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Summary
In this thesis, I provide models and nu-
merical tools to better understand and

Résumé
Dans cette thèse, je propose plusieurs
modèles et outils numériques afin de

predict the behavior and development mieux comprendre et prédire le compor-
of neuronal cultures and devices. Neu- tement et le développement de cultures
ronal cultures have proven invaluable et dispositifs neuronaux. Les cultures de
in improving our understanding of how neurones ont en effet été un outil pré-
the brain processes information, by en- cieux durant les 20 dernières années :
abling researchers to investigate neu- elles ont permis de mieux comprendre la
ronal and network response functions to manière dont le cerveau traite les diffé-
various perturbations and stimuli. Fur- rentes informations qui lui parviennent
thermore, recent progress in microflu- en donnant aux scientifiques la possibi-
idics have opened the gate towards more lité de tester les effets de médicaments
elaborated neuronal devices, bringing us sur les neurones, ainsi que d’obtenir leurs
one step closer to complex signal pro- réponses détaillées à diverses perturba-
cessing with living in vitro neurons. tions et stimuli. De plus, de récentes

avancées en microfluidiques ont ouvert
la voie à la conception de dispositifs neu-
ronaux plus élaborés, rapprochant en-
core un peu plus la perspective du trai-
tement de signaux complexes via des
neurones in vitro.

My first point will be to propose a Dans une première partie, je propose
mechanism so as to explain the epilep- un mécanisme pour expliquer les bouf-
tiform bursts of activity present in cul- fées d’activité épileptiformes présentes
tures, mechanism which I formulate as a dans les cultures, mécanisme que je for-
concise theoretical model. I subsequently mule via un modèle théorique concis.
test the predictions of this model on J’effectue ensuite une vérification expé-
cultures and show that they are indeed rimentale des prédictions du modèle sur
compatible with the behavior observed des cultures et montre que celles-ci sont
in vitro. I further develop this descrip- effectivement compatibles avec le com-
tion in the second part of the thesis, portement observé in vitro. Dans une
where I analyze its spatiotemporal dy- seconde partie, je décris plus en détail
namics and the fact that bursts nucleate la description de la dynamique spatio-
in specific areas in the network. Since temporelle du phénomène, notamment
predictions and analysis of these nucle- le fait que les bursts nucléent en des
ation centers strongly depends on the zones bien précises du réseau neuronal.
network structure, I develop a simula- Comme les prédictions et analyses effec-
tion platform to enable efficient model- tuées dépendent fortement de la struc-
ing of the network development. This ture de ce réseau, je présente ensuite
software takes into account the inter- la réalisation d’une plateforme de simu-
actions between the neurons and their lation afin de permettre de modéliser
environment and is the first platform to efficacement le développement des ré-
provide versatile and complete models seaux neuronaux. Ce logiciel prend en
to simulate the entire growth process of compte les interactions entre les neu-



neurons. I demonstrate that this simu- rones et leur environnement et constitue
lator is able to generate valid neuronal la première plateforme à fournir des mo-
morphologies, then use it to postulate dèles polyvalents et complets pour dé-
new network topologies to describe neu- crire l’intégralité du processus de crois-
ronal cultures, as well as to reproduce sance neuronal. Je montre ensuite que
existing neuronal devices. I then show ce simulateur est capable de générer des
that the activities sustained by these morphologies valides et l’utilise pour
structures are compatible with the ex- proposer des nouvelles topologies de ré-
perimental recordings. Eventually, I dis- seaux afin de décrire les cultures de neu-
cuss several future directions for which rones. Je reproduis également des dispo-
the use of neuronal devices would en- sitifs neuronaux existants et montre que
able to circumvent current limitations les activités entretenues par ces struc-
of neuronal cultures, thus providing new tures sont compatibles avec les observa-
information on the processes which un- tions expérimentales. Enfin, je discute
derlie brain development and plasticity. plusieurs directions de recherche pos-

sibles, pour lesquelles l’utilisation de dis-
positifs neuronaux spécifiques permet-
trait de contourner les limitations des
cultures neuronales et fournirait ainsi
de nouvelles informations sur les proces-
sus sous-tendant le développement et la
plasticité cérébrale.
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Glossary

action potential sudden and localized increase of the membrane potential of a
neuron that is actively propagated mostly from the soma and the base of the
axon towards the periphery of the axonal tree; it is the base unit of significance
in neuronal communications 15, 16, 23, 34, 50, see spike

AdExp adaptive Exponential Integrate-and-Fire 17–19, 34, 39–43, 55, 133, 178, see
aEIF

aEIF adaptive Exponential Integrate-and-Fire see AdExp

AHP After HyperPolarization See “The biological reality” (subsection 1.3.1), 15, 17,
34, 43, 45, 51

ANN Artifical Neural Network 2, 3

API Application Programming Interface 84

centrifugal order integer describing the number of bifurcation points that separate
a terminal segment of a tree (a growth cone, in the case of a neurite) from its
root (the soma) 100

CNS Central Nervous System 13, 24

CV Coefficient of Variation 57, 58

DIV Day In Vitro 12, 69, 73

EDR Exponential Distance Rule 67, 69, 73, 82, 111, 114, 125, 145, 146, 154

EEG ElectroEncephaloGraphy 2, 27

fAHP fast After HyperPolarization 43–45, 152

fMRI functional Magnetic Resonance Imaging 2, 27

FP2L Front-based Power-Law Lateral 103, 104



IBI Inter-Burst Interval 42, 43, 46–48, 55–58, 65, 66, 76, 77

integrate-and-fire models are simple mathematical descriptions of neurons as
excitable units; they model the neuron as an integrator (storing incoming
inputs) that will emit a spike (fire) when the cumulated inputs reach a certain
level. Such models contain at least one continuous variable (the membrane
potential) and have a discrete output function (spiking events). Examples are:
leaky integrate-and-fire (LIF), exponential integrate-and-fire (EIF) 16, 17, see
aEIF

ISI Inter-Spike Interval 20, 56

mAHP medium After HyperPolarization 43–46, 152

MEA Micro-Electrode Array 4, 5, 62, 67

mEPSC miniature Excitatory Post Synaptic Current 33, 64, 146

mEPSP miniature Excitatory Post Synaptic Potential 33

mini Miniature excitatory post-synaptic current, post-synaptic event triggered by
the spontaneous release of vesicle at an excitatory synapse. See also mEPSC
and mEPSP 33–35, 50, 64, 66, 70, 76, 146

MT microtubule 12, 13, 88–90, 94–96, 99, 102

PSC Post Synaptic Current 24, 35

QP Quorum Percolation 54, 165, 178

sAHP slow After HyperPolarization 35, 42, 43, 45, 152

spike sudden and localized increase of the membrane potential see action potential

STD Short-Term Depression 32, 35, 66



Chapter 1

Introduction

As hinted in the title, the main focus of this manuscript shall be the investigation of
the various mechanisms underlying the growth and epileptiform activity of neuronal
cultures. The objective behind this endeavour, beyond the potential insights provided
by a deeper understanding of these phenomena, is to prepare for the next step,
namely the design and investigation of neuronal devices, which will be described
hereafter.

Before going into the heart of the subject, I will first provide some context and
necessary notions, which will be referred to regularly in the main matter.
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1.1 What is this all about?
1.1.1 The big picture

How did we humans become sapient creatures? How do thoughts and consciousness
emerge from the myriads of electro-chemical signals our brain hosts? What exactly
would an answer to these questions bring us?

None of these daunting questions will be answered in this manuscript; however,
they have doubtlessly led many researchers to the investigation of the brain. This
incredible structure, which has emerged and been selected over millions of year in all
animals, is itself composed of intricate networks made by up to several billion cells,
resulting in trillions of connections.consciousness

and
intelligence as

an emergent
phenomenon

There are many ways to study such a system; for
instance from a global, macroscopic perspective, studying the interactions of large
brain areas using ElectroEncephaloGraphy (EEG) or functional Magnetic Resonance
Imaging (fMRI), or taking a bottom-up approach, building on from the neuron to
smaller, then larger networks, until we reach a sufficient degree of complexity, the
level where a first flash of consciousness would appear.

Moreover, though there are many limitations to the human brain, and despite the
fact that it might be very far from the optimal structure in term of computational
power1, its processing capabilities with respect to its actual power consumption are
indeed beyond compare.

However, the brain seemed just too complex, functioning at scales that involve
too many interacting units, to be studied with current mathematical and physical
descriptions. So I started thinking about how I could get the chance of studying the
emergence of complex signal processing, however remote it might be from actual
thoughts or consciousness.

how to
approach this

question?

Well, single neurons already perform some signal processing through the complex
interactions between the afferent signals inside the dendritic tree and the integration
and comparison performed in the soma and axonal hillock — to transmit or not
an action potential to the neighboring neurons. But this felt a little too limited,
compared to the actual brain, especially since I discovered network theory during
my Masters degree, which was quite stimulating and seemed to go beyond what I
had seen before.

I was thus looking for “complex”, but not intractable networks. . .

Artificial Neural Networks
In parallel to the biological study of the brain, the field of artificial intelligence, or more
accurately “machine learning”, given our current capabilities, started investigating
questions such as attention (Olah et al. 2016; Xu et al. 2015), intent, and consciousness
(Russell et al. 1995; Searle 1980).

These two fields became closer and closer as perceptrons and Artifical Neural
Networks (ANNs) were discovered. With ANNs, computer scientists began to incor-
porate some of the biological knowledge on neurons to help machines become more
“autonomous” (Marblestone et al. 2016). On the other hand, could we, by finding
ways to implement cognitive mechanisms in silico, gain some insights into potential
biological mechanisms?trying to build

an artificial
intelligence?

As technology and theory advanced, more complex networks
were used, up to the current deep learning methods which reproduce the principle of

1 Optimality in the brain is always considered with respect to some constraints, either wiring
length, energy consumption. . . and is probably not optimal at all from an “absolute” perspective.
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a modular and hierarchical brain encoding more and more abstract information and
concepts in higher layers.

Other machine learning technics, such as reservoir computing (Lukoeviius et al.
2009), were also inspired by biological neuronal systems, which decided me to start
my Masters internship in the team of Peter Dominey, investigating how the structure
of the reservoir and the learning rule might impact the efficiency of the algorithm.

The hope for these methods was that, by finding general principles for computation
and analysis, we would obtain leads as to how our brain processes information,
generalizes concepts, and makes decisions. ANNs indeed led to considerable progress
in what machines could do without requiring human intervention, even enabling
them to outperform humans at chess, go, managing problems. . . However, these
feats were significantly conditioned by improvements in hardware performance, as no
theoretical breakthrough was encountered so far, and the energy efficiency of current
machine learning methods are still quite far from narrowing the gap with the brain2.
The reasons behind the emergence of computing capabilities thus stay elusive, and
most machine learning techniques remain quite distant from biological mechanisms.

1.1.2 Neuronal cultures and devices
Part of the complexity of the brain comes from its intricate 3D structure, which
deeply influences the connectivity of the neurons. Another problem lies in the fact
that neuron or areas in the brain can seldom be studied in isolation but are generally
subjected to a large number of incoming stimuli.

However, starting in 1880 with Wilhelm Roux and confirmed by Ross Harrison first
culture of frog neurons (Harrison 1907), simplifying the

system
the ability to cultivate neurons changed this

fact. For the past 15-20 years, protocols for long term cultures of primary mammalian
neurons (Beaudoin et al. 2012; Potter et al. 2001) have enabled researchers to use
neurons that are embedded in much simpler, 2-dimensional networks, as new case
models. This led to tremendous simplifications in how the system can be studied,
controlled, and monitored. From then on, it was at last possible to study the
processes of real biological units without the topological complexity of the brain and
in “isolation” from unwanted stimuli.

Through this new system, it now seemed possible to bridge the gap between
computer science and neuroscience, trying to harness the power-efficiency and adapt-
ability of biological units to reproduce and adapt computational principles that had
been investigated on their silicon-based counterparts.

Yet, as a former PhD student in the NeuroPhysics group once said:

“ Leaving well-behaved models and semi-conductors for the realm of
biology is easier said than done.” Renaud Renault

2 the observation of the discrepancy between brain and machine consumption is in fact a significant
argument in favor of neuromorphic hardware, which might provide a way around the energy
wall (Hasler et al. 2013).
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Indeed, to reproduce the complexity of current artificial circuits such as perceptrons,
reservoir computing, or multi-layer networks,how to

compute with
simple

networks?

many technical problems must first be
overcome, in order to answer these fundamental questions: starting from a single
neuronal cell, how can one build a structure capable of processing signals in a
predefined and reliable way? What is required to compute with biological neurons?

Making, observing, stimulating
To answer these questions, one must first make the culture, then keep the neurons
alive in order to record and analyze their activity.

Many protocols exist to obtain neuronal cultures; the neurons used in this study
were primary cells, i.e. obtained directly from the animals (Beaudoin et al. 2012),
then dissociated. However, direct brain slices can also be used (Humpel 2015; Mathis
et al. 2011) and other cultures are derived from stem-cells (Darville et al. 2016)
or other immortalized neuronal cell lines (Amini et al. 2013).first, build and

characterize
the system

Once the neurons
are obtained, they are put in a growing and nutritive medium where they develop
and form the network; details on the plating and media can be found in “Culture
preparation and feeding procedures” (section E.1).

Once the neurons are in the culture, their electrical activity can be observed directly
by patching them with electrodes; such technique led to significant improvements
in our understanding of single neuron behavior, but becomes limited when large
networks are involved. However, the planar nature of most cultures makes them easily
recorded by a Micro-Electrode Array (MEA), generalizing the previous principle to
many cells at a time3; the cultures can also be observed under the microscope, in
order to observe the neuronal development. Optical and electrical recording thus
showed that, after 5 or 7 days, the network becomes connected enough for collective
activity to emerge.

Figure 1.1.: MEA culture dish and zoom on the electrodes.
These arrays are generally composed of 10-micrometer electrodes which can stimulate
the tissue-and track the response. The picture shows a 1-week old culture of ∼ 50000
neurons and glial cells from embryonic rat cortex, growing on an MEA and forming a
dense network 1–2 mm across. Fifty-nine 30µm electrodes spaced at 200 µm intervals
connect a few hundreds of the network’s neurons to the outside world, by allowing
their activity to be recorded or evoked by electrical stimulations. Original figure
from Bakkum et al. 2007

3at the cost of moving from intra to extracellular recording, which leads to a decrease in the
precision with which the variations of the potential can be measured.
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Apart from electrical recordings, fluorescent probes can be used to optically
monitor the neuronal activity, making neurons light up when they activate. Such
microscopy techniques enable one to obtain more detailed spatial information and to
combine several optical probes; they can thus often give more information, compared
to electrode-based recordings, but have lower temporal resolution and sensitivity,
making it difficult to discern single spikes; furthermore previous calcium indicators
were toxic for the cells, preventing long-term recordings of cultures. New probes
have improved temporal resolution and are genetically encoded so that they do
not affect the cells anymore; however, with the recent progress in CMOS-MEA
technologies, the two main advantages of calcium imaging in cultures would be to
couple morphological and activity-recordings, and the concurrent use of calcium
reporters with other probes, e.g. to identify which neurons are inhibitory (DeRosa et
al. 2015).

Figure 1.2.: Optical recording of a neuronal culture using Ca2+.
(a) Bright-field image of a circular culture, grown on glass, containing about 3000
neurons. (b) Inset showing a subarea of the culture and the distribution of neurons
inside. The circle identifies a single neuron. (c) Corresponding fluorescence image
during a spontaneous activity event. Bright spots are firing neurons. The resolution
of the image is the same as the actual measurements. (d) Fluorescence signal from a
30-minute recording of the spontaneous activity in the culture shown in a, averaged
over the 500 brightest neurons. Figure adapted from Orlandi et al. 2013.

then interact
to probe
further

In both MEAs and calcium imaging, the observation setup can often simultaneously
be used to stimulate the neurons locally, both in time and space, enabling the precise
study of the neurons’ and network’s response functions.

Complex circuits and devices
In the past decade, protocols to culture neurons over long timescales have been
refined, to the extent that obtaining networks and keeping them alive is no longer
an issue. In parallel, researchers therefore started investigating how to interact more
extensively with the neurons, developing new methods to stimulate them, but also
to guide the development of the neurons, in order to obtain specific patterns of
connectivity in the network.
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Thanks to progress in microfluidics and chemical patterning, it is now possible to
designprogressively

increase the
complexity

complex structures which spatially segregate neurons into distinct populations
while directing the connectivity in a precise and reproducible fashion. Figure 1.3
gives examples of prototypes of such devices.

Figure 1.3.: Proof of concept for neuronal devices.
Right device represents the basis of a neuronal diode, with two chambers linked by
asymmetrical funnels — wide top entrance and narrow bottom entrance — which
allows neurons from the top chamber to project axons to the bottom chamber by
prevents neurons from the bottom chamber to project back. Left device shows a
three-chamber devices with a “multiplexer” guiding the axons towards the right
chamber. Image adapted from Renault 2015.

This new ability of shaping the network connectivity at the level of populations
and not individual neurons enables both a good reproducibility from a statistical
standpoint, and the study of interactions at a larger scale compared to the previous
neuron-neuron communications.

Fundamental and medical implications
Thanks to neuronal cultures, many medical advances were made in drug testing,
modeling of viral infections or neurodegenerative diseases (Amini et al. 2013; Costa
et al. 2011; Schlachetzki et al. 2013). They have also brought a significant amount
of fundamental knowledge on the physiology of neurons, their development, but also
on more global properties such as circuit formation or short term synaptic plasticity.

understanding
epileptiform

activity

Furthermore, since they typically display epileptiform activity, which will be one of
the central theme of this thesis, neuronal cultures are seen as a promising way of
improving our understanding of epileptic activity (Dichter 2009).
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Moreover, the ability to design more complex neuronal devices, with different
activity patterns, or precisely tuned bursting frequency, could also provide new
perspectives in the field of neuroprosthetics4. For instance, medical protocols such as
the Vagus Nerve Stimulation (VNS) or Spinal Cord Stimulation (SCS) improving

neuro-
prosthetics

have been
used to treat epilepsy (Ben-Menachem et al. 2015), chronic pain (Deer et al. 2014),
or to recover some motor function after paralysis (Ievins et al. 2017). Though such
treatment are not exempt of risks (Mekhail et al. 2011), their efficiency has been
conformed by numerous studies, and if neuronal devices can enable more physiological
stimulation methods, this might help reduce the severity of potential complications.

diseases and
signal
processing

Eventually, aside from potential applications in neuroprosthetics, neuronal devices
also provide case models to study the propagation of neuro-degenerative diseases
(Takeda et al. 2015), axonal regeneration (Tong et al. 2015), or more generally, the
propagation of signals on complex structures.

1.1.3 A thesis in computational neuroscience
And this is how I decided to do a PhD in computational neuroscience, focusing on
neuronal cultures and devices. I found a nice lab in Paris, started discussing and
writing a project, and this manuscript is the result, 3 years later. So let me try to
contextualize all this in a nutshell.

First of all, what is computational neuroscience? Historically, the field progressively
emerged and gained importance with the development of computer science. It
gradually became known as cybernetics, with studies on neurons and networks by
researchers such as von Neuman (Neumann 1956), McCulloch and Pitts (McCulloch
et al. 1943), or Arbib (Arbib 2018), and was eventually defined as computational
neuroscience in the eighties–nineties, for instance by Eric Schwartz:

“ Computational neuroscience might be characterized as that area
of overlap between neuroscience and computer science which required
sufficient specialized expertise to justify a new subdiscipline.”(Schwartz 1993)

However, the scope of a field can obviously change in time and, as overlapping
notions between neuroscience and computer science is getting wider and wider, more
and more people would now provide a significantly different definition, such as

“ Computational neuroscience is the theoretical study of the brain to
uncover the principles and mechanisms that guide the development,
organization, information processing, and mental abilities of the nervous
system.” (Trappenberg 2010)

Indeed, since computer science is intricately associated to many scientific fields,
defining computational neuroscience through an overlap does not seem to really
make sense anymore, even though it was not purely restricted to methods but also
to a way of approaching “neuronal algorithmics”.

4 also called neural prosthetics (Shenoy et al. 2012), these prostheses are aimed at restoring motor
functionality in patients suffering from neurological injuries or disorders. See also the wikipedia
page on neuroprosthetics for additional examples: https://en.wikipedia.org/wiki/Neuroprosthet-
ics.

https://en.wikipedia.org/wiki/Neuroprosthetics
https://en.wikipedia.org/wiki/Neuroprosthetics
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In this manuscript, I will be referring to computational neuroscience as acomputational
neuroscience

as the study of
computation
in the brain

subpart of neuroscience focused on understanding and modeling how
computation and signal processing is performed by single neurons or
brain-cell assemblies.

This definition aims at grouping together studies sharing a similar goal (the under-
standing of computation, as opposed to development, or diseases) but not necessarily
with similar methodologies or technical aspects.

However, given that many of these studies belong to theoretical neuroscience,
two important issues are the quality and availability of the computational material
(model, software, and algorithms) and the relation between the models and the
current experimental capabilities.providing

open, reliable,
and

reproducible
material

As for the first part, many people (Manninen et
al. 2018; Nordlie et al. 2009) have already stressed the importance of implementing
workflows to ensure that:

• a study can be replicated (results can be obtained again by rerunning the code
provided by the authors),

• the models can be reproduced using different software thanks to the model and
code descriptions,

• if deemed useful, the code is clear and documented enough so as to be reusable
by others in a different study.

In that perspective, I must say that, apart from my theoretical work, this PhD
actually included a large amount of computational and software engineering work to
which this manuscript will not do justice. Indeed, they were designed only as tools to
help me study more and more complex phenomena, not for themselves; the details
of their internal routines and how I implemented, debugged, and tested them would
be out of place in this manuscript.

However, I believe that this is a necessary dark side of computational neuroscience,
and all I can hope for is that the open-source (Gleeson et al. 2017) software that
I spent so many hours designing – trying to apply the good practice methods I
mentioned above – will eventually prove useful to future studies and researchers.

with a few
additional
objectives

Regarding the second topic, one of the questions I often hear is “how can we,
theorists, make things go forward”? I am rather optimistic about this issue, as there
are many ways to proceed (forward is vague enough after all. . . ); for instance one
can

• tackle research debt5 by improving existing models, building simple and clear
theoretical frameworks or unified descriptions for phenomena. . .

• provide new and experimentally-testable hypotheses to actually get answers
(or new questions) on these phenomena;

• design new tools when needed (make them, make them good, make them free).

5https://distill.pub/2017/research-debt/

https://distill.pub/2017/research-debt/
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This was basically my endeavor these past three years: help improve a little
our understanding of how computation is performed by brain cells through simple
mathematical frameworks, new computational tools — that I made as documented,
reusable, and reliable as I could — and experiments or experimental proposals.
And this is where we begin.
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1.2 Brain cells
1.2.1 Neurons: structure and function

Brain cells, and neurons in particular, display very specific morphologies compared
to most cells in other body parts. These morphologies are adapted to their specific
function of information collection and transmission.

(a) Drawing of a Purkinje neuron, with its
exhuberant dendritic arbor.

(b) Cortical layers including several pyrami-
dal cells.

Figure 1.4.: Two of the first drawings of neurons by the pioneer artist and pathol-
ogist Santiago Ramón y Cajal, safeguarded by the Cajal Institute in Madrid, and
duely stamped by Pedro Manzano.

In fact, Cajal, the first person to ever see a neuron6,neurons are
shaped to

receive and
transmit

signals

had the brilliant insights, just
from looking at the cell structure, that neurons passed electrical information in only
one direction, and communicated together at small, localized places, the synapses.

Indeed, we now know that neurons (also called nerve cells) are excitable cells
which are able to receive and transmit electro-chemical signals. As shown on Figures
1.4 and 1.5, neurons gather incoming signals from their neighbors through rootlike
dendrites. These signals are then integrated inside the soma and in the region of the
axon hillock; depending on the context and on their strength, the neuron will then
choose to transmit or not a new signal via a longer terminal, the axon.

6 Santiago Ramón y Cajal, in the years 1890s, used a small microscope, working by gaslight,
and observed thin slices of brain tissue, which he had previously subjected to a silver-staining
solution. He discovered not the continuous network expected at the time, but a set of individual
cells connected together: the neurons. Read more on the online article from Fields 2017.

http://www.scholarpedia.org/article/Santiago_Ram%C3%B3n_y_Cajal
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Figure 1.5.: Schematics of a neuronal cell in the central nervous system. Internal
organelles (endoplasmic reticulum (ER). . . ) visible inside the cell body, or soma;
are common to all animal cells. However, the long protrusions coming out of the
cell, which differenciate into the dendrites and the axon, are specific to neuronal
cells. Adapted from Wikimedia commons, public domain images by LadyofHats and
Andrew c.

To improve the speed and reliability of the signal’s propagation, the axon can be
covered in a sheath of myelin; however, myelination is not present on all axons, nor
necessary if signals are conveyed over small distances.

The signals transmitted are conveyed under the form of localized electric waves,
which progress along the axons and dendrites. In the axon, they can be transmitted
from one neuron to the next at synapses, where the information is “converted” to
chemical signals which cross the inter-cellular space to reach the membrane of the
target neuron, where they are converted back to electric waves.

1.2.2 Neuronal development: from seed to tree
To generate the intricate structure of a neuron, the cell undergoes a multi-stage
development from an initial ovoid or slightly elongated shape to reach its final
arborescent structure.

Polarization
The first stage, which is especially visible in in vitro culture, is the progressive
apparition of protrusions, making the cell apear “spiny”, cf. Figure 1.8.

https://commons.wikimedia.org/
https://commons.wikimedia.org/wiki/File:Complete_neuron_cell_diagram_en.svg
https://commons.wikimedia.org/wiki/File:Neuron_with_oligodendrocyte_and_myelin_sheath.svg
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(a) Stage 1 neuron. (b) Stage 2 neuron. (c) Stage 3 neuron.

Figure 1.6.: Early development of a neuron: at stage 1 (a), the cell is only composed
of a soma and small protruding filopodia; when it reaches stage 2 (b) the filopodia
evolve into minor, unpolarized processes which compete with one another until one
undergoes axonal specification — stage 3 (c) after 1.5 to 3 DIVs. At that point, the
axon elongates more significantly while the outgrowth of the other neurites (the
dendrites) is less pronounced. Neuron morphologies are taken from (Baj et al. 2014).

These immature neurites first compete with one another until one prevails and
differenciates into the axon. This special neurite elongates faster and often longer
than the others.

The formation of the neuronal processes — dendrites and axon — is made possible
by the action of intracellular filaments which compose the cytoskeleton and maintain
the underlying structure of the axon and dendrites.

biopolymers
support these

elongated
processes

Among the filaments involved in the neuronal morphogenesis, the main actors
are two polymers: actin and microtubules (MTs) (Coles et al. 2015; Conde et al.
2009). The former forms rather flexible filaments, which are mostly responsible for
the initial protrusion of filopodia and lamellipodia during stage 1. The latter is more
rigid and bundles into shafts which support the elongated tubular structure of the
neurite, especially in axons where they form homogeneous bundles with a single
polarization, leading to even more rigid and resilient structures (Sakakibara et al.
2013).

(a) Neuronal outgrowth. (b) Dynamic period. (c) Mature neuron.

Figure 1.7.: Later development of a neuron: after 4 DIVs, steady elongation and
branching of the neurites occurs (a); once the arborescence of the structure is
established, neurons often undergo a dynamic phase b) of successive elongation and
retraction of the branches (black and white arrows), where some are selected and
others will be pruned. Eventually, the established branches are stabilized (c) and
resume their elongation until the final shape is obtained. Neuron morphologies are
taken from (Baj et al. 2014).
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Neurite outgrowth
Once the neurites are differenciated into axon and dendrites, both start elongating
and branching to form the arborescent structure which characterizes neurons. This
phenomenon, however, is not continuous but interspersed with numerous periods of
retraction or pausing which are tightly linked with the cytoskeletal, and especially
the MTs dynamics (Coles et al. 2015).

Though the principles of this development may first appear rather straightforward,
subtle variations in the proportion of the mechanisms involved will lead to vastly
different structures, as one can see on Figure 1.4. One of the central goal of this thesis
will thus be to provide simple models which should allow to study these phenomena
through a generic and efficient simulation tool, as will be developed in “Accounting
for neuronal development” (chapter 4).

1.2.3 Companions: glial cells
Despite our focus on neurons, they are not the only cells in the Central Nervous
System (CNS). Far from it, actually, since glial cells or neuroglia represent half of
the brain and spinal chord volume.

These cells are mostly divided into olygodendrocytes (76%), astrocytes (17%), and
miccroglia (7%), which serve crucial role to maintain the brain in a fully functional
state.

glial cells play
an active role
in neuronal
networks

Olygodendrocytes are mostly involved in axonal myelination in the CNS, allowing
fast and lossless transmission of electric signals over large distances. Astrocytes play
a crucial role in calcium propagation, potassium regulation, and are tightly associated
to synapses, in a structure called tripartite synapse. Microglia are much smaller cells
compared to neurons, oligodendrocyte, and astrocytes; they are mostly macrophages
and constitute the main active immune defense in the CNS.

Although these cells play a very significant role, we will mostly ignore their presence
in this study. In neuronal cultures, oligodendrocytes and microglia are usually scarcely
present anyway (axons are not myelinated), so only the presence of astrocytes is
really significant and we will only consider their presence by acknowledging that their
work in redistributing and buffering ions is done properly and keep the extracellular
concentrations homogeneous and roughly constant everywhere.

(a) Olygodendrocyte. (b) Astrocyte. (c) Microglia.

Figure 1.8.: Example of glial cells in the CNS. (a) is from EuroStemCell; (b) is
taken from Wikemedia commons, and originally posted by GerryShaw; (d) is from
NeuroscienceAssociates.

https://www.eurostemcell.org/multiple-sclerosis-how-could-stem-cells-help
https://commons.wikimedia.org/wiki/File:Astrocyte5.jpg
https://www.neuroscienceassociates.com/neurosafety-testing/evaluation-of-perturbationsinflammation/
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1.3 Neuronal dynamics
In this section, I will briefly introduce the electrophysiological principles which enable
neurons to process and transfer information, and describe how such behavior can be
reproduced by concise mathematical models.

1.3.1 The biological reality
As communication between neuronal cells is electro-chemical, the cells must be able
to regulate or induce changes in their membrane potential. The potential of this
membrane is defined by the imbalance between the concentrations of ions inside the
neuron and in the extracellular medium.

To change the value of the membrane potential Vm, the neuron must therefore
change the inner ion concentrations. To that end, numerous pumps and passive
ion channels are embedded in the membrane to allow or force sodium, potassium,
chloride, or calcium to flow in and out of the cell.

Figure 1.9.: Schematics of the obtention of an action potential by the opening and
closing dynamics of the sodium and potassium voltage-gated channels. Rise and fall
times of Vm are typically 1 to 2 ms. Image from HyperPhysics.

http://hyperphysics.phy-astr.gsu.edu/hbase/Biology/actpot.html
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Sodium (Na+) currents tend to depolarize the cell towards less negative values of
Vm, while potassium (K+) currents tend to hyperpolarize the cells, bringing Vm to
more negative values.

At rest, the neuron typically balances the ion concentration to maintain its
potential around −70 to -60 mV. However, when the neuron receives a sufficient
amount of excitatory inputs, it locally generates a very significant depolarization
which is then actively propagated without loss along the whole axonal length: the
action potential or spike.

Figure 1.9 provides a very simplified view of the mechanisms involved in action
potential generation, with the opening and closing of sodium and potassium channels
causing the sharp rise and fall of the membrane potential. Here, both channels
are called voltage-gated because their opening occurs once the membrane potential
crosses a given threshold.

However, other ions also flow in and out of the cell during the action potential.
In particular, calcium (Ca2+) ions flow into the cell around the peak of the action
potential and is responsible for many crucial mechanisms. As will be describe in
“Chemical connections: synapses” (subsection 1.4.1), it enables the release of synaptic
vesicles, which conditions the proper transmission of the signal from one neuron to
the next.

But calcium also plays a second role which will be of primary importance in
the rest of this study. Indeed, not all channels are voltage-gated; some rely on the
presence of a chemical molecule to trigger their opening. This phenomenon is present
in synapses, but also in the main cell body, where calcium binds to several channel
receptors to trigger potassium outflow.

These calcium-gated channels are quite significant because they possess temporal
dynamics that span much wider duration than the voltage-gated channels involved
during spike generation. They are involved in a phenomenon called After HyperPo-
larization (AHP), which results, during some time following the spike, in a lower
excitability of the neuron. Almost all neurons possess a refractory period which
follows the action potential, usually stemming from the slightly slower dynamics
of the K+-channel which continues to let potassium out for some time after the
membrane potential has repolarized to values lower than the resting potential — cf.
Figure 1.9. This “standard” phenomenon typically lasts a few milliseconds longer
than the spike duration, but remains overall quite short. Calcium-gated potassium
channels, however, can remain open for several hundreds of milliseconds, or even
on the order of a few seconds, providing a long-term modulation of the neuronal
dynamics.

Though the conductance of these long-lasting currents is generally small, they
can become quite significant during periods of intense activity, which explains why
they will play such a central role in our study of epileptiform bursts of activity in
neuronal cultures — cf “The influence of neuronal adaptation” (section 2.2).

1.3.2 Neurons as excitable units
If we simplify its behavior to the core, a neuron can be seen as a simple excitable
unit that is characterized by two states: an inactive, resting state, and an active,
excited state.
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Depending on its type, a neuron will either spontaneously switch betweenexcitability
partially

characterizes
a neuron

these
two states, the inactive state remaining the most prevalent, or it will require some
additional input to be able to transition to the excited state. Regardless of its type,
a resting neuron can be forced to switch to the active state when subjected to
an external stimulation. The strength of the input that is required to trigger this
transition can then be used to characterize the neuron through a property that we
will define as its “excitability”.

1.3.3 Simple models for spiking neurons
Together with his book, “Dynamical Systems in Neuroscience” (Izhikevich 2007),
this article from Izhikevich 2003 is one of the research materials that inspired me
most when I was trying to find where I might fit in scientific research.

This section describes how neurons can be modeled as simple dynamical sys-
tems that allow us to visually represent their behavior and understand them both
qualitatively and quantitatively.

I will first introduce the 2D neuronal model that will be used throughout the
manuscript, then introduce the notions of restlessness and susceptibility to use them
on a few examples of typical neuronal activities. I will especially precise the notion of
pacemaker neuron, which is characterized by constraints on the neuronal parameters,
leading to specific statistical properties on the spiking behavior.

Integrate-and-fire models
Expanding a little the two-state model of an excitable unit, one can describe the
transition between the two states by looking at the mechanism explaining most of
this transition.

Indeed, if the active state is the short timeframe around the peak of the action
potential — cf. Figure 1.9 — then transitions between active and inactive are
conditioned by the value of the membrane potential compared to a threshold7.
Linking the properties of the neuron to equivalent electrical circuits, scientists thus
proposed a very simple model8, assimilating the neuron to a capacitor associated
to a comparator: the neuron “charges” up to a certain value at which it suddenly
discharges and sends a spike. The mathematical formulation of this model, called
integrate-and-fire models, reads:

CmV̇m = I(t) if Vm < Vth else Vm ← Vr, (1.1)

where:

V̇m = dV

dt
is the time derivative of the membrane potential,

Cm is the membrane capacitance,

I(t) is the total input current arriving at the soma at a time t,

Vth is the threshold potential,

Vr is the reset potential.

7 In the simple description of the spike generation by only voltage-gated channels.
8see review by Brunel and Van Rossum 2007
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Note that during the rest of this study, the membrane potential Vm will simply be
written V for simplicity.

The sudden reset of the membrane potential when the threshold is reached marks
the emission of an action potential, which is not described by the model. Such models
thus require additional equations to account for information transmission between
neurons and usually only aim at describing the cell’s response to an excitation; we
will see in the next section — “Chemical connections: synapses” (subsection 1.4.1)
— how to account for information transfer and coupling between cells.

The adaptive Exponential Integrate-and-Fire model
Following the seminal paper of Lapicque on the integrate-and-fire models, the model
was properly formulated later (Brunel and Van Rossum 2007), then many other
models were developed to describe neuronal dynamics. Not all them followed the
integrate-and-fire models framework, starting from the one which is probably the
most well- known, the Hugkin-Huxley model (Hodgkin et al. 1952).

However, integrate-and-fire modelss have several advantages over a priori more
realistic, continuous models, notably for simulation and analysis purposes.

Indeed, using such models, the spike times are intrinsically and easily determined;
furthermore they low dimensionality enables to visually represent and analyze their
dynamics.

This study will thus be performed using an extended version of the simple integrate-
and-fire models, introduced by Brette and Gerstner 2005, which builds on the
adaptation principles introduced by Izhikevich 2003 and the improved exponential
spike generation proposed by Fourcaud-Trocmé et al. 20039.

In this model, the state of the neuron is described by two variables: the usual
membrane potential, V , and a second variable, w, which accounts for adaptation
currents flowing in and out of the neuron. Because of this, the model is able to
account, at least partly, for the AHP mechanisms mentioned above — “The biological
reality” (subsection 1.3.1).

The equations of the Adaptive Exponential Integrate-and-Fire (AdExp) model
read:

CmV̇ = −gL(V − EL) + gL∆T exp
(

V −Vth

∆T

)
− w + I(t)

τwẇ = a(V − EL)− w
if V ≥ Vpeak (1.2)

else, if V > Vpeak, then
{
V ← Vr

w ← w + b
(1.3)

This model is able to reproduce a large set of neuronal dynamics observed in vitro
and in vivo10 and in particular, neurons displaying spike-triggered adaptation, as
well as pacemaker neurons. The wide range of possible dynamics is notably enabled
by the presence of two different timescales, one for the adaptation current, τw, and
another for the membrane potential, given by

τm = Cm

gL

, (1.4)

with, in general, τw � τm.
9 see also Touboul et al. 2008 for details on the relevance of the exponential spike generation

compared to the quadratic model of Izhikevich.
10 see “Simulating networks of spiking neurons” (Appendix D) and Naud et al. 2008.
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Excitability, restlessness, and susceptibility
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Figure 1.10.: A. Visualisation of the susceptibility of a neuron depending on its
current state. The suceptibility values are indicated by the color gradient (negative
in blue, null in white and positive in green); the limits between the domains is
qualitatively given by Vth and the leftmost part of the V -nullcline, which is indicated
by the black dashed curve. The arrows represent the vector (V̇ , ẇ) which gives the
speed and direction of the flow in phase-space. B. The phase space of a resting
(Rl < 0) and restless (Rl > 0) neuron are shown respectively in solid and dashed
lines for the w-nullcline. For the resting neuron, the solid w-nullcline intersects the
blue V -nullcline in two points, the stable resting point (filled black circle) and the
unstable fixed point (empty circle). In the case of the restless neuron, there is no
intersection between the dashed w-nullcline and the V -nullcline, hence no resting
point and the neuron fires spontaneously in the absence of input.

In the AdExp model, which describes the adaptation currents through a single
variable w, the excitability of the neuron can be qualitatively described as “how
often and how easily a neuron fires”.
To refine this description, I will define here two dimensionless numbers, the suscepti-
bility, Sc, and the restlessness Rl that will quantify the excitability of a neuron.

Let us first describe the susceptibility Sc as a characteristics of the sort-term
response of a neuron to an excitation. By short-term, I imply here a response on a
timescale dt which is typically smaller than τm. At this timescale, the value of the
susceptibility Sc will let us determine whether the neuron will spike spontaneously
or not. Indeed Sc describes how quickly the membrane potential will increase after
the neuron has been subjected to the minimal excitation necessary to make it go
over threshold and fire11.

susceptible
neurons fire

easily

Let us suppose that, compared to the neuronal timescale τm, all the excitation is
delivered almost instantly (τe � τm). In that case, this is equivalent to delivering a

11see “Excitability, restlessness, and susceptibility” (Appendix B) for more details on susceptibility
and its underlying hypotheses.
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charge Q which will increment the voltage by ∆V = Q
Cm

.
In that case, what we want is to find the charge Q necessary to get V +Q/Cm ≥ Vth

and V̇ ≥ 0, with Q = 0 if both V ≥ Vth and V̇ (V,w) ≥ 0.
We will then define the instantaneous susceptibility of a neuron in a state (V,w) as

Sc = v̇ − q (1.5)

with v̇ the dimensionless voltage derivative at V + ∆V , and q the dimensionless
charge—see “Neuronal dynamics and the AdExp model” (Appendix A) and Eq. B.11
for the analytic expression.

The susceptibility is therefore an instantaneous variable that does not characterize
a neuron, but only its state at a given time. Neurons that are in a state of negative
susceptibility will thus require an additional excitation to spike, and that excitation
will need to be greater as the magnitude of Sc increases. On the other hand, neurons
that are in a state having a positive susceptibility will rapidly spike, even in the
absence of an external excitation.

In order to characterize a neuron regardless of its current state, let us introduce
the second variable, the restlessness Rl.

restless
neurons fire
spontaneously

This number describes the spontaneous behavior of a neuron: it is negative if the
neuron has a resting point and does not fire spontaneously; its is positive if the
neuron spikes spontaneously. We will therefore define the restlessness as

Rl =
{
Sc(Vrest, wrest) if a resting point exists,

f0/1Hz otherwise. (1.6)

where Sc(Vrest, wrest) < 0 is the susceptibility at the resting point, and f0 is the
average spontaneous frequency of the neuron in Hz

With that formula, we can divide the neurons in two categories:

• neurons with Rl ≤ 0, which will need an external excitation to spike,
• neurons with Rl > 0, which will spike spontaneously, even in the absence of

excitation.

A qualitative illustration of how Sc evolves depending on the state of the neuron,
as well as examples of a resting and restless neuron are visible on Figure 1.10.

The notion of pacemaker neuron
In this study, neurons qualified as pacemakers will play a major role. These neurons
are able to regulate their activity to produce very regular spike trains, with a well
defined period which is resilient even with respect to significant noise levels.

Using the AdExp model, such neurons can be modeled using negative values for
the a parameter. This negative coupling between V and w reproduces the behavior
of persistent sodium currents (INa,P ), which have been associated to pacemaker
behavior (Sipilä et al. 2006; Tazerart et al. 2008).
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Such neurons belong to the type I class (Ermentrout 1996); they can fire spikes at
arbitrarily low frequencies and their intrinsic dynamics is only slightly affected by
noise — see Figure 1.11. However, the specificity of negative a values goes beyond
the general properties of type I neurons12. Indeed, as can be seen on Figure 1.12, the
range of Inter-Spike Interval (ISI) that can be obtained with pacemaker neurons is
much broader than for simple type I neurons. This difference is, however, mostly
quantitative, since these neurons belong to the same class, while it is qualitative if we
compare them to type II neurons (Figure 1.13), which display much more irregular
spike train and start spiking at finite and not arbitrarily low frequencies.

12 See “Neuronal dynamics and the AdExp model” (Appendix A) for more detailed explanations
on the negative a property and pacemaker neurons.
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Figure 1.11.: Response of pacemaker neurons submitted to miniature spiking events
following a Poisson distribution. Such neurons display a rather homogeneous activity
and do not spike at arbitrarily high frequencies compared to non-pacemaker neurons.
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(b) Example of the time evolution of a type
I non-pacemaker neuron subjected to a 20 Hz
Poisson noise.

Figure 1.12.: Response of non-pacemaker neurons of type I, submitted to miniature
spiking events following a Poisson distribution. Compared to pacemaker neurons,
parameters still require some tuning to display such a wide range of firing rates upon
variations of the noise, but much less precise than I neurons. Increasing noise rates
quickly increase their firing frequency but it remains above a minimal rate, as for
pacemaker neurons.
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(b) Example of the time evolution of a type
II non-pacemaker neuron subjected to a 20 Hz
Poisson noise.

Figure 1.13.: Response of non-pacemaker neurons of type II, submitted to miniature
spiking events following a Poisson distribution. Compared to pacemaker neurons,
the parameters of these neurons must be tuned very precisely to display such a wide
range of firing rates upon variations of the noise. Increasing noise rates quickly makes
them fire at high frequency.
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1.4 Information transfer: connections between cells
In the previous section, we have seen some properties of intrinsic neuronal dynamics;
however, much of the interest of neuronal behavior resides in its evolution from
the properties of the single cell to those of the collective behavior once the cells are
coupled inside a network.

We will therefore see here how neurons connect together and how these connections
influence their dynamics.

1.4.1 Chemical connections: synapses
The main mode of connection between neurons is the chemical synapse, from which
a glimpse was given on Figure 1.5.

For functional neuron-neuron connection, a synapse must be formed by the
combination of two components13, a pre-synaptic site, stemming from the axon
of the source neuron, and a post-synaptic site, which can be almost any region of the
target neuron’s membrane — cf. Figure 1.14. These two components are separated
by a small gap of extracellular medium, the synaptic cleft.

Figure 1.14.: Several synaptic types. Axoextracellular and axosecretory types
will not be considered here. Original image from Blausen.com staff (2014). “Med-
ical gallery of Blausen Medical 2014”. WikiJournal of Medicine 1 (2). DOI:
10.15347/wjm/2014.010. ISSN 2002-4436.

Neurotransmission
The pre-synaptic site contains synaptic vesicles, which are filled with neurotrans-
mitters. Vesicles can occasionally be released spontaneously, and this phenomenon
leads to the arrival of random inputs on the target neuron. Though synaptic noise is

13 As mentioned in “Companions: glial cells” (subsection 1.2.3), the reality is usually more complex,
as astrocytes tend to interact tightly at the synaptic site to form tripartite synapses.

https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical_2014
https://en.wikiversity.org/wiki/WikiJournal_of_Medicine/Medical_gallery_of_Blausen_Medical_2014
https://doi.org/10.15347/wjm/2014.010
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actually of significant importance, and will be mentioned again in “Burst initiation,
deterministic or stochastic?” (subsection 2.1.1), it only accounts for a small fraction
of the synaptic activity.

Indeed, most of the emission of synaptic vesicles occurs upon the arrival of an
action potential at the synapse. The arrival of the spike triggers a local influx of
calcium which enables the vesicles to bind to the membrane, fuse with it, and release
the neurotransmitters they contain, in a phenomenon called exocytosis (Kaeser et al.
2014); this is the synchronous release.

The neurotransmitters then diffuse quickly in the synaptic cleft to reach the
post-synaptic site, where they bind to specific receptors. Depending on their type,
the neurotransmitters will either trigger a depolarization or a hyperpolarization of
the membrane. Figure 1.15 shows the example of glutamate, the main excitatory
neurotransmitter, which binds to AMPA and NMDA receptors.

Glutamate

Pre-synaptic terminal

Post-synaptic terminal

Mg2+

Na+

Ca2+

AMPA
NMDA receptor
receptor

Figure 1.15.: Fast and slow excitatory transmission associated to glutamate. Glu-
tamate binds AMPA and NMDA receptors upon release. This opens the AMPA
channels which let Na+ (red) flow inside the post-synaptic terminal. However, the
NMDA channel remains blocked by Mg2+ (blue) until the depolarization caused by
the sodium influx drives them away from the membrane. At that point the channel
is fully activated and Ca2+ (yellow) flows in. This explains why NMDA channels
activate later than AMPA and why they are considered as both glutamate- and
voltage-gated. Image adapted from LumenLearning and The Mind’s Machine.

In excitatory synapsess, the fast AMPA receptor opens and let sodium ions flow
inwards as soon as glutamate binds with it, leading to a fast local depolarization,
which will generally be relayed passively down to the soma. The NMDA receptor,
however, has a slower dynamics because it is blocked by magnesium ions, hence the
absence of ionic flow when glutamate binds with it. In fact, the NMDA channel
requires the additional depolarization induced by the Na+ flow from the AMPA

https://courses.lumenlearning.com/biology2xmaster/chapter/how-neurons-communicate/
https://2e.mindsmachine.com/asf04.02.html
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channel to push the magnesium away from the membrane and make the channel
accessible for calcium ions, which will flow inwards, further depolarize the membrane,
then act as second messengers. Overall, upon arrival of a spike at an excitatory
synapse, there are two depolarizing contribution that will be felt by the target neuron:
a fast one relayed by the AMPA receptor, and a slightly slower one, associated to
the NMDA receptor.

However, these two contributions are close enough in terms of timescale so they
can be approximated by a single Post Synaptic Current (PSC), which is what will
be done in simulations, where the arrival of the spike at time τ will be modeled by
an alpha-shaped current:

Is(t) = s · I0
t− τ
τs

e(τ−t)/τs for t > τ, (1.7)

where

s is the synaptic strength,

I0 is the unit current 1 pA,

τs is the synaptic timescale.

