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Most of the progressive failures of geotechnical structures are associated with the strain localization phenomenon, which is generally accompanied by strength softening. Many experimental observations show that significant rearrangements and rotations of particles occur inside the shear bands. The aim of this thesis is to investigate numerically the strain localization phenomena of granular materials. Considering the mesh dependency problems in finite element analysis caused by strain softening within the classical continuum framework, a sand model based on critical-state has been formulated within the framework of the micropolar theory, taking into account the micro rotations, and implemented into a finite element code for two dimensional problems. Then, the simulations of the shear band in biaxial tests are comprehensively studied in terms of onset, thickness, orientation, etc. At the same time, the efficiency of the micropolar approach, as a regularization technique, is discussed. This is followed by an instability analysis using the second-order work based on the micropolar continuum theory. Finally, for a wider application in simulating failures in geotechnical engineering, the 2D model has been extended to 3D model. Based on the entire study, both the 2D and 3D model demonstrate obvious regularization ability to relieve the mesh dependency problems and to reproduce reasonably the shear bands in geostructures.
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General introduction

The aim of this thesis is to investigate numerically the strain localization phenomena in geotechnical structures with the finite element method. In order to overcome the serious mesh dependency problems of the numerical solutions in the post-bifurcation regime and to reproduce reasonably the shear band, a sand model based on critical-state has been formulated within the framework of micropolar theory and implemented into a finite element code. The micropolar theory was selected as the regularization method, because we consider that it has more physical meaning than other regularization theories. That is to say, compared to other regularization approaches, the micropolar theory is able to take into account the independent rotations of the particles. The thesis is divided into five chapters followed by general conclusions and perspectives. The outline is as follows:

Chapter 1 presents a comprehensive review of the strain localization phenomena in natural or artificial geo-structures and laboratory tests. The, with the aim of explaining the strain localization phenomena, various research methods and theories including the finite element method were summarized. Considering the mesh dependency problems in models based on the classical continuum theory, several regularization theories, e.g. non-local theory, high-gradient theory, micropolar theory, were discussed. According to their advantages or disadvantages, the micropolar theory was selected and used at last.

In chapter 2, a detailed introduction of the micropolar theory is presented, followed by a brief description of a sand model based on critical-state. Then, the full formulations of the model within the framework of micropolar theory have been derived. Based on the polarized model, FE implementations and validations have been conducted by fitting a series of laboratory element tests.

The capability of micropolar approach in dealing with mesh dependency problems has also been presented by simulating a biaxial test and a retaining wall.

In chapter 3, the shear band in biaxial tests is numerically investigated in terms of onset, thickness and orientation, etc. For the purposes of validation, shear band thickness was also compared with the experimental outcomes. Furthermore, an effective regularization ratio in the micropolar model was proposed and discussed. At last, the influences of all the conditions, such as confining pressures, initial void ratios, internal length, model parameters, on shear band patterns and the effective ratio have been discussed.

In chapter 4, the strain localization problems were discussed from an energy point of view.

Because the driving force behind failures is believed to be the instability, the second-order work proposed by [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF] was newly defined according to the micropolar model and used herein to investigate the difference between the classical model and the micropolar model. The mesh-independency using the micropolar model was also revealed by comparing second-order work for different cases.

In chapter 5, with an intent for more wide application in simulating the failures in geotechnical engineering, the 2D micropolar model has been extended to a 3D one. The implementation and numerical simulations were performed in detail. Furthermore, both the 2D and 3D model have demonstrated powerful regularization ability to relieve the mesh dependency problems and reasonably reproduce the shear band in structures.

Finally the general conclusions and perspectives summarized the thesis and proposed some perspectives and open questions for future developments.

Besides of these, some mathematical derivations of the mesh dependency problems and the pathological solutions can be found in the Appendices. The parameters used in current manuscript by fitting an isotropic compression test and a series of triaxial tests were also calibrated and summarized in the Appendices.

Introduction générale

Cette thèse vise à étudier numériquement les phénomènes de localisation des déformations en géotechnique par la méthode des éléments finis. Afin de traiter les sérieux problèmes de dépendance au maillage des solutions numériques dans le régime post-bifurcation et de reproduire raisonnablement le développement des bande de cisaillement, un modèle de sable basé sur l'état critique a été formulé dans le cadre de la théorie micropolaire et implémenté dans un code aux éléments finis. Le choix de cette méthode de régularisation s'appuie sur le fait qu'elle a un sens physique plus parqué que d'autres approches de régularisation. C'est-à-dire, par rapport à d'autres approches de régularisation, la théorie micropolaire est capable de prendre en compte les rotations indépendantes des particules. La thèse est divisée en cinq chapitres suivis des conclusions générales et des perspectives et est structurée comme suit.

Dans le chapitre 1, une synthèse détaillée des phénomènes de localisation des déformations au sein de géo-structures naturelles ou artificielles et d'échantillons de laboratoire a été réalisée. Puis, dans le but d'expliquer les phénomènes de localisation des déformations, une série de méthodes de recherche et de théories incluant la méthode des éléments finis a été résumée. Etant donnés les problèmes de dépendance au maillage dans les modèles basés sur la théorie du continuum classique, plusieurs approches de régularisation, telles que la théorie non locale, la théorie du gradient élevé, la théorie micropolaire, ont été présentées. Sur la base des discussions sur les avantages et les inconvénients de ces différentes théories, l'approche micropolaire a finalement été sélectionnée.

Au chapitre 2, la théorie micropolaire a été illustrée en détail. Un modèle élastoplastic pour les sables, basé sur l'état critique a été retenu et les formulations complètes du modèle dans le cadre de la théorie micropolaire ont été dérivées. Ce modèle polarisé a été implémenté dans un code de calcul aux éléments finis et des validations ont été réalisées en s'appuyant sur une série d'essais élémentaire de laboratoire. La capacité de l'approche micropolaire dans le traitement des problèmes de dépendance au maillage a également été présentée. Although strain localization has long been observed at the scales of both geotechnical structures and laboratory experiments, systematic studies designed to observe and analyze shear banding in geomaterials have been undertaken only during the past decades [START_REF] Desrues | Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry[END_REF].

Based on the monitoring or observation of strain localization phenomena, the mechanism underpinning strain localization has become clearer. Although a macroscopic occurrence, its origin lies in the material microstructure. A variety of theories and methods have been proposed with the aim of describing and explaining these phenomena against the backdrop of geotechnical engineering, for example, equilibrium theories, discontinuity theories, bifurcation theories, and different constitutive models. Occasionally, these models have been enhanced using a range of regularization approaches, which have chiefly been adopted for post-failure analysis. With the help of a suitable theory and constitutive model, the typical strain localization with shear band can be reproduced via numerical simulations. The shear banding invariably refers to failure surface inclination, shear banding thickness, and the global bearing capacity of structures during the overall failure process.

In this chapter, a detailed synthesis of strain localization phenomena from natural or artificial geo-structures to laboratory tests was first summarized. Then, the mechanism of strain softening of granular material or structures was discussed. As an intent of explaining the strain localization phenomena, a series of research methods and theories was reviewed. Shear band, the main specific feature of strain localization phenomena, was focused on in terms of its onset, inclination, thickness, etc. Next, the advantages and disadvantages of numerical methods were discussed. Considering the deficiencies of FEM in modelling strain localization problem, several main regularization approaches, such as viscosity theory, non-local theory, high-gradient theory and micropolar theory, are naturally introduced. According to the properties of each regularization technique, the micropolar theory was favored in the present manuscript at last. Therefore, the applications of micropolar theory in geotechnical engineering and its internal length scale parameters have been comprehensively summarized and discussed.

Strain localization phenomena 1.2.1 Engineering scale: collapse of geotechnical structures

The collapse of natural or artificial geotechnical structures, when attributable to their excessive shear strain localization, has a number of possible factors. It has been found that accumulation of plastic strain resulted in the instability of structures. Interestingly, we start this section by the picture of Leaning Tower of Pisa in Italy in Figure 1-1 (a) and its comparison in Figure 1-1 (b). The Leaning Tower of Pisa, relating to the uneven deformation of foundation, is a very famous example in geotechnics. The collapse of a 13-story residential building under construction in Shanghai, China, in 2009 is also an example of excessive leaning, while it is a disaster. The Leaning Tower's uneven settlement is attributable to the self-heterogeneous nature of the materials in the foundation. For the 13-story building, by contrast, temporary excavation (unloading) adjacent to the structure on one side, together with temporary spoils piles (loading) on the other, caused slightly uneven settlement of the building that then induced an excess of external unbalanced forces sufficient to shear the pile foundations, causing global slope stability failure and ultimately collapse. We can imagine that if the uneven displacement of a building constructed on a soil foundation were not monitored and controlled as soon as possible, it would no doubt transition from a state similar to that of the famous Leaning Tower to a final collapsed condition, just as this obscure residential building did. The building's state would change from the onset of inhomogeneous deformation to, ultimately, total collapse, a process that could be identified as progressive failure caused by the development of shear strain localization. Besides the uneven settlement of buildings, certain other geotechnical failures can also be identified as instances of such failure, such as landslides, erosion of high embankments or dams, the collapse of the excavated surface of a tunnel, and the failure of a retaining wall. Figure 1 /publish/Wall_Failures/Retaining_Wall_Failure_-_San_Antonio_TX.shtml). The term landslide is used to refer to a wide variety of processes that result in the downward and outward movement of slope-forming materials, including rock, soil, or artificial fill or a combination of all of these. The failures of all these structures, then, can be explained by defining them as landslides. The key factor that causes a landslip to occur is instability of the slope, whether steep or shallow. Many geological factors (such as type of rock, grain size, and steepness of slope) influence a particular location's susceptibility to landslide. When the gravitational force reaches a certain threshold (which varies according to location, rock type, and so on), the slope fails and a landslide occurs. Whether this outcome is sudden or slow, it always undergoes the same progressive process. Although many possible causes may be acting independently or in tandem to cause a landslide, certain key events are likely to trigger them: volcanic or earthquake activity, heavy rain, isostatic rebound (melting of glacial ice, which causes land to rise), and human activity such as mining or construction. Although instability can cause a structure to fail in many ways, this section will be restricted to the phenomenon of the collapse of several typical geotechnical structures at an engineering scale.

Other mechanisms will be discussed and studied in subsequent sections. According to the classification of the U.S. Geological Survey, the two most common types of slide are rotational and translational landslides, as shown in Figure 1-3. In fact, what links different geological failures is the common phenomenon of severe rotational and translational deformation of materials in the strain-localized region. The failures of structures are closely related to the grain conditions inside the strain localized regions. That is to say the rotations and rearrangements of grains located in the local failure regions affect greatly the global mechanical response, which will be discussed in detail in the following chapters.

Model scale: strain localization in model tests

Work on model walls began in 1954 with Roscoe, as reported by [START_REF] Schofield | Critical state soil mechanics[END_REF]. Those who have continued his work have conducted, and recorded on radiographs, many model wall tests (active or passive) [START_REF] Arthur | Strains and lateral force in sand[END_REF][START_REF] James | Stress and strain fields in sand[END_REF][START_REF] Lucia | Passive earth pressure and failure in sand[END_REF][START_REF] May | A pilot project on the cutting of soils[END_REF][START_REF] Adeosun | Lateral forces and failure patterns in the cutting of sands[END_REF][START_REF] Bransby | Stress and strain in sand caused by rotation of a model wall[END_REF][START_REF] Lord | Stresses and strains in an earth pressure problem[END_REF][START_REF] Smith | Stress and stain in a sand mass adjacent to a model wall[END_REF][START_REF] Milligan | The Behaviour of Rigid and Flexible Retaining Walls in Sand[END_REF]. These follow-ups were performed at Cambridge University between 1962 and 1974. The researchers' main purpose was to obtain high-quality strain measurements inside the sand mass using the X-ray method, but not to study the shear band [START_REF] Leśniewska | Analysis of shear band pattern formation in soil[END_REF]. Their work provided subsequent researchers with abundant data concerning numerous shear bands, contributing significantly to the study of strain localization.

Later on, increasing numbers of researchers conducted model test series to investigate the failures of geotechnical structures. Considering the stress-dependent behavior of soil, centrifuge has proven to be a highly suitable and powerful technique for investigating several types of practical problems in geotechnics. Many measuring and test techniques in experimental geotechnics have been developed and applied by Allersma and his team, who designed and built a small geo-centrifuge at the geotechnical laboratory (Allersma, 1994b[START_REF] Allersma | Application of a Small Beam Centrifuge in Offshore Foundation Engineering[END_REF]. Furthermore, several projects have been modeled correctly in the centrifuge, such as those simulating the instability of dykes and embankments, land subsidence, the instability of street pile walls, the collapse of steep cuttings, and so on.

In Figure 1 As well as centrifuge modeling, other model tests have also been performed by many researchers, such as the tank model conducted as part of the British Geological Survey. Figure 12345shows the reconstruction of a typical geo-hazard, retaining wall failure, using a tank model in 2013 (https://www.youtube.com/watch?v=MS4H_u0ARpo). A retaining wall is intended to safeguard the buildings constructed above the soil behind it. This can be observed where roads, railways, or other excavations have been built that cut into the land. The failure of such a wall can be used to explain the familiar hazard process in ground engineering. Figure 1-5 demonstrates the entire progressive failure process of a retaining wall. With the rotation of the wall around its toe, the first main shear band appears before the right-side region of the shear band begins to slide downward and outward; then, the retaining wall moves to a certain extent and secondary shear bands form in the previous sliding region. This is followed by the collapse of the soils behind the wall as well as the construction above it. Recently, Lluís (2017) demonstrated for educational purposes the progressive failure process of soil under rigid footing. From his video recording, we can also observe the entire formation process of the strain localization phenomenon. Initially, only the soils immediately beneath the footing begin to sink. With the footing's increasing penetration into the soils, those beneath the footing form a triangular shape because of the frictional constraint between the rough base of the footing and the soil. At the same time, the soil around the triangular area is subjected to pressure and slide outward along an inclined surface. Finally, the soil at both sides of the footing is significantly uplifted laterally, leading to the occurrence of instability. The shapes of the failure (shear band) under ultimate loading conditions are displayed in image (d). The failure is accompanied by the appearance of failure shear bands and considerable bulging of a sheared mass of sand. This type of failure was designated as general shear failure by Terzaghi (1943). However, the surfaces are in theory sliding surfaces rather than, as in reality, sliding shear bands of finite thickness. It should be noted that two other failure types can occur: local shear failure and punching shear failure. 

Laboratory sample scale: strain localization in specimens

In the laboratory, strain localization is usually reproduced using shear bands formed in specimens during loading. This is done in the direct shear test, simple shear test, hollow cylinder, triaxial test, and biaxial test, for example. It is a narrow zone of intense shearing strain, usually plastic in nature, which develops during severe deformation of ductile materials. Sample tests of shear bands have been conducted by many researchers, e.g. [START_REF] Vardoulakis | Shear band inclination and shear modulus of sand in biaxial tests[END_REF], [START_REF] Desrues | Shear band initiation in granular materials: Experimentation and theory[END_REF], [START_REF] Han | Shear bands in biaxial tests on dry coarse sand[END_REF][START_REF] Han | Shear bands in biaxial tests on dry coarse sand[END_REF][START_REF] Alshibli | Experimental Observations of Localization Phenomena in Sands: Plane Strain Versus Triaxial Compression Conditions[END_REF]. Strain localization phenomena can be clearly observed in their studies. As examples, soil specimens (overconsolidated clay and dense sand) of triaxial and biaxial tests are shown in Figure 1-7; the pictures on the left are of triaxial and biaxial apparatuses operated by [START_REF] Tang | The Biot-Cosserat continuum model for coupled hydro-dynamic analysis in saturated porous media and finite element simulation of strain localization[END_REF] and Alshibli (1996), respectively. The next two pictures represent the deformed specimens in various states. In these tests, the specimens are usually compressed and then sheared by increasing the axial strain. For the triaxial test, after an axial-symmetric compression test, the sample was initially cylindrical in shape; because the researchers attempted to preserve symmetry during the test, the cylindrical shape was maintained for a short time and the deformation was homogeneous.

But at extreme loading, two crossed shear bands formed and the subsequent deformation was strongly localized. For the biaxial test, conducted on dense Ottawa sand, we can also observe that the uniform deformation of the specimen was broken at an early stage by the first inclined shear band after only a small axial deformation. With the increasing axial strain, the second shear band appeared and formed two clear crossed (X-shaped) shear bands. In general, it is easy to discern that shear bands are narrow zones of finite thickness and a certain orientation, which have been studied by many researchers via experimental and numerical means. In addition, strain localization should be held responsible for a reduction in global bearing strength. This section is limited to a discussion of the strain localization phenomenon. Shear bands will be investigated in detail in subsequent parts.

Researchers have also found that shear bands inside dense or overconsolidated specimens in triaxial tests are highly complex. In contrast, the bands formed easily, early, and clearly in biaxial tests. As well as the macro-observation of the strain localization phenomenon in the laboratory, micro-observations have also been performed by many groups. Recently, with the latest discrete grain scale Volumetric Digital Image Correlation (V-DIC) method developed by 3S-R in Grenoble, the translations and substantial rotations of grains in shear strain-localized regions have been confirmed by [START_REF] Viggiani | Imaging sand deformation at the grain scale[END_REF]. 

Mechanisms of strain localization

At the macroscopic level of observation, a shear band may be described as a zone of intense deformation bounded by two discontinuity planes with a finite thickness. This phenomenon may be caused by geometrical effects (shape and boundary conditions of the body can augment the bifurcation conditions of the interior [START_REF] Dietsche | Boundary effects in elasto-plastic Cosserat continua[END_REF] or by material effects (heterogeneity and local defects). Taking the sample test as an example, the mechanism of strain localization can be discussed in terms of its onset, development, and causes. Shear bands-the typical sign of strain localization-are usually found in the specimens in triaxial or biaxial tests on overconsolidated soil or dense sand. In these tests, the specimen is usually compressed first, before being sheared to the point of failure. During the shearing stage, initially the strength increases and the total volume decreases with the growing axial strain, which corresponds to Stage 1 as shown in Figure 1-8. After a short period of homogeneous deformation, the specimen begins to dilate, accompanied by the appearance of the shear band. The dilatancy of granular materials in strain-localized regions results in an increase of global volume. At the same time, the bearing strength reaches an apex just after the onset of the shear band, then reduces gradually. This process is illustrated in Stage 2 in Figure 12345678. With the further increase of axial strain, the increased volume, caused by dilatancy, and the decreased load capacity, mainly caused by failure, stop changing and tend to a terminal steady state, respectively, which corresponds to Stage 3 in Figure 12345678.

Although many factors, such as grain size, grain shape, grain surface roughness, confining pressure, boundary condition, initial imperfections, initial density, and so on, have been proven to affect the formation of the shear band [START_REF] Alsaleh | Numerical modeling of strain localization in granular materials using Cosserat theory enhanced with microfabric properties[END_REF], the forms (thickness and orientation) of said band and the trend of the mechanical response are generally similar. Accordingly, the influences of these different factors will not be discussed in this section. As most granular materials share the same strain-softening behavior, we can be in no doubt that the softening behavior of soil or sand can result in the global softening phenomenon for a specimen, greatly influencing shear band formation. However, it is worth noting that the softening behavior is not a necessary factor as regards the onset and development of shear bands (de Borst et al., 1993).

From a physical point of view, we can explain the strain localization phenomenon, which is accompanied by a reduction of bearing strength, as follows: "Because a specimen composed of granular particles always has intrinsic heterogeneity and different boundary restraints on its borders, the stress distribution will be non-uniform and the strain distribution will also not be homogeneous.

When the sample is loaded, some local regions will be first to reach their strength limit and start to rupture; and thus the local strength reduces with further deformation and is not sufficient to resist the previous loadings. At the same time, local imperfection results in a reduction of the global bearing capacity. Then, to keep the force balanced, the additional burden will be transferred and shared by the neighboring soil regions. This will continue until the internal resistance can balance the external load. If the latter does not happen, the strain-localized regions will continually spread and develop in a certain direction until the formation of complete shear bands, which will divide the sample into a certain number of independent parts before the final collapse of the structure. During this process, failure occurs in certain regions and spreads to their surroundings, which is also a progressive balancing process. With the reduction of global bearing capacity, the parts outside the strain-localized regions unload for the sake of equilibrium."

The strain-localized and other regions have very different deformation gradients. Accordingly, we may conclude that the failure of a sample or structure is a progressive process, in the course of which the strain localization phenomenon is often accompanied by a significant reduction of the load bearing capacity. Vardoulakis (1998) also explained the softening phenomenon from a micro point of view; in his opinion, reduction of coordination number and grain column buckling produce macroscopic softening of materials inside the localized zone. For equilibrium reasons, the material outside the localized zone is unloaded. He also pointed out that the modeling of localized deformation in geomaterials is quite a challenging task, because of the mathematical difficulties that are generally encountered while dealing with the behavior of non-associated and softening materials.

Finally, to accurately predict the development of failure and prevent geotechnical hazards, the study of this progressive kinematic process is of great importance and significance in the real world.

Theories and methods of describing strain localization

1.4.1 Experimental investigations

Techniques for observing the shear band

As is widely known, investigations into the shear localization phenomenon have been fruitful, thanks to the unrelenting efforts of those who have done before. The most valuable experimental contributions to the understanding of shear banding have been those that have measured, in one way or another, the full extent of deformation in a specimen, which is the only means by which test results can be adequately interpreted [START_REF] Viggiani | Imaging sand deformation at the grain scale[END_REF] .

Full-field analysis of the strain localization phenomenon in sand began in the 1960s in Cambridge, which was followed by the work of several groups, including 3S-R in Grenoble [START_REF] Desrues | La localisation de la déformation dans les milieux granulaires[END_REF][START_REF] Desrues | Shear band initiation in granular materials: Experimentation and theory[END_REF][START_REF] Bésuelle | Localization: shear bands and compaction bands[END_REF][START_REF] Viggiani | X-ray microtomography for studying localized deformation in fine-grained geomaterials under triaxial compression[END_REF][START_REF] Desrues | Advances in X-ray Tomography for Geomaterials[END_REF][START_REF] Viggiani | Imaging sand deformation at the grain scale[END_REF]. In the 1960s X-ray radiography was first used to measure 2D strain fields in sand, and from the early 1980s X-ray tomography was used by a few groups working in geomechanics. Thereafter, the advent of X-ray micro-tomography, as used by Oda and his colleagues [START_REF] Oda | Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling[END_REF][START_REF] O'sullivan | Micro-structure developed in shear bands of dense granular soils and its computer simulation-mechanism of dilatancy and failure[END_REF][START_REF] Oda | Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils[END_REF] , allowed researchers to study the mechanics of granular media (in 3D) at the grain level, which would not have been possible with the previous standard X-ray tomography images. However, the images taken by Oda were obtained after the fact, and the evolution of the entire deformation process was ignored. Because of the deficiencies of X-ray micro-tomography, in-situ X-ray tomography was proposed, which could scan and record throughout the entire loading process. Now, highly accurate strain-filed evolution measurement techniques have been developed and used widely, including false relief stereo photogrammetry (FRS) and computed tomography (CT) as proposed by 3S-R in Grenoble, France [START_REF] Desrues | Strain localization in geomaterials[END_REF] , and the digital image processing technique developed by [START_REF] Shao | Application of digital image processing technique to triaxial test in soil mechanics[END_REF]. These new techniques enable full tracking of strain localization from onset to complete formation of shear band. In recent work, the researchers in 3S-R have also applied the 3D Volumetric Digital Image Correlation (V-DIC) method to a sequence of X-ray tomography images taken during their tests. Furthermore, they proposed a grain-scale V-DIC that permits the characterization of the full kinematics (i.e., 3D displacements and rotations) of all the individual grains in a specimen.

In terms of the study of strain localization, the focus has mainly been on the onset and propagation of the shear band, its thickness and orientation, and the influences of key factors, such as mean grain size, confining pressure, initial density, and so on, on its formation.

Onset of shear band

For many years, the received wisdom on the onset of shear bands was that they occurred and developed only in dense sand and overconsolidated soils. This was because we cannot always discern bands in loose specimens with the naked eye. Years later, [START_REF] Leśniewska | Analysis of shear band pattern formation in soil[END_REF] gave two explanations for the invisible shear bands of loose sand: "First, tests performed on loose samples were often terminated before the peak friction angle had been attained. This occurred because such samples were investigated in the same range of deformation as their dense counterparts (usually about 5% of axial strain), whereas they required higher strains to achieve the peak friction angle. If the tests had been taken further, it is likely that shear bands would have been observed. The second explanation related to the technical observation. In general, no appropriate equipment existed at that time to record shear bands, which are somewhat faint in the case of loose samples."

In order to provide a better understanding of physical mechanics of shear bands, [START_REF] Hicher | Microstructural analysis of strain localisation in clay[END_REF] conducted a series triaxial tests with normal consolidated clay. In their study, the influences of testing factors such as boundary conditions, sample dimensions, over-consolidation ratio were examined. With the use of scanning and transmission electron microscopes, they also managed to observe the failures at the particle level, which showed a strong reorientations of the particles along the sliding surfaces, indicating that large displacements and rotation took place in the strain localized regions. [START_REF] Desrues | Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography[END_REF] showed the entire pattern of faint localizations within dense and loose sand using computed tomography. Then [START_REF] Finno | Shear bands in plane strain compression of loose sand[END_REF] found shear bands in all their loose samples with the help of stereo photogrammetry. Later, they were also confirmed by Alshibli et al. (2000bAlshibli et al. ( , 2010) ) and [START_REF] Desrues | Strain localization in geomaterials[END_REF], who used computed tomography in the 3D condition as shown in Figure 1-9. Although imperfection (as a kind of discontinuity) can be regarded as a factor in the initiation of strain localization, it has been proven not to be the most essential one.

After years of attempts to guarantee the homogeneity of the stress-strain state within the specimen (uniform deposition of sand samples; enlarged, polished, and lubricated end platens; elimination of load eccentricities), researchers came to gradually accept that at a certain load level, the uniformity of the stress-strain state was always lost. Strain localization seems to be an inevitable aspect of all kinds of granular materials, regardless of the type used in the experiment. In fact, experimental types and the initial conditions affect the onset of the shear band. Results have shown that the onset of a shear band comes earlier in biaxial than in triaxial tests, and that the denser the specimen, the more easily the band appears. Furthermore, a reduction of the specimen size or its slenderness will result in the retardation of the band's onset (Desrues, 2004). 

Inclination of shear band

Turning to the orientation of the shear band, its inclined angle in relation to the principal stresses or strains is invariably considered. Three main equations are always used to predict the inclination. The first classical solution for shear band inclination in frictional materials subjected to plane strain condition is known as the Mohr-Coulomb solution. According to the Mohr-Coulomb criterion, the inclination angle of the shear band is given by Eq. (1.1). C is the angle measured from the direction of the minimum principal effective stresses, is the mobilized angle of internal friction defined by Eq. (1.4) for cohesion-free materials, and 1and 3 are major and minor principal stresses, respectively. The second classical solution was proposed by [START_REF] Roscoe | The Influence of Strains in Soil Mechanics[END_REF] in the form of Eq. (1.2).

R is the angle between the shear band and the direction of the minor principal strain increment d3; is the dilation angle at failure, which is defined by Eq. (1.5); Roscoe represent an upper bound and a lower limit, respectively [START_REF] Vardoulakis | Shear band inclination and shear modulus of sand in biaxial tests[END_REF]. In the case of associated plasticity, the mobilized friction angle equals the dilatancy angle, meaning that the Mohr-Coulomb and Roscoe equations coincide. However, the non-associated plastic flow rule has been proven to be more reasonable for describing the behaviors of granular materials. Later, based on experimental observations, [START_REF] Arthur | Plastic deformation and failure in granular media[END_REF] proposed an intermediate solution for shear band inclination, as shown in Eq. (1.3). Shortly thereafter, Vardoulakis (1980) validated Arthur's solution using the bifurcation theory, whereas [START_REF] Vermeer | A simple shear-band analysis using compilances[END_REF] used compliance methods to derive an expression for the shear band inclination angle that agreed well with the solutions suggested by Arthur et al. and Vardoulakis. As may be observed, if associated plasticity is adopted, the solution obtained by Arthur's equation will be the same as those garnered from the Mohr-Coulomb or Roscoe equations. In most articles, the shear band inclination is within a range between the Mohr-Coulomb and Roscoe solutions.
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In fact, for many years no agreement could be reached between the experimental inclinations published by different authors. Some were closer to Mohr-Coulomb, some were closer to Roscoe, and others lay in between. [START_REF] Lade | Experimental methods for study of Cosserat elastic solids and other generalized elastic continua[END_REF], who studied shear band formation via triaxial extension tests, investigated three different sands and found that in all cases, the Coulomb inclination was clearly favored. [START_REF] Alshibli | Shear band formation in plane strain experiments of sand[END_REF], meanwhile, conducted a comprehensive experimental study to investigate the effects of specimen density, confining pressure, and sand type on the stressstrain and stability behavior of sand tested under the plane strain condition. Different from the conclusion of [START_REF] Lade | Experimental methods for study of Cosserat elastic solids and other generalized elastic continua[END_REF], all their experimental investigations showed that the Mohr-Coulomb solution overestimated the shear band inclination, whereas Roscoe's prediction was closer to the mark. Another team, [START_REF] Saada | Bifurcation and shear band propagation in sands[END_REF], reported that the inclination of shear bands in sand appears to depend on the effective angle of friction and that of dilation in a combination defined by [START_REF] Arthur | Plastic deformation and failure in granular media[END_REF] and [START_REF] Vardoulakis | Shear band inclination and shear modulus of sand in biaxial tests[END_REF]. Elsewhere, [START_REF] Finno | Shear bands in plane strain compression of loose sand[END_REF] [START_REF] Vardoulakis | Formation of shear bands in sand bodies as a bifurcation problem[END_REF] also found that the measured shear band inclination was extremely sensitive to boundary conditions and that loose specimens were more sensitive than dense ones. Similarly, Oda

and Kazama (1998) later argued that difficulties were inherent in determining shear band inclination in their plane-strain tests, because the bands were not perfectly straight in the vertical sections of the sample; rather, they were generally curved. Thus, in their opinion, the inclination angle is not necessarily a material constant, but rather a variable sensitive to certain boundary conditions. The experimental results gained by [START_REF] Viggiani | X-ray microtomography for studying localized deformation in fine-grained geomaterials under triaxial compression[END_REF] also demonstrated that the shear band pattern depends on boundary conditions and the slenderness of the specimen. Various patterns of shear zones were observed, including even parallel and crossing zones. They claimed that the shear zone reflection at rigid boundaries was a typical mode of propagation in short specimens.

Thickness of shear band

Shear band thickness is another important aspect of shear banding in the research into strain localization. Based on direct experimental observations, [START_REF] Roscoe | The Influence of Strains in Soil Mechanics[END_REF] found that the width of shear bands is about 10 times the average grain diameter (or mean grain size) d50, a figure that was verified by [START_REF] Scarpelli | Experimental observations of shear patterns in direct shear tests[END_REF]. In the experimental observations gained from biaxial tests of different sands by [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF], it was concluded that the average shear band thickness is about 16 times the mean grain diameter d50. The results garnered by [START_REF] Desrues | La localisation de la déformation dans les milieux granulaires[END_REF] proved that shear band thickness is augmented with increasing particle size, which specifically in the range of 7.5 to 9.6 times the mean grain size [START_REF] Mokni | Strain localization measurements in undrained plane-strain biaxial tests on Hostun RF sand[END_REF]. Yoshida et al. (1994) found that the most important factor controlling the shear deformation was particle size and that the shear band thickness was about 8-22 times the d50. Thereafter, strip foundation tests on dense SLB sand were carried out by Tatsuoka et al. (1997), who found that the thickness of the shear band was about 10 times the d50. Based on the results of biaxial tests on three different sands, conducted by [START_REF] Alshibli | Shear band formation in plane strain experiments of sand[END_REF], the shear band thickness is in the range of 13-14 d50 for fine sand, 11-12 d50 for medium-grained sand, and 10-11 d50 for coarse-grained sand. In experimental tests of earth pressure performed by [START_REF] Nübel | A study of localized deformation pattern in granular media[END_REF], it was found that the thickness of the shear band was 11-15 times d50 for active cases and 20 times d50 for passive cases. As we can observe from all this, almost all researchers normalize the shear band thickness using the mean grain size, and many have also found that the normalized shear band thickness is not constant. Instead, the conclusion that shear band thickness increases along with d50, and that normalized shear band thickness by d50 decreases as d50 increases, has been commonly validated and accepted.

