S. Roundy, K. Paul, J. Wright, and . Rabaey, A study of low level vibrations as a power source for wireless sensor nodes, Computer communications, vol.26, issue.11, pp.1131-1144, 2003.

D. Zhu, P. Stephen, . Beeby, J. Michael, N. R. Tudor et al., A credit card sized self powered smart sensor node, Sensors and Actuators A : Physical, vol.169, issue.2, pp.317-325, 2011.

B. Yang and K. Yun, Piezoelectric shell structures as wearable energy harvesters for effective power generation at low-frequency movement, Sensors and Actuators A : Physical, vol.188, pp.427-433, 2012.

R. Yang, Y. Qin, C. Li, G. Zhu, and Z. Wang, Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator, Nano Letters, vol.9, issue.3, pp.1201-1205, 2009.

S. Kulkarni, E. Koukharenko, R. Torah, J. Tudor, S. Beeby et al., Design, fabrication and test of integrated micro-scale vibration-based electromagnetic generator, Sensors and Actuators A : Physical, vol.145, pp.336-342, 2008.

J. Wen, . Li, C. H. Terry, . Ho, M. H. Gordon et al., Infrared signal transmission by a laser-micromachined, vibrationinduced power generator, Proceedings of the 43rd IEEE Midwest Symposium on, vol.1, pp.236-239, 2000.

G. Thomas-von-büren and . Tröster, Design and optimization of a linear vibration-driven electromagnetic micro-power generator, Sensors and Actuators A : Physical, vol.135, issue.2, pp.765-775, 2007.

C. R. Saha, T. O'donnell, P. Wang, and . Mccloskey, Electromagnetic generator for harvesting energy from human motion, Sensors and Actuators A : Physical, vol.147, issue.1, pp.248-253, 2008.

G. Despesse, . Chaillout, . Jager, A. Cardot, and . Hoogerwerf, Innovative structure for mechanical energy scavenging, Solid-State Sensors, Actuators and Microsystems Conference, pp.895-898, 2007.

E. Arroyo, Energy harvesting from ambient vibrations : electromagnetic generator and electronic synchronous energy extraction circuit, 2012.
URL : https://hal.archives-ouvertes.fr/tel-00790616

S. Photovoltaïque, , pp.2017-2024

. Tfa-dostmann, , pp.2017-2024

D. Brunelli, C. Moser, L. Thiele, and L. Benini, Design of a solar-harvesting circuit for batteryless embedded systems, IEEE Transactions on Circuits and Systems I : Regular Papers, vol.56, issue.11, pp.2519-2528, 2009.

N. H. Reich, . Veefkind, . Wgjhm-van-sark, . Ea-alsema, S. Wc-turkenburg et al., A solar powered wireless computer mouse : Industrial design concepts, Solar Energy, vol.83, issue.2, pp.202-210, 2009.

W. Glatz, E. Schwyter, L. Durrer, and C. Hierold, Bi?2te?3-based flexible micro thermoelectric generator with optimized design, Journal of Microelectromechanical Systems, vol.18, issue.3, pp.763-772, 2009.

. Micropelt, , pp.2017-2024

V. Leonov and R. Vullers, Wearable thermoelectric generators for bodypowered devices, Journal of electronic materials, vol.38, issue.7, pp.1491-1498, 2009.

, Comment fonctionne la recharge sans fil ?

L. Olvitz, D. Vinko, and T. ?vedek, Wireless power transfer for mobile phone charging device, MIPRO, 2012 Proceedings of the 35th International Convention, pp.141-145, 2012.

S. Ahn and J. Kim, Magnetic field design for high efficient and low emf wireless power transfer in on-line electric vehicle, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), pp.3979-3982, 2011.

M. Soudeh-heydari-nasab and . Asefi, Lutfi Albasha, and Naser Qaddoumi. Investigation of rf signal energy harvesting. Active and Passive Electronic Components, 2010.

P. Nintanavongsa, U. Muncuk, D. R. Lewis, and K. Chowdhury, Design optimization and implementation for rf energy harvesting circuits, IEEE Journal on emerging and selected topics in circuits and systems, vol.2, issue.1, pp.24-33, 2012.

. Powercast, , pp.2017-2024

H. Kanaya, S. Tsukamaoto, T. Hirabaru, D. Kanemoto, R. K. Pokharel et al., Energy harvesting circuit on a one-sided directional flexible antenna, IEEE Microwave and Wireless Components Letters, vol.23, issue.3, pp.164-166, 2013.

