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If you torture the data long
enough, it will confess

Ronald H. Coase
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Abstract

Data obtained from environmental surveys may be prone to have different anoma-
lies (i.e., incomplete, inconsistent, inaccurate or outlying data). These anomalies affect
the quality of environmental data and can have considerable consequences when assess-
ing environmental ecosystems. Selection of data preprocessing procedures is crucial to
validate the results of statistical analysis however, such selection is badly defined. To
address this question, the thesis focused on data acquisition and data preprocessing
protocols in order to ensure the validity of the results of data analysis mainly, to recom-
mend the most suitable sequence of preprocessing tasks. We propose to control every
step in the data production process, from their collection on the field to their analysis.
In the case of water quality assessment, it comes to the steps of chemical and hydro-
biological analysis of samples producing data that were subsequently analyzed by a
set of statistical and data mining methods. The multidisciplinary contributions of the
thesis are: (1) in environmental chemistry: a methodological procedure to determine
the content of organochlorine pesticides in water samples using the SPE-GC-ECD
(Solid Phase Extraction – Gas Chromatography – Electron Capture Detector) tech-
niques; (2) in hydrobiology: a methodological procedure to assess the quality of water
on four Mexican rivers using macroinvertebrates-based biological indices; (3) in data
sciences: a method to assess and guide on the selection of preprocessing procedures
for data produced from the two previous steps as well as their analysis; and (4) the
development of a fully integrated analytics environment in R for statistical analysis of
environmental data in general, and for water quality data analytics, in particular. Fi-
nally, within the context of this thesis that was developed between Mexico and France,
we have applied our methodological approaches on the specific case of water quality
assessment of the Mexican rivers Tula, Tamazula, Humaya and Culiacan.

Keywords : Data preprocessing, Data analysis, Environmental Data, Water
Quality Assessment, water pollution.
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Résumé

Les données acquises lors des surveillances environnementales peuvent être sujettes
à différents types d’anomalies (i.e., données incomplètes, inconsistantes, inexactes ou
aberrantes). Ces anomalies qui entachent la qualité des données environnementales
peuvent avoir de graves conséquences lors de l’interprétation des résultats et l’évalua-
tion des écosystèmes. Le choix des méthodes de prétraitement des données est alors
crucial pour la validité des résultats d’analyses statistiques et il est assez mal défini.
Pour étudier cette question, la thèse s’est concentrée sur l’acquisition des données et
sur les protocoles de prétraitement des données afin de garantir la validité des résul-
tats d’analyse des données, notamment dans le but de recommander la séquence de
tâches de prétraitement la plus adaptée. Nous proposons de maîtriser l’intégralité du
processus de production des données, de leur collecte sur le terrain et à leur analyse,
et dans le cas de l’évaluation de la qualité de l’eau, il s’agit des étapes d’analyse chi-
mique et hydrobiologique des échantillons produisant ainsi les données qui ont été par
la suite analysées par un ensemble de méthodes statistiques et de fouille de données.
En particulier, les contributions multidisciplinaires de la thèse sont : (1) en chimie
de l’eau : une procédure méthodologique permettant de déterminer les quantités de
pesticides organochlorés dans des échantillons d’eau collectés sur le terrain en utilisant
les techniques SPE–GC-ECD (Solid Phase Extraction - Gas Chromatography - Elec-
tron Capture Detector) ; (2) en hydrobiologie : une procédure méthodologique pour
évaluer la qualité de l’eau dans quatre rivières Mexicaines en utilisant des indicateurs
biologiques basés sur des macroinvertébrés ; (3) en science des données : une méthode
pour évaluer et guider le choix des procédures de prétraitement des données produites
lors des deux précédentes étapes ainsi que leur analyse ; et enfin, (4) le développement
d’un environnement analytique intégré sous la forme d’une application développée en
R pour l’analyse statistique des données environnementales en général et l’analyse de
la qualité de l’eau en particulier. Enfin, nous avons appliqué nos propositions sur le
cas spécifique de l’évaluation de la qualité de l’eau des rivières Mexicaines Tula, Ta-
mazula, Humaya et Culiacan dans le cadre de cette thèse qui a été menée en partie
au Mexique et en France.

Mots clés : prétraitement des données, analyse des données, données environne-
mentales, évaluation de qualité de l’eau, pollution de l’Eau.
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Resumen

Los datos obtenidos de monitoreos ambientales pueden estar sujetos a diferentes
tipos de anomalías (i.e., datos incompletos, inconsistencias, inexactitudes, o valores
extremos). Estas anomalías que afectan la calidad de los datos ambientales pueden
tener consecuencias graves al ser utilizados en la interpretación de resultados y en la
evaluación de los ecosistemas. La elección de métodos de pre-tratamiento de datos
resulta crucial en la validación de resultados de análisis estadísticos sin embargo, esta
esta mal definida. Para estudiar esta problemática, esta tesis se concentro en la ad-
quisición y en los protocolos de pre-tratamiento de datos para garantizar la validez
de los resultados de análisis, con la finalidad principal de dar recomendaciones sobre
las secuencias de pre-tratamiento mas adecuadas. Nosotros proponemos un control
integral en el proceso de producción de datos, desde la colecta en el terreno de estu-
dio hasta su análisis. En el caso de la evaluación de la calidad del agua, se trata de
las etapas de análisis químico e hidrobiológico de muestras, cuyos datos producidos
han sido posteriormente analizados a través de un una serie de métodos estadísti-
cos y de exploración de datos. Las contribuciones multidisciplinarias de la tesis son:
(1) en química ambiental: un procedimiento metodológico que permite determinar el
contenido de plaguicidas organoclorados en muestras de agua utilizando las técnicas
de SPE-GC-ECD (Solid Phase Extraction – Gas Chromatography -Electron Capture
Detector); (2) en hidrobiología: un procedimiento metodológico para evaluar la cali-
dad del agua en cuatro ríos Mexicanos, utilizando indicadores biológicos basados en
macro-invertebrados; (3) en ciencia de los datos: un método para evaluar y guiar la
elección de procedimientos de pre-tratamiento de datos producidos luego de las dos
etapas precedentes, así como su análisis; y (4) el desarrollo de un ambiente analítico
integrado en forma de aplicación desarrollada en R para el análisis estadístico de datos
ambientales en general y el análisis de la calidad del agua en particular. Finalmente,
dentro del contexto de esta tesis desarrollada entre México y Francia, hemos aplicado
nuestras propuestas en el caso especifico de la evaluación de la calidad del agua de los
rios mexicanos Tula, Tamazula, Humaya y Culiacan.

Palabras clave: pre-tratamiento de datos, análisis de datos, datos ambientales,
evaluación de la calidad del agua, contaminación del agua.
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CHAPTER1
Introduction

According to UNESCO, rivers, lakes and coastal areas of developing countries are polluted
by more than 80% of untreated sewage. In 2012, the World Health Organization (WHO)
estimated that 871,000 human deaths were caused by contaminated drinking water and
soil (WHO, 2016). Regarding freshwater biodiversity, globally, more than 20% of verte-
brates species have been threatened by pollution (Assessment, 2005; Vörösmarty et al.,
2010), 32% of the world’s amphibian species are threatened with extinction (Dudgeon
et al., 2006) and it is estimated that rates of species loss have a tendency to increase with
higher values in tropical latitudes (Groombridge and Jenkins, 2000).

Faced with the need to reduce water pollution, intensive studies to monitor the quality
of water are continuously implemented. Monitoring activities consist in measuring various
water quality components at many locations during numerous time periods. Though data
from environmental surveys may be prone to have different anomalies (i.e., incomplete,
inconsistent, inaccurate or outlying data). Anomalies on data are ubiquitous, they arise
due to experimental problems, human errors or system failures.

Bad data quality, may be significant costly (Haug et al., 2011) and have considerable
consequences when assessing environmental ecosystems (Wahlin and Grimvall, 2008). To
generate quality data and reduce data anomalies, it is necessary both: to acquire quality
data and preprocess data (Han and Kamber, 2000; Berti-Équille, 2007a).

The acquisition of quality data can be obtained by following standardized sampling
and analytical protocols, and using advanced analytical tools (i.e., Inductively Coupled
Plasma Mass Spectrometry (ICP-MS) , Gas Chromatography Mass Spectrometry (GC-
MS), Liquid Chromatography Mass Spectrometry (LC-MS) or Liquid Chromatography
tandem Mass Spectrometry (LC-MS-MS)) (UNEP, 2004). However, in developing coun-
tries access to advanced analytical tools may be limited or standardized protocols are
difficult to implement. It is thus, necessary to adapt tools that can be easy and cheap to
use without compromising the quality of data.

Concerning data preprocessing, it consists of all actions necessary to generate quality
data. These actions include but are not limited to:

1. Cleaning data (i.e., removing outliers) and inconsistencies;
2. Resolving data conflicts (i.e., settling discrepancy);
3. Recovering incomplete data (i.e, filling missing values);
4. Reducing data (i.e., selecting relevant attributes) or creating new aggregate data.

1
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Although anomaly detection has been extensively studied in the recent years, few
works have been published and specifically applied in the domain of environmental science.
Considering that anomalies on data may appear all along an environmental study, it is
essential to identify, control (Berti-Équille, 2007a), and if necessary design well-defined
data acquisition and data preprocessing protocols in order to guarantee accurate results.
In this work we focused in both data acquisition and data preprocessing, specifically for
the analysis of environmental data from a developing country: Mexico.

1.1 Environmental informatics

Pollution problems have boosted environmental research activities going from general to
more detailed measurements and involving various disciplines such as Geology, Chemistry,
Ecology, Biology or Statistics. The large and complex production of environmental re-
search findings urge the need to use tools to analyse data. Environmental Informatics
science emerged from this need.

Environmental Informatics (EI) is a relatively new multidisciplinary, the first EI com-
munity was founded in the 80’s (Pillmann et al., 2006). It aims to carry out research
and develop IT tools focused on environmental sciences related to the creation, collec-
tion, processing, modelling, analysis and diffusion of environmental data, information and
findings. Environmental Informatics incites an aperture of the environmental sciences to
the Computer Science in order to exploit the concepts, methods, and tools to advance
knowledge in Environmental Sciences.

The work presented here is positioned on Environmental Informatics since it has a
multidisciplinary approach between Environmental Chemistry, Hydrobiology, Statistics,
Data science and Computer Science. The study was focused on two main challenges:
acquisition of quality data and definition of adequate data preprocessing procedures to
finally analyse data.

The importance of this work is highlighted by the definition of a generic, flexible
and extensible methodological framework dedicated to data acquisition, specifically water
quality data, and data preprocessing practices for analysis of environmental data.

This project was developed in collaboration with the Institute of Geophysics at The
National Autonomous University of Mexico (UNAM) in Mexico and the Research Insti-
tute for Development (IRD) in France within a scientific collaboration between the two
countries for the environmental preservation. In order to provide methods and tools for
the acquisition of data, different activities in environmental chemistry and hydrobiology
were designed. The activities related to environmental chemistry were developed at the
Institute of Geophysics at UNAM in Mexico and those related to hydrobiology were de-
veloped at ENGEES in Strasbourg, France. The activities in the Statistics and Computer
Science that define the methods to preprocess and analyse data were developed at IRD in
Montpellier, France.

1.2 Motivations

During environmental analysis, it is essential to only consider quality data that provide
valid information and discard results from deformed or distrust data. It is clear that to
provide accurate predictive and analytical results we need good quality data. In data
science, for instance, preprocessing procedures are proposed to reduce anomalies in data.
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In fact, a vast number of data preprocessing procedures are available rending the selection
of an optimal procedure a very arduous task.

There are many inherent challenges in this respect, for instance:

• Conventional approaches treat each data anomaly as isolated cases however, data
anomalies co-occur in data. Therefore it is necessary to develop preprocessing pro-
cedures that deal with multiple data anomalies within a dataset;

• The ordering in which preprocessing procedures should be executed is under studied.
It is necessary to define a data preprocessing ordering to produce the least biased
results;

• The impact of data preprocessing on statistical analysis results has not been widely
studied, it is necessary to conduct studies in this area to produce accurate results;

• An extensive work that provides information about the accuracy on the application
of preprocessing procedures is needed.

Data preprocessing, will definitely improve the quality of data. But, good data ac-
quisition practices are also necessary to prevent data anomalies. An important problem
on the acquisition of quality environmental data is the lack of standardized sampling and
analytical protocols particularly on laboratories where the access to advanced analyti-
cal instruments is limited. Thus, it is necessary to adapt analytical procedures that are
cost-effective and easy to implement in order to get quality data.

We are interested in developing a new approach that combines both; good data ac-
quisition and data preprocessing practices. Our main motivation is to provide tools and
methodological approaches to the scientific community for the acquisition, preprocessing
and analysis of environmental data. In this manner we were concentrated in two main
challenges: acquire quality data and preprocess data. Our purposes are: (1) to provide
methodological approaches and tools for the acquisition of water quality data and (2) to
provide a general overview of the advantages and disadvantages of preprocessing proce-
dures on statistical results.

Concerning the acquisition of data we focused on the development of tools in Environ-
mental Chemistry and Hydrobiology. We were especially interested in: (1) water pollution
problems caused by heavy metals, pesticides, pharmaceutical and personal care products,
and (2) the use of biomonitoring metrics using macroinvertebrates for water quality as-
sessment of Mexican rivers.
In Mexico, the monitoring of these type of pollutants is limited regardless their toxic effects
on ecosystems and human health. Such limitation is due to the restricted access to ad-
vanced analytical instruments for their quantification. By adapting analytical techniques
we will be able to: quantify pesticides, pharmaceuticals and personal care products in
water; acquire quality data by reducing the presence of anomalies such as missing values,
censored or outlying data; and identify sources of pollution that may affect ecosystems
and human health.
Use of biomonitoring metrics based on macroinvertebrates is an interesting approach for
the assessment of water quality in rivers. It is a low-cost and easy to implement tool that
provides valuable information about the ecological state of aquatic ecosystems. Nonethe-
less, in Mexico biomonitoring metrics are scarcely used. In fact, well-described sampling
and analytical protocols for their implementation do not exist yet. We were interested
in developing sampling and analytical protocol to use biomonitoring metrics based on
macroinvertebrates for the water quality assessment of Mexican rivers.

Regarding data preprocessing, we were interested in highlighting the importance of
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having quality data by implementing appropriate data preprocessing procedures. In pre-
vious works (Serrano Balderas, 2012; Serrano Balderas, 2013) we observed that the quality
of data has a significant impact on analytical results. These works conducted us to perform
a study where we demonstrated the importance of having quality data in an environmental
application framework (Berrahou et al., 2015). Data quality is undoubtedly important in
data analysis, we are concerned now about the procedures to get quality data namely,
preprocessing procedures.

1.3 Objectives

Our principal objective is to provide to the scientific community the methodological ap-
proaches and tools for the acquisition, preprocessing and analysis of environmental data
by guaranteeing the quality of data and analysis results. We aim at applying our method-
ological approaches for a specific case: water quality assessment of four Mexican rivers
(Tula, Tamazula, Humaya and Culiacan).

Our purpose on providing an integrated approach that combines both; good data ac-
quisition and data preprocessing practices, is to control the entire pipeline this is, from
the production and to the analysis of data. To achieve our aim, we have defined specific
objectives related to the three areas of our study. The objectives are:

Environmental Chemistry

• Acquire data by deploying reliable and low-cost methods of analysis for the quantifi-
cation of organochlorine pesticides, pharmaceuticals and personal care products in
water. These methods aimed at acquiring quality data for water quality assessment
in four Mexican rivers (Tula, Humaya, Tamazula and Culiacan);

• Specify the sampling and methodological protocols for the analysis of organochlorine
pesticides, pharmaceuticals and personal care products;

• Conduct the sampling campaign and analytical procedures for the analysis of water
samples from the four Mexican rivers (Tula, Humaya, Tamazula and Culiacan).

Hydrobiology

• Acquire data by defining a methodological approach using macroinvertebrates-based
biomonitoring metrics as new complementary tools for water quality assessment of
Mexican rivers;

• Conduct the sampling campaign and analytical procedures for the acquisition of
hydrobiological data.

Data science

• Define a methodological approach for the selection of data preprocessing procedures
to treat the most common data anomalies and data problems (missing values, out-
liers, feature selection and normalization);

• Evaluate the impact of data preprocessing procedures on subsequent statistical anal-
ysis;

• Determine the most appropriate data preprocessing procedures to get the less biased
analytical results;

• Specify the procedures to preprocess and analyse data that are necessary to ensure
the reliability of results on environmental studies in general and for water quality
data analysis in particular.
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1.4 Outline

The document is organized as follows:
Chapter 2 presents an overview of related work including: a) the acquisition of water
quality data for physico-chemical, chemical and biological parameters and b) preprocess-
ing and analysis of environmental data. In Chapter 3 we describe our methodological
approaches for the acquisition of chemical and biological data. We also describe the study
sites and the methods followed to collect and analyse the samples. Our methodological
approach for the assessment of data preprocessing procedures is detailed in Chapter 4. In
Chapter 5 we present EvDa, a Shiny/R application designed to preprocess and analyse
environmental data. Results of EvDa application to water quality data from the Mexican
rivers: Tula Tamazula, Humaya and Culiacan are also described in Chapter 5.
Finally, conclusions and future work associated to our contributions are given in Chapter
6.
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2.1 Introduction

The main tasks presented in this manuscript are: data acquisition, data preprocessing and
data analysis. Concerning data acquisition we aimed at developing and applying tools in
environmental chemistry and hydrobiology to acquire water quality data. For data pre-
processing, we aimed at developing a methodological framework to prepare the data and
analyse them. As a consequence our bibliographic study ranges from environmental chem-
istry (Section 2.2), hydrobiology (Section 2.3), computer science and statistics (Section
2.4).

2.2 Data collection in physico-chemical and chemical water

quality assessment

Collection of water quality data involves a set of tasks that include but are not limited to:
design of experiment, selection of sites of study, sample collection, development and/or
adaptation of analytical methods for analysis of pollutants and analysis of data (Bartram
and Ballance, 1996). For a better understanding of the characteristics of water quality
data and an appropriate subsequent analysis, we provide a general overview of methods
and tasks that are implemented to get water quality data. We focused mainly on methods
to acquire data related to pesticides, pharmaceuticals and beauty products as pollutants.

2.2.1 Water quality assessment of rivers

Water quality monitoring programs (WQMP) are conducted, in general, to get informa-
tion about the characteristics of water resources, identify pollution problems, evaluate and
describe water management actions (WMO, 2013). Assessment of water quality is com-
monly carried out following standardized methods and protocols. Globally, the WHO have
proposed a practical guide for designing and implementing freshwater quality studies (Bar-
tram and Ballance, 1996). Today, each country have established their own protocols, water
quality standard and permissible limits.

Water Quality Monitoring Programs refer to the acquisition of quantitative and repre-
sentative information on the existing conditions (physical, chemical and biological charac-
teristics) of a water body. They are designed following, in general, twelve steps according
to the diagram shown in Figure 2.1.

Identification and definition of objectives are the first two steps in monitoring programs
(Smith et al., 2014). Then the necessary experiments are designed, these need to be
structured to meet specific needs according to the objectives defined. The experiments
are composed of subsequent steps including: selection of scale, determination of frequency,
location and design of stations, selection of variables, selection of sample type, definition
of sample collection, definition of analysis methods and definition of land use monitoring.

Scale is defined whether at local, regional or national level. Frequency of sampling
varies according to the purpose of the monitoring, the characteristics of the water body
and the importance of the sampling station location. In general, monthly and seasonal
samplings are made for characterizing water quality over long time periods (e.g., over a
year) whereas weekly samplings are done for control purposes. On cases where significant
differences are suspected or detected, samples may be collected on a continuous basis.
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1. Identify problem
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Figure 2.1 – General water quality monitoring workflow.

Traditionally, the design of stations is done subdividing the locations into macro-
location and micro-locations. Macro-locations are river reaches sampled within a water-
shed and micro-locations are sampling points belonging to a macro-location that represent
specific points (e.g., discharge of a river, source of pollution) (Harmancioglu et al., 1999).
Today, design of stations is done using remote sensing techniques. By integrating remotely
sensed data, GPS or GIS technologies natural resource managers are able to geographically
locate a monitoring site (Ritchie et al., 2003).

Selection of variables depend directly to the objectives established on the monitoring
program and their importance vary with the type of water body and uses. Commonly the
variables that characterize water quality are classed into: general water quality parame-
ters, dissolved salts, organic matter, microbial pollution, nutrients and inorganic variables.
The development of new analytical technologies have allowed the identification of chemical
compounds that were not possible to identify with traditional techniques. These com-
pounds are classed as emergent pollutants and are monitored whether in surface waters
(Geissen et al., 2015b) or ground waters (Lamastra et al., 2016). Such organic compounds
include among others: pesticides, fungicides, oils, hydrocarbons, organic solvents, phenols,
surfactants, pharmaceuticals, fats and hormones (c.f. Table 2.1).

In addition to the aforementioned variables, ecological indicators (e.g., fish, macroin-
vertebrates, macrophytes, diatoms, phytoplankton.) are integrated as part of biological
monitoring. Though the use of ecological indicators is advantageous (c.f. Section 2.3.1),
they only provide information about indirect causes for a given change therefore it is rec-
ommended to use them as complementary tools in WQ monitoring activities (Sponseller
et al., 2001; Serrano Balderas et al., 2016).

Concerning sample type and sample collection, they depend on the variables to be
measured (Pegram et al., 2013). Commonly; water, particular matter and living organ-
isms are collected. Quality of water and particular matter are analysed by measuring
physical and chemical parameters whereas living organisms can be used in different ways,
for instance: as ecological indicators studying communities of organisms or as toxicological
indicators by studying the physiology, morphology or chemical composition of tissues on
specific organisms (Dolédec and Statzner, 2010).

Analytical methods are determined according to the type of sample, the quality pa-
rameter to be analysed, amount of sample and whether the sample is analysed in situ
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Table 2.1 – Water quality variables.

General water quality Organic matter Other Inorganic variables

Water discharge/levela Organic carbon (OC)b Boronb
Total suspended solidsb Chemical Oxygen Demand (COD)b Cyanideb
Temperatured Biochemical Oxygen Demand (BOD)b Heavy metalsb
pH Chlorophyll a Arsenic and seleniumb

Conductancee Sulphideb
Redox potential (Eh)f Microbial pollution

Hardnessg Faecal coliformsh Emergent pollutants

Disolved Oxygen (DO)b Pathogensh Oil and hydrocarbonsb
Turbidityk Bacteriah Organic solventsb
Colouri Phenolsb
Odourj Nutrients Pesticidesc
Tastej Nitrate plus nitriteb Surfactantsb
Particle size Ammoniab Pharmaceuticalsc

Organic nitrogenb Fatsb
Dissolved salts Phosphorusb Hormonesb
Calciumb Silicab Fungicidesb
Magnesiumb

Sodiumb

Potassiumb

Chlorideb
Fluorideb
Sulphateb
Alkalinityg
a Units are in m3 s−1.
b Units are in mgL−1.
c Units are in µgL−1.
d Units are in ◦C.
e Units are in µScm−1.
f Units are in mV.
g Units are in mg/CaCO3.
h Units are in number/100 mL.
i Units are in mgL−1 Pt/Co [Hazen units].
j Units are in dilution rate at stated temperature.
k Units are in FTU (Formazin Turbidity Units) or NTU (Nephelometric Turbidity Units) or JTU (Jack-

son Turbidity Units).
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or at laboratory. Generally, water sampling operations include in situ measurements,
sample pre-treatment, conservation, identification and transportation. There are numer-
ous methods for field monitoring they range from simple devices to sophisticated equip-
ment (WMO, 2013)(UNEP, 2004)(Meyers, 2000)(APHA/AWWA/WPCF, 2005). The
selection of methods and devices to measure the selected variables depend on the avail-
ability of equipment and reagents, degree of expertise and the accuracy needed according
to the objectives of the program.

Data management (DM) is an integral part of a monitoring program: it aims at con-
verting data into information that will meet monitoring objectives. DM inWQMP includes
analysis, distribution and storage of data. As an important part, data analysis allows to
have a basic understanding of data and to determine data quality and quantity (EPA,
2006). A first insight to understand data can be obtained through summary statistics.
Some of the characteristics that can be described include: normality, variability, symmetry
of data distribution, missing values or outliers. This kind of information can be useful in
order to define the suitability of data to support the intended use and, in most of the cases,
to identify problems on data that may affect conclusions on the environmental assessment
program (Helsel and Hirsch, 2002).

2.2.2 Collection of data about emerging pollutants in rivers

Today, there are numerous synthetic organic compounds that are used for industrial,
agricultural or domestic purposes. They can enter to natural effluents through infiltra-
tion, draining, natural deposition or by direct discharge. Except for specific removal by
wastewater treatment processes, they may be released into running waters at trace level
concentrations (in the nanogram (ng) or microgram per liter (µg l−1) range). Some trace
pollutants are referred as Emerging Pollutants (EP). Emerging pollutants (EPs) are syn-
thetic or naturally occurring chemicals that are rarely part of environmental monitoring
practices but which enter the environment and cause known or suspected adverse ecolog-
ical and (or) human health effects (Geissen et al., 2015a). Common wastewater processes
are not able to treat EPs.

Though release of EPs have been occurred for a long time, the interest to include
them in environmental assessment programs has increased over the last decades. Some
of the EPs that are found in aquatic environment have been recognized as hazardous to
ecosystems (von der Ohe et al., 2011). The persistence of EPs, their metabolites and
transformation products in natural waters has increased environmental and human health
concern, since little is known about their fate, behaviour and ecotoxicological effects (Petrie
et al., 2015). The EPs most constantly studied in the freshwater environments include: in-
dustrials, pesticides, pharmaceuticals and personal care products (PPCPs) (Murray et al.,
2010). In Table 2.2 we provide a list of some of these compounds.

Industrials are organic compounds used in manufacturing and production processes,
pesticides are substances or mix of substances used to destroy, suppress or alter the life
cycle of any pest1 and PPCPs are compounds administrated internally or externally to
the bodies of humans and domestic animals. PPCPs are part of the compounds of human
health concern because they can exhibit multixenobiotic resistance and show resistance to
microbial degradation (Smital et al., 2004).

As well as in a traditional water quality monitoring program (c.f. Subsection 2.2.1),
collection of data for assessment of EPs includes twelve steps (c.f. Figure 2.1). Due

1http://www.epa.nsw.gov.au/pesticides/pestwhatrhow.htm
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Table 2.2 – List of some Emerging Pollutants that are frequently found in aquatic environment.

Industrials Pesticides PPCPs

antioxidants carbamates analgesics
perfluorates chloro-acetanilides anti-epileptic drugs (AEDs)
phenols chlorophenoxy acids anticonvulsants
phthalates organochlorines lipid regulators
poly-brominated diphenylethers (PBDEs) organophosphates antimicrobials
triazoles pyrethroids polycyclic musks (PCMs)

triazines non-steroidal anti-inflammatory drugs (NSAIDs)
diuron synthetic hormones
isoproturon fragances
mecoprop insect repellant
prometon

Units are given in µgL−1.

to the physico-chemical properties of EPs (e.g., adsorption, volatility, polarity), sample
collection and analytical methods are the critical steps. Water quality data that includes
EPs is numerical, volume of data may depend on the objectives and scale of study (i.e.,
local, regional, national) thus, it can vary from 5 to over thousand of individuals (or
sampling sites) and from one to hundred of compounds.

Uncertainties may occur all along data collection and could be linked mainly to: field
sampling problems, transportation of samples, bad sample manipulation or problems with
analytical instrumentation. Data anomalies such as missing values, outliers and non-
detected data are frequently found when EPs are included in a water quality monitoring
program. Missing values and outlying data may occur by different reasons (e.g., difficul-
ties on field sample collection, lost of sample, equipment failure, anomalous conditions).
Non-detected concentrations or ND are frequently reported when a concentration of a
compound in a sample is less than a specified limit of detection (LOD), the resulting
left-censored data preclude subsequent statistical analysis (Clarke, 1998). For the case of
missing values and outlying data different data preprocessing procedures could be imple-
mented to improve the quality of data and facilitate statistical analysis (c.f. Subsection
2.4). Concerning non-detected data, use of advanced analytical techniques could be advan-
tageous, since advanced techniques allow the detection of EPs at very low concentrations
(µg and ng l−1).

2.2.3 Chemical analysis in water

Samples collected for environmental assessment constitute a representative fragment of
the site under study. Such sample contains the target specie called the analyte, which in
general is mixed with a number of other compounds constituting the matrix. To identify
or quantitatively determine an analyte, separation methods can be used. Such methods
are achieved by differences in physical or chemical properties between the constituents of
a mixture (Wilson et al., 2000).

There are different separation methods including: chemical precipitation, distillation,
extraction by solvents, ion exchange, electrolysis, and chromatography (Skoog Douglas
et al., 2014; Harvey, 2000).

• Chemical precipitation is based on the solubility of the compounds. It requires to
have big differences of solubility between the analyte and the other compounds. The
main drawback is that undesired co-precipitates can be formed making the separation
process more complex and slow.

• Distillation is used to separate volatile analytes from non-volatile interferences. Big
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differences of volatility are required to separate the target compound therefore, the
use of this method is limited when compounds in a mixture have similar or very
close volatility characteristics.

• Extraction by solvents is based on solubility differences between two immiscible liq-
uids. This method involves the selective transfer of an analyte from one liquid phase
to another by using a solvent with a polarity similar to the analyte. In water sam-
ples, non-polar solvents are used to extract the analyte from water.
Compared to precipitation, the extraction method is less complex and faster how-
ever, large quantities of organic solvents are needed, emulsions may be formed and
it is not suitable for thermally unstable compounds.

• Ion exchange. Water is composed of electrically charged atoms or molecules named
ions. Ions can be charged positively or negatively, named cations or anions re-
spectively. Ion exchange is used to separate undesired cations and anions within a
water matrix such undesired cations are replaced with other similarly charged ions.
The process occurs when a water matrix is in contact with an ion exchange resin
which contains charged ions. The ions of the matrix are then replaced by the ions
of the resin. Resins are composed of organic polymer chains which contain charged
functional groups with either positive or negative charge. In a matrix containing
multiple compounds the ion exchange separation will not be highly efficient for dif-
ferent reasons: 1) the sample need to be passed through different resins in order to
separate the analyte from the matrix, causing a lost of sample and analyte; 2) it is
necessary to know the physico-chemical characteristics of the compounds present in
a matrix in order to use specific resins; and 3) resins composed of mixed polymer
chains are indispensable but they can be costly and there is not guarantee of getting
good separation results.

• Electrolysis occurs when an electric current is passed through a mixture containing
ions. The electric current induce chemical reactions and separates compounds of the
matrix. The process occurs in an electrolytic cell which is a device with positive
and negative electrodes. The electrodes are then introduced in a solution containing
charged ions. When the electric current is passed through the solution, cations
travel to the electrode charged negatively (cathode) and are transformed to neutral
molecules. While anions travel to the electrode charged positively (anode) to be
transformed into neutral molecules. Separation by electrolysis is widely used in
metallurgical processes.

• Chromatography is a separation process where substances are distributed between
two phases named stationary and mobile phase. The mobile phase is a sample-
free phase that is passed over a second sample-free phase that remains stationary
(stationary phase). The chromatography is achieved by placing a sample into the
stationary phase and putting it in contact with the mobile phase, as the mobile
phase moves the components of the sample are partitioned between the mobile and
the stationary phases.
The basic chromatographic process can be described in the following steps (c.f. Fig-
ure 2.2):

1. First, the stationary phase, which is a finely powdered solid, is placed into a
vertical hollow glass tube. Then a sample matrix containing the components
to be separated is placed at the top of the glass tube;

2. Then, the mobile phase is added continuously to the glass tube. In this manner,
the different constituents of the mixture are carried on along with the mobile
phase. This process is known as elution;

3. Finally, the separated components of the mixture can be recovered.
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Figure 2.2 – Basic chromatographic process. (a) The different components (C: glass column,
SP: stationary phase, MP: mobile phase, S: sample); (b) introduction of the sample; (c) elution
of constituents of the mixture; (d) recovering of compounds after separation. Figure taken from
Rouessac and Rouessac (2008).

The basic chromatographic process has been largely used for the separation and pu-
rification of divers compounds. This technique has been improved greatly. Nowadays
chromatographic techniques are composed of divers accessories designed to automa-
tize, control and assure reproducibility of the entire separation process.
In general, the chromatography instrumentation is composed by a mobile phase
supply system, a chromatographic column, a detector and an equipment for data
acquisition and processing (Figure 2.3).

Mobile phase supply

Detector

Data acquisition
and processing

Chromatogram

1

2

3

Intensity

Time0

1 - Decane
2 - Hexanol
3 - nonane

Figure 2.3 – Schematic representation of chromatographic instrumentation

The mobile phase supply systems is designed to transfer the mobile phase through
the chromatographic column. To achieve the separation of the compounds present
in a mixture, the mobile phase should be composed of divers solvents or solvent mix-
tures that will interact with the molecules of the sample to proceed with the elution
of compounds. With the help of the mobile phase the components of a mixture are
carried out to the chromatographic column. The column contains the stationary
phase that allows the separation of compounds. Once the different compounds are
eluted from the column they are identified by a detector.
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The detector along with the column is an important part of the chromatographic
system, it identifies the components separated by the column and allows their quan-
tification. Detectors provide whether a single information (e.g., retention time2

or combined information (e.g., retention time and structure of the analyte). For
this reason, chromatographic systems can be equipped with two or three detectors.
The detectors must frequently used include: Thermal conductivity detector (TCD),
flame ionization detector (FID), Nitrogen phosphorus detector (NPD), Electron cap-
ture detector (ECD), Photo-ionization detector (PID), Mass spectrometry detector
(MSD), Infrared detector (IR) and ultraviolet detector (UV).
The compounds identified by the detector are represented in a chromatogram. The
chromatogram shows the variation of the amount of the analyte in the mobile phase
in specific period of time. The chromatogram consist of a peak for each of the
separated compounds identified by the detector (Rouessac and Rouessac, 2008).
Considering the physical nature of the two phases involved, chromatographic tech-
niques can be classed into Liquid phase chromatography (LC) and Gas phase chro-
matography (GC).
The liquid phase chromatography uses a liquid as the mobile phase. Depending on
the retention phenomenon this category can be sub-divided into liquid/solid chro-
matography (or adsorption chromatography), ion chromatography (IC), liquid/liquid
chromatography (or partition chromatography, LLC), and liquid/bound chromatog-
raphy.
In gas chromatography the mobile phase is an inert gas3 (i.e., helium, hydrogen or
nitrogen). Gas chromatography can be sub-divided into gas/liquid/chromatography
(GLC) and gas/solid chromatography (GSC).

When measuring an analyte at trace level4 within a matrix, interferences between an-
alyte and other compounds may occur. Therefore it is necessary to meticulously prepare
a sample before its analysis. Some methodologies for sample pretreatment include: solid
phase extraction (SPE), immunoaffinity extraction, microextraction procedures, gas ex-
traction on a cartridge or a disc, headspace, supercritical phase extraction and microwave
reactors. Among these methodologies the SPE is the most frequently used.

SPE is used to purify or concentrate an extract prior to the analysis of its constituents
(Pawliszyn, 2010). It is implemented using a plastic cartridge similar to a syringe which
contains a solid sorbent upon which a known volume of liquid sample is passed.

In the initial step of the SPE method the target compound is retained by the sor-
bent, then undesired substances are eliminated by rising them. Finally a small volume
of a strongly enriched solution is recovered using an appropriate solvent. This solution
contains the analyte. The SPE procedure isolates and pre-concentrates the analyte, this
is particular useful when analysing traces.
An analogous methodology to SPE is the liquid/liquid extraction, where large volume of
solvent is used to dilute the analyte. The main drawbacks of the liquid/liquid extraction
are: 1) large volume of solvents are necessary and 2) impurities along with the analyte are
dissolved by solvent so the extracted solution contains both the analyte and impurities
which makes the method unacceptable.

Today, numerous analytical techniques are available, most of them include the use of

2The time a solute takes to move from the point of injection to the detector (Harvey, 2000).
3Inert gas is a gas that do not undergo chemical reactions, they are used to avoid unwanted chemical

reactions
4A compound is considered to be in trace amount when its concentration in the environment is less

than 1000 ppm (1 µLL−1 or 1 mgkg−1)
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Liquid Chromatography tandem Mass Spectrometry (LC-MS-MS) or Gas Chromatogra-
phy Mass Spectrometry (GC-MS). They have been used for the analysis of various com-
pounds in wastewater, surface and ground waters (Robles-Molina et al. 2014; Bruzzoniti
et al. 2006; Ma et al. 2009; Nebot et al. 2007; Mansilha et al. 2010).

In Mexico, different efforts to advance on the study of EPs have been made. Some
of the analytical methods that have been proposed for the analysis of EPs in Mex-
ico include: Supercritical-Fluid Chromatography coupled with Diode-Array Detection
(SFC-DAD) (Salvatierra-Stamp et al., 2015a), Selective Elution and analysis by Gas
Chromatography-Mass Spectrometry (GC-MS) (Gibson et al., 2007), Liquid Chromatog-
raphy with a Photodiode Array Detector (LC-PAD) (Salvatierra-Stamp et al., 2015b),
Solid Phase Micro Extraction followed by Gas Chromatography-Mass Spectrometry (SPME-
GC-MS) (Peña-Álvarez and Castillo-Alanís, 2015), Liquid Chromatography (LC) with
post-column fluorescence detection (García de Llasera and Bernal-González, 2000a) and
Liquid Chromatography diode array UV detection coupled on-line to a Solid Phase Ex-
traction (SPE) (García de Llasera and Bernal-González, 2000a).
These methods can be used to analyse different EPs in water samples including: phar-
maceuticals (e.g., carbamazepine, carbofuran, glyburide), endocrine disruptors (e.g., 17α-
ethinyl estradiol, bisphenol A, 17β-estradiol), bactericides (i.e., triclosan) and pesticides
(carbamates, organochlorine, organophosphorus).
In addition to the above mentioned methods, some others were also developed for the anal-
ysis of EPs in soils (García de Llasera and Bernal-González, 2000b) and sediments (Alcántara-
Concepción et al., 2013).

The works published on environmental assessment of EPs in Mexico are still limited,
but the already published work gives evidences of the importance to conduct studies on
this topic, and most importantly, to include EPs in the monitoring programs to assess the
quality of Mexican surface waters.
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2.3 Data collection from biomonitoring in water quality as-

sessment

The growing need for controlling good surface water quality and healthy aquatic ecosys-
tems demands an increasing effort to monitor the quality of aquatic ecosystems. This
section presents the importance of using macroinvertebrates-based monitoring metrics as
a rapid, low cost, and reliable alternative to monitor the quality of surface waters. In
the following subsections a state-of-the art on biomonitoring and collection of data from
biomonitoring practices using macroinvertebrates is presented.

2.3.1 Biological organisms in biomonitoring

Aquatic ecosystems are affected by a number of interrelated physical, chemical, and bi-
ological factors. The continuous degradation of surface waters due to natural or anthro-
pogenic causes prompts an interest to the monitoring and management from a regulatory
approach to a holistic ecosystem approach (Pinto et al., 2009). In this manner, biological
monitoring has become an effective tool for the assessment of water quality and aquatic
ecosystem integrity (Barbour et al. 1999; Markert et al. 1999; Masese et al. 2013; Thorne
and Williams 1997).

Biomonitoring or biological monitoring is an environmental survey using biological
variables. Biotic communities present changes in their structure, composition and be-
haviour when the physical, chemical or biological attributes of a river are altered. There-
fore, aquatic ecosystems are increasingly monitored by observing the overall responses of
a biocenosis5 able to integrate over space and time all the stressors undergone by the
ecosystem.

Usually biomonitoring tools concern only a part of biocenosis, e.g., fish. Their appli-
cation supposes to know biological organisms currently present in a geographic site and
includes a listing of these organisms. Today, different aquatic organisms are used to assess
biotic integrity of streams including: bacteria, protozoans, diatoms, algae, macrophytes,
macroinvertebrates, and amphibians (Amaral Pereira et al. 2012; Barbour et al. 1999;
Kane et al. 2009; Lane and Brown 2007). Each group responds to disturbances differ-
ently, providing diverse information. Thus, the group of assemblage is chosen depending
on the objective of the study and the characteristics of the ecosystem to be assessed.

Biomonitoring of lotic systems; i.e., rivers, is done using metrics based on periphy-
ton, benthic macroinvertebrates and fish communities (Li et al., 2010). Metrics based
on periphyton and fish communities are good indicators of habitat/hydro-morphological
alterations. While metrics based on macroinvertebrates have a better response when en-
richment of pollutants (like NO3) is the main stressor affecting streams integrity (Johnson
et al., 2006).

Use of macroinvertebrates on bioassessment practices present different advantages
(Bonada et al. 2006; Rosenberg and Resh 1993) including:

1. their benthic nature, which allows a spatial analysis of pollutants;
2. their relatively long-live cycles, that allows to follow environmental changes over long

periods of time (they provide evidence of conditions of about 6 last months), contrary
to diatoms that can reflect environmental changes only for the last 2 months;

5a self-sufficient community of naturally occurring organisms occupying and interacting within a specific

biotope.
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3. their sensitivity to different types of chemical and/or hydro-morphological alter-
ations;

4. their abundance and diversity: a large number of species produces a range of re-
sponses to a wide variety of disturbances;

5. they are easy to identify to a family level (at this level of identification, they provide
in general, enough information of alteration level), compared to periphyton;

6. sampling is easy to implement, requires few people, and equipment is relatively
inexpensive; compared to fishes;

7. and their ubiquitous occurrence.

