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Résumé

Cette thèse porte sur la modélisation des comportements individuels de vaccination. Lorsque

la vaccination est libre, c’est-à-dire recommandée à divers degrés mais non obligatoire, les

individus peuvent décider ou non de se vacciner, et ces décisions influencent la propagation

de la maladie. Nous proposons une approche de modélisation flexible qui permet de prendre

en compte ces décisions individuelles dans les modèles de simulation épidémiologiques. Ces

modèles sont utilisés par les décideurs publics et privés, et nos travaux visent d’abord l’utilité

pratique.

Nous reprenons l’exemple de la rougeole tout au long de la thèse. La rougeole est le type

même de maladie dont la propagation dépend essentiellement des comportements individu-

els. Il s’agit d’une maladie infectieuse extrêmement contagieuse et dont les complications

peuvent être grave. Elle peut être facilement évitée grâce à un vaccin efficace et largement

accessible dans les pays développés. Pourtant, elle continue de circuler parce qu’une partie

de la population refuse la vaccination. En effet, sa forte contagiosité nécessite que 90% à 95%

d’une population soit immunisée pour empêcher sa propagation. On parle alors d’immunité

grégaire. Si les taux de vaccination sont relativement élevés dans les pays développés, ils

ne permettent d’atteindre uniformément ces niveaux d’immunisation, et des épidémies de

rougeole continuent de se déclarer sporadiquement.

Dans cette thèse, nous considérons un aspect bien particulier de la décision de se vacciner

ou non: les comportements stratégiques et d’anticipation. Il peut sembler étrange a priori

d’aborder ainsi les comportements de vaccination sous l’angle de la rationalité. En plus

d’aller à l’encontre de faits bien établis par la recherche médicale, refuser de se vacciner

peut empêcher l’ensemble de la population d’atteindre l’immunité grégaire. Or l’immunité

grégaire protège, en enrayant la propagation de la maladie, les individus qui n’ont pas accès

à la vaccination, soit parce qu’ils sont trop jeunes, soit parce qu’elle leur est contre-indiquée

pour raisons de santé. Le refus de se vacciner a tout d’un comportement à la fois néfaste et

irrationnel.

Toutefois l’attitude vis-à-vis de la vaccination ne se résume pas à son acceptation ou à son

refus inconditionnels. Certains, par exemple, plutôt que la refuser, retardent la vaccination.

D’autres la refusent en accusant l’administration de plusieurs vaccins en une seule injection

d’avoir des effets secondaires. D’autres enfin ne se font pas vacciner pour des raisons politiques

ou religieuses.

De plus, les études empiriques semblent indiquer que même des individus que l’on quali-
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fierait aisément d’anti-vaccins peuvent modifier leur comportement en fonction des coûts et

bénéfices respectifs de la vaccination et de la non vaccination. Remarquons enfin que la vac-

cination a un coût, y compris pour les individus qui n’ont pas une attitude particulièrement

négative à son encontre. Sans même parler de coûts monétaires, le simple fait de prendre

rendez-vous chez le médecin représente un coût. L’étude de la décision de vaccination comme

évaluation rationnelle de coûts et de bénéfices paraît donc pertinente. Cette approche reste

d’ailleurs flexible, en laissant par exemple la possibilité de faire varier le coût de vaccination

d’un individu à l’autre.

Quant à l’étude des comportements stratégiques, elle se justifie de deux façons. En premier

lieu, sur le plan théorique, la décision de vaccination est, par définition, très proche d’une

interaction stratégique. C’est-à-dire que les gains d’un individu dépendent non seulement de

sa propre décision, mais aussi de celles de tous les autres. Si l’ensemble d’une population

est vaccinée et s’il est raisonnable de penser qu’elle le sera à l’avenir, il est optimal pour un

nouvel arrivant de ne pas se vacciner. Il profitera ainsi de l’immunité des autres individus

sans payer son coût de vaccination. Si au contraire personne n’est vacciné, il devient optimal

de se vacciner, pour peu que le coût d’être malade soit suffisamment élevé comparativement

au coût de se faire vacciner. Si, de plus, chaque individu décide en anticipant les décisions

des autres, on est face à une véritable interaction stratégique.

En second lieu, sur le plan pratique, modéliser les décisions de vaccination en épidémiologie

implique nécessairement de modéliser des interactions stratégiques, ne serait-ce qu’implicitement

sous forme d’une boîte noire. Admettons par exemple qu’on veuille modéliser la décision de

vaccination comme une fonction ad hoc de la prévalence. Comme la vaccination protège un

individu dans le temps, cette fonction inclut inévitablement l’anticipation par les individus

de la prévalence future. Or la prévalence dépend des décisions individuelles, donc notre fonc-

tion ad hoc représente en fait un comportement stratégique. Modéliser les comportements

stratégiques explicitement, c’est-à-dire en tant que tels, permet d’éviter de recourir à des

boîtes noires de ce type qui sont souvent peu convaincantes, voire présentent des contradic-

tions internes.

Les premiers modèles de comportement de vaccination ont été proposés par des économistes.

En effet, l’immunité grégaire, et plus généralement la diminution du risque d’infection lorsque

la proportion de personnes vaccinées augmente dans une population, est une externalité de

la vaccination. En première approximation, les individus se vaccinent pour se protéger eux-

mêmes, mais cette décision a des conséquences pour l’ensemble de la population non vaccinée.

Comme cette externalité est un bien public (il n’est pas possible d’empêcher un individu non

vacciné d’en bénéficier), un résultat classique de la théorie économique prédit qu’elle sera

produite par les individus à un niveau inférieur à ce qui serait optimal en tenant compte de

la somme des bénéfices individuels. Ceci semble se vérifier empiriquement dans la mesure où

l’immunité grégaire peine souvent à être atteinte dans les pays développés.

Ces premiers modèles économiques ne se concentraient pas spécifiquement sur les com-

portements stratégiques. Bien que compatibles avec de tels comportements, ces modèles

étaient simplifiés de sorte que l’anticipation par un individu des comportements de tous les
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autres soit reléguée au second plan. Ces simplifications avaient pour objectif d’obtenir des ré-

sultats analytiques à une époque, les années 1980 et 1990, où les ressources de calcul étaient

limitées. Au-delà des restrictions sur la prise en compte des comportements stratégiques,

le principal désavantage de ces méthodes est qu’elles n’autorisaient pas une modélisation

d’aspects pertinents tels que la guérison, la naissance d’individus susceptibles, ou encore

la perte d’immunité vaccinale. Les études qui entreprenaient de les modéliser devaient se

cantonner à l’analyse d’états stationnaires.

Les interactions stratégiques dans la décision de vaccination ont été formalisées en théorie

de jeux au début des années 2000. Les premiers modèles de “jeux de vaccination” étaient

également très simplifiés sur le plan épidémiologique. Ils ont continué à se développer depuis,

mais toujours, jusqu’à récemment, avec d’importantes simplifications épidémiologiques ou

en se restreignant à des modèles statiques ou à l’étude d’états stationnaires. Nos travaux

contribuent à cette littérature en permettant de modéliser les décisions de vaccination de

façon dynamique sous des hypothèses épidémiologiques pertinentes, sinon réalistes.

Ce type de modèles présente un intérêt particulier pour plusieurs acteurs du système de

santé : compagnies d’assurance, industrie pharmaceutique ou autorités de santé. Les modèles

de théorie des jeux ne sont pas mobilisés par ces derniers pour l’évaluation économique des

politiques de santé. Une contribution de cette thèse est de montrer (i) que les comportements

individuels endogènes (qui ne sont pas posés directement comme hypothèse par le modélisa-

teur) ne peuvent a priori pas être négligés dans certains modèles épidémiologiques, (ii) que les

modèles de théorie des jeux sont compatibles avec les approches plus traditionnelles utilisées

en économie de la santé, et enfin (iii) de proposer une méthode de modélisation qui limite les

hypothèses simplificatrices de façon à être utilisable en pratique.

Lorsqu’il s’agit d’évaluer, par exemple, une politique de vaccination, les acteurs du système

de santé procèdent habituellement de la façon suivante. Le coût d’un cas de la maladie est

d’abord évalué. Ce coût peut être individuel ou social, monétaire ou exprimé en termes

d’utilité ; cela dépendra de l’acteur à l’origine de l’étude. On compte ensuite le nombre de

cas que l’on espère éviter grâce à la politique en question. Le bénéfice total de la politique

est le nombre de cas évités multiplié par le coût d’un cas individuel. Ce bénéfice total est

finalement comparé au coût de la politique.

Le premier problème posé par ce type d’approche est qu’il s’agit d’un raisonnement à l’état

stationnaire, un choix discutable dans l’étude des maladies infectieuses. Il est vrai que les

coûts et bénéfices peuvent tenir compte, par exemple, de futures complications. Cependant,

comme les valeurs de ces coûts et bénéfices futurs sont actualisées, le caractère dynamique

du modèle n’est que superficiel. D’autre part, ces études économiques ne peuvent pas tenir

compte des comportements stratégiques et d’anticipation des individus. En d’autres termes,

les individus dans ces modèles répondent éventuellement aux incitations mises en place par la

politique (de façon exogène au modèle). En revanche, ils ne répondent pas de façon endogène

aux effets même de la politique, ainsi qu’aux réponses des autres individus. Le Chapitre 2

de cette thèse est consacré à un exemple montrant que les comportements individuels face à

une politique de santé publique peuvent donner lieu à des effets non négligeables.
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Avant de développer ces applications pratiques, notre premier travail a été de présenter

notre approche de modélisation et d’en illustrer la flexibilité. Cette thèse se compose de

trois chapitres écrits comme des articles indépendants. Le premier chapitre est consacré à la

présentation du modèle, le second à une application en santé publique, et le troisième à une

discussion plus théorique du comportement de vaccination.

Dans le Chapitre 1, nous étudions la décision de vaccination face à une maladie inspirée de

la rougeole. Les individus basent leurs décisions sur leur anticipation de la prévalence future

de la maladie, c’est-à-dire qu’ils anticipent les décisions des autres individus. Cependant,

leurs décisions influencent la propagation future de la maladie. La contagion peut donc

être modélisée par un système d’équations différentielles couplées. Les unes représentent la

propagation de la maladie et vont “en avant” dans le temps : la prévalence future dépend de

la prévalence passée. Les autres représentent la prise de décision et vont “en arrière” dans le

temps : les décisions présentes dépendent de l’anticipation du futur. Nous montrons comment

poser et résoudre ce problème comme une recherche de point fixe. Nous obtenons des résultats

pour un modèle avec taux de mort et de naissance, et perte d’immunité vaccinale. Nos

résultats sur longue période de temps mettent en évidence des pics épidémiques récurrents.

À titre de comparaison, nous produisons également des résultats pour des individus ayant

un comportement adaptatif. Un comportement adaptatif consiste à baser sa décision sur

la prévalence actuelle sans anticiper son évolution. Enfin, nous proposons une extension du

modèle avec deux populations ayant des coûts de vaccination différents.

Le double objectif du Chapitre 2 est (i) de montrer que la boucle entre prévalence et

comportements individuels étudiée dans le Chapitre 1 ne peut pas être négligée a priori

dans les évaluations de politiques de santé publique, et (ii) de présenter un outil pour les

inclure dans ces évaluations. Nous développons l’exemple de la vaccination obligatoire contre

la rougeole. Notre modèle épidémiologique est le modèle SIR habituellement utilisé pour

représenter la rougeole. Avant l’entrée en vigueur de la vaccination obligatoire, les parents

décident librement et de façon altruiste s’ils veulent ou non vacciner leur enfant. Nous

modélisons des parents anti-vaccins, et d’autres ayant une attitude plus positive vis-à-vis de

la vaccination. Nos résultats suggèrent que l’anticipation de la vaccination obligatoire peut

conduire à une augmentation transitoire de la prévalence avant l’éradication à long terme de la

maladie. Ceci conduirait à d’importants transferts d’utilité entre générations. Ironiquement,

dans notre scénario, des anti-vaccins sont parmi ceux qui bénéficient le plus de la vaccination

obligatoire.

Le Chapitre 3 est plus spéculatif. Nous partons du constat que la comparaison des coûts

de vaccination avec le risque d’être infecté par la rougeole peine à expliquer la couverture

vaccinale relativement élevée (bien que souvent insuffisante) dans les pays développés. Nous

discutons l’hypothèse selon laquelle la vaccination est un comportement coopératif. Dans

ce scénario, une partie des individus forme une coalition dont les membres s’accordent pour

se vacciner et punir ceux d’entre-eux qui ne se vaccineraient pas. Nous mettons en œuvre

des concepts d’équilibre et de punition habituellement utilisés en théorie des jeux répétés

en donnant des arguments pour leur utilisation dans le contexte de la vaccination. Nous
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considérons deux types de punition contre les membres de la coalition qui manqueraient

à leur engagement de se vacciner. La première consiste pour les membres de la coalition

à suivre leur intérêt individuel. La seconde consiste pour eux à ne plus se vacciner. Nos

résultats indiquent que la menace d’une punition peut expliquer la vaccination lorsqu’elle

serait normalement sous-optimale.

Si ces travaux s’adressent en premier lieu aux acteurs du système de santé, ils ne man-

queront pas d’intéresser d’autres communautés. Les théoriciens des jeux y trouveront une

méthode de résolution des jeux de vaccination dynamiques, et les épidémiologistes une illus-

tration de l’influence des comportements individuels sur la propagation des maladies.

Pour finir, soulignons quelques limites de nos travaux ainsi que des pistes de recherche.

Tout d’abord, il convient de rappeler que tous nos résultats sont issus de simulations. Ils

ne prétendent en aucun cas se substituer à des observations empiriques, qui pourront faire

l’objet de futures. Bien entendu, les discussions habituelles sur le bien-fondé de l’hypothèse

de rationalité des individus s’appliquent. Il en va de même pour les concepts de solution

retenus pour les jeux de vaccination.

Ensuite, l’analyse mathématique est ici réduite au strict minimum. Nous n’avons pas

développé certaines démonstrations qu’il pourrait être pertinent de considérer à l’avenir.

Enfin, la flexibilité de notre approche ne doit pas faire oublier que celle-ci n’a de pertinence

que pour modéliser les comportements à la fois stratégiques et d’anticipation. Si son usage ne

se restreint pas à l’étude des comportements de vaccination, il devra être justifié dans chaque

cas.
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Introduction

Few experiences of social life are so frustrating as to be at the mercy of others’ irrational or

outright wicked behaviors. It takes failed attempts to thwart unwanted behaviors – through

calls for reason, gentle persuasion, or by force – to come to the humbling realization that

they may not be as gratuitous as first thought. And that individuals may not give up their

self-interest so easily.

Measles vaccination refusal provides a vivid example. Measles is the typical example of a

disease that could easily be avoided through vaccination but is still able to circulate because

part of the population refuses vaccination. Here, individuals do not have to suffer from the

behavior of, say, a distant polluter they might well never encounter. Rather, they may have

to suffer from the refusal of vaccination by people in their closer circles: family, colleagues,

neighbors, or the parents of their child’s school friends. It goes without saying that under

such circumstances, in addition to being a serious public health issue, vaccination refusal has

given rise to fierce debates.

The consequences of vaccination refusal have motivated researchers to develop models of

vaccination decision-making. This thesis builds upon this literature and aims at developing

tools that are useful to the decision maker. We concentrate our efforts on a very specific aspect

of vaccination decision-making: strategic behavior. Individuals engaging in strategic behavior

base their decision not only on their own preference for vaccinating or not vaccinating, but

also on what they expect others to do. As irrational as vaccination refusal may seem, strategic

behavior is a relevant and now standard way to account for vaccination decisions – including

refusal. This certainly calls for further explanations.

0.1 Why model strategic behavior in Measles vaccination?

Of all the Measles outbreaks in the past few years, the 2014–2015 Disneyland (California)

epidemic certainly received the most extensive media coverage (Halsey and Salmon, 2015;

Clemmons et al., 2015). The individuals who got infected at the amusement park or during

the subsequent outbreak fall into three categories. A fraction of them had received the vaccine

but their immune system had not responded to it, leaving them unimmunized. Others were

children too young to get vaccinated or who could not get vaccinated for medical reasons.

Finally, some were unimmunized because their parents had refused to vaccinate them.

This outbreak resulted in 147 cases in seven states in the U.S., Mexico, and Canada
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(CDC, 2015). Compare this figure to the 667 cases reported in 2014 and the 188 cases

reported in 2015 in the U.S. The Disneyland outbreak drew heated debate over vaccination

refusal. Measles indeed, while an infectious disease with potentially serious complications,

is at the same time entirely preventable. It could even be eradicated through vaccination

(Moss, 2017).

An efficient vaccine has been available since the 1960s, and in most developed countries, it

started to be included in vaccination schedules during the 1980s. The vaccine against Measles

is often combined with vaccines against Mumps and Rubella (MMR vaccine).1 Nowadays, the

MMR vaccine is usually delivered with two shots. The second shot is not a booster dose. The

immune system may not respond to the vaccine and 7% of the children who receive one dose

remain unimmunized. The second dose raises vaccine efficacy from 93% to 97%. The MMR

vaccine generally comes at a low cost and with little supply constraints, at least in developed

countries. Of course, vaccine accessibility varies from one country to another. In France,

the state covers vaccination costs. In the United States, most health plans cover Measles

vaccination as a preventive service, and the government’s Vaccines for Children Program

offers vaccination at no cost for children who do not have a health insurance. Also in the

United States, the cost of vaccines and low reimbursements put the provision of the most

expensive vaccines under strain in some practices (Glazner et al., 2009; Rosenthal, 2014).

The MMR vaccine, however, remains an average priced vaccine with a private sector cost per

dose of about $70 reported by manufacturers in the U.S. (CDC, 2018).

Overall, it is fair to assume that the MMR vaccine, in addition to being efficient, is widely

accessible in developed countries. But there is more. Vaccination against an infectious disease

is not only about individual immunization. It is also about preventing virus circulation in

the whole population. An infectious disease can spread because a single infectious individual

may contaminate several susceptible individuals, which can result in a snowball effect. As

more individuals get immunized, susceptible individuals are less likely to encounter infectious

individuals and get infected. A population where the proportion of immunized individuals

is so high as to stop disease transmission is said to have reached herd immunity. Reaching

herd immunity is the objective of many public health policies because it protects individuals

who cannot vaccinate for medical reasons, and those whose immune system did not respond

to the vaccine.

Measles is highly contagious. Its basic reproduction number is often estimated between

12 and 18.2 This means that a single infectious individual would infect on average 12 to 18

individuals in an entirely susceptible population. More specifically, virtually all susceptible

individuals in the environment of an infectious individual get infected. The practical conse-

quence of this is that a high vaccination coverage is necessary to reach herd immunity. The

target coverage is often set to 90% or 95%, but some authors have argued that policies should

aim at a 100% coverage (Salathé, 2015).

So vaccination seems to bring far-reaching benefits for a limited cost. Many authors have

1It may also be combined with the vaccine against Varicella (MMRV vaccine). As of 2018, the MMRV
vaccine is not included in routine vaccination schedules in France.

2Locally, this figure can vary widely. See Guerra et al. (2017).
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Figure 1: MMR vaccination coverage among 24 month old children in France, 2010–2016.
Orange: one dose. Green: two doses. (Source: Santé publique France (2018a).)

shown the benefits of controlling or eradicating Measles, and that Measles vaccination is cost-

efficient (Bester, 2016). Yet in developed countries, a portion of the population still refuses

vaccination. In fact, while Measles vaccination is strongly recommended by health authori-

ties, it is offered on a voluntary basis in many countries. In the United States, vaccination

requirements are established by state legislation. Measles vaccination is mandatory for school

entry in all 50 states but parents can receive medical, religious, or philosophical exemptions.

In France, Measles vaccination is mandatory for all children born after January 1st 2018 but

there are no sanctions against parents who fail to vaccinate their children.

Vaccination coverage targets regularly fail to be met. For illustration, we show the vacci-

nation coverage among 24 months old children in France between 2010 and 2016 in Figure 1.

Since the first dose is scheduled when children are 12 month old and the second when they

are 16 to 18 month old, Figure 1 gives an indication of what were parents’ vaccination deci-

sions. Similar vaccination coverages are observed in the U.S. (Hill et al., 2017) and in other

developed countries (World Health Organization, 2017).

