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RESUME

Ce manuscrit de these présente une nouvelle approche pour caractériser qualitativement
et quantitativement la localisation et les propriétés des structures dans un aquifére fracturé et
karstique a 1’échelle décamétrique. Cette approche est basée sur une tomographie hydraulique
mengée a partir de réponses a une investigation de pompages et interprétée avec des méthodes
d’inversions adaptées a la complexité des systémes karstiques. L’approche est appliquée sur un
site karstique d’étude expérimental en France, une premiere fois avec des signaux de pompage
constants, et une deuxieme fois avec des signaux de pompage harmoniques. Dans les deux cas,
I’investigation a fourni des réponses de niveaux d’eau de nappe mesurés pendant des pompages
alternés a différentes positions. L’interprétation quantitative de ces jeux de réponses consiste a
les reproduire par un modele avec un champ de propriété réaliste adéquat généré par inversion.
Les méthodes d’inversions proposées dans ce manuscrit permettent de reconstruire un champ
de propriétés hydrauliques réaliste en représentant les structures karstiques soit par un réseau
généré par automates cellulaires, soit par un réseau discrétisé. Les résultats d’interprétations
obtenus sur le site d’étude expérimental permettent d’imager les structures karstiques sur une
carte et de «lire » leur localisation. De plus, les résultats obtenus avec les réponses a des
pompages harmoniques tendent a montrer le rle de la fréquence du signal sur les informations
portées par les réponses. En effet, les fréquences plus ¢levées caractérisent mieux les structures
les plus conductrices, alors que les fréquences plus faibles mobilisent des écoulements

¢galement dans des structures karstiques moins conductrices.



ABSTRACT

This thesis manuscript presents a novel approach to characterize qualitatively and
quantitatively the structures localization and properties in a fractured and karstic aquifer at a
decametric scale. This approach relies on a hydraulic tomography led from responses to a
pumping investigation and interpreted with inversion methods adapted to the complexity of
karstic systems. The approach is applied on a karstic experimental study site in France, a first
time with constant pumping signals, and a second time with harmonic pumping signals. In both
applications, the investigation resulted in groundwater level responses measured during
alternated pumping tests at different locations. The quantitative interpretation of these sets of
responses consists in reproducing these responses through a model with an adequate realistic
property field generated by inversion. The inversion methods proposed in this manuscript
permit to reconstruct a realistic hydraulic property field by representing the karstic structures
either through a network generated by cellular automata, or through a discretized network. The
interpretation results obtained on the experimental study site permit to image the karstic
structures on a map and to ‘read’ their localization. Furthermore, the results obtained with the
responses to harmonic pumping tests tend to show the role of the signal frequency on the
information carried by the responses. In fact, higher frequencies better characterize the most
conductive structures, while lower frequencies mobilize flows also in less conductive karstic

structures.
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Figure 4.5: Initial and inverted models for an inversion using drawdown data produced
from a true model (on the right) with a homogeneous matrix. The red dots on the true
model symbolize the pumping/measurement boreholes for the hydraulic data. The

inverted model permits to localize approximatively the karstic network connections but

in this case the amount of data is insufficient to have a proper imagery. 123

Figure 4.6: Initial (a) and inverted (b) models for an inversion using drawdown data
produced from a true model with a homogeneous matrix, and associated map of the
conduit properties posterior standard deviations (c). The inverted model in (b) permits

a good localization the true karstic network. It also reduced locally the initial

transmissivity (0.06 m?/s to 0.01 m?/s) of the conduits connected to the primary drain

in the bottom right part of the model (the conduit thickness is proportional to its
transmissivity value). The red dots on the true model symbolize the

pumping/measurement boreholes for the hydraulic data. 124

Figure 4.7: Initial and inverted models for an inversion using drawdown data produced
from a true model (on the right) with a homogeneous matrix. The red dots on the true
model symbolize the pumping/measurement boreholes for the hydraulic data, primarily
located in the matrix. The inverted model permits to almost reproduce the karstic

network even if only two measurement points are located in the true network. 125

Figure 4.8: Initial and inverted models for an inversion using drawdown data produced
from a true model (on the right) with a heterogeneous matrix. The red dots on the true
model symbolize the pumping/measurement boreholes for the hydraulic data. A first
inverted model (a) permits to localize the true karstic network but also generates

conduits to simulate the more transmissive part of the true model. A second

inversion (b) starting from the previous inverted model permits to correct the

geometry and produces an inverted model matching more accurately the true model. 126
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Figure 4.9: Maps of the conduit and matrix transmissivities posterior standard

deviations. The matrix higher transmissivity zones in the inverted model (bottom left)

have a higher uncertainty value than the lower transmissivity zones (top right). On the
contrary, the uncertainty on the transmissivities of the conduits of the primary drain is
higher than the secondary conduits. 127