Eventually, not all of the synaptic release events occur during the synchronous
release, and some vesicles continue to be released at low rates for tens of milliseconds
following the main synchronous release; this phenomenon is called asynchronous
release.

Inhibitory neuron and GABA transmission
Glutamate is the main excitatory neurotransmitter in the CNS, but there is also
another crucial type of neurotransmission which is mediated by GABA, and tends to
hyperpolarize the target neurons instead of depolarizing them. This neurotransmitter
is not expressed in excitatory neurons, which only have glutamate in their synaptic
vesicles, but only in inhibitory GABAergic cells. In these cells, the GABA molecules
are release by the exocytosis and come to bind on GABA receptors on the target cells,
which will let chloride flow into the post-synaptic site, leading to a hyperpolarization
of the membrane.

As for glutamate, there are two types of GABA receptors (a and b), with different
timescales, but we will neglect these differences in the study.

GABA receptors can be blocked by a chemical antagonist called bicuculline,
which prevents the opening of the channels, thus the flow of chloride and the
hyperpolarization. This molecule will be used during the experiments performed in
this thesis to work with fully excitatory networks.

Synaptic depression
Because the finite number of synaptic vesicles that are available at a given time, a
synapse cannot transmit an arbitrarily large amount of spikes in a given period.

Indeed, vesicles in the pre-synaptic compartment can be divided into three main
pools: a small readily-releasable pool (RRP), which will be used during synchronous
release, a large reserve pool, which is maintained by a constant synthesis of new
vesicles, and an intermediate recycling pool, which replenishes the RRP after a
evocked release.
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Thus, since only RRP vesicles are released during synchronous release, if the rate
of spike arrival at the synapse is higher than the rate at which the RRP can be
replenished, then the synapse will transmit less input after each successive spike, in
a phenomenon called synaptic depression.
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Figure 1.16.: Example of the effect of synaptic depression on the post-synaptic
potential obtained at the soma of the target neuron. After each successive sollicitation,
an additional fraction of the RRP is depleted, leading to a lower current flow in
the post-synaptic neuron, in turn lowering the depolarization induced on the target
neuron. If the sollicitation is at a high rate (left), the RRP is almost completely
depleted. It takes a few hundred milliseconds to a few seconds to replenish the RRP,
after which the initial amplitude is recovered (first spike of the second series, around
2400 ms). Lower sollicitation rates (right) lead to lower depression.

1.4.2 Electrical connections: gap junctions
Besides chemical synapses, another kind of connection exists, where the neurons
communicate directly by holes in their membranes through which the ions can flow
in both directions. These bidirectionnal connections (by contrast with the directed
synapses), are called gap junctions.

As shown on Figure 1.17, gap junctions are formed by channels that connect the
cytoplasm of two cells through their membranes. Also called electrical synapses,
gap junctions are present in the brain, especially among inhibitory interneurons
(Galarreta et al. 2001). Gap junctions are strongly involved in neuroglial as well as
glia-glia interactions, where they constitute one of the primary mode of information
flow.

However, in in vitro cultures of neurons, the influence of gap junction seems
minimal, since blockade of synaptic transmission abolishes the activity (Penn et al.
2016; Suresh et al. 2016). Furthermore, even the number of neuron-astrocyte gap
junctions have been shown to decrease significantly for cultures before the collective
activity emerges (Janeiro et al. 1999).
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Figure 1.17.: Sketch of a gap junction. Original image by LadyOfHats.

In the rest of this manuscript, we will therefore neglect the role of gap junctions
on the activity of all neuronal networks that will be considered.

1.4.3 Other pathways for information transfer
Eventually, apart from direct transmission, the activity of neurons can also be
influenced by a large variety of phenomena.

Coming back on glial cells, calcium oscillations mediated by astrocytes may
intermittently change neuronal excitability, and astrocytes also play a major role in
modulating the efficiency of chemical synapses.

Beyond glial cells, the connections between neurons are not static, but plastic,
meaning that they evolve in time, depending on the activity of the neurons. A
large body of work is now available on the various mechanisms responsible for
the evolution of the connection strength between two neurons; from homeostatic
regulation (Turrigiano et al. 2004), to spike-time dependent plasticity and their
interactions (Toyoizumi et al. 2014). However, despite recent progress, the sheer
complexity of these mechanisms has prevented scientists from obtaining clear and
quantitative models to describe this evolution as a general phenomenon, and not as
a set of special cases (Markram et al. 2012).

Because of this, and since the timescales over which we study the activity of a
network are small compared to those of plasticity mechanisms, all simulation and
analyzes will be performed considering the synaptic strengths in the network to be
fixed.

https://commons.wikimedia.org/wiki/File:Gap_cell_junction-en.svg
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1.5 Coupled neurons: network and dynamics
In the previous sections, we have seen the basic behavior of neurons, how they
regulate their electrical activity, how they grow, and how they connect together
through synapses.

Once the neurons have matured, they will thus form large networks in which
the activity of any given neuron will influence that of another, either exciting or
inhibiting it.

In the adult brain, this gives rise to a wide variety of activity, or firing patterns,
which vary depending on the state of the subject — active, resting, REM sleep. . .
Such global patterns of activity are often studied using ElectroEncephaloGraphy
(EEG) or functional Magnetic Resonance Imaging (fMRI), which are non-invasive
methods. However, these methods have very low spatial and temporal resolutions,
so the information obtained already reflects the collective activity of thousands of
neurons over several hundred or thousand milliseconds.

In order to study in more details how the collective activity emerges from the
detailed interactions of many individual neurons, smaller systems such as the previ-
ously mentioned neuronal cultures, more invasive techniques, or genetic engineering
are required.

In this thesis, the experimental focus will be on neuronal cultures, because of the
relative simplicity of the networks generated on such 2-dimensional setups, and we
will therefore focus here on the patterns observed in such structures.

1.5.1 Typical activities of neuronal cultures
In their first weeks of development, neuronal cultures and brain areas display similar
types of activity, with sparse overall activity, interspersed with short windows of
intense firing (Egorov et al. 2013; Wagenaar et al. 2006). However, these bursts of
activity recede progressively after the first week postnatal in the brain, while they
persist in neuronal cultures over the whole lifespan — see Figure 1.18 for an example.

Figure 1.18.: (a) Cortical network on substrate-embedded multielectrode array.
The dark circle is an electrode of diamater 30-µm. (b) Raster plot showing the spikes
recorded at each of the 60 electrodes (black dots) in the system as a function of
time. The gray line shows the mean firing rate over 50 ms-time bins. Figure from
Masquelier et al. 2013.

Yaghoubi et al. 2018 have shown recently that other types of activity such
as asynchronous patterns or intense single-neuron activities could be observed in
neuronal cultures, depending notably on the preparation conditions. Yet, decades
of research on neuronal cultures (Gross et al. 1993; Kamioka et al. 1996; Okujeni
et al. 2017; Opitz 2002; Orlandi et al. 2013; Pasquale et al. 2008) have shown that
bursting activity where the whole network becomes active over a period of a few
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hundred milliseconds is, by a significant margin, the main type of activity in such
systems, regardless of the culturing methods.

1.5.2 Emerging behaviors: synchronization and bursting
Here is where the question of emergence comes forth. Indeed, for such a behavior to
be systematically occurring in these systems, there should be a reason for it, a rule
embedded in the dynamical properties of the neurons or the connections.

However, such a rule can be quite difficult to find, and knowing the properties of
an object and the principles governing its behavior does not necessarily mean that
predicting its behavior without prior knowledge is possible14.

Moreover, the predominance of a given behavior does not mean that the emergence
of other activities is not possible (Yaghoubi et al. 2018). On of the main goals of this
thesis will thus be to provide a general understanding of the phenomena underlying
the emergence of collective activity in neuronal cultures in order to provide methods
to guide the system towards different types of behavior.

In that respect, our chance is that bursting activity is a special case of synchroniza-
tion, which has been the subject of extensive research, from its simplest description
to students discovering dynamical systems (S. Strogatz 2007), to the well-known
Kuramoto model (S. H. Strogatz 2000). Furthermore, we will see that adaptive
neurons have a dynamics which is similar to that of relaxation oscillators, leading to
very strong synchronizability (D. Wang 1999).

We will study the mechanisms leading to the collective behavior to understand
how its properties depend on the neuronal and network parameters. This will allow
us to propose new ways of modulating the bursting activity of neuronal cultures.

14 As interesting examples, one can have a look at the Langton’s ant, or at Conway’s game of Life.
In both cases, the agents (an ant for Langton, cells for Conway) possess simplistic behaviors,
yet they give rise to incredibly complex patterns that are mostly impossible to predict without
a comprehensive exploration of all possible situations.

https://en.wikipedia.org/wiki/Langton%27s_ant
https://en.wikipedia.org/wiki/Conway%27s_Game_of_Life
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Chapter 2

Mechanisms governing epileptiform bursts

How can a phenomenon as widespread as epileptiform bursts, which we decribed in
“Emerging behaviors: synchronization and bursting” (subsection 1.5.2), still remain
so elusive when we try to determine its potential causes?

In this case, the problem is mostly due to two main factors: the multiplicity
of the potential mechanisms and the complexity of the phenomenon itself, which
decomposes in three ill-defined periods, an initiation, a plateau, and a termination
phase.

In this chapter, we will discuss the numerous mechanisms that could play a
role in the occurrence and shape of network bursts in neuronal cultures. For each
mechanism, we will discuss specific observations that could support a causal role
in one of the extremal phases (initiation and termination). We will then develop
predictive models to evaluate the consequences these mechanisms should have on the
bursting properties, which enables us to propose and carry out actual experiments
to assess the validity of the model and the likelihood of the associated mechanisms.
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2.1 Possible bursting mechanisms
A significant difference between what may happen in the brain — e.g. up- and
down-states generated by thalamocortical networks (Destexhe 2009) — comes from
the fact that cultured networks are isolated: burst of activity cannot stem from
the interaction of two different networks, one active and one adaptive, or from the
response to external stimuli, but only from the intrinsic dynamics of the neurons or
input noise which comes from inside the network.

To understand the phenomena involved in the sporadic activity observed in
cultures, three main components must be characterized:transition

between up
and down

states
• What leads a significant fraction of the neurons to become active in a compara-

tively short time interval? (initiation)
• Why is this activity sustained over several hundred milliseconds? (plateau)
• What prevents this activity from persisting over longer periods? (termination)

relates to These three phenomena can be qualitatively understood through the description
that was developed in “Neurons as excitable units” (subsection 1.3.2). They define
the transition of the network between up and down states (Wilson 2008), or, almost
equivalently, active and resting states.

excitation-
excitability

balance

Indeed, the initiation of the burst can be understood as the moment when the input
the neurons receive becomes greater than their excitability; this activity is then
sustained as long as the recurrent input remains greater than the excitability and
terminates when it goes below it.

For the initiation, this means that either the overall neuronal excitability tends
toward infinity, leading to spontaneous activity even with little input, or that
enough inputs were received over a short period to go above the finite excitability of
some neurons. This distinction is not trivial because the two phenomena interact
together, but it is what differentiates pacemaker and noise-driven bursts, and it will
be developed in the first subsection.
For the termination, either the excitability decreases as the plateau endures, or
the input strength decreases. This phenomenon is easier to understand and can be
described by the effect of intrinsic adaptation current versus the activity-driven
depletion of synaptic vesicles — Short-Term Depression (STD); it will be developed
in the second subsection.
Eventually, the plateau is the easiest phase, consisting of a region where the activity
is self-sustained: the first spikes elicited trigger the subsequent ones in an iterative
manner.

2.1.1 Burst initiation, deterministic or stochastic?
Let us try to reach a more detailed understanding of the possible mechanisms that
might drive the initiation of the bursting activity.

pacemaker
neurons for

deterministic
periodic
bursting

A deterministic cause to the burst initiation would be the existence of a subset of
neurons which are subjected to a pacemaker mechanism that drives them to spike
in a relatively periodic fashion. Coming back to the excitability property, for these
neurons, it increases steadily until it reaches infinity with a typical period T , leading
the neurons to fire with this same period. Pacemaker neurons can easily synchronize,
as mentioned in “Simple models for spiking neurons” (subsection 1.3.3) and lead to
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a periodic and significant input inside the network, which could act as a trigger for
the transition to the up-state, i.e. the initiation of the burst.

On the other hand, one must not neglect a well characterized phenomenon, which
is the presence of synaptic noise, as the spontaneous release of synaptic vesicles
(Kavalali 2014; Loy et al. 2014). The neuronal inputs associated to these spontaneous
releases are often called miniature Excitatory Post Synaptic Current (mEPSC) or
miniature Excitatory Post Synaptic Potential (mEPSP), or simply minis (Sibarov
et al. 2015). minis for

noise-driven
bursting

For each connection between two neurons, these spontaneous events
will occur with a base frequency ν0; this means that a neuron having n incoming
synapses will receive minis with a total frequency νn = n ·ν0. Because of this constant
bombardment of excitatory inputs, some neurons in the network will “spontaneously”
fire and the accumulation of these spontaneous spikes in addition to the minis
progressively drives the ignition of the whole network.

Differences between the two mechanisms
At first glance, these two mechanisms have significantly different properties: pace-
maker neurons should lead to a more regular activity whereas noise-driven activity
could be less periodic. different

periodicity
and network
influence?

Moreover, pacemaker neurons have no reason to be localized
in specific areas of the network and the properties of pacemaker-driven bursts should
therefore be less dependent on the network properties. On the contrary, the amount of
incoming minis received by a neuron is strongly dependent on its connectivity inside
the network, which could lead to a bursting activity displaying stronger correlations
to the network structure.

Disentangling the two phenomena
So far, I have described pacemaker neurons and minis as well-defined and separate
mechanisms. Unfortunately, this is not true at all: minis are pervasive, they are
always present as soon as synaptic connections are established. problem:

synaptic noise
is always
present

This means that,
rigorously, synaptic noise should always be considered in a model describing the
activity of a neuronal network.

This means that the difference between deterministic and stochastic bursting
should come from a quantitative change in the importance of one mechanism relative
to the other. Though this is easy for stochastic bursting, where the absence of any
pacemaker neuron is a possibility, deterministic bursting will stem from a combination
of pacemaker neurons and synaptic noise. In fact, in the pacemaker scenario, the
additional input provided by the noise is probably necessary for the neurons to be in
a state of spontaneous periodic firing.

How then can we tell these mechanisms apart?
In the following, I will first discuss previous studies that gathered evidence in favor of
one phenomenon or the other, then develop some models and simulation framework
that will be used to make predictions on the possible differences that might arise
depending on the relative strength of a pacemaker mechanism compared to synaptic
noise.

Previous experimental and theoretical studies
In the litterature, studies reporting on the influence of both mechanisms can be
found, most propbably because both mechanisms are indeed contributing to the
phenomenon.
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Thus, a recent study by Penn et al. 2016 shed light on the high regularity of
hippocampal neurons, relating it to the influence of a persistent sodium channel,
and suggesting that as much as 60% of the cultured neurons might exhibit rhythmic
activity patterns.

On the other hand, a paper from (Chever et al. 2016), investigating the role of
neuro-glial interactions, showed how the regulation of extracellular potassium by
astrocytes influences the importance of the spontaneous synaptic bombardment to
which the neurons are subjected, impacting the frequency and duration of epileptiform
bursts.

Eventually, two very interestig studies by T. A. Gritsun, Le Feber, et al. 2010
and Baltz et al. 2011, mixing experimental and numerical protocols, compared the
influence of bursting pacemaker neurons, random spiking neurons, and synaptic noise
as driving mechanisms for bursting events. Both studies concluded that burst profiles
were best reproduces by pacemaker neurons. Even though Baltz et al. 2011 further
refined the analysis by emphasizing on the importance that pacemaker cells exhibit
intrinsically bursting behaviors, adding that older cultures might see an increase
in the relative importance of synaptic noise. However, both numerical studies used
uniform Poisson noise to model mini and did not take the number of synapses into
account.

2.1.2 Burst termination: adaptation or depression?
As for initiation, different mechanisms could lead to the termination of a burst,
bringing the network back to the down state.
The two main phenomena that we will discuss here are adaptation and synaptic
depression1. Indeed, there are two simple ways of preventing the activity from lasting
indefinitely: either reduce the excitability of the neurons or reduce the input strength.

act on units
or connections

The former is enforced by adaptation currents and concerns the cells’ intrinsic
excitability; the latter is obtained through synaptic depression, which reduces the
coupling strength between neurons.

Neuronal adaptation
We mentioned adaptation currents in biological neurons – “The biological reality”
(subsection 1.3.1) – and in “Simple models for spiking neurons” (subsection 1.3.3)
when we described the AdExp model. In this model, all the adaptation is modeled
by one slow current w that tends to bring the neuron’s membrane potential back
towards its resting voltage.adaptation

currents
reduce

neuronal
excitability

In real neurons, there are many adaptation currents that display a large variety of
timescales and origins (Sah et al. 2002). In this study, we will focus on the currents
related to After HyperPolarization (AHP), i.e. spike-triggered currents that flow
into the cell and hyperpolarize it after the emission of an action potential. This
mechanism is modeled by the b step-increment of the slow current w in the AdExp
model. As the name “adaptation” suggests, the effect of these currents leads to a
form of habituation for the neuron: the excitability of the neuron decreases as the
stimulation is repeated, thus its effect on the neuronal behavior diminishes and the

1 other phenomena such as sodium channel inactivation (Goldin 2003) do not seem to occur in
synchronous bursts, and local changes in ion concentrations will not be considered under the
hypothesis that glial cells are efficiently maintaining ion concentrations homogeneous.
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neuronal response is reduced to get closer to the usual resting behavior (without
necessarily reaching it).

Synaptic depression
Contrary to adaptation, synaptic depression does not modify the intrinsic properties
of the neurons but rather those of the connections between the cells.
As described in “Chemical connections: synapses” (subsection 1.4.1), the main type
of connection between neurons is the synapse, which contains vesicles filled with
neurotransmitters. The release of these vesicles towards the post-synaptic neuron can
be triggered by the arrival of a spike, and the amount of released vesicles characterizes
the strength of the PSC that will be felt by the target neuron. Thus, reducing the
number of released vesicles leads to a decreased strength for signal transfer.
We will therefore focus here on a phenomenon called Short-Term Depression (STD),
which concerns the temporary diminution of the coupling strength between neurons
because of the repeated arrival of spikes over a short time-period (Neher et al. 2008).

STD reduces
connections’
strength

This reduction of the synaptic strength stems from the finite number of available
vesicles in the readily-releasable pool of the pre-synaptic compartment; indeed, as
the arrival of a spike triggers the exocytosis of a fraction of these readily-releasable
vesicles, and given that it takes time to replenish the pool, fewer vesicles are available
if a second spike arrives before the vesicles have been fully replaced (Kaeser et al.
2014).

Underlying reality
In fact, these two phenomena are just two sides of a similar principle that is generally
not appearing in neuronal models: the energy cost of the actions that are performed
by the neuron.
Indeed, it requires work for the neuron to emit an action potential, then get ready to
emit a new one, returning to baseline by actively pumping ions against concentration
gradients (Gulledge et al. 2013; Tiwari et al. 2018). both

mechanisms
involve energy
costs

Similarly, generating all the
vesicles necessary for synaptic transmission is definitely not a cost-free operation.
Therefore, adaptation and short-term depression (STD) are just two ways of patching
up the models to take into account the fact that, if too much solicitation is applied
to it, the neuron cannot keep up and will have to slow down the pace, either by
firing less rapidly, transmitting signals at lower intensity, or both.

Experimental observations
As for the initiation mechanism, both termination mechanisms have been reported
to influence the bursting behavior in spontaneously active neuronal networks.

Two experimental studies by Empson et al. 2001 and Sevilla et al. 2006 attested
the influence of adaptation currents on the interburst interval and the burst du-
ration. However, these studies were performed on slices, and one of them used
4-aminopyridine and Mg2+-free medium to induce the bursting behavior. Further-
more, these studies used nifedpine to block the slow After HyperPolarization (sAHP),
which, as other dihydropyridines, is not very selective with respect to other calcium
and adaptation channels (Curtis et al. 2001; Lima et al. 2007) and increases sponta-
neous release of neurotransmitters (Hirasawa et al. 2003). Given the known influence
of mini on the bursting rate, additionnal experiments would therfore necessary to
properly assess the influence of adaptation.
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Conversely, the influence of synaptic depletion on bursting events of dissociated
neuronal cultures was analyzed by D. Cohen et al. 2011, who demonstrated that the
interburst duration displayed a significant dependence on the recovery of synaptic
vesicle pools. However, though this effect indeed proves the importance of STD on
the bursting behavior, it does not establish any causal relation between STD and
burst termination.
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2.2 The influence of neuronal adaptation
Adaptation in neurons is a widely represented property, and several studies have
mentioned it as a probable candidate in bursting mechanisms Augustin et al. 2013;
Compte et al. 2003; Ferguson et al. 2015; Van Vreeswijk et al. 2001.

However, as there was no complete mechanism explaining its role in shaping this
phenomenon, we set out to investigate if adaptation alone could account for the
dynamics observed experimentally in neuronal cultures.

Our goal was therefore not only to reproduce the bursting dynamics, but also
to test if a single mechanism could enable us to reproduce the distinct activities
observed by the team of Elisha Moses. Can we

explain
bursting and
its phase
transitions
through
adaptation
alone?

Indeed, the results from Penn et al. 2016,
showed that the cultures were able to sustain highly synchronized bursts, and that
this activity persisted even in the absence of an inhibitory balance, as blocking the
inhibitory synapses through bicuculline did not alter the dynamics qualitatively.
Moreover, blockade of the persistent sodium current INa,P led to an almost complete
suppression of the activity, hinting at a pacemaker-driven activity.

Eventually, they showed that the network could be brought from an asynchronous
activity to this synchronized bursting behavior through a two-step phase transition as
calcium concentration was increased, first displaying a fuzzy phase synchronization,
followed by a near-zero phase-lag region.

2.2.1 A concise model for periodic bursting
To account for the synchronized bursting activity, the simplest model, given the
observations, was to model the neuronal population through adaptive pacemaker
neurons: a persistent current would be responsible for the initiation of the up-state,
while adaptation would act as a balancing force and prevent the activity from blowing
up.

In order to provide the simplest explanation regarding the role that adaptation
could play in shaping network bursts, I developed a theoretical and tractable model,
first focusing on the simplest homogeneous situation, then progressively increase the
complexity. This model can be found in Fardet, Ballandras, et al. 2018 — included in
“Bursting and adaptation (Frontiers in Neuroscience 2018)” (section J.3), with details
on the theoretical equations in “Self-consistent equations for the bursting behavior”
(Appendix C) — while a more intuitive description based on the susceptibility is
proposed here.

predict global
activity from
cell properties

I will thus show how such a model enables us to understand and predict the bursting
properties of an entire neuronal population simply from the average properties of
the cells and connectivity.

Minimalist
Let us first remove all heterogeneity from the model: we will take all neurons identical,
with parameters that lead to a pacemaker and adaptive behavior; furthermore, we
will connect them in a fixed-in-degree network, meaning that all neurons receive the
same number of connections.

In that situation, if the neurons start in a synchronized state, as they receive the
same number of inputs and since there is no noise in the system, they will always
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stay synchronous 2.
Because of this, we can actually further simplify the system by modeling it through
a unique equivalent neuron with an autapse (a self-loop synapse).

strength: s
delay: d

strength: ks
delay: d

N times

Figure 2.1.: Schematic representation of the equivalence between a fixed-in-degree
network containing N = 6 synchronous neurons, with in-degree k = 2 and connection
strength s, and N isolated neurons, with a self-loop connection of strength ks.

Figure 2.1 provides an example for such a network, where each neuron receives
incoming connections from two other neurons. In the fully synchronous state, this is
equivalent to a single neuron looping on itself with a connection of strength 2s.

In such a simple system, as in the initial description of a burst, we find again the
three characteristic periods for the up-state:

• the initiation of the burst is triggered by the progressive depolarisation of the
membrane potential due to a persistent current modeling the effect of INa,P in
vitro,

• the plateau consists of repetitive spiking in the network, as described on Figure
2.2 (the neuron spikes, the action potential propagates until it reaches the
target and its arrival on the target excites it; if the excitation is enough, the
sequence is repeated),

• the termination of the burst once the excitation is not sufficient to make the
neuron spike.

Let us now explain this behavior using restlessness and susceptibility — cf. “Ex-
citability, restlessness, and susceptibility” (section 1.3.3). As we chose the parameters
to get pacemakers neurons, they have a restlessness that is positive (Rl > 0), meaning
that they spike spontaneously. Looking at the susceptibility Sc, the spike will occur
when Sc also becomes positive, as can be seen on Figure 2.3.

Once these spikes are synchronized (see “Emerging behaviors: synchronization and
bursting” (subsection 1.5.2) to understand how thisburst

initiation as
〈Sc〉 crosses 0

synchronization occurs), all the
susceptibilities of the neurons will switch from negative to positive in a short time
window; this marks the initiation of the burst.

2 Because of the strong synchronizability of relaxation oscillators, to which adaptive neurons
belong, this synchronized state is stable and is rapidly recovered after a random perturbation of
the network, as shown in “Stability of the synchronized state” (section C.3).
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Figure 2.2.: Schematic representation of the two phases of the bursting behavior.
On the left, the down-state (interburst) contains the slow process of depolarisation of
the neuron from the persistent current. Once the depolarization is sufficient to cross
a certain threshold, we switch to the right part, the up-state (burst). The up-state is
obtained through the repetition of the spiking, spike propagation and integration
periods until the integration is not sufficient to trigger a new spike and we switch
back to the left part, to the down state.

During the burst, we can estimate the “excitatory power” of the network as the
number of inputs a neuron will receive times the charge Qs delivered by a single
spike. Since all neurons are involved in these bursts, the average number of inputs
received by the neurons is simply the average in-degree 〈kin〉 in the network burst lasts

while
pe + 〈Sc〉 > 0Pe ∼ 〈kin〉Qs (2.1)

Let us call pe = Pe

Cm∆T
the dimensionless excitatory power; then the plateau will last

as long as pe is greater than |〈Sc〉|, i.e. as long as the excitatory power is sufficient
to bring the neurons to a positive value of the susceptibility. This condition can be
visualized on Figure 2.3.

In the hypothesis that adaptation sculpts the bursting behavior, as the neurons
repeatedly fire, the adaptation currents progressively increase (the w variable in the
AdExp model), w such that

pe + 〈Sc〉 < 0
leads to
termination

making the neurons less and less susceptible, until the excitatory
power of the network is not sufficient to trigger new spikes and the burst terminates.

Accounting for heterogeneity
What has been described above is a situation where all neurons are perfectly identical
and synchronized, and the spike delivery occurs instantaneously. This is obviously
not the case in real populations of neurons, where

1. neurons have different properties,

2. they make various numbers of connections,

3. the connection strength is variable and finite,
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Figure 2.3.: Time course of the membrane potential (red curve) and adaptation
variable (grey curve) of one neuron in a heterogeneous bursting network (top).
Concurrent evolution of the neuronal susceptibility (bottom). The burst initiation
starts as Sc crosses zero and the burst terminates when Sc goes below the network’s
excitatory power.

which absolutely prevents perfect synchrony, as shown on Figure 2.5.
In order to take into account the heterogeneity in the connectivity, a simple trick

is to model what the input would look like in the case of neurons that produce
realistic network bursts. In realistic bursts, the activity is still restricted over a short
window, while the remaining time is spent in the down-state; however, instead of
being distributed in discrete slices inside the burst, normal spikes are spread more or
less homogeneously over the whole burst duration (see Figure 2.5 and “Self-consistent
equations for the bursting behavior” (Appendix C) for more details).

We will therefore consider the limit case where the spikes are distributed uniformly
inside the burst window TB. In the limit of a large number of neurons, each cell will
receive an almost constant amount of current I(c)

s during the burst, such that

I(c)
s = ns〈kin〉Qs

TB

. (2.2)

The average current is thus simply the total charge delivered during the burst,
divided by the burst duration; the total charge being the number of delivered spikes
— 〈ns〉〈kin〉, with 〈ns〉 the average number of spikes emitted by a neuron — times
the unit charge Qs carried by a spike.

In that scenario, the initiation of the burst leads to the addition of a new excitatory
current to the neurons, and the burst lasts until the neurons have adapted to this
new input.

Termination condition for the adaptation current
As mentioned before, our model poses the adaptation current w as the stabilizing
mechanism of the neuronal network, its increase preventing an explosion of the
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membrane potential (red solid
line, top) and adaptation current
(grey solid line, top) compared
to the susceptibility (blue solid
line, bottom) inside a burst. Af-
ter each spike, the increase of w
leads to a decrease of the suscep-
tibility. Burst termination occurs
when Sc goes below the network’s
excitatory power (red dashed line,
bottom).

(a) Homogeneous, fixed in-degree network (b) Heterogeneous network

Figure 2.5.: Rasters of bursting networks. The insets detail the spike distributions
inside a burst for a fully homogeneous and a heterogeneous network.

spiking activity. adaptation
eventually
prevents
threshold
crossing

As w increases, the charge that is necessary to make the neurons
spike increases conjointly, making the neurons less and less susceptible until the
excitatory power of the network is not sufficient to trigger a new spike.

Since the value of w mostly increases through spike-triggered adaptation, modeled
by b in the AdExp model, the peak value wmax is reached right after the last spike
of a burst. Based on this observation, Figure 2.6 details how we can predict the
existence of a critical value w∗, such that no new spike can be elicited if w > w∗.

Though the precise mechanism varies depending on how we model synaptic
coupling3 the basic principle is always preserved: neurons spike if the excitation is
strong enough to bring them “above threshold”.
In the AdExp model, this means that they must be able to get either below or to
the right of the V -nullcline. Through its b-increment and its negative retroaction on

3See the supplemental video of Fardet, Ballandras, et al. 2018 for an example of the time-dependent
termination mechanism in more realistic synapses, and “Self-consistent equations for the bursting
behavior” (Appendix C) for detailed equations.

https://www.frontiersin.org/articles/10.3389/fnins.2018.00041/full#supplementary-material
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(a) Homogeneous, fixed in-degree network.
The critical value w∗ is given here when the
total charge delivered, kQs is not sufficient
to escape the inside of the V -nullcline.

I
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(b) Heterogeneous network. The critical
value w∗ is given here when the trajectory
of the spike intersects the I

(c)
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Figure 2.6.: Trajectory of the equivalent bursting neuron in dimensionless phase
space for Dirac and continuous synapses; the grey numbers indicate the order in
which the neuron arrives at the different points in the trajectory. Spiking or jump
discontinuities are marked through empty squares while reset points are indicated
by full circles. The initiation are marked by circled Is while the burst termination
conditions for the homogeneous and heterogeneous descriptions of the bursting
behavior are marked by circled Ts.

V , the increase of w prevents both mechanisms by shifting the trajectory upward
and speeding up the decay of the potential towards lower values, on the left side of
phase space.

The interburst interval
Once the neuronal trajectory is trapped by the V -nullcline, it goes back to lower
values of the potential, then the membrane potential begins its slow increase again,
along the left branch of the V -nullcline, until it reaches the nullcline’s minimum and
the initiation starts anew.

During this slow repolarization, the neurons remain in what could be described as
a long refractory period while the lingering effect of the adaptation currents keeps
the neuronal susceptibility to a low value. This long lasting effect of the adaptation
currents is related to slow After HyperPolarization (sAHP) and is related to the
value of τw in the AdExp model. Thus, the influence of τw on the Inter-Burst Interval
(IBI) is very significant in our model, as the sAHP mostly dictates the duration of
the down-state.

Eventually, as the adaptation variable recovers to its default value, the suscepti-
bility returns to near-zero, then positive values just before the initiation of the next
burst.

2.2.2 Shaping bursts through adaptation channels
I will refer to our article (Fardet, Ballandras, et al. 2018) for more details regarding
the three different ways in which we have modeled the synaptic coupling of the
neurons, the hypotheses underlying the approximations of the neuronal dynamics,
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and the consequences that these descriptions have on the population behavior. In a
nutshell, these three descriptions allowed us to make relevant predictions regarding
the bursting behavior of the population, as can be seen on Figure 2.7.

50 60 70 80 90 100
Coupling strength (pA)

0
100

200

300

400

500

600

700

IB
I

(m
s)

Figure 2.7.: Variation of the IBI depending on maximum value of the PSC (in pA).
Values predicted by the equivalent model are shown in dashed, dot-dashed and dotted
lines respectively for the Dirac, alpha and continuous models. Simulated values for
a Gaussian network with σk = 4 (blue) and σk = 20 (green) are superimposed: the
main curve represents the average value, while the filled area marks the 5th to 95th
percentiles.

One of the main advantages of this analytic model is that it does not only propose
a mechanistic explanation of the bursting behavior, but also predicts the properties
of the collective activity based only on the neuronal properties and the average
connectivity. Furthermore, linking the parameters of the AdExp model to the
biological mechanisms underlying neuronal adaptation, we were able to predict the
effect of a blockade of specific adaptation channels on the properties of the network
bursts.

Theoretical predictions
Neuronal adaptation channels can be divided into three main categories: slow After
HyperPolarization (sAHP), medium After HyperPolarization (mAHP), and fast After
HyperPolarization (fAHP). In order to understand the effect of these channels, we
mapped them to some of the parameters and phenomena in the AdExp model. This
lead to three theoretical predictions (PF, PM, PS) for each of the AHP types.

For instance, fAHP plays an important role in the repolarization of the membrane
potential after a spike; in the model, it is thus related to the Vr variable (the reset
potential). PF: blocking

fAHP
increases
in-burst
activity and
lengthens IBIs

Blocking channels responsible for fAHP should therefore be equivalent to increasing
the value of Vr. This would lead to an increased excitability of the neurons during
the up-state, causing more spikes to be emitted, and at higher rates — see Figure
2.8 (a). Because of the higher activity during a burst, an indirect effect of fAHP
blockade should an increase of the sAHP currents, as well as additional synaptic
depression, which would lead to increased Inter-Burst Intervals (IBIs).
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Figure 2.8.: Predicted evolution of the bursting activity under blockade of an
AHP currents; susceptibility of simulated activity in “control” conditions is in blue,
opposite of the network excitatory power is given by the dashed red line, and predicted
shift in the post-spike susceptibility is given by the dash-dotted orange lines, with
spike times marked by dots. (a) Blockade of fAHP through paxilline (increasing
Vr in the model) should lead to higher post-spike susceptibility, leading to higher
firing rates. (b) Blockade of mAHP through apamin should reduce medium-term
potassium influx, hence reducing the step increase of w in the model, i.e. the step
between two consecutive post-spike susceptibility levels. This leads to a lower slope
for the decrease of the susceptibility, hence to longer bursts and more spikes but
no significant increase in the firing-rate. (c) Blockade of sAHP through isradipine
should remove the long-term influx of potassium post-burst, equivalent to reducing
τw in the model, thus leading to a faster recovery of the susceptibility, i.e. to shorter
interbursts.

Similarly, mAHP produces hyperpolarizing currents whose effect lasts on the
order of 100 ms, and that therefore cause (in the model) the progressive decrease in
neuronal susceptibility during the burst.

Here, though, we encounter one of the limitations of the AdExp model: since only
one adaptation current is present, it is difficult to separate the effects of the slow
and medium AHP. However, taking into account that the effect of mAHP is only
relevant during the up-state, we will consider here that, as long a τw — the typical
relaxation time of the adaptation current — is on the order of the burst duration,
only the value of b matters to describe the effect of mAHP4.PM: blocking

mAHP should
increase burst

duration

Thus, blocking mAHP
should lead to lower adaptation inputs, which, as depicted on Figure 2.8 (b) and
Figure 2.6, would lead to an increased number of spikes during the burst, though at

4Note that we only consider here the effect during the burst: lowering b would obviously also affect
the IBI, but separating the effect of medium and slow AHP cannot be done in the framework of
the AdExp model, except as a Gedankenexperiment, which is what this prediction is.
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a rather similar rate, hence resulting in an increased burst duration. Because the
in-burst firing-rate does not increase significantly, it is difficult to predict the indirect
effect of mAHP blockade on the IBI. In any case, changes should be less significant
that those resulting from fAHP blockade.

Eventually, as for mAHP, we will try to isolate the effect of sAHP by considering
that its influence is solely related to the value of τw

5. PS: blocking
sAHP leads to
shorter IBIs

In that perspective, blocking sAHP should lead to a significant decrease of the
IBI, as shown on Figure 2.8 (c), regardless of the influence of synaptic depression
because both phenomena occur on similar timescales (several hundred milliseconds
to a few seconds). Thus, their effects should add up, meaning that weakening one or
the other should allow the neuronal susceptibility to increase more rapidly after a
burst, allowing for a quicker occurrence of the next burst initiation.

Experimental results
In order to test the theoretical predictions experimentally, I went to Elisha Moses’
laboratory at the Weizmann Institute, where I tested the effect of a specific blocker
on each of the adaptation currents:

• paxilline, to selectively block fAHP (Reiß et al. 2006; Sah et al. 2002; Shao et
al. 1999),

• apamin, to selectively block mAHP (Empson et al. 2001; Reiß et al. 2006; Sah
et al. 2002),

• isradipine, to selectively block sAHP (Lima et al. 2007; Reiß et al. 2006).

I analyzed the changes in the collective behavior of cultures that were induced by
the blockade of each of the AHP currents. To that purpose, I recorded the activity
of primary neuronal cultures from Winstar rats using calcium imaging.

For each of the three blockers, I analyzed the changes induced by the addition
to normal (EI) cultures, with functional excitatory and inhibitory synapses, or to
excitatory only (E) cultures, where inhibitory synapses had previously been blocked
by the addition of bicuculline (40 µM).

In total, 12 experiments were performed — see “Experimental protocols” (Ap-
pendix E) — among which:

• 6 led to results compatible with the theoretical predictions,
• 2 could be explained taking STD into account,
• 2 cultures showed no reaction to bicuculline,
• 1 culture showed no significant reaction to apamin,
• 1 culture showed a different reaction to isradipine, switching to a strongly

irregular behavior.

I will leave aside the last four experiments, which cannot be explained at our
current level of understanding, and focus on the first eight experiments to see how
they relate to our mechanistic description of the bursting behavior.

5It is obviously also related to b, however, for an quasi-exponential decay, such as is undergone by
w after a burst, reducing the initial value or the timescale has a similar effect regarding the
evolution of the delay necessary to reach the minimum value wmin.
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Figure 2.9.: Influence of the fAHP blocker, paxilline, on the bursting activity.
(Top) Traces of the calcium fluorescence over time for the 16 DIV culture. (Bottom)
Distribution of the burst duration and inter-burst interval (IBI) in the control
conditions (blue), after addition of bicuculline (grey), and after addition of paxilline
(orange). Median is marked in black. For burst duration and IBIs, p-values using
the Kolmogorov-Smirnov and Mann-Whitney rank tests where all smaller than 10−5.

In the case of paxilline (Figure 2.9), the two positive results included both EI (14
DIV) and E (16 DIV) networks. As predicted (PF), addition of paxilline with a final
concentration of 2.5 µM leads to a significant increase in the Inter-Burst Interval
(IBI). In addition to this IBI lengthening, the addition of paxilline also resulted in a
significant increase of the burst duration. This effect could indicate that the mAHP is
not sufficient to counterbalance the increased excitability, leading to a longer active
period in spite of the increased firing rate. However, electrophysiological recordings
would be necessary to provide a definite answer to the evolution of the intra-burst
activity.
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Figure 2.10.: Influence of the mAHP blocker, apamin, on the bursting activ-
ity. (Top) Traces of the calcium fluorescence over time for the 15 DIV culture.
(Bottom) Distribution of the burst duration and inter-burst interval (IBI) in the
control conditions (blue), after addition of bicuculline (grey), and after addition of
apamin (orange). Median is marked in black. For burst duration, p-values using the
Kolmogorov-Smirnov and Mann-Whitney rank tests where all smaller than 10−5.

Addition of apamin (Figure 2.10, final concentration 200 nM) also led to behaviors
that were compatible with the theoretical prediction (PM) for both EI (20 DIV) and
E (15 DIV) networks. In both cases, the activity displayed a significant shift towards
longer bursts, with no or only slightly significant changes in the IBI.
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As shown on Figure 2.11, addition of isradipine (final concentration of 7.5 µM)
led to a significant decrease of the IBI (PS) with no significant change in the burst
duration.
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Figure 2.11.: Influence of the sAHP blocker, isradipine, on the bursting activity.
(Top) Traces of the calcium fluorescence over time for the 16 DIV culture. (Bottom)
Distribution of the burst duration and inter-burst interval (IBI) in the control
conditions (blue) and after addition of isradipine (orange). Median is marked in
black. For IBIs, p-values using the Kolmogorov-Smirnov and Mann-Whitney rank
tests where both smaller than 10−6.
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Eventually, two cultures displayed significant qualitative changes in their activity
after addition of either apamin or paxilline.Indeed, as shown on Figure 2.12, the
bursting behavior switched from a rather regular activity, with little variability in
the bursting intensity, to series composed of a “strong” burst, followed by several
smaller bursts, which are repeated in time.
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Figure 2.12.: (Top) Reponse of an EI culture (16 DIV) to apamin. (Bottom)
Response of an EI culture (16 DIV) to paxilline. In both cases, large (normal) bursts
are separated by several smaller bursts.

This behavior looks similar to an effect shown by Loebel et al. 2002 where short-
term depression prevents the emergence of “strong” bursts until the vesicle pools
have been replenished. preliminary

experiments
are compatible
with all
predictions

Though further experiments would be necessary to obtain exploitable statistics
on the influence of the adaptation channels, these preliminary results are entirely
compatible with the hypothesis that cellular adaptation plays a prominent role in
shaping network bursts.
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2.3 Statistical properties of bursting behaviors
Statistical properties of the bursting activities are among the easiest measurements
that are experimentally accessible. Indeed, these are “macroscopic” predictions, they
involve the whole network, and they are therefore easy to “spot”, compared to
specific behaviors in single neurons, and also more reliable given the large variance
in biological neuronal networks.

Throughout this manuscript, my goal has been to provide such macroscopic and
statistical properties, in order to make experimentally testable predictions. In the
case of bursting, the objective is to find out whether there could be some significant
statistical differences between pacemaker-driven and noise-driven bursting, as well
as between adaptation-based and STD-based termination.

2.3.1 The transition to synchronous bursting
Transition of neuronal networks from asynchronous to synchronous activities has
been studied by several groups in the case of balanced networks subjected to external
inputs (Brunel 2000; Brunel and Hakim 2008), or as a way of switching between
different brain states (Destexhe 2009). However, these modes of synchronization are
quite different what is happening in cultures, where the networks are not necessary
balanced and are not subjected to external inputs.

Examining the effect of adaptation on the synchronization properties of pairs of
neurons have led Ladenbauer et al. 2012 to propose that spike-triggered adaptation
might improve low-frequency oscillations in excitatory networks. I will show here
that, taking spike-triggered adaptation and its calcium dependency into account, one
can explain the progressive transition between an asynchronous and a synchronous
bursting state which is observed experimentally.

Experimental observations
In a recent paper, Penn et al. 2016 revealed the existence of a well-defined phase
transition in hippocampal cultures, going from asynchronous to phase-locked syn-
chronized burst through the variation of the extracellular calcium concentration.

calcium-
induced

transition
This transition was progressive: starting with fully uncoupled, asynchronous

neurons, they first obtained a “fuzzy” synchronized state, where neurons seem to
synchronize their spiking frequency while preserving a broad distribution of the
phases. Once calcium concentration exceeded 200 µM, a zero-phase-lag synchrony
was obtained, with very sharp initiation for the up-state and almost no interburst
activity.

Influence of calcium on neurons and synapses
From a mechanistic standpoint, reducing the calcium concentration can affect four
main properties of the neuronal network.

calcium affects
both synaptic
and neuronal

properties

First of all, and most importantly, the diminution of calcium reduces its influx
at synapses upon arrival of an action potential, which reduces vesicle release, hence
the efficiency of neurotransmission (Neher et al. 2008). At zero calcium, the network
is thus effectively disconnected, with a complete removal of the triggered-release;
however, the effect of calcium on the spontaneous release — minis — has been
reported to be weaker, leading to a relatively smaller variation of the noise rate and
amplitude (Williams et al. 2018).
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However, apart from synapses, calcium concentration also affects the neuronal
behavior. Indeed, all After HyperPolarization (AHP) mechanisms mentioned in the
previous sections rely on a spike-driven influx of calcium to trigger the hyperpolar-
ization, meaning that a decrease of calcium would also decrease all AHP-related
influence. Diminution of calcium also reportedly increases the excitability of neurons
and the combined effect of excitability and AHP changes may lead the neuronal
behavior to switch from a spiking to a intrinsically bursting behavior at lower calcium
concentrations (Su et al. 2001).

Reproducing the “fuzzy” transition with adaptation
In order to reproduce as faithfully as possible the suspected mechanisms underlying
the phase-transition observed by Penn et al. 2016, the effect of changes in the
extracellular calcium concentration were modeled in the following way:

• normalized calcium factor c was defined as c = [Ca2+]/1 mM,
• synaptic strength were varied continuously according to s = c · smax,
• spike-driven adaptation was set according to the equation b = bmin + c(bmax −
bmin).

The transition was tested for both spiking pacemaker neurons, with Vr < Vth,
and for neurons that transited between spiking and bursting behaviors depending
on the calcium concentration. This change in the behavior was obtained by setting
Vr & Vth, such that for high values of b, a single spike is sufficient to bring the
neuronal state inside the V -nullcline and prevent bursting sequences. Parameters
used for the neurons are given in “Network models and parameters” (section D.2).

As shown on Figures 2.13 and 2.14, both conditions lead to a progressive transition
from asynchronous to zero-lag synchrony which is quite similar to what was observed
by Penn et al. 2016. adaptation-

based
description
successfully
reproduces the
asynchronous,
fuzzy, and
zero-lag stages

Indeed, at lower calcium, the reduced connectivity and noise lead
to sparse activity in the network, the excitatory power being insufficient to trigger
many successive spikes. Moreover, the decreased AHP diminishes the relaxation
character of neuronal oscillations and reduces their synchronizability, leading to
this “fuzzy” synchronization pattern. For higher calcium concentration, the highly
synchronized pattern is recovered by the enhanced connectivity and synchronizability,
while the restored AHP prevents the activity from diverging during a burst.

The most notable difference lies in the burst termination, which occurs much
more rapidly in the simulations compared to the experimental observations. This
phenomenon can be attributed to the fact that neither NMDA receptors, nor asyn-
chronous release is incorporated in the model, preventing the occurrence of long-
lasting bursts due to slower excitation mechanisms.
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(a) Raster plot of the network for [Ca2+] = 0 µM.
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(b) Raster plot of the network for [Ca2+] = 100 µM.

25 30 35 40 45 50 55
Time (s)

0

200

400

600

800

1000

N
eu

ro
n

ID

0

25

50

75

100

125

150

175

Fi
rin

g
ra

te
(a

.u
.)

(c) Raster plot of the network for [Ca2+] = 200 µM.
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(d) Raster plot of the network for [Ca2+] = 500 µM.

Figure 2.13.: Evolu-
tion of the properties
of the culture depend-
ing on the simulated cal-
cium concentration for
spiking pacemaker neu-
rons. Blue dots mark neu-
ronal spike time while
the black curve repre-
sents the firing-rate of the
whole population in ar-
bitrary units (consistent
throughout the figure).
Comparing the numerical
and experimental results,
it appears that both the
“fuzzy” transition and the
zero-lag synchrony can be
recovered. The progres-
sive decrease of the IBI
due to the increased level
of synaptic noise in the
culture is also compatible
with the experimental ob-
servation.
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(a) Raster plot of the network for [Ca2+] = 0 µM.
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(b) Raster plot of the network for [Ca2+] = 100 µM.
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(c) Raster plot of the network for [Ca2+] = 200 µM.
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(d) Raster plot of the network for [Ca2+] = 500 µM.

Figure 2.14.: Evolu-
tion of the properties
of the culture depending
on the simulated calcium
concentration for pace-
maker neurons transi-
tioning from intrinsically
bursting at low [Ca2+]
to adaptive spiking at
higher [Ca2+]. Blue dots
mark neuronal spike time
while the black curve rep-
resents the firing-rate of
the whole population in
arbitrary units (consis-
tent throughout the fig-
ure). Comparing the nu-
merical and experimental
results, it appears that
both the “fuzzy” transi-
tion and the zero-lag syn-
chrony can be recovered.
The progressive decrease
of the IBI due to the in-
creased level of synaptic
noise in the culture is also
compatible with the ex-
perimental observation.
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2.3.2 Synchronous bursts as percolation events
Is there a generic way to describe bursting? Can we find a framework that would not
depend on the specific properties of the units that constitute the bursting network,
and may even be independent of the network (at least qualitatively)?