Own-wall friction tests were carried out by [START_REF] Tejchman | Experimental and numerical study of sand-steel interfaces[END_REF] using a plane strain apparatus developed by [START_REF] Vardoulakis | Formation of shear bands in sand bodies as a bifurcation problem[END_REF] for dense and loose Karlsruhe sand with different wall roughness to study the shear localization in the boundary region. In their tests, strain localization was caused by geometrical effects (boundary condition) but not by material effects (heterogeneity and local defects). It was found that the thickness of the shear zone formed along the inclined wall was approximately 1 mm (2×d50) for a rough wall and 3 mm (6×d50) for a very rough wall. Thereafter, the experimental tests on dense and loose medium Karlsruhe sand (d50 = 0.45 mm) in a plane strain model silo with parallel (bin) and convergent walls (hopper) and a slowly moveable bottom, by [START_REF] Tejchman | Shear localization in granular bodies with micro-polar hypoplasticity[END_REF], demonstrated that the shear band thickness was approximately 5 mm (11×d50) at the smooth wall, 20 mm (45×d50) at the very rough wall with loose Karlsruhe sand, and 15-20 mm ((33-45)×d50) at the very rough wall with dense Karlsruhe sand. The thickness of the shear zone with coarse Karlsruhe sand (d50 = 1.0 mm) was 10 mm (10×d50) at the smooth wall, 25 mm (25×d50) at the very rough wall with initially loose sand, and 22-25 mm ((22-25)×d50) at the very rough wall with initially dense sand [START_REF] Tejchman | Shear localization in granular bodies with micro-polar hypoplasticity[END_REF].

Influencing factors for the formation of shear band

Initial void ratio (initial density), confining pressure, particle size, boundary conditions, and the like have been proven to influence shear band inclination and thickness. Moreover, it is worth noting that different factors' sensitivity on shear band inclination or thickness may be different for different cases. Experimental observation by Alshibli (1995) indicated that shear band inclination angle increases with confining pressure for F-sand, whereas it decreases for C-sand. For the M-sand, shear band inclination decreases with confining pressure for dense specimens but increases for loose specimens. In his study, for all sands, shear band inclination angles were larger for dense specimens than for loose specimens [START_REF] Alshibli | Shear band formation in plane strain experiments of sand[END_REF]. Based on the experimental results reported by [START_REF] Desrues | La localisation de la déformation dans les milieux granulaires[END_REF], shear band inclination decreased with increasing confining pressure, and shear band thickness decreased as confining pressure and initial density increased. The results also showed that specimen boundary conditions and slenderness significantly influenced shear band patterns, including even parallel and crossing shear zones. The strain localization reflection at rigid boundaries was a typical mode of propagation in short specimens. Shear bands were steeper in dense specimens than in loose ones. By reducing the specimen's size or slenderness, the onset of strain localization was retarded, and the inclination of the shear band was reduced and its thickness increased. What's more, onset of shear localization occurred slightly before the peak stress ratio. Inclination was not affected by the mean grain size and non-uniformity of sand grading. The results also demonstrated that the imperfection dictated the location of the shear strain localization and acted as a trigger for the onset of shear strain localization. Yoshida et al. (1994) found that the shear band thickness decreased with the increasing confining pressure. The shear band inclination relative to the horizontal direction decreased with increasing particle size. The plane strain compression tests conducted by [START_REF] Pradhan | Characteristics of shear band in plane strain compression test of sands[END_REF] indicated that shear band thickness depended on confining pressure and mean grain size. The thickness decreased with increasing confining pressure and decreasing particle size. In turn, the shear zone inclination depended on confining pressure, anisotropy, and mean grain size. The inclination to the horizontal plane decreased as mean grain diameter and pressure level increased.

In addition to widely accepted main factors such as initial void ratio, confining pressure, and particle size, some researchers (e.g. Rowe, Vardoulakis, Gudehus, Alshibli, and Alsakeh) believe that particles' surface roughness and shape also significantly affect shear band forms. Experimental tests conducted by [START_REF] Rowe | The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[END_REF]found that shear strength and dilatancy depended on the surface friction and particle packed ways which supported strain localization's being affected by particle shape and surface roughness. [START_REF] Vardoulakis | Bifurcation analysis in geomechanics[END_REF] argued that surface roughness would affect inter-particle slipping in granular materials. [START_REF] Alshibli | Shear band formation in plane strain experiments of sand[END_REF] found that shear band inclination decreased as grain size and angularity increased. [START_REF] Gudehus | Evolution of shear bands in sand[END_REF] found that grain angularity affected, to a certain extent, grains' rotational resistance, which in turn affected the onset and development of shear band. Based on the experimental and numerical study conducted by Alsakeh (2004), it was obvious that surface roughness significantly affects the behavior of granular materials, which in turn affects shear band thickness, and that shear band thickness increases slightly with the surface roughness of the particles. Two indices, IR and ISPH, are used to define sphericity and roughness of the particle, with the higher these two indices the larger the dilation, which then leads to a thicker localization zone [START_REF] Alsaleh | Numerical modeling of strain localization in granular materials using Cosserat theory enhanced with microfabric properties[END_REF].

The foregoing experimental observations were mainly concentrated on a global scale.

Nowadays, however, with the appearance and development of precise nondestructive detective devices, shear band observations have become possible on the micro scale, and the kinematic performance of grains in the shear band has also become increasingly clear. Grain rotations were observed by [START_REF] Kuhn | Structured deformation in granular materials[END_REF] within shear bands in the deforming of granular materials. Using an X-ray micro-tomography technique, [START_REF] Oda | Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling[END_REF][START_REF] O'sullivan | Micro-structure developed in shear bands of dense granular soils and its computer simulation-mechanism of dilatancy and failure[END_REF][START_REF] Oda | Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils[END_REF] thoroughly investigated the phenomenon of strain localization in granular materials and found that grain rotation significantly affected media dilatancy. Consequently, microrotations, a prominent cause of failure, must be taken into consideration with their couple stress. What's more, columns of aligned grains were also observed inside the shear band [START_REF] Oda | Experimental micromechanical evaluation of strength of granular materials: effects of particle rolling[END_REF][START_REF] O'sullivan | Micro-structure developed in shear bands of dense granular soils and its computer simulation-mechanism of dilatancy and failure[END_REF][START_REF] Oda | Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils[END_REF][START_REF] Iwashita | Mechanics of granular materials: an introduction[END_REF][START_REF] Takemura | Microstructure observation in deformed geomaterials using microfocus X-ray computed tomography[END_REF]. Recently, the results obtained from advanced discrete C-DIC in 3S-R confirmed once again the significance of grain rotations for strain localization. A clear correspondence can thus be established between the zones of a specimen experiencing localization of continuum shear strain and the zones where grain rotations are more intense. A deeper analysis of the kinematics of particles in the shear band at grain scale and of their evolution is now possible. In constitutive modeling, one must understand the physical performance of materials from the micro scale to the continuum scale. Accordingly, the rotations of grains are important and should be taken into consideration regardless of the type of model or the solving technique.

Constitutive models and theories

Many researchers have studied strain localization in metal, composites, and geomaterials since the early 1900s, including by proposing constitutive models based on experimental data and phenomena.

At first, scientists could only predict the failure condition of small scale models using rather rough mathematical equations. At that time, Coulomb's equation for the shear strength was used to describe the shear failure of soil, but then Otto Mohr introduced the Mohr-Coulomb equation based on

Coulomb's theory [START_REF] Labuz | Mohr-Coulomb failure criterion[END_REF]. Even this, however, was too simple to accurately predict failure, being unable to reasonably describe the mechanical behavior of granular materials. Since then, more and more advanced constitutive models have been proposed to study instability and strain localization based on plasticity theory while at the same time considering bifurcation theory, noncoaxial theory, and so forth.

Shear band formation is an example of a material instability, corresponding to an abrupt loss of deformation homogeneity in a solid sample that has been subjected to a loading path compatible with continued uniform deformation. In this sense, it may be interpreted as a deformation mechanism "alternative" to a trivial one and thus as a bifurcation or loss of uniqueness of a "perfect" equilibrium path. This bifurcation is distinctive for occurring even in an infinite body or under the extreme constraint of smooth contact with a rigid constraint. When localization begins, deformations migrate from a continuous mode to both continuous and discontinuous modes, and the continuum splits into localized and continua regions. Based on triaxial tests, [START_REF] Sulem | Bifurcation analysis of the triaxial test on rock specimens. A theoretical model for shape and size effect[END_REF] argued that the bifurcation might occur during the hardening regime but not just in the post-bifurcation regime, a prediction that has been widely verified by later researchers. They grouped two modes of bifurcation: localized and diffuse. These bifurcation modes provide sufficient information about failure progress in materials. It was argued that diffuse mode might occur in the pre-peak regime, whereas localization mode had more chances to occur in the post-peak regime. The bifurcation theory was also used to explain and trace the strain localization phenomena that occurred in the post-failure regime. These work can be found in [START_REF] Cheng | Axisymmetric bifurcation in an elastic-plastic cylinder under axial load and lateral hydrostatic pressure[END_REF], Vardoulakis and Sulem (1979, 1983, 1990[START_REF] Michalowski | Stability of slopes: limit analysis approach[END_REF], [START_REF] Saada | Bifurcation and shear band propagation in sands[END_REF], [START_REF] Bauer | Analysis of shear band bifurcation with a hypoplastic model for a pressure and density sensitive granular material[END_REF], [START_REF] Darve | Constitutive instabilities in incrementally non-linear modelling[END_REF][START_REF] Darve | Constitutive modelling and instabilities of soil behaviour[END_REF][START_REF] Darve | Instabilities in granular materials and application to landslides[END_REF][START_REF] Darve | Failure in geomaterials: continuous and discrete analyses[END_REF], [START_REF] Nova | Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes[END_REF][START_REF] Nova | The failure concept in soil mechanics revisited[END_REF], Nicot et al. (2007[START_REF] Nicot | Bifurcation in granular materials: An attempt for a unified framework[END_REF]Nicot et al. ( , 2011[START_REF] Nicot | Second-order work criterion: from material point to boundary value problems[END_REF] and [START_REF] Daouadji | Instability in granular materials: experimental evidence of diffuse mode of failure for loose sands[END_REF][START_REF] Daouadji | Divergence instability and diffuse failure in granular media[END_REF], among others.

Strain softening is known to be a significant accompanying characteristic even though it is not a necessary factor of strain localization. Many constitutive models that contain softening behaviors have been proposed to describe the stress-strain behavior of materials or to study strain localization phenomena. Later on, researchers have increasingly found that the non-associated flow rule was more reasonable and widely used in describing stress-strain behavior, which can also result in structural instability. According to [START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF], strain localization might occur even in strain hardening models when non-associated flow rules have been adopted. [START_REF] Li | INSTABILITY AND DISPERSIVITY OF WAVE PROPAGATION IN INELASTIC SATURATED/UNSATURATED POROUS MEDIA[END_REF] also proposed a critical state condition of losing stability for dynamic analysis of saturated porous media with non-associated flow rule. In other words, even without softening behavior, but only if the tangent modulus matrix becomes asymmetric, materials will become unstable, and shear strain localization phenomena will occur in the specimen or structure. Many researchers have found that when shear strain localization occurs, the direction of the principal stress no longer coincides with that of principal strain. Moreover, the inherent anisotropy of the majority of materials is believed to be the main characteristic, which is also a trigger to the strain localization. In this sense, the proposition of non-coaxial constitutive models, being able to describe the principal stress rotation and anisotropy, is of great significance. Accordingly, some researchers have proposed the noncoaxial theory, which can be related to local deformation and instability. For example, [START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF] added non-coaxial terms into the classical Drucker-Prager model with a view of analyzing strain localization problems. [START_REF] Papamichos | Shear band formation in sand according to non-coaxial plasticity model[END_REF] argued that the inadequacy of the ordinary flow and deformation theories of plasticity for explaining experimental results having to do with shear band formation led to the development of a consistent non-coaxial plasticity theory. Moreover, using non-coaxial theory, theoretical predictions for shear band orientation and its onset has been shown to agree well with experimental observations of biaxial tests. [START_REF] Yatomi | General theory of shear bands formation by a non-coaxial Cam-clay model[END_REF] systematically extended the well-known Cam-Clay model developed for small strains to use in the model for finite strains, and then incorporated a non-coaxial term in the model to examine the effects of the non-coaxial term on shear band formation. [START_REF] Zhang | An influence on shear band formation of the rotations of principal stress directions[END_REF] analyzed the influence of the non-axial flow rule on shear band formation and proposed the modified method of considering the non-coaxial terms. [START_REF] Qian | Effect of non-coaxial plasticity on onset strain localization in soils under 3D stress condition[END_REF] compared numerical predictions and experimental data. All results of the analysis indicated that a non-coaxial plastic flow theory needs to be incorporated into the classical constitutive model so as to describe the bifurcation, which would be able to correctly predict the state of bifurcation. [START_REF] Huang | Prediction of the onset of strain localization in non-coaxial plasticity[END_REF][START_REF] Huang | Theoretical Prediction of Strain Localization in Anisotropic Sand by Non-coaxial Elasto-Plasticity[END_REF] accurately predicted the strain localization of sand sample using a non-coaxial elastoplastic model.

Numerical analysis

Based on the strain localization phenomena of geotechnical structures and the laboratory samples, several analytical and numerical methods have been adopted to study and describe these failure modes. The rapid progression of computing science technology has greatly increased the efficiency and precision of calculations in geotechnical engineering. To achieve more accurate solutions, numerical simulation methods (e.g., the finite element method, the discrete element method) have seen wide introduction in geotechnical engineering. The development of numerical algorithms and other computer-based numerical schemes has reached a stage at which solutions for many different geotechnical problems are obtainable. Moreover, thanks to the significant progress in numerical simulation techniques, shear band onset and propagation in relatively complex situations can be traced closely, albeit still at great computational cost.

Limit analysis

Based on laboratory tests, the numerical prediction of the failure of structures in geoengineering is always used, especially in practical engineering. For example, the conventional limit equilibrium method is a very useful stability analysis. Stability analysis using the limit equilibrium method was first performed by Hultin and Pettersson in 1916, as documented in 1955[START_REF] Janbu | Stability analysis of slopes with dimensionless parameters[END_REF]. A safety factor Fs should be estimated to judge the stability of slopes, as still widely used in geotechnical engineering nowadays [START_REF] Michalowski | Stability of slopes: limit analysis approach[END_REF]. According to the model's tests results for a wall, conducted systematically by Cambridge from 1962[START_REF] Milligan | The Behaviour of Rigid and Flexible Retaining Walls in Sand[END_REF][START_REF] Leśniewska | Analysis of shear band pattern formation in soil[END_REF] systematically studied shear band patterns, formations, and mechanism using the limit equilibrium method.

However, doing so requires so many assumptions that only very experienced engineers can make a reasonable prediction. In short, the limit equilibrium method is no more an accurate method than any others in analyzing structural failure [START_REF] Vardoulakis | Formation of shear bands in sand bodies as a bifurcation problem[END_REF].

DEM based analysis

Granular materials are of great importance in civil engineering or in manufacturing processes whether they are granular soils in nature or raw materials for industries. Because of their discrete nature, the behavior of such materials is complex and it is not trivial to carry out their modelling.

DEM (discrete element method) [START_REF] Cundall | A discrete numerical model for granular assemblies[END_REF][START_REF] O'sullivan | Micro-structure developed in shear bands of dense granular soils and its computer simulation-mechanism of dilatancy and failure[END_REF]) is a very powerful numerical tool to simulate the granular materials with the significance of physics. The DEM modeling involves specifying the equations of motion for a system of discrete bodies, and solving the resulting equations. The mechanical response of granular materials in DEM is governed by the contacts between particles and also between particles and boundaries. Therefore, the physical quantities in microscale, such as particle rotations, contact orientations, contact forces, etc., can easily be measured. If the micro-mechanism of materials is of great interests to be focused on, DEM is undoubtedly a good choice.

The realistic description and accurate solution of DEM have attracted a lot of attentions for both academic research and application in civil engineering. The materials in local zones must undergo a collapse before a global failure of the structures, and the microstructure of granular materials affects a lot the macro behavior. Numerous researchers have contributed to study the strain localization phenomena in a microscale level with DEM. [START_REF] Bardet | Numerical investigation of the structure of persistent shear bands in granular media[END_REF] investigated the structure of the persistent shear bands by DEM, linking the particle rotations with the shear band formation in granular materials. By means of DEM, [START_REF] Wang | Discrete-continuum analysis of shear banding in the direct shear test[END_REF][START_REF] Wang | Discrete element simulations of direct shear specimen scale effects[END_REF] analyzed the shear band in a direct shear test, including the onset, evolution, shape, etc. Shear band simulations with DEM were intensively investigated by [START_REF] Jiang | Discrete element modelling of deep penetration in granular soils[END_REF][START_REF] Jiang | Strain localization analyses of idealized sands in biaxial tests by distinct element method[END_REF][START_REF] Jiang | Modeling shear behavior and strain localization in cemented sands by two-dimensional distinct element method analyses[END_REF][START_REF] Jiang | Distinct element method analyses of idealized bonded-granulate cut slope[END_REF]Jiang et al. ( , 2013aJiang et al. ( , 2013bJiang et al. ( , 2013[START_REF] Jiang | DEM analyses of shear band in granular materials[END_REF] from biaxial tests to geostructures. Nearly all the factors, such as confining pressure, initial void ratio, grain rotations, rolling resistance at particle contact, affecting the formation of shear band were analyzed. [START_REF] Lin | A comparative study between DEM and micropolar hypoplasticity[END_REF] simulated the biaxial test and the simple shear test with DEM, it was found that high rotations occurred inside the shear band or in the corners, and left the rotations of the grains outside shear band almost zero as shown in Figure 1-10. Almost all the above researchers highlighted the importance of particle rotations to the shear band development, which is consistent with the experimental observations.

However, the numbers of contacts between particles are limited by computational power, preventing the use of the discrete element method for modeling a real scale structure (e.g., a dam, slope, tunnel, foundation) containing very huge numbers of particles. 

Finite element analysis

Compared to DEM, the finite element method is more efficient and less expensive when modeling large scale geostructures, which should be divided simply by fine or coarse mesh. Regions of particular interest should feature more elements, being finely divided so as to obtain more accurate solutions.

The finite element method offers an effective way to solve partial differential equations containing the mechanics and thermal unknowns. The standard procedure is displayed in Figure 1-11.

First, structures (even those having very complex geometry) are discretized into smaller elements, creating a mesh during the preprocessing stage. During this stage, material properties are also assigned for all integration points (Gauss points) of each element. At the same time, all boundary constraints, the initial stress state, and external loading are also set. Second, fundamental unknowns such as displacement, reaction forces, stresses, and strains, as well as state variables, will be solved during the solving-processing stage. This always features two main solvers: the explicit solver and the implicit solver. The latter is used chiefly to calculate static problems and the former chiefly to calculate dynamic problems. The third stage is that of post-processing, during which all solutions can be visualized and output. The whole progressive failure process can be dynamically reproduced and traced. In the present study, the finite element method will be adopted to simulate strain localization phenomena. Up to now, various finite element implemented constitutive models have widely been used to simulate the failure of specimens or geotechnical structures. In order to get more accurate solutions, two-scale approach has recently been adopted to investigate the strain localization of granular structures by combining the advantages of DEM and FEM (Nitka et al., 2009a;Nitka et al., 2009b;[START_REF] Nitka | Two-scale modeling of granular materials: a DEM-FEM approach[END_REF][START_REF] Guo | A coupled FEM/DEM approach for hierarchical multiscale modelling of granular media[END_REF][START_REF] Desrues | FEM× DEM multi-scale analysis of boundary value problems involving strain localization, Bifurcation and degradation of geomaterials in the new millennium[END_REF]Guo andZhao, 2015, 2016;[START_REF] Shahin | A study of the influence of REV variability in double-scale FEM× DEM analysis[END_REF]. FEM is used to describe the global mechanical responses and DEM mainly aims at the local mechanics of granular materials. Therefore, the shear band in granular materials can be accurately and effectively predicted.

However, it should be worth noting that most FE implemented models are based on the conventional continuum mechanics. In this sense, when bifurcation occurs, the partial differential governing equations will change their properties, resulting in pathological solutions and the solutions seriously depending on the mesh sizes (the detailed derivations of the numerical pathological solutions of static and dynamic problems and a mesh dependency example can be referred in the Appendix at the end of the manuscript). That is to say, shear band thickness can vary from wide to narrow when the element mesh is divided from coarse to fine. The fundamentals behind the mesh dependency problems are due to the lack of internal scale in the constitutive models to reflect the microscale structure. Therefore, the introduction of non-localized regularization approaches, aiming at dealing with mesh dependency problems into FEM is of great significance, which will be introduced in detail in the following section.

Non-localized regularization approaches

Nowadays, more and more constitutive models [START_REF] Jefferies | Nor-Sand: a simple critical state model for sand[END_REF]Wu & Bauer, 1993;[START_REF] Tejchman | Numerical simulation of shear band formation with a hypoplastic constitutive model[END_REF][START_REF] Fuschi | A thermodynamic approach to nonlocal plasticity and related variational principles[END_REF]Yao et al., 2004Yao et al., , 2008;;Yin et al., 2010a[START_REF] Yin | Evaluation of the influence of elasto-viscoplastic scaling functions on modelling time-dependent behaviour of natural clays[END_REF][START_REF] Yin | A micromechanics-based model for sand-silt mixtures[END_REF] have been proposed to describe the behavior of granular soils. However, these models all fall within the framework of classical continuum theory. Numerical and analytical solutions for strain localization under classical continuum mechanics are known to suffer from serious mesh dependency. The pathological solutions are caused by the loss of ellipticity when using governing field equations for static problems and hyperbolicity for dynamic problems. Accordingly, non-localized methods are needed to rectify this problem. Any technique that can remove or reduce the spurious mesh dependency observed during the simulation of strain localization phenomena is called a regularization technique. In most cases, regularization techniques alleviate mesh dependency problems when simulating strain localization phenomena by incorporating at least one implicit or explicit intrinsic parameter with length scale.

The length scales incorporated in the models, usually characterizing the microstructures of material, manage to define the width of the strain-localized regions. The main regularization methods include viscosity approach, nonlocal theory, gradient theory, and micropolar theory. However, as main regularization techniques, the advantages and disadvantages of these regularization approaches are rarely symmetrically summarized and compared. Accordingly, a comprehensive review of these regularization approaches is necessary for a deep understanding of the differences between these approaches and for the selection of the appropriate regularization method in different cases.

Viscosity regularization

Soils and granular materials have important rate-dependent behaviors that are a function of their viscosity. For example, strain rate within the shear band exceeds that outside it; when the difference is obvious enough, shear bands will form. Viscosity regularization relies on high deformation rates in the localized region being reduced and distributed in the finite element mesh by means of the viscosity. [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF] argued that even without clear internal parameters for the dimension of length in the classical viscoplastic model, rate-dependent constitutive models implicitly introduce a length scale into the governing equations, at which the incremental equilibrium equations for quasistatic problems remain elliptic and wave speeds for dynamic problems remain real, even in the presence of strain softening. The pathological mesh sensitivity associated with numerical solutions of localization problems for rate-independent solids is eliminated. In this way, introducing the viscosity into the elastoplastic model with strain softening behavior is able, in some degree, to reduce the mesh dependency of finite element solutions. It is thus not surprising that the fluid in saturated media should greatly affect the degree of mesh sensitivity.

Viscoplasticity is a theory in continuum mechanics that describes the rate-dependent inelastic behaviour of solids. The elastic response of viscoplastic materials can be represented in one-dimension by Hookean spring elements. Rate-dependence can be represented by nonlinear dashpot elements in a manner similar to viscoelasticity. Plasticity can be accounted for by adding sliding frictional elements as shown in Figure 1-12. Viscoplasticity is usually modelled in three-dimensions using overstress theory of [START_REF] Perrin | The constitutive equations for rate sensitive plastic materials[END_REF][START_REF] Perzyna | Fundamental problems in viscoplasticity[END_REF] or Duvaut and Lions (1972). In these models, the stress is allowed to increase beyond the rate-independent yield surface upon application of a load and then allowed to relax back to the yield surface over time. The yield surface is usually assumed to be rate-independent in such models.

Rate-dependence was initially introduced to describe mesh sensitivity for localization problems in metal, as by [START_REF] Needleman | Material rate dependence and mesh sensitivity in localization problems[END_REF], [START_REF] Shawki | Shear band formation in thermal viscoplastic materials[END_REF], and [START_REF] Wu | Deformation trapping due to thermoplastic instability in one-dimensional wave propagation[END_REF]. Later, it was applied to deal with the instability and localization phenomena of saturated porous media (Loret and Prevost, 1991), of concrete and rock fracture [START_REF] Sluys | Wave propagation, localisation and dispersion in softening solids[END_REF]Sluys, 1992;Sluys and de Borst, 1992), and of dilatant materials and clay (Higo, 2004;[START_REF] Yin | An anisotropic elasticviscoplastic model for soft clays[END_REF]Oka et al., 1994Oka et al., , 1995[START_REF] Oka | Effect of dilatancy on the strain localization of water-saturated elasto-viscoplastic soil[END_REF][START_REF] Yin | Identifying parameters controlling soil delayed behaviour from laboratory and in situ pressuremeter testing[END_REF]Yin and Karstunen, 2011;Yin et al., 2010a[START_REF] Yin | Evaluation of the influence of elasto-viscoplastic scaling functions on modelling time-dependent behaviour of natural clays[END_REF]Yin et al., , 2011Yin et al., , 2015a[START_REF] Yin | Rate-dependent and long-term yield stress and strength of soft Wenzhou marine clay: experiments and modeling[END_REF][START_REF] Yin | An efficient optimization method for identifying parameters of soft structured clay by an enhanced genetic algorithm and elastic-viscoplastic model[END_REF][START_REF] Yin | Comparison of two creep degradation modeling approaches for soft structured soils[END_REF]. Building on the work of Sluys and[START_REF] Sluys | Wave propagation, localisation and dispersion in softening solids[END_REF], [START_REF] Wang | Viscoplasticity for instabilities due to strain softening and strain-rate softening[END_REF] introduced a consistency viscoplastic model in which the viscosity is implemented by means of a rate-dependent yield surface. It has been proven to have a faster global convergence than the overstress viscoplastic models ( [START_REF] Perrin | The constitutive equations for rate sensitive plastic materials[END_REF][START_REF] Perzyna | Fundamental problems in viscoplasticity[END_REF] and (Duvaut and Lions, 1972)). Based on viscoplastic models proposed by Perzyna and Duvaut-Lions, Dias (2004) also proposed a simple model for viscous regularization of elastoplastic constitutive laws with softening. This model, when tested in a problem with slip-driven softening (von Mises material) as well as in a problem with decohesion-driven softening (Cam-Clay model), exhibited its capability to regularize the solution.

With the regularization of viscosity, mesh dependency problems have been significantly alleviated, allowing shear band thickness to be predicted and specified. For example, in Eq. (1.6) the strain rate distribution along a one-dimensional element was implicitly expressed by the internal length scale l in the consistency model proposed by [START_REF] Wang | Viscoplasticity for instabilities due to strain softening and strain-rate softening[END_REF],
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where  is a small constant that represents the cutoff value of the relative strain rate at the edge of the shear band, G is the shear modulus and g G c   is the elastic shear wave speed, m is the viscosity parameter, and h is the strain softening parameter. [START_REF] Wang | Viscoplasticity for instabilities due to strain softening and strain-rate softening[END_REF] found that the smaller value of the internal length scale l and the imperfection size w determined the shear band thickness

(L = min[l, w]).
In their numerical examples, they observed that on mesh refinement, the shear band thickness converged to the material length scale l as defined in Eq. (1.6). Clearly, the thickness of shear band will decrease when the viscosity m decreases or when the absolute value of the softening parameter | h | increases (h is a negative value). If the imperfection size w was taken into consideration, it was observed that the imperfection size dominated the shear band thickness when it was smaller than the material length scale (w < l). In contrast, if the imperfection size exceeded the material length scale, the influence of the imperfection would disappear, and the material length scale determined the shear band thickness.

The main advantage of viscosity regularization is that it does not need any additional global discretization, because it requires only supplementary operations at the local level in constitutive models, whose implementation in common nonlinear finite element packages is very simple.

Furthermore, it works equally well for both the decohesion failure mechanism and the slip-driven softening failure mechanism. Its main disadvantage is the need to add an artificial feature of "viscosity" to describe the material behavior when it does not exhibit rate dependence, that its applicability is obviously limited to transient loading conditions, and that the regularizing effect rapidly decreases for slow loading rates or when approaching the rate-independent limit.

Nonlocal theory

Modern nonlocal elastic constitutive models of the integral type-that is, using weighted spatial averages-first saw use in the 1960s, motivated by homogenization of the atomic theory of Bravais lattices. By means of nonlocal approaches, researchers managed to describe the damage and dislocation phenomena in crystals on a scale comparable to the range of interatomic forces. They found that nonlocal models could approximately reproduce the dispersion of short elastic waves and enhance descriptions of interactions between crystal defects such as voids, interstitial atoms, and dislocations [START_REF] Eringen | A unified theory of thermomechanical materials[END_REF](Eringen, , 1972a(Eringen, , 1972b[START_REF] Eringen | Nonlocal polar field theories[END_REF][START_REF] Eringen | On nonlocal elasticity[END_REF]Kroner, 2012;[START_REF] Kunin | Theory of elasticity with spatial dispersion one-dimensional complex structure[END_REF] . Several years later, plastic nonlocal models were first proposed as a way of describing the stress field at a fracture front [START_REF] Ari | Nonlocal Stress Field at Griffith Crack[END_REF][START_REF] Eringen | On nonlocal plasticity[END_REF][START_REF] Eringen | Theories of nonlocal plasticity[END_REF]. However, Eringen's formulation did not mean to serve as a localization limiter, and the averaging operator was applied to the total strain tensor, which could lead to spurious instabilities. Later, nonlocal plasticity theory was improved and initially introduced to describe strain localization phenomena of softening materials by [START_REF] Bažant | Non-local yield limit degradation[END_REF]. After these initial developments, a comprehensive number of relevant contributions rapidly emerged [START_REF] Perrin | The constitutive equations for rate sensitive plastic materials[END_REF][START_REF] Strömberg | FE-formulation of a nonlocal plasticity theory[END_REF][START_REF] Nilsson | Nonlocal strain softening bar revisited[END_REF][START_REF] Jirásek | Nonlocal models for damage and fracture: comparison of approaches[END_REF][START_REF] Needleman | Dynamic crack growth in a nonlocal progressively cavitating solid[END_REF][START_REF] Nilsson | On nonlocal rate-independent plasticity[END_REF][START_REF] Fuschi | A thermodynamic approach to nonlocal plasticity and related variational principles[END_REF][START_REF] Borino | Thermodynamically consistent plasticity models with local and nonlocal internal variables[END_REF][START_REF] Jackiewicz | Numerical aspects of non-local modeling of the damage evolution in elasticplastic materials[END_REF][START_REF] Benvenuti | Iterative LCP solvers for non-local loading-unloading conditions[END_REF][START_REF] Engelen | Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour[END_REF][START_REF] Jackiewicz | Non-local regularization for FE simulation of damage in ductile materials[END_REF][START_REF] Jirásek | Comparison of integral-type nonlocal plasticity models for strain-softening materials[END_REF][START_REF] Rolshoven | Nonlocal plasticity models for localized failure. Institut de structures section de génie civil pour l'obtention du grade de docteur ès sciences par dipling[END_REF][START_REF] Bobinski | Numerical simulations of localization of deformation in quasi-brittle materials within non-local softening plasticity[END_REF][START_REF] De Angelis | A variationally consistent formulation of nonlocal plasticity[END_REF][START_REF] Andrade | Non-local modelling of ductile damage: formulation and numerical issues[END_REF]. Nonlocal regularization has been proven to reduce mesh sensitivity when simulating the damage behavior of ductile materials with microdefects and strain localization phenomena caused by strain softening.

