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e[Ye$ On$ j$ kO$ Y[$ ke$ n$ nd$ d$

e[Y\$ On$ Y[$ dY$ Ye$ kd$ YO$ nk$ Yd$

e[YO$ kj$ d$ d\$ YY$ kj$ Yd$ d[$ j$

e[Yn$ k[$ YY$ dY$ Yk$ lj$ ek$ kj$ ee$

e[Yk$ O[$ Y\$ l[$ l$ ln$ YO$ lY$ YY$



!/*%5(*%3+%&-+,%/#%42(#5/%/.%3+%&"#$%3(#*%&/*%,("*%(&,)#*%/.%/#%6-2780/%

! "&!

!



!/*%5(*%3+%&-+,%/#%42(#5/%/.%3+%&"#$%3(#*%&/*%,("*%(&,)#*%/.%/#%6-2780/%

! "'!

!

<&=,$"*:)!.7612;!:2;!:512<1=/0;!<2617=02;!X20!J82@Y!21!=0<2617=02;!X20!6/@42Y!:@!8/@A!20!G670<2!20162!+**$!

!



!/*%5(*%3+%&-+,%/#%42(#5/%/.%3+%&"#$%3(#*%&/*%,("*%(&,)#*%/.%/#%6-2780/%

! "(!

"-J-!.7;!:@!8H03!:70;!82;!A7H;!78A=0;!

"-J-+-!./012312!:@!;@=>=!

C1(0%+(-(#$&-$/*#"-#*1($."$&=(L$.-(/$&%/$,-=/$-&,*(/4$0%&"*70*$-$>#>$+>*(#+1."*#$.-(/$ &%/$E&,%/$
.-(/$&%/$-((>%/$Yjl[4$%#$,&"/$.%$O[$-(/$,&"/$#-+.4$'1*(/$.%$e[z$.%/$E&,%/$1(#$>#>$+%01&1(*/>%/$
;:1&*(-+*7H1)*($ %#$ -&6$ e[Y[<6$ T%/$ %L,%+#/$ ."$ &=(L$ .%/$ /%,#$ ,-=/$ -&,*(/$ ;b+-(0%4$ K#-&*%4$
T*%
&-$01(/%+F-#*1($.%$&-$,1,"&-#*1($.%$&=(L$.%/$E&,%/$;U#-#"/$-(.$C1(/%+F-#*1($1!$#5%$E&,*(%$T=(L$
c1,"&-#*1($7UCETc4$:1&*(-+*7I1)*($%#$-&6$e[[\<4$.1(#$&h1)I%0#*!$%/#$.%$+>#-)&*+$%#$'-*(#%(*+$"(%$
,1,"&-#*1($F*-)&%$.%$&=(L$.-(/$&%/$,-=/$-&,*(/4$%($01%L*/#%(0%$-F%0$&%/$,1,"&-#*1(/$5"'-*(%/6$
C%$,+1I%#$-$,1"+$)"#$.%$011+.1((%+$%#$(1+'-&*/%+$&-$/"+F%*&&-(0%$%#$&-$01(/%+F-#*1($."$&=(L$-&,*($
J$3+-(.%$>05%&&%4$J$#+-F%+/$&%/$l$,-=/$01(0%+(>/$;:1&*(-+*7I1)*($%#$-&6$e[[\<
%/#$.%$/=(05+1(*/%+$&-$+>01&#%$.%$.1((>%/$J$"(%$>05%&&%$*(#%+(-#*1(-&%4$%#$.%$'%##+%$%($,&-0%$
"(%$ /#+-#>3*%$ .%$ 01(/%+F-#*1($ ."$ &=(L$ .-(/$ 0%/$ .*!!>+%(#/$ ,-=/4$ &-$ U#+-#>3*%$ ,-(7E&,*(%$ .%$
C1(/%+F-#*1($."$&=(L$;c-(E&,*(%$C1(/%+F-#*1($U#+-#%3=$cECU<$;:1&*(-+*7I1)*($%#$-&6$e[[\<6$
$
$ C1''%$,1"+$&%$/"*F*$."$&1",$%($b+-(0%4$&%$/"*F*$."$&=(L$%/#$.1(0$+>-&*/>$3+g0%$J$"($+>/%-"$
.%$,&"/$.%$Y\[[$1)/%+F-#%"+/$#%&/$2"%$.%/$3-+.%/705-//%/$1"$.%/$-3%(#/$.%/$/%+F*0%/$!1+%/#*%+/6$

&=(L$ .-(/$ &%/$E&,%/6$A%$,&"/4$ .%/$ 05-//%"+/4$ .%/$ (-#"+-&*/#%/$%#$ .h-"#+%/$ ,%+/1((%/$ ;*6%6$ .%/$
]$0*#1=%(/$^<$ ,%"F%(#$ !-*+%$ ,-+#*%$ ."$ +>/%-"4$ ,%+'%##-(#$ "(%$ -'>&*1+-#*1($ .%$ &h-00%,#-#*1($
/10*-&%$."$/"*F*4$#1"#$%($-"3'%(#-(#$&%/$05-(0%/$.%$.>#%0#%+$&-$,+>/%(0%$."$&=(L4$>#-(#$.1((>$
2"%$ &%/$'%')+%/$1(#$.%/$-0#*F*#>/$.*!!>+%(#%/$/"+$ &%$ #%++-*($ ;:1&*(-+*7I1)*($%#$-&6$e[[\<6$ T%/$
'%')+%/$."$+>/%-"$+%05%+05%(#$-0#*F%'%(#$&%/$/*3(%
F>+*!*%(#$&%/$/*3(%/$2"*$&%"+$/1(#$/*3(-&>/$,-+$&%/$0*#1=%(/6$T%/$/*3(%/$.%$,+>/%(0%$1(#$>#>$0&-//>/$
%($#+1*/$0-#>31+*%/$.%$!*-)*&*#>$r$CY$01++%/,1(.$-"L$.1((>%/$*(.*/0"#-)&%/4$,-+$%L%',&%$"($&=(L$
'1+#4$.%/$ ,51#1/$ .%$,*G3%/$,51#13+-,5*2"%/$ -*(/*$2"%$ 0%+#-*(/$>05-(#*&&1(/$3>(>#*2"%/4$ Ce$
/1(#$.%/$.>#%0#*1(/$2"*$1(#$>#>$01(!*+'>%/$,-+$"($%L,%+#$;&%/$+%/#%/$.%$,+1*%/$/-"F-3%/$%#$&%/$
#+-0%/<$ %#$C\$ /1(#$ .%/$ .1((>%/$2"*$ (h1(#$ ,-/$ ,"$ M#+%$ F>+*!*>%/$ ,-+$ .%/$%L,%+#/$ ;#+-0%/$ (1($

2"%$,1"+$&%$&1",$%($.1((>%/$0%+#-*(%/$%#$*(0%+#-*(%/4$(1"/$-F1(/$01(/*.>+>$&%/$.1((>%/$CY$%#$
Ce$ 01''%$.%/$.>#%0#*1(/$ 0%+#-*(%/4$ %($ /",,1/-(#$2"h*&$ (h=$ -F-*#$ ,-/$.%$ !-"//%/$ .>#%0#*1(/$
,1/*#*F%/$.-(/$0%/$.1((>%/4$#-(.*/$2"%$&%/$.1((>%/$C\$1(#$>#>$#+-*#>%/$01''%$.%/$.>#%0#*1(/$
*(0%+#-*(%/6$$
$
$
01''%$"($,1//*)&%$,-+-'G#+%$,1"
.%$&=(L$%($9"+1,%$;:1&*(-+*7H1)*($%#$-&6$e[Yd<
.>!*(*$,1"+$ &%$ &=(L$%($9"+1,%$01''%$"($#1#-&$.%$Y[[[$*(.*F*."/$'-#"+%/$;1"$Y\[[$*(.*F*."/$
*(.>,%(.-(#/<$ +>,-+#*/$ .-(/$ &%/$ E&,%/$ ;U05(*.+*3$ %#$ -&6$ e[Yk`$ :1&*(-+*7H1)*($ %#$ -&6$ e[Yd<6$

+>/%-"$UCETc$%#$&-$.>!*(*#*1($.%$(1+'%/$01''"(%/$.%,"*/$&-$+>*(#+1."0#*1($.%/$&=(L$.-(/$&%/$

01(/%+F-#*1($."$&=(L$,1"+$05-0"($.%/$,-=/$;:1&*(-+*7H1)*($%#$-&6$e[Y[<6$Th>F-&"-#*1($"&#>+*%"+%$
.%$&h>F1&"#*1($.>'13+-,5*2"%$%#$.%$&-$+>,-+#*#*1($."$&=(L$.-(/$&%/$E&,%/$/h%/#$-,,"=>%$/"+$0%/$
+-,,1+#/$.h>#-#4$.-(/$ &%/2"%&/$ &%$(1')+%$%#$ &-$+>,-+#*#*1($.%/$/*3(%/$."$ &=(L$>#-*%(#$>F-&">/$



!/*%5(*%3+%&-+,%/#%42(#5/%/.%3+%&"#$%3(#*%&/*%,("*%(&,)#*%/.%/#%6-2780/%

! "*!

.-(/$05-
&%/$ #%(.-(0%/$ .%/$ 1)/%+F-#*1(/$ !-*#%/$ /-(/$ ,+%(.+%$ %($ 01',#%$ &-$ ,+1)-)*&*#>$ .%$ .>#%0#*1($
*',-+!-*#%$."$&=(L$;F1*+$:1&*(-+*7H1)*($%#$-&6$e[[k4$e[Y[< :1&*(-+*7H1)*($%#$
-&6$ ;e[Ye<$ %+$ &%/$
+>,-+#*#*1(/$1)#%("%/$-F%0$&%/$.1((>%/$0%+#-*(%/$%#$&%/$.1((>%/$*(0%+#-*(%/$/>,-+>'%(#4$/-(/$
,+%(.+%$%($01',#%$&-$,+1)-)*&*#>$.%$!-"L$,1/*#*!/6$9(!*(4$:1&*(-+*7H1)*($%#$-&6$;e[Yd<$1(#$-I"/#>$

%(F*+1((%'%(#-&%/$%L,&*2"-(#$&%/$F-+*-#*1(/$.%/$,-+-'G#+%/$."$'1.G&%6$
!

"-J-"-!F2;!>266/@;!C51M/:/8/4=B@2;!!

&%/$ '>#51.%/$ "#*&*/>%/$ ,1"+$ /"*F+%$ &%$ &=(L$ /1(#$
>3-&%'%(#$'%(>%/$ J$ &-+3%$ >05%&&%$ -F%0$ .%/$ 1)/%+F-#%"+/$ F%(-(#$ .%$ .*!!>+%(#%/$ 0-#>31+*%/$
/10*17,+1!%//*1((%&&%/$2"*$01&&%0#%(#$.%/$.1((>%/$*(.*+%0#%/6$X+4$.-(/$0%/$.1((>%/$*(.*+%0#%/4$
*&$%/#$,1//*)&%$2"%$.%/$%
"($,+10%//"/$.%$!*&#+-3%$-$>#>$'*/$-"$,1*(#$-!*($.%$+%I%#%+$&%/$.>#%0#*1(/$2"*$(%$/1(#$>F*.%''%(#$

-*(#%(-(#4$
&-$,&",-+#$.%/$-(-&=/%/$.%$+>,-+#*#*1($.%/$3+-(./$0-+(*F1+%/$%($9"+1,%$(%$/%$!1(#$2"%$/"+$0%/$
.1((>%/$0%+#-*(%/$;F1*+$,-+$%L%',&%$:1&*(-+*7H1)*($%#$-&6$e[Yd<4$ &%/$.1((>%/$ *(0%+#-*(%/$;&%/$
C\<$>#-(#$>0-+#>%/$.%/$-(-&=/%/6$U*$&%/$.1((>%/$*(0%+#-*(%/$01(#*%((%(#$.%/$!-"L7,1/*#*!/4$%&&%/$

$01(#%(*+$.%/$*(!1+'-#*1(/$>01&13*2"%/6$K0*4$I%$'%$/"*/$

.-(/$&%/$.1((>%/$*(0%+#-*(%/6$$
!

"-J-#-!F2;!:/0052;!

C1''%$,1"+$&%/$.1((>%/$.%$/"*F*$."$&1",$%($b+-(0%4$(1"/$-F1
0%##%$!1*/70*$,-+$,>+*1.%/$.%$e$'1*/$;?1F%')+%7A>0%')+%4$H-(F*%+7b>F+*%+$%#$:-+/7EF+*&<6$E!*($
.%$3>(>+%+$.%/$.>#%0#*1(/$%#$.%/$(1(7.>#%0#*1(/4$(1"/$-F1(/$+-'%(>$&%/$.1((>%/$.%$.>#%0#*1($

*3"+%$e<6$A%$'M'%$2"%$,1"+$&%$&1",4$/*$,&"/*%"+/$/*3(%/$.%$

7
.>#%0#*1(/4$(1"/$-F1(

;:1&*(-+*7H1)*($ %#$-&6$ e[Yd<6$?1"/$-F1(/$.1(0$ 01(/*.>+>$ &%/$ /*#%/$

$
'-*/$2"%$3-+.%/705-//%$%#$3-+.%/$!1+%/#*%+/$/1(#$,+>/%(#/$%#$+-,,1+#%(#$.%/$1)/%+F-#*1(/4$Y$
/*3(*!*%$ 2"%$ &%/$ -3%(#/$ ."$ +>/%-"$ /1(#$ ,+>/%(#/$%#$e$ /*3(*!*%$ 2"%$.%/$ %L,%+#/$ %(#+-*(>/$ /1(#$
,+>/%(#/$%#$05%+05%(#$-0#*F%'%(#$.%/$/*3(%/$.%$,+>/%(0%$."$&=(L6$$
$
$ T%$(1')+%$.%$.>#%0#*1(/$."$&=(L$.-(/$&%/$,-=/$-&,*(/$-$-"3'%(#>4$-F%0$&-$,+>/%(0%$.%$
.1((>%/$*(0%+#-*(%/$.G/$Yjjn6$T%$(1')+%$.%$.>#%0#*1(/$0%+#-*(%/$%/#$,-//>$.%$YO$.>#%0#*1(/$
&1+/$.%$ &-$,>+*1.%$?1F%')+%7 %($e[Y\$
;R-)&%-"$\<6$T%/$.>#%0#*1(/$0&-//>%/$*(0%+#-*(%/$+%/#%(#$-"//*$%($'*(1+*#>4$&%"+$(1')+%$F-+*%$.%$
d$,-+$,>+*1.%$.%$e$'1*/$J$\\$&1+/$.%$&-$,>+*1.%$:-+/7



!/*%5(*%3+%&-+,%/#%42(#5/%/.%3+%&"#$%3(#*%&/*%,("*%(&,)#*%/.%/#%6-2780/%

! #,!

3(*!*%$ ,-/$ (>0%//-*+%'%(#$ "(%$

/*3(%/$ .%$ ,+>/%(0%$ *(0%+#-*(/$ -,,-+-
;:1&*(-+*7H1)*($%#$-&6$e[Yd<6$?1"/$

/$ 0%+#-*(%/$ ."$ &=(L$ %($ E&&%'-3(%$ %#$ /%"&%'%(#$
2"%&2"%/$.>#%0#*1(/$ *(0%+#-*(%/$.-(/$ &%$,-=/$%(#+%$e[[d$%#$e[Y\6$E"$#1#-&4$ .%$YjjO$J$e[Y\4$
eYdd$1)/%+F-#*1(/$;kd$z<$1(#$>#>$0&-//>%/$01''%$>#-(#$.%/$.>#%0#*1(/$0%+#-*(%/$%#$Y[Oe$;\e$
z<$01''%$>#-(#$*(0%+#-*(%/6$$
$ $



!/*%5(*%3+%&-+,%/#%42(#5/%/.%3+%&"#$%3(#*%&/*%,("*%(&,)#*%/.%/#%6-2780/%

! #+!

9320"3,*>!)!!E/CJ62!:2!;=12;!7>2<!:2;!:512<1=/0;!<2617=02;!21!=0<2617=02;!7@!</@6;!:2;!C/=;!

:@!;@=>=!:@!8H03!:70;!82;!A7H;!78A=0;!20162!+**%!21!",+#-!

!

!

!

$ ?1F%')+%7A>0%')+%$

;-((>%$(7Y<$

H-(F*%+7b>F+*%+$;-((>%$(<$ :-+/7EF+*&$;-((>%$(<$

E((>%$ C%+#-*(%/$ K(0%+#-*(%/$ C%+#-*(%/$ K(0%+#-*(%/$ C%+#-*(%/$ K(0%+#-*(%/$

Yjjn$ YO$ d$ Yl$ d$ Yl$ Yn$

Yjjk$ Yd$ Yl$ \n$ YO$ el$ Yj$

Yjjl$ \Y$ Ye$ en$ Yl$ ed$ Ye$

Yjjd$ \[$ Yl$ Yd$ Yl$ \n$ Yj$

Yjjj$ \e$ Yn$ \Y$ e\$ \l$ Yd$

e[[[$ eY$ \e$ \n$ e[$ Oe$ Yd$

e[[Y$ \e$ Yj$ \O$ ek$ \\$ e\$

e[[e$ ed$ e[$ ed$ ee$ O\$ Yk$

e[[\$ \l$ ek$ Oe$ el$ nY$ Yj$

e[[O$ \e$ ek$ \k$ eO$ ne$ e\$

e[[n$ ed$ e[$ Oe$ eY$ \j$ \\$

e[[k$ \e$ Yl$ \d$ Yl$ ed$ \e$

e[[l$ O\$ Yl$ \j$ YO$ \l$ en$

e[[d$ Ol$ eY$ n[$ Yl$ n[$ Yk$

e[[j$ OY$ Yj$ Oj$ Yd$ nj$ e\$

e[Y[$ \l$ YO$ Oj$ Y[$ ne$ YO$

e[YY$ \O$ Y\$ ne$ k$ Od$ Ye$

e[Ye$ \k$ Y\$ nk$ YY$ lY$ Ye$

e[Y\$ nd$ Yj$ kd$ YY$ kO$ en$







!/*%5(*%3+%&-+,%/#%42(#5/%/.%3+%&"#$%3(#*%&/*%,("*%(&,)#*%/.%/#%6-2780/%

! #$!

"-<-!.7;!:@!8H03!20!E/6>I42!

"-<-+-!./012312!:@!;@=>=!

0%,%(.-(#$/-$,1,"&-#*1($-$!1+#%'%(#$.*'*(">$&1+/$."$/*G0&%$,+>0>.%(#$."%$J$"(%$05-//%$(1($

01(#+q&>%$;T*((%&&$%#$-&6$e[Y[<6$A%$

T-$ 05-//%$ %/#$ +>-&*/>%$ %($ ,-+#*%$ ,1"+$ &*'*#%+$ &%/$ .>3g#/$ /"+$ &%/$ #+1",%-"L$ %#$ ,1"+$ &%$ &1*/*+$

;c%.%+/%($%#$-&6$Yjjj`$X..%($%#$-&6$e[[e<

,1,"&-#*1(/$ .%$ &=(L6$ E!*($ .%$ ,+>/%+F%+$ "(%$ ,1,"&-#*1($ /#-)&%$ %#$ "(%$ 05-//%$ ."+-)&%4$ *&$ %/#$

%$,1,"&-#*1($-!*($.%$,1"F1*+$!*L%+$&%/$2"1#-/$

-(("%&/$.%$05-//%6$$

$

$ T-$ ,+*(0*,-&%$'>#51.%$ .%$ /"*F*$ ."$ &=(L$ %($ ?1+FG3%$ 01(/*/#%$ J$ 01',#%+$ &%/$ 3+1",%/$

)/%+F-#*1($.%$#+-0%/$.%$,&"/$.%$.%"L$*(.*F*."/$.-(/$&-$(%*3%$;E(.+>($%#$-&6$e[[e`$

T*((%&&$ %#$ -&6$ e[[l< #$ &-$

,>+*1.%$.%$+%,+1."0#*1($01''%(f-(#$!*($'-+/4$&%/$'g&%/$%#$&%/$!%'%&&%/$F*F%(#$.1(0$/>,-+>/$

!-'*&*-&$%#$/1(#$/*3(-&>%/$,-+$&%/$05-//%"+/4$&%/$3-+.%705-//%/$-*(/*$2"%$&%$,")&*0$%(#+%$X0#1)+%$

(-#*1(-&%$ ;DX_PEU9?$ \6[r$ @@@6+1F)-/%6(1<$

$

$

$ 9($,&"/$."$01',#-3%$.%$3+1",%/$ !-'*&*-"L4$ &-$'1+#-&*#>$.%$ &-$,1,"&-#*1($.%$ &=(L$%/#$

%(+%3*/#+>/$.-(/$"(%$)-/%$.%$.1((>%/$(-#*1(-&%4$-F%0$&-$.-#%$.%$&-$'1+#4$&-$&10-&*/-#*1(4$&%$/%L%$

+%,1+#>%$%($U0-(.*(-F*%$."%$J$&-$05-//%$;O\$z<$%#$-"$)+-01((-3%$;Olz<$;P-/*&&%$%#$-&6$e[Y\<6$C%/$

*($01''%$,+*(0*,-&$!-0#%"+$ &*'*#-(#$&-$0+1*//-(0%$.%$&-$



!/*%5(*%3+%&-+,%/#%42(#5/%/.%3+%&"#$%3(#*%&/*%,("*%(&,)#*%/.%/#%6-2780/%

! #%!

'-+/$ ;P*/051!$ %#$ -&6$ e[Ye<6$ T%/$ 2"1#-/$ /1(#$ .>!*(*/$ ,1"+$ d$ +>3*1(/$ ."$ ,-=/$ %($ !1(0#*1($ .%/$

%/#*'-#*1(/$.%$,1,"&-#*1($+>-&*/>%/$J$,-+#*+$."$01',#-3%$.%/$#+-0%/$.-(/$&-$(%*3%6$$

$

$ %$."$&=(L$%($?1+FG3%$;T*((%&&$

%#$-&6$e[Y[<6$R1"#$.h-)1+.4$&%/$'1"#1(/$.1'%/#*2"%/$,g#"+%(#$.-(/$&%/$!1+M#/$%#$&%/$'1(#-3(%/$

.%$#1"#$&%$,-=/$."+-(#$&h>#>6$T-$,&",-+#$.%/$#+1",%-"L$/1(#$%($,g#"+-3%$&*)+%4$/-(/$0&q#"+%$(*$

/",%+F*/*1($ 1"$ 3-+.*%((-3%6$ C%$ ,g#"+-3%$ &*)+%$ 'G(%$ .1(0$ J$ .%/$ -##-2"%/$ !+>2"%(#%/$ .%/$

#+1",%-"L$,-+$&%$&=(L$;X..%($%#$-&6$e[[e`$w*''%+'-(($%#$-&6$e[YY<6$T%$#-"L$.h1F*(/$05-//>/$,-+$

&%$&=(L$%/#$01++>&>$J$&-$#-*&&%$.%$&-$,1,"&-#*1($&10-&%$.%$&=(L$ ;B%+!*(.-&$%#$-&6$e[[n<6$T%/$+%((%/$

/%'*7.1'%/#*2"%/$/1(#$>&%F>/$,-+$&%/$U-'*/$.-(/$&%$0%(#+%$%#$&%$(1+.$.%$&-$?1+FG3%6$T%/$+%((%/$

/1(#$ >3-&%'%(#$ #+G/$ F"&(>+-)&%/$ J$ &-$ .>,+>.-#*1($ ,-+$ &%$ &=(L$ ;U"(.%$ %#$ -&6$ e[[[<6$

R+1*/*G'%'%(#4$&%/$05-//%"+/$.%$05%F+%"*&/$,%+f1*F%(#$ &%$ &=(L$01''%$"($01(0"++%(#$'-I%"+$

,1"+$&-$05-//%$.%$,+1*%/$01''"(%/$;?*&/%($%#$-&6$e[[j<6$c-+$01(/>2"%(#4$&-$3%/#*1($."$&=(L$%/#$

01(/*.>+>%$,-+$ &%/$ ,1&*#*2"%/$ ,")&*2"%/4$ &%/$ 3%/#*1((-*+%/$ %#$ &%$ ,")&*0$ 01''%$ "($ ,+10%//"/$

F*/-(#$J$#+1"F%+$"($>2"*&*)+%$%(#+%$&-$(>0%//*#>$.%$'-*(#%(*+$.%/$,1,"&-#*1(/$F*-)&%/$.%$&=(L$%#$

&-$(>0%//*#>$.h-##>("%+$&%/$*',-0#/$/"+$&%/$>&%F-3%/$.1'%/#*2"%/$%#$/%'*7.1'%/#*2"%/6$$

$

$ +#*#*1($

;P1"=%+$%#$-&6$e[Yn<4$

&%/$!-0#%"+/$*(!&"%(f-(#$&%/$,-+-'G#+%/$.>'13+-,5*2"%/$;P-/*&&%$%#$-&6$e[[j<$%#$.%$.>#%+'*(%+$
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Early View (EV): 1-EV

 In this context, mapping the distribution of a species can 
help to target potential area of presence and mitigate confl icts 
often associated with the recovery of large carnivores. Species 
distribution models (SDMs) have become important tools 
in the ecological, biogeographical and conservation fi elds 
(Guisan and ! uiller 2005). By correlating presence-only or 
presence – absence data of a species to environmental factors, 
SDMs provide an understanding of habitat preferences and 
predictions on future species distribution. ! is is especially 
relevant for species involved in confl icts, since predicting 
their future presence can help targeting contentious areas 
and guide management to reduce confl icts (Guillera-Arroita 
et   al. 2015). However, the monitoring of large carnivores 
remains challenging to carry out in the fi eld because these 
species live at low density and occupy wide areas (Woodroff e 
2001). ! erefore, assessing the distribution of these species 
comes with methodological challenges. 

 First, standard SDMs such as Maxent (Phillips et   al. 
2006) rely on the assumption that the focal species is 
detected everywhere it is present (Yackulic et   al. 2013). 
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 Large carnivores are often considered as key elements for 
maintaining ecosystems. Because of their high position in 
the trophic chain, their extinction can lead to trophic cas-
cades and detrimental changes in species abundance and 
functioning of ecosystems (Ripple et   al. 2014). Once wide-
spread in Europe, many populations of large carnivores were 
extirpated over the last century, mainly due to interferences 
with human activities (Breitenmoser 1998, Ripple et   al. 
2014). Since the 1970s, all large carnivores have recovered, 
resulting in most of the European countries hosting at least 
one viable population of large predators (Chapron et   al. 
2014). Often used as a conservation success story, the recov-
ery of large carnivores in human-dominated areas comes 
with challenges, including the question of whether there 
are any suffi  ciently large and functional areas left for viable 
populations (Packer et   al. 2013). Another issue is how to 
coordinate management of these species at large scales, pos-
sibly across borders (Linnell and Boitani 2012, Bischof et   al. 
2015), in particular in the context of international treaties 
and directives (e.g. the European Habitats Directive). 

                             Mapping and explaining wolf recolonization in France using 
dynamic occupancy models and opportunistic data      

    Julie     Louvrier  ,       Christophe     Duchamp  ,       Valentin     Lauret  ,       Eric     Marboutin  ,       Sarah     Cubaynes  , 
      R é mi     Choquet  ,       Christian     Miquel     and         Olivier     Gimenez            
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France.  –  C. Duchamp, Offi  ce National de la Chasse et de la Faune Sauvage, CNERA pr é dateurs et animaux d é pr é dateurs, Parc Micropolis, Gap, 
France.  –  E. Marboutin, Offi  ce National de la Chasse et de la Faune Sauvage, ZI Mayencin, Gi è res, France.  –  C. Miquel, Univ. Grenoble 1, 
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 While large carnivores are recovering in Europe, assessing their distributions can help to predict and mitigate confl icts with 
human activities. Because they are highly mobile, elusive and live at very low density, modeling their distributions presents 
several challenges due to 1) their imperfect detectability, 2) their dynamic ranges over time and 3) their monitoring at large 
scales consisting mainly of opportunistic data without a formal measure of the sampling eff ort.    

 Here, we focused on wolves  Canis lupus  that have been recolonizing France since the early 1990s. We evaluated the 
sampling eff ort a posteriori as the number of observers present per year in a cell based on their location and professional 
activities. We then assessed wolf range dynamics from 1994 to 2016, while accounting for species imperfect detection and 
time- and space-varying sampling eff ort using dynamic site-occupancy models.    

