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Distributed automata are nite-state machines that operate on nite directed graphs. Acting as synchronous distributed algorithms, they use their input graph as a network in which identical processors communicate for a possibly in nite number of synchronous rounds. For the local variant of those automata, where the number of rounds is bounded by a constant, Hella et al. ( , ) have established a logical characterization in terms of basic modal logic. In this thesis, we provide similar logical characterizations for two more expressive classes of distributed automata.

The rst class extends local automata with a global acceptance condition and the ability to alternate between nondeterministic and parallel computations. We show that it is equivalent to monadic second-order logic on graphs. By restricting transitions to be nondeterministic or deterministic, we also obtain two strictly weaker variants for which the emptiness problem is decidable.

Our second class transfers the standard notion of asynchronous algorithm to the setting of nonlocal distributed automata. The resulting machines are shown to be equivalent to a small fragment of least xpoint logic, and more speci cally, to a restricted variant of the modal µ-calculus that allows least xpoints but forbids greatest xpoints. Exploiting the connection with logic, we additionally prove that the expressive power of those asynchronous automata is independent of whether or not messages can be lost.

We then investigate the decidability of the emptiness problem for several classes of nonlocal automata. We show that the problem is undecidable in general, by simulating a Turing machine with a distributed automaton that exchanges the roles of space and time. On the other hand, the problem is found to be decidable in for a class of forgetful automata, where the nodes see the messages received from their neighbors but cannot remember their own state.

As a minor contribution, we also give new proofs of the strictness of several set quanti er alternation hierarchies that are based on modal logic.

Résumé

Les automates distribués sont des machines à états nis qui opèrent sur des graphes orientés nis. Fonctionnant en tant qu'algorithmes distribués synchrones, ils utilisent leur graphe d'entrée comme un réseau dans lequel des processeurs identiques communiquent entre eux pendant un certain nombre (éventuellement in ni) de rondes synchrones. Pour la variante locale de ces automates, où le nombre de rondes est borné par une constante, Hella et al. ( , ) ont établi une caractérisation logique par des formules de la logique modale de base. Dans le cadre de cette thèse, nous présentons des caractérisations logiques similaires pour deux classes d'automates distribués plus expressives.

La première classe étend les automates locaux avec une condition d'acceptation globale et la capacité d'alterner entre des modes de calcul non-déterministe et parallèle. Nous montrons qu'elle est équivalente à la logique monadique du second ordre sur les graphes. En nous restreignant à des transitions non-déterministes ou déterministes, nous obtenons également deux variantes d'automates strictement plus faibles pour lesquelles le problème du vide est décidable.

Notre seconde classe adapte la notion standard d'algorithme asynchrone au cadre des automates distribués non-locaux. Les machines résultantes sont prouvées équivalentes à un petit fragment de la logique de point xe, et plus précisément, à une variante restreinte du µ-calcul modal qui autorise les plus petits points xes mais interdit les plus grands points xes. Pro tant du lien avec la logique, nous montrons aussi que la puissance expressive de ces automates asynchrones est indépendante du fait que des messages puissent être perdus ou non.

Nous étudions ensuite la décidabilité du problème du vide pour plusieurs classes d'automates non-locaux. Nous montrons que le problème est indécidable en général, en simulant une machine de Turing par un automate distribué qui échange les rôles de l'espace et du temps. En revanche, le problème s'avère décidable en pour une classe d'automates oublieux, où les noeuds voient les messages reçus de leurs voisins, mais ne se souviennent pas de leur propre état.

Finalement, à titre de contribution mineure, nous donnons également de nouvelles preuves de séparation pour plusieurs hiérarchies d'alternance de quanti cateurs basées sur la logique modale.

Mots-clés. Automates, Algorithmes distribués, Logique modale, Logique monadique du second ordre, Graphes.

Introduction

The present thesis aims to contribute to the recently initiated development of a descriptive complexity theory for distributed computing.

What does this mean? Descriptive complexity [START_REF] Immerman | Descriptive complexity[END_REF] basically compares the expressive powers of certain classes of algorithms, or abstract machines,

We identify algorithms with abstract machines.

with those of certain classes of logical formulas. The Holy Grail, so to speak, is to establish equivalences of the form: "Algorithm class A has exactly the same power as formula class Φ."

Introduction

Why is this interesting? First and foremost, a descriptive complexity theory for distributed computing would o er the same bene ts as its classical counterpart does for sequential computing: a. If distributed algorithm class A turns out to be equivalent to formula class Φ, then this provides strong evidence for the naturalness of both classes. Indeed, the de nition of any mathematical device may, by itself, seem arbitrary. Why should distributed machines communicate precisely that way? Why should logical formulas contain precisely those components? But if two devices, that appear rather di erent on the surface, turn out to be descriptions of the exact same thing, then this is unlikely to be pure coincidence. b. Connecting two seemingly unrelated elds -here, distributed computing and logic -can provide new insights into both elds. Some proofs might be easier to perform if one adopts the point of view of one setting rather than the other.

Formal logic dates back to the mid-th century, while distributed computing started in the s/ s.

Furthermore, some open questions in one eld might already have well-known answers in the other. Especially the eld of distributed computing could bene t from this, as it is more than a century younger than formal logic, and therefore has had less time to evolve. Second, distributed computing also brings an interesting new perspective to the eld of descriptive complexity itself: c. Distributed algorithms can be evaluated on the same input as logical formulas, without any need for encoding that input. More precisely, the network in which a distributed algorithm is executed may be considered identical to the structure on which the truth of a corresponding formula is evaluated. This stands in sharp contrast to classical descriptive complexity theory. For instance, in the case of Fagin's theorem, the input of a Turing machine is a binary string that encodes a nite graph in form of an adjacency matrix. Hence, the equivalence of nondeterministic polynomial-time Turing machines and existential second-order logic is actually stated with respect to such an encoding.

Background

Let us now take a step back and put the subject into context. We start with a brief summary of some classical results in automata theory, and then turn to more recent developments in distributed computing.

Related work in automata theory

Although the eld of descriptive complexity theory really started with Fagin's theorem in the s, the idea of characterizing abstract machines through logical formulas had already appeared earlier in automata theory. In the early s, Büchi [START_REF] Büchi | Weak Second-Order Arithmetic and Finite Automata[END_REF], Elgot [START_REF] Elgot | Decision Problems of Finite Automata Design and Related Arithmetics[END_REF] and Trakhtenbrot [START_REF] Trakhtenbrot | Finite automata and the logic of single-place predicates[END_REF] discovered independently of each other that the regular languages, which are recognized by nite automata on words, are precisely the languages de nable in monadic second-order logic, or (see, e.g., [START_REF] Thomas | Languages, Automata, and Logic[END_REF]Thm 3.1]). The latter is an extension of rst-order logic, which in addition to allowing quanti cation over elements of a given domain (e.g., positions in a word), also allows to quantify over sets of such elements. Along with several other equivalent characterizations, in particular through regular expressions [START_REF] Stephen | Representation of events in nerve nets and nite automata[END_REF], regular grammars [START_REF] Chomsky | Three models for the description of language[END_REF], and nite monoids [START_REF] Nerode | Linear automaton transformations[END_REF], the equivalence between automata and logic helped to legitimize regularity as a highly natural concept in formal 1.1 Background 3 language theory (cf. Item a, above). Furthermore, it proved that the satis ability and validity problems for on words are decidable, because so are the corresponding problems for nite automata. In this way, the eld of logic directly bene ted from the connection with automata theory (cf. Item b). Nowadays, such connections also play a central role in model checking, where one needs to decide whether a system, represented by an automaton, satis es a given speci cation, expressed as a logical formula.

About a decade later, the result was generalized from words to labeled trees by Thatcher and Wright [START_REF] Thatcher | Generalized Finite Automata Theory with an Application to a Decision Problem of Second-Order Logic[END_REF] and Doner [START_REF] Doner | Tree Acceptors and Some of Their Applications[END_REF] (see, e.g., [START_REF] Thomas | Languages, Automata, and Logic[END_REF]Thm 3.6]). The corresponding tree automata can be seen as a canonical extension of nite automata to trees; as far as is concerned, the generalization to trees is even more straightforward, since both words and trees are merely special cases of the relational structures on which logical formulas are usually evaluated. The other characterizations of regular languages can also be generalized from words to trees in a natural manner, and quite remarkably, they all remain equivalent on trees (see, e.g., [CDG + 08]). Hence, the notion of regularity extends directly to tree languages. Moreover, similar equivalences have been established for several other generalizations of words, such as nested words (see [START_REF] Alur | Adding nesting structure to words[END_REF]) and Mazurkiewicz traces (see, e.g., [START_REF] Volker Diekert | Partial Commutation and Traces[END_REF]).

In contrast, the situation becomes far more complicated if we expand our eld of interest to arbitrary nite graphs (possibly with node labels and multiple edge relations). Although some of the characterizations mentioned above can be generalized to graphs in a meaningful way, they are, in general, no longer equivalent. The logical approach is certainly the easiest to generalize, since graphs are yet another special case of relational structures. While on words and trees the existential fragment of ( ) is already su cient to characterize regularity, it is strictly less expressive than full on graphs, Fagin's result was later extended by Matz, Schweikardt and Thomas to yield a complete separation of the quanti er alternation hierarchy (see [START_REF] Matz | The Monadic Quanti er Alternation Hierarchy over Grids and Graphs[END_REF]).

as has been shown by Fagin in [START_REF] Fagin | Monadic generalized spectra[END_REF]. Similarly, the algebraic approach (based on monoids) has been adapted to graphs by Courcelle in [START_REF] Courcelle | The Monadic Second-Order Logic of Graphs. I. Recognizable Sets of Finite Graphs[END_REF], and it turns out that is strictly less powerful than his notion of recognizability. (The latter is de ned in terms of homomorphisms into many-sorted algebras that are nite in each sort.) A common pattern that emerges from such results is that the di erent characterizations of regularity drift apart as the complexity of the considered structures increases. In this sense, regularity cannot be considered a natural -or even well-de ned -property of graph languages.

To complicate matters even further, the automata-theoretic characterization which is instrumental in the theory of word and tree languages, does not seem to have a natural counterpart on graphs. A word or tree automaton can scan its entire input in a single canonical traversal, which is completely determined by the structure of the input (i.e., left-to-right, for words, and bottom-up, for trees). On arbitrary graphs, however, there is no sense of a global direction that the automaton could follow, especially since we do not even require connectivity or acyclicity. This is one of the reasons why much research in the area of graph languages has focused on . In the words of Courcelle and Engelfriet [CE12, p. 3]:

. . . monadic second-order logic can be viewed as playing the role of " nite automata on graphs" . . . Another approach, investigated by Thomas in [START_REF] Thomas | On Logics, Tilings, and Automata[END_REF] and [START_REF] Thomas | Automata Theory on Trees and Partial Orders[END_REF], is to nondeterministically assign a state of the automaton to each node of the graph, and then check that this assignment satis es certain local "transition" conditions for 1 Introduction each node (speci ed with respect to neighboring nodes within a xed radius) as well as certain global occurrence conditions at the level of the entire graph. The graph acceptors devised by Thomas turn out to be equivalent to on graphs of bounded degree. Following up on this idea in [START_REF] Schwentick | Local Normal Forms for First-Order Logic with Applications to Games and Automata[END_REF], Schwentick and Barthelmann have also suggested a more general model, which remains very close to a normal form of , but overcomes the constraint of boundedness on the degree. Both of these graph automaton models are legitimate generalizations of classical nite automata, in the sense that they are equivalent to them and can easily simulate them if we restrict the input to (graphs representing) words or trees. However, on arbitrary graphs, they are less well-behaved, which is a direct consequence of their equivalence with . In particular, they do not satisfy closure under complementation, and their emptiness problem is undecidable. It is worth noting that both models are somewhat similar to the local distributed algorithms considered in the next section, insofar as they take into account the local view that each node has of its xed-radius neighborhood. This connection has already been recognized and exploited by Göös and Suomela in [START_REF] Göös | Locally checkable proofs[END_REF][START_REF] Göös | Locally Checkable Proofs in Distributed Computing[END_REF]; we will mention it again below.

Related work in distributed computing

Rather surprisingly, the idea of extending descriptive complexity theory to the setting of distributed computing seems to be relatively new. The rst research in that direction (of which the author is aware) started in the early s as a collaboration between the Finnish communities of logic and distributed algorithms.

In [HJK + 12, HJK + 15], Hella et al. have presented a systematic study of several models of distributed computing that impose restrictions of varying degrees on the communication between the nodes of a network. Their most permissive model corresponds to the well-established port-numbering model, where every node has a separate communication channel with each of its neighbors and is guaranteed that the messages sent and received through that channel relate consistently to the same neighbor; the network is anonymous in the sense that nodes are not equipped with unique identi ers. In the nomenclature of [HJK + 12, HJK + 15], the class of graph problems solvable in this model by deterministic synchronous algorithms is denoted by c .

The classes of Hella et al.:

Incoming Outgoing c vector vector -multisetsetvector singleton multisetset -

Here, "synchronous" means that all nodes of the network share a global clock, thereby allowing the computation to proceed in an in nite sequence of rounds; in each round, all the nodes simultaneously exchange messages with their neighbors, and then update their local state based on the newly obtained information. Next, by dropping the channel-consistency guarantee, one obtains the class , where in each round, every node sees a vector consisting of all the incoming messages received from its neighbors, and generates a vector of outgoing messages that are sent to the neighbors; the di erence with c is that the two vectors are not necessarily sorted in the same order, so the node cannot assume that the neighbor who sends the i-th incoming message is the same who receives the i-th outgoing message. (However, the sorting orders do not change throughout the rounds.) Communication is further restricted in the classes and , where the vector of incoming messages is replaced by a multiset and a set, respectively. In the former case, a node cannot identify the senders of its incoming messages, whereas in the latter, it cannot even distinguish between several identical messages. Similarly, the classes , , and are characterized by the fact that the outgoing vector is replaced by a singleton, meaning that a node must broadcast the same message to all of its neighbors.

Background

The main result of [HJK + 12, HJK + 15] is that the preceding classes satisfy the linear order

⫋ = ⫋ = = ⫋ c .
The same order holds for the so-called local (or constant-time) versions of these classes, which contain only those graph problems that can be solved in a constant number of communication rounds, regardless of the size of the network. (For a relatively recent survey of local algorithms, see [START_REF] Suomela | Survey of local algorithms[END_REF].) Most relevant for the present thesis, the same paper also establishes a very natural correspondence between these local classes and several variants of modal logic. In particular, a graph property lies in (1), the local version of , if and only if it can be de ned by a formula of backward modal logic.

Using the backward version of standard modal logic is merely a presentational choice, motivated by the intuition that the messages of a distributed algorithm should ow in the same direction as the network links on which they travel. The presentation in [HJK + 12, HJK + 15] is a bit di erent.

Just like a distributed algorithm, such a formula is evaluated from the local point of view of a particular node in the input graph. In order to make a statement about the incoming neighborhood of that node, backward modal logic allows to move the current point of evaluation to one of the incoming neighbors by means of a special operator, called backward modality. The key insight of Hella et al. is that the nesting depth of these modalities corresponds precisely to the running time of the local algorithms that solve problems in (1). With this idea in mind, it is possible to derive similar characterizations for the other local classes (1), . . . , c (1) in terms of extensions of backward modal logic that o er additional types of modalities (viz., multimodal and graded modal logic).

Motivated by these results, the connection between distributed algorithms and modal logic was further investigated by Kuusisto in [START_REF] Kuusisto | Modal Logic and Distributed Message Passing Automata[END_REF] and [START_REF] Kuusisto | In nite Networks, Halting and Local Algorithms[END_REF]. The rst paper lifts the constraint of locality required in [HJK + 12, HJK + 15], thereby allowing algorithms with arbitrary running times. Now, for local algorithms, it does not matter whether we impose a restriction on the amount of memory space used by each node, because in a constant number of rounds, a node can only visit a constant number of di erent states. Therefore the local algorithms characterized by Hella et al. are implicitly nite-state machines. On the other hand, in the nonlocal case considered by Kuusisto, space restrictions have to be made explicit. His papers focus on algorithms for the class , since results for that class can easily be adapted to the others. In [START_REF] Kuusisto | Modal Logic and Distributed Message Passing Automata[END_REF], particular attention is devoted to a category of such algorithms that act as nite-state semi-deciders; we shall refer to them as distributed automata. The main result establishes a logical characterization of distributed automata in terms of a new recursive logic dubbed modal substitution calculus. In the same vein, it is also shown that the in nite-state generalizations of distributed automata recognize precisely those graph properties whose complement is de nable by the conjunction of a possibly in nite number of backward modal formulas (called modal theory). Furthermore, it is proven that on nite graphs, distributed automata are strictly more expressive than the least-xpoint fragment of the backward µ-calculus. This logic, which we shall refer to simply as the backward µ-fragment, extends backward modal logic with a least xpoint operator that may not be negated. It thus allows to express statements using least xpoints, but unlike in the full backward µ-calculus, greatest xpoints are forbidden. Finally, the second paper [START_REF] Kuusisto | In nite Networks, Halting and Local Algorithms[END_REF] makes crucial use of the connection with logic to show that universally halting distributed automata are necessarily local if in nite graphs are allowed into the picture.

Closely related to the work mentioned above, the last decade has also seen active research in distributed decision [START_REF] Feuilloley | Survey of Distributed Decision[END_REF], a eld that aims to develop a counterpart of computational complexity theory for distributed computing. In that context, the 1 Introduction nodes of a given network have to collectively decide whether or not their network satis es some global property. Every node rst computes a local answer, based on the information received from its neighbors over several rounds of communication, and then all answers are aggregated to produce a global verdict. Typically, the network is considered to be in a valid state if it has been unanimously accepted by all nodes; in other words, the global answer is the logical conjunction of the local answers.

Just as in classical complexity theory, a common approach in distributed decision is to start with some base class of deterministic algorithms, and then extend it with additional features, such as nondeterminism and randomness. However, depending on the underlying model of distributed computing, these additional features can quickly lead to excessive expressive power. For instance, if we add unrestricted nondeterminism to the widely adopted model,

The model allows unbounded synchronous communication between Turing-complete processors that are equipped with unique identi ers. Despite the name, algorithms in this model are not necessarily local.

then the nodes can simply guess a representation of the entire network and verify in one round that their guess was correct. Consequently, nondeterministic algorithms in the model can already decide every Turing-decidable graph property in a single round of communication (see, e.g., [START_REF] Feuilloley | Survey of Distributed Decision[END_REF]§ 4.1.1]). To make things more interesting, one therefore often imposes a restriction on the number of bits that each node can nondeterministically choose; viewing nondeterminism as the ability to "guess and verify", we refer to the bit strings guessed by the nodes as certi cates. A typically chosen bound on the size of those certi cates is logarithmic in the size of the network because this allows each node to guess only a constant number of processor identi ers. In stark contrast to the unbounded case, where Turing-decidability is the only limit, there are natural decision problems that cannot be solved by any nondeterministic local algorithm whose certi cates are logarithmically bounded. An example of such a problem is to verify whether a given tree is a minimum spanning tree, as has been shown by Korman and Kutten in [START_REF] Korman | Distributed veri cation of minimum spanning trees[END_REF]. Nevertheless, on connected graphs, nondeterminism with logarithmic certi cates provides enough power to decide every property de nable in within a constant number of rounds, essentially by using nondeterministic bits to construct a spanning tree and simulate existential set quanti ers. This observation has been made by Göös and Suomela in [START_REF] Göös | Locally checkable proofs[END_REF][START_REF] Göös | Locally Checkable Proofs in Distributed Computing[END_REF], based on the work of Schwentick and Barthelmann mentioned in the previous section.

Once existential quanti cation has been introduced into the system, a natural follow-up is to complement it with universal quanti cation; for instance, in classical complexity theory, alternating the two types of quanti ers leads to the polynomial hierarchy, which generalizes the classes and co . While not very interesting for the unrestricted model with unbounded certi cates (where nondeterminism already su ces to decide everything possible), this form of alternation provides a genuine increase of power if we consider distributed algorithms that are oblivious to the node identi ers. In [START_REF] Balliu | What Can Be Veri ed Locally[END_REF], Balliu, D'Angelo, Fraigniaud and Olivetti showed that we require one alternation between universal and existential quanti ers in order to be able to decide every Turing-decidable property in the identi er-oblivious variant of the model (with unbounded certi cates); hence the corresponding alternation hierarchy collapses to its second level. On the other hand, the hierarchy of the standard model with certi cates of logarithmic size is much less well understood; in particular, it is still open whether or not that hierarchy is in nite. As a rst step towards an answer, Feuilloley, Fraigniaud and Hirvonen showed in [START_REF] Feuilloley | A Hierarchy of Local Decision[END_REF] that if there is equality between the existential and universal versions of a given level in the logarithmic hierarchy, then the entire hierarchy collapses to that level. Furthermore, they could identify a decision problem that lies 1.2 Contributions outside of the hierarchy, which shows that even with the full power of alternation, algorithms whose certi cates are logarithmically bounded remain weaker than their unrestricted counterparts.

Contributions

Obviously, developing a descriptive complexity theory for distributed computing is a highly ambitious project, of which the present work can only strive to be a small building block. As its title suggests, this thesis does not deal with the powerful models of computation that are usually considered in distributed computing. Instead, it takes an automata-theoretic approach and focuses on a rather weak model that has already been explored by Hella et al. and Kuusisto, namely distributed automata. The main contributions are two new logical characterizations related to that model.

The rst covers a variant of local distributed automata, extended with a global acceptance condition and the ability to alternate between nondeterministic decisions of the individual processors and the creation of parallel computation branches. This kind of alternation constitutes a canonical generalization of nondeterminism, and is nowadays standard in automata theory. We show that the resulting alternating local automata with global acceptance are equivalent to on nite directed graphs. In spirit, they are similar to the alternation hierarchies considered in the distributed-decision community, even though their expressive power is much more restricted. They also share some similarities with Thomas' graph acceptors, as they use a combination of local conditions, checked by the nodes based on their neighborhood, and global conditions, checked at the level of the entire graph. However, both types of conditions are much simpler than in Thomas' model, which allows us to consider graphs of unbounded degree. To a certain extent, the equivalence with can be considered as a generalization to graphs of the classical result of Büchi, Elgot and Trakhtenbrot, although the machines involved are by no means deterministic; whereas on words and trees, alternation simply provides a more succinct representation of deterministic automata, it turns out to be a crucial ingredient in our case. If we allow only nondeterminism, we get a model that is not closed under complementation, and is even strictly weaker than , but has a decidable emptiness problem. Interestingly, that model is still powerful enough to characterize precisely the regular languages when restricted to words or trees. Hence, this work also contributes to the general observation, made in Section 1.1.1, that regularity becomes a moving target when lifted to the setting of graphs.

The second main contribution consists in a logical characterization of a fully deterministic class of nonlocal automata. As mentioned in Section 1.1.2, Kuusisto has noticed that distributed automata, in their unrestricted form, are strictly more powerful than the backward µ-fragment on nite graphs. While it is straightforward to evaluate any formula of the backward µ-fragment via a distributed automaton, there also exist automata that exploit the fact that a node can determine if it receives the same information from all of its neighbors at the exact same time. Such a behavior cannot be simulated in the backward µ-fragment, and actually not even in the much more expressive . However, since the argument relies solely on synchrony, it seems natural to ask whether removing this feature can lead to a distributed automaton model that has the same expressive power as the backward µ-fragment.

To answer this question, we introduce several classes of asynchronous automata that 1 Introduction transfer the standard notion of asynchronous algorithm to the setting of nite-state machines. Basically, this means that we eliminate the global clock from the network, thus making it possible for nodes to operate at di erent speeds and for messages to be delayed for arbitrary amounts of time, or even be lost. From the syntactic point of view, an asynchronous automaton is the same as a synchronous one, but it has to satisfy an additional semantic condition: its acceptance behavior must be independent of any timing-related issues. Taking a closer look at the automata obtained by translating formulas of the backward µ-fragment, we can easily see that they are in fact asynchronous. Furthermore, their state diagrams are almost acyclic, except that the states are allowed to have self-loops; we call this property quasi-acyclic. As it turns out, the two properties put together are su cient to give us the desired characterization: quasi-acyclic asynchronous automata are equivalent to the backward µ-fragment on nite graphs. Incidentally, this remains true even if we consider a seemingly more powerful variant of asynchronous automata, where all messages are guaranteed to be delivered.

Another aspect of distributed automata investigated in this thesis are decision problems, and more speci cally emptiness problems, where the task is to decide whether a given automaton accepts on at least one input graph. As all the equivalences mentioned above are e ective, we can immediately settle the decidability of the emptiness problem for local automata: it is decidable for the basic variant of Hella et al., but undecidable for the alternating extension that we shall consider. This is because the ( nite) satis ability problem is -complete for (backward) modal logic but undecidable for . The problem is also decidable for our classes of asynchronous automata, since ( nite) satis ability for the (backward) µ-calculus is -complete. However, the corresponding question for unrestricted, nonlocal automata was left open in [START_REF] Kuusisto | Modal Logic and Distributed Message Passing Automata[END_REF]. Here, we answer this question negatively for the general case and also consider it for three special cases. On the positive side, we obtain a decision procedure for a class of forgetful automata, where the nodes see the messages received from their neighbors but cannot remember their own state. When restricted to the appropriate families of graphs, these forgetful automata are equivalent to classical nite word automata, but strictly more expressive than nite tree automata. On the negative side, we show that the emptiness problem is already undecidable for two heavily restricted classes of distributed automata: the quasi-acyclic ones, and those that reject immediately if they receive more than one distinct message per round. For the latter class, we present a proof with an unusual twist, where a Turing machine is simulated by a distributed automaton in such a way that the roles of space and time are reversed between the two devices.

Finally, as a minor contribution, we investigate the problem of separating quanti er alternation hierarchies for several classes of formulas that are based on modal logic. Essentially, these classes are hybrids, obtained by adding the set quanti ers of to some variant of modal logic. They are motivated by the above characterizations of local distributed automata in terms of (backward) modal logic and . The contribution is a toolbox of simple encoding techniques that allow to easily transfer to the modal setting the separation results for established by Matz, Schweikardt and Thomas in [START_REF] Matz | The Monadic Quanti er Alternation Hierarchy over Graphs is In nite[END_REF][START_REF] Schweikardt | The Monadic Quanti er Alternation Hierarchy over Grids and Pictures[END_REF][START_REF] Matz | The Monadic Quanti er Alternation Hierarchy over Grids and Graphs[END_REF]. We thereby provide alternative proofs to similar ndings previously reported by Kuusisto in [START_REF] Kuusisto | A modal perspective on monadic second-order alternation hierarchies[END_REF][START_REF] Kuusisto | Second-order propositional modal logic and monadic alternation hierarchies[END_REF].

Outline

Outline

The structure of this thesis is rather straightforward. All the notions that occur in several places are de ned in Chapter 2. In particular, there is a simple de nition of distributed automata that subsumes most of the variants we shall consider. The subsequent four chapters (i.e., 3 to 6) are independent of each other and thus can be read in any order. In Chapter 3, we focus on local distributed automata and present the alternating variant with global acceptance, which is shown to be equivalent to . Chapter 4 shifts the focus to nonlocal automata; there we introduce the semantic notion of asynchrony and show that quasi-acyclic asynchronous automata are captured by the backward µ-fragment. Nonlocal automata are also the subject of Chapter 5, where we present both positive and negative decidability results on the emptiness problem for several restricted classes. Then, in Chapter 6, we switch completely to logic and consider issues related to quanti er alternation hierarchies. Finally, some perspectives for future research are brie y outlined in Chapter 7.

Note to the reader of the electronic version. The PDF version of this document makes extensive use of hyperlinks. In addition to the cross-reference links inserted automatically by the standard L A T E X package hyperref, most of the notions de ned within the document are linked to their point of de nition. This new feature, which concerns both text and mathematical notation, is based on the knowledge package developed by Thomas Colcombet. Beware that there can be several links within a single symbolic expression; for instance, the expression ⟦ Σ ( → )⟧ @ contains links to ve di erent concepts: ⟦. . .⟧, , Σ , → , and @ .

Preliminaries

This chapter introduces essential notation and terminology that will be recurring throughout this thesis. It is meant to be consulted for speci c information rather than for consecutive reading. Concepts that are speci c to a single chapter, will be introduced later, along with the topic.

Basic notation

We denote the empty set by ∅, the set of Boolean values by 2 = {0, 1}, the set of For any two sets S and T , the set of all functions from S to T is denoted T S . This notation gives rise to two important special cases. First, we write 2 S for the power set of S, since we can identify it with the set of all functions from S to {0, 1}. Second, given k ∈ N, we write S k ∶= S [k] for the set of all k-tuples over S, since we can identify it with the set of functions from [k] to S. All of these notations have another special case in common: the set of binary strings of length k, denoted 2 k , can be interpreted as either the function space from [k] to 2, or the power set of [k], or the set of k-tuples over 2. By the rst interpretation, the individual letters of a string x of length k will be denoted x(1), . . . , x(k). Furthermore, we write S for the cardinality of S and x for the length of x.

Symbols

Since logic plays an important role in this thesis, it also has an in uence on how we present other concepts; in particular, our de nition of directed graphs in Section 2.4 will refer to the notion of (abstract) symbol. We shall not always make a sharp distinction between variables and (non-logical) constants. Instead, there is simply a xed supply of symbols, which can serve both as variables and as constants. Hence, the terms "variable" and "constant" are just synonyms for "symbol"; we will use them whenever we want to clarify the intended role of a symbol within a given context.

The set S 0 contains our node symbols, which within formulas will represent nodes of structures such as graphs; among them, there is a special position symbol @. Moreover, for every integer k ⩾ 1, we let S k denote the set of k-ary relation symbols.

All of these sets are in nite and pairwise disjoint. If a symbol lies in S k , for k ⩾ 0, then we call k the arity of that symbol. We also denote the set of all symbols by S, i.e., S ∶= ⋃ k⩾0 S k , S contains both variables and constants.

and shall often refer to the unary relation symbols in S 1 as set symbols. Node symbols will always be represented by lower-case letters, and relation symbols by upper-case ones, often decorated with subscripts. Typically, we use x, y, z for node variables or arbitrary node symbols, X, Y, Z for set variables or arbitrary set symbols, P, Q for set constants, and R, S for relation constants of higher arity or arbitrary symbols. (See Section 2.6 for some simple examples.)

Structures

Before we formally introduce directed graphs in the next section, we de ne the more general concept of a relational structure. Although the present thesis focuses mainly on variants of directed graphs, this top-down approach will allow us to specify the semantics of several types of logical formulas in a uni ed framework, using a consistent notation. In particular, it will be apparent that modal logic simply provides an alternative syntax for a certain fragment of rst-order logic (see Section 2.5).

Let σ be any subset of S. A (relational) structure G of signature σ consists of a nonempty set of nodes V G (also called the domain of G), a node x G of V G for each node symbol x in σ, and a k-ary relation R G on V G for each k-ary relation symbol R in σ. Here, x G and R G are called G's interpretations of the symbols x and R. We may also say that G is a structure over σ, or that σ is the underlying signature of G, and we denote σ by sig(G). In case the position symbol @ lies in sig(G), we call G a pointed structure and @ G the distinguished node of G.

A set of structures will be referred to as a structure language. As is customary, we are only interested in structures up to isomorphism. That is, two structures over σ are considered to be equal if there is a bijection between their domains that preserves the interpretations of all symbols in σ. Consequently, our structure languages characterize only properties that are invariant under isomorphism.

Let G be a structure and α be a map of the form

{S 1 ↦ I 1 , . . . , S n ↦ I n } that assigns to each symbol S i ∈ S, for i ∈ [n], a suitable interpretation I i over the domain of G. That is, if S i ∈ S 0 , then I i ∈ V G , and if S i ∈ S k , for k ⩾ 1, then I i ⊆ (V G ) k .
We use the notation G[α] to designate the α-extended variant of G, which is the structure G ′ obtained from G by interpreting each symbol S i as I i , while maintaining the other interpretations provided by G. More formally, letting σ = {S 1 , . . . , S n }, we have

V G ′ = V G , sig(G ′ ) = sig(G) ∪ σ, S G ′ i = I i for i ∈ [n], and 
T G ′ = T G for T ∈ sig(G) ∖ σ.
Often, we do not want to give an explicit name to the assignment α, in which case we may denote G ′ by G[S 1 , . . . , S n ↦ I 1 , . . . , I n ]. If the interpretations of the symbols in σ are clear from context, we may also refer to G ′ as the σ-extended variant of G. Furthermore, as we will often consider pointed variants of structures, we introduce the shorthand G

[v] ∶= G[@ ↦ v] for v ∈ V G ,
and refer to G[v] as the v-pointed variant of G (i.e., the variant of G with distinguished node v).

