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Dedication

To those suffering in silence from Osteoporosis





‘My object is not to establish that I was right but to find out if I am. In fact we shall

question everything all over again and we shall go forward not in seven-league boots but at

a snail’s pace. And whatever we wish to find we shall regard, once found, with particular

mistrust.’

Excerpt from Scene 9, Life of Galileo, Bertolt Brecht





Mohamed HAFRI

Segmentation de l’os cortical pour la prédiction des

fractures ostéoporotiques. Application à l’imagerie in vivo

(HRpQCT)

Résumé :

Cette thèse concerne la segmentation d’images HRpQCT et l’évaluation d’indices morphologiques de l’os

cortical pour le diagnostic de l’ostéoporose et la prédiction des fractures osseuses. Dans un premier temps,

deux méthodes sont proposées pour la segmentation de l’os cortical. La première utilise une nouvelle

approche des contours actifs basée sur la logique floue suivie d’une nouvelle technique de remplissage

développée pour imiter le comportement des opérateurs pour séparer l’os cortical de l’os trabéculaire. La

deuxième approche est une technique 3D à double contours actifs combinant à la fois les informations

locales le long et entre les deux contours. Les deux approches de segmentation sont comparées à celles

de l’état de l’art afin de valider leurs performances. Dans un second temps, différents indices extraits de l’os

cortical sont utilisés pour déterminer leur potentiel de prédiction des fractures ostéoporotiques. Les résultats

obtenus montent que l’analyse globale de l’os cortical masque des variations potentiellement importantes.

Par conséquent, une décomposition régionale de l’enveloppe corticale est proposée afin d’améliorer la

prédiction du risque fracturaire.

Mots clés : Segmentation, contours actifs, ostéoporose, os cortical, fracture

Cortical bone segmentation for the prediction of osteoporotic fractures. Application

in vivo (HRpQCT)

Abstract :

This thesis concerns the segmentation of HRpQCT images and the evaluation of the cortical bone parameters

for the osteoporosis characterization and the fracture prediction. Firstly, two approaches were proposed to

segment the cortical bone. The first uses a new fuzzy energy active contours approach followed by a new

filling technique designed to mimic the behaviour of clinicians while extracting the cortical bone from the tra-

becular one. The second approach is a local based 3D dual active contours approach proposed to separate

between three regions constituting the image. To move, this approach combines the local information along

each point in the two contours conjointly with the information between them. The segmentation results of

these approaches were confronted to the state of the art methods to validate their performance. Secondly,

different parameters were extracted from the segmented cortical bone to monitor the association of these

parameters with the osteoporotic fracture prediction. Global analysis of the cortical bone obscures potentially

important regional variations. Therefore, regional cortical decomposition was proposed to illustrate that

cortical sub-regions could improve the evaluation of fracture risk than the global analysis of the cortical bone.

Keywords : Segmentation, active contours, osteoporosis, cortical bone, fracture
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Introduction

Motivations

Osteoporosis is a skeletal pathology characterized by a decrease in the bone density and a

change (deterioration) in the bone micro-architecture. As bones become more porous and

fragile, the risk of bone fracture is greatly increased. This pathology is usually referred

as a silent disease, because, often there are no symptoms until the first fracture occurs.

This leads to an alteration of the quality of the life or even to the death of the patient.

The bone is a living, growing tissue that undergoes a constant cycle of bone model-

ing/remodeling throughout life. This process ensures that old damaged bone is removed

and replaced with a new, mechanically stronger bone to preserve the bone rigidity and

strength. Osteoporosis appears when an imbalance in this cycle (modeling/remodeling)

happens. This occurs with the skeleton aging and different other factors, such as: tobacco,

alcohol consumption, menopause,etc.

Each bone is composed of two compartments, cortical and trabecular bone. The cortical

bone is the solid outer shell and trabecular bone is the inner mesh of spongy look. After

menopause, the bone loss is more apparent in the trabecular bone than it is in the cortical

one. Therefore, researches have been focused on studying the relationship between the

trabecular bone and the fragility fractures, neglecting the role of the cortical bone. Despite

the fact that about 80% of fractures in old age arise at sites that are mainly cortical, and

happen after the age of 65, where most bone loss is cortical, not trabecular.

With the population aging, bone pathologies in particular osteoporosis have become in-

creasingly widespread along with an increase in the associated care cost. Therefore, dif-

ferent imaging technologies have been developed to further comprehend these pathologies

and monitor the response or nonresponse to therapies. Among the different imaging tech-

nologies, High Resolution peripheral Quantitative Computed Tomography (HRpQCT)
1



2 Introduction
technique is considered one of the most interesting developments to assess the bone

strength. This technology opened a new perspectives in the three dimensional in-vivo

exploration of the bone tissue with a high resolution of ∼ 82µm. Along this advancement

in image acquisition and quality, different parameters of the cortical and trabecular bone

are now available. However, an accurate extraction of these parameters depends mainly

on the employed segmentation technique to separate the cortical and trabecular bones.

This thesis is therefore focused on studying the cortical bone, which represents 80% of the

human skeleton. Acquisitions from HRpQCT scanner allowed us to analyze the cortical

bone in the radius and the tibia sites.

Objectives

Image segmentation is the first step in structural image analysis. It simplifies the under-

standing of the image by dividing it into meaningful structures (regions). In our case, it is

the problem of separating between the cortical and trabecular bone in HRpQCT images.

Defining an accurate image segmentation method is a challenging task, because it affects

the results of all the following steps. Several segmentation techniques have been proposed

in the literature. Among the state of the art techniques, Active Contours Models have

received more attention and have been extensively used in medical image segmentation.

Active Contours, as the name implies, its idea is based on evolving a contour (also referred

as a curve) in the image domain using two forces. The first one, often called external force,

pulls the contour towards the features of interest. The other one, often called internal

force ensures the smoothness of the contour during evolution.

Based on Active Contours Models, we have proposed two approaches to segment cortical

bone in HRpQCT images. The first approach consists of a new fuzzy energy active

contours approach, to segment the bone (cortical and trabecular) in HRpQCT images.

Afterwards, a post-processing algorithm is used to separate the two bones. The second

approach is a novel 3D dual active contours technique able to segment the cortical bone

and its erosions automatically. This approach introduces a new concept, where the two

contours evolve minimizing a shared energy, to encapsulate the object of interest between

the two contours.

The performance of these two approaches is performed on the QUALYOR database.
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Different similarity measures are used to validate the performance of the two proposed

approaches compared to state of the art techniques.

Furthermore, an additional objective of this thesis is to predict the osteoporotic frac-

tures. After the image segmentation step, we quantified the different cortical parameters

to establish a relationship between these parameters and patients prone to fractures. The

predictive capabilities of the proposed approach were compared with the HRpQCT scan-

ner. Based on these results, we deduced that global analysis of the cortical bone obscure

potentially important regional variations. Therefore, the second study focused on par-

titioning the cortical bone to four regions to study the association between the regional

cortical parameters and the incident Fractures.

Thesis Plan

This thesis is divided into three parts. The first part consists of 2 chapters, that present

successively notions on bone tissue, osteoporosis, and then state of the art on imaging

modalities.

Chapter 1 presents bone tissue. The characteristics of the later, whether chemical,

cellular or histological are discussed. Then a detailed description of the bone tissue

remodeling phase is explained, and how an alteration of its mechanism can be of concern

for bone loss (osteoporosis). The etiology and epidemiology of this disease in worldwide

and in France in particular is also discussed.

Chapter 2 is devoted to the state of the art of different imaging methods to characterize

the bone tissue. These techniques have been categorized into two groups based on the

provided information (Bone density and quality). The advantages and disadvantages

of each method are discussed in particular the case of HRpQCT images. Finally, the

application of these techniques to predict osteoporotic fractures is illustrated.

Chapter 3 provides the state of the art of image segmentation methods with a particular

focus on active contours. A detailed survey of the latter is given. Based on the external

force, the active contours techniques are divided into two categories. One uses the edge

information and the other uses the pixels variations. Furthermore, different variations of

active contours are also outlined.

The second part of the thesis is composed of two chapters outlining the two first contri-
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butions of this work.

Chapter 4 presents the HRpQCT Image segmentation problem, starting briefly with the

state of the art techniques. Then, a detailed presentation of the database QUALYOR

of patients used for the segmentation and for the prediction of osteoporotic fractures is

provided. Finally, the different similarity metrics used for the performance validation are

provided.

Chapter 5 details the proposed active contours based HRpQCT segmentation methods.

Starting with the first proposed fuzzy energy active contours method to segment the bone

from background, followed by a post-processing algorithm applied to separate the cortical

and trabecular bones. The second contribution consists in the 3D Dual active contours.

This approach presents a novel framework of active contours that employ the energy of

two curves to segment objects that share the same intensity level with different textures.

Chapter 6 is dedicated to the use of the proposed segmentation techniques in identifying

patients prone to fractures. A local cortical region study was evaluated to demonstrate

the fact that global analysis can obscure potentially important regional variations in the

cortical structure.

Finally, this manuscript is concluded with a brief summary of the thesis, and prospects

for future studies.



Chapter 1

Bone Tissue

1.1 Introduction

Despite appearing dry and lifeless, the human bone is a highly specialized supporting

framework of the body, characterized by its rigidity, hardness, and power of regeneration

and repair. Therefore, before discussing methods of characterization of the bone, it is

useful to recall the bone structure and physiology to further understand the different

bone pathologies, in particular osteoporosis.

The bone is made mostly of collagen protein which provides a soft framework, and

a calcium phosphate mineral which adds strength and hardens the framework. The bone

is mostly composed of two components, cortical and trabecular bone. The cortical bone

is a thick and solid outer shell that surrounds the marrow space, and the inner bone

(Figure 1.1). The second component is an inner mesh of spongy look known as cancelous or

trabecular bone, with blood and bone marrow between the struts of bone [1] (Figure 1.1).

The bone is a living, growing tissue that undergoes a constant cycle of bone mod-

eling/remodeling throughout life to remove old, damaged bone and replace it with new,

mechanically stronger bone to preserve the bone strength. With the skeleton aging, cou-

pled with several factors an imbalance in the bone remodeling process occurs, hence, a

modification of the mechanical properties of the skeleton resulting in a weak and fragile

bones prone to fractures. This leads to a disease called osteoporosis.
5
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Figure 1.1: Illustration of the cortical and trabecular bone structure
https://basicmedicalkey.com/skeletal-tissues/

1.2 Structure of the bone

The adult human skeleton is composed of 80% cortical (compact) bone and 20%

trabecular (spongy) bone [2]. As the name of the two bones imply, they are different in

density and how tightly the bone tissue is packed together.

1.2.1 Cortical Bone

Cortical bone is the firmer thick outer layer of bone tissue which supports the whole

body weight and covers the internal surface. At microscopical level (Figure 1.1), the

cortical bone is composed of closely packed osteons also referred as Haversian systems.

These osteons consist of a set of rings (lamellae) centred over a canal called the Haversian

canal. Between these rings, the bone cells (osteocytes) are located in spaces called lacunae.

The Haversian canals contain blood vessels that are parallel to the long axis of the bone.

These blood vessels interconnect through perforating canals (Volksman), with the vessels

on the surface of the bone.

Cortical bone is enclosed by an outer, and inner surfaces called periosteal and en-

dosteal surfaces, respectively. The periosteum (outer surface) is a membrane that sur-

rounds the cortical bone, except at joints where the bone is lined by articular cartilage.

It protects, nourishes, aides in the bone formation, and plays an important role in appo-

https://basicmedicalkey.com/skeletal-tissues/
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sitional growth and fracture repair.

The endosteum is a membranous structure covering the inner surface of cortical and

cancellous bone and the blood vessel canals (Volkmann’s canals) present in bone. [3]

1.2.2 Trabecular Bone

Compared to cortical, the trabecular bone is lighter and less dense, it can be found

at the end of long bones and within the interior of vertebrae. Microscopically (Figure 1.1),

trabecular bone consists of plates (trabeculae) and bars of bone adjacent to small, irregular

cavities that contain red bone marrow. It may appear that the trabeculae are arranged in a

haphazard manner, but actually they are organized so as to provide a maximum strength

to the bone, similar to braces that are used to support a building. The trabeculae of

spongy bone follow the lines of stress and can realign if the direction of stress changes.

[3]

The bone constantly undergoes the process of regeneration, reshape and repair during

lifetime to help it adapt to changing biomechanical forces, and also remove old, micro-

damaged bone and replace it with new, mechanically stronger bone. This two processes

are referred as bone modeling and remodeling.

There are three types of cells that contribute to bone homeostasis. Osteoblasts,

Osteoclasts, and Osteocytes. Osteoblasts are the bone-forming cells that create new

bone, Osteoclasts are the bone-resorbtion cells that remove and break down bone, and

osteocytes are mature bone cells. An equilibrium between osteoblasts formation and

osteoclasts resorbtion maintains the bone tissue status.

1.2.3 Bone Modeling and Remodeling

Throughout one’s lifetime, the human skeleton changes its size and shape, and this

is characterized predominantly by two processes : bone modeling and remodeling.

Bone Modeling

The bone modeling (reshaping) occurs intensively in the first two decades where it

involves the growth throughout the childhood and shaping of the bone. It can also occur

following a bone fracture or mechanical stress. Therefore, during this process, bones widen
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Figure 1.2: The Bone Remodeling Cycle. Source : Encyclopedia Britannica

and/or change their overall shape in response to physiologic influences or mechanical forces

as described by Wolff’s law, leading to gradual adjustment of the skeleton to the forces

that it encounters.

In response to bio-mechanical forces and fractures, bones change and old damaged

bone tissue are removed and replaced by a new bone tissues on the affected surfaces.

Bone Remodeling

Bone remodeling is a lifelong process wherein old damaged bone tissue is removed

(a subprocess called bone resorption) and new bone tissue is added (a subprocess called

bone formation). It is estimated that 5 to 10% of the skeletal is renewed each year. In

addition to being a process that happens continuously and throughout life, bone remod-

eling can occur following injuries like fractures and also bone micro-damage to prevent

damage accumulation which can happen following normal activities [4]. Furthermore,

bone remodeling also responds to mechanical loading. This explains the fact that bone

can be added into certain locations where it is required and removed where it is not.

Normal bone remodeling cycle requires a balance between the bone resorption and

bone formation. This balance depends on the activation of two cells, osteoclasts for

resorption and osteoblasts for formation. Based on the development of these two cell

types, the bone remodeling cycle can be divided into the following six states:

• Quiscent Phase: the bone is at rest- where bone cells are seen layed on the endosteal
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surface.

• Activation Phase: as the name implies, this phase is the activation of the endosteal

surface prior to resorption. This phase includes an interaction between the osteoclast

and osteoblast precursor cells. This leads to the differentiation, migration, and

maturation of osteoclasts which will be attached to the mineralized bone surface to

start resorption [5, 6].

• Resorption Phase: The matured osteoclasts start dissolving mineralized bone and

degrading the bone matrix.

• Reversal Phase: it is the phase where osteoblasts finished resorption and signals has

been emitted to announce the end of bone resorption and the beginning of bone

formation. These signals are yet to be identified[3].

• Formation Phase: the osteoclasts are replaced by osteoblasts with underlying new

osteoid matrix

• Mineralization Phase: 30 days after the depostition of new osteoid and under the

action of phosphatases secreted by the osteoblasts, the mineralization phase begin.

This process lasts 3 months in the trabecular bone and more than 4 months (130

days) in the cortical one.

The skeleton is a metabolically active organ that undergoes continuous remodeling through-

out life which is estimated to take a duration of 2-8 months. The main functions of

the bone remodeling process are the preservation of structural integrity and stiffness of

the skeleton, and also maintaining the calcium and phosphorus homeostasis to subserve

metabolic functions. Until reaching the bone mass peak (30 years), the two subprocess

(resorption and formation) are positively balanced. From this stage, resorption will dom-

inate the formation gradually reducing the bone mass resulting in certain cases a very

fragile bones, referred as the osteoporosis disease.

For women, bone loss is fastest in the first few years after menopause, and it continues

into the post-menopausal years. Osteoporosis which mainly affects women but may also

affect men will develop when bone resorption occurs too quickly or when replacement

occurs too slowly. Osteoporosis is more likely to develop if you did not reach optimal

peak bone mass during your bone-building years.
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1.3 Osteoporosis

1.3.1 Definition

According to the World Health Organization, Osteoporosis, or porous bone, is a

disease characterized by low bone mass and structural deterioration of the bone tissue,

leading to bone fragility and an increased risk of fractures of the hip, spine, and other

skeletal sites [7].

Beyond the third decade, an imbalance in the mechanisms of bone formation and

resorption is noticed in favor of the latter. With the skeleton aging, this imbalance is

further heightened, hence a modification of the mechanical properties of the skeleton

resulting in a weak and fragile bones prone to fractures. When the the risk of fractures

is particularly high, this stage is then considered as osteoporosis.

The amount of bone loss relies predominately on the remodeling process. This pro-

cess is initiated on the surfaces of the bone. Hence, it is obvious that a bone with a

large exposed surface will be remodeled rapidly [8]. This justifies the fact that trabecular

bone which has a bigger bone surface is more exposed to bone remodeling compared to

the cortical bone [8]. Therefore, bone loss is more apparent in the trabecular bone than

it is in the cortical. This finding coupled with fractures of the vertebral body, which is

a structure containing large amounts of trabecular bone, have shifted the focus of the

researchers, on only studying the relationship between the trabecular bone and fragility

fractures [9, 10]. This neglects the role of the cortical bone in bone pathologies and in

particular bone loss (osteoporosis). Despite the fact that, about 80% of fractures in old

age are non-vertebral, and arise at sites that are mainly cortical, and happen after the

age of 60, when the rate of trabecular bone loss decelerates [11].

A recent study [12] has prevailed contrary to previous views, that the peripheral bone

loss in the first 15 years after menopause makes only a small contribution to the total

bone loss. Moreover, most old age fractures occur at predominately cortical sites after

the age 65, where most bone loss is cortical, not trabecular [13]. This what motivated the

research conducted in this thesis concerning the segmentation and the characterization of

the cortical bone.
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1.3.2 Epidemiology

Prevalence

Due to the impact on the quality of life and economic burden induced by fractures,

osteoporosis has become a major public health issue throughout the world [14]. Approx-

imately 200 million people in the world are osteoporotic and 8.9 million fractures occur

each year worldwide [15]. This is related to the growing percentage of the elderly pop-

ulation worldwide, as people age, bone mass declines and therefore the risk of fractures

increases. Here are some statistical facts about France:

• 4 out of 10 women over the age of 50 are affected by osteoporosis as 1 out of 8 men

are.