Figure 4.10: Initial and inverted models for an inversion using drawdown data

generated from a true model (on the right) with a homogeneous matrix. The red dots

on the true model symbolize the pumping/measurement boreholes for the hydraulic

data. A first inverted model (a), starting from a simple initial model, permits to

localize approximately the true network geometry. A second inversion (b), starting from

a more detailed initial model, permits to produce a more precise network geometry. 128

Figure 4.11: Maps of the posterior uncertainties of the network local directions for the
Cases a and b. In the Case a, started from a simple initial model, the highest

uncertainties are distributed uniformly over the inverted network. In the Case b, started
from a more detailed initial model, the highest uncertainties are located in the

periphery of the model. 129

Figure 5.1: Scheme of the 8 different weighting distributions N possibilities to
parameterize the CA subspaces. Each distribution defines a different direction for the
conduit-state generation shown by the arrows. The dual radius neighborhood is
described here for a given cell in grey (the other cells are not shown for a reason of

readability). In the configurations N,,1e [1,4] the circles are defined by an inner circle

of radius 2 cells and an outer circle of radius 6 cells, and in the configurations
N,,ie [5,8] the circles are defined by an inner circle of radius 4 cells and an outer

circle of radius 5 cells. The neighbor cells of the greyed cell are split in 8 internal

‘activator’ weighting sectors and 8 external ‘inhibitor’ weighting sectors represented by

the two radially split circles. A neighbor cell in state matrix can be associated (given its
position in the neighborhood) to a positive weight ‘+ +’ which is twice higher than a ‘+’
weight, or to a negative weight ‘- -* which is twice higher than a *-* weight, or to a

null weight in the empty sectors and beyond the neighborhood. 143

Figure 5.2: Presentation of a model in the CADI algorithm. Here the model is
partitioned in 9 subspaces controlled by CA. The model is parameterized by a

structural parameter P, (here P, (5)=N, ; P, (4)=P,(6)=N, and
P, (1)=P,(9)= N, (see Figure 1)) and a property values parameter P,

(here every subspace is defined by the same B but it could vary in each subspace).

Initially the whole model is considered as matrix, except an initial conduit cell. Within

the CA time process the conduit is generated from this initial cell and propagates

through the model depending on the subspaces structural parameters until it reaches

a global converged geometry. 144

Figure 5.3: (a) Map indicating the location of the experimental site. The black square
indicates the location of the Lez aquifer in which the Terrieu site is included.

(b) Distribution of twenty-two boreholes of the Terrieu experimental site. The red dots
indicate the boreholes where the pumping tests were performed while the grey dots
indicate the measurement boreholes. (¢) Pumping rates (red captions). Inferred

principal flow path connectivity (blue dotted lines) and local karstic conduits (green

lines) based on downhole videos, well logs, and packer tests. The orientation of the

green lines indicates the orientation of local karstic features observed on downhole

videos. A green dot indicates that no karstic features were seen in this borehole. 149
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Figure 5.4: Schematic showing the sequential series of inversions led to obtain the

final flow network model. The initial model was partitioned with 4 X 6 subspaces

for its inversion. The inverted flow network model was then used as a new initial

model for an inversion with 8 X 12 subspaces. The same operation was repeated on

last time so that our final flow network has a partitioning of 16 X 24 subspaces. 151

Figure 5.5: (a) Comparison of the observed drawdowns to the drawdowns modeled

by the inverted flow model. (b) Resultant model of the inversion modeling

showing the heterogeneous distribution of the transmissivities. (c) Comparison of the

result model with the known preferential flow path connectivity (interpreted in the

model in dotted blue lines). (d) Superimposition of the known local conduits direction
(shown as blue lines) presented in Figure 5.3c. 153

Figure 5.6: Maps of hydraulic drawdowns calculated from the result flow network

model. The drawdowns are shown for each of the pumping wells (white triangles) used

for the hydraulic tomography (the pumping rate is indicated in each figure). The
drawdowns can have very different forms depending on the localization of the

borehole in a conduit or in the matrix, highlighting the heterogeneity of the model.