2.3.2 Ecological assessment of rivers using macroinvertebrates

Assessment of environmental condition using biological organisms has been historically
practised in developed countries (Cairns and Pratt, 1993). Today, analysis of macroin-
vertebrates communities in rivers is carried out using mainly structural and taxonomical
approaches, this means relying on the presence/absence, sensitivity, richness, abundance,
and diversity of particular taxa. All this information is then converted into numerical
values such as indices and scores.

The main steps on rivers assessment using macroinvertebrates include: (1) field sam-
pling, (2) sample treatment, and (3) interpretation of data.

1. Field sampling: Sampling can be implemented in a representative fragment of the
water body. To select a representative fragment, it is necessary first to record the
specific locality, topography, and drainage characteristics of the aquatic ecosystem
habitats. Locality can be specified by latitude, longitude, section number, habitat
location (country, state, province or township), and elevation of the study area
above the sea level. The topographic description of the study area includes: the
type of water body (creek, river, pond, lake or reservoir); surface features (slope
and form of the surrounding terrain and shoreline, form of stream channel and
formations such as riffles, rapids, falls or islands); size of the water body, and its
approximate centre and average depths; current velocity and sediment structure.
For drainage characteristics, the major drainage system should be identified along
with the name of the water body as well as the smaller watershed that drains the
body water (Brower et al., 1997).
The characteristics of the aquatic habitats are then used to select the sampling
methodology and tools. All habitats or specific habitats (e.g., habitats with uniform
and clearly defined conditions) can be sampled (Jáimez-Cuéllar et al., 2004). Within
the studied fragment of body water, samples are collected generally from mineral
and vegetable (alive or dead) substrates and from slow and fast water’s course speed.
Samples can be collected with the help of different devices (APHA 1998; Ghetti
1997; Rosenberg and Resh 1982). The most commonly-used ones include: nets (e.g.,
handnet, surber net, kick net, D-frame net, dredges), grabs, core samplers, artificial
substrates and drift. Important for the nets is the mesh size which should be between
250 µm and 500 µm. Sampling can be completed by hand, picking macroinvertebrates
that may be situated on hard substrates (stones or plants). Biological organisms are
frequently preserved in 70% ethanol for posterior examination.

2. Sample treatment: Examination of macroinvertebrate samples can be performed in
situ or soon after capture, or most frequently later in a laboratory, (Bervoets et al.,
1989). Samples are sorted using a pile of sieves of 250, 500, 750, 1000 or 1250 µm
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in order to separate different size of substrates and of macroinvertebrates, to make
easier the visualization of organisms. The sample can be cleaned with running tap
water. Sieve contents should be placed in white trays to sort the organisms. The
organisms can be examined under a stereoscope and finally be conserved in glass
or plastic containers with 70% ethanol (APHA, 1998)(De Pauwn and Vanhooren,
1993)(Ghetti, 1997)(U.S.E.P.A, 2013).
Family or genus are the level of taxa identification the most adopted in many biomon-
itoring programs (Thorne and Williams, 1997) where family is considered the min-
imal identification level recommended (Hilsenhoff, 1988). Taxa is identified by the
use of keys of local taxa.

3. Interpretation of data: All the information obtained from the identification and
quantification of taxa is then treated to compute various metrics (i.e., richness, di-
versity, similarity, biotic indices, functional traits, multimetric approaches). Finally,
analysis of data is performed applying different statistical methods. The selection of
the statistical method depends mainly on the purpose of the study and may even-
tually combine the biological metrics with environmental metrics (e.g. chemical or
physicochemical parameters). For instance, graphical techniques are used to provide
rapidly accessible information of a selected number of variables while multivariate
statistical techniques can be used to test the degree of similarities in a larger number
of variables. Some differences on the performance of graphical, multivariate and clas-
sification methods are described in Güler et al. (2002) and Walley and S.Džeroski
(1996).

The idea of using aquatic organisms as biological indicators of environmental condition
was first introduced by Kolkwitz and Marsson (1908). They introduced the concept of
saprobity which refers to a measure of organic pollution in rivers and the associated de-
crease in dissolved oxygen. Since then, different approaches have been developed. Among
them, Metcalfe (1989) has distinguished three major approaches: the saprobic, diversity,
and biotic approaches. In recent years, however, new approaches have been developed,
e.g., multiple biological traits, multimetric and predictive approaches. Below we describe
the most common approaches. They are classed into five groups (Resh and Jackson, 1993)
which are: (1) measures of richness; (2) enumerations; (3) diversity and similarity indices;
(4) biotic indices, and (5) functional traits. In addition to these groups, there are multiple
biological traits, multimetric, and predictive approaches.

1. Measures of richness: There are as many measures of richness as there are macroin-
vertebrates orders and levels of identification: the most frequently-used for macroin-
vertebrates are family, genus and species. Orders of EPT taxa are considered to
be sensible to anthropogenic stressors. Therefore, they have been widely used as
indicators of environmental disturbances (Wallace et al., 1996). Five measures of
richness are the most commonly used (c.f. Table 2.3)

Table 2.3 – Measures of richness (Barbour et al., 1999) (Resh and Jackson, 1993).

Measure name Common expression

Number of total taxa Num. Total Taxa

Number of EPT taxa (Ephemeroptera, Plecoptera, Trichoptera) Num. EPT

Number of Ephemeroptera taxa Num. Ephemeroptera

Number of Plecoptera taxa Num. Pleocoptera

Number of Trichoptera taxa Num. Trichoptera

2. Enumerations: Concerning enumeration metrics, it is considered that some stresses
increase or decrease the total numbers of individuals of some taxa. Some measures
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are based on the identification of pollution-sensible groups and their relative abun-
dances to the total abundance of macroinvertebrates (e.g., Ratio of EPT abundance
to Chironomidae abundance). The most commonly used include five metrics (c.f.
Table 2.4) (Merrit et al., 2008b). They simple consist on counting and classifying
individuals, to finally compute the corresponding ration of each metric.

Table 2.4 – Enumeration metrics.

Metric name Common expression

Ratio of EPT individuals to total individuals % EPT

Ratio of Chironomidae individuals to total number of individuals % Chironomidae

Ratio of EPT abundance to Chironomidae abundance EPT:Chironomidae

Ratio of individuals in numerically dominant family to total number of

individuals

% of most dominant genera

Ratio of individuals in numerically dominant taxa to total number of

individuals

% of dominant taxa

3. Diversity and similarity indices: Diversity approaches use richness, evenness, and
abundance to evaluate the community structure with respect to the occurrence of
species (Li et al. 2010; Merrit et al. 2008b). These approaches are based on the
principle that stressed or polluted water will lead to a reduction in diversity on the
community. The main problems of diversity approaches is the unclear reference level
and the considerable variations on the diversity of natural undisturbed waters. The
use of diversity on water quality monitoring relies on the idea that balanced, stable
communities will be represented by high diversity index values. Similarity indices
compare community structure between sites. Thus, communities at disturbed and
undisturbed sites, will present remarkable dissimilarities. Diversity and similarity
indices have been strongly criticized when employed separately in assessment of river
systems (Metcalfe, 1989) and today, they are preferably used jointly with other
metrics (e.g., multimetric approaches) in order to integrate the behaviour of the
elements and processes of biological systems (Karr, 1999). In Table 2.5, the most
commonly used Similarity and Diversity metrics are listed. It must be noticed that
Bray-Curtis distance is a dissimilarity index, its interpretation is teh opposite of teh
results obtained with the other similarity indices but provides relevant information.

4. Biotic indices: Biotic approaches combine measures of diversity with the ecological
sensitivity of individual taxa into a single numerical expression. The principle of
biotic approaches is that macroinvertebrate groups disappear as pollution increases
and a reduction of the number of taxonomic groups is observed when pollution
increases. The main disadvantage of these approaches are the difficulty to determine
representative reference communities and the uncertainties that can be generated
when biotic approaches are adopted in geographic regions different from which they
were originally designed.
Biotic indices are calculated as follows: first, different values are assigned to macroin-
vertebrate taxa according to their sensitivity or tolerance: then, all individual values
of the taxa present in the studied sample are summed up to finally generate a single
index or score. The values assigned to macroinvertebrates differ among taxa accord-
ing to their sensitivity and tolerance to pollutants. Those values are constructed
more commonly taking into account the tolerance of macroinvertebrates to: pH,
organic pollution, eutrophication, heavy metals, and pesticides.
From the numerous biotic indexes that have been developed (Cairns and Pratt
1993; Metcalfe 1989) six are the most widely used (c.f. Table 2.6). Among them,
the Biological Monitoring Working Party (BMWP) has been adopted and modified
for effective use in several countries, such as Spain (Alba-Tercedor and Sánchez-
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Table 2.5 – Similarity and Diversity indices.

Index name Definition Reference

Diversity indices

Shannon’s

Index

H =
∑i=S
i=1 pi logpi (Shannon, 1948)

Simpson’s Index D =

∑i=S

i=1
ni(ni−1)

N(N−1)
(Simpson, 1949)

Sequential

Comparison

Index (SCI)

SCI = number of runs
number of specimens (Cairns et al., 1968)

Margalef Index D = S− 1
logN (Margalef, 1951)

Similarity indices

Jaccard’s Coef-

ficient

Cj = j
a+b−j (Jaccard, 1908)

Sørensen Coeffi-

cient

Cs = 2j
a+b (Sørensen, 1948)

Bray-Curtis dis-

tance

BC = 1− 2Cij

Si+Sj
(Bray and Curtis, 1957)

Community loss

index

CLI =
(A−B)
C (Courtemanch and Davies, 1987)

pi = proportion of individuals of the ith taxon pi = ni/N .

ni = total number of individuals of the ith taxon.

N = total number of individuals for all ith taxa.

S = total number of taxa.

j = number of taxa in common between the stations A and B.

a = number of all taxa in station A and b = number of all taxa in station B.

A = Number of taxa at the reference site.

B = Number of taxa at the study site.

C = The taxa common to both sites.

Ortega, 1988), Australia (Chessman, 1995), India (De Zwart and Trivedi, 1994),
Costa Rica (Mafla, 2005), and Colombia (Roldán Pérez, 2003).

Table 2.6 – Biotic indices.

Index name Common expression Reference

Trent biotic Index TBI (Woodiwiss, 1964)

Extended Biotic Index EBI (Ghetti, 1997)(Hellawell, 1978)

Beck Biotic Index BBI (Beck, 1955)

Hilsenhoff’s Biotic Index HBI (Hilsenhoff, 1982)

Biological Monitoring Working Party

Score System

BMWP (Armitage et al., 1983)

BMWP - Average Score Per Taxon BMWP-ASPT (Armitage et al., 1983)

Each biotic index contains a table listing the tolerance values assigned for each taxa. Computation of

the biotic indexes is done using the corresponding tables for each metric.

5. Functional traits: Macroinvertebrate traits are characteristics that have been adopted
as a complementary and indirect approach to reflect ecological integrity (Statzner
et al., 2001b). This approach is based on the habitat characteristics and the biolog-
ical and ecological functions of species. Thus, by relating species traits to habitat
characteristics, important insights into the structure and functioning of streams com-
munities can be observed (Bremner et al., 2006; Kilbane and Holomuzki, 2004; Poff
et al., 2006; Statzner et al., 2001a).
Traits are classified in two categories mainly: biological and ecological. Biological
traits (i.e., size, body form, life cycle, food and feeding habits, reproductive strate-
gies, mobility, etc.) describe the biology of the species. Ecological traits (i.e., pH
and temperature tolerances, bio-geographic distribution, tolerance to organic pol-
lution, etc.) are related to habitat preferences.Usseglio-Polatera et al. (2000) have
proposed twenty-two (eleven biological and eleven ecological traits).
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Functional traits measures organize species into functional feeding froups (FFGs) ac-
cording to their morphological behaviour, food-gathering mechanisms or locomotion-
attachment adaptation (Merrit et al., 2008b; Tachet et al., 2010). Each of these
FFGs are expected to vary significantly, they can increase or decrease upon accu-
mulation or loss of particular food sources, presence of pollutants or with particular
habitat types. FFGs indicate perturbation of the community when deviations of
expected abundances of FFGs or habit groups occur (Merrit et al., 2008b).
FFGs have been applied by several authors to assess perturbations on the aquatic
ecosystem such as: land use effects (Dolédec et al., 2006), high-flow disturbance (Holo-
muzki and Biggs, 2000), anthropogenic effects (Usseglio-Polatera and Beisel, 2002),
organic pollution (Lafont et al., 2006) or monitoring of water quality (Bady et al.,
2005; Charvet et al., 2000; Statzner et al., 2005) and, in recent years, they have
been applied together with other metrics (i.e., multimetric approaches). The most
commonly used are: the percentage of filtering collectors, the percentage of scrapers,
the percentage of gathering collectors, the percentage of predators and the ratio of
scrapers to filtering collectors (scrapers/filtering collectors).

6. Multimetric approaches: Multimetric approaches provide robust and integral re-
sponses of an assemblage to natural and anthropogenic stressors. They combine
various measures of richness, enumerations, pollution-tolerance values, functional
feeding groups, dominance, life cycle and density.
The Index of Biotic Integrity (IBI), introduced by Karr (1981) was the first mul-
timetric approach, which was designed to assess fish assemblages. Inspired by the
IBI index, different multimetric approaches have been proposed and adopted in dif-
ferent countries including: France (I2M2 (Mondy et al., 2012)), Germany (Vlek
et al., 2004), India (Sivaramakrishnan et al., 1996), East Africa (IBI-LVB (Masese
et al., 2013)), Brazil (Multimetric approach for Central Amazonia region (Couceiro
et al., 2012)), Panama (NLSMI (Helson and Williams, 2013)) and Mexico (IBI-
west-central-Mx (Weigel et al., 2002)). Multimetric indices are potential and effi-
cient assessment tools because they integer individual metrics that consider different
attributes of communities in order to respond to different types of pressure. Never-
theless, these multimetric approaches are region-specific and cannot be implemented
globally.

7. Predictive approaches: Predictive models assess river health by comparing reference
sites with altered ones. The assumption on these models is that the least-impacted
sites with similar environmental characteristics should have similar fauna patterns in
the absence of anthropogenic impact. In this context, predictive models have been
proven to be useful in biomonitoring activities.
Both multimetric and predictive approaches use biotic indices. The predictive model
approaches most frequently used are the Biological Monitoring Working Party score
(BMWP) and the Average Score Per Taxon (ASPT) (Norris and Hawkins, 2000).
The multivariate predictive models that are widespread used include:

• RIVPACS (River Invertebrate Prediction and Classification System (Wright
et al., 1984));

• AusRivAS (Australian Rivers Assessment System (Smith et al., 1999));
• BEAST (Benthic Assessment Sediment (Reynoldson et al., 1995)) and
• ANNA (Assessment by Nearest Neighbor Analysis (Linke et al., 2005))

Inspired by RIVPACS, some other models have also been developed such as: Mon-
dego (Feio et al., 2007), Medpacs (Poquet et al., 2009) or the predictive model
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for Bolivian streams (Moya et al., 2011). But so far, due mainly to the absence of
reference sites and incomplete information on rivers functions, there is no equivalent
model developed in Mexico.

Some of the foreign biomonitoring metrics that have been used to assess Mexican
aquatic ecosystems using macroinvertebrates include: the Hinselhoff Family-level Biotic
Index (Henne et al., 2002)(Barba-Álvarez et al., 2013), the Beck Biotic Index (Rosas
et al., 1984) and the Extended Biotic Index (López-Hernández et al., 2007). Nonetheless,
they have been used only on isolated cases or for a particular study case. In fact, the use of
macroinvertebrates for bioassessment of lotic systems in Mexico is still scarce (Mathuriau
et al., 2011). This is due mainly to: untrained personnel, unknown information of pristine
communities, absence of sampling material, lack of identification keys, absence of local
experts and incomplete information on macroinvertebrates functions on Mexican rivers
(Resh, 2007).

Applicability of biological monitoring methods in developing countries can be always
debated. For instance, in a study published by Damanik-Ambarita et al., 2016a carried
out in different tropical river basins (Ecuador, Ethiopia and Vietnam), it was observed
that different biological metrics, presence and absence of sensitive/tolerant taxa as well as
relative abundance of macroinvertebrates families could be used to assess the quality of
the studied rivers. They particularly observed that functional traits, like FFG (Functional
Feeding Groups) were promising. In other study published by Damanik-Ambarita et al.,
2016b different biomonitoring metrics were used in Middle and South America Rivers. To
study the ecological water quality in Ecuador (Guayas river basin), they selected physico-
chemical data (temperature, conductivity, turbidity, Chlorophyll, nutrients, organic mat-
ters) and two macroinvertebrates indices: the BMWP-CO (Roldán Pérez, 2003) and the
Neotropical Low-land Stream Multimetric Index (NLSMI) (Helson and Williams, 2013).
The NLSMI’s metrics are : % of scrapers, % of shredders, Margalef’s index, % of chi-
ronomidae and % of Diptera, % of Trichoptera and Shannon Index, which are among the
metrics we recommend. They used these metrics because macroinvertebrates’ responses
towards environmental changes might vary across sites and habitats (García-de la Parra
et al., 2012; Helson and Williams, 2013). However in the above mentioned publications
they did not study micro-pollutants. In our study we plan to study macro-pollutants and
micro-pollutants as chemical variables, we choose to keep all the 35 biotic metrics and
their potential correlation with abiotic data because, 1) as showed by Damanik-Ambarita
et al., 2016a the relationship between macroinvertebrates communities and habitat dis-
turbance are still lacking and poorly understood in South America, and 2) as explained
previously, bioassessment of freshwaters in Mexico is scarce.

2.3.3 Biomonitoring data: general characteristics, common uncertain-

ties and anomalies

Biomonitoring data consist of a list of fauna living in the rivers. The term taxa is used
to define the family, sub-family or species from which a giving individual belongs. Fishes,
oligochaetes or macroinvertebrates could be part of the fauna on a biomonitoring study.
The resulting list of taxa is used to compute biological indices that provide a numerical
value. This numerical value is then used as an indicator of the water quality characteristics
of river. In the previous section (c.f. 2.3.2), we described the different indices that can be
computed. Each index provides different information that scientist can integer to have a
general overview of the characteristics of a river.

Uncertainties in biomonitoring data are ubiquitous. They may occur from collection to
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analysis of data. Uncertainties may occur due to differences on: sampling protocols, num-
ber of volume of samples, type of substrates, analysis of samples by inexperienced personal,
sorting method, level of taxa identification or rare specimens consideration (Wiederkehr,
2015).

Misclassification of taxa, is one of the most common errors found on biomonitoring
data. It has an important impact on the boundary between good and moderate rivers
water quality status (Wiederkehr et al. 2016; Haase et al. 2006; Metzeling et al. 2003).
Another common error is missing data, that may occur mainly to lost of samples.
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2.4 Preprocessing and analysis of environmental data

Data exploration and analysis are the basis to discover knowledge, understand studied
phenomena, solve problems, and make decisions. Data quality is an important issue on
data analysis, bad data quality may be significant costly (Haug et al., 2011) and induce
misleading conclusions (Wahlin and Grimvall, 2008). Quality data is mandatory par-
ticularly on environmental data because erroneous data may lead to faulty conclusions
leading expensive decisions and causing dramatic consequences on environmental systems.
Aiming at improving the quality of data for the particular case of water quality, Rieger
et al. (2010), Alferes et al. (2013), Alferes and Vanrolleghem (2014) have proposed to
evaluate and validate data from in situ measurements. Such evaluation allows to detect
data anomalies and implement corrective actions for on-line monitoring systems however,
most of the monitoring systems are not on-line. Thus, different approaches are necessary
in order to correct data anomalies and improve the quality of data.

Anomalies in data are ubiquitous and may have dramatic consequences in data analy-
sis (Eppler and Helfert, 2004), limit performance of statistical procedures (Cortes et al.,
1995; Coussement et al., 2014) and produce misleading analytical results (Wahlin and
Grimvall, 2008). To mitigate the impacts of data anomalies such as missing values, in-
consistencies, outlying data, duplicates, etc., it is a first necessary step to preprocess data
(Famili et al., 1997; Gibert et al., 2008).

Data preprocessing is a fundamental and critical step in data analysis, it consists of all
actions necessary to prepare the data before data analysis. In general it is performed to:
(1) solve data problems, (2) understand the nature of data and perform more meaningful
data analysis, and (3) extract meaningful knowledge from a given dataset and application
domain (Famili et al., 1997).

Although, numerous procedures to preprocess data anomalies are available, there are
many inherent challenges in this area, for instance:

1. Conventional approaches usually treat data anomalies as independent types of anomaly
and handle them in isolation. Preprocessing approaches that take into consideration
jointly different types of data anomalies still need to be developed;

2. Anomalies co-occur in data. It is crucial to define a data preprocessing ordering that
produce the results with the least bias. This means that preprocessing procedures
should not impact statistical results;

3. The impact of data preprocessing procedures on statistical analysis results is under
studied. Thus, it is important to conduct this type of studies;

4. It is necessary to define a systematic framework that will allow users to perform the
most appropriate preprocessing procedure according to a specific statistical analysis
task.

5. Very few research is focused on environmental data preprocessing.

In this thesis, we focus on the different strategies to preprocess data anomalies and
particularly, on their impact on statistical analysis results. We have conducted a biblio-
graphic study related to data anomalies, data preprocessing procedures, and their impact
on statistical analysis.
In the following section, we briefly describe data anomalies and related detection meth-
ods. Then, we describe data preprocessing procedures for missing values, outliers, and
duplicates.
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2.4.1 Data anomalies and their detection

2.4.1.1 Data anomalies

Abnormal patterns in data (or data glitches) are errors in the measurement and recording
of data that negatively impact analysis. They are ubiquitous and occur due to a variety of
reasons from human errors (e.g., typos) to software and hardware problems (e.g., incon-
sistencies due to failures of automated equipment) (Berti-Equille et al., 2015). Data may
be distorted during the collection step, or when data is transcribed, merged, transferred
or copied (De Veaux and Hand, 2005).

Different types of data glitches may be found. According to the taxonomy of data
distortion proposed by Kim et al. (2003), we can identify three main classes: missing
data, not missing but wrong data, and not missing and not wrong but unusable.

We focus on data glitches related to missing data and not missing but wrong data.
Hereafter, we refer only to numerical data problems. Data glitches, detection methods,
and preprocessing procedures related to non-numerical data are out-of-the scope of this
work and will not be addressed. Hereafter, we describe the data glitches most commonly
encountered.

Missing data: Missing data are instances where no data is stored for a given vari-
able in the current observation. They may occur due to failure in equipment or human
errors. Let us consider a dataset which composed by a table with rows (observations) and
columns(variables). A dataset is considered incomplete if there are at least one variable
with at least one missing data. A complete dataset is then defined as

Ycom = (Yobs,Ymis) (2.1)

where Yobs corresponds to the "observed" part and Ymis to the missing part.
To better understand the behaviour of missing data it is necessary to identify them

within a dataset Ycom. In the dataset indicator variables R are defined, they identify what
is known (R = 1) and what is missing (R = 0). R is known as the missingness which
is represented by a matrix composed by the indicator variables linked to the variables
of Ycom. The pattern of missingness depends on the structure of missing values of an
incomplete dataset. It can be: (a) univariate if only one variable has missing values, (b)
monotone if the variables in the dataset can be classified from left to right so that if a
value is missing from Ymisi so it si also for Ymisi+1

, and (c) arbitrary (c.f. Figure 2.4).
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Figure 2.4 – Structures of missingness: (a) univariate pattern, (b) monotone pattern, and (c)
artibtrary pattern. Rows correspond to observations and columns to variables (Cottrell et al.,
2009).

.
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According to Rubin (1976) three types of missing data can be distinguished: Missing
at Random (MAR), Missing Not at Random (MNAR) and Missing Completely at Random
(MCAR).

By denoting a complete data as Ycom and partition it as Ycom = (Yobs,Ymis) where Yobs
and Ymis are the observed and missing parts respectively.

Missing data are considered to be MAR when the distribution of missingness does not
depend on the missing parts. This can be expressed as

P (R/Ycom) = P (R/Yobs) (2.2)

This equation indicates that all the information on the missing part (Ymis) of the data is
contained in the observed part (Yobs).

An special case of MAR is MCAR, which occurs when the distribution of missingness
does not depend on both Ymis and Yobs.

P (R/Ycom) = P (R) (2.3)

Missing data is considered as MNAR when the distribution of missingness depends on
Ymis (Schafer and Graham, 2002).

Considering for example the structure of univariate data in Figure 2.4, where the
variable X is known for all individuals but the variable Y is missing for some individuals.
MCAR means that the probability that Y is missing for an individual it does not depend
of values in X or Y . MAR means that the probability that Y is missing may depend on
X but not on Y , and MNAR means that the probability of the existence of the missing
values depend on Y .

The previous definitions describe the statistical relationships between a set of data
and their missing values while ignoring the causes of the gaps. It is assumed now that
these causes can be encoded by a group of variables Z. These group of variables may
have, for example, variables that will explain the reasons for which some individuals have
missing values. It is possible that the variables that cause missing values are not present
in a dataset, however some of these variables may be related to X and Y and so, relation
between X, Y and R can be deduced.

By setting Z as a variable of cause that is unrelated to X and Y , MCAR, MAR and
MNAR data can therefore be represented by the graphical relationship of Figure 2.5. On
MCAR it is necessary to have the causes of missing data entirely contained in Z. MAR
allows some causes of being related to X. On MNAR, it is required to have some causes
related to Y once the relationship between X and R have been taken into account (Schafer
and Graham, 2002).

In general a dataset is necessarily either MNAR or MAR.
Inconsistent and faulty data: Inconsistent data are considered as data that do

not respect certain constraints (e.g., domain expert or business constraint). Outliers for
instance may be considered as inconsistencies in the case that data do not respect a given
statistical model as a constraint such as distribution or density. And our focus is on
outlying values as a type of inconsistencies that are model-based.
Inconsistencies may arise from misreading instruments or misrecording values at any level.
For instance, when "John F. Kennedy" is recorded as "Jhon F. Kenedy", this may be easy
identified as a typo error. There may be more complex cases for instance: "400-02-06-
2005" that is entered as "400-20-06-2005". Another example may be when subjects do
not follow questionnaire instructions by answering questions that they were supposed to
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Figure 2.5 – Representation of (a) missing completely at random (MCAR), (b) missing at random
(MAR), and (c) missing not at random (MNAR) in a univariate missing-data pattern. X represents
completely observed variables, Y denotes partly missing variable, Z represents the component of
the causes of missingness unrelated to X and Y, and R represents the missingness (Schafer and
Graham, 2002).

.

skip (Arlanturk et al., 2016). In these cases, constraint satisfaction methods are used
(Berti-Équille, 2007b; Berti-Équille and Dasu, 2009).

Outliers: These are unexpected data that do not conform to a given model. According
to Chen et al. (2010), an outlier is considered as a pattern in data that does not comply
with the general behaviour of the data. Park et al. (2003) identify two types of outliers:
(a) outliers caused by equipment failure or measurement errors and (b) outliers reflecting
ground truth. Outliers occur due to human errors, instrument errors, natural deviations
in populations, fraudulent behaviours and changes or faults in the systems (Hodge and
Austin, 2004)

Duplicates: Duplicates are repeated entries. They may not share common identities
(Sarawagi and Bhamidipaty, 2002; Berti-Équille, 2007b). These kind of glitches occur
frequently in data integration from different databases, they are defined as data hetero-

geneity problems (Chatterjee and Segev, 1991). Two types of data heterogeneity can be
distinguished: structural and lexical (Elmagarmid et al., 2007). Structural heterogeneity
arise when databases are structured differently. For instance, user name might be recorded
in one field Name, while, in another database the same information might be recorded in
multiple fields, say, First Name, Last Name. Lexical heterogeneity occurs when different
representations are used to refer to the same object in multiple databases (e.g., George

Walker Bush versus G.W. Bush).

Undocumented data: Data may be unusable when proper data documentation is
lacking. Undocumented data is a very important problem because, without an appropriate
data dictionary, many suppositions can be made. For instance, a record can be composed
of a set of numbers as follows: 123 456 789. One can suppose that is a telephone number,
or a membership number, or many other possibilities. However, this is still a guess:
without proper data documentation this type of data is unusable (Berti-Équille and Dasu,
2009; Dasu, 2013).

2.4.1.2 Detection of data anomalies

There are different tools in the fields of statistics, data mining, and data management to de-
tect problems in data. Detection methods are mainly classified into two categories (Dasu,
2013): (1) quantitative methods based on statistical and data mining approaches, and (2)
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methods based on constraints developed from data properties and functional dependencies,
or manually defined by experts.

We focused mainly on statistical methods and particularly on methods to detect miss-
ing and outlying data. We review techniques for the detection of such anomalies. We also
briefly review some approaches for detection of inconsistent and duplicated data.

Data profiling is performed by using statistical methods to get standard character-
istics of data (i.e., data types, granularity, format patterns, content patterns, value sets,
and cross-column relationships) (Sebastian-Coleman, 2012; Abedjan et al., 2016). This
first exploration of data allows to detect mistakes, check assumptions, preselect appropri-
ate models and determine relationships among the explanatory variables. The statistical
methods used in data profiling are either univariate or multivariate.

Missing data. Number, pattern of missing observations (MAR, MNAR, MCAR) and
plausible reasons for missing data are useful information for an appropriate treatment
and analysis (Pigott, 2001). Number of missing observations is an important information.
Lower percentage of missing observations may imply the use of simple methods to process
them though, there is not a consistent definition of "low percentage of missing observations"
they may go to 20% to lower values to be processed (Little and Rubin, 2002).

Currently numerous statistical software’s allow exploratory data analysis (e.g., SAS,
ADaMSoft, IMB SPSSModeler, JASP, R, RapidMiner, STATISTICA, MATLAB,WEKA).
Must of them include packages/modules that allow the detection of missing values. We
can mention for instance the package VIM available in the R environment for statistical
computing which allows the exploration and analysis of missing observations (Templ et al.,
2011a).

Outliers detection. Considering the definition given by Hawkins (1980) "An outlier

is an observation which deviates so much from the other observations as to arouse sus-

picions that it was generated by a different mechanism". Thus, the purpose is to detect
observations that fit into this description. There are many methods to detect outliers, some
of them include: statistics-based (proximity-based, parametric, non-parametric and semi-
parametric), distance-based, density-based, deepness-based, deviation-based, clustering-
based, neural networks (supervised and unsupervised), machine learning, etc. (Huang
et al., 2006; Kriegel et al., 2010). We will just describe three outlier detection approaches
in detail. A more detailed description of the different methods can be consulted on the
survey of Kriegel et al., 2010.

• Statistic-based outlier detection approach. This approach assumes a distribution or
probability model for the given dataset then a discordancy test is used to identify out-
liers with respect to the model. A discordancy test examines a null or working hypoth-
esis and an alternative hypothesis. The working hypothesis, H0 : xi ∈ F,i= 1,2, ...,n,
assumes the entire dataset of n records comes from the same distribution model F .
In the alternative hypothesis, H1 it is assumed that data comes from another distri-
bution model G, H1 : xi ∈ G,i = 1,2, ...,n. The test of discordancy verifies whether
an object xi is significantly large or small in relation to the distribution F . Many
tests have been proposed. A review of the most frequently used has been done by
Barbato et al. (2011). Briefly, they include: Interquartile range (IQR), modified
IQR, Pierce, Chauvenet, Grubbs and Dixon’s methods.
Some of the major disadvantage of the test of discordancy are: (1) they assume that
data follows a normal distribution. This may be misleading, particularly when data
does not follow a normal distribution; (2) results depend on chosen model F . Thus,
xi may be an outlier under one model and a valid value under another and; (3) they
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are appropriate for one-dimensional data but not applicable to multi-dimensional
data (Barnett and Lewis, 1994; Barbato et al., 2011 ).
Detection of outliers in multivariate data is more complex than univariate data be-
cause outliers may be masked in the bulk of multi-dimensional data. Multivariate
outlier detection methods consider the variations of multiple variables, they depend
frequently on a distance measure. Such distance measure attempts to measure the
distance between an observation and the centre of the data distribution, by con-
sidering the inherent variability and correlation in the data. Multivariate outlier
detection methods are frequently based on Mahalanobis distance (Filzmoser, 2004;
Riani et al., 2009; Berti-Équille and Dasu, 2009; Kriegel et al., 2010).

• Distance-based outlier detection approach. Distance-based approaches measure simi-
larity between two objects with the help of distance between them in the data space.
When this distance exceeds a particular threshold, the object is considered as an
outlier. In a given dataset X, an outlier DB(p,d) with parameters p and d, will be
considered as such if a fraction of p of the object x in X lies at a distance greater
than d from x. This approach is suitable for datasets that do not fit any standard
distribution model, it discovers outliers effectively and it can be used on multivari-
ate data. The k-NN approaches such as (Knorr and Ng, 1998; Knorr et al., 2000;
Ramaswamy et al., 2000; Byers and Raftery, 1998) are the most popular.

• Density-based outlier detection approach. In this approach, the degree of an object to
be an outlier is measured with respect to the density of the local neighbourhood. This
degree named local outlier factor (LOF) is assigned to each object (Breunig et al.,
2000). Compared to other approaches, the density-based approach assigns an outlier
factor, which is the degree the object is being outlier. Different density-based outlier
mining algorithms have been proposed, for instance: the local correlation integral
(LOCI)(Papadimitriou et al., 2003), the relative density factor (RDF)(Ren et al.,
2004) or the density-similarity-neighbour based outlier factor (DSNOF)(Cao et al.,
2010) to mention some. The singularity of the density-based outlier detection and its
ability to detect outliers has become an attractive approach to detect outliers (Chen
et al., 2010).

Although, the selection of appropriate outlier detection methods is an important task
when determining relationships among the studied variables (Alameddine et al., 2010; Filz-
moser et al., 2005) an universal outlier detection method has not been identified, rather,
different aspects may be considered for the selection of a particular method including:
characteristics of the data (e.g., dimension, type, sample size), scalability, speed, model
accuracy, algorithm efficiency and performance. A detailed insight of the pros and cons
of different outlier detection techniques has been provided by different authors (Reimann
et al., 2005; Pasha, 2013; Chen et al., 2010; Filzmoser, 2005; Zimek et al., 2012; Barbato
et al., 2011; Ghosh and Vogt, 2012; Cousineau and Chartier, 2015).

For the case of the detection of inconsistent and duplicate data, various techniques
based mainly, on constraints have been developed, some of them are described below.

Detection of inconsistencies. There are various approaches for the resolution of
inconsistencies (Dongilli et al., 2005; Kolev et al., 2015). Data inconsistency occurs at the
level of data representation. This kind of conflict is based generally on the content and
not the schema and so it can be resolved by simple conversion in the case of numerical
values.

Detection of duplicated data. Typically, detection of duplicated data relies on
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string comparison techniques to deal with typographical variations. A detailed survey of
methods to detect typographical variations has been made by Elmagarmid et al. (2007).
Briefly, they are classed into: character-based similarity metrics, token-based similar-
ity metrics, phonetic similarity metrics and numeric similarity metrics. Some other ap-
proaches to detect duplicates in data streams have been proposed by Deng and Rafiei
(2006), Shen and Zhang (2008), Gopalan and Radhakrishnan (2009) and Wei et al.
(2011).

For duplicated data where multi-instance tuples are versions of each other, a tuple

similarity measure is adopted. The tuple similarity measure is used to map each tuple
to a binary vector in a semantic vector space, then the similarity between tuples of the
multi-instance is computed as one of the vector coefficients (e.g., matching coefficient,
Dice coefficient, overlap coefficient or Jaccard coefficient). Two tuples can have high
probabilities of being versions of each other if they are the most similar (Anokhin et al.,
2001).

In data from water quality assessment, the anomalies most frequently found are missing
values, outlying data, duplicate data and inconsistent data.

2.4.2 Dealing with data anomalies and main preprocessing procedures

The best way to improve the quality of data is to prevent errors since the data collection
step. Though, even if good data collection practices are implemented, data glitches may
inevitable occur. When data glitches occur, different procedures can be implemented
to process them. It is important to notice that the preprocessing may differ depending
mainly on the purpose of the study and the statistical method to be used. Below we give an
overview of features selection and normalization procedures then, we continue presenting
an overview of relevant methods to process data anomalies, particularly missing values
and outliers.

Data preprocessing is a mandatory task needed to convert raw data into new data
that serve as input for a certain data mining (DM) algorithm. Data preprocessing in-
volves different subtasks mainly: data integration, data cleaning, data reduction and data
transformation (García et al., 2015; Hellerstein, 2008).

In data integration, multiple data sources (e.g., databases, data cubes, flat files) are
combined to construct new tuples and values.
Data cleaning involves all operations necessary to correct anomalous data (e.g., treating
missing or outlying data, removing noise, resolving inconsistencies).
Data reduction include techniques (e.g., dimension reduction, data compression, discretiza-
tion and concept hierarchy generation) to reduce the volume or dimensions (number of
attributes) in a dataset without compromising the integrity of the original data and yet
producing quality knowledge.
In Data transformation, data is converted or consolidated into forms appropriate for min-
ing. Subtasks in data transformation include: normalization, smoothing, aggregation,
feature construction and generalization of the data.

We focus our overview on the procedures for data cleaning, particularly to solve missing
and outlying data on data transformation specifically normalization and feature selection
for data reduction.

Missing values. Today various imputation methods are available (Olinsky et al.,
2003). Most of them use indirect approaches to replace the missing values by an imputed
form. In general, the imputation methods are focused on MAR data. We can identify two
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main types: univariate (single imputation) and multivariate (multiple imputation) meth-
ods (Olinsky et al., 2003; Donders et al., 2006; Farhangfar et al., 2008). One important
difference between univariate and multivariate methods is that univariate methods are
based on the estimation of parameters in order to maximize the similarity between vari-
ables when replacing the value, whereas multivariate imputation methods are based on
similarities among the objects and/or variables.

The univariate imputation methods most commonly used include: the mean, hot-deck
and regression (Olinsky et al., 2003; Schafer and Graham, 2002). Multivariate imputation
methods are based either on the k-NN, the Expectation-Maximization (EM) algorithms
or they are multiple imputations.

k-NN methods are based on the use of a distance measure in order to find the nearest
neighbour, subsequently, the average weighted value found is used to replace the missing
value. In general, the average weight value used for numerical data is the mean (Troy-
anskaya et al., 2001; Jerez et al., 2010; García-Laencina et al., 2009; Hron et al., 2010).

The main advantages of k-NN are: (1) it predicts both quantitative and qualitative
features and (2) the training dataset is used as a ’lazy’ model so explicit predictive models
are not created. The major disadvantage is that the algorithm searches through all the
dataset to look for the most similar instances. This is a big limitation for large databases.
When applying the k-NN approach different distance metrics are used to define similarities
between target and reference records. The most frequently used are based on absolute
differences, Euclidean or Mahalanobis distance functions (Eskelson et al., 2009). Absolute
differences are computed as:

The Expectation-Maximization approach iterates through two main steps (Expecta-
tion, E, and Maximization, M). An incomplete data matrix have observed data Yobs,
missing data Ymis and a vector of parameters, θ. Complete data Ycom is then defined
as Ycom = (Yobs,Ymis). The expected complete data log-likelihood function is defined as
Q(θ|θ′) = E{ln[f(Ycom|θ)]Yobs,θ

′}. Where the complete data log-likelihood function and
the observed data log-likelihood function are defined as: L(θ) = f(Ycom|θ) and L(θ) =
f(Yobs|θ) respectively. The EM algorithm alternates between the following steps, where θ
is initialized at some value:

1. Expectation step (E step): Computing Q(θ|θ(t)) as a function of θ;
2. Maximization step (M step): Find θ(r+1) that maximizes Q(θ|θ(t))

In the M step, the maximum log-likelihood estimation is performed as if there were
no missing data. Then, in the E step, the conditional expectation of the missing values is
found, such value is predicted given the observed data and current estimated parameters.
The values obtained from the expectation are used to replace the missing values. The
approach iterates until there is convergence in the parameters estimates (Ho et al., 2001;
Olinsky et al., 2003; Palarea-Albaladejo and Martín-Fernández, 2008). The EM is a sim-
ple and easy to implement approach. The algorithm is numerically stable and it provides
fitted values for the complete data during the E step which do not demand further com-
putation. The main disadvantage is its slow linear convergence in some cases in addition
the EM approach tends to underestimate the variability of the estimate (Couvreur, 1997).

Multiple imputation (MI) involves three steps: the generation of completed datasets,
the computation of overall estimates and standard errors, and the combination of results.
Each missing value is replaced by a list of simulated values, which generates m possible
versions of the complete datasets then, each m possibility is analysed by standard proce-
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dures which are specific for handling complete data. Finally, the results are combined to
obtain overall estimates and standard errors that will provide information about missing-
data uncertainty and finite-sample variation. According to (Rubin, 1976) the three steps
of MI are:

Step 1 - Imputation: An appropriate model that includes random variation is used to
impute missing values. ‘Completed’ datasets are created by setting plausible values for
missing observations. The set of values is used M times to create M ‘completed’ datasets.

Step 2 - Analysis: TheM datasets are analysed using standard complete-data methods.

