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École Doctorale de Dauphine – ED 543
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Abstract

Stochastic Invariance and Stochastic Volterra Equations

The present thesis deals with the theory of finite dimensional stochastic equations.

In the first part, we derive necessary and sufficient geometric conditions on the coefficients
of a stochastic differential equation for the existence of a constrained solution, under weak
regularity on the coefficients.

In the second part, we tackle existence and uniqueness problems of stochastic Volterra equa-
tions of convolution type. These equations are in general non-Markovian. We establish their
correspondence with infinite dimensional equations which allows us to approximate them by
finite dimensional stochastic differential equations of Markovian type.

Finally, we illustrate our findings with an application to mathematical finance, namely rough
volatility modeling. We design a stochastic volatility model with an appealing trade-off
between flexibility and tractability.

Keywords: Stochastic invariance, stochastic convolution equations, affine processes, rough
volatility.
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Samuel, Sara, Stefano, Stéphane, Thibault, Thorsten, Todor, Wahid, Xialou, Zorana.

I would also like to profoundly thank Dave and Hassan for encouraging me to embark on such
a stimulating adventure. I cannot forget to mention the administrative staff at Dauphine
for their hard efforts and their reactivity. In particular, I am deeply thankful to César, Igor,
Marie-Belle and Sylvie.

Finally, I could not have made it without the unconditional moral support and the love of my
friends, my family and my parents. My final sweet thought goes to my lifetime companion
Maya for always believing in me.

Paris, October 18, 2018

Eduardo Abi Jaber



Contents

Abstract ii

1 Introduction 1

1.1 Stochastic invariance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 The invariance/viability paradigm . . . . . . . . . . . . . . . . . . . . 3

1.1.2 A physicist’s insight in a deterministic setup . . . . . . . . . . . . . . 3

1.1.3 A geometric intuition in a random environment . . . . . . . . . . . . . 4

1.1.4 Existing results and sticking points . . . . . . . . . . . . . . . . . . . . 5

1.1.5 Our contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.5.1 Guessing game: beyond the Stratonovich drift . . . . . . . . 8

1.1.5.2 First order characterization under weak regularity assumptions 9

1.1.5.3 Extension to jumps . . . . . . . . . . . . . . . . . . . . . . . 10

1.2 Stochastic Volterra equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Affine lens: uniqueness and tractability . . . . . . . . . . . . . . . . . 18

1.2.4 Recovering Markovianity: correspondence with SPDEs . . . . . . . . . 20

1.2.5 Approximation procedure: only SDEs are needed . . . . . . . . . . . . 22

1.2.6 Lifting the Heston model . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.2.7 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2 Introduction (Version française) 25

2.1 Invariance Stochastique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.1.1 Le problème d’invariance ou de viabilité . . . . . . . . . . . . . . . . . 25
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2.2.4 Markovianité: correspondance avec les EDP stochastiques . . . . . . . 44

2.2.5 Procédure d’approximation . . . . . . . . . . . . . . . . . . . . . . . . 46
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Chapter 1

Introduction

The modeling puzzle: consistency and tractability

Models are everywhere. A model is an umbrella term that refers to a simplification of a
complex reality embodying different concepts such as fashion models, scale models, scientific
models. . . For scientists, a model is more precisely a mathematical representation of the world
used to understand, describe and predict. Yet, it still has to verify certain properties to be
recognized as a successful model before being adopted in practice. Two such key properties
are consistency and tractability.

A model is said to be consistent if it captures, to some extent, the stylized facts of the
observations. The more complex a model is, e.g. with a large number of parameters, the
more detailed the description of the reality, the more simplistic the more it drifts away from
real life. A model is said to be tractable if it produces its outputs in reasonable time1.
Complex models will require more computational resources. It is worth noting that the
concept of tractability evolves with time: what was considered un-tractable fifty years ago
is now considered tractable due to technological progress and the increase in computational
power. One can therefore distinguish between analytical tractability (closed-form solutions)
and computational tractability (numerical approximations of solutions).

In a utopian world, ideal models would provide a perfect balance between consistency and
tractability, that is, be able to replicate the stylized facts2 of the empirical observations while
predicting relevant outputs in a time-efficient fashion. Finding such models is without any
doubt a myth. Yet, this has never discouraged scientists from going in search of models
approximating this ideal concept:

How much consistency is one willing to sacrifice for tractability?

To answer this question, a picture is worth a thousand words.

1relatively to the problem at hand.
2at least some of them that are judged important for the problem considered.

1
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Figure 1.1: “Everything should be made as simple as possible, but not simpler” - Albert
Einstein

The present thesis conceptually deals with consistency and tractability of probabilistic mod-
els, more precisely stochastic models in continuous time. These models are used to account
for randomness phenomena with a wide range of applications in biology, economics, energy
markets, finance, insurance, physics and much more. The motivation stems here mainly
from mathematical finance. However, most of the chapters are concerned with the general
theory of stochastic analysis and are not restricted to the exciting field of finance. The con-
cepts and results developed in the sequel are in their most general form, perfectly suited for
probabilistic modeling.

The first part of the thesis is devoted to one of the most basic qualitative concepts of con-
sistency: picture a biologist wishing to model the evolution (in time) of the frequency of a
specific gene in a certain population. The most minimal requirement that the biologist could
ask for is a model with values in [0, 1] in order to stay consistent with the physical constraint:
a frequency is by definition a non-negative number less or equal than one. Similarly, before
putting millions of euros at stake, a trader would, hopefully, require from his model to pro-
duce positive values for the asset price. In mathematical terms, starting from an initial set
of physical constraints denoted by D, we are asked to determine all stochastic models, more
precisely all stochastic differential equations, that remain in D at all time. This is known
as an invariance or viability problem and is the subject of Chapters 3 and 4. Once there,
the biologist and the trader would often favor those consistent models having a high degree
of tractability for practical use. Technically, this restriction is made by usually imposing
an additional structure on the coefficients of the stochastic differential equation, for instance
affine or polynomial structures. This often yields tractability by completely characterizing
the underlying law of the stochastic process.

This leads to the second part of the thesis where the quantitative concept of tractability is
tackled. We introduce a new class of stochastic models that are richer and more flexible
than those studied in the first part, namely stochastic Volterra equations. The price to pay is
that a priori these equations are highly un-tractable. Our main results show that looking at
these equations through the affine lens allows one to recover tractability, making stochastic
Volterra equations perfect candidates for successful probabilistic models with an appealing
trade-off between consistency and tractability. This is highlighted in Chapters 5 and 6.
Finally, we exemplify these results with an application to finance in Chapters 7 and 8.

From a mathematical viewpoint, the two parts of this thesis can be read independently.
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1.1 Stochastic invariance

1.1.1 The invariance/viability paradigm

What is an invariance/viability problem? On an abstract level, we fix a set D of some
topological space and we drop a particle inside D. The set D is said to be invariant/viable if
the particle stays in D at all time. The problem is then to characterize the invariance of D
through conditions on the driving forces that govern the movement of the particle. Invariance
and viability problems have been intensively studied in the literature, first in a deterministic
setup and later in a random environment.

1.1.2 A physicist’s insight in a deterministic setup

In order to gain insights, we start by making two restrictions on the set D and the movement
of the particle. We consider a closed subset D of Rd equipped with its canonical inner product
〈·, ·〉 and assume that the movement of the particle is governed by the following autonomous
ordinary differential equation

dXt = b(Xt)dt, X0 = x, (1.1.1)

where Xt ∈ Rd denotes the position of the particle at time t ≥ 0 and b : Rd → Rd is the
driving force. Further, we assume that b is Lipschitz continuous so that (1.1.1) admits a
unique solution for every initial point x ∈ Rd. Starting the solution from X0 ∈ D, the
invariance problem can now be formulated as follows.

On what conditions on b does the solution X remain in D at all time?

Assume that X stays in D up to the first time it hits the boundary at time t ≥ 0. From a
physicist’s perspective, b(Xt) = dXt

dt denotes the instantaneous velocity of the particle at time
t. In this context, it is useful to recall that the instantaneous velocity is always tangential
to the path of the particle. Whence, intuitively, at a boundary point Xt ∈ D the trajectory
will stay in the domain as long as

the velocity b(Xt) is either tangential to the boundary or inward pointing,

or else the velocity would point outwards and force the particle outside the domain. When the
particle is strictly inside the domain, the instantaneous velocity can point in any direction.
This can be given a precise mathematical meaning by specifying a dual object to tangency:
the first order normal cone defined as

N 1
D(x) =

{
u ∈ Rd : 〈u, y − x〉 ≤ o(‖y − x‖),∀ y ∈ D

}
(1.1.2)

consisting of all outward pointing normal vectors to the set D at a point x. The physicist’s
intuition translates into

〈u, b(x)〉 ≤ 0, x ∈ D, u ∈ N 1
D(x). (1.1.3)

If the point x strictly lies in the interior of D, N 1
D(x) = {0} so that (1.1.3) is trivially satisfied

for interior points independently of the behavior of b.

To confirm this assertion mathematically, assume that D is invariant under (1.1.1) started
at x ∈ D, i.e. Xt ∈ D, for all t ≥ 0. Let φ : Rd → R be a smooth function such that
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max
D

φ = φ(x). Since φ(Xt) ≤ φ(x), for all t ≥ 0, the chain rule yields

∫ t

0
Dφ(Xs)b(Xs)ds ≤ 0, t ≥ 0,

where Dφ(x) is the transpose of the gradient of φ at the point x. Dividing the above by t
and sending t → 0 yields by continuity

Dφ(x)b(x) ≤ 0

which after a small additional effort can be shown to be equivalent to (1.1.3).3 The condition
is also sufficient for invariance. This result is known as Nagumo’s tangency condition named
after the Japanese mathematician Mitio Nagumo who was the first one to derive this char-
acterization in a seminal paper in 1942 written in German [97]. The theorem was seemingly
forgotten and rediscovered independently in different contexts during the next twenty years.
For a detailed treatment of deterministic invariance and viability problems we refer to [9, 24].

1.1.3 A geometric intuition in a random environment

In a random environment, the autonomous ordinary differential equation (1.1.1) is extended
to a time-homogeneous Markovian stochastic differential equation

dXt = b(Xt)dt+ σ(Xt) dWt︸︷︷︸
noise

, X0 = x, (1.1.4)

where σ : Rd 7→ Rd×d is continuous with growth conditions and W is a d-dimensional
Brownian motion W , i.e. the analogue of a random walk in continuous-time.

The rules of the game remain unchanged: find necessary and sufficient conditions on the drift
b and the volatility matrix σ under which there exists a D-valued weak solution of (1.1.4)
given that x ∈ D.

Extending the physicist’s intuition, as long as the particle remains strictly inside the domain,
it is clear that b and σ can point in any direction. The situation is now trickier at the
boundary. Let us first consider the diffusive term σ(Xt)dWt. Heuristically, dWt

dt ≈ Wt+h−Wt

h
is a Gaussian random variable with support equal to Rd meaning that it can take arbitrarily
large positive and negative values with positive probability. For this reason, at the boundary,
σ cannot have any transverse directions to the boundary, or else the particle can be pushed
out quite far from the domain due to the unbounded fluctuations of the Gaussian random
variable. Whence, the only possible directions for σ are those that are tangential to the
boundary (highlighted in blue on Figure 1.2 below). At this stage, the geometry and the
curvature of the domain enter into play for b as displayed on Figure 1.2:

• In the absence of curvature at point (ii), the volatility σ is keeping the particle on the
boundary of the domain. Hence, the drift b can vanish here or point inward.

• For a locally convex boundary as in (i), although tangential, the volatility σ is pushing
the particle outside the domain. Therefore, the drift b has to compensate this movement
in order to bring back the particle inside the domain. Notice that in this case b cannot
vanish.

3Think of a first order Taylor’s expansion of φ around its maxima x with u ≡ Dφ(x)⊤.
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• For a locally concave boundary as in (iii), the drift b can even be outward pointing
since the volatility is pushing the particle inside the domain.

(i)

(iii)

(ii)

σ

σ

σ

b

b

b

D

Figure 1.2: Geometric intuitions: Interplay between the geometry/curvature of D and
the coefficients (b, σ).

All in all, the geometric intuitions can be formulated as follows.

An informal characterization

There exists a D-valued solution to (1.1.4) started from any X0 ∈ D if and only if, at
all boundary points, the following geometric conditions hold

tangential volatility σ and inward pointing compensated drift (b− F (σ)), (1.1.5)

where F quantifies the contribution due to σ in the tangent direction.

1.1.4 Existing results and sticking points

Second order characterization

We now turn to a more formal mathematical derivation mimicking that of Section 1.1.2.
Assume that there exists a D-valued solutionX to (1.1.4) started from x ∈ D. Let φ : Rd → R

be a smooth function such that max
D

φ = φ(x). Since φ(Xt) ≤ φ(x), by Itô’s lemma

∫ t

0
Lφ(Xs)ds+

∫ t

0
(Dφσ)(Xs)dWs ≤ 0, t ≥ 0, (1.1.6)

where Lφ := Dφb+ 1
2 Tr(D2φσσ⊤). Taking the expectation in the above, dividing by t and

sending t → 0 yield
Lφ(x) ≤ 0,

or equivalently, after a small effort4,

〈u, b(x)〉 +
1

2
Tr(vσ(x)σ(x)⊤) ≤ 0 x ∈ D, (u, v) ∈ N 2

D(x), (1.1.7)

4Think of a second order Taylor’s expansion of φ around its maxima x with (u, v) ≡ (Dφ(x)⊤, D2φ(x)).
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where N 2
D(x) is the second order normal cone to the set D at a point x defined as

N 2
D(x) = {(u, v) ∈ Rd × Sd, 〈u, y − x〉 +

1

2
〈y − x, v(y − x)〉 ≤ o(‖y − x‖2),∀ y ∈ D}.

The condition (1.1.7) is also sufficient for invariance by virtue of the celebrated positive
maximum principle of Ethier and Kurtz [54, Theorem 4.5.4].

This yields a characterization of the invariance in terms of the second order normal cone.
Nevertheless, the formulation (1.1.7) has two main drawbacks. First, the geometric intuitions
(1.1.5) cannot be read directly on (1.1.7). Second, computing the second order normal
cone can be daunting in practice as opposed to the first order normal cone. Whence, it
would be preferable to have a characterization using the first order normal cone as in the
deterministic setting. Inspecting (1.1.7) and recalling that (u, v) ≡ (Dφ(x), D2φ(x)), one
is tempted to perform an integration by parts on the term Tr(vσ(x)σ(x)⊤) to recover the
gradient u = Dφ(x)⊤. In order to do so, additional regularity assumptions on σ such as
differentiability are needed.

First order characterization

Looking back at (1.1.6) and assuming that σ is twice differentiable, one could reapply Itô’s
lemma on the term (Dφσ)(X) to get (recall that X0 = x)

0 ≥
∫ t

0
Lφ(Xs)ds+Dφ(x)σ(x)Wt

+

∫ t

0

(∫ s

0
D(Dφσ)(Xu)σ(Xu)dWu

)⊤
dWs +

∫ t

0

∫ s

0
L(Dφσ)(Xu)du dWs. (1.1.8)

One could now study the pathwise small time behavior without taking the expectation. For
illustration purposes we restrict to the one dimensional case d = 1 and set

γ : y → D(Dφσ)(y)σ(y) = D2φ(y)σ2(y) +Dφ(y)Dσ(y)σ(y).

The double stochastic integral term in (1.1.8) reads

∫ t

0

∫ s

0
γ(Xu)dWudWs = γ(x)

∫ t

0

∫ s

0
dWudWs +

∫ t

0

∫ s

0
(γ(Xu) − γ(X0))dWudWs

=
γ(x)

2
(W 2

t − t) +O(t1+ǫ)

where the estimate involving the random variable ǫ(ω) > 0 can be derived heuristically under
suitable Hölder regularity on σ and the fact that Wt behaves very roughly like

√
t. With the

same reasoning the last term in (1.1.8) can be shown to be dominated by t3/2 as t goes to 0.
Further, since

lim inf
t→0

W 2
t

t
= 0 and lim sup

t→0

W 2
t

t
= +∞,

dividing (1.1.8) by t and taking the lim sup for t → 0 yields

0 ≥ Lφ(x) + lim sup
t→0

Dφ(x)σ(x)
Wt

t
− γ(x)

2
+ 1{γ(x)>0}“ + ∞”.

Since Wt
t is a centered Gaussian random variable with variance 1, the previous inequality is

possible only if
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(i) Dφ(x)σ(x) = 0,

(ii) γ(x) ≤ 0,

(iii) 0 ≥ Lφ(x) − γ(x)
2 = Dφ(x)

(
b(x) − 1

2Dσ(x)σ(x)
)
.

The informal study of the small time path behavior of double stochastic integrals can be
made rigorous by appealing to the law of the iterated logarithm for Brownian motion as
shown in [30], see also [23, Lemma 2.1]. Dropping the restriction d = 1, (i) and (iii) lead
to the following characterization first derived by Doss [47] and later on by Da Prato and
Frankowska [38]. Under suitable regularity assumptions on (b, σ) there exists a D-valued
solution to (1.1.4) started from any X0 ∈ D if and only if

σ(x)⊤u = 0 and 〈u, b(x) − 1

2

d∑

j=1

Dσj(x)σj(x)〉 ≤ 0, x ∈ D, u ∈ N 1
D(x), (1.1.9)

where σj(x) denotes the j-th column of the matrix σ(x) and Dσj(x) is the Jacobian of σj(x)
at x.

The conditions (1.1.9) reflect exactly the geometric intuitions (1.1.5) where the contribution
F (σ) due to the volatility σ in the tangent direction is quantified by means of the so-called
Stratonovich correction term

F (σ) =
1

2

d∑

j=1

Dσjσj .

Historically, the correction term was named after the Russian mathematician Ruslan L.
Stratonovich and allows one to recover the chain rule of ordinary calculus lost with Itô’s
theory. The Stratonovich correction term arises in a multitude of problems such as Wong
and Zakäı approximation result [113], the support theorem of Stroock and Varadhan [107],
the Milstein method for numerical simulations. . . and has numerous applications in Physics.
Although disparate, these problems, along with invariance/viability problems, rely on the
traditional chain rule, which explains the appearance of the Stratonovich correction term.

On the practical side, the formulation (1.1.9) requires strong regularity assumptions on the
coefficients, namely on σ. The Stratonovich correction term makes sense only when σ is
differentiable, which is too restrictive for applications. Indeed, set D = R+ and consider the
square-root process

dXt = b(Xt)dt+
√
XtdWt.

Here, σ : x → √
x is not differentiable at the boundary point x = 0. Although the

Stratonovich term is not well defined in this case, one could still stubbornly consider a
naive limit at the point 0 with u = −1 (since N 1

D(0) = R−) so that

0 ≥ lim
x→0

〈u, b(x) − 1

2
Dσ(x)σ(x)〉 = lim

x→0
(−1)

(
b(x) − 1

2

1

2
√
x

√
x

)
,

yielding

b(0) ≥ 1

4
,

which is too strong since the well known invariance condition for the square-root process is
b(0) ≥ 0. Intuitively, when the process approaches zero the diffusion term

√
XtdWt goes

to 0 and X behaves as the deterministic equation (1.1.1) yielding the inward pointing drift
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condition b(0) ≥ 0. This example illustrates that on the one hand even simple diffusions as
the square-root process do not satisfy the assumptions needed for (1.1.9). On the other hand
approximating the Stratonovich term on the boundary of the domain by a sequence of the
value it takes at interior points does not provide the correct invariance characterization.

Noting that a := σ2 is differentiable for the square-root process, one is tempted to derive a
first order characterization similar to (1.1.9) in terms of a := σσ⊤ in place of σ by imposing
the regularity assumptions on the level of a. This desire stems from the following two
observations. As already seen on (1.1.7) the characterization depends on σ only through
a = σσ⊤ and an integration by parts would still be possible on the term Tr(vσ(x)σ(x)⊤)
when only a is assumed to be differentiable. On a deeper probabilistic level, the problem
of finding a D-valued solution to (1.1.4) can be exclusively reformulated using the support
of the law of the process X which is entirely determined by a and b. Second, imposing the
regularity assumptions on a rather than on σ extends considerably the range of validity of
(1.1.9) to a wider class of models useful in practice such as affine and polynomial diffusions
(see [48] and [35]). For these processes the mapping a = σσ⊤ is smooth (with affine or
polynomial dependence in x) but σ may fail to be differentiable mainly on the boundary of
the domain, as already highlighted by the example of the square-root process.

1.1.5 Our contributions

1.1.5.1 Guessing game: beyond the Stratonovich drift

At the present stage, the problem at hand is to reformulate the characterization (1.1.9) in
terms of a = σσ⊤. It is straightforward that the tangential volatility condition σ(x)⊤u = 0
is equivalent to the condition

a(x)u = 0. (1.1.10)

Guessing the correction term when σ is not differentiable is a more challenging task. The ex-
ample of the square-root process already revealed that taking a naive limit of the Stratonovich
correction term does not yield the correct conditions. Therefore a new expression for quanti-
fying the contribution of the diffusion term in (1.1.5) needs to be found. One could therefore
think of taking more involved limits of some suitable Stratonovich correction terms. Let us
make this more precise.

Assume that the mapping a is differentiable and denote by (e1, . . . , ed) the canonical basis of
Rd. Fix ǫ > 0 and consider the following regularization preserving the tangential volatility
conditions

σǫ : x → a(x)(a(x) + ǫId)
− 1

2 .

It is clear that σǫ is Fréchet differentiable with a derivative given by the product rule5

Dσǫ(x)h = Da(x)h(a(x) + ǫId)
− 1

2 + a(x)D((a+ ǫId)
− 1

2 )(x)h, h ∈ Rd.

5we use the same notation for the Fréchet derivative and the Jacobian matrix where we identify Da(x)ej =
Daj(x).
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In particular, evaluating at h = ej for j = 1, . . . , d yields that the Stratonovich correction
term 〈u,∑d

j=1Dσ
j
ǫ (x)σjǫ (x)〉 is equal to

〈u,
d∑

j=1

Daj(x)(a(x) + ǫId)
− 1

2σjǫ (x)〉 + 〈u, a(x)
d∑

j=1

D((a+ ǫId)
− 1

2 )(x)ejσ
j
ǫ (x)〉.

By virtue of the tangential condition (1.1.10) the second term vanishes so that

〈u,
d∑

j=1

Dσjǫ (x)σjǫ (x)〉 = 〈u,
d∑

j=1

Daj(x)(a(x) + ǫId)
− 1

2a(x)(a(x) + ǫId)
− 1

2 ej〉 (1.1.11)

Since a(x) ∈ Sd+, its spectral decomposition is given by

a(x) = Q(x)diag(λ1, . . . , λr, 0, . . . , 0)Q(x)⊤,

where r ≤ d denotes the rank of a(x), λ1 ≥ · · · ≥ λr > 0 and Q(x) is an orthogonal matrix.
Therefore,

(a(x) + ǫId)
− 1

2a(x)(a(x) + ǫId)
− 1

2 = Q(x) diag

[(
λ1

λ1 + ǫ
, . . . ,

λr
λr + ǫ

, 0, . . . , 0

)]
Q(x)⊤

−−→
ǫ→0

Q(x) diag


(1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0)


Q(x)⊤.

The last expression is nothing else but the projection matrix on the span of a(x) which can be
re-expressed as a(x)a(x)+ where a(x)+ denotes the Moore-Penrose pseudo-inverse6 of a(x).
Therefore, sending ǫ to 0 in (1.1.11) yields the correction term

lim
ǫ→0

〈u,
d∑

j=1

Dσjǫ (x)σjǫ (x)〉 = 〈u,
d∑

j=1

Daj(x)(aa+)j(x)〉. (1.1.12)

Heuristically, combining (1.1.10) and (1.1.12) we arrive at the following characterization.

Main result 1 - Invariance characterization

Under suitable assumptions such as differentiabilty of a := σσ⊤. There exists a D-
valued solution to (1.1.4) started from X0 ∈ D if and only if

a(x)u = 0 and 〈u, b(x) − 1

2

d∑

j=1

Daj(x)(aa+)j(x)〉 ≤ 0 (1.1.13)

for all x ∈ D and u ∈ N 1
D(x).

1.1.5.2 First order characterization under weak regularity assumptions

We prove in Chapter 3 that the characterization (1.1.13) holds. This constitutes the first
main result of the present thesis. The successive applications of Itô’s Lemma as done in

6The Moore-Penrose pseudoinverse of a m × n matrix A is the unique n × m matrix A+ satisfying:
AA+A = A, A+AA+ = A+, AA+ and A+A are Hermitian.
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(1.1.8) cannot be simply replicated. The crux resides in the fact that σ(X) fails to be
a semimartingale in general. We therefore had to develop new ideas before revisiting the
strategy.

To the best of our knowledge, as opposed to the Stratonovich term, the correction term
entering the characterization (1.1.13) appears for the first time in the literature and quantifies
the forcing action F of (1.1.5) as follows

F (a) =
1

2

d∑

j=1

Daj(x)(aa+)j(x).

The projection term aa+ is needed to stay in line with the geometric intuitions: b only has to
compensate the tangential directional derivatives of a to keep the particle inside the domain.

Further, if the volatility matrix σ is differentiable, it follows from (1.1.12) that

〈u,
d∑

j=1

Dσj(x)σj(x)〉 = lim
ǫ→0

〈u,
d∑

j=1

Dσjǫ (x)σjǫ (x)〉 = 〈u,
d∑

j=1

Daj(x)(aa+)j(x)〉,

proving that (1.1.13) reduces to the characterization (1.1.9). Therefore, our result generalizes
the works [38, 47] under weaker regularity assumptions, mainly on the volatility matrix σ.

Finally, going back to the square-root example, we have a(x) = x so that aa+(x) = 1{x>0}.
Taking u = −1 the conditions (1.1.13) at the boundary point 0 read

a(0) = 0 and b(0) ≥ 0,

yielding the correct characterization.

The following table summarizes our findings so far.

Existing Existing

2nd order 1st order Our result

Conditions (1.1.7) (1.1.9) (1.1.13)
Normal cone Second order First order First order

Main assumption on σ Continuity Differentiability Differentiability of σ2

All affine/polynomial diffusions ✓ ✗ ✓

Geometric intuitions as in (1.1.5) ✗ ✓ ✓

Table 1.1: Summary of the characteristics of the different characterizations.

1.1.5.3 Extension to jumps

One can introduce an additional source of randomness to (1.1.4) to account for jumps in the
movement of the particle as follows

dXt = b(Xt)dt+ σ(Xt)dWt +

∫

Rd
ρ(Xt−, z) (µ(dt, dz) − F (dz)dt) , X0 = x, (1.1.14)
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where µ is a Poisson random measure on R+ × Rd with compensator dt ⊗ F (dz) governing
the frequency of the jumps arriving at random times and ρ is a function determining the size
of jumps with suitable continuity properties.

The sources of randomness can be shown to be independent, one can therefore focus on
gaining intuitions on the discontinuous part for the particle to remain in D. If the particle
X is (strictly) inside the domain right before a jump at time t then one trivially sees that it
is not allowed to jump outside the domain, that is

Xt− + (size of the jump) belongs to D.

At the boundary, the situation is more involved. On a microscopic scale, the particle can
have either big or small jumps. If one observes the movement of the particle on a macroscopic
scale, small jumps fluctuating very rapidly become invisible to the naked eye and one only sees
a continuous trajectory. One therefore expects these small jumps to have the same behavior
as a continuous random process with infinite variation, say Brownian motion. Inspired by
(1.1.5), the tangential volatility intuition carries over as follows:

rapidly fluctuating small jumps need to be tangential to the boundary.

Further, as in the continuous case,

b should compensate these tangential movements to keep the particle inside the domain.

Once again, the previous heuristics combined with (1.1.13) can be mathematically interpreted
as follows.

Main result 2 - Extension to jumps

Under suitable assumptions such as differentiabilty of a := σσ⊤. There exists a D-
valued solution to (1.1.14) started from X0 ∈ D if and only if

x+ ρ(x, z) ∈ D, for F -almost all z,
∫

|〈u, ρ(x, z)〉|F (dz) < ∞, a(x)u = 0,

〈u, b(x) −
∫
ρ(x, z)F (dz) − 1

2

d∑

j=1

Daj(x)(aa+)j(x)〉 ≤ 0,

for all x ∈ D and u ∈ N 1
D(x).

This leads to the second main result of the thesis proved in Chapter 4 where an equivalent
characterization in the semimartingale framework in terms of the differential characteristics
triplet is also provided.
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1.2 Stochastic Volterra equations

The second part of the thesis is dedicated to the study of d-dimensional stochastic integral
Volterra equations of convolution type

Xt = g0(t) +

∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, (1.2.1)

where W is a multi-dimensional Brownian motion, and the convolution kernel K, the function
g0 and coefficients b and σ satisfy suitable regularity and integrability conditions.

SettingK ≡ 1 and g0 ≡ X0 for some constant initial conditionX0, one recovers (1.1.4) written
in integral form. Consequently, stochastic Volterra equations extend standard stochastic
differential equation allowing for more flexibility in modeling. However, they do not fall in
general in the semimartingale and Markovian frameworks, as illustrated by the Riemann-
Liouville fractional Brownian motion Xt =

∫ t
0 KH(t − s)dWs where KH is the fractional

kernel defined by

KH : t → tH−1/2, H ∈ (0, 1/2). (1.2.2)

Nevertheless, we develop in the sequel several techniques to treat existence and uniqueness for
different state spaces and clarify the link with standard stochastic differential equations. Our
arguments avoid stochastic integration with respect to non-semimartingales, relying instead
on tools from the theory of finite-dimensional deterministic convolution equations.

Before moving to a more detailed exposition, let us first discuss the motivations.

1.2.1 Motivations

Our motivation for studying such convolution equations is twofold. Stochastic Volterra equa-
tions arise as scaling limits of branching processes in population genetics and self-exciting
processes in mathematical finance.

A biologist’s inspiration for a chemist’s problem

A chemist is looking to model a chemical diffusion-reaction interaction between two sub-
stances: a reactant and a catalyst. The first substance, called the reactant diffuses in space
with some random motion. The chemical reaction will only take place locally in the presence
of a second catalytic substance spread out in space, proportionally to the concentration of
the catalyst at the contact point.

In order to describe the microscopic picture, her7 biologist colleague suggests the following
simple model inspired from population genetics. Think of the reactant as a system of n
particles in one dimension moving independently according to a standard Brownian motion.
The catalyst region at a certain time t is defined as the support of some deterministic measure
ρt(dx). Whenever a particle enters in the catalyst region and after spending a random time
in the vicinity of the catalyst, it will either die or split into two new particles, with equal
probabilities. The measure ρt(dx) determines the local branching rate in space and time
depending on the location and the concentration of the catalyst. Two typical examples
are ρt(dx) ≡ ρ̄ where the branching occurs in the entire space with constant rate ρ̄ and

7The sex of the chemist was determined by a coin flip . . . with a biased coin.
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ρt(dx) = δ0(dx) for a branching occurring with infinite rate only when the particle hits a
highly concentrated single point catalyst located at 0. In case of branching, the two offspring
particles evolve independently with the same spatial movement and branching mechanism as
their parent.

One can view the reactant as a rescaled measure-valued process (Ȳ n
t (dx))t≥0 defined by

Ȳ n
t (B) =

number of particles in B at time t

n
, for every Borel set B.

Sending the number of particles to infinity, one can establish the convergence towards a
measure-valued macroscopic reactant Ȳ , coined catalytic super-Brownian motion, which
solves an infinite dimensional martingale problem. Once there, weak uniqueness follows
from a duality argument on the Laplace functional which is shown to be exponentially affine

E
[
exp(〈u, Ȳt〉)

]
= exp(〈Ψt, Ȳ0〉), u ≤ 0, (1.2.3)

where 〈f, ν〉 =
∫
f(x)ν(dx) and Ψ is the mild solution of the following Riccati partial differ-

ential equation

∂Ψt(x)

∂t
=

1

2
∆Ψt(x) +

1

2
Ψ2
t (x)

ρt(dx)

dx
, Ψ0(x) = u(x), (1.2.4)

with ∆ = ∂2/∂x2 the second order Laplace operator.

Moreover, in the presence of a suitable deterministic catalyst ρ = (ρt(dx))t≥0 having no
atoms, the measure-valued process Ȳ admits a density Ȳt(dx) =

∫
Yt(x)dx solution to the

following stochastic partial differential equation

∂Yt(x)

∂t
=

1

2
∆Yt(x) +

√
Yt(x)Ẇ ρ(t, x), (1.2.5)

where Ẇ ρ(t, x) is a space-time noise with covariance structure determined by ρ, refer to
Zähle [116] for more details. Denoting by pt(x) = (2πt)−1/2 exp(−(x − y)2/(2t)) the heat
kernel, solutions to (1.2.5) started from an initial curve Y0 are considered in mild form

Yt(x) =

∫

R

pt(x− y)Y0(y)dy +

∫ t

0

∫

R

pt−s(x− y)
√
Ys(y)W ρ(ds, dy). (1.2.6)

The previous equation is only valid if ρ has no atoms. One could still heuristically set
ρt(dx) = δ0(dx) in (1.2.6) for the extreme case of a single point catalyst at 0. Then, the
space-time noise reduces to a standard Brownian motion W so that evaluation at x = 0
yields

Yt(0) = g0(t) +

∫ t

0

(t− s)−1/2

√
2π

√
Ys(0)dWs, (1.2.7)

where g0(t) =
∫
R pt(y)Y0(y)dy. Therefore, (Yt(0))t≥0 solves a stochastic Volterra equation of

the form (1.2.1). Needless to say, one is not allowed to plug the Dirac measure in (1.2.6).
Indeed, in the presence of a single point catalyst, the catalytic super-Brownian motion does
not admit a density at the catalyst position as shown by Dawson and Fleischmann [41] and
(1.2.5) breaks down. This can be seen directly on (1.2.7) since the kernel K : t → t−1/2 fails
to be locally square-integrable and the stochastic integral is not well defined in the sense of
Itô’s L2-theory. Nevertheless, square-integrability can be informally recovered by bumping



Chapter 1. Introduction 14

the power of the kernel with a small H > 0 leading to the fractional kernel KH defined in
(1.2.2). For the kernel KH , (1.2.7) makes sense. At the level of the microscopic branching
process, this translates into substituting the heat flow ∆ by a suitable spatial motion ∆H .
These heuristics are made rigorous in Mytnik and Salisbury [96].

As a by-product, one could also deduce the Laplace transform of (Yt(0))t≥0 from (1.2.3).
Indeed, because of the smoothing property of the semigroup generated by ∆H , one could
start the Riccati partial differential equation from measure-valued initial conditions. Since
〈u, Ȳt〉 = 〈u, Yt〉, setting u(x) = uδ0(dx) for some non-positive constant u and Y0(x) ≡ Y0 ≥ 0,
straightforward manipulations of (1.2.3)-(1.2.4) with ρt(dx) = δ0(dx) lead to

E [exp(uYt(0))] = exp(χ(t)Y0), (1.2.8)

where χ(t) = u+ 1
2

∫ t
0 Ψ2

s(0)ds and (Ψt(0))t≥0 solves the following Riccati-Volterra equation

ψ(t) = uKH(t) +
1

2

∫ t

0
KH(t− s)ψ2(s)ds. (1.2.9)

A trader’s viewpoint: a tick-by-tick foundation to rough volatility

In the field of quantitative finance, due to the rapid development of algorithmic high fre-
quency trading, the theory of market microstructure is flourishing. As its name suggests,
this theory deals with issues such as price formation, transaction costs and liquidity by a
refined study of the market on a microscopic scale.

Mimicking the biologist of the previous section, the trader can proceed in two steps. First,
conceive a microscopic model encoding the main stylized facts of modern market microstruc-
ture and then look for the limiting macroscopic picture emerging from the microscopic model
after suitable rescaling. Such approach has been adopted in Jaisson’s PhD dissertation [78],
relying on Hawkes processes for modeling the tick-by-tick price of an asset at the microscopic
level. The thesis was then followed by a series of paper culminating in the elegant construc-
tion of the so-called rough Heston model in [51]. Hawkes processes are a generalization of
Poisson processes where the intensity of the jumps depends on the past realizations of the
process. This dependence structure is specified by some kernel. For suitable kernels, one can
generate feedback effects allowing to jointly account for the following stylized facts of the
market:

(i) clustering behavior of the order flow: one can observe periods with a high number of
trades followed by periods of a low number of trades,

(ii) order splitting/metaorders: large orders are not executed at once, they are split in time
by trading algorithms to optimize transaction costs,

(iii) high degree of endogeneity: most of the orders lack real economic motivation, they are
only sent by algorithms in reaction to other orders.

After embedding these observations into the intensity of the Hawkes process, a suitable
rescaling yields the convergence towards the following model for the stock price S and its
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stochastic variance V

dSt = St
√
VtdBt, S0 = 1, (1.2.10)

Vt = V0 +

∫ t

0
KH(t− s)η

√
VsdWs, (1.2.11)

where KH is the fractional kernel defined in (1.2.2) with H ∈ (0, 1/2), (V0, η) ∈ R2
+ and

B = ρW +
√

1 − ρ2W⊥ with ρ ∈ [−1, 1] and (W,W⊥) a two dimensional Brownian motion.
The two-dimensional process X = (S, V ) falls into the class of stochastic Volterra equations
of the form (1.2.1) for the diagonal kernel K = diag [(1,KH)].

The macroscopic model (1.2.10)-(1.2.11) was coined rough Heston model. The appellation is
justified as follows. On the one hand, sample paths of V are locally Hölder continuous of
any order strictly less than H, thereby less regular than standard Brownian motion (which
corresponds to the case H = 1/2). Consequently models involving the fractional kernel have
been dubbed rough volatility models.8 On the other hand, for H = 1/2, (1.2.10)-(1.2.11)
reduces to the standard Heston model [72] owing its popularity to the closed-form expression
of the characteristic function of the log-price allowing for fast pricing and calibration by
Fourier inversion techniques. Remarkably, an analogous formula continue to hold for the
rough Heston model. Indeed, taking limits of the Fourier transform of the microscopic Hawkes
model, El Euch and Rosenbaum [50] derive the affine transform

E [exp(v logSt)] = exp(χ(t)V0), v ∈ iR, (1.2.12)

in terms of a Riccati-Volterra equation

ψ(t) =

∫ t

0
KH(t− s)F (v, ψ(s))ds, (1.2.13)

where

F (v, u) =
1

2
(v2 − v) + ρνu+

u2

2
and χ(t) =

∫ t

0
F (v, ψ(s))ds.

Clearly, equations (1.2.12)-(1.2.13) share some similarities with (1.2.8)-(1.2.9). Combining
the two examples, one would expect to get an affine transform for the joint process (logS, V ).

Our approach: the macroscopic picture

It is a common approach in probability theory to study various phenomena through the
associated limiting macroscopic object in order to gain valuable insights on the behavior of
the more realistic microscopic picture. We adopt this perspective in this thesis taking as
starting point stochastic Volterra equations in Rd of the form (1.2.1). By doing so, we avoid
the infinite-dimensional analysis used for super-processes. We also circumvent the need to
study scaling limits of Hawkes processes allowing for a more generic treatment of the following
issues:

• What about more general kernels than the fractional kernel KH?

• Can one go into higher dimensions?

• What about arbitrary dynamics, not necessarily of square-root type?

8Empirical studies on a very wide range of assets volatility time-series in [66, 15] revealed that the dynamics
of the log-volatility are close to that of a fractional Brownian motion with a small Hurst parameter H of order
0.1, which is inconsistent with standard semimartingale models.
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• How can one clarify the underlying affine structure behind the square-root process and
recover uniqueness as well as tractability?

This is mainly the object of Chapter 5 where general existence problems for (1.2.1) are tack-
led on different state spaces. Uniqueness is then established for a specific class, namely affine
Volterra processes, by completely characterizing the Fourier–Laplace functional of the solu-
tion in terms of a Riccati-Volterra integral deterministic equation. Once there, we shed some
light on the correspondence with stochastic partial differential equations through different
lifting procedures of the stochastic Volterra equation to infinite dimension. This leads to
the complete characterization of the Markovian structure of stochastic Volterra equations
and consequently opens the door for numerical approximation schemes. These results are
collected in Chapters 6, 7 and 8.

1.2.2 Existence

We provide new existence results for (1.2.1) on several state spaces under weak conditions
on the kernel and coefficients.

Unconstrained solutions: from Itô to Skorokhod

The problem of existence of unconstrained solutions, i.e. on Rd, is laid bare by revisiting
the classical strategies for stochastic differential equations (1.1.4). Historically, the first
existence and uniqueness result dates back to the pioneering work of Kiyosi Itô [75] under
global Lipschitz coefficients b and σ. Later on, Anatoliy Volodymyrovych Skorokhod [104]
was able to derive existence of solutions under continuity and linear growth conditions on b
and σ.

It was discovered later that the two notions of solutions are not equivalent. Given a filtered
probability space (Ω,F ,F := (Ft)t≥0,P) supporting a Brownian motion as input, Itô con-
structed a pathwise solution X adapted to the filtration generated by the Brownian motion,
which corresponds to the concept of strong solution. Whereas in Skorokhod’s proof, one
constructs a filtered probability space (Ω,F ,F := (Ft)t≥0,P) supporting a Brownian motion
W and a process X such that (1.1.4) holds almost surely, this is know as a weak solution. A
weak solution X is not necessarily adapted to the Brownian filtration. Clearly, every strong
solution is a weak solution, but the converse is not true as illustrated by Itô-Tanaka’s example

dXt = sign(Xt)dWt.

We prove that similar type of existence results continue to hold for the stochastic Volterra
equation (1.2.1).

Main result 3 - Existence of unconstrained solutions

Under mild assumptions on g0 and K ∈ L2
loc(R+,R

d):

(i) If b and σ are Lipschitz continuous, then (1.2.1) admits a unique continuous
strong solution X.

(ii) If b and σ are continuous with growth conditions, then (1.2.1) admits a continuous
weak solution X.
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Constrained solutions: back to the invariance problem

Similar to stochastic differential equations, one could also ask for existence of constrained
solutions. As one would expect, the invariance/viability problem turns out to be more
involved in the non-Markovian framework. We provide sufficient conditions for existence of
Rd+-valued solutions to stochastic Volterra equations (1.2.1).

Under continuity and growth conditions on (b, σ), the previous result guarantees the existence
of an unconstrained continuous weak solution X to the following modified equation

Xt = g0(t) +

∫ t

0
K(t− s)b(X+

s )ds+

∫ t

0
K(t− s)σ(X+

s )dWs,

for a suitable input curve g0 and kernel K, where x+ = max(0, x). Clearly, one needs to
impose additional assumptions on g0 to ensure the nonnegativity of X and drop the positive
part in the previous equation so that X solves (1.2.1). Indeed, since X0 = g0(0), it is
straightforward that g0(0) should be in Rd+ for instance. Whence, the problem can be now
formulated as follows:

Can one find a set GK of initial input curves g0 such that X remains in Rd+?

In order to gain intuitions, one can go back to the standard one-dimensional square-root
process

Xt = g0(t) − λ

∫ t

0
X+
s ds+

∫ t

0

√
X+
s dWs.

Putting on the physicist’s glasses, the behavior of X right after a fixed time t can be approx-
imated by

Xt+h ≈ Xt + g0(t+ h) − g0(t) − hλX+
t +

√
X+
t (Wt+h −Wt), for small h > 0.

Since g0(0) ≥ 0, if X hits zero for the first time at t ≥ 0, then

Xt+h ≈ g0(t+ h) − g0(t).

Whence, one sees that Xt+h would remain nonnegative for all h > 0 if the set of initial input
curves is given by

G1 = {g0 non-decreasing such that g0(0) ≥ 0}.
For an arbitrary kernel K, one would expect that an analogous “non-decreasing” condition
should take into account the variations of K. This is indeed the case, we provide a set of
admissible input curves

GK = {g0 “non-decreasing w.r.t. K” such that g0(0) ≥ 0}. (1.2.14)

such that (1.2.1) admits a Rd+-valued weak solution.9

9The explicit form of GK is provided in Chapter 6.



Chapter 1. Introduction 18

Main result 4 - Existence of constrained solutions in Rd
+

Under mild assumptions on K ∈ L2
loc(R+,R

d) such as nonnegativity and non-
increasing monotonicity, if the geometric conditions

xi = 0 implies bi(x) ≥ 0 and σi(x) = 0, i = 1, . . . , n

hold, then (1.2.1) admits an Rd+-valued continuous weak solution for any suitable
initial curve g0 ∈ GK .

1.2.3 Affine lens: uniqueness and tractability

Having established existence, one can turn to the uniqueness problem which is a crucial
requirement before using the model in practice. Uniqueness is a rather challenging prob-
lem when the coefficients are not globally Lipschitz even for standard stochastic differential
equations. Indeed, when K ≡ id is constant and equal to the d-dimensional identity matrix,
weak uniqueness can be obtained in the special case of affine coefficients a := σσ⊤ and b:

a(x) = A0 + x1A
1 + · · · + xdA

d

b(x) = b0 + x1b
1 + · · · + xdb

d,
(1.2.15)

for some d-dimensional symmetric matrices Ai and vectors bi. In this case solutions of
(1.1.4) are called affine diffusions, we refer to Duffie, Filipović and Schachermayer [48] for a
systematic treatment. More precisely, let X be an affine diffusion of the form (1.1.4) on some
state space D. For a suitable d-dimensional row vector u, the conditional Fourier–Laplace
transform of X displays an exponentially affine form

E
[
exp (uXT )

∣∣∣ Ft

]
= exp (φ(T − t) + ψ(T − t)Xt) , (1.2.16)

where the real-valued function φ and the row-vector-valued function ψ satisfy the following
Riccati ordinary differential equations:

φ(t) =

∫ t

0

(
ψ(s)b0 +

1

2
ψ(s)A0ψ(s)⊤

)
ds

ψ(t) = u+

∫ t

0

(
ψ(s)B +

1

2
A(ψ(s))

)
ds,

with A(u) = (uA1u⊤, . . . , uAdu⊤) and B = (b1 · · · bd).

Weak uniqueness for (1.1.4) is then established as a consequence of (1.2.16) leading also
to tractability. Indeed, affine diffusions arguably constitute the most popular framework
for building tractable multi-factor models in finance. They have been used to model a vast
range of risk factors such as credit and liquidity factors, inflation and other macro-economic
factors, equity factors, and factors driving the evolution of interest rates. In particular,
affine stochastic volatility models, such as the Heston model [72] already encountered in the
motivation, are very popular.

Dropping the restriction K ≡ id and recalling the two motivations, one would hope for a
similar expression for the Fourier–Laplace transform to hold for stochastic Volterra equations
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(1.2.1) with affine coefficients of the form (1.2.15). Nevertheless, (1.2.16) is clearly a Marko-
vian expression and one cannot expect it to hold in a non-Markovian framework. Therefore,
a natural first step would be to derive a good potential Ansatz for the Fourier–Laplace
transform in a non-Markovian setting.

Guessing game: deriving a good Ansatz

In order to gain valuable insights, we revisit the one dimensional standard square-root process

dXt = −λXtdt+ η
√
XtdWt,

which is clearly an affine diffusion on R+ with coefficients a(x) = η2x and b(x) = −λx. It
follows from (1.2.16) that

E [exp(uXT )|Ft] = exp (ψ(T − t)Xt) , ℜ(u) ≤ 0,

where

ψ′ = −λψ +
η2

2
ψ2, ψ(0) = u.

The variation of constants formula on the level of X and ψ yields

E[Xs|Ft] = e−λ(t−s)Xt and ψ(t) = ue−λt +
η2

2

∫ t

0
e−λ(t−s)ψ2(s)ds, s ≥ t,

so that

ψ(T − t)Xt = ue−λ(T−t)Xt +
η2

2

∫ T−t

0
ψ2(s)e−λ(T−t−s)Xtds

= uE[XT |Ft] +
η2

2

∫ T

t
ψ2(T − s)E[Xs|Ft]ds,

leading to the alternative expression for the Fourier–Laplace transform

E
[
exp (uXT )

∣∣∣ Ft

]
= exp

(
E[uXT | Ft] +

1

2

∫ T

t
ψ2(T − s)a(E[Xs | Ft])ds

)
.

Compared to (1.2.16), the previous expression has the advantage of completely hiding the
Markovian property of the process. For this reason it constitutes a good potential Ansatz
for the Volterra case.

Affine Volterra processes

Our main result shows that, remarkably, the same expression continue to hold for the class
of affine Volterra processes where the function ψ now solves a deterministic integral equation
of convolution type. An affine Volterra process with state space D and coefficients (1.2.15)
is defined as a D-valued weak solution to (1.2.1) with a := σσ⊤ on D.



Chapter 1. Introduction 20

Main result 5 - Affine transform

Under mild assumptions on K ∈ L2
loc(R+,R

d), assume that X is a D-valued affine
Volterra process with coefficients given by (1.2.15) and that the corresponding Riccati-
Volterra equation

ψ(t) = uK(t) +

∫ t

0

(
ψ(s)B +

1

2
A(ψ(s))

)
K(t− s) ds,

admits a solution, then under an integrability condition, the following affine transform
holds

E
[
exp (uXT )

∣∣∣ Ft

]
= exp

(
E[uXT | Ft] +

1

2

∫ T

t
ψ(T − s)a(E[Xs | Ft])ψ(T − s)⊤ds

)
.

Again, weak uniqueness is established as a corollary. Furthermore, it is possible to express
the Fourier-Laplace in a form that is exponential-affine in the past trajectory {Xs, s ≤ t}. In
particular, when g0 ≡ X0 for some constant X0 ∈ Rd, setting t = 0 yields the unconditional
Fourier–Laplace

E[exp(uXT )] = exp (φ(T ) + χ(T )X0) ,

where

φ =

∫ ·

0
(ψb0 +

1

2
ψA0ψ⊤)(s)ds and χ = u+

∫ ·

0
(ψB +

1

2
A(ψ))(s)ds.

These last expressions agree with the formulations (1.2.8) and (1.2.12) of the motivations.
Finally, the characterization of the Fourier-Laplace is a major strength of affine Volterra
processes, making these equations enjoy an appealing trade-off between consistency and
tractability.

1.2.4 Recovering Markovianity: correspondence with SPDEs

The motivation arising from population genetics highlights the correspondence between
stochastic Volterra equations and degenerate stochastic partial differential equations. More
precisely, solving the existence and uniqueness problem for one of these classes leads to solving
the problem for the other class and vice-versa. Starting from certain stochastic partial dif-
ferential equations, one can recover a stochastic Volterra equation by a projection procedure.
Conversely, any stochastic Volterra equation can be lifted to an infinite dimension equation.
Having already tackled the existence and uniqueness problem for stochastic Volterra equa-
tions, it seems natural to adopt the latter approach. As a by-product, this leads to the
complete characterization of the Markovian structure of stochastic Volterra equations. We
provide two such representations in terms of infinite-dimensional objects and specify their
state space.

To keep the exposition simple, we restrict to the one dimensional case of stochastic Volterra
equations with state space R+. Recalling our Main result 4, we assume that b and σ satisfy
the boundary conditions

b(0) ≥ 0 and σ(0) = 0,

and that g0 belongs to the set of admissible input curves GK given by (1.2.14) so that (1.2.1)
admits a nonnegative weak solution X.
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First representation: forward process

One starts with the following observation: conditional on Ft, the shifted process Xt :=
(Xt+x)x≥0 solves the same stochastic Volterra equation (1.2.1) provided that g0 is replaced
by the following adjusted forward process

gt(x) = E

[
Xt+x −

∫ x

0
K(x− s)b(Xt+s)ds

∣∣∣ Ft

]
, x ≥ 0,

that is, the process Xt solves the equation

Xt
x = gt(x) +

∫ x

0
K(x− s)b(Xt

s)ds+

∫ x

0
K(x− s)σ(Xt

s)dW
t
s , x ≥ 0,

with W t := Wt+· −Wt. This suggests that, on the one hand, X is Markovian in the infinite
dimensional curve (gt)t≥0. On the other hand, because the process Xt is nonnegative, one
is tempted to claim that gt is again an admissible input curve belonging to GK as defined
in (1.2.14). Our main result shows that this is indeed the case as it states that GK is
stochastically invariant with respect to the family (gt)t≥0. In other words, if we start from
an initial admissible input curve g0 ∈ GK , then gt belongs to GK , for all t ≥ 0. This in turn
enables us to characterize the Markovian structure of X in terms of the the adjusted forward
process (gt)t≥0. Furthermore, (gt)t≥0 can be realized as a GK-valued mild solution of the
following stochastic partial differential equation of Heath–Jarrow–Morton-type

dgt(x) =

(
d

dx
gt(x) +K(x)b(gt(0))

)
dt+K(x)σ(gt(0))dWt, g0 ∈ GK ,

and displays an affine characteristic functional if in addition b and σ2 are affine.