• After 80 years of age, 70% of women are osteoporotic.

• 50,000 to 150,000 new cases of vertebral fractures occur each year.

• The mortality rate is higher in men (10-14% versus 5% in women) related to the

lifestyle.

• The morbidity rate is also important: 50% of patients with hip fractures perma-

nently lose their independence.

Economic burden

In 2010, osteoporosis cost the French health system approximately e4.9 billion, with

an annual cost projected to approach e6.1 billion by the year of 2025. [16] These med-

ical costs include first year costs, subsequent year costs and pharmacological fracture

prevention costs amounted in 2010 to e3.179 billion, e1.329 billion and e346 million,

respectively.

This increase of cost is proportionally related to the number of elderly population

(over age 50) which expected to increase from 22,6 million in 2010 to 27,1 million in

2025 [16]. And because osteoporosis is a silent disease, the majority of this population

doesn’t find out that they have osteoporosis until a fracture occurs. Therefore, the total

number of fractures is estimated to rise from 377,000 in 2010 to 491,000 in 2025. [16] The

hip, vertebrae and forearm are the three main sites of osteoporotic fractures. Due to the

importance of the consequences on the quality, and the lifetime of the patient, fractures

of the hip and vertebrae are the most monitored. Hip fractures are associated with
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increased hospitalizations and surgical procedures. These operations lead to prolonged or

permanent immobilizations and are associated with mortality. In fact, in about 20% of

the cases, death occurs in the year following the fracture [17]. This is due, in particular

to the cardiac, pulmonary or infectious complications that can occur rapidly after surgery

in the elderly population [36]. On the other hand, vertebral fractures can induce pain,

severe deformations of the column, and mortality [18].

1.3.3 Etiology

There are four types of osteoporosis: primary, secondary, osteogenesis imperfecta,

and idiopathic juvenile. Primary osteoporosis is the most common type of osteoporosis,

it is related to skeletal senescence and menopause in women. Secondary osteoporosis is

much less frequent, it occurs as a result of taking certain medicines, such as oral or high-

dose inhaled corticosteroids. It may also happen as a result of metabolic or endocrine

diseases. The third type is Osteogenesis imperfecta, which is a rare form of osteoporosis

that is present at birth and can cause bone breaks for no apparent reasons. Another rare

form of osteoporosis is the Idiopathic juvenile osteoporosis which occurs only on children

between the age of 8 to 14.

In this manuscript, only the primary osteoporosis is studied. It affects both men

and women of 70 years of age or higher. It is a multi-factorial disease, and several

epidemiological surveys have gathered the different risk factors:

• Menopause is the main risk factor for osteoporosis, because of the sudden decrease in

estrogen levels [19]. Estrogen deficiency increases bone resorption by increasing the

number of osteoclasts (by promoting their formation and decreasing their apoptosis)

while stimulating their activities [20].

• Genetic factors: a family history of fractures, particularly, hip fractures [21]

• Nutritional and environmental factors: low calcium intake, vitamin D deficiency,

alcoholism, smoking, physical inactivity, leanness [22].

• Occurrence of a first fracture event: vertebral compression or non-vertebral fracture.

• Taking medicines for the treatment of certain conditions such as rheumatoid arthri-

tis, hyperthyroidism, hypercorticism, etc.

As previously mentioned, menopause is the main risk factor for osteoporosis, there-

fore, our study was carried out on a population of menopausal women. In this type
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of population, bone loss was significantly associated with an increased risk of fracture

[23, 24].

1.4 Conclusion

In this chapter, different informations concerning the bone tissue were presented,

including its structure and functions, finishing with the osteoporosis disease along with

its epideomiology and etiology. The public health impact of this pathology justifies the

interest in developing more efficient and less costly methods to characterize the bone

tissue and estimate the bone fragility resulted by this disease. Bone strength reflects the

integration of 2 main features, bone density and bone quality. Based on these features

several imaging techniques have been proposed such as DXA, CT, MRI, HRpQCT, etc.

The following chapter provides a detailed survey of existing imaging technologies regarding

the osteoporosis disease.



Chapter 2

Bone Imaging

2.1 Introduction

Osteoporosis is the most common metabolic bone disorder, characterized by a com-

promised bone strength resulting in brittle bones that can break easily [25], leading to a

chronic pain, deformity and reduced mobility. Unfortunately, while treatments for osteo-

porosis are in place, currently no cure exists [26]. However, an early diagnosis of the bone

status can help prevent the osteoportic fractures [27]. This preventive system is based on

the use of pharmacotherapy which needs a clear guidelines to be initiated, because they

are expensive and can produce side effects [28]. Therefore, diagnostic imaging techniques

should be put in place to monitor and assess the response or nonresponse to these phar-

macotherapies. In the last decades, the gold standard for assessing the bone strength in

osteoporotic studies was based on the Bone Mineral Density (BMD). However, different

studies [29, 30] have illustrated that BMD is not an accurate predictor for osteoporotic

fractures. This is because BMD alone does not reflect the bone strength, as it needs to

be integrated with the bone quality (Figure 2.1)[31, 32]. Bone quality is characterized by

bone geometry, turnover, microarchitecture, modeling/remodeling, and material content

(mineral, collagen, crystal structure and micro-damage) [33]. Correctly diagnosing and

interpreting fragility fractures with all available imaging modalities is one of the major

responsibilities facing the osteoporosis studies.

In this chapter, the use of the early methods of quantitative skeletal assessment based

on BMD in particular Dual-energy X-ray Absorptiometry (DXA) and its advantages and

disadvantages are discussed. Furthermore, qualitative skeletal assessment techniques to
14
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Figure 2.1: Parameters that contribute to the bone strength.

study the bone microarchitecture are examined with a particular focus on High Resolu-

tion peripheral Quantitative Computed Tomography (HRpQCT). Finally, the different

parameters extracted from these imaging modalities and their feasibility in the fracture

prediction are discussed.

2.2 Quantitative bone assessment

2.2.1 Digital X-Ray Radiogrammetry

Radiogrammetry is the first quantitative method of skeletal assessment. This tech-

nique uses the conventional radiographs to make quantitative measurements of the bone,

such as cortical thickness and width. This method was most commonly applied to the

diaphysis of the second metacarpal of the non-dominant hand, with the cortical thickness

measured and calculated as a percentage of the midshaft bone diameter of the ‘metacarpal

index’.

An automated digital version of this, referred as Digital X-ray Radiogrammetry

(DXR) was described in [35, 34]. The basic concept of this methodology is to automatically

locate several regions around the digital hand radiographs and segment the diaphysis into

cortical and medular parts (Figure 2.2). From this segmentation, the average thickness,

width and porosity of the cortical bone are calculated to provide an estimate of the

metacarpal BMD using the following formula:

BMDDXR = c× V PAcomb × (1− p) (2.1)
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Figure 2.2: The regions of interest used for the calculations of BMD estimate are shown
as the highlighted areas. In the metacarpals, the cortical thickness is determined on both
sides (radial and ulnar sides), while in the radius and ulna only the radial and ulnar sides
respectively are used. Source [34]

where, c is an empirical density constant used to calibrate the BMDDXR so that the

BMDDXR on average is equal to the BMDDXA of the mid-distal forearm region, p is

the fraction of the cortical bone that is not occupied by bone [36], and V PAcomb is the

combined bone Volume Per Area, and is the average VPA of each bone regions. The

VPA of a single bone is computed assuming that this bone is cylindrical, T is its cortical

thickness and W is its width. :

V PA = π × T × (1− T/W ) (2.2)

In the case of the short term in vivo precision, the coefficient of variation (CV) of

this technique is reported to be between 0.60% and 1.00%. This high level of precision

can capture the changes in BMD over short periods (6 – 12 months) of follow-up. Further-

more, in osteoporotic studies, DXR has been shown to predict hip, wrist and vertebral

fractures[37, 38, 39].

2.2.2 Dual-energy X-ray absorptiometry (DXA)

DXA introduced to clinical use in 1987 is the most widely used technique for bone

densitometry in research studies and clinical diagnosis [40]. The patient is radio-graphed
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with two X-Ray beams with differing peak kilo-voltage (30–50 and 70 keV) that allows it

to subtract the soft tissue component. This enables the measurement of the areal BMD

on the lumbar spine (L1–L4), proximal femur, and distal radius (Figure 2.3).

(a)

(b)

(c)

Figure 2.3: The sites scanned routinely, and from which diagnosis of osteoporosis is
made, are (a) lumbar spine L1–L4, (b) proximal femur neck, and (c) distal femur.

In addition to the areal BMD (in g/cm2), this technique provides other parameters

such as: bone mineral contents (BMC in g/c2m), bone area (cm2), T scores and Z scores.

T scores are standard deviations compared with a young adult reference population, while

Z scores are standard deviations compared with an age-matched reference population [41]

and can be calculated as follows:

T − score =
Measured BMD− Young adult mean BMD

Young adult population SD
(2.3)

Z − score =
Measured BMD− Age matched mean BMD

Age matched population SD
(2.4)

Based on the T score calculated over female population, four essential diagnostic categories

have been established by the World Health Organization (WHO) and the International

Osteoporosis Foundation (IOF) [42] to assess osteoporosis using DXA:

Despite being used in the clinical routine for the diagnosis of osteoporosis, DXA

suffers from several limitations mainly in its two dimensional nature, because it provides
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Table 2.1: The four diagnostic categories designed by WHO and IOF to assess
Osteoporosis using T-score

Status T − score

Normal > –1

Low bone mass (Osteopenia) −2.5 < T − score < −1

Osteoporosis 6 –2.5

Severe Osteoporosis < −2.5 with one or more fragility fracture in the past

Figure 2.4: Fracture rate, BMD distribution, and number of fractured based on NORA
[29].

a 2D projection of the 3D bone structure. Therefore, it cannot capture the 3D bone mor-

phology nor its microarchitecture. Furthermore, different studies [29, 30] have illustrated

that BMD cannot be used alone to predict osteoporotic fractures because less than 50%

of the variation in the bone strength is attributable to variations in BMD [43].

For instance, The US National Osteoporosis Risk Assessment (NORA) study [29]

revealed that 82% post-menopausal women with a fracture after one year of follow-up

had a T − score > −2.5 and 67% had a T − score > −2.0 as illustrated in Figure 2.4.

Similarly, in a Rotterdam cohort [30], 56% of the non-vertebral fractures in the women and

79% in the men were belonging to osteopenic individuals with a −2.5 < T − score < −1.

This is mainly due to the fact that BMD does not represent many factors that influence

bone strength, and a variety of non skeletal factors that contribute to fragility are not

considered. Therefore, efforts have been made to formulate a new system to better predict

fracture risk using different factors other than the BMD. A Fracture Risk Assessment tool

(FRAX) was proposed in [44]. This tool takes in consideration different clinical factors

illustrated in Table 2.2 to compute the 10-year risk of hip and other osteoporotic fractures.

The FRAX algorithm has been developed after studying population-based cohorts
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Table 2.2: Clinical Risk Factors Considered in FRAX tool

Clinical Risk Factors Description

Country of residence Available in different states now

Age Accepts ages between 40 and 90 years

Sex Male/Female

Race offered only in US

Weight, Height Calculate Body Mass Index (BMI in kg/m2)

History of fragility fracture Including radiographic evidence of vertebral compression
fracture

Family history of osteoporosis Hip fracture in mother or father

Current smoking

Corticosteroid use Exposed to > 5 mg/day of prednisolone for > 3 mo (or equiv-
alent doses of other glucocorticoids)

Rheumatoid arthritis Diagnosis confirmed by a health-care professional

Secondary osteoporosis Type-I diabetes, osteogenesis imperfecta in adults, untreated
long-standing hypothyroidism and hypogonadism or prema-
ture menopause, chronic malnutrition or malabsorption, and
chronic liver disease

Alcohol intake > 3 units/day (a unit of alcohol is equivalent to a glass of
beer [285 mL], an ounce [30 mL] of spirits, or a medium-sized
glass of wine [120 mL])

from Europe, North America, Asia and Australia, integrating clinical risk factors, with

or without BMD at the femoral neck, to produce finally a 10-year probability of hip and

major osteoporotic fracture Figure 2.5.

However, several limitations need to be considered while using the FRAX tool [45],

due to the fact that, the reported rates of major osteoporotic fractures at sites other

than the hip may not be accurate [30]. This is because, all patients with hip fracture

are admitted in hospitals and therefore recruited in the cohort. However, patients with a

wrist or proximal humeral fracture are usually excluded and treated as outpatients. This

leads to an underestimation of the fracture probability associated with these sites.

Furthermore, Other densitometric techniques have been described in the literature

but haven’t received the proper attention such as Quantitative CT which can unlike DXA

produce volumetric(3D) measurement of the lumbar spine and the proximal femur. More-

over, cross-sectional studies have shown that BMD measured using quantitative CT for

the spine can discriminate individuals with fragility fractures better than BMD measured

using DXA [46, 47]. However, QCT still suffers from several drawbacks, including its

higher radiation dose (0.06 – 2.9 mSv), the limited number of longitudinal scientific stud-
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Figure 2.5: FRAX algorithm for the assessment of fracture probability

ies monitoring the role of QCT in predicting osteoporotic fractures, and more importantly,

the QCT T − scores are yet to be used in the definition of osteoporosis [27].

2.3 Qualitative bone assessment

One of the most important factors that motivated the assessment of the bone strength

using its structure (quality) is because of the non-reliability of the BMD based techniques.

As has been stated by the US National Osteoporosis Risk Assessment study [29] which

revealed that only 18% of patients with a T score <-2.5 have fractures. This finding

indicates that the bone strength is can be in fact explained using additional parameters

to BMD to better determine the osteoporosis effect and the fracture risk.

The standard method to quantitatively describe the bone architecture is the estima-

tion of morphometric indices, which was previously achieved using the histomorphometry

parameters extracted from bone biopsies [48].

These parameters represent the morphological and topological characteristics of the

trabecular bone such as the thickness of the trabeculae (Tb.Th), and their spacing (Tb.Sp

: Trabecular separation) or the characteristics of the cortical bone such as the cortical

thickness (Ct.Th), and the cortical porosity (Ct.Po) as they are further described in

Table 2.3.
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Figure 2.6: Sphere fitting technique for trabecular thickness and separation measure-
ment

Table 2.3: Definition and description of bone morphology parameters

Abbreviation Description unit

TV Total volume = Volume of the entire region of interest mm3

BV Bone volume = Volume of the region segmented as bone mm3

BS Bone surface = Surface of the region segmented as bone mm2

BV/TV Bone volume fraction = Ratio of the segmented bone vol-
ume to the total volume of the region of interest

%

BS/TV Bone surface density = Ratio of the segmented bone sur-
face to the total volume of the region of interest

mm2/mm3

BS/BV Specific bone surface = Ratio of the segmented bone sur-
face to the segmented bone volume

mm2/mm3

Tb.N Trabecular number = the average number of trabeculae
per unit length

1/mm

Tb.Th Trabecular thickness = Mean thickness of trabeculae, as-
sessed using direct 3D methods

mm

Tb.Sp Trabecular separation = Mean distance between trabecu-
lae

mm

Tb.Th.SD Standard deviation of trabecular thickness mm

Tb.Sp.SD Standard deviation of trabecular separation mm

Ct.V Cortical Volume mm3

Ct.Ar Cortical bone area = cortical volume (Ct.V)÷(number of
slices × slice thickness)

mm2

Tt.Ar Total cross-sectional area inside the periosteal envelope mm

Ct.Th Average cortical thickness mm

Ct.Th.SD Standard deviation of cortical thickness mm

Ct.Po Cortical porosity = the volume of pores (Po.V, mm3) ÷
the volume of cortical bone (Ct.V, mm3)

%

Po.N Pores Number n

Avg.Po.V Average Pore Volume = Po.V ÷ Po.N mm3

Po.Dn Pore density = Po.N ÷ Ct.V

The calculation of these parameters should be based on 3D calculations. For Ct.Th,

Tb.Th, Tb.Sp, and Tb.N a sphere-fitting technique, where for thickness measurement
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spheres are fitted to the object and for separation the spheres are fitted to the background

[49](Figure 2.6). Afterwards, the diameter of the largest possible sphere that can be fitted

through each voxel is computed and then the average of these diameters is considered

the mean thickness or separation. If the image resolution is sufficient like in the case

of HRpQCT, further measurement can be computed for cortical bone such as cortical

porosity (Ct.Po, as Po.V/Ct.V, %), total pore volume (Po.V, mm3), pore number (Po.N,

#), average pore volume (Po.V/ Po.N, mm3), the standard deviation of the pore volume

(Po.V.SD, mm3), and pore density (Po.N/Ct.V, mm3).

In the recent years, researchers were focused on the development and improvement of

noninvasive high resolution imaging technologies such as: MRI and QCT to characterize

bone structure using these parameters, which was previously achievable only using invasive

bone biopsy [48].

2.3.1 High-resolution MRI

Magnetic resonance imaging (MRI) uses magnetic fields and radiation frequency

rather than ionization used in CT and conventional radiography. In MRI, it is the com-

bination of an intense magnetic field, gradients of magnetic fields in the three directions

of space and radiofrequency pulses that generate images in three dimensions. The align-

ment of the magnetic moments of the protons of water as a result of the application of

an intense magnetic field produces a resultant magnetization. However, high resolution

MRI is limited by its relatively low signal-to-noise ratio compared to QCT. Moreover, in

vivo MRI takes long acquisition times (12 mins), which makes it susceptible to motion

artifacts. Furthermore, the spatial resolution with MRI is not in the range of trabecular

dimensions (in-plane resolution, 0.15-0.3 mm2; section thickness, 0.3-1 mm), which results

in false over/under estimation of the trabecular parameters.

The possibility of obtaining three dimensional images without the use of radiation

makes this technique attractive for scientific and clinical studies. Furthermore, it provides

the best current resolution with clinical routine devices [50]. However, this technique has

been mainly established for peripheral imaging of the distal radius, tibia, and calcaneus.

A number of studies were performed that demonstrated that MRI can provide ad-

ditional information to BMD for the differentiation between patients with and without

fragility fractures [51, 52, 53]. A very limited number of longitudinal studies have shown
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the possibility of monitoring the effect of treatments on bone formation [54]. However,

the use of MRI remains confined to research because of its low availability and cost [55].