Step 3 - Combination: In the final step, results are combined in order to take into
consideration the uncertainty of the imputation. The following estimations are involved
in the procedure:

• produce a single-point estimate (i.e., θ̂ = (1/M)
∑M
m=1 θ̂

(m)) by averaging the value
of the parameter estimates across the M samples;

• compute standard errors by (a) getting the average of the squared standard errors
of the M estimates, (b) computing the variance of the M parameter estimates, and
(c) include the uncertainty due to imputation by combining the two quantities.

The purpose of the imputation is to perform statistical analysis taking into account
the uncertainty due to the presence of missing values present in the incomplete dataset
and preserving the main characteristics and structure of the data (Farhangfar et al., 2008;
Abayomi et al., 2008; Cottrell et al., 2009). As the EM approach, MI is advantageous
because it incorporates uncertainty associated to the imputation, it is simpler to adapt
however, when the percentage of missing information is large, several imputations are
required to get precise estimates, and the results are very sensitive to a misspecification
of the model (Heitjan, 1997).

In the selection of an imputation method to replace missing values, different aspects
can be considered such as: the characteristics and structure of data (e.g., percentage
of missing values, distribution, pattern of missing values), robustness of method, speed
and suitability (univariate or multivariate). Aiming at identifying the most performing
imputation method, different comparative studies have been done (Kadengye et al., 2012;
Hron et al., 2010; Zhang et al., 2009; Borgoni and Berrington, 2013; Olinsky et al., 2003;
Engels and Diehr, 2003; Mercer et al., 2011), results of such studies indicate that multiple
imputation methods perform better than single imputation methods.

Outliers: As previously mention, outliers are patterns in data that are not necessarily
incorrect but likely suspicious. Once an outlier has been detected, the way to proceed for
its treatment should be taken cautiously. Outlying data can be whether eliminated from
data, retained with an appropriate label or replaced by an imputed form (e.g., mean,
median and mode), using single imputation methods. The way in which an outlier is
treated will mainly depend on the application domain and expert knowledge (Hodge and
Austin, 2004).

Feature selection is performed to find the minimum set of attributes that are nec-
essary to extract the same knowledge as the one obtained using all attributes. It allows
to speed the learning stages and facilitates the understanding of data patterns. Feature
selection techniques are classified into three categories: Filter, Wrapper and Hybrid (Liu
and Motoda, 2012; Sutha and Tamilselvi, 2015).

• Filter methods look at the intrinsic properties of the data to evaluate the relevance of
features. In general, the score of feature relevance is computed so low-scoring features
are identified and removed. Filter methods are advantageous because they can be
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used in high-dimensional datasets, are computationally simple, fast and independent
of the classification algorithm. However, most of the available methods are univariate
and ignore feature dependencies.

• Contrary to filter techniques where relevant features are found independently of the
model selection step, wrapper methods embed the model selection within the feature
subset search. In wrapper techniques, different possible feature subsets are searched,
evaluated, and compared. A specific classification model is trained and tested to
evaluate a specific subset of features. To search for possible feature subsets, a search
algorithm is ‘wrapped’ around the classification model. To guide the search of an
optimal subset and thus avoid the generation of exponential feature subsets, heuristic
search methods are used. The main advantages of wrapper techniques is that they
take into account feature dependencies and that they integer feature subsets search
with model selection. However, they are computationally expensive and have high
probabilities of overfitting.

• In Hybrid methods, the optimal subset of features is search while the classifier is
constructed. As in wrapper methods, hybrid methods are specific to a given learning
algorithm; however, hybrid methods are less computationally expensive.

Interesting results of a comparative study on feature selection methods has been pub-
lished by Bolón-Canedo et al. (2013). In accordance to their results, Bolón-Canedo et al.
(2013) suggest to use filtering methods over wrapper and hybrid methods. However, when
selecting a method, Murtaugh (2009) suggest to base the selection on the appropriateness
for the task at hand. Some other aspects can also be considered such as: characteristics of
data, computational costs and robustness of the method (Murtaugh, 2009; Saeys et al.,
2007; Sutha and Tamilselvi, 2015).

In addition to the above mentioned techniques, there are some approaches that auto-
matically perform feature selection or variable selection e.g., within a regression model.
We can distinguish three important classes of methods: (1) Subset selection, (2) Shrinkage,
and (3) Dimension reduction.

• Subset selection In this approach a subset of p predictors that we believe to be re-
lated to the response are identified. A model using least squares is then fitted on the
reduced subset. Subset selection methods include best subset and stepwise model
selection.
In the best subset selection a least squares regression is fitted for each possible com-
bination of the p predictors. Then the resulting models are compared in order to
identify the one that fit the best. Its algorithm is described as follows:

Algorithm 2.1. Best subset selection

1. Let M0 denote the null model, which contains no predictors. This model simply predicts the

sample mean for each observation.

2. For k = 1,2, ...p:
(a) Fit all

(
p
k

)
models that contain exactly k predictors

(b) Pick the best among these
(
p
k

)
models, and call it Mk. Here best is defined as having the

smallest Residual sum of squares (RSS), or equivalently largest R2.

3. Select a single bet model from amongM0, ...,Mp using cross-validated prediction error, Cp (AIC),

BIC, or adjusted R2.

The main disadvantage with best subset selection is that it can not be applied
with very large p. When p is large, there are higher chances to overfitting and high
variance of the coefficient estimates. An alternative to best subset selection, stepwise
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methods can be used. They explore a more restricted set of models and include the
forward stepwise selection and backward stepwise selection.
Forward stepwise selection starts with a model with no predictors and add predic-
tors one-at-a-time until all predictors are included in the model. Contrary to forward
stepwise selection Backward stepwise selection begins the least squares model con-
taining all p predictors and removes the least useful predictor one-at-a-time. Below
we provide the algorithm for Forward stepwise selection, more details on the the
backward stepwise selection can be consulted at (Harrell, 2015).

Algorithm 2.2. Forward stepwise selection

1. Let M0 denote the null model, which contains no predictors.

2. For k = 0, ...p−1:

(a) Consider all p−k models that augment the predictors in Mk with one additional predictor.

(b) Choose the best among these p− k models, and call it Mk+1. Here the best is defined as

having smallest RSS or highest R2.

3. Select a single bet model from amongM0, ...,Mp using cross-validated prediction error, Cp (AIC),

BIC, or adjusted R2.

Forward stepwise can be used when n < p, while backward selection requires that
the number of observations n to be larger than the number of variables p.
Subset selection, forward selection and backward selection provide a set of models
each one containing a subset of p predictors. To select the best model with respect
to test error the Cp, Akaike information criterion (AIC), Bayesian information

criterion (BIC) and Adjusted R2 can be used. From a standard linear model

Y = β0 +β1X1 + ...+βpXp+ ε (2.4)

The Cp estimate of test MSE is computed as follows:

Cp = 1
n

(RSS+ 2dσ̂2) (2.5)

where σ̂2 is an estimate of the variance of the error ε associated with each response
measurement in 2.4. In the selection of the best model, the model with the lowest
Cp value is chosen. The AIC criterion is defined as:

AIC = 1
nσ̂2

(RSS+ 2dσ̂2) (2.6)

Cp and AIC are proportional to each other. The BIC is given by

BIC = 1
n

(RSS+ log(n)dσ̂2) (2.7)

Similarly to Cp the model that has the lowest BIC values is selected.
For a least square model with d variables the adjusted R2 is defined as:

Adjusted R2 = 1− RSS/(n−d−1)
TSS/(n−1) (2.8)

where TSS =
∑

(yi− ȳ)2. Contrary to Cp, AIC and BIC where small values indicate
a model with low test error, large values of adjusted R2 indicate a model with a
low test error. The above mentioned methods involve the use of least squares linear
models that contains a subset of predictor variables. As an alternative shrinkage
methods can be used to fit a model that contains all p predictors.
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• Shrinkage. Shrinkage methods constrains the coefficient estimates towards zero. By
shrinking the coefficient estimates the variance of the model is reduced. The two
best-known techniques for shrinking the regression coefficients are ridge regression

and the lasso.
The fitting procedure in least squares estimates β0,β1,βp uses values that minimize

RSS =
n∑
i=1

(yi−β0−
p∑
j=1

βjxij)2 (2.9)

In ridge regression the coefficients are estimated by minimizing

n∑
i=1

(yi−β0−
p∑
j=1

βjxij)2 +λ
p∑
j=1

β2
j =RSS+λ

p∑
j=1

β2
j (2.10)

The objective in ridge regression is to make the RSS small in order to get coefficient
estimates that fit the data well. The term λ

∑
j β

2
j named shrinkage penalty will be

small when β1, ...,βp are close to zero, therefore it will shrink the estimates of βj
towards zero. The advantage of ridge regression over least squares is based on the
bias-variance trade-off. In fact as λ increases ridge regression fit decreases, this leads
to decreased variance but increased bias. In addition, ridge regression is advanta-
geous over best subset selection computationally speaking, because ridge regression
only fits a single model for any fixed value of λ while best subset selection requires
searching through 2p models. One important disadvantage of ridge regression is that
it includes all p predictors in the final model and so λ

∑
β2
j will shrink all the coeffi-

cients towards zero, but any of them will be set exactly to zero (unless λ=∞). This
is problematic particularly in model interpretation where the number of variables
p is large. An alternative to ridge regression that overcomes this disadvantages is
lasso. The lasso coefficients estimates are the values that minimize

n∑
i=1

(yi−β0−
p∑
j=1

βjxij)2 +λ
p∑
j=1

|βj |=RSS+λ
p∑
j=1

|βj | (2.11)

The difference with respect to lasso is that the β2
j term in the ridge regression has

been replaced by |βj |. Similarly to ridge regression, lasso shrinks the coefficient esti-
mates towards zero. In the case of lasso some of the coefficient estimates are forced to
be exactly equal to zero when λ is sufficiently large. Lasso performs variable selection
which generated models are easier to interpret compared to those produced by ridge
regression. It is expected that lasso perform better when a relatively small number
of predictors have substantial coefficients, and the remaining predictors equal zero.
Ridge regression performs better when the response variable is a function of many
predictors with coefficients of equal size. The main problem is that in real-datasets
the number of predictors that are related to the response is a priori unknown.

Subset selection and shrinkage methods control variance either by using a subset
of variables or by shrinking the coefficients toward zero. An alternative to these
methods are the dimension reduction methods which transform the predictors to
then fit a least square model with the transformed variables.

• Dimension Reduction By considering Z1,Z2, ...,ZM represent M <p linear combina-
tions of original p predictors, that is

Zm =
p∑
j=1

φjmXj (2.12)
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for some constants φ1m, φ2m, ...,φpm, m = 1, ...,M . Using least squares, the linear
model is then fitted as

yi = θ0 +
M∑
m=1

θmzim+ εi, i= 1, ...,n (2.13)

The dimension reduction approach reduces the problem of estimating the p+ 1 co-
efficients β0,β1, ...,βp to estimating the M +1 coefficients θ0,θ1, ...,θM where M < p.
Dimension reduction methods include two steps. In the first step the transformed
predictors Z1,Z2, ...ZM are obtained and in the second step, the model is fitted us-
ing the M predictors previously obtained. Principal components and partial least
squares are two dimension reduction approaches.

Subset selection, shrinkage and dimension reduction are approaches to perform fea-
ture selection or variable selection from a regression model. Within the purpose of this
manuscript we assess approaches that are not automatically performed in statistical meth-
ods, except for lasso, they were not used in this study.

Normalization Transformation and normalization is performed when attributes val-
ues refer to different measurement units or have different scales. It is carried out to give all
attributes equal weight and also to smooth the outliers. To this aim, attributes are scaled
to range within a specific scale (e.g. −1.0 to 1.0, or 0 to 1.0). Different methods for data
normalization are available, the most commonly used are: min−max normalization,
z−score normalization, and normalization by decimal scaling (García et al., 2015).

2.4.3 Impact of data preprocessing procedures on statistical analysis

results

Data preprocessing has been acknowledged as a primary task to counteract the negative
effects that data glitches may produce on analytical results (Van den Broeck et al., 2005;
Dasu, 2013; Gibert et al., 2008). Indeed, various publications indicate that more per-
forming results can be obtained when preprocessing procedures are performed previous to
statistical analysis (Crone et al., 2006b; Crone et al., 2006a; Nawi et al., 2013; Kotsiantis
et al., 2006; Praveena et al., 2012).

Different published works have demonstrated that results from statistical analysis can
be improved when procedures such as imputation of missing values (Farhangfar et al.,
2008), outlier processing (Ramezani and Fatemizadeh, 2010), feature selection (Kotsiantis
et al., 2006) and normalization (Nawi et al., 2013; Crone et al., 2006a) are applied to
preprocess data.

Except for the interesting study published by Farhangfar et al. (2008) most of the
studies have assessed a particular preprocessing method for a particular statistical analy-
sis. In the comparative study of Farhangfar et al. (2008), the effect of different missing
data imputation methods on six classifiers was assessed. Their results indicate that im-
provements on classification may vary according to the imputation method used to replace
missing values. Their results highlight the importance of conducting comparative stud-
ies to define the specific methods necessary to preprocess data for a particular statistical
analysis.

Another aspect that is important to mention when preprocessing data is the absence
of tools to: (1) measure the accuracy of preprocessing procedures and (2) frame a method-
ological workflow to preprocess data according to specific statistical analyses.
Aiming at providing tools to measure the impact of data preprocessing procedures Dasu
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and Loh (2012) have developed the statistical distortion metric. The statistical distortion

was proposed to measure the effectiveness of data cleaning strategies, it includes three
dimensions: glitch improvement, statistical distortion and cost-related criteria. Another
interesting approach proposed by Berti-Equille et al. (2015), is the masking index which
is an indicator for quantifying hidden glitches. However, these metrics do not assess the
impact on statistical methods.
Concerning a methodological data preprocessing framework, to our knowledge, there are
still no publication on this topic. This remains an interesting topic to be explored which
actually motivated my work. Finally, few research has been focused on preprocessing
of environmental data. Some approaches that has been published to assess and control
the quality of data have been published by Rieger et al. (2010); Alferes et al. (2013);
Alferes and Vanrolleghem (2014). And Gibert et al. (2016) have provided guide lines to
non-expert user for the selection of pre-processing techniques. Though a robust method-
ological approach to guide on the selection of preprocessing techniques remains a topic to
be explored.

As previously mentioned, presence of glitches is an ubiquitous problem, their detection
and processing is an important task to obtain reliable results on data analysis. However
there are still many open questions:

• Among the different detection methods, which one is the most suitable one according
to the statistical analysis to be applied?

• Which data preprocessing procedure should be applied for a specific statistical anal-
ysis and dataset?

• How different are the analysis results when different preprocessing procedures are
applied?

• Do preprocessing procedures adversely impact analytical results and conclusions?
In the data preprocessing study that we present in Chapter 3 we intend to answer these
questions in general, and also in the particular application use cases of water quality
assesment and environmental data analysis.

2.5 Summary

In this chapter, we have presented an overview of the state-of-the art related to three
disciplines of my work. The state-of-the art that we present refers to two main topics:
data acquisition and data preprocessing. For data acquisition we were interested in the
different tools in environmental chemistry and hydrobiology to acquire data specifically
for water quality assessment. While in data preprocessing, we were interested in data
anomalies that occur in environmental datasets, their detection, and processing.

Related to environmental chemistry, Section 2.2.1 gives a general overview of water
quality assessment, later in section 2.2.2 we present important aspects on pollution by
emerging pollutants and relevant works related to the assessment of pollution in water.
We put an emphasis on the pollution of Mexican rivers by emerging pollutants because
they are introduced to the natural effluent without following an specific treatment and
they are not included in national monitoring programs. The restricted access to advanced
analytical instrumentation is one of the main causes of the limited analysis of emerging
pollutants. We present in Section 2.2.2, our bibliographic study related to analytical
methods for the quantification of emerging pollutants.

Concerning hydrobiology, we present a state-of-the art on biomonitoring practices (Sec-
tion 2.3.1), usefulness of macroinvertebrates in bio-assessment practices (Section 2.3.2)
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and uncertainties on biomonitoring data (Section 2.3.3). In fact, as we described in our
bibliographic study, the use of macroinvertebrates-based biomonitoring metrics are very
pertinent for the assessment of Mexican rivers. However, their use is limited and the chal-
lenges are vast: description of sampling and analytical protocols, development of local or
regional metrics, development of specific taxonomical keys. It is necessary to solve this
issues in order to acquire quality biomonitoring data.

Finally, to complete our bibliographic survey in Section 2.4 we present different data
aspects related to data anomalies, their detection (Section 2.4.1), procedures to process
data anomalies (Section 2.4.2) and impact of data preprocessing on statistical analysis
(Section 2.4.3).
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3.1 Introduction

In environmental studies it is essential to have quality analytical results to provide accurate
responses or solutions to an specific problem. The quality of analytical results relies mainly
on the quality of data therefore, good laboratory and field practices are necessary to ensure
good data quality.
The assessment of water quality with respect to the content of emerging pollutants such
as pesticides, pharmaceuticals, and personal care products is at its early stage in Mexico.
One important problem when analysing these type of pollutants is the elevated cost and
the difficulty to analyse them specially in laboratories with limited access to specialized
analytical instrumentation. Therefore, development or adaptation of tools as well as the
definition of protocols to analyse these type of pollutants are necessary.

Data from biomonitoring water quality assessment is a regular practice in developed
countries however, in Mexico the use of biomonitoring metrics for the water quality as-
sessment of rivers is scarce despite their advantages (i.e., easy to implement, cheap). An
essential problem is the absence of biomonitoring protocols to sample and analyse bio-
logical samples. To acquire quality biomonitoring data is indispensable to define such
protocols.

Within the interest to acquire quality data, we propose to control the entire pipeline.
This means from the collection of samples on the field and until the analysis of data on the
laboratory. We focused on the acquisition of water quality data with respect to emerging
pollutants and biomonitoring data. Our aim is to provide a methodological approach for
good laboratory practices to acquire quality data.

In this chapter, we describe our methodological approach for the acquisition of water
quality data in Mexico with respect to: pollution by pesticides, pharmaceuticals, and
personal care products, a biomonitoring using macroinvertebrates. To our purpose we
have collected and analysed water and biological (macroinvertebrates) samples from four
Mexican rivers (Tula, Culiacan, Humaya and Tamazula). In addition, we have acquired
physico-chemical and chemical data.

This chapter is organized as follows: we present the sites of our study in Section 3.2.
In Section 3.3, we describe the sampling and analytical methods used for the acquisi-
tion of physico-chemical and chemical data. In Section 3.3.3, we present our analytical
method for the analysis of organochlorine pesticides. Finally, in Section 3.4, we present
the sampling and analytical protocol for the bio-assessment of Mexican river waters using
macroinvertebrates.

3.2 Description of the study sites

We have studied four rivers in Mexico the Tula, Culiacan, Humaya, and Tamazula.
The sub-watershed of Tula River is located at the sud-west of Hidalgo State, Mexico.

This sub-watershed has 330 km length, semi-arid climate, mean annual temperature of
16 °C, between 110 mm and 1270 mm of rainfall annually (between May and October in
storms) and the mean evaporation rate is 42.8 mm3 (INEGI, 2013).

The Tula river is a water flow system that runs from the State of Mexico to the south-
central part of Hidalgo state in Mexico. The Tula river receives the untreated wastewater
from Mexico City and from different municipalities in the State of Hidalgo, including south
of Zimapán, South-East of Tasquillo, South-West of Ixmiquilpan, Progreso de Obregón,
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Mixquihuala de Juárez, Tezontepec de Aldama, Tula de Allende, and Tepeji del Río de
Ocampo. As a result of wastewater irrigation, the flow of the Tula river increased from
1.6 to 12.7m3 s-1 in the last decades (DFID, 1998).

Water from the Tula River is used mainly for agricultural purposes. Municipali-
ties of Hidalgo state that use a vast soil extension for agriculture are Mixquihaula de
Juárez (81.8%), Tezonepec de Aldama (62.4%), Progreso de Obregón (62.2%), Ixmiquil-
pan (56%), Tula de Allende (53.2%), Tasquillo (34.9%), and Zimapán (16.5%) (INEGI,
2013).

Five sampling sites (named H1 to H5) placed along the river were selected to collect
samples (c.f. Figure 3.1). Sites H2 and H3 are located closed to agricultural fields and
were selected to assess the quantities of organochlorine pesticides in the water of the Tula
River. Sites H2, H3, and H5 were located near urbanized areas, they were selected to
assess the levels of pollutants, mainly PPCPs. Details of sampling site location is given
in Table 3.1.

Table 3.1 – Location of sampling sites of the Tula river.

Name of sam-

pling site

Municipality Latitude Longitude Altitude (m) Focus of the

study

H1 Tasquillo 20° 33.703’ 099° 18.581’ 1761.134 domestic waste

pollution

H2 Ixmiquilpan 20° 28.829’ 099° 13.277’ 1730.654 pesticides from

agricultureH3 Ixmiquilpan 20° 29.585’ 099° 13.310’ 1706.270

H4 Tlacotlapilco 20° 22.451 099° 13.414’ 1703.222 domestic waste

pollutionH5 Progreso 20° 14.696’ 099° 12.344’ 1702.917

Figure 3.1 – Sampling sites in the Tula river (Hidalgo state, Mexico)

The rivers Tamazula, Humaya, and Culiacan are located in the Pacific coast plain
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province of Mexico in the state of Sinaloa, Mexico. Its a semiarid region with seasonal
rainfall from June to September (mean annual precipitation 678 mm) and dryness during
the rest of the year. This region has a mean annual temperature of 25.7 °C and mean
annual evapotranspiration of 2100 mm (INEGI, 2014).

Water flow of Tamazula River starts at the South-East of Durango state and ends at
the Culiacan city, it has a length of 152 km and a drainage basin of 3,307 km2.
The Humaya River is considered as the main watercourse forming the Culiacan river. It
has a total length of 179 km and a drainage basin of 10,770 km2.

The Culiacan River begins at the Culiacan city after the union of the rivers Tamazula
and Humaya. It runs 82.8 km until it reaches the Gulf of California and on its way, it
increases its volume by groundwater recharge (INEGI, 1990). The Culiacan river is the
most important perennial river in the region it has a drainage basin of 17,195 km2, it
receives the treated water from the sewage of Culiacan city and surrounding communities
(approximately 855,000 inhabitants) at a rate of 160,206 m3 day-1 (INEGI, 1995). Until
1958, the discharge rate of the Culiacan river used to be 99.5 m3s-1; however, currently
its discharge rate has diminished due, mainly, to its use to irrigate agricultural fields.

Water from the Culiacan river is used for agricultural, industrial, domestic and live-
stock activities. Though, irrigation of agricultural fields is the main use. The Culiacan
valley is the biggest and the most important agricultural zone of Mexico, it comprises more
than 4000 Km2 of agricultural fields which represents 42% of Sinaloa state. The Culiacan
agricultural area has ≈ 140,000 ha with 60% of the land irrigated (INEGI, 1990).

We have selected a total of eleven sampling sites to assess the water quality along the
rivers Tamazula, Humaya, and Culiacan (c.f. Figure 3.2). The location of each sampling
site is detailed in Table 3.2. We selected four sampling sites along the longitudinal axis
of the Humaya river (C1 to C4) to assess the levels of pollutants mainly from domestic
wastes. Three sampling sites (C5-C7) were selected on the Tamazula River to represent
the least polluted state. Sampling sites C8 and C9 were selected to assess the levels of
domestic wastes and anthropogenic activities in the Culiacan River and sites C10 and C11
were chosen to assess pollution by organochlorine pesticides.

Table 3.2 – Location of sampling sites of Tamazula, Humaya and Culiacan rivers.

Name of

Sampling

site

Municipality Latitude Longitude Altitude (m) Focus of the

study

Humaya river

C1 Mojolo 24° 50.316’ 107° 24.775’ 45.110

domestic waste

pollution

C2 Mojolo 24° 50.395’ 107° 24.305’ 44.805

C3 Mojolo 24° 49.934’ 107° 24.227’ 46.024

C4 Humaya 24° 49.045’ 107° 24.199’ 41.757

Tamazula river

C5 Culiacan 24°48.796’ 107° 23.755’ 62.788
least polluted

state
C6 Tamazula 24° 49.308’ 107° 22.758’ 46.329

C7 La Limita de Itaje 24° 49.005’ 107° 21.630’ 50.292

Culiacan river

C8 Culiacan 24° 48.551’ 107° 24.767’ 45.415 anthropogenic

activitiesC9 Culiacan 24° 47.524’ 107° 26.873’ 33.528

C10 Bacurimi 24° 47.848’ 107° 30.462’ 33.223 pesticides from

agricultureC11 Culiacancito 24° 48.409’ 107° 31.883’ 25.298
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Figure 3.2 – Sampling sites in the Tamazula, Humaya, and Culiacan rivers (Sinaloa state, Mex-
ico).

3.3 Physico-chemical and chemical data acquisition

3.3.1 Sampling of water samples

Due to a limited budget and time we did the sampling campaign only for one year and
two seasons (dry and post-rainy). Five sampling stations were sampled on April 2015
(dry season) and October 2014 (post-rainy season) at the Tula River. While 11 sampling
stations were sampled on January 2015 (dry season) at the Tamazula, Humaya, and
Culiacan rivers. The sampling sites described in the previous section were chosen according
to accessibility, ease of recognition in the field and ecological relevance.

Water samples were collected to determine contents of: major elements pH, conduc-
tivity, carbonate (CO3), bicarbonate (HCO3), sulfate (SO4), chloride (Cl), fluoride(F),
sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), boron (B), silicon dioxide
(SiO2), nitrate (NO3) arsenic (As), heavy metals cadmium (Cd), lead (Pb), iron (Fe),
copper (Cu), manganese (Mn), zinc (Zn), eighteen organochlorine pesticides, namely: I-
BHC, II-BHC, III-BHC, IV-BHC, heptachlor, aldrin, heptachlor epoxide, I-endosulfan,
II-endosulfan, dieldrin, DDE, endrin, DDD, endrin aldehyde, endosulfan sulfate, DDT,
endrin ketone and methoxychlor, and eight PPCPs (ibuprofen, 2-benzyl-4-chlorophenol,
naproxen, triclosan, ketoprofen, diclofenac, bisphenol A and estrone).

For analysis of major elements, one liter of water was collected and kept at 4°C until
analysis. For analysis of heavy metals and As 500 mL of water were collected and added
HNO3. Polypropilene bottles used were previously rinsed first with 30% HNO3 and then
three times with deionized water. Samples were taken by duplicates.

One liter of water was collected by duplicate in amber glass bottles for analysis of
pesticides, while 500 mL were collected for analysis of PPCPs. Samples were kept at 4°C
and analysed right after collection. Glass bottles were washed and rinsed 5 times with
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deionized water then, they were placed in a container with HCl 10% during 2 hours. After
that time, bottles were rinsed with deionized water and dried. Finally, dried glass bottles
were rinsed first with acetone and then with hexane. The above mentioned conditions of
cleaning were carry out to reduce pollution effects produced by the presence of external
compounds that may not be present in the sampling sites and to get the best recovery of
all pesticides under study.

3.3.2 Analysis of major elements, heavy metals, and arsenic in water

samples

Physico-Chemical Parameters

Temperature, pH, conductivity and redox potential (Eh) parameters were determined
at each sampling station using an ORION handheld Multiparameter for the determination
of temperature, pH, and Eh. A portable conductometer conductronic PC-18 was used to
determine conductivity.

Determination of major elements, heavy metals and arsenic concentrations

Determination of major species was done following the protocol of Armienta et al.
(1987). Alkalinity (CO3, HCO3) was determined by titration, boron by carmine method,
Ca and Mg by titration with EDTA, Cl and F by potentiometry, SiO2 through the molyb-
dosilicate method, sulfate by turbidimetric method, Na, and K by Atomic Absorption
Spectrometry (AAS), and NO3 by HPLC.

Analysis of arsenic was performed using atomic absorption hydride generation with
a Perkin Elmer AAnalyst 100 Spectrometer and FIAS 100. Analysis of lead was done
using an Atomic Absorption Spectrometer Perkin Elmer AAnalyst 100 with graphite fur-
nace. And analysis of Cd, Fe, Cu, Mn, and Zn was performed by Atomic Absorption
Spectrometry with a Perkin Elmer AAnalyst 2000 Spectrometer.

The physico-chemical and chemical data that we acquired is composed of 16 individuals
(sampling sites) and 21 variables (physicochemical and chemical parameters) of numerical
values. Only the sites from the Tula river where sampled for two seasons (dry and rainy).
An example of data obtained from these analysis is presented on Tables 3.3 and 3.4.
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Table 3.3 – Example of data from the physochemical and chemical values obtained from the analysis of water samples of the rivers Tula. Tamazula. Humaya
and Culiacan.

Sample Season pH Ω µS/cm CO3 HCO3 SO4 Cl F

H1 7.82 ± 0.06 1777 ± 11 44.96 ± 1.55 447.65 ± 6.30 204.07 ± 0.375 206 ± 2.5 0.76 ± 0.0095

H2 7.67 ± 0.06 1576 ± 12 – 554.83 ± 0 146.1 ± 1.205 175.5 ± 5 0.749 ± 0.009

H3 7.73 ± 0 1578 ± 5 37.21 ± 0 472.87 ± 0.005 137.1 ± 4.04 163.25 ± 0.25 0.773 ± 0.003

H4 7.79 ± 0.07 1567.5 ± 12.02 41.86 ± 6.58 471.29 ± 15.60 156.4 ± 3.260 166.75 ± 5.30 0.766 ± 0.0064

H5 7.7 ± 0.01 1564.5 ± 0.5 40.31 ± 0 488.63 ± 3.15 130.68 ± 1.4 169.5 ± 1 0.758 ± 0.002

ND = Non detected. Concentrations are given in mg/L. Each sample was analyzed by triplicates for each parameter.

Table 3.4 – Example of the data from the concentration of arsenic and heavy metals on water samples of the rivers Tula, Tamazula, Humaya and Culiacan.

Sample Saison Cd As Fe Cu Mn Zn Pb

H1 Dry 0.017 ± 0.0003 0.00949 ± 0.00079 0.14 ± 0.005 ND 0.12 ± 0 ND 0.028 ± 0.0005

H2 0.015 ± 0.0005 0.01009 ± 0.00039 0.08 ± 0 ND 0.11 ± 0 ND 0.024 ± 0

H3 0.016 ± 0 0.00907 ± 0.00004 ND ND 0.11 ± 0 ND 0.026 ± 0.0015

H4 0.016 ± 0.014 0.00973 ± 0.00070 0.13 ± 0 ND 0.12 ± 0.005 ND 0.031 ± 0.0071

H5 0.015 ± 0.00005 0.00954 ± 0.00037 ND ND 0.1 ± 0 ND 0.024 ± 0.001

ND = Non detected. Concentrations are given in mg/L. Each sample was analyzed by triplicates for each element.
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3.3.3 Analysis of organochlorine pesticides and PPCPs in water samples

Quantification of pollutants in water at low concentrations (in the range of µgL−1 and
ngL−1), has been a challenging problem in water quality assessment studies. A vast
number of techniques have been developed to overcome this problem however, most of
them include the use of advanced analytical tools (i.e., ICP-MS, GC-MS, LC-MS or LC-
MS-MS). In laboratories where such tools are not available it is necessary to adapt or
develop new tools that are cheaper and easy to use without compromising the quality of
data. In Mexico monitoring of pesticides is scarce partially due to the limited access to
specialized analytical instrumentation. To provide an accessible tool for the analysis of
pesticides in water we have adapted an analytical method based on Solid Phase Extraction
(SPE) followed by Gas-Chromatography with an Electron Capture Detector (GC-ECD)
for the quantification of organochlorine pesticides.

We adapted the method described by Guardia Rubio et al. (2007). Analysis was
performed using a solid phase extraction (SPE) and gas chromatography with electron
capture detection (GC-ECD). Contrary to the method proposed by Guardia Rubio et al.
(2007), we used ethyl acetate-hexane 25:75%, v/v to dissolve the extract obtained from
the solid phase extraction. We have performed an analysis using different combinations of
the solvents hexane, cyclohexane and ethyl acetate-hexane, and the ethyl acetate-hexane
provided the best results. The solid phase extraction step that we proposed in our method
was compared to a liquid-liquid extraction (LLE) method which was previously used in
the laboratory. With our methodological approach we obtained better recoveries than
with the LLE (recovery ranging from 15% to 40%). Details of the analytical performance
of the proposed methodology are given in Table 3.5.

Table 3.5 – SPE-GC-ECD limit of detection (LOD), limit of quantification (LOQ) and recovery
values for water analysis.

No. Pesticide RT(min) SD LOD (ngL−1) LOQ (ngL−1) Recovery (% ± RSD)

1 I-BHC 9.01 0.15 0.43 1.54 109.07 ± 0.55
2 II-BHC 9.86 0.30 0.82 2.96 143.42 ± 0.40
3 III-BHC 10.02 0.12 0.32 1.16 128.18 ± 0.49
4 IV-BHC 10.85 0.17 0.48 1.73 177.67 ± 0.22
5 Heptachlor 12.22 0.71 1.97 7.08 48.53 ± 0.63
6 Aldrin 13.34 0.34 0.95 3.42 24.93 ± 0.69
7 Heptachlor epoxide 14.64 0.85 2.36 8.48 64.80 ± 0.38
8 I-Endosulfan 15.83 1.18 3.27 11.80 62.74 ± 0.41
9 Dieldrin 16.75 0.54 1.51 5.44 17.70 ± 0.67

10 DDE 16.86 0.54 1.51 5.44 17.70 ± 0.67
11 Endrin 16.86 0.76 2.12 7.63 50.38 ± 0.40
12 II-Endosulfan 17.68 0.70 1.95 7.02 89.66 ± 0.48
13 DDD 18.01 0.01 0.03 0.11 79.38 ± 0.42
14 Endrin aldehyde 18.23 1.46 4.04 14.56 35.27 ± 0.47
15 Endosulfan sulfate 18.56 0.22 0.61 2.20 120.75 ± 0.29
16 DDT 19.18 0.52 1.46 5.24 105.47 ± 0.61
17 Endrin ketone 20.07 0.10 0.28 1.01 132.72 ± 0.39
18 Methoxychlor 20.24 0.74 2.05 7.37 91.82 ± 0.90
Spiked level of water 500 ngL−1.

Replicates n= 3.

RT=Retention time.

SD = Standard deviation.

RSD = Residual standard deviation.

Analysis of PPCPs was performed using a new method based on SPME and GC-MS.
The method used for PPCPs analysis was tested and developed in collaboration with a
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group of researchers of the Faculty of Chemistry at UNAM, Mexico under the direction of
Dr.Araceli Peña A. The new SPME-GC-MS that we proposed is a simple, rapid, efficient,
and sensitive alternative for the simultaneous analysis of PPCPS (ibuprofen, 2-benzyl-
4-chlorophenol, naproxen, triclosan, ketoprofen, diclofenac, bisphenol A and estrone) in
water at trace levels (ngL−1).
In this manuscript, we only describe the procedure followed for the analysis of organochlo-
rine pesticides. Details about the SPME-GC-MS method for PPCPs analysis on water
is presented by Diaz-Flores et al.(under revision, Determination of pharmaceuticals and
personal care products (PPCPs) in river water and sediment by solid phase extraction
followed by gas chromatography-mass spectrometry (SPME-GC-MS), submitted to Ana-

lytical Chemistry). In Table 3.6 we provide details of the analytical performance of the
SPME-GC-MS method for the analysis of PPCPs.

Table 3.6 – SPME-GC-MS limit of detection (LOD), limit of quantification (LOQ) and recovery
values for water analysis.

No. Pesticide LOD (ngL−1) LOQ (ngL−1) Recovery (% ± RSD) Recovery (% ± RSD)

1 Ibuprofen 0.4 1.1 94.1 ± 3.4 90.6 ± 3.0
2 2-benzyl-4-chlorophenol 0.4 1.1 91.2 ± 2.3 96.1 ± 2.4
3 Naproxen 0.7 2.0 77.4 ± 2.1 88.9 ± 1.7
4 Triclosan 0.5 1.6 90.6 ± 3.7 97.2 ± 3.8
5 Ketoprofec 0.4 1.2 85.6 ± 4.1 96.2 ± 8.7
6 Diclofenac 4.2 12.8 57.5 ± 0.4 54.4 ± 2.5
7 Bisphenol A 1.4 4.1 93.2 ± 1.4 84.0 ± 3.5
8 Estrone 1.5 4.6 67.5 ± 1.1 76.0 ± 3.6

Spiked level of water 20 ngL−1.

Spiked level of water 90 ngL−1.

Replicates n= 3.

RSD = Residual standard deviation.

The new methodological approaches that we proposed allowed to: (1) simultaneously
detect eighteen organochlorine pesticides (SPE-GC-ECD) and eight PPCPs (SPME-GC-
MS), (2) perform analysis in a shorter period of time, (3) reduce sample manipulation
which reduces errors on data and, (4) reduce volume of solvents to be used.

Solid Phase Extraction

Solid Phase Extraction was performed for the extraction of pesticides in water sam-
ples, the procedure followed is as follows. Samples were first filtered under vacuum through
a 0.45 µm Millipore filter to eliminate particulated material until the sample remained
transparent. C18 cartridge were placed in a 12-port Visiprep SPE vacuum manifold and
conditioned by passing 5 mL of dichloromethane, 5 mL of methanol and 5 mL of Milli-Q
water at a flow rate of 1 mLmin−1. Then, 500 mL of water sample was passed through the
cartridge at a flow rate of 1 mLmin−1. The solid phase in the cartridge was not allowed
to become dry at any moment. After loading the sample, the SPE cartridge was dried for
20 min under vacuum. Pesticides were eluted using 2 mL of dichloromethane by gravity
and finally under vacuum. The extract was brought to dryness in a nitrogen stream and
redissolved in 1 mL of ethyl acetate-hexane (25 : 75%, v/v). Analyses of a spiked blank
sample and a blank sample were performed together with every set of samples. Figure 3.3
schematizes the SPE procedure for extraction of OCPs in water samples.

Solid Phase Micro Extraction

Solid Phase Micro Extraction (SPME) was performed for the extraction of PPCPs in
water samples, SPME was carried out using 85 µm poliacrylate fibers (PA) supported on
a manual device for SPME (Bellefonte, PA, USA). PA fibers were previously conditioned
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SPE Cartridges:

Strata C-18 

(200 mg/6 mL)

SPE

Conditioning

Flow rate:

1 mL/min

Sample loading

Flow rate:

12 -15 mL/min

Water remotion

1 x 5mL Dichlorometane

1 x 5mL Methanol

1 x 5mL MiliQ water

500 mL of water

Passing air for 15 min

Passing nitrogen for 15 min

2 x 1mL Dichloromethane
Flow rate:

1 mL/min

Sample elution

Adding Sodium sulfate and

washing with dichloromethane

Filtration

To dryness with nitrogen

Evaporation

Redissolved in 1 mL of 

ethyl acetate-hexane 25:75%, v/v

Transfer

GC-ECD analysis

Figure 3.3 – Flow diagram of the SPE method for analysis of OCPs in water.
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directly on the GC injector at 280 °C for 1 h.
Water samples were firstly filtered under vacuum through a 0.45 µm Millipore filter.

Then, samples were fortified with analytes at (1000 ng l−1), 5 mL of water were transferred
to a glass vial and adjusted to pH 3 with 0.1% concentrated formic acid(89%), 0.54 g
sodium chloride were added and a stir bar was introduced. The glass vial was closed
and placed on a water bath at 40°C and maintained 5 min for temperature equilibrium.
The analytes were extracted by SPME in immersion mode for 45 min at 40 °C and 1200
rpm. Following SPME, the analytes were derivatized on head-space mode by exposing the
fiber to the vapors of 100 µL of N,N-tertbutyldimethylsilil-N-methyltrifluoroacetamide
(MTBSTFA) in order to obtain the volatile derivatives. After derivatization, the fiber was
retracted and inserted directly on the GC injector. Analytes desorption was carried out
at 250 °C for 10 min.

Analytical instrumentation and operating conditions

An Agilent Technology 6890N gas chromatograph equipped with an ECD detector was
used for pesticide quantification. The chromatograph was equipped with an autosampler
and split/splitless injector. The column used was a capillary column (Phenyl Methyl
Siloxane 30m×250µm×0.25µm i.d.), with nitrogen as carrier gas at a constant flow of
1 mLmin−1.
A 1 µL aliquot of the extract was injected in a splitless mode into the gas chromatograph.
After each injection, syringe was first rinsed with acetone and then with ethyl acetate-
hexane (25:75%, v/v). Temperature programme was the following: initial temperature
80 ◦C, held for 1 min, 30 ◦Cmin−1 ramp to 175 ◦C then 6 ◦Cmin−1 to 215 ◦C, finally by
15 ◦Cmin−1 to 290 ◦C and held for 5 min.