Second representation: completely monotone case

More can be said when K is completely monotone on (0,∞), that is K is infinitely differ-
entiable on (0,∞) such that (−1)nK(n) ≥ 0 for all n ≥ 0. By Bernstein’s theorem, this is
equivalent to stating that K is the Laplace transform of a nonnegative measure µ

K(t) =

∫ ∞

0
e−xtµ(dx), t > 0.

For instance, the fractional kernel KH given in (1.2.2) is completely monotone and its asso-

ciated measure reads µH(dx) = x−1/2−H

Γ(1/2−H)dx. Exploiting the complete monotonicity property,

starting from a solution to (1.2.1) with g0 ≡ 0, a formal interchange of the integration order
leads to

Xt =

∫ t

0
K(t− s) (b(Xs)ds+ σ(Xs)dWs)

=

∫ ∞

0

∫ t

0
e−x(t−s) (b(Xs)ds+ σ(Xs)dWs)µ(dx)

=

∫ ∞

0
Ut(x)µ(dx) (1.2.17)

where Ut(x) :=
∫ t

0 e
−x(t−s) (b(Xs)ds+ σ(Xs)dWs). In particular, one recognizes the mild

formulation of the following equation

dUt(x) =

(
−xUt(x) + b

(∫ ∞

0
Ut(y)µ(dy)

))
dt+ σ

(∫ ∞

0
Ut(y)µ(dy)

)
dWt, U0(x) = 0,
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for all x ∈ supp(µ), where supp(µ) denotes the support of the measure µ. The processes
(U(x))x∈(suppµ) share the same dynamics except that they mean revert at different speeds.
In case µ is finitely supported by n points (x1, . . . , xn) then the equation reduces to a n-
dimensional system of standard differential equation of the form (1.1.4). Moreover, it follows
from the representation (1.2.17) that X is Markovian in n-dimension (U(x1), . . . , U(xn)).

The two representations are linked by the following formula

gt(x) =

∫ ∞

0
e−yxUt(y)µ(dy), t, x ≥ 0.

Further, in the case of an affine Volterra process, i.e. b(x) = −λx and σ(x) = η
√
x, the

Laplace transform of X can be shown to be an exponential affine functional of Ut

E
[
exp(uXT )

∣∣∣ Ft

]
= exp

(∫ ∞

0
χ(T − t, x)Ut(x)µ(dx)

)

where χ solves the following Riccati partial differential equation

∂tχ(t, x) = −xχ(t, x) + F

(∫ ∞

0
χ(t, y)µ(dy)

)
, χ(0, x) = u, x ∈ supp(µ),

with F (u) = −λu+ η2

2 u
2. As previously, if the support of µ is finite then the equation reduces

to a finite system of Riccati ordinary differential equations.

1.2.5 Approximation procedure: only SDEs are needed

At this stage, one natural idea would be to approximate any nonnegative measure µ with
infinite support by a finite weighted sum of Dirac measures and expect to get the convergence
of the associated equations. More precisely, one starts with a completely monotone kernel
K such that the associated measure has infinite support, for instance the fractional kernel.
Approximating the kernel K by a sequence of smooth kernels (Kn)n≥1, one would expect
the convergence of the following corresponding sequence of stochastic Volterra equations

Xn
t = gn0 (t) +

∫ t

0
Kn(t− s)b(Xn

s )ds+

∫ t

0
Kn(t− s)σ(Xn

s )dWs, n ≥ 1, (1.2.18)

towards the initial equation (1.2.1) with kernel K for a suitable choice of gn0 .

This is made precise in the following abstract stability result for stochastic Volterra equations.

Main result 6 - Stability of stochastic Volterra equations

Fix T > 0, under mild integrability assumptions, assume that ‖Kn − K‖L2(0,T ) → 0
and gn0 → g0 pointwise on [0, T ], then the sequence (Xn)n≥1 of solutions to (1.2.18)
is tight for the uniform topology and any point limit is a solution of the stochastic
Volterra equation (1.2.1).

As an application to mathematical finance, we show that the previous Markovian represen-
tations combined with the stability result are of particular importance in practice as they
lead to new numerical approximation schemes mainly for rough volatility modeling. Indeed,
we design tractable multi-factor stochastic volatility models approximating rough volatility
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models while still enjoying a Markovian structure. Further, we apply our procedure to the
specific case of the rough Heston model. This in turn enables us to derive a numerical method
for solving the corresponding Riccati-Volterra equation in this setting.

1.2.6 Lifting the Heston model

In the final chapter, we turn the previous point of view around by taking the finite dimensional
Markovian model as starting point. We introduce a lifted version of the Heston model with n
multifactors sharing the same Brownian motion but mean reverting at different speeds. The
model nests as extreme cases the classical Heston model (when n = 1) and the rough Heston
model (when n goes to infinity). We show that the lifted model enjoys the best of both
worlds: Markovianity and satisfactory fitting of implied volatility smiles for short maturities.
Further, our approach speeds up the calibration time and opens the door to time-efficient
simulation schemes.

1.2.7 Structure

The second part of this thesis is structured as follows.
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Chapter 2

Introduction (Version française)

Résumé

La présente thèse traite de la théorie des équations stochastiques en dimension finie.

Dans la première partie, nous dérivons des conditions géométriques nécessaires et suffisantes
sur les coefficients d’une équation différentielle stochastique pour l’existence d’une solution
contrainte à rester dans un domaine fermé, sous de faibles conditions de régularité sur les
coefficients.

Dans la seconde partie, nous abordons des problèmes d’existence et d’unicité d’équations de
Volterra stochastiques de type convolutif. Ces équations sont en général non-Markoviennes.
Nous établissons leur correspondance avec des équations en dimension infinie ce qui nous
permet de les approximer par des équations différentielles stochastiques Markoviennes en
dimension finie.

Enfin, nous illustrons nos résultats par une application en finance mathématique, à savoir la
modélisation de la volatilité rugueuse. En particulier, nous proposons un modèle à volatilité
stochastique assurant un bon compromis entre flexibilité et tractabilité.

Mots Clés: Invariance stochastique, équations de convolutions stochastiques, processus affines,
volatilité rugueuse.

2.1 Invariance Stochastique

2.1.1 Le problème d’invariance ou de viabilité

Qu’est-ce qu’un problème d’invariance ou de viabilité? D’un point de vue abstrait, nous
fixons un ensemble D d’un espace topologique et nous lâchons une particule à l’intérieur de
D. Nous dirons que l’ensemble D est invariant ou viable si la particule reste dans D à tout
instant. Nous cherchons à caractériser l’invariance de D via des conditions sur les forces
régissant le mouvement de la particule. Les problèmes d’invariance et de viabilité ont été
intensivement étudiés dans la littérature, tout d’abord dans un cadre déterministe et plus
tard dans un environnement aléatoire.

25
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2.1.2 Le cadre déterminisite à la physicienne

Afin de mieux comprendre le problème, nous commençons par faire deux restrictions sur
l’ensemble D et le mouvement de la particule. Nous considérons un sous-ensemble fermé D
de Rd muni de son produit scalaire canonique 〈·, ·〉 et nous supposons que le mouvement de
la particule satisfait l’équation différentielle ordinaire autonome suivante

dXt = b(Xt)dt, X0 = x, (2.1.1)

où Xt ∈ Rd indique la position de la particule à l’instant t ≥ 0 et b : Rd → Rd est la force
motrice. De plus, nous supposons que b est Lipschitz, de sorte à ce que (2.1.1) admette une
unique solution pour tout point initial x ∈ Rd. En démarrant la solution d’un point X0 ∈ D,
le problème d’invariance peut désormais être formulé comme suit:

A quelles conditions sur b, la solution X reste-t-elle, à tout instant, dans D?

Supposons que X reste dans D jusqu’à l’intant t ou la particule touche le bord. Pour le
physicien, b(Xt) = dXt

dt est le vecteur de vitesse instantanée de la particule à l’instant t,
toujours tangent à la trajectoire de la particule. Par conséquent, à un point du bord Xt ∈ D,
la trajectoire reste dans le domaine tant que

le vecteur vitesse b(Xt) est soit tangent au bord, soit pointe vers l’intérieur du domaine.

En effet, tout vecteur vitesse pointant vers l’extérieur pousse la particule à l’extérieur du
domaine. Lorsque la particule est strictement à l’intérieur du domaine, la vitesse instantanée
peut pointer dans n’importe quelle direction. Nous pouvons formuler rigouresement cette
intuition en introduisant le concept de tangence via le cône normal du premier ordre défini
par

N 1
D(x) =

{
u ∈ Rd : 〈u, y − x〉 ≤ o(‖y − x‖),∀ y ∈ D

}
. (2.1.2)

Le cône normal contient tous les vecteurs normaux qui pointent vers l’extérieur du domaine
D en un point x. L’intuition du physicien se traduit donc par

〈u, b(x)〉 ≤ 0, x ∈ D, u ∈ N 1
D(x). (2.1.3)

Si le point x se situe strictement à l’intérieur de D, N 1
D(x) = {0} et (2.1.3) est trivialement

satisfaite pour les points situés strictement à l’intérieur du domaine et ceci indépendamment
du comportement de b.

Afin de confirmer mathématiquement cette intuition, supposons que D est invariant sous
(2.1.1) démarrée au point x ∈ D, i.e. Xt ∈ D, pour tout t ≥ 0 . Soit φ : Rd → R une
fonction régulière telle que max

D
φ = φ(x). Puisque φ(Xt) ≤ φ(x), pour tout t ≥ 0, la règle

de dérivation en châıne entrâıne

∫ t

0
Dφ(Xs)b(Xs)ds ≤ 0, t ≥ 0,

où Dφ(x) est le vecteur transposé du gradient de φ évalué au point x. En divisant ce qui
précède par t et en envoyant t → 0, nous obtenons par continuité

Dφ(x)b(x) ≤ 0
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qui, après un petit effort supplémentaire, implique (2.1.3).1 La condition est également
suffisante pour l’invariance. Ce résultat est connu sous le nom de condition de tangence
de Nagumo, nommée après le mathématicien japonais Mitio Nagumo, qui fut le premier
à dériver cette caractérisation dans un article fondateur publié en 1942 en allemand [97].
Le théorème a été apparemment oublié et redécouvert dans différents contextes au cours
des vingt prochaines années. Pour un traitement détaillé des problèmes d’invariance et de
viabilité dans un cadre déterministe, nous renvoyons à [9, 24].

2.1.3 Une intuition géometrique dans un environnement aléatoire

Dans un environnement aléatoire, l’équation différentielle ordinaire autonome (2.1.1) est
remplacée par une équation différentielle stochastique Markovienne homogène en temps

dXt = b(Xt)dt+ σ(Xt) dWt︸︷︷︸
bruit

, X0 = x, (2.1.4)

où σ : Rd 7→ Rd×d est continu satisfaisant des conditions de croissance etW est un mouvement
Brownien d-dimensionnel, i.e. l’analogue d’une marche aléatoire en temps continu.

Les règles du jeu restent inchangées: trouver des conditions nécessaires et suffisantes sur le
vecteur de drift b et la matrice de volatilité σ sous lesquelles il existe une solution faible de
(2.1.4) à valeur dans D, pour tout point de départ x ∈ D.

En reprenant l’intuition du physicien, tant que la particule reste strictement à l’intérieur du
domaine, il est clair que b et σ peuvent pointer dans n’importe quelle direction. La situation
est désormais plus délicate au bord du domaine. Considérons en premier le terme de diffusion
σ(Xt)dWt. Heuristiquement, dWt

dt ≈ Wt+h−Wt

h est une variable aléatoire gaussienne dont le
support est égal à Rd, ce qui signifie qu’elle peut prendre des valeurs positives ou négatives
arbitrairement grandes avec probabilité positive. Pour cette raison, au bord du domaine, σ
ne peut pas avoir de direction transversale au bord, sinon la particule peut être projeter très
loin du domaine en raison des fluctuations non bornées de la variable aléatoire gaussienne.
Ainsi, les seules directions possibles pour σ sont celles qui sont tangentes au bord (illustrées
en bleu sur la figure 2.1 ci-dessous). A ce stade, la géométrie et la courbure du domaine
entrent en jeu pour déterminer les directions possibles pour le vecteur b, comme indiqué sur
la figure 2.1:

• En l’absence de courbure au point (ii), la volatilité σ maintient la particule au bord
du domaine. Par conséquent, le vecteur de drift b peut s’annuler en ce point ou alors
pointer vers l’intérieur du domaine.

• Pour un bord localement convexe comme dans (i), bien que tangentielle, la volatilité σ
pousse la particule hors du domaine. Par conséquent, le vecteur b doit compenser ce
mouvement pour ramener la particule à l’intérieur du domaine. Dans ce cas, b ne peut
pas s’annuler.

• Pour un bord localement concave comme dans (iii), le vecteur b peut même pointer
vers l’extérieur vu que la volatilité pousse la particule à l’intérieur du domaine.

1Via la formule de Taylor au premier ordre pour φ autour de son maxima x avec u ≡ Dφ(x)⊤.
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(i)

(iii)

(ii)

σ

σ

σ

b

b

b

D

Figure 2.1: Intuitions géometriques: Géometrie/courbure de D et directions des coef-
ficients (b, σ).

Dans l’ensemble, les intuitions géométriques peuvent être formulées comme suit.

Une caractérisation informelle

Il existe une solution à (2.1.4) à valeurs dans D pour n’importe quel point de départ
X0 ∈ D si et seulement si, en tout point du bord, les conditions géométriques suivantes
sont satisfaites:

volatilité tangentielle σ; drift compensé (b− F (σ)) pointant vers l’intérieur , (2.1.5)

où F quantifie la contribution dûe à σ dans la direction tangentielle.

2.1.4 Résultats existant et points bloquants

Une caractérisation du second ordre

Nous passons désormais à une dérivation mathématique plus formelle imitant celle de la
section 2.1.2. Supposons qu’il existe une solution X de (2.1.4) à valeurs dans D démarrée
d’un point x ∈ D. Soit φ : Rd → R une fonction régulière telle que max

D
φ = φ(x). Comme

φ(Xt) ≤ φ(x), le lemme d’Itô entrâıne

∫ t

0
Lφ(Xs)ds+

∫ t

0
(Dφσ)(Xs)dWs ≤ 0, t ≥ 0, (2.1.6)

où Lφ := Dφb+ 1
2 Tr(D2φσσ⊤). En prenant l’espérance de l’expression précèdente avant de

diviser par t et d’envoyer t → 0, nous obtenons

Lφ(x) ≤ 0,

ou, de manière équivalente, après un petit effort2,

〈u, b(x)〉 +
1

2
Tr(vσ(x)σ(x)⊤) ≤ 0 x ∈ D, (u, v) ∈ N 2

D(x), (2.1.7)

2via la formule de Taylor au second ordre de φ autour de son maxima x avec (u, v) ≡ (Dφ(x)⊤, D2φ(x)).
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où N 2
D(x) est le cône normal de second ordre de l’ensemble D en un point x défini par

N 2
D(x) = {(u, v) ∈ Rd × Sd, 〈u, y − x〉 +

1

2
〈y − x, v(y − x)〉 ≤ o(‖y − x‖2),∀ y ∈ D}.

Par ailleurs, la condition (2.1.7) est suffisante pour l’invariance en vertu du principe du
maximum d’Ethier et de Kurtz [54, Théorème 4.5.4].

Cela donne une caractérisation de l’invariance en termes du cône normal du second ordre.
Néanmoins, la formulation (2.1.7) présente deux inconvénients majeurs. Premièrement, nous
ne pouvons pas directement lire sur (2.1.7) les intuitions géométriques (2.1.5). Deuxièmement,
le calcul du cône normal du second ordre peut être lourd en pratique, par opposition à celui
du cône normal du premier ordre. Il serait donc préférable d’avoir une caractérisation ex-
clusivement en terme du cône normal du premier ordre, comme dans le cadre déterministe.
En inspectant (2.1.7) et en se rappelant que (u, v) ≡ (Dφ(x), D2φ(x)), nous sommes tentés
d’effectuer une intégration par parties sur le terme Tr(vσ(x)σ(x)⊤) afin de récupérer le gra-
dient u = Dφ(x)⊤. Pour ce faire, des hypothèses de régularité supplémentaires sur σ, telle
que sa dérivabilité, sont nécessaires.

Une caractérisation du premier ordre

En observant (2.1.6) et en supposant que σ est deux fois dérivable, nous pouvons réappliquer
le lemme d’Itô au terme (Dφσ)(X) pour obtenir (rappelons que X0 = x)

0 ≥
∫ t

0
Lφ(Xs)ds+Dφ(x)σ(x)Wt

+

∫ t

0

(∫ s

0
D(Dφσ)(Xu)σ(Xu)dWu

)⊤
dWs +

∫ t

0

∫ s

0
L(Dφσ)(Xu)du dWs. (2.1.8)

L’idée est désormains d’étudier le comportement en temps court de l’expression précédente
sans prendre l’espérance. Afin de simplifier les notations, nous nous limitons au cas unidi-
mensionnel d = 1 et nous définissons

γ : y → D(Dφσ)(y)σ(y) = D2φ(y)σ2(y) +Dφ(y)Dσ(y)σ(y).

Le terme de double intégrales stochastiques dans (2.1.8) se décompose de la façon suivante

∫ t

0

∫ s

0
γ(Xu)dWudWs = γ(x)

∫ t

0

∫ s

0
dWudWs +

∫ t

0

∫ s

0
(γ(Xu) − γ(X0))dWudWs

=
γ(x)

2
(W 2

t − t) +O(t1+ǫ)

où l’estimation dépendant de la variable aléatoire ǫ(ω) > 0 peut être obtenue de manière
heuristique sous des hypothèses de régularité Höldérienne convenables sur σ et le fait que
Wt se comporte, très grossièrement, comme

√
t. Par le même raisonnement, nous pouvons

montrer que le dernier terme de (2.1.8) est dominé par t3/2 lorsque t tend vers 0. Par ailleurs,
comme

lim inf
t→0

W 2
t

t
= 0 et lim sup

t→0

W 2
t

t
= +∞,

en divisant (2.1.8) par t et en prenant la lim sup pour t → 0, nous obtenons

0 ≥ Lφ(x) + lim sup
t→0

Dφ(x)σ(x)
Wt

t
− γ(x)

2
+ 1{γ(x)>0}“ + ∞”.
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Comme Wt
t est une variable aléatoire gaussienne centrée avec variance 1, l’inégalité précédente

n’est possible que si

(i) Dφ(x)σ(x) = 0,

(ii) γ(x) ≤ 0,

(iii) 0 ≥ Lφ(x) − γ(x)
2 = Dφ(x)

(
b(x) − 1

2Dσ(x)σ(x)
)
.

L’étude informelle précédente du comportement en temps court des intégrales stochastiques
doubles peut être rendue rigoureuse en faisant appel à la loi du logarithme itéré du mou-
vement Brownien, comme dans [30], voir aussi [23, Lemme 2.1]. En relâchant la restriction
d = 1, (i) et (iii) conduisent à la caractérisation suivante, dérivée d’abord par Doss [47] et
plus tard par Da Prato et Frankowska [38]. Sous des hypothèses de régularité appropriées
sur (b, σ), il existe une solution à (2.1.4) à valeurs dans D pour tout point de départ X0 ∈ D
si et seulement si

σ(x)⊤u = 0 et 〈u, b(x) − 1

2

d∑

j=1

Dσj(x)σj(x)〉 ≤ 0, x ∈ D, u ∈ N 1
D(x), (2.1.9)

où σj(x) désigne la j-ème colonne de la matrice σ(x) et Dσj(x) est la matrice Jacobienne de
σj(x) évaluée au point x.

Les conditions (2.1.9) reflètent exactement les intuitions géométriques (2.1.5) où la contri-
bution F (σ) due à la volatilité σ dans la direction tangentielle est quantifiée via le terme
correctif de Stratonovich

F (σ) =
1

2

d∑

j=1

Dσjσj .

Historiquement, le terme correctif a été nommé après le mathématicien russe Ruslan L.
Stratonovich et permet de retrouver la règle de dérivation en châıne perdue avec la théorie
d’Itô. Le terme correctif de Stratonovich apparâıt dans une multitude de problèmes tels que le
résultat d’approximation de Wong et Zakäı [113], le théorème de support de Stroock et Varad-
han [107], la méthode de Milstein pour les simulations numériques . . . avec de nombreuses
applications en physique. Bien que différents, les problèmes énumérées précédemment, tout
comme les problèmes d’invariance et de viabilité, reposent sur la règle de dérivation en châıne
traditionnelle, ce qui explique l’apparition du terme correctif Stratonovich.

Sur le plan pratique, la formulation (2.1.9) nécessite de fortes hypothèses de régularité sur
les coefficients, à savoir sur σ. Le terme correctif de Stratonovich n’a de sens que lorsque σ
est dérivable, ce qui est très restrictif pour les applications. En effet, nous fixons D = R+ et
nous considérons le processus racine carrée suivant

dXt = b(Xt)dt+
√
XtdWt.

Ici, σ : x → √
x n’est pas dérivable au point du bord x = 0. Bien que le terme Stratonovich

ne soit pas bien défini dans ce cas, nous pouvons toujours prendre une limite näıve au point
0 avec u = −1 (vu que N 1

D(0) = R−), ce qui donne

0 ≥ lim
x→0

〈u, b(x) − 1

2
Dσ(x)σ(x)〉 = lim

x→0
(−1)

(
b(x) − 1

2

1

2
√
x

√
x

)
,
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entrâınant

b(0) ≥ 1

4
,

qui est une condition trop forte; puisque la bonne condition d’invariance pour le processus
racine carrée est b(0) ≥ 0. Intuitivement, lorsque le processus approche zéro, le terme de
diffusion

√
XtdWt tend vers 0 et X se comporte comme dans l’équation déterministe (2.1.1)

donnant la condition de drift pointant vers l’intérieur b(0) ≥ 0. Cet exemple illustre que
d’une part, même pour des diffusions simples, en l’occurrence le processus racine carrée, les
hypothèses requises pour (2.1.9) ne sont pas remplies. D’autre part, l’approximation näıve
du terme correctif de Stratonovich sur le bord du domaine par les valeurs qu’il prend à
l’intérieur du domaine ne fournit pas la bonne caractérisation de l’invariance.

En observant que a := σ2 est dérivable pour le processus racine carrée, nous sommes tentés
de dériver une caractérisation du premier ordre similaire à (2.1.9) en termes de la matrice
a := σσ⊤ à la place de σ, en imposant les hypothèses de régularité sur a plutôt que sur
σ. Ceci peut être heuristiquement justifié par les deux observations suivantes. Comme nous
l’avons déjà constaté sur (2.1.7), la caractérisation dépend de σ uniquement via a = σσ⊤ et
une intégration par parties serait toujours possible sur le terme Tr(vσ(x)σ(x)⊤) si seulement
a est supposé dérivable. En langage probabiliste, le problème de trouver une solution à
(2.1.4) à valeurs dans D peut être exclusivement reformulé via la loi du processus X, qui est
entièrement déterminée par a et b. Deuxièmement, imposer les hypothèses de régularité sur
a plutôt que sur σ étend considérablement la plage de validité de (2.1.9) à une classe plus
large de modèles utiles en pratique, comme les diffusions affines et polynomiales (voir [48] et
[35]). Pour ces processus, la fonction a = σσ⊤ est régulière (avec une dépendance affine ou
polynomiale en x) mais σ peut ne pas être dérivable, notamment sur le du bord domaine,
comme l’exemple du processus racine carré l’a déjà illustré.

2.1.5 Nos contributions

2.1.5.1 Au delà du drift de Stratonovich

Au stade actuel, le problème consiste à reformuler la caractérisation (2.1.9) en termes de
a = σσ⊤. Il est immédiat de constater que la condition de volatilité tangentielle σ(x)⊤u = 0
est équivalente à la condition

a(x)u = 0. (2.1.10)

Deviner le terme correctif lorsque σ n’est pas dérivable s’avère plus délicat. L’exemple du
processus racine carrée a déjà révélé qu’une limite näıve du terme correctif de Stratonovich
n’aboutit pas aux bonnes conditions. Par conséquent, une nouvelle expression quantifiant
la contribution du terme de diffusion dans (2.1.5) doit être trouvée. L’idée naturelle serait
de prendre des approximations plus appropriés de certains termes correctif de Stratonovich.
Nous précisons ceci dans ce qui suit.

Supposons que la fonction a est dérivable et fixons (e1, . . . , ed) la base canonique de Rd.
Soit ǫ > 0 et considérons la régularisation suivante qui préserve les conditions de volatilité
tangentielle

σǫ : x → a(x)(a(x) + ǫId)
− 1

2 .
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Il est clair que σǫ est dérivable au sens de Fréchet avec une dérivée donnée par la règle du
produit3

Dσǫ(x)h = Da(x)h(a(x) + ǫId)
− 1

2 + a(x)D((a+ ǫId)
− 1

2 )(x)h, h ∈ Rd.

En particulier, en évaluant au point h = ej pour j = 1, . . . , d, le terme de correction de
Stratonovich 〈u,∑d

j=1Dσ
j
ǫ (x)σjǫ (x)〉 est égal à

〈u,
d∑

j=1

Daj(x)(a(x) + ǫId)
− 1

2σjǫ (x)〉 + 〈u, a(x)
d∑

j=1

D((a+ ǫId)
− 1

2 )(x)ejσ
j
ǫ (x)〉.

En vertu de la condition tangentielle (2.1.10), le deuxième terme disparâıt de telle sorte à ce
que

〈u,
d∑

j=1

Dσjǫ (x)σjǫ (x)〉 = 〈u,
d∑

j=1

Daj(x)(a(x) + ǫId)
− 1

2a(x)(a(x) + ǫId)
− 1

2 ej〉 (2.1.11)

Puisque a(x) ∈ Sd+, sa décomposition spectrale est donnée par

a(x) = Q(x)diag(λ1, . . . , λr, 0, . . . , 0)Q(x)⊤,

où r ≤ d dénote le rang de a(x), λ1 ≥ · · · ≥ λr > 0 et Q(x) est une matrice orthogonale. Il
découle que

(a(x) + ǫId)
− 1

2a(x)(a(x) + ǫId)
− 1

2 = Q(x) diag

[(
λ1

λ1 + ǫ
, . . . ,

λr
λr + ǫ

, 0, . . . , 0

)]
Q(x)⊤

−−→
ǫ→0

Q(x) diag


(1, . . . , 1︸ ︷︷ ︸
r times

, 0, . . . , 0)


Q(x)⊤.

La dernière expression n’est rien d’autre que la matrice de projection sur l’image de a(x) qui
peut être ré-exprimée sous la forme a(x)a(x)+ où a(x)+ dénote la matrice pseudo-inverse de
Moore-Penrose4 de a(x). Par conséquent, en faisant tendre ǫ vers 0 dans (2.1.11), le terme
correctif devient

lim
ǫ→0

〈u,
d∑

j=1

Dσjǫ (x)σjǫ (x)〉 = 〈u,
d∑

j=1

Daj(x)(aa+)j(x)〉. (2.1.12)

Heuristiquement, en combinant (2.1.10) et (2.1.12) nous arrivons à la caractérisation suivante.

3nous utilisons la même notation pour la dérivée de Fréchet et la matrice jacobienne en identifiant
Da(x)ej = Daj(x).

4La matrice pseudo-inverse de Moore-Penrose d’une m × n-matrice A est l’unique n × m-matrice A+

satisfaisant: AA+A = A, A+AA+ = A+, tels que AA+ et A+A sont hermitiennes.
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Résultat principal 1 - Caractérisation de l’invariance

Sous des hypothèses appropriées telles que la dérivabilité de a := σσ⊤. Il existe une
solution à (2.1.4) à valeurs dans D pour tout point de départ X0 ∈ D si et seulement
si

a(x)u = 0 et 〈u, b(x) − 1

2

d∑

j=1

Daj(x)(aa+)j(x)〉 ≤ 0 (2.1.13)

pour tout x ∈ D et u ∈ N 1
D(x).

2.1.5.2 Caractérisation du premier order sous de faibles hypothèses de régularité

Nous prouvons dans le Chapitre 3 que la caractérisation (2.1.13) est valide. Ceci constitue le
premier résultat principal de la thèse. Les applications successives du Lemme d’Itô comme
dans (2.1.8) ne peuvent pas être simplement répliquées. Le problème réside dans le fait que
σ(X) n’est pas une semimartingale en général. Nous avons donc été amenés à développer de
nouvelles idées avant de revisiter la stratégie précédente.

À notre connaissance, contrairement au terme de Stratonovich, le terme correctif entrant
dans la caractérisation (2.1.13) apparâıt pour la première fois dans la littérature et quantifie
la force tagentielle F de (2.1.5) comme suit

F (a) =
1

2

d∑

j=1

Daj(x)(aa+)j(x).

Le terme de projection aa+ est nécessaire pour être en accord avec les intuitions géométriques:
b ne doit compenser que les dérivées directionnelles tangentielles de a afin de garder la
particule à l’intérieur du domaine.

De plus, si la matrice de volatilité σ est dérivable, il découle de (2.1.12) que

〈u,
d∑

j=1

Dσj(x)σj(x)〉 = lim
ǫ→0

〈u,
d∑

j=1

Dσjǫ (x)σjǫ (x)〉 = 〈u,
d∑

j=1

Daj(x)(aa+)j(x)〉,

prouvant que (2.1.13) se réduit à la caractérisation (2.1.9). Par conséquent, notre résultat
généralise les travaux [38, 47] sous des hypothèses de régularité plus faibles, principalement
sur la matrice de volatilité σ.

Enfin, pour revenir à l’exemple du processus racine carrée, a(x) = x de sorte que aa+(x) =
1{x>0}. Pour u = −1 les conditions (2.1.13) au bord en 0 sont données par

a(0) = 0 et b(0) ≥ 0,

ce qui aboutit à la bonne caractérisation.

Le tableau suivant résume nos résultats jusqu’à présent.
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Existant Existant

2nd ordre 1er ordre Notre résultat

Conditions (2.1.7) (2.1.9) (2.1.13)
Cône normal Second ordre Premier ordre Premier ordre

Hypothèses principales sur σ Continuité Dérivabilité Dérivabilité de σ2

Diffusions affines/polynomiales ✓ ✗ ✓

Intuitions géométriques selon (2.1.5) ✗ ✓ ✓

Table 2.1: Résumé des différentes caractérisations.

2.1.5.3 Extension aux sauts

Nous introduisons une source supplémentaire d’aléas dans (2.1.4) afin d’inclure des sauts
dans le mouvement de la particule comme suit

dXt = b(Xt)dt+ σ(Xt)dWt +

∫

Rd
ρ(Xt−, z) (µ(dt, dz) − F (dz)dt) , X0 = x, (2.1.14)

où µ est une mesure aléatoire de Poisson sur R+ ×Rd avec comme compensateur dt⊗F (dz)
contrôlant la fréquence d’arrivées des sauts, et ρ est une fonction qui détermine la taille des
sauts et qui satisfait des conditions de continuité appropriées.

Nous pouvons montrer que les sources de bruits aléatoires sont indépendantes. De ce fait,
nous nous concentrons uniquement sur les intuitions pour la partie discontinue afin que la
particule reste dans D. Si la particule X est (strictement) à l’intérieur du domaine juste
avant un saut à l’instant t, alors il est évident de voir que la particule ne doit pas sauter à
l’extérieur du domaine, c’est-à-dire

Xt− + (taille du saut) appartient à D.

La situation s’avère plus délicate au bord du domaine. À l’échelle microscopique, la particule
peut faire de grands ou petits sauts. Si l’on observe le mouvement de la particule à une échelle
macroscopique, les petits sauts fluctuant très rapidement deviennent invisibles à l’œil nu et
on ne voit plus qu’une trajectoire continue. Nous nous attendons donc à ce que ces petits
sauts aient le même comportement qu’un processus aléatoire continu à variation infinie, tout
comme le mouvement Brownien. En nous inspirant de (2.1.5), l’intuition de la volatilité
tangentielle se traduit pour les sauts comme suit:

les petits sauts fluctuant rapidement doivent être tangents au bord.

De plus, comme dans le cas continu,

b devrait compenser ces mouvements tangentiels pour que la particule reste dans le domaine.

Encore une fois, les intuitions précédentes combinées avec (2.1.13) peuvent être interprétées
mathématiquement comme suit.
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Résultat principal 2 - Extension aux sauts

Sous des hypothèses appropriées telles que la dérivabilité de a := σσ⊤. Il existe une
solution à (2.1.14) à valeurs dans D pour tout point de départ X0 ∈ D si et seulement
si

x+ ρ(x, z) ∈ D, pour F -presque tout z,
∫

|〈u, ρ(x, z)〉|F (dz) < ∞, a(x)u = 0,

〈u, b(x) −
∫
ρ(x, z)F (dz) − 1

2

d∑

j=1

Daj(x)(aa+)j(x)〉 ≤ 0,

pour tout x ∈ D et u ∈ N 1
D(x).

Cela conduit au second résultat principal de la thèse que nous prouvons dans le Chapitre
4. Nous dérivons également une caractérisation équivalente pour le cadre semimartingale en
termes du triplet caractéristique.

2.2 Equations de Volterra stochastiques

La seconde partie de la thèse est consacrée à l’étude des équations intégrales de Volterra
stochastiques d-dimensionnelles de la forme

Xt = g0(t) +

∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, (2.2.1)

où W est un mouvement Brownien multidimensionnel, et le noyau de convolution K, la
fonction g0 et les coefficients b et σ satisfont des conditions de régularité et d’intégrabilité
appropriées.

En fixant K ≡ 1 et g0 ≡ X0 pour une condition initiale constante X0, nous récupèrons (2.1.4)
sous forme intégrale. Par conséquent, les équations de Volterra stochastiques étendent les
équations différentielles stochastiques traditionnelles et permettent une plus grande flexibilité
pour la modélisation. Cependant, elles ne rentrent pas en général dans les cadres semi-
martingale et Markovien, comme l’illustre l’exemple du mouvement Brownien fractionnaire
de Riemann-Liouville Xt =

∫ t
0 KH(t− s), où KH est le noyau fractionnaire défini par

KH : t → tH−1/2, H ∈ (0, 1/2). (2.2.2)

Néanmoins, nous développons dans la suite plusieurs techniques pour traiter l’existence et
l’unicité pour différents espaces d’état et pour clarifier le lien avec les équations différentielles
stochastiques standards. Nos arguments évitent l’intégration stochastique par rapport à
des processus non-semimartingales, s’appuyant plutôt sur des outils issus de la théorie des
équations de convolution déterministes en dimension finie.

Avant de passer à un exposé plus détaillé, nous motivons d’abord l’étude des équations de
Volterra stochastiques.
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2.2.1 Motivations

Notre motivation pour étudier ces équations de convolution est double. Les équations de
Volterra stochastiques apparaissent comme limites de processus de branchement, conven-
ablement normalisés, dans le domaine de la génétique des populations et des processus auto-
excitants en mathématiques financières.

Interaction entre biologie et chimie

Un chimiste cherche à modéliser une interaction de type réaction-diffusion entre deux sub-
stances: un réactif et un catalyseur. La première substance, appelée le réactif diffuse dans
l’espace suivant un mouvement aléatoire. La réaction chimique n’aura lieu localement qu’en
présence d’une seconde substance, le catalyseur, répandu dans l’espace, proportionnellement
à la concentration du catalyseur au point de contact.

Afin de décrire l’image microscopique, son collègue biologiste suggère le modèle simple suiv-
ant, inspiré de la génétique des populations. Le reactif peut être considéré comme un système
de n particules unidimensionionelles se déplaçant dans l’espace suivant un mouvement Brown-
ien standard, de façon indépendante. La région occupée par le catalyseur à un instant donnée
t est définie par le support d’une mesure déterministe ρt(dx). Chaque fois qu’une particule
entre dans une région catalyste, et après avoir passé un temps aléatoire au voisinage du
catalyseur, elle meurt ou se divise en deux nouvelles particules, avec probabilités égales.
La mesure ρt(dx) détermine le taux local de branchement en temps et en espace, en fonc-
tion de l’emplacement et de la concentration du catalyseur. Deux exemples typiques sont
ρt(dx) ≡ ρ̄, auquel cas le branchement se produit dans tout l’espace avec un taux constant ρ̄,
et ρt(dx) = δ0(dx) correspondant à des branchements se produisant à un taux infini unique-
ment lorsque la particule atteint un unique point extrêmement concentré en catalyseur situé
en 0. En cas de branchement, les deux particules filles évoluent de façon indépendante avec
le même mouvement spatial et le même mécanisme de branchement que la particule mère.

Le reactant peut être vu comme un processus à valeurs dans l’espace des mesures (Ȳ n
t (dx))t≥0

défini par

Ȳ n
t (B) =

nombre de particles dans B à l’instant t

n
, pour tout Borélien B.

En envoyant le nombre de particules vers l’infini, nous pouvons établir la convergence de
la suite (Ȳ n)n≥1 vers un processus réactif limite Ȳ à valeurs dans l’espace des mesures: le
super-mouvement Brownien avec catalyse, solution d’un problème martingale en dimension
infinie. Par ailleurs, l’unicité faible découle d’un argument de dualité sur la fonctionnelle de
Laplace qui se révèle être exponentiellement affine

E
[
exp(〈u, Ȳt〉)

]
= exp(〈Ψt, Ȳ0〉), u ≤ 0, (2.2.3)

où 〈f, ν〉 =
∫
f(x)ν(dx) et Ψ est la solution mild de l’équation aux dérivées partielles de type

Riccati suivante

∂Ψt(x)

∂t
=

1

2
∆Ψt(x) +

1

2
Ψ2
t (x)

ρt(dx)

dx
, Ψ0(x) = u(x), (2.2.4)

avec ∆ = ∂2/∂x2 le Laplacien du second ordre.



Chapter 2. Introduction (Version française) 37

De plus, en présence d’un catalyseur ρ = (ρt(dx))t≥0 n’ayant aucun atome, le processus Ȳ
admet une densité Ȳt(dx) =

∫
Yt(x)dx solution de l’équation aux dérivées partielles stochas-

tique suivante

∂Yt(x)

∂t
=

1

2
∆Yt(x) +

√
Yt(x)Ẇ ρ(t, x), (2.2.5)

où Ẇ ρ(t, x) est un bruit spatio-temporel dont la structure de covariance est déterminée par
ρ; nous renvoyons vers Zähle [116] pour plus de détails. En notant

pt(x) = (2πt)−1/2 exp(−(xy)2/(2t))

le noyau de la chaleur, les solutions à (2.2.5) démarrant d’une courbe initiale Y0 sont con-
sidérées au sens mild, c’est à dire

Yt(x) =

∫

R

pt(x− y)Y0(y)dy +

∫ t

0

∫

R

pt−s(x− y)
√
Ys(y)W ρ(ds, dy). (2.2.6)

L’équation précédente n’est valide que si ρ n’a pas d’atomes. Nous pouvons toujours rem-
placer de manière heuristique ρt(dx) = δ0(dx) dans (2.2.6) pour le cas extrême d’un seul point
catalyseur en 0. Dans ce cas, le bruit spatio-temporel se réduit à un mouvement Brownien
standard W , de telle sorte à ce que l’évaluation au point x = 0 donne

Yt(0) = g0(t) +

∫ t

0

(t− s)−1/2

√
2π

√
Ys(0)dWs, (2.2.7)

où g0(t) =
∫
R pt(y)Y0(y)dy. Par conséquent, (Yt(0))t≥0 résout une équation de Volterra

stochastique de la forme (2.2.1). Inutile de dire que l’on n’est pas autorisé à introduire la
mesure de Dirac dans (2.2.6). En effet, en présence d’un seul point catalyseur, le super-
mouvement Brownien avec catalyse n’admet pas de densité au point catalyseur, comme le
montrent Dawson et Fleischmann [41], et (2.2.5) n’est plus valide. Cela peut être vu directe-
ment sur (2.2.7) puisque le noyau K : t → t−1/2 n’est pas localement de carré intégrable
et l’intégrale stochastique n’est pas bien définie au sens de la théorie L2 d’Itô. Néanmoins,
l’intégrabilité L2 peut être récupérée de manière informelle en perturbant la puissance du
noyau avec un petit H > 0 conduisant au noyau fractionnaire KH défini dans (2.2.2). Pour le
noyau KH , (2.2.7) a désormais du sens. Au niveau microspcopique du processus de branche-
ment, cela se traduit par la substitution du flux de la chaleur ∆ par un mouvement spatial
approprié ∆H . Ces heuristiques sont rendues rigoureuses par Mytnik et Salisbury [96].

Par ailleurs, la transformée de Laplace de (Yt(0))t≥0 se déduit de (2.2.3). En effet, en raison
de la propriété de régularisation du semi-groupe généré par ∆H , l’équation aux dérivées
partielles de Riccati peut être démarrée d’une condition initiale dans l’espace des mesures.
Comme 〈u, Ȳt〉 = 〈u, Yt〉, et en définissant u(x) = uδ0(dx) pour certaines constantes non
positives u et Y0(x) ≡ Y0 ≥ 0, des manipulations directes de (2.2.3)-(2.2.4) avec ρt(dx) =
δ0(dx) mènent à

E [exp(uYt(0))] = exp(χ(t)Y0), (2.2.8)

où χ(t) = u+ 1
2

∫ t
0 Ψ2

s(0)ds et (Ψt(0))t≥0 résout l’équation Riccati-Volterra suivante

ψ(t) = uKH(t) +
1

2

∫ t

0
KH(t− s)ψ2(s)ds. (2.2.9)
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Le point de vue d’un trader: du tick-par-tick vers la volatilité rugueuse

Dans le domaine de la finance quantitative, en raison du développement rapide du trading
algorithmique haute fréquence, la théorie de la microstructure des marchés est en plein essor.
Comme son nom l’indique, cette théorie traite de questions telles que la formation des prix,
les coûts de transaction et la liquidité, par une étude approfondie du marché à une échelle
microscopique.

Imitant le biologiste de la section précédente, le trader peut procéder en deux étapes. Tout
d’abord, concevoir un modèle microscopique codant les principaux faits stylisés de la mi-
crostructure moderne du marché, avant de regarder la limite macroscopique émanant du
modèle microscopique, suite à une normalisation appropriée. Une telle approche a été adoptée
dans la thèse de doctorat de Jaisson [78], en s’appuyant sur les processus de Hawkes pour
modéliser le prix d’un actif au niveau microscopique. La thèse a ensuite été suivie par une
série de travaux qui ont abouti à la construction élégante du modèle d’Heston rugueux dans
[51]. Les processus de Hawkes sont une généralisation des processus de Poisson où l’intensité
des sauts dépend des réalisations passées du processus. Cette structure de dépendance est
spécifiée par un noyau. Pour des noyaux appropriés, des effets auto-excitants peuvent être
générés, permettant une modélisation jointe des faits stylisés suivants:

(i) clustering du flux d’ordres: nous observons des périodes avec un nombre élevé de trans-
actions suivies de périodes plus creuses,

(ii) découpage des ordres: les ordres importants ne sont pas exécutés en une fois, ils sont
découpés dans le temps en plusieurs ordres de petite taille par des algorithmes de trading
afin d’optimiser les coûts de transaction,

(iii) haut degré d’endogénéité: la plupart des ordres manquent de réelle motivation économique,
ils ne sont envoyés que par des algorithmes en réaction à d’autres ordres.

Après avoir incorporé ces observations dans l’intensité du processus de Hawkes, une normal-
isation appropriée entrâıne la convergence vers le modèle suivant pour le cours de l’action S
et sa variance stochastique V

dSt = St
√
VtdBt, S0 = 1, (2.2.10)

Vt = V0 +

∫ t

0
KH(t− s)η

√
VsdWs, (2.2.11)

où KH est le noyau fractionnaire défini dans (2.2.2) avec H ∈ (0, 1/2), (V0, η) ∈ R2
+ et

B = ρW+
√

1 − ρ2W⊥ avec ρ ∈ [−1, 1] et (W,W⊥) un mouvement Brownien bidimensionnel.
Le processus bidimensionnel X = (S, V ) appartient à la classe des équations de Volterra
stochastiques de la forme (2.2.1) avec le noyau diagonal K = diag [(1,KH)].

Le modèle macroscopique (2.2.10) - (2.2.11) a été baptisé modèle d’Heston rugueux. L’appellation
est justifiée comme suit. D’une part, les trajectoirs de V sont localement Höldériens pour
tout ordre strictement inférieur à H, et donc moins régulier que le mouvement Brownien
standard (qui correspond au cas H = 1/2). Par conséquent, les modèles impliquant le noyau
fractionnaire ont été surnommé modèles à volatilité rugueuse (rough volatility en anglais).5

5Des études empiriques sur différentes séries temporelles de la volatilité réalisée des actifs dans [66, 15] ont
révélé que la dynamique de la volatilité suit celui d’un mouvement brownien fractionnaire avec un paramètre
de Hurst H de l’ordre de 0.1, ce qui est incompatible avec les modèles semimartingales standard.
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D’autre part, pour H = 1/2, (2.2.10)-(2.2.11) se réduit au modèle d’Heston standard [72],
qui est l’un des modèles les plus populaires grâce à sa formule fermée pour la fonction car-
actéristique du log-prix, permettant un pricing et une calibration rapides par des techniques
d’inversion de Fourier. De façon assez remarquable, une formule analogue est disponible
pour le modèle d’Heston rugueux. En effet, en prenant la limite de la suite des transformées
de Fourier du modèle microscopique de Hawkes, El Euch et Rosenbaum [50] dérivent la
transformation affine

E [exp(v logSt)] = exp(χ(t)V0), v ∈ iR, (2.2.12)

en fonction de l’équation de Riccati-Volterra

ψ(t) =

∫ t

0
KH(t− s)F (v, ψ(s))ds, (2.2.13)

où

F (v, u) =
1

2
(v2 − v) + ρνu+

u2

2
et χ(t) =

∫ t

0
F (v,Ψ(s))ds.

Clairement, les équations (2.2.12)-(2.2.13) partagent certaines similitudes avec (2.2.8) - (2.2.9).
En combinant les deux exemples, on s’attendrait à obtenir une expression similaire pour le
processus joint (logS, V ).

Notre approche: le point de vue macroscopique

Il est courant en théorie des probabilités d’étudier divers phénomènes à travers l’objet macro-
scopique limite associé afin d’obtenir de précieuses informations sur le comportement du
modèle microscopique, qui lui est plus réaliste. Nous adoptons cette perspective dans cette
thèse en prenant comme point de départ les équations de Volterra stochastiques dans Rd

de la forme (2.2.1). Ce faisant, nous évitons l’analyse en dimensions infinie, comme celle
utilisée pour étudier les super-processus. Nous évitons également les limites normalisés de
de processus de Hawkes, ce qui permet un traitement plus générique des problèmes suivants:

• Qu’en est-il des noyaux plus généraux que le noyau fractionnaire KH?

• Peut-on augmenter la dimension?

• Qu’en est-il des dynamiques arbitraires, pas nécessairement du type racine carrée?

• Comment peut-on clarifier la structure affine sous-jacente?

Ces questions font principalement l’objet du Chapitre 5 où les problèmes d’existence générale
de (2.2.1) sont abordés pour différents espaces d’état. L’unicité est ensuite établie pour une
classe spécifique, à savoir les processus affines de Volterra, en caractérisant complètement la
transformé de Fourier-Laplace de la solution en termes d’une équation déterministe intégrale
de type Riccati-Volterra. Par la suite, nous établissons la correspondance avec des équations
aux dérivées partielles stochastiques. Cela conduit à la caractérisation complète de la struc-
ture markovienne des équations stochastiques de Volterra et ouvre la porte à des schémas
d’approximations numériques. Ces résultats sont rassemblés dans les Chapitres 6, 7 et 8.

2.2.2 Existence

Nous fournissons de nouveaux résultats d’existence pour (2.2.1) pour plusieurs espaces d’état
sous des conditions faibles sur le noyau et les coefficients.
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Solutions non-contraintes: d’Itô à Skorokhod

Le problème d’existence de solutions non-contraintes, c’est-à-dire à valeurs dans Rd, est traité
en revisitant les stratégies classiques pour les équations différentielles stochastiques (2.1.4).
Historiquement, le premier résultat d’existence et d’unicité remonte à Kiyosi Itô [75] pour
des coefficients b et σ Lipschitz. Plus tard, Anatoliy Volodymyrovych Skorokhod [104] a pu
établir l’existence de solutions sous des conditions de croissance linéaire et de continuité pour
b et σ.

On a découvert plus tard que les deux notions de solutions n’étaient pas équivalentes. Étant
donné un espace de probabilité filtré (Ω,F ,F := (Ft)t≥0,P) avec un mouvement Brownien
en entré, Itô construit une solution trajectorielle X adaptée à la filtration générée par le
mouvement Brownien, ce qui correspond au concept de solution forte. Alors que dans la
preuve de Skorokhod, on construit un espace de probabilité filtré (Ω,F ,F := (Ft)t≥0,P) avec
un mouvement Brownien W et un processus X tel que (2.1.4) est vérifiée presque sûrement,
ce qui correspond au concept de solution faible. Nous remarquons qu’une solution faible X
n’est pas nécessairement adaptée à la filtration Brownienne. Il est clair que toute solution
forte est une solution faible, mais l’inverse n’est pas vrai, comme l’illustre le célèbre exemple
d’Itô-Tanaka

dXt = sign(Xt)dWt.

Nous prouvons des résultats d’existence similaires pour l’équation de Volterra stochastique
(2.2.1).

Résultat principal 3 - Existence de solutions non-contraintes

Sous des hypothèses faibles sur g0 et K ∈ L2
loc(R+,R

d):

(i) Si b et σ sont Lipschitz, alors (2.2.1) admet une unique solution forte continue
X.

(ii) Si b et σ sont continus avec des conditions de croissance, alors (2.2.1) admet une
solution faible continue x.

Solutions contraintes: retour au problème d’invariance

Comme pour les équations différentielles stochastiques, la question d’existence de solutions
contraintes à rester dans un domaine se pose. Cependant, le problème d’invariance ou de
viabilité se révèle plus délicat dans le cadre non-markovien. Nous fournissons des conditions
suffisantes pour l’existence de solutions aux équations de Volterra stochastiques (2.2.1) à
valeurs dans Rd+.

Sous des conditions de continuité et de croissance pour (b, σ), le résultat précédent garantit
l’existence d’une solution faible non-contrainte X à l’équation modifiée suivante

Xt = g0(t) +

∫ t

0
K(t− s)b(X+

s )ds+

∫ t

0
K(t− s)σ(X+

s )dWs,

pour une courbe d’entrée g0 et un noyau K appropriés, où x+ = max(0, x). Clairement,
il faudrait imposer des hypothèses supplémentaires sur g0 pour assurer la positivité de X
et pouvoir supprimer la partie positive dans l’équation précédente, afin d’obtenir que X est
solution de (2.2.1). En effet, puisque X0 = g0(0), il est clair que g0(0) devrait être dans Rd+.
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Le problème peut désormais être formulé comme suit:

Peut-on trouver un ensemble GK de courbes d’entrée initiales g0 telles que X reste dans Rd+?

Afin de mieux comprendre le problème, revenons au processus racine carré standard en
dimension un

Xt = g0(t) − λ

∫ t

0
X+
s ds+

∫ t

0

√
X+
s dWs.

En raisonnant à la physicienne, le comportement de X juste après un instant fixé t peut être
approximé par

Xt+h ≈ Xt + g0(t+ h) − g0(t) − hλX+
t +

√
X+
t (Wt+h −Wt), pour h > 0 petit.

Comme g0(0) ≥ 0, si X touche zéro pour la première fois à l’instant t ≥ 0, alors

Xt+h ≈ g0(t+ h) − g0(t).

D’où, Xt+h reste positif pour tout h > 0 si l’ensemble des courbes d’entrée initiales est donné
par

G1 = {g0 croissante telle que g0(0) ≥ 0}.
Pour un noyau K arbitraire, on pourrait s’attendre à une condition de “croissance” analogue
qui prenne en compte les variations de K. C’est en effet le cas, nous fournissons un ensemble
de courbes d’entrée admissibles

GK = {g0 “croissante par rapport à K” telle que g0(0) ≥ 0}. (2.2.14)

tel que (2.2.1) admette une solution faible à valeurs dans Rd+.6

Résultat principal 4 - Existence de solutions constraintes dans Rd
+

Sous de faibles hypothèses sur K ∈ L2
loc(R+,R

d) telles que la positivité et la
décroissance, si les conditions géométriques

xi = 0 implique bi(x) ≥ 0 et σi(x) = 0, i = 1, . . . , n

sont satisfaites, alors (2.2.1) admet une solution faible continue à valeurs dans Rd+,
pour toute courbe initiale admissible g0 ∈ GK .