In many developed countries, immunization levels are high enough for Measles to be

considered non endemic. However immunization levels are often too low to provide herd

immunity. In other words, Measles does not circulate in these countries without external

input, but sporadic and local outbreaks occur whenever the virus is brought from endemic

regions of the world by an unvaccinated individual. This is how the Disneyland outbreak

started in 2014. Since then, many epidemics following the same pattern occurred in other

developed countries. We could mention the 2017 outbreak in Italy (Giuffrida, 2015), or

the late 2017–early 2018 outbreak in southwestern France which lead to the death of an

unvaccinated woman (Aït El Belghiti et al., 2018). Figure 2 shows the number of Measles
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Figure 2: Measles cases reported by doctors in France, 2006–2016. (Source: Santé publique
France (2018b).)

cases reported in France from 2006 and 2016. These figures are likely to be underestimates

but still provide orders of magnitude. The 2008–2011 outbreak was explained by low toddler

vaccination and insufficient catch-up in other cohort in previous years (Antona et al., 2013).

The serious consequences of insufficient vaccination drew attention on the so-called anti-

vaccination movement. Anti-vaccination has existed ever since vaccination started to general-

ize in the early 19th century (Dubé et al., 2015). In the case of Measles, anti-vaccination has

mainly been fueled by a fraudulent 1998 article linking Measles vaccination and autism. 20

years later, anti-vaccination has found new champions and still remains a source of concern for

public health decision makers. What is commonly called the “anti-vaccination movement”,

however, hardly qualifies as a movement. It actually consists of a nuanced set of stances

ranging from outright vaccine refusal to vaccine hesitancy. Broadly speaking, we see three

main mutually non-exclusive groups of anti-vaccination arguments. Some individuals refuse

vaccination on religious grounds, either because vaccination is seen as a way to interfere with

God’s plan, or because vaccine production uses cell lines derived from aborted fetuses. There

are also political objections to vaccination. Some are rooted in conspiracy theories that gov-

ernments and the media are colluding with pharmaceutical companies. Others simply see

vaccination as an unacceptable governmental intrusion. Finally, some reject the vaccine itself

or the vaccination method. They typically hold that vaccination is not safe, or that the risk

of side effects outweighs the benefits of vaccination. They would for instance incriminate

vaccines’ components, vaccine combination, or vaccination schedules.

Anti-vaccinationists ignore sound medical advice and their propaganda is often some-

what excessive. To make matters worse, they can at least in part be held responsible for

the infection of young children and sick individuals who cannot vaccinate for medical rea-

4



Introduction

sons. Needless to say, this makes anti-vaccinationists obvious and easy targets for journalists,

scholars, and policy makers.

There is a large body of literature investigating vaccine refusal and vaccine hesitancy, and

attempting to devise strategies to increase vaccine uptake. See Sadaf et al. (2013), Wang

et al. (2014), Corben and Leask (2016), and MacDonald et al. (2018) for extensive reviews on

this topic. What these studies have in common, is that they all focus on the specific reasons

underpinning anti-vaccination, and use them as a starting point for policy making. As we will

see, we look at vaccination behavior from a different angle in this thesis. But there is still an

interesting takeaway. These studies all rest implicitly on the optimistic assumption that even

anti-vaccinationists can be lead to vaccinate if the right incentives are implemented. Said

differently, they assume that anti-vaccinationists would vaccinate if the cost of vaccination

were low enough or the cost of not vaccinating were high enough. And their empirical findings

seem to be in line with this assumption. In the United States for instance, exemption rates

increased in states where philosophical or personal belief exemptions were introduced in

addition to medical and religious exemptions. That is in states where it became easier to

apply for an exemption. On the contrary, exemption rates are lower where the procedure for

obtaining an exemption is more complicated, and thus more costly. Individuals claiming an

exemption where vaccination is mandatory can certainly be described as anti-vaccinationists.

Yet far from being unswerving in their refusal of vaccination, some of them3 will respond to

incentive changes and adapt their behavior.

What about individuals who are not anti-vaccinationists? Can we expect that individuals

who normally vaccinate in countries where vaccination is not mandatory will do so under any

circumstances? The issue of vaccination behavior goes much deeper than the case of anti-

vaccinationists alone. Indeed, vaccinating is also costly for individuals who have a more

positive attitude toward vaccination. Vaccination expenditures, of course, are not always

fully covered. But we could also mention many other possible costs such as the inconvenience

of bringing a child to the doctor, the fear of needles, or adverse events. If we accept that anti-

vaccinationists may adapt their vaccination behavior to incentives, then there is no reason

to believe a priori that this will not be true of the rest of the population. Actually, there

is strong empirical evidence for a link between prevalence and child vaccination. See Smith

et al. (2017) for the influence of perceived susceptibility on individual vaccination decisions.

See Philipson (1996) and Goldstein et al. (1996) for aggregate observations in the case of

Measles. See Oster (2018) for a more recent study in the case of Pertussis. If prevalence

is low, the incentives to vaccinate are also lower. Memory and the lack of experience with

the disease can make things worse. This is true for the whole population, not just anti-

vaccinationists, and could explain – among other factors – why the last steps to eradication

are more challenging than the reduction of prevalence when the disease is endemic (Klepac

et al., 2013; Saint-Victor and Omer, 2013).

Economic theory explains well why vaccination decreases when prevalence is too low, and

why vaccination coverage targets are not met. Indeed, the decrease in infection risk in a

3An example of unshakable anti-vaccinationism can be found in Duffell (2001).
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population4 is a positive externality of individual vaccination. This externality has public

good attributes. It is nonrivalrous since the fact that an individual enjoys low infection risk

does not increase the risk of others. It is also nonexcludable since there is no way to preclude

an individual from enjoying low prevalence in the population. A classic result of economic

theory is that in such situations, if individuals only follow their private incentives, they will

engage in free riding and the public good will be underprovided5 (Mas-Colell et al., 1995,

p. 361). In the context of vaccination, free riders are individuals with lower incentives to

vaccinate (e.g. because they have a more negative attitude toward vaccination) that benefit

from the effort of those who vaccinate because their incentives are higher. Of course we can

expect that more individuals will choose to free ride as prevalence decreases, thus forbidding

eradication. This “external” side of vaccination behavior has without doubt received the most

attention. Keep in mind, however, that vaccination decision-making has a private component

(vaccinated individuals are immunized). We will see in Chapter 2 and Chapter 3 that this

also has consequences in terms of welfare and incentives when comparing scenarios: if the

vaccine is perfect (that is when 100% of shots do work), individuals who vaccinate under

different scenarios pay the same cost for the same benefit in each scenario.

Free-riding can be accounted for in epidemiological simulation models by considering indi-

viduals with adaptive behaviors. Individuals with adaptive behaviors (see Xu and Cressman

(2014), for instance), decide whether or not to vaccinate by weighting the benefits of vacci-

nation against its costs. This individual cost-benefit analysis, however, is simply based on

the current risk of being infected, that is on prevalence at the time of decision. Conceptually,

models of imitation or memory fall into the same category: vaccination decisions depend on

past and present prevalence.

We see two major limitations to these approaches. First, they implicitly assume that

individuals (falsely) believe that prevalence will remain constant forever. This is of course

unrealistic. Since, as we mentioned before, perceived susceptibility has been shown to be

a major determinant of vaccination, we cannot make this assumption. Indeed, the benefits

of immunity come after vaccination, so they depend on future prevalence. If susceptibility

truly is a determinant of vaccination, then including anticipation of future prevalence in a

behavioral model of vaccination is unavoidable. This leads us to the second limitation of

models featuring only adaptive behaviors. Namely, they cannot fully account for strategic

interactions because individuals in these models do not anticipate future vaccination decisions.

They may free ride de facto, but not as part of a real strategy. That is, they will benefit from

the vaccination of individuals who vaccinated before them, and they will respond by lowering

their own coverage, but they will not base their decision on what they expect others will do

in the future.

In fact, the two limitations we just pointed out in adaptive behavior models are essen-

tially the same. Insofar as prevalence is determined by vaccination decisions and vaccination

decisions depend on prevalence, anticipating others’ behavior is the same as anticipating

4And so herd immunity, when it is reached.
5In the sense that more of the public good would be produced based on the sum benefit of individuals in

the population. Assumptions about who pays what will vary depending on the scenario.
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prevalence. However, it gives us two different rationales for focusing on strategic interaction

in our investigation of vaccination behavior. The first rationale is that if we are to consider

realistic prevalence anticipation, then the model will necessarily feature some degree of strate-

gic behaviors since future prevalence depends on others’ vaccination, and future vaccination

decisions depend on present decisions. We may want to model strategic interaction because

a realistic model of vaccination behavior from the point of view of epidemiology will feature

strategic behavior anyway. If it is not modeled explicitly, strategic behavior will appear as

an implicit assumption. The second rationale is that we may want to model strategic behav-

ior explicitly simply because vaccination decision-making, insofar as individuals base their

decisions on others’ decisions, is strategic by definition: the payoff of an individual depends

on his own decision, but also on the decisions of all other individuals. This is a more theo-

retical argument justifying that strategic behavior in vaccination decision-making should be

investigated for its own sake.

0.2 Vaccination games

Strategic vaccination behavior has been formalized as vaccination games. In a vaccination

game, the players are rational and far-sighted individuals who maximize their lifetime utility

by deciding whether or not to vaccinate. They are often but not always atomistic. They

base their decision on a private cost-benefit analysis. The cost of vaccination is usually a

constant, and the benefit of vaccination depends on prevalence, which in turn depends on

the vaccination decisions of all other players. In a dynamic setting, this is in contrast with

adaptive models where the benefit of vaccination only depends on past vaccination decisions.

The objective of vaccination game models is to call attention to aggregate effects that are

relevant to policy making (e.g. insufficient voluntary vaccination) and arising from individual

behaviors (e.g. free riding). This approach is relevant not only to vaccination modeling,

but also to any preventive behavior that has a cost for those engaging in it and positive

externalities for the whole population. We will mention some applications to self-quarantine

and to the prevention of sexually transmitted diseases.

The technical difficulty in vaccination games lies in the fact that decision-making inter-

plays with prevalence, which has its own complex dynamics. Authors managed to dodge this

difficulty in different ways. We will see how models of vaccination behaviors evolved from no

account of epidemiology whatsoever to ever more complete accounts, and how the approach

developed in this thesis builds upon this literature. The first attempts used non game theo-

retic methods. It is important to look at those studies to better understand the contribution

of game theory, and to gain insight on the interpretation of game theoretic results.

The early work by Fine and Clarkson (1986) stands out in several respects. Their ap-

proach may seem naive at first sight. In their model, homogeneous individuals decide whether

or not to vaccinate by weighting the risk of infection against the risk of vaccination adverse

event. The authors did not consider an epidemiological model linking vaccination decisions

and infection risk. They simply assumed ad hoc relationships between vaccination coverage
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and infection risk reduction. Their reasoning was static (implicitly steady state). Interest-

ingly, however, they discussed their results in terms of “strategies”, thus foreshadowing later

game theoretic works. Also, they computed what they called the “critical level of vaccination

coverage” below which a rational individual vaccinates and above which he refuses vacci-

nation. We will see that this critical level actually corresponds to a mixed strategy Nash

equilibrium, a notion that was introduced in the context of vaccination decision-making only

twenty years later. Finally the authors – epidemiologists – bothered to produce numerical

results,6 which would largely be neglected in the subsequent economic studies.

Until the 2000s, the literature was dominated by studies using traditional non game theo-

retic economic methods. Besides a marked preference for analytical results over numerical re-

sults, these authors typically derived their results by assuming an underlying non-degenerate

distribution of the population over the vaccination cost (Brito et al., 1991) or the equivalent

(Geoffard and Philipson, 1996). They described vaccination behavior in terms of thresholds:

for instance the vaccination cost above which individuals do not vaccinate, or the prevalence

level above which they do. Such thresholds partition the population between those who vac-

cinate and those who do not. The corresponding vaccination coverage can be obtained simply

by summing the population distribution over the right interval. This vaccination coverage,

however, may not be interpreted primarily as the result of strategic behavior.

This is best illustrated by Brito et al. (1991). In this study, the population has a non-

degenerate distribution over the vaccination cost c. The threshold of interest is the vacci-

nation cost c∗ such that all individuals who have a vaccination cost c < c∗ vaccinate and

those who have a vaccination cost c ≥ c∗ do not vaccinate. The model is static without an

explicit epidemiological component. The authors simply assumed that the utility of being

unvaccinated unv was strictly increasing with the vaccination coverage. Since more people

vaccinate as the threshold c∗ increases, unv is a strictly increasing function c∗. Of course the

net utility of vaccination uv decreases with the vaccination cost c incurred by an individual

who vaccinates. From these assumptions, the authors could determine a unique equilibrium

value of c∗.

This equilibrium threshold is such that uv(c∗) = unv(c∗). Consider for instance a can-

didate threshold c∗ such that uv(c∗) > unv(c∗). In this case, the marginal individual with

vaccination cost c∗ has an incentive to vaccinate because the vaccination coverage correspond-

ing to the candidate threshold c∗ is too low. The same reasoning goes for a candidate c∗ such

that unv(c∗) > uv(c∗). Here the vaccination coverage corresponding to c∗ is too high and the

marginal individual has an incentive to free ride. So the equilibrium vaccination coverage

can be interpreted as arising from the successive decisions of marginal individuals: individu-

als with a lower vaccination cost vaccinate first and then individuals whose vaccination cost

is just equal to the current threshold vaccinate until there is no incentive to do so. It is

true that at equilibrium, no individual has an incentive to deviate, so the equilibrium is not

inconsistent with strategic behavior. But this equilibrium relies heavily on the underlying

6Actually numerical values of analytic expressions. This is still very different from numerical solutions such
as those computed in this thesis, but to us this approach was headed in the right direction.
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population distribution over the vaccination cost, and less on the incentives linked to the

disease itself as will be the case in game theoretic models.

Of course we might find cases where the most relevant effects are driven by the presence

of thresholds in a distributed population. An obvious example are age distributions, that are

certainly to be considered more carefully in some contexts. Moreover, reasoning in terms of

distributions and thresholds has some advantages. Brito et al. (1991), for instance, were able

to provide welfare arguments by summing welfare functions over the population distribution.

Noticeably, such results can be obtained without specifying the distribution: we may compare

different scenarios by comparing different integrals over the same distribution.

We have already argued that it is a priori reasonable to focus on strategic behavior when

investigating vaccination decision-making. Further, it seems relevant to look at strategic

behaviors that stem from the features of the disease itself (time to recovery, infectiousness,

etc.), under realistic epidemiological assumptions, and independently of any assumed under-

lying distribution of the population. We believe that non game theoretic economic methods

have reached their limits in the study of vaccination behavior for at least two reasons. First,

these authors have invariably used strong simplifying assumptions that reduced drastically

the scope of their results. This might in part be explained by a strong inclination for analytic

results, or by limited computational resources at the time of publication. Some simplifica-

tions were necessary to obtain results in terms of a single threshold value. This is especially

true in dynamic settings. We may then suspect that the only purpose of assuming underlying

distributions was to give some substance to results that would have otherwise boiled down to

simple threshold values. The second limitation of methods relying on population distributions

and threshold values, is that they are ill-suited to numerical simulation. Performing numeri-

cal simulations in such frameworks would require to specify all underlying distributions. But

then, when analyzing the results, it would become difficult to disentangle the effects due to

the strategic problem faced by individuals from effects due to the shapes of the specified

distributions. Finally, notice that most epidemiological models cannot be solved analytically,

even when they do not feature individual decision-making. Building models of vaccination

behavior while avoiding to use numerical methods might have provided early insights in a

time where the use of computers was not as widespread as today. Yet in the long run, this

approach was bound to come to a dead end.

Further examples from this literature include the works by Geoffard and Philipson (1996),

Francis (1997), and Geoffard and Philipson (1997). Geoffard and Philipson (1996) studied

the use of protection against a sexually transmitted disease in a dynamic setting. Their model

includes an explicit epidemiological model (which was not the case in Brito et al. (1991)).

The disease is described with a SI (Susceptible and Infectious) compartmental model without

vital dynamics or recovery, so the prevalence can only increase. The population is distributed

over the threshold prevalence above which an individual uses protection. While the results

depend on time, decision-making is not dynamic: formally, individuals maximize their lifetime

expected utility, but their decisions only depend on the current prevalence. This is similar to

a model of adaptive behavior, or can be interpreted as the repetition of static models. We

9
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see that time dependency here is somewhat artificial.

The same SI epidemiological model was used by Francis (1997), this time in the context

of vaccination. Here, overlooking anticipation is more difficult to justify as the benefit of

vaccination also depends of future prevalence. In the model proposed by Francis (1997), ho-

mogeneous (same vaccination cost) individuals decide at what time it is optimal to vaccinate.

Since the prevalence can only increase, this is equivalent to finding a threshold prevalence

level. In this framework, all individuals vaccinate at once when the threshold is reached, and

no individual has an incentive to deviate. However, this is only true under the assumption

that prevalence only increases. Consider for instance a situation where individuals recover

from the disease so that prevalence decreases if enough individuals vaccinate. In this scenario,

an atomistic individual may have an incentive to deviate if all other individuals vaccinate.

With this simple scenario, we can appreciate how anticipation in some dynamic settings

can create strategic interactions. Recall that in the static setting proposed by Brito et al.

(1991), vaccination coverage was driven by the distribution of a behavioral parameter, vac-

cination cost, that pertains only remotely to strategic behavior. Yet, while the focus of the

study was not on strategic behavior, the aggregate outcome was still consistent with strate-

gic behavior. Anticipation in dynamic settings reveals strategic interactions that are less

apparent – or less distinctive – in static settings. Having said that, we must stress that antic-

ipatory behavior and strategic behavior are two different notions. Individuals do anticipate

in the setting proposed by Francis (1997), but their lack of control over prevalence precludes

strategic interaction. Geoffard and Philipson (1997) tried to go beyond the limitations of SI

compartmental models with a SIR (Susceptible, Infectious, and Recovered) model but they

only gave analytic results on steady states.

The work by Francis (1997) also gives us a better understanding of why a distribution

of the population over the vaccination cost is only incidental to the core issue of strategic

behavior. Simply consider an extension of the model to the case of several individuals with

different vaccination costs. Here, individuals with lower vaccination cost would vaccinate

first, thus slowing down the increase in prevalence but not reversing it – all thresholds would

eventually be reached and individuals would vaccinate by increasing cost of vaccination. In

this scenario, individuals are not influenced by the individuals vaccinating after them, so the

setting is not strategic.

The first formal game theoretic account of vaccination decision-making was proposed by

Bauch et al. (2003). Their model is static and features homogeneous atomistic individuals

who decide whether or not to vaccinate by weighting the expected utility of vaccinating

against the expected utility of delaying vaccination. This framework is very similar to that

found in Brito et al. (1991): in both models, an equilibrium is reached when the utility of

vaccinating equals the utility of not vaccinating. But with one major difference. In the model

by Brito et al. (1991), the equilibrium vaccination coverage resulted from the equilibrium

threshold vaccination cost c∗. It was derived from an assumed population distribution over

the vaccination cost by summing the population with vaccination cost c < c∗. In contrast,

the equilibrium vaccination coverage in Bauch et al. (2003) depends on strategic interaction

10
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V NV
V +, + +, ++
NV ++, + −, −

Figure 3: Normal-form representation of a static two-player vaccination game. V : vaccinat-
ing, NV : not vaccinating. “+” stands for higher payoffs and “−” for lower payoffs.

only, without reference to any underlying distribution of the population.7

Let us look at a version of the static game formalized by Bauch et al. (2003) with only

two players instead of a continuum of atomistic players. A typical instance of this game is

illustrated in Figure 3. The outcomes (V, V ) and (NV, NV ) where both players vaccinate or

do not vaccinate are unstable. If both individuals vaccinate, one of them will be tempted to

deviate, and reap the benefits of herd immunity while avoiding to pay his vaccination cost.

If no player vaccinates, then they will not be protected against the disease and will have an

incentive to vaccinate. There are two Nash equilibria where one individual vaccinates and the

other does not. In this simplistic setting, the equilibrium vaccination coverage would be 50%.

Since both players are identical, knowing precisely which player vaccinates and which one does

not is irrelevant, so we can directly discuss the results in terms of equilibrium vaccination

coverage. Once again, this vaccination coverage is the result of strategic interaction and

relevant epidemiological assumptions only.

We may note in passing that the vaccination game presented in Figure 3 is close to the

game of chicken (or hawk-dove game). In their paper, Bauch et al. (2003) drew a parallel

with the prisoner’s dilemma, but this is misleading. In a prisoner’s dilemma version of

the vaccination game, an individual vaccinating while the other does not would get the worst

possible payoff in the game. This will not be the case in the most typical vaccination scenarios

(e.g. with perfect or close to perfect vaccines) insofar as vaccinated individuals get the benefit

of being immunized. When the vaccine is not perfect, a vaccinating individual may be worse

off if the other individual does not vaccinate, compared to a situation where all individuals

vaccinate. This setting would correspond to the “real” game of chicken. Also, in a prisoner’s

dilemma vaccination game, the payoffs when no one is vaccinated would not be the worst

possible payoffs, and no one vaccinating would eventually be the Nash equilibrium.