It turns out we can: the initiation of bursting activity in neuronal networks (Breskin
et al. 2006; O. Cohen et al. 2010), as well as many other phenomena such as failures
in electrical networks, magnetization, and opinion or epidemic spreading, can be
described as percolation events.

burst
initiation as a

generic
percolation

phenomenon

This is because in all these systems, each unit’s behavior can be described as that
of a gatherer-comparator: it accumulates the inputs it receives, then “decides” to
change its state or not depending on their total value – “changing state” meaning
respectively spiking, failing, flipping, changing your mind, or getting sick, in the
previously mentioned systems.

A percolation event on a neuronal network is thus a rapid transition from a state
where only a small fraction of the neurons are active to a state where almost all
neurons are firing or just fired — see Figure 5 in “Review on percolation (IOP
Conf. Series 2017)” (section J.1) for a description of this percolation process. This
mechanism explains and describes the initiation of a burst as the spread of this active
state over the whole network.

This universal behavior enables us to make very general and resilient predictions
on the behavior of such units when they are gathered in large assemblies, and this
regardless of the detailed mechanisms underlying the response of the units to a
stimulation.

Quorum percolation
In that context, Quorum Percolation (QP) has been elaborated to describe the
initiation of bursts observed in such cultures as a collective phenomenon, from the
point of view of statistical physics rather than dynamical systems.

The introduction of QP was justified by the fact that:

“ In the simplest picture of a spiking neuron, stimuli (inputs) from
connected neurons are “integrated” in the target neuron, which fires once
a threshold voltage is reached and then propagates the electric signal
on to other neurons. Imposing the need for a large quorum of m input
nodes to fire leads to a percolation problem, which we term “quorum
percolation” (QP).” (O. Cohen et al. 2010)

percolation
has enabled to

deduce
structural

information

Using this description, several studies (Breskin et al. 2006; O. Cohen et al. 2010;
Soriano, Rodríguez Martínez, et al. 2008) managed to show that the evolution of the
bursting properties with the number of connections in the network was compatible
with an overall Gaussian distribution for the in-degree of the neurons, and that the
average value of this Gaussian distribution varied between 60 and 150 neighbors
depending on the neurons’ origins and density inside the culture.

A review of this model and a discussion of how heterogeneities, delays, and decay
affect its properties is proposed in Monceau, Renault, Métens, Bottani, and Fardet
2017 — included in “Papers” (Appendix J) — as well as a discussion about how
this mechanism can also describe the initiation of spontaneous activity in neuronal
cultures.
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Because these models seemed to reproduced quite faithfully the initiation period of a
burst, another study by J.-P. Eckmann et al. 2010 even proposed alternative network
structures that would provide a more realistic slope for the temporal recruitment of
the neurons, developing the concept of “leader neurons”, which I will comment on in
more details in the following chapter.

Extended QP: inhibition and dynamical units
These studies on percolation, confirmed that a sudden shift between two distinct
states, associated to the notion of bursting activity in neuronal cultures, is an intrinsic
property of random networks containing excitable units: as soon as a the number of
active units goes above a critical threshold, the activity percolates and spreads to
the entire culture.

robust against
many sources
of disorder
and
independent of
the unit’s
detailed
dynamics

The robustness of this model to topological disorder in the number of neighbors
of the neurons (Métens et al. 2016), heterogeneity in the firing threshold among
the neurons (Monceau, Renault, Métens, and Bottani 2016), and temporal decay
(Renault, Monceau, and Bottani 2013) was also demonstrated by later studies.

We further showed (Fardet, Bottani, et al. 2018) that presence of inhibitory units
does not qualitatively affect the behavior but only modulates the threshold value.
This is consistent with the fact that burst initiation shows no significant difference
in fully excitatory or mixed excitatory/inhibitory networks. In this same publication
— included in “Inhibitory and dynamical quorum percolation (Physica A 2018)”
(section J.2) — we verified that these predictions were independent of the detailed
model used to describe the neurons by showing that the percolation transition could
also be reproduced using cells modeled by the AdExp model.

This percolation mechanism, coupled to the relaxation-like behavior of adaptive
neurons, explains the high synchronisability of neuronal networks, since differences
between neurons are nullified by the fast recruitement of the network, which syn-
chronizes all units.

In this condition, we understand easily why the concept of “leader neurons”
became popular. Indeed, the IBI does not correspond to the average value of over all
oscillators, as in the Kuramoto model, but is driven by the period of the nth “fastest”
neurons, n being the number of active neurons required for percolation to occur.

2.3.3 Statistical properties of the interburst interval
In the introduction — “Simple models for spiking neurons” (subsection 1.3.3) —
we have seen that neurons can react differently to similar inputs, and especially
how pacemaker neurons display more regular behavior compared to non-pacemaker
neurons of type I or II.

In the following paragraphs, we will see how this increased stability of pacemaker
neurons with respect to their intrinsic frequency leads to significant differences in
the statistical properties of the bursting activity.

Following other studies on the subject (T. A. Gritsun, Le Feber, et al. 2010; T.
Gritsun et al. 2009), we will use these statistical properties to discuss the likelihood
of noise versus pacemaker activity as the origin of bursting activity in neuronal
cultures.
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Bursting activity of homogeneous networks
pacemaker-

driven bursts
are much

more regular

Looking at the distribution of Inter-Burst Intervals (IBIs) in networks where all
neurons have identical properties allows to further illustrate the difference between
non-pacemaker and pacemaker neurons6: as their name indicates, pacemaker neurons
display an extremely regular activity, while non-pacemaker neurons of both type I
and II generate much more irregular activity. This tendency is further increased as
the IBI increases, even though pacemaker neurons retain a rather regular behavior,
the variability of the other two types syrockets.
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(a) Density estimates for 14-second IBI
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Figure 2.15.: Kernel density estimate of the IBI distribution for each of the neuronal
types. Bursts were obtained for a 1000-neuron network simulated over 1000 seconds
with a 15 Hz Poisson noise on the synapses. Individual values of the IBIs are given
by the small sticks while density estimates using Gaussian kernel are marked by
the solid lines. Median values of the distributions are represented by the vertical
lines. Results for pacemaker neurons are in red (median IBI of 13.9 and 4.9 s) and
the density is given on the right axes. Type I neurons are in green (median IBI of
14.4 and 4.9 s) and type II neurons are in blue (median IBI of 13.8 and 5.0 s); the
densities of both are given on the left axes.

Bursting activity of heterogeneous networks
As shown on Figure 2.16a, adding heterogeneity in the network, by relaxing the
constraint that all neurons have identical properties, further increases the variability
in the IBI distribution.

This also illustrate the difference between synchronous bursts and a Kuramoto
process: looking at the distribution of Inter-Spike Intervals (ISIs) for isolated indi-
vidual neurons — Figure 2.16b — one can acknowledge the significant difference
between the median IBI, which is around 9 s, and the median ISI, which is around
20 s, not accounting for neurons which spiked less than twice over the whole 1000
seconds.

Contrary to Kuramoto phase oscillators which synchronize around the median
frequency, our adaptive neurons, as relaxation oscillators, are driven by the fastest
group.

6 see previous discussion at the end of “Simple models for spiking neurons” (subsection 1.3.3);
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(a) Density estimates for ∼15-second IBIs
in heterogeneous networks
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Figure 2.16.: (a) Kernel density estimate of the IBI distribution for each of the
neuronal types. Bursts were obtained for a 1000-neuron network simulated over 1000
seconds with minis at an average 15 Hz. Individual values of the IBIs are given by
the small sticks while density estimates using Gaussian kernel are marked by the
solid lines. Median values of the distributions are represented by the vertical lines.
Results for pacemaker neurons are in red (median IBI of 13.2 s) and the density
is given on the right axis. Type I neurons are in green (median IBI of 12.0 s) and
type II neurons are in blue (median IBI of 20.2 s); the densities of both are given
on the left axis. For all neurons, values of a and Vth were sampled from Gaussian
distributions, with a 0.01 pA and 0.01 mV deviation respectively. This is actually
sufficient to produce significant variability in the intrinsic interspike interval of the
neurons, when their are taken isolately. (b) shows the cumulated distribution for
the pacemaker neurons, which are simulated with the same noise as in (a), but are
uncoupled (spikes are not transmitted. The dotted yellow line shows the median
interburst, which is significantly different from the average ISI in the network.

Coefficient of variation
In the Supplementary material of their paper, Penn et al. 2016 quantified the
variability in the IBI of its hippocampal cultures using a simple measure, the
Coefficient of Variation (CV), defined as the ratio between the standard deviation σ
of a series, and its mean µ:

CV = σ

µ
. (2.3)

For most of its cultures, the CVs of the IBIs were rather low, with a median
around 0.34 for physiological calcium concentrations (Ca2+= 1 mM), and median
IBI values between 2 and 8 seconds.

Furthermore, for lower concentrations, they obtain even lower CVs, 0.22 at Ca2+=
100 µM, and 0.09 at Ca2+= 200 µM, both with average IBIs that were higher than
10 s7.

7note that each of these values correspond to measurements made on a single culture
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As can be seen on Figure 2.15, the CV of networks composed of pacemaker
neurons is much lower than that networks without pacemakers. In fact, for long
IBIs, the regularity of pacemaker neurons allow them to keep the variability to a
reasonable range, with a CV of 0.18 on 2.15a, while the variability of the other
neurons skyrockets to CVs greater than 0.65. On the other hand, as the interburst
decreases, the CVs of non-pacemaker networks become more reasonable (around
0.2), whereas pacemaker neurons display an activity which is much too regular (CV
< 0.01).for long

interbursts,
pacemaker

neurons are
necessary to

obtain
realistic CVs

In order to obtain more realistic activities, with CVs of the same range as those
observed in cultures, with various mean IBIs, one must therefore combine pacemaker
and non-pacemaker neurons, as shown on Figure 2.17.
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Figure 2.17.: IBI distribution of mixed pacemaker and non-pacemaker type I and
II populations, with respective ratios of 20 %, 40 %, and 40 %. Compared to previous
results, this enables the obtention of small and large average IBIs with variabilities
that are compatible with experimental observations. Fast bursting with an average
IBI of 14 s and a CV of 0.46 is shown in green; slower dynamics with an average IBI
of 28 s and a CV of 0.54 is in red; slow bursting with a average IBI of 46 s and a CV
of 0.76 is shown in blue.

Conclusion on temporal properties
Previous work by T. A. Gritsun, Le Feber, et al. 2010 looked into the profiles of
burst dynamics (the rise and decay properties of the firing rate) to analyze the effect
of pacemaker neurons on the activity. However, getting precise burst profiles from
experimental data is quite tricky, which is the reason why I decided to focus on
Inter-Burst Intervals (IBIs), which can be more reliably characterized.

T. A. Gritsun, Le Feber, et al. 2010 concluded that, for cortical cultures, small
fraction of pacemaker neurons (between 4 and 16%) led to bursting profiles that
are more realistic than those generated purely by noise. Using a different approach
based on the statistical variability of the bursting dynamics, I provide additional
evidence that inclusion of pacemakers in the population leads to activity patterns
that are more compatible with experimental observations.
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Overall, and regardless of the detailed neuronal behavior, percolation theory pre-
dicts that, for network of excitable units, a threshold exists, above which the activity
of individual neurons will spread and recruit the entire network. Because sponta-
neous activity occurs, either from noise or from pacemaker neurons, experimental
observations show the apparition of these percolation events, which lead to a global
activity. This activity then self-sustains until some fatigue mechanism leads to its
termination. The period of the bursting events is hence dictated by a balance between
the intrinsic timescale of the recovery process and the excitation mechanism.

Though further investigation is required to provide a quantitative assessment
of the dominant mechanisms (if any), we can already see that the occurrence of
spontaneous bursting events appears as almost inevitable in light of the intrinsic
neuronal properties. . . that is, on a homogeneous random network. . .
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Chapter 3
Topology and
spatio-temporal bursting patterns

In the previous chapter, we gave some details about the evolution of network bursts
in time. However, since we are studying 2D cultures, this dynamics is not limited to
the temporal realm but also displays specific spatial properties.

In this part, I will therefore try to provide a more complete description of the
phenomenon, describing some of the interactions between the temporal, spatial, and
structural mechanisms.

After a short overview of previous observations regarding spatio-temporal bursting
in cultures, I will show how the access to the spatial data can help provide a more
general definition of bursts. Then, I will discuss how different bursting mechanisms
lead to different spatio-temporal properties as the interaction between cell and
network properties change. We will see how this understanding could further improve
our understanding of the primary mechanisms involved in epileptiform bursts.
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3.1 Nucleation centers in experiments and simulations
Using calcium imaging at the scale of an entire culture, Orlandi et al. 2013 were
able to show experimentally that the occurrence of network-wide bursts was not
initiated randomly throughout the culturebursts

nucleate in
localized areas

, but instead was triggered by a nucleation
mechanism that occurred only in a few specific areas. This nucleation process occurred
only in a small set of localized regions which consistently initiated network bursts
over the entire recording. Other groups have also observed or hypothesized the
existence of nucleation centers (J. P. Eckmann et al. 2008; Jarvis et al. 2011) and
simulations on spatial networks, where the connectivity between neurons is distance
dependent, also displayed this nucleation mechanisms. More recently, Lonardoni
et al. 2017 used high density CMOS-MEAs to record 4000 neurons over the whole
culture, and also observed the presence of nucleation centers from which the activity
propagates in a wave-like fashion to recruit the whole network.

Moreover, Orlandi et al. 2013 observed that the propagation of the up-state to
the whole network evolved greatly with the age of the culture. While a clear circular
propagation from the initiation center could be observed at relatively low speed
(often less than 15 mm/s) in cultures less than 12 DIV-old, when the connectivity
is still very local, cultures above 20 DIV, with more long-range connections, would
display much faster propagation speeds (up to 70 mm/s) and less obvious nucleation
centers.

3.1.1 Resilience of the nucleation mechanism in silico
We observed the existence of areas that would consistently be responsible for the
initiation of network bursts in all simulations. A short overview of these observation
will be given in the following paragraphs, while more detailed results and figures
will be provided in the rest of this chapter. Parameters for the simulations can be
found in “Network models and parameters” (section D.2), subsection “Parameters
for “Burst nucleation in neuronal cultures in silico” (subsection 3.3.2)”.

The phenomenon was conserved regardless of the heterogeneity of the neuronal
population (from identical neurons to highly heterogeneous populations containing
four different types of neurons with randomized parameters) 1. Similarly, the size of
the network did not affect the nucleation process, and centers were observed for all
network sizes considered, i.e. from 1,000 to 50,000 neurons.nucleation

centers appear
when neurons

make local
connections

However, nucleation centers were significantly affected by the locality of the
network: structures with very local connections compared to the network spatial
extension, would often present several nucleation centers, whereas structures were
connections can span the whole network would typically exhibit only one or two
nucleation centers. As such, the existence of nucleation centers seems to be an
intrinsic property of networks exhibiting spatial locality.

Taken together with the experimental observation of Orlandi et al. 2013, this fact
hints at a significant role played by locality in the emergence of these nucleation
centers. This importance of locality in shaping complex behaviors will be further

1 Only in some rare cases did we observe situations where the nucleation center was “delocalized”
all around the periphery of the culture, resulting in centripetal waves that converged towards the
center. Because of its rarity and since it had not been reported experimentally, this phenomenon
is not treated in this thesis and has been left for future investigations.
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explored at the end of this manuscript, when neuronal devices will be discussed —
“Conclusion, towards neuronal devices” (chapter 5).

3.1.2 Who are the first to fire?
The apparent prevalence of locality, compared to neuronal properties, for the obten-
tion of nucleation centers hints at a significant importance of the network structure
in the initiation of collective activity. However, despite several claims regarding
specific structural properties that “leader” neurons would display (Afshar et al. 2015;
J. P. Eckmann et al. 2008; Hernandez-Hernandez et al. 2017), analyses in (Orlandi et
al. 2013) and our own simulations did not confirm any of these properties. Moreover,
a study by Zbinden 2011 also stressed the importance of neuronal properties to
characterize “leader” neurons. properties of

nucleation
centers
remain elusive

In this chapter, we will analyze the properties of the bursts and their associated
nucleation centers depending on the initiation mechanism that causes the bursting
behavior. We will focus here on a simple situation where all neurons have identi-
cal properties to assess the importance of the network depending on the central
mechanism involved in burst initiation.

Because epileptiform activity can occur for a wide range of neuronal biological
properties and network structure, the term “leaders’ — which is often used to
characterize the neurons that fire early at the beginning of the burst — is quite
misleading. These neurons indeed initiate the global activity, but they are not
necessary for its emergence, and in this sense, they do not drive it, nor are there
necessarily more active than other neurons. I will therefore refer to them as “first-to-
fire neurons”, rather than “leaders”, in the rest of this chapter.
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3.2 Structure and initiation-termination mechanisms
In this section, we will use the various insights obtained in the previous chapter to
draw a more complete portrait of network bursts. Analyzing the different mechanisms
that could play a role in structuring the collective activity, we will see how each
mechanism relates to the structural properties of the network and why this might
explain the difficulty encountered to characterize nucleation centers.

3.2.1 The possible driving mechanisms
In this study, I simulated two main scenarii to model bursting behavior in neuronal
cultures:

• systems where the neurons do not have a preferred frequency and are randomly
activated by the noisy synaptic bombardment to which they are subjected
(noise-driven bursting),

• systems where the neurons tend to fire at a specific frequency and for which the
noisy synaptic bombardment does not lead to random firing times (pacemaker-
driven bursting)

As mentioned previously, these two systems are characteristic of the main initiation
mechanisms that have been hypothesized to explain the emergence of spontaneous
bursting activity.

Noise-driven bursting
Biologically, the noise to which neurons are subjected comes from miniature Excita-
tory Post Synaptic Currents (mEPSCs), or minis (Kavalali 2014). These minis result
from the spontaneous release of synaptic vesicles in the absence of incoming action
potential. These events have been shown experimentally to occur randomly at each
synapse; taken together over a whole neuron, these events occur with total rates
ν which are in the [1, 30] Hz range (Sibarov et al. 2015). Compared to triggered
release by action potentials (Bekkers 2003) the quantal release of minis are typically
between 1/3rd and 2/3rd of a full spike.

Because spontaneous events arriving at each synapse of the neuron are considered
independent, the overall rate ν for one cell is given by

ν = kinν0, (3.1)

with kin the in-degree of the neuron and ν0 the base rate of arrival of minis at a
single synapse.

Simulations of noise-driven networks were divided into two categories: 1) control
simulations where all neurons received independent realizations of a Poisson noise
with the same rate 2) more realistic simulations where the neurons are subjected to
a Poisson noise whose rate is proportional to their in-degree, in order to simulate
minis.

As detailed afterwards, the presence of noise in the culture tends to increase the
variability of the neuronal activity in both cases, though minis introduce additional
correlations in the network compared to uniform Poisson noise.
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Pacemaker-driven bursting
In the previous chapter, we focused on the influence of pacemaker neurons, i.e. cells
with an intrinsic frequency, which, as their name imply, impose this pace to the rest
of the culture. As detailed on Figure 2.15 in the previous chapter2, this regularity is
reflected in the collective activity and tends to reduce the variability of the activity.

However, though we studied the phenomenon in noiseless networks, pacemaker
activity can never be found on its own, but, if present, will coexist with synaptic
noise.

3.2.2 Influence of the termination mechanism
In the previous chapter “The influence of neuronal adaptation” (section 2.2), we have
seen how network bursts could be shaped, and especially terminated, by adaptation
currents. Moreover, the preliminary results from experimental blocking of the adap-
tation channels — “Shaping bursts through adaptation channels” (subsection 2.2.2)
— showed that a significant role of adaptation consists in shaping the bursting
properties was indeed plausible.

In the literature (D. Cohen et al. 2011; T. A. Gritsun, Le Feber, et al. 2010; Koppert
et al. 2011), synaptic depletion is the other mechanism considered as predominant
in burst termination. We will discuss here how, in both conditions, the topological
properties of the neurons influence their role in the bursting dynamics.

However, it is worth mentioning that — as for noise in the initiation mechanism
— synaptic depletion is always present in synapses3 as a physical consequence of the
finite rate at which vesicles can be synthesized and conveyed near the presynaptic
membrane. The issue here is therefore to find which (if any) of the two mechanisms
plays a predominant role during specific parts of the activity. From our experimental
results, it is for instance possible that adaptation should dominate the burst termi-
nation, while the longer timescale on which synapses recover may dictate most of
the IBI duration.

3.2.3 The complex influence of topology
This discussion will mostly be founded on the observation that, in a network composed
of identical neurons, the cells which are most active during a burst are those which
have the strongest input strongly

connected
neurons fire
more during
bursts

coupling S, defined, for a neuron i, as

Si =
∑
j→i

sji, (3.2)

where sij is the total synaptic strength of the connections with presynaptic neuron i
and postsynaptic neuron j.

Hindsight from the adaptation model
When adaptation is the dominant mechanism for burst termination, the most active
cells — which fire more spikes during a burst — end up in a state characterized by
a higher value of w at the end of the burst.

2 see “Statistical properties of the interburst interval” (subsection 2.3.3).
3see also discussion in “Burst termination: adaptation or depression?” (subsection 2.1.2)
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Because the influx of potassium in the cell was greater, the time necessary for
K+to be evacuated, i.e. for w to return to zero, is also increased compared to less
active neurons.in “pure

adaptation”
bursts,

first-to-fire
neurons have
lowest input

strength

This means that neurons with the lowest in-degree4 will return to
a positive susceptibility more rapidly. Because they become susceptible first, the
neurons with lowest in-degree, i.e. the least active cells during the up-state, tend to
be the first-to-fire in adaptation-terminated bursts.

This fact is especially visible for pacemaker-driven bursts, as pacemakers do not
a priori occupy specific positions in the network and should not be correlated to
specific network properties.

However, if noise is driving the activity, then the influence of the in-degree is quite
different, since nodes with higher in-degrees receive larger amounts of minis, which
tends to increase their susceptibility more rapidly.minis counter-

balance
adaptation by
favoring high

in-degrees

This is especially in situations
where the IBI is much longer than the recovery time of the susceptibility from
adaptation currents. Even with pacemakers, minis are necessarily present and may
contribute to an increased excitability of large in-degree pacemakers.

Influence of synaptic depression
Short-Term Depression (STD) is linked to the frequency at which a given connection
is solicited. Thus, the synapses that undergo the most significant depletion are those
coming from the most active neurons in the network.

As for adaptation, there are thus two scenarii: either 1) the IBI is directly driven
by the recovery time of the synapses, or 2) synapses recover fully before the next
burst is initiated.

In the first case, it is likely that neurons that will be able to initiate the burst are
those whose out-going synapses recovered the most. This basically means synapses
that were not over-solicited, meaning that the associated neurons should be among
the least active in the burst.

Assessment
adaptation

and STD favor
neurons with

low activity. . .

Based on our preliminary results — “Shaping bursts through adaptation channels”
(subsection 2.2.2) — and hints from previous studies (D. Cohen et al. 2011; Ferguson
et al. 2015), it seems probable that burst occurrence should closely follows the end of
the recovery period (be it adaptation or depletion). Because of this, the termination
mechanism is likely to determine which neurons are the first-to-fire. Since both
adaptation and synaptic depletion affect most strongly the neurons that are very
active during the burst, the least active neurons are likely to be in the best position
to initiate the next up-state.

but minis
drive neurons

with high
input strength

The presence of minis, which are stronger for neurons with high in-degree tends of
course to counteract this influence of the termination mechanism. Yet, if adaptation
and STD are indeed the mechanisms dictating the bursting period, first-to-fire
neurons might well be, overall, those with lowest input strength.

4or the lowest synaptic coupling, in heterogeneous networks
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3.3 Structural and dynamical properties
In order to explain why some neurons fire early and drive the rest of the network into
the up-state, previous studies tried to reproduce some of the firing rate properties,
which led them to attribute specific topological (D. Cohen et al. 2011; Zbinden 2011)
or dynamical (Baltz et al. 2011; T. A. Gritsun, Le Feber, et al. 2010) properties
to these neurons. In the brain, it has also been suggested that hippocampal bursts
in-vivo are orchestrated by GABAergic hub neurons (Bonifazi et al. 2009).

However, previous studies on cultures were all based on experimental recordings
which included only a tiny fraction5 of the network.

In order to investigate the properties of the bursting activity with respect to the
network properties of the neurons, the activity of the whole network must be recorded,
as was performed by Orlandi et al. 2013 using whole-culture calcium imaging and
more recently by Lonardoni et al. 2017 using high density CMOS-MEAs.

In order to model and discuss the results observed in these two studies, I will
first introduce the random network model used to model the spatial structure of 2D
cultures in silico. After a brief analysis of the structural properties of such networks,
we will see how, based on the discussion made in “Structure and initiation-termination
mechanisms” (section 3.2), we can predict the position of nucleation centers for
each bursting scenario. We will then analyze some simulations and discuss how this
data can help us evaluate the likelihood of the bursting mechanisms that have been
discussed so far.

3.3.1 Topological properties of spatial cultures
In this study, 2D cultures were modeled through Exponential Distance Rule (EDR)
networks, which are space embedded random networks similar to Erdős-Renyi
networks (Barabási 2016), except that, when introducing

space in the
model

testing for the connection probability
between two neurons i and j, the probability depends on the Euclidean distance dij

between them:
pi,j = pji = p0e

−dij/λ, (3.3)
where p0 is a normalization factor to adjust the number of connections in the network,
while λ determines the scale of the typical distance between connected neurons in
the culture.

This generative model leads to random networks with strong metric correlations,
where neighboring neurons tend to cluster together, while forming fewer long range
connections with further cells. However, this behavior depends very strongly on the
value of λ, and, in the limit λ→∞, one recovers of course a non-metric Erdős-Renyi
network.

In the following, we will see through two main quantities (the clustering coefficient
and the betweenness centrality) how locality influences the structures of 2D networks.
The clustering characterizes how strongly neurons sharing a common neighbor are
connected together; for a neuron i, the clustering coefficient is defined by the fraction
of edges that exists among the out-neighbors of i compare to the total number if
they were all connected together. The betweenness, on the other hand, quantifies
the importance of a connection in propagating information throughout the network
by counting how many shortest path go through this specific connection6.

5typically 1% or less for old MEA systems in standard cultures
6 see “Properties of spatial networks” (section D.3) for additional details and definitions.
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Locality and EDR networks
To generate spatial networks, nodes (neurons) are seeded uniformly in space, then
connected together. Because of local heterogeneity in the distribution of the neurons,
some regions display higher local densities while other are more sparsely seeded.
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(a) Evolution of the in-degree distribution
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Figure 3.1.: Evolution of the network properties depending on the spatial scale
for networks of 1000 nodes contained in a disk of radius 1 mm. Values of λ are
given on the left axis; top distribution is always the Erdős-Renyi reference. For all
network properties except the delay (obviously), locality, i.e. smaller values of λ lead
to greater variability among the nodes.

When λ is small compared to the typical length of the environment, heterogeneities
between local regions become prominent, hence the widening of the in-degree, clus-
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tering, and betweenness7 distributions. locality
increases
structural
heterogeneity
between
neurons

Indeed, for the in-degree, we see a progressive
segregation between nodes in high-density areas (higher in-degree) and low-density re-
gions (low in-degree). The clustering increases significantly but the same phenomenon
occurs since low-density regions make only a fraction of all possible connections,
which lowers the clustering. The most interesting behavior is probably that of the
betweenness probability: as locality increases, nodes having increasingly high be-
tweenness appear while the majority of the population shifts towards low centralities.
This behavior is symptomatic of the progressive separation of the network into
local dense regions with sparser inter-cluster connectivity, i.e. bottlenecks in the
information transfer across the whole culture. Nodes connecting different clusters
then start having a more prominent (central) position since shortest-path connecting
different regions of the network necessarily go through them.

Circular cultures of various ages
In order to reproduce some of the properties of circular neuronal cultures, their
connectivity will be approximated by EDR networks of different λ values depending
on their age: low-DIV cultures will be modeled by low-λ networks while older cultures,
with more long-range connections, will be modeled by high-λ networks. Complete
details about the network models and properties used for simulations can be found
in “Network models and parameters” (section D.2).

(a) “Young culture” modeled by an EDR
graph with λ = 100 µm.

(b) “Old culture” modeled by an EDR graph
with λ = 1 mm.

Figure 3.2.: Spatial and topological visualization of 1000-node EDR networks
contained in a disk of radius 1 mm. Node size represents the clustering (higher
nodes have higher clustering) while color shows in-degree, from low values in dark
violet to high values in yellow. Only one connection in 50 has been kept for better
visualization.

7 the betweenness of a node quantifies the number of shortest-path in the network that go through
that node.
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Figure 3.2 shows the evolution of the spatial properties from young (a) to older (b)
cultures. A typical property of circular cultures is the presence of high-degree nodes
around the center of the culture, where more neurons are present, and high-clustering
nodes on the periphery, where the number of neighbors is more limited — hence
the high clustering. The strong difference in clustering is especially visible for young
cultures, while it homogenizes in older networks.

Predicting the nucleation centers
Based on our discussion in “Structure and initiation-termination mechanisms” (sec-
tion 3.2), we can now make predictions about the regions that are more likely to act
as nucleation centers in the different burst-generation mechanisms:

• for pacemaker-driven bursts, where synaptic noise (minis) are not predominant,
bursts should be more likely to nucleate on the periphery, where in-degree is
low and clustering high, increasing the probability to find clusters of less-active
neurons,

• for noise-driven bursts, where noisy synaptic inputs initiate the activity, bursts
are much more likely to initiate in the center of the culture, where the connec-
tivity is highest.

3.3.2 Burst nucleation in neuronal cultures in silico
In order to analyze the spatio-temporal characteristics of the bursting activity in a
whole culture, a necessary preliminary step consists of a rapid delimitation of the
bursting events, in order to associate all spikes in the recording to a single bursting
event.

To that end, the spikes are first converted to a time series representing the firing
rate of the whole culture — see “Nucleation centers” (Appendix F) for more details
— and the approximate burst times are defined by the highest value of the firing
rate. A spike is then considered as satellite of a given burst if it is closer to it than
to any other burst, as described on Figure 3.3e.

detecting burst
nucleation

through spatial
clustering

After the spikes have been attributed to their respective bursts, a clustering
algorithm is used to cluster the neurons that have fired before a given timestep: like
in a percolation process8 active nodes are considered active until the whole culture has
been recruited; the ensemble of active nodes is then tested for the presence of clusters
— regions where all or almost all nodes have been activated. After the appearance of
the first center, this cluster will grow, potentially accompanied by others, until all
neurons belong to a cluster. A more visual explanation of the algorithm can be seen
on Figure 3.3.

Thanks to the additional information provided by the spatial evolution of the
activity, the detection of the first cluster provides a non-arbitrary way9 to define
the beginning of a burst. To that end, each area assigned to a burst — Figure
3.3e — was divided into time bins of duration given by the average delay in the
network. Cluster detection was then performed using the DBSCAN algorithm (Ester
et al. 1996) from the scikit-learn python module for each time bin in order to detect

8 see “Synchronous bursts as percolation events” (subsection 2.3.2) for more details on percolation
processes.

9 because the parameters of the clustering algorithm are fully determined by the network structure,
there are no arbitrary parameters used in the cluster detection.

http://scikit-learn.org/stable/modules/clustering.html#dbscan
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clusters of activity in space. To be considered as part of a cluster, an active neuron
must have a minimum number of active neighbors kactive

min within a radius ε. Knowing
the network structure, the ε parameter was thus set to the typical length λ of the
EDR model, while the minimum number of active neurons is computed based on the
average spatial density of neurons d, and is given by kactive

min = bd ∗ πε2 −
√
d ∗ πε2c.

This characterizes the number of neurons in the part of the culture with the smallest
local density due to the random fluctuations.
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(a) Burst detection and spike segregation. (b) First detected cluster.

(c) Expansion of the cluster. (d) Second cluster detected.

(e) Coalescence. (f) Final state.

Figure 3.3.: Visualization of the preliminary burst detection (a) and subsequent
clustering (b) to (f). (a) From the raster plot (blue dots), the firing rate of the
whole population is obtained (black curve). For a given burst, marked by the orange
diamond, all spikes closer to it than to the neighboring bursts (orange dots) are
associated to that precise bursting event — all spikes between the two dashed orange
lines. For these successive spikes, the progressive accumulation of active neurons
in the culture is tested through a clustering algorithm. Once a critical density of
active neurons is reached, a cluster is detected — (b) red neurons — while other
neurons (in black) are still considered as isolated events. In time, the cluster grows
(c), potentially coexisting with others (d) until all clusters coalesce (e) and finally
encompass the whole culture (f).
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Bursting patterns
Though the bursts almost always nucleate from one or several centers, there is great
variability in the number, position, and relative importance of these centers.

In most experimental and simulated cultures, only one to three nucleation centers
are usually observed. When several nucleation centers are present, no pattern is
usually visible in the sequence of the selected centers, and their alternation is
seemingly random, though some centers may initiate the activity more often than
others. However, simulations of cultures with low connectivity (an average in-degree
of 30), displayed a large number of nucleation centers (more than 5) and significant
correlation in the initiation sequence, with a given center sometimes activating up to
ten bursts in a row10. Such observation also seem possible in experimental cultures,
judging from the recent results of Lonardoni et al. 2017, where up to four or five
different nucleation centers — designated by initition sites in the paper.

(a) Burst initiated by one nucleation center. (b) Burst initiated by two nucleation cen-
ters.

Figure 3.4.: Temporal evolution of the bursting activity, starting from one (a)
or two (b) nucleation centers. Note that the first neurons to transit back to the
down-state are usually those around the nucleation centers.

“Age-dependence” of the bursting behavior
General tendencies for the behavior of the nucleation centers can nonetheless be
derived from the accumulated observations, and are enumerate in Tables 3.1 and
3.2:

• the number of nucleation centers increases with the locality of the network
(many short-range connections lead to many centers),

• concurrently with their decrease in number, the nucleation centers shift towards
the center of the culture as connection-range increases.

As mentioned previously, cultures of different DIVs were modeled using EDR
networks of different scales and average degree.
10 these findings are preliminary and are the result of direct observation, since automated tools to

characterize and compare burst centers — detecting whether or not two bursting events were
initiated by the same center — are yet to be developed.
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Young cultures were modeled by networks with short-range connections (λ =
200 µm) and low in-degrees (〈k〉 = 50) while older cultures possessed long-range
connections (λ = 800 µm) and higher in-degrees (〈k〉 = 100). Intermediate cultures
were also simulated, with λ = 400 µm and 〈k〉 = 75.

Conditions/Age Young Intermediate Old

All Several Few One
Pacemaker-driven At least two One or two One
Noise-driven One or two One One

Table 3.1.: Evolution of the number of nucleation centers depending on the “age”
of the culture and on the bursting mechanism.

Conditions/Age Young Intermediate Old

Pacemaker-driven Border More centred Centred
Noise-driven Almost centred Centred Centred

Table 3.2.: Evolution of the location of the nucleation centers depending on the
“age” of the culture and on the bursting mechanism. Consistently with the predictions,
noise-driven bursts nucleate from the center, where the highest in-degree nodes are
localized, while pacemaker-driven bursts are initiated closer to the periphery, where
low in-degree nodes are located.

Consistently with the locality dependence of the nucleation centers, one can thus
say that young cultures are more likely to display several nucleation centers in
the periphery, while older cultures would tend to exhibit a single, more centered
initiation site.

the position of
the nucleation
center affects

both the
temporal and

spatial
dynamics

Furthermore, these differences in the properties of the nucleation centers also affect
the burst profiles. Indeed, for peripheral nucleation centers, the “activity front” —
the border of the active area, which delimitates the region where neurons activated
from the still quiescent region, as shown on Figure 3.4a — quickly reaches the
edge of the culture, meaning that its expansion only occurs as a half-disk, while
initiations at the center can expand in all directions. Illustration of this behavior is
illustrated on Figure 3.5. Coupled to the fact that propagation speed increases with
the amount of long-range connections, this makes burst profiles much sharper for
old cultures compared to young cultures: the time necessary to recruit the whole
culture diminishes with the age of the culture; conversely, the peak firing rate in the
burst increases with age.

First-to-fire neurons and nucleation centers
Most of the time, only one or a few nucleation centers are repeatedly selected to
initiate up-states. Because of this strong resilience for a given network and neuronal
population, it seems unlikely for nucleation center not to be related to some topological
property of the network.
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Figure 3.5.: Evolution of the firing rate depending on the number and localization
of the nucleation centers. Peak firing rates increases from a single nucleation center
on the border (red), two centers with the first one on the border (blue), a single center
in the middle (orange), three nucleation centers (purple), and four simultaneous
centers (violet). Visualization of the activity on the network is either given at hte
beginning (full centers) or at the end (empty centers) depending on which displayed
better visibility.

Starting from the predictions proposed in the previous section, I investigated
the correlations between degree centralities and the first-to-fire property, before
extending the analysis to several additional centralities and network properties —
see “Predicting nucleation centers by graph centralities” (section F.3) for details on
all centralities tested.

The neurons and their associated activity were characterized by three values:

• The average first-to-fire property, quantifying how early a neuron fires with
respect to the time at which all neurons have recruited into a burst. For each
burst, the first neuron to start is associated the value 1 while the last one is
associated the value 0. Intermediate neurons have a value which is proportional
to their spike time.

• The first-to-cluster property, characterizing the time at which a neuron is
associated to a cluster of active neurons during the percolation process.

• A “nucleator” index, which is a topological property of the network which
correlates with the first-to-fire and first-to-cluster properties11.

pre-burst
activity is
localized
around the
future
nucleation
center

A surprising feature of the bursting activity which came out of this study was
the very strong correlation between the first-to-fire and first-to-cluster properties.
Indeed, defining the burst start as the apparition of a first cluster, the first-to-fire
neurons are technically “out-of-synch” neurons which precede the bursting event.
Yet, these apparently random spikes, which increase in frequency right before the

11 several nucleator indices will be described in the following, the best nucleator index depending
on the properties of the neurons: no “universal nucleator index” was found.
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Figure 3.6.: Spatial representation of the bursting properties of an EDR network
composed of 2000 adaptive spiking, non-pacemaker neurons. Neurons are represented
by the filled circles, colored by their average first-to-fire property over a 500-second
simulation: from white for early spiking neurons, to black for the last to fire in the
burst. Each node is associated to its Voronoi cell which is colored from dark blue for
the first neurons detected in a cluster (the nucleation center), to white for the last
to join the percolating cluster. Contour around the Voronoi cell delineate the groups
of similar nucleator index, from low values in off-white, to high values in dark red.

start of a burst, are actually statistically localized in close proximity of the future
location of the nucleation center, as can be seen on Figures 3.6, 3.7, and 3.8.

As predicted, for networks where the activity is noise-driven, exemplified on Figure
3.6, the nucleation center co-localizes with the area where the nodes have the highest
total-degree. In this case, the “nucleator” index consider is thus the normalized value
of the degree. Because EDR networks have higher degrees around the center of the
culture, nucleation centers tend to be rather centered for non-pacemaker neurons
of type I and II, where the activity is purely noise-driven.nucleation

position
depends on

neuronal type
and

noise/adapta-
tion

balance

This effect is especially
strong when the noise is correlated to the in-degree (minis), but is still present event
for uncorrelated noise, since neurons with higher in-degree are more likely to collect
random spikes and become active as a consequence.

Using pacemaker neurons, the localization of the nucleation center depends on the
relative importance of the noise compared to the adaptation currents:
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Figure 3.7.: Spatial representation of the bursting properties of an EDR network
composed of 2000 pacemaker neurons. Neurons are represented by the filled circles,
colored by their average first-to-fire property over a 500-second simulation: from
white for early spiking neurons, to black for the last to fire in the burst. Each
node is associated to its Voronoi cell which is colored from dark blue for the first
neurons detected in a cluster (the nucleation center), to white for the last to join the
percolating cluster. Contour around the Voronoi cell delineate the groups of similar
nucleator index, from low values in off-white, to high values in dark red.

• if the Inter-Burst Interval (IBI) is mostly dictated by the recovery time of the
adaptation current, then first-to-fire neurons tend to be low-in-degree nodes, as
shown on Figure 3.7,

• if the IBI is much longer than the recovery time of the adaptation current, then
the behavior of the network becomes closer to that of a noise-driven network,
since excitatory input need to build up before the neurons start firing again; in
that case the nucleation centers shift back towards the interior of the culture,
cf Figure 3.8.

In the second case, as for non-pacemaker neurons, the best predictor for the location
of the nucleation centers seem to be the total-degree of the neurons (Figure 3.8).
However, in the first case, the best “nucleator” index found was very different, since
it was given by the combination of the lowest clustering coefficient with the lowest
in-degree.
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To understand why the combination of both properties might make sense, one must
first realize that they actually tend to anti-correlate. Indeed, in the EDR network,
the lowest in-degree nodes are located on the periphery of the network, because
they have access to a lower number of neighbors, hence their lower connectivity. In
addition, this inferior number of available neighbors leads to an increased tendency for
neighboring nodes to be connected to one another, which is why peripheral neurons
tend to have higher clustering coefficients. Taking the normalized combination of
both leads to a “nucleator” index nj, for node j, given by:

nj = c̃j ∗ k̃(in)
j , (3.4)

where c̃j is the normalized value of the opposite of the correlation coefficient,

c̃j = cmax − cj

cmax − cmin

, (3.5)

and k̃
(in)
j is the normalized value of the opposite of the in-degree,

k̃
(in)
j =

k(in)
max − k

(in)
j

k
(in)
max − k(in)

min

. (3.6)

This index quantifies a balance between the low connectivity of the neuron and the
presence of long-range edges among its connections. Indeed, we know that high-in-
degree nodes will take much longer to recover from their superior in-burst firing-rate,
which will bring them to very high values of adaptation current w at the end of
the burst; first-to-fire neurons are thus more likely to be lower-degree nodes. Yet, if
these nodes are too isolated, they will not be able to excite the network sufficiently
to initiate the burst. Taking the clustering coefficient into account enables to both
prevent the selection of exceedingly small degrees and to make sure that the selected
neurons sample more broadly the culture and do not only connect to their local
neighbors. In that situation, the neurons that ignite the whole culture are therefore
those that maintain an equilibrium between excessive connectivity and excessive
local confinement.

Eventually, when neither the noise, nor the adaptation predominates, we obtain
an intermediate regime where none of the previous nucleator indices significantly
correlates with the nucleation centers.

3.3.3 Limitations of the predictions
Unfortunately, though the predictions of the nucleation centers are based on generic
properties which are robust against the model used, the detailed spatiotemporal
predictions heavily rely on the predicted properties of the neuronal network. Further-
more, even for a given network model, no universal nucleator index was found, and
the best predictions were obtained using different indices depending on the neuronal
properties.
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Figure 3.8.: Spatial representation of the bursting properties of an EDR network
composed of 2000 pacemaker neurons. Neurons are represented by the filled circles,
colored by their average first-to-fire property over a 500-second simulation: from
white for early spiking neurons, to black for the last to fire in the burst. Each
node is associated to its Voronoi cell which is colored from dark blue for the first
neurons detected in a cluster (the nucleation center), to white for the last to join the
percolating cluster. Countour around the Voronoi cell delineate the groups of similar
nucleator index, from low values in off-white, to high values in dark red.

Though several studies (Barral et al. 2016; Horvát et al. 2016; Lv et al. 2017)
have hinted at the validity of simple distance rule models to reproduce properties
of spatial neuronal networks, the actual precision of such models and how they
behave with respect to boundary conditions near the boundary of the culture is
far from obvious. Furthermore, we have postulated here the absence of correlation
between neuronal properties and connectivity, which might not be the case, given
that neuronal morphology also affects the dynamical properties. Eventually, these
models are not optimal to simulate the change of connectivity over time in a single
culture, and can only give trends regarding how the behavior statistically evolves
with the age of the culture.

We will see in 4.4.2 how these issues can be alleviated, at least partly, using our
new simulation platform to grow cultures in a more realistic fashion. However, a final
problem remains, which is the issue of the synaptic strength. Indeed, all simulations
were performed on networks where all synapses had identical strength, while several
studies (Sayer et al. 1990; Song et al. 2005) have hinted at broad distributions for the
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synaptic strength. However, without knowing whether synaptic strength correlates
to specific network properties, it is quite hard to model their impact, which is why
this problem was not tackled in this thesis.
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Chapter 4

Accounting for neuronal development
In the previous chapters, almost all simulations were performed with the NEST
simulator (Peyser et al. 2017). This open-source software, and others like BRIAN, or
NEURON, has proven invaluable to simulate neuronal activity, both on small desktop
machines and on large scale supercomputers.

However, there is no such widely-used platform to account for neuronal devel-
opment and connectivity: even though tools were developed (Koene et al. 2009;
Torben-Nielsen et al. 2014; Zubler et al. 2009), they were not as versatile as their
“activity” counterparts and their development now seems discontinued. Thus, no
simulation platform currently provides access to several models for neuronal devel-
opment, which hinders theoretical studies of complex neuronal systems and neuronal
growth.

In this chapter, I will present a new platform, DeNSE, meant to provide a unifying
framework for the study of neuronal development. This software gives access to
several existing models for both neuronal elongation and branching, as well as new
models, and takes spatial environment into account by modeling the interactions
between the neurons and their surroundings.

After a brief introduction of the platform, I will detail the models that were
implemented to describe neuronal elongation and navigation through growth cones
and their behaviors. I will then discuss branching mechanisms and how they interact
with elongation models, to finally show how we can move from individual neurons to
a fully connected neuronal network.

Contents
4.1 DeNSE, a unifying platform for neuronal growth 92
4.1.1 Existing software, assessment, and objectives . . . . . . . . . . . . . . . . . . 92
4.1.2 Modeling and analyzing developing neurons with DeNSE . . . . . . . . 94

4.2 Growth cones, steering and interactions 96
4.2.1 Modeling an extending growth cone . . . . . . . . . . . . . . . . . . . . . . . . 96
4.2.2 Beyond the isolated growth cone: interactions . . . . . . . . . . . . . . . 102

4.3 Branching patterns 108
4.3.1 Growth cone splitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
4.3.2 Lateral branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
4.3.3 Pruning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.4 From neuronal morphologies to neuronal networks 117
4.4.1 A complete neurite tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.4.2 Coupling neurons: synapses and network . . . . . . . . . . . . . . . . . . . . 118



92 Chapter 4. Accounting for neuronal development

4.1 DeNSE, a unifying platform for neuronal growth
When building numerical simulations of neuronal networks, most studies rely on
simple network models with characteristic connectivity distributions (e.g. Gaussian,
in the case of the homogeneous cultures we studied in the previous chapters, or with
small-world, or scale-free properties). Though they might be fine in a number of
cases, such model have many flaws if one wants to account for specific properties of
the network connectivity.

For instance, countless studies in the brain, as well as many in vitro experiments
and more theoretical studies in network science (Leyva et al. 2011; Pernice et
al. 2013; Tibau et al. 2013) have stressed the significant influence of the network
structure on the observed activity. Moreover, several neurodegenerative diseases such
as Alzheimer, Parkinson, or Huntington, could be related to the directed propagation
of deregulated or misfolded proteins (Takeda et al. 2015), while autistic disorders
have been related to altered neuronal arbors, as well as modified spine densities,
during development (Courchesne et al. 2005; Kulkarni et al. 2012).

In order to take at least spatial correlations into account, a common first step is
to use spatial networks, such as the EDR model we used in “Topology and spatio-
temporal bursting patterns” (chapter 3). However, such simple models do not account
for the polarization of neurons that often send processes in specific directions, in a
strongly non-uniform fashion. Worse, when the networks are embedded in complex
non-convex structures, the Euclidean distance used by such generative algorithms
cannot provide realistic connectivity between neurons that are separated by distances
that are very different from that between their somas.

The DeNSE simulation platform (Development of Neurons in Spatial Environments),
presented in this chapter, was developed in order to tackle these issues, which are
especially important for the study of neuronal devices, and to provide a generic
tool to model neuronal development through biophysical models bringing together
different steps of neuronal growth.

4.1.1 Existing software, assessment, and objectives
Between 2009 and 2014, three different simulation platforms were developed to model
neuronal growth: NETMORPH (Koene et al. 2009), CX3D (Zubler et al. 2009), and
NeuroMaC (Torben-Nielsen et al. 2014).

All three approached neuronal growth from very different perspectives.
NETMORPH provided possible branching and elongation processes to obtain a
desired morphology through a mathematical description of branching and elongation
as stochastic phenomena.
On the other hand, CX3D developed mechanistic axioms to describe the mechanics of
migration and extension for large number of neurons, notably to form hierarchically
organized networks such as cortical layers.
Eventually, NeuroMaC focused on the importance of interactions in the elonga-
tion of neuronal processes, proposing a set of principles that could explain specific
morphologies and neuronal circuit organization.