Di erent kinds of digraphs

The structures we are actually interested in are several variants of directed graphs; these are structures with nite domains and relations of arity at most 2. To facilitate lookup and comparison, we present them all in the same section. In the following de nitions, let s and r be non-negative integers.

An s-bit labeled, r-relational directed graph, abbreviated digraph, is a nite structure G of signature {P 1 , . . . , P s , R 1 , . . . , R r }, where P 1 , . . . , P s are set symbols, and R 1 , . . . , R r are binary relation symbols.

The sets P G 1 , . . . , P G s , which we shall call labeling sets, determine a (node) labeling λ G ∶ V G → 2 s that assigns a binary string of length s to each node. More precisely, we de ne λ G such that

λ G (v)(i) = 0 if v ∉ P i , 1 otherwise, for all v ∈ V G and i ∈ [s]. Given another mapping ζ∶ V G → 2 s ′ with s ′ ∈ N, we shall denote by G[ζ] Our bracket notation is overloaded, but if one knows the type of ζ, the ζ-relabeled variant G[ζ] of G should be easy to distinguish from an α-extended variant G[α], as well as from a v-pointed variant G[v].
the ζ-relabeled variant of G, i.e., the s ′ -bit labeled digraph G ′ that is the same as G, except that its labeling λ G ′ is equal to ζ. It is often convenient to regard the labels of an s-bit labeled digraph as the binary encodings of letters of some nite alphabet Σ. With respect to a given injective map f∶ Σ → 2 s , a Σ-labeled digraph is an s-bit labeled digraph G such that for every node v ∈ V G , we have λ G (v) = f(a) for some a ∈ Σ. Since we do not care about the speci c encoding function f, we will never mention it explicitly, and just call G a Σ-labeled, r-relational digraph.

The binary relations R G 1 , . . . , R G r will be referred to as edge relations. If uv is an edge in R G i , then u is called an incoming i-neighbor of v, or simply an incoming neighbor, and v is called an outgoing i-neighbor of u, or just outgoing neighbor. We also say that u and v are adjacent, and without further quali cation, the term neighbor refers to both incoming and outgoing neighbors. The (undirected) neighborhood of a node is the set of all of its neighbors, and the incoming and outgoing neighborhoods are de ned analogously. A node without incoming neighbors is called a source, whereas a node without outgoing neighbors is called a sink.

The class of all s-bit labeled, r-relational digraphs is denoted by r s . In case the parameters are s = 0 and r = 1, we may omit them and use the shorthand ∶= 1 0 . We shall also drop the subscripts on the symbols, and just write P or R, if there is only one symbol of a given arity. Furthermore, we denote by r Σ the class of all Σ-labeled, r-relational digraphs.

As can be easily guessed from the previous de nitions, a pointed digraph is a digraph in which some node has been marked by the position symbol @, i.e., it is a structure of the form G[@ ↦ v], with G ∈ r s and v ∈ V G . We write @ r s for the set of all s-bit labeled, r-relational pointed digraphs, and de ne @ ∶= @ 1 0 . A digraph G is called an (s-bit labeled, r-relational) undirected graph, or simply graph, if all of its edge relations are irre exive and symmetric, i.e., if for all u, v ∈ V G and i ∈ 

[r], it holds that uu ∉ R G i ,
∈ R G i implies λ G (u) ≠ λ G (v), for all u, v ∈ V G and i ∈ [r]. If Σ = k,
such a coloring is called a k-coloring of G, and any r-relational digraph for which a k-coloring exists is said to be k-colorable. Note that, by de nition, a digraph that contains self-loops is not k-colorable for any k.

A directed rooted tree, or ditree, is an (s-bit labeled) r-relational digraph G that has a distinct node v , called the root, such that R G i ∩ R G j = ∅ for i ≠ j, and from each node v in V G , there is exactly one way to reach v by following the directed edges in

⋃ 1⩽i⩽r R G i . A pointed ditree is a pointed digraph G[v ],
where G is a ditree and v is its root. Moreover, a (pointed) r-relational ditree is called ordered if for 1 ⩽ i ⩽ r, every node has at most one incoming i-neighbor and every node that has an incoming (i + 1)-neighbor also has an incoming i-neighbor. As a special case, an ordered 1-relational ditree is referred to as a directed path, or dipath. Accordingly, the distinguished node of a pointed dipath is the last node (the one with no outgoing neighbor). The classes of pointed dipaths and pointed ordered ditrees can be identi ed with the structures on which classical word and tree automata are run. We denote them by @ s and @ r s , respectively. We shall also consider an important subclass of 2 s whose members represent rectangular labeled grids (also called pictures). In such a structure G, each node is identi ed with a grid cell, and the edge relations R G 1 and R G 2 are interpreted as the "vertical" and "horizontal" successor relations, respectively. The unique node that has no predecessor at all is regarded as the "upper-left corner", and all the usual terminology of matrices applies. Formally, G is a s-bit labeled grid if, for some m, n ⩾ 1, it is isomorphic to a structure with domain {1, . . . , m} × {1, . . . , n} and edge relations

R G 1 = (i, j), (i + 1, j) 1 ⩽ i < m, 1 ⩽ j ⩽ n , R G 2 = (i, j), (i, j + 1) 1 ⩽ i ⩽ m, 1 ⩽ j < n .
If s = 0, we refer to G simply as a grid. In alignment with the previous nomenclature, we let and s denote the classes of grids and s-bit labeled grids. A digraph language is a structure language that consist of digraphs with a xed number of labeling sets and edge relations, i.e., a subset of r s , for some s, r ∈ N + . The notion is de ned analogously for all the other classes of structures introduced above. In particular, a pointed-digraph language is a subset of @ r s .

The considered logics

As we shall contemplate both classical logic and several variants of modal logic, we introduce them all in a common framework. First we de ne the syntax and semantics of a generalized language, and then we specify which particular syntactic fragments we are interested in. Some examples will follow in Section 2.6. 

G ⊧ ψ x {@, x} @ G = x G (x ≐ y) {x, y} x G = y G X {@, X} @ G ∈ X G X(x) {x, X} x G ∈ X G R(x 0 , . . . , x k ) {x 0 , . . . , x k , R} (x G 0 , . . . , x G k ) ∈ R G ¬ϕ free(ϕ) not G ⊧ ϕ (ϕ 1 ∨ ϕ 2 ) free(ϕ 1 ) ∪ free(ϕ 2 ) G ⊧ ϕ 1 or G ⊧ ϕ 2 R (ϕ 1 , . . . , ϕ k ) {@, R} ∪ ⋃ 1⩽i⩽k free(ϕ i ) For some v 1 , . . , v k ∈ V G such that (@ G , v 1 , . . , v k ) ∈ R G , we have G[@ ↦ v i ] ⊧ ϕ i for each i ∈ {1, . . , k}.
R (ϕ 1 , . . . , ϕ k ) same as above As above, except for the condition

(v k , . . . , v 1 , @ G ) ∈ R G . • ϕ free(ϕ) ∖ {@} G[@ ↦ v] ⊧ ϕ for some v ∈ V G ∃ x ϕ free(ϕ) ∖ {x} G[x ↦ v] ⊧ ϕ for some v ∈ V G ∃ X ϕ free(ϕ) ∖ {X} G[X ↦ W] ⊧ ϕ for some W ⊆ V G
Here, x, x 0 , . . . , x k , y ∈ S 0 , X ∈ S 1 , R ∈ S k+1 , and ϕ, ϕ 1 , . . . , ϕ k are formulas, for k ⩾ 1.

Table 2.1. Syntax and semantics of the considered logics.

Class of formulas Generating grammar

First-order ϕ ∶∶= (x ≐ y) X(x) R(x 0 , . . . ,

x k ) ¬ϕ (ϕ 1 ∨ ϕ 2 ) ∃ x ϕ Existential ϕ ∶∶= ψ ∃ X ϕ, where ψ ∈ . Equivalently, ∶= Σ 1 ( ); see Section 6.1. Monadic ϕ ∶∶= (x ≐ y) X(x) R(x 0 , . . . , x k ) ¬ϕ (ϕ 1 ∨ ϕ 2 ) ∃ x ϕ ∃ X ϕ second-order Equivalently, ∶= ( ). → Modal ϕ ∶∶= x X ¬ϕ (ϕ 1 ∨ ϕ 2 ) R (ϕ 1 , . . . , ϕ k ) ← Backward modal ϕ ∶∶= x X ¬ϕ (ϕ 1 ∨ ϕ 2 ) R (ϕ 1 , . . . , ϕ k ) ↔ Bidirectional modal ϕ ∶∶= x X ¬ϕ (ϕ 1 ∨ ϕ 2 ) R (ϕ 1 , . . . , ϕ k ) R (ϕ 1 , . . . , ϕ k ) → g
Modal with global modalities

ϕ ∶∶= x X ¬ϕ (ϕ 1 ∨ ϕ 2 ) R (ϕ 1 , . . . , ϕ k ) • ϕ ← g , ↔ g
Analogous to the preceding grammars.

(Φ) Φ extended with set quanti ers Same grammar as Φ with the additional choice " ∃ X ϕ".

Here, x, x 0 , . . . , x k , y ∈ S 0 , X ∈ S 1 , R ∈ S k+1 , for k ⩾ 1, and

Φ ∈ { → , ← , . . . , ↔ g , }.
Table 2.2. The considered classes of formulas.

2 Preliminaries formula ϕ, i.e., outside the scope of a binding operator. If free(ϕ) ⊆ σ, we say that ϕ is a sentence over σ. Sometimes, when the notions of "variable" and "constant" are clear from context, we also use the notation ϕ(x 1 , . . . , x m , X 1 , . . . , X n ) to indicate that at most the variables given in brackets occur freely in ϕ, i.e., that no other variables than x 1 , . . . , x m , X 1 , . . . , X n lie in free(ϕ). The relation ⊧ de ned in Table 2.1 speci es in which cases a structure G satis es ϕ, written G ⊧ ϕ, assuming that ϕ is a sentence over sig(G). Otherwise, we stipulate that G ⊭ ϕ.

Of particular interest for this thesis are those formulas in which the node symbol @ is considered to be free, although it might not occur explicitly. They are evaluated on a pointed structure G from the perspective of the node @ G . Atomic formulas of the form x or X, with x ∈ S 0 and X ∈ S 1 , are satis ed if @ G is labeled by the corresponding symbol. Using the operator R , which is called the R-diamond, we can remap the symbol @ through existential quanti cation over the nodes in G that are reachable from @ G through the relation R G . If we want to do the same with respect to the inverse relation of R G , we can use the backward R-diamond R . In addition, there is also the global diamond • (unfortunately often called "universal modality"), which ranges over all nodes of G. It can be considered as the diamond operator corresponding to the relation V G × V G , i.e., the edge relation of the complete digraph over V G . To facilitate certain descriptions, we shall sometimes treat R and • as special cases of R , assuming that they are implicitly associated with the reserved relation symbols R -1 and •, respectively. These symbols do not belong to S, and therefore cannot be interpreted by any structure.

Allowing a bit of syntactic sugar, we will make liberal use of the remaining operators of predicate logic, i.e., ∧, →, ↔, ∀, and we may leave out some parentheses, assuming that ∨ and ∧ take precedence over → and ↔. Furthermore, we de ne the abbreviations ⊺ ∶= @, ∶= ¬@, and R (ϕ 1 , . . . , ϕ k ) ∶= ¬ R (¬ϕ 1 , . . . , ¬ϕ k ).

Note that it makes sense to de ne ⊺ ("true") as @, since by de nition, the atomic formula @ is always satis ed at the point of evaluation. Also, the second line remains applicable if one substitutes R -1 or • for R. The resulting operators R , R and • provide universal quanti cation and are called boxes (using the same attributes as for diamonds). Diamonds and boxes are collectively referred to as modalities or modal operators. In case we restrict ourselves to structures that only have a single relation, we may omit the relation symbol R, and just use empty modalities such as . Similarly, if the relation symbols involved are indexed, like R 1 , . . . , R r , we associate them with modalities of the form i , for 1 ⩽ i ⩽ r.

Let us now turn to the particular classes of formulas considered in this thesis, which are speci ed in Table 2.2. The languages of rst-order logic ( ), existential monadic second-order logic ( ), and monadic second-order logic ( ) are de ned in the usual way. When evaluated on some structure G, their atomic formulas allow to compare nodes assigned to node symbols in sig(G) with respect to the equality relation and any other relation assigned to a relation symbol in sig(G). In , we can assign new interpretations to node symbols by means of existential and universal quanti cation over nodes. In , we may additionally reinterpret set symbols using existential quanti ers over sets of nodes, and in , we can also use the corresponding universal quanti ers.

Example formulas

The remaining classes of formulas can all be quali ed as modal languages, insofar as they include modal operators instead of the classical rst-order quanti ers. By performing this change of paradigm, we lose our "bird's-eye view" of the structure G, and now see it from the local point of view of the node @ G . (For this, G obviously has to be pointed.) In basic modal logic ( → ), a node "sees" only its outgoing neighbors, and thus our domain of quanti cation is restricted to those neighbors. Furthermore, the position symbol @ is the only node symbol whose interpretation can be changed by a modal operator. Backward modal logic ( ← ) is the variant of → where a node "sees" its incoming neighbors instead of its outgoing neighbors, whereas bidirectional modal logic ( ↔ ) is the combination where a node "sees" both incoming and outgoing neighbors. We will also look at modal logic with global modalities ( → g ), where we regain the possibility to quantify over the entire domain of the structure, but are still con ned to remapping only the position symbol @. The backward and bidirectional variants ← g and ↔ g are de ned analogously. Finally, we also consider crossover versions of modal logic that are enriched with the set quanti ers of . Given a class of formulas Φ, we denote by (Φ) the corresponding enriched class. For instance, the formulas of ( → ) are generated by the grammar

ϕ ∶∶= x X ¬ϕ (ϕ 1 ∨ ϕ 2 ) R (ϕ 1 , . . . , ϕ k ) ∃ X ϕ,
where x ∈ S 0 , X ∈ S 1 , and R ∈ S k+1 . Note that by this notation, = ( ). For any class of formulas Φ, we shall refer to its members as Φ-formulas. Given a Φ-formula ϕ, a class of structures C (e.g., ), and a structure G, we use the semantic bracket notations ⟦ϕ⟧ C and ⟦ϕ⟧ G to denote the structure language de ned by ϕ over C, and the set of nodes of G at which ϕ holds. More formally,

⟦ϕ⟧ C ∶= G ∈ C G ⊧ ϕ , and ⟦ϕ⟧ G ∶= v ∈ V G G[@ ↦ v] ⊧ ϕ .
Furthermore, ⟦Φ⟧ C denotes the family of structure languages that are de nable in Φ (or Φ-de nable) over C, i.e.,

⟦Φ⟧ C ∶= ⟦ϕ⟧ C ϕ ∈ Φ .
If C is equal to the set of all structures, then we do not have to specify it explicitly as a subscript; that is, we may simply write ⟦ϕ⟧ and ⟦Φ⟧ instead of ⟦ϕ⟧ C and ⟦Φ⟧ C . Similarly, we use

[ϕ] C ∶= ψ ⟦ψ⟧ C = ⟦ϕ⟧ C
for the equivalence class of ϕ over C, and

[Φ] C ∶= ⋃ ϕ∈Φ [ϕ] C
for the set of all formulas that are equivalent over C to some formula in Φ. Again, we may drop the subscript if we do not want to restrict to a particular class of structures.

Example formulas

In order to illustrate the syntax introduced in the previous section, we now look at two simple examples.

Preliminaries

The rst is a great classic that is often used to show how a widely known graph property can be expressed in without too much e ort.

Example 2.1 (3-Colorability).

▸ The following -formula de nes the language of 3-colorable digraphs over .

ϕ color 3 ∶= ∃ X 1 ,X 2 ,X 3 ∀ x X 1 (x) ∨ X 2 (x) ∨ X 3 (x) ∧ ¬ X 1 (x) ∧ X 2 (x) ∧ ¬ X 1 (x) ∧ X 3 (x) ∧ ¬ X 2 (x) ∧ X 3 (x) ∧ ∀ x,y R(x, y) → ¬ X 1 (x) ∧ X 1 (y) ∧ ¬ X 2 (x) ∧ X 2 (y) ∧ ¬ X 3 (x) ∧ X 3 (y)
The existentially quanti ed set variables X 1 , X 2 , X 3 ∈ S 1 represent the three possible colors. In the rst four lines, we specify that the sets assigned to these variables form a partition of the set of nodes (possibly with empty components). The remaining three lines constitute the actual de nition of a valid coloring: no two adjacent nodes share the same color, which means that adjacent nodes are in di erent sets.

◂

Our second example is equally simple, but less glamorous because it illustrates a technical issue that will concern us in Chapter 6, where we shall work with ( → g ) and some variants thereof. As we do not allow rst-order quanti cation in modal logic with set quanti ers, some properties that seem very natural in (and thus ) become rather cumbersome to express. Nevertheless, translation from to ( → g ) is always possible because we can simulate rst-order quanti ers by set quanti ers relativized to singletons, which, by extension, also entails the equivalence of and ( → g ). Example 2.2 presents the basic construction that allows us to do this. We will refer to it several times in Chapter 6.

Example 2.2 (Uniqueness).

▸ Consider the following formula schema, where X ∈ S 1 , R ∈ S 2 , and ϕ can be any

↔ g -formula: see1 R (ϕ) ∶= R ϕ ∧ ∀ X R (ϕ ∧ X) → R (ϕ → X) .
When evaluated on a pointed structure G whose signature includes {@, R} ∪ free(ϕ), the formula see1 R (ϕ) states that there is exactly one node v ∈ V G reachable from @ G through an R G -edge, such that ϕ is satis ed at v (i.e., by the structure G[@ ↦ v]). In the context of 1-relational digraphs, we may use the shorthand see1(ϕ) to invoke this schema. Using the same construction with global modalities, we also de ne tot1(ϕ) ∶= see1 • (ϕ), which states that there is precisely one node in the entire structure G at which ϕ is satis ed. Here, G does not necessarily have to be pointed, and, of course, sig(G) does not contain • (since it is the symbol reserved for the total symmetric relation). ◂

Distributed automata

Anticipating the notation of Section 6.1, the formulas obtained by the construction in Example 2.2 can be classi ed as [Π 1 (Φ)]-formulas, where Φ ∈ { → , ↔ , → g , ↔ g } depends on the speci c modalities that occur in ϕ.

Distributed automata

We conclude this preliminary chapter by introducing our primary objects of interest. Simply put, a distributed automaton is a deterministic nite-state machine A that reads sets of states instead of the usual alphabetic symbols. To run A on a 1-relational digraph G, we place a separate copy of the machine on every node v of G, initialize it to a state that may depend on v's label λ G (v), and then let all the nodes communicate in an in nite sequence of synchronous rounds. In every round, each node computes its next state as a function of its own current state and the set of states of its incoming neighbors. Intuitively, node v broadcasts its current state q to every outgoing neighbor, while at the same time collecting the states received from its incoming neighbors into a set S; the successor state of q is then computed as a function of q and S. Since S is a set (as opposed to a multiset or a vector), v cannot distinguish between two incoming neighbors that share the same state. Now, acting as a semi-decider, the machine at node v accepts precisely if it visits an accepting state at some point in time. Either way, all machines of the network keep running and communicating forever. This is because even if a node has already accepted, it may still obtain new information that a ects the acceptance behavior of its outgoing neighbors.

Let us now de ne the notion of distributed automaton more formally, and generalize it to digraphs with an arbitrary number of edge relations.

Definition 2.3 (Distributed automaton).

▸ A (deterministic, nonlocal ) distributed automaton ( ) over Σ-labeled, r-relational digraphs is a tuple A = (Q, δ 0 , δ, F), where Q is a nite nonempty set of states,

δ 0 ∶ Σ → Q is an initialization function, δ∶ Q × (2 Q ) r → Q is a transition function, and F ⊆ Q is a set of accepting states.

◂

Let G be a Σ-labeled, r-relational digraph. The run of A on G is an in nite sequence ρ = (ρ 0 , ρ 1 , ρ 2 , . . . ) of maps ρ t ∶ V G → Q, called con gurations, which are de ned inductively as follows, for t ∈ N and v ∈ V G :

ρ 0 (v) = δ 0 (λ G (v)) and ρ t+1 (v) = δ ρ t (v), {ρ t (u) uv ∈ R G i } 1⩽i⩽r .
For v ∈ V G , the automaton A accepts the pointed digraph G[v] if v visits an accepting state at some point in the run ρ of A on G, i.e., if there exists t ∈ N such that ρ t (v) ∈ F.

The pointed-digraph language of A, or pointed-digraph language recognized by A, is the set of all pointed digraphs that are accepted by A. We denote this language by ⟦A⟧ @ r Σ , in analogy to our notation for logical formulas. Similarly, given a class of automata A, we write ⟦A⟧ @ r Σ for the class of pointed-digraph languages over @ r Σ that are recognized by some member of A; we call them A-recognizable. As usual, two devices (i.e., automata or formulas) are equivalent if they specify (i.e., recognize or de ne) the same language.

In distributed computing, one often considers algorithms that run in a constant number of synchronous rounds. They are known as local algorithms (see, e.g., 2 Preliminaries [START_REF] Suomela | Survey of local algorithms[END_REF]). Here, we use the same terminology for distributed automata and give a syntactic de nition of locality in terms of state diagrams. Basically, a distributed automaton is local if its state diagram does not contain any directed cycles, except for self-loops on sink states. This is equivalent to requiring that all nodes stop changing their state after a constant number of rounds.

Definition 2.4 (Local distributed automaton).

▸ A local distributed automaton ( ) over r-relational digraphs is a distributed automaton A = (Q, δ 0 , δ, F) whose state diagram satis es the following two conditions: a. The only directed cycles are self-loops. That is, for every sequence q 1 , q 2 , . . . , q n of states in Q such that q 1 = q n and δ(q i , ⃗ S i ) = q i+1 for some ⃗ S i ∈ (2 Q ) r , it must be that all states of the sequence are the same. b. Self-loops occur only on sink states. That is, for every state q ∈ Q, if δ(q, ⃗ S) = q for some ⃗ S ∈ (2 Q ) r , then the same must hold for all ⃗ S ∈ (2 Q ) r .

◂

Deviating only in nonessential details from the original presentation given by Hella et al. in [HJK + 12, HJK + 15], we can now restate their logical characterization of the class (1) using the terminology introduced above.

Theorem 2.5 ( ⟦ ⟧ @ r Σ = ⟦ ← ⟧ @ r Σ ; [HJK + 12, HJK + 15] ).
▸ A pointed-digraph language is recognizable by a local distributed automaton if and only if it is de nable by a formula of backward modal logic. There are e ective translations in both directions.

◂

The notion of locality plays a major role in Chapter 3, where we extend 's with the capacity of alternation and a global acceptance condition. Our extension leaves the realm of basic 's, since we show that it is equivalent to , which by [Kuu13a, Prp. 6 & 8] is incomparable with 's.

On the other hand, in Chapters 4 and 5, we consider a simpler extension of 's, which can be seen as a natural intermediate stage between 's and 's. Given the above de nition of local automata, a rather obvious generalization is to allow selfloops on all states, even if they are not sink states; we call this property quasi-acyclic. More formally, a quasi-acyclic distributed automaton (

) is a that satis es Item a of De nition 2.4, but not necessarily Item b. An example of such an automaton will be provided in Section 4.1 (Figure 4.1 on page 40).

Alternating Local Automata

In this chapter, we transfer the well-established notion of alternating automaton to the setting of local distributed automata and combine it with a global acceptance condition. This gives rise to a new class of graph automata that recognize precisely the languages of nite digraphs de nable in . By restricting transitions to be nondeterministic or deterministic, we also obtain two strictly weaker variants for which the emptiness problem is decidable.

Informal description

We start with an informal description of the adjustments that we make to the basic model of local automata (see Section 2.7). Formal de nitions will follow in Section 3.2.

The term "local distributed automaton with global acceptance condition" ( g ) will be used to refer collectively to the deterministic, nondeterministic and alternating versions of our model. Let us rst mention the properties they have in common.

Levels of states.

As for basic local automata, the number of communication rounds is limited by a constant. To make this explicit and to simplify the subsequent de nition of alternation, we associate a number, called level, with every state. In most cases, this number indicates the round in which the state may occur. We require that potentially initial states are at level 0, and outgoing transitions from states at level i go to states at level i + 1. There is an exception, however: the states at the highest level, called the permanent states, can also be initial states and can have incoming transitions from any level. Moreover, all their outgoing transitions are self-loops. The idea is that, once a node has reached a permanent state, it terminates its local computation, and waits for the other nodes in the digraph to terminate too.

Global acceptance. Unlike for basic local automata, the considered input is a digraph, not a pointed digraph, and consequently the language recognized by an g is a digraph language. For this reason, once all the nodes have reached a permanent state, the g ceases to operate as a distributed algorithm, and collects all the reached permanent states into a set F. This set is the sole acceptance criterion: if

F q 1 q yes q ini q 2 q no q 3 ∌q 1 ∋q 1 ∌q 2 ∋q 2 ∌q 3 ∋q 3 Figure 3.1.
A color 3 , a nondeterministic g over unlabeled, 1-relational digraphs whose digraph language consists of the 3-colorable digraphs.

is part of the g 's accepting sets, then the input digraph is accepted, otherwise it is rejected. In particular, the automaton cannot detect whether several nodes have reached the same permanent state. This limitation is motivated by the desire to have a simple nite representation of g 's; in other words, the same reason why we do not allow nodes to distinguish between several neighbors that are in the same state.

As an introductory example, we translate the -formula ϕ color 3 from Example 2.1 in Section 2.6 to the setting of g 's.

Example 3.1 (3-colorability).

▸ Figure 3.1 shows the state diagram of a simple nondeterministic g A color 3 . The states are arranged in columns corresponding to their levels, ascending from left to right. A color 3 expects an unlabeled digraph as input, and accepts it if and only if it is 3-colorable. The automaton proceeds as follows: All nodes of the input digraph are initialized to the state q ini . In the rst round, each node nondeterministically chooses to go to one of the states q 1 , q 2 and q 3 , which represent the three possible colors. Then, in the second round, the nodes verify locally that the chosen coloring is valid. If the set received from their incoming neighborhood (only one, since there is only a single edge relation) contains their own state, they go to q no , otherwise to q yes . The automaton then accepts the input digraph if and only if all the nodes are in q yes , i.e., {q yes } is its only accepting set. This is indicated by the bar to the right of the state diagram. We shall refer to such a representation of sets using bars as barcode.

◂

The last property, which applies only to our most powerful version of g 's, is alternation, a generalization of nondeterminism introduced by Chandra, Kozen and Stockmeyer in [START_REF] Ashok | Alternation[END_REF] (there, for Turing machines and other types of word automata).

Alternation. In addition to being able to nondeterministically choose between di erent transitions, nodes can also explore several choices in parallel. To this end, the nonpermanent states of an alternating g ( g ) are partitioned into two types, existential and universal, such that states on the same level are of the same type. If, in a given round, the nodes are in existential states, then they nondeterministically choose a single state to go to in the next round, as described above. In contrast, if they are in universal states, then the run of the g is split into several parallel branches, called universal branches, one for each possible combination of choices of the nodes. This procedure of splitting is repeated recursively for each round in which the nodes are in universal states. The g then accepts the input digraph if and only if its acceptance condition is satis ed in every universal branch of the run.

q 1 q yes q ini q 2 q no q 3 ∌q 1 ∋q 1 ∌q 2 ∋q 2 ∌q 3 ∋q 3 Figure 3.2.
A color 3 , an alternating g over unlabeled, 1-relational digraphs whose digraph language consists of the digraphs that are not 3-colorable.

Example 3.2 (Non-3-colorability).

▸ To illustrate the notion of universal branching, consider the

g A color 3 shown in Figure 3.2. It is a complement automaton of A color 3 from Example 3.1, i.e.
, it accepts precisely those (unlabeled) digraphs that are not 3-colorable. States represented as boxes are universal (whereas the diamonds in Figure 3.1 stand for existential states). Given an input digraph with n nodes, A color 3 proceeds as follows: All nodes are initialized to q ini . In the rst round, the run is split into 3 n universal branches, each of which corresponds to one possible outcome of the rst round of A color 3 running on the same input digraph. Then, in the second round, in each of the 3 n universal branches, the nodes check whether the coloring chosen in that branch is valid. As indicated by the barcode, the acceptance condition of A color 3 is satis ed if and only if at least one node is in state q no , i.e., the accepting sets are {q no } and {q yes , q no }. Hence, the automaton accepts the input digraph if and only if no valid coloring was found in any universal branch. Note that we could also have chosen to make the states q 1 , q 2 and q 3 existential, since their outgoing transitions are deterministic. Regardless of their type, there is no branching in the second round.

◂

Formal definitions

We now repeat and clarify the notions from Section 3.1 in a more formal setting, beginning with our most general de nition of g 's.

Definition 3.3 (Alternating local distributed automaton).

▸ An alternating local distributed automaton with global acceptance condition

( g ) over Σ-labeled, r-relational digraphs is a tuple A = ( ⃗ Q, δ 0 , δ, F), where • ⃗ Q = (Q E , Q A , Q P ) is a collection of states, with Q E , Q
A and Q P ≠ ∅ being pairwise disjoint nite sets of existential, universal and permanent states, respectively, also referred to by the notational shorthands

-Q ∶= Q E ∪ Q A ∪ Q P , for the entire set of states, -Q N ∶= Q E ∪ Q A , for the set of nonpermanent states, • δ 0 ∶ Σ → Q is an initialization function, • δ∶ Q × (2 Q ) r → 2 Q is a (local) transition function, and • F ⊆ 2 Q P is
a set of accepting sets of permanent states.

Alternating Local Automata

The functions δ 0 and δ must be such that one can unambiguously associate with every state q ∈ Q a level l A (q) ∈ N satisfying the following conditions:

• States on the same level are of the same type, i.e., for every i ∈ N,

{q ∈ Q l A (q) = i} ∈ (2 Q E ∪ 2 Q A ∪ 2 Q P ).
• Initial states are either on the lowest level or permanent, i.e., for every q ∈ Q, ∃a ∈ Σ∶ δ 0 (a) = q implies l A (q) = 0 ∨ q ∈ Q P .

• Nonpermanent states without incoming transitions are on the lowest level, and transitions between nonpermanent states go only from one level to the next, i.e., for every q ∈ Q N ,

l A (q) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 0 if for all p ∈ Q and ⃗ S ∈ (2 Q ) r , it holds that q ∉ δ(p, ⃗ S), i + 1 if there are p ∈ Q N and ⃗ S ∈ (2 Q ) r such that l A (p) = i and q ∈ δ(p, ⃗ S).
• The permanent states are one level higher than the highest nonpermanent ones, and have only self-loops as outgoing transitions, i.e., for every q ∈ Q P ,

l A (q) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 0 if Q N = ∅, max{l A (q) q ∈ Q N } + 1 otherwise, δ(q, ⃗ S) = {q} for every ⃗ S ∈ (2 Q ) r .

◂

For any g A = ( ⃗ Q, δ 0 , δ, F), we de ne its length len(A) to be its highest level, that is, len(A) ∶= max{l A (q) q ∈ Q}.

Next, we want to give a formal de nition of a run. For this, we need the notion of a con guration, which can be seen as the global state of an g .

Definition 3.4 (Con guration).

▸ Consider a digraph G and an

g A = ( ⃗ Q, δ 0 , δ, F). For any map ζ∶ V G → Q, we call the Q-labeled variant G[ζ] of G a con guration of A on G. If every node in G[ζ]
is labeled by a permanent state, we refer to that con guration as a permanent con guration. Otherwise, if G[ζ] is a nonpermanent con guration whose nodes are labeled exclusively by existential and (possibly) permanent states, we say that G[ζ] is an existential con guration. Analogously, the con guration is universal if it is nonpermanent and only labeled by universal and (possibly) permanent states.