The two-player game in Figure 3 can be extended to N > 2 players. It would again

result in an equilibrium coverage likely to be different from 100% or 0% in most (though not

all) instances of the game. By assuming that the population is formed by a continuum of

identical atomistic individual, Bauch et al. (2003) could interpret the vaccination coverage as

resulting from individual mixed strategies. When playing a mixed strategy, individuals choose

to vaccinate with some probability P . Since all individuals are identical, the equilibrium

strategy is the same for all, and results in a vaccination coverage p = P . This passage to the

limit greatly reduces the dimensionality of the problem and is a foundation of a branch of

game theory, mean field game theory. In this thesis we will not use the formal framework of

7Apart from the distribution over health statuses, of course. But this distribution is endogenous while the
distributions we have discussed to far were assumed exogenously.
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mean field game theory even though our results and methods are close.

Another non-negligible contribution of Bauch et al. (2003) is that they provided a specific

scenario (preemptive vaccination under bioterrorist threat) justifying to use a one period

static model. Their model is also based on an explicit epidemiological model and numerical

simulations. This might denote a more marked leaning toward real life issues than some

previous studies, but perhaps also be the result of an increase in available computing power.

Bauch and Earn (2004) used the same framework in a more general dynamic setting but they

restricted themselves to the investigation of steady states only.

Since then, many studies have used static or steady state models. Yet this is certainly

insufficient for most epidemiological applications. Indeed, epidemics are fundamentally time

dependent. In fact, the problem with epidemics lies not so much in steady state prevalence

levels as in dynamic phenomena. To illustrate, consider such common issues as the build up

of a pool of susceptible individuals as unimmunized children are born over time, or the arrival

of an infectious individual in a steady state population.

In this thesis, we will strive for full time dependent solutions of the vaccination decision

problem. We will solve for the proportion of the population vaccinating and for prevalence

at each time over an horizon, while retaining explicitly the most relevant epidemiological

features of the disease in the model. In dynamic models, individuals base their decision on

value functions that are the expected lifetime utility of being in a given state or health status

at a given time. They engage in anticipatory or forward-looking behavior. In the context of

vaccination, individuals will compare the value of being susceptible with the value of being

vaccinated at each time. There is a technical challenge here, on which we will elaborate when

we will present our approach in Section 0.4.

Before moving on, we only need to mention some authors who have tackled this challenge.

Reluga (2010, 2013) developed a model of social distancing. In his model, individuals can

decide to invest in self-quarantine to protect themselves. However the contact rate is a

function of the sum investment in the population, hence the game. The mapping from

investment levels to contact rates was assumed by the author. Laguzet and Turinici (2015b)

considered a SIR model and vaccination decision-making, but without vital dynamics and

lifelong immunity of vaccinated individuals (no waning vaccine efficacy). Finally, Salvarani

and Turinici (2018) produced results very similar to ours with a mean field game approach.

Their epidemiological model features an imperfect vaccine and loss of immunity over time,

but their application case allowed them to overlook vital dynamics.

To sum up, we argued (but this fact is now widely acknowledged) that the spread of

some infectious diseases such as Measles heavily depends on individual vaccination decision-

making. We then made a case for focusing on the strategic interaction implied by vaccination

behavior, while at the same time modeling the peculiarities of the disease with some realism in

a dynamic setting. We saw how game theoretic approaches allow to model what is essential,

both in individual behavior and in disease dynamics. Yet we might still wonder about the real

life needs of practitioners and decision-makers who use epidemiological models. Vaccination

policies, for instance, were assessed long before researchers started to study vaccination games.
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So how do these relatively new models articulate with already existing methods? And most

importantly, are they of any use? We found rationales for modeling strategic behavior in

vaccination decision-making, but would doing so change anything to results found by public

health professionals using more traditional methods? After all, strategic interactions might

make sense for describing vaccination decision-making, they might even occur in real life,

and still yield only second order effects. Besides, we emphasized the need for epidemiological

realism in models of vaccination behavior, and yet even the most recent models in this

literature (including ours, as we will see) remain extremely simplistic compared to some

epidemiological models developed by epidemiologists. We need to look at some models and

methods used by health economists to better understand how our models can be used to

tackle real life issues.

0.3 Some methods in health economics

So far, we have only mentioned the costs and benefits of vaccination from the point of view

of an individual. Yet other participants in the health system may be interested in weighting

benefits of vaccination against its costs. Public health authorities typically seek to maximize

citizens’ welfare while minimizing the cost of a vaccination campaign. A health insurance

company may face a trade-off between promoting prevention (e.g. through vaccination) or

reimbursing medical care of sick individuals. Finally, the profit of a pharmaceutical company

depends on the demand for vaccines, or more generally on vaccination policies decided by

health authorities. All these need to perform economic evaluations of epidemics and of control

policies from their own point of view.

When referring to economic evaluation, a distinction is usually made between cost-benefit

analyses in which the cost and benefits of a policy8 are monetary, and cost-effectiveness

analyses in which costs are usually monetary but the outcome measure is not. Examples

of non monetary outcomes include the number of averted cases, or the number of gained

life years. Cost-utility analyses are cost-effectiveness analyses in which gains are in terms

of a utility measure, QALYs (quality-adjusted life years). In this thesis, we loosely refer to

economic evaluations as “cost-effectiveness analyses”. In our simulations, we solve for the

time evolution of Measles prevalence: costs and benefits in whatever unit follow immediately

from this result, but we leave such computations outside the scope of the thesis. In Chapter 2,

which is dedicated to an application of our vaccination decision models to cost-effectiveness

analyses, we discuss outcomes in terms of welfare gains and losses for individuals. However

the effects we bring out may translate into gains and losses for any health system participant.

Health economics is a wide field of study. Health economists have analyzed topics so

diverse as health insurance or medicine pricing. Still, there is one ubiquitous method in the

discipline, and that is economic evaluation. One of the main challenges here, is that economic

evaluations of health interventions or public health policies require to evaluate heterogeneous

8These methods where developed to evaluate and compare health interventions in general, not only public
health policies.
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and sometimes subjective costs and benefits. In addition to the difficulty of enumerating all

relevant costs and benefits in a single public health policy, comparing two policies can also

prove delicate. One policy might be more beneficial on one aspect while the other might be

more advantageous on another aspect.

QALYs were introduced as measure of utility in health economics in order to tackle this

issue. QALYs aggregate two dimensions: quality of life and life years. They are obtained

simply by multiplying a measure of the quality of life with life time. Quality of life is

normalized to 1 for perfect health and to 0 for death. In this framework, a health intervention

increasing life by 10 years with a quality of life of 0.4 brings 0.4 × 10 = 4 QALYs and is

equivalent to another intervention that would extend life by 8 years with a quality of life of

0.5. QALYs are now widely used along with an alternative utility measure, DALYs (disability-

adjusted life years), which takes the opposite perspective by counting life years lost due to

premature death, and years of good health lost due to disability.

Of course, quality of life is itself an aggregate. It can be estimated via questionnaires or

by other methods. We give one of the most simple for illustration: standard gambles (see

Gafni, 1994). In standard gambles, sick individuals are asked to choose between (i) not doing

anything and so keeping their current quality of life q, and (ii) entering a lottery where they

can be cured with probability p and die with probability 1 − p. The quality of life q of a sick

individual is then estimated as the value of p such that sick individuals indifferent between

the lottery and remaining sick (q = 1 × p + 0 × (1 − p)).

Measuring gained and lost QALYs raises obvious methodological questions. Health econo-

mists have devoted much effort to develop and implement ever more specific evaluation meth-

ods. In the case of Measles, the QALY cost of being sick was for instance estimated by Thor-

rington et al. (2014) to approximately 7 QALDs (quality-adjusted life days, 1 QALD equals

1/365 QALY). They used a questionnaire based instrument, the EQ-5D-3L (van Reenen

and Oppe, 2015). Patients were asked to describe their health state based on 5 dimensions:

pain/discomfort, anxiety/depression, mobility, self-care, and usual activities. The 5 dimen-

sions were then weighted so as to obtained an index between 0 and 1. The final result was

obtained by averaging over different age categories.

Once the cost of a single Measles case has been estimated – whether individual or so-

cietal, monetary or in terms of utility – the most straightforward way to assess a control

policy is to multiply this cost by the number of averted cases without any reference to a

dynamic epidemiological model. This approach was exemplified by Zwanziger et al. (2001)

and by Hinman et al. (2004). They performed economic evaluations of an increase of Measles

vaccination coverage, and of MMR vaccination respectively.

Both studies are based on decision trees.9 In the study by Zwanziger et al. (2001), the

decision tree is a list of scenarios faced by an infected individual along with their probabilities,

and individual and societal costs. The tree includes among other things necessary health care,

missed days of work, and Measles complications such as Meningitis and death. From this

9Zwanziger et al. (2001) do not mention this method explicitly, but they implement it in effect. Notice
also that “decision” in this context refers to the decisions made by the user of the decision tree, and not to
vaccination decisions made by agents in the model.
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tree, the authors could compute the individual and societal costs of a single case of Measles as

the net present value over lifetime of the expected cost of all scenarios. Then, they assumed

that raising vaccination coverage to 90% would lead to herd immunity. When herd immunity

is reached, all preventable cases are prevented – an unimmunized individual can be infected

by a traveler, but the disease does not propagate. From historical data, they could compute

a baseline incidence level, and so the number of averted cases compared to this baseline if

herd immunity is reached. The saved cost was computed as the number of averted cases

times the cost of a single case. Finally, they compared the cost of increasing vaccination

coverage to 90% to the saved cost of averted cases. Here, we see that two steady states were

actually compared: the baseline (constant) incidence level, and herd immunity with assumed

zero incidence. However, those steady state do not correspond to an epidemiological model

– in one of them, herd immunity is simply assumed.

The study by Hinman et al. (2004) is slightly more elaborate. Their decision tree includes

Measles infection, i.e. an equivalent of the tree used by Zwanziger et al. (2001). Since they

investigated MMR vaccination, they added Mumps and Rubella infections to the tree along

with their respective complications. One major difference with Zwanziger et al. (2001), is that

vaccination and the probability of infection themselves were included to the tree. Individuals

vaccinate with some probability and the vaccine works with some other probability. Adverse

events may occur, and individuals may get infected with Measles, Mumps, or Rubella, and

incur the corresponding costs. The authors considered two scenarios: available MMR vaccine

and prevaccine era. They also modeled several age classes. Probabilities were estimated from

historical data for each scenario, and each age class. The authors could then compute net

present values over lifetime under each of the two scenarios and make comparisons. Here

again, only steady states were compared. This time, the authors considered an implicit

epidemiological model, but with constant infection probabilities.

From a very down-to-earth perspective, we know that the dynamic features of an epidemic

are critical (recall the build up of a pool of susceptible individuals over time, etc.). If epidemics

were only steady state, that is if it were possible to switch instantaneously from one steady

state to another, then much of their burden would be readily avoided. In other words, steady

state models do not allow to appraise how steady states are reached, specifically at what

pace, and with or without damped oscillations. In the context of vaccination, knowing how

fast and how “smoothly” and epidemic may be controlled is of obvious relevance.

This specifies an optimal control problem. There is an extensive more or less theoretical

mathematical literature on the topic of optimal vaccination policies. For illustration, we

may only mention the works by Hethcote and Waltman (1973) and by Laguzet and Turinici

(2015a). Both tackled the problem of optimal vaccination policy to control a disease described

by a SIR compartmental model. A vaccination policy is specified by the vaccination rate at

each time. Vaccination has a cost, and so has the disease. The objective is to choose a

vaccination policy such that the total cost is minimized subject to some constraints.

Hethcote and Waltman (1973) used the traditional dynamic programming technique. It

consists in discretizing the state space (here the number of susceptible and infected individ-

15



Introduction

uals) and then use the principle of dynamic programming (or Bellman equation) to solve

for the best control (vaccination rate) from each state at each time, starting from final time

and moving backward. They assumed no vital dynamics so the total number of infected

individuals over the time horizon was simply the sum of infected and recovered individuals

at final time. This assumption allowed the author to set a constraint on the total number

of infected individuals in a simple way. Laguzet and Turinici (2015a) considered the same

optimal control problem in a more general technical setting. They concluded their study with

an application to cost-effectiveness analyses.

Many applications do not require to solve for an optimal vaccination policy. Dynamic

models can be used to compare predefined vaccination strategies. This was done by Beu-

tels and Gay (2003) in the case of Measles vaccination with a compartmental model of five

compartments. More recently, Littlewood et al. (2015) performed a cost-effectiveness anal-

ysis of adding Varicella vaccination to the MMR vaccine (MMRV vaccine) under different

vaccination strategies. They also used a compartmental model to run simulations.

One argument for using steady state models in economic evaluations is that the underlying

dynamic phenomenon is too complicated to be properly accounted for. Rather than putting

effort into dynamic modeling intricacies that are bound to fail, the authors following this line

of reasoning usually strive for highly specific and elaborate cost estimations based on tools

such as decision trees. As for the epidemiological component of their studies, they choose a

simple “accounting” method that consists in enumerating the number of, say, averted cases

based on coarse-grained historical data. This might be perfectly fine in the most simple

cases, when the unfolding of events over time is inconsequential. But clearly, when it comes

to infectious disease epidemics, an explicit dynamic model of the most salient features of the

disease seems necessary more often than not.10 What does not seem to be always realized, is

that steady state accounting models used in such cases actually are dynamic models in that

they make assumptions about what happens over time. Simply, these assumptions remain

implicit and often groundless.

The same goes for strategic settings. Recall that strategic settings are when individuals

are free to make decisions and the payoff of each individual is influenced by the decisions of all

other individuals, so that they base their decisions on what they expect others to do. Just as

using a steady state model in a dynamic setting amounts to a risky implicit assumption about

the dynamics of the system, overlooking strategic behavior in a strategic setting amounts to

an equally bold assumption about individual behavior. Individual strategic behavior cannot

be discounted a priori from economic evaluations in a strategic setting.

Individual behavior pervades naturally in many economic evaluations. Indeed, the re-

sponse of individuals to an intervention or public health policy is often decisive to its success.

Yet this kind of individual responses usually found in the literature bears no relation to

strategic behavior. To better see this, and appreciate what strategic behavior implies in the

context of economic evaluations, consider the difference between responding to the incentives

directly implemented by a policy, and responding to the incentive changes caused by others’

10What is “salient” remains in part a matter of appreciation.
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behavior. In a strategic setting we can expect that individuals will not on only respond to

the policy itself, but also to the behavior of all other individuals. The key distinction to make

here is between exogenous incentive changes (those caused by the policy we are evaluating),

and endogenous incentive changes (those caused by modeled agents).

Examples of nonstrategic behaviors investigated in economic evaluations can be found

in the review by Lorenc et al. (2011). The reviewed papers are evaluations of strategies for

promoting HIV testing among men who have sex with men. They measured the response

of the target audience to various promotion campaigns. A further example can be found in

DePasse et al. (2017). Here, the authors used an agent-based model to evaluate the cost

efficiency of offering several Influenza vaccine options instead of one. In the scenario where

several options were available, vaccination coverage was increased exogenously by the authors

in order to fit data. As for the “choice” of a specific vaccine option by individuals, it was

drawn at random.

In Chapter 2 we will show with an example, mandatory vaccination, that individual

strategic behavior cannot be overlooked a priori in cost-effectiveness analyses. This work

does not question the relevance of economic evaluations in general. On the contrary, we

will make our case on the same premises. For instance in Chapter 2 (and Chapter 3), we

will assume that the cost of being infected with Measles for an individual is equal to the

7 QALYs found by Thorrington et al. (2014). This will be an input of our models.11 The

outputs will be the resulting vaccination decisions and prevalence. Insofar as prevalence

and vaccination decisions determine costs and benefits – from the point of view of any health

system participant – our models are compatible with usual economic evaluation methods. We

will add only one further premise by allowing for strategic interaction in vaccination decision-

making. We will see that this can yield non-negligible effects in economic evaluations.

Before giving more details on our approach, we must emphasize that the complexity of

the epidemiological models used in vaccination game models is not behind that of the epi-

demiological models used for economic evaluations. This is all the more true of the models

presented in this thesis since we are striving for some realism. It is true that epidemiologists

have developed complex models describing, for instance, contact networks or spatial distribu-

tions. In the field of health economics, however, epidemiological models are usually far more

simple. First, many are simple steady state models. They are used by researchers but also

widely by practitioners (see Whitney et al. (2014) for an example published by the Centers

for Disease Control and Prevention). Then, the dynamic models that are sometimes used are

most often simple SIR models or the like. Their complexity is comparable to the dynamic

models found in the vaccination game literature, and to our models in particular.

11More generally, the very detailed costs that are often computed in studies using steady state models can
be used as input of dynamic models.
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0.4 Actionable models of strategic vaccination behavior

To review, we have argued that dynamic vaccination games are highly relevant models of

vaccination behavior because strategy and anticipation are essential features of vaccination

decision-making. There is however still a lack for dynamic vaccination game models in general

settings, that is with full complexity (vital dynamics, waning vaccine efficacy, etc.) rather

than specific scenarios. The dynamic vaccination game approach developed in this thesis

avoids ad hoc simplifying assumptions. Consequently, it relies mostly on numerical solu-

tion methods. Several similar models have been developed until recently. We have already

mentioned studies by Reluga (2010, 2013), Laguzet and Turinici (2015b), and Salvarani and

Turinici (2018). The work of Salvarani is the most advanced in our opinion and, as we will

see, is quite similar to ours, even though both models were developed independently.

Importantly, we do not aim at solving complex models for their own sake. One of our

objective is to engage with public health professionals. We argued in Section 0.3 that vaccina-

tion game models were compatible with cost-effectiveness analyses used by health economists.

We also claimed that individual strategic behavior cannot be overlooked in a setting that is

essentially strategic, just as time dependency cannot be overlooked a priori where dynamic

phenomena seem to be an essential feature. Out of context, however, this argument re-

mains weak (even a tautology) and lacks practical implications. In Chapter 2 we will use

our vaccination game model to discuss an example of public health policy, and thus provide

practitioners with tools.

Our modeling approach needs to be flexible enough and adaptable to economic evalua-

tions, while at the same time allowing to tackle complex and large problems. Let us give

some details about the main features of this approach. We use a continuous time setting with

infinite time horizon. The time evolution of the epidemic will be described by differential

equations. We retain the Nash equilibrium as solution to our vaccination game. The solution

will be the proportion of individual who vaccinate at each time. It can also be interpreted as

a mixed strategy Nash equilibrium, that is the probability that an individual vaccinates at

each time.

Let Λ(t) denote the proportion of individuals who vaccinate at time t between time 0 and

final time T , if they have access to vaccination at this time. The strategy Λ translates into

a prevalence path, which in turn translates into costs for individuals. Of course, the best

response of an individual to strategy Λ does not need to be Λ. For instance if Λ(t) = 1 for

all t, an individual may have an incentive to free ride on others’ vaccination. A strategy Λ∗

is a Nash equilibrium if the best response of each individual to Λ∗ is Λ∗ itself at each time.

Finding a Nash equilibrium is equivalent to finding a fixed point of a best response function.

In a dynamic setting, of course, the fixed point is not a scalar but a function of time.

Salvarani and Turinici (2018) solved this fixed point problem with a fictitious game approach.

They started with an initial candidate strategy Λ0 and assumed that all individuals were

playing Λ0. Then they computed the best response Λ1 of an individual as the solution of

a quadratic programming problem, under the constraint that Λ1 should remain close to Λ0.
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They repeated until a convergence criterion was reached.

We took another (yet similar) approach, that does not require to solve an optimization

problem at each step.12 We compute Λ as the solution of a fixed point problem as well, and

we do it iteratively too. Like Salvarani and Turinici (2018), we evaluate the best response to

a candidate solution at each step. However, instead of doing so by solving an optimization

problem, we compute an approximate best response.

In our setting, individuals maximize their lifelong expected utility. At each time, the

expected lifelong utility of being in a given health status for an individual making optimal

decisions is given by a value function. So here, a candidate strategy played by all individuals

will translate into a prevalence path, which will in turn translate into value functions. Given

these value functions, the approximate best response of an individual is given by the func-

tions χ illustrated in Figure 4. If the net value of vaccination at time t is ∆V (t), then the

approximate best response at this time is Λ(t) = χ (∆V (t)).

These functions are known as smoothed best response functions (Fudenberg and Levine,

1998) or quantal response functions (McKelvey and Palfrey, 1995, 1998). They have mostly

been used to make sense of data in experimental economics. Some authors have given in-

terpretations of smoothed best responses in terms of error terms – either due to unobserved

individual preferences, or to individual computation errors.13 We will not concern ourselves

with such interpretations in this thesis.

