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When you are studying any matter, or
considering any philosophy, ask your-
self only what are the facts and what
is the truth that the facts bear out.
Never let yourself be diverted either
by what you wish to believe, or by
what you think would have beneficent
social effects if it were believed.

Bertrand Russell, What is it worth telling the
future generations?, BBC interview (1959)

Lorsque vous étudiez quoi que ce
soit, ou considérez n’importe quelle
philosophie, demandez-vous unique-
ment quels sont les faits et quelle
vérité ces faits viennent confirmer. Ne
vous laissez jamais détourner de cela
par ce que vous voudriez croire ou par
ce que vous imaginez avoir des effets
bénéfiques sur la société si cela était
cru.

Bertrand Russell, Quel message voudriez-
vous transmettre aux générations futures ?,
BBC interview (1959)
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Abstract

The present study aims at analysing turbulence modelling in Reynolds-averaged Navier-
Stokes (RANS) simulations, in the context of turbomachinery flows, using large-eddy
simulations (LES) as references. Two test cases are considered: a corner separation
(CS) flow in a linear compressor cascade, and a tip-leakage (TL) flow of a single
blade in a jet. Two constitutive relations, the Boussinesq constitutive relation and the
quadratic constitutive relation (QCR), are investigated, with two versions of Wilcox’s
k − ω turbulence model.

The studied constitutive relations rely on two hypotheses: an alignment hypothesis
between the Reynolds stress tensor and a mean flow tensor, and an hypothesis on the
turbulent viscosity. The alignment hypothesis is investigated using LES, where both
the tensors are known independently, with an indicator built on the inner product of
the tensors. The results are presented as probability density functions of the indicator
value for the entire domain first, and then for three specific areas of interest: the inlet
area, similar to a boundary-layer flow, an area of strong interaction between the flow
and the walls (CS: passage area, TL: tip clearance) and an area of highly vortical flow
(CS: separation wake, TL: tip-leakage vortex). The alignment hypothesis is rarely
verified in any area for the Boussinesq constitutive relation. For the QCR, the results
are improved for the inlet areas compared to the Boussinesq constitutive relation, but
no significant improvement is found in the highly vortical regions. An improvement of
the constitutive relation is needed in order to improve the RANS turbulence modelling.
In contrast, the use of the turbulent kinetic energy and the specific dissipation rate
appears quite correct to estimate the turbulent viscosity.

The modelling of the RANS turbulent kinetic energy (TKE) budget equation is
investigated through a term to term comparison with the resolved LES TKE budget
equation. The LES presents a turbulence that is not at equilibrium, with the produc-
tion and the dissipation not superimposed, and an important amount of transport.
This differs from the RANS models, at equilibrium: the production and the dissi-
pation are superimposed, with a small amount of transport. The development of a
non-equilibrium turbulence model for RANS simulations could improve this aspect of
turbulence modelling.

Finally, a new hybrid RANS-LES formulation, based on the wall distance in wall
units, is also proposed. It is validated on a bi-periodical channel flow, and a first
attempt is made on the corner separation case, but further investigations are still
needed for the model to be fully operational.

Keywords : large-eddy simulation; Reynolds-averaged Navier-Stokes; turbulence
modelling; constitutive relation; TKE budget; corner separation; tip-leakage; hybrid
RANS-LES
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Résumé

L’objectif de la présente étude est d’analyser la modélisation de la turbulence de sim-
ulations en moyenne de Reynolds (RANS) dans le cadre d’écoulements de type turbo-
machines, en utilisant des simulations aux grandes échelles (SGE) comme référence.
L’étude porte sur deux cas test: un décollement de coin dans une grille d’aubes rec-
tiligne, et un écoulement de jeu pour un aubage isolé dans un jet. Deux lois de com-
portement, la loi de comportement de Boussinesq et la loi de comportement quadra-
tique (quadratic constitutive relation ou QCR), sont analysées, avec deux versions du
modèle de turbulence k − ω de Wilcox.

Les lois de comportement étudiées reposent sur deux hypothèses: une hypothèse
d’alignement entre le tenseur de Reynolds et un tenseur construit à partir de l’écoule-
ment moyen, et une hypothèse sur la viscosité turbulente. L’hypothèse d’alignement
est étudiée à partir de la SGE, pour laquelle les deux tenseurs sont indépendamment
connus, en utilisant un indicateur construit sur le produit scalaire des tenseurs. Les
résultats sont présentés sous forme d’une fonction de répartition de la valeur de l’indi-
cateur pour le domaine complet, puis pour trois sous-domaines d’intérêt: l’entrée, une
région où l’écoulement interagit fortement avec les parois, et une région où l’écoulement
est fortement tourbillonnaire. L’hypothèse d’alignement n’est que rarement valide pour
la loi de comportement de Boussinesq. Pour la QCR, les résultats sont meilleurs en
entrée, comparé à la loi de Boussinesq. Il ne sont cependant pas meilleurs pour les
régions où l’écoulement est plus tourbillonnaire. Une amélioration de la loi de com-
portement est nécessaire pour pouvoir faire progresser la modélisation turbulente en
RANS. En revanche, l’utilisation de l’énergie cinétique turbulente et du taux de dissi-
pation spécifique semble correcte pour estimer la valeur de la viscosité turbulente.

L’analyse de la modélisation de l’équation d’énergie cinétique turbulente (ECT)
est réalisée au travers d’une comparaison terme à terme avec l’équation d’ECT résolue
par la SGE. Les résultats SGE présentent une turbulence qui n’est pas à l’équilibre
: la production et la dissipation ne sont pas superposées, et le terme de transport
est important. Pour le RANS, la turbulence est à l’équilibre : la production et la
dissipation sont superposées, et le terme de transport est de faible intensité. Un
modèle de turbulence qui prend en compte le déséquilibre est nécessaire pour améliorer
ce point.

En dernier lieu, une nouvelle formulation hybride RANS/SGE est proposée, fondée
sur la distance à la paroi en unités de paroi. La formulation est validée dans un canal
bi-périodique et un premier essai est réalisé sur le cas de décollement de coin, mais
d’autres analyses sont nécessaires avant que cette formulation ne soit fonctionnelle.

Mot clefs : simulation aux grandes échelles (SGE); simulation en moyenne de Reynolds
(RANS); modélisation de la turbulence; loi de comportement; bilan d’énergie cinétique
turbulente; décollement de coin; écoulement de jeu; hybride RANS/SGE
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Introduction

Context
Never in the history of mankind it has been easier to travel around the world. Exchange
abroad has never been this ordinary for the students, almost anyone can go as far as
the other side of the world, to discover different cultures or make affairs. It is partly
due to the development of civil aviation. Not only it is one of the fastest, surest means
of transport, it also became incredibly affordable. The IATA gives a record numbers
of 3.7 billions aerial passenger in 2016, a growth of 6.3% compared with 2015. This
trend is expected to continue and accelerate, since the world aircraft fleet is expected
to double within the next thirty years (Tucker, 2013).

This state of affairs suppose incredible challenges. A plane consume kerosene to
fly, and release chemical and acoustic pollution in the atmosphere. Due to the dete-
riorating ecological situation of the world and the rarefaction of fossil fuel, these are
burning issues. A global effort to reduce the pollutants emissions of all kind, along
with the fuel consumption, is needed. In this context, the ACARE (Advisory Council
for Aeronautics Research in Europe) proposed drastic objectives by 2020, with no less
than a reduction of the specific fuel consumption by 20%, a CO2 emissions reduction
of 50%, a nitrogen oxide (NOx) emissions reduction of 80%, and a perceived noise
reduction of 50% for the planes compared to the one produced in 2000.

Consequently improvements are required in all the domains of aviation, from the
plane conception to the air traffic. Among all the parameters, two key parameters
are the engine efficiency and size. The size reduction leads to a mass reduction, thus
a consumption reduction. With 40% to 50% of the weight, the gas turbine is an
heavy part of the engine. Its mass reduction can be realised with a decrease of the
number of its compressor stages. However, nowadays, with the high by-pass ratio
and ultra-high by-pass ratio engines, the size reduction and decrease of the number
of compressor stages is not the major issue for industrials. The increasing of the
by-pass ratio leads to a more important improvement in term of efficiency. One point
of compressor efficiency increase can be directly linked with a decrease in the specific
fuel consumption between 0.5% and 0.8% (Courtiade, 2012). The problem boils down
to a gas turbine compressor conception problem.

A major problem encountered during the conception phase, occurring even without
reducing the number of compressor stages and increasing the loading, is the occurrence
of three-dimensional, highly vortical secondary flows, such as corner separation or
tip-leakage. The corner separation occurs at the junction between the suction side
and the hub for a compressor rotor (suction side and casing for a compressor stator).
It is the resultant of the end-wall boundary-layer and blade boundary-layer interaction.
The tip-leakage flow is induced by the pressure difference between the pressure side
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and the suction side of the blade, and the relative motion of the blade tip and the
casing. It tends to develop as a large vortex and secondary vortices. These flow
disturb the performances of the compressor. They have to be at least controlled, and
when possible avoided.

Yet, even their characterisation during the conception phase is difficult. Industrial
conception relies highly on numerical simulations. In a given time-span and at a rea-
sonable cost, it allows to optimize configurations. However, industrial solver usually
rely on Reynolds-averaged Navier-Stokes (RANS) modelling for computing cost rea-
sons and represent imperfectly such flows. With the development of high performance
computing (HPC), large-eddy simulations (LES) became tractable for simulating ac-
curately the secondary flows, in a context of research. Conception improvements may
be achieved by a better understanding of the RANS simulations capacity and limita-
tions, to have in mind the bias it infers when it deals with secondary flows. Another
possibility is to couple the RANS approach and the LES approach, in order to have an
accurate description far from the walls with the LES, with less computational resources
thanks to the use of RANS close to the walls. This last approach keeps being more ex-
pensive, computationally speaking, than RANS simulations, but can be coupled with
it to have a multi-fidelity approach.

Objectives
This thesis is part of the project VortexFlowCFD, an international project that re-
groups academic structures, LMFA (Laboratoire de Mécanique des Fluides et d’Acous-
tique) in France and BUAA (Beijing University of Aeronautics and Astronautics) in
China, and an industrial company, Safran Aircraft Engines. The objective of the
project is to identify improvements in CFD (Computational fluid dynamics) codes
with popular turbulence model used in industrial conception, in order to get a better
description of highly turbulent, strongly rotating flows within a reasonable time-span.

The present work focuses on the characterisation of turbulence modelling in RANS
simulations of rotating flows. These simulations relies on strong hypotheses, such as
the Boussinesq hypothesis, and a complete modelling of the turbulent kinetic energy
budget equation. Large-eddy simulation, which provides a detailed description of the
largest turbulent eddies, is used as reference to evaluate the validity of the Boussinesq
hypothesis, through a local criterion, and the turbulent kinetic energy budget equation
modelling, through a local term to term comparison. These comparisons are done in
three-dimensional, highly vortical flows, a corner separation flow in a linear compressor
cascade, and a tip-leakage flow of a single blade in the potential core of a jet.

Furthermore an hybrid RANS-LES formulation is proposed. This formulation is
inspired from Tucker’s formulation (Tucker et al., 2012a), and presents the advantage
to be adaptable to any couple of RANS-LES models that relies on an eddy-viscosity.
The hybrid RANS-LES method is tested on the corner separation flow previously
mentioned.
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Outlines
Part I presents the state of the art.

• Chapter 1 gives a short introduction on turbomachinery and reviews previous
works on corner separations and tip-leakage flows.

• Chapter 2 presents the governing equations of the flows and details the large-eddy
simulations approximations, models, and formulation, along with the approxima-
tions, models, and formulation of Reynolds-averaged Navier-Stokes simulations.

• Chapter 3 reviews the existing hybrid RANS-LES models and discuses their
advantages and limitations.

Part II presents the methods used in this thesis.

• Chapter 4 details the implementation of the LES turbulent kinetic energy bud-
get extraction. The implementation is validated on a flat-plate boundary-layer
test-case against direct numerical simulation results.

• Chapter 5 details the proposed hybrid RANS-LES method and its validation on
a bi-periodical channel, against direct numerical simulation results.

• Chapter 6 details the simulation protocols used for the corner separation simu-
lations and the tip-leakage simulations.

Part III presents the results.

• Chapter 7 concerns the mean flow and the Reynolds stress analysis on the corner
separation case. The Reynolds stresses are compared between LES results and
RANS results.

• Chapter 8 presents the constitutive relation validity analysis on the corner sep-
aration case.

• Chapter 9 is about the turbulent kinetic energy budget comparison on the corner
separation case.

• Chapter 10 details the results of an hybrid RANS-LES simulation of the corner
separation, compared with the LES results and the RANS results.

• Chapter 11 concerns the mean flow and the Reynolds stress analysis on the
tip-leakage case.

• Chapter 12 presents the constitutive relation validity analysis on the tip-leakage
case.

• Chapter 13 is about the turbulent kinetic energy budget comparison on the
tip-leakage case.
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Part I

State of the art
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Chapter 1

Secondary flows in axial turboma-
chineries

Sections
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1.2 Corner separation . . . . . . . . . . . . . . . . . . . . . . . . . 9
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Jet engines were a revolution for aircraft propulsion. Originally imagined in parallel
by Frank Whittle and Hans von Ohain as a device able to produce an important

amount of thrust for long periods with an affordable mass for aircrafts, the technology
has evolved a lot to become the aircraft engines known today.

1.1 Axial turbomachinery generalities
In order to generate thrust, an aircraft engine needs to accelerate the ambient air. This
creates a reciprocal force from the fluid on the plane, as stipulated by Newton’s third
law. This is done in modern aircraft engines by exploiting the Brayton thermodynamic
cycle: air is breathed at the inlet of the engine, compressed, a mix of air-fuel is burnt
in the combustion chamber, goes through a turbine and is accelerated in a nozzle. The
compression is necessary to the cycle. The turbine extracts from the exhaust gas the
amount of energy necessary to power the compressor. Finally, the nozzle accelerates
the fluid, by changing a part of the remaining fluid thermal energy into kinetic energy,
to maximise the thrust, proportional to the mass flow rate times the velocity.

Modern designs rely generally on two-flux turbofans. The primary flux ensures the
Brayton cycle while the secondary flux increases the mass flow rate, in order to increase
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Figure 1.1: Generic modern turbofan sketch (a) (modified from ”Turbofan operation”
by K. Aainsqatsi - Own work. Licensed under Creative Commons Attribution 2.5 via
Wikimedia Commons.) and its associated Brayton cycle (b).

the thrust. A generic turbofan sketch and its associated Brayton cycle is presented in
figure 1.1. The primary flux produces around 20% of the thrust while the secondary
flux produces around 80% of the thrust.

The compressor of the axial gas turbine is made of successive stages. Each stage
presents a rotor, a row of blades in rotation, upstream a stator, a row of fixed vanes.
The rotor aims at increasing the total temperature and pressure, while the stator plays
the role of a diffuser that increases the static pressure. The pressure ratio of a stage is
defined as the ratio between the outlet pressure and the inlet pressure. The pressure
increases along the compressor, so the pressure gradient is adverse to the flow.

Due to the variety of flight phases, the engines are built to operate at various
rotation speeds. Considering a given rotation speed, the adverse pressure gradient
acts as a throttle. When the pressure ratio increases, the adverse pressure gradient
increases and the mass flow rate generally decreases. The evolution of the pressure
ratio against the mass flow rate for various rotation speeds are usually represented in a
performance characteristic map. A generic performance characteristic map of an axial
compressor is presented in Fig. 1.2. For a given rotation speed, if the pressure ratio
is too important, ergo the mass flow rate too weak to counter the pressure gradient,
surge happens. On the other hand, if the the mass flow rate is too important, the flow
becomes supersonic and the compressor is choked. The main goal of design is to stay
away from these areas, and to place preferably the operating point as close as possible
to the maximum of efficiency.

However, even when the operating point is far from the surge line and the choke
line, various mechanisms (pressure gradients, trajectory curvature, viscosity,...) lead
to what is known as secondary flows. These flows dissipate the energy given to the
fluid and can damage the compressor. For this reason, the secondary flows have to
be controlled, which requires their correct representation by numerical simulation. An
illustration of secondary flows encountered in turbomachinery is given in figure 1.3.
Among these secondary flows are the corner separation and the tip-leakage flow, which
are studied in this work.
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Figure 1.2: Generic performance characteristic map of an axial compressor

1.2 Corner separation
Corner separation is a three-dimensional phenomenon occurring at the junction of two
orthogonal boundary layers. In can appear in external flows (Bordji et al., 2015) or in
internal flows. This state of the art focuses on internal flows.

In compressors, this can concern the junction between the blade boundary layer
and the hub boundary layer for a rotor (or casing boundary layer for a stator). Cor-
ner separation can be studied in linear cascades, which present advantages, such as
isolation of the phenomenon and easier instrumentation for measurements.

1.2.1 In a rotor
Dring et al. (1982) carried out measurements on an isolated rotor with highly loaded
blades. They observed a corner separation on the suction side of the blades. When the
loading increases, the separation develops over the entire span of the blade. Conclu-
sions were that corner separation increases losses of the rotor and modifies the wakes
generated by the blades, which can impact stages downstream.

Wisler (1985) built a compressor of large dimension in order to make measurements
at high Reynolds number with a low velocity flow. He observed a corner separation on
the first rotor when the compressor works at full capacity. He considered the corner
separation to be one of the most important sources of losses for the compressor.

1.2.2 In a stator
Joslyn and Dring (1985) carried out measurements on the second stage stator of two-
stage compressor of large dimension and low rotation speed, which was an upgrade
of Dring et al. (1982) experimental set-up. Experiment was made for three working
points, the nominal one, a lightly loaded one, and one close to the stall point of the
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Figure 1.3: Sketch of secondary flows in turbomachinery, modified from Boudet (2014).
: stream lines, : friction lines.

blades. Corner separation is observed at each working point, and increases as the
loading of the blades increases. Moreover, the majority of losses takes place in the
separated regions.

Li et al. (1992) carried out measurements on an annular cascade at low Reynolds
number (Re < 1.1 · 105) and low Mach number (M < 0.1) for four different incidence
angles. Flow is directed at the entrance with a distributor. Corner separation is ob-
served through an oil visualisation method and pressure loss measurements. They
show that the separation is highly turbulent and can be considered as a ”dead zone”,
not participating to the overall diffusion. They claim that the losses due to corner
separation are more important than those due to secondary flows or wake-blade inter-
action.

Schulz and Gallus (1988) conducted an experimental campaign in order to deter-
mine the precise impact of blade loading on three-dimensional flows by varying the
incidence angle. The study was done on an annular cascade and the incidence angle
variation went from a slightly negative value to a strongly positive value. A corner
separation was observed for each incidence at the junction of the hub and the blade.
When loading increases, the hub-blade separation tends to increase while the leading
edge separation tends to reduce. Besides, a zone of high losses is observed down-
stream of the separation. Measurements suggest a direct responsibility of the corner
separation in those losses.

Hah and Loellbach (1999) lead a study with both experiments and numerical simu-
lations on the aforementioned annular cascade set-up (Schulz and Gallus, 1988). They
managed to demonstrate the existence of two counter-rotating vortices using a RANS
simulation (Fig. 1.4). One of those vortices originates from the hub, the other from
the blade. When they meet, they create a region with strong back-flow that gives
birth to corner separation. The experimental results confirm the existence of those
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two vortices.

(a) Flow angle : 44.2◦ (b) Flow angle : 49.2◦

Figure 1.4: Visualisation of two counter-rotating vortices for two different incidence
angles. At low loading, i.e. at low incidence angle, the corner separation is weak (a).
When loading increases, corner separation increases in both size and intensity (b).
Results from Hah and Loellbach (1999).

Yamada et al. (2016) realised a detached-eddy simulation of the 7th first stages
of the test rig used for development of the industrial gas turbine Kawasaki L30A, in
order to investigate rotating stall inception. They found a hub corner separation in
one passage in the 6th stator stage, whose growth leads to a leading edge separation.
This instigates another hub corner separation in a neighbour passage, and evolves into
a rotating stall.

1.2.3 In a linear cascade
Yocum and O’Brien (1993a,b) did an experimental study on a linear cascade for var-
ious stagger angles. They observed a corner separation and concluded that stagger
angle influences strongly its characteristics. Surprisingly, they also concluded that the
Reynolds number has little effect on the corner separation characteristics in the range
tested

(
Re ∈

[
5.0 × 104, 2.0 × 105]).

Ma et al. (2011, 2013) conducted a series of experiments in order to both understand
deeply the physics of corner separation and create a database for LES and RANS
calibration. They showed the existence of a bi-modal phenomenon at the interface of
the corner separation and the non-separated flow (see fig. 1.5) (Ma et al., 2013). They
did not manage to understand clearly the physical origin of such a phenomenon. It is
supposed to be due to two aperiodic phenomena appearing alternatively.

Zambonini and Ottavy (2015) realised unsteady pressure measurements on the
same linear cascade. In contrast with the velocity measurements, the wall static pres-
sure never presents bimodal probability density functions. However, the second, third
and fourth order moments of the unsteady pressure signals show unsteady intermit-
tent behavior of the separation line on the suction surface. Later time-resolved par-
ticle imaging velocimetry (PIV) measurements and proper orthogonal decomposition
(POD) analysis infer that the bimodal behaviour is an intermittent switch between
two sizes of separation, large and almost suppressed (Zambonini, 2016; Zambonini
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Figure 1.5: Corner separation in a linear cascade, from Ma et al. (2013). Vortex cores,
separation border and places where bi-modal phenomena occur are represented.

et al., 2017). The cyclic mechanism begins with the absorption by the separation of
fluctuations coming from the leading edge that destabilize it. It provokes a growth
of the separation, which increases blockage until its main constituting vortex breaks
down and the separation almost vanishes.

Gao et al. (2015a), on the same configuration as Ma et al. (2011), did a numerical
study using both LES and RANS simulations. The LES simulation gave results in
good agreement with the experimental results. RANS gave poorer results, with a
systematic overestimation of the size of the corner separation and the pressure losses.
A bi-modal tendency was observed also in the LES simulation (Gao et al., 2015b) but
the sampling was not long enough to confirm it. The present work uses the LES results
of Gao et al. (2015a) in order to evaluate RANS modelling.

Scillitoe et al. (2017) realised a large-eddy simulation of two linear compressor blade
cascades to investigate the effect of various sub-grid scales models on the prediction of
corner separation, and the effects of the free-stream turbulence intensity and end-wall
boundary-layer state on the corner separation behaviour. They conclude that the
usual Smagorinsky SGS model (Smagorinsky, 1963) is not suited for this kind of flow,
due to its weak prediction close to the walls. The WALE model (Nicoud and Ducros,
1999) and the σ model (Nicoud et al., 2011) perform better. The state of the end-wall
boundary layer is found to be of critical importance for the description of the corner
separation. On the other hand, the free-stream turbulence intensity is found to have
little effect on the corner separation.

1.2.4 Separation criteria
Lei et al. (2008) did a vast study, experimentally and numerically, on more than
hundred different geometries for the numerical part, to find a criterion for the existence
of a corner separation and its kind. The criterion is composed of two numbers, S andD,
respectively the corner separation criterion and the Lieblein diffusion factor (Lieblein,
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1959). Those numbers depend on some global parameters of the flow, such as flow
angles, solidity, geometrical characteristics of the blades or boundary-layer thickness
for instance. The criterion and its sensitivity is given in figure 1.6. A value S > 0.12
indicates a corner separation. A recirculation (much smaller than an actual corner
separation) can be found for S 6 0.12. Correlation indicates that corner separation
appears whenD > 0.4±0.05, but Gao (2014) observed a corner separation forD = 0.26
(cf fig. 1.7).

(a) Correlation between S and D (b) Criterion sensitivity

Figure 1.6: Corner separation criterion from Lei et al. (2008). Sub-figure (a) shows
the correlation between the stall criterion S and the Lieblein diffusion factor (D).
Sub-figure (b) shows the sensitivity of the criterion to the Reynolds number (Re), the
aspect ratio (AR) and the non-dimensional boundary-layer thickness (δ/c).

1.3 Tip-leakage flow
The tip-leakage flow is a three-dimensional, highly vortical flow induced by the pressure
difference between the pressure side and the suction side of the blade, and the relative
motion of the blade tip and the casing. It is responsible for pressure losses, noise,
and influences the stability of the compressor. An intense vortex, referred to as the
tip-leakage vortex (TLV), develops from the tip-clearance and can develop natural
unsteadinesses.

1.3.1 Topology
Lakshminarayana et al. (1995) realised a detailed measurement, with a rotating five-
hole probe, of the flow field in the tip region of an axial flow field compressor rotor.
The goal of the study was to obtain the structures of the flow field in the vicinity of the
tip gap. They found differences with the flow fields observed in cascades (Storer and
Cumpsty, 1991). In their rotor measurements, the leakage jet is present, but does not
roll up into a vortex. It mixes with the main flow stream and produces flow separation.

You et al. (2007a) realised a large-eddy simulation of a tip-leakage flow in a tur-
bomachinery cascade with a moving end-wall, in order to understand the viscous loss
mechanisms close to the tip gap. The tip-leakage vortex (TLV), tip-separation vor-
tex (TSV) and induced counter-rotating vortex (CRV) were identified (cf fig. 1.8).
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Experiment
LES
RANS

Figure 1.7: Position of Gao (2014) corner separation in Lei’s criterion.

The TLV and tip-leakage jet were found to generate strong mean velocity gradients,
responsible for the major part of the viscous losses close to the end-wall.

Tip-separation vortex

Tip-leakage vortex

Induced vortex

(a) Sketch

Induced vortices

Tip-leakage vortex

Tip-separation vortices

Flow direction

(b) Visualisation

Figure 1.8: Tip-leakage flow topology from You et al. (2007a). The sketch and visual-
isation show the tip-separation vortex, the tip-leakage vortex and the induced counter
rotating vortex.

1.3.2 Experimental investigations
Devenport research team from Virginia Tech published a series of articles on a linear
cascade with a tip gap and a moving endwall (Muthanna and Devenport, 2004; Wang
and Devenport, 2004; Devenport et al., 2004). The first article (Muthanna and De-
venport, 2004) focuses on the tip-leakage flow mechanisms for a stationary end-wall.
The three components of velocity and turbulence quantities were investigated for a
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tip gap height equal to 1.6% of the blade chord. Then, the velocities and turbulent
quantities were investigated at one station against two tip gap sizes, 0.8% and 3.3% of
the blade chord. The structure and topology of the tip-leakage vortex was extensively
described. It was found to be similar to the ones in compressor rotors with comparable
characteristics. The authors concluded that the characteristics of the tip-leakage flow
is essentially controlled by blade loading and geometry. The second article (Wang and
Devenport, 2004) focuses on the tip-leakage flow mechanisms for a moving end-wall.
The movement has been simulated using a belt moving over a sliding surface under the
tips of the blades. The same investigations as for the stationary end-wall were realised.
The end-wall motion spread out the vortex center into a ribbon, but the some of the
main features, such as the magnitude of the large streamwise mean-velocity deficit
at the vortex center and its decay with downstream distance, were unaffected by the
end-wall motion. The tip gap size did not influence qualitatively the tip-leakage vortex
characteristics, but had a quantitative influence. The third article (Devenport et al.,
2004) focuses on the velocity spectra and space-time correlations in the tip-leakage
vortex. The velocity spectra levels were high due to the high turbulence levels. How-
ever, with the absence of distinct spectral peak, no periodically organised structures
were found. The tip-leakage vortex turbulence was found to be highly anisotropic and
characterised by inclined elongated eddies (about 30◦ to the vortex axis).

Tan et al. (2015) realised an experimental investigation of the tip-leakage vortex in
subsonic conditions in a compressor-like facility. Thanks to the refraction index of the
casing and the blades matching the one of the fluid, unobstructed optic measurements
have been achieved. The facility is made to test casing treatments for tip-leakage
passive control. The facility is first tested with a smooth casing. The visualisations
of the TLV, using the cavitation that it induces, show the trajectories of the vortex in
the case of highest flow rate and pre-stall conditions. The time-resolved particle image
velocimetry (PIV) measurements show that, for the early phase of the vortex rollup, an
area of negative vorticity is present close to the end-wall, as presented in Fig. 1.9 (1).
This area represents the interaction of the TLV with the casing boundary-layer, and
is responsible of the production for a substantial amount of turbulent kinetic energy.

(1)

Figure 1.9: Instantaneous PIV of the TLV in a cross section, extracted from Tan et al.
(2015). The value plotted is the normalised vorticity.

Li et al. (2017) realised another time-resolved PIV campaign on the same configu-
ration as Tan et al. (2015). The authors analysed the turbulent characteristics in the
tip region, with the turbulent kinetic energy, the Reynolds stresses, or the turbulent
kinetic energy budget transport terms. As part of the analysis, the authors tested the
correlation between the Reynolds stresses and the mean strain-rate. In the tip region,
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they are poorly correlated, which means that the Boussinesq hypothesis, commonly
used in RANS modelling, is not verified.

Advanced measurements were carried out by Jacob et al. (2016a), on an academic
configuration. The experimental set-up is made up with an isolated blade placed
between two plates into the potential core of a jet, as presented in Fig 1.10. The
blade is attached to the top plate and a clearance is present between the blade tip and
the bottom plate. The measurements were realised inside a subsonic anechoic wind
tunnel. During the experimental campaign, the unsteady behaviour of the TLV was
characterised. A lot of information was gathered, such as the TLV center locations
and TLV extent, with respectively the Γ1 and Γ2 functions presented in Eq. (1.1)
and (1.2), and the Reynolds stresses. The use of time-resolved PIV gave access to a
low-frequency oscillation of the TLV, not entirely understood yet. A spectrum hump
at medium and high frequencies, in the range [0.7kHz, 7kHz], is also found in the near
and far fields.

Γ1 (P ) =
1

S

ˆ

M∈S

(
PM ∧ UM

)
· x

‖ PM ‖ · ‖ UM ‖
dS (1.1)

Γ2 (P ) =
1

S

ˆ

M∈S

[
PM ∧

(
UM − ŨP

)]
· x

‖ PM ‖ · ‖ UM − ŨP ‖
dS (1.2)

(a) Photo (b) Sketch

Figure 1.10: Experimental set-up from Jacob et al. (2016a). (a) photo of the set-up,
(b) sketch of the set-up.

The previous article is completed by a paper (Jacob et al., 2016b), on the same
academic case. A ZLES simulation was also performed and presented by Boudet et al.
(2016b,a) (cf section 1.3.3).

1.3.3 Numerical investigations
Storer and Cumpsty (1991) realised an experimental and numerical study of the tip-
leakage flow. The numerical study relies on three-dimensional RANS with the mixing-
length turbulence model of Baldwin and Lomax (1978). The experimental results are
well represented by the RANS simulation, even though the computation mesh is coarse
and the turbulence model unsophisticated. The authors conclude that the mechanism
of tip leakage is primarily an inviscid mechanism.
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Figure 1.11: Tip-leakage flow topology from Boudet et al. (2015a). The element
already found by You et al. (2007a) are present.

Borello et al. (2006) realised a RANS simulation using a second moment closure
turbulence model on a 3D linear compressor cascade flow with tip clearance. They
conclude that with this modelling, the tip-leakage flow phenomenology description is
improved. The pressure distribution and pitch-wise velocity are in better agreement
with experimental results than with eddy-viscosity RANS models. Moreover, only the
second moment closure simulation seems able to predict the tip-separation vortex.

You et al. (2007b) realised a LES of a linear cascade with a tip gap and a mov-
ing end-wall. The analysis focused on the velocity field and low-pressure fluctuations.
The tip-leakage vortex was found to be the main vortical structure in the end-wall
region. The authors found that the tip-leakage vortex is subject to a pitchwise low
frequency wandering motion. This analysis relies on the energy spectra and space-time
correlations of the velocity fluctuations. The tip-leakage vortex is found to interact
strongly with the induced vortices. The authors believe that the low-pressure fluc-
tuations could be responsible, in hydraulic turbomachineries, for cavitation. These
cavitation-inducing low-pressure fluctuations were found to most likely occur in the
upstream portion of the tip-leakage vortex and underneath the tip-gap, at around
30-40% axial chord.

Boudet et al. (2015a) realised a numerical investigation of a DLR rotor, using a
zonal large-eddy simulation (ZLES) approach. The region of interest at the blade tip
is computed with a fully resolved LES, while the others regions rely on RANS simu-
lation with the original Wilcox k − ω turbulence model (Wilcox, 1988). The classical
structures are observed (You et al., 2007a), as presented in figure 1.11. The simulation
provides a good description of the flow. An unsteadiness of the TLV has been de-
tected with the analysis of the spectrum, in accordance with the experimental results.
The oscillation is believed to be excited by turbulence from the casing boundary-layer
or/and the adjacent TLV. It may be a precursor of rotating instability and rotating
stall.

Leichtfuß et al. (2013) realised an experimental and numerical investigations of
stability-limiting phenomena in the Darmstadt transonic compressor. Counter-rotating
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pressure fluctuations were identified in the experimental and numerical results, and
linked with the drop in aerodynamic damping. The authors suggested that the tip-
leakage flow is fundamental to understand these fluctuations. Later, Möller et al.
(2016) realised a numerical investigation of the Darmstadt transonic compressor in
order to investigate the tip-clearance flow induced flutter. They found that the flutter
vibration pattern happened with a pressure fluctuation pattern of the tip clearance.
This pressure fluctuations interacts with the blade motion and caused the instabilities.
The interaction happened specifically when the tip clearance flow fluctuation is about
50% of the blade tip speed.

A numerical investigation was lead on the experimental set-up of Jacob et al.
(2016a,b). Boudet et al. (2016a,b) realised a ZLES on the configuration. The region
of interest at the blade tip is computed with a fully resolved LES, while the other
regions rely on RANS with the original Wilcox k − ω turbulence model (Wilcox,
1988). A special attention is paid to the incoming boundary-layer, as its thickness
has a value similar with the tip-clearance height. Some of the flow characteristics,
such as mean velocities, Reynolds stresses and spectra, are presented in the papers.
A good agreement is found between the experimental and numerical results, on cross
stream planes at 80%c and 90%c. The principal results concern the TLV position
and swirl velocity, comparable with the free-stream velocity. The position of the TLV
center (Fig. 1.13a) and its width were quantified with the Γ1 and Γ2 functions. The
results are in good agreement with the experiment. The near-field spectral content is
also presented, and in good agreement with the experiment, as presented in Fig. 1.13b.
The far-field acoustic spectrum is also computed at 2 meters from the blade, using the
Ffowcs Williams and Hawkings analogy. A very good agreement is observed in the
range of [0.7kHz, 7kHz], as presented in Fig. 1.12. The good agreement between
experimental and numerical results serves as a validation of the simulation, in order
to use it as a reference for further analysis.
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[0.7kHz, 7kHz]

Figure 1.12: Far-field acoustic spectrum at 2m from the blade, extracted from Boudet
et al. (2016b). EXP: experiment, ZLES+FWH: Ffowcs Williams Hawkings propaga-
tion from the ZLES results.

(a) Mean TLV trajectory and probe locations (b) Pressure spectrum at probe B

Figure 1.13: ZLES results from Boudet et al. (2016a).
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Given that no exact solution exists for the Navier-Stokes equations in general,
the predictions rely on numerical simulations. These simulations necessitate to

represent the effects of turbulence in order to be accurate. Turbulence modelling is
one of the key aspects of computational fluid dynamics (CFD).

First, the governing equations are detailed. Then, the three main turbulence mod-
elling approaches, direct numerical simulation, large-eddy simulation, and Reynolds-
averaged Navier-Stokes are presented. For both large-eddy simulation and Reynolds-
averaged Navier-Stokes, the modifications and approximations on the governing equa-
tions are detailed, along with the turbulence modelling used and the turbulent kinetic
energy budget formulation.

2.1 Governing equations
The present study is dedicated to flow phenomena occurring in aeronautical axial
compressor. The fluid considered is air, a Newtonian fluid. Its motion is governed by
the compressible Navier-Stokes equations:



22 Chapter 2. Turbulence modelling
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with ρ the density, t the time, u the velocity of the fluid, x the position vector, p the
static pressure, τ the viscous stress tensor, et the total energy and q the heat flux.

Equation (2.1) expresses the conservation of mass, equation (2.2) expresses the
evolution of momentum and equation (2.3) expresses the evolution of energy. Un-
der certain hypotheses, the equations can be expressed using only five conservative
variables (ρ, ρu1, ρu2, ρu3, ρet) and constants (Garnier et al., 2009).