 Ignoring the eff ect of sampling eff ort on species detectability led to underestimating the number of occupied sites by 
more than 50% on average. Colonization appeared to be negatively infl uenced by the proportion of a site with an altitude 
higher than 2500 m and positively infl uenced by the number of observed occupied sites at short and long-distances, for-
est cover, farmland cover and mean altitude. ! e expansion rate, defi ned as the number of occupied sites in a given year 
divided by the number of occupied sites in the previous year, decreased over the fi rst years of the study, then remained 
stable from 2000 to 2016. Our work shows that opportunistic data can be analyzed with species distribution models that 
control for imperfect detection, pending a quantifi cation of sampling eff ort. Our approach has the potential for being used 
by decision-makers to target sites where large carnivores are likely to occur and mitigate confl icts.   
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Going undetected at a given site does not necessarily mean 
that this species is absent from that site, but rather that it 
may simply be missed for various reasons related to observer 
abilities, habitat characteristics or species level of activity 
(K é ry et   al. 2010, K é ry 2011). Ignoring the issue of imper-
fect detection can result in false absences that lead to fl awed 
inference in two ways: 1) the distribution maps are biased by 
underestimating actual presences (K é ry and Schaub 2011, 
Lahoz-Monfort et   al. 2014); 2) there may be confusion 
in identifying the drivers of the species distribution when 
detection depends on environmental explanatory variables 
that are independent from the variables infl uencing the spe-
cies ’  actual presence (Lahoz-Monfort et   al. 2014). To cope 
with this fi rst issue, single-season or static site-occupancy 
models were developed (Mackenzie et   al. 2006) and have 
been widely used for carnivores (Long et   al. 2010, ! orn 
et   al. 2011, Sunarto et   al. 2012). Based on spatial and tem-
poral replicated sampling of the target species, these models 
allow making the distinction between non-detections and 
true absences via the estimation of species detectability. 

 Second, most SDMs are implicitly based on the ecological 
niche concept (Grinnell 1917, Hutchinson 1957) and there-
fore rely on two main hypotheses: 1) the species is present in 
areas where environmental conditions are the most favorable 
and 2) dispersal is not a limiting factor (Jeschke and Strayer 
2006). However, expanding species are often absent from an 
area not because conditions are unfavorable but because they 
have not yet dispersed to this area, or because of geographical 
barriers or dispersal constraints (Ara ú jo and Guisan 2006). 
Hence, static SDMs ignore important dynamic processes, 
which may lead to bias in the resulting distributions and 
should therefore not be used for prediction (Zurell et   al. 
2009, Yackulic et   al. 2015). To deal with this second issue, 
occupancy models have been extended (Mackenzie et   al. 
2003, Royle and K é ry 2007) to account for the infl uence 
of dynamic processes such as colonization and extinction 
on the species range dynamics (Mackenzie et   al. 2003). 
So-called multi-season or dynamic site-occupancy models 
are increasingly used to assess the range dynamics of expand-
ing or invasive species (Bled et   al. 2011, Broms et   al. 2016a), 
but remain rarely applied to carnivores (Marcelli and Fusillo 
2012, Miller et   al. 2013). 

 ! ird, data collection is particularly costly if not unfea-
sible for elusive species that need wide areas due to the large 
presence area required for sampling. In this context, citizen 
science is considered as an effi  cient source of information 
to assess changes in a species distribution by covering wide 
areas (Schmeller et   al. 2009). However, data from citizen sci-
ence are often collected with protocols that do not control 
for variation in the sampling eff ort 1) in time: a site can be 
sampled by several observers during a given year and not the 
following year and 2) in space: given two sites where the spe-
cies is present, if the sampling eff ort is lower in one site, this 
might lead to recording a false absence in this site (K é ry et   al. 
2010). As a consequence, if sampling eff ort is not controlled 
for, detectability can be estimated low, for instance at sites 
with no sampling eff ort, leading to biased estimates of the 
distribution area (Van Strien et   al. 2013). 

 Static and dynamic occupancy models hold promise to 
analyze population trends from opportunistic data because 
the data collection process is formally incorporated (Isaac 

et   al. 2014). However, to address the third issue and apply 
occupancy models to opportunistic data, one needs to dif-
ferentiate between a site that was not sampled and a site that 
was sampled but the species was not detected. In the case of 
several species being monitored, the detection of a species 
in a site informs about the non-detection of other species 
because this site is known to have been sampled (Van Strien 
et   al. 2013). ! is no longer holds for single-species settings, 
and the assumption is sometimes made that all sites where 
at least one detection occurred are sampled throughout the 
whole duration of the study (Molinari-Jobin et   al. 2012, 
Rich et   al. 2013). 

 Here, we considered grey wolves  Canis lupus  as a case 
study to illustrate the challenges in using opportunistic data 
and SDMs to infer the range dynamics of large carnivores. 
Wolves disappeared in most of the western European coun-
tries during the twentieth century (Promberger and Schr ö der 
1993, Boitani 2010) except in Spain, Portugal and Italy 
(Boitani and Ciucci 1993). ! e species naturally recolo-
nized the French Alps from the remaining Italian population 
(Vali è re et   al. 2003, Fabbri et   al. 2007). Because the species 
is protected by law while being a source of confl icts with 
sheepherding, its recolonization process needs to be carefully 
monitored. 

 Our main objective was to describe and determine the 
drivers of wolves ’  recolonization pattern in France between 
1994 and 2016. To account for imperfect detection, we built 
a dynamic site-occupancy model (Mackenzie et   al. 2006) 
and analyzed opportunistic data collected by a network of 
trained volunteers since 1992. To do so, we built a poste-
riori the sampling eff ort to account for biases in data col-
lected through citizen science. To describe the recolonization 
process over time, we addressed two main questions: 1) what 
are the environmental and biological factors infl uencing 
colonization and extinction probabilities? 2) How can sam-
pling eff ort be inferred a posteriori, i.e. after the data were 
collected, and to what extent does sampling eff ort correlate 
with detection probability?   

 Methods  

 Study species and area 

 ! e fi rst wolf  Canis lupus  occurrence was detected in France 
in the early 1990s as a consequence of the Italian popula-
tion ’ s expansion (Vali è re et   al. 2003, Ciucci et   al. 2009). ! e 
species then spread outside the Alpine mountains to reach 
the Pyrenees and the Massif Central westward fi rst in 1999, 
and the Vosges Mountains northward from 2011. ! e wolf 
is an opportunist species that can adapt its diet depending 
on available prey species (Poulle et   al. 1997, Imbert et   al. 
2016). In areas with livestock farming, strong interactions 
between wolf presence and sheep breeding usually occur. ! e 
study area mostly covered eastern France and a major part of 
central France (Fig. 1).   

 Data collection 

 Wolf detection data were made of presence signs sampled 
all year long from 1992 to 2016 thanks to a network of 
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professional and non-professional observers. ! e network 
size has increased from a few hundred people in 1994, up to 
3138 wolf experts in 2016. Every observer is trained during 
a 3-d teaching course led by the French National Game and 
Wildlife Agency (ONCFS) to document signs of the spe-
cies ’  presence (Duchamp et   al. 2012). Presence signs went 
through a standardized control process combining genetic 
identifi cation tools, and validation standards to prevent mis-
identifi cation (Duchamp et   al. 2012). For every presence 
sign, the date and location of collection were stored in a 
geo-referenced database. ! ese data are considered oppor-
tunistic in the sense that monitoring occurs all year long 
in an extensive manner without explicitly quantifying the 
sampling eff ort.   

 Dynamic site occupancy models 

 To model the colonization dynamics of wolf, we used 
dynamic site-occupancy models (Mackenzie et   al. 2003) 
where sampling units were defi ned as 10    !    10 km cells 
(European Commission 2006). Site occupancy models rely 
on the closure assumption which states that the ecologi-
cal state of a site (whether it is occupied or not) remains 
unchanged through occasions (or surveys)  j  within a year 
 k . Sites were monitored mainly in winter from December 
to March, the most favorable period to detect the species 
between the two peaks of dispersal events in spring and fall 
(Mech and Boitani 2010). We defi ned the secondary occa-
sions  j  as December, January, February and March and  y  i,j,k , 
the observed state of site  i  equal to 1 if at least one sign of 
presence was found at site  i  during occasion  j  in the year  k  
(and 0 otherwise). 

 We considered a state-space formulation of the dynamic 
occupancy model (Royle and K é ry 2007) in which the model 
is viewed as the combination of 1) the ecological process that 
involves the latent ecological state of a site, i.e. whether it is 
occupied or not; 2) the observation process that leads to the 
detections or non-detections by the observer conditional on 
the state of the system. ! e colonization probability  γ  i,k  is the 
probability that an empty site  i  during year  k  becomes occu-
pied during year  k  "   1, while the extinction probability  ε  i,k  is 
the probability that an occupied site  i  during year  k  becomes 
empty during year  k  "   1. We defi ne  z  i,  1  as the initial latent 
state of site  i  as being drawn from a Bernoulli distribution 
with the success probability being   Y   i,  1 , 

  z  i,  1   ∼   Bernoulli  (  Y   i,  1 ) 

 All other latent states  z  i,k  for  k  #   1 are drawn from a Bernoulli 
distribution as 

  z  i,k    "      1   | z  i,k   ∼   Bernoulli  ( z  i,k  (1  –   ε  i,k )  "  (1  –   z  i,k  )  γ  i,k ) 

 On top of the ecological process stands the observation 
process, in which the detections/non-detections are drawn 
from a Bernoulli distribution 

  y  i,j,k  |z  i,k    ∼  Bernoulli ( z  i,k   p  i,j,k ) 

 where  p  i,j,k  is the probability that the species is detected at 
site  i  for an occasion  j  during year  k . ! e state-space formu-
lation is appealing as it makes explicit the latent states  z  i,k  
that can be used to build distribution maps. We modelled 
detection probability with logistic regression using sampling 
eff ort, road density and months as covariates. We modelled 
colonization probability with logistic regression using for-
est cover, farming cover, rock cover, mean altitude, propor-
tion of high altitude ( #    2500 m), the number of observed 
occupied neighboring sites at short distance, the number of 
observed occupied neighboring sites at long distance and 
the distance to the nearest barrier (road or main river) as 
explanatory variables. Finally, we modelled extinction proba-
bility as a logistic function of  ‘ year ’  as a continuous covariate. 
We describe these covariates below.   

 Sampling effort 

 Monitoring the range expansion of wolves at the country 
level prevented us from implementing any standardized 
experimental sampling design. Instead, the presence signs 
were sampled in an opportunistic way and the sites were 
defi ned a posteriori. We adopted an original approach to 
infer the non-detections based on the available qualitative 
information on the observers. When entering the network, 
observers attended a 3-d training session to learn how to 
identify the species and how it is monitored (Duchamp 
et   al. 2012). During these training sessions, we recorded 
the observers ’  personal and professional address, socio-
professional category and entry date into the network. 
! e entry and exit dates (whenever known) were used to 
quantify how many observers were present in the network 
each year. If necessary, we updated their socio-professional 
category. We calculated a circular buff er for the prospection 
area for each observer based on a radius specifi c to his/her 
socio-professional category and a center located at his/her 

  Figure 1.     Maps of cumulated species detections (red dots) for the 
period 1994 – 2016. Sites were defi ned as 10    !    10 km cells within a 
grid covering all detections. Dark green areas represent mountain-
ous areas with an altitude higher than 1500 m.  
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and rock cover would have a negative eff ect on coloniza-
tion. Farmland cover was defi ned as a covariate including 
pastures areas which can be used by livestock, a possible 
prey to wolves and a proxy for rural landscape under human 
infl uence. Altitude may also have an infl uence on coloniza-
tion (Llaneza et   al. 2012, Falcucci et   al. 2013). We used the 
IGN BD_ALTI     database (250 m resolution) to calculate 
the mean altitude of each site as well as the proportion of 
altitude higher than 2500 m. We predicted a site with a high 
proportion of high-altitude ( #    2500 m high) would be less 
attractive for the species as ungulate species might be less 
abundant above this limit. 

 Dispersal capacity is a key factor to explain the dynamic 
of wolf colonization (Boyd and Pletscher 1999, Kojola et   al. 
2006, Ciucci et   al. 2009). Because cells occupied by estab-
lished packs may act as a source of dispersers at short and 
long-distance (Yackulic et   al. 2012), the neighborhood of an 
unoccupied cell may infl uence its colonization probability 
(Veran et   al. 2016). In that spirit, the presence of individuals 
at short and long-distance could be accounted for by using 
conditional autoregressive models and auto-logistic models 
(Bled et   al. 2013). However, due to the computational bur-
den and convergence issues, we could not implement this 
approach here. We therefore defi ned two covariates that con-
sisted of the observed number of contiguous observed occu-
pied cells at both short and long-distances around the focal 
cell. ! e short-distance covariate was defi ned as the number 
of observed occupied cells directly contiguous to the focal 
cell i.e. situated within a distance of 10 km. ! e limit for the 
long-distance parameter was set to avoid a dilution eff ect due 
to the small number of observed occupied cells at very long-
distances but large enough to account for most long-distance 
observed occupied cells that could play a role in the coloniza-
tion probability. Based on observations of wolf dispersal in 
the western Italian Alps (Marucco and McIntire 2010), we 
set this limit at 150 km around the focal cell. We expected a 
positive eff ect of these two covariates on the probability of a 
site to be colonized. 

address (Supplementary material Appendix 1 Table A1). 
For instance, for an observer belonging to the category 1 
(departmental authority) whose address was located in the 
French Department number 39, his/her prospection area 
would be 4999 km ² , which is the size of the Department 
(Supplementary material Appendix 1 Fig. A1 and Table A2). 
For this observer, a circular buff er was built with a radius 
calculated as 

  Radius     $ 
prospection area 

π
 

 For each 10    !    10 km cell, we then calculated the number of 
observers monitoring the species per year, i.e. the sampling 
eff ort, by summing the number of prospection areas overlap-
ping the cell (Supplementary material Appendix 1 Fig. A2). 
Sites with a sampling eff ort equal to zero were not prospected 
by observers. To avoid estimating a detection probability at 
sites that were not prospected, we set the detection probabil-
ity to zero when the sampling eff ort was null at these sites. 
When at least one observer was found in a cell in a given 
year, we considered that sampling occurred. We expected 
that the sampling eff ort had a positive eff ect on the detec-
tion parameter. We performed a sensitivity analysis to assess 
how a change in the construction of the sampling eff ort 
infl uenced the model parameter estimates (Supplementary 
material Appendix 1 Fig. A3).   

 Other covariates 

 Keeping in mind that wolves can adapt to a large range of 
diff erent habitats, we incorporated proxies of variables that 
might shape the wolf distribution (Table 1). Using the 
CORINE Land Cover     database (U.E  –  SOeS, Corine Land 
Cover 2006), we defi ned three covariates to characterize the 
landscape of the study area: forest cover, farming cover and 
rock cover. Forest cover may structure the ungulate distribu-
tion (i.e. prey species). As a consequence, we expected that 
forest cover would have a positive eff ect on colonization, 

  Table 1. Description and expected effects of covariates used to describe the occupancy dynamics of wolf in France.  

Covariate Abbreviation Parameter Description
Expected 

effect Reference

Forest cover Forest Colonisation ( γ ) Percentage of mixt, coniferous or 
deciduous forests cover

 " Oakleaf et   al. 2006, 
  Fechter and Storch 2014

Farmland cover Agr Colonisation ( γ ) Percentage of pasture lands and other 
farming activities cover

 " / – Glenz et   al. 2001

Rock cover Rock Colonisation ( γ ) Percentage of rock cover  – 
High altitude Halt Colonisation ( γ ) Proportion of altitude higher than 

2500 m
 – Glenz et   al. 2001

Altitude Alt Colonisation ( γ ) Mean altitude  " / – Llaneza et   al. 2012
  Falcucci et   al. 2013

Distance to the closest 
barrier

Dbarr Colonisation ( γ ) Minimal distance between a highway 
or one of the fi ve main rivers in 
France

 – Falcucci et   al.   2013

Short distance occupied 
neighboring cells

SDAC Colonisation ( γ ) Proportion of observed occupied 
contiguous cells

 " Bled et   al. 2011

Long distance occupied 
neighboring cells

LDAC Colonisation ( γ ) Proportion of observed occupied 
cells within a 150 km radius 
without the contiguous cells

   " 

Year (continuous) Trend-year Extinction ( ε ) Year as a linear effect  – Marucco 2009
Sampling effort SEff Detection ( p ) Number of observers per site per year  " 
Road density Rdens Detection ( p ) Percentage of site covered by roads  " 
Month-survey survey Detection ( p ) Occasion of survey (categorical)  " / – Marucco 2009
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10 000 iterations on which we based our inference. We used 
posterior medians and 95% credible intervals to summarize 
parameter posterior distributions. To assess the eff ect of a 
covariate on a parameter, we set the other covariates to their 
mean value. We checked convergence visually by inspecting 
the chains and by checking that the R-hat statistic was below 
1.1 (Gelman and Shirley 2011). We fi nally produced distri-
bution maps of the latent states by using a posteriori means 
of the  z  i,k  from the best model. To assess the fi t of our fi nal 
model, we used the posterior predictive checking approach 
(Gelman et   al. 1996) that has recently been applied to occu-
pancy models (Broms et   al. 2016b) (Supplementary material 
Appendix 1 Fig. B1).   

 Data deposition 

 Data available from the Dryad Digital Repository:  <  http://
dx.doi.org/10.5061/dryad.g9s1d  >  (Louvrier et   al. 2017).    

 Results  

 The effect of covariates on detectability and the 
dynamic of occupancy 

 ! e model best supported by the data had detection as 
a function of sampling eff ort, road density and occasion 
(month) and colonization as a function of forest cover, 
farmland cover, mean altitude, proportion of high-altitude 
and the number of observed occupied cells at a short and 
long-distance neighborhood (Supplementary material 
Appendix 1 Table C1). ! is model appeared to fi t the 
data adequately well (Supplementary material Appendix 1 
Fig. B1). 

 Initial occupancy probability was low, as expected since 
few sites were detected as occupied at the beginning of the 
study (Supplementary material Appendix 1 Table C2). 

 As predicted, forest cover had a positive infl uence on the 
probability that a site became colonized. ! e proportion of 
farmland cover within a cell also appeared to have a positive 
infl uence on this probability. Below 1500 m of mean alti-
tude, the probability that a site became colonized was close 
to zero, whereas above this limit the probability reached up 
to 0.07 (0.05; 0.11) (Fig. 2). ! is probability decreased with 
the high-altitude proportion in a site. Over time, the num-
ber of observed occupied neighboring cells increased at both 
short and long-distance (Supplementary material Appendix 
1 Fig. D1). If all of the 8 neighboring cells were observed as 
occupied, the probability that the target cell became colo-
nized was 0.48 (0.32; 0.58) compared to a colonization 
probability of 0.11 (0.08; 0.15) if the target site had only 
0 to 2 contiguous neighboring cells observed occupied. As 
this number increased, the probability that a site became 
colonized increased accordingly (Fig. 2). 

 Sites located within the Alps had the highest number 
of observed occupied sites at both short and long-distance. 
Colonization probability was the highest in this area 
(Fig. 3). ! e highest part of the Alps (i.e. sites with the 
greatest proportions of high-altitude) remained with a low 
colonization probability (Supplementary material Appendix 1 

 Because dispersal could be driven by the presence of phys-
ical barriers (Wabakken et   al. 2001, Blanco et   al. 2005), we 
defi ned a landscape covariate depicting the distance from the 
center of the site to the closest barrier defi ned as highways or 
rivers (U.E  –  SOeS, Corine Land Cover 2006). We expected 
this covariate to impact colonization negatively. 

 In the fi rst few years after sites become newly colonized, 
extinction probability is expected to be high as long as only 
isolated individuals use them. Once a pack has settled, pack 
persistence is the rule for wolves when other packs are pres-
ent in the surrounding areas (Mech and Boitani 2010). Pack 
splitting may rise from various sources including harvest or 
poaching of alpha pairs (Gehring et   al. 2003, Brainerd et   al. 
2008) leading to a locally extinct site. Within the distribu-
tion of an actively expanding population, extinct sites might 
be recovered by surrounding individuals, either by dispersers 
or by neighboring packs. We therefore expected extinction 
probability to decrease over time. 

 Finally, in addition to sampling eff ort, we considered the 
potential eff ect of road densities on the species detectability, 
fi rst through facilitation of site accessibility for the observ-
ers and second, because cross roads can be used as marking 
sites (Barja et   al. 2004), which can lead to a higher detect-
ability. Because presence signs rely partly on track records 
in the snow, we considered month as a categorical variable 
to account for the variation in detection conditions due 
to weather variations across the survey months (Marucco 
2009). 

 Last, we considered the initial occupancy probability as 
constant since only two sites were occupied in the fi rst year 
of the study, which was not enough to assess the eff ects of 
covariates on this parameter.   

 Model fi tting, selection and validation 

 We performed covariate selection using stochastic search 
variable selection (SSVS; George and McCulloch 1993, 
O ’ Hara and Sillanp ä  ä  2009). In brief, SSVS builds a model 
that includes all covariate combinations as special cases. In 
practice, this is achieved by adding binary indicator vari-
ables,  α  p  equals 1 or 0, which allows the estimation of the 
regression parameter  β  p  or excludes it by setting it to a con-
stant (Supplementary material Appendix 1 Table C1). In a 
Bayesian framework, we explored the model space generated 
by excluding or including covariates. ! e priors for regres-
sion parameters  β  p  were written as (1  –  w) Normal(0,0.0001) 
 "  w Normal(0,1) with w  ∼  Bernoulli(0.5) therefore assum-
ing a priori that each covariate had a 50-50 chance of being 
present in the model. We checked that the model space was 
well sampled by the SSVS and that we did not get stuck 
in a particular set of models. We used three diff erent initial 
model confi gurations (with all covariates vs without any of 
the covariates vs a few covariates picked at random in the set 
of all covariates). We did not explore diff erent priors as mix-
ing and convergence were satisfying. Prior to model selec-
tion, we ran a Spearman test to check for correlations among 
covariates. 

 We used Markov chain Monte Carlo (MCMC) simu-
lations and parameter estimation. We ran three MCMC 
chains with a burn-in period of 2500 iterations followed by 
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in 2016 (around 70-fold increase, see top panel in Fig. 5). 
! is led to an apparent occupancy (proportion of occupied 
sites on the total number of sites in the study area) varying 
from 0.001 in 1994 to 0.047 in 2016. 

 Accounting for both sampling eff ort and imperfect 
detection, we estimated the number of occupied sites as 
up to 10 (1; 19) in 1994 and up to 211 (195; 227) in 2016 
(top panel in Fig. 5). Overall, the estimates were higher 
than the na ï ve estimates of occupancy. When we ignored 
the sampling eff ort in the detection process, we found an 
estimated number of occupied sites equal to 2 (1; 4) in 
1994 and up to 192 (180; 204) in 2016. Most discrepan-
cies between the two models (accounting for vs. ignoring 
the sampling eff ort) were found at the early stage of the 
colonization process when the network of observers was 
implemented mainly in eastern France (compare bottom 
left and right panels in Fig. 5; see also Supplementary 
material Appendix 1 Fig. D3). Accounting for the sampling 
eff ort allowed us to infer the species presence on sites that 
were not prospected or prospected with a low sampling 
eff ort (top panel in Fig. 5). 

Fig. D2). Overall, this probability remained higher than zero 
in mountainous areas and increased with time as the number 
of occupied sites increased (Fig. 3). 

 Finally, and as expected, detection probability varied 
according to the survey month with the lowest mean value 
of 0.17 (0.16; 0.18) in December and the highest value of 
0.25 (0.24; 0.26) in January (Fig. 4). As expected, detection 
probability increased when the number of observers per site 
increased but, in contrast with what we expected, decreased 
with increasing road density. ! e sensitivity analysis showed 
weak eff ects of variations in the prospection areas used to 
build the sampling eff ort, except for the number of observed 
occupied sites at long distance (Supplementary material 
Apendix 1 Fig. A3).   

 Distribution map 

 From 1994 to 2016, 10 918 presence signs were recorded by 
the network and used in our analysis. ! e species was ini-
tially spotted in 2 cells in 1994 and was detected in 188 cells 

  Figure 2.     Relationship between the estimated colonization probability and (A) short-distance occupied neighboring cells, (B) long-distance 
occupied neighboring cells, (C) proportion of forest cover, (D) altitude, (E) proportion of farmland cover, and (F) site proportion of 
altitude higher than 2500 m.  
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  Figure 3.     Maps of estimated colonization probability between 1995 and 1996, 2001 and 2002, 2009 and 2010, 2015 and 2016 from the 
best model (Table 2). Black dots represent detections made in 1995, 2001, 2009, and 2015.  

  Figure 4.     Joint eff ects of road density, standardized sampling eff ort and occasion (month) on the species detection probability.  
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 Discussion 

 Determining favorable areas is often accomplished by 
building distribution maps using habitat suitability mod-
els (Mladenoff  et   al. 1999) or occupancy models (Marucco 
2009). However, these studies often rely on a static relation-
ship between the species of interest and its environment 

 Our results showed that in 1994 the species was found 
only in the southern Alps, and then actively colonized 
towards the northern Alps at the beginning of the 2000s. 
! e colonization process started to reach the Pyrenees and 
Massif Central area in early 2000, and the Vosges area in the 
very north-eastern part of France, at the beginning of the 
2010s, indicating that the French wolf population is still in 
a phase of expansion west and northward from the alpine 
range. ! is led to an average expansion rate (i.e. number 
of occupied sites divided by the number of occupied sites 
the previous year) of 112% (100%; 128%) (Fig. 6). ! is 
expansion rate fi rst decreased over time, from 225% (118%; 
600%) at the early stage of the wolf colonization in 1994 to 
103% (91%; 117%) in 2000 due to low number of occupied 
cells, then stabilized at 107% (98%; 117%) on average per 
year demonstrating that the population is still in an expand-
ing phase mainly thanks to the colonization outside of the 
alpine range. 

 ! e model did not predict absence in places where pres-
ence signs were found (Fig. 7). Sites with high occupancy 
probability were mainly close to the sites where the species 
had been previously detected, mostly due to the eff ect of 
short-distance neighbors. Some sites had a high probability 
of being occupied ( #    0.75), however the uncertainty associ-
ated with those predictions was also high (standard deviation 
[SD]  #    0.30). We found sites with high probability of occu-
pancy ( #    0.75) with low uncertainty (SD    %    0.20), and some 
of those sites were observed as occupied in the following year 
because the model propagates information backwards in 
time and so  z  k  is informed directly by  zk    "      1 .    

  Figure 5.     Up: number of 10    !    10 km cells observed (black), estimated occupied ignoring sampling eff ort (red) and estimated occupied 
accounting for sampling eff ort (blue) for each year from 1994 to 2016. Also displayed is the 95% credible interval for both estimates of the 
sampling eff ort. Down: maps of diff erences between estimates of occupancy from the model accounting for sampling eff ort and the one 
ignoring sampling eff ort. Dark red sites are sites that appeared estimated occupied by the model accounting for sampling eff ort but did not 
appear occupied once ignoring sampling eff ort. Both maps are associated with maps of the sampling eff ort on their right, for the years 1996 
and 2016.  

  Figure 6.     Growth rate (i.e. number of sites divided by the total 
number of sites the previous year) given for each year from 1994 to 
2016, on a log scale.  
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the sampling eff ort. Furthermore, by accounting for the 
number of observed occupied neighboring cells, we made 
the detection history of a focal cell dependent partly on 
the detection histories of the neighboring cells. If the 
source of dependence is unknown, spatial autocorrelation 
can be modeled using geostatistical tools on occupancy or 
extinction/colonization parameters and also on detection 
(Bled et   al. 2013). 

 ! ird, the status of a site should not change during 
primary occasions  –  the closure assumption (Rota et   al. 
2009). We used the data provided within the winter period 
from November to March as a primary occasion because it 
corresponds to the most stable period in the social organiza-
tion of the packs. If movements or mortality occurred inside 
or outside of the sampling sites, it is likely, in our study, that 
the probability of occupancy in a given time interval did 
not depend on the occupancy status of a site in the previ-
ous time interval (Mackenzie and Royle 2005). In this situ-
ation of so-called random temporary emigration, the bias 
in parameter estimates is minimal, but occupancy should 
be interpreted as use of the sampling area rather than the 
proportion of area occupied by the species (Mackenzie et   al. 
2004). 

 Fourth, there should be no unmodelled heterogeneity in 
the model parameters. Regarding the detection probabil-
ity, some heterogeneity might remain due to a diff erence of 
detection in the presence signs, e.g. tracks vs hair (Graves 
et   al. 2011). ! is was unlikely to occur in our study because 

(Jedrzejewski et   al. 2008). Here, we used dynamic site-
occupancy models and brought new insights on the pro-
cesses governing the dynamic of recolonization of a keystone 
carnivore species. By controlling for species detectability and 
heterogeneous sampling eff ort, our approach can be used 
to assess the distribution dynamics of any species based on 
opportunistic data, pending relevant information is gathered 
on the people collecting the data.  

 Model assumptions 

 Site occupancy models rely on several assumptions that need 
to be discussed (Mackenzie et   al. 2003, 2006). First, the spe-
cies should not be detected when absent from a site (i.e. no 
false positives). ! is is unlikely to happen in our case since 
we did not account for presence signs that were rejected 
because they did not fulfi ll the standardized criteria used to 
avoid species misidentifi cation (Duchamp et   al. 2012). If 
doubts persist about the occurrence of false positives, this 
assumption could be relaxed by using site-occupancy models 
that account for misidentifi cations (Miller et   al. 2011, Rich 
et   al. 2013). 

 Second, detection histories of all sampling units are 
assumed to be independent. However, detection histories 
were likely dependent in space because of a non-homogeneous 
spatial sampling eff ort inherent to opportunistic data. We 
partly accounted for this non-independence by quantifying 

  Figure 7.     Maps of estimated occupancy (top) and associated standard deviation (bottom) for years 1996 and 2016. Black dots represent 
detections made in 1996 and 2016.  
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high road density. As expected, we found that detection 
probability increased when sampling eff ort increased, there-
fore highlighting the importance to account for imperfect 
detection when it is likely to be inhomogeneous in time and 
space. Finally, detection varied according to the month of 
the survey, which can be explained by the variability in snow 
conditions in the study area. 