Additionally, we say that a permanent con guration

G[ζ] is accepting if the set of states occurring in it is accepting, i.e., if {ζ(v) v ∈ V G } ∈ F.
Any other permanent con guration is called rejecting. Nonpermanent con gurations are neither accepting nor rejecting.

◂

The (local) transition function of an g speci es for each state a set of potential successors, for a given family of sets of states. This can be naturally extended to con gurations, which leads us to the de nition of a global transition function.

Definition 3.5 (Global transition function).

▸ The global transition function δ g of an g A = ( ⃗ Q, δ 0 , δ, F) over Σ-labeled, r-relational digraphs assigns to each con guration G[ζ] of A the set of all of its successor con gurations G[η], by combining all possible outcomes of local transitions on G[ζ], i.e.,

δ g ∶ r Q → 2 ( r Q ) G[ζ] ↦ G[η] ⋀ v∈V G η(v) ∈ δ ζ(v), {ζ(u) uv ∈ R G i } i∈[r] .

◂

We now have everything at hand to formalize the notion of a run.

Definition 3.6 (Run).

▸ A run of an

g A = ( ⃗ Q, δ 0 , δ, F) over Σ-labeled, r-relational digraphs on a given digraph G ∈ r
Σ is an acyclic digraph ρ whose nodes are con gurations of A on G, such that

• the initial con guration G[δ 0 ○ λ G ] ∈ V ρ is the only source,
Here, the operator ○ denotes standard function composition, such that

(δ0 ○ λ G )(v) = δ0(λ G (v)).
• every nonpermanent con guration

G[ζ] ∈ V ρ with set of successor con gurations δ g (G[ζ]) = {G[η 1 ], . . . , G[η m ]} has -exactly one outgoing neighbor G[η i ] ∈ δ g (G[ζ]) if G[ζ] is existential, -exactly m outgoing neighbors G[η 1 ], . . . , G[η m ] if G[ζ] is universal, and • every permanent con guration G[ζ] ∈ V ρ is a sink.
The run ρ is accepting if every permanent con guration

G[ζ] ∈ V ρ is accepting. ◂ An g A = ( ⃗ Q, δ 0 , δ, F) over Σ-labeled, r-relational digraphs accepts a given digraph G ∈ r
Σ if and only if there exists an accepting run ρ of A on G. The digraph language recognized by A is the set

⟦A⟧ r Σ ∶= G ∈ r Σ A accepts G .
A digraph language that is recognized by some g is called g -recognizable. We denote by ⟦ g ⟧ r Σ the class of all such digraph languages. The g A is equivalent to some -formula ϕ if it recognizes precisely the digraph language de ned by ϕ over r Σ , i.e., if ⟦A⟧ r Σ = ⟦ϕ⟧ r Σ . We inductively de ne that a con guration

G[ζ] ∈ r Q is reachable by A on G if either G[ζ] = G[δ 0 ○ λ G ], or G[ζ] ∈ δ g (G[η]) for some con guration G[η] ∈ r Q reachable by A on G. In case G is irrelevant, we simply say that G[ζ] is reachable by A. The automaton A is called a nondeterministic g ( g ) if it has no universal states, i.e., if Q A = ∅. If additionally every con guration G[ζ] ∈ r
Q that is reachable by A has precisely one successor con guration, i.e., δ g (G[ζ]) = 1, then we refer to A as a deterministic g ( g ). We denote the classes of g -and grecognizable digraph languages by ⟦ g ⟧ r Σ and ⟦ g ⟧ r Σ . Let us now illustrate the notion of g using a slightly more involved example.

Alternating Local Automata

Example 3.7 (Concentric circles).

▸ Consider the g A centric = ( ⃗ Q, δ 0 , δ, F) over {a, b, c}-labeled digraphs represented by the state diagram in Figure 3.3. Again, existential states are represented by diamonds, universal states by boxes, and permanent states by double circles. The short arrows mapping node labels to states indicate the initialization function δ 0 . For instance, δ 0 (a) = q a . The other arrows specify the transition function δ. A label on such a transition arrow indicates a requirement on the set of states that a node receives from its incoming neighborhood (only one set, since there is only a single edge relation). For instance, δ q b , ({q a , q c }) = {q b∶1 , q b∶2 }. If there is no label, any set is permitted. Finally, as indicated by the barcode on the far right, the set of accepting sets is F = {q a∶3 , q yes }, {q a∶4 , q yes } .

Intuitively, A centric proceeds as follows: In the rst round, the a-labeled nodes do nothing but update their state, while the band c-labeled nodes verify that the labels in their incoming neighborhood satisfy the condition of a valid graph coloring. The c-labeled nodes additionally check that they do not see any a's, and then directly terminate. Meanwhile, the b-labeled nodes nondeterministically choose one of the markers 1 and 2. In the second round, only the a-labeled nodes are busy. They verify that their incoming neighborhood consists exclusively of b-labeled nodes, and that both of the markers 1 and 2 are present, thus ensuring that they have at least two incoming neighbors. Then, they simultaneously pick the markers 3 and 4, thereby creating di erent universal branches, and the run of the automaton terminates. Finally, the g checks that all the nodes approve of the digraph (meaning that none of them has reached the state q no ), and that in each universal branch, precisely one of the markers 3 and 4 occurs, which implies that there is a unique a-labeled node.

To sum up, the digraph language ⟦A centric ⟧ r Σ consists of all the {a, b, c}-labeled, digraphs such that • the labeling constitutes a valid 3-coloring,

• there is precisely one a-labeled node v a , and

• v a has only b-labeled nodes in its undirected neighborhood, and at least two incoming neighbors.

The name "A centric " refers to the fact that, in the (weakly) connected component of v a , the band c-labeled nodes form concentric circles around v a , i.e., nodes at distance 1 of v a are labeled with b, nodes at distance 2 (if existent) with c, nodes at distance 3 (if existent) with b, and so forth. Figure 3.4 shows an example of a labeled digraph that lies in ⟦A centric ⟧ r Σ . A corresponding accepting run can be seen in Figure 3.5. The leftmost con guration is existential, the next one is universal, and the two double-circled ones are permanent. In the rst round, the three nodes that are in state q b have a nondeterministic choice between q b∶1 and q b∶2 . Hence, the second con guration is one of eight possible choices. The branching in the second round is due to the node in state q ′ a which goes simultaneously to q a∶3 and q a∶4 . In both branches, an accepting con guration is reached, since {q a∶3 , q yes } and {q a∶4 , q yes } are both accepting sets. Therefore, the entire run is accepting.

◂

In the following subsections (3.3, 3.4 and 3.5), we derive our results on several properties of g 's.

q a∶3 q a q ′ a q a∶4 q b∶1 q b q yes q b∶2 q c q no a b c ∌q b ∌q b ∋q b ∌q c ∧ ∌q a ∋q c ∨ ∋q a ={q b∶1 , q b∶2 } ={q b∶1 , q b∶2 } ≠{q b∶1 , q b∶2 } Figure 3.3.
A centric , an g over {a, b, c}-labeled digraphs whose digraph language consists of the labeled digraphs that satisfy the following conditions: the labeling constitutes a valid 3-coloring, there is precisely one a-labeled node v a , the undirected neighborhood of v a contains only b-labeled nodes, and v a has at least two incoming neighbors. 

q a∶3 q yes q yes q yes q yes q yes q a q b q c q b q b q c q ′ a q b∶1
q yes q b∶1 q b∶2 q yes q a∶4 q yes q yes q yes q yes q yes 

Hierarchy and closure properties

By a (node) projection we mean a mapping h∶ Σ → Σ ′ between two alphabets Σ and Σ ′ . With slight abuse of notation, such a mapping is extended to labeled digraphs by applying it to each node label, and to digraph languages by applying it to each labeled digraph. That is, for every

G ∈ r Σ and L ⊆ r Σ , h(G) ∶= G[h ○ λ G ], and h(L) ∶= {h(G) G ∈ L},
where the operator ○ denotes function composition, such that

(h○λ G )(v) = h(λ G (v)). Proposition 3.8 (Closure properties of ⟦ g ⟧ r Σ ).
▸ The class ⟦ g ⟧ r Σ of g -recognizable digraph languages is e ectively closed under Boolean set operations and under projection.

◂

Proof sketch. As usual for alternating automata, complementation can be achieved by simply swapping the existential and universal states, and complementing the acceptance condition. That is, for an

g A = (Q E , Q A , Q P ), δ 0 , δ, F over Σ-labeled, r-relational digraphs, a complement automaton is A = (Q A , Q E , Q P ), δ 0 , δ, 2 Q P ∖ F .
This can be easily seen by associating a two-player game with A and any Σ-labeled, r-relational digraph G. One player tries to come up with an accepting run of A on G, whereas the other player seeks to nd a (path to a) rejecting con guration in any run proposed by the adversary. The rst player has a winning strategy if and only if A accepts G. (This game-theoretic characterization will be used and explained more extensively in the proof of Theorem 3.13.) From this perspective, the construction of A corresponds to interchanging the roles and winning conditions of the two players.

For two g 's A 1 and A 2 , we can e ectively construct an g A ∪ that recognizes ⟦A 1 ⟧ r Σ ∪ ⟦A 2 ⟧ r Σ by taking advantage of nondeterminism. The approach is, in principle, very similar to the corresponding construction for nondeterministic nite automata on words. In the rst round of A ∪ , each node in the input digraph nondeterministically and independently decides whether to behave like in A 1 or in A 2 . If there is a consensus, then the run continues as it would in the unanimously chosen automaton A j , and it is accepting if and only if it corresponds to an accepting run of A j . Otherwise, a con ict is detected, either locally by adjacent nodes that have chosen di erent automata, or at the latest, when acceptance is checked globally (important for disconnected digraphs), and in either case the run is rejecting. (Note that we have omitted some technicalities that ensure that the construction outlined above satis es all the properties of an g .) Closure under node projection is straightforward, again by exploiting nondeterminism. Given an g A with node alphabet Σ and a projection h∶ Σ → Σ ′ , we can e ectively construct an g A ′ that recognizes h(⟦A⟧ r Σ ) as follows: For every b ∈ Σ ′ , each node labeled with b nondeterministically chooses a new label a ∈ Σ, such that h(a) = b. Then, the automaton A is simulated on that new input.

∎ Proposition 3.9 (⟦ g ⟧ r Σ ⊂ ⟦ g ⟧ r Σ ).
▸ There are (in nitely many) g -recognizable digraph languages that are not g -recognizable.

◂

Proof. For any constant k ⩾ 1, we consider the language L card ⩽k of all digraphs that have at most k nodes, i.e., L card ⩽k = G ∈ V G ⩽ k . We can easily construct an 3.3 Hierarchy and closure properties 29 g that recognizes this digraph language: In a universal branching, each node goes to k + 1 di erent states in parallel. The automaton accepts if and only if there is no branch in which the k + 1 states occur all at once. Now, assume for sake of contradiction that L card ⩽k is also recognized by some g A, and let G be a digraph with k nodes. We construct a variant G ′ of G with k + 1 nodes by duplicating some node v, together with all of its incoming and outgoing edges. Observe that any accepting run of A on G can be extended to an accepting run on G ′ , where the copy of v behaves exactly like v in every round.

∎ Proposition 3.10 (Closure properties of ⟦ g ⟧ r Σ ).
▸ The class ⟦ g ⟧ r Σ of g -recognizable digraph languages is e ectively closed under union, intersection and projection, but not closed under complementation.

◂

Proof. For union and projection, we simply use the same constructions as for g 's (see Proposition 3.8).

Intersection can be handled by a product construction, similar to the one for nite automata on words. Given two g 's A 1 and A 2 , we construct an g A ⊗ that operates on the Cartesian product of the state sets of A 1 and A 2 . It simulates the two automata simultaneously and accepts if and only if both of them reach an accepting con guration.

To see that ⟦ g ⟧ r Σ is not closed under complementation, we recall from the proof of Proposition 3.9 that for any k ⩾ 1, the language L card ⩽k of all digraphs that have at most k nodes is not g -recognizable. However, complementing the g given for L card ⩽k yields an g that recognizes the complement language

L card ⩾k+1 . ∎ Proposition 3.11 (⟦ g ⟧ r Σ ⊂ ⟦ g ⟧ r Σ ).
▸ There are (in nitely many) g -recognizable digraph languages that are not g -recognizable.

◂

Proof. Let k ⩾ 2. As mentioned in the proof of Proposition 3.10, the language L card ⩾k of all digraphs that have at least k nodes is g -recognizable. To see that it is not g -recognizable, consider (similarly to the proof of Proposition 3.9) a digraph G with k -1 nodes and a variant G ′ with k nodes obtained from G by duplicating some node v, together with all of its incoming and outgoing edges. Given any g A, the determinism of A guarantees that v and its copy v ′ behave the same way in the (unique) run of A on G ′ . Hence, if that run is accepting, so is the run on G. ∎ Proposition 3.12 (Closure properties of ⟦ g ⟧ r Σ ).

▸ The class ⟦ g ⟧ r Σ of g -recognizable digraph languages is e ectively closed under Boolean set operations, but not closed under projection.

◂

Proof. To complement a g , we can simply complement its set of accepting sets. The product construction for intersection of g 's mentioned in Proposition 3.10 remains applicable when restricted to g 's. Closure under node projection does not hold because we can, for instance, construct a g that recognizes the language L occur a,b,c of all {a, b, c}-labeled digraphs in which each of the three node labels occurs at least once. However, projection under the mapping h∶ {a, b, c} → {ε}, with h(a) = h(b) = h(c) = ε (the empty word), yields the digraph language h(L occur a,b,c ) = L card ⩾3 , which is not g -recognizable (see the proof of Proposition 3.11).

∎

Equivalence with monadic second-order logic

Theorem 3.13 (⟦ g ⟧ r Σ = ⟦ ⟧ r Σ ).
▸ A digraph language is g -recognizable if and only if it is -de nable. There are e ective translations in both directions.

◂ Proof sketch. (⇒) We start with the direction ⟦ g ⟧ r Σ ⊆ ⟦ ⟧ r Σ . Let A = ( ⃗ Q, δ 0 , δ, F) be an
g of length n over Σ-labeled, r-relational digraphs. Without loss of generality, we may assume that every con guration reachable by A has at least one successor con guration and that no permanent con guration is reachable in less than n rounds. In order to encode the acceptance behavior of A into an formula ϕ A , we use again the game-theoretic characterization

This characterization is heavily inspired by the work of Löding and

Thomas in [START_REF] Löding | Alternating Automata and Logics over In nite Words[END_REF].

brie y mentioned in the proof sketch of Proposition 3.8. Given A and some G ∈ r Σ , we consider a game with two players: the automaton (player E) and the path nder (player A ). This game is represented by an acyclic digraph whose nodes are precisely the con gurations reachable by A on G. For any two nonpermanent con gurations

G[ζ] and G[η], there is a directed edge from G[ζ] to G[η] if and only if G[η] ∈ δ g (G[ζ]
). Starting at the initial con guration G[δ 0 ○ λ G ], the two players move through the game together by following directed edges. If the current con guration is existential, then the automaton has to choose the next move, if it is universal, then the decision belongs to the path nder. This continues until some permanent con guration is reached. The automaton wins if that permanent con guration is accepting, whereas the path nder wins if it is rejecting. A player is said to have a winning strategy if it can always win, independently of its opponent's moves. It is straightforward to prove that the automaton has a winning strategy if and only if A accepts G. Our -formula ϕ A will express the existence of such a winning strategy, and thus be equivalent to A.

Within , we represent a path G[ζ 0 ]⋯G[ζ n ] through the game by a sequence of families of set variables ⃗ X 0 , . . . , ⃗ X n , where ⃗ X 0 = ( ) and ⃗ X i = (X i,q ) q∈Q , for 1 ⩽ i ⩽ n. The intention is that each set variable X i,q is interpreted as the set of nodes v ∈ V G for which ζ i (v) = q. (We do not need set variables to represent G[ζ 0 ], since the players always start at

G[δ 0 ○ λ G ].)
Now, for every round i, we construct a formula ϕ win i ( ⃗ X i ) (i.e., with free variables in ⃗ X i ), which expresses that the automaton has a winning strategy in the subgame starting at the con guration

G[ζ i ] represented by ⃗ X i . In case G[ζ i ]
is existential, this is true if the automaton has a winning strategy in some successor con guration of

G[ζ i ], whereas if G[ζ i ]
is universal, the automaton must have a winning strategy in all successor con gurations of G[ζ i ]. This yields the following recursive de nition for 0 ⩽ i ⩽ n -1:

ϕ win i ( ⃗ X i ) ∶= ∃ ⃗ X i+1 ϕ succ i+1 ( ⃗ X i , ⃗ X i+1 ) ∧ ϕ win i+1 ( ⃗ X i+1 ) , if level i of A is existential, and ϕ win i ( ⃗ X i ) ∶= ∀ ⃗ X i+1 ϕ succ i+1 ( ⃗ X i , ⃗ X i+1 ) → ϕ win i+1 ( ⃗ X i+1 ) , if level i of A is universal. Here, ϕ succ i+1 ( ⃗ X i , ⃗ X i+1 ) is an -formula expressing that ⃗ X i and ⃗ X i+1 represent two con gurations G[ζ i ] and G[ζ i+1 ] such that G[ζ i+1 ] ∈ δ g (G[ζ i ]).
As our recursion base, we can easily construct a formula ϕ win n ( ⃗ X n ) that is satis ed if and only if ⃗ X n represents an accepting con guration of A. The desired -formula is

ϕ A ∶= ϕ win 0 ( ⃗ X 0 ) = ϕ win 0 ( ).
3.4 Equivalence with monadic second-order logic 31 (⇐) For the direction ⟦ g ⟧ r Σ ⊇ ⟦ ⟧ r Σ , we can proceed by induction on the structure of an -formula ϕ. In order to deal with free occurrences of node symbols, we encode their interpretations into the node labels (which normally encode only the interpretations of set symbols). Let free 0 (ϕ) be an abbreviation for free(ϕ) ∩ S 0 . For G ∈ r Σ and α∶ free 0

(ϕ) → V G , we represent G[α] as the labeled digraph G[λ G × α -1 ] whose labeling λ G × α -1 assigns to each node v ∈ V G the tuple λ G (v), α -1 (v)
, where α -1 (v) is the set of all node symbols in free 0 (ϕ) to which α assigns v. We now inductively construct an g A ϕ = ( ⃗ Q, δ 0 , δ, F) over r-relational digraphs labeled with the alphabet Σ ′ = Σ × 2 free 0 (ϕ) , such that

G[λ G × α -1 ] ∈ ⟦A ϕ ⟧ r Σ ′ if and only if G[α] ⊧ ϕ. Base case. Let x, y ∈ S 0 , X ∈ S 1 and i ∈ [r].
If ϕ is one of the atomic formulas x ≐ y or X(x), then, in A ϕ , each node simply checks that its own label (a, M) ∈ Σ×2 free 0 (ϕ) satis es the condition speci ed in ϕ (which, in particular, is the case if x, y ∉ M). Since this can be directly encoded into the initialization function δ 0 , the g has length 0. It accepts the input digraph if and only if every node reports that its label satis es the condition.

The case ϕ = R i (x, y) is very similar, but A ϕ needs one communication round, after which the node assigned to y can check whether it has received a message through an i-edge from the node assigned to x. Accordingly, A ϕ has length 1.

Inductive step. In case ϕ is a composed formula, we can obtain A ϕ by means of the constructions outlined in the proof sketch of Proposition 3.8 (closure properties of ⟦ g ⟧ r Σ ). Let ψ and ψ ′ be -formulas with equivalent g 's A ψ and A ψ ′ , respectively.

If ϕ = ¬ψ, it su ces to de ne A ϕ = A ψ . Similarly, if ϕ = ψ ∨ ψ ′ , we get A ϕ by applying the union construction on A ψ and A ψ ′ . (In general, we rst have to extend A ψ and A ψ ′ such that they both operate on the same node alphabet Σ×2 free 0 (ψ) ∪ free 0 (ψ ′ ) .)

Existential quanti cation can be handled by node projection. If ϕ = ∃ X (ψ), with X ∈ S 1 , we construct A ϕ by applying the projection construction on A ψ , using a mapping h∶ Σ × 2 free 0 (ψ) → Σ × 2 free 0 (ψ) that deletes the set variable X from every label. In other words, the new alphabet Σ encodes the subsets of free(ψ)∩(S 1 ∖{X}). An analogous approach can be used if ϕ = ∃ x (ψ), with x ∈ S 0 . The only di erence is that, instead of applying the projection construction directly on A ψ , we apply it on a variant A ′ ψ that operates just like A ψ , but additionally checks that precisely one node in the input digraph is assigned to the node variable x. ∎ From Theorem 3.13 we can immediately infer that it is undecidable whether the digraph language recognized by some arbitrary g is empty. Otherwise, we could decide the satis ability problem of on digraphs, which is known to be undecidable (a direct consequence of Trakhtenbrot's Theorem, see, e.g., [Lib04, Thm 9.2]).

Corollary 3.14 (Emptiness problem of g 's).

▸ The emptiness problem for g 's is undecidable.

◂

Emptiness problem for nondeterministic automata

At the cost of reduced expressive power, we can also obtain a positive decidability result.

Proposition 3.15 (Emptiness problem of g 's).

▸ The emptiness problem of g 's is decidable in doubly-exponential time. More precisely, for any g A = ( ⃗ Q, δ 0 , δ, F) over Σ-labeled, r-relational digraphs, whether its recognized digraph language ⟦A⟧ r Σ is empty or not can be decided in time

2 k , where k ∈ O(r ⋅ Q 4 len(A) ⋅ len(A)).
Furthermore, whether or not the digraph language ⟦A⟧ r Σ contains any connected, undirected graph can be decided in time

2 2 k ′ , where k ′ ∈ O(r ⋅ Q ⋅ len(A)).

◂

Proof sketch. Let G ∈ r Σ . Since g 's cannot perform universal branching, we can consider any run of A on G as a sequence of con gurations

ρ = G[ζ 0 ]⋯G[ζ n ],
with n ⩽ len(A). In ρ, each node of G traverses one of at most Q len(A)+1 possible sequences of states. Now, assume that G has more than Q len(A)+1 nodes. Then, by the Pigeonhole Principle, there must be two distinct nodes v, v ′ ∈ V G that traverse the same sequence of states in ρ. We construct a smaller digraph G ′ by removing v ′ from G, together with its adjacent edges, and adding directed edges from v to all of the former outgoing neighbors of v ′ . If all the nodes in G ′ maintain their nondeterministic choices from ρ, none of them will notice that v ′ is missing, and consequently they all behave just as in ρ. The resulting run ρ ′ on G ′ is accepting if and only if ρ is accepting.

Applying this argument recursively, we conclude that if ⟦A⟧ r Σ is not empty, then it must contain some labeled digraph that has at most Q len(A)+1 nodes. Hence, the emptiness problem is decidable because the search space is nite. The time complexity indicated above corresponds to the naive approach of checking every digraph with at most Q len(A)+1

nodes. If we are only interested in connected, undirected graphs, the reasoning is very similar, but we have to require a larger minimum number of nodes in order to be able to remove some node without in uencing the behavior of the others. In a graph G with more than Q ⋅ 2 r⋅ Q len(A)+1 nodes, there must be two distinct nodes v, v ′ ∈ V G that, in addition to traversing the same sequence of states, also receive the same family of sets of states from their neighborhood in every round. Observe that the automaton will not notice if we merge v and v ′ . The rest of the argument is analogous to the previous scenario. 

Summary and discussion

We have introduced g 's, which are probably the rst graph automata in the literature to be equivalent to on digraphs. However, their expressive power results mainly from the use of alternation: we have seen that the deterministic, nondeterministic and alternating variants form a strict hierarchy, i.e.,

⟦ g ⟧ r Σ ⊂ ⟦ g ⟧ r Σ ⊂ ⟦ g ⟧ r Σ .
The corresponding closure and decidability properties are summarized in On an intuitive level, this hierarchy and these closure properties do not seem very surprising. One might even ask: are g 's just another syntax for ? Indeed, universal branchings correspond to universal quanti cation, and nondeterministic choices to existential quanti cation. By disallowing universal set quanti cation in we obtain , and further disallowing existential set quanti cation yields . Analogously to g 's, the classes of digraph languages de nable in these logics form a strict hierarchy, i.e.,

⟦ g ⟧ r Σ = ⟦ ⟧ r Σ • L conn ⟦ ⟧ r Σ • L colorable k ∪ L card ⩽k ′ ⟦ ⟧ r Σ • L card ⩽k ⟦ g ⟧ r Σ • L colorable k ⟦ g ⟧ r Σ • L colored k • L card ⩾k
⟦ ⟧ r Σ ⊂ ⟦ ⟧ r Σ ⊂ ⟦ ⟧ r Σ .
Furthermore, the closure properties of ⟦ ⟧ r Σ and ⟦ ⟧ r Σ coincide with those of ⟦ g ⟧ r Σ and ⟦ g ⟧ r Σ , respectively. Given that ⟦ g ⟧ r Σ and ⟦ ⟧ r Σ are equal, one might therefore expect that the analogous equalities hold for the weaker classes. However, as already hinted by the positive decidability properties in Table 3.1, this is not the case. The actual relationships between the di erent classes of digraph languages are depicted in Figure 3.6. A glance at this diagram suggests that g 's are not simply a one-to-one reproduction of .

Justi cation of Figure 3.6. Fagin has shown in [START_REF] Fagin | Monadic generalized spectra[END_REF] that the language L conn of all (weakly) connected digraphs separates ⟦ ⟧ r Σ from ⟦ ⟧ r Σ . (Since nonconnectivity is -de nable, this also implies that ⟦ ⟧ r Σ is not closed under complementation.) The inclusion ⟦ g ⟧ r Σ ⊆ ⟦ ⟧ r Σ holds because we can encode every g into an -formula, using the same construction as in the proof sketch of Theorem 3.13. It is also easy to see that we can encode a g by inductively constructing a family of -formulas ϕ state i∶q (x), stating that in round i (of the unique run of the automaton), the node assigned to x is in state q. Hence, 

⟦ g ⟧ r Σ ⊆ ⟦ ⟧ r Σ . In the following, let k, k ′ ⩾ 2.
⟦ g ⟧ r Σ = ⟦ ← g ⟧ r Σ and ⟦ g ⟧ r Σ = ⟦Σ 1 ( ← g )⟧ r Σ .
More generally, one can show a levelwise equivalence with the set quanti er alternation hierarchy of ( ← g ), a rather unconventional logic that is equivalent to . In other words, two corresponding levels of alternation in the frameworks of g 's and ( ← g ) characterize exactly the same digraph languages. Against this backdrop, g 's may be best described as a machine-oriented syntax for ( ← g ). We shall pick up on this point in the introduction of Chapter 6.

As of the time of writing this thesis, no new results on ⟦ ⟧ r Σ have been inferred from the alternative characterization through g 's. On the other hand, the notion of g contributes to the general observation, mentioned in Section 1.1.1, that many characterizations of regularity, which are equivalent on words and trees, drift apart on digraphs. To see this, consider g 's whose input is restricted to those Σ-labeled, r-relational digraphs that represent words or trees over the alphabet Σ. For words, r = 1 and edges simply go from one position to the next, whereas for ordered trees of arity k, we set r = k and require edge relations such that uv ∈ R G i if and only if u is the i-th child of v. Observe that we can easily simulate any word or tree automaton by an g of length 2: guess a run of the automaton in the rst round (each node nondeterministically chooses some state), then check whether it is a valid accepting run in the second round (transitions are veri ed locally, and acceptance is determined by the unique sink). This implies that the classes of grecognizable and -de nable languages collapse on words and trees, and hence that g 's recognize precisely the regular languages on those restricted structures. (Note that this does not hold for g 's; for instance, it is easy to see that they cannot decide whether a given unary word is of even length.) In this light, the decidability of the emptiness problem for g 's can be seen as an extension to arbitrary digraphs of the corresponding decidability results for nite automata on words and trees.

Chapter based on the conference paper [START_REF] Reiter | Asynchronous Distributed Automata: A Characterization of the Modal Mu-Fragment[END_REF].

Asynchronous Nonlocal Automata

In this chapter, we introduce a particular class of nonlocal distributed automata and show that on nite digraphs, they are equivalent to the least-xpoint fragment of the backward µ-calculus, or simply backward µ-fragment.

For the general case, a logical characterization has been provided by Kuusisto in [START_REF] Kuusisto | Modal Logic and Distributed Message Passing Automata[END_REF]; there he introduced a modal-logic-based variant of Datalog, called modal substitution calculus, that captures exactly the class of nonlocal automata. Furthermore, [START_REF] Kuusisto | Modal Logic and Distributed Message Passing Automata[END_REF]Prp. 7] shows that these automata can easily recognize all the properties de nable in the backward µ-fragment on nite digraphs. On the other hand, the reverse conversion from nonlocal automata to the backward µ-fragment is not possible in general. As explained in [Kuu13a, Prp. 6], it is easy to come up with an automaton that makes crucial use of the fact that a node can determine whether it receives the same information from all of its incoming neighbors at exactly the same time. Such synchronous behavior cannot be simulated in the backward µ-fragment (and not even in ). This leaves open the problem of identifying a subclass of distributed automata for which the conversion works in both directions.

Here, we present a very simple solution: it basically su ces to transfer the standard notion of asynchronous algorithm to the setting of distributed automata.

The organisation of this chapter is as follows. After giving the necessary formal de nitions in Section 4.1, we state and brie y discuss the main result in Section 4.2. The proof is then developed in the last two sections. Section 4.3 presents the rather straightforward translation from logic to automata. The reverse translation is given in Section 4.4, which is a bit more involved and therefore occupies the largest part of the chapter.

Preliminaries

The class of asynchronous distributed automata introduced in this chapter, is a special case of the distributed automata de ned in Section 2.7. We maintain the same syntax as in De nition 2.3, but reintroduce the semantics of (unrestricted) distributed automata from a slightly di erent perspective. In order to keep notation simple, we 4 Asynchronous Nonlocal Automata do this only for 1-relational digraphs, but everything presented here can easily be extended to the multi-relational case.

To run a distributed automaton A on a digraph G, we now regard the edges of G as bu ers. Each bu er vw will always contain a sequence of states previously traversed by node v. An adversary chooses when v evaluates δ to push a new state to the back of the bu er, and when the current rst state gets popped from the front. The details are clari ed in the following.

A trace of an automaton A = (Q, δ 0 , δ, F) is a nite nonempty sequence σ = q 1 . . . q n of states in Q such that q i ≠ q i+1 and δ(q i , S i ) = q i+1 for some S i ⊆ Q. Notice that A is quasi-acyclic if and only if its set of traces Q is nite.

For any states p, q ∈ Q and any (possibly empty) sequence σ of states in Q, we de ne the unary post x operators first, last, pushlast and popfirst as follows:

pσ.first = σp.last = p, σp.pushlast(q) = σpq if p ≠ q, σp if p = q, pσ.popfirst = σ if σ is nonempty, pσ if σ is empty. An (asynchronous) timing of a digraph G = (V G , R G , λ G ) is an in nite sequence τ = (τ 1 , τ 2 , τ 3 , . . . ) of maps τ t ∶ V G ∪ R G → 2, indicating
which nodes and edges are active at time t, where 1 is assigned in nitely often to every node and every edge. More formally, for all t ∈ N + , v ∈ V G and e ∈ R G , there exist i, j > t such that τ i (v) = 1 and τ j (e) = 1. We refer to this as the fairness property of τ. As a restriction, we say that τ is lossless-asynchronous if τ t (uv) = 1 implies τ t (v) = 1 for all t ∈ N + and uv ∈ R G . Furthermore, τ is called the (unique) synchronous timing of G if τ t (v) = τ t (e) = 1 for all t ∈ N + , v ∈ V G and e ∈ R G .

Definition 4.1 (Asynchronous Run).