The assumption that bulk viscosity can be neglected, known as Stokes hypothesis,
allows to write the viscous stress tensor as only dependent on the dynamic viscosity
of the fluid µ and the strain rate tensor S:

∀(i, j) ∈ [[ 1 ; 3 ]]2, τij = µσij (2.4)

∀(i, j) ∈ [[ 1 ; 3 ]]2, σij = 2Sij −
2
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with δij the Kronecker’s delta and σ the zero-trace strain rate tensor.
The heat flux q can be derived from the law of Fourier under the assumption of

negligible energy transport by the molecular diffusion and the radiant transfer:

∀i ∈ [[ 1 ; 3 ]], qi = −κ ∂T
∂xi

(2.7)

with T the static temperature and κ the thermal conductivity.
The thermal conductivity κ can be expressed using the Prandtl number Pr, the

dynamic viscosity µ and the constant pressure heat capacity cp:

Pr =
µcp
κ

(2.8)

Air is considered to behave as an ideal gas, which means the temperature T can
be expressed using the density ρ, the specific gas constant rair = 287J.kg−1.K−1 and
the pressure p:

p = ρrairT (2.9)

The specific gas constant rair can be expressed as a function of the constant pressure
heat capacity cp and the constant volume heat capacity cv, which are linked by the
specific heat ratio γ:

rair = cp − cv, γ =
cp
cv

(2.10)
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Finally, the internal energy e, the total energy et, the velocity u, the pressure p
and the density ρ are linked by the relations:

et = e+
1

2
uiui (2.11)

e = cvT =
1

γ − 1

p

ρ
(2.12)

For all the flows considered in this study, the Mach number remains under 0.3.
The incompressibility hypothesis is valid. This assumption plus the assumptions that
the fluid is an ideal gas, that the walls are adiabatic, and that there is no internal
energy source, lead to consider the quantities µ, Pr, rair, cp, cv and γ are constant.
The equations (2.1), (2.2) and (2.3) are finally expressed using only the set of five
conservative variables (ρ, ρu1, ρu2, ρu3, ρet) and the constants µ, Pr, rair, cp, cv and γ.

Except for some simple cases, such as Couette flow, there is no exact solution to
the Navier-Stokes system of equations. Currently, the resolution of the Navier-Stokes
equations relies on numerical solvers. The remaining problem is to correctly represent
the flow down to the smallest eddy and to take into account the chaotic behaviour of
turbulence, with all its aspects. Usually, the simulations are classified in three families
(Bailly and Comte-Bellot, 2003), namely the direct numerical simulation (DNS), the
more exhaustive, the large-eddy simulation (LES), an intermediate approach, and the
Reynolds-averaged Navier-Stokes (RANS) simulation that relies entirely on turbulence
modelling.

2.2 Direct numerical simulation
Direct numerical simulation (DNS) is the more natural approach for flow simulations.
All the scales of turbulence are directly resolved, down to the smallest eddies. For this
reason, this simulation method is the most precise available.

The downside of this approach is its cost. In order to resolve all the scales of
turbulence, the grid size must be comparable with the Kolmogorov scale. Due to the
necessity of extremely high resolution, the computational cost is important, even with
simple, low Reynolds number configurations. In point of fact, the disparity between
the turbulent length-scales evolves proportionally to Re3/4, the number of grid points
for a three-dimensional case evolves proportionally to Re9/4, so the computational cost
evolves as Re3 (Pope, 2000). For this reason, the DNS approach is used mainly for low
or moderate Reynolds number configurations in academic researches, with for instance
the work of Jiménez et al. (2010). It can be used to create a database of extremely
high fidelity academic cases, for both physical analysis and practical calibration of
methods relying on turbulence modelling. However, DNS can not be yet considered
for realistic high Reynolds number configurations or for industrial applications, such
as turbomachinery.

2.3 Large-eddy simulation
Large-eddy simulation is intended to reduce the simulation cost compared to DNS.
The largest, more powerful scales of turbulence (the large eddies) are directly resolved,
and the smallest scales (the small eddies) are modelled. The strategy is to filter the
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equations, in order to compute the largest scales of turbulence, and to model the
remaining part of turbulence using a sub-grid scale (SGS) model (Sagaut, 2006).

With this method, the number of grid points remains important, and so does the
computational cost. This makes it impeachable for daily design cycles, but allows
detailed investigations on complex, high-Reynolds number configurations (Gao et al.,
2015a; Boudet et al., 2016a). In the present work, LES results are used as an high
fidelity reference database to analyse physically the turbulence.

The following sub-sections detail the implementation of the LES method in Turb’Flow
(Boudet et al., 2007), the in-house, compressible, finite volume code used for the
present work.

2.3.1 Filtered equations
The filtering of the Navier-Stokes equations can be realised using classical filters such
as the box filter or the Gaussian filter (Garnier et al., 2009). In the present work, the
filtering is made by the grid, and the influence of the filter characteristics are neglected.

For a given quantity ϕ, the large-scale filter is represented by the operator ϕ and the
small-scale residual is represented by the operator ϕ`, with the relation ϕ = ϕ + ϕ`.
Due to the fact that the compressible Navier-Stokes equations are considered, the
Favre decomposition is used. Considering ρ the density, the Favre large-scale filter is
represented by the operator ϕ̃ = ρϕ/ρ, and the Favre small-scale residual is represented
by the operator ϕ`̀ , with the relation ϕ = ϕ̃+ ϕ`̀ .

The mass conservation equation (2.1) and momentum conservation equation (2.2)
are directly filtered, which gives:

∂ρ

∂t
+
∂ρũj
∂xj

= 0 (2.13)

∀i ∈ [[ 1 ; 3 ]],
∂ρũi
∂t

+
∂ρũiũj
∂xj

= − ∂p

∂xi
+
∂τij
∂xj

+
∂Πij

∂xj
(2.14)

Πij is the sub-grid scale (SGS) tensor, defined as:

∀(i, j) ∈ [[ 1 ; 3 ]]2, Πij = ρũiũj − ρuiuj = −ρ (ũiuj − ũiũj) (2.15)

Different energy conservation equations can be obtained, depending on the filtering
strategy and the approximations realised. For instance, the filtered energy conservation
equation can be based on enthalpy, pressure, temperature or entropy (Garnier et al.,
2009). In the case of Turb’Flow, the total energy equation is directly filtered (Boudet
et al., 2007):

∂ρet
∂t

+
∂(ρet + p)uj

∂xj
=
∂τijui
∂xj

− ∂qj
∂xj

(2.16)

The filtered viscous stress tensor is approximated by:

∀i ∈ [[ 1 ; 3 ]],
∂τij
∂xj

=
∂

∂xj
(µσij) ≈

∂µσ̃ij
∂xj

(2.17)

with σ̃ the Favre filtered zero-trace strain rate tensor:
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∀(i, j) ∈ [[ 1 ; 3 ]]2, σ̃ij =
∂ũi
∂xj

+
∂ũj
∂xi

− 2

3
δij
∂ũk
∂xk

(2.18)

In the original Navier-Stokes equations, the pressure is computed using the total
energy as p = ρ(γ − 1)(et − 1/2uiui) (see equations (2.11) and (2.12)). The filtered
pressure is:

p = ρ (γ − 1)

(
ẽt −

1

2
ũiui

)
≈ ρ (γ − 1)

(
ẽt −

1

2
ũiũi

)
(2.19)

because the terms ˜̃uiui`̀ and ˜ui`̀ ui`̀ are neglected in Turb’Flow.
The SGS tensor Π needs to be modelled to close the filtered momentum equa-

tion (2.14). First, it is decomposed into a deviatoric part ΠD and an isotropic part
ΠI :

∀(i, j) ∈ [[ 1 ; 3 ]]2,

Πij = ΠD
ij +ΠI

ij ; ΠD
ij = Πij −

1

3
δijΠkk ; ΠI

ij =
1

3
δijΠkk (2.20)

The deviatoric part of the SGS tensor is modelled by analogy with the viscous
stress tensor, by introducing a sub-grid scale viscosity µSGS. The isotropic part of the
SGS tensor is neglected, considering that the sub-grid scale Mach number remains low
(Boudet, 2003):

∀(i, j) ∈ [[ 1 ; 3 ]]2, Πij = ΠD
ij = µSGSσ̃ij (2.21)

The sub-grid scale viscosity µSGS is computed using a sub-grid scale model, pre-
sented in sub-section 2.3.2.

In the filtered energy equation the viscous dissipation term and the pressure velocity
term are approximated by:

∂τijui
∂xj

≈ ∂τijũi
∂xj

(2.22)

∂ujp

∂xj
≈ ∂ũjp

∂xj
(2.23)

The heat flux is approximated by:

∀i ∈ [[ 1 ; 3 ]], qi = −κ ∂T
∂xi

≈ −κ ∂T̃
∂xi

(2.24)

The remaining term to approximate is the total energy transport term. The total
energy is decomposed with the internal energy e:

∂ρetuj
∂xj

=
∂ρeuj
∂xj

+
1

2

∂ρuiuiuj
∂xj

=
∂ρẽũj
∂xj

+
∂Θj

∂xj
+

1

2

∂ρuiuiuj
∂xj

(2.25)

with Θ the sub-grid scale heat flux:

∀i ∈ [[ 1 ; 3 ]], Θj = ρeuj − ρẽũj = ρcv

(
T̃ uj − T̃ ũj

)
(2.26)
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The sub-grid scale heat flux Θ is modelled by analogy with the heat flux, with
the introduction of a sub-grid scale thermal conductivity κSGS and a sub-grid scale
Prandtl number PrSGS:

∀i ∈ [[ 1 ; 3 ]], Θj = −κSGS
∂T̃

∂xj
= −µSGScp

PrSGS

∂T̃

∂xj
(2.27)

In this work, the SGS Prandtl number PrSGS is considered constant, equal to 0.9
(Cahuzac, 2012). The remaining term of the equation (2.25) is modelled as follows:

∂ρuiuiuj
∂xj

=
∂ρũiuiũj
∂xj

− ∂Πijũj
∂xj

(2.28)

Finally, the ideal gas equation is filtered to close the system of equations:

p = ρrairT̃ (2.29)

The complete filtered Navier-Stokes system of equations is:

∂ρ

∂t
+
∂ρũj
∂xj

= 0 (2.30a)

∀i ∈ [[ 1 ; 3 ]],
∂ρũi
∂t

+
∂ρũiũi
∂xj

= − ∂p

∂xi
+
∂(µ+ µSGS)σ̃ij

∂xj
(2.30b)

∂ρẽt
∂t

+
∂(ρẽt + p)ũj

∂xj
=
∂(µ+ µSGS)σ̃ijũj

∂xj
+

∂

∂xj

(
(κ+ κSGS)

∂T̃

∂xj

)
(2.30c)

2.3.2 Sub-grid scale model
The sub-grid scale model is used to compute µSGS. The historical model was developed
by Smagorinsky (1963). This model is still widely used, but is known to be imprecise
close to the walls. The Smagorinsky SGS model is available in Turb’Flow. Another
classical model available in Turb’Flow was developed by Nicoud and Ducros (1999).
The model, named wall-adapting local eddy-viscosity model (WALE), was conceived
to present a good behaviour close to the walls.

The large-eddy simulations presented in this work were realised with another SGS
model, the shear-improved Smagorinsky model (SISM). It is an in-house model devel-
oped by Lévêque et al. (2007). The model was conceived to be physically sound and
consistent with the scale-by-scale energy budget of locally homogeneous shear turbu-
lence, with a low CPU cost. It demonstrated its capacity to provide good solutions
for various academic flow simulations of turbomachinery phenomena (Cahuzac et al.,
2011; Gao et al., 2015a; Boudet et al., 2016a).

Formulation

The SISM model is based on the original Smagorinsky model. Following the theoretical
developments presented by Lévêque et al. (2007), the Smagorinsky model is modified
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by subtracting the magnitude of the mean shear stress | < S̃ > | from the magnitude
of the resolved instantaneous strain-rate tensor |S̃|:

µSGS = ρ (Cs∆)2
(∣∣∣S̃∣∣∣− ∣∣∣〈S̃〉∣∣∣) (2.31)

with ∆ the grid spacing, computed as the cube root of the cell volume, and Cs = 0.18
the Smagorinsky constant. The magnitude of the tensors is calculated as |ϕ̃| = |ϕ̃ijϕ̃ij|.

The calculation of the SGS viscosity with the SISM model requires the ensemble
average of the filtered strain-rate tensor. Practically, this is unknown during the
computation. An approximation of the mean flow is necessary.

Mean flow approximation for the SISM

The exponentially weighted moving average approach, implemented and tested by
Cahuzac et al. (2010), is used to approximate the mean flow, in order to calculate the
mean shear stress. The idea is to update at each time step the mean flow estimate
with the new instantaneous field. If we note, ϕn an instantaneous quantity at a given
nth time step, ϕn+1 the instantaneous quantity at the following time step, < ϕ >n the
mean value of the quantity at the nth time step and < ϕ >n+1 the mean value at the
following time step, the exponentially weighted moving average is calculated as:

〈ϕ〉n+1 = (1− cexp) 〈ϕ〉n + cexpϕ
n+1 (2.32)

where cexp is the smoothing factor, with (0 < cexp < 1).
As a recursive approach, the exponentially weighted moving average needs a first

element. The first mean value is chosen equal to the first instantaneous quantity:

〈ϕ〉0 = ϕ0 (2.33)

The approach acts as a low-pass filter on the quantity ϕ, with a fixed cut-off
frequency fc that can be related to the smoothing factor cexp:

cexp '
2πfc∆t√

3
(2.34)

with ∆t the time step.
With this approach, the samples used to compute the mean quantity are mainly

comprised inside a fixed-width temporal window advancing on the time axis at each
time step. The width of the window depends on the cut-off frequency fc, which can be
calculated as the ratio between a characteristic velocity and a characteristic length.

An improved version of this averaging has been developed by Cahuzac et al. (2010),
as a Kalman filter with a local and instantaneous estimate of the cut-off frequency.
However, it is not employed in the present work, for which constant fc have been
determined.

2.3.3 Turbulent kinetic energy budget
A turbulent kinetic energy (TKE) budget, often called turbulence budget, allows to
identify the distribution of the TKE transport terms, between production, dissipation
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and transport. Such a budget gives valuable insights on the physical behaviour of
turbulence at a fine level. However, obtaining such a budget experimentally is quite
complicated due to the difficulty to measure the combined statistics. In this regard,
DNS and LES offer an interesting alternative for such an in-depth physical analysis of
turbulence.

Different works on TKE budget were realised. Lu and Chen (2000) proposed a
theoretical framework, based on DNS results, to represent the TKE budget terms
computed in the viscous sub-layer with a 3D wave model. Marquillie et al. (2008)
extracted TKE budgets from a DNS of a separation after a bump in a tunnel. The
configuration reproduces an experiment at École Centrale de Lille. The budget terms
are all extracted with great precision. These results constitute a valuable database for
comparison on this configuration. Later, Kuban et al. (2012) realised various large-
eddy simulations on this configuration in order to test the influence of various SGS
models. Bogey and Bailly (2009) simulated a free round jet with LES and extracted
the TKE budget on this configuration. Jiménez et al. (2010) extracted TKE budgets
from a flat-plate boundary-layer simulation. Finally, Gao (2014) extracted TKE bud-
gets from the LES of a corner separation case, and compared them with RANS results.
In the present work, the TKE budget extraction of Gao will be revised and improved,
applied to two different configurations, and used to characterise RANS turbulence
modelling.

Reynolds stress budget formulation

The filtered momentum equation (2.30b) can be used to obtain the Reynolds stress
budget equation (Bogey and Bailly, 2009). Then, the resulting equation is averaged, in
order to obtain the ensemble-averaged Reynolds stress budget equation. Four notations
are introduced. For a given quantity ϕ, the ensemble average is represented by 〈ϕ〉, and
the Favre ensemble average is represented by [ϕ] = 〈ρϕ〉 / 〈ρ〉. The fluctuating part of
the large-scale filtered quantity is noted ϕ′ (ϕ = 〈ϕ〉 + ϕ′) and the Favre fluctuating
part of the Favre large-scale filtered quantity is noted ϕ′′ (ϕ̃ = [ϕ̃] + ϕ′′).

The detailed procedure to derive the Reynolds stress budget can be found in ap-
pendix A. The resulting equations are:

∀(i, j) ∈ [[ 1 ; 3 ]]2,

∂
〈
ρu′′i u

′′
j

〉
∂t

= − ∂

∂xk

(〈
ρu′′i u

′′
j

〉
[ũk]
)

︸ ︷︷ ︸
Advection

−
〈
ρu′′ju

′′
k

〉 ∂ [ũi]
∂xk

− 〈ρu′′i u′′k〉
∂ [ũj]

∂xk︸ ︷︷ ︸
Production

− ∂

∂xk

(〈
ρu′′i u

′′
ju

′′
k

〉)
︸ ︷︷ ︸

Turbulent diffusion

−
∂
〈
u′′jp

′〉
∂xi

− ∂ 〈u′′i p′〉
∂xj︸ ︷︷ ︸

Pressure diffusion

+

〈
p′
∂u′′j
∂xi

〉
+

〈
p′
∂u′′i
∂xj

〉
︸ ︷︷ ︸

Pressure dilatation

−
〈
u′′j
〉 ∂ 〈p〉
∂xi

−〈u′′i 〉
∂ 〈p〉
∂xj

+
∂
〈
τ iku

′′
j

〉
∂xk

+
∂ 〈τ jku′′i 〉
∂xk︸ ︷︷ ︸

Viscous diffusion

−
〈
τ ik

∂u′′j
∂xk

〉
−
〈
τ jk

∂u′′i
∂xk

〉
︸ ︷︷ ︸

Viscous dissipation

+
∂
〈
Πiku

′′
j

〉
∂xk

+
∂
〈
Πjku

′′
i

〉
∂xk︸ ︷︷ ︸

SGS diffusion

−
〈
Πik

∂u′′j
∂xk

〉
−
〈
Πjk

∂u′′i
∂xk

〉
︸ ︷︷ ︸

SGS dissipation

(2.35)
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Turbulent kinetic energy budget formulation

The Favre large-scale filtered part of the turbulent kinetic energy, noted k, is defined
as k = 1/2 u′′i u

′′
i . The sum of the three ensemble-averaged equations on the Reynolds

stress tensor diagonal terms gives the ensemble-averaged turbulent kinetic energy bud-
get equation:

0 =
∂ 〈ρk〉
∂t

= − ∂

∂xk
(〈ρk〉 [ũk])︸ ︷︷ ︸

Advection

−〈ρu′′i u′′k〉
∂ [ũi]

∂xk︸ ︷︷ ︸
Production

− ∂

∂xk
(〈ρku′′k〉)︸ ︷︷ ︸

Turbulent diffusion

−∂ 〈u
′′
i p

′〉
∂xi︸ ︷︷ ︸

Pressure Diffusion

+

〈
p′
∂u′′i
∂xi

〉
︸ ︷︷ ︸

Pressure dilatation

−〈u′′i 〉
∂ 〈p〉
∂xi

+
∂ 〈τ iku′′i 〉
∂xk︸ ︷︷ ︸

Viscous diffusion

−
〈
τ ik

∂u′′i
∂xk

〉
︸ ︷︷ ︸

Viscous dissipation

+
∂
〈
Πiku

′′
i

〉
∂xk︸ ︷︷ ︸

SGS diffusion

−
〈
Πik

∂u′′i
∂xk

〉
︸ ︷︷ ︸
SGS dissipation

+Ξ︸︷︷︸
Numerical residual

(2.36)

In numerical simulations, the TKE budget may not be perfectly balanced, i.e.
the sum of the terms on the right-hand side may not be exactly zero. Therefore, a
numerical residual term, noted Ξ, is added in the budget to close it. This term is
computed as minus the sum of all the other spatial terms on the right-hand side.

2.4 Reynolds-averaged Navier-Stokes
The Reynolds-averaged Navier-Stokes (RANS) approach is an alternative to reach an
affordable computational cost when considering complex, high Reynolds number con-
figurations. Reynolds (1895) proposed to decompose the flow field into an ensemble-
averaged quantity and a fluctuating quantity, or turbulent quantity. The application
of such a decomposition to the Navier-Stokes equations generates a tensor, called
Reynolds stress tensor, accounting for the effects of turbulence on the mean flow. The
computation of only the mean motion of the flow necessitates much less grid points
than the computation with LES. The strength of this method is its ability to treat
industrial cases in a moderate amount of time. Its weakness is its dependence on the
model used to represent turbulence.

The following sub-sections detail the implementation of the RANS method in
Turb’Flow (Aubert, 1993; Smati, 1997), the in-house, compressible, finite-volume solver
used for the present work.

2.4.1 Averaged equations
The averaging is realised with the ensemble average operator. For a given quantity ϕ,
the ensemble average is noted 〈ϕ〉 and the fluctuating part is noted ϕ′, with the relation
ϕ = 〈ϕ〉 + ϕ′. Because the compressible Navier-Stokes equations are considered, the
Favre average is used (Favre, 1969). Considering ρ the density, the Favre average is
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noted [ϕ] = 〈ρϕ〉 / 〈ρ〉, and the Favre fluctuating part is noted1ϕ′′, with the relation
ϕ = [ϕ] + ϕ′′.

The Navier-Stokes equations are averaged directly:

∂ 〈ρ〉
∂t

+
∂ 〈ρ〉 [uj]
∂xj

= 0 (2.37)

∀i ∈ [[ 1 ; 3 ]],
∂ 〈ρ〉 [ui]

∂t
+
∂ 〈ρ〉 [ui] [uj]

∂xj
= −∂ 〈p〉

∂xi
+
∂ 〈τij〉
∂xj

+
∂τtij
∂xj

(2.38)

∂ 〈ρ〉 [et]
∂t

+
∂(〈ρ〉 [et] + 〈p〉) [uj]

∂xj
= −

∂
〈
(ρet + p)u′′j

〉
∂xj

+
∂ 〈τijui〉
∂xj

− ∂ 〈qj〉
∂xj

(2.39)

with τt the Reynolds stress tensor:

∀(i, j) ∈ [[ 1 ; 3 ]]2, τtij = −
〈
ρu′′i u

′′
j

〉
(2.40)

The averaged viscous stress tensor is approximated by:

∀i ∈ [[ 1 ; 3 ]],
∂ 〈τij〉
∂xj

=
∂ 〈µσij〉
∂xj

≈ 〈µ〉 ∂ [σij]
∂xj

(2.41)

The pressure relation is averaged directly:

〈p〉 = 〈ρ〉 (γ − 1)

(
[et]−

1

2
[ui] [ui]− [k]

)
(2.42)

with k = 1/2 u′′i u
′′
i the turbulent kinetic energy.

In order to close the system of equations, the Reynolds stress tensor needs to be
modelled. This modelling follows a two-step procedure. First, a constitutive relation is
chosen, that introduces a turbulent viscosity (or eddy-viscosity) µt. This is detailed in
sub-section 2.4.2. Then, the eddy-viscosity is expressed using a turbulence model. In
the present case, the original Wilcox k−ω turbulence model (Wilcox, 1988) is chosen,
with ω the specific turbulent dissipation rate. The details of this model are given in
sub-section 2.4.3.

The heat flux can be approximated by:

∀i ∈ [[ 1 ; 3 ]], 〈qi〉 = −
〈
κ
∂T

∂xi

〉
≈ −〈κ〉 ∂ [T ]

∂xi
(2.43)

with 〈κ〉 =< µ > cp/Pr.
The viscous transport term is modelled, according to Smati (1997) as:

∂ 〈τijui〉
∂xj

=
∂ 〈τij〉 [ui]

∂xj
+

∂

∂xj

(
〈µ〉 ∂ [k]

∂xj

)
(2.44)

The remaining term is modelled as follows:
1Note that the same notation ϕ′ is used for the ensemble-averaged fluctuating part and the large-

scale filtered fluctuating part. Moreover, the same notation ϕ′′ is used for the Favre averaged fluc-
tuating part and the Favre filtered fluctuating part. This allows common notations for the Reynolds
stresses and the turbulent kinetic energy budget between RANS and LES, and aims at simplifying
the results presentation.
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∂
〈
(ρet + p)u′′j

〉
∂xj

=
∂cp 〈ρ〉

[
Tu′′j

]
∂xj

+
∂
〈
ρu′′i u

′′
j

〉
[ui]

∂xj
+
∂ 〈ρ〉

[
ku′′j
]

∂xj
(2.45)

The temperature-velocity correlation [Tu′′] is usually expressed in terms of average
temperature gradient and turbulent thermal conductivity. A similar approach can be
used for the triple correlation [ku′′]. In this case, the correlation is expressed in terms
of average turbulent kinetic energy gradient and eddy-viscosity:

∂
〈
(ρet + p)u′′j

〉
∂xj

= − ∂

∂xj

(
κt
∂ [T ]

∂xj

)
− ∂τtij [ui]

∂xj
− ∂

∂xj

(
µt

σk

∂ [k]

∂xj

)
(2.46)

with κt = µtcp/Prt, Prt = 0.9 the turbulent Prandtl number, and σk a constant of the
turbulence model.

The previous models are expressed using the Favre averaged temperature. Finally,
the the ideal gas equation is averaged to relate the pressure, the density and the
temperature and close the system:

〈p〉 = 〈ρ〉 rair [T ] (2.47)

The complete averaged Navier-Stokes system of equations is:

∂ 〈ρ〉
∂t

+
∂ 〈ρ〉 [uj]
∂xj

= 0 (2.48a)

∀i ∈ [[ 1 ; 3 ]],
∂ 〈ρ〉 [ui]

∂t
+
∂ 〈ρ〉 [ui] [uj]

∂xj
= −∂ 〈p〉

∂xi
+
∂ 〈τij〉+ τtij

∂xj
(2.48b)

∂ 〈ρ〉 [et]
∂t

+
∂(〈ρ〉 [et] + 〈p〉) [uj]

∂xj
=

∂

∂xj

(
(〈κ〉+ κt)

∂ [T ]

∂xj

)
+

∂

∂xj

(
(〈µ〉+ µt

σk
)
∂ [k]

∂xj

)
+
∂(〈τij〉+ τtij) [ui]

∂xj
(2.48c)

2.4.2 Constitutive relations
The Reynolds stress tensor, that represents the impact of turbulence on the mean
flow, needs to be modelled. To do it, a constitutive relation, that links the Reynolds
stress tensor and the mean flow values, is needed. In the present work, two different
constitutive relations are considered. The first one is the classical Boussinesq consti-
tutive relation, that assumes the alignment between the Reynolds stress tensor and
the zero-trace strain-rate tensor. The second one is the quadratic constitutive relation
(QCR), that adds anisotropy to the Boussinesq constitutive relation.

Boussinesq constitutive relation

The Boussinesq constitutive relation (Boussinesq, 1877) is an analogy with the vis-
cous stress model derived for a Newtonian fluid, and given in equation (2.4). The
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Boussinesq relation assumes that the Reynolds stress tensor τt is proportional to the
averaged zero-trace strain-rate tensor

[
σ
]
. The Reynolds stress tensor calculated with

the Boussinesq constitutive relation is noted τ ∗t . The proportionality coefficient has
the same dimension as a viscosity, therefore this coefficient is named eddy-viscosity
µt. The eddy-viscosity is calculated with the turbulence model, as presented in sub-
section 2.4.3. The relation τt ≈ τ ∗t = µt

[
σ
]
− 2/3 < ρ > [k], when developed, gives:

∀(i, j) ∈ [[ 1 ; 3 ]]2, τ ∗tij = µt

(
∂ [ui]

∂xj
+
∂ [uj]

∂xi
− 2

3
δij
∂ [uk]

∂xk

)
− 2

3
δij 〈ρ〉 [k] (2.49)

The hypothesis of alignment between the Reynolds stress tensor and the zero-trace
strain-rate tensor is a strong hypothesis. Schmitt (2007) proposed a criterion to analyse
its validity, when both tensors are known independently.

This criterion is defined as:

ΥSchmitt =

∣∣∣τ ∗∗t :
[
σ
]∣∣∣∥∥∥τ ∗∗t ∥∥∥∥∥[σ]∥∥ (2.50)

with
[
σ
]

the averaged zero-trace strain-rate tensor and τ ∗∗t the unmodelled Reynolds
stress tensor plus 2k/3 on the diagonal:

∀(i, j) ∈ [[ 1 ; 3 ]]2, τ ∗∗tij = τtij +
2

3
δij 〈ρ〉 [k] (2.51)

For two tensors ϕ and ς, the inner product is defined as:

ϕ : ς = trace(ϕtς) = ϕijςij (2.52)

with the norm associated to this inner product defined as:

‖ϕ‖ = ϕ : ϕ = ϕ2
ij (2.53)

The indicator2 ΥSchmitt is analogous to the cosine of an angle between the tensors.
When it is equal to 1, the tensors are aligned, ergo proportional, and the Boussinesq
hypothesis is valid. When it is equal to 0, the tensors are orthogonal, and the Boussi-
nesq hypothesis is invalid. Schmitt (2007) proposed to consider that the alignment is
approximately verified for an indicator value greater than 0.86. With LES, DNS or
experimental results, both tensors are known independently, which allows the calcu-
lation of the indicator. In this work, LES results are exploited in order to test the
Boussinesq constitutive relation hypothesis.

2The indicator is named ρRS in the original paper. In order to avoid confusion, the notation ρ
is only used for density related values, and the notation ΥSchmitt is preferred in this thesis for the
Schmitt indicator.
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Quadratic constitutive relation

The quadratic constitutive relation (QCR), proposed by Spalart (2000), is a modifica-
tion of the Boussinesq constitutive relation in order to take into account the important
effect of vorticity. The Reynolds stress tensor calculated with the QCR is noted τQCR

t .
The Reynolds stresses are obtained from:

∀(i, j) ∈ [[ 1 ; 3 ]]2, τQCR
tij = τ ∗tij − cQCR

(
Oikτ

∗
tjk +Ojkτ

∗
tik

)
(2.54)

with cQCR = 0.3 a constant, τ ∗t the Reynolds stress tensor calculated with the Boussi-
nesq constitutive relation in equation (2.49), and O the normalised rotation tensor:

∀(i, j) ∈ [[ 1 ; 3 ]]2, Oij =

∂[ui]
∂xj

− ∂[uj ]

∂xi√
∂[uk]
∂xl

∂[uk]
∂xl

(2.55)

The ”linear” Reynolds stresses τ ∗t are modified by the addition of a term depending
on the vorticity divided by the norm of the velocity-gradient tensor. That is why the
modification is expected to mainly affect regions where the flow is highly rotational.
For example, the flow is highly rotational for corner separation and tip-leakage, thus
the QCR is expected to have a non negligible effect. In particular, in the context
of external aerodynamics, Bordji et al. (2015) showed a reduction of the size of a
corner separation, in better agreement with the experiment. In the context of internal
aerodynamics, Scillitoe et al. (2015) obtained an improvement of a corner separation
prediction in a numerical simulation with the Spalart and Allmaras (1994) turbulence
model and the QCR. Another version of the model exists (Mani et al., 2013), but was
not tested during this work.

The Schmitt (2007) indicator previously introduced can be adapted to the QCR
as follows:

ΥQCR
Schmitt =

∣∣∣τ ∗∗t :
[
σQCR∗]∣∣∣∥∥∥τ ∗∗t ∥∥∥∥∥[σQCR∗

]∥∥ (2.56)

with:

∀(i, j) ∈ [[ 1 ; 3 ]]2, σQCR∗
ij = [σij]− cQCR (Oik [σjk] +Ojk [σik]) (2.57)

2.4.3 Turbulence models
The only remaining quantity to model, in order to close the problem, is the eddy-
viscosity µt. Many turbulence models exist to model this quantity. The simplest, and
less universals, are the zero equation models (Smith and Cebeci, 1967; Baldwin and
Lomax, 1978). They are designed for a given kind of flow, and do not account for
the transport effects. The Spalart and Allmaras (1994) one equation model solves
the transport of a viscosity-like quantity, used to reconstruct the eddy-viscosity. This
model is still widely used, mainly for airfoil conception, but also for internal flow
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applications. The next level of complexity is reached with the two equations mod-
els. Usually, one equation gives the turbulent kinetic energy k, and the other gives
the turbulence dissipation rate ε, or the specific turbulence dissipation rate ω, with
ε = 0.09kω. Among these models are the Launder and Sharma (1974) k − ε model,
the Wilcox (1988) k − ω model, the Menter (1994) SST k − ω model, the Kok (2000)
k − ω model or the Wilcox (2008) k − ω model.

In this work, three versions derived from the Wilcox k − ω model of 1988 are con-
sidered. The two first versions are the classical model with the Boussinesq constitutive
relation and its version with the QCR. The third version uses a modification of the
transport equation of ω, in order to present a more realistic behaviour for the corner
separation flow. For the naming convention, with the Boussinesq constitutive relation,
the model is named the original Wilcox k − ω model, with the QCR, the model is
named the quadratic Wilcox k − ω model, and the last version is called the modified
Wilcox k − ω model.

Original Wilcox k − ω model

The original Wilcox k − ω turbulence model, first mentioned in Wilcox (1988), is a
two-equation model for turbulent viscosity modelling. The two model variables, the
turbulent kinetic energy k and the specific dissipation rate ω, allow calculating the
turbulent viscosity as follows:

µt = cµ 〈ρ〉
[k]

[ω]
(2.58)

with cµ = 1.0 a constant of the model.
The two equations of the model are:

∂ 〈ρ〉 [k]
∂t

+
∂ 〈ρ〉 [k] [uj]

∂xj
= Pk +

∂

∂xj

((
µ+

µt

σk

)
∂ [k]

∂xj

)
− ck 〈ρ〉 [k] [ω] (2.59a)

∂ 〈ρ〉 [ω]
∂t

+
∂ 〈ρ〉 [ω] [uj]

∂xj
= cω1

[ω]

[k]
Pk +

∂

∂xj

((
µ+

µt

σω

)
∂ [ω]

∂xj

)
− cω2 〈ρ〉 [ω] 2 (2.59b)

with ck = 0.09, cω1 = 5/9, cω2 = 3/40, σk = 2.0, σω = 2.0 and Pk the k-production
term defined as:

Pk = τ ∗tij
∂ [ui]

∂xj
(2.60)

Alternative expressions of the turbulent kinetic energy production term exist, based
on the vorticity (Menter, 1992) (eq. (2.61)) or on the product between the vorticity
tensor and the strain-rate tensor (Kato, 1993) (eq. (2.62)).

Pk = 2µtΩijΩij (2.61)

Pk = 2µt

√
SijSij

√
ΩijΩij (2.62)
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In order to keep a coherence between the formulation of the k-production term and
the Reynolds tensor modelling, these expressions will not be used in this work.

Quadratic Wilcox k − ω model

The quadratic constitutive relation modifies the Reynolds stress tensor. In the trans-
port equations, it has a direct impact only on the k-production term Pk. This modifi-
cation leads to:

Pk = τQCR
tij

∂ [ui]

∂xj
(2.63)

Modified Wilcox k − ω model

The Wilcox k − ω model was originally calibrated on flows around simple geometries.
The modification, introduced by Liu et al. (2016), impacts the production term in
the ω equation. The term is modified using kinematic vorticity, considering that fluid
rotation and deformation occur in complex geometries, and calibrated on a low-speed
prescribed velocity distribution cascade from Cambridge University (Gbadebo et al.,
2004, 2005, 2007).

The ω equation (2.59b) becomes:

∂ 〈ρ〉 [ω]
∂t

+
∂ 〈ρ〉 [ω] [uj]

∂xj
= cω1

[ω]

[k]
Pkfr1+

∂

∂xj

((
µ+

µt

σω

)
∂ [ω]

∂xj

)
−cω2 〈ρ〉 [ω] 2 (2.64)

with the function fr1 defined as:

fr1 = − 1

2π
arctan (5(Nk − 1.2)) + 0.75 (2.65)

Nk =

(
1 +

2Q

[Sij] [Sij]

)1/2

(2.66)

Q =
1

2
([Ωij] [Ωij]− [Sij] [Sij]) (2.67)

with Nk the kinematic vorticity, Q the local balance between the strain rate and the
vorticity magnitudes,

[
S
]

the averaged strain rate tensor and
[
Ω
]

the averaged rotation
tensor defined as:

∀(i, j) ∈ [[ 1 ; 3 ]]2, [Ωij] =
1

2

(
∂ [ui]

∂xj
− ∂ [uj]

∂xi

)
(2.68)

The modified Wilcox k−ω model is used with the Boussinesq constitutive relation,
ergo Pk = τ ∗t,ij∂ [ui] /∂xj.

2.4.4 Turbulent kinetic energy budget
In RANS with the Wilcox k − ω model, the turbulent kinetic energy budget is es-
sentially given by the equation (2.59a). The Wilcox k − ω model tends to over-
predict k production where anisotropy is important (Strahle, 1985). Consequently,
a k-production limiter (Menter, 1994) is implemented in the solver, in the form of a
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clipping of the k-production term, when the k-production term is superior to ten times
the k-dissipation term. This limiter does not appear in the k equation (2.59a) but is
explicitly introduced in the budget, in the form of a dissipative term Λ. Moreover,
the TKE budget equation being directly solved, there should be a negligible residual.
However, a numerical residual term Ξ is introduced to have a comparable formulation
for both RANS and LES budgets. This term is computed as minus the sum of all the
other spatial terms. The budget equation is:

∂ 〈ρ〉 [k]
∂t

= Pk︸︷︷︸
Production

−∂ 〈ρ〉 [k] [uj]
∂xj︸ ︷︷ ︸

Advection

+
∂

∂xj

(
µ
∂ [k]

∂xj

)
︸ ︷︷ ︸

Molecular
diffusion

+
∂

∂xj

(
µt

σk

∂ [k]

∂xj

)
︸ ︷︷ ︸
Turbulent transport &

pressure diffusion

−ck 〈ρ〉 [k] [ω]︸ ︷︷ ︸
Dissipation

+Λ︸︷︷︸
k production

limiter

+Ξ︸︷︷︸
Numerical

residual

(2.69)

with Pk = τ ∗t,ij∂ [ui] /∂xj for both the original Wilcox model and the modified Wilcox
model, and Pk = τQCR

t,ij ∂ [ui] /∂xj for the quadratic Wilcox model.
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The hybrid RANS-LES approach was born of the will to have a more physical de-
scription of the flow than with RANS, but at a lower cost than with the LES

approach. The principle of the hybrid RANS-LES modelling is to use RANS mod-
elling close to walls, where the mesh refinement needed with the LES has the highest
computational cost, and use the LES approach elsewhere, where the mesh can be
coarser. The different methods differ in their way to pass continuously from a model
to another. An overview of the ”detached-eddy” methods (DES, DDES, IDDES and
ZDES) can be found in Spalart (2009).