 We found that colonization was mainly infl uenced by 
the number of observed occupied neighbors at short and 
long-distances, showing that dispersal and competition for 
space with other packs is a key factor of the dynamic of 
occupancy. ! ese results corroborate those of Adams et   al. 
(2008) who showed that dispersal was the main component 
explaining wolf population dynamics. Several long-distance 
dispersal events have been documented across the alpine area 
(Wolf Alpine Group 2014) and in France (Duchamp et   al. 
unpubl.). Further studies explicitly modeling dispersal pro-
cesses could help to better predict wolves colonization by 
accounting for factors that could enhance or slow down the 
dispersal rate for instance (Broms et   al. 2016a). 

 We found that mean altitude had a positive eff ect on 
colonization probability. Wolves are highly fl exible and can 
live in various areas from maize cultures to high moun-
tains (Kaczensky et   al. 2013). Starting from central Italy 
(Lucchini et   al. 2002, Fabbri et   al. 2007), wolves reached 
the alpine range via the natural Apennine mountain corri-
dor. ! erefore, the eff ect of mean altitude may be related to 
the history of the wolves ’  natural recovery process. However, 
we also found a negative eff ect of the proportion of altitude 
higher than 2500 m, i.e. the higher the proportion of high-
altitude, the less likely a site was to become colonized. Above 
2500 m, vegetation turns to sparse vegetation with rocky 
covers and snow. In contrast, more forest cover associated 
with lower altitudes ( %    2500 m) increased the probability 
that a site become colonized mainly because these habitats ’  
structure and composition are much more suitable to the 
presence of key prey species (Darmon et   al. 2012). To a lesser 
extent, the eff ect of farmland cover was also found to have a 
positive infl uence on the colonization probability. Although 
pasture areas host domestic preys (Meriggi and Lovari 1996) 
and may infl uence wolf colonization, the farmland covariate 
refers to rural exploited landscapes usually located down the 
valleys or lowlands. As wolf recovery is increasing over time, 
dispersers do not have other choices than to fulfi ll free avail-
able space to colonize. ! e overlap between human range 
activities and wolf settlement then increases as the recovering 
process is going on. ! e inclusion of more explicit covariates 
related to pastoral activity, such as the number of sheep in 
space, may provide a better understanding of the interaction 
between domestic prey and wolf presence, but these were not 
available to us.   

 Trends in wolf recolonization 

 Colonization patterns have been studied during recent decades 
(Wabakken et   al. 2001). It appears that in Scandinavia, 
wolves were showing a colonization process that is typical 
of species with high dispersal capacities and pre-saturation 
dispersal (Swenson et   al. 1998). ! is process is character-
ized by single long leaps forward and as a consequence, the 

the vast majority of presence signs are tracks. Regarding the 
colonization parameter, even though we had data on the 
number of killed preys during the hunting season, we did 
not have information on wild prey density at such a large 
scale. ! erefore, we used characteristics of their habitats as a 
proxy for their presence (Jedrzejewski et   al. 2008). 

 Besides the usual assumptions of occupancy models, we 
also had to deal with opportunistic data that are collected 
through non-standardized sampling protocols. To cope with 
opportunistic data, we defi ned a grid of spatial units that 
was overlaid on the map of detections/non-detections. We 
used 10    !    10 km cells as sampling units, a choice we made 
in agreement with what was recommended by the European 
Union (European Commission 2006) and also shown to be 
the best tradeoff  between the species territory size and sensi-
tivity of the distribution to the size and shape of the unit cell 
(Marboutin et   al. 2010). ! e average wolves ’  territory size 
vary between 100 and 400 km ²  in western and central Europe 
(Ciucci et   al. 1997, Mech and Boitani 2010, Duchamp et   al. 
2012). Although these cells might not entirely cover wolves 
territories, Latham et   al. (2014) studied the eff ect of grid size 
to assess wolf  ’ s occupancy and found that taking a large grid 
size may not be appropriate for areas with moderate to high 
wolf density as it can overestimate occupancy rate. On the 
other hand, if the size of the sampling unit is too small, then 
there is a risk of having very few detections within a year, 
which would make the estimation of the detection probabil-
ity diffi  cult. 

 Last, we assumed that observers were prospecting homo-
geneously inside the prospection area we assigned to them. 
! is assumption may have been violated for two reasons. 
First, an observer might prospect more intensively near the 
center of the prospecting area, because it was defi ned as a 
home or work location, or near places where she/he already 
found presence signs (Duchamp et   al. 2012). We also 
assumed that observers were prospecting homogeneously 
in time. However, observers may show diff erent patterns 
in sampling frequency and some might not be prospecting 
during the months of winter. Finally, we assumed that once 
entered in the network, observers did not leave it unless we 
had information indicating the contrary such as a change 
of job or social status. Consequently, we might have over-
estimated the number of observers actually prospecting in 
the network. We therefore recommend recording carefully 
the activity of observers within the network to get a realis-
tic picture of the actual sampling eff ort (Beirne and Lambin 
2013).   

 Effects of environmental covariates 

 We used road density as a proxy of human presence and 
found a negative infl uence on the detection probability. 
When defi ning the road density covariate, we accounted for 
all types of roads (except highways). Because many observ-
ers from the network are wildlife professionals (Duchamp 
et   al. 2012), main roads may not be used and accessibility 
to a site may consist mostly in dirt and forest roads or path-
ways. ! e negative infl uence could be explained by the fact 
that wolves tend to avoid roads (Whittington et   al. 2005), 
therefore there might be fewer presence marks at sites with 
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in coexisting species of mountain ungulates.  –  Ecography 35: 
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  Duchamp, C. et   al. 2012. A dual frame survey to assess time- and 
space-related changes of the colonizing wolf population in 
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  European Commission 2006. Assessment, monitoring and 
reporting under article 17 of the habitats directive: explanatory 
notes and guidelines.  –  European Commission.  

  Fabbri, E. et   al. 2007. From the Apennines to the Alps: colonization 
genetics of the naturally expanding Italian wolf ( Canis lupus ) 
population.  –  Mol. Ecol. 16: 1661 – 1671.  

  Falcucci, A. et   al. 2013. Modeling the potential distribution for a 
range-expanding species: wolf recolonization of the Alpine 
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  Fechter, D. and Storch, I. 2014. How many wolves ( Canis lupus ) 
fi t into Germany? ! e role of assumptions in predictive rule-
based habitat models for habitat generalists.  –  PLoS One 9: 
e101798.  

  Gehring, T. M. et   al. 2003. Limits to plasticity in gray wolf,  Canis 
lupus , pack structure: conservation implications for recovering 
populations.  –  Can. Field-Nat. 117: 419 – 423.  

colonization front is less well defi ned (Hartman 1994) com-
pared to a stepping stone dispersal strategy. Wolves seem to 
follow a similar pattern in France (Fig. 6). ! is biological 
trait used by wolves is mainly known as a mechanism to avoid 
competition with other packs (Hayes and Harestad 2000). 
Once the area becomes saturated, dispersers may settle at 
unoccupied sites at long distance with higher risks of mor-
tality due to an Allee eff ect (Hurford et   al. 2006, Sanderson 
et   al. 2013) or demographic stochasticity (Vucetich et   al. 
1997). In line with Marescot et   al. (2011) who estimated 
a positive rate of increase in abundance, we demonstrated 
that the spatial dynamic mechanism of the wolves ’  natural 
recovery is still going on, particularly outside the alpine 
range both northward and westward. However, this recov-
ery appeared to slow down, mainly due to areas becoming 
saturated within the alpine range associated with the natural 
barrier along the Rh ô ne valley slowing down dispersal and/
or a recent increase in offi  cial wolf controls. We may expect 
an increase in occupancy once few new packs have settled 
apart the alpine range. 

 We used dynamic occupancy models to assess the cur-
rent and dynamic distribution of a species that is expanding 
since it returned; there is a temptation to aim at forecasting 
its future distribution. However, we emphasize the diffi  culty 
of achieving this objective because we could not incorporate 
the drivers that may appear relevant to explain future colo-
nization events. For instance, now that wolves have settled 
in the alpine range and continue to expand, they are likely 
to encounter new environments such as lowlands in the next 
few years, a landscape that may drive future colonization. 
Consequently, use of our model as a predictive tool should 
be considered in an adaptive framework, i.e. by updating the 
management rules and the distribution maps every year dur-
ing the active colonization phase. 

 ! e outcomes of our analyses have important conse-
quences for managing animal species because their con-
servation status must be assessed partly through trends in 
their distributions (see art. 1 of the Habitats Fauna Flora 
European Directive). Dynamic occupancy models are 
therefore relevant tools to the decision-making process by 
providing maps and spatio-temporal trends. In the case of 
the wolf, these models can help in focusing the prevention 
of damage to livestock (Miller 2015). ! e identifi cation of 
areas where the species may or may not occur along with 
the surrounding uncertainty may be used to target specifi c 
sites and determine priorities for implementing mitigation 
measures. 
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Conservation Methods

Use of ambiguous detections to improve estimates
from species distribution models
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Abstract: As large carnivores recover throughout Europe, their distribution needs to be studied to determine

their conservation status and assess the potential for human-carnivore conflicts. However, efficient monitoring

of many large carnivore species is challenging due to their rarity, elusive behavior, and large home ranges.

Their monitoring can include opportunistic sightings from citizens in addition to designed surveys. Two types

of detection errors may occur in such monitoring schemes: false negatives and false positives. False-negative

detections can be accounted for in species distribution models (SDMs) that deal with imperfect detection.

False-positive detections, due to species misidentification, have rarely been accounted for in SDMs. Generally,

researchers use ad hoc data-filtering methods to discard ambiguous observations prior to analysis. These

practices may discard valuable ecological information on the distribution of a species. We investigated the

costs and benefits of including data types that may include false positives rather than discarding them for SDMs

of large carnivores. We used a dynamic occupancy model that simultaneously accounts for false negatives

and positives to jointly analyze data that included both unambiguous detections and ambiguous detections.

We used simulations to compare the performances of our model with a model fitted on unambiguous data

only. We tested the 2 models in 4 scenarios in which parameters that control false-positive detections and

true detections varied. We applied our model to data from the monitoring of the Eurasian lynx (Lynx lynx)

in the European Alps. The addition of ambiguous detections increased the precision of parameter estimates.

For the Eurasian lynx, incorporating ambiguous detections produced more precise estimates of the ecological

parameters and revealed additional occupied sites in areas where the species is likely expanding. Overall, we

found that ambiguous data should be considered when studying the distribution of large carnivores through

the use of dynamic occupancy models that account for misidentification.

Keywords: false positives, large carnivores, lynx, occupancy models, species imperfect detection

Uso de Detecciones Ambiguas para Mejorar las Estimaciones a partir de Modelos de Distribución de Especies

Resumen: Conforme los carnı́voros mayores se recuperan en toda Europa, su distribución requiere ser

estudiada para determinar su estado de conservación y para evaluar el potencial de conflictos entre humanos

y carnı́voros. Sin embargo, el monitoreo eficiente de muchas especies de carnı́voros mayores es complicada

debido a su rareza, comportamiento elusivo y las grandes extensiones de su ámbito de hogar. Su monitoreo
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2 Occupancy Models

puede incluir avistamientos oportunistas por parte de los ciudadanos, además de los censos diseñados.

Pueden ocurrir dos tipos de errores de detección en dichos métodos de monitoreo: negativos falsos y negativos

positivos. La detección de los falsos negativos puede justificarse en los modelos de distribución de especies

(MDE) que manejan la detección imperfecta. La detección de falsos positivos por causa de la identificación

errónea rara vez se justifica en los MDE. Los investigadores usan generalmente métodos con filtración de

datos ad hoc para descartar las observaciones ambiguas previo al análisis. Estas prácticas pueden descartar

información ecológica variable sobre la distribución de una especie. Investigamos los costos y beneficios de

la inclusión de tipos de datos que podŕıan contener falsos positivos en lugar de descartarlos de los MDE

para carnı́voros mayores. Usamos un modelo dinámico de ocupación que justificó simultáneamente los

falsos positivos y falsos negativos para analizar en conjunto los datos que incluı́an tanto las detecciones

no ambiguas como las ambiguas. Usamos simulaciones para comparar el desempeño de nuestro modelo

con el de un modelo ajustado solamente para datos no ambiguos. Probamos los dos modelos en cuatro

escenarios en los que variaron los parámetros que controlan la detección de falsos positivos y de detecciones

verdaderas. Aplicamos nuestro modelo a datos del monitoreo del lince euroasiático (Lynx lynx) en los Alpes.

La suma de las detecciones ambiguas incrementó la precisión de las estimaciones de los parámetros. Para

el lince euroasiático, la incorporación de las detecciones ambiguas produjo estimaciones más precisas de los

parámetros ecológicos y reveló sitios ocupados adicionales en áreas en donde la especie probablemente se esté

expandiendo. En general, encontramos que los datos ambiguos debeŕıan ser considerados cuando se estudia

la distribución de carnı́voros mayores por medio del uso de modelos dinámicos de ocupación que justifican

la identificación errónea.

Palabras Clave: carńıvoros mayores, detección imperfecta de especies, lince, modelos de ocupación, positivos

falsos
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Introduction

The distribution and abundance of large carnivores in
many parts of the world has been declining for centuries

because of habitat loss and human persecution (Ripple
et al. 2014). Thanks to active conservation measures,
several species of large carnivores have been recently

expanding their ranges substantially in Europe. As a re-
sult, most European countries currently host at least 1
viable population of a large predator (Chapron et al.

2014). This expansion has led to the emergence of con-
flicts with humans (Ripple et al. 2014). In this context,
accurate distribution mapping (i.e., species distribution

models [SDMs]) (Elith & Leathwick 2009) is essential for
determining conservation status and recovery success
(IUCN 2012); targeting potential areas of occurrence;

understanding large carnivore range dynamics; identify-
ing possible areas for future population establishment

(Chapron et al. 2014); and mitigating conflicts associated

with the recovery of large carnivores (Guillera-Arroita
et al. 2015), for example, depredation of livestock by
wolves (Marucco & Mcintire 2010). However, carnivore

rarity, elusive behavior, and low densities render efficient
monitoring difficult (Ripple et al. 2014).

The monitoring of large carnivores in Europe relies
on several survey methods implemented by profession-
als and members of the public (citizens). In particular,

citizen participation increases the ability to survey large
areas over extended periods, an effort that would be
costly if done by professionals only (Molinari-Jobin et al.

2018). A primary goal of citizen science (CS) is to produce
reliable data and information that scientists or decision
makers can use (McKinley et al. 2017), and it is becom-

ing an important tool with which to study the distribu-
tion, abundance, and species richness of plants and ani-
mals (Silvertown 2009; Dickinson et al. 2012). However,
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CS-generated data present potential quality problems, es-

pecially when the goal is to build SDMs.
Difficulty detecting large carnivores means animals can

be missed at sites where they are present (i.e., produc-
ing false-negative observations). Occupancy models were
developed to deal with false-negative errors (Guillera-

Arroita 2017) and are recommended for analyzing CS
data (Isaac et al. 2014). Although data sets produced by
CS are valuable (Kosmala et al. 2016), professionals are

better able to detect or identify species of interest, which
diminishes the risk of identification errors (Fitzpatrick
et al. 2009). False positives can occur when a species

is detected through misidentification at a site where it
does not occur (Miller et al. 2011). Recent studies have
demonstrated the importance of accounting for misiden-

tification for SDMs (Miller et al. 2011, 2013; Chambert
et al. 2015). Ignoring misidentification may lead to overes-
timating a species range (Royle & Link 2006; McClintock

et al. 2010).
Usually large carnivores are surveyed with indirect

methods, for example, observations of tracks, scat, and
prey remains or use of camera traps (Molinari-Jobin et al.
2018). Observations are then filtered by experts to as-

sess the reliability of evidence of the observed presence.
Recent studies of the distribution of European large carni-
vores have been based on only reliable observations, that

is, those remaining after discarding ambiguous detections
and validation by experts (Molinari-Jobin et al. 2018). This
means that some observations are discarded, even though

they may contain relevant ecological information on the
species distribution. This raises the question of whether
this information can somehow be extracted and made

useful in the context of SDMs.
We investigated the pros and cons of removing ambigu-

ous detections in SDMs of large carnivores versus keeping

all records and formally accounting for misidentification.
We used a dynamic occupancy model that accounts for

both false-negative and false-positive errors (Miller et al.
2011, 2013) to jointly analyze unambiguous and ambigu-
ous detections. To assess the performance of this ap-

proach, we performed a simulation study in which we
compared the analysis of unambiguous and ambiguous
detections with the use of unambiguous detections only.

We applied these methods to an SDM of the Eurasian
lynx (Lynx lynx) in the European Alps (Molinari-Jobin
et al. 2018). We expected improved precision in ecolog-

ical parameter estimates when all data were included in
an analysis, despite having to accommodate additional
nuisance parameters to deal with misidentification.

Methods

Occupancy Model Accounting for Misidentification

Dynamic occupancy models allow estimation of occu-
pancy and its temporal dynamics as a function of local ex-

tinction and colonization probabilities while accounting

for imperfect species detection (MacKenzie et al. 2003).
These models can be formulated as state–space models to

separate the state process (i.e., whether or not a species
is present at a site and how presence changes over time)
from the observational process (i.e., whether a species

is observed at a site during a given period depending on
whether or not it was actually present) (Royle & Kéry
2007). We defined zi,1 as the initial latent occurrence

state of site i (z = 1, presence; z = 0, absence) and zi,t

as the latent state for site i at time t. The state process
is initiated by the initial occupancy probability (ψ i,1) for

site i and governed by colonization probability (γ i,t) (the
probability that a site i that is not occupied at time t will
become occupied at time t + 1) and extinction probabil-

ity (εi,t) (the probability that an occupied site i at time t

will become unoccupied at time t + 1). We modeled zi,1

as a draw from a Bernoulli distribution with probability

ψ i,1. All subsequent latent states zi,t for t > 1 were draws
from another Bernoulli distribution that combines both

possible extinction and colonization events:

zi,t +1|zi,t ∼ Bernoulli(zi,t (1 − εi,t ) +
(

1 − zi,t

)

γi,t ). (1)

If a site is occupied in year (or season) t, it will still be
occupied with probability 1 – εi,t or if it is unoccupied, it
will become occupied with probability γ i,t. Each year (or

season), a site is surveyed several times (j) within a year
or season. Site occupancy models rely on satisfaction of
the site-closure assumption, whereby the latent occur-

rence state of a site does not change within a sampling
season, whereas occupancy dynamics (colonization and
extinction) happen between years (or seasons).

In addition to the state process, the observation pro-
cess leads to the data yi,j,t: the observed state of site i

during a secondary survey j within year (or season) t.

Hereafter, we do not use the indices when possible to
ease reading of the model parameters. Here, y = 0 de-
notes no detection, y = 1 an unambiguous detection,

and y = 2 an ambiguous detection. To account for un-
ambiguous and ambiguous detections, we followed the

formulation of Miller et al. (2013). We defined an addi-
tional parameter di,j,t that had a value of 1 if any detection
(ambiguous or unambiguous) was made at site i during

survey j within year t and a value of 0 if there were
no detections. For occupied sites, by definition, d = 1
and denoted a true detection. For unoccupied sites, d =

1 was a false-positive detection. For both occupied and
unoccupied sites, d = 0 meant no detection and thus y =

0. At an occupied site, the possible observations were no

detection (y = 0), unambiguous detection (y = 1| d =

1), or ambiguous detection (y = 2| d = 1). For occupied
sites, the probability of a true detection (i.e., d = 1) during

a secondary sampling occasion (or survey) was defined
as P(d = 1| z = 1) (hereafter p11). The probability that
a true detection will be classified as unambiguous was
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P(y = 1| d = 1) (hereafter b). The probability of an

unambiguous detection was p11b, and the probability for
an ambiguous detection (i.e., y = 2) for an occupied site

was p11(1 – b). For unoccupied sites (i.e., z = 0), by
definition, unambiguous detections (y = 1| d = 1) did
not occur; thus, the only possible observations were an

ambiguous detection (y = 2| d = 1), which in this case is
a false positive, or no detection (y = 0). The probability
of a false positive detection (i.e., d = 1) occurring at an

unoccupied site i during a secondary sampling occasion
(or survey) j was P(d = 1| z = 0) (hereafter p10). Then
the probabilities, unconditional on state z of a site, of

recording the 3 possible observed states (y) were

P
(

y = 0
)

= P (z = 1) P
(

d = 0|z = 1
)

+P (z = 0) P
(

d = 0|z = 0
)

= ψ
(

1 − p11

)

+
(

1 − ψ
) (

1 − p10

)

for no detection;

P
(

y = 1
)

= P (z = 1) P
(

d = 1|z = 1
)

P
(

y = 1|d = 1
)

= ψ p11b for unambiguous detection; and

P
(

y = 2
)

= P (z = 1) P
(

d = 1|z = 1
)

P
(

y = 2|d = 1
)

+P (z = 0) P
(

d = 1|z = 0
)

= ψ p11 (1 − b)

+
(

1 − ψ
)

p10 for ambiguous detection.

Simulations

We conducted a simulation to examine the performance

of a dynamic occupancy model that accounted for pos-
sible false positives (model unambiguous or ambiguous
[MUA]) relative to a dynamic occupancy model that ac-

counted only for false negatives (fitted with unambiguous
data only) (model unambiguous [MU]). To assess the abil-
ity of both models to estimate ecological parameters, we

tested 4 scenarios in which parameters that control false-
positive detections and true detections varied (Table 1).

Because the ecological parameters have an influence

on the amount of detections produced, occupancy prob-
ability was either high or low. In the high occupancy

scenario, we set the initial occupancy probability ψ1 at
0.8, the colonization probability γ at 0.4, and extinction
probability at 0.1 to maintain a high occupancy probabil-

ity. This scenario corresponds to a fairly well-established
species reflected by its high occupancy probability across
time. In the low occupancy scenario, we set the initial oc-

cupancy probability ψ1 at 0.1, the colonization probabil-
ity γ at 0.1, and extinction probability at 0.1 to maintain
a low occupancy probability. This scenario corresponds

to a rare species with a low occupancy probability across
time.

Detection parameters also influence the amount of

false-positive and true-positive detections. True detec-
tions are controlled by p11 and b. Therefore, in both high
and low occupancy scenarios, we considered 2 situations

in which b was either high (i.e., set at 0.8) or low (i.e., set

at 0.5), for a total of 4 scenarios. For all scenarios, we set
p11 at 0.4. When b = 0.8, most of the true detections were

classified as unambiguous. This scenario corresponds to
monitoring of a species that is not easily mistaken for
another or monitoring conducted by people trained to

recognize accurately the presence signs of the species.
When b = 0.5, a larger part of the true detections was
classified as ambiguous. This scenario corresponds to the

monitoring of a species that can easily be mistaken or
done by untrained people, for instance from the general
public. The amount of false-positive detections was con-

trolled by p10. In all 4 scenarios, we looked at how the
models performed under 7 different values of p10 (range
0.01–0.3), for a total of 28 different simulation scenarios.

Finally, because our main objective was to assess the
effect of accounting for ambiguous data, environmental
variation was not included in our simulations. The high

occupancy high b scenario is referred to as HH; the high
occupancy low b scenario is HL; the low occupancy high

b scenario is LH; and the low occupancy low b is LL.
In our simulations, we generated data for 100 sites

over 5 years and 3 surveys. To remain realistic in the

simulations, the number of surveys mimicked the case-
study characteristics. For each scenario, we simulated
500 data sets and fitted both models to each data set.

For the initial occupancy probability, the colonization
probability, and the extinction probability in both models
in each scenario, we calculated the relative bias and mean

squared error (MSE).

Eurasian Lynx Case Study

After its total eradication in the Alps by around 1930, the
Eurasian lynx (Lynx lynx) has been reintroduced multi-
ple times since 1970 in Switzerland, Italy, Austria, and

Slovenia (Molinari-Jobin et al. 2018). In the 1990s, ex-
perts from the 7 Alpine countries set up the international
lynx monitoring program (Status and Conservation of the

Alpine Lynx Population). To ensure coverage of its entire
territory, the monitoring of the elusive lynx relies on

>1300 trained experts (official game wardens and forest
service personnel) in 7 Alpine countries. Hunters, natural-
ists, and other citizens also may be part of the monitoring

network. Professional network members search actively
for signs and check signs that are reported to them by
citizens. We classified signs of presence into 3 reliability

categories: C1, hard facts (e.g., dead lynx, lynx removed
from the wild as a young orphan and put into captivity,
lynx photos, and genetic samples); C2, detections con-

firmed by a lynx expert (livestock killed by lynx, wild
prey remains, and tracks); and C3, data that could not
be verified by experts (unverified tracks and wild prey

remains) and unverifiable data (e.g., sighting, scat, and
vocalization). We treated C1 and C2 data as unambigu-
ous detections, assuming there were no false-positive
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Table 1. Parameter values for the 4 simulation scenarios in which parameters controlling the total amount of false-positive and true detections
varied.

Scenarios

Initial
occupancy

probability (ψ1)
Colonization

probability (γ )

Probability of classifying
a true detection as
unambiguous (b)

False-positive
detection

probability (p10)

High occupancy
high b (HH)

0.8 0.4 0.8 0.01

0.5
0.10
0.15
0.20
0.25
0.30

High occupancy
low b (HL)

0.8 0.4 0.5 0.01

0.5
0.10
0.15
0.20
0.25
0.30

Low occupancy
high b (LH)

0.1 0.1 0.8 0.01

0.5
0.10
0.15
0.20
0.25
0.30

Low occupancy
low b (LL)

0.1 0.1 0.5 0.01

0.5
0.10
0.15
0.20
0.25
0.30

detections in these data, and C3 data as ambiguous

detections. From 1995 to 2014, 8415 observations (67%)
were classified as unambiguous detections and 3991
(33%) as ambiguous. If unambiguous and ambiguous de-

tections occurred at a site, we accounted for the unam-
biguous detections only. Nondetections were obtained
on sites that were sampled but where no lynx presence

was reported during a survey within a year. Molinari-Jobin
et al. (2018) fitted a dynamic occupancy model with un-

ambiguous detections only (i.e., they used our model MU)
to assess the effects of environmental covariates on dif-
ferent parameters of the model and to assess distribution-

based population trends. A 10 × 10 km grid was used
to define the distribution units that corresponded to the
approximate home range size of a female lynx in the

Alps (Molinari-Jobin et al. 2018). Surveys were defined
as 3 replicated 2-month periods: November–December,
January–February, and March–April. We used the same

data set as Molinari-Jobin et al. (2018), but we added
the C3 data and fitted a dynamic occupancy model that
combined both unambiguous and ambiguous detections

(MUA). We used the same covariates for the parameters

that were common to the models MU and MUA. We con-
sidered the effects of forest cover and distance to the
release site on ψ1; the effects of year, forest cover, and

number of observed occupied contiguous neighbors on
ε; and the same effects plus that of human density and
elevation on γ .

For the new parameters in MUA, p11 and p10, we used
the effect of elevation and forest cover and a random

site-by-winter effect to accommodate unmodeled spatial
heterogeneity in detection rates in every combination of
site and winter. A network covariate was also included to

account for heterogeneity in sampling effort in time and
space. This covariate took the following values based on
the amount of effort for the location and time period: 0,

no information available regarding the sampling effort, in
which case we assumed it was small but never null be-
cause of the presence of at least game wardens and forest

service agents who have not been trained in the recog-
nition of lynx signs but report suspect cases (Molinari-
Jobin et al. 2012); 1, presence of trained members of the
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lynx monitoring network on the site; and 2, members of

the lynx monitoring network actively searching for lynx
signs. We also considered a linear year effect (i.e., an

annual trend) on p10 to investigate whether this probabil-
ity decreased as observers gained experience over time.
Finally, we kept the probability b to classify a true positive

detection as an unambiguous constant. We considered
the effect of a covariate significant if its 95% credible
interval (CRI) did not overlap 0.

To evaluate the added value of incorporating the C3
data (ambiguous detections) into the analysis, we com-
pared the maps of occupancy produced by the 2 models

by calculating and mapping the difference in the site- and
year-specific estimates of realized occurrence ẑi,t (MU) –
ẑi,t (MUA).

Codes to run the simulations and fit the models de-
scribed above are in Supporting Information.

Results

Simulations

For MSE, MUA performed better than MU in all 4 sce-
narios when p10 ! 0.15 (Supporting Information). Above

this value both models performed equally well except
in 1 scenario and for 1 parameter when estimating the

ecological parameters: MUA estimated the colonization
probability γ less precisely than MU only in the HL sce-
nario for values of p10 between 0.20 and 0.30. The MSE

was highest (range 0.04–0.25) in the HL scenario and
ranged from 0.04 to 0.14 in the HH scenario. The MSE
was lowest in the LH scenario and ranged from 0.02 to

0.06 and 0.02 to 0.11 in the LL scenario.
Both models estimated ψ1 and γ with biases below or

equal to 5% in the HH, HL, and LH scenarios (Supporting

Information). In the LL scenario, MU estimated ψ1 with
a bias above 5% (up to 8%) and MUA had a lower bias
than MU. For ε, MUA performed better or equivalently

above 5% in terms of bias in the scenarios HH and HL
and worse or equivalently above 5% in the LH and LL
scenarios.