2.2.3 Cadre affine: unicité et tractabilité

Ayant établi l’existence, nous nous tournons vers le problème d’unicité qui est une étape cru-
ciale pour l’utilisation du modèle dans la pratique. L’unicité est un problème assez difficile
pour des coefficients non-Lipschitz, même pour les équations différentielles stochastiques stan-
dards. En effet, lorsque K ≡ id est constant et égal à la matrice d’identité d-dimensionnelle,
l’unicité faible peut être obtenue dans le cas particulier où les coefficients a := σσ⊤ et b sont
affines:

a(x) = A0 + x1A
1 + · · · + xdA

d

b(x) = b0 + x1b
1 + · · · + xdb

d,
(2.2.15)

6La formulation explicite de GK est donnée au Chapitre 6.
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pour certaines matrices symétriques d-dimensionnelles Ai et vecteurs bi. Dans ce cas, les
solutions de (2.1.4) sont appelées diffusions affines, nous référons à Duffie, Filipović et
Schachermayer [48] pour un traitement détaillé. Plus précisément, supposons que X soit
une diffusion affine de la forme (2.1.4) à valeurs dans un fermé D ⊂ Rd. Pour un vecteur de
ligne d-dimensionnel approprié u, la transformée de Fourier-Laplace conditionnelle de X est
exponentiellement affine

E
[
exp (uXT )

∣∣∣ Ft

]
= exp (φ(T − t) + ψ(T − t)Xt) , (2.2.16)

où les fonctions φ et Ψ satisfont aux équations différentielles ordinaires de Riccati suivantes:

φ(t) =

∫ t

0

(
ψ(s)b0 +

1

2
ψ(s)A0ψ(s)⊤

)
ds

ψ(t) = u+

∫ t

0

(
ψ(s)B +

1

2
A(ψ(s))

)
ds,

avec A(u) = (uA1u⊤, . . . , uAdu⊤) et B = (b1 · · · bd). L’unicité faible de (2.1.4) découle
alors de (2.2.16), ce qui conduit également à la tractabilité. En effet, les diffusions affines
constituent sans doute le cadre le plus populaire pour la construction de modèles multi-
facteurs faciles à gérer en finance. En particulier, les modèles de volatilité stochastique affines,
tels que le modèle de Heston [72] déjà rencontré dans la motivation, sont très populaires.

En supprimant la restriction K ≡ id et en renvoyant aux deux motivations, on pourrait
espérer une expression similaire pour la transformée de Fourier-Laplace pour les équations
de Volterra stochastiques (2.2.1) avec des coefficients affines de la forme (2.2.15). Néanmoins,
(2.2.16) est clairement une expression Markovienne et ne peut pas rester valide dans un cadre
non-Markovien. Par conséquent, une première étape naturelle serait de trouver un Ansatz
potentiel pour la transformation de Fourier-Laplace dans un environnement non-Markovien.

Dérivation d’un bon Ansatz

Nous revisitons le processus standard racine carrée

dXt = −λXtdt+ η
√
XtdWt,

qui est clairement une diffusion affine à valeurs dans R+ avec comme coefficients a(x) = η2x
et b(x) = −λx. Il découle de (2.2.16) que

E [exp(uXT )|Ft] = exp (ψ(T − t)Xt) , ℜ(u) ≤ 0,

où

ψ′ = −λψ +
η2

2
ψ2, ψ(0) = u.

La formule de la variation des constantes au niveau du processus X et de la fonction Ψ donne

E[Xs|Ft] = e−λ(t−s)Xt et ψ(t) = ue−λt +
η2

2

∫ t

0
e−λ(t−s)ψ2(s)ds, s ≥ t,
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ce qui entrâıne

ψ(T − t)Xt = ue−λ(T−t)Xt +
η2

2

∫ T−t

0
ψ2(s)e−λ(T−t−s)Xtds

= uE[XT |Ft] +
η2

2

∫ T

t
ψ2(T − s)E[Xs|Ft]ds,

conduisant à l’expression alternative pour la transformée de Fourier-Laplace

E
[
exp (uXT )

∣∣∣ Ft

]
= exp

(
E[uXT | Ft] +

1

2

∫ T

t
ψ2(T − s)a(E[Xs | Ft])ds

)
.

Par rapport à (2.2.16), l’expression précédente à l’avantage de masquer complètement la
propriété Markovienne du processus. Pour cette raison, elle constitue un bon potentiel Ansatz
pour le cadre Volterra.

Processus affines de Volterra

Notre résultat principal montre que, remarquablement, cette même expression est toujours
valide pour la classe des processus affines de Volterra où la fonction Ψ résout désormais une
équation intégrale déterministe de type convolution. Un processus affine de Volterra avec un
espace d’état D et des coefficients (2.2.15) est défini comme une solution faible évaluée de
(2.2.1) à valeurs dans D, avec a := σσ⊤ sur D.

Résultat principal 5 - Transformation affine

Sous des hypothèses appropriées sur K ∈ L2
loc(R+,R

d), fixons X un processus affine
de Volterra à valeurs dans D avec des coefficients donnés par (2.2.15) et supposons
que l’équation de Riccati-Volterra correspondant

ψ(t) = uK(t) +

∫ t

0

(
ψ(s)B +

1

2
A(ψ(s))

)
K(t− s) ds,

admette une solution. Alors, sous une condition supplémentaire d’intégrabilité, nous
avons

E
[
exp (uXT )

∣∣∣ Ft

]
= exp

(
E[uXT | Ft] +

1

2

∫ T

t
ψ(T − s)a(E[Xs | Ft])ψ(T − s)⊤ds

)
.

Encore une fois, l’unicité faible en découle. De plus, il est possible d’exprimer la transformée
de Fourier-Laplace sous une forme exponentiellement-affine en la trajectoire passée {Xs, s ≤
t}. En particulier, lorsque g0 ≡ X0 pour une constante X0 ∈ Rd, et pour t = 0, la transformée
de Fourier-Laplace non-conditionnelle est donnée par

E[exp(uXT )] = exp (φ(T ) + χ(T )X0) ,

où

φ =

∫ ·

0
(ψb0 +

1

2
ψA0ψ⊤)(s)ds and χ = u+

∫ ·

0
(ψB +

1

2
A(ψ))(s)ds.

Ces dernières expressions concordent avec les formulations (2.2.8) et (2.2.12) des motivations.
Enfin, la caractérisation de Fourier-Laplace est une propriété clé des processus affines de
Volterra, rendant ces équations intéressantes en pratique avec un compromis attrayant entre
flexibilité et tractabilité.
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2.2.4 Markovianité: correspondance avec les EDP stochastiques

La motivation provenant de la génétique des populations met en évidence la correspon-
dance entre les équations stochastiques de Volterra et les équations aux dérivées partielles
stochastiques dégénérées. Plus précisément, résoudre le problème d’existence et d’unicité
pour l’une de ces classes conduit à résoudre le problème pour l’autre classe et vice-versa.
En partant de certaines équations aux dérivées partielles stochastiques, on peut récupérer
une équation de Volterra stochastique par une procédure de projection. Inversement, toute
équation stochastique de Volterra peut être élevée vers une équation en dimension infinie.
Ayant déjà abordé le problème d’existence et d’unicité des équations de Volterra stochas-
tiques, il semble naturel d’adopter les équations de Volterra comme point de départ. Cela
conduit à une caractérisation de la structure Markovienne des équations stochastiques de
Volterra. Nous fournissons deux représentations Markoviennes en termes d’objets en dimen-
sion infinie et spécifions leur espace d’états.

Par soucis de clareté, nous nous limitons au cas des équations de Volterra stochastiques
unidimensionnelles à valeurs dans R+. Nous supposons que b et σ satisfont les conditions au
bord

b(0) ≥ 0 et σ(0) = 0,

et que g0 appartient à l’ensemble de courbes d’entrée admissibles GK , donné par (2.2.14) de
sorte à ce que notre résultat principal 4 assure l’existence d’une solution faible non négative
X à (2.2.1).

Première représentation: processus forward

Nous commençons par l’observation suivante: conditionnellement à Ft, le processus shifté
Xt := (Xt+x)x≥0 résout la même équation de Volterra stochastique (2.2.1) à condition que
g0 soit remplacée par le processus forward ajusté suivant

gt(x) = E

[
Xt+x −

∫ x

0
K(x− s)b(Xt+s)ds

∣∣∣ Ft

]
, x ≥ 0.

Plus précisement, le processus Xt résout l’équation

Xt
x = gt(x) +

∫ x

0
K(x− s)b(Xt

s)ds+

∫ x

0
K(x− s)σ(Xt

s)dW
t
s , x ≥ 0,

avec W t := Wt+· − Wt. Ceci suggère que, d’une part, X est Markovien en la courbe de
dimension infinie (gt)t≥0. D’autre part, comme le processus Xt est positif, nous sommes
tentés d’affirmer que gt constitue de nouveau une courbe d’entrée admissible appartenant
à GK telle que définie dans (2.2.14). Notre résultat principal confirme cette intuition en
montrant que GK est invariant pour la famille (gt)t≥0. En d’autres termes, si on démarre
d’une courbe d’entrée admissible g0 ∈ GK , alors gt appartient à GK , pour tout t ≥ 0. Cela
nous permet de caractériser la structure Markovienne de x en fonction du processus forward
ajusté (gt)t≥0. De plus, (gt)t≥0 peut être vu comme la solution mild à valeurs dans GK de
l’équation aux dérivées partielles stochastique de type Heath-Jarrow-Morton

dgt(x) =

(
d

dx
gt(x) +K(x)b(gt(0))

)
dt+K(x)σ(gt(0))dWt, g0 ∈ GK ,

et possède une fonctionnelle de Fourier exponentiellement affine lorsque b et σ2 sont affines.
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Deuxième représentation: cas complètement monotone

Nous pouvons en dire plus lorsque K est complètement monotone sur (0,∞), i.e. K est
infiniment dérivable sur (0,∞) tel que (−1)nK(n) ≥ 0 pour tout n ≥ 0. D’après le théorème
de Bernstein, cela revient à dire que K est la transformée de Laplace d’une mesure non
négative µ

K(t) =

∫ ∞

0
e−xtµ(dx), t > 0.

Par exemple, le noyau fractionnaire KH donné dans (2.2.2) est complètement monotone et

sa mesure associée est donnée par µH(dx) = x−1/2−H

Γ(1/2−H)dx. En exploitant cette propriété et en

partant d’une solution à (2.2.1) avec g0 ≡ 0, une interversion formelle de l’ordre d’intégration
conduit à

Xt =

∫ t

0
K(t− s) (b(Xs)ds+ σ(Xs)dWs)

=

∫ ∞

0

∫ t

0
e−x(t−s) (b(Xs)ds+ σ(Xs)dWs)µ(dx)

=

∫ ∞

0
Ut(x)µ(dx) (2.2.17)

où Ut(x) :=
∫ t

0 e
−x(t−s) (b(Xs)ds+ σ(Xs)dWs). En particulier, on reconnâıt la formulation

mild de l’équation suivante

dUt(x) =

(
−xUt(x) + b

(∫ ∞

0
Ut(y)µ(dy)

))
dt+ σ

(∫ ∞

0
Ut(y)µ(dy)

)
dWt, U0(x) = 0,

pour tout x ∈ supp(µ), où supp(µ) indique le support de la mesure µ. Les processus
(U(x))x∈(suppµ) partagent la même dynamique, sauf qu’ils retournent à leur moyenne à des
vitesses différentes. Dans le cas où le support de µ est fini, constitué de n points (x1, . . . , xn),
l’équation se réduit à un système d’équation différentielle standard n-dimensionnel de la forme
(2.1.4). De plus, il découle de la représentation (2.2.17) que X est Markovien en dimension
n en (U(x1), . . . , U(xn)).

Les deux représentations sont liées par la formule suivante:

gt(x) =

∫ ∞

0
e−yxUt(y)µ(dy), t, x ≥ 0.

Par ailleurs, dans le cas d’un processus affine de Volterra, à savoir b(x) = −λx et σ(x) =
η
√
x, nous montrons que la transformée de Laplace de X est une fonctionnelle exponentielle-

ment affine en Ut

E
[
exp(uXT )

∣∣∣ Ft

]
= exp

(∫ ∞

0
χ(T − t, x)Ut(x)µ(dx)

)

où χ résout l’équation aux dérivées partielles de Riccati suivante

∂tχ(t, x) = −xχ(t, x) + F

(∫ ∞

0
χ(t, y)µ(dy)

)
, χ(0, x) = u, x ∈ supp(µ),

avec F (u) = −λu+ η2

2 u
2. Comme précédemment, lorsque le support de µ est fini, l’équation

se réduit à un système fini d’équations différentielles ordinaires de Riccati.
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2.2.5 Procédure d’approximation

À ce stade, une idée naturelle serait d’approcher toute mesure positive µ à support infini par
une somme pondérée finie de mesures de Dirac, tout en espérerant obtenir la convergence des
équations associées. Plus précisément, on fixe un noyau complètement monotone K de telle
sorte à ce que la mesure associée est à support infinie, par exemple le noyau fractionnaire.
En approchant le noyau K par une suite de noyaux réguliers (Kn)n≥1, on pourrait s’attendre
à obtenir la convergence de la suite des équations de Volterra stochastiques correspondante

Xn
t = gn0 (t) +

∫ t

0
Kn(t− s)b(Xn

s )ds+

∫ t

0
Kn(t− s)σ(Xn

s )dWs, n ≥ 1, (2.2.18)

vers l’équation initiale (2.2.1) avec le noyau K, pour un choix approprié de gn0 .

Ceci est rendu rigoureux par le résultat de stabilité pour les équations de Volterra stochas-
tiques suivant.

Résultat principal 6 - Stabilité des équations de Volterra stochastique

Fixons T > 0, sous de faibles hypothèses d’intégrabilité, nous supposons que ‖Kn −
K‖L2(0,T ) → 0 et gn0 → g0 point par point sur [0, T ], alors la suite (Xn)n≥1 de solutions
à (2.2.18) est tendue pour la topologie uniforme, et tout point limite est solution de
l’équation stochastique de Volterra (2.2.1).

En tant qu’application aux mathématiques financières, nous montrons que les représentations
Markoviennes précédentes, combinées avec le résultat de stabilité, ont une importance cru-
ciale dans la pratique car elles conduisent à de nouveaux schémas d’approximation numériques
principalement pour la modélisation de la volatilité rugueuse. En effet, nous concevons
des modèles de volatilité stochastique multi-facteurs tractables approchant les modèles de
volatilité rugueuse tout en bénéficiant d’une structure Markovienne. De plus, nous appliquons
notre procédure au cas spécifique du modèle d’Heston rugueux. Cela nous permet de dériver
une méthode numérique pour résoudre l’équation de Riccati-Volterra correspondante dans
ce contexte.

2.2.6 Lifting du modèle d’Heston

Dans le dernier chapitre, nous inversons le point de vue précédent en prenant le modèle
Markovien en dimension finie comme point de départ. Nous introduisons une version liftée
du modèle d’Heston à n-facteurs partageant le même mouvement Brownien mais avec des
vitesses de retour à la moyenne différents. Le modèle inclus comme cas extrêmes le modèle
classique d’Heston (quand n = 1) ainsi que le modèle d’Heston rugueux (quand n tend
vers l’infini). Nous montrons que le modèle lifté bénéficie du meilleur des deux mondes:
la markovianité et une interpolation satisfaisante du smile de volatilité implicite pour les
maturités courtes. De plus, notre approche accélère le temps de calibration et ouvre la porte
à des schémas de simulation rapides.



Chapter 2. Introduction (Version française) 47

Structure

La deuxième partie de cette thèse est structurée comme suit.
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Figure 2.2: Diagramme de la Partie II
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Chapter 3

Stochastic invariance with with
non-Lipschitz coefficients

Summary

This chapter provides a new characterization of the stochastic invariance of a closed
subset of Rd with respect to a diffusion. We extend the well-known inward pointing
Stratonovich drift condition to the case where the volatility matrix can fail to be
differentiable: we only assume differentiability of the covariance matrix. In particular,
our result can be applied to construct affine and polynomial diffusions on any arbitrary
closed set.

Based on [3]: Abi Jaber, E., Bouchard, B., & Illand, C. (2016) Stochastic invariance
of closed sets with non-Lipschitz coefficients. Accepted for publication - Stochastic
Processes and their Applications.

3.1 Introduction

Let b : Rd 7→ Rd and σ : Rd 7→ Rd×d be continuous functions, where Rd×d denotes the space
of d × d matrices. We assume that b and σ satisfy the following linear growth conditions:
there exists L > 0 such that

‖b(x)‖ + ‖σσ⊤(x)‖ 1
2 ≤ L(1 + ‖x‖), ∀ x ∈ Rd, (A1)

and we consider a weak solution of the stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dWt, X0 = x, (3.1.1)

i.e. a d-dimensional Brownian motion W and an adapted process X such that the above
equation holds.

The aim of this chapter is to provide a characterization of the stochastic invariance of a
closed set D ⊂ Rd, i.e. find necessary and sufficient conditions on the instantaneous drift b

51
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and the instantaneous covariance matrix σσ⊤ under which there exists a weak solution of
(3.1.1) that remains in D for all t ≥ 0, almost surely, given that x ∈ D. (See Definition 3.2
below for a precise formulation.)

The first stochastic invariance/viability results can be found in Stroock and Varadhan [107],
Friedman [62] and Doss [47]. Since then, many extensions were considered in the literature.
For an arbitrary closed set, the stochastic invariance was characterized through the second
order normal cone in Bardi and Goatin [12] and Bardi and Jensen [13]. Aubin and Doss [10]
used the notion of curvature, while Da Prato and Frankowska [38] provided a characterization
in terms of the Stratonovich drift. For a closed convex set, the distance function was used in
Da Prato and Frankowska [39], and the invariance was characterized for affine jump-diffusions
in Tappe [109].

Although these approaches differ, they have at least one thing in common: the tradeoff one
has to make between the assumptions on the topology/smoothness of the domain and the
regularity of the coefficients b and σ. This makes all of these existing results difficult to apply
in practice. Let us start by highlighting this difficulty through the two main contributions
to the literature:

(i) In Bardi and Jensen [13], the stochastic invariance is characterized by using Nagumo-
type geometric conditions on the second order normal cone. Their main result states
that the closed set D is stochastically invariant if and only if

u⊤b(x) +
1

2
Tr(va(x)) ≤ 0, x ∈ D, (u, v) ∈ N 2

D(x),

in which a := σσ⊤ on D and N 2
D(x) is the second order normal cone at the point x:

N 2
D(x) :=

{
(u, v) ∈ Rd × Sd : 〈u, y − x〉 +

1

2
〈y − x, v(y − x)〉 ≤ o(‖y − x‖2),∀ y ∈ D

}
.

(3.1.2)
Prior to deriving the conditions on b and σ, we have to determine the second order
normal cone at all points of a given set. When the boundary is smooth, the computation
of the second order normal cone is an easy task, see e.g. [13, Example 1]. However, it
is much more challenging in general, by lack of efficient techniques. This renders the
result of [13] difficult to use in practice. This also corresponds to the positive maximum
principle of Ethier and Kurtz [54].

(ii) Building on Doss [47], Da Prato and Frankowska [38] give necessary and sufficient
conditions for the stochastic invariance in terms of the Stratonovich drift and the first
order normal cone:

σ(x)⊤u = 0 and 〈u, b(x) − 1

2

d∑

j=1

Dσj(x)σj(x)〉 ≤ 0, x ∈ D, u ∈ N 1
D(x), (3.1.3)

where σj(x) denotes the j-th column of the matrix σ(x), Dσj is the Jacobian of σj ,
and the first order normal cone N 1

D(x) at x (sometimes simply called normal cone) is
defined as

N 1
D(x) :=

{
u ∈ Rd : 〈u, y − x〉 ≤ o(‖y − x‖),∀ y ∈ D

}
. (3.1.4)

In practice, the first order normal cone is much simpler to compute than the second
order cone used in [13], see [11] and [102]. However, the price to pay is to impose a
strong regularity condition on the diffusion matrix σ, which is assumed to be bounded
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and differentiable on Rd, with a bounded Lipschitz derivative. Again, this constitutes
a sticking point for applications, it cannot be applied to simple models (think about
square-root processes for instance, see below).

The aim of the present chapter is to extend the characterization (3.1.3), given in terms
of the easy-to-compute first order normal cone, under weaker regularity conditions on the
diffusion matrix σ. We make the following seemingly trivial observation: a := σσ⊤ might be
differentiable at a point x while σ is not. It is the case for the square-root process mentioned
above, at the boundary point x = 0. Moreover, the terms Dσj(x)σj(x) can be rewritten in
terms of the Jacobian of a whenever both quantities are well defined, see Proposition 3.4 for
a precise formulation. This suggests to reformulate (3.1.3) with the Jacobian matrices of the
columns of a instead of σ.

We prove that this is actually possible. Our main result, Theorem 3.3 below, states that the
stochastic invariance is equivalent to the following conditions:

a(x)u = 0 and 〈u, b(x) − 1

2

d∑

j=1

Daj(x)(aa+)j(x)〉 ≤ 0, x ∈ D, u ∈ N 1
D(x). (3.1.5)

Here, (aa+)j(x) is the j-th column of (aa+)(x) with a(x)+ defined as the Moore-Penrose
pseudoinverse of a(x), see Definition A.1 in the Appendix. We only assume that

a can be extended to a C1,1
loc (Rd,Sd) function that coincides with σσ⊤ on D, (A2)

in which C1,1
loc means C1 with a locally Lipschitz derivative. Note that we do not impose the

extension of a to be positive semi-definite outside D, so that σ might only match with its
square-root on D. Also, it should be clear that the extension needs only to be local around
D.

The term aa+ in (3.1.5) plays the role of the projection on the image of a, see Proposition
A.3 in the Appendix and the discussion in Remark 3.5 below. This projection term cannot
be removed. To see this, let us consider the square-root process with a(x) = x and D = R+,
so that N 1

D(0) = R−. Then,

a(0)(−1) = 0 and 〈−1, b(0) − 1

2
Da(0)〉 ≤ 0

leads to b(0) ≥ 1/2 while the correct condition for invariance is b(0) ≥ 0, which is recovered
from (3.1.5) by using the fact that (aa+)(0) = 0.

This extension of the characterization of Da Prato and Frankowska [38] provides for the
first time a unified criteria for the case where the volatility matrix may not be C1 on the
whole domain, which is of importance in practical situations. In fact, many models used in
practice, in mathematical finance for instance, do not have C1 volatility maps but satisfy our
conditions. This is in particular the case of affine diffusions (see [48, 58]), or of polynomial
diffusions that are characterized by a quadratic covariance matrix (see [35, 57]), etc. When
applied to such processes, stochastic invariance results have been so far tweaked in order to fit
in the previous set up, or have been proved under limiting conditions, on a case by case basis.
For instance, in their construction of affine processes on the cone of symmetric semi-definite
matrices, Cuchiero et al. [34] start by regularizing the martingale problem before applying
the stochastic invariance characterization of [38] and then pass to the limit. In Spreij and
Veerman [106], some stochastic invariance results are also derived for affine diffusions but
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only on convex sets with smooth boundary. More recently, the mathematical foundation for
polynomial diffusions was given in Filipović and Larsson [57]. Necessary conditions for the
stochastic invariance are derived for basic closed semialgebraic sets. All the above cases can
now be treated by using our characterization. See Section 3.5 for a generic example.

Our proof of the necessary condition is in the spirit of Buckdahn et al. [23]. They use
a second order stochastic Taylor expansion together with small time behavior results for
double stochastic integrals. However, in our case, the stochastic Taylor expansion cannot be
applied directly since σ is not differentiable and σ(X) fails to be a semi-martingale whenever
an eigenvalue vanishes (see [93, Example 1.2]). We therefore need to develop new ideas. We
first observe that, if σ is diagonal, then vanishing eigenvalues can be eliminated by taking the
conditional expectation with respect to the path of the Brownian motion acting on the non-
vanishing ones. This corresponds to the projection term aa+ in (3.1.5). If σ is not diagonal,
we can essentially reduce to the former case by considering its spectral decomposition and a
suitable change of Brownian motion (based on the corresponding basis change), see Lemma
3.7 below. However, it requires a smooth spectral decomposition which is not guaranteed
when repeated eigenvalues are present. To avoid this, we need an additional transformation
of the state space, see Proposition 3.10.

Conversely, we show that the infinitesimal generator of our diffusion satisfies the positive
maximum principle whenever (3.1.5) holds, see Section 3.4 below. Applying [54, Theorem
4.5.4] shows that this condition is indeed sufficient. (Note that the approach based on the
comparison principle for viscosity solutions used in [13, 23] cannot be applied to our case
since σ is not Lipschitz.)

The rest of the chapter is organized as follows. Our main result is stated in Section 3.2. The
proofs are collected in Sections 3.3 and 3.4. In Section 3.5, we exemplify our characterization
by deriving explicit stochastic invariance conditions for various typical examples of applica-
tions. Finally, Section 3.6 provides a complementary tractable sufficient condition ensuring
the stochastic invariance of the interior of a domain. For the convenience of the reader, we
collect some standard results of matrix calculus and differentiation in Appendix A.

From now on, all identities involving random variables have to be considered in the a.s. sense,
the probability space and the probability measure being given by the context. Elements of
Rd are viewed as column vectors, in particular the i-th element of the canonical basis of Rd

is denoted by ei.

3.2 Main result

In this section, we state our main result, Theorem 3.3, that extends Theorem 4.1 in Da Prato
and Frankowska [38] to weaker regularity assumptions.

Since we are dealing with general coefficients b and σ, i.e. not necessarily Lipschitz coefficients,
solutions to the stochastic differential equation (3.1.1) should be considered in the weak sense
rather than in the strong sense. Existence is guaranteed by our condition (A1), together with
our standing assumption of continuity of b and σ: there exist a filtered probability space
(Ω,F ,F =(Ft)t≥0,P) satisfying the usual conditions, a d-dimensional F-Brownian motion W
and a F-adapted process X with continuous sample paths such that (3.1.1) holds P−a.s. See
e.g. [74, Theorems IV.2.3 and IV.2.4].
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For later use, note that Assumption (A1) implies that, for any positive integer p, there exists
Kp,x > 0 such that

E [‖Xt −Xs‖p] ≤ Kp,x|t− s| p
2 (3.2.1)

for all 0 ≤ s, t ≤ 1. Hence, Kolmogorov’s continuity criterion ensures that the sample
paths of X are (locally) η-Hölder continuous for any η ∈ (0, 1

2) (up to considering a suitable
modification).

Remark 3.1. The collection Q of possible distributions of X is entirely determined by the
infinitesimal generator L defined on the space of smooth functions φ by Lφ := Dφb +
1
2Tr[σσ⊤D2φ]. Therefore, Q is the same if σ is replaced by σ̃ such that σ̃σ̃⊤ = σσ⊤, see
e.g. [108, Remark 5.1.7]. Hence, we can reduce to the case where σ is the symmetric square-
root of a on D, which we will assume from now on.

Before stating our main result, let us make precise the definition of stochastic invariance.1

Definition 3.2 (Stochastic invariance). A closed subset D ⊂ Rd is said to be stochastically
invariant with respect to the diffusion (3.1.1) if, for all x ∈ D, there exists a weak solution
(X,W ) to (3.1.1) starting at X0 = x such that Xt ∈ D for all t ≥ 0, almost surely.

Our characterization of stochastic invariance reads as follows (see Propositions 3.10 and 3.12
below for the proof). From now on we use the same notation a for a defined as σσ⊤ on D
and for its extension defined in Assumption (A2).

Theorem 3.3 (Invariance characterization). Let D be closed. Assume that b, σ and a are
continuous and satisfy assumptions (A1)-(A2). Then, the set D is stochastically invariant
with respect to the diffusion (3.1.1) if and only if





a(x)u = 0 (3.2.2a)

〈u, b(x) − 1

2

d∑

j=1

Daj(x)(aa+)j(x)〉 ≤ 0 (3.2.2b)

for every x ∈ D and for all u ∈ N 1
D(x).

Clearly, the regularity conditions of Theorem 3.3 are much weaker than those of [38, Theorem
4.1]. Let us immediately exemplify this by considering the case of the square-root process
already mentioned in the introduction. Let D = R+, a(x) = η2x with η > 0, and consider the
diffusion dXt = b(Xt)dt + η

√
XtdWt. Since a(x)a(x)+ = 1{x>0} and N 1

R+
(x) = 1{x=0}R−,

Theorem 3.3 implies that R+ is stochastically invariant if and only if b(0) ≥ 0, while σ : x ∈
R+ 7→ η

√
x is not differentiable at 0.

On the other hand, one can easily recover [38, Theorem 4.1] under their smoothness assump-
tions. This is the object of the next proposition (recall that, by Remark 3.1, the study can
be reduced to the case a = σ2 on D).

1This concept is also known as viability. More precisely a set D is said to be viable if there exists a
D-valued solution started from X0 ∈ D. The set is said to be invariant if all solutions started from X0 ∈ D
remain in D. In case of uniqueness of solutions, the two notions coincide. In this thesis, we will use the term
invariance to stay coherent with the literature on affine and polynomial processes, where usually uniqueness
of solutions hold, although our results go beyond these processes.
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Proposition 3.4. Fix σ ∈ C1,1
b (Rd,Sd) (i.e. σ is differentiable with a bounded and a globally

Lipschitz derivative). Then a := σ2 ∈ C1,1
loc (Rd,Sd+) and

〈u,
d∑

j=1

Dσj(x)σj(x)〉 = 〈u,
d∑

j=1

Daj(x)(aa+)j(x)〉, x ∈ D, u ∈ Kerσ(x).

Proof. Fix x ∈ D and u ∈ Kerσ(x). By using Definition A.7 and Proposition A.8 in the
Appendix, we first compute that

Da(x) = D(σ(x)2) = (σ(x) ⊗ Id)Dσ(x) + (Id ⊗ σ(x))Dσ(x),

which clearly shows that a is C1,1
loc . It then follows from Proposition A.5 and the fact that

u ∈ Kerσ(x) that

(Id ⊗ u⊤)Da(x)a(x)a(x)+ = (σ(x) ⊗ u⊤)Dσ(x)a(x)a(x)+.

Observe now that a(x)a(x)+σ(x) = σ(x) since a(x) = σ(x)2 (use the spectral decomposition
of σ as in Proposition A.2). Using Proposition A.5 again, the above implies that

Tr
[
(Id ⊗ u⊤)Da(x)a(x)a(x)+

]
= Tr

[
σ(x)(Id ⊗ u⊤)Dσ(x)a(x)a(x)+

]

= Tr
[
(Id ⊗ u⊤)Dσ(x)σ(x)

]
.

Then, by Proposition A.5 and A.8,

〈u,
d∑

j=1

Dσj(x)σj(x)〉 =
d∑

j=1

u⊤D(σ(x)ej)σ(x)ej

=
d∑

j=1

u⊤(e⊤
j ⊗ Id)Dσ(x)σ(x)ej

=
d∑

j=1

e⊤
j (Id ⊗ u⊤)Dσ(x)σ(x)ej

= Tr
[
(Id ⊗ u⊤)Dσ(x)σ(x)

]

= Tr
[
(Id ⊗ u⊤)Da(x)a(x)a(x)+

]

= 〈u,
d∑

j=1

Daj(x)(aa+)j(x)〉, (3.2.3)

in which the last identity follows by reproducing exactly the same computations in the reverse
order with a in place of σ.

The following provides another formulation of (3.2.2b) that highlights the notion of projection
on the image of a.

Remark 3.5 (Interpretation of the projection formulation). Fix x ∈ ∂D and assume that the
spectral decomposition of a takes the form a(x) = Q(x)diag [λ1(x), . . . , λr(x), 0, . . . , 0]Q(x)⊤,
where Q(x)Q(x)⊤ = Id and λj(x) > 0 for all 1 ≤ j ≤ r. Hence, the r-first columns of Q(x),
denoted by (q1, . . . , qr) = (q1(x), . . . , qr(x)), span the image of a(x) and the projection matrix
on the image of a(x) is given by a(x)a(x)+ =

∑r
j=1 qjq

⊤
j , see Propositions A.3 and A.2 in the
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Appendix and recall that qj is a column vector. Thus, by (3.2.3) in the proof of Proposition
3.4 and Proposition A.5 in the Appendix,

〈u,
d∑

j=1

Daj(x)(aa+)j(x)〉 = Tr
[
(Id ⊗ u⊤)Da(x)a(x)a(x)+

]

=
r∑

j=1

Tr
[
(Id ⊗ u⊤)Da(x)qjq

⊤
j

]

=
r∑

j=1

Tr
[
q⊤
j (Id ⊗ u⊤)Da(x)qj

]

=
r∑

j=1

u⊤(q⊤
j ⊗ Id)Da(x)qj

so that, by Proposition A.8,

〈u,
d∑

j=1

Daj(x)(aa+)j(x)〉 = 〈u,
r∑

j=1

D(aqj)(x)qj〉 = 〈u,
r∑

j=1

Dqj (aqj)(x)〉

in which Dqj is the directional derivative with respect to qj :

Dqj (aqj)(x) := lim
t→0

a(x+ tqj)qj − a(x)qj
t

.

Therefore (3.2.2b) reads 〈u, b(x) − 1
2

∑r
j=1Dqj (aqj)(x)〉 ≤ 0. Otherwise stated, a is first

projected onto the basis of the image of a(x) before being derived only in the directions
of (q1, ..., qr). This is clearly consistent with (3.2.2a) that states that there cannot be any
transverse diffusion of a(x) to the boundary. Therefore, the drift b(x) should only compensate
the tangential diffusion given by the projection onto the image of a(x) in order to keep the
diffusion in the domain.

3.3 Necessary conditions

In this section, we prove that the conditions of Theorem 3.3 are necessary for D to be
invariant.

Our general strategy is similar to [23]. We fix x ∈ D and we consider a smooth function
φ : Rd 7→ R such that max

D
φ = φ(x). Since D is stochastically invariant, let X be a D-valued

solution starting from X0 = x. In particular, φ(Xt) ≤ φ(x), for all t ≥ 0. Then, if σ is
sufficiently smooth, by applying Itô’s Lemma twice, we obtain

∫ t

0
Lφ(Xs)ds+

∫ t

0

(
Dφσ(x) +

∫ s

0
L(Dφσ)(Xr)dr +

∫ s

0
D(Dφσ)σ(Xr)dWr

)⊤
dWs ≤ 0.

Recall Remark 3.1 for the definition of the infinitesimal generator L. Given (now standard)
estimates on the small time behavior of single and double stochastic integrals, see e.g. [23, 30],
this readily implies

Dφ(x)σ(x) = 0 and 〈Dφ(x), b(x) − 1

2

d∑

j=1

Dσj(x)σj(x)〉 ≤ 0,
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under appropriate regularity conditions. It remains to choose a suitable test function φ,
i.e. such that Dφ(x) = u⊤, to deduce that (3.2.2a)-(3.2.2b) must hold when σ is differentiable,
recall Proposition 3.4.

In our setting, one can however not differentiate σj in general. To surround this problem
the above can be rewritten in term of the covariance matrix a. The projection term in
(3.2.2a)-(3.2.2b) will appear through a conditioning argument.

In order to separate the difficulties, we shall first consider the case where a admits a locally
smooth spectral decomposition. The general case will be handled in Section 3.3.2 below.

3.3.1 The case of distinct eigenvalues

As mentioned above, we shall first make profit of having distinct eigenvalues before consid-
ering the general case. The main idea consists in using the spectral decomposition of a in
the form QΛQ⊤ in which Q is an orthogonal matrix and Λ is diagonal positive semi-definite.
Then, the dynamics of X can be written as

dXt = b(Xt)dt+Q(Xt)Λ(Xt)
1
2dBt

in which B =
∫ ·

0 Q(Xs)
⊤dWs is a Brownian motion. If Q and Λ are smooth enough, then we

can apply the same ideas as the one exposed at the beginning of this section. An additional
localization and conditioning argument will allow us to reduce to the case where Λ has only
(strictly) positive entries.

Note that eigenvalues and the eigenvectors can always be chosen measurable. However,
multiple eigenvalues and their corresponding eigenvectors can fail to have the same regularity
as a. To ensure a sufficient regularity, we therefore assume in the following Lemma that non-
zero eigenvalues are distinct. The general case will be treated later, thanks to a change of
variable argument, see Section 3.3.2 below.

Lemma 3.6. Assume that a ∈ C1,1
loc (Rd,Sd). Let x ∈ D be such that the spectral decomposition

of a(x) is given by

a(x) = Q(x)diag [λ1(x), . . . , λr(x), 0, . . . , 0]Q(x)⊤ (3.3.1)

with λ1(x) > λ2(x) > · · · > λr(x) > 0 and Q(x)Q(x)⊤ = Id, r ≤ d. Then there exist an
open (bounded) neighborhood N(x) of x and two measurable Rd×d-valued functions on Rd,
y 7→ Q(y) := [q1(y) · · · qd(y)] and y 7→ Λ(y) := diag [λ1(y), . . . , λd(y)] such that

(i) a(y) = Q(y)Λ(y)Q(y)⊤ and Q(y)Q(y)⊤ = Id, for all y ∈ Rd,

(ii) λ1(y) > λ2(y) > ... > λr(y) > max{λi(y), r + 1 ≤ i ≤ d} ∨ 0, for all y ∈ N(x),

(iii) σ̄ : y 7→ Q̄(y)Λ̄(y)
1
2 is C1,1(N(x),Rd×d), in which Q̄ := [q1 · · · qr 0 · · · 0] and Λ̄ =

diag[λ1, ..., λr, 0, ..., 0].

Moreover, we have:

〈u,
d∑

j=1

Dσ̄j(x)σ̄j(x)〉 = 〈u,
d∑

j=1

Daj(x)(aa+)j(x)〉, u ∈ Ker(a(x)). (3.3.2)
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Proof. Note that the fact that (qi)i≤d can be chosen measurable is guaranteed when (C,Λ)
is measurable by the fact that each eigenvector solves a quadratic minimization problem,
see e.g. [19, Proposition 7.33(p.153)]. Moreover, the continuity of the eigenvalues follows
from Weyl’s perturbation theorem, [20, Corollary III.2.6], and the smoothness of (Λ̄, Q̄)
is a consequence of [89, Theorem 1] since all the positive eigenvalues are simple and a is
C1,1
loc (Rd,Sd). Let us now observe that any u ∈ Ker(a(x)) satisfies

u⊤Q̄(x) = u⊤σ̄(x) = 0.

Since ā := σ̄σ̄⊤ is differentiable at x, the product rule of Proposition A.8 combined with
Proposition A.5 yields

(Id ⊗ u⊤)Dā(x) = (Id ⊗ u⊤)
[
(σ̄(x) ⊗ Id)Dσ̄(x) + (Id ⊗ σ̄(x))Dσ̄(x)⊤

]

= (σ̄(x) ⊗ u⊤)Dσ̄(x)

= σ̄(x)(Id ⊗ u⊤)Dσ̄(x).

Observing that ā = σ̄σ̄⊤ = aQ̄Q̄⊤ and that Q̄(x)Q̄(x)⊤ = a(x)a(x)+, we get by similar
computations:

(Id ⊗ u⊤)Dā(x) = (Id ⊗ u⊤)
[
(a(x)a(x)+ ⊗ Id)Da(x) + (Id ⊗ a(x))D

(
Q̄Q̄⊤

)
(x)
]

= a(x)a(x)+(Id ⊗ u⊤)Da(x).

Combining the above leads to

Tr
[
(Id ⊗ u⊤)Dσ̄(x)σ̄(x)

]
= Tr

[
(Id ⊗ u⊤)Da(x)a(x)a(x)+

]
,

which proves (3.3.2) by similar computations as in the proof of (3.2.3).

We can now adapt the arguments of [23]. In the following we use the notion of proximal
normals. A vector u ∈ Rd is said to be a proximal normal to D at a point x if ‖u‖ = dD(x+u),
where dD is the distance function to D. We denote by N 1,prox

D (x) the cone spanned by all
proximal normals. Note however that (3.2.2a)-(3.2.2b) holds at x for all proximal normals
u ∈ N 1,prox

D (x) if and only if it holds for all u ∈ N 1
D(x). Indeed,

N 1,prox
D (x) ⊂ N 1

D(x) ⊂ c̄o

(
lim sup
D∋y→x

N 1,prox
D (y)

)
, (3.3.3)

where lim sup stands for the Painlevé-Kuratowski upper limit (see e.g. [11, 38]) and c̄o is the
closed convex hull (see also [38, Remark 4.2 (a)]).

Lemma 3.7. Assume that D is stochastically invariant with respect to the diffusion (3.1.1).
Let x ∈ D and a be as in Lemma 3.6. Then, (3.2.2a) and (3.2.2b) hold at x for all u ∈ N 1

D(x).

Proof. It follows from the discussion before our lemma that it suffices to prove our claim for
u ∈ N 1,prox

D (x). Let (X,W ) denote a weak solution starting at X0 = x such that Xt ∈ D
for all t ≥ 0. If x /∈ ∂D, then N 1,prox

D (x) = {0} and there is nothing to prove. We therefore

assume from now on that x ∈ ∂D. We fix u ∈ N 1,prox
D (x).

Step 1. We first claim that there exists a function φ ∈ C∞
b (Rd,R) with compact support in

N(x) such that max
D

φ = φ(x) = 0 and Dφ(x) = u⊤. Indeed, it follows from [102, Chapter
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6.E] that one can find κ > 0 such that 〈u, y − x〉 ≤ κ
2 ‖y − x‖2 for all y ∈ D. Then, one can

set ψ := 〈u, · − x〉 − κ
2 ‖ · −x‖2 and define φ := ψρ in which ρ is a C∞

b function with values in
[0, 1], compact support included in N(x), and satisfying ρ = 1 in a neighborhood of x.
Step 2. Since D is invariant under the diffusion X, φ(Xt) ≤ φ(x), for all t ≥ 0. From now
on, we use the notations of Lemma 3.6. By the above and Itô’s lemma:

0 ≥
∫ t

0
Lφ(Xs)ds+

∫ t

0
Dφ(Xs)σ(Xs)dWs =

∫ t

0
Lφ(Xs)ds+

∫ t

0
(DφQΛ

1
2Q⊤)(Xs)dWs

in which L is the infinitesimal generator of X. Let us define the Brownian motion B =∫ ·
0 Q(Xs)

⊤dWs, recall that Q is orthogonal, together with

B̄ = Λ(x)Λ(x)+B = (B1, .., Br, 0, ..., 0) and B̄⊥ = (Id−Λ(x)Λ(x)+)B = (0, ..., 0, Br+1, ..., Bd),

recall Proposition A.2. Since QΛ̄
1
2 = Q̄Λ̄

1
2 , the above inequality can be written in the form

0 ≥
∫ t

0
Lφ(Xs)ds+

∫ t

0
Dφ(Xs)σ̄(Xs)dB̄s +

∫ t

0
(DφQΛ

1
2 )(Xs)dB̄

⊥
s .

Let (F B̄
s )s≥0 be the completed filtration generated by B̄. By [88, Corollaries 2 and 3 of

Theorem 5.13], [82, Lemma 14.2], and the fact that the martingale B̄⊥ is independent of B̄,
we obtain

0 ≥
∫ t

0
EFB̄

s
[Lφ(Xs)]ds+

∫ t

0
EFB̄

s
[Dφ(Xs)σ̄(Xs)]dB̄s

=

∫ t

0
EFB̄

s
[Lφ(Xs)]ds+

∫ t

0
EFB̄

s
[Dφ(Xs)σ̄(Xs)]dBs,

where the last equality holds because the (d− r) columns of σ̄ are 0. We now apply Lemma
3.8 below to (Dφσ̄)(X) and use [88, Corollaries 2 and 3 of Theorem 5.13] and [82, Lemma
14.2] again to find a bounded adapted process η such that

0 ≥
∫ t

0
θsds+

∫ t

0

(
α+

∫ s

0
βrdr +

∫ s

0
γrdBr

)⊤
dBs (3.3.4)

where

θ := EFB̄
·

[Lφ(X·)] , α⊤ := (Dφσ̄)(x) = u⊤Q(x)Λ(x)
1
2

β := EFB̄
·

[D(Dφσ̄)(X·)b(X·) + η·] , γ := EFB̄
·

[D(Dφσ̄)σ̄(X·)] ,

recall from Step 1 that Dφ(x) = u⊤.
Step 3. We now check that we can apply Lemma 3.9 below. First note that all the above
processes are bounded. This follows from Lemma 3.6, Assumption (A1) and the fact that
φ has compact support. In addition, given T > 0, the independence of the increments of
B̄ implies that θs = EFB̄

T
[Lφ(Xs)] for all s ≤ T . It follows that θ is a.s. continuous at 0.

Moreover, since Dφσ̄ is C1,1, D(Dφσ̄)σ̄ is Lipschitz which, combined with (3.2.1), implies
condition (3.3.6) below.
Step 4. In view of Step 3, we can apply Lemma 3.9 to (3.3.4) to deduce that α = 0

and θ0 − 1
2 Tr(γ0) ≤ 0. Multiplying the first equation by Λ(x)

1
2Q⊤(x) implies that 0 =

α⊤Λ(x)
1
2Q⊤(x) = u⊤Q(x)Λ(x)

1
2 Λ(x)

1
2Q⊤(x) = u⊤a(x), or equivalently a(x)u = 0 since a(x)

is symmetric. The second identity combined with Dφ(x) = u⊤ and Proposition A.8 shows
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that

0 ≥Lφ(x) − 1

2
Tr
[
σ̄⊤D2φσ̄ + (Id ⊗ u⊤)Dσ̄σ̄

]
(x) = u⊤b(x) − 1

2
Tr
[
(Id ⊗ u⊤)Dσ̄σ̄

]
(x),

which is equivalent to (3.2.2b) by (3.3.2) and similar computations as in the proof of (3.2.3).

The rest of this section is dedicated to the proof of the two technical lemmas that were used
above. Our first result is a slight extension of Itô’s lemma to only C1,1 function. It is based
on a simple application of Komlós lemma (note that the assumption that f has a compact
support in the following is just for convenience, it can obviously be removed by a localization
argument, in which case the process η is only locally bounded).

Lemma 3.8. Assume that b and σ are continuous and that there exists a solution (X,W )
to (3.1.1). Let f ∈ C1,1(Rd,R) have compact support. Then, there exists an adapted bounded
process η such that

f(Xt) = f(x) +

∫ t

0
(Df(Xs)b(Xs) + ηs) ds+

∫ t

0
Df(Xs)σ(Xs)dWs

for all t ≥ 0.

Proof. Since f ∈ C1,1 has a compact support, we can find a sequence (fn)n in C∞ with
compact support (uniformly) and a constant K > 0 such that

(i) ‖D2fn‖ ≤ K,

(ii) ‖fn − f‖ + ‖Dfn −Df‖ ≤ K
n ,

for all n ≥ 1. This is obtained by considering a simple mollification of f . By applying Itô’s
Lemma to fn(X), we get

fn(Xt) = fn(x) +

∫ t

0
Dfn(Xs)b(Xs)ds+

∫ t

0
ηns ds+

∫ t

0
Dfn(Xs)σ(Xs)dWs

in which ηn := 1
2Tr[D2fnσσ

⊤](X). Since σσ⊤ is continuous, (i) above implies that (ηn)n is
uniformly bounded in L∞(dt×dP). By [43, Theorem 1.3], there exists (η̃n) ∈ Conv(ηk, k ≥ n)
such that η̃n → η dt ⊗ dP almost surely. Let Nn ≥ 0 and (λnk)n≤k≤Nn ⊂ [0, 1] be such that

η̃n =
∑Nn
k=n λ

n
kη

k and
∑Nn
k=n λ

n
k = 1. Set f̃n :=

∑Nn
k=n λ

n
kfk. Then,

f̃n(Xt) = f̃n(x) +

∫ t

0
Df̃n(Xs)b(Xs)ds+

∫ t

0
η̃ns ds+

∫ t

0
Df̃n(Xs)σ(Xs)dWs. (3.3.5)

By dominated convergence,
∫ t

0 η̃
n
s ds converges a.s. to

∫ t
0 ηsds. Moreover, (ii) implies that

‖f̃n(Xt) − f(Xt)‖ ≤
Nn∑

k=n

λnk‖f̃k(Xt) − f(Xt)‖ ≤
Nn∑

k=n

λnk
K

k
≤ K

n
,

so that f̃n(Xt) converges a.s. to f(Xt). Similarly,

∫ t

0
Df̃n(Xs)σ(Xs)dWs →

∫ t

0
Df(Xs)σ(Xs)dWs,

∫ t

0
Df̃n(Xs)b(Xs)ds →

∫ t

0
Df(Xs)b(Xs)ds
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in L2(Ω,F ,P) as n → ∞, and therefore a.s. after possibly considering a subsequence. It thus
remains to send n → ∞ in (3.3.5) to obtain the required result.

The following adapts [23, Lemma 2.1] to our setting, see also [22, 30].

Lemma 3.9. Let (Wt)t≥0 denote a standard d-dimensional Brownian motion on a filtered
probability space (Ω,F , (Ft)t≥0,P). Let α ∈ Rd and (βt)t≥0, (γt)t≥0 and (θt)t≥0 be predictable
processes taking values respectively in Rd, Rd×d and R and satisfying

(1) β is bounded,

(2)
∫ t

0 ‖γs‖2ds < ∞, for all t ≥ 0,

(3) there exists η > 0 such that

∫ t

0

∫ s

0
E
[
‖γr − γ0‖2

]
drds = O(t2+η), (3.3.6)

(4) θ is a.s. continuous at 0.

Suppose that for all t ≥ 0

∫ t

0
θsds+

∫ t

0

(
α+

∫ s

0
βrdr +

∫ s

0
γrdWr

)⊤
dWs ≤ 0. (3.3.7)

Then,

(a) α = 0,

(b) −γ0 ∈ Sd+,

(c) θ0 − 1
2 Tr(γ0) ≤ 0.

Proof. Since (W i
t )

2 = 2
∫ t

0 W
i
sdW

i
s + t, (3.3.7) reduces to

(θ0 − 1

2
Tr(γ0))t+

d∑

i=1

αiW i
t +

d∑

i=1

γii0
2

(W i
t )

2 +
∑

1≤i6=j≤d
γij0

∫ t

0
W i
sdW

j
s +Rt ≤ 0,

where

Rt =

∫ t

0
(θs − θ0)ds+

∫ t

0

(∫ s

0
βrdr

)⊤
dWs +

∫ t

0

(∫ s

0
(γr − γ0)dWr

)⊤
dWs

=: R1
t +R2

t +R3
t .

In view of [23, Lemma 2.1], it suffices to show that Rt/t → 0 in probability. To see this, first
note that R1

t = o(t) a.s. since θ is continuous at 0. Moreover, [30, Proposition 3.9] implies

that R2
t = o(t) a.s., as β is bounded. Finally, it follows from (3.3.6) that

R3
t
t → 0 in L2, and

hence in probability. We conclude by applying [23, Lemma 2.1].
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3.3.2 The general case

We can now turn to the general case.

Proposition 3.10 (Necessary conditions of Theorem 3.3). Let the conditions of Theorem
3.3 hold and assume that D is stochastically invariant with respect to the diffusion (3.1.1).
Then conditions (3.2.2a) and (3.2.2b) hold for all x ∈ D and u ∈ N 1

D(x).

Proof. If x lies in the interior of D, then N 1
D(x) = {0} and there is nothing to prove. We

therefore assume from now on that x ∈ ∂D. Let Λ and Q be defined through the spectral
decomposition of a, as in (3.3.1) but with only λ1(x) ≥ · · · ≥ λd(x). We shall perform a
change of variable to reduce to the conditions of Lemma 3.7. To do this, we fix 0 < ǫ < 1
and define

Aǫ = Q(x)diag

[√
(1 − ǫ),

√
(1 − ǫ)2, . . . ,

√
(1 − ǫ)d

]
Q(x)⊤.

Since D is invariant with respect to the diffusion X, Dǫ := AǫD is invariant with respect to
the diffusion Xǫ := AǫX. Note that

dXǫ = bǫ(X
ǫ)dt+ aε(X

ǫ)
1
2dW

in which

bǫ := Aǫb((Aǫ)−1·) and aǫ := Aǫa((Aǫ)−1·)(Aǫ)⊤

have the same regularity and growth as b and a. Moreover, the positive eigenvalues of aǫ are

all distinct at xǫ := Aǫx, as aǫ(x
ε) = Q(x)diag

[
(1 − ǫ)λ1(x), . . . , (1 − ǫ)dλd(x)

]
Q(x)⊤. We

can therefore apply Lemma 3.7 to (Xǫ,Dǫ):





aǫ(x
ǫ)uǫ = 0 (3.3.8a)

〈uǫ, bǫ(xǫ) − 1

2

d∑

j=1

Dajǫ(x
ǫ)(aǫa

+
ǫ )j(xǫ)〉 ≤ 0 (3.3.8b)

for all uǫ ∈ N 1
AǫD(xǫ). We now easily verify that N 1

AǫD(xǫ) = (Aǫ)−1N 1
D(x), recall the

definition in (3.1.4). Finally, by sending ǫ → 0 in (3.3.8a) and (3.3.8b), we get by continuity:





a(x)u = 0

〈u, b(x) − 1

2

d∑

j=1

Daj(x)(aa+)j(x)〉 ≤ 0,

for all u ∈ N 1
D(x), which ends the proof.