2.3.2 High Resolution peripheral Quantitative Computed To-

mography (HRpQCT)

In the past twenty years, one of the most interesting developments to assess bone

strength was the introduction of high resolution peripheral QCT scanners. This opened

new perspectives in the exploration of the bone tissue. This imaging technology is based

on a computerized processing of X-ray attenuation (measured in Hounsfield Units, HU)

for the acquisition of sectional images, in the same way as a conventional CT scan does.

This relatively low radiation (<3 µSv) and non-invasive method provides a new in

vivo information on the three-dimensional bone microarchitecture and volumetric BMD

of the cortical and trabecular bones in the appendicular sites, commonly the radius and

the tibia (Section 2.3.2) with a voxel size of 82 µm.

The scanner performing the HRpQCT images is currently dominated by one single

manufacturer (XtremeCT, Scanco Medical AG, Brütisellen, Switzerland) [56].

Figure 2.7: Tibia scan of a patient using Xtreme CT scanner (a), the scout view (b),
and 2D ultra-distal scan of tibia (c) and distal scan (d)

The standard scanning procedure of HRpQCT starts by immobilizing the non dom-

inant limb (hand or leg) of the patient in a carbon fiber shell to avoid artifacts resulting

from motion. Initially, a 2D X-ray scan (referred as a scout view) is obtained to determine

the precise region to be scanned as illustrated in Section 2.3.2b. On the Scout-View, a

reference line has to be set. This reference line determines the position of the site to be

scanned with a fixed offset from this line (in mm or %), depending on the control file

settings (by default it is 9.50 mm for radius and 22.5 mm for tibia). Each site includes
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110 slices, totaling an extension of 9.02 mm (110 × 0.082 mm) along the axial axis of

the bone. The first slices close to the articulation are referred as ultra-distal slices (Sec-

tion 2.3.2c) where the trabecular bone predominates and the cortical bone is thin. On the

other hand, along the axial axis when the cortical bone is thickening up, these slices are

referred as distal slices (Section 2.3.2d). The acquisition of this 3D images takes approx-

imately 3 minutes using the default human peripheral in vivo scanning protocol : X-Ray

tube current = 95 100 mA, X-Ray tube potential = 60 kVp, voxel size = 82 µm, and a

1536 × 1536 matrix.

What makes HRpQCT an interesting imaging technology is the clinical need for an

imaging modality with lower radiation dose and better spatial resolution. The low dose

radiation is related to the low radio-sensitivity of the targeted anatomical zones. However,

by limiting itself to the peripheral regions, HRpQCT imaging excludes the analysis of the

lumbar spine and the proximal regions of the tibia and therefore the main fracture sites

[27].

Similarly to CT scanners, the HRpQCT imaging could be distorted by different

artifacts such as ring, metal, or motion artifacts [57].

Ring artifact: Occasionally, this defect occurs when a mis-calibration or a failure of

one or more detector elements in the scanner. This phenomenon creates an artifact that

looks like rings or half rings around the isocentre (rotation center) of the reconstructed

image and are usually visible on multiple slices at the same location. This artifacts can

be resolved by a recalibration of the scanner.

Motion artifact: During scanning, the radiation source is rotating relative to the

sample, to obtain different X-Ray projections from multiple angles. If the patient moves

within the scanning rotation, the projections will not fit together properly during recon-

struction, resulting in distortion of the object. For this reason, it is important that the

patient stays immobilized during the scanning procedure so no motion artifact occurs.

Metal artifact: Scanning metals produce a star shaped artifacts in the recon-

structed image, because they have a very high linear attenuation coefficients and absorb

the X-ray beam totally. In our study, none of the recruited patients had a metal implant,

therefore, the metal artifact didn’t occur.

In addition to the morphometric parameters calculated from the binary segmenta-
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tions of cortical and trabecular bones, the Xtreme CT scanner can estimate the volumetric

BMD separately for cortical and trabecular bones. Furthermore, Finite Element Analy-

sis (FEA) can be applied to these data sets and apparent bio-mechanical properties (eg:

stiffness, elastic modulus) can be computed by decomposing the trabecular bone struc-

ture into small cubic elements (ie, the voxels) with assumed mechanical properties [58]

(Figure 2.8).

Figure 2.8: Different results extracted from the HRpQCT imaging studies to illustrate
the bone quality differences between a healthy control subject (top) and a patient with
hip fracture (bottom). (A, E) are The 2D tomograms and B, F, 3D surface renderings.
C, G, represent the 3D morphometry of both bones. D, H, Finite Element Analysis data

(Image courtesy of Andrew Burghardt [59].)

A very large number of clinical studies performed using HRpQCT data have demon-

strated promising results in fracture risk assessment, predominantly in postmenopausal

women with osteopenia and osteoporosis [60, 61, 62, 63]. In [64] the importance of struc-

tural parameters has been highlighted when they found that the bone structure con-

tributes to fracture risk independently of areal BMD (aBMD). Another study [65] have

examined the parameters BV/TV, Tb.N, Ct.Th, and Ct.BMD, and found that they were

significantly different between those with wrist fracture compared with those with hip

fracture. Stein et. al [66] also compared postmenopausal women with (n=68) and with-

out (n=101) previous fracture and found that those with fracture had reduced volumetric

BMD, more microarchitectural deterioration, and had lower estimated bone strength by
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FEA. However, no measurement could adequately discriminate fracture types [66]. There-

fore, different attempts have been conducted using different parameters and/or advanced

statistical techniques to discriminate fractures types.

The combination of different parameters to discriminate fracture types have been

initiated by [67, 68] using principal component analysis (PCA). Both studies highlighted

the importance of the cortical bone (Ct.BMD, Ct.Th, and FE estimates) in determining

bone strength, and discriminating wrist fractures cases [68] from other fractures [67].

A recent study has examined patients with type 2 diabetes and suggested that cortical

porosity measurements are useful to assess increased fracture risk [59]. Unlike using DXA

BMD which was increased in patients with type 2 diabetes. This is another reason to

revoke the usage of DXA BMD and to prove that it is not well-suited for fracture risk

diagnosis.

In addition to postemenaupausal women studies, differences in bone micro-architecture

have been observed in men with and without fractures [69, 70]. These studies demon-

strated that FE estimates and microarchitecture parameters are associated with all types

of fractures. Furthermore, Graeff C et. al [70] showed the superiority of HRpQCT pa-

rameters on DXA in discriminating vertebral fractures in men with glucocorticoid-induced

osteoporosis.

2.4 Conclusion

Along this advancement in image acquisition and quality, attention now is focused on

the development of image analysis techniques to quantify the microarchitectural param-

eters of the bone. The first step in structural image analysis is the image segmentation,

which is defined as the process of understanding the image by dividing it into meaningful

structures (regions). In our case, it’s the separation between the cortical and the tra-

becular bone in HRpQCT images, which is a very critical step to accurately generate

reliable bone morphometry [57]. The following chapter provides an elaborate depiction of

the image segmentation problem and the different state of the art techniques previously

published with a special focus on active contours approaches.
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Image Segmentation using Active

contours

3.1 Introduction

Image segmentation is the first step in structural imaSge analysis. It simplifies

the understanding of the image and divides it into meaningful structures (regions) that

share the same characteristics such as intensity level, color, or texture. The goal of

the segmentation is, therefore, to partition the image domain into homogeneous regions

corresponding to individual objects.

However, It is considered a challenging task to find a segmentation technique that

works on several types of images. Since a method applied to one image may not repro-

duce the same result compared to another. Therefore, several segmentation techniques

have been proposed throughout the years. These methods can be divided into two main

categories: model-free (unsupervised) methods and knowledge-based (supervised) meth-

ods. Unsupervised techniques segment the image based on a certain similarity criterion

aiming at grouping together pixels with consistent visual properties. On the other hand,

supervised methods are based on training a classifier using predefined informations such

as: shape, texture, etc, to seek a solution that is a compromise between the one produced

from the training phase and the one expressed in the test phase. Due to its popularity

and the number of publications, only the first type is discussed in this chapter.

Among the popular model-free techniques, we find thresholding techniques, where the

intensities of the image pixels are compared to a certain threshold defined automatically
27
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or by the operator[71, 72, 73]. Clustering techniques which group the image pixels into

clusters based on their shared characteristics, so the difference between these pixels is

minimal [74, 75, 76, 77, 78, 79]. Graph based methods including normalized cuts[80],

graph-cuts [81]. Watershed segmentation [82, 83], and variational methods including

Mumford-shah technique [84] and its active contours variants [85, 86].

In the remainder of this chapter, we will focus on the Active Contours Models (ACM)

and review the different variant approaches proposed based on it. The goal of this chapter

is to provide first a theoretical background of the active contours approach, and then the

different formulations proposed based on it (Figure 3.1).

3.2 Active contours

Since they were first introduced by Kass et al. [87], ACM have received more atten-

tion and have been extensively used in medical image segmentation. The idea is to evolve

a curve in the image domain using two forces, one computed from the image data, often

called external force, which pulls the contour towards the features of interest and another

one referred as internal force to ensure the smoothness of the contour during evolution.

Figure 3.1: Active Contours Models

As illustrated in Figure 3.1, ACM are categorized based on how they defined (snakes

or level set) further explanation of each representation is in the following section. Level

set based ACM have received more attention in the recent years, and according to the

external force, there are two kinds of ACM: edge and region-based. Edge based ACM

use the information of the objects boundaries usually the gradient. Region based ACM

use the statistical information of image intensity within each region. However, classical

ACM cannot handle intensity inhomogeneity and noise level in medical images, therefore,
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several variants of active contours have been proposed such as: local based ACM, Fuzzy

ACM, Texture based ACM, etc (Figure 3.1).

3.2.1 Snakes

The first model of active contour was proposed by Kass et al. [87] and named snakes

due to the appearance of the contour’s evolution. The contour C can be defined as follows:

C(s) = (x(s), y(s)) : 0 6 s 6 L : ℜ −→ Ω (3.1)

where L denotes the length of the contour C, and Ω denotes the entire domain of an

image I(x, y). An energy function E(C) can then be defined such as:

E(C) = Eint + Eext (3.2)

where Eint and Eext respectively represent the internal energy and external energy func-

tions. The internal energy function determines the regularity, i.e. the smooth shape, of

the contour. A common choice for the internal energy is a functional given by :

Eint =

∫ L

0

α|C ′(s)|+ β|C ′′(s)|2ds (3.3)

Here α controls the tension of the contour, and β controls the rigidity of the contour.

As for the external energy term which represents the criteria of contour evolution which

depends on the image, it is defined as follows :

Eext =

∫ L

0

1

λ|∆Gσ ∗ I(x, y)|
(3.4)

where Gσ is a Gaussian smoothing filter with the standard deviation σ, and λ is a suitably

chosen constant. Solving the problem of snakes is to find the contour that minimizes the

total energy term with the given set of weights α, β, and λ.

The classic snakes provide an accurate segmentation only if the initial contour is given

sufficiently near the edges of the object of interest because they make use of only the local

information along the contour. Estimating a proper position of initial contours without

prior knowledge is a difficult problem. In addition, classic snakes cannot detect more than

one boundary simultaneously because the snakes maintain the same topology during the
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evolution stage. This means, snakes cannot split to multiple boundaries or merge from

multiple initial contours [88]. And then, it comes the level set theory proposed by [89] to

solve this problem.

In this thesis, we are interested only on the level set based active contours methods

because of their popularity, their performance, and their abundance among published

papers.

3.2.2 Level Set

Level set theory is a formulation to implement active contours that was proposed

by Osher and Sethian [89]. They represented a contour implicitly via a two-dimensional

Lipschitz-continuous function φ : Ω → ℜ defined on the image plane. The function φ(x, y)

is called level set function, and a particular level, usually the zero level of φ(x, y) is defined

as the contour, such as:

C = {(x, y) : φ(x, y) = 0}, ∀(x, y) ∈ Ω, (3.5)

where Ω denotes the entire image plane. With this definition, the evolution of the contour

is equivalent to the evolution of the level set function, i.e. ∂C/∂t = ∂φ(x, y)/∂t. The

advantage of using the zero level is that a contour can be defined as the border between

a positive area and a negative one, so the contours can be identified by just checking the

sign of φ(x, y).

The initial level set function φ0(x, y) may be given by the signed distance from the

initial contour such as,

φ0(x, y) = φ(x, y) : t = 0

= ±D((x, y), Nx,y(C0)), ∀(x, y) ∈ Ω

(3.6)

where ±D(x, y) denotes a signed distance between x and y, and Nx,y(C0) denotes the

nearest neighbor pixel to the initial contours C0 = C(t = 0) from (x, y).

The deformation of the contour is generally represented in a numerical form as a

Partial Differential Equation(PDE). A formulation of the contour evolution using the

magnitude of the gradient of φ(x, y) was initially proposed by Osher and Sethian [90, 91],
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as :

δφ(x, y)

δt
= |▽φ(x, y)|(v + ǫκ(φ(x, y))) (3.7)

where v denotes a constant speed term to push or pull the contour, κ(.) : Ω → ℜ denotes

the mean curvature of the level set function φ(x, y) given by:

κ(φ(x, y)) = div(
▽φ

||▽φ||
) (3.8)

The role of the curvature term is to control the regularity of the contour as the internal

energy term does in the classic snakes model. ǫ controls the balance between the regularity

and robustness of the contour evolution.

Another form of contour evolution was proposed by Chan and Vese [92, ]. The

contour length |C| can be approximated by a function of φ(x, y), such as:

|C| =

∫

Ω

|▽H(φ(x, y))|dxdy

=

∫

Ω

δ(φ(x, y))|▽φ(x, y)|dxdy

(3.9)

where, H(.) denotes the regularized form of the Heaviside function and δ(.) its derivative.

The contour evolution is therefore defined:

∂φ(x, y)

∂t
= δ(φ(x, y))κ(φ(x, y)), (3.10)

3.3 Methods

3.3.1 Edge-based Active Contours

Geometric active contour

The Geometric ACM was proposed by Caselles et al. [93] by adding an additional

term, called stopping function, to the speed function. It was the first level set implemented

ACM for the image segmentation problem. Malladi et al. [91, 94] proposed a similar

model:

∂φ(x, y)

∂t
= g(I(x, y))|▽φ(x, y)|(v + κ(φ(x, y))) (3.11)
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where g(.) : Ω → ℜ denotes the stopping function, i.e. a positive and decreasing function

of the image gradient. A simple example of the stopping function is:

g(I(x, y)) =
1

1 + |▽I(x, y)|n
(3.12)

where n is given as 1 in [93] and 2 in [91].The contours move in the normal direction with

a speed of g(I(x, y))(κ(φ(x, y))+v), and therefore stops on the edges, where g(.) vanishes.

The curvature term κ(.) maintains the regularity of the contours, while the constant term

v accelerates and keeps the contour evolution by minimizing the enclosed area [95].

Geodesic active contour

The Geodesic ACM was proposed by Caselles et al. [96, 97]. Kichenassamy et al.

[98] and Yezzi et al. [92] also proposed a similar active contour model. Based on the

principle of the classic dynamic systems, solving the active contour problem is equivalent

to finding a path of minimal distance, called geodesic curve [99] given by:

∂C

∂t
= (g(I(x, y))κ(φ(x, y))− ▽g(I(x, y)).N)N, (3.13)

where N denotes the inward unit normal. From the relation between a contour and a

level set function and the level set formulation of the steepest descent method, solving this

geodesic problem is equivalent to searching for the steady state of the level set evolution

equation [96] and can be expressed as follows:

σφ(x, y)

σt
= g(I(x, y))|▽φ(x, y)|(v + κ(φ(x, y))) + ▽g(I(x, y)).▽φ(x, y) (3.14)

where v is an additional speed term to accelerate the evolution. The equivalence be-

tween classic snakes and geodesic active contours has been also shown by other authors

[100, 101, 102, 103] in slightly different views. It is evident that the geodesic active con-

tour model is identical to the geometric active contour model except for the added term

▽g(I(x, y)).▽φ(x, y)

More recently, Pratondo et al. [104] proposed a robust edge stopping function for

the geodesic active contours to solve the problem of poorly defined boundaries in medical

images. The basic idea is, in addition to gradient stopping function they use a machine
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learning method to construct a probability score of each pixel to be classified as a fore-

ground. The chance that a boundary exists is high when an ambiguous classification

occurs, i.e., the probability score is 0.5. Based on this definition a fuzzy edge stopping

function was defined as follows:

p(s) = (2(s− 0.5))2 (3.15)

Where s is the probability score for the foreground. However, this technique is con-

sidered a supervised active contours approach [104] that depends on the training classifier

probability results. Due to the structure of the speed functions and the stopping functions

defined above, edge based active contour models have a few disadvantages. Because of

the constant term v, edge based active contour models evolve the contour towards only

one direction, either inside or outside. Therefore, an initial contour should be placed com-

pletely inside or outside the ROI (region of interest), and some level of a prior knowledge

is still required. Since edge-based active contours rely on the image gradient operation,

this type of active contours may skip the blurry boundaries, and they are sensitive to

local minima or noise as edge-based segmentation does.

3.3.2 Region-based Active Contours

Among the different formulations of active contours, region based ACM is the most

popular, because it does not depend on the phase of initialization unlike edge based meth-

ods. Most region-based active contour models consist of two parts: the regularity part,

which determines the smooth shape of the contours, and the energy minimization part,

which searches for the uniformity of the desired feature within a subset. A nice character-

istic of global region-based ACM is that the initial contours can be located anywhere in

the image as region-based segmentation relies on the global energy minimization rather

than local energy minimization. Therefore, less prior knowledge is required than edge-

based ACM. Figure 3.2 illustrates the segmentation result of edge based technique [97]

against region based one [85].

Piecewise-constant active contour

Piecewise-constant ACMwas proposed by Chan and Vese [105, 106] using the Mumford-

Shah segmentation model [107, 84]. Piecewise-constant ACM moves deformable contours
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Figure 3.2: Segmentation result of edge based technique (geodesic active contours [97])
left and region based (active contours without edges [85]) right

minimizing an energy function instead of searching for edges. A constant approximates

the statistical information of image intensity within a subset, and a set of constants, i.e. a

piecewise-constant, approximate the statistics of image intensity along the entire domain

of an image. The energy function measures the difference between the piecewise-constant

and the actual image intensity at every image pixel. The level set evolution equation is

given by:

σφ(x, y)

σt
= δǫ(φ(x, y))[vκ(φ(x, y))− (I(x, y)− µ1)

2 − (I(x, y)− µ2)
2] (3.16)

where µ0 and µ1 respectively denote the mean of the image intensity within the two

regions (outside and inside the contours).