Lynx Case Study

When we fitted the MUA with both unambiguous and
ambiguous detections (i.e., for C1, C2, and C3 data), p11

was higher on sites with a high forest cover and appeared
to vary according to the season and network (Table 2).
Elevation had no effect on p11. The p10 was higher on

sites with a high forest cover and varied according to
network (Table 2). Although elevation and season had no
significant effect on p10, this probability decreased over

time (Table 2). Both models gave similar estimates for
ψ1, ε, and γ , but MUA produced more precise estimates
than MU (Supporting Information).

The b was estimated at 0.81 with high precision (CRI

0.79–0.83). At the beginning of the study period, in the
winter 1995 and 1996, we estimated the mean ψ over

all sites at 0.04 (CRI 0.03–0.07), p11 at 0.11 (CRI 0.10–
0.25), and p10 at 0.006 (CRI 0.004–0.01). For the end of
the study period, winter 2013 and 2014, we estimated

the mean ψ at 0.1 (CRI 0.0899–0.11), p11 at 0.17 (CRI
0.09–0.24), and p10 at 0.007 (CRI 0.003–0.010). MUA
estimated a few more occupied sites than MU for both

winters 1995 and 1996 and 2013 and 2014 (4 [1995 and
1996] to 13 [2013 and 2014]) (Fig. 1) and estimated oc-
cupied sites that were estimated occupied by MU too.

The additional sites that were estimated occupied from
MUA were sites where ambiguous detections occurred
(Fig. 1).

Discussion

Assessing the distribution of large carnivores at large
scales is vital information for assessing their conservation
status and abundance (IUCN 2012; Jedrzejewski et al.

2018), identifying potential conflict areas (Marucco &
Mcintire 2010), and, for successful management, under-

standing the mechanism behind distribution dynamics
(Eriksson & Dalerum 2018). Producing more precise and
less biased estimates by adding ambiguous data with a

model accounting for false-positive detections can bring
new insights to the distribution of species where get-
ting unambiguous data is challenging. Due to the large

areas involved, the monitoring of large carnivores in Eu-
rope relies on a large network of both professional and
nonprofessional observers (Louvrier et al. 2018; Molinari-

Jobin et al. 2018). Although false-negative detections
have received much attention in the literature of species
distribution modeling with the rise of occupancy mod-

els (MacKenzie et al. 2003; Bailey et al. 2014), dealing
with ambiguous detections has been studied much less
(Miller et al. 2011; Chambert et al. 2015). Here, our

simulations demonstrated that jointly analyzing unam-
biguous and ambiguous detections with the appropriate

dynamic occupancy models can lead to increased preci-
sion in the estimates of ecological parameters when p10

is low. When this probability was >0.20, both models

estimated ecological parameters with almost equivalent
precision, which varied between its highest values in
the high occupancy scenarios and its lowest values in

the low occupancy scenarios. Both models produced
estimates of ecological parameters with low bias ex-
cept for one ecological parameter in one specific sce-

nario. When looking at the results of the lynx analy-
sis, adding ambiguous data helped produce more pre-
cise estimates and provided additional spatial informa-

tion that improved inference in areas where the species
likely occurred at very low density (e.g., at a colonization
front).
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Table 2. Parameters estimates for the detection probabilities from the dynamic occupancy model accounting for unambiguous data only and accounting for unambiguous and ambiguous data. Both
models were fitted on Alpine lynx data from 1995 to 2014.a

Model with unambiguous data only (MU)
Model with ambiguous and unambiguous

data only (MUA)
Model with ambiguous and unambiguous

data only (MUA)

Detection probability (p) True detection probability (p11) False-positive detection probability (p10)

mean SD x y mean SD x y mean SD x y

Intercept −3.88 0.46 −4.88 −3.04 −3.14 0.47 −4.15 −2.33 −5.37 0.29 −5.96 −4.80
Effect of elevation −0.11b 0.05b −0.20b −0.01b −0.07 0.04 −0.16 0.01 −0.02 0.06 −0.13 0.09
Effect of forest 0.63b 0.07b 0.50b 0.75b 0.67b 0.06b 0.55b 0.79b 0.37b 0.06b 0.26b 0.49b

Effect of season 2 0.26b 0.07b 0.12b 0.40b 0.22b 0.07b 0.08b 0.35b −0.14 0.12 −0.38 0.09
Effect of season 3 0.42b 0.07b 0.28b 0.57b 0.42b 0.07b 0.29b 0.56b −0.04 0.12 −0.25 0.19
Effect of network 1 1.21b 0.21b 0.77b 1.60b 0.92b 0.20b 0.54b 1.31b 0.37b 0.14b 0.09b 0.66b

Effect of network 2 2.37b 0.23b 1.93b 2.84b 1.95b 0.22b 1.53b 2.40b 2.63b 0.30b 2.02b 3.20b

Residual effect 0.86 0.10 0.65 1.04 0.90 0.06 0.77 1.01 0.42 0.21 0.18 0.92
Effect of country France −3.49b 0.31b −4.09b −2.87b −2.76b 0.28b −3.32b −2.21b −5.55b 0.25b −6.05b −5.06b

Effect of country Italy −3.40b 0.24b −3.86b −2.94b −2.85b 0.23b −3.31b −2.40b −5.55b 0.24b −6.01b −5.07b

Effect of country Switzerland −2.87b 0.23b −3.32b −2.42b −2.23b 0.22b −2.68b −1.81b −4.75b 0.26b −5.25b −4.25b

Effect of country Austria −4.00b 0.25b −4.48b −3.51b −3.25b 0.21b −3.67b −2.84b −5.62b 0.23b −6.07b −5.16b

Effect of country Slovenia −4.54b 0.35b −5.23b −3.86b −3.83b 0.34b −4.51b −3.19b −4.62b 0.28b −5.17b −4.05b

Effect of country Germany −4.99b 1.39b −8.28b −2.65b −3.93b 1.52b −7.41b −1.51b −6.11b 0.49b −7.21b −5.23b

Effect of time in years – – – – – – – – −0.04b 0.02b −0.09b −0.01b

aBoth models were fitted on Alpine lynx data collected from 1995 to 2014. Means are posterior means, x and y are lower and upper bounds of the 95% Bayesian CI.
bEffects with 95% Bayesian CI that do not contain zero.
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Figure 1. (Top row) Locations of Lynx observation (i.e., raw data) in the winters of 1994 and 1995 and 2013 and

2014 (black sites, unambiguous detections occurred; gray sites, ambiguous detections occurred); (middle row)

estimated lynx distribution (probability of occurrence 0–1) in the Alps in the winters of 1994 and 1995 and 2013

and 2014 for the model with ambiguous data (not used on figure) (black sites, sites with a probability of

occupancy of 1; white sites, sites with a probability of occupancy of 0); (bottom row) and mapped differences in

occupancy estimates between the model with unambiguous data only (value on the right in key) and the model

with unambiguous and ambiguous data for the winters 1994 and 1995 (left) and 2013 and 2014 (right) (value

on left) (gray sites, model with ambiguous data predicted a higher occupancy probability than the model with

unambiguous data only).
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Simulation Lessons

MUA performed better than MU in most of the scenar-
ios. Two factors seemed to have an influence on mod-

els’ performances: the false-positive probability and the
occupancy probability. In terms of precision, MUA per-
formed better when p10 was low and performed equiva-

lently when p10 was high. In the case of a low occupancy
probability, the estimates of extinction probability were
more biased positively under the MUA than the MU, lead-

ing to an overestimation of ε and the distribution. For the
other parameters and the other scenarios, MUA produced

estimates with low biases. Whether a species occurs at
high or low occupancy probability can often be evalu-
ated prior to the analyses based on the knowledge of the

species ecology or on previous studies. We recommend
always including ambiguous data because in most of the
scenarios MUA performed better than or equivalently to

MU in terms of both precision and bias for the ecological
parameter estimates.

Accounting for Ambiguous Data When Studying Distribution
of Large Carnivores

Our SDM exercise with lynx allowed assessment of trends
in the distribution of the species, and these trends can
be used to inform their conservation status (Guisan &

Thuiller 2005). Our covariate effects were similar in di-
rection and magnitude to those estimated by Molinari-
Jobin et al. (2018), who fitted the simpler MU to the

lynx data with unambiguous detections only (Table 2).
(See Molinari-Jobin et al. [2018] for a detailed description
of these effects and their possible biological interpreta-

tion.) Our results showed that the probability of a false-
positive detection decreased over time. This could be
due to observers remaining in the network becoming less

likely to make false-positive detections over time as they
became more experienced in recognizing the species
(Jordan et al. 2012). This was corroborated by the fact

that the number of ambiguous detections decreased over
the study period (Molinari-Jobin et al. 2012). Additionally,

the use of camera trapping has increased over time and
has led to an increased number of C1 detections and
therefore diminished the proportion of C3 in the data

sets (Molinari-Jobin et al. 2018). The learning process
of citizens in scientific monitoring programs has been
studied (Dickinson et al. 2012; Jordan et al. 2012). The

general public not only learns through participation, but
also becomes more aware of the general ecological is-
sues and more prone to understand scientific research

(Bonney et al. 2009). We found that the probability of
making a true detection was similar to the probability
of detecting the species in MU fitted by Molinari-Jobin

et al. (2018). This makes sense because the probability of
detecting the species in MU was equal to the probability
of making a true detection multiplied by the probability

of classifying a detection as unambiguous. We also found

that there was a probability of 0.8 of classifying a true
detection as unambiguous. This may be due to the fact

that observers in the network were highly competent at
detecting the species and producing reliable data. This
finding may also reflect that it is relatively easy to identify

the signs of presence of lynx because there is almost no
confusion possible with other species present in the area.
Whenever the focus species can be mistaken for another

species, if the quality of data is not sufficient (e.g., dog
tracks in the snow mistaken for wolf tracks), true de-
tections can be classified as ambiguous. There can also

be false-positive detections from misidentification when
b is low. In this case, the amount of true detections in
ambiguous data will not be negligible. In a case where

b is low and only unambiguous data are used, a large
part of true presences can be missed and the resulting
distribution will be underestimated (Miller et al. 2011).

The occupancy estimates under both models suggest
the lynx case study corresponds to the LH simulation

scenario (compare Table 1 with Supporting Information).
For the distribution maps produced by MUA, adding am-
biguous detections brought new and useful information.

Some sites were estimated as occupied by MUA, whereas
these same sites were estimated as unoccupied by MU
(Fig. 1). Because of the low occupancy of the lynx and

its elusive behavior, the number of times the species was
detected was very low. Because the probability to clas-
sify a detection as unambiguous b was high, only a few

true detections were classified as ambiguous, which may
explain why adding them did not change the parameter
estimates but helped produced more precise estimates. In

turn, adding ambiguous detections provided new insights
related to management of a protected species (Guillera-
Arroita et al. 2015). The sites we found to be occupied

because of the incorporation of ambiguous detections
could likely represent areas where the species is currently

expanding. These same sites also may be places where
lynx have not occurred before and negative interactions
may occur due to the novelty of lynx presence. Sites that

appeared occupied after including ambiguous data can
inform the prediction of location of potential conflicts.
Finally, if the objective is to map the colonization front to,

for example, mitigate conflicts, ambiguous data should be
included.

Recommendations

Dynamic occupancy models in general provide a power-
ful and natural analytical framework for changing species

distributions (Kéry et al. 2013). More specifically, dy-
namic occupancy models accounting for misidentifica-
tion represent a powerful method to deal with detections

that cannot be categorized as certain in species distri-
bution modeling. We recommend careful categorization
of field observations into unambiguous or ambiguous

Conservation Biology
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detections, for instance by using several experts to clas-

sify the detections and a standardized filtering classifica-
tion process to avoid false-positive detections mistakenly

classified as reliable data. This filtering process also allows
rejecting detections that can be identified easily as false
positives. If some detections cannot be checked by ex-

perts for instance and cannot be classified as unambigu-
ous, observers may need to visit the sites where these
detections were made to get more reliable detections.

Even though occupancy models can deal with ambiguity,
survey should be designed and data collected so as to
avoid the production of false-positive detections or at

least reduce their proportion. In the case of data from
CS projects, models accounting for false-positive detec-
tions are a relevant tool to assess species distribution if

a classification of detections is made (e.g., unambiguous
vs. ambiguous). In the case of a species occurring at low
density, such as the Eurasian lynx, additional information

can provide new insights into the species distribution
and help target specific sites where the species is likely

to occur in the future.
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A B S T R A C T

Occupancy models allow assessing species occurrence while accounting for imperfect detection. As with any
statistical models, occupancy models rely on several assumptions amongst which (i) there should be no un-
modelled heterogeneity in the detection probability and (ii) the species should not be detected when absent from
a site, in other words there should be no false positives (e.g., due to misidentification). In the real world, these
two assumptions are often violated. To date, models accounting simultaneously for both detection heterogeneity
and false positives are yet to be developed. Here, we first show how occupancy models with false positives can be
formulated as hidden Markov models (HMM). Second, benefiting from the HMM framework flexibility, we
extend models with false positives to account for heterogeneity with finite mixtures. First, using simulations, we
demonstrate that, as the level of heterogeneity increases, occupancy models accounting for both heterogeneity
and misidentification perform better in terms of bias and precision than models accounting for misidentification
only. Next, we illustrate the implementation of our new model to a real case study with grey wolves (Canis lupus)
in France. We demonstrate that heterogeneity in wolf detection (false negatives) is mainly due to a hetero-
geneous sampling effort across space. In addition to providing a novel modeling formulation, this work illus-
trates the flexibility of HMM framework to formulate complex ecological models and relax important assump-
tions that are not always likely to hold. In particular, we show how to decompose the model structure in several
simple components, in a way that provides much clearer ecological interpretation.

1. Introduction

Occupancy models (Mackenzie et al., 2006) are commonly used to
infer species occurrence while accounting for imperfect detection
(Bailey et al., 2014; Guillera-Arroita, 2017). These models rely on
species detections and non-detections recorded during surveys repeated
across time and across several spatial sampling units (sites). As with any
statistical models, inferences made from occupancy analyses heavily
rely on several assumptions that should be checked and validated
(Mackenzie et al., 2003, 2006), although in reality this is rarely done
(see however, Mackenzie et al., 2004; Warton et al., 2017).

Here, we focus on two important assumptions. First, there should be
no unmodelled heterogeneity in species detection. In other words, all
heterogeneity should be accounted for with covariates. If ignored,
heterogeneity in detection leads to underestimating occupancy (Royle

and Nichols, 2003; Royle, 2006). Detection heterogeneity can be due to
a heterogeneous sampling effort in space (Louvrier et al., 2018), var-
iation in animal abundance (Royle and Nichols, 2003) or variation in
site characteristics (Mackenzie et al., 2011). Often, site-level covariates
can be measured on the field and incorporated in occupancy models to
account for detection heterogeneity. However, unexplained variation
may remain or measuring the relevant covariates may simply be im-
possible in the field. When we suspect substantial unmodelled hetero-
geneity to occur, we should consider modeling it, either with con-
tinuous latent variables (through normally distributed site random
effects, e.g. Gimenez et al., 2014). Modelling heterogeneity using nor-
mally distributed random effect has long been studied in the field of
theoretical biology (e.g., Perc, 2011). Alternatively, modelling hetero-
geneity can be done using finite mixtures. In finite-mixture models, a
latent variable is defined to assign sites to a mixture components (i.e.,
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groups of heterogeneity) characterized by specific parameters (Royle,
2006; Pledger and Phillpot, 2008). While heterogeneity in detection
probability using mixture models has been long studied in the capture-
recapture (CR) literature (review in Gimenez et al., 2017), less attention
has been given to this issue in occupancy models (Gimenez et al., 2014;
Miller et al., 2015).

A second important assumption of occupancy models is that the
species should not be detected when absent from a site (i.e. no false
positives). False positives occur when the species of interest is detected
at sites where it did not occur, usually as a result of misidentification
(Miller et al., 2013). Several studies have underlined the importance of
accounting for false positives on species distribution (Royle and Link,
2006; Miller et al., 2011, 2013; Chambert et al., 2015). Ignoring false
positives and counting them as true positives causes important biases,
such as overestimating occupancy and colonization probabilities, and
underestimating extinction probability (Royle and Link, 2006;
Mcclintock et al., 2010). Miller et al. (2011, 2013) developed static and
dynamic occupancy models that accommodate both false negatives and
false positives. As example of applications, these models have been used
to estimate occurrence of amphibians (Miller et al., 2011), bats
(Clement et al., 2014), and several large vertebrates in India (Pillay
et al., 2014), as well as occurrence dynamics of wolves in Montana
(Miller et al., 2013).

While several studies have accounted for heterogeneity in occu-
pancy models with false positives by using site-level covariates
(Mcclintock et al., 2010; Ferguson et al., 2015; Miller, 2015), methods
that simultaneously account for both unmodelled heterogeneity
through finite mixtures and false positives have yet to be developed.
Here, we fill this gap and illustrate the use of hidden Markov modelling
(HMM) framework as a powerful tool for further developments aiming
at relaxing occupancy models’ assumptions.

Standard occupancy models can be formulated as HMMs describing
two time-series running in parallel. The first time-series captures the
dynamics of the latent states with the state process following a
Markovian sequence (e.g. site occupied vs. unoccupied); the other time
series models the observation process consisting in detections condi-
tional on the underlying but possibly unknown states (Gimenez et al.,
2014). The originality of our approach is twofold. First, we show how
occupancy models with false positives can be formulated as HMMs.
Second, benefiting from the HMM framework flexibility, we extend
models with false positives to account for unmodelled heterogeneity
using a finite-mixture approach.

To assess the performance of our approach, we performed a simu-
lation study comparing parameter bias and precision in a model ac-
counting for misidentification and heterogeneity vs. a model ac-
counting for misidentification only. To do so, we considered scenarios
with an increasing level of heterogeneity in the probability of false
positive detection. We also used a case study on the grey wolves’ (Canis
lupus) distribution in France to illustrate implementation of the method
in a real-world scenario. Our objectives were (i) to investigate how
detection heterogeneity, when ignored, affects the accuracy of occu-
pancy estimation and (ii) assess the extent at which this heterogeneity
might be explained by sampling effort variability across space.

2. Methods

In the statistical literature, there are three main problems of interest
when using HMM (Rabiner, 1989). In what follows, we review each of
these problems in the context of occupancy models. In the evaluation

problem, we ask what the probability that the observations are gener-
ated by our model is – see Section 2.1. In the decoding problem, we ask
what the most likely state sequence in the model that produced the
observations is – see Section 2.5. In the learning problem, we ask how
we should adjust the model parameters to maximize the likelihood – see
Section 2.3.

2.1. HMM formulation of occupancy models with misidentification

Occupancy models can be viewed as HMM whereby the ecological
states are considered as partially hidden states, i.e. imperfectly ob-
served (Gimenez et al., 2014). Occupancy models incorporating false
positives can also be framed within this approach. The HMM for-
mulation allows flexibility in the model formulation. By decomposing
the occupancy approach into simpler steps, the HMM formulation al-
lows better understanding of the ecological and observation processes.
To account for false positives, we followed the multi-season dynamic
model formulation of Miller et al. (2013). For occupied sites, three
observations can be made: (i) an unambiguous detection which is a true
detection that has been validated, (ii) an ambiguous detection which is
also a true detection but that could not be validated and (iii) no de-
tection. At unoccupied sites, by definition, unambiguous detections
cannot occur, thus, only two possible observations can be made: an
ambiguous detection, which in this case is a false positive detection due
to species misidentification, or no detection. The parameters of interest
are ψ1 the probability of initial occupancy, the probability of local
extinction ε and of colonization γ, the probability of correctly detecting
the species at an occupied site p11, the probability to falsely detect the
species at an unoccupied site p10, and the probability b to classify a
true-positive detection as unambiguous (Miller et al., 2011). The spe-
cification of a HMM is divided in three steps: the vector of initial state
probabilities, the matrix of transition probabilities linking states be-
tween successive sampling occasions and the matrix of observation
probabilities linking observations and states at a given occasion
(Gimenez et al., 2014). We define zi,k the latent state of a site i during
the primary occasion (e.g., season or year) k. At the first primary oc-
casion, k = 1, a site can only be in one of two states (‘unoccupied’ or
‘occupied’), with probabilities in the vector of initial state probabilities:

= −Ψ
unoccupied occupied

ψ ψ[1 ]1 1

Then, the states are distributed as a first-order Markov chain gov-
erned by a transition matrix of the form:

=
+

⎡
⎣
−

+

− ⎤
⎦

T unoccupied at k

occupied at k

unoccupied at k

γ
ε

occupied at k

γ

ε

1

1

1

1

where rows describe states at occasion k in, and columns describe states
at k + 1.

Next, we describe the observation process, which is conditional on
occupancy states. We define yi,j,k the observation of a site i during the
secondary occasion (e.g. visit or survey) j during the primary occasion
k. For unoccupied sites, unambiguous detections (yi,j,k=1) do not
occur while ambiguous detections (yi,j,k=2) or no detections (yi,j,k=0)
may occur. For occupied sites, unambiguous detections, ambiguous
detections and no detection can all occur. For the sake of clarity, it is
more convenient to write the observation process as the product of two
matrices. The first matrix summarizes the detection state process con-
ditional on occupancy state (rows) ‘unoccupied’ and ‘occupied’ at k.
Columns describe the following intermediate latent detection states: ‘no
detection’, ‘true positive detection’ and ‘false positive detection’:

= ⎡
⎣⎢
−
− ⎤

⎦
P unoccupied

occupied

no detection

p

p

true positive detection

p

false positive detection

p1

1
0

0

10

11 11

10

It is important to keep in mind that the true, underlying state (i.e.,
false or true positive) of the detections is unknown. At this stage of the
modeling, we are still dealing with latent state, not with actual data.
The second matrix then summarizes the classification of a true-positive
detection as unambiguous or ambiguous, with probability b and 1-b,
respectively. In this matrix, rows represent the above intermediate
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latent detection states (‘no detection’, ‘true-positive detection’, ‘false
positive detection’) while columns correspond to actual observations
(data), i.e., ‘no detection’ (yi,j,k=0), ‘unambiguous detection’
(yi,j,k=1) and ‘ambiguous detection’ (yi,j,k=2):

=
⎡

⎣
⎢
⎢

−
⎤

⎦
⎥
⎥

no detection

B
true positive detection

false positive detection

no detection unambiguous detection

b

ambiguous detection

b

1
0
0

0

0

0

1
1

We reemphasize that, by definition, false detections can only occur
in the form of ambiguous detection. This last process only deals with
the classification of true detection as certain or ambiguous, depending
on the level of confidence in the observation. The overall observation
process can then be written in the form of a simple matrix product, O =
PB, which gives:

= ⎡
⎣⎢
−
− −

⎤
⎦⎥

O unoccupied

occupied

no detection

p

p

unambiguous detection

bp

ambiguous detection

p

b p

1

1
0

(1 )
10

11 11

10

11

Note that for simplicity we assume observation parameters to be
constant, but these could be specified as survey-specific (j), season-
specific (k), site-specific (i) or any combination of these effects. We can
then write the general probability of any detection history h such as:

=

+ + … +

× + + … +

…

⋮
⋮
⋮

×
+ + … +

P h

first primary occasion

ΨD O y T D O y T D O y

second primary occasion

TD O y T D O y T D O y

last primary occasion

TD O y T D O y T D O y

( )

[ (., 1)] [ (., 1)] [ (., 1)]

[ (., 1)] [ (., 1)] [ (., 1)]

[ (., 1)] [ (., 1)] [ (., 1)]

1

J

J

K K J K

N

1,1 0 2,1 0 ,1

1,2 0 2,2 0 ,2

1, 0 2, 0 ,

where for the sake of simplicity we have dropped the index i for site, D
(θ) is the diagonal matrix with diagonal elements equal to the elements
of the arbitrary vector θ, O(.,yj,k) is the column vector corresponding to
the observation y at the secondary occasion j during primary occasion k,
A0 is the transition matrix with ε = γ=0 and 1N is the column vector
of N ones, with N the number of occupancy states. The likelihood is
then the product of the probabilities of all the site histories (Zucchini
et al., 2016).

In our study on wolves, we focused on static (single-season) models,
such that extinction and colonization events do not occur. The prob-
ability of any site history h can thus be simplified to:

= + + … +P h ΨD O y T D O y T D O y( ) [ (., 1)] [ (., 1)] [ (., 1)]J1 0 2 0

2.2. Occupancy model with heterogeneity in the detection probability

We now show how to incorporate site-to-site (i.e., spatial) hetero-
geneity in the detection process through the addition of a probabilistic
process that assigns any site to a finite number of latent classes (Royle,
2006; Miller et al., 2015). For the sake of clarity, here we only consider
two classes of heterogeneity (class A and B), but more classes could
easily be considered. Like group effects, membership to a heterogeneity
class is a constant feature of a site (i.e., it does not change over time), so
the assignation process occurs at the first modelling step, describing
initial states:

= −Π
class A class B

π π[ 1 ]

where π (respectively 1- π) is the probability for any site to be assigned
to class A (resp. to class B). This is the main difference with the model
described above. The following processes, and the associated para-
meters remain the same, except that parameters are now allowed to
vary according to the two classes of sites. We now define four occu-
pancy states: occupied (A), occupied (B), unoccupied (A) and un-
occupied (B). In terms of model parameters, in addition to π, we now
have: ψ1A (resp. ψ1B) the probability of initial occupancy for sites of
class A (resp. B), εA (resp. εB) the probability of local extinction for sites
of class A (resp. B) and γA (resp. γB) the probability of local colonization
for sites of class A (resp. B); pA11 (resp. pB11) the probability of correctly
detecting the species at an occupied site of class A (resp. B), pA10 (resp.
pB10) the probability to falsely detect the species at an unoccupied site A
and the probability b to classify a true-positive detection as un-
ambiguous (Miller et al., 2011).

The next process describes whether a site is initially occupied or not,
but now conditionally on the site’s class membership (A or B). The
pattern matrix that links class membership to the four class-specific
occupancy states is:

= ⎡
⎣
−

− ⎤
⎦

Φ class A

class B

unoccupied A

ψ
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ψ
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ψ

occupied B

ψ

( )
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( )

0
1
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0
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0A

B

A

B

1

1

1

1

Here, rows correspond to the two conditioning states (‘class A’ and
‘class B’) and columns represent all possible initial states: ‘unoccupied
(A)’, ‘unoccupied (B)’, ‘occupied (A)’ and ‘occupied (B)’ in columns.

The final vector of initial state probabilities is therefore the product
of the row vector of class-assignment proportions and the matrix of
occupancy probabilities:

Ψ = Π Φ

Because we were interested in incorporating heterogeneity in the de-
tection process only, here we assume = =ψ ψ ψA B1 1 1. The state transi-

tion process remains the same but is distinguished according to the two
heterogeneity classes A and B. This leads us to define the following
matrix for state transition from k to k+1:

The conditional observation process then happens independently at
A sites and B sites. As above, rows describe occupancy states while
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columns represent intermediate latent detection states ‘not detection’,
‘true positive detection’, ‘false positive detection’:

=
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⎢
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Finally, the matrix describing the classification process of true po-
sitives as unambiguous or ambiguous detections remains unchanged
(see matrix B above). Overall, the observation process can be described
by the matrix product O=P B with the occupancy states in rows and
the observations in columns:
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The likelihood, for both static and dynamic models, is written in the
same way as for the model without heterogeneity, only the composition
of the matrices changes. Again, in the rest of this paper, we focus on
static (single-season) models, so that εA = εB = γA = γB=0.

2.3. Implementation

Occupancy models formulated as HMMs can be implemented in the
software E-SURGE (Choquet et al., 2009), which allows for the de-
composition of the observation and state processes in multiple steps,
providing more flexible, and often more easily interpretable para-
meterization (Gimenez et al., 2014). We provide in Appendix A and
Appendix B two detailed step-by-step procedure to implement occu-
pancy models accounting for false positives with and without hetero-
geneity in E-SURGE. We also refer to the E-SURGE manual (Choquet
and Nogue, 2011) as well as Choquet (2008) and Choquet et al. (2009)
for additional details. We also provide in Appendix C and Appendix D
the R (R. Core Team, 2013) codes to fit the models described above.

2.4. Simulations

We conducted a simulation study to assess performance of two
models: one accounting for misidentification only and one accounting
for both misidentification and heterogeneity. First, we simulated oc-
cupancy data, including both unambiguous and ambiguous detections,
assuming two classes of heterogeneity for false positive probability p10.
To characterize and compare heterogeneity among the scenarios con-
sidered, we define a heterogeneity coefficient as:

=
−

η
σ

µ µ

²

(1 )

with the mean value of the heterogeneity parameter μ = π pA10 + (1-
π) pB10 and the variance between components σ² = π(pA10- μ)² + (1- π)
(pB10 – μ)² (Dorazio and Royle, 2003; Cubaynes et al., 2012). We

considered three scenarios with increasing heterogeneity coefficient, by
varying parameters π and pB10 (Table 1). Other parameters were held
constant: pA10 was set at 0.1; the initial occupancy probability ψ1 was
set at 0.8; probabilities of true positive pA11 and pB11 were both set at
0.5 and b was set at 0.7. For all simulation runs, we used 100 sites with
3 and 10 occasions. For each scenario, we simulated S=200 datasets,
and for each dataset, fitted both models. Simulation and analyses were
done in the software R (see Appendix C and Appendix D). We compared
the two models’ performance using averaged AIC differences, calcu-
lated from the 200 repeated runs. We chose the AIC because it has been
shown to be effective at selecting the number of classes in finite-mixture
capture-recapture models (Cubaynes et al., 2012). For each model, we
also calculated the relative bias defined as:

∑ −
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θ θ
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and root mean square error (RMSE) for occupancy probability esti-
mates:
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We performed a second simulation study, considering the same form
and levels of heterogeneity, but applied to the true detection parameter
p11 instead of the false positive detections parameter p10. We tested
three scenarios with increasing heterogeneity coefficient by varying
parameters π and pB11. Every other aspect of this simulation study was
the same as in the first simulation study (Appendix E).