The derivation of any nonlocal theory starts from the choice of the variable to be enhanced by nonlocality. Typical choices are, among others, the regularization of variables related to kinematics (such as the strain tensor), regularization of internal state variables (such as scalar measurements of the amount of plastic strain or damage) or regularization of thermodynamic forces power-conjugated with internal state variables (for instance, the elastic energy release rate in damage models). Faced with this wide range of possibilities, deciding which option is more effective is difficult. Indeed, the choice of the nonlocal variable depends on the kind of material to be modeled, as well as on the nature of the problem to be solved. In the particular case of elastoplastic damaging ductile solids, internal degradation, which is closely related to the localization phenomena, is usually chosen as an internal non-localized variable. After the nonlocal variable is chosen, its nonlocal counterpart can be expressed, in an integral-type formulation, by means of the spatially weighted averaging integral. For example, the spatial average of the magnitude of the plastic strain  p at location x has been suggested

by Bazant et Lin (1988), as shown in Figure 1-13, 
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The brackets denote the averaging operator, with p  and p  , the local and nonlocal internal variables, respectively. V is a finite volume of the body that is dictated by one constitutive parameter, generally called intrinsic length l with a dimension of length. Vr has approximately but not exactly the same meaning as the representative volume in the statistical theory of heterogeneous materials. (x) is the weighting function that defines the averaging and s the general coordinated vector. Because numerical computations show much better convergence if the weighting function is smooth, the error density function (normal distribution function) has been suggested as the suitable form of the weighting function [START_REF] Bažant | Non-local yield limit degradation[END_REF],
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in which, for one, two, and three dimensions
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l is the characteristic length, a material property that defines the diameter of the representative volume (a line segment, circle, or sphere), and is determined pursuant to the condition that the representative volume have the same volume as the normal distribution function extending to infinity (x, y, z are the Cartesian coordinates). For numerical finite element computations, only those elements whose integration points are distributed in the domain of 2l around x need to be included in the sum using the Gauss integration method. For those elements outside the domain, the error density function  is negligible. As for the strain localization problems caused by softening, the nonlocal average should simply be applied to those variables controlling strain softening.

Nonlocal approaches work well for both types of failure mechanisms (mode I: decohesion; mode II: slip). For total stress-strain relations (without decomposition into elastic and plastic parts) the nonlocal approach is computationally more efficient than the gradient models discussed in the next section. An example is the elasticity-based nonlocal damage model proposed by [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF]. A definite disadvantage of current nonlocal formulations is that they are at odds with existing numerical strategies [START_REF] Simo | Complementary mixed finite element formulations for elastoplasticity[END_REF]. Gradient models, for their part, are much more amenable to an efficient numerical implementation by preserving their favorable property of containing an internal length scale (de Borst and Mühlhaus, 1991). Another disadvantage is the consistency condition resulting in an integral-differential equation instead of an algebraic equation that can be solved locally.

High-order gradient (grade-n) theory

Generally speaking, gradient models and nonlocal models belong to a common theoretical category, with the gradient model a particular nonlocal model. Gradient models can be derived from nonlocal models by expanding the kernel of the integral employed in the averaging procedure for the inelastic strains. The gradient theory has been widely used as a very effective tool for regularizing finite element solutions so as to study strain localization phenomena in geotechnical engineering. Gradient dependence was first used within the theory of rigid plastic material to analyze persistent slip bands [START_REF] Aifantis | On the microstructural origin of certain inelastic models[END_REF][START_REF] Aifantis | The physics of plastic deformation[END_REF] and shear bands [START_REF] Coleman | On shear bands in ductile materials[END_REF] in metals. Vardoulakis andAifantis (1989, 1991) used the second-order gradient theory in studying the heterogeneous deformation in granular media. They modified the flow theory and the yield function by incorporating a high-order gradient, and use of an appropriate length scale allowed them to capture the shear band thickness. For more detailed formulations and to gain a better understanding of its application, the paper of [START_REF] Vardoulakis | Bifurcation analysis in geomechanics[END_REF] should be referenced by interested readers.

Ever since, many other researchers have also contributed greatly to this area. [START_REF] Chambon | Plastic continuum with microstructure, local second gradient theories for geomaterials: localization studies[END_REF] proposed a local and Cosserat second-order gradient theories model for dealing with localization phenomena. [START_REF] Chikazawa | A particle method for elastic and visco-plastic structures and fluid-structure interactions[END_REF] used a gradient-dependent viscoplastic constitutive model to study the strain localization of water saturated soils and found strain localization to be highly dependent on strain gradient. [START_REF] Borja | Bifurcation of elastoplastic solids to shear band mode at finite strain[END_REF] obtained a finite element solution for the shear banding evolution using the deformation gradient to map between stress tensors. [START_REF] Voyiadjis | Multi-scale non-local approach for geomaterials[END_REF] used the gradient theory to capture strain localization of porous media by considering micro-interactions between grains. The thermoelastic Helmholtz free energy function was dependent on those internal variables and their second-order gradients. [START_REF] Dorgan | Nonlocal dislocation based plasticity incorporating gradients of hardening[END_REF] used the second-order gradient theory in the kinematic hardening by introducing an internal length scale.

Even so, the internal length has no clear physical meaning, being merely a mathematical method. Now, with a view to explain the procedure of gradient continuum theory (second-order generally suffices), we revisit the gradient plasticity formulations proposed by de Borst et al. (1991de Borst et al. ( , 1993[START_REF] De Borst | Some novel developments in finite element procedures for gradient-dependent plasticity[END_REF], in which they restricted the yield function to second-order derivatives so that the yield function was also dependent on the Laplacian of a hardening parameter in addition to the hardening parameter itself (de Borst and Mühlhaus, 1991;de Borst et al., 1993;[START_REF] Pamin | Gradient-dependent plasticity in numerical simulation of localization phenomena[END_REF][START_REF] De Borst | Some novel developments in finite element procedures for gradient-dependent plasticity[END_REF]
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Compared with nonlocal theory, a distinct advantage of gradient plasticity is that the consistency condition yields a partial differential equation instead of an integral differential equation,
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where n T , h, and g are given by
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in which g is a positive gradient influence coefficient with the dimension of force [START_REF] Pamin | Gradient-dependent plasticity in numerical simulation of localization phenomena[END_REF]. For g = 0, the classical plastic flow theory is retrieved. The enhanced gradient theory aims at preserving the well-posedness of the governing equations for materials that do not comply with the material stability requirement. When a softening relation between stresses and strains (h < 0) is assumed or when non-associated plastic flow is postulated as reproducing an experimental response of soil, the tangential stiffness matrix D ep becomes non-symmetric, leading to an inclination of instability. For strain softening materials (h < 0), the gradient term seen in Eq. (1.18) can act as a stabilizer and guarantee ellipticity of the governing partial differential equation Eq. (1.15) after the onset of plastic deformation. For example, in a one-dimensional problem (de Borst et al., 1993), the gradient influence coefficient g is expressed by a strain softening parameter and an internal length parameter l: For strain hardening materials, the Laplacian term with g > 0 is also demonstrably able to smooth the solution. Similar observations can also be obtained for the general cases of three-dimensional continua [START_REF] Mühlhaus | A variational principle for gradient plasticity[END_REF][START_REF] De Borst | Gradient-dependent plasticity: Formulation and algorithmic aspects[END_REF]. The width of localized zones in strain localization problems, as measured by the evolution of plastic strain, has been estimated
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analytically by a constant w = 2l in a one-dimensional localization problem (pure tension of a bar with length L) (de Borst and [START_REF] De Borst | Gradient-dependent plasticity: Formulation and algorithmic aspects[END_REF][START_REF] Pamin | Gradient-dependent plasticity in numerical simulation of localization phenomena[END_REF].

Gradient plasticity theory has proven to be highly versatile for describing localization of deformation in a continuum medium while also being computationally much more efficient. The regularization of the gradient approach is effective for both mode I (decohesion) and mode II (frictional slip) failures. A disadvantage of the approach is the introduction of an additional variable at the global level in addition to the conventional displacement degrees of freedom. Moreover, the parameter determination of is not an easy task. Importantly, the gradient terms disappear from the constitutive equations if a homogeneous state of strain and stress is analyzed, and although the gradient terms are negligible if strains vary slowly in the pre-peak regime of softening problems, they exert a significant influence in the presence of strain localization (in the post-peak regime).

Because higher-order continuum models have no effect for homogeneous deformations, additional parameters of high-order continuum models cannot be measured directly from elementary tests such as uniaxial or triaxial tension or compression tests; rather, a semi-inverse method is required whereby the experimental results of different types of tests are fitted in the post-peak regime.

Micropolar theory

Micropolar theory is one of the most important regularization approaches, which has a more physical meaning than a wholly mathematical technique when compared with other regularization approaches (e.g. nonlocal and high-gradient). Many researchers [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF][START_REF] Mühlhaus | Application of Cosserat theory in numerical solutions of limit load problems[END_REF][START_REF] De Borst | Simulation of strain localization: a reappraisal of the Cosserat continuum[END_REF][START_REF] De Borst | Localisation in a Cosserat continuum under static and dynamic loading conditions[END_REF][START_REF] De Borst | A generalisation of J2-flow theory for polar continua[END_REF]Tejchman andWu, 1993, 1996;[START_REF] Tejchman | FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization[END_REF][START_REF] Pasternak | Cosserat continuum modelling of granulate materials[END_REF][START_REF] Huang | Numerical investigations of shear localization in a micro-polar hypoplastic material[END_REF][START_REF] Nübel | A study of localized deformation pattern in granular media[END_REF][START_REF] Huang | Bifurcation analysis for shear localization in non-polar and micro-polar hypoplastic continua[END_REF][START_REF] Li | A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localisation[END_REF][START_REF] Alshibli | Modelling strain localization in granular materials using micropolar theory: numerical implementation and verification[END_REF]Arslan and Sture, 2008b;[START_REF] Tang | Three-dimensional pressure-dependent elastoplastic Cosserat continuum model and finite element simulation of strain localization[END_REF][START_REF] Tang | Application of the Cosserat continua to numerical studies on the properties of the materials[END_REF] have used micropolar theory as a regularization approach for analyzing strain localization problems, and it has proven to be effective enough to alleviate or even solve mesh dependency problems by preserving the ellipticity of the governing partial differential equations for boundary value problems.

Cosserat theory (micropolar theory) is a generalized classical continuum theory that includes couple stress. Couple stress theory (constrained Cosserat theory) considers the possibility of body couples existing in the interior of the body and of surface couples existing on the surface of the body.

According to Ristinmaa (1996), one of the oldest theories belonging to this class of models is the centennial couple stress theory originally proposed by [START_REF] Voigt | Theoretische studien über die elasticitätsverhältnisse der krystalle[END_REF] and later developed by the Cosserat brothers (1909), who removed the connection between the rotational field and the displacement gradients. Because of its relative complexity, however, it received little attention.

Investigations into Cosserat theory saw an uptick in the early 1960s with the work of, notably, [START_REF] Mindlin | Effects of couple-stresses in linear elasticity[END_REF] and [START_REF] Koiter | Couple-stresses in the theory of elasticity, I & II[END_REF]. Ever since then, Cosserat theory has also been called micropolar theory, a terminology in vogue at that time that has also been adopted in the present study. Interest in the applications of Cosserat theory began to increase in the mid-1970s when specialists in geotechnical engineering began to link Cosserat kinematics and strain localization phenomenon.

Finite element calculations using micropolar theory with independent rotations began with Mülhaus (1989) and de Borst and Sluys (1991Sluys ( , 1991)). After that, more and more micropolar constitutive models were implemented and adopted to analyze the shear localization problems of other microstructural problems by means of the finite element method.

In classical continuum mechanics, the Cauchy strain tensor can be decomposed into a symmetric part (the stretch tensor) and an antisymmetric part (the spin tensor) regardless of whether it is the Green-Lagrangian strain tensor or the Eulerian strain tensor. The classical spin tensor generally corresponds to the macro-rotation caused by differences in displacement gradients.

However, in practical cases, the onset and evolution of shear bands is closely related to grain rotation as well as non-uniform displacements (global rotation) or translational deformations that have also been confirmed by experimental results [START_REF] Desrues | Strain localization in geomaterials[END_REF] . Unlike in classical continuum mechanics theory, which accounts for only macro-rotations, micropolar theory takes into account the independent micro-rotations of material points, as seen in Figure 1-15 (an element having four material points): where x, y, and z are the micro-rotations in the x, y, and z directions. These micro-rotations will cause the micro-curvatures and the corresponding energy-conjugated couple stresses in the micro-element surfaces. Moreover, the normal stresses are no more homogeneous, for the theorem of conjugate shearing stress is no better satisfied. For 3D problems, the generalized stress and strain components in micropolar theory are augmented: and mij are the coupled stress components (mii are the torsion ones and mij are the bending moments). ij are the gradients of micro-rotations j in direction i.

Of the two new added micro-length scale parameters lc and lt, lc is the length scale parameter related to bending couple stress, and lt is related to torsion couple stress. When the microstructure is considered, a typical strain localization problem such as the relation of shear band to microstructure can be reasonably predicted to give the thickness of the specified shear band. At the same time, the high-order terms guarantee the ellipticity of the governing partial differential equations, especially in the post-peak regime-and the mesh dependency problems have, obviously, been removed.

Micropolar theory can yield efficient and fully mesh-independent solutions for static problems as well as for dynamic problems. In analyzing the problems of the frictional slip failure mode (mode II failure type) involving a high localized shear band, the micropolar approach seems to be a particularly natural framework, being easily implemented and physically meaningful. However, a disadvantage of the micropolar continuum theory is that the rotational degrees of freedom are activated only under shear loading. Numerical results suggest that for failure problems in which decohesion plays a prevailing role (mode I failure type), the rotational degrees of freedom become inactive and the microcurvatures remain zero, as do the work-conjugated couple stresses. That is to say, when decohesion rather than frictional slip is the predominant failure mode, the regularization effect of micropolar theory is generally too weak to preserve the ellipticity of the boundary value problems. Instead, for tensile loadings in which decohesion is the main cause of structure failure, nonlocal models [START_REF] Bažant | Continuum theory for strain-softening[END_REF] are very effective at keeping the boundary value problem elliptic. It is worth noting that strain localization in dry and saturated specimens has been studied

experimentally by many researchers on loose sand as well as dense sand, demonstrating that strain localization is the dominant failure phenomenon. It is also the main failure mechanism for geostructures in reality. There is no doubt, then, that micropolar theory can be used to analyze strain localization problems in geomaterials. For anyone who is deeply interested in micropolar theory, the full formulations of micropolar theory can be found in the Appendix at the end of the manuscript.

Discussions of regularization methods

Inevitably, every regularization method has limitations, and in some cases in which a single regularization method does not work well, a regularization method combining at least two regularization approaches might be efficient. In general, the combination of viscosity with another regularization technique has seen wide adoption. For instance, [START_REF] Wang | Viscoplasticity for instabilities due to strain softening and strain-rate softening[END_REF][START_REF] Wang | Gradient viscoplastic modelling of material instabilities in metals[END_REF] proposed a model regularized by both rate dependency (viscoplasticity) and plastic gradient that was effective for both quasistatic and dynamic problems when dealing with mesh dependency problems. Moreover, interactions between these two methods in controlling shear band thickness have also been discussed. [START_REF] Oka | Instability of gradient-dependent elastoviscoplastic model for clay and strain localization analysis[END_REF][START_REF] Oka | Effect of dilatancy on the strain localization of water-saturated elasto-viscoplastic soil[END_REF] proposed a gradient-dependent elastoviscoplastic model for clay to study the strain localization problems and deformation mode. Based on a typical plastic constitutive model proposed by [START_REF] Wang | Viscoplasticity for instabilities due to strain softening and strain-rate softening[END_REF] that featured both rate and gradient dependence for strain localization analysis, [START_REF] Zhang | A discussion on some relationships between two different material models related with strain localization analysis[END_REF][START_REF] Zhang | Discussion on interaction between different intrinsic length scale parameters for material strain localization analysis[END_REF] predicted the internal length scale of the combined model for general cases and illustrated the interactions between different length scale parameters for rate dependency models and gradient plastic models from a mathematical point of view using a one-dimensional example. [START_REF] Tang | The Biot-Cosserat continuum model for coupled hydro-dynamic analysis in saturated porous media and finite element simulation of strain localization[END_REF] proposed a coupled Biot-Cosserat model by combining both Biot's theory (rate-dependency) and Cosserat continuum theory with a view to simulate strain localization phenomena caused by strain softening in saturated porous media.

Numerical results demonstrated the developed model's ability to maintain the well-posedness of boundary value problems while incorporating strain softening behavior, as well as the capacity to model strain localization phenomena in saturated media.

From the above descriptions of the four main regularization techniques, it can be seen that the domain of the strain localized region is closely related to the internal length scale, however, the meanings of different length scales and their relations to the thickness of shear band are not identical.

For viscoplastic model, take the consistency model proposed by [START_REF] Wang | Viscoplasticity for instabilities due to strain softening and strain-rate softening[END_REF], the shear modulus, shear wave speed, viscosity parameter as well as the softening parameter, etc. are believed to decide the thickness of shear band, and these factors can be related to the cut off value of the strain rate at the edge of the shear band by an implicit parameter with length scale. What's more, under the approximate form of the relation, the implicit length scale is able to denote the thickness of shear band. For non-local theory, certain internal variables closely related to the strain localization are averaged in a non-local finite volume to reach the regularization effectiveness, and the finite representative volume decided by the parameter with length scale is believed to be the damaged region and strain localized region. In this way, the size of the strain localized region is controlled by the internal length scale and the chosen weighting function. For gradient theory, a special case of the non-local theory, the gradient term can be denoted by the softening parameter and the internal length scale, then it can be thought to reflect the fact that below the certain size scale the interaction between the microstructural carriers of the deformation is non-local, resulting in the thickness of shear band decided by the internal length scale. For a micropolar model, the independent grains' rotations result in the couple stresses, therefore, in 2D problems the internal length scale is naturally regarded as the bending length between grains or aggregates for granular materials. Thus, the thickness of shear band can be predicted by the value of the internal length parameter as the relation between the grain size and the shear band thickness in experimental tests.

In conclusion, a single or combined regularization approach has always been adopted for reproducing strain localization phenomena in geotechnical engineering using finite element method.

No matter which regularization method is adopted, at least one explicit or implicit internal length scale parameter must generally be incorporated into the constitutive model. In the research of various scientists, internal length scale parameters have also been hypothetically related to the microstructure, with random constants distributed within a certain range of the ratio of a structure's typical dimension, internal defection, or even interactions, indicating that the physical meanings of internal length scales values have not been obtained a common sense until now. Accordingly, further investigation of the physical meanings of all internal length scales in each regularization approach is still a matter of great urgency and significance. At last, the argument of [START_REF] Tejchman | FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization[END_REF] is favored in the present manuscript: " the micropolar approach is more suitable, from a physical sense, for the modeling of shear zones in granular materials than other models that seek to capture strain localization in a proper manner (e.g., the nonlocal, high-order gradient, and viscous models), because it takes into account grains' rotations and couple stresses during shearing (even though these remain negligible during homogeneous deformation)", which has been experimentally validated.

Application of micropolar theory in geotechnical engineering

Different polarized constitutive models and the applications

Since the Cosserat brothers proposed their own theory in 1909, Cosserat theory has been widely adopted as a way to explain and solve various phenomena and problems related to microstructures. It has performed professional efficiency to reflect the micro size effect and great capability to reproduce strain localization phenomena. In this part, the applications of the Cosserat theory (micropolar theory) are summarized in Table 1-1 with particular emphasis on geotechnical engineering. Cosserat elasticities [START_REF] Mindlin | Influence of couple-stresses on stress concentrations[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF][START_REF] Sternberg | The effect of couple-stresses on the stress concentration around a crack[END_REF][START_REF] Cowin | Singular stress concentrations in plane Cosserat elasticity[END_REF][START_REF] Kulesh | Propagation of surface elastic waves in the Cosserat medium[END_REF][START_REF] Randow | A directed continuum model of micro-and nano-scale thin films[END_REF] Studying various stress concentration problems including those around a hole, a crack tip, and near a concentrated force and dispersion of Rayleigh wave in wave propagation and the size effect in thin film

Cosserat continuum elasticity

Muhlhaus et al. [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF][START_REF] Mühlhaus | Application of Cosserat theory in numerical solutions of limit load problems[END_REF][START_REF] Pasternak | Cosserat continuum modelling of granulate materials[END_REF] Analyzing theoretically the thickness of shear band under plane strain condition; the influence of finite rotations of the blocks on the limit load was investigated Simple Von-Mises elastoplastic model developed by Vardoulakis; continuum model for regular block structures De Borst et al. [START_REF] De Borst | Simulation of localisation using Cosserat theory, Computer Aided Analysis and Design of Concrete Structures[END_REF][START_REF] De Borst | Simulation of strain localization: a reappraisal of the Cosserat continuum[END_REF][START_REF] De Borst | Localisation in a Cosserat continuum under static and dynamic loading conditions[END_REF][START_REF] De Borst | A generalisation of J2-flow theory for polar continua[END_REF] Mesh independency: infinite long shear layer; plane strain biaxial tests Von-Mises elastoplastic model; pressure dependent J 2 flow model Ehlers et Volk (Ehlers et al., 1997;Ehlers andVolk, 1997a, b, 1998) Shear band localization phenomena of footing acted on fluid-saturated elastoplastic porous solid materials and slope failure induced by an excavation process Hookean elasticity model for elastic domain and the single surface plastic yield criterion by Ehlers (1993aEhlers ( ,1995) ) [START_REF] Tejchman | Numerical study on patterning of shear bands in a Cosserat continuum[END_REF][START_REF] Tejchman | Numerical simulation of shear band formation with a polar hypoplastic constitutive model[END_REF][START_REF] Tejchman | FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization[END_REF][START_REF] Tejchman | Shearing of a narrow granular layer with polar quantities[END_REF][START_REF] Tejchman | Patterns of shear zones in granular bodies within a polar hypoplastic continuum[END_REF][START_REF] Tejchman | FE-studies on shear localization in an anistropic micro-polar hypoplastic granular material[END_REF][START_REF] Tejchman | Shear localization in granular bodies with micro-polar hypoplasticity[END_REF] Capturing the shear band in plane strain compression tests; monotonic shearing of an infinite layer; stripe foundation; earth pressure; direct and simple shear; advanced applications including sandpiles, direct symmetric cyclic shearing under constant normal stiffness condition, wall boundary conditions, deterministic and statistical size effects, non-coaxiality and stress-dilatancy rule and textural anisotropy.

A polarized hypoplastic constitutive model; elastoplastic model proposed by Muhlhaus Huang et al. [START_REF] Huang | Polar extension of a hypoplastic model for granular materials with shear localization[END_REF][START_REF] Huang | Numerical investigations of shear localization in a micro-polar hypoplastic material[END_REF][START_REF] Nübel | A study of localized deformation pattern in granular media[END_REF][START_REF] Huang | Bifurcation analysis for shear localization in non-polar and micro-polar hypoplastic continua[END_REF][START_REF] Huang | Analysis of plane Couette shear test of granular media in a Cosserat continuum approach[END_REF][START_REF] Huang | Characteristic lengths in Cosserat continuum modeling of granular materials[END_REF] Simulating plane coquette shear and biaxial tests; reproducing the strain localization in sand behind the retaining wall and under strip footing A polarized hypoplastic constitutive model Alsaleh et al. [START_REF] Alsaleh | Numerical modeling of strain localization in granular materials using Cosserat theory enhanced with microfabric properties[END_REF][START_REF] Voyiadjis | Evolving internal length scales in plastic strain localization for granular materials[END_REF][START_REF] Alsaleh | Modelling strain localization in granular materials using micropolar theory: mathematical formulations[END_REF][START_REF] Alshibli | Modelling strain localization in granular materials using micropolar theory: numerical implementation and verification[END_REF] Reproduce the strain localization phenomena on F-75 silica sand, coarse silica sand and two sizes of glass beads compressed under plane strain conditions (biaxial tests)

The single hardening Lade's constitutive model proposed by Lade et Nelson Li et al. (Li and Tang, 2005;[START_REF] Tang | The Biot-Cosserat continuum model for coupled hydro-dynamic analysis in saturated porous media and finite element simulation of strain localization[END_REF][START_REF] Tang | Numerical analysis for the effects of constitutive parameters in Cosserat continuum model on the simulation results of the strain localization[END_REF][START_REF] Tang | Three-dimensional pressure-dependent elastoplastic Cosserat continuum model and finite element simulation of strain localization[END_REF][START_REF] Tang | Application of the Cosserat continua to numerical studies on the properties of the materials[END_REF] Predicting the shear band and proving the mesh independency capabilities in the plane strain and 3D conditions: shear layer with infinite length; uniaxial compression of a square panel; progressive failure of slope, footing, excavation and retaining wall. In 3D condition: studying the size effect by a micro cantilever beam and a micro rod (elastic) propagation, and the size effect in thin film. For elastoplastic materials, it is mainly used as a regularization technique to alleviate mesh sensitivity problems when modeling strain localization using finite element method, especially in the post-failure regime. To reproduce and study the strain localization phenomena in laboratory tests or of geostructures' failures in reality, where the material response is essentially inelastic, various elastoplastic micropolar models as well as hypoplastic micropolar models have been proposed and widely used as presented in the table above. Moreover, micropolar theory is also adopted to describe the strain localization phenomena in multiphase media.

2D
It is inevitable that the table cannot encompass all the micropolar constitutive models, but the majority of constitutive models being able to inspire readers have been listed.

Internal length scale and micropolar shear modulus

In elastic micropolar continuum approaches, analytical solutions that predict the size effect have been used to determine material constants in experiments. [START_REF] Huang | Analysis of plane Couette shear test of granular media in a Cosserat continuum approach[END_REF] have illustrated the determination of micro-deformation-related parameters in inelastic micropolar theory. However, the determination of the additional parameters of micropolar constitutive models is still an open topic.

Two additional key parameters are incorporated into micropolar continuum models for 2D problems in static loading analysis: internal characteristic length scale lc and micropolar shear modulus Gc. For the choice of Gc, it is widely accepted as proven that Gc can be set to about half the conventional shear modulus G (de Borst and Mühlhaus, 1991;[START_REF] De Borst | Localisation in a Cosserat continuum under static and dynamic loading conditions[END_REF][START_REF] De Borst | A generalisation of J2-flow theory for polar continua[END_REF]Arslan and Sture, 2008b, a;[START_REF] Tang | Numerical analysis for the effects of constitutive parameters in Cosserat continuum model on the simulation results of the strain localization[END_REF][START_REF] Kondo | Characterizing the evolving internal length scale in strain localization for cosserat media[END_REF]. Taking into account that the micropolar shear modulus influences the final results only very slightly, such as in the thickness of shear bands and the load-bearing capacity in biaxial tests, emphasis is laid on the effect of the internal length scale lc.

Indeed, lc, reflecting the microstructure, significantly influences the effectiveness of regularization, as well as the final numerical results. The choice of the internal length scale is still an open question and has been argued by [START_REF] De Borst | A generalisation of J2-flow theory for polar continua[END_REF]. In his article, he set lc as a random value, but lc depends on the shape and the size of the micro-element, as was also pointed out. [START_REF] Tang | Numerical analysis for the effects of constitutive parameters in Cosserat continuum model on the simulation results of the strain localization[END_REF] proposed a range within which to consider lc reasonably. In their opinion, the internal length scale lc must be no less than 1/100H, generally 1/100H < lc < 1/10H, where H is the concerned dimension of the structure (e.g., the height of a slope or width of a footing). Only in this condition the regularization role of the micropolar continuum model, as well as the accuracy of the attendant numerical results, can be guaranteed. In most cases, lc is regarded as the mean grain size d50 [START_REF] Tejchman | FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization[END_REF][START_REF] Alshibli | Modelling strain localization in granular materials using micropolar theory: numerical implementation and verification[END_REF]Arslan and Sture, 2008b). Alternatively, lc can also be identified as an equivalent radius of assembly of grains [START_REF] Papanastasiou | Bifurcation analysis of deep boreholes: II. Scale effect[END_REF] or as being proportional to the microstructure length -the mean grain diameter d50 [START_REF] Huang | Characteristic lengths in Cosserat continuum modeling of granular materials[END_REF].

It is questionable whether or not a fixed value of the material length scale is used to model strain localization phenomena through the whole process. With dilatancy and rearrangement of particles, a significant change in length scales is expected owing to the effect of the shape indices and the surface roughness of the particles. Accordingly, in contrast to the foregoing assumptions that lc is a random value or merely related to microstructure length, some also believe that internal length scale is affected by surface roughness index, sphericity index, and the like.

Two simple formulations have been proposed to calculate the contact surface between two adjacent particles and the rotation arm length in the micropolar continuum model [START_REF] Alsaleh | Numerical modeling of strain localization in granular materials using Cosserat theory enhanced with microfabric properties[END_REF][START_REF] Voyiadjis | Evolving internal length scales in plastic strain localization for granular materials[END_REF],
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where ls and la are the length of surface contact and arm of rotation, respectively. ISPH, IR, and Ra are sphericity index, roughness index, and mean surface roughness.

Rub and [START_REF] Al-Rub | Analytical and experimental determination of the material intrinsic length scale of strain gradient plasticity theory from micro-and nano-indentation experiments[END_REF] suggested an evolving equation of the average internal length that starts with an initial value and then decreases exponentially as a function of the total accumulated effective plastic strain ,
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where k0 is a constant and l0 is the initial length scale, which can be defined as 05 0 5 0 1 22
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Based on the formulation in the previous equation, two other length scale evolving formulations have been suggested by [START_REF] Liu | Characterizing the Influence of the Evolution of Length scale on the Strain Localization in Cosserat Media, Instrumentation, Testing, and Modeling of Soil and Rock Behavior[END_REF]. One assumes that the evolution of the internal length scale depends on both the deviatoric and the rotational effective plastic strain,
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and others consider a coupling of the deviatoric and the rotational components,
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where  is the ratio between the deviatoric strains and the total strains,
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in which k0 and are parameters that control the evolution rate of the length scale components.

Then, Arslan and Sture (2008a) proposed a length scale equation intended to include the effects of micro-rotation, normal stress, and contact area, 22 12 () t a n 3
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in which G and K are the conventional shear modulus and the rotational stiffness modulus, respectively. is the relative rotation at contact, A denotes the contact area, and   is the normal stress.

Considering the crushing of grains within granular materials, an evolving formulation of the internal length scale regarded as the current mean grain size has been proposed by [START_REF] Tejchman | Effect of grain crushing on shear localization in granular bodies within micro-polar hypoplasticity[END_REF] in a micropolar hypoplastic constitutive model, (1.33) 51 in which 50 u d is the ultimate mean grain diameter, calculated under the assumption that the grain size distribution tends to be fractal [START_REF] Hardin | Crushing of soil particles[END_REF], 50 o d denotes the initial mean grain diameter, and B is the current relative breakage index.