3.1 DES
The detached eddy simulation formulation is one of the first attempts to hybridise
RANS modelling with LES modelling. It was theorised by Spalart et al. (1997) for the
Spalart and Allmaras (1992, 1994) turbulence model.

3.1.1 Formulation

The one-equation Spalart and Allmaras (1994) model relies on a wall distance d̂ = d
in the original RANS formulation:

∂ν̂

∂t
+ uj

∂ν̂

∂xj
= cb1 (1− ft2) Ŝν̂ −

(
cw1fw − cb1

κ2

)( ν̂
d̂

)2

+
1

σ

[
∂

∂xj

(
(ν + ν̂)

∂ν̂

∂xj

)
cb2

∂ν̂

∂xi

∂ν̂

∂xi

]
(3.1)

µt = ρν̂fv1; fv1 =
χ3

χ3 + c3v1
; χ =

ν̂

ν
(3.2)

The model introduces some functions in which the wall distance is present. The
functions are defined as follows:

Ŝ =

√(
∂ui
∂xj

− ∂uj
∂xi

)(
∂ui
∂xj

− ∂uj
∂xi

)
+

ν̂

κ2d̂2
fv2 (3.3)

fv2 = 1− χ

1 + χfv1
(3.4)

fw = g

(
1 + c6w3

g6 + c6w3

)1/6

(3.5)

g = r + cw2

(
r6 − r

)
(3.6)

r = min
(

ν̂

Ŝκ2d̂2
, 10

)
(3.7)

ft2 = ct3 exp
(
−ct4χ2

)
(3.8)

The model constants are cb1 = 0.1355, cb2 = 0.622, σ = 2/3, κ = 0.41, cv1 = 7.1,
ct3 = 1.2, ct4 = 0.5, cw1 = cb1/κ+ (1 + cb2)/σ, cw2 = 0.3 and cw3 = 2.
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The wall distance d̂ is the variable modified in the DES formulation, in order to
yield an LES resolution away from the walls:

d̂ = min (d, CDES∆) (3.9)

with ∆ = ∆max = max(∆x, ∆y, ∆z) and CDES the Smagorinsky (1963) sub-grid
scale model constant.

3.1.2 Alternative formulation
An alternative formulation exists for two-equations models. This formulation, pro-
posed by Kok et al. (2004), relies on the definition of a turbulent length scale l̂ for the
computation of µt:

l̂ = min

(√
k

ω
, C1∆

)
; µt = ρl̂

√
k (3.10)

with C1 = 0.06.
Another formulation, presented by Travin et al. (2004), modifies the DES to use

the SST model (Menter, 1994; Menter et al., 2003), in order to improve the separation
predictions. An hybrid numerical scheme is also presented, with an upwind-biased
scheme (order 3 or 5) for the RANS and a fourth-order centred-scheme for the LES.

3.1.3 Low Reynolds number correction
The eddy viscosity µt tends to decrease when the Reynolds number decreases, which
tends to be considered by the model as a proximity with a wall. In order to correct this
behaviour, Spalart et al. (2006) proposed a function ψ > 1 that increases the CDES

(or C1) coefficient:

d̂ = min (d, ψCDES∆) (3.11)

The correction can be used with the Spalart-Allmaras version of the DES (3.12) or
the k − ω version of the DES (3.13).

ψ2 = min

[
102,

1− cb1
cw1κ2fw

[ft2 + (1− ft2) fv2]

fv1 max
(
10−10, 1− ft2

) ]
(3.12)

ψ =
β∗

Cµ

(
2α

α∗

)3/4

(3.13)

where the constants of (3.13) can be found in the Wilcox (1988) model definition.

3.1.4 Limitations
The brutal modification of d̂, due to the minimum in Eq. (3.9), implies that a careful
consideration should be given to the mesh. The variation of ∆ must be smooth enough
to allow a transition zone (often referred to as the ”grey zone”) that links correctly
the RANS part to the LES part of the simulation.

The model is also known to have troubles to stay in RANS when the boundary-layer
is too thick, or if small separations occur (Spalart et al., 2006).
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3.2 DDES
The delayed detached-eddy simulation aims at correcting the weakness of the DES for
thick boundary-layers.

3.2.1 Formulation
The principle of the correction proposed by Spalart et al. (2006) is to delay the LES
activation by using a transition function as follow:

d̂ = d− fd max (0, d− CDES∆) (3.14)

with :

fd = 1− tanh
(
[8rd]

8) (3.15)

rd =
ν̂ + ν√

∂ui

∂xj

∂ui

∂xj
κ2d2

(3.16)

This formulation is less dependant on the mesh and allows three possible states
instead of just the two states of the original DES formulation:

• d 6 CDES∆: The RANS model is used and d̂ = d.

• d > CDES∆, rd ≈ 1: The model makes a transition between RANS and LES, an
explicit ”grey zone” in which d̂ = (1− fd)d+ fdCDES∆.

• d > CDES∆, rd � 1: The LES formulation is used and d̂ = CDES∆.

3.2.2 Alternative formulation
Another formulation, presented by Gritskevich et al. (2012), modifies the DDES to
use the k − ω SST model (Menter, 1994; Menter et al., 2003). The equations are not
presented here, but they can be found in the article appendix, along with some of the
constants that were re-calibrated.

3.2.3 Low Reynolds number correction
The previous low Reynolds number correction, presented in Eq. (3.12), can be used
for the DDES. Another solution is to limit χ before the computation of fv1, fv2 and
ft2, as follows:

χ = max (χ, 20fd) (3.17)

3.2.4 Limitations
The DDES improves the DES formulation by reducing the mesh dependency. However,
some discrepancies remain. The log laws, in the RANS area and in the LES area, do
not coincide at the interface for instance (Shur et al., 2008; Spalart, 2009).
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3.3 IDDES
The IDDES was presented the first time by Travin et al. (2006), but the final formu-
lation is from the article of Shur et al. (2008). The main goal of the improved delayed
detached-eddy simulation is to use the DES formulation to do wall-modelled LES. The
limitations of the DES formulation lead to preferably use the concept of the DDES,
with an hybridisation function. This aims at correcting the log law discrepancies of the
DDES formulation. The IDDES has been successfully used by Greschner and Thiele
(2011), with the ”Compact Explicit Algebraic Stress Turbulence Model” (Greschner
et al., 2010), to simulate the interaction broadband noise in a rotor-stator cascade.

3.3.1 Formulation
First, the sub-grid scale is redefined for the LES part:

∆ = min [max (CWd, CW∆max, CW∆wn) , ∆max] (3.18)

with ∆max = max(∆x, ∆y, ∆z) the local longest cell dimension, ∆wn the cell dimension
in the direction normal to the wall and CW = 0.15 an empirical constant.

Then, the hybridisation function is defined:

d̂ = fhyb (1 + feψ) d+ (1− fhyb)CDESψ∆ (3.19)

Two new functions, fhyb and fe, are used in this formulation. fhyb is defined as
follows:

fhyb = max [(1− fd, fstep)] (3.20)

with:

fd = 1− tanh
(
[8rd]

8) ; rd = ν̂

κ2d2
1

max
(√

∂ui

∂xj

∂ui

∂xj
, 10−10

) (3.21)

and

fstep = min
[
2 exp

(
−9α2

)
, 1.0

]
; α = 0.25 − d

∆max
(3.22)

fe is defined as follows:

fe = max [(fe1 − 1) , 0]ψfe2 (3.23)

with:

fe1 =

{
2 exp (−11.09α2) if α > 0
2 exp (−9.0α2) if α < 0

; α = 0.25− d

∆max
(3.24)

and:

fe2 = 1.0 − max (ft, fl) (3.25)

ft = tanh
[(
c2t rd

)3] (3.26)
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fl = tanh
[(
c2l rdl

)10]
; rdl =

ν

κ2d2
1

max
(√

∂ui

∂xj

∂ui

∂xj
, 10−10

) (3.27)

with the constants ct = 1.63 and cl = 3.55 chosen to have fe2 ≈ 0 for rd ≈ 1 and
rdl ≈ 1.

3.3.2 Alternative formulation
Another formulation, presented by Gritskevich et al. (2012), modifies the IDDES to
use the k − ω SST model (Menter, 1994; Menter et al., 2003). The equations are not
presented here, but they can be found in the article appendix, along with some of the
constants that were re-calibrated.

3.3.3 Low Reynolds number correction
The low Reynolds number correction ψ used in the IDDES is similar to the correction
used for the DES, presented in Eq. (3.12), except that instead of using the value of fw
from the Spalart-Allmaras model, fw = 0.424.

3.3.4 Limitations
The IDDES formulation is, by far, the most advanced formulation of the ”detached-
eddy” method family. Its main limitation comes from its complexity. The model is
much more complex than the original DES model, and uses many constants. The
correct calibration and validation of such a model necessitate an important amount of
efforts. For these reasons, its implementation is quite complicated. The ”grey zone”
problem is still not completely solved, and the mesh generation keeps being difficult
(Spalart, 2009).

3.4 Zonal detached-eddy simulation
The zonal detached-eddy simulation, introduced by Deck (2005), aims at correcting two
of the problems present in the ”detached-eddy” models. The grid-induced separation
(GIS) and the modelled-stress depletion (MSD) are effects of the mesh density variation
that affect all the ”detached-eddy” models. They occur in the ”grey-zone”, and create
non-physical results in these areas.

The principle of ZDES is to classify the different possible separations occurring
in the flow per areas, and use the adapted model from the ”detached-eddy” family.
Many improvements with respect to the original publication together with advices for
implementation and use can be found in Deck (2012).

3.4.1 Formulation
First, the flow has to be classified in order to choose the kind of model to use. The
classification of the flows is given in Fig. 3.1.

In the case (I), presented in Fig. 3.1a, the separation is directly imposed by the ge-
ometry. The boundary-layer thickness δ is far smaller than the height of the separation
H. The place of the separation is well-known a priori. The case (II) is different from
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δ

H
δ

H
� 1

(a) Case (I)

δ

Hδ

H
� 1

(b) Case (II)

δ

H

δ

H
= O(1),

δ

H
> 1
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Figure 3.1: Classification of the flows for the ZDES.

the case (I), as shown in Fig. 3.1b: the separation is induced by an adverse pressure
gradient or the curvature of the geometry. If the boundary-layer thickness δ is still far
smaller than the height of the separation H, the exact position where the separation
occurs is not precisely known. In the case (III), presented in Fig. 3.1c, the main factor
influencing the separation is the dynamics of the incoming boundary-layer. In that
case, the boundary-layer thickness δ can be approximately equal to the height of the
separation H, or bigger.

Secondly, three sub-grid scales are defined, ∆vol, ∆vort and ∆max:

∆vol = (∆x∆y∆z)
1/3 (3.28)

∆vort =

√(
Ωx

‖Ω‖

)2

∆y∆z +

(
Ωy

‖Ω‖

)2

∆x∆z +

(
Ωz

‖Ω‖

)2

∆x∆y (3.29)

∆max = max (∆x, ∆y, ∆z) (3.30)

where Ω is the vorticity.
∆vort can be also calculated as follows:

∆vort =
√
SΩ (3.31)

with SΩ the cell mean section along the directions normal to Ω.
It can be noted that ∆max is the usual sub-grid scale for the DES and DDES, and

is already present in the computation of the sub-grid scale for the IDDES. The two
other sub-grid scales presented in Eq. (3.28) and Eq. (3.29) are newly introduced by
the ZDES model.

The ZDES model relies on two variables, ides and imode, that allow to choose the
method. ides is the variable to choose if the hybridisation should be activated, while
imode is the variable to choose the case encountered. If the case studied necessitates
pure RANS with no hybridisation, ides = 0, thus d̂ = d. If the case studied is case (I),
ides = 1, imode = 1, and d̂ = dI . If the case studied is case (II), ides = 1, imode = 2,
and d̂ = dII . If the case studied is case (III), ides = 1, imode = 3, and d̂ = dIII . It is
summarised in Tab. 3.1. The definitions of dI , dII and dIII are given in the following
sub-sections.

Case (I)

The first case corresponds to a well known and well located separation that does not
depend on the state of the incoming boundary-layer, or the pressure gradient. In that
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Case ides imode d̂
Pure RANS 0 NA d
Case (I) 1 1 dI
Case (II) 1 2 dII
Case (III) 1 3 dIII

Table 3.1: ZDES selection variables function of the case studied.

case, the model used is the classical DES model, with a modification of the sub-grid
scale:

dI = min (d, CDES∆) ; ∆ = ∆vol or ∆ = ∆vort (3.32)

Case (II)

The second case corresponds to a separation induced by an adverse pressure gradient
or the curvature of the geometry. The separation does not take place at a prescribed
position as in the first case, but the area of separation is quite correctly bounded. In
that case, the model used is preferably the DDES, with a modified sub-grid scale:

dII = d− fd max (0, d− CDES∆) (3.33)
with fd the DDES function defined in Eq. (3.15), and ∆ defined as:

∆ = [0.5 + sign (0.5, fd − fd0)] (∆max + {∆vol or ∆vort}) (3.34)
with fd0 = 0.8.

The function sign is defined as the Fortran function sign (a, b), returning a if b > 0
and −a if b < 0. The case (II) can be viewed as a DDES with two conditions. The
first one is the criterion on the wall-distance, driven by fd, as in the classical DDES,
and a second one is the criterion on fd − fd0. If fd < fd0, ∆ = 0 and dII = d.

Case (III)

The last case is the most complex, and relies on a user-defined wall-distance duser to
choose the place of transition between RANS and LES:

dIII =

{
d if d < duser
dI if d > duser

(3.35)

The hybrid part relies on the case (I) formulation.

3.4.2 Limitations
The ZDES is very interesting and promising, but it relies on a fine knowledge of the
flow studied, given that the user have to choose both the areas where the transition
between RANS and LES occurs, and the kind of mode to use. In term of complexity,
it simplifies the mesh generation since it relies on DDES and IDDES. However, it adds
the difficulty of choosing the right case to have the best results. Another good point
is that it allows pure zonal simulations, with mode 0 for pure RANS and mode 3 with
duser = 0 for pure LES (Bordji et al., 2015). The ZDES was described by Spalart
(2009) as more powerful and less auto-sufficient at the same time.
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3.5 Tucker’s formulation
The main goal of Tucker et al. (2012a,b) formulation is to link the RANS zone and
the LES zone of the DES through a non-abrupt interface. The model aims at keeping
the LES quite close to the wall too. For these reasons, the solution chosen is to use a
Hamilton-Jacobi differential equation on d̂.

3.5.1 Formulation
The Hamilton-Jacobi equation is written as follows:∣∣∣∇d̂∣∣∣ = 1 + f

(
d̂
)
∇2d̂+ g (d) (3.36)

The functions f and g are defined as follows:

f
(
d̂
)
= ε0d̂ (3.37)

g (d) = ε1

(
d

L

)n

(3.38)

with ε0 and ε1 two constants to calibrate, L the distance between the wall and the
LES zone, and n an integer to calibrate.

If the model was first designed to be used with the Spalart and Allmaras (1994)
turbulence model, it can theoretically be used with any model relying on a turbulence
length-scale. The induced modifications are of the same kind of the modifications of
the DES, DDES or IDDES alternatives formulations.

3.5.2 Limitations
The model presents the advantage of simplicity, with only three calibration parameters.
However, the value for d̂ is 0 at the wall and is 0 in the LES zone too, as presented in
Fig. 3.2. This means that the MILES model (Boris et al., 1992) is intended to be used
in the LES zones (which means, practically, no sub-grid scale model), leading to what
is known as numerical LES (NLES). This obligation to do LES without a sub-grid
scale model is a major drawback of the model.

Another limitation comes from the resolution of the Hamilton-Jacobi equation.
The resolution must be propagated from the nearest wall to the NLES zone. This
solution needs a solver compatible with this kind of propagation.

3.6 Zonal large-eddy simulation
Zonal large-eddy simulation (ZLES) was introduced to let the user define where to
use LES and where to use RANS. LES can be applied to a specific region of interest,
down to the wall, while peripheral regions are described by RANS. However, if RANS
is specified in the near wall region, an hybrid RANS-LES formulation is obtained.
Any kind of RANS and LES models relying on an eddy viscosity can be used. The
transition is continuous, with a parametrised polynomial function, and is made on
the eddy viscosity, instead of d̂. The model presented was used by Boudet et al.
(2015a, 2016a,b) on a tip-clearance flow case, with the original Wilcox model for
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d̂
RANS Mixed

NLES

d
d = 0 d = L

Figure 3.2: Hybridisation function from Tucker et al. (2012a,b) for different ε0 and ε1,
and n = 1. The central curve is for ε0 = 0.2 and ε1 = 1.5.

RANS (Wilcox, 1988) and the shear-improved Smagorinsky model (SISM) for LES
(Lévêque et al., 2007).

3.6.1 Formulation
The formulation given here relies on an hybridisation of the turbulent and SGS vis-
cosities:

µmod = (1− β (x))µSGS + β (x)µt (3.39)

with µmod the hybrid viscosity, µSGS the sub-grid scale viscosity (LES) and µt the
turbulent viscosity (RANS).

The β function is a user-defined smooth function (e.g. polynomial).

3.6.2 Limitations
The function β(x) has to be defined by the user, which can be a complex task when
dealing with three-dimensional geometries. Moreover, in the version presented by
Boudet et al. (2015b), no synthetic fluctuation is imposed at the interface between the
RANS and LES zones. For this reason, the β = 0.5 surface is preferably set tangent
to the mean flow, or cross-stream if the flow is oriented from a LES zone towards a
RANS zone.
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Turbulent kinetic energy budget ex-
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One of the main goals of this work is to compare how turbulent models manage
to represent the behaviour of a complex turbulent flow. In order to do this, the

turbulent kinetic energy budget is extracted and a term-to-term comparison is done
between simulations using RANS modelling and simulations using LES modelling,
considered as reference. For RANS simulations, the operation is straightforward. The
two-equation models provide one equation on the turbulent kinetic energy. For LES,
the operation is more complex. The entire Reynolds stress budget is extracted, and
not only the symmetrical terms. The budget relies on many gradients. The ensemble
average is practically computed as a time-average, and the acquisition of the data
regularly spaced in time is done on the fly. The details of the implementation is
presented in this chapter.

4.1 Gradients computation
The turbulent kinetic energy budget presented in equation (2.36) relies on many gra-
dients. These gradients are not directly computed in the flow computation, and have
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to be generated via a chosen discretisation. The budget gradients are computed us-
ing the internal metrics of Turb’Flow and a finite differences approach, whereas the
Navier-Stokes equations are discretised using finite-volumes.

4.1.1 Metrics calculation
The gradient computation programming depends on the mesh chosen in a general
case, due to the fact that the mesh size intervene in the general formulation. To
generalise the programming, a change of coordinates is realised at each point, in order
to transform a given mesh into a Cartesian mesh at each point. This section details
the metrics construction realised in Turb’Flow, on which the gradients computation
relies.

The change of coordinates is made between the original mesh positions x and their
associated Cartesian mesh positions ξ. For a considered node in the original mesh
and its associated node in the Cartesian mesh the indexes are noted with the capital
letters I, J , and K, as presented in figure 4.1.

x(I,J,K)
x(I-1,J,K)

x(I,J-1,K)

x(I,J,K+1)

x(I,J,K-1)
ξ(I,J,K) ξ(I+1,J,K)ξ(I-1,J,K)

ξ(I,J-1,K)ξ(I,J,K-1)

Original mesh Cartesian mesh

x(I+1,J,K)

x(I,J+1,K) ξ(I,J,K+1)ξ(I,J+1,K)

Figure 4.1: Mesh transformation from original to Cartesian.

The contravariant basis (ς, η, γ), is defined as:

ς =

(
∂ξ1
∂x1

,
∂ξ1
∂x2

,
∂ξ1
∂x3

)
(4.1)

η =

(
∂ξ2
∂x1

,
∂ξ2
∂x2

,
∂ξ2
∂x3

)
(4.2)

γ =

(
∂ξ3
∂x1

,
∂ξ3
∂x2

,
∂ξ3
∂x3

)
(4.3)

The contravariant basis has the particularity that ς is normal to a constant I surface
locally, η is normal to a constant J surface locally and γ is normal to a constant K
surface locally (Fig. 4.2).

For a given quantity at a given point ϕ = ϕ[I, J,K], the partial derivative with
respect to a direction is given by:

∀i ∈ [[ 1 ; 3 ]],
∂ϕ

∂xi
= ςi

∂ϕ

∂ξ1
+ ηi

∂ϕ

∂ξ2
+ γi

∂ϕ

∂ξ3
(4.4)

where the derivatives of the quantity ϕ with respect to the Cartesian mesh coordinates
can be computed using a finite difference scheme. Such a formulation relies on the
computation of the contravariant basis.
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ς

η

γ

Figure 4.2: Contravariant basis.

Usual formulation

Usually, the computation begins with the computation of the covariant basis. The Ja-
cobian is deduced from the covariant basis, and then the contravariant basis is obtained
as a cross product of the covariant basis multiplied by the inverse of the square root
of the Jacobian RJ , as presented in Merle and Robinet (2009) for a two dimensional
formulation or Aubert (1993) (appendix D) for a three dimensional formulation.

The contravariant basis and the square root of the Jacobian are used in Turb’Flow
chiefly to calculate the oriented surfaces of the discretisation cell in the finite volume
method:

nIdS = RJς (4.5)
nJdS = RJη (4.6)
nKdS = RJγ (4.7)

For this calculation, the usual formulation presents the inconvenient of not being
conservative if the meshes are too distorted. An example of very distorted mesh is
given in figure 4.3. The solution adopted is to calculate the square root of the Jacobian
directly as the volume of the integration cell V centred on the considered node, and
the contravariant basis using the normals of the surfaces.

Implemented formulation

In order to build the integration cell, 27 phantom points are constructed around each
node. For a considered node at indices (I, J,K), the phantom points are constructed
as barycentres of the surrounding nodes. The generic formula to obtain a given point
coordinates is:

∀(∆I,∆J,∆K) ∈ {−1, 0, 1}3, ∀i ∈ [[ 1 ; 3 ]],

x
(∆I,∆J,∆K)
i [I, J,K] =

1

8

(
xi[I, J,K] + xi[I +∆I, J,K] + xi[I, J +∆J,K]

+ xi[I +∆I, J +∆J,K] + xi[I, J,K +∆K] + xi[I +∆I, J,K +∆K]

+ xi[I, J +∆J,K +∆K] + xi[I +∆I, J +∆J,K +∆K]

)
(4.8)
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with x(∆I,∆J,∆K) the phantom points coordinates. A two dimensional slice of a dis-
cretisation cell, representing the points for ∆K = 0, is presented in figure 4.4.

The integration cell is cut into eight hexahedral sub-volumes, as presented in fig-
ure 4.5a. For a given sub-volume, with the notation given in figure 4.5b, the volume
Vhex is computed using the triple product of the diagonals:

Vhex =
1

16

(
AH : (BG ∧DE) +BG : (DE ∧ CF )

+DE : (CF ∧ AH) + CF : (AH ∧BG)
)

(4.9)

with : the scalar product operator and ∧ the cross product operator. The total volume
V is computed as the sum of the eight sub-volumes:

V =
∑

hexahedral
sub-volumes

Vhex (4.10)

The contravariant basis is then built by summing the oriented surface vectors of
the four small surfaces generated by the phantom points when one of the superscript
index is equal to zero. For each element of surface, the oriented surface vector is
computed as the cross-product of the diagonals of these small surfaces. For instance,
the participation of the constant I surface (ACGE) presented in figure 4.5b is equal
to −AG ∧ EC. It can be expressed, in terms of coordinates, as −(x(0,1,1) − x(0,0,0)) ∧
(x(0,0,1) − x(0,1,0)). The formulation when all the elementary surfaces are taken into
account is:

 ς1
η1
γ1

 =
1

V

∑
j∈{−1,1}
k∈{−1,1}

j × k ×
(
x(0,j,k) − x(0,0,0)

)
∧
(
x(0,0,k) − x(0,j,0)

)
(4.11)

 ς2
η2
γ2

 =
1

V

∑
i∈{−1,1}
k∈{−1,1}

i× k ×
(
x(i,0,k) − x(0,0,0)

)
∧
(
x(i,0,0) − x(0,0,k)

)
(4.12)

 ς3
η3
γ3

 =
1

V

∑
i∈{−1,1}
j∈{−1,1}

i× j ×
(
x(i,j,0) − x(0,0,0)

)
∧
(
x(0,j,0) − x(i,0,0)

)
(4.13)

The same metrics construction is made at each interface between the integration
cells too, in order to have coherent oriented surfaces for two adjacent integration
cells. The finite volume method is guaranteed conservative by this construction. The
gradient computation for the TKE budget relies on the metrics presented, centred on
the nodes, in order to stay coherent with the metrics used by the solver to solve the
Navier-Stokes equations.

4.1.2 Finite differences formulation
The derivatives of the quantity ϕ with respect to the ξi, i ∈ [[ 1 ; 3 ]], introduced in
equation (4.4), are computed using a second order centred finite difference scheme.
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Exact covariant vector
(∂x1/∂ξ1, ∂x1/∂ξ2)

Approximated covariant vector
(∂x1/∂ξ1, ∂x1/∂ξ2)

x(I,J,K)

x(I,J-1,K)

x(I+1,J,K)
x(I-1,J,K)

x(I,J+1,K)

Exact line of 
coordinates

Exact contravariant vector
(∂ξ1/∂x1, ∂ξ1/∂x2)

Approximated contravariant vector
(∂ξ1/∂x1, ∂ξ1/∂x2)

Figure 4.3: Strongly distorted mesh. Only the participation of the blue line covariant
vector

x( 0, 0, 0) x( 1, 0, 0)

x(-1, 0, 0)

x( 0, 1, 0)

x( 0,-1, 0)

x( 1, 1, 0)

x( 1,-1, 0)x(-1,-1, 0)

x(-1, 1, 0)

x[I,J,K]

x[I,J+1,K]

x[I,J-1,K]

x[I+1,J,K]

x[I-1,J,K]

x[I+1,J-1,K]

x[I+1,J+1,K]

x[I-1,J-1,K]

x[I-1,J+1,K]

Figure 4.4: 2D slice of a 3D integration cell. The generalisation from 2D to 3D is done
by constructing the same points as for the 2D cell, but at ∆K ± 1 too, the 2D cell
presenting the points at ∆K = 0.
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(a) Hexahedral sub-volumes of an integration cell

B

C DE F

G H

A=x( 0, 0, 0)

(b) Hexahedral sub-volume details

Figure 4.5: Hexahedral sub-volumes of an integration cell. The sub-volume in pale
yellow in (a) is reproduced in (b)

The formulation with this set of coordinates depends only, at a given set of indices
I, J,K, on the surrounding points:

∂ϕ

∂ξ1
=

1

2
(ϕ[I + 1, J,K]− ϕ[I − 1, J,K]) (4.14)

∂ϕ

∂ξ2
=

1

2
(ϕ[I, J + 1, K]− ϕ[I, J − 1, K]) (4.15)

∂ϕ

∂ξ3
=

1

2
(ϕ[I, J,K + 1]− ϕ[I, J,K − 1]) (4.16)

For the points inside the calculation domain, the computation is straightforward.
For the points at the border of the calculation domain, the computation relies on the
supplementary planes, as presented by Smati (1997).

4.2 Statistics extraction

4.2.1 Averaged values calculation
The ensemble average is practically computed as a time average, on the fly. For a
given value ϕ at a given time t (noted ϕ(t)), the average is computed as:

〈ϕ〉 (t) = 1

t− tstart

(
t∑

T=tstart+∆t(tstart)

ϕ(T )∆t(T )

)
(4.17)

with tstart the time at which the time average begins and ∆t the time step that separates
a given instant from the precedent.

The gradients of the averaged values are computed at the end of the averaging and
yield the averaged gradients.

Practically, a field variable is declared for each value to average, and a scalar
variable is declared for the averaging time. The fields and averaging time are initialised
to zero, and then at each time step the value ϕ times the time-step ∆t is accumulated
in the corresponding field. The time step is added to the averaging time. The division
by the total averaging time is done at the last iteration.
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4.2.2 Fluctuating values calculation
The Reynolds stress budget relies on second order and third order correlations. These
correlations are reconstructed via the average quantities. For instance, for ρ the density
and three given quantities ϕ1, ϕ2 and ϕ3, a first order correlation 〈ϕ1ϕ

′′
2〉 is computed

as:

〈ϕ1ϕ
′′
2〉 = 〈ϕ1ϕ̃2〉 − 〈ϕ2〉 [ϕ̃2] (4.18)

The second order correlation 〈ρϕ′′
1ϕ

′′
2〉 is reconstructed as:

〈ρϕ′′
1ϕ

′′
2〉 = 〈ρϕ̃1ϕ̃2〉 − 〈ρ〉 [ϕ̃1] [ϕ̃2] (4.19)

and the third order correlation 〈ρϕ′′
1ϕ

′′
2ϕ

′′
3〉 is reconstructed as:

〈ρϕ′′
1ϕ

′′
2ϕ

′′
3〉 = 〈ρϕ̃1ϕ̃2ϕ̃3〉 − 〈ρ〉 [ϕ̃1ϕ̃2] [ϕ̃3]− 〈ρ〉 [ϕ̃1ϕ̃3] [ϕ̃2]− 〈ρ〉 [ϕ̃2ϕ̃3] [ϕ̃1]

+ 2.0 〈ρ〉 [ϕ̃1] [ϕ̃2] [ϕ̃3] (4.20)

4.2.3 Computational cost
This approach needs an important amount of RAM to store the 138 fields necessary.
A list of the fields extracted to reconstruct the Reynolds stress budget is given in
appendix A. This approach does not require the storage of the intermediate unsteady
flow fields. The storage cost is then drastically reduced, and becomes independent
of the number of samples needed. In addition, the computation cost increase of the
simulation due to the accumulation of values is not too expensive. The cost increase
is around 5% for the cases investigated in the present work.

4.3 Validation on a flat-plate boundary-layer
The implementation is validated on a flat-plate boundary layer simulation, against
DNS results from Jiménez et al. (2010). The test-case has already been extensively
studied during the author’s master thesis (Monier, 2014).

4.3.1 Simulation protocol
The flow characteristics, mesh characteristics and numerical characteristics are chosen
as similar as possible to the characteristics used for the corner separation case and the
tip-leakage case, presented in chapter 6.

Flow characteristics

The turbulent flat-plate boundary-layer is described with large-eddy simulation. The
boundary-layer is described up to Rex = 1.3×106, with a virtual roughness element to
trip transition at Rex = 3.0×105. The details of the trip implementation are presented
in Boudet et al. (2015b). The position of the trip is represented in figure 4.6 by a cone.

Because the solver uses a compressible formulation, the Mach number is cho-
sen small enough to limit compressible effects but high enough to improve conver-
gence speed, i.e. M = 0.2, which gives ue = 70m.s−1, where ue is the free stream
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velocity. The air density is ρe = 1.117kg.m−3 and the dynamic viscosity is µ =
1.81 × 10−5kg.m−1.s−1.

x1

x2

x3

Figure 4.6: Flat-plate boundary layer representation with instantaneous iso-surface of
Q-criterion, coloured by normalised streamwise velocity. For visualisation, the total
length is cut into three pieces, which are piled from top to bottom. A cone marks the
trip abscissa, and the grey plane the extraction abscissa for the TKE budget.

Dimensions of the computational domain

In order to get Rex ' 1.3 ·106 at the outlet, the length of the computational domain in
the stream-wise direction is Lx1 = 0.3m. To take correctly into account the boundary-
layer at the outlet, the computational domain height is set to twice the estimated
boundary-layer thickness, thus Lx2 = 0.0117m. Concerning the span-wise direction,
the width chosen corresponds to the estimated boundary-layer thickness at the outlet,
Lx3 = 0.00586m.

Mesh

Mesh is uniform in the stream-wise and span-wise directions. In the wall-normal
direction, the point distribution follows a geometrical law with an expansion coefficient
of 1.10. In terms of cell sizes at the wall, in wall units: ∆x+1 6 60, ∆x+2 6 2 and
∆x+3 6 30. This refinement level is classical in wall resolved LES. The wall unit is
defined, for a given value ϕ, as:

ϕ+ =
uτρϕ

µ
(4.21)
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with ρ the density, µ the dynamic viscosity, and uτ the friction velocity:

uτ =

√
τw
ρ
; τw =

∥∥(τ · n−
(
n : τ · n

)
n
)∥∥ (4.22)

with τw the wall shear-stress, τ the viscous stress and n the wall normal. The a
posteriori check of the cell sizes at the wall, given in figure 4.7, shows that the con-
ditions are verified with even ∆x+2 < 1. Thus, the computational domain is made of
1035 × 60 × 44 = 2 732 400 points, and divided into 47 sub-domains (23 × 60 × 44
points) in the stream-wise direction for parallelisation. A representation of the first
sub-domain is given in figure 4.8.

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
x1 [m]

0

20

40

60

80

100

∆
x

+ 1

(a) ∆x+
1

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
x1 [m]

0

2

4

6

8

10

∆
x

+ 2

(b) ∆x+
2

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
x1 [m]

0

10

20

30

40

50

∆
x

+ 3

(c) ∆x+
3

Figure 4.7: Cell sizes at the wall in wall units. The conditions for wall-resolved LES
are verified.

Boundary conditions

At the inlet boundary condition, velocity and density are set. The outlet boundary
condition and upper boundary condition are set to a mixed pressure outlet condition,
which mixes atmospheric static pressure prescription (p = 101 340Pa) and a non-
reflection condition. It allows pressure waves to exit the computational domain. The
wall boundary condition is set to non-slip adiabatic. The lateral boundary conditions
are set to periodic.
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Figure 4.8: Flat-plate boundary layer test-case mesh. Due to the length of the flat-
plate compared to its height, only the first sub-domain is represented. Every fourth
line is plotted in each direction.

Numerical schemes

The spatial scheme for the inviscid fluxes is a 4-point Jameson centred scheme, with
a fourth-order artificial viscosity (coefficient: 0.002, see (Boudet et al., 2015b) for its
definition). A 2-point centred scheme is used for the viscous fluxes. The temporal
scheme is a three-step Runge-Kutta scheme, with a global constant time step of 10−8s,
which corresponds to a CFL of 0.95 (based on the inflow velocity plus the speed of
sound and the minimal grid size).

SGS model

The computations are carried out with the SISM SGS model from Lévêque et al.
(2007), presented in chapter 2, section 2.3.2. The exponential average used to extract
the mean flow for the SISM (Cahuzac et al., 2010) is calibrated with a frequency of
13, 340Hz. This choice is based on the ratio between a characteristic velocity (the
stream-wise friction velocity at the transition point) and a characteristic length (the
boundary-layer displacement thickness at the transition point).
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4.3.2 Flow analysis
Boundary-layer thicknesses

The boundary-layer thicknesses are used to assess the correct development of the
boundary-layer along the plate, including the correct turbulent transition. The 99%
thickness δ, the displacement thickness δ1, the momentum thickness δ2 and the shape
factor H12 are defined as:

∀(x1, x2, x3) ∈ [0, Lx1 ]× [0, Lx2 ]× [0, Lx3 ] ,

u1(x1, δ(x1), x3) = 0.99ue (4.23)

δ1(x1) =

δ(x1)ˆ

0

1− u1(x1, x2, x3)

ue
dx2 (4.24)

δ2(x1) =

δ(x1)ˆ

0

u1(x1, x2, x3)

ue

(
1− u1(x1, x2, x3)

ue

)
dx2 (4.25)

H12(x1) =
δ1(x1)

δ2(x1)
(4.26)

The boundary-layer thicknesses are presented in figure 4.9, against Schlichting and
Gersten (2000) law for δ and Michel laws (Cousteix, 1989) for δ1 and δ2.

The simulation begins spatially with a laminar boundary layer and becomes turbu-
lent after the trip. The boundary-layer thickness δ is a bit underestimated compared
with the experiment. The difference tends to increase along the flat-plate. On the other
hand, the displacement thickness δ1 and the momentum thickness δ2 are correctly es-
timated. A very good agreement is observed with the analytical and experimental
results, in laminar and turbulent regimes respectively. The shape factor H12 shows the
transition is rapid and terminated before x1 = 0.15m.

Profile analysis

An extraction is realised at a constant x1 position with Reδ2 = 1968 and compared
with DNS results from Jiménez et al. (2010). In term of coordinates, the profile and
TKE budget are extracted at x1 = 0.26m.