▸ Let A = (Q, δ 0 , δ, F) be a distributed automaton over s-bit labeled digraphs and Q be its set of traces. Furthermore, let G = (V G , R G , λ G ) be an s-bit labeled digraph and τ = (τ 1 , τ 2 , τ 3 , . . . ) be a timing of G. The (asynchronous) run of A on G timed by τ is the in nite sequence ρ = (ρ 0 , ρ 1 , ρ 2 , . . . ) of con gurations

ρ t ∶ V G ∪ R G → Q, with ρ t (V G ) ⊆ Q, which are de ned inductively as follows, for t ∈ N, v ∈ V G and vw ∈ R G : ρ 0 (v) = ρ 0 (vw) = δ 0 (λ G (v)), ρ t+1 (v) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ ρ t (v) if τ t+1 (v) = 0, δ ρ t (v), {ρ t (uv).first uv ∈ R G } if τ t+1 (v) = 1, ρ t+1 (vw) = ρ t (vw).pushlast(ρ t+1 (v)) if τ t+1 (vw) = 0, ρ t (vw).pushlast(ρ t+1 (v)).popfirst if τ t+1 (vw) = 1.
If τ is the synchronous timing of G, we refer to ρ as the synchronous run of A on G. ◂ Throughout this chapter, we assume that our digraphs, automata and logical formulas agree on the number s of labeling bits. An automaton A accepts a pointed digraph G[v] under timing τ if v visits an accepting state at some point in the run ρ of A on G timed by τ, i.e., if there exists t ∈ N such that ρ t (v) ∈ F. If we simply say that A accepts G[v], without explicitly specifying a timing τ, then we stipulate that ρ is the synchronous run of A on G. Notice that this is coherent with the de nition of acceptance presented in Section 2.7.

Given a digraph G = (V G , R G , λ G ) and a class T of timings of G, the automaton A is called consistent for G and T if for all v ∈ V G , either A accepts G[v] under every timing in T , or A does not accept G[v] under any timing in T . We say that A is asynchronous if it is consistent for every possible choice of G and T , and lossless-asynchronous if it is consistent for every choice where T contains only lossless-asynchronous timings. By contrast, we call an automaton synchronous if we wish to emphasize that no such consistency requirements are imposed. Intuitively, all automata can operate in the synchronous setting, but only some of them also work reliably in environments that provide fewer guarantees.

We denote by a-, la-and the classes of asynchronous, lossless-asynchronous and synchronous automata, respectively. Similarly, a-, la-and are the corresponding classes of quasi-acyclic automata.

Next, we want to introduce the backward µ-fragment, for which it is convenient to distinguish explicitly between constants and variables. As our starting point, we consider ← restricted to s set constants and (arbitrarily many) unnegated set variables. Its formulas are generated by the grammar

ϕ ∶∶= ⊺ P i ¬P i X (ϕ ∨ ϕ) (ϕ ∧ ϕ) ϕ ϕ ,
where P i ∈ S 1 is considered to be a set constant, for 1 ⩽ i ⩽ s, and X ∈ S 1 ∖{P 1 , . . . , P s } is considered to be a set variable. Note that this syntax ensures that set variables cannot be negated.

Traditionally, the modal µ-calculus is de ned to comprise individual xpoints which may be nested. However, it is well-known that we can add simultaneous xpoints to the µ-calculus without changing its expressive power, and that nested xpoints of the same type (i.e., least or greatest) can be rewritten as non-nested simultaneous ones (see, e.g., [BS07, § 3.7] or [Len05, § 4.3]). The following de nition directly takes advantage of this fact. We shall restrict ourselves to the µ-fragment of the backward µ-calculus, abbreviated backward µ-fragment, where only least xpoints are allowed, and where the usual modal operators are replaced by their backwardlooking variants. Without loss of generality, we stipulate that each formula of the backward µ-fragment with s set constants is of the form

ϕ = µ ⎛ ⎜ ⎝ X 1 ⋮ X k ⎞ ⎟ ⎠ . ⎛ ⎜ ⎝ ϕ 1 (P 1 , . . . , P s , X 1 , . . . , X k ) ⋮ ϕ k (P 1 , . . . , P s , X 1 , . . . , X k ) ⎞ ⎟ ⎠
, where X 1 , . . . , X k ∈ S 1 ∖ {P 1 , . . . , P s } are considered to be set variables, and ϕ 1 , . . . , ϕ k are formulas of ← with s set constants and unnegated set variables that may contain no other set variables than X 1 , . . . , X k . We shall denote the set of formulas of the backward µ-fragment by Σ µ 1 ( ← ).

For every digraph G = (V G , R G , λ G ), the tuple (ϕ 1 , . . . , ϕ k ) gives rise to an opera- tor f∶ (2 V G ) k → (2 V G
) k that takes some valuation of ⃗ X = (X 1 , . . . , X k ) and reassigns to each X i the resulting valuation of ϕ i . More formally, variant of G that interprets each X i as

f maps ⃗ W = (W 1 , . . . , W k ) to (W ′ 1 , . . . , W ′ k ) such that W ′ i = ⟦ϕ i ⟧ G[ ⃗ X↦ ⃗ W] . Here, G[ ⃗ X ↦ ⃗ W] is the extended 1 (P 1 ) 1 2 0 3 (X) 4 (Y) 5 (X,Y) otherwise if S ⊈ {4, 5} and S ⊈ {1, 2, 4} otherwise i f S ⊈ { 4 , 5 } a n d S ⊈ { 1 , 2 , 4 } if S ⊆ {4} i f { 5 } ⊆ S ⊆ { 4 , 5 } otherwise if S ⊆ {4, 5} otherwise i f { 5 } ⊆ S always i f S ⊆ { 4 , 5 } S: set of received states
W i . A (simultaneous) xpoint of the opera- tor f is a tuple ⃗ W ∈ (2 V G ) k such that f( ⃗ W) = ⃗ W.
Since, by de nition, set variables occur only positively in formulas, the operator f is monotonic. This means that

⃗ W ⊆ ⃗ W ′ implies f( ⃗ W) ⊆ f( ⃗ W ′ ) for all ⃗ W, ⃗ W ′ ∈ (2 V G ) k
, where set inclusions are to be understood componentwise (i.e., W i ⊆ W ′ i for each i). Therefore, by virtue of a theorem due to Knaster and Tarski, f has a least xpoint, which is de ned as the unique xpoint ⃗

U = (U 1 , . . . , U k ) of f such that ⃗ U ⊆ ⃗ W for every other xpoint ⃗ W of f.
As a matter of fact, the Knaster-Tarski theorem even tells us that ⃗

U is equal to ⋂{ ⃗ W ∈ (2 V G ) k f( ⃗ W) ⊆ ⃗ W},
where set operations must also be understood componentwise. Another, perhaps more intuitive, way of characterizing ⃗ U is to consider the inductively constructed sequence of approximants

( ⃗ U 0 , ⃗ U 1 , ⃗ U 2 , . . . ), where ⃗ U 0 = (∅, . . . , ∅) and ⃗ U j+1 = f( ⃗ U j ). Since this sequence is monotonically increasing and V G is nite, there exists n ∈ N such that ⃗ U n = ⃗ U n+1 . It is easy to check that ⃗ U n
coincides with the least xpoint ⃗ U. For more details and proofs, see, e.g., [GKL + 07, § 3.3.1].

Having introduced the necessary background, we can nally establish the semantics of ϕ with respect to G:

the set ⟦ϕ⟧ G = v ∈ V G G[v] ⊧ ϕ of nodes at which ϕ holds is precisely U 1 , the rst component of ⃗ U.
Accordingly, the pointed digraph G[v] lies in the language ⟦ϕ⟧ @ 1 s de ned by ϕ if and only if v ∈ U 1 , and we denote by ⟦Σ µ 1 ( ← )⟧ @ 1 s the class of all pointed-digraph languages de ned by some formula of the backward µ-fragment.

Figure 4.1 provides an example of a quasi-acyclic asynchronous distributed automaton and an equivalent formula of the backward µ-fragment.

⟦ ⟧ @ 1 s ⟦la-⟧ @ 1 s ⟦a-⟧ @ 1 s ⟦ ⟧ @ 1 s ⟦la- ⟧ @ 1 s ⟦a- ⟧ @ 1 s a.
Immediate by the de nitions.

⟦ ⟧ @ 1 s ⟦la-⟧ @ 1 s ⟦a-⟧ @ 1 s ⟦ ⟧ @ 1 s ⟦la- ⟧ @ 1 s ⟦a- ⟧ @ 1 s ⟦Σ µ 1 ( ← )⟧ @ 1 s b.
Collapse shown in this chapter.

Figure 4.2. Hierarchy of the classes of pointed-digraph languages recognizable by distributed automata ( ), depending on whether the automata are synchronous (neither "la" nor "a"), lossless-asynchronous ("la"), asynchronous ("a"), or quasiacyclic (" "). The arrows denote inclusion (e.g., ⟦la-⟧ @ 1 s ⊆ ⟦ ⟧ @ 1 s ).

Equivalence with the backward mu-fragment

This may seem counterintuitive at rst sight, but it is actually consistent with the standard terminology of distributed computing: an asynchronous algorithm can always serve as a synchronous algorithm (i.e., it can be executed in a synchronous environment), but the converse is not true.

Based on the de nitions given in Section 4.1, asynchronous automata are a special case of lossless-asynchronous automata, which in turn are a special case of synchronous automata. Furthermore, quasi-acyclicity constitutes an additional (possibly orthogonal) restriction on these models. We thus immediately obtain the hierarchy of classes depicted in Figure 4.2a.

Our main result provides a simpli cation of this hierarchy: the classes ⟦a-⟧ @ 1 s and ⟦la-⟧ @ 1 s are actually equal to the class of pointed-digraph languages denable in the backward µ-fragment. This yields the revised diagram shown in Figure 4.2b.

Theorem 4.2 (⟦Σ µ 1 ( ← )⟧ @ 1 s = ⟦a- ⟧ @ 1 s = ⟦la- ⟧ @ 1 s ).
▸ When restricted to nite digraphs, the backward µ-fragment is e ectively equivalent to the classes of quasi-acyclic asynchronous automata and quasi-acyclic losslessasynchronous automata.

◂

Proof. The forward direction is given by Proposition 4.3 (in Section 4.3), which asserts that ⟦Σ µ 1 ( ← )⟧ @ 1 s ⊆ ⟦a-⟧ @ 1 s , and the trivial observation that ⟦a-⟧ @ 1 s ⊆ ⟦la-⟧ @ 1 s . For the backward direction, we use Proposition 4.6 (in Section 4.4), which asserts that ⟦la-⟧ @ 1 s ⊆ ⟦Σ µ 1 ( ← )⟧ @ 1 s .

∎

As stated before, synchronous automata are more powerful than the backward µ-fragment (and incomparable with

). This holds even if we consider only quasi-acyclic automata, i.e., the inclusion ⟦Σ µ 1 ( ← )⟧ @ 1 s ⊂ ⟦ ⟧ @ 1 s is known to be strict (see [START_REF] Kuusisto | Modal Logic and Distributed Message Passing Automata[END_REF]Prp. 6]). Moreover, an upcoming paper will show that the inclusion ⟦ ⟧ @ 1 s ⊂ ⟦ ⟧ @ 1 s is also strict. In contrast, it remains open whether quasi-acyclicity is in fact necessary for characterizing ⟦Σ µ 1 ( ← )⟧ @ 1 s . On the one hand, this notion is crucial for our proof (see Proposition 4.6), but on the other hand, no pointed-digraph language separating ⟦a-⟧ @ 1 s or ⟦la-⟧ @ 1 s from ⟦Σ µ 1 ( ← )⟧ @ 1 s has been found so far.

Computing least fixpoints using asynchronous automata

In this section, we prove the easy direction of the main result. Given a formula ϕ of the backward µ-fragment, it is straightforward to construct a (synchronous) distributed automaton A that computes on any digraph the least xpoint ⃗ U of the operator associated with ϕ. As long as it operates in the synchronous setting, A simply follows the sequence of approximants ( ⃗ U 0 , ⃗ U 1 , . . . ) described in Section 4.1. It is important to stress that the very same observation has previously been made in [Kuu13a, Prp. 7] (formulated from a di erent point of view). In the following proposition, we re ne this observation by giving a more precise characterization of the obtained automaton: it is always quasi-acyclic and capable of operating in a (possibly lossy) asynchronous environment.

Proposition 4.3 (⟦Σ µ 1 ( ← )⟧ @ 1 s ⊆ ⟦a- ⟧ @ 1 s ).
▸ For every formula of the backward µ-fragment, we can e ectively construct an equivalent quasi-acyclic asynchronous automaton.

◂

Proof. Let ϕ = µ(X 1 , . . . , X k ).(ϕ 1 , . . . , ϕ k ) be a formula of the backward µ-fragment with s set constants. Without loss of generality, we may assume that the subformulas ϕ 1 , . . . , ϕ k do not contain any nested modalities. To see this, suppose that

ϕ i = ψ. Then ϕ is equivalent to ϕ ′ = µ(X 1 , . . . , X i , . . . , X k , Y).(ϕ 1 , . . . , ϕ ′ i , . . . , ϕ k , ψ)
, where Y is a fresh set variable and ϕ ′ i = Y. The operator and Boolean combinations of and are handled analogously. We now convert ϕ into an equivalent automaton A = (Q, δ 0 , δ, F) with state set Q = 2 {P 1 ,...,Ps,X 1 ,...,X k } . The idea is that each node v of the input digraph has to remember which of the atomic propositions P 1 , . . . , P s , X 1 , . . . , X k have, so far, been veri ed to hold at v. Therefore, we de ne the initialization function such that δ 0 (x) = {P i x(i) = 1} for all x ∈ 2 s . Let us write (q, S) ⊧ ϕ i to indicate that a pair (q, S) ∈ Q × 2 Q satis es a subformula ϕ i of ϕ. This is the case precisely when ϕ i holds at any node v that satis es exactly the atomic propositions in q and whose incoming neighbors satisfy exactly the propositions speci ed by S. Note that this satisfaction relation is well-de ned in our context because the nesting depth of modal operators in ϕ i is at most 1. With that, the transition function of A can be succinctly described by δ(q, S) = q ∪ {X i (q, S) ⊧ ϕ i }. Since q ⊆ δ(q, S), we are guaranteed that the automaton is quasi-acyclic. Finally, the accepting set is given by F = {q X 1 ∈ q}.

It remains to prove that A is asynchronous and equivalent to ϕ. For this purpose, let

G = (V G , R G , λ G ) be an s-bit labeled digraph and ⃗ U = (U 1 , . . . , U k ) ∈ (2 V G
) k be the least xpoint of the operator f associated with (ϕ 1 , . . . , ϕ k ). Due to the asynchrony condition, we must consider an arbitrary timing τ = (τ 1 , τ 2 , . . . ) of G. The corresponding run ρ = (ρ 0 , ρ 1 , . . . ) of A on G timed by τ engenders an in nite sequence ( ⃗ W 0 , ⃗ W 1 , . . . ), where each tuple

⃗ W t = (W t 1 , . . . , W t k ) ∈ (2 V G ) k speci es the valuation of every set variable X i at time t, i.e., W t i = {v ∈ V G X i ∈ ρ t (v)}.
Since A is quasi-acyclic and V G is nite, this sequence must eventually stabilize at some value ⃗ W ∞ , and each node accepts if and only if it belongs to W ∞ 1 . Reformulated this way, our task is to demonstrate that ⃗ W ∞ equals ⃗ U, regardless of the timing τ.

" ⃗ W ∞ ⊆ ⃗
U": We show by induction that ⃗ W t ⊆ ⃗ U for all t ∈ N. This obviously holds for t = 0, since ⃗ W 0 = (∅, . . . , ∅). Now, consider any node v ∈ V G at an arbitrary time t. Let q be the current state of v and S be the set of current states of its incoming neighbors. Depending on τ, it might be the case that v actually receives some outdated information S ′ instead of S. However, given that the neighbors' previous states cannot contain more set variables than their current ones (by construction), and that set variables can only occur positively in each ϕ i , we know that (q, S ′ ) ⊧ ϕ i implies (q, S) ⊧ ϕ i . Hence, if v performs a local transition at time t, then the only new set variables that can be added to its state must lie in {X i (q, S) ⊧ ϕ i }. On a global scale, this means that ⃗

W t+1 ∖ ⃗ W t ⊆ f( ⃗ W t )
. Furthermore, by the induction hypothesis, the monotonicity of f, and the fact that ⃗ U is a xpoint, we have f(

⃗ W t ) ⊆ f( ⃗ U) = ⃗ U.
Putting both together, and again relying on the induction hypothesis, we obtain ⃗

W t+1 ⊆ ⃗ U.
" ⃗ W ∞ ⊇ ⃗ U": For the converse direction, we make use of the Knaster-Tarski theorem, which gives us the equality

⃗ U = ⋂{ ⃗ W ∈ (2 V G ) k f( ⃗ W) ⊆ ⃗ W}. With this, it su ces to show that f( ⃗ W ∞ ) ⊆ ⃗ W ∞ . Consider some time t ∈ N such that ⃗ W t ′ = ⃗
W ∞ for all t ′ ⩾ t. Although we know that every node has reached its nal state at time t, the bu ers of some edges might still contain obsolete states from previous times. However, the fairness property of τ guarantees that our customized popfirst operation is executed in nitely often at every edge, while the pushlast operation has no e ect because all the states remain unchanged. Therefore, there must be a time t ′ ⩾ t from which on each bu er contains only the current state of its incoming node, i.e., ρ t ′′ (uv) = ρ t ′′ (u) for all t ′′ ⩾ t ′ and uv ∈ R G . Moreover, the fairness property of τ also ensures that every node v reevaluates the local transition function δ in nitely often, based on its own current state q and the set S of states in the bu ers associated with its incoming neighbors. As this has no in uence on v's state, we can deduce that {X i (q, S) ⊧ ϕ i } ⊆ q. Consequently, we have f( ⃗

W t ′ ) ⊆ ⃗ W t ′ , which is equivalent to f( ⃗ W ∞ ) ⊆ ⃗ W ∞ . ∎

Capturing asynchronous runs using least fixpoints

This section is dedicated to proving the converse direction of the main result, which will allow us to translate any quasi-acyclic lossless-asynchronous automaton into an equivalent formula of the backward µ-fragment (see Proposition 4.6). Our proof builds on two concepts: the invariance of distributed automata under backward bisimulation (stated in Proposition 4.4) and an ad-hoc relation "▷" that captures the possible behaviors of a xed lossless-asynchronous automaton A (in a speci c sense described in Lemma 4.5).

We start with the notion of backward bisimulation, which is de ned like the standard notion of bisimulation (see, e.g., [BRV02, Def. 2.16] or [BB07, Def. 5]), except that edges are followed in the backward direction. Formally, a backward bisimulation between two s-bit

labeled digraphs G = (V G , R G , λ G ) and G ′ = (V G ′ , R G ′ , λ G ′ ) is a binary relation B ⊆ V G × V G ′
that ful lls the following conditions for all vv ′ ∈ B:

a. λ G (v) = λ G ′ (v ′ ), b. if uv ∈ R G , then there exists u ′ ∈ V G ′ such that u ′ v ′ ∈ R G ′
and uu ′ ∈ B, and, conversely,

c. if u ′ v ′ ∈ R G ′
, then there exists u ∈ V G such that uv ∈ R G and uu ′ ∈ B.

We say that the pointed digraphs G[v] and G ′ [v ′ ] are backward bisimilar if there exists such a backward bisimulation B relating v and v ′ . It is easy to see that distributed automata cannot distinguish between backward bisimilar structures:

Proposition 4.4 .

▸ Distributed automata are invariant under backward bisimulation. That is, for

every automaton A, if two pointed digraphs G[v] and G ′ [v ′ ] are backward bisimilar, then A accepts G[v] if and only if it accepts G ′ [v ′ ].

◂

Proof. Let B be a backward bisimulation between G and G ′ such that vv ′ ∈ B. Since acceptance is de ned with respect to the synchronous behavior of the automaton, we need only consider the synchronous runs ρ = (ρ 0 , ρ 1 , . . . ) and ρ ′ = (ρ ′ 0 , ρ ′ 1 , . . . ) of A on G and G ′ , respectively. Now, given that the bu ers on the edges of the digraphs merely contain the current state of their incoming node, it is straightforward to prove by induction on t that every pair of nodes uu ′ ∈ B satis es ρ t (u) = ρ ′ t (u ′ ) for all t ∈ N.

∎

We now turn to the mentioned relation "▷", which is de ned with respect to a xed automaton. For the remainder of this section, let A denote an automaton (Q, δ 0 , δ, F), and let Q denote its set of traces. The relation ▷ ⊆ (2 Q × Q) speci es whether, in a lossless-asynchronous environment, a given trace σ can be traversed by a node whose incoming neighbors traverse the traces of a given set S. Loosely speaking, the intended meaning of S ▷ σ ("S enables σ") is the following: Take an appropriately chosen digraph under some lossless-asynchronous timing τ, and observe the corresponding run of A up to a speci c time t; if node v was initially in state σ.first and at time t it has seen its incoming neighbors traversing precisely the traces in S, then it is possible for τ to be such that at time t, node v has traversed exactly the trace σ. This relation can be de ned inductively: As the base case, we specify that for every q ∈ Q and S ⊆ Q, we have S ▷ q.pushlast(δ(q, S)). For the inductive clause, consider a trace σ ∈ Q and two nite (possibly equal) sets of traces S, S ′ ⊆ Q such that the traces in S ′ can be obtained by appending at most one state to the traces in S. More precisely, if π ∈ S, then π.pushlast(p) ∈ S ′ for some p ∈ Q, and conversely, if π ′ ∈ S ′ , then π ′ = π.pushlast(π ′ .last) for some π ∈ S. We shall denote this auxiliary relation by S ⇉ S ′ . If it holds, then S ▷ σ implies S ′ ▷ σ.pushlast(q), where q = δ(σ.last, {π ′ .last π ′ ∈ S ′ }).

The next step is to show (in Lemma 4.5) that our de nition of "▷" does indeed capture the intuition given above. To formalize this, we rst introduce two further pieces of terminology.

First, the notions of con guration and run can be enriched to facilitate discussions about the past. Let ρ = (ρ 0 , ρ 1 , . . . ) be a run of A on a digraph G = (V G , R G , λ G ) (timed by some timing τ). The corresponding enriched run is the sequence ρ = ( ρ0 , ρ1 , . . . ) of enriched con gurations that we obtain from ρ by requiring each node to remember the entire trace it has traversed so far. Formally, for t ∈ N, v ∈ V G and e ∈ R G , ρ0 (v) = ρ 0 (v), ρt+1 (v) = ρt (v).pushlast(ρ t+1 (v)) and ρt (e) = ρ t (e).

Second, we will need to consider nite segments of timings and enriched runs. A lossless-asynchronous timing segment of a digraph G is a sequence τ = (τ 1 , . . . , τ r ) that could be extended to a whole lossless-asynchronous timing (τ 1 , . . . , τ r , τ r+1 , . . . ).

Likewise, for an initial enriched con guration ρ0 of G, the corresponding enriched run segment timed by τ is the sequence ( ρ0 , . . . , ρr ), where each ρt+1 is computed from ρt and τ t+1 in the same way as for an entire enriched run.

Equipped with the necessary terminology, we can now state and prove a (slightly technical) lemma that will allow us to derive bene t from the relation "▷". This lemma essentially states that if S ▷ σ holds and we are given enough nodes that traverse the traces in S, then we can take those nodes as the incoming neighbors of a new node v and delay the messages received by v in such a way that v traverses σ, without losing any messages.

Lemma 4.5 .

▸ For every trace σ ∈ Q and every nite (possibly empty) set of traces S = {π 1 , . . . , π } ⊆ Q that satisfy the relation S ▷ σ, there are lower bounds m 1 , . . . , m ∈ N + such that the following statement holds true:

For any n 1 , . . . , n ∈ N + satisfying n i ⩾ m i , let G be a digraph consisting of the nodes (u j i ) i,j and v, and the edges (u j i v) i,j , with index ranges 1 ⩽ i ⩽ and 1 ⩽ j ⩽ n i . If we start from the enriched con guration ρ0 of G, where ρ0 (u j i ) = π i , ρ0 (u j i v) = π i and ρ0 (v) = σ.first, then we can construct a (nonempty) lossless-asynchronous timing segment τ = (τ 1 , . . . , τ r ) of G, where τ t (u j i ) = 0 and τ t (v) = 1 for 1 ⩽ t ⩽ r, such that the corresponding enriched run segment ρ = ( ρ0 , . . . , ρr ) timed by τ satis es ρr-1 (u j i v) = π i .last and ρr (v) = σ.

◂

Proof. We proceed by induction on the de nition of "▷". In the base case, where S = {p 1 , . . . , p } ⊆ Q and σ = q.pushlast(δ(q, S)) for some q ∈ Q, the statement holds with m 1 = ⋅ ⋅ ⋅ = m = 1. This is witnessed by a timing segment τ = (τ 1 ), where τ 1 (u j i ) = 0, τ 1 (v) = 1, and τ 1 (u j i v) can be chosen as desired. For the inductive step, assume that the statement holds for σ and S = {π 1 , . . . , π } with some values m 1 , . . . , m . Now consider any other set of traces S ′ = {π ′ 1 , . . . , π ′ ′ } such that S ⇉ S ′ , and let σ ′ = σ.pushlast(q), where q = δ(σ.last, {π ′ k .last π ′ k ∈ S ′ }). Since S ▷ σ, we have S ′ ▷ σ ′ . The remainder of the proof consists in showing that the statement also holds for σ ′ and S ′ with some large enough integers

m ′ 1 , . . . , m ′ ′ . Let us x m ′ k = ∑{mi π i .pushlast(π ′ k .last) = π ′ k }.
(As there is no need to nd minimal values, we opt for easy expressibility.)

Given any numbers n ′ 1 , . . . , n ′ ′ with n ′ k ⩾ m ′ k , we choose suitable values n 1 , . . . , n with n i ⩾ m i , and consider the corresponding digraph G described in the lemma. Because we have S ⇉ S ′ , we can assign to each node u j i a state p j i such that π i .pushlast(p j i ) ∈ S ′ . Moreover, provided our choice of n 1 , . . . , n was adequate, we can also ensure that for each π ′ k ∈ S ′ , there are exactly n ′ k nodes u j i such that π i .pushlast(p j i ) = π ′ k . (Note that nodes with distinct traces π i , π i ′ ∈ S might be mapped to the same trace π ′ k ∈ S ′ , in case π i ′ = π i p j i .) It is straightforward to verify that such a choice of numbers and such an assignment of states are always possible, given the lower bounds m ′ 1 , . . . , m ′ ′ speci ed above. Let us now consider the lossless-asynchronous timing segment τ = (τ 1 , . . . , τ r ) and the corresponding enriched run segment ρ = ( ρ0 , . . . , ρr ) provided by the induction hypothesis. Since the popfirst operation has no e ect on a trace of length 1, we may assume without loss of generality that τ t (u j i v) = 0 if ρt-1 (u j i v) has length 1, for t < r.

Asynchronous Nonlocal Automata

Consequently, if we start from the alternative enriched con guration ρ′ 0 , where ρ′ 0 (u j i ) = π i .pushlast(p j i ), ρ′ 0 (u j i v) = π i .pushlast(p j i ) and ρ′ 0 (v) = σ.first, then the corresponding enriched run segment ( ρ′ 0 , . . . , ρ′ r ) timed by τ can be derived from ρ by simply applying "pushlast(p j i )" to ρt (u j i ) and ρt (u j i v), for t < r. We thus get ρ′ r-1 (u j i v) = π i .last.pushlast(p j i ) and ρ′ r (v) = σ.

We may also assume without loss of generality that τ r (u j i v) = 1 if ρ′ r-1 (u j i v) has length 2, since this does not a ect ρ and lossless-asynchrony is ensured by τ r (v) = 1. Hence, it su ces to extend τ by an additional map τ r+1 , where τ r+1 (u j i ) = 0, τ r+1 (v) = 1, and τ r+1 (u j i v) can be chosen as desired. The resulting enriched run segment ( ρ′ 0 , . . . , ρ′ r+1 ) satis es

ρ′ r (u j i v) = p j i = π ′ k .last (for some π ′ k ∈ S ′ ) and ρ′ r+1 (v) = σ.pushlast(q) = σ ′ .
∎ Finally, we can put all the pieces together and prove the converse direction of Theorem 4.2:

Proposition 4.6 (⟦la- ⟧ @ 1 s ⊆ ⟦Σ µ 1 ( ← )⟧ @ 1 s ).
▸ For every quasi-acyclic lossless-asynchronous automaton, we can e ectively construct an equivalent formula of the backward µ-fragment.

◂

Proof. Assume that A = (Q, δ 0 , δ, F) is a quasi-acyclic lossless-asynchronous automaton over s-bit labeled digraphs. Since it is quasi-acyclic, its set of traces Q is nite, and thus we can a ord to introduce a separate set variable X σ for each trace σ ∈ Q. Making use of the relation "▷", we convert A into an equivalent formula ϕ = µ X 1 , (X σ ) σ∈Q . ϕ 1 , (ϕ σ ) σ∈Q of the backward µ-fragment, where

ϕ 1 = ⋁ σ∈Q σ.last∈F X σ , (a) 
ϕ q = ⋁ x∈2 s δ 0 (x)=q ⋀ x(i)=1 P i ∧ ⋀ x(i)=0 ¬P i for q ∈ Q, and (b) 
ϕ σ = X σ.first ∧ ⋁ S⊆Q S▷σ ⋀ π∈S X π ∧ ⋁ π∈S X π for σ ∈ Q with σ ⩾ 2. (c)
Note that this formula can be constructed e ectively because an inductive computation of "▷" must terminate after at most Q ⋅ 2 Q iterations.

To prove that ϕ is indeed equivalent to A, let us consider an arbitrary s-bit labeled

digraph G = (V G , R G , λ G ) and the corresponding least xpoint ⃗ U = (U 1 , (U σ ) σ∈Q ) ∈ (2 V G
) Q +1 of the operator f associated with (ϕ 1 , (ϕ σ ) σ∈Q ). The easy direction is to show that for all nodes v ∈ V G , if A accepts G[v], then G[v] satis es ϕ. For that, it su ces to consider the synchronous enriched run ρ = ( ρ0 , ρ1 , . . . ) of A on G. (Any other run timed by a lossless-asynchronous timing would exhibit the same acceptance behavior.) As in the proof of Proposition 4.4, we can simply ignore the bu ers on the edges of G because ρt (uv) = ρt (u).last.

Using this, a straightforward induction on t shows that every node v ∈ V G satis es { ρt (u) uv ∈ R G } ▷ ρt+1 (v) for all t ∈ N. (For t = 0, the claim follows from the base case of the de nition of "▷"; for the step from t to t + 1, we can immediately apply the inductive clause of the de nition.) This in turn allows us to prove that each node v is contained in all the components of ⃗ U that correspond to a trace traversed by v in ρ, i.e., v ∈ U ρt(v) for all t ∈ N. Naturally, we proceed again by induction: For t = 0, we have ρ0 (v) = δ 0 (λ G (v)) ∈ Q, hence the subformula ϕ ρ0 (v) de ned in equation (b) holds at v, and thus v ∈ U ρ0 (v) . For the step from t to t + 1, we need to distinguish two cases. If ρt+1 (v) is of length 1, then it is equal to ρt (v), and there is nothing new to prove. Otherwise, we must consider the appropriate subformula ϕ ρt+1 (v) given by equation (c). We already know from the base case that the conjunct X ρt+1 (v).first = X ρ0 (v) holds at v, with respect to any variable assignment that interprets each X σ as U σ . Furthermore, by the induction hypothesis, X ρt(u) holds at every incoming neighbor u of v. Since { ρt (u) uv ∈ R G } ▷ ρt+1 (v), we conclude that the second conjunct of ϕ ρt+1 (v) must also hold at v, and thus v ∈ U ρt+1 (v) . Finally, assuming A accepts G[v], we know by de nition that ρt (v).last ∈ F for some t ∈ N. Since v ∈ U ρt(v) , this implies that the subformula ϕ 1 de ned in equation (a) holds at v, and therefore that G[v] satis es ϕ.