Software limitations
It is almost impossible to determine precisely why a given piece of software was
discontinued, and for academic software, this often depends quite significantly on
the career evolution of the people involved in their development. However, for the
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three simulation platforms we will focus on, regardless of why they now seem to
be discontinued, no significant user base was reached, which may have led to new
developers investing on them. Let us therefore have a look at the features that might
have contributed to this fact, in order to make sure these are properly addressed by
DeNSE.

As summarized in Table 4.1, only NeuroMaC respected some “neuroscience stan-
dards”, i.e. enabling the user to code in a generic scientific programming language
(Python, which is also the main language for neuronal activity simulations) and
saving the generated morphologies in the SWC1 format.

Software NETMORPH CX3D NeuroMaC

Multiplatform Partly Yes Yes

Documentation .doc file Online tutorial, Online
google group documentation

Code-sharing Source code Source code Yes
(download only) (download only) (GitHub)

Standards None Java, XML Python, SWC

Efficiency Low speed Variable Low speed

Biological Limited Good Correctmechanisms

Versatility Limited Limited Limited

Table 4.1.: Assessment of the three simulators. For practical purposes, I checked
whether they could be used on all computers (Linux, Windows or Mac), if they were
documented, if the code could be modified and improved by users, if they respected
some community standards in the language and the generated files. Regarding the
simulator itself, I evaluated how fast it could simulate growing neurons, if the
mechanisms underlying growth and branching were modeled in a biologically realistic
way, and how versatile the code was (i.e. how many models were implemented and
to which extent they could be changed).

Besides the language barrier for NETMORPH and CX3D, the documentations,
though quite short and sometimes difficult to understand, were usually sufficient to
get started with the software.

I believe that the three projects were discontinued for the following reasons:

• all simulators are quite slow and, except for CX3D, they do not allow to use
more than a hundred or a few hundred neurons,

• none of them allows the user to work with different models,

1A standard format for neuronal morphologies, see
http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html

http://www.neuronland.org/NLMorphologyConverter/MorphologyFormats/SWC/Spec.html
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• the limited biological relevance of the parameters and mechanisms provided
in NETMORPH and NeuroMaC restrict their use case to rather theoretical
studies.

Overall, it seems that, except for CX3D, which had very specific applications to
understand for instance layer formation in the cortex, NETMORPH and NeuroMaC
could not provide models and parameters that were close enough to the biological
reality. Because of this, they were unable to raise sufficient interest from people
focused on the understanding of the biological mechanisms underlying neuronal
growth.
On the other hand, though these simulators could have been of interest for people
focused on neuronal circuits, their performances were not sufficient to generate the
networks involved in such studies, which are usually composed of at least several
thousands neurons (for a typical example, see the study of Aimovi et al. 2011
comparing NETMORPH and CX3D).

Objectives for the DeNSE simulator
Based on the previous analysis, the DeNSE simulator was designed with the following
specifications in mind:

• the simulator should provide efficient simulations for reasonable network sizes—
at least 10,000 neurons,

• models should provide biologically-relevant parameters,
• API should be in Python to respect standards in computational neuroscience

and generated morphologies should be saved in standard formats such as SWC,
• the simulator should be versatile—several models for each developmental “fea-

ture” such as elongation and branching—and modular—features can be switched
on and off, all models can be combined.

Given the complexity of the task, we decided to restrict the scope of DeNSE to
bidimensional neurons, in order to focus on in vitro studies and neuronal devices.

The design of the DeNSE simulator was thus started using an architecture similar
to that of NEST (Gewaltig et al. 2007), using a C++ backend to allow fast and
concurrent simulations with OpenMP coupled to a Python frontend through Cython.

4.1.2 Modeling and analyzing developing neurons with DeNSE
Assessment of current capabilities
DeNSE enables to model the development of neurons from the time of the axonal
polarization until the end of the growth process. As in NETMORPH and NeuroMaC,
the neurons’ positions are fixed; as in NeuroMaC, interactions between the neurons
and the environment are considered.

DeNSE can simulate neurons with or without a spatial environment, the former
situation being significantly faster as interactions with the environment do not need
to be checked.

Though long-range interactions such as chemical gradients would be very interest-
ing in the context of neuron-neuron interactions and might be added to future releases,
only mechanical interactions are available in this first version of the simulator.

http://www.openmp.org/
http://cython.org/
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A simulation with DeNSE
DeNSE is implemented using object-oriented programming; its structure thus reflects
the biological hierarchy: a Neuron object contains Neurites, and each Neurite
contains GrowthCone objects sharing similar properties.

In a simulation, the properties of the neurons, axons, and dendrites are thus passed
upon construction, then all growth cones inherit their own neurites’ properties.

1 import dense as ds
2

3 params = {
4 "growth_cone_model": "run_tumble",
5 "use_uniform_branching": True,
6 "uniform_branching_rate": 0.0002,
7 "sensing_angle": 0.2,
8 "position": (0., 0.),
9 "speed_growth_cone": 0.03

10 }
11

12 dendrite_params = {"speed_growth_cone": 0.01}
13

14 n = ds.CreateNeurons(n=1000, num_neurites=2, params=params,
15 dendrite_params=dendrite_params)
16

17 ds.Simulate(hours=20.)
18

19 ds.PlotNeuron(show=True)

Visualize and analyze the neurons
Neurons were analyzed and visualized using the neurom2 Python library.

Dendrogram of the neurites were obtained with the ete33 library.
More detailed visualization of the resulting spatial or topological networks were

performed respectively with the algorithms included in the DeNSE and NNGT4 libraries.

2 freely available on GitHub (https://github.com/BlueBrain/NeuroM) or via pip, see also
http://neurom.readthedocs.io/.

3 see http://etetoolkit.org/, package available via pip.
4 this is my personal library which is aimed at bridging graph theory and neuroscience; it is freely

available on GiHub (https://github.com/Silmathoron/NNGT) or via pip and the documentation
can be found here: http://nngt.readthedocs.io/.

https://github.com/BlueBrain/NeuroM
http://neurom.readthedocs.io/
http://etetoolkit.org/
https://github.com/Silmathoron/NNGT
http://nngt.readthedocs.io/
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4.2 Growth cones, steering and interactions
As mentioned in the introduction — “Neuronal development: from seed to tree”
(subsection 1.2.2) — the development of neurons is a complex process through which
an almost spherical cell polarizes and evolves into a complex structure composed of
long, specialized extensions which connect it to other neighbouring or distant cells
(Van Ooyen 2011).

During the extension of the neuronal processes (the neurites, one of the main
actors is the growth cone: this is the “hand-like” structure present at each tip of a
neurite, that enables it to sense the surroundings and set the neurite on the “desired”
path.

In this section, we will describe the structure of a growth cone, as well as the
biological mechanisms involved in its dynamics, before detailing several models
that can be used to reproduce its behavior. In the last part, we will focus on how
interactions with the rest of the neurite and the environment may affect the dynamics
of a single growth cone.

4.2.1 Modeling an extending growth cone
Structure and properties of a growth cone

T-domain

P-domain

stable MTs

C-domain

dynamic MT

lamelipodia-like

filopodium

F-actin bundle

F-actin network

F-actin arc

axonal shaft

veil

Figure 4.1.: The growth cone leading edge consists of dynamic, finger-like filopodia.
They are separated by lamellipodia-like veils consisting of sheets of membrane. The
growth cone can be divided into three domains based on cytoskeletal distribution.
The central C-domain encloses stable, bundled MTs that enter the growth cone
from the axon shaft. The peripheral P-domain contains long, bundled actin filaments
(F-actin bundles), which form the filopodia. It also contains mesh-like branched
F-actin networks, which give structure to the lamellipodia. Additionally, individual,
dynamic, and “pioneering” microtubules (MTs) explore this region, usually along
F-actin bundles. Finally, the transition T-domain sits at the interface between the
P- and C-domains, where actomyosin contractile structures — called actin arcs —
lie perpendicular to F-actin bundles, forming a hemicircumferential ring within the
T-domain. Adapted from Lowery et al. 2009.
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As can be seen on Figure 4.1, the growth cone is composed of extending protrusions,
the filopodia, which emerge from a larger body, the lamelipodia.

The filopodia are the main sensing organs of the growth cone; they explore the
neighboring space and generate the first traction forces that are responsible for the
elongation or turning of the growth cone.

Once a traction force has been consistently exerted by a filopodia, a focal adhesion
point form on the lamelipodia, below the pulling filopodia. From the focal adhesion,
much stronger traction forces can then be applied, stabilizing potential dynamic
MTs and leading to the progressive invasion of the other MTs from the C-domain.

Eventually, the large bundle of MTs in the axonal shaft contributes to the rigidity
of the extending neurite and determines its general persistence length. reproduce

characteristics
of elongation
and turning
through simple
models

In order to properly account for the whole dynamics of the growth cone, very
detailed biomechanical models would be necessary. However, as for neuronal activity,
we will use simpler models that capture a number of the main dynamical features of
the growth process which is a high as possible.

Main characteristics of the trajectory
For all elongation models, the main biological parameter is the persistence length lp
that characterizes the neurite.

This length is defined through the correlation of the neurite’s shape: starting from
a point r0 (associated to an angle θ0 with Ox) along the neurite, the statistical
correlation, at a point r (associated to an angle θ) along the trajectories of many
growth cones in a set of neurons, is given by

〈r0 · r〉
‖r0‖‖r‖

= 〈cos(θ0 − θ)〉 = exp
(
−‖r− r0‖

lp

)
, (4.1)

with 〈·〉 denoting the ensemble average over the set of growth cones. This correlation
decays exponentially with the distance. lp: length of

straight
regions along
the path

This length roughly gives the average distance on which the path followed by the
neuron can be considered almost as a straight line, i.e. consistently stays along a
given angle.

A second characteristic of a growth cone’s trajectory is given by its tortuosity. For
a trajectory linking rfirst to rlast via a path C, the tortuosity is defined as:

T = 1
‖rfirst − rlast‖

∫
C

s
‖s‖
· ds, (4.2)

which is the ratio of the total path length and the end-to-end length. T : how much
does it flee the
initial point?

As the name
indicates, this characterizes how tortuous the path followed by the growth cone is,
i.e. how far from its starting point does the growth ends up after “walking” a given
distance.

Existing models and implementations
The different models implemented in previous simulators vary depending on the
properties that they capture. In the simulator, we divide the models into two main
categories:

• models related to navigation, or steering, i.e. to how the growth cone chooses a
new direction at every step,
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• models related to elongation (the evolution of the growth cone’s speed in time),
• models related to branching, which will be describe in a later section.

In NETMORPH, the steering mechanism is a run-and-tumble model, where the growth
cone follows a straight trajectory during “run” periods, interrupted by “tumble”
events, where the growth cone makes sudden turns. This model has the benefit of
being simple and allows to reproduce desired persistence lengths. Though it might at
first be seen as lacking biological relevance (at least to describe growth cones), the
run-and-tumble model is actually quite relevant to model the effect of turns caused
by a paused, then resumed elongation, as exemplified in Kahn et al. 2016 (Figure 3
in the article). During a pause, the dynamic microtubules (MTs) are disorganized
and form bundles before “settling” on a new direction when the elongation resumes.

In NeuroMac, the behavior of the growth cone is driven by self-referential forces
(SRF), which dictate the new steering direction of the growth cone (Memelli et
al. 2013; Torben-Nielsen et al. 2014). Though this mechanical description captures
some interesting properties of growth cone navigation and might be especially
appealing to physicists, the numerous problems associated to its implementation —
see “Self-referential forces” (section G.3) — raise some concerns about its relevance
to understanding the behavior of growth cone steering. In order to alleviate these
problems, I will propose here a different implementation accounting for the same
mechanisms. Like all other steering models in DeNSE, the new implementation of
the previous “self-referential forces” algorithm is implemented using a probabilistic
description and not a force-based one.

In all simulators, the elongation speed was considered constant, which neglects
the existence of pausing and retracting periods.

In the following sections, I will therefore describe the models implemented in
DeNSE, explaining their principle, how they reproduce or improve aforementioned
models, and assess how they influence the growth cone motions.

Biological parameters for steering: choosing an angle
As mentioned previously, the persistence length of the trajectory followed by the
growth cone characterizes the behavior of a neurite and can be affected by various
pathologies. However, one can also easily go deeper into the biological details by
considering the potential link between the microtubules (MTs) composing the axonal
or dendritic shaft of a neurite branch and its persistence length.

Indeed, for a stiff uniform rod — by which a neurite branch can be approximmated
— the persistence length can be related to the bending stiffness (Peter et al. 2017)
by the relation

lp = Bs

kBT
= EI

kBT
= Eπa4

4kBT
, (4.3)

where

• Bs = EI is the bending stiffness or flexural rigidity,
• E is the Young modulus,
• I = πa4/4 is the area moment of inertia of a circular rod, with a the cross-section

area of the rod5.

5see https://en.wikipedia.org/wiki/List_of_second_moments_of_area

https://en.wikipedia.org/wiki/List_of_second_moments_of_area
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Model Parameters Features

Random walk lp Persistence length
Run-and-Tumble lp Persistence length

SRF
fsa, λsa Self-avoidance force and decay scale
fst, λst Soma-tropic force and decay scale
fi (lp) Inertial force (persistence length)

Because the force or the energy necessary to bend a set of rods grows linearly with
the number of rods (each rod bends “independently”), the persistence length of a
neurite containing m MTs in its shaft is simply lp = m · lp,MT .

However, this persistence length does not account for the fact that discontinuities
in the shaft can occur, which, coupled to the active bending of dynamic MTs, can
lead to sudden turns on scales which are much lower than the persistence length we
computed from the “passive” properties of the neurite.

relating lp to
the models’
parameters

In the simulator, the user can directly enter the persistence length to any model
and the internal parameters will be automatically computed to provide the required
behavior — details are provided in “Growth models” (Appendix G). In the case of
the simple random walk, this is obtained by setting the standard deviation to

σ =

√√√√2vdt
lp

, (4.4)

Where v is the speed of the growth cone, and dt is the timestep of the simulation. In
the case of the run-and-tumble model, we chose the average distance of a run, l0,
such that

l0 = θ2
maxlp
24 . (4.5)

where the new angle after each tumble is chosen uniformly in a range [−θmax, θmax]
around the previous angle.

Elongation, retraction, and pausing
On average, the growth of neurites occurs at an average speed which slowly varies
during the different steps of neuronal development. However, experimentally, one
observes that, far from displaying a continuous extension, growth cones usually switch
between elongation, pausing, and retraction phases during the whole development.

This behavior is handled separately by the “elongation” models, which regulate
the evolution of speed during the motion.

Only two elongation models have been included in the simulator so far: (1) a
simplistic model with constant speed, which only considers the average elongation
speed, without reproducing the three different phases and (2) a more complex model
where the speed of the growth cone depends on the amount of a critical resource
which is available at the tip.

The first model being rather obvious, I will focus here on the second model which
can actually reproduce the elongation, pausing, and retraction phases observed exper-
imentally. Theoretical models describing alternation between these three phases have
been introduced in several papers (Hely et al. 2001; Hjorth et al. 2014) which focus
either on the influence of tubulin concentration or on other microtubule-associated
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proteins. The model introduced here proposes a simpler version of these ideas in
order to make it tractable analytically while retaining the global behavior.

In this model, the behavior of the growth cone is related to the amount a of an
unbinded molecule which is required for the stabilization or elongation of the MTs
in the axonal or dendritic shaft.resource-based

description
reproduces the
different states

of a growing
neurite

The amount a which is present at the tip depends
on the consumption of the growth cone to polymerize or maintain the MTs, and
on the advected flux of the molecule in the neurite, based on the total amount of
molecule available, A, through the following Langevin equations:

ȧ = −a
(
u+ 1

τl

)
+ A

τd

+ χ = −κa+ A

τd

+ χ

Ȧ = Am − A
τA

− A

τd

+ ξ = 1
τ

(AM − A) + ξ

(4.6)

where:

u is the consumption rate of the molecule by the MTs,

τl is the time constant associated to potential leak or degradation of the molecule,

τ−1
d is the advection rate of the molecule along the branch,

τ is such that τ−1 = τ−1
A + τ−1

d

Am is the target amount of molecule in the neurite,

AM = Amττ
−1
A is the average amount of molecule in the neurite at equilibrium,

τA is the characteristic time of the molecular recruitment to the neurite,

χ, ξ drive the fluctuations of a and A, and are defined as Gaussian random variables:
ξ ∈ N (0, σξ) and χ ∈ N (0, σ).

The boundary condition a = 0 is subjected to a no-flux constraint:

∀A, ∂f
∂a

(0, A) = 0, (4.7)

with f(a,A) the probability density of the neurite state.
The detailed analysis of the dynamics can be found in “Critical resource and

competition” (section G.4) and is summarized on Figure 4.2, where we can see that,
on average, the amount of molecule in the neurite converges to AM , while the amount
in the growth cone converges to AM

κτd

.

behavior
(elongation,

retraction, or
stalling)

depends on
the value of a

We subsequently define the dynamics of the growth cone’s speed v based on the
thresholds:

θr below which the growth cone retracts,

θe above which the growth cone elongates.
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Figure 4.2.: Phase space of the
growth cone and neurite state
for a single growth cone. Arrows
quantify the speed and direction
of the motion; A-nullcline is in
blue, a-nullcline in orange, and
stable fixed point of the aver-
age trajectory is given by the
black dot. Here AM = 50 and
AM/(κτd) ≈ 0.857.

such that:

v =



a− θr

θr

vr < 0 if a < θs

0 if θr ≤ a ≤ θe

a− θe

a+ θe

ve > 0 if θe < a

(4.8)

where:

vr is the maximum retraction speed when a growth cone has no resource,

ve is the maximum elongation speed.

model
reproduces
qualitative
behavior

To sum up, in this model, the amount of molecule a that is available at the tip
fluctuates around a value that is driven by the total amount A. Depending on the
value of a with respect to the two thresholds θr and θe, the growth cone can switch
from elongating to stalling or retracting behaviors — see Figure 4.3.

It is worth noting that the simplicity of the model, as usual, comes at a cost in
terms of biophysical relevance with some

intrinsic
limitations

since the reaction of the growth cone to changes in
the total amount of resource is immediate, as the model does not account for real
transport processes. However, I believe that this limitation is acceptable, both because
it is the limit case of a reasonable assumption, and in light of the advantages that it
provides (making the model, at least partly, solvable). Indeed, immediate response to
an average concentration in the neurite, though obviously incorrect, may not be such
a bad approximation in the case of proteins whose synthesis could be distributed
and with transport speeds that may reach tens of microns per minute (A. Brown
2003). Accounting for transport more precisely would require the implementation of
compartmental models which are currently not available in DeNSE.
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Figure 4.3.: Dynamics of a single growth cone for the critical resource model,
where the behavior changes between elongating, retracting, and stalled phases. On
both graphs, elongation threshold is given in green, retraction threshold in red, and
theoretical average value is the black dashed line, obtained for a = AM/(κτd).

Termination processes
As any biological object, a neuron cannot grow indefinitely; however, simple random
walk models will simply grow indefinitely unless additional checks are implemented.
In order to prevent such infinite growth, we included in the models some specific
termination conditions, similar to what was done in Memelli et al. 2013. Thus,
termination for individual branches occurs when the segment diameter reaches a
minimum value6.

Termination condition for a whole neurite can also happen when its arbor reaches
a specified length, and, similarly, termination of an entire neuron’s growth process
can be decided via a threshold on its total arbor length.

Eventually a termination mediated by the number of growth cones present in the
neurite or neuron can also be set. However, this mechanism has been implemented
to prevent memory overflow when branching rates are set to values which are too
important and it is not supposed to be used in normal conditions.

4.2.2 Beyond the isolated growth cone: interactions
In the previous paragraphs, we have seen how we can reproduce some of the properties
of single growth cones, such as the persistence length or switching behavior between
elongation, retraction, or stalling.

However, during most of the development period, the growth cones are not isolated,
but, on the contrary, strongly interacting.

In the following paragraphs, I will detail how we can account for the various kinds
of interactions that exist between several growth cones, or one growth cone and its
environment.

6 together with a self-avoidance mechanism, termination when a branch is surrounded by neigh-
boring branches is also being implemented, but is not release-ready yet.
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Competing growth cones
Because the growth cones rely on resources to grow, it can happen that not enough
resource is present in the neurite to allow “full speed” elongation of all the growth
cones. In such cases, some growth cone might be able to secure more resource for
themselves at the expense of other growth cones: one will keep progressing rapidly
while others display reduced speed, stalling, or even retraction.

This behavior can partly be accounted for using the previous model of “resource-
driven” growth. Indeed, interaction between the growth cones simply modulates
the rate at which the resource is received from the neurite. For a growth cone i
interacting with other cones j of a neurite, Eq. 4.6 becomes

ȧi = −κai + A

τd

ζiai∑
j ζjaj

+ χi

Ȧ = AM − A
τ

+ ξ

(4.9)

with ζi being the weight factor associated to growth cone i.
The addition of this “competition” term introduces interactions between the

growth cones as a tip can only get more resource if the amount received by some
others is reduced. Considering the transport of the resource to the growth cone the
weights {ζj} account for the efficiency of the transport and may depend on the
branch diameter or the distance to the soma.
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(a) Degenerated phase space for identical
growth cones (ζ1 = ζ2): nullclines of both
growth cones are fused in a single line.
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(b) Phase space for ζ2 = 2ζ1: unstable fixed
point for 1 (empty circle) and stable fixed
point for 2 (filled circle).

Figure 4.4.: Phase space of the quantity of resource for the two growth cones at
a constant resource level A = AM in the neurite. Arrows quantify the speed and
direction of the motion. The colorbar represents the number of states in each bin: this
is the histogram of the timeseries in (b), and it represents how many times a pair
(a1, a2) occured during the simulated time. Here AM = 50 and AM/(κτd) ≈ 0.857.
As can be seen on (b), when the growth cones have different weights, the only stable
state of the system is when the “strongest” cone takes over the whole resource;
however, fluctuations allow the exploration of a large area around the two nullclines
(in orange for a1 and in blue for a2).
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As can be seen on Figure 4.4b, the final stable state of the system, when several
growth cones are competing, is necessarily a “winner takes all” state where the
growth cone with the largest weight ζ obtains the whole resource.

However, the difference between weights is usually quite small, especially at the
beginning of the growth process, where new growth cones have similar diameters
and distances to the soma. In a neurite composed of several growth cones having
similar weights, a durable metastable state where all cones coexist can be observed
because of the region in between the nullclines (orange and blue lines on Figure
4.4b). Indeed, this area is characterized by a slow deterministic dynamics, meaning
that the trajectory there can be dominated by a diffusive process due to the noise,
as Figure 4.5 illustrates.

0 2
a2 (µM)

0

1

2

a
1

(µ
M

)

0 500 1000 1500 2000
Time (min)

0

50

100
A

(µ
M

)

100

101

102

103

N
um

be
ro

fs
ta

te
s

0

1

a
i

(µ
M

)

Figure 4.5.: Noise-dominated trajectory for two competing growth cones. Left graph
depicts the number of times a particular state of phase-space was visited; Right
graph shows the time evolution of the total amount in the neurite (grey line) and in
cones 1 (blue) and 2 (orange).

Moreover, beyond that possibility of a noise-dominated trajectory, two growth
cones can perfectly coexist, even with strongly different weights, as long as the
amount of resource received by each cone supports itscoexistence of

elongating
growth cones

is possible

elongation. This can be
possible because branches having lower diameters, and less MTs in their shaft, will
require lower amounts of resource to extend, thus being able to survive with only a
small fraction of the available resource.

Sensing the environment
In order to simulate the development of neurons in cultures and complex neuronal
devices, it is necessary to account for interactions between the growth cone and the
environment it evolves in.

Despite extensive work on the mechanisms involved in the generation of force
to steer the trajectory of growth cones, the precise values of the forces exerted
(Athamneh et al. 2015) as well as the detailed cytoskeletal dynamics (Cammarata et
al. 2016; Coles et al. 2015) still require deeper investigation.

For instance, the lamellipodia is usually the main source of force generation
processes through focal adhesions in neural (Rico et al. 2004) and non-neural cells
and its role has been shown by studies using optical tweezers (Athamneh et al. 2015)
and theoretical models (Craig et al. 2012), other studies (Bornschlögl et al. 2013)
consider filopodia as the main pulling actor. Moreover, attempts to quantify the
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Figure 4.6.: Schematics of the sensing process of the growth cone: filopodia contain-
ing bundled actin (straight red line) extend from the lamellipodia and sense/pull on
the environment. Each angular region ∆θ is then assigned an affinity value in [0,+∞[
which is by default a, the affinity of the current area. In DeNSE, when obstacles,
such as walls, or other areas are detected, they increase or decrease the local affinity
depending on user-defined parameters. For instance, growth cone usually have a high
affinity for walls which they tend to follow, hence the increase of affinity in their
direction. Adapted and extended from Grabham 2003.

magnitude of the forces exerted have led to measurements spanning 5 orders of
magnitude, from the piconewton (pN) to more than a hundred micronewtons (µN). underlying

principles for
steering
emerge from
partly
understood
mechanisms

However, regardless of the origin of the force generation, the principle of action is
usually quite generic:

1. the membrane binds to the environment or other cells through adhesion
molecules,

2. these adhesion molecules bind to actin filaments,

3. molecular motors or actin flow generate pulling forces,

4. these forces are transmitted to MTs in the neurite shaft through molecular
motors or crosslinkers.

The amount of force generated then depends on the stiffness of the substrate (Betz
et al. 2011) and on the affinity between the growth cone and the surface (Sang et al.
2003; Yu et al. 2008).

In DeNSE, a very qualitative model was implemented in order to account for
interactions. First, each growth cone is assigned a number nf of filopodia that extend
from the lamellipodia in well defined directions, ranging from −θmax to θmax by steps

∆θ = 2θmax

nf − 1 .
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The environment in each direction is assessed by a filopodia and assigned a value
which is greater than the default affinity a if deemed “more interesting” than a
standard flat substrate, or smaller than a if deemed less interesting.

The value associated to a given direction typically varies due to:growth cones
interact more

or less
strongly with

various
topographical

elements

• a change in the chemistry of the substrate (the value is then the affinity between
this specific substrate and the growth cone),

• the presence of a wall, to which most neurites adhere preferentially compared
to flat substrates,

• the presence of a step, either doing up, or down, which acts as a potential
barrier which is more or less difficult to cross depending on its height.

Moreover, when changing substrate, the affinity of the growth cone is not the
only thing that can be modified: the speed of the growth cone, as well as its angular
aperture θmax, can also be affected by the substrate properties.

An example of how topographical elements affect the preferential choice of the
growth cone is illustrated on Figure 4.6. The set of values sampled by the filopodia
leads to a “non-normalized probability distribution”, of integral

I =
nf∑
i=1

p(θi),

from which the neuron will select at random a direction for its next step. At each step,
the growth cone tries to make a step in the preferred direction and succeeds with
probability p = min(1, I), which is why the “probability distribution” is typically
“normalized” such that I0 = ∑nf

i=1 a = 2 to account for the fact that growth cones
grow without problem when half their angular field is blocked. Biologically, this
steering through a weighted sampling of the available space can be associated to
the preferential invasion of a side of the growth cone by a higher number of MTs
(Kahn et al. 2016) when pulling forces facilitate their stabilization. Details on the
implementation of the sensing algorithm are provided in “Modeling the environment”
(Appendix H).

Experiments on the interaction between axons and their environment have been
carried out in the team by Renaud Renault (Renault 2015). Through series of setups
where only one parameter was varied, he investigated how the behavior of the grow
cone evolved in order to quantify the strength of the interactions between the growth
cones and the walls. Reproducing these experiments in silico allows us to obtain an
interval for the value of the wall affinity7, as shown of Figure 4.7.

Eventually, growth cones do not only interact with the walls and other artificial
obstacles, but also with other neurites and guidance cues. Very different kind of
behavior can stem from neurite-neurite interactions, the most striking being self-
avoidance (Grueber et al. 2010), fasciculation, and repulsion (L. Wang et al. 2013).
Unfortunately, accounting for these interactions in an efficient way requires more
advanced spatial algorithms which I did not have time to implement in the initial
release of DeNSE, but will be made available in future versions. The inclusion of
concentration gradients that might provide guidance to the growth cones requires
even more complex description which might be added in a more distant future.

7 for reminders, see Figure 4.6
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(a) Evolution of the neurite trajectory with the change in angle.

N
um

be
ro

fs
pi

ke
sp

er
bi

n
(b) Simulation for decreasing angles, from left to right: 154°, 120°, and 96°.

Figure 4.7.: In silico reproduction of the evolution of the trajectory of neurites
along a wall, depending on the intensity of the angle change. (a) is adapted from
Renault 2015 and shows the experimental setup, with the angle marked in red and
the neurites shown in green. (b) displays simulation of the same setup using DeNSE,
with a wall affinity of 1000; density give the number of neurites in each pixel, from
more than 50 in yellow, down to one in dark violet and zero in black. Total width is
200 µm on each image.
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4.3 Branching patterns
In the previous section, we have seen how the elongation of a branch can be modeled,
accounting for their dynamics and interactions with the environment.

However, such models are not sufficient to describe the development of a whole
neurite because they do not explain the emergence of new branches, the “arborization”
process. Indeed, both axons and dendrites undergo complex branching processes
(Gallo 2011; Jan et al. 2010; Lewis et al. 2013) in the course of their development,
where new growth cones emerge from existing branches and extend into new ones.
Branching mechanisms are widespread phenomena in nature and seem to follow
similar principles, even in systems that may be seen as completely different at first
(Leonetti 2001).

two main
branching

mechanisms to
decribe the

emergence of
the neurite’s

arbor

In this section, we will describe some of the mechanisms through which the complex
neuritic arbor is produced, and how they affect the final shape of the neurite tree —
cf. Figure 4.8.

In particular, we will focus on four properties to characterize the morphology of the
neurites: the number of terminal segments, or tips, the total neurite length, the tree-
asymmetry, and the Sholl analysis. These methods are detailed in “Quantifying and
analyzing branching patterns” (section I.3), especially the tree-asymmetry measure,
which is a properly renomalized version of Van Pelt, H. B. Uylings, et al. 1992.

Figure 4.8.: The two main branching modes: lateral branching (left) and growth
cone splitting, or bifurcation (right). Image adapted from Lewis et al. 2013.

4.3.1 Growth cone splitting
A first mechanism for the apparition of a new growth cone is the separation of an
existing cone into two separate entities. This mechanism is called growth cone splitting
or growth cone bifurcation and has been extensively studied, both experimentally
and theoretically (Ooyen 2003; Pelt and H. B. M. Uylings 2002; Wessells et al. 1978).
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Biological occurrence
Biologically, the split of a growth cone typically occurs when the dynamical mi-
crotubules (MTs) regroup into two separate bundles, one on the right part of the
growth cone, the other on the left part.

Two specific situations can facilitate this mechanism:

1. environmental factors, such as multimodal interactions leading to strong pulling
in two different directions, either from substrate structure (Withers et al. 2006)
or from guidance cues

2. the arrival of an actin wave at the tip (Flynn et al. 2009).

Diameters of the child branches
bifurcation
events change
both directions
and diameters

In a situation where the diameter of a branch triggers the termination of the
branch elongation when it goes below a critical value dmin, accounting for diameter
variation at branching points is of primary importance.

In that perspective, DeNSE implements a power-law rule (Chklovskii et al. 2003;
Shefi, Harel, et al. 2004), which defines the relation between the diameters d and d′

of the child branches depending on the parent branch diameter d0 as(
d

d0

)η

+
(
d′

d0

)η

= 1. (4.10)

where the exponent η describes the thinning process at branching points (the larger
η, the smaller the diameter decrease for large branches).

The model is currently defined as follow: 1) the ratio between the child branches
is sampled randomly from a truncated Gaussian distribution r ∈ N (r0, σ); 2) the
diameter of the first branch is then chosen as

d = d0

(1 + rη)1/η
, (4.11)

then 3) the complementary diameter is taken for the second branch, using

d′ = (dη
0 − dη)1/η . (4.12)

With that model, it is possible to choose the imbalance between the child branches,
with the limit cases (r0, σ) = (1, 0), where child branches always have the same
diameter d0/2η, and (r0, σ)→ (0, 0), where one branch diameter is much larger than
the other’s.

The van Pelt model
Although not focused on the biological mechanisms, the most advanced models for
neurite branching through growth cone splitting is probably due to van Pelt and van
Ooyen, notably one which was modestly named “the BEST model”, from the name of
the parameters composing it.

Van Pelt and van Ooyen published several articles (Ooyen 2003; Van Pelt, Dityatev,
et al. 1997) to provide detailed descriptions of this phenomenon through simple
mathematical equations. In Van Pelt, Dityatev, et al. 1997 they proposed the BEST
model, accounting for the branching mechanism through growth cone splitting only,
via a set of phenomenological.
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Given a neurite with n(t) terminal segments at a time t, they describe the branching
mechanism as the evolution of the number of these terminal segments (Pelt and
H. B. M. Uylings 2002), considering that the probability of a growth cone split at
time t is ps(t):

ṅ(t) = n(t)ps(t) (4.13)

Refining the model, they develop the branching probability for a growth cone
characterized by a centrifugal order 8 γ, at each timestep i, as:

pi(γ) = B

N
Ci2−γiSn−E

i , (4.14)

where:

B is the average number of branching events for a single cone,

E is the competition parameter between the cones,

S is the strength of the order dependence,

T (or N here) is the total duration (number of timesteps).

This model has been further described, generalized, and refined in several papers
(Pelt, Ooyen, et al. 2001; Pelt and H. B. M. Uylings 2002), but the basic principles
are captured in Equation4.14. From it, one can show that the number of branching
events is limited and decays with time. This model has been including in DeNSE
with a slightly modified implementation as the parameter B is given as the average
branching rate of a cone.

controlling the
asymmetry. . .

In this model, the typical asymmetry is controlled by the parameter S, which
quantifies the likelihood of branching occurrence for growth cones that are already
part of a highly branched region of the neurite. Indeed, the centrifugal order γi of a
cone i characterizes how many bifurcations already occurred while going from the
root towards it; thus, the higher the centrifugal order of a cone, the more arborescent
its region. For positive S, the model tends to regulate the asymmetry, making growth
cones in unbranched regions more likely to branch, while negative values of S will
increase spontaneous asymmetry, as illustrated on Figure 4.9a.

is mostly
unnecessary

However, the biological origin of this phenomenon is unclear in the model, and
the positive values used for S in papers from van Pelt et al. are usually required to
obtain more symmetric structures, because their model does not take diameter into
account. In DeNSE, it is possible to combine the BEST model and diameter-associated
termination, leading to a complete growth model, where branches halt under a critical
diameter and new branching occurrences will necessarily occur on the branches which
are still active. Because these branches are those with larger diameters, and since
(except for pathological cases with r → 0) this is usually associated to lower branching
occurrences, the influence of diameter-associated halt automatically regulates the
tree-asymmetry, as shown on Figure 4.9b.

Similarly, the competition parameter E, leading to the progressive decrease of the
branching rate in the BESTthe critical

diameter also
regulates the

branching rate

model, is entirely unnecessary when the growth model
takes the diameter into account: as progressive branching events reduce the branches’
diameters, they progressively become inactive until none is left.

8The centrifugal order is the number of nodes separating the cone from the base of the soma.
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(a) Evolution of tree-asymmetry with S (left
values) in the “standard” BEST model.
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(b) Evolution of tree-asymmetry with S (left
values) accounting for minimal diameter.

(c) Fully asymmetrical dendrogram (A = 1)
of size 5.

(d) More symmetrical dendrogram (A ≈
0.52) of size 7.

Figure 4.9.: Asymmetry properties of trees generated by the BEST model varying
the strength S of the order dependence. The distributions were obtained over 300
different neurites. Dendrograms give examples of strongly asymmetrical and more
balanced trees, where line thickness depicts the average diameter along the branch.
Total length for both neurites is 800 µm.

Though it reproduces some interesting statistical properties, the BEST model is
thus quite artificial, in the sense that 1) it does not provide a mechanistic description
of the branching process but uses parameters that are similar to those of generative
models (it only aims at obtaining a set of desired properties for the final morphology
of the neuron), and 2) some of the parameters introduced are actually not necessary
but derive from a minimal diameter constraint which was not taken into account in
the model.

Resource- and pull-driven split
getting closer
to biological
mechanisms

In order to provide a model that would be closer to biological phenomena occurring
in the neurite, DeNSE includes two mechanisms related to growth cone splitting:

• a pull-based split when a multimodal pull distribution is present — see “Branch-
ing models” (Appendix I),

• a resource-based mechanism, for the competitive model, when the amount of
resource in a cone reaches a certain threshold θb.

In the resource-based paradigm — cf. “Modeling an extending growth cone”
(subsection 4.2.1), once a cone possesses an amount of resource a > θb, it displays a
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branching rate rb which is given by

rb(a) = a− θb

a+ θb

Rb, (4.15)

with Rb the maximum branching rate.
The idea behind this description is that, as MTs are stabilized by higher amounts

of resource, the probability that two MT-bundles start invading two different parts
of the growth cones increases, leading to higher branching probability.

As shown in the previous section, the competitive model has only one stable fixed
point where one cone obtains the entire resource content. However, in the case
of growth cone splitting, the new cones are often very similar in diameter (Shefi,
Golebowicz, et al. 2005), which brings the system quite close to the degenerate case
shown on Figure 4.4a. Because of this and of the noise in the resource distribution,
the system never remains on the fixed point but explores a (potentially quite large)
region around it.

“Growth cone split” (section I.1) gives additional details on the precise analysis of
the phenomenon, but the main behavior can be understood qualitatively by crudely
approximating the extreme case where, for n growth cones, one gets all the resource
while the other n − 1 oscillate near their a = 0 region. For a level of noise σ, the
average value of these low-a cones will scale at least as

√
σ, meaning that the average

rate ra at which the winner receives the resource is lower thanbranching rate
in resource-
driven split

eventually
goes to zero

r(max)
a = A

τd

ζmaxA/(κτd)
(n− 1)

√
σ + ζmaxA/(κτd) , hence lim

n→∞
r(max)

a = 0. (4.16)

This guarantees that the average branching probability of the most active growth
cone will eventually go to zero as the number of growth cone increases.

One of the main interests of this model is that it can be used to couple the
elongation and branching mechanisms, allowing us to investigate the consequences
of this coupling on the final morphology.

4.3.2 Lateral branching
Besides the bifurcation of a growth cone into two, new growth cones can also emerge
directly from the side of existing branches in a phenomenon called lateral, or collateral
branching, cf. Figure 4.8.

Biological occurrence
As described in the review of Gallo 2011, collateral branching can occur 1) from the
spontaneous protrusion of a filopodium or a lamella from the side of a branch, which
matures into a growth cone as new MTs invade it and reinforce the actin network or
2) from an actin deposit left behind by a pausing growth cone. In axons, the lamellar
protrusion is strongly associated with actin waves propagating from the proximal
segment of the axon towards the extremities.
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Figure 4.10.: Asymmetry properties of trees generated by the resource-based
branching model, varying the strength of the diameter weight on resource acquisition
(indicated on the left axis). The distributions were obtained over 300 different
neurites. Average values of the distributions are marked by a white circle.

Uniform lateral branching
A first naive model is implemented in DeNSE as a uniform branching model, where
new branches emerge randomly and uniformly along the active branches of the
neurite tree. These branches develop from a diameter which is a fraction f of the
parent’s at the branching point. Despite this apparent uniformity, lateral branching
gives rise to strongly asymmetrical structure due to the diameter-based termination
process: thin branches inactivate more quickly, leading to a majority of branching
occurrences on the wider branches, thus increase the tree-asymmetry, cf. Fig. 4.13a.

uniform and
close-to-the-tip
emergence of
lateral
branches

Distance-dependent phenomenon
Contrary to what a uniform branching pattern may generate, experimental observa-
tions show that lateral branching, either during collateral branching or in the final
arborization process, often occurs rather far from the root, and closer to the growth
cone (Gibson et al. 2011). In order to account for this fact, and though part of its
origin may come from external cues, a second branching model was implemented in
DeNSE, where new branches emerge at a distance d from a randomly-chosen growth
cone among the active pool9, with d following a power-law distribution — see “Lateral
branching” (section I.2).

The Front-based Power-Law Lateral (FP2L) branching has several interesting
properties:

9meaning that its diameter is greater than dmin.



114 Chapter 4. Accounting for neuronal development

0.01

0.02

0.04

0.06

0.0 0.2 0.4 0.6 0.8 1.0
Tree-asymmetry

0.08

(a) Evolution of tree-asymmetry.

0.01

0.02

0.04

0.06

0 10 20 30 40 50 60
Number of terminal segments

0.08

(b) Evolution of the number of tips.

Figure 4.11.: Asymmetry properties of trees generated by uniform lateral branching.
Branching rates are given on the left axes, in h−1 for a 5 day branching process.
For very low branching rates, the over-representation of the trivial 1, 2, and 3-tip
structures with asymmetry values 0 and 1 leads to multimodal distributions while
higher branching rates and number of terminal segments span the asymmetry space
more completely and lead to more unimodal distributions. The distributions were
obtained over 300 different neurites.

• Since it stems from areas that are closer to the neurite tips, thus with smaller
diameters, FP2L branching leads to smaller branches which stop quicker, and
leads to a branching process that is more likely to terminate from diameter-based
termination compared to the uniform branching pattern.

• Because it only starts from active growth cones, this model also promotes high
asymmetry values; this property is thus conserved, as in the uniform branching
pattern.

Coupling with growth cone split
One of the properties of lateral branching is that its occurrence does not affect the
diameter of the branch it stems from, but only that of the emerging branch. The new
branch starts with a diameter which is a fraction of the parent’s diameter. Because
of this, neurites generating solely through lateral branching (unless they are modeled
through a resource-driven elongation) will take very long to stop growing, leading to
unnaturally long neurites with exuberant arborescence.

More biologically plausible structures are therefore preferably obtained when lateral
branching is not used as at the final stage of the growth process, but either at the
beginning or during an intermediate step, in order to make sure that growth will
“properly” terminate.

This effect is nonetheless almost eliminated when using FP2L branching, since the
events occur close to the tip, i.e. at lower diameters, and the new branches become
inactive more rapidly.

4.3.3 Pruning
Having defined the mechanisms for competition and branching, one logically falls
into a last mechanism, called pruning (Oan et al. 2011). Indeed, some branches do
not manage to elongate sufficiently: they eventually retract back to the point from
which they initially protruded and disappear.
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Figure 4.12.: Asymmetry properties of trees generated by FP2L branching. Branch-
ing rates are given on the left, in h−1 for a 5 day branching process. For very low
branching rates, the over-representation of the trivial 1, 2, and 3 tips structures with
asymmetry values 0 and 1 leads to multimodal distributions while higher branching
rates and number of terminal segments span the asymmetry space more completely
and lead to more unimodal distributions. The distributions were obtained over 300
different neurites.

In our model, this behavior is obtained when a growth cones retracts, either from
lack of resource, or because of “interaction-based” retraction10. Once the length of
their branch reaches zero, they are pruned, i.e. deleted from the neurite.

10see “Making the forward step” (section H.2) for details
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(a) Evolution of the length for the uniform
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Figure 4.13.: Total length of the neurite tree for a 5 day growth under the uniform
and FP2L branching processes. Branching rates are given on the left, in h−1 for
a 5 day branching process. As predicted from its properties, the FP2L branching
algorithm leads to total length that are on average lower than those of the uniform
branching (see white circles for average values). Distribution were calculated over
300 neurites.
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4.4 From neuronal morphologies to neuronal networks
4.4.1 A complete neurite tree

The development of the entire arborescence of a neurite is a complex process which
generally involves all the mechanisms mentioned in the previous section — elongation,
growth cone bifurcation, lateral branching, and pruning. These basic ingredient are
combined in various proportions depending on the nature of the neurite and the
stage of development.

Overall, this makes it almost impossible to describe the general outgrowth of a
neurite with a single model, especially at the level of simplification used in the models
presented in this study.

In order to reproduce the broad variety of neural shapes that can be found in
various brain regions — e.g. for dendritic trees, with number of branches ranging
from 10 to 400 (Stuart et al. 1999) — I therefore designed DeNSE to let the user
himself separate the growth process into relevant stages.

Multi-step growth
The outgrowth of most neurons can be modeled into a few stages. An initial elongation
period with little or no branching events, where the neurites elongate away from the
soma until they reach a certain length. Depending on the cell, this period can contain
a few bifurcation events that contribute to the development of initial arbor, where
neurites do not emerge directly from the soma but rather from a large dendritic
trunk. users can

define time
periods
described by
specific
processes

This initial period is followed by one or several branching periods, composed
of many splitting, lateral branching events, or both. As discussed in the previous
section — “Branching patterns” (section 4.3) — growth cone splitting or bifurcation
can be used to obtain very symmetrical trees, as shown on Fig. 4.14a and 4.15d.
More asymmetrical trees can also be obtained through lateral (and especially FLPL)
branching events, see for instance Fig. 4.14b and 4.14c.

Eventually, the final period of the development is often composed of a ramification
process, preferably modeled in DeNSE by splitting or FLPL branching at low rate to
ensure termination, as shown on Fig. 4.14c.

Reproducing realistic morphologies
The multi-step growth procedure was used here to reproduce typical cell morphologies
presenting different topological and geometrical properties.

Depending on the initial neurite diameter and on its taper rate, the typical length
of the neurite can be regulated, leading to rather short (granule cell, pyramidal and
chandelier dendrites) or much more elongated trees (dendrites of the starburst cell,
pyramidal axon).

Variability in the branching rates then provides more or less tufted and exuberant
arbors.
Specifically, growth cone splitting usually promotes more balanced structures as
bifurcation points divide into child branches of comparable width, while lateral
branching leads to the development of a well defined trunk (characterized in K. M.
Brown et al. 2008 by its caulescence) from which smaller branches emerge.
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(a) Dendrogram of a symmetrical dendrite
from a starbust amacrine cell. Obtained
through successive splittings, it leads to a
low asymmetry of 0.2.

(b) Dendrogram of a fully asymmetri-
cal axon from a pyramidal cell. Obtained
through a one growth cone split, followed by
FLPL branching events, it has an asymmetry
value of 1.

(c) Dendrogram of less symmetrical axon
from a chandelier cell. Obtained a first pe-
riod of growth cone splits, followed by FLPL
branching,and terminated by a last round of
splitting, it leads to a an asymmetry value
of 0.45.

Figure 4.14.: Dendrograms of various cells obtained with DeNSE, through different
elongation and branching processes.

Figure 4.15 provides an example in the starbust amacrine cell (4.15d), which is
obtained purely through subsequent growth cone splits, while structures like the
chandelier and pyramidal cells (4.15a and 4.15b) start with a short period of growth
cone splitting, followed by a longer period of elongation and lateral branching.

The main limitation of the DeNSE simulator so far is the absence of self-avoidance
and fasciculation (when several cells are involved). This absence is especially visible
on the starbust amacrine cell (Fig. 4.15d), for which neurites usually avoid one
another very efficiently. These mechanisms are currently being implemented but
require a significant amount of work to be computationally efficient.

4.4.2 Coupling neurons: synapses and network
Simple rules for synapse formation
Once morphological types have been selected, DeNSE can be used to grow many
neurons in a confined environment such as a culture. However, because of the current
limitations of the space-management components of the library, generating synaptic
connections on-the-fly is currently not possible11 and is therefore implemented as
post-treatment of the generated neuronal population.

Synapses between neurons can then be generated by taking into account the
interaction between the axons and dendrites of neighboring cells. Currently, two

11 As for self-avoidance and fasciculation, such interaction mechanisms require an additional grid-
based management or other kind of R-tree search methods to provide fast queries of neighboring
objects.
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(a) Chandelier cell. (b) Pyramidal cell.

(c) Granule cell. (d) Starbust amacrine cell.

Figure 4.15.: Visualization of four specific cell types generated with DeNSE. The
axon is always the longest neurite, except for the starbust amacrine cell, where only
neurites are present. Scale is given by the soma size which is 16 µm for all cells.

simple generation methods are provided in DeNSE: a very simple crossing test and a
slightly more elaborate spine-based method.

The easiest method is simply to check for crossings between axons and dendrites
and assign a probability of synapse formation ps upon crossing. In the case of several
connection sites between two neurons, the weights of the connections are summed
and the interaction between the neurons is modeled by a single synapse having a
weight w = ∑

k wk and associated to the average delay12.
A more elaborate and more biologically relevant method consists in taking into

account the density of spines along the neurite, as shown on Figure 4.17. To each
dendrite is associated a (potentially distance-dependent) spine density ρ. Given that
spines reach up to a maximal distance dmax, the probability to connect to an existing
spine when at a distance d < dmax is

P (d) = P0
dmax − d(l)

dmax

, (4.17)

where P0 is an adjustment constant — usually taken as 1.