The fluctuating velocities, defined as:

∀i ∈ [[ 1 ; 3 ]], u′′i =

√
− τtii
〈ρ〉

=
√
[u′′i

2] and u′′i
+ =

u′′i
uτ

(4.27)

are given, in wall units, in figure 4.10.
The stream-wise fluctuating velocity is presented in figure 4.10a. Both DNS and

LES results present a peak at x+2 ≈ 1.5 × 101, and then an inflexion at x+2 ≈ 2 × 102.
The LES estimation is good, compared with the DNS results, in the viscous sub-layer
(x+2 < 101) and in the outer layer (x+2 > 2 × 102). However, in the buffer layer and
log-law region (101 < x+2 < 2 × 102), the LES overestimates the fluctuating velocity
by around 10%. For the cross-stream fluctuating velocity, presented in figure 4.10b,
a peak is visible at (x+2 ≈ 2 × 102). The LES underestimates the cross-stream fluc-
tuating velocity in the viscous sub-layer and buffer-layer (x+2 < 8 × 101) and slightly
overestimates it in the log-law region (8 × 101 < x+2 < 2 × 102). In the outer layer
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Figure 4.9: Boundary layer thicknesses for the flat-plate test case. The LES results
are compared with Blasius laminar solution and experimental turbulent results from
Schlichting and Gersten (2000) for δ and Michel (Cousteix, 1989) for δ1 and δ2.

(x+2 > 2 × 102), the DNS and LES results match. The span-wise fluctuating velocity,
presented in figure 4.10c, shows a typical bell curve. LES yields a vary good prediction,
according to DNS, in all the parts of the boundary-layer.

4.3.3 Validation of the TKE budget extraction
The turbulent kinetic energy budget is extracted at the same position as the fluctuating
velocities, i.e. at a constant x1 position with Reδ2 = 1968. The sampling period
is 10−2µs (= LES time step), and a total time of 12.0ms is used for the complete
statistics computation. Some of the TKE budget terms, presented in equation (2.36),
are grouped for the presentation. The advection and production are kept alone. The
viscous and SGS dissipations are summed into a dissipation term. The viscous diffusion
and SGS diffusion are summed into a viscous diffusion term. The remaining terms
are summed into a single term, representing the pressure dilatation and turbulent
diffusion. The numerical residual is computed in order to gauge the validity of the
budget reconstruction. The budget terms are normalised by (ρ2eu

2
e)/µ.

Statistical convergence check

The budget relies on statictics, so the statistical convergence, i.e. the constance of the
terms when new samples are added, is checked. In order to do so, the budget evolution
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Figure 4.10: Flat-plate boundary layer fluctuating velocities, normalised by uτ .

is analysed against the sample time used for its calculation. For a given sample time,
a term is represented by the integral of its absolute value over the height, and divided
by the production term computed with the maximal sample time. The convergence
is considered reached when the integrals remain constant when the sample time is
increased.

The results are presented in figure 4.11. All terms are stationary, which indicates
the statistical convergence is correct. However, a non null numerical residual is present.
This term is also stationary, inferring that the numerical residual is not due to a
statistical convergence default.

Comparison with DNS

The comparison is realised with the budget computed over the entire sample time,
against DNS results from Jiménez et al. (2010). A budget from a two-dimensional
RANS test-case using Wilcox k−ω turbulence model, extracted at the same position,
is also presented for comparison. For the RANS simulations with a k equation, it
shows the ability of the model to describe correctly the fine physics of turbulence. The
RANS set-up is not presented here, but can be found in Monier (2014), under the
appellation RA_WStd.

The results are presented in figure 4.12. Figure 4.12a shows that the LES is able to
describe the TKE budget compared with the DNS. The production and transport terms
of the LES are very close to the DNS and the difference on the dissipation term remains
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Figure 4.11: TKE budget terms against sample time. The terms are divided by the
production term computed with the maximal sample time.

moderate. The viscous diffusion term is a little over estimated, whereas the pressure
dilatation and turbulent diffusion term is slightly underestimated. The numerical
residual is negative, thus acting as a numerical dissipation. The numerical dissipation
is maximal at x+2 ≈ 10, but remains smaller than the other terms. The RANS results
show significant differences compared with the LES and DNS. In figure 4.12b, the
production term is well represented, but the dissipation differs significantly from the
DNS. The production and the dissipation are superimposed (in absolute value) in the
buffer layer. The dissipation at the wall is also very weak, which is non physical.
Concerning the viscous diffusion and the pressure dilatation and turbulent diffusion
terms, they are underestimated. The residual remains very small since the equation
on k is directly solved.

In order to summarise the physical meaning of the terms, the advection term,
the viscous diffusion term and the pressure dilatation and turbulent diffusion term
are grouped into a single transport term. The results are presented in figure 4.13.
As already stated, the numerical residual of the LES budget presents a dissipative
behaviour. In order to gauge the global dissipative effect on the budget, the sum of
the dissipation term and the numerical residual term is also plotted in figure 4.13. For
the LES, presented in figure 4.13a, the transport term presents a very good agreement
with the DNS, better than the two terms taken separately. It means that the transport
of the turbulent kinetic energy is globally correctly represented. When the dissipation
and the numerical dissipation are summed, the resulting term is very close to the DNS
dissipation term. The numerical residual represents various numerical effects, that are
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not taken into account by the viscous and SGS dissipation. Among these effects, we
can cite the effects of the numerical schemes, the effects of the mesh, or the effect of
the computational methods (finite differences) used to compute the TKE budget for
instance. It is a non exhaustive list. Finally, the LES yields an excellent result close
to the wall (x+2 6 3), where the three physical terms are very similar to the DNS. For
the RANS case, presented in figure 4.13b, the transport term has the correct topology
but is greatly underestimated. This is a known issue of RANS with two equation
models, mentionned by Wilcox (2006): production and dissipation are superimposed,
with only a small amount of transport.

Another test was realised in order to gauge the implementation of the extraction
method. The stream-wise direction, for which the terms of the budget are dominant,
is borne by x1 in the test-case. A permutation of the coordinate system has been
operated, in order to have the stream-wise direction borne by x2, and then x3. The
results obtained were exactly similar for each direction, the stream-wise, cross-stream,
and span-wise, no matter by which coordinate it was represented. This lead to the
conclusion that the implementation is correct, and that the budget extraction is robust
to the choice of a coordinate system.

Although the LES results present more numerical dissipation than the DNS, the
prediction of the different terms is considered correct enough to be exploited for a
physical analysis. This behaviour is common for LES TKE budget extraction. A
similar phenomenon, with a similar amount of numerical dissipation can be found
on the work of Schiavo et al. (2017). The extraction of the turbulent kinetic energy
budget is considered validated against the DNS simulation.
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Figure 4.12: Turbulent kinetic energy budget in a flat-plate boundary layer, extracted
at Reδ2 = 1968.
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Figure 4.13: Turbulent kinetic energy budget in a flat-plate boundary layer, extracted
at Reδ2 = 1968. The advection term, the viscous diffusion term and the pressure
dilatation and turbulent diffusion term are grouped into a single transport term.
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All the hybrid methods presented in chapter 3 have advantages and limitations.
The method presented here has its own. This approach is inspired by both the

ZLES (Boudet et al., 2016a), and Tucker’s model (Tucker et al., 2012a). The main goal
is to create an hybrid model that allows the use of any desired RANS model relying on
a turbulent viscosity and any desired SGS model relying on a sub-grid scale viscosity,
but without the user-defined zone set-up present in the ZLES. If the hybridisation
is kept on the turbulent/SGS viscosity, the criterion for transition shall be based on
d+, the nearest wall distance in wall units, which is found to be more physical for
turbulence modelling than a criterion on the dimensional wall-distance.

5.1 Formulation
The following formulation has been retained:

µhyb =
(
1− fhyb(d

+)
)
µt + fhyb(d

+)µSGS (5.1)
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Figure 5.1: Proposed hybridisation function.

with µhyb the hybrid eddy-viscosity, µt the RANS eddy-viscosity and µSGS the sub-grid
scale eddy-viscosity.

The hybridisation function is defined as follows:

fhyb
(
d+
)
=

1

2

[
1 + tanh

(
fµ(Lhyb)× (d+ − d+µ )

)]
(5.2)

fµ(Lhyb) =
2 artanh (0.9)

Lhyb

(5.3)

with d+µ the wall distance in wall-units at the center of the RANS-LES hybridisation
area, and Lhyb the width of the hybridisation area at ±5%.

The hybridisation function presented in Eq. (5.2) is an hyperbolic tangent1. It
presents two major advantages. First, it is indefinitely differentiable C∞ (R), and
secondly, it is a simple function. The smoothness of the transition ensured by such a
function is a great advantage (Fig. 5.1).

The values of d+µ ans Lhyb can be tuned by the user. For instance d+µ ≈ 20 and
Lhyb ≈ 10 allow a transition between RANS and LES in the buffer layer.

5.2 d+ calculation
Such a formulation presents an evident difficulty, the computation of d+. Three possi-
bilities are presented. They are classified from the easiest to implement and less costly,
to the hardest to implement and most costly, as presented in Fig. 5.2.

1The notation tanh and artanh are preferred to tanh and tanh−1 for the hyperbolic tangent and
the inverse hyperbolic tangent to respect the ISO 80000-2:2009(E) standard.
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Figure 5.2: Classification of the proposed hybrid models with respect to Tucker’s model
(Tucker et al., 2012a).
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5.2.1 Model 1: Empirical d+ calculation
The first method consists in realising only one calculation of d+, at the beginning.
The friction velocity used for the computation is derived from a flat-plate correlation.
Michel’s empirical relation (Cousteix, 1989) is used as follows:

Cf =
τw

0.5ρeu2e
= 0.0368Re−1/6

x1
⇒ uτ =

√
0.0184ueRe−1/12

x1
(5.4)

with Cf the friction coefficient, τw the wall shear stress, uτ =
√
τw/ρe the friction

velocity (defined in equation (4.22)) and Rex1 = ρeuex1/µ the Reynolds number based
on the free-stream velocity ue, the free-stream density ρe and the stream-wise position
x1. This correlation is in very good agreement with the experimental data in the range
Rex1 ∈ [105, 108], adapted for turbomachinery flows.

Then, d+ is directly obtained:

d+ =
uτρed

µ
=

√
0.0184ueRe−1/12

x1
ρed

µ
(5.5)

The friction velocity uτ evolves slowly with the evolution of x1, which can justify
the use of a constant user-defined Rex1 . Moreover, uτ tends to decrease in separations,
which is not captured by the correlation. So the transition between RANS and LES
predicted from the correlation should be closer to the wall than necessary, which is
not a problematic behaviour.

Only this first approach is tested in the present thesis.

5.2.2 Model 2: RANS-based d+ calculation
The idea is to evaluate d+ from a preliminary RANS simulation, typically used to
initialise the hybrid simulation. In that case, d+ is still computed only once at the
beginning:

d+ =
ρeduτ
µ

=
ρed

µ

√
τw
ρe

(5.6)

5.2.3 Model 3: Dynamic d+ calculation
The last improvement is to compute dynamically the d+ field, using again Eq. (5.6).
This method is more complex to implement and would increase the computational
cost. A smoothing strategy should be implemented to estimate τw. Moreover, at each
time step, all the points in all the domains should communicate with the wall points
in order to obtain the information on the friction velocity.

5.3 Limitations
Some limitations remain with this model. The attention to the mesh is a little bit less
important than for DES. However, the transition between RANS and LES is a burning
issue. The user has to define the width of the transition zone and the position of its
center. The LES area have to be close enough to the walls, in order to capture a lot
of physics on the turbulent boundary layer, but far enough not to impact too much
the computational cost.
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5.4 Implementation strategy
The RANS-LES hybridisation relies on the similarity of the LES equations (2.30) and
the RANS equations (2.48). The flow equations (i.e. the mass conservation equation,
the three momentum equations and the energy equation) and the equations of the
chosen RANS turbulence model are solved everywhere. In the RANS region, µhyb ' µt,
all the equations are used and they correspond to the RANS formulation. In the LES
region, µhyb ' µSGS, the RANS turbulence model equations are solved but not used
and the flow equations correspond to the LES formulation.

When it is part of a RANS model, the k equation is solved everywhere. For this
reason, the turbulent kinetic energy appears in the equations (e.g. ideal gas law) even
in the LES regions. The working hypothesis is that k rapidly becomes small in LES
areas, so its effects are negligible. This approximation is kept in order to simplify the
implementation of the present hybrid strategy.

5.5 Validation on a bi-periodical channel flow
The implementation is validated on a bi-periodical channel flow test-case at Reτ = 395
(Reτ = ρeuτδ1/2/µ, with ρe the reference density, uτ the friction velocity defined in
equation (4.22), δ1/2 the channel half-width and µ the dynamic viscosity), against DNS
results from Moser et al. (1999).

5.5.1 Simulation protocol
The simulation protocol is presented in this section. The flow characteristics, mesh
characteristics and numerical characteristics are chosen similar to the Turb’Flow test-
case set-up by Boudet et al. (2007) and used by Cahuzac (2012) for a zonal LES
formulation validation.

Flow characteristics

The canal half-height is δ1/2 = 0.01m. The objective is to reach a Reynolds number
Reτ = 395. The density is equal to ρe = 1.214kg.m−3 and the viscosity is equal to
µ = 1.81 × 10−5kg.m−1.s−1, yielding a target friction velocity uτ = 0.59m.s−1. The
Mach number in the center of the channel is M = 0.2 in order to limit compressible
effects but improve convergence speed. The flow is initialised with a laminar Poiseuille
parabolic profile in the stream-wise direction, perturbed with a white noise whose
amplitude is 2% of the local velocity. For the RANS and hybrid simulations, k is also
initialised with local velocity fluctuations of 2%. A representation of the Q criterion
(defined as the second invariant of the velocity gradient tensor (Holmén, 2012)), for
Q = 106, coloured by the instantaneous flow velocity magnitude in wall units (‖u+‖ =
‖u‖/uτ , with uτ = 0.59), is given in figure 5.3.

Dimensions of the computational domain

The geometry of the channel is the same as in Moser et al. (1999). The origin is set
at the center of the channel. Two walls are placed at x2 = ±δ1/2 in the cross-stream
direction. The inflow and outflow faces are placed at x1 = ±πδ1/2, and the lateral
faces are placed at x3 = ±πδ1/2/2.
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Figure 5.3: Q criterion 106, coloured by the instantaneous flow velocity magnitude in
wall units, for the pure LES simulation.

Mesh

The mesh is refined in order to allow a wall resolved large-eddy simulation. The
stream-wise and span-wise grid steps are taken constant, with ∆x+1 = 52 and ∆x+3 = 31
in wall units. The cross-stream grid step is set equal to ∆x+2 = 0.5 at the wall and
to ∆x+2 = 24 in the center of the channel, and follows a hyperbolic tangent law in
between. The computational domain is made of 49×89×41 = 178 801 points, divided
into 8 domains (25 × 45 × 21 points) for parallel computing. A representation of the
mesh is given in figure 5.4. The same mesh is used for the LES, RANS and hybrid
RANS-LES simulations.

Boundary conditions

The boundary conditions of the faces in the stream-wise direction are set to periodic.
The boundary conditions of the lateral faces are set to periodic. The top and bottom
walls are set as no-slip adiabatic. In order to maintain the flow, a source term is added
at each point in order to compensate the friction dissipation. The source term added
is equal to ρu2τ/δ1/2 in the x1-momentum equation, and ρu1u2τ/δ1/2 in the total energy
equation.

Numerical schemes

For the LES and hybrid simulations, the spatial scheme for the inviscid fluxes is a
4-point Jameson centred scheme without artificial viscosity. A 2-point centred scheme
is used for the viscous fluxes. The temporal scheme is a five-step Runge-Kutta scheme,
with a global constant time step of 5.0 × 10−7s.

For the RANS simulations, the spatial scheme for the inviscid fluxes is a 2-point
Jameson centred scheme with a fourth-order artificial viscosity (coefficient: 0.02, see
Boudet et al. (2015b) for its definition). A two-point centred scheme is used for the
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Figure 5.4: Bi-periodical channel test-case mesh. Every fourth line is plotted in each
direction.

viscous fluxes. The temporal scheme is a five-step Runge-Kutta scheme, with a local
variable time step corresponding to a CFL number of 0.7 (based on the velocity plus
the speed of sound and the local grid size).

Turbulence/SGS models

The LES and the LES regions of the hybrid simulations rely on the SISM SGS model
from Lévêque et al. (2007), presented in chapter 2, section 2.3.2. The characteristic
frequency of the exponential average is set to 59.0Hz. This choice is based on the ratio
between the target friction velocity uτ and the canal half-height δ1/2.

The RANS simulation and the RANS regions of the hybrid simulations rely on the
original Wilcox k−ω model (Wilcox, 1988), presented in chapter 2, section 2.4.3. Both
use the Boussinesq constitutive relation.
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Figure 5.5: Hybrid simulation degenerated into a LES. (a): comparison of the residual
on u1, (b): comparison of the instantaneous velocity magnitude at d+ = 25 from the
bottom wall.

5.5.2 Degenerated hybrid model validation
First, a non regression test is realised. Degenerated versions of the model are tested,
which means that d+µ is set to ±∞. In the case d+µ = −∞, µhyb = µSGS in the entire
domain and the simulation should be a pure LES simulation. In the case d+µ = +∞,
µhyb = µt in the entire domain and the simulation should be a pure RANS simulation.

In both cases, the simulation is compared to a real pure LES (resp. pure RANS)
simulation using numerical criteria, in order to validate the implementation in Turb’Flow.
In order to see if the two approaches are numerically equivalent, the residuals on u1 are
compared between the degenerated hybrid simulation on the first 100 000 iterations
and the pure LES (resp. RANS) simulation. Moreover, a numerical probe is placed
at d+ = 25 from the bottom wall, in order to obtain the instantaneous velocities. The
instantaneous velocity magnitudes at d+ = 25 are compared over the first 100 000
iterations too.

Hybrid simulation degenerated into a LES

The first case tested is a degeneration of the hybrid modelling into a LES. In that
case, d+µ = −1 × 1030 and Lhyb = 1.0.

The comparison with the pure LES simulation is presented in figure 5.5. The
blue curves representing the LES results and the green curves representing the hybrid
simulation (degenerated into a LES) are superimposed at each point, over the entire
sample. This indicates that the two approaches are numerically equivalent, the LES
region of the hybrid simulation behaves as a pure LES if d+ is big enough compared
with d+µ .

Hybrid simulation degenerated into a RANS simulation

The second case tested is a degeneration into a RANS simulation. In that case, d+µ =
1 × 1030 and Lhyb = 1.0.

The comparison with the pure RANS simulation is presented in figure 5.6. First,
a comparison with the curves in figure 5.5 shows that the residual and the instanta-
neous velocity magnitude evolve differently during these first 100 000 iterations for the
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Figure 5.6: Hybrid simulation degenerated into a RANS simulation. (a): comparison
of the residual on u1, (b): comparison of the instantaneous velocity magnitude at
d+ = 25 from the bottom wall.

LES and the RANS simulation. This ensures that the superimposition of the curves
is not due to some persistent behaviour of the code at the beginning. Two superim-
posed curves, in this case, represent actually two numerically identical simulations. In
Fig. 5.6, the blue curves representing the RANS results and the green curves repre-
senting the hybrid simulation (degenerated into a RANS simulation) are superimposed
at each point, over the entire sample for this test too. This indicates that the two ap-
proaches are equivalent, the RANS region of the hybrid simulation behaves as a pure
RANS if d+ is small enough compared with d+µ .

5.5.3 Hybrid model validation
An hybrid simulation is realised and compared with a full LES and a full RANS sim-
ulation. The mean and fluctuating velocities are compared. A spatial autocorrelation
is also calculated to compare the LES and the LES region of the hybrid simulation.

Hybrid simulation characteristics

The hybrid simulation uses a target wall distance for RANS-LES transition d+µ = 50
(in wall units) and a RANS-LES transition width Lhyb = 10.0. A visualisation of
the different regions is given in figure 5.7. The a posteriori evaluation of the wall
distance for RANS-LES transition, computed with the actual friction velocity instead
of Michel’s empirical correlation, gives a transition for an actual d+µ = 27, with an
actual RANS-LES transition width Lhyb = 6.0.

Convergence analysis

A numerical probe is placed in the first domain, in order to assess the numerical
convergence of the computation for the pure LES and the hybrid simulation. The
three components of velocity are presented every 1000 iterations, as a function of
the number of iterations, in figure 5.8. The simulations are considered numerically
converged after 300 000 iterations.

The statistics are computed from iteration 300 000 to iteration 500 000, with a
sampling every 1000 iterations. The directions of homogeneity and the symmetry
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Figure 5.7: Hybridisation function for the bi-periodical channel on a x3 = 0 plane.
The red region is the LES region while the blue area is the RANS region.
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Figure 5.8: Instantaneous velocity components at x+2 = 25 from the bottom wall,
normalised by uτ = 0.59.

along the cross-stream direction are used in order to increase the number of samples,
yielding a total of 200× 48× 40× 2 = 768 000 samples.

Mean velocities

The mean velocities are computed, for LES, as the sum of the samples divided by the
number of samples:
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Figure 5.9: Mean velocity and derivative along the cross-stream direction in the bi-
periodical channel. The velocity is normalised by the actual uτ of the calculation and
the derivative is normalised by uτ/δ1/2. The three vertical lines represent from left to
right respectively fhyb = 0.05, fhyb = 0.50, and fhyb = 0.95.

∀i ∈ [[ 1 ; 3 ]], [ui] =
1

Nsamples

Nsamples∑
l=1

ui,l (5.7)

with Nsamples the number of samples and ui,l the lth sample of the ith component of
velocity. For RANS, the mean values of the velocities are directly known. The mean
stream-wise velocity profiles, and their derivatives in the cross-stream direction, are
presented against DNS results in figure 5.9.

Concerning the mean stream-wise velocity profiles, presented in sub-figure 5.9a, all
the approaches are similar in the viscous sub-layer, i.e. for x+2 6 8. A divergence
appears in the buffer sub-layer, for x+2 > 10. Then, the LES over-predicts the ve-
locity and the RANS simulation under-predicts the velocity. The hybrid simulation
under-predicts the velocity in the buffer sub-layer region, and shows a velocity deficit
in the hybridisation region, enclosed by the vertical bars. Where the hybrid simulation
follows a LES formulation, for x+2 > 30, the velocity profile is correctly estimated com-
pared with DNS. The hybrid formulation may present a more dissipative behaviour
than the pure LES, which could explain why the over-prediction of the velocity profile
is reduced, yielding a better agreement with DNS.

Concerning the derivatives, presented in sub-figure 5.9b, the different approaches
behave differently. All the simulations present curves of the same shape, comparable
with the DNS. Both the RANS and hybrid simulations succeed in predicting correctly
the levels at low x+2 , while the LES under-predicts significantly the levels. The RANS
and hybrid simulations then slightly under-predict the derivative for x+2 > 3, while the
LES shows a good agreement with the DNS for x+2 > 10. Around the hybridisation
region, the hybrid results yield a bump that is absent from the DNS. The maximum
of the bump is located outside the hybridisation area, in the LES region (x+2 > 30),
and have a width of x+2 ' 40. Its amplitude remains small.

The hybrid formulation gives correct results compared with DNS, with only a local
increase of the velocity gradient in the direct vicinity of the hybridisation region.
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Fluctuating velocities

The fluctuating velocities can be computed in two different ways. For the LES, the
main part of the fluctuating velocities energy is directly simulated. In order to ex-
tract the information from the instantaneous velocity fields, the results undergo a two
pass treatment. First, the mean velocities are extracted, as previously mentioned in
eq. (5.7). Then, for each sample, the instantaneous fluctuating velocity is obtained as
the difference between the instantaneous value and the mean value:

∀i ∈ [[ 1 ; 3 ]], ∀l ∈ [[ 1 ; Nsamples ]], u
′′
i,l = ui,l − [ui,l] (5.8)

with the same notations as for equation (5.7).
The averaging of the products of fluctuating velocities is obtained as the sum of

these values over every sample, divided by the number of samples:

∀(i, j) ∈ [[ 1 ; 3 ]]2,
[
u′′i u

′′
j

]
=

1

Nsamples

Nsamples∑
l=1

u′′i,lu
′′
j,l (5.9)

For the RANS approach, the Reynolds stresses are obtained using the Boussi-
nesq constitutive relation, presented in equation (2.49), with the hybrid viscosity
(1 − fhyb(d

+))µt instead of µt for the hybrid simulation. The fluctuating velocity
products are then calculated at any grid point as:

∀(i, j) ∈ [[ 1 ; 3 ]]2,
[
u′′i u

′′
j

]
= −

τ ∗tij
〈ρ〉

(5.10)

with τ ∗t the Reynolds stress tensor calculated with the Boussinesq constitutive relation
and 〈ρ〉 the averaged density.

The fluctuating velocity products along the cross-stream direction are presented in
figure 5.10. Due to the symmetry of the flow, the only relevant velocity products are
those composed of the diagonal terms of the Reynolds stress tensor [u′′1u′′1], [u′′2u′′2], [u′′3u′′3]
and the one composed of the first extra diagonal term of the Reynolds stress tensor
[u′′1u

′′
2]. In each sub-figure, for the hybrid results, both the fluctuating velocity products

computed with the LES approach and the ones computed with the RANS approach
are given. The LES approach is supposed to give a null value in the RANS area, due to
the subtraction in equation (5.8). The RANS approach gives 0 by construction in the
LES area. The two estimates are also summed and presented under the name hybrid
value. Three vertical bars delimit the hybridisation region. The RANS region for the
hybrid simulation is always the closest to the wall (smallest x+2 ), while the LES region
is always the furthest from the wall (largest x+2 ).

The stream-wise fluctuating velocity products are presented in sub-figure 5.10a.
The LES represents accurately the topology of the fluctuating velocity product, com-
pared with the DNS, but overestimates moderately its intensity. On the opposite, the
RANS simulation presents a maximum further from the wall and underestimates the
fluctuating velocity product intensity. In the RANS region of the hybrid simulation,
the fluctuating velocity product computed with the RANS approach follows the pure
RANS results. However, the fluctuating velocity product computed with the LES
approach is not small, but presents a plateau at half the maximal value computed
with pure LES. This suggests that the flow field presents resolved scales of turbulence
that penetrate the RANS region. This may be due to the strong refinement used for
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Figure 5.10: Fluctuating velocity products along the cross-stream direction in the
bi-periodical channel. The fluctuating velocity products are normalised by the actual
u2τ . The three vertical lines represent from left to right respectively fhyb = 0.05,
fhyb = 0.50, and fhyb = 0.95.

the computation close to the walls. In the LES region of the hybrid simulation, the
fluctuating velocity product computed with the LES approach follows the pure LES
results. The sum of the two estimates of the hybrid approach gives a fluctuating veloc-
ity product that presents roughly the correct topology, with a dent in the hybridisation
region, but an incorrect intensity. The fluctuating velocity product is underestimated
by about 30%.

The cross-stream fluctuating velocity products are presented in sub-figure 5.10b.
The pure LES is still accurate in term of topology compared with the DNS, but
slightly underestimates its intensity. The maximum is located further from the wall
than for the stream-wise fluctuating velocity product. On the opposite, the pure RANS
simulation presents a maximum too close to the wall, compared with the DNS, and
overestimates strongly this fluctuating velocity product intensity. In the RANS region
of the hybrid simulation, the fluctuating velocity product computed with the RANS
approach follows the fluctuating velocity product for the pure RANS simulation, with
a slight reduction of its intensity. The fluctuating velocity product computed with
the LES approach is small in this region. In the LES region of the hybrid simulation,
the fluctuating velocity product computed with the LES approach has the correct
topology, but presents a smaller intensity than for the pure LES. The sum of the
two estimates of the hybrid approach gives a fluctuating velocity product that evolves
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strongly between the RANS region and the LES region.
The span-wise fluctuating velocity products are presented in sub-figure 5.10c. In

this case, the pure LES presents a peak located closer to the wall than for the DNS,
and overestimates its intensity. The pure RANS simulation is correct in term of topol-
ogy, but shows an overestimation of around 30% of the intensity at the maximum.
In the RANS region of the hybrid simulation, the fluctuating velocity product cal-
culated with the RANS approach presents the same topology as the one calculated
in the pure RANS simulation. The intensity is again overestimated. The fluctuating
velocity product calculated with the LES approach is small, but not negligible. As
for the stream-wise fluctuating velocity product, the flow field presents resolved scales
of turbulence that penetrate the RANS region. In the LES region, the fluctuating
velocity product computed with the LES approach has the correct topology, but its
intensity is underestimated, compared with the pure LES and the DNS. As for the
cross-stream fluctuating velocity product, the sum of the two estimates of the hybrid
approach gives a fluctuating velocity product that evolves strongly between the RANS
region and the LES region.

The extra-diagonal fluctuating velocity products are presented in figure 5.10d. Both
the pure LES and the pure RANS simulation give the correct topology compared
with the DNS. In the viscous and buffer sub-layers, the RANS simulation slightly
overestimates the intensity. The LES overestimate is larger and located in the log
region. As previously, in the RANS region of the hybrid simulation, the fluctuating
velocity product calculated with the RANS approach follows the trend of the pure
RANS simulation. The fluctuating velocity product calculated with the LES approach
is smaller than the one calculated with the RANS approach, but not negligible. In the
LES region, the fluctuating velocity product computed with the LES approach has the
correct topology, but its intensity is underestimated, compared with the pure LES and
with the DNS. As for the previous results, the sum of the two estimates of the hybrid
approach gives a fluctuating velocity product that evolves strongly between the RANS
region and the LES region.

The fluctuating velocity products present discrepancies between the RANS region
and the LES region of the hybrid simulation. However, a rather smooth evolution is
obtained for the dominant component, in the stream-wise direction. Moreover, in the
LES region, the topology of the fluctuating velocity products is correct, even though
the intensity is always underestimated compared to pure LES.

Spatial autocorrelation

The spatial autocorrelation of the fluctuating velocity u′′ is defined, for a given spatial
step in the stream-wise direction ∆x1 or in the span-wise direction ∆x3, as:

∀i ∈ [[ 1 ; 3 ]],

Rii (∆x1) =
x3,maxˆ

x3,min

∑
x2,ref∈

{xlw
2,ref ,x

up
2,ref}

x1,maxˆ

x1,min

u′′i (x1 +∆x1, x2,ref , x3)× u′′i (x1, x2,ref , x3) dx1dx3 (5.11)
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Figure 5.11: Velocity autocorrelations along the stream-wise and span-wise directions
in the bi-periodical channel. The correlations are computed at x+2 = 100, and nor-
malised by the actual u2τ .

Rii (∆x3) =
x3,maxˆ

x3,min

∑
x2,ref∈

{xlw
2,ref ,x

up
2,ref}

x1,maxˆ

x1,min

u′′i (x1, x2,ref , x3 +∆x3)× u′′i (x1, x2,ref , x3) dx1dx3 (5.12)

with x3,min = −πδ1/2/2, x3,max = πδ1/2/2, x1,min = −πδ1/2, x1,max = πδ1/2, and xlw2,ref
(resp. xup2,ref ) chosen to yield xlw +

2,ref = 100 (resp. xup +
2,ref = 100) from the lower (resp.

upper) wall. The fluctuating velocity is computed as the instantaneous velocity minus
the mean velocity, as presented in equation (5.8). The choice of x+2 = 100 ensures that
the autocorrelation is calculated in the LES region of the hybrid simulation, and can
be compared with the pure LES and DNS.

The spatial autocorrelations of the fluctuating velocity components, along the
stream-wise direction and the span-wise direction, are presented in figure 5.11.

The spatial autocorrelations along the stream-wise direction are presented in fig-
ure 5.11a. The DNS shows that R11 presents a maximum at ∆x+1 = 0 and rapidly
decreases for 0 6 ∆x+1 6 300. R22 and R33 present a similar intensity, about half
that of R11, and decrease over 0 6 x+2 6 100. The spatial autocorrelations along the
span-wise direction are presented in figure 5.11b. The same trend as in the stream-
wise direction can be observed in the DNS, with a maximum for ∆x+3 = 0 and a rapid
decrease. R11 is still around twice bigger than R22 and R33, and R33 is slightly bigger
than R22.

The autocorrelation gives an insight on the size and relative intensity of the tur-
bulent eddies. The eddies are stronger and larger in the stream-wise direction, and
of similar size and intensity in the other directions. For the three fluctuating com-
ponents in both correlation directions, the autocorrelation gives similar results for
the LES and the hybrid simulation. The size and intensity of the turbulent eddies
are correctly represented by both the LES and the hybrid simulation, compared with
DNS.

The mean velocity and autocorrelations show that the hybrid approach developed
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in the present thesis is quite able to represent the physics of the flow. Discrepancies
remain in the computation of the fluctuating velocities. This is mainly due to the fact
that the hybridisation occurs on these quantities, so they suffer the approximations
inherently present in the model. Given the presented results, the hybrid approach is
considered validated, and will be used on the corner separation case (c.f. chapter 10).
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The present work relies on the study of two academic flows, representative of tur-
bomachinery phenomena. First, a corner separation case in a linear cascade at

low Mach number is considered. Then, a tip-clearance flow of a single blade in the
potential core of a jet is considered. Both flows are studied using LES and RANS
simulations. The corner separation case will also be investigated using the hybrid ap-
proach developed in chapter 5. The simulation protocols are presented in the present
chapter.
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6.1 Corner separation simulation protocols
The corner separation test-case represents a passage of the LMFA-NACA65 linear
compressor cascade. Two experimental campaigns were lead on this test-case, with the
work of Ma (2012) (see also Ma et al. (2011, 2013)) and later the work of Zambonini
et al. (2017) (see also Zambonini and Ottavy (2015); Zambonini (2016)).

The corner separation case presented here has been numerically studied by Gao
(2014) (see also Gao et al. (2015a,b, 2017)). The LES simulation was realised during
Gao’s PhD thesis, and is used as a reference database for this work. The RANS
simulations and the hybrid simulation presented in this work have been performed by
the author.

6.1.1 Flow characteristics
The free-stream velocity is set to the same value as for the experiment, i.e. ue =
40m.s−1. It yields a Mach number M ≈ 0.1, and the flow can be considered as
incompressible. The reference density is set to ρ = 1.177kg.m−3, and the dynamic
viscosity is set to µ = 1.81 × 10−5kg.m−1s−1, for a chord based Reynolds number
Rec = 3.82 × 105. All the simulations are realised with an incidence angle of 4◦. The
flow characteristics are summarised in table 6.1.

Name Symbol Value
Free-stream velocity ue 40m.s−1

Mach number M 0.1
Density ρ 1.177kg.m−3

Dynamic viscosity µ 1.81 × 10−5kg.m−1s−1

Chord based Reynolds number Rec 3.82 × 105

Table 6.1: Summary of the corner separation test-case flow characteristics.

6.1.2 Geometry and dimensions of the computational domain
The experimental linear compressor cascade is composed of 13 identical NACA 65-009
blades, whose camber angle has been modified. The original geometry and the mod-
ifications can be found in the theses of Ma (2012) and Gao (2014). The blades have
a chord length c = 150mm, a stagger angle γ = 42.7◦, a pitch length s = 134.0mm
and a span length h = 370.0mm. The passage is simulated up to one chord length
upstream of the blade leading edge and one chord length downstream of the blade
trailing edge. In order to restrain the computational cost of Gao’s LES, only half the
channel span was simulated (h/2 = 185.0mm). The same half channel is simulated in
RANS, in order to have comparable cases. More information concerning the geometry
of the linear compressor cascade can be found in Zambonini et al. (2017) and in Gao
(2014). The dimensional characteristics are summarised in table 6.2.

6.1.3 Mesh
Two different meshes are considered in this work, a wall-resolved LES mesh and a
mesh for wall-resolved RANS simulations. The RANS mesh is also used for the hybrid
simulation.
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Name Symbol Value
Chord length c 150mm
Stagger angle γ 42.7◦

Pitch length s 134.0mm
Span length h 370.0mm
Simulated span length h/2 185.0mm

Table 6.2: Summary of the corner separation test-case dimensions.

The LES mesh of half the blade passage is built as a HOH blade-to-blade mesh
reproduced 481 times along the span-wise direction. A representation of the HOH
mesh (truncated upstream and downstream) of this blade-to-blade plane is given in
figure 6.1. The refinement is chosen to yield a priori ∆x+1 ≈ 60 for the smallest
cell length in the stream-wise direction, ∆x+2 ≈ 1 for the smallest cell length in the
wall-normal direction at the blade (resp. ∆x+3 ≈ 1 at the end-wall) and ∆x+3 ≈ 30 for
the smallest cell length in the transverse direction at the blade (resp. ∆x+2 ≈ 30 at the
end-wall). A posteriori, the simulation yields ∆x+2 6 2 at the blade (resp. ∆x+3 6 2
at the end-wall), which is a correct refinement for wall-resolved LES. The a posteriori
check of the wall cell sizes can be found in Gao (2014). The tripping bands used to
force the laminar/turbulent transition in the experiment are represented in the LES
by the removal of some grid points at the same locations. The total number of points
is about 200 × 106 points, split into 642 blocks for parallel computing.

Figure 6.1: LES mesh for the corner separation case. Every fourth point in every
direction is plotted.

The RANS and hybrid mesh of half the blade passage is built in the same way
as the LES mesh. A HOH mesh in the blade-to-blade plane is reproduced 77 times
along the span-wise direction. The refinement is chosen to yield a priori ∆x+2 6 2,
which is verified a posteriori in Gao (2014). For the RANS simulations, as soon as
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the turbulence model is activated, the flow is considered turbulent. The addition of
tripping bands is not necessary. The total number of points is about 2.8 × 106, split
into 48 blocks for parallel computing.

The mesh characteristics are summarised in table 6.3.