Pumping in the matrix (P2, P10, P17) results in a very local drawdown, while

pumping in a conduit (PO, P5, P11, P16, P21) produces a more global drawdown in

the whole model (in these cases the area the most impacted by the pumping is

delimited by white dotted lines). 154

Figure 5.7: Schematic representation of the modeled karstic structure at the

Terrieu experimental site, considering the geological information, the hydraulic

tomography investigation, and the flow network produced by inversion with the CADI
method. The red lines indicate the boreholes where the pumping tests were performed,
while the grey lines indicate the measurement boreholes. 155

Figure 5.8: The map of the network structural uncertainties (left) shows that the

network geometry is well constrained especially in a zone between each borehole in

the center of the model, and compared to the map of transmissivities standard

deviation (right), the hydraulic data permitted to constrain more the conduits position

than the matrix. 157

Figure 5.9: Maps of the pumped water velocities calculated by the result model for a
pumping in borehole PO and in borehole P21 (the two most productive pumping). The
pumping boreholes are indicated by white triangles. For a reason a better readability of

the low velocities, the scale has been fixed on a maximal velocity of 10 m/s, thus

in the blackest zones, the velocity can be higher than this value (up to 102 m/s

near the pumping point for P0). 158

Figure 5.10: Comparison of the inversion result produced by the CADI method and

by the SNOPT method (Wang et al. 2016) at the same scale of the Terrieu field site

and with same hydraulic dataset. The initial models are shown on the left and the

inverted models are presented on the right. 159

Figure 6.1: The theoretical synthetic case used to study the responses of a harmonic
pumping in a karstic field. A karstic network (in blue) composed of a large conduit

(LC) and two thin conduits (TC) crosses a homogeneous matrix (in white). All conduits

are 1-D features in the model, but shown with conductivity-weighted thicknesses for

clarity. Eight different boreholes are positioned in the model and represent

pumping or measurement points. 175
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Figure 6.2: Drawdown responses h in each borehole to a harmonic pumping in P3
in a time domain simulation. If the greyed portion of the time series is not considered,

these drawdown responses can be described as the sum of a linear signal h,, and a
purely oscillatory signal h__ . 178

Figure 6.3: Oscillatory signals responses in each borehole for a harmonic pumping in

P3, for a frequency domain simulation and a time domain simulation (avoiding the first
signal period). One sees that these signals are almost the same for the two

simulations. 179

Figure 6.4: Relative amplitude (%, in blue) and relative phase offset (°, in orange)

values in the oscillatory responses in each borehole for different harmonic pumping
locations (P4, P7, P6, P3). A dash represents an absence of oscillatory response

(< 1 mm). The pumping location is indicated by ‘P’ and its drawdown oscillatory

signal is considered as a 100% amplitude signal with a 0° phase offset. 181

Figure 6.5: Differences in relative amplitude (in blue, in %) and relative phase offset (in
orange, in °) values in the oscillatory responses by decreasing from a 5 min period

signal to a 1 min period signal for two different harmonic pumping locations (P6, P3).

A dash represents an absence of oscillatory response (< 1 mm). The pumping

location is indicated by ‘P’. The main signal differences appear for the boreholes

located in the matrix, near to a conduit (P1, P4) (dual connection). 182

Figure 6.6: Comparison of the oscillatory relative responses for a harmonic pumping in

P3 for a 1min period signal during 6 min (full line) and a 5min period signal during

30 min (dotted line). The measurement boreholes have been separated

regarding their location: in a conduit (P2, P5, P6, P8) or in the matrix (P1, P4, P7).

The main signal differences appear for the boreholes located in the matrix, near to a
conduit (P1, P4) (dual connection). 183

Figure 6.7: Maps of distribution of the amplitude value in the responses to a harmonic
pumping signal with a 5 min period at different locations: in the matrix near a conduit
(P4), in the matrix (P7), in a large conduit (P6), in a thin conduit (P3). 185

Figure 6.8: Maps of distribution of the phase offset value in the responses to a
harmonic pumping signal with a 5 min period at different locations: in the matrix near a
conduit (P4), in the matrix (P7), in a large conduit (P6), in a thin conduit (P3). 186

Figure 6.9: Comparative maps of distribution of the amplitude and absolute phase
offset values in the responses to a harmonic pumping at two different locations (in
the matrix near a conduit (P4), in a large conduit (P6)) for a 5 min period (left) and
1 min period (right) signal. 188

Figure 6.10: Boreholes locations on the Terrieu site. The colors for P2, P9, P10 and

P15 refer to the colors used to designate these boreholes in Figure 6.11. The blue line
indicates a conduit connectivity assessed from previous investigations (Dausse 2015;
Wang et al. 2016). The boreholes in light grey were not measured during the

harmonic pumping test. 189

Figure 6.11: Example of different type of responses registered during the 5 min

period harmonic pumping test in P15 on the Terrieu site. The top graph shows the
complete responses and the bottom graph shows the purely oscillatory responses after
having subtracted the linear signal. 191

Figure 6.12: Registered oscillatory responses for each measurement borehole
compared to the T= 5 min period pumping borehole signal (full lines) and the
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interpreted signals for an equation form of Equation (6.10) with variables amplitude and
phase offset values (dotted lines). 192