For the converse direction of the equivalence, we have to overcome the di culty that ϕ is more permissive than A, in the sense that a node v might lie in U σ , and yet not be able to follow the trace σ under any timing of G. Intuitively, the reason why we still obtain an equivalence is that A cannot take advantage of all the information provided by any particular run, because it must ensure that for all digraphs, its acceptance behavior is independent of the timing. It turns out that even if v cannot traverse σ, some other node v ′ in an indistinguishable digraph will be able to do so. More precisely, we will show that if v ∈ U σ , then there exists a pointed digraph G ′ [v ′ ], backward bisimilar to G[v], and a lossless-asynchronous timing τ ′ of G ′ , such that ρ′ t (v ′ ) = σ for some t ∈ N, It remains to verify ( * ). We achieve this by computing the least xpoint ⃗ U inductively and proving the statement by induction on the sequence of approximants ( ⃗ U 0 , ⃗ U 1 , . . . ). Note that we do not need to consider the limit case, since ⃗ U = ⃗ U n for some n ∈ N.

The base case is trivially true because all the components of ⃗ U 0 are empty. Furthermore, if σ consists of a single state q, then we do not even need to argue by induction, as it is evident from equation (b) that for all j ⩾ 1, node v lies in U j q precisely when δ 0 (λ G (v)) = q. It thus su ces to set G ′ [v ′ ] = G[v] and choose the timing τ ′ arbitrarily. Clearly, we have ρ′

0 (v ′ ) = δ 0 (λ G (v)) = q if v ∈ U j q .
On the other hand, if σ is of length at least 2, we must assume that statement ( * ) holds for the components of ⃗ U j in order to prove it for U j+1 σ . To this end, consider an arbitrary node v ∈ U j+1 σ . By the rst conjunct in (c) and the preceding remarks regarding the trivial cases, we know that δ 0 (λ G (v)) = σ.first (and incidentally that 4 Asynchronous Nonlocal Automata j ⩾ 1). Moreover, the second conjunct ensures the existence of a (possibly empty) set of traces S that satis es S ▷ σ and that represents a "projection" of v's incoming neighborhood at stage j. By the latter we mean that for all π ∈ S, there exists u ∈ V G such that uv ∈ R G and u ∈ U j π , and conversely, for all u ∈ V G with uv ∈ R G , there exists π ∈ S such that u ∈ U j π . Now, for each trace π ∈ S and each incoming neighbor u of v that is contained in U j π , the induction hypothesis provides us with a pointed digraph G ′ u∶π [u ′ π ] and a corresponding timing τ ′ u∶π , as described in ( * ). We make n u∶π ∈ N distinct copies of each such digraph G ′ u∶π . From this, we construct

G ′ = (V G ′ , R G ′ , λ G ′
) by taking the disjoint union of all the ∑ n u∶π digraphs, and adding a single new node v ′ with

λ G ′ (v ′ ) = λ G (v)
, together with all the edges of the form u ′ π v ′ (i.e., one such edge for each copy of every u ′ π ). Given that every

G ′ u∶π [u ′ π ] is backward bisimilar to G[u],
we can guarantee that the same holds for G ′ [v ′ ] and G[v] by choosing the numbers of digraph copies in G ′ such that each incoming neighbor u of v is represented by at least one incoming neighbor of v ′ . That is, for every u, we require that n u∶π ⩾ 1 for some π.

Finally, we construct a suitable lossless-asynchronous timing τ ′ of G ′ , which proceeds in two phases to make v ′ traverse σ in the corresponding enriched run ρ′ . In the rst phase, where 0 < t ⩽ t 1 , node v ′ remains inactive, which means that every τ t assigns 0 to v ′ and its incoming edges. The state of v ′ at time t 1 is thus still σ.first. Meanwhile, in every copy of each digraph G ′ u∶π , the nodes and edges behave according to timing τ ′ u∶π until the respective copy of u ′ π has completely traversed π, whereupon the entire subgraph becomes inactive. By choosing t 1 large enough, we make sure that the bu er on each edge of the form u ′ π v ′ contains precisely π at time t 1 . In the second phase, which lasts from t 1 + 1 to t 2 , the only active parts of G ′ are v ′ and its incoming edges. Since the number n u∶π of copies of each digraph G ′ u∶π can be chosen as large as required, we stipulate that for every trace π ∈ S, the sum of n u∶π over all u exceeds the lower bound m π that is associated with π when invoking Lemma 4.5 for σ and S. Applying that lemma, we obtain a lossless-asynchronous timing segment of the subgraph induced by v ′ and its incoming neighbors. This segment determines our timing τ ′ between t 1 + 1 and t 2 (the other parts of G ′ being inactive), and gives us ρ′ t 2 (v ′ ) = σ, as desired. Naturally, the remainder of τ ′ , starting at t 2 + 1, can be chosen arbitrarily, so long as it satis es the properties of a lossless-asynchronous timing.

As a closing remark, note that the pointed digraph G ′ [v ′ ] constructed above is very similar to the standard unraveling of G[v] into a (possibly in nite) tree. (The set of nodes of that tree-unraveling is precisely the set of all directed paths in G that start at v; see, e.g., [START_REF]Modal logic[END_REF]Def. 4.51] or [BB07, § 3.2]). However, there are a few di erences: First, we do the unraveling backwards, because we want to generate a backward bisimilar structure, where all the edges point toward the root. Second, we may duplicate the incoming neighbors (i.e., children) of each node in the tree, in order to satisfy the lower bounds imposed by Lemma 4.5. Third, we stop the unraveling process at a nite depth (not necessarily the same for each subtree), and place a copy of the original digraph G at every leaf.

∎

Chapter based on the conference paper [START_REF] Kuusisto | Emptiness Problems for Distributed Automata[END_REF].

Emptiness Problems

This chapter is concerned with the decidability of the emptiness problem for several classes of nonlocal distributed automata. Given such an automaton, the task is to decide algorithmically whether it accepts on at least one input digraph. For our main variants of local automata, we can easily determine if this is possible, simply on the basis of their logical characterizations: emptiness is decidable for 's because they are e ectively equivalent to ← , for which the ( nite) satis ability problem is known to be -complete; on the other hand, it is undecidable for g 's because they are e ectively equivalent to , for which ( nite) satis ability is undecidable. We have also shown in Section 3.5, that the corresponding problem for g 's is decidable, using a simple nite-model argument. Furthermore, by the results on nonlocal automata presented in Chapter 4, we know that emptiness is decidable for a-'s and la-'s, since ( nite) satis ability for the (backward) µ-calculus is -complete. However, for nonlocal automata in general, the decidability question has been left open by Kuusisto in [START_REF] Kuusisto | Modal Logic and Distributed Message Passing Automata[END_REF]. Indeed, since the logical characterization given there is in terms of the newly introduced modal substitution calculus (for which no decidability results have been previously established), it does not provide us with an immediate answer. Here, we obtain a negative answer for the general case and also consider the question for three subclasses of nonlocal distributed automata.

Our rst variant, dubbed forgetful automata, is characterized by the fact that nodes can see their incoming neighbors' states but cannot remember their own state. Although this restriction might seem very arti cial, it bears an intriguing connection to classical automata theory: forgetful distributed automata turn out to be equivalent to nite word automata (and hence ) when restricted to pointed dipaths, but strictly more expressive than nite tree automata (and hence ) when restricted to pointed ordered ditrees. As shown in [Kuu13a, Prp. 8], the situation is di erent on arbitrary digraphs, where distributed automata (and hence forgetful ones) are unable to recognize non-reachability properties that can be easily expressed in . Hence, none of the two formalisms can simulate the other in general. However, while satis ability for is undecidable, we obtain a algorithm that decides the emptiness problem for forgetful distributed automata.

Emptiness Problems

The preceding decidability result begs the question of what happens if we drop the forgetfulness condition. Motivated by the equivalence of nite word automata and forgetful distributed automata, we rst investigate this question when restricted to dipaths. In sharp contrast to the forgetful case, we nd that for arbitrary distributed automata, it is undecidable whether an automaton accepts on some dipath. Although our proof follows the standard approach of simulating a Turing machine, it has an unusual twist: we exchange the roles of space and time, in the sense that the space of the simulated Turing machine M is encoded into the time of the simulating distributed automaton A, and conversely, the time of M is encoded into the space of A. To lift this result to arbitrary digraphs, we introduce the class of monovisioned distributed automata, where nodes enter a rejecting sink state as soon as they see more than one state in their incoming neighborhood. For every distributed automaton A, one can construct a monovisioned automaton A ′ that satis es the emptiness property if and only if A does so on dipaths. Hence, the emptiness problem is undecidable for monovisioned automata, and thus also in general.

Our third and last class consists of the quasi-acyclic distributed automata. The motivation for considering this particular class is threefold. First, quasi-acyclicity may be seen as a natural intermediate stage between local and nonlocal distributed automata, because local automata (for which the emptiness problem is decidable) can be characterized as those automata whose state diagram is acyclic as long as we ignore sink states (see Section 2.7). Second, the Turing machine simulation mentioned above makes crucial use of directed cycles in the diagram of the simulating automaton, which suggests that cycles might be the source of undecidability. Third, the notion of quasi-acyclic state diagrams also plays a major role in Chapter 4, where it serves as an ingredient for a-'s and la-'s (for which the emptiness problem is also decidable). However, contrary to what one might expect from these clues, we show that quasi-acyclicity alone is not su cient to make the emptiness problem decidable, thereby giving an alternative proof of undecidability for the general case.

The remainder of this chapter is organized as follows: We rst introduce some formal de nitions in Section 5.1 and establish the connections between forgetful distributed automata and classical word and tree automata in Section 5.2. Then, in Section 5.3, we show the positive decidability result for forgetful automata. Finally, we establish the negative results for monovisioned automata in Section 5.4 and for quasi-acyclic automata in Section 5.5.

Preliminaries

Given a distributed automaton A, the (general) emptiness problem consists in deciding e ectively whether the language of A is nonempty, i.e., whether there is a pointed digraph G[v] that is accepted by A. Similarly, the dipath-emptiness problem is to decide whether A accepts some pointed dipath.

We now de ne forgetful distributed automata, which are characterized by the fact that in each communication round, the nodes of the input digraph can see their neighbors' states but cannot remember their own state. As this entails that they are not able to access their own label by storing it in their state, we instead let them reread that label in each round.

Definition 5.1 (Forgetful distributed automaton).

▸ A forgetful distributed automaton ( ) over Σ-labeled, r-relational digraphs is a
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51 tuple A = (Q, q 0 , (δ a ) a∈Σ , F), where Q is a nite nonempty set of states, q 0 ∈ Q is an initial state, δ a ∶ (2 Q ) r → Q is a transition function associated with label a ∈ Σ, and F ⊆ Q is a set of accepting states.

◂

The semantics is completely analogous to the one de ned in Section 2.7, for the unrestricted automata of De nition 2.3. For a given Σ-labeled, r-relational digraph G, the run ρ of A on G is the in nite sequence of con gurations (ρ 0 , ρ 1 , ρ 2 , . . . ), which are de ned inductively as follows, for t ∈ N and v ∈ V G :

ρ 0 (v) = q 0 and ρ t+1 (v) = δ λ G (v) {ρ t (u) uv ∈ R G i } 1⩽i⩽r .
The de nition of acceptance remains exactly the same as in Section 2.7, i.e., for v ∈ V G , the pointed digraph G[v] is accepted by A if and only if there exists t ∈ N such that ρ t (v) ∈ F.

Comparison with classical automata

The purpose of this section is to motivate our interest in forgetful distributed automata by establishing their connection with classical word and tree automata.

Proposition 5.2 ( ⟦ ⟧ @ Σ = ⟦ ⟧ @ Σ ).
▸ When restricted to the class of pointed dipaths, forgetful distributed automata are equivalent to nite word automata, and thus to .

◂

Proof. Let us denote a (deterministic) nite word automaton over some nite alphabet Σ by a tuple B = (P, p 0 , τ, H), where P is the set of states, p 0 is the initial state, τ∶ P × Σ → P is the transition function, and H is the set of accepting states. Given such a word automaton B, we construct a forgetful distributed automaton A = (Q, q 0 , (δ a ) a∈Σ , F) that simulates B on Σ-labeled dipaths. For this, it su ces to set Q = P ∪ { }, q 0 = , F = H, and

δ a (S) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ τ(p 0 , a) if S = ∅, τ(p, a)
if S = {p} for some p ∈ P, otherwise.

When A is run on a dipath, each node v starts in a waiting phase, represented by , and remains idle until its predecessor has computed the state p that B would have reached just before reading the local letter a of v. (If there is no predecessor, p is set to p 0 .) Then, v switches to the state τ(p, a) and stays there forever. Consequently, the distinguished last node of the dipath will end up in the state reached by B at the end of the word, and it accepts if and only if B does.

For the converse direction, we convert a given forgetful distributed automaton A = (Q, q 0 , (δ a ) a∈Σ , F) into the word automaton B = (P, p 0 , τ, H) with components

P = 2 Q , p 0 = ∅, H = {S ⊆ Q S ∩ F ≠ ∅}, and τ(p, a) = {q 0 } ∪ {δ a (∅)} if p = p 0 , {δ a ({q}) q ∈ p} otherwise.
On any Σ-labeled dipath G, our construction guarantees that the set of states visited by A at the i-th node is equal to the state that B reaches just after processing the 5 Emptiness Problems i-th letter of the word associated with G. We can easily verify this by induction on i: At the rst node, which is labeled with a 1 , automaton A starts in state q 0 and then remains forever in state δ a 1 (∅). Node number i + 1 also starts in q 0 , and transitions to δ a i+1 ({q i t }) at time t + 1, where a i+1 is the node's own label and q i t is the state of its predecessor at time t. In agreement with this behavior, we know by the induction hypothesis and the de nition of τ that the state of B after reading a i+1 is precisely {q 0 } ∪ {δ a i+1 ({q i t }) t ∈ N}. As a result, the nal state reached by B will be accepting if and only if A visits some accepting state at the last node. ∎ A (deterministic, bottom-up) nite tree automaton over Σ-labeled, r-relational ordered ditrees can be de ned as a tuple B = (P, (τ k ) 0⩽k⩽r , H), where P is a nite nonempty set of states, τ k ∶ P k × Σ → P is a transition function of arity k, and H ⊆ P is a set of accepting states. Such an automaton assigns a state of P to each node of a given pointed ordered ditree, starting from the leaves and working its way up to the root. If node v is labeled with letter a and its k children have been assigned the states p 1 , . . . , p k (following the numbering order of the k rst edge relations), then v is assigned the state τ k (p 1 , . . . , p k , a). Note that leaves are covered by the special case k = 0. Based on this, the pointed ditree is accepted if and only if the state at the root belongs to H. For a more detailed presentation see, e.g., [START_REF] Löding | Basics on Tree Automata[END_REF]§ 3.3].

Proposition 5.3 ( ⟦ ⟧ @ r Σ ⫌ ⟦ ⟧ @ r Σ ).
▸ When restricted to the class of pointed ordered ditrees, forgetful distributed automata are strictly more expressive than nite tree automata, and thus than .

◂

Proof. To convert a tree automaton B = (P, (τ k ) 0⩽k⩽r , H) into a forgetful distributed automaton A = (Q, q 0 , (δ a ) a∈Σ , F) that is equivalent to B over Σ-labeled, r-relational ordered ditrees, we use a simple generalization of the construction in the proof of Proposition 5.2: Q = P ∪ { }, q 0 = , F = H, and

δ a ( ⃗ S) = ⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ τ k (p 1 , . . . , p k , a) if ⃗ S = {p 1 }, .
. . , {p k }, ∅, . . . , ∅ with p 1 , . . . , p k ∈ P, otherwise.

In contrast, a conversion in the other direction is not always possible, as can be seen from the following example on binary ditrees. Consider the forgetful distributed automaton A ′ = ({ , ⊺, ⋆}, , δ, {⋆}), with

δ(S 1 , S 2 ) = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ if S 1 = S 2 = { } ⊺ if S 1 , S 2 ∈ {∅, {⊺}} ⋆ otherwise.
When run on an unlabeled, 2-relational ordered ditree, A ′ accepts at the root precisely if the ditree is not perfectly balanced, i.e., if there exists a node whose left and right subtrees have di erent heights. To achieve this, each node starts in the waiting state , where it remains as long as it has two children and those children are also in . If the ditree is perfectly balanced, then all the leaves switch permanently from to ⊺ in the rst round, their parents do so in the second round, their parents' parents in the third round, and so forth, until the signal reaches the root. Therefore, the root will transition directly from to ⊺, never visiting state ⋆, and hence the pointed ditree is rejected. On the other hand, if the ditree is not perfectly balanced, then
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there must be some lowermost internal node v that does not have two subtrees of the same height (in particular, it might have only one child). Since its subtrees are perfectly balanced, they behave as in the preceding case. At some point in time, only one of v's children will be in state , at which point v will switch to state ⋆. This triggers an upward-propagating chain reaction, eventually causing the root to also visit ⋆, and thus to accept. Note that ⋆ is just an intermediate state; regardless of whether or not the ditree is perfectly balanced, every node will ultimately end up in ⊺.

To prove that A ′ is not equivalent to any tree automaton, one can simply invoke the pumping lemma for regular tree languages to show that the complement language of A ′ is not recognizable by any tree automaton. The claim then follows from the fact that regular tree languages are closed under complementation. ∎

Exploiting forgetfulness

We now give an algorithm deciding the emptiness problem for forgetful distributed automata (on arbitrary digraphs). Its space complexity is linear in the number of states of the given automaton. However, as an uncompressed binary encoding of a distributed automaton requires space exponential in the number of states, this results in complexity. Obviously, the statement might not hold anymore if the automaton were instead represented by a more compact device, such as a logical formula.

Theorem 5.4 .

▸ We can decide the emptiness problem for forgetful distributed automata with complexity.

◂

Proof. Let A = (Q, q 0 , (δ a ) a∈Σ , F) be some forgetful distributed automaton over Σ-labeled, r-relational digraphs. Consider the in nite sequence of sets of states S 0 , S 1 , S 2 ⋯ such that S t contains precisely those states that can be visited by A at some node in some digraph at time t. That is, q ∈ S t if and only if there exists a pointed digraph G[v] such that ρ t (v) = q, where ρ is the run of A on G. From this point of view, the pointed-digraph language of A is nonempty precisely if there is some t ∈ N for which S t ∩ F ≠ ∅.

By de nition, we have S 0 = {q 0 }. Furthermore, exploiting the fact that A is forgetful, we can specify a simple function ∆∶ 2 Q → 2 Q such that S t+1 = ∆(S t ):

∆(S) = δ a ( ⃗ T ) a ∈ Σ and ⃗ T ∈ (2 S ) r
Obviously, S t+1 ⊆ ∆(S t ). To see that S t+1 ⊇ ∆(S t ), assume we are given a pointed digraph G q [v q ] for each state q ∈ S t such that v q visits q at time t in the run of A on G q . (Such a pointed digraph must exist by the de nition of S t .) Now, for any a ∈ Σ and ⃗ T = (T 1 , . . . , T r ) ∈ (2 St ) r , we construct a new digraph G as follows: Starting with a single a-labeled node v, we add a (disjoint) copy of G q for each state q that occurs in some set T k . Then, we add a k-edge from v q to v if and only if q ∈ T k . Each node v q behaves the same way in G as in G q because v has no in uence on its incoming neighbors. Since A is forgetful, the state of v at time t + 1 depends solely on its own label and its incoming neighbors' states at time t. Consequently, v visits the state δ a ( ⃗ T ) at time t + 1, and thus δ a ( ⃗ T ) ∈ S t+1 .

Emptiness Problems

Now, we know that the sequence S 0 , S 1 , S 2 ⋯ must be eventually periodic because its generator function ∆ maps the nite set 2 Q to itself. Hence, it su ces to consider the pre x of length 2 Q in order to determine whether S t ∩ F ≠ ∅ for some t ∈ N.

This leads to the following simple algorithm, which decides the emptiness problem for forgetful automata.

(A) ∶ S ← {q 0 } repeat at most 2 Q times ∶ S ← ∆(S) if S ∩ F ≠ ∅ ∶ return true return false
It remains to analyze the space complexity of this algorithm. For that, we assume that the binary encoding of A given to the algorithm contains a lookup table for each transition function δ a and a bit array representing F, which amounts to an asymptotic size of Θ Σ ⋅ 2 Q r ⋅ log Q input bits. To implement the procedure , we need Q bits of working memory to represent the set S and another Q bits for the loop counter. Furthermore, we can compute ∆(S) for any given set S ⊆ Q by simply iterating over all a ∈ Σ and ⃗ T ∈ (2 Q ) r , and adding δ a ( ⃗ T ) to the returned set if all components of ⃗ T are subsets of S. This requires log Σ + Q ⋅ r additional bits to keep track of the iteration progress, Θ log Σ + Q ⋅ r + log log Q bits to store pointers into the lookup tables, and Q bits to store the intermediate result. In total, the algorithm uses Θ log Σ + Q ⋅ r bits of working memory, which is logarithmic in the size of the input.

∎

Exchanging space and time

In this section, we rst show the undecidability of the dipath-emptiness problem for arbitrary distributed automata, and then lift that result to the general emptiness problem.

Theorem 5.5 .

▸ The dipath-emptiness problem for distributed automata is undecidable. ◂

Proof sketch. We proceed by reduction from the halting problem for Turing machines.

For our purposes, a Turing machine operates deterministically with one head on a single tape, which is one-way in nite to the right and initially empty. The problem consists of determining whether the machine will eventually reach a designated halting state. We show a way of encoding the computation of a Turing machine M into the run of a distributed automaton A over unlabeled digraphs, such that the language of A contains a pointed dipath if and only if M reaches its halting state. Note that since dipaths are oriented, the communication between their nodes is only one-way. Hence, we cannot simply represent (a section of) the Turing tape as a dipath.

It turns out that this corresponds to a wellknown construction in cellular automata theory; see Section 7.2.2.

Instead, the key idea of our simulation is to exchange the roles of space and time, in the sense that the space of M is encoded into the time of A, and the time of M into the space of A. Assuming the language of A contains a dipath, we will think of that dipath as representing the timeline of M, such that each node corresponds to a single point in time in the computation of M. Roughly speaking, when running A, the node v t corresponding to time t will "traverse" the con guration C t of M at time t. Here, "traversing" means that the sequence of states of A visited by v t is an encoding of C t read from left to right, supplemented with some additional bookkeeping information.

The rst element of the dipath, node v 0 , starts by visiting a state of A representing an empty cell that is currently read by M in its initial state. Then it transitions to another state that simply represents an empty cell, and remains in such a state forever after. Thus v 0 does indeed "traverse" C 0 . We will show that it is also possible for any other node v t to "traverse" its corresponding con guration C t , based on the information it receives from v t-1 . In order for this to work, we shall give v t-1 a head start of two cells, so that v t can compute the content of cell i in C t based on the contents of cells i -1, i and i + 1 in C t-1 .

Node v t enters an accepting state of A precisely if it "sees" the halting state of M during its "traversal" of C t . Hence, A accepts the pointed dipath of length t if and only if M reaches its halting state at time t.

We now describe the inner workings of A in a semi-formal way. In parallel, the reader might want to have a look at Figure 5.1, which illustrates the construction by means of an example. Let M be represented by the tuple (P, Γ , p 0 , ◻, τ, p h ), where P is the set of states, Γ is the tape alphabet, p 0 is the initial state, ◻ is the blank symbol, τ∶ (P ∖ {p h }) × Γ → P × Γ × {L, R} is the transition function, and p h is the halting state. From this, we construct A as (Q, q 0 , δ, F), with the state set Q = ({ } ∪ (P ×Γ ) ∪ Γ ) 3 , the initial state q 0 = ( , , ), the transition function δ speci ed informally below, and the accepting set F that contains precisely those states that have p h in their third component. In keeping with the intuition that each node of the dipath "traverses" a con guration of M, the third component of its state indicates the content of the "currently visited" cell i. The two preceding components keep track of the recent history, i.e., the second component always holds the content of the previous cell i -1, and the rst component that of i -2. In the following explanation, we concentrate on updating the third component, tacitly assuming that the other two are kept up to 5 Emptiness Problems date. The special symbol indicates that no cell has been "visited", and we say that a node is in the waiting phase while its third component is .

In the rst round, v 0 sees that it does not have any incoming neighbor, and thus exits the waiting phase by setting its third component to (p 0 , ◻), and after that, it sets it to ◻ for the remainder of the run. Every other node v t remains in the waiting phase as long as its incoming neighbor's second component is . This ensures a delay of two cells with respect to v t-1 . Once v t becomes active, given the current state (c 1 , c 2 , c 3 ) of v t-1 , it computes the third component d 3 of its own next state (d 1 , d 2 , d 3 ) as follows: If none of the components c 1 , c 2 , c 3 "contain the head of M", i.e., if none of them lie in P × Γ , then it simply sets d 3 to be equal to c 2 . Otherwise, a computation step of M is simulated in the natural way. For instance, if c 3 is of the form (p, γ), and τ(p, γ) = (p ′ , γ ′ , L), then d 3 is set to (p ′ , c 2 ). This corresponds to the case where, at time t -1, the head of M is located to the right of v t 's next "position" and moves to the left. As another example, if c 2 is of the form (p, γ), and τ(p, γ) = (p ′ , γ ′ , R), then d 3 is set to γ ′ . The remaining cases are handled analogously.

Note that, thanks to the two-cell delay between adjacent nodes, the head of M always "moves forward" in the time of A, although it may move in both directions with respect to the space of M (see Figure 5.1).

∎

To infer from Theorem 5.5 that the general emptiness problem for distributed automata is also undecidable, we now introduce the notion of monovisioned automata, which have the property that nodes "expect" to see no more than one state in their incoming neighborhood at any given time. More precisely, a distributed automaton A = (Q, δ 0 , δ, F) is monovisioned if it has a rejecting sink state q rej ∈ Q ∖ F, such that δ(q, S) = q rej whenever S > 1 or q rej ∈ S or q = q rej , for all q ∈ Q and S ⊆ Q. Obviously, for every distributed automaton, we can construct a monovisioned automaton that has the same acceptance behavior on dipaths. Furthermore, as shown by means of the next two lemmas, the emptiness problem for monovisioned automata is equivalent to its restriction to dipaths. All put together, we get the desired reduction from the dipath-emptiness problem to the general emptiness problem.

Lemma 5.6 .

▸ The language of a distributed automaton is nonempty if and only if it contains a pointed ditree.

◂

Proof sketch. We slightly adapt the notion of tree-unraveling, which is a standard tool in modal logic (see, e.g., [START_REF]Modal logic[END_REF]Def. 4.51] or [BB07, § 3.2]). Consider any distributed automaton A. Assume that A accepts some pointed digraph G[v], and let t ∈ N be the rst point in time at which v visits an accepting state. Based on that, we can easily construct a pointed ditree G ′ [v ′ ] that is also accepted by A. First of all, the root v ′ of G ′ is chosen to be a copy of v. On the next level of the ditree, the incoming neighbors of v ′ are chosen to be fresh copies u ′ 1 , . . . , u ′ n of v's incoming neighbors u 1 , . . . , u n . Similarly, the incoming neighbors of u ′ 1 , . . . , u ′ n are fresh copies of the incoming neighbors of u 1 , . . . , u n . If u i and u j have incoming neighbors in common, we create distinct copies of those neighbors for u ′ i and u ′ j . This process is iterated until we obtain a ditree of height t. It is easy to check that v and v ′ visit the same sequence of states q 0 , q 1 , . . . , q t during the rst t communication rounds. ▸ The language of a monovisioned distributed automaton is nonempty if and only if it contains a pointed dipath.

◂

Proof sketch. Consider any monovisioned distributed automaton A whose language is nonempty. By Lemma 5.6, A accepts some pointed ditree G[v]. Let t ∈ N be the rst point in time at which v visits an accepting state. Now, it is easy to prove by induction that for all i ∈ {0, . . . , t}, sibling nodes at depth i traverse the same sequence of states q 0 , q 1 , . . . , q t-i between times 0 and ti, and this sequence does not contain the rejecting state q rej . Thus, A also accepts any dipath from some node at depth t to the root. ∎

Timing a firework show

We now show that the emptiness problem is undecidable even for quasi-acyclic automata. This also provides an alternative, but more involved undecidability proof for the general case. Notice that our proof of Theorem 5.5 does not go through if we consider only quasi-acyclic automata.

It is straightforward to see that quasi-acyclicity is preserved under a standard product construction, similar to the one employed for nite automata on words. Hence, we have the following closure property, which will be used in the subsequent undecidability proof.

Lemma 5.8 .

▸ The class of languages recognizable by quasi-acyclic distributed automata is closed under union and intersection.

◂

Theorem 5.9 .

▸ The emptiness problem for quasi-acyclic distributed automata is undecidable. ◂ Proof sketch. We show this by reduction from Post's correspondence problem ( ). An instance P of consists of a collection of pairs of nonempty nite words (x i , y i ) i∈I over the alphabet {0, 1}, indexed by some nite set of integers I. It is convenient to view each pair (x i , y i ) as a domino tile labeled with x i on the upper half and y i on the lower half. The problem is to decide if there exists a nonempty sequence S = (i 1 , . . . , i n ) of indices in I, such that the concatenations x S = x i 1 ⋯ x in and y S = y i 1 ⋯ y in are equal. We construct a quasi-acyclic automaton A whose language is nonempty if and only if P has such a solution S.

Metaphorically speaking, our construction can be thought of as a perfectly timed " rework show", whose only "spectator" will see a putative solution S = (i 1 , . . . , i n ), and be able to check whether it is indeed a valid solution of P. Our "spectator" is the distinguished node v of the pointed digraph on which A is run. We assume that v has n incoming neighbors, one for each element of S. Let v k denote the neighbor corresponding to i k , for 1 ⩽ k ⩽ n. Similarly to our proof of Theorem 5.5, we use the time of A to represent the spatial dimension of the words x S and y S . On an intuitive level, v will "witness" simultaneous left-to-right traversals of x S and y S , advancing by one bit per time step, and it will check that the two words match. It is the task of each node v k to send to v the required bits of the subwords x i k and y i k at the appropriate times. In keeping with the metaphor of reworks, the correct timing can be achieved by attaching to v k a carefully chosen "fuse", which is "lit" at time 0. Two separate " re" signals will travel at di erent speeds along this (admittedly sophisticated) "fuse", and once they reach v k , they trigger the " ring" of x i k and y i k , respectively.

We now go into more details. Using the labeling of the input graph, the automaton A distinguishes between 2 I + 1 di erent types of nodes: two types i and i ′ for each index i ∈ I, and one additional type to identify the "spectator". Motivated by Lemma 5.6, we suppose that the input graph is a pointed ditree, with a very speci c shape that encodes a putative solution S = (i 1 , . . . , i n ). An example illustrating the following description of such a ditree-encoding is given in Figure 5.2. Although A is not able to enforce all aspects of this particular shape, we will make sure that it accepts such a structure if its language is nonempty. The root (and distinguished node) v is the only node of type . Its children v 1 , . . . , v n are of types i 1 , . . . , i n , respectively. The "fuse" attached to each child v k is a chain of k -1 nodes that represents the multiset of indices occurring in the (k -1)-pre x of S. More precisely, there is an induced dipath v k,1 → ⋯ v k,k-1 → v k , such that the multiset of types of the nodes v k,1 , . . . , v k,k-1 is equal to the multiset of indices occurring in (i 1 , . . . , i k-1 ). We do not impose any particular order on those nodes. Finally, each node of type i ∈ I also has an incoming chain of nodes of type i ′ (depicted in gray in Figure 5.2), whose length corresponds exactly to the product of the types occurring on the part of the "fuse" below that node. That is, if we de ne the alias v k,k ∶= v k , then for every node v k,j of type i ∈ I, there is an induced dipath v k,j,1 → ⋯ v k,j, → v k,j , where all the nodes v k,j,1 , . . . , v k,j, are of type i ′ , and the number is equal to the product of the types of the nodes v k,1 , . . . , v k,j-1 (which is 1 if j = 1). We shall refer to such a chain v k,j,1 , . . . , v k,j, as a "side fuse".

The automaton A has to perform two tasks simultaneously: First, assuming it is run on a ditree-encoding of a sequence S, exactly as speci ed above, it must verify that S is a valid solution, i.e., that the words x S and y S match. Second, it must ensure that the input graph is indeed su ciently similar to such a ditree-encoding. In particular, it has to check that the "fuses" used for the rst task are consistent with each other. Since, by Lemma 5.8, quasi-acyclic distributed automata are closed under intersection, we can consider the two tasks separately, and implement them using two independent automata A 1 and A 2 . In the following, we describe both devices in a rather informal manner. The important aspect to note is that they can be easily formalized using quasi-acyclic state diagrams.