GC-MS: A Hewlett Packard HP 5890A gas chromatograph equipped with a 5973
mass spectrometer (Agilent Technologies, U.S.A.) was used for PPCPs analysis. The
chromatographic column used was a ZB-5 (30 m x 0.25 mm i.d. x 0.25 µm film thickness),
with helium as carrier gas at a constant flow of 1 mLmin-1 and injector temperature of
250°C.
Column temperature program was 70 °C (1 min), then increased at 10 °C min-1 to 230 °C
(4 min), then 14 °C min-1 to 300 °C (6 min); total running time 33 min. The sample was
injected in splitless mode (1 min). Mass spectrometric detection was carried out by single
ion monitoring (SIM), selecting two fragment ions for identification and quantification of
each analyte: ibuprofen 263 y 320 m/z; naproxen 327 y 324 m/z; diclofenac 214 y 352
m/z; ketoprofen 295 y 311 m/z; 2-benzyl-4-chlorophenol 275 y 332 m/z; triclosan 200 y
375 m/z; bisphenol A 442 y 456 m/z; estrone 328 y 384 m/z. Quantification was carried
out by external standardization by integrating area of the chromatographic peaks. Peak
identity was confirmed with retention time and mass spectrum of each analyte, where
characteristic fragment ions were selected.

With the use of analytical methods described above we were able to analyse for the
first time the content of organochlorine pesticides and PPCPs in the Mexican rivers (Tula,
Tamazula, Humaya and Culiacan). Data from the analysis of PPCPs and organochlorine
pesticides is composed of 16 individuals (sampling sites) and 23 variables (5 PPCPs and
18 Oragnochlorine Pesticides) of numerical values. An example of these data is presented
on Tables 3.7 and 3.8.
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Table 3.7 – Example of data from the analysis of organochlorine pesticides on water samples from the Tula river. Only ten out of the six-teen compounds
are shown.

Season Sample II-Endosulfan DDD Endrin aldehyde Endosulfan sulfate DDT

Dry H1 0.777 ± 0.002 3.775 ± 2.436 0.797 ± 0.564 1.072 ± 0.033 0.228 ± 0.126

H2 0.554 ± 0.202 0 ± 0 0.680 ± 0.126 1.103 ± 0.069 0.453 ± 0.138

H3 0.282 ± 0.250 1.240± 1.23 0 ± 0 0.963 ± 0.127 0.492 ± 0.243

H4 0.276 ± 0.172 0 ± 0 0.480 ± 0.043 0.943 ± 0.099 0.168 ± 0.180

H5 0.088 ± 0.098 0 ± 0 0.608 ± 0 1.040 ± 0.026 0.052 ± 0.088

ND = Non detected. Concentrations are given in ng/L. Each sample was analysed by duplicates for each

compound.

Table 3.8 – Example of data from the analysis of PPCPs on water samples from the Tula river.

Sample Season Ibuprofen Naproxen Triclosan Diclofenac Bisphenol A

H1 dry 59±2.1 160.1±8.4 31.4±1.1 – –

H2 79.7±3.8 240.3±10.9 29.8±1.1 – –

H3 76.1±5.0 212.5±10.7 31.1±0.6 – –

H4 79.6±0.3 246±1.0 28.6±1.3 – –

H5 100.3±1.0 101.8±2.6 29.7±0.6 – –

ND = Non detected. Concentrations are given in ng/L. Each sample was analysed by triplicates for each

compound.
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3.4 Hydrobiological data acquisition

As explained in Section 2.3 currently, in Mexico, the use of macroinvertebrates for ecolog-
ical assessment of aquatic systems is scarce due partially to the absence of biomonitoring
protocols and undefined metrics. Aiming at providing guidelines and practical tools for
the biomonitoring of aquatic systems, we have done a study whose objectives were: 1)
identify the macroinvertebrate-based monitoring approaches with potential application to
the ecological assessment of Mexican streams, and 2) describe sampling and analytical
procedures necessary to implement such approaches.
Results of this study have been published (Serrano Balderas et al., 2016) and are part of
the work of this manuscript. Briefly, thirty-five biomonitoring metrics were identified as
potential approaches to be applied for the ecological assessment of Mexican streams. A
description of the sampling and analytical procedures to compute the selected metrics is
also given in the above mentioned publication.
We have applied for the first time the guidelines described by Serrano Balderas et al.
(2016) in order to acquire biological data for Tula, Tamazula, Humaya, and Culiacan
rivers. Below we described the sampling and analytical procedures followed for this pur-
pose.

3.4.1 Sampling of macroinvertebrates

Macroinvertebrate sampling was performed first by a visual inspection of a 100 m stretch of
the river channel to identify the different habitats and substrates. Samples were collected
from multi-habitats as suggested by Jáimez-Cuéllar et al. (2004), using a surber net
(surface 500 cm2, mesh size 500µm). For each sampling point, 2 replicates were obtained.
Samples were stored in plastic bags and preserved in 70% ethanol.

3.4.2 Analysis of macroinvertebrates

In laboratory, macroinvertebrate samples were separated from vegetable and mineral sub-
strates and sorted using a 250 µm mesh sieve. Macroinvertebrates were examined under
a stereoscope and identified at family level using different taxonomic keys (Heckman,
2006; Heckman, 2008; Heckman, 2011; Merrit et al., 2008a; Tachet et al., 2010; Novelo-
Gutiérrez, 1997b; Novelo-Gutiérrez, 1997a). Thirty-five biomonitoring metrics were cal-
culated. They include: 5 metrics of richness, 11 enumeration metrics, 6 diversity and
similarity indices, 7 biotic indices , 5 functional feeding metrics and 1 multimetric ap-
proach. For the case of similarity indices, they were computed by comparing two stations.
In fact, during the sampling campaign one station was selected to represent the least
polluted state of the river, this station was located far from anthropogenic and urban
activities and upstream. This station considered as "non-polluted" or "the least polluted"
was used to compute similarity indices by comparing it against the other stations.

Details concerning the taxonomic resolution, definition, and expected response to in-
creasing perturbation for each metric are given in Table 3.9.
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Table 3.9 – Biomonitoring metrics for the biological assessment of Mexican rivers (Serrano
Balderas et al., 2016).

Metric Taxonomic
resolution

Definition Expected re-
sponse to in-
creasing pertur-
bation

Reference

Measures of
richness

Number of total
taxa

Family All different taxa at a site. Decrease Resh
and
Jackson,
1993;Bar-
bour
et al.,
1999

Number of EPT
taxa

Total number of taxa of the or-
ders Ephemeroptera (mayflies),
Plecoptera (stoneflies) and Tri-
choptera (caddisflies).

Number of
Ephemeroptera
taxa

Genus or
Species

Total number of taxa of the order
Ephemeroptera (mayflies).

Number of Ple-
coptera taxa

Total number of taxa of the order
Plecoptera (stoneflies).

Number of Tri-
choptera taxa

Total number of taxa of the order
of Trichoptera (caddisflies).

Enumerations Number of fami-
lies in common

Family Number of families in common
between 2 samples.

%EPT Ratio of EPT abundance.
%Ephemeroptera Ratio of mayflies to total number

of individuals.
%Plecoptera Ratio of stoneflies to total number

of individuals.
%Trichoptera Ratio of caddisflies to total num-

ber of individuals.
%Coleoptera Ratio of individuals of the order

of Coleoptera to total number of
individuals.

%Diptera Ratio of individuals of the order
of Diptera to total number of
individuals.

Increase

%Chironomidae Ratio of chironomidae individuals
to total number of individuals.

EPT / Chirono-
midae

Ratio of EPT abundance to chi-
ronomidae abundance.

Decrease

% of most domi-
nant genus

Genus Ratio of individuals in numerically
dominant genus to total numbers
of individuals.

Increase

% of dominant
taxa

Family Ratio of individuals in numerically
dominant taxa to total number of
individuals.

Diversity and
Similarity indices

Shannon’s Index Description of community struc-
ture (Diversity).

Decrease Shannon,
1948

Simpson’s Index Diversity index commonly used in
Ecology and Biology.

Increase Simpson,
1949

Margalef Index Diversity index, where the number
of species in the sample and the
total number of organisms in the
sampling are considered.

Decrease Margalef,
1951

Sequential Com-
parison Index
(SCI)

Order or
Family

Description of stream quality
method, based upon distinguishing
the number of different types
of organisms and the number of
"runs".

Cairns
et al.,
1968

Jaccard’s Coeffi-
cient

Family Description of the similarity be-
tween two samples.

Jaccard,
1901

Sørensen Coeffi-
cient

Description of the similarity be-
tween two samples.

Sørensen,
1948

Biotic indices Trent Biotic
Index (TBI)

Family
(genus
for Ple-
coptera and
Ephemeroptera
nymphs and
species-level
for Annelida,
Mollusca,
Crustacea
and
Megaloptera)

Description of the pollution level
of streams, according to the sensi-
tivity of key groups to pollution.

Woodiwiss,
1964;
Met-
calfe,
1989

Extended Biotic
Index (EBI)

Family or
Genus

Description of the pollution level
of streams, according to the sensi-
tivity of key groups to pollution.
Aquatic ecosystems are described
using "quality classes".

Ghetti,
1997

Beck Biotic
Index (BI)

Genus Classification of streams according
to their organic pollution. Organ-
isms are classed according to their
tolerance to organic pollution.

Beck,
1955

Family Biotic
Index (FBI)

Family Uses tolerance values to weight
abundance in an estimate of over-
all pollution. Originally designed
to evaluate organic pollution.

Increase Hilsenhoff,
1982;
Hilsen-
hoff,
1988;
Plafkin
et al.,
1989
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Table 3.9 – Biomonitoring metrics for the biological assessment of Mexican rivers (Serrano
Balderas et al., 2016). (continued...)

Metric Taxonomic
resolution

Definition Expected re-
sponse to in-
creasing pertur-
bation

Reference

Biological Mon-
itoring Working
Party (BMWP)

Score system using benthic
macroinvertebrate classed ac-
cording to their pollution tolerance
for Britain rivers.

Decrease ISO,
1979;
National
Water
Council,
1981

Biological Mon-
itoring Working
Party Costa Rica
(BMWP CR)

Score system based on the BMWP
modified to include macroinverte-
brate communities of Costa Rica

Gutiérrez-
Fonseca
and
Lorion,
2014

Biological Mon-
itoring Working
Party Average
Score per Taxon
(BMWP ASPT)

Average Score Per Taxon, added to
the BMWP Score System.

Armitage
et al.,
1983

Functional Feed-
ing measures

%Filterer collec-
tors

Percent of the macrobenthos that
filter fine organic material.

Increase Merrit
et al.,
2008b

% Scrapers Percent of the macrobenthos that
feed on epiphytes.

Decrease

%Shredder Percent of the macrobenthos that
feed on leaf litter.

%Predators Percent of the predator func-
tional feeding group. They are
carnivores-scavangers, engulf or
pierce prey.

% gathering
collectors

Percent of the macrobenthos that
collect fine deposited organic
material.

Variable

Multimetric
approach

IBI-west central
Mexico

Computation of multimetric ap-
proaches which is summarized in a
single value.

Decrease Weigel
et al.,
2002

The taxonomic level indicated for the diversity and similarity indices is the level preconceived by the author of each metric. However,
they can be computed using some other taxonomic level (e.g., species-level).

Metric of richness is the number of specimens found in each sample site, the rich-
ness metrics calculated includes: number of total taxa, number of EPT taxa, number of
Ephemeroptera taxa, number of Plecoptera taxa, and number of Trichoptera taxa.

Enumerations were computed by estimating the relative abundance of certain pollution-
sensible groups to the total abundance of macroinvertebrates they consisted of: number of
families in common, %EPT, %Ephemeroptera, %Plecoptera, %Trichoptera, %Coleoptera,
%Diptera, %Chironomidae, EPT:Chironomidae, % of most dominant genera, and % of
dominant taxa.

Four diversity indices (Shannon’s Index, Simpson’s Index, Margalef Index, and Se-
quential Comparison Index) and two similarity indices (Jaccard’s Coefficient and Sørensen
Coefficient) were computed. The formulaes of three diversity indices are given below:

Shanon_Index :H =
i=S∑
i=1

pi logpi (3.1)

Simpson_Index :D =
∑i=S
i=1 ni(ni−1)
N(N −1) (3.2)

Margalef_Index :D = S− 1
logN (3.3)

Where pi is the proportion of individuals of the ith taxon (pi = ni/N), ni is the total
number of individuals of the ith taxon, N is the total number of individuals for all ith
taxa and S is the total number of taxa.

Sequential Comparison Index (SCI) was computed using Equation 3.4 (Cairns et al.,
1968). The procedure to estimate the SCI is as follows: Let us consider a sample containing
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macroinvertebrates. These macroinvertebrates are placed in a container for examination
(c.f., Figure 3.4). Counting from left to right in row A, we can observe that the first four
organisms are similar and, therefore, are part of the same run. Organisms six and seven
are similar but both are different compared to organism five and, therefore, the last two
organisms are part of a new run. In row A there are 3 runs for 7 organisms. Compared
to row A, row B presents 5 runs for 10 organisms.

SCI = number of runs

number of organisms
(3.4)

  

A

B

Figure 3.4 – Example of macroinvertebrates counting process to determine the number of runs
in a sample. Each form represents a different organism. The number of runs is used to compute
the Seqential Compraison index (SCI).

The Jaccard’s (Jaccard, 1901) and (Sørensen, 1948) coefficients are similarity indices
used to evaluate the mean differences between sampling stations. They use presence-
absence data and were computed using the following equations:

Jaccard_Coefficient : Cj = j

a+ b− j
(3.5)

Sørensen_Coefficient : Cs = 2j
a+ b

(3.6)

where j is the number of taxa in common between the stations A and B, a is the
number of all taxa in station A and b is the number of all taxa in station B.

Biotic indices and the Macroinvertebrate-based Index of Biotic Integrity (IBI) for west-
central Mexican streams were computed according to authors description. Biotic indices
include: Trent Biotic Index (Metcalfe, 1989), Extended Biotic Index (Ghetti, 1997), Beck
Biotic Index (Beck, 1955), Family Biotic Index(Hilsenhoff, 1988), Biological Monitor-
ing Working Party (National Water Council, 1981) and its associated Average Score per
Taxon (Armitage et al., 1983). Details on the computation of each metric are given in
Appendix A.

Six Functional Feeding Groups were computed including: filtering collectors, scrapers,
shredders, predators, and gathering collectors. Each organism was counted and grouped
in feeding groups according to Merrit et al. (2008a).

Hydrobiological data from the rivers Tula, Tamazula, Humaya, and Culiacan is com-
posed of 16 individuals (sampling sites) and 35 numeric parameters (35 biomonitoring
metrics). Only the Tula river contains information related to two sampling periods (dry
and rainy). Below we provide an example of data from biomonitoring of the rivers Tula,
Tamazula, Humaya and Culiacan.
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Table 3.10 – Example of data from the biomonitoring metrics computed for the rivers Tula,
Tamazula, Humaya and Culican.

Metric Sampling sites

H1 H2 H3 H4 H5

M
ea
su
re
s

o
f

ri
ch
n
es
s

Number of total taxa 710 2684 11419 26636 9762

Number of EPT taxa 0 0 0 0 0

Number of Ephemeroptera taxa 0 0 0 0 0

Number of Plecoptera taxa 0 0 0 0 0

Number of Trichoptera taxa 0 0 0 0 0

E
n
u
m
er
a
ti
o
n
s

Number of families in common 5 6 5 4 8

%EPT 0 0 0 0 0

%Ephemeroptera 0 0 0 0 0

%Plecoptera 0 0 0 0 0

%Trichoptera 0 0 0 0 0

%Coleoptera 0 0 0 0 0,0102

%Diptera 6,0563 4,8808 0,7531 0,1840 1,9975

%Chironomidae 5,9155 4,8435 0,7531 0,1727 1,9975

EPT : Chironomidae 0 0 0 0 0

% of most dominant genera 81,55 91,62 98,65 89,43 95,16

% of dominant taxa 81,41 90,91 98,64 89,43 95,16

D
iv
er
si
ty

a
n
d

S
im

il
a
ri
ty

in
d
ic
es

Shannon’s Index 0,6686 0,4097 0,0855 0,3504 0,2600

Simpson’s Index 0,3227 0,1704 0,0269 0,1896 0,0937

Margalef Index 1,5232 1,2666 1,0703 0,9814 1,0886

Sequential Comparison Index

(SCI)

0,0070 0,0022 0,0005 0,0002 0,0009

Jaccard’s Coefficient 0,5556 0,6667 0,6250 0,4000 1

Sørensen Coefficient 0,7143 0,8000 0,7692 0,5714 1

B
io
ti
c
in
d
ic
es

Trent Biotic Index (TBI) 3 3 3 3 3

Extended Biotic Index (EBI) 5 5 4 5 5

Beck Biotic Index (BI) 1 2 1 2 3

Family Biotic Index (FBI) 4,5775 4,2973 4,0375 7,5823 7,9045

Biological Monitoring Working

Party (BMWP)

15 23 15 17 21

Biological Monitoring Working

Party (BMWP-CR)

22 23 16 21 24

Biological Monitoring Working

Party- Average Score per Taxon

(BMWP- ASPT)

3,00 3,29 3,00 3,40 3,00

F
u
n
ct
io
n
a
l

fe
ed

in
g

m
ea
su
re
s

%Filterer collectors 0,0000 0,0373 0 0,0038 0

% Scrapers 0 0,0373 0 0 0,0819

%Shredder 81,5493 91,6170 98,6513 10,3394 1,9461

%Predators 2,1127 0,8197 0,2102 0,0563 0,8194

% gathering collectors 16,3380 7,4888 1,1384 89,6005 97,1525

Multimetric

approach IBI-west central Mexico 30 35 40 10 10
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4.1 Introduction

Data Mining (DM) methods include non supervised methods (i.e., clustering, PCA, clas-
sifiers) and supervised methods (i.e., regression, classification), through the use of such
methods, we can discover relevant patterns in the data and gain more knowledge. To use
DM methods it is necessary to provide input data in the amount, structure and format
that suits DM methods perfectly. However, real-world data such as data from environ-
mental surveys are highly affected by anomalies such as missing values, inconsistencies,
inaccuracies, outlying data, etc. To provide high quality data and thus quality analytical
results it is necessary to preprocess data.
Data preprocessing is a critical step in data mining processes. Results from data prepro-
cessed inappropriately may lead to misleading conclusions and, in the worst case, dramatic
consequences and wrong decision making that can affect the survival of certain environ-
mental ecosystems in our application domain.
We aim at providing to data and environmental scientists a guide to inspect, preprocess
and analyse environmental data. We focused our study on the best practices to prepro-
cess data with respect to an specific statistical analysis in order to get quality analytical
results.

To our aim, we have developed a comprehensive study to assess the impact of prepro-
cessing procedures on accuracy of different statistical methods namely regression, classifi-
cation, and clustering. We focused our study on procedures to select features, normalize
data, and deal with missing values and outliers because these are the anomalies most
frequently find in water quality data.

The main objectives of the approach are:
1. Assess the robustness of methods to process missing and outlying data;
2. Evaluate the effect of feature selection, normalization, missing data imputation,

and outlying processing on the accuracy of subsequent classification, clustering, and
regression analysis;

3. Identify the best data preprocessing procedures for a particular statistical analysis.
We have structured our study in three parts: (1) generation of synthetic datasets, (2)

data preprocessing, and (3) statistical analysis (c.f. Figure 4.1).
In the first part, we construct synthetic data to assess preprocessing procedures then,

in step two we generated preprocessed data by executing different preprocessing proce-
dures on the synthetic data of step one, and we assessed the robustness of preprocessing
procedures. In the third step we used the preprocessed data to assess the impact of pre-
processing procedures on the results of statistical analysis. In the following sections we
describe each part of our study.

The chapter is organized as follows: in Section 4.2 we briefly describe the preprocessing
procedures used in our study, in Section 4.3 we describe our synthetic datasets. Then,
in Section 4.5 we detail the methodological procedure followed to study the robustness of
the preprocessing procedures and, in Section 4.6 we describe our analysis of the impact of
data preprocessing procedures on the results of the main statistical methods. Finally, our
results and concluding remarks are given in Section 4.7 respectively.
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4.2 Data preprocessing procedures

4.2.1 Feature selection

Feature selection is performed to reduce the dataset by removing redundant or irrelevant
features (or variables). It increases the speed of the learning methods and facilitates the
understanding of patterns. We have studied three feature selection methods, two filter

and one wrapper method. They were chosen because they belong to two different families
of techniques that allow us to have an heterogeneous suite of methods to carry out our
experiments. The methods are the following:

• Correlation-based Feature Selection (CFS) is a filter algorithm that ranks features
according to a correlation-based evaluation (Hall, 1999; Liu et al., 2002). Relevant
features are selected according to their correlation among classes and with each
other. Features are considered relevant when they present a strong correlation with
the class and they are not correlated with each other. Acceptance of a feature will
depend on its efficiency to predict classes in the instance space that are not predicted
by other features.

• Linear Correlation is an attribute evaluation method. This univariate filter method
provides a ranking of all features for a certain threshold. Here, we set up the thresh-
old to select features with strong correlation values (Eid et al., 2013).

• Wrapper Subset Evaluator evaluates usefulness of a feature set by using a learning
algorithm. Cross-validation is used to estimate accuracy of the subsets (Kohavi and
John, 1997). Finally, the feature subset which provides the best learning performance
is chosen. In this work, we have used a simple regression model.

4.2.2 Normalization

Normalization is performed in order to give all variables equal weight. By normalizing
data, all variables are expressed in the same measurement units, therefore measurement
units can not affect data analysis. We have performed three normalization methods on
numerical data: min-max, z-score and decimal-scale normalization. They were chosen due
to their differences on the computation and their popularity.

• In Min-max normalization. Let us define minA and maxA be the minimum and
maximum values of an attribute A. In min-max normalization a value vi of A is
transformed to v′i in the range [new_minA,new_maxA] by computing

v
′
i = vi−minA

maxA−minA
(new_maxA−new_minA) +new_minA (4.1)

• Z-score normalization (or zero-mean normalization) is performed based on the mean
and standard deviation of an attribute A. A value vi of A is normalized to vii as
follows:

v
′
i = vi− Ā

σA
(4.2)

where Ā is the mean and σA the standard deviation of A.
• In decimal scale normalization, the values of an attribute vi is normalized to v

′
i

by moving the decimal point which depends on the maximum absolute value of v′i.
Decimal scale normalization is computed using the following formula:
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v
′
i = vi

10j (4.3)

where j is the smallest integer such that Max(|v′i|)< 1.

4.2.3 Imputation methods

Imputation methods, are used to replace missing values on the dataset. This alternative
can be used when an statistical method can not be performed under the presence of missing
values. To our purpose, we have tested four imputation methods: two distance-based
imputations: Hot-deck and K-NN, and two model-based imputation methods: Multiple
Imputation by Chained Equations (MICE) and Iterative Robust Model-based Imputation
(IRMI). They were chosen because they represent different techniques of imputation that
allow us to have an heterogeneous comparison of methods.

• Hot-deck imputation method uses an actual value from a dissimilar case in the current
dataset to replace the missing value. To determine the similar case, the user selects
classification variables. The cases that agree with the case under consideration on
these classification variables are placed into a pool from which one case is chosen
randomly (Olinsky et al., 2003). The values used to impute in Hot-deck preserve the
distributional characteristics of the data. This approach is effective essentially when
the data are MAR. However, there is little empirical work which can determine the
accuracy of this imputation method, it also can provide large bias on the estimates
of the error variances.

• K-nearest neighbour imputation (K-NN) is based on the application of a distance
measure in order to find the closest neighbours. Once the k-nearest neighbours have
been found, a replacement value is estimated and used as a substitute for the missing
value. The replacement value is calculated depending on the type of data, the mode
is used for qualitative data and the mean for continuous data (Troyanskaya et al.,
2001). One important issue when applying the K-NN approach is the selection of
the appropriate distance metric. The distance between two observations was defined
as

di,j =
∑p
k=1wkδi,j,k∑p
k=1wk

(4.4)

where wk is the weighted mean of the contributions of each variable and δi,j,k is the
contribution of the kth variable. For continuous variables the absolute distance was
computed as follows:

δi,j,k = |xi,k−xj,k|/rk (4.5)

where xi,k is the value of the kth variable of the ith observation, and rk the range
of the kth variable (Templ et al., 2011a).
The advantage of K-NN is that it provides a robust procedure for missing data
estimation, it can make prediction for both discrete and continuous attributes, it
can treat multiple missing values easily because the creation of predictive models
are not needed however, the K-NN algorithm is particularly problematic for large
datasets because the algorithm search on the entire dataset to find the most similar
instances (Batista et al., 2002).

• The Multiple Imputation by Chained Equations (MICE) is based on the assumption
that missing data is MAR. The procedure consists of the computation of a set of
regression models where each variable with missing values is modelled conditionally
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upon the other variables in the data (Buuren and Groothuis-Oudshoorn, 2011). The
algorithm can be summarized into the following steps:

Algorithm 4.1. Multiple Imputation by Chained Equations (MICE)

– Step 1: Initialization of a temporal imputation using a simple imputation method (e.g., mean);

– Step 2: For one of the variables yi set back the temporal imputation into missing values;

– Step 3: Regression based on the observed values from the variable yi in Step 2 on the other

variables in the imputation model. This means that in a regression model yi will be considered

as the dependent variable and the other variables as independent;

– Step 4: Replace missing values of yi by predictions drawn from the regression model. When yi
is subsequently used as independent variable in the regression models for other variables, both

these imputed values and the observed will be used;

– Step 5: Steps 2-4 are repeated for each variable with missing values.

– Step 6: The loop through each variables where steps 2-4 are repeated constitutes one iteration.

At the end of each iteration, all missing values have been replaced. Steps 2-4 are repeated for a

number of iterations defined by user. The final imputations at the end of all iterations are kept

as the final result for one version of imputed dataset.

• The Iterative Robust Model-based Imputation (IRMI) (Templ et al., 2011b) is based
on the EM algorithm, where, in the "Expectation" step, the regression method is ap-
plied iteratively. For each iterative step, one variable is used as the response variable
and the other variables are used as regressors. In this way, "all" the information of
the variables is used for the imputation of the responding variables. The algorithm
is summarized into seven steps as follows:

The main differences between MICE and IRMI is that IRMI includes a robust re-
gression which reduces the influence of outlying observations and protects against poorly
initialized missing values. Another difference is that in each step of MICE the predictive
values are used to update former missing values while IRMI uses predictive values to up-
date expected values, this allow to keep track of convergence of sequential methods. IRMI
also provides (co-)variances that are included in the final iteration.

The four selected imputation methods are available in R. Scripts involving the studied
methods and their respective packages, namely: VIM for hot-deck, K-NN and IRMI, and
mice for MICE have been implemented for testing and assessing the methods.
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Algorithm 4.2. Iterative Robust Model-based Imputation (IRMI)

– Step 1: Initialization of a temporal imputation using a simple imputation method (e.g., mean

imputation);

– Step 2: Sort each variable x according to the amount of missing values. Set I = {1,...,p};

– Step 3: Set l = 1;

– Step 4: Define Xol

I/{l} and X
ml

I/{l} the matrices with the variables of the observed and missing cells

of xl, respectively, where ml ⊂ {1, ...,n} denotes the indices of missing observations in variable

xl and ol = {1, ...,n}/ml the indices of the observed cells of xl. The first column of Xol

I/{l} and

Xml

I/{l} will consist of ones, and an intercept term xol

l =Xol

I/l
β+ε in the regression problem should

be considered. Where β is the regression coefficient and ε is the error term. In each regression

the distribution of the response xol

l is considered to fit if the response is:

∗ continuous, the link is µ and a robust regression method is applied;

∗ categorical, a generalized linear regression is applied;

∗ binary, a logistic linear regression is applied when the link is log( µi

1−µi
) for i = 1,...,n;

∗ semi-continuous, a two-stage approach is applied, in the first stage a logistic regression is

applied and in the second stage a robust regression based on the continuous (non-constant)

part of the response is used to impute;

∗ count, a robust generalized linear regression of family Poisson is applied and the link is

log(µi), for i = 1,...,n.

– Step 5: Evaluate β with the model in Step 4. Replace the missing parts xml

l by x̂ml

l =Xml

k β̂;
– Step 6: Perform Step 4-5 for each l=2,...,p;

– Step 7: Repeat Steps 3-6 until imputed values stabilize, i.e. until∑
i

( ˆxml

l,i −
¯xml

l,i )
2 < δ,for all iεml and lεI (4.6)

where ˆxml

l,i is the i-th imputed value of the current iteration, and ¯xml

l,i is the i-th imputed value

from the previous iteration.
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4.2.4 Outlier detection methods

Four detection methods based on different approaches were implemented including; an
statistic-based approach (Inter quartile Range, IQR), two multivariate outlier detection
approaches (Adjusted-Quantile), and an algorithm that uses Principal Components decom-
position (PCOUT) (Filzmoser et al., 2008), and a density-based approach (Local Outlier
Factor, LOF; (Breunig et al., 2000)). They were chosen because they belong to different
families of methods that allow us to have an heterogeneous comparison of methods.

• Inter Quartile Range (IQR) covers the central 50% of data, it is determined as
the range between the 25 and 75% of the quantiles Q1 (lower quantile value) and
Q3 (upper quartile value), IQR = Q3−Q1. When an observation falls below Q1−
1.5(IQR) or above Q3 + 1.5(IQR) it is then considered as an outlier.

• Adjusted-Quantile (AQ). Outliers are detected through the adjusted quantile as
follows (Filzmoser et al., 2005): First, a chi-squared plot is used to visualize the
deviation of the data distribution from multivariate normality in the tails. Then
the tails of the empirical distribution function Gn(u) of the squared robust distances
RD2

i and the distribution function G(u) of χ2
ρ are compared to detect outliers.

Let us denote the empirical distribution function of the squared robust distances
RD2

i as Gn(u) and G(u) as the distribution function of χ2
ρ. Gn will converge to G

for multivariate normally distributed samples. The tails of Gn and G are compared
to detect outliers.
The tails are defined by δ = χ2

ρ;1−α for small α (e.g., α = 0.02), and

ρn(δ) = sup
u≥δ

(G(u)−Gn(u))+ (4.7)

where + indicates the positive differences. pn(δ) is not used directly as a measure of
outliers. Instead a critical value Pcrit is introduced to distinguish between outliers
and extremes where extremes of the distribution are considered as observations with
a large RD. The measure of outliers in the sample is defined as

αn(δ) =
{

0 if pn(δ)≤ pcrit(δ,n,p),
pn(δ) if pn(δ)> pcrit(δ,n,p)

}
(4.8)

cn(δ) =G−1
n (1−αn(δ)) determines the threshold value.

• Principal Component decomposition for outlier detection (PCOUT) consist of two
parts: a step to detect location outliers and a step to detect scatter outliers. Loca-
tion outliers are described by different location parameter while scatter outliers are
differentiated due to their scatter matrix which is different from the rest of the data
(Filzmoser et al., 2008). The algorithm of PCOUT that includes the two parts is
summarized bellow in Algorithm 4.3.

• Local Outlier Factor (LOF) assigns an outlier factor to each observation, which is
the degree the observation is being outlier. This degree is measured with respect to
the density of the local neighbourhood (Breunig et al., 2000; Kriegel et al., 2010).
LOF is computed as follows:
For any positive integer k, k-distance(p) is defined as the distance d(p,o) between
object p and o εD such that:

1. o′εD \{p} holds that d(p,o′)≤ d(p,o), for at least k objects, and
2. o′εD \{p} holds that d(p,o′ < d(p,o)) for at most k−1 objects

The reachability distance between object p and object o is defined as:

reach−distk(p,o) =max{k−distance(o),dist(p,o)} (4.14)
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Algorithm 4.3. Principal component decomposition for outlier detection (PCOUT; (Filzmoser et al.,

2008))

– Step 1 Transform the data by subtracting the median and dividing by the median absolute

deviation (MAD), in each dimension. Compute the covariance matrix of the transformed data.

The MAD is defined for a sample {x1, ...,xn} ⊂ R as

MAD(x1, ...,xn) = 1.4826 ·med
j
|xj −med

j
xi| (4.9)

– Step 2 Calculate the principal component decomposition of the semi-robust covariance matrix

from Step 1. Retain the p∗ values/eigenvectors that contribute to at least 99% of the total

variance. Sphered the transformed data through the median and MAD.

– Step 3 Compute the robust kurtosis weights for each components and weighted norms for the

sphered data as follows

wj =

∣∣∣∣∣ 1n
n∑
i=1

(zij −medizij)4

MAD(z1j,...,znj
)4
−3

∣∣∣∣∣ (4.10)

By scaling data through MAD, the Euclidean norms in principal component space are equivalent

to Mahalanobis distances. Transform these distances using the following equation

di =RDi ·

√
χ2
p∗,0.5

median{RDi}
(4.11)

where χ2
p∗,0.5 is the χ2

p∗ 0.5 quantile.

– Step 4 Determine weights w1i for each robust distances as follows:

w1i =


0, di ≥ c(
1− (di−M

c−M )2
)2
, M < di < c

1, di ≤M
(4.12)

where i = 1, ...,n and M is the 0.33 quantile of the distances {d1, ...,dn} and c =

median{d1, ...,dn}+ 2.5 ·MAD{d1, ...,dn}.
– Step 5Compute the (unweighted) Euclidean norms of the data using the semi-robust principal

component decomposition used in Step 2. Transform using Eq. (4.11) to get a set of distances.

– Step 6 For each robust distance, determine weights w2i according to Eq. (4.12) with c2 =χ2
p∗0.99

quantile and M2 = χ2
p∗0.25 quantile.

– Step 7 Determine final weights for all observations according to Eq. (4.13) using weights of Steps

4 and 6

wi =
(w1i+s)(w2i+s)

(1 +s)2
(4.13)
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The local reachability density (lrd) of object p is the inverse of the average reach-dist
of the kNNs of p which is defined as:

lrdk(p) = l/

(∑
oεkNN(p) reach−distk(p,o)

Card(kNN(p))

)
(4.15)

The local outlier factor (LOF) of object p is the average ratio of local reachability
distance of neighbours of p and lrd of o

LOFk(p) =
∑
oεkNN(p)

lrdk(o)
lrdk(p)

Card(kNN(p)) (4.16)
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4.3 Synthetic data description

Generation of
Synthetic datasets

Original Deformed

Injection
of

anomalies

OUT

NA
NA

OUT

AL
AL

FT
FT

Figure 4.2 – Flow diagram of the generation of synthetic datasets for the assessment of preprocess-
ing procedures on statistical results. FT denotes highly correlated data, AL denotes non-normalized
data, NA stands for not available/missing values and OUT denotes outlying data.

The first step of our comprehensive study for the assessment of preprocessing proce-
dures is the construction of synthetic datasets. Our experiments can not rely only on
our dataset produced using the methods described in the previous chapter (c.f. Section
3) because the results would not be meaningful. Thus, we needed to construct synthetic
datasets. Our synthetic datasets were constructed in order to be the most similar to envi-
ronmental data in terms of distribution, correlation, etc., specifically, water quality data.
As illustrated in Figure 4.2, we created non-deformed datasets that we named "original"
then, we deformed the original datasets by injecting anomalies (i.e., missing values and
outlying data) or by deforming the original characteristics of the datasets. For instance,
creating a new dataset with a non-normal distribution or by generating high correlated
variables. We created different datasets for a better control on our experimentations. The
resulting deformed datasets were subsequently used on the second part of our study (c.f.
Section 4.5). Below we detail the characteristics of our datasets.

Synthetic data for Feature Selection

Four synthetic datasets were used to assess the impact of feature selection procedures
on subsequent regression, classification, and clustering analysis. Each dataset follows a
normal distribution and is composed of different number of observations n, numerical vari-
ables p, and one categorical variable of five classes with an uniform distribution, variables
include irrelevant features (c.f. Table 4.1). These irrelevant features are highly correlated
variables.
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Synthetic datasets for Normalization

Experiments to assess the impact of normalization were performed using four synthetic
datasets. Each dataset is composed of different number of observations n, numerical
variables p from a Weibull distribution and one categorical variable of five classes from an
uniform distribution (c.f. Table 4.2).

Synthetic datasets for missing data

Assessment of imputation methods was carried out using four synthetic datasets. Each
dataset is composed of different number of observations n, numerical variables p from a
normal distribution and one categorical variable of five classes from an uniform distribu-
tion. Missing data were introduced randomly in numerical variables, using the MCAR
mechanism, into each of the datasets. The missing values were introduced into all vari-
ables in all datasets in the following six amounts: 5%, 10%, 15%, 20%, 25% and 30%.
For each missing ratio, we generated ten different missing datasets from the original com-
plete dataset to ensure that experimental results were statistically acceptable. Table 4.3
summarizes the characteristics of our experimental datasets.

Synthetic datasets for outlying data

The experiments were performed using three synthetic datasets. Each dataset is com-
posed of different number of observations n, numerical variables p from a normal distri-
bution and one categorical variable of five classes from an uniform distribution. Outlying
data were introduced randomly into each of the datasets in the following five amounts:
1.5%, 2.5%, 5%, 10% and 15%. A detailed description of the synthetic datasets used for
assessment of outlier detection methods is given in Table 4.4.

Hereafter we provide the characteristics of the first ten variables of the datasets used
for our experimentations.
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Table 4.1 – Synthetic datasets used to assess feature selection methods. Only the µ and σ2 values of the first ten variables are shown. Highly correlated
variables are denoted as Yk.

Dataset Variables

FS21 n= 21 p= 8 X1 X2 X3 X4 X5 Y1 Y2 Y3

µ 321.72 181.80 518.91 734.27 714.80 775.90 619.09 753.99

σ2 1.11 1.12 0.87 1.43 1.20 0.84 0.86 0.74

FS600 n= 600 p= 30 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 511.01 32.00 69.99 238.07 159.08 125.98 350.98 578.01 281.04 445.00

σ2 0.95 1.06 1.06 1.02 1.01 1.03 0.91 1.05 0.96 0.97

FS4000 n= 4000 p= 53 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 769.98 155.98 663.00 19.01 720.99 684.00 467.02 599.98 477.00 326.01

σ2 0.98 0.99 1.01 0.97 0.99 1.02 1.00 0.99 0.99 1.00

FS20000 n= 20000 p= 98 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 23.00 142.00 746.01 351.00 459.99 270.00 55.99 132.00 804.99 783.01

σ2 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.99 1.01 1.00

Table 4.2 – Synthetic datasets used to assess normalization methods. Only the µ and σ2 values of the first ten variables are shown.

Dataset Variables

AL21 n= 21 p= 8 X1 X2 X3 X4 X5 X6 X7 X8

µ 213.98 255.75 761.98 562.19 35.16 411.48 348.67 393.36

σ2 41343.79 62385.58 679029.21 129683.04 1010.23 221852.32 175850.52 122081.17

AL600 n= 600 p= 30 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 171.95 193.49 72.89 107.32 633.29 310.19 244.98 558.62 443.10 156.39

σ2 29166.08 40522.14 5041.46 12452.19 443577.50 82307.87 53645.94 333400.05 195958.17 20831.51

AL4000 n= 4000 p= 53 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 259.17 227.73 838.73 67.93 165.33 323.62 741.48 531.30 620.14 789.61

σ2 66203.82 51371.52 700756.56 4462.29 28778.14 99923.59 529437.41 271397.61 392837.24 605888.40

AL20000 n= 20000 p= 98 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 256.25 225.65 839.71 67.18 168.80 319.50 710.35 532.69 632.25 779.89

σ2 66029.69 50712.29 683255.96 4518.53 27972.67 102515.49 500528.68 283402.55 407322.39 602853.08
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Table 4.3 – Synthetic datasets used to assess imputation methods. Only the µ and σ2 values of the first ten variables are shown.

Dataset Variables

N21 n= 21 p= 8 X1 X2 X3 X4 X5 Y1 Y2 Y3

µ 191.25 156.16 536.92 544.79 693.06 766.90 744.81 269.08

σ2 1.18 1.29 1.19 0.83 0.80 0.55 0.79 0.78

N600 n= 600 p= 30 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 216.99 512.02 244.01 333.99 172.01 241.02 211.04 310.99 158.94 402.06

σ2 0.92 1.00 0.99 1.03 1.01 1.01 0.96 1.05 0.96 0.91

N4000 n= 4000 p= 53 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 97.02 513.00 517.00 487.99 362.98 893.01 355.99 688.98 661.01 817.00

σ2 1.01 1.02 1.00 0.97 1.01 1.01 1.01 1.02 0.98 0.98

N20000 n= 20000 p= 98 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 311.99 338.00 154.00 272.99 513.98 391.99 417.00 578.00 386.00 560.01

σ2 1.00 1.00 1.01 0.99 1.00 0.99 1.00 0.99 0.98 0.99

Table 4.4 – Synthetic datasets used to assess outlying preprocessing. Only the µ and σ2 values of the first ten variables are shown.

Dataset Variables

N21 n= 21 p= 8 X1 X2 X3 X4 X5 X6 X7 X8

µ 190.88 155.89 536.80 544.77 693.12 766.84 744.70 268.90

σ2 4.43 5.43 3.05 0.76 1.10 1.43 1.52 3.31

N600 n= 600 p= 30 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 216.79 511.82 243.71 333.76 171.73 240.75 210.81 310.80 158.73 401.81

σ2 2.74 3.20 3.75 3.35 3.95 3.36 3.30 2.96 2.86 3.45

N4000 n= 4000 p= 53 X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 96.81 512.78 516.77 487.76 362.76 892.80 355.78 688.74 660.76 816.75

σ2 3.04 3.21 3.31 3.21 3.24 3.07 3.09 3.40 3.29 3.48
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4.4 Semi-synthetic data description
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Figure 4.3 – Flow diagram of the generation of semi-synthetic datasets for the assessment of
preprocessing procedures on statistical results.