12 Because the dendritic tree is usually quite localized compared to the size of the culture, we can
actually consider with a good approximation (∆d ≤ 1 ms) that delays between connections
across the same two neurons are very similar and can be approximated by the mean delay. This
allows to consider only simple graphs and not multigraphs, which simplifies the analysis.
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(a) Chandelier cell.
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(b) Pyramidal cell.
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(c) Granule cell.
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(d) Starbust amacrine cell.

Figure 4.16.: Sholl analysis of four specific cell types generated with DeNSE. The
evolution of the number of intersections between the neurites and successive circles
centered on the soma allows to quantify the typical reach of the neuron, its branching
pattern, as well as its heterogeneity. Thus, the strong isotropy and regularity of the
starbust amacrine cell is reflected in its abrupt termination, while significance of the
asymmetry between the dendrites and axon of the other three cells transpires in the
more or less prominent tail of the distribution.

Thus, for an axon crossing a dendrite’s spine field over a distance l, the number of
synapses that will be created is given by:

n = P0

l

∫ l

0

dmax − d(l)
dmax

ρ(l)dl (4.18)

Synapses are actually formed when spines interact with axonal boutons, whose
density would also affect the probability of synapse formation. However, the typical
density of boutons on axons is usually such that spines can generally reach one
bouton for each axo-dendritic crossing (Ikonomovic et al. 2007; Zhang et al. 2011),
and the overall probability can still be tuned by changing the value of P0.

Compared to the crossing method, the “spine-based” algorithm leads to more
potential connections since neighboring axons and dendrites can connect, even if
they do not cross, as long as they are separated by a distance smaller than dmax.
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dendritic spines

axons

dendrite

Figure 4.17.: Schematics of the principle of spine-based connectivity. Putative
synaptic sites are marked by the dashed black areas. A sketch of spines is shown
in the gray inset and approximated in the model by the continuous pale blue area
surrounding the dendrite. Note that crossing is not necessary for synapse formation
in this model.

Growing neuronal cultures
Culture growth was simulated according to the following procedure:

• 5 days of elongation without branching for the axon, and with low growth cone
bifurcation rate for the dendrites,

• 10 days of lateral branching for all neurites, with slightly reduced elongation
speed,

• 10 days of final elongation for the axon and of further growth cone splitting for
the dendrites, both at reduced speed.

In order to compare the results with the generated EDR networks, the mean
connection distance in the culture was computed to obtain the value of λ giving the
associated distribution, and the properties of the two networks were then confronted.

This analysis was performed on two networks: one obtained from pyramidal cells,
the other from bipolar cells.

General properties of “grown” networks
compared to
EDR graphs,
grown
networks do
not exhibit the
core-periphery
segregation of
high-degree
neurons

Compared to the EDR model, a significant difference can be seen in the spatial
distribution of the in-degree: though central neurons also exhibit rather high degrees,
some regions on the periphery also exhibit very high in-degrees. This comes from the
fact that growing neurites follow the edge of culture, while not such thing exists in the
EDR model. Coming back on the nucleation centers discussed in “Burst nucleation in
neuronal cultures in silico” (subsection 3.3.2), this implies that the difference between
centered initiation points for noise-driven activity and more peripheral nucleation
points for pacemaker-driven activity can in fact not be used to differentiate between
these two initiation mechanisms.

The spatial distribution clustering coefficient follows a trend which is similar
to that of the EDR model, with highest values located on the periphery, and
lowest values at the center. However, the actual values observed in both pyramidal
and bipolar networks are significantly higher than those of the EDR model which
already displayed clustering values that were notably higher than non-spatial random
networks.
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Networks of bipolar cells
Bipolar cells, as shown on Figure 4.18, are a morphological category which is often
seen in cultures (Garay et al. 2013), and presents a very specific shape with a rather
low space coverage due to its low branching and tortuosity: neurites grow away from
the cell in opposite directions, and with little arborization.

(a) 5 DIV. (b) 10 DIV. (c) 15 DIV. (d) 25 DIV.

Figure 4.18.: Simulated evolution of a bipolar cell in time. Soma size is 8 µm.

(a) 5-DIV culture of bipolar neurons showing
all connections.

(b) 15-DIV culture of bipolar neurons show-
ing one connection in 4.

Figure 4.19.: Simulated growth of a 1500-neuron culture of bipolar neurons over
25 days. Node size shows the relative difference between the in-degree across the
network, while color represents the clustering coefficient, from low values in dark
purple to yellow for the highest values, through blue and green.
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Networks of pyramidal cells
Pyramidal cells — cf. Figure 4.20 — are the main morphological type of excitatory
cells in the cortex and the hippocampus. Compared to the previous bipolar cells,
they occupy a larger fraction of their surroundings because to their higher neurite
number and increased lateral branching.

(a) 5 DIV. (b) 10 DIV. (c) 15 DIV. (d) 25 DIV.

Figure 4.20.: Simulated evolution of a pyramidal cell in time. Soma size is 8 µm.

(a) 5-DIV culture of pyramidal neurons
showing one connection in 5.

(b) 15-DIV culture of pyramidal neurons
showing one connection in 15.

Figure 4.21.: Simulated growth of a 1500-neuron culture of pyramidal neurons over
25 days. Node size shows the relative difference between the in-degree across the
network, while color represents the clustering coefficient, from low values in dark
purple to yellow for the highest values, through blue and green.



124 Chapter 4. Accounting for neuronal development

Influence of the cell morphology
Rather unsurprisingly, one observes that the network generated from pyramidal
neurons possesses a higher average degree, both because of their superior filling
fraction and greater neurite length. This increased degree also leads to higher
clustering coefficients, which are significantly greater than those observed in EDR
networks.

Though the average degree obtained for the bipolar cell is low compared to reported
values (Soriano, Rodríguez Martínez, et al. 2008), the degree distribution obtained
for the pyramidal neurons is compatible, if on the lower bound of the interval.

Regarding the distance distribution, the values are also compatible with measure-
ments from Barral et al. 2016 which obtain average distances of the order of 400
µm.
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for the pyramidal culture.

Figure 4.22.: Comparison of the properties of grown cultures composed of bipolar
(left), or pyramidal neurons (right) with respect to those of an “equivalent” EDR
network, which is shown by the dotted lines. Average values of the culture properties
are marked by the white circles. The age of the culture in DIV is given on the left
axis.
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Chapter 5

Conclusion, towards neuronal devices

In this final (and brief) chapter, I provide an assessment of the work presented in
my thesis on neuronal culture. After discussing how the properties that have proved
so useful in neuronal cultures might also be their greatest limitation for the future,
I show how the models, tools, and experiments developed here come together to
provide leads on a final question: where do we go next?
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5.1 Current limitations of neuronal cultures
As discussed throughout this manuscript, the major strength of neuronal cultures
relies in their simplicity and the ease with which the network and neurons can be
monitored, stimulated, or altered. The rather homogeneous and simple network, as
well as the isolated nature of the culture have enabled significant progress in our
understanding of countless synaptic and cellular mechanisms.

However, when it comes to the diversity of the behavior displayed by neuronal
networks, this simplicity is also one of the greatest weakness of homogeneous cultures.
Indeed, the stereotypical bursting activity that emerges from such networks acts as
an overwhelming attractor and prevents the apparition of more subtle patterns.

This does not mean that synchrony should be avoided at all costs; on the contrary,
many synchronous events also play a crucial role in highly complex tasks such as
memory consolidation (Benchenane 2006). However, what is desired is a selective
synchrony (Brette 2012), which would contribute to information encoding, by contrast
to the regular and thus rather uninformative process observed in cultures.

If we are to prevent the emergence of this behavior, two main approaches seem to
stand out. Indeed, though brain networks also exhibit strong synchronous dynamics
in their early developmental stages, or during sleep, mature and awake dynamics
evolve away from these purely synchronous states. Comparing brains and culture is
of course difficult, given the vast differences in size, heterogeneity, or wiring; however,
two differences are easy to notice and are present at all scales: the presence of afferent
inputs and the structured (e.g. layered) connectivity.

5.1.1 The unfortunate side-effect of isolation
One of the major issue of the isolated nature of neuronal cultures comes from the
fact that neurons cannot live without afferent inputs (Schonfeld-Dado et al. 2011).
Thus, in order for the culture to survive, neurons have no choice but to reach a state
of self-sustained activity, where they themselves provide the inputs necessary for
their survival.

This property is related to the notion of emergence mentioned at the beginning
of this thesis, and has been investigated in the literature as the self-organization of
neuronal networks, notably through coupling between growth and activity (T. A.
Gritsun, Feber, et al. 2012; Van Pelt, Corner, et al. 1993), then via the evolution of
the synaptic strength through plasticity mechanisms (Ocker et al. 2015). In neuronal
culture, this notion was often associated to a strong belief that this evolution would
spontaneously lead the system towards a critical state (Pasquale et al. 2008; Tetzlaff
et al. 2010). Anyhow, the fact is that, over time, cultures indeed mature towards a
dynamical state which provides enough inputs to maintain itself; given the strong
coupling in the network and the high synchronizability of the units, this kind of
activity usually converges to synchronized bursting.bursting may

be caused by
the isolated

state of
cultures

Thus, I propose that the emergence of synchronized bursting is a simple and
almost unavoidable side-effect of the requirement for sustained activity coupled
with the percolation property displayed by networks of excitable units. To prevent
cultures from converging towards this synchronized state, one should therefore either
change the isolated nature of the culture, or bring the network below the percolation
threshold.



5.2 Neuronal devices as the next step 133

5.1.2 Preventing percolation
As detailed in articles on quorum percolation, there are several ways of preventing
the emergence of system-size events:

• reducing the synaptic strength (Soriano, Breskin, et al. 2007),
• reducing the number of neighbours (Renault, Monceau, Bottani, and Métens

2014),
• increasing the propertion of inhibitory neurons (Fardet, Bottani, et al. 2018),
• increasing transmission delays (Renault, Monceau, and Bottani 2013).

Unfortunately, not all of these methods are really suitable experimentally. For
instance, though reducing the synaptic weight through partial block of the excitatory
synapses is indeed possible, it is both costly, constraining, and only a short-term
palliative since the overall synaptic strength and activity in the network will slowly
increase to adapt to this constraint. Increasing the number of inhibitory neurons can
also be done experimentally, though it requires costly labeling methods and FACS
equipment1; however, similarly to what was mentioned for reduced synaptic weights,
the networks simply adapt by scaling up the remaining excitatory connections in
order to preserve the bursting behavior. Eventually, increasing the transmission
delay would a priori require increasing the average distance between neurons, which,
though possible over a limited range, would probably not be sufficient to curb the
bursting dynamics. percolation

may be
prevented via
network
structuring

Overall, the most promising method to prevent percolation is probably to constrain
the neurons spatially in order to limit the number of neighbors they can connect
to: a limitation of the activity spreading through network patterning and locality
constraints.

5.2 Neuronal devices as the next step
In order to tackle the limitations of homogeneous neuronal cultures mentioned above,
one of the easiest method is to take advantage of the microfluidic capabilities offered
by recent technological developments (Feinerman et al. 2008; Renault, Durand, et
al. 2016; Taylor et al. 2003). Indeed, these structures enable precise molding of the
desired pattern on which the neurons will then be able to develop.

Moreover, the potential of these devices is not limited to “burst prevention”: using
the arches developed by Renault, Durand, et al. 2016, it is now possible to build
systems were the information is precisely defined, enabling the study of both neuron-
and population-level interactions at the same time.

Yet, building these devices, though relatively inexpensive, is still resource- and
time-consuming, especially since it can be difficult to predict what the best structure
will be to obtain a target connectivity pattern.

I will therefore show here how the tools developed in this thesis can provide a useful
insights into the final connectivity obtained inside a given microfluidic structure.

1 See Renault, Sukenik, et al. 2015, Figure S2 for labelling method using tdTomato. Experimental
protocol to isolate GABAergic neurons and obtain cultures with varying fractions — up to
almost 100% — of inhibitory neurons were developed as part of the PhD project of Nirit Sukenik,
at the Weizmann Institute, and are currently unpublished.
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5.2.1 Directed information flow
One of the main focus of neuronal devices has been the design of structure that
would allow information to be transferred only in specific directions. Following the
seminal paper of Feinerman et al. 2008, with the introduction of neuronal logic gates,
several other devices were made using microfluidic techniques.

One of the simplest pattern is of course the neuronal diode, for which an example
can be found in Renault, Sukenik, et al. 2015. That kind of device already led to
rather efficient selectivity, as shown in the original paper and in recent simulations
— cf. Figure 5.1. However, the directivity obtained is not perfect, as can be seen on
a reproduction in silico, on Figure 5.2.
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Figure 5.1.: Simulated activity on the diode from Figure 5.2, in two situations: (a)
one with higher bursting rate on the source chamber (the one with larger funnel
diameter) and (b) another with higher bursting rate on the target chamber (thinner
funnel diameter). One can see that activity in the source chamber almost immediately
triggers a burst in the target chamber while the reverse is not true, or at least implies
much longer delays.

Using the newer arches setup from Renault, Durand, et al. 2016, even higher
selectivity can be obtained and simulation using DeNSE also reproduced this selectivity,
as shown on Figure 5.3.

introducing
causality

This type of device, though is does not prevent the occurrence of bursting activity,
already introduces a new property in the global dynamics: causality. Indeed, the
neurons are separated into two non-equivalent populations, with the activity of the
“transmitter” neurons remaining unaffected by that of the “receiver” neurons.

5.2.2 Development under stimulation
growing

non-isolated
cultures to

prevent
bursting

Beyond potential applications for more precise studies of neuronal communication
in vitro, the design of neuronal devices with directed connectivity would also provide
researchers with a new, more accurate way of investigating the influence of stimulation
on the development of neuronal networks.
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Figure 5.2.: Reproduction of the neuronal diode in silico with 200 neurons. (a)
shows the grown network, with the soma in black, dendrites in blue, axons from the
top chamber are in green, axons from the bottom chamber in orange. (b) shows the
topological network obtained using the simple crossing method with a probability of
connection of 1.

Indeed, such approach was already tested by DeMarse et al. 2016 in a setup using
a 2-chamber culture, where one chamber was seeded a few days earlier than the
second. However, the setup used in the study was made of symmetrical funnels.
Using chambers connected by arches, one could further improve this experiment,
first by preventing the newest neurons from projecting to the elder chamber, second,
by severing the connection between the chambers and assessing the evolution of the
activity in the newest chamber. Indeed, the arches, by preventing projections from
the younger chamber to go towards the elder chamber, would enable a separation of
the chambers involving only minimal or even no damage to the youngest neurons.

Making the neurons from several chambers project their axons into a single one,
it would even be possible to analyze the effect of a progressive decrease of external
excitation on the activity of a network.

5.2.3 Structured networks
The previous examples already showed the potential of structuring neuronal connec-
tivity, and in particular of directing the flow of information inside the network. As
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(a) 2 arches (b) 3 arches (c) Curved extremities.

Figure 5.3.: Simulation of the neurite density over the whole device, from high
densities in red to low densities in dark blue. Highest density are in the bottom
chamber where neurons are initially seeded. The number of axons crossing to the
other side decreases progressively with the number of arches — (a) to (b). Convex
shape at the entrance helps the axons into the funnels while concave entrance with
acute angles prevents them from entering (b).

seen on Figure 5.1, such networks already exhibit activity patterns that cannot be
obtained in homogeneous cultures. Yet, though they may be slightly more complex
than the stereotypical bursting of “standard” cultures, these activity patterns still
only involve synchronous bursting events that span the entire chamber.

To obtain more elaborate firing patterns, it is therefore necessary to change the
network structure in greater depth.

Distributed local directivity
The idea behind altering the global and local connectivity of the network was first
introduced by Tibau et al. 2013 as a way to force the neurons to connect through
complex paths in order to increase the structural and dynamical complexity. This
increased complexity prevents the neurons from making long range connections and
forces the flow of the activity to follow more complex paths, thus impeding the fast
percolation of the activity.

The method relies on the presence of platforms, randomly placed inside the culture,
which form islands where neurons are located above the rest on the population, which
is on the lower stage — cf. Figure 5.4.
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Full network

Top to bottom Bottom to bottom

Top to top Bottom to top

Figure 5.4.: Simulation of a spatial network representing a 2-layer culture. Upper
platforms are denoted by lighter blue filling while lower are is in darker blue. Neurons
on the upper platforms are shown in red, those on the lower platforms are in blue.
The four insets show the connectivity between these two groups of neurons and the
central representation gives the overlay.

Compared to the previous methods, such a network also leads to a directed
connectivity based on these hypothesized mechanisms:

• as the height difference increases, axons from the top are unable to cross the
gap,

• while the dendrites of the top-neurons can still descend to the bottom layer, i.e.
up to stages a few hundred microns high, bottom-to-top connections can still
occur,

• after a few hundred microns, only the axons from the top can reach the bottom
layer, resulting in a fully directional top-to-bottom connectivity,

• when the height difference goes above 600 µm, the two stages are effectively
disconnected and coexist without interactions, as might two separate chambers.
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Considering the two populations as a whole, the evolution of the connectivity with
platform height would therefore appear identical to varying the number of arches in
the previous setup. However, in light of the results on “Topology and spatio-temporal
bursting patterns” (chapter 3), one notices here that, in contrast with diode-like
systems, the 2-layer culture introduces directivity while preserving the locality of the
network connections: the two populations are not spatially segregated but tightly
intertwined.distributed

local
constraints to

reduce the
average degree

and help
prevent

percolation

For the bottom-neurons, the presence of the platforms constrains their development
and prevents them from connecting with as many neighbors as in a homogeneous
culture — cf. Figure 5.5a. Top-neurons, however, do not feel this constraint as
strongly since they can connect to all neurons on a similar platform, as well as to all
bottom neurons in the vicinity. Their only constraint occurs if their axon descends
into the bottom area and extends enough to hit another platform.
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(a) Degree distribution: in-degree of all neu-
rons in a 2-layer culture in orange, out-
degree in red; in-degree of an EDR network
with the same number of edges is marked
by empty black bars.
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is in blue, equivalent EDR network with the
same number of edges is in green; standard
culture with an average in-degree of 100 is
shown by the empty black bars.

Figure 5.5.: Topological properties of the simulated 2-layer culture compared to
homogeneous EDR networks.

In short, the connectivity of bottom-neurons is significantly limited spatially, while
top-neurons are less affected; this means that transmission of the signal from one
part of the culture to the other will often rely on “shortest-path” involving the more
central top-neurons, as denoted by the much higher betweenness values of the 2-layer
culture on Figure 5.5b. As we will see, the increased locality and the lower degree of
such a network results in radically different activity patterns compared to all other
setups.

Complexity of the resulting activity
By contrast with homogeneous cultures of the same size, the 2-layer culture displays
bursting activity with much longer timescales, as bursts typically last over more
than a second — cf. Figure 5.6. Because the activity is more localized, the network
does not only display system-size events, but also periods where only part of the
culture is active. This enables the occurrence of periods of uninterrupted local and
global activity, which may span more than 10 seconds.
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Figure 5.6.: Raster plot of the 2-layer culture. Neurons are grouped by platform
(same color) and sorted by increasing x and y position in the culture.

Compared to standard cultures, this activity is therefore more complex, in terms
of the variety of timescales and spatial scales involved in the overall activity.

5.3 Concluding remarks
In this manuscript, I presented a set of analytical and numerical tools to reproduce,
analyze and characterize the development and activity patterns of neuronal cultures
and devices.

From the susceptibility-based description of the bursting activity and our simula-
tions on adaptive pacemaker neurons, I was able to predict the influence of adaptation
channels on the collective activity. The results from the preliminary experiments that
I conducted at the Weizmann Institute are indeed compatible with these predictions
and additional experiments may confirm the importance of adaptation in shaping the
bursting behavior. Furthermore, these experiments also revealed interesting changes
in the activity, which may provide additional insight into the relative influence of
adaptation and synaptic depression. Eventually, analysis of the statistical properties
of the interburst interval confirmed the study by T. A. Gritsun, Le Feber, et al. 2010
on the increased “authenticity” of bursting activity in network including a fraction
of pacemaker neurons.

Moving into a more detailed spatio-temporal study of the nucleation centers
in bursting networks, I showed that nucleation centers are consistently observed
as soon as locality and spatial correlation are introduced. In addition, analysis
of first-to-fire neurons, with the help of Mallory Dazza, revealed that seemingly
random activity before burst initiation is in fact concentrated around the nucleation
centers. Attempts to characterize the properties of these neurons showed significant
correlations with several topological properties depending on the bursting mechanisms
involved. However, these properties displayed significant dependence on the boundary
conditions that were specific to the EDR model used; because network whose structure
was derived from a growth process possessed rather different properties, additional
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analysis on such networks would be necessary in order to offer reasonable experimental
predictions.

The implementation of the DeNSE simulator, with the support of Alessio Quaresima,
enabled the simulation of more realistic cultures with an improved inclusion of the
boundary conditions, as growth cones properly interact with the walls delimiting
the culture. The development of new models coupling elongation, diameter, and
branching, as well as the inclusion and improvement of several existing models, make
DeNSE the first growth simulator providing a comprehensive framework to study the
development of neurons in silico.

Taken together, these results enabled us to discuss some of the limitations of
homogeneous neuronal cultures and to propose applications for future neuronal
devices. As a proof of concept, the set of examples provided in this last chapter show
that DeNSE is able to generate networks in silico which display reasonable properties
and are able to reproduce the activity of experimental devices.

Though several limitations were apparent throughout the study — especially for
DeNSE, which still lacks major mechanisms such as self-avoidance and fasciculation —
the extensive analysis provided on the bursting mechanism leads to the conclusion that
the emergence of synchronized activity relies on highly resilient and even redundant
mechanisms. This explains the resilience and pervasive nature of epileptiform bursts
in neuronal cultures and hints at the necessity of new strategies to prevent its
apparition: the design of cultures which would grow under external stimulation or
the profound modification of the network properties to prevent the percolation of
the activity throughout the culture.

Eventually, interesting perspectives ensue from this discussion on the future of
neuronal devices. Among them, one may highlight the possibility of studying and
modeling structural plasticity, as well as the interplay between growth and activity.
In addition, we also rationalized a new paradigm to increase the complexity of
neuronal cultures while preserving the quasi-2-dimensionality which constitutes one
of their major advantages. Hopefully, future versions of DeNSE, coupled with activity
simulators, may prove useful in tackling these challenges and investigating new
designs for neuronal devices.
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Appendix A

Neuronal dynamics and the AdExp model

A.1 Pacemaker neurons
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Figure A.1.: Phase space of a pacemaker neuron modeled by the AdExp model
(a < 0). V -nullcline (V̇ = 0) is in blue while w-nullcline (ẇ = 0) is in green. Arrows
indicate the values of (V̇ , ẇ) at each point in phase space.

As shown on Figure A.1, the negative slope of the w-nullcline for pacemaker
neurons, can lead to the emergence of an extended ghost of what was the fixed point
before the bifurcation. In this area, the derivative of both V and w are very small,
generating a “trap” where the neuron remains for a long time and which dampens
the effect of external perturbation on the trajectory. This property is what provide
pacemaker neurons their strong periodicity and resilience to synaptic inputs and
noise.

A.2 Firing patterns
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Appendix B

Excitability, restlessness, and susceptibility

B.1 Transitions of the AdExp model
In the AdExp model, there are two possible transitions that make a neuron fire
spontaneously: a saddle-node bifurcation for a/gL < τm/τw or an Andronov-Hopf
bifurcation for a/gL < τm/τw (Naud et al. 2008).

In the case of the Andronov-Hopf bifurcation, the transition current or (rheobase
current) is given by

IAH = (gL + a)
[
Vth + ∆T ln

(
1 + τm

τw

)
− EL −∆T

]
+ gL

(
a

gL

− τm

τw

)
(B.1)

whereas in the saddle-node bifurcation, it becomes

ISN = (gL + a)
[
Vth + ∆T ln

(
1 + a

gL

)
− EL −∆T

]
. (B.2)

For Ie greater to the bifurcation current associated to a given parameter set, the
neuron will have no equilibrium potential, i.e. it will fire spontaneously.

B.2 Susceptibility
We define the susceptibility of a neuron as the balance between the charge that had
to be delivered to make it reach V ≥ Vth with V̇ ≥ 0 and the speed at which its
membrane potential will increase once the charge has been delivered. This leads to:

Sc = v̇ − q (B.3)

with the dimensionless quantities

v̇ = τmV̇

∆T

q = Q

Cm∆T

It is thus the difference between the post-excitatory derivative of the membrane
potential and the excitatory charge that was necessary to reach this “excited” state
where the neuron will fire.

The susceptibility Sc of an AdExp neuron can be determined based on the
separation of phase space described in Figure B.11.

1 this separation of phase-space is an approximmation in the case where the two variables V and w
evolve on different timescales, such that τm � τw (adiabatic hypothesis); go to the Limitations
subsection to see when this hypothesis may not hold.
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• In the region (a), we have V ≥ Vth and V̇ ≥ 0, therefore q = 0 and Sc = v̇ ≥ 0.
• In (b), we have v̇ ≥ 0, and q = Vth−V

Cm∆T
.

• In (c), we need to reach the right arm of the V -nullcline to get v̇ = 0, and thus
we get Sc = −q ≤ 0.

w
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A
)
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Figure B.1.: The three different regions of phase space for the computation of the
susceptibility.

Defining region (b)
Region (b) is defined as the area where V ≤ Vth and w ≤ wmin, with wmin the
minimum of the V -nullcline (VNV (wmin) = Vth).

From this, we can compute

wmin = Ie + gL (EL + ∆T − Vth) (B.4)

In this region
q = Vth − V

∆T

(B.5)

and the speed in Vth is
v̇ = 1 + EL − Vth

∆T

+ Ie − w
gL∆T

(B.6)

Defining region (c)
The (c) region is the area where w ≥ wmin and V ≤ V r

V N (w), where V (r)
V N is the curve

delimiting the right arm of the V -nullcline.
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The equation of the V -nullcline is given by

gL(EL − V ) + gL∆T exp
(
V − Vth

∆T

)
+ Ie − w = 0 (B.7)

using the Lambert W function, we can obtain the function giving the right arm as

V
(r)

NV (w) = EL + Ie − w
gL

−∆TW−1

[
− exp

(
gL(EL − Vth) + Ie − w

gL∆T

)]
(B.8)

given that w ∈ [wmin,∞[, the argument of the Lambert W function is always in
[−1

e
, 0[ so the result is always defined using the -1 branch of the Lambert W function.

From this, we can compute the value of q in the (c) region, which leads to:

Sc(c) = −q(c) = V − V (r)
NV (w)

∆T

. (B.9)

General equation for the susceptibility
Therefore, the susceptibility can be defined as:

Sc =



1 + V +EL−2Vth

∆T
+ Ie−w

gL∆T
if V ≤ Vth and w ≤ wmin,

V
(r)

V N (w)−V

∆T
if V ≤ V r

V N(w) and w ≥ wmin

EL−V
∆T

+ e(V −Vth)/∆T + Ie−w
gL∆T

otherwise

(B.10)

which can be rewritten using the Heaviside Θ function,

Sc =


V

(r)
V N (w)−V

∆T
if V ≤ V r

V N(w) and w ≥ wmin

EL−V +2Θ(Vth−V )
∆T

+ eΘ(V −Vth)/∆T + Ie−w
gL∆T

otherwise
(B.11)

Limitations
The adiabatic hypothesis (τm � τw) is obviously not always valid, and the fact
that w varies in time changes the behavior of the neuron with respect to the simple
division of phase-space that has been proposed above. Though the variations of w in
time make little difference for most of the biologically-relevant values of τw, there
are some specific regions of phase-space and τw values that lead to slightly more
complex behaviors.

B.3 Restlessness
Based on the definitions in “Transitions of the AdExp model” (section B.1), we can
define the bifurcation current

I(b)
e =

{
ISN if a/gL < τm/τw

IAH if a/gL ≥ τm/τw
(B.12)

which leads to {
Rl < 0 if Ie < I(b)

e

Rl ≥ 0 otherwise (B.13)





Appendix C
Self-consistent equations
for the bursting behavior

These equations describe the bursting behavior of adaptive spiking neurons in the
absence of noise in the system. See also Fardet, Ballandras, et al. 2018 for details.

C.1 Neuronal model (AdEx) and parameters
Dimensionless parameters
The dimensionless parameters are obtained from their dimensional counterparts via
the following formulas:

V = Ṽ − Ṽth

∆̃T

, EL = ẼL−Ṽth

∆̃T
(general relation for voltages)

w = w̃

g̃L∆̃T

, I = Ĩ
g̃L∆̃T

(general relation for currents)

t = t̃

τ̃m

, τw = τ̃w

τ̃m
(general relation for times)

gL = 1 a = ã
g̃L

(general relation for conductances)

C.2 Hypotheses underlying the equivalent model
As the dynamics of w is slow except for its fast spike-triggered increase during the
burst, our model is based on a quasi-static hypothesis regarding the subthreshold
dynamics of w:

τw � τm = Cm

gL

= 1. (C.1)

C.3 Stability of the synchronized state
Synchronization of relaxation oscillators (a class of periodically active units to which
adaptive pacemaker neurons belong) has been extensively studied and is a known
asymptotic behavior Bottani 1995; Somers et al. 1993, which has been shown to lead
to bursting in the presence of adaptation Van Vreeswijk et al. 2001.

This stability can be observed in simulations, and Figure C.1 shows the immediate
recovery of the network bursts after the random perturbation of the network at
250 ms. This perturbation was obtained by sending a 5-ms pulse of current to all
neurons, with amplitudes distributed uniformly between 0 and 1 nA.
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(a) Raster plot over the whole simulation.
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(b) 1st intraburst activity post-perturbation.
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(c) Intraburst activity after more than 3 s.
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(d) Close to complete recovery after ≈ 6 s.

Figure C.1.: Stability of the synchronized bursting state for a 1000-neuron network
with respect to an external perturbation of the activity. The bursting behavior
is immediately recovered after the perturbation and the intraburst synchrony is
progressively recovered over time (time-lag becomes smaller than the simulation
timestep – 0.1 ms – after 7 s, making it undetectable).

Neuronal parameters are given below:

1 param = {
2 'V_reset': -58.,
3 'V_peak': 0.0,
4 'V_th': -50.,
5 'I_e': 300.,
6 'g_L': 9.,
7 'tau_w': 300.,
8 'E_L': -70.,
9 'Delta_T': 2.,

10 'a': 2.,
11 'b': 60.,
12 'C_m': 200.,
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13 'V_m': -70.,
14 'w': 100.,
15 'tau_syn_ex': 0.2
16 }

Neurons are coupled by alpha-shaped currents of peak amplitude 60 pA.

C.4 Linear evolution of V submitted to a constant cur-
rent
During an ISI, V undergoes a quasi-linear variation which starts right after the reset
following a spike (let us simplify the calculations by setting t = 0 at this time) and
lasts until the effect of the exponential term is no longer negligible.
During this period, the membrane potential behaves as if it were submitted to the
linear equation:

dVl

dt
= −(Vl − EL) + I(t)− w. (C.2)

For time independent synaptic currents, I(t) = I, we obtain – with Vl(0) = Vr:

Vl(t) = Vre
−t + (EL + I − w)

(
1− e−t

)
. (C.3)

C.5 Modeling a burst with instantaneous Dirac synapses
In all this section, the current to which the neurons are subjected is I(t) = I0 at all
times and the effect of the spike is instantaneously delivered as a Dirac pulse, i.e. as
an equivalent charge Qs.

Interspike approximation
Between two spikes the slow current w varies slowly enough to be taken constant –
see Figure 6 in the main text; therefore the interspike for a given w is called ts(w).
Consider ã and b̃ two such spikes, characterized by the times tA and tB, the interspike
is defined as

t(d)
s (w) = tB − tA =

∫ tB

tA

dt.

The synaptic delay after which the PSP associated to spike ã occurs separates the
equation into:

t(d)
s (w) =

∫ tA+d

tA

dt+
∫ tB

tA+d
dt.

Changing variables from t to V for the second term and defining V +
d = V (d+) ≈

Vl(d) + kQs from Eq. (C.2), this becomes:

t(c)
s (w) =

∫ d

0
dt+

∫ Vp

V +
d

dV

eV + EL + Ie − w
≈ d+ T

(d)
div
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where Vd = Vl(d), from Eq. (C.2), α = EL+Ie−w, β = eVp+α/2, γ = exp
(
Vd + kQs

)
+

α/2, and

T
(d)
div (w) =

∫ eVp

eVd+kQs

du

(u+ α/2)2 − α2/4

=
∫ β

γ

dx

x2 − α2/4

= 1
α

∫ β

γ

dx

x− α/2 −
dx

x+ α/2

= 1
α

ln
∣∣∣∣∣(γ + α/2)(β − α/2)
(γ − α/2)(β + α/2)

∣∣∣∣∣ .
Hence:

t(d)
s (w) ≈ d+ 1

α
ln
∣∣∣∣∣(2γ + α)(2β − α)
(2γ − α)(2β + α)

∣∣∣∣∣ . (C.4)

Self-consistent equation
Using the linear solution of Eq. C.2 with I = Ie, the condition V (t+sp) ≤ VNV (w)
translates into:

Vre
−d + (EL + Ie − w)(1− e−d) + kQs = VNV (w) (C.5)

hence, with VNV = EL + Ie − w −W−1
(
−eEL+Ie−w

)
,

w∗ = EL + Ie − Vr +
[
W−1

(
−eEL+Ie−w∗)+ kQs

]
ed (C.6)

where W−1 is the lower branch of the Lambert W function.

Approximative equation for w∗
Once the coupling of the neurons in the network is strong enough1, the value of w at
which the V -nullcline is crossed by the trajectory (see section “Regular networks and
Dirac synapses” and Figure 5 in the main text) is located in a region where the shape
of the nullcline is dominated by the exponential term. Because of this, even quite
significant changes in the value of w∗ lead to small changes for VNV (w∗) ≈ ln(w∗) as
w∗ = nsb is large.
Thus, VNV (w∗) ≈ C, which is a constant, and, from Eq. C.5, we get:

Vre
−d + (EL + Ie − w)(1− e−d) + kQs ≈ C (C.7)

hence
w∗ ≈ EL + Ie + Vre

−d + kQs

1− e−d
+ C. (C.8)

1We call “strong bursting” a situation where nsb� 1, with ns the number of spikes emitted by a
neuron during the burst and b̃ the spike-triggered adaptation.
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C.6 Bursting in heterogeneous networks: continuous synapses
Interspike approximation
As for the Dirac model, we take

t(c)
s (w) =

∫ tB

tA

dt =
∫ Vp

Vr

dV

−V + eV + EL + I+ − w

≈
∫ 0

Vr

dV

EL − V + I+ − w
+
∫ Vp

0

dV

eV + EL + I+ − w

Setting α = EL + I+ − w and β = eVp + α/2, we obtain:

t(c)
s (w) ≈ ln

(
α− Vr

α

)
+ 1
α

ln
∣∣∣∣∣(1 + α)(2β − α)

2β + α

∣∣∣∣∣ . (C.9)

Self-consistent equation
The upper bound for w is the value w∗ ≈ EL + I+ − Vr at which spiking does not
occur anymore, i.e. when the time between two spikes becomes infinite. As w varies
by steps of b̃ for individual neurons, the average interspike during the burst, ts(w∗),
can be approximated by integrating the exact expression of ts(w) on [wmin, w

∗ − b],
where the integrand does not diverge. To keep the coherence with the other two
models, though the total burst duration of the continuous model must be taken as
the sum of the spike times plus the delay necessary for the last spike to arrive:

TB = (ns − 1) ts(w∗) + d (C.10)

where

ts(w∗) = 1
w∗ − b− wmin

∫ w∗−b

wmin

t(c)
s (w)dw

= 1
w∗ − b− wmin

∫ w∗−b

wmin

[
ln
(
α− Vr

α

)
+ 1
α

ln
∣∣∣∣∣(1 + α)(2β − α)

2β + α

∣∣∣∣∣
]
dw.

In addition, the value of w∗ leads to the relation:

w∗ − wmin = I+ − Ie. (C.11)

From Eq. (C.10) and (7) we get

d+ (ns − 1)ts(w∗) = nskQs

I+ − Ie

which becomes, using Eq. C.11, and ns = (w∗ − wmin)/b:

d+
(
w∗ − wmin

b
− 1

)
ts(w∗) = kQs

b
(C.12)

which leads to the self-consistent equation (8) in the main text.
Note that for this model to make sense with respect to the previous one, we must

be able to define an equivalent non-zero burst duration through the interspike, which
means that the number of spikes in the burst must be at least two.
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C.7 Effect of the last spike
Depending on the model used for the synapses and on the delay regarding spike
transmission, the network might feel the effect of the last spike after a time d̃
following the end of a burst.

In the case of the continuous synapses, this delay is already taken into account
inside TB, so we consider that the burst ends directly with the last reset. Thus, we
end up at 0 on Figure 4B, with V (c)

max = Vr. This takes a time tfinal = 0.
For the other two models, the last spark of activity is felt after the delay d̃. During

this delay, the membrane potential decays linearly – cf. Eq. (C.2) – to:

Vd = Vl(d) ≈ Vre
−d + (EL + Ie − w)(1− e−d).

In the case of the Dirac synapses, the potential then undergoes an instantaneous
shift which leads to the final value V (d)

max = Vd + kQs after tfinal = d. For alpha-
shaped synapses, the potential subsequently increases over 4τs to reach V (α)

max ≈
Vd + 4τs

(
Ie + kce

4 + EL − Vd − wmax

)
after tfinal = d+ 4τs.

To be coherent with the description of the dynamics in time, presented on Figure
4A, we will consider that the global time is t = 0 after the last spark of activity dies
out and V (0) = Vmax.

C.8 Resting period: interburst dynamics
During the whole interburst (from 0 to 4 on Figure 4A), we consider that V is always
small compared to Vth = 0, i.e. that its dynamics is described by Eq. (C.2) where
I(t) simplifies to Ĩe for all times in [0; IBI], when the effect of the last spike is no
longer felt by the neurons.

Note that all subsequent numbers will refer to the circled points marking the
different periods on Figure 4.

After the last spike, the system ends up in a highly excited state with (V,w) =
(Vmax, wmax) – marked 0. In that region, w follows a very simple dynamics which
can, at the leading order, be approximated as an exponential decrease from its peak
value until it reaches its minimum:

ẇ ≈ a(V − EL)− w)
τw

. (C.13)

This simple equation represents the influence of the average potential V = (Vmin +
Vmax)/2 felt by w during its decay.

The behavior of V , on the other hand, is slightly more complex and can be divided
into three distinct phases: a first, abrupt, decrease of duration Tdown, followed by
a short transition period ending at T2 = Tdown + Tup, then a slow increase until TI

(point 1).
The first period is a rapid decrease dominated by the influence of w ≈ wmax. It is
followed by a short period Tup (between 1 and 2) where it goes from the V -nullcline
to the recovery path (dotted line on Figure 4B).

The resting period can thus be characterized by three values (wmax, wmin and
Vmin) which strongly influences its duration TI .
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Decrease of V
In order to solve on [0, Tdown] ([0; 1] region) and get a good approximation for Tdown,
we linearize the slow current. The linearized expression for w is called wl, the solution
of the linearized equation for V is called Vl.

wl(t) = wmax + λt.

We determine λ by taking the average value 〈V 〉 = 1
2(Vmax − V 0

min) in the equation
of ẇ.

wl(t) = wmax + 1
τw

(
a

gL

Vmin + Vmax − 2EL

2 − wmax

)
t.

This linearized expression for w is substituted in the right-hand side of Eq. (C.2), its
solution with initial condition Vmax reads

Vl(t) = e−t (Vmax − EL − Ie + wmax − λ) + λ(1− t) + EL + Ie − wmax

with
λ = 1

τw

(
a

gL

Vmin + Vr − 2EL

2 − wmax

)
.

Then Tdown is the time when the derivative of Vl vanishes, it is given by

Tdown = − ln
(

λ

λ− Vmax + EL + Ie − wmax

)
. (C.14)

Transition from refractory to recovery
After the initial decrease of V , the trajectory passes the nullcline and reaches the
recovery path (from 1 to 2). During this portion of the dynamics, V̇ � ẇ, so the
evolution of w can be considered to happen at constant V = Vmin at zeroth order.
We use this approximation for w ∈ [w(1), w(2)]. Considering the 1st order, V then
slowly evolves to reach the value corresponding to w(2) along the recovery path.
From a biological standpoint, this can be seen as the point where the persistent
currents and the hyperpolarization-activated currents compensate the effect of the
spike-driven hyperpolarizing currents.

ẇ ≈ 1
τw

[a(Vmin − EL)− w]

hence, setting t = 0 at Tdown:
w(t) ≈ a(Vmin − EL) +

[
w(1) − a(Vmin − EL

]
e−t/τw . (C.15)

Putting the solution back into the equation for V and developing around the nullcline
point (Vmin, w

(1)), we get:
V̇ = −(V − EL) + Ie − w

= −(V − Vmin)−
[
w(1) − a(Vmin − EL)

] (
1− e−t/τw

)
.

Changing variables for V (t) = f(t)e−t, this leads to:

ḟ =
[
Vmin −

(
w(1) − a(Vmin − EL)

) (
1− e−t/τw

)]
⇒ f(t) =

[
a(Vmin − EL)− w(1)

] ( τw

τw − 1 − 1
)

+
[
Vmin + a(Vmin − EL)− w(1)

]
et

+ τw

τw − 1
[
w(1) − a(Vmin − EL)

]
e

τw−1
τw

t
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hence

V (t) = Vmin+[
a(Vmin − EL)− w(1)

]
·
[(

τw

τw − 1 − 1
)
e−t − τw

τw − 1e
−t/τw − 1

]
. (C.16)

Recovery period
After the transition which follows the initial decrease of V , we enter the recovery
period – interval between points 2 and 3. There, w slowly decreases to its minimum
value wmin while V increases until the first spike of the following burst. The trajectory
stays close to the V -nullcline, on a path where the derivative of both V and w have
the same magnitude, i.e, neglecting the nonlinear terms:

ẇ

V̇
≈ a(V − EL)− w
τw(Ie + EL − V − w) = dwV N

dV
≈ −1

which leads to
w = 1

1 + τw

[(a− τw)(V − EL) + τwIe] (C.17)

or equivalently
V = EL + 1

a− τw

[(1 + τw)w − τwIe] .

During this period, the evolution of w is therefore driven by

ẇ = 1
τw

[a(V − EL)− w]

= 1
τw

[
a

a− τw

((1 + τw)w − τwIe)− w
]

= − 1 + a

τw − a

(
w − a

1 + a
Ie

)
.

This behavior changes when V reaches Vth = 0, where the non linear terms become
predominant and the dynamics of V , again, becomes much faster than that of w.

Thus, the recovery time is given by:

TR = τw − a
1 + a

ln
 w(2) − a

1+a
Ie

wmin − a
1+a

Ie

 .
Initiation of the burst
After the recovery period, the burst is initiated (point 3 on Figure 4) as the trajectory
of the mean-field neuron reaches the minimum of the V -nullcline, i.e. for w0

min =
1 + Ie + EL and V = Vth = 0. Once V reaches 0, the first spike of the burst is
initiated, which takes

Tfs =
∫ TI+Tfs

t=TI

dt =
∫ Vpeak

V =0

dV

V̇
≈
∫ Vpeak

V =0
e−V dV ≈ 1. (C.18)



Appendix D

Simulating networks of spiking neurons

D.1 Simulation choice and protocols
AdExp implementation
As the exponential term in the differential equation for V is quite difficult to
control numerically, I improved the existing implementation of the NEST simulator
and provided new current-based synapses, starting from version 2.12.0. The new
implementation binds V to be smaller than Vpeak at all times, and was tested against
the solution provided by the LSODAR solver1, which has been designed to handle
directly discontinuous equations. Contrary to the old implementation, this new
formulation converges towards the reference solution and is closer to it for any given
simulation timestep.

Checking for spurious synchrony
We checked for synchronization artifacts that might come from the grid-based spike
delivery in NEST using a custom implementation of the precise (event-based) model
of the AdExp neuron, then compared to simulation with varying timesteps. No
significant changes (delays or cancellations (Brette, Rudolph, et al. 2007)) were
observed, hence all subsequent simulations were performed with timesteps of 0.1 ms,
or occasionally 0.5 ms for very long simulations or parameter search.

D.2 Network models and parameters
All network models used in this study are implemented in the NNGT library2

In “Mechanisms governing epileptiform bursts” (chapter 2), both non-spatial
Gaussian networks and EDR network were used. In the subsequent chapters, only
the EDR and DeNSE-grown networks were considered.

Parameters for the phase transition — “The transition to syn-
chronous bursting” (subsection 2.3.1)
Gaussian networks were generated with an average degree of 100 and subjected to
Poisson noise with an average rate of 15 Hz and a peak current given by

I(noise)
max = 1 + c

2 . (D.1)

1 see jupyter notebook https://github.com/nest/nest-simulator/blob/master/doc/model_de-
tails/aeif_models_implementation.ipynb on the NEST github repository for details.

2 a python library aimed at bridging the gap between neuroscience and graph theory; see
http://nngt.readthedocs.io/en/latest/ for details.

https://github.com/nest/nest-simulator/releases/tag/v2.12.0
http://nngt.readthedocs.io/en/latest/modules/generation.html#nngt.generation.gaussian_degree
http://nngt.readthedocs.io/en/latest/modules/generation.html#nngt.generation.distance_rule
https://github.com/nest/nest-simulator/blob/master/doc/model_details/aeif_models_implementation.ipynb
https://github.com/nest/nest-simulator/blob/master/doc/model_details/aeif_models_implementation.ipynb
http://nngt.readthedocs.io/en/latest/
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Non bursting pacemakers

1 p_PM_nb = {
2 'E_L': -64.1,
3 'I_e': 23.,
4 'g_L': 10.,
5 'C_m': 250.,
6 'a': -1.5,
7 'V_th': -54.98,
8 'V_reset': -59.,
9 'Delta_T': 5.5,

10 'b': 60.,
11 'tau_w': 350.,
12 'tau_syn_ex': 1.5,
13 't_ref': 3.
14 }

Bursting to spiking pacemakers

1 p_B_osc = {
2 'E_L': -64.1,
3 'I_e': 23.,
4 'g_L': 10.,
5 'C_m': 250.,
6 'a': -1.5,
7 'V_th': -54.99,
8 'Delta_T': 5.5,
9 'b': 60.,

10 'tau_w': 350.,
11 'V_peak': 20.,
12 'tau_syn_ex': 1.5,
13 't_ref': 3.
14 }

For the bursting pacemakers, the reset potential Vr was randomized following a
normal distribution N (−53.5, 0.5) is order to provide a smooth transition (otherwise
all neurons switch from spiking to bursting at the same time).

Parameters for “Burst nucleation in neuronal cultures in silico”
(subsection 3.3.2)
EDR networks were generated with an average degree of 100 and subjected to minis
with a base rate of 0.15 Hz per synapse, such that a neuron of degree 100 will receive
mEPSCs with an average rate of 15 Hz. Peak current of the minis is set to a third of
the average synaptic strength.
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5-second IBI, type II,
used with a synaptic cou-
pling of 25 pA

1 p_II_5s = {
2 'I_e' : 0.,
3 'E_L': -56.4,
4 'V_m': -56.4,
5 'V_reset': -53.,
6 'g_L': 11.,
7 'C_m': 300.,
8 'b': 100.,
9 'tau_w': 500.,

10 'V_th': -54.935,
11 'a': 6.,
12 'Delta_T': 2.,
13 'tau_syn_ex':

1.5,↪→

14 't_ref': 3.
15 }

5-second IBI, pacemaker,
used with a synaptic cou-
pling of 10 pA

1 p_PM_5s = {
2 'I_e' : 0.,
3 'E_L': -56.4,
4 'V_m': -56.4,
5 'V_reset': -53.,
6 'g_L': 11.,
7 'C_m': 300.,
8 'b': 100.,
9 'tau_w': 500.,

10 'V_th': -54.935,
11 'a': 6.,
12 'Delta_T': 2.,
13 'tau_syn_ex':

1.5,↪→

14 't_ref': 3.
15 }

14-second IBI, pace-
maker, used with a
synaptic coupling of 30
pA.