2.5. Application: wolf data

To illustrate use of our model accounting for both misidentification
and heterogeneity, we analyzed wolves’ detection/non-detection data
collected in France during the year 2013 (Louvrier et al., 2018). Signs of
presence of the species such as tracks, scats, prey remains, dead wolves,
camera trap photos or sightings are being collected thanks to a network
of professional and non-professional observers (Duchamp et al., 2012).
The data consisted of 250 unambiguous detections, 54 ambiguous de-
tections and 12540 non-detections spread over a grid of 3211
10× 10 km cells (Fig. 1). To respect the closure assumption, sites were
visited between December and March, which corresponds to a period
between the two peaks of dispersal events, in spring and fall (Mech and
Boitani, 2010). In a previous study, we found that variability in occu-
pancy probabilities was mostly explained by site’s altitude, while de-
tection probability was primarily driven by sampling effort, defined as
the number of observers per site and per year (Louvrier et al., 2018).
Here, we compared four different models, all of which included altitude
as a covariate on occupancy parameter. A first model accounted for
misidentification only without heterogeneity in the detection process
(MMO); a second model accounted for misidentification with hetero-
geneity in both detection probabilities (MMH); in the last model, we
accounted for some detection heterogeneity using the sampling effort
covariate (on both p11 and p10) (MMS), instead of including a finite-
mixture heterogeneity process. Sampling effort was indeed quite

Table 1

Results of the simulation study to assess the performance of the misidentification occupancy model accounting for heterogeneity (MMH) vs. the model without
heterogeneity (MMO). The first column corresponds to the heterogeneity coefficient calculated with π the proportion of sites of class A and pA10 the probability of
making false positive on sites of class A and pB10 the probability of making false positive on sites of class B. The differences of AIC (ΔAIC) between the two models,
obtained from 200 simulations for each scenario, are provided. Estimation accuracy (RMSE) and relative bias for the occupancy probability are both provided as
measures of model performance.

Heterogeneity coefficient π pA10 pB10 ΔAIC Sd (ΔAIC) RMSE(ψ1) MMH RMSE(ψ1) MMO Relative bias(ψ1) MMH Relative bias(ψ1) MMO

0.24 0.2 0.1 0.7 6.66 8.62 0.09 0.05 6.35 4.28
0.49 0.5 0.1 0.8 28.15 13.61 0.05 0.10 3.04 12.00
0.53 0.8 0.1 0.9 45.59 19.58 0.05 0.12 2.43 12.23
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heterogeneous across space, with areas around the Alps subject to much
higher sampling effort than the rest of the study area. We expected
sampling effort to capture most of the heterogeneity in the detection
parameters, which would translate in close AIC values for MMH and
MMS and a lower AIC value for MMO. Finally, we fitted a fourth model,
including both the finite-mixture process (for unobserved hetero-
geneity) and the sampling effort covariate (MMHS). This last model
allowed assessing the relative fraction of heterogeneity due to sampling
effort.

Using the parameter estimates from MMH, we finally built a map
depicting the estimated assigned classes of heterogeneity for the 3211
sites of the study area. This was done with the Viterbi algorithm (Rouan
et al., 2009), an approach that allows estimation of latent states from
HMMs. Although the Bayes’ theorem could be used in this situation
where no time series structure is involved, the Viterbi algorithm is a
general approach that can be used in a dynamic occupancy framework.

3. Results

3.1. Simulations

Results from the simulations with 10 occasions showed that when
heterogeneity in false positive probability increased (coefficient η going
from 0.24 to 0.53), the ΔAIC between MMO and MMH (ΔAIC=AICMMO

– AICMMH) increased from 6.66 (−10.23; 23.55) to 45.59 (7.21; 83.97).
While both models showed low RMSE, in terms of occupancy estima-
tion, MMH clearly outperformed MMO as heterogeneity increased.
MMO produced increasingly biased parameters when heterogeneity
increased while the bias in MMH always remained low (Table 1). We
found similar results when we considered heterogeneity in the true
detection probability p11. MMH clearly outperformed MMO in terms of
AIC, bias and RMSE as heterogeneity increased. The bias for MMO did
not increase but remained important across the range of heterogeneity
coefficients (Appendix E). Finally, with 3 occasions, MMH appeared to
perform worse than MMO, highlighting the need to consider a minimal
sampling effort to distinguish false positives and heterogeneity (Ap-
pendix F).

3.2. Wolf case study

We found evidence for heterogeneity in the detection process
(Table 2), with MMO having a much larger AIC (2209.49) value than
MMH (2084.14). Most of this heterogeneity was explained by spatial
variation in sampling effort, as suggested by the fact that MMS had a
lower AIC value (2071.51) than MMH, but, even after accounting for
sampling effort, there remained some unobserved heterogeneity, as
evidenced by the fact that MMHS still had a lower AIC value (1953.26)
than MMS.

Fig. 1. Map of the unambiguous detections (green) and ambiguous detections (red) cumulated for the year 2013. Sites were defined as 10× 10 km cells within a grid
covering all detections (Louvrier et al., 2018). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).
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Overall, all four models estimated a low occupancy probability
(Table 2). All four models estimated a very low probability of false-
positive detection p10 (Fig. 2). MMHS estimated that for 70% of sites,
p10 was equal to zero, while for the remaining 30% p10 strongly in-
creased with sampling effort. MMS results also suggested that p10
strongly increased with sampling effort. According to MMH, 81% of the
sites had a value of p10 similar to the one estimated from MMO. For the
remaining 19% p10 was equal to zero, indicating that virtually no false-
positive errors occurred at these sites. As we could expect, both MMS
and MMHS results suggested that true detection probability p11 strongly
increases with sampling effort for both classes of sites. MMH estimated
p11 quite low, at around 0.04 (0.02; 0.06) for 81% of the sites and high
in 19% of the sites (Fig. 3). Finally, the sites with high detectability
corresponded to sites with high sampling effort (Fig. 4).

4. Discussion

While heterogeneity in detection probability has long been studied
in the capture-recapture literature (review in Gimenez et al., 2017), less
attention has been given to this issue in occupancy modeling (Miller
et al., 2015). We developed single- (static) and multi-season (dynamic)
occupancy models that account for both heterogeneity and false-posi-
tives, benefiting from the flexibility of HMM frameworks to decompose
a complex likelihood structure in multiple simpler components more
amenable to biological interpretation (Zucchini et al., 2016). Using si-
mulations, we showed that, when ignored, detection heterogeneity in-
duces biases in occupancy estimators. On a case study on wolves, we
also found that finite-mixture models of detection could be used to

capture part of the heterogeneity due to variable sampling efforts. We
note that, although such mixture models are very useful to account for
unobserved detection heterogeneity, the associated parameters remain
difficult to interpret (Gimenez et al., 2017).

4.1. Advantages of the HMM framework

The HMM formulation of occupancy models provides a great flex-
ibility in the way detection heterogeneity and misidentification can be
specified. First, the HMM formulation provides a straightforward mean
to modelling the ecological and the observation processes separately
(Pradel, 2005). Besides, each process can be split in multiple steps that
match exactly the underlying, relevant ecological or observation events,
making the modeling exercise and interpretation more intuitive to the
biologist. This latter feature has been illustrated in several capture-re-
capture studies (Pradel, 2005; Sanz-Aguilar et al., 2011; Avril et al.,
2012) but it is fairly new for occupancy models (Gimenez et al., 2014).

In this study, we focused on issues of heterogeneity in the detection
process, but the framework provided can equally be used to model
heterogeneity in occupancy probabilities (Gimenez et al., 2014). We
may also allow a site to change heterogeneity status by introducing a
transition parameter from class A to class B (Pradel, 2009; Gimenez
et al., 2012). This model could be useful in the wolf case study to ac-
commodate an increase in sampling effort over time and the possibility
for some sites with low detectability to get a higher detectability. The
use of finite mixtures allows capturing relevant levels of heterogeneity
without the need to include a large number of explanatory covariates. It
is however important to keep in mind that parameter redundancy can
become an issue as we add more classes of heterogeneity and/or choose
to apply finite mixtures on several parameters (Gimenez et al., 2014).
For instance, if we wanted to consider classes of heterogeneity for all
parameter (occupancy, true detection and false detection), our model
could quickly become too complex (Gimenez et al., 2014). If parameter
redundancy is suspected, it could be assessed using the methods that

Table 2

Estimated parameters for the model with misidentification and heterogeneity
and sampling effort on detection probabilities (pA11, pB11, pA10 and pB10)
(MMHS), the model with misidentification only with sampling effort on both
detection probabilities (p11 and p10) (MMS), for the model with misidentifica-
tion and heterogeneity (MMH) and the model with misidentification only
(MMO). The Akaike Information Criterion (AIC) value is given for each model
as well as the lower (CI-) and upper (CI+) limits of the 95% confidence in-
terval.

Model with misidentification and heterogeneity with
sampling effort on detection probabilities (MMHS)

AIC 1953.26

Parameter Value CI- CI+

Proportion of sites in class A π 0.70 0.62 0.78
Probability of occupancy ψ 0.05 0.03 0.10
Probability to classify a true-positive detection as

unambiguous b
0.89 0.84 0.92

Model with misidentification only with sampling effort
on both detection probabilities (MMS)

AIC 2071.51

Parameter Value CI- CI+

Probability of occupancy ψ 0.06 0.04 0.08
Probability to classify a true-positive detection as

unambiguous b
0.91 0.87 0.94

Model with misidentification and heterogeneity (MMH) AIC 2084.14

Parameter Value CI- CI+

Proportion of sites in class A π 0.81 0.75 0.86
Probability of occupancy ψ 0.03 0.02 0.06
Probability of false-positive detection in sites A pA10 0.00 0.00 0.00
Probability of false-positive detection in sites B pB10 0.00 0.00 0.00
Probability of true-positive detection in sites A pA11 0.04 0.02 0.06
Probability of true-positive detection in sites B pB11 0.56 0.47 0.64
Probability to classify a true-positive detection as

unambiguous b
0.86 0.81 0.90

Model with misidentification only (MMO) AIC 2209.49

Parameter Value CI- CI+

Probability of occupancy ψ 0.03 0.02 0.03
Probability of false-positive detection p10 0.00 0.00 0.00
Probability of true-positive detection p11 0.42 0.37 0.47
Probability to classify a true-positive detection as

unambiguous b
0.91 0.86 0.94

Fig. 2. Estimates of false positive detection from the model accounting for
misidentification and sampling effort on the detection probability (MMS; red
line) and the model accounting for misidentification and heterogeneity with
sampling effort on detection probabilities (MMHS; green line); Lighter shades
represent the estimated 95% confidence interval. The estimate of p10 for sites of
class A was on average zero in the MMHS. In both models (MMHS and MMS)
sampling effort had a positive effect on p10 in the MMS and on pB10 in the
MMHS. When the sampling effort increased, pB10 increased but remained below
0.5. The probability p10 in the MMS model increased as well when sampling
effort increased but p10 remained below pB10. (For interpretation of the refer-
ences to colour in this figure legend, the reader is referred to the web version of
this article).
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Fig. 3. Estimates of true positive detection from the model accounting for misidentification and the standardized sampling effort (number of observers per site per
year) on the detection probability (MMS; red line) and the model accounting for misidentification and heterogeneity with sampling effort on detection probabilities
(MMHS; green lines) (left panel), the model accounting for misidentification and heterogeneity (MMH; blue lines) and the model accounting for misidentification
only (MMO; yellow line). Lighter shades represent the estimated 95% confidence interval. Sampling effort was defined as the number of observers per cell per year. In
both models (MMHS and MMS) sampling effort had a positive effect on p11 in the MMS and on pA11 and pB11 in the MMHS. When sampling effort increased, pB11
increased as well, before almost reaching a plateau for the maximum values of sampling effort. pA11 increased as well but remained below 0.4 when sampling effort is
at the maximum value. With (left panel) or without (right panel) sampling effort as a covariate on this probability, pA11 was much lower than pB11. On the right panel,
no covariate was used in the detection probabilities, which explains the flat lines. (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article).

Fig. 4. Visualizing heterogeneity. Left: Map depicting the class of heterogeneity to which each site belongs to (obtained through the use of the Viterbi). Sites within
the study area that are colored in white correspond to sites where sampling effort was null. Sites colored in blue are sites affiliated to class A, and sites colored in red
are sites affiliated to class B. Right: Map of the sampling effort defined as the number of observers per site per year for the year 2013. The grey rectangle represents
the study area where we defined our 10 x 10 km sites (Louvrier et al., 2018). Sites of class A, which correspond to the ones with a null false positive probability pA10
and a very low true detection probability pA11 are the sites represented in light blue where sampling effort is very low as well. In opposition, sites of class B seemed to
be mainly where sampling effort was important. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article).
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have been developed for this purpose (Choquet and Cole, 2012).

4.2. Simulations

We considered three scenarios in which the heterogeneity coeffi-
cient increased with the proportion of sites of class A and the prob-
ability of false-positive detections in sites B. As expected, models ig-
noring heterogeneity produced biased and imprecise occupancy
estimates when heterogeneity was actually increasing. Those results are
the same whether heterogeneity occurs in probabilities of false positive
detections or true detections. Previous studies have emphasized the
importance of incorporating covariates, when available, on the true
positive probability to avoid underestimating occupancy parameters
(Miller et al., 2015). In absence of measurable candidate covariates, we
recommend using the finite-mixture approach described in this paper.
An alternative to finite mixtures is to consider a site random effect
(Gimenez et al., 2014). An advantage of finite-mixture models is that
they can easily be fitted in a frequentist or a Bayesian framework. In
contrast, site random effects are naturally fitted in a Bayesian frame-
work, but at the cost of higher computational burden; in the frequentist
framework, site random effects require a specific, non-trivial treatment
of the likelihood (e.g., Gimenez and Choquet, 2010).

4.3. Wolf case study

We found strong evidence of among-site heterogeneity in the de-
tection probability of wolves. This heterogeneity was mostly explained
by spatial variation in sampling effort. As expected, the probability of
true positive detection increased with sampling effort. In this study,
more sampling effort occurs at the core of the species’ distribution,
around the Alps and in the North-Eastern part of France (Fig. 1). This
variable effort is explained by the fact that in France, the first re-
colonizing wolves were detected in the Alps, before they started
spreading out (Valière et al., 2003).

Average values of detection parameters estimated by the MMH were
close to the average values estimated by the MMS and the MMHS,
highlighting the similarities between these models. However, the MMH
and MMS provided slightly different estimates of occupancy prob-
ability. AIC comparison between these two models revealed that sam-
pling effort explains most of the variation in detection probabilities. A
previous study (Louvrier et al., 2018) had also found strong support for
this covariate, and the authors had shown that ignoring the effect of
sampling effort leads to underestimating occupancy probabilities,
especially at sites with low effort. Results from the MMHS confirm this
hypothesis as the estimate of occupancy probability was close to the
one provided by the MMS. Sampling effort is thus an important cov-
ariate to account for, but the fact that MMHS had the lowest AIC sug-
gests that some unobserved detection heterogeneity remains. If sam-
pling effort cannot easily be measured, models accounting for
unobserved heterogeneity could be used as an alternative to control for
detection variability and avoid estimation biases. Such an approach
should prove especially useful for analyses of opportunistic monitoring
data collected by large networks of citizens, which rely on protocols
that rarely include explicit measures of sampling effort.

The fact that the estimated probability of false positive detection
was low suggests that the continuous training, over the years, of the
observers of the network (Duchamp et al., 2012) has been efficient. The
low value of the false positive detection could also mean that the fil-
tering process of observations was effective. Part of this filtering process
consisted in rejecting detections that could be identified as false posi-
tives to avoid noise in the data. We can conclude that most false posi-
tives may very well have already been rejected during this filtering
process. Based on this fact and the value of the probability to classify a
true detection as unambiguous b we could conclude that most of the
ambiguous data were actually true positive detections, which could be
considered as unambiguous detections and analyzed with standard

occupancy models. However, running the model accounting for false
positives would still be a necessary step to ensure that false positive
probability is extremely low, before we decide to treat ambiguous data
as true detections.

In our wolf study, winter observations consisted mostly of tracks
found in the snow, scats, carcasses and camera trap photographs
(Duchamp et al., 2012), which were all observations that could easily
be verified. However, on the colonization front, a larger proportion of
detections consisted of visual sightings, and because these types of data
could not be verified they were therefore classified as ambiguous. Here,
integrating these ambiguous data is especially interesting because it
brings new information about the wolf distribution on the colonization
front. These data could thus provide new insights in the context of
managing an expanding protected species where new identified sites
could help understanding the processes underlying the recolonization
of wolves (Guillera-arroita et al., 2015).

We found from the Viterbi algorithm that the sites having the higher
true positive probability were those where the sampling effort was high.
However, the fact that the estimated number of sites of class B from the
Viterbi algorithm is lower than what the MMH estimated can be due to
the low value of the occupancy probability. This low occupancy esti-
mate can lead to a greater uncertainty in assessing the class of a site
(Rouan et al., 2009). Despite this fact, it is possible to see the link be-
tween sampling effort and the two classes of heterogeneity. Sites be-
longing to the heterogeneity class A, which were primarily found on the
colonization front of the species (Louvrier et al., 2018), had a lower
detection probability p11 than sites of class B. This strongly suggests
that the species is less likely to be detected on the colonization front,
where new conflicts with human activities can arise.

In conclusion, we recommend devoting efforts in the monitoring
process to minimize heterogeneity across sites, and possibly identifying
and measuring covariates that may affect detection probability such as
the sampling effort. If not possible, we recommend using occupancy
models accounting for detection heterogeneity if covariates possibly
explaining site-to-site variation cannot be measured in the field. The
HMM formulation we propose allows an easy implementation of these
models.

Data accessibility

We provide the scripts to simulate the data in the Appendix B and
Appendix C as well as the wolf data in the Dryad Digital Repository:
https://doi.org/10.5061/dryad.g9s1d
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Abstract  22 

Species distribution models (SDMs) have become an increasingly useful tool to understand the 23 

mechanisms underlying the distribution of species. Recently, combined SDMs have been 24 



developed to analyze jointly presence-background and detection/non-detection data, providing 25 

less biased and more precise estimates of distribution parameters than standard SDMs. Here, 26 

we used a new approach developed by Renner and Gimenez (2018) that formulates combined 27 

SDM in a unified point process modeling framework, therefore allowing the use of existing 28 

techniques to check spatial residuals and efficiently select covariates. We applied the new 29 

combined SDM to a hunted large carnivore in Norway, the Eurasian lynx (Lynx lynx). We 30 

analyzed family groups data, i.e. adult females with a cub, with site-occupancy models and data 31 

on harvested lynx with presence-background models, and both datasets together with the 32 

combined SDM. We found important factors such as slope and primary productivity that 33 

underlie lynx distribution across years. Occupancy data on family groups provided information 34 

on imperfect detection, while PB data provided scale-independent information. Our results 35 

bring new insights into the management of lynx in Norway by highlighting places where lynx 36 

may occur and therefore help in targeting specific areas, determining priorities for 37 

implementing protection measures and defining sustainable harvesting quotas.  38 

 39 

Introduction  40 

Understanding the mechanisms underlying the distribution of species is essential in ecology, 41 

evolution and conservation biology (Guisan & Thuiller 2005; Elith & Leathwick 2009). Species 42 

Distribution Models (SDMs) have become an increasingly useful tool to address this issue. 43 

They allow understanding and predicting the spatial distribution of species presence based on 44 

the location of observed individuals. In some cases, SDMs can be used to study changes through 45 

times in the context of management of threatened species, conservation planning as well as 46 

predicting the future ranges of invasive species (Guillera-arroita et al. 2015).  47 



SDMs may rely on locations where a species or signs of its presence were observed 48 

(Dorazio 2014), known as presence-background (PB) data, collected during opportunistic 49 

surveys, i.e. without measure of the sampling effort. PB data are an attractive source of 50 

information for SDMs because collecting them is easier and less expensive than planned 51 

surveys and allows covering a large spatial study site (Dorazio 2014). To provide an 52 

understanding of the mechanisms underlying the distribution of a species, PB data are 53 

correlated to potential environmental and climatic covariates (Guisan & Thuiller 2005). A 54 

variety of SDMs have been developed to analyze PB data (Elith et al. 2006), including Maxent 55 

(Phillips et al. 2006; Elith et al. 2011) and models of spatial point patterns (Warton & Shepherd 56 

2010; Renner et al. 2015), with a close link between the two (Renner & Warton 2013).  57 

In addition to PB data, other sources of data may be collected. Planned surveys lead to 58 

detections and non-detections of the species at sites (Koshkina et al. 2017), generating so-called 59 

occupancy data. Site-occupancy models have been developed to analyze occupancy data and 60 

are attractive because they allow explicitly incorporating the imperfect detection of a species 61 

based on several repeated surveys over each site (MacKenzie et al. 2002). The parameters of 62 

site-occupancy models have, however, scale-dependent definitions and need to be cautiously 63 

interpreted (Koshkina et al. 2017). 64 

Recently, efforts have been put into the development of SDMs combining both PB an 65 

occupancy data, therefore providing better estimates of distribution parameters than SDMs 66 

based on PB data or occupancy data analyzed in isolation. (Dorazio 2014) first developed a 67 

model combining PB data with data from point-count surveys in which imperfect detection was 68 

accounted for. In parallel, Fithian et al. (2015) developed a similar approach to combine PB 69 

data and occupancy data using information on several species to correct for the observer bias 70 

in the PB data.  71 



However, SDMs combining different sources of data have only recently been introduced 72 

(Hefley & Hooten 2016), with no assessment of their limitations. For example, combining 73 

models makes the process of selecting relevant explanatory covariates more complex because 74 

of the increase in the number of potential model combinations. Additionally, combined models 75 

are limited by the lack of methods for checking residuals and assessing model fit. Building on 76 

(Dorazio 2014)77 

combines machine learning methods and point process tools for efficient covariate selection 78 

and model validation. 79 

Here, we showcase the Renner and Gimenez (2018)  new approach using large 80 

81 

resulting in most of the European countries hosting at least one viable population of large 82 

predators (Chapron et al. 2014). However, the presence of large carnivores in human-dominated 83 

areas comes with challenges. Their presence can lead to conflictual situations with human-84 

related activities (Linnell et al. 2007). In addition, the question of finding optimal areas left for 85 

viable populations needs to be addressed (Packer et al. 2013). In this context, mapping the 86 

distribution of large carnivores can help management decisions by targeting factors affecting 87 

their presence to mitigate conflicts and protect the species.   88 

Monitoring large carnivore populations is also a challenge due to their low densities and 89 

elusive behaviors.  As a consequence, studies on large carnivores are mostly based on indirect 90 

sampling methods, where scats, tracks and other opportunistic signs are collected and used as 91 

presence signs (Thompson et al. 1998; Duchamp et al. 2012; Louvrier et al. 2018b; Molinari-92 

Jobin et al. 2018). Here we illustrate these constraints by using two different types of ecological 93 

datasets, PB data and occupancy data on the Eurasian lynx, Lynx lynx in Norway. In Norway, 94 

lynx have always been present but they are currently heavily harvested, to limit conflictual 95 

situations and also to provide hunting opportunities (Pedersen et al. 1999; Odden et al. 2002; 96 



Linnell et al. 2010). Monitoring their population and assessing their distribution is therefore 97 

crucial to get population trends, target potential favorable areas, and harvest sustainably. The 98 

main monitoring method for lynx in Norway was put in place to assess population trends and 99 

set hunting quotas. This monitoring consists in counts of family groups (adult females with 100 

dependent kittens) based on observations of tracks in the snow (Andrén et al. 2002; Linnell et 101 

al. 2007). In addition to this monitoring, other types of monitoring have been considered for 102 

various objectives: transects along which lynx tracks (in the snow) are recorded (Linnell et al. 103 

2007); quota bags are collected with biological information about the hunted individuals and 104 

the location of the hunt from hunters, which give yearly information about population trends 105 

(Linnell et al. 2010); GPS collared individuals are followed to study fine scale habitat and 106 

hunting preferences, territory sizes and individual movements  (Mattisson et al. 2011; Bouyer 107 

et al. 2015b, 2015a). However, with the logistical difficulties and financial constraints in 108 

running several monitoring schemes in parallel, there is a need to optimize the surveys to target 109 

surveys that would bring most of the ecological information about the lynx distribution. Here, 110 

we tackled the issue by focusing on the family group monitoring (occupancy data) and the 111 

harvested data (PB data).  112 

We first describe the new SDM that combines PB data with occupancy data (Renner 113 

and Gimenez, 2018). Then we demonstrate the advantage in combining information by 114 

analyzing the Norwegian lynx data with family groups and harvested lynx together or by 115 

considering them separately. We perform covariates selection in the combined model using the 116 

LASSO technique to investigate the effects of environmental covariates on lynx distribution. 117 

We show how to assess the underlying assumptions of the combined model by highlighting the 118 

analysis of spatial residuals. Finally, by running SDM models for each year, we quantify the 119 

distribution dynamics of the lynx in Norway.  120 

 121 



Material and methods 122 

1- Data collection  123 

Family groups 124 

Counting lynx family groups has been the main monitoring method used for lynx national 125 

monitoring program in Norway since 1996 (Braa et al. 1999; Linnell et al. 2010). Family groups 126 

are defined as groups of one reproductive female with one or more dependent kittens (Linnell 127 

et al. 2007). Kittens stay with their mother until they are 10 months old and mating starts late 128 

March, males and females remaining separated before this date. Tracks in the snow of more 129 

than one individual during early winter indicated a family group. Records of lynx tracks were 130 

collected by hunters, game wardens and the public from beginning of October until the end of 131 

February. These observations were all verified by state wardens who followed the tracks for 132 

more than 1 km. For every family group track, the date and location of collection were stored 133 

in a national monitoring database (ROVBASEN 3.0: www.rovbase.no). Here, we used records 134 

of snow-tracking observations from family groups from each winter between 1997 and 2016 135 

(Fig. 1, Table 1).  136 

 137 

Figure 1: Maps of observation of family groups detected between October and February for the years 1998, 

2010 and 2015.  