From the preceding summary, the common sense of researchers is that the internal length scale depends on the mean grain diameter for particle materials and that the value may differ slightly for different problems [START_REF] Aifantis | Strain gradient interpretation of size effects[END_REF]. However, it must be noted that obtaining accurate values for the new parameters in these formulations is a difficult task.

Conclusions

This chapter summarized strain localization phenomena in large-scale structures as well as in tank models and specimens in laboratory tests, and then illustrated mechanisms of strain localization in detail. After that, it summarized theories and methods relating to the study of strain localization and reviewed the influences of various factors on shear band onset, thickness, and inclination.

Various investigations on the strain localization phenomena by numerical methods were reviewed, such as DEM, FEM, among others. Their advantages and disadvantages were discussed.

Considering the mesh dependency problems in modelling strain localization phenomena using the finite element method within the framework of classical continuum theory, several typical regularization approaches, like viscosity theory, nonlocal theory, gradient theory, and micropolar theory, were introduced naturally. The advantages and disadvantages of each regularization approach was symmetrically summarized and compared, helping us to gain a deep understanding of the differences between these approaches and to select an appropriate regularization method in different cases. Furthermore, emphases were laid on the micro polar theory, whose applications and the internal length scale parameter were summarized and discussed in detail. According to the review, the present thesis aims at investigating the progressive failure of granular material made structures.

And the micropolar approach is used to overcome the convergence difficulties and mesh dependency problems when simulating strain localization phenomena by FEM.

Chapter 2 Finite Element Implementation of the Micropolar SIMSAND Model

Introduction

When subjected to high levels of stress, particles of granular materials inside strain localization zones will be forced to rearrange and deform with great intensity. The grains or aggregates of such materials will undergo extreme and irreversible rotational and translational deformations. Many researchers have supported the idea that particles' rotations are most dominant at the failure or bifurcation point [START_REF] O'sullivan | Micro-structure developed in shear bands of dense granular soils and its computer simulation-mechanism of dilatancy and failure[END_REF][START_REF] Oda | Microstructure of shear bands and its relation to the mechanisms of dilatancy and failure of dense granular soils[END_REF](Oda et al., , 2002;;[START_REF] Vardoulakis | Bifurcation analysis in geomechanics[END_REF]. Accordingly, apart from the translations of grains, it is of great importance that grain rotations be brought into the formulations so to describe the realistic behavior of granular materials. Many constitutive models have been developed in the literature to describe the mechanical behavior of granular materials.

However, most of the formulations of these models fit within the framework of classical continuum theory, and the finite element solutions suffer from serious mesh dependency problems when the strain localization phenomena are simulated. The main reason for mesh dependency is the lack of length scale parameter to reflect the internal micro-structure, and the partial differential governing equations will lose ellipticity in the post-bifurcation regime. As mentioned by [START_REF] Vardoulakis | Bifurcation analysis in geomechanics[END_REF], the Cosserat theory (micropolar theory), proposed by the Cosserat brothers (1909), can be used to describe the strain localization phenomenon. Micropolar theory takes into account the micro rotations of grains and is able to relieve the mesh dependency problems in finite element analysis.

In this chapter, the recently developed critical state-based elastoplastic sand model (SIMSAND) has been formulated under the framework of micropolar theory. Then, the numerical implementations and validations have been performed. At last, the regularization ability in dealing with the mesh dependency problems in finite element analysis of the micropolar SIMSAND model was demonstrated by simulating a biaxial test and a passive retaining wall.

Introduction of micropolar SIMSAND model

Description of SIMSAND model

Over the past few decades, many constitutive models have been developed for sand from linear elastic models and ideal plastic models to nonlinear models and even advanced critical state-based models (such as the NorSand model by [START_REF] Jefferies | Nor-Sand: a simple critical state model for sand[END_REF], the Severn-Trent model by Gajo and Muir Wood (1999), the SANISAND model by [START_REF] Taiebat | SANISAND: Simple anisotropic sand plasticity model[END_REF], and micromechanical models by [START_REF] Chang | An elasto-plastic model for granular materials with microstructural consideration[END_REF] and Yin et al. (2010[START_REF] Yin | A micromechanics-based model for sand-silt mixtures[END_REF]). These advanced sand models have described the behavior of sand accurately. In this section, a different simple critical state-based nonlinear model (the SIMSAND model) would be introduced briefly. For more detailed information of SIMSAND model, the publication of [START_REF] Jin | Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis[END_REF] and [START_REF] Wu | A straightforward procedure of parameters determination for sand: a bridge from critical state based constitutive modelling to finite element analysis[END_REF] should be referred to.

The constitutive relations are introduced as follows, with the total strain rate conventionally decomposed into the elastic part and the plastic part:
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The hypoelastic behavior is assumed to be isotropic with bulk modulus K or shear modulus G.

The forms of these two moduli proposed by [START_REF] Richart | Use of couple-stress theory in elasto-plasticity[END_REF] have been adopted,
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which, if defined in the p'-q plane, produces , 3 
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Thus the reference value of bulk modulus K and Poisson's ratio  can be taken as the input parameters.

The plastic strain is based on the shear sliding,
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where g is the plastic potential function and dis the plastic multiplier. The yield surface for shear sliding can be expressed in a similar way to those proposed by many previous researchers [START_REF] Vermeer | A double hardening model for sand[END_REF][START_REF] Jefferies | Nor-Sand: a simple critical state model for sand[END_REF][START_REF] Fuschi | A thermodynamic approach to nonlocal plasticity and related variational principles[END_REF]Yin et al., 2010),
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in which f is the yield function, q is the deviatoric stress ( ).

The potential surface, accounting for contraction or dilation, which is also similar to those proposed by the aforementioned researchers, can be expressed as
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where Ad is the stress-dilatancy parameter; Mpt = 6sin(pt)/(3-sin(pt)) can be calculated from the phase transformation friction angle pt.

M, the slope of the critical state line in the p'-q plane, is expressed as M = 6sin(u)/(3-sin(u)).

The peak friction angle p and the phase transformation friction angle pt are associated with the critical friction angle u (corresponding to the critical state line CSL in the p'-q plane in Figure 2-1) and the critical void ratio ec (obtained from the critical state line CSL in the e-log p' plane in Figure 2-1) as follows [START_REF] Jin | Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis[END_REF][START_REF] Wu | A straightforward procedure of parameters determination for sand: a bridge from critical state based constitutive modelling to finite element analysis[END_REF] (2.11)

where np and nd are model parameters, eref is the reference critical void ratio corresponding to pat, and is the slope of the CSL in the e-log p' plane. The simple form of the critical state line given by Eq.

(2.11) is suitable for sand under a mean effective stress of no more than 1 MPa with very few particle breakages.

From Eq. (2.10) and Figure 2-1, we can find that for loose sand with e > ec, the phase transformation stress ratio Mpt is bigger than M and the peak stress ratio Mp is smaller than M, which allows the loose sand to contract during deviatoric loading with a strain-hardening behavior; for dense sand with e < ec, the phase transformation stress ratio Mpt is smaller than M, and the peak stress ratio Mp is bigger than M, which allows the dense sand first to contract and then to dilate during deviatoric loading, with the peak strength followed by a softening behavior. For both loose and dense granular assemblies, when the stress state reaches the critical state line, the void ratio e becomes equal to the critical void ratio ec, after which zero dilation or contraction takes place. Thus the constitutive equations guarantee that stresses and void ratio simultaneously reach the critical state in the p'-q-e space.

The plastic multiplier d can be calculated in a conventional way according to plasticity:
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Based on the foregoing constitutive equations, the stress-strain relationship can be solved. 

Extension to the micropolar SIMSAND model

Classical constitutive models feature six components in stress and strain vectors for three-dimensional problems and four components for two-dimensional problems (e.g., plane strain problems) if not repeatedly counting mutual-equal shear stress components: 3D: 
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The simple critical state-based elastoplastic model just illustrated has been polarized to account for couple stresses and rotations of grains under plane strain condition by the augmentation of the strain and stress vectors. Herein, we revisit strain and stress vectors, as well as the elastic stiffness matrix D e under plane strain condition, in the enhanced micropolar model: 
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where lc is the incorporated internal length scale parameter in the micropolar model, and Gc denotes the micropolar shear modulus.

Compared with the initial SIMSAND model, the stress and strain invariants in the micropolar SIMSAND model have been modified to consider the couple curvatures and corresponding energetically conjugated couple stresses. According to de Borst et al. (1987Borst et al. ( , 1991Borst et al. ( , 1991)), the strain and stress invariants can be formulated as
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where p ij e  is the plastic deviatoric strain rate tensor, p ij  is the plastic micro-curvature rate tensor, sij is the deviatoric stress tensor, and mij is the micro-moment tensor. The summation convention with respect to repeated indices has been adopted. Furthermore, the deviatoric stress q is updated by new stress invariant 2 3J . For numerical convenience, the choice a1 = a2 = 1/4, a3 = 1/2 and b1 = b2 = 1/3, b3 = 2/3 has been used in majority cases (de [START_REF] De Borst | Simulation of localisation using Cosserat theory, Computer Aided Analysis and Design of Concrete Structures[END_REF][START_REF] De Borst | Simulation of strain localization: a reappraisal of the Cosserat continuum[END_REF][START_REF] De Borst | Localisation in a Cosserat continuum under static and dynamic loading conditions[END_REF]. To arrive at a compact matrix-vector notation, the formulation of q is expressed as

1 2 q  T σ Pσ (2.20)
where P is called the plastic potential matrix [START_REF] Li | A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localisation[END_REF]  is expressed directly by the seven generalized strain components as the manner for calculating the second invariant of deviatoric stress q, then the equivalent plastic strain can be expressed in compact matrix-vector notation,
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with the matrix Q defined as follows:
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Notably, however, Muhlhaus and [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF] have suggested that other combinations of the coefficients a1, a2, a3 and b1, b2, b3 in Eq. (2.18) and Eq. (2.19) might have more representative meanings for granular assemblies based on micromechanical considerations.

As can be seen, augmenting a classical constitutive model to produce a micropolar model in a stress-strain level is not a complex task. The stress and strain vectors must simply be extended to consider the micromoments and microcurvatures, which also requires that stress and strain invariants be newly defined based on the foregoing equations. Note, however, that when the independent microrotation is constrained, all micro qualities are null values and the micropolar model is retrieved to a classical one.

nd controls the slope of the transformation line; u controls the slope of the critical state line in the q- p' plane; and eref andcontrol the specific position and slope of the said line in the e-log p' plane.

There are two ways of identifying the interlocking effect-related parameters kp, Ad, np, and nd : one is the conventional curve-fitting method, the success of which depends greatly on experience;

the other is by means of an optimization method. Sometimes, optimization methods allow parameters to be found more quickly and effectively [START_REF] Jin | Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis[END_REF].

In terms of the two additional incorporated parameters, which are identified as the internal length scale parameter lc and the micropolar shear modulus Gc in the model within the framework of micropolar theory for plane strain problems, the thickness of the shear band is commonly recognized as being decided primarily by the internal length scale; thus lc, reflecting the microstructure, is generally related to microstructures such as the mean grain size d50 or is linearly proportional to the same. The influence of micro-properties, such as the shape and surface roughness of the particles on the value of the internal length scale parameter lc, will not be considered in the present research. It has been widely accepted that Gc can be set to about half the conventional shear modulus G (de Borst and Mühlhaus, 1991;[START_REF] De Borst | Localisation in a Cosserat continuum under static and dynamic loading conditions[END_REF][START_REF] De Borst | A generalisation of J2-flow theory for polar continua[END_REF]Arslan and Sture, 2008b, a;[START_REF] Tang | Numerical analysis for the effects of constitutive parameters in Cosserat continuum model on the simulation results of the strain localization[END_REF]. Taking into account that the micropolar shear modulus (when Gc 0.5G) has only a very slight influence on the final results, such as for shear band thickness and load carrying capacity in biaxial tests, the emphasis is put on the effect of the internal length scale lc. The value of lc has a considerable influence on the load-displacement curve, as well as the distribution of strain localization. A larger lc will result in more toughness in the post-peak regime as well as in a wider shear zone. The influence of lc can finally be observed and analyzed by simulating the strain localization phenomena using the finite element method when the rotational degree of freedom is taken into account. The programming of a UEL is more difficult and complex than that of a UMAT, which simply requires the description of the strain-stress relationship. Accordingly, this feature of ABAQUS is intended for advanced users only. Before programming a UEL subroutine, certain key characteristics of a user element must be defined, such as the number of nodes on the element, the number of coordinates at each node, the degrees of freedom active at each node, the number of element properties, and the number of solution-dependent state variables to be stored per element.

Finite element implementation

Figure 2-3 presents a flowchart of a UEL, which illustrates the entire process of a UEL in detail.

We can find that the process is completely the same with the finite element analysis within the framework of classical continuum mechanics theory. However, the element type, represented by shape functions, is defined by the user rather than the ones in ABAQUS. The cutting plane method to update stresses will be illustrated in the next section. Because the additional degree of freedom-rotational can be regarded as a specific and particular translational one, the micropolar theory is also referred to as the generalized continuum mechanics theory. 

Derivations of a user defined element

The finite element formulations, conducted in the updated Lagrangian frame, have been implemented

into the commercial finite element tool ABAQUS via the UEL function.

As with the introduction of micropolar theory aforementioned, there are three degrees of freedom for each node for the plane-strain element. To address the issue of full integration causing shear volumetric locking and reduced integration leading to hourglass of a four-node bilinear quadrilateral element, as shown in Figure 2-4, an eight-node biquadratic quadrilateral element was defined. And, reduced integration was used in the present study, which is suitable for nearly all plane strain conditions without any problem. 
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The shape functions of the plane-strain eight-node isoparametric element were displayed as follows: 
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Then, the strain can be derived from the displacement, as in the classical continuum mechanics theory. The L matrix (defined in Appendix C) is used as a bridge of strain and displacement:   ee

Lu LΝ B

(2.28)

B is named the strain matrix and written in blocked form by node number:

  12345678 B BBBBBBB  BL N
(2.29) Thus, B is formulated as 00 00 000 0 (i 1, 2...8) 0 00 00
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When the strain has been obtained, the stress can be calculated based on the constitutive law; this will be discussed in detail in the next section.
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(2.31)

From this formula, we may discern that to calculate stress and strain vectors, the shape function N, as expressed in the natural coordinate system, must be transferred to the Cartesian coordinate system.

The Jacobian matrix is introduced to realize the map between the current and previous configurations.

The isoparametric element is used in this paper, which means that the nodes used to decide the element's shape and displacement are the same, as are the shape functions. The element's global coordinate in the plane can also be obtained from the shape functions and global coordinate of each node:
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According to the partial differential rule, we know that
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Eq. (2.33) can be also expressed as
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after which the partial difference in Eq. (2.30) can be obtained,
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where 
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Discretization of the governing field equations

According to the mechanics theory, the total potential energy of the structure, based on the virtual displacement principle in the two-dimensional plane strain problem, is expressed as
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where t is the thickness of the 2D elastic element, f is the body force vector in the interior of the element, and T is the surface force vector exerted on the boundary.

Combing Eq. (2.28) and Eq. (2.37), the total potential energy of the system is equal to the sum where K e is the element stiffness matrix and P e is the element equivalent node load vector: (2.41) For the total system, the discretized equation is formulated as

 KP a (2.42)
where K is the global stiffness matrix of the structure, a is the global node displacement array, and P is the global equivalent node force array of the total system. The derivations above are also suitable for the elastoplastic continuum. Here, K and P correspond to AMATRX and RHS in the interface of the user element subroutine, respectively, and a is U or DU. In ABAQUS, the Newton-Raphson technique is used to fulfill the static equilibrium equations of the nonlinear problems. Via the transition of the Jacobian matrix, the integration zones are changed from irregular to regular under natural coordinates. Because the integrations are too complex to be solved easily while attaining an accurate analytical solution, a numerical method, such as Gauss integration, is invariably adopted.

Take the element stiffness matrix, for example: In this case, m = n = 2, Hi, and Hj are the corresponding weight factors of each integration point.

Integration algorithm-cutting plane method

During the numerical implementation of micropolar SIMSAND model, the cutting plane algorithm [START_REF] Ortiz | An analysis of a new class of integration algorithms for elastoplastic constitutive relations[END_REF]) was adopted to update the stresses. All the internal state variables (such as void ratio, plastic work, and plastic strain) were also updated within the UEL using the explicit forward Euler integration scheme. According to the flow rule, the key factor for obtaining the plastic strains is the plastic multiplier d. The direct means of calculating d is explicit, which requires a very small loading step and much computing time. The algorithm presented here is semi-implicit, which can allow a more accurate solution with a larger loading step compared to the direct approach.

The efficiency and effectiveness of calculation can therefore be improved using this algorithm.

The cutting plane algorithm uses explicit elastic predictions that follow an iterative plastic correction loop. The framework of the algorithm is sufficiently general to be used with a wide variety of constitutive models with rate-independent plasticity, or viscoplasticity models. The formulation of the cutting plane algorithm considers strain-controlled loading, meaning that incremental strains are input quantities in this algorithm and incremental stresses are calculated from the incremental strains using the constitutive model.

In general, the total strain  can be decomposed into elastic and plastic parts  e and p , so that
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First, the stresses are considered the function of the elastic strain vector  e and the internal plastic variables Hk, where k is the number of the internal plastic state variables:
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Then, based on the flow rule, the evolution of the plastic strain and state variables will be calculated per the formulations
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where g is the plastic potential function, hi (, H) represents the incremental direction of the state variable Hi, and H contains all the internal plastic state variables.

Turning to the procedure of the cutting plane algorithm, the total incremental strain is first assumed to be completely elastic; thus the incremental plastic strains and the internal plastic state variables equal zero:
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After the elastic prediction, stresses, strains, and other state variables (such as the void ratio) should be updated:
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Furthermore, the position of the new stress state, relative to the initial yield surface, is checked by calculating the yield function f. The value of the function is checked against the yield surface error tolerance FTOL, where FTOL is a small positive number (e.g., 1E-7). If the stress state is within the yield surface, or sufficiently close to it that the yield function is less than or equal to FTOL, then the increment is accepted as totally elastic and the algorithm is complete. However, if the new stress state exceeds the boundary of the yield surface, the algorithm enters into an iterative plastic correction loop as shown in Figure 2-5. The process by which plastic correction is made when plasticity occurs is clearly displayed in Figure 2-5. As in the figure, the elastic prediction is first done to obtain a new stress state  i=0 , which exceeds the initial yield surface, where the superscript i counts for the iteration of the loop. The yield function f i=0 , which gives the distance between the stress state and the previous yield surface, is greater than FTOL, causing the algorithm to enter the plastic correction loop. After one iteration of the correction loop, the stress is decreased to  i=1 and the plastic variables H i=0 are adjusted, causing the yield surface to kinematically harden and move toward the current stress state. These adjustments work in harmony to decrease the value of the yield function. If the yield function f i=1 FTOL, the next iteration should be made. After the second iteration in this illustration, f i=2 is less than FTOL and the iteration is complete.

Figure 2-5 Illustration of correction phase of cutting plane algorithm

During the plastic phase, the equations governing the plastic correction loop are as follows:
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The target outcome is that the stress state must be corrected to return into the domain of the yield surface based on current  i and f i , so that the value of the new yield function satisfies f i+1 = 0.

If the yield function is expanded to a Taylor series, in terms of the current stress and internal plastic state variables, ignoring the high-order items:
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This equation can be also written as follows:
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Combining Eq. (2.59), Eq. (2.54), Eq. (2.56), and Eq. (2.57), d can be calculated as follows:
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Finally, the stresses and internal plastic state variables are corrected based on the following equations:
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Then the updated stresses are used to check the yield function once more, and the plastic correction loop stops until the value of the yield function satisfies f i=1 FTOL.

The procedure of the algorithm is summarized in Figure 2-6: 
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Based on all the foregoing expressions, the micropolar critical state-based model can be solved via the cutting plane algorithm with high efficiency.

Numerical validations

The numerical element test is a necessary process for ensuring the correctness of the implemented user subroutine. Therefore, the simulated results from a UEL should be verified by those counterparts obtained from the original integration point program (IPP), whose constitutive law is defined at the stress-strain level. The results from the stress-strain level IPP are assumed to be correct and considered as the objective ones by default. In fact, before validating the UEL program, the correctness of UMAT (less advanced than UEL) has been validated, which can be found in Appendix C. Bearing in mind that the UEL is a two-dimensional type, element tests are confined to a domain of plane strain condition. At the strain-stress level, the specimen is ideally maintained in a state of homogeneity (with no strain localization). In this condition, the micropolar approach will have no specific influence on the simulated results from the UEL, compared with those results from the IPP that are under the framework of classical continuum theory. That is to say, the micropolar theory does not offer any advantages in the homogeneous field, in which there is no rotation of individual grains.

For validation, biaxial drained and undrained tests for both dense and loose Toyoura sand were simulated by an IPP and a UEL, with model parameters referred to [START_REF] Jin | Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis[END_REF] and [START_REF] Wu | A straightforward procedure of parameters determination for sand: a bridge from critical state based constitutive modelling to finite element analysis[END_REF]. There are two steps for biaxial tests, the first step is isotropic compression, and the second one 

Verification of the micropolar model with plane strain tests results

A series of biaxial tests have been conducted on medium dense and dense F-75 Ottawa sand (see Appendix E) under low and high confining pressure conditions to investigate the effects of specimen density, confining pressure, and sand grain size and shape on the constitutive and stability behavior of granular materials [START_REF] Alshibli | Shear band formation in plane strain experiments of sand[END_REF]. The micropolar model was used to predict the stress-strain relationship of F-75 silica sand under plane strain condition. Material parameters, which are listed in Appendix E at the end of the manuscript, have been calibrated with an optimization technique by fitting the experimental data of an isotropic compression test as well as a series of triaxial tests under different confining pressures. It must be noted that on the basis of the calibrated parameters in Appendix E, the parameters used in simulating the biaxial tests have been slightly modified a little as may be found a larger critical friction angle u listed in Table 2-1 compared to Table E-1. Some evidences could support this difference in the findings of [START_REF] Alshibli | Strain localization in sand: plane strain versus triaxial compression[END_REF], in which the comparisons between principal stress ratio versus axial strain of conventional triaxial compression and plane strain experiments indicate that the peak stress value and the residual stress of plane strain experiments are slightly higher than those of the conventional triaxial compression experiments. From a mathematical point of view, the slightly higher value of the peak and residual stress can be explained by the fact that for different loading conditions with different Lode angles can result in the differences in the critical friction angle in the constitutive law. What's more, the restrained platen end of the specimens in the biaxial tests can also lead to a higher residual strength [START_REF] Alshibli | Strain localization in sand: plane strain versus triaxial compression[END_REF]. For the two incorporated micropolar parameters, the internal length scale parameter lc was set to be identical to the mean grain size d50 (0.22 mm) of F-75 sand and the micropolar shear modulus Gc was set to be half of the classical shear modulus G. Referring to the publication of [START_REF] Alshibli | Shear band formation in plane strain experiments of sand[END_REF], experiments on dry specimens with dimensions of 150 mm in height and 80 mm in width under drained plane strain conditions were conducted. In the present study, the F-75 sand was chosen as the objective experimental data, i.e.

medium dense with initial void ratio of 0.629 (Dr = 55%) under low confining pressure (15 kPa), medium dense with initial void ratio of 0.655 (Dr = 47%) under high confining pressure (100 kPa), very dense with initial void ratio of 0.495 (Dr = 97%) under low confining pressure (15 kPa), and very dense with initial void ratio of 0.527 (Dr = 87%) under high confining pressure (100 kPa). With a constant confining pressure applied to the specimens using a cell pressure reservoir, a constant axial displacement rate was applied on the specimens. The bottom end platen was restrained from movement and the top end platen was rigidly connected to the loading ram. During the testing process, the specimen's deformation was monitored by noting the displacements of the grid imprinted on the membrane surface covering the specimen. In finite element simulations, in order to develop a single shear band which was the case in most of the experimental tests, the bottom of the specimen was allowed to slide in the lateral direction, and an imperfect element with a relative larger initial void ratio was set at the left top of the specimen to trigger the onset of strain localization.

As we know that significant grain rotations occur inside the shear band, consequently, the shear bands represented by the independent micro rotations or rearrangements of the simulated results from the micropolar model were compared with those represented by deformation from the experimental tests. 

Numerical simulations of shear bands in biaxial tests

Admittedly, the solutions to strain localization caused by softening based on classical continuum mechanics may have congenital numerical or analytical technical problems and suffer from ill-posed mathematics. As we know the incorporated micropolar approach is mainly used to overcome convergence difficulties and deal with the mesh dependency problems in finite element analysis when the strain localization phenomena occur, the regularization efficiency of the polarized SIMSAND model will be analyzed in this section.

The FE simulations of the biaxial test using the micropolar SIMSAND model have been compared with those from the classical SIMSAND model. Constitutive parameters referred to the ones of Ottawa sand, which have been calibrated in the Appendix E at the end of the manuscript. We considered a dry, dense specimen with a width of 10 cm, a height of 20 cm, and a unit thickness (in 2D condition, it is 1m by default). In the test, which featured two steps, mixed control was adopted.

The first step was isotropic compression with a confining pressure of 100 kPa, and the second was shear loading by controlling the displacement of the top surface (up to a total axial strain of 5%). To ease the triggering of the strain localization, the lateral deformations of the top and bottom surfaces of the specimen were constrained. Four different mesh sizes, mesh 10×20, mesh 15×30, mesh 20×40 and mesh 30×60, were used to investigate the mesh sensitivity. The expression mesh 10×20 indicates that the width and height of the specimen were uniformly divided by 10 and 20 elements, respectively. And the other expressions represent the corresponding discretizations.

Mesh dependency of the simulated results by classical SIMSAND model

Shear bands and mechanical response

First the simulations were conducted using the classical SIMSAND model. Shear bands in current configuration, identified by the equivalent plastic strain distribution of four different discretizations, are shown in Figure 2-12, and the load versus displacement curves of four different mesh sizes are plotted in Figure 2-13. From the shear band contours and the load-displacement curves, it can be observed that the calculations for the mesh 10×20 and mesh 15×30 are completely finished. However, for the mesh 20×40, the calculation stops just after the peak loading, and-more seriously-it does not become convergent at the peak loading for the mesh 30×60. The reason is that the occurrence of strain-softening leads to a localization of strain into a single finite element no matter how small the element is. Thus, the width of the strain-localization region and the energy consumed by failure due to strain softening converge to zero as the element size is decreased to zero, which is an unrealistic feature of local continuum and not representative of real materials [START_REF] Bažant | Continuum theory for strain-softening[END_REF]. For refined meshes, the localized deformation is relative large, in which the acoustic tensors of many gauss points become singular resulting in the difficulty of convergent or pathological solutions. For the fully formed shear bands in mesh 10×20 and mesh 15×30 in Figure 2-12, we can see that the shear band thickness is dependent on the mesh size, that the coarser the element size, the thicker the shear band will be. In Figure 2-13, the load peak of the mesh 10×20 (coarse mesh) is slightly higher and more delayed than the others' (fine mesh). Additionally, the specimen displays more stiff behaviors in the softening regime of a coarse mesh than in a fine mesh. From the plastic strain contour of mesh 30×60 and the green curve in the load-displacement plane, it can be seen that the strain localization occurs just before the peak loading, which coincides with the experimental observations of [START_REF] Desrues | Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry[END_REF]. 

Shear band inclination

According to the studies in the past, when it came to the investigations of the mesh dependency problems, many of the discussions were concentrated solely on shear band thickness and strength capacity in the post-peak regime, whereas shear band orientations have been rarely studied. In terms of shear band patterns, the present study considers not only the thickness of the band but also its orientation. Shear band orientation is obtained by measuring the angle between the centerline of the intense strain-localized region and the horizontal principal stress (under original configuration). The centerline can be explained as a sliding surface in experiments; the shear band orientations of three different mesh sizes are shown in Figure 2-14 (i.e., 1, 2, and 3). Considering that the calculation of Mesh 30×60 did not converge in the early stage, the other three shear band orientations were measured, respectively, as 1 = 52.69°, 2 = 57.65°, and 3 = 60.15°. Thus it may be discerned that the finer the mesh, the larger the shear band inclination angle. From the contours in Figure 2-12 and Figure 2-14, it can be seen that not only shear band thickness but also shear band orientation is dependent on the mesh size. As a result, some conclusions about the mesh dependency within the framework of classical continuum theory can be obtained from the simulated results. First, when the specimen is refined, the acoustic tensors of some localized elements will become singular upon the occurrence of strain localization, resulting in the difficulty of convergence. Second, the patterns of the shear band, including thickness and orientation, are significantly dependent on the mesh size. Third, load carrying capacity relies on the mesh size, especially in the post-peak regime.

Mesh independency of the simulated results by micropolar SIMSAND model

Shear bands and mechanical response

To demonstrate the regularization capability of the micropolar technique, the same simulations of biaxial tests were conducted again with the micropolar SIMSAND model. The shear bands, identified by the plastic strain, of four different mesh sizes are displayed in Figure 2-15. In a departure from the calculations within the framework of classical continuum theory, all four simulations could be completely finished without any numerical convergence problem. And, the mesh independency of shear band thickness for the four different mesh sizes can be easily observed.

Load versus displacement curves of the four discretizations are presented in Figure 2-16, showing that the mesh dependency problems have been significantly relieved. Although the pink curve of Mesh 10×20 is a little stiffer than the other three curves in the softening regime, the loaddisplacement curves of the other three fine meshes coincide with each other absolutely. It is worth noting that the difference of the curves in the load-displacement plane can be used to precisely evaluate the degree of mesh dependency. To conclude, being more advanced than the classical constitutive model, the micropolar SIMSAND model shows a good convergence property and significantly alleviates the mesh dependency problems.

Application of the micropolar model in simulating retaining wall

Earth pressure on retaining walls is one of the soil mechanics classical problems. In this section, a small scale rigid retaining wall under passive condition was considered. As shown in Figure 2-18, a two dimensional sand block in a rectangular rigid box with the dimension of 200×100 mm is selected to be the model, and the interaction between the sand and the box is smooth, from which the boundary conditions can be clearly illustrated. The height of the wall is of 50 mm which moves horizontally towards the soil mass, and the contact between the wall and the soil behind the wall is assumed to be perfectly adhesive.

Figure 2-18 A small scale retaining wall model in passive condition

In order to illustrate the regularization effectiveness of the micropolar model to contribute to the mesh independency in simulating strain localization problems in numerical analysis with finite element method, three different element sizes, i.e. mesh 20×10, mesh 28×14, and mesh 40×20, were used to represent the model. The parameters were referred to those calibrated in Appendix E. The sand behind the wall was very dense with a relative density of 97%, and a unit density of 20 kg/m 3 , moreover, a downward centrifugal acceleration 10g has been also considered.

Mesh dependency of the simulated results by classical SIMSAND model

First, the simulations were conducted by the classical SIMSAND model, the simulated results are presented in Figure 2-19 to Figure 2-22. From the deformed configurations in Figure 2-19, it can be seen that the shear band thickness is significantly affected by the element size, the larger the element sizes is, the narrower the shear band thickness will be. As a result, a great distortion occurs for the fine mesh 40×20. The shear bands identified by the equivalent plastic strain and the void ratio in Figure 2-20 and Figure 2-21 are also found to be mesh dependent. Figure 2-22 shows the mesh dependency of the load-displacement curves for different mesh sizes, which illustrates that, with a finer mesh, the loading peak is reached with a smaller horizontal displacement, while the coarser mesh has a higher residual bearing strength. 

Conclusions

In this chapter, the critical state-based elastoplastic model for sand (SIMSAND model) has been enhanced within the framework of micropolar theory. The FE implementation process of the micropolar SIMSAND model via the user-defined interface of ABAQUS was illustrated in detail.

Moreover, the efficiency of the cutting plane method to update stress was also clearly demonstrated.