In the need to implement useful tools to evaluate the effectiveness of restoration and/or
protection actions of French rivers, the FRESQUEAU1 was conceived. The project brought
together experts on computational intelligence and data mining methods (from the four
laboratory involved, LHYGES2, TETIS3, LSIIT4 and LIRMM5.) and experts on hydro-
ecology: LHYGES, TETIS as well as two engineering consultants, AQUASCOP and
AQUABIO. The principal goals of this project were: to develop a tool that will allow
the assessment of rivers global function by considering the different parts of the ecosys-
tem and to broaden the knowledge of data mining from complex, heterogeneous and large
databases with temporal and spatial variations. Within the objectives of the project,
physical, chemical and biological data produced by the French Water Agencies DREAL6

and ONEMA7 from the Rhin-Meuse (RM) and Rhône-Méditerranée-Corse (RMC) basins
were collected.

1The FRESQUEAU project (« Fouille de données pour l’évaluation et le suivi de la qualité hydro-

biologique des cours d’eau ») which was a French multidisciplinary project financially supported by the

Research National Agency (ANR) 2011-2013
2Laboratory of Hydrology and Geochemistry of Strasbourg
3A joint research centre of Territories, Environment Remote Sensing satellite and Spatial Information

(TETIS from its French acronym).
4LSIIT from its French abbreviation is the Laboratory of Science of Images, Informatics and Remote

Sensing Satellite of Strasbourg.
5LIRMM from its French abbreviation is the Laboratory of Informatics, Robotics and Microelectronics

of Montpellier
6The Regional Direction for the Environment, Development and Housing (DREAL from its French

abbreviation).
7The National Office of Water and Aquatic Environment (ONEMA from its French abbreviation).
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The FRESQUEAU dataset was composed of 234 monitoring stations of the RM area
dating from 2002 to 2010. It concerned physical and physico-chemical information. The
data contained the annual statistical summary values of each parameter (arithmetic mean,
median, percentile 10, percentile 90) obtained from streams water quality monitoring done
every month or every two months.

The physico-chemical data were formed by the monitoring of 644 parameters analysed
for each station. Out of these 644 parameters, 33 were considered as classic physico-
chemical parameters called now with the Water Framework Directive (DCE) “physico-
chemical parameters supporting biology” (in the text those parameters will be mentioned
as macro pollutants) and 611 as micro pollutants. The list of macro pollutants is made
up of the parameters describing the content of oxygen (e.g. DBO5, Dissolved Oxygen O2,
saturated oxygen O%), organic matter (e.g., Organic Carbon, CO3

2– ) phosphorus (total
phosphorus, phosphates PO4

3– ), nitrogen (e.g., Kjendhal Nitrogen, NH4
– , NO2

– , NO3
– ),

minerals (e.g., Na, K, Ca, Cl) or eutrophication (e.g. chlorophyl a, pheopigments).
The FRESQUEAU dataset contained the couple station-year (which was considered as

an independent station) and its corresponding summary statistic value for each parameter.
We have used the data which is composed of 1565 stations-year with 33 variables for

macro pollutants related to the mean summary statistic value. This dataset was treated
in order to remove noisy data. Therefore outliers, duplicate data and missing values were
removed. The cleaned dataset was composed of 1504 observations (stations-year) and 26
variables that we named FQ1000. From this dataset, two semi-synthetic datasets were
generated. The first semi-synthetic dataset, named FQ16 is a reduced presentation of
FQ1000, it is composed of 16 observations and 13 variables. Observations and variables
were selected randomly from the FQ1000 dataset. The second semi-synthetic dataset,
FQ7000 was constructed by introducing new observations following the distribution of
the FQ1000 dataset. FQ7000 dataset is composed of 7520 observations and 26 variables.

The cleaned semi-synthetic dataset (FQ16, FQ1000 and FQ7000) were subsequently
deformed by injecting anomalies (i.e., missing values, outlying data) in the same fashion
as described in Section 4.3 for the synthetic datasets. Details of the µ and σ2 of the
semi-synthetic datasets are given in Appendix B.
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4.5 Robustness study of data preprocessing procedures
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Figure 4.4 – Extract of the general workflow for assessment of data preprocessing procedures.
Figure shows the workflow diagram of data preprocessing assessment.

In the second part of our comprehensive study, we aimed at assessing the robustness
of methods to process missing and outlying data and preprocess data by feature selection
and normalization. To our purpose, we have used our deformed data constructed in the
previous step (c.f. Section 4.3), next we have executed four data preprocessing procedures
including: feature selection, normalization, imputation of missing values and outlying
processing (c.f. Figure 4.4). We were interested in these procedures because they treat the
data anomalies most frequently found in environmental data. The resulting preprocessed
datasets were subsequently used on the third part of our study (c.f. Section 4.6).

Additional to the construction of preprocessed datasets, we have compared the perfor-
mance of the selected imputation and outlier detection methods. We did a comparative
study for the selected methods because, we did not find in the literature a study that
compares them. Concerning feature selection and normalization, previous studies have
compared the performance of different feature selection (Bolón-Canedo et al., 2013) and
normalization methods (Mustaffa and Yusof, 2011; Grimvall et al., 2001) and thus we did
not studied them in here. Below we detail our experimental procedure.

4.5.1 Selection of features

Feature selection is a process to select an optimal subset of features. An optimal subset
could be a subset that gives the best estimate on a predictive model. It is implemented for
different purposes including: (1) to improve performance of a model in terms of simplicity
of the model, speed, etc.; (2) to better visualize data; (3) to remove noise and reduce
dimensionality.
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We have performed three feature selection methods a Correlation-based feature selec-
tion (CFS), a linear-based correlation (LC) and a Wrapper subset evaluator (WR) to select
an optimal data subset. Selection of features on each deformed dataset was performed as
follows: First, we have aleatory chosen one variable that we used as independent variable
then, by using the selected feature selection methods we have identified the best data
subset with respect to our independent variable. The resulting data subsets were subse-
quently used to assess the impact of feature selection procedures on statistical results (c.f.
Section 4.5).

4.5.2 Normalization of data

Water quality data is represented by a set of variables with different dimensions and
units. To give all variables equal weight and obtain accurate predictive model we need
to normalize data. We have performed three normalization methods: min-max (MM), Z-
score (ZS) and decimal scale normalization (DS). Normalization was applied to numerical
data. The resulting normalized datasets were subsequently used for our study described
in Section 4.5.5.

4.5.3 Handling missing data

Original
dataset

HD KN

MICE

Imputation of missing
values

IRMI

Injection
of

missing values
NA

NA

Processed
dataset

Deformed
dataset

Figure 4.5 – Experimental procedure for assessment of imputation methods.

Experimental procedure to assess robustness of missing data imputation is presented
in Figure 4.5. First, the ‘original’ synthetic datasets were deformed by injecting six dif-
ferent amounts of missing values. Next, the missing values in the ’deformed’ datasets
were imputed using five imputation methods. The imputation accuracy was evaluated
by computing the normalized root mean squared error (NRMSE) (Oba et al., 2003) as
follows:

NRMSE =
√
mean[(yimputed−ycomplete)2]

variance[ycomplete]
(4.17)

where the mean and variance are calculated over missing entries in the whole matrix.
ycomplete is known because the missing entries are artificial. The larger the NRMSE is, the
less is the prediction accuracy.

The experiments, which include 4 datasets, 10 times 6 amounts of missing values, 4
imputation methods gives us a total of 4×10×6×4 = 960 preprocessed datasets. All the
experiments were performed using the R environment for statistical computing (version
3.2.2; R Core Team (2016)).
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4.5.4 Handling outlying data
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Figure 4.6 – Experimental procedure for assessment of outlier detection and processing.

Experimental procedure to assess robustness of outlying processing is presented in
Figure 4.6. First, ‘original’ synthetic datasets were constructed, then outlying datasets
were generated by introducing the five different amounts of outlying data. Next, outliers
were detected using four methods to detect outliers. Finally, outliers were replaced using
the imputation methods Hot-deck, k-NN, mice and IRMI. The resulting imputed datasets
were subsequently used to study the impact of outlier preprocessing on statistical results
(c.f. Subsection 4.6). Outlier detection methods were assessed by computing detection
rate and precision of detection as follows (Chen et al., 2010),

detection rate= the number of outliers correctly detected

total number of true outliers
×100 (4.18)

precision= tp
tp+fp

×100 (4.19)

where tp is the number of points correctly labelled as outlier and fp is the number of
points wrongly labelled as outlier.

The experiments, which include three datasets, five amounts of outlying data, four
outlier detection methods and four methods of imputation gives us a total of 3×5×4×4 =
240 preprocessed datasets. All the experiments were performed using different functions
available in the R environment for statistical computing (version 3.2.2; R Core Team
(2016)).

4.5.5 Results and discussion on robustness of data preprocessing pro-

cedures

4.5.5.1 Imputation methods robustness

Results of our assessment on imputation methods are graphically illustrated in Figure 4.7.
We observed that, from the two distance-based imputation methods, the K-NN is more
accurate than the Hot-deck method. While for the two model-based imputation methods,
IRMI showed up to be more accurate than MICE. To our surprise, the K-NN method
has the lowest NRMSE values. We consider that this results is due to the characteristics
of the datasets. More experiments that include heterogeneous set of datasets (e.g., non
normal distribution, correlated variables) will be necessary to have a more general view
of the behaviour of the tested methods. Except for K-NN, our results are congruent
to previous studies (Cottrell et al., 2009; Templ et al., 2011b; Hron et al., 2010) in
that multivariate imputation methods (here: MICE and IRMI) are more robust when
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comparing with more simple imputation methods (here: Hot-deck). It must be noticed
that the results that we obtained depend on the characteristics of the data, in our case data
with multivariate normal distribution. It must be necessary to perform other experiments
with a more heterogeneous set of data to get a more complete vision of the behaviour
of the tested imputation methods. For our subsequent comparative study (c.f.4.6), we
decided to continue using the imputation methods described in this section.
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Figure 4.7 – NRMSE results of the imputation of missing values using the Hot-deck (hd), IRMI
(ir), k-NN (kn) and Mice (mi) imputation methods on datasets N21 (A), N600 (B), N4000 (C)
and N20000 (D).

4.5.5.2 Outlier detection assessment

Results of our outlier detection assessment are as follows: As shown in Figure 4.8, we
observed that precision of outlier detection methods was in the following ordering: PCOUT
> Adjusted quantile > LOF > IQR for N4000 and N600 datasets. For N21 dataset the
LOF detection method show the best results. We observed that the IQR method has
negative values, this indicated that IQR is precise but the rate of outliers detected is low.
This assumption was confirmed with the results of detection rate where the IQR method
show, in general, the lowest values.

Concerning outlier detection rates, detection performance is observed in the following
order: LOF > PCOUT > Adjusted quantile > IQR. In general, LOF method provides
the best results for datasets N600 and N4000 for the five outlying data rates. For dataset
N21, we observed that at low outlying data rates (1.5% and 2.5%) methods Adjusted quan-
tile and PCOUT perform well but at higher outlying data rates (5% and 15%) method
LOF has the best detection results. For our synthetic datasets that have multivariate
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normal distribution and individual outliers LOF shows to be the best method. Additional
experiments that may include heterogeneous set of datasets will be necessary. We want
to emphasize that the results that we observed were characteristic for our datasets (mul-
tivariate normal distribution and individual outliers injected at random). And further
analysis may be necessary to observe the behaviour of the tested methods on datasets
with different distribution (e.g., Weibul, Cauchy) and with other type of outliers (e.g.,
cluttered, patterns).
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Figure 4.8 – Precision and detection rate results of outliers detection methods. Adjusted quan-
tile (adj.quan), Inter Quartile Range (iqr), Local Outlier Factor (lof) and Principal Components
decomposition approach (pcout).
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4.6 Study of the impact of data preprocessing procedures

on statistical results
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Figure 4.9 – Experimental procedure for assessment of the impact of data preprocessing proce-
dures on statistical analysis results.

Our experimental procedure to assess the impact of data preprocessing procedures on
statistical analysis results is shown in Figure 4.9. First, we have used synthetic deformed
datasets (c.f. Section 4.3) that were preprocessed using: feature selection, normalization,
imputation and outlier processing (c.f. Section 4.5). Then, the resulting preprocessed
datasets were used to execute regression, classification and clustering methods. The se-
lected statistical methods were chosen because they are frequently used on environmental
studies to predict phenomena, find patterns and discover relationships among variables
and observations (Wiseman, 2006). Finally, we have compared the statistical results of
each preprocessed data by computing different statistical errors. We have performed our
experiments using a combination that, seems the most simple to us. This is, only one type
of data anomaly was studied at a time the resulting preprocessed dataset was then used to
implement the selected statistical methods. For example, we have four deformed datasets
for feature selection, they were preprocessed using three feature selection methods. Fi-
nally the resulting twelve preprocessed datasets were used to implement three regression
methods, three classifiers and two clustering methods.

In the following sections we detail the procedures followed to implement the statistical
methods and the computation of the errors.

4.6.1 Impact on regression results

We have performed three regression methods on our preprocessed data that resulted from
feature selection (c.f. Subsection 4.5.1), normalization (c.f. Subsection 4.5.2), imputation
of missing values (c.f. Subsection 4.5.3), and outliers processing (c.f. Subsection 4.5.4).
Regression methods were chosen for their diversity of representation and learning style.
They include:
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• Penalized regression: Least Absolute Shrinkage and Selection Operator (LASSO);
• Linear regression: Ordinary Least Squares Regression (OLSR);
• Non-Linear regression: Multivariate Adaptive Regression Splines (MARS).
Regression analysis for each dataset was implemented as follows:
1. We begin by randomly splitting the observations into a training and test set where

66% of data was used for training and 34% for testing,
2. Regression model was fit on the training set, and the fitted model was used to predict

the responses for the observations in the testing set,
3. Resulting validation was assessed using the RMSE as in Equation 4.20.

RMSE =
√
mean[(y− ŷ)]2 (4.20)

where ŷ is the predicted value and y is the actual value.
4. Finally, we estimated the preprocessing error rate by comparing the RMSE value of

the original non-deformed dataset and the preprocessed dataset as follows:

ErrorRMSEprocessing = RMSEPreprocessed−RMSEoriginal
RMSEoriginal

∗100% (4.21)

Low values of ErrorRMSEprocessing will be indicative of small data preprocessing
impact on regression results.

4.6.2 Impact on classification results

Three classification methods based on different learning style were chosen. they are:
• Linear classification: Linear Discriminant Analysis (LDA);
• Non-Linear classification: Naïve Bayes (NB);
• Non-Linear classification with Regression Trees: Classification and Regression Trees

(CART)
Similarly to regression analysis (c.f. Section 4.6.1) we have applied the classification

method to different alternatives of data preprocessing outputs. Classification analysis was
performed in four steps:

1. We randomly split the observations into a training and test sets where 66% of data
was used for training and 34% for testing;

2. Classification models were fit on the training set, and the fitted model was used to
predict the responses for the observations in the testing set;

3. Resulting validation of the previous step was assessed through computation of accu-
racy, and Cohen’s Kappa coefficient (Cohen, 1960).
Accuracy is the number of correct predictions made divided by the total number of
predictions

Accuracy = number of correct classifications

total number of classifications
(4.22)

The kappa coefficient (Cohen, 1960) is commonly used as a measure of agreement
between two classifications, it ranges from −1 to +1. A value of 1 indicates perfect
agreement.
Let us consider the following results from two classifiers;

Example. Classification results of two classifiers for 20 observations:
Classifier 1 : b, b, c, a, c, c, c, a, a, b, c, b, b, a, c, a, b, c, c, a.
Classifier 2 : b, b, b, a, c, c, b, a, a, c, c, b, b, a, c, b, c, c, c, a.
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The resulting classifications can be assimilated into two qualitative variables of p
terms (here p= 3) giving the following contingency table:

Table 4.5 – Contingency table obtained from the results of two classifiers.

A B C
A 5 1 0

B 0 4 2

C 0 2 6

In the case of perfect agreement between the two classifiers, the contingency table
would have been zero out of the diagonal. By denoting the contingency table as
N = (nij)i,j=1,...,p and n the total observations, the observed proportional agreement
is defined as:

p0 = 1
n

p∑
i=1

nii (4.23)

In the case where the two variables are independent (i.e., if the agreement between
the two classifiers was perfectly random), the theoretical proportion of observed
agreements is estimated by :

pe = 1
n2

p∑
i=1

ni.n.i (4.24)

kappa is then defined as:
κ= p0−pe

1−pe
(4.25)

4. Lastly, preprocessing error was computed using Eq (4.26) and Eq (4.27) as follows:

Absolute ErrorAccuracyprocessing = |AccuracyPreprocessed−Accuracyoriginal| (4.26)

Absolute ErrorKappaprocessing = |KappaPreprocessed−Kappaoriginal| (4.27)

4.6.3 Impact on clustering results

Clustering analysis was performed using the K-means (KM) and Hierarchical clustering
(HC) methods on our preprocessed data that resulted from feature selection (c.f. Sub-
section 4.2.1), normalization (c.f. Subsection 4.2.2), imputation of missing values (c.f.
Section 4.5.3) and outliers processing (c.f. Section 4.5.4). The two clustering methods
were chosen for their algorithmic differences.

To perform K-means clustering, we first specified a number of clusters K using the
elbow method (Thorndike, 1953). The elbow method was applied first to the original
dataset and, theK number of clusters found was then used on the processed dataset. Then,
we performed the K-means algorithm with the previously specified number of clusters.
Hierarchical clustering was computed using the Ward’s agglomeration method (Ward Jr,
1963).

Clustering results of K-means on preprocessed data were compared against the clus-
tering results of the original non-deformed datasets using the Rand Index (RI, Equation
4.30), Adjusted Rand Index (AR, Equation 4.31) and Jaccard Index (JI, Equation 4.32)
(Meilă, 2007).

From resulting cluster Ck of the original non-preprocessed dataset D, the number of
data points in D and in Ck are defined as n and nk, respectively thus,
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n=
K∑
k=1

nk (4.28)

A second cluster of the preprocessed dataset D is defined as C ′ = {C ′1,C ′2, ...,C ′k′}, and
the cluster sizes as n′k′ .

To compare clustering from the pair (C, C ′), we use a confusion matrix. Within the
confusion matrix (which is a K×K ′ matrix) the kk′th element is the number of points in
the intersection of clusters Ck of C and C ′k′ of C ′. Thus nkk′ =| Ck ∩C ′k′ |.

We compare clusters by counting the pairs of points on which two clusterings agree/disagree.
They were obtained from the contingency table [nkk′ ]. The four cases that can be found
are:
N11 the number of pairs that are in the same cluster under both C and C ′;
N00 the number of pairs in different clusters under both C and C ′;
N10 the number of pairs in the same cluster under C but not under C ′;
N01 the number of pairs in the same cluster under C ′ but not under C;

The four counts satisfy

N11 +N00 +N10 +N01 = n(n−1)/2 (4.29)

We use the following indices to represent the probability that a pair of points belonging
to a cluster under C is also in the same cluster C ′.

Rand Index :RI(C,C ′) = N11 +N00

n(n−1)/2 (4.30)

Adjusted Rand Index :

AR(C,C ′) = R(C,C ′)−E[R]
1−E[R]

=
∑k
k=1

∑K′
k′=1

(nkk′
2

)
− [
∑K
k=1

(nk
2

)
][
∑K′
k′=1

(n′
k′
2

)
]/
(n

2

)
[
∑
k=1K

(nk
2

)
+
∑K′
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(n′
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]/2− [
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)
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(4.31)

Jaccard index : J(C,C ′) = N11

N11 +N01 +N10
(4.32)

For Hierarchical clustering we have compared the clustering results of preprocessed
dataset against the clustering results of the original non-preprocessed dataset using the
Cophenetic correlation coefficient (Sokal and Rohlf, 1962). Datasets D were modelled
using the hierarchical clustering method to produce a dendrogram T which distance mea-
sures are defined as:
x(i, j) =|Di−Dj | , the Euclidean distance between the ith and jth observations;
t(i, j) = the distance between the model points Ti and Tj ;

and the Cophenetic correlation coefficient is defined as:

c=
∑
i<j (x(i, j)− x̄)(t(i, j)− t̄)√

[
∑
i<j (x(i, j)− x̄)2][

∑
i<j (t(i, j)− t̄)2]

(4.33)
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where x̄ is the average of x(i, j) and t̄ the average of t(i, j). The Cophenetic correlation
coefficient allow us to estimate the similarities between dendograms of preprocessed and
original datasets. Where Cophenetic values close to 1 indicate high similarity between two
dendrograms.



Preprocessing and Analysis of Environmental Data 85

4.6.4 Results and discussion about preprocessing procedures on statis-

tical results

4.6.4.1 Regression analysis
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Figure 4.10 – Experimental procedure for assessment of the impact of data preprocessing proce-
dures on results from regression analysis.

Our results report the preprocessing error values for three different regression methods
(LASSO, OLSR and MARS) against (c.f. Figure 4.10):

• For feature selection

– three feature selection methods; Correlation-based Feature Selection (CFS),
Linear Correlation-based Feature Selection, and Wrapper Subset Evaluator.

• For normalization preprocessing

– three normalization methods; Decimal scale (DS), Sigmoidal normalization us-
ing logistic sigmoid function (SS) and Sigmoidal normalization using the hy-
perbolic tangent funciton (SM);

• For missing values preprocessing

– six amounts of missing values (5%, 10%, 15%, 20%, 25% and 30%)
– four imputation methods; Hot-Deck (HD), K-Nearest Neighbour (KN), It-

erative Stepwise Regression Imputation (IRMI) and Multiple Imputation by
Chained Equation (MICE)

• For outliers preprocessing

– five amounts of outlying data (1.5%, 2.5%, 5%, 10% and 15%);
– four outlier detection methods; (1) Inter Quartile Range (IQR), (2) Adjusted

Quantile (AQ), (3) Principal Components decomposition for multivariate out-
lier detection approach (PCOUT) and (4) Local Outlier Factor (LOF);

– subsequent outlier imputation by four imputation methods; Hot-Deck (HD),
K-Nearest Neighbour (KN), Iterative Stepwise Regression Imputation (IRMI)
and Multiple Imputation by Chained Equations (MICE)

Results for feature selection

Results obtained from regression analysis on datasets processed by feature selection
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are represented in Figures 4.11 and 4.12. They present the RMSE results on a side by
side comparison between different feature selection methods, respective of the regression
algorithms. It is known that noise features that are not truly associated with the response
will lead to a deterioration of the fitted model and will increase the test-set error and the
risk of over-fitting. This is important in the analysis of highly dimensional data which is
known as "curse of dimensionality". This was the main reason to have performed feature
selection before analysis on regression methods. However, it must be noticed that LASSO
already includes feature selection. To make our analysis comparable we have performed
feature selection before analysis on LASSO but this step should be omitted on a regression
analysis by LASSO.

For our synthetic datasets we observed that in general, Linear correlation-based fea-
ture selection show the lowest RMSE values for LASSO and OLSR regression methods.
For MARS regression, none of the three feature selection methods stand up as the best
for FS21, FS4000 and FS20000 datasets. For FS600 dataset the Linear correlation-
based method show the best results. Concerning our semi-synthetic datasets the linear
correlation-based feature selection show the lowest RMSE values for the three regression
methods.

Results for normalization

Predictive variables can be normalized in order to obtain a numerical stability that
enables one to compare effects across multiple explanatory variables. In other words, by
normalizing predictive variables one assure to give the same weight to all the predictors.
One important aspect in linear regression is that linear transformations are not expected
to affect regression results because the model coefficients (intercept and slope terms in the
linear model) are estimated in order to convert the units of predictive variables into the
units of response variable. In this manner, linear transformation of predictive variables
does not seem to be meaningful in linear regression. Our goal in this section was to
assess the variability induced by different non-linear transformations on the final results
of regression analysis. To our purpose we have performed three non-linear normalizations
they are: decimal scale and two sigmoidal normalizations. They were computed using the
following formulas:

• Decimal scale normalization:

v
′
i = vi

10j (4.34)

• Sigmoidal normalization using logistic sigmoid function:

v
′
i = 1

1 +e
− vi−µi

σi

(4.35)

• Sigmoidal normalization using the hyperbolic tangent function:

v
′
i = 1−e−

vi−µi
σi

1 +e
− vi−µi

σi

(4.36)

where vi denotes the values of an attribute, v′i is the normalization of vi and j is the
smallest integer such that Max(|v′i|)< 1.

We have selected one response variable and the remaining variables were used as pre-
dictors. Only predictor variables were transformed (non Gaussian initially). Figures 4.11
and 4.12 show that there is not a significant difference when non-linear transformations
are applied to predictor variables on LASSO, OLSR and MARS regressions.
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Our results indicate that, similarly to linear transformations, non-linear transforma-
tions do not affect linear regression results. Such behaviour can be explained through the
estimation of the model coefficients because they produce estimates in order to transform
the units of each predictor variable into units of the response variable appropriately. Our
results suggest that transformations on data are not relevant when regression by LASSO,
OLSR and MARS are performed.

Results for missing values preprocessing

A side-by-side comparison between different imputation methods, respective of the re-
gression algorithms, is given in Figures 4.15 and 4.16. It shows the preprocessing error
rates computed for RMSE over the three regressions methods and the four datasets, re-
sulting from imputation against different amounts of missing values. The preprocessing
error rates are provided for the four imputation methods.

Preprocessing error results on our synthetic datasets show that the impact of imputa-
tion varies for different regression methods. In general, at high amounts of missing values
(25% and 30%) imputation methods Hot-Deck and MICE give the lowest error values.
The lowest error rates were observed for LASSO and OLSR regression methods (with 7%
and 9% on average respectively). In general, the highest RMSE values were observed for
the dataset of small size (N21) and the highest error values were observed on dataset N21
for MARS regression. High preprocessing error values indicate high probabilities to get
inaccurate regression results. From this observation, we could conclude that inaccurate
results may be obtained when regression by MARS is performed after imputing missing
values particularly for small datasets (<100 observations) and missing data percentage
superior to 5%. Imputation is required for LASSO and OLSR and it was observed that
Hot-Deck and MICE imputation methods impact the least LASSO and OLSR regression
results. LASSO and OLSR methods are the least impacted by imputation methods when
the dataset size is greater than 100 observations and the percentage of missing values is
lower than 20%.

Whit respect to the semi-synthetic data (c.f., Figure 4.16) we observed that error
values increase with respect to the increased missing data rate. We observed that the
imputation methods Hot-Deck and K-Nearest Neighbour have the highest error for the
three datasets. Results about the imputation methods are not the same between the two
groups of dataset (synthetic and semi-synthetic) such behaviour is justified by the fact
that datasets have different characteristics (different number of observations and variables)
however, we noticed that both groups of datasets have the same tendency. This means
that error values increase with respect to the increased missing rates.

Results on outliers preprocessing

A side-by-side comparison between different outlier detection and imputation methods,
respective of the regression algorithms is given in Figures 4.17 and 4.18. It shows the
preprocessing error rates of RMSE over the three regression methods and the synthetic
and semi-synthetic datasets, resulting from outlier detection-imputation with respect to
different amounts of outlying data. The preprocessing error rates are provided for the
sixteen combinations of outlier detection and imputation methods.

In general, for our synthetic datasets we observed that at small amounts of outlying
data (1.5% and 2.5%) and small length dataset ( N21), the combined methods PCOUT-
Hot-Deck and PCOUT-IRMI give the lowest preprocessing error values. While at high
amounts of outlying data (5%, 10%, or 15%) and large datasets (e.g., N600 and N4000),
detection methods PCOUT and LOF combined with imputation methods MICE and IRMI
give the lowest preprocessing error values. We noticed that, in general, at high amounts of
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Figure 4.11 – RMSE results of the analysis of regression after feature selection processing on syn-
thetic datasets. Linear correlation-based feature selection (FI), Correlation-based Feature selection
(HC) and Wrapper Subset evaluator (WR).
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Figure 4.12 – RMSE results of the analysis of regression after feature selection processing on
semi-synthetic datasets. Linear correlation-based feature selection (FI), Correlation-based Feature
selection (HC) and Wrapper Subset evaluator (WR).
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Figure 4.13 – RMSE results of the analysis of regression after normalization on synthetic datasets.
Decimal scale noramlization (DS), Logistic sigmoidal normalization (SS) and Sigmoidal normal-
ization using the hyperbolic tangent function (SM).
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Figure 4.14 – RMSE results of the analysis of regression after normalization on semi-synthetic
datasets. Decimal scale normalization (DS), Logistic sigmoidal normalization (SS) and Sigmoidal
normalization using the hyperbolic tangent function (SM).
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Figure 4.15 – Preprocessing errors of RMSE of the analysis of regression after imputation of
missing values on synthetic dataset. Hot-deck (HD), Iterative Stepwise Regression Imputation
(IR), K-Nearest Neighbour (KN) and Multiple Imputation by Chained Equations (MI)
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Figure 4.16 – Preprocessing errors of RMSE of the analysis of regression after imputation of miss-
ing values on semi-synthetic datasets. Hot-deck (HD), Iterative Stepwise Regression Imputation
(IR), K-Nearest Neighbour (KN) and Multiple Imputation by Chained Equations (MI)
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outlying data (10% and 15%) preprocessing error rates were higher. For our semi-synthetic
datasets (c.f., Figure 4.18), we observed that error rates increase at higher amounts of
outlying data. For LASSO the detection method IQR combined with IRMI and MICE
show the lowest error values. While for OLSR and MARS we did not observe remarkable
differences among the outlying preprocessing methods.

It has been widely suggested to process outliers carefully because, depending of the
observer they may provide different information according to the domain of study and
could be considered either as noise or as signal (Huang et al., 2006). According to our
results, and if the observer considers to preprocess outlying data, we could suggest the use
of multivariate methods (i.e., PCOUT and LOF combined with MICE and IRMI).

For the specific characteristics of our synthetic datasets, we observed that, in general,
multivariate methods give the best results and particularly on large datasets with high
amounts of missing values and outlying data. We interestingly observed that, simple
methods (e.g., K-NN imputation method or Inter Quartile Range) provide the best results
on our small datasets with small amounts of data anomalies.
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Figure 4.17 – Preprocessing errors of RMSE of the analysis of regression after outlier detection
followed by imputation of outlying data on synthetic datasets. Detection methods: Inter Quartile
Range (1), Adjusted Quantile (2), PCOUT (3) and LOF (4). Imputation methods: Hot-deck
(HD), Iterative Stepwise Regression Imputation (IR), K-Nearest Neighbour (KN) and Multiple
Imputation by Chained Equations (MI).
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Figure 4.18 – Preprocessing errors of RMSE of the analysis of regression after outlier detection
followed by imputation of outlying data on semi-synthetic datasets. Detection methods: Inter
Quartile Range (1), Adjusted Quantile (2), PCOUT (3) and LOF (4). Imputation methods:
Hot-deck (HD), Iterative Stepwise Regression Imputation (IR), K-Nearest Neighbour (KN) and
Multiple Imputation by Chained Equations (MI).
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4.6.4.2 Classification analysis
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Figure 4.19 – Experimental procedure for assessment of the impact of data preprocessing proce-
dures on results from classification.

In these experiments, we report the preprocessing error values for three different classi-
fication methods: Classification and Regression Trees (CART), Linear Discriminant anal-
ysis (LDA) and Naïve Bayes (NB) with respect to (c.f. Figure 4.19):

• For feature selection

– three feature selection methods; Correlation-based Feature Selection (CFS),
Linear Correlation-based Feature Selection and Wrapper Subset Evaluators.

• For normalization preprocessing

– three normalization methods; min-max (MM), decimal scale (DS) and z-score
(ZS)

• For missing values preprocessing

– six amounts of missing values (5%, 10%, 15%, 20%, 25% and 30%)
– four imputation methods; Hot-Deck (HD), K-Nearest Neighbour (KN), Iter-

ative Stepwise Regression Imputation (IRMI), and Multiple Imputation by
Chained Equations (MICE)

• For outlier preprocessing

– five amounts of outlying data (1.5%, 2.5%, 5%, 10% and 15%)
– four outlier detection methods; (1) Inter Quartile Range (IQR), (2) Adjusted

Quantile, (3) a Principal Components decomposition for multivariate outlier
detection approach (PCOUT), and (4) Local Outlier Factor (LOF);

– subsequent outlier imputation by four imputation methods; Hot-Deck (HD),
K-Nearest Neighbour (KN), Iterative Stepwise Regression Imputation (IRMI),
and Multiple Imputation by Chained Equations (MICE)

Results for feature selection

Classification results on data preprocessed by feature selection are illustrated in Figures
4.20 and 4.21. It shows a side-by-side comparison of Accuracy and Kappa results over the
three classification methods and the synthetic and semi-synthetic datasets resulting from
feature selection.
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Results on our synthetic datasets for accuracy show that the filter method Correlation-
based feature selection give the most accurate results on the four datasets for the three
classifiers. Concerning Kappa, the best results for LDA were observed on the Correlation-
based feature selector. While for NB classification, the Linear Correlation-based feature
selection show the best results. For CART classifier none of the feature selection methods
stand-up as the best one.

For our semi-synthetic datasets the wrapper subset evaluator give the best results for
LDA, while the linear correlation-based feature selection give best results for NB. Finally,
non of the feature selection methods stand-up as the best for CART classifier.

CART is known to be highly non robust this explains its behaviour in our results.
We consider that the correlation-based feature selection methods show the best results
on our synthetic dataset due to the characteristics of our datasets (e.g., variables with a
correlation > 0.7, multivariate distribution).

Results for normalization

Figures 4.22 and 4.23 shows a side-by-side comparison of the results of accuracy and
Kappa values over the three classification methods and the four datasets resulting from
normalization.

The results on our synthetic datasets show that, decimal-scale normalization provides
the best results for AL21 and AL20000 datasets on the LDA and NB classifiers, while
for AL600 and AL4000 datasets, the min-max and z-score normalizations stand up as the
best for LDA and NB respectively. Except for AL4000 dataset the z-score normalization
gives the best results for CART classifier. For our semi-synthetic datasets the z-score and
min-max normalitzations give the best results for LDA and NB respectively. For CART,
none of the normalization strategies stand up as the best.

From Kappa results we observed that, for small datasets decimal-scale and z-score
give the best results for synthetic and semi-synthetic datasets respectively. While for
long datasets (e.g., AL4000, AL20000 and FQ1000) none of the methods stand up as the
best. Our results suggest that the selection of normalization method will provide different
classification results. We assume that the difference in our synthetic and semi-synthetic
datasets is due to the characteristics of our datasets (e.g., distribution, size) and on the
differences of the learning style of the three classifiers.

Results for missing values preprocessing

A side-by-side comparison between different imputation methods, with respect to the
regression algorithms, is given in Figures 4.24 and 4.25. They show the preprocessing
absolute errors computed for accuracy and Kappa over the three classification methods
and the synthetic and semi-synthetic datasets, resulting from imputation against different
amount of missing values. The preprocessing absolute errors are provided for the four
imputation methods.

Results show that, in general, for small datasets (N21, FQ16), imputation methods
Hot-Deck and k-Nearest Neighbour give low preprocessing error rates at small amounts
of missing values (5%, 10%, and 15%). For large datasets (N4000, N20000, FQ1000
and FQ7000) imputation methods IRMI and MICE show the lowest preprocessing error
values in both, accuracy and Kappa, for the six amounts of missing values. For the three
classification methods the highest preprocessing error values of accuracy were observed on
N21 and FQ16 datasets for the four imputation methods.

Concerning the preprocessing error results for Kappa, we observed that small datasets
(N21, FQ16) and small amounts of missing values (5%, 10%, and 15%) the imputation
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Figure 4.20 – Accuracy and Kappa results of the analysis of classification after feature selection
on synthetic datasets. Linear Correlation-based Feature Selection (FI), Correlation-based Feature
selection (HC) and Wrapper Subset evaluator (WR).
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Figure 4.21 – Accuracy and Kappa results of the analysis of classification after feature selection
on semi-synthetic datasets. Linear Correlation-based Feature Selection (FI), Correlation-based
Feature selection (HC) and Wrapper Subset evaluator (WR).
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Figure 4.22 – Accuracy and Kappa results of the analysis of classification after normalization on
synthetic datasets. Min-Max normalization (MM), Decimal scale normalizaton (DS) and Z-score
normalization (ZS).
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Figure 4.23 – Accuracy and Kappa results of the analysis of classification after normalization
on semi-synthetic datasets. Min-Max normalization (MM), Decimal scale normalizaton (DS) and
Z-score normalization (ZS).
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method Hot-Deck have the lowest error values on the three classification methods for the
seven datasets. From these results, we could conclude that for datasets with similar char-
acteristics as ours and small amounts of missing values (5%, 10%, or 15%), the imputation
by Hot-Deck will have the lowest impact on CART, LDA, and NB classification methods.
While for large datasets (more than 600 observations and 30 variables), IRMI and MICE
imputation methods should be preferred. We inferred that this behaviour depends directly
on the characteristics of the datasets that we use for our study. Therefore, results may
change if datasets have different characteristics than ours.

Results on outlying data preprocessing

In Figures 4.26 and 4.27, we present a side-by-side comparison between different out-
lier detection and imputation methods, with respect to the classification algorithms. It
shows the preprocessing absolute errors computed for accuracy and Kappa over the three
classification methods and the synthetic and semi-synthetic datasets, resulting from outlier
detection-imputation against different amounts of outlying data. Sixteen combinations of
outlier detection and imputation methods are shown.

Results show that, on average, there is no universally best method to detect and impute
outliers. The impact of detection-imputation of outliers varies for different classifiers. In
general, we observed that classification results were the most impacted on the small dataset
(N21 and FQ16), where preprocessing error values of accuracy were, on average, over 0.4.
CART classifier seems to be the most affected on N21, F16, N600 and FQ1000 datasets
for the five amounts of outlying data.

Concerning the preprocessing error values for Kappa, in general, small datasets (N21
and FQ16) gives the highest errors for LDA and NB classifiers. While for CART, the high-
est errors were observed on N600 and FQ1000 dataset for the five amounts of outlying
data. Among the sixteen combinations assessed, we noticed that outlier detection meth-
ods PCOUT and LOF combined with IRMI and MICE imputation methods provide the
lowest error values on the three classifiers and on the five amounts of outlying data. For
synthetic datasets, the detection method PCOUT combined with Hot-Deck imputation
also shows low preprocessing error values on the three classifiers particularly for N21 and
N600 datasets at outlying data rates of 2.5%, 5%, and 10%.

Our experiments on synthetic and semi-synthetic datasets show that results on outliers
preprocessing depend on the characteristics of the datasets. We can see that multivariate
methods (e.g., PCOUT and MICE) give the best results for our datasets which have
a multivariate distribution with variables somehow correlated. The results observed for
CART classifier, indicate us that this method is the most impacted by the preprocessing
procedure which is explained due to its poor robustness.
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Figure 4.24 – Accuracy and Kappa preprocessing error from the analysis of classification after
imputation of missing data on synthetic datasets. Imputation methods: Hot-deck (HD), Iterative
Stepwise Regression Imputation (IR), K-Nearest Neighbour (KN) and Multiple Imputation by
Chained Equations (MI).
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Figure 4.25 – Accuracy and Kappa preprocessing error from the analysis of classification after
imputation of missing data on semi-synthetic datasets. Imputation methods: Hot-deck (HD), Iter-
ative Stepwise Regression Imputation (IR), K-Nearest Neighbour (KN) and Multiple Imputation
by Chained Equations (MI).
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Figure 4.26 – Preprocessing errors of Accuracy and Kappa of the analysis of classification after
outlier detection followed by imputation of outlying data on synthetic datasets. Detection methods:
Inter Quartile Range (1), Adjusted Quantile (2), PCOUT (3) and LOF (4). Imputation methods:
Hot-deck (HD), Iterative Stepwise Regression Imputation (IR), K-Nearest Neighbour (KN) and
Multiple Imputation by Chained Equations (MI).
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Figure 4.27 – Preprocessing errors of Accuracy and Kappa of the analysis of classification after
outlier detection followed by imputation of outlying data on semi-synthetic datasets. Detection
methods: Inter Quartile Range (1), Adjusted Quantile (2), PCOUT (3) and LOF (4). Imputation
methods: Hot-deck (HD), Iterative Stepwise Regression Imputation (IR), K-Nearest Neighbour
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4.6.4.3 Clustering results
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Figure 4.28 – Experimental procedure for assessment of the impact of data preprocessing pro-
cedures on results from clustering.

Our experiments report the Rand Index (RI), Adjusted Rand Index (AR), Jaccard
Index (JI) for K-means clustering and Cophenetic coefficient for Hierarchical clustering
with respect to (c.f. Figure 4.28):

• For feature selection preprocessing

– three feature selection methods; Correlation-based Feature Selection (CFS),
Linear Correlation-based Feature Selection (FI) and Wrapper Subset Evaluator
(WR).

• For missing values preprocessing

– six amounts of missing values (5%, 10%, 15%, 20%, 25%, and 30%)
– four imputation methods; Hot-Deck (HD), K-Nearest Neighbour (KN), It-

erative Stepwise Regression Imputation (IRMI) and Multiple Imputation by
Chained Equations (MICE).