S. Kim, B. Cook, T. Le, J. Cooper, H. Lee et al., Inkjet-printed antennas, sensors and circuits on paper substrate, IET Microwaves, Antennas & Propagation, vol.7, issue.10, pp.858-868, 2013.

K. W. Lui, C. Murphy, and . Toumazou, A wearable wideband circularly polarized textile antenna for effective power transmission on a wirelesslypowered sensor platform, IEEE transactions on antennas and propagation, vol.61, issue.7, pp.3873-3876, 2013.

D. Masotti, S. Costanzo, and . Adami, Design and realization of a wearable multi-frequency rf energy harvesting system, Antennas and Propagation (EUCAP), Proceedings of the 5th European Conference on, pp.517-520, 2011.

M. Piñuela, S. Paul-d-mitcheson, and . Lucyszyn, Ambient rf energy harvesting in urban and semi-urban environments, IEEE Transactions on Microwave Theory and Techniques, vol.61, issue.7, pp.2715-2726, 2013.

L. Binh, A. Pham, and . Pham, Triple bands antenna and high efficiency rectifier design for rf energy harvesting at 900, 1900 and 2400 mhz, Microwave Symposium Digest (IMS), pp.1-3, 2013.

H. Sun, Y. Guo, M. He, and Z. Zhong, A dual-band rectenna using broadband yagi antenna array for ambient rf power harvesting, IEEE Antennas and Wireless Propagation Letters, vol.12, pp.918-921, 2013.

H. Nishimoto, Y. Kawahara, and T. Asami, Prototype implementation of ambient rf energy harvesting wireless sensor networks, Sensors, 2010 IEEE, pp.1282-1287, 2010.

N. Shinohara, Power without wires, IEEE Microwave Magazine, vol.12, issue.7, pp.64-73, 2011.

R. Christopher, . Valenta, and . Gregory-d-durgin, Harvesting wireless power : Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems, IEEE Microwave Magazine, vol.15, issue.4, pp.108-120, 2014.

A. Khemar, A. Kacha, H. Takhedmit, and G. Abib, Design and experiments of a dual-band rectenna for ambient rf energy harvesting in urban environments, IET Microwaves, Antennas & Propagation, vol.12, issue.1, pp.49-55, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01699126

U. Olgun, C. Chen, and J. L. Volakis, Design of an efficient ambient wifi energy harvesting system, IET Microwaves, vol.6, pp.1200-1206, 2012.

Z. Harouni, L. Cirio, L. Osman, A. Gharsallah, and O. Picon, A dual circularly polarized 2.45-ghz rectenna for wireless power transmission, IEEE Antennas and Wireless Propagation Letters, vol.10, pp.306-309, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00692921

T. Huynh and K. Lee, Single-layer single-patch wideband microstrip antenna, Electronics letters, vol.31, issue.16, pp.1310-1312, 1995.

G. Zheng, . Kishk, A. B. Aw-glisson, and . Yakovlev, Simplified feed for modified printed yagi antenna, Electronics Letters, vol.40, issue.8, pp.464-466, 2004.

X. Qing and N. Yang, A folded dipole antenna for rfid, Antennas and Propagation Society International Symposium, vol.1, pp.97-100, 2004.

J. Liang, C. Choo, X. Chiau, C. G. Chen, and . Parini, Study of a printed circular disc monopole antenna for uwb systems, IEEE transactions on antennas and propagation, vol.53, issue.11, pp.3500-3504, 2005.

C. Bruns, P. Leuchtmann, and R. Vahldieck, Analysis and simulation of a 1-18-ghz broadband double-ridged horn antenna, IEEE Transactions on electromagnetic compatibility, vol.45, issue.1, pp.55-60, 2003.

D. Stylianos and . Assimonis, Sensitive and efficient rf harvesting supply for batteryless backscatter sensor networks, Spyridon-Nektarios Daskalakis, and Aggelos Bletsas, vol.64, pp.1327-1338, 2016.

V. Palazzi, C. Kalialakis, F. Alimenti, P. Mezzanotte, L. Roselli et al., Performance analysis of a ultra-compact low-power rectenna in paper substrate for rf energy harvesting, 2017 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet), pp.65-68, 2017.