3.4 Sufficient conditions

In this section, we prove that the necessary conditions of Proposition 3.10 are also sufficient.
We start by showing in Proposition 3.11 that (3.2.2a) and (3.2.2b) imply that the generator
L of X satisfies the positive maximum principle: Lφ(x) ≤ 0 for any x ∈ D and any function
φ ∈ C2(Rd,R) such that max

D
φ = φ(x) ≥ 0, see e.g. [54, p165]. Then, classical arguments,
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mainly [54, Theorem 4.5.4], yield the existence of a solution to the corresponding martingale
problem that stays in D, see Proposition 3.12 below.

The following proposition is inspired by [38, Remark 5.6].

Proposition 3.11. Under the assumptions of Theorem 3.3, assume that (3.2.2a)-(3.2.2b)
hold for all x ∈ D and u ∈ N 1

D(x). Then, the generator L satisfies the positive maximum
principle.

Proof. We fix x ∈ D. For 1 ≤ j ≤ d, let us consider the following deterministic control
system: {

y′(t) = a(y(t))σ(x)+ej

y(0) = x,
(3.4.1)

where σ(x)+ is the pseudoinverse of σ(x). Since a is locally Lipschitz and verifies condition
(3.2.2a), [38, Proposition 2.5] combined with (3.3.3) implies that D is invariant with respect
to the deterministic control system (3.4.1). Then, by definition of the second order normal
cone in (3.1.2),

〈u, y(
√
h) − x〉 +

1

2
〈v(y(

√
h) − x), y(

√
h) − x〉 ≤ o(||y(

√
h) − x||2)

for any (u, v) ∈ N 2
D(x). On the other hand, since a is C1,1

loc , a Taylor expansion around 0
yields

y(
√
h) = x+

√
ha(x)σ(x)+ej +

h

2
(e⊤
j σ(x)+ ⊗ Id)Da(x)a(x)σ(x)+ej + o(h),

recall Proposition A.8 and note that (σ+)⊤ = σ+ since σ is symmetric. Now observe that
u ∈ N 1

D(x) whenever (u, v) ∈ N 2
D(x). In particular, u⊤a(x) = 0 under (3.2.2a). Combining

the above, and recalling Proposition A.5 then leads to

h

2
e⊤
j (σ(x)+ ⊗ u⊤)Da(x)a(x)σ(x)+ej +

h

2
e⊤
j σ(x)+a(x)va(x)σ(x)+ej ≤ o(h).

Note that σ+σ+ = a+ and that aσ+σ+a = aa+a = a, see e.g. Definition A.1 and Proposition
A.2, and recall that (σ(x)+ ⊗ u⊤) = σ(x)+(Id ⊗ u⊤) by Proposition A.5. Then, dividing the
above by h/2 and sending h → 0 before summing over 1 ≤ j ≤ d yields

Tr
(
(Id ⊗ u⊤)Da(x)a(x)a(x)+

)
+ Tr (va(x)) ≤ 0.

In view of (3.2.2b) and (3.2.3), this shows that

〈b(x), u〉 +
1

2
Tr(va(x)) ≤ 〈u, b(x) − 1

2

d∑

j=1

Daj(x)(aa+)j(x)〉 ≤ 0

for all (u, v) ∈ N 2
D(x). To conclude, it remains to observe that (Dφ(x), D2φ(x)) ∈ N 2

D(x)
whenever φ ∈ C2(Rd,R) is such that max

D
φ = φ(x) ≥ 0. Hence, Lφ(x) ≤ 0.

Proposition 3.12 (Sufficient conditions of Theorem 3.3). Under the assumptions of The-
orem 3.3, assume that conditions (3.2.2a) and (3.2.2b) hold for all x ∈ D and u ∈ N 1

D(x).
Then, D is stochastically invariant with respect to the diffusion (3.1.1).
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Proof. We already know from Proposition 3.11 that L satisfies the positive maximum princi-
ple. Then, [54, Theorem 4.5.4] yields the existence of a solution to the martingale problem as-
sociated to L with sample paths in the space of càdlàg functions with values in D∆ := D∪{∆},
the one-point compactification of D. The discussion preceding [29, Proposition 3.2] and [54,
Proposition 5.3.5], recall our linear growth conditions (A1), then shows that the solution has
a modification with continuous sample paths in D. Finally, [54, Theorem 5.3.3] implies the
existence of a weak solution (X,W ) such that Xt ∈ D for all t ≥ 0 almost surely.

3.5 A generic application

We show in this section how Theorem 3.3 can be applied in various examples of application.
We restrict to a two-dimensional setting for ease of computations and notations.

We first provide a generic tractable characterization for the stochastic invariance of all state
spaces D ⊂ R2 of the following form:

D = {(x̄, x̃) ∈ R2, x̄ ∈ D1 and φ(x̄, x̃) ∈ D2}, (3.5.1)

where D1 ⊂ R and D2 ⊂ R are closed subsets and φ is a continuously differentiable function.

Then, D can be characterized through Φ : (x̄, x̃) 7→ (x̄, φ(x̄, x̃)) by

D = Φ−1(D1 × D2),

and [102, Exercise 6.7 and Proposition 6.41] provides the following description of the normal
cone whenever

Φ is differentiable at x and its Jacobian DΦ(x) has full rank (Hx)

holds at any point x ∈ D.

Proposition 3.13. Fix x = (x̄, x̃) ∈ D such that (Hx) holds. Then,

N 1
D(x) =

{(
ū+ ∂1φ(x)ũ
∂2φ(x)ũ

)
, ū ∈ N 1

D1
(x̄) and ũ ∈ N 1

D2
(φ(x̄, x̃))

}
,

in which ∂iφ is the derivative with respect to the i-th component.

When x lies in the interior of D, N 1
D(x) = {0} and (3.2.2a)-(3.2.2b) are trivially verified.

Hence, it suffices to control b and a on the boundary of the domain in order to ensure
the stochastic invariance of D as stated by the following proposition, in which we use the
notations

b = (b̄, b̃)⊤, a = (aij)ij and ∂u = u2∂1 − u1∂2. (3.5.2)

Proposition 3.14. Let D be as in (3.5.1) and x = (x̄, x̃) ∈ ∂D be such that (Hx) holds.
Fix u = (u1, u2)⊤ ∈ N 1

D(x) as in Proposition 3.13. Under the assumptions of Theorem 3.3,
(3.2.2a)-(3.2.2b) are equivalent to the following:
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(a) Either ũ 6= 0 and





a(x) = a11(x)




1 −u1
u2

−u1
u2

u2
1

u2
2


 , (3.5.3a)

〈u, b(x)〉 − 1{a11(x) 6=0}
2(u2

1 + u2
2)

[
u1u2∂u(a11 − a22)(x) + (u2

2 − u2
1)∂ua12(x)

]
≤ 0.(3.5.3b)

(b) Or, ũ = 0, u1 = ū and





a(x)1{ū 6=0} = a22(x)

(
0 0
0 1

)
1{ū 6=0}, (3.5.4a)

ū

(
b̄(x) − 1{a22(x) 6=0}

2
∂2a12(x)

)
≤ 0. (3.5.4b)

Proof. Case (a), ũ 6= 0: Since DΦ(x) has full rank, ∂2φ(x) 6= 0 and therefore u2 6= 0. Since
a(x) ∈ S2, (3.2.2a) is clearly equivalent to (3.5.3a).
If a11(x) 6= 0, (3.5.3a) implies that u = (ū + ∂1φ(x)ũ, ∂2φ(x)ũ)⊤ spans the kernel of a(x).
Therefore, by Proposition A.3,

a(x)a(x)+ = I2 − 1

‖u‖2
uu⊤ =

1

u2
1 + u2

2

(
u2

2 −u1u2

−u1u2 u2
1

)
.

Straightforward computations yield

〈u,
2∑

j=1

Daj(x)(aa+)j(x)〉 =
1

u2
1 + u2

2

[
u1u2∂u(a11 − a22)(x) + (u2

2 − u2
1)∂ua12(x)

]
,

recall the notations introduced in (3.5.2). This shows the equivalence between (3.2.2b) and
(3.5.3b) when a11(x) 6= 0.
If a11(x) = 0, then (3.5.3a) implies that a(x)a(x)+ = 0 and (3.2.2b) reads 〈u, b(x)〉 ≤ 0.
Case (b), ũ = 0: If ū = 0, then u = 0 and there is nothing to prove. Otherwise, u1 = ū 6= 0.
Since a(x) ∈ S2, (3.2.2a) is clearly equivalent to a11(x) = 0 and a21(x) = a12(x) = 0, that is
(3.5.4a). If a22(x) 6= 0, then (3.5.4a) provides

a(x)a(x)+ =

(
0 0
0 1

)
,

and straightforward computations yield

〈u,
2∑

j=1

Daj(x)(aa+)j(x)〉 = ū∂2a12(x),

which shows the equivalence between (3.2.2b) and (3.5.4b) when a22(x) 6= 0. If a22(x) = 0,
then a(x)a(x)+ = 0 and (3.2.2b) reads ūb̄(x) ≤ 0.

Note that ū = 0 when D1 = R, which will be the case from now on. In the sequel, we impose
more structure on the coefficients, as it is usually done in the construction of invariant
diffusions. This permits to deduce an explicit form of (a, b) on the whole domain from the
boundary conditions (3.5.3a)-(3.5.3b). As already stated, Theorem 3.3 can be directly applied
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to a large class of diffusions, e.g. affine diffusions [48, 58, 106] and polynomial diffusions
[57, 85], not only for closed subsets of Rd, but even when D ⊂ Sd (as in [34]) since Sd can be

identified with R
d(d+1)

2 by using the half-vectorization operator. We start by defining these
two main structures.

Definition 3.15 (Affine and polynomial diffusions). X is a polynomial diffusion on D if:

(i) There exist b̄i, b̃i ∈ R, 0 ≤ i ≤ 2, and Ai ∈ S2, 1 ≤ i ≤ 5, such that b : x 7→ b(x) :=
(b̄(x), b̃(x)) ∈ R2 and a : x 7→ a(x) ∈ S2 have the following form:





b̄(x) = b̄0 + b̄1x̄+ b̄2x̃,

b̃(x) = b̃0 + b̃1x̄+ b̃2x̃,
a(x) = A0 +A1x̄+A2x̃+A3x̄2 +A4x̄x̃+A5x̃2,

(3.5.5)

for all x = (x̄, x̃) ∈ D.

(ii) a(x) ∈ Sd+, for all x ∈ D.

When Ai = 0 for all 3 ≤ i ≤ 5, we say that X is an affine diffusion.

Then, it is clear that b and a are C∞ and satisfy the linear growth conditions (A1).

In what follows, we highlight the interplay between the geometry/curvature of the boundary
and the coefficients b and a. The three explicit examples below characterize the invariance
for flat, convex and concave boundaries.

Example 3.16 (Canonical state space). Fix D1 = R, D2 = R+ and φ(x̄, x̃) = x̃. Then
D = R × R+ and N 1

D(x) = {0} × 1{x̃=0}R−. Hence, (3.5.3a)-(3.5.3b) are equivalent to

a(x̄, 0) = a11(x̄, 0)

(
1 0
0 0

)
and b̃(x̄, 0) − 1{a11(x̄,0) 6=0}

2
∂1a12(x̄, 0) ≥ 0, for all x̄ ∈ R.

If we now impose the structural condition (3.5.5), then straightforward computations lead to
the characterization in [48] for affine diffusions. The case of polynomial diffusions can be
treated similarly.

Example 3.17 (Parabolic convex state space). Let us consider the following parabolic state
space:

D = {(x̄, x̃) ∈ R2, x̃ ≥ x̄2}.
Then, with the previous notations, D1 = R, D2 = R+ and φ(x̄, x̃) = x̃ − x̄2. Therefore, the
first order normal cone given by Proposition 3.13 reads

N 1
D(x) =

(
−2x̄

1

)
R−, for all x = (x̄, x̄2) ∈ ∂D.

Conditions (3.5.3a)-(3.5.3b) are therefore equivalent to





a(x) = a11(x)

(
1 2x̄

2x̄ 4x̄2

)
, (3.5.6a)

〈u, b(x)〉 − 1{a11(x) 6=0}
2(1 + 4x̄2)

[
−2x̄∂u(a11 − a22)(x) + (1 − 4x̄2)∂ua12(x)

]
≥ 0, (3.5.6b)
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for all x̄ ∈ R, x = (x̄, x̄2) and u = (−2x̄, 1)⊤.
If we now impose an additional affine structure on the diffusion X = (X̄, X̃), as in Duffie et
al. [48, Section 12.2], we recover the characterization given in Gourieroux and Sufana [68,
Proposition 2]. Indeed, Proposition 3.14 says that D is invariant if and only if there exists
α ≥ 0 such that

(a)

a(x) = α

(
1 2x̄

2x̄ 4x̃

)
, for all x = (x̄, x̃) ∈ D, (3.5.7)

(b) b̄2 = 0 and





b̃2 > 2b̄1 and (b̃1 − 2b̄0)2 ≤ 4(b̃2 − 2b̄1)(b̃0 − α)
or

b̃2 = 2b̄1, b̃1 = 2b̄0 and b̃0 ≥ α.

(3.5.8)

Let us detail the computations: (a) The covariance matrix a(x) ∈ S2
+ is of the form (3.5.6a)

on the boundary. Since a is affine in (x̄, x̄2), then necessarily a11(x) is constant (or else
a22(x) would have at least a polynomial dependence of order 3 in x̄). Therefore, there exists
α such that a(x) has the form (3.5.7) at x = (x̄, x̄2), in which α ≥ 0 to ensure that a(0) ∈ S2

+.
Finally, a needs to have the same form (3.5.7) on the whole state space D, since it is affine.
(b) We now derive the form of the drift vector b(x) = (b̄(x), b̃(x)) ∈ R2 by using (3.5.6b).
From (3.5.7), elementary computations show that condition (3.5.6b) is equivalent to

−2b̄2x̄3 + (b̃2 − 2b̄1)x̄2 + (b̃1 − 2b̄0)x̄+ b̃0 − α ≥ 0, for all x̄ ∈ R,

which is equivalent to (3.5.8), when α > 0. If α = 0, the same conclusion holds.
Conversely, (3.5.7) clearly implies (3.2.2a) and (ii) of Definition 3.15 since det(a(x)) =
4α(x̃− x̄2) ≥ 0 and x̃ ≥ 0 for all (x̄, x̃) ∈ D. Moreover, (3.5.8) leads to (3.5.3b) by the same
computations as above.

Example 3.18 (Parabolic concave state space). We now consider the epigraph of the concave
function x̄ 7→ −x̄2,

D = {(x̄, x̃) ∈ R2, x̃ ≥ −x̄2}.

It follows that D1 = R, D2 = R+, φ(x̄, x̃) = x̃+ x̄2 and

N 1
D(x) =

(
2x̄
1

)
R−, for all x = (x̄,−x̄2) ∈ ∂D,

from Proposition 3.13. Hence, conditions (3.5.3a)-(3.5.3b) are now equivalent to





a(x) = a11(x)

(
1 −2x̄

−2x̄ 4x̄2

)
, (3.5.9a)

〈u, b(x)〉 − 1{a11(x) 6=0}
2(4x̄2 + 1)

[
2x̄∂u(a11 − a22)(x) + (1 − 4x̄2)∂ua12(x)

]
≥ 0, (3.5.9b)

for all x̄ ∈ R, x = (x̄,−x̄2) and u = (2x̄, 1)⊤ ∈ −N 1
D(x).

Let us first note that the above shows that we can not construct an affine diffusion living in
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D, that is not degenerate, unless it lives on the boundary only. Indeed, if a is affine then
a11 =: α has to be constant, because of (3.5.9a), and a is of the form (3.5.9a) with (−x̃) in
place of x̄2. Since a(x) ∈ S2

+, we must have α ≥ 0 and det a(x) = −4α2(x̃+ x̄2) ≥ 0. Thus,
α = 0 unless we restrict to points (x̄, x̃) on the boundary. If we do so, it is not difficult to
derive a necessary and sufficient condition on the coefficients from the identity X̃ = −X̄2.
We now impose a polynomial structure on the diffusion X = (X̄, X̃), such that X̄ is affine on
its own, i.e. b̄ and a11 are of affine form and only depend on x̄. This extends [85, Example
5.2] and entirely characterizes the stochastic invariance of D with respect to this structure of
diffusion. By Proposition 3.13, D is invariant if and only if there exist α, β ≥ 0, such that

(a)

a(x) =

(
α −2αx̄

−2αx̄ (4α+ β)x̄2 + βx̃

)
, for all x = (x̄, x̃) ∈ D, (3.5.10)

(b) b̄2 = 0 and





b̃2 < 2b̄1 and (b̃1 + 2b̄0)2 ≤ 4(−b̃2 + 2b̄1)(b̃0 + α)
or

b̃2 = 2b̄1, b̃1 = −2b̄0 and b̃0 ≥ −α
. (3.5.11)

Let us do the computations explicitly: (a) The covariance matrix a(x) ∈ S2
+ is of the form

(3.5.9a) on the boundary. Therefore, a11(x) ≥ 0, for all x ∈ ∂D. Since a11 is affine and
only depends on x̄ ∈ R, then necessarily a11 is a non-negative constant on the whole space
D. Therefore, there exists α ≥ 0 such that a11(.) = α on D. Moreover, (3.5.5) reads on the
boundary

a(x) = A0 +A1x̄+ (A3 −A2)x̄2 −A4x̄3 +A5x̄4, for all x̄ ∈ R.

Therefore, comparing with (3.5.9a) leads to A4 = A5 = 0 and the existence of β, β′ such that
a is of the form (

α −2αx̄
−2αx̄ 4αx̄2

)
+

(
0 β′

β′ β

)
(x̃+ x̄2)

on the whole space D. We now use the fact that a(D) ⊂ S2
+. In particular, taking x̄ = 0

shows that we must have αβx̃ − (β′)2x̃2 ≥ 0 for all x̃ ≥ 0, so that β′ = 0. Similarly,
4αx̄2 + β(x̃+ x̄2) ≥ 0 must hold for all x ∈ D, which is equivalent to β ≥ 0.
(b) We now derive the form of the drift vector b(x) = (b̄(x), b̃(x)) ∈ R2 by using (3.5.9b).
Since X is affine on its own, b̄2 = 0. From (3.5.10), elementary computations show that
condition (3.5.9b) is equivalent to

(−b̃2 + 2b̄1)x̄2 + (b̃1 + 2b̄0)x̄+ b̃0 + α ≥ 0, for all x̄ ∈ R,

which is equivalent to (3.5.11), when α > 0. If α = 0, the same conclusion holds.
Conversely, (3.5.10)-(3.5.11) show that X is a polynomial diffusion such that X̄ is affine
on its own since det(a(x)) = αβ(x̃ + x̄2) ≥ 0 and 4αx̄2 + β(x̃ + x̄2) ≥ 4αx̄2 ≥ 0 for all
(x̄, x̃) ∈ D. (3.5.10) clearly implies (3.2.2a). Moreover, (3.5.11) leads to (3.5.3b) by the same
computations as above.

We conclude with a final remark on the interplay between the local geometry of the boundary,
the coefficients a and b and the structure of the diffusion.
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Remark 3.19. (i) Curvaceous boundary and covariance matrix: the curvature of the bound-
ary plays a crucial role in determining the covariance structure. In Example 3.16, the
canonical state space, which shows no curvature, imposes strict constraints on the co-
variance matrix. Whereas, for curved domains, as in Examples 3.17-3.18, the first order
normal cone is a more complicated object and induces a richer covariance structure on
the boundary.

(ii) Convexity and drift direction: Figure 3.1 visualizes the direction of the drift b(0) =
(b̄0, b̃0) with respect to the convexity of the domain. When the domain is convex, as in
Example 3.17, the drift is necessarily inward pointing since b̃0 ≥ α, with α ≥ 0 from
(3.5.8). However, when the domain is concave, as in Example 3.18, the drift could even
be outward pointing. This follows from the fact that b̃0 ≥ −α, with α ≥ 0 in (3.5.11).

{x̃ ≥ x̄2}
(i) Affine diffusion

b(0)

{x̃ ≥ −x̄2}
(ii) Polynomial diffusion

b(0)

Figure 3.1: Interplay between the convexity of the domain and the direction
of the drift: (i) Inward pointing drift for convex domains (Example 3.17). (ii) Possible

outward pointing drift for concave domains (Example 3.18).

3.6 Additional remark on the boundary non-attainment

In this last section, we provide a sufficient condition for the stochastic invariance of the
interior of D, when D has a smooth boundary. The result is a direct implication of [106,
Proposition 3.5] derived with the help of McKean’s argument (see [92, Section 4]). Moreover,
we extend the tractable conditions of [106, Proposition 3.7] given for affine diffusions. Our
result could be easily used in the context of polynomial diffusions for instance.

Proposition 3.20. Let D ⊂ Rd be closed with a non-empty interior D̊ that is a maximal
connected subset of {x,Φ(x) < 0} where Φ ∈ C2(Rd,R) such that ∂D = Φ−1(0). Assume
that b and a are continuous and satisfy assumptions (A1)-(A2). Moreover, assume that
a ∈ C1(Rd,Sd+). Then D̊ is stochastically invariant if there exists v ∈ Rd such that





DΦ(x)a(x) = Φ(x)v⊤ (3.6.1a)

〈DΦ(x), b(x) − 1

2

d∑

j=1

Daj(x)ej〉 ≤ 0 (3.6.1b)
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for all x ∈ D.

Proof. Fix x ∈ D̊. By differentiating (3.6.1a) with the help of Propositions A.8 and A.5, we
obtain

vDΦ(x) = (a(x) ⊗ I1)D2Φ(x) + (Id ⊗DΦ(x))Da(x) = a(x)D2Φ(x) + (Id ⊗DΦ(x))Da(x),

which, combined with (3.6.1b), leads to

〈DΦ(x), b(x)〉 ≤ 1

2
Tr
[
(Id ⊗DΦ(x)⊤)Da(x)

]

= −1

2
Tr
[
a(x)D2Φ(x)

]
+

1

2
DΦ(x)v

= −1

2
Tr
[
a(x)D2Φ(x)

]
+

1

2
Φ(x)−1DΦ(x)a(x)DΦ(x)⊤.

We conclude by using [106, Proposition 3.5] (after a change of the sign, since D is assumed
to be a connected subset of {x,Φ(x) > 0} in [106, Proposition 3.5]).

Example 3.21. (i) Square root process: Let us consider again the process defined by
dXt = b(Xt)dt + η

√
XtdWt, for some η > 0, on D = R+. Then, Φ : x 7→ −x and

(3.6.1a)-(3.6.1b) are equivalent to v = η2 and b(0) ≥ η2

2 . These are the well known
conditions for the boundary non-attainment of the square-root process.

(ii) Affine diffusions: More generally, let D ⊂ Rd satisfy the assumptions of Proposition 3.20
and take a(x) = A0 +

∑d
j=1A

jxj for some Aj ∈ Sd, 1 ≤ j ≤ d. Then differentiating a

shows that condition (3.6.1b) is equivalent to 〈DΦ(x), b(x) − 1
2

∑d
j=1(Aj)j〉 ≤ 0 yielding

[106, Proposition 3.7].

(iii) Jacobi diffusion: Set D = (0, 1] and consider a polynomial diffusion X on D, i.e. b is
affine and a is a polynomial of degree two. Theorem 3.3 applied on [0, 1] immediately
yields that de dynamics of X must be of the form dXt = κ(θ−Xt)dt+η

√
Xt(1 −Xt)dWt

where κ, η ≥ 0 and 0 ≤ θ ≤ 1. Now a localized version of Proposition 3.20 shows that

D = (0, 1] is stochastically invariant under the additional condition that κθ ≥ η2

2 .

Proposition 3.20 is important in practice since it gives, in many cases, the existence and the
uniqueness of a global strong solution to (3.1.1) as discussed in the following remark.

Remark 3.22. Let D be as in Proposition 3.20. Assume that a ∈ C2(D̊,Sd+) and that b is
locally Lipschitz (which is clearly the case for affine and polynomial diffusions). By [62,

Remark 1 page 131], σ = a
1
2 is locally Lipschitz on D̊. Therefore, when the boundary is

never attained, (3.1.1) starting from any element x ∈ D̊ admits a global strong solution and
pathwise-uniqueness holds.





Chapter 4

Stochastic invariance with jumps

Summary

We extend the characterization of the previous chapter to account for jumps. We
provide necessary and sufficient first order geometric conditions for the stochastic
invariance of a closed subset of Rd with respect to a jump-diffusion under weak regu-
larity assumptions on the coefficients. We also derive an equivalent formulation in the
semimartingale framework.

Based on [1]: Abi Jaber, E. (2017) Stochastic invariance of closed sets for jump-
diffusions with non-Lipschitz coefficients. Electronic Communications in Probability,
22, paper no. 53, 15 pp.

4.1 Introduction

We consider a weak solution to the following stochastic differential equation with jumps

dXt = b(Xt)dt+ σ(Xt)dWt +

∫
ρ(Xt−, z) (µ(dt, dz) − F (dz)dt) , X0 = x, (4.1.1)

that is: a filtered probability space (Ω,F ,F = (F)t≥0,P) satisfying the usual conditions and
supporting a d-dimensional Brownian motion W , a Poisson random measure µ on R+ × Rd

with compensator dt ⊗ F (dz), and a F-adapted process X with càdlàg sample paths such
that (4.1.1) holds P-almost surely.

Throughout this chapter, we assume that b : Rd 7→ Rd, σ : Rd 7→ Rd×d and ρ : Rd ×Rd 7→ Rd

are measurable. In addition, we assume that

b, σ and

∫
ρ(., z)⊤H(ρ(., z))ρ(., z)F (dz) are continuous for any H ∈ Cb(Rd,Rd×d), (HC)

73
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where Cb(Rd,Rd×d) denotes the space of Rd×d-valued continuous bounded functions on Rd.
We also assume that there exist q, L > 0 such that, for all x ∈ Rd,

∫

{‖ρ(x,z)‖>1}
‖ρ(x, z)‖q ln ‖ρ(x, z)‖F (dz) ≤ L(1 + ‖x‖q), (H0)

‖b(x)‖2 + ‖σσ⊤(x)‖ +

∫
‖ρ(x, z)‖2F (dz) ≤ L(1 + ‖x‖2). (H1)

Let D denote a closed subset of Rd. Our aim is to characterize the stochastic invariance
(a.k.a viability) of D under weak regularity assumptions, i.e. find necessary and sufficient
conditions on the coefficients such that, for all x ∈ D, there exists a D-valued weak solution
to (4.1.1) starting at x.

In the presence of jumps, invariance and viability problems have been studied in [103, 110, 59].
Note that a first order characterization for a smooth volatility matrix σ is given in [59],
where the Stratonovich drift appears (see [38] for the diffusion case). For a second order
characterization, we refer to [110, Propositions 2.13 and 2.15].

Combining the techniques used in Chapter 3 with the ones of [110], we derive for the first time
in Theorem 4.2 below, a first order geometric characterization of the stochastic invariance
with respect to (4.1.1) when the volatility matrix σ can fail to be differentiable. We also
provide an equivalent formulation of the stochastic invariance with respect to semimartingales
in Theorem 4.5. This extends Theorem 3.3 to the jump-diffusion case. From a practical
perspective, this is the first known first order characterization that could be directly applied
to construct affine [48, 80] and polynomial processes [35] on any arbitrary closed sets, since
for these processes the volatility matrix can fail to be differentiable (on the boundary of the
domain).

As in the previous chapter we only make the following assumption on the covariance matrix

a := σσ⊤ on D can be extended to a C1,1
loc (Rd,Sd) function, (H2)

in which C1,1
loc means C1 with a locally Lipschitz derivative and Sd denotes the set of d × d

symmetric matrices. Note that we do not impose the extension of a to be positive semi-
definite outside D, so that σ might only match with its square-root on D. Also, it should be
clear that the extension needs only to be local around D. We use the same notation a for
σσ⊤ on D and for its extension defined in Assumption (H2).

The rest of the chapter is organized as follows. Our main results are stated and proved
in Sections 4.2-4.3. In Section 4.4, we adapt some technical results from Chapter 3 to the
jump-framework.

4.2 Stochastic invariance for stochastic differential equations

with jumps

In order to ease the comparison with Chapter 3, we first provide in Theorem 4.2 below
a characterization of the invariance for stochastic differential equations with jumps. An
equivalent formulation in terms of semimartingales is also provided in the next section (see
Theorem 4.5 below). We insist on the fact that the two formulations are equivalent by the
representation theorem of semimartingales with characteristics as in (4.3.1) below in terms
of a Brownian motion and a Poisson random measure (see [76, Theorem 2.1.2]).
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We start by making precise the definition of stochastic invariance1 for stochastic differential
equations with jumps.

Definition 4.1 (Stochastic invariance). A closed subset D ⊂ Rd is said to be stochastically
invariant with respect to the jump-diffusion (4.1.1) if, for all x ∈ D, there exists a weak
solution X to (4.1.1) starting at X0 = x such that Xt ∈ D for all t ≥ 0, almost surely.

The following theorem provides a first order geometric characterization of the stochastic
invariance in terms of the first order normal cone N 1

D(x) as defined in (3.1.4). Recall that
N 1

D(x) consists of all outward pointing normal vectors to D at a point x.

Theorem 4.2. Let D ⊂ Rd be closed. Under the continuity assumptions (HC) and (H0)-
(H2), the set D is stochastically invariant with respect to the jump-diffusion (4.1.1) if and
only if





x+ ρ(x, z) ∈ D, for F -almost all z, (4.2.1a)∫
|〈u, ρ(x, z)〉|F (dz) < ∞, (4.2.1b)

a(x)u = 0, (4.2.1c)

〈u, b(x) −
∫
ρ(x, z)F (dz) − 1

2

d∑

j=1

Daj(x)(aa+)j(x)〉 ≤ 0, (4.2.1d)

for all x ∈ D and u ∈ N 1
D(x), in which Daj(x) denotes the Jacobian of the j-th column of

a(x) and (aa+)j(x) is the j-th column of (aa+)(x) with a(x)+ defined as the Moore-Penrose
pseudoinverse of a(x).

(i)

(iii)

(ii)

C

C

C

b

b

b

ρ

D

Figure 4.1: Interplay between the geometry/curvature of D and the coefficients (b, a, ρ).

Before moving to the proof, we start by giving the geometric interpretation of conditions
(4.2.1a)-(4.2.1d), also shown in Figure 4.1. Condition (4.2.1c) states that at the boundary
of the domain, the column of the covariance matrix should be tangential to the boundary,

1The concept is also often known as viability. We use the term invariance here in order to stay coherent
with the affine/polynpmial literature.
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while (4.2.1a) requires from D to capture all the jumps of the process. Moreover, at the
boundary, the jumps can have infinite variation only if they are tangent to the boundary,
by (4.2.1b). Finally, it follows from (4.2.1d) that the compensated drift should be inward
pointing. We recall that the compensated drift extends the Stratonovich drift (see [38, 59])
when the volatility matrix can fail to be differentiable. In fact, if the volatility matrix is
smooth, Proposition 3.4 yields

〈u,
d∑

j=1

Dσj(x)σj(x)〉 = 〈u,
d∑

j=1

Daj(x)(aa+)j(x)〉, x ∈ D and u ∈ Kerσ(x)⊤.

Conversely, the example of the square root process a(x) = x and σ(x) =
√
x on D := R+

shows that σ may fail to be differentiable at 0 while a satisfies (H2).

The proof of Theorem 4.2 adapts the argument of Chapter 3 combined with techniques
taken from [110] to handle the jump component. For the necessity, we use the same con-
ditioning/projection argument together with the small time behavior of double stochastic
integrals as in the previous chapter. For the sufficiency, we show that conditions (4.2.1a)-
(4.2.1d) imply the positive maximum principle for the infinitesimal generator and we conclude
by applying [54, Theorem 4.5.4], which is possible by Lemma 4.3 below. The latter lemma
highlights the role of the growth condition (H0). In fact, (H1) would only yield that Lφ is
bounded. This is not enough to apply [54, Theorem 4.5.4].

We will need the continuity of the infinitesimal generator of (4.1.1) acting on smooth functions
φ

Lφ := Dφb+
1

2
Tr(D2φσσ⊤) +

∫
(φ(.+ ρ(., z)) − φ−Dφρ(., z))F (dz), (4.2.2)

where Dφ⊤ (resp. D2φ) is the gradient (resp. Hessian) of φ. In the sequel, we denote by C(D)
the space of continuous functions on D. We add the superscript p on C to denote functions
with p-continuous derivatives for all p ≤ ∞, and the subscript c (resp. 0) stands for functions
with compact support (resp. vanishing at infinity). This is the object of the following lemma
(a similar formulation in the semimartingale set-up can be found in [105, Lemma A.1]).

Lemma 4.3. Under (HC) and (H0), L(C2
c (D)) ⊂ C0(D).

Proof. Let φ ∈ C2
c (D). We extend it to C2

c (Rd). Let M > 0 be such that φ(x) = 0 if ‖x‖ > M
and fix ‖x‖ > M + 1. Then

Lφ(x) =

∫
φ(x+ ρ(x, z))F (dz) =

∫

{‖x+ρ(x,z)‖≤M}
φ(x+ ρ(x, z))F (dz).

On {‖x+ ρ(x, z)‖ ≤ M}, 1 +M < ‖x‖ ≤ M + ‖ρ(x, z)‖. Hence, (H0) yields

|Lφ(x)| ≤ ‖φ‖∞

∫

{‖x+ρ(x,z)‖≤M}

‖ρ(x, z)‖q ln ‖ρ(x, z)‖
(‖x‖ −M)q ln(‖x‖ −M)

F (dz)

≤ ‖φ‖∞L
(1 + ‖x‖q)

(‖x‖ −M)q
1

ln(‖x‖ −M)
,



Chapter 4. Stochastic invariance with jumps 77

where ‖.‖∞ is the uniform norm, which shows that Lφ(x) → 0 when ‖x‖ → ∞. Moreover,
denoting by Φ :=

∫
(φ(.+ ρ(., z)) − φ−Dφρ(., z))F (dz), we have for all x, y ∈ D

Φ(y) =

∫ ∫ 1

0

∫ t

0
ρ(y, z)⊤D2φ(y + sρ(y, z))ρ(y, z)dsdtF (dz)

=

∫ ∫ 1

0

∫ t

0
ρ(y, z)⊤D2φ(x+ sρ(y, z))ρ(y, z)dsdtF (dz)

+

∫ ∫ 1

0

∫ t

0
ρ(y, z)⊤

(
D2φ(y + sρ(y, z)) −D2φ(x+ sρ(y, z))

)
ρ(y, z)dsdtF (dz)

=: I1(x, y) + I2(x, y).

Observe that I2(x, y) → 0 when y → x, since D2φ is uniformly continuous (recall that φ
has compact support). In addition, it follows from (HC) that I1(x, y) → Φ(x) when y → x,
which ends the proof.

We can now move to the proof of Theorem 4.2.

Proof of Theorem (4.2). Part a. We first prove that our conditions are necessary. Let X
denote a weak solution starting at X0 = x such that Xt ∈ D for all t ≥ 0. If x /∈ ∂D, then
N 1

D(x) = {0} and there is nothing to prove. We therefore assume from now on that x ∈ ∂D.
Let 0 < η < 1. Throughout the proof, we fix ψη a bounded continuous function on Rd such
that ψη = 0 on Bη(x) and ψη → 1{Rd\{0}} for η ↓ 0, where Bη(x) is the open ball with center
x and radius η.
Step 1. We start by proving (4.2.1a). Let ǫ > 0 and φǫ : Rd 7→ [0, 1] be C2 such that φǫ = 0
on D ∪ Bǫ(x) and φǫ = 1 on (D ∪B2ǫ(x))c. D is stochastically invariant, hence φǫ(Xt) = 0,
for all t ≥ 0. Since φǫ is twice differentiable and bounded, Itô’s formula [77, Theorem I.4.57]
yields

∫ t

0
Lφǫ(Xs) +

∫ t

0
Dφǫ(Xs)σ(Xs)dWs + (φǫ(Xs− + ρ(Xs−, .)) − φǫ(Xs−)) ∗ (µ− ν) = 0,

where ∗ denotes the standard notation for stochastic integration with respect to a random
measure (see [77]) and ν(dt, dz) := dtF (dz). By continuity of Lφ (see Lemma 4.3), taking
the expectation, dividing by t and letting t → 0 yield

Lφǫ(x) = 0. (4.2.3)

A change of probability measure with respect to the Doléans-Dade exponential Z := E(ψη ∗
(µ − ν)), which is uniformly integrable (see [86, Theorem IV.3] and the proof of [110,
Proposition 2.13]), yields

∫ t

0
L̃φǫ(Xs)ds+

∫ t

0
Dφǫ(Xs)σ(Xs)dWs + (φǫ(Xs− + ρ(Xs−, .)) − φǫ(Xs−)) ∗ (µ− ν̃) = 0,

(4.2.4)
where

b̃ := b+

∫
ψη(z)ρ(., z)F (dz), ν̃(dt, dz) := dtF̃ (dz), F̃ (dz) := (1 + ψη(z))F (dz),

L̃φ := Dφb̃+
1

2
Tr(D2φa) +

∫
(φ(.+ ρ(., z)) − φ−Dφρ(., z)) F̃ (dz).
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By combining the above with (4.2.2), taking the expectation in (4.2.4), dividing by t and
sending t → 0, and invoking once again Lemma 4.3, we get

Lφǫ(x) +

∫
φǫ(x+ ρ(x, z))ψη(z)F (dz) = 0.

It then follows from (4.2.3) that
∫
φǫ(x + ρ(x, z))ψη(z)F (dz) = 0 for all η ∈ (0, 1). Sending

η ↓ 0 leads to
∫
φǫ(x + ρ(x, z))F (dz) = 0, by monotone convergence (recall that φǫ ≥ 0).

Hence ∫
1{x+ρ(x+z)∈(D∪B2ǫ(x))c}F (dz) = 0.

For ǫ ↓ 0, (4.2.1a) follows from monotone convergence again.
Step 2. By the proof of Proposition 3.10, it suffices to consider the case where the positive
eigenvalues of the covariance matrix a at the fixed point x ∈ D are all distinct as in Lemma
3.6. We can also restrict the study to σ = a

1
2 (see Remark 3.1). We therefore use the

notations of Lemma 3.6. We proceed as in Step 2 of the proof of Lemma 3.7 for the continuous
part combined with the proof of [110, Proposition 2.13] for the jump part. Fix u ∈ N 1

D(x)
and let φ be a smooth function (with compact support in N(x)) such that max

D
φ = φ(x)

and Dφ(x) = u⊤.2 Since D is stochastically invariant, φ(Xt) ≤ φ(x), for all t ≥ 0. Let
wη := (η − 1)ψη. By reapplying Step 1, with the test function φ (resp. wη) instead of φǫ
(resp. ψη), we obtain

0 ≥
∫ t

0
L̃φ(Xs)ds+

∫ t

0
Dφ(Xs)σ(Xs)dWs + Ñt

=

∫ t

0
L̃φ(Xs)ds+

∫ t

0
(DφQΛ

1
2Q⊤)(Xs)dWs + Ñt,

where Ñs := (φ(Xs− + ρ(Xs−, .)) − φ(Xs−)) ∗ (µ− ν̃) is the pure-jump true martingale part
under the new measure (since φ is Lipschitz and (H1) holds). Let us define the Brownian mo-
tion B =

∫ ·
0 Q(Xs)

⊤dWs, recall that Q is orthogonal, together with B̄ = (B1, .., Br, 0, ..., 0)⊤

and B̄⊥ = (0, ..., 0, Br+1, ..., Bd). Since QΛ̄
1
2 = Q̄Λ̄

1
2 , the above inequality can be written in

the form

0 ≥
∫ t

0
L̃φ(Xs)ds+

∫ t

0
Dφ(Xs)σ̄(Xs)dB̄s +

∫ t

0
(DφQΛ

1
2 )(Xs)dB̄

⊥
s + Ñt.

Let (F B̄
s )s≥0 be the completed filtration generated by B̄. Since B̄, B̄⊥ are independent and

B̄ has independent increments, conditioning by F B̄
t yields, by Lemma 4.8 in the appendix,

0 ≥
∫ t

0
EFB̄

s
[L̃φ(Xs)]ds+

∫ t

0
EFB̄

s
[Dφ(Xs)σ̄(Xs)]dB̄s.

We now apply Lemma 4.7 of the Appendix to (Dφσ̄)(X) and reapply the same conditioning
argument to find a bounded adapted process η̃ such that

0 ≥
∫ t

0
θsds+

∫ t

0

(
α+

∫ s

0
βrdr +

∫ s

0
γrdBr

)⊤
dBs, (4.2.5)

2Such a function always exists (up to considering an element of the proximal normal cone), recall the
discussion preceding Lemma 3.7 and Step 1 of the proof of the same Lemma.
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where

θ := EFB̄
·

[
L̃φ(X·)

]
, α⊤ := (Dφσ̄)(x) = Dφ(x)Q(x)Λ(x)

1
2

β := EFB̄
·

[η̃·] , γ := EFB̄
·

[D(Dφσ̄)σ̄(X·)] .

Step 3. We now check that we can apply Lemma 3.9 below. First note that all the above
processes are bounded. This follows from Lemmas 3.6 and 4.3, (H1) and the fact that φ has
compact support. In addition, given T > 0, the independence of the increments of B̄ implies

that θs = EFB̄
T

[
L̃φ(Xs)

]
for all s ≤ T . From Lemma 4.3 and since X has almost surely no

jumps at 0, it follows that θ is a.s. continuous at 0. Moreover, since Dφσ̄ is C1,1, D(Dφσ̄)σ̄
is Lipschitz which, combined with (4.4.3), implies (3.3.6).
Step 4. In view of Step 3, we can apply Lemma 3.9 to (4.2.5) to deduce that α = 0

and θ0 − 1
2 Tr(γ0) ≤ 0. The first equation implies that α⊤Λ(x)

1
2Q⊤(x) = u⊤a(x) = 0, or

equivalently (4.2.1c) since a(x) is symmetric. The second identity combined withDφ(x) = u⊤

shows that

0 ≥ L̃φ(x) − 1

2
Tr
[
σ̄⊤D2φσ̄ + (Id ⊗ u⊤)Dσ̄σ̄

]
(x)

= Lφ(x) − 1

2
Tr
[
σ̄⊤D2φσ̄ + (Id ⊗ u⊤)Dσ̄σ̄

]
(x) + (η − 1)

∫
(φ(x+ ρ(x, z)) − φ(x))ψη(z)F (dz),

in which ⊗ stands for the Kronecker product (recall Definition A.4 and Proposition A.5 in
the Appendix) and Dσ̄ is the Jacobian matrix of σ̄ (see Definition A.7). Sending η ↓ 0, by
monotone convergence, we get

0 ≥ Lφ(x) − 1

2
Tr
[
σ̄⊤D2φσ̄ + (Id ⊗ u⊤)Dσ̄σ̄

]
(x) +

∫
(φ(x) − φ(x+ ρ(x+ z)))F (dz).

(4.2.6)

In particular, since φ(x) = max
D

φ, (4.2.1a) implies that
∫ |φ(x + ρ(x + z)) − φ(x)|F (dz) =

∫
(φ(x) − φ(x+ ρ(x+ z)))F (dz) < ∞. Moreover, the right hand side is equal to

−
∫
Dφ(x)ρ(x, z)F (dz) −

∫ ∫ 1

0

∫ t

0
ρ(x, z)⊤D2φ(x+ sρ(x, z))ρ(x, z)dsdtF (dz),

yielding (4.2.1b) (recall (H1) and that φ has compact support). Combining (4.2.6), (3.3.2)-
(4.2.2) and

Tr
[
(Id ⊗ u⊤)Dσ̄σ̄

]
(x) = 〈u,

d∑

j=1

Dσ̄j(x)σ̄j(x)〉,

we finally obtain (4.2.1d).
Part b. We now prove that our conditions are sufficient. It follows from (4.2.1c) and the
proof of Proposition 3.11 that

Tr(D2φ(x)a(x)) ≤ −〈Dφ(x)⊤,
d∑

j=1

Daj(x)(aa+)j(x)〉,

for any smooth function φ such that max
D

φ = φ(x) ≥ 0. Moreover, after noticing that

Dφ(x)⊤ ∈ N 1
D(x) (this is immediate from the Taylor expansion of φ around x), (4.2.1b)
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yields

∫
(φ(x+ ρ(x, z)) − φ(x) +Dφ(x)ρ(x, z))F (dz) =

∫
(φ(x+ ρ(x, z)) − φ(x))F (dz)

+

∫
Dφ(x)ρ(x, z)F (dz).

In addition, it follows from (4.2.1a) that φ(x+ρ(x, z)) ≤ φ(x) for F -almost all z. Combining
all the above with (4.2.1d) we finally get

Lφ(x) ≤ 〈Dφ(x)⊤, b(x) −
∫
ρ(x, z)F (dz) − 1

2

d∑

j=1

Daj(x)(aa+)j(x)〉 ≤ 0.

Therefore, L satisfies the positive maximum principle. In addition, since L : C∞
c (D) 7→ C0(D)

(see Lemma 4.3) and C∞
c (D) is dense in C0(D), by [54, Theorem 4.5.4], there exists a càdlàg

(D ∪ ∆)-valued solution to the martingale problem for L, where ∆ denotes the one point
compactification of D. ∆ is attained either by jump (killed by a potential) or by explosion. By
the discussion preceding [29, Proposition 3.2], the process cannot jump to ∆. Moreover, the
growth conditions (H1) ensure that no explosion happens in finite time (see (4.4.3)). Hence
∆ is never attained. We conclude by using the equivalence between martingale problems and
stochastic differential equations, e.g. [81, Theorem 2.3].

4.3 Equivalent fomulation in the semimartingale framework

In this section, we provide an equivalent formulation of Theorem 4.2 in the semimartingale
set-up which is more adapted to the construction of affine and polynomial jump-diffusions
(see Remark 4.6 below). We stress once more that, by [53, 28], (4.1.1) is a very general for-
mulation, equivalent to the semimartingale formulation (4.3.2) below (see also [76, Theorem
2.1.2]).

Let X denote a homogeneous diffusion with jumps in the sense of [77, Definition III.2.18] on
a filtered probability space (Ω̃, F̃ , F̃, P̃), i.e. its semimartingale characteristics (B̃, C̃, ν) are
of the form

B̃t =

∫ t

0
b̃(Xs)ds, C̃t =

∫ t

0
ã(Xs)ds, ν(dt, dz) = dtK(Xt, dz), (4.3.1)

with respect to a continuous truncation function h, i.e. h is bounded and equal to the identity
on a neighborhood of 0. Here, b̃ : Rd 7→ Rd, ã : Rd 7→ Sd+, K is a transition kernel from Rd

into Rd \ {0} and

b̃, ã and

∫
f(z)‖z‖2K(., dz) are continuous for any bounded continuous function f. (H̃C)

The triplet (b̃, ã,K) is called the differential characteristics of X. In addition we assume that
there exist q̃, L̃ > 0 such that

∫

{‖z‖>1}
‖z‖q̃ ln ‖z‖K(x, dz) ≤ L̃(1 + ‖x‖q̃), (H̃0)

‖b̃(x)‖2 + ‖ã(x)‖ +

∫
‖z‖2K(x, dz) ≤ L̃(1 + ‖x‖2), (H̃1)
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for all x ∈ Rd. It follows that X is a locally square-integrable semimartingale (see [77,
Definition II.2.27 and Proposition II.2.29]) and in particular X is a special semimartingale.
Recall that ν is the compensated measure of the random jump measure µ of X. By [77,
Theorem II.2.38], X admits the following canonical decomposition

X = X0 +B +Xc + z ∗ (µ− ν), (4.3.2)

where Xc is a continuous local martingale with quadratic variation 〈Xc〉· =
∫ ·

0 ã(Xs)ds and

B :=
∫ ·

0 b(Xs)ds, where b := b̃+
∫

(z − h(z))K(., dz). Finally, we assume that

the restriction of ã to D can be extended to a C1,1
loc (Rd,Sd) function, (H̃2)

and we denote by a this extended function.

We are now ready to state an equivalent formulation of Theorem 4.2 adapted to (4.3.2). We
start by defining naturally the notion of stochastic invariance with respect to a semimartin-
gale.

Definition 4.4 (Stochastic invariance). A closed subset D ⊂ Rd is said to be stochastically
invariant with respect to the semimartingale (4.3.1) if, for all x ∈ D, there exists a filtered
probability space (Ω,F ,F := (Ft)t≥0,P) supporting a semimartingale X with characteristics
(4.3.1) starting at X0 = x and such that Xt ∈ D for all t ≥ 0, P-almost surely.

Theorem 4.5. Let D ⊂ Rd be closed. Under the continuity assumptions (H̃C) and (H̃0)-
(H̃2), the set D is stochastically invariant with respect to the semimartingale (4.3.1) if and
only if





suppK(x, dz) ⊂ D − x, (4.3.3a)∫
|〈u, z〉|K(x, dz) < ∞, (4.3.3b)

a(x)u = 0, (4.3.3c)

〈u, b(x) −
∫
zK(x, dz) − 1

2

d∑

j=1

Daj(x)(aa+)j(x)〉 ≤ 0, (4.3.3d)

for all x ∈ D and u ∈ N 1
D(x).

Proof. Our proof is based on a (standard) representation of (4.3.2) in terms of (4.1.1). In this
proof, we show the correspondence between the characteristics of (4.3.1) and the coefficients
of (4.1.1), and between the assumptions and invariance conditions of the two settings. Then,
Theorem 4.5 is deduced from a direct application of Theorem 4.2.
Part a. More precisely, let us fix F a σ-finite and infinite measure with no atom. By
[28, Lemma 3.4] and the discussion preceding [28, Theorem 3.13], there exists a measurable
function ρ : Rd × Rd → Rd\{0} such that3

K(x,B) =

∫
1B(ρ(x, z))F (dz), for all Borel sets B. (4.3.4)

Let us fix ρ for the rest of the proof, and recall that b = b̃ +
∫

(z − h(z))K(., dz) and set

σ := ã
1
2 . We claim that the assumptions (H̃C) and (H̃0)-(H̃2) imply the assumptions (HC) and

(H0)-(H2), and that the conditions (4.2.1a)-(4.2.1d) are equivalent to the conditions (4.3.3a)-
(4.3.3d). To see this, recall that h is bounded and equal to the identity on a neighborhood of 0.

3There is a lot of freedom for ρ, see [28, Section 4] and [53, Theorem 6 and Corollary 7].
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Hence z → (z−h(z))/(‖z‖2
1{‖z‖6=0}) is bounded and continuous (because it is equal to 0 on a

neighborhood of 0). It follows, from (H̃C) that b and σ are continuous. Therefore, combining
the above with (4.3.4) and (H̃0)-(H̃2) yields (HC) and (H0)-(H2). Finally, one easily deduce
from (4.3.4) that (4.2.1a)-(4.2.1d) are equivalent to (4.3.3a)-(4.3.3d) since

∫
g(z)K(x, dz) =∫

g(ρ(x, z))F (dz), for any measurable function g.
Part b. To see that the conditions (4.3.3a)-(4.3.3d) of Theorem 4.5 are sufficient, it suffices
to apply Theorem 4.2, whose assumptions and conditions are satisfied by Part a. above.
Namely, under the conditions (4.3.3a)-(4.3.3d), (4.1.1) admits a D-valued weak solution,
which is also a semimartingale with characteristics (4.3.1).
Part c. We now prove that the conditions (4.3.3a)-(4.3.3d) are necessary. Assume that D
is stochastically invariant with respect to (4.3.1). Fix (Ω,F ,F := (Ft)t≥0,P) supporting a
semimartingale X with characteristics (4.3.1) starting at X0 = x ∈ D such that P({Xt ∈
D,∀t ≥ 0}) = 1. By [76, Theorem 2.1.2], there exists a filtered extension (Ω̃, F̃ , F̃ :=
(F̃t)t≥0, P̃) supporting a d-dimensional Brownian motion W and a Poisson random measure
µ with compensator dt⊗ F (dz) such that X solves

Xt = x+

∫ t

0
b̃(Xs)ds+

∫ t

0
σ̃sdWs + (δ1{‖δ‖≤1}) ∗ (µ− dtF (dz)) + (δ1{‖δ‖>1}) ∗ µ, (4.3.5)

where (σ̃, δ) are such that σ̃t(ω̃)σ̃t(ω̃)⊤ = ã(Xt(ω̃)) and K(Xt(ω̃), B) =
∫
1B(δ(ω̃, t, z))F (dz),

for all Borel sets B, for all t ≥ 0, for P̃-almost all ω̃. In view of (4.3.4),

∫
1B(ρ(X·ω̃, z))F (dz) = K(X·(ω̃), B) =

∫
1B(δ(ω̃, ·, z))F (dz),

for all Borel sets B, for P̃-almost all ω̃. Hence, δ = ρ(X·, ·) F ⊗ P almost everywhere.
Similarly, σ̃ can be taken to be equal to the square root of ã (see Remark 3.1). Thus, (4.3.5)

can be written in the form (4.1.1) with (b, σ := ã
1
2 , ρ). Moreover, P̃({Xt ∈ D,∀t ≥ 0} =

P({Xt ∈ D,∀t ≥ 0}) = 1, by the discussion following [76, Equation (2.1.26)]. In view of Part
a., Theorem 4.2 implies that (4.2.1a)-(4.2.1d) should hold, so that (4.3.3a)-(4.3.3d) must be
satisfied.