• For outliers preprocessing
– five amounts of outlying data (1.5%, 2.5%, 5%, 10%, and 15%)
– four outlier detection methods; (1) Inter Quartile Range (IQR), (2) Adjusted

Quantile (AQ), (3) Principal Components decomposition for multivariate out-
lier detection approach (PCOUT), and (4) Local Outlier Factor (LOF);

– subsequent outlier imputation by four imputation methods; Hot-Deck (HD),
K-Nearest Neighbour (KN), Iterative Stepwise Regression Imputation (IRMI)
and Multiple Imputation by Chained Equations (MICE)

Clustering by K-means was performed for all synthetic datasets and for FQ16 and
FQ1000 semi-synthetic datasets. Hierarchical Clustering is not robust for datasets which
number of observations are larger than 4000 therefore, only the datasets N21, N600,
N400, FQ16 and FQ1000 were used for this method.

Results for feature selection

A side by side comparison between different feature selection methods, with respect
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to the clustering algorithms is given in Figures 4.29 and 4.30. It shows the Rand index,
Adjusted Rand index and Jaccard index over the K-means on the synthetic and semi-
synthetic datasets, and the Cophenetic coefficient over Hierarchical clustering on datasets
FS21, FS600, FS4000, FQ16 and FQ1000.

We observed that Wrapper Subset evaluator show to have the best results on both
clustering methods for datasets FS600, FS4000, and FS20000. While for datasets FQ16
and FQ1000 the Linear Correlation-based feature selection show the best results on both
clustering methods. It can be observed that clustering results on the studied datasets after
feature selection are different. It was assumed that such differences are due mainly to the
characteristics of the datasets (e.g., distribution, size).

Results for missing values preprocessing

A side-by-side comparison between the different imputation methods, respective of
the clustering algorithms, is given in Figures 4.31 and 4.32. It shows the RI, AR, JI,
and Cophenetic coefficient values over the two clustering methods and the synthetic and
semi-synthetic datasets resulting from imputation against different amounts of missing
values.

In general, it was observed that the precision of the clustering methods reduced with
an increasing amount of missing data. Our results show that the Hot-Deck and MICE
imputation methods give the best results on both clustering methods on small datasets
(N21 and FQ16) and low missing data rates (5% and 10%). K-Nearest Neighbour impu-
tation method shows, in general, the best results on K-means clustering for the synthetic
datasets and the six amounts of missing data. While for FQ16 and FQ1000 datasets the
MICE and IRMI imputation methods show the best results on K-means clustering.
Except for N21 dataset at 5% missing data, MICE and IRMI imputation methods provide
the best results on Hierarchical clustering for the three dataset and the six amounts of
missing data. For N21 dataset and 5% missing data, Hot-Deck imputation shows the best
results. We consider that the observed results depend on the characteristics of the data.
We observed that the multivariate imputation methods MICE and IRMI stand up as the
best since our datasets are multivariate. On the particular case of N21 and FQ16 datasets,
the Hot-Deck method provide the best results, we consider that this is due in part to the
type of missing values (Missing at Random) and the characteristics of our datasets.

Results for outlying data preprocessing

A side-by-side comparison between different outlier detection and imputation methods,
respective of the regression algorithms is given in Figures 4.33 and 4.34. It shows the
Rand index, Adjusted Rand index, Jaccard index, and Cophenetic coefficient over the
two clustering methods and the three datasets resulting from outlier detection-imputation
against different amounts of outlying data. The three indices and coefficient values are
shown for the sixteen combinations of outlier detection and imputation methods.

Results show that, on average, there is no universally best method to detect and impute
outliers. The impact of detection-imputation of outliers varies for the two clustering
methods and for the synthetic and semi-synthetic datasets. Rand index, Adjusted Rand
index, and Jaccard index results show that, Inter Quartile Range (IQR) combined with
K-Nearest Neighbour and MICE imputation give the best results on the two clustering
methods for N21 dataset at 1.5% of outlying data. While for dataset FQ16, Adjusted
Quantile (AQ) combined with IRMI imputation give the best results at 1.5% and 2.5% of
outlying data.

For N600 dataset and the five amounts of outlying data, IQR detection method com-
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Figure 4.29 – Rand index, Adjusted Rand index, Jaccard index and Cophenetic coefficient of
Clustering methods after feature selection processing on synthetic datasets. Feature selection
methods: Correlation-based Feature Selection (HC), Linear Correlation-based Feature Selection
(FI) and Wrapper Subset Evaluator (WR).
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Clustering methods after feature selection processing on semi-synthetic datasets. Feature selection
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bined with IRMI, MICE and Hot-Deck shows the best results for K-means clustering.
While for N4000 and FQ1000 datasets for the five amounts of outlying data, IQR com-
bined with K-Nearest Neighbour and MICE are the best outlier preprocessing procedures
for K-means clustering.
Concerning Hierarchical clustering, the IQR detection method combined with K-Nearest
Neighbour and Hot-Deck imputation methods show the best Cophenetic coefficient values
for N21 and N600 datasets for the five amounts of outlying data. For dataset N4000, IQR
combined with Hot-Deck or IRMI imputation methods show to be the best outlying data
preprocessing option. The combined methods AQ-MICE and IQR-MICE provide the best
results for datasets FQ16 and FQ1000 respectively.

According to our results on Section 4.4.5, the IQR method, provided a very low detec-
tion rate, but a high precision. This means that the probability that the detected point
using IQR were a real outlier was high. When comparing our results from Section 4.4.5
and 4.5.4.3 we observe that in general the IQR outlier detection method stands as the
best when combined with imputation methods such as MICE and IRMI. We consider that
these results depend to the characteristics of the datasets and also on the preprocessing
methods. It seems that a precise outlier detection method such as the IQR combined with
multivariate imputation methods will be a good option to preprocess outliers. However, it
is probable that different results may be obtained on dataset with characteristics different
from ours. Thus, our results can not be generalized for all type of datasets but are useful
to visualize the impact of the preprocessing and statistical methods that we studied on
our synthetic and semi-synthetic datasets.
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4.7 Summary and concluding remarks

A comprehensive study to assess the impact of preprocessing procedures on accuracy of
three statistical methods (regression, classification and clustering) was presented. Our
methodological approach allowed us to identify the best data preprocessing strategies for
each statistical method for our synthetic and semi-synthetic datasets. We discovered that
there is not a universal data preprocessing procedure since it depends on the characteristics
of the dataset in terms of size, distribution, Skewness, Kurtosis, etc.

Results obtained from this study were collected and summarized in a matrix. It con-
tains the main characteristics of our datasets and the preprocessing procedures that pro-
vides the best results for each statistical method. With the help of such matrix we could
construct a set of rules for combining optimally data preprocessing and data analysis.
This rules were subsequently used on the construction of a fully integrated analytics en-
vironment in R for statistical analysis of environmental data in general, and for water
quality data analytics, in particular (c.f. Chapter 5). Table 4.6 gives an extract of our
summary table. For simplicity purposes, only results for N21 dataset on one regression,
one classification and one clustering methods are shown. The set of rules that we obtained
can be used as the basis to extract knowledge related to data preprocessing and most
importantly, it can be completed and extended to study: other type of datasets, data
anomalies and data preprocessing procedures.

It should be noticed that our study was performed using datasets with a multivariate
normal distribution and on four procedures to prepare data (feature selection and nor-
malization) and process anomalies (missing values and outliers). Further studies will be
necessary to cover a wider spectrum of datasets including temporal or spatial series, differ-
ent distribution along with other types of data preprocessing and data mining techniques.
Moreover, the approach that we presented was performed studying each data anomaly as
isolated cases. For instance, datasets including missing values have been preprocessed only
using imputation methods. However, multiple anomalies may be present in a real-world
dataset thus requiring the application of divers preprocessing strategies. An important
issue when multiple anomalies are present in a dataset is the order in which preprocessing
strategies need to be applied. Below we provide an example to illustrate the importance
of data preprocessing ordering.

Non-normalized datasets with missing values were preprocessed by different order. The
synthetic datasets have different length (ALNA21; n= 21 p= 8; ALNA600; n= 600 p= 30)
with a Weibul distribution and different amounts of missing at random values (i.e., 5%,
10%, 15%, 20%, 25% and 30%). These datasets were preprocessed by (1) normalization
followed by imputation of missing values and, (2) imputation of missing values followed
by normalization. Min-max normalization was used. Imputation of missing values were
done using the IRMI, MICE, Hot-deck and k-NN methods. To compare the results of
preprocessing strategies a classification by Naïves Bayes was performed following the same
methodology described in Section 4.6.2.

Results of classification by Naïves Bayes on the different ordering of preprocessing
strategies is shown in Figure 4.35. It was observed that the differences between the two
preprocessing ordering are small but, in general, lower error rates are obtained when
normalization is performed after imputation of missing values. Such differences may be
due to divers aspects including: distribution of data before and after the the application
of the first preprocessing procedure, general assumption of preprocessing and statistical
procedures, etc. Therefore an extended study in this respect is necessary in order to have
a better understanding of preprocessing ordering.
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Though ordering of preprocessing strategies is out of the scope of this thesis work, with
this example we want to highlight the importance of conducting studies in this topic.
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5.1 Introduction

In the previous chapter, we have presented our methodology to collect water quality data
as well as our approach to assess data preprocessing quality.
In order to provide to the scientific community the tools to better preprocess and analyse
environmental data, we have developed a fully integrated environment in R that integrates
our data preprocessing approach.

The dataset collected for assessing water quality in Mexican rivers was used as input
to the tool that we describe in this chapter. In this chapter, we present our results in our
application domain of Water Quality Assessment.

This chapter is organized as follows: in Section 5.2 we present related work on scientific
workflow systems as our tool fits in the same line. Then, in Section 5.3 we present the
main functionalities of our prototype. In Section 5.4, we present the results of the analysis
of water quality data of the Mexican rivers by using our prototype. Finally, we provide
some conclusions of this chapter in Section 5.5

5.2 Related work on scientific workflow systems

Advances in scientific computation allow scientist to conduct their analysis by using work-
flow systems. Scientific workflow systems (SWFS) provide an infrastructure to perform
and monitor a set of data manipulation steps in a goal-oriented scientific application.

A scientific workflow system is composed of a set of tasks linked together to create a
final product in therms of derivative/aggregate data, or hypothesis validation. In comput-
ing sciences, workflows are derived from programming models that allow the integration
of software routines, datasets and services for the scientific discovery process. SWFS are
generally applied to: (1) describe complex scientific procedures, (2) automate data deriva-
tion processes, (3) improve through put and performance on high performance computing
and (4) manage and query of provenance (Zhao et al., 2008).

There are several software environments that provide tools to define, compose, map,
and execute workflows. They have been grouped into two classes: script-like systems and
graphical-based systems (Neubauer et al., 2006).

Script-like systems describe workflows using a textual programming languages such
as Java, Perl or C++. Tasks, parameters, constraints and data dependencies are estab-
lished in order to build up a workflow. Examples of these type of systems are GridAnt
(von Laszewski and Hategan, 2005), Karajan (Von Laszewski et al., 2007) or Askalon
(Fahringer et al., 2007) to mention some. Some of their advantages include:

• Configuration of specialized process model;
• Control of sequences, constraints, loops and parallel tasks;
• Parallel execution of workflows;
• Monitoring of the execution.

Though, Script-like systems often have complex semantics, require a deep knowledge of
the workflow engine functionality and knowledge on programming languages.

Graphical-based systems specify workflows through graphical elements (i.e., nodes and
edges) that correspond to the graph component. Workflow tasks are often represented
by nodes while data dependencies or communications between tasks are represented by
links. Some of the most popular graph-based systems are: Kepler (Altintas et al., 2004),
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Weka4WS (Talia et al., 2005) and Triana (Taylor et al., 2003). Their advantages include:
• Easy and intuitive use for unskilled user;
• Model of workflows through the use of graphical interface;
• Limited use of programming languages;
One important drawback of graphical-based systems, is that complex workflows can

not be represented due to the limited expressiveness on the directed acyclic graph-based
languages.

Scientific workflow systems aim at supporting research by providing a framework that
encompass all the necessary tasks and algorithms to access, collect, process and analyse
scientific data. Numerous workflow systems are available (Talia, 2013; Liu et al., 2015),
often require user to have a deep knowledge of the workflow engine functionality or ability
on programming languages. They also require a comprehensive knowledge of the char-
acteristics of data, thus the designed scientific workflow can include the necessary data
preprocessing tasks to manage anomalies on data. Notwithstanding, as we have mentioned
in our previous chapters, the impact of data preprocessing task on subsequent data analysis
is under study and as such, the integration of data preprocessing procedures on scientific
workflow systems may be taken cautiously. Additional to this problem, it must be noticed
that environmental scientist are not computer experts, they may not be able nor want
to cope to the complexity of the use and deployment of these systems for their scientific
purposes. To our knowledge, there are not a scientific workflow system specifically for
environmental sciences that includes data preprocessing procedures and that provides a
user-friendly interface for non computer experts.
We aim to cover this need by providing a simple scientific workflow system. Our system
integers the necessary tasks to inspect, preprocess and analyse environmental data. Data
preprocessing procedures can be assessed and if necessary be modified in order to get valid
results according to user criteria. It also take advantages of an user-friendly interface that
allows users with little knowledge on R to analyse environmental data.

5.3 EvDA: Development of R Shiny application for envi-

ronmental data preprocessing and analysis

5.3.1 Main workflow

Data collected by environmental scientists cover highly diverse topics of study going from
public health studies to atmospheric phenomena. Moreover, the laborious tasks of col-
lecting environmental data increase the probability of having anomalies in the data. As
a result, the analysis of environmental data has itself become an arduous effort. The
methodological approaches developed in this work aim at providing tools to support and
assist the scientific community in the preprocessing and analysis of data. We have focused
on procedures for preprocessing the environmental data specifically features selection,
normalization, imputation of missing values, and outlying data as well as regression, clas-
sification, and clustering methods since they are frequently used to analyse environmental
data.

We present a prototype named EvDA that aims to inspect, preprocess, and analyse
environmental data easier. The user can upload his/her own data. Preprocessing pro-
cedures can be executed sequentially and data analysis such as regression, classification,
clustering or PCA analysis produce meaningful results for the domain experts using an
user-friendly interface.
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Load data AnalysisPreprocessing SummaryInspection
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summary
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Display results Display all results

Figure 5.1 – Scientific workflow of EvDA

Implementation To this aim, we have designed and developed a scientific workflow
system prototype in EvDA, based on our methodological approach described in the Section
4.2. It was constructed to execute a set of data manipulation tasks for environmental
data analysis in general and for water quality data analytics in particular. Our prototype
consists of graphical user interface from which user is able to load, inspect, preprocess
and analyse data (c.f. Figure 5.1). EvDA was implemented using Shiny web application
framework (R package version 3.3.0) for R statistics software (R Core Team, 2016). It
uses several R packages and functions internally. In EvDA, the input is an original dataset.
After inspection, a set of preprocessing tasks are executed to perform statistical analysis
on the preprocessed data. Finally, the outputs include visualization and analytical results
of the preprocessed data.

Data inspection. EvDA provides results of summary statistics such as mean, median,
minimum and maximum values, as well as Skewness and Kurtosis coefficients to charac-
terize the data distribution. Information about normality, missing values, and outlying
data is also provided. Results are displayed in a table and can be graphically visualized.
In the data inspection step, the user can have a general overview of the characteristics of
data. This information is helpful to make decisions about data preprocessing procedures
that may be necessary to execute.

Data preprocessing. Data preprocessing procedures such as: feature selection, nor-
malization, imputation of missing data, and outlying data preprocessing can be performed.
The most optimal data preprocessing procedures are automatically determined in EvDA:
a message listing optimal data preprocessing procedures are displayed. The user could
choose between the suggested options and the procedures available in the application.
Three feature selection methods are available: wrapper subset evaluator, Correlation-
based and linear correlation-based feature selectors, they are calculated using the caret
and the mlr R packages. Feature selection outputs are: (1) a list containing pertinent
features and (2) a new dataset containing only the selected features.
Six normalization methods can be performed: decimal scale, min-max, z-score, 0-1 range
normalization, sigmoidal and softmax normalization; they were adapted from the dprep
R package.
Five methods to impute missing values are proposed in EvDA including: mean, Hot-
Deck, K-Nearest Neighbour (K-NN), Iterative Robust Model-based Imputation (IRMI),
and Multiple Imputation by Chained Equations (MICE). Imputation methods are com-
puted using their respective packages, namely ForImp for mean, VIM for Hot-Deck, K-NN
and IRMI and, mice for MICE.
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Outlying data are processed as follows: first outliers are detected using one of the outlier
detection methods, then they could be removed from the dataset or imputed using impu-
tation methods. The outlier detection methods available in EvDA are: inter quartile range
(IQR), adjusted-quantile (AQ), Principal Components decomposition (PCOUT) and Lo-
cal Outlier Factor (LOF). They are computed using the mvoutlier and Rlof R packages.
And the imputation methods are the Hot-Deck, K-Nearest Neighbour (K-NN), the Iter-
ative Robust Model-based Imputation (IRMI), and the Multiple Imputation by Chained
Equations (MICE).

Data analysis. Regression, classification, clustering, and PCA analysis can be per-
formed in EvDA. Analytical methods are computed using various R packages.

Nineteen regression methods are available including: four linear regression (ordinary
least square regression, stepwise linear regression, principal component regression and par-
tial least squares regression), three penalized regression (Ridge regression, least absolute
shrinkage and selection operator and, elastic net), four non-linear regression (multivariate
adaptive regression splines, support vector machine, k-Nearest Neighbour and neural net-
work) and eight decision trees (Classification and Regression Trees (CART), conditional
decision trees, model trees, rule system, bagging CART, random forest, gradient boosted
machine and cubist).

Sixteen classification methods can be computed they are: two linear classifiers (logistic
regression and linear discriminant analysis), eight non linear classifiers (Mixture discrim-
inant analysis, quadratic discriminant analysis, regularized discriminant analysis, neural
network classification, flexible discriminant analysis, support vector machine classification,
K-Nearest Neighbour classification and Naïves Bayes) and six non-linear classifies with
decision trees (Classification and regression trees, bagging CART classification, Random
Forest Classification, C 4.5, C 5.0, and PART).

The hierarchical clustering, K-means, correlation matrix and PCA can also be com-
puted in EvDA. For clustering methods, information such as number of clusters (i.e.,
K-means) or the height of the cut to the dendrogram for hierarchical clustering need to
be specified by user. Principal Component Analysis (PCA) and correlation matrix are
performed using the FactoMineR and Hmisc R packages respectively.

5.3.2 Overview of the application

EvDA has a user-friendly interface. It consists of four main steps including: loading,
inspection, preprocessing, and analysis of data. The user can click on different tabs to
move between each step. Parameters are inserted through the use of widgets such as
drop-down menus, sliders, check-box, etc. At each step, the user can define the settings
and the results are calculated and shown automatically.

• Data input. The user’s data can be uploaded by uploading a file in .csv, .txt or .xls
format. Delimiters are detected automatically from the data (c.f. Figure 5.2) but,
it is also possible to specify it manually. Sometimes the user may be interested in
studying a subset of the dataset. In this case the user can select the desired rows and
columns manually and use the subset as a new dataset. EvDA uses only numerical
and categorical data since the methods available in EvDA are implemented mainly
on these type of data.

• Data inspection. Inspection of data is done through: descriptive statistics, tests of
normality, analysis of missing data, and detection of outlying data. The inspection
tasks are accessible by selecting the corresponding tab. The users can choose which
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Figure 5.2 – Screenshot of EvDA application. Display of the Data input tab.

normality test and outlier detection method to use. Results are displayed in tables
and graphs (see Figure 5.3) and can be downloaded by users for future use.

• Data preprocessing. Many real-world data may contain different type of anomalies.
To improve the quality of data and perform statistical analysis, data need to be pre-
processed. EvDA provides a set of preprocessing tasks including: feature selection,
normalization, imputation of missing values, and outliers processing. In order to
guide the user, a panel indicating the most optimal data preprocessing procedures
is shown. The user can choose one among the different methods that are available
for each preprocessing task. They can be performed whether in the original input
dataset or in a dataset resulted from a previous preprocessing task. An example of
the information displayed on the data preprocessing tab is given in Figure 5.4. It
shows the different methods to impute missing values on a given dataset. Prepro-
cessed data can be used for subsequent statistical analysis or downloaded for future
use.

• Analysis. Our prototype implements some of the functionalities that we considered
the most frequently used on environmental studies.
For regression analysis, independent and dependent variables can be specified by the
user. The models are constructed by splitting the observations into a training and
test sets. Percentage of splitting can be manually defined. Accuracy of the model is
then computed and the results can be saved.
Similarly to regression, classification analysis is performed using splitted data. Pre-
diction can be made using the resulting model and the user can obtain accuracy and
Kappa measure results.
The construction of clustering by K-means requires to specify the number of cluster
k. For easy selection of k, EvDA performs the elbow method. A graphic representing
the number of clusters against the total within-clusters sum of squares is displayed.
With the help of this visualization, the user can select the number of cluster k. Hi-
erarchical clustering does not require to pre-specify the number of clusters. In our
prototype, Hierarchical clustering is performed and the results are represented in a
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Figure 5.3 – Screenshot of EvDA application. Display of the Data inspection tab.
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Figure 5.4 – Screenshot of EvDA application. Display of the Data Preprocessing tab.

dendrogram which is a tree-based representation of the observations.
Correlation matrix is performed using all variables, the output is composed of a
correlation matrix, a list of the most correlated variables and a graphical display of
the correlation matrix.
PCA is constructed only using numerical data. PCA output consists of a table that
summarizes PCA results and, PCA plots of the observations and variables. PCA
visualization is a scatterplot of the principal components corresponding to axes 1
and 2 and PCA plot of variables shows the projection of the variables within the
first two principal components. Optionally, the user can add supplementary vari-
ables, they can be whether continuous or categorical. These variables can be used
to get additional information about the variability. In the resulting plots, they are
coloured differently for better visualization. In Figure 5.5, we show an example of
the information displayed when the K-means clustering analysis is performed.

In the next section we present results obtained from the application of EvDA. In the
following section, we aimed at demonstrating the utility of our prototype and providing
useful information to specialists regarding the water pollution of the four Mexican rivers.
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Figure 5.5 – Screenshot of EvDA application. Example of display of the analysis by K-means
clustering.
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5.4 Case study: Water pollution of the Tula, Culiacan,

Tamazula, and Humaya rivers

By applying our methodological approaches, we aimed now at responding to a concrete ap-
plicative need in the context of water quality assessment. Precisely, we aimed at providing
answers to the following specialist-driven questions:

1. Considering the different sources of pollution from PPCPs and pesticides, are they
found in the same place or are they found with the same concentrations in the
different sampling sites?

2. What is the correlation between heavy metals, pesticides, PPCPs, and biomonitoring
metrics?

3. What are the most representative or pertinent pollutants to focus on in order to
assess the impact of specific anthropological activities (i.e., agricultural activities)?

4. Is it appropriate to analyse all the pollutants if the conclusions are similar for one
type of pollutant?

5.4.1 Data description

5.4.1.1 Physico-chemical and chemical data

To assess the quality of water of the Tula, Humaya, Tamazula, and Culiacan Mexican
rivers, the methodological approach we designed to collect water quality data was described
in Chapter 3. By applying our methodological approach, we have collected data that
describe the physico-chemical, chemical and biological characteristics of the rivers. The
physico-chemistry includes a set of physical and chemical parameters that characterize the
river. Such parameters could be necessary either for aquatic biodiversity or for a pollution
source. We have organized the different physico-chemical and chemical parameters into
two groups: macro-pollutants and micro-pollutants.

• Macro-pollutants. They include a set of compounds that are naturally present in
the river, which are necessary for good functioning of the aquatic ecosystem. We
can mention for instance: organic carbon, nitrate, phosphates, sulphate or metals
which are necessary for the good functioning of aquatic ecosystems. However, when
their concentrations exceed normal values, pollution problems may emerge such as
eutrophication1 or anoxia2.

• Micro-pollutants. They are compounds that are not naturally present in the river;
they include oil, hydrocarbons, organic solvents, surfactants, pesticides, pharmaceu-
ticals, and personal care products. They could be introduced due to filtration, runoff
or direct discharge to the watercourse. A tiny dose of these compounds will poison
the aquatic environment.
We have analysed water samples to determine the content of organochlorine pes-
ticides and PPCPs. The analytical methods that we adapted for the analysis of
pesticides and PPCPs are under submission.

1Process in which a body of water acquires high concentrations of nutrients, specifically phosphates and

nitrates. It also causes a massive development of plants.
2Lack of oxygen in a body of water produced by oxidation of high concentrations of organic matter.
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5.4.1.2 Biological data

It concerns the biological organisms (flora and fauna) living in rivers. In hydrobiology the
biological organisms are grouped into: macrophytes, diatoms, fishes, macroinvertebrates,
and oligochaetes. Macrophytes and diatoms are representative of the aquatic flora while
fishes, macroinvertebrates, and oligochaetes are representative of the aquatic fauna. We
have chosen macroinvertebrates in order to compute biological indices to assess the quality
of the aquatic ecosystems of the Mexican rivers.
Macroinvertebrates are biological organisms living at the bottom of rivers and lakes. Their
size is superior to 0.5mm and they are visible without the help of special lens. Macroinver-
tebrates include different species: for example; molluscs, crustaceans or larvae of insects.
Macroinvertebrates are inventoried and the resulting list of taxa has been then used to
compute different indices that provide information about the diversity, fauna richness, and
quality characteristics of the aquatic ecosystem.
In our study case, we have collected and analysed macroinvertebrates from each sampling
site. A total of 35 indices were computed as suggested by Serrano Balderas et al. (2016).

Our dataset is composed of 16 observations and a total of 78 numerical variables that
include 20 macro-pollutants, 23 micro-pollutants, and 35 biological indices. Collection of
samples was done in two seasons (rainy and dry). For the sake of simplicity, we present
only the results of the dry season. In Table 5.1, we list the different parameters that
compose our dataset. Below we will refer to this dataset as the Mexican dataset.

5.4.2 Data preprocessing

Data collected from the analysis of samples can not be used in its original form. We need
to perform a set of preprocessing tasks in order to initialize data properly to serve as input
for subsequent statistical analysis. The preprocessing task that were implemented are (1)
feature selection, (2) normalization, (3) imputation of missing values, and (4) outlying
data processing. The preprocessing procedures that we applied were those proposed by
EvDa.

1. Normalization. Our dataset contains variables with different measurement units;
to scale all numerical variables to an specific range, we have performed z-score nor-
malization. By applying this transformation, values of variables have a mean equal
to 0 and a standard deviation of 1.

2. Missing values. Our data subsets contained an amount of 9.70% of missing data.
Missing data were due mainly, to some technical accidents during the manipulation
of samples. To obtain a complete dataset, we have imputed missing data using the
Multiple Imputation by Chained Equations (MICE) imputation method.

3. Outlying data processing. Detection of outliers was performed using the In-
ter Quartile Range (IQR) method. A total amount of 7.61% of outlying data was
detected. We decided to process outliers by imputing them using the K-Nearest
Neighbour imputation method. However, they will be studied conscientiously for an
extended future analysis.
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Table 5.1 – List of variables that were used for the assessment of water quality of the Mexican
rivers Tula, Humaya, Tamazual and Culiacan.

Variables

Macro-pollutants Micro-pollutants Biological indices

General

chemistry

Heavy met-

als

Organo-

chlorine

pesticides

PPCPs

pH As I-BHC Ibuprofen Number of total taxa

conductivity Cd II-BHC Naproxen Number of EPT taxa

CO3 Fe III-BHC Triclosan Number of Ephemeroptera taxa

HCO3 Mn IV-BHC Diclofenac Number of Plecoptera taxa

SO4 Pb Heptachlor Bisphenol A Number of Trichoptera taxa

Cl Zn Aldrin Number of families in common

F Heptachlor

epoxide

% EPT

Na I-Endosulfan % Ephemeroptera

K Dieldrin % Plecoptera

Ca DDE % Trichoptera

Mg Endrin % Coleoptera

B II-

Endosulfan

% Diptera

SiO2 DDD % Chironomidae

NO3 Endrin alde-

hyde

EPT/ Chironomidae

DDT % of most dominant genus

Endrin ke-

tone

% of dominant taxa

Methoxychlor Shannon’s Index

Simpson’s Index

Margalef Index

Sequantial Comparison Index

Jaccard’s coefficient

Sørensen coefficient

Trent Biotic index

Extended Biotic index

Beck Biotic index

Family Biotic index

BMWP

BMWP-CR

BMWP-ASPT

% Filterer collectors

% Scrapers

% Shredder

% Predators

% gathering collectors

% IBI-west central Mexico

BMWP: Biological Monitoring Working Party.

BMWP-CR: Biological Monitoring Working Party-Costa Rica.

BMWP-ASPT: Biological Monitoring Working Party-Average Score per Taxon.
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5.4.3 Results of the analysis

In order to respond to the questions listed at the beginning of Section 5.4, we have applied
a set of statistical analyses to our preprocessed data. Below, we present the results.

1. Considering the different sources of pollution from PPCPs and pesti-

cides, are they found in the same place or are they found with the same

concentrations in the different sampling sites?

For the sake of simplicity, we show exclusively the results obtained for the analysis
of pesticides. We have computed a linear regression. First we have done a selec-
tion of variables by performing a Linear correlation-based feature selection. Feature
selection was performed to obtain a regression model that represented the best our
phenomena. A total of 9 variables over the 18 corresponding to the concentrations of
organochlorine pesticides were used as predictors and a variable named distance was
used as response. We have created the variable distance using Google Earth, it
measures the distance between agricultural areas and each sampling site. In Figure
5.6, we illustrate the distance taken between agricultural areas and the sampling
sites C1 to C11.

We have graphically represented the concentrations of the pesticides for each sam-
pling site (c.f. Figure 5.7). In Tables 5.2 and 5.3, we provide details of the linear
model for the regression of distance between sampling sites and agricultural areas
on the concentration of pesticides for the Mexican data. The R2 value indicates
that our model fits well our data, the F-statistics value suggests that at least one
of the pesticides must be related to the distance between sampling sites and the
agricultural areas. However, the p-values of the variables used for the analysis (c.f.
Table 5.3) indicate that changes on the distance are not related to changes in the
pesticides variables. The linear regression model using only the distance variable
and the concentration of pesticides only provides us information about the relation-
ship between the proximity of agricultural fields and the content of pesticides in
the samples. This means that, the closest an agricultural field is from a sampling
site, the content of pesticides in a water sample will be higher. In Figure 5.7, we
observed that site C11 has the highest content of the analyzed pesticides. We also
observed that site C11 collects the water discharges of the flow and is the closest of
an agricultural area (c.f. Figure 5.6). From these observations, we can deduce that
the quantities of pesticides depend in part, on the proximity of pollution sources in
this case from the agricultural fields thus, high concentrations of pesticides will be
found at sampling stations closer to agricultural fields.
It must be noticed that the regression model built using only the distance variable
as the response and the concentrations of organochlorine pesticides as predictors
does not provide complete information to model pesticides fate in surface waters.
To this purpose additional parameters (i.e., organic matter content, particle size of
sediment, concentration of pesticide, polarity, etc.) and complex models should be
further considered (Nowell et al. (2009); Holvoet et al. (2007)).

Table 5.2 – Summary of results about the linear model for the regression of distance between
sampling sites and agricultural areas on the concentration of pesticides of the Mexican dataset.

Quantity Value

Residual standard error 467

R2 0.9117

F-statistic 13.91
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Table 5.3 – Results from the linear regression analysis on the Mexican dataset. Variables used
for the analysis were chosen using the Linear correlation-based feature selection method.

Coefficient Std. error t-statistics p-value

Intercept 46980.5403 19359.5346 2.4267 0.1360

I_BHC -804097.7114 2540280.9059 -0.3165 0.7815

I_Endosulfan -1785134.3199 2313596.7093 -0.7715 0.5210

Dieldrin 4833030.3504 1352013.2102 3.5746 0.0701

Endrin -10029972.3708 3403391.7747 -2.9470 0.0984

Endrin_aldehyde 2688714.3977 1645159.3280 1.6343 0.2438

Endosulfan_sulfate -12548183.7978 5488622.0854 -2.2862 0.1495

Endrin_ketone -1008695.0461 387653.0960 -2.6020 0.1213

Methoxychlor 4606679.6139 1603210.0739 2.8734 0.1027

Figure 5.6 – Google Earth image of the sampling sites C1 to C11 situated on the rivers Tamazula,
Humaya and Culiacan. Distance between agricultural areas and the sampling sites are defined
by a red line, sampling sites are highligted by a yellow icon. Source: "Culiacan." 24°48’00”N
107°23’00”O. Google Earth ©. August 5, 2016. November 22, 2016.

.

2. Which is the correlation between heavy metals, pesticides, PPCPs, and

biomonitoring metrics?

To distinguish relationships among the different variables, we have subsetted the orig-
inal dataset into three datasets named macro, micro, and metals. The macro subset
contains the general chemistry variables related to the macro-pollutants listed on
Table 5.1, while micro and metals datasets contain the variables of Micro-pollutants
and Heavy metals respectively. A correlation matrix and a PCA analysis were per-
formed on each data subset. We have constructed the PCA using the biomonitoring
metrics as supplementary variables.
From the correlation matrix (c.f. Figure 5.8), we observed that, out of the 35
biomonitoring metrics, only 13 are positively correlated to the macro-pollutants, 8
to the micro-pollutants, and 19 to metals.
A better visualization of the correlation between the different variables was obtained
from a PCA analysis. Figure 5.9 shows the first two principal components for the
macro-pollutants, micro-pollutants, and metals subsets respectively.
For macro-pollutants and micro-pollutants, we observed that, some biomonitoring
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Figure 5.7 – Concentrations of Pesticides on sites C1 to C11 situated on the rivers Tamazula,
Humaya, and Culiacan.

.

metrics show a negative correlation with these pollutants. This observation indicates
that at high concentrations of pollutants, low values of biomonitoring metrics will
be observed. Such observation is consistent with biomonitoring metrics themselves
indeed, certain biomonitoring metrics (i.e., BMWP, EBI, Shannon or Simpson’s
indices) show low values when poor aquatic biodiversity is observed therefore a
polluted aquatic system. The Family Biotic Index (FBI) show a similar behaviour
compared to the other metrics. In fact, FBI has high values at high concentration
levels of pollutants and, as we can observe on Figure 5.9 (a) and (b) this metric is
positively correlated to the macro- and micro-pollutants.
For the case of metals, our results do not provide enough information about the
relationship between the metals and the biomonitoring metrics. As we observed
on the PCA the percentage of explained variance provided by the two axes is 55%
which is lower compared to the axes for macro and micro pollutants (78% and 69%
respectively).

3. What are the most representative or pertinent pollutants to study in

order to assess the impact of specific anthropological activities (i.e., agri-

cultural activities)?

For this question, we focused on the impact of agricultural activities. To this, we have
performed a linear correlation-based feature selection to identify the variables that
are the most pertinent to assess this activity. We have used our variable distance that
we previously described in Question 1 (Considering the different sources of pollution
between PPCPs and pesticides, are they found in the same place or have the same
trends?).
For a detailed analysis, we have subsetted the Mexican dataset into three subsets
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named macro, micro, and bio. They are composed of the variables Macro-pollutants,
Micro-pollutants and Biological indices as detailed in Table 5.1.
Results from the feature selection on each subset is given in Table 5.4. For the assess-
ment of the impact of agricultural activities, it appear that only 8 macro-pollutants,
12 micro-pollutants, and 12 biological indices are pertinent to use.

Table 5.4 – Results of the linear correlation-based feature selection on the data subsets macro,
micro and bio.

Name of subset Number of original

variables

Number of selected

variables

Name of selected vari-

ables

macro 15 8 pH, conductivity, SO4,

Cl, Na, K, Ca, SiO2

micro 24 12 II-BHC, I-Endosulfan,

Dieldrin, DDE, En-

drin, Endrin-aldehyde,

Endosulfan-sulfate,

Endrin-ketone, Methoxy-

chlor, Ibuprofen,

Bisphenol-A

bio 36 9 percentage of diptera,

EPT-Chironomidae,

Shannon’s index, Simp-

son’s index, Margalef,

SCI, Sørensen index,

TBI, BMWP

4. Is it appropriate to analyse all the pollutants if the conclusions are similar

for each type of pollutant?

Certainly, each type of pollutant provide different information and scientist may be
interested to study most of them. However, as we will illustrate, not all pollutants
can necessarily be included to study the impact of specific anthropogenic activity.
Lets us continue using the agricultural activity as the subject of the next study. To
assess the impact of agricultural activities on the quality of water, scientist may be
interested in determining the content of different pollutants such as metals, minerals,
and pesticides. Then, the complete set of variables could be used to predict the
pollution due to the proximity of agricultural activities. However, this action is
not necessarily the most efficient. To exemplify this, we have performed a linear
regression model.
We have used the three data subsets named macro, micro, and bio as previously
described in Question 3 (What are the most representative or pertinent pollutants

to study in order to assess the impact of specific anthropological activities (i.e., agri-

cultural activities)?). We have subsetted the data in order to study separately each
type of pollutant as they provide different information.
A linear correlation-based feature selection was computed for the selection of vari-
ables. The regression model was performed on the data subsets that contain the
totality of variables and on the subsets after the selection of features.
In Table 5.5, we present the results of the linear model for the regression of the
distance between the sampling sites and the agricultural areas on the variables, for
the macro, micro, and bio data subsets. The construction of the regression model
using all variables seems to be inadequate: the results indicate that the number of
observations n is not large enough to construct a model with 15 (for macro), 24
(micro) and 36 (bio) variables. However, we observed that the model fits better
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with a reduced number of features. The most promising results were observed on
the micro and bio subsets.

Our result suggest that a limited number of variables will be sufficient to construct a
linear regression model to predict the impact of agricultural activities on the quality
of water.
It must be noted that a linear model will perform well on test observations if n, the
number of observations, is much larger than p, the number of variables. However, a
large variability of the model exists if n is not much larger than p, which results in
over-fitting thus on poor predictions. It is frequently observed that some or many of
the variables used in a model are not associated with the response. Such irrelevant
variables lead to complex resulting models. A model that can be easily interpreted
can be obtained by removing irrelevant variables. Some of the approaches that
include feature selection or variable selection include stepwise model selection pro-
cedures (e.g., Forward Stepwise selection, Backward Stepwise selection), shrinkage
methods (e.g., Ridge regression, LASSO), and dimension reduction methods (e.g.,
Principal Component Regression, Partial Least Squares) (James et al., 2013).

Table 5.5 – Results of the linear regression on the macro, micro and bio data subsets before and
after feature selection.

Name of

data subset

Number of

variables

Quantity

Residual

standard

error

R2 F-statistic

After feature

selection

macro 8 999.7 0.5955 2.84

micro 12 266.4 0.9713 43.25

bio 9 364.9 0.9461 20.5

5.5 Conclusion and future development

The analysis of environmental data demands the application of various data preprocessing
tasks in order to obtain a dataset in conformance with the requirements of data analysis
methods and useful for further data mining. Therefore, scientists may be confronted to
two main challenges: (1) the efficient application of data preprocessing procedures and (2)
the appropriate selection of the methods to preprocess data. To cover these challenges,
we have developed a fully integrated analytics environment in R.

The originality of our prototype, is that it includes a set of data preprocessing proce-
dures and statistical analysis for environmental data in general and for water quality data
analytics in particular with user-friendly interface. The users with little knowledge on R
can inspect, preprocess, and analyse their data by simply clicking on the desired action
then, EvDA recommends and executes the necessary scripts to analyse data and finally
returns results that can be saved. Concerning preprocessing procedures, EvDA analyses
the characteristics of data and guides the user for the selection of the most appropriate
preprocessing methods.

EvDA provides the following functionalities:
• Inspection of the statistical characteristics of data;
• Data preprocessing procedures;
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• Visual representation of analytical steps;
• Display of original and preprocessed data;
• Recording of the preprocessing procedures that have been executed.
We have presented our prototype EvDA for preprocessing and analysis of environmen-

tal data and its application on our case study: Water pollution of the Tula, Culiacan,
Tamazula, and Humaya river. Currently our prototype has some limitations and some of
the adaptations that will be implemented in a short-term future include:

• Adaptation of data preprocessing procedures for categorical data. Currently, the
data preprocessing procedures are suitable only for quantitative data;

• Addition of supplementary data preprocessing procedures: EvDa includes a limited
number of methods to normalize, select features, impute missing values, and process
outliers;

• Inclusion of other data preprocessing procedures such as data transformation, dis-
cretization, instance selection, etc;

• Development of more interactive options: our prototype does not allow the setting
of the method parameters for most of the statistical analysis;

• Development of interactive options related to visualization of data and presentation
of data that may be interesting for the user;

• Inclusion of spatial spatio-temporal data analysis methods: the user may also be
interested in representing statistical information on the map particularly to study
the dynamic phenomena.
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Conclusions

Data obtained from environmental surveys may be prone to have different anomalies (i.e.,
incomplete, inconsistent, inaccurate, or outlying data). These anomalies affect the quality
of environmental data and may have severe consequences when assessing environmental
ecosystems. To get correct and useful results from data mining and statistical analysis
tasks, it is necessary to acquire quality data and preprocessed data. Different shortcomings
are associated to the acquisition and preprocessing of environmental data. In chemical
data acquisition for instance, there are analytical techniques with limited performance,
non standardized methods or ambiguous data collection protocols. In data science, some
of the shortcomings include: the sequence of data preprocessing procedures is not handed
and depends on the dataset characteristics; the impact of data preprocessing procedures
on statistical results has been understudied. Within the context of this thesis, we were
interested on a particular shortcoming, the impact of data preprocessing procedures on
subsequent statistical analysis and in one specific applicative domain: water quality as-
sessment. Although we have applied our approaches in this domain, they can be adapted
for analysis and preprocessing of other type of environmental data.