Simulation Tripping
∆x+1 ∆x+2 ∆x+3

Number of
bands points (×106)

LES Yes 6 60 6 2 6 30 280
RANS/Hybrid No [−] 6 2 [−] 2.8

Table 6.3: Summary of the corner separation mesh characteristics.

6.1.4 Boundary conditions
Generating a turbulent inflow for LES is a burning issue. In order to provide a
physically-sound turbulent boundary layer to the LES, a flat-plate boundary layer
simulation using three-dimensional, wall resolved LES is realised in parallel with the
passage simulation. The instantaneous density and velocity are extracted on a plane
from the flat-plate boundary-layer simulation at the location where the time-averaged
displacement thickness equals the experimental one at the inlet of the blade passage.
The flat-plate simulation has a limited cross-stream extension (∼ δ) which is repeated
periodically to feed the blade passage inlet. In the free-stream region, due to the weak
intensity of the turbulence, the quantities are averaged in space and injected in the
inlet plane of the blade passage. This ensures consistent inflow conditions between
the LES and the experiment. A representation of the inflow generation is given in
figure 6.2. The flat-plate domain is 2.54m long, its width is ∼ δ and its height is ∼ 2δ
(δ estimated at the blade passage inlet). The refinement is similar to the refinement
of the flat-plate test-case in chapter 4. The total number of points in the flat-plate
domain is around 100 × 106. Unlike for the flat-plate boundary-layer used in chapter 4,
the transition is triggered by a tripping band represented by a step in the grid. The
band is located at Rex = 1.3 × 106, and measures 4.8 × 10−3m long by 6.73 × 10−4m
thick, and modelled by removing cells from the smooth mesh.

For the inflow of the RANS and hybrid simulations, a two dimensional steady
RANS, flat-plate boundary-layer simulation is carried out. As for the LES, a profile is
extracted at the location where the displacement thickness matches the experimental
one. The density, the three components of the velocity, and the two turbulent variables
are injected as inlet profile.

The pitch-wise boundary condition is set to periodic for all the simulations. As
already mentioned, only half of the experimental channel height (or blade span) is
simulated. The boundary condition at mid-span is set as symmetric, for all the sim-
ulations. All the walls, i.e. the end-wall and the blade surface, are set as non-slip
adiabatic.

For the LES, hybrid and RANS simulations, the outlet boundary condition is set
to a partially non reflective pressure condition. In LES, a special attention has to be
paid to the correct evacuation of the numerical acoustic waves at the outlet. In order
to damp the unwanted numerical reflections, the mesh is stretched in the stream-wise
direction and an explicit filter (Bogey and Bailly, 2002) is implemented in the last 20
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Tripping band

Figure 6.2: Corner separation inflow configuration (Gao, 2014).

grid planes (whose normals are in the stream-wise direction). The formulation of the
filter is:

∀I ∈ [[ Ibegin ; Iend ]], ηflt[I] =
I − Ibegin + 1

Iend − Ibegin + 1
(6.1)

σflt (ηflt[I]) = αflt × ηflt[I]
βflt (6.2)

with I the index in the stream-wise direction, Ibegin the index in the stream-wise
direction of the first plane where the filter is implemented, Iend the index of the last
plane, and αflt ∈ [0, 0.45], βflt ∈ [1, 2] constants of the filter. The constants have
been set to αflt = 0.05 and βflt = 2.0. A filtered quantity ϕ is given by:

ϕ[I, J,K] = ϕ[I, J,K]− σflt (ηflt[I])

(
ϕ[I, J,K]−

(
ϕ[I − 1, J,K] + ϕ[I + 1, J,K]

+ ϕ[I, J − 1, K] + ϕ[I, J + 1, K] + ϕ[I, J,K − 1] + ϕ[I, J,K + 1]
)
/6

)
(6.3)

The filter is also used near the blade leading and trailing edges over five grid points in
the whole span, in order to smooth the oscillations present close to stagnation points.

The boundary condition characteristics are summarised in table 6.4.

Simulation Inlet Lateral Mid-span Walls Outlet
Turbulent inflow Semi-reflective

LES from 3D Periodic Symmetric Non-slip pressure condition
boundary-layer adiabatic + filter

Turbulent profile
RANS & from 2D Periodic Symmetric Non-slip Semi-reflective
hybrid boundary-layer adiabatic pressure condition

Table 6.4: Summary of the corner separation boundary-condition characteristics.
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6.1.5 Numerical schemes
For all the simulations, the spatial scheme used for the inviscid fluxes is a four-point
centred scheme discretisation from Jameson et al. (1981), with a fourth-order artificial
viscosity (coefficient: 0.002 for the LES, 0.02 for the RANS and hybrid simulations,
see Boudet et al. (2015b) for its definition). The spatial scheme for the viscous fluxes
is a two-point centred scheme.

For the LES and the hybrid simulation, the temporal scheme is a three-step Runge-
Kutta scheme with a constant time step of 2.5 × 10−8s, yielding a Courant-Friedrichs-
Lewy (CFL) number of 0.95 based on the minimum grid size 1.0 × 10−5m, the reference
velocity 40m.s−1 and the speed of sound 340m.s−1. For the RANS simulations, the
temporal scheme is a five-step Runge-Kutta scheme with a local variable time step,
based on a local CFL number of 0.7 (based on the local grid size, the local velocity
and the local speed of sound).

A summary of the numerical schemes used is given in table 6.5.

Simulation
Spatial Artificial visco- Temporal CFL
scheme sity coefficient scheme number

LES Jameson 4-points 0.002 3-step Runge-Kutta 0.95
RANS Jameson 4-points 0.02 5-step Runge-Kutta 0.70
Hybrid Jameson 4-points 0.02 3-step Runge-Kutta 0.95

Table 6.5: Summary of the corner separation numerical schemes.

6.1.6 Turbulence/SGS models
The large-eddy simulation of the corner separation case is carried out with the SISM
SGS model from Lévêque et al. (2007), presented in chapter 2, section 2.3.2. The
characteristic frequency of the exponential average used in the model is calculated
using the free-stream velocity ue and the chord length c, as 2ue/c = 533Hz.

For the RANS simulations, the three turbulence models presented in chapter 2,
section 2.4.3 are used. These turbulence models are the original Wilcox k − ω turbu-
lence model, the quadratic Wilcox k − ω turbulence model, and the modified Wilcox
k − ω turbulence model.

For the hybrid simulation, the SGS turbulence in the LES region is modelled using
the SISM, with the same characteristic frequency of 533Hz as for the pure LES simu-
lation, and the turbulence in the RANS region is modelled using the original Wilcox
k − ω model. The hybrid model 1 is used, with d+µ = 50 and Lhyb = 10 (cf equa-
tion (5.2) for their definition). A summary of the turbulence models used is given in
table 6.6.

6.1.7 Statistics
For LES, that is naturally unsteady, the transient regime at the beginning of the com-
putation corresponds to the phase of numerical convergence. The statistics have to be
computed on a numerically converged case to be physically relevant. The LES has been
carried over ten through-flow periods (defined as the ratio between the chord length
c and the free-stream velocity ue), corresponding to the evacuation of the transient



6.2. Tip-leakage simulation protocols 89

Simulation Simulation SGS Turbulence
name type model model
LES LES SISM [−]
RANS_BSQ RANS [−] Original wilcox k − ω
RANS_QCR RANS [−] Quadratic wilcox k − ω
RANS_BUA RANS [−] Modified wilcox k − ω
HYBR Hybrid SISM Original wilcox k − ω

Table 6.6: Summary of the corner separation turbulence models.

regime, plus about ten more through-flow periods. The statistics have been computed
over these last ten periods (40.25ms), with a sample every 50µs (every 2000 iterations),
for a total number of 805 samples.

For the RANS simulations, the mean values of the conservatives variables and the
turbulent kinetic energy budget are directly known after the numerical convergence,
which is determined by the vanishing residuals (the residuals have to be stable in time
and reduced for about three order of magnitude compared with the beginning of the
computation).

For the hybrid simulation, the same approach as for the LES is necessary. The
statistics have to be computed on a numerically converged case to be physically rel-
evant. The hybrid simulation has been carried over about ten through-flow periods,
corresponding to the evacuation of the transient regime, plus ten more through-flow
periods. The statistics have been computed over these last ten periods (40.0ms), with
a sample every 2.5µs (every 100 iterations).

6.1.8 Summary of the cases
In total, one large-eddy simulation, three RANS simulations and an hybrid RANS-LES
simulation are analysed. The LES had been realised by Gao, and has been extensively
studied (Gao, 2014; Gao et al., 2015a,b, 2017). It is compared to the three RANS sim-
ulations, carried out by the author. The hybrid simulation, using the model developed
in chapter 5, was also carried out by the author.

6.2 Tip-leakage simulation protocols
The tip-leakage analysis relies on several numerical simulations that reproduce an
academic experimental configuration of an isolated NACA5510 blade placed in the
potential core of a jet. The simplicity of this configuration allowed a detailed exper-
imental characterisation with advanced measurement techniques. Two experimental
campaigns were lead on the configuration. The first campaign results are presented
in Jacob et al. (2010). The analyses on the second experimental campaign can be
found in Jacob et al. (2016a,b).

A numerical campaign, simultaneous with the second experimental campaign, has
been carried out on the same configuration using zonal large-eddy simulation (ZLES).
The ZLES was realised by Caro. The zonal model used is presented in section 3.6.
The validation against experimental results and an analysis of the ZLES results can
be found in Boudet et al. (2016a,b). The ZLES is used as a reference database in the
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Figure 6.3: Geometry of the tip-leakage case. (a): Experimental installation from
Jacob et al. (2016a), (b): Sketch of the geometry.

present work. Three RANS simulations, performed by the author, were realised and
are compared with the reference ZLES.

6.2.1 Geometry and flow characteristics
The studied blade is a NACA5510 airfoil, whose chord length equals 0.2m, span length
equals 0.19m, thickness equals 0.02m, and camber equals 5%. The airfoil is attached to
an end-plate at the top and set above an end-plate at the bottom. The set-up presents
a tip-clearance at the bottom with a h = 0.01m clearance height. A sketch of the
configuration is presented in figure 6.3. The tip-clearance height is large (h/c = 0.05),
compared to what is usually used in industrial compressors. In the original experiment,
this choice was lead by acoustic considerations. The gap is large in order to increase
the tip-clearance noise with respect to the trailing edge noise. Although the present
study does not consider the acoustics, this tip-clearance height has been kept in order
to be comparable with the available experimental and ZLES results.

The jet velocity is set to the same value as the experimental one, i.e. ue = 70m.s−1.
It yields a Mach number M ≈ 0.2. The flow can be considered as incompressible.
The reference density is set to ρ = 1.200kg.m−3 and the dynamic viscosity is set to
µ = 1.81 × 10−5kg.m−1s−1, yielding a chord based Reynolds number Rec = 9.3 × 105.
All the simulations are realised for an angle of attack of 15◦.

The dimensions and flow characteristics are summarised in table 6.7.

6.2.2 Computational domains
Two computational domains are considered in this work. For the ZLES, the domain
extends over 29c axially, 37c laterally and 1c span-wise. In order to reduce the compu-
tational cost, only the region around the tip-clearance is simulated using pure LES, as
presented in figure 6.4. The inlet flow, generated by a LES flat-plate boundary layer,
is located half a chord length upstream of the blade leading edge. The outer regions
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Name Symbol Value
Chord length c 0.2m
Blade Span length [−] 0.19m
Blade thickness [−] 0.02m
Blade camber [−] 5%
Clearance height h 0.01m
Clearance height to chord ratio h/c 0.05
Free-stream velocity ue 70m.s−1

Mach number M 0.2
Density ρ 1.200kg.m−3

Dynamic viscosity µ 1.81 × 10−5kg.m−1.s−1

Chord based Reynolds number Rec 9.3 × 105

Table 6.7: Summary of the tip-leakage flow characteristics.

are simulated with RANS, as presented on figure 6.5. More information can be found
in Boudet et al. (2016a,b).

Figure 6.4: Zonal decomposition around the airfoil tip region from Boudet et al.
(2016a). The black, grey and white lines correspond respectively to β = 0.1, β = 0.5,
and β = 0.9 with the notations of eq. (3.39) in section 3.6.

For the RANS simulations, the computational domain extends over 12.3c axially,
20c laterally and 1c span-wise.

The dimensions of the computational domains are summarised in table 6.8.

6.2.3 Mesh
Two different meshes are used in this work, corresponding to the two different sim-
ulation domains. The ZLES mesh is built as an HOH mesh around the blade, with
a fine resolution in the tip-clearance (62 points through the clearance). In the LES
region, the refinement is chosen to yield ∆x+1 6 80, ∆x+2 6 1.5, and ∆x+3 6 30, which
is a correct refinement for wall-resolved LES. The grid is made up with 150 × 106

points, split into 524 domains for parallel computing. A global view of the mesh and a
close-up view around the tip-clearance leading edge are given in figure 6.6. A special
attention was paid to the LES and inlet regions, and to the jet flow. The outer RANS
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Figure 6.5: ZLES calculation domains of the tip-leakage case. Left: view of the full
calculation domain. Right: zoom on the LES region.

Simulation Axial extent Lateral extent Span-wise extent
ZLES 29c 37c 1c
RANS 12.3c 20c 1c

Table 6.8: Dimensions of the tip-leakage computational domains.

regions are much coarser. The close-up view in the tip-clearance shows that a special
attention was paid to the junction between the tip-clearance and the end-wall around.

The RANS mesh used has been designed by Li (2016). The RANS mesh is built in
the same manner as the LES region of the ZLES, but coarser. A fine resolution in the
tip-clearance is kept, with 69 points span-wise. The boundary-layers are well resolved,
with ∆x+2 6 1.5. The grid is made up with 5.4 × 106 points, split into 62 domains for
parallel computing.

The mesh characteristics are summarised in table 6.9.

Simulation ∆x+1 ∆x+2 ∆x+3
Number of

points (×106)
ZLES 6 80 6 1.5 6 30 150
RANS [−] 6 1.5 [−] 5.4

Table 6.9: Summary of the characteristics of the tip-leakage grids.

6.2.4 Boundary conditions
As for the corner separation case, the inlet conditions are a burning issue. The region
of interest being a full LES, the inlet condition must present the correct turbulent
behaviour compared to the experiment. In the present case, a special attention is paid
to have a similar boundary-layer displacement thickness between the outlet of the
experimental jet and the inlet of the ZLES. The generation is realised with a flat-plate
boundary-layer simulation placed upstream of the profile, as presented in figure 6.5.
The turbulence of the boundary-layer is triggered by a source term as for the flat-plate
boundary-layer case presented in chapter 4 (see Boudet et al. (2015b) for more details).
The width of the boundary layer domain is ∼ δ (δ measured at the inlet of the ZLES).
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Figure 6.6: Mesh of the tip-leakage case configuration, for the ZLES simulation. Left:
the entire mesh, at the end-wall. In green, the profile. Right: a close-up view around
the tip-clearance at the leading edge.

It is repeated periodically (4 times) to feed the LES region around the tip-clearance.
For the RANS simulation, a mean profile with the correct turbulent characteristics is
imposed.

For all the simulations, the walls are set as non-slip adiabatic. The top and bottom
boundaries are walls, respectively the top-wall, where the blade is attached, and the
end-wall, where the tip-clearance is located. The other boundaries, i.e. the lateral
and outlet boundaries, are set to a partially non-reflective pressure condition. The
boundary condition characteristics are summarised in table 6.10.

Simulation Inlet Lateral Walls Outlet
Turbulent inflow Semi-reflective Non-slip Semi-reflective

ZLES from 3D pressure condition adiabatic pressure condition
boundary-layer

RANS Mean turbulent Semi-reflective Non-slip Semi-reflective
profile pressure condition adiabatic pressure condition

Table 6.10: Summary of the tip-leakage boundary condition characteristics.

6.2.5 Numerical schemes
For all the simulations, the spatial scheme used for the inviscid fluxes is a four-point
centred scheme from Jameson et al. (1981). The ZLES uses a fourth-order artificial
viscosity (coefficient: 6 0.003 for the LES region, increased up to 0.03 in the outer
RANS regions, see Boudet et al. (2015b) for its definition) and the RANS simulations
use a second-order artificial viscosity (coefficient: 0.02). The spatial scheme for the
viscous fluxes is a two-point centred scheme.

For the ZLES, the temporal scheme is a three-step Runge-Kutta scheme with a
constant time step of 1.6 × 10−8s (5.6 × 10−6c.u−1

e ), yielding a CFL of 0.90 (based on
the inlet velocity plus the speed of sound and the minimal grid size). For the RANS
simulations, the temporal scheme is a three-step Runge-Kutta scheme with a local
variable time step, based on a local CFL number of 0.6 (based on the local grid size,
the local velocity and the local speed of sound).
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A summary of the numerical schemes used is given in table 6.11.

Simulation Spatial Artificial Temporal CFL
scheme viscosity scheme number

ZLES Jameson 4-points 0.002 (4th order) 3-step Runge-Kutta 0.90
RANS Jameson 4-points 0.020 (2nd order) 3-step Runge-Kutta 0.60

Table 6.11: Summary of the tip-leakage numerical schemes.

6.2.6 Turbulence/SGS models
The zonal large-eddy simulation of the tip-leakage is carried out with the SISM SGS
model from Lévêque et al. (2007) (presented in chapter 2 section 2.3.2) in the LES
region, and the original Wilcox k − ω turbulence model in the outer RANS regions.
The characteristic frequency of the exponential average of the SISM is calculated as
1.8ue/c = 630Hz, using the free-stream velocity ue and the chord length c.

For the RANS simulations, the three turbulence models presented in chapter 2,
section 2.4.3, are used. These turbulence models are the original Wilcox k − ω turbu-
lence model, the quadratic Wilcox k − ω turbulence model, and the modified Wilcox
k − ω turbulence model.

A summary of the turbulence models used is given in table 6.12.

6.2.7 Statistics
For the ZLES, the region of interest is simulated with pure LES. The computation
was initiated with a converged RANS simulation, in order to reduce the numerical
convergence phase. The statistics have to be computed after numerical convergence
for relevance. The LES has been carried over six through-flow periods (defined as the
ratio between the chord length c and the free-stream velocity ue), corresponding to the
evacuation of the transient regime, plus ten more through-flow periods. The statistics
have been computed over these last ten periods (28.57ms), with a sample every 48µs
(every 3000 iterations), for a total number of 595 samples.

For the RANS simulations, the mean values of the conservatives variables and the
turbulent kinetic energy budget are directly known after the numerical convergence,
which is determined by the vanishing residuals (the residuals have to be stable in time
and reduced for about three order of magnitude compared with the beginning of the
computation).

Simulation Simulation SGS Turbulence
name type model model
ZLES LES/RANS SISM Original wilcox k − ω
RANS_BSQ RANS [−] Original wilcox k − ω
RANS_QCR RANS [−] Quadratic wilcox k − ω
RANS_BUA RANS [−] Modified wilcox k − ω

Table 6.12: Summary of the tip-leakage turbulence models.
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6.2.8 Summary of the cases
In total, one zonal large-eddy simulation and three RANS simulations are analysed.
The ZLES has been realised by Caro, and has been extensively studied (Boudet et al.,
2016a,b). It is compared to the three RANS simulations, carried out by the author,
using the three turbulence models presented in chapter 2, section 2.4.3.
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Results
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Chapter 7

Corner separation mean flow analy-
sis
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As presented in chapter 1, the corner separation is a three dimensional, highly
vortical flow. For these reasons, the usual turbulence models, often calibrated on

more academic, less complex flows, have difficulties to predict accurately the physical
phenomena of this flow. The present analysis aims at investigating some turbulence
modelling strategies for the RANS simulations of a corner separation flow, using LES
as a reference.

First, some results on the mean values, such as the pressure coefficient around the
blade or the total pressure losses, are presented to gauge the overall quality of the
simulation. Then, the Reynolds stresses, which are the quantities that directly impact
the momentum and energy equations (see equations (2.48b) and (2.48c)), are analysed
on various extraction planes.

7.1 Pressure coefficient and total pressure losses

7.1.1 Mean flow visualisation
The corner separation occurs at the junction of the blade suction side and the end-wall,
in the aft part of the blade. This separation is promoted by the interaction between
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Figure 7.1: Visualisation of the LES flow field in the corner separation case. (a):
instantaneousQ criterion for a constantQ = 1 × 107s−2. (b): Mean pressure coefficient
on the blade and at the end-wall, and mean total pressure coefficient at the outlet of
the blade passage. The same scale and colourmap are used for Cpt in both figures.
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the blade boundary-layer and the end-wall boundary-layer. This highly vortical phe-
nomenon can be visualised using the Q criterion, defined as the second invariant of
the velocity gradient tensor (Holmén, 2012):

Q =
1

2

(∥∥∥Ω̃∥∥∥ 2 −
∥∥∥S̃∥∥∥ 2

)
(7.1)

with S̃ the strain rate tensor defined in equation (2.6), and Ω̃ the vorticity tensor
defined as follows:

∀(i, j) ∈ [[ 1 ; 3 ]]2, Ω̃ij =
∂ũi
∂xj

− ∂ũj
∂xi

(7.2)

The criterion is represented for Q = 1 × 107s−2 in figure 7.1a for an instantaneous
snapshot of the flow. The losses are also represented using the mean total pressure
loss coefficient, defined as:

Cpt =
pte − pt
pte − pe

(7.3)

with pte the inflow total pressure, pt the local total pressure and pe the inflow static
pressure. The Q criterion compares the magnitude of rotation and strain. A positive
Q means that rotation exceeds strain. The value of the criterion is related to the size
of the structures. A small value shows large structures, while a large value shows small
structures. The criterion shows that the flow is turbulent in the end-wall boundary-
layer and on the blade, as expected. The structures are more dense in the area of the
corner separation. The maximum of losses, represented by the maximum of the total
pressure loss coefficient, is located inside the corner separation.

In figure 7.1b, the mean pressure coefficient is represented at the end-wall and on
the blade, along with the mean total pressure loss coefficient at the outlet of the blade
passage. The mean pressure coefficient is defined as:

Cp =
p− pe
1

2
ρu2e

(7.4)

with p the local static pressure.
In order to gauge the quality of the simulations, the mean pressure coefficient and

the mean total pressure coefficient calculated using LES and RANS are compared with
the coefficients from the experiment of Zambonini et al. (2017). The pressure coefficient
is extracted around the blade at six span-wise positions, and the total pressure loss
coefficient is extracted on three planes downstream of the blade passage outlet. The
extraction locations are presented in figure 7.2.

7.1.2 Pressure coefficient around the blade
The pressure coefficient −Cp is presented in figure 7.3. The black lines represent the
LES, the blue lines represent the RANS simulation with the original Wilcox model, the
green lines represent the RANS simulation with the quadratic Wilcox model, and the
red lines represent the RANS simulation with the modified Wilcox model. Oscillations
are present close to the leading edge in the LES simulation due to the implementation
of the tripping bands. The upper branch of the curves represent the suction side, while
the lower branch represent the pressure side.
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Figure 7.2: Extraction locations for Cp and Cpt for comparison with the experimental
results of Zambonini et al. (2017). The pressure coefficient is extracted on the blade
surface at different span-wise positions, and the total pressure coefficient is exctracted
on the outlet planes 1 to 3.

At mid span (Fig. 7.3a) and at 30% of span (Fig. 7.3b), all the simulations are
consistent. In these areas, the flow is attached to the blade. At 21.6% of the span
length (Fig. 7.3c) a difference can be observed between the LES and the RANS_BUA
simulation on one side, and the RANS_BSQ and RANS_QCR simulations on the
other side. The RANS_BSQ and RANS_QCR simulations present a flattening of
the pressure distribution on the suction side for x1/ca > 0.75, indicating a thickening
of the boundary-layer. This behaviour is even more marked closer to the end-wall,
where the corner separation develops (Fig. 7.3d, 7.3d and 7.3d). At these positions,
the RANS_BUA becomes less consistent with the LES than before, but stays closer
to it than the two other RANS simulations. For all the RANS simulations, the region
of quasi-constant Cp (marking the corner separation) is clearly over-estimated. The
modification of the Wilcox model has a visible impact, but not sufficient to stick to
the LES results when confronted to the corner separation. However, the results are
slightly better than with the original Wilcox model or with the quadratic Wilcox
model. The impact of the QCR is limited, the RANS_QCR simulation results being
almost superimposed with the RANS_BSQ simulation results.

A sudden and important static pressure drop is visible at the trailing edge. This is
a known feature of steady simulations, that Denton (2010) explains by the difficulty
to capture the separation at the trailing edge. A refined mesh on that case would
worsen the prediction, by retarding even more the separation. He suggests to use a
coarse mesh with a cusp at the trailing edge in steady calculations to avoid this drop
of pressure.
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Figure 7.3: Mean static pressure coefficient around the blade at various span-wise
positions.

7.1.3 Total pressure coefficient on outlet planes

The total pressure loss coefficients on outlet plane 1 are given in figure 7.4. Experi-
mental pressure losses (Fig. 7.4a) and LES pressure losses (Fig. 7.4b) are very similar.
A particular attention was paid to the consistency of the experimental and numerical
inlet values (such as boundary layer thickness). The pressure losses results legitimate
the usage of LES as a reference. The RANS simulations over-predict the losses in each
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Figure 7.4: Mean total pressure loss coefficient on outlet plane 1.

case. The use of a non-linear constitutive relation (QCR) yields almost no effect on
the results (Fig. 7.4d) compared to the original Wilcox model (Fig. 7.4c). The use
of the modified Wilcox model has a beneficial impact on the intensity of the losses
(Fig. 7.4e) compared to the original Wilcox model, but not on the topology or the size
of the loss region. The corner separation remains too curvy and too large spatially
compared with the experimental or LES results.

The results on the outlet plane 2 (Fig. 7.5) follow the same trends as those on the
outlet plane 1. The experiment (Fig. 7.5a) and the LES (Fig. 7.5b) are slightly less
alike, but remains very similar. The RANS simulations keep over-predicting the loss
intensities (Fig. 7.5c, 7.5d and 7.5e). They also over-predict the size of the region of
losses, which is a consequence of the over-prediction of the corner separation size.

The results on the outlet plane 3 follow the same trends as upstream. The shape
of the corner separation wake is again triangular for the experiment (Fig. 7.6a) and
the LES (Fig. 7.6b), but it is notably twisted in the RANS simulations (Fig. 7.6c,
Fig. 7.6d, Fig. 7.6e). This may be due to the more intense separation, and the induced
effect on its wake. In term of levels, the RANS with the modified Wilcox model is
more comparable to the LES than the two other RANS simulations, as for the planes
upstream.

The RANS simulations fail to represent accurately the physics at stakes. The most
heavily modelled part in a RANS simulation is the turbulence, and more precisely
its effect on the mean flow, with the modelling of the Reynolds stresses. In order to
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Figure 7.5: Mean total pressure loss coefficient on outlet plane 2.

evaluate the validity of such a modelling, the Reynolds stresses computed with the
RANS simulations are extracted on various planes and compared with the LES results
on the same planes in the following section. Such results are not available from the
experiment, but the quality of the LES flow prediction has been demonstrated above.

7.2 Reynolds stress analysis

7.2.1 Extraction planes
The levels and topology of the Reynolds stresses are investigated on 6 different planes,
presented in figure 7.7. The first plane is located close to the passage inlet, and normal
to the blade, in a region upstream of the corner separation emergence. The point at the
junction of the blade and the end-wall is at x1/ca = 0.064, with ca = c×cos(γ×π/180).
This plane is referenced as the inlet plane. The second plane is placed through the
passage, at x3 equals two percent of the blade span length. It is referred to as the
passage plane. The four last planes are all located at constant x1, and cover the pitch
length s and half the span height. The outlet 0 plane is placed right at the outlet of the
passage, and the outlet 1, 2 and 3 planes are placed respectively 0.363ca, 0.635ca, and
0.907ca downstream. These three last planes are the ones on which the total pressure
loss coefficient have been extracted and presented.

Only three planes are presented in the following sections: the inlet plane, the
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Figure 7.6: Mean total pressure loss coefficient on outlet plane 3.

passage plane, and the outlet 1 plane. The three other outlet planes present the same
physical behaviour as on the outlet 1 plane. Nevertheless, the results are available in
appendix C.

7.2.2 On the inlet plane
Normal stresses

The normal stresses at the inlet are given in figures 7.8, 7.9 and 7.10. Two distinct
regions can be seen on each LES figure (Fig. 7.8a, 7.9a and 7.10a). First, very close
to the blade ( d/s ≈ 0, with d the distance to the wall), where the normal stresses are
important, is the blade boundary layer. Secondly, represented by the horizontal strat-
ification of the Reynolds stresses, is the end-wall boundary layer. This boundary-layer
is thicker than the blade one. A bubble of high intensity of the Reynolds stresses can
be found close to the corner, around d/s = 0.025 and x3/h = 0.005.

In the three figures, the RANS with the original Wilcox model mis-predicts the
extent and intensity of the normal Reynolds stresses in the area of the blade boundary-
layer. For τt11 (Fig. 7.8b), the area is thicker and less intense than in LES, while for τt22
(Fig. 7.9b) the area of high intensity is detached from the blade. For τt33 (Fig. 7.10b),
the intense region in the corner is wider than in LES. The QCR corrects the size of
the area for τt11 (Fig. 7.8b) but not the intensity. It corrects both the size and the
intensity for τt22 (Fig. 7.9b), but the area is still detached from the blade. Its action
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Figure 7.7: Extraction locations for the Reynolds stresses and the TKE budget.
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Figure 7.8: τt11 on the inlet plane, normalised by ρu2e.
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Figure 7.9: τt22 on the inlet plane, normalised by ρu2e.
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Figure 7.10: τt33 on the inlet plane, normalised by ρu2e.

on τt33 (Fig. 7.10b) is negligible concerning the area in the blade boundary layer, but
the corner region is reduced. The modified Wilcox model shows results similar to the
original Wilcox model. For the three normal Reynolds stresses (Figs. 7.8d, 7.9d and
7.10d), the topology is the same. The stresses are slightly more intense than with the
original Wilcox model, and closer to the LES intensities.

RANS with the original Wilcox model is quite correct with the τt11 representation
in the end-wall boundary layer, missing only a few layers close to end-wall, but shows
an area highly twisted for τt22 and thicker and more intense for τt33. The QCR corrects
the number of layers and the intensity for τt11, but increase too much the intensity
of τt22 and decreases too much the intensity of τt33 in the end-wall boundary layer
compared to the LES. The modified Wilcox model shows again results similar to the
original Wilcox model.

Concerning the bubble of stresses in the corner, the three RANS simulations predict
its existence. The quadratic Wilcox model gives results more comparable to the LES
concerning the position, the size of the area and the intensity than the original Wilcox
model or the modified Wilcox model, which appear to overestimate this region.
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Figure 7.11: τt12 on the inlet plane, normalised by ρu2e.

The shear stresses at the inlet are given in figures 7.11, 7.12 and 7.13. The different
areas visible in the LES results (Fig. 7.11a, 7.12a and 7.13a) are the same as those
previously described for the normal stresses.

The RANS with the original, the quadratic and the modified Wilcox models all
mis-predict the extent and the intensity of the shear Reynolds stresses in the area of
the blade boundary layer. For the three shear stresses (Fig. 7.11b, 7.12b and 7.13b),
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Figure 7.12: τt13 on the inlet plane, normalised by ρu2e.
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Figure 7.13: τt23 on the inlet plane, normalised by ρu2e.

the RANS with the original Wilcox model under-predicts the intensity. This may be
due to the weak anisotropy in the Boussinesq constitutive relation. The similarity
of the results with the modified Wilcox model, that relies on the same constitutive
relation, confirms this idea. On the opposite, the RANS with the quadratic Wilcox
model over-predicts the size of the area and the intensity of τt13 (Fig. 7.12c). This
is certainly due to the increased anisotropy of the QCR, but with a too important
intensity. It yields less important modifications on the two other stresses (Fig. 7.11c
and 7.13c). Finally, a remarkable feature is observed for the three RANS models on
τt13 and τt23: the region of high intensity is detached from the wall. This is a well
known drawback of RANS models around the leading edge of airfoils.

The intensity of the stresses in the area of the end-wall boundary layer is cor-
rectly represented by the two RANS with the Boussinesq constitutive relation, but
over-predicted by the RANS with the QCR for each stress.

Concerning the bubble of Reynolds stresses in the corner, the three RANS simu-
lations predict its existence. However, it is correctly represented only by the RANS
with the original and modified Wilcox models, that rely on the Boussinesq constitutive
relation, and over-predicted by the RANS with the quadratic Wilcox model, that relies
on the QCR, compared to LES. This is opposite to the observations on the normal
stresses.

7.2.3 On the passage plane
Normal stresses

The normal Reynolds stresses on the passage plane are given in figures 7.14, 7.15 and
7.16. On the LES results (Fig. 7.14a, 7.15a and 7.16a), three areas are visible. First,
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Figure 7.14: τt11 on the passage plane, normalised by ρu2e.
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Figure 7.15: τt22 on the passage plane, normalised by ρu2e.
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Figure 7.16: τt33 on the passage plane, normalised by ρu2e.
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the area of the boundary-layer development on the suction side, for x1/ca 6 0.4 and
x2/s 6 0.4, where the stresses are important only close to the wall. Then, the area of
the corner separation, for x1/ca ∈ [0.4, 1.0] and x2/s ∈ [0.4, 0.8], characterized by the
high intensity of the normal Reynolds stresses. Last, the area close to the pressure
side wall, for x2/s ∈ [0.8, 1.6], where the normal Reynolds stresses are weak.

The RANS with the original Wilcox model (Fig. 7.14b, 7.15b and 7.16b), the RANS
with the quadratic Wilcox model (Fig. 7.14c, 7.15c and 7.16c), and the RANS with
the modified Wilcox model (Fig. 7.14d, 7.15d and 7.16d) over-predict the extent of
the Reynolds stresses in the area of the suction side boundary layer development.
They all anticipate the separation point, putting it closer to the leading edge, around
x1/ca ≈ 0.2 and x2/s ≈ 0.3. The RANS with the modified Wilcox model shows a
separation point slightly downstream (around x1/ca ≈ 0.25 and x2/s ≈ 0.35) compared
with the two other RANS, but the difference is not significant enough to yield results
comparable with LES (x1/ca ≈ 0.5 and x2/s ≈ 0.5).

The intensity of τt11 and τt33 in the corner separation is over-predicted by the two
RANS with the Boussinesq constitutive relation and correctly predicted by the QCR.
τt22 intensity in the corner separation is correctly predicted by the two RANS with the
Boussinesq constitutive relation but the QCR correction over-predicts it.

Close to the pressure side wall, the three RANS simulations represent correctly the
normal stresses, except for the important over-prediction of τt22 by the RANS with
the quadratic Wilcox model (Fig. 7.15c, for x1/ca = 0.7 and x2/s = 1.1).
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Figure 7.17: τt12 on the passage plane, normalised by ρu2e.

The shear Reynolds stresses on the passage plane are given in figures 7.17, 7.18
and 7.19. The different areas visible in the LES results (Fig. 7.17a, 7.18a and 7.19a)
are the same as those previously identified for the normal Reynolds stresses.

Due to the misplacement of the separation point in the RANS simulations (original
Wilcox: fig. 7.17b, 7.18b and 7.19b, quadratic wilcox: fig. 7.17c, 7.18c and 7.19c,
modified Wilcox: fig. 7.17d, 7.18d and 7.19d), the area of maximal stresses in the
corner separation is closer to the leading edge, compared with the LES. The topology
of this area is different from the one obtained with LES. The area is more elongated
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Figure 7.18: τt13 on the passage plane, normalised by ρu2e.
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Figure 7.19: τt23 on the passage plane, normalised by ρu2e.

and develops away from the wall. The intensity of the stresses in the corner separation
is correctly represented by the two RANS with the Boussinesq constitutive relation.
τt23 is under-predicted while τt13 is over-predicted by the RANS with QCR.

Close to the pressure side wall, the RANS with QCR creates an area of high
intensity, non-existent in the two other RANS simulations and in the LES. This area
is particularly intense for τt23.

7.2.4 On outlet 1
Normal stresses

The normal Reynolds stresses at the outlet section 1 are given in figures 7.20, 7.21
and 7.22. Two zones are visible on the LES results (Fig. 7.20a, 7.21a and 7.22a), the
wake of the blade boundary-layer (x2/s ∈ [1.0, 1.1], x3/h ∈ [0.2, 0.5]) and the wake of
the corner separation (x2/s ∈ [0.9, 1.5], x3/h ∈ [0.0, 0.2]).

For the three components, the intensity in the wake of the blade is under-predicted
by RANS when x3/h > 0.3, compared to the LES.
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Figure 7.20: τt11 on the plane outlet 1, normalised by ρu2e.
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Figure 7.21: τt22 on the plane outlet 1, normalised by ρu2e.
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Figure 7.22: τt33 on the plane outlet 1, normalised by ρu2e.

In the wake of the corner separation, the RANS simulations mis-predict the in-
tensity of the normal Reynolds stresses compared to LES, by over-predicting τt11 and
τt33, and under-predicting τt22. For each component, the RANS wake areas are also
wider and further from the wake of the blade than for the LES. The QCR increases the
intensity of the first and second normal Reynolds stress (τt11 and τt22) but decreases
it for the third one (τt33). For the first two components, the effect of the QCR is
small. For τt33 (Fig. 7.22), the minimum of the stress calculated with the QCR is more
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comparable to the LES than the minimum calculated with the other RANS simula-
tions. The modified Wilcox model (Fig. 7.20d, 7.21d and 7.22d) yields results that
are similar to the original Wilcox model for each normal Reynolds stress, with a small
modification that each time goes in the right direction. However, the modification is
never sufficient to get close to the LES results.
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Figure 7.23: τt12 on the plane outlet 1, normalised by ρu2e.
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Figure 7.24: τt13 on the plane outlet 1, normalised by ρu2e.