Nor will we provide a measure of the quality of our approximation. In use cases of our

model, we will choose the slope of the smoothed best response function at 0 such that a

small variation (relative to the considered case) of the net value of vaccination ∆V around 0

(indifference) leads to a 0 or 1 response. Put the other way, responses different than 0 and

1 will only be obtained when individuals are virtually indifferent between vaccinating and

not vaccinating, so the resulting equilibria will in effect approximate mixed strategy Nash

equilibria.

Besides allowing to compute best responses in a simpler way than by solving an opti-

mization problem, smoothed best responses have the technical advantage of providing some

flexibility in solving. Our iterative fixed point search algorithm converges more easily when

the slope at 0 is smaller, so there is a trade-off between the quality of our approximation and

the speed of convergence.

Our models comprise two components. The first is a compartmental epidemiological

model describing the time evolution of the population in each health status (susceptible,

infectious, etc.). The second component governs the time evolution of the value function

corresponding to each health status. This results in a system of coupled differential equations.

The link between the two components is made via the smoothed best response function.

Let n the number of compartments or health status. Let x and V two continuously

differentiable functions from [0, T ] to R
n giving respectively the population in each health

status at each time and the value of being in each health status at each time. For all t

12Which does not mean that convergence is better or faster in our case.
13In another context, the famous work by McFadden et al. (1973) provides such analysis.

19



Introduction

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

∆V

χ

Figure 4: Smoothed best response functions for a slope of 1 at 0. ∆V is the net value of
vaccination. Black: Sigmoid (Chapters 1 and 2). Gray: Ramp function (Chapter 3).

between time 0 and final time T , the system of coupled equations is of the form

d

dt
x(t) =f1(x(t), V (t)) (1)

−
d

dt
V (t) =f2(x(t), V (t)) (2)

x(0) = x0,V (T ) = VT (3)

where f1 and f2 are continuous.

Here we need to emphasize one peculiarity of dynamic vaccination games. As the payoff

of individuals depends on their immunity and prevalence in the future, they engage in antic-

ipatory behavior and base their vaccination decision at time t on the prevalence (that is x)

at later times. Of course this decision has an influence on future prevalence. This results in a

forward-backward system. Equation (1) goes forward in time. We know x at time 0 (e.g. the

initial prevalence), and given a strategy, we can compute x until final time T . Conversely,

Equation (2) goes backward in time. We do not know V at time 0 but we can set V (T ). For

instance, infinite time is achieved by setting V (T ) to a steady state value of V for T large

enough. Then, given a prevalence path, we can compute V from time T back to time 0.

Solving Equations (1)–(2) as a fixed point problem is a way to tackle the technical difficulty

of this forward-backward system. There are other methods to do so. Reluga (2010, 2013),

for instance, used a shooting method. He solved Equations (1)–(2) backward in time starting

from multiple values of x(T ) until finding a satisfying x(0).

Our relaxed fixed point iteration method is summarized in Algorithm 1. In practice we

solved Equations (1)–(2) with explicit or semi-implicit Euler methods. Algorithm 1 was used

as the most basic component of more elaborate schemes. For instance we used continuation

methods in some cases. This consists in solving the problem for some parameter values for

which it is easy to solve (say a low slope parameter in the smoothed best response), and then

use the solution as starting point of the fixed point iteration algorithm with more difficult
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parameter values.

input : x0, VT , step, crit, model parameters
output: approximate equilibrium strategy Λ∗

initialize Λ0, dist:=crit+1;
while dist > crit do

compute the solution x to Equation (1) based on Λ0;
compute the solution V to Equation (2) based on x and Λ0;
compute the best response Λ1 to x via V and the smoothed best response
function;

dist:=distance(Λ0, Λ1);
Λ0+=step × (Λ1 − Λ0);

end

Λ∗ := Λ0;
Algorithm 1: Relaxed fixed point iteration

Our first task in this thesis was to introduce this modeling approach and illustrate its

versatility. Only then were we able to show practical applications, either to policy making

or to theoretical work. This thesis consists of three chapters, each of which was written as a

selfstanding paper.

In Chapter 1, we introduce our approach for a disease close but not identical to Measles.

This choice was driven by the need to include waning vaccine efficacy in order to illustrate

the reach of our approach. We also included vital dynamics, which is not done in many

vaccination game models. With this model, we show how the interplay between individual

anticipatory vaccination decisions and the otherwise biological dynamics of the disease may

lead to the emergence of recurrent patterns. For comparison, we provide results for individuals

with adaptive behavior.

Chapter 2 has two objectives. The first is to show with an example that anticipatory

behavior cannot always be overlooked in cost-effectiveness analyses. The second objective

is to illustrate how our approach can be used in economic evaluations. We investigate the

effect of anticipatory behavior in a scenario where Measles vaccination becomes mandatory.

When mandatory vaccination is announced in advance, we show that individuals may alter

their vaccination behavior, thus causing an increase in prevalence before Measles is ultimately

eradicated. These transition effects lead to non negligible welfare differences between gen-

erations. We consider an anti-vaccinationist subpopulation with a higher vaccination cost,

and exhibit scenarios where anti-vaccinationists are among those who benefit the most from

mandatory vaccination.

Finally, Chapter 3 is a more theoretical investigation of vaccination behavior based on

our modeling approach. We discuss whether coalitions of vaccinating individuals can account

for the relatively high observed vaccination coverages. We explain why and how retaliation

concepts usually found in repeated games can be used in the context of vaccination, even

though individuals vaccinate only once. This allows us to model how vaccinating individuals

might retaliate against those who refuse vaccination. We show that retaliation threats can

sustain vaccination where it would otherwise be suboptimal for individuals.
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Chapter 1

Canonical modeling of anticipatory

vaccination behavior and long term epidemic

recurrence

This chapter is based on an article coauthored with N. Houy and P. Michel published in the

Journal of Theoretical Biology (Flaig et al., 2018).

Abstract

Vaccination is one of humanity’s main tools to fight epidemics. In most countries
and for most diseases, vaccination is offered on a voluntary basis. Hence, the spread
of a disease can be described as two interacting opposite dynamic systems: contagion
is determined by past vaccination, while individuals decide whether to vaccinate based
on beliefs regarding future disease prevalence. In this study, we show how the interplay
between such anticipating behavior and the otherwise biological dynamics of a disease
may lead to the emergence of recurrent patterns. We provide simulation results for (i) a
Measles-like outbreak, (ii) canonical fully rational and far-sighted individuals, (iii) waning
vaccine efficacy and vital dynamics, and (iv) long periods of time, i.e. long enough to
observe several vaccination peaks. For comparison, we conducted a similar analysis for
individuals with adaptive behavior. As an extension, we investigated the case where part
of the population has an anti-vaccination stance.

Keywords: epidemics, behavior, vaccination, game theory, forward-backward system,
backward induction.

Vaccination is one of the most efficient tools humanity possesses to fight epidemics. The

collective consequences of vaccination depend on its cost, its effectiveness, and disease dynam-

ics. Many theoretical works have studied optimal vaccination policies (from Hethcote and

Waltman (1973) to Laguzet and Turinici (2015a)). When vaccination, as is often the case,

is administered on a voluntary basis, a further mechanism comes into play: the interaction

between disease dynamics and human behavior – a now widely acknowledged fact (see Funk
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et al. (2010, 2015)). On the one hand, disease dynamics has an impact on human behavior

through prevalence, individual beliefs about the future course of the epidemic, and spreading

of information or beliefs about it. On the other hand, human actions such as vaccination,

social distancing, treatment adherence, or even fleeing, influence disease dynamics. Observa-

tions of the strong impact of human behavior on disease dynamics include Philipson (1996);

Jansen et al. (2003); Riley et al. (2003); Nishiura (2007); Bayham et al. (2015).

It is all the more crucial to investigate human behavior in the case of vaccination decision

as vaccination contributes to herd immunity. Yet individual vaccination decisions may not

be aligned with social interests: individuals make their decisions out of self-interest while

their actions also bear on the whole population. Herd immunity is merely an externality

of vaccination decisions, and therefore the result of voluntary vaccination is generally not

socially optimal in this respect. Besides, it can be readily understood how in the long run

this discrepancy between private and social interests may give rise to recurrent epidemic

patterns – low prevalence may lead to low vaccination rates, which in turn may lead to high

contagion, higher vaccination rates, and again low prevalence.

Theoretical modeling of vaccination behavior, however, remains a challenge. When faced

with a transmittable disease, an individual may decide on a course of action based on his be-

liefs regarding future developments of the epidemic. That is, each individual may anticipate

developments to come. Now, if all individuals do this, the very evolution of the epidemic is

modified. Ultimately, the spread of a disease can be described as two entangled yet conflicting

dynamical systems. The spread of a disease restricted to its biological1 features evolves for-

ward in time: future developments are only determined by the current state of the epidemic.

On the other hand, individuals base their vaccination decision at least in part on backward

reasoning: they act now upon what might happen in the future. The spread of a disease is

influenced by individual decisions while in turn influencing these decisions.

In order to solve this problem, several approaches have been proposed. Some authors

tackled the problem with a full consideration of the forward-backward dimension described

above. Yet these studies, in order to obtain tractable results, had to decrease the complexity

of other dimensions. Other authors simplified the dynamics system, at least compared to the

model we will present here: Geoffard and Philipson (1996); Chen and Cottrell (2009) studied

SI models, and Geoffard and Philipson (1997); Laguzet and Turinici (2015b) studied SIR

models without waning vaccine efficacy. Others restricted the scope of their study. Geoffard

and Philipson (1996, 1997), for instance, produced a qualitative description of some features

of the solution. In the same vein, Chen and Cottrell (2009) investigated equilibrium existence,

uniqueness, and potential coexistence of two equilibria in a given setting. Finally, Reluga and

Galvani (2011) restricted themselves to the study of steady states.

An alternative stream of literature somehow decreases the complexity of the coupled

system by disregarding backward reasoning in human behavior. Bauch et al. (2003); Bauch

and Earn (2004) sparked renewed interest in vaccination policy and individual choices with

1We describe epidemics as biological insofar as they do not depend on human behavior. As will be made
clear later, this distinction depends on problem specification: some parameters may or may not be modeled
as decision variables. Consider for instance the contact rate between individuals.
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one period (i.e. static) models. Further instances of one period models were provided by

Reeling and Horan (2015); Codeço et al. (2007); Shim et al. (2012). In order to introduce

dynamic decision-making in this framework, Bauch (2005) (followed by Reluga et al. (2006);

d’Onofrio et al. (2011); Fu et al. (2011); Yang et al. (2016)) proposed models with imitation

behavior. Just as the spread of a transmittable disease when individual behavior is ignored,

imitation only depends on past and current states of the epidemic: imitation dynamics goes

forward in time. This outlook on the problem was also adopted by Fenichel et al. (2011). They

assumed that individuals falsely believe that the current epidemiological state will persist

(Voinson et al. (2015) added cognitive biases to this framework). Similarly, Buonomo et al.

(2008); Epstein et al. (2008); Coelho and Codeço (2009); Funk et al. (2009); Bhattacharyya

et al. (2015) all modeled information and/or beliefs with forward dynamics in time.

At this point, we must emphasize that we by no mean argue that real life vaccination

decision (or for that matter any other behavior pertaining to the study of epidemics) is

only driven by backward reasoning. Nor do we claim that imitation or the past evolution

of an epidemic are irrelevant to our case. However, we believe that there is currently a

need for modeling the entangled backward and forward dynamics described above in all

their complexity with canonical – though somehow unrealistic – perfectly informed, fully

rational and far-sighted individuals. Simulation results are to be used as benchmarks to better

evaluate the weight of the different factors that can influence decision-making in populations

faced with a transmittable disease. This is to be done by measuring how real life data departs

from the predictions of the canonical model proposed here.

In the present paper, we address the challenge of coupled forward-backward dynamics

posed by canonical modeling of vaccination decision-making. We consider

• a SIVR (Susceptible, Infectious, Vaccinated, Recovered) epidemiological dynamic model

with vital dynamics and waning vaccine efficacy, and

• backward reasoning by far-sighted, fully rational, and selfish individuals.

Close to our work are Reluga (2010) and Reluga (2013) in the context of social distancing. The

main difference between these studies and ours is that, since we consider waning immunity

and vital dynamics with growing population, our set of equations is larger and convergence is

more difficult to obtain. Indeed, the proportion of vaccinated individuals is not constrained

to always grow in our model, which increases dramatically the array of possible vaccination

strategies. We solve this complex system, and we believe that we are the first to obtain

recurrent behavioral patterns (in our case, vaccination peaks) with a canonical forward-

backward model and full complexity of population dynamics.

We describe our model in Section 1.1. Section 1.2 is dedicated to the results of our model

for a Measles-like disease and a vaccine with waning efficacy. Our base case (Section 1.2.1)

involves a population of identical individuals. For comparison, we provide results in the

case of adaptive behavior (Section 1.2.2). Finally, we investigate populations in which some

individuals have an anti-vaccination stance, that is a higher vaccination cost (Section 1.2.3).

Section 1.3 concludes.
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1.1 Model

We consider a SIR model with vaccination and vital dynamics. Individuals can be either

susceptible (S), infected (I) or recovered (R). In addition, susceptible individuals have the

possibility to access vaccination on a voluntary basis and become vaccinated (V). The disease

is transmitted under the assumption of homogeneous mixing of the population. Vaccination

has a waning efficacy so that vaccinated individuals can become susceptible after some time.

Birth and death rates can differ and hence do not necessarily imply constant population size.

Susceptible Infected Recovered

Vaccinated

Figure 1.1: Illustration of the SIRV model. Black: epidemiological transitions. Gray: vital
dynamics.

A susceptible individual is assumed to base his decision to vaccinate on a rational far-

sighted cost-benefit analysis. Hence, vaccination decision depends on the values the individual

expects from being vaccinated and from remaining susceptible, and on the immediate cost

(monetary, psychological, logistical, etc.) of vaccination. Formally, the problem of finding

an individual’s optimal vaccination policy over time can be solved by ways of dynamic pro-

gramming via Bellman equations. Solving Bellman equations yields the intertemporal value

function of individuals in each health status. Given his current health status, an individ-

ual’s value function is the discounted future value he expects to get if he follows his optimal

policy. Since we consider waning vaccine efficacy, both the value of remaining susceptible

and the value of getting vaccinated at a given time depend on predictions about future epi-

demiological states. A vaccinated individual may lose immunity and get the value of being

susceptible with non zero probability. To our knowledge, we are the first to solve the canoni-

cal forward-backward problem with four value functions, two of them depending on contagion

dynamics.

Also, we consider for the sake of realism that individuals cannot vaccinate at any time:

in real life, only a fraction of them has access to vaccination simultaneously. This feature

is represented by rate α (see Table 1.1) in our model.2 In contrast to models where vaccine

is available at once to the whole population, individuals in our model anticipate that not

vaccinating when they have a chance implies waiting until the next opportunity to do so.

This, however, does not remove the game theoretic dimension of our problem even though

2We performed a sensitivity analysis on α. Dividing α by two does not bear upon short term epidemiological
results and vaccination decision. While the epidemic is not affected in the long run, the long term vaccination
decision changes noticeably, as shown in Figure B.2.
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Figure 1.2: χǫ for relevant values of ǫ.

individuals do not play against each other in each instant. We have a sequential game in

which Nature randomly picks the playing order in each moment, and allows a maximum αdt

zero-measure set of individuals to vaccinate.

For numerical tractability, and yet certainly as a realistic assumption, we use the concept

of smoothed best response (Fudenberg and Levine (1998)). When facing a choice between

two alternatives leading to intertemporal values V1 and V2 respectively, an individual chooses

V1 with probability e(V1/ǫ)

e(V1/ǫ)+e(V2/ǫ) , or introducing function χǫ : x 7→ 1
1+e−x/ǫ for all ǫ ∈ R+, he

chooses V1 with probability χǫ(V1 − V2).3 In Figure 1.2, we show function χǫ for the different

values of ǫ used in our simulations.4 Notice that as ǫ tends to 0, the probability of playing

any strategy that is not a best response goes to 0.

For a given ǫ, the epidemiological side – strictly speaking – of our model is governed by

Equations 1.1a–1.1d. T is the final time, sǫ(t) (resp. iǫ(t), vǫ(t), rǫ(t)) denotes the number

of susceptible (resp. infected, vaccinated, recovered) individuals at time t in [0, T ]. For

concision, we introduced nǫ(t) = sǫ(t) + iǫ(t) + vǫ(t) + rǫ(t) and function ξǫ : x 7→ xχǫ(x)

for x in R. The individual decision process is described by Equations 1.2a–1.2d, where V ǫ
S(t)

(resp. V ǫ
I (t), V ǫ

V (t), V ǫ
R(t)) is the value function of a susceptible (resp. infected, vaccinated,

recovered) individual at time t in [0, T ].

3The same approach was used by Xu and Cressman (2014, 2016) with individuals making decisions based
only on the present state of the epidemiology.

4 We used two different ǫ values so as to ease equation solving for some of our simulations. This, however,
is of little consequence as to our results. Consider for instance the difference in utility between being sick
and being healthy for the average duration of the infectious period (see Table 1.1 for parameter values). This
difference in utility is 5 × (10 − 2) = 40 on average, ignoring the discount factor for this short period. It can
readily be made sure that χ1/20(40) and χ1/600(40) are both close enough to 1 for our purpose. χ between 0
and 1 will denote indifference in our model.
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d

dt
sǫ(t) = − sǫ(t)

[

αχǫ(V ǫ
V (t) − V ǫ

S(t) − c) + λ
iǫ(t)
nǫ(t)

+ µ

]

+ νnǫ(t) + γV vǫ(t) (1.1a)

d

dt
iǫ(t) = − iǫ(t)

(

γI − λ
sǫ(t)
nǫ(t)

+ µ

)

(1.1b)

d

dt
vǫ(t) = − vǫ(t)(γV + µ) + αsǫ(t)χǫ(V ǫ

V (t) − V ǫ
S(t) − c) (1.1c)

d

dt
rǫ(t) = − rǫ(t)µ + γIiǫ(t) (1.1d)

−
d

dt
V ǫ

S(t) =ug − (δ + µ)V ǫ
S(t) + λ

iǫ(t)
nǫ(t)

(V ǫ
I (t) − V ǫ

S(t)) + αξǫ(V ǫ
V (t) − V ǫ

S(t) − c) (1.2a)

−
d

dt
V ǫ

I (t) =ub − (δ + µ)V ǫ
I (t) + γI(V ǫ

R(t) − V ǫ
I (t)) (1.2b)

−
d

dt
V ǫ

V (t) =ug − (δ + µ)V ǫ
V (t) + γV (V ǫ

S(t) − V ǫ
V (t)) (1.2c)

−
d

dt
V ǫ

R(t) =ug − (δ + µ)V ǫ
R(t) (1.2d)

A detailed description of the parameters is given in Table 1.1. The construction of Equa-

tions 1.1a–1.2d is made explicit by the alternative formulation in Appendix A.1.

Equations 1.1b and 1.1d are the same as in usual SIR models. We assume that the death

rate µ is the same for healthy and infected individuals. Infected individuals are recovering

at rate γI . Equation 1.1a too, is very similar to the equation describing the susceptible

population in a SIR model: each day, a susceptible individual has an average λ encounters in

which he could potentially get infected. A proportion i(t)/n(t) of these encounters occur with

an infected individual. Also, individuals are born susceptible at rate ν. Our model departs

from SIR models in that susceptible individuals decide whether or not to vaccinate based on

a cost-benefit analysis. At time t, the higher the net value to vaccinate V ǫ
V (t) − V ǫ

S(t) − c, the

closer to 1 the probability of deciding to vaccinate given by function χǫ.

Let us now elaborate on Equations 1.2a–1.2d satisfied by the value functions. Again,

an alternative formulation of these equations is provided in Appendix A.1 for the interested

reader. ug and ub are the instantaneous utilities of being in good and bad health respectively.

Individuals are forward-looking, hence the value functions decrease at rate ug or ub (depending

on the considered health status) with time. δ is the time discount factor and we normalize

the value of being dead to 0, so all value functions increase at rate (δ + µ). That is the value

of being say, susceptible, at time t decreases by (δ + µ) × (0 − VS(t)). Similarly, the value

of being in a given health status decreases by the net value of each health status transition

weighted by the rate of this transition.
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Existence and uniqueness of a solution to Equations 1.1a–1.2d follow from Theorem 1.5

Theorem 1

The system of Equations 1.1a–1.2d has a unique solution for any ǫ > 0.

Proof. See Appendix A.2.