G. Vera, A. Georgiadis, A. Collado, and S. Via, Design of a 2.45 ghz rectenna for electromagnetic (em) energy scavenging, Radio and Wireless Symposium (RWS), pp.61-64, 2010.

A. Mavaddat, . Seyyed-hossein-mohseni, A. R. Armaki, and . Erfanian, Millimeter-wave energy harvesting using 4x4 microstrip patch antenna array. IEEE Antennas and wireless propagation letters, vol.14, pp.515-518, 2015.

M. Nie, X. Yang, G. Tan, and B. Han, A compact 2.45-ghz broadband rectenna using grounded coplanar waveguide, IEEE Antennas and Wireless Propagation Letters, vol.14, pp.986-989, 2015.

A. Okba and A. Takacs, Hervé Aubert, Samuel Charlot, and Pierre-François Calmon. Multiband rectenna for microwave applications

, Comptes Rendus Physique, vol.18, issue.2, pp.107-117, 2017.

A. Ahmad, M. Salih, and . Sharawi, A miniaturized dual-band meander line antenna for rf energy harvesting applications, Applied Electrical Engineering and Computing Technologies (AEECT), 2015 IEEE Jordan Conference on, pp.1-4, 2015.

. Powercast, , pp.2018-2019

Z. Zakaria, . Na-zainuddin, A. Mza, . Aziz, M. A. Husain et al., Dual-band monopole antenna for energy harvesting system, Wireless Technology and Applications (ISWTA), 2013 IEEE Symposium on, pp.225-229, 2013.

L. Lu, B. Vosooghi, L. Dai, and C. Li, A 0.7 v relative temperature sensor with a non-calibrated ±1 ? c 3? relative inaccuracy, IEEE Transactions on Circuits and Systems I : Regular Papers, vol.62, issue.10, pp.2434-2444, 2015.
URL : https://hal.archives-ouvertes.fr/in2p3-00149778

-. Farnell, , pp.2018-2019

J. Hubregt and . Visser, Approximate antenna analysis for CAD, 2009.

Y. Lu, J. Y. Guo, and H. Huang, Design of triple symmetric arms dipole antenna for 900/1800/2450 mhz applications, Intelligent Information Hiding and Multimedia Signal Processing (IIH-MSP), pp.1-4, 2014.

A. Rida, L. Yang, R. Vyas, and . Tentzeris, Conductive inkjetprinted antennas on flexible low-cost paper-based substrates for rfid and wsn applications, IEEE Antennas and Propagation Magazine, vol.51, issue.3, 2009.

M. Saud, C. A. Saeed, C. Balanis, and . Birtcher, Inkjet-printed flexible reconfigurable antenna for conformal wlan/wimax wireless devices, IEEE Antennas and Wireless Propagation Letters, vol.15, pp.1979-1982, 2016.

X. Guo, Y. Hang, Z. Xie, C. Wu, L. Gao et al., Flexible and wearable 2.45 ghz cpw-fed antenna using inkjet-printing of silver nanoparticles on pet substrate. Microwave and Optical Technology Letters, vol.59, pp.204-208, 2017.

M. Talha-hafeez and S. Jilani, Novel millimeter-wave flexible antenna for rf energy harvesting, Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp.2497-2498, 2017.

R. Dib, Caractérisation de couches diélectriques et magnétiques de structures multicouches par cavité résonante microonde, 2014.

. Dupont, , pp.2017-2028

J. Bito, R. Bahr, J. G. Hester, S. Abdullah-nauroze, A. Georgiadis et al., A novel solar and electromagnetic energy harvesting system with a 3-d printed package for energy efficient internet-of-things wireless sensors, IEEE Transactions on Microwave Theory and Techniques, vol.65, issue.5, pp.1831-1842, 2017.

Z. Popovic, S. Korhummel, S. Dunbar, R. Scheeler, A. Dolgov et al., Scalable rf energy harvesting, IEEE Transactions on Microwave Theory and Techniques, vol.62, issue.4, pp.1046-1056, 2014.

B. Merabet, L. Cirio, H. Takhedmit, F. Costa, C. Vollaire et al., Low-cost converter for harvesting of microwave electromagnetic energy, Energy Conversion Congress and Exposition, pp.2592-2599, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00539175

C. Lo, Y. Yang, C. Tsai, C. Lee, and C. Yang, Novel wireless impulsive power transmission to enhance the conversion efficiency for low input power, Microwave Workshop Series on Innovative Wireless Power Transmission : Technologies, Systems, and Applications (IMWS), pp.55-58, 2011.