1 p_PM_14s = {
2 'E_L': -64.1,
3 'I_e': 22.5,
4 'g_L': 10.,
5 'C_m': 250.,
6 'a': -1.5,
7 'V_th': -54.918,
8 'V_reset': -62.,
9 'Delta_T': 5.5,

10 'b': 70.,
11 'tau_w': 350.,
12 'V_peak': 20.,
13 'tau_syn_ex':

1.5,↪→

14 't_ref': 3.
15 }

Older simulations, performed during my stay in Japan (JSPS Summer Program
2017) and described in Figures 3.4 and 3.5, used different networks and neuronal
parameters, which can be found below.

50,000 neurons were seeded on a disk 6.5 mm in radius, leading to a density around
380 neurons/mm2. These neurons were then connected using the EDR model with
characteristic distances of either 200, 400, or 800 µm to model different developmental
stages. Average degrees were varied between 50 and 150 to also account for the
differences in developmental advancement. The weights between all neurons were
taken from a lognormal distribution of mean 250. and a scale of 0.5 and the synapses
were taken from ’tsodyks2_synapse’ with parameters U = 0.33, τrec = 1500s,
u = 0 and x = 1 (Loebel et al. 2002).

The population was composed of 4 neuron types: regular spiking pacemakers,
intrinsically bursting pacemakers, adaptive spiking non-pacemakers, fast spiking
inhibitory.

Parameters for their resting state (no spontaneous activity) read:



162 Chapter D. Simulating networks of spiking neurons

Intrinsically bursting pacemakers

1 p_IB_rest = {
2 'E_L': -70.,
3 'V_m': -70.,
4 'I_e': 0.,
5 'g_L': 10.2,
6 'C_m': 300.,
7 'a': -3.5,
8 'V_th': -57.,
9 'V_reset': -53.,

10 'Delta_T': 7.2,
11 'b': 25.,
12 'tau_w': 350.,
13 'V_peak': 20.,
14 'tau_syn_ex': 1.5,
15 'tau_syn_in': 3.,
16 't_ref': 3.
17 }

Regular spiking pacemakers

1 p_RS_rest = {
2 'E_L': -64.,
3 'V_m': -64.,
4 'I_e': 0.,
5 'g_L': 10.,
6 'C_m': 250.,
7 'a': -1.5,
8 'V_th': -55.,
9 'V_reset': -59.,

10 'Delta_T': 5.5,
11 'b': 80.,
12 'tau_w': 200.,
13 'V_peak': 20.,
14 'tau_syn_ex': 1.5,
15 't_ref': 3.
16 }

Adaptive spiking non-pacemakers

1 p_AS_rest = {
2 'E_L': -60.,
3 'V_m': -60.,
4 'w': 200.,
5 'V_reset': -60.,
6 'g_L': 9.,
7 'C_m': 300.,
8 'V_peak': 30.,
9 'b': 20.,

10 'tau_w': 300.,
11 'V_th': -56.,
12 'a': 4.,
13 'Delta_T': 2.,
14 'tau_syn_ex': 1.5,
15 'tau_syn_in': 3.,
16 't_ref': 3.
17 }

Fast spiking inhibitory

1 p_FSi = {
2 'E_L': -60.,
3 'V_m': -60.,
4 'w': 0.,
5 'V_reset': -64.,
6 'g_L': 12.,
7 'C_m': 250.,
8 'V_peak': 30.,
9 'b': 30.,

10 'tau_w': 50.,
11 'V_th': -54.,
12 'a': 1.,
13 'Delta_T': 2.,
14 'I_e': 0.,
15 'tau_syn_ex': 1.5,
16 'tau_syn_in': 3.,
17 't_ref': 2.
18 }

Then, a fraction of the excitatory population (usually 5%) was put in a sponta-
neously active state through both minis of average rate 5 Hz and an increase in their
excitability to obtain average spiking rates of 0.1 Hz.
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Neuronal parameters for the neuronal devices
For both the 2-stage culture and the neuronal diode, the parameter used were

1 p_PM = {
2 'E_L': -64.1,
3 'V_m': -64.1,
4 'I_e': 21.8,
5 'g_L': 10.,
6 'C_m': 250.,
7 'a': -1.6,
8 'V_th': -55.,
9 'V_reset': -59.,

10 'Delta_T': 5.5,
11 'b': 5.,
12 'tau_w': 350.,
13 'V_peak': 20.,
14 'tau_syn_ex': 1.5,
15 't_ref': 3.
16 }

with a synaptic strength of 20 pA.
For the more active region of the diode, the following parameters were changed:

a = −1.57 nS, Ie = 22.02 pA, and EL = −64.1 mV.

D.3 Properties of spatial networks
In spatial networks, delays were attributed to the connections based on the distance
between the source and target nodes, considering propagation speeds for the action
potential in the range [100, 250] µm/ms. This was notably based on the observations
of Barral et al. 2016.

Regarding the synaptic strength, no correlation between distance and strength
was used since Magee et al. 2000 reported a distance-based scaling leading to almost
constant post-synaptic currents at the soma.

Neuronal degree
All networks were generated with average in-degrees between 30 and 100.

Clustering coefficient
The local clustering coefficient ci is defined as

ci = |{ejk}|
ki(ki − 1) : vj, vk ∈ Ni, ejk ∈ E, (D.2)

where ki is the out-degree of node i, and
Ni = {vj : eij ∈ E}

is the set of out-neighbors of node i.



164 Chapter D. Simulating networks of spiking neurons

Betweenness
The betweenness centrality of an edge is defined as the number of shortest paths
going through it.

For a vertex v, the betweenness centrality CB(v) is defined as,

CB(v) =
∑

s 6=t∈V

σ(s, t|v)
σ(s, t) , (D.3)

where V is the set of vertices in the network, σ(s, t) is the number of shortest
(s, t)-paths, and σ(s, t|v) is the number of those paths passing through some vertex
v other than s, t.
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Experimental protocols

E.1 Culture preparation and feeding procedures
Primary neurons were obtained from Winstar rat embryos at stages E19. All proce-
dures were approved by the Weizmann Institutes Animal Care and Use Committee.

Dissection and papain dissociation of hippocampi was done according to established
protocols at the Weizmann Institute (Renault, Sukenik, et al. 2015). Brains from
embryos were micro-dissected on ice in L-15 medium without phenol red (Life
technologies) supplemented with 0.6% glucose and 0.2% gentamycin. Hippocampi
were digested in papain solution (papain 100 units, DNAseI 1000 units, L-Cystein
2 mg, NaOH 1M 15 µL, EDTA 50 mM 100 µL, CaCl2 100 mM 10 µL, dissection
solution 10 mL) at 37◦C for 20 minutes. After digestion, the supernatant was carefully
removed and replaced with 10 mL of plating medium (MEM without glutamine
supplemented with 0.6% glucose, 1% GlutaMAX, 5% Horse Serum, 5% Fetal Calf
Serum and 0.1% B27) supplemented with 25 mg of trypsin inhibitor and 25 mg
of Bovine Serum Albumine for 5 min to inactivate the papain. Supernatant was
removed, replaced with plating medium and tissues were triturated with fired polished
pasteur pipettes.

The medium covering the glass chips was aspirated and the dissociated neurons
were seeded in compartment at a density around 5000 neurons/mm2. The seeded
chips were incubated half an hour in a humidified, 37◦C and 5% CO2 incubator to
allow the attachment of neurons to the PLL substrate. Each chip was finally covered
by 2 mL of serum-free medium (Neurobasal, B27 4%, GlutaMAX 1% and FCS 1%)
and the cultures were placed back into the incubator.

Glial proliferation was stopped 4 days after plating by adding in the medium 20
µg/mL 5-fluoro-2-deoxyuridine and 50 µg/mL uridin (Sigma, Israel).

Cultures were fed every day, replacing 0.5 mL of the old medium with new feeding
medium containing MEM and HS.

E.2 Calcium imaging
Before imaging, cultures were changed to 2 mL of observation medium containing:

K+ at 5.3 mM,

Na+ at 144 mM,

Cl− at 155 mM,

Mg2+ at 0.81 mM,

Glucose at 39 mM,
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Sucrose at 16 mM,

HEPES at 10 mM,

GlutaMAX at 10 mM,

Ca2+ at 1 mM,

with addition of 160 µL of NaOH (1 M) to regulate the pH.

One hour before observation, 4 µL of Fluo-4 in DMSO were added and left
incubating. After one hour, the medium was removed and replaced with clean
observation medium, without Fluo-4.

Observations were subsequently performed on a LEICA TCS SP5 X scanning
confocal microscope with a laser excitation at 488 nm. The activity of a 922 µm2

area in the culture was recorded at 5 Hz using a 10x magnification and a 1.7 zoom.

E.3 Application of the blockers
After control recordings, blockers were added to the medium and left to react for 15
minutes before resuming recordings.

Bicuculline: blocking inhibitory synapses
To record from purely excitatory cultures, 20 µL of bicuculline at 4 mM was added
to the 2 mL medium to obtain a final concentration of 40 µM.

Paxilline: blocking fAHP
To block fAHP, 2 µL of paxilline in DMSO (at 2.5 mM) was added to reach a final
concentration of 2.5 µM.

Apamin: blocking mAHP
To block mAHP, 10 µL of apamin in water (at 40 µM) was added to reach a final
concentration of 200 nM.

Isradipine: blocking sAHP
To block sAHP, 2 µL of isradipine in DMSO (at 7.5 mM) was added to reach a final
concentration of 7.5 µM.
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Nucleation centers

In order to detect the nucleation centers which contributed to the initiation of bursts
of activity in the cultures, the localization of the peak of the bursting activity was
first obtained in order to assign each spike in the raster to a given “burst region”.
Following this segregation, nucleation centers were obtained using a parameterless
clustering method. Eventually, correlation between the nucleation centers and various
graph centralities is assessed.

F.1 Preliminary burst delimitation
In order to detect the peak of the bursting activity, the totalfiring rate of the culture
is first obtained by successively convolving the spike times by an exponential and a
Gaussian kernel:

Fr = 1
tauσ

√
2π

∑
i

δ(t− ti) ∗Θ(t− ti)e−t/τ ∗ e(t−ti)2/(2σ2), (F.1)

where the exponential kernel preserves the causality of the signal, while the Gaussian
kernel avoids the presence of individual peaks in the firing rate and facilitates the
detection of a single maximum in the burst.

Values of τ and sigma were adapted to provide a single maximum per burst
(typically between τ ∈ [4; 20] ms and σ = 3τ .

Once the burst peaks are detected, all spikes that are closer to it than to any other
peak are associated to this burst — see Figure 3.3e in the main text.

F.2 Detection via a clustering algorithm
Once this segregation has been performed, the clustering is implemented by analyzing
the spatial distribution of all neurons which activated before a time t.

Setting t = 0 at the beginning of a burst region and t = T at the end of this region
(dashed orange limits on Figure 3.3e), t is progressively varies from 0 to T and the
distribution of the active neurons before time t is assessed to search for clusters.

This clustering search is performed using the DBSCAN algorithm from the scikit-
learn library. This algorithm requires two main parameters:

the maximum distance eps for two points to be considered as neighbors,

the minimal number of neighbors min_samples to be considered as a core point
in a cluster.

http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_dbscan.html
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For the EDR network, and rather similarly for the grown networks, the typical scale
of the connectivity — λ, in the EDR case — is half the average distance length in
the network, which is the distance which is chosen for eps as characterizing the
distance between connected neurons. For the number of neighbors, we characterize
the degree distribution, which is typically close to normal, and use as typical degree
k0 = 〈k〉− (〈k2〉− 〈k〉2), which ensures that the minimal connectivity can be reached
by most neurons in the network.

F.3 Predicting nucleation centers by graph centralities
Apart from the two centralities presented in the main text1, the graph centralities
tested in this study included:

• the in- and out-degree, which gave results similar to that of the total degree,
• the closeness2, which did not correlate to the nucleation centers (NCs), nor to

the first-to-fire property (FtF),
• the node betweenness3, which did not correlate to the NCs or the FtF property,
• the subgraph centrality (Estrada et al. 2005) which did not correlate to the

NCs, nor to the FtF property,
• the average delay from a node to or from all its neighbors, which did not

correlate,
• multiple combination of the normalized centralities above also did not correlate.

1 see “Burst nucleation in neuronal cultures in silico” (subsection 3.3.2).
2see https://en.wikipedia.org/wiki/Closeness_centrality.
3see https://en.wikipedia.org/wiki/Betweenness_centrality.

https://en.wikipedia.org/wiki/Closeness_centrality
https://en.wikipedia.org/wiki/Betweenness_centrality
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Growth models

This appendix provides some additional details about the models used for growth
cone steering in DeNSE.

G.1 Simple random walker
The simplest model is the random walk, implemented more for reference and null-
model purposes than for actual use.

In this model, each of the possible angles given by the filpodia1 is assigned a
probability obtained from a Gaussian distribution which is centered on the current
direction angle.

For nf filopodia spanning an angular aperture 2θmax, there are nf − 1 angles that
separate the regions assigned to each filopodia; the probability assigned to each
filopodia of being chosen as the new direction for the next step is therefore the
integral of the Gaussian probability density over that region, i.e. for the filopodia i:

Pi = 1
σ
√

2π

∫ (i+1)∆θ−θmax

i∆θ−θmax

e−θ2/(2σ2)dθ, (G.1)

with ∆θ = 2θmax/(nf − 1).
As shown by equation 4.4 in the main text, the value of σ can be computed easily

from the persistence length.
However, the main issue here is that, in order for a random walk to be independent

of the simulation timestep dt, its standard deviation σ must scale as σ = σ0
√
dt,

where σ0 is the desired standard deviation associated to the required persistence
length. Because of this, in the simple random walk, the typical angular aperture of
the growth cone, θmax has to be changed with the timestep. Though this is not a
problem per se, it triggers incorrect behaviors when the growth cone interacts with
the environment, because this interaction occurs at different angles depending on
the timestep, which leads to timestep-dependent results. Consequently, the use of
this model is not permitted if a spatial environment is present.

G.2 Run-and-Tumble model
The main model for growth and interactions is therefore the run-and-tumble model
— see Kirkegaard et al. 2018 for recent results and list of previous results — since the
presence of two parameters (the run length l0, and the angular choice θmax during
tumbles) enables to uncouple the angular aperture from the persistence length, as
shown in equation 4.5 and on Figure G.1. This model is a reference to model planar

1 see Figure 4.6 in “Beyond the isolated growth cone: interactions” (subsection 4.2.2).
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motions, for instance of bacteria, because its two variables l0 and θmax allow to set the
characteristic scale of the persistence length through two mechanisms: the frequency
of direction change and the angular width of this change, i.e. the correlation between
two successive runs.

Figure G.1.: Illustration of a run-and-tumble trajectory. The blue circles mark the
tumble positions, which are separated by l0, while the possible angles for the next
run are given by the orange angular are. The filopodia are shown in red on the last
position.

Maintaining θmax constant, one can thus provide timestep-independent interactions
while ensuring a proper persistence length using the l0 parameter.

Furthermore, this model also corresponds to the biological reality that the persis-
tence length of the neurite is not related to the flexural rigidity of the microtubules,
but rather to active events which trigger ruptures in the axonal or dendritic shaft.

G.3 Self-referential forces
As mentioned in the main text, though the notion of self-referential forces (SRF)2

is very interesting, the proposed implementation of these “forces” result in both
misleading and error-prone descriptions.

Indeed, the notion of inertial force, to characterize the rigidity3 of the neurite has no
physical relevance, mechanical inertia being negligible in those regimes. Considering
the mechanism maintaining the neurite’s trajectory almost straight on short distances
as an “intertial force” is thus incorrect and may be misleading for non-physicists. If
forces are considered, they should be those exerted by the filopodia and lamellipodia,
and the work they apply on bending the neurite shaft can then be used to quantify
the progressive bending of the growth cone trajectory.

Moreover, the issue of self-referential forces is not limited to the “inertial force”.
Indeed, the implementation present in NeuroMac (Torben-Nielsen et al. 2014) also
models the stochastic deviation from the deterministic force balance using a “stochas-
tic force” term which is added to the deterministic resulting force. Unfortunately,
because the stochastic force is directing randomly in [0, 2π[, the angular distribution
obtained for the total resulting force is not unimodal but bimodal, promoting a
“broken line” trajectory rather than the smooth evolution observed exerimentally.

2 as the presence of mechanisms that are intrinsic to the growth cone.
3 visualized by the persistence length of the neurite, as described previously.
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To correct this behavior, the SRF implemented in DeNSE considers the resulting
force exerted by all filopodia on the C-domain — the center of the growth cone, see
Figure 4.1 in “Modeling an extending growth cone” (subsection 4.2.1). Combined to
the bending energy of the microtubules in the neurite shaft (equation 4.3), the work
of this force gives an effective bending angle that shifts the trajectory.

Similarly, the somatropism is changed to correspond to a mechanism where the
growth cone responds to the gradient of a molecule emitted at the soma. This imple-
mentation considers that the molecule diffuses around the soma up to a characteristic
distance r0 with a Gaussian profile:

C ∝ e−r2/(2r2
0 . (G.2)

The intensity with which each filopodia i senses the gradient is thus proportional to
the concentration at the growth cone’s current position, as well as to the cosine of
the angle ∆θi between the filopodia and the direction of the soma. This repulsive
contribution is therefore taken into account for all filopodia whose angle with the
direction of the soma is lower than 90° and reads:

pst(r, θi) = e−r2/(2r2
0 cos(∆θi). (G.3)

For completeness this algorithm is combined to the run-and-tumble model: the
forces account for the progressive turns during runs, where changed is trajectory are
prevented by the rigidity of the neurite shaft, while the tumbles account for specific
events where the integrity of the shaft is compromised and a new “shaft section” is
formed, generating a discontinuity in the neurite’s trajectory.

G.4 Critical resource and competition
As discussed in the main text4, conditioning the extension of the growth cone on the
amount of a given critical resource which is present at the tip, enables to recover an
important property oberved in vitro, which is the alternation of periods of elongation,
retraction, and pausing.

One of the main advantages of the model proposed in equation 4.6 is that it is fully
tractable. Deriving the probability density function for the growth cone, one can
therefore predict the fraction of time that will be spent in each of the three states.

Solutions for A
The easiest equation to solve is that describing the evolution of the amount of
molecule in the neurite, A.

Fokker-Planck
Let f(A, t) be the probability density of A at time t; we have:

f(A, t+ ∆t) =
∫
f(A− A′, t)P∆t(A′|t, A− A′)dA′

= f(A, t)− f∂A〈∆A〉 − 〈∆A〉∂Af + 1
2f∂

2
A〈(∆A)2〉

+∂Af∂A〈(∆A)2〉+ 1
2〈(∆A)2〉∂2

Af.

4 see “Modeling an extending growth cone” (subsection 4.2.1), “Extension, retraction, and pausing”.



172 Chapter G. Growth models

Hence:

∂tf = −1
τ
f +

(
Am

τA

− A

τ

)
∂Af +

σ2
ξ

2 ∂
2
Af = ∂A

[
1
τ

(AM − A)f +
σ2

ξ

2 ∂Af

]
(G.4)

with the boundary condition, since A ≥ 0,

∀t, ∂Af(0, t) = 0. (G.5)

Permanent regime
Once the permanent regime is reached, the Fokker-Plank equation (G.4) becomes:

∂A

[
1
τ

(AM − A)f +
σ2

ξ

2 ∂Af

]
= 0 (G.6)

Hence 1
τ

(AM − A)f +
σ2

ξ

2 ∂Af = 0 (regularization at A→∞).
Thus ln(f) = − 1

τσ2
ξ

(A− AM)2 + cst, which leads to:

f(A) = 1
σξ

√
πτ

[
exp

(
−(A− AM)2

σ2
f

)
+ exp

(
−(A+ AM)2

σ2
f

)]
(G.7)

where σf = σξ

√
τ .

Average trajectory
The solution of the average variable 〈A〉 is given by:

〈A〉(t) = AM + (A0 − AM)e−t/τ . (G.8)

Solution for one growth cone
ȧ = −κa+ A

τd

+ χ

Ȧ = 1
τ

(AM − A) + ξ

(G.9)

This leads to the average and squared average:

〈∆a〉 = −κ〈a〉∆t+ A

τd

∆t+ o(∆t) (G.10)

〈(∆a)2〉 = σ2∆t+ o(∆t). (G.11)

Average trajectory
The average equation for A, in turn, leads to (if κ 6= τ−1):

〈a〉(t) = AM

κτd

+ 〈a〉0e−κt + τ

τd(τκ− 1)(A0 − Am)e−t/τ (G.12)

or to
〈a〉(t) = AM

κτd

+ 〈a〉0e−κt + A0 − AM

τd

te−κt (G.13)

if they are (we do not consider this case since we will use κ� τ−1
A , τ−1

d ).
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Conditional Fokker-Planck
Let gA(a, t) = f(a, t|A) be the conditional distribution for a at fixed A.

As for f(A, t) before, we obtain:

gA(a, t+ ∆t) =
∫
gA(a− a′, t)P∆t(a′|t, a− a′)da′

= gA(a, t)− gA∂a〈∆a〉 − 〈∆a〉∂agA + 1
2gA∂

2
a〈(∆a)2〉

+∂agA∂a〈(∆a)2〉+ 1
2〈(∆a)2〉∂2

agA,

which gives

∂tgA = −κgA −
(
A

τd

− κa
)
∂agA + σ2

2 ∂
2
agA (G.14)

= ∂a

[(
κa− A

τd

)
gA + σ2

2 ∂agA

]
. (G.15)

With the boundary condition ensuring a ≥ 0,
∀t, A, ∂agA(0, t) = 0. (G.16)

Permanent regime
As for A, in the permanent regime we obtain a truncated Gaussian distribution
which is centered around AM/(κτd):

κ
(
a− AM

κτd

)
gA + σ2∂gA = 0, (G.17)

which leads to

gA(a) = 1
σ

√
κ

π

[
exp

(
−(a− AM/(κτd))2

κσ2

)
+ exp

(
−(a+ AM/(κτd))2

κσ2

)]
. (G.18)

From this probability density, we can deduce the fraction of time spent in each of
the three states (elongating, retracting, stalled), by computing the integral of gA on
the intervals [0, θr], [thetar, θe], and [θe, ∞[, which though they involve the error
function, can be easily evaluated using any numerical library such as numpy.

Several interacting growth cones
Furthermore, for several interacting growth cones, the total amount of molecule
present in all the tips also follows the same equation, which enables to qualitatively
assess their behavior.

Indeed, in the deterministic limit, if the weight of one of the growth cones is much
greater than the other, then one recovers the case of the single growth cone for that
neuron, while all other neurons will fluctuate around zero with a deviation σ — see
discussion in “Growth cone splitting” (subsection 4.3.1).

In the limit where the deterministic flux is negligible compared to the stochastic
fluctuations, then region between the two fixed points is randomly explored.

Limit for the stochastic dynamics is given by:

σ � AM

2κτd

√√√√4 ζ2
1 + ζ2

2
(ζ1 + ζ2)2 − 2, (G.19)

which goes to zero as ζ1 and ζ2 become close.
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Modeling the environment

H.1 Principle of growth cone sensing
As shown on Figure 4.6 in the main text, the environment sensing is based on the
information gathered by the filopodia in each of their specific direction.

Wall affinity
When a neurite i touches a wall, the affinity in the direction θi is set to the user-defined
value of the wall affinity, aw.

If this affinity is greater than the default affinity for the substrate of the current
area, then growth cones tend to follow the walls, as shown of Figure 4.7. In the other
scenario, if the wall affinity is smaller than the substrate affinity, then growth cones
tend to avoid obstacles.

Areas and crossing
DeNSE enables to divide the environment into Areas which possess specific properties.

Each area can modulate the growth cones’ properties, either increasing or decreasing
their speed, angular aperture, or substrate affinity.

Furthermore, areas can have different heights, which affects how growth cones
will behave when trying to cross from one area to another.

Overall, for a growth cone trying to cross from area 1 to area 2, the difference in
affinity will be compared based on a1 and a2, the two substrate affinities, as well as
h1 and h2, their heights.

If h1 and h2 are the same, then the probability of crossing to area 2 is simply
given by a2/(

∑
j aj), with aj the affinity in the other directions. If h2 < h1, then the

probability of going down to area 2 is modulated by a descent probability pdown,
to account for the fact that growth cone may also follow the edge. Probability of
crossing then becomes pdown · a2/(

∑
j aj). Eventually, if h2 > h1, then the height

difference ∆h between the two areas is tested and the probability is modulated by an
exponential decrease with ∆h and becomes a2 ·exp(−∆h/lc)/(

∑
j aj). Experimentally,

it seems that the critical length lc above which the growth cone can no longer climb
up is rather small (a few microns).

H.2 Making the forward step
Testing the total probability
As shown on Figure 4.6, the overall affinities in each direction define a non-normalized
probability distribution. The sum of the probabilities in every direction gives the
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total step probability Ps. If Ps ≥ 1, the step is performed; however if Ps < 1, then
the step is performed with probability Ps — a random number in [0, 1] is drawn and
compared to Ps.

Validating the step
Once the step is validated, a direction is chosen based on a sampling algorithm
(directions with highest affinity are more likely to be chosen). If the line between the
target position and the current position intersects the environment, then the step
is forbidden because it would lead the growth cone to leave the inner environment.
In that case, the angle is progressively moved toward the closest angle inside the
environment, until the line no longer intersects the border of the environment.

Interaction-based retraction
As shown previously, forward moves are not performed systematically, and a growth
cone can sometimes stop moving, either because the probability of making a step is
too low, or because all possible moves are actually forbidden (they would step out of
the environment); in that case, the growth cone is said to be stalled. When a growth
cone is stalled and cannot perform any forward move, then it has a probability pr of
undergoing an interaction-based retraction. Until this retraction happens, the growth
cone remains stalled in its current position.



Appendix I

Branching models

I.1 Growth cone split
Resource- and pull-driven split
Similarly as for the fraction of time spent in the elongating, retracting, and pausing
stages that was described in “Critical resource and competition” (section G.4), one
can use the analytic probability density function of the amount of resource at the
tip of a growth cone to compute its branching probability in time.

As discussed in “Growth cone splitting” (subsection 4.3.1), even in the situation
where one growth cone should theoretically obtain the whole resource, the fluctuations
in the amount received by the other cones is sufficient to make the remaining resource
go to zero. Thus, unless the fluctuation amplitude (given by σ) is on the order of the
branching threshold θb — which would be biologically unrealistic — the branching
rate will eventually go to zero.

In the future, the implementation of a pull-driven split, with the detection of
bimodal pull distribution — in the case of two separate areas of high affinity, or two
guidance cues — is also planned.

Implementation of the branching times
The resource-driven split is unpredictable and occurs immediately when a growth cone
reaches an amount of resource greater than θb, if the probabilistic test is positive1.

Van Pelt branching, on the other hand, occurs at pre-determined times, depending
on the base branching rate B and the number of growth cones, as given in equation
4.14.

The branching times are thus sampled from a Poisson process with a rate given
by the Van Pelt equation.

I.2 Lateral branching
In the two lateral branching models, the branching events follow a Poisson distribution
with a constant rate rb.

In the case of the uniform branching, a branch is elected randomly to support the
emerging growth cone, and a point on this branch is also chosen at random.

For the distance-dependent case, on the other hand, a growth cone is selected
randomly, and a point on this branch, or on a parent branch going down towards
the soma is selected based on a power-law distribution of exponent γ.

1 because the branching occurs with a probabilistic rate rb = a−θb

a+θb
Rb, the algorithm draws a

random number r ∈ [0, 1] and tests whether rb · dt > r.
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I.3 Quantifying and analyzing branching patterns
Tree and partition asymmetry
Partition asymmetry: for a tree having T terminal segments (tips), the asymmetry
of its structure is recursively defined as the mean of all subpartitions of this tree.

For a given partition of size n ≥ 2 at a branching point, let us call l and r the size
of the two subpartitions such that n = l + r − 2 (the common branching point is
counted in both subpartitions). The asymmetry a of this partition is then given by:

a = |l − r|
n

. (I.1)

For a complete neurite tree, the global asymmetry is thus given by the average of
the T − 1 possible partitions:

A = 1
T − 1

T −1∑
k=1

ak. (I.2)

The main drawback of this measure, as detailed in (K. M. Brown et al. 2008;
Van Pelt, H. B. Uylings, et al. 1992), is that its value does not vary in [0, 1], but in
[0, amax,T ], with limT →∞ amax,T = 1.

However, it is possible to compute amax,T analytically, because in the most asym-
metric case, one of the subpartitions is always of size 2:

amax,T = 1
T − 1

T −1∑
k=1

2(T − k)− 2
2(T − k) (I.3)

= 1− 1
T − 1

T −1∑
k=1

1
T − k

(I.4)

= 1−
[
ψ(0)(T ) + γ

]
, (I.5)

with:

ψ(0) the digamma function,

γ = −ψ(0)(1) the Euler–Mascheroni constant.

In this thesis, all asymmetry values for trees composed of T tips were therefore
renormalized by amax,T , in order to always have an asymmetry of 1 to characterize
the most asymmetric trees, regardless of their size.

Sholl analysis
The Sholl analysis (Sholl 1953) consists in looking at how many branches of a neuron
or neurite are present at a given distance from the soma. By plotting the number of
intersections between concentric circles starting from the soma and a neuron’s or
neurite’s arbor, one can thus characterize how the number of branches evolves with
the distance to the soma. The histograms of the number of intersections at a given
distance then convey intuitively some of the characteristics of the branching patterns
involved, as show on the Figures in “A complete neurite tree” (subsection 4.4.1).



Appendix J

Papers

This chapter contains the papers that were published during my PhD, concerning
the percolation of activity in bursting neuronal networks (Fardet, Bottani, et al.
2018; Monceau, Renault, Métens, Bottani, and Fardet 2017), as well as a detailed
model on the influence of adaptation on synchronous bursting (Fardet, Ballandras,
et al. 2018). A more intuitive and visual description of Fardet, Ballandras, et al.
2018 is detailed in “A concise model for periodic bursting” (subsection 2.2.1).

J.1 Review on percolation (IOP Conf. Series 2017)
This paper reviews the results obtained by the Quorum Percolation (QP) model
to describe the response of a neuronal network to an external excitation. It further
describes how variability in the neuronal properties and the presence of decay (ac-
counting for the neuronal relaxation during the transmission delay) do not prevent
the occurence of the percolation phenomenon. Eventually, I discuss how the perco-
lation formalism may also prove useful to describe activity patterns that are not
triggered externally, but result from the intrinsic activity of the neuronal network.
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Abstract. The Quorum Percolation model has been designed in the context of neurobiology
to describe bursts of activity occurring in neuronal cultures from the point of view of statistical
physics rather than from a dynamical synchronization approach. It is based upon information
propagation on a directed graph with a threshold activation rule; this leads to a phase diagram
which exhibits a giant percolation cluster below some critical value mC of the excitability.
We describe the main characteristics of the original model and derive extensions according
to additional relevant biological features. Firstly, we investigate the effects of an excitability
variability on the phase diagram and show that the percolation transition can be destroyed
by a sufficient amount of such a disorder; we stress the weakly averaging character of the
order parameter and show that connectivity and excitability can be seen as two overlapping
aspects of the same reality. Secondly, we elaborate a discrete time stochastic model taking into
account the decay originating from ionic leakage through the membrane of neurons and synaptic
depression; we give evidence that the decay softens and shifts the transition, and conjecture than
decay destroys the transition in the thermodynamical limit. We were able to develop mean-field
theories associated with each of the two effects; we discuss the framework of their agreement with
Monte Carlo simulations. It turns out that the the critical point mC from which information
on the connectivity of the network can be inferred is affected by each of these additional effects.
Lastly, we show how dynamical simulations of bursts with an adaptive exponential integrate-
and-fire model can be interpreted in terms of Quorum Percolation. Moreover, the usefulness
of the percolation model including the set of sophistication we investigated can be extended
to many scientific fields involving information propagation, such as the spread of rumors in
sociology, ethology, ecology.

Keywords: Phase transitions general studies, neural networks, percolation, complex networks.

1. Introduction
In vitro cultures of dissociated neurons have turned out to be a powerful tool in investigating
fundamental questions in several scientific fields. From a conceptual point of view, compelling
issues comprise the nature of biological computations, the mechanisms of information spreading
throughout networks, and the understanding of collective behaviors [1], as these questions could
bring new elements to the understanging of neuronal computation and to the field of artificial
intelligence. Moreover, neuronal cultures are suitable for pharmaceutical drugs experimentation
and have been useful in studying neurodegenerative diseases [2]. Lastly, populations of neurons
could be the basic units in designing computational devices involving real living cells [3].
Experimentally, such cultures can be obtained by seeding dissociated neurons extracted from
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rodent embryos on a suitable substrate; axons and dendrites grow in such a way that neurons self-
organize after a few days into a quasi two-dimensional network [4]. The cells can be maintained
alive several weeks and display sustained electric activity. Let us recall that there are about
1011 neurons in the human brain, each of them being connected to 7 000 others on average
through synapses; hence, it is a very complex network where neurons are organized in localized
computational units connected according to a well defined hierarchical structure. However, in
vitro cultures establish very different connectivity patterns during their growth [3] since they are
characterized by a higher level of randomness. The neuronal cultures we are interested in hold
between 103 and 105 neurons with typical densities between 500 and 5 000 neurons per mm2,
each of them connected via a number of synapses falling between 20 and 200. These changes in
connectivity and scale which could at first glance appear as a loss from a neurobiologic point
of view are largely compensated by the benefits associated with in vitro experimentation. The
recent development of techniques such as micro-electrode arrays (MEA), [5] optogenetics and
calcium imaging [6, 7] enables the experimentalists to carry out quantitative measurements
inaccessible in vivo. Furthermore, more precise control over the system can now be attained:
physicochemical parameters such as extracellular ionic concentrations can be modified [8], drugs
can be injected [4], neurons can be electrically or optically excited. Microfabrication techniques
are now also used to structure the connectivity between sub-populations by constraining
mechanically the axon growth with obstacles or designed channels [3] in order to build in silico
models of brain structures or build neuronal devices designed for specific functions [9]. Both in
vitro and in vivo, neuronal rhythms are a widespread phenomenon observed at many temporal
and spatial scales. Synchronized periodic bursts of spiking activity emerge spontaneously in
cultures of dissociated neurons from rodent hippocampus and cortex [8, 10], depending on
their density and age. Furthermore, bursts can be triggered by initially activating a fraction
of neurons. Rather than describing collective behaviors observed in living neuronal networks
grown in vitro in terms of synchronization [11, 12], the Quorum Percolation model (QP) tackles
the issue of population wide activation from the point of view of statistical physics. The
Quorum Percolation model, derived from bootstrap percolation, has been specifically designed
to describe activity bursts observed in such cultures [13]. Under its original form, it is a discrete
time dynamics model of information propagation on a directed graph, built up according to a
simplification of the most relevant biological features: the neurons, located at the nodes of the
graph, are two state systems whose activation is governed by a threshold (Quorum) rule. A
burst is seen as a discontinuity in the activity of the network, interpreted as the occurrence of
a giant excited cluster. We further refined the model by introducing the following biological
relevant developments:

(i) Modulation of the neurons excitability. As a matter of fact, neuronal cultures exhibit some
variability in the neuron excitability; we study the modifications induced in the behavior of
a Quorum Percolation model by taking into account an uncorrelated Gaussian variability
of the neuronal thresholds.

(ii) Decay of the subthreshold neuron voltage. The decay accounts for ionic leakage through
the membrane of neurons, since they do not behave as perfect capacitors; we take it into
account in a Quorum Percolation with Decay (DQP) where we model the decay by a discrete
time disintegration process of the membrane potential of the neurons.

2. Phase diagram and critical behavior of the original quorum percolation model
The networks we deal with includes N neurons, where each of them is a two-level system which
can be either active or at rest. A directed network is constructed by randomly choosing, for
each neuron i, k incoming links among the N − 1 other neurons according to an in-degree
probability distribution pk. Experimental results and their interpretation through the original
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Quorum Percolation model suggest that the connectivity of mature in vitro cultures can be
approximated by a random oriented graph with Gaussian distribution of incoming links [10];
hence, in the following, we will restrict ourselves to such networks, where k denotes the mean
value of pk and σk its standard deviation. The construction of such networks does not require
information on the geometrical location of neurons in the physical space. Thus, we deal with
percolation on a random graph without taking in account any spatial metric. Starting at time
t = 0 from an initial state of the network where a given fraction f of randomly chosen neurons is
set active, information spreads through the network according to an excitability threshold rule.
A neuron i becomes active if a given number m (called quorum) of its k incoming neighbors
are active. The activation process of the network is described by a discrete-time dynamics with
a step ∆t during which each neuron integrates the signals sent by its incoming neighbors. A
discrete variable Vi(t) – accounting for the membrane potential – is assigned to each neuron i.
The transition from one time step to the next obeys the following rules:

(1) Every neuron i activated between t − ∆t and t sends at time t one signal to each of its
neighbors through its outgoing links; no further signals will be sent by such an activated
neuron at later times. Each sent signal has the same weight and is associated to an integer
increment equal to +1.

(2) The variable Vi(t) of each target neuron at rest is incremented by the sum of the inputs
received at time t.

(3) If Vi(t) is greater than or equal to the activation threshold m, the neuron i fires, which
means that it switches from the resting state (at time t) to the active state (at time t+∆t).

(4) Once a neuron has been activated, it remains in the active state until the end of the process.

The macroscopic activity state of a network at time t is the fraction of its active neurons.
Once a random network, and a random initial state have been drawn, the discrete-time dynamics
described above is deterministic, monotonically increasing, and leads to an equilibrium state of
the network characterized by a final fraction Φ of active neurons. Explicit simulations aim
at directly calculating the response Φ of a finite-size network of N neurons, from an initial
excitation parametrized by the fraction f of initially activated nodes. Given a set of parameters{
k, σk

}
, and m, a Monte-Carlo run consists of the following steps:

(i) A random directed network G is constructed according to the incoming links probability
distribution pk.

(ii) A fraction f of neurons is randomly activated.

(iii) The discrete time process described above goes on until the number of active neurons stops
increasing, i.e. when the stationary state has been reached.

The average value of Φ is then calculated over several runs. A typical phase diagram is
shown on Fig. 1 where two regimes can be distinguished as m varies, for fixed values of k
and σk. Such a phase diagram provides a good description of experiments carried out in the
group of E. Moses [4, 13]. Below some critical value mC , the final fraction of activated neurons
presents a discontinuity when we vary the control parameter f (the initial fraction of activated
neurons), whereas it remains continuous above mC . The sudden jump occurring at f∗ in the
global activity Φ is associated with a percolation transition on the network G, where a very
small variation of f results in the appearance of a giant cluster, whose normalized size g is given
by the difference between the lower and upper values of φ at the discontinuity. Once pk is fixed,
following the usual concepts of percolation on lattices [14], the normalized mean cluster size 〈g〉
can be considered as an order parameter whose behavior in the vicinity of mC is given by a

power law: 〈g〉 ∼
(
mC−m
mC

)β
.
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Figure 1. Phase diagram of the
Quorum Percolation model, for a
Gaussian ”in-connectivity” with k̄ =
50 and σk = 10. When the quorum
m is smaller than mC , a jump in the
fraction of active neurons Φ occurs
when increasing the fraction f of
initially activated neurons from zero.
The height 〈g〉 of the jump at the
discontinuity is the normalized size
of the percolation giant cluster.

As a main result, it should be noticed that the critical behavior of 〈g〉 provides information
on the connectivity of the network [10, 13]. It is tricky to calculate the critical exponent β, since
the quorum percolation model is discrete; however we were able to derive an extension of the
QP model to continuous values of m with the help of a mean-field approach in good agreement
with Monte-Carlo simulations [15, 16]. A numerical resolution of the associated highly nonlinear
self-consistent equation led to a value very close to the classical mean-field exponent β = 1/2
when pk is Gaussian. This value, associated with a Gaussian distribution of incoming links, is in
agreement with experimental results. Furthermore, the critical value has been shown to depend
on k and σk as mC ≈ k − 1.3σk. Hence the position of the critical point provides quantitative
information on the mean value and width of the Gaussian connectivity distribution.

3. A quorum percolation model with quorum variability
Unlike the original QP model where the quorum takes the same value over the whole set of
neurons, we introduce disorder on the excitability by randomly setting each node’s quorum
to an integer value according to some probability distribution Pm – with no correlation to
other network properties. Thus, the Monte-Carlo algorithm described in section 2 includes an
additional stage just after the first one, where such a disorder on the quorums is implemented.
φ must be averaged over the three sets of associated configurations, that is a set of initial
configurations associated to f , a set of quorums related to Pm and a set of networks realizations
based on pk.

3.1. Mean-field theory
An alternative approach for calculating φ can be deduced from a mean-field treatment: the
probability for a neuron to be active at equilibrium corresponds to the probability to be either
active through initial stimulation or to be activated during the QP discrete time process; the
activation probability of a neuron – given m and k – can be approximated by a binomial process
depending upon φ. Since the activation of a neuron can occur only if at least m incoming links
are linked to active neighbors, such an activation probability reads

∑∞
l=m

(
k
l

)
Φl(1 − Φ)k−l. In

the end, we obtain the following self-consistent equation:
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Φ− f
1− f

=
∞∑
m=1

Pm
∞∑
k=m

pk

k∑
l=m

(
k

l

)
Φl(1− Φ)k−l =

∞∑
k,m

Π(m, k)
∞∑
l=m

(
k

l

)
Φl(1− Φ)k−l (1)

where the right-hand term accounts for the total activation probability Pact(Φ) of a neuron of
the network. The solutions of the self-consistent equation (1) are given by the intersection points
of Pact(Φ) with the line of slope 1/(1 − f) passing through the point of coordinates (1, 1) in
the {Φ,Pactm (Φ)} plane. Assuming that Pm and pk are Gaussian probability distributions with
respective average values m and k and variances σm and σk, the self-consistent equation involves
a truncated bidimensional Gaussian probability distribution. As a first result, it turns out that
the qualitative behavior of the solutions for Φ is close to the one observed in the absence of
disorder. When numerically solving equation (1) in the physically meaningful range [0,1] of f ,
two regimes can be distinguished: For m smaller than a critical value mC now depending on
the additional parameter σm, there is a range f ∈]f0, f

∗[ where three different real values of Φ
satisfy (1). For m > mC , a single real value of f satisfies (1). Since the QP process requires Φ to
be an increasing function of f , the physical behavior of Φ resolves the existence of an unstable
branch below mC in this range by a discontinuity at f∗ associated with the appearance of the
giant cluster; the normalized size of this cluster is equal to the difference between the lower Φ−

and the upper Φ+ solutions of equation (1) at the border between the two regimes. Situations
showing the evolution of the jump in Φ for two different values of σm are displayed on Fig. 2.

Figure 2. Evolution of Pact(Φ) for k = 25,
σk = 3 and m = 15 and two different
values of σm. The open circles represent

the intersections of the curves Pact(Φ) with
the lines D of slopes 1/(1 − f) giving the
two solutions φ− and φ+ of equation (1)
associated with the percolation clusters.

3.2. Simulation results
Results reported on Fig. 3 provide a picture of the main conclusions that can be drawn out
from a large set of Monte Carlo simulations and numerical resolutions of equation (1).

(i) There is a good agreement between the mean-field and Monte Carlo approaches at least
within the range of physical parameters involved in the quantitative description of neuronal
cultures with Gaussian in-degree.

(ii) For a fixed value of m, increasing the variance σm shifts the position of the jump in Φ
towards lower values of f and reduces the size of the giant cluster (unless m is “too small”,
in which case a slight bump can appear in the variation of g with σm).

(iii) m being fixed, a large enough amount of disorder (σm) on the excitability can destroy the
percolation transition (σm = 32 on Fig. 3).
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Figure 3. Evolution of the activity of
the network when increasing σm at a fixed
value of m obtained by explicit simulations
with N = 100 000 neurons (clouds of
points) and self-consistent equation (black
dots). Notice the agreement between the
two approaches and the vanishing of the
percolation transition when the disorder
width σm is large enough.

(iv) The position of the critical point mC depends not only on k and σk, but also on σm; as
long as the jump in φ survives, mC decreases when σm increases.

An interpretation of some of the preceding conclusions can be done by looking at the truncated
bidimensional Gaussian probability distribution Π(m, k) involved in the activation probability.
The initially excited nodes are uniformly drawn over the whole distribution, but the nodes liable
to be involved in the network activation must satisfy m ≤ k in order to be excitable; hence, they
lie under the bisecting line in the (m, k) plane. Two competitive effects arise when increasing σm
from zero: a fraction of nodes, associated with the part of Π(m, k) below m becomes more easily
excitable, while the other fraction becomes less easy or even – when they cross the bisecting line
– impossible to excite. The neurons below m are responsible for the shift of 〈f∗〉: the ignition
mechanism of the giant cluster needs a smaller fraction of initially excited nodes, but a larger
spread of activity throughout the network since (Φ− − 〈f∗〉) increases with σm as shown in the
example displayed Fig. 3. Moreover, as can be seen on Fig. 2, the sigmoids associated with the
activation probability Pact(Φ) become less steep when σm increases, leading to smaller values
of the slope of the line tangent to this curve at the point Φ−, hence to a decrease in f∗. Since
Monte Carlo simulations showed that we can rely on the mean field theory to describe a Quorum
Percolation with excitability disorder, a prolongation to non integer values of m with the help of
Beta functions enables to investigate properly the critical region [15]. As a main result a normal
form treatment of the prolonged self-consistent equation leads to the same power law behavior

as in the case without disorder, that is 〈g〉 ∝
(
mC(σm)−m
mC(σm)

)1/2
. Nevertheless it is worth noticing

that mC depends on the additional parameter σm; hence the relation mC ≈ k − 1.3σk cannot
be used to infer the values of the connectivity parameters.

3.3. Finite size analysis of the fluctuations
A detailed study of finite-size effects is of great interest from an experimental point of view, since
measurements are always carried out on finite neuronal populations. A finite-size scaling in the
vicinity of the critical point cannot be done from the standard point of view of percolation [14],
since it relies on a comparison between the linear size of the network and some correlation length,
quantities which do not make sense in the present case of percolation on a graph, where the
dimensionality of the system and the metric are not defined. Recalling that, in the presence of
quorum disorder, the physical quantities calculated from Monte Carlo simulations are averaged
over three sets of configurations, special attention must be paid to the study of sample to
sample fluctuations. Moreover, such fluctuations which are linked to self-averaging properties
can exhibit very unusual properties in the vicinity of a critical point [17, 18]. A large set of
parameters

{
k, σk,m, σm

}
has been investigated by means of intensive Monte Carlo simulations
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for different sizes ranging from N = 103 to N = 2.5 × 106. As a main result we found that
the relative fluctuations decrease as power laws of the network sizes: 〈∆g〉 / 〈g〉 ∼ N−γ and
〈∆f∗〉 / 〈f∗〉 ∼ N−ζ and that fluctuations of the order parameter f are always larger than
the fluctuations of the jump positions; moreover, the fluctuations in g increase as m increases,
approaching the critical value mC as expected from a second order phase transition. On the
other hand, the fluctuations in g and f∗ increase as the threshold disorder σm is increased
(for a given value of m), the exponents associated with the power laws exhibit an universal
character, since no significant difference in these exponents can be brought out from the set of
simulations we carried out: ζ = 0.495(10) and γ = 0.29(15). Therefore, a finite-size analysis of
the fluctuations does not enable the direct detection of disorder on the quorum. Let us recall
that, in the case of networks with a linear size L in a D dimensional space, a quantity O is
said to be strongly self-averaging if [〈∆O〉 / 〈O〉]2 ∼ 1/N = L−D and weakly self-averaging if
[〈∆O〉 / 〈O〉]2 ∼ L−a where 0 < a < D [17]. Hence, it turns out that f∗ is practically strongly
self-averaging since [〈∆f∗〉 / 〈f∗〉]2 ∼ N−1 whereas the order parameter is weakly self-averaging
independently of the physical parameters, in particular the threshold disorder.

3.4. Subcritical behavior: disorder-independent fixed points
We investigated the effects of threshold disorder on the behavior of the network activity for values
of m̄ and σm such that no percolation occurs anymore. An example of the results obtained by
Monte Carlo simulations is shown on Fig. 4.

Figure 4. Disorder independent fixed
points in the supercritical region with
k̄ = 50, and σk = 10 for different values
of m indicated inside the figure and
each time four different values of σm
(increasing from red to blue): [11, 14]
when m = 34, [9, 12] when m = 36,
[7, 10] when m = 38, [3, 6], when m =
40, [2, 5], when m = 42. The dotted line
corresponds to Φ = f .