1.2 Results

1.2.1 Base case: population of identical individuals

Base parameter values are summarized in Table 1.1. We use parameter values that are

characteristic of Measles. Measles is a widely studied disease whose epidemiological features

allow for rich modeling in our framework. Also, Measles vaccine is offered on a voluntary

basis, and has recently been in the spotlight due to alleged side effects deterring part of the

population from vaccinating. We model a vaccine that is efficient for 10 years on average and

costs 10.6 Vital dynamics is characteristic of a developing country.7

Our base case features a perfectly mixed population of identical individuals. That is, all

individuals have the same vulnerability to the disease and rate of recovery, have the same

preference for being healthy over being sick, and face the same vaccination cost.

Equations 1.1a–1.2d are solved numerically using techniques close to fixed-point itera-

tions.8 We set initial conditions for Equations 1.1a–1.1d, and final conditions for Equa-

tions 1.2a–1.2d. Notice that from Equation 1.2d,

V ǫ
R(t) =

(

V ǫ
R(T ) −

ug

δ + µ

)

e−(δ+µ)(T −t) +
ug

δ + µ
, (1.3)

and then V ǫ
I (Equation 1.2b), can be solved analytically. In our model, recovered individuals

stay recovered for the rest of their life, and ug, δ and µ do not depend on time, so V ǫ
R does

not depend on time. Consequently, V ǫ
I does not depend on time either, and we can set both

V ǫ
R and V ǫ

I to their respective steady state values. We then use the steady state values of V ǫ
R

and V ǫ
I to set the final value of V ǫ

S and V ǫ
V .9 For all simulations, we make sure that final time

T is large enough so that the influence of final conditions on the result is null.10

5Notice that in a related study, Chen and Cottrell (2009) found possible multiple equilibria. This is due to
the way they modeled imperfect vaccine efficacy, and in particular to the independence of vaccine failure at
each encounter. Indeed, in their study, when vaccine efficacy is low, a high prevalence implies a high infection
probability at each encounter and hence an incentive not to vaccinate balancing the incentive to vaccinate.

6This cost represents 1/4 of the cost of being sick on average, disregarding epidemiological changes after
infection (see calculation in Footnote 4).

7All parameter values are only illustrative and do not reflect any specific real life case. A ±10% sensitivity
analysis on all parameters is shown in Figure B.3.

8Rather than shooting techniques, as is done in Reluga (2010). Source code is available on request.
9We know that the value of being vaccinated V ǫ

V and the value of being susceptible V ǫ
S are both higher

than the value of being infectious V ǫ
I , but lower than the value of having recovered V ǫ

R. In practice, the final
value of V ǫ

S and V ǫ
V is set to V ǫ

I or (V ǫ
I + V ǫ

R)/2 depending on the simulation, with no consequence as for the
results presented here.

10Typically, T is taken larger than 350 years.
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(a) Epidemiology

(b) Vaccination decision

Figure 1.3: Epidemiological results and vaccination decision (χǫ(V ǫ
V (t) − V ǫ

S(t) − c)) over the
first quarter of the epidemic, with ǫ = 1/600 and nǫ(0) = 1.
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(a) Epidemiology

(b) Vaccination decision

Figure 1.4: Epidemiological results and vaccination decision (χǫ(V ǫ
V (t) − V ǫ

S(t) − c)) over the
first 20 years of the epidemic, with ǫ = 1/600 and nǫ(0) = 1.
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Notation Value Description

Epidemiology

λ 2.8 Contact rate.
α 0.0068 Potential vaccination rate.
γV 2.74 × 10−4 Vaccination efficacy waning rate.
γI 0.2 Rate of recovery.
Decision-making

ug 10 Instantaneous utility to be in good health.
ub 2 Instantaneous utility to be in bad health.
δ 8.1 × 10−5 Time discount rate.
c 10 Cost of vaccination.
Vital dynamics

µ 5.48 × 10−5 Death rate.
ν 8.22 × 10−5 Birth rate.
Initial state

sǫ(0) 0.99 × nǫ(0) Initial number of susceptible individuals.
iǫ(0) 0.01 × nǫ(0) Initial number of infectious individuals.
vǫ(0) 0 Initial number of vaccinated individuals.
rǫ(0) 0 Initial number of recovered individuals.

Table 1.1: Parameter values. Time unit is day, utility and cost are dimensionless.

In Figures 1.3–1.4, we show the output of our model (Equations 1.1a–1.2d) for ǫ = 1/600

over the first quarter and over the first 20 years of the epidemic.11 In the first days of

the outbreak, individuals anticipate that the prevalence of the disease will be high and hence

vaccinate. At epidemic peak, more than 70% of the population is infectious and all individuals

that have access to vaccination vaccinate. After that, as the pool of susceptible individuals

decreases, the disease prevalence drops, and when it is low enough (and anticipated to remain

so for a long time), individuals stop vaccinating. Because of vital dynamics and waning

vaccination efficacy, the pool of susceptible individuals grows again and a second wave of

vaccination is observed about five years after the introduction of the disease. Vaccination

dynamics is then strongly damped and has an increasing frequency over time. A state is

finally reached where a portion of the individuals that have access to the vaccine vaccinate

at all time.

1.2.2 Individuals with adaptive behavior

So as to draw a parallel with the existing literature, we model the same disease as in Sec-

tion 1.2.1 in the case where individuals adopt an adaptive behavior. Individuals with adaptive

behavior do not anticipate the evolution of the epidemic at an aggregate level, even though

they do anticipate the evolution of their own health status. Susceptible individuals with

adaptive behavior, for instance, anticipate the loss of utility corresponding to being sick for

about 5 days – the average length of infection, but mistakenly expect disease prevalence to

remain unchanged in the future. Hence, in this model, value functions are stationary and
11Results for ǫ = 1/20 are provided in Appendix B.
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solutions to Equations 1.2a–1.2d under d
dt

V ǫ
S(t) = d

dt
V ǫ

I (t) = d
dt

V ǫ
V (t) = d

dt
V ǫ

R(t) = 0 at any

time t.12 The system dynamics only goes forward in time.

In Figures 1.5–1.6 we display results for a population of individuals with adaptive behavior

over the first 20 years and the first quarter of the epidemic, and for ǫ = 1/600.13 The first

peak of vaccination lasts more that twice longer for adaptive individuals since they do not

anticipate the very low prevalence to come for the following 5 years. Still, in the case of

our Measles-like disease, this difference in vaccination decisions yields qualitatively almost no

difference in prevalence for the first quarter of the epidemic. Indeed, the speed of contagion is

so fast that when decisions differ, almost all individuals, whether far-sighted or with adaptive

behavior, have already been infected.

In the long run, the vaccination dynamics of adaptive individuals is very different from

that of far-sighted individuals. While after the sixth year a portion of the latter vaccinates

at all times, the former have a more polarized vaccination behavior. Either all adaptive indi-

viduals or none of them want to vaccinate. Adaptive individual vaccination peaks occur with

increasing frequency. Anticipation of future epidemiological states by far-sighted individuals

flattens vaccination decisions.

While we are not making policy recommendations in the present article, we can expect the

selected modeling approach to have policy implications. In the case shown here, for instance,

a model with adaptive agents would predict that the demand for vaccination never settles,

when our model with rational expectation would predict that with time, individuals become

close to indifferent to vaccination.

1.2.3 Populations with different costs to vaccinate

The population we have been modeling so far was made of identical individuals. Preferences,

notably, were the same for all individuals. Yet we expect real life individuals to have dif-

ferentiated preferences. Besides, as we are considering far-sighted individuals who need to

anticipate the future of the epidemic, we need to take into account the fact that an individ-

ual’s decision may be influenced by his knowledge of others’ preferences and hence others’

influence on future epidemiological states.

In this section, we model two populations – still homogeneously mixed – only differing

in their attitude toward vaccination. Different attitudes toward vaccination are modeled

by different costs to vaccinate. Population 0 has the same vaccination cost c = 10 as the

population modeled to this point (Sections 1.2.1–1.2.2). Population 1 has a more anti-

vaccination stance and a cost to vaccinate c = 12.14 Obviously, the vaccination behavior of

individuals in Population 1 is different from that of individuals in Population 0. This disparity

influences the course of the epidemic, which is anticipated by individuals in Population 0, in

turn modifying their behavior compared to the case where they were the only individuals in

12That is, the value functions do depend on time. Numerically, we solve this system for each date, subject
to the current state of the epidemic.

13In Figure B.4 in Appendix, we show the same results for ǫ = 1/20.
14This difference can be accounted for by ideology but it can also be interpreted more materialistically:

individuals may face different insurance policies, more expensive access to medical services, etc.
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(a) Epidemiology

(b) Vaccination decision

Figure 1.5: Epidemiological results and vaccination decisions over the first quarter of the
epidemic, with ǫ = 1/600 and nǫ(0) = 1 – Individuals with adaptive behavior.
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(a) Epidemiology

(b) Vaccination decision

Figure 1.6: Epidemiological results and vaccination decisions over the first 20 years of the
epidemic, with ǫ = 1/600 and nǫ(0) = 1 – Individuals with adaptive behavior.
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the population. Similarly, individuals in Population 1 anticipate decisions made by individuals

in Population 0.

We investigate the effects of vaccination cost heterogeneity by varying the proportion of

the whole population belonging to Population 1 between 0% (all individuals are in Population

015), and 100% (all individuals are in Population 1). In each simulation, 1% of Population 0

and 1% of Population 1 is initially infected.

Results are displayed in Figures 1.7–1.8.16 Individuals in Population 0 vaccinate more

that individuals in Population 1. Indeed, the former have a lower cost to vaccinate than the

latter and yet face the same disease prevalence at all times.

Individuals in each population tend to vaccinate more as the ratio of individuals in Popu-

lation 1 increases. Indeed, more individuals in Population 1 implies a lower overall vaccination

rate. Because higher prevalence is then anticipated by all individuals, more people vaccinate

in each population. This reasoning fails at some points in time since the whole dynamics of

the epidemic is modified by the change in vaccination policy of both populations. Indeed, a

change in vaccination policy may influence the waveform of the disease dynamics and hence

the lack of coherence between both cases may imply shifted local maxima and local minima

of vaccination decisions.

1.3 Conclusion

Investigating the interplay between the strictly speaking biological dynamics of an epidemic,

and individual vaccination decision-making, is certainly critical to the design of operational

health policies. In this line, there is a need for an appropriate benchmark. We claim that

this benchmark is to be provided by the behavior of canonical fully rational and far-sighted

individuals. The resulting forward-backward system of equations, however, is difficult to

solve: it is computationally challenging to obtain the functional fixed-point of the system. The

problem is even harder to solve over long time horizon, with vital dynamics, and with waning

vaccine efficacy – in this case several vaccination peaks arise, which increases dramatically

the complexity of decision-making. It is even more challenging when we consider individuals

with different preference types.

In this study, we exposed the evolution of such an epidemiological system taking into

account (i) the forward dynamics of an epidemic, and (ii) the backward individual decision-

making process. We simulated a Measles-like outbreak in this setting. We obtained several

vaccination peaks in the long run due to vital dynamics and waning vaccine efficacy. We

compared the results of our canonical candidate benchmark with those of another possible

benchmark found in the literature: adaptive vaccination decision-making. As a first extension

of our model, we also modeled heterogeneous preferences in the simple case where two pop-

ulations with a different stance toward vaccination coexist. Once adapted for more complex

15This corresponds in fact to the base case presented in Section 1.2.1.
16Figures C.4–C.5 in Appendix show more details. Figures C.2–C.3 and Figures C.6–C.7 in Appendix

display the same results for vaccination cost in Population 1 of c = 11 and c = 15 respectively.
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epidemic models, we believe that our approach will be able to produce benchmark results for

real life epidemics in cases where vaccination is offered on a voluntary basis.
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(a) Population 0

(b) Population 1

Figure 1.7: Vaccination decisions for two perfectly mixed populations with different costs to
vaccinate. Population 0: c = 10. Population 1: c = 12. ǫ = 1/20 and nǫ(0) = 1. Color scale
indicates the proportion of individuals in Population 1.
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(a) Total number of vaccinated individuals in both populations

(b) Total Number of infectious individuals in both populations

Figure 1.8: Epidemiological results for two perfectly mixed populations with different costs
to vaccinate. Population 0: c = 10. Population 1: c = 12. ǫ = 1/20 and nǫ(0) = 1. Color
scale indicates the proportion of individuals in Population 1.
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Chapter 2

Cost-effectiveness analysis revisited: The

case of Measles mandatory vaccination

This chapter is based on an article coauthored with N. Houy and P. Michel.

Abstract

Individuals may respond to an epidemic by engaging in preventive behaviors that, in
turn, influence the course of the epidemic. We argue that such feedback loops need to be
considered in the cost-effectiveness evaluations of public health policies. We elaborate on
the example of mandatory Measles vaccination. Our framework is a SIR compartmental
model. Before vaccination becomes mandatory, parents decide altruistically and freely
whether to vaccinate their children. We model anti-vaccinationist and vaccinationist
parents. We provide numerical evidence suggesting that individual anticipatory behavior
may lead to a transitional increase in Measles prevalence before steady state eradication.
This would cause non negligible welfare transfers between generations. Ironically, in our
scenario, anti-vaccinationists are among those who benefit the most from mandatory
vaccination.

Keywords: cost-effectiveness analysis, mandatory vaccination, Measles, MMR, behav-
ior.

In economic evaluations of disease control policies, costs are usually weighted against the

number of averted cases and other possible benefits. Costs and benefits may be expressed

as money, or in terms of well-being. They may be direct or indirect. Tools were developed

to reckon, measure, and add up a wide range of – sometimes subjective – aspects of a dis-

ease, from physical and psychological pain to the monetary cost of missing work (Weinstein

et al., 2009; Sassi, 2006). Even though it is debated (Holmes, 2013; Evans and Pagani, 2014;

Beresniak and Dupont, 2016), cost-effectiveness analysis is now a routine procedure in public

health (see Drummond et al. (2015) for a comprehensive textbook on the subject).

What modern economic evaluation methods have yet in common, is their limited account

of individual responses to the outcomes of a public health policy. Some studies look retro-

spectively upon individual behaviors insofar as they were directly affected by a policy (see
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Walker (2003); Lorenc et al. (2011) for instance). Other authors, like DePasse et al. (2017),

attempt to anticipate the effects of individual responses to policies but individual decisions

are either random or assumed in their models. Besides, they too focus on responses to the

direct effects of a policy, and not on responses to indirect incentive changes implied by this

policy. As a rule, in cost-effectiveness analyses, individual behavioral responses to incentive

changes are overlooked a priori.1

We see two reasons explaining why such individual behaviors are not considered in cost-

effectiveness analyses before policy implementation. First, we think that they may be implic-

itly deemed second order effects without further consideration. Second, considering feedback

loops between individual behaviors and epidemics can be a complex task, especially when

it comes to forward looking behaviors influencing the future spread of the disease. Let us

elaborate on those two explanations.

It might be argued that individual behavior is not always relevant to disease control. Some

real life examples might even be brought up. However, this does not imply that behaviors

should be disregarded in all cases. Measles is a typical example of a disease whose spread

hinges essentially, at least in developed countries, on individual behaviors. This has been dra-

matically illustrated by the MMR vaccine controversy (McIntyre and Leask, 2008). Measles is

a highly contagious infectious disease with potentially severe complications – around one out

of five cases in the United States requires hospitalization (Orenstein et al., 2004; Centers for

Disease Control and Prevention, 2015). Because it displays a very high reproduction number

(12 to 18, see Guerra et al. (2017)), high levels of immunization (90 to 95%, see Nokes and

Anderson (1988)) are necessary to reach herd immunity. An effective vaccine against Measles

has been available in developed countries since the 1960’s and has been included in routine

immunization programs since the 1980’s. Besides, in some countries such as France and the

United Kingdom, vaccination expenses are covered by the state or health insurances. Yet,

despite the apparent incentives to vaccinate and low vaccination costs, a fraction of the pop-

ulation still refuses vaccination. While Measles is not endemic in developed countries,2 this

unvaccinated subpopulation allows for sporadic epidemics whenever the virus is brought from

endemic regions of the world (World Health Organization, 2017). Examples of such epidemics

include the 2014–2015 California outbreak (Clemmons et al., 2015; Halsey and Salmon, 2015)

and more recently, the 2018 epidemics in Ireland, Italy (WHO Europe, 2018), and southwest-

ern France (Santé Publique France, 2018). The first objective of this paper is to illustrate

how individual behaviors can substantially influence disease dynamics, and show that they

can be relevant to economic evaluation. Our study may convince public health professionals

that individual behaviors, and specifically the feedback loop between prevalence, public poli-

cies, and individual decision-making, cannot be disregarded in many economic evaluations.

It must be noted that this work is not an application of well-established economic evaluation

1Some authors have discussed such individual responses, yet not as part of cost-effectiveness analyses. See
Ahituv et al. (1996) and Geoffard and Philipson (1996) for instance.

2The situation may however vary within a developed country. In 2016 in the United States, for instance,
the MMR coverage among uninsured children aged 19–35 months was as low as 77.3%. Vaccination coverage
may also differ from one minority to another. See Hill et al. (2017).
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methods. Rather, we use mathematical modeling and numerical simulation to look into some

of the foundations of these methods.

Let us now turn to the complexity argument for overlooking individual behavior in eco-

nomic evaluations – the technical difficulty of analyzing the feedback loop between individual

behaviors and disease dynamics. Arguably, individuals accept or refuse vaccination because

it is in their interest to do so. That is, they vaccinate if the risk of getting infected outweighs

their vaccination cost. This cost encompasses vaccination expenses, but also medical visit

inconvenience, fear of needles, going against one’s own religious beliefs, or fearing side effects

(see Kata (2010) for a review of anti-vaccination arguments). As for the risk of getting in-

fected, it depends on the number of infectious individuals, which in turn depends on how

many people got vaccinated in the past, and will in the future. Hence the technical difficulty

of modeling situations where individuals make decisions by anticipating the future disease

dynamics, this dynamics depending itself on past and present decisions. In order to circum-

vent these difficulties, some authors have considered only backward-looking behaviors like

memory- (Bhattacharyya et al., 2015) or imitation- (Reluga et al., 2006; Fenichel et al., 2011;

Poletti et al., 2012; Voinson et al., 2015) driven behaviors, or behaviors depending on the

current epidemiological situation only (Xu and Cressman, 2016).3 In the present study, we

use the canonical model described in Flaig et al. (2018) in order to tackle the full complexity

of the case. The second objective of this paper is to provide public health professionals with

computational tools allowing them to include individual behaviors in economic evaluations.

In order to meet both of our objectives – showing that individual behaviors can have a

first order impact in cost-effectiveness analyses, and providing tools to overcome the tech-

nical complexity of taking these behaviors into account – we study the example of Measles

vaccination in France, were MMR vaccination was made mandatory for all children born

after January 1st 2018. We use numerical simulations to show that individual anticipatory

behaviors may give rise to substantial generational effects – about six times larger than the

effects a traditional cost-effectiveness analysis would highlight. Also, counter-intuitively and

ironically enough, we show that anti-vaccinationists may be among those who benefit the

most from mandatory vaccination.

Our model is presented in Section 2.1. Simulation results are analyzed in Section 2.2.

First, we show the effect of anticipatory behaviors on the dynamics of Measles (Section 2.2.1).

Then, we compare the welfare of the different generations and subpopulations (Section 2.2.2).

Section 2.3 concludes.

2.1 Model

2.1.1 Epidemiological assumptions

We describe Measles dynamics with a SIR compartmental model with homogeneous mixing.

Individuals are born Susceptible. Following infection, individuals remain Infectious for five

3See Flaig et al. (2018) for more references on behavior modeling in epidemiology.
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days on average.4 Then, they Recover and stay immunized for the rest of their lives. Birth and

death rates are low and equal, which is characteristic of developed countries. We overlook

passive immunity through maternal antibodies. While most infants are born immune to

Measles, they usually become susceptible several months before scheduled vaccination. Also,

studies have found that children lose immunity earlier where Measles is not endemic. For a

recent review of this topic, see Guerra et al. (2018).

Real life vaccination schedules vary depending on the vaccine and from one country to

another (World Health Organization, 2017). We model a MMR-like vaccine, with a simplified

vaccination schedule. We assume that children have access to vaccination when they are 14

months (420 days) old. Hence, two age categories are relevant for our study: younger and

older than 14 months. Vaccination is only offered as part of routine vaccination schedules,

and has an efficacy of 97% (Centers for Disease Control and Prevention, 2015). Figure 2.1

sums up the epidemiological assumptions.

Susceptible Infected Recovered

Vaccinated Susceptible Infected Recovered

Age < 14 mo.

Age > 14 mo.

Figure 2.1: Compartmental model for Measles with vaccination. Gray arrows: births and
deaths.