Collection, analysis, and preprocessing of environmental data is a complex subject and
it requires specialized knowledge of each domain. Environmental scientists are interested
among others in developing methods and/or protocols to analyse and collect environmen-
tal samples while data scientist are interested in developing algorithms and information
systems to better analyse, preprocess, and visualize any data. The goal is to provide
scientific solutions for understanding environmental phenomena that involve both envi-
ronmental and data science. The challenges are vast and, in this work, we focused on
one main problem: How to analyse environmental data and provide accurate

results? To answer this question we propose a suite of methodological approaches to
collect, preprocess, and analyse environmental data in order to control the entire process
and guarantee accurate analysis results.

We were interested on the development of approaches and tools that will allow scientists
to: (1) acquire quality data and (2) perform the most appropriate data preprocessing
procedures to finally obtain accurate results in the context of water quality assessment.

Our approaches are multidisciplinary and thus related to both environmental sciences
and data science, they include:

• a method for the collection of water quality data, specifically for the quantification
of pollutants at low concentrations, which reduces incompleteness of data;
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• a methodological procedure for the collection of biological data, that diminishes data
errors due to outlying data, missing values or inconsistencies;

• an approach to identify the optimal data preprocessing strategies for specific statis-
tical methods.

6.1 Contributions

We have provided contributions related to Environmental Chemistry, Hydrobiology, and
Data Science. Hereafter, we detail each one.

Environmental Chemistry:

• The analysis of pesticides in samples of water: The existing analytical methods to
quantify emerging pollutants on environmental samples use advanced instrumenta-
tion such as Liquid Chromatography tandem Mass Spectrometry (LC-MS-MS) or
Gas Chromatography Mass Spectrometry (GC-MS). However, in developing coun-
tries access to advanced analytical instrumentation may be limited as consequence,
analysis of emerging pollutants is rarely done. We adapted an analytical method
for the simultaneous analysis of eighteen organochlorine pesticides in samples of
water including: I-BHC, II-BHC, III-BHC, IV-BHC, heptachlor, aldrin, heptachlor
epoxide, I-endosulfan, II-endosulfan, dieldrin, DDE, endrin, DDD, endrin aldehyde,
endosulfan sulfate, DDT, endrin ketone and methoxychlor. The proposed analyt-
ical method uses the Solid Phase Extraction (SPE) to extract analytes followed
by Gas Chromatography-Electron Capture Detector (GC-ECD) for their quantifi-
cation. The Liquid-Liquid extraction method (LLE) has been used for the analysis
of organochlorine pesticides (Wu et al., 2010; Diaz et al., 2008) however, it is a
laborious method, use large amount of solvent and require intensive cleaning pro-
cedures to assure contaminant free material to determine pesticides at trace levels.
The analytical method that we proposed requires small amount of solvent, is simple,
it provides better recovery for the majority of the pesticides (recovery ranging from
72% to 92% on average) compared to LLE (recovery ranging from 15% to 40%) and
reduces incertitudes and errors that may appear due to intensive manipulation of
samples.

• Analysis of Pharmaceutical and Personal Care Products (PPCPs) in samples of

water: A collaborative work between the Institute of Geophysics and the Faculty
of Chemistry at UNAM has also been done to develop a new Solid Phase Micro
Extraction-Gas Chromatography-Mass Spectrometry (SPME-GC-MS) method for
the simultaneous analysis of PPCPs (ibuprofen, 2-benzyl-4-chlorophenol, naproxen,
triclosan, ketoprofen, diclofenac, bisphenol A and estrone) in river water. Compared
to other methods (Huang et al., 2015; Yu et al., 2012), ours is simple, rapid and
efficient. It allows to extract target analytes from a miniaturized system where
volume samples reach few millilitres and where manual intervention of the analyst
is reduced to the minimum. This is advantageous to reduce anomalies on data.

The analytical methods that we propose allow us to quantify pesticides at a concen-
tration range of µgL−1 and ngL−1 for pesticides and PPCPs respectively. We propose
to use our analytical methods to reduce the presence of data anomalies such as missing
values, outliers, and censored data.

Hydrobiology:

Use of biomonitoring metrics for the assessment of water quality in Mexico is scarce
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despite their advantages (Mathuriau et al., 2011). Their limited used is due to: absence
of sampling and analytical protocols, lack of identification keys, incomplete information
of local communities and absence of monitoring metrics. These shortcomings increase the
problems on data quality.
We have designed a new methodological approach for the acquisition of data using biomon-
itoring metrics in Mexico. We have done a bibliographic study where we identified thirty
five macroinvertebrate-based biomonitoring metrics of potential use for the ecological as-
sessment of surface waters in Mexico. Metrics were selected considering the following
characteristics: sensitivity, ecological relevance, representative, feasibility, metric interpre-
tation, performance, and geographical suitability. Sampling and analytical procedures to
compute the selected metrics are also described. We suggest the use of our methodological
approach to increase the quality of data, reduce uncertainties, incompleteness or inconsis-
tencies in the dataset due to undefined sampling and analytical protocols for biomonitoring
assessment in Mexico.

Data Science:

When analysing environmental data, various data preprocessing tasks need to be ap-
plied to obtain a dataset in conformance with the requirement of data analysis methods,
and useful for further data analysis. Numerous data preprocessing procedures are avail-
able (c.f. Chapter 2.4) and their appropriate selection is necessary to get the less biased
statistical analysis results. An important aspect when analysing environmental data is
that contrary to data scientists, environmental scientists are not familiar with the tasks
to preprocess data such as: data cleaning, normalization, data transformation, feature
selection, etc. Therefore, data preprocessing and data analysis may be a very critical step.
We aim at providing to environmental scientists a guide to inspect, preprocess and analyse
environmental data. Our contributions are:

• Selection of data preprocessing procedures: We proposed an optimal selection of
data preprocessing procedures to treat common data anomalies and data problems
(feature selection, normalization, missing values and outliers). They consist of proce-
dures already available on the R environment for statistical computing. The selected
preprocessing procedures respond to the need to treat data anomalies of datasets
with different dimensions, providing accurate statistical results.

• Assessment of data preprocessing procedures: We evaluated the impact of data pre-
processing procedures on subsequent statistical analysis. From this evaluation we
suggested the data preprocessing procedures that are the most appropriate to get
the least biased analytical results.

• Development of an integrated analytics environment in R: An integrated analytics
environment, named EvDA, for statistical analysis of environmental data, was pro-
posed. EvDA is a user-friendly Shiny/R application relying on statistics to guarantee
data quality and quality results. It allows users with little knowledge of R to in-
spect, preprocess, and analyse their data. An stable version of our prototype will be
available on Github in a short-term future.

6.2 Future work

The approaches developed in this work are, to our-point-of-view, an important step on
environmental informatics. However, there are still more work to be done including:

For our approaches in Environmental Chemistry and Hydrobiology:

• Adapt of our analytical technique (SPE GC-ECD) for the analysis of other types of



142 Chapter 6

emerging pollutants and types of samples (i.e., soils and sediments). We were fo-
cused on the development of an analytical method that allow us analyse specifically
organochlorine pesticides and some PPCPs but, many other pollutants affect the
aquatic environment (e.g., oils, surfactants, industrial wastes,etc.) and the develop-
ment or adaptation of methods to analyse them is necessary;

• Development of local biomonitoring metrics. We have demonstrated the usefulness
of biomonitoring metrics using macroinvertebrates for the water quality assessment
of Mexican rivers. However, it will be favourable to develop a biomonitoring metric
suitable to the ecological, climatological and geographic characteristics of Mexico.
Because in Mexico the diversity of biological species is vast, there are endemic species,
and the climate and geographic characteristics are heterogeneous and complex.

For our approaches in Data science:

We have designed our experimentations to study the most frequent data anomalies (non
normalized data, irrelevant features, missing values, outlying data) using the most general
case (datasets with multivariate normal distribution). However, other data anomalies
may appear on data (e.g., censored data, uncertainties), and real-world dataset may have
different characteristics to those conducted in our study. Due to our limited time, we
have decided to focused on the above mentioned cases but it most be noticed that further
studies need to be done in order to cover the full spectrum of possibilities in order to
appropriately preprocess data.

In addition, our experimentations were developed under the assumption that data
anomalies appear as isolated cases. However, data anomalies may co-occur (Berti-Equille
et al., 2015) thus, the results of data preprocessing may be different to those observed in
our study. We insist on the need to continue studying in this topic and some future work
that we suggest include:

• Enlarge the study related to data anomalies and data preprocessing. In this study
we were focused on a limited number of data anomalies and data preprocessing
procedures. To continue contributing to this area of study, other types of data
anomalies (e.g., censored data, duplicates, data redundancies, inconsistencies) and
preprocessing procedures (e.g., transformation, discretization, integration) should be
studied;

• Adjust our approach to other environmental data such as ecological biodiversity,
geological studies, air or soil pollution;

• Study the effect of preprocessing procedures under the presence of multiple data
anomalies;

• Adjust our approach to datasets of varied characteristics.
We also have proposed a prototype to inspect, preprocess and analyse environmental

data. It can be used as a basis to create robust-user-friendly tools that allow preprocess
and analyse environmental data. Anomalies on data are not exclusive of environmental
studies, they may occur also in biology, astrophysics, geology or engineering, to mention
some. It is necessary to continue producing knowledge on this exiting and interesting area.
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CHAPTER 7
Résumé étendue

Confrontés à la nécessité de réduire la pollution d’eau, des programmes de surveillance
de la qualité de l’eau sont fréquemment mis en place. De tels programmes consistent
à quantifier divers composants physiques et chimiques dans différents sites et pendant
plusieurs périodes. Or les données collectés lors des programmes de surveillance sont sujets
aux différents anomalies (i.e., incomplets, inconsistantes, imprécis ou aberrants). Des
anomalies dans les données sont omniprésents et peuvent être présents dû aux problèmes
dans les expériences, par des erreurs humains ou défaillances du système.

La mauvaise qualité de données peut être significativement coûteuse (Haug et al.,
2011) et avoir des sévères conséquences dans l’évaluation des écosystèmes environnemen-
taux (Wahlin and Grimvall, 2008). Pour produire des données de qualité et réduire des
anomalies de données il est nécessaire : acquérir des données de qualité et pré-traiter des
données (Han and Kamber, 2000 ; Berti-Equille, 2007a).

L’acquisition des données de qualité peut être obtenue 1) en suivant des protocoles
d’échantillonnage et d’analyse normalisés et 2) en utilisant des outils analytiques avancées
(i.e. spectrométrie de masse couplée à un plasma inductif (SF-ICP-MS), chromatographie
en phase gazeuse – spectrométrie de masse (CG-MS) ou chromatographie liquide couplée à
la spectrométrie de masse en tandem (LC-MS/MS)). Cependant, dans les pays en voie de
développement l’accès aux tels outils analytiques est limité ou des protocoles normalisés
sont difficiles à mettre en place. Il est donc nécessaire d’adapter des outils qui peuvent
être faciles à utiliser et bon marché sans compromettre la qualité des données.

Concernant le pré-traitement des données il s’agit de tout procédure qui est nécessaire
afin de générer des données de qualité. Ces procédures incluent :

• Nettoyage des données (i.e., suppression de valeurs aberrantes et des incohérences) ;
• Élimination des inconsistances des données (i.e. réglage des différences);
• Complétude des données manquantes (i.e., remplissage des valeurs manquantes);
• Réduction des données (i.e., sélection d’attributs relevants) ou création des données

agrégées.

Bien que la détection des anomalies dans les données ait été largement étudiée, très peu
des travaux ont été publié en particulier dans le domaine de sciences de l’environnement.
En considérant que les anomalies sur des données peuvent apparaître tout au long d’une
étude environnementale il est nécessaire d’identifier, contrôler et dans le cas nécessaire

145



146 Chapter 7

designer des protocoles d’acquisition et pré-traitement des données pour garantir des ré-
sultats précis.

Le travail de thèse présenté ici est positionné sur l’informatique environnementale
puisqu’il a une approche pluridisciplinaire entre chimie de l’environnement, hydrobiologie,
statistique, science des données et informatique. Ce travail a été centré dans deux défis
principaux : l’acquisition des données de qualité et la définition des procédures de pré-
traitement des données appropriés pour finalement analyser des données.

7.1 Motivations

Lors des études environnementaux il est important de considérer uniquement des données
de qualité qui fournissent des informations valables. Il est évident que pour fournir des
résultats précis il est nécessaire d’avoir des données de bonne qualité. Dans la science
des données les procédures de pré-traitement des données sont proposées pour réduire
des anomalies et ainsi améliorer la qualité des données. Le choix des méthodes de pré-
traitement des données est crucial pour la validité des résultats d’analyses statistiques et
il est assez mal défini.

Les procédures de pré-traitement de données amélioreront certainement la qualité de
données cependant, des bonnes pratiques d’acquisition des données sont aussi nécessaires
pour éviter des anomalies de données. Un problème important sur l’acquisition de don-
nées environnementales est l’absence des protocoles standardisés pour l’échantillonnage et
l’analyse en particulière dans des laboratoires où l’accès aux instrumentations analytiques
est limité. Il est donc nécessaire d’adapter des procédures analytiques qui sont rentables
et faciles de mettre en œuvre pour obtenir des données de qualité.

Dans ce travail de thèse un intérêt particulier a été porté sur le développement d’une
nouvelle approche qui combine à la fois des bonnes pratiques d’acquisition et de pré-
traitement des données.

7.2 Objectifs

L’objectif principal de ce travail est de fournir à la communauté scientifique des approches
méthodologiques et des outils pour l’acquisition, le pré-traitement et l’analyse des données
environnementales en garantissant la qualité de résultats d’analyse et de données. Les
approches méthodologiques ont été appliqués dans un cas d’étude : évaluation de la qualité
de l’eau dans quatre rivières mexicaines (Tula, Tamazula, Humaya et Culiacan).

Le but de fournir une approche intégrée qui combine à la fois la bonne acquisition
de données et des bonnes pratiques de pré-traitement de données est de contrôler tout la
chaîne de traitement de données dès leur acquisition et jusqu’à leur analyse. Pour attendre
l’objectif principal des objectifs spécifiques ont été définis. Ils sont liés aux trois domaines
d’étude.

Chimie de l’environnement

• Acquérir des données en déployant des méthodes fiables et bon marché pour la
quantification des pesticides organochlorés, des produits pharmaceutiques et de soin
dans l’eau;

• Définir des protocoles pour l’échantillonnage et l’analyse des pesticides organochlorés,
des produits pharmaceutiques et de soin;
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• Mettre en place la campagne d’échantillonnage et les procédures analytiques pour
l’analyse des échantillons d’eau des rivières mexicaines Tula, Humaya, Tamazula et
Culiacan.

Hydrobiologie

• Acquérir des données en définissant une approche méthodologique à l’aide de métriques
de biosurveillance (macroinvertébrés) en tant que nouveaux outils complémentaires
pour la surveillance de la qualité d’eau des rivières mexicaines;

• Mettre en place la campagne d’échantillonnage et les procédures analytiques pour
l’acquisition des données hydrobiologiques.

Sciences des données

• Définir une approche méthodologique pour la sélection des procédures de pré-traitement
des données afin de traiter des anomalies sur les données et des problèmes sur les
données (i.e., valeurs manquantes, valeurs aberrantes, sélection des variables, nor-
malisation);

• Évaluer l’impact des procédures de pré-traitement des données sur des ultérieure
analyses statistique;

• Déterminer les procédures de pré-traitement de données les plus appropriés pour
obtenir les résultats des analyses moins biaisées;

• Préciser les procédures pour pré-traiter et analyser des données qui sont nécessaires
pour garantir la fiabilité des résultats sur des études environnementaux en général
et pour l’analyse de données de qualité de l’eau en particulier.

7.3 Acquisition des données

Dans le but d’acquérir des données de bonne qualité des approches méthodologiques en
chimie de l’environnement et en hydrobiologie ont été proposées. Il s’agit des approches
pour l’acquisition des données issue de la surveillance de la qualité de l’eau par rapport à
la biosurveillance à l’aide des macroinvertébrés et à la pollution par : pesticides, produits
pharmaceutiques et de soin. Pour attendre les objectifs préalablement décrit, des échantil-
lons d’eau et des macroinvertébrés ont été prélevés dans quatre rivières mexicaines (Tula,
Tamazula, Humaya et Culiacan).

7.3.1 Sites d’étude

Cinq sites (H1 – H5) situés au long de la rivière Tula ont été sélectionnés pour prélever des
échantillons (c.f. Figure 7.1). Les sites H2 et H3 sont situés proche aux champs agricoles,
ils ont été choisis pour évaluer les quantités des pesticides organochlorés dans l’eau de
la rivière Tula. Les sites H1, H4 et H5 sont localisés près des zones urbanisées ils ont
été sélectionnés pour évaluer les niveaux des polluants principalement PPCPS (Produits
pharmaceutiques et de soin). Les détails sur l’emplacement des sites d’échantillonnage
sont données dans la table 7.1

Pour évaluer la qualité de l’eau des rivières Tamazula, Humaya et Culiacan once sites
ont été sélectionnés (c.f. Figure 7.2) Les détails sur l’emplacement de sites d’échantillonnage
sont données dans la table 7.2. Quatre sites localisés au long de la rivière Humaya (C1 -
C4) ont été choisis pour évaluer les concentrations de polluants principalement de déchets
domestiques. Trois sites (C5 – C7 ) ont été pris dans la rivière Tamazula pour représen-
ter l’état le moins pollué. Les sites C8 et C9 ont été choisis pour évaluer le niveaux de
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Table 7.1 – Emplacement des sites d’échantillonnage de la rivière Tula

Sites Commune Latitude Longitude Altitude (m)

H1 Tasquillo 20° 33.703’ 099° 18.581’ 1761.134

H2 Ixmiquilpan 20° 28.829’ 099° 13.277’ 1730.654

H3 Ixmiquilpan 20° 29.585’ 099° 13.310’ 1706.270

H4 Tlacotlapilco 20° 22.451 099° 13.414’ 1703.222

H5 Progreso 20° 14.696’ 099° 12.344’ 1702.917

Figure 7.1 – Sites de prélèvement dans la rivière Tula (État d’Hidalgo, Mexique).
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pollution par déchets domestiques et activités anthropiques dans la rivière Culiacan. En
fin, les sites C10 et C11 ont été sélectionnées pour évaluer la pollution par des pesticides
organochlorés.

Table 7.2 – Emplacement des sites d’échantillonnage des rivières Tamazula, Humaya et Culiacan.

Site Commune Latitude Longitude Altitude (m)

Humaya river

C1 Mojolo 24° 50.316’ 107° 24.775’ 45.110

C2 Mojolo 24° 50.395’ 107° 24.305’ 44.805

C3 Mojolo 24° 49.934’ 107° 24.227’ 46.024

C4 Humaya 24° 49.045’ 107° 24.199’ 41.757

Tamazula river

C5 Culiacan 24°48.796’ 107° 23.755’ 62.788

C6 Tamazula 24° 49.308’ 107° 22.758’ 46.329

C7 La Limita de Itaje 24° 49.005’ 107° 21.630’ 50.292

Culiacan river

C8 Culiacan 24° 48.551’ 107° 24.767’ 45.415

C9 Culiacan 24° 47.524’ 107° 26.873’ 33.528

C10 Bacurimi 24° 47.848’ 107° 30.462’ 33.223

C11 Culiacancito 24° 48.409’ 107° 31.883’ 25.298

Figure 7.2 – Sites de prélèvement des rivières Tamazula, Humaya et Culiacn (État de Sinaloa,
Mexique).

7.3.2 Acquisiton de données physico-chimiques et chimiques

Des échantillons d’eau ont été collectés pour déterminer le contenu de : pH, conductivité,
carbonate (CO3), bicarbonate (HCO3), sulphate (SO4), chlore (Cl), fluor (F), sodium
(Na), potassium (K), calcium (Ca), magnésium (Mg), bore (B), dioxyde de silicium (SiO2),
nitrate (NO3) arsenic (As), cadmium (Cd), plomb (Pb), fer (Fe), cuivre (Cu), manganèse
(Mn), zinc (Zn), dix-huit pesticides organochlorés: I-BHC, II-BHC, III-BHC, IV-BHC,
heptachlor, aldrin, heptachlor epoxide, I-endosulfan, II-endosulfan, dieldrin, DDE, endrin,
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DDD, endrin aldehyde, endosulfan sulfate, DDT, endrin ketone et methoxychlor, et huit
PPCPs (ibuprofen, 2-benzyl-4-chlorophenol, naproxen, triclosan, ketoprofen, diclofenac,
bisphenol A et estrone).

L’analyse des éléments majeurs et métaux à été effectué en suivant le protocole de
Armienta et al. (1987). Les données physico-chimiques et chimiques qui a été acquis est
composé de 16 individus (sites d’échantillonnage) et 21 variables des valeurs numériques.
Les sites de la rivière Tula ont été échantillonnées dans deux saisons (pluie et étiage) tandis
que les rivières Tamazula, Humaya et Culiacan ont été échantillonnées uniquement dans
la saison d’étiage.

7.3.3 Analyse des pesticides organochlorés et PPCPs

Une méthode analytique pour l’analyse des pesticides organochlorés a été adapté en mod-
ifiant la méthode décrit par Guardia Rubio et al. (2007). L’analyse a été réalisé en
utilisant une extraction en phase solide (SPE) et la chromatographie en phase gazeuse
avec détection par capture d’électrons (GC-ECD). L’analyse de PPCPs a été effectué
en utilisant une nouvelle méthode basée sur la micro-extraction en phase solide suivi de
la chromatographie en phase gazeuse couplé à un spectromètre de masse (SPME – GC
– MS). La nouvelle méthode permet la quantification de PPCPs (ibuprofen, 2benzyl-4-
chlorophenol, naproxen, triclosan, ketoprofen, diclofenac, bisphenol A et estrone) dans des
échantillons d’eau à niveau de traces (ng/L). Les détails sur la méthode SPME-GC-MS
sont présentés par Diaz-Flores et al. (en révision, Determination of pharmaceuticals and
personal care products (PPCPs) in river water and sediment by solid phase extraction
followed by gas chromatography-mass spectrometry (SPME-GC-MS) soumis à Analytical

Chemistry) et donc il ne sera pas détaillé ici.

L’extraction en phase solide a été réalisée pour extraire des pesticides dans des échan-
tillons d’eau. La première phase de la procédure consiste à filtrer les échantillons à travers
un filtre Millipore 0.45 µm. Ensuite l’échantillon est déposé dans des cartouches C18 qui
sont installés sur un système manifold. Les cartouches sont premièrement conditionnées
en faisant passer 5mL de cichloromethane, 5mL de methanol et 5 mL d’eau distillé avec un
flux de 1mL/min. Ensuite 500 mL d’échantillons d’eau sont versées à travers les cartouches
(flux : 1mL/min). La cartouche a été séchée pendant 20 min sous vide. En fin l’extrait
a été mis à sec dans un courant d’azote et redissous dans 1 mL d’ethyl acetate-hexane
25:75%, v/v.

Les données obtenus lors de l’analyse de pesticides et PPCPs est constitué de 16
individus (sites d’échantillonnage) et 23 variables (5 PPCPs et 18 pesticides organochlorés)
des valeurs numériqes.

7.3.4 Acquisition des données hydrobiologiques

Afin de fournir des lignes directrices et des outils pratiques pour la biosurveillance des
systèmes aquatiques une étude à été menée dont les objectives ont été : 1) identifier
des méthodes de biosurveillance basées sur des macroinvertébrés qui peuvent être poten-
tiellement utilisées dans l’évaluation écologique des rivières au Mexique, et 2) décrire les
procédures d’échantillonnage et d’analyse pour mettre en place les méthodes identifiées en
1. Les résultats de cette étude ont été publiés (Serrano Balderas et al., 2016) et font partie
de ce manuscrit. De manière synthétique trente-cinq métriques ont été identifiées comme
des outils de potentiel application pour la surveillance écologique des rivières mexicaines.
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Les procédures d’échantillonnage et d’analyse pour calculer les métriques sélectionnées
sont décrits dans la même publication.

Le prélèvement des macroinvertébrés a été effectué tout d’abord par une inspection
visuelle d’un tronçon de la rivière afin d’identifier les différents habitats et substrats. Des
échantillons ont été prélevés dans des habitats multiples à l’aide d’un filet surber (surface
500 m2, maillage 500 µm). Pour chape point d’échantillonnage, des prélèvements ont été
répliqués deux fois. Les échantillons ont été stockés dans des sacs en plastique et conservés
dans de l’éthanol 70%.

Les échantillons ont été analysés dans le laboratoire. Les macroinvertébrés ont été
séparés des substrats et triés en utilisant une maille de 250 µm. Ensuite, ils ont été exam-
inées sous un stéréoscope et identifiés au niveau des familles à l’aide des différents clés tax-
onomiques (Heckman, 2006; Heckman, 2008; Heckman, 2011; Merrit et al., 2008a; Tachet
et al., 2010; Novelo-Gutiérrez, 1997b; Novelo-Gutiérrez, 1997a). Finalement, trente-cinq
métriques (indicateurs biologiques) ont été calculé, ils comprennent:

• 5 indicateurs de richesse (nombre de taxons totales, nombre des taxons EPT, nombre
des taxons Ephemeroptera, nombre des taxons Plecoptera et nombre des taxons
Trichoptera) ;

• 11 indicateurs d’énumération (nombre des familles en commun, %EPT, %Ephemeroptera,
% Plecoptera, % Trichoptera, % Coleoptera, % Diptera, % Chironomidae, % EPT:
Chironomidae, % taxons plus dominants, % genres plus dominantes);

• 6 indices de diversité et similitude (Shanon, Simpson, Margalef, Sequential Compar-
ison Index – SCI, Jaccard et Sørensen);

• 7 indices biotiques (Trent Biotic index, Extended Biotic index, Beck Biotic index,
Family biotic index, Biological Monitoring Working Party et Average Score per
Taxon);

• 5 groupes fonctionnelles (les filtreurs, les prédateurs, les détritivores, les herbivores
et les omnivores) et;

• 1 indice multi-métrique (IBI-west central Mexico).

Le jeux des données hydrobiologiques collectées des rivières Tula, Tamazuala, Hu-
maya et Culiacan est composé de 16 individus (sites d’échantillonnage) et 35 paramètres
numériques (35 métriques).

7.4 Pré-traitement et analyse des données

Afin de fournir aux spécialiste de l’environnement un guide pour inspecter, pré-traiter
et analyser des données environnementales une étude sur des meilleurs pratiques pour
pré-traiter les données a été menée. Cette étude a été centré sur des procédures de pré-
traitement des données (sélection des variables, normalisation des données, imputation
des valeurs manquantes et traitement des valeurs aberrants) et leur impact sur des sub-
séquent analyses statistique principalement les méthodes de régression, classification et
groupement. Les objectives de l’approche sont les suivants :

• Évaluer la robustesse des méthodes pour traiter des valeurs manquantes et aberrants ;
• Examiner l’effet des procédures de pré-traitement de données sur la précision dans

des analyses de classification, groupement et régression ;
• Identifier les meilleurs procédures de pré-traitement des données pour une analyse

statistique particulière.

L’étude a été structurée en trois parties : (1) génération des données synthétiques, (2)
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pré-traitement des données et (3) analyse statistique (c.f. Figure 7.3). Dans la première
partie, des données synthétiques ont été construites afin d’évaluer les procédures de pré-
traitement de données puis, à l’étape deux, des données pré-traités ont été construites
en utilisant différents procédures de pré-traitement sur les données synthétiques qui ont
été construites dans la première partie. Dans la troisième étape, les données pré-traitées
ont été utilisées pour évaluer l’impact des procédures de pré-traitement sur les résultats
des analyses statistique. Une description détaillée de chaque partie de l’étude est donnée
ci-dessous.

7.4.1 Données synthétiques et semi-synthétiques

Quatre jeux de données synthétiques ont été utilisés pour évaluer l’impact des procé-
dures de sélection de variables sur des subséquentes analyses de régression, classification
et groupement. Chaque jeu suit une loi normale et est composé d’un nombre différent
d’observations (i.e., n = 21, n = 600, n = 4000, n = 20000), variables numériques (i.e.,
p = 8, p = 30, p = 53, p = 98) et une variable catégorielle de cinq classes suivant une
distribution uniforme. Les variables incluent des variables non pertinentes.

Les tests pour évaluer l’impact de pré-traitement par normalisation des données ont été
exécutes en utilisant quatre jeux de données synthétiques composés d’un nombre différent
d’observations (i.e., n = 21, n = 600, n = 4000, n = 20000), variables numériques (i.e.,
p = 8, p = 30, p = 53, p = 98) et, une variable catégorielle de cinq classes. Chaque jeu
de données suit une distribution Weibull.

L’évaluation des méthodes d’imputation des valeurs manquantes a été effectué en util-
isant quatre jeu de données synthétiques. Chaque jeu a été composé d’un nombre différent
d’observations (i.e., n = 21, n = 600, n = 4000, n = 20000), variables numériques (i.e.,
p = 8, p = 30, p = 53, p = 98) suivant une loi normale et une variable catégorielle de
cinq classes suivant une distribution uniforme. Des valeurs manquantes on été injectés
de manière aléatoire sur les variables numériques sur chaque jeu de données dans les pro-
portions suivantes : 5%, 10%, 15%, 20%, 25% et 30%. Pour chaque injection de valeurs
manquantes dix répétitions ont été effectués pour s’assurer que les résultats expérimentaux
ont été statistiquement acceptables.

En fin, des tests pour évaluer le pré-traitement de valeurs aberrants a été exécuté en
utilisant trois jeux de données synthétiques composées d’un nombre différent des observa-
tions (i.e., n = 21, n = 600, n = 4000), variables numériques (i.e., p = 8, p = 30, p = 53)
suivant une loi normale et une variable catégorielle de cinq classes suivant une distribution
uniforme. Des valeurs aberrantes ont été injectés de manière aléatoire sur chaque jeu de
données dans les proportions suivantes: 1.5%, 2.5%, 5%, 10% et 15%.

Nous avons utilisé également des données semi-synthétiques. Tout d’abord nous avons
collecté des données réelles issues de campagnes de surveillance des eaux de la région Rhin-
Meuse, France. Ce jeu de données se composent de 3787 individus (stations d’échantillonnage)
et 55 variables. Cet ensemble de données a été traitée afin d’éliminer les données bruitées.
Le jeu de données nettoyé se composait de 3726 individus et 48 variables. A partir de ce
jeu de données deux ensembles de données semi-synthétiques ont été générés. Le premier
est une présentation réduite, il est composé de 38 individus et 35 variables sélectionnés de
manière aléatoire. Le deuxième jeu de données a été construit en introduisant de nouvelles
observations. Ces observations suivent la même répartition que le jeu de données nettoyé.
Le deuxième jeu de données est composé de 9742 individus et 48 variables.
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7.4.2 Pré-traitement de données

Dans la deuxième partie de notre étude, nous avons cherché à évaluer la robustesse des
méthodes pour traiter les valeurs manquantes et aberrantes et, pré-traiter les données
par sélection des variables et normalisation. Pour attendre les objectifs de cette étude,
les données déformés, construites dans l’étape précédente, ont été pré-traités en utilisant
différents méthodes (imputation des valeurs manquantes, traitement des valeurs aberrants,
sélection des variables et normalisation de données).

Trois méthodes de sélection de variables ont été exécutés (Correlation-based feature
selection (CFS), linear-based correlation (LC) et Wrapper subset evaluator (WR)) afin de
sélectionner un sous-ensemble de données optimale. La sélection de variables sur chaque
jeu de données déformée a été implémenté comme suit: tout d’abord, une variable a
été utilisé comme variable indépendante, puis, en utilisant les méthodes de sélection de
variables et par rapport à la variable indépendante, le meilleur sous-ensemble de données
a été choisi. Le sous-ensembles de données qui en résultent ont par la suite servis à évaluer
l’impact des méthodes de sélection de variables sur les résultats des analyses statistiques.

Trois méthodes de normalisation ont été implémentés (min-max, Z-score et decimal
scale) sur les données numériques. Les données qui en résultent ont par la suite été
utilisés pour évaluer l’impact des méthodes de normalisation sur les résultats des analyses
statistiques.

Les valeurs manquantes dans chaque jeux de données déformés ont été traités en util-
isant quatre différents méthodes d’imputation (Hot-deck, K-NN, mice et IRMI ). Les
jeux de données imputés ont par la suite été utilisés pour évaluer l’impact des méthodes
d’imputation sur les résultats des analyses statistiques.

Les données déformés par des valeurs aberrantes ont été traités tout d’abord, en util-
isant quatre différents méthodes de détection de valeurs aberrantes (Inter Quartil Range
(IQR), Adjusted-Quantile, Principal Components decomposition (PCOUT) et Local Out-
lier Factor (LOF)). Par la suite, les valeurs aberrantes ont été remplacés en utilisant des
méthodes d’imputation (Hot-deck, K-NN, mice et IRMI). Les données pré-traitées ont été
utilisées pour évaluer l’impact du traitement des valeurs aberrants sur les résultats des
analyses statistiques.

7.4.3 Analyse statistique

Pour évaluer l’impact des procédures de pré-traitement des données différents méthodes
statistiques ont été appliquées aux données pré-traitées. Les méthodes statistiques utilisées
ont été choisis car ils sont fréquemment utilisées dans des études environnementaux. La
comparaison des résultats statistiques sur chaque jeu de donnée pré-traitée a été effectuée
en calculant différents erreurs statistiques. Par simplicité, chaque anomalie de données
a été étudiées en les considérant comme cas isolées. Les anomalies sur les données qui
occurrent simultanément dans un jeu de données n’as pas fait l’objet d’étude dans cette
thèse.

Trois méthodes de régression ont été implémentés sur les jeux de données pré-traitées.
Ils incluent :

• Penalized regression : Leas Absolute Shrinkage and Selection Operator (LASSO) ;
• Linear regression : Ordinary Least Squares Regression (OLSR) ;
• Non-Linear regression : Multivariate Adaptive Regression Splines (MARS).
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L’analyse par régression sur chaque jeu de donnée a été implémentée de la manière
suivante :

1. Les données ont été divisées de manière aléatoire en deux sous-ensemble de données
nommées training et test où 66% des données ont été utilisé pour training et 34%
pour test ;

2. Le modèle de régression a été calculé sur le sous-ensemble de données training. Par
la suite, le modèle ajusté a été utilisé pour prédire les réponses pour les observations
dans le jeu de données test ;

3. Le résultat de la validation a été évalué en calculant le RMSE ;
4. Enfin, l’erreur de pré-traitement a été calculé en comparant la valeur de RMSE du

jeu de données non-deformé avec celle du jeu de données pré-traitée comme suit:

ErrorRMSEprocessing = RMSEPreprocessed−RMSEoriginal
RMSEoriginal

∗100% (7.1)

Les trois méthodes de classification qui ont été utilisées sont :
• Linear classification : Linear discriminant analysis (LDA) ;
• Non-Linear classifcation : Naïve Bayes (NB) ;
• Non-Linear classifcation with Regression Trees : Classification and Regression Trees

(CART)
L’analyse de classification sur chaque jeu de données pré-traité a été exécutée dans

quatre étapes :
1. Les données ont été divisées en deux sous-ensemble de données où 66% des données

ont été utilisées pour training et 34% pour test ;
2. Le modèle de classification a été construit sur le sous-ensemble training, le modèle

obtenue a par la suite été utilisé pour prédire les réponses pour les observations dans
le sous-ensemble test ;

3. Le résultat de la classification a été évalué en calculant l’exactitude et le coefficient
de Cohen’s Kappa ;

4. Finalement, l’erreur de pré-traitement a été calculé en utilisant les formules suiv-
antes :

Absolute ErrorAccuracyprocessing = |AccuracyPreprocessed−Accuracyoriginal| (7.2)

Absolute ErrorKappaprocessing = |KappaPreprocessed−Kappaoriginal| (7.3)

L’analyse de groupement a été implémenté en utilisant les méthodes K-means et re-
groupement hiérarchique sur les données pré-traitées. La méthode K-means a été im-
plémenté en spécifiant tout d’abord le nombre de clusters K à l’aide de la méthode de
coude. La méthode de coude à d’abord été appliquée à l’ensemble de données originaux
non déformées et le nombre de clusters trouvé a été utilisé sur les données pré-traitées. La
méthode de regroupement hiérarchique a été exécutée à l’aide de méthode d’agglomération
de Ward.

Les résultats de regroupement de la méthode K-means de données pré-traitées ont
été comparés contre les résultats de regroupement de données originaux non-déformées à
l’aide des indices Rand, Adjusted Rand et Jaccard (Meila, 2007).

Concernant les analyses par regroupement hiérarchique les résultats des données pré-
traitées ont été comparées contre ceux de données non-déformées à l’aide du coefficient
Cophenetic de corrélation (Sokal and Rohlf, 1962).
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L’approche méthodologique pour évaluer l’impact des procédures de pré-traitement de
données sur les résultats des analyses statistiques nous a permis d’identifier les meilleurs
méthodes de pré-traiter de données pour chaque une de méthode d’analyse statistique
étudiée. Nous avons découvert qu’il n’y a pas un procédure de prétraitement de données
universel puisqu’il dépend des caractéristiques de données et termes de taille, distribution,
Skewness, Kurtosis, etc. Les résultats de cette étude ont été utilisés pour établir un ensem-
ble de règles permettant de combiner de façon optimale les procédures de pré-traitement
et d’analyse de données. Cette règles par la suite ont été utilisés sur la construction d’un
environnement analytique intégré sour la forme d’une application développée en R pour
l’analyse statistique des données environnementales en général et l’analyse de la qualité de
l’eau en particulier. L’étude réalisée ici a utilisé des données multivariée avec une distribu-
tion normale et sur quatre procédures pour préparer les données (normalisation et sélection
des variables) et traiter des anomalies (valeurs manquantes et valeurs aberrantes). En con-
séquence, l’ensemble de règles qui ont été obtenus n’est pas exhaustive, mais il pourrait
être utilisé comme base et encore plus important, il peut être complété par l’étude d’autres
type des données, des anomalies de données et procédures de pré-traitement de données.

7.5 Développement

Un prototype nommée EvDa est présenté ici, il vise à inspecter, pré-traiter et analyser les
données environnementales d’un manière plus facile. L’utilisateur peut télécharger ses pro-
pres données. Les procédures de pré-traitement peuvent être exécutées séquentiellement et
l’analyse de données telles que : régression, classification, groupement ou ACP produisent
des résultats utiles pour les experts du domaine à l’aide d’une interface graphique facile à
utiliser.

EvDA se compose de quatre étapes principales : téléchargement, inspection, pré-
traitement et analyse des données. L’utilisateur peut cliquer sur les différents onglets pour
se déplacer entre chaque étape. Les différents paramètres sont insérés par l’utilisation de
widgets tels que des menus déroulants, case, etc. A chaque étape, l’utilisateur peut définir
les paramètres et les résultats sont calculés et montrés de manière automatique (c.f. Figure
7.4).

• Data input : L’utilisateur peut télécharger des fichiers en format .csv, .txt ou .xls.
Dans certain cas l’utilisateur peut être intéressé en étudier un sous-ensemble de don-
nées, dans ce cas l’utilisateur peut sélectionner les colonnes et lignes et utiliser le
sous-ensemble de données comme nouveaux jeu de données. EvDA utilise unique-
ment des données numériques et catégorielles.

• Inspection de données: L’inspection de données est implémenté en utilisant des anal-
yses statistiques descriptives, des tests de normalité, des analyses de valeurs man-
quantes et détection des valeurs aberrants. L’utilisateur peut sélectionner parmi les
différents méthodes de normalisation et détection des valeurs aberrants.

• Pré-traitement de données: Différents procédures de pré-traitement de données sont
proposés y compris: sélection des variables pertinents, normalisation, imputation
des valeurs manquantes, et traitement des valeurs aberrants. L’utilisateur peut
choisir parmi les différentes méthodes qui sont disponibles pour chaque tâche de
prétraitement. Ils peuvent être effectués dans le jeu de données d’entrée original ou
dans un jeu de données qui a résulté d’une tâche précédente de pré-traitement.

• Analyse de données: EvDA inclus des analyses par régression, classification, groupe-
ment et ACP.
Pour une anlayse de régression, les variables indépendantes et dépendantes peu-
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Figure 7.4 – Capture d’écran de l’application EvDA. Affichage de l’onglet inspection de données.



158 Chapter 7

vent être spécifiés par l’utilisateur. Les modèles sont construits en créant des sous-
ensemble de données pour training et test. La précision du modèle est ensuite cal-
culée et les résultats peuvent être sauvegardés.
De manière similaire l’analyse par classification est effectuée en utilisant un sous-
ensemble de données. La prédiction peut être faite en utilisant le modèle qui en
résulte et l’utilisateur peut calculer l’exactitude et la valeur de Kappa.
L’analyse de regroupement par K-means est exécuté en spécifiant le nombre de clus-
ters k. Les résultats sont affiches dans un graphique où l’utilisateur peut sélectionner
le nombre de clusters k. Les résultats de la méthode de groupement hiérarchique
sont fournis de manière graphique où les observations sont représentés de manière
arborescente dans un dendrogramme.
La matrice de corrélation est implémenté en utilisant tous les variables, les résul-
tats sont composés d’une liste de variables le plus corrélés et d’une représentation
graphique de la matrice de corrélation.
L’ACP est construit en utilisant uniquement des données numériques. Les résultats
de l’ACP sont représentés graphiquement pour les variables et les observations, où
les deux premières composantes principales (Axe 1 et Axe 2) peuvent être visualisés.
Les résultats numériques de l’ACP et les graphiques peuvent être sauvegardé.