The shear Reynolds stresses on the outlet 1 plane are given in figures 7.23, 7.24
and 7.25. The different areas visible in the LES results (Fig. 7.23a, 7.24a and 7.25a)
are the same as those previously identified for the normal Reynolds stresses.

For the three components, the intensity in the wake of the blade is again under-
predicted by RANS when x3/h > 0.3, compared to the LES.

The RANS simulations mis-predict again the size and the intensity of the Reynolds
stresses compared to LES. For τt12, contrary to the tendency for the normal stresses,
the RANS simulations with the original Wilcox model (Fig. 7.23b) and the modified
Wilcox model (Fig. 7.23d) under-predict the intensity of the stress compared to the
LES (Fig. 7.23a). The quadratic Wilcox model corrects this behaviour by increasing
the intensity of the stress (Fig. 7.23d) beyond the LES value. For τt13 and τt23 (Fig. 7.24
and 7.25), the two RANS with the Boussinesq constitutive relation over-predict the
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Figure 7.25: τt23 on the plane outlet 1, normalised by ρu2e.

stresses compared to the LES. The over-prediction is slightly less important with the
modified Wilcox model. The quadratic Wilcox model further increases the intensity
of the stresses, but yields almost no effect on the position of their maximum.

7.3 Partial conclusion
The LES demonstrates its capacity to be used as reference when compared with ex-
perimental results.

For the mean flow values, such as the wall static pressure coefficient or the total
pressure loss coefficient, none of the RANS simulations were able to yield results
comparable with the experiment or the LES. The modified Wilcox model tends to
improve slightly the estimations.

The study of the Reynolds stresses shows that each stress is mis-predicted (either
over-predicted or under-predicted) by the RANS simulations, compared with LES. The
original and modified Wilcox models, that rely on the Boussinesq constitutive relation,
yield comparable results, with slightly better ones for the modified Wilcox model. The
quadratic Wilcox model, that uses the QCR, yields results quite different from the two
other RANS simulations. However, if the correction goes in the right direction in the
major part of the cases, the correction is too intense, mostly on the shear stresses.
Moreover, an artificial area of intense shear stresses is generated by the QCR in the
passage, between the corner separation and the adjacent blade pressure side. This
seems to indicate that in highly vortical areas with moderate Reynolds stresses, the
QCR term depending on the normalised rotation tensor is dominant and much more
important than the Reynolds stress tensor from the Boussinesq constitutive relation.
The impact of the vorticity is too important on the correction.

The modelling of the Reynolds stresses bears the joint effect of the constitutive
relation used and the eddy-viscosity modelling, with the use of equations on k and ω.
The following chapters aim at inspecting the validity of the constitutive relation and
the validity of the k equation.
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Chapter 8

Corner separation constitutive rela-
tion analysis
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The comparison between the LES Reynolds stresses and the RANS Reynolds stresses
in the previous chapter lead to the conclusion that the turbulence modellings on

which the RANS simulations rely do not accurately predict the physics. The present
chapter tackles the analysis of turbulence modelling, through one of its two main com-
ponents, the constitutive relation. LES is used as reference to test the validity of
the two hypotheses of the constitutive relations studied (Boussinesq constitutive rela-
tion and QCR): the tensor alignment hypothesis and the turbulent viscosity estimate
(proportionality coefficient).

8.1 Evaluation methods

8.1.1 Constitutive relation alignment
Boussinesq constitutive relation

The Boussinesq constitutive relation, presented in equation (2.49), relies on the hy-
pothesis of alignment of two tensors. This hypothesis can be written, in its tensorial
form, as:
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τ ∗
t
+

2

3
〈ρ〉 [k] I3 = µt

[
σ
]

(8.1)

with I3 the identity tensor and
[
σ
]

the mean zero-trace strain rate tensor.
In LES, both the Reynolds stress tensor, noted τt and the mean zero-trace strain

rate tensor, noted [σ̃] are known independently, so the alignment hypothesis can be
tested. The alignment between the tensors is measured using an indicator similar to
Schmitt’s indicator (Schmitt, 2007), introduced in equation (2.50). The main disad-
vantage of Schmitt’s indicator is its incapacity to discriminate between aligned and
anti-aligned tensors. Two tensors are said anti-aligned if they are aligned with opposite
directions. An example of anti-aligned vectors is given in figure 8.1. The following
indicator, which corresponds to Schmitt’s indicator without the absolute value, is pre-
ferred:

Υ =
τ ∗∗t :

[
σ̃
]∥∥∥τ ∗∗t ∥∥∥∥∥[σ̃]∥∥ (8.2)

with τ ∗∗t the Reynolds stress tensor plus 2[k̃]/3 on the diagonal:

τ ∗∗
t

= τ
t
+

2

3
〈ρ〉
[
k̃
]

(8.3)

with [k̃] = 1/2τtii/ < ρ >. As for Schmitt’s one, when this indicator is equal to 1, the
tensors are aligned, ergo proportional, and the Boussinesq hypothesis is valid. When
this indicator is equal to 0, the tensors are orthogonal, and the Boussinesq hypothesis
is invalid. Contrary to Schmitt’s one, this indicator can be negative. In this case, the
tensors are anti-aligned, which means that using the Boussinesq constitutive relation
would yield non-physical results. The same threshold of 0.86 is kept. If the indicator
is greater than 0.86, the alignment hypothesis is considered valid. An illustration is
given in figure 8.1, for vectors in place of tensors.

AB

C

D

E

ΥSchmitt(A,B) = 1.00
ΥSchmitt(A,C) = 0.86
ΥSchmitt(A,D) = 0.00
ΥSchmitt(A,E) = 1.00

Υ(A,B) =  1.00
Υ(A,C) =  0.86
Υ(A,D) =  0.00
Υ(A,E) = -1.00

π/6

Figure 8.1: Illustration of the tensor alignment criterion. The grey cone represents the
area where the Boussinesq constitutive relation is considered valid.

Quadratic constitutive relation

The quadratic constitutive relation (QCR), presented in equation (2.54), relies also
on the hypothesis of alignment of two tensors. The Reynolds stress tensor computed
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with Boussinesq constitutive relation, present in the second member of the equation,
can be developed to yield the following tensorial formulation of the QCR:

τQCR

t
− 2

3
〈ρ〉 [k] I3 = µt

([
σ
]
+ cQCR(

[
σ
]
O −O

[
σ
]
)
)

(8.4)

with O the normalised rotation tensor introduced in equation (2.55).
The indicator previously introduced is adapted to the QCR as follows:

ΥQCR =
τ ∗∗t :

[
σQCR∗]∥∥∥τ ∗∗t ∥∥∥∥∥[σQCR∗

]∥∥ (8.5)

with: [
σQCR∗] = [σ̃]+ cQCR(

[
σ̃
]
Õ − Õ

[
σ̃
]
) (8.6)

8.1.2 Turbulent viscosities
The turbulent viscosity represents the proportionality coefficient between the Reynolds
stress tensor and the constitutive relation tensor (i.e.

[
σ̃
]

for the Boussinesq constitu-
tive relation and

[
σQCR∗] for the QCR). Given the LES data available, a first approach

is to reconstruct an turbulent viscosity as the ratio of the tensor norms:

µ
(0)
t =

∥∥∥τ ∗∗t ∥∥∥∥∥[σ̃]∥∥ ; µ
(0)QCR
t =

∥∥∥τ ∗∗t ∥∥∥∥∥[σQCR∗
]∥∥ (8.7)

If the tensors are aligned, i.e. Υ = 1.0 (resp. ΥQCR = 1.0), this value is the turbulent
viscosity that verifies the Boussinesq constitutive relation (resp. QCR).

This proportionality coefficient is homogeneous, for the considered RANS k−ω
models to:

µ
(1)
t = 〈ρ〉

[
k̃
]

[ω̃]
(8.8)

This second estimate of µt can also be computed from the LES results with [ω̃] =

[ε̃]([k̃]Cµ)
−1, Cµ = 0.09 a constant, and [ε̃] derived from the turbulent kinetic energy

budget equation (2.36) as:

〈ρ〉 [ε̃] =
〈
τ ik

∂u′′i
∂xk

〉
︸ ︷︷ ︸

Viscous dissipation

+

〈
Πik

∂u′′i
∂xk

〉
︸ ︷︷ ︸
SGS dissipation

(8.9)

8.2 Alignment analysis
The alignment is gauged with the Υ indicator (resp. ΥQCR indicator) presented in
equation (8.2) (resp. (8.5)), plotted as probability density functions (PDF) and cumu-
lative distribution functions (CDF) of the indicator value. Concerning the PDF (for
instance, in Fig. 8.3a), there are two sets of bars, a left black bar with a right green
bar for each value. A couple of bars occupies a range of 0.05. The black one (resp.
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green one) represents the mass weighted percentage of points with Υ (resp. ΥQCR) in
the given 0.05 range. Concerning the CDF (for instance in Fig. 8.3b), the integration
of the PDF is made from −1 upward, so practically, the ordinate corresponding to the
abscissa Υ = 0.86 (resp. ΥQCR = 0.86) represents the mass weighted percentage of
points for which the Boussinesq constitutive relation (resp. QCR) is not valid.

The analysis is focused on the regions where turbulence is significant. Only the
points where the turbulence rate (defined as (2/3[k̃]/([ũi][ũi]))

1/2) is superior to 5%
participate to the PDF and CDF. This value is chosen so that the corner separation
wake and the blade wake are included in the analysis. In order to be grid independent,
each point considered is weighted by its mass, calculated as the square root of the
Jacobian at that point (homogeneous to a volume) times the density. The analysis
focuses first on the entire domain, which includes the inlet domain, passage domain
and outlet domain, as presented in figure 8.2. Then, each individual domain is analysed
separately.

Inlet

Outlet

Pass
age

x1
x3

x2

Figure 8.2: Domains used for the alignment criterion analysis. Blue: inlet, grey:
passage, red: outlet

8.2.1 Entire domain
The probability density function (PDF) and cumulative distribution function (CDF)
of the alignment criterion for the entire domain are plotted in figure 8.3. Both the
Boussinesq constitutive relation and the QCR present points with a negative criterion,
meaning a negative alignment between the Reynolds stress tensor and the constitutive
relation tensor. For both constitutive relations, the quantity of anti-aligned points
remains small, with less than 4% of the points concerned. The PDF of Υ (Boussinesq)
increases evenly from 0 to 0.75 and then decreases abruptly, showing that the vast
majority of the points tested does not present a correct alignment between the tensors.
The peak of the distribution is in the interval [0.7, 0.75]. In comparison, ΥQCR presents
lower densities under 0.75 and more points in the upper values, with its peak in the
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Figure 8.3: PDF (a) and CDF (b) of the Υ and ΥQCR criteria on the entire domain.

interval [0.9, 0.95]. The CDF shows the Boussinesq constitutive relation is not valid
for 91% of the points, whereas for the QCR only 63% of the points are not valid. The
QCR, though far from perfect, has a significant beneficial impact on the alignment of
the tensors.

The analysis will now focus specifically on the inlet domain, the passage domain
and the outlet domain in order to see if the constitutive relations present different
behaviours for different parts of the flow.

8.2.2 Inlet domain
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Figure 8.4: PDF (a) and CDF (b) of the Υ and ΥQCR criteria on the inlet domain.

The inlet domain, located upstream the blades and the corner separation, presents
the characteristics of a fully turbulent boundary layer. The Boussinesq constitutive
relation is expected to present better results on this canonical case. The number
of points from this domain, weighted by the mass, represents 6% of the total mass-
weighted number of points. The PDF and CDF of the inlet domain are given in
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figure 8.4. Contrary to the expectations, the Boussinesq constitutive relation yields
bad results on this inlet domain. The distribution is similar to the one of the entire do-
main, with a peak in the interval [0.7, 0.75], except there are no negative alignments.
The CDF shows that the overall alignment is worse, with 97% of the points for which
the Boussinesq constitutive relation is not valid. In comparison, the QCR presents
quite an improvement in this area. The peak of the PDF is in the interval [0.95, 1.0],
and the CDF shows that the constitutive relation is valid, in term of alignment, for
76% of the points. The QCR have an important effect on this canonical flow. This
may be partly explained by the fact that the calibration of the constant cQCR has been
done originally in the outer region of a simple boundary layer (Spalart, 2000).

8.2.3 Passage domain

-1.0 -0.5 0.0 0.5 0.86  1.0
Υ

0

5

10

15

PD
F 

[%
]

PDF of the passage domain (48% of the points)
Boussinesq
QCR

(a) PDF

-1.0 -0.5 0.0 0.5 0.86  1.0
Υ

0

25

50

75

100
93

57

CD
F 

[%
]

CDF of the passage domain (48% of the points)
Boussinesq
QCR

(b) CDF

Figure 8.5: PDF (a) and CDF (b) of the Υ and ΥQCR criteria on the passage domain.

The passage domain, located in between the blades, presents three boundary layers:
at the end-wall and on both sides of the blades. The interaction of the end-wall
and suction-side boundary layers forms the corner separation. The phenomenon is
three dimensional and vortical, and more complex than the inlet domain boundary
layer. The number of points from this domain, weighted by the mass, represents
48% of the total mass-weighted number of points. The PDF and CDF of the passage
domain are given in figure 8.5. Around 2% of the points are anti-aligned, for both the
Boussinesq and quadratic constitutive relations. The Boussinesq constitutive relation
yields similar results to the inlet domain. The peak of the PDF is still located in the
interval [0.7, 0.75]. Looking at the CDF, the Boussinesq hypothesis is not verified for
93% of the points. The QCR still yields better results in term of tensor alignment, but
the improvement is not as important as for the inlet domain. The peak of the PDF is
still inside the area where the alignment hypothesis is verified, but the CDF indicates
57% of the points are not valid.

8.2.4 Outlet domain
The last domain is located at the outlet. In this domain, the wake of the corner
separation develops downstream. The flow is again three-dimensional and vortical.
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Figure 8.6: PDF (a) and CDF (b) of the Υ and ΥQCR criteria on the outlet domain.

The number of points from this domain, weighted by the mass, represents 46% of the
total mass-weighted number of points. The PDF and CDF of the outlet domain are
given in figure 8.6. The Boussinesq constitutive relation yields again similar results,
with a little improvement, but not enough to consider that it behaves well. Almost all
the anti-aligned points of the entire domain are located in the outlet part, in the corner
separation wake. Concerning the QCR, an improvement is still visible compared to
the Boussinesq constitutive relation, but the improvement is less significant than for
the upstream domains. In this complex wake region, the QCR behaviour, in term of
tensor alignment, is much closer to the Boussinesq constitutive relation than in the
boundary layer at the inlet. The CDF shows that the quantity of misaligned points
is comparable to the Boussinesq results: 75% of misaligned points for ΥQCR, closer to
the value of 88% for Υ. This result is counter-intuitive. Given that the formulation of
the QCR explicitly contains a normalised rotation tensor, it was expected to be more
effective in highly vortical areas.

8.3 Turbulent viscosity comparisons
The turbulent viscosities, defined in equations (8.7−8.8), are plotted in figure 8.7.
They are compared to the turbulent viscosities extracted from the three RANS simu-
lations studied. The turbulent viscosities are plotted on the outlet 1 plane, presented
in figure 7.7, and normalised by the dynamic viscosity µ = 1.81 × 10−5kg.m−1.s−1.

It is first remarkable that the LES turbulent viscosity computed as µ(1)
t =< ρ >

[k̃]/[ω̃] is of a comparable order of magnitude as the RANS turbulent viscosities com-
puted as µt =< ρ > [k]/[ω], where [k] and [ω] are provided by the transport equations
of the models. In term of topology, as already observed for this configuration with the
Reynolds stresses in chapter 7 section 7.2.4, RANS simulations are unable to correctly
predict the size of the corner separation, where the turbulent viscosity is maximal.
Concerning the turbulent viscosities computed as the ratio of two tensor norms, µ(0)

t ,
they are also of the same order of magnitude as the turbulent viscosities computed
as < ρ > [k]/[ω]. µ(0)

t and µ
(0)QCR
t are superior to µ(1)

t , but their maxima are similar
to the maxima of the other turbulent viscosities. Given the similarity between the
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Figure 8.7: Turbulent viscosities on the outlet 1 plane.

µ
(0)
t and µ(0)QCR

t values, the QCR bears no significant modification on the norm of the
constitutive relation tensor. Its influence is essentially a rotation of the tensor.

8.4 Partial conclusion
The two constitutive relations tested rely on a set of two hypotheses, an hypothesis of
tensor alignment and an hypothesis on the manner to calculate the proportionality co-
efficient (turbulent viscosity). The first hypothesis has been tested with an alignment
indicator, derived from the inner product of the two tensors. The hypothesis of align-
ment is rarely verified for the Boussinesq constitutive relation, with around 90% of
the mass-weighted points where the misalignment is higher than an angle of π/6. The
Boussinesq constitutive relation yields similar results in all the studied sub-domains.
The QCR succeeds in realigning the constitutive relation tensor with the Reynolds
stress tensor for around 30% of the mass-weighted points. The correction impacts
strongly the inlet, where a flat-plate boundary layer develops, with flow characteris-
tics close to the ones used for the QCR calibration. The impact of the QCR decreases
in the passage and in the outlet region, where the wake of the corner-separation lies. In
the outlet region, the QCR yields results closer to the Boussinesq constitutive relation.

The second hypothesis has been tested by measuring the ratios of the tensor norms,
and by comparing them with the ratio < ρ > [k̃]/[ω̃] extracted from LES, and with the
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turbulent viscosities calculated with the three RANS simulations. All these estimates
present similar amplitudes, so the choice of k and ω to compute the turbulent viscos-
ity is legitimate, and the transport equations of the k − ω models provide meaningful
values. Furthermore, the viscosities computed as the ratios of the norms of the ten-
sors are very similar, indicating that the QCR rotates the constitutive relation tensor
without dilating it.

Finally, the Boussinesq constitutive relation shows an important alignment default,
but the calculation of the coefficient of proportionality from modelled statistics is
legitimate. To correct the alignment, the path seems to add a rotation to the zero-trace
mean strain-rate tensor in order to realign it with the Reynolds stress tensor. The QCR
goes in that direction, but is not sufficient in the highly vortical part of the flow. The
correction may be improved. A general solution, introduced by Pope (1975), would
be to express the Reynolds stress tensor as a linear combination of no more than 10
tensors derived from the zero-trace mean strain-rate tensor and the mean vorticity
tensor, yielding a general non-linear constitutive relation approach:

T1 = σ (≈ Boussinesq) T2 = σΩ− Ωσ (≈ QCR)

T3 = σ2 − 1

3

∥∥σ∥∥2 I3 T4 = Ω2 − 1

3

∥∥Ω∥∥2 I3
T5 = Ωσ2 − σ2Ω T6 = Ω2σ − σΩ2 − 2

3

∥∥σΩ2
∥∥2 I3

T7 = ΩσΩ2 − Ω2σΩ T8 = σΩσ2 − σ2Ωσ

T9 = Ω2σ2 − σ2Ω2 − 2

3

∥∥σ2Ω2
∥∥2 I3 T10 = Ωσ2Ω2 − Ω2σ2Ω

The first term of this formulation corresponds to the Boussinesq constitutive relation,
while the addition of the first two terms gives a model close to the QCR. This method
has been used and calibrated by Shih et al. (1996) for their turbulence model, but its
complexity makes it not very popular in the turbomachinery community.

The main drawback of such a model is its complex calibration. As a perspective,
a two step approach is proposed. First, high fidelity LES or DNS databases can
be used to find the predominant terms in Pope expression, if they exist, using for
instance a statistical approach. Then, the calibration of this reduced model can be
done statistically with the same databases.
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Corner separation TKE budget anal-
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The turbulent kinetic energy (TKE) budget shows the physics of turbulence through
the production, dissipation and transport. For the RANS simulations with a k

equation, it shows the ability of the model to represent correctly the fine physics of
turbulence. The TKE budget is extracted on the same plane as the Reynolds stresses
presented in chapter 7 (c.f. Fig. 7.7) and normalised by (ρ2u4e)/µ. The results on
the outlet 0, outlet 2 and outlet 3 planes are similar to the results on the outlet 1
plane. These results are not presented in the present chapter, but can be found in
appendix D. In the LES figures, horizontal and vertical lines are visible. These lines
are a consequence of the interpolation between different blocks for visualization.
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9.1 On the inlet plane
This plane allows to analyse the interaction of the thick end-wall boundary-layer with
the blade suction-side boundary-layer.

9.1.1 Numerical residual
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Figure 9.1: Numerical residual on the inlet plane, normalised by (ρ2u4e)/µ.

The numerical residual term is added to close the physical budget presented in
equations (2.36) and (2.69). The term is calculated as minus the sum of all the other
terms. The numerical residual term on the inlet plane is represented in the figure 9.1.
For all the simulations, the numerical residual is negative, thus corresponding to a
dissipative effect. For the LES simulation, in figure 9.1a, the numerical residual is
located only in the blade boundary-layer area (d/s ' 0), with non negligible levels. Its
maximal intensity is of similar level as the maximal production and transport inten-
sities. Consequently, any physical interpretation in this area must be considered with
caution. The main reason of such an important numerical residual term is supposed to
be the numerical error, influenced by the mesh distribution. The blade boundary-layer
area is the location where the numerical effects are the strongest compared to the rest
of the flow, and the hardest to control.

For the RANS simulations, two different behaviours can be observed. The RANS
simulations with the original Wilcox model and the modified Wilcox model scarcely
show any numerical residual (Figs. 9.1b and 9.1d). On the contrary, the RANS simula-
tion with the quadratic Wilcox model (Fig. 9.1c) shows an important numerical resid-
ual in the end-wall boundary-layer area (x3/h ≈ 0), superimposed where an important
production intensity is seen in figure 9.2c. For RANS simulations, since the k equation
is directly solved, the numerical residual indicates that the k production limitation is
activated. This k production limitation is normally active in highly anisotropic areas.
RANS with the quadratic Wilcox model tends to over-predict the value of production
compared to LES in the end-wall boundary-layer (Fig. 9.2a), and it is clipped by an
important k production limitation.

9.1.2 Production
The production term on the inlet plane is represented in figure 9.2. The two main
areas where the production term is important on the LES results, in figure 9.2a, are
the blade boundary-layer (d/s ' 0) and the end-wall boundary-layer (x3/h ≈ 0).
While a bubble of Reynolds stresses is present in the corner, no bubble of production
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Figure 9.2: Production on the inlet plane, normalised by (ρ2u4e)/µ.

can be seen there on the figure. This may be due to a lack of resolution in this area,
directly located on a block intersection, where the budget is not correctly computed.

The RANS simulations with the original and modified Wilcox models, in fig-
ures 9.2b and 9.2d, show a correct representation of the production term in the
boundary-layers, compared to the LES, and no production bubble in the corner. The
RANS simulation with the quadratic Wilcox model, in figure 9.2c, decreases the pro-
duction term intensity in the blade boundary-layer and increases the intensity in the
end-wall boundary-layer, beyond the LES values in both cases, and shows a bubble of
production in the corner.

9.1.3 Dissipation
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Figure 9.3: Dissipation on the inlet plane, normalised by (ρ2u4e)/µ.

The dissipation term at the inlet is represented in figure 9.3. The areas where
the dissipation is important for the LES results, in figure 9.3a, are the same areas as
for the production term, i.e. in the boundary-layers. The intensity of dissipation is
the highest close to the suction side of the blade, but still smaller than the intensity
of production at the same location. Not all the turbulent kinetic energy produced is
dissipated on the same place.

In all the RANS cases (Figs. 9.3b, 9.3c and 9.3d), the dissipation term is super-
imposed with the production term in the blade boundary-layer, with almost the same
intensity (opposite). In the end-wall boundary-layer, the RANS simulations with the
original and modified Wilcox models show a dissipation at equilibrium with produc-
tion, while for the RANS simulation with the quadratic Wilcox model, the dissipation
is weak compared to the intense production. No bubble of dissipation can be seen in
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the corner, as counterpart of the bubble of production for RANS with the quadratic
model.

9.1.4 Transport
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Figure 9.4: Transport on the inlet plane, normalised by (ρ2u4e)/µ.

The transport term at the inlet is represented in figure 9.4. The LES simulation
shows an important transport in the blade boundary-layer, in figure 9.4a, and a weak
transport in the end-wall boundary-layer.

The RANS simulations (Figs. 9.4b, 9.4c and 9.4d) present a very weak transport
term, with a maximum ten times smaller than for the production or dissipation terms.
This is a known default of RANS modelling, and the quadratic constitutive relation
has no influence on it.

9.2 On the passage plane
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Figure 9.5: Numerical residual on the passage plane, normalised by (ρ2u4e)/µ.

The numerical residual term on the passage plane is represented in figure 9.5. This
term is maximal, for the LES results (Fig. 9.5a), very locally at the beginning of
the corner separation (x1/ca ≈ 0.5), and small enough elsewhere compared to the
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production term or the transport term. This result allows the physical analysis of the
budget from the LES.

For the three RANS results (Fig. 9.5b, 9.5c and 9.5d), the numerical dissipation,
representing the k production limitation, is present in highly anisotropic areas where
the two-equation RANS modelling over-produces turbulent kinetic energy. For the
RANS simulation with the quadratic Wilcox model, a bubble of high numerical dis-
sipation is present at x1/ca = 0.7 and x2/s = 1.1, superimposed with the peak of
production (Fig. 9.6c), and cancelling completely its effect.

9.2.2 Production
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Figure 9.6: Production on the passage plane, normalised by (ρ2u4e)/µ.

The production term on the passage plane is represented in figure 9.6. The produc-
tion term is important, for the LES (Fig. 9.6a) and the RANS simulations (Fig. 9.6b,
9.6c and 9.6d), on the blade suction side close to the leading edge, at the beginning of
the corner separation, and on the blade pressure side close to the trailing edge. The
maximum of production is each time superimposed with the maximum of τt11 , shown
in figure 7.14.

The two RANS simulations with the Boussinesq constitutive relation (Fig. 9.6b and
9.6d) over-estimate the production intensity in the corner separation, at the leading
edge on the pressure side and at the trailing edge on the suction side. This is a known
behaviour of two-equation models to over predict production at stagnation points and
in highly anisotropic areas. The RANS simulation with the QCR (Fig. 9.6c) presents
the same behaviour as the other RANS simulations, with the addition of a bubble
of production at x1/ca = 0.7 and x2/s = 1.1, where a maximum of τt22 is present
(Fig. 7.15c).

9.2.3 Dissipation
The dissipation term on the passage plane is represented in figure 9.7. The dissipation
is important, for the LES (Fig. 9.7a), in the suction side boundary-layer upstream the
corner separation. It is also significant at the beginning of the corner separation itself,
but its intensity is weaker than the production intensity.
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Figure 9.7: Dissipation on the passage plane, normalised by (ρ2u4e)/µ.

For the RANS simulations (Fig. 9.7b, 9.7c and 9.7d), the dissipation is mainly
superimposed with the production in the boundary-layers and at the beginning of the
corner separation. There is no over estimation of dissipation at the leading edge or in
the middle of the passage at x1/ca = 0.7 and x2/s = 1.1, where a peak of production
is visible for the RANS simulation with the quadratic Wilcox model.

9.2.4 Transport
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Figure 9.8: Transport on the passage plane, normalised by (ρ2u4e)/µ.

The transport term on the passage plane is represented in figure 9.8. The transport
term for the LES (Fig. 9.8a) is the most intense in the corner separation, where the
turbulent and rotational effects are the most important. This, and the topology of
the transport term, suggest that the turbulent transport is mainly due to convective
effects in the separation.

For the RANS simulations (Fig. 9.8b, 9.8c and 9.8d), the transport topology is
correctly represented in the corner separation, but with weaker intensities and a larger
extent than for the LES. The transport at the leading edge on the pressure side has
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opposite signs for LES and RANS, showing a complete mis-prediction of the turbulent
physics at this stagnation point.

9.3 On outlet 1

9.3.1 Numerical residual
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Figure 9.9: Numerical residual on the plane outlet 1, normalised by (ρ2u4e)/µ.

The numerical dissipation term at the outlet section 1 is represented in figure 9.9.
The numerical residual term for the LES (Fig. 9.9a) is not negligible compared to the
other terms but remains again moderate. Its extremum is almost four times smaller
than the extrema of production and dissipation, thus its impact on the budget does
not modify the physical analysis.

The three RANS simulations show a non-negligible numerical dissipation (Figs. 9.9b,
9.9c and 9.9d), corresponding to the activation of the k production limiter. This be-
haviour is coherent with what was expected, given that the limitation is to occur in ar-
eas of high anisotropy. Because the QCR was designed to improve modelling in highly
vortical areas, it was expected to reduce the use of the k-production limiter. However,
the exact opposite occurs. For the RANS simulation with the quadratic Wilcox model,
the k production limitation is even more important than for the two RANS simulations
relying on the Boussinesq constitutive relation, given that the production intensity is
increased (Fig. 9.10c) and the dissipation intensity decreased (Fig. 9.11c).

9.3.2 Production
The production term at outlet section 1 is represented in figure 9.10. The production
term for the LES (Fig. 9.10a) shows two clearly visible lobes of maximal intensity. The
first lobe, centred around x2/s = 1.1 and x3/h = 0.05, is the main area of production.
A second lobe of lower intensity is found around x2/s = 1.3 and x3/h = 0.1. These two
areas are inside the area of maximal Reynolds stresses and maximal losses, as shown
in figures 7.4 and 7.20-7.25.

The RANS results (Fig. 9.10b, 9.10c and 9.10d) present a similar topology to LES,
i.e. two lobes well delimited. However, all the RANS simulations over-predict the
size of the lobes and the intensity of the term. The over-prediction is remarkable for
the second lobe (at x2/s ' 1.3 and x3/h ' 0.15), where the levels are very different
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Figure 9.10: Production on the plane outlet 1, normalised by (ρ2u4e)/µ.

from the LES. The quadratic Wilcox model tends to further increase the intensity of
the production term and the area of maximal intensity, while the modified Wilcox
model tends to reduce a little the intensity of the production and the area of maximal
intensity. This latter model yields the best comparison to LES.

9.3.3 Dissipation
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Figure 9.11: Dissipation on the plane outlet 1, normalised by (ρ2u4e)/µ.

The dissipation term at outlet section 1 is represented in figure 9.11. In the LES,
the dissipation is very weak, as seen in figure 9.11a.

The behaviour of RANS is quite different. For the three simulations (Figs. 9.11b,
9.11c and 9.11d), the area of dissipation is again superimposed with the area of pro-
duction.

The original and quadratic Wilcox models yield very similar results, with a notable
overestimation of the dissipation. The intensity is reduced in the modified Wilcox
model, but not sufficiently in comparison to LES.

9.3.4 Transport
The transport term at outlet section 1 is represented in figure 9.12. In the LES, the
transport develops in the same region as the production, as seen in figure 9.12a. The
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Figure 9.12: Transport on the plane outlet 1, normalised by (ρ2u4e)/µ.

TKE is taken from the area of production to be transported to a dissipative place,
close to the blade wall and downstream. In the separation, the transport of turbulent
kinetic energy can be associated with the convection due to the rotation of the fluid,
which explains the sign change at x2/s ' 1.1 and x3/h ' 0.1.

The amplitude of the transport term for the RANS simulations is moderate (Figs. 9.12b,
9.12c and 9.12d) compared with the production or dissipation terms. This is again the
counterpoint of the non-physical behaviour of the RANS models. Turbulent kinetic
energy is dissipated where it is produced, and not transported. However, given the
overestimation of production and dissipation, transport reaches intensities comparable
with LES. Neither the quadratic model nor the modified model modify strongly the
size of the area of maximal transport or its intensity

9.4 Partial conclusion
The TKE budget extraction methodology used on this configuration allows a fine
understanding of the turbulence physics in the corner separation. The LES TKE
budget presents an important production inside the wake of the corner separation,
superimposed with transport. The dissipation inside the wake of the corner separation
is very weak, except within a thin layer near the end-wall. The LES is used as a
reference to evaluate the RANS turbulence models.

The RANS simulations reproduce reasonably the topologies of the TKE budget
terms. However, the levels are not correctly estimated. The production is slightly
overestimated inside the corner separation and the corner separation wake, while the
dissipation is excessive and the transport underestimated. This is a typical behaviour
of RANS to consider the turbulence at equilibrium, i.e. with production and dissi-
pation superimposed and little transport (Wilcox, 2006). Concerning the differences
between the RANS models, the TKE budget analysis shows that for the four terms, the
original and modified Wilcox models are similar. The modification of the ω produc-
tion term improves slightly the results, but the differences with LES remain important.
The modification of the constitutive relation in the quadratic Wilcox model produces
stronger variations compared to the original Wilcox model and tends to degrade further
the results.
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Corner separation hybrid simulation
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In the previous chapters, the turbulence modelling of three RANS approaches has
been investigated in the corner separation case, using LES as reference. The con-

clusion is that the RANS simulations fail to represent accurately the turbulent physics
of the corner separation. The LES is much more accurate, but at a prohibitive com-
putational cost for an everyday design application. The approach tested here is a
compromise between the precision of a LES and the moderate computational cost of a
RANS simulation. RANS is used close to the wall, where the need for a refined mesh
in LES is the most demanding.

The quality of the present approach is gauged with mean values of the flow, such
as the pressure coefficient around the blade at various heights and the total pressure
losses. These are values of interest for industrials.

A reference simulation is run, with the default parameters of the hybrid method.
The results are presented in sections 10.1 to 10.5. Then, in section 10.6, a second
hybrid RANS-LES simulation, with an increased RANS-LES transition distance, is
presented. This simulation aims at assessing the sensitivity of the flow solution to this
parameter.
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10.1 Computational cost
The simulation was performed with Turb’Flow, an in-house solver. The simula-
tion ran on 42 Haswell cores with a 2.60GHz frequency, during two full months
(∼ 45 000 CPU hours), for a total physical time of 20 through-flow periods. This
is a longer computation time than a RANS simulation, but a much less important one
than a LES.

10.2 RANS-LES transition location
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Figure 10.1: Visualisation of the instantaneous RANS-LES transition location in the
corner separation case, determined a posteriori.

As presented in chapter 5, the RANS-LES transition location occurs at a given
distance from the wall, in wall units. The normalisation of the wall-distance requires a
friction velocity, which is obtained at the beginning of the computation using Michel’s
empirical relation (Cousteix, 1989), presented in equation (5.4). Consequently, the
transition function value is fixed for each grid point from the beginning of the compu-
tation. This estimated friction velocity is generally different from the actual friction
velocity of the computation, and this will have an influence on the final transition
location. Indeed, if the actual friction velocity is smaller than the one estimated from
Michel’s relation, the grid points where the transition function equals 0.5 will corre-
spond to a smaller d+, so the transition will occur deeper in the boundary-layer.

The a posteriori transition location is presented in figure 10.1. The transition
should occur at d+ = 50. However, the actual transition is located between d+ =
30 and d+ = 50. The over-estimation of the friction velocity by Michel’s empirical
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relation leads to a RANS-LES transition deeper in the boundary-layer than expected.
This behaviour has to be taken into account for future simulations in order to choose
transition parameters d+µ and Lhyb that yield the desired transition location.

10.3 Flow visualisation
The corner separation, occurring at the junction of the blade suction side and the
end-wall, in the aft part of the blade, is visualised using the Q criterion defined in
equation (7.1). The Q = 5 × 105s−2 surface is presented in figure 10.2a, for an instan-
taneous snapshot of the flow. The losses are also represented using the mean total
pressure loss coefficient, defined in equation (7.3).

On the first hand, the corner separation presents a size and intensity of losses
comparable with the LES case, presented in figure 7.1a. The vortical structures are
bigger, but this is due to the coarser mesh used for the hybrid simulation.

On the other hand, vortical structures are present on the suction side of the blade.
These structures, absent from the LES case, are caused by a separation occurring at
around one third of the chord, on the blade suction side. The separation is thought to
be a consequence of the hybrid RANS-LES transition location. This is a classical be-
haviour present in the DES family models, known as grid-induced separation (Menter
et al., 2003; Spalart et al., 2006), when the RANS to LES transition is too close to the
walls.

In figure 10.2b, the mean pressure coefficient is represented at the end-wall and on
the blade, along with the mean total pressure loss coefficient at the outlet of the blade
passage. On both the blade and the outlet of the passage, the effects of the separation
are clearly visible.

10.4 Pressure coefficient around the blade
The pressure coefficient −Cp is extracted at various span heights (indicated in fig-
ure 7.2) and presented in figure 10.3. The black lines represent the LES, the blue
lines represent the RANS simulation with the original Wilcox model, and the green
lines represent the hybrid simulation. Oscillations are present close to the leading edge
in the LES simulation due to the implementation of the tripping bands. The upper
branch of the curves represents the suction side, while the lower branch represents the
pressure side.