We start with A 1 , which veri es the solution S. It takes into account only nodes with types in I ∪ { } (thus ignoring the gray nodes in Figure 5.2). At nodes of type i ∈ I, the states of A 1 have two components, associated with the upper and lower halves of the domino (x i , y i ). If a node of type i sees that it does not have any incoming neighbor, then the upper and lower components of its state immediately start traversing sequences of substates representing the bits of x i and y i , respectively. Since those substates must keep track of the respective positions within x i and y i , none of them can be visited twice. After that, both components loop forever on a special substate ⊺, which indicates the end of transmission. The other nodes of type i keep each of their two components in a waiting status, indicated by another substate , until the corresponding component of their incoming neighbor reaches its last substate before ⊺. This constitutes the aforementioned " re" signal. Thereupon, they start traversing the same sequences of substates as in the previous case. Note that both components are updated independently of each other, hence there can be an arbitrary time lag between the "traversals" of x i and y i . Now, assuming the "fuse" Figure 5.2. Timing a " rework show" to prove Theorem 5.9. The domino tiles on the bottom-left visualize the solution (5, 3, 7, 3) for the instance {3 ↦ (00, 100), 5 ↦ (010, 0), 7 ↦ (11, 01)} of . This solution is encoded into the labeled ditree above, with node types , 3, 5, 7, 3 ′ , 5 ′ , 7 ′ . Each domino is represented by a bold-highlighted white node of the appropriate type. The "fuse" of such a bold node consists of the chain of white nodes below it, which lists the indices of the preceding dominos in an arbitrary order. Each white node also has a gray "side fuse" whose length is equal to the product of the white types occurring below that node. The " rework show" observed at the root will feature two simultaneous bitstreams, which both represent the sequence 010001100.

of each node v k really encodes the multiset of indices occurring in (i 1 , . . . , i k-1 ), the delay accumulated along that "fuse" will be such that v k starts "traversing" x i k and y i k at the points in time corresponding to their respective starting positions within x S and y S . That is, for x i k it starts at time x i 1 ⋯ x i k-1 + 1, and for y i k at time y i 1 ⋯ y i k-1 + 1. Consequently, in each round t ⩽ min{ x S , y S }, the root v receives the t-th bits of x S and y S . At most two distinct children send bits at the same time, while the others remain in some state q ∈ { , ⊺} 2 . With this, the behavior of A 1 at v is straightforward: It enters its only accepting state precisely if all of its children have reached the state (⊺, ⊺) and it has never seen any mismatch between the upper and lower bits.

We now turn to A 2 , whose job is to verify that the "fuses" used by A 1 are reliable. Just like A 1 , it works under the assumption that the input digraph is a ditree as speci ed previously, but with signi cantly reduced guarantees: The root could now have an arbitrary number of children, the "fuses" and "side fuses" could be of arbitrary lengths, and each "fuse" could represent an arbitrary multiset of indices in I. Again using an approach reminiscent of reworks, we devise a protocol in which each child v will send two distinct signals to the root v . The rst signal ↑ 1 indicates that the current time t is equal to the product of the types of all the nodes on v's "fuse". Similarly, the second signal ↑ 2 indicates that the current time is equal to that same product multiplied by v's own type. To achieve this, we make use of the "side fuses", along which two additional signals ← 1 and ← 2 are propagated. For each node of type i ∈ I, the nodes of type i ′ on the corresponding "side fuse" operate in a way such that ← 1 advances by one node per time step, whereas ← 2 is delayed by i time units at every node. Hence, ← 1 travels i times faster than ← 2 . Building on that, each node v of type i (not necessarily a child of the root) sends ↑ 1 to its parent, either at time 1, if it does not have any predecessor on the "fuse", or one time unit before receiving ↑ 2 from its predecessor. The latter is possible, because the predecessor also sends a pre-signal ↑ pre 2 before sending ↑ 2 . Then, v checks that signal ← 1 from its "side fuse" arrives exactly at the same time as ↑ 2 from its predecessor, or at time 1 if there is no predecessor. Otherwise, it immediately enters a rejecting state. This will guarantee, by induction, that the length of the "side fuse" is equal to the product of the types on the "fuse" below. Finally, two rounds prior to receiving ← 2 , while that signal is still being delayed by the last node on the "side fuse", v rst sends the pre-signal ↑ pre 2 , and then the signal ↑ 2 in the following round. For this to work, we assume that each node on the "side fuse" waits for at least two rounds between receiving ← 2 from its predecessor and forwarding the signal to its successor, i.e., all indices in I must be strictly greater than 2. Due to the delay accumulated by ← 2 along the "side fuse", the time at which ↑ 2 is sent corresponds precisely to the length of the "side fuse" multiplied by i.

Without loss of generality, we require that the set of indices I contains only prime numbers (as in Figure 5.2). Hence, by the unique-prime-factorization theorem, each multiset of numbers in I is uniquely determined by the product of its elements. This leads to a simple veri cation procedure performed by A 2 at the root: At time 1, node v checks that it receives ↑ 1 and not ↑ 2 . After that, it expects to never again see ↑ 1 without ↑ 2 , and remains in a loop as long as it gets either no signal at all or both ↑ 1 and ↑ 2 . Upon receiving ↑ 2 alone, it exits the loop and veri es that all of its children have sent both signals, which is apparent from the state of each child. The root rejects immediately if any of the expectations above are violated, or if two nodes with di erent types send the same signal at the same time. Otherwise, it enters an accepting state after leaving the loop. Now, consider the sequence T = (t 1 , . . . , t n+1 ) of rounds in which v receives at least one of the signals ↑ 1 and ↑ 2 . It is easy to see by induction on T that successful completion of the procedure above ensures that there is a sequence S = (i 1 , . . . , i n ) of indices in I with the following properties: For each k ∈ {1, . . . , n}, the root has at least one child v k of type i k that sends ↑ 1 at time t k and ↑ 2 at time t k+1 , and the "fuse" of v k encodes precisely the multiset of indices occurring in (i 1 , . . . , i k-1 ). Conversely, each child of v can be associated in the same manner with a unique element of S.

To conclude our proof, we have to argue that the automaton A, which simulates A 1 and A 2 in parallel, accepts some labeled pointed digraph if and only if P has a solution S. The "if" part is immediate, since, by construction, A accepting a ditreeencoding of S is equivalent to S being a valid solution of P. To show the "only if" part, we start with a pointed digraph accepted by A, and incrementally transform it into a ditree-encoding of a solution S, while maintaining acceptance by A: First of all, by Lemma 5.6, we may suppose that the digraph is a ditree. Its root must be of type , since A would not accept otherwise. Next, we require that A raises an alarm at nodes that see an unexpected set of states in their incoming neighborhood, and that this alarm is propagated up to the root, which then reacts by entering a rejecting sink state. This ensures that the repartition of types is consistent with our speci cation; for example, that the children of a node of type i ′ must be of type i ′ themselves. We now prune the ditree in such a way that nodes of type i keep at most two children and nodes of type i ′ keep at most one child. (The behavior of the deleted children must be indistinguishable from the behavior of the remaining children, since otherwise an alarm would be raised.) This leaves us with a ditree corresponding exactly to the input "expected" by the automaton A 2 . Since it is accepted by A 2 , this ditree must be very close to an encoding of a solution S = (i 1 , . . . , i n ), with the only di erence that each element i k of S may be represented by several nodes v 1 k , . . . , v m k . However, we know by construction that A behaves the same on all of these representatives. We can therefore remove the subtrees rooted at v 2 k , . . . , v m k , and thus we obtain a ditree-encoding of S that is accepted by A.

∎

Chapter based on the preprint [START_REF] Reiter | Alternating Set Quanti ers in Modal Logic[END_REF].

Alternation Hierarchies

In this chapter, we transfer the set quanti ers of to the setting of modal logic and investigate the resulting alternation hierarchies. More precisely, we establish separation results for the hierarchies that one obtains by alternating existential and universal set quanti ers in several logics of the form (Φ), where Φ is some variant of modal logic.

Within the context of this thesis, the motivation for such hybrids between modal logic and classical logic stems from their close connection to local distributed automata. By [HJK + 12, HJK + 15], 's are equivalent to ← (Theorem 2.5), and by Chapter 3, g 's are equivalent to (Theorem 3.13). As mentioned in Section 3.6, the combination of those two results suggests an alternative logical characterization of g 's using ( ← g ) instead of . The equivalence of ( ← g ) and can be easily proven by a standard technique that simulates node quanti ers through set quanti ers (see, e.g., [START_REF] Kuusisto | A modal perspective on monadic second-order alternation hierarchies[END_REF][START_REF] Kuusisto | Second-order propositional modal logic and monadic alternation hierarchies[END_REF]§ 3]). Yet in some sense, ( ← g ) provides a more faithful representation of g 's because it preserves the expressive power of each quanti er alternation level. For instance, the existential fragment Σ 1 ( ← g ) speci es exactly the same digraph languages as g 's, whereas is strictly more powerful (see Section 3.6). Therefore, if we want to precisely examine the power of alternation between nondeterministic decisions and universal branchings in g 's, then we can do so from a purely logical perspective using ( ← g ). This has the advantage that, compared to state diagrams, formulas take up less space and are usually easier to manipulate.

As it turns out, the above considerations are closely related to an old problem in modal logic. Already in , van Benthem asked in [START_REF] Van Benthem | Modal Logic and Classical Logic[END_REF] whether the syntactic hierarchy obtained by alternating existential and universal set quanti ers in ( → ) induces a corresponding hierarchy on the semantic side.

In [START_REF] Balder Ten | Expressivity of Second Order Propositional Modal Logic[END_REF] and [START_REF] Kuusisto | A modal perspective on monadic second-order alternation hierarchies[END_REF][START_REF] Kuusisto | Second-order propositional modal logic and monadic alternation hierarchies[END_REF], (

→

) is called (second-order propositional modal logic).

Remaining unanswered, the question was raised again by ten Cate in [START_REF] Balder Ten | Expressivity of Second Order Propositional Modal Logic[END_REF], and nally a positive answer was provided by Kuusisto in [START_REF] Kuusisto | A modal perspective on monadic second-order alternation hierarchies[END_REF][START_REF] Kuusisto | Second-order propositional modal logic and monadic alternation hierarchies[END_REF]: he showed that ( → ) induces an in nite hierarchy over pointed digraphs. This tells us that the hierarchy does not completely collapse at some level, but a priori leaves open whether or not each number of quanti er alternations corresponds to a separate semantic level.

Kuusisto's proof builds upon the work of Matz, Schweikardt and Thomas in As a spin-o , Theorem 6.2 also provides an extension of some of these separations to → , a kernel class without global modalities. Following [START_REF] Kuusisto | A modal perspective on monadic second-order alternation hierarchies[END_REF][START_REF] Kuusisto | Second-order propositional modal logic and monadic alternation hierarchies[END_REF], we consider the alternation hierarchies of both ( → ) and • ( → ). For the former, which is evaluated on pointed digraphs, Figure 6.1 gives a detailed picture, leaving open only whether the inclusion ⟦ Σ (Φ)⟧ C ⊆ ⟦∆ +1 (Φ)⟧ C is proper. Inferring the strictness of this inclusion from the preceding results does not seem very dicult, but would call for a generalization of our framework. In contrast, the second hierarchy based on → is arguably less natural, since every • ( → )-formula is pre xed by a global box, regardless of the occurring set quanti ers. This creates a certain asymmetry between the Σ -and Π -levels, which becomes apparent when considering the missing relations in Figure 6.2. Unlike for the other hierarchies, one cannot simply argue by duality to deduce from ⟦ • Σ (Φ)⟧ C ⊈ ⟦ • Π (Φ)⟧ C that the converse noninclusion also holds. Nevertheless, the presented result is strong enough to answer the speci c strictness question mentioned in [START_REF] Kuusisto | A modal perspective on monadic second-order alternation hierarchies[END_REF]: For arbitrarily high , we have

⟦ Σ (Φ)⟧ C ⟦Σ (Φ)⟧ C ⟦Π (Φ)⟧ C ⟦∆ +1 (Φ)⟧ C ⟦Σ +1 (Φ)⟧ C ⟦Π +1 (Φ)⟧ C ⊈ ⊉ ⫌ ⫋ ⊆ (⊉) ⫋ ⫌ ⊈ ⊉
⟦ • Σ (Φ)⟧ C ⟦ • Π (Φ)⟧ C ⟦ • Σ +1 (Φ)⟧ C ⟦ • Π +1 (Φ)⟧ C ⊈ ⫋ ⫌ ⊆ ⫋ ⊈
⟦ • Σ ( → )⟧ ⊉ ⟦ • Σ +1 ( → )⟧ .

Top-level proofs

In accordance with our top-down approach, the present section already provides the proof of our main theorem, where everything comes together. It therefore acts as a gateway to the sections with the technical parts, especially Section 6.5.

Figurative inclusions

First of all, we need to introduce the primary tool with which we will transfer separation results from one setting to another. It can be seen as an abstraction of the strong rst-order reductions used in [START_REF] Matz | The Monadic Quanti er Alternation Hierarchy over Grids and Graphs[END_REF]. Unlike the latter, it is formulated independently of any logical language, which allows us to postpone the technical details to the end of the chapter. 

◂

Figuratively speaking, the partial bijection µ creates a tunnel between C and D, and all the sets in L and M are cropped to t through that tunnel. Two original sets are considered to be equal if their cropped versions are mapped onto each other by µ.

We denote the inverse function of µ by µ -1 and the identity function on C by id C .

We also de ne the shorthands Note that ordinary inclusion is a special case of gurative inclusion, i.e., for

C = D, L ⊆ M if and only if L ⇀ ⊆ id C M.
Furthermore, gurative inclusion is transitive in the sense that

L ⇀ ⊆ µ M ⇀ ⊆ ν N implies L ⇀ ⊆ ν○µ N.
(This depends crucially on the fact that ν is injective.) 

(ν ○ µ)(L) = ν(M ∩ µ(C)) = ν(M) ∩ (ν ○ µ)(C) ( * ) = N ∩ ν(D) ∩ (ν ○ µ)(C) = N ∩ (ν ○ µ)(C).
Equality ( * ) holds because ν is injective. Since the choice of L was arbitrary, there is such an N ∈ N for every L ∈ L, and thus L ⇀ ⊆ ν○µ N.

∎

In our speci c context, given a noninclusion ⟦Φ 2 ⟧ C ⊈ ⟦Φ 1 ⟧ C , we shall use the concept of gurative inclusion to infer from it another noninclusion ⟦Ψ 2 ⟧ D ⊈ ⟦Ψ 1 ⟧ D . Here, Φ 1 , Φ 2 , Ψ 1 , Ψ 2 and C, D refer to some classes of formulas and structures, respectively. The key part of the argument will be to construct an appropriate encoding function µ∶ C → D, in order to apply the following lemma. Lemma 6.4 .

▸ Let L 1 , L 2 ⊆ 2 C and M 1 , M 2 ⊆ 2 D be
families of subsets of some sets C and D. If there is a total injective function µ∶

C → D such that L 2 ⇀ ⊆ µ M 2 and L 1 ⇀ ⊇ µ M 1 , then L 2 ⊈ L 1 implies M 2 ⊈ M 1 .
◂ for all Ξ ∈ {Σ , Π , Σ } with ⩾ 0. If we can additionally show that µ(C) is (at most) ∆ 2 (Ψ)-de nable over D, then, by Lemma 6.5, the gurative equality ( * ) also holds for Ξ = ∆ +1 with ⩾ 1. Note that the backward part " ⇀ ⊇ µ " is always true, since µ -1 (D) is trivially ∆ 2 (Φ)-de nable over C.

The groundwork being in place, we proceed by applying Lemma 6.4 as follows: • If we have established ( * ) for Ξ ∈ {Σ , Π }, then we can transfer the separation

⟦Σ (Φ)⟧ C ⊈ ⊉ ⟦Π (Φ)⟧ C (1)
to the kernel class Ψ evaluated on the class of structures D. • Similarly, if ( * ) holds for Ξ ∈ { Σ , ∆ +1 }, then

⟦∆ +1 (Φ)⟧ C ⊈ ⟦ Σ (Φ)⟧ C (2)
can also be transferred to Ψ on D.

It remains to provide concrete gurative inclusions to prove the di erent parts of Theorem 6.2.

(a), (b) The rst two parts are treated in parallel. We start by transferring (1) and (2) from grids to digraphs, for the kernel class ↔ g , taking a detour via 2-relational digraphs, and then via 2-bit labeled ones. For all Ξ ∈ {Σ , Π , Σ , ∆ +1 } with ⩾ 1, we get

⟦Ξ( ↔ g )⟧ ⇀ = id ⟦Ξ( ↔ g )⟧ 2 0 ⇀ = µ 1 ⟦Ξ( ↔ g )⟧ 1 2 ⇀ = µ 2 ⟦Ξ( ↔ g )⟧ .
The rst line is trivial for Ξ ∈ {Σ , Π , Σ }, since ⊆ 2 0 . It also holds for Ξ = ∆ +1 because is Π 1 ( ↔ g )-de nable over 2 0 , as shall be demonstrated in Proposition 6.10. The other two lines rely on the existence of adequate injective functions µ 1 and µ 2 that allow us to apply Lemmas 6.14 and 6.5 in the way explained above. They will be provided by Propositions 6.15 and 6.16, respectively.

We proceed in a similar way to transfer (1) and (2) from ↔ g to → g on digraphs:

⟦Ξ( ↔ g )⟧ ⇀ = µ 3 ⟦Ξ( → g )⟧ 2 0 ⇀ = µ 1 ⟦Ξ( → g )⟧ 1 2 ⇀ = µ 2 ⟦Ξ( → g )⟧ ,
for Ξ ∈ {Σ , Π , Σ , ∆ +1 } with ⩾ 1. The very simple encoding function µ 3 , which lets us eliminate backward modalities and again use Lemmas 6.14 and 6.5, will be supplied by Proposition 6.17. The encodings µ 1 and µ 2 are the same as before, because the properties asserted by Propositions 6.15 and 6.16 hold for both → g and ↔ g as kernel classes. Incidentally, this means we could transfer (1) directly from → g on grids to → g on digraphs, without even mentioning ↔ g . To show that (1) and (2) are also valid for → g on 1-bit labeled undirected graphs, we establish

⟦Ξ( ↔ g )⟧ ⇀ = µ 4 ⟦Ξ( → g )⟧ 1 1
, again for all Ξ ∈ {Σ , Π , Σ , ∆ +1 } with ⩾ 1. The appropriate encoding µ 4 shall be constructed in Proposition 6.18. Since backward modalities do not o er any additional expressive power on undirected graphs, the separations we obtain also hold for the kernel ↔ g .

(c) Next, to transfer (1) from → g on digraphs to → on pointed digraphs, we show that, for Ξ ∈ {Σ , Π } with ⩾ 1, we have

⟦Ξ( → g )⟧ ⇀ = µ 5 ⟦Ξ( → )⟧ @ .
The injective function µ 5 , which satis es the translatability property required to obtain this gurative equality via Lemma 6.14, will be provided by Proposition 6.19. Its image µ 5 ( ) is not ( → )-de nable, for the simple reason that an ( → )formula is unable to distinguish between two structures that are isomorphic when restricted to the connected component containing the position marker @. Hence, we cannot merely apply Lemma 6.5 to show (2). Our approach would have to be re ned to take into account equivalence classes of structures, which we shall not do in this thesis.

(d) Finally, Proposition 6.19 will also state that µ 5 can be converted into an encoding µ ′ 5 , from back into , that satis es the following gurative inclusions for all ⩾ 2:

⟦Σ ( → g )⟧ ⇀ ⊆ µ ′ 5 ⟦ • Σ ( → )⟧ , ⟦Π ( → g )⟧ ⇀ = µ ′ 5 ⟦ • Π ( → )⟧ .
Using (1) for → g on digraphs, and applying Lemma 6.4, we can infer from this that

⟦ • Σ ( → )⟧ ⊈ ⟦ • Π ( → )⟧ . ∎

Grids as a starting point

In this section, we establish that the set quanti er alternation hierarchies of , ( ↔ g ) and ( → g ) are equivalent on labeled grids. In addition, we give a [Π 1 ( ↔ g )]-formula that characterizes the class of grids.

The standard translation

Our rst building block is a well-known property of modal logic, which holds even if we do not con ne ourselves to the setting of grids.

Proposition 6.6 .

▸ For every ↔ g -formula, there is an equivalent -formula, i.e., ⟦ ↔ g ⟧ ⊆ ⟦ ⟧.

◂

Proof. Given an ↔ g -formula ϕ, we have to construct an -formula ψ ϕ such that G ⊧ ϕ if and only if G ⊧ ψ ϕ , for every structure G. This is simply a matter of transcribing the semantics of ↔ g given in Table 2.1 to the language of rst-order logic, a method known as the standard translation in modal logic (see, e.g., [BRV02, Def. 2.45]). The following table gives a recursive speci cation of this translation.

6 Alternation Hierarchies ϕ ∈ ↔ g Equivalent formula ψ ϕ ∈ x @ ≐ x X X(@) ¬ϕ 1 ¬ψ ϕ 1 ϕ 1 ∨ ϕ 2 ψ ϕ 1 ∨ ψ ϕ 2 R (ϕ 1 , . . . , ϕ k ) ∃ x 1 ,...,x k R(@, x 1 , . . . , x k ) ∧ ⋀ 1⩽i⩽k ψ ϕ i [@ ↦ x i ]
R (ϕ 1 , . . . , ϕ k ) as above, except R(x k , . . . , x 1 , @)

• ϕ 1

∃ @ ψ ϕ 1
Here, x ∈ S 0 , X ∈ S 1 , R ∈ S k+1 , ϕ 1 , . . . , ϕ k ∈ ↔ g , for k ⩾ 1, and x 1 , . . . , x k are node symbols, chosen such that x i ∉ free(ψ ϕ i ). The notation ψ ϕ i [@ ↦ x i ] designates the formula obtained by substituting each free occurrence of @ in ψ ϕ i by x i . ∎

A detour through tiling systems

By restricting our focus to the class of labeled grids, we can take advantage of a well-studied automaton model introduced by Giammarresi and Restivo in [START_REF] Giammarresi | Recognizable Picture Languages[END_REF], which is closely related to . A "machine" in this model, called a tiling system, is de ned as a tuple T = (Σ, Q, Θ), where • Σ = 2 s is seen as an alphabet, with s ⩾ 0,

• Q is a nite set of sates, and

• Θ ⊆ (Σ × Q) ∪ {#} 4
is a set of 2×2-tiles that may use a fresh letter # not contained in (Σ × Q).

For a xed number of bits s, we denote by s the set of all tiling systems with alphabet Σ = 2 s . Given a s-bit labeled grid G, a tiling system T ∈ s operates similarly to a nondeterministic nite automaton generalized to two dimensions. A run of T on G is an extended labeled grid G # , obtained by nondeterministically labeling each cell of G with some state q ∈ Q and surrounding the entire grid with a border consisting of new #-labeled cells. We consider G # to be a valid run if each of its 2×2-subgrids can be identi ed with some tile in Θ. The set recognized by T consists precisely of those labeled grids for which such a run exists. By analogy with our existing notation, we write ⟦ s ⟧ s for the class formed by the sets of s-bit labeled grids that are recognized by some tiling system in s .

Exploiting a locality property of rst-order logic, Giammarresi, Restivo, Seibert and Thomas have shown in [START_REF] Giammarresi | Monadic Second-Order Logic Over Rectangular Pictures and Recognizability by Tiling Systems[END_REF] that tiling systems capture precisely the existential fragment of on labeled grids: Theorem 6.7 (Giammarresi, Restivo, Seibert, Thomas).

▸ For arbitrary s ⩾ 0, a set of s-bit labeled grids is -recognizable if and only if it is Σ 1 ( )-de nable over s , i.e.,

⟦ s ⟧ s = ⟦Σ 1 ( )⟧ s .
◂ 6.4 Grids as a starting point
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The preceding result is extremely useful for our purposes, because, from the perspective of modal logic, it provides a much easier access to . This brings us to the following proposition. Proposition 6.8 . ▸ For arbitrary s ⩾ 0, if a set of s-bit labeled grids is -recognizable, then it is also Σ 1 ( → g )-de nable over s , i.e.,

⟦ s ⟧ s ⊆ ⟦Σ 1 ( → g )⟧ s .

◂

Proof. Let T = (Σ, Q, Θ) be a tiling system with alphabet Σ = 2 s . We have to construct a Σ 1 ( → g )-sentence ϕ T over the signature {P 1 , . . . , P s , R 1 , R 2 }, such that each labeled grid G ∈ s satis es ϕ T if and only if it is accepted by T . The idea is standard: We represent the states of T by additional set symbols (X q ) q∈Q , and our formula asserts that there exists a corresponding partition of V G into Q subsets that represent a run G # of T on G. To verify that it is indeed a valid run, we have to check that each 2×2-subgrid of G # corresponds to some tile

θ = θ 1 θ 2 θ 3 θ 4 in Θ.
If the entry θ 1 is di erent from #, we can easily write down an → -formula ϕ θ that checks at a given position v ∈ V G , whether the 2×2-subgrid of G # with upper-left corner v matches θ. Here, θ 1 is chosen as the representative entry of θ, because the upper-left corner of the tile can "see" the other nodes by following the directed R 1and R 2 -edges. Otherwise, if θ 1 is equal to #, there is no such node v, since G does not contain special border nodes. However, we can always choose some other entry θ i , di erent from #, to be the representative of θ, and write a formula ϕ θ describing the tile from the point of view of a node corresponding to θ i . This choice is never arbitrary, because the representative must be able to "see" the other non-# entries of the tile. Consequently, we divide Θ into four disjoint sets Θ 1 , Θ 2 , Θ 3 , Θ 4 , such that Θ i contains those tiles θ that are represented by their entry θ i . In order to facilitate the subsequent formalization, we further subdivide each set into partitions according to the #-borders that occur within the tiles: Θ contains the "middle tiles" (all entries di erent from #), Θ the "left tiles" (with θ 1 and θ 3 equal to #), Θ the "bottom-right tiles", and so forth . . . Altogether, Θ is partitioned into nine subsets, grouped into four types:

Θ 1 = Θ ∪ Θ ∪ Θ ∪ Θ Θ 2 = Θ ∪ Θ Θ 3 = Θ ∪ Θ Θ 4 = Θ
We now construct the formula ϕ T in a bottom-up manner, starting with a subformula ϕ θ i for each entry θ i other than #, for every tile θ ∈ Θ. Letting θ i be equal to (a, q) ∈ Σ × Q, with a = a 1 . . . a s , the formula ϕ θ i checks at a given position v ∈ V G if the labeling of v matches θ i .

ϕ θ i = ⋀ a j =1 P j ∧ ⋀ a j =0 ¬P j ∧ X q ∧ ⋀ q ′ ≠q ¬X q ′
Building on this, we can de ne for each tile θ ∈ Θ the formula ϕ θ mentioned above. Since → g does not have backward modalities, there is a certain asymmetry 6 Alternation Hierarchies between tiles in Θ 1 , where the representative can "see" the entire 2×2-subgrid, and the remaining tiles, where the representative must "know" that it lies in the leftmost column or the uppermost row of the grid G. We shall address this issue shortly, and just assume that information not accessible to the representative is veri ed by another part of the ultimate formula ϕ T . For tiles in Θ , Θ , Θ , Θ , the de nitions of ϕ θ are given in the following table. For tiles in Θ , Θ , Θ , Θ , Θ , the method is completely analogous.

θ ϕ θ Θ ∋ θ 1 θ 2 θ 3 θ 4 ϕ θ 1 ∧ 2 ϕ θ 2 ∧ 1 ϕ θ 3 ∧ 1 2 ϕ θ 4 Θ ∋ θ 1 # # # ϕ θ 1 ∧ 2 ∧ 1 Θ ∋ # θ 2 # θ 4 ϕ θ 2 ∧ 1 ϕ θ 4 Θ ∋ # # # θ 4 ϕ θ 4
It remains to mark the top and left borders of G, using two additional predicates Y and Y , over which we will quantify existentially. To this end, we write an → g -formula ϕ border , checking that top [resp. left] nodes have no R 1 -[resp. R 2 -] predecessor, that there is a top-left node, and that being top [resp. left] is passed on to the R 2 -[resp. R 1 -] successor, if it exists.

ϕ border = ¬ • ( 1 Y ∨ 2 Y ) ∧ • (Y ∧ Y ) ∧ • (Y → 2 Y ) ∧ (Y → 1 Y )
Finally, we can put everything together to describe the acceptance condition of T . Every node v ∈ V G has to ensure that it corresponds to the upper-left corner of some tile in Θ 1 . Furthermore, nodes in the leftmost column or uppermost row of G must additionally check that the assignment of states is compatible with the tiles in Θ 2 , Θ 3 , Θ 4 . This leads to the desired formula ϕ T :

∃ (Xq) q∈Q , Y , Y ϕ border ∧ • ⋁ θ∈Θ 1 ϕ θ ∧ • Y → ⋁ θ∈Θ 2 ϕ θ ∧ • Y → ⋁ θ∈Θ 3 ϕ θ ∧ • Y ∧ Y → ⋁ θ∈Θ 4 ϕ θ
Note that we do not need a separate subformula to check that the interpretations of (X q ) q∈Q form a partition of V G , since this is already done implicitly in the conjunct

• (⋁ θ∈Θ 1 ϕ θ ). ∎

Equivalent hierarchies on grids

We now have all we need to prove the levelwise equivalence of , ( ↔ g ) and ( → g ) on labeled grids. Theorem 6.9 .

▸ Let s ⩾ 0, ⩾ 1 and Ξ ∈ {Σ , Π , Σ , ∆ }. When restricted to the class of s-bit labeled grids, Ξ( ), Ξ( ↔ g ) and Ξ( → g ) are equivalent, i.e.,

⟦Ξ( )⟧

s = ⟦Ξ( ↔ g )⟧ s = ⟦Ξ( → g )⟧ s .

◂

Proof. First, we show that the claim holds for the case Ξ = Σ 1 (with arbitrary s ⩾ 0). This can be seen from the following circular chain of inclusions:

⟦Σ 1 ( → g )⟧ s ⊆ ⟦Σ 1 ( ↔ g )⟧ s (a) ⊆ ⟦Σ 1 ( )⟧ s (b) ⊆ ⟦ s ⟧ s (c) ⊆ ⟦Σ 1 ( → g )⟧ s (d) (a)
The rst inclusion follows from the fact that Σ 1 ( → g ) is a syntactic fragment of Σ 1 ( ↔ g ).

(b) For the second inclusion, consider any Σ 1 ( ↔ g )-formula φ = ∃ X 1 ,...,Xn (ϕ), where X 1 , . . . , X n are set symbols and ϕ is an ↔ g -formula. By Proposition 6.6, we can replace ϕ in φ by an equivalent -formula ψ ϕ . This results in the Σ 1 ( )-formula ψ φ = ∃ X 1 ,...,Xn (ψ ϕ ), which is equivalent to φ on arbitrary structures, and thus, in particular, on s-bit labeled grids.

(c) The translation from Σ 1 ( ) on labeled grids to tiling systems corresponds to the more challenging direction of Theorem 6.7, which is the main result of [START_REF] Giammarresi | Monadic Second-Order Logic Over Rectangular Pictures and Recognizability by Tiling Systems[END_REF].

(d) The last inclusion is given by Proposition 6.8.

The general version of the theorem can now be obtained by induction on . This is straightforward, because the classes Π (Φ), Σ (Φ) and Σ +1 (Φ) are de ned syntactically in terms of Σ (Φ), for any set of kernel formulas Φ (see Section 6.1), and if the claim holds for Ξ ∈ {Σ , Π }, then it also holds for the intersection classes of the form ⟦∆ (Φ)⟧ s . ∎

A logical characterization of grids

We conclude this section by showing that a single layer of universal set quanti ers is enough to describe grids in ( ↔ g ).

Proposition 6.10 .