Statistical modeling  151 

To model the distribution of lynx in Norway based on two different sources of data (family 152 

groups and harvested lynx), we developed a combined SDM that fit both occupancy data and 153 

presence-background data simultaneously. To compare the performance of the combined 154 

model, we first analyzed separately family groups with site-occupancy models and harvested 155 

lynx with point process models (PPM), then we fitted the combined SDM. We now describe in 156 

more details the different models. 157 

Occupancy models for family groups 158 

Occupancy data are records of detection and non-detections at large scale through planned 159 

surveys over the region of interest (Koshkina et al. 2017). To model the distribution of lynx 160 

based on family groups monitoring, we used static (aka single-season) site-occupancy models 161 

(MacKenzie et al. 2002). Site-occupancy models are particularly relevant to account for 162 

imperfect detectability because the data collection process is formally incorporated (Isaac et al. 163 

2014). We divided the country into 4044 sampling units, defined as 10x10 km cells. Site 164 

occupancy models rely on the closure assumption which states that the ecological state of a site 165 

(whether it is occupied or not) remains unchanged through sampling occasions j. The 166 

monitoring occurred during the winter months, so we defined the sampling occasion j as 167 

October, November, December, January or February. For each site i (i 168 

sampling occasion j (j yi,j with yi,j = 1 if the species 169 

was detected at site i during sampling occasion j and yi,j = 0 otherwise. The sampling effort 170 

may vary in time and space but is non-null everywhere in the country (Linnell et al. 2010). This 171 

assumption allowed us considering sites with no clues of presence as non-detections (i.e. yi,j = 172 

0) (Louvrier et al. 2018b; Molinari-Jobin et al. 2018). We defined i the probability of 173 

occupancy at site i and pi,j the probability to detect the species at site i during sampling occasion 174 

j. Covariates were introduced using a logistic function on these parameters with x the vector 175 



of regression coefficients on the occupancy probability and  the vector of regression 176 

coefficients on the detection probability to be estimated. The log-likelihood of a site-occupancy 177 

model can be written as follows (MacKenzie et al. 2002):  178 

= log  179 

+ log . 180 

The first part of the log-likelihood formula corresponds to the k sites where at least one detection 181 

was made during the J occasions, and the second part to the I  k sites with no detection.  182 

Point process models for harvested lynx 183 

PB data are made of a set of locations where signs of the species were observed, without any 184 

information on sites where the monitoring occurred but the species was not present, i.e. 185 

absences (Renner et al. 2015; Koshkina et al. 2017). Based on the analysis of PB data, point 186 

process models (PPMs) yield an intensity of species observations per unit area (Renner et al. 187 

2015). However, they usually suffer from observer bias, i.e., spatial patterns in the distribution 188 

of observers that may influence the distribution of observations. By correcting for observer 189 

bias, the output can be interpreted as an intensity of species observations per unit area (Renner 190 

et al. 2015). It is assumed that the locations of presence-background data are a realization of an 191 

inhomogeneous Poisson PPM (Cressie & Wikle 2015). Inhomogeneous Poisson PPMs are 192 

characterized by an intensity i, corresponding to the mean number of individuals in a site i We 193 

assumed that the point locations were independently distributed, conditional on environment. 194 

The intensity i can be modelled as a log-linear function of covariates at location i. 195 

log( i) =  +  196 

where  and v  are vectors of environmental and observer bias variables at location  and x 197 

and v are the regression coefficients to be estimated. We chose the spatial resolution to be the 198 



same as for the site-occupancy model, i.e., 10x10 km. To fit a Poisson PPM, the log-likelihood 199 

needs to be maximized and is written as follows (Renner et al. 2015):  200 

 =  -  201 

with m the number of locations, the first part of the log likelihood representing the realized 202 

number of presence points and the integral representing the expected number of presence 203 

points in the whole study region A. 204 

Combined model  205 

The combined SDM uses the continuous space in the Poisson PPM process to model the 206 

detection and non-detections used in a site-occupancy model framework. By doing so, we 207 

analyze both datasets within the same framework. i can be formulated as the probability that 208 

at least one individual is on site si, that is, if we defined Ni the number of individuals present at 209 

site i: 210 

i = P(Ni > 0) = 1  P(Ni = 0). 211 

We assume that Ni follows a Poisson distribution depending on the intensity function at site si:  212 

Ni ~ Poisson( i Ai ) 213 

where Ai is the surface of site i. Following (Dorazio 2014), we built the likelihood of the 214 

combined SDM by multiplying the likelihoods of the Poisson PPM model and the occupancy 215 

model, assuming that the presence-background and the occupancy datasets are independent of 216 

each other. Here, this assumption is likely to be valid because the data are collected during 217 

different time periods and for different goals. The log-likelihood for the combined SDM can 218 

therefore be expressed as:  219 

 220 



Finally, to estimate the parameters of the combined SDM, we maximized this log-likelihood.  221 

Model validation and spatial dependence between observations 222 

PPMs assume that data points are independent in space. We ran a residual analysis (Baddeley 223 

et al. 2015) to assess adequacy of the model for intensity, in particular by checking for a spatial 224 

trend in residuals with a varying area of interaction radius between 1 km and 10 km (Fig. 4). 225 

We found that data points were not independent in space because there was evidence of 226 

additional clustering of observed locations beyond that which was explained by the ecological 227 

and observer bias variables. We accounted for spatial dependence between data points by fitting 228 

an area-interaction model for each year (Widom & Rowlinson 1970; Baddeley & Van Lieshout 229 

1995). Area interaction models are point process models assuming interactions among all points 230 

within a certain radius. The choice of the interaction radius was made by selecting the radius 231 

that maximized the pseudo-likelihood of the spatial point process, using the profilepl function 232 

in the spatstat R package (Baddeley et al. 2015). Finally, we fitted the PPM and combined SDM 233 

both with and without point interactions for each year.  234 

Environmental covariates  235 

For the probability of occupancy, a range of environmental covariates were used including 5 236 

habitat type covers, slope, environmental productivity, presence of wild preys and presence of 237 

domestic preys. The variables were chosen according to previous established knowledge 238 

regarding lynx habitat preferences in Scandinavia (May et al. 2008; Bouyer et al. 2015a). 239 

Habitat type covers were obtained from a 30 x 30m Norway Land Cover (NORUT; 240 

Johansen et al. 2009). We calculated the percentage of cover of 5 aggregated habitat classes in 241 

each 10x10 km cell. The 5 classes were considered to be meaningful for lynx based on 242 



knowledge of their habitat use and factors affecting their demography (Table 2) (May et al. 243 

2008; Basille et al. 2009; Bouyer et al. 2015a).  244 

 245 

Table 2: Classification of the vegetation covers based on the aggregation of layers from the 246 

Norut database (Johansen et al. 2009). 247 

Aggregated classes Layers from the Norut map 

Urban area (class 1) Cities and built-up areas 

Agricultural area (class 2) Agricultural areas 

Forest (class 3) Coniferous Forest  dense canopy layer  

Coniferous forest and mixed forest - open canopy  

Lichen rich pine forest  

Low herb forest and broad leaved deciduous fore  

Tall herb - tall fern deciduous forest  

Bilberry- low fern birch forest  

Crowberry birch forest  

Lichen-rich birch forest  

Open area below treeline 

(class 4) 

Ombrotrophic bog and low-grown lawn vegetation  

Tall-grown lawn vegetation  

Wet mires, sedge swamps and reed beds  

Open area above treeline 

(class 5) 

Exposed alpine ridges, scree and rock complex  

Graminoid alpine ridge vegetation  

Heather-rich alpine ridge vegetation  

Lichen-rich heathland  

Heather- and grass-rich early snow patch com.  

Fresh heather and dwarf-shrub communities (up-/lowland)  

Herb-rich meadows (up-/lowland)  

Grass and dwarf willow snow-patch vegetation  

Bryophyte late snow patch vegetation  

Glacier, snow and wet snow-patch vegetation  

 248 



Slope was averaged from a 50 x 50m Digital Elevation Model (DEM) raster (Norwegian 249 

Mapping Authority). Environmental productivity was obtained from the normalized difference 250 

vegetation index (NDVI; Gutman et al. 1997). For each cell, we determined whether wild preys 251 

(roe deer Capreolus capreolus and red deer Cervus elaphus) or domestic preys (reindeer 252 

Rangifer tarandus) were present based on maps realized during previous studies on distribution 253 

of lynx preys (Odden et al. 2006; Mattisson et al. 2011; Gervasi et al. 2014). 254 

For the detection probability in the site-occupancy model, we considered that two 255 

factors could affect the parameter: the annual hunting quota and the population density. With 256 

higher quotas, we expected the search effort to be high during the winter before the hunting 257 

season hence increasing the detectability (Linnell et al. 2010). A previous study found that if 258 

the number of people surveying the species increased, the probability to detect the species 259 

increased as well (Louvrier et al. 2018b), therefore we expected human density to have a 260 

positive effect on detectability. Human population was averaged in each 10x10 km from a 1x1 261 

km raster from the Earth Observing System Data and Information System (EOSDIS). The 262 

quotas information was given by the Norwegian Institute for Nature Research (NINA).  263 

The ecological variables for the intensity parameter  in the point process model were 264 

chosen to be the same as the variables for the probability of occupancy. Finally, we set only 265 

human density as a variable for the observer bias as it may have an influence on the number of 266 

people going hunting.  267 

Variable selection 268 

We carried out variable selection using the LASSO technique (Renner et al. 2015). The LASSO 269 

consists in augmenting the likelihood with a penalty function, which is the sum of the absolute 270 

values of the penalty is then maximized to control model complexity and 271 

reduce the variance of parameter estimates. Several parameters are then estimated at 0 (the so-272 



273 

the LASSO for each year from 1997 to 2016. All the analyses were done in R using the 274 

ppmlasso package (Renner et al. 2015). Below we display the results of the analyses of spatial 275 

dependence for years 1997, 1998, 1999, 2002, 2003, 2004, 2006, 2010, 2011, 2012, and 2015. 276 

We encountered convergence issues for years 2000, 2001, 2005, 2007, 2008, 2009, 2013, 2014 277 

that precluded us from getting results. For convenience, we display the results from the variable 278 

selection and further results for three years spread over the study period, namely 1998, 2010, 279 

and 2015.  280 

Results 281 

Accounting for spatial dependence 282 

We checked the residuals spatial trend with point interactions, to check for any aggregation left 283 

for each year (Fig. 4). The radius of area interaction in order to account for spatial dependence 284 

varied according to the years, between 1 km for the year 1998 and 10 km for the year 2015 285 

(Appendix 1). Multiplication of the smoothed residuals by the square root of the area allowed 286 

for comparisons to the standard +/- 2 thresholds of Pearson residuals. Based on the analyses of 287 

the Pearson residuals for the PPM only, accounting for spatial dependence appeared to be 288 

significant for years 1998, 2002, 2003, 2006, 2010, and 2011 (Table 3).  289 

 290 

 291 

 292 

 293 



Table 3: Boundaries of residuals calculated as the multiplication of the range of smoothed field 294 

found in Appendix 1 with the area of entire window for the model not accounting for area 295 

interaction, and the range of smoothed field multiplied by the area of clipped window for the 296 

model accounting for area interaction. Accounting for area interaction appears significant when 297 

the difference of the resulting boundaries is higher than 2. The years during which accounting 298 

for spatial dependence appeared significant are displayed with a *.  299 

 300 

Year Without area interaction With area interaction 

 Lower boundary 

of residuals 

Upper boundary 

of residuals  

Lower boundary 

of residuals 

Upper boundary 

of residuals  

1997 -0.8016501 0.834763763 -2.6511298 2.53473299 

1998* -0.9240023 0.797534272 -3.1527588 4.8201286 

1999 -0.8201713 0.737293588 -2.6038621 2.37402264 

2002* -1.225954 1.241669004 -3.7347429 4.01775858 

2003* -0.9264344 1.261312705 -3.1663483 3.01154639 

2004 -0.8574008 0.532999095 -2.4626497 1.69868469 

2006* -0.9372852 1.110523912 -3.4464097 3.75128665 

2010* -0.9715213 1.305464262 -3.140351 3.90963361 

2011* -0.950381 1.477019253 -3.352465 2.49987302 

2012 -0.6922066 0.94214933 -2.3391627 3.39146092 

2015 -0.6968837 1.514248744 -2.3403444 3.09958257 

 301 

 302 







In 2015, the observer bias increased when human density increased.  For 1998, 2010 and 2015, 323 

for both the occupancy and the combined models, the detection probability decreased when 324 

human density increased. The detection probability increased in both the combined and the 325 

occupancy models when the quota increased for the years 1998 and 2010 and decreased for 326 

year 2015.  327 

 328 

Table 5: Effects of the ecological and observer biases on the intensity of the combined model 329 

with area interaction, the PPM with area interaction fitted on one source of data (harvested 330 

lynx) and on the probability for a site to be occupied in the occupancy model fitted to family 331 

group data, for years 1998, 2010 and 2015. Environmental biases and observer biases for the 332 

PPM and combined models are given on a log scale and covariates for the detection and 333 

occupancy probability for the occupancy model are given on a logit scale 334 

 

 Combined model 

with area interaction 

 PPM Only model 

with area interaction 

 

Occupancy model 

1998  2.5% 50% 97.5%  2.5% 50% 97.5%  2.5% 50% 97.5% 

Intercept for 

environmental 

bias 

 

-9.28 -9.13 -7.89 

 

-10.12 -9.66 -8.20 

 

-8.49 -8.17 -6.48 

Slope  0 0.48 0.50  0 0.50 0.55  0 0.48 0.61 

NDVI  0 0.83 1.19  0 0.81 1.45  0 1.75 2.46 

Reindeer  0 0.75 0.80  0 0.71 0.80  0 1.05 1.25 

Wild  0 0.35 0.38  0 0.15 0.23  0 0.63 0.65 

Cover 1  0 0 0.07  0 0.10 0.24  0 0 0.06 

Cover 2  0 0.24 0.27  0 0.46 0.54  0 0.25 0.30 

Cover 3  0.25 1.46 1.58  0.22 1.92 2.25  0.28 1.44 1.51 



Cover 4  -0.05 -0.04 0  0 0.01 0.11  -0.10 -0.04 0 

Cover 5  0 0.21 0.43  0 0.86 1.36  -0.15 -0.07 0 

Human density 

for observer 

bias 

 

-0.90 -0.60 0 

 

-2.92 -1.97 0 

 

   

Intercept for 

detection 

probability 

 

-1.98 -1.95 -1.92 

 

   

 

-3.30 -3.22 -3.01 

Quota  0 0.10 0.12      0 0.15 0.17 

Human density  -0.90 -0.48 0      -1.67 -1.21 0 

2010             

Intercept for 

environmental 

bias 

 

-8.81 -8.71 -7.64 

 

-9.10 -9.01 -7.97 

 

-7.77 -7.61 -6.66 

Slope  0 0.32 0.34  0 0.31 0.32  0 0.29 0.34 

NDVI  0 0.61 0.84  0 0.13 0.30  0 0.84 1.24 

Reindeer  0 0.94 0.98  0 0.87 0.92  0 1.06 1.23 

Wild  0 0.45 0.46  0 0.75 0.76  0 0.22 0.26 

Cover 1  0 0.03 0.08  0 0 0.02  0 0.10 0.11 

Cover 2  0 0.31 0.32  0 0.25 0.27  0 0.99 1.22 

Cover 3  0.22 1.49 1.59  0.10 1.19 1.31  0.22 1.99 2.32 

Cover 4  -0.20 -0.20 0  -0.21 -0.20 0  -0.24 -0.23 0 

Cover 5  0 0.45 0.62  0 0.03 0.20  0 0.95 1.35 



Human density 

for observer 

bias 

 

-0.31 -0.22 0 

 

-0.47 -0.35 0 

 

   

Intercept for 

detection 

probability 

 

-1.76 -1.71 -1.71 

 

   

 

-2.78 -2.73 -2.44 

Quota  0 0.10 0.10      0 0.21 0.21 

Human density  -0.13 -0.07 0      -0.30 -0.27 0 

2015             

Intercept for 

environmental 

bias 

 

-9.52 -9.42 -8.13 

 

-10.36 -10.12 -8.60 

 

-8.42 -8.25 -7.11 

Slope  0 0.69 0.74  0 0.66 0.78  0 0.69 0.75 

NDVI  0 0.78 0.99  0 0.04 0.39  0 1.04 1.47 

Reindeer  0 0.61 0.67  0 0.13 0.26  0 0.88 1.00 

Wild  0 0.31 0.32  0 0.13 0.19  0 0.44 0.45 

Cover 1  -0.16 -0.11 0  -0.07 0 0  -0.13 -0.05 0 

Cover 2  0 0.12 0.13  0 0.21 0.23  0 0.08 0.12 

Cover 3  0.25 1.30 1.30  0 1.37 1.40  0.22 1.33 1.42 

Cover 4  -0.04 -0.02 0  0 0.12 0.17  -0.18 -0.16 0 

Cover 5  -0.02 -0.01 0  -0.23 -0.19 0  0 0 0.13 

Human density 

for observer 

bias 

 

0 0.02 0.04 

 

0 0 0.02 

 

   



Intercept for 

detection 

probability 

 

-1.71 -1.69 -1.63 

 

   

 

-2.65 -2.58 -2.40 

Quota  -0.08 -0.07 0      -0.12 -0.11 0 

Human density  -0.45 -0.24 0      -0.79 -0.54 0 

 335 

Distribution dynamics of lynx in Scandinavia 336 

Overall, the distribution of lynx in Scandinavia decreased according to the occupancy model 337 

(Fig. 6 first row), with two cores in central Norway and in the South-East in 1998 and 2010 and 338 

a single core in central Norway in 2015. According to the PPM model accounting for spatial 339 

dependence, the distribution shifted from South to central Norway as well, but with an 340 

increasing average intensity (Fig. 6 second row). In the combined SDM, the average intensity 341 

was higher than in the PPM with harvested data only, except for year 2015. The resulting 342 

distribution according to the combined model shifted to central Norway between 1998 and 2010 343 

but shifted South with a core distribution in central Norway in 2015. 344 

 345 

  346 





Discussion  364 

 365 

We demonstrated the use of a combined SDM, using PB data and occupancy data 366 

simultaneously. By casting our combined SDM in a unifying point process modeling 367 

framework, we used existing techniques to inspect spatial residuals and efficiently select 368 

covariates. We applied the new combined SDM to the Norwegian lynx and found important 369 

factors such as slope and primary productivity that underlie lynx distribution across years.  370 

Effects of environmental variables on lynx distribution in Norway 371 

Overall, we found that the effects of the environmental factors were similar across models, i.e. 372 

the combined SDM and each SDM in isolation. Slope, primary productivity, forest cover, 373 

agricultural cover and the presence of wild preys and reindeers explained lynx presence, in 374 

agreement with previous studies (Basille et al. 2009, 2013; Bouyer et al. 2015b, 2015a). Human 375 

presence is usually negatively correlated to slope (Basille et al. 2009), and here the positive 376 

effect of slope highlighted the influence of human presence on lynx presence. We found that 377 

the presence of lynx increased with the presence of reindeer and wild preys. Lynx are 378 

considered a specialist species because they predate only on a small range of specific species 379 

(Breitenmoser & al 2000)380 

information about variation in prey density. The primary productivity indirectly represented the 381 

variation in prey density. We found that the presence of lynx increased with the primary 382 

production, which confirms that lynx was more likely to be present wherever preys density 383 

increased. We found that the presence of lynx increased with increased forest cover. We 384 

explained this pattern by the fact that lynx live mainly in forest , 385 

and may hunt on roe deer and red deer, which are known to live in forests and farmland-forest 386 

mosaics (Bunnefeld et al. 2006; Meisingset et al. 2013). We also found a positive effect of 387 

farmland cover which confirms the presence of lynx influenced by the presence of roe deer and 388 



red deer. Reindeer are more associated with alpine tundra and high-altitude areas (Mattisson et 389 

al. 2011) however, depending on the years, the effects of the proportion of open area below and 390 

above treeline, which corresponds to the habitat of reindeer was positive or negative, which 391 

might be due to the sparsity of detections found in these areas, making this relationship 392 

uncertain. We found a positive effect of urban cover on lynx presence, which might be due to 393 

the detection of family groups near roads and habitations, leading to some bias in the effect of 394 

urban cover on the presence of lynx (Linnell et al. 2010). Finally, we found a negative effect of 395 

human density on the observer bias and the detection probability. This effect might be explained 396 

by the fact that family groups and hunting data are based on detection of snow tracks, which 397 

might become undetectable with too many people passing by.  398 

Trends in lynx distribution in Norway between 1997 and 2016 399 

Lynx got almost exterminated by the mid 20th century and persisted in one or two remaining 400 

cores in southeastern and central Norway (Basille et al. 2009). Those two cores still remain 401 

occupied by the species (Fig. 6). Linnell et al. (2010) found that population abundance varied 402 

greatly from a peak in 1997 until its lowest point in 2004 and increased again, until it exceeded 403 

the national conservation goals in several regions. Four years after the introduction of quota 404 

hunting, the species was completely exterminated from South-western Norway (Region 1) 405 

where an unlimited quota was set (Linnell et al. 2010). We found that in central Norway, lynx 406 

remained present across the years in this core despite a fluctuating maximum intensity varying 407 

between 0.0015 in 2002 and 0.010 in 2010 (Fig. 6). In South-East Norway, lynx remained but 408 

with a lower intensity around 0.002 than in the core in Central Norway. In Northern Norway, 409 

lynx was present in the area in a sporadic way, absent in 1999 and 2006. Finally, no lynx was 410 

present in South-western Norway, which confirms what was found by Linnell et al. (2010). 411 

 412 



Advantages in combining presence-background data with occupancy data 413 

Modelling species distribution based on PB data is widely used because these data are 414 

frequently available across broad scales (Fletcher et al. 2016). However, PB data often suffer 415 

from sample selection bias, whereby presence signs are collected near roads or easily accessible 416 

areas (Phillips et al. 2009). In contrast, site-occupancy data are detections and non-detections 417 

and can account for imperfect and possibly heterogeneous detection. However, site-occupancy 418 

models depend on the spatial resolution of the study site, with occupancy estimates being higher 419 

in larger study sites even though abundance remains constant  (Steenweg et al. 2018). In 420 

contrast, the parameters of a point-process model do not depend on the spatial scale because 421 

the outputs are expressed as an intensity per area in opposition to an intensity per grid cell (as 422 

in MaxEnt, (Renner & Warton 2013). As a consequence, combined SDMs can be used to 423 

predict occurrence of individuals for any sampling site size (Dorazio 2014; Koshkina et al. 424 

2017).  425 

When it comes to our case study, the combination had several advantages. First, the 426 

results of the PB data analysis should be interpreted carefully. The PB data are based on hunted 427 

lynx therefore an increase in the distribution intensity might actually mean an increase in lynx 428 

mortality. The combination with occupancy data based on indirect signs should lower this 429 

potential bias. Second, the occupancy monitoring relies on the detection of adult females with 430 

cubs. By adding the harvested data in the analysis, which include both females and males, the 431 

combined SDM produce the species distribution for both sexes. Third, we found an increased 432 

433 

one data source, as expected (Dorazio 2014). Making optimal use of all the data we have is of 434 

particular importance when dealing with a cryptic species such as the lynx. Fourth, occupancy 435 

data were collected by people detecting tracks in the snow, hence in rather populated areas, 436 



while harvest lynx data were collected by hunters going to places with low human density. The 437 

combined analysis of both datasets therefore allows sharing information, as illustrated in the 438 

combined SDM map (Fig. 6 and Appendix 3). For most of the years, the occupancy model 439 

estimated a broader distribution of lynx in central and South East Norway while the point 440 

process based on the PB data barely estimated a few sites with high intensity. In 2002, only the 441 

occupancy model estimated occupied sites in North-East Norway.  442 

Methodological novelty 443 

The approach developed by Renner and Gimenez (2018) offers solutions to existing issues in 444 

combined SDMs. First, covariate selection was difficult for combined models, because no 445 

method was really developed to deal with variable selection. Here we used the LASSO 446 

technique in a single step and automatically making the covariate selection process easier for 447 

users.  448 

Second, checking the residuals of combined SDM was previously not possible. In the 449 

lynx case study, accounting for spatial dependence was however needed for most of the years 450 

according to the residuals check. Spatial dependence in the data locations might have resulted 451 

from both biological processes such as social aggregation or the observation process due to the 452 

unmeasured sampling effort. 453 

Third, current combined SDMs rely on the Poisson assumption, which no longer holds 454 

when spatial clustering occurs. The new approach allows fitting combined SDMs that explicitly 455 

account for spatial clustering across the years. As a result, we found that inference about the 456 

species distribution was improved by reducing the magnitude of the residuals.  457 

Limits and perspectives  458 



An important hypothesis that needs to be discussed is that species that are present at a site do 459 

not leave (or enter from another site) during the data collection (Rota et al. 2009). This 460 

hypothesis applies especially for site-occupancy data. This hypothesis is likely to be satisfied 461 

for species with limited movements but is likely to be violated for mobile species such as lynx. 462 

Because lynx territory can vary from a few hundred km2 up to 1000 km2 (Sunde et al. 2000), it 463 

is very likely that movements occurred inside or outside of the sampling sites. Assuming that 464 

those movements are random, the bias in occupancy estimates is minimal, but occupancy should 465 

be interpreted as habitat use rather than the proportion of area occupied by the species 466 

(Mackenzie & Royle 2005). 467 

In the Norwegian lynx monitoring, other datasets are available such as GPS data and 468 

citizen science data collected by the public with a smartphone application. The challenge in 469 

dealing with GPS data is that they occur at much finer time and spatial scales. Such fine-scale 470 

data could help bring new insight into the distribution and territory use of lynx at a finer scale 471 

and compare the outputs we have at a broader scale. On the other hand, combining site 472 

occupancy data with citizen science data could bring a valuable source of information by 473 

covering even wider areas (Schmeller et al. 2009). However, the lynx citizen science data are 474 

not checked through a standardized protocol, which means that false positives might occur (i.e. 475 

false detections of the species at sites where it is absent). Accounting for false positives has 476 

been developed in the site occupancy modelling framework (Miller et al. 2011), in particular 477 

for large carnivores (Louvrier et al. 2018a) but remains to be investigated in point process 478 

models.  479 

 The family group monitoring is the most comprehensive monitoring of lynx in Norway 480 

(Linnell et al. 2007). This monitoring was set up to get a minimum abundance index. 481 

Interestingly, we found trends in the lynx distribution that coincide with trends in the estimated 482 

abundance, therefore raising the question of using occupancy as a proxy for abundance 483 



(Mackenzie 2006). While the occupancy-abundance relationship has been questioned when 484 

occupancy is estimated in continuous habitats (Efford & Dawson 2012), Linden et al. (2017) 485 

have showed that occupancy and abundance estimates were correlated when the area of the 486 

study sites scale is similar to that of home ranges. In the lynx case study, the area of grid cells 487 

might be too small to establish a reliable link between occupancy and abundance. The fine-488 

scale GPS data could help in comparing the variation in territory sizes and the territory use in 489 

time with the occupancy data.  490 

A widely used method for assessing the predictive ability of species distribution models 491 

is to evaluate the area under the receiver operating characteristic curve (AUC  Elith et al. 492 

2006). However, the AUC has been shown to be biased in occupancy models due to imperfect 493 

detection (Zipkin et al. 2012). The development of an AUC criterion to assess the predictive 494 

ability of combine SDMs remains an open issue.  495 

Finally, we used static SDMs to assess trends in the lynx distribution in Norway, by 496 

analyzing each year separately. To better understand the mechanisms underlying trends, our 497 

approach should be extended to allow the estimation of local colonization and extinction 498 

processes. While dynamic (aka multi-season) site-occupancy models have been developed 499 

(MacKenzie et al. 2003), the point process modelling framework yet fails to acknowledge time.  500 

 501 

!502 

Conclusion  503 

Combining PB data with occupancy data in a combined model to understand species 504 

distribution offers a number of advantages. Occupancy data on females provided useful insight 505 

into the distribution by accounting for imperfect detection, while PB data provided a scale-506 

independent framework and information about the distribution of males. The combined SDM 507 

formulated in a unifying point process framework offers the methodological flexibility to check 508 



spatial residuals and look for spatial clustering, to fit area-interaction models if needed and to 509 

use the LASSO technique for automatic covariate selection. Finally, our results bring new 510 

insights into the management of lynx in Norway, by highlighting places where lynx may occur 511 

and therefore help in targeting specific areas, determining priorities for implementing 512 

protection measures and defining sustainable harvesting quotas.  513 
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Abstract !*"

Species distribution models (SDMs) are important statistical tools for ecologists to understand #+"

and predict species range. However, standard SDMs do not explicitly incorporate dynamic #!"

processes like dispersal. This limitation may lead to bias in inference about species distribution. ##"

Here, we adopt the theory of ecological diffusion that has recently been introduced in statistical #$"

ecology to incorporate spatio-temporal processes in ecological models. As a case study, we #%"

considered the wolf (Canis lupus) that has been naturally recovering Eastern France through #&"



dispersal from the Apennines . Using partial differential equations for #'"

modelling species diffusion and growth in a fragmented landscape, we developed a #("

mechanistic-statistical spatio-temporal model accounting for ecological diffusion, logistic #)"

growth and imperfect species detection. We conducted a simulation study and showed the #*"

ability of our model to i) estimate ecological parameters in various situations with contrasted $+"

species detection probability and number of surveyed sites and ii) forecast distribution in the $!"

future. We found that the growth rate of the wolf population in France was explained by the $#"

proportion of forest cover, that diffusion was influenced by human density and that species $$"

detectability increased with increasing survey effort. Using the parameters, we estimated on the $%"

2007-2015 period, we forecasted wolf distribution in 2016 and found good agreement with the $&"

actual detections made that year. Our approach may be useful for managing species that interact $'"

with human activities to anticipate potential conflicts.  $("

Introduction  $)"

Assessing the dynamic of species distribution is a fundamental topic in ecology $*"

(Guillera-Arroita 2017). Species distribution models (SDMs) are important tools in the fields %+"

of ecology, biogeography and conservation biology to understand and predict species %!"

distribution by correlating occurrence data to environmental covariates (Guisan & Thuiller %#"

2005). SDMs can be used to study distribution dynamics through time (Elith & Leathwick 2009; %$"

Hefley & Hooten 2016; Koshkina et al. 2017), which is especially relevant in conservation for %%"

the management of threatened species, conservation planning, as well as predicting the likely %&"

range of invasive species (Elith & Leathwick 2009; Guillera-arroita et al. 2015). %'"

Despite being the most widely used methods in ecological applications, SDMs based on %("

regressing presence locations on environmental factors suffer from several limitations (Hefley %)"

& Hooten 2016; Hefley et al. 2017). SDMs rely on the hypotheses that species will be present %*"

in the most favorable areas and that dispersal is not a limiting factor (Jeschke & Strayer 2006). &+"



However, expanding species may be absent from an area because they have not yet dispersed &!"

to this area, or because of geographical barriers or dispersal constraints (Araújo & Guisan &#"

2006), not necessarily because conditions are unfavorable. &$"

Species may expand through colonization defined as the ecological process of &%"

population  establishment in unoccupied areas, in which populations can often face novel &&"

environments (Koontz et al. 2017). Colonization is therefore a dynamic process, underlying the &'"

past, present and future distribution of species (Clark et al. 2001; Wikle 2003; Wikle & Hooten &("

2010; Williams et al. 2017). Colonization can be a natural process, or the consequence of &)"

anthropogenic pressures, for example biological invasions (Sakai et al. 2001; Ricciardi 2007). &*"

Being able to understand the underlying mechanisms of the colonization has significant '+"

implications for wildlife managers (Koontz et al. 2017). Ignoring the dynamic process involved '!"

can lead to biased inferences and some authors have discouraged the use of SDMs for '#"

predictions (Yackulic et al. 2015).  '$"

Mechanistic spatio-temporal models have been developed to offer an alternative to '%"

regression-based SDMs that encounter difficulties associated with dispersal processes (Hefley '&"

et al. 2017). Mechanistic models are based on biological processes, such as survival or ''"

dispersal, describing processes through which environmental factors affect the targeted '("

biological system (Morin & Thuiller 2009; Mouquet et al. 2015; Gauthier et al. 2016). SDMs ')"

accounting for dynamic mechanisms are relevant tools to assess ecological colonization, '*"

because they improve our ability to get predictions in space and time and include reliable (+"

measures of prediction errors (Williams et al. 2017).  (!"