Piecewise-smooth active contour

An extension of piecewise-constant ACM using a set of smoothed partial images,

was also proposed by Chan and Vese [108, 108, 109, 110, 111]. The same segmentation

energy employed in the piecewise-constant model to partition an image is used. But in

this model each subset is also represented by its smoothed representation. The level set

evolution equation is given by:

σφ(x, y)

σt
= δǫ(φ(x, y))[vκ(φ(x, y))− (I(x, y)− µ1)

2 − (I(x, y)− µ2)
2

− ω(|▽µ1(x, y)|
2 − |▽µ0(x, y)|

2)]

(3.17)

where µ0(x, y) and µ1(x, y) denote the smoothed images within the outside and inside of

contours. However, traditional region-based models rely on the idea that the intensity

of images is homogeneous. Because the contours evolve under the assumption that the

image consists of two distinct homogeneous regions. This means that the outside and

inside contour regions have different mean pixel intensity, which is not the case in images
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Figure 3.3: Segmentation result of local based active contours against global. (a) the
initialization of the contours, (b), (c), and (d) are the segmentation results of the Chan
veze [85], Chunming [112] and Lankton [113] respectively

with intensity inhomogeneity such as medical images MRI, PET, CT, etc. In what follows,

only the fitting energy of each method will be expressed, because the regularity term is

the same for all the methods, using either the curvature κ(.) or the length of the contour

|C|.

Due to global region based active contours problem with intensity inhomogeneity,

as illustrated in (Figure 3.3), Chan Veze [85] wasn’t able to segment properly the vessel

image, unlike Chunming [112] and Lankton [113] who uses a local region based ACM

[114, 115, 116, 117, 118, 119, 62] that will be detailed next.

3.3.3 Local Region Based Active Contours

In [115, 116], Chunming Li et al. proposed an efficient region-based ACM to segment

inhomogeneous images using the intensity information of the local regions at a controllable

scale. A data fitting energy is defined using functions that locally approximate the image

intensities on the two sides of the contour. The proposed method by [116] segments

inhomogeneous images by employing a local binary fitting (LBF) energy with a kernel

function. The energy function is expressed as follows:

E =
2
∑

i=1

λi

∫

Ωi

K(x− y)|I(y)− µi(x)|
2dy (3.18)

where, λ1 and λ2 are positive constants, and µ1(x) and µ2(x) are two values that approx-

imate the image intensities in Ω1(insideC) and Ω2(outsideC), respectively. The intensity

pixels I(y) represent the local region centered at the point x, whose size can be controlled

using the kernel function. In [116] the choice of the kernel is Gaussian, defined as follows:

Kσ(u) =
1

(2π)n/2γn
e−|u|2/2γ2

(3.19)
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with a scale parameter γ > 0.

A different formulation of this technique was proposed by C. He et al. [119] where

they replaced the Gaussian kernel with a “mollifying” kernel with compact support and

added a weight to the energy function. The added weight function is defined by a local

entropy derived from a gray level distribution of the image [120]. The proposed energy

functional is defined as follows:

E =
2
∑

i=1

λi

∫

Ω

Ex(X)(

∫

Ωi

Kp(x− y)|I(y)− µi(x)|
2dy)dx (3.20)

where, Ex(X) = E(x,B(x, r)) is the local entropy of x ∈ Ω,

B(x, r) = y : |x− y| ≤ r, r > 0, the kernel Kp is chosen as a mollifying kernel of the form:

Kp(u) =
1

p2
ψ(
u

p
), u ∈ ℜ2 (3.21)

where p > 0 is a scale parameter and the function ψ(u) is a symmetric mollifier defined

as follows:

ψ(u) =















Ae
−1

(1−|u|2) , if |u| ≤ 1

0, if |u| > 1

(3.22)

where the constant A > 0 is selected so that
∫

ℜ2 ψ(u)du = 1.

Another, localized energy based ACM was proposed by Lankton et al. [117] to

localize any region-based energy in a fully variational way. The analysis of local regions

leads to the construction of a family of local energies at each point along the curve. In

order to optimize these local energies, each point along the curve is considered separately,

and moves to minimize the energy computed in its own local region using a ball. To

compute these local energies, the local neighborhoods of each point x are split into local

interior and local exterior by the evolving curve. The energy optimization is then obtained

by fitting a model to each local region, and therefore, it can be defined as follows:

E(φ) =

∫

Ωx

δφ(x)

∫

Ωy

B(x, r).F (I(y), φ(y))dydx (3.23)

where, B is a ball function used as a mask to extract the local region of each point x. F is a

generic internal energy function representing the local adherence to a given model at each

point along the contour. Different region based energy functions F were employed such
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as: uniform modeling energy [106], mean separation [121], and the histogram separation

(HS) energy using the Bhattacharyya coefficient [122, 123].

3.3.4 Hybrid Active Contours

The first integration of global and local information was the integration of edge and

region based information that has been proposed by a several authors. Geodesic active

region is a supervised ACM, proposed by Paragios [124, 125], incorporating both edge and

region-based energy in the same function. A statistical analysis based on the Minimum

Description Length (MDL) criterion and the Maximum Likelihood (ML) principle for

the observed density function, for example: an image histogram, which indicates the

number of sub-regions and the statistical Probability Density Function (PDF) within

those sub-regions using a mixture of Gaussian elements. Regional probability is estimated

from the statistical PDF based on prior knowledge, i.e. training samples. Then, the

boundary information is determined by a probabilistic edge detector, estimated from the

regional probabilities of neighborhood [126]. For example, an image pixel is more likely

an edge pixel if the neighborhood pixels, located on the opposite sides, have high regional

probabilities for a different class. The level set evolution equation is given by

δφ(x, y)

δt
= |▽φ(x, y)| ∗ [α

∑

b

wblog(
p1(Ib(x, y))

p2(Ib(x, y))
)+

(1− αg(pe(x, y))κ(φ(x, y)) + ▽g(pe(x, y)).
▽φ(x, y)

|φ(x, y)|
)]

(3.24)

where Ib(x, y) denotes the b− th band of a multispectral image ”I(x, y)”. pi(Ib(x, y))

denotes the regional probability presenting for a pixel Ib(x, y) to belong to a sub-region

i, pe(x, y) denotes the probabilistic edge detector so that a boundary pixel is located at

(x, y), and g(pe) denotes a positive and decreasing function of the probability. Jehan-

Besson et al. also proposed an ACM [127, 128] minimizing an energy criterion involving

both region and boundary functional. These functionals are derived through a shape

derivative approach instead of classical calculus of variation. They focus on the statistical

property, i.e. the PDF of the color histogram of a sub-region. Many hybrid approaches

have been proposed all over the years [129, 130, 131, 132, 133], they all use use two

functional energy one based on global, and the other based on local information.
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3.3.5 Texture-based Active Contours

Despite the high accuracy of edge, and region based ACM on image segmentation,

they are not very efficient on outdoor object detection and segmentation. This is because

outside scenery is composed of different patterns (textures). Therefore, different ACM

variants have been proposed based on image texture.

Structure tensor featrues

The proposed approach [134] extracts the classical structure tensor texture parame-

ters [135, 136, 137] using the following formula:

Jp = Kp ∗ (▽I▽I
T ) =







Kp ∗ I
2
x Kp ∗ IxIy

Kp ∗ IxIy Kp ∗ I
2
y






(3.25)

where, Kp is a Gaussian kernel and p is its standard deviation. Instead of using the

original image I in the ACM energy minimization problem, a vector valued image u =

(u1, u2, u3, u4) obtained by smoothing (I, I2x, I
2
y , Ixy) is used in the fitting energy function.

Moreover, the image segmentation in [134] was formulated as maximizing the a posteriori

partitioning probability p(G(Ω)|I) where G(Ω) = {Ω1,Ω2} is a partition of the image do-

main. Let p1(u(x)) and p2(u(x)) be the probability density functions for the value u(x) to

be in Ω1 (inside contour) and Ω2 (outside contour), respectively. The image segmentation

using the structure tensor parameters can be found by minimizing the following energy:

E = −

∫

Ω1

logp1(u(x))dx−

∫

Ω2

logp2(u(x))dx (3.26)

Gabor features

Sagiv et. al. [138] proposed a texture based active contours using the Gabor feature

space [139] and the 2D Riemannian manifold of local features [140] for both edge based,

and region based active contours. For edge active contours, based on the 2-D submanifold

of texture features, and using the natural Riemannian metric defined on it, a novel edge

stopping function was defined as follows:

E(texture(x, y)) =
1

det(gµv)
(3.27)
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where, gµv is the Gaussian smoothed derivatives of the image used as a metric for the

Gaussian-Beltrami flow. For the region based active contours, they used the vector valued

active contours [85] and the Gabor transforms obtained when convolving Gabor filters with

the image. Let u0 be the textured image, and ui0, (i = 1, . . . , N), be N Gabor transforms

of the original image. The fitting energy term is then defined as follows:

E =

∫

Ω1

1/N
N
∑

i=1

λi+|u
i
0(x, y)− ci+| −

∫

Ω2

1/N
N
∑

i=1

λi−|u
i
0(x, y)− ci−| (3.28)

where, λi− and λi+ > 0 are fixed parameters for each Gabor channel, ci+, c
i
− are the averages

of each Gabor channel in Ω1 and Ω2, respectively.

LBP features

Another interesting texture based active contours technique is based on the LBP

features [141]. It utilizes the vectorsDi(x, y), i = 1, 2, ..., b, where each componentDi(x, y)

corresponds to the ith bin of the LBP distribution, and b = 2P is the number of bins

comprising each distribution. Di(x, y) encodes the textural properties of k×k-pixel image

regions centered at pixel (x, y). Moreover, the log-likelihood statistic was suggested by

[141] as an accurate similarity measure for LBP distributions. Therefore, the fitting energy

term is now defined as follows:

E =

∫

Ω1

1/b
b
∑

i=1

λi+(1−Di(x, y)log(ci+))−

∫

Ω2

λi−(1−Di(x, y)log(ci−)) (3.29)

Similarly using the vector based active contours, different techniques were developed based

on Principal Component Analysis (PCA) [142, 143], the fractal dimension feature [144],

the Bhattacharyya Gradient Flow [123], and the intensity covariance matrices [145].

3.3.6 Fuzzy Active Contours

Another interesting variant was proposed using the inclusion of the fuzzy logic in

the region based ACM energy [85].

Fuzzy region based active contours

Krinidis and Chatzis [146] proposed the usage of the fuzzy clustering logic in the

active contours model as an external force to pull the curve towards more robust and
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noise resistant clusters. The authors [146] demonstrated its capability of handling the

noise of the image as well as the boundaries discontinuity. The Fuzzy Energy Based

Active Contours (FEBAC) model proposed by Krinidis and Chatzis [146] defined a new

pseudo level set formulation using the fuzzy membership function u ∈ [0, 1], defined as

follows:

C =(x, y) ∈ I : u(x, y) = 0.5,

inside(C) =(x, y) ∈ I : u(x, y) > 0.5, (3.30)

outside(C) =(x, y) ∈ I : u(x, y) < 0.5

The energy function is therefore reformulated:

E = λ1

∫

Ω

[u(x, y)]m|I(x, y)− µ1|dxdy + λ2

∫

Ω

[1− u(x, y)]m|I(x, y)− µ2|dxdy (3.31)

where µ1 and µ2 are the average constants of the regions inside and outside the contour,

respectively. They can be calculated as follows:

µ1 =

∫

Ω
[u(x, y)]mI(x, y) dx
∫

Ω
[u(x, y)]m dx

, µ2 =

∫

Ω
[1− u(x, y)]mI(x, y) dx
∫

Ω
[1− u(x, y)]m dx

, (3.32)

The membership function u(x, y) ∈ [0, 1] is the degree of membership of I(x, y) to the

inside of C, and m is a weighting exponent on each fuzzy membership, defined as follow:

u(x, y) =
1

1 + (λ1(I(x,y)−µ1)2

λ2(I(x,y)−µ2)2
)(1/m−1)

(3.33)

The segmentation result can be obtained finally after energy minimization by checking if

u(x, y) > 0.5.

Global and local fuzzy energy active contours

A different hybrid representation of this approach was proposed by Kuo-Kai et al.

in [149, 150] and Thieu et al. in [130, 148].The proposed approach of [149] takes into

consideration both global and local region statistical information. They both added the

local information of each pixel to the fitting term of each region. In this case, there will be

a global function to assure the convergence of the contour and a local function to capture
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Figure 3.4: The segmentation result of the local [112], hybrid [147] and fuzzy hybrid
[148] techniques on two heart MR images respectively. Source [148]

the inhomogeneity of each region.

E =β
2
∑

i=1

∫

Ω

λi(vi(x))
m|I(x)− ci|

2dx+

(1− β)
2
∑

i=1

λi

∫

Ω

(

∫

[vi(y)]
mGσ(x− y)|I(y)− fi(x)|

2dy)dx

(3.34)

where the first term is the global term and the second is the local one. v1 = u, v2 = 1−u,

f1(x) and f2(x) are two local functions used to approximate the intensity means of two

local regions around the point x inside and outside the contour, respectively. β is a weight

parameter, and Gσ is a Gaussian kernel.

3.4 Conclusion

Active contours models are considered one of the popular approaches for a variety

of applications, particularly in medical image segmentation. They are based upon the

utilization of deformable contours, which can move accordingly to internal forces and

external forces derived from the image characteristics. In this chapter, a detailed overview

was provided of different existing methods of active contours with particular focus on level

set ACM. These various techniques are categorized in two groups based on the external

force extracted from the image (Edge and region based). The latter group has received

a tremendous amount of attention in medical image processing. Different modifications

have been proposed all over the years, including localized energy, fuzzy logic integration,
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texture information, etc. In the following chapter, we position the segmentation problem

in the case of HRpQCT images, starting with the state of the art techniques, the patients

database included in this study, and finally the quantitative metrics used for evaluating

the different approaches.



Chapter 4

HRpQCT Image segmentation

4.1 Introduction

This chapter provides an overview of the different state of art techniques devel-

oped along the years to segment HRpQCT images. Then, a detailed presentation of the

database of patients used for the segmentation and the prediction of osteoporotic frac-

tures is provided. Finally, to validate the performance of the proposed approaches, three

quantitative metrics are discussed.

4.2 State of art methods

4.2.1 Dual threshold

As the name of this approach [151] implies, it requires two threshold inputs, one

to extract the periosteal and another to extract the endosteal surfaces of the output

mask. Buie et. al proposed an algorithm of two steps where first the periosteal surface

of the cortex is identified, and then the endosteal surface. In the first step, the image

is binarized using the first threshold, then a median filter is applied to reduce the noise

artifacts. 3D dilation and erosion operations (15 voxels, equivalent to 2.46mm), coupled

with the connectivity filter are then used to close the marrow cavities in the trabecular

bone. This ends the first step, which after closing the trabecular bone will result in the

periosteal (outer) surface of the bone.

In the second step the original image is then re-thresholded using the second thresh-

old, and masked with output of the first step, leaving only the marrow cavities. Dilation
43
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Figure 4.1: Summary of the two steps to extract the cortical bone in the Dual threshold
techniques. Source [151]

.

and erosion operations are then used to reconnect the marrow cavities, thus eliminating

trabeculae, allowing extraction of a trabecular region mask via a connectivity filter. The

region is Gaussian smoothed and thresholded to reduce roughness of the endosteal surface.

The cortical bone mask is then extracted through a simple combination of the output of

the two steps (Figure 4.1).

4.2.2 Burghardt technique

An update of the Dual threshold approach was proposed by Burghardt et al. [152]. It

is currently the default algorithm implemented in the Xtreme CT scanner. The proposed

approach can be split down into 3 steps. The first two stages are to extract the cortical

bone, and the last one is to estimate the pores in the cortical bone. The first step

starts with applying the Laplace-Hamming filter, which effectively smooths the image

and accentuate edges, then a fixed global threshold (40% of the maximum possible gray-

scale value) is applied to binarize the image[153]. Afterwards, morphological operations

(3D Dilation and erosion same size of [151]) with 2D connectivity filter are used to identify

the periosteal surface.

As for the second step to extract the endosteal surface. It starts by inverting the

original binary bone structure image (the output of the threshold phase in first step).

This inverted image is then masked using the final output of the first step to leave only

the marrow voxels. A 2D connectivity criterion to select the single largest mutually

connected object is used to identify the background, thereby partially removing internal
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trabeculae. A 3D thickness threshold (2 voxels) is then used to remove thin, disconnected

trabeculae, and cortical cavities. This step is done to prevent small cortical pores from

being included in the following dilation step, where they would otherwise be identified as

part of the marrow space. Next, the same morphological operations applied on the first

step are used to identify the endosteal surface. Finally, the binary difference between the

first and second step yields the cortical bone mask (Figure 4.2).

Figure 4.2: Summary of the two steps to extract the cortical bone in the Burghardt
techniques. Source [59]

.

The third step uses the cortical mask extracted at the end of the first two steps

and mask the binary image of the bone. The pore is defined as the void voxels in the

cortical compartment that are surrounded by bone (referred as high confidence pores).

These pores are identified by applying a 2D connectivity filter to select the small black

holes in the cortical bone, excluding those connected to the marrow or the background

(considered low confidence pores). Then, a hysteresis region-growing process, constrained

to the z-direction, to correspond with the primary osteonal orientation, is applied to

extract low-confidence pore voxels longitudinally connected to high-confidence pore voxels

(i.e., seeds). Afterwards, the high, and low-confidence pores connected to high ones are

combined together and added to the cortical bone, and a 2D connectivity filter is then

applied to capture any residual intracortical void. Finally, pores with a volume smaller

than 5 voxels are discarded as they likely represent noise or other artefactual features.

4.2.3 Valentinitsch technique

Another approach for the segmentation of HRpQCT bone images was proposed by

Valentinitsch et. al [154]. This approach is a machine learning algorithm that uses the

3D texture to differentiate between the cortical and the trabecular bone. The background
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voxels are excluded from analysis by using the auto contouring algorithm provided by the

manufacturer. In the training phases, a trained operator segmented manually 14 distal

radius images. Then, for each voxel in the image a local texture descriptor was calculated

based on a cube of 15×15×15 surrounding voxels [155]. The employed texture descriptor

was based on: a three-dimensional gray level co-occurrence matrix (3D GLCM) [156, 157],

the local structure tensor, and the Hessian matrix [158]. The authors justified the use

of 3D GLCM to extract informations regarding the distribution of voxels within the

cube. The structure tensor, and Hessian matrix capture the local image properties, such

as tubularity, or flatness [159]. Afterwards, the random forest classifier is then trained

using this feature space to capture the relationship between the features and the class

membership of the voxels.