Remark 4.6. As already mentioned above, in the presence of jumps, the semimartingale
formulation given in Theorem 4.5 is more adapted to affine and polynomial processes than
Theorem 4.2. In fact, affine (resp. polynomial) jump-diffusions are characterized by an affine
(resp. polynomial) dependence of their triplet (b̃, ã,K) (e.g. [110, Definition 4.2]). Inspecting
the identity in (4.3.4), it is not clear how this property translates to ρ.

4.4 Technical lemmas

For completeness, we provide in the sequel some technical lemmas with their proofs. They
are either standard or minor modifications of already known results.

The generalized Itô’s lemma derived in Lemma 3.8 can easily be extended to account for
jumps in the following way.

Lemma 4.7. Assume that σ is continuous and that there exists a solution X to (4.1.1). Let
f ∈ C1,1

c (Rd,R). Then, there exists an adapted bounded process η such that

f(Xt) = f(x) +

∫ t

0
η̃sds+

∫ t

0
(Dfσ)(Xs)dWs + (f(Xs− + ρ(Xs−, z)) − f(Xs−)) ∗ (µ− dtF (dz)),
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for all t ≥ 0, with η̃s = (Dfb)(Xs)+ηs+
∫

(f(Xs + ρ(Xs, z)) − f(Xs) −Df(Xs)ρ(Xs, z))F (dz).

Proof. Since f ∈ C1,1 has a compact support, we can find a sequence (fn)n in C∞ with
compact support (uniformly) and a constant K > 0 such that

(i) ‖D2fn‖ ≤ K,

(ii) ‖fn − f‖ + ‖Dfn −Df‖ ≤ K
n ,

for all n ≥ 1. This is obtained by considering a simple mollification of f . Set µ̃ := µ−dtF (dz).
Since fn is twice differentiable and bounded, Itô’s formula [77, Theorem I.4.57] yields

fn(Xt) = fn(x) +

∫ t

0
Dfn(Xs)σ(Xs)dWs + (fn(Xs− + ρ(Xs−, z)) − fn(Xs−)) ∗ µ̃

+

∫ t

0

(
(Dfnb)(Xs) + ηns +

∫
(fn(Xs + ρ(Xs, z)) − fn(Xs) −Dfn(Xs)ρ(Xs, z))F (dz)

)
ds

in which ηn := 1
2Tr[D2fnσσ

⊤](X). Since σσ⊤ is continuous, (i) above implies that (ηn)n is
uniformly bounded in L∞(dt×dP). By [43, Theorem 1.3], there exists (η̂n) ∈ Conv(ηk, k ≥ n)
such that η̂n → η dt ⊗ dP almost surely. Let Nn ≥ 0 and (λnk)n≤k≤Nn ⊂ [0, 1] be such that

η̂n =
∑Nn
k=n λ

n
kη

k and
∑Nn
k=n λ

n
k = 1. Set f̂n :=

∑Nn
k=n λ

n
kfk. Then,

f̂n(Xt) = f̂n(x) +

∫ t

0
η̃nds+

∫ t

0
Df̂n(Xs)σ(Xs)dWs +

(
f̂n(Xs− + ρ(Xs−, z)) − f̂n(Xs−)

)
∗ µ̃,

(4.4.1)

in which η̃n := (Df̂nb)(Xs)+ η̂ns +
∫ (

f̂n(Xs + ρ(Xs, z)) − f̂n(Xs) −Df̂n(Xs)ρ(Xs, z)
)
F (dz).

By dominated convergence,
∫ t

0 η̂
n
s ds converges a.s. to

∫ t
0 ηsds. Moreover, (ii) implies that

‖f̂n(Xt) − f(Xt)‖ ≤
Nn∑

k=n

λnk‖f̂k(Xt) − f(Xt)‖ ≤
Nn∑

k=n

λnk
K

k
≤ K

n
,

so that f̂n(Xt) converges a.s. to f(Xt). Similarly,

∫ t

0
η̃ns ds →

∫ t

0
η̃sds,

∫ t

0
Df̂n(Xs)σ(Xs)dWs →

∫ t

0
Df(Xs)σ(Xs)dWs,

(
f̂n(Xs− + ρ(Xs−, z)) − f̂n(Xs−)

)
∗ µ̃ → (f(Xs− + ρ(Xs−, z)) − f(Xs−)) ∗ µ̃,

in L2(Ω,F ,P) as n → ∞, and therefore a.s. after possibly considering a subsequence. It thus
remains to send n → ∞ in (4.4.1) to obtain the required result.

We also used the following elementary lemma which extends [114, Lemma 5.4] to account
for jumps (see also [88, Corollaries 2 and 3 of Theorem 5.13]).

Lemma 4.8. Let B,B⊥ denote two independent Brownian motions and µ a Poisson random
measure on R+ ×Rd with compensator dt⊗F on a filtered probability space (Ω,F , (Ft)t≥0,P).
Let (γs)s≥0 be an adapted square integrable process and ξ : R+ × Rd 7→ Rd be a predictable

process such that E
[∫ t

0

∫ ‖ξ(s, z)‖2F (dz)ds
]
< ∞, for all t ≥ 0. Define the sub-filtration
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FB
t = σ{Bs, s ≤ t} ⊂ Ft and denote by µ̃ = µ− dtF (dz). Then P − a.s., for all t ≥ 0,

EFB
t

[∫ t

0
γsdBs

]
=

∫ t

0
EFB

s
[γs] dBs, EFB

t

[∫ t

0
γsdB

⊥
s

]
= EFB

t
[ξ ∗ µ̃] = 0.

Moreover, it holds similarly for any integrable adapted process θ that

EFB
t

[∫ t

0
θsds

]
=

∫ t

0
EFB

s
[θs] ds.

Proof. We sketch the proof for the jump integral. See [114, Lemma 5.4] for the other iden-
tities. Let ξ be simple and predicable, i.e. ξ(s, z) =

∑n
i=1 ξi1(ti,ti+1](s)1Ai(z), in which ξi is

bounded and Fti-measurable, (ti)1≤i≤n a subdivision of [0, t] and Ai ⊂ Rd Borel sets such
that F (Ai) < ∞. We can write FB

t = FB
ti ∨ FB

ti,t where FB
ti,t := σ(Bs − Bti , ti ≤ s ≤ t). It

follows from [74, Theorem II.6.3] that µ and B are independent and

EFB
t

[ξ ∗ µ̃] =
n∑

i=1

EFB
ti

∨FB
ti,t

[ξiµ̃ ((ti, ti+1] ×Ai)]

=
n∑

i=1

E
[
E
[
ξiµ̃ ((ti, ti+1] ×Ai) | Fti ∨ FB

ti,t

]
| FB

ti ∨ FB
ti,t

]

=
n∑

i=1

E
[
ξiE

[
µ̃ ((ti, ti+1] ×Ai) | Fti ∨ FB

ti,t

]
| FB

ti ∨ FB
ti,t

]

= 0.

For general ξ, the result follows from Itô’s isometry and the fact that simple processes are
dense in L2(dt⊗ F ) (see [8, Lemma 4.1.4]).

Proposition 4.9. Let X denote a weak solution of (4.1.1) starting at x. Under the growth
conditions (H1), there exists M1

x,L > 0 such that the following moment estimates hold:

E

[
sup
s≤t

‖Xs‖2

]
≤ 4

(
‖x‖2 + Lt(t+ 8)

)
e4Lt(t+8), t ≥ 0, (4.4.2)

E
[
‖Xt −Xs‖2

]
≤ M1

x,L|t− s|, s, t ≤ 1. (4.4.3)

Proof. Let τn = inf{t ≥ 0 : ‖Xt‖ ≥ n or ‖Xt−‖ ≥ n} ∧ t. Set gnt := E
[
sups≤t ‖Xs‖2

1{s<τn}
]
.

By convexity of y 7→ y2, (a+ b+ c+ d)2 = 16(a+b+c+d
4 )2 ≤ 4(a2 + b2 + c2 + d2). Combined

with Cauchy–Schwarz and Burkholder-Davis-Gundy inequalities, we get for all u ≤ t

gnu ≤ 4‖x‖2 + 4t

∫ u

0
E
[
‖b(Xs1{s<τn})‖2

]
ds

+ 16

∫ u

0
E
[
‖C(Xs1{s<τn})‖

]
ds+ 16

∫

[0,u]×Rd
E
[
‖ρ(Xs−1{s<τn}, z)‖2

]
F (dz)ds.

The growth conditions (H1) now yield

gnu ≤ 4

(
‖x‖2 + Lt(t+ 8) + L(t+ 8)

∫ u

0
gns ds

)
, u ≤ t.

Finally, (4.4.2) follows from Grönwall’s Lemma and monotone convergence after sending
n → ∞. Moreover, for all s, t ≤ 1, by Cauchy-Schwarz inequality, Itô’s isometry and (H1)
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we have

E
[
‖Xt −Xs‖2

]
≤ 3

(
|t− s|

∫ t

s
E‖b(Xr)‖2dr +

∫ t

s
E[‖C(Xr)‖ +

∫

Rd
‖ρ(Xr−, z)‖2F (dz)]dr

)

≤ 3
(
L|t− s|2(1 + g1) + L|t− s|(1 + g1)

)

≤ 6L(1 + g1)|t− s|.

Hence, (4.4.3) follows from (4.4.2).
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Chapter 5

Affine Volterra processes

Summary

We introduce affine Volterra processes, defined as solutions of certain stochastic convo-
lution equations with affine coefficients. Classical affine diffusions constitute a special
case, but affine Volterra processes are neither semimartingales, nor Markov processes in
general. We provide explicit exponential-affine representations of the Fourier–Laplace
functional in terms of the solution of an associated system of deterministic integral
equations, extending well-known formulas for classical affine diffusions. For specific
state spaces, we prove existence, uniqueness, and invariance properties of solutions
of the corresponding stochastic convolution equations. Our arguments avoid infinite-
dimensional stochastic analysis as well as stochastic integration with respect to non-
semimartingales, relying instead on tools from the theory of finite-dimensional deter-
ministic convolution equations. Our findings generalize and clarify recent results in
the literature on rough volatility models in finance.

Based on [6]: Abi Jaber, E., Larsson, M., & Pulido, S. (2017) Affine Volterra processes.
In revision - Annals of Applied Probability.

5.1 Introduction

We study a class of d-dimensional stochastic convolution equations of the form

Xt = X0 +

∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, (5.1.1)

where W is a multi-dimensional Brownian motion, and the convolution kernel K and coeffi-
cients b and σ satisfy regularity and integrability conditions that are discussed in detail after
this introduction. We refer to equations of the form (5.1.1) as stochastic Volterra equations
(of convolution type), and their solutions are always understood to be adapted processes
defined on some stochastic basis (Ω,F , (Ft)t≥0,P) satisfying the usual conditions. Stochastic
Volterra equations have been studied by numerous authors; see e.g. [16, 17, 100, 99, 117, 96]
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among many others. In Theorem 5.10 and Theorem 5.12 we provide new existence results
for (5.1.1) under weak conditions on the kernel and coefficients.

We are chiefly interested in the situation where a(x) = σ(x)σ(x)⊤ and b(x) are affine of the
form

a(x) = A0 + x1A
1 + · · · + xdA

d

b(x) = b0 + x1b
1 + · · · + xdb

d,
(5.1.2)

for some d-dimensional symmetric matrices Ai and vectors bi. In this case we refer to
solutions of (5.1.1) as affine Volterra processes. Affine diffusions, as studied in [48], are
particular examples of affine Volterra processes of the form (5.1.1) where the convolution
kernel K ≡ id is constant and equal to the d-dimensional identity matrix.

Stochastic models using classical affine diffusions are tractable because their Fourier–Laplace
transform has a simple form. It can be written as an exponential-affine function of the initial
state, in terms of the solution of a system of ordinary differential equations, known as the
Riccati equations, determined by the affine maps (5.1.2). More precisely, let X be an affine
diffusion of the form (5.1.1) with K ≡ id. Then, given a d-dimensional row vector u and
under suitable integrability conditions, we have

E
[
exp (uXT )

∣∣∣ Ft

]
= exp (φ(T − t) + ψ(T − t)Xt) , (5.1.3)

where the real-valued function φ and row-vector-valued function ψ satisfy the Riccati equa-
tions

φ(t) =

∫ t

0

(
ψ(s)b0 +

1

2
ψ(s)A0ψ(s)⊤

)
ds

ψ(t) = u+

∫ t

0

(
ψ(s)B +

1

2
A(ψ(s))

)
ds,

with A(u) = (uA1u⊤, . . . , uAdu⊤) and B = (b1 · · · bd). Alternatively, using the variation of
constants formula on X and ψ, one can write the Fourier–Laplace transform as

E
[
exp (uXT )

∣∣∣ Ft

]
= exp

(
E[uXT | Ft] +

1

2

∫ T

t
ψ(T − s)a(E[Xs | Ft])ψ(T − s)⊤ds

)
.

(5.1.4)

For more general kernels K, affine Volterra processes are typically neither semimartingales,
nor Markov processes. Therefore one cannot expect a formula like (5.1.3) to hold in general.
However, we show in Theorem 5.16 below that, remarkably, (5.1.4) does continue to hold,
where now the function ψ solves the Riccati–Volterra equation

ψ(t) = uK(t) +

∫ t

0

(
ψ(s)B +

1

2
A(ψ(s))

)
K(t− s) ds. (5.1.5)

Furthermore, it is possible to express (5.1.4) in a form that is exponential-affine in the past
trajectory {Xs, s ≤ t}. This is done in Theorem 5.18.

For the state spaces Rd, Rd+, and R×R+, corresponding to the Volterra Ornstein–Uhlenbeck,
Volterra square-root, and Volterra Heston models, we establish existence and uniqueness of
global solutions of both the stochastic equation (5.1.1) and the associated Riccati–Volterra
equation (5.1.5), under general parameter restrictions. For the state spaces Rd+ and R×R+,
which are treated in Theorem 5.21 and Theorem 5.24, this involves rather delicate invariance
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properties for these equations. While standard martingale and stochastic calculus arguments
play an important role in several places, the key tools that allow us to handle the lack of
Markov and semimartingale structure are the resolvents of first and second kind associated
with the convolution kernel K. Let us emphasize in particular that no stochastic integration
with respect to non-semimartingales is needed. Furthermore, by performing the analysis on
the level of finite-dimensional integral equations, we avoid the infinite-dimensional analysis
used, for instance, in [96]. We also circumvent the need to study scaling limits of Hawkes
processes as in [51, 49, 52].

Our motivation for considering affine Volterra processes comes from applications in financial
modeling. Classical affine processes arguably constitute the most popular framework for
building tractable multi-factor models in finance. They have been used to model a vast
range of risk factors such as credit and liquidity factors, inflation and other macro-economic
factors, equity factors, and factors driving the evolution of interest rates. In particular, affine
stochastic volatility models, such as the Heston model [72], are very popular.

However, a growing body of empirical research indicates that volatility fluctuates more
rapidly than Brownian motion, which is inconsistent with standard semimartingale affine
models. Fractional volatility models such as those in [70, 66, 14, 51, 15] have emerged as
compelling alternatives, although tractability can be a challenge for these non-Markovian,
non-semimartingales models. Nonetheless, it is shown in [51, 52] that there exist fractional
adaptations of the Heston model where the Fourier–Laplace transform can be found explic-
itly, modulo the solution of a specific fractional Riccati equation. These models are of the
affine Volterra type (5.1.1) involving singular kernels proportional to tα−1. Our framework
subsumes and extends these examples.

The chapter is structured as follows. Section 5.2 covers preliminaries on convolutions and
their resolvents, and in particular develops the necessary stochastic calculus. Section 5.3
gives existence theorems for stochastic Volterra equations on Rd and Rd+. Section 5.4 intro-
duces affine Volterra processes on general state spaces and develops the exponential-affine
transform formula. Section 5.5 contains detailed discussions for the state spaces Rd, Rd+, and
R × R+, which correspond to the Volterra Ornstein–Uhlenbeck, Volterra square-root, and
Volterra Heston models, respectively. Additional proofs and supporting results are presented
in Section 5.6. Our basic reference for the deterministic theory of Volterra equations is the
excellent book [69].

Notation

Throughout the chapter we view elements of Rm and Cm = Rm + iRm as column vectors,
while elements of the dual spaces (Rm)∗ and (Cm)∗ are viewed as row vectors. For any
matrix A with complex entries, A⊤ denotes the (ordinary, not conjugate) transpose of A.
The identity matrix is written id. The symbol | · | is used to denote the Euclidean norm on
Cm and (Cm)∗, as well as the operator norm on Rm×n. The shift operator ∆h with h ≥ 0,
maps any function f on R+ to the function ∆hf given by

∆hf(t) = f(t+ h).

If the function f on R+ is right-continuous and of locally bounded variation, the measure
induced by its distribution derivative is denoted df , so that f(t) = f(0) +

∫
[0,t] df(s) for all

t ≥ 0. By convention, df does not charge {0}.
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5.2 Stochastic calculus of convolutions and resolvents

For a measurable function K on R+ and a measure L on R+ of locally bounded variation,
the convolutions K ∗ L and L ∗K are defined by

(K ∗ L)(t) =

∫

[0,t]
K(t− s)L(ds), (L ∗K)(t) =

∫

[0,t]
L(ds)K(t− s) (5.2.1)

for t > 0 whenever these expressions are well-defined, and extended to t = 0 by right-
continuity when possible. We allow K and L to be matrix-valued, in which case K ∗ L and
L ∗K may not both be defined (e.g. due to incompatible matrix dimensions), or differ from
each other even if they are defined (e.g. if K and L take values among non-commuting square
matrices). If F is a function on R+, we write K ∗ F = K ∗ (Fdt), that is,

(K ∗ F )(t) =

∫ t

0
K(t− s)F (s)ds. (5.2.2)

Further details can be found in [69], see in particular Definitions 2.2.1 and 3.2.1, as well
as Theorems 2.2.2 and 3.6.1 for a number of properties of convolutions. In particular, if
K ∈ L1

loc(R+) and F is continuous, then K ∗ F is again continuous.

Fix d ∈ N and let M be a d-dimensional continuous local martingale. If K is Rm×d-valued
for some m ∈ N, the convolution

(K ∗ dM)t =

∫ t

0
K(t− s)dMs (5.2.3)

is well-defined as an Itô integral for every t ≥ 0 such that
∫ t

0 |K(t − s)|2dTr〈M〉s < ∞. In
particular, if K ∈ L2

loc(R+) and 〈M〉s =
∫ s

0 audu for some locally bounded process a, then
(5.2.3) is well-defined for every t ≥ 0. We always choose a version that is jointly measurable
in (t, ω). Just like (5.2.1)–(5.2.2), the convolution (5.2.3) is associative, as the following result
shows.

Lemma 5.1. Let K ∈ L2
loc(R+,R

m×d) and let L be an Rn×m-valued measure on R+ of
locally bounded variation. Let M be a d-dimensional continuous local martingale with 〈M〉t =∫ t

0 asds, t ≥ 0, for some locally bounded process a. Then

(L ∗ (K ∗ dM))t = ((L ∗K) ∗ dM)t (5.2.4)

for every t ≥ 0. In particular, taking F ∈ L1
loc(R+) we may apply (5.2.4) with L(dt) = Fdt

to obtain (F ∗ (K ∗ dM))t = ((F ∗K) ∗ dM)t.

Proof. By linearity it suffices to take d = m = n = 1 and L a locally finite positive measure.
In this case,

(L ∗ (K ∗ dM))t =

∫ t

0

(∫ t

0
1{u<t−s}K(t− s− u)dMu

)
L(ds).

Since

∫ t

0

(∫ t

0
1{u<t−s}K(t− s− u)2d〈M〉u

)1/2

L(ds) ≤ max
0≤s≤t

|as|1/2‖K‖L2(0,t)L([0, t]),
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which is finite almost surely, the stochastic Fubini theorem, see [111, Theorem 2.2], yields

(L ∗ (K ∗ dM))t =

∫ t

0

(∫ t

0
1{u<t−s}K(t− s− u)L(ds)

)
dMu = ((L ∗K) ∗ dM)t,

as required.

Under additional assumptions on the kernelK one can find a version of the convolution (5.2.3)
that is continuous in t. We will use the following condition:

K ∈ L2
loc(R+,R) and there is γ ∈ (0, 2] such that

∫ h
0 K(t)2dt = O(hγ)

and
∫ T

0 (K(t+ h) −K(t))2dt = O(hγ) for every T < ∞.
(5.2.5)

Remark 5.2. Other conditions than (5.2.5) have appeared in the literature. In [42], dM =
σdW is defined on the Wiener space with coordinate process W under the requirement that
F 7→ K ∗ F is be continuous from certain Lp spaces to appropriate Besov spaces. In [95],
K is assumed to be a function of smooth variation and M a semimartingale. See also [112,
Theorem 1.3].

Example 5.3. Let us list some examples of kernels that satisfy (5.2.5):

1. Locally Lipschitz kernels K clearly satisfy (5.2.5) with γ = 1.

2. The fractional kernel K(t) = tα−1 with α ∈ (1
2 , 1) satisfies (5.2.5) with γ = 2α − 1.

Indeed, it is locally square integrable, and we have
∫ h

0 K(t)dt = h2α−1/(2α− 1) as well
as ∫ T

0
(K(t+ h) −K(t))2dt ≤ h2α−1

∫ ∞

0

(
(t+ 1)α−1 − tα−1

)2
dt,

where the constant on the right-hand side is bounded by 1
2α−1 + 1

3−2α . Note that the
case α ≥ 1 falls in the locally Lipschitz category mentioned previously.

3. If K1 and K2 satisfy (5.2.5), then so does K1 +K2.

4. If K1 satisfies (5.2.5) and K2 is locally Lipschitz, then K = K1K2 satisfies (5.2.5)
with the same γ. Indeed, letting ‖K2

2‖∞,T denote the maximum of K2
2 over [0, T ] and

LipT (K2) the best Lipschitz constant on [0, T ], we have

∫ h

0
K(t)2dt ≤ ‖K2

2‖∞,h

∫ h

0
K2

1 (t)dt = O(hγ)

and

∫ T

0
(K(t+ h) −K(t))2dt ≤ 2‖K2

2‖∞,T+h

∫ T

0
(K1(t+ h) −K1(t))2dt

+ 2‖K1‖2
L2(0,T )LipT+h(K2)2h2

= O(hγ).

5. If K satisfies (5.2.5) and f ∈ L2
loc(R+), then f ∗ K satisfies (5.2.5) with the same γ.

Indeed, Young’s inequality gives
∫ h

0 (f ∗ K)(t)2dt ≤ ‖f‖2
L1(0,h)‖K‖2

L2(0,h) = O(hγ) and,
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using also the Cauchy–Schwarz inequality,

∫ T

0
((f ∗K)(t+ h) − (f ∗K)(t))2dt ≤ 2T‖f‖2

L2(0,T+h)‖K‖2
L2(0,h)

+ 2‖f‖2
L1(0,h)‖∆hK −K‖2

L2(0,h)

= O(hγ).

6. If K satisfies (5.2.5) and is locally bounded on (0,∞), then ∆ηK satisfies (5.2.5) for
any η > 0. Indeed, local boundedness gives ‖∆ηK‖2

L2(0,h) = O(h) and it is immediate

that
∫ T

0 (∆ηK(t+ h) − ∆ηK(t))2dt ≤ ∫ T+η
0 (K(t+ h) −K(t))2dt = O(hγ).

7. By combining the above examples we find that, for instance, exponentially damped and
possibly singular kernels like the Gamma kernel K(t) = tα−1e−βt for α > 1

2 and β ≥ 0
satisfy (5.2.5).

Lemma 5.4. Assume K satisfies (5.2.5) and consider a process X = K ∗(bdt+dM), where b
is a predictable process and M is a continuous local martingale with 〈M〉t =

∫ t
0 asds for some

predictable process a. Let T ≥ 0 and p > 2/γ be such that supt≤T E[|at|p/2 + |bt|p] is finite.
Then X admits a version which is Hölder continuous on [0, T ] of any order α < γ/2 − 1/p.
Denoting this version again by X, one has

E

[(
sup

0≤s<t≤T

|Xt −Xs|
|t− s|α

)p]
≤ c sup

t≤T
E[|at|p/2 + |bt|p] (5.2.6)

for all α ∈ [0, γ/2 − 1/p), where c is a constant that only depends on p, K, and T . As
a consequence, if a and b are locally bounded, then X admits a version which is Hölder
continuous of any order α < γ/2.

Proof. For any p ≥ 2 and any s < t ≤ T < ∞ we have

|Xt −Xs|p ≤ 4p−1

∣∣∣∣
∫ t

s
K(t− u)budu

∣∣∣∣
p

+ 4p−1

∣∣∣∣
∫ s

0
(K(t− u) −K(s− u)) budu

∣∣∣∣
p

+ 4p−1

∣∣∣∣
∫ t

s
K(t− u)dMu

∣∣∣∣
p

+ 4p−1

∣∣∣∣
∫ s

0
(K(t− u) −K(s− u)) dMu

∣∣∣∣
p

= 4p−1 (I + II + III + IV) .

Jensen’s inequality applied twice yields I ≤ (t− s)p/2 ‖K‖p−2
L2(s,t)

∫ t
s |bu|pK(t− u)2du. Taking

expectations and changing variables we obtain

E[ I ] ≤ (t− s)p/2
(∫ t−s

0
K(u)2du

)p/2

sup
u≤T

E[|bu|p]. (5.2.7)

In a similar manner,

E[ II ] ≤ T p/2
(∫ s

0
(K(u+ t− s) −K(u))2du

)p/2

sup
u≤T

E[|bu|p]. (5.2.8)
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Analogous calculations relying also on the BDG inequalities applied to the continuous local
martingale {∫ r0 K(t− u)dMu : r ∈ [0, t]} yield

E [ III ] ≤ Cp E

[(∫ t

s
K(t− u)2 au du

)p/2
]

≤ Cp

(∫ t−s

0
K(u)2du

)p/2

sup
u≤T

E[|au|p/2]

(5.2.9)

and

E [ IV ] ≤ Cp

(∫ s

0
(K(u+ t− s) −K(u))2du

)p/2

sup
u≤T

E[|au|p/2]. (5.2.10)

Combining (5.2.7)–(5.2.10) with (5.2.5) leads to

E [|Xt −Xs|p] ≤ c′ sup
u≤T

E[|au|p/2 + |bu|p] (t− s)γp/2,

where c′ is a constant that only depends on p, K, and T , but not on s or t. Existence of a
continuous version as well as the bound (5.2.6) now follow from the Kolmogorov continuity
theorem; see [101, Theorem I.2.1].

Finally, if a and b are locally bounded, consider stopping times τn → ∞ such that a and b
are bounded on [[0, τn]]. The process Xn = K ∗ (b1[[0,τn]]dt + a1[[0,τn]]dW ) then has a Hölder
continuous version of any order α < γ/2 by the first part of the lemma, and one has Xt = Xn

t

almost surely on {t ≤ τn} for each t.

Consider a kernel K ∈ L1
loc(R+,R

d×d). The resolvent, or resolvent of the second kind, corre-
sponding to K is the kernel R ∈ L1

loc(R+;Rd×d) such that

K ∗R = R ∗K = K −R.1 (5.2.11)

The resolvent always exists and is unique, and a number of properties such as (local) square
integrability and continuity of the original kernel K are inherited by its resolvent; see [69,
Theorems 2.3.1 and 2.3.5]. Using the resolvent R one can derive a variation of constants
formula as shown in the following lemma.

Lemma 5.5. Let X be a continuous process, F : R+ → Rm a continuous function, B ∈ Rd×d

and Z =
∫
b dt +

∫
σ dW a continuous semimartingale with b, σ, and K ∗ dZ continuous.

Then

X = F + (KB) ∗X +K ∗ dZ ⇐⇒ X = F −RB ∗ F + EB ∗ dZ,

where RB is the resolvent of −KB and EB = K −RB ∗K.

Proof. Assume that X = F + (KB) ∗ X + K ∗ dZ. Convolving this with RB and using
Lemma 5.1 yields

X −RB ∗X =
(
F −RB ∗ F ) +

(
KB −RB ∗ (KB)

) ∗X + EB ∗ dZ.
1Rather than (5.2.11), it is common to require K ∗ R = R ∗ K = R − K in the definition of resolvent. We

use (5.2.11) to remain consistent with [69].
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The resolvent equation (5.2.11) states that KB −RB ∗ (KB) = −RB, so that

X = F −RB ∗ F + EB ∗ dZ. (5.2.12)

Conversely, assume that (5.2.12) holds. It follows from the resolvent equation (5.2.11) that
KB − (KB) ∗RB = −RB and

(KB) ∗ EB = (KB) ∗ (K −RB ∗K) = −RB ∗K.

Hence, convolving both sides of (5.2.12) with KB and using Lemma 5.1 yields

X − (KB) ∗X = F + (−RB −KB + (KB) ∗RB) ∗ F + (EB − (KB) ∗ EB) ∗ dZ
= F + (EB +RB ∗K) ∗ dZ
= F +K ∗ dZ,

which proves that X = F + (KB) ∗X +K ∗ dZ.

Another object related to K is its resolvent of the first kind, which is an Rd×d-valued measure
L on R+ of locally bounded variation such that

K ∗ L = L ∗K ≡ id, (5.2.13)

see [69, Definition 5.5.1]. Some examples of resolvents of the first and second kind are
presented in Table 5.1. A resolvent of the first kind does not always exist. When it does, it
has the following properties, which play a key role in several of our arguments.

Lemma 5.6. Let X be a continuous process and Z =
∫
b dt +

∫
σ dW a continuous semi-

martingale with b, σ, and K ∗ dZ continuous. Assume that K admits a resolvent of the first
kind L. Then

X −X0 = K ∗ dZ ⇐⇒ L ∗ (X −X0) = Z. (5.2.14)

In this case, for any F ∈ L2
loc(R+,C

m×d) such that F ∗ L is right-continuous and of locally
bounded variation, one has

F ∗ dZ = (F ∗ L)(0)X − (F ∗ L)X0 + d(F ∗ L) ∗X dt⊗ P-a.e. (5.2.15)

If F ∗ dZ has a right-continuous version, then with this version (5.2.15) holds up to indistin-
guishability.

Proof. Assume X −X0 = K ∗ dZ. Apply L to both sides to get

L ∗ (X −X0) = L ∗ (K ∗ dZ) = (L ∗K) ∗ dZ = id ∗ dZ = Z,

where the second equality follows from Lemma 5.1. This proves the forward implication in
(5.2.14). Conversely, assume L ∗ (X −X0) = Z. Then,

id ∗ (X −X0) = (K ∗ L) ∗ (X −X0)

= K ∗ (L ∗ (X −X0))

= K ∗ Z
= K ∗ (id ∗ dZ)

= id ∗ (K ∗ dZ),
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using [69, Theorem 3.6.1(ix)] for the second equality and Lemma 5.1 for the last equality.
Since both X −X0 and K ∗ dZ are continuous, they must be equal.

To prove (5.2.15), observe that the assumption of right-continuity and locally bounded vari-
ation entails that

F ∗ L = (F ∗ L)(0) + d(F ∗ L) ∗ id.

Convolving this with K, using associativity of the convolution and (5.2.13), and inspecting
the densities of the resulting absolutely continuous functions, we get

F = (F ∗ L)(0)K + d(F ∗ L) ∗K a.e.

Using (5.2.4) and the fact that K ∗ dZ = X −X0 by assumption, it follows that

F ∗ dZ = (F ∗ L)(0)K ∗ dZ + d(F ∗ L) ∗ (K ∗ dZ)

= (F ∗ L)(0)X − (F ∗ L)X0 + d(F ∗ L) ∗X

holds dt⊗ P-a.e., as claimed. The final statement is clear from right-continuity of F ∗L and
d(F ∗ L) ∗X.

Remark 5.7. The previous lemma will be used with F = ∆hK, for fixed h > 0. If K is
continuous on (0,∞), then ∆hK ∗L is right-continuous. Moreover, if K is non-negative and
L non-increasing in the sense that s → L([s, s + t]) is non-increasing for all t ≥ 0, then
∆hK ∗ L is non-decreasing since

(∆hK ∗ L)(t) = 1 −
∫

[0,h)
K(h− s)L(t+ ds), t > 0.

In particular, ∆hK ∗ L is of locally bounded variation.

K(t) R(t) L(dt)

Constant c ce−ct c−1δ0(dt)

Fractional c t
α−1

Γ(α) ctα−1Eα,α(−ctα) c−1 t−α

Γ(1−α)dt

Exponential ce−λt ce−λte−ct c−1(δ0(dt) + λ dt)

Gamma ce−λt tα−1

Γ(α) ce−λttα−1Eα,α(−ctα) c−1 1
Γ(1−α)e

−λt d
dt(t

−α ∗ eλt)(t)dt

Table 5.1: Some kernels K and their resolvents R and L of the second and first kind. Here
Eα,β(z) =

∑∞

n=0
zn

Γ(αn+β) denotes the Mittag–Leffler function, and the constant c may be an

invertible matrix.

5.3 Stochastic Volterra equations

Fix d ∈ N and consider the stochastic Volterra equation (5.1.1) for a given kernel K ∈
L2

loc(R+,R
d×d), initial condition X0 ∈ Rd, and coefficients b : Rd → Rd and σ : Rd → Rd×m,
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where W is m-dimensional Brownian motion. The equation (5.1.1) can be written more
compactly as

X = X0 +K ∗ (b(X)dt+ σ(X)dW ).

We will always require the coefficients b and σ as well as solutions of (5.1.1) to be continuous
in order to avoid problems with the meaning of the stochastic integral term. As for stochastic
(ordinary) differential equations, we call X a strong solution if it is adapted to the filtration
generated by W , and a weak solution otherwise.

The following moment bound holds for any solution of (5.1.1) under linear growth conditions
on the coefficients.

Lemma 5.8. Assume b and σ are continuous and satisfy the linear growth condition

|b(x)| ∨ |σ(x)| ≤ cLG(1 + |x|), x ∈ Rd, (5.3.1)

for some constant cLG. Let X be a continuous solution of (5.1.1) with initial condition
X0 ∈ Rd. Then for any p ≥ 2 and T < ∞ one has

sup
t≤T

E[|Xt|p] ≤ c

for some constant c that only depends on |X0|, K|[0,T ], cLG, p and T .

Proof. Let τn = inf{t ≥ 0: |Xt| ≥ n} ∧ T , and observe that

|Xt|p1{t<τn} ≤
∣∣∣∣X0 +

∫ t

0
K(t− s)

(
b(Xs1{s<τn})ds+ σ(Xs1{s<τn})dWs

)∣∣∣∣
p

.

Routine application of the Jensen and BDG inequalities as well as the linear growth condi-
tion (5.3.1) show that the expectations E[|Xt|p1{t<τn}] satisfy the inequality

fn ≤ c′ + c′|K|2 ∗ fn

on [0, T ] for some constant c′ that only depends on |X0|, ‖K‖L2(0,T ), cLG, p and T . Consider
now the scalar non-convolution kernel K ′(t, s) = c′|K(t− s)|21s≤t. This is a Volterra kernel
in the sense of [69, Definition 9.2.1], and for any interval [u, v] ⊂ R+, Young’s inequality
implies that

∣∣∣∣∣∣K ′∣∣∣∣∣∣
L1(u,v) ≤ c′‖K‖L2(0,v−u), (5.3.2)

where ||| · |||L1(u,v) is defined in [69, Definition 9.2.2]. Thus −K ′ is of type L1 on (0, T ).

Next, we show that −K ′ admits a resolvent of type L1 on (0, T ) in the sense of [69, Def-
inition 9.3.1]. For v − u sufficiently small, the right-hand side in (5.3.2) is smaller than
1, whence |||K ′|||L1(u,v) < 1. We now apply [69, Corollary 9.3.14] to obtain a resolvent of

type L1 on (0, T ) of −K ′, which we denote by R′. Since −c′|K|2 is nonpositive, it follows
from [69, Proposition 9.8.1] that R′ is also nonpositive. The Gronwall type inequality in [69,
Lemma 9.8.2] then yields fn(t) ≤ c′(1−(R′ ∗1)(t)) ≤ c′(1−(R′ ∗1)(T )) for t ∈ [0, T ]. Sending
n to infinity and using Fatou’s lemma completes the proof.

Remark 5.9. It is clear from the proof that the conclusion of Lemma 5.8 holds also for state
and time-dependent predictable coefficients b(x, t, ω) and σ(ω, t, x), provided they satisfy a
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linear growth condition uniformly in (t, ω), that is,

|b(x, t, ω)| ∨ |σ(x, t, ω)| ≤ cLG(1 + |x|), x ∈ Rd, t ∈ R+, ω ∈ Ω,

for some constant cLG.

The following existence result can be proved using techniques based on classical methods for
stochastic differential equations; the proof is given in Section 5.6.1.

Theorem 5.10. Assume that K admits a resolvent of the first kind, that the components of
K satisfy (5.2.5), and that b and σ are continuous and satisfy the linear growth condition
(5.3.1). Then (5.1.1) admits a continuous weak solution for any initial condition X0 ∈ Rd.

Remark 5.11. At the cost of increasing the dimension, (5.1.1) also covers the superficially
different equation X = X0 + K1 ∗ (b(X)dt) + K2 ∗ (σ(X)dW ) where the drift and diffusion
terms are convolved with different kernels K1 and K2. Indeed, if one defines

K̃ =

(
K1 K2

0 K2

)
, b̃(x, y) =

(
b(x)

0

)
, σ̃(x, y) =

(
0 σ(x)
0 0

)
,

and obtains a solution Z = (X,Y ) of the equation Z = Z0 + K̃ ∗ (b̃(Z)dt+ σ̃(Z)dW̃ ) in R2d,
where Z0 = (X0, 0) and W̃ = (W ′,W ) is a 2d-dimensional Brownian motion, then X is a
solution of the original equation of interest. If K1 and K2 admit resolvents of the first kind
L1 and L2, then

L̃ =

(
L1 −L1

0 L2

)

is a resolvent of the first kind of K̃, and Theorem 5.10 is applicable.

Our next existence result is more delicate, as it involves an assertion about stochastic in-
variance of the nonnegative orthant Rd+. This forces us to impose stronger conditions on the
kernel K along with suitable boundary conditions on the coefficients b and σ. We note that
any nonnegative and non-increasing kernel that is not identically zero admits a resolvent of
the first kind; see [69, Theorem 5.5.5].

Theorem 5.12. Assume that K is diagonal with scalar kernels Ki on the diagonal that
satisfy (5.2.5) as well as

Ki is nonnegative, not identically zero, non-increasing and continuous on
(0,∞), and its resolvent of the first kind Li is nonnegative and

non-increasing in that s 7→ Li([s, s+ t]) is non-increasing for all t ≥ 0.
(5.3.3)

Assume also that b and σ are continuous and satisfy the linear growth condition (5.3.1) along
with the boundary conditions

xi = 0 implies bi(x) ≥ 0 and σi(x) = 0,

where σi(x) is the ith row of σ(x). Then (5.1.1) admits an Rd+-valued continuous weak
solution for any initial condition X0 ∈ Rd+.

Example 5.13. If Ki is completely monotone on (0,∞) and not identically zero, then (5.3.3)
holds due to [69, Theorem 5.5.4]. Recall that a function f is called completely monotone
on (0,∞) if it is infinitely differentiable there with (−1)kf (k)(t) ≥ 0 for all t > 0 and
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k = 0, 1, . . .. This covers, for instance, any constant positive kernel, the fractional kernel
tα−1 with α ∈ (1

2 , 1), and the exponentially decaying kernel e−βt with β > 0. Moreover, sums
and products of completely monotone functions are completely monotone.

Proof of Theorem 5.12. Define coefficients bn and σn by

bn(x) = b
(
(x− n−1)+

)
, σn(x) = σ

(
(x− n−1)+

)
,

and let Xn be the solution of (5.1.1) given by Theorem 5.10, with b and σ replaced by bn

and σn. Note that bn and σn are continuous, satisfy (5.3.1) with a common constant, and
converge to b(x+) and σ(x+) locally uniformly. Lemmas 5.30 and 5.31 therefore imply that,
along a subsequence, Xn converges weakly to a solution X of the stochastic Volterra equation

Xt = X0 +

∫ t

0
K(t− s)b(X+

s )ds+

∫ t

0
K(t− s)σ(X+

s )dWs.

It remains to prove that X is Rd+-valued and hence a solution of (5.1.1). For this it suffices
to prove that each Xn is Rd+-valued.

Dropping the superscript n, we are thus left with the task of proving the theorem under the
stronger condition that, for some fixed n ∈ N,

xi ≤ n−1 implies bi(x) ≥ 0 and σi(x) = 0. (5.3.4)

Define Z =
∫
b(X)dt+

∫
σ(X)dW and τ = inf{t ≥ 0: Xt /∈ Rd+}. On {τ < ∞} we have

Xτ+h = X0 + (K ∗ dZ)τ+h = X0 + (∆hK ∗ dZ)τ +

∫ h

0
K(h− s)dZτ+s (5.3.5)

for all h ≥ 0. We claim that

(∆hKi ∗ Li)(t) is nondecreasing in t for any h ≥ 0. (5.3.6)

Indeed, using that Ki ∗ Li ≡ 1 we have

(∆hKi ∗ Li)(t) =

∫

[0,t]
Ki(t+ h− u)Li(du)

= 1 −
∫

(t,t+h]
Ki(t+ h− u)Li(du)

= 1 −
∫

(0,h]
Ki(h− u)Li(t+ du),

and therefore, for any s ≤ t,

(∆hKi ∗ Li)(t) − (∆hKi ∗ Li)(s) =

∫

(0,h]
Ki(h− u) (Li(s+ du) − Li(t+ du)) .

This is nonnegative since Ki is nonnegative and Li non-increasing, proving (5.3.6). Further-
more, since Ki is non-increasing and Li nonnegative we obtain

0 ≤ (∆hKi ∗ Li)(t) ≤ (Ki ∗ Li)(t) = 1. (5.3.7)

Since ∆hKi is continuous and of locally bounded variation on R+ for h > 0, it follows that
∆hKi ∗ Li is right-continuous and of locally bounded variation. Moreover, ∆hKi satisfies
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(5.2.5) due to Example 5.36, so that ∆hKi ∗ dZ has a continuous version by Lemma 5.4.
Thus (5.2.15) in Lemma 5.6, along with (5.3.6)–(5.3.7) and the fact that Xt is Rd+-valued for
t ≤ τ , yield

Xi,0 + (∆hKi ∗ dZi)τ = (1 − (∆hKi ∗ Li)(τ))Xi,0

+ (∆hKi ∗ Li)(0)Xi,τ

+ (d(∆hKi ∗ Li) ∗Xi)τ

≥ 0.

In view of (5.3.5) it follows that

Xi,τ+h ≥
∫ h

0
Ki(h− s) (bi(Xτ+s)ds+ σi(Xτ+s)dWτ+s) (5.3.8)

on {τ < ∞} for all i and all h ≥ 0.

Now, on {τ < ∞} there is an index i (depending on ω) such that Xi,τ = 0 and Xi,τ+h < 0
for arbitrarily small but positive values of h. On the other hand, by continuity there is
some ε > 0 (again depending on ω) such that Xi,τ+h ≤ n−1 for all h ∈ [0, ε). Thus (5.3.4)
and (5.3.8) yield Xi,τ+h ≥ 0 for all h ∈ [0, ε). This contradiction shows that τ = ∞, as
desired.

5.4 Affine Volterra processes

Fix a dimension d ∈ N and a kernel K ∈ L2
loc(R+,R

d×d). Let a : Rd → Sd and b : Rd → Rd

be affine maps given by
a(x) = A0 + x1A

1 + · · · + xdA
d

b(x) = b0 + x1b
1 + · · · + xdb

d
(5.4.1)

for some Ai ∈ Sd and bi ∈ Rd, i = 0, . . . , d. To simplify notation we introduce the d × d
matrix

B =
(
b1 · · · bd

)
,

and for any row vector u ∈ (Cd)∗ we define the row vector

A(u) = (uA1u⊤, . . . , uAdu⊤).

Let D be a subset of Rd, which will play the role of state space for the process defined
below, and assume that a(x) is positive semidefinite for every x ∈ D. Let σ : Rd → Rd×d

be continuous and satisfy σ(x)σ(x)⊤ = a(x) for every x ∈ D. For instance, one can take
σ(x) =

√
π(a(x)), where π denotes the orthogonal projection onto the positive semidefinite

cone, and the positive semidefinite square root is understood.

Definition 5.14. An affine Volterra process (with state space D) is a continuous D-valued
solution X of (5.1.1) with a = σσ⊤ and b as in (5.4.1). In this chapter we always take X0

deterministic.

Setting K ≡ id we recover the usual notion of an affine diffusion with state space D; see
e.g. [56]. Even in this case, existence and uniqueness is often approached by first fixing
a state space D of interest, and then studying conditions on (a, b) under which existence
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and uniqueness can be proved; see e.g. [48, 34, 106, 84]. A key goal is then to obtain
explicit parameterizations that can be used in applications. In later sections we carry out
this analysis for affine Volterra processes with state space Rd, Rd+, and R × R+. In the
standard affine case more general results are available. In [105], existence and uniqueness
of affine jump-diffusions are characterized on closed convex state spaces, while Chapter 3 of
this thesis provides necessary and sufficient first order geometric conditions for existence of
affine diffusions on general closed state spaces. We do not pursue such generality here for
affine Volterra processes.

Assuming that an affine Volterra process is given, one can however make statements about
its law. In the present section we develop general results in this direction. We start with
a formula for the conditional mean. This is an immediate consequence of the variation of
constants formula derived in Lemma 5.5.

Lemma 5.15. Let X be an affine Volterra process. Then for all t ≤ T ,

E[XT | Ft] =

(
id −

∫ T

0
RB(s)ds

)
X0 +

(∫ T

0
EB(s)ds

)
b0 +

∫ t

0
EB(T − s)σ(Xs)dWs,

(5.4.2)

where RB is the resolvent of −KB and EB = K −RB ∗K. In particular,

E[XT ] =

(
id −

∫ T

0
RB(s)ds

)
X0 +

(∫ T

0
EB(s)ds

)
b0.

Proof. Since X = X0 + (KB) ∗X +K ∗ (b0dt+ σ(X)dW ), Lemma 5.5 yields

X = (id −RB ∗ 1)X0 + EB ∗ (b0dt+ σ(X)dW ).

Consider the local martingale Mt =
∫ t

0 EB(T−s)σ(Xs)dWs, t ∈ [0, T ]. Its quadratic variation
satisfies

E[|〈M〉T |] ≤
∫ T

0
|EB(T − s)|2 E[|σ(Xs)|2]ds ≤ ‖EB‖L2(0,T ) max

s≤T
E[|σ(Xs)|2],

which is finite by Lemma 5.8. Thus M is a martingale, so taking Ft-conditional expectations
completes the proof.

The first main result of this section is the following theorem, which expresses the conditional
Fourier–Laplace functional of an affine Volterra process in terms of the conditional mean
in Lemma 5.15 and the solution of a quadratic Volterra integral equation, which we call a
Riccati–Volterra equation.

Theorem 5.16. Let X be an affine Volterra process and fix some T < ∞, u ∈ (Cd)∗, and
f ∈ L1([0, T ], (Cd)∗). Assume ψ ∈ L2([0, T ], (Cd)∗) solves the Riccati–Volterra equation

ψ = uK +

(
f + ψB +

1

2
A(ψ)

)
∗K. (5.4.3)
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Then the process {Yt, 0 ≤ t ≤ T} defined by

Yt = Y0 +

∫ t

0
ψ(T − s)σ(Xs)dWs − 1

2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)⊤ds, (5.4.4)

Y0 = uX0 +

∫ T

0

(
f(s)X0 + ψ(s)b(X0) +

1

2
ψ(s)a(X0)ψ(s)⊤

)
ds (5.4.5)

satisfies

Yt = E[uXT + (f ∗X)T | Ft] +
1

2

∫ T

t
ψ(T − s)a(E[Xs | Ft])ψ(T − s)⊤ds (5.4.6)

for all 0 ≤ t ≤ T . The process {exp(Yt), 0 ≤ t ≤ T} is a local martingale and, if it is a true
martingale, one has the exponential-affine transform formula

E
[
exp (uXT + (f ∗X)T )

∣∣∣ Ft

]
= exp(Yt), t ≤ T. (5.4.7)

Referring to (6.2.13) as an exponential-affine transform formula is motivated by the fact that
Yt depends affinely on the conditional expectations E[Xs | Ft]. We show in Theorem 5.18
below that under mild additional assumptions on K, Yt is actually an affine function of the
past trajectory {Xs, s ≤ t}. Before proving Theorem 5.16 we give the following lemma.

Lemma 5.17. The Riccati–Volterra equation (5.4.3) is equivalent to

ψ = uEB +

(
f +

1

2
A(ψ)

)
∗ EB, (5.4.8)

where EB = K −RB ∗K and RB is the resolvent of −KB.

Proof. Assume (5.4.8) holds. Using the identity EB ∗ (BK) = −RB ∗K we get

ψ − ψ ∗ (BK) = u(EB +RB ∗K) +

(
f +

1

2
A(ψ)

)
∗ (EB +RB ∗K),

which is (5.4.3). Conversely, assume (5.4.3) holds. With R̃B being the resolvent of −BK,
we obtain

ψ − ψ ∗ R̃B = u(K −K ∗ R̃B) +

(
f +

1

2
A(ψ)

)
∗ (K −K ∗ R̃B) − ψ ∗ R̃B.

To deduce (5.4.8) it suffices to prove K ∗ R̃B = RB ∗K. Equivalently, we show that for each
T < ∞, there is some σ > 0 such that

(e−σtK) ∗ (e−σtR̃B) = (e−σtRB) ∗ (e−σtK) on [0, T ], (5.4.9)

where e−σt is shorthand for the function t 7→ e−σt. It follows from the definitions that
e−σtRB is the resolvent of −e−σtKB, and that e−σtR̃B is the resolvent of −e−σtBK; see [69,
Lemma 2.3.3]. Choosing σ large enough that ‖e−σtKB‖L1(0,T ) < 1 we get, as in the proof of
[69, Theorem 2.3.1],

e−σtRB = −
∑

k≥1

(e−σtKB)∗k and e−σtR̃B = −
∑

k≥1

(e−σtBK)∗k

on [0, T ]. This readily implies (5.4.9), as required.
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Proof of Theorem 5.16. Let Ỹt be defined by the right-hand side of (6.2.14) for 0 ≤ t ≤ T .
We first prove that Ỹ0 = Y0. A calculation using the identity va(x)v⊤ = vA0v⊤ + A(v)x
yields

Ỹ0 − Y0 = uE[XT −X0] + (f ∗ E[X −X0])(T )

+

(
1

2
A(ψ) ∗ E[X −X0]

)
(T ) −

(
ψ ∗ (b0 +BX0)

)
(T ),

(5.4.10)

where E[X −X0] denotes the function t 7→ E[Xt −X0]. This function satisfies

E[X −X0] = K ∗
(
b0 +B E[X]

)
,

as can be seen by taking expectations in (5.1.1) and using Lemma 5.8. Consequently,

1

2
A(ψ) ∗ E[X −X0] =

1

2
A(ψ) ∗K ∗

(
b0 +B E[X]

)

= (ψ − uK − (f + ψB) ∗K) ∗
(
b0 +B E[X]

)

= ψ ∗
(
b0 +B E[X]

)
− uE[X −X0] − (f + ψB) ∗ E[X −X0].

Substituting this into (5.4.10) yields Ỹ0 − Y0 = 0, as required.

We now prove that Ỹ = Y . In the following calculations we let C denote an F0-measurable
quantity that does not depend on t, and may change from line to line. Using again the
identity va(x)v⊤ = vA0v⊤ +A(v)x we get

Ỹt = C + uE[XT | Ft] +

∫ T

0

(
f +

1

2
A(ψ)

)
(T − s)E[Xs | Ft] ds

− 1

2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)⊤ds.

Lemma 5.15, the stochastic Fubini theorem, see [111, Theorem 2.2], and a change of variables
yield

∫ T

0

(
f +

1

2
A(ψ)

)
(T − s)E[Xs | Ft] ds

= C +

∫ T

0

(
f +

1

2
A(ψ)

)
(T − s)

∫ t

0
1{r<s}EB(s− r)σ(Xr)dWr ds

= C +

∫ t

0

(∫ T

r

(
f +

1

2
A(ψ)

)
(T − s)EB(s− r)ds

)
σ(Xr)dWr

= C +

∫ t

0

((
f +

1

2
A(ψ)

)
∗ EB

)
(T − r)σ(Xr)dWr,

where the application of the stochastic Fubini theorem in the second equality is justified by
the fact that

∫ T

0

(∫ t

0

∣∣∣∣
(
f +

1

2
A(ψ)

)
(T − s)1{r<s}EB(s− r)σ(Xr)

∣∣∣∣
2

dr

)1/2

ds

≤ max
0≤s≤T

|σ(Xs)| ‖EB‖L2(0,T )‖f +
1

2
A(ψ)‖L1(0,T ) < ∞.
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Since E[XT | Ft] = C +
∫ t

0 EB(T − r)σ(Xr)dWr by Lemma 5.15, we arrive at

Ỹt = Ỹ0 +

∫ t

0

(
uEB +

(
f +

1

2
A(ψ)

)
∗ EB

)
(T − r)σ(Xr)dWr

− 1

2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)⊤ds.