Les approches méthodologiques développés en chimie de l’environnement, hydrobiolo-
gie et science des données ont par la suite été utilisées pour évaluer la pollution de l’eau
dans quatre rivières mexicaines (Tula, Tamazula, Humaya et Culiacan). Les résultats des
analyses sur les données du Mexique montrent que les activités d’agriculture, les déchets
urbains et industrielles polluent l’eau des rivières étudiés. Les résultats observés indiquent
que des mesures de protection et remédiation sont nécessaires pour améliorer et protéger la
qualité des écosystèmes aquatiques dans les rivières mexicaines Tula, Tamazula, Humaya
et Culiacan.

7.6 Conclusions

Les contributions multidisciplinaire de la thèse sont : (1) en chimie de l’eau : une procé-
dure méthodologique permettant de déterminer les quantités de pesticides organochlorés
dans des échantillons d’eau collectés sur le terrain en utilisant les techniques SPE-GC-
ECD (Solid Phase Extraction – Gas Chromatography – Electron Capture Detection) ; (2)
en hydrobiologie : une procédure méthodologique pour évaluer la qualité de l’eau dans
quatre rivière Mexicaines en utilisant des indicateurs biologiques basés sur des macroin-
vertébrés ; (3) en science des données : une méthode pour évaluer et guider le choix des
procédures de pré-traitement des données produites lors des deux précédentes étapes ainsi
que leur analyse ; en fin (4) le développement d’un environnement analytique intégré sous
la forme d’une application développée en R pour l’analyse statistique des données envi-
ronnementales en général en l’analyse de la qualité de l’eau en particulier. Enfin, nous
avons appliqué nos propositions sur le cas spécifique de l’évaluation de la qualité de l’eau
des rivières Mexicaines Tula, Tamazula, Humaya et Culiacan dans le cadre de cette thèse
qui a été menée en partie au Mexique et en France.



APPENDIX A
Biotic indices

Trend Biotic Index (Metcalfe, 1989) The organisms used for the computation of
index are identified at family, genus or species level depending on the type of organism.
The index values go from 0 to 10, with 10 representing clean streams, this value decreases
with increasing pollution. In Table A.1, are represented the key groups and the Biotic
index values necessary to estimate the Trent Biotic Index of a given sample. It is a
two-entrance table: vertical entrance corresponds to the value of richness found and the
horizontal entrance to the less tolerant organism.

Table A.1 – Trent Biotic Index (TBI). Key groups for the estimation of the Trent River Board
Biotic Index and Biotic Index values related to the total number of groups present in a sample
(Table taken from Metcalfe, 1989).

A group consists of : Common name

Each family of Trichoptera larvae Caddis flies
Each family of Coleoptera larvae and adults Beetles
Each family of Diptera (except blood worms) Trues flies
Each family of Annelida Oligochaeta Worms
Each genus of Plecoptera nymphs Stoneflies
Each genus of Ephemeroptera nymphs May-flies
Each species of Annelida Hirundinea Leeches
Each species of Mollusca Sanils, limpets, etc.
Each species of Crustacea Shrimps, water hoglice
Each species of Megaloptera larvae Alder flies
Chironomus thumni Blood worms

Trent River Board Biotic Index

Total number of groups present
0-1 2 – 5 6 – 10 11 – 15 16

Biotic Index

Clean
Plecoptera
Nymphs
Present

More than one
species

- VII VIII VIII IX

One species only - VI VII VIII IX

Organisms in
order of
tendency to
disappear
as degree of
pollution
increase

Ephemeroptera
nymphs present
(excluding Baetis)

More than one
species

- VI VII VIII IX

One species only - V VI VII VIII

Trichoptera lar-
vae
or Baetis present

More than one
species

- V VI VII VIII

One species only IV IV V VI VII

Gammarus present All above species
absent

III IV V VI VII

Asellus present All above species
absent

III IV V VI VII

Tubificid worms
and/or red Chi-
ronomid larvae
present

All above species
absent

I II III IV -

Polluted All above species
absent

Some organisms
such as Eristalis
tenax not requiring
dissolved oxygen
may be present

- I II - -

159
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Extended Biotic Index (EBI) (Ghetti, 1997)

EBI values are determined considering the abundance of specific macroinvertebrate
taxa which is ordered according to its tolerance to stress factors. EBI values go from
0 to 14. They are calculated using a two-entrance table (c.f. Table A.2): a vertical
entrance – corresponding to the value of Richness found; and a horizontal entrance –
corresponding to the less tolerant Systematic Units (SU) to stress factors. To determine
the ecological quality of aquatic ecosystems, EBI values are calculated and converted into
“quality classes”. The organisms used to compute the Extended Biotic Index (EBI), are
identified at family or genus level.

Table A.2 – Table to calculate Extended Biotic Index (EBI) values and conversion table to trans-
form EBI values into Quality Classes (Ghetti, 1997). SU: Number of Systematic Units observed
of the taxonomic group.

Faunal Groups which deter-
mine
their presence to the horizontal
inlet in table (horizontal input)

Total Number of Systematic Units constituting the community (vertical input)

0 – 1 2 – 5 6 – 10 11 – 15 16 – 20 21 – 25 26 – 30 31 – 35 36 - . . .

Plecoptera
present
(Leuctra)

More than
one SU

- - 8 9 10 11 12 13 14

Only one SU - - 7 8 9 10 11 12 13

Ephemeroptera
present (ex-
cluding
Baetidae and
Caenidae)

More than
one SU

- - 7 8 9 10 11 12 -

Only one SU - - 6 7 8 9 10 11 -

Trichoptera
present
(Baetidae
and Caenidae
included)

More than
one SU

- 5 6 7 8 9 10 11 -

Only one SU - 4 5 6 7 8 9 10 -

Gammarus All the SU
above absent

- 4 5 6 7 8 9 10 -

Asellus All the SU
above absent

- 3 4 5 6 7 8 9 -

Oligochaeta
and/or Chi-
ronomid

All the SU
above absent

1 2 3 4 5 - - - -

All above or-
ganism

All the SU
above absent

0 1 2 3 - - - - -

Conversion table of values of EBI in Quality Classes

Quality class EBI value Quality judgment Color relating to the quality class

Class I 10 – 11 – 12 -
. . .

Environment is not altered in a sensitive manner Blue

Class II 8 – 9 Environment with moderate symptoms of alteration Green

Class III 6 – 7 Environment altered Yellow

Class IV 4 – 5 Environment very altered Orange

Class V 0- 1 – 2 – 3 Environment highly degraded Red
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Beck Biotic Index (Beck, 1955)

To calculate this index, macroinvertebrates are counted and organized according to
the three classifications proposed by Beck (c.f. Table A.3). The three classes categorize
macroinvertebrates according to their organic pollution tolerances. They are defined as
follows: Class I Organisms (Sensitive or Intolerant): organisms that exhibit rapid response
to aquatic environmental degradations and are reduced in number. Class II Organisms
(Facultative): organisms that are capable to survive under polysaprobic conditions. Class
III Organisms (Tolerant): organisms that have high resistance to adverse conditions within
the aquatic environment. Once the organisms have been counted and classed the Beck’s
Biotic Index is calculated using the following expression:

BI = 2n1 +n2(7) (A.1)

Where BI is the Beck’s Biotic Index n1 is the number of Class I organisms identified
n2 is the number of Class II organisms identified Index values range from 0 to about 40
and, at lower values of the index, the organic pollution is greater.

Table A.3 – Benthic macroinvertebrates clased according to Beck’s biotic Index (BBI) Classes
(Beck, 1955).

Invertebrate form Class Invertebrate form Class

Caddisflies : Trichoptera Crayfish : Crustacea

Hydropsychidae 1 Astacidae 2

Hydroptilidae 1 Flatworms : Turbellaria

Limnephilidae 1 Planaridae 2

Leptoceridae 1 Crane Flies : Diptera

Helicopsychiade 1 Tipulidae 2

Psychomyiidae 1 Gill Snails : Mollusca

Goeridae 1 Pleuroceridae 2

Stoneflies : Plecoptera Horse Flies : Diptera

Perlidae 1 Tabanidae 2

Perlodidae 1 Isopods : Crustacea

Mayflies : Ephemeroptera Asellidae (Aquatic Sowbugs) 2

Baetidae 1 Blackflies : Diptera

Heptageniidae 1 Simuliidae 2

Ephemeridae 1 Air Breathing Snails : Mollusca

Helligrammites : Megaloptera Physidae 3

Corydalidae 1 Ancylidae (Limpets) 3

Freshwater Naiads (Clams) : Bivalvia Aquatic Earthworms : Annelida

Unionidae 1 Oligochaeta 3

Beetles : Coleoptera Midges : Diptera

Elmidae (Riffle Beetle) 1 Chironomidae 3

Psephenidae (Water Penny) 1 Leeches : Annelida

Damselflies :Odonata zygoptera Hirundinea 3

Coenagrionidae 2 Moth flies : Diptera

Agrionidae 2 Psychodidae 3

Dragonflies : Odonata Anisoptera

Aeschnidae 2

Gomphidae 2

Libellulidae 2
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Family Biotic Index (Hilsenhoff, 1988)

It includes other macroinvertebrates than arthropods and, uses family-level tolerance
values (Hilsenhoff, 1988, Plafkin et al., 1989). Organisms are identified at family level.
Tolerance values are assigned from 0 for organisms very intolerant to organic pollution
to 10 for organisms very tolerant to organic pollution (c.f. Table A.4). FBI is computed
using the following expression:

FBI =
∑

xiti/n (A.2)

where xi is the number of individuals in the ith taxon ti is the tolerance value of the ith
taxon n is the total number of organisms in the sample.

Table A.4 – Evaluation of water quality using the Family Biotic Index (FBI) and the tolerance
values for families of stream arthropods (Hilsenhoff, 1988).

Plecoptera Trichoptera Amphipoda

Capniidae 1 Brachycentridae 1 Gammaridae 4

Chloroperlidae 1 Glossosomatidae 0 Talitridae 8

Leuctridae 0 Helicopsychidae 3

Nemouridae 2 Hydropsychidae 4 Isopoda

Perlidae 1 Hydroptilidae 4 Asellidae 8

Perlodidae 2 Lepidostomatidae 1

Pteronarcyidae 0 Leptoceridae 4 Megaloptera

Taeniopterygidae 2 Limnephilidae 4 Corydalidae 0

Molannidae 6 Sialidae 4

Ephemeroptera Odontoceridae 0

Baetidae 4 Philpotamidae 3 Lepidoptera

Baetiscidae 3 Phryganeidae 4 Pyralidae 5

Caenidae 7 Polycentropodidae 6

Ephemerellidae 1 Psychomyiidae 2 Coleoptera

Ephemeridae 4 Rhyacophilidae 0 Dryopidae 5

Heptageniidae 4 Sericostomatidae 3 Elmidae 4

Leptophlebiidae 2 Psephenidae 4

Metretopodidae 2 Diptera

Oligoneuriidae 2 Athericidae 2

Polymitarcyidae 2 Blephariceridae 0

Potomanthidae 4 Ceratopogonidae 6

Siphlonuridae 7 Blood-red Chironomidae (Chironomini) 8

Tricorythidae 4 Other Chironomidae (including pink) 6

Dolichopodidae 4

Odonata Empididae 6

Aeshnidae 3 Ephydridae 6

Calopterygidae 5 Muscidae 6

Coenagrionidae 9 Psychodidae 10

Cordulegastridae 3 Simuliidae 6

Corduliidae 5 Syrphidae 10

Gomphidae 1 Tabanidae 6

Lestidae 9 Tipulidae 3

Libellulidae 9

Macromiidae 3
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Family Biotic Index Water Quality Degree of Organic Pollution

0,00 – 3,75 Excellent Organic pollution unlikely

3,76 – 4,25 Very good Possible slightly organic pollution

4,26 – 5,00 Good Some organic pollution probable

5,01 – 5,75 Fair Fairly substantial pollution likely

5,76 -6,50 Fairly poor Substantial pollution likely

6,51 – 7,25 Poor Very substantial pollution likely

7,26 – 10,00 Very poor Severe organic pollution likely
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Biological Monitoring Working Party and Average Score per Taxon (Na-

tional Water Council (1981), Armitage et al. (1983))

To calculate the BMWP, all the individual scores of all families present in a sample are
summed. High BMWP values are characteristic of clean sites, while low BMWP values
are typical of polluted sites (c.f. Table A.5).

Table A.5 – Biomonitoring Working Party Score System (BMWP) (National Water Council;
1981)

Families Score

Siphlonuridae Heptageniidae Leptophlebiidae Ephemerellidae

10

Potamanthidae Ephemeridae

Taeniopterygidae Leuctridae Capniidae Perlodidae Perlidae

Chloroperlidae

Aphelocheiridae

Phryganeidae Molannidae Beraeidae Odontoceridae

Leptoceridae Goeridae Lepidostomatidae Brachycentridae

Sericostomatidae

Astacidae

8

Lestidae Agriidae Gomphidae Cordulegasteridae Aeshnidae

Corduliidae Libellulidae

Psychomyiidae Philopotamidae

Caenidae

7
Nemouridae

Rhyacophilidae Polycentropodidae Limnephilidae

Neritidae Viviparidae Ancylidae

6

Hydroptilidae

Unionidae

Corophiidae Gammaridae

Platycnemididae Coenagriidae

Mesoveliidae Hydrometridae Gerridae Nepidae Naucoridae

5

Notonectidae Pleidae Corixidae

Haliplidae Hygrobiidae Dytiscidae Gyrinidae

Hydrophilidae Crambidae Helodidae Dryopidae Elimidae

Chrysomelidae Curculionidae

Hydropsychidae

Tipulidae Simuliidae

Planariidae Dendrocoelidae

Baetidae

4
Sialidae

Piscicolidae

Valvatidae Hydrobiidae Lymnaeidae Physidae Planorbidae

3

Sphaeriidae

Glossiphoniidae Hirudidae Eropobdellidae

Asellidae

Chironomidae
2

Oligochaeta (whole class) 1
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Average Score Per Taxon (ASPT) (Armitage et al., 1983). ASPT is calculated
by dividing the BMWP score by the total number of contributing taxa. High ASPT values
characterize clean sites with relatively large numbers of high scoring taxa and low ASPT
values are distinctive of polluted sites that do not support many high scoring taxa (c.f.
Table A.6).

Table A.6 – Biological Monitoring Working Party (BMWP) and Average Score Per Taxon (ASPT)
scores and their related quality index (Armitage et al., 1983; Friedrich et al., 1996; National Water
Council, 1981).

BMWP score ASPT score Category Interpretation
0 – 10 3,6 or less Very poor Heavily polluted
11 – 40 3,61 – 4,2 Poor Polluted or impacted
41 – 70 4,21 – 4,80 Moderate Moderately impacted
71 – 100 4,81 – 5,4 Good Clean but slightly impacted
>100 Over 5,4 Very good Unpolluted, unimpacted

Functional Feeding Groups measures Six FFG measures are described in here,
including filtering collectors, scrapers, shredders, predators and gathering collectors. The
Functional feeding group approaches are based on the behavioural and feeding mechanisms
by which macroinvertebrates obtain their food resources (c.f. Table A.7) (Merrit et al.,
2008).

Table A.7 – Functional Feeding Groups (FFG): Categorization and food resources. Coarse Par-
ticulate Organic Matter (CPOM); Fine Particulate Organic Matter (FPOM) (Merrit et al., 2008).

Functional groups Particle size feeding

mechanisms

Dominant food

ressources

Particle size range of

food (mm)

Shredders Chew conditioned letter

or live vascular plant tis-

sue, or gouge wood

CPOM-decomposing (or

living hydrophyte) vas-

culat plants

>1,0

Filtering collectors Suspension feeders : fil-

ter particles form the

water column

FPOM-decomposing de-

trital particles ; algae,

bacteria, and feces

0,01 – 1,0

Gathering collectors Deposit feeders : ingest

sediment or gather loose

particles in depositional

areas

FPOM-decomposing de-

trital particles ; algae,

bacteria, and feces

0,05 – 1,0

Scrapers Graze rock and wood

surfaces or stems of

rooted aquatic plants

Periphyton-attached,

non-filamentous algae

and associated detritus,

microflora and fauna,

and feces

0,01 – 1,0

Predators Catpure and engulf prey

or tissue, ingest body

fluids

Prey-living animal >0,5
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Macroinvertebrate-based Index of Biotic Integrity (IBI designed for west-

central Mexico streams) (Weigel et al., 2002).

The Macroinvertebrate-based Index of Biotic Integrity (IBI) designed for west-central
Mexican streams was computed. It comprises eight metrics (catch per unit effort, generc
richness, % EPT genera, % Chironomidae individuals, Hilsenhoff Biotic Index, % depo-
sitional individuals, % predator individuals and % gatherer genera). Macroinvertebrate
IBI score was calculated by summing component metric scores (c.f. Table A.8 and Table
A.9). The final IBI score is then used to qualify the stream. IBI classifies streams into five
classes (very poor, poor, fair, good and very good). Low IBI scores correspond to streams
with very poor quality.

Table A.8 – Scoring criteria of the Macroinvertebrate-based Index of Biotic Integrity (IBI designed
for west-central Mexico streams) (Weigel et al., 2002).

Metric Poor(0) Fair(5) Good(10)
Catch per unit effort (CPUE) ≤50 - >50

Generic richness (GR)

Basin area ≤400Km2 ≤13 14 - 22 ≥23

Basin area > 400 Km2 ≤11 - ≥12

% EPT

Basin area ≤400 Km2 <32 32 - 38 > 38

Basin area > 400 Km2 <35 35 - 55 > 55

% Chironomidae individuals (% Midge) > 25 5 - 25 < 5

Hilsenhoff biotic Index (HBI) > 5 4.25 - 5 < 4.25

% depositional individuals (%Depo) > 75 55 - 75 < 55

% predator individuals (%Pred) < 4 4 - 14 > 14

%gatherer genera (%Gath) > 48 44 - 48 < 44

Table A.9 – Macroinvertebrates-based Index of Biotic Integrity (IBI) quality values and their
related biological responses to environmental conditions (Weigel et al., 2002).

Value and qualitative rating Biological response to environmental condition
75 - 80 Very good Comparable to the minimum influence system in the region. Macroinverte-

brates are abundant. GR and %EPT are near the maximum for the size of

stream. Chironomids are absent or %Midge is very low. Low HBI scores and

% Depo indicate no organic pollution and sedimentation are undetectable.

High % Pred and low % Gath indicate a predominance of specialized feeders.

Non-point-source pollution is minimum or distant from the site.

60 - 70 Good Generally low levels of non-point-source pollution have influences some as-

pects of the macroinvertebrate assemblage. GR and % EPT are usually high

but may not be at the maximum for the size of the stream. Often % Midge,

% Depo and % Gath increase. Some organic pollution may be reflected in

the HBI scores.

50 -55 Fair Point-source pollution may be present distant from the site or in low quanti-

ties. Moderate to severe non-point-source pollution or diversion for irrigation

are typically the major stressors. GR and % EPT are moderate to low for the

size of stream. Odonates and other depositional taxa become more prevalent.

HBI scores and % Midge typically run moderate to high.

25 - 45 Poor Point-source pollution is generally present but is intermittent or not imme-

diately at the site. Non-point-source pollution can be severe. Abundance is

typically low but, if it is high, is due to a high % Midge. HBI scores and %

Depo suggest very tolerant assemblages.

0 - 20 Very poor System is severely degraded by point-source pollution. Zero values can result

from all water being diverted for irrigation or collecting < 100 individuals

in 4 CPUEs. Chironomids are typically the only macroinvertebrate fauna

present and are usually abundant. If other taxa are present, their abundance

is low.
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Synthetic and semi-synthetic

datasets

B.1 Datasets for assessment of feature selection

Table B.1 – N21 synthetic dataset (n= 21, p= 8) used to assess feature selection methods. The
µ and σ2 values of all variables are shown. Highly correlated variables are denoted as Yk

Variables
X1 X2 X3 X4 X5 Y1 Y2 Y3

µ 321.72 181.80 518.91 734.27 714.80 775.90 619.09 753.99
σ2 1.11 1.12 0.87 1.43 1.20 0.84 0.86 0.74

Table B.2 – N600 synthetic dataset (n = 600, p = 30) used to assess feature selection methods.
The µ and σ2 values of all variables are shown. Highly correlated variables are denoted as Yk

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 511.01 32.00 69.99 238.07 159.08 125.98 350.98 578.01 281.04 445.00

σ2 0.95 1.06 1.06 1.02 1.01 1.03 0.91 1.05 0.96 0.97

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

µ 243.03 472.04 57.99 127.05 9.01 407.00 78.06 27.01 581.05 260.94

σ2 0.97 1.06 1.06 1.07 0.96 1.18 0.97 0.98 0.93 1.11

X21 Y1 Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9

µ 27.01 488.98 53.99 203.95 45.99 72.00 65.03 239.95 196.99 92.02

σ2 0.98 0.94 0.96 1.06 1.04 0.99 1.05 0.98 1.01 1.01

Table B.3 – N4000 synthetic dataset (n= 4000, p= 53) used to assess feature selection methods.
The µ and σ2 values of all variables are shown. Highly correlated variables are denoted as Yk.

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 769.98 155.98 663.00 19.01 720.99 684.00 467.02 599.98 477.00 326.01

σ2 0.98 0.99 1.01 0.97 0.99 1.02 1.00 0.99 0.99 1.00

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
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µ 255.02 816.01 164.99 406.02 422.99 702.99 473.99 299.01 810.99 551.97

σ2 1.05 1.00 0.99 1.04 1.02 0.99 0.99 1.00 0.95 1.00

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

µ 865.99 891.00 69.99 508.01 650.99 512.98 668.99 611.99 363.00 361.99

σ2 0.98 0.99 1.02 1.01 1.03 0.99 0.98 1.01 0.98 0.99

X31 X32 X33 X34 X35 X36 X37 Y1 Y2 Y3

µ 294.98 593.97 599.01 427.99 604.98 745.99 726.00 665.00 28.00 248.99

σ2 1.01 1.02 1.00 1.01 1.01 1.01 1.00 0.99 0.96 1.00

Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11 Y12 Y13

µ 352.01 166.00 385.00 835.00 695.99 420.02 656.01 145.00 504.01 334.00

σ2 0.97 0.99 1.01 0.99 0.99 0.99 1.00 1.01 0.97 0.98

Y14 Y15 Y16

µ 512.00 153.01 222.00

σ2 0.98 1.00 1.02

Table B.4 – N20000 synthetic dataset (n= 20000, p= 98) used to assess feature selection meth-
ods. The µ and σ2 values of all variables are shown. Highly correlated variables are denoted as
Yk.

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 23.00 142.00 746.01 351.00 459.99 270.00 55.99 132.00 804.99 783.01

σ2 0.99 0.99 0.99 1.00 1.00 1.00 1.00 0.99 1.01 1.00

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

µ 843.01 514.00 77.00 220.02 706.00 688.99 170.00 48.00 645.01 620.99

σ2 1.00 1.02 1.00 0.99 1.01 1.02 0.98 1.01 1.00 0.99

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

µ 735.00 562.99 692.01 158.01 260.00 528.00 653.00 663.99 117.01 268.00

σ2 1.00 1.01 1.00 1.01 1.01 0.99 1.00 0.99 1.01 1.00

X31 X32 X33 X34 X35 X36 X37 X38 X39 X40

µ 388.00 257.01 688.00 362.00 234.00 35.00 158.00 757.01 303.99 189.99

σ2 1.01 1.00 1.00 0.99 1.01 1.00 1.02 0.99 1.00 1.00

X41 X42 X43 X44 X45 X46 X47 X48 X49 X50

µ 687.99 495.01 627.00 664.00 514.99 103.01 545.01 384.01 635.01 701.00

σ2 1.02 1.00 0.99 1.00 1.01 0.99 0.99 1.00 1.00 1.00

X51 X52 X53 X54 X55 X56 X57 X58 X59 X60

µ 368.00 229.00 611.00 500.00 304.00 260.00 729.01 360.00 241.01 397.01

σ2 1.00 1.00 0.99 1.01 1.01 0.99 1.00 0.99 0.99 0.99

X61 X62 X63 X64 X65 X66 X67 X68 X69 Y1

µ 190.99 825.00 606.01 461.00 603.00 510.00 632.00 144.01 793.02 783.00

σ2 1.01 1.01 0.99 1.00 1.00 1.01 1.00 0.99 1.00 1.00

Y2 Y3 Y4 Y5 Y6 Y7 Y8 Y9 Y10 Y11

µ 772.00 506.99 451.99 451.00 721.00 478.99 411.00 334.00 638.99 109.00

σ2 1.00 0.99 1.01 1.00 0.99 1.00 1.00 1.00 1.00 1.00

Y12 Y13 Y14 Y15 Y16 Y17 Y18 Y19 Y20 Y21

µ 691.00 219.00 664.00 253.99 172.99 361.99 714.99 562.00 131.00 259.00

σ2 0.99 0.99 0.99 1.00 1.00 1.00 0.99 0.99 1.00 0.99

Y22 Y23 Y24 Y25 Y26 Y27 Y28 Y29

µ 0.99 273.00 507.00 58.00 823.00 11.99 319.00 588.99

σ2 0.99 0.99 1.00 1.00 1.00 0.99 1.00 0.99
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B.2 Datasets for assessment of normalization

Table B.5 – N21 synthetic dataset (n= 21, p= 8) used to assess normalization methods. The µ
and σ2 values of all variables are shown.

Variables
X1 X2 X3 X4 X5 X6 X7 X8

µ 213.98 255.75 761.98 562.19 35.16 411.48 348.67 393.36
σ2 41343.79 62385.58 679029.21 129683.04 1010.23 221852.32 175850.52 122081.17

Table B.6 – N600 synthetic dataset (n= 600, p= 30) used to assess normalization methods. The
µ and σ2 values of all variables are shown.

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 171.95 193.49 72.89 107.32 633.29 310.19 244.98 558.62 443.10 156.39

σ2 29166.08 40522.14 5041.46 12452.19 443577.5082307.87 53645.94 333400.05195958.1720831.51

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

µ 230.44 439.67 348.19 543.69 103.32 492.18 10.71 307.91 376.14 597.09

σ2 48509.81 196197.88126782.85314880.0210408.54 261451.92120.93 104061.63186155.22336488.02

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

µ 149.90 516.38 462.82 592.14 28.44 217.84 265.07 78.54 100.16 217.36

σ2 20573.98 243214.29198983.84351947.00935.20 47683.27 63771.27 7279.55 10179.21 47442.12

Table B.7 – N4000 synthetic dataset (n = 4000, p = 53) used to assess normalization methods.
The µ and σ2 values of all variables are shown.

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 259.17 227.73 838.73 67.93 165.33 323.62 741.48 531.30 620.14 789.61

σ2 66203.82 51371.52 700756.564462.29 28778.14 99923.59 529437.41271397.61392837.24605888.40

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

µ 61.46 425.39 210.42 307.06 592.82 398.29 458.01 418.55 869.55 323.35

σ2 3784.41 186875.7545683.98 96196.95 367170.28165341.61207590.83177688.14734021.93100877.20

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

µ 880.13 0.00 328.66 887.06 729.59 604.98 415.10 26.18 654.61 793.93

σ2 772333.280.00 110325.47806008.34524076.28373426.31175900.16677.49 421312.08618914.70

X31 X32 X33 X34 X35 X36 X37 X38 X39 X40

µ 359.02 233.11 531.26 400.37 422.71 887.88 119.78 54.92 415.37 537.44

σ2 134574.5854284.41 294972.85154544.61171652.38740684.4114064.93 3131.38 163346.27270536.16

X41 X42 X43 X44 X45 X46 X47 X48 X49 X50

µ 300.09 775.59 390.67 258.02 36.27 231.47 474.80 618.16 212.09 576.81

σ2 89469.43 612330.10144625.5668051.31 1286.68 54297.00 218089.49379085.7443515.72 329587.24

X51 X52 X53

µ 333.99 181.94 318.28

σ2 107663.9631545.49 98725.43

Table B.8 – N20000 synthetic dataset (n= 20000, p= 98) used to assess normalization methods.
The µ and σ2 values of all variables are shown.

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10
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µ 256.25 225.65 839.71 67.18 168.80 319.50 710.35 532.69 632.25 779.89

σ2 66029.69 50712.29 683255.964518.53 27972.67 102515.49500528.68283402.55407322.39602853.08

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

µ 60.64 436.79 206.82 307.70 587.59 383.29 457.25 407.74 873.67 327.31

σ2 3709.63 186963.0043167.64 95563.30 334101.60147077.22203124.77163764.91760757.50107135.86

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

µ 866.89 0.00 328.75 882.44 708.47 603.77 414.02 26.90 650.98 774.83

σ2 731462.420.00 111380.71 780798.88497773.79364936.19169903.44716.31 419447.40604890.00

X31 X32 X33 X34 X35 X36 X37 X38 X39 X40

µ 357.79 230.36 541.34 392.98 426.97 891.83 118.02 56.37 420.54 522.53

σ2 129495.9051850.43 286181.76155292.08179373.43801893.1113926.27 3189.79 177238.05269304.61

X41 X42 X43 X44 X45 X46 X47 X48 X49 X50

µ 299.35 752.47 390.65 258.32 35.87 232.53 487.54 625.89 209.88 578.61

σ2 89715.82 562883.22149652.8265563.29 1306.82 53869.40 237970.89392352.6642475.87 340018.65

X51 X52 X53 X54 X55 X56 X57 X58 X59 X60

µ 331.93 178.58 311.62 257.89 224.85 829.31 67.04 169.27 323.43 715.00

σ2 111161.35 32528.65 96610.98 66740.47 51360.61 701679.564431.92 28968.62 104694.17504497.08

X61 X62 X63 X64 X65 X66 X67 X68 X69 X70

µ 533.02 628.41 798.44 61.72 438.50 208.81 306.48 594.43 382.46 461.95

σ2 286302.17397655.36634633.383724.25 194280.2844181.82 96660.32 352346.07146855.25213417.76

X71 X72 X73 X74 X75 X76 X77 X78 X79 X80

µ 405.62 888.18 327.85 866.30 0.00 325.81 889.64 712.29 597.94 414.89

σ2 160561.01789606.80106419.25747883.970.00 104118.77 803717.38515921.77356863.20175971.83

X81 X82 X83 X84 X85 X86 X87 X88 X89 X90

µ 27.23 640.82 790.15 355.04 229.49 534.95 393.80 429.26 878.11 119.23

σ2 738.39 410935.81626179.61124148.0551529.17 285859.45154502.42188158.64783723.1613926.79

X91 X92 X93 X94 X95 X96 X97 X98

µ 55.79 415.47 531.17 298.78 752.11 396.72 257.39 35.75

σ2 3055.07 172393.03278408.0289350.34 574736.61157206.8366238.50 1306.13
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B.3 Datasets for assessment of imputation of missing values

Table B.9 – N21 synthetic dataset (n= 21, p= 8) used to assess imputation methods. The µ and
σ2 values of all variables are shown.

Variables
X1 X2 X3 X4 X5 X6 X7 X8

µ 191.25 156.16 536.92 544.79 693.06 766.90 744.81 269.08
σ2 1.18 1.29 1.19 0.83 0.80 0.55 0.79 0.78

Table B.10 – N600 synthetic dataset (n= 600, p= 30) used to assess imputation methods. The
µ and σ2 values of all variables are shown.

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 216.99 512.02 244.01 333.99 172.01 241.02 211.04 310.99 158.94 402.06

σ2 0.92 1.00 0.99 1.03 1.01 1.01 0.96 1.05 0.96 0.91

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

µ 59.95 400.97 406.00 206.03 116.01 230.02 499.05 488.02 24.05 283.99

σ2 0.91 1.06 0.97 0.94 1.14 1.06 1.03 0.87 0.95 0.98

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

µ 564.03 179.04 517.02 164.00 541.04 344.94 33.01 245.98 71.98 81.95

σ2 1.13 0.93 1.11 1.08 0.99 0.90 0.92 1.03 1.06 0.99

Table B.11 – N4000 synthetic dataset (n = 4000, p = 53) used to assess imputation methods.
The µ and σ2 values of all variables are shown.

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 97.02 513.00 517.00 487.99 362.98 893.01 355.99 688.98 661.01 817.00

σ2 1.01 1.02 1.00 0.97 1.01 1.01 1.01 1.02 0.98 0.98

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

µ 67.02 480.96 363.01 897.00 385.99 480.01 888.02 789.00 738.99 39.99

σ2 0.99 1.03 0.96 0.95 0.99 1.01 0.98 1.04 0.99 1.01

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

µ 670.98 655.01 769.99 384.00 396.00 765.01 10.01 118.02 243.99 608.96

σ2 1.05 0.99 1.02 1.03 1.02 1.01 0.98 0.98 1.01 0.99

X31 X32 X33 X34 X35 X36 X37 X38 X39 X40

µ742.00 199.99 246.01 562.00 188.99 576.96 86.96 424.01 640.00 422.99

σ2 1.00 1.00 0.99 1.03 1.04 1.01 0.99 0.99 1.02 0.97

X41 X42 X43 X44 X45 X46 X47 X48 X49 X50

µ 260.99 527.04 659.01 237.00 61.03 165.99 227.00 102.00 596.99 214.01

σ2 0.99 0.97 1.00 1.04 0.96 1.01 1.01 0.99 1.01 1.02

X51 X52 X53

µ 483.01 94.99 496.01

σ2 1.00 1.02 1.03
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Table B.12 – N20000 synthetic dataset (n= 20000, p= 98) used to assess imputation methods.
The µ and σ2 values of all variables are shown.

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 204.00 311.99 338.00 154.00 272.99 513.98 391.99 417.00 578.00 386.00

σ2 0.99 1.00 1.00 1.00 1.01 0.99 1.00 0.99 1.00 0.99

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

µ 560.01 771.01 172.00 116.00 587.99 11.99 265.99 827.00 544.99 300.00

σ2 1.00 1.01 0.99 1.00 0.99 1.01 1.00 1.01 0.99 1.00

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

µ 29.00 728.99 471.00 355.00 446.00 422.99 665.00 502.00 797.00 623.02

σ2 0.99 1.02 1.00 1.01 0.99 0.99 1.00 0.99 1.00 1.01

X31 X32 X33 X34 X35 X36 X37 X38 X39 X40

µ 789.01 620.00 7.99 386.99 137.00 246.01 821.00 370.00 204.00 786.00

σ2 1.00 1.00 1.00 1.01 1.02 1.00 1.00 1.00 1.00 0.99

X41 X42 X43 X44 X45 X46 X47 X48 X49 X50

µ 817.99 254.00 682.01 167.01 56.01 462.99 39.00 574.01 532.99 394.00

σ2 1.00 1.01 1.02 0.99 1.00 1.00 0.99 0.99 0.99 1.02

X51 X52 X53 X54 X55 X56 X57 X58 X59 X60

µ 454.00 440.00 704.00 615.00 794.00 65.00 168.00 335.01 845.00 252.01

σ2 1.01 1.00 1.00 0.99 1.01 1.01 1.00 1.01 1.01 1.00

X61 X62 X63 X64 X65 X66 X67 X68 X69 X70

µ 319.99 4.01 285.00 19.99 839.00 571.99 373.00 27.00 538.99 27.00

σ2 1.01 0.98 1.00 1.01 1.03 0.99 1.01 0.98 1.00 1.00

X71 X72 X73 X74 X75 X76 X77 X78 X79 X80

µ 366.00 740.01 4.00 834.99 631.01 442.01 367.00 716.00 279.00 730.99

σ2 0.99 1.00 1.02 1.01 0.99 1.01 1.01 1.00 0.99 1.01

X81 X82 X83 X84 X85 X86 X87 X88 X89 X90

µ 610.00 280.00 593.98 282.99 510.00 714.00 304.99 738.00 500.99 519.99

σ2 1.01 1.00 1.00 1.03 0.98 1.01 1.00 1.00 1.01 0.99

X91 X92 X93 X94 X95 X96 X97 X98

µ 29.00 522.99 8.01 737.00 610.00 201.01 558.01 180.99

σ2 1.00 1.01 1.00 0.99 1.01 1.01 1.01 1.00
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B.4 Datasets for assessment of outliers processing

Table B.13 – N21 synthetic dataset (n = 21, p = 8) used to assess outliers processing methods.
The µ and σ2 values of all variables are shown.

Variables
X1 X2 X3 X4 X5 X6 X7 X8

µ 190.88 155.89 536.80 544.77 693.12 766.84 744.70 268.90
σ2 4.43 5.43 3.05 0.76 1.10 1.43 1.52 3.31

Table B.14 – N600 synthetic dataset (n= 600, p= 30) used to assess outliers processing methods.
The µ and σ2 values of all variables are shown.

Variables
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 216.79 511.82 243.71 333.76 171.73 240.75 210.81 310.80 158.73 401.81
σ2 2.74 3.20 3.75 3.35 3.95 3.36 3.30 2.96 2.86 3.45

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20
µ 59.69 400.70 405.78 205.84 115.79 229.78 498.84 487.79 23.84 283.77
σ2 3.07 3.91 3.03 2.83 3.68 3.55 3.19 2.92 2.98 3.20

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30
µ 563.79 178.79 516.76 163.80 540.84 344.65 32.78 245.72 71.75 81.70
σ2 3.74 3.51 3.72 3.29 3.23 3.56 3.08 3.75 3.45 3.34

Table B.15 – N4000 synthetic dataset (n = 4000, p = 53) used to assess outliers processing
methods. The µ and σ2 values of all variables are shown.

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 96.81 512.78 516.77 487.76 362.76 892.80 355.78 688.74 660.76 816.75

σ2 3.04 3.21 3.31 3.21 3.24 3.07 3.09 3.40 3.29 3.48

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

µ 66.78 480.77 362.78 896.77 385.73 479.81 887.78 788.77 738.74 39.80

σ2 3.29 3.11 3.28 3.17 3.36 3.11 3.31 3.34 3.37 3.09

X21 X22 X23 X24 X25 X26 X27 X28 X29 X30

µ 670.76 654.75 769.78 383.76 395.80 764.82 9.76 117.78 243.80 608.72

σ2 3.42 3.55 3.12 3.53 3.19 2.94 3.54 3.30 3.10 3.24

X31 X32 X33 X34 X35 X36 X37 X38 X39 X40

µ 741.76 199.76 245.79 561.79 188.78 576.75 86.75 423.77 639.80 422.74

σ2 3.39 3.39 3.04 3.20 3.17 3.19 3.10 3.37 3.05 3.39

X41 X42 X43 X44 X45 X46 X47 X48 X49 X50

µ 260.75 526.78 658.79 236.77 60.77 165.77 226.77 101.76 596.79 213.80

σ2 3.23 3.48 3.33 3.36 3.36 3.23 3.21 3.25 2.96 3.25

X51 X52 X53

µ 482.74 94.79 495.78

σ2 3.57 3.06 3.35
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B.5 Semi-synthetic datasets

Table B.16 – FQ16 semi-synthetic dataset (n= 16, p= 13). The µ and σ2 values of all variables
are shown.

Variables
X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 9.87 0.72 89.95 0.17 62.00 32.01 54.24 13.64 169.27 3.98
σ2 0.64 0.15 61.62 0.05 2418.85 3788.79 9718.26 44.65 12204.02 7.01

X11 X12 X13
µ 541.63 21.14 0.16
σ2 320283.22 352.27 0.01

Table B.17 – FQ1000 semi-synthetic dataset (n = 1504, p = 26). The µ and σ2 values of all
variables are shown.

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 9.78 24.40 3.38 65.36 171.03 2.31 0.89 0.35 0.29 0.97

σ2 1.21 2496.01 4.58 2619.00 11239.40 0.97 0.68 0.16 0.56 1.18

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

µ 11.65 10.68 17.82 11.42 3.38 44.58 16.89 4.16 0.19 514.71

σ2 146.14 64.15 394.60 1.90 2.35 10935.99 73.99 15.83 0.04 205676.86

µ 88.27 0.13 20.93 7.78 13.45 53.45

σ2 101.23 0.04 271.96 0.09 38.44 6617.83

Table B.18 – FQ7000 semi-synthetic dataset (n = 7520, p = 26). The µ and σ2 values of all
variables are shown.

Variables

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

µ 9.78 24.40 3.38 65.36 171.03 2.31 0.89 0.35 0.29 0.97

σ2 1.21 2494.69 4.58 2617.60 11233.42 0.97 0.67 0.16 0.56 1.18

X11 X12 X13 X14 X15 X16 X17 X18 X19 X20

µ 11.65 10.68 17.82 11.42 3.38 44.58 16.89 4.16 0.19 514.71

σ2 146.06 64.12 394.39 1.90 2.34 10930.17 73.95 15.82 0.04 205567.45

X21 X22 X23 X24 X25 X26

µ 88.27 0.13 20.93 7.78 13.45 53.45

σ2 101.18 0.04 271.82 0.09 38.42 6614.31
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