M. Kamal-hosain, Z. Abbas, M. F. Kouzani, S. Samad, and . Tye, A miniature energy harvesting rectenna for operating a head-mountable deep brain stimulation device, IEEE access, vol.3, pp.223-234, 2015.

. Skywork, , pp.2017-2024

. Avago, , pp.2017-2024

. Avago, , pp.2017-2024

S. S. Sarma, S. Chandravanshi, and M. J. Akhtar, Triple band differential rectifier for rf energy harvesting applications, 2016 Asia-Pacific Microwave Conference (APMC), pp.1-4, 2016.

B. Merabet, F. Costa, H. Takhedmit, C. Vollaire, B. Allard et al., A 2.45-ghz localized elements rectenna, 3rd IEEE International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, pp.419-422, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00519002

H. Lee, D. Shim, C. Rhee, M. Kim, and S. Kim, A sub-1.0-v on-chip cmos thermometer with a folded temperature sensor for low-power mobile dram

, IEEE Transactions on Circuits and Systems II : Express Briefs, vol.63, issue.6, pp.553-557, 2016.

L. Fadel, L. Oyhenart, R. Bergès, V. Vigneras, and T. Taris, A concurrent 915/2440 mhz rf energy harvester, International Journal of Microwave and Wireless Technologies, vol.8, issue.3, pp.405-413, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01474918

A. , , pp.2017-2024

, LISTE DES PUBLICATIONS Publications internationales

L. Fadel, L. Oyhenart, R. Berges, V. Vigneras, and T. Taris, A concurrent 915/2440 MHz RF energy harvester, International Journal of Microwave and Wireless Technologies, vol.8, issue.3, pp.405-413, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01474918

A. L. Lando, R. Berges, B. Leite, T. Taris, and A. Mariano, Ultra low power integrated circuits for energy harvesting, IBERCHIP 2016, pp.25-28, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01553111

R. Berges, L. Fadel, L. Oyhenart, V. Vigneras, and T. Taris, A dual band 915MHz/2.44 GHz RF energy harvester, Microwave Conference (EuMC), pp.307-310, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01475276

T. Taris, L. Fadel, L. Oyhenart, R. Berges, F. Torres et al., December). RF Energy Scavenging in 900MHz and 2.4 GHz bands, Conference on Electronics Circuits and Systems. Publications nationales, 2014.

R. Berges, L. Fadel, L. Oyhenart, V. Vigneras, and T. Taris, Récupérateur d'énergie radiofréquences en technologie souple, Journées Nationales Microondes, 2017.

R. Berges, L. Fadel, L. Oyhenart, V. Vigneras, and T. Taris, A Flexible printed dual-band antenna dedicated to RF Energy Harvesting Application, Journées Nationales sur la Récupération et le Stockage d'Énergie, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01484377

R. Berges, L. Fadel, L. Oyhenart, V. Vigneras, and T. Taris, Récupérateur d'Énergie RF Bi-bande, p.915, 2015.

, MHz/2.44 GHz, Journées Nationales Microondes

, Prix Prix Jean-Marc Gey pour le développement durable dans la catégorie thèse, 2017.

, De façon symétrique, les réseaux passe bas, utilisant des inductances séries et des capacités parallèles, affectent plus les hautes fréquences. Le résultat est que si ces règles sont respectés, la bande basse et haute fréquence pourront être adapter de façon quasi indépendante. Pour illustrer cette méthode nous allons réaliser l'adaptation d'un circuit à 900 MHz et 1,9 GHz, peuvent être utilisé. C'est très important de respecter cette règle car le réseau créer sera un passe haut qui aura donc plus effets sur les basse fréquence que sur les haute fréquence

, Grâce aux équations de la section sur les circuit en L, les valeurs des composants du circuit passe haut sont défini. Le réseau est donc finalement composé d'une capacité série de 3,2 pF et une inductance parallèle de 3 nH. L'impédance d'entrée est donc modifier pour être proche de 50 ? à 900 MHz

, Coefficient de réflexion en entrée d'un circuit adapté à 900 MHz. La même opération est renouveler pour adapter la bande haute fréquence avec cette fois-ci un montage passe bas. Pour compenser l'impact des réseaux d'adaptations l'un sur l'autre et l'ajout des ligne de transmission pour faire les interconnexions