Due to Lemma 5.17 and (6.2.18) we then obtain (6.2.17).

The final statements are now straightforward. Indeed, (6.2.17) shows that Y + 1
2〈Y 〉 is a local

martingale, so that exp(Y ) is a local martingale by Itô’s formula. In the true martingale
situation, the exponential-affine transform formula then follows upon observing that YT =
uXT + (f ∗X)T by (6.2.14).

In the particular case f ≡ 0 and t = 0, Theorem 5.16 yields two different expressions for the
Fourier–Laplace transform of X,

E[euXT ] = exp

(
E[uXT ] +

1

2

∫ T

0
ψ(T − t)a(E[Xt])ψ(T − t)⊤dt

)
(5.4.11)

= exp (φ(T ) + χ(T )X0) , (5.4.12)

where φ and χ are defined by

φ′(t) = ψ(t)b0 +
1

2
ψ(t)A0ψ(t)⊤, φ(0) = 0, (5.4.13)

χ′(t) = ψ(t)B +
1

2
A(ψ(t)), χ(0) = u. (5.4.14)

If K admits a resolvent of the first kind L, one sees upon convolving (5.4.3) by L and using
(5.2.13) that χ = ψ ∗ L; see also Example 5.20 below. Note that (5.4.13)–(6.2.11) reduce to
the classical Riccati equations when K ≡ id, since in this case L = δ0id and hence ψ = χ.
While the first expression (5.4.11) does exist in the literature on affine diffusions in the
classical case K ≡ id, see [105, Proposition 4.2], the second expression (5.4.12) is much more
common.

In the classical case one has a conditional version of (5.4.12), namely

E[euXT | Ft] = exp (φ(T − t) + ψ(T − t)Xt) .

This formulation has the advantage of showing clearly that the right-hand side depends on
Xt in an exponential-affine manner. In the general Volterra case the lack of Markovianity
precludes such a simple form, but using the resolvent of the first kind it is still possible to
obtain an explicit expression that is exponential-affine in the past trajectory {Xs, s ≤ t}.
Note that this property is not at all obvious either from (6.2.13) or from the expression

E[euXT | Ft] = E
(
Y0 +

∫
ψ(T − s)σ(Xs)dWs

)

t
,

which follows directly from (6.2.17)–(6.2.18) and where E denotes stochastic exponential. The
second main result of this section directly leads to such an exponential-affine representation
under mild additional assumptions on K.
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Theorem 5.18. Assume K is continuous on (0,∞), admits a resolvent of the first kind L,
and that one has the total variation bound

sup
h≤T

‖∆hK ∗ L‖TV(0,T ) < ∞ (5.4.15)

for all T ≥ 0. Then the following statements hold:

(i) With the notation and assumptions of Lemma 5.15, the matrix function

Πh = ∆hEB ∗ L− ∆h(EB ∗ L)

is right-continuous and of locally bounded variation on [0,∞) for every h ≥ 0, and the
conditional expectation (5.4.2) is given by

E[XT | Ft] = (id ∗ EB)(h)b0 + (∆hEB ∗ L)(0)Xt − Πh(t)X0 + (dΠh ∗X)t (5.4.16)

with h = T − t.

(ii) With the notation and assumptions of Theorem 5.16, the scalar function

πh = ∆hψ ∗ L− ∆h(ψ ∗ L)

is right-continuous and of bounded variation on [0, T − h] for every h ≤ T − t, and the
process Y in (6.2.14) is given by

Yt = φ(h) + (∆hf ∗X)t + (∆hψ ∗ L)(0)Xt − πh(t)X0 + (dπh ∗X)t (5.4.17)

with h = T − t and

φ(h) =

∫ h

0

(
ψ(s)b0 +

1

2
ψ(s)A0ψ(s)⊤

)
ds.

Proof. (i): We wish to apply Lemma 5.6 with F = ∆hEB for any fixed h ≥ 0, so we first
verify its hypotheses. Manipulations using Fubini’s theorem give

(∆hEB ∗ L)(t) = (∆hK ∗ L)(t) −
∫ t+h

h
RB(s)ds−

∫ h

0
RB(h− s)(∆sK ∗ L)(t)ds.

Owing to (5.4.15) we get the bound

sup
h≤T

‖∆hEB ∗ L‖TV(0,T ) < ∞, (5.4.18)

and using continuity of K on (0,∞) we also get that ∆hEB ∗ L is right-continuous on R+.
In particular, in view of the identity

EB ∗ L = id −RB ∗ id, (5.4.19)

we deduce that Πh is right-continuous and of locally bounded variation as stated. Now,
observe that EB = K − RB ∗ K is continuous on (0,∞), since this holds for K and since
RB and K are both in L2

loc. Moreover, Example 5.33 and 5 imply that the components of
EB satisfy (5.2.5). As a result, Example 5.36 shows that the components of ∆hEB satisfy
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(5.2.5) for any h ≥ 0. Fix h = T − t and define

Z =
∫
b(X)dt+

∫
σ(X)dW.

It follows from Lemma 5.4 that ∆hEB ∗ dZ has a continuous version. Lemma 5.6 with
F = ∆hEB yields

∆hEB ∗ dZ = (∆hEB ∗ L)(0)X − (∆hEB ∗ L)X0 + d(∆hEB ∗ L) ∗X.

Moreover, rearranging (5.4.2) and using (5.4.19) gives

E[XT | Ft] = (EB ∗ L)(T )X0 + (EB ∗ id)(h)b0 + (∆hEB ∗ (dZ −BXdt))t.

Combining the previous two equalities and using the definition of Πh yields

E[XT | Ft] = (EB ∗ id)(h)b0 + (∆hEB ∗ L)(0)Xt − Πh(t)X0

+ ((d(∆hEB ∗ L) − ∆hEBBdt) ∗X)t.

The definition of EB and the resolvent equation (5.2.11) show that EBB = −RB, which in
combination with (5.4.19) gives EBBdt = d(EB ∗ L). Thus (5.4.16) holds as claimed. This
completes the proof of i.

(ii): Recall that Lemma 5.17 gives ψ = uEB +G(ψ) ∗ EB where

G(ψ) = f +
1

2
A(ψ).

Manipulating this equation gives

∆hψ(t) = u∆hEB(t) + (G(ψ) ∗ ∆tEB)(h) + (G(∆hψ) ∗ EB)(t).

Convolving with L and using Fubini yields

(∆hψ ∗ L)(t) = u(∆hEB ∗ L)(t) + (G(ψ) ∗ (∆•EB ∗ L)(t))(h)

+ (G(∆hψ) ∗ EB ∗ L)(t),
(5.4.20)

where (∆•EB ∗ L)(t) denotes the function s 7→ (∆sEB ∗ L)(t). Similarly,

∆h(ψ ∗ L)(t) = u∆h(EB ∗ L)(t) + (G(ψ) ∗ ∆•(EB ∗ L)(t))(h)

+ (G(∆hψ) ∗ EB ∗ L)(t).

Computing the difference between the previous two expressions gives

πh(t) = uΠh(t) + (G(ψ) ∗ Π•(t))(h). (5.4.21)

In combination with (5.4.18) and (5.4.19), as well as the properties of Πh that we have already
proved, it follows that πh is right-continuous and of bounded variation as stated. Now, using
Fubini we get

E[(f ∗X)T | Ft] = (∆T−tf ∗X)t +

∫ T−t

0
f(s)E[XT−s | Ft] ds. (5.4.22)
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Combining (6.2.14), (5.4.16), and (5.4.22), we obtain after some computations

Yt = (∆T−tf ∗X)t +
1

2

∫ T−t

0
ψ(s)A0ψ(s)⊤ ds

+

(
u(id ∗ EB)(T − t) +

∫ T−t

0
G(ψ(s))(id ∗ EB)(T − t− s) ds

)
b0

+

(
u(∆T−tEB ∗ L)(0) +

∫ T−t

0
G(ψ(s))(∆T−t−sEB ∗ L)(0) ds

)
Xt

−
(
uΠT−t(t) +

∫ T−t

0
G(ψ(s))ΠT−t−s(t) ds

)
X0

+ u(dΠT−t ∗X)t +

∫ T−t

0
G(ψ(s))(dΠT−t−s ∗X)t ds

= I + II + III + IV + V.

(5.4.23)

Here

I + II = (∆T−tf ∗X)t +
1

2

∫ T−t

0
ψ(s)A0ψ(s)⊤ ds

+
(
(uEB +G(ψ) ∗ EB) b0 ∗ 1

)
(T − t)

= (∆T−tf ∗X)t + φ(T − t).

(5.4.24)

As a result of (5.4.19), EB ∗ L is continuous on R+, whence (G(∆hψ) ∗ EB ∗ L)(0) = 0.
Evaluating (5.4.20) at t = 0 thus gives

III = (∆T−tψ ∗ L)(0)Xt. (5.4.25)

As a consequence of (5.4.21),
IV = −πT−t(t)X0. (5.4.26)

Finally, it follows from (5.4.21) that dπh = udΠh + µh, where µh(dt) = (G(ψ) ∗ dΠ•(dt))(h).
Since for any bounded function g on [0, t] we have

∫

[0,t]
g(r)µh(dr) =

∫ h

0
G(ψ(s))

(∫ t

0
g(r)dΠh−s(dr)

)
ds,

we obtain
V = (dπT−t ∗X)t. (5.4.27)

Combining (5.4.23)–(5.4.27) yields (5.4.17) and completes the proof.

Remark 5.19. Consider the classical case K ≡ id. Then L(dt) = id δ0(dt), RB(t) = −BeBt,
and EB(t) = eBt. Thus (∆hEB ∗ L)(t) = eB(t+h) = ∆h(EB ∗ L)(t), so that (5.4.16) reduces
to the well known expression E[XT | Ft] = eB(T−t)Xt+

∫ T−t
0 eBsb0ds. In addition, in (5.4.17)

the correction πh vanishes so that, if f ≡ 0, the expression for Yt reduces to the classical
form φ(T − t) + ψ(T − t)Xt.

Example 5.20 (Fractional affine processes). Let K = diag [(K1, . . . ,Kd)], where

Ki(t) =
tαi−1

Γ(αi)
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for some αi ∈ (1
2 , 1]. Then L = diag [(L1, . . . , Ld)] with Li(dt) = t−αi

Γ(1−αi)
dt if αi < 1, and

Li(dt) = δ0(dt) if αi = 1. It follows that χi = ψi ∗ Li = I1−αiψi, where I1−αi denotes
the Riemann-Liouville fractional integral operator. Hence, (5.4.3) and (5.4.13) reduce to the
following system of fractional Riccati equations,

φ′ = ψb0 +
1

2
ψA0ψ⊤, φ(0) = 0,

Dαiψi = fi + ψbi +
1

2
ψAiψ⊤, i = 1, . . . , d, I1−αψ(0) = u,

where Dαi = d
dtI

1−αi is the Riemann-Liouville fractional derivative. Moreover, for t = 0,
(6.2.13) reads

E
[
euXT +(f∗X)T

]
= exp

(
φ(T ) + I1−αψ(T )X0

)

where we write I1−αψ = (I1−α1ψ1, . . . , I
1−αdψd). This generalizes the expressions in [51, 52].

Notice that the identity Lαi ∗Kαi ≡ 1 is equivalent to the identity Dαi(Iαif) = f .

5.5 Examples

5.5.1 The Volterra Ornstein–Uhlenbeck process

The particular specification of (5.4.1) where A1 = · · · = Ad = 0, so that a ≡ A0 is a
constant symmetric positive semidefinite matrix, yields an affine Volterra process with state
space E = Rd that we call the Volterra Ornstein–Uhlenbeck process. It is the solution of the
equation

Xt = X0 +

∫ t

0
K(t− s)(b0 +BXs)ds+

∫ t

0
K(t− s)σdWs,

where σ ∈ Rd×d is a constant matrix with σσ⊤ = A0. Here existence and uniqueness is no
issue. Indeed, Lemma 5.6 with T = t yields the explicit formula

Xt =

(
id −

∫ t

0
RB(s)ds

)
X0 +

(∫ t

0
EB(s)ds

)
b0 +

∫ t

0
EB(t− s)σdWs,

where RB is the resolvent of −KB and EB = K − RB ∗ K. In particular Xt is Gaussian.
Furthermore, the solution of the Riccati–Volterra equation (5.4.3) is obtained explicitly via
Lemma 5.17 as

ψ = uEB + f ∗ EB.
The quadratic variation of the process Y in (6.2.17) is given by

〈Y 〉t =

∫ t

0
ψ(T − s)σσ⊤ψ(T − s)⊤ds,

and is in particular deterministic. The martingale condition in Theorem 5.16 is thus clearly
satisfied, and the exponential-affine transform formula (6.2.13) holds for any T < ∞, u ∈
(Cd)∗, and f ∈ L1([0, T ], (Cd)∗).
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5.5.2 The Volterra square-root process

We now consider affine Volterra processes whose state space is the nonnegative orthant
E = Rd+. We let K be diagonal with scalar kernels Ki ∈ L2

loc(R+,R) on the diagonal. The
coefficients a and b in (5.4.1) are chosen so that A0 = 0, Ai is zero except for the (i, i) element
which is equal to σ2

i for some σi > 0, and

b0 ∈ Rd+ and Bij ≥ 0 for i 6= j. (5.5.1)

The conditions on a and b are the same as in the classical situation K ≡ id, in which case
they are necessary and sufficient for (5.1.1) to admit an Rd+-valued solution for every initial
condition X0 ∈ Rd+. With this setup, we obtain an affine Volterra process that we call the
Volterra square-root process. It is the solution of the equation

Xi,t = Xi,0 +

∫ t

0
Ki(t− s)bi(Xs)ds+

∫ t

0
Ki(t− s)σi

√
Xi,sdWi,s, i = 1, . . . , d. (5.5.2)

The Riccati–Volterra equation (5.4.3) becomes

ψi(t) = uiKi(t) +

∫ t

0
Ki(t− s)

(
fi(s) + ψ(s)bi +

σ2
i

2
ψi(s)

2

)
ds, i = 1, . . . , d. (5.5.3)

The following theorem is our main result on Volterra square-root processes.

Theorem 5.21. Assume each Ki satisfies (5.2.5) and the shifted kernels ∆hKi satisfy (5.3.3)
for all h ∈ [0, 1]. Assume also that (5.5.1) holds.

(i) The stochastic Volterra equation (5.5.2) has a unique in law Rd+-valued continuous weak
solution X for any initial condition X0 ∈ Rd+. For each i, the paths of Xi are Hölder
continuous of any order less than γi/2, where γi is the constant associated with Ki in
(5.2.5).

(ii) For any u ∈ (Cd)∗ and f ∈ L1
loc(R+, (C

d)∗)) such that

Reui ≤ 0 and Re fi ≤ 0 for all i = 1, . . . , d,

the Riccati–Volterra equation (5.5.3) has a unique global solution ψ ∈ L2
loc(R+, (C

d)∗),
which satisfies Reψi ≤ 0, i = 1, . . . , d. Moreover, the exponential-affine transform
formula (6.2.13) holds with Y given by (6.2.17)–(6.2.14).

Example 5.22. A sufficient condition for Ki to satisfy the assumptions of Theorem 5.21 is
that it satisfies (5.2.5) and is completely monotone and not identically zero; see Example 5.13.
This covers in particular the gamma kernel tα−1e−βt with α ∈ (1

2 , 1] and β ≥ 0.

Proof. Thanks to (5.5.1) and the form of σ(x), Theorem 5.12 yields an Rd+-valued continuous
weak solution X of (5.5.2) for any initial condition X0 ∈ Rd+. The stated path regularity
then follows from the last statement of Lemma 5.4.

Next, the existence, uniqueness, and non-positivity statement for the Riccati–Volterra equa-
tion (5.5.3) is proved in Lemma 5.23 below. Thus in order to apply Theorem 5.16 to obtain
the exponential-affine transform formula, it suffices to argue that ReYt is bounded above



Chapter 5. Affine Volterra processes 111

on [0, T ], since exp(Y ) is then bounded and hence a martingale. This is done using Theo-
rem 5.18, and we start by observing that

πr

h,i(t) = −
∫ h

0
ψr

i (h− s)Li(t+ ds), t ≥ 0,

where πh = ∆hψ ∗ L − ∆h(ψ ∗ L) and we write πr

h = Reπh and ψr = Reψ. Due to the
assumption (5.3.3) on Li and since −ψr

i ≥ 0, it follows that πr

h,i is nonnegative and non-
increasing.

As in the proof of Theorem 5.12, each Ki satisfies (5.3.6) and (5.3.7). This implies that the
total variation bound (5.4.15) holds, so that Theorem 5.18ii yields

ReYt = Reφ(h) + (Re ∆hf ∗X)t + (∆hψ
r ∗ L)(0)Xt − πr

h(t)X0 + (dπr

h ∗X)t

where h = T − t and, since A0 = 0,

φ(h) =

∫ h

0
ψ(s)b0ds.

Observe that ψr, (∆hψ
r ∗ L)(0), Re ∆hf , −πr

h, and dπr

h all have nonpositive components.
Since b0 and X take values in Rd+ we thus get

ReYt ≤ 0.

Thus exp(Y ) is bounded, whence Theorem 5.16 is applicable and the exponential-affine
transform formula holds.

It remains to prove uniqueness in law for X. This follows since the law of X is determined by
the Laplace functionals E[exp((f ∗X)T )] as f ranges through, say, all (Rd)∗-valued continuous
functions f with nonpositive components, and T ranges through R+.

Lemma 5.23. Assume K is as in Theorem 5.21. Let u ∈ (Cd)∗ and f ∈ L1
loc(R+, (C

d)∗))
satisfy

Reui ≤ 0 and Re fi ≤ 0 for all i = 1, . . . , d.

Then the Riccati–Volterra equation (5.5.3) has a unique global solution ψ ∈ L2
loc(R+, (C

d)∗),
and this solution satisfies Reψi ≤ 0, i = 1, . . . , d.

Proof. By Theorem 5.32 there exists a unique non-continuable solution (ψ, Tmax) of (5.5.3).
Let ψr and ψi denote the real and imaginary parts of ψ. They satisfy the equations

ψr

i = (Reui)Ki +Ki ∗
(

Re fi + ψrbi +
σ2
i

2

(
(ψr

i )
2 − (ψi

i)
2
))

ψi

i = (Im ui)Ki +Ki ∗
(
Im fi + ψibi + σ2

i ψ
r

iψ
i

i

)

on [0, Tmax). Moreover, on this interval, −ψr

i satisfies the linear equation

χi = −(Reui)Ki +Ki ∗
(

−Re fi + χbi +
σ2
i

2

(
(ψi

i)
2 + χiψ

r

i

))
.

Due to (5.5.1) and since Reu and Re f both have nonpositive components, Theorem 5.36
yields ψr

i ≤ 0, i = 1, . . . , d. Next, let g ∈ L2
loc([0, Tmax), (Rd)∗) and h, ℓ ∈ L2

loc(R+, (R
d)∗) be



Chapter 5. Affine Volterra processes 112

the unique solutions of the linear equations

gi = |Im ui|Ki +Ki ∗
(
|Im fi| + gbi + σ2

i ψ
r

i gi
)

hi = |Im ui|Ki +Ki ∗
(
|Im fi| + hbi

)

ℓi = (Reui)Ki +Ki ∗
(

Re fi + ℓbi − σ2
i

2
h2
i

)
.

These solutions exist on [0, Tmax) thanks to Corollary 5.34. We now perform multiple appli-
cations of Theorem 5.36. The functions g ± ψi satisfy the equations

χi = 2(Im ui)
±Ki +Ki ∗

(
2(Im fi)

± + χbi + σ2
i ψ

r

iχi
)

on [0, Tmax), so |ψi

i| ≤ gi on [0, Tmax) for all i. Similarly, h− g satisfies the equation

χi = Ki ∗
(
χbi − σ2

i ψ
r

i gi
)

on [0, Tmax), so gi ≤ hi on [0, Tmax). Finally, ψr − ℓ satisfies the equation

χi = Ki ∗
(
χbi +

σ2
i

2

(
(ψr

i )
2 + h2

i − (ψi

i)
2
))

,

on [0, Tmax), so ℓi ≤ ψr

i on [0, Tmax). In summary, we have shown that

ℓi ≤ ψr

i ≤ 0 and |ψi

i| ≤ hi on [0, Tmax) for i = 1, . . . , d.

Since ℓ and h are global solutions and thus have finite norm on any bounded interval, this
implies that Tmax = ∞ and completes the proof of the lemma.

5.5.3 The Volterra Heston model

We now consider an affine Volterra process with state space R × R+, which can be viewed
as a generalization of the classical Heston stochastic volatility model in finance, and which
we refer to as the Volterra Heston model. We thus take d = 2 and consider the process
X = (logS, V ), where the price process S and its variance process V are given by

dSt
St

=
√
Vt
(√

1 − ρ2 dW1,s + ρ dW2,s
)
, S0 ∈ (0,∞), (5.5.4)

and

Vt = V0 +

∫ t

0
K(t− s)

(
κ(θ − Vs)ds+ σ

√
Vs dW2,s

)
, (5.5.5)

with kernel K ∈ L2
loc(R+,R), a standard Brownian motion W = (W1,W2), and parame-

ters V0, κ, θ, σ ∈ R+ and ρ ∈ [−1, 1]. Here the notation has been adapted to comply with
established conventions in finance. Weak existence and uniqueness of V follows from The-
orem 5.21 under suitable conditions on K. This in turn determines S. Moreover, observe
that the log-price satisfies

logSt = logS0 −
∫ t

0

Vs
2
ds+

∫ t

0

√
Vs
(√

1 − ρ2 dW1,s + ρ dW2,s
)
.
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Therefore the process X = (logS, V ) is indeed an affine Volterra process with diagonal kernel
diag(1,K) and coefficients a and b in (5.4.1) given by

A0 = A1 = 0, A2 =

(
1 ρσ
ρσ σ2

)
,

b0 =

(
0
κθ

)
, B =

(
0 −1

2
0 −κ

)
.

The Riccati–Volterra equation (5.4.3) takes the form

ψ1 = u1 + 1 ∗ f1, (5.5.6)

ψ2 = u2K +K ∗
(
f2 +

1

2

(
ψ2

1 − ψ1

)
− κψ2 +

1

2

(
σ2ψ2

2 + 2ρσψ1ψ2

))
. (5.5.7)

Theorem 5.24. Assume K satisfies (5.2.5) and the shifted kernels ∆hK satisfy (5.3.3) for
all h ∈ [0, 1].

(i) The stochastic Volterra equation (5.5.4)-(5.5.5) has a unique in law R × R+-valued
continuous weak solution (logS, V ) for any initial condition (logS0, V0) ∈ R×R+. The
paths of V are Hölder continuous of any order less than γ/2, where γ is the constant
associated with K in (5.2.5).

(ii) Let u ∈ (C2)∗ and f ∈ L1
loc(R+, (C

2)∗)) be such that

Reψ1 ∈ [0, 1], Reu2 ≤ 0 and Re f2 ≤ 0.

where ψ1 is given by (6.2.9). Then the Riccati–Volterra equation (6.2.10) has a unique
global solution ψ2 ∈ L2

loc(R+,C
∗), which satisfies Reψ2 ≤ 0. Moreover, the exponential-

affine transform formula (6.2.13) holds with Y given by (6.2.17)–(6.2.14).

(iii) The process S is a martingale.

Proof. As already mentioned above, part (i) follows directly from Theorem 5.21 along with
the fact that S is determined by V . Part (iii) is proved in Lemma 5.26 below. The existence,
uniqueness, and non-positivity statement for the Riccati–Volterra equation (6.2.10) is proved
in Lemma 5.27 below. Thus in order to apply Theorem 5.16 to obtain the exponential-
affine transform formula, it suffices to argue that exp(Y ) is a martingale. This is done
using Theorem 5.18 and part (iii). As the argument closely parallels that of the proof
of Theorem 5.21, we only provide an outline. We use the notation of Theorem 5.18 and
Theorem 5.21, in particular πh and πr

h = Reπh, and let L be the resolvent of the first kind
of K. Theorem 5.18 is applicable and gives

ReYt = ψr

1(h) logSt + (Re ∆hf1 ∗ logS)t + Reφ(h) + (∆hψ
r

2 ∗ L)(0)Vt

+ (Re ∆hf2 ∗ V )t − πr

h,2(t)V0 + (dπr

h,2 ∗ V )t (5.5.8)

where h = T − t and

φ(h) = κθ

∫ h

0
ψ2(s) ds.
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Since ψr
1 ∈ [0, 1], integration by parts yields

ψr

1(h) logSt + (Re ∆hf1 ∗ logS)t = ψr

1(T ) logS0 +

∫ t

0
ψr

1(T − s) d logSs

≤ ψr

1(T ) logS0 + Ut − 1

2
〈U〉t,

where

Ut =

∫ t

0
ψr

1(T − s)
√
Vs
(√

1 − ρ2 dW1,s + ρ dW2,s
)
.

This observation and inspection of signs and monotonicity properties applied to (6.2.19) show
that

| exp(Yt)| = exp(ReYt) ≤ S
ψr

1(T )
0 exp(Ut − 1

2
〈U〉t),

where the right-hand side is a true martingale by Lemma 5.26. Thus exp(Y ) is a true
martingale, Theorem 5.16 is applicable, and the exponential-affine transform formula holds.

Example 5.25 (Rough Heston model). In the fractional case K(t) = t1−α

Γ(α) with α ∈ (1
2 , 1) we

recover the rough Heston model introduced and studied by [51, 52]. Theorem 5.24 generalizes
some of their main results. For instance, with the notation of Example 5.20 and using that
L(dt) = t−α

Γ(1−α)dt, we have

χ = (ψ1, I
1−αψ2),

which yields the full Fourier–Laplace functional with integrated log-price and variance,

E
[
eu1 logST +u2VT +(f1∗logS)T +(f2∗V )T

]
= exp

(
φ(T ) + ψ1(T ) logS0 + I1−αψ2(T )V0

)
,

where ψ1 is given by (6.2.9), and φ and ψ2 solve the fractional Riccati equations

φ′ = κθψ2, φ(0) = 0,

Dαψ2 = f2 +
1

2

(
ψ2

1 − ψ1

)
+ (ρσψ1 − κ)ψ2 +

σ2

2
ψ2

2, I1−αψ2(0) = u2.

This extends some of the main results of [51, 52].

We now proceed with the lemmas used in the proof of Theorem 5.24.

Lemma 5.26. Let g ∈ L∞(R+,R) and define Ut =
∫ t

0 g(s)
√
Vs(
√

1 − ρ2dW1,s + ρdW2,s)).
Then the stochastic exponential exp(Ut − 1

2〈U〉t) is a martingale. In particular, S is a mar-
tingale.

Proof. Define Mt = exp(Ut − 1
2〈U〉t). Since M is a nonnegative local martingale, it is a

supermartingale by Fatou’s lemma, and it suffices to show that E[MT ] ≥ 1 for any T ∈ R+.
To this end, define stopping times τn = inf{t ≥ 0: Vt > n} ∧ T . Then M τn is a uniformly
integrable martingale for each n by Novikov’s condition, and we may define probability
measures Qn by

dQn

dP
= Mτn .

By Girsanov’s theorem, the process dWn
t = dW2,t − 1{t≤τn}ρ g(t)

√
Vtdt is Brownian motion

under Qn, and we have

V = V0 +K ∗ ((κθ − (κ− ρσg1[[0,τn]])V )dt+ σ
√
V dWn).



Chapter 5. Affine Volterra processes 115

Let γ be the constant appearing in (5.2.5) and choose p sufficiently large that γ/2 − 1/p > 0.
Observe that the expression κθ − (κ− ρσg(t)1{t≤τn(ω)})v satisfies a linear growth condition
in v, uniformly in (t, ω). Therefore, due to Lemma 5.8 and Remark 5.9, we have the moment
bound

sup
t≤T

EQn [|Vt|p] ≤ c

for some constant c that does not depend on n. For any real-valued function f , write

|f |C0,α(0,T ) = sup
0≤s<t≤T

|f(t) − f(s)|
|t− s|α

for its α-Hölder seminorm. We then get

Qn(τn < T ) ≤ Qn
(

sup
t≤T

Vt > n
)

≤ Qn
(
V0 + |V |C0,0(0,T ) > n

)

≤
(

1

n− V0

)p
EQn

[
|V |pC0,0(0,T )

]

≤
(

1

n− V0

)p
c′

for a constant c′ that does not depend on n, using Lemma 5.4 with α = 0 for the last
inequality. We deduce that

EP [MT ] ≥ EP

[
MT1{τn=T}

]
= Qn(τn = T ) ≥ 1 −

(
1

n− V0

)p
c′,

and sending n to infinity yields EP[MT ] ≥ 1. This completes the proof.

Lemma 5.27. Assume K is as in Theorem 5.24. Let u ∈ (C2)∗ and f ∈ L1
loc(R+, (C

2)∗))
be such that

Reψ1 ∈ [0, 1], Reu2 ≤ 0 and Re f2 ≤ 0,

with ψ1 given by (6.2.9). Then the Riccati–Volterra equation (6.2.10) has a unique global
solution ψ2 ∈ L2

loc(R+,C
∗), which satisfies Reψ2 ≤ 0.

Proof. The proof parallels that of Lemma 5.23. For any complex number z, we denote by zr

and zi the real and imaginary parts of z. We rewrite equation (6.2.10) for ψ2 as

ψ2 = u2K +K ∗
(
f2 +

1

2
(ψ2

1 − ψ1) + (ρσψ1 − κ)ψ2 +
σ2

2
ψ2

2

)
. (5.5.9)

By Theorem 5.32 there exists a unique non-continuable solution (ψ2, Tmax) of (5.5.9). The
functions ψr

2 and ψi
2 satisfy the equations

ψr

2 = ur

2K +K ∗
(
fr

2 +
1

2
((ψr

1)2 − ψr

1 − (ψi

1)2) − ρσψi

1ψ
i

2

− σ2

2
(ψi

2)2 + (ρσψr

1 − κ)ψr

2 +
σ2

2
(ψr

2)2
)

ψi

2 = ui

2K +K ∗
(
f i

2 +
1

2

(
2ψr

1ψ
i

1 − ψi

1

)
+ ρσψi

1ψ
r

2 + (ρσψr

1 − κ+ σ2ψr

2)ψi

2

)
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on [0, Tmax). After some rewriting, we find that on [0, Tmax), −ψr
2 satisfies the linear equation

χ = −ur

2K +K ∗
(

− fr

2 +
1

2
(ψr

1 − (ψr

1)2 + (1 − ρ2)(ψi

1)2)

+
(σψi

2 + ρψi
1)2

2
−
(
ρσψr

1 − κ+
σ2

2
ψr

2

)
χ

)
.

Due to (5.5.1) and since ψr
1, |ρ| ∈ [0, 1], and fr

2 and ur
2 are nonpositive, Theorem 5.36 yields

ψr
2 ≤ 0 on [0, Tmax).

Now, if σ = 0, then (5.5.9) is a linear Volterra equation and thus admits a unique global
solution ψ2 ∈ L2

loc(R+,C
∗) by Corollary 5.34. Therefore it suffices to consider the case σ > 0.

Following the proof of Lemma 5.23, we let g ∈ L2
loc([0, Tmax), (R)∗) and h, ℓ ∈ L2

loc(R+, (R)∗)
be the unique solutions of the linear equations

g = |ui

2|K +
∣∣∣ρσ−1ui

1

∣∣∣+K ∗
( ∣∣∣∣∣ρσ

−1(L ∗ f i

1) + f i

2 +
ψi

1

2

(
2(1 − ρ2)ψr

1 − 1 +
2κρ

σ

)∣∣∣∣∣

+ (ρσψr

1 − κ+ σ2ψr

2)g

)

h = |ui

2|K +
∣∣∣ρσ−1ui

1

∣∣∣+K ∗
( ∣∣∣∣∣ρσ

−1(L ∗ f i

1) + f i

2 +
ψi

1

2

(
2(1 − ρ2)ψr

1 − 1 +
2κρ

σ

)∣∣∣∣∣+ (ρσψr

1 − κ)h

)

ℓ = ur

2K +K ∗
(
fr

2 +
1

2
((ψr

1)2 − ψr

1 − (ψi

1)2) − |ρσψi

1|
(
h+

∣∣∣ρψi

1σ
−1
∣∣∣
)

− σ2

2

(
h+

∣∣∣ρψi

1σ
−1
∣∣∣
)2

+ (ρσψr

1 − κ)ℓ

)
.

These solutions exist on [0, Tmax) thanks to Corollary 5.34. We now perform multiple appli-
cations of Theorem 5.36. The functions g ± (ψi

2 + (ρψi
1σ

−1)) satisfy the equations

χ = 2(ui

2)±K + 2
(
ρσ−1ui

1

)±
+K ∗

(
2

(
ρσ−1(L ∗ f i

1) + f i

2 +
ψi

1

2

(
2(1 − ρ2)ψr

1 − 1 +
2κρ

σ

))±

+ (ρσψr

1 − κ+ σ2ψr

2)χ

)

on [0, Tmax), so that 0 ≤ |ψi
2 +

(
ρψi

1σ
−1
)

| ≤ g on [0, Tmax). Similarly, the function h − g

satisfies the equation

χ = K ∗
(
−σ2ψr

2g + (ρσψr

1 − κ)χ
)

on [0, Tmax), so that g ≤ h on [0, Tmax). This yields |ψi
2| ≤ h+

∣∣∣ρψi
1σ

−1
∣∣∣ on [0, Tmax). Finally,

the function ψr
2 − ℓ satisfies the linear equation

χ = K ∗
(

|ρσψi

1|
(
h+

∣∣∣ρψi

1σ
−1
∣∣∣
)

− ρσψi

1ψ
i

2

+
σ2

2

((
h+

∣∣∣ρψi

1σ
−1
∣∣∣
)2

−
(
ψi

2

)2
+ (ψr

2)2
)

+ (ρσψr

1 − κ)χ

)

on [0, Tmax), so that ℓ ≤ ψr
2 ≤ 0 on [0, Tmax). Since h and ℓ are global solutions and thus

have finite norm on any bounded interval, this implies that Tmax = ∞ and completes the
proof of the lemma.
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We conclude this section with a remark on an alternative variant of the Volterra Heston
model in the spirit of [70].

Example 5.28. Let K̃ denotes a scalar locally square integrable non-negative kernel. Con-
sider the following variant of the Volterra Heston model

dSt = St

√
ṼtdBt, S0 ∈ (0,∞),

dVt = κ(θ − Vt)dt+ σ
√
VtdB

⊥
t , V0 ≥ 0,

Ṽt = Ṽ0 + (K̃ ∗ V )t,

where B and B⊥ are independent Brownian motions. Since K̃ is nonnegative, one readily
sees that there exists a unique strong solution taking values in R × R2

+. The 3-dimensional

process X = (logS, V, Ṽ ) is an affine Volterra process with

K = diag
[
(1, 1, K̃)

]
, b0 =




0
κθ
0


 , B =




0 0 −1
2

0 −κ 0
0 1 0


 ,

A0 = 0, A1 = 0, A2 = diag
[
(0, σ2, 0)

]
, A3 = diag [(1, 0, 0)] .

The Riccati–Volterra equation (5.4.3) reads

ψ′
1 = f1, ψ1(0) = u1,

ψ′
2 = f2 + ψ3 − κψ2 +

σ2

2
ψ2

2, ψ2(0) = u2,

ψ3 = u3K̃ + K̃ ∗
(
f3 +

1

2
ψ1(ψ1 − 1)

)
.

Under suitable conditions the solution exists and is unique, and the process eY with Y given
by (6.2.17)–(6.2.14) is a true martingale. Hence by Theorem 5.16 the exponential-affine
transform formula (6.2.13) holds. We omit the details. In particular, for f ≡ 0 we get, using
Example 5.20,

χ(t) = (ψ ∗ L)(t) =

(
u1, ψ2(t), u3 +

(u2
1 − u1)t

2

)

and

E

[
eu1 logST +u2VT +u3ṼT

]
= exp

(
φ(T ) + u1 logS0 + ψ2(T )V0 +

(
u3 +

(u2
1 − u1)T

2

)
Ṽ0

)
,

where φ and ψ2 solve

φ′ = κθψ2, φ(0) = 0,

ψ′
2 = u3K̃ + K̃ ∗ (u2

1 − u1)

2
− κψ2 +

σ2

2
ψ2

2, ψ2(0) = u2.

Setting K̃ = tα−1

Γ(α) and u2 = 0, this formula agrees with [70, Theorem 2.1]. If B and B⊥ are

correlated one loses the affine property, as highlighted in [70, Remark 2.2].
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5.6 Supporting results

5.6.1 Weak existence for stochastic Volterra equations

Lemma 5.29. Assume b and σ are Lipschitz continuous and the components of K sat-
isfy (5.2.5). Then (5.1.1) admits a unique continuous strong solution X for any initial
condition X0 ∈ Rd.

Proof. The proof parallels that of [96, Proposition 2.1], using a Picard iteration scheme. We
define X0 ≡ 0 and for each n ∈ N,

Xn = X0 +K ∗ (b(Xn−1)dt+ σ(Xn−1)dW ).

For any p ≥ 2 and T ≥ 0 we may combine the Lipschitz property of b and σ with the Jensen
and BDG inequalities to obtain

E[|Xn
t −Xn−1

t |p] ≤ c

∫ t

0
|K(t− s)|2 E[|Xn−1

s −Xn−2
s |p]ds, t ≤ T, n ≥ 2,

where one can take c = 2p−1(T p/2 + Cp)cLIP‖K‖p−2
L2(0,T ) with Cp the constant from the BDG

inequality and cLIP a common Lipschitz constant for b and σ. The extended Gronwall’s
lemma given in [40, Lemma 15] now yields that the series

∑

n≥2

E[|Xn
t −Xn−1

t |p]

converges, uniformly in t ∈ [0, T ]. Consequently, for each t ∈ [0, T ] there exists a random
variable Xt such that Xn

t → Xt in Lp, and one even has supt∈[0,T ] E[|Xn
t −Xt|p] → 0. Passing

to the limit in the identity

Xn
t −X0 −

∫ t

0
K(t− s)(b(Xn

s )ds+ σ(Xn
s )dWs) = Xn

t −Xn+1
t

then shows that the random variables {Xt : t ∈ [0, T ]} satisfy (5.1.1) for each t ∈ [0, T ].
Furthermore, it follows that supt≤T E[|Xt|p] is finite, so that X has a continuous version by
Lemma 5.4. This version is the desired strong solution.

To prove uniqueness, let X and X ′ be two solutions and define f(t) = E[|Xt − X ′
t|2] for

t ∈ [0, T ], which is finite by Lemma 5.8. Relying on the Lipschitz continuity of b and σ, one
find that f satisfies the inequality

f ≤ c′|K|2 ∗ f on [0, T ]

for some constant c′. Arguing as in the proof of Lemma 5.8 we deduce that f = 0. This
proves uniqueness.

Lemma 5.30. Fix an initial condition X0 ∈ Rd and a constant cLG. Let X denote the
set of all continuous processes X that solve (5.1.1) for some continuous coefficients b and
σ satisfying the linear growth bound (5.3.1) with the given constant cLG. Then X is tight,
meaning that the family {law of X : X ∈ X } of laws on C(R+;Rd) is tight.
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Proof. Let X ∈ X be any solution of (5.1.1) for some continuous b and σ satisfying the linear
growth bound (5.3.1). Lemma 5.8 implies that supu≤T E[|b(Xu)|p] and supu≤T E[|σ(Xu)|p]
are bounded above by a constant that only depends on |X0|, ‖K‖L2(0,T ), cLG, p, and T .
Therefore, since the components of K satisfy (5.2.5), we may apply Lemma 5.4 to obtain

E

[(
sup

0≤s<t≤T

|Xt −Xs|
|t− s|α

)p]
≤ c

for all α ∈ [0, γ̄/2 − 1/p), where γ̄ is the smallest of the constants γ appearing in (5.2.5)
for the components of K, and where c is a constant that only depends on |X0|, ‖K‖L2(0,T ),
cLG, p, and T , but not on s or t, nor on the specific choice of X ∈ X . Choosing p so that
γ̄p/2 > 1, and using that closed Hölder balls are compact in C(R+;Rd), it follows that X is
tight.

Lemma 5.31. Assume that K admits a resolvent of the first kind L. For each n ∈ N, let Xn

be a weak solution of (5.1.1) with b and σ replaced by some continuous coefficients bn and
σn that satisfy (5.3.1) with a common constant cLG. Assume that bn → b and σn → σ locally
uniformly for some coefficients b and σ, and that Xn ⇒ X for some continuous process X.
Then X is a weak solution of (5.1.1).

Proof. Lemma 5.6 yields the identity

L ∗ (Xn −X0) =

∫
bn(Xn)dt+

∫
σn(Xn)dW.

Moreover, [69, Theorem 3.6.1(ii) and Corollary 3.6.2(iii)] imply that the map

F 7→ L ∗ (F − F (0))

is continuous from C(R+;Rd) to itself. Using also the locally uniform convergence of bn and
σn, the continuous mapping theorem shows that the martingales

Mn =

∫
σn(Xn)dW = L ∗ (Xn −X0) −

∫
bn(Xn)dt

converge weakly to some limit M , that the quadratic variations 〈Mn〉 =
∫
σnσn⊤(Xn)dt

converge weakly to
∫
σσ⊤(X)dt, and that

∫
bn(Xn)dt converge weakly to

∫
b(X)dt.

Consider any s < t, m ∈ N, any bounded continuous function f : Rm → R, and any 0 ≤ t1 ≤
· · · ≤ tm ≤ s. Observe that the moment bound in Lemma 5.8 is uniform in n since the Xn

satisfy the linear growth condition (5.3.1) with a common constant. Using [21, Theorem 3.5],
one then readily shows that

E[f(Xt1 , . . . , Xtm)(Mt −Ms)] = lim
n→∞E[f(Xn

t1 , . . . , X
n
tm)(Mn

t −Mn
s )] = 0,

and similarly for the increments of Mn
i M

n
j − 〈Mn

i ,M
n
j 〉. It follows that M is a martingale

with respect to the filtration generated by X with quadratic variation 〈M〉 =
∫
σσ⊤(X)dt.

This carries over to the usual augmentation. Enlarging the probability space if necessary, we
may now construct a d-dimensional Brownian motion W such that M =

∫
σ(X)dW .

The above shows that L ∗ (X − X0) =
∫
b(X)dt +

∫
σ(X)dW . The converse direction of

Lemma 5.6 then yields X = X0 +K ∗ (b(X)dt+σ(X)dW ), that is, X solves (5.1.1) with the
Brownian motion W .
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Proof of Theorem 5.10. Using [73, Proposition 1.1] we choose Lipschitz coefficients bn and σn

that satisfy the linear growth bound (5.3.1) with cLG replaced by 2cLG, and converge locally
uniformly to b and σ as n → ∞. Let Xn be the unique continuous strong solution of (5.1.1)
with b and σ replaced by bn and σn; see Lemma 5.29. Due to Lemma 5.30 the sequence {Xn}
is tight, so after passing to a subsequence we have Xn ⇒ X for some continuous process X.
The result now follows from Lemma 5.31.

5.6.2 Local solutions of Volterra integral equations

Fix a kernel K ∈ L2
loc(R+,R

d×d) along with functions g : R+ → Cd and p : R+ × Cd → Cd,
and consider the Volterra integral equation

ψ = g +K ∗ p( · , ψ). (5.6.1)

A non-continuable solution of (5.6.1) is a pair (ψ, Tmax) with Tmax ∈ (0,∞] and ψ ∈
L2

loc([0, Tmax),Cd), such that ψ satisfies (5.6.1) on [0, Tmax) and ‖ψ‖L2(0,Tmax) = ∞ if Tmax <
∞. If Tmax = ∞ we call ψ a global solution of (5.6.1). With some abuse of terminology we
call a non-continuable solution (ψ, Tmax) unique if for any T ∈ R+ and ψ̃ ∈ L2([0, T ],Cd)
satisfying (5.6.1) on [0, T ], we have T < Tmax and ψ̃ = ψ on [0, T ].

Theorem 5.32. Assume that g ∈ L2
loc(R+,C

d), p( · , 0) ∈ L1
loc(R+,C

d), and that for all
T ∈ R+ there exist a positive constant ΘT and a function ΠT ∈ L2([0, T ],R+) such that

|p(t, x) − p(t, y)| ≤ ΠT (t)|x− y| + ΘT |x− y|(|x| + |y|), x, y ∈ Cd, t ≤ T. (5.6.2)

The Volterra integral equation (5.6.1) has a unique non-continuable solution (ψ, Tmax). If g
and p are real-valued, then so is ψ.

Remark 5.33. If K ∈ L2+ε
loc for some ε > 0, then it is possible to apply [69, Theorem 12.4.4]

with p = 2 + ε to get existence.

Proof. We focus on the complex-valued case; for the real-valued case, simply replace Cd by
Rd below. We first prove that a solution exists for small times. Let ρ ∈ (0, 1] and ε > 0 be
constants to be specified later, and define

Bρ,ε = {ψ ∈ L2([0, ρ],Cd) : ‖ψ‖L2(0,ρ) ≤ ε}.

Consider the map F acting on elements ψ ∈ Bρ,ε by

F (ψ) = g +K ∗ p( · , ψ).

We write ‖ · ‖q = ‖ · ‖Lq(0,ρ) for brevity in the following computations. The growth condition

(5.6.2) along with the Young, Cauchy–Schwarz, and triangle inequalities yield for ψ, ψ̃ ∈ Bρ,ε

‖F (ψ)‖2 ≤ ‖g‖2 + ‖K‖2‖p( · , ψ)‖1

≤ ‖g‖2 + ‖K‖2

(
‖p( · , 0)‖1 + ‖Π1‖2‖ψ‖2 + Θ1‖ψ‖2

2

)
(5.6.3)

≤ ‖g‖2 + ‖K‖2

(
‖p( · , 0)‖1 + ‖Π1‖L2(0,1)ε+ Θ1ε

2
)
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and

‖F (ψ) − F (ψ̃)‖2 ≤ ‖K‖2

(
‖Π1‖2 + Θ1

(
‖ψ‖2 + ‖ψ̃‖2

))
‖ψ − ψ̃‖2

≤ ‖K‖2

(
‖Π1‖L2(0,1) + 2Θ1ε

)
‖ψ − ψ̃‖2.

Choose ε > 0 so that 1 + ε
2 + ‖Π1‖L2(0,1)ε+ Θ1ε

2 < 2 and ε (‖Π1‖L2(0,1) + 2Θ1ε) < 2. Then
choose ρ > 0 so that ‖g‖2 ∨ ‖K‖2 ∨ ‖p( · , 0)‖1 ≤ ε/2. This yields

‖F (ψ)‖2 ≤ ε

2

(
1 +

ε

2
+ ‖Π1‖L2(0,1)ε+ Θ1ε

2
)

≤ ε

and
‖F (ψ) − F (ψ̃)‖2 ≤ κ‖ψ − ψ̃‖2, κ =

ε

2

(
‖Π1‖L2(0,1) + 2Θ1ε

)
< 1.

Thus F maps Bρ,ε to itself and is a contraction there, so Banach’s fixed point theorem implies
that F has a unique fixed point ψ ∈ Bρ,ε, which is a solution of (5.6.1).

We now extend this to a unique non-continuable solution of (5.6.1). Define the set

J = {T ∈ R+ : (5.6.1) has a solution ψ ∈ L2([0, T ],Cd) on [0, T ]}.

Then 0 ∈ J , and if T ∈ J and 0 ≤ S ≤ T , then S ∈ J . Thus J is a nonempty interval.
Moreover, J is open in R+. Indeed, pick T ∈ J , let ψ be a solution on [0, T ], and set

h(t) = g(T + t) +

∫ T

0
K(T + t− s)p(s, ψ(s))ds, t ≥ 0,

which lies in L2
loc(R+,C

d) by a calculation similar to (5.6.3). By what we already proved,
the equation

χ = h+K ∗ p( · + T, χ)

admits a solution χ ∈ L2([0, ρ],Cd) on [0, ρ] for some ρ > 0. Defining ψ(t) = χ(t − T ) for
t ∈ (T, T + ρ], one verifies that ψ solves (5.6.1) on [0, T + ρ]. Thus T + ρ ∈ J , so J is open in
R+ and hence of the form J = [0, Tmax) for some 0 < Tmax ≤ ∞ with Tmax /∈ J . This yields
a non-continuable solution (ψ, Tmax).

It remains to argue uniqueness. Pick T ∈ R+ and ψ̃ ∈ L2([0, T ],Cd) satisfying (5.6.1) on
[0, T ]. Then T ∈ J , so T < Tmax. Let S be the supremum of all S′ ≤ T such that ψ̃ = ψ
on [0, S′]. Then ψ̃ = ψ on [0, S] (almost everywhere, as elements of L2). If S < T , then for
ρ > 0 sufficiently small we have 0 < ‖ψ − ψ̃‖L2(0,S+ρ) ≤ 1

2‖ψ − ψ̃‖L2(0,S+ρ), a contradiction.
Thus S = T , and uniqueness is proved.

Corollary 5.34. Let K ∈ L2
loc(R+,C

d×d), F ∈ L2
loc(R+,C

d) and G ∈ L2
loc(R+,C

d×d). Sup-
pose that p : R+ × Cd → Cd is a Lipschitz continuous function in the second argument such
that p( · , 0) ∈ L2

loc(R+,C
d). Then the equation

χ = F +K ∗ (Gp( · , χ))

has a unique global solution χ ∈ L2
loc(R+,C

d). Moreover, if K and F are continuous on
[0,∞) then χ is also continuous on [0,∞) and χ(0) = F (0).

Proof. Theorem 5.32 implies the existence and uniqueness of a non-continuable solution
(χ, Tmax). If K and F are continuous on [0,∞), then this solution is continuous on [0, Tmax)
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with χ(0) = F (0). To prove that Tmax = ∞, observe that

|χ| ≤ |F | + |K| ∗ (|G|(|p( · , 0)| + Θ|χ|)) (5.6.4)

for some positive constant Θ. Define the scalar non-convolution Volterra kernel K ′(t, s) =
Θ|K(t− s)||G(s)|1s≤t. This is a Volterra kernel in the sense of [69, Definition 9.2.1] and

∫ T

0

∫ T

0
1s≤t|K(t− s)|2|G(s)|2ds dt ≤ ‖K‖2

L2(0,T )‖G‖2
L2(0,T ) (5.6.5)

for all T > 0, by Young’s inequality. Thus by [69, Proposition 9.2.7(iii)], K ′ is of type L2
loc,

see [69, Definition 9.2.2]. In addition, it follows from [69, Corollary 9.3.16] that −K ′ admits
a resolvent of type L2

loc in the sense of [69, Definition 9.3.1], which we denote by R′. Since
−K ′ is nonpositive, it follows from [69, Proposition 9.8.1] that R′ is also nonpositive. The
Gronwall type inequality in [69, Lemma 9.8.2] and (5.6.4) then yield

|χ(t)| ≤ f ′(t) −
∫ t

0
R′(t, s)f ′(s) ds (5.6.6)

for t ∈ [0, Tmax], where

f ′(t) = |F (t)| +

∫ t

0
|K(t− s)| |G(s)| |p(s, 0)|ds.

Since the function on the right-hand side of (5.6.6) is in L2
loc(R+,R) due to [69, Theo-

rem 9.3.6], we conclude that Tmax = ∞.

5.6.3 Invariance results for Volterra integral equations

Lemma 5.35. Fix T < ∞. Let u ∈ Cd, G ∈ L2([0, T ],Cd×d), as well as Fn ∈ L2([0, T ],Cd)
and Kn ∈ L2([0, T ],Cd×d) for n = 0, 1, 2, . . .. For each n, there exists a unique element
χn ∈ L2([0, T ],Cd×d) such that

χn = Fn +Kn ∗ (Gχn).

Moreover, if Fn → F 0 and Kn → K0 in L2(0, T ), then χn → χ0 in L2(0, T ).