For the LES and RANS simulations, at mid span (Fig. 10.3a) and at 30% of span
(Fig. 10.3b), the results are consistent. In these areas, the flow is expected to be
attached to the blade. However, in the hybrid simulation, the separation on the
suction side, seen in figure 10.2, creates a plateau of Cp. The separation is located
at x1/ca > 0.3, from mid span down to 13.5% of span (Fig. 10.3d). At 5.4% of span
and 1.4% of span, a small reminiscence of the suction-side separation is still visible in
the hybrid simulation, between x1/ca ≈ 0.4 and x1/ca ≈ 0.6. Then, the simulation
presents a flattening of the pressure distribution on the suction side, for x1/ca > 0.6,
characteristic of the corner separation. The sudden and important static pressure drop
is visible at the trailing edge.

The suction-side separation perturbs the flow, and does not really permit a compar-
ison with the RANS simulation or the LES. The overall quality of the flow prediction is
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Figure 10.2: Visualisation of the hybrid flow field in the corner separation case. (a):
instantaneous Q criterion for Q = 5 × 105s−2. (b): Mean pressure coefficient on the
blade and at the end-wall, and mean total pressure coefficient at the outlet of the blade
passage. The same scale and colourmap are used for Cpt in both figures.
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Figure 10.3: Mean static pressure coefficient around the blade, at various span-wise
positions.

bad, but the reason for this failure, a grid-induced separation or the inherent capacity
of the hybrid approach, is not determined.



142 Chapter 10. Corner separation hybrid simulation

10.5 Total pressure coefficient on the outlet planes

The total pressure coefficient Cpt is extracted on the three outlet planes, presented in
figure 7.2. On each plane, it is compared with the experiment, the LES and the RANS
simulation with the original Wilcox model.

10.5.1 On outlet 1
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Figure 10.4: Mean total pressure loss coefficient on outlet plane 1.

The results on the outlet plane 1 are presented in figure 10.4. Two different areas
are visible. The area of losses for x2/s ∈ [1.0, 1.4] and x3/h > 0.2 corresponds to the
wake of the blade. It is particularly thick for the hybrid simulation, because of the
suction-side separation. The triangular area of losses at the bottom of each figure is
due to the corner separation wake.

The area of the wake of the suction-side separation can not be analysed. As a
numerical artefact, it should not be present in the simulation, so it is not physically
relevant. But the corner separation wake area presents an interesting behaviour. In
term of intensity, this area of losses in the hybrid simulation is more comparable to the
experimental results or the LES results, though still a bit higher, than to the RANS
results. In term of topology, the size of the area is similar to the experimental one
or the LES one, and smaller than the RANS one. This may indicate a capacity of
the hybrid approach to simulate more accurately this flow than a RANS approach.
However, due to the suction-side separation, a blockage is induced in the passage. The
reduction of the corner separation could also be a mere consequence of this blockage.
It is not yet possible to arbitrate on this point.

10.5.2 On outlet 2

The results on the outlet plane 2 are presented in figure 10.5. They follow the same
trends as those on the outlet plane 1. The prediction of the size and intensity of the
corner separation wake by the hybrid simulation is still closer to the experimental and
LES results than to the RANS results.
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Figure 10.5: Mean total pressure loss coefficient on outlet plane 2.

1.4 1.6 1.8 2.0 2.2
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

0.05

0.05

0.
05

0.10

0.10

0.
10

0.15

0.15

0.15

0.
20

0.20

0.250.30

0.
30

0.350.40
0.45 0.05

0.15

0.25

0.35

0.45

0.55

(a) EXP

1.4 1.6 1.8 2.0 2.2
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

0.05

0.05

0.
05

0.
05

0.10

0.10
0.15

0.20

0.25

0.30

0.35 0.400.450.50 0.55

(b) LES

1.4 1.6 1.8 2.0 2.2
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

0.
05

0.05

0.05

0.10

0.
10

0.15
0.

15

0.20

0.20

0.25

0.25

0.25

0.30

0.30

0.35

0.35

0.40 0.450.50 0.55

(c) HYBR

1.4 1.6 1.8 2.0 2.2
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

0.05

0.05

0.05

0.10

0.10

0.15

0.15

0.20

0.20

0.25

0.30

0.350.400.45 0.50 0.55

(d) RANS_BSQ

Figure 10.6: Mean total pressure loss coefficient on outlet plane 3.

10.5.3 On outlet 3
The results on the outlet plane 3 are presented in figure 10.6, and follow the same
trends as upstream. The shape of the corner separation wake is again triangular for
the experiment, the LES, and the hybrid simulation. As already noted in chapter 7, it
is twisted for the RANS simulation. The hybrid simulation provides a good description
of the corner-separation wake evolution downstream of the blade passage.

10.6 Increased RANS-LES transition distance
In order to try to get rid of the suction-side separation, a second hybrid simulation
is run with a different target wall distance d+µ and hybrid length Lhyb. The target
wall distance and hybrid length need to be increased, in order to capture more of
the boundary-layer with the RANS approach, so the chosen values are d+µ = 200 and
Lhyb = 50. All the other simulation parameters remain unmodified.

10.6.1 Flow visualisation
The corner separation, occurring at the junction of the blade suction side and the
end-wall, in the aft part of the blade, is visualised using the Q criterion defined in
equation (7.1). The Q = 5 × 105s−2 surface is presented in figure 10.7a, for an instan-



144 Chapter 10. Corner separation hybrid simulation

0

50

10

20

30

40 ||ũ|| (m
.s -1)

Q criterion
Q = 5x105s-2

L.E.

T.E.

End-wall

Bl
ad

e

Corner
Separation

Iso-contours
of Cpt

(a) Q criterion of the instantaneous hybrid flow

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

Cp

0.0

0.8

0.4

0.2

0.6

Cpt

L.E.

T.E.

End-wall

Bl
ad

e

Corner
Separation

Iso-contours
of Cpt

Outlet of the
blade passage

(b) Mean pressure coefficient and mean total pressure coefficient

Figure 10.7: Visualisation of the hybrid flow field in the corner separation case for
a target RANS-LES transition distance d+µ = 200. (a): instantaneous Q criterion
iso-surface for Q = 5 × 105s−2, and contours of Cpt at the outlet of the blade passage.
(b): Mean pressure coefficient on the blade and at the end-wall, and mean total
pressure coefficient at the outlet of the blade passage. The same scale and colourmap
are used for Cpt in both sub-figures.
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taneous snapshot of the flow. The losses are also represented using the mean total
pressure loss coefficient, defined in equation (7.3). In figure 10.7b, the mean pressure
coefficient is represented on the blade and at the end-wall, along with the mean total
pressure loss coefficient at the outlet of the blade passage.

Compared to the case with a target wall distance for transition d+µ = 50, presented
in figure 10.2, the separation on the suction side away from the end-wall has disap-
peared. This confirms that this separation was a consequence of a transition occurring
too close to the walls, for the present mesh density.

Concerning the description of the corner separation, the size is more comparable
to what is found in pure RANS simulations than in pure LES simulations, but with a
less rounded topology.

10.6.2 Total pressure loss coefficient on outlet 1
The total pressure coefficient Cpt is extracted on the outlet 1 plane, presented in
figure 7.2. It is compared with the experiment, the LES, the hybrid RANS-LES
simulation with a target wall distance for transition d+µ = 50 and the RANS simulation
with the original Wilcox model. The results are presented in figure 10.8.

The results are similar to what has already been seen. The suction-side separation,
whose effect is visible on the wake of the blade in figure 10.8d, is not anymore present,
as visible in figure 10.8e. The counterpart of this disappearance is that the corner
separation is no longer constrained. Its size is more comparable to what was obtained
with pure RANS, in figure 10.8c, than with pure LES in figure 10.8b. The topology
however is not exactly the same as in pure RANS simulation. It is more irregular.

Even though this result is not satisfactory, it is still an improvement compared with
the simulation with d+µ = 50. An important point remaining to test is the influence of
the mesh density. The mesh used for the hybrid simulations was designed for RANS
simulations, thus not necessarily adapted for hybrid simulations. For example, for
a ZDES hybrid approach, the typical mesh requirements are ∆x+ 6 200, ∆y+ ' 1
and ∆z+ 6 100, with a small expansion ratio (Riera, 2014). In the present case, the
mesh is coarser but close enough to the requirements (∆x+ 6 400, ∆y+ ' 1 and
∆z+ 6 200), but the expansion ratio may be too important. This could explain the
weak improvement obtained with the hybrid simulation, when there is no separation
on the suction side of the blade.

10.7 Partial conclusion
An hybrid simulation has been carried-out on the corner separation case with the de-
fault hybrid parameters, and compared against experimental, LES and RANS results.
The comparisons have been made on an instantaneous snapshot of the flow, the pres-
sure coefficient at various span-heights and the total pressure loss coefficient on three
planes downstream of the blade, where the analysis has already been realised for the
LES and RANS results.

The instantaneous view of the flow and the pressure coefficients show a separation
on the suction side of the blade, that covers almost the whole span. Such separations
occur with hybrid turbulence models from the DES family, when the RANS-LES tran-
sition is too close to the wall for a given mesh density. They are called grid-induced
separations.
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Figure 10.8: Mean total pressure loss coefficient on outlet plane 1. The simulation
labelled HYBR_200 (e) corresponds to the hybrid RANS-LES simulation with a target
RANS-LES transition distance d+µ = 200.

The total pressure loss coefficient show that the losses due to the corner separation
are closer, in terms of topology and intensity, to the experiment and the LES than to
the RANS. It may be a consequence of the hybrid approach ability to predict more
accurately this corner separation flow, but it could be also a side effect of the artificial
suction side separation.

In order to test the influence of the RANS-LES transition location on the suction-
side separation, a second simulation has been carried out with a larger target wall
distance d+µ = 200. This modification successfully suppresses the suction-side separa-
tion, which tends to confirm this was a grid-induced separation. However the corner
separation is bigger, with a size and intensity closer to what is found in pure RANS.

In order to conclude on this hybrid method, further studies are necessary, and
principally a study on the mesh requirements. As a first attempt, the same mesh as
for the pure RANS simulations has been used. This mesh is fine enough for the pure
RANS approach, but may be too coarse for an hybrid RANS-LES approach. A mesh
sensitivity analysis has not been possible in the allotted time of this work.



147

Chapter 11

Tip-leakage mean flow analysis

Sections
11.1 Mean flow analysis . . . . . . . . . . . . . . . . . . . . . . . . 147

11.1.1 Flow topology . . . . . . . . . . . . . . . . . . . . . . . . . 147
11.1.2 Extraction locations . . . . . . . . . . . . . . . . . . . . . . 149
11.1.3 Pressure coefficient . . . . . . . . . . . . . . . . . . . . . . . 149
11.1.4 Mean velocities . . . . . . . . . . . . . . . . . . . . . . . . . 150
11.1.5 Mean turbulent kinetic energy . . . . . . . . . . . . . . . . 154

11.2 Reynolds stress analysis . . . . . . . . . . . . . . . . . . . . . 155
11.2.1 Through the tip-clearance . . . . . . . . . . . . . . . . . . . 155
11.2.2 In the tip-leakage vortex . . . . . . . . . . . . . . . . . . . . 160

11.3 Partial conclusion . . . . . . . . . . . . . . . . . . . . . . . . . 163

As presented in chapter 1, the tip-leakage flow is a three dimensional, vortical flow.
For these reasons, the usual turbulence models, often calibrated on more aca-

demic, less complex flows, have difficulties to predict accurately this flow physics. The
present analysis aims at investigating in details the capacities of RANS turbulence
modelling in a tip-leakage flow.

First, some results on the mean values, such as the pressure coefficient at various
span locations or mean velocities, are presented to gauge the overall quality of the sim-
ulation. Then, the Reynolds stresses, which are the turbulent quantities that directly
impact the momentum and energy equations (see equations (2.48b) and (2.48c)), are
analysed on two extraction planes, one through the tip-clearance and one that cuts
the tip-leakage vortex.

11.1 Mean flow analysis

11.1.1 Flow topology
The tip-leakage flow is caused by the presence of a gap between the tip of a blade
and a wall. The pressure difference between the pressure side and the suction side of
the blade creates a flow that evolves rapidly into a vortex. The Q criterion, defined
by equation (7.1), allows a visualisation of the end-wall turbulent boundary layer and
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Figure 11.2: Tip-leakage flow extraction planes. (a) extraction plane through the
tip-clearance, (b) extraction plane through the tip-leakage vortex.

the tip-leakage vortex, from an instantaneous flow field. It is presented, for Q =
5 × 107s−2, in figure 11.1.

A special attention is paid to the LES description of the turbulent incoming
boundary-layer, with a thickness consistent with the experiment of Jacob et al. (2016a,b).
The tip-leakage vortex initiates at the leading-edge of the blade, and then grows down-
stream. This gain in energy and size is due to the leakage through the tip-clearance,
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from pressure side to suction side. This phenomenon is known as jet-leakage flow.

11.1.2 Extraction locations

The pressure coefficient and the mean quantities extraction locations are presented
in figure 11.2. The pressure coefficient is extracted at mid-span and at 99.5% of the
span-length, close to the tip-gap (Fig. 11.2b), where Boudet et al. (2016a) validated the
ZLES results with experimental results. The mean velocities, mean turbulent kinetic
energy and Reynolds stresses are extracted on two different planes, one through the
tip-clearance (Fig. 11.2a) and one through the tip-leakage vortex (Fig. 11.2b).

11.1.3 Pressure coefficient
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Figure 11.3: Mean static pressure coefficient around the blade. (a): midspan, (b):
99.5% of the span length.

The pressure coefficient is computed at 50% span length and 99.5% span length
(i.e. at 0.1h = 1mm from the blade tip), as presented in figure 11.2b. The ZLES and
the three RANS simulations present a fairly good agreement on the pressure coefficient,
for both the mid-span (Fig. 11.3a) and the tip extractions (Fig. 11.3b). At mid-span,
the pressure coefficient distribution is comparable to a compressor blade distribution.
The three RANS simulations overestimate the pressure coefficient at the leading edge
stagnation point. The RANS simulation with the modified Wilcox model presents a
slight deterioration of the pressure coefficient prediction at the trailing edge compared
with the original model.

At 99.5% span, the pressure coefficient presents a different topology. The pressure
difference between the pressure side and the suction side is globally less important, and
instead of monotonously decreasing along the chord, an increase of pressure difference
is visible at x1/c ≈ −0.45. This is due to a pressure decrease on the suction side,
because of the jet leakage. The RANS simulations with the original or quadratic
Wilcox models underestimate the pressure drop, while the RANS simulation with the
modified Wilcox model misses it.
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11.1.4 Mean velocities
The mean velocities are extracted on the planes presented in figure 11.2. They are
normalised by the inflow velocity ue. The directions x1, x2 and x3 are normalised
respectively by ca, ca and c, with c the chord length and ca its projection on x1.
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Figure 11.4: Mean axial velocity through the clearance. The velocity is normalised by
ue. The black arrows represent the planar velocity.

The axial velocity (resp. transverse and span-wise) through the tip-clearance is
presented on figure 11.4 (resp. Fig 11.5 and 11.6). The projection of the blade on the
plane is also shown (thin black line). The planar velocity direction and magnitude are
presented with black arrows.

Concerning the direction of the flow, far from the blade, the flow is essentially axial.
In the clearance, an important transverse component appears, with an acceleration
from the pressure side to the suction side. This phenomenon is the tip-leakage jet. The
ZLES shows an intense axial velocity, with a maximum at x1/ca ≈ −0.7, on the suction
side. An important area of lower velocity can be found inside the tip-leakage vortex,
with a velocity twice as small as the reference velocity (Fig. 11.4a at x3/ca ≈ 0.33).
An important acceleration of the fluid is observed on the transverse component of the
velocity in the clearance (Fig. 11.5a for x1/ca ∈ [−0.7,−0.3] and x2/ca ∈ [0.15, 0.30]).
This acceleration is maximum around 50% of the chord. Concerning the span-wise
velocity, the ZLES shows a highly vortical flow. The fluid dive to the end-wall close to
the pressure side (Fig. 11.6a), and is driven upward by the tip-leakage vortex on the
suction side (Fig. 11.6a for x1/ca ∈ [−0.5,−0.1] and x1/ca ≈ 0.3).
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Figure 11.5: Mean transverse velocity through the clearance. The velocity is nor-
malised by ue. The black arrows represent the planar velocity.
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Figure 11.6: Mean span-wise velocity through the clearance. The velocity is normalised
by ue. The black arrows represent the planar velocity.
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The three RANS simulations are able to represent correctly the axial, transverse
and span-wise velocities, with comparable levels and topologies. The quadratic model
yields little difference on the mean velocities, as does the modified model, compared
with the original model. The small influence of the turbulence model on the mean
values can be explained by the previous conclusions of Storer and Cumpsty (1991)
that the tip-leakage flow is essentially pressure driven.

In the tip-leakage vortex
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Figure 11.7: Mean axial velocity in the tip-leakage vortex. The velocity is normalised
by ue. The black arrows represent the planar velocity.

The axial velocity (resp. transverse and span-wise) in the tip-leakage vortex is
presented on figure 11.7 (resp. Fig 11.8 and 11.9). The planar velocity direction and
magnitude are presented with black arrows.

Concerning the direction of the flow, the vortical behaviour is clearly visible. With
respect to the ZLES, the mean velocities calculated by the RANS simulations present
a similar topology, but differ on the intensity. The most visible difference is for the
axial velocity. The ZLES shows a maximum of axial velocity close to the centre of
the vortex (Fig. 11.7a at x2/ca ≈ 0.24 and x3/c ≈ 0.04), while for the three RANS
simulations the center of the vortex corresponds to a minimum of axial velocity (for
instance in figure 11.7b at x2/ca ≈ 0.23 and x3/c ≈ 0.05). Moreover, while the ZLES
simulation shows a highly vortical flow, the RANS simulations present a more diffused
vortex. The RANS prediction of the vortex center is correct, even if it is located a
little bit upper than in the ZLES (x3/c ≈ 0.04 for the ZLES and x3/c ≈ 0.05 for the
RANS simulations). The effects of the QCR or the modified Wilcox model are weak
compared with the original Wilcox model. Again, it strengthens the idea that the
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Figure 11.8: Mean transverse velocity in the tip-leakage vortex. The velocity is nor-
malised by ue. The black arrows represent the planar velocity.
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Figure 11.9: Mean span-wise velocity in the tip-leakage vortex. The velocity is nor-
malised by ue. The black arrows represent the planar velocity.
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tip-leakage flow is mainly an inviscid phenomenon.

11.1.5 Mean turbulent kinetic energy
Through the clearance
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Figure 11.10: Mean turbulent kinetic energy through the clearance. The specific
turbulent kinetic energy is normalised by u2e.

Two areas of high intensity can be seen for [k] in the ZLES, one close to the trailing
edge (Fig. 11.10a(1)) and the other further from the blade, in the area where the flow
goes up through the measurement plane (Fig. 11.10a(2)). The turbulent kinetic energy
develops from mid-chord, where the tip-leakage vortex cuts the extraction plane, even
though the tip-leakage vortex begins upstream, close to the leading edge (Fig. 11.1).
There is no significant turbulent kinetic energy inside the clearance, at mid-gap. This
result is similar to what was already observed by Boudet et al. (2009).

The topology is quite well represented by the RANS simulations (Figs. 11.10b,
11.10c and 11.10d), but the intensities are too weak. As for the mean velocities, the
modifications induced by the QCR or the modified Wilcox model are negligible. The
results are similar to those obtained with the original Wilcox model.

In the tip-leakage vortex

Four areas of high intensity can be seen for [k] in the ZLES: one in the leakage jet
(Fig. 11.11a (1)), one in the right-hand side bottom corner of the plane (Fig. 11.11a (2)),
one in the right-hand side top corner of the plane (Fig. 11.11a (3)), and one in the
center of the tip-leakage vortex (Fig. 11.11a (4)). The leakage jet area and the right-
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Figure 11.11: Mean turbulent kinetic energy in the tip-leakage vortex. The specific
turbulent kinetic energy is normalised by u2e.

hand side bottom corner area are the same as on the plane through the clearance
(Fig. 11.10a (1), (2)).

The topology is not well represented by the RANS simulations with the original
and quadratic Wilcox models (Figs. 11.11b, and 11.11c). If the leakage jet area and
the top corner area are present, although too weak, none of the two other areas is
visible. There is no significant kinetic energy at the vortex center nor in the bottom
corner, where the vortex interacts with the end-wall boundary layer. The three RANS
simulations fail at describing these particular areas. The RANS simulation with the
modified Wilcox model (Fig 11.11d) increases the levels, but not sufficiently, and does
not capture the missing areas. Again, the modifications introduced by the QCR or
the modified Wilcox model are weak with respect to the original Wilcox model.

11.2 Reynolds stress analysis
The Reynolds stresses are extracted on the same planes as the mean velocities, and
normalised by ρu2e.

11.2.1 Through the tip-clearance
Normal stresses

The normal stresses are plotted in Figs. 11.12, 11.13 and 11.14. Two areas of high
intensity can be seen in the ZLES. The first area of high intensity is present for all the
normal stresses, close to the trailing edge, on the suction side (Figs. 11.12a, 11.13a and
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Figure 11.12: τt11 through the clearance. The Reynolds stress is normalised by ρu2e.
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Figure 11.13: τt22 through the clearance. The Reynolds stress is normalised by ρu2e.

11.14a, (1)). This part of the flow corresponds to the leakage jet. The second area of
high intensity is further from the blade, where the flow goes up through the cutting
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Figure 11.14: τt33 through the clearance. The Reynolds stress is normalised by ρu2e.

plane. This region of high turbulence intensity is present for τt11 and τt22 (Figs. 11.12a
and 11.13a, (2)), but is very weak for τt33 (Fig. 11.14a). Both areas present similar
intensities for τt11, while the leakage jet area is less intense than the second area for τt22.
These areas correspond to the areas of high intensity of [k], observed in Fig 11.10a (1)
and (2). No area of high normal stress intensity can be found inside the clearance at
mid-gap, despite the important acceleration of the transverse velocity. This must be
due to the position of the plane inside the clearance, away from the walls.

The area of high intensity on the suction side in the ZLES is present for the three
RANS simulations, for the three normal Reynolds stresses. However, this area presents
normal Reynolds stresses much less intense than in the ZLES. The normal Reynolds
stresses in the second area, further from the blade, are barely visible for both τt11 and
τt22 in the RANS simulations. In this area, according to the ZLES, the stresses should
be of similar intensity as in the jet area (Fig. 11.12a compared to Figs. 11.12b, 11.12c
and 11.12d) or more intense than in the jet area (Fig. 11.13a compared to Figs. 11.13b,
11.13c and 11.13d). The quadratic model increases a little the stresses in the jet area
for τt11 and τt22, and so does the modified model. However, it is far from enough to
have levels comparable to the ZLES Reynolds stresses. The quadratic model decreases
a little the intensity of τt33 in the jet area (Fig. 11.14c), which worsen the RANS
prediction for this normal Reynolds stress, while the modified Wilcox model increases
it a little, but still not enough to reach the ZLES levels. Neither the quadratic nor the
modified model yield a significant effect on the normal Reynolds stresses in the second
area, further from the blade.
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Figure 11.15: τt12 through the clearance. The Reynolds stress is normalised by ρu2e.
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Figure 11.16: τt13 through the clearance. The Reynolds stress is normalised by ρu2e.
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Figure 11.17: τt23 through the clearance. The Reynolds stress is normalised by ρu2e.

Shear stresses

The shear stresses are plotted in Figs. 11.15, 11.16 and 11.17. The shear Reynolds
stresses are null in the case of an isotropic flow. Therefore, the shear Reynolds stresses
can be used as a measure of the anisotropy of the flow. Concerning the ZLES, the shear
Reynolds stress τt12 presents two areas of maximal negative intensity (Fig. 11.15a (1)),
superimposed with the maxima of τt11 (Fig. 11.12a), and interlaced with two areas of
maximal positive intensity (Fig. 11.15a (2)). The shear Reynolds stress τt13 presents
one area of maximal negative intensity, in the leakage jet area close to the blade
suction side (Fig. 11.16a (3)), and one area of maximal positive intensity further from
the blade (Fig. 11.16a (4)). The last shear Reynolds stress τt23 presents only one area
of maximal negative intensity in the jet area (Fig. 11.17a (5)). Again, no area of high
stress intensity can be found inside the clearance, at mid-gap.

The RANS shear Reynolds stresses follow the same trend as the normal stresses,
i.e. an underestimation of the intensity of the stresses. In the case of τt12, the RANS
simulations with the Boussinesq constitutive relation fail completely to represent the
topology of the ZLES stress (Fig. 11.15b and 11.15d). The quadratic model yields a
better result concerning the topology, with three lobes visible (Fig. 11.15c) out of four
in the ZLES case. However, the shear Reynolds stress is still far from being as intense
as in the ZLES case. Concerning the shear Reynolds stress τt13, the three RANS
simulations manage to represent the correct topology with two lobes. The intensity
is significant but still under-predicted. The quadratic model yields no visible effect
on this stress, while the modified model increases the Reynolds stress intensity in the
leakage jet. The last shear Reynolds stress is correctly represented in term of topology,
for all the RANS simulations (Figs. 11.17b, 11.17c and 11.17d), but still not in term
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of intensity. The QCR and the modified Wilcox model increase slightly the intensity
of the stress, but it remains much smaller than in the ZLES.

11.2.2 In the tip-leakage vortex
Normal stresses
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Figure 11.18: τt11 in the tip-leakage vortex. The Reynolds stress is normalised by ρu2e.

The normal stresses are plotted in Figs. 11.18, 11.19 and 11.20. For τt11, four areas
of high intensity can be seen in the ZLES simulation (Fig. 11.18a, (1) − (4)). These
are the areas of high intensity of [k], presented in figure 11.11a. For τt22 and τt33, three
out of the four areas are present each time in the ZLES simulation (Figs. 11.19a and
11.20a). The first area is at the bottom left of the figure (x3/c ≈ −0.02, Figs. 11.18a,
11.19a and 11.20a (1)), where the jet develops from the leakage through the tip-
clearance. The second area is on the border of the vortex, where it interacts with
the end-wall boundary-layer, and is particularly intense for τt22 (Fig. 11.19a (2)). The
third area is at the top right corner of the figure, on the outer part of the tip-leakage
vortex. This area is intense for τt11 and τt33 (Fig. 11.18a, 11.20a (3)). The last area
is close to the center of the vortex, for the three components (Fig. 11.18a, 11.19a and
11.20a, (4)).

For the RANS simulations, the normal Reynolds stresses are much less intense than
in the ZLES. The most intense regions of the ZLES are partly described by RANS,
with a lower intensity: the jet for the three components, the bottom right region for
the second component and the top right region for the third component. These last
two regions are barely visible in RANS. The quadratic model and the modified model
increase a little the three stresses, but it is far from enough to have comparable levels
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Figure 11.19: τt22 in the tip-leakage vortex. The Reynolds stress is normalised by ρu2e.
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Figure 11.20: τt33 in the tip-leakage vortex. The Reynolds stress is normalised by ρu2e.

with ZLES. The normal Reynolds stresses are clearly under-predicted by the RANS
simulations, compared to the ZLES.
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Shear stresses
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Figure 11.21: τt12 in the tip-leakage vortex. The Reynolds stress is normalised by ρu2e.
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Figure 11.22: τt13 in the tip-leakage vortex. The Reynolds stress is normalised by ρu2e.
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Figure 11.23: τt23 in the tip-leakage vortex. The Reynolds stress is normalised by ρu2e.

The shear stresses are plotted in Figs. 11.21, 11.22 and 11.23. The shear Reynolds
stresses follow similar trends as the normal Reynolds stresses, for the ZLES and the
RANS simulations. The areas of higher intensity are placed for the ZLES in the jet,
on the border of the vortex, and in its center. The values are not negligible, which
demonstrates the high anisotropy of this flow. The four areas visible for τt11 are also
present for τt12 (Fig. 11.21a, (1)− (4)). Each area is doubled into two adjacent areas
where the stresses are opposed in sign. For τt13, three out of the four areas are visible,
with again opposite sign lobes (Fig. 11.22a, (1), (3) and (4)). Finally, for τt23, only the
jet area and the right-hand side top corner area are visible, and present only negative
stresses, without lobe splitting (Fig. 11.23a, (1), (3)).

The RANS simulations show very weak shear Reynolds stresses. The main area
of these stresses is in the jet, for the three simulations. Concerning the models, the
main difference comes from the modified model for τt13 in the jet region (Fig. 11.22d),
where the intensity is quite comparable with the ZLES. It is not possible to conclude
if the weakness of the shear stresses, compared to the ZLES, is due to the difficulties
RANS two-equation models are known to have when the flow is anisotropic, or if it is
due to the diffusion of the vortex, observed for instance in figure 11.7. The quadratic
model, with the QCR, was expected to add anisotropy to the Reynolds stresses, but
its effect appears not significant.

11.3 Partial conclusion
Once again, the LES demonstrates its capacity to be used for a fine physical analysis of
complex phenomena, and as reference to analyse RANS simulations. For the mean flow
values, such as the mean velocities, the RANS simulations present a good agreement
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with the ZLES in this particular case, even though the RANS results are more diffused.
This is mainly due to the pressure driven nature of the tip-leakage flow.

However, for the turbulent quantities, such as the mean turbulent kinetic energy or
the Reynolds stresses, the RANS prediction is always incorrect. The topology of the
Reynolds stresses is almost never accurately estimated. The jet leakage area is often
present, but the other areas are not visible, due to the important underestimation of
the stresses. The quadratic model and the modified model yields small improvements
in term of levels, but not sufficient to have comparable results with the ZLES.

The RANS modelling of the Reynolds stresses depend on both the constitutive
relation used and the eddy-viscosity modelling, with the use of equations on k and ω.
The following chapters aim at inspecting the validity of the constitutive relation and
the validity of the modelled k equation.
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The comparison between the LES Reynolds stresses and the RANS Reynolds stresses
in the previous chapter lead to the conclusion that the turbulence modellings on

which the RANS simulations rely do not accurately predict the physics. The present
chapter analyses more precisely RANS turbulence modelling, through one of its two
main components, the constitutive relation. LES is used as reference to test the validity
of the two hypotheses of the constitutive relations studied, the Boussinesq constitutive
relation and the QCR, which are the tensor alignment hypothesis and the hypothesis
on the choice of the proportionality coefficient.

12.1 Evaluation methods
The evaluation methods have already been presented in details in chapter 8, section 8.1.
The main aspects are merely recalled in the following sections.

12.1.1 Constitutive relation alignment
The constitutive relation alignment is tested using the two alignment indicators pre-
sented in equations (8.2) and (8.5). The first indicator concerns the alignment hypoth-
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esis on which the Boussinesq constitutive relation relies, while the second indicator
concerns the alignment hypothesis on which the QCR relies.

As for the Schmitt indicator, introduced in equation (2.50), when the alignment
indicators are equal to 1, the tensors are aligned, ergo proportional, and the alignment
hypothesis is, by definition, valid. When the alignment indicators are equal to 0,
the tensors are orthogonal, and the alignment hypothesis is invalid. Contrary to the
Schmitt one, the present alignment indicators can be negative. In this case, the tensors
are anti-aligned, which means that the Boussinesq constitutive relation or the QCR
yield non-physical results. The same threshold of 0.86 is kept. If the indicators are
greater than 0.86, the alignment hypothesis is considered valid. An illustration has
been given for vectors in figure 8.1 (chapter 8, section 8.1).

12.1.2 Eddy-viscosities
The eddy-viscosity represents the proportionality coefficient between the Reynolds
stress tensor and the constitutive relation tensor. The same eddy-viscosity construc-
tions as presented in equations (8.7) and (8.8) are investigated here.

12.2 Alignment analysis
The alignment is gauged with the Υ indicator (resp. ΥQCR indicator) presented in
equation (8.2) (resp. (8.5)), plotted as probability density functions (PDF) and cumu-
lative distribution functions (CDF) of the indicator value. Concerning the PDF (for
instance, in Fig. 12.2a), the bar goes by couple, a left black bar with a right green bar.
A couple of bars occupies a range of 0.05. The black one (resp. green one) represents
the mass weighted percentage of points with Υ (resp. ΥQCR) in the given 0.05 range.
Concerning the CDF (for instance in Fig. 12.2a), the integration of the PDF is made
from −1 upward, so practically, the ordinate corresponding to the abscissa Υ = 0.86
(resp. ΥQCR = 0.86) represents the mass weighted percentage of points for which the
Boussinesq constitutive relation (resp. QCR) is not valid.

The analysis is focused on the regions where turbulence is sufficiently intense. Only
the points where the turbulence rate (defined as (2/3[k̃]/([ũi][ũi]))1/2) is superior to 5%
participate to the distribution. This threshold value is chosen so that the turbulent
inlet boundary-layer and the tip-leakage vortex are included in the analysis. In order
to be grid independent, each point considered is weighted by its mass, calculated as
the square root of the Jacobian at that point (homogeneous to a volume) times the
density. The analysis focuses first on the entire domain, which includes the inlet
domain, the tip-clearance domain and the tip-leakage vortex domain, as presented in
figure 12.1. Then, each individual domain is analysed separately. The inlet domain is
the domain where the incoming boundary-layer develops, the clearance domain is the
domain located in the tip-clearance, and the tip-leakage vortex domain is the volume
on the suction side of the blade where the tip-leakage vortex develops downstream.
All the domains are located inside the LES zone of the flow.

12.2.1 Entire domain
The probability density functions (PDF) and cumulative distribution functions (CDF)
of the alignment criteria for the entire domain are plotted in figure 12.2. Both the
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Figure 12.1: Domains used for the alignment criterion analysis. Blue: Inlet, black:
tip-clearance, red: tip-leakage vortex, grey: unused
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Figure 12.2: PDF (a) and CDF (b) of the Υ and ΥQCR criteria in the entire domain.

Boussinesq constitutive relation and the QCR present points with a negative criterion,
meaning an opposite orientation between the Reynolds stress tensor and the constitu-
tive relation tensor. For both constitutive relations, the quantity of anti-aligned points
remains small, with less than 5% of the points concerned. The PDF of Υ increases from
0 to 0.75 and then decreases abruptly, showing that the vast majority of the points
tested does not present a correct alignment between the tensors. The decreasing is
more abrupt for the Boussinesq constitutive relation than for the QCR. The peak of
the distribution is in the interval [0.85, 0.90] for the Boussinesq constitutive relation.
In comparison, ΥQCR presents fewer points in each range between 0.0 and 0.5 and
more points in the upper ranges, with its peak in the interval [0.9, 0.95]. The CDF
shows the Boussinesq constitutive relation is not valid for 80% of the points, whereas



168 Chapter 12. Tip-leakage constitutive relation analysis

the QCR is not valid for 69% of the points. The QCR has a significant beneficial
impact on the alignment of the tensors. However, this impact is less important than
in the corner separation case (c.f. figure 8.3).

The analysis will now focus specifically on the inlet domain, the tip-clearance do-
main and the tip-leakage vortex domain in order to see if the constitutive relations
present different behaviours when confronted to different flow types.

12.2.2 Inlet domain
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Figure 12.3: PDF (a) and CDF (b) of the Υ and ΥQCR criteria in the inlet domain.

The inlet domain, located upstream the blade, presents the characteristics of a
fully turbulent boundary layer. The number of points from this domain, weighted by
the mass, represents 8% of the total mass-weighted number of points. The PDF and
CDF of the inlet domain are given in figure 12.3. Similarly to what was found for the
corner separation case, the Boussinesq constitutive relation yields bad results on this
canonical flow. The distribution is similar to the one of the entire domain, but the
peak is in the interval [0.7, 0.75], and there is no negative alignment. The CDF shows
that the overall alignment is worse, with 99% of the points for which the Boussinesq
constitutive relation is not valid. As in the corner separation inlet, the QCR presents
quite an improvement in this area. The peak of the PDF is in the interval [0.95, 1.0],
and the CDF shows that the constitutive relation is valid, in term of alignment, for
77% of the points. This situation is very similar to what was found for the inlet of
the corner separation, and confirms that the QCR have an important effect on this
canonical flow. The explanation is the same as before: the calibration of the constant
cQCR has been done originally in the outer region of a simple boundary layer (Spalart,
2000).

12.2.3 Tip-clearance domain
The tip-clearance domain is located between the blade tip and the end-wall. The
pressure difference between the pressure side and the suction side of the blade creates
an important acceleration of the flow toward the suction side. The flow topology is
more complex than the inlet domain boundary layer. The number of points from this
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Figure 12.4: PDF (a) and CDF (b) of the Υ and ΥQCR criteria in the tip-clearance
domain.

domain, weighted by the mass, represents only 3% of the total mass-weighted number
of points. The PDF and CDF of the clearance domain are given in figure 12.4. The
Boussinesq constitutive relation yields a distribution with two peaks: a small peak
in the interval [0.0, 0.05] and a maximum in the interval [0.7, 0.75]. Around 12%
of the points are negatively aligned for the Boussinesq constitutive relation, which
is not negligible. No certain explanation has been found concerning this important
non-physical behaviour. The CDF is comparable to the previous results for Υ, with
94% of the points for which the Boussinesq hypothesis is not verified. The QCR
yields again better results in term of tensor alignment, but the improvement is not
as important as for the inlet domain. A significant number of points still present an
anti-alignment between the tensors. Only one peak is noticeable though, in the interval
[0.9, 0.95]. The peak is inside the area where the alignment hypothesis is verified, and
the CDF indicates 47% of the points are valid.