The theory of ecological diffusion is an essential component of mechanistic models to (#"

assess spatial distributions dynamics and population dynamics (Soubeyrand & Roques 2014; ($"

Roques & Bonnefon 2016; Hefley et al. 2017). To model dynamic ecological processes, (%"

mechanistic models are usually expressed as partial differential equations (PDEs) (Wikle & (&"



Hooten 2010). By combining Bayesian estimation methods with mechanistic models, these ('"

PDEs can be fitted to data, so-called mechanistic-statistical models, and facilitate probabilistic (("

forecasts of spatio-temporal processes (Wikle et al. 1998).  ()"

Here, we aimed at exploring the use of mechanistic-statistical models to gain insight (*"

into the colonization of large carnivores, with a particular emphasis on the observation process. )+"

Indeed, data collection is particularly costly for elusive species that need wide areas to live )!"

and/or disperse. Monitoring large carnivores often requires sampling large areas. In this context, )#"

citizen sciences are increasingly used as an efficient source of information to assess the )$"

dynamics of such  species (Schmeller et al. 2009; Louvrier et al. 2018). The monitoring system )%"

then often relies on the only available opportunistic data, leading to a set of presence locations, )&"

with no information about absences (Koshkina et al. 2017). These data need to be analyzed )'"

cautiously as they are collected without any measure of time- and space-varying sampling )("

effort, possibly leading to biased estimates of the actual factors influencing the distribution ))"

(Van Strien et al. 2013). Furthermore, large carnivores can go undetected at sites where they )*"

are actually present, due to imperfect detection (Kéry 2011). Ignoring the issue of detectability *+"

< 1 can lead to underestimating the actual distribution (Kéry & Schaub 2011; Lahoz-Monfort *!"

et al. 2014) and confusion in the environmental factors driving the distribution dynamics *#"

(Lahoz-Monfort et al. 2014). *$"

We developed a mechanistic-statistical model accounting for ecological diffusion, *%"

logistic growth and imperfect detection. To assess the performance of our approach, we *&"

performed a simulation study to assess bias and precision of parameter estimates and evaluate *'"

forecasting performance in contrasted scenarios of varying species-level detectability and *("

number of monitoring sites. Then, we fitted our model to opportunistic data on wolves in South-*)"

Eastern France between 2007 and 2015. We considered grey wolves (Canis lupus) as a case **"

study to illustrate the challenges of using detections/non-detections data to infer the dynamics !++"



of a recolonizing large carnivore. Wolves disappeared in western European countries during !+!"

the twentieth century (Mech & Boitani 2010; Chapron et al. 2014) except in Spain, Portugal !+#"

and Italy (Ciucci et al. 2009). The species naturally recolonized the French Alps from the !+$"

remaining Italian population (Valière et al. 2003). From the 1990s, the species then spread !+%"

outside the Alpine mountains to reach the Pyrenees and the Massif Central then later, the !+&"

Vosges Mountains northward. In areas with livestock farming, strong interactions between wolf !+'"

presence and sheep breeding usually occur. Because the species is protected by law while being !+("

a source of conflicts with sheepherding, its recolonization process needs to be carefully !+)"

monitored. Besides quantifying the wolf colonization process over the study period, we !+*"

explored the ability of our model to forecast wolf recolonization in the short term.  !!+"

Material and Methods  !!!"

1- Model !!#"

To model the spatial expansion of wolves, we developed an approach to infer the parameters !!$"

of a mathematical formulation of the temporal dynamics of species distribution from !!%"

detection/non-detection data collected in the field. We adopted the framework of ecological !!&"

diffusion (Hefley et al. 2017). We considered a state-space modelling approach in which the !!'"

model is formulated in two parts: 1) the observation process that handles the detections and !!("

non-detections conditional on 2) the state process describing the hidden ecological dispersion !!)"

process.  !!*"

 !#+"

Observation process  !#!"

Let yi,j,t be a random variable that takes value 1 if at least one individual is detected at site i = !##"

1,..., K at site i within a study area S (i  S  R2) during secondary occasion (or survey) j = !#$"



1,..., J in year t = 1,..., T, and takes value 0 otherwise. Let ni,t be the true abundance at site i in !#%"

year t. The probability pi,t for the species to be detected at site i in year t is likely to be !#&"

influenced by ni,t. To link the detection process to abundance, we used the Royle-Nichols !#'"

approach (Royle & Nichols 2003) developed to deal with heterogeneity in the detection !#("

probability due to variation in abundance and/or occupancy surveys (Williams et al. 2017). If !#)"

at a site i during year t there are ni,t individuals present, assuming that each individual within !#*"

an occupied cell has an identical detection probability qi,t, and that there is independence of !$+"

detections among individuals, then the probability to detect the species is equal to the !$!"

probability to detect at least one individual. This latter probability is the complementary !$#"

probability of detecting no individuals which can be written as . Then the !$$"

probability to detect at least one individual at site i during year t can be written as follows:  !$%"

pi,t =  !$&"

Conditioning the observation yi,j,t on the latent, true abundance ni,t through the species-level !$'"

detection probability pi,t, and assuming a binomial observation process, a constant survey !$("

effort, and that qi,t and ni,t remain unchanged across the J surveys, we then have !$)"

yi,t =    Binomial(J, pi,t)  !$*"

The J repeated surveys within each year t are used to estimate the species-level detection !%+"

probability. Note that if ni,t = 0 then pi,t = 0 and yi, j,t = 0 for all!j.  !%!"

Covariates are incorporated in the individual-level detection probability using a logistic !%#"

regression-like relationship. To avoid estimating the detection probability where sampling !%$"

effort was null, we set the detection probability to zero when sampling effort was equal to zero.  !%%"

  !%&"



State process  !%'"

We assumed that the true abundance ni,t at site i during year t was Poisson distributed over a !%("

site i !%)"

ni,t  i,t)) !%*"

where (i,t) is a spatiotemporal process that describes the dynamics of the number of individuals !&+"

in site i during year t. We then defined this parameter as follows:  !&!"

(i,t) =  !&#"

where (x,t) is the density of individuals at the spatial location x at time t and Bi is the study !&$"

area in which counts occur.  !&%"

We used Partial Differential Equations (PDE) known as ecological diffusion (Williams !&&"

et al. 2017) to describe diffusion and growth dynamics. The ecological diffusion PDE !&'"

describing the variation of density of individuals at location x at time t, (x,t) over time, in two !&("

dimensions with logistic growth, can be written as follows:  !&)"

 D(x) (x,t)) + R(x) (x,t) (1 ) !&*"

where is the Laplace 2D diffusion operator (i.e. the sum of the second derivatives with respect !'+"

to the coordinates). This operator describes uncorrelated random walk movements, with the !'!"

coefficient D(x) measuring heterogeneous mobility. The term R(x) is the intrinsic growth rate !'#"

at low density and K(x) is the carrying capacity. In addition, we assumed reflecting boundary !'$"

conditions, meaning that there were no population flows going outside the boundaries of the !'%"

study area due to actual barriers (i.e. seas) or symmetric inward and outward flows. Last, we !'&"



assumed that the scale at which data were collected coincides with the numerical scale in which !''"

we solve (x,t), which prevents from integrating over Bi.  !'("

Approximation !')"

Calculating the density u(x,t) requires solving the PDE described above. We used finite !'*"

differencing in space, which consists in discretizing the spatial domain into Cs grid cells of N !(+"

rows and L columns, leading to an approximation of the PDE system by a system of Ordinary !(!"

Differential Equations (ODE; Hooten et al. 2013; Williams et al. 2017). The corresponding !(#"

densities were then taken at each time t as  !($"

 !(%"

We defined M as a Cs x Cs diffusion matrix that describes how  varies through time as a !(&"

function of direct neighboring cells in four cardinal directions and diffusion parameter Dk,l. The !('"

ith row of M represents the link between the Cs sites to site i. The approximation of the !(("

differential operator is then: !()"

!(*"

 !)+"

With sk,l the coordinates of the site i and With k = 1,..., R and l = 1,..., L and !)!"

R L = Cs. Exceptions are the cells bordering non-habitat cells as the later are excluded of the !)#"

dynamics due to the reflecting boundary conditions. This leads to the approximation of the !)$"

density dynamics using the following ODE system:  !)%"

 !)&"

The term (i,t) is then calculated over the surface Ai of site i as follows:  !)'"

(i,t) =  !)("



with  the discretized approximation of (x,t) at site i. The system was solved using the !))"

lsoda method (Petzold 1983) through the R-package deSolve (Soetaert et al. 2010). !)*"

2- Simulations  !*+"

We conducted a simulation study to assess the ability of the model to estimate ecological !*!"

parameters. We defined four scenarios in which we explored the effect of a variation in the grid !*#"

resolution (see section Approximation above) and in the individual-level detectability q. To !*$"

mimic the characteristics of the wolf case study (see below), we set the number of surveys to 4 !*%"

and the number of years to 20, while we set the carrying capacity to 5 individuals per 100 km2, !*&"

the diffusion coefficient to 5 individuals per cell and the growth rate to 80%. Because we !*'"

discretize the spatial domain, we expected a lower bias and a better precision of the ecological !*("

parameters estimates when increasing the grid cell resolution. We defined a low resolution (LR) !*)"

scenario in which the spatial domain was divided into 16 cells and a high resolution (HR) !**"

scenario in which we divided the spatial domain into 100 cells. Under the Royle-Nichols model #++"

hypothesis, individual-level detectability can have a positive effect on the species-level #+!"

detectability until a certain level of abundance, hence it can influence whether the species is #+#"

detected or not. We then defined a high detectability (HD) scenario in which the individual-#+$"

level detectability was set at 0.8, and a low detectability (LD) scenario in which this probability #+%"

was set at 0.2. For each scenario (LR-LD, LR-HD, HR-LD, HR-HD), we simulated 100 datasets #+&"

and we fitted the model to each dataset. We calculated the relative bias and mean squared error #+'"

(MSE) for the carrying capacity K, the growth rate R and the species-level detectability q. Note #+("

that in the simulation study we assumed that K, R and q were constant over space and time. To #+)"

explore the ability of our model to forecast the abundance of individuals per site in the four #+*"

scenarios, we fitted our model to the first ten years and forecasted the distribution for the next #!+"

ten years.  #!!"



3- Case study: Wolf colonization in France 2007-2015 #!#"

Wolf detections and non-detections were made of presence signs sampled all year long thanks #!$"

to a network of spatially distributed professional and non-professional observers (Duchamp et #!%"

al. 2012). Presence signs went through a standardized control process to prevent #!&"

misidentification. #!'"

To define the observation process, we used a grid to cover the study area with 10x10 #!("

km cells that we used as sampling units (Cs = 975 in the notation above). Wolf monitoring #!)"

occurred mainly in winter from December to March, the most favorable period to detect the #!*"

species. Secondary occasions were defined as December, January, February and March (J = 4). ##+"

We focused on the south-eastern part of France and the period 2007-2015 (T = 9) (Fig. 1). We ##!"

used the sampling effort, defined as the number of observers at site i in year t (Effi,t) and the ###"

road density at site i (RoadDi) to explain variation in the individual-level detection probability ##$"

(qi,t) as: ##%"

logit(qi,t 0 1 Effi,t 2 RoadDi ##&"

We expected that the sampling effort had a positive effect and road density had a ##'"

negative effect on the individual-level detection probability q. We also used environmental and ##("

anthropogenic covariates to model spatial variation in parameters R and D. Using the CORINE ##)"

Land Cover® database (U.E  SOeS, Corine Land Cover 2006), we calculated forest cover as ##*"

the percentage of mixt, coniferous or deciduous forest cover. Because forests may structure the #$+"

ungulate distribution (i.e. prey species), we expected that forest cover would have a positive #$!"

effect on the logistic growth rate R (Louvrier et al. 2018).  #$#"

Human density was found in previous studies to influence habitat choice and dispersal #$$"

of wolves in Italy (Corsi et al. 1999; Marucco & Mcintire 2010). We therefore considered #$%"



human density as a candidate covariate possibly explaining spatial variation in the diffusion #$&"

parameter D. Human population was averaged in each 10x10 km from a 1x1 km raster from #$'"

the Earth Observing System Data and Information System (EOSDIS). For both parameters, we #$("

tested a linear and a quadratic effect through a logistic regression-type relationship.  #$)"

Finally, we initialized the model with  = 0.01 for the sites with at least one wolf #$*"

detection during the period 1994-2006 preceding our study period, which corresponds to one #%+"

individual per 100 km2 cell, and zero otherwise.  #%!"

To explore the ability of our model to forecast wolf colonization, we used the parameter #%#"

estimates we obtained on the 2007-2015 period and forecasted the abundance in 2016. We #%$"

assessed qualitatively our prediction by confronting the estimated probability of a site being #%%"

occupied (forecasted abundance at that site > 0) in 2016 to the actual detections made in that #%&"

same year.  #%'"

 #%("
Figure 1: Maps of the yearly detections of wolf in the study area in France from 2007 

to 2015.  



4- Bayesian inference  #%)"

To complete the Bayesian specification of our model, we specified normal priors with mean 0 #%*"

and variance 1 for the parameters to be estimated, except for parameter  for which we used a #&+"

logistic distribution between 0 and 0.2. The simulations were implemented in OpenBUGS #&!"

(Lunn et al. 2010). The wolf analyses were implemented in JAGS using the JAGS package #&#"

mecastat (Rey et al. 2018). We used Markov chain Monte Carlo (MCMC) simulations for #&$"

parameter estimation and forecasting (Hobbs & Hooten 2015). We ran three MCMC chains #&%"

with 40,000 iterations preceded by 10,000 iterations as a burn-in. We used posterior medians #&&"

and 95% credible intervals to summarize parameter posterior distributions. We checked #&'"

convergence visually by inspecting the chains and by checking that the R-hat statistic was #&("

below 1.1 (Gelman & Shirley 2011). We produced distribution maps of the latent states by #&)"

using a posteriori means of the ni,t from the model. We provide the scripts for running the #&*"

simulations and for fitting the model on the wolf data in Appendix 3.  #'+"

5- Forecasting  #'!"

To forecast the abundance of individuals per site, along with the associated prediction #'#"

uncertainty, we needed to assess the probability distribution of the true state in the future when #'$"

data will be collected, conditional on the collected data in the past (Williams et al. 2018). The #'%"

Bayesian formulation of our model allowed assessing the forecast densities by simulating #'&"

yearly data from t T + 1 and sampling (i, T+1) on each iteration of the MCMC chains. #''"

The posterior distribution was then assessed from the forecast distribution by sampling into the #'("

forecast nT+1. In the simulation study, we compared this posterior distribution with the #')"

simulated data for the last year. For the wolf case study, we assessed the probability that the #'*"

site i was occupied, which boiled down to calculating P(zi.= 1) where zi is the latent status of #(+"



the site (occupied or not) as the number of MCMC iterations producing a strictly positive #(!"

abundance, i.e. P(zi.= 1) = P(Ni > 0).  #(#"

 #($"

Results  #(%"

1- Simulations  #(&"

When the resolution in the simulation scenario increased from 16 cells to 100 cells, the model #('"

produced less biased results for all parameters (Fig. 2 and 3). The largest decrease in bias was #(("

found for the carrying capacity: from 8.94 % in LR-HD and 7.84 % in LR-LD to 1.91 % in HR-#()"

HD and 2.39 % in HR-LD. The bias also decreased for the growth rate: 3.80 % in LR-HD and #(*"

4.71 % in LR-LD to 1.46 % in HR-HD and -0.83 % in HR-LD. For the diffusion coefficient, #)+"

the combination of high resolution and high individual-level detectability led a bias reduction #)!"

from 4.82 % in LR-HD, 5.02 % in LR-LD and 4.99 % in HR-LD to 0.99 % in HR-HD.  #)#"

The model also produced more precise results for all parameters (Fig. 2 and 3). The #)$"

largest MSE reduction was found for the diffusion parameter. The MSE decreased for the #)%"

carrying capacity from 0.84 in LR-HD and 1.65 in LR-LD to 0.466 in HR-HD and 0.619 in #)&"

HR-LD. The MSE also decreased for the growth rate (0.02 in LR-HD and 0.017 in LR-LD to -#)'"

0.005 in HR-HD and 0.004 in HR-LD). For the diffusion coefficient the MSE decreased greatly #)("

from 2.187 in LR-HD and 2.44 in LR-LD to 0.767 in HR-HD and 0.739 in HR-LD.  #))"

When the resolution was low, and the individual-level detectability increased from 0.2 #)*"

to 0.8, leading to an increase in the species-level detectability, there was no significant change #*+"

in bias for the 3 parameters estimates (Fig. 3). For the carrying capacity the MSE was lower #*!"

when the detectability was high (from 1.65 to 0.84). For the other parameters there was no #*#"

significant change.  #*$"







2- Wolf case study $!&"

According to our model, the detection probability increased when the sampling effort increased $!'"

and decreased when road density increased (Fig. 4 and Appendix 4). We found that the logistic $!("

growth rate increased when the forest cover increased. The carrying capacity was estimated $!)"

around 1 individual per 100 km2 site (9.91x10-3 CRI: 8.87x10-3; 1.10x10-2). Last, the diffusion $!*"

parameter decreased as human density increased until its average of 177 inhabitants/km2. $#+"

Beyond this threshold, when human density increased, the diffusion parameter increased and $#!"

reached its maximum plateau.  $##"





Turning to the forecasting exercise now, we predicted that a large part of sites with a $#)"

forecasted occupancy probability > 0.5 were indeed detected occupied in year 2016 (Fig. 6). $#*"

Amongst the 137 sites that were detected occupied in 2016, we found only 7 of them in the $$+"

South-Western part of the study area were forecasted with a low occupancy probability. $$!"

However, the model forecasted a higher number of sites with a high occupancy probability than $$#"

the number of detected occupied sites. Most of the sites with a high occupancy probability had $$$"

also the highest uncertainty with a standard deviation of 0.25. $$%"

 $$&"

 $$'"Figure 5: Maps of the estimated abundance of wolves per 100 km2 site in South-East France between 2007 and 2015. 

Black dots represent detections in a year. 





non-detections. Besides, we explored the possibility of forecasting the potential future $%)"

distribution of a large carnivore, which could be used to target management areas or focus on $%*"

potential conflictual areas (Marucco & Mcintire 2010; Eriksson & Dalerum 2018).  $&+"

 $&!"

Simulations  $&#"

 $&$"

In the simulation study, we showed that ecological parameters were sensitive to the way we $&%"

discretized space to solve the PDE. Our model performed well when the resolution was high, $&&"

with less biased (under 5%) and more precise parameter estimates than in the low-resolution $&'"

scenario. We note however that the low-resolution scenario was an unrealistic example used to $&("

test the model in extreme conditions. Furthermore, our model was sensitive to the species-level $&)"

detectability but only when the resolution was high. We explain this pattern by the fact that $&*"

resolution had a stronger effect on the parameter estimates than the detectability and the effect $'+"

of low detectability was hidden by the effect of the low-resolution grid. $'!"

 $'#"

Wolf study  $'$"

 $'%"

We found that the logistic growth rate increased when forest cover increased. Although wolves $'&"

can adapt to various ecosystems, this pattern also matches with the suitable habitats of the key $''"

prey species for wolves (Darmon et al. 2012). We found that when human density increased, $'("

until the average value of human density, the diffusion coefficient decreased, leading to less $')"

individuals diffusing in a neighboring site with a higher human density. However, above this $'*"

average, the diffusion coefficient increased again. These contrasted patterns might be the result $(+"

of two underlying mechanisms. First, the fact the diffusion coefficient decreased is in agreement $(!"

with previous studies demonstrating the influence of human density on wolf presence (Corsi et $(#"

al. 1999; Marucco & Mcintire 2010). Second, beyond the average value of human density, the $($"



diffusion coefficient might increase due to the increase of linear features, which have been $(%"

found to be selected over natural linear features for wolves  movements (Newton et al. 2017). $(&"

As expected, we found that when sampling effort increased, the individual-level $('"

detectability increased, while it decreased when road density increased. We also expected that $(("

road density would influence wolf detectability by facilitating observers survey and site $()"

accessibility. Other studies have found that linear features also facilitate wolf travel and prey $(*"

encounter rate (Dickie et al. 2017; Newton et al. 2017). On the contrary, we found that the $)+"

increase in road density negatively affected the species detection. This result was found in $)!"

previous studies as well (Falcucci et al. 2013; Votsi et al. 2016; Louvrier et al. 2018) $)#"

corroborating the fact that wolves avoid roads and leave fewer marks in sites with highly $)$"

frequented roads or pathways (Whittington et al. 2005).  $)%"

 We estimated carrying capacity at 1 individual per 10x10 km site. Wolves pack size was $)&"

documented on average at 3.8 individuals per pack in France (Duchamp et al, 2012) varying $)'"

from 2 to a dozen individuals. Considering the average wolf territory size commonly reported $)("

between 100 and 400 km2 in western and central Europe (Ciucci et al. 2009; Mech & Boitani $))"

2010; Duchamp et al. 2012), our estimate covers the standard range of wolf densities reported $)*"

elsewhere (Mech & Boitani for a review). $*+"

 $*!"

Model Assumptions  $*#"

 $*$"

We built our model based on several assumptions that need to be discussed. We assumed that $*%"

the sampling effort was constant across surveys and that the individual-level detectability and $*&"

the local abundance remained unchanged. First, it is likely that the sampling effort varies $*'"

between surveys (months) due to human factors. However, we could only quantify the sampling $*("

effort between years, and had no information at the month level. Second, it is also likely that $*)"

the individual-level detectability varies between months partly due to the varying sampling $**"



effort between months, but also to environmental conditions, such a snow cover represented by %++"

the month of survey (Louvrier et al. 2018). Third, the local abundance at a site is also likely to %+!"

change between surveys. The choice to consider the wintering data survey, during which the %+#"

social organization of packs is the most stable (Mech & Boitani 2010), may prevent a large part %+$"

of this sampling heterogeneity according the sampling protocol implemented in the Alps by the %+%"

wolf network (Duchamp et al, 2012). However, we cannot exclude that mortality or movements %+&"

occur inside or outside the sites. In this case, the estimates for local abundance can be %+'"

overestimated as the same individuals can be detected in two neighboring sites for instance., %+("

The distribution should in any case be interpreted cautiously and considered as area of use %+)"

(Mackenzie 2006).  %+*"

Under the Royle-Nichols model, the species-level detectability is function of the %!+"

individual-level detectability, but the relationship between these two parameters is not always %!!"

linear and depends on the abundance of individuals at a site. If abundance is large (i.e., above %!#"

50 individuals), then individuals can be detected during all surveys, and no variability in the %!$"

species-level detectability will be observed, which leads to the inability to characterize the %!%"

distribution of abundances (Royle & Nichols 2003). Finally, our approach was based on a %!&"

logistic growth, but other forms of growth should be investigated, especially growth accounting %!'"

for an Allee effect, of particular relevance for wolves for which the probability of finding a %!("

mate decreases in areas with low density ((Hurford et al. 2006). %!)"

Another assumption relies on the model construction considering the diffusion equally %!*"

for all individuals. Wolves have a strong social organization in packs and future works may %#+"

consider the social aggregation of individuals when modeling the dynamic of the wolf %#!"

distribution  (see  for instance Lewis et al. 1997 and Potts & Lewis 2014).  %##"

We need to highlight here the fact that our model was realistic because we fitted it on %#$"

data from the core distribution of wolves in France. However, if we had extended our model to %#%"



the whole country, we would expect less realistic estimates due to the fact that wolves not only %#&"

disperse at short distance but also at long distance, especially on colonization fronts (Mech and %#'"

Boitani 2010). In Louvrier et al. (2018), we found that the number of observed occupied sites %#("

at long distance also influenced the probability for a site to be occupied. Our model was %#)"

deterministic but if we were to extend our model to the whole country, we would need to %#*"

account for stochasticity in events when the population is a low density (Hurford et al. 2006).  %$+"

 %$!"

 %$#"

Comparison with dynamic site-occupancy models  %$$"

 %$%"

In Louvrier et al. (2018), a dynamic site-occupancy model was fitted to the same dataset, at a %$&"

national level and between 1994-2016. We found in this previous study that when forest cover %$'"

increased, the probability for a site to be colonized the year after increased as well. This can be %$("

related to the logistic growth rate parameter, because once a site is colonized, population will %$)"

start growing. We found the same effects of sampling effort and road density on the species-%$*"

level detectability, which can be explained by the fact that maximum abundance per site is low %%+"

enough to guarantee a linear correspondence between species- detectability and individual-level %%!"

detectability. In comparison with the map of occupancy estimated with a dynamic site %%#"

occupancy model (top right panel of Figure 7 in Louvrier et al. 2018), we found that the %%$"

mechanistic approach predicted more sites with an average occupancy probability of 0.6 than %%%"

the dynamic site-occupancy model. The latter approach estimated a smaller number of occupied %%&"

sites but with a higher occupancy probability, up to 1. This difference could be explained by %%'"

the fact that occupancy models are regression-type models, which means that the estimated %%("

occupancy is linked to the data, while our mechanistic approach is based on a continuous model %%)"

over time model which allows the spreading of individuals over several sites without having to %%*"

be detected. Another explanation could be that we assumed a Poisson distribution for the %&+"

number of individuals per site in our mechanistic model. However, there could be an issue with %&!"



adjusting our model to the data, for example, due to over-dispersion in relation to the %&#"

dependence between individuals due to their social structure. A first way to overcome this %&$"

problem is to use a negative binomial distribution to relax the constraint of equal mean and %&%"

variance inherent to the Poisson distribution (White & Bennetts 1996). Another approach would %&&"

be to directly model the dependence between individuals by explaining the pack structure in %&'"

the mechanistic part of our model (Lewis et al. 1997). %&("

 %&)"

Forecasting capacities  %&*"

In the current context of fast-changing environments, predicting the future distribution or %'+"

abundance of species is an increasing challenge in the field of ecology, where ecologists are %'!"

(Mouquet et al. 2015; Houlahan et al. 2017; Maris et %'#"

al. 2018). Ecological forecasting is the process of predicting the state of an ecological system %'$"

with fully specified uncertainties (Clark et al. 2001). Forecasts should therefore be probabilistic %'%"

(Gneiting & Katzfuss 2014) to provide reliable uncertainties. Not accounting for uncertainties %'&"

associated with predictions of future change in distributions can lead to misguided decisions by %''"

policymakers or managers (Gauthier et al. 2016). The Bayesian method provides a natural %'("

framework for making probabilistic forecasts (Hefley et al. 2017). We demonstrated using %')"

simulations that our model had satisfying forecasting capabilities. When we applied our %'*"

approach to the wolf, we produced relatively correct forecasts for the presence of wolves. In %(+"

2016, 137 sites were detected as being occupied, out of which 7 sites were not forecasted as %(!"

occupied by our model. These sites were found at the edge of the distribution core in the South-%(#"

Western part of the study site. This part of the distribution was recently colonized by wolves %($"

with first detections of wolves occurred there in 2014 and 2015 for the first time. Wolves are %(%"

highly flexible and can live in various areas from maize cultures to high mountains (Kaczensky %(&"

et al. 2012). This South-Western part are places where forest cover is lower and human density %('"



is higher than in the Alpine range. In the future we might expect the effects of forest cover to %(("

be weaker as wolves expand in different landscapes. Overall, we forecasted more sites with a %()"

relatively high probability of being occupied than the number of sites detected occupied in %(*"

2016, which can be explained by the fact that our model accounts for imperfect wolf detection.  %)+"

 %)!"

Conclusion  %)#"

Mechanistic-statistical models are valuable tools to bring insight into the dynamic of species %)$"

distribution. However, ecologists are often faced with cryptic species with detectability less %)%"

than one. Here we developed a mechanistic-statistical model accounting for imperfect detection %)&"

for wolf management in France. The model is flexible and can be used in a variety of contexts %)'"

to assess the dynamic of species distribution by amending the observation process if required. %)("

By forecasting the distribution of wolves in France, we illustrate that our approach may provide %))"

a new tool in the context of the management of a species with possible conflictual interactions %)*"

with human activities. Our approach resonates with the adaptive management framework where %*+"

ecologists need to make decisions based on yearly estimates of population abundance and %*!"

distribution (Marescot et al. 2013).  %*#"

"%*$"
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Annexes Article 1 

 
Table A1: Size of prospection areas as a function of socio-professional category of observers. 

Observers were classified according to 8 entities to capture the diversity of their professional 

and personal field activities. People working for the departmental authorities (Category 1) 

display a field effort all over that departmental area. Observers belonging to the category 2 are 

state employees affected to the protected area they are working in. Details were not given for 

Regional Natural Park agents and Natural reserve agents. Their prospection area corresponds 

to the mean area of the protected area they are affiliated to. ONCFS agents (category 8) are 

attributed half a French Department as field areas when assigned for species monitoring. ONF 

agents (category 9) are attributed 1/10 of a French Department. Farmers (category 4) and 

sheep or hunt. Scientists (category 3), members of a naturalist association (category 6) and 

volunteers (category 7) were given ¼ of their affiliated department as their main activity might 

not be focused on species monitoring. 