Proof. For any K ∈ L2([0, T ],Cd×d), define K ′(t, s) = K(t − s)G(s)1s≤t. Arguing as in the
proof of Corollary 5.34, K ′ is a Volterra kernel of type L2 on (0, T ) since (5.6.5) still holds
by Young’s inequality. In particular,

|||K ′|||L2(0,T ) ≤ ‖K‖L2(0,T )‖G‖L2(0,T ), (5.6.7)

where ||| · |||L2(0,T ) is defined in [69, Definition 9.2.2]. Invoking once again [69, Corollary 9.3.16],

−K ′ admits a resolvent R′ of type L2 on (0, T ). Due to [69, Theorem 9.3.6], the unique so-
lution in L2(0, T ) of the equation

χ(t) = F (t) +

∫ t

0
K ′(t, s)χ(s)ds, t ∈ [0, T ],
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for a given F ∈ L2([0, T ],Cd), is

χ(t) = F (t) −
∫ t

0
R′(t, s)F (s)ds, t ∈ [0, T ].

This proves the existence and uniqueness statement for the χn. Next, assume Fn → F 0 and
Kn → K0 in L2(0, T ). Applying (5.6.7) with K = Kn − K0 shows that (K ′)n → (K ′)0

with respect to the norm ||| · |||L2(0,T ). An application of [69, Corollary 9.3.12] now shows that

χn → χ0 in L2(0, T ) as claimed.

Theorem 5.36. Assume K ∈ L2
loc(R+,R

d×d) is diagonal with scalar kernels Ki on the
diagonal. Assume each Ki satisfies (5.2.5) and the shifted kernels ∆hKi satisfy (5.3.3) for
all h ∈ [0, 1]. Let u, v ∈ Rd, F ∈ L1

loc(R+,R
d) and G ∈ L2

loc(R+,R
d×d) be such that ui, vi ≥ 0,

Fi ≥ 0, and Gij ≥ 0 for all i, j = 1, . . . , d and i 6= j. Then the linear Volterra equation

χ = Ku+ v +K ∗ (F +Gχ) (5.6.8)

has a unique solution χ ∈ L2
loc(R+,R

d) with χi ≥ 0 for i = 1, . . . , d.

Proof. Define kernels Kn = K( · + n−1) for n ∈ N, which are diagonal with scalar kernels
on the diagonal that satisfy (5.3.3). Example 5.36 shows that the scalar kernels on the
diagonal of Kn also satisfy (5.2.5). Lemma 5.35 shows that (5.6.8) (respectively (5.6.8) with
K replaced by Kn) has a unique solution χ (respectively χn), and that χn → χ in L2(R+,R

d).
Therefore, we can suppose without loss of generality that K is continuous on [0,∞) with
Ki(0) ≥ 0. To shows that χ takes values in Rd+, it is therefore enough to consider the case
where K is continuous on [0,∞) with Ki(0) ≥ 0 for all i.

For x ∈ Rd define b(x) = F +Gx. For all positive n, Corollary 5.34 implies that there exists
a unique solution χn ∈ L2

loc(R+,R
d) of the equation

χn = Ku+ v +K ∗ b((χn − n−1)+),

and that χn is continuous on [0,∞) with χni (0) = Ki(0)ui + vi ≥ 0 for i = 1, . . . , d. We
claim that χn is Rd+ valued for all n. Indeed, arguing as in the proof of Theorem 5.12, we
can show that if Li denotes the resolvent of the first kind of Ki, then (∆hKi ∗ Li)(t) is
right-continuous, nonnegative, bounded by 1, and nondecreasing in t for any h ≥ 0. Fix n
and define Z =

∫
b((χn − n−1)+) dt. The argument of Lemma 5.6 shows that for all h ≥ 0

and i = 1, . . . , d,

∆hKi ∗ dZi = (∆hKi ∗ Li)(0)Ki ∗ dZi + d(∆hKi ∗ Li) ∗Ki ∗ dZi
= (∆hKi ∗ Li)(0)χni + d(∆hKi ∗ Li) ∗ χni

− ui ((∆hKi ∗ Li)(0)Ki + d(∆hKi ∗ Li) ∗Ki)) − vi∆hKi ∗ Li.
(5.6.9)

Convolving the quantity d(∆hKi ∗ Li) ∗Ki first by Li, then by Ki, and comparing densities
of the resulting absolutely continuous functions, we deduce that

d(∆hKi ∗ Li) ∗Ki = ∆hKi − (∆hKi ∗ Li)(0)Ki a.e.

Plugging this identity into (5.6.9) yields

∆hKi ∗ dZi = (∆hKi ∗ Li)(0)χni + d(∆hKi ∗ Li) ∗ χni − ui∆hKi − vi∆hKi ∗ Li. (5.6.10)
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Define τ = inf{t ≥ 0: χnt /∈ Rd+} and assume for contradiction that τ < ∞. Then

χn(τ +h) = ∆hK(τ)u+v+ (K ∗dZ)τ+h = ∆hK(τ)u+v+ (∆hK ∗dZ)τ +

∫ h

0
K(h− s)dZτ+s

(5.6.11)
for any h ≥ 0. By definition of τ , the identities (5.6.10) and (5.6.11) imply

χni (τ + h) ≥
∫ h

0
Ki(h− s)bi((χ

n(τ + s) − n−1)+) ds, i = 1, . . . , d.

As in the proof of Theorem 5.12, these inequalities lead to a contradiction. Hence τ = ∞
and χn is Rd+-valued for all n.

To conclude that χ is Rd+-valued it suffices to prove that χn converges to χ in L2([0, T ],Rd)
for all T ∈ R+. To this end we write

χ− χn = K ∗
(
G(χn − (χn − n−1)+) +G(χ− χn)

)
,

from which we infer

|χ− χn| ≤
√
d

n
|K| ∗ |G| + |K| ∗ (|G||χ− χn|).

The same argument as in the proof of Corollary 5.34 shows that

|χ− χn| ≤
√
d

n

(
F ′ −

∫ ·

0
R′( · , s)F ′(s) ds

)
, (5.6.12)

where R′ is the nonpositive resolvent of type L2
loc of K ′(t, s) = |K(t−s)||G(s)|1s≤t, and F ′ =

|K|∗|G|. Since the right-hand side of (5.6.12) is in L2
loc(R+,R) in view of [69, Theorem 9.3.6],

we conclude that χn converges to χ in L2([0, T ],Rd) for all T ∈ R+.



Chapter 6

Markovian structure

Summary

We characterize the Markovian and affine structure of the Volterra Heston model in
terms of an infinite-dimensional adjusted forward process and specify its state space.
More precisely, we show that it satisfies a stochastic partial differential equation and
displays an exponentially-affine characteristic functional. As an application, we deduce
an existence and uniqueness result for a Banach-space valued square-root process and
provide its state space. This leads to another representation of the Volterra Heston
model together with its Fourier-Laplace transform in terms of this possibly infinite
system of affine diffusions.

Based on [4]: Abi Jaber, E., & El Euch, O. (2018) Markovian structure of the Volterra
Heston model. In revision - Statistics and Probability Letters.

In this chapter, we restrict ourselves to the one-dimensional Volterra square-root process
in order to highlight the key ideas without obscuring them with cumbersome notations.
The correspondence between stochastic Volterra equations and stochastic partial differential
equations established here remain valid for any b and σ. That between Riccati-Volterra equa-
tions and partial differential equations holds more generally for any affine Volterra process
as studied in the previous chapter. Once one treats the one-dimensional case, the extension
to higher dimension is straightforward.

6.1 Introduction

We recall the dynamics of the Volterra Heston model introduced in the previous chapter:

dSt = St
√
VtdBt, S0 > 0, (6.1.1)

Vt = g0(t) +

∫ t

0
K(t− s)

(
−λVsds+ ν

√
VsdWs

)
, (6.1.2)

125
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with K ∈ L2
loc(R+,R), g0 : R+ → R, λ, ν ∈ R+ and B = ρW +

√
1 − ρ2W⊥ such that

(W,W⊥) is a two-dimensional Brownian motion and ρ ∈ [−1, 1]. St typically represents a
stock price at time t with instantaneous stochastic variance Vt.

This model nests as special cases the Heston model for K ≡ 1, and the rough Heston model
of [51], obtained by setting K(t) = tα−1

Γ(α) for α ∈ (1
2 , 1) and

g0(t) = V0 +

∫ t

0
K(s)λθds, t ≥ 0, for some V0, θ ≥ 0, (6.1.3)

so that the only model parameters are V0, θ, λ, ρ, ν, α. Recall that the rough Heston model
does not only fit remarkably well historical and implied volatilities of the market, but also
enjoys a semi-closed formula for the characteristic function of the log-price in terms of a
solution of a deterministic Riccati-Volterra integral equation.

In [52], the authors highlight the crucial role of (6.1.3) in the design of hedging strategies for
the rough Heston model. Here we consider more general input curves g0. Our motivation
is twofold. In practice, the function g0 is intimately linked to the forward variance curve
(E[Vt])t≥0. More precisely, taking the expectation in (6.1.2) leads to the following relation

E[Vt] + λ

∫ t

0
K(t− s)E[Vs]ds = g0(t), t ≥ 0.

Thus, allowing for more general input curves g0 leads to more consistency with the market
forward variance curve. From a mathematical perspective, this enables us to understand
the general picture behind the Markovian and affine nature of the Volterra Heston model
(6.1.1)-(6.1.2) and more generally, of stochastic Volterra equations as studied in Chapter 5.

More precisely, adapting the methods of the previous Chapter, we provide a set of admissible
input curves GK defined in (6.2.5) such that (6.1.1)-(6.1.2) admits a unique R2

+-valued weak
solution for any g0 ∈ GK . In particular, we show that the Fourier-Laplace transform of
(logS, V ) is exponentially affine in (logS0, g0). Then we prove that, conditional on Ft, the
shifted Volterra Heston model (St+·, Vt+·) still has the same dynamics as in (6.1.1)-(6.1.2)
provided that g0 is replaced by the following adjusted forward process

gt(x) = E

[
Vt+x + λ

∫ x

0
K(x− s)Vt+sds

∣∣∣ Ft

]
, x ≥ 0. (6.1.4)

This leads to our main result which states that GK is stochastically invariant with respect to
the family (gt)t≥0. In other words, if we start from an initial admissible input curve g0 ∈ GK ,
then gt belongs to GK , for all t ≥ 0, see Theorem 6.4. This in turn enables us to characterize
the Markovian structure of (S, V ) in terms of the stock price and the adjusted forward process
(gt)t≥0. Furthermore, (gt)t≥0 can be realized as the unique GK-valued mild solution of the
following stochastic partial differential equation of Heath–Jarrow–Morton-type

dgt(x) =

(
d

dx
gt(x) − λK(x)gt(0)

)
dt+K(x)ν

√
gt(0)dWt, g0 ∈ GK ,

and displays an affine characteristic functional.

As an application, we establish the existence and uniqueness of a Banach-space valued square-
root process and provide its state space. This leads to another representation of (Vt, gt)t≥0

when the kernel K is completely monotone. Moreover, the Fourier-Laplace transform of
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(logS, V ) is shown to be an exponential affine functional of this process. These results are
in the spirit of the Markovian representation of fractional Brownian motion, see [25, 71].

The chapter is organized as follows. In Section 6.2, we prove weak existence and uniqueness
for the Volterra Heston model and provide its Fourier-Laplace transform. Section 6.3 char-
acterizes the Markovian structure in terms of the adjusted forward variance process. Section
6.4 establishes the existence and uniqueness of a Banach-space valued square-root process
and provides the link with the Volterra framework. In Section 6.5, we extend the existence
results for stochastic Volterra equations of the previous Chapter.

Notations : As in Chapter 5, elements of Cm are viewed as column vectors, while elements
of the dual space (Cm)∗ are viewed as row vectors. For h ≥ 0, ∆h denotes the shift operator,
i.e. ∆hf(t) = f(t + h). If the function f on R+ is right-continuous and of locally bounded
variation, the measure induced by its distribution derivative is denoted df , so that f(t) =
f(0) +

∫
[0,t] df(s) for all t ≥ 0. Finally, we use the notation ∗ for the convolution operation.

6.2 The extended Volterra Heston model

We study in this section the extended Volterra Heston model given by (6.1.1)-(6.1.2) allowing
for arbitrary curves g0 as input. Section 6.2.1 treats the existence part, while Section 6.2.2
tackles the uniqueness part and provides the exponential-affine transform.

6.2.1 Weak existence of the Volterra Heston model

When g0 is given by (6.1.3), Theorem 5.24 provides the existence of a R2
+-valued weak

solution to (6.1.1)-(6.1.2) under mild assumptions on K. We show in Theorem 6.1 below
that weak existence in R2

+ continue to hold for (6.1.1)-(6.1.2) for a wider class of admissible
input curves g0 under the same assumptions on K. Since S is determined by V , it suffices
to study the Volterra square-root equation (6.1.2). In the sequel, we assume that K satisfies
(5.2.5) and (5.3.3). Theorem 6.10(ii) below guarantees the existence of an unconstrained
continuous weak solution V to the following modified equation

Vt = g0(t) +

∫ t

0
K(t− s)

(
−λVsds+ ν

√
V +
s dWs

)
, (6.2.1)

for any locally Hölder continuous function g0, where x+ = max(0, x). Clearly, one needs to
impose additional assumptions on g0 to ensure the nonnegativity of V and drop the positive
part in (6.2.1) so that V solves (6.1.2). Hence, weak existence of a nonnegative solution to
(6.1.2) boils down to finding a set GK of admissible input curves g0 such that any solution
V to (6.2.1) is nonnegative.

To get a taste of the admissible set GK , we start by assuming that g0 and K are continuously
differentiable on [0,∞). In that case, V is a semimartingale such that

dVt =
(
g′

0(t) + (K ′ ∗ dZ)t −K(0)λVt
)
dt+K(0)ν

√
V +
t dWt, (6.2.2)
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where Z =
∫ ·

0(−λVsds+ ν
√
V +
s dWs). Relying on Lemma 5.6, we have1

K ′ = (K ′ ∗ L)(0)K + d(K ′ ∗ L) ∗K,

so that K ′ ∗ dZ can be expressed as a functional of (V, g0) as follows

K ′ ∗ dZ = (K ′ ∗ L)(0)(V − g0) + d(K ′ ∗ L) ∗ (V − g0). (6.2.3)

Since V0 = g0(0), it is straightforward that g0(0) should be nonnegative. Now, assume that V
hits zero for the first time at τ ≥ 0. After plugging (6.2.3) in the drift of (6.2.2), a first-order
Euler scheme leads to the formal approximation

Vτ+h ≈ (
g′

0(τ) − (K ′ ∗ L)(0)g0(τ) − (d(K ′ ∗ L) ∗ g0)(τ) + (d(K ′ ∗ L) ∗ V )τ
)
h,

for small h ≥ 0. Since K ′ ∗L is non-decreasing and V ≥ 0 on [0, τ ], it follows that (d(K ′ ∗L)∗
V )τ ≥ 0 yielding the nonnegativity of Vτ+h if we impose the following additional condition

g′
0 − (K ′ ∗ L)(0)g0 − d(K ′ ∗ L) ∗ g0 ≥ 0.

In the general case, V is not necessarily a semimartingale, and a delicate analysis should be
carried on the integral equation (6.2.1) instead of the infinitesimal version (6.2.2). This sug-
gests that the infinitesimal derivative operator should be replaced by the semigroup operator
of right shifts leading to the following condition on g0

∆hg0 − (∆hK ∗ L)(0)g0 − d(∆hK ∗ L) ∗ g0 ≥ 0, h ≥ 0, 2 (6.2.4)

and to the following definition of the set GK of admissible input curves

GK =
{
g0 ∈ Hγ/2 satisfying (8.6.4) and g0(0) ≥ 0

}
, (6.2.5)

where Hα = {g0 : R+ → R, locally Hölder continuous of any order strictly smaller than α}.
Recall that γ is the exponent associated with K in (5.2.5).

The following theorem establishes the existence of a R2
+-valued weak continuous solution

to (6.1.1)-(6.1.2) on some filtered probability space (Ω,F ,F = (Ft)t≥0,P) for any admis-
sible input curve g0 ∈ GK . Since S is determined by V , the proof follows directly from
Theorems 6.10-6.11.

Theorem 6.1. Assume that K satisfies (5.2.5) and (5.3.3). Then, the stochastic Volterra
equation (6.1.1)-(6.1.2) has a R2

+-valued continuous weak solution (S, V ) for any positive
initial condition S0 and any admissible input curve g0 ∈ GK . Furthermore, the paths of V
are locally Hölder continuous of any order strictly smaller than γ/2 and

sup
t≤T

E[|Vt|p] < ∞, p > 0, T > 0. (6.2.6)

Example 6.2. The following classes of functions belong to GK .

(i) g ∈ Hγ/2 non-decreasing such that g(0) ≥ 0. Since K is non-increasing and L is
nonnegative, we have 0 ≤ ∆hK ∗ L ≤ 1 for all h ≥ 0 (see the proof of Theorem 5.12)

1Under (5.3.3) one can show that K′ ∗ L is right-continuous, non-decreasing and of locally bounded
variation (as in Remark 5.7), thus the associated measure d(K′ ∗ L) is well defined.

2Recall that under assumption (5.3.3), one can show that ∆hK ∗ L is right-continuous and of locally
bounded variation (see Remark 5.7), thus the associated measure d(∆hK ∗ L) is well defined.
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yielding, for all t, h ≥ 0, that ∆hg(t) − (∆hK ∗L)(0)g(t) − (d(∆hK ∗L) ∗ g)(t) is equal
to

∫ t

0
(g(t) − g(t− s))(∆hK ∗ L)(ds) + g(t+ h) − g(t) + g(t)(1 − (∆hK ∗ L)(t)) ≥ 0

(ii) g = V0 + K ∗ θ, with V0 ≥ 0 and θ ∈ L2
loc(R+,R) such that θ(s)ds + V0L(ds) is a

nonnegative measure. First, g ∈ Hγ/2 due to (5.2.5) and the Cauchy-Schwarz inequality

(g(t+ h) − g(t))2 ≤ 2

(∫ t

0
(K(s+ h) −K(s))2ds+

∫ h

0
K(s)2ds

)∫ t+h

0
θ(s)2ds.

Moreover, g(0) = V0 ≥ 0 and

∆hg − (∆hK ∗ L)(0)g − d(∆hK ∗ L) ∗ g (6.2.7)

is equal to

V0(1 − ∆hK ∗ L) + ∆h(K ∗ θ) − (∆hK ∗ L)(0)K ∗ θ − d(∆hK ∗ L) ∗K ∗ θ.

(8.6.4) now follows from Lemma 5.6 with F = ∆hK, after noticing that (6.2.7) becomes

∆h(K ∗ (V0L+ θ)) − ∆hK ∗ (V0L+ θ) =

∫ ·+h

·
K(· + h− s)(V0L(ds) + θ(s)ds) ≥ 0.

6.2.2 The Fourier-Laplace transform

We now tackle the weak uniqueness of (6.1.1)-(6.1.2) by entirely characterizing the Fourier-
Laplace transform of the process X = (logS, V ). Indeed, when g0 is of the form (6.1.3), X is
a two-dimensional affine Volterra process in the sense of Definition 5.14. For this particular
g0, Theorem 5.24(ii) provides the exponential-affine transform formula

E[exp(uXT + (f ∗X)T )] = exp

(
ψ1(T ) logS0 + u2g0(T ) +

∫ T

0
F (ψ1, ψ2)(s)g0(T − s)ds

)

(6.2.8)

for suitable u ∈ (C2)∗ and f ∈ L1([0, T ], (C∗)2) with T > 0, where ψ = (ψ1, ψ2) solves the
following system of Riccati-Volterra equations

ψ1 = u1 + 1 ∗ f1, (6.2.9)

ψ2 = u2K +K ∗ F (ψ1, ψ2), (6.2.10)

with

F (ψ1, ψ2) = f2 +
1

2

(
ψ2

1 − ψ1

)
+ (ρνψ1 − λ)ψ2 +

ν2

2
ψ2

2. (6.2.11)

We prove in the following theorem that the affine transform (6.2.8) carries over for any
admissible input curve g0 ∈ GK with the same Riccati equations (6.2.9)-(6.2.10).

Theorem 6.3. Assume that K satisfies (5.2.5) and that the shifted kernels ∆hK satisfy
(5.3.3) for all h ∈ [0, 1]. Fix g0 ∈ GK , S0 > 0 and denote by (S, V ) a R2

+-valued continuous
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weak solution to (6.1.1)-(6.1.2). For any u ∈ (C2)∗ and f ∈ L1
loc(R+, (C

2)∗)) such that

Reψ1 ∈ [0, 1], Reu2 ≤ 0 and Re f2 ≤ 0, (6.2.12)

with ψ1 given by (6.2.9), the Riccati–Volterra equation (6.2.10) admits a unique global solu-
tion ψ2 ∈ L2

loc(R+,C
∗). Moreover, the exponential-affine transform (6.2.8) is satisfied. In

particular, weak uniqueness holds for (6.1.1)-(6.1.2).

Proof. Uniqueness in law follows from part (6.2.8) since the law of V is determined by the
Laplace functionals E[exp((f2 ∗ V )T )] as f2 ranges through all nonpositive real valued con-
tinuous functions, and T ranges through R+. The existence, uniqueness, and non-positivity
statement for the Riccati–Volterra equation is proved in Lemma 5.27. In order to obtain
(6.2.8), we adapt the arguments of Theorems 5.16 and 5.24 to prove that the conditional
Fourier-Laplace transform exhibits an exponentially affine form

E [exp (uXT + (f ∗X)T ) | Ft] = exp(Yt), t ≤ T, (6.2.13)

and Y is defined as follows

Yt = E[uXT + (f ∗X)T | Ft] +
1

2

∫ T

t
ψ(T − s)a(E[Xs | Ft])ψ(T − s)⊤ds, (6.2.14)

where a corresponds to the diffusion matrix

a(x) =

(
1 ρν
ρν ν2

)
x2, x = (x1, x2) ∈ R × R+. (6.2.15)

Step 1. Inspecting the proof of Lemmas (5.5) and 5.15, the conditional mean of V can be
expressed as

E[Vs | Ft] = (g0 −Rλ ∗ g) (s) +

∫ t

0
Eλ(s− r)ν

√
VrdWr, s ≤ t, (6.2.16)

where Rλ is the resolvent of the second kind of −λK, i.e. the unique solution of R =
−λK + λK ∗R = −λK +R ∗ λK and Eλ = K −Rλ ∗K.
Step 2. Plugging back the expression (6.2.16) in (6.2.14) together with similar computations
to those in the proof of Theorem 5.16 we get the following dynamics for Y :

Yt = Y0 +

∫ t

0
ψ(T − s)σsdW

′
s − 1

2

∫ t

0
ψ(T − s)a(Xs)ψ(T − s)⊤ds, (6.2.17)

Y0 = (u1 + (1 ∗ f1)(T )) logS0 + (u2g0 + F (ψ1, ψ2) ∗ g0)(T ), (6.2.18)

where

σs =

( √
1 − ρ2 ρ

0 1

)
ν
√
Vs,

B =
√

1 − ρ2dW⊥ + ρdW , W ′ = (W⊥,W ) is a standard two-dimensional Brownian motion
and a, F are respectively given by (6.2.15) and (6.2.11). It follows that Y + 1

2〈Y 〉 is a local
martingale, so that exp(Y ) is a local martingale by Itô’s formula. Provided that exp(Y ) is
a true martingale, the exponential-affine transform formula (6.2.13) follows upon observing
that YT = uXT + (f ∗X)T by (6.2.14). Therefore, it suffices to argue that exp(Y ) is indeed
a true martingale.
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Step 3. We start by observing that the scalar function

πh = ∆hψ ∗ L̄− ∆h(ψ ∗ L̄)

is of locally bounded variation for every h ≥ 0 (see Theorem 5.18(ii)), where L̄ = diag [δ0, L]
and L is the resolvent of the first kind of K. Moreover, denoting by (·)r = Re(·), we observe
that

πr

h,2(t) = −
∫ h

0
ψr

2(h− s)L(t+ ds), t ≥ 0,

Due to the assumption (5.3.3) on L and since −ψr
2 ≥ 0, it follows that πr

h,2 is nonnegative
and non-increasing. In addition, a straightforward extension of Theorem 5.18(ii) shows that
the process Y in (6.2.14) can be rewritten as

Yt = (∆hf ∗X)t + (∆hψ ∗ L̄)(0)(Xt − ḡ(t)) + (dπh ∗ (X − ḡ))t

with h = T − t and ḡ = (logS0, g0)⊤. In particular,

ReYt = ψr

1(h) logSt + (Re ∆hf1 ∗ logS)t + (∆hψ
r

2 ∗ L)(0)Vt

+ (Re ∆hf2 ∗ V )t + (dπr

h,2 ∗ V )t − (∆hψ
r

2 ∗ L)(0)g(t) − (dπr

h,2 ∗ g0)(t). (6.2.19)

Since ψr
1 ∈ [0, 1], integration by parts yields

ψr

1(h) logSt + (Re ∆hf1 ∗ logS)t = ψr

1(T ) logS0 +

∫ t

0
ψr

1(T − s) d(logS)s

≤ ψr

1(T ) logS0 + Ut − 1

2
〈U〉t,

where Ut =
∫ t

0 ψ
r
1(T − s)

√
VsdBs. This observation together with the fact that ψr

2, (∆hψ
r
2 ∗

L)(0), Re ∆hf2, −πr

2,h, and dπr

2,h all have nonpositive components in (6.2.19) and that g0 is
bounded on [0, T ] show that

| exp(Yt)| = exp(ReYt) ≤ CTS
ψr

1(T )
0 exp(Ut − 1

2
〈U〉t),

for some constant CT ≥ 0, where the right-hand side is a true martingale by an obvious
extension of Lemma 5.26. Thus exp(Y ) is a true martingale and the exponential-affine
transform (6.2.13) holds. Evaluating (6.2.13) at t = 0 leads to (6.2.8) thanks to (6.2.18).

6.3 Markovian structure

Using the same methodology as in [52], we characterize the Markovian structure of the
Volterra Heston model (6.1.1)-(6.1.2) in terms of the F-adapted infinite-dimensional adjusted
forward curve (gt)t≥0 given by (6.1.4) which is well defined thanks to (6.2.6). Furthermore,
we prove that the set GK is stochastically invariant with respect to (gt)t≥0.

Theorem 6.4. Under the assumptions of Theorem 6.1, fix g0 ∈ GK . Denote by (S, V )
the unique solution to (6.1.1)-(6.1.2) and by (gt)t≥0 the process defined by (6.1.4). Then,
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(St0 , V t0) satisfies

dSt0t = St0t

√
V t0
t dB

t0
t , St00 = St0 ,

V t0
t = gt0(t) +

∫ t

0
K(t− s)

(
−λV t0

s ds+ ν

√
V t0
s dW

t0
s

)
,

where (Bt0 ,W t0) = (Bt0+· − Bt0 ,Wt0+· − Wt0) are two Brownian motions independent of
Ft0 such that d〈Bt0 ,W t0〉t = ρdt. Moreover, GK is stochastically invariant with respect to
(gt)t≥0, that is

gt ∈ GK , t ≥ 0.

Proof. The part for V t0 is immediate after observing that

gt0(t) = g0(t0 + t) −
∫ t0

0
K(t+ t0 − s)λVsds+

∫ t0

0
K(t+ t0 − s)ν

√
VsdWs, (6.3.1)

for all t0, t, h ≥ 0. The part for St0 is straightforward. We move to proving the claimed
invariance. Fix t0, t, h ≥ 0 and define Z =

∫ ·
0(−λVsds + ν

√
VsdWs). By Lemma 5.6 and

Remark 5.7,

∆hK = (∆hK ∗ L)(0)K + d(∆hK ∗ L) ∗K, (6.3.2)

so that

(∆hK ∗ dZ) = (∆hK ∗ L)(0)(V − g0) + d(∆hK ∗ L) ∗ (V − g0).

Hence,

V t0
t+h = g0(t0 + t+ h) + (∆hK ∗ dZ)t0+t +

∫ h

0
K(h− s)dZt0+t+s

= g0(t0 + t+ h) + (∆hK ∗ L)(0)(V t0
t − g0(t0 + t))

+ (d(∆hK ∗ L) ∗ (V − g0))t0+t +

∫ h

0
K(h− s)dZt0+t+s

= g0(t0 + t+ h) − (∆hK ∗ L)(0)g0(t0 + t) − (d(∆hK ∗ L) ∗ g0) (t0 + t)

+ (∆hK ∗ L)(0)V t0
t + (d(∆hK ∗ L) ∗ V )t0+t +

∫ h

0
K(h− s)dZt0+t+s

≥ (∆hK ∗ L)(0)V t0
t + (d(∆hK ∗ L) ∗ V )t0+t −

∫ h

0
K(h− s)λV t0

t+sds

+

∫ h

0
K(h− s)ν

√
V t0
t+sdW

t0
t+s,
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since g0 ∈ GK . We now prove (8.6.4). Set Gt0h = ∆hgt0 − (∆hK ∗L)(0)gt0 − d(∆hK ∗L) ∗ gt0 .
The previous inequality combined with (6.1.4) yields

Gt0h (t) = E
[
V t0
t+h + (λK ∗ V t0)t+h − (∆hK ∗ L)(0)(V t0

t + (λK ∗ V t0)t)
∣∣∣ Ft0

]

− E
[(
d(∆hK ∗ L) ∗ (V t0 + λK ∗ V t0)

)
t

∣∣∣ Ft0

]

≥ E

[
(d(∆hK ∗ L) ∗ V )t0+t −

(
d(∆hK ∗ L) ∗ V t0

)
t
−
∫ h

0
K(h− s)λV t0

t+sds
∣∣∣ Ft0

]

+ E
[
(λK ∗ V t0)t+h −

(
((∆hK ∗ L)(0)K + d(∆hK ∗ L) ∗K) ∗ λV t0

)
t

∣∣∣ Ft0

]
.

Relying on (6.3.2), we deduce

Gt0h (t) ≥ E

[∫ t0+t

t
(d(∆hK ∗ L))(ds)Vt0+t−s −

∫ h

0
K(h− s)λV t0

t+sds
∣∣∣ Ft0

]

+ E

[∫ t+h

t
K(t+ h− s)λV t0

s ds
∣∣∣ Ft0

]

= E

[∫ t0+t

t
(d(∆hK ∗ L))(ds)Vt0+t−s

∣∣∣ Ft0

]
.

Hence (8.6.4) holds for gt0 , since V ≥ 0 and d(∆hK∗L) is a nonnegative measure, see Remark
5.7. Finally, by adapting the proof of Lemma 5.4, we can show that for any p > 1, ǫ > 0 and
T > 0, there exists a positive constant C1 such that

E [|Vt+h − Vt|p] ≤ C1h
p(γ/2−ǫ), t, h ≥ 0, t+ h ≤ T + t0,

Relying on (5.2.5), (6.1.4) and Jensen inequality, there exists a positive constant C2 such
that

E [|gt0(t+ h) − gt0(t)|p] ≤ C2h
p(γ/2−ǫ), t, h ≥ 0, t+ h ≤ T,

By Kolmogorov continuity criterion, gt0 ∈ Hγ/2 so that gt0 ∈ GK since gt0(0) = Vt0 ≥ 0.

Theorem 6.4 highlights that V is Markovian in the state variable (gt)t≥0. Indeed, conditional
on Ft for some t ≥ 0, the shifted Volterra Heston model (St, V t) can be started afresh from
(St, gt) with the same dynamics as in (6.1.1)-(6.1.2). Notice that gt is again an admissible
input curve belonging to GK . Therefore, applying Theorems 6.1 and 6.3 with (St, V t, gt)
yields that the conditional Fourier-Laplace transform of X = (logS, V ) is exponentially
affine in (logSt, gt):

E
[
exp(uXT + (f ∗X)T )

∣∣∣ Ft

]
= exp ((∆T−tf ∗X)t)

× exp (ψ1(T − t) logSt + (u2gt + F (ψ1, ψ2) ∗ gt)(T − t)) ,
(6.3.3)

for all t ≤ T , where F is given by (6.2.11), under the standing assumptions of Theorem 6.3.

Moreover, it follows from (6.3.1) and the fact that g·(0) = V that the process (gt)t≥0 solves

gt(x) = ∆tg0(x) +

∫ t

0
∆t−s (−λKgs(0)) (x)ds+

∫ t

0
∆t−s

(
Kν

√
gs(0)

)
(x)dWs. (6.3.4)
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Recalling that (∆t)t≥0 is the semigroup of right shifts, (6.3.4) can be seen as a GK-valued mild
solution of the following Heath–Jarrow–Morton-type stochastic partial differential equation

dgt(x) =

(
d

dx
gt(x) − λK(x)gt(0)

)
dt+K(x)ν

√
gt(0)dWt, g0 ∈ GK . (6.3.5)

The following proposition provides the characteristic functional of (gt)t≥0 leading to the
strong Markov property of (gt)t≥0. Define 〈g, h〉 =

∫
R+
g(x)h(x)dx, for suitable functions f

and g.

Theorem 6.5. Under the assumptions of Theorem 6.3. Let h ∈ C∞
c (R+) and g0 ∈ GK .

Then,

E [exp (i〈gt, h〉)] = exp (〈Ht, g0〉) , t ≥ 0, (6.3.6)

where H solves

Ht(x) = ih(x− t)1{x>t} + 1{x≤t}

(
− λ〈Ht−x,K〉 +

ν2

2
〈Ht−x,K〉2

)
, t, x ≥ 0. (6.3.7)

In particular, weak uniqueness holds for (6.3.4) and (gt)t≥0 is a strong Markov process on
GK .

Proof. Consider S̃t = 1+
∫ t

0 S̃u
√
VudWu, for all t ≥ 0. Then, (S̃, V ) is a Volterra Heston model

of the form (6.1.1)-(6.1.2) with ρ = 1 and S̃0 = 1. Fix t ≥ 0, 〈gt, h〉 is well defined since
x → gt(x) is continuous. It follows from (6.3.1) together with stochastic Fubini theorem, see
[111, Theorem 2.2], which is justified by (6.2.6), that

〈gt, h〉 = 〈g0(t+ ·), h〉 +

(
ν

2
− λ

)∫ t

0
〈K(t− s+ ·), h〉Vsds+ ν

∫ t

0
〈K(t− s+ ·), h〉d(log S̃)s

= 〈g0, h(−t+ ·)〉 +

(
ν

2
− λ

)∫ t

0
〈K,h(s− t+ ·)〉Vsds

+ ν〈K,h〉 log S̃t − ν

∫ t

0
〈K,h′(s− t+ ·)〉 log S̃sds,

where the last identity follows from an integration by parts. Hence, setting

u2 = 0, u1 = iν〈K,h〉, f1(t) = −iν〈K,h′(−t+ ·)〉,
ψ1(t) = u1 + (1 ∗ f1)(t) = iν〈K(t+ ·), h〉,
f2(t) = i(

ν

2
− λ)〈K(t+ ·), h〉, ψ2 = K ∗ F (ψ1, ψ2),

with F as in (6.2.11), the characteristic functional follows from Theorem 6.3

E [exp (i〈gt, h〉)] = ei〈h(−t+·),g0〉E
[
exp

(
u1 log S̃t + (f1 ∗ log S̃)t + (f2 ∗ V )t

)]
= exp (〈Ht, g0〉)

where
Ht(x) = h(x− t)1{x>t} + 1{0≤x≤t}F (ψ1, ψ2)(t− x), x ≥ 0,
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and (6.2.11) reads

F (ψ1, ψ2)(t) = −λ〈K(t+ ·), h〉 +
ν2

2
〈K(t+ ·), h〉2

+ (ν2〈K(t+ ·), h〉 − λ)ψ2(t) +
ν2

2
ψ2(t)2. (6.3.8)

Now observe that

〈Ht,K〉 = 〈h(−t+ ·),K〉 +

∫ t

0
F (ψ1, ψ2)(t− x)K(x)dx = 〈h,K(t+ ·)〉 + ψ2(t).

Hence, after plugging ψ2(t) = 〈Ht,K〉 − 〈h,K(t+ ·)〉 back in (6.3.8) we get that

F (ψ1, ψ2)(t) = −λ〈Ht,K〉 +
ν2

2
〈Ht,K〉2,

yielding (6.3.7). Weak uniqueness now follows by standard arguments. In fact, thanks to
(6.2.6) and stochastic Fubini theorem, (gt)t≥0 solves (6.3.5) in the weak sense, that is

〈gt, h〉 = 〈g0, h〉 +

∫ t

0

(〈gs,−h′〉 − λ〈K,h〉gs(0)
)
ds+

∫ t

0
ν〈K,h〉

√
gs(0)dWs, h ∈ C∞

c (R).

Therefore, combined with Theorem 6.4, (gt)t≥0 solves a martingale problem on GK . In
addition, (6.3.6) yields uniqueness of the one-dimensional distributions which is enough to
get weak uniqueness for (6.3.4) and the strong Markov property by [54, Theorem 4.4.2].

We notice that (6.3.6)-(6.3.7) agree with [67, Proposition 4.5] when λ = 0. Moreover, one
can lift (6.3.7) to a non-linear partial differential equation in duality with (6.3.5). Indeed,
define the measure-valued function H̄ : t → H̄t(dx) = Ht(x)1{x≥0}dx. Then, it follows from
(6.3.7) that

H̄t(dx) = ih(x− t)1{x>t}dx+

∫ t

0
δ0(dx− (t− s))(−λ〈H̄s,K〉 +

ν2

2
〈H̄s,K〉2)ds

which can be seen as the mild formulation of the following partial differential equation

dH̄t(dx) = (− d

dx
H̄t(dx) + δ0(dx)(−λ〈H̄t,K〉 +

ν2

2
〈H̄t,K〉2))dt, H̄0(dx) = ih(x)1{x>t}dx.

(6.3.9)
We refer to [36] for similar results in the discontinuous setting where stochastic partial
differential equations are taken as the starting point. The previous results highlight not only
the correspondence between stochastic Volterra equations of the form (6.1.2) and stochastic
partial differential equations (6.3.5) but also between their dual objects, that is the Riccati-
Volterra equation (6.2.10) and the non-linear partial differential equation (6.3.9). As already
illustrated in the introduction of this thesis, one can establish a correspondence between
(6.1.2) and other related stochastic partial differential equations which, unlike (gt)t≥0, do
not necessarily have a financial interpretation but for which the semigroup operator has the
smoothing property, see in particular [96].
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6.4 Application: square-root process in Banach space

As an application of Theorems 6.1, 6.3, 6.4, we obtain conditions for weak existence and
uniqueness of the following (possibly) infinite-dimensional system of stochastic differential
equations

dUt(x) =

(
−xUt(x) − λ

∫ ∞

0
Ut(z)µ(dz)

)
dt+ ν

√∫ ∞

0
Ut(z)µ(dz)dWt, x ∈ supp(µ),

(6.4.1)

for a fixed positive measure of locally bounded variation µ3. This is achieved by linking
(6.4.1) to a stochastic Volterra equation of the form (6.1.2) with the following kernel

K(t) =

∫ ∞

0
e−xtµ(dx), t > 0. (6.4.2)

We will assume that µ is a positive measure of locally bounded variation such that

∫ ∞

0
(1∧ (xh)−1/2)µ(dx) ≤ Ch(γ−1)/2,

∫ ∞

0
x−1/2(1∧ (xh))µ(dx) ≤ Chγ/2; h > 0, (6.4.3)

for some γ ∈ (0, 2] and positive constant C. The reader may check that in that case K
satisfies (5.2.5). Furthermore, [69, Theorem 5.5.4] guarantees the existence of the resolvent
of the first kind L of K and that (5.3.3) is satisfied for the shifted kernels ∆hK for any
h ∈ [0, 1]. Hence, K satisfies assumptions of Theorems 6.1 and 6.3.

K(t) Parameter restrictions µ(dγ)

Fractional c t
α−1

Γ(α) α ∈ (1/2, 1) c x−α

Γ(α)Γ(1−α)dx

Gamma ce−λt tα−1

Γ(α) λ ≥ 0, α ∈ (1/2, 1) c
(x−λ)−α

1(λ,∞)(x)

Γ(α)Γ(1−α) dx

Exponential sum
n∑

i=1

cie
−γit ci, γi ≥ 0

n∑

i=1

ciδγi(dx)

Table 6.1: Some measures µ satisfying (6.4.3) with their associated kernels K. Here c ≥ 0.

By a solution U to (6.4.1) we mean a family of continuous processes (U(x))x∈supp(µ) such
that x → Ut(x) ∈ L1(µ) for any t ≥ 0, (

∫∞
0 Ut(x)µ(dx))t≥0 is a continuous process and

(6.4.1) holds a.s. on some filtered probability space. If such solution exists, we set V =∫∞
0 U·(x)µ(dx) and g0 =

∫∞
0 U0(x)e−x(·)dx. Thanks to (6.4.3), the stochastic Fubini theorem

yields for each t ≥ 0

Vt = g0(t) +

∫ t

0
K(t− s)(−λVsds+ ν

√
VsdWs). (6.4.4)

The processes above being continuous, the equality holds in terms of processes. Thus, pro-
vided that g0 belongs to GK , Theorem 6.3 leads to the weak uniqueness of (6.4.1) because

3We use the notation supp(µ) to denote the support of a measure µ, that is the set of all points for which
every open neighborhood has a positive measure. Here we assume that the support is in R+.
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for each x ∈ supp(µ),

Ut(x) = e−xtU0(x) +

∫ t

0
e−x(t−s)(−λVsds+ ν

√
VsdWs), t ≥ 0. (6.4.5)

On the other hand, if we assume that g0 =
∫∞

0 U0(x)e−x(·)µ(dx) ∈ GK for some initial
family of points (U0(x))x∈supp(µ) ∈ L1(µ), there exists a continuous solution V for (6.4.4)
by Theorem 6.1. In that case, we define for each x ∈ supp(µ), the continuous process
U(x) as in (6.4.5). Thanks to (6.4.3) and (6.2.6), another application of the stochastic
Fubini theorem combined with the fact that V satisfies (6.4.4) yields that, for each t ≥ 0,
(Ut(x))x∈supp(µ) ∈ L1(µ) and

Vt =

∫ ∞

0
Ut(x)µ(dx). (6.4.6)

Moreover, by an integration by parts, we get for each x ∈ supp(µ),

Ut(x) = e−xtU0(x) + Zte
−xt +

∫ t

0
xe−x(t−s)(Zs − Zt)ds,

with Z =
∫ ·

0(−λVsds+ν
√
VsdBs). We know that for fixed T > 0, η ∈ (0, 1/2) and for almost

any ω ∈ Ω there exists a positive constant CT (ω) such that |Zs − Zt| ≤ CT (ω)|t− s|η for all
t, s ∈ [0, T ]. Hence for any t ∈ [0, T ] and x ∈ supp(µ)

|Ut(x)| ≤ |U0(x)| + CT (ω)e−xttη + CT (ω)x

∫ t

0
e−xssηds = |U0(x)| + CT (ω)η

∫ t

0
e−xssη−1ds.

Then,

sup
t∈[0,T ]

|Ut(x)| ≤ |U0(x)| + CT (ω)η

∫ T

0
e−xssηds ∈ L1(µ).

Therefore by dominated convergence theorem, the process (
∫∞

0 Ut(x)µ(dx))t≥0 is continuous.
In particular, (6.4.6) holds in terms of processes and it follows from (6.4.5) that U is a
solution of (6.4.1).

This leads to the weak existence and uniqueness of (6.4.1) if the initial family of points
(U0(x))x∈supp(µ) belongs to the following space Dµ defined by

Dµ = {(ux)x∈supp(µ) ∈ L1(supp(µ));

∫ ∞

0
uxe

−x(·)µ(dx) ∈ GK}, (6.4.7)

with K given by (6.4.2). Notice that for fixed t0 ≥ 0 and for any t ≥ 0 and x ∈ supp(µ),

Ut+t0(x) = Ut0(x)e−xt+
∫ t

0
e−x(t−s)

(
−λ

∫ ∞

0
Us+t0(z)µ(dz) + ν

√∫ ∞

0
Us+t0(z)µ(dz)dWs+t0

)

and then by stochastic Fubini theorem
∫∞

0 Ut+t0(y)µ(dy) is equal to

gt0(t) +

∫ t

0
K(t− s)

(
−λ

∫ ∞

0
Us+t0(z)µ(dz) + ν

√∫ ∞

0
Us+t0(z)µ(dz)dWs+t0

)
,

with gt0(t) =
∫∞

0 Ut0(y)e−ytµ(dy). Thanks to Theorem 6.4, we deduce that gt0 ∈ GK and
therefore (Ut0(x))x∈supp(µ) belongs to Dµ. As a conclusion, the space Dµ is stochastically
invariant with respect to the family of processes (U(x))x∈supp(µ).
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Theorem 6.6. Fix µ a positive measure of locally bounded variation satisfying (6.4.3).There
exists a unique weak solution U of (6.4.1) for each initial family of points (U0(x))x∈supp(µ) ∈
Dµ. Furthermore for any t ≥ 0, (Ut(x))x∈supp(µ) ∈ Dµ.

Remark 6.7 (Representation of V in terms of U). In a similar fashion one can establish the
existence and uniqueness of the following time-inhomogeneous version of (6.4.1)

dUt(x) = (−xUt(x) − λ (g0(t) + 〈1, Ut〉µ)) dt+ ν
√
g0(t) + 〈1, Ut〉µdWt, x ∈ supp(µ),

(6.4.8)

whenever

g0 = g̃0 +

∫ ∞

0
e−x(·)U0(x)µ(dx) ∈ GK ,

with g̃0 : R+ → R. In this case,

g̃0(t+ ·) +

∫ ∞

0
e−x(·)Ut(x)µ(dx) ∈ GK , t ≥ 0.

In particular, for U0 ≡ 0, g0 = g̃0 ∈ GK and K as in (6.4.2), the solution V to the stochastic
Volterra equation (6.1.2) and the forward process (gt)t≥0 admit the following representations

Vt = g0(t) + 〈1, Ut〉µ, gt(x) = g0(t+ x) + 〈e−x(·), Ut〉µ, t, x ≥ 0, (6.4.9)

where we used the notation 〈f, g〉µ =
∫ t

0 f(x)g(x)µ(dx). These results are in the spirit of
[25, 71].

When µ has finite support, (6.4.8) is a finite dimensional diffusion with an affine structure
in the sense of [48]. This underlying structure carries over to the case of infinite support and
is the reason behind the tractability of the Volterra Heston model.

Remark 6.8 (Affine structure of (logS, V ) in terms of U). Let the notations and assumptions
of Remark 6.7 be in force. Relying on the existence and uniqueness of the Riccati-Volterra
equation (6.2.10) one can establish the existence and uniqueness of a differentiable (in time)
solution χ2 to the following (possibly) infinite-dimensional system of Riccati ordinary differ-
ential equations

∂tχ2(t, x) = −xχ2(t, x) + F (ψ1(t), 〈χ2(t, ·), 1〉µ) , χ2(0, x) = u2, x ∈ suppµ, t ≥ 0,
(6.4.10)

such that χ2(t, ·) ∈ L1(µ), for all t ≥ 0 and t → 〈χ2(t, ·), 1〉µ ∈ L2
loc(R+) with ψ1 given by

(6.2.9) and F by (6.2.11). Moreover, the unique global solution ψ2 ∈ L2
loc(R+,C

∗) to the
Riccati–Volterra equation (6.2.10) admits the following representation

ψ2 =

∫ ∞

0
χ2(·, x)µ(dx),

where χ2 is the unique solution to (6.4.10). In particular, combining the equality above with
(6.3.3) and the representation of (gt)t≥0 in (6.4.9) leads to the exponentially-affine functional

E
[
exp (uXT + (f ∗X)T )

∣∣∣ Ft

]
= exp (φ(t, T ) + ψ1(T − t) logSt + 〈χ2(T − t, ·), Ut〉µ)

(6.4.11)

for all t ≤ T where φ(t, T ) = (u2∆tg0 +F (ψ1, ψ2) ∗ ∆tg0)(T − t) + (∆T−tf ∗X)t, (u, f) as in
(6.2.12) and U solves (6.4.8).
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The previous expression generalizes the well-known affine transform of the standard [72] case.

Remark 6.9. Set K ≡ 1 and g0 = V0 +
∫ ·

0 λθ(s)ds for a locally square-integrable non-negative
function θ. Then, µ = δ0, V 0 = V − g0 and u2 +

∫ t
0 F (ψ1, ψ2)(s)ds = ψ2. Define φ =∫ ·

0 λθ(s)ψ2(s)ds. Direct computations show that we recover the standard affine transform

E
[
exp (u1 logST + u2VT )

∣∣∣ Ft

]
= exp (φ(T − t) + u1 logSt + ψ2(T − t)Vt) .

The representations of this section lead to a generic approximation of the Volterra Heston
model by finite-dimensional affine diffusions, see Chapter 7 for the rigorous treatment of
these approximations.

6.5 Existence results for stochastic Volterra equations

In this section, we adapt the existence results of Chapter 5 to allow for arbitrary initial input
curves in the equation

Xt = g(t) +

∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, (6.5.1)

where K ∈ L2
loc(R,R

d×d), W is a m-dimensional Brownian motion, g : Rd → Rd, b : Rd → Rd,
σ : Rd → Rd×m are continuous with linear growth.

A straightforward adaptions of the proofs Lemma 5.29 and Theorem 5.10 lead to the following
existence results of unconstrained solutions.

Theorem 6.10. Under (5.2.5), assume that g ∈ Hγ/2.

(i) If b and σ are Lipschitz continuous, (6.5.1) admits a unique continuous strong solution
X.

(ii) If b and σ are continuous with linear growth and K admits a resolvent of the first kind
L, then (6.5.1) admits a continuous weak solution X.

In both cases, X is locally Hölder continuous of any order strictly smaller than γ/2 and

sup
t≤T

E[|Xt|p] < ∞, p > 0, T > 0.

The following theorem extends Theorem 5.12 for the existence of constrained solutions. No-
tice how the domain GK defined in (6.2.5) enters in the construction of these solutions.

Theorem 6.11. Assume that d = m = 1 and that the scalar kernel K satisfies (5.2.5)-(5.3.3).
Assume also that b and σ are continuous with linear growth such that

b(0) ≥ 0 and σ(0) = 0.

Then (6.5.1) admits a nonnegative continuous weak solution for any g ∈ GK .
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Proof. Theorem 6.10(ii) yields the existence of an unsconstrained continuous weak solution
X to the following modified equation

Xt = g(t) +

∫ t

0
K(t− s)b(X+

s )ds+

∫ t

0
K(t− s)σ(X+

s )dWs.

As in the proof of of Theorem 5.12, it suffices to prove the nonnegativity of X under the
stronger condition, that, for some fixed n ∈ N,

x ≤ n−1 implies b(x) ≥ 0 and σ(x) = 0. (6.5.2)

Set Z =
∫

(b(X)dt + σ(X)dW ) and τ = inf{t ≥ 0: Xt < 0}. Since g(0) ≥ 0, τ ≥ 0. On
{τ < ∞},

Xτ+h = g(τ+h)+(K∗dZ)τ+h = g(τ+h)+(∆hK∗dZ)τ+

∫ h

0
K(h−s)dZτ+s, h ≥ 0. (6.5.3)

Using Lemma 5.6 and Remark 5.7, together with the fact that X ≥ 0 on [0, τ ],

g(τ + h) + (∆hK ∗ dZ)τ = g(τ + h) + (∆hK ∗ L)(0)(X − g)(τ)

+ (d(∆hK ∗ L) ∗X)τ − (d(∆hK ∗ L) ∗ g)(τ)

≥ g(τ + h) − (d(∆hK ∗ L) ∗ g)(τ) − (∆hK ∗ L)(0)g(τ),

which is nonnegative. In view of (6.5.3) it follows that

Xτ+h ≥
∫ h

0
K(h− s) (b(Xτ+s)ds+ σ(Xτ+s)dWτ+s) (6.5.4)

on {τ < ∞} for all h ≥ 0. Now, on {τ < ∞}, Xτ = 0 and Xτ+h < 0 for arbitrarily small h.
On the other hand, by continuity there is some ε > 0 such that Xτ+h ≤ n−1 for all h ∈ [0, ε).
Thus (6.5.2) and (6.5.4) yield Xτ+h ≥ 0 for all h ∈ [0, ε). This shows that τ = ∞, ending
the proof.
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Approximation

Summary

Rough volatility models are very appealing because of their remarkable fit of both
historical and implied volatilities. However, due to the non-Markovian and non-
semimartingale nature of the volatility process, there is no simple way to simulate
efficiently such models, which makes risk management of derivatives an intricate task.
In this chapter, we design tractable multi-factor stochastic volatility models approx-
imating rough volatility models and enjoying a Markovian structure. Furthermore,
we apply our procedure to the specific case of the rough Heston model. This in turn
enables us to derive a numerical method for solving fractional Riccati equations ap-
pearing in the characteristic function of the log-price in this setting.

Based on [5]: Abi Jaber, E., & El Euch, O. (2018) Multi-factor approximation of rough
volatility models. In revision - SIAM Journal on Financial Mathematics. (BFS Junior
Scholar Award for most outstanding paper.)