2.1.2 Behavioral assumptions

Being healthy brings utility, while being sick has a relative cost. For the sake of simplicity,

the total cost of being sick is paid immediately upon infection. This simplifying assumption

is made possible by the short duration of the symptoms, and the low discount rate value of

3% annually. Costs and utilities are in QALDs (1 QALD is 1/365 QALY). Sick individuals

incur a total cost of 7 QALDs (Thorrington et al., 2014). This figure includes symptoms,

time off school or work, hospitalization, and missed days of work by parents of sick children.5

Vaccination has a cost too (monetary, logistical, ideological, etc.) that must be paid when

vaccination is voluntary, but also when it is mandatory. We use this cost to model two

types of individuals: anti-vaccinationists and vaccinationists. In our model, the former are

simply assumed to have a higher vaccination cost than the latter. We call “vaccinationists”

individuals that are not anti-vaccinationists for the sake of concision. When vaccination is

voluntary, individuals (at 14 months of age) freely choose whether they want to get vaccinated

based on a personal intertemporal and far-sighted cost-benefit analysis. When vaccination is

mandatory, all susceptible 14 month old children get vaccinated.

4Infected individuals are infectious four days before rash onset (Centers for Disease Control and Prevention,
2015). Our assumption is that sick individuals are (self-)quarantined after five days of positive infectiousness.

5Notice here that individuals consider their private costs, and not a social cost of being sick.
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Here we assume that individuals decide for themselves even though they are 14 months

old. This assumption is equivalent to considering perfectly altruistic parents making the

decision of having their child vaccinated considering his best interest (Ramsey, 1928). This

assumption seems to be in line with observations in the case of MMR vaccination decision-

making (Brown et al., 2010).

Timing is as follow: before time 0, individuals believe that voluntary vaccination will last

forever and they behave accordingly. We start our simulations at time 0 with the epidemic

steady state corresponding to this behavior. At time 0, authorities announce that vaccination

will be made mandatory at time tmv > 0. Hence, between time 0 and tmv, vaccination is still

voluntary but individuals can anticipate the future effects of mandatory vaccination.

2.1.3 Equations

For all time t between 0 and final time T , the population in each health status is governed by

equations (2.1)–(2.7). sa,j (resp. ia,j , ra,j , va,j) is the susceptible (resp. infected, recovered,

vaccinated) population

• in age class a ∈ {y, o}: younger or older than 14 months,

• of type j ∈ {v, av}: vaccinationist or anti-vaccinationist.

Equation 2.8 is the Bellman equation governing the value V o
S of being susceptible and

older than 14 months, that is the value of having missed or not seized the chance to receive

the vaccine.

d

dt
sy,j(t) =αjνno(t) −

(

1
l

+ λ
i(t)
n(t)

)

sy,j(t) (2.1)

d

dt
so,j(t) =

1
l

(1 − θΛj(t)) sy,j(t) −

(

µ + λ
i(t)
n(t)

)

so,j(t) (2.2)

d

dt
iy,j(t) =λ

i(t)
n(t)

sy,j(t) −

(

1
l

+ γI

)

iy,j(t) (2.3)

d

dt
io,j(t) =λ

i(t)
n(t)

so,j(t) +
1
l
iy,j(t) − (µ + γI) io,j(t) (2.4)

d

dt
ry,j(t) =γIiy,j(t) −

1
l
ry,j(t) (2.5)

d

dt
ro,j(t) =

1
l
ry,j(t) + γIio,j(t) − µro,j(t) (2.6)

d

dt
vo,j(t) =

1
l
θΛj(t)sy,j(t) − µvo,j(t) (2.7)

−
d

dt
V o

S (t) =ug −

(

δ + µ + λ
i(t)
n(t)

)

V o
S (t) + λ

i(t)
n(t)

(

V̄V − C
)

(2.8)

A description of the parameters with their values is given in Table 2.1.
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Notation Value Description

Epidemiology

λ 2.8 Contact rate
γI 1/5 Rate of recovery
θ 97% Vaccine efficacy
Decision-making

ug 1 Utility of being in good health
C 7 Total cost of being sick
cv 1.02 × 10−3 Vaccination cost of vaccinationists
cav 9.41 × 10−3 Vaccination cost of anti-vaccinationists
αv 96% Proportion of vaccinationists
αav 4% Proportion of anti-vaccinationists
δ 8.1 × 10−5 Discount rate
ǫ 10−5 Slope parameter of the sigmoid χǫ

Vital dynamics

ν 3.42 × 10−5 Birth rate
µ 3.42 × 10−5 Death rate
1/l 1/420 Aging rate

Table 2.1: Parameter values. Time unit: day. Costs and utility in QALD.

The total population of individuals older than 14 months at time t is

no(t) =
∑

j∈{v,av}

so,j(t) + io,j(t) + ro,j(t) + vo,j(t).

A proportion αav of the νno(t) children born at time t are anti-vaccinationist (or equiv-

alently, have anti-vaccinationist parents), and a proportion αv = 1 − αav are vaccinationist

(Equation 2.1). We set αav to 4%. Results are similar for higher values of αav. We provide

results for αav = 1% in Appendix D as a robustness check.

Aging is probabilistic in our model. At each time, individuals younger than 14 months

(Equations (2.1), (2.3), and (2.5)) grow older than 14 months with probability 1/l × dt.

Individuals older than 14 months (Equations (2.2), (2.4), (2.6), and (2.7)) die with probability

µdt. We assume that infected individuals do not have a higher death rate (instead, for the

sake of simplicity, this probability is included in the cost of being infected).

Under homogeneous mixing assumption, susceptible individuals (Equations 2.1 and 2.3)

are infected with probability λ × i(t)/n(t) × dt at time t, where

i(t) =
∑

a∈{y,o}
j∈{v,av}

ia,j(t)

is the total number of infected individuals at time t, and

n(t) =
∑

a∈{y,o}
j∈{v,av}

sa,j(t) + ia,j(t) + ra,j(t) + va,j(t)
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is the total population at time t. Infected individuals (Equations 2.3 and 2.4) then recover

at rate γI .

As long as vaccination is not mandatory, children decide to vaccinate by comparing the

value V o
S of being susceptible (Equation 2.8) with the value VV of being vaccinated.

Remember that individuals are forward-looking: value functions are (future) expected

utilities. Therefore, if ug is the utility of being in good health during one day, V o
S decreases

by ug each day spent susceptible as one day of good health is past. In other words, V o
S

decreases at rate ug. The same reasoning goes for health status transitions. As time passes

and transitions are forgone, their net value is subtracted from the value of being susceptible.

The value of being dead is normalized to 0. Then, the value of dying at time t for a

susceptible individual is −V o
S (t). Since vaccination provides lifelong immunization, VV is

equal to its steady state value V̄V = ug/(δ + µ). Recovered individuals also enjoy lifelong

immunization so we approximate the net value of getting infected at time t by V̄V −C −V o
S (t),

where C is the total cost of being sick. The discount rate δ stands for time preferences.

We represent decision-making by a smoothed best response function (Fudenberg and

Levine, 1998; Xu and Cressman, 2014). Children refuse vaccination with non zero proba-

bility, even when the net value of vaccination exceeds the value of being susceptible, and

the probability of choosing either option gets close to 0.5 as the net value difference between

the two gets close to 0. In addition to easing computation, smoothed best responses remain

consistent with real life behaviors. We use the sigmoid χǫ : x 7→
1

1 + exp [−x/ǫ]
as smoothed

best response function. If the value difference between two alternatives, say 1 and 2, is

∆V = V1 − V2, then alternative 1 of value V1 is chosen with probability χǫ (∆V ).

Let Λj(t) denote the proportion of children of type j who reach 14 months at time t,

and who receive the vaccine. With tmv ∈ [0, T ] standing for the date at which mandatory

vaccination comes into force, Λj is given by

Λj(t) =







χǫ

(

θ
(

V̄V − V o
S (t)

)

− cj

)

if t < tmv

1 otherwise

where θ is the efficacy of the vaccine. In the following simulations, ǫ = 10−5. The derivative of

χǫ at 0 is χ′
ǫ(0) = 25, 000. This means that locally, a change of 1/25, 000 QALD corresponds

to a 100% change in vaccination decision: we make sure that individual decisions are reactive

enough to incentive changes.

2.1.4 Solution method

We solve Equations (2.1)–(2.8) numerically using a fixed-point iteration algorithm. Solutions

are computed for a total population of 1. Since birth and death rate are equal, the total

population is constant. This allows us to solve with the total population older than 14

months set to its steady state value n̄o = 1/(1 + νl).

In order to solve, we need initial conditions for Equations (2.1)–(2.7), and a final condition

for Equation (2.8). We choose final time T so that solutions to Equations (2.1)–(2.7) are
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reasonably close to their steady state by time T .

Initial conditions of Equations (2.1)–(2.7) are set to the steady state that is reached when

(i) vaccination is available on a voluntary basis, and (ii) mandatory vaccination has not yet

been announced. This initial state depends on the proportion αav of anti-vaccinationists in

the population, and on the respective vaccination costs cv and cav of vaccinationists and

anti-vaccinationists. After setting αav, we adjust cv and cav so as to obtain a steady state

corresponding to an incidence of 250 Measles cases per year in a population of 6×107 persons,

that is the approximate population of France. Measles incidence may vary greatly from one

year to another. 250 cases correspond to the 2014 incidence in France. This steady state

incidence level serves as benchmark in the welfare analysis.

2.2 Results

2.2.1 Epidemiology

Figure 2.2 shows the instantaneous prevalence and vaccination decisions for four different

values of tmv under the assumption that a proportion αav = 4% of the population is anti-

vaccinationist. Before mandatory vaccination is announced, 100% of vaccinationists vaccinate

in this scenario. 25% of the anti-vaccinationists do the same.

In Figure 2.2a, mandatory vaccination immediately comes into force upon announcement

at time 0. All children reaching 14 months are vaccinated against Measles, and the prevalence

drops to eradication levels.

Things turn out differently when mandatory vaccination is announced before coming into

force. In Figure 2.2b, mandatory vaccination is announced 6 months in advance. Before

vaccination comes into force, anti-vaccinationists anticipate that Measles will ultimately be

eradicated thanks to mandatory vaccination. This means that they will enjoy eradication for

most of their life, whether vaccinated or not. Consequently, they engage in free riding and

do not vaccinate. Between time 0 and tmv, 0% of anti-vaccinationists receive the vaccine.

They do not pay the vaccination cost, yet they will benefit from the constrained effort of

those who will vaccinate under mandatory vaccination. To some extent, vaccinationists free

ride too but only right before tmv. The drop in vaccination between time 0 and tmv leads to

a slight increase in prevalence.

This increase in prevalence amplifies as mandatory vaccination is announced earlier (Fig-

ures 2.2c and 2.2d). Indeed, the longer the interval between time 0 and tmv, the longer

the drop in vaccination can last. At some point, the increase in prevalence makes free rid-

ing suboptimal for vaccinationists. Besides, as mandatory vaccination is put off to a later

time after announcement, eradication is also delayed and it becomes optimal for some anti-

vaccinationists to vaccinate their children.

Figure 2.3 displays the same results for all values of tmv ranging from 0 to 10 years. It

shows how a spike in Measles cases develops as mandatory vaccination is announced earlier

before implementation. This spike in prevalence and the eventual eradication of the disease

imply that individuals will fare very differently depending on their birthdate and their vacci-
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(a) tmv = 0 (b) tmv = 6 months

(c) tmv = 5 years (d) tmv = 10 years

Figure 2.2: Prevalence and vaccination decisions. Green (left axis): vaccination decision
by vaccinationists. Red (left axis): vaccination decision by anti-vaccinationists. Blue (right
axis): instantaneous prevalence per 6 × 107 persons. Dashed: initial (steady) state.

nation status at a given date. Hence we must look into intertemporal effects by undertaking

a full welfare evaluation.
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(a) Vaccination decision by vaccinationists (b) Vaccination decision by anti-vaccinationists

(c) Instantaneous prevalence

Figure 2.3: Vaccination decisions and prevalence for a mandatory vaccination date (tmv)
between 0 and 10 years. Green: date t = tmv.
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2.2.2 Welfare

Let us turn to welfare analysis. In order to be comprehensive, we need to consider the welfare

of (i) individuals who are born after the announcement of mandatory vaccination (at time

0), and (ii) individuals that were born before that time. For each of these categories, we

compare

1. the value of being susceptible6 at each time between 0 and T when vaccination becomes

mandatory at time tmv, with

2. the value of being susceptible under a benchmark scenario where vaccination is volun-

tary, that is under our initial epidemic steady state conditions.

Under the mandatory vaccination scenario, the value of being susceptible and older than

14 months is given by V o
S , the solution of Equation (2.8). We compute the value of being

susceptible, younger than 14 month, and of type j ∈ {v, av} at time t ∈ [0, T ] as

V y,j
S (t) = ugdt + (1 − δdt)

[

λ
i(t)

n(t)

(

V̄V − C
)

dt

+
1

l
Λj(t)θ

(

V̄V − cj

)

dt

+
1

l
Λj(t) (1 − θ) (V o

S (t + dt) − cj) dt

+
1

l
(1 − Λj(t)) V o

S (t + dt)dt

+

(

1 − λ
i(t)

n(t)
dt −

1

l
dt

)

V y,j
S (t + dt)

]

. (2.9)

The probability tree in Figure 2.4 may clarify Equation (2.9).

Figure 2.5 displays the welfare gains of mandatory vaccination for children depending on

their birthdate and their vaccinationist or anti-vaccinationist stance.

All individuals born after Measles eradication benefit from mandatory vaccination (light

blue area on the right of each graph). This illustrates an instance where state intervention

solves the vaccination public good problem. This scenario and the corresponding welfare gain

are well-known (Bauch et al., 2003). Usually, cost-effectiveness analyses provide precisely this

welfare gain as only measure of the impact of mandatory vaccination.

However, individuals who are born when prevalence is peaking – when mandatory vacci-

nation is announced long enough before implementation – are worse-off (Figure 2.5). Indeed,

newborns spend 14 months without having access to vaccination, which makes them especially

vulnerable to infection. During this period, only herd immunity is protecting them.

The individuals benefiting the most from mandatory vaccination are those who will not

be obliged to vaccinate and who still see many others undergo this obligation. The first of

those two effects will be stronger for anti-vaccinationists because they have a higher cost to

6Since we consider lifelong immunity after successful vaccination or recovery, only susceptible individuals
have their welfare depending on health policies.
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V y,j
S

1 −
1
l
dt − λ i

n
dt

V̄V − C
λ i

n
dt

V o
S

1 − Λj

V o
S − cj

1 − θ

V̄V − cjθ

Λj

1
l
dt

Figure 2.4: Probability tree for individuals of type j.

(a) Vaccinationists (b) Anti-vaccinationists

Figure 2.5: Value difference between mandatory vaccination scenario and benchmark scenario
for children born after time 0. Green: birthdate t = tmv.

vaccinate. The second effect will be stronger if mandatory vaccination is implemented quickly

after its announcement so that there is not enough time for free riding to translate into a

spike in Measles cases. In this case, ironically enough, anti-vaccinationists who are able to

free ride are among those who benefit the most from mandatory vaccination (Figure 2.5b).

Namely, anti-vaccinationists in this situation benefit around six times more from mandatory

vaccination than vaccinationists born after eradication. Obviously, the specific magnitude of

this transfer of welfare between subpopulations and generations depends on many parameters.

Yet, we argue that it cannot be overlooked a priori in a cost-effectiveness analysis.

To be exhaustive in our evaluation, we also need to take into account the population that

was born before time 0. Figure 2.6 shows the difference between the value of being suscep-

tible at time 0 and the value of being susceptible in our benchmark steady state voluntary

vaccination scenario.
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Figure 2.6: Value difference at time 0 for susceptible children born before time 0. Blue:
individuals older than 14 months. Green: vaccinationists younger than 14 months. Red:
anti-vaccinationists younger than 14 months.

At time 0, individuals are indifferent to mandatory vaccination when it comes late after

the announcement (in our instance, more than about 5 years after announcement). This

is due to time discounting, and to the fact that a larger increase in prevalence offsets the

benefits of subsequent eradication.

Susceptible individuals who are older than 14 months at time 0 (blue curve in Figure 2.6)

are either those who refused vaccination, or those whose immune system did not respond to

vaccination. From their point of view, the sooner mandatory vaccination is implemented the

better: the less significant the spike in prevalence following the announcement and the sooner

the eradication – hence the lower the infection probability.

Since we model aging as a Poisson process, it is equivalent for a child to be younger than

14 months at time 0, or to be born exactly at time 0. Then, the green and red curves in

Figure 2.6 corresponding to children younger than 14 months at time 0 can be read directly

on Figure 2.5 with 0 x-axis value. Interpretation is the same as above.

2.3 Conclusion

Cost-effectiveness evaluations of disease control policies allow to compare substantially dif-

ferent courses of action. In this direction, much effort has been made towards ever more

precise measures of the costs of diseases for individuals and society, whether in money or in

terms of utility. Still, however much detailed these measures might become, we argue that

disregarding individual behaviors in cost-effectiveness evaluations is a priori problematic for

two reasons. First, this approach overlooks possible feedback loops between the spread of a

disease, policies, and individual behaviors. Such feedback loops may influence the ultimate
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outcome of a policy – even in the very long run. Second, insofar as human behavior is based

on anticipation, public health policies transfer large amount of welfare between generations,

or more generally between subpopulations.

In this article, we draw on the example of mandatory Measles vaccination to support our

claim. We show that in this instance, while Measles is eradicated in the long run, individual

anticipatory behaviors may cause major transition effects. As some individuals anticipate

eradication, they do no vaccinate their children before mandatory vaccination comes into

force. This leads to a transitional increase in prevalence and, consequently, to generational

welfare differences. Somewhat ironically, anti-vaccinationists are among the ones benefiting

the most from mandatory vaccination in this scenario. The transitional increase in prevalence

can be avoided by implementing mandatory vaccination quickly after it has been announced.

While this study focuses on Measles vaccination decision, we use a framework that is rele-

vant for all types of infectious diseases and anticipatory behaviors involving strategic interac-

tions. Also, the effects we bring out are not conditional on considering an anti-vaccinationist

subpopulation – free riding can also occur in an homogeneous population. Our study is based

on numerical simulations, and on the restricting (yet relevant) assumption that individuals

are rational and far-sighted. The use of numerical simulation methods is however clearly

justified by the complexity of the problem, and we believe that one merit of our study is

to display a use case for the numerical methods we described in Flaig et al. (2018). This

approach is ultimately intended as a tool for public health professionals. Finally, we argue

that our simulations allow to highlight effects whose magnitude calls for empirical investi-

gations and possibly reconsideration of some public health policy recommendations. It has

been demonstrated (Saint-Victor and Omer, 2013) that vaccination tends to decrease with

prevalence, which may indicate free riding and “rational” behavior. Yet data is still missing

to investigate the full extent of these phenomena and their welfare implications in the real

world.
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Chapter 3

Vaccination as a cooperative behavior

This chapter is based on an article coauthored with N. Houy and P. Michel.

Abstract

We study voluntary Measles vaccination as a cooperative behavior. In this scenario,

individuals form a coalition by agreeing to vaccinate their children and to retaliate against

those who fail to do so. We rely on the model developed by Flaig et al. (2018a) that

consists of a compartmental model coupled with a model of rational and far-sighted

vaccination decision-making. This numerical approach overcomes the technical difficulty

of including individual behavior in epidemiological models. We draw upon equilibrium

and retaliation concepts borrowed from the theory of repeated games, even if individuals

vaccinate only once in our framework. We bring out the vaccination cost and coalition

size values for which cooperative vaccinating behavior is sustainable in different scenarios:

(i) when there is no retaliation against individuals who refuse vaccination, (ii) when

retaliation is mild, and (iii) when retaliation is harsh. It is well known that vaccination

coverage tends to decrease near eradication prevalence levels. Interestingly, cooperation

can be a powerful way to promote vaccine uptake where it would otherwise become

insufficient due to low prevalence. Finally, we show that cooperation brings benefits in

terms of reduced prevalence.

Keywords: Measles, voluntary vaccination, cooperation.

Measles is a highly contagious viral infectious disease. An efficient vaccine has been

available since 1963 and a combination of vaccines protecting from Rubella, Mumps and

Measles has been available since 1974. In the United States, in the decade preceding the

introduction of the vaccine, virtually all children were infected before they reached 15 years

of age (about 3 to 4 million people infected every year). An estimated 400 to 500 people died

each year, 48,000 were hospitalized, and 1,000 developed encephalitis CDC (2018). Since

2000, the annual number of reported Measles infections in the US has been ranging from 37

people in 2004 to 667 people in 2014. However striking this decrease might be, eradication

does not seem to be close. In fact, Measles outbreaks still regularly occur, mainly in pools of

unvaccinated individuals (Amish communities in Ohio in 2014, or regularly in Romani camps

in France, see INVS (2018a,b)), but not only (Salmon et al., 1999).
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The last steps to meet vaccination coverage targets seem to be the hardest ones (Saint-

Victor and Omer, 2013). Health authorities regularly insist that citizens should vaccinate

more. Indeed, it is well known that vaccination is not only about protecting oneself. What is

at stake, is also whether the population as a whole will be able to reach herd immunity, thus

protecting those who may not have access to vaccination for a variety of reasons, and those

who remained unimmunized because their immune system did not respond to the vaccine.