 

 

 

 

 

 

 
 

 

 

 

  

 

 

 

 

Socio-professional category Prospection area Number of observers

Administrative (e.g., department authorities) (category 1) Area of the affiliated French department 275

National Park agent (category 2) Area of the affiliated National Park #"#

Regional Natural Park agent (category 2) 450 km² ('

Natural reserve agent (category 2) 10km² "&

Scientist (category 3) 1/4 of the affiliated departmen's surface 10

Agricultural profession (category 4) Area of the affiliated municipality 91

Hunter (category 5) Area of the affiliated municipality 423

Member of a naturalist association (category 6) 1/4 of the affiliated departmen's surface 267

Volunteer (category 7) 1/4 of the affiliated departmen's surface 474

ONCFS agent (category 8) 1/2 of the affiliated departmen's surface 746

French Forest Agency (ONF) agent (category 9) 1/10 of the affiliated departmen's surface 354
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Table A2: French departments where observers were present in 2016 along with their area and the number of observers affiliated to each department 

depending on their socio-professional category. Categories 2, 4 and 5 are not shown because their prospection areas do not depend on the size of 

the affiliated department. See also Figure A1. 

Department.code Surface (km²) Category.1 Category.3 Category.6 Category.7 Category.8 Category.9 Total

1 5762 4 0 6 10 20 10 76

3 7340 0 0 0 0 2 0 2

4 6925 23 0 8 42 39 27 174

5 5549 11 0 18 29 31 19 210

6 4299 14 1 0 35 41 2 208

7 5529 6 0 7 3 13 4 58

8 5229 4 0 1 3 6 5 38

9 4890 0 0 6 2 16 7 36

10 6004 0 1 1 0 3 0 6

11 6139 1 0 3 2 10 3 44

12 8735 4 0 0 3 19 4 50

13 5087 2 0 2 3 11 2 27

14 5548 0 0 0 0 1 0 1

15 5726 6 0 4 3 9 2 35

19 5857 0 0 0 0 1 0 1

21 8763 2 0 1 1 13 0 18

23 5565 0 0 0 0 2 0 2

24 9060 0 0 0 0 3 0 3

25 5234 7 0 13 5 23 13 90

26 6530 14 0 6 22 24 26 145

27 6040 0 0 0 0 1 0 1

29 6733 0 0 0 0 1 0 1

30 5853 4 0 3 0 12 1 47

31 6309 1 1 0 6 19 1 32

32 6257 0 0 0 1 10 0 11

33 10725 0 0 0 0 2 0 2

34 6101 7 2 4 2 21 1 43

36 6791 0 0 0 1 0 0 1

38 7431 6 1 23 37 41 32 211

39 4999 6 0 19 12 14 15 90

40 9243 0 0 0 0 6 0 6

42 4781 12 0 1 3 4 2 37

43 4977 3 0 0 0 9 1 43

44 6815 0 0 0 1 0 0 1

Department.code Surface (km²) Category.1 Category.3 Category.6 Category.7 Category.8 Category.9 Total

46 5217 0 0 0 0 7 0 7

47 5361 0 0 0 0 1 0 1

48 5167 18 0 7 10 17 8 111

51 8162 0 0 0 0 2 0 2

52 6211 1 0 0 0 10 0 11

54 5246 4 0 12 3 12 4 47

55 6211 6 0 4 2 14 5 47

56 6823 0 0 0 0 1 0 1

57 6216 3 0 6 8 17 1 38

58 6817 1 0 0 0 8 0 9

59 5743 0 0 0 1 0 0 1

63 7970 1 1 4 2 9 1 18

64 7645 0 0 0 2 13 0 16

65 4464 0 0 0 0 4 0 6

66 4116 7 0 12 24 15 15 102

67 4755 6 0 21 17 29 9 95

68 3525 29 0 24 59 18 10 163

69 3249 7 0 2 4 5 0 19

70 5360 5 0 9 3 8 7 48

71 8575 0 0 0 2 8 0 10

73 6028 17 1 6 32 24 54 225

74 4388 7 0 20 40 21 19 133

75 105 1 0 0 0 0 0 1

78 3284 0 0 0 1 0 0 1

80 6170 0 0 1 0 0 0 1

81 5758 2 0 0 1 9 5 34

82 3718 0 0 0 0 3 0 3

83 5973 7 2 2 6 21 4 64

84 3567 2 0 1 3 13 5 32

85 6720 0 0 0 0 1 0 1

87 5520 0 0 0 2 0 0 2

88 5874 9 0 10 21 15 28 107

89 7427 0 0 0 0 6 0 6

90 609 5 0 0 3 8 2 23

92 176 0 0 0 2 0 0 2
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Figure A1: Map of French departments with the identity code used in Table A2. 
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Table C1: Top 10 models incorporating habitat covariates for the wolf detection/non-detection data. In the model structure, a 1/0 indicates the 

presence/absence of the corresponding covariate in the colonization, extinction of detection probability. Note that the intercept is always included 

in the model and therefore not represented in this notation.  

 

Model structure 
Posterior 

model probability 

colonization  extinction  detection  

forest agr rock halt alt 
Dbar

r 
SDAC LDAC 

 
Trend-year 

 
SEff 

Rden

s 
survey  

1 1 0 1 1 0 1 1  0  1 1 1 0.656 

1 1 0 1 1 0 1 1  1  1 1 1 0.182 

1 1 1 1 1 0 1 1  0  1 1 1 0.066 

1 1 0 1 1 1 1 1  0  1 1 1 0.061 

1 1 1 1 1 0 1 1  1  1 1 1 0.016 

1 1 0 1 1 1 1 1  1  1 1 1 0.014 

1 1 1 1 1 1 1 1  0  1 1 1 0.005 

0 0 0 0 0 0 0 0  0  0 0 0 0.000 

1 0 0 0 0 0 0 0  0  0 0 0 0.000 

0 1 0 0 0 0 0 0  0  0 0 0 0.000 
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Table C2: Parameters estimates from the best dynamic site-occupancy model for wolf in France 

between 1994 and 2016.  The median a posteriori is given with the associated standard deviation 

(SD). Occasions 2, 3 and 4 correspond to January, February and March. Estimates are given on 

a logit scale except for alpha.psi which is given on its natural scale, i.e. [0, 1]. 

 

  

Parameters Median SD Interpretation 

alpha.phi -1.13 7.50x10-2 Extinction intercept 

alpha.psi 2.55x10-3 1.49x10-3 Initial occupancy 

alpha.p -1.98 8.04x10-2 Detection intercept 

beta.SEffp 0.37 2.56x10-2 Effect of sampling effort on 

detection 

beta.Rdensp -0.33 4.00 x10-2 Effect of accessibility (road density) 

on detection 

beta.occp2 0.47 6.42x10-2 Effect of occasion 2 on detection 

beta.occp3 0.40 6.36x10-2 Effect of occasion 3 on detection 

beta.occp4 0.38 6.42x10-2 Effect on occasion 4 on detection 

alpha.gamma -5.65 8.79x10-2 Colonization intercept 

beta.agamma 0.49 8.93x10-2 Effect of farmland cover on 

colonization 

beta.SDACgamma 0.68 3.33x10-2 Effect of short distance occupied 

neighboring cells on colonization 

beta.LDACgamma 0.49 5.25x10-2 Effect of long-distance occupied 

neighboring cells on colonization 

beta.fgamma 0.64 6.34x10-2 Effect of forest cover on colonization 

beta.altgamma 0.59 6.06x10-2 Effect of mean altitude on 

colonization 

beta.haltgamma -0.15 4.44x10-2 Effect of high altitude proportion on 

colonization 
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Figure B1: Results from posterior predictive checks for the dynamic occupancy model best 

supported by the wolf data. We show a scatterplot of the predicted chi-square discrepancy 

between simulated and expected data (on the Y axis) versus the observed chi-square 

discrepancy between expected and observed data (on the X axis) across MCMC samples. The 

Bayesian predictive p-value is 0.46 and represents the proportion of samples above the 

diagonal. Overall, the fit of the model seems satisfactory.  
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Figure D1: Number of sites having more than 0 observed occupied neighboring cells at short 

(contiguous cells) and long distance (between 10 km and 150 km) for 1994, 2005, and 2016.  
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Annexes Article 2 

 
Appendix S3: Relative bias (in %) and Mean Square Error (MSE) from a dynamic occupancy 

model accounting for ambiguity and fitted with unambiguous and ambiguous data (MUA; 

grey bars) and a dynamic occupancy model dealing with unambiguous data only (MU; black 

1, colonization 

 based on simulations in the HH, HL, LH and LL 

scenarios.  

 
Relative bias (in %) and Mean Square Error (MSE) from a dynamic occupancy model 

accounting for ambiguity and fitted with unambiguous and ambiguous data (MUA; grey bars) 

and a dynamic occupancy model dealing with unambiguous data only (MU; black bars) for the 
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Relative bias (in %) and Mean Square Error (MSE) from a dynamic occupancy model 

accounting for ambiguity and fitted with unambiguous and ambiguous data (MUA; grey bars) 

and a dynamic occupancy model dealing with unambiguous data only (MU; black bars) for the 

1

 (HL).  
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Relative bias (in %) and Mean Square Error (MSE) from a dynamic occupancy model 

accounting for ambiguity and fitted with unambiguous and ambiguous data (MUA; grey bars) 

and a dynamic occupancy model dealing with unambiguous data only (MU; black bars) for the 

1
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Relative bias (in %) and Mean Square Error (MSE) from a dynamic occupancy model 

accounting for ambiguity and fitted with unambiguous and ambiguous data (MUA; grey bars) 

and a dynamic occupancy model dealing with unambiguous data only (MU; black bars) for 

the three ecological parameters, initi 1

 

(LL). 
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Appendix S4: Estimates of parameters in the dynamic occupancy model accounting for unambiguous data (MU) on the left and in the dynamic 

occupancy model accounting for unambiguous and ambiguous data (MUA) on the right, with posterior means and standard deviations and the 

lower and upper bound of the 95% credible interval.  

Model with unambiguous data only (MU)  Model with unambiguous and ambiguous data (MUA) 

Parameter 
mean sd 2.5% 97.5%  Parameter 

mean sd 2.5% 97.5% 

Initial occupancy probability      Initial occupancy probability     

Intercept -5.31 0.67 -6.77 -4.12  Intercept -5.29 0.63 -6.64 -4.11 

Effect of forest 0.76 0.27 0.26 1.34  Effect of forest 0.71 0.25 0.22 1.22 

Effect of distance to nearest 

released site 

-3.11 0.58 -4.32 -2.06  

Effect of distance to nearest 

released site 

-2.99 0.56 -4.15 -1.93 

Extinction probability      Extinction probability     

Intercept -0.53 0.32 -1.16 0.10  Intercept 0.23 0.21 -0.17 0.66 

Effect of forest 0.29 0.14 0.01 0.5  Effect of forest 0.21 0.13 -0.04 0.48 

Effect of number of observed 

occupied contiguous neighbors. 

8.40 1.37 5.93 11.41  

Effect of number of observed 

occupied contiguous neighbors. 

7.87 1.21 5.77 10.56 

Colonization probability      Colonization probability     

Intercept  -4.57 0.20 -4.91 -4.26  Intercept  -4.63 0.16 -4.97 -4.34 

effect of elevation -0.20 0.08 -0.37 -0.04  effect of elevation -0.24 0.08 -0.40 -0.09 

effect of human density -3.78 1.45 -6.58 0.96  effect of human density -3.07 1.39 -5.79 -0.42 
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effect of distance to nearest 

released site 

-0.88 0.10 -1.09 -0.69  

effect of distance to nearest 

released site 

-0.86 0.10 -1.08 -0.67 

Effect of number of observed 

occupied contiguous neighbors. 

6.98 0.59 5.83 8.15  

Effect of number of observed 

occupied contiguous neighbors. 

7.32 0.59 6.19 8.51 
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Annexes Article 3 

 
Appendix A. Mathematical formulation and instructions for implementing an occupancy 

model incorporating misidentification and detection heterogeneity with altitude as a covariate 

on the initial occupancy probability in program E-SURGE. 

 

 Occupancy models dealing with misidentification and heterogeneity can be implemented in 

Program E-SURGE (Choquet et al. 2009) which is freely downloadable at 

https://www.cefe.cnrs.fr/fr/actus/livres/34-french/recherche/bc/bbp/264-logiciels. Below we 

provide the matrix patterns of state and event transitions for the occupancy model accounting 

for misidentification and heterogeneity developed in this paper. Statistical and software details 

can be found in E-SURGE manual (Choquet and Nogue 2011).  

We considered 2 classes of sites, say A and B. We considered also 4 states: unoccupied in site 

A (UA), unoccupied in site B (UB), occupied in site A (OA), occupied in site B (OB) plus the 

state dead that is required by E-SURGE. Finally, we considered 3 events: not detected (0), 

detected unambiguous (1) and detected ambiguous (2).  

We defined the class affiliation vector , the initial state matrix , the transition matrix A, the 

- 

the proportion of sites in class A (resp. class B), while   (resp. ) denotes the initial 

occupancy probability for sites in class A (resp. class B). The parameter  (  is the 

probability that an unoccupied site of class A (resp. B) at time k becomes occupied at time k+1 

and  (resp. ) the probability that an occupied site of class A (resp. B) at time k becomes 

unoccupied at time k+1. The parameter pA10 (resp. pB10) is the probability of incorrectly 

detecting the species at an unoccupied site A (resp. B) and pA11 is the probability of detecting 

the species at an occupied site A (resp. B). Finally, the parameter b is the probability to classify 

a true detection as unambiguous.  
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Based, on those parameters, we have:  

Initial States (in two steps): 
Class affiliation 

At the initial state, sites can be of class A (resp. B) with the probability  (resp. 1-  

 =  

Initial state 

At the second step, sites of class A. (resp. B) can be occupied with the probability  (resp. 

) 

 

 

State Transitions 
The transition step in the occupancy framework describes the change of state across primary 

occasions or years. If a site of class A (resp. class B) is unoccupied at year k, it will become 

occupied at year k+1 with the colonization probability  (resp. ). On the opposite, if a site 

of class A (resp. class B) is occupied at year k, it will become unoccupied at year k+1 with the 

extinction probability  (resp. ) (Gimenez et al. 2014). 

A =  

 

Observation Events (in two steps): 
Detection 

The first step deals with detection. An observation made on an unoccupied site A (resp. B) is 

a false positive made with the probability pA10 (resp. pB10). An observation made on an 

occupied site A (resp. B) is a true positive made with the probability pA11 (resp. pB11). 
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P =  

Classification 

The second step deals with the classification of detections. If a true positive detection is made, 

it will be classified as unambiguous with probability b.  

B =  

 

FITTING IN E-SURGE 

The first step is to load the data: 

Start » New session (preferably in the directory where your dataset is) 

 

In the 'DATA' section in the main window, click the 'Modify' button and use 5 states 

and 1 age class. 

The second step is to specify that we are in the occupancy framework:  

 

The third step is to specify if we want to compute the confidence intervals of the model

estimates:  

In the 'Advanced Numerical' section in the main window, tick the 'Compute C-I 

(Hessian)' box to get confidence intervals 

 

Then, the model specification procedure is decomposed into i) implementing the basic 

structural form of the matrices using the GEPAT interface, ii) setting linear model of each 
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parameter using the GEMACO interface and iii) fixing initial parameters using IVFV 

interface. 

In the 'COMPUTE A MODEL' section in the main window, click on the 'Gepat' 

yellow button and use the following Matrix Patterns: 

In the GEPAT module in E-

-

event matrices introduced above, we have: 

In the 

the number to 2 for Initial state and Event. 

Initial State (in two steps): 
- Class affiliation vector   

 p  *  

- Initial state matrix 

* - p - 

- * - p 

 

Transition 
- Transition matrix 

* - y - - 

- * - y - 

y - * - - 

- y - * - 

- - - - * 

 

Event (in two steps): 
- Detection matrix 

 

* - b 

* - b 

* b - 

* b - 

* - - 

 

- Classification matrix 

* - - 

- b * 

- - * 

 

Click Exit to go to the next step. 
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In the GEMACO interface (Choquet 2008), predefined shortcuts are used to specify which 

parameters are to be time-constant, time-specific or state-

 In the 

depend on the individual state. 

In the 'COMPUTE A MODEL' section in the main window, click on the 'Gemaco' 

green button and use the following syntax in the 'Model definition' dialog box (in the 

right bottom corner): 

 

GEMACO:  

IS: step 1: i 

Because we were interested in incorporating heterogeneity in the detection process only, we 

considered  =  here with an effect of altitude as a covariate.  

IS: step 2: i + altiscale 

A B A B 

and set their values to zero in the IVFV interface. 

T: i 

We wanted to get all detection probabilities different:  

E: step : f  

E: step 2: i  

 

To check that the model is correctly implemented:  

Gemaco » Call Gemaco (all phrases) or Ctr+G, then click Exit 

In the 'COMPUTE A MODEL' section in the main window, click on the 'IVFV' pink 

button and specify parameters value if you want some to be fixed:  

 

In the IVFV interface, for the Transition as we have one parameter, one needs to set it at 0: 

#1 = 0 to remain in a static occupancy model. 

In the 'COMPUTE A MODEL' section in the main window, click on the 'RUN' red 

button to fit the model to the simulated dataset. 

When the dialog box pops up, modify the model name if needed, then click OK 

In the 'Output' section of the main window, click on 'Selected Model Results (.out)' to 
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eight lines below are organized as follows: pi, psi, effect of altitude on , pA10, pB10, 

pA11, pB11

output file.  

Note: Miller et al. (2011) developed a multiple detection method model to account for multiple 

detection methods employed on unique sampling occasions. The general HMM framework we 

introduce can be used with a multi-method model. The decomposition of the observation matrix 

is actually the same, only the implementation in program E-SURGE would differ. For instance, 

for the surveys during which only unambiguous data happen for sites of class A, we would have 

to fix pA10 and pA11*(1-b) to zero during those surveys. For surveys during which only 

ambiguous data happen then we would have to fix b*pA11 to zero. Same for occasions for sites 

B.  
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Appendix B. Mathematical formulation and instructions for implementing an occupancy 

model incorporating misidentification only with altitude as a covariate on the initial 

occupancy probability and sampling effort as a covariate on detection probabilities in program 

E-SURGE. 

Occupancy models dealing with misidentification and heterogeneity can be implemented in 

Program E-SURGE (Choquet et al. 2009) which is freely downloadable at 

https://www.cefe.cnrs.fr/fr/actus/livres/34-french/recherche/bc/bbp/264-logiciels. Below we 

provide the matrix patterns of state and event transitions for the occupancy model accounting 

for misidentification only developed in this paper. Statistical and software details can be found 

in E-SURGE manual (Choquet and Nogue 2011).  

We considered 2 states: unoccupied and occupied plus the state dead in E-SURGE. We also 

considered 3 events: not detected (0), detected unambiguous (1) and detected ambiguous (2).  

classification matrix B. The parameter  denotes the initial occupancy probability. The 

parameter is the probability that an unoccupied site at time k becomes occupied at time k+1 

and  the probability that an occupied site at time k becomes unoccupied at time k+1. The 

parameter p10 is the probability of incorrectly detecting the species at an unoccupied site and 

p11 is the probability correctly detecting the species at an occupied site. Finally, the parameter 

b is the probability to classify a true detection as unambiguous.  

Based, on those parameters, we have:  

Initial States:  
Initial state 

At the initial step sites can be occupied with the probability  

   

State Transitions 
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The transition step in occupancy framework describes the change of state across primary 

occasions or years. If a site is unoccupied at year k, it will become occupied at year k+1 with 

the colonization probability . On the opposite if a site is occupied at year k, it will become 

unoccupied at year k+1 with the extinction probability  (Gimenez et al. 2014). 

A =  

Observation Events (in two steps): 
Detection 

The first step deals with detection. An observation made on an unoccupied site is a false 

positive made with the probability p10. An observation made on an occupied site is a true 

positive made with the probability p11. 

P =   

Classification 

The second step deals with the classification of detections. If a true positive detection is made, 

it will be classified as unambiguous with probability b.  

B =  

 

FITTING IN E-SURGE 

The first step is to load the data: 

Start » New session (preferably in the directory where your dataset is) 

 

In the 'DATA' section in the main window, click the 'Modify' button and use 5 states 

and 1 age class. 
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The second step is to specify that we are in the occupancy framework:  

 

estimates:  

In the 'Advanced Numerical' section in the main window, tick the 'Compute C-I 

(Hessian)' box to get confidence intervals 

 

Then, the model specification procedure is decomposed into i) implementing the basic 

structural form of the matrices using the GEPAT interface, ii) setting linear model of each 

parameter using the GEMACO interface and iii) fixing initial parameters using IVFV 

interface . 

In the 'COMPUTE A MODEL' section in the main window, click on the 'Gepat' 

yellow button and use the following Matrix Patterns: 

In the GEPAT module in E-

- eroes. For the initial states matrices, the transition and 

event matrices introduced above, we have: 

Initial State:  
- Initial state vector   

 *  p  

Transition 
- Transition matrix 

* y - 

y * - 

- - - 

 

Event(in two steps): 
- Detection matrix 

 

* - b 

* b - 

* - - 
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- Classification matrix 

* - - 

- b * 

- - * 

 

Click Exit to go to the next step. 

 

In the GEMACO interface (Choquet 2008), predefined shortcuts are used to specify which 

parameters are to be time-constant, time-specific or state-

model consi

depend on the individual state.  

In the 'COMPUTE A MODEL' section in the main window, click on the 'Gemaco' 

green button and use the following syntax in the 'Model definition' dialog box (in the 

right bottom corner): 

 

GEMACO:  

We wanted to test for the effect of altitude on the initial occupancy probability:  

IS: i + altiscale 

 and set their 

values to zero in the IVFV interface. 

T: i 

We wanted to get all detection probabilities different with sampling effort as a covariate on 

both detection probabilities:  

E: step : f.[i+POscale] 

E: step 2: i  

 

To check that the model is correctly implemented:  

Gemaco » Call Gemaco (all phrases) or Ctr+G, then click Exit 

In the 'COMPUTE A MODEL' section in the main window, click on the 'IVFV' pink 

button and specify parameters value if you want some to be fixed:  

 

In the IVFV interface, for the Transition as we have one parameter, one needs to set it at 0: 

#1 = 0 to remain in a static occupancy model. 
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In the 'COMPUTE A MODEL' section in the main window, click on the 'RUN' red 

button to fit the model to the simulated dataset. 

When the dialog box pops up, modify the model name if needed, then click OK 

In the 'Output' section of the main window, click on 'Selected Model Results (.out)' to 

eight lines below are organized as follows: psi, effect of altitude on , p10, p11, b, the 

effect of sampling effort on p10 and the effect of sampling effort on p11. To check the 
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Appendix E: Results of the simulation study to assess the performance of the misidentification 

occupancy model accounting for heterogeneity (MMH) vs. the model without heterogeneity 

(MMO). The first column corresponds to the heterogeneity coefficient calculated with the 

proportion of sites of class A and pA11 the probability of making true positive on sites of class 

A and pB11 the probability of making true positive on sites of class B. The differences of AIC 

00 simulations for each scenario, are provided. 

Estimation accuracy (RMSE) and relative bias for the occupancy probability are both provided 

as measures of model performance.  

 

  

Heterogeneity 

coefficient 
 pA11 pB1

1 

 Sd 

 
1) 

MMH  
1) 

MMO 

Relative 

1) 

MMH 

Relative 

1) 

MMO 

0.24 0.2 0.1 0.7 81.49 19.54 0.04 0.08 0.12 -8.41 

0.49 0.5 0.1 0.8 252.99 30.79 0.03 0.09 1.14 -10.91 

0.53 0.8 0.1 0.9 305.96 37.96 0.05 0.06 -1.96 -3.12 
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Appendix F: Results of the simulation study to assess the performance of the misidentification 

occupancy model accounting for heterogeneity (MMH) vs. the model without heterogeneity 

(MMO) with 3 occasions. The first column corresponds to the heterogeneity coefficient 

calculated with the proportion of sites of class A and pA10 the probability of making true 

positive on sites of class A and pB10 the probability of making true positive on sites of class B. 

, obtained from 200 simulations for 

each scenario, are provided. Estimation accuracy (RMSE) and relative bias for the occupancy 

probability are both provided as measures of model performance.  

 

 

  

Heterogeneity 

coefficient 
 pA10 pB1

0 

 Sd 

 
1) 

MMH  
1) 

MMO 

Relative 

1) 

MMH 

Relative 

1) 

MMO 

0.24 0.2 0.1 0.7 -4.65 1.84 0.12 0.07 9.96 7.28 

0.49 0.5 0.1 0.8 -3.33 2.95 0.14 0.09 15.61 10.24 

0.53 0.8 0.1 0.9 -2.98 2.49 0.10 0.08 7.04 4.79 
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Annexes Article 4  

 

Appendix 1: Comparison of Pearson residuals for the PPM only model not accounting for spatial dependence and the PPM only accounting for 

spatial dependence.  

 

 Without area interaction With area interaction 

Year Sum of 

Pearson 

residuals 

in entire 

window 

Area of 

entire 

window 

Quadrature 

area 

Range of smoothed field Area 

interaction 

radius 

Sum of 

Pearson 

residuals in 

clipped 

window 

Area of 

clipped 

window 

Quadrature 

area 

Range of smoothed field 

1997 -329.9 350000 350000 -0.004285 : 0.004462 7 -359.5 349100 349000 -0.004487 : 0.00429 

1998 -143.3 350000 350000 -0.004939 : 0.004263 1 -58.31 349100 349100 -0.005336 : 0.008158 

1999 -40.34 350000 350000 -0.004384 : 0.003941 5 -23.47 349100 349100 -0.004407 : 0.004018 

2002 -61.9 350000 350000 -0.006553 : 0.006637 6 -5.188 349100 349100 - 0.006321 : 0.0068 

2003 247.5 350000 350000 -0.004952 : 0.006742 3 -153 349100 349000 -0.005359 : 0.005097 

2004 -232.5 350000 350000 -0.004583 : 0.002849 7 -354.3 349100 349100 -0.004168 : 0.002875 

2006 -250 350000 350000 -0.00501 : 0.005936 5 -390.3 349100 349000 -0.005833 : 0.006349 

2010 -129.4 350000 350000 -0.005193 : 0.006978 5 -315.4 349100 348900 -0.005315 : 0.006617 

2011 -130.5 350000 350000 -0.00508 : 0.007895 6 -465.2 349100 349100 -0.005674 :0.004231 

2012 -179.1 350000 350000 -0.0037 : 0.005036 5 -220.9 349100 349000 -0.003959 : 0.00574 

2015 380.3 350000 350000 -0.003725 : 0.008094 10 -120.1 349100 349000 -0.003961 : 0.005246 
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Appendix 2: Variable selection using the LASSO technique (Renner et al. 2015) for all the years. The Poisson PPM likelihood is 

augmented with a penalty function. On the plot, each curve represents a variable in the model. The x axis is a function of the 

regularization penalty parameter. The y axis gives the value of the variables. The vertical line shows, depending on the selection 

criteria, the optimal value of the penalty parameter and the values of the selected variables.  
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Appendix 3: Intensity maps from the combined model accounting and not accounting for spatial dependence for all the years, 

probability of occupancy maps for all the years and intensity maps from the PPM model accounting and not accounting for spatial 

dependence for all the years  
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Appendix 1: Estimated abundance evolution for 10 years from the posterior median (red solid line) and the 95 % credible intervals (grey dashed line) in comparison 
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Appendix 3:  Median and 95% credible interval of the yearly wolf abundance estimates in 

France between 2007 and 2015 in South-Eastern France.  

 2.50% 50% 97.50% 

Year Estimated abundance 

2007 81.0 121 313.0 

2008 95.0 137 330.0 

2009 134.0 180 441.0 

2010 126.0 177 488.8 

2011 124.0 179 566.8 

2012 127.0 198 630.8 

2013 140.0 228 710.0 

2014 146.2 245 780.0 

2015 159.0 265 842.0 
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Appendix 4: Median and 95% credibility intervals for the parameters and the effects of 

ecological variables on wolf distribution dynamics between 2007 and 2015 in South-Eastern 

France. A * sign indicates that the credible interval of the corresponding parameter does not 

contain zero.  

 

 

 2.50% 50% 97.50% 

Species-level detectability q    

Intercept* -2.19 -2.03 -1.86 

Linear effect of sampling effort* 0.30 0.39 0.47 

Quadratic effect of sampling effort* -1.05 -0.94 -0.84 

Logistic growth rate R    

Intercept* -1.67 -1.04 -0.42 

Linear effect of forest cover* 2.60 3.43 4.49 

Quadratic effect of forest cover  -0.90 0.09 1.03 

Carrying capacity K     

Intercept* 8.88x10-2 9.90x10-2 1.10x10-2 

Diffusion parameter D      

Intercept  -0.11 1.16 2.89 

Linear effect of human density  -1.34 0.46 1.89 

Quadratic effect of human density* 0.18 1.17 2.76 
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