The training and testing of this approach was performed in a leave-one-out cross

validation fashion. Therefore, they used 13 data samples for training and applied the

classifier on 1 sample. They iterated this procedure so that there is a always disjoint

between the training, and testing. However, the small number of data is not sufficient

to cover the high variability introduced by normal anatomy of the bone. Therefore, this

approach didn’t receive enough attention, because of its poor accuracy and incapability

of handling thin cortical bones [154].

4.2.4 Zebaze technique

This proposed approach by Zebaze et. al [160] segments the bone into three regions:

cortical, trabecular and the transitional zone between them. This method works only on

the last 40 slices of the bone, it begins by identifying a point in the middle (not necessary

the centroid ’C’) within the marrow cavity(Figure 4.3). From this point, a rectangular

region of interest (ROI) starts and extends to the edge of the entire image. The ROI

(Arm as identified by the authors) is selected so that its length is perpendicular to the

bone surface. The Arm width (AW) is selected to be narrow enough to ensure that the

periosteal edge of the bone within the Arm is locally linear but contains two or more

rows of voxels. This avoids discontinuities due to noise or pores resulting in irregularities

of bone boundaries after segmentation. AW = Ri × tan(acos(θ)) and is automatically

quantified as a function of the distance between ’C’ and the nearest periosteal surface

(Ri). The value of (θ) is 0.98, chosen close to 1 so that the local portion of the periosteal
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surface is almost linear.

After the extraction of this Arm (Figure 4.3), the attenuation profile curve is easily

extracted. The separation between the different regions of the bone is illustrated in

Figure 4.3. After analyzing the first ROI, the Arm sweeps in steps of 0.1◦ analyzing

consecutive and overlapping Arms (ROIs) until a rotation of 360◦ is completed and the

entire cross sectional slice has been assessed. This method however, is restricted only to

the 40 most proximal slices because the cortical bone in the first 70 slices is thin and

hard to identify [160]. This is the reason why the comparison against this approach is not

considered in this thesis, because it classifies the bone into 3 overlapping regions instead

of 2, and cannot handle thin cortices (prominent place of fractures, and the main focus

of this thesis).

Figure 4.3: (A) HRpQCT distal slice of the radius, where the Arm originates from
’C’ to P0. (B) A magnification of the Arm to show its contents (background, and bone
edges). (C) The attenuation profile. The zone ’K’ to ’M’is the transitional zone between
background and cortical (excluded in their study). The zone ’M’ to ’N’ and ’O’ to ’C’ are
the cortical and trabecular compartments respectively. Finally, the zone ’N’ to ’O’ is the
transitional zone between cortical and trabecular [160].

As for the quantification of porosity in the cortical compartment. This approach

quantifies the pores voxel by voxel, because the median size of Haversian canals is 50µm

[161, 162]. It uses two terms (Level Of Fullness) LOF and (Level Of Void) LOV to identify

the pores in the cortical bone. LOF is estimated by knowing the attenuation of a voxel

in the background (no mineralized bone) known as P and the attenuation of a voxel that
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contains only mineralized bone known as B. If Ii is the attenuation of voxel ′i′ then

LOFi(%) = (Ii − P )/(B − P ) (4.1)

The LOE of each voxel (i.e., porosity) is then calculated by : 100−LOF (%). The porosity

of the entire cortical bone (Po) is the average of all LOEs of all voxels (LOEi) where n is

the total number of voxels within the cortical compartment

Po =
n
∑

i=1

LOEi/n (4.2)

4.3 Subjects recruited in the study

The HRpQCT data employed in this thesis is from the QUALYOR (Qualité Osseuse

et Amélioration de la prédiction du risque fracturaire à LYon et ORléans) cohort with

the ClinicalTrials.gov Identifier is NCT01150032. The cohort’s objective is to test the

bone quality variables (Trabecular/ Cortical parameters) to predict the risk of fracture

in women identified as at low or at medium risk using BMD. This study includes 1525

menopausal women (1000 scanned in Lyon and 525 in Orléans), only Orléans data were

available during the thesis. These women were recruited for 5 years study (from 2011 to

2016). The inclusion criteria were identified as: postmenopausal women, with age > 50

years, and osteopenic without fracture. For the non-inclusion criteria, participants were

not accepted if they had one of the following conditions:

• Corticotherapy,

• antecedent treatment of osteoporosis,

• antecedent vertebral and non-vertebral fractures,

• Hormone treatment of menopause in progress,

• Taking drugs that are likely to affect bone metabolism,

• clinical signs of hepatic, cardiac, or respiratory insufficiency,

• Life expectancy < 4 years or serious illness which could affect the maintaining of

the participant in the study for 48 months

For each woman, a face to face survey with rheumatologist was conducted and a

written informed consent for the participation was obtained. The Qualyor study was
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carried out in accordance with the recommendations of the revised version of the Helsinki

declaration adopted by the world Medical Association in Seoul in 2008. The Patient

Protection Committee (CPP Sud-Est IV) gave its approval to this study. Afterwards,

two steps were conducted, the first concerned the clinical parameters: previous fracture,

parents fracture, tobacco alcohol consumption, weight, height, etc. The second step

concerned the imaging of patients where three scans took place:

• DXA scan to measure the BMD at hip, spine and wrist using the HOLOGIC Dis-

covery,

• BMA scan of the calcaneum to analyze the bone texture,

• HRpQCT scan of the radius and tibia to measure cortical and trabecular bone

parameters

In this study, only the latter is considered. The scan of radius and tibia are performed

using the Xtreme CT scanner. The image scanning takes approximately 3 minutes per

patient using the default human peripheral in vivo scanning protocol (60 kVp, 1000 A,

100 ms integration time, frame averaging of 1 and radiation dose of less than 3 µSv), to

produce a 3D image of 110 slices (9.02 mm thick section (0.082 * 110 mm).

In the first part of the thesis (segmentation phase) from the 525 patients of QUA-

LYOR in Orléans hospital, only 20 patients were considered to produce 20 radius and

20 tibia images. The performance of the proposed approaches was compared against the

state of art techniques results using 40 images. In the 5 years period of this study, 45

patients have experienced 56 fractures (20 radius, 17 vertebral, 5 malleolus, 4 femoral

neck, 3 pubic bone, 1 kneecap, and 1 elbow). In the second part of this thesis (Prediction

of osteoporotic fractures), 176 patients (145 control, and 31 fractured) were selected based

on the quality of the obtained acquisition (no artifacts) using the criterion of Piala et. al

[163].

4.4 Quantitative metrics for evaluation

4.4.1 Ground truth

Unlike the literature techniques, to validate any method, a manual segmentation of

the in vivo image of each patient was constructed using the ITK-SNAP software [164],

which contains predefined image processing techniques developed for medical diagnosis
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(a) (b)

Figure 4.4: 2D segmentation result of radius produced by the operator using ITK-SNAP
(a), 3D Reconstruction of the segmentation result using ITK-SNAP (b)

aid. A trained operator segmented manually the 110 slices of the volume of the database.

The manual segmentation process uses the default region based Chan-Vese active contours

algorithm [85] implemented in ITK-SNAP. The process starts with placing manually cir-

cles on the cortical bone. Then, these circles start evolving in the image to cover all the

cortical bone. Finally, the operator corrects the constructed volume and removes the false

accepted voxels as it is illustrated in Figure 4.4

The manually segmented image of each dataset is used as gold standard to be com-

pared with the segmentation result of each approach. Unlike the literature studies that

focus only on cortical thickness error (Ct.Th error) and cortical total volume error (Ct.TV

error), different volumetric and distance based measures were used in this study to eval-

uate the performance of each approach including the two proposed ones.

4.4.2 Dice similarity coefficient

The Dice Similarity Coefficient (DSC) [165] measures the spatial overlap between

the gold standard result (G) and the computed segmentation result (S). DSC values are

expressed in percentage ranging between 0 (no overlap) and 100% (perfect agreement).

DSC is obtained using Equation (4.3):

DSC =
2|S

⋂

G|

|S|+ |G|
× 100 (4.3)

where |.| denotes the number of non zero elements. This metric takes into consideration

the spatial distribution of the cortical bone by considering both non-cortical voxels (back-

ground and trabecular) classified as cortical and cortical voxels classified as trabecular or
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background. Consequently, this measure is more accurate than simple volume or cortical

thickness estimation employed in the literature studies, which could lead to overall small

volume errors associated with largely inaccurate segmentations.

4.4.3 Absolute volume difference

The Absolute Volumetric Difference (AVD) is calculated as the ratio of the absolute

difference between the gold standard volume (VG) and the segmented volume (VS) to the

gold standard volume. The AVD is computed using the following formula :

AVD =
|VS − VG|

VG
× 100 (4.4)

where VG and VS can be computed by multiplying the number of labelled voxels by the

voxel dimensions.

4.4.4 Hausdorff distance

The Hausdorff distance and the error measurement based on it are used to evaluate

the difference between the generated mesh by the method (S) and the manual (ground

truth) mesh (G). The Hausdorff distance error between two meshes is defined as the

distance between the corresponding sections of the meshes. For each point p in S the

minimum distance between p and all points in G is calculated as follows:

e(p,G) = min
p′∈G

d(p, p′), (4.5)

where d(, ) denotes the Euclidean distance between two points. The Hausdorff distance

between S and G is defined as follows:

E(S,G) = max
p∈S

e(p,G) (4.6)

As referred in [166, 167], this distance is (not symmetric) i.e. E(S,G) 6= E(G,S). It is

then convenient to define a two-sided distance (symmetrical Hausdorff distance) as the

maximum of E(S,G) and E(G,S). Two additional measurements can be defined based

on the Hausdorff distance; the mean and root-mean-square errors. The mean error Em
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between two surfaces S and G is calculated as follows:

Em =
1

|S|

∫

p∈S

e(p,G)dS, (4.7)

where |S| denotes the area of S. From this, the definition of a root mean square error

Erms follows naturally:

Erms =

√

1

|S|

∫

p∈S

e(p,G)2dS (4.8)

For more details refer to [166, 167].

As a complementary measurement, a qualitative evaluation was conducted to assess

the location predominance of segmentation errors and locate the misclassified trabecular

and cortical voxels individually for each method.

4.5 Conclusion

This chapter provides the state of the art techniques of HRpQCT image segmentation

methods including Dual threshold, Burghardt, Valentinitsch and Zebaze. Afterwards, a

full description of the database employed in this thesis, followed by the different metrics

used to evaluate the performance of the approaches.

On the following chapter, two new methods for HRpQCT image segmentation are

proposed, one based on fuzzy energy active contours and the second presents a novel

framework of 3D dual contours.



Chapter 5

Proposed Active Contours

approaches for HRpQCT Image

Segmentation

5.1 Introduction

This chapter encompasses the different contributions achieved during the thesis.

First, a new fuzzy energy active contours approach coupled with a post-processing tech-

nique to separate the cortical bone from the trabecular is details. Second, a novel dual

active contours approach able to segment the cortical bone and its erosions automatically.

Then, finally to validate the performance of these approaches, the different measures il-

lustrated in Chapter 4.4 have been implemented and compared to state of art techniques.

5.2 Method 1: Fuzzy energy based HRpQCT cortical

bone segmentation

Classical active contours are sensitive to noise and cannot handle objects with ill

defined boundaries, the case in HRpQCT images. The employment of fuzzy clustering

logic [168, 131] has proved its applicability in active contours to solve the noise and the

boundaries discontinuity problems.

The proposed fuzzy energy based active contours model assumes like most ACM,

that the image is divided into two subsets. The idea is to move the deformable con-
53
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tours minimizing an energy function that measures the difference between a constant

that approximates the statistical information of the image intensity within a subset and

the actual image intensity at every pixel of the image.

Let’s assume that Ω is the image domain and C is a closed contour that separates

the image Ω into two regions: (InsideC) and non bone (OutsideC), which both have

distinct values of intensity, their energy function is defined as follows:

E(C, c1, c2, u) = µ · Length(C) + λ1

∫

Ω

|I(x, y)− c1|
2[u(x, y)]m dx dy

+ λ2

∫

Ω

|I(x, y)− c2|
2[1− u(x, y)]m) dx dy

(5.1)

where the first term represents the regularization term (internal force) which assures

the smooth shape of the contour. The length parameter µ has a scaling role, the smaller

it is the more small objects can be detected. Therefore, in our study we fixed µ = 0

so small trabeculae of the trabecular bone can be detected. The remaining terms of

Equation (5.1) represent the fitting terms (external force), where the constants c1 and c2

are the averages of pixels intensity inside and outside C, respectively. u(x, y) ∈ [0, 1] is

the belonging (membership) function of the pixel I(x, y) to inside the contour and m is a

weighting exponent on this function.

c1 =

∫

Ω
[u(x, y)]mI(x, y) dx
∫

Ω
[u(x, y)]m dx

, c2 =

∫

Ω
[1− u(x, y)]mI(x, y) dx
∫

Ω
[1− u(x, y)]m dx

, (5.2)

The proposed fuzzy membership function u(x, y) ∈ [0, 1], is a Gaussian function

assigned to each pixel, where it is inversely related to the distance of the pixel from the

center of the cluster InsideC. Using the new fuzzy membership function, a new contour is

derived. This contour is implicitly represented via a two dimensional lipschitz continuous

function defined as follows:

C ≡{(x, y) ∈ Ω : u(x, y) = 0.05},

InsideC ≡{(x, y) ∈ Ω : u(x, y) > 0.05}, (5.3)

OutsideC ≡{(x, y) ∈ Ω : u(x, y) < 0.05},
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The proposed fuzzy membership function is designed to focus on the fuzzy inhomo-

geneous regions of the image. Therefore, the following function associated to each pixel

will decrease iteratively depending on the intensity of the pixels of each cluster. The

exponential function in Equation (5.4) was used to increase the intensity difference values

so the very fuzzy pixels which are difficult to spot can be detected. The concept of the

fuzzy membership function was changed here to give more interest to the inside contour

region. In the case of pixels belonging to OutsideC, the denominator of Equation (5.4) is

very high, hence u(x, y) is very small. As for pixels belonging to InsideC, the denomina-

tor of Equation (5.4) is very small, hence the value of u(x,y) is bigger than those of the

OutsideC case. The 0.05 value was chosen empirically after a set of tests, after noticing

that the membership function of pixels OutsideC converge highly to 0. The function is

defined as follows:

u(x, y) =
m

exp

(

λ1(I(x,y)−c1)2

λ2(I(x,y)−c2)2

) (5.4)

The usual procedure to solve the minimization problem of active contours (Equa-

tion (5.1)) is to derive the Euler-Lagrange equation and then to use explicit time march-

ing. However, the time and computational cost of this procedure are too high [168],

therefore, in this study, we employed the following algorithm to minimize the energy of

Equation (5.1):

To compute the difference between the new and old fuzzy energy for each image pixel

Io, the same equation proposed by [168] is used:

△E = λ1s1
[umn − um0 ](I0 − c1)

2

s1 + umn − um0

+ λ2s2
[(1− un)

m − (1− uo)
m](I0 − c2)

2

s2 + (1− un)m − (1− uo)m

(5.5)

where Io is the current pixel and uo its corresponding degree of membership. un is

the new membership function calculated using Equation (5.4), s1 =
∑

i,j[u(i, j)
m], and

s2 =
∑

i,j[1 − u(i, j)]m. If △E < 0, then change uo with un value, else keep the old

(uo) value. This step is repeated for the whole image pixels using Jacobi iterations to

compute the total energy E of the image. In [168], the authors explain the development

of Equation (5.5).

The different steps to minimize the proposed energy are further explained in the
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Figure 5.1: The minimization algorithm of the proposed fuzzy active contours energy.

flowchart (Figure 5.1)

Nevertheless, this proposed approach can only binarize the HR-pQCT image (sep-

arate the bone from the background). Figure 5.2 illustrate the result of the proposed

approach in segmenting the bone from HRpQCT image compared to FEBAC. However,

the aim of this thesis is to not only separate the bone from the background, but also to

isolate the cortical bone from the trabecular one. To achieve this, we propose an approach

that employs the proposed fuzzy active contour model followed by a post-processing al-
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Figure 5.2: Segmentation results on ultra-distal slice of radius, using (a) proposed
approach, and (b) FEBAC method

gorithm designed to mimic the clinicians behaviour while segmenting the inner contour

of the cortical bone as defined in what follows.

Bone filling technique The bone filling algorithm was mainly developed to mimic

the behaviour of clinicians in the delineation of the inner contour of the cortical bone.

The structure of the trabecular bone resembles sponge or honeycomb with many open

spaces connected by flat planes known as trabeculae. However, the proposed fuzzy energy

active contours algorithm considers these spaces as background. To fill them, we have

developed a filling algorithm that runs through the pixels of the image, and if it finds a

background pixel surrounded by four bone pixels (two in the horizontal direction and two

on the vertical one as illustrated in Fig. 5.3), this latter turns into a bone pixel. This

novel filling technique is unlike the morphological operations and filling holes technique

employed in [151, 152], because it can fill the trabecular spaces even when the cortical bone

has breaks. Moreover, it produces a more uniform representation of the inner contour of

the cortical bone.

Figure 5.3: An example of a background pixel (value = 0) surrounded by four bone
pixels (value = 1). In this case, the value of the background pixel turns to 1. A pixel of
value = *, is either 0 or 1.
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The different steps of the algorithm are presented in the following:

Algorithm : Proposed protocol to extract the cortical bone

1: Binarize the image using the proposed fuzzy energy active contours model explained
in details in Chapter 5.2

2: Remove the wrongfully identified pixels using a 3D connectivity filter
3: Fill in the trabecular bone using the proposed filling technique (see Chapter 5.2) to

extract the periosteal surface (the outer contour of the cortical)
4: Apply morphological operation (dilation and erosion) using a small structuring ele-

ment (disk of 5 pixels radius) to smoothen the outer contour of the cortical
5: Erode the output of step 4 using a disk of 10 pixels and apply the result as a mask

on the output of step 1 to keep only the trabecular bone.
6: Apply a 3D connectivity filter to select the biggest white region, this removes the

Haversian, Volkman’s canals and the pores of the cortical bone
7: Fill in the trabecular space using the same filling technique used in step 3 to extract

the trabecular area (the inner contour of the cortical).
8: Apply a 2D connectivity and a Gaussian filter on the output of step 7 to refine the

segmentation result and remove the cortical pores
9: Subtract the result of step 8 from the one of step 4 to extract the cortical bone (Fig.

5.4).