▸ The set of all grids is Π 1 ( ↔ g )-de nable over 2-relational digraphs, i.e.,

∈ ⟦Π 1 ( ↔ g )⟧ 2 0 . ◂ Proof.
In the course of this proof, we give a list of properties, items a to f, which are obviously necessary for a 2-relational digraph G to be a grid, and show how to express them as [Π 1 ( ↔ g )]-formulas. We argue that the conjunction of all of these properties also constitutes a su cient condition for being a grid, which immediately provides us with the required formula, since ⟦Π 1 ( ↔ g )⟧ is closed under intersection.

6 Alternation Hierarchies c. If Φ includes backward modalities, then for each relation symbol R in σ of arity at least 2, there is a Ψ-formula ψ R -1 that satis es the property of item b for R -1 instead of R.

d. If Φ includes global modalities, then there is a Ψ-formula ψ • that satis es the property of item b for • instead of R and k = 1.

e. There is a Ψ-sentence ψ ini over τ enriched with an additional set symbol Y, such that

G[X ↦ U] ⊧ X • X i µ(G)[Y ↦ W] ⊧ ψ ini , assuming U, W satisfy u ∈ U ⇔ (1, u) ∈ W,
where

X • X is X if @ ∈ σ, and • X otherwise, for all G ∈ C, U ⊆ V G , W ⊆ V µ(G) and X ∈ S 1 .
◂ Definition 6.13 (Backward Translation).

▸ Consider two classes of structures C and D over signatures σ and τ, respectively, two classes of formulas Φ, Ψ ∈ { → , ↔ , → g , ↔ g }, and a linear encoding µ∶ C → D with parameters m, n. We say that µ allows for backward translation from Ψ to Φ if the following properties are satis ed: a. For each node symbol or set symbol Q in τ and all h ∈ [n], there is a Φ-sentence S over σ @ enriched with additional set symbols (X j i ) 1⩽j⩽n 1⩽i⩽k , such that

ϕ h Q over σ @ , such that G[@ ↦ u] ⊧ ϕ h Q i µ(G)[@ ↦ v] ⊧ Q, where v is (h, u) if h ⩽ m,
G @, (X j i ) j⩽n i⩽k ↦ u, (U j i ) j⩽n i⩽k ⊧ ϕ h S if and only if µ(G) @, (Y i ) i⩽k ↦ v, (W i ) i⩽k ⊧ S (Y i ) i⩽k , where v is (h, u) if h ⩽ m, otherwise h, and W i = ⋃ 1⩽j⩽m {j}×U j i ∪ ⋃ m<j⩽n {j U j i = V G }, for all G ∈ C, nodes u ∈ V G , sets (U j i ) 1⩽j⩽m 1⩽i⩽k ⊆ V G and (U j i ) m<j⩽n 1⩽i⩽k ∈ {∅, V G }, and set symbols (Y i ) 1⩽i⩽k .
c. If Ψ includes backward modalities, then for each relation symbol S in τ of arity at least 2, and all h ∈ [n], there is a Φ-formula ϕ h S -1 that satis es the property of item b for S -1 instead of S.

d. If Ψ includes global modalities, then for all h ∈ [n], there is a Φ-formula ϕ h

• that satis es the property of item b for • instead of S and k = 1.
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e. There is a Φ-sentence ϕ ini over σ enriched with additional set symbols (X j ) 1⩽j⩽n , such that

G (X j ) j⩽n ↦ (U j ) j⩽n ⊧ ϕ ini if and only if µ(G)[Y ↦ W] ⊧ Y • Y , where Y • Y is Y if @ ∈ τ, otherwise • Y, and W = ⋃ 1⩽j⩽m {j}×U j ∪ ⋃ m<j⩽n {j U j = V G }, for all structures G ∈ C, sets (U j ) 1⩽j⩽m ⊆ V G and (U j ) m<j⩽n ∈ {∅, V G }, and Y ∈ S 1 .

◂

To simplify matters slightly, we shall say that a linear encoding µ allows for bidirectional translation between Φ and Ψ, if it allows for both forward translation from Φ to Ψ and backward translation from Ψ to Φ. Furthermore, in case Φ = Ψ, we may say "within Φ" instead of "between Φ and Φ".

Let us now prove that our notion of translatability is indeed su cient to imply gurative inclusion on the semantic side, even if we bring set quanti ers into play. In several places, given some ( ↔ g )-formula ϕ, the need will arise to substitute newly created ↔ g -formulas ϕ 1 , . . . , ϕ k for set symbols X 1 , . . . , X k . We shall write ϕ[(X i ) i⩽k ↦ (ϕ i ) i⩽k ] to denote the ( ↔ g )-formula that one obtains by simultaneously replacing every free occurrence of each X i in ϕ by the formula ϕ i . a. For every Ξ(Φ)-sentence ϕ over σ, we must construct a Ξ(Ψ)-sentence ψ ϕ over τ, such that ψ ϕ says about µ(G) the same as ϕ says about G, for all structures G ∈ C.

We start by focusing on the kernel classes Φ, Ψ, and show the following by induction on the structure of Φ-formulas: For every Φ-sentence ϕ over σ @ ∪ Z, with Z = {Z 1 , . . . , Z z } being any collection of set symbols disjoint from σ and τ (i.e., free set variables), there is a Ψ-sentence ψ

* ϕ over τ @ ∪ Z such that G @, (Z t ) t⩽z ↦ u, (U t ) t⩽z ⊧ ϕ if and only if µ(G) @, (Z t ) t⩽z ↦ (1, u), (W t ) t⩽z ⊧ ψ * ϕ , assuming U t , W t satisfy u ′ ∈ U t ⇔ (1, u ′ ) ∈ W t ,
6 Alternation Hierarchies for all structures G ∈ C, nodes u ∈ V G , and sets (U t ) 1⩽t⩽z ⊆ V G and (W t ) 1⩽t⩽z ⊆ V µ(G) .

• If ϕ = @ or ϕ = Z, for some Z ∈ Z, it su ces to set ψ * ϕ = ϕ.

• If ϕ = P, for some node symbol or set symbol P in σ, we exploit that µ allows for forward translation from Φ to Ψ, and choose ψ * ϕ = ψ P . Here, ψ P is the formula postulated by De nition 6.12 a; it ful lls the induction hypothesis, since adding interpretations of the symbols Z 1 , . . . , Z z to a structure has no in uence on whether or not that structure satis es a sentence over a signature that does not contain these symbols.

• If ϕ = ¬ϕ 1 or ϕ = ϕ 1 ∨ ϕ 2 , where ϕ 1 and ϕ 2 are formulas that satisfy the induction hypothesis, we set

ψ * ϕ = ¬ψ * ϕ 1 or ψ * ϕ = ψ * ϕ 1 ∨ ψ * ϕ 2 , respectively. • If ϕ = R (ϕ i ) i⩽k
, where R is a relation symbol in σ of arity k + 1 ⩾ 2, and (ϕ i ) i⩽k are Φ-sentences over σ @ ∪ Z satisfying the induction hypothesis, we again use the fact that µ allows for forward translation from Φ to Ψ. The desired formula ψ * ϕ is obtained by substituting (ψ * ϕ i ) i⩽k for the symbols (Y i ) i⩽k in the formula ψ R , whose existence is asserted by De nition 6.12 b, i.e.,

ψ * ϕ = ψ R (Y i ) i⩽k ↦ (ψ * ϕ i ) i⩽k . For any integer i ∈ [1 ∶ k], let U ′ i be the set of nodes u ′ ∈ V G that satisfy ϕ i in G (Z t ) t⩽z ↦ (U t ) t⩽z , and let W ′ i be the set of nodes v ′ ∈ V µ(G) that satisfy ψ ϕ i in µ(G) (Z t ) t⩽z ↦ (W t ) t⩽z . By induction hypothesis, we are guaranteed that all the sets U ′ i , W ′ i are such that a node u ′ lies in U ′ i if and only if (1, u ′ ) lies in W ′ i . Thus, we have G @, (Z t ) t⩽z ↦ u, (U t ) t⩽z ⊧ ϕ i G @, (X i ) i⩽k ↦ u, (U ′ i ) i⩽k ⊧ R (X i ) i⩽k i µ(G) @, (Y i ) i⩽k ↦ (1, u), (W ′ i ) i⩽k ⊧ ψ R i µ(G) @, (Z t ) t⩽z ↦ (1, u), (W t ) t⩽z ⊧ ψ * ϕ .
• If ϕ = R (ϕ i ) i⩽k , assuming Φ incorporates backward modalities, we obtain ψ * ϕ by applying the same argument as in the previous case, but this time considering R -1 instead of R and invoking De nition 6.12 c.

• If ϕ = • ϕ 1 , supposing Φ includes global modalities, we again follow the same line of reasoning as in the case ϕ = R (ϕ i ) i⩽k , referring to De nition 6.12 d and using • instead of R, with k = 1.

Now we can consider the case where the position symbol @ is not (re)mapped, and then look beyond the kernel classes to nally deal with set quanti ers. Arguing once more by structural induction, we extend the preceding claim as follows: For every Ξ(Φ)-sentence ϕ over σ ∪ Z, with Z = {Z 1 , . . . , Z z } as before (possibly empty), there is a Ξ(Ψ)-sentence ψ ϕ over τ ∪ Z such that

G (Z t ) t⩽z ↦ (U t ) t⩽z ⊧ ϕ if and only if µ(G) (Z t ) t⩽z ↦ (W t ) t⩽z ⊧ ψ ϕ , assuming U t , W t satisfy u ∈ U t ⇔ (1, u) ∈ W t , 6.5 A toolbox of encodings 81 for all G ∈ C, (U t ) 1⩽t⩽z ⊆ V G and (W t ) 1⩽t⩽z ⊆ V µ(G) .
• If ϕ lies in the kernel Φ, we make use of the claim just proven, together with the formula ψ ini described in De nition 6.12 e. We set

ψ ϕ = ψ ini [Y ↦ ψ * ϕ ].
-If @ belongs to σ, the asserted property of ψ ini guarantees that ϕ holds at the initial position @ G in the Z-extended variant of G if and only if ψ ϕ is satis ed by the Z-extended variant of µ(G).

-Otherwise, @ cannot be free in ϕ, since ϕ is a sentence over σ ∪ Z, which also implies that Φ incorporates global modalities. It follows that ϕ is equivalent to • ϕ. Again applying the de nition of ψ ini , we obtain that the Z-extended variant of G satis es • ϕ, and thus ϕ, if and only if the Z-extended variant of µ(G) satis es ψ ϕ .

• If ϕ is a Boolean combination of formulas that satisfy the induction hypothesis, the translation is straightforward, just as in the previous part of the proof.

• If ϕ = ∃ Z z+1 ϕ 1 , where ϕ 1 is a Ξ(Φ)-sentence over σ ∪ {Z 1 , . . . , Z z+1 } that satis es the hypothesis, we choose ψ ϕ = ∃ Z z+1 ψ ϕ 1 . To justify this choice, let G ′ and µ(G) ′ denote the Z-extended variants of G and µ(G), respectively. We get the following by induction:

-If choosing Z z+1 ↦ U z+1 leads to satisfaction of ϕ 1 in G ′ , then choosing Z z+1 ↦ {1}×U z+1 does the same for ψ ϕ 1 in µ(G) ′ . -Conversely, if Z z+1 ↦ W z+1 is a satisfying choice for ψ ϕ 1 in µ(G) ′ , then so is Z z+1 ↦ {u (1, u) ∈ W z+1 } for ϕ 1 in G ′ .
b. The proof of the reverse direction of the lemma is very similar to the previous one, but a bit more cumbersome, because each node of a structure G has to play the role of several di erent nodes in µ(G). Given any Ξ(Ψ)-sentence ψ over τ, we need to construct a Ξ(Φ)-sentence ϕ ψ over σ, such that evaluating ϕ ψ on G is equivalent to evaluating ψ on µ(G), for all G ∈ C. For the remainder of this proof, let m, n be the parameters of the linear encoding µ. Again, we rst deal with the kernel classes Φ, Ψ, and show the following claim by induction on the structure of Ψ-formulas: For every Ψ-sentence ψ over τ @ ∪ Z and all h ∈ [n], with Z = {Z 1 , . . . , Z z } ⊆ S 1 ∖τ, there is a Φ-sentence ϕ h ψ over σ @ ∪ Z, with Z

= {Z 1 1 , . . . , Z n z } ⊆ S 1 ∖σ, such that G @, (Z j t ) j⩽n t⩽z ↦ u, (U j t ) j⩽n t⩽z ⊧ ϕ h ψ if and only if µ(G) @, (Z t ) t⩽z ↦ v, (W t ) t⩽z ⊧ ψ, where v is (h, u) if h ⩽ m, otherwise h, and W t = ⋃ 1⩽j⩽m {j}×U j t ∪ ⋃ m<j⩽n {j U j t = V G }, for all G ∈ C, u ∈ V G , and sets (U j t ) 1⩽j⩽m 1⩽t⩽z ⊆ V G and (U j t ) m<j⩽n 1⩽t⩽z ∈ {∅, V G }.
• If ψ = @, it su ces to set ϕ h ψ = @.

• If ψ = Z t , for some Z t ∈ Z, the translation is given by ϕ h ψ = Z h t .

• If ψ = Q, for some node symbol or set symbol Q in τ, we use the fact that µ allows for backward translation from Ψ to Φ, and choose ϕ h ψ to be the formula ϕ h Q , which is provided by De nition 6.13 a. The de nition asserts that this formula ful lls the induction hypothesis for the case where G and µ(G) are not extended using additional set symbols from Z and Z. But since these symbols do not occur freely in ϕ h Q and Q, their interpretations do not in uence the evaluation of the formulas.

• If ψ = ¬ψ 1 or ψ = ψ 1 ∨ ψ 2 , where ψ 1 and ψ 2 are formulas that satisfy the induction hypothesis, we set ϕ h ψ = ¬ϕ h ψ 1 or ϕ h ψ = ϕ h ψ 1 ∨ ϕ h ψ 2 , respectively.

• If ψ = S (ψ i ) i⩽k , where S is a relation symbol in τ of arity k+1 ⩾ 2, and (ψ i ) i⩽k are Ψ-sentences over τ @ ∪Z satisfying the hypothesis, we again rely on the premise that µ allows for backward translation from Ψ to Φ. We construct ϕ h ψ by plugging the formulas (ϕ j ψ i ) j⩽n i⩽k provided by induction into the formula ϕ h S of De nition 6.13 b as follows:

ϕ h ψ = ϕ h S (X j i ) j⩽n i⩽k ↦ (ϕ j ψ i ) j⩽n i⩽k .
For 1 ⩽ i ⩽ k and 1 ⩽ j ⩽ n, let U j′ i be the set of nodes u ′ ∈ V G that satisfy ϕ j ψ i in G (Z j t ) j⩽n t⩽z ↦ (U j t ) j⩽n t⩽z , and let W ′ i be the set of nodes v ′ ∈ V µ(G) that satisfy ψ i in µ(G) (Z t ) t⩽z ↦ (W t ) t⩽z . The induction hypothesis ensures that

W ′ i = ⋃ 1⩽j⩽m {j}×U j′ i ∪ ⋃ m<j⩽n {j U j′ i = V G }.
Hence, we obtain the required equivalence as follows:

G @, (Z j t ) j⩽n t⩽z ↦ u, (U j t ) j⩽n t⩽z ⊧ ϕ h ψ i G @, (X j i ) j⩽n i⩽k ↦ u, (U j′ i ) j⩽n i⩽k ⊧ ϕ h S i µ(G) @, (Y i ) i⩽k ↦ v, (W ′ i ) i⩽k ⊧ S (Y i ) i⩽k i µ(G) @, (Z t ) t⩽z ↦ v, (W t ) t⩽z ⊧ ψ.
• If ψ = S (ψ i ) i⩽k , supposing Ψ includes backward modalities, we construct ϕ h ψ using the same approach as in the previous case, the only di erence being that we consider S -1 instead of S and invoke De nition 6.13 c instead of 6.13 b.

• If ψ = • ψ 1 , in case Ψ includes global modalities, we again proceed as for the case ψ = S (ψ i ) i⩽k , this time using • instead of S, with k = 1, and referring to De nition 6.13 d.

Similarly to the proof of part a, we now extend the previous property to cover formulas with set quanti ers, evaluated on structures that may interpret the position symbol @ arbitrarily. Our induction hypothesis is the following: For every Ξ(Ψ)sentence ψ over τ ∪ Z, with Z = {Z 1 , . . . , Z z } ⊆ S 1 ∖τ (possibly empty), there is a

Ξ(Φ)-sentence ϕ ψ over σ ∪ Z, with Z = {Z 1 1 , . . . , Z n z } ⊆ S 1 ∖σ, such that G (Z j t ) j⩽n t⩽z ↦ (U j t ) j⩽n t⩽z ⊧ ϕ ψ if and only if µ(G) (Z t ) t⩽z ↦ (W t ) t⩽z ⊧ ψ, where W t = ⋃ 1⩽j⩽m {j}×U j t ∪ ⋃ m<j⩽n {j U j t = V G }, 6.5 A toolbox of encodings 83 
for all structures G ∈ C, and sets (U j t ) 1⩽j⩽m 1⩽t⩽z ⊆ V G and (U j t ) m<j⩽n 1⩽t⩽z ∈ {∅, V G }.

• If ψ belongs to the kernel class Ψ, we apply the claim just proven, and construct ϕ ψ by substituting into the formula ϕ ini provided by De nition 6.13 e: ϕ ψ = ϕ ini (X j ) j⩽n ↦ (ϕ j ψ ) j⩽n . Proceeding analogously to the proof of part a, we have to distinguish whether or not the position symbol @ belongs to τ. (If it does not, ψ is necessarily equivalent to • ψ.) In both cases, the de nition of ϕ ini guarantees that the Z-extended variant of G satis es ϕ ψ if and only if the Z-extended variant of µ(G) satis es ψ.

• If ψ is a Boolean combination of subformulas that satisfy the induction hypothesis, then ϕ ψ is simply the corresponding Boolean combination of the translated subformulas.

• If ψ = ∃ Z z+1 ψ 1 , where ψ 1 is a Ξ(Ψ)-sentence over τ ∪ {Z 1 , . . . , Z z+1 } that satis es the induction hypothesis, we choose ϕ ψ to be the formula

∃ (Z j z+1 ) j⩽m ⋁ N ⊆ ]m∶n] ϕ ψ 1 Z j z+1 j>m ↦ N(j) j>m , with N(j) = ⊺ if j ∈ N, and 
N(j) = otherwise. For each set N ⊆ ]m ∶ n], let ϕ N ψ 1
denote the disjunct corresponding to N in the formula above. By induction, we have the following equivalence: the interpretation map (Z j z+1 ) j⩽m ↦ (U j z+1 ) j⩽m leads to satisfaction of ϕ N ψ 1 in the Z-extended variant of G if and only if

Z z+1 ↦ ⋃ 1⩽j⩽m {j}×U j z+1 ∪ N
is a satisfying choice for ψ 1 in the Z-extended variant of µ(G). ∎

Ge ing rid of multiple edge relations

We now show how to encode a multi-relational digraph into a 1-relational one, by inserting additional labeled nodes that represent the di erent edge relations.

Proposition 6.15 .

▸ For all s, r ⩾ 0 and Φ ∈ { → g , ↔ g }, there is a linear encoding µ from r s into 1 s+r that allows for bidirectional translation within Φ. Moreover, µ( r s ) is Π 1 ( → g )-de nable over 1 s+r .

◂

Proof. We choose µ to be the linear encoding that assigns to each s-bit labeled, r-

relational digraph G the (s + r)-bit labeled (1-relational) digraph µ(G) = H with domain [r + 1]×V G , labeling sets P H i = {1}×P G i , for 1 ⩽ i ⩽ s, and P H s+i = {i+1}×V G , for 1 ⩽ i ⩽ r, and edge relation R H = ⋃ 1⩽i⩽r (1, u), (i + 1, u) u ∈ V G ∪ (i + 1, u), (1, u) u ∈ V G ∪ (i + 1, u), (i + 1, u ′ ) (u, u ′ ) ∈ R G i .
That is, for each node u ∈ V G and for 1 ⩽ i ⩽ r, we introduce an additional node representing the "R i -port" of u, and connect everything accordingly.

Alternation Hierarchies

Our forward translation, from Φ on r s to Φ on µ( r s ), is given by

ψ P i = P i for 1 ⩽ i ⩽ s, ψ R i = ψ i+1 ∧ (ψ 1 ∧ Y) for 1 ⩽ i ⩽ r, ψ R -1 i = ψ i+1 ∧ (ψ 1 ∧ Y) for 1 ⩽ i ⩽ r, ψ • = • (ψ 1 ∧ Y), ψ ini = ψ • ,
where

ψ 1 = ¬ ⋁ 1⩽i⩽r (ψ i+1 ) ("regular"), ψ i+1 = P s+i for 1 ⩽ i ⩽ r ("R i -port").
Our translation in the other direction, from Φ on µ( r s ) to Φ on r s , is given by

ϕ h+1 P i = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ P i for h = 0 and 1 ⩽ i ⩽ s, for h = 0 and s + 1 ⩽ i ⩽ s + r, ⊺ for 1 ⩽ h ⩽ r and i = s + h, for 1 ⩽ h ⩽ r and i ≠ s + h, ϕ h+1 R = ⋁ 1⩽i⩽r X i+1 for h = 0, X 1 ∨ h X h+1 for 1 ⩽ h ⩽ r, ϕ h+1 R -1 = ⋁ 1⩽i⩽r X i+1 for h = 0, X 1 ∨ h X h+1 for 1 ⩽ h ⩽ r, ϕ h+1 • = • (X 1 ∨ . . . ∨ X r+1 ) for 0 ⩽ h ⩽ r, ϕ ini = ϕ 1 • .
We can characterize µ( r s ) over the class 1 s+r by the conjunction of the following Π 1 ( → g )-de nable properties, using our helper formulas (ψ i ) 1⩽i⩽r+1 from the forward translation.

• A "port" that corresponds to a relation symbol R i may not be associated with any other relation symbol R j , nor be labeled with predicates (P j ) 1⩽j⩽s .

⋀ 1⩽i⩽r • ψ i+1 → ¬ ⋁ 1⩽j⩽r, j≠i (ψ j+1 ) ∧ ¬ ⋁ 1⩽j⩽s (P j )
• Every "regular node" is connected to its r di erent "ports", and nothing else. The uniqueness of each "R i -port" can be expressed by the [Π 1 ( → g )]-formula see1(ψ i+1 ), using the construction from Example 2.2 in Section 2.6.

• ψ 1 → ¬ ψ 1 ∧ ⋀ 1⩽i⩽r see1(ψ i+1 )
• Similarly, each "port" is connected to precisely one "regular node" and to an arbitrary number of "ports" of the same relation symbol, but not to any other ones.

⋀ 1⩽i⩽r

• ψ i+1 → see1(ψ 1 ) ∧ ¬ ⋁ 1⩽j⩽r, j≠i ψ j+1 6.5 A toolbox of encodings
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• Finally, the links between "regular nodes" and "ports" have to be bidirectional: for each edge from a node of one type to a node of a di erent type, the corresponding inverse edge must also exist.

⋀ 1⩽i⩽r+1 ∀ X • ψ i ∧ X → (¬ψ i → X)
Note that, in combination with the previous properties, this ensures that we have the same total number of nodes for each type i ∈ [1 ∶ r + 1]. ∎

Ge ing rid of vertex labels

Being able to eliminate multiple edge relations at the cost of additional labeling sets (see Proposition 6.15), our natural next step is to encode labeled digraphs into unlabeled ones.

Proposition 6.16 .

▸ For all s ⩾ 1 and Φ ∈ { → g , ↔ g }, there is a linear encoding µ from 1 s into that allows for bidirectional translation within Φ.

Moreover, µ( 1 s ) is Π 1 ( → g )-de nable over .

◂

Proof. We construct the linear encoding µ that assigns to each s-bit labeled digraph G the (unlabeled) digraph µ(G) = H with domain ({1} × V G ) ∪ [2 ∶ s + 3] and edge relation

R H = (1, u), (1, u ′ ) (u, u ′ ) ∈ R G ∪ (1, u), 3 u ∈ V G ∪ ⋃ 1⩽i⩽s
(1, u), i + 3 u ∈ P G i ∪ (i + 3, i + 2) 1 ⩽ i ⩽ s ∪ (i + 3, 2) 0 ⩽ i ⩽ s .

The idea is to introduce a gadget that contains a separate node for each labeling set of the original digraph, and then connect the "regular nodes" to this gadget in a way that corresponds to their respective labeling. The gadget is easily identi able because it contains the only node in the digraph that has no outgoing edge (namely, node 2). We ensure this by connecting all the "regular nodes" to node 3. Our forward translation, from Φ on 1 s to Φ on µ( 1 s ), is given by

ψ P i = ψ i+3 for 1 ⩽ i ⩽ s, ψ R = (ψ 1 ∧ Y), ψ R -1 = Y, ψ • = • (ψ 1 ∧ Y), ψ ini = ψ • ,
where

ψ 1 = ¬ ⋁ 2⩽i⩽s+3 (ψ i ), ψ 2 = , ψ 3 = ψ 2 ∧ ψ 2 , ψ i+3 = ψ 2 ∧ ψ i+2 ∧ (ψ 2 ∨ ψ i+2 ) for 1 ⩽ i ⩽ s.

Alternation Hierarchies

Our translation in the other direction, from Φ on µ( 1 s ) to Φ on 1 s , is given by

ϕ h R = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ X 1 ∨ X 3 ∨ ⋁ 1⩽i⩽s (P i ∧ X i+3 ) for h = 1, for h = 2, X 2 for h = 3, X 2 ∨ X h-1 for 4 ⩽ h ⩽ s + 3, ϕ h R -1 = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ X 1 for h = 1, ⋁ 0⩽i⩽s X i+3 for h = 2,
• X 1 ∨ X h+1 for h = 3,

• (P h-3 ∧ X 1 ) ∨ X h+1 for 4 ⩽ h ⩽ s + 2,

• (P h-3 ∧ X 1 ) for h = s + 3,

ϕ h • = • (X 1 ∨ . . . ∨ X s+3 ) for 1 ⩽ h ⩽ s + 3, ϕ ini = ϕ 1 • .
Using the helper formulas (ψ i ) 1⩽i⩽s+3 from the forward translation, we can characterize µ( 1 s ) over as

• ψ 1 ∧ ⋀ 2⩽i⩽s+3 tot1(ψ i ) ∧ • (ψ 1 → ψ 3 ∧ ¬ ψ 2 ).
Here, each [Π 1 ( → g )]-subformula tot1(ψ i ) is obtained through the singleton construction from Example 2.2 in Section 2.6. ∎

Ge ing rid of backward modalities

For the sake of completeness, we also describe the encoding that lets us simulate backward modalities by means of an additional edge relation. Proposition 6.17 .

▸ There is a linear encoding µ from into 2 0 that allows for bidirectional translation between ↔ g and → g . Moreover, µ( ) is Π 1 ( → g )-de nable over 2 0 .

◂

Proof. The encoding is straightforward: to each digraph G, we assign a copy µ(G) = H that is enriched with a second edge relation, which coincides with the inverse of the rst. Formally,

V H = {1} × V G , R H 1 = (1, u), (1, u ′ ) (u, u ′ ) ∈ R G , and
R H 2 = (v ′ , v) (v, v ′ ) ∈ R H 1 .
With this, in order to translate between ↔ g on and → g on µ( ), we merely have to replace backward modalities by R 2 -modalities, and vice versa. Hence, when we x our forward translation, we choose ψ R = 1 Y and ψ R -1 = 2 Y, and for the backward translation we set ϕ 1 R 1 = X 1 and ϕ 1 R 2 = X 1 . To de ne µ( ) over 2 0 , we can use the following Π 1 ( → g )-formula: ∀ X • X → 1 2 X ∧ 2 1 X ∎ 6.5 A toolbox of encodings 87 6.5.5 Ge ing rid of directed edges

In order to encode a digraph into an undirected graph, we proceed in a similar manner to the elimination of multiple edge relations in Proposition 6.15. Using an ad-hoc trick, we can do this by introducing only one additional labeling set.

Proposition 6.18 .

▸ There is a linear encoding µ from into 1 1 that allows for bidirectional translation between ↔ g and → g . Moreover, µ( ) is Π 1 ( → g )-de nable over 

E H = {(1, u), (2, u)} u ∈ V G ∪ {(1, u), (3, u)} u ∈ V G ∪ {(2, u), (3, u ′ )} (u, u ′ ) ∈ R G ∪ {(2, u), 4} u ∈ V G ∪ {(3, u), 5} u ∈ V G ∪ {5, 6} .
The idea is that we connect each original node u ∈ V G to two new nodes, which represent the "outgoing port" and "incoming port" of d, and use undirected edges between "ports" to simulate directed edges between "regular nodes". In order to distinguish the di erent types of nodes, we connect them in di erent ways to the additional P-labeled nodes.

Our forward translation, from ↔ g on to → g on µ( ), is given by

ψ R = ψ 2 ∧ (ψ 1 ∧ Y) , ψ R -1 = ψ 3 ∧ (ψ 1 ∧ Y) , ψ • = • (ψ 1 ∧ Y), ψ ini = ψ • ,
where ψ 1 = ¬(ψ 2 ∨ . . . ∨ ψ 6 ) ("regular"), ψ 2 = ψ 4 ("outgoing"), ψ 3 = ¬P ∧ ψ 5 ("incoming"), ψ 4 = P ∧ ¬ P ∧ ¬P, ψ 5 = P ∧ P ∧ ¬P, ψ 6 = P ∧ P ∧ ¬ ¬P.

Our backward translation, from → g on µ( ) to ↔ g on , is given by

ϕ h P = for 1 ⩽ h ⩽ 3, ⊺ for 4 ⩽ h ⩽ 6, ϕ h R = ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ X 2 ∨ X 3 for h = 1, X 1 ∨ X 3 ∨ X 4 for h = 2, X 1 ∨ X 2 ∨ X 5 for h = 3, • X 2 for h = 4, • X 3 ∨ X 6
for h = 5, X 5

for h = 6, ϕ h

• = • (X 1 ∨ . . . ∨ X 6 ) for 1 ⩽ h ⩽ 6, ϕ ini = ϕ 1

• .

We can de ne µ( ) over 1 1 with the following [Π 1 ( → g )]-formula. It makes use of our helper formulas (ψ i ) 1⩽i⩽6 from the forward translation and the constructions see1(ψ i ) and tot1(ψ i ) from Example 2.2 in Section 2.6.

⋀ 4⩽i⩽6 tot1(ψ i ) ∧ • ψ 2 → see1(ψ 1 ) ∧ (ψ 1 ∨ ψ 3 ∨ ψ 4 ) ∧ • ψ 3 → see1(ψ 1 ) ∧ (ψ 1 ∨ ψ 2 ∨ ψ 5 ) ∧ • ψ 1 → see1(ψ 2 ) ∧ see1(ψ 3 ) ∧ (ψ 2 ∨ ψ 3 )
The rst line states that the three P-labeled nodes are unique, which forces 5 and 6 to be connected. The remaining lines ensure that each "port" is connected to exactly one "regular node", and, conversely, that every "regular node" is linked to precisely one "outgoing port" and one "incoming port". As a consequence, the number of "regular nodes" must be the same as the number of "ports" of each type. Furthermore, the formula restricts the types of neighbors each node can have, while the usage of the helper formulas ψ 2 and ψ 3 makes sure that the required connections to the P-labeled nodes are established. Finally, the fact that ψ 1 characterizes the "regular nodes" as the "remaining ones" guarantees that there are no unaccounted-for nodes. ▸ There is a linear encoding µ from into @ that allows for bidirectional translation between → g and → . Furthermore, µ can be easily adapted into a linear encoding µ ′ from into that satis es the following gurative inclusions, for arbitrary ⩾ 2:

⟦Σ ( → g )⟧ ⇀ ⊆ µ ′ ⟦ • Σ ( → )⟧ , ⟦Π ( → g )⟧ ⇀ = µ ′ ⟦ • Π ( → )⟧ .