Figure 6.13: Example of a possible conduits network (inside the zone delineated

by violet dotted boundaries) interpreted from the boreholes connectivity by applying the
same analysis than in the synthetic case. The captions represent the relative

amplitude (in blue, in %) and relative phase offset (in orange, in °) values in the

oscillatory responses in each measured borehole. A dash represents an absence of
oscillatory response (< 1 mm). The pumping location is indicated by ‘P’. The blue line
indicates a conduit connectivity known from previous investigations (Jazayeri

Noushabadi 2009; Dausse 2015). 193

Figure 7.1: Maps of localization of the Terrieu site in France (left) and well pattern on

the site (right). Boreholes used as pumping and measurement points are indicated

using red triangles, and boreholes used only as measurement points are indicated

using grey circles. Boreholes indicated by solid black points were not used

during the investigation. The blue dotted line delineates a preferential flow path

identified by previous studies (Jazayeri Noushabadi 2009 and Dausse 2015), which

shows a connectivity between P2, P8, P11, P12, P15 and P20. 208

Figure 7.2: Left: Measured drawdown curves for a selection of boreholes (P2, P10,

P11, P15) during a pumping in P15 with a 2 min and a 5 min period. Right: Zoom-in

view of three oscillation cycles after removing the linear part from the drawdown

curves. 210

Figure 7.3: Zoom-in on the oscillatory responses extracted from the drawdown
measured in P2, P10, P11 and P15 during pumping tests in P15 with a 2 min (left) and
a 5 min (right) signal periods and FFT results of the interpreted amplitude (Amp.) and
phase offset (P.-O.) responses. Solid lines represent the measured signals,

dotted lines represent the interpreted signals (h, . in Equation (7.2)) reconstructed

from the amplitudes and phase offsets interpreted by FFT. For interpreted amplitudes
smaller than 1 mm (for example here in P10), we considered the oscillatory

responses to be negligible. The blue lines represent the interpreted pumping signals

(P15) and are presented for each borehole for a better visualization of the interpreted
phase offset responses. 212

Figure 7.4: Connectivity maps interpreted from the amplitude (in blue) and phase

offset (in orange) responses to a pumping in P15 with a 2 min (left) and a 5 min (right)
period of signal. The areas within the dotted lines delineate a possible area where
boreholes are connected through a direct conduit connectivity. Dashes indicate

negligible oscillatory responses. 213

Figure 7.5: Schema of the parameterization of a model with the CADI method. P,

contains the encoded (see Encoding) structural directions of generation associated to
each subspace which permits to generate, from an initial ‘conduit’ cell, a network of

conduits in the matrix. PB contains the conduit (C) and matrix (M) transmissivity and
storativity values associated to each subspace. F(PN,Pﬁ) designates the model

produced by applying the property values from PB to the network generated from P, . 218
Figure 7.6: Schematization of the complete multi-scale inversion process. Starting

from an initial model, firsts inversions were led for a 6 X 4 partitioning (shown by the

grid). The results were refined to 12 X 8 subspaces and used for new inversions.

Finally, joint inversion were led starting from the results of the previous separate
inversion. 224
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Figure 7.7: Comparison of some measured and simulated (with the property

distributions presented in Figure 7.9) responses signals in observation points P2

(green), P10 (orange), P11 (red) and pumping points P3, P9, P15, P20 (each time in

blue), for pumping signals with a 2 min (left) and a 5 min (right) period. In the case

of the pumping in P3 we present in blue the signal in PO, located 1 m away from P3

(which was not measured during the investigation). For a better readability the

responses are presented separately for a pumping in P15 with their amplitude (A. in

cm) and their phase offset (P. in °) values. For the pumping in P3, P9 and P20 the
responses are presented on a same graph. 226

Figure 7.8: Maps of simulated spatial amplitude (Amp.) and phase offset (P.-O.)
with the models in Figure 7.9 for a pumping in P15 with a signal period of 2 min and
5 min. 227

Figure 7.9: Maps of the distributions of transmissivity (7" ) and storativity (.S ) found by
separate inversions of the responses to periods of 2 min and 5 min. 229

Figure 7.10: Maps of the distributions of transmissivity found by inversions of the
responses to the 2 min and 5 min periods, and joint inversions started with the 2 min
result (2 min (+5 min)), and with the 5 min result (5 min (+2 min)). 230

Figure 7.11: Maps of the connectivity responses associated to each borehole

from the networks (shown in background in black) inverted with the joints inversions.
Boreholes in blue are associated to a conduit connectivity, in orange to a dual

connectivity, and in red to a matrix connectivity. The red lines show flow paths in the
models which show a same connectivity as the field preferential flow path

highlighted in Jazayeri Noushabadi (2009) and Dausse (2015). 233

Figure 7.12: Structural uncertainty values from the results found for separate inversions
of the 2 min and 5 min responses, and joint inversions started with the 2 min result
(2 min (+5 min)), and with the 5 min result