Then, the validation at the single element level was performed with both loose and dense Toyoura sand. Moreover, the micropolar model was used to fit the experimental data in biaxial tests conducted by [START_REF] Alshibli | Shear band formation in plane strain experiments of sand[END_REF] with loose and dense F-75 sand. At last, by simulating the shear bands in a biaxial test as well as in a passive retaining wall with Ottawa sand, the regularization effectiveness of the micropolar approach has been proven, showing that not only the bearing capacity but also the shear band patterns were independent of the element mesh size. 

Introduction

In this chapter, the shear band in a micropolar continuum is further discussed in terms of the onset, thickness and inclination, etc. For the purposes of validation, shear band thickness was also compared with the experimental outcomes. As a regularization approach, an effective regularization ratio of the internal length scale to element size in FE analysis was proposed and discussed, with which the mesh dependency problems could be removed absolutely. In the past, a micropolar Lade's single hardening constitutive model [START_REF] Alshibli | Modelling strain localization in granular materials using micropolar theory: numerical implementation and verification[END_REF], as well as a hypoplastic model within the framework of micropolar theory [START_REF] Tejchman | FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization[END_REF], have been used to discuss the influence of initial void ratio, pressure level, and mean grain size on shear band. However, the critical state-based type models for granular materials have rarely been enhanced by the micropolar model for the analysis of shear band.

Therefore, the polarized critical state-based model-micropolar SIMSAND model-was adopted herein to conduct the influence analysis of different factors on shear band. Based on the numerical simulations of strain localization in biaxial tests, the effects of several factors, e.g. internal length, confining pressure, initial void ratio, etc., on the onset and patterns of shear bands have been discussed. In addition, for the specific micropolar SIMSAND model, the influences of three key model parameters, i.e. the critical friction angle u, the strength parameter np, and the deformation parameter nd, on the shear band have also been analyzed. Besides the influences on the shear band thickness and the bearing capacity, the focus was also on the effect to the regularization effectiveness ratio proposed in this chapter.

Numerical investigation of shear band by micropolar approach

Mechanical response

In the last chapter we have shown that the mesh dependency problems could be overcome by the micropolar SIMSAND model. However, the comparisons between the mechanical response of classical SIMSAND model and micropolar SIMSAND model have not been discussed. Therefore, to clearly identify the differences, the load-displacement curves from the classical and micropolar models are plotted in the same plane as shown in Figure 3-1. Being more advanced than the classical constitutive model, its micropolar counterpart shows a good convergence property and significantly alleviates the mesh dependency. Moreover, the simulations from the polarized model have a higher and more delayed peak load than those from the classical model, showing stiffer characteristics after being polarized in the softening regime. Certainly, the slight difference of Mesh 10×20 is caused by its mesh being too coarse. Thus, it is believed that element size may affect the regularization efficiency. Consequently, the regularization effectiveness related to the internal length scale and mesh size will be discussed in detail in the following section. 

Shear band inclination

The micropolar SIMSAND model has succeeded in significantly relieving the mesh dependency of shear band orientation, with the shear band inclination of mesh 10×20 at 1 = 53.10°, other three fine meshes have been proven to be the same: 2 = 3 = 4 = 53.22°. Furthermore, the shear band orientation was quantitatively studied in this section.

As shown in Figure 3-2, the mobilized dilatancy angle  was defined by Muhlhaus and [START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF] based on biaxial tests. In the plane strain condition, v = 12 and  = 12.

Thus, the mobilized dilatancy angle can be expressed as arcsin( ) Because the peak frictional angle and dilatancy angle are closely related to the initial density, some other simulations, with a different initial density, should be performed to confirm the finding.

   (3.1)
The specimen has also been set to the initial void ratios of 0.52, 0.55, 0.58, and 0.65, which correspond to initial relative densities of 87%, 78%, 68%, and 46%, respectively. The measured shear band angles and predicted angles from different simulations were listed in Table 3 For the material having a relatively low density, no clear shear band can be found by the micropolar continuum. Based on the table, it may be discerned that for the dense material, all the shear bands by the micropolar continuum are close to Roscoe's estimation, as well as that the denser the material, the steeper the shear band inclination-consistent with the experimental conclusion of [START_REF] Alshibli | Shear band formation in plane strain experiments of sand[END_REF]. However, it should also be noted that the measured shear band inclination is extremely sensitive to boundary conditions [START_REF] Vardoulakis | Formation of shear bands in sand bodies as a bifurcation problem[END_REF].
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Shear band thickness and shear band identifications

To measure an accurate shear band thickness, the equivalent plastic strain (a measure of the amount of permanent strain in an engineering body, which is calculated from the component plastic strain as defined as the equivalent stress/strain. In current study, the term plastic strain always means the equivalent plastic strain) along a path perpendicular to the shear band orientation should be extracted and recorded. For simplification, the horizontal red line through the specimen center in Figure 3-3 was selected as the reference direction for all the simulations. According to Figure 3-3 (a), the reference direction and the shear band orientation are marked, and in Figure 3-3 (b), the thickness of shear band can be calculated: TSB=l•sin(). In this way, the shear band thickness of different simulations can easily be compared. As has been demonstrated, in addition to equivalent plastic strain, other state variables, such as void ratio, axial strain, microrotations, and microcurvatures, can be also extracted and recorded to represent shear band. To verify this finding, these related variables have been recorded from the same simulated result (mesh 30×60, lc = 2 mm). For purposes of comparison at the same scale, all variables have been normalized by their maximum as shown in Figure 3-4, which indicates that these variables tend to be constants outside the shear band, with the shear bands measured by these five variables being approximately the same. Accordingly, it is certain that these variables can be used to identify shear band distribution. The distributions of void ratio, equivalent plastic strain, and axial strain are bell-shaped. The peak values of plastic strain and axial strain located in the middle of shear band are caused because the largest deformation gradients occur in the middle of the shear band and gradually decrease outward. Excessive strain localization is caused chiefly by significant rearrangement and rotations of particles, which results in dilatancy inside the shear band. As a result, the void ratio in the middle of shear band is the largest. Considering that microcurvatures are entirely caused by microrotations, the distribution of curvatures is consistent with the distribution of particles' rotations, and the rotations transform from clockwise to counterclockwise at the centerline, which can thus be explained as a slide line. The equivalent plastic strain has been adopted to identify the shear band orientation and thickness. [START_REF] Nübel | A study of localized deformation pattern in granular media[END_REF] defined the shear band domain by using a criterion that the normalized plastic strain  p / p max should exceed 0.6. However, the criterion has been redefined in the present study by comparing the shear band contours and the values of equivalent plastic strain along the selected path. Through the benchmark, it was suggested that the normalized plastic strain  p / p max being larger than 0.5 be more appropriate to identify shear band as in Figure 3-5.

From the four normalized shear bands identified by plastic strain shown in Figure 3 

Shear band evolution

The evolution process of a shear band is shown in Figure 3456. With the development of axial strain from 4% to 5%, the shear band becomes more and more obvious. However, it should be noticed that even though the plastic strain inside shear band increases with the development of axial strain, the thickness of shear band has remained constant during the whole evolution process. This indicates that once the shear band fully forms, its thickness remains constant from beginning to end. 

Influence of internal length on the simulated results

As has been illustrated in chapter one, no matter which regularization method is adopted, at least one explicit or implicit internal length scale parameters must be incorporated into the constitutive model.

The incorporation of the internal length scale in the micropolar SIMSAND model indeed relieves the mesh dependency problems. Therefore, the discussions about the internal length scale are of significant importance. As a result, four different values of lc were used in a fixed mesh (mesh 20×40), from which the influences of the internal length scale on biaxial tests results could be investigated.

The load-displacement curves with four different lc are plotted in Figure 34567. When lc equals zero, the micropolar model reverts to a classical one, and the numerical difficulties still exist in softening regime. The load-displacement curves show that the load peak depends on the internal length scale and increases with lc. In addition, for a larger value of lc, it requires a larger axial strain to arrive at the peak load, indicating that the increased lc is able to delay the bifurcation point of a structure. In the softening stage, the material having a larger lc also demonstrates a stiffer behavior.

From a physical point of view, the value of lc controls the domain of the strain localized region, consequently, a larger lc can drive more particles located inside the shear band to bear the loading together. In this sense, a larger lc makes the bifurcation point more delayed and the strength stiffer. Shear band thickness in laboratory tests has been measured by a number of researchers, beginning with [START_REF] Roscoe | The Influence of Strains in Soil Mechanics[END_REF]. It has been concluded that shear band thicknesses in biaxial tests are confined within 5-20 times of the mean grain size based on the laboratory tests [START_REF] Nübel | A study of localized deformation pattern in granular media[END_REF]Arslan and Sture, 2008b). To discuss the relation between shear band thickness and internal length scale or mean grain size, several publications [START_REF] Vardoulakis | Formation of shear bands in sand bodies as a bifurcation problem[END_REF][START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF][START_REF] Desrues | Shear band initiation in granular materials: Experimentation and theory[END_REF]Alshibli andSture, 1999, 2000;[START_REF] Viggiani | An experimental investigation of the relationships between grain size distribution and shear banding in sand[END_REF][START_REF] Alshibli | Experimental Observations of Localization Phenomena in Sands: Plane Strain Versus Triaxial Compression Conditions[END_REF][START_REF] Alsaleh | Numerical modeling of strain localization in granular materials using Cosserat theory enhanced with microfabric properties[END_REF][START_REF] Desrues | Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry[END_REF] on biaxial tests are referred to, in which researchers quantitatively studied the influences of mean grain size on shear band thickness.

Similarly, the relation between shear band thickness and internal length scale has been quantitatively defined via a series of numerical simulations in the present study. The experimental results by other researchers as well as the simulated results with the micropolar SIMSAND model are summarized in Additionally, shear band thickness in simulations increases with the internal length scale as the relation between shear band thickness and mean grain size in experiments. Figure 3-11 shows that the normalized value of shear band thickness decreases with increased mean grain size or internal length scale. Thus, the assumption that lc equals d50 in the micropolar model is a reasonable one-or at least appropriate for the dimensions of a laboratory specimen. Based on the foregoing, the internal length scale lc can be taken to significantly influence the material's strength and the shear band patterns. The larger lc is, the larger and later the peak loading will be, and also the stiffer the load-displacement curve in the softening regime for a larger lc. Shear band inclination will decrease slightly as lc increases. Shear band thickness increases with the internal length scale lc, whereas normalized shear band thickness decreases with an increase in lc.

Finally, in the case of a structure's dimensions at a laboratory scale, the mean grain size can reasonably be regarded as the internal length scale of a micropolar model. 

Influences of the micropolar shear modulus

According to the findings of other researchers (de Borst and Mühlhaus, 1991;[START_REF] De Borst | Localisation in a Cosserat continuum under static and dynamic loading conditions[END_REF][START_REF] De Borst | A generalisation of J2-flow theory for polar continua[END_REF]Arslan and Sture, 2008b, a;[START_REF] Tang | Numerical analysis for the effects of constitutive parameters in Cosserat continuum model on the simulation results of the strain localization[END_REF], it has been widely accepted that Gc can be set to about half the conventional shear modulus G. In the opinion of these authors, when the micropolar shear modulus is set to Gc 0.5G, it has a very slight influence on the final results, such as shear band thickness and load carrying capacity. Consequently, emphasis has always been laid on researching the internal length scale lc in the past. However, the influences of micropolar modulus on shear band patterns and load carrying capacity have never been verified, and discussions of Gc have been infrequent.

In this section, the influences of the micropolar shear modulus Gc on shear band patterns and load carrying capacity were investigated. As has already been illustrated, the theorem of conjugate shearing stress is no longer satisfied in micropolar theory because of microrotation. Thus, the influence of Gc on shear stress and shear strain as well as the newly produced curvature and moment were also discussed.

When the micropolar shear modulus Gc equals zero, the micropolar model reverts to a classical one, and the simulations suffer from numerical difficulties and mesh dependency problems. Thus, by increasing the value of Gc gradually, it is possible to find a value of Gc that is able to entirely overcome the mesh dependency problems. Several relatively small micropolar shear moduli, such as Gc = 0.01G, Gc = 0.05G, and Gc = 0.1G, were tested initially. The load-displacement curves are shown in Figure 3-12, from which it can be found that once the micropolar model reverts to a classical one (with Gc being set to null), the convergence property is worse, especially in the post-failure regime, and with increased Gc, the convergence property becomes better than before.

Moreover, Gc can affect peak load and stiffness in the softening regime: the larger the Gc, the stiffer the material. 
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inside the shear band are also found to be unrelated to the choice of Gc. Shear strain and shear stress are affected slightly by the value of Gc, but their peak does not monotonically increase with Gc.

Some other advantages of the micropolar approach

From the foregoing discussion, we see that the micropolar technique offers great promise for overcoming numerical difficulties while dealing with the mesh dependency problems in finite element analysis. Moreover, it can reflect the kinematic behaviors of microstructures of materials. For dense materials, strain localization phenomena are often accompanied by a reduction in load-carrying capacity. However, experiments have demonstrated an absence of strain softening behavior for loose materials when loaded. Considering this, the micropolar approach is always adopted when describing dense materials' behaviors, whereas loose materials have been never

studied by a micropolar model. In fact, the micropolar model has also significantly influenced the final results for loose materials by incorporating the internal length scale.

In this section, the simulated results from a classical continuum model and its polarized model were compared and discussed in terms of shear bands and mechanical response. Shear bands are identified by axial strain. For simulated results within the framework of the classical continuum theory laid out in Figure 3-21, it may be observed that several shear bands divide the specimen into many distributed sections and that the smaller the mesh size, the more divided the sections produced.

Even the thickness of a single shear band is not the same in local region (the finer the mesh size, the thinner the shear band), but different quantities of shear band for different discretization produce a similar global mechanical response, see Figure 3-22. From the load-displacement curves, it can be seen that there is no softening behavior for loose materials in biaxial tests. However, the strong oscillations of the load versus displacement curves can be found just after the onset of shear bands because of the numerical instabilities within the classical continuum theory. Furthermore, the oscillations of the global load-displacement curves of the specimens can be explained by the accumulation of local numerical instabilities, as indicated in Figure 3-23 with elements located on the horizontal bearing profile given in subfigure (a) and their bearing capacities in subfigure (b).

Generally speaking, mesh dependency phenomena for loose materials are not as serious a matter as in dense materials, but numerical instabilities exist in the post-failure regime. After the governing field equations were regularized using the micropolar approach, the failure mode is very different from that associated with classical continuum theory, and a consistent diffusion mode is found in the loose specimen for the four different mesh sizes rather than shear strain-localized mode, as in Figure 3-24, which has been experimentally verified by many researchers in the past. When numerical simulations are conducted within the framework of the micropolar continuum theory, not only the displacements of particles but also those particles' rotations originating from the boundary constraints play a main role, together, in forming the failure mode. The load-displacement curves obtained from the micropolar model in Figure 3-25 are seen to be smoother and more stable than classical ones. Moreover, the four curves for different discretization in Figure 3-25 coincide with each other absolutely, thereby also demonstrating the regularization ability of the micropolar technique when overcoming numerical difficulties and dealing with mesh dependency problems. Similarly, the smooth curves can be also explained by the accumulations of local bearing curves of each element located on the horizontal profile, as in Figure 3-26. Compared to the local curves from classical simulations, it is obvious that the loaddisplacement curves of each bearing element from micropolar simulations become more stable.

Because the incorporated internal length scale can drive more particles in its surroundings to bear the loading, the load carrying capacity achieved by the micropolar model is a little higher than that given by the classical constitutive model, increasing gradually to reach a stable stage. From the simulated results of loose materials and dense materials in the previous sections, we can find that the density of materials greatly influences the behavior of granular materials. Indeed, density significantly affects not only failure mode but also peak strength. Dense materials always have obvious intense located shear bands, whereas the loose specimens will undergo a diffuse failure mode. Regarding load carrying capacity, dense materials have a higher strength than loose ones.

Based on these simulations-although the differences are very slight-mesh dependency problems still exist in loose materials. Although the micropolar approach has been used chiefly to describe materials having softening behavior, and only rarely to describe loose material, the additional internal length scale and rotational degree of freedom in the micropolar formulations can maintain the ellipticity of the partial differential equations during finite element analysis. As a result, numerical instabilities are well overcome and physically meaningful solutions finally obtained.

Proposition of the regularization effectiveness ratio-l c ∕l e

The simulations in the previous section showed that even though mesh dependency problems have significantly improved, the load-displacement curve of mesh 10×20 still could not coincide with the other three relatively finer meshes. Thus, it is believed that for a fixed internal length scale, the element size may affect the regularization effect. If the element size is too large compared to the internal length scale parameter, then the element size le controls the thickness of shear bands instead of the internal length parameter lc. Purely from the perspective of regularization effectiveness, then, the internal length scale parameter lc incorporated in the micropolar model and the element size le should be considered simultaneously via a series of simulations of biaxial tests. Several researchers [START_REF] Richart | Use of couple-stress theory in elasto-plasticity[END_REF][START_REF] Sharbati | Computational aspects of the Cosserat finite element analysis of localization phenomena[END_REF][START_REF] Tejchman | FE-studies on shear localization in an anistropic micro-polar hypoplastic granular material[END_REF] have suggested that only if the ratio of the internal length to the discretized element size (lc∕le) is larger than a certain value, effective the micropolar approach will be to overcome mesh dependency problems. [START_REF] Richart | Use of couple-stress theory in elasto-plasticity[END_REF] found that mesh dependency problems could be wholly alleviated when the ratio condition lc∕le > 0.2 was satisfied. According to Tejchman (1998[START_REF] Tejchman | FE-studies on shear localization in an anistropic micro-polar hypoplastic granular material[END_REF], all simulations were based on the premise lc∕le > 0.2; [START_REF] Sharbati | Computational aspects of the Cosserat finite element analysis of localization phenomena[END_REF] proposed a new criterion lc∕le > 0.15 with which to overcome mesh dependency problems. Accordingly, in this section, the effective value of the internal length scale parameter lc compared to the element size le will be discussed.

To study the regularization effectiveness of the micropolar model, four different values of the internal length scale lc have been attempted for each fixed element size, with four meshes ranging from coarse to fine. Thus, four groups corresponding to 16 cases are listed in Table 3-4 for analysis.

Detailed information about the simulations is described hereafter. The width and height of the specimen was 10×20 cm, with 10×20, 15×30, 20×40, and 30×60 meshes denoting four different divided meshes. The element type adopted was the user-defined eight-node biquadratic quadrilateral element considering the rotational degree of freedom introduced in Chapter 2. Dry dense material is known to exhibit softening behavior when sheared excessively, and shear band rather than diffusion is the main failure mode in biaxial tests. Accordingly, dense material was used in the simulations based on the critical state-based micropolar model. Regularization effectiveness can be judged by two criteria: thickness of shear band and mechanical response. In this section, shear band contour is identified by the distribution of axial strain. Based on the precede results laid out, it was found that the load-displacement curve is a more precise criterion for judging regularization effectiveness. In this sense, then, a criterion -load-displacement curves coincide with each other or not for the four different meshes for a fixed internal length scale -is adopted to judge the degree of mesh dependency.

As already mentioned, only if the ratio of lc to le reaches a certain value is the micropolar theory able to overcome the mesh dependency problems. We aim at finding the ratio through use of the following simulated results. First, the simulations of group 1 were made as shown in Table 3-4, using a fixed internal length scale lc = 1 mm for four different discretization meshes of 10×20, 15×30, 20×40, and 30×60, corresponding to the four different element sizes le shown in Figure 3-27; the mechanical response curves are plotted in Figure 3-28. Obviously, not only shear band thickness but also loaddisplacement curves are mesh-dependent. The shear bands are concentrated only in a thickness of about two element sizes. As a result, the coarse mesh produces a thick shear band, whereas the fine mesh produces a narrow shear band. That is to say, the element size controls the shear band thickness but not the mean grain size or the internal length scale. For load-displacement curves, even though the peak strength is the same, the load carrying capacity is higher for the coarse mesh than for the fine mesh in the post-failure regime (softening regime). That the load-displacement curve for a ratio of 0.2 does not coincide with that for a ratio of 0.3 signifies that the ratio 0.2 does not satisfy the mesh independency criterion in the present study.

In group 2 with lc = 1.5 mm, the shear band contours in Figure 3-29 are found to be significantly mesh-independent. However, from the load-displacement curves in Figure 3-30, we see that the curve of the relatively coarse mesh 10×20 is not consistent with the other three curves, although the other three cases are believed to be mesh-independent. Thus the ratio 0.225 satisfies the criterion for overcoming the mesh dependency problems.

For group 3 with lc = 2 mm, the simulated results are shown in Figure 3-31 and Figure 3-32-similar to those produced by the second group in that the mesh dependency problems of the three relatively fine meshes are entirely alleviated. Certainly, the ratio 0.3 is a satisfied criterion, then, because it satisfies the criterion 0.225. 

Influencing factors on shear band and regularization effectiveness ratio

As was pointed out, the effective ratio lc∕le for the micropolar approach is 0.225-even as it had been also argued that this ratio might not be a constant but rather might be affected by many factors, such as confining pressure, initial density, and constitutive parameters. Therefore, the influences of these factors on the regularization effectiveness ratio were investigated in this section.

Influence of confining pressure

The softening behavior following the peak-point results from bifurcation instability in the neighborhood, which causes localization of deformations into narrow shear zones and enables development of the kinematics of a failure mechanism. In short, global softening behavior has been used to describe the slip mechanism after the onset of the shear band. Based on earlier discussions, shear bands in biaxial tests have been proven to be affected by several factors, including grain size, specimen density, and confining pressure, which can be reflected by shear band thickness and a more accurate criterion: the mechanical response.

It can be easily understood from a physical point of view that loose sand might be dilatant under low confining pressure, whereas dense sand might contract under high confining pressure. There is thus no doubt that the confining pressure and the specimen density greatly influence the failure mode (shear band) and strength of the specimen in biaxial tests. Consequently, for the micropolar approach, the confining pressure may affect the regularization effectiveness, which may be explained by the changing of the effective ratio lc/le. Considering that the differences of shear band inclined angle  compared to the initial configuration for different cases are so slight when the simulations are within the framework of micropolar theory, different shear bands comparisons can be made with reference to shear band thickness.

In this section, the influence of the confining pressure on load carrying capacity and shear band thickness was observed to evaluate the regularization effectiveness ratio. Three confining pressures 50 kPa, 100 kPa, and 200 kPa were adopted, and for each confining pressure, three different meshes from coarse to fine were used for the discretization. Moreover, the ratio lc/le in this section was set greater than or equal to 0.225, thus satisfying the criterion obtained from section 3.4. From Figure 3-35, it can be found that the confining pressure greatly influences the load-displacement curves.

First, the stiffness decreases with a decrease in confining pressure during the hardening regime, and the softening behavior becomes more significant when the confining pressure is smaller in the post-failure regime. Second, the axial strain at peak-load (near the onset of shear band) increases with increase in the confining pressure; it seems that the bifurcation point is delayed for specimens subjected to high confining pressure. Third, load carrying capacity increases with increased confining pressure. These findings entirely agree with the findings of [START_REF] Han | Shear bands in biaxial tests on dry coarse sand[END_REF], of [START_REF] Alshibli | Shear band formation in plane strain experiments of sand[END_REF], and of [START_REF] Desrues | Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry[END_REF], who performed a series of biaxial tests to investigate the effects of the confining pressure on the onset and formation of shear bands.

Closer scrutiny of the three sets of curves in Figure 3-35 reveals that the mesh dependency problems occurs at the end of the softening regime, especially for the low confining pressure. To some extent, then, it requires that the micropolar approach play additional roles in fully alleviating mesh dependency problems when the confining pressure is relatively low. In short, a smaller element size le (larger ratio lc /le) is needed in order to regularize the solutions when the confining pressure is relatively low.

The thickness of the shear band can be found in Figure 3 [START_REF] Lee | Comparison of plane strain and triaxial tests on sand[END_REF] and [START_REF] Marachi | Plane-strain testing of sand, Laboratory shear strength of soil[END_REF] concluded that as specimen density increases, specimens tend to fail at a smaller axial strain, which pointed out the influence of the initial density on strain localization. Later on, however, [START_REF] Han | Shear bands in biaxial tests on dry coarse sand[END_REF] and [START_REF] Alshibli | Shear band formation in plane strain experiments of sand[END_REF] argued that rather than initial density, confining pressure was the main factor affecting the onset of shear band.

Influence of initial density

Three different initial void ratios were used alternatively, and for each void ratio, three different meshes were discretized. According to Figure 3-37, we can see that both the hardening and the softening behavior are more obvious when the material is denser, the initiation of the bifurcation point for specimens with different initial densities is very close, and the peak load carrying capacity increases with the initial density. Most of all, the regularization effectiveness of the micropolar approach for denser materials (blue curves) is worse than for the other two sets of simulations, especially at the end of the softening regime: it requires the micropolar approach to play a stronger role in overcoming the mesh dependency problems for denser materials. In short, a smaller element size le (larger ratio lc /le) is required for regularizing solutions when the initial density is larger. 

Influence of several key parameters

In this section, several important constitutive parameters, such as the critical friction angle u (controlling the position of the critical state line), the strength parameter np (controlling the peak stress), and the deformation parameter nd (controlling dilatancy) were discussed in terms of how they affect global strength as well as shear band thickness. Moreover, for each fixed parameter, the model was also discretized into three different meshes ranging from coarse to fine as had been done in previous sections. Thus, by comparing different meshes, the influence of these parameters on the regularization effectiveness ratio was observed.

Influence of the critical friction angle u

Three different critical friction angles u were used, and for each critical friction angle three different meshes were considered. The load carrying capacity curves for different cases are given in Figure 3-39, and from them certain phenomena can be observed: First, stiffness increases with critical friction angle during the hardening regime while at the same time softening behavior in the post-peak regime becomes significant when the critical friction angle increases during softening regime, as for the blue curves in Figure 3-39. Second, axial strain at the initiation of shear band increases significantly with critical friction angle; seemingly, the bifurcation point is delayed if the material Finally, it can be shown that the value of the critical friction angle greatly affects the effectiveness of regularization-that is to say, for material having a larger critical friction angle u, the micropolar approach is required to play a stronger role in overcoming the mesh dependency problems during finite element analysis. Thus, a smaller element size le (larger ratio of lc to le) is needed to regularize solutions if a larger critical friction angle u has been adopted.

Considering the shear band thickness shown in Figure 3-40, we can find that differences of equivalent plastic strain distributions among the three groups having a different value of critical friction angle are less than obvious. Thus the critical friction angle u has little influence on the thickness of shear bands in biaxial tests, but the critical friction angle u significantly affects the peak value of equivalent plastic strain inside the shear band-and the less u is, the greater the plastic strain peak inside the shear band. 

Influence of the interlocking parameter np

The influence of the interlocking parameter np on strength and shear band was discussed in this section. Three different values of np have been adopted, with three different meshes performed for each fixed np. The load-displacement curves of the different cases are shown in Figure 3-41, allowing certain conclusions to be drawn. First, stiffness increases with the parameter np during the hardening regime, while at the same time the softening behavior in the post-peak regime becomes more significant when the parameter np increases as for the blue curves in Figure 3-41 and the strength of the largest np at the end of the softening regime is even less than for the other two groups (red and pink curves). Second, the axial strain at the onset of shear band increases slightly with the increase of the parameter np, which is to say that a large parameter np is able to delay the bifurcation point. Third, the parameter np greatly influences the specimen strength, with peak load carrying capacity increasing significantly with the value of the parameter np. Finally, it was also found that parameter np significantly affects the effectiveness of regularization, requiring the micropolar approach to play more roles in overcoming the mesh dependency problems for material having a larger parameter np. In other words, for materials having a larger parameter np, a smaller element size le (larger ratio lc/le) is always needed to regularize the solutions.

Comparisons of shear band thickness for different cases are shown in Figure 3-42, which indicates that the larger the parameter np, the narrower the shear band will be. Nevertheless, the influence of parameter np on shear band thickness is not very significant. Moreover, the peak value of plastic strain can be found to be also affected by the value of np, and the larger np is, the greater the maximum plastic strain inside the shear band. 

Influence of the interlocking parameter nd

The deformation parameter nd, which controls the dilatancy behavior, is very important. It influences the specimen strength, the shear band thickness, and the effectiveness of regularization, as discussed in this section. The load carrying capacity of the specimen in different cases is shown in Figure 3-43, allowing certain observations. First, stiffness increases with deformation parameter nd during the hardening regime, while at the same time the softening behavior in the post-peak regime becomes more significant when the deformation parameter nd increases as for the blue curves in Figure 3-43.

Second, the most obvious influence of deformation parameter nd on the load-displacement curve is that the axial strain at the initiation of the shear band increases significantly with nd. That is to say, the bifurcation point occurs earlier if the material has a larger deformation parameter nd, which also demonstrates that the strain localization is closely related to the local dilatancy. Third, the influence of the deformation parameter nd on the peak load carrying capacity can be found very slight. Finally, it can also be observed that deformation parameter nd affects the effectiveness of regularization significantly, requiring the micropolar approach to play more roles in overcoming the mesh dependency problems for materials having a larger deformation parameter nd. In short, a material having a larger deformation parameter nd needs a smaller element size le (larger ratio of lc to le) to regularize the solutions during finite element analysis.

Shear band thickness for different cases is shown in Figure 3-44, showing that differences among cases are not very obvious: the deformation parameter nd has little influence on the thickness of shear bands in biaxial tests. However, the peak value of the equivalent plastic strain inside the shear band is seriously affected by the value of nd-and the larger nd is, the higher the maximum equivalent plastic strain. 

Conclusions

A series of simulations of biaxial tests using the polarized SIMSAND model was conducted in this chapter. Based on these simulated results, the shear band was deeply investigated, and some conclusions have been obtained as follows. Through comparison with simulated results from the classical continuum theory-based model, the micropolar technique can be seen to have great capacity for overcoming numerical difficulties and is capable of dealing with mesh dependency problems during finite element analysis.

Two-dimensional problems call for two newly incorporated parameters, among which the internal length scale lc has particularly great influence on the shear band patterns and the load carrying capacity of a specimen, whereas the influence of the micropolar shear modulus Gc is negligible. The larger lc is, the larger and later the peak load carrying capacity will be-and a larger lc corresponds to more ductile material in the softening regime. Shear band inclination decreases slightly with the increase in lc. Shear band thickness increases with internal length scale lc, whereas normalized shear band thickness decreases with the increase of lc. All these findings also validate the physical assumption that lc can be regarded as the mean grain size d50-at least during simulations of small structures during biaxial tests in the laboratory.

Unlike in the articles already referenced, which merely suggested a ratio for lc in terms of le, the regularization effective ratio lc/le was first proposed in the present study, along with the suggestion that for simulations having different meshes one certain ratio exists that can entirely alleviate mesh dependency problems. Moreover, discussions of the regularization effectiveness ratio of the micropolar technique have been featured in details. However, it must be noted that this ratio can be affected by other factors, such as material density, confining pressure, and the parameters of the constitutive model.

The influence on load carrying capacity and the thickness of shear bands of some other factors has been discussed, with simulated results demonstrating that peak load carrying capacity increases with initial density, confining pressure, critical friction angle u, strength parameter np, and deformation parameter nd. However, the impact of each factor varies-for example, the deformation parameter nd has only slight, indeed ignorable, effect on the peak load carrying capacity, whereas the strength parameter np greatly influences the peak load carrying capacity. The influence on shear band thickness of these factors is negligible. Based on these influence analyses, a consistent conclusion has been obtained: if the softening behavior is more significant during the softening regime, then a smaller le (larger effective ratio lc/le) is needed to entirely alleviate mesh dependency problems.