Yet this externality is not, by definition, taken into account by perfectly rational and selfish

individuals basing their vaccination decision on a private cost-benefit analysis. Consequently,

the vaccination coverage resulting from private cost-benefit analyses is lower than what would

be socially optimal.

Let us illustrate this point in the case of Measles with a short back-of-the-envelope com-

putation. Assume a nonoptimistic yearly incidence of 667 cases in a population of 3 × 108

individuals, that is the highest incidence in the United States in the past few years. The

average private cost of having Measles has been estimated to be about 7 quality-adjusted life

days (QALD) by Thorrington et al. (2014). Considering a 3% discount rate, the present value

of risking to be infected with Measles would be about 7 × 667
3×108 × 1

3% ≈ 5.2 × 10−4 QALDs,

i.e. 45 quality-adjusted life seconds! This computation is simplified and somewhat naive, but

it still gives some important insights. Consider for instance that having a child vaccinated

requires an adult to bring the child to a physician twice to receive two vaccine shots. This

can hardly be deemed less costly than the expected cost of not being vaccinated.1 Again, our

computation is simplistic and does not take into account many aspects of the problem.2 Yet

we believe that the order of magnitude of our result will convince the reader that, at least

in the case of Measles, the puzzle is not so much vaccine refusal as vaccination acceptance.

We are not saying that it is not collectively profitable that individuals vaccinate.3 Rather,

we claim that calling to individuals’ rationality for them to implement this optimal collective

policy might be misguided. This is in line with the conclusions of the recent review by Brewer

et al. (2017). In order to better inform policy makers, we hold that researchers should strive

for a better understanding of the reasons underpinning Measles vaccination acceptance and

the relatively high Measles vaccination coverages we can observe in most developed countries.

While high, these vaccination coverages fall short of achieving herd immunity more often than

not (see Hill et al. (2017) for instance), and Measles immunization remains a major public

health issue. Many mutually non-exclusive reasons can be given for vaccination: behavioral

explanations (risk attitude, beliefs), social norms, and the role of the media among others.

In the current article, we investigate the role of cooperation in a theoretical framework with

a simulation based approach.

1In real life, parents decide for their children and do not face the same costs. Assuming that parents are
perfectly altruistic towards their children – and only towards them – makes all the computations of this article
valid.

2One of our strongest assumptions is to ignore the fact that the vaccine against Measles is generally
combined with vaccines against Mumps and Rubella, which should be an additional incentive to get vaccinated.
Notice however that many anti-vaccination activists ask for vaccines to be administered independently. So in
their case the combination of several vaccines seems to be more of a deterrent than an incentive.

3An enormous literature has shown the positive social benefit of vaccination against Measles, see Bester
(2016) for a systematic review.
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We believe that studying vaccination as a cooperative behavior is interesting from both

theoretical and explanatory standpoints. For the latter, we will show in this article that

cooperation can help explain the puzzle of vaccination acceptance described above. From a

theoretical standpoint, we borrow retaliation (or punishment) concepts from the theory of

repeated games. Vaccination decision-making is strategic in essence, which justifies a game

theoretic approach. Formally, however, strategic interaction in vaccination is not repeated,

since vaccination is usually scheduled at a given age and vaccination decision is made only

once. Yet the concept of retaliation still makes sense in this context as an individual’s utility

– a player’s payoff in our game – depends on future disease prevalence, that is on future

players’ vaccination decisions. This dynamic setting allows individuals to punish past bad

behaviors.

The major difficulty in our investigation of cooperation in vaccinating behavior is the

technical difficulty of solving the corresponding dynamical system. This system is indeed

both backward and forward in time. In order to make their vaccination decision rationally,

individuals must anticipate the future disease prevalence path which determines the risk of

being infected. The spread of the disease depends in turn on past vaccination decisions. This

two-ways dynamics can hardly be computed analytically and is hard to compute numerically.

In order to solve this problem, several approaches have been proposed. Some authors

tackled the problem with a full consideration of the forward-backward dimension described

above. Geoffard and Philipson (1996) and Chen and Cottrell (2009) studied SI epidemiolog-

ical models, whereas Geoffard and Philipson (1997) and Laguzet and Turinici (2015) studied

SIR models. Geoffard and Philipson (1996, 1997); Chen and Cottrell (2009) produced mainly

qualitative descriptions of some features of the solution that can hardly be used in an ap-

plied context. Laguzet and Turinici (2015) overlooked vital dynamics. In the same stream of

literature, Reluga and Galvani (2011) restricted themselves to the study of steady states.

An alternative stream of literature somehow decreases the complexity of the coupled sys-

tem by disregarding the forward reasoning component in human behavior. Bauch et al. (2003)

and Bauch and Earn (2004) sparked renewed interest in vaccination policy and individual

choices with one period, static models. Further instances of one period models were provided

by Reeling and Horan (2015), Code et al. (2007) and Shim et al. (2012a). In order to intro-

duce dynamic decision-making in this framework, Bauch (2005) (followed by Reluga et al.

(2006), d’Onofrio et al. (2011), Fu et al. (2011) and Yang et al. (2016)) proposed models with

imitation behavior. Just as the spread of a transmittable disease when individual behavior

is ignored, imitation only depends on past and current states of the epidemic: imitation

dynamics goes forward in time. This outlook on the problem was also adopted by Fenichel

et al. (2011). They assumed that individuals falsely believe that the current epidemiological

state will persist (Voinson et al. (2015) added cognitive biases to this framework). Simi-

larly, Buonomo et al. (2008), Epstein et al. (2008), Coelho and Codeco (2009), Funk et al.

(2015) and Bhattacharyya et al. (2015) all modeled information and/or beliefs with forward

dynamics in time.

In this article, we use the formal model and computational tools we developed previously
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Flaig et al. (2018a,b) in order to analyze vaccination coverage in a cooperative setting. We

define two levels of punishment and show the parameter values for which punishment threat

sustains cooperation between individuals in a given subpopulation.

3.1 Model

Our model is made of the same two components as in Chapter 2. The first component is

a usual SIR compartmental model with vaccination. It models the demographics and the

spread of Measles assuming homogeneous mixing. Individuals can vaccinate at 14 months of

age. Vaccination provides life-long immunity and has a 97% take-rate. There is no maternal

immunity. Infection has an instantaneous 7 QALD cost. Birth and death rates are typical of

a developed country.

The second component is a model of individual vaccination decision-making. At 14 months

of age,4 far-sighted individuals rationally anticipate the future prevalence of Measles, that is

the risk of being infected during their life, and the corresponding expected cost. They then

base their decision on a private cost-benefit analysis weighting the cost of vaccination against

the expected cost of being infected. The vaccination decision of each individual modifies

the future prevalence, thus influencing the payoff of all other players, including those yet to

be born. This strategic interaction in vaccination decision-making justifies a game theoretic

approach.

We consider two subpopulations – 1 and 2 – with different costs to vaccinate, c1 and c2

respectively. We call anti-vaccinationist the subpopulation with the highest cost to vaccinate.5

α1 is the share of subpopulation 1, and α2 = 1 − α1 is the share of subpopulation 2. We

assume that individuals in subpopulation 1 can form a coalition by agreeing to cooperate and

vaccinate at 14 months of age under the conditions described below. Individuals in population

2 always implement their best response to the vaccination decisions of all other individuals

in both subpopulations. Notice that we make no assumption regarding the relative values of

c1 and c2 at this point.

Our model is the same as that described by Equations (2.1)–(2.8) in Chapter 2, except

that subpopulations 1 and 2 may switch role and represent alternatively vaccinationists or

anti-vaccinationists depending on the simulation instance. Also, we do not use the usual

sigmoid function because, in our study, we are especially interested in limit behaviors with

0% or 100% vaccination. The sigmoid may tend to a 0% or 100% behavior but never reaches

it. Another solution would have been to define thresholds above (resp. below) which we

assume 100% (resp. 0%) behavior. However, this would have required the introduction of an

4The assumption that children make their own decision is equivalent to considering perfectly altruistic
parents making the decision of having their children vaccinated considering the latter’s best interest (Ramsey,
1928). This assumption seems to be in line with observations in the case of the MMR vaccine (Brown et al.,
2010).

5See Cojocaru et al. (2007); Manfredi et al. (2009); Shim et al. (2012b) for other instances of this modeling
approach.
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Notation Value Description

Epidemiology

λ 2.8 Contact rate
γI 1/5 Rate of recovery
θ 97% Vaccine efficacy
Decision-making

ug 1 Utility of being in good health
C 7 Total cost of being sick
c1 variable Vaccination cost of subpopulation 1
c2 variable Vaccination cost of subpopulation 2
α1 variable Proportion of individuals

in subpopulation 1
α2 1 − α1 Proportion of individuals

in subpopulation 2
δ 8.1 × 10−5 Discount rate
ǫ 2 × 10−3 Slope parameter of the function χǫ

Vital dynamics

ν 3.42 × 10−5 Birth rate
µ 3.42 × 10−5 Death rate
1/l 1/420 Aging rate

Table 3.1: Parameter values. Time unit: day. Costs and utility in QALD.

additional arbitrary parameter. Instead, we use the function

χǫ : x 7→























0 if x ≤ −ǫ/2

1 if x ≥ ǫ/2

1/2 + x/ǫ otherwise

as smoothed best response function.

A description of the parameters with their values is given in Table 3.1.

We will study the sustainability of vaccination cooperation among subpopulation 1 with

two different grim trigger strategies borrowed from the theory of repeated games (Friedman,

1971; Axelrod, 1984).

• The mild trigger strategy: if an individual does not cooperate/vaccinate, all individuals

in the coalition (subpopulation 1) implement their best responses and fall back onto

the subgame perfect Nash equilibrium strategy in the future.

• The harsh trigger strategy: if an individual does not cooperate/vaccinate, all individuals

in the coalition (subpopulation 1) do not cooperate in the future (i.e. stop vaccinating).

In the following, we will say that vaccination cooperation is an equilibrium with mild

(resp. harsh) threat if individuals in subpopulation 1 have no incentive to deviate from

vaccinating when the mild (resp. harsh) trigger strategy is implemented.
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Figure 3.1: Steady state vaccination decision by individuals in subpopulation 2 when indi-
viduals in subpopulation 1 all vaccinate.

3.2 Results

When the subpopulation 1 coalition holds, vaccination decision by individuals in subpopula-

tion 2 only depends on their own vaccination cost c2 and on the share of each subpopulation

in the total population. The steady state vaccination decision by individuals in subpopulation

2 in this scenario is shown in Figure 3.1. As expected, they tend to vaccinate less as their

vaccination cost increases. Also, individuals in subpopulation 2 free ride on subpopulation

1 coalition: when the share of subpopulation 1 increases and the coalition holds, the risk of

being infected decreases and subpopulation 2 can decrease its own vaccination coverage. In

the following, all results will be for c2 = 3.6

When the coalition holds in subpopulation 1, the best response of an individual in this

subpopulation might be to free ride on others’ vaccination. Figure 3.2 shows the steady state

best response of a single individual in subpopulation 1, in the scenario where all individuals

in subpopulation 1 vaccinate and there is no retaliation threat. That is, all individuals in

subpopulation 1 will continue vaccinating even if one of them decides to not vaccinate. As we

consider atomistic individuals, individuals in subpopulation 2 vaccinate as in Figure 3.1 (with

c2 = 3) when a single individual in subpopulation 1 deviates from the coalition. When the

best response is to vaccinate for 100% of the individuals in subpopulation 1, the corresponding

equilibrium is a subgame perfect Nash equilibrium (SPNE). Put differently, the coalition holds

in subpopulation 1 because it is in each individual’s best interest to vaccinate, even if there

is no retaliation against free riders. In this case the coalition is sustainable without needing

a collective cooperation mechanism.

SPNEs with all individuals in subpopulation 1 vaccinating are obtained for lower values of

c1, the vaccination cost of subpopulation 1. When c1 is equal to c2 (recall that c2 = 3) the best

6We performed simulations for c2 between 2 × 10−3 and 6 and obtained the same effects qualitatively.
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Figure 3.2: Steady state best response vaccination decision by a single individual in subpopu-
lation 1 when all other individuals in subpopulation 1 always vaccinate (no threat). Crosses:
points where the best response is to vaccinate for 100% of subpopulation 1. c2 = 3.

response of an atomistic individual in subpopulation 1 is the same as that of an individual in

subpopulation 2 shown in Figure 3.1. From c1 = c2, a small increase in c1 makes it optimal

for an individual in subpopulation 1 to free ride on subpopulation 2’s vaccination. Notice

that in this scenario the individuals in subpopulation 1, those who are forming a coalition,

are actually anti-vaccinationists (c1 > c2).

We now turn to cooperation sustained by threats, mild and harsh, as defined above. It

must be noted in the first place, that actually carrying out a threat is not necessarily optimal

for individuals in subpopulation 1. Therefore, some cases where the coalition holds because

(and only because) of a retaliation threat are not SPNEs. In the second place, notice that in

order to determine if it is in the best interest of an individual in subpopulation 1 to deviate

from the steady state coalition, we need to compare (i) his welfare if the coalition holds, with

(ii) his welfare if he decides not to vaccinate and incurs mild or harsh retaliation. But welfare

when retaliation is carried out depends on future prevalence, that is on all future vaccination

decisions of subpopulation 2 in the case of harsh retaliation, and of both subpopulations in

the case of mild retaliation. Technically, this requires solving a dynamic system out of steady

state for each retaliation scenario, which is challenging in our case. We compute solutions as

functional fixed points, see Flaig et al. (2018a,b) for more details.

Time dependent solutions when threats are carried out are illustrated in Figure 3.4. At

time 0, 100% of the individuals in subpopulation 1 vaccinate as they are forming a coalition,

and individuals in subpopulation 2 implement their best response strategy to this coalition,

as displayed in Figure 3.1. The initial prevalence corresponds to these behaviors. Consider

now the vaccination decision of an individual in subpopulation 1. If he vaccinates, the initial

steady state coalition is sustained and he will face the corresponding prevalence (thin dashed

lines in Figure 3.4). If he does not vaccinate, then either mild or harsh retaliation is carried
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out by subpopulation 1 and he will have to face the corresponding prevalence (thin black

lines in Figure 3.4).

Again, we must emphasize that there is no shortcut (e.g. restraining ourselves to steady

state solutions) to results on the sustainability of a coalition in our case. We need full,

time dependent, solutions. Indeed, when mild retaliation is carried out, prevalence (and then

welfare) depends on the best response vaccination decisions of individuals in subpopulations 1

and 2, which in turn depends on their anticipation of future prevalence. The same holds when

harsh retaliation is carried out, but only individuals in subpopulation 2 choose their optimal

vaccination decision since harsh punishment consists in 0% of subpopulation 1 vaccinating.

We solve for vaccination decisions and prevalence over time for different values of α1 and

c1 in order to compute the best response of an individual in subpopulation 1 when mild and

harsh trigger strategies are implemented. This allows us to highlight parameter values for

which a coalition is sustainable thanks to the different trigger strategies. Our results are

shown in Figure 3.3. These plots are to be compared with Figure 3.2. The parameter values

for which we displayed full solutions in Figure 3.4 are such that it is optimal for an individual

in subpopulation 1 to deviate when the mild trigger strategy is implemented, but it becomes

optimal for him to vaccinate if the harsh trigger strategy is implemented.

We see in Figure 3.3 that trigger strategies sustain cooperation over wide ranges of pa-

rameter values. Also, the harsh trigger strategy performs slightly better than the mild trigger

strategy. Retaliation threats are globally more effective when the share of subpopulation 1 is

larger, as a larger share of individuals may carry out the threat. When α1 is larger, it takes

a higher vaccination cost c1 for individuals in subpopulation 1 not to cooperate. However

the mild trigger strategy becomes ineffective for α1 close enough to 1. Recall that when the

coalition holds, 100% of the individuals in subpopulation 1 vaccinate. When the share α1 of

subpopulation 1 is large enough, prevalence eradication levels are reached when the coalition

holds. If the mild retaliation is carried out, individuals in subpopulation 1 vaccinate freely.

Yet the prevalence is so low and α1 so high that they can easily control the epidemic.

One question remains unanswered: does cooperation bring any benefit in terms of preva-

lence reduction? In Figure 3.5, we show the prevalence levels resulting from the equilibria

shown in Figure 3.3. Because prevalence is a function of time, we display at each point:

• if vaccination is an equilibrium sustained by the appropriate trigger strategy (crosses in

Figure 3.3), the steady state prevalence with individuals in subpopulation 1 vaccinating

and individuals in subpopulation 2 playing their best response strategy,

• if vaccination is not an equilibrium sustained by the appropriate trigger strategy (dots in

Figure 3.3), the steady state prevalence with all individuals playing their best response

strategy (mild trigger strategy, Figure 3.5a) or individuals in subpopulation 1 never

vaccinating and individuals in subpopulation 2 playing their best response strategy

(harsh trigger strategy, Figure 3.5b).

When the coalition does not hold, and whatever the implemented trigger strategy, the

prevalence levels observed when all individuals in subpopulation 1 do not vaccinate (harsh
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(b) Harsh trigger strategy.

Figure 3.3: Best response vaccination decision by an individual of subpopulation 1 when
the mild (upper panel) and harsh (lower panel) trigger strategies are implemented. Crosses:
points where the best response is to vaccinate for 100% of subpopulation 1. c2 = 3.
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(b) Harsh trigger strategy.

Figure 3.4: Solutions when mild (upper panel) and harsh (lower panel) retaliations are carried
out with α1 = 30%, c1 = 3.5, and c2 = 3. Thick black (left axis): best response vaccination
decision of subpopulation 1. Thick gray (left axis): best response vaccination decision of sub-
population 2. Thin black (right axis): instantaneous prevalence per 105 individuals. Dashed:
initial steady state with sustained coalition.
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punishment) or when they apply their best response (mild punishment) are close. And this

is quite not surprising because this configuration occurs for high costs c1 and hence, the best

response of individuals in subpopulations 1 is to not vaccinate anyhow. However, when a

coalition holds, it obviously leads to much lower prevalence levels whenever α1 is significant

or not. Figure 3.5 illustrates the importance of having cooperation sustained in order to meet

public health objectives.

3.3 Conclusion

The starting point for this article is the observation that individual tradeoffs between the

private costs and benefits of vaccination are unlikely to explain observed immunization levels.

We then undertake an investigation of vaccination as a cooperative behavior. We use the

model previously developed by Flaig et al. (2018a,b) and retaliation concepts borrowed from

repeated games theory. Our contribution is technical and theoretical. First, we overcome

the technical difficulty of including forward-looking voluntary vaccinating behaviors in an

epidemiological model. Modeling such behaviors is unavoidable in our case. Second, we

apply concepts from repeated games theory even though all players vaccinate only once.

This is justified by the fact that vaccination decisions have an impact on individuals who

have already made their decision, and on those who will have to decide later. Hence, the

concepts of retaliation threat and of credibility of a threat do make sense in our framework.

We showed results for two different kinds of threat.

We believe that cooperation can be an explanation for the relatively high levels of vacci-

nation coverage in developed countries, where there is no supply constraints but vaccination

is offered on a voluntary basis. If it is the case, it is crucial to understand this aspect when

designing public policies to achieve collective objectives. However, cooperation, because it is

at least in part a forward-looking behavior, is hard to include in an epidemiological frame-

work. We hope that this article, by providing an appropriate theoretical framework, will be

a first step toward a better understanding of cooperative vaccination choice.
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Figure 3.5: Long term (steady state) prevalence per 105 individuals resulting from the equi-
libria displayed in Figure 3.3. Crosses: points where the best response is to vaccinate for
100% of subpopulation 1. c2 = 3.
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Conclusion

This thesis tackled the issue of including individual vaccination decisions in epidemiological

models. This issue consists firstly in a technical challenge. The coupled equations governing

the spread of the disease and vaccination decision-making are difficult to solve. This is

especially true of models that are meant to be actionable, that is models relying on reasonably

realistic epidemiological assumptions. The notion of what is reasonable is of course contingent

on the modeled disease, but also on the questions addressed with the model. This leads us to a

second question that followed naturally from the technical difficulty: is solving the equations

even worth the trouble? And particularly in the field of health economics, does including

individual decision-making alter usual economic evaluations? More speculative questions also

arose along the way. While our approach focuses primarily on individual decisions, a simple

calculation shows that individual decisions based on costs and benefits alone hardly account

for the relatively high (though often insufficient) observed vaccination coverages. Vaccination

acceptance, rather than refusal, seemed to require closer inquiry.