12.2.4 Tip-leakage vortex domain
The last domain is located on the suction side of the blade. It is the domain where the
tip-leakage vortex develops downstream. The flow is three-dimensional and vortical,
and probably more complex than in the previous domains. It is comparable to the
outlet domain of the corner separation, except that in the present case, the vortical
structures are bigger and more coherent. The number of points from this domain,
weighted by the mass, represents 88% of the total mass-weighted number of points. The
PDF and CDF of the tip-leakage vortex domain are given in figure 12.5. Surprisingly,
the Boussinesq constitutive relation yields better results compared to the results on the
simple boundary-layer at the inlet. A few negatively aligned points are present (around
5% for both constitutive relations). Concerning the QCR, almost no improvement
is visible compared to the Boussinesq constitutive relation. The difference in term
of alignment correction on the CDF is about 3%. In this complex, vortical region,
the QCR behaviour, in term of tensor alignment, is much closer to the Boussinesq
constitutive relation than in the boundary layer at the inlet. The CDF shows that
the quantity of misaligned points is much smaller compared to the previous results
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Figure 12.5: PDF (a) and CDF (b) of the Υ and ΥQCR criteria in the tip-leakage
vortex domain.

for Υ (Boussinesq), with ”only” 77%, but for ΥQCR the number of points where the
tensors are not aligned raises to 74%. As for the corner separation case, this result
is counter-intuitive. Given that the formulation of the QCR explicitly contains a
normalised rotation tensor, it was expected to be more effective in highly vortical
areas. However, in both the corner separation case and the present tip-leakage case,
the opposite occurs.

12.3 Eddy-viscosity comparisons

The eddy-viscosities, defined in equations (8.7−8.8), are plotted in figure 12.6. They
are compared to the eddy-viscosities extracted from the three RANS simulations stud-
ied. They are plotted on the plane through the tip-leakage vortex, presented in fig-
ure 11.2b, and normalised by the dynamic viscosity µ = 1.81 × 10−5kg.m−1.s−1.

It is remarkable that the three ZLES eddy-viscosities present a similar topology, and
are comparable in term of intensity. µ(1)

t , defined as < ρ > [k̃]/[ω̃], is a bit more intense
(about three times) than µ

(0)
t or µ(0)QCR

t , computed as the ratio of two tensor norms.
They remain of the same order of magnitude, which indicates the estimates of µt as
< ρ > [k̃]/[ω̃] is physically sound. However, the RANS simulations present smaller
eddy-viscosities. This may be a consequence of the general behaviour of the RANS
simulations to underestimate the turbulent quantities in this particular case. Given
the similarity between the values of µ(0)

t and µ
(0)QCR
t , the QCR bears no significant

modification on the norm of The constitutive relation tensor. As seen previously with
the PDFs, the Boussinesq constitutive relation and the QCR have almost the same
behaviour in the tip-leakage vortex domain. The conclusion is that the QCR has only
a weak effect on the constitutive relation tensor, in the tip-leakage vortex. It realigns
it slightly, with little effect on its norm. Its influence is essentially a rotation.
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Figure 12.6: Eddy-viscosity comparison in the tip-leakage vortex. For the sake of
readability, the figures are scaled differently.

12.4 Partial conclusion
The two constitutive relation tested rely on a set of two hypotheses, an hypothesis
of tensor alignment and an hypothesis on the manner to calculate the proportionality
coefficient (turbulent viscosity). The first hypothesis has been tested with an align-
ment indicator, derived from the inner product of the two tensors. The hypothesis
of alignment is rarely verified for the Boussinesq constitutive relation, with around
80% of the mass-weighted points where the misalignment is higher than an angle of
π/6. The Boussinesq constitutive relation yields similar results in all the studied sub-
domains. The quadratic constitutive relation succeeds in realigning the constitutive
relation tensor with the Reynolds stress tensor for around 11% of the mass-weighted
points. The correction impacts very favourably the inlet, where a flat-plate boundary
layer develops, with flow characteristics close to the ones used for the QCR calibration.
The impact of the QCR decreases in the tip-clearance and in the tip-leakage vortex
regions. In the tip-leakage vortex region, the QCR yields results very close to the
Boussinesq constitutive relation. These results complete the observations and confirm
the conclusions made on the corner separation case.

The second hypothesis has been tested by measuring the ratios of the tensor norms,
and by comparing them to the ratio < ρ > [k̃]/[ω̃] extracted from the ZLES, and to the
eddy-viscosities calculated with the three RANS simulations. All the eddy-viscosities
present similar amplitudes and topologies for the ZLES. The RANS eddy-viscosities
are much smaller than the ZLES ones. This is due to the important underestimation
of all the turbulent quantities in the RANS simulations, as presented in chapter 11.
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Based on the ZLES, the choice of k and ω to compute the eddy-viscosity is legitimate.
The viscosities computed as the ratios of the norms of the tensors are very similar,
yielding that the QCR rotates the constitutive relation tensor without dilating it.

As for the corner separation case, the Boussinesq constitutive relation shows an
important alignment default, but the calculation of the coefficient of proportionality
(turbulent viscosity) from modelled statistics is legitimate. To correct the alignment,
the path seems to add a rotation to the zero-trace mean strain-rate tensor in order to
realign it with the Reynolds stress tensor. The QCR goes in that direction, but is not
sufficient in the highly vortical part of the flow. The correction may be improved to
be more accurate. A general approach, introduced by Pope (1975) and presented in
the conclusion of chapter 8, could be investigated on the present flow cases.
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The turbulent kinetic energy budget shows the physics of turbulence through the
production, dissipation and transport. For the RANS simulations with a k equa-

tion, it shows the ability of the model to represent correctly the fine physics of turbu-
lence. The TKE budget is extracted on the same two planes as the Reynolds stresses.
They are presented in chapter 11 (c.f. Fig. 11.2). The TKE budget terms are nor-
malised by (ρ2u4e)/µ.

13.1 Statistical convergence
The numerical residual term, presented in figures 13.1a and 13.1c, is used to gauge the
closure of the TKE budget. This term results from the numerical effects, such as ar-
tificial viscosity effects, numerical dissipation, or statistical convergence imperfection.
In the ZLES case, the term can be positive or negative, and seems roughly opposed to
the transport term (Figs. 13.5 and 13.9). The term is really intense, and no such effect
was observed in the previous cases (flat-plate and corner separation). The residual
seems to counter-part the spatial oscillations of the transport term. The transport
term includes triple correlations, which necessitate many samples to be statistically
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Figure 13.1: Comparison of the numerical residuals of the ZLES, with different sam-
pling duration. (a), (c): statistics accumulated during 10 through flow periods. (b),
(d): statistics accumulated during 13.5 through flow periods. (a), (b): through the
tip-clearance. (c), (d): in the tip-leakage vortex.

converged. The statistics have been originally computed over ten through-flow periods
(10c/ue = 28.57ms). In order to test if the strong numerical residual is a consequence
of a lack of statistical convergence, the computation have been run over three and
a half more through-flow periods (≈ 10ms). For computational cost reasons, only
the acquisition of these three and a half more through-flow periods has been possible
during this work. The results are presented in figures 13.1b and 13.1d.

The residual computed over 13.5 periods is slightly smaller everywhere, compared
to the residual computed over 10 periods. However, the difference is far from being
sufficient to consider that the statistics are converged. Besides, no difference is visi-
ble for the first and second order statistics (mean velocity and Reynolds stresses, not
presented here). The conclusion is that the first and second order statistics are statis-
tically converged, and the third order statistics (triple correlations) lack of statistical
convergence. In the following sections, the ZLES TKE budget terms presented are
computed using the statistics over the 13.5 through-flow periods. In order to analyse
the physical terms of the budget (production, dissipation and transport) in the areas
where they are meaningful, areas are greyed and ignored if they meet the two following
conditions:

1. Locally, the term considered is bigger than five percent of the maximum of the
production term: term > 0.05 × max (Production).

2. Locally, the term considered is smaller than twice the numerical residual:
term < 2.0 × Numerical residual.
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The first condition evaluates if the term is significant, while the second condition
imposes a mask if the numerical residual is too important.

13.2 Through the tip-clearance

13.2.1 Numerical residual
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Figure 13.2: Numerical residual through the tip-clearance, normalised by (ρ2u4e)/µ.

The numerical residual term is presented in figure 13.2. As said before, the ZLES
term is quite intense. The suspected reason is a lack of statistical convergence. The
RANS simulations show a small amount of numerical residual because the k-equation
is directly solved.

13.2.2 Production
The production term of the TKE budget accounts for the turbulent kinetic energy
creation. It is presented in figure 13.3. The main areas of production are located in
the leakage jet, close to the suction side of the blade (Fig 13.3a (1)) and in the second
area of maximal normal Reynolds stresses, further from the blade (Fig 13.3a (2)).
Those areas correspond to the areas of high intensity for both the normal Reynolds
stresses and the shear Reynolds stresses, as presented in chapter 11. In the area further
from the blade, the production is due to the interaction between the leakage jet and
the end-wall boundary-layer (Tan et al., 2015). The RANS simulations show the
same topology as the ZLES for the production term, but with an intensity ten times
smaller. This is directly related to the under-prediction of the Reynolds stresses. As
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Figure 13.3: Production through the tip-clearance, normalised by (ρ2u4e)/µ.

for the Reynolds stresses, neither the quadratic nor the modified Wilcox models yield
significant effects compared to the original Wilcox model.

13.2.3 Dissipation
The dissipation term of the TKE budget accounts for the turbulent kinetic energy
damping. It is presented in figure 13.4. In the ZLES, no significant area of dissipation
can be found on the studied plane. All the areas of dissipation present an intensity
too weak to pass the threshold on the numerical residual criterion. The dissipation is
found to occur mainly close to the walls, but not significantly in the tip-leakage vortex.
For the RANS simulations, dissipation occurs in the jet area, where the production
is intense. This is a known behaviour of RANS models, to superimpose production
and dissipation, with only a small amount of transport (Wilcox, 2006). Again, neither
the quadratic nor the modified Wilcox models yield significant effects compared to the
original Wilcox model.

13.2.4 Transport
The transport term of the TKE budget accounts for the turbulent kinetic energy
displacement in the flow. It is presented in figure 13.5. As mentioned, the ZLES
term oscillates within the clearance, with its value roughly opposed to the value of the
numerical residual term. This is probably due to insufficient statistical convergence.
On the suction side, two important areas of negative energy transportation are found
superimposed with the areas of high production, with absolute values about twice
the numerical residual. A significant part of the energy produced in these areas is
transported elsewhere, and not locally dissipated, contrary to the behaviour of the
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Figure 13.4: Dissipation through the tip-clearance, normalised by (ρ2u4e)/µ.
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Figure 13.5: Transport through the tip-clearance, normalised by (ρ2u4e)/µ.

RANS simulations. The RANS simulations show almost no transport. As previously
mentioned, the turbulent kinetic energy is produced and dissipated locally, without
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transport. Once again, no significant effects of the quadratic or modified Wilcox models
can be seen.

13.3 In the tip-leakage vortex

13.3.1 Numerical residual
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Figure 13.6: Numerical residual in the tip-leakage vortex, normalised by (ρ2u4e)/µ.

The numerical residual term is presented in figure 13.6. As said before, the ZLES
term is quite intense, and opposed to the transport term (Fig. 13.9). The RANS
simulations show again a small amount of numerical residual because the k-equation
is directly solved. Slightly more intense values are observed near the end-wall, where
mesh expansion is stronger.

13.3.2 Production
The production term is presented in figure 13.7. The main areas of production for
the ZLES simulation are the jet and at the bottom right-hand side corner of the
figure (Fig. 13.7a (1) and (2)). Those areas correspond to regions of high intensity
for both the normal Reynolds stresses and the shear Reynolds stresses, as presented
in figures 11.18a to 11.23a. The important production area in the jet is impacted by
the high residual, but not entirely, while the other area of important production is not
significantly impacted by the high residual. The bottom right corner area corresponds
to the area where the vortex interacts with the casing end-wall boundary-layer, as
mentioned by Tan et al. (2015). This area seems to be the same area as that labelled
(2) in the plane through the clearance (Fig. 13.3a). Interestingly, the third and fourth
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Figure 13.7: Production in the tip-leakage vortex, normalised by (ρ2u4e)/µ.

areas of high Reynolds stresses (Figs. 11.18a to 11.23a, (3) and (4)) are not linked with
areas of high turbulent kinetic energy production. This indicates shear is moderate
in those regions and turbulence originates from upstream regions. Concerning the
RANS simulations, the main area of production is in the jet, but with levels ten
times smaller than for the ZLES. As could be expected, the global under-prediction of
the Reynolds stresses is associated with an under-prediction of the turbulent kinetic
energy production. The bottom right corner area is not visible at all, even though
the second lobe of production is present in Figs. 13.3b, 13.3c, and 13.3d (label (1)), at
upstream chord-wise positions, again very weak. As for the previous results, neither
the quadratic nor the modified Wilcox models yield significant effects compared to the
original Wilcox model.

13.3.3 Dissipation

The dissipation term is presented in figure 13.8. The main area of dissipation for
the ZLES is close to the end-wall, at x3/c 6 −0.04 (Fig. 13.8a), and particularly in
the bottom right hand corner where the TLV interacts with the boundary-layer. No
significant dissipation can be seen in the jet area, where production is intense. The
area of important dissipation is not affected by the high numerical residual. For the
RANS simulations, the dissipation occurs in the jet, where the production is intense.
This is a classical issue in RANS, production and dissipation are superimposed, with
a small amount of transport (Wilcox, 2006). This behaviour is not corrected by the
use of the quadratic or the modified Wilcox models.
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Figure 13.8: Dissipation in the tip-leakage vortex, normalised by (ρ2u4e)/µ.

13.3.4 Transport
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Figure 13.9: Transport in the tip-leakage vortex, normalised by (ρ2u4e)/µ.
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The transport term is presented in figure 13.9. For the ZLES, as already pointed
out, the transport term shows strong oscillations, in opposition with the numerical
residual term. This seems to be due to an insufficient statistical convergence. However,
the region in the bottom right corner of the figure (Fig. 13.9a (2), and x3/c 6 −0.04)
shows values sufficiently intense compared to the residual, and can be analysed. A sig-
nificant positive energy transportation is found in the area of high dissipation, near the
end-wall. Energy is taken from the vortex above (negative transport) and transferred
to the end-wall (positive transport) where it is dissipated. The RANS simulations show
very little transport, because production and dissipation are superimposed. Still, no
significant effect of the quadratic or modified Wilcox models can be seen compared to
the original Wilcox model.

13.4 Partial conclusion
The TKE budget extraction methodology used on this configuration allows a fine un-
derstanding of the turbulence physics through the tip-clearance and in the tip-leakage
vortex. For the ZLES, in this configuration, the numerical residual is found to be in-
tense and oscillating, and opposed to the transport term. This seems to be mainly due
to a lack of statistical convergence of the triple correlations. However, some regions
of the flow show significant intensities of the TKE budget terms in comparison to the
residual. The production is mainly located in the jet-leakage and in the area where
the vortex interacts with the end-wall boundary-layer. The dissipation is very weak
inside the tip-leakage vortex, and occurs mainly close to the end-wall. The ZLES is
used as a reference to evaluate the RANS turbulence models.

The RANS simulations present very weak budget terms (around 10% of the inten-
sity of the ZLES budget terms). It is directly linked with the under-estimation of the
Reynolds stresses. The spatial distribution of the terms is never correctly estimated.
The leakage-jet area is present, but the area of interaction between the vortex and the
end-wall boundary-layer is very weak. The modifications introduced in the quadratic
Wilcox model and the modified Wilcox model yield no significant effect compared to
the original Wilcox model.
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Conclusion
The main objective of the present work was to characterise the turbulence modelling
in Reynolds-averaged Navier-Stokes simulations of vortical flows. The characterisation
has been made through various aspects, from the analysis of the Reynolds stress ten-
sor to the term-to-term comparison of the modelled turbulent kinetic energy equation,
against large-eddy simulation results used as reference. The alignment hypotheses
on which the constitutive relations rely were also analysed. The turbulence charac-
terisation was made for three different turbulence models, the original Wilcox k − ω
turbulence model with the Boussinesq constitutive relation, the Wilcox k − ω turbu-
lence model with the quadratic constitutive relation, and a modified version of the
Wilcox k − ω turbulence model with the Boussinesq constitutive relation. Two aca-
demic test-cases have been considered: a corner separation flow in a linear compressor
cascade, and a tip-leakage flow from a single blade in the potential core of a jet. These
flows, three-dimensional and highly vortical, are representative of what is encountered
in actual turbomachines.

For both test cases, the three RANS models fail to represent accurately the Reynolds
stresses, compared to the LES. Both the topology and intensity are wrongly estimated.
The incorrect estimation of the Reynolds stresses can be a consequence of a defect of
the constitutive relation, a defect of the modelled turbulence equations, or a coupling
of the two.

The studied constitutive relations rely on two strong hypotheses: the alignment
between the Reynolds stress tensor and a tensor computed from velocity gradients,
and the possibility to use k and ω to compute the eddy-viscosity. These hypotheses
have been tested using large-eddy simulation results, where all the quantities (e.g.
Reynolds stress tensor, the zero-trace mean strain rate tensor, k, and ω) are known
independently from each others. The analysis showed that the alignment hypothesis
is generally not verified. The Boussinesq constitutive relation relies on an alignment
that is not verified even on simple flows, such as a developing boundary layer. The
quadratic constitutive relation, that bears a term explicitly taking into account the
local vorticity of the flow, gives much better results on a developing boundary layer
flow but has little effect on the highly vortical flows, the corner separation or the
tip-leakage vortex. The use of k and ω to calculate the eddy-viscosity gives correct
results.

The modelled turbulent kinetic energy budget presents, for the three turbulence
models, on the two test-cases, almost the same behaviour. The production term is
not accurately represented, which is directly linked with the erroneous representation
of the Reynolds stresses, compared with LES results. The transport term is almost
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non-existent in the RANS simulations, while it is not negligible in LES. Last, the
dissipation term is locally opposed to the production term in the RANS simulations,
while in LES the turbulent kinetic energy dissipation is not located in the same area as
the production. This superimposition is typical of RANS turbulence models that rely
implicitly on the strong hypothesis of equilibrium turbulence, i.e. a local equilibrium
between production and dissipation with little transport.

LES has been successfully used to characterise turbulence modelling, given its ca-
pacity to represent accurately the physics compared to the RANS approach. However,
the high computational cost of LES makes it unaffordable in nowadays industrial de-
sign process of compressors. In order to cumulate the precision of LES and the reduced
computational cost of RANS, an hybrid RANS-LES approach has been proposed and
tested on a channel flow and the corner separation case. The results are mitigated.
The computations are quite robust and much less expensive than pure LES. The chan-
nel flow results are good. With the default hybrid parameters, the corner separation
seems to be more similar, in terms of size and intensity, to the LES one, but a suc-
tion side separation is generated. When the RANS-LES transition is set further from
the walls, the suction-side separation is not anymore present, but the prediction of
the corner separation size and intensity is only slightly better than with pure RANS.
These rather poor results may come from a maladapted mesh.

Further work
The results obtained in the present work raise three interrogations. Which physically
more relevant constitutive relation can be used to replace the Boussinesq constitutive
relation or the QCR? What would be the impact of a turbulence model that takes
into account the non-equilibrium of turbulence, in realistic turbomachinery flows? Is
it possible to modify the hybrid approach in order to improve the description of the
corner separation?

The Boussinesq constitutive relation, that relies on one point statistics and a scalar
eddy-viscosity, is too simplistic to take into account the reality of the physics. Among
the possible approaches to find a more physical constitutive relation, an analysis and
calibration of a more complex model, such as Pope (1975) constitutive relation, can
be imagined. The calibration is complex, but given the various LES and DNS existing
databases, a statistical calibration, based on a ”big data” approach, can be attempted.

The second point, the non-equilibrium turbulence modelling, may lead to an im-
provement of the physical description of the flows. Indeed, the corner separation is
a spectrally (Touil, 2002) and spatially (Shao, 1992) non-equilibrated turbulent flow.
Various approaches exist in order to take into account the non-equilibrium of tur-
bulence, and the interactions of the different length-scales of turbulence. The con-
struction of a non-equilibrium turbulence model is in progress at the LMFA (Bos and
Rubinstein, 2017).

Last, concerning the hybrid approach, the weak improvement of the corner sepa-
ration prediction, compared to pure RANS, may be a consequence of a maladapted
mesh. The influence of the mesh density in the prediction of the corner separation for
the present hybrid formulation should be investigated by a mesh sensitivity analysis.
Another point to be tested is the sensitivity of the hybrid approach to the RANS
model used close to the walls.
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In the present appendix, the calculation to obtain the Reynolds stress budget equa-
tions and the turbulent kinetic energy (TKE) budget equation are presented. The

calculation is the same as in Bogey and Bailly (2009).

A.1 Budget equations calculation

A.1.1 Preliminary steps
The calculation begins with the mass equation and the three momentum equations:

∂ρ

∂t
+
∂ρũk
∂xk

= 0 (A.1)

∀i ∈ [[ 1 ; 3 ]],
∂ρũi
∂t

+
∂ρũiũk
∂xk

= − ∂p

∂xi
+
∂τ ik
∂xk

+
∂Πik

∂xk
(A.2)

Equation (A.2) can also be written as follows:

∀i ∈ [[ 1 ; 3 ]], ũi
∂ρ

∂t
+ ρ

∂ũi
∂t

+ ũi
∂ρũk
∂xk

+ ρũk
∂ũi
∂xk

= − ∂p

∂xi
+
∂τ ik
∂xk

+
∂Πik

∂xk
(A.3)

By merging the equations (A.1) and (A.3), the momentum equation becomes:

∀i ∈ [[ 1 ; 3 ]], ρ
∂ũi
∂t

+ ρũk
∂ũi
∂xk

= − ∂p

∂xi
+
∂τ ik
∂xk

+
∂Πik

∂xk
(A.4)
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Then, for (i, j) ∈ [[ 1 ; 3 ]]2, equation (A.4) is multiplied by u′′j :

ρu′′j
∂ũi
∂t

+ ρu′′j ũk
∂ũi
∂xk

= −u′′j
∂p

∂xi
+ u′′j

∂τ ik
∂xk

+ u′′j
∂Πik

∂xk
(A.5)

Given the symmetry on the indexes, equation (A.5) is straightforwardly re-written
as follows:

ρu′′i
∂ũj
∂t

+ ρu′′i ũk
∂ũj
∂xk

= −u′′i
∂p

∂xj
+ u′′i

∂τ jk
∂xk

+ u′′i
∂Πjk

∂xk
(A.6)

Equations (A.5) and (A.6) are summed into the following equation:
∀(i, j) ∈ [[ 1 ; 3 ]]2,

ρu′′j
∂ũi
∂t

+ ρu′′i
∂ũj
∂t︸ ︷︷ ︸

(A)

+ρu′′j ũk
∂ũi
∂xk

+ ρu′′i ũk
∂ũj
∂xk︸ ︷︷ ︸

(B)

= −u′′j
∂p

∂xi
− u′′i

∂p

∂xj︸ ︷︷ ︸
(C)

+u′′j
∂τ ik
∂xk

+ u′′i
∂τ jk
∂xk︸ ︷︷ ︸

(D)

+u′′j
∂Πik

∂xk
+ u′′i

∂Πjk

∂xk︸ ︷︷ ︸
(E)

(A.7)

Each underlined term from equation (A.7) is to be developed and averaged in order
to get the Reynolds stress equation.

A.1.2 Development and averaging
The development and averaging of the terms begins with the term (A):

∀(i, j) ∈ [[ 1 ; 3 ]]2,

(A) = ρu′′j
∂ũi
∂t

+ ρu′′i
∂ũj
∂t

(A.8)

(A) = ρu′′j
∂

∂t
([ũi] + u′′i ) + ρu′′i

∂

∂t

(
[ũj] + u′′j

)
(A.9)

(A) = ρu′′j
∂ [ũi]

∂t
+ ρu′′i

∂ [ũj]

∂t
+
∂ρu′′i u

′′
j

∂t
− u′′i u

′′
j

∂ρ

∂t
(A.10)

Finally, by applying the ensemble average to (A), and given that 〈[ϕ]〉 = [ϕ] and
〈ρϕ′′〉 = 0, and by switching the average and the time derivation, (A) becomes:

〈(A)〉 =
∂
〈
ρu′′i u

′′
j

〉
∂t

+

〈
u′′i u

′′
j

∂ρũk
∂xk

〉
(A.11)

The same process is applied for the term (B):
∀(i, j) ∈ [[ 1 ; 3 ]]2,
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(B) = ρu′′j ũk
∂ũi
∂xk

+ ρu′′i ũk
∂ũj
∂xk

(A.12)

(B) = ρu′′j ([ũk] + u′′k)
∂ ([ũi] + u′′i )

∂xk
+ ρu′′i ([ũk] + u′′k)

∂
(
[ũj] + u′′j

)
∂xk

(A.13)

(B) = ρu′′j [ũk]
∂ [ũi]

∂xk
+ ρu′′i [ũk]

∂ [ũj]

∂xk
+ ρu′′ju

′′
k

∂ [ũi]

∂xk
+ ρu′′i u

′′
k

∂ [ũj]

∂xk

+
∂

∂xk

(
ρu′′i u

′′
j [ũk]

)
+

∂

∂xk

(
ρu′′i u

′′
ju

′′
k

)
− u′′i u

′′
j

∂ρũk
∂xk

(A.14)

As before, the ensemble averaging is applied:

〈(B)〉 =
〈
ρu′′ju

′′
k

〉 ∂ [ũi]
∂xk

+ 〈ρu′′i u′′k〉
∂ [ũj]

∂xk
+

∂

∂xk

(〈
ρu′′i u

′′
j

〉
[ũk]
)

+
∂

∂xk

(〈
ρu′′i u

′′
ju

′′
k

〉)
−
〈
u′′i u

′′
j

∂ρũk
∂xk

〉
(A.15)

Again, for (C):
∀(i, j) ∈ [[ 1 ; 3 ]]2,

(C) = −u′′j
∂p

∂xi
− u′′i

∂p

∂xj
(A.16)

(C) = −u′′j
∂

∂xi
(〈p〉+ p′)− u′′i

∂

∂xj
(〈p〉+ p′) (A.17)

(C) = −u′′j
∂ 〈p〉
∂xi

− u′′i
∂ 〈p〉
∂xj

−
∂u′′jp

′

∂xi
− ∂u′′i p

′

∂xj
+ p′

∂u′′j
∂xi

+ p′
∂u′′i
∂xj

(A.18)

Again, the ensemble averaging is applied:

〈(C)〉 = −
〈
u′′j
〉 ∂ 〈p〉
∂xi

− 〈u′′i 〉
∂ 〈p〉
∂xj

−
∂
〈
u′′jp

′〉
∂xi

− ∂ 〈u′′i p′〉
∂xj

+

〈
p′
∂u′′j
∂xi

〉
+

〈
p′
∂u′′i
∂xj

〉
(A.19)

Again, for (D):
∀(i, j) ∈ [[ 1 ; 3 ]]2,

(D) = u′′j
∂τ ik
∂xk

+ u′′i
∂τ jk
∂xk

(A.20)

(D) =
∂τ iku

′′
j

∂xk
+
∂τ jku

′′
i

∂xk
− τ ik

∂u′′j
∂xk

− τ jk
∂u′′i
∂xk

(A.21)

Again, the ensemble averaging is applied:

〈(D)〉 =
∂
〈
τ iku

′′
j

〉
∂xk

+
∂ 〈τ jku′′i 〉
∂xk

−
〈
τ ik

∂u′′j
∂xk

〉
−
〈
τ jk

∂u′′i
∂xk

〉
(A.22)
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Last, for (E):
∀(i, j) ∈ [[ 1 ; 3 ]]2,

(E) = u′′j
∂Πik

∂xk
+ u′′i

∂Πjk

∂xk
(A.23)

(E) =
∂Πiku

′′
j

∂xk
+
∂Πjku

′′
i

∂xk
− Πik

∂u′′j
∂xk

− Πjk
∂u′′i
∂xk

(A.24)

Again, the ensemble averaging is applied:

〈(E)〉 =
∂
〈
Πiku

′′
j

〉
∂xk

+
∂
〈
Πjku

′′
i

〉
∂xk

−
〈
Πik

∂u′′j
∂xk

〉
−
〈
Πjk

∂u′′i
∂xk

〉
(A.25)

Finally, the five terms are summed (〈(A)〉+〈(B)〉 = 〈(C)〉+〈(D)〉+〈(E)〉) to obtain
the Reynolds stress budget equations.

A.1.3 Reynolds stress equations

The Reynolds stress equations, already presented in chapter 2, are presented again
here:

∀(i, j) ∈ [[ 1 ; 3 ]]2,

∂
〈
ρu′′i u

′′
j

〉
∂t

= − ∂

∂xk

(〈
ρu′′i u

′′
j

〉
[ũk]
)

︸ ︷︷ ︸
Advection

−
〈
ρu′′ju

′′
k

〉 ∂ [ũi]
∂xk

− 〈ρu′′i u′′k〉
∂ [ũj]

∂xk︸ ︷︷ ︸
Production

− ∂

∂xk

(〈
ρu′′i u

′′
ju

′′
k

〉)
︸ ︷︷ ︸

Turbulent diffusion

−
∂
〈
u′′jp

′〉
∂xi

− ∂ 〈u′′i p′〉
∂xj︸ ︷︷ ︸

Pressure diffusion

+

〈
p′
∂u′′j
∂xi

〉
+

〈
p′
∂u′′i
∂xj

〉
︸ ︷︷ ︸

Pressure dilatation

−
〈
u′′j
〉 ∂ 〈p〉
∂xi

−〈u′′i 〉
∂ 〈p〉
∂xj

+
∂
〈
τ iku

′′
j

〉
∂xk

+
∂ 〈τ jku′′i 〉
∂xk︸ ︷︷ ︸

Viscous diffusion

−
〈
τ ik

∂u′′j
∂xk

〉
−
〈
τ jk

∂u′′i
∂xk

〉
︸ ︷︷ ︸

Viscous dissipation

+
∂
〈
Πiku

′′
j

〉
∂xk

+
∂
〈
Πjku

′′
i

〉
∂xk︸ ︷︷ ︸

SGS diffusion

−
〈
Πik

∂u′′j
∂xk

〉
−
〈
Πjk

∂u′′i
∂xk

〉
︸ ︷︷ ︸

SGS dissipation

(A.26)

A.1.4 TKE budget equation

The TKE budget equation is derived from the Reynolds stress equations, with k defined
as k = 1/2 u′′i u

′′
i :
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0 =
∂ 〈ρk〉
∂t

= − ∂

∂xk
(〈ρk〉 [ũk])︸ ︷︷ ︸

Advection

−〈ρu′′i u′′k〉
∂ [ũi]

∂xk︸ ︷︷ ︸
Production

− ∂

∂xk
(〈ρku′′k〉)︸ ︷︷ ︸

Turbulent diffusion

−∂ 〈u
′′
i p

′〉
∂xi︸ ︷︷ ︸

Pressure Diffusion

+

〈
p′
∂u′′i
∂xi

〉
︸ ︷︷ ︸

Pressure dilatation

−〈u′′i 〉
∂ 〈p〉
∂xi

+
∂ 〈τ iku′′i 〉
∂xk︸ ︷︷ ︸

Viscous diffusion

−
〈
τ ik

∂u′′i
∂xk

〉
︸ ︷︷ ︸

Viscous dissipation

+
∂
〈
Πiku

′′
i

〉
∂xk︸ ︷︷ ︸

SGS diffusion

−
〈
Πik

∂u′′i
∂xk

〉
︸ ︷︷ ︸
SGS dissipation

(A.27)

A.2 Required fields to extract the budgets
The budget extracted is directly the Reynolds stresses budget. In order to build these
equations, 138 fields are averaged and stored, on the fly. The ensemble averaged is
estimated as a time average, as presented in chapter 4. The list of the fields is given,
with (i, j, k) ∈ [[ 1 ; 3 ]]3, as follows:

Quantity Description Number of fields
〈ρ〉 Density 1 field
〈ρũi〉 Momentum 3 fields
〈p〉 Pressure 1 field
〈ũi〉 Velocity 3 fields
〈ρũiũj〉 Reynolds stresses 6 fields
〈ρũiũjũk〉 Triple correlations 10 fields
〈ũip〉 Pressure-velocity correlation 3 fields
〈p∂ũi/∂xj〉 Pressure-acceleration correlation 9 fields
〈τ ij〉 Viscous stresses 6 fields
〈ũiτ jk〉 Velocity-viscous stresses correlation 18 fields
〈∂ũi/∂xkτ jk〉 Acceleration-viscous stresses correlation 27 fields〈
Πij

〉
SGS stresses 6 fields〈

ũiΠjk

〉
Velocity-SGS stresses correlation 18 fields〈

∂ũi/∂xkΠjk

〉
Acceleration-SGS stresses correlation 27 fields

Total: 138 fields

Table A.1: Necessary fields for the Reynolds stress budget equations calculation.

The fluctuating quantities are calculated as presented in chapter 4, section 4.2.
With these fields, any term of the Reynolds stress budget equations can be calculated.
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In this appendix are presented the results not presented in the core of the manuscript.
The interpretation for these results is similar with the one for the results on outlet

plane 1, presented in chapter 7, section 7.2.4.

C.1 On outlet 0

C.1.1 Normal stresses

0.8 1.0 1.2 1.4 1.6
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

−0.05

−0.04

−0.03

−0.02

−0.01

0.00

(a) LES

0.8 1.0 1.2 1.4 1.6
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

(b) RANS_BSQ

0.8 1.0 1.2 1.4 1.6
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

(c) RANS_QCR

0.8 1.0 1.2 1.4 1.6
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

(d) RANS_BUA

Figure C.1: τt11 on the plane outlet 0.
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Figure C.2: τt22 on the plane outlet 0.
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Figure C.3: τt33 on the plane outlet 0.
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C.1.2 Shear stresses
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Figure C.4: τt12 on the plane outlet 0.
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Figure C.5: τt13 on the plane outlet 0.
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Figure C.6: τt23 on the plane outlet 0.
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C.2 On outlet 2

C.2.1 Normal stresses
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Figure C.7: τt11 on the plane outlet 2.
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Figure C.8: τt22 on the plane outlet 2.
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Figure C.9: τt33 on the plane outlet 2.
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C.2.2 Shear stresses
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Figure C.10: τt12 on the plane outlet 2.
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Figure C.11: τt13 on the plane outlet 2.
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Figure C.12: τt23 on the plane outlet 2.
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C.3 On outlet 3

C.3.1 Normal stresses
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Figure C.13: τt11 on the plane outlet 3.
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Figure C.14: τt22 on the plane outlet 3.
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Figure C.15: τt33 on the plane outlet 3.
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C.3.2 Shear stresses
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Figure C.16: τt12 on the plane outlet 3.
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Figure C.17: τt13 on the plane outlet 3.
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Figure C.18: τt23 on the plane outlet 3.
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In this appendix are presented the results not presented in the core of the manuscript.
The interpretation for these results is similar with the one for the results on outlet

plane 1, presented in chapter 9, section 9.3.
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D.1 On outlet 0
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Figure D.1: Numerical residual on the plane outlet 0, normalised by (ρ2u4e)/µ.
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Figure D.2: Production on the plane outlet 0, normalised by (ρ2u4e)/µ.
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Figure D.3: Dissipation on the plane outlet 0, normalised by (ρ2u4e)/µ.



D.2. On outlet 2 205

D.1.4 Transport

0.8 1.0 1.2 1.4 1.6
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

−4.000

−3.111

−2.222

−1.333

−0.444

0.444

1.333

2.222

3.111

4.000

(a) LES

0.8 1.0 1.2 1.4 1.6
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

(b) RANS_BSQ

0.8 1.0 1.2 1.4 1.6
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

(c) RANS_QCR

0.8 1.0 1.2 1.4 1.6
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

(d) RANS_BUA

Figure D.4: Transport on the plane outlet 0, normalised by (ρ2u4e)/µ.
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Figure D.5: Numerical residual on the plane outlet 2, normalised by (ρ2u4e)/µ.
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Figure D.6: Production on the plane outlet 2, normalised by (ρ2u4e)/µ.
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D.2.3 Dissipation
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Figure D.7: Dissipation on the plane outlet 2, normalised by (ρ2u4e)/µ.
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Figure D.8: Transport on the plane outlet 2, normalised by (ρ2u4e)/µ.

D.3 On outlet 3
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Figure D.9: Numerical residual on the plane outlet 3, normalised by (ρ2u4e)/µ.
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D.3.2 Production

1.4 1.6 1.8 2.0 2.2
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

0.0000

0.0556

0.1111

0.1667

0.2222

0.2778

0.3333

0.3889

0.4444

0.5000

(a) LES

1.4 1.6 1.8 2.0 2.2
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

(b) RANS_BSQ

1.4 1.6 1.8 2.0 2.2
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

(c) RANS_QCR

1.4 1.6 1.8 2.0 2.2
x2/s

0.0

0.1

0.2

0.3

0.4

0.5

x
3/
h

(d) RANS_BUA

Figure D.10: Production on the plane outlet 3, normalised by (ρ2u4e)/µ.

D.3.3 Dissipation
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Figure D.11: Dissipation on the plane outlet 3, normalised by (ρ2u4e)/µ.

D.3.4 Transport
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Figure D.12: Transport on the plane outlet 3, normalised by (ρ2u4e)/µ.
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