◂

Proof. We choose µ to be the linear encoding that maps each digraph G to the pointed digraph µ(G) = H with domain ({1} × V G ) ∪ [2 ∶ 3], position @ H = 2, and 6.5 A toolbox of encodings 89 edge relation

R H = (1, u), (1, u ′ ) (u, u ′ ) ∈ R G ∪ (1, u), 2 u ∈ V G ∪ 2, (1, u) u ∈ V G ∪ (2, 3) .
One can distinguish node 2 from the others because it is connected to 3, which is the only node without any outgoing edge. Our forward translation, from → g on to → on µ( ), is given by

ψ R = (ψ 1 ∧ Y), ψ • = (ψ 2 ∧ (ψ 1 ∧ Y)), ψ ini = (ψ 1 ∧ Y),
where ψ 1 = and ψ 2 = .

Our backward translation, from → on µ( ) to → g on , is given by

ϕ h R = ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ X 1 ∨ X 2 for h = 1, • X 1 ∨ X 3 for h = 2, for h = 3, ϕ ini = • X 2 .
Turning to the second claim of the proposition, we obtain µ ′ (G) by simply removing the position marker from µ(G), i.e., for every digraph G, µ ′ (G) is such that µ ′ (G)[@ ↦ 2] = µ(G).

For the forward gurative inclusions, let Ξ ∈ {Σ , Π }, for some arbitrary ⩾ 0. By applying Lemma 6.14 a on µ, we get that for every Ξ( → g )-sentence ϕ over {R}, there is a Ξ( → )-sentence ψ ϕ over {@, R} such that, for all G ∈ ,

G ⊧ ϕ i µ ′ (G)[@ ↦ 2] ⊧ ψ ϕ , i µ ′ (G) ⊧ • (ψ 2 → ψ ϕ ).
Hence, ⟦Ξ( → g )⟧ ⇀ ⊆ µ ′ ⟦ • Ξ( → )⟧ . For the backward gurative inclusion, we require that ⩾ 2. Slightly adapting the proof of Lemma 6.14 b to discard the part where we make use of the formula ϕ ini from De nition 6.13 e (incidentally allowing us to merge the two consecutive induction proofs), it is easy to show the following: Given h ∈ [3] and any Π ( → )-sentence ψ over {@, R}, we can construct a Π ( → g )-sentence ϕ h ψ over {@, R} such that, for all G ∈ and u ∈ V G ,

G[@ ↦ u] ⊧ ϕ h ψ i µ ′ (G)[@ ↦ v] ⊧ ψ,
where v is (h, u) if h = 1, and h otherwise.

This immediately gives us a way of translating • ψ:

G ⊧ • (ϕ 1 ψ ∧ ϕ 2 ψ ∧ ϕ 3 ψ ) i µ ′ (G) ⊧ • ψ.
7 Perspectives relatively easy to show that any -formula can be translated to an g of length 3. However, for digraphs of unbounded degree, the author does not know the answer to the above question.

Does asynchrony entail quasi-acyclicity?

As already mentioned in Section 4.2, we make crucial use of quasi-acyclicity to prove the equivalence of a-'s and the backward µ-fragment (i.e., Theorem 4.2 on page 41). It is however open whether we really need to impose this condition on our asynchronous automata in order to be able to convert them into formulas of Σ µ 1 ( ← ). Asynchrony is a very strong requirement, and it might well be the case that every asynchronous automaton is in fact equivalent to a quasi-acyclic one. Moreover, if this assumption turned out to be true, it would be interesting to know if it extends to lossless-asynchronous automata.

Is asynchrony decidable?

Another natural question concerning asynchrony is whether there exists an algorithm that decides if a given distributed automaton is asynchronous, or alternatively, if it is lossless-asynchronous. Even though we can e ectively translate from quasi-acyclic (lossless-)asynchronous automata to the backward µ-fragment (see Proposition 4.6), our translation procedure relies on the guarantee that the given automaton is indeed an la-. From a practical perspective, it would be advantageous if the procedure could also check that its input is valid. While quasi-acyclicity can be easily veri ed, (lossless-)asynchrony seems to present a more challenging problem.

Are forgetful automata useful as tree automata?

In Chapter 5, we have seen that forgetful distributed automata are strictly more expressive than classical tree automata on ordered ditrees (Proposition 5.3 on page 52). Moreover, their emptiness problem is decidable on arbitrary digraphs (Theorem 5.4 on page 53), and since all distributed automata satisfy a tree-model property (see Lemma 5.6 on page 56), it is straightforward to adapt our decision procedure to the special case of ordered ditrees.

This begs the question whether forgetful automata could be of use in typical application areas of tree automata, such as program veri cation and processing of -like data. A rst step towards an answer would be to investigate their closure properties (which are probably not as nice as those of tree automata) and to precisely analyze the complexities of their decision problems. Indeed, the complexity of the emptiness problem (stated in Theorem 5.4) has to be revised for the case of ordered ditrees because distributed automata that operate exclusively on such structures do not have to deal with sets of states and thus can be represented more compactly; this leads to higher computational complexity.

How powerful are quasi-acyclic automata on dipaths?

We have presented two di erent constructions to prove the undecidability of the emptiness problem for distributed automata. The rst (Theorem 5.5 on page 54) uses the idea of exchanging space and time to simulate a Turing machine by a distributed automaton that runs on a dipath. This simulation shows that even the 7.2 Broader questions 93 dipath-emptiness problem is undecidable, but it works only if the state diagram of the simulating automaton may contain cycles. Our second approach (Theorem 5.9 on page 57) shows that also for quasi-acyclic automata the emptiness problem is undecidable, but the construction is much more technical and does not work if we restrict ourselves to dipaths.

It is part of ongoing work to establish a precise characterization of quasi-acyclic automata on dipaths in terms of counter machines. As a corollary, this will yield a stronger undecidability result that supersedes the two previous ones.

Broader questions

To conclude, let us expand our focus by suggesting possible extensions and asking how the present work ts into the wider landscape of graph automata and distributed computing.

What about distributed automata on infinite digraphs?

Although in this thesis we have considered only nite structures, this restriction is by no means necessary; distributed automata could also run on in nite digraphs, and this would not even require changing their de nition. It is straightforward to see that the equivalence of g 's and established in Chapter 3 immediately extends to the in nite setting (simply by verifying that the given proofs remain applicable). However, this is not the case for all the results presented here. In particular in Chapter 4, we have relied on the fact that our digraphs are nite to prove the equivalence of quasi-acyclic asynchronous automata and the backward µ-fragment (see the proof of Proposition 4.3 on page 42). It seems that a more powerful acceptance condition would be required in order to get a corresponding equivalence on in nite digraphs.

For future research on distributed automata, it would be worthwhile to systematically consider both the nite and the in nite case.

What is the overlap with cellular automata?

Obviously, distributed automata are closely related to cellular automata. The only noteworthy di erence is that distributed automata can operate on arbitrary digraphs, whereas cellular automata are usually con ned to regular structures, such as (doubly linked) grids or dipaths. That is, if we restrict ourselves to the appropriate classes of digraphs, then the two models are exactly the same. Furthermore, there is a branch of research concerned with cellular automata as language acceptors (see, e.g., [Kut08, § 6.5] or [START_REF] Terrier | Language Recognition by Cellular Automata[END_REF]). In order not to "reinvent the wheel", it is thus important to relate questions arising in the study of distributed automata to the existing body of knowledge in cellular automata theory.

An example where this was not done thoroughly enough can be found in Section 5.4. As the author has been recently informed by N. Bacquey (on October ), the idea of exchanging space and time is well-known within the community of cellular automata. It is for instance documented in [Ter12, Fig. 9], where it is employed to simulate a real-time one-dimensional two-way cellular automaton by a corresponding one-way automaton. Although the presentation and purpose di er considerably from those in the present work, the technical construction is essentially the same.

Can we characterize more powerful models?

As mentioned at the beginning of Chapter 1, the original motivation for this thesis was to work toward a descriptive complexity theory for distributed computing. By focusing on distributed automata, we were able to make some progress in that direction, but the main challenge remains to establish logical characterizations of stronger models of computation, powerful enough to cover the kinds of algorithms usually considered in distributed computing. In order to be of practical interest, such a characterization should be in terms of nite formulas, just like the one provided by Fagin's theorem for nondeterministic polynomial-time Turing machines.

There are several ideas "in the air" on how one might characterize distributed nite-state machines equipped with unique identi ers, or even distributed Turing machines subject to certain time and space constraints. As of the time of writing, the author is not aware of any fully developed solution, but new results should be expected in the next few years. 

  non-negative integers by N = {0, 1, 2, . . . }, the set of positive integers by N + = N∖{0}, and the set of integers by Z = {. . . , -1, 0, 1, . . . }. Integer intervals of the form {i ∈ Z m ⩽ i ⩽ n}, where m, n ∈ Z and m ⩽ n, will sometimes be denoted by [m ∶ n]. We may also use the shorthand [n] ∶= [1 ∶ n], and, by analogy with the Bourbaki notation for real intervals, we indicate that we exclude an endpoint by reversing the square bracket corresponding to that endpoint, e.g., ]m ∶ n] ∶= [m ∶ n] ∖ {m}.
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 34 Figure 3.4. An {a, b, c}-labeled, digraph.
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 35 Figure 3.5. An accepting run of the g of Figure 3.3 on the labeled digraph shown in Figure 3.4.
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 36 Figure 3.6. Venn diagram relating the classes of digraph languages recognizable by our three avors of g 's to those de nable in , and .

Figure 4

 4 Figure 4.1. A quasi-acyclic asynchronous distributed automaton that is equivalent to the formula µ X Y

  the enriched run of A on G ′ timed by τ ′ . Now suppose that G[v] satis es ϕ. By equation (a), this means that v ∈ U σ for some trace σ such that σ.last ∈ F. Consequently, A accepts the pointed digraph G ′ [v ′ ] postulated in ( * ), based on the claim that v ′ traverses σ under timing τ ′ and the fact that A is lossless-asynchronous. Since G[v] and G ′ [v ′ ] are backward bisimilar, it follows from Proposition 4.4 that A also accepts G[v].

Figure 5 . 1 .

 51 Figure5.1. Exchanging space and time to prove Theorem 5.5. The left-hand side depicts the computation of a Turing machine with state set {0, 1, 2, 3} and tape alphabet { , }. On the right-hand side, this machine is simulated by a distributed automaton run on a dipath. Waiting nodes are represented in black, whereas active nodes display the content of the "currently visited" cell of the Turing machine (i.e., only the third component of the states is shown).
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 61 Figure 6.1. The set quanti er alternation hierarchies established by Theorem 6.2 (a), (b) and (c). If we include the noninclusion in parentheses, this diagram holds for Φ ∈ { ↔ g , → g } and C ∈ { , , 1 1 }. If we ignore that noninclusion, it is also veri ed for Φ = → and C = @ . In both cases, we assume ⩾ 1.
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 62 Figure 6.2. The set quanti er alternation hierarchy implied by Theorem 6.2 (d) for Φ = → , C = , and ⩾ 2.

  Definition 6.3 (Figurative Inclusion). ▸ Consider two sets C and D and a partial injective function µ∶ C ⇀ D. For any two families of subsets L ⊆ 2 C and M ⊆ 2 D , we say that L is forward included in M guro µ, and write L ⇀ ⊆ µ M, if for every set L ∈ L, there is a set M ∈ M such that µ(L) = M ∩ µ(C).

⇀⊇

  µ and ⇀ = µ as natural extensions of the previous notation:L ⇀ ⊇ µ M, which is de ned as M ⇀ ⊆ µ -1 L, means that M is backward included in L guro µ,and L ⇀ = µ M, an abbreviation for the conjunction of L ⇀ ⊆ µ M and L ⇀ ⊇ µ M, states that L is forward equal to M guro µ. All of these relations are referred to as gurative inclusions.

Proof.

  Consider three sets C, D and E, two partial injective functions µ∶ C ⇀ D and ν∶ D ⇀ E, and three families of subsets L ⊆ 2 C , M ⊆ 2 D and N ⊆ 2 E . Assume that we have L ⇀ ⊆ µ M ⇀ ⊆ ν N. Choose an arbitrary set L ∈ L. Since L ⇀ ⊆ µ M, there must be a set M ∈ M such that µ(L) = M ∩ µ(C). Furthermore, as M ⇀ ⊆ ν N, there is also a set N ∈ N such that ν(M) = N ∩ ν(D). Hence,

  and h otherwise, for all G ∈ C and u ∈ V G . b. For each relation symbol S in τ of arity k + 1 ⩾ 2, and all h ∈ [n], there is a Φ-sentence ϕ h

▸

  Consider two classes of structures C and D, a linear encoding µ∶ C → D, two classes of formulas Φ, Ψ ∈ { → , ↔ , → g , ↔ g }, and let Ξ ∈ {Σ , Π , Σ }, for some arbitrary ⩾ 0. a. If µ allows for forward translation from Φ to Ψ, then we have ⟦Ξ(Φ)⟧ C ⇀ ⊆ µ ⟦Ξ(Ψ)⟧ D . b. Similarly, if µ allows for backward translation from Ψ to Φ, then we have ⟦Ξ(Φ)⟧ C ⇀ ⊇ µ ⟦Ξ(Ψ)⟧ D . ◂ Proof. Let σ and τ be the signatures underlying C and D, respectively. Parts a and b of the lemma are treated separately in the following proof.

◂

  Proof. A suitable choice for µ is to take the function that assigns to every digraphG the 1-bit labeled undirected graph µ(G) = H with domain ([3] × V G ) ∪ [4 ∶ 6], labeling set P H = [4 ∶ 6], and edge relation R H = (v, v ′ ) {v, v ′ } ∈ E H , where

∎

  6.5.6 Ge ing rid of global modalitiesOur last encoding function lets us simulate global modalities by inserting a new node that is bidirectionally connected to all the "regular nodes". Proposition 6.19 .

  is (weakly) connected if for every nonempty proper subset W of V G , there exist two nodes u ∈ W and v ∈ V G ∖ W that are adjacent.The node labeling λ G of a Σ-labeled digraph constitutes a valid coloring of G if no two adjacent nodes share the same label, i.e., if uv
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	A digraph G		
	and uv ∈ R G i if and only if vu ∈ R G i . The	

Table 2

 2 

	.1 shows how formulas are built up, and what they mean. Furthermore,
	it indicates how to obtain the set free(ϕ) of symbols that occur freely in a given

Table 3

 3 

	.1.

  Adapting the proofs of [HJK + 12, HJK + 15] to our setting, it is relatively easy to show that

				The incomparability
	of ⟦	g ⟧ r Σ and ⟦ ⟧ r Σ is witnessed by the language L colorable k	of k-colorable
	digraphs, which lies within ⟦	g ⟧ r Σ (see Example 3.1) but outside of ⟦ ⟧ r Σ
	(see, e.g., [Lib04]), and the language L card ⩽k of digraphs with at most k nodes, which
	lies outside of ⟦	g ⟧ r Σ (see the proof of Proposition 3.9) but obviously within
	⟦ ⟧ r Σ . Considering the union language L colorable k	∪ L card ⩽k ′ also tells us that the
	inclusion of ⟦	g ⟧ r Σ ∪⟦ ⟧ r Σ in ⟦	⟧ r

Σ is strict. Finally, the language L card ⩾k of digraphs with at least k nodes separates

⟦ g ⟧ r Σ from ⟦ g ⟧ r Σ ∩ ⟦ ⟧ r Σ

(see the proof of Proposition 3.11). A simple example of a language that lies within

⟦ g ⟧ r Σ is the set L colored k of Σ-

labeled digraphs whose labelings are valid kcolorings, with Σ = k. ∎ Nevertheless, based on the equivalence of 's and ← established by Hella et al. (Theorem 2.5), we can actually obtain precise logical characterizations of g 's and g 's by extending ← with global modalities and existential set quanti ers.

Alternating Local Automata

Asynchronous Nonlocal Automata

[START_REF] Matz | Dot-depth, monadic quanti er alternation, and rstorder closure over grids and pictures[END_REF] Thm. 

2.26] states that ⟦Σ ( )⟧ ⊉ ⟦Π ( )⟧ , which, by duality, also implies ⟦Σ ( )⟧ ⊈ ⟦Π ( )⟧ .

Alternation Hierarchies
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6 Alternation Hierarchies [START_REF] Matz | The Monadic Quanti er Alternation Hierarchy over Grids and Graphs[END_REF] (elaborating on their previous results in [START_REF] Matz | The Monadic Quanti er Alternation Hierarchy over Graphs is In nite[END_REF] and [START_REF] Schweikardt | The Monadic Quanti er Alternation Hierarchy over Grids and Pictures[END_REF]), where they have shown that in the case of on digraphs, the alternation hierarchy is strict. Thus, each additional alternation between the two types of set quanti ers properly extends the family of de nable digraph languages. Signi cantly, this separation also holds on grids, a more restrictive class of structures, where it can be established using techniques from classical automata theory. Furthermore, taken in conjunction with the equivalence of ( ← g ) and , the result on digraphs immediately implies that the corresponding hierarchy of ( ← g ) is in nite. But since the alternation levels of that logic are not the same as those of , it does not seem obvious how strictness could be inferred.

The present chapter provides an alternative way of transferring the results of Matz, Schweikardt and Thomas to the modal setting. In particular, our method allows to show directly that the set quanti er alternation hierarchies of ( → ) and ( → g ) are strict over (pointed) digraphs.

To avoid the backward modalities of (

we work instead with ( → g), which is called in [START_REF] Kuusisto | A modal perspective on monadic second-order alternation hierarchies[END_REF][START_REF] Kuusisto | Second-order propositional modal logic and monadic alternation hierarchies[END_REF]. By duality, separating one alternation hierarchy also separates the other.

At rst sight, this seems to expand the existing body of knowledge, especially since the strictness question for ( → ) has been mentioned as an open problem in [START_REF] Kuusisto | A modal perspective on monadic second-order alternation hierarchies[END_REF] and [START_REF] Kuusisto | Modal Logics and De nability[END_REF]. However, it turns out that in both cases, strictness is actually a consequence of in niteness [A. Kuusisto, personal communication, March ]. Although this observation has so far not been formally published, it appears to be folklore in the model-theory community. Hence, this chapter contributes new proofs to essentially known results. Just as Kuusisto has done in [START_REF] Kuusisto | A modal perspective on monadic second-order alternation hierarchies[END_REF][START_REF] Kuusisto | Second-order propositional modal logic and monadic alternation hierarchies[END_REF], we use as a starting point the strictness result of [START_REF] Matz | The Monadic Quanti er Alternation Hierarchy over Grids and Graphs[END_REF] for on grids. But from there on, the two proof methods diverge considerably.

The original approach of Kuusisto is mainly based on the fact that one can simulate rst-order quanti ers by means of set quanti ers, combined with a formula stating that a set is a singleton. As already mentioned, this can be used to show that ( → g ) is equivalent to . The spirit of the proof in [START_REF] Kuusisto | A modal perspective on monadic second-order alternation hierarchies[END_REF][START_REF] Kuusisto | Second-order propositional modal logic and monadic alternation hierarchies[END_REF] is essentially the same for ( → ), although the details are much more technical, since this logic is less expressive than on arbitrary pointed structures. It is precisely the use of additional second-order quanti ers that leads to the temporary loss of the speci c separation results provided by [START_REF] Matz | The Monadic Quanti er Alternation Hierarchy over Grids and Graphs[END_REF].

In contrast, one simple insight will allow us to directly transfer those results: When restricted to the class of grids, ( → g ) and are more than just equivalentthey are levelwise equivalent, and consequently all the separation results shown for also hold for ( → g ) on grids. This approach is based on the observation that the existential fragment of ( → g ) can simulate another model, called tiling systems, which has been shown to be equivalent to the existential fragment of in [START_REF] Giammarresi | Monadic Second-Order Logic Over Rectangular Pictures and Recognizability by Tiling Systems[END_REF]. On the basis of this new nding, we can then transfer the given separation results from ( → g ) on grids to other classes of digraphs and other extensions of modal logic, such as ( → ). While this works along the same general principle as the strong rst-order reductions used in [START_REF] Matz | The Monadic Quanti er Alternation Hierarchy over Grids and Graphs[END_REF], the additional limitations imposed by modal logic force us to introduce custom encoding techniques that cope with the lack of expressive power.

The remainder of this chapter is organized in a top-down manner. After introducing the necessary notation in Section 6.1, we present the main results in Section 6.2, and almost immediately get to the central proof in Section 6.3. The latter relies on several other propositions, but since those are treated as "black boxes", the main line of reasoning might be comprehensible without reading any further. We then provide all the missing details in the last two sections, which are independent of each 6.1 Preliminaries 65 other. Section 6.4 establishes the levelwise equivalence of three di erent alternation hierarchies on grids, and may thus be interesting on its own. On the other hand, Section 6.5 is dedicated to encoding functions, which constitute the more technical part of our demonstration.

Preliminaries

Assume we are given some set of formulas Φ, referred to as kernel, which is free of set quanti ers and closed under negation (e.g., → g ). Then, for ⩾ 0, the class Σ (Φ) consists of those formulas that one can construct by taking a member of Φ and prepending to it at most consecutive blocks of set quanti ers, alternating between existential and universal blocks, such that the rst block is existential. Reformulating this solely in terms of existential quanti ers and negations, we get Σ 0 (Φ) ∶= Φ and

where the second line uses set concatenation and the Kleene star. We de ne Π (Φ) as the corresponding dual class, i.e., the set of all negations of formulas in Σ (Φ). Generalizing this to arbitrary Boolean combinations, let Σ (Φ) denote the smallest superclass of Σ (Φ) that is closed under negation and disjunction.

The formulas in Σ (Φ) and Π (Φ) are said to be in prenex normal form with respect to the kernel Φ. It is well known that every -formula can be transformed into prenex normal form with kernel class . This is based on the observation that rst-order quanti ers can be replaced by second-order ones. Using the construction of Example 2.2 in Section 2.6, it is not di cult to see that the analogue holds for ( → ), ( ↔ ), ( → g ) and ( ↔ g ) with respect to their corresponding kernel classes. A more elaborate explanation can be found in [START_REF] Balder Ten | Expressivity of Second Order Propositional Modal Logic[END_REF]Prp. 3].

For the sake of clarity, we break with the tradition of implicit quanti cation that is customary in modal logic. Instead of evaluating ( → )-formulas on non-pointed structures by means of "hidden" universal quanti cation, we shall explicitly put a global box in front of our formulas. This leads to the class

Analogously, we also de ne • Π ( → ).

All of our results will be stated in terms of the semantic classes that one obtains by evaluating the preceding formula classes on some set of structures C. On the semantic side, we will additionally consider the class

Since it is not based on any syntactic counterpart, there is no meaning attributed to the notation ∆ (Φ) by itself (without the brackets).

Separation results

With the notation in place, we are ready to formally enunciate the main theorem, whose complete proof will be the subject of the remainder of this chapter. It is an 66 ▸ The set quanti er alternation hierarchy of is strict over the classes of grids, digraphs and undirected graphs.

A more precise statement of this theorem, referred to as Theorem 6.1 (a) and (b), is given in Table 6.1.

◂

Roughly speaking, the extension provided in the present chapter tells us that the preceding separations are largely maintained if we replace the rst-order kernel by certain classes of modal formulas. To facilitate comparisons, the formal statements of both theorems are presented together in the same table.

Theorem 6.2 (Main Results).

▸ The set quanti er alternation hierarchies of ( ↔ g ) and ( → g ) are strict over the classes of grids, digraphs and 1-bit labeled undirected graphs.

Furthermore, the corresponding hierarchies of ( → ) and • ( → ) are (mostly) strict over the classes of pointed digraphs and digraphs, respectively.

A more precise statement of this theorem, referred to as Theorem 6.2 (a), (b), (c) and (d), is given in Table 6.1.

◂ By basic properties of predicate logic

In particular, the inclusion of ⟦ Σ (Φ)⟧ C in ⟦∆ +1 (Φ)⟧ C follows from the fact that, when transforming a Boolean combination of Σ (Φ)formulas into prenex normal form, one is free to choose whether the resulting formula (with up to + 1 quanti er alternations) should start with an existential or a universal quanti er.

and the transitivity of set inclusion, it is easy to infer from Theorem 6.2 the hierarchy diagrams represented in Figures 6.1 and 6.2.

If we take into account all the depicted relations, the diagram in Figure 6.1 is the same as in [START_REF] Matz | The Monadic Quanti er Alternation Hierarchy over Grids and Graphs[END_REF] and [START_REF] Matz | Dot-depth, monadic quanti er alternation, and rstorder closure over grids and pictures[END_REF]. Hence, when switching to one of the modal kernels that include global modalities, i.e., ↔ g or → g , the separations of Theorem 6.1 are completely preserved on grids and digraphs. Our proof method also allows us to easily transfer this result to undirected graphs, as long as we admit that the vertices may be labeled with at least one bit. Additional work would be required to eliminate this condition.

Proof. To show the contrapositive, let us suppose that M 2 ⊆ M 1 , or, equivalently,

(This depends on µ being total and injective.) Consequently, we have L 2 ⊆ L 1 .

∎

In some cases, we can combine two given gurative inclusions in order to obtain a new one that relates the corresponding intersection classes. This property will be very useful for establishing gurative inclusions between classes of the form ⟦∆ (Φ)⟧ C . Lemma 6.5 .

▸ Consider two sets C and D, a partial injective function µ∶ C ⇀ D, and four families

. Furthermore, we also know that µ(C) lies in M 1 , and that the latter is closed under intersection. Hence, µ(L) ∈ M 1 . Analogously, we also get that µ(L) ∈ M 2 . Finally, knowing that for all

Proving the main theorem

We are now ready to give the central proof of this chapter. Although it makes references to many statements of Sections 6.4 and 6.5, it is formulated in a way that can be understood without having read anything beyond this point.

Proof of Theorem 6.2. The basis of our proof shall be laid in Section 6.4, where the case s = 0 of Theorem 6.9 will state the following: When restricted to the class of grids, the set quanti er alternation hierarchies of , ( ↔ g ) and ( → g ) are equivalent. More precisely, for every ⩾ 1 and Ξ ∈ {Σ , Π , Σ , ∆ }, it holds that

Hence, if we consider only the case C = , the separation results for the kernel class stated in Theorem 6.1 (a) and (b) immediately imply those for ↔ g and → g in Theorem 6.2 (a) and (b).

The remainder of the proof now consists of establishing suitable gurative inclusions, in order to transfer these results to other classes of structures and, to some extent, to weaker classes of kernel formulas. For this purpose, we shall introduce in Section 6.5 a notion of translatability between two classes of kernel formulas Φ and Ψ, with respect to a given total injective function µ that encodes structures from a class C into structures of some class D. As will be shown in Lemma 6.14, bidirectional translatability implies

6 Alternation Hierarchies a. For each relation symbol R ∈ {R 1 , R 2 }, every node has at most one R-predecessor and at most one R-successor; in other words, R G 1 and R G 2 are partial injective functions.

separately, there is a directed R-path from every node to an R-sink, i.e., to some node without R-successor.

Taken together, properties a and b state that R G 1 and R G 2 each form a collection of directed, acyclic, pairwise vertex-disjoint paths. Let us refer to the rst nodes of those paths as R 1 -and R 2 -sources, respectively. c. There is precisely one node that is both an R 1 -and an R 2 -source.

(Here, tot1 is the schema from Example 2.2 in Section 2.6.)

By adding c and d to our list of conditions, we ensure that there is an R 1 -path consisting precisely of the R 2 -sources, thereby also forcing the digraph G to be connected.

e. If a node has both an R 1 -and an R 2 -successor, then it also has a descendant reachable by rst taking an R 1 -edge and then an R 2 -edge.

f. The relations R G 1 and R G 2 commute. This means that following an R 1 -edge and then an R 2 -edge leads to the same node as rst taking an R 2 -edge and then an R 1 -edge.

Considered in conjunction with condition a, there are only two ways to satisfy e and f from the point of view of two nodes u, v ∈ V G that are connected by an R 1 -edge from u to v: either both nodes are R 2 -sinks, or they have R 2 -successors u ′ and v ′ , respectively, with an R 1 -edge from u ′ to v ′ . Moreover, v ′ only possesses an R 1 -successor if v does. Now, imagine we start from the left border, i.e., from the R 1 -path that consists of all the R 2 -sources, which is provided by properties a to d, and iteratively enforce the requirements just mentioned. Then, in doing so, we propagate the grid topology through the entire digraph. More speci cally, the additional requirements of e and f entail that all the R 2 -paths have the same length, and that the nodes lying at a xed (horizontal) position of those R 2 -paths constitute an independent R 1 -path, ordered in the same way as their respective R 2 -predecessors. ∎ 6.5 A toolbox of encodings 77

A toolbox of encodings

In this section, we provide all the encoding functions used in the proof of Theorem 6.2 (see Section 6.3.2), and show that they satisfy suitable translatability properties, allowing us to establish the required gurative inclusions. With a view to modularity and reusability, some of our constructions are more general than needed.

Given a set of symbols σ, the extension σ ∪ {@} will be abbreviated to σ @ .

Encodings that allow for translation

We shall only consider encoding functions that are linear in the following sense: Definition 6.11 (Linear Encoding).

▸ Let C, D be two classes of structures, and m, n be integers such that 1 ⩽ m ⩽ n.

A linear encoding from C into D with parameters m, n is a total injective function µ∶ C → D that assigns to each structure G ∈ C a structure µ(G) ∈ D, whose domain is composed of m disjoint copies of the domain of G and nm additional nodes, i.e.,

◂

Given such a linear encoding µ and some ↔ g -formula ϕ, we want to be able to construct a new formula ψ ϕ , such that evaluating ϕ on C is equivalent to evaluating ψ ϕ on µ(C). Conversely, we also desire a way of constructing a formula ϕ ψ that is equivalent on C to a given formula ψ on µ(C). The following two de nitions formalize this translatability property for both directions. We then show in Lemma 6.14 that they adequately capture our intended meaning. Although the underlying idea is very simple, the presentation is a bit lengthy because we have to exhaustively cover the structure of ↔ g -formulas.

Definition 6.12 (Forward Translation).

▸ Consider two classes of structures C and D over signatures σ and τ, respectively, two classes of formulas Φ, Ψ ∈ { → , ↔ , → g , ↔ g }, and a linear encoding µ∶ C → D. We say that µ allows for forward translation from Φ to Ψ if the following properties are satis ed: a. For each node symbol or set symbol P in σ, there is a Ψ-sentence ψ P over τ @ , such that G) , and set symbols (X i ) 1⩽i⩽k .

Alternation Hierarchies

The left-hand side sentence can be transformed into prenex normal form by simulating the global box with a universal set quanti er. Checking that a given set is not a singleton can be done in Σ 1 ( → g ), since the negation is Π 1 ( → g )-expressible (see Example 2.2 in Section 2.6). Thus, the given formula is equivalent to a Π ( → g )formula, and we obtain that ⟦Π (

Coming to the end of this thesis, we discuss some ideas for future research. They can be separated into two categories: rather focused questions that directly follow up on the results presented here, and broader questions that aim at the bigger picture.

Focused questions

Let us start with the topics directly related to this work, following roughly the order of discussion in the document.

7.1.1 Is there an alternation level that covers first-order logic?

In Chapter 3, we have related the classes of digraph languages recognizable by our three avors of g 's to those de nable in , and . As shown in Figure 3.6 on page 33, g 's cover (as a direct consequence of their equivalence to ), whereas g 's do not. It is also easy to see that every g is equivalent to an g of length 1, since each node can simply guess all of its nondeterministic transitions at once, and then verify in one round of communication that its own choices are consistent with those of its neighbors. Furthermore, we know from Chapter 6 (Theorem 6.2 on page 66) that g 's of length + 1 are strictly more expressive than g 's of length (or equivalently, that the set quanti er alternation hierarchy of ( ← g ) is strict over digraphs). This means that length-restricted g 's form an in nite hierarchy of automata classes between g 's and g 's. Against this backdrop, a natural question is whether there exists a bound such that g 's of length can recognize all languages de nable in on arbitrary digraphs. Note that this would also imply that g 's of length + 1 fully cover . When restricted to digraphs of bounded degree, the answer is positive. This can be seen using Hanf's locality theorem, which basically states that on digraphs of bounded degree, every -formula is equivalent to a Boolean combination of conditions of the form "r-sphere H occurs at least n times", where an r-sphere is a pointed digraph that represents the r-neighborhood of its distinguished node (see, e.g., [START_REF] Thomas | Elements of an automata theory over partial orders[END_REF]Thm 4