Arguably, vaccination decision-making is essentially strategic and anticipatory. This re-

quires to solve for dynamic prevalence paths and vaccination decisions under the assumption

that individual are rational and far-sighted. We met this technical challenge by expressing

vaccination decision as a functional fixed point, and by solving with a fixed point iteration

algorithm. We showed the versatility of this approach in Chapter 1 with a Measles-like model

including some complicating features: vital dynamics and waning vaccine efficacy. For illus-

tration, we also showed the qualitative differences between the results of our model and the

results of the corresponding model of adaptive behavior.

We then dwelled on the example of mandatory Measles vaccination to show that fully

accounting for individual strategic decision-making can alter the results of cost-effectiveness

analyses (Chapter 2). To do this, we took the same perspective that can be found in economic

analyses of public health policies. Namely we used a fairly simple compartmental model, and

we based our analysis on a comparison of costs and benefits where the individual private cost

of being sick with Measles was found in the health economics literature. We also performed

a welfare analysis based on a comparison with a benchmark steady state scenario, which is

a common procedure. We found that individual strategic behavior can cause large welfare

transfers between generations. Importantly, these welfare transfers are not only large, they

are non-negligible by the very standards of usual economic evaluation methods.

Many factors beyond individual costs and benefits can account for vaccination behavior.
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This thesis (Chapter 3) investigates cooperation, that is coalitions of vaccinating individu-

als, as a possible explanation of vaccination behavior. In a brief theoretical discussion, we

explained why and how concepts of retaliation usually found in repeated games can read-

ily be used in the context of vaccination. We focused on two types of retaliation that we

found relevant, and we showed in each case that retaliation threats can sustain vaccination.

Investigating cooperation and retaliation, however, is only possible where full time depen-

dent solutions to the vaccination decision problem can be computed. This provided a more

theoretical use case for our modeling approach and solution method.

In vaccination games, payoffs and vaccination decisions depend on the full path of preva-

lence. Prevalence, however, depends itself on vaccination decisions. This feedback loop is of

course well-known and has largely been studied. The work presented in this thesis originates

from a gap in this literature. Since the equations corresponding to the feedback loop are

difficult to solve, authors have usually relied on simplifying assumptions or restricted them-

selves e.g. to steady state solutions. This thesis adds to the literature on vaccination games

with an approach allowing to solve for dynamic prevalence and vaccination decision paths.

So our first contribution to the literature is technical in the sense that we overcome technical

difficulties irrespective of whether doing so has any practical use.

The technical difficulty of solving dynamic vaccination games might well account for

another literature gap, namely in the related health economics literature. In addition to being

difficult to model, strategic individual behavior is usually assumed to yield only negligible

effects in economic evaluations. As a consequence, it is as a rule overlooked without further

investigations. Here, our contribution to the literature is both theoretical and technical. On

the theoretical side, we show with an example that individual behavior cannot be disregarded

a priori in economic evaluations. This result challenges assumptions commonly found in the

literature. On the technical side, we provide tools to include individual strategic behavior

in economics evaluations. This is perhaps the main takeaway of this thesis: while solving a

difficult problem is of little interest in itself, our approach is of practical use and is meant to

be applied in further studies.

In the same spirit but on a much more speculative level, we also contributed to the un-

derstanding of vaccination behavior. The literature on this topic consists mostly of empirical

studies based on questionnaires. Our work opens up game theoretic modeling possibilities

as it allows to consider how vaccinating individuals might retaliate against those who refuse

vaccination. Again, we brought a theoretical argument – that retaliation makes sense in the

context of vaccination – and our modeling approach provided a tool to carry out the ensuing

analysis.

Our work will appeal primarily to public health practitioners, health economists, and

more generally to health system participants interested in cost-effectiveness analyses. They

will find a discussion of why strategic anticipatory behavior must in some case be consid-

ered in economic evaluations. More importantly, they will find tools to do so. Economic

evaluation is the field of application where we can expect our work to have the most impli-

cations. Indeed, most improvements on cost-effectiveness analyses attempt to capture ever
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more specific features of a disease, or to measure individual costs and benefits ever more

precisely. We took another direction by adding a noticeably basic assumption to economic

evaluations: that of individual strategic anticipatory behavior. Doing so, however, allows

to discern effects that would otherwise remain hidden. Moreover, while this thesis focuses

on Measles vaccination decision-making, other applications might be found where individual

anticipations and strategic behavior can be expected to carry weight.

This thesis will also be of interest for researchers in other disciplines. Game theorists will

find a method to solve dynamic vaccination games along with illustrative use cases. In par-

ticular, they will find new perspectives to investigate cooperative behavior in vaccination. As

for theoretical epidemiologists, this thesis will mostly provide them with further illustrations

of the implications of individual behaviors in epidemiology.

Let us conclude with some caveats regarding the work presented here and with directions

for future research. Stating the obvious, we must emphasize once again that our work is

based on numerical simulations. As much as we tended to describe our results as real life

scenarios for brevity and clarity in the text, these results are only provisional until confronted

with empirical facts. Empirical investigations were left outside the scope of this thesis, but

they remain necessary if we are not to lose sight of reality.

The assumption that vaccination decision is based on individual cost-benefit analyses is

less restrictive than it may seem since the welfare of others can in principle be included in

private utilities. The assumption of rationality, however, is more restrictive but it remains a

standard way to produce internally consistent benchmarks. In the applications of our work to

economic evaluations, our point was to consider strategic interactions in standard frameworks,

and certainly not to challenge the whole of these otherwise well-established methods.

The same argument goes for the use Nash equilibria. We presented results in terms of

Nash equilibria without examining how such equilibria might be reached. This question is

essential in the fields of ecology and evolutionary game theory, and borrowing concepts from

these disciplines might prove fruitful in the future. To a very limited extent, this is what we

did in Chapter 3. As for the stability of our solutions, our investigations are restricted to

robustness checks (especially on the slope parameter of the smoothed best response function)

without in depth formal discussion of the properties of the dynamical system.

This is brings us to the lack of some mathematical foundations in our work. We gave

rationales to interpret the smoothed best response as an approximation for mixed strategy

best responses. Yet doing this formally would require two mathematical proofs that do not

appear in this thesis as we focused on producing operational results. First, showing that for

all sequence of slope parameters going to infinity, the corresponding sequence of solutions of

the dynamical system converges to a unique limit. This requires to consider several candidate

modes of convergence, among which pointwise convergence and uniform convergence. Second,

showing that this limit is a mixed strategy Nash equilibrium. This being said, the smoothed

best response can also be interpreted in terms of the aggregate of noisy best responses, which

is a standard interpretation in economics and computational social sciences.

Discussing results in terms of mixed strategies is especially meaningful for engaging with

83



Conclusion

researchers working on mean field game approaches. Some of them have recently developed

models that share several qualities with ours: they are versatile, they allow to compute full

dynamic solutions of the vaccination game, and they do not rely on simplifying assumptions.

Having in mind that simulations only make sense if they are run over a range of parameter

values, our preference will go to the faster method (for a given and relevant solution quality).

The performance of the solution method used in this thesis varies a lot from one problem

instance to another. It typically took from few seconds up to several hours to compute

a single solution. Determining what method falls behind or outperforms the other might

demand systematic comparisons in each application case. Yet some investigations on the

properties of our solution method, for instance proving convergence formally, remain to be

done analytically.

Finally, while our approach opens up many modeling possibilities, it will not always be

relevant. It only applies to strategic and anticipatory behavior. That is, to situations where

the payoffs and decisions of each individual depend on the decisions of all other individuals,

and at the same time where events and decisions unfold over a period of time. If individuals

can reasonably be described as passive, then the case falls outside the scope of game theory

(and even economics). For instance, individuals might passively go from one health status to

another and anticipate it. This anticipation would however not have strategic implications. If

individuals have the ability to adapt to others’ decisions but cannot influence others’ payoffs,

then the interaction is still not strategic. If there is a strategic interaction but all individuals

decide at the same time, then a static one period game will be sufficient to describe the

situation. The tool we developed in this thesis calls for careful justification when put to use.
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Appendix A

Theoretical supplement to Chapter 1

A.1 Alternative formulation of the problem

In Equations A.1a–A.2d, we provide an alternative formulation of Equations 1.1a–1.2d mak-

ing the construction of the model more apparent.

sǫ(t + dt) =sǫ(t)

[

1 − αχǫ(V
ǫ

V (t + dt) − V ǫ
S(t + dt) − c)dt − λ

iǫ(t)

nǫ(t)
dt − µdt

]

+ νnǫ(t)dt + γV vǫ(t)dt (A.1a)

iǫ(t + dt) =iǫ(t)

(

1 − γIdt + λ
sǫ(t)

nǫ(t)
dt − µdt

)

(A.1b)

vǫ(t + dt) =vǫ(t)(1 − γV dt − µdt) + αsǫ(t)χǫ(V
ǫ

V (t + dt) − V ǫ
S(t + dt) − c)dt (A.1c)

rǫ(t + dt) =rǫ(t)(1 − µdt) + γIiǫ(t)dt (A.1d)

V ǫ
S(t) =ugdt + (1 − δdt)

{

λ
iǫ(t)

nǫ(t)
V ǫ

I (t + dt)dt + αξǫ(V
ǫ

V (t + dt) − V ǫ
S(t + dt) − c)dt

+

(

1 − µdt − λ
iǫ(t)

nǫ(t)
dt

)

V ǫ
S(t + dt)

}

(A.2a)

V ǫ
I (t) =ubdt + (1 − δdt) {γIV ǫ

R(t + dt)dt + (1 − µdt − γIdt)VI(t + dt)} (A.2b)

V ǫ
V (t) =ugdt + (1 − δdt) {γV V ǫ

S(t + dt)dt + (1 − µdt − γV dt)V ǫ
V (t + dt)} (A.2c)

V ǫ
R(t) =ugdt + (1 − δdt)(1 − µdt)V ǫ

R(t + dt) (A.2d)

for t in [0, T ].
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A.2 Proof of Theorem 1

This proof was derived by P. Michel.

Without loss of generality, Equations 1.1a–1.2d can be normalized by introducing

∆ǫ
V S(t) = V ǫ

V (t) − V ǫ
S(t), ∆ǫ

IR(t) = V ǫ
I (t) − V ǫ

R(t), ∆ǫ
IS(t) = V ǫ

I (t) − V ǫ
S(t),

sǫ(t) = sǫ(t)/nǫ(t), iǫ(t) = iǫ(t)/nǫ(t), vǫ(t) = vǫ(t)/nǫ(t), rǫ(t) = rǫ(t)/nǫ(t).

For all t in [0, T ] we get

d

dt
sǫ(t) = − sǫ(t)

(

αχǫ(∆
ǫ
V S(t) − c) + λiǫ(t) + ν

)

+ ν + γV vǫ(t) (A.3a)

d

dt
iǫ(t) = − iǫ(t) (γI − λsǫ(t) + ν) (A.3b)

d

dt
vǫ(t) = − vǫ(t) (γV + ν) + αsǫ(t)χǫ(∆

ǫ
V S(t) − c) (A.3c)

d

dt
rǫ(t) = − rǫ(t)ν + γIiǫ(t) (A.3d)

and

−
d

dt
∆ǫ

V S(t) = − (δ + µ + γV )∆ǫ
V S(t) − αξǫ(∆

ǫ
V S(t) − c) − λiǫ(t)∆ǫ

IS(t) (A.4a)

−
d

dt
∆ǫ

IS(t) =(ub − ug) − (δ + µ + λiǫ(t))∆ǫ
IS(t) − αξǫ(∆

ǫ
V S(t) − c) − γI∆ǫ

IR(t) (A.4b)

−
d

dt
∆ǫ

IR(t) =(ub − ug) − (δ + µ + γI)∆IR(t) (A.4c)

By definition, sǫ(t) + iǫ(t) + rǫ(t) + vǫ(t) = 1. Hence we can write Equations A.3a–A.4c

as fixed-point problem

(sǫ(t), iǫ(t), vǫ(t), ∆ǫ
V S(t), ∆ǫ

IS(t), ∆ǫ
IR(t)) = Φ(sǫ(t), iǫ(t), vǫ(t), ∆ǫ

V S(t), ∆ǫ
IS(t), ∆ǫ

IR(t)).

After some computation on the integral version of Equations A.3a–A.4c, we have

sup
[0,t]

‖Φ(u) − Φ(v)‖(t) ≤ Cǫ(t) sup
[0,t]

‖u − v‖(t),

where

Cǫ(t) ≤ t max



















α(1 + 1
4ǫ

) + 2λ + ν + γV ,

γI + 2λ + ν,

γV + ν + α(1 + 1
4ǫ

),

δ + µ + γV + 3α + λ,

δ + µ + 2λ + 3α + γI



















.
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Let M = Cǫ(T ) + 1. Then

sup
t∈[0,T ]

‖(Φ(u) − Φ(v))e−Mt‖(t) ≤
Cǫ(T )

M

(

1 − e−MT
)

sup
t∈[0,T ]

‖(u − v)e−Mt‖(t).

Hence, by contraction mapping theorem on C0([0, T ]), there exists a unique solution to

Equations A.3a–A.4c and hence to Equations 1.1a–1.2d.
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Appendix B

Robustness checks and sensitivity analysis for

Chapter 1

91



(a) Epidemiology – zoom (b) Epidemiology

(c) Vaccination decision – zoom (d) Vaccination decision

Figure B.1: Epidemiological results and vaccination decisions with ǫ = 1/20 and nǫ(0) = 1.
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Figure B.2: Sensitivity to α of the long term vaccination decision in our base case model for
ǫ = 1/20.
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Figure B.3: Sensitivity analysis of the steady state values of i/n and v/n in our base case
model for ǫ = 1/20, and a ±10% variation of each parameter.
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(a) Epidemiology – zoom (b) Epidemiology

(c) Vaccination decision – zoom (d) Vaccination decision

Figure B.4: Epidemiological results and vaccination decisions with ǫ = 1/20 and nǫ(0) = 1
– Individuals with adaptive behavior.
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Appendix C

Additional results to Chapter 1
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(a) First quarter of the epidemic

(b) First 20 years of the epidemic

Figure C.1: Net value of health status transition for vaccination cost c = 10, ǫ = 1/600, and
nǫ(0) = 1.
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(a) Population 0

(b) Population 1

Figure C.2: Vaccination decisions for two perfectly mixed populations with different costs to
vaccinate. Population 0: c = 10. Population 1: c = 11. ǫ = 1/20 and nǫ(0) = 1. Color scale
indicates the proportion of individuals in Population 1.
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(a) Total number of vaccinated individuals in both populations

(b) Total number of infectious individuals in both populations

Figure C.3: Epidemiological results for two perfectly mixed populations with different costs
to vaccinate. Population 0: c = 10. Population 1: c = 11. ǫ = 1/20 and nǫ(0) = 1. Color
scale indicates the proportion of individuals in Population 1.
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(a) Population 0

(b) Population 1

Figure C.4: Vaccination decisions for two perfectly mixed populations with different costs to
vaccinate. Population 0: c = 10. Population 1: c = 12. ǫ = 1/20 and nǫ(0) = 1. Color scale
indicates the proportion of individuals in Population 1.
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(a) Total number of vaccinated individuals in both populations

(b) Total number of infectious individuals in both populations

Figure C.5: Epidemiological results for two perfectly mixed populations with different costs
to vaccinate. Population 0: c = 10. Population 1: c = 12. ǫ = 1/20 and nǫ(0) = 1. Color
scale indicates the proportion of individuals in Population 1.
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(a) Population 0

(b) Population 1

Figure C.6: Vaccination decisions for two perfectly mixed populations with different costs to
vaccinate. Population 0: c = 10. Population 1: c = 15. ǫ = 1/20 and nǫ(0) = 1. Color scale
indicates the proportion of individuals in Population 1.
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(a) Total number of vaccinated individuals in both populations

(b) Total number of infectious individuals in both populations

Figure C.7: Epidemiological results for two perfectly mixed populations with different costs
to vaccinate. Population 0: c = 10. Population 1: c = 15. ǫ = 1/20 and nǫ(0) = 1. Color
scale indicates the proportion of individuals in Population 1.
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Appendix D

Mandatory vaccination: results for αav = 1%

In this appendix, we provide results for αav = 1% as a robustness check. We also performed

simulations for αav as high as 12% but there was little qualitative difference with the case

αav = 4% presented in the main text.

For αav = 1%, calibration to a 250 cases per year per 6 × 107 individuals yields cv =

8.08×10−3 and cav = 1.14×10−2. Vaccination costs are higher than for αav = 4% (Table 2.1).

Due to higher vaccination costs, less than 100% of the vaccinationists and 0% of the anti-

vaccinationists vaccinate initially (Figure D.1). For the same reason, vaccination by vaccina-

tionists drops significantly before mandatory vaccination date tmv. As a consequence, preva-

lence increases faster and is significant for a wider range of tmv values (Figures D.1 and D.2c).

When vaccination is mandatory, both subpopulations have to pay a substantially higher

cost than for αav = 4%, which reduces their welfare (Figure D.3). In the case of anti-

vaccinationists (Figure D.3b), the herd immunity externality does not compensate for this

higher vaccination cost.

In Figure D.4, the value of being susceptible at time 0, when mandatory vaccination is

announced, only increases as mandatory vaccination date tmv gets very close from 0. This is

because prevalence increases significantly even for relatively small values of tmv. The spike in

prevalence offsets the benefits of eradication if mandatory vaccination comes into force more

than a few months after announcement.

The value of being susceptible and less than 14 months (green and red curves on Fig-

ure D.4) is low or negative as children have a high probability of turning 14 months after

tmv. If they do, they have to pay their high vaccination cost. Their value increases as the

probability of turning 14 months after tmv decreases.
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(a) tmv = 0 (b) tmv = 6 months

(c) tmv = 5 years (d) tmv = 10 years

Figure D.1: Prevalence and vaccination decisions for αav = 1%. Green (left axis): vaccination
decision by vaccinationists. Red (left axis): vaccination decision by anti-vaccinationists. Blue
(right axis): instantaneous prevalence per 6 × 107 persons. Dashed: initial state.
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(a) Vaccination decision by vaccinationists (b) Vaccination decision by anti-vaccinationists

(c) Instantaneous prevalence

Figure D.2: Vaccination decisions and prevalence for a mandatory vaccination date (tmv)
between 0 and 10 years for αav = 1%. Green: date t = tmv.

(a) Vaccinationists (b) Anti-vaccinationists

Figure D.3: Value difference between mandatory vaccination scenario and benchmark scenario
for children born after time 0 for αav = 1%. Green: birthdate t = tmv.
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Figure D.4: Value difference at time 0 for susceptible children born before time 0 for αav = 1%.
Blue: individuals older than 14 months. Green: vaccinationists younger than 14 months. Red:
anti-vaccinationists younger than 14 months.
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A simulation based approach to vaccination behavior

We tackle the issue of including individual vaccination decisions in epidemiological models.
We draw on the example of Measles vaccination, and we focus on strategic interactions and
anticipatory behavior. We contribute to a fuller account of such behaviors by developing a
modeling approach intended as a tool for practitioners and theorists.

In Chapter 1, we show how the interplay between individual anticipatory vaccination decisions
and the otherwise biological dynamics of a disease may lead to the emergence of recurrent
patterns. We consider a Measles-like outbreak, rational and far-sighted individuals, vital
dynamics, and waning vaccine efficacy. This chapter illustrates the versatility of our approach.
For comparison, we provide results for individuals with adaptive behavior.

In Chapter 2, we investigate the effect of anticipatory behavior in a scenario where Measles
vaccination becomes mandatory. When mandatory vaccination is announced in advance, we
show that individuals may alter their vaccination behavior, thus causing an increase in preva-
lence before Measles is ultimately eradicated. These transition effects lead to non negligible
welfare differences between generations. We consider an anti-vaccinationist subpopulation
with a higher vaccination cost, and exhibit scenarios where anti-vaccinationists are among
those who benefit the most from mandatory vaccination.

In Chapter 3, we discuss whether coalitions of vaccinating individuals can account for the
relatively high vaccination coverages observed in developed countries. We explain why and
how retaliation concepts usually found in repeated games can be used in the context of vacci-
nation, even though individuals vaccinate only once. This allows us to model how vaccinating
individuals might retaliate against those who refuse vaccination. We show that retaliation
threats can sustain vaccination where it would otherwise be suboptimal for individuals.

Keywords: vaccination, game theory, epidemics, forward-backward system, backward in-
duction, cost-effectiveness analysis, mandatory vaccination, cooperation, Measles