Chapter 4 Second-Order Work Criterion in Micropolar Theory

Introduction

It is well known that the failures of geostructures are due to the loss of stability. The definition of stability was initially introduced by [START_REF] Lyapunov | Problème général de la stabilité de mouvement[END_REF]. Half a century later, some theories associated to the stability were put forward one after another, including the stability criteria of [START_REF] Drucker | A definition of stable inelastic material[END_REF] and of [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF], among others. The stability criterion proposed by [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF] was the one favored by numerous researchers in decades. The form of Hill's criterion can be expressed as the second-order work of materials in a Lagrangian formalism. Stability is related to the sign of the second-order work. For the small deformation cases, the second-order work can be expressed by the Cauchy stress tensor and strain tensor instead of the first Piola-Kirchoff stress tensor and the general term of deformation gradient in the original form (Nicot et al. 2007).

The second-order work in the numerical simulations with DEM (discrete element method) and FEM (finite element method) has been used to judge the instability of homogenous material problems [START_REF] Hossain | DEM analysis of angular ballast breakage under cyclic loading[END_REF]Nicot and Darve, 2007;Nicot et al., 2007;[START_REF] Nicot | Bifurcation in granular materials: An attempt for a unified framework[END_REF]Nicot et al., 2011;[START_REF] Daouadji | Divergence instability and diffuse failure in granular media[END_REF]Nicot et al., 2012a;[START_REF] Nicot | Second-order work analysis for granular materials using a multiscale approach[END_REF][START_REF] Wan | Diffuse instabilities with transition to localization in loose granular materials[END_REF][START_REF] Nicot | Describing failure in geomaterials using second-order work approach[END_REF][START_REF] Hadda | Failure in granular media from an energy viewpoint[END_REF][START_REF] Nicot | Second-order work criterion: from material point to boundary value problems[END_REF]. Moreover, the second-order work criterion was recently extended from the homogeneous problems to judge also the instability of boundary value problems (Nicot, 2007).

In this chapter, the second-order work in micropolar theory has first been formulized. Then, based on the simulations of a biaxial test, the differences in the expression of the second-order work by classical continuum theory and micropolar theory based models were discussed and compared, from which the contributions of the couple stresses and curvatures in micropolar model to the second-order work have been analyzed. What's more, the mesh independency in simulating the shear bands in biaxial tests of the micropolar approach was demonstrated by the evolution of the second-order work during loading. At last, the envelope of the vanishing of the second-order work within the framework micropolar theory was also applied to an analysis of the failure a retaining wall.

Mathematical implications of instability

Material instability

The definition of stability was initially introduced by [START_REF] Lyapunov | Problème général de la stabilité de mouvement[END_REF] for elastic materials only.

Since then, many researchers have contributed much to the domain of the instability of materials [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF][START_REF] Hill | Bifurcation and uniqueness in non-linear mechanics of continua[END_REF][START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF]de Borst et al., 1993;[START_REF] Nova | Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes[END_REF][START_REF] Nova | The failure concept in soil mechanics revisited[END_REF][START_REF] Daouadji | Instability in granular materials: experimental evidence of diffuse mode of failure for loose sands[END_REF][START_REF] Nicot | Bifurcation in granular materials: An attempt for a unified framework[END_REF]Nicot et al., 2011;Nicot and Darve, 2011;[START_REF] Daouadji | Divergence instability and diffuse failure in granular media[END_REF]Nicot et al., 2012a;[START_REF] Hadda | Micromechanical analysis of second order work in granular media[END_REF][START_REF] Nicot | Second-order work analysis for granular materials using a multiscale approach[END_REF][START_REF] Wan | Diffuse instabilities with transition to localization in loose granular materials[END_REF][START_REF] Nicot | Describing failure in geomaterials using second-order work approach[END_REF][START_REF] Hadda | Failure in granular media from an energy viewpoint[END_REF][START_REF] Nicot | Second-order work criterion: from material point to boundary value problems[END_REF].

The classical stable postulate proposed by [START_REF] Drucker | A definition of stable inelastic material[END_REF] requires a linear incremental stressstrain relation and an associated flow rule. The criterion of stability is more restrictive, because it requires that the plastic component of the second-order work density remains positive:
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Thus, the consequence is that an instable state for Drucker's criterion might be stable for Hill's criterion hereafter explained.

In [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF][START_REF] Hill | Bifurcation and uniqueness in non-linear mechanics of continua[END_REF], a slight wave perturbation acted on an infinite material with a homogenous state of stress and strain, after which the stability was checked by analyzing the response to the wave. If the perturbation increased, the material was in a state of instability; otherwise, the material was stable. According to [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF], the second-order work must be positive for the constitutive relationship of stable material (expressed by the Cauchy stress and strain herein).
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We can find for the perfect elastic plastic materials that Drucker's criterion is the same as Hill's criterion. If we limit our interest to incrementally linear constitutive equations, The loss of the uniqueness of the incremental solution in theoretical continuum mechanics was first studied by [START_REF] Darve | Constitutive instabilities in incrementally non-linear modelling[END_REF]. Then, the non-uniqueness of the solutions was theoretically demonstrated by the loss of controllability [START_REF] Nova | Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes[END_REF][START_REF] Nova | The failure concept in soil mechanics revisited[END_REF][START_REF] Wan | Diffuse instabilities with transition to localization in loose granular materials[END_REF]. Based on the stress-strain curve, the limit point condition has the form
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The condition det(D) = 0 can mark the plastic limit and the existence of a non-unique solution of the differential Eq. (4.7). For a symmetric tangential stiffness matrix D, the loss of positive-definiteness of D coincides with the limit point or the loss of controllability (non-uniqueness).

Obviously, the softening behavior can lead to the violation of the stability criterion that the inner product of the stress rate and the strain rate is positive. There is also a class of material instabilities that can cause the inner product of stress rate and strain rate to become negative even without the occurrence of strain softening (de Borst et al., 1993). For a non-symmetric tangential stiffness matrix, the non-symmetry is in itself sufficient to cause the loss of material stability, even if the slope of the vertical stress-strain curve is still rising [START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF]. For the material with the non-symmetric tangential stiffness matrix, the loss of material stability may be encountered prior to the limit point or loss of uniqueness. The reason is that the real-valued Eigen-spectrum of D is bounded by the minimum and maximum eigenvalues of 1/2(D+D T ). Thus det(D+D T ) = 0 always precedes the condition of det(D) = 0 (de Borst et al., 1993;[START_REF] Etse | Fracture energy formulation for inelastic behavior of plain concrete[END_REF].

According to the suggestions of de Borst (1993), material instabilities can be classified into two major categories. In category one, the prevailing failure mechanism is decohesion, which may be denoted as mode I fracture, like fracture in masonry concrete and rocks under low confining pressure levels. The second category of failure is governed by the frictional slip, which may be identified as mode II failure, like frictional slip failures in metals, in soils, and in concrete and rocks under high confining pressure levels. In the same article, de Borst (1993) also argued that this distinction had deep implications for the effectiveness of various regularization approaches used to restore the well-posedness of the boundary value problems.

The formation of discontinuity in the deformation gradient has traditionally been identified with strain localization. In the research of [START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF], strain localization has been considered as a bifurcation in the macroscopic constitutive description of the material. A shear band means a zone of intense deformation bounded by two discontinuity planes. It can be detected by the vanishing of the determinant of the acoustic tensor in the expression det( ) 0  nDn

(4.8)
where n is the normal vector of the discontinuity [START_REF] Rudnicki | Conditions for the localization of deformation in pressure-sensitive dilatant materials[END_REF]. The singularity of the acoustic tensor and the formation of the discontinuity correspond to the local loss of ellipticity of the rate equilibrium equations. It should be noted that this criterion allows us to detect only certain particular failures related to strain localization mode, but not failure in diffuse mode. Fortunately, it has been confirmed that the non-positiveness of the second-order work illustrated in the previous section can generally be used to detect both diffuse and localized failure [START_REF] Etse | Fracture energy formulation for inelastic behavior of plain concrete[END_REF].

To summarize the knowledge of material instability, [START_REF] Wan | Diffuse instabilities with transition to localization in loose granular materials[END_REF] clearly defined the hierarchy of material instabilities with the sign of each indicator as shown in Figure 4-1 (for a non-symmetric constitutive matrix D). For a symmetric constitutive matrix, all indicators tend to coincide at the peak response during loading history, with the possibility of det(nDn) occurring later in the softening regime. 

Structural instability

Based on the material instability aforementioned, the structural instability will be analyzed.

According to Hill's definition, the stability of a body (structural stability) that occupies the volume V can be guaranteed for all kinematically admissible  only if Eq. (4.9) is satisfied. If the inequality in Eq. (4.9) is replaced by equality, it also means the onset of potential structural instability. Therefore, the material instability may lead to structure instability.
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For a discrete mechanical system, we can introduce the structural tangential stiffness matrix K,
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where the superscript T is the transpose symbol and the matrix B relates the strain rate vector  to the nodal displacement rate vector a  ,
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and the onset of structural bifurcation may be denoted by the loss of positive-definiteness for the structural stiffness matrix
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From Eq. (4.10), we can see that if the local material tangential stiffness matrix D loses positive-definiteness, the structural stiffness matrix K may lose positive-definiteness as well. In short, material instabilities may lead to structural instability, even in the absence of geometric destabilizing terms. However, the loss of positive-definiteness for material stiffness matrix D is not a necessary triggered for structural instabilities. But it can result in local loss of ellipticity for the equilibrium rate loss of positive definiteness of second-order work (diffuse instability) loss of ellipticity (localized instability) loss of uniqueness (plastic limit)

W 2 = 0; det(D) sym det(nDn) = 0 det(D) = 0 loading history equations.
It is worth noting that the ellipticity of the governing equations is one of the three necessary conditions for well-posedness of the rate boundary value problems in static analysis, since the ellipticity must be preserved in the static case to obtain physically meaningful solutions. The other two conditions for well-posedness are the satisfaction of the boundary complementing condition and the satisfaction of the interfacial complementing condition (de Borst et al., 1993).

More details can be found in [START_REF] Needleman | Effect of boundaries and interfaces on shear-band localization[END_REF].

When considering structural instability, it must be noted whether the solution in the post-peak equilibrium path is the critical one at a lowest energy level or whether other equilibrium states exist at the same energy level. For this reason, the solution uniqueness is discussed hereafter. It is assumed that there are two different stress field rates 1 σ  and 2 σ  , both of which satisfy the incremental equilibrium equation
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where  denotes the variation of a quantity and f assembles the external forces. Subtracting the two preceding equilibrium equations produces
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where  denotes the difference between two different stress quantities corresponding to the same energy level. Substituting Eq. ( 4.3) and Eq. (4.11) into the foregoing Eq. (4.14), we can find for any visual displacement field a, with Eq. (4.14) able to be obtained only if
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Multi-solutions of Eq. (4.15) exist only when det( ) 0  K (4.16) This also means structural plastic limit point. From the foregoing discussion, we can conclude again that for a symmetric structural tangential stiffness matrix K, the loss of structural stability coincides with the loss of uniqueness of the solution. For a non-symmetric tangential stiffness matrix K, the structural instability ( T det(

) 0  K+K ) may occur before the loss of uniqueness ( det( ) 0  K ) [START_REF] Maier | Nonassociated and coupled flow rules of elastoplasticity for rock-like materials[END_REF]de Borst et al., 1993).

Second-order work framework

The Hill's stability criterion has been favored in decades [START_REF] Nova | Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes[END_REF][START_REF] Nova | The failure concept in soil mechanics revisited[END_REF][START_REF] Daouadji | Instability in granular materials: experimental evidence of diffuse mode of failure for loose sands[END_REF][START_REF] Nicot | Bifurcation in granular materials: An attempt for a unified framework[END_REF]Nicot et al., 2011;Nicot and Darve, 2011;[START_REF] Daouadji | Divergence instability and diffuse failure in granular media[END_REF]Nicot et al., 2012a;[START_REF] Hadda | Micromechanical analysis of second order work in granular media[END_REF][START_REF] Nicot | Second-order work analysis for granular materials using a multiscale approach[END_REF][START_REF] Wan | Diffuse instabilities with transition to localization in loose granular materials[END_REF][START_REF] Nicot | Describing failure in geomaterials using second-order work approach[END_REF][START_REF] Hadda | Failure in granular media from an energy viewpoint[END_REF][START_REF] Nicot | Second-order work criterion: from material point to boundary value problems[END_REF], because the authors found that the loss of uniqueness or controllability coincided with the vanishing of Hill's second-order work. Nicot et al. (2007[START_REF] Nicot | Bifurcation in granular materials: An attempt for a unified framework[END_REF] succeeded in mathematically explaining the physical meaning of Hill's criterion, and built a framework to study the instability based on the second-order work theory. Moreover, the second-order work theory was recently applied from homogenous problems to boundary value problems by [START_REF] Nicot | Second-order work criterion: from material point to boundary value problems[END_REF].

As a proposition to understand the second-order work physically, Nicot et al. (2007) introduced the concept of sustainability, which refers to the stability of mechanical states in the sense that any external perturbation at constant control variables will cause an outburst in kinetic energy growth and, hence, sudden collapse. Thereafter, Nicot et al. (2007[START_REF] Nicot | Bifurcation in granular materials: An attempt for a unified framework[END_REF] worked out from energy equations that there could be a loss of sustainability of equilibrium states without any incremental input in the external work for a certain kinematical velocity field. Based on energy conservation, this condition would manifest itself through a sudden outburst of kinetic energy with a transition from a quasi-static phase to a dynamical regime in Eq. (4.17). 

W

is the internal second-order work. The increase in kinetic energy from an equilibrium state, under incremental loading, was shown to be equal to the difference between the external second-order work, involving the external loading parameters, and the internal second-order work, involving the constitutive properties of the material [START_REF] Nicot | Describing failure in geomaterials using second-order work approach[END_REF]. When the system is quasi-static, the inertial term I2 and the kinetic energy c E  are nil, the internal second-order work is equal to the external second-order work. It turned out that this transition could also be mathematically expressed by the vanishing of the second-order work.

The failure mechanism of the material was initiated at the same time as the internal second-order work vanishes [START_REF] Wan | Diffuse instabilities with transition to localization in loose granular materials[END_REF].

As a new interpretation of the second-order work, they indeed provided the relations between the loss of positive definiteness, loss of control, and loss of sustainability of equilibrium states because of incompatibility between imposed loading and material response. In this sense, the missing links in Hill's pioneering publications on second-order work and its physical interpretations were successfully explained by [START_REF] Nova | Controllability of the incremental response of soil specimens subjected to arbitrary loading programmes[END_REF][START_REF] Nova | The failure concept in soil mechanics revisited[END_REF] and [START_REF] Nicot | Bifurcation in granular materials: An attempt for a unified framework[END_REF]. Following that, a synthesis on the second-order work from several collaborating research teams was done by [START_REF] Daouadji | Divergence instability and diffuse failure in granular media[END_REF]. Furthermore, [START_REF] Wan | Diffuse instabilities with transition to localization in loose granular materials[END_REF] reinterpreted the basic theory of the second-order work in a rather concise but clear manner by comparing high-quality laboratory experimental results with finite element simulations.

Formulations of second-order work in micropolar theory

General equation of second-order work

The vanishing of the second-order work is fundamental and necessary for the collapse of the system to occur. Starting from an equilibrium state, and restricting problems in small deformations, the second-order work in local and global senses are defined as follows
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, respectively. According to [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF], whenever the second-order work vanishes or becomes negative, there is potential for material instability. At the global scale, if the negative second-order work pervades enough throughout the structure, it is anticipated that collapse will eventually occur [START_REF] Wan | Diffuse instabilities with transition to localization in loose granular materials[END_REF].

Second-order work in classical continuum theory based FE analysis

In finite element analysis, the system is discretized into numerous elements connected to each other by common nodes. Therefore, the local second-order work in FEM can be calculated in a single element i
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While the global second-order work can be obtained by summing all the local ones 22 11 ()
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where i is the element indicator, n is the total number of elements, and Vi is the volume of element i.

σ  and  are the stress and strain rate vectors, respectively. It is worth noting that in all the cases of instability analysis with FEM in past studies, the contributions of the micro moments and the corresponding curvatures to the second-order work have not been considered.

Second-order work in micropolar theory based FE analysis

Since particles' rotations and rearrangements play significant roles in the failure of geotechnical structures, the micro moments and the energetically conjugated curvatures should be indispensable parts to the contribution of the second-order work.

Before the introduction of the second-order work in micropolar theory, it is useful to analyze the contribution of the grains' rotations to the second-order work, as it has already been examined in DEM. Based on the definition of particles in contact in DEM, as the contact (p-q) shown in Figure where l c is the branch connecting the two centers of a contacting pair of particles in contact (p-q), f c is the inter-particulate contact force, f p is the resultant contact force applying on the particle p and x p denotes the position of the mass center of p. The first term in the right-hand side implies the contact force and the branch vector between the particles in contact, which can be linked to the part of the second-order work associated to the relative displacement of particle p to particle q. The second term in the right-hand side denotes the contribution to the second-order work of micro-structural rearrangements, which should not be neglected in strain localization analysis with significant rotations inside the shear band. Eq. (4.22) introduces the micro-mechanical expression of the second-order work, which allows us to investigate, at the microscopic scale, the origin of the vanishing of the macroscopic second-order work. Besides the DEM, the micropolar theory is also able to consider the particles' independent rotations; consequently, the produced moments and micro curvatures can be taken into account. For two-dimensional problems, the stress and strain vectors in micropolar theory, enhanced by the micro moments and curvatures, have been generalized as 

Discussions of second-order work in FE analysis by simulating a biaxial test

In this section, failure in granular media was analyzed by the second-order work from a fundamentally energy viewpoint. Based on the simulations of a biaxial test by the classical SIMSAND model and the polarized one, the differences of second-order work in the classical continuum theory and micropolar theory were discussed and compared. Constitutive parameters referred to the calibrated ones for Ottawa sand in Appendix E-Table E-1, and the specimen size, the boundary conditions and the test process referred to the description in Chapter 2-section 2.4.

Similarly, four different mesh sizes, mesh 10×20, mesh 15×30, mesh 20×40 and mesh 30×60, were used as before.

Second-order work behind the mechanical response

Given an equilibrium state of the system, the mechanical response is the external performance, while the second-order work is the intrinsic reason responding to the outward behavior. We considered a failure analysis in a biaxial test simulation (e.g. the classical model with mesh 10×20), and plotted the mechanical response and the second-order work in the same plane as shown in Figure 4 
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Comparisons of second-order work from classical model and polarized model

The comparison between the second-order work calculated from the classical SIMSAND model and from the micropolar SIMSAND model are the subject in hand. For the same specimen (with the same mesh: mesh 15×30), the simulated results by the two models are presented in Figure 4 First, for the investigation of the second-order work in the classical continuum, we consider the four different meshes, mesh 10×20, mesh 15×30, mesh 20×40 and mesh 30×60.

The envelope diagrams of the vanishing of the second-order work at the end of the calculation for different meshes are shown in Figure 4-7, which can be used to denote the failure regions. We can find that the failure regions identified by the vanishing of the second-order work are dependent on the discretization. For mesh 10×20 and mesh 15×30, the calculations could be finished; however, the shear band of mesh 10×20 is obviously thicker than that of mesh 15×30. For the relatively fine meshes, mesh 20×40 and mesh 30×60, the envelope diagrams of the vanishing of second-order work just appeared at the center of the specimen, and could not propagate to the corners due to the difficulty of convergence in the vicinity of the bifurcation in classical continuum theory based FE analysis. In conclusion, in the failure analysis using a classical theory based model, either the numerical calculation has to be stopped caused by convergence problems or the numerical solutions are pathologically dependent on the discretized element size. Thus, the negative values of the second-order work from the classical model are also mesh dependent; consequently, the instable envelope diagrams by the vanishing of second-order work are not objective.

Mesh independency analysis of micropolar model by the second-order work

Then, the second-order work in the micropolar continuum is investigated. According to the regularization effective ratio defined in Chapter 3-section 3.4, the three relative fine meshes, mesh 15×30, mesh 20×40 and mesh 30×60, which satisfy the effective ratio, are used for simulation by the With the regularization of micropolar approach, no convergence difficulty was encountered for all the different meshes, and all the calculations proceeded from beginning to end. From Figure 4-9, it can be observed that the failure regions identified by the envelope diagrams of the vanishing of It is worth noting that at the global scale the contributions from micro moments and curvatures are relatively small compared to classical Cauchy stresses and strains, because the rotations of the grains in most regions outside the shear bands are very small; consequently, the global rotational part does not contribute much to the global total second-order work. However, the rotational degree of freedom and the internal length scale in the micropolar theory based models have great influence within the strain localized domains. Thus, the mechanical response or the evolution of the second-order work of the micropolar continuum is very different from that of a classical continuum. From Figure 4-15, it can be seen that the regions of the vanishing second-order work are seriously dependent on the element size, the finer the element size is, the narrower the thickness of the region of the vanishing second-order work will be. Moreover, the envelopes of the vanishing of the second-order work for the three mesh sizes based on the classical continuum theory are rough and fluctuant, which means the instability of the calculation by the classical model. In contrast, the envelops of the vanishing of the second-order work for the three different mesh sizes based on the micropolar theory are showed in Figure 4-16, from which it can be seen that the thicknesses of the three failure regions identified by the vanishing of the second-order work are nearly the same, and the envelopes of these regions are smoother and regular. Accordingly, the generalized second-order work can not only reflect the regularization effectiveness of the micropolar theory but also characterize the potential instable regions regardless of the element size.

Conclusions

In this chapter, the instability criteria closely related to material and structure failures were reviewed.

Focuses have been laid on the second-order work proposed by [START_REF] Hill | A general theory of uniqueness and stability in elastic-plastic solids[END_REF], based on which Nicot et al. (2007[START_REF] Nicot | Bifurcation in granular materials: An attempt for a unified framework[END_REF] have succeeded in building a framework to study the instability. Then, the formulations of the second-order work criterion in micropolar theory has been derived and its applications have been investigated by simulating the failure of the specimen in biaxial test and a retaining wall.

It is well known that the second-order work is the intrinsic factor responding to the external mechanical response, therefore, the regularization role of the micropolar theory was illustrated from an energy point of view by the second-order work criterion. According to the simulated results, it can be concluded that the vanishing of the second-order work in both the classical continuum and the micropolar continuum can predict the bifurcation point. However, the bifurcation point in classical continuum is dependent on the discretized mesh size. In the post-bifurcation regime, the negative values of the second-order work based on the classical model become meaningless because of the pathological numerical solutions. In contrast, the mesh dependency problems can be effectively overcome by the regularization in micropolar theory. Because of the incorporation of a rotational degree of freedom and an internal length scale, the bifurcation point in the micropolar continuum is significantly delayed. Moreover, in the shear band zones with great rotations of grains, the couple stresses and curvatures contribute a lot to the second-order work and delay significantly the vanishing of the second-order work. Global failure is the developed result of the local failure, therefore, the envelope diagrams of the vanishing of the second-order work are very physically meaningful to represent the failure regions, and thus to obtain the correct failure domains in the micropolar continuum regardless of the mesh size.

Chapter 5 Extension of the micropolar model from 2D to 3D

Introduction

The aforementioned research based on micropolar theory focuses chiefly on two-dimensional plane strain problems. However, most actual engineering structures belong to the three-dimensional domain. Accordingly, extension of the current two-dimensional micropolar model to make it three-dimensional is needed. Recently, some researchers have formulated a framework for the three-dimensional micro polar model, and several numerical simulations have also been conducted

with it [START_REF] Khoei | 3D finite element modeling of shear band localization via the micro-polar Cosserat continuum theory[END_REF]Riahi et al., 2009;Riahi and Curran, 2009;[START_REF] Tang | Application of the Cosserat continua to numerical studies on the properties of the materials[END_REF] , but a more advanced constitutive model for sand with the notion of critical state has never been generalized from 2D to 3D.

In this chapter, a three-dimensional finite element formulation of a micropolar continuum was first presented. After that, the user-defined element within the framework of the micropolar theory was derived and developed via the interface of the commercial finite element software ABAQUS. 

Framework of the 3D micropolar theory

Equilibrium formulations

According to [START_REF] Mindlin | Effects of couple-stresses in linear elasticity[END_REF], the conservation of mass, balance of momentum, moment of momentum, and conservation of mechanical energy for a micropolar continuum must be satisfied. According to the divergence theorem, combining Eq. ( 6.1), Eq. ( 6.2), and Eq. (6.7) gives
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This allows the usual force stress equation of motion to be obtained:

  σ fv 
(5.9)

The left and right side of Eq. ( 5.3) can be also formulated:
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where I is the unit spatial dyadic. Hence Eq. ( 5.3) becomes
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From Eq. (6.9) and Eq. (6.13), we can get the couple stress equation of motion:

   mcσ I

(5.14)

The force stress σ can be divided into a symmetric part and an antisymmetric part:

A S   σσ σ

(5.15)

The antisymmetric part of σ is  

1 2 A    σ I σ I  . Hence   1 2 A     σ Im c
(5.16) Substituting Eq. (5.15) and Eq. ( 5.16) into Eq. (5.9), we find an alternative form of the equation of motion:
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For the equation of conservation of mechanical energy, the left and right side can be also formulated:
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(5.20) Thus Eq. (5.4) can be written as From the foregoing formulations of balance of momentum, moment of momentum, and conservation of mechanical energy for a micropolar continuum, we find that the antisymmetric part of the force stress and the scalar of the couple stress do not contribute to the internal energy and the equation of motion and are instead indeterminate-a peculiarity of the micropolar equation.
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Kinematics formulations

Deformation of a micropolar continuum

In this section, a brief introduction of the kinematical relations of a micropolar continuum is presented with reference to the publications of [START_REF] Eringen | Theory of micropolar elasticity[END_REF] and [START_REF] Altenbach | Generalized Continua-from the Theory to Engineering Applications[END_REF]. To describe the motion of a micropolar particle, this particle is assumed to be endowed with six degrees of freedom.

Three of the degrees of freedom are translational as in classical elasticity, and other three degrees are orientational or rotational:

T xyz x y z uuu      u
(5.26)

In the actual configuration χ at instant t, the position of a particle on the micropolar continuum is given by the position of vector r. The particle orientation is defined by an orthonormal trihedron dk (k = 1, 2, 3) whose vectors are called directors. The two vectors r and dk define the translational and rotational motions of a particle, respectively.

To describe the relative deformation, a fixed position of the body, which may be taken at t = 0 or another fixed instant, should be referred to as the reference configuration. Herein, the referred state of a particle is defined by the position vector R and its orientation directors Dk (see Figure 5-2).

It should be noted that the reference configuration need not be chosen at the initial state; any time will suffice. (5.28)

H is called the microrotation tensor. Thus r describes the position of the particle of the continuum at time t, whereas H defines its orientation. The orientations of Dk and dk can be selected identically so that H is properly orthogonal. Hence the micropolar continuum deformation can be described by the following relations:

(, t ) , (, t )  rr R HH R

(5.29)

The linear velocity is given by the relation

 vr 
(5.30)

The angular velocity vector, also called the micro-gyration vector, is given by

  1 2 T    ω HH (5.31)
Eq. (5.31) means that ω is the axial vector associated with the skew symmetric tensor T  HH .

Microrotation of a micropolar continuum

The most general form representing micropolar rotation has been proposed as

    exp spn c  R ω (5.32)
 can be also expressed by ii e   ω (5.33) where ei is the ith component of the base vector and rotation angle  is defined as

  ω
(5.34)

The skew symmetric tensor associated with the axial vector is expressed by

 32 31 21 0 spn 0 0                     ω e ω (5.35)
where e is the permutation symbol. The mathematical expansion of the rotation tensor is
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In a small rotation framework, the rotation matrix, R c , is approximately expressed by
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(5.37)

Strain and micro-curvature of a micropolar continuum

For a three-dimensional micropolar point, the microrotation can result in the production of micro-torsion curvature in the corresponding axis and micro-bending curvatures in other two axes.

Thus there are a total of 18 components in the generalized strain vector , 
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(5.43)

Force stress and moment stress of a micropolar continuum

Similarly, there are also a total of 18 components in the generalized stress vector . Apart from the components identical to the classical ones, the stress vector also includes the micro-couple components (moments) energetically conjugated with the micro-bending and torsion curvatures: (5.44)

Figure 5-3 shows all the stress components acting on a 3D micropolar continuum. The first subscript of the force stress refers to the direction of the surface normal pertinent to the surface on which the force stress acts. The second subscript of the force stress refers to the direction on which the stress acts. The first subscript of couple stress refers to the axis around which it rotates, whereas the second subscript denotes the surface on which the couple stress acts. 

Constitutive equations for a micropolar elasticity

In the constitutive relations of a 3D micropolar elasticity, two assumptions have been made: first, there is no coupling between the force stress and couple stress components; second, to relate couple stress to curvature, there is no interaction between bending and torsion couple stresses. Just as with classical constitutive relations, the generalized strain vector and stress vector are related by the linear (5.46)

Removing the interaction between force stress and couple stress so that D u = Du  = 0, the remaining two submatrices are formulated as [START_REF] Liu | A micropolar formulation of the Desai hierarchical model for elastoplastic porous media[END_REF][START_REF] Khoei | 3D finite element modeling of shear band localization via the micro-polar Cosserat continuum theory[END_REF][START_REF] Tang | Application of the Cosserat continua to numerical studies on the properties of the materials[END_REF]) 
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Finite element formulations

Equilibrium equations

The equilibrium governing equations in micropolar theory can be written in the indicial notation forms , , 0

0 ij i j kj j kij ij k f me c           (5.49)
where f and c denote the body force and body couple moment, and  and m are the micro polar force stress and micro couple stress, respectively. The first sub-equation is completely analogous to the equilibrium equation of classical continuum, and the second sub-equation is the additional condition for a micropolar continuum.

Kinematics equations

The relations between the generalized deformation vector and strain vector in Eq. ( 5 
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(5.52)

Finite element discretization

To avoid the volumetric locking associated with incompressible materials and the hourglass phenomenon caused by reduced integration in the low-order cubic element (Reduced integration does not work in 4 noded quadrilateral elements or 8 noded brick elements. The error occurs because the stiffness matrix is nearly singular and the system of equations includes a weakly constrained deformation mode. This phenomenon is known as 'hourglassing' because of the characteristic shape of the spurious deformation mode [START_REF] Bower | Applied mechanics of solids[END_REF]), the cubic solid element of higher order shown in Figure 5-4 has been adopted. Because the higher-order element has a higher level of continuity, it performs well when simulating incompressible and nonlinear materials, in this way, it is suitable to simulate the strain localization phenomena in boundary value problems [START_REF] Brown | Characterization of MSC/NASTRAN & MSC/ABAQUS elements for turbine engine blade frequency analysis[END_REF][START_REF] Schwarzbach | Three-dimensional adaptive higher order finite element simulation for geo-electromagnetics-a marine CSEM example[END_REF][START_REF] Belytschko | Nonlinear finite elements for continua and structures[END_REF]. 
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The shape function of each node in Figure 5-4 is expressed in the space of the natural coordinates: Finally, the Newton-Raphson technique is used to fulfill the static equilibrium iteration of the nonlinear problems, and the Gauss integration method is adopted when performing the integral operation. Take the element stiffness matrix, for example, 
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FE implementation of the 3D critical state-based micropolar model

Compared with the initial SIMSAND model, the stress and strain invariants in the 3D micropolar SIMSAND model have been augmented by considering micro-curvatures and corresponding energetically conjugated couple stresses. According to de Borst et al. (1987;[START_REF] De Borst | Simulation of strain localization: a reappraisal of the Cosserat continuum[END_REF][START_REF] De Borst | Simulation of strain localization: a reappraisal of the Cosserat continuum[END_REF], the strain and stress invariants can be formulated as (5.66)

To ensure proper retrieval of the classical continuum expressions for the invariants, the choices a1 = a2 = 1/4, a3 = 1/2 and b1 = b2 = 1/3, b3 = 2/3 have been used in most cases (de [START_REF] De Borst | Simulation of localisation using Cosserat theory, Computer Aided Analysis and Design of Concrete Structures[END_REF][START_REF] De Borst | Simulation of strain localization: a reappraisal of the Cosserat continuum[END_REF][START_REF] De Borst | Localisation in a Cosserat continuum under static and dynamic loading conditions[END_REF]. Thus the deviatoric stress q in the 3D micropolar SIMSAND model should be calculated by the new stress invariant 2 3 J . To arrive at a compact matrix-vector notation, the formulation of q is expressed as

1 2 q  T σ Pσ
(5.67)

where P is the plastic potential matrix [START_REF] Li | A consistent return mapping algorithm for pressure-dependent elastoplastic Cosserat continua and modelling of strain localisation[END_REF][START_REF] Khoei | 3D finite element modeling of shear band localization via the micro-polar Cosserat continuum theory[END_REF][START_REF] Khoei | 3D finite element modeling of shear band localization via the micro-polar Cosserat continuum theory[END_REF]:
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where P1, P2, and P3 can be expressed as 
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Similarly, the equivalent plastic strain p d  can be expressed in a compact matrix-vector notation as

  2 3 p d   T pp Q (5.70)
where matrix Q is defined as
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where Q1, Q2, and Q3 can be expressed as 
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As can be seen from the foregoing formulations, when extending a classical constitutive model to a micropolar model at stress-strain level, the stress and strain vectors need merely to be augmented to incorporate the micro-moment stresses and microcurvatures. Consequently, the stress and strain invariants also need to be defined based on generalized stress and strain components. 