The most striking result is the emergence of disorder independent fixed points: the mean
activity of the network, for a given m and a given fFP is independent of the width of the
threshold distribution over a large range of σm. Furthermore, it turns out that the activity
ΦFP at the fixed point and fFP follow a universal law, since they line up along the straight
line ΦFP = 1

2 (1 + fFP ) independently of k and σk. Hence the fixed points occur right when

the activation probability is equal to 1
2 . This can be interpreted if we remember the evolution

of Pact(Φ) with σm: the evolution observed on Fig. 2 has the same profile when Eq. (1) has
a single solution. Below ΦFP , an increase in σm enhances the activity propagation, while it
has the opposite effect above. Therefore, the two competitive effects, arising between the more
easily and less easily excitable populations when σm is varied, balance exactly at the fixed point.

3.5. Discussion: connectivity, excitability and disorder
With regard to experiments carried out on neuronal networks, m was tuned by drugs [13] and k̄
and σk deduced from simulations fitting the experimental data in the critical region assuming an
uniform excitability. Since the critical value of the quorum depends on σm, the hypothesis that
no threshold disorder is present can lead to wrong estimations of the connectivity parameters



8

1234567890

28th annual IUPAP Conference on Computational Physics IOP Publishing

IOP Conf. Series: Journal of Physics: Conf. Series 905 (2017) 012008  doi :10.1088/1742-6596/905/1/012008

of the network. The results reported in section 3 show that the excitability and connectivity
distribution widths quantified by σk and σk are intricately connected. There is some kind of
equivalence between connectivity and excitability, which was noted by J. P. Eckmann et al. [19].
In fact, as already pointed out in the case of neuronal cultures, connectivity and excitability can
be seen as two overlapping aspects of the same reality: the addition of synaptic blockers – used
to increase the control parameter m – can also be interpreted as a weakening of the network
functional connectivity [4, 13]. This is locally reflected in the model: a node whose threshold
goes from m to m + 1 when introducing disorder needs a larger number of incoming links to
fire. Roughly speaking, what matters in describing the qualitative behavior of the model is the
ratio of excitability to connectivity m/k. However, the accessible physical quantities that can
be brought out from experiments involve averaging processes from which the detailed respective
roles of the connectivity driven by pk and the excitability driven by Pm are very difficult to
discriminate.

4. A quorum percolation model with decay
The membrane of biological neurons can be compared to a capacitor that supports electric
potential difference through ionic charge separation. Active neighbors will inject ionic currents
into this capacitor, changing the electric potential difference across the membrane until it
eventually passes a threshold value (associated with m in the framework of the QP model)
when the neuron fires. This membrane is not a perfect capacitor as it is continuously leaking
ions; hence, without new input, the membrane potential decays exponentially to its resting value
with a time constant τ . In the limit where the time interval between each received signals is much
larger that τ , they won’t add up at all. The state of a real neuron is thus not only determined
by the number of received signals, but also by their arrival times. We take into account the
decay by building an extended model, (called DQP for Decay Quantum Percolation) in which
each discrete accumulated signal can disintegrate independently with a probability d ∈ [0, 1] at
each step of the percolation process. Thus, the evolution of the neuronal activity is described
by a discrete time stochastic process with a step ∆t involving two competitive mechanisms: the
reception of new signals sent by activated neurons and the decay of the accumulated signals
with a characteristic time τ . The quorum is here assumed to be the same for all neurons.

A scheme of The Monte Carlo DQP process is provided on Fig. 5, and goes as follow:

(1) Every neuron j activated between t − ∆t and t sends at time t one signal to each of its
out-neighbors; no further signals will be sent by such an activated neuron at later times.
Each sent signal has the same weight and is associated to an integer increment equal to 1.

(2) The variable Vi(t) of each target neuron at rest is incremented by the sum of the number
of signals it has received at time t.

– If Vi(t) is greater than or equal to the activation threshold m, the neuron i switches
from the state at rest (at time t) to the state active (at time t+ ∆t).

– If Vi(t) is smaller than m, each integer element of this potential is submitted to a
Bernoulli trial of parameter d (with 0≤d≤1) and is disintegrated if the trial is positive;
the potential of the neuron at rest has decayed from its value Vi(t) to Vi(t+ ∆t).

(3) Once a neuron has been activated it remains in such a state until the end of the process.

A DQP Monte Carlo run follows the same algorithm as the one described in section 2, where the
discrete process of the item (3) is replaced by the process in item (2). Thus, it is as if the sum
of accumulated signals decays on average exponentially with a time constant τ=−∆t/ln(1−d),
within a time step ∆t. If we normalize the time constant τ to the duration of an iteration in vitro,
that is, the minimal time interval necessary to transmit activity from a neuron to another inside
a culture, we can reckon the value of the decay parameter d. Taking into account the action
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Figure 5. Mechanism of DQP model (below); the QP model is recalled above. At time t, the
red neuron (left down) is activated; the orange ones (left up and down right have been activated
before). At t + td, the green one (up right) encounters a decay; its potential is decreased from
2 to 1. The network is updated at t + ∆t: the central neuron is activated. At t + ∆t + td the
upper right neuron encounters once more a decay, and its potential is decreased from 1 to 0; in
its updated state at t + 2∆t it receives a signal from the centered neuron, but it is not in the
same state as in the absence of decay (when ∆t << τ).

potential duration and propagation speed, the size of a typical culture and the synaptic delay,
we can estimate that ∆t lies between 1 and 10 ms and d between 0.1 and 0.01. Nevertheless,
from a mean-field point of view, we were able to establish a recursive relation enabling us to
fully describe the stochastic dynamics in the presence of decay [22]. The striking point is the
idea that everything goes on as if the decay changes the connectivity of the network all along
the process. At time t let us consider a neuron with k incoming neighbors, a potential Vi(t) = s
and x active neighbors (x ≥ s according the DQP rules); this neuron has undergone (x − s)
decrements due to the decay. Hence it is as if (x − s) among the k incoming links had been
erased. This remark enables to define a time dependent effective connectivity according to the
Quorum Percolation without decay; this neuron will behave as a neuron experiencing an effective
connectivity defined as keq = k − (x − s). Details on the derivation of this recursive relation
based on this equivalence can be found in [22].

Figure 6. Comparison of a network
calculated by Monte Carlo simulations
(lines) and numerical resolution of the
mean-field algorithm (dots); points of the
same color correspond to 10 different
equivalent Monte Carlo simulations. k =
50, σ = 10, d = 0.1

Fig. 6 displays typical results where the agreement between Monte Carlo simulations and the
mean-field approach can clearly be seen even when the size of the network is rather small. The
effect of the decay is shown on Fig. 7 where Monte Carlo simulations are gathered together.
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As a main result, the decay softens the transition, reduces the apparent size of the
discontinuity, and shifts its position towards higher values of f .

Figure 7. Evolution of the activity of
a network when increasing the decay d
at m constant calculated by Monte Carlo
simulations. Note the decrease of the
apparent size of the discontinuity with d
and the vanishing of the transition if d is
large enough; mC should be equal to 0.58
without decay. k = 50, σ = 10, m=35.

The size of the discontinuity g as a function of m was previously used [13] to infer connectivity
in real neuronal networks; since decay is part of the physics of these networks, we wanted to
evaluate to what extent the decay parameter d was changing those results. The value of the step
ε between successive values of f is crucial in evaluating the size of the discontinuity; when dealing
with Monte Carlo simulations on networks with N neurons, the increment in f associated with
a single neuron imposes a lower bound 1/N for ε. For a given value of m, we define the apparent
size of the discontinuity gε(m) as the maximum value of the difference [Φ(f + ε) − Φ(f)] with
respect to f . In order to characterize properly the transition in the thermodynamical limit,
when N → ∞, numerical calculations of gε(m) are done in the framework of the mean-field
approach; hence the evolution of gε(m) as a function of ε can be studied with ε as small as wished,
approaching the real size of the discontinuity. Surprisingly, when d is non-zero, continuously
decreasing ε leads to a steady gradual reduction of gε(m): ∀m, lim

ε→0
gε(m) = 0. The convergence

is faster when the decay d is strong and the m/k ratio is high, but the phenomenon was observed
in every computationally accessible case, as long as d was non-zero. This strongly suggests that
gε(m) always converges towards 0 when d > 0 and m > 1.

Thus, the main result of our set of computations is the conjecture that the critical point
expected from the classical QP model in the thermodynamical limit vanishes in the framework
of the DQP model. It also reveals how the distinction between continuous and discontinuous
transitions depends both on the size of the network and the accuracy in the control of external
stimulation; consequently the decay, although being part of the networks dynamics, may remain
unnoticed. Lastly, a consequence of the shift in the apparent size of the discontinuity is that a
model which does not take decay into account leads to an underestimation of mC , introducing a
bias in the estimation of the network connectivity parameters, since the relation mC ≈ k−1.3σk
does not hold anymore when d 6= 0.

5. Percolation in dynamical situations of bursting cultures
The QP model was initially designed to study bursting activity in neuronal cultures; we will
discuss here how it can be applied, beyond the study of “forced” systems, to analyze spontaneous
activity in neuronal cultures. We simulated networks of oscillatory excitatory neurons using the
adaptive exponential integrate-and-fire model [23]. Each neuron is connected to others from a
Gaussian distribution of average 100 and standard deviation 5, and the spikes are transmitted
between neurons with a constant delay of 1 ms. Figure 8 shows the simulated activity, which
is composed of periodic bursts with a specific inner structure. A burst is indeed composed of
a succession of synchronous burst slices (SBS) which are the base units that we will describe,
using the introduced formalism, as several distinct percolation events. Let us first describe
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and explain how a burst is initiated, develops and terminates. Burst initiation comes from
the intrinsic behavior of the neurons which are oscillators [8]: their membrane potential slowly
depolarizes under the influence of a persistent sodium current INa,p until a first spike is initiated.
After an initial synchronization of the population due to phase rest and positive feedback [24],
the first spikes of a burst occur concomitantly in a relatively short time period (e.g. 4510–
4512 ms) and involve a large fraction of the population. This initial SBS acts as the intrinsic
counterpart of the external excitation in the Quorum Percolation model since it is what activates
the first neurons of the following SBS (the [4514–4516] ms slice on the inset). Thus we obtain a
series of SBSs, each initiated by the input of the previous one. Moreover, the successive SBSs
get wider and more sparse because of adaptation mechanisms and fatigue, which increase the
quorum necessary for one neuron to activate. Since the effect of the SBS is spread over several
milliseconds, taking decay into account, we eventually reach a point where the cumulative effect
of the previous SBS in no longer sufficient for neurons to reach their increased quorum and the
burst terminates.

Figure 8. A: spike raster
of a 1000-neuron network
with Gaussian in-degree dis-
tribution N (100, 5), display-
ing periodic spiking behav-
ior. B: detailed dynamics of
5th burst (boxed), with the
successive SBSs. C: same
time-window as B but with
neurons ordered by increas-
ing in-degree; we can clearly
see the activity propagate
between groups with differ-
ent connectivity profiles.

The detailed structure of the burst becomes apparent if we sort the neurons based on their
in-degree. Figure 8 C represents the same time window as B and shows how strongly the
spiking times of the neurons correlate to their in-degree. Indeed, higher-degree nodes will reach
their quorum more easily, thus firing earlier than the rest of the network. This effect becomes
more significant as the average quorum increases; on the last SBS of C, we can clearly see the
sigmoidal shape as the percolation front propagates from the higher to the lower in-degree nodes.
Eventually, it should be stressed that, though the percolation formalism helps us understand
the inner structure of the burst, only the last SBSs can be described as a “pure” percolation
phenomenon. This can be understood from the 2nd SBS: because of the extension of the 1st SBS,
the resulting “initially activated fraction” is not clearly defined and it looks like two percolation
processes are interfering. We can see that the structure becomes clearer on the last SBSs where
the activity of the whole population occurs on a unique and longer timescale, in a decreasing
in-degree order, and follows the initial activation of the highest in-degree neurons.

6. Conclusion
We elaborated extensions to the original Quorum Percolation model by introducing two
additional neurobiological properties; we studied their effects on the activity of the networks. In
each case, we were able to construct a mean-field theory in good agreement with Monte Carlo
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explicit simulations within a wide parameter range, which is specified in this paper. The central
idea that enabled us to derive these mean-field approaches is the mapping of the network onto
equivalent ones related to the original QP model, but exhibiting a different connectivity. A main
point is the close relation between excitability and connectivity, between decay and connectivity.
These two effects impact the position of the critical point in a manner that can remain unnoticed.
Hence deciphering the functional connectivity of the network using percolation methods is more
difficult than expected. Yet, the study of bursts with the help of a two dimensional dynamical
model gives evidence that the ideas of percolation are worth being kept in mind within such a
framework. At last, although the Quorum Percolation models we set out in this paper have been
designed to describe what triggers burst of activity in neuronal networks, they are also relevant
in other scientific fields (propagation of rumors, ecology, sociology. . . ) involving information
propagation throughout networks with a threshold rule.
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J.2 Inhibitory and dynamical quorum percolation (Phys-
ica A 2018)
The following paper uses an extension of the initial Quorum Percolation (QP) model
to assess how the presence of inhibitory neurons in the network would affect the
percolation process. In a second part, I show that the percolation transition is also
obtained for networks where the units are modeled through a dynamical descrip-
tion (the AdExp model) and include time-delays in the information propagation
mechanism.

Both these results highlight the fact that the initiation of a bursting event can
indeed be describe as a percolation process and that it is qualitatively independent
of the presence of inhibitory neurons.
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Abstract

The Quorum Percolation model (QP) has been designed in the context of neuro-

biology to describe the initiation of activity bursts occurring in neuronal cultures

from the point of view of statistical physics rather than from a dynamical syn-

chronization approach. This paper aims at investigating an extension of the

original QP model by taking into account the presence of inhibitory neurons in

the cultures (IQP model). The first part of this paper is focused on an equiva-

lence between the presence of inhibitory neurons and a reduction of the network

connectivity. By relying on a simple topological argument, we show that the

mean activation behavior of networks containing a fraction η of inhibitory neu-

rons can be mapped onto purely excitatory networks with an appropriately

modified wiring, provided that η remains in the range usually observed in neu-

ronal cultures, namely η / 20%. As a striking result, we show that such a

mapping enables to predict the evolution of the critical point of the IQP model

with the fraction of inhibitory neurons. In a second part, we bridge the gap be-

tween the description of bursts in the framework of percolation and the temporal

description of neural networks activity by showing how dynamical simulations

of bursts with an adaptive exponential integrate-and-fire model lead to a mean

description of bursts activation which is captured by Quorum Percolation.
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1. Introduction

Neuronal rhythms are widespread oscillating phenomena, both in vivo

and in vitro, which were observed over many temporal scales [1]. Hitherto, the

fundamental mechanisms underlying their occurrence is far from being fully un-

derstood and is the subject of a significant research activity; it involves several5

scientific fields, from fundamental biology, information theory [2], physics of dy-

namical systems and critical phenomena [3] to graph topology [4] and massive

parallel computation [5, 6]. The human brain is a very complex network, with

about 1011 neurons [7], each of them connected to 1000–15000 others. More-

over, it is organized in localized computational units connected according to a10

well defined hierarchical structure. Thus, although investigation and imaging

techniques enabling to record the cerebral activity in vivo are making significant

progress [8, 9], the mere size and complexity of the brain makes its whole de-

scription and understanding a far-sighted goal. Complementary to observations

and experiments on real brains, in vitro experiments on dissociated neuronal15

cultures are an invaluable tool in investigating the fundamental questions on

neuronal dynamics set above. Such cultures are usually obtained by seeding

dissociated neurons extracted from rodent embryos, or alternatively neuronal

stem cells, on a suitable substrate. Though similar monitoring can be performed

on brain slices, we will focus on the activity of dissociated cultures, where axons20

and dendrites grow in such a way that neurons self-organize after a few days

into a two-dimensional network exhibiting a high level of randomness [10]. As

a matter of fact the connectivity between neurons is described by probability

distributions. These neuronal cultures hold between 103 and 105 neurons with

typical densities between 500 and 5 000 neurons per mm2, each of them con-25

nected via a number of synapses falling between 20 and 200 [11]. These changes

in connectivity and scale compared to a brain could, at first glance, appear as

2



a loss from a neurobiologic point of view; yet, they are a key feature for the

complementary approach of in vitro experimentation to study neuronal activity

and growth. Quantitative measurements of the neural activity inaccessible in30

vivo can be carried out with the help of micro-electrode arrays (MEA) [12],

optogenetics, and calcium imaging [13].

Synchronized periodic bursts of spiking activity have been regularly observed

in dissociated neuronal cultures [14, 15] and appear as a fundamental emergent

spatio-temporal property of neuronal populations. Bursts of activity can also be35

artificially triggered by externally activating a fraction of neurons. The Quorum

Percolation model (QP) has been elaborated to describe the initiation of bursts

observed in such cultures as a collective phenomenon, from the point of view of

statistical physics rather than dynamical systems [16]. Under its original form

the QP model does not take into account the presence of inhibitory neurons.40

However, a general description of collective behaviors in neural networks re-

quires the integration of inhibitory neurons in the QP model, since it has been

pointed out that they can play a role in the structure of bursts [17, 18]. We

devoted recently several studies to extend the original QP model by including

additional biological relevant properties and modulation of the neuronal activ-45

ity: the decay of the neuronal voltage accounting for ions leakage through the

neuron membrane [19], variability in the quorum accounting for a modulation

of the neuronal excitability threshold [20], finite size scaling and the derivation

of a normal form around the critical point together with a preliminary study

of the incorporation of inhibitory neurons [21]. In this last paper, we suggested50

that under specific conditions, the mean characteristics of the burst activation

of networks with inhibitory neurons are the same as the ones of purely excita-

tory networks with different effective connectivity. The first goal of this paper

is to provide a deeper investigation of the mapping between the presence of in-

hibitory neurons and an equivalent purely excitatory reduced connectivity. We55

point out what should be learned from the mean field approach, we character-

ize the connectivity features of the purely excitatory network accounting for a

fraction of inhibitory neurons, we quantify its equivalence domain and derive a

3



relation between the critical point and the fraction of inhibitory neurons. As

inhibitory neurons are commonly assumed to play a modulating role of neu-60

ronal activity and spatio-temporal coordination, we investigate the validity of

our previous conclusions in a dynamical setting. Thus, the second goal of this

paper is to show that the key features of Quorum Percolation captured by the

simple, discrete model with inhibition are preserved in a fully dynamical model

based on biologically more refined description of neurons and synapses, namely65

the adaptive Exponential Integrate-and-Fire model [22]. However, it should be

noticed that the dynamics of the activity cannot be captured by IQP and QP

models, since they deal with equilibrium properties of the short time onset of

bursts.

2. The original Quorum Percolation model70

The original Quorum Percolation (QP) model is a discrete-time cellu-

lar automaton describing the propagation of information on a graph through a

minimal set of rules for activation cascades in neuronal populations. Since neu-

ronal communication through synapses is directional, the neuronal population

is represented by a directed graph connecting neurons located on the vertices.75

Specifically introduced to describe the onset of activity bursts observed in small,

in vitro cultures [16], the model is based on a non spatial graph considering only

the node connectivities and constructed by randomly choosing, for each neuron

i, k incoming links among the N−1 other neurons according to an in-degree

probability distribution pk. It is worth noticing that such a random description80

of the incoming links probability relevant in the case of cultures of dissociated

neurons grown in an in vitro environment does not work anymore in the case

of neuronal cultures that have grown in vivo like brain slices or animal visual

cortex [23].

In the QP model, each neuron i is represented by a discrete variable Vi(t)85

which accounts for the membrane potential, and by a neuronal state – at rest

or active – with activation governed by a threshold rule. A neuron is activated

4



between t−∆t and t if its potential becomes greater or equal to some activation

threshold m; once activated, it sends signals to its outgoing neighbors. As the

models represents only one activation wave, an activated neuron remains so and90

sends no further signals in the following steps. After a time step ∆t, each neuron

i integrates the signals it received by incrementing its potential Vi(t − ∆t) by

the sum of the inputs from its incoming neighbors activated during the elapsed

time interval. All the signals are taken identical and associated to an integer

increment equal to +1, which sets the scale for the threshold value m. The95

network is stimulated at time t = 0 by an initial excitation of the network,

performed by activating a given fraction f of randomly chosen neurons.

The activity of the network at time t is given by the fraction of active neurons

φ(t), increasing with t, and converging towards a stationary value Φ(f,m) after

a few time steps, dependent on the initial active fraction f and the threshold

m. As first reported by Cohen et al. [16] the surface Φ(f,m) (noted simply

Φ in the following) defines a phase diagram as shown on Fig. 1, where two

regimes can be distinguished depending on m. Below some critical value mc, Φ

presents a discontinuity at some value f∗(m) when the control parameter f is

varied, whereas it remains continuous above mc. The sudden jump occurring

at f∗(m) is associated with a percolation phenomenon on the network, where

a very small variation of f results in the appearance of a giant cluster, whose

normalized size is given by the difference between the lower and upper values

of Φ at the discontinuity. Despite its simplicity the phase diagram of QP model

captures the key behavior observed in experiments in the group of E. Moses

[11, 16] on induction of activity in neuronal cultures which exhibits the same

emergence of a giant cluster depending on neuronal excitability. Following the

usual concepts of percolation on lattices [24] for the second order transition

between the presence and absence of a percolation phenomenon, the amplitude

of the jump 〈g〉 is considered as the standard order parameter, whose behavior

in the vicinity of mc follows a power law:

〈g〉 ∼
(
mc −m
mc

)β
. (1)
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Figure 1: Phase diagram of the Quorum Percolation model, for a Gaussian in-degree distribu-

tion with a mean k̄ = 50 and a standard deviation σk = 10. When the quorum m is smaller

than mc, a jump in the fraction of active neurons Φ occurs when increasing the fraction f of

initially activated neurons from zero. The height 〈g〉 of the jump at the discontinuity is the

normalized size of the giant percolation cluster.

Since m is discrete, it is difficult to extract a precise critical value of β from

the behavior of 〈g〉, mainly because the uncertainty over the value of mc is at

least of 1 unit. We overcame such an hurdle by carrying out an extension of100

the quorum percolation mean-field theory to non integer values of m and we

showed [25] that a Gaussian distribution pk of incoming links leads to mc =

k

(
1− a

(
σ
k

)
+ b

(
σ
k

)2
)

where k is the mean value of the number of incoming

links and σ the width of pk; for values of k lying in the range of experiments on

mature cultures, we found that a ∈ [1.27, 1.30] and b ∈ [1.56, 1.59]. Moreover we105

showed that the value of β for such incoming links distributions is compatible
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with β = 1/2.

Defined as above the model is only related to the topological relationships

between nodes and does not take into account spatial properties from local-

ization of neurons is space. Hence, no metric is involved and the percolation110

cannot be described with respect to a given dimensionality as in the usual case

of lattices [24]. As showed by Tlusty and Eckmann [26] for small dense neu-

ronal cultures as those used for the global activation experiments, the spatial

embedded neuronal network is in practice a fully randomly connected one. For

large cultures, as for instance those investigated by Orlandi et al. [27] activity115

propagation fronts are observed and a spatial metric has to be considered for

the study of the neuronal culture dynamics. Furthermore, it has recently been

shown on the basis of another statistical physics model of neuronal cultures,

the random field Ising model, that metric correlations induce strong deviations

from the mean field [28].120

3. A quorum percolation model with inhibitory neurons: IQP

3.1. Main features of the IQP model and comparison with experiments

Let us now assume that a fraction η of neurons, drawn at random, is

inhibitory. As in the original model, the network is wired in such a way that, for

each neuron, the number of incoming links follows a probability distribution pk;125

however, we now set every outgoing link of an inhibitory neuron to “inhibitory”.

We account for these neurons in the following way: when an inhibitory neuron

fires, its sends a signal equal to −1 instead of +1 through its outgoing links, thus

decrementing the potential of each target. Hence, a neuron becomes active if

the number of its active excitatory incoming neighbors e minus the number i of130

its active inhibitory ones is greater than the quorum: (e− i) ≥ m. A sketch ex-

plaining the progress of the Quorum Percolation with inhibitory neurons (IQP)

is provided in Fig. 2. It should be noticed that, unlike the QP model, the

potential of a neuron is no more a monotonous increasing function of the time

t associated with the discrete time kinetics, but the fraction of active neurons135
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(inhibitory and excitatory) necessarily increases with t because of the threshold

rule. Running Monte-Carlo simulations to compute the stationary activity Φ

involves (i) constructing a random network G of N neurons according to the

incoming links probability distribution pk, (ii) declaring a fraction η of neurons

inhibitory according to an uniform random distribution, (iii) activating a frac-140

tion f of the neurons regardless of their excitatory or inhibitory nature and (iv)

processing the quorum activation rule until the number of active neurons stops

increasing.

Figure 2: Arrows represent the directed axonal links between neurons. The neurons associated

with the light grey (yellow) color are active (i.e. they already fired) while the white ones are at

rest and the red ones are just firing at the indicated time. One inhibitory neuron is represented

as a dented circle. Upper figure: at time t, the inhibitory neuron fires (because of external

inputs which are not represented here); thus the potential of its outgoing neighbor, in the

center, shifts from 2 to 1. Let us suppose that, at time t + ∆t the upper right neuron fires

(also because of external inputs not represented here); the potential of its outgoing neighbor

is incremented by one, leading to the state represented at t+ 2∆t. The bottom figures show

that the order in which the neurons fire matters in the presence of inhibitory neurons. If we

assume that the right upper corner excitatory neuron fires before the left down inhibitory one

(because of another history of external inputs than on the first row) the central neuron now

activates, while it will never fire before the end of the process in the example above.

We carried out explicit Monte Carlo simulations of the IQP model for Gaus-

sian incoming links distributions involving 100 000 neurons, four values of145

k ∈ {25, 50, 75, 100}, ten values of η ranging from 0.05 to 0.2, and three dif-

ferent values of σ in each case; these ranges were chosen to be consistent with
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the experimental estimations [11, 16]; in each case, the value of Φ as a function

of f was averaged over 29 different network configurations. A selection of some

of these explicit IQP simulations are shown as solid red lines in Fig. 3 to Fig.150

4 for networks with different mean connectivity as a function of η.

Our main result is that, for η under 25 percent (i.e. less than a quarter of the

whole population is inhibitory), the presence of the inhibitory neurons does not

change the qualitative behavior of the quorum percolation phase diagram: for

a given value of η, jumps in the activity will occur, provided that m is smaller155

than a critical value mc, which depends on η.

Furthermore, Fig. 5 shows the influence of η for a fixed value of the threshold m

and fixed values of the connectivity parameters {k, σ}. Indeed, when the ratio

η of inhibitory neurons in increased, the position f∗ of the jump in Φ is shifted

towards greater values of the initial activity, while its size g is decreased (until160

it possibly vanishes). Hence, when inhibition increases for a given firing thresh-

old and a given connectivity, a more important fraction of initially activated

neurons is necessary to trigger the percolation.

Communication between neurons involves chemical signaling at the synap-

tic level: neurotransmitters present in the pre-synaptic domain are released by165

vesicle exocytosis and bind to receptors located in the post-synaptic domain.

This release is triggered by electrical signaling conveyed by action potentials,

and is the biological equivalent of the update of a node’s potential by its active

neighbours. In neuronal networks, both excitatory and inhibitory synapses are

present, the latter being associated to GABAA (Gamma-aminobutyric acid) re-170

ceptors. These receptors can be hindered, and even blocked by adding specific

drugs. Using bicuculline in the culture medium to block GABAA receptors

Soriano et al. [14] compared the activations of fully excitatory networks and

of untreated mixed excitatory and inhibitory cultures and observed that the

presence of inhibitory neurons decreases the threshold for the percolation phe-175

nomenon compared to the purely excitatory case. Such an experimental result

is very well described in the framework of the IQP model and predicted by our

simulations.
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Figure 3: Comparison between explicit IQP Monte Carlo simulations (solid red lines), solutions

of the mean-field equation around the jumps (open black symbols), and QP simulations of the

equivalent purely excitatory network obtained trough keq = k(1− 2η) (blue dotted lines).

k = 25, σ = 2.5 and η = 0.06 (left) k = 50, σ = 5 and η = 0.10 (right).

Figure 4: Comparison between explicit IQP Monte Carlo simulations (solid red lines), solutions

of the mean-field equation around the jumps (open black symbols), and QP simulations of the

equivalent purely excitatory network obtained trough keq = k(1− 2η) (blue dotted lines).

k = 75, σ = 7.5 and η = 0.14 (left) k = 100, σ = 10 and η = 0.18 (right).

3.2. Mean-field theory

An alternative approach for calculating the stationary fraction of active neu-

rons Φ can be deduced from a mean-field leading to a self-consistency equation

[21]. Indeed Φ is also the probability for a neuron to be active at equilibrium

and it corresponds to the probability to be either active through initial stim-

ulation or to be activated during the IQP discrete signal propagation process.

This activation probability of a neuron in the cascade depends itself upon Φ and

can be approximated by binomial processes given m and pk. In order to obtain
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f

Φ

Figure 5: Evolution of the jump in the activity when the ratio η of inhibitory neurons increases

from 0.06 (leftmost jump) to 0.34 (rightmost jump) in steps of 0.04. These values are obtained

via the mean-field equation, for a fixed threshold m = 10 and fixed parameters {k = 50, σ =

0.05} for the network connectivity.

this self-consistency equation, we first partition the set of neurons according to

their number k of incoming links and consider a neuron of the network with ke

excitatory and ki inhibitory incoming links (k is fixed). The probabilities that

Y = e excitatory neurons among ke and Z = i inhibitory ones among ki are

active read respectively Pex(Y = e) =
(
ke
e

)
Φe(1 − Φ)ke−e and Pin(Z = i) =(

ki
i

)
Φi(1−Φ)ki−i. The probability for the target neuron to exceed the quorum

( to have e− i ≥ m ) can be calculated by noticing that an activation occurs if

Z = i only if Y ≥ m + i. Hence the activation probability of this neuron can

be written as the double sum: P(e− i ≥ m) =
ki∑
i=0

Pin(Z = i)
ke∑

e=m+i

Pex(Y = e).

Now, the probability that a neuron with k incoming links has ki inhibitory

ones reads P (ki|k) =
(
k
ki

)
ηki(1 − η)k−ki , assuming that η is also the fraction

of inhibitory incoming links, as we will discuss further. In the end, the self
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consistency equation can be written:

Φ = f + (1− f)
∞∑
k=m

pk

k−m∑
ki=0

(
k

ki

)
ηki(1− η)k−ki

ki∑
i=0

(
ki
i

)
Φi(1− Φ)ki−i

k−ki∑
e=m+i

(
k − ki
e

)
Φe(1− Φ)k−ki−e. (2)

We compared the results of our Monte-Carlo simulations for 100 000 neurons180

with the values of Φ provided by the resolution of equation (2) focused on the

vicinity of the jumps, in some cases showed in Fig. 3 and Fig. 4. This extension

of the range of our investigation with respect to [21] where only 10 000 neurons

populations were simulated shows in a robust way a very good agreement be-

tween the two approaches; we checked that this agreement increases with the185

size of the network because of finite size effects, since the mean-field approach

is expected to hold in the infinite limit. The agreement is remarkable as the

mean field approach is not designed to take into account temporal correlations

while strictly speaking, the actual IQP process is sensitive to them. Indeed, Fig.

2 shows that the order in which a neuron receives signals can come into play190

whereas it does not matter in the absence of inhibitory neurons. Nevertheless, a

reason why the mean field actually works is that the order of activation hardly

comes into play in the information propagation process but when the state of

the neurons are close to firing, that is just below the quorum.

3.3. Mapping of the IQP model on purely excitatory networks195

A close look at the IQP rules suggests that a neuron with k incoming links,

ki of them being inhibitory, could in average behave as a neuron with k − 2ki

purely excitatory incoming links: each inhibitory neuron can be viewed as can-

celing one of the excitatory. This can be for example observed for the central

neuron in the sketch of the upper row of Fig. 2: starting from a value of its200

potential equal to 2, it ends with the same value since the inhibitory and exci-

tatory inputs compensate each other: it is as if the links with the left down and

the upper right neurons had been erased. The robustness of the agreement of
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the IQP mean-field theory with Monte-Carlo simulations suggests that such an

observation may be averaged over the whole network. We therefore expect that205

a mixed excitatory and inhibitory network with a mean number ki of inhibitory

incoming links and k − ki excitatory ones should lead to the same stationary

state as a purely excitatory network with k−2ki mean incoming links. In order

to check this hypothesis, we ran additional Monte-Carlo simulations: Assum-

ing that ki = ηk, we simulated for each set {k, σ, η,m} already investigated in210

the framework of the IQP model, an associated QP set {keq = k(1− 2η), σ,m}

without inhibitory neurons. Some typical results are reported in Fig. 3 and Fig.

4, where comparisons of the activity computed by the two processes are shown.

As shown on these figures, the stationary response of the mixed excitatory and

inhibitory networks to a given external excitation f is indeed remarkably close215

to the one of the associated purely excitatory network with the equivalent re-

duced number of incoming links. From these figures, we can notice that the

differences between the two approaches depend on m and f : They are more

pronounced when m increases and in the vicinity of the jump, where the perco-

lation process makes the fraction Φ of active neurons undergo a steep variation,220

from a value just above f to a value close to 1. However a quantitative analysis

of these differences can be achieved from a global point of view by computing

a (renormalized) Minkowski distance between the IQP and the associated QP

response over the whole excitation range as:

∆ =
1

N

√√√√i=N∑
i=1

(Φ(fi)− Φeq(fi))
2
, (3)

where a subscript i must be added to the initial value of the excitation225

parametrized by f to define properly ∆; fi runs from 0 to 1, and i from 1 to N =

200. Φ(fi) and Φeq(fi) denote respectively the original IQP activity and the QP

activity on equivalent excitatory networks averaged over 29 configurations, as

responses to an excitation parametrized by fi; since Φ(fi) ∈ [0, 1], ∆ lies between

zero for identical global responses and one for maximal disagreeing responses.230

Fig.6 and Fig. 7 show the evolution of ∆ in the η−m plane. These results call
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for the following comments: obviously, if m is greater than keq the differences

between IQP and QP are negligible because the activation probability are very

low, since Φ and Φeq are very close to f all over the range [0, 1]. For a given

value of η the differences between the two approaches exhibit a maximum at an235

intermediate value of the quorum, while for a given value of m, the difference

increases with η, excepted if m is too low. Lastly the meaningful scale of the

discrepancies decreases as the mean connectivity k of the network increases.
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Figure 6: Minkovski distances ∆ between the IQP model and the equivalent QP model without

inhibitory neurons as a function of m and η for k = 25 and k = 50. The solid white lines

represent keq and the dotted ones mc as a function of η.
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Figure 7: Minkovski distances ∆ between the IQP model and the equivalent QP model without

inhibitory neurons as a function of m and η for k = 75, σ = 7.5 and k = 100, σ = 10. The

solid white lines represent keq and the dotted ones mc as a function of η.

Besides the global comparison of the QP and IQP model, we carried out a

local analysis by investigating a physical quantity describing the critical behav-240

ior: the order parameter. Typical results are shown in Fig. 8 where values of
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the order parameter (averaged over 29 configurations in each case) calculated

from simulations of the IQP model are compared with values extracted from the

equivalent QP model. As long as η is below 10%, the mean relative differences

in the two approaches
〈
δg
g

〉
remain below 7%. We can retrieve a slight increase245

in the differences and in the relative differences
〈
δg
g

〉
as η is increased and an

increasing agreement as k increases. It should be noticed that these results take

into account uncertainties on the calculation of 〈g〉; these uncertainties grow

very quickly when getting close to the critical point and the comparisons are no

more meaningful. As a matter of fact, when linking these results with the ones250

set out in the last subsection, we can conclude that an important part of the

differences in Minkowski distances (Fig. 6 and Fig. 7) stems from the shift in

the position of the jump rather than its height.
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Figure 8: Evolution of the order parameter 〈g〉 calculated from the IQP model (red circles)

and the equivalent QP one (blue circles) as a function of η in the cases where k = 50 (left)

and k = 100 (right) for 8 different values of m ranging from 0.9k to 0.2k from bottom to top.

The shaded area accounts for the differences between the two approaches and the dotted line

follows the mean relative deviations between them for different values of η.
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3.4. Critical point of the IQP model

We carried out an additional set of simulations of the IQP model by steps255

of 1 unit in m in order to estimate the critical values mc(η) of the quorum as a

function of η for the four different values of the mean incoming links numbers

already investigated. We were able to estimate mc(η) within an uncertainty of 1

unit for k equal to 25 and 50 and an uncertainty of 2 units for k equal to 75 and

100. The results are shown in Fig. 9 where a linear decrease of the values of the260

critical point mc(η) with η can be seen. Such a result can be nicely interpreted

in the framework of the mapping set out in the last subsection. When going

back to the analytical expression of the critical point obtained in the framework

of a continuous extension of the QP model [25], mc = k

(
1− a

(
σ
k

)
+ b

(
σ
k

)2
)

and pluging the value of the equivalent network mean number of incoming links,265

we obtain to leading order in σ/keq :

mc(η) = mc(η = 0)− 2kη, (4)

where mc(η = 0) = (k − aσ). Results of the fits of the lines observed on

Fig. 9 are set out in Table I; as a main result, the evolution of the critical point

mc(η) with the fraction of inhibitory neurons extracted from IQP simulations is

predicted by the QP theory applied to the equivalent network with a remarkable270

agreement. mc(η) gives a relation between the two parameters characterizing

the the total distribution of incoming links (excitatory and inhibitory) {k, σ}

and the fraction of inhibitory neurons. Let us notice that it is a little bit

different from the results obtained by Soriano et al. [14] in a situation where pk

is Poissonian: they showed that that the critical values mcE for a mixed network275

made fully excitatory by addition of bicuculline in the culture and mcEI for the

mixed network are linked by the approximated relation mcEI

mcE
= 1 − kI

kE
where

kE and kI designate the mean numbers of excitatory and inhibitory incoming

links of the mixed network.
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Figure 9: Evolution of the critical point mc as a function of η for the four different values of

k investigated with σ = 0.1k

k mc(η = 0) mc(η) (fits)

25 21.7 23− 50η

50 44.3 44− 106η

75 64.4 66− 150η

100 88.8 90− 194η

Table 1: Results of the fits of the four straight lines represented on Fig. 9; values of the

critical points calculated from the continous extension of the QP model are recalled in the

middle column of the table

4. Validity of the quorum percolation paradigm in a dynamical frame-280

work

As percolation is sufficient to describe the initiation of bursts, it should be

investigated if properties of the basic theoretical percolation models remain valid

in more realistic situations. As mentioned previously, percolation phenomena,

with and without inhibition, have been experimentally validated by the match285

of the original minimal model to the experimental observations on neuronal

cultures by the group of E. Moses [11, 14, 16]. This significant evidence of
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quorum percolation phenomenon in living neuronal networks concerned how-

ever only the single response of a neuronal population to an external activation

signal of increasing strength. Although it would be surprising for a percolation290

process to happen only in this circumstance, its occurrence during the long-

term activity of a neuronal culture remains to be characterized. This question

is specifically relevant when focusing on networks with inhibitory neurons, as

inhibition plays a role on the temporal correlations of neuronal activity in a

population. Thus, this last section is devoted to the investigation of quorum295

percolation in the framework of a dynamical model of neuronal networks. We

show on a generic example that the percolation description remains relevant to

describe the initiation of a burst of activity inside a population of dynamical

neurons, then discuss how this phenomenon can also be observed in simulations

of spontaneous neuronal activity.300

Similarly as for the IQP model, we use and generate a random network G

with Gaussian distribution pk of incoming links characterized by k and σ. Each

node is now described by a differential equation model that realistically describes

the membrane potential variation in time and spikes. The input links are rep-

resented by terms in the neuronal state differential equation that describe the

positive (for excitation) or negative (for inhibition) time varying post-synaptic

potential of synpases. We chose here the adaptive Exponential Integrate-and-

Fire (aEIF) model [22] because of its compromise between simplicity and biolog-

ical relevance. In this model, the dynamical evolution of a neuron is described

by two variables – its membrane potential V and a slow adaptation current w

– which are governed by the following equations: Cm
dV
dt = −gL(V − EL) + gL∆T exp

(
V−Vth

∆T

)
− w + I

τw
dw
dt = a(V − EL)− w

(5)

if V > Vpeak

 V ← Vr

w ← w + b
(6)

all neuronal parameters are defined in [22]. Hence we will only mention the two

most relevant in this study, which are EL, the resting potential of an isolated
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neuron, and Vth, the “threshold” potential, which marks the beginning of a

spike initiation, generated by the diverging exponential. The difference Vth −

EL is therefore closely related to the quorum defined in the IQP model. The305

connection from any neuron A to a second neuron B is implemented using alpha-

shaped post-synaptic currents (PSCs) in the input term I which leads, if a spike

occurs at t = 0, to a subsequent current of the form

Is(t) = sAB
I0
τs
te−t/τs , (7)

where sAB is the dimensionless synaptic strength and I0 = e · 1pA is a nor-

malization constant which sets the peak value of the PSC to sAB pA. Inhibitory310

inputs correspond to negative sAB and we declare a fraction η of the neurons as

inhibitory (all outgoing synapses have negative strengths) according to a uni-

form random distribution. The numerical simulations were carried out using

the NEST neuronal simulator [6].

We aim first at reproducing the quorum percolation with this dynamical315

model. In order to perform the same numerical experiment as in the quorum

percolation Monte-Carlo runs, we adapted an equivalent protocol to the dy-

namical model : (i) a random fraction f of all neurons is activated via a large

post-synaptic current that brings them above their “threshold” and induces

their simultaneous firing; (ii) the simulation is pursued until the number of ac-320

tive neurons stops increasing (in practice, because of the relaxation from the

leak conductance, simulations are performed on a 100-ms time window, which

is long enough for all activity to occur given our sets of neuronal parameters). In

order to be as close as possible to the original experiment, the neurons are set so

that their refractory period after a spike is equal to the simulation time (ensure325

they fire only once), and the axon transmission delay is set to one simulation

timestep, i.e. 0.1 ms. For this first part, the units are all implemented with

parameters for adaptive spiking neurons, though this has no significant impact

on the involved timescale.
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Parameters f∗ (IQP) f∗ (Sim.)

k = 25, m = 5 0.05 [0.06; 0.08]

k = 25, m = 10 0.18 [0.19; 0.21]

k = 25, m = 15 0.45 ∼ 0.45

k = 75, m = 9 0.04 [0.045; 0.05]

k = 75, m = 15 0.11 [0.11; 0.115]

k = 75, m = 30 0.29 [0.31; 0.32]

k = 75, m = 45 0.52 ∼ 0.54

Table 2: Comparison between the values of the critical fraction of initially active neurons f∗

obtained by the IQP or the dynamical simulations for η = 0.05. Interval for the dynamical

simulation is given by the “jump” values for the 5th and 95th percentiles. For the last row in

each k set, the dynamical simulation displayed a smooth transition, so the value given is the

position of the inflexion point.

Figure 10: Simulated phase transition for inhibitory fractions of 5% (left) and 25% (right)

– averaged over 50 runs for each curve to quantify the fluctuations. For the simulations,

10 000 neuron networks were generated with Gaussian in-degree distributions (k = 25 and

σk = 5). The average transition curve is represented by the solid lines (with increasing

quorums {5, 10, 15, 20} from dark purple to light green) and the filled area is delimited by

the 5th and 95th percentiles, i.e. it contains 90% of the simulated datapoints. The dashed

line marks the Φ = f curve. As in the mean-field model, increasing the inhibitory fraction

leads to a sharp decrease in the critical quorum value: 10 < mc < 15 for η = 0.05 whereas

5 < mc < 10 for η = 0.25.
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In the dynamical simulations, the quorum m was evaluated as the number330

of simultaneous spikes necessary to make a neuron fire (see Appendix for a more

detailed explanation on how its precise value is obtained). The resulting activity

of the total population can be seen on Fig. 10. Comparison with Fig. 3 and Fig.

4 shows significant resemblance in the qualitative, as well as in the quantitative

behavior of the phase transition. As for the mean-field model, an increase in the335

fraction η of inhibitory neurons leads to a decrease of both the size g of the jump

and the final fraction of active neurons Φ. The tendency for the critical value

of the quorum to be lower in the dynamical simulations can be easily explained

by the combination of the leak conductance and the PSC decrease over time,

as detailed in a previous percolation model including decay [19]. Beside this340

small offset, the excellent agreement of the positions where the jump occurs,

detailed in Table 2, confirms that the simple IQP percolation model captures

the behavior of a more sophisticated dynamical model and is thus relevant to

describe the ignition of a burst of activity in a network of coupled neurons.

Figure 11: A. Spike raster of a 1000-neuron network with Gaussian in-degree N (100, 5) dis-

playing a spontaneous and periodic bursting behavior. B. shows the inset of the left raster

with the detailed dynamics of the successive SBSs. Neurons ordered by increasing in-degree.

Eventually, as can be seen on Fig. 11, the percolation paradigm is perfectly345

relevant to describe some of the successive network events that occur inside a

network burst, for spontaneously active neural networks. Spontaneous bursting

activity is a common phenomenon in neuronal networks [27, 15] and the IQP
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can therefore be a useful tool to investigate the properties of this spontaneous

behavior.350

On Fig. 11 A, the simulated activity is composed of periodic bursts which

themselves present a precise substructure as a succession of synchronous burst

slices (SBS), shown on 11 B. These are the basic activity blocks that can be

described through the percolation formalism. Indeed, after the first sponta-

neous slice, each subsequent SBS is triggered be the previous one. Because the355

excitability of the neurons decreases as the burst progresses, this corresponds

to a succession of percolation events with increasing values of the quorum. Af-

ter the last SBS, the value of the quorum becomes greater than mc so no new

percolation can occur and the burst terminates.

5. CONCLUSION360

In this paper, we set out an extension of the Quorum Percolation model

with a Gaussian distribution of incoming links (QP) including a fraction η of

inhibitory neurons (the IQP model). Furthermore, we showed how the mean

stationary activation of bursts in a network with inhibitory neurons can be

mapped onto an equivalent purely excitatory network endowing an appropriate365

and different wiring. We provided a quantification of the agreement between

the QP and IQP approaches and showed that the agreement is good in usual

neuronal cultures, where η . 20%. Thus, on the issue of large scale response

of quorum percolation, mixed inhibitory and excitatory Gaussian random net-

works with mean input connectivity k and fraction η of inhibitory neurons, have370

a purely excitatory Gaussian random network equivalent with a mean incoming

links connectivity (1 − 2η)k. This enabled us to calculate the critical point of

the IQP model as a function of η. Lastly, we gathered together the approaches

coming from the fields of percolation theory and dynamical systems in order to

check how the percolation paradigm remains meaningful for the interpretation375

of a network response to excitation in a biologically more realistic model taking

time explicitely into account. We built indeed a dynamical version of the IQP
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model using Brette-Gestner adaptative exponential neurons and alpha-shaped

synapses. We showed that Quorum Percolation occurs also in the more sophis-

ticated dynamical framework so that, despite their apparent simplicity, QP and380

IQP models are an appropriate approach for bursts onset in neuronal cultures.

6. Appendix

All dynamical simulations were performed using the NEST simulator [6]

with the aeif psc alpha model (present on the master branch of the GitHub

repository or in release versions strictly higher than 2.11.0) and static synapses.385

The neurons were set to adaptive spiking using the neuronal and synaptic

parameters detailed in Table 3.

Neuronal parameter Cm gL EL Vth Ie ∆T a τw tref

Value 200 9 -60 -50 0 2 2 600 100

Synaptic parameter τs,exc τs,inh d

Value 0.2 0.2 0.1

Table 3: Neuronal and synaptic parameters used in the simulations. The units are as follow:

capacitance in pF , conductance in nS, voltage in mV , current in pA and time in ms. d is the

spike transmission delay.

In order to obtain a desired quorum m, the synaptic strength between neu-

rons was tuned according to the following procedure:

• Send m spikes, each with strength s, on a neuron, and increase s until the390

post-synaptic neuron fires, which occurs for a synaptic strength s∗m.

• Repeat the process for m− 1 spikes; this results in a second value s∗m−1.

• use the synaptic strength sm =
s∗m+s∗m−1

2 for all connections in the network.

This value of the synaptic strength is important if we want to compare quantita-

tively the predictions of the mean-field model to the simulations. Indeed, in the395

simulations, the evolution of the state Vi of neuron i is progressive, and a spike
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is not necessarily triggered immediately after the excitation. More precisely,

at the critical value s∗m for which the neuron starts spiking when it receives m

spikes, the emission of this spike can take an infinite amount of time (critical

slowing down). The choice of sm as the average value between s∗m and s∗m−1 is400

therefore important to ensures that the neuron will fire rapidly enough (with

a characteristic timescale τs) after the reception of m spikes, and thus be in a

situation which is comparable to that of the mean-field model.