A detailed illustration of the 9 steps to extract the cortical bone from the HR-pQCT

image is provided in the flowchart of Figure 5.4, where each step of the algorithm is

illustrated.

5.2.1 Fuzzy energy active contours performance

The performance of the proposed approach was compared to three methods in

the ultra-distal site scan (thin cortices). The two first methods are the dual threshold

(DT) method [151] and Burghardt technique (BT) [152]. The third method is FEBAC

technique[168] followed by the same post-processing algorithm employed in our approach.

The two other technique[154, 160] weren’t included because of their inability of handling

ultra-distal sites.

Table 5.1 shows the results of the comparison metrics described in Section 4.4 applied

to the segmentation results of each method in the case of images of the radius. The mean

and SD in Table 5.3 are calculated with respect to the whole dataset and not to the

110 slices for a selected subject. The performance of the proposed approach is very

satisfactory, where it provided statistically the highest DSC (89 ± 0.72%). Both BT and

DT produced an over or/and under estimation of the segmentation result compared to

the ground truth, hence, the DSC is lower than our approach (BT: 87.18 ± 0.95%) and
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Figure 5.4: The flowchart of the proposed algorithm to extract the cortical bone

(DT: 83.31 ± 1.88). Similarly, the Hausdorff distance errors demonstrate the efficiency

of the approach and its capability of handling thin cortices, unlike DT who produced the

highest error in all dataset (Em= 1.88 ± 1.53 and Erms = 3.93 ± 3.88). This is mainly

due to the two empirically chosen thresholds of the approach.

In the case of FEBAC method, the Hausdorff distance error between GT (ground

truth) and FEBAC’s result (Em = 1.06 ± 0.12 and Erms = 1.56 ± 0.33) is lower than DT

error. However, for the DSC metric, FEBAC’s approach provides the lowest value of the

different methods. This is due to it’s inability to handle the low intensity values of the
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cortical bone. Therefore, the filling process cannot accurately extract the outer contour

region (DSC = 71.9%)

For the segmentation volume error illustrated in Table 5.3 with the AVD metric,

similarly the proposed approach provides the lowest value compared to the other methods.

However, BT produced the highest error value (AVD = 15.03±7.42%), which contradicts

the dice similarity coefficient and the Hausdorff distance results. This illustrates that using

the AVD metric can lead to overall small volume errors associated with largely inaccurate

segmentations. Therefore, this metric is considered as an unreliable error measure and

cannot be used alone to evaluate the segmentation result as used in [151, 152, 154, 160].

Table 5.1: Comparison of the accuracy of the different methods versus the ground
truth in the case of the radius using different metrics

Parameters Units Proposed FEBAC BT DT

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

DSC [%] 89 ± 0.72 81.93 ± 1.06 87.18 ± 0.95 83.31 ± 1.88

AVD [%] 11.03 ± 4.76 14.77 ± 5.72 15.03 ± 7.42 12.59 ± 7.06

Mean error [mm] 0.72 ± 0.08 1.06 ± 0.12 0.95 ± 0.1 1.88 ± 1.53

RMS error [mm] 1.18 ± 0.09 1.56 ± 0.31 1.46 ± 0.33 3.93 ± 3.88

Table 5.2 illustrates the comparison of the different approaches in the tibia images. The

overall agreement (DSC) between the segmentation result of the proposed method and

FEBAC with GT is better than in the case of radius (proposed: 90.4± 1.23% and FEBAC:

87.18 ± 0.96%). This is because the cortical bone in the tibia is larger and thicker than

in the radius, hence, it is easier to segment. However, this is not the case for DT and BT,

because of the complex structure of the inner contour in the image of the tibia, where

over and under-estimation of the cortical bone occur.

In the AVD error rate, a different disproportion of the results is noticed like in the

case of the radius. BT produced the highest error rate compared to DT and FEBAC.

On the other hand the lowest AVD error in tibia dataset was produced by the FEBAC

approach (2.44 ± 0.76). This contradicts DSC and Hausdorff results and demonstrates

that the volume error is an unreliable evaluation metric.
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Table 5.2: Comparison of the accuracy of the different methods versus the ground
truth in the case of the tibia using different metrics

ParametersUnits Proposed FEBAC BT DT

Mean ± SD Mean ± SD Mean ± SD Mean ± SD

DSC [%] 90.4 ± 1.23 87.18 ± 0.96 85.82 ± 2.92 83.14 ± 3.47

AVD [%] 3.95 ± 2.8 2.44 ± 0.76 18.45 ± 9.26 10.57 ± 10.95

Mean error [mm] 1.01 ± 0.09 1.23 ± 0.19 2.09 ± 1.49 3.58 ± 3.22

RMS error [mm] 1.57 ± 0.47 1.64 ± 0.4 3.88 ± 2.94 8.33 ± 9.14

Figure 5.5: Comparison between the result of the manual segmentation (GT) and the
different approaches in the case of the tibia (first row) and the radius (second). Highlighted
in red are the over-estimation of the mask. The cortical breaks (highlighted in green) are
apparent on all the approaches except in our proposed technique.

5.3 Method 2: Dual Active Contours

The only drawback with the previous approach is the post-processing algorithm,

which only delineates the cortical mask and does not detect the cortical pores automat-

ically. In this thesis, another active contours approach has been proposed based on the

local energy.

This section presents the proposed energy framework to guide the dual active con-

tours model. Due to the inhomogeneity of the different regions in medical images, within

this framework, segmentation is not based on a global region model. Instead, a new

concept is introduced, where the object of interest (foreground: cortical in our case) is

considered between two curves.

The outer curve is dedicated to the outer contour of our desired object. For each

point in the curve, the local energy inside and outside the curve is calculated. Then,
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based on these calculations, the curve evolves to reduce the local energy as in [113]. Once

the outer curve’s energy is minimised, the inner curve is triggered and starts evolving

to reduce the local energy between the two curves. This concept avoids the hypothesis

that the active contours evolve to separate between two regions with different piecewise

constant intensities.

Let I be an image in the Ω domain and C1, C2 are the dual closed contours. The outer

contour C1 is defined as the zero level set of a signed distance φ1, i.e. (C1 = {x|φ1(x) = 0}).

The interior of the contour C1 is then defined by the following Heaviside function:

H(φ1(x)) =































1, φ1(x) < −ǫ

0, φ1(x) > ǫ

1
2
{1 + 2

π
arctan(

φ1(x)

ǫ
)}, otherwise

(5.6)

(a) (b)

Figure 5.6: The neighbourhood of each point x (black small dot) along both curves
is represented by the spheroid S(x, .). This spheroid is split by the contour into local
interior (green = ux) and local exterior (blue = vx) (a). The spheroid of each point along
the curve C2 is split by the two contours C1 and C2 and only the region between them is
considered (green) (b).

Based on the definition of the Heaviside function of C1, it is easy to define another

contour inside C1, as illustrated in Figure. 5.6b. The initialisation of C2 can be achieved

using the following definition:

C2 = {x|H(φ1(x)) = t}, (5.7)

the smaller the parameter t < 0 is, the higher the distance between the two contours is.

After the definition of C2, its level set function φ2(x) can be achieved using the following
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equation:

φ2(x)) =















d(x, C2), x ∈ ΩinsideC2

−d(x, C2), x ∈ ΩoutsideC2

(5.8)

where d(x, C2) is the Euclidean distance between the point x and the contour C2.

The energy of the new Dual Active Contours (DAC) model is based on the energy of the

two contours and can be defined as follows:

E(φ1, φ2) = E(φ1) + Γ(C1) · E(φ2) (5.9)

where, Γ(C1) is a weighting function that has a reverse relationship with the convergence

of the first curve, and it is defined as follows:

Γ(C1) =















1, E(φ1) = min(E(φ1))

0, otherwise

(5.10)

The energy of C1 and C2 is defined in details in the following section. In addition to the

energy of the two curves a constraint function was introduced to control and preserve the

distance between the two curves. This can be set by the user based on the application, it

is defined as follows :

D(φ1, φ2) = |D − d(φ1, φ2)| (5.11)

where, D is the maximum distance allowed between the two surfaces φ1 and φ2, and d(., .)

is the Euclidean distance between the two curves (surfaces in 3D).

5.3.1 Outer contour energy

For the energy of the first curve E(φ1), the local active contour framework proposed

by Lankton et al. [113] is used, where each point along the curve evolves reducing a local

energy. The energy of contour C1 is defined by the following function :

E(φ1) =

∫

Ωx

δ(φ1(x))

(

∫

Ωy

S(x, y) ·
[

H(φ1(y))(I(y)− ux)
2+

(1−H(φ1)) · (I(y)− vx)
2
]

dy

)

dx,

(5.12)
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where Ωx represents all the points x in the Ω domain and Ωy represents the points y the

neighbouring pixels of the point x. The constants ux and vx are the averages of the pixels

intensity inside and outside the local neighbourhood of the point x. For simplicity reasons

we define:

M1(φ) = H(φ), M2(φ) = 1−H(φ),

f1 = (I(y)− ux)
2, and f2 = (I(y)− vx)

2.

δ(φ1(x)) is the Dirac function which represents the derivative of the Heaviside func-

tion (eq. 5.6) and can be defined as follows:

δ(φ1(x)) =































1, φ1(x) < −ǫ

0, φ1(x) > ǫ

ǫ

π(ǫ2 + φ(x)2)
, otherwise

(5.13)

ux =

∫

Ωy
S(x, y) ·M1(φ1(y)) · I(y) dy
∫

Ωy
S(x, y) ·M1(φ1(y)) dy

,

vx =

∫

Ωy
S(x, y) ·M2(φ1(y)) · I(y) dy
∫

Ωy
S(x, y) ·M2(φ1(y)) dy

,

(5.14)

S(x, .) represents the local neighbourhood of the point x. The interaction of S(x, .)

with the interior and exterior regions is illustrated in Figure. 5.6a.

S(x, y) =















1, ||x− y|| < r

0, otherwise

(5.15)

where r represents the radius of the spheroid of the curve illustrated in Figure. 5.6.

The bigger the radius, the more pixels are involved in the evolution of each point in the

curve.

5.3.2 Inner contour energy

Once the energy of C1 is minimised, the second contour C2 starts evolving the same

way of C1 but using a novel local energy. Each point along the contour evolves reducing
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a local energy defined as follows :

E(φ2) =

∫

Ωx

δ(φ2(x))
(

∫

Ωy

S(x, y)R(y)

·H(φ2(y))((I(y)− wx)
2)dy

)

dx

(5.16)

where the constant wx represents the average of pixels intensities between the two curves,

defined as follows:

wx =

∫

Ωy
S(x, y) ·R(y) ·H(φ2(y)) · I(y) dy
∫

Ωy
S(x, y) ·R(y) ·H(φ2(y)) dy

, (5.17)

R(.) is a function developed to assure that only the points between the two curves

are considered. The interaction of both R(.) and S(x, .) with the two curves is illustrated

in Figure. 5.6b.

R(y) =















1, y ∈ {RC1 \RC2}

0, otherwise

(5.18)

where RC1 and RC2 are the regions inside C1 and inside C2, respectively.

Finally, to ensure the smoothness of the contour C1, the commonly regularization

term developed in [85] is used. The final energy functional of the dual contours is defined

in details as follows:

E(φ1,φ2) =

∫

Ωx

δ(φ1(x))
(

∫

Ωy

S(x, y) ·
[

2
∑

i=1

Mi(φ1(y)) · fi
]

dy
)

dx

+ Γ(C1)

∫

Ωx

δ(φ2(x))
(

∫

Ωy

S(x, y) ·R(y) ·H(φ2(y)) · f3dy
)

dx

+ µ1

∫

Ωx

δφ1(x)|| ▽ φ1(x)||dx+ Γ(C1) · µ2

∫

Ωx

δφ2(x)|| ▽ φ2(x)||dx

(5.19)

By taking the first variation of this energy with respect to φ1 and φ2, the following
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evolution equation is obtained:

δ(φ1, φ2)

δt
= δ(φ1(x))

∫

Ωy

S(x, y) · δ(φ1(x)) · (f1 − f2)dy

+ Γ(C1) · δ(φ2(x))

∫

Ωy

S(x, y) ·R(y) · δ(φ2(y)) · f3dy

+ µ1δφ1(x)div(
▽φ1(x)

| ▽ φ1(x)|
) + Γ(C1) · µ2δφ2(x)div(

▽φ2(x)

| ▽ φ2(x)|
)

(5.20)

where (f1 − f2) can be developed as follows:

f1 − f2 = u2x − v2x + 2I(y) ∗ (ux + vx) (5.21)

For simplicity reasons and for further development, we refer to the first term of eq.

5.20 as ”A”, the second as ”B”, the third as ”C”, and the fourth as ”D”.

At each time step dt, φ must be reinitialized to be the Signed Distance Function

(SDF) to its zero-level curve. This procedure is assured through using the Sussman

technique [169] to prevent the level set function of becoming too flat.

The steps of the proposed algorithm are detailed in the following algorithm:

Algorithm : The DAC algorithm

Initialize manually Contour C1

Compute Γ(C1) using (eq. 5.10)
while Γ(C1) == 0 do
for each point x ∈ C1 do
Compute ux and vx using (eq. 5.14)
Compute f1 − f2
Compute the first term (A) of (eq. 5.20)

end for
Compute the third term (C) of (eq. 5.20)
φ1 = φ1 + (A+ C) ∗ dt
Reinitialize φ1 to be SDF
Compute Γ(C1)

end while
Initialize φ2 using (eq. 5.8)
while

(

E(φ2) <> min(E(φ2))
)

do
for each point x ∈ C2 do
Compute wx using (eq. 5.17)
Compute the second term (B) of (eq. 5.20)

end for
calculate the fourth term (D) of (eq. 5.20)
φ2 = φ2 + (B +D) ∗ dt
Reinitialize φ2 to be a SDF

end while
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5.3.3 Implementation

In our method, the main computational cost of each iteration resides in the compu-

tation of ux, vx, wx, F1 and F2. Based on [112], we noticed that all these terms can be

rewritten as a suite of convolutions, for instance vx can be written as follows :

vx =
S(x, y) ∗ I − S(x, y) ∗ (H(φ1)I)

S(x, y) ∗ ✶− S(x, y) ∗H(φ1)
(5.22)

where ∗ represents the convolution product and ✶ is the matrix with the value ✶ in all

its elements. It is obvious that the terms [S(x, y) ∗ I] and [S(x, y) ∗ ✶] do not depend

on the evolution of φ1, therefore, they can be computed once before the iterations of the

proposed algorithm. The second term of the nominator and the denominator of vx are

the same in ux. In the same way wx can be computed.

With the help of the Fast Fourier Transform (FFT), the complexity of the convolution

product can be reduced from O(n6) to O(n3log3n). In this approach, the FFT operator

was applied to all the convolutions operations to minimize quickly the energy of eq. 5.19,

as it is illustrated in the experiments section.

The execution time, the computation complexity of the proposed approach, and

the proposed implementation scheme were examined, using a 2.4 GHz dual core based

PC to run the segmentation algorithm implemented in Matlab. First, we examined the

effect of the employment of the convolution product on the outer curve. The testing was

applied on an image of a radius bone with the following characteristics (198*284*40) with

an outer contour of 10 pixels radius. Using the standard algorithm, each iteration takes

approximately 35.7 seconds, and after applying the convolution process, the iteration time

reduced to 12.5 seconds. With the employment of the FFT on the convolution product,

the complexity of the algorithm is further reduced to achieve 2.5 seconds for each iteration.

Second we examines the convergence of the dual contours and their time properties

while segmenting the tibia. Figure. 5.7 illustrates the interaction between the dual

contours and the convergence of both of them.

5.3.4 DAC’s performance

Different experiments were performed to investigate the performance of the proposed

DAC approach on the segmentation of synthetic and medical images. Synthetic test



68 Chapter 5. Proposed Active Contours approaches for HRpQCT Image Segmentation

Figure 5.7: Convergence and timing properties of DAC. The inner contour starts evolv-
ing at the iteration 85 where the outer contour converged.

images were constructed from the Brodatz database [170].

For the real medical images, we used HR-pQCT bone image (radius), and an MRI

Image of the bladder wall.

The obtained results are organised in three parts. The first part evaluates the pro-

posed approach efficiency on synthetic images. The second part compares the performance

of the proposed approach with the one achieved by the state of art techniques (Burghardt

(BT) and dual threshold (DT)) on HRpQCT images. Whereas, the third part exam-

ines the effect of the different parameters of the DAC technique, starting with the local

radius effect, the initial distance between the two contours and the proposed contours

initialization method.

Segmentation of Synthetic Data

To provide a fair comparison, both compared methods used the same initial con-

tour, which is painted in red. Figure. 5.8 illustrates an example of segmentation results

obtained by the application of the DAC and Lankton approaches [113] on two different

images. As can be seen, the proposed approach has successfully segmented the exist-

ing inhomogeneous area between the two regions. The Lankton method[113] was only

capable of separating between the background and the outer boundary of the region of

interest. This is because the contours of the proposed approach evolve with a constrained

distance between them, along with the hypothesis that they are both reducing a shared

energy. The Dice Similarity Coefficient (DSC) was calculated to compare the segmenta-

tion results. The average of the DAC approach is 98.2 ± 1.2. The results show that the
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(a) Initialization (b) DAC (c) Lankton [113]

(d) Initialization (e) DAC (f) Lankton [113]

Figure 5.8: Results of the segmentation using the proposed DAC approach (b, e) and
Lankton [113] (c, and f)on synthetic images created from Brodatz database and using the
same contour initialization (a, and d)

DAC approach managed to segment accurately the different images despite the intensity

overlaps between the different regions.

Segmentation of Medical images

Figure. 5.9 illustrates the segmentation result obtained by the application of the

DAC and the Lankton methods on the HRpQCT and MRI image.

The DAC method produced the best result compared to Lankton’s technique and in

both cases the DAC managed to delineate accurately the cortical bone and the bladder

wall.

To further validate the performance of DAC, similar to the previous method valida-

tion a database of 20 three dimensional HRpQCT images was used.

The average (DSC) metric of the DAC approach on the HRpQCT images is estimated

to be 88.17% ± 2.09, and on MRI bladder wall is 98.2%.

As mentioned before, this is due to the shared energy of the two curves, along with

the distance constraint between them.