Boundary value problems in plane strain condition

We know that in element tests, all simulations are confined in a homogeneous state without strain localization phenomena. However, micro polar technique can be activated only with the onset of strain localization, which is accompanied by particle rotations in the strain-localized region and a lessening of the structure's strength. Accordingly, simulations of strain localization phenomena in boundary value problems, such as shear bands in biaxial tests, should be performed with the 3D micropolar SIMSAND model.

To validate the correctness, the simulations of biaxial tests as had been done in previous Chapter were conducted again within a three-dimensional framework by the polarized SIMSAND model, and all material parameters were kept the same as those used in a 2D condition. In these simulations, the three internal length scale parameters were set the same: lb = lt = lc.

In doing so, the conditions of the biaxial test were revisited. A specimen, with a width of 10 cm, a height of 20 cm, and a thickness of 1 cm, was considered-different from that seen in the two-dimensional condition, in which the default thickness is 1 m. The test included two steps, and the mixed loading control was adopted. The first step was isotropic compression with a confining pressure of 100 kPa, and the second was shear loading produced by controlling the displacement of the top surface (up to a total axial strain of 5%). To trigger the strain localization easily, the lateral deformations of the top and bottom surfaces of the specimen were constrained.

Mesh dependency using the classical SIMSAND model

Considering that there is no obvious shear band in the 30×60×1 mesh as a result of poor convergence within the framework of classical continuum theory, shear bands identified by the equivalent plastic strain distribution of three different discretizations-mesh sizes of 10×20×1, 15×30×1, and 20×40×1-are shown in Figure 5-9, with the corresponding load versus displacement curves plotted in Figure 5-10. From the contours and the load-displacement curves, it can be found that the simulations for relative coarse meshes, such as 10×20×1 and 15×30×1, are completely finished, whereas the calculation stops just after the onset of bifurcation point for a fine mesh of 20×40×1. The bearing peak of the coarse 10×20×1 mesh is slightly higher and more delayed than the others.

Additionally, the specimen displays a stiffer behavior during the softening regime with a coarse mesh than that with a fine mesh. All the observations obtained using a 3D framework are in accordance with those by using a 2D framework, indicating the presence of serious mesh dependency problems for a classical continuum when simulating strain localization problems. 

Mesh independency using the 3D micropolar SIMSAND model

To demonstrate the regularization capability of the micropolar technique, the same simulations of biaxial tests as in previous section were conducted once more using the 3D polarized model, with the parameters kept the same as before and the two newly incorporated length scale parameters lb = lt = lc and the micro polar shear modulus Gc was set identically to the one in the 2D condition. The shear bands identified by plastic strain for four different discretizations are shown in Figure 5-11. Unlike for calculations within the framework of classical continuum theory, all four simulations could be entirely finished without any numerical convergence problem, and from a first glimpse at shear band thickness, the mesh independency for the four different discretizations is found easily. Loaddisplacement curves for the four simulations are presented in Figure 5-12, showing that the pink curve of mesh 10×20×1 is a little stiffer than the other three curves during the softening regime.

However, the load-displacement curves of the other three fine meshes coincide with each other and display mesh independency. In this sense, the existence of the effective regularization ratio of internal length to element size is verified again. 

Influence of the internal length scales

The incorporation of the internal length scale is required to preserve the ellipticity of the partial differential equations for boundary values problems. Through the regularization mechanism of the micro polar approach, the mesh dependency problems have been amply solved. Undoubtedly, the internal length scales will greatly influence the material behavior as well as the shear band pattern. Classical l c = 0

Validation of the simulated results

According to the simulated results heretofore related, the 3D micropolar model has demonstrated a significant ability to overcome convergence difficulties and alleviate mesh dependency problems.

However, these results can be persuasive only after validation. The correctness of the 3D micropolar model is validated by comparing the results from the 2D micropolar, which are assumed to be right ones by default. 

Conclusions

In this chapter, the micropolar theory within a 3D framework was demonstrated in detail. A high-order 20-node cubic solid element having six degrees of freedom (three translational and three rotational), was developed via the user-defined interface of ABAQUS, and a reduced integration was adopted that successfully avoids the volumetric and shear locking associated with incompressible Displacement (mm)

Conclusions and Perspectives

Conclusions

As for investigating the strain localization phenomena in geotechnical engineering, main results of the thesis can be concluded as follows:

(1) Considering the fact that great rearrangements and rotations occur inside shear band, the micropolar approach with clearer physical sense among other regularization theories, was favored in current study to deal with the mesh dependency problems.

(2) A simple critical-state based sand model has been formulated within the micropolar theory and numerically implemented into a finite element code for dealing with 2D and 3D static and quasi-static problems, with which the convergence difficulties and the mesh dependency problems faced with the classical continuum theory based models were effectively relieved.
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where f is the body force. From Eq. (A-6) and Eq. (A-7), we can get

2 2 p p Eh u f xE hx         (A-8)
The property of the partial differential equation for static loading problems, it is universally acknowledged, must be kept elliptical. When the condition of E >hp > 0 is satisfied, the property of the governing field equation will change from ellipticity to hyperbolicity, and material stability is lost.

What's more, the solutions become pathological.

Ill-posedness of dynamic loading problems

To aid discussion of the instability and ill-posedness of dynamic loading problems under the framework of classical continuum theory, we take a one-dimensional wave equation as an example, where ,  , u , and t are the density of the medium, the stress rate, the spread speed, and the time.

Reconsidering the relationship between stress rate and strain rate as Eq. (A-6), the wave expressed in Eq. (A-9) can also be expressed as where CE   , the property of the foregoing partial differential equation, is hyperbolic when hp > 0 and, conversely, is elliptic when 0 <hp < E. To illustrate the problems more clearly, we conduct a characteristic analysis of the foregoing wave equation, calculating the first-order derivatives of the spread speed u in the x-t plane: The multiplier matrix is noted to be A, after which we can obtain the characteristic functions from the condition det(A) = 0:

p p h dx C dt E h   (A-14)
The foregoing equation means that the wave spreads with a speed of

 

pp Ch E h  when   0 pp hE h  , as well as that the wave speed is an imaginary number. Furthermore, the wave will become a standing wave, unable to spread any more.

From the foregoing discussions, we can conclude that the property of partial differential equations used in dynamic loading problems will vary from hyperbolic to elliptic in response to strain softening behaviors within the framework of classical continuum theory. When the wave speed in the strain localization region becomes an imaginary number, the wave will become a standing wave and lose the ability to spread further. A softening stage ensues. In this second stage, on reaching the yield strength y of the imperfect element, its current stress begins to reduce with further tension because of the material's softening behavior. However, this condition has not exceeded other elements' yield strength, meaning that they will unload elastically to maintain the equilibrium of the system. It is also assumed that the descending slope is a constant (i.e., that the softening parameter H does not vary with the inelastic strain). In the softening stage, then, however, is that because the constitutive model has always been illustrated in terms of a stress-strain law and not as a force-displacement relation, when the average strain becomes zero upon mesh refinement and the failure area also becomes zero, energy dissipation also tends to become zero.

From a physical point of view, this is unacceptable. We must either rephrase our constitutive model in terms of force-displacement relations, which implies the use of special interface element [START_REF] Rots | Computational modeling of concrete fracture[END_REF], or enrich the continuum description by adding higher-order terms that can accommodate narrow zones of highly localized deformation (de Borst and Mühlhaus, 1991).

It can be judged from where zx and zy are introduced as micro-curvatures in micropolar theory, derived from the gradients of rotational quantity z in directions x and y; mzx and mzy are couple stresses energy conjugated to the curvatures zx and zy; and lc, a material bending length, may be taken as an internal length. The value of internal length lc, however, is still an open question. Many researchers imbue this parameter with more physical meaning and then take the mean grain size d50 as the internal length scale parameter.

When considering the additional components of stress and strain, it must be noted that the stress tensor is non-symmetric and that the couple stress are noticeable in the shear zones. However, the stress tensor is symmetric, and the couple stresses disappear outside the shear zones. The occurrence of non-symmetry in the stress tensor and the appearance of the couple stresses take place immediately after the onset of the strain localization. Accordingly, when interests are limited to strain localization phenomena, the equilibrium equations, compatibility equations, and constitutive laws in micropolar continua mechanics must be revised by considering the additional components of stress and strain on the basis of classic continua mechanics, as will be illustrated in detail in the following sections.

Equilibrium equations

Static equilibrium

With the incorporated couple stresses as already discussed, the equilibrium of a micro plane element having a very small size of dx in x direction and dy in y direction is considered while ignoring the body force and body moment. The thickness of the micro-element is assumed to be one unit. As 

                   (C-4)
It is assumed that the element size is rather small (dx and dy are the infinitesimal quantities), which means that the higher-order terms can be ignored. Consequently, if the body force and body moment are also ignored, the foregoing equilibrium equations can be simplified in the form The first two sub-equations of Eq. (C-5) are the same as in the classical continuum theory. The third sub-equation is a particular case of micropolar theory from which we can observe that the theorem of conjugate shearing stress is no longer true owing to the appearance of the couple stresses.

In ), it satisfies the theorem of conjugate shearing stress, and the micropolar theory is totally retrieved to the classical continuum mechanics theory. 

Dynamic equilibrium

For dynamic problems, apart from the conventional way, linear inertia terms, the rotational or spin inertia are also taken into account in a micropolar continuum for which the form of equilibrium equations is similar to those of static ones, From all the foregoing formulations, it can be easily found for dynamic problems that only density  is a new added parameter compared with static problem.

Kinematics equations

In micropolar theory, apart from the translational degrees of freedom inherited from the classical continuum theory, an additional rotational degree of freedom appears and results in an independent micro-rotation different from the macro-rotation caused by shear strain. The micropolar theory thus requires two independent kinematical fields: The first aims to obtain the conventional strain tensor, and the second is used to get the curvatures or the rotation gradients. That is to say, the micro-rotation may be an arbitrary value with 1 2 

Constitutive laws

To summarize the two foregoing subsections, a similar process has been found for the micropolar continuum theory as for the classical continuum mechanics theory, which must necessarily obey the kinematic and equilibrium equations. The foregoing equations can be written in matrix-vector forms for simplification, where Lamé constant G2, G and  are the conventional shear modulus and Poisson's ratio, respectively, and Gc is the micropolar shear modulus affecting the asymmetric degree of shear stress. The coefficient 2 has been introduced in the terms D e (6, 6) and D e (7, 7) so as to arrive at a convenient form of the inelastic constitutive equations [START_REF] De Borst | Simulation of strain localization: a reappraisal of the Cosserat continuum[END_REF][START_REF] De Borst | Continuum models for discontinuous media, Fracture processes in concrete, rock and ceramics[END_REF][START_REF] De Borst | Localisation in a Cosserat continuum under static and dynamic loading conditions[END_REF][START_REF] De Borst | A generalisation of J2-flow theory for polar continua[END_REF]. Obviously, the total bending stiffness 2Glc 2 , which sets the relation between the micro-curvatures and the couple stresses, is determined by the value of the internal length scale parameter lc.

Elastoplastic models

For the formulation of a general elastoplastic micropolar continuum, the hypothesis that strain rate can be decomposed into both elastic and plastic parts for small-strain plasticity is adopted: UMAT simulations of the typical laboratory tests with the SIMSAND model, including drained and undrained triaxial tests and drained and undrained biaxial tests for both loose and dense Toyoura sand [START_REF] Jin | Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis[END_REF][START_REF] Wu | A straightforward procedure of parameters determination for sand: a bridge from critical state based constitutive modelling to finite element analysis[END_REF], were compared with those from IPP. It is worth noting that all results are based on the assumption that specimens are sustained in a homogeneous state from beginning to end. For drained tests, there were two steps: the first step was isotropic compression, and the second one was the shear loading by the strain control of the top side of specimen, mean while keeping the confining pressure constant. Differently, for undrained tests, the specimen volume was kept constant by controlling the axial and lateral strain at the same time in the second shear loading step.

The comparisons of IPP and UMAT simulations of drained and undrained for both dense and loose Toyoura sand were shown from compression test, were also suitable for triaxial tests. Nine independent parameters needed to be identified by experimental data, and another three parameters could be assumed in advance (lc and )

or set to depend on other parameters (Gc). Because many researchers [START_REF] Roscoe | The Influence of Strains in Soil Mechanics[END_REF][START_REF] Vardoulakis | Formation of shear bands in sand bodies as a bifurcation problem[END_REF][START_REF] Mühlhaus | The thickness of shear bands in granular materials[END_REF][START_REF] Desrues | Shear band initiation in granular materials: Experimentation and theory[END_REF]Alshibli andSture, 1999, 2000b;Yoshida et al., 1994;Tatsuoka et al.,1997;[START_REF] Tejchman | FE-studies on the influence of initial void ratio, pressure level and mean grain diameter on shear localization[END_REF][START_REF] Viggiani | An experimental investigation of the relationships between grain size distribution and shear banding in sand[END_REF][START_REF] Alshibli | Experimental Observations of Localization Phenomena in Sands: Plane Strain Versus Triaxial Compression Conditions[END_REF][START_REF] Alsaleh | Numerical modeling of strain localization in granular materials using Cosserat theory enhanced with microfabric properties[END_REF][START_REF] Desrues | Strain localization in sand: an overview of the experimental results obtained in Grenoble using stereophotogrammetry[END_REF] have found that the thickness of the shear band is linearly related to the mean grain size from biaxial tests, and because the thickness of the shear band has also been found to be linearly related to the internal length scale lc in numerical simulations, in the present study, lc, reflecting the microstructure, was regarded as the mean grain size by default, and there was no need to identify it by fitting the experimental curves. For a more specific value of lc, it can also be decided by reproducing the thickness of the shear band (as in the biaxial test).

The adopted parameter estimation procedure is divided into three steps: First, the elasticity parameters can be determined based on the isotropic compression test; then, the critical state parameters can be inversely searched for, based on at least three drained triaxial tests; and finally, the interlocking related parameters can be defined based on at least one drained triaxial test. The optimization technique assists in finding a more accurate model parameter that is capable of adequately describing the sand behavior. The detailed procedures are presented in the following sections. Using the genetic optimization technique, the optimized parameters were found and are summarized below. Thereafter, the comparisons between the laboratory data and simulated results with the optimized parameters will be displayed. Micropolar theory is mainly used to reflect the micro-size effect and deal with the mesh dependency problems by regularizing the governing field's equations in finite element analysis. Thus, the influences on the final results caused by the internal length scale lc were observed and detailed d'épaisseur, d' orientation, etc … Dans le m ême temps, l'efficacité d e l' approche micropolaire, en tant q ue technique de régularisation, a été discutée. L'analyse de l'instabilité dans un co ntinuum micropo laire basé s ur le travail du second-ordre a également été effectuée. Enfin, pour u ne ap plication pl us lar ge da ns la si mulation des défaillances en ingénierie géotechnique, le modèl e 2D a été étendu à u n modèle 3D. Sur la base de l' étude, les modèles 2D et 3D ont dé montré leurs capacités de régularisation pour éviter les problèm es de dépen dance au maillage et reproduire raisonnablement les bandes de cisaillement dans les géostructures.
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Abstract

Most of the progress ive failures of geotec hnical structures are associated w ith the strain localiz ation phenomenon, w hich is generally accompanied b y strength softe ning. Ma ny experimental observ ations show that sig nificant rear rangements and rotations of particles occ ur inside the sh ear ban ds. T he aim of this thesis is to inv estigate n umerically the strai n localiz ation phenomena of gran ular materials. Considering the mesh dependency pr oblems i n finit e eleme nt ana lysis cause d by strain s oftening within the cl assical conti nuum framework, a sand mod el based on critic al-state has been formulat ed within the frame work of the microp olar theory, taking into accou nt the micro rotations, an d implemented into a finite element co de for t wo dimensional problems. Then, the simulations of the shear band in bi axial tests are c omprehensively stu died i n terms of onset, thickness, ori entation, etc. At the same time, the effici ency of the micropo lar ap proach, as a regularization technique, is discussed. This is followed by an instability analysis using the second-order work based on the microp olar contin uum theor y. F inally, for a wider application in simulating failures in geotechnical engineering, the 2D mod el has b een extended to 3 D model. Bas ed on the e ntire s tudy, b oth the 2D an d 3D model demo nstrate obvious regularization abi lity to relieve the mesh dependency problems and to reproduce reasonably the shear bands in geostructures.
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  Dans le chapitre 3, la bande de cisaillement dans les essais biaxiaux ont été numériquement étudiée en termes d'amorcé de la localisation, d'épaisseur et d'orientation des bandes, etc... A des fins de validation, l'épaisseur de la bande de cisaillement a également été comparée à celles obtenues dans les expériences. De plus, un ratio de régularisation efficace dans le modèle micropolaire a été proposé et discuté. Enfin, les influences de différentes conditions d'essai, telles que la pression de confinement et l'indice des vides initial, sur les caracteristiques des bandes de cisaillement obtenues numériquement et sur la valeur du rapport de régularisation ont été discutées. De même l'influence de la longueur interne et celle des paramètres du modèle ont été examinées. Au chapitre 4, les problèmes de localisation des déformations ont été discutés d'un point de vue énergétique. Parce que l'instabilité matérielle est considéré comme étant le moteur des défaillances structurales, le travail du second ordre proposé par Hill (1958) a été redéfini dans le cadre du modèle micropolaire et utilisé ici pour analyser et comprendre les différences entre le modèle classique et le modèle micropolaire. L'indépendance du maillage à l'aide du modèle micropolaire a également été en évidence en étudiant le travail du second ordre pour différents cas de chargement. Dans le chapitre 5, avec comme objectif une application plus large dans la simulation des défaillances en ingénierie géotechnique, le modèle micropolaire 2D a été étendu à un modèle 3D. La mise en oeuvre et les simulations numériques ont été présentées en détail pour illustrer les capacités de cette modélisation. Comme le modèle 2D et le modèle 3D a démontré une capacité de régularisation puissante pour soulager les problèmes de dépendance au maillage et reproduire raisonnablement les bandes de cisaillement dans les structures géotechnique. Le mémoire se terminé par des conclusions générales reprenant les avancées scientifiques principales obtenues au cours de ce travail de ce thèse et des perspectives et questions ouvertes pour des développements futurs. Certaines dérivations mathématiques des problèmes de dépendance au maillage et des solutions pathologiques sont présentées en annexe. L'étalonnage des paramètres du modèle de comportement utilisés dans le manuscrit sur la base d'une série d'essais triaxiaux est également présenté en annexe. Natural and artificial geotechnical structures play an essential role in our lives. Granular soils, whether as the main construction materials or the foundation of geotechnical structures, determine, to an extent, their failure mechanisms. Many disasters that affect our lives are linked to geotechnical failures, such as landslides, slope instability of high embankments or dams, collapse of excavated tunnel surfaces, and uneven settlement of buildings and roads. Most geotechnical hazards can be identified as examples of progressive failure caused by the occurrence and development of severe strain localization. Accordingly, this phenomenon, as it pertains to geotechnical engineering, has long been an important and extensively researched topic.
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 11 Figure 1-1 Uneven settlement and the collapse of buildings: (a) Tower of Pisa; (b) residential buildings in Shanghai
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 12 Figure 1-2 Collapse of typical geotechnical structures: (a) landslide in San Salvador; (b) slide of a high embankment; (c) collapse of the excavation surface; (d) failure of a retaining wall

  -2 illustrates such eventualities: (a) a landslide on a mountain slope after a 2001 earthquake in San Salvador (http://kids.britannica.com/kids/article/landslide/433121); (b) the break-up of a high embankment; (c) the collapse of a tunnel under construction in Inner Mongolia, China, 2010 (http:// www.chinadaily.com.cn/china/2010-03/20/content_9616414.htm); (d) the slide of backfilled soils behind a retaining wall in the U.S. city of San Antonio (http://www.retainingwallexpert.com/artman2
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 13 Figure 1-3 Major types of failure of slope: (a) rotational landslide; (b) translational landslide; (c) block slide

  -4, (a) is the centrifuge developed by TU Delft, while (b), (c), and (d) represent the modeling of the instability of a dyke and the uneven settlement and collapse of a street pile wall (http://hgballersma.net/tudweb). From the model tests undertaken by TU Delft, strain localization phenomena can easily be observed.
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  strains, respectively. Seemingly, the solutions given by Mohr-Coulomb and
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  relates to the plastic shear modulus, Mp is the stress ratio corresponding to the peak strength and determined by the peak friction angle p (Mp = 6sin(p)/(3-sin(p))), and p d  is the deviatoric plastic strain (
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 21 Figure 2-1 Principle of critical-state-based nonlinear hardening model for sand

  of UEL When using micropolar theory, an additional rotational degree of freedom, apart from the translational degrees of freedom for a 2D element, is activated in finite element analysis. For all the 2D element types in ABAQUS, there are only two translational degrees of freedom, meaning that the user-defined element (UEL) subroutine, which provides the platform for advanced development, should be used to define a new element that satisfies the various requirements of different users. The advantages of implementing UEL in ABAQUS, instead of writing a complete analysis code, are obvious. Additionally, we can use the pre-processing and post-processing platforms of ABAQUS, maintaining and porting subroutines is much easier than doing the same for a complete finite element program. The programming language used for the user subroutines of ABAQUS can be FORTRAN, C, or C++. A UEL subroutine is just one of the various user subroutines, and a specific format of interface, as shown in Figure2-2, exists in each subroutine to realize the data transferring and sharing between subroutines and the solvers of ABAQUS. Certain necessary and indispensable arrays must be defined. RHS contains the contributions of this element to the right-hand-side vectors of the overall system of equations-for most nonlinear analysis procedures, NRHS = 1 and RHS should contain the residual vector; AMATRX contains the contribution of this element to the Jacobian (stiffness) or other matrix of the overall system of equations; SVARS contains the values of the solution-dependent state variables associated with this element, and the number of such variables is NSVARS. At the end of the subroutine UEL, AMATRX and RHS must be updated and saved for further calculation.
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 22 Figure 2-2 Subroutine interface of UEL
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 23 Figure 2-3 Flow chart of the UEL

  Figure 2-4 Element of 2D micropolar continuum: (a) 8-node plane element; (b) integration points Based on the interpolation approximation method, the displacements and rotations of an element can be calculated by the counterparts of each node, as demonstrated by  e uN

  of the potential energy of each element. The total potential energy of the discrete model is expressed as minimum potential energy principle and the randomness of the virtual displacement,

  is the shear loading. For drained test, shear loading is applied by controlling the displacement of the top side of the specimen, while keeping the confining pressure constant. Differently, for undrained tests, the specimen volume is kept constant by controlling the axial and lateral strain at the same time in the second shear loading step. The comparisons of the simulations between IPP and UEL are shown in Figure2-7 and Figure2-8, from which it can be found that the simulated results produced by UEL are absolutely consistent with those from IPP, thus amply verifying the correctness of the UEL implementation. In all the figures below, each subfigure denotes different relations: (a) axial strain versus deviatoric stress, (b) mean effective stress versus deviatoric stress, (c) axial strain versus void ratio, (d) mean effective stress versus deviatoric stress. It should be noted that the step size greatly affects the final results, which is to say that a smaller step size will yield a more accurate solution.

Figure

  Figure 2-7 Comparisons between IPP and UEL in simulating biaxial drained tests

  Figure 2-9 shows a shear band example of the experimental test and numerical simulation for very dense sand under high confining pressure at axial strain of 10%, which illustrates that the finite element result is in good agreement with the laboratory test, and the micropolar model is able to capture the realistic shear band pattern no matter the shear band thickness or the orientation of localization. Figure 2-10 and Figure 2-11 present the comparisons between the predicted and experimental data in biaxial tests for F-75 sand, which shows that the predicted curves of the principal stress ratio versus axial strain agree fairly well with the experimental data while the volumetric strains are poorly predicted.
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 292 Figure 2-9 Comparison between experimental and simulated shear band for very dense sand under 100 kPa confining pressure at 10% axial strain: (a) deformation in experimental biaxial test; (b) grain rotations by the micropolar model
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 2222 Figure 2-19 The deformation of different meshes by classical model: (a) mesh 20×10; (b) mesh 28×14; (c) mesh 40×20;
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 31 Figure 3-1 Comparisons of load-displacement curves of four different mesh sizes between classical model and micropolar model

Figure 3 - 2

 32 Figure 3-2 Volumetric strain versus shear strain
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 33 Figure 3-3 Identification of shear band thickness by equivalent plastic strain: (a) selected path and shear band orientation; (b) calculation of the shear band thickness
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 34 Figure 3-4 Shear band thickness identified by different variables

  Figure 3-5 Normalized shear band thickness of four different mesh sizes
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  Figure 3-6 Evolution of a shear band
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 37 Figure 3-7 Influence of internal length scale lc on load-displacement curves
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 38 Figure 3-8 Influence of internal length scale lc on shear band orientation: (a) lc = 1 mm, 1 = 55.9°; (b) lc = 1.5 mm, 2 = 54.2°; (c) lc = 2 mm, 3 = 53.2°

  thickness and mean grain size or internal length scale are alternatively presented in Figure 3-10 and Figure 3-11. In Figure 3-10 and Figure 3-11, the abbreviations Exp. and Sim. denote the experimental and simulated results, respectively. Figure 3-10 indicates that the simulated results are very consistent with the experimental results, which are also located within the two dashed lines: 5lc < TSB < 20lc.
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 3 Figure 3-10 Relationship between thickness of shear band and micro structural size

Figure 3 -Figure 3 -Figure 3 -Figure 3 -Figure 3 -

 33333 Figure 3-12 Influence of a small Gc on load-displacement curves

  Thus a micropolar model can monitor the onset and evolution of shear bands by tracing the particles' rotations. For dense materials, strain localization can be explained by the great dilatancy inside the strain-localized region, which is caused by particles' rotations and rearrangements. Because the conventional constitutive models within the framework of classical continuum theory have not considered the independent rotations of micro particles, they cannot reflect the real kinematics of the shear band evolution. Conversely, the evolution process can be recorded in the simulated results by the micropolar model, as in Figure3-20. Subfigures (a), (b) and (c) denote the onset, developing and fully formed shear band, respectively. We can find that the microrotations start from the corners due to the constraints on the boundaries, then propagate to the center of the specimen until the complete formation of two conjugated shear bands.

Figure 3 -

 3 Figure 3-20 Evolution of shear band based on the particles' rotations: (a) shear band onset corresponding to axial strain 2.5%; (b) corresponding to axial strain 3%; (c) fully formed shear band corresponding to axial strain 5%

Figure 3 -

 3 Figure 3-21 Shear bands for different discretization obtained from the classical model for loose materials: (a) mesh 10×20; (b) mesh 15×30; (c) mesh 20×40; (d) mesh 30×60

Figure 3 -

 3 Figure 3-23 Load-displacement curves of each element from the classical simulation: (a) elements located on the horizontal profile; (b) local-displacement curves of each element

Figure 3 -

 3 Figure 3-24 Diffusion mode for different discretization obtained from the micropolar model for loose materials: (a) mesh 10×20; (b) mesh 15×30; (c) mesh 20×40; (d) mesh 30×60

Figure 3 -

 3 Figure 3-26 Load-displacement curves of each element from the Cosserat simulation: (a) elements located on the horizontal profile; (b) local-displacement curves of each element

Figure 3 -Figure 3 -Figure 3 -Figure 3 -Figure 3 -Figure 3 -

 333333 Figure 3-28 Load-displacement curves for different discretization using the micropolar model: lc = 1 mm

  -36, in which sub-figure (a) signs the values of equivalent plastic strain, and sub-figure (b) can be used to judge the shear band thickness.It indicates that confining pressure's influence on shear band thickness is very slight. However, the peak value of the equivalent plastic strain inside the shear band is obviously affected by the confining pressure. Smaller the confining pressure, greater is the peak value of the equivalent plastic strain.

Figure

  Figure 3-35 Influence of confining pressure on the load-carrying capacity

Figure 3 -

 3 Figure 3-38 displays shear band thickness, allowing us to find that shear band thickness is almost identical for different initial densities. Accordingly, initial density has little influence on the thickness of shear bands in biaxial tests. The differences of peak values for plastic strain inside the shear band are also slight.
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 33 Figure 3-37 Influence of initial density on the load carrying capacity

  critical friction angle. Third, load carrying capacity increases with critical friction angle.

Figure 3 -

 3 Figure 3-39 Influence of critical friction angle u on the load carrying capacity

Figure 3 -

 3 Figure 3-41 Influence of strength parameter np on the load carrying capacity

Figure 3 -

 3 Figure 3-43 Influence of deformation parameter nd on the load carrying capacity

  and ij   are strain rate and stress rate tensors, respectively, ijkl D is the material tangential matrix (in general non-symmetric), and the summation convention is adopted. Conversely, a necessary condition for material instability. If we consider the vectorial instead of the tensorial form, it can be expressed as follows 0 equality of Eq. (4.5) marks the onset of material bifurcation. Mathematically, this condition coincides with the loss of the positive-definiteness of the material tangential stiffness matrix D or the singularity of the symmetric part of D

Figure 4 - 1

 41 Figure 4-1 Order of instability criteria during loading history for non-symmetric constitutive matrices

  the left-hand side c E  is the second-order time derivative of the kinetic energy; the first term on the right- is an internal term. As a quadratic average of the acceleration, this term is always positive. The second term in the right-hand side 2 ext W denotes the external second-order work, and the third terms int 2

4- 2 ,

 2 Nicot et al. (2012b) wrote the second-order work expression as a function of

Figure 4 - 2

 42 Figure 4-2 Definition of particles in contact

  second-order work of the global system 2 glo W can be obtained according to Eq. (4.21).

  -3. It can be observed that the vanishing of the second-order work corresponds to the peak point of the bearing force, and the values of the second-order work are negative in the softening regime. The degree of softening is also reflected by the rate of the negative second-order work.

Figure 4 - 3

 43 Figure 4-3 Second-order work behind the mechanical response

  -4. It can be observed that by considering the contribution of coupled stresses and curvatures, the vanishing of the second-order work in micropolar theory occurs obviously later than that from the classical continuum theory. As an instability criterion, the vanishing of the second-order work in both the classical continuum theory and the micropolar theory can predict the bifurcation point which is a necessary condition for a potential failure. However, for the analysis in classical continuum theory, the negative values of second-order work calculated from the current stress-strain state in the post-bifurcation regime are influenced by pathological mesh dependency solutions. After the regularization of the micropolar approach, the numerical solutions become corrected in the post-bifurcation region; consequently, the negative values of the second-order work calculated from the micropolar SIMSAND model are meaningful.