The networks were generated using the nngt library using the igraph back-

end.405
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J.3 Bursting and adaptation (Frontiers in Neuroscience
2018)
This paper gives a more detailed mathematical description of the bursting model
developed in “A concise model for periodic bursting” (subsection 2.2.1). It provides
a description of the different results obtained through the description of synapses
by either instantaneous Dirac synapses, “continuous” synapses, and alpha-shaped
current synapses. From these results, theoretical predictions regarding the effect
of adaptation channels (AHP) on the global dynamics are then proposed. These
predictions were later tested experimentally and preliminary results are discussed in
“Shaping bursts through adaptation channels” (subsection 2.2.2).

References to the supplementary material can be directly obtained in “Self-
consistent equations for the bursting behavior” (Appendix C).
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Experimental and numerical studies have revealed that isolated populations of oscillatory

neurons can spontaneously synchronize and generate periodic bursts involving the

whole network. Such a behavior has notably been observed for cultured neurons in

rodent’s cortex or hippocampus. We show here that a sufficient condition for this

network bursting is the presence of an excitatory population of oscillatory neurons

which displays spike-driven adaptation. We provide an analytic model to analyze

network bursts generated by coupled adaptive exponential integrate-and-fire neurons.

We show that, for strong synaptic coupling, intrinsically tonic spiking neurons evolve

to reach a synchronized intermittent bursting state. The presence of inhibitory neurons

or plastic synapses can then modulate this dynamics in many ways but is not

necessary for its appearance. Thanks to a simple self-consistent equation, our model

gives an intuitive and semi-quantitative tool to understand the bursting behavior.

Furthermore, it suggests that after-hyperpolarization currents are sufficient to explain

bursting termination. Through a thorough mapping between the theoretical parameters

and ion-channel properties, we discuss the biological mechanisms that could be involved

and the relevance of the explored parameter-space. Such an insight enables us to

propose experimentally-testable predictions regarding how blocking fast, medium or

slow after-hyperpolarization channels would affect the firing rate and burst duration, as

well as the interburst interval.

Keywords: bursting, adaptation, neuronal networks, synchrony, oscillators

INTRODUCTION

Network bursting is an intermittent collective behavior that occurs spontaneously in neuronal
populations. It is characterized by long quiet periods, with almost no spike emission, punctuated by
brief periods of intense spiking activity, where the whole network displays high firing rates—most
neurons emit at least 2 closely-packed spikes. This particular pattern is then repeated, with varying
regularity, over long time intervals.

Such periodic and synchronized activity has been observed as an emergent phenomenon in large
neuronal populations, both in brain regions (Meister et al., 1991; Blankenship and Feller, 2009;
Rybak et al., 2014) and unperturbed neuronal cultures (Wagenaar et al., 2006; Stegenga et al., 2008;
Penn et al., 2016). It has been investigated as a plausible candidate for rhythmogenesis (Ramirez
et al., 2004), but also in various disorders such as epilepsy (Derchansky et al., 2008) or Parkinson’s
disease.
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Recent experiments by Penn et al. (2016), studying dissociated
neuronal cultures where the chemical environment was precisely
controlled, provide evidence that the majority of hippocampal
pyramidal neurons are self-sustaining oscillators. These
oscillators spontaneously synchronize to give birth to a very
regular network bursting phenomenon.

Starting from these results and others (Ramirez et al., 2004;
Suresh et al., 2016), we propose here a detailed understanding of
the synchronized network bursting dynamics that explains and
reproduces other experimental observations (Sipilä et al., 2006;
Masquelier and Deco, 2013; Orlandi et al., 2013) of bursting on
a variety of different timescales and with inter-burst intervals
(IBIs) ranging from less than 1 s up to several minutes. We
focus specifically on the characterization of the synchronized
attractor and do not consider the transient synchronization
process from an asynchronous to a synchronized phase.
Indeed, synchronization of pulse-coupled oscillators is a known
asymptotic behavior (Somers and Kopell, 1993; Bottani, 1995),
which has been shown to lead to bursting in the presence
of adaptation (Van Vreeswijk and Hansel, 2001). This was
confirmed in all our simulations, regardless of the precise
neuronal parameters, as long as they corresponded to adaptive
oscillatory neurons. By oscillatory, we mean that a single
neurons will spike periodically if uncoupled and considered
independently.

Let us insist on the fact that collective bursting, giving
rise to “network bursts,” should not be confused with the
individual behavior observed at the cellular level for “bursting”
or “chattering” neurons. Though they share similar intervals
of rapid firing followed by long quiet periods (Connors and
Gutnick, 1990; Sipilä et al., 2006), hence the common name,
collective bursting can stem from radically different mechanisms
and occur on different timescales (see Supplementary S1.3). Here,
population-wide bursts are a specific synchronized behavior
emerging from the interaction of oscillating, adaptive-spiking
neurons which do not display intrinsic bursting behavior when
considered independently but only emit single spikes.

The periodic activity of the intrinsically oscillatory neurons
present in culture populations and brain regions is assumed
to rely on leak currents which affect their excitability (Suresh
et al., 2016). More specifically, the persistent, non-inactivating,
sodium current INa,p (Golomb et al., 2006; Penn et al., 2016)
and the H-current Ih (Lüthi and McCormick, 1998) are the
prime candidates for this intrinsic depolarization. Adaptation, on
the other hand refers to the capacity of a neuron to change—
here, more precisely, to lower—its excitability in response to
continuous or repeated excitation, such as a step-current in
electrophysiological experiments, or the intense synaptic input
received from its neighbors during a collective burst. Adaptive
neurons indeed display periodic firing with a spiking frequency
that progressively slows down from its initial high frequency
value. The biophysical processes mediating adaptation are thus
distinct for the origin of the rhythmic behavior which they
modulate, and several potassium currents are considered for this
frequency adaptation, like the muscarinic K+ (IM) current or the
Ca2+ activated K+ currents (IAHP) (Sah and Louise Faber, 2002;
Golomb et al., 2006).

We show here that adaptive spiking is a sufficient condition
for network bursting, confirming what was suggested by previous
studies (Van Vreeswijk and Hansel, 2001; Masquelier and Deco,
2013; Ferguson et al., 2015), and that intrinsically bursting or
chattering neurons are not required. Indeed, we focus on the role
of adaptation to explain why, as observed in the experiments,
the presence of inhibitory neurons is not necessary to obtain
regular collective bursting dynamics. Likewise, though short-
term synaptic plasticity might play a role in shaping the dynamics
(Gritsun et al., 2010; Masquelier and Deco, 2013), we also
demonstrate that it is not required to reproduce characteristic
timescales of this dynamics.

METHODS

We first describe the models used for the different units
composing the system (neurons, synapses and network
structure). Based on these, we derive an effective model
which remains almost completely tractable, so that most of
the properties of the collective dynamics can be predicted
analytically. This model is based on successive approximations
which were validated by numerical experiments: by dividing
the cyclic behavior into several subdomains, we isolate regions
where the activity can be solved under different approximations.
The final solution is thus composed of the concatenation of
these different approximations. We also used these simulations
to verify and extend the predictions of our analytic equivalent
model.

Neuronal Model
We chose the adaptive Exponential Integrate-and-Fire (aEIF)
model (Brette and Gerstner, 2005) because of its compromise
between simplicity and biological relevance. The dynamical
evolution of a neuron is described by two variables, its membrane
potential Ṽ , and a slow adaptation current w̃, which are governed
by the following equations:

if Ṽ ≤ Ṽpeak



















C̃m
dṼ

dt̃
= −g̃L(Ṽ − ẼL)+ g̃L1̃Te

Ṽ−Ṽth
1̃T

−w̃+ Ĩe + Ĩs

τ̃w
dw̃

dt̃
= ã(Ṽ − ẼL)− w̃

else if Ṽ > Ṽpeak, then

{

Ṽ ← Ṽr

w̃ ← w̃+ b̃
(1)

where C̃m is the membrane capacitance, g̃L is the leak
conductance of the neuron, ẼL is its resting potential, 1̃T affects
both the slope and the strength of the spiking current, Ṽth is the
threshold potential, τ̃w is the adaptation timescale, ã gives the

strength of subthreshold adaptation, b̃ gives the intensity of the
spike-triggered adaptation, and Ṽr is the reset potential. Ṽpeak is

the spike cutoff for the model. Ĩe is an external current to which
the neuron can be submitted.

The main difference of this model compared to the
well-known integrate-and-fire model is the presence of the
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second variable, the current w̃, which modulates the neuronal
excitability. The synaptic input received by a neuron is
represented by the variable Ĩs, which is usually time dependent.
The neuronal adaptation can be either subthreshold, through
the coupling between Ṽ and w̃ via ã, or spike-driven, from

the step increments of size b̃ that w̃ undergoes after a
spike.

The exponential spike generation present in the aEIF model is
more realistic than the hard threshold of the original Integrate-
and-Fire model, which leads to unrealistically fast spiking during
bursts. The soft threshold of the Izikevich model (Izhikevich,
2007), which also includes adaptation and could have been a
possible choice, is similar to that of the aEIF model and would
be analytically more tractable. However, it generates a divergence
which is not sharp enough, thus leading to overly long interspikes
and induces an undesired influence of the cutoff value (Vpeak) on
the neuronal dynamics (Touboul, 2009). Despite its non-analytic
nature, this feature of the aEIF model was therefore critical to
capture the inter-spike dynamics inside bursts.

In this study, and in accordance with the experimental
observations for several types of pyramidal neurons, we use only
neuronal parameters leading to adapting neurons which exhibit
periodic spiking. This state is reached through the persistent
current Ĩe, which drives their progressive depolarization and
makes them spike periodically; setting Vr < Vth ensures that the
neurons are not intrinsically bursting, as described in Naud et al.
(2008).

Contrary to the resting state, where one stable and one

unstable fixed point exist (points where both ˙̃V and ˙̃w are zero),
the periodic activity occurs after these two points disappear
through a bifurcation, as described in Brette and Gerstner (2005)
and Touboul and Brette (2008), when Ie becomes high enough.
In this spiking regime, no fixed point is present in phase space,
which allows the neuron to depolarize until Vpeak before being
reset to Vr , thus following a discontinuous limit cycle.
Illustration of the resting and spiking behaviors can be found
on Figures S2, S3, while biologically-relevant values of the
parameters used for the aEIF model can be found in Table S1,
in the Supplementary Material.

For these parameter sets, we have τ̃w ≫ τ̃m =
C̃m
g̃L
, as the typical

timescales for the continuous variation of w̃ relate to medium
and slow after-hyperpolarization, which occur over hundreds of
milliseconds (Sah and Louise Faber, 2002).

During the rest of the study, we use the dimensionless version
of the model:

{

V̇ = −(V − EL)+ eV − w+ Ie + Is
τwẇ = a(V − EL)− w

(2)

Details for the change of variables can be found in the
first section of the Supplementary Material, “Neuronal model

and parameters.” From then on, all equations involve only
dimensionless variables and parameters.

Synaptic Model
The coupling strength between a pre-synaptic neuron j and a
post-synaptic neuron i, such that j → i, is represented by the
total charge Qs transmitted from j to i. This charge is passed
dynamically through the ion channels of the synapses, which we
represent here by an alpha-shaped post-synaptic current (PSC)
(Roth and van Rossum, 2009). If neuron j spikes at time tj, the
triggered PSC is felt by i, after a delay dji, and is described by:

Is(t) = 2(t − tj − dji)Iji(t − tj − dji)

= sjiI0 · (t − tj − dji)2(t − tj − dji)e
−

t−tj−dji
τs . (3)

Where sji is the strength of the synaptic connection from j to i,
τs is the characteristic synaptic time, 2(x) is the Heaviside step
function, such that 2(x) = 0 is x ≤ 0 and 2(x) = 1 if x > 1,
and I0 =

1pA

g̃L1̃T
is the unit current which we set in this way to

be coherent with the conventions of the NEST simulator (Kunkel
et al., 2017). As such, the total charge delivered to i reads:

Qs,ji =

∫ ∞

0
Iji(t)dt = sjiI0τ

2
s . (4)

Network Models
This study is based on two non-spatial random network
models: a fully homogeneous network with fixed in-degree
which is useful to introduce the equivalent model, and more
heterogeneous Gaussian in-degree networks which are supposed
to be representative of connectivity in dissociated cultures
(Cohen et al., 2010). Both random networks are generated in
the same way by drawing a number ki (in-degree) of incoming
connections originating from randomly chosen other neurons in
the population. In the case of fixed in-degree networks, the in-
degree ki is fixed and identical for each neuron. For Gaussian
random networks, ki is drawn for each neuron from a Gaussian
distribution with mean value k and standard deviation σk. Note
that the fixed-in-degree networks can be seen as the limit case
of the Gaussian ones when the variance goes to zero. The out-
degree distributions are binomial and identical in both cases.
All networks where generated using the graph-tool or igraph
backends of the NNGT library.

All transmissions between neurons in the network are
subjected to the same delay d and have the same synaptic strength
s. which means that the complete dynamical system describing
the network is given, for each neuron i, by:















V̇i = −(Vi − EL)+ eVi − wi + Ie +
∑

j→i

∑

tj

sI0 · (t − tj − d)2(t − tj − d)e−
t−tj−d

τs

︸ ︷︷ ︸

Isyn,i(t)

τwẇi = a(Vi − EL)− wi

(5)

Where {j→ i} is the set of neurons j that are presynaptic neurons
for i and {tj} is the set of spike times for neuron j.
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Numerical Simulations
All dynamical simulations were performed using the NEST
simulator (Kunkel et al., 2017) with the aeif_psc_alpha

model implementation, that we developed, and which
corresponds to the Equations (2, 3) presented above. Neurons
were set to adaptive spiking using the neuronal and synaptic
parameters detailed in Table S1 and were connected using
static_synapses, i.e., without plasticity, but including a
delay d in the spike transmission. Simulations were started from
a population of neurons in an asynchronous random state, with
their state variable w̃ following a normal distribution of average
value 50 pA and standard deviation 10 pA. The runs were
performed on networks containing 1,000–100,000 neurons with
an average degree of 100, which is the typical value estimated in
mature neuronal cultures (Cohen et al., 2010).

Activity Analysis
For each simulation we computed the average firing rate ν =
Ns
T , where Ns is the total number of spike and T is the
simulation time. This gives us a characteristic timescale tν , which
would be the average interspike if the spikes were distributed
uniformly. Considering d as the transmission delay of action
potentials, bursts are identified as uninterrupted sequences of
spikes separated by less than min(tν/2, 3d); they must also
involve at least 20% of the neurons. This analysis was performed
using tools from the NNGT library and extra functions available
on our GitHub repository.

Equivalent Analytical Model
We derived an equivalent model that describes the system
dynamics and predicts the range over which the characteristic
frequencies can vary without the need to simulate the network
dynamics.Themodel focuses on the fully synchronized dynamics,
for which all neurons behave almost identically. The rationale
of the model is most apparent if we first consider the case of a
fixed in-degree network. As illustrated on Figure 1, in this case,
once the population is synchronized, all neurons receive the same
input, that is the contribution of k simultaneous spikes given by
the sum of k PSCs. Here, one neuron behaves exactly as any other
neuron, thus, ∀i, j, t Vi(t) = Vj(t) = V(t).

This means that the network of N neurons receiving k inputs
of strength s is equivalent to N isolated neurons, each one
forming a close loop with one autapse—that is, a self-loop—of
strength k × s. This simplification is inexact if all neurons do
not have the same number of incoming connections, however,
as shown in the Results section, this approximation holds very
well for homogeneous Gaussian networks and, through a slight
modification of the synaptic dynamics, even the behavior of more
heterogeneous Gaussian or scale-free networks can be estimated.

Based on this observation, exact for fixed in-degree networks,
we propose a model of bursting dynamics for any synchronized

FIGURE 1 | Schematic representation of the equivalence between a

fixed-in-degree network containing N = 6 synchronous neurons, with

in-degree k = 2 and connection strength s, and N isolated neurons, with a

self-loop connection of strength ks.

network, where we describe the whole population through the
behavior of an equivalent neuron, representative of the “average”
dynamics. This neuron is subjected to the “average” input
received by neurons in the network, and, under this simplified
description, Equation (5) is now the same for every neuron in
the network, since they are all approximated by this equivalent
neuron. As they all receive the same number of spikes (ns)
emitted at the same times {tj}, j ∈ [1, . . . , ns], and from the same
number k of neighbors, we obtain:















V̇ = −(V − EL)+ eV − w+ Ie +
∑

j

ksI0 · (t − tj − d)2(t − tj − d)e−
t−tj−d

τs

︸ ︷︷ ︸

Isyn(t)

τwẇ = a(V − EL)− w

(6)

This single dynamical system is then solved through several
approximations depending on the network state. A typical
approximation in the burst, on the interval [ti, ti + d] between
the emission of a spike and its arrival, consists in linearizing the
exponential term when V < Vth. On this interval, Isyn = 0 and
since d≪ τw, w can be considered as constant. This leads to an
approximate solution forV(t) that we will callVl(t), withVl(ti) =
Vr (see also Equations S2, S3 in Supplementary Material):

Vl(t) = Vre
−t + (EL + Ie − w)

(

1− e−t
)

for ti ≤ t < ti + d.
(7)

For V ∈ [Vth,Vpeak], we cannot solve the equation, but know
from simulations that this simply leads the neuron to spike with
a typical timescale of τm = 1.

From these analytic formula, we can then constrain the final
solution through a self-consistent equation. The solution of the
self-consistent equation will therefore assure that the spikes of
one neuron during a burst sustain the burst itself and drive the
subsequent ones (self-loop in the equivalent representation of
Figure 1), thus shaping a permanent and self-sustained bursting
activity, as observed experimentally. Such a solution gives a
complete description of the neuron’s dynamical properties in
time and allows us to obtain all the characteristics of the bursting
dynamics.
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This equivalent approach is applied here to three different
synaptic models (instantaneous, continuous, and alpha-shaped
synapses) leading to three transcendental self-consistent
equations; details of mathematical developments can be found
in the Supplementary Material. Python tools to solve the self-
consistent equations and compute the characteristics of the
bursting behavior are available on our GitHub repository; they
are based on the scipy implementation of Brent’s root-finding
method.

Exploration of Parameter Space
Thanks to the fast computation of the equivalent model, we were
able to compute the dynamical properties for a large number
of parameter sets. These results were normalized and analyzed
through a Principal Component Analysis algorithm, using the
scikit.learn package, in order to obtain the correlation
matrix linking the collective dynamical properties to the precise
values of the neuronal parameters.

For each parameter set, we first ensure that there is no
stable fixed-point in phase-space and that the model predicts
a solution, i.e., the existence of bursts with mathematically
coherent properties. Secondly, we assess the biological relevance
of the solution by (1) ruling out dynamics for which the voltage
decreases to values lower than −120 mV during the giant
hyperpolarization following a burst; (2) restricting the maximum
value of the slow current w to 1,000 pA; (3) preventing cellular
bursting for individual neurons by asserting Vr < Vth—this
restricts the neurons to single-spike intrinsic behaviors (Naud
et al., 2008).

These constraints limit the number of “valid” parameter sets
and make the parameters inter-dependent; this leads to a non-
trivial parameter/parameter correlation matrix (Figure S1).

RESULTS

As mentioned in the introduction and discussed in the
Supplementary Material, synchronization is highly resilient and
we focus here solely on the fully synchronized bursting network.
We start from individual neurons which are spiking periodically,
a behavior that seems to originate from persistent sodium
currents like INa,p or Ih in neuronal cultures (Penn et al.,
2016); it is modeled here by a constant input current Ie. When
these neurons are coupled, however, their periodic dynamics is
drastically modified as they adopt a collective bursting behavior
(Borges et al., 2017).

We describe the attractor characterizing the dynamics of the
synchronous bursting state. Our key result details the properties
of this attractor and shows how they are linked to both the
biological parameters of the neurons and the network topology.

The behavior shows features of a relaxation oscillator (see
Figure 4A): the current w slowly decreases during the quiescent
phase, then rapidly increases during the bursting phase until
it reaches a threshold value w∗, which determines the burst
termination and the start of a new cycle.

The main characteristic which determines the dynamics is
the maximum value of the adaptation current, w∗ reached at
the end of a burst. It depends on the neuronal and network

parameters, and qualitatively obeys the following equation
(details in subsection 5.3 of the Supplementary Material):

w∗ ≈ EL + Ie +
Vre
−d + kQs

1− e−d
+ C (8)

where C is a constant. Since the firing rate during the burst is
mostly linked to w∗, this equation directly shows that higher

coupling (kQs), higher excitability (EL), or higher reset voltage
(Vr) will increase the bursting intensity. The effect of the
transmission delay d is slightly more complex but roughly
decreases bursting intensity when increased.

Taking into account finer effects and spike-driven adaptation
then leads to more complete equations delivering additional
results about the influence of the remaining parameters.
These are considered in more details in the Discussion
section.

In the following subsections, we describe and explain the
bursting dynamics, then discuss themore detailed, self-consistent
versions of Equation (8) (complete derivation of these equations
can be found in the SupplementaryMaterial). Finally, we describe
how our model accounts for the structural heterogeneity that is
present in neuronal cultures.

The Attractor, Inner Structure of a Burst
The synchronous attractor is composed of intermittent bursts of
activity, as shown in Figure 2 in the (V ,w) phase space. During
a cycle, the neuron state variables (V , w) do not follow the
attractor at constant velocity: the neuron spends much longer on
the recovery path (low V) compared to the bursting period (high
V)—see Figure 4 to see this trajectory in time.

This attractor is modified by the presence of heterogeneity in
the network’s topology—quantified by σk for Gaussian in-degree
networks—which impacts both its duration and regularity.
Indeed, heterogeneity noticeably smooths the average behavior
and reduces the number of spikes in a burst which goes down
from 6 spikes per burst for the fixed in-degree graph, to 3–5
if σk = 4, and is roughly reduced to 2 when σk = 20. For
the fully synchronized fixed in-degree network, all neurons are
responding to the exact same input—they receive spikes from the
same number of neighbors—hence they are all equivalent to a
single average neuron.

As can be seen on Figure 3 for a fixed in-degree network,
synchronized bursting of the population consists of a
succession of active periods, called bursts1, separated by
long inactive intervals, which we call recovery periods. As can
be seen on the inset, the burst displays a strongly ordered
inner structure composed of successive synchronized burst
slices, which are consistent sets of spikes stemming from a
common input.

This inner structure, based on spike events, helps us define
several quantities that characterize the dynamics such as the

1Let us insist once again that the term burst always refers here to the concerted

activity of a large fraction of the neuronal population (i.e., a network burst) and

should not be confused with single neuron bursting behavior—though they share

common characteristics—since they have different origins and population bursts

occur on much longer timescales.
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FIGURE 2 | Attractors for three different networks of 1,000 identical neurons

with average degree 100. Fixed-in-degree is represented by the blue solid line

(spike positions are represented by empty squares and reset positions by full

circles). For Gaussian in-degree networks, the logarithm of the number of

states per bin—over 200 simulations with 4 cycles each—was used to

compensate the non-constant velocity across the whole attractor. The larger

attractor, in green, is associated to σk = 4; the smaller one, in purple, is for

σk = 20; both attractors are delimited by a dashed line (limit of a unique visit

per bin). Bin size is approximately 0.05 mV along the V-axis and 1 pA along

the w-axis.

FIGURE 3 | Spike raster of bursting activity for a fixed 100-in-degree network.

Inset provides details on the behavior of the neurons during a single burst, with

successive synchronized burst slices separated by longer and longer intervals

as the adaptation increases.

burst and inter-burst durations. However, information about the
spike times alone is not sufficient to provide insights regarding
the phenomena involved in the burst initiation or termination.
Therefore, we will use the time evolution of the neuron’s state
variables to perform a phase-plane analysis and investigate
possible mechanisms for both the bursting and recovery
periods.

Neuronal Trajectory, Assessment of the
Theoretical Model
From the simulation, we can record the evolution of V and
w during the whole dynamics to reconstruct the trajectory of
the neuronal state, both in time and in phase-space. Figure 4A
represents the time evolution of the equivalent neuron (see
Figure 1) during a bursting dynamics on a regular fixed
in-degree network and the comparison with the trajectory
predicted by the “alpha” equivalent model (see section 6 of the
Supplementary Material, “A more detailed model: alpha-shaped
synapses”). The close agreement between these trajectories shows
that the theoretical model has a good predictive power. Indeed,
the most visible discrepancy between the equivalent model and
the simulations concerns the precise spike times, as shown in
the inset of Figure 4A; however, though the difference can be
significant on the intraburst timescale, it is in fact limited to a
few milliseconds, which is negligible compared to the duration
of a cycle.

The dynamics can be understood most easily when looking
at w since its behavior can be seen as relaxation oscillations:
after a burst (0), the adaptation variable undergoes a quasi-
exponential decrease until it reaches its minimum value wmin—
passing through points (1) to (4). At this point, the burst starts
and w increases rapidly toward a peak value w∗—point (5) on
Figure 4, which characterizes the trajectory, and will be derived
below. Once this maximum value is reached, the neuron stops
spiking, the increase of w stops, then the cycle starts again (see
Supplementary animation online).

The evolution of V can then be seen as an interplay between
the influence of w, Ie, and the synaptic currents in the active
period:

• During the burst, each new spike induces a strong
depolarization of the membrane, thus leading to another
spike—point (4) to (5) on the figure.
• Once w reaches its peak value w∗, its influence becomes

predominant and prevents the neuron from firing; once
the effect of the last spike vanishes, it drives a fast
hyperpolarization of the neuron down to point (1).
• After V has reached a quasi-equilibrium value along its

nullcline, it instantaneously adapts to the slow decay of w and
increases progressively until the trajectory reaches the lowest
point of the V-nullcline—point (3). This recovery from the
strong hyperpolarization is greatly influenced by Ie.
• At this point, the potential starts increasingmore rapidly as the

first spike is initiated until the bursting starts again with (4),
where the first spike predicted by the equivalent model occurs.

Understanding the Initiation and
Termination of a Burst
One of the main interests of this equivalent model is that
it provides an intuitive understanding of the mathematical
conditions describing the initiation and the termination of bursts.
As shown on Figures 4B, 5, the whole existence of the short active
period can be understood from the position of the neuronal state
in phase space compared to the V-nullcline (curve V̇ = 0),
which can be seen as an effective threshold. Indeed, the initiation
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FIGURE 4 | (A) Time evolution of parameters V and w for the theoretical model (thick black lines and circled numbers) and for a simulation (thin red curve for V, blue
for w) on a fixed in-degree graph with k = 100. Two bursts are represented and the intraburst dynamics is presented in the inset, where the spike times predicted by

the equivalent model are marked by black dots. The numbered circles mark the main points of the theoretical dynamics, where the behavior changes, as described in

the SI. (B) Plot of the attractors in phase space, both for the theoretical model (thick black curve), and through a simulation (thin brown). The three first periods

following a burst are denoted by blue arrows: there is first a sharp decrease of V down to its minimum value as it crosses the V-nullcline (dashes); it is followed by a

short interval where the neuronal state moves rapidly toward the “recovery curve” (dotted line), which is then followed until the minimum of the V-nullcline and the

bursting sequence. The spike trajectory is cut on the figure (marked by empty squares) and the following reset point is marked by a filled circle, as the voltage is set

back to Vr and w is increased by b. Neuronal and synaptic parameters are detailed in Table S1, Set 1. The w-nullcline is outside the range of (B).

of the burst simply occurs when w becomes low enough so
that the trajectory can “pass under” the V-nullcline; this can be
understood easily since the excitability of the neuron increases
when w decreases. The lowest value wmin represent the situation
where the excitability of the neuron has become so high that it
spontaneously emits a spike.

A key result is then the derivation of a condition for burst
termination. We show that the end of the spiking sequence
that constitutes a burst is ensured by the intrinsic dynamical
properties of single neurons—through adaptationmechanisms—
and does not require inhibition nor plastic synapses.

To understand the succession of spikes during the burst and
why this spiking process comes to an end, we must introduce a
description of the dynamic coupling between the neurons. We
first explicit this coupling for two limit cases: firstly instantaneous
couplings in perfectly regular fixed in-degree networks, using
synapses modeled by Dirac delta functions (called Dirac synapses
in the following); secondly, mimicking the effect of highly
disordered networks, where synapses release a constant current
over the entire burst duration. Thirdly, we consider a more
biologically relevant coupling using alpha-shaped synapses,
detailed in section 6 of the Supplementary Material, which lies
between these two previous limits.

In general, the synaptic coupling Is between the neurons
is time-dependent, which makes the resolution of the system’s
dynamics (Equation 2) highly complex. As a result the V-
nullcline (V̇ = 0) is not generally fixed over a whole cycle. This
complicates the threshold condition on w∗ in the case of the
“alpha” synapses. Therefore, the Dirac and continuous synaptic
models are more convenient since they enable us to get an insight
on the bursting mechanisms through a static representation of
the phase diagram during a burst.

Regular Networks and Dirac Synapses
The rationale for the condition of burst termination is most
easily understandable in the case of regular networks assuming
a coupling in the form of Dirac synapses. Indeed, the arrival of a
spike then simply results in a step increment of the post-synaptic
neuron’s membrane potential:

V(t+sp) = V(t−sp)+ kQs (9)

where tsp is the time at which the spike is delivered to the post-
synaptic neuron; t−sp, t

+
sp are respectively the instants immediately

before and after spike delivery. Qs is the total charge delivered by
the spike and reflects the coupling strength in the network.

The behavior of the neuron can easily be understood by
looking at the situation in phase space on Figure 5. Due to the
instantaneous coupling through the Dirac function, there is no
finite period of time where the equation for V receives a non-
zero input. Consequently, in this limit the V-nullcline remains
fixed at all times. Therefore, the condition for the occurrence
of a new spike during the burst depends only on the position
of V(t+sp) compared with the value of the V-nullcline at the
same w: VNV (w). During an interspike of duration TI(w), w
can be considered as constant since τm,TI(w)≪ τw (quasi-static
approximation). Hence, either V(t+sp) > VNV (w) and a new spike

occurs, or V(t+sp) ≤ VNV (w) and the burst terminates.
Developing this condition mathematically leads to the

following self-consistent equation:

w∗ = EL + Ie − Vr +

[

W−1

(

−eEL+Ie−w
∗
)

+ kQs

]

ed (10)

whereW−1 is the lower branch of the Lambert W function.
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FIGURE 5 | Trajectory of a “Dirac burst” in dimensionless phase space; the

gray numbers indicate the order of the burst initiation. After a reset, the

potential first decreases (leftmost parts of the trajectory) until the spike arrives

(brown square), at which point the potential is suddenly shifted to the

corresponding brown dot on the rightmost part of the trajectory. The decay

before the spike arrival becomes more and more significant as w increases

since it contributes negatively to V̇. Burst continues until w becomes greater

than w∗, denoted by the green dot, where the V-nullcline (black line,

representing the set of points (VNV (w),w)) is crossed. Once wmax is reached

(circled 0), the burst ends and the recovery period starts.

Heterogeneous Networks and Continuous Synapses
For very heterogeneous networks, the broad in-degree
distribution leads the neurons to fire at seemingly random
times during the bursting period. In the limit where the time
distribution of the spikes inside a burst becomes completely
uniform, we can approximate it through a window-like synaptic
current which is zero during the interburst, then jumps to a finite
constant value during the burst.

To obtain an effect equivalent to the spikes described in the
previous subsection, devoted the Dirac model, the total charge
transmitted during the burst should be the same if an equal
number of spikes is emitted. This condition reads, for an average

in-degree k, and a mean synaptic current I
(c)
s during the burst,

I(c)s TB = nskQs. (11)

where ns is the number of spikes inside the burst. As described
previously, the burst termination occurs when the trajectory
crosses the V-nullcline. Figure 6 shows this condition in this
heterogeneous limit, i.e., as the input received by the neurons
becomes continuous during the burst.

Because of the quasi-static hypothesis on w during an
interspike, burst termination arises when w goes above the lowest

point of the V-nullcline, which occurs for w∗ = 1+EL+ I
(c)
s + Ie.

This is obtained by setting V = 0 in wNV (V). After a few lines
of calculation detailed in the Supplementary Material (Equations
S8–S10), we obtain the self-consistent equation:

w∗ = wmin + b
[

ts(w
∗)− d

]

+ kQs. (12)

FIGURE 6 | Trajectory of a burst in dimensionless phase space for neurons

coupled via continuous synapses. Once the first spike occurs (marked by 4),

the burst is initiated, i.e., a continuous current I(c)s is injected into the neurons,

thus shifting the resting V-nullcline (dashed curve) upwards (solid black). The

neuron spikes until the last shift of b brings w above w∗, at wmax , where it

encounters the nullcline. This marks the end of the burst and the beginning of

the recovery period (circled 0).

where ts(w
∗) is the average interspike interval (ISI) in the

burst. As in the previous equations (Equations 8, 10), the
critical value of the adaptation current wj at which the burst

terminates (1) increases when the coupling strength (kQs)
increases (2) decreases when the transmission delay d increases.
Furthermore, this self-consistent equation also shows the effect
of the spike-driven adaptation b which increases the maximum
value of the adaptation current that can be reached.

Summary of the Theoretical Description
Once w∗ has been computed using one of the theoretical models,
we can derive all the dynamical properties, starting with:

wmax =

{ ⌈
w∗−wmin

b

⌉

b for fixed in-degree networks

w∗ with heterogeneity
(13)

where ⌈·⌉ denotes the ceiling function. Though the self-consistent
equations derived above are less easy to interpret compared
to the approximated solution (Equation 8), they allow precise
quantitative predictions of the network’s dynamics without too
much computational cost.

Note that the neurons follow a well-defined and unique
attractor, with w changing by discrete steps, only in the case
of a fixed in-degree network, where they are all equivalent and
synchronous, hence the dual form of Equation (13). In the
presence of heterogeneity, the attractor has fuzzy boundaries, as
shown by numerical simulations on Figure 2. In this case, the
average adaptation over all neurons has a smooth dynamics and
wmax is closer to the statistical value at which the neurons stop
bursting: w∗.

The complete dynamics of the model can be completely
captured by the relaxation behavior of w, which displays
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two phases: one resting period where the adaptation variable
decreases until it reaches its lowest value, and an active period
wherew increases rapidly up to its peak value. The duration of the
resting period (interburst interval, or IBI) can be approximated as
the sum of the following terms:

Tdown characterizes the time necessary for the neuron to
undergo its strong hyperpolarization and reach its lowest
membrane potential—from (0) to (1) on Figure 4,

TR is the duration of the recovery—from (2) to (3),
Tfs is the time necessary for the initiation of the first spike

which is roughly equivalent to the membrane time
constant τm—from (3) to (4).

This allows us to obtain the characteristic values of the dynamics
(see section 8 of the Supplementary Material, “Resting period”,
for detailed calculations):

ns =

⌈
w∗ − wmin

b

⌉

(average number of spikes in a burst),

TB =

ns−1∑

j=1

ts(wmin + jb), where ts(w) is the interspike

interval (ISI) for a given value of w,

Tdown = ln

(
λ

λ− Vmax + EL + Ie − wmax

)

,

TR =
τw − a

1+ a
ln

(

w(2) − a
1+a Ie

wmin −
a

1+a Ie

)

, where w(2) is the value

of w at point (2),
IBI ≈ Tdown + TR + 1.

Because these results are analytic, thus immediate to compute,
this has the significant advantage over simulations that it allows
us to quickly predict the properties of the collective dynamics
for a large number of parameter sets, i.e., of individual neuron’s
behaviors.

Evolution of the Properties with Neuronal
and Synaptic Parameters
In order to assess the separate influence of the different neuronal
parameters on the bursting properties, we used the model to
test in a systematic way the influence of the separate variables.
As can be seen on Figure 7, this allows to compare the
relative influence of any desired set of parameters in a fast and
systematic way. Thus, it is a valuable tool to make preliminary
explorations in order to prepare for subsequent experimental
tests.

This matrix allows us to confirm obvious trends, such as
the negative influence of the driving current Ie on the IBI,
as it tends to quicken the depolarization of the neurons.
Likewise, τw is almost linearly related to the IBI since it
dictates the decay time for w. However, this systematic study
also revealed less predictable correlations. Indeed, one of the
most interesting features is the quasi-absence of influence of
the subthreshold adaptation variable a compared to the spike-
driven adaptation (characterized by b and Vr) on the most
visible features of the activity, namely the IBI and burst
duration.

FIGURE 7 | Correlation matrix for the main characteristics of the bursting

dynamics vs. neuronal parameters. 〈ISI〉 is the mean value of the interspike

over one burst. Correlations were performed over 2 million randomly-drawn

neuronal parameter sets using the predictions of the equivalent model. The

experimentally observable features are the IBI, TB, ns, and 〈ISI〉.

Correlations for 〈ISI〉 should be treated with care as this
value is the average of the interspike interval over a burst.
An additional spike (increment in ns) automatically increases
〈ISI〉 since the new interspike interval will be larger than the
previous ones. This is due to the monotonic growth of ISI
with w as the burst progresses. Thus, if Vr indeed reduces
the interspike duration on the whole, the negative correlation
between 〈ISI〉 and b mainly comes from the decrease of ns as b
increases.

Due to the sheer amount of calculation this would require,
the theoretical values returned by the equivalent model during
this large exploration of parameter-space cannot be verified by
simulations in a systematic way. However, the distributions of
the bursting characteristics (number of spikes, interburst, and
burst duration) are in biologically relevant ranges—see Figure 8.
This shows that adaptation alone can lead to network bursts
with periods varying from a few tenths of milliseconds to several
seconds.

Predictive Ability of the Burst Model for
Heterogeneous Networks
Our description of periodic bursts predicts the main features of
the synchronized bursting rhythmic activity such as its period
and firing rate, which are significantly influenced by the presence
of heterogeneity in the network’s structure, as was already visible
in Figure 2. Indeed, as the heterogeneity—namely σk—increases,
the sharpness of the synchronized burst slices decreases until the
spikes contained in the burst becomemore uniformly distributed;
this is clearly visible on Figure 9, which shows the comparison
of a burst for two Gaussian in-degree networks with different
standard deviations.

Our model is able to take this heterogeneity into account
through three synaptic descriptions (Dirac, alpha-shaped, or
“continuous”): this allows us to predict the interval in which
the bursting properties of most networks should be contained.
As shown on Figure 10, they fall in between the Dirac and
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FIGURE 8 | Distributions of the burst burst duration TB and of the IBI (both in ms) for 2 million parameter sets.

FIGURE 9 | Rasters of the bursting activity for 2 different Gaussian networks with 1,000 neurons and an average in-degree of 100; each inset details the inner

structure of a burst with the successive slices. (A) Homogeneous Gaussian in-degree network with k = 100 and σk = 5 leads to well-defined synchronized burst

slices inside the bursts. (B) Heterogeneous Gaussian in-degree network with k = 100 and σk = 20 leads to fuzzy synchronized burst slices.

“continuous-synapses” models. This description successfully
accounts for dynamics of networks with low heterogeneity. For
high levels of heterogeneity and low synaptic strengths, themodel
tends to overestimate the synchrony, although prediction of the
bursting period remains correct.

DISCUSSION

In all the simulations we performed, we observed that oscillating
adaptive spiking neurons synchronize, then start emitting bursts
of spikes as the coupling increases.

Our model provides a predictive framework which allows us
to determine how this bursting behavior is affected by changes in
the individual properties of the neurons.

In the following subsections, we first discuss the validity range
of the analytic model. Then, through a thorough mapping of
the aEIF parameters to ion channels and biological mechanisms,
we make experimentally-testable predictions about the possible
influence the main adaptation channels on the bursting behavior.
Namely, we suggest how adaptation-channel blockers may
affect the dynamics when applied on a bursting neuronal
culture.

Validity Range of the Equivalent Model
In order to get meaningful results within the framework of the
present model, one must take care to use sets of parameters that
lead to adaptive spiking neurons.

More importantly, the conceptual boundaries of the model
are reached in the limit of either a very weakly or very
strongly coupled neuronal network. For strong coupling the
discrepancy between the equivalent model and the simulations
mostly occurs because PSCs becomes so intense that a single
input can generate several spikes. This can occur in silico but
has little biological relevance for adaptive spiking neurons.
The weak coupling limit, however, is more revealing since a
progressive transition from an asynchronous state to a bursting
phase occurs. This transition first involves oscillating firing
rates, then synchronous slices containing between one and two
spikes, before bursts containing multiple spikes appear. Our
equivalent model, designed to describe a fully synchronous

bursting dynamics, cannot faithfully capture this smooth
transition.

Regarding the network structure, more heterogeneous (e.g.,

scale-free) networks may also be described by the “continuous-

synapse” model on some range of the coupling strength
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FIGURE 10 | Variation of the IBI depending on maximum value of the PSC (in

pA). Values predicted by the equivalent model are shown in dashed,

dot-dashed and dotted lines respectively for the Dirac, alpha and continuous

models. Simulated values for a Gaussian network with σk = 4 (blue) and

σk = 20 (green) are superimposed: the main curve represents the average

value, while the filled area marks the 5th to 95th percentiles.

as the qualitative bursting behavior is still present on such
networks.

The Influence of Adaptation and Its
Biological Origin
Despite its simplicity, the aEIF model takes into account
most of the adaptation phenomena involved in biological
neurons. Thus, voltage-gated subthreshold adaptation currents,
like the muscarinic potassium current IM (Womble and Moises,
1992) are quantified by the constant a in Equation (2).
On the other hand, spike-triggered adaptation, which mostly
comes from calcium-gated potassium channels leading to after-
hyperpolarization (AHP) phenomena (Sah and Louise Faber,
2002), are quantified by the reset conditions. These calcium-
activated currents can be separated into three main types (Sah,
1996; Sah and Louise Faber, 2002; Vogalis et al., 2003) according
to their timescales. Over a few milliseconds (1–10 ms) the fast
hyperpolarization current fAHP contributes to action potential
repolarization, and is thus taken into account by the model
through the value of Vr in Equation (1). On an intermediate
(“medium”) timescale, the current mAHP has a fast rise-time
(less than 10 ms), followed by a decay over 50 to several hundred
milliseconds (Storm, 1989); it is modeled by the b step of w
after a spike, in Equation (1). Finally, the slow hyperpolarization
(Shah and Haylett, 2000; Andrade et al., 2012) current sAHP
has a slow rise of 100 ms or more, and an even slower decay
over several seconds. It is mostly revealed after a train of action
potentials and peaks between 400 and 700 ms. Though this
current is not explicitly taken into account by the aEIF model,
in the case of bursts, its qualitative effect can be obtained
approximately by an increase of τw, which lengthens the effect
of the potassium current after a burst. One of the limits of the

model is its unique timescale for all of the adaptation-related
features.

From the exploration of parameter-space, we obtain the
correlation matrix of Figure 7, which shows a significant
influence of spike-triggered adaptation on the dynamics
compared to subthreshold adaptation. A previous study
(Augustin et al., 2013) also hinted at the importance of a
non-zero b value to obtain low-frequency oscillations. Using the
equivalent model, this can be explained easily by the quasi-static
hypothesis and the shape of Equation (12). Indeed, the second
term of the right-hand side involves the average ISI—which is an
increasing function of w∗—and the spike-driven increment for
the adaptation, b. Thus, the higher the effect of the spike-driven
adaptation, the higher w∗, which leads to longer interbursts.
On the other hand, the quasi-static hypothesis states that the
evolution of w is slow compared to that of V , meaning that
the subthreshold variations given by a are limited by their slow
evolution on a timescale of τw.

A significant advantage of this simple description is that the
mechanisms proposed by our equivalent model, in light of the
correlation matrix on Figure 7, allow us to make qualitative
predictions that could be tested to validate it experimentally.
Thus, we predict that blocking the voltage-gated adaptation
(Stiefel et al., 2008) should have only limited influence on the
dynamics through a slight increase in the number of spikes
during a burst. On the contrary, blocking one of the calcium-
gated channels should lead to drastic changes in the collective
behavior:

• Blocking the fAHP channels should be equivalent to increasing
Vr , hence increasing the number of spikes in a burst, leading
to higher wmax, therefore longer IBI.
• Blocking themAHP channels through apamin (Sah and Louise

Faber, 2002) would be equivalent to lowering the value of b,
which should strongly impact the number of spikes inside a
burst, therefore its duration. Yet, this should not change wmax

significantly, so it should not strongly impact the IBI if the
sAHP is significant enough. However, in the case of complete
blocking, if the sAHP is not strong enough to compensate,
this should lead to the complete disappearance of the bursting
behavior.
• Specific blocking of sAHP channels via noradrenaline (Sah

and Louise Faber, 2002) should lead to a small increase of
the number of spikes during a burst, but would mostly be
equivalent to lowering τw. In situation where adaptation has
the strongest influence over the bursting period, this would
lead to a significant decrease of the IBI. This is however
unlikely to happen in neuronal cultures, as will be explained
below.

These experiments would enable to test the adaptation hypothesis
and assess the relative strength of the different processes we
described. In fact, some previous studies by Empson and
Jefferys (2001) and de Sevilla et al. (2006) have shown results
that seem to corroborate the previous predictions, at least
regarding the effect of apamin on bursting in slices. However,
the first study records only from few individual neurons, and
the second uses 4-aminopyridine and Mg2+-free medium to
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FIGURE 11 | Modification of the original dynamics (left), where only excitatory

neurons are present, by the introduction of 20% of non-oscillating, fast-spiking

inhibitory neurons (middle), or of plastic synapses exhibiting short-term

depression (right). The coherence of the qualitative aspect over three very

different systems is remarkable.

trigger the epileptiform activity. To assess the general validity
of the proposed mechanisms, one would thus need additional
measurements using cultures in physiological conditions, and
where each ion-channel would be tested independently while
recording larger fractions of the network, either through calcium
imaging or MEAs.

Moreover, other features, such as slow modulation of
extracellular potassium concentration due to neuronal activity
(Bazhenov et al., 2008) have been described in the context of
rhythmic activities; these experiments would also help determine
whether such phenomena are required as driving forces or only
contribute to strengthening existing bursting activities. In our
simulations, network bursting is very robust against the following
modifications of the system: addition of inhibitory neurons in
the network or inclusion of short-time depression in the synaptic
dynamics, as shown on Figure 11. It is thus likely that the
underlying mechanism we detailed for excitatory synapses can
be generalized to these cases. Indeed, the mechanism remains
unchanged by plasticity, while adding inhibitory neurons in
the population essentially translates into an effective decrease
of the excitatory coupling; the latter has been pointed out for
percolation in networks of integrate-and-fire neurons.

Eventually, previous studies (Cohen and Segal, 2011) have
hinted at the importance of synaptic fatigue in the burst
termination: they showed that the duration of an evoked burst
was strongly dependent on the elapsed time since the previous
burst, due to the time needed to repopulate the pools of
neurotransmitters. What we showed here is also compatible
with these results, since they can easily be understood in the
framework of our model: a smaller recovery time leads to a
higher initial value of the adaptation current, thus shortening
the burst duration because the maximum value of w is reached
sooner. The effects of synaptic plasticity and adaptation should
thus be similar; however, given the timescales reported in the
literature, termination could be mostly mediated by adaptation,

while the IBI might depend more strongly on synaptic
recovery time. In such a case, blocking sAHP as proposed
above should not dramatically change the IBI of neuronal
cultures.

CONCLUSION

This study explains the dynamical processes determining
synchronous network bursting of a population of oscillating
neurons coupled through excitatory synapses. In particular we
explain why adaptation is a sufficient condition for collective
bursting. We reproduce a large range of biological rhythms with
burst frequencies spanning almost 3 orders of magnitude, from a
few hundred milliseconds to tens of seconds, in agreement with
experimental observations.

Thanks to a phase-space analysis, we are able to propose a
mechanism for the initiation and termination of the bursting
period related to spike-driven adaptation, which we link to the
underlying biological phenomena. The derivation of analytic
equivalent models describing the complete bursting dynamics
allows us to predict the evolution of the characteristics of
the global behavior from the properties of the individual
units—neurons and synapses. This enables us to propose a
set of experiments which should clarify the role of adaptation
currents in network bursting, as well as their relative importance
compared to other biological processes such as exhaustion of
vesicle pools.

In our description, each new spike in the burst is caused by the
previous one, which means that the delay between the emission
of a spike and its reception by the post-synaptic neuron has a
significant influence on the dynamics. Indeed, we understand
intuitively that the longer the delay, the lower the excitability of
the neurons when the PSC arrives, since the membrane potential
can decay to lower values. This fact, added to the effect of
heterogeneity—which tends to reduce the interburst interval—
hints at the existence of a limit to the spatial extension which can
sustain coherent bursting. Exploring the effect of heterogeneity
and spatial embedding (through propagation delays) therefore
constitutes a natural continuation of this work. This is certainly
necessary to address experimental observations in large cultures,
such as the tendency of the activity to initiate in specific regions
before it propagates to the rest of the network (Orlandi et al.,
2013).
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