Figure. 5.10 illustrates an example of the segmentation result obtained by the ap-

plication of DAC and state of art techniques on an HRpQCT image of the radius. The

different similarity measures computed are presented in Table 5.3. The DAC method
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(a) Initialization (b) DAC (c) Lankton [113]

(d) Initialization (e) DAC (f) Lankton [113]

Figure 5.9: The segmentation result of the proposed DAC approach and Lankton [113]
applied on radius bone HRpQCT image (first row) and bladder wall MRI (second row)

produced the best result using the different quality measures. The average (DSC) metric

of the DAC approach is estimated to be 88.17% ± 2.09 compared to 83.65% ± 5.07 for

BT and 81.12% ± 3.96 for DT. Results show that DAC managed to delineate the cortical

compartment (Figure 5.10) compared to BT and DT who both produced an over or/and

underestimation of the segmentation result compared to the GT.

In addition to DSC, the Hausdorff distance measure and the absolute volume error were

used to further evaluate the 3D segmentation result. The Hausdorff distance (EH) rep-

resents the maximum distance between the mesh of the GT and the mesh generated by

the other approaches. Similar to DSC, DAC approach provided the best results with an

error equal to 0.72 ± 0.08 mm. This demonstrates DAC efficiency and its capability of

handling thin cortices, unlike DT who produced the highest error in all dataset (EH =

1.88 ± 1.53) and cortical breaks can be seen (Figure 5.10). This is mainly due to the two

empirically chosen thresholds of the approach.

Table 5.3: Comparison of the accuracy of the different methods versus the GT using
different metrics

Parameters Units DAC BT DT

DSC [%] 88.17 ± 2.09 83.65 ± 5.07 81.12 ± 3.96

EH [mm] 0.72 ± 0.08 0.95 ± 0.1 1.88 ± 1.53
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(a) GT (b) DAC (c) BT (d) DT

Figure 5.10: Comparison between the result of the manual segmentation (GT) and the
different approaches in the case of radius. Cortical breaks are highlighted in red, they are
apparent on all the approaches except in DAC.

Parameters effects

The proposed DAC approach depends on several parameters including the radius of

the spheroid, the initialized distance between the two curves and the initialisation of the

two contours. The effect of these parameters is studied in details in the following sections.

Radius sensitivity In the DAC approach, the radius r of the spheroid determines

how local the information of the neighbouring pixels is incorporated into each point’s

movement. Therefore, for the outer contour, the choice of the radius should be selected

based on the proximity of the contour to the object of interest along with the scale of

this object. As stated in [113], larger radii are useful when attempting to segment large

objects with less nearby clutter. This is the case in the HR-pQCT images. It is worth

noting that the spheroid employed in our experiments has a pair of equal semi-axes (x

and y) and a distinct third axis (z). First, we studied the effect of changing the radius

along the (x and y-axis). Figure. 5.11 illustrates the effect of the selection of Rx,y after

200 iterations. Using Rx,y = 10 pixels radius, the outer contour cannot detect a difference

in the local neighbourhood. As a result, the contour cannot evolve and be attracted to

the object, unlike the case of Rx,y = 30 pixels (Figure. 5.11).

(a) Initial (b) 30 pixels (c) 10 pixels

Figure 5.11: The effect of the radius Rx,y on the convergence of the outer curve, the
30 pixels radius is represented in red in (a) and the 10 pixels one is in blue. A good
segmentation result is achieved using Rx,y = 30 pixels in (b). The non incorporation of
the bone pixels in Rx,y = 10 pixels provides a bad segmentation result (c).



72 Chapter 5. Proposed Active Contours approaches for HRpQCT Image Segmentation
Furthermore, It can be noticed that in the Rx,y = 30 result, the change along the

curve is smoother than the one of Rx,y = 10. However, this can lead to pixels misclassifi-

cation and an over-estimation of the outside region of the cortical bone, as can be noticed

in the boundaries of the contour for Rx,y = 30 (Figure. 5.11.b).

In the case of the inner curve, we also studied the effect of the different values of

Rx,y. Figure. 5.12 illustrates the evolution of the inner contour using two different values

of Rx,y of the spheroid. In the case of Rx,y = 30 pixels, an over-estimation of the cortical

compartment can be noticed, due to the big size of the radius. It is obvious that the

larger the radius is, the more neighbouring pixels are incorporated into the movement of

the contour. This explains the over-estimation in the case of Rx,y = 30 pixels unlike the

Rx,y = 10 pixels segmentation result.

In the case of Rz, we noticed that the bigger the radius is, the more uniform the

transition between the slices of the produced segmentation result is. The choice of Rz was

fixed empirically to 5 pixels after a set of tests.

(a) R = 30 pixels (b) R = 10 pixels

Figure 5.12: The obtained inner contour using Rx,y = 30 pixels (a) and Rx,y = 10 pixels
(b).

dual contour distance sensitivity In order to achieve a correct segmentation of the

cortical bone, the initial distance between the two contours needs to be selected properly.

The second contour must be inward and the distance between the two contours cannot

be very big or the inner contour will start evolving in the trabecular bone region as seen

in Figure. 5.13c. This distance cannot also be very small or the contour will not evolve

properly with a risk of stagnation as can be seen in Figure. 5.13.

initialisation sensitivity Usually, local based methods have an essential drawback

which is the process of contour initialisation as illustrated in Figure. 5.14. The contour
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(a) D = -1 (b) D = -5 (c) D = -20

Figure 5.13: Initial contours distance effect

(a) Bad Initialisation (b) Bad result (c) Good Initialisation (d) Good result

Figure 5.14: The effect of bad and good initialisation result

of the proposed approach must be initialized relatively close to the object of interest.

Because the form of the object of interest is known, the user intervention can be omitted,

and hence, an automatic initialisation technique was proposed using the flowchart of

Figure. 5.15.

DAC initialization

A specific initialization technique was proposed for the HRpQCT image. Since the

bone shape is closed and round, a curve close to the object of interest can be identified

automatically. The proposed pre-processing algorithm starts with the binarization of the

image using a threshold of 40% of the highest gray level intensity in the image. Afterwards,

a closing operation is used (dilation and erosion) with a structuring element (disk of 20

pixels) to fill in the trabecular bone. The last result serves as an initialisation mask for

the DAC method as illustrated in Figure. 5.15.

5.4 Conclusion

To summarize, this chapter provided two distinct approaches proposed during this

thesis. The first segmentation approach enables to segment accurately the HR-pQCT im-

ages in the ultra-distal sites. This was achieved using a new fuzzy energy active contours
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Figure 5.15: The proposed pre-processing algorithm to initialize DAC method.

approach. The latter is followed by a post-processing algorithm to mimic the clinicians

behaviour for the separation between the two bones. The proposed algorithm provided

accurate results and has the potential to provide more data due to its capability of han-

dling the ultra-distal sites. However, this approach cannot quantify directly the porosity

of the cortical bone, as the same post processing provided by [152] is needed. For that,

we developed a new Dual Active Contours approach that can segment the cortical bone

and its erosions automatically without any post-processing. The concept of DAC is based

on evolving two contours in the image domain based on the energy between them, where

they interact with each other to encapsulate the desired object.

After segmenting the cortical bone, an analysis of this compartement is needed to

understand the effect of pathologies (osteoporosis) on it. The following chapter provides

an overview of the different parameters extracted from the cortical bone and their relation

with the fragility fractures.



Chapter 6

Osteoporotic Fractures Prediction

6.1 Introduction

The objective of this chapter is to illustrate the use of the segmentation result to

quantify the different cortical parameters and thereby identify patients prone to fractures.

The predictive capabilities of DAC approach were compared with the Xtreme Ct scan-

ner segmentation method. The results achieved showed that the conventional analysis

techniques of the cortical bone obscure potentially important regional variations in the

cortical structure. Therefore, the cortical bone of the distal radius in this thesis is split

into four regions to study the association between the local regional cortical parameters

and fractures. The results prove that spatially resolved analysis is able to identify cortical

sub-regions with increased fracture risk better than global analysis of the cortical bone.

6.2 Extracted parameters from the cortical bone

6.2.1 Global parameters

The standard method to quantitatively describe the bone architecture is the es-

timation of morphometric indices. These parameters represent the morphological and

topological characteristics of the cortical bone and its porosity. The following Table 6.1

presents a detailed description of the parameters used in this study .

For the estimation of the mean cortical thickness, the following algorithm is applied

to the binary result of the DAC method, which does not use the classical sphere technique,

but, it produces the same results:

75
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Table 6.1: Description of the Employed Cortical and Porosity Parameters

Parameter (unit) Description
C
o
rt
ic
a
l Ct.V (mm3) Cortical Volume = number of voxels of segmentation result in-

cluding the pores × resolution (0.0823mm3)

Ct.Th (mm) Average cortical thickness

Ct.Ar (mm2) Cortical bone area = Ct.V÷ (number of slices× slice thickness)

P
o
ro

si
ty

Po. V (mm3) Porosity Volume = the void pixels in the segmentation result
× resolution

Ct.Po (%) Cortical porosity = (Po.V ÷ Ct.V ) × 100

Po.N (n) Pores Number

Avg.Po.V (mm3) Average Pore Volume = Po.V ÷ Po.N

Po.Dn (mm−3) Pore density = Po.N ÷ Ct.V

(a) (b) (c)

Figure 6.1: Illustration of the different steps to calculate the average cortical thickness,
of a 2D distal radius slice (a), followed by the Euclidean distance transform (b), and the
local maxima (c)

1. Compute the Euclidean distance transform of the binary image [171], so that all

the background pixels are set to 0, and the foreground pixels are set to the distance

from the background Figure 6.1b.

2. Find the local maxima in the distance transformed image. Assuming that there are

spheres fitted in the binary image, the local maxima points represent the center of

the spheres with maximum axis (Figure 6.1c).

3. Compute the average value of these points, which represents the mean cortical

thickness.

6.2.2 Local parameters

As Kazakia et. al states in [172], while the importance of the cortical structure

quantification is increasingly underscored by recent literature, the conventional analysis

techniques obscure potentially important regional parameter variations. Therefore, re-
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gional analysis has become recently an interesting field to understand and explore the

anatomic distribution of geometric and microstructural features [172, 173, 174, 175, 59].

Analyses focusing on variation along the length of the bone have found considerable vari-

ation in geometry and microarchitecture measures [174, 176, 172]. Furthermore, in [176]a

correlation between these measures and the mechanical competence of the bone illus-

trated. In site-specific analyses focused on the trabecular compartment, regional analysis

has improved sensitivity to morphologic changes associated with age and gender differ-

ences [175] as well as those affected by antiresorptive therapy [175]. Regional analysis

has also been used to detect a spatial association between cortical area and stress frac-

ture prevalence at the tibia [173]. In this context, this work also studies the correlation

between the regional cortical parameters and the bone fractures.

The first objective was therefore to partition all the images of the radius bone simi-

larly To achieve that, an ellipse fitting technique on the image of the radius bone is applied.

Then the two axis of the ellipse partition the image into four quadrants (Figure 6.2). The

first step in the ellipse fitting technique is to extract the coordinates (x1, y1), . . . , (xn, yn)

of all the n points of the outer contour of the cortical bone. Afterwards, the best fitted

ellipse on these points is computed following the conic equation of an ellipse as follows:

ax2 + bxy + cy2 + dx+ ey + f = 0 (6.1)

AX + f = 0

where A is the vector of parameters to be estimated (a, b, c, d, e) along with f . X is the

vector (x2, xy, y2, x, y)T .

To fit an ellipse over the points (x1, y1), . . . , (xn, yn), we need to look for A that

verifies:



















AX1 + f = 0

AX2 + f = 0

...

AXN + f = 0



















(6.2)

where X1, . . . , Xn are the vector X for the points (x1, y1), . . . , (xn, yn), respectively. Using

the least square technique, which considers that the best fit minimizes the sum of the
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Figure 6.2: In red, the ellipse fitted to the ultra-distal scan of the radius bone using least
squares method. The four quadrants used for the regional analysis are also illustrated.

squares of every single equation of the model is given by Equation (6.2). Considering

Y ≡ (X1, X2, . . . , XN), and F ≡ (f, f, . . . , f). The cost function to be minimized is then

expressed as follows:

C ≡ (AY + F )T · (AY + F ) (6.3)

To estimate A that minimizes the cost function, the first derivative of Equation (6.3) is

set to zero, A is then:

A =
−f ∗

∑

Y

Y TY
(6.4)

After the radius bone decomposition, the same parameters listed in the Chapter 6.2.1

are quantified for each quadrant, to serve as the local parameters of the radius bone.

6.3 Database

The subjects studied in this work come from the QUALYOR (Qualité Osseuse et

Amélioration de la prédiction du risque fracturaire à LYon et ORléans) cohort described

previously in Chapter 4.3. This is a prospective study of 1525 (1000 in Lyon, and 525

in Orléans) menopausal women aged ≥ 50, recruited between 2011 and 2012 with a 5

years follow-up for HRpQCT acquisition. The protocol was approved by a regional ethics
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committee. Each subject was included in the study after signature of informed consent.

Only the Orléans data were available during this thesis, with a limited number of fractured

participants (31) along the follow up period. The Piala criterion for HRpQCT image

quality was used [163] and then only 172 participants were selected where the acquired

images were accurate with no motion and no ring artifacts. Over the 172 patients, 31

(18.12%) sustained one or more fracture during the in average 5-3 years follow-up period.

Table 6.2 presents the baseline (clinical) characteristics of the 172 patients used in this

study, where the clinical variables are presented as mean ± standard deviation.

Table 6.2: Baseline characteristics of the employed database

Control Fractured

(N=141) (N=31)

Age (years) 69.63 ± 4.73 69.73 ± 6.42

Bone Mineral Index (BMI) (kg/m2) 24.88 ± 4.04 24.56 ± 3.82

BMD (g/cm2) 0.79 ± 0.08 0.77 ± 0.07

6.4 Statistical analysis

First, using the segmented database, the global cortical parameters are coupled with

the clinical covariates (Age, BMI, menopause year, Hip BMD) to construct a feature

vector. Then, to monitor the predictive capability of this vector of parameters, the logistic

regression technique ([177]) is used with four distinct models.

1. Model 1: Clinical covariates (Age, BMI, Hip BMD and menopause year)

2. Model 2: Clinical covariates + Cortical parameters (Table 6.1)

3. Model 3: Clinical covariates + Porosity parameters (Table 6.1)

4. Model 4: Combination of all the above three models.

These models were used to test the effect of the clinical, cortical and porosity parameters

individually and to identify the best set of parameters able on distinguishing between

the two populations (controls and fractured). Each model was evaluated using the 10-

fold cross-validation repeated 100 times in order to construct the Receiver Operating

Characteristic (ROC) curves ([177]).
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A comparison between the DAC parameters and the conventional technique of the

Xtreme CT scanner is conducted to identify which method separates better the two pop-

ulations. The area under the curve (AUC) from the ROC curves is used as performance

criterion, in addition to the statistical classification rates such as: Accuracy, Sensitiv-

ity, Specificity, Positive Predictive Value (PPV), Negative Predictive Value (NPV), and

Balanced Accuracy (BA). More details are provided in the Appendix A.

In the second experiment, we have realized a decomposition of each radius image

of the database into four regions [175] using the ellipse fitting technique described in

Chapter 6.2.2. The ROC curves and the classification rates are also used to evaluate the

associations between the cortical bone parameters of each quadrant and the fractures.

Furthermore, the Cox Proportional Hazard (CPH) model developed by Cox [178]

is used to evaluate the associations between each quadrant’s parameters and the bone

fractures. CPH is essentially a regression model commonly used in medical research

for investigating the association between the survival time of patients and one or more

predictor variables. The purpose of the CPH model is to evaluate simultaneously the

effect of several factors on the survival. In other words, it allows us to examine how

specific parameters influence the rate of a particular event happening (e.g. fracture) at a

particular point in time. This rate is commonly referred as the Hazard Rate (HR) and is

quantified for each parameter. HR above 1 indicates that a parameter (referred covariate)

is positively associated with the event probability, and thus negatively associated with

the length of survival. Three values are considered for the HR:

• HR = 1 : No effect on prognosis.

• HR < 1 : Reduction in hazard, meaning less risk of getting fracture is associated

with the considered parameter.

• HR > 1 : Increase in hazard, meaning more risk of getting fracture is associated

with the considered parameter.

Based on the CPH models, a composite variable was built, taking into account the

age, BMI, and Hip BMD in combination with either cortical parameters or porosity ones.

All statistical analyzes were performed in R language (https://www.r-project.

org, version 3.3.3), using the MASS packages (version 7.3 - for iterative optimization),

Caret (version 6.0 - for cross-validation), pROC (version 1.10 - for the analysis of ROC

https://www.r-project.org
https://www.r-project.org
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(a) (b)

Figure 6.3: ROC curves for a composite clinical variables, cortical parameters, poros-
ity parameters, and all the previous models using (a) the DAC’s segmentation result(b)
Xtreme CT technique result

curves), and survival (version 2.41 - for the cox proportional hazard model). The doc-

umentation for these packages is available online (https://cran.r-project.org/web/

packages)

6.5 Results

6.5.1 Fracture prediction using cortical global parameters

First, the database was segmented using the DAC and the Xtreme CT implemented

method. Based on the segmentation results, the different parameters expressed in Chapter

6.2.1 are calculated in a global manner on each radius. Then, an evaluation of the outcome

of each of the four models using both segmentations results is performed. Both techniques

achieved the same conclusions, using the model 3 achieves better results compared to

model 2, meaning that porosity parameters separate better than only cortical parameters.

The separation between the fractured and the control patients using the model 2 and 3

was evaluated using the AUC. An increase of 10 % in the AUC value of the DAC approach

(0.65 in model 2 to 0.75 in model 3), and an increase of 8% of the Xtreme CT (0.59 model

2 to 0.67 model 3) Figure 6.3.

Furthermore, Table 6.3 illustrates the performance of the two techniques using the

model 4 which combines clinical, cortical and porosity parameters. Both techniques did

not provide good performances on identifying the patients that are prone to experience

fracture, with a sensitivity of 15.35% using DAC compared to 11.09% using Xtreme. The

accuracy of the DAC method (82.05 %) is less than the one obtained from Xtreme CT

(82.38%), which can be explained by the number of control patients that is superior than

https://cran.r-project.org/web/packages
https://cran.r-project.org/web/packages
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the fractured ones. This can influence the accuracy result because, even if all the patients

are classified as controls, the accuracy will remain high. Therefore, Balanced Accuracy

(BA), which is equal to ((sensitivity+specificity)/2) was used to balance between the

number of controls and fractured, and in this case the proposed approach (56,03%) ex-

ceeded Xtreme CT one (54,23%). However, it is obvious that no remarkable improvement

is achieved between DAC and Xtreme CT, due to the very low sensitivity rate in both

techniques.