Figure 4 - 4 Force

 44 Figure 4-4 Comparisons of the results from classical SIMSAND model and the polarized model It is well known that the failure can be triggered from local regions as a local instability inside the specimen and then be amplified to the whole sample. Therefore, the evolution of local

Figure

  Figure 4-5 Evolution of the second-order work in the classical continuum: (a) vertical displacement of 4 mm; (b) vertical displacement of 4.5 mm; (c) vertical displacement of 5 mm; (d) vertical displacement of 5.8 mm

Figure 4 - 7

 47 Figure 4-7 Instability regions identified by second-order work of different meshes in classical continuum: (a) mesh 10×20; (b) mesh 15×30; (c) mesh 20×40; (d) mesh 30×60

  micropolar SIMSAND model. Compared to the results from the classical model, significant improvements can be observed in Figure 4-9 and Figure 4-10.

  work in the micropolar continuum are nearly the same. So the mesh dependency problems have been efficiently relieved.

Figure 4 - 9

 49 Figure 4-9 Instability regions identified by second-order work of different meshes in micropolar continuum: (a) mesh 15×30; (b) mesh 20×40; (c) mesh 30×60Furthermore, the mesh independency of the mechanical responses and the global second-order work evolution for the three different meshes can also be found in Figure4-10, indicating that the vanishing of the second-order work occurs at the same vertical displacement regardless of the discretization. Moreover, the three curves coincide with each other even after the vanishing of the second-order work corresponding to the consistent force-displacement curves after the bifurcation point. Considering that the micropolar theory can preserve the ellipticity (for static problems) of the partial differential governing equations after the onset of bifurcation, consequently, the second-order work in the post-failure regime of the micropolar continuum is still meaningful and can be used not only to detect the bifurcation point but also to reflect the tendency of the mechanical response after the bifurcation point.

Figure 4 -

 4 Figure 4-10 Comparisons of different meshes in a micropolar continuum: (a) mechanical responses; (b) evolutions of the second-order work If the vanishing of the second-order work from classical and micropolar results are compared based on Figure 4-8 and Figure 4-10, we can see that the bifurcation points in the micropolar continuum are significantly delayed. Owning to the incorporation of the rotational degree of freedom and the internal parameter with a microstructural length scale, the conventional definition of the

Figure 4 -

 4 Figure 4-11 Contribution of the grains rotations to the second-order work

Figure 4 -

 4 Figure 4-13 Components of the second-order work of a local element Similarly, in Figure 4-14 the global second-order work of the specimen (based on micropolar model: mesh 15×30) is also divided into two parts, corresponding to the conventional part and rotational part, respectively. It is also found that the contribution of the couple stresses and curvatures in the micropolar continuum delays slightly the vanishing of the global second-order work.
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 444 Figure 4-14 Components of the global second-order work

Finally, the finite

  element implementation of the 3D critical state-based micropolar model for granular soils was demonstrated. To validate the correctness of the 3D micropolar SIMSAND model, a series of test simulations, including triaxial and biaxial drained and undrained tests for dense and loose sand, was conducted and compared in terms of the results obtained through use of the integrated point program (IPP) and the 3D micropolar model. Furthermore, numerical simulations of boundary value problems have been conducted using the 3D micropolar model and validated through comparison of results from the 2D model. Finally, the regularization effectiveness of the 3D model when dealing with mesh dependency problems was discussed.
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 5 Figure5-1 depicts the motion of a portion V of a material volume, bounded by a surface S with outward normal n. S separates the portion of a material volume V from the remainder. Across S act force stress and couple stress vectors tn and mn, respectively, and within V act body-force and bodycouple vectors f and c, respectively. Force stress vector tn and body-force vector f are polar vectors, whereas the couple stress vector m and the body-couple vector c are axial vectors. Axial vectors are taken to be positive in the direction of advance of a right-handed screw.

Figure 5 - 1

 51 Figure 5-1 Forces stresses and couple stresses acting on a micro polar portion

  time-derivative,  is the mass density, r is the spatial position vector from a fixed origin, v is the material velocity d dt r , U is the internal energy per unit mass,

  Consideration of the equilibrium of forces acting on the elementary tetrahedron, as the volume of the tetrahedron shrinks to zero, leads to the definition of the usual force stress dyadic : of the equilibrium of moments acting on the tetrahedron yields the definition of the couple stress dyadic m:

  of   v also equals zero, the right-hand side of the preceding equation can m D is the deviator of m:

Figure 5 - 2

 52 Figure 5-2 Deformation of a micro polar continuum

Figure 5 - 3

 53 Figure 5-3 Stress components acting on a 3D micro polar continuum

;

  G and are the classical shear modulus and Poisson's ratio, respectively. Gc denotes the micropolar shear modulus.

Figure 5 - 4

 54 Figure 5-4 Element of 3D micro polar continuum: (a) 20-node solid element; (b) integration points

  is the strain matrix.The total potential energy of a structure is formulated as the summation of all elements, the body force vector in the inner of the element and T is the surface force vector exerted on the boundary. Based on the minimum potential energy principle and the randomness of the virtual displacementthe element stiffness matrix K e and element node load vector P e expressed as

  m = n = l = 2, Hi, Hj, and Hk are the corresponding weight factors of each integration point and the Jacobian matrix is expressed as

Figure

  Figure 5-5 Comparisons between IPP and 3D UEL in simulating triaxial drained test

Figure

  Figure 5-9 Shear bands of three different mesh sizes using the 3D classical model: (a) mesh 10×20×1; (b) mesh 15×30×1; (c) mesh 20×40×1

FigureFigure 5 -

 5 Figure 5-11 Shear bands of four different mesh sizes using the3D micropolar model: (a) mesh 10×20×1; (b) mesh 15×30×1; (c) mesh 20×40×1; (d) mesh 30×60×1

Figure 5 -

 5 Figure 5-13 Influence of internal length scale lc on shear band thickness: (a) lc = 0mm; (b) lc = 1mm; (c) lc = 1.5mm; (c) lc = 2mm;

First, the results

  from the retrieved classical model should be compared. The shear bands using a 2D classical model for three different mesh sizes are shown in Figure 5-15, allowing us to note that the shear band patterns from a 3D model, shown in Figure 5-9, are precisely the same as these obtained by using a 2D model. The comparisons of the load-displacement curves between 2D and 3D classical models are presented in Figure 5-16, showing that the curves from the 3D model coincide exactly with those from the 2D model. Notably, the strength of the 3D model should be multiplied by 100 considering the unit depth (100 cm) of 2D models.

FigureFigure 5 -

 5 Figure 5-15 Shear bands of three different mesh sizes using the 2D classical model: (a) mesh 10×20; (b) mesh 15×30; (c) mesh 20×40

Figure 5 -

 5 Figure 5-17 Shear bands of four different mesh sizes using the 2D micro polar model: (a) mesh 10×20; (b) mesh 15×30; (c) mesh 20×40; (d) mesh 30×60

Figure 5 -

 5 Figure 5-20 Shear bands in 3D foundations using classical model

Figure 5 -

 5 Figure 5-22 Shear bands in 3D foundations using micropolar model

  ) With the micropolar model, the comprehensive study of shear band has been conducted. Based on serious simulations, a regularization effective ratio of the internal length to element size was proposed to absolutely deal with the mesh dependency problems. Various factors' influences on the shear band patterns and the regularization efficiencies have been investigated, showing that a larger lc corresponds to more ductile of material in the softening regime, and shear band thickness increases with internal length scale lc; another micropolar parameter Gc has nearly no influence on the shear band patterns and the regularization effective ratio; peak load carrying capacity increases with initial density, confining pressure, critical friction angle u, strength parameter np, and deformation parameter nd, however, the impact of each factor varies.(4) The second-order work, as instability criterion, has been newly defined within the micropolar theory. After considering the contribution of couple stresses and conjugated curvatures, the vanishing of second-order work has been obviously delayed. Moreover, the vanished values of second-order work become meaningful in a micropolar continuum. Therefore, the envelope diagrams of the local vanishing of second-order work can be used to characterize the failure domain.to negative), then the second-order work density material goes into instability. The rate form of the partial differential equation for one-dimensional static problem is expressed as

Figure B- 1

 1 Figure B-1 Uniaxial tension test of a barIn Figure B-1, a bar of length L is divided uniformly into m elements, with each element having a length h, so that L = mh. Moreover, it is assumed that one element has been set as an imperfection and has a tensile strength limit y that is slightly weaker than other m -1 elements. A tension load is performed in the right side of the bar, and the final displacement is u. An approximation of the measured load-displacement relation is plotted in Figure B-2. During the first stage, before reaching the tensile yield stress of the weak element, all the elements' response is elastic until the yield stress y, with a linear relation assumed between the stress  and the strain  =  e ( p = 0) during this stage, defined as

  the average strain of the bar and the evolution of current stress is plotted in Figure B-3, which indicates that the results depend entirely on the discretization of the bar. The finite manages to capture the failure zone in a single element thickness, irrespective of the size of the element: mathematical derivation, it can be easily found that  depends on the element number m: after the onset of strain softening () y    the solution is entirely determined by the discretization. When the imperfect element is totally exhausted, and current stress becomes zero. It is obvious from Figure B-3 that when the bar is infinitely divided, m tends toward an infinite value, with the post-peak curve receding absolutely along the original loading path. A major problem,

  Figure B-3 to obtain a meaningful solution for elastoplastic materials. It is compulsory to set m < / .

Figure

  Figure B-2 Softening response in stress-strain

Figure C- 1

 1 Figure C-1 Asymmetry stress distribution in micro polar theoryClassical continuum models, not having any internal length scale parameter, suffer from pathological mesh dependency when modeling strain localization in failure analysis. A potential reason for this defect is that the governing field equations of the constitutive model within the framework of classical theory will convert from the elliptic property into the hyperbolic one under static loading conditions when a localization zone sees excessive development. For half a century, micropolar theory with high-order terms has been used as a regularization approach to preserve the ellipticity.Two-dimensional plane strain problems are first taken into consideration for the introduction of micropolar theory. There are three generalized displacement degrees of freedom for each micro-element.

  shown in FigureC-2, the stress distribution on the right side is slightly different from that on the left side, and the up side is different from the down side in the x and y directions.

Figure C- 2

 2 Figure C-2 Micropolar plane element: (a) ideal stress distribution of a micro polar element; (b) considering the slight difference caused by micro sizeBased on the static equilibrium conditions:

  geotechnical engineering, the shear stresses are categorized into the symmetric part and skew symmetric part based on the roles they play on the micro-element. The symmetric part independent rotation of the micro-element and has nothing to do with the shear strain. If the skew symmetric part disappears (

Figure C- 3

 3 Figure C-3 Symmetric part and the skew symmetric part of the shear stress in micro polar theory

  Figure C-4 Cube micro element and spin inertia Considering a spin moment acting on the micro-element: 4 1 (1 )(2 ) 6 xz xz MG d    (C-10)For the couple stress mxz, then, we can get

  Figure C-5 Bending curvatures and couple stresses of a micropolar element

  body force vector (including body moment) and the displacement-strain operator matrix L relation of elastic materials, the stress rate is linearly related to elastic strain rate by the elastic stiffness matrix e

(

  the potential function,   denotes the plastic multiplier, and m determines the direction of plastic flow. For a general elastoplastic yield function which σ represents the current stress state and  is a vector containing the hardening variables, the Kuhn-Tucker conditions must be satisfied: multiplier is a nonnegative value, current stress must located within or on the yield surface and the consistency condition must be satisfied. The plastic flow is governed by to the yield function and the hardening modulus can be calculated as  Eq. (C-24) and Eq. (C-28), we obtain the elastoplastic relationship of stress rate and strain rate: strain rate are the generalized vectors of a micropolar continuum defined in Eq. (C-2)and Eq. (C-3). The elastoplastic stiffness matrix can be defined as results from the stress-strain level (one Gauss point) are the correct and objective ones by default.

  Figure D-3 to Figure D-6. In all the figures, each subfigure denotes different meaning: (a) axial strain versus deviatoric stress, (b) mean effective stress versus deviatoric stress, (c) axial strain versus void ratio, and (d) mean effective stress versus deviatoric stress. From the comparisons, it can be found that the simulated results produced by UMAT are absolutely consistent with those produced by IPP, thus amply verifying the correctness of the UMAT implementation. The successful implementation of UMAT in ABAQUS will lay a solid foundation for further implementation of a UEL.

Figure

  Figure D-3 Comparisons between IPP and UMAT in simulating triaxial drained test

Figure E- 2

 2 Figure E-2 Calibration of parameters with isotropic compression and triaxial drained tests of F-75 sand: (a) one isotropic compression test; (b) five different triaxial drained tests with different confining pressureBased on these comparisons between the simulations and the experimental results, we can discern that the optimized parameters for the critical state-based model are able to adequately describe the sand behaviors in the isotropic compression and triaxial drained tests. By means of the calibration process, we can deeply understand the model and its parameters.
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 1 1 Summary of micropolar constitutive models and applications ............................................

Table 2 -

 2 1 Material parameters used to simulating the biaxial tests .

  concluded that the measured shear band orientation in plane strain tests on loose, fine-grained, water-saturated sand in drained or undrained conditions, lay between the Coulomb and Arthur et al. solutions. That said,

Table 1 -1 Summary of micropolar constitutive models and applications Publications Applications Constitutive models

 1 

  As shown in Table1-1, Cosserat theory demonstrates extensive applicability, being introduced first into elastic continuum materials and then into elastoplastic ones. In micropolar elastic materials, rather than mimicking classical continuum theory, it is able to reflect the micro size effect shown in experiment tests such as stress concentration problems, dispersion of Rayleigh wave-in-wave

			and 3D
			Pressure dependent
			Drucker-Prager type
			elastoplastic model
	Liu et al.	Mesh independency: infinite long shear layer; strain	3D two phase Desai
	(Liu et al., 2007)	localization in 3D specimen	hierarchical model
	Arslan et al. (Arslan and Sture, 2008b, a)	Predicting the load behavior of a shallow footing and failure behavior of a slope as well as the size effect by footing tests	Drucker-Prager type elastoplastic model
	Riahi et al. (Riahi and Curran, 2009; Riahi and Curran, 2010)	Predicting the deformation of layered structures: plate structures with various geometry (Cantilever, excavation in layered rock Rectangular, Circular) and boundary condition;	3D layered model based on plate theory
	Manzari et al. (Manzari, 2004; Manzari and Dafalias, 2005; Manzari and Yonten, 2011)	Several examples of failure analysis, such as a deep excavation, shallow foundation, and a retaining wall, were presented showing the regularization numerical difficulties in boundary value problems abilities of micropolar technique in overcoming the	A critical state two-surface micropolar plasticity model for sands

  is the mean effective stress; and pat is the atmospheric pressure used as reference pressure (pat = 101.3 kPa). Shear modulus and bulk modulus can be related by Poisson's ratio,

	KKp 	at		97 e 1 ep p at      		(2.4)
	0 GGp 	at		 ep 2 2.97 e 1 p at      		(2.5)
	where K0, G0 are reference values of bulk modulus and shear modulus, respectively.  is an input

parameter controlling the nonlinearity of the confining stress effect; e is the void ratio;  is Poisson's ratio; p'

Figure 2-6 Flow chart of iteration procedure of the cutting plane algorithm

  Calculate d, d pUpdate H i+1 =H i +dH i

			Initial state at step i:  i , H i ' ' gg qg p qp         	(2.65)
	Set d p  Step i+1: total increment=d           p pp d pp p dp d pd MM f k k		2	(2.66)
	Loop of plastic correction	d=d-d p d=Dd  i+1  i d Check f<1D-7  2 1 , ' ' fq f p qp p     ,1 ' dp t gq g AM pp q       333 '1 1 1 0000 p	Yes	(2.67) (2.68)
			No	
			Current state at step at i+1:  i+1 , H i+1
	d		      ij fg  ijkl kl D      p d f g q T f	(2.63)
	where f is the yield function expressed in Eq. (2.8), and Dijkl is the elastic stiffness matrix expressed
	in Eq. (2.63). Other partial derivatives are derived as follows:
			'  ' fq fp qp    f     		(2.64)

For SIMSAND model, the original constitutive model has been described in Section 2.2.1, and its extended model within the framework of micropolar theory has also been introduced in Section 2.2.2. The following derivations are simply used to calculate the plastic multiplier of the micropolar SIMSAND model, per Eq. (2.60), within the framework of micropolar theory. The plastic multiplier of the micropolar critical state-based model is expressed as

Table 2 -1 Material parameters used to simulating the biaxial tests

 2 

	Parameters	K 0		 u	e ref		k p	A d	n p	n d
	Values	60	0.63	38.5	0.776	0.015	0.004	0.4	1	2

Table 3 -1 shear band inclinations with different initial density

 3 

	D r [%]	º	º  º C º  º	 R º
	100	53.2	52	16.7	71	62.2	53.4
	87	51.4	50	12.4	70	60.6	51.2
	78	50.5	48	9.1	69	59.3	49.5
	68	48.2	47	6.8	68.5	58.5	48.4
	46	/	44	0	67	56	45

Table 3 -

 3 

3. It should be pointed out that the normalized thickness of shear band in simulations is obtained by dividing shear band thickness by the internal length scale lc. Subsequently, the relations

Table 3 -3 Shear band thickness in biaxial tests from experiments and simulations

 3 

	Technique	Reference	d 50 (l c ) [mm]	TSB [mm]	TSB/d 50 (TSB/l c )
		Muhlhaus and	0.2	3.7	18.5
		Vardoulakis (1987)	0.33	4.3	13.0
			0.35	7.5	21.4
		Desrues et al.	1.2	13.5	11.3
	Experiments	(2004)	2.4	17.0	7.1
			3.2	22.0	6.9
			0.22	3.0	13.6
		Alshibli et al.			
			0.55	6.2	11.3
		(1999)			
			1.6	17.3	10.8
		Simulations with	1.0	12.4	12.4
	Numerical				
		micropolar	1.5	14.6	9.7
	simulations				
		SIMSAND model	2.0	18.0	9.0

Table 3 -4 Different combinations of internal length lc and element size le

 3 

	l c [mm]	1.0				1.5		2.0				2.25
	l e [mm]	10 6.67	5 3.33	10	6.67	5 3.33 10 6.67	5 3.33	10	6.67	5	3.33
	l c ⁄l e	0.1 0.15 0.2	0.3 0.15 0.225 0.3 0.45 0.2	0.3 0.4	0.6 0.225 0.338 0.5 0.675

  in which lb and lt are two new added micro-length scale parameters. lb and lt are related to the bending couple stress and the torsion couple stress, respectively.

	Micro-curvature is a third-order tensor and is mathematically defined as
			ijs  	, ik ik s cc R R	(5.40)
	Because the third-order curvature is antisymmetric with respect to the interchange of the first two
	indices, it can be reduced to a second-order tensor per the following notation:
		ls  	1 2		, lij ik jk s cc eRR		(5.41)
	Substituting Eq. (5.37) in the above equation and ignoring any higher-order terms of rotation
	supplies the second-order curvature tensor:			
		11 21 31  12 22 32    13 23 33     	, ij 	(5.42)
	Thus the micropolar strain and micro-curvature components in (x, y, z) coordinate space can be
	expressed by					
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	T   (5.38) xx yy zz xy yx yz zy zx xz xx t yy t zz t xy b xz b yx b yz b zx b zy b lllllllll          
	The micropolar strain can be formulated in indicial notation as
			ij		, j i ue ijk k  	(5.39)

  Based on Eq. (A-10), Eq. (A-11), and Eq. (A-12), we can obtain a matrix equation in which

					22 uu dd t dx x t x u 2          	d x	(A-12)
						2 x u 2   	,
	2 t  	2 u 	, and	2 u x t   	are taken as unknowns.
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Table E -1 Optimized values of constitutive parameters

 E 

					(a)					
					(b)					
	Parameters	K 0		 u	e ref		k p	A d	n p	n d
	Values	60	0.63	35.8	0.776	0.015	0.004	0.4	1	2
					216					
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Summary of model parameters

The micropolar constitutive model features 12 parameters in total. Besides those parameters that can straightforwardly be given a meaningful value before fitting the experimental curves, such as Poisson's ratio , the parameters in the constitutive model can be divided into four groups: (1) elasticity-related parameters: K0, , and ; (2) critical state-related parameters: u, eref, and ; (3) plasticity interlocking parameters: kp, Ad, np, and nd; and (4) the newly incorporated parameters in a micropolar constitutive model for 2D problems: lc and Gc.

A typical value for Poisson's ratio of 0.2 is usually assumed. The values of K0 and  chiefly control the isotropic compression curve, and the values of u, eref, ,kp, Ad, np, and nd chiefly control the triaxial shearing curves. Accordingly, the elasticity-related parameters K0, can be obtained based on an isotropic compression curve; to identify the critical state-related parameters u, eref, and , at least three set of triaxial tests with different confining pressures and different initial void ratios should be required; the plastic interlocking parameters kp, Ad, np, and nd can be determined by one triaxial drained test. The micropolar parameters lc and Gc chiefly control the thickness strain localization zones and the bearing capacity in specimens' or structures' post-failure regime.

Consequently, the micropolar parameters may be determined by analyzing the thickness of shear bands such that results match the real experimental width. Unlike macro-scale material parameters, however, the micro-scale material parameter cannot be easily determined through experiment. Lakes (1995) proposed some experimental methods for elastic micropolar continuum. These experiments are quite complicated and work only for materials such as metal. For granular materials, no standard experiment exists that is suited to micropolar theory, nor any recognized definition of the length scale.

In terms of the influence on the material behavior of these parameters, kp and np control the peak strength, Ad and nd control the dilatancy behavior, and u, eref, andcontrol the position of the critical state line in the q-p' plane and the e-log p' plane. Specifically, kp controls the initial slope of the curve ' p d qp   ; in addition, the degradation rate of the stiffness at small strain levels is determined by the plastic shear modulus kp: a smaller value of kp gives a slower degradation of the global shear modulus; Ad is the stress dilatancy multiplier, which controls the magnitude of dilatancy;

From these first three groups, we can assume that the ratio lc∕le should be larger than 0.225, making this a criterion for regularization effectiveness in the critical state-based micropolar model.

To check the reasonability of this suggested criterion, we perform simulations for group 4 with lc = 2.25 mm. In this group, the smallest ratio is 0.225. The simulated results are shown in Figure 3-33 and Figure 3-34, and we find not only the shear band thickness but also load-displacement curves, to some extent, to be mesh-independent. We can thus conclude that the criterion for regularization effectiveness for the micropolar model as regards mesh dependency problems is met, requiring that the ratio lc∕le exceed 0.225 in the present study. However, it must be noted that this ratio could be affected by other factors, such as the scale of the model, material density, confining pressure, and the parameters of the constitutive model. should be redefined, but in some constitutive models, including the third stress invariant J3, J3 should be also redefined as [START_REF] Liu | A micropolar formulation of the Desai hierarchical model for elastoplastic porous media[END_REF]  

Js s s m m m  (5.73)

When conducting numerical simulations with the micropolar model, if the independent rotational degrees of freedom are constrained, all the micro-qualities become null values, and the micropolar model is retrieved to the classical one. The 3D polarized SIMSAND model has been numerically implemented via the user-defined element introduced in the previous section. For the integration algorithm within the constitutive model, the cutting plane technique was also adopted as illustrated in detail in chapter 2.

Numerical simulations and discussions

Element validation

To ensure the correctness of the three-dimensional user-developed element and the polarized elastoplastic model, element validation is essential. In this section, simulations of drained and undrained triaxial tests and drained and undrained biaxial tests for both loose and dense Toyoura sand were conducted using the 3D micropolar SIMSAND model, which were compared and verified by the results from IPP. The comparisons were presented hereafter, from materials and the hourglass phenomena for low-order element when using reduced integration.

Furthermore, a finite element implementation of the 3D micropolar model was performed. Through simulation of element tests, the 3D micropolar model has been proven to be correct when modeling a homogeneous stress state.

The regularization abilities of the 3D micropolar model were exhibited by simulating boundary value problems in the context of strain localization phenomena under both plane strain condition and real three-dimensional conditions. Simulations of biaxial tests using the 3D polarized critical statebased model were compared with the results obtained by using a 2D micropolar model, thereby validating the correctness of the 3D micropolar model as well as its ability to overcome numerical difficulties and alleviate mesh dependency problems for strain localization phenomena during finite element analysis. Similarly, simulation of a three-dimensional foundation for different mesh sizes has demonstrated the regularization abilities of the 3D micropolar model. However, more work should be further continued on the 3D model.

Perspectives

Although the micropolar theory has demonstrated more physical meaning and great ability in dealing with mesh dependency problems in finite element analysis, its regularization efficiency was still affected by the element size. In this sense, the application of micropolar theory in simulating the very large geotechnical structures is still on the way. Based on the current study, the perspectives are looked forward to as follows.

(1) The sensitivity of the results of the finite element simulations to the mesh size has been illustrated, while, the influences of the mesh alignment have not been discussed. Therefore, besides the rectangular element, more types of the user defined element, e.g. triangle element, should be developed for the mesh sensitive study.

(2) The discussions of the internal length scales in micropolar theory are still an opening question.

Therefore, the further study about the physical meaning should be continued in the future.

(3) The other regularization approaches should have also been numerically implemented and compared with the micropolar theory, which may be an interesting direction and will be tried in the future. Considering the advantages and the scope of applications of each regularization technique, the combined regularization approach may be proposed to become more powerful to deal with the mesh dependency problems. What's more, the attempts can also be done to implement other advance techniques, such as SPH, MPM, in the near future.

(4) Current finite element simulations were conducted with the implicit algorithm in ABAQUS, which limited the problems in a static or quasi-static domain. Using the explicit method to study the dynamic problems is a tendency.

(5) Although the 2D and 3D micropolar model has been implemented and validated successfully, the calculation efficiency was not so powerful to obtain a solution rapidly. As a result, more advanced algorithms should be adopted to face the volume interlocking and hourglass problems in low-order element.

Appendix A: Numerical Pathological Solutions

Ill-posedness of static loading problems

From a mathematical point of view, material instability results in changes to the properties of a partial differential equation. For simplicity, a one-dimensional uniaxial compression or tension test is first taken as an example in context of which to discuss the instability of static loading problems under the framework of classical continuum theory. As we know, the total strain of a material point can be decomposed into the elastic part and plastic part:

The elastic part can be calculated by the Hooke's Law,

where and E are the axial stress and Young's modulus, respectively. It is assumed that the material belongs to the typical plastic category and that stress rate will decrease linearly with plastic strain rate after entering into the softening regime, after which the current stress can be expressed as

where and  are the current stress and initial yield stress, respectively; hp is the plastic hardening (softening) modulus. Thus the plastic part can be calculated from Eq. (A-3):

Combining Eqs. (A-1), (A-2) and (A-4), we get the total strain rate:

Alternatively, the stress rate can be expressed as a function of total strain rate:

The absolute value of softening parameter is less than the Young's modulus by default. If the elastoplastic modulus is changed from

Appendix B: Mesh Dependency Problem within Classical Continuum Theory

Mesh dependency phenomenon can be observed by revisiting an example, the uniaxial tension test of a bar, conducted by [START_REF] Crisfield | Local instabilities in the non-linear analysis of reinforced concrete beams and slabs[END_REF]de Borst (1982, 1986), in which a softening plasticity model was adopted.

Figure B-3 Solution dependency on the discretization for a bar in uniaxial test

The mechanism of these mesh dependency problems has been demonstrated clearly from a mathematical and analytical point of view. Similarly, mesh dependency problems exist with the softening of constitutive models within the framework of the classical continuum theory in general 2D or 3D cases, especially when the failure analysis is performed by the finite element method. The pioneering work of the Delft University of Technology (de Borst, 1991; de Borst and Mühlhaus, 1991;[START_REF] De Borst | Localisation in a Cosserat continuum under static and dynamic loading conditions[END_REF][START_REF] De Borst | A generalisation of J2-flow theory for polar continua[END_REF] was based on a reappraisal of the mechanics of generalized continua developed in the 1960s [START_REF] Kröner | Elasticity theory of materials with long range cohesive forces[END_REF][START_REF] Forest | Strain localization patterns at a crack tip in generalized single crystal plasticity[END_REF].

Generalized continua can be classified into three main groups:

(1) micropolar continua are endowed with additional degrees of freedom in addition to the usual displacement field (Cosserat and micro-orphic theories, according to [START_REF] Eringen | Nonlocal polar field theories[END_REF];

(2) higher-grade continua introduce higher space derivatives of the displacement field than the usual deformation gradient (second gradient theory, according to [START_REF] Mindlin | On first strain-gradient theories in linear elasticity[END_REF], and this class of theories also incorporates the gradients of some selected internal variables that play significant roles in the balance and constitutive relations [START_REF] Aifantis | The physics of plastic deformation[END_REF];

(3) the third or last class contains fully nonlocal media for which integral relations relate stress and strain evolutions [START_REF] Eringen | Nonlocal polar field theories[END_REF][START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF].

Among these three approaches, micropolar theory is particularly attractive for its relative ease of implementation and its suitability in capturing shear-dominated modes of failure. Furthermore, the micropolar theory, in which the grain rotations and couple stresses arise naturally and can be easily explained from a point of view of physics, has been adopted in present study.

In contrast to micropolar theory, classical continuum mechanics considers only the interaction of microstructures of material through global displacements of material points. However, in reality, interactions of grains may include micro-rotations and consequently produced micro-curvatures and corresponding conjugated couple stresses. Accordingly, extending the classical continuum to a

Appendix D: Brief Introduction of UMAT and Validation

Introduction of UMAT

User defined material (UMAT) is one of the functions of the commercial FE software-ABAQUS.

The UMAT subroutine, with specific format is shown in Figure D-1, needs to be coded to define the mechanical behavior of a material. The specific interface is able to realize data transference and data sharing between different subroutines of ABAQUS. Various constitutive models can be numerically implemented as alternatives to become the built-in ABAQUS models. UMAT greatly increases the power of ABAQUS, allowing it to contain more and more materials with arbitrary complexity.

When programming a UMAT, users can still take the advantages of ABAQUS's pre-processing and post-processing platforms, making implementation easy. All that users need to do is completely incorporate the constitutive law into the subroutine. In the UMAT subroutine, certain indispensable arrays, such as the current strain STRAN(NTENS), the strain increment DSTRAN(NTENS) and initial input parameters PROPS(NPROPS), and the current stress STRESS(NTENS), must be defined. Some other variables, such as the Jacobian matrix DDSDDE(NTENS,NTENS), stress STRESS(NTENS), and state variables STATEV(STATV), need to be updated and saved at the end of the subroutine, after which all updated arrays will be returned into UMAT subroutine as a current new state for further calculation. A detailed description of UMAT can be found in the ABAQUS documentation. The process for defining a user-defined material is briefly demonstrated in flowchart in Figure D-2. The integration method, cutting plane algorithm, in the flowchart has been illustrated in Chapter 2. 

Appendix E: Calibration with Optimization Method

After the detailed description of all the parameters for the micropolar constitutive model in chapter 2, their estimation process has been illustrated in this section. From the description of these parameters in the previous section, we know that certain of them, such as lc and , can be assumed at the beginning; the micropolar shear modulus Gc can be set to depend on the shear modulus G; the elasticity-related parameters K0,  can be identified by fitting the isotropic compression test; and the critical state-related parameters u, eref, and  and plastic interlocking parameters kp, Ad, np, and nd can be identified by a series of triaxial tests. The genetic optimization method was used to search for these parameters, and the process for finding the optimized solutions is displayed hereafter. For more information about the optimization technique, please consult [START_REF] Jin | Investigation into MOGA for identifying parameters of a critical-state-based sand model and parameters correlation by factor analysis[END_REF].