Table 6.3: The Statistical Performance of DAC and Xtreme CT Segmentation results
on the Predictions of Fractures

Method Accuracy Sensitivity Specificity PPV NPV BA

DAC 82.05 15.35 96.7 50.63 83.86 56.03

Xtreme CT 82.38 11.54 96.9 43.55 84.22 54.23

6.5.2 Fracture prediction using the local cortical parameters

After the radius bone decomposition into four quadrants, the cortical bone param-

eters are studied locally in each region. To test the associations between each part pa-

rameters with the incident fractures, we first used the ROC curves, and the CPH model

explained in Appendix A. The performance of each quadrant is discussed in follows:

Quadrant 1

Figure 6.4: ROC curve for the “Quadrant 1”of the radius bone using the four models
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Among the different quadrants, the first part (Figure 6.2), produced the best results

with an AUC of 0.88 using the cortical parameters (model 2), 0.87 using the porosity

parameters (model 3) and 0.90 using the model 4 (Figure 6.4). Compared to the global

analysis, these results show that local bone observation achieve better associations with

incident fractures. This can be related to the fact that this quadrant experience more

remodeling than the other quadrants, which is yet to be anatomically proven. However, it

is evident that different daily forces and activities influence the bone formation. Moreover,

the results achieved (Figure 6.4) illustrate that cortical parameters slightly achieve better

results than the porosity ones. To further exhibits the performance of this quadrant,

Table 6.4 represent the statistical results, with a sensitivity of 59.53% and a balanced

accuracy of 76.92% compared to global parameters with 15.35% for sensitivity and 56.03%

for balanced accuracy.

Moreover, to identify the best parameters in the first quadrant, the CPH model

is used. Table 6.5 represents the hazard ratio results of every parameter from the four

quadrants. The base model was the clinical covariates (Age, BMI and Hip BMD), then

we added individually each cortical and porosity parameter to evaluate its association

with the fractures. If the HR > 1, this means that this parameter is a good fracture

predictor. Three robust prediction values were noticed in the parameters CT.Ar1, Po.V1,

and AvgPo.V1. The Ct.Ar1 in the fractured group decreased compared to healthy ones

and the HR associated was (1.8; Confidence Interval (CI) of 1.5-2.2). An increase in the

Po.V1 with (HR of 1.5; CI 1.2-1.8), and Avg.Po.V1 in the fractured group with (HR of

1.7; CI 1.4-2.1).

Quadrant 2

The same observations as the first quadrant were achieved in the second quadrant.

AUC of 0.86 using the cortical parameters, 0.85 using the porosity parameters and 0.83

using the 4th model. Similar to Quadrant 1, compared to the global analysis, these results

show that this part experience more noticeable changes compared to the cortical bone as

a whole. Comparably good results were also achieved using the classification rates as can

be seen in Table 6.4. However, using the CPH model none of the quadrant 2 parameters

produced a robust HR (Table 6.5).
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Figure 6.5: ROC of the “Quadrant 2 ”parameters of the cortical bone of the radius

Table 6.4: The Statistical Classification Rates of the Local Cortical Parameters by
Quadrant

Quadrant Accuracy Sensitivity Specificity PPV NPV BA

Part1 88.2 59.53 94.30 68.98 91.63 76.92

Part2 86.68 42.87 96.01 69.55 88.76 69.44

Part3 81.06 0.07 98.15 0.74 82.28 49.42

Part4 81.56 1.66 98.55 19.68 82.48 50.10

Quadrant 3

The parameters extracted from the quadrant 3, were not able to differentiate be-

tween the healthy and fractured participants. The statistical tests (Table 6.4) show that

quadrant 3 could not predict fractures, with a sensitivity (0.07%) near to zero, which

means that the majority of participants were identified as non prone to fractures. The

same interpretation is reached using the CPH model (Table 6.5).

Quadrant 4

Similar to Quadrant 3, the Quadrant 4 was not able to differentiate between the

healthy and prone to fractures group. The produced sensitivity 1.66 % effectively means

that the parameters extracted from this quadrant are not good predictors for osteoporotic

fractures with HR for all the parameters = 1 (Table 6.5).
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Table 6.5: Association Between Multiple HR-pQCT Cortical Bone Variables and
Fractures Using Cox Model

Parameters HR (95% CI for HR)

Global

Ct. Ar 1.1 (1-1.2)

Ct. Th 1.1 (1-1.1)

Ct. V 1 (1-1)

Ct. Po 0.98 (0.67-1.4)

Po. V 1 (0.96-1.1)

Avg. Po. V 1.3 (0.97-1.8)

Quadrant 1

Ct. Ar 1 1.8 (1.5-2.2)

Ct. Th 1 1 (1-1)

Ct. V 1 1.1 (1-1.1)

Ct. Po 1 1.1 (0.83-1.5)

Po. V 1 1.5 (1.2-1.8)

Avg. Po. V 1 1.7 (1.4-2.1)

Quadrant 2

Ct. Ar 2 1.3 (1.1-1.6)

Ct. Th 2 1 (1-1)

Ct. V 2 1 (1-1.1)

Ct. Po 2 1 (0.78-1.3)

Po. V 2 1.2 (0.97-1.4)

Avg. Po. V 2 1.1 (0.98-1.3)

Quadrant 3

Ct. Ar 3 0.89 (0.73-1.1)

Ct. Th 3 0.98 (0.95-1)

Ct. V 3 0.99 (0.97-1)

Ct. Po 3 0.83 (0.6-1.2)

Po. V 3 0.83 (0.66-1)

Avg. Po. V 3 0.79 (0.59-1)

Quadrant 4

Ct. Ar. 4 0.96 (0.8-1.2)

Ct. Th 4 0.99 (0.96-1)

Ct. V 4 1 (0.98-1)

Ct. Po 4 0.77 (0.52-1.1)

Po. V 4 0.8 (0.6-1.1)

Avg. Po. V 4 0.63 (0.42-0.97)

6.6 Discussion

To our knowledge, this is the first study associating the regional cortical changes

in radius with the osteoporotic fractures. As a conclusion from the local analysis of the

cortical bone, we deduced that actually, the global cortical parameters obscure potentially

important regional variations such as quadrants 1 and 2. Therefore, incorporating the

global parameters of the cortical bone will use healthy portions of the bone that are not
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Figure 6.6: ROC curve of the “Quadrant 3”parameters of the cortical bone of radius
using the four models

Figure 6.7: ROC curve of the “Quadrant 4”parameters of the cortical bone of the radius
using the four models

prone to fractures, and hence, will bias the global results. For that reason, it is necessary

to study the cortical bone locally instead of globally to construct a more robust predictive

system of osteoporotic fractures.

Compared to [172], which evaluated the Age and gender related differences in the

geometry and microstructure of the cortical bone subregions, significant regional variations

were noticed in the cortical parameters in the radius as well as in the tibia. At both sites,

Ct.Po displayed the greatest regional variations. Comparing women to men, differences

in Ct.Po were most pronounced in the quadrant 1 of the radius (36% lower in women). As
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for the comparison between the elderly to young women, differences in Ct.Po were most

pronounced in the quadrant 1 and 2 of the radius (328% higher in the elderly women).

Since, the oldest we get, the higher the probability of fracture we have. This result

corroborates our findings, that Quadrant 1 and 2 are the most affected by the aging and

more prone to fractures. These results suggest that regional analysis may be important in

studies of disease and therapeutic effects. Particularly where microstructural parameters

based on global analyses have thus far failed to identify a response in bone quality.

One limitation faces the proposed study is the lack of the anatomical explanation of

the specific quadrants affections. As stated by [172, 173], the biomechanical parameters

describing the load and the stress distribution all over the bone explains further how

each bone region changes according to the mechanical forces applied on it. This can help

explaining the results difference between the quadrants.

6.7 Conclusion

This cross-sectional study presents a novel investigation of the bone quality and

the osteoporotic fractures using three-dimensional HR-pQCT, as well as a customized

regional analysis method to examine spatial variations by quadrants. When analyzing

the bone as a whole, cortical/prorosity parameters outcomes were not different between

the different groups (controls and fractured). However, the regional analysis revealed

trends of a thinner cortex, augmentation of porosity volume and a significantly smaller

cortical area in the first quadrant of the fractured group. The anatomical interpretation

of the finding is yet to be justified. However, these data suggest that there are significant

differences in both the cortical, and porosity parameters between the control and fractured

groups and that the differences are mostly localized in the quadrants 1 and 2 (Figure 6.2).
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This work presents the problem of the HRpQCT image segmentation for the prediction of

osteoporotic fractures. The aim of this thesis was to determine whether the morphological

parameters of the cortical bone extracted from HRpQCT images could lead to a better

identification of the participants that will experience fractures. The analysis of the cortical

bone and the extraction of its morphological parameters cannot be accomplished until a

correct segmentation of the latter is achieved. Therefore, our main objective was to

propose an automatic and an accurate cortical bone segmentation of HRpQCT images.

Currently, in Xteme CT scanner, HRpQCT cortical bone segmentation is based

on the semi-manual delineation of the periosteal surface, while the endosteal surface is

extracted using Burghardt technique [59]. Two approaches were proposed to solve the

problem of automatic and accurate segmentation of the cortical bone. The first approach

segments the ultra-distal sites images based on a new fuzzy energy active contours ap-

proach. The approach does not use the intensity of the pixel to separate between inside

and outside the contours, instead it uses a fuzzy membership function which describes

the belonging of each pixel to each region. This approach proved its applicability in han-

dling the image inhomogeneity in the ultra distal sites. However, another post processing

algoithm is needed to extract the pores of the cortical bone.

On the other hand, the second approach can segment the cortical bone and its

porosity. A new concept was introduced based on evolving two contours in the image

domain based on the local energy between them, where they can interact with each other

to encapsulate the desired object. This hypothesis can furthermore be used to improve

the segmentation result of objects with difficult structures. Many conclusions can be

drawn from the experiments of the approach DAC. First, an application of Dual Active

Contour approach on synthetic data created using the Brodatz database illustrated the

applicability of the latter. Moreover, to further validate the performance of DAC, medical
88
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images such as HRpQCT images and MRI bladder wall were used.

In DAC, the idea of moving the second contour to ensure that the region between

the two contours is homogeneous will never produce cortical breaks unlike the state of the

art. Finally, due to the localized energy of the proposed technique, user intervention is

needed to initialize the contour close to the object of interest. In this study, in the case

of HRpQCT images, we have proposed a novel pre-processing algorithm that can provide

an automatic initial contour based on a thresholding technique and closing operations.

Furthermore, the time complexity was reduced using the FFT transform to simplify the

convolution complexity. In spite of that, the computation cost of the approach in Matlab

remains high in dealing with huge 3D volumes of data.

Using the DAC segmentation method on the QUALYOR database, allowed us to

analyze and quantify the different cortical parameters such as: Cortical thickness, Cortical

porosity, porosity volume, etc. Different experiments enlightened us the role of the cortical

bone. When analyzing the bone as a whole, cortical/porosity parameters outcomes were

not different between groups. However, the regional analysis revealed trends of a thinner

cortex, augmentation of porosity volume and a significantly smaller cortical area in certain

quadrants of the fractured group. The anatomical interpretation of the finding is yet to be

justified. However, on the whole, these data suggest that there are significant differences

in both the cortical, and porosity parameters between the control and fractured groups

and that the differences are mostly localized in some quadrants.

Future studies will focus on several areas:

• The combination of the fuzzy logic introduced in the first approach to the DAC

energy can be studied to further enhance the result of segmentation

• For the time complexity of DAC, a current work is undergoing to parallelize the two

contours interaction, where each point of the inner contour will take into account

only the neighboring points in the outer contour. Thereby, points all over the inner

contour can start moving while the outer one hasn’t converged yet

• Another interesting idea is to add a global fitting term to the DAC energy. This

could help resolve the initialization problem and the execution time.

• A specific study could focus on understanding the mechanical behavior of the bone
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along the different parts using Finite Element Analysis (FEA). This will help com-

prehend the stress and stiffness on each of them, which can explain the differences

between the quadrant results.

• A complete study on the QUALYOR database. Recently we have retrieved the

whole database in the two sites of Orleans and Lyon. More than 100 participants

have endured fracture along the follow up study. Therefore, the number of fractured

patients will no long be crippling as it was in the actual study. It remains to remake

the statistical study with the different quadrants to consolidate the obtained results.
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Statistic Tools used for Predictions

A.1 Logistic regression

Logistic regression is a method of data analysis widely used in the medical field to

find characteristics specific to a pathology. This model of analysis is also used in other

fields such as insurance or econometrics for the explanation of discrete variables. This

method was proposed in 1958 by Cox [177].

As the name implies, it is a binomial regression model used to estimate the proba-

bility of a binary response in function of a set of independent qualitative or quantitative

variables. In other words, we measure the association of a qualitative variable with two

levels, called dependent, with one or more explanatory variables via a logistic function.

Let Y be the variable to be predicted and X = (X1; . . . ;Xp) are the set of predictive

variables. We note Yj the observations of Y for j = 1, . . . , n and Xi,j the observations of

X for i=1, . . . , p

The logit function of probability Pr(1|X) is given by:

ln(
Pr(1|X)

1− Pr(1|X)
) = β0 + β1x1 + · · ·+ βjxj

The logistic model is then written as follows:

ln(
Pr(Yj = 1|Xij)

Pr(1− Yj = 1|Xij)
) = β0 +

p
∑

i=1

β1Xij

The parameters β of the model are then estimated by maximizing the likelihood L
91
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given by:

L(β) =
n
∏

j=1

Pr(Yj = 1|Xij)
Yj × Pr(Yj = 0|Xij)

=
n
∏

j=1

Pr(Yj = 1|Xij)
Yj × [1− Pr(Yj = 1|Xij)Yj]

The maximum likelihood estimation is done by an iterative optimization algorithm

based on the Newton-Raphson method:

βi+1 = βi −
( ∂2L

∂β∂β′

)−1

×
∂L

∂β
(A.1)

Each iteration refining the values of β, until the convergence towards the optimal

values, is translated by a stability of the parameters β from one iteration to the other.

A.2 ROC Curves

ROC curves, also called performance characteristic curves or sensitivity/ specificity

curves, are visual indicators of the performance of a binary classifier. To construct these

curves, the sensitivity (Se) of a classifier against its specificity (Sp) is plotted for different

thresholds of probability. Sensitivity is the probability of obtaining a positive prediction

for a positive observation. Specificity measures the probability of obtaining a negative

prediction for a negative observation.

In the case of a logistic regression, the probability Pr(Y j = 1|Xij) ∈ [0; 1] is com-

puted for each sample. By varying the decision threshold σ ∈ [0; 1], different confusion

matrices tables are constructed (Table A.1).

Table A.1: Confusion Matrix

Reference

Case Control

P
re
d
ic
te
d

Case TP FP

Control FN TN
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From these confusion matrix, the sensitivity, and specificity associated with this

threshold σ are calculated according to:

Se(σ) =
TP

TP + FN
SP (σ) =

TN

TN + FP

with :

• TP: True Positive, the number of true observations classified true.

• FN: False Negatives, the number of true observations classified as false.

• TN: True Negative, the number of false observations classified false.

• FP: False Positive, the number of false observations classified as true.

Different parameters can be computed from the confusion matrix, using the following

formulas :

Sensitivity =
TP

TP + FN

Specificity =
TN

TN + FP

Prevalence =
(TP + FN)

(TP + FP + TN + FN)

PPV =
(sensitivity × prevalence)

((sensitivity × prevalence) + ((1− specificity)× (1− prevalence)))

NPV =
(specificity × (1− prevalence))

(((1− sensitivity)× prevalence) + ((specificity)× (1− prevalence)))

BalancedAccuracy =
(sensitivity + specificity)

2

The ROC curve is a fundamental tool for diagnostic test evaluation. In a ROC

curve the true positive rate (Sensitivity) is plotted in function of the false positive rate

(100-Specificity) for different cut-off points of a parameter. Each point on the ROC curve

represents a sensitivity/specificity pair corresponding to a particular decision threshold.

A test with perfect discrimination (no overlap in the two distributions) has a ROC curve

that passes through the upper left corner (100% sensitivity, 100% specificity). Therefore

the closer the ROC curve is to the upper left corner, the higher the overall accuracy of

the test.
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Figure A.1: Example of ROC curve. The blue dotted line corresponds to the ideal curve
with sensitivity and specificity equal to 1. The gray area symbolizes the area under the
curve (AUC).

From this curve, the area under the curve (AUC) is calculated as a performance

indicator:

AUC =

∫ 1

0

Se(σ)(1− Sp(σ))

The AUC is therefore between 0 and 1. A random prediction will have an AUC of

0.5, while a perfect classifier will have an AUC of 1. It is commonly assumed that a model

is acceptable if it produces an AUC > 0.7.

A.3 Cox proportional hazard model

The Cox proportional-hazards model (Cox, 1972) [178] is essentially a regression

model commonly used statistical in medical research for investigating the association

between the survival time of patients and one or more predictor variables.

The purpose of the model is to evaluate simultaneously the effect of several factors

on survival. In other words, it allows us to examine how specified factors influence the

rate of a particular event happening (e.g., infection, death) at a particular point in time.

This rate is commonly referred as the hazard rate. Predictor variables (or factors) are

usually termed covariates in the survival-analysis literature.

The Cox model is expressed by the hazard function denoted by h(t). Briefly, the

hazard function can be interpreted as the risk of dying at time t. It can be estimated as
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follow:

h(t) = h0(t)× exp(b1x1 + b2x2 + ...+ bpxp)

where,

• t represents the survival time

• h(t) is the hazard function determined by a set of p covariates (x1, x2, . . . , xp)

• the coefficients (b1, b2,..., bp) measure the impact (i.e., the effect size) of covariates.

• the term h0 is called the baseline hazard. It corresponds to the value of the hazard

if all the xi are equal to zero (the quantity exp(0) equals 1). The ‘t’ in h(t) reminds

us that the hazard may vary over time.

The Cox model can be written as a multiple linear regression of the logarithm of the

hazard on the variables xi, with the baseline hazard being an ‘intercept’ term that varies

with time.

The quantities exp(bi) are called hazard ratios (HR). A value of bi greater than zero,

or equivalently a hazard ratio greater than one, indicates that as the value of the ith

covariate increases, the event hazard increases and thus the length of survival decreases.

Put another way, a hazard ratio above 1 indicates a covariate that is positively

associated with the event probability, and thus negatively associated with the length of

survival.

In summary,

• HR = 1: No effect

• HR < 1: Reduction in the hazard

• HR > 1: Increase in Hazard
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