7.1 Introduction

Empirical studies of a very wide range of assets volatility time-series in [66] have shown that
the dynamics of the log-volatility are close to that of a fractional Brownian motion WH with
a small Hurst parameter H of order 0.1. Recall that a fractional Brownian motion WH can be
built from a two-sided Brownian motion thanks to the Mandelbrot-van Ness representation

WH
t =

1

Γ(H + 1/2)

∫ t

0
(t− s)H− 1

2dWs +
1

Γ(H + 1/2)

∫ 0

−∞

(
(t− s)H− 1

2 − (−s)H− 1
2
)
dWs.

The fractional kernel (t − s)H− 1
2 is behind the H − ε Hölder regularity of the volatility for

any ε > 0. For small values of the Hurst parameter H, as observed empirically, stochastic
volatility models involving the fractional kernel are called rough volatility models.

Aside from modeling historical volatility dynamics, rough volatility models reproduce accu-
rately with very few parameters the behavior of the implied volatility surface, see [14, 50],
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especially the at-the-money skew, see [63]. Moreover, microstructural foundations of rough
volatility are studied in [49, 79].

In this paper, we are interested in a class of rough volatility models where the dynamics of
the asset price S and its stochastic variance V are given by

dSt = St
√
VtdBt, S0 > 0, (7.1.1)

Vt = V0+
1

Γ(H + 1
2)

∫ t

0
(t−u)H− 1

2 (θ(u)−λVu)du+
1

Γ(H + 1
2)

∫ t

0
(t−u)H− 1

2σ(Vu)dWu, (7.1.2)

for all t ∈ [0, T ], on some filtered probability space (Ω,F ,F,P). Here T is a positive time
horizon, the parameters λ and V0 are nonnegative, H ∈ (0, 1/2) is the Hurst parameter, σ is a
continuous function and B = ρW+

√
1 − ρ2W⊥ with (W,W⊥) a two-dimensional F-Brownian

motion and ρ ∈ [−1, 1]. Moreover, θ is a deterministic mean reversion level allowed to be
time-dependent to fit the market forward variance curve (E[Vt])t≤T as explained in Section
7.2 and in [52]. Under some general assumptions, we establish in Section 7.2 the existence of
a weak nonnegative solution to the fractional stochastic integral equation in (7.1.2) exhibiting
H−ε Hölder regularity for any ε > 0. Hence, this class of models is a natural rough extension
of classical stochastic volatility models where the fractional kernel is introduced in the drift
and stochastic part of the variance process V . Indeed, when H = 1/2, we recover classical
stochastic volatility models where the variance process is a standard diffusion.

Despite the fit to the historical and implied volatility, some difficulties are encountered in
practice for the simulation of rough volatility models and for pricing and hedging derivatives
with them. In fact, due to the introduction of the fractional kernel, we lose the Markovian
and semimartingale structure. In order to overcome theses difficulties, we approximate these
models by simpler ones that we can use in practice.

In [51, 49, 52], the rough Heston model (which corresponds to the case of σ(x) = ν
√
x) is

built as a limit of microscopic Hawkes-based price models. This allowed the understanding
of the microstructural foundations of rough volatility and also led to the formula of the
characteristic function of the log-price. Hence, the Hawkes approximation enabled us to
solve the pricing and hedging under the rough Heston model. However, this approach is
specific to the rough Heston case and can not be extended to an arbitrary rough volatility
model of the form (7.1.1)-(7.1.2).

Based on the representations of the previous Chapter and inspired by the works of [25, 26, 71,
94], we provide a natural Markovian approximation for the class of rough volatility models

(7.1.1)-(7.1.2). The main idea is to write the fractional kernel K(t) = tH−
1
2

Γ(H+1/2) as a Laplace
transform of a positive measure µ

K(t) =

∫ ∞

0
e−xtµ(dx); µ(dx) =

x−H− 1
2

Γ(H + 1/2)Γ(1/2 −H)
dx. (7.1.3)

We then approximate µ by a finite sum of Dirac measures µn =
∑n
i=1 c

n
i δxn

i
with positive

weights (cni )1≤i≤n and mean reversions (xni )1≤i≤n, for n ≥ 1. This in turn yields an approxi-
mation of the fractional kernel by a sequence of smoothed kernels (Kn)n≥1 given by

Kn(t) =
n∑

i=1

cni e
−xn

i t, n ≥ 1.
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This leads to a multi-factor stochastic volatility model (Sn, V n) = (Snt , V
n
t )t≤T , which is

Markovian with respect to the spot price and n variance factors (Un,i)1≤i≤n and is defined
as follows

dSnt = Snt

√
V n
t dBt, V n

t = gn(t) +
n∑

i=1

cni U
n,i
t , (7.1.4)

where
dUn,it = (−xni Un,it − λV n

t )dt+ σ(V n
t )dWt,

and gn(t) = V0 +
∫ t

0 K
n(t − s)θ(s)ds with the initial conditions Sn0 = S0 and Un,i0 = 0.

Note that the factors (Un,i)1≤i≤n share the same dynamics except that they mean revert at
different speeds (xni )1≤i≤n. Relying on our existence results of stochastic Volterra equations
in the previous Chapter, we provide in Theorem 7.3 the strong existence and uniqueness
of the model (Sn, V n), under some general conditions. Thus the approximation (7.1.4) is
uniquely well-defined. We can therefore deal with simulation, pricing and hedging problems
under these multi-factor models by using standard methods developed for stochastic volatility
models.

Theorem 7.7, which is the main result of this paper, establishes the convergence of the
multi-factor approximation sequence (Sn, V n)n≥1 to the rough volatility model (S, V ) in
(7.1.1)-(7.1.2) when the number of factors n goes to infinity, under a suitable choice of the
weights and mean reversions (cni , x

n
i )1≤i≤n . This convergence is obtained from a general

result about stability of stochastic Volterra equations derived in Section 7.3.4.

As shown in Chapters 5 and 6, the characteristic function of the log-price for the specific case
of the rough Heston model is obtained in terms of a solution of a fractional Volterra-Riccati
equation. We highlight in Section 7.4.1 that the corresponding multi-factor approximation
(7.1.4) inherits a similar affine structure as in the rough Heston model. More precisely,
(S, V n) is again a Volterra Heston model. Consequently, it displays the same characteristic
function formula for which the Riccati-Volterra equation decouples in n-dimensional classical
Riccati ordinary differential equations. This suggests solving numerically the fractional Ric-
cati equation by approximating it through a n-dimensional classical Riccati equation with
large n, see Theorem 7.9. In Section 7.4.2, we discuss the accuracy and complexity of this
numerical method and compare it to the Adams scheme, see [44, 45, 46, 51].

The chapter is organized as follows. In Section 7.2, we define the class of rough volatility
models (7.1.1)-(7.1.2) and discuss the existence of such models. Then, in Section 7.3, we
build a sequence of multi-factor stochastic volatility models of the form of (7.1.4) and show
its convergence to a rough volatility model. By applying this approximation to the specific
case of the rough Heston model, we obtain a numerical method for computing solutions of
fractional Riccati equations that is discussed in Section 7.4. Finally, some proofs are relegated
to Section 7.5 and some useful technical results are given in Sections 7.6-7.8.

7.2 A definition of rough volatility models

We provide in this section the precise definition of rough volatility models given by (7.1.1)-
(7.1.2). We discuss the existence of such models and more precisely of a nonnegative solution
of the fractional stochastic integral equation (7.1.2). The existence of an unconstrained weak
solution V = (Vt)t≤T is guaranteed by Corollary 7.21 below when σ is a continuous function
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with linear growth and θ satisfies the condition

∀ε > 0, ∃Cε > 0; ∀u ∈ (0, T ] |θ(u)| ≤ Cεu
− 1

2
−ε. (7.2.1)

Furthermore, the paths of V are Hölder continuous of any order strictly less than H and

sup
t∈[0,T ]

E[|Vt|p] < ∞, p > 0. (7.2.2)

Moreover using Theorem 6.11 together with Remarks 7.23 and 7.24 below1, the existence
of a nonnegative continuous process V satisfying (7.1.2) is obtained under the additional
conditions of non-negativity of V0 and θ and σ(0) = 0. We can therefore introduce the
following class of rough volatility models.

Definition 7.1. (Rough volatility models) We define a rough volatility model by any R2
+-

valued continuous process (S, V ) = (St, Vt)t≤T satisfying

dSt = St
√
VtdBt,

Vt = V0 +
1

Γ(H + 1/2)

∫ t

0
(t− u)H− 1

2 (θ(u) − λVu)du+
1

Γ(H + 1/2)

∫ t

0
(t− u)H− 1

2σ(Vu)dWu,

on a filtred probability space (Ω,F ,F,P) with nonnegative initial conditions (S0, V0). Here
T is a positive time horizon, the parameter λ is nonnegative, H ∈ (0, 1/2) is the Hurst
parameter and B = ρW +

√
1 − ρ2W⊥ with (W,W⊥) a two-dimensional F-Brownian motion

and ρ ∈ [−1, 1]. Moreover, to guarantee the existence of such model, σ : R 7→ R is assumed
continuous with linear growth such that σ(0) = 0 and θ : [0, T ] 7→ R is a deterministic
nonnegative function satisfying (7.2.1).

As done in [52], we allow the mean reversion level θ to be time dependent in order to be
consistent with the market forward variance curve. More precisely, the following result shows
that the mean reversion level θ can be written as a functional of the forward variance curve
(E[Vt])t≤T .

Proposition 7.2. Let (S, V ) be a rough volatility model given by Definition 7.1. Then,
(E[Vt])t≤T is linked to θ by the following formula

E[Vt] = V0 +

∫ t

0
(t− s)α−1Eα(−λ(t− s)α)θ(s)ds, t ∈ [0, T ], (7.2.3)

where α = H + 1/2 and Eα(x) =
∑
k≥0

xk

Γ(α(k+1)) is the Mittag-Leffler function. Moreover,

(E[Vt])t≤T admits a fractional derivative2 of order α at each time t ∈ (0, T ] and

θ(t) = Dα(E[V.] − V0)t + λE[Vt], t ∈ (0, T ]. (7.2.4)

Proof. Thanks to (7.2.2) together with Fubini theorem, t 7→ E[Vt] solves the following frac-
tional linear integral equation

E[Vt] = V0 +
1

Γ(H + 1/2)

∫ t

0
(t− s)H− 1

2 (θ(s) − λE[Vs])ds, t ∈ [0, T ], (7.2.5)

1Theorem 6.11 is used here with the fractional kernel K(t) = t
H−

1

2

Γ(H+1/2)
together with b(x) = −λx and

g(t) = V0 +
∫ t

0
K(t − u)θ(u)du.

2Recall that the fractional derivative of order α ∈ (0, 1) of a function f is given by d
dt

∫ t

0

(t−s)−α

Γ(1−α)
f(s)ds

whenever this expression is well defined.
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yielding (7.2.3) by Theorem 7.18 and Remark 7.20 below. Finally, (7.2.4) is obviously ob-
tained from (7.2.5).

Finally, note that uniqueness of the fractional stochastic integral equation (7.1.2) is a dif-
ficult problem. Adapting the proof in [96], we can prove pathwise uniqueness when σ is
η-Hölder continuous with η ∈ (1/(1 + 2H), 1]. This result does not cover the square-root
case, i.e. σ(x) = ν

√
x, for which weak uniqueness has been established in Chapters 5 and 6,

see also [96].

7.3 Multi-factor approximation of rough volatility models

Thanks to the small Hölder regularity of the variance process, models of Definition 7.1 are
able to reproduce the rough behavior of the volatility observed in a wide range of assets.
However, the fractional kernel forces the variance process to leave both the semimartingale
and Markovian worlds, which makes numerical approximation procedures a difficult and chal-
lenging task in practice. The aim of this section is to construct a tractable and satisfactory
Markovian approximation of any rough volatility model (S, V ) of Definition 7.1. Because S is
entirely determined by (

∫ ·
0 Vsds,

∫ ·
0

√
VsdBs), it suffices to construct a suitable approximation

of the variance process V . This is done by smoothing the fractional kernel.

More precisely, denoting by K(t) = tH−
1
2

Γ(H+1/2) , the fractional stochastic integral equation

(7.1.2) reads

Vt = V0 +

∫ t

0
K(t− s) ((θ(s) − λVs)ds+ σ(Vs)dWs) ,

which is a stochastic Volterra equation. Approximating the fractional kernel K by a sequence
of smooth kernels (Kn)n≥1, one would expect the convergence of the following corresponding
sequence of stochastic Volterra equations

V n
t = V0 +

∫ t

0
Kn(t− s) ((θ(s) − λV n

s )ds+ σ(V n
s )dWs) , n ≥ 1,

to the fractional one.

The argument of this section runs as follows. First, exploiting the identity (7.1.3), we con-
struct a family of potential candidates for (Kn, V n)n≥1 in Section 7.3.1 such that V n en-
joys a Markovian structure. Second, we provide convergence conditions of (Kn)n≥1 to K
in L2([0, T ],R) in Section 7.3.2. Finally, the approximation result for the rough volatility
model (S, V ) is established in Section 7.3.3 relying on an abstract stability result of stochastic
Volterra equations postponed to Section 7.3.4 for sake of exposition.

7.3.1 Construction of the approximation

In [25, 71, 94], a Markovian representation of the fractional Brownian motion of Riemann-

Liouville type is provided by writing the fractional kernel K(t) = tH−
1
2

Γ(H+1/2) as a Laplace

transform of a nonnegative measure µ as in (7.1.3). This representation was extended in
Chapter 6 for the Volterra square-root process. Adopting the same approach, we establish
a similar representation for any solution of the fractional stochastic integral equation (7.1.2)
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in terms of an infinite dimensional system of processes sharing the same Brownian motion
and mean reverting at different speeds. Indeed by using the linear growth of σ together with
the stochastic Fubini theorem, see [111], we obtain that

Vt = g(t) +

∫ ∞

0
Ut(x)µ(dx), t ∈ [0, T ],

with
dUt(x) = (−xUt(x) − λVt)dt+ σ(Vt)dWt, U0(x) = 0, x ≥ 0,

and

g(t) = V0 +

∫ t

0
K(t− s)θ(s)ds. (7.3.1)

Inspired by [25, 26], we approximate the measure µ by a weighted sum of Dirac measures

µn =
n∑

i=1

cni δxn
i
, n ≥ 1,

leading to the following approximation V n = (V n
t )t≤T of the variance process V

V n
t = gn(t) +

n∑

i=1

cni U
n,i
t , t ∈ [0, T ], (7.3.2)

dUn,it = (−xni Un,it − λV n
t )dt+ σ(V n

t )dWt, Un,i0 = 0,

where

gn(t) = V0 +

∫ t

0
Kn(t− u)θ(u)du, (7.3.3)

and

Kn(t) =
n∑

i=1

cni e
−xn

i t. (7.3.4)

The choice of the positive weights (cni )1≤i≤n and mean reversions (xni )1≤i≤n, which is crucial
for the accuracy of the approximation, is studied in Section 7.3.2 below. Before proving the
convergence of (V n)n≥1, we shall first discuss the existence and uniqueness of such processes.
This is done by rewriting the stochastic equation (7.3.2) as a stochastic Volterra equation of
the form

V n
t = gn(t) +

∫ t

0
Kn(t− s) (−λV n

s ds+ σ(V n
s )dWs) , t ∈ [0, T ]. (7.3.5)

The existence of a continuous nonnegative weak solution V n is ensured by Theorem 6.11
together with Remarks 7.23 and 7.24 below3, because θ and V0 are nonnegative and σ(0) =
0. Moreover, pathwise uniqueness of solutions to (7.3.5) follows by adapting the standard
arugments of [115], provided a suitable Hölder continuity of σ, see Proposition 7.22 below.
Note that this extension is made possible due to the smoothness of the kernel Kn. For
instance, this approach fails for the fractional kernel because of the singularity at zero. This
leads us to the following result which establishes the strong existence and uniqueness of a
nonnegative solution of (7.3.5) and equivalently of (7.3.2).

Theorem 7.3. Assume that θ : [0, T ] 7→ R is a deterministic nonnegative function satisfying
(7.2.1) and that σ : R 7→ R is η-Hölder continuous with σ(0) = 0 and η ∈ [1/2, 1]. Then,

3Theorem 6.11 is used here with the smoothed kernel Kn given by (7.3.4) together with b(x) = −λx and
g defined as in (7.3.1)
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there exists a unique strong nonnegative solution V n = (V n
t )t≤T to the stochastic Volterra

equation (7.3.5) for each n ≥ 1.

Due to the uniqueness of (7.3.2), we obtain that V n is a Markovian process according to n
state variables (Un,i)1≤i≤n that we call the factors of V n. Moreover, V n being nonnegative, it
can be used to model a variance process. This leads to the following definition of multi-factor
stochastic volatility models.

Definition 7.4. (Multi-factor stochastic volatility models). We define the following sequence
of multi-factor stochastic volatility models (Sn, V n) = (Snt , V

n
t )t≤T as the unique R2

+-valued
strong solution of

dSnt = Snt

√
V n
t dBt, V n

t = gn(t) +
n∑

i=1

cni U
n,i
t ,

with
dUn,it = (−xni Un,it − λV n

t )dt+ σ(V n
t )dWt, Un,i0 = 0, Sn0 = S0 > 0,

on a filtered probability space (Ω,F ,P,F), where F is the canonical filtration a two-dimensional
Brownian motion (W,W⊥) and B = ρW +

√
1 − ρ2W⊥ with ρ ∈ [−1, 1]. Here, the weights

(cni )1≤i≤n and mean reversions (xni )1≤i≤n are positive, σ : R 7→ R is η-Hölder continuous such
that σ(0) = 0, η ∈ [1/2, 1] and gn is given by (7.3.3), that is

gn(t) = V0 +

∫ t

0
Kn(t− s)θ(s)ds,

with a nonnegative initial variance V0, a kernel Kn defined as in (7.3.4) and a nonnegative
deterministic function θ : [0, T ] 7→ R satisfying (7.2.1).

Note that the strong existence and uniqueness of (Sn, V n) follows from Theorem 7.3. This
model is Markovian with n+ 1 state variables which are the spot price Sn and the factors of
the variance process Un,i for i ∈ {1, . . . , n}.

7.3.2 An approximation of the fractional kernel

Relying on (7.3.5), we can see the process V n as an approximation of V , solution of (7.1.2),

obtained by smoothing the fractional kernel K(t) = tH−
1
2

Γ(H+1/2) into Kn(t) =
∑n
i=1 c

n
i e

−xn
i t.

Intuitively, we need to choose Kn close to K when n goes to infinity, so that (V n)n≥1

converges to V . Inspired by [26], we give in this section a condition on the weights (cni )1≤i≤n
and mean reversion terms 0 < xn1 < ... < xnn so that the following convergence

‖Kn −K‖2,T → 0,

holds as n goes to infinity, where ‖ · ‖2,T is the usual L2([0, T ],R) norm. Let (ηni )0≤i≤n be
auxiliary mean reversion terms such that ηn0 = 0 and ηni−1 ≤ xni ≤ ηni for i ∈ {1, . . . , n}.
Writing K as the Laplace transform of µ as in (7.1.3), we obtain that

‖Kn −K‖2,T ≤
∫ ∞

ηn
n

‖e−x(·)‖2,Tµ(dx) +
n∑

i=1

Jni ,
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with Jni = ‖cni e−xn
i (·) − ∫ ηn

i
ηn

i−1
e−x(·)µ(dx)‖2,T . We start by dealing with the first term,

∫ ∞

ηn
n

‖e−x(·)‖2,Tµ(dx) =

∫ ∞

ηn
n

√
1 − e−2xT

2x
µ(dx) ≤ 1

HΓ(H + 1/2)Γ(1/2 −H)
√

2
(ηnn)−H .

Moreover by choosing

cni =

∫ ηn
i

ηn
i−1

µ(dx), xni =
1

cni

∫ ηn
i

ηn
i−1

xµ(dx), i ∈ {1, . . . , n}, (7.3.6)

and using the Taylor-Lagrange inequality up to the second order, we obtain

∣∣∣∣∣c
n
i e

−xn
i t −

∫ ηn
i

ηn
i−1

e−xtµ(dx)

∣∣∣∣∣ ≤ t2

2

∫ ηn
i

ηn
i−1

(x− xni )2µ(dx), t ∈ [0, T ]. (7.3.7)

Therefore,
n∑

i=1

Jni ≤ T 5/2

2
√

5

n∑

i=1

∫ ηn
i

ηn
i−1

(xni − x)2µ(dx).

This leads to the following inequality

‖Kn −K‖2,T ≤ f (2)
n

(
(ηi)0≤i≤n

)
,

where f
(2)
n is a function of the auxiliary mean reversions defined by

f (2)
n ((ηni )1≤i≤n) =

T
5
2

2
√

5

n∑

i=1

∫ ηn
i

ηn
i−1

(x− xni )2µ(dx) +
1

HΓ(H + 1/2)Γ(1/2 −H)
√

2
(ηnn)−H .

(7.3.8)

Hence, we obtain the convergence of Kn to the fractional kernel under the following choice
of weights and mean reversions.

Assumption 7.3.1. We assume that the weights and mean reversions are given by (7.3.6)
such that ηn0 = 0 < ηn1 < . . . < ηnn and

ηnn → ∞,
n∑

i=1

∫ ηn
i

ηn
i−1

(xni − x)2µ(dx) → 0, (7.3.9)

as n goes to infinity.

Proposition 7.5. Fix (cni )1≤i≤n and (xni )1≤i≤n as in Assumption 7.3.1 and Kn given by
(7.3.4), for all n ≥ 1. Then, (Kn)n≥1 converges in L2[0, T ] to the fractional kernel K(t) =
tH−1/2

Γ(H+ 1
2

)
as n goes to infinity.

There exists several choices of auxiliary factors such that condition (7.3.9) is met. For
instance, assume that ηni = iπn for each i ∈ {0, . . . , n} such that πn > 0. It follows from

n∑

i=1

∫ ηn
i

ηn
i−1

(x− xi)
2µ(dx) ≤ π2

n

∫ ηn
n

0
µ(dx) =

1

(1/2 −H)Γ(H + 1/2)Γ(1/2 −H)
π

5
2

−H
n n

1
2

−H ,
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that (7.3.9) is satisfied for

ηnn = nπn → ∞, π
5
2

−H
n n

1
2

−H → 0,

as n tends to infinity. In this case,

‖Kn −K‖2,T ≤ 1

HΓ(H + 1/2)Γ(1/2 −H)
√

2

(
(ηnn)−H +

HT
5
2√

10(1/2 −H)
π2
n(ηnn)

1
2

−H
)
.

This upper bound is minimal for

πn =
n− 1

5

T

(
√

10(1 − 2H)

5 − 2H

) 2
5 , (7.3.10)

and
‖Kn −K‖2,T ≤ CHn

− 4H
5 ,

where CH is a positive constant that can be computed explicitly and that depends only on
the Hurst parameter H ∈ (0, 1/2).

Remark 7.6. Note that the kernel approximation in Proposition 7.5 can be easily extended
to any kernel of the form

K(t) =

∫ ∞

0
e−xtµ(dx),

where µ is a nonnegative measure such that

∫ ∞

0
(1 ∧ x−1/2)µ(dx) < ∞.

7.3.3 Convergence result

We assume now that the weights and mean reversions of the multi-factor stochastic volatility
model (Sn, V n) satisfy Assumption 7.3.1. Thanks to Proposition 7.5, the smoothed kernel
Kn is close to the fractional one for large n. Because V n satisfies the stochastic Volterra
equation (7.3.5), V n has to be close to V and thus by passing to the limit, (Sn, V n)n≥1

should converge to the rough volatility model (S, V ) of Definition 7.1 as n goes large. This
is the object of the next theorem, which is the main result of this paper.

Theorem 7.7. Let (Sn, V n)n≥1 be a sequence of multi-factor stochastic volatility models
given by Definition 7.4. Then, under Assumption 7.3.1, the family (Sn, V n)n≥1 is tight for
the uniform topology and any point limit (S, V ) is a rough volatility model given by Definition
7.1.

Theorem 7.7 states the convergence in law of (Sn, V n)n≥1 whenever the fractional stochastic
integral equation (7.1.2) admits a unique weak solution. In order to prove Theorem 7.7, whose
proof is in Section 7.5.2 below, a more general stability result for d-dimensional stochastic
Volterra equations is established in the next subsection.
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7.3.4 Stability of stochastic Volterra equations

As mentioned above, Theorem 7.7 relies on the study of the stability of more general d-
dimensional stochastic Volterra equations of the form

Xt = g(t) +

∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, t ∈ [0, T ], (7.3.11)

where b : Rd → Rd, σ : Rd → Rd×m are continuous and satisfy the linear growth condition,
K ∈ L2([0, T ],Rd×d) admits a resolvent of the first kind L, and W is a m-dimensional
Brownian motion on some filtered probability space (Ω,F ,F,P). From Section 7.7 below,
g : [0, T ] 7→ Rd and K ∈ L2([0, T ],Rd×d) should satisfy Assumption 7.7.1, that is

|g(t+ h) − g(t)|2 +

∫ h

0
|K(s)|2ds+

∫ T−h

0
|K(h+ s) −K(s)|2ds ≤ Ch2γ , (7.3.12)

for any t, h ≥ 0 with t + h ≤ T and for some positive constants C and γ, to guarantee the
weak existence of a continuous solution X of (7.3.11).

More precisely, we consider a sequence Xn = (Xn
t )t≤T of continuous weak solutions to

the stochastic Volterra equation (7.3.11) with a kernel Kn ∈ L2([0, T ],Rd×d) admitting a
resolvent of the first kind, on some filtered probability space (Ωn,Fn,Fn,Pn),

Xn
t = gn(t) +

∫ t

0
Kn(t− s)b(Xn

s )ds+

∫ t

0
Kn(t− s)σ(Xn

s )dWn
s , t ∈ [0, T ],

with gn : [0, T ] 7→ Rd and Kn satisfying (7.3.12) for every n ≥ 1. The stability of (7.3.11)
means the convergence in law of the family of solutions (Xn)n≥1 to a limiting process X
which is a solution to (7.3.11), when (Kn, gn) is close to (K, g) as n goes large.

This convergence is established by verifying first the Kolmogorov tightness criterion for the
sequence (Xn)n≥1. It is obtained when gn and Kn satisfy (7.3.12) uniformly in n in the
following sense.

Assumption 7.3.2. There exists positive constants γ and C such that

sup
n≥1

(
|gn(t+ h) − gn(t)|2 +

∫ h

0
|Kn(s)|2ds+

∫ T−h

0
|Kn(h+ s) −Kn(s)|2ds

)
≤ Ch2γ ,

for any t, h ≥ 0 with t+ h ≤ T ,

The following result, whose proof is postponed to Section 7.5.1 below, states the convergence
of (Xn)n≥1 to a solution of (7.3.11).

Theorem 7.8. Assume that

∫ T

0
|K(s) −Kn(s)|2ds −→ 0, gn(t) −→ g(t),

for any t ∈ [0, T ] as n goes to infinity. Then, under Assumption 7.3.2, the sequence (Xn)n≥1

is tight for the uniform topology and any point limit X is a solution of the stochastic Volterra
equation (7.3.11).
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7.4 The particular case of the rough Heston model

The rough Heston model introduced in [51, 52] is a particular case of the class of rough
volatility models of Definition 7.1, with σ(x) = ν

√
x for some positive parameter ν, that is

dSt = St
√
VtdBt, S0 > 0,

Vt = g(t) +

∫ t

0
K(t− s)

(
−λVsds+ ν

√
VsdWs

)
,

where K(t) = tH−
1
2

Γ(H+1/2) denotes the fractional kernel and g is given by (7.3.1). Aside from
reproducing accurately the historical and implied volatility, the rough Heston model displays
a closed formula for the characteristic function of the log-price in terms of a solution to a
fractional Riccati equation allowing to fast pricing and calibration, see [50]. More precisely,
the model belongs to the class of Volterra Heston models studied in Chapter 6 such that

L(t, z) = E
[
exp

(
z log(St/S0)

)]

is given by

exp

(∫ t

0
F (z, ψ(t− s, z))g(s)ds

)
, (7.4.1)

where ψ(·, z) is the unique continuous solution of the fractional Riccati equation

ψ(t, z) =

∫ t

0
K(t− s)F (z, ψ(s, z))ds, t ∈ [0, T ], (7.4.2)

with F (z, x) = 1
2(z2 − z) + (ρνz − λ)x + ν2

2 x
2 and z ∈ C such that ℜ(z) ∈ [0, 1]. Unlike

the classical case H = 1/2, (7.4.2) does not exhibit an explicit solution. However, it can be
solved numerically through the Adam scheme developed in [44, 45, 46, 51] for instance. In
this section, we show that the multi-factor approximation applied to the rough Heston model
gives rise to another natural numerical scheme for solving the fractional Riccati equation.
Furthermore, we will establish the convergence of this scheme with explicit errors.

7.4.1 Multi-factor scheme for the fractional Riccati equation

We consider the multi-factor approximation (Sn, V n) of Definition 7.4 with σ(x) = ν
√
x,

where the number of factors n is large, that is

dSnt = Snt

√
V n
t dBt, V n

t = gn(t) +
n∑

i=1

cni U
n,i
t ,

with
dUn,it = (−xni Un,it − λV n

t )dt+ ν
√
V n
t dWt, Un,i0 = 0, Sn0 = S0.

Recall that gn is given by (7.3.3) and it converges pointwise to g as n goes large, see Lemma
7.12.

We write the dynamics of (Sn, V n) in terms of a Volterra Heston model with the smoothed
kernel Kn given by (7.3.4) as follows

dSnt = Snt

√
V n
t dBt,
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V n
t = gn(t) −

∫ t

0
Kn(t− s)λV n

s ds+

∫ t

0
Kn(t− s)ν

√
V n
s dWs.

In particular, relying again on Chapter 6,

Ln(t, z) = E
[
exp

(
z log(Snt /S0)

)]

is given by

exp

(∫ t

0
F (z, ψn(t− s, z))gn(s)ds

)
, (7.4.3)

where ψn(·, z) is the unique continuous solution of the Riccati-Volterra equation

ψn(t, z) =

∫ t

0
Kn(t− s)F (z, ψn(s, z))ds, t ∈ [0, T ], (7.4.4)

for each z ∈ C with ℜ(z) ∈ [0, 1].

Thanks to the weak uniqueness of the rough Heston model and to Theorem 7.7, (Sn, V n)n≥1

converges in law for the uniform topology to (S, V ) when n tends to infinity. In particular,
Ln(t, z) converges pointwise to L(t, z). Therefore, we expect ψn(·, z) to be close to the
solution of the fractional Riccati equation (7.4.2). This is the object of the next theorem,
whose proof is reported to Section 7.5.3 below.

Theorem 7.9. There exists a positive constant C such that, for any a ∈ [0, 1], b ∈ R and
n ≥ 1,

sup
t∈[0,T ]

|ψn(t, a+ ib) − ψ(t, a+ ib)| ≤ C(1 + b4)

∫ T

0
|Kn(s) −K(s)|ds,

where ψ(·, a + ib) (resp. ψn(·, a + ib)) denotes the unique continuous solution of the Riccati
Volterra equation (7.4.2) (resp. (7.4.4)).

Relying on the L1-convergence of (Kn)n≥1 to K under Assumption 7.3.1, see Proposition
7.5, we have the uniform convergence of (ψn(·, z))n≥1 to ψ(·, z) on [0, T ]. Hence, Theorem
7.9 suggests a new numerical method for the computation of the fractional Riccati solution
(7.4.2) where an explicit error is given. Indeed, set

ψn,i(t, z) =

∫ t

0
e−xn

i (t−s)F (z, ψn(s, z))ds, i ∈ {1, . . . , n}.

Then,

ψn(t, z) =
n∑

i=1

cni ψ
n,i(t, z),

and (ψn,i(·, z))1≤i≤n solves the following n-dimensional system of ordinary Riccati equations

∂tψ
n,i(t, z) = −xni ψn,i(t, z) + F (z, ψn(t, z)), ψn,i(0, z) = 0, i ∈ {1, . . . , n}. (7.4.5)

Hence, (7.4.5) can be solved numerically by usual finite difference methods leading to ψn(·, z)
as an approximation of the fractional Riccati solution.
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7.4.2 Numerical illustrations

In this section, we consider a rough Heston model with the following parameters

λ = 0.3, ρ = −0.7, ν = 0.3, H = 0.1, V0 = 0.02, θ ≡ 0.02.

We discuss the accuracy of the multi-factor approximation sequence (Sn, V n)n≥1 as well as
the corresponding Riccati Volterra solution (ψn(·, z))n≥1, for different choices of the weights
(cni )1≤i≤n and mean reversions (xni )1≤i≤n. This is achieved by first computing, for different
number of factors n, the implied volatility σn(k, T ) of maturity T and log-moneyness k by
a Fourier inversion of the characteristic function formula (7.4.3), see [27, 87] for instance.
In a second step, we compare σn(k, T ) to the implied volatility σ(k, T ) of the rough Heston
model. We also compare the Riccati Volterra solution ψn(T, z) to the fractional one ψ(T, z).

Note that the Riccati Volterra solution ψn(·, z) is computed by solving numerically the n-
dimensional Riccati equation (7.4.5) with a classical finite difference scheme. The complexity
of such scheme is O(n×n∆t), where n∆t is the number of time steps applied for the scheme,
while the complexity of the Adam scheme used for the computation of ψ(·, z) is O(n2

∆t). In
the following numerical illustrations, we fix n∆t = 200.

In order to guarantee the convergence, the weights and mean reversions have to satisfy
Assumption 7.3.1 and in particular they should be of the form (7.3.6) in terms of auxiliary
mean reversions (ηni )0≤i≤n satisfying (7.3.9). For instance, one can fix

ηni = iπn, i ∈ {0, . . . , n}, (7.4.6)

where πn is defined by (7.3.10), as previously done in Section 7.3.2. For this particular choice,

Figure 7.1 shows a decrease of the relative error
∣∣∣ψ

n(T,ib)−ψ(T,ib)
ψ(T,ib)

∣∣∣ towards zero for different

values of b.

Figure 7.1: The relative error
∣∣∣ψ

n(T,ib)−ψ(T,ib)
ψ(T,ib)

∣∣∣ as a function of b under (7.4.6) and for

different numbers of factors n with T = 1.

We also observe in the Figure 7.2 below that the implied volatility σn(k, T ) of the multi-
factor approximation is close to σ(k, T ) for a number of factors n ≥ 20. Notice that the
approximation is more accurate around the money.
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Figure 7.2: Implied volatility σn(k, T ) as a function of the log-moneyness k under (7.4.6)
and for different numbers of factors n with T = 1.

In order to obtain a more accurate convergence, we can minimize the upper bound f
(2)
n ((ηni )0≤i≤n)

of ‖Kn − K‖2,T defined in (7.3.8). Hence, we choose (ηni )0≤i≤n to be a solution of the con-
strained minimization problem

inf
(ηn

i )i∈En

f (2)
n ((ηni )0≤i≤n), (7.4.7)

where En = {(ηni )0≤i≤n; 0 = ηn0 < ηn1 < ... < ηnn}.

Figure 7.3: The relative error
∣∣∣ψ

n(T,ib)−ψ(T,ib)
ψ(T,ib)

∣∣∣ as a function of b under (7.4.7) and for

different numbers of factors n with T = 1.

We notice from Figure 7.3, that the relative error |ψn(T,ib)−ψ(T,ib)
ψ(T,ib) | is smaller under the choice

of factors (7.4.7). Indeed the Volterra approximation ψn(T, ib) is now closer to the fractional
Riccati solution ψ(T, ib) especially for small number of factors. However, when n is large,
the accuracy of the approximation seems to be close to the one under (7.4.6). For instance
when n = 500, the relative error is around 1% under both (7.4.6) and (7.4.7).
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Figure 7.4: Implied volatility σn(k, T ) as a function of the log-moneyness k under (7.4.7)
and for different numbers of factors n with T = 1.

In the same way, we observe in Figure 7.4 that the accuracy of the implied volatility approx-
imation σn(k, T ) is more satisfactory under (7.4.7) especially for a small number of factors.

Theorem 7.9 states that the convergence of ψn(·, z) depends actually on the L1([0, T ],R)-
error between Kn and K. Similarly to the computations of Section 7.3.2, we may show
that, ∫ T

0
|Kn(s) −K(s)|ds ≤ f (1)

n ((ηni )0≤i≤n),

where

f (1)
n ((ηni )0≤i≤n) =

T 3

6

n∑

i=1

∫ ηn
i

ηn
i−1

(x− xni )2µ(dx) +
1

Γ(H + 3/2)Γ(1/2 −H)
(ηnn)−H− 1

2 .

This leads to choosing (ηni )0≤i≤n as a solution of the constrained minimization problem

inf
(ηn

i )i∈En

f (1)
n ((ηni )0≤i≤n). (7.4.8)

It is easy to show that such auxiliary mean-reversions (ηni )0≤i≤n satisfy (7.3.9) and thus
Assumption 7.3.1 is met.

Figure 7.5: The relative error
∣∣∣ψ

n(T,ib)−ψ(T,ib)
ψ(T,ib)

∣∣∣ as a function of b under (7.4.8) and for

different numbers of factors n with T = 1.
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Figure 7.6: Implied volatility σn(k, T ) as a function of the log-moneyness k under (7.4.8)
and for different numbers of factors n with T = 1.

Figures 7.5 and 7.6 exhibit similar results as the ones in Figures 7.3 and 7.4 corresponding to
the choice of factors (7.4.7). In fact, we notice in practice that the solution of the minimization
problem (7.4.7) is close to the one in (7.4.8).

7.4.3 Upper bound for call prices error

Using a Fourier transform method, we can also provide an error between the price of the
call Cn(k, T ) = E[(SnT − S0e

k)+] in the multi-factor model and the price of the same call
C(k, T ) = E[(ST − S0e

k)+] in the rough Heston model. However, for technical reasons,
this bound is obtained for a modification of the multi-factor approximation (Sn, V n)n≥1 of
Definition 7.4 where the function gn given initially by (7.3.3) is updated into

gn(t) =

∫ t

0
Kn(t− s)

(
V0

s−H− 1
2

Γ(1/2 −H)
+ θ(s)

)
ds, (7.4.9)

where Kn is the smoothed approximation (7.3.4) of the fractional kernel. Note that the
strong existence and uniqueness of V n is still directly obtained from Proposition 7.22 and its
non-negativity from Theorem 6.11 together with Remarks 7.23 and 7.24 below4. Although
for gn satisfying (7.4.9), (V n)n≥1 can not be tight5, the corresponding spot price (Sn)n≥1

converges as shown in the following proposition.

Proposition 7.10. Let (Sn, V n)n≥1 be a sequence of multi-factor Heston models as in Def-
inition 7.4 with σ(x) = ν

√
x and gn given by (7.4.9). Then, under Assumption 7.3.1,

(Sn,
∫ ·

0 V
n
s ds)n≥1 converges in law for the uniform topology to (S,

∫ ·
0 Vsds), where (S, V ) is a

rough Heston model as in Definition 7.1 with σ(x) = ν
√
x.

Note that the characteristic function (7.4.3) still holds. Using Theorem 7.9 together with a
Fourier transform method, we obtain an explicit error for the call prices. We refer to Section
7.5.5 below for the proof.

Proposition 7.11. Let C(k, T ) be the price of the call in the rough Heston model with
maturity T > 0 and log-moneyness k ∈ R. We denote by Cn(k, T ) the price of the call in the

4Note that Theorem 6.11 is used here for the smoothed kernel Kn, b(x) = −λx and gn defined by (7.4.9).
5In fact, V n

0 = 0 while V0 may be positive.
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multi-factor Heston model of Definition 7.4 such that gn is given by (7.4.9). If |ρ| < 1, then
there exists a positive constant c > 0 such that

|C(k, T ) − Cn(k, T )| ≤ c

∫ T

0
|K(s) −Kn(s)|ds, n ≥ 1.

7.5 Proofs

In this section, we use the convolution notations together with the resolvent definitions of
Section 7.6 below. We denote by c any positive constant independent of the variables t, h
and n and that may vary from line to line. For any h ∈ R, we will use the notation ∆h to
denote the semigroup operator of right shifts defined by ∆hf : t 7→ f(h+ t) for any function
f .

We first prove Theorem 7.8, which is the building block of Theorem 7.7. Then, we turn to
the proofs of the results contained in Section 7.4, which concern the particular case of the
rough Heston model.

7.5.1 Proof of Theorem 7.8

Tightness of (Xn)n≥1 : We first show that, for any p ≥ 2,

sup
n≥1

sup
t≤T

E[|Xn
t |p] < ∞. (7.5.1)

Thanks to 7.7.2, we already have

sup
t≤T

E[|Xn
t |p] < ∞. (7.5.2)

Using the linear growth of (b, σ) and (7.5.2) together with Jensen and BDG inequalities, we
get

E[|Xn
t |p] ≤ c


sup
t≤T

|gn(t)|p +

(∫ T

0
|Kn(s)|2ds

) p
2

−1 ∫ t

0
|Kn(t− s)|2(1 + E[|Xn

s |p])ds)

 .

Relying on Assumption 7.3.2 and the convergence of (gn(0),
∫ T

0 |Kn(s)|2ds)n≥1, supt≤T |gn(t)|p
and

∫ T
0 |Kn(s)|2ds are uniformly bounded in n. This leads to

E[|Xn
t |p] ≤ c

(
1 +

∫ t

0
|Kn(t− s)|2E[|Xn

s |p]ds)
)
.

By the Grönwall type inequality in Lemma 7.19 below, we deduce that

E[|Xn
t |p] ≤ c

(
1 +

∫ t

0
Enc (s)ds)

)
≤ c

(
1 +

∫ T

0
Enc (s)ds)

)
,

where Enc ∈ L1([0, T ],R) is the canonical resolvent of |Kn|2 with parameter c, as defined
in Section 7.6 below, and the last inequality follows from the fact that

∫ ·
0 E

n
c (s)ds is non-

decreasing by Corollary 7.26. The convergence of |Kn|2 to |K|2 in L1([0, T ],R) implies the
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convergence of Enc to the canonical resolvent of |K|2 with parameter c in L1([0, T ],R), see
[69, Theorem 2.3.1]. Thus,

∫ T
0 Enc (s)ds is uniformly bounded in n, yielding (7.5.1).

We now show that (Xn)n≥1 exhibits the Kolmogorov tightness criterion. In fact, using again
the linear growth of (b, σ) and (7.5.1) together with Jensen and BDG inequalities, we obtain,
for any p ≥ 2 and t, h ≥ 0 such that t+ h ≤ T ,

E[|Xn
t+h−Xn

t |p] ≤ c
(
|gn(t+h)−gn(t)|p+(

∫ T−h

0
|Kn(h+s)−Kn(s)|2ds)p/2

+
( ∫ h

0
|Kn(s)|2ds)p/2

)
.

Hence, Assumption 7.3.2 leads to

E[|Xn
t+h −Xn

t |p] ≤ chpx,

and therefore to the tightness of (Xn)n≥1 for the uniform topology.

Convergence of (Xn)n≥1 : LetMn
t =

∫ t
0 σ(Xn

s )dBn
s . As 〈Mn〉t =

∫ t
0 σσ

∗(Xn
s )ds, (〈Mn〉)n≥1

is tight and consequently we get the tightness of (Mn)n≥1 from [77, Theorem VI-4.13]. Let
(X,M) = (Xt,Mt)t≤T be a possible limit point of (Xn,Mn)n≥1. Thanks to [77, Theorem
VI-6.26], M is a local martingale and necessarily

〈M〉t =

∫ t

0
σσ∗(Xs)ds, t ∈ [0, T ].

Moreover, setting Y n
t =

∫ t
0 b(X

n
s )ds+Mn

t , the associativity property (5.2.4) yields

(L ∗Xn)t = (L ∗ gn)(t) +
(
L ∗ ((Kn −K) ∗ dY n))

t
+ Y n

t , (7.5.3)

where L is the resolvent of the first kind of K. By the Skorokhod representation theorem, we
construct a probability space supporting a sequence of copies of (Xn,Mn)n≥1 that converges
uniformly on [0, T ], along a subsequence, to a copy of (X,M) almost surely, as n goes to
infinity. We maintain the same notations for these copies. Hence, we have

sup
t∈[0,T ]

|Xn
t −Xt| → 0, sup

t∈[0,T ]
|Mn

t −Mt| → 0,

almost surely, as n goes to infinity. Relying on the continuity and linear growth of b together
with the dominated convergence theorem, it is easy to obtain for any t ∈ [0, T ]

(L ∗Xn)t → (L ∗X)t,

∫ t

0
b(Xn

s )ds →
∫ t

0
b(Xs)ds,

almost surely as n goes to infinity. Moreover for each t ∈ [0, T ]

(L ∗ gn)(t) → (L ∗ g)(t),

by the uniform boundedness of gn in n and t and the dominated convergence theorem. Finally
thanks to the Jensen inequality,

E[| (L ∗ ((Kn −K) ∗ dY n))t |2] ≤ c sup
t≤T

E[| ((Kn −K) ∗ dY n)t |2].

From (7.5.1) and the linear growth of (b, σ), we deduce

sup
t≤T

E[| ((Kn −K) ∗ dY n)t |2] ≤ c

∫ T

0
|Kn(s) −K(s)|2ds,
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which goes to zero when n is large. Consequently, we send n to infinity in (7.5.3) and obtain
the following almost surely equality, for each t ∈ [0, T ],

(L ∗X)t = (L ∗ g)(t) +

∫ t

0
b(Xs)ds+Mt. (7.5.4)

Recall also that 〈M〉 =
∫ ·

0 σσ
∗(Xs)ds. Hence, by [101, Theorem V-3.9], there exists a m-

dimensional Brownian motion W such that

Mt =

∫ t

0
σ(Xs)dBs, t ∈ [0, T ].

The processes in (7.5.4) being continuous, we deduce that, almost surely,

(L ∗X)t = (L ∗ g)(t) +

∫ t

0
b(Xs)ds+

∫ t

0
σ(Xs)dBs, t ∈ [0, T ].

We convolve by K and use the associativity property (5.2.4) to get that, almost surely,

∫ t

0
Xsds =

∫ t

0
g(s)ds+

∫ t

0

(∫ s

0
K(s− u)(b(Xu)du+ σ(Xu)dBu)

)
ds, t ∈ [0, T ].

Finally it is easy to see that the processes above are differentiable and we conclude that X is
solution of the stochastic Volterra equation (7.3.11) by continuity after taking the derivative.

7.5.2 Proof of Theorem 7.7

Theorem 7.7 is easily obtained once we prove the tightness of (V n)n≥1 for the uniform
topology and that any limit point V is solution of the fractional stochastic integral equation
(7.1.2). This is a direct consequence of Theorem 7.8, by setting d = m = 1, g and gn

respectively as in (7.3.1) and (7.3.3), b(x) = −λx, K being the fractional kernel and Kn(t) =∑n
i=1 c

n
i e

−xn
i t its smoothed approximation. Under Assumption 7.3.1, (Kn)n≥1 converges

in L2([0, T ],R) to the fractional kernel, see Proposition 7.5. Hence, it is left to show the
pointwise convergence of (gn)n≥1 to g on [0, T ] and that (Kn, gn)n≥1 satisfies Assumption
7.3.2.

Lemma 7.12 (Convergence of gn). Define gn : [0, T ] 7→ R and g : [0, T ] 7→ R respectively by
(7.3.1) and (7.3.3) such that θ : [0, T ] 7→ R satisfies (7.2.1). Under assumption (7.3.1), we
have for any t ∈ [0, T ]

gn(t) → g(t),

as n tends to infinity.

Proof. Because θ satisfies (7.2.1), it is enough to show that for each t ∈ [0, T ]

∫ t

0
(t− s)− 1

2
−ε|Kn(s) −K(s)|ds (7.5.5)

converges to zero as n goes large, for some ε > 0 and Kn given by (7.3.4). Using the
representation of K as the Laplace transform of µ as in (7.1.3), we obtain that (7.5.5) is
bounded by

∫ t

0
(t− s)− 1

2
−ε
∫ ∞

ηn
n

e−xsµ(dx)ds+
n∑

i=1

∫ t

0
(t− s)− 1

2
−ε|cni e−xn

i s −
∫ ηn

i

ηn
i−1

e−xsµ(dx)|ds. (7.5.6)
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The first term in (7.5.6) converges to zero for large n by the dominated convergence theorem
because ηnn tends to infinity, see Assumption 7.3.1. Using the Taylor-Lagrange inequality
(7.3.7), the second term in (7.5.6) is dominated by

1

2

∫ t

0
(t− s)− 1

2
−εs2ds

n∑

i=1

∫ ηn
i

ηn
i−1

(x− xni )2µ(dx),

which goes to zero thanks to Assumption 7.3.1.

Lemma 7.13 (Kn satisfying Assumption 7.3.2). Under Assumption 7.3.1, there exists C > 0
such that, for any t, h ≥ 0 with t+ h ≤ T ,

sup
n≥1

(∫ T−h

0
|Kn(h+ s) −Kn(s)|2ds+

∫ h

0
|Kn(s)|2ds

)
≤ Ch2H ,

where Kn is defined by (7.3.4).

Proof. We start by proving that for any t, h ≥ 0 with t+ h ≤ T

∫ h

0
|Kn(s)|2ds ≤ ch2H . (7.5.7)

In fact we know that this inequality is satisfied for K(t) = tH−
1
2

Γ(H+1/2) . Thus it is enough to
prove

‖Kn −K‖2,h ≤ chH ,

where ‖ · ‖2,h stands for the usual L2([0, h],R) norm. Relying on the Laplace transform
representation of K given by (7.1.3), we obtain

‖Kn −K‖2,h ≤
∫ ∞

ηn
n

‖e−x(·)‖2,hµ(dx) +
n∑

i=1

Jni,h,

where Jni,h = ‖cni e−xn
i (·) − ∫ ηn

i
ηn

i−1
e−x(·)µ(dx)‖2,h. We start by bounding the first term,

∫ ∞

ηn
n

‖e−x(·)‖2,hµ(dx) ≤
∫ ∞

0

√
1 − e−2xh

2x
µ(dx)

=
hH

Γ(H + 1/2)Γ(1/2 −H)
√

2

∫ ∞

0

√
1 − e−2x

x
x−H− 1

2dx.

As in Section 7.3.2, we use the Taylor-Lagrange inequality (7.3.7) to get

n∑

i=1

Jni,h ≤ 1

2
√

5
h

5
2

n∑

i=1

∫ ηn
i

ηn
i−1

(x− xni )2µ(dx).

Using the boundedness of
(∑n

i=1

∫ ηn
i

ηn
i−1

(x−xni )2µ(dx)
)
n≥1

from Assumption 7.3.1, we deduce

(7.5.7). We now prove

∫ T−h

0
|Kn(h+ s) −Kn(s)|2ds ≤ ch2H . (7.5.8)
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In the same way, it is enough to show

‖(∆hK
n − ∆hK) − (Kn −K)‖2,T−h ≤ chH ,

Similarly to the previous computations, we get

‖(∆hK
n − ∆hK) − (Kn −K)‖2,T−h ≤

∫ ∞

ηn
n

‖e−x(·) − e−x(h+·)‖2,T−hµ(dx) +
n∑

i=1

J̃ni,h,

with J̃ni,h = ‖cni (e−xn
i (·) − e−xn

i (h+·)) − ∫ ηn
i

ηn
i−1

(e−x(·) − e−x(h+·))µ(dx)‖2,T−h. Notice that

∫ ∞

ηn
n

‖e−x(·) − e−x(h+·)‖2,T−hµ(dx) =

∫ ∞

ηn
n

(1 − e−xh)

√
1 − e−2x(T−h)

2x
µ(dx)

≤ c

∫ ∞

0
(1 − e−xh)x−H−1dx ≤ chH .

Moreover, fix h, t > 0 and set χ(x) = e−xt − e−x(t+h). The second derivative reads

χ′′(x) = h
(
t2xe−xt 1 − e−xh

xh
− he−x(t+h) − 2te−x(t+h)), x > 0. (7.5.9)

Because x 7→ xe−x and x 7→ 1−e−x

x are bounded functions on (0,∞), there exists C > 0
independent of t, h ∈ [0, T ] such that

|χ′′(x)| ≤ Ch, x > 0.

The Taylor-Lagrange formula, up to the second order, leads to

|cni (e−xn
i t − e−xn

i (t+h)) −
∫ ηn

i

ηn
i−1

(e−xt − e−x(t+h))µ(dx)| ≤ C

2
h

∫ ηn
i

ηn
i−1

(x− xni )2µ(dx).

Thus
n∑

i=1

J̃ni,h ≤ C

2
h

n∑

i=1

∫ ηn
i

ηn
i−1

(x− xni )2µ(dx).

Finally, (7.5.8) follows from the boundedness of
(∑n

i=1

∫ ηn
i

ηn
i−1

(x − xni )2µ(dx)
)
n≥1

due to As-

sumption 7.3.1.

Lemma 7.14 (gn satisfying Assumption 7.3.2). Define gn : [0, T ] 7→ R by (7.3.3) such that
θ : [0, T ] 7→ R satisfies (7.2.1). Under Assumption 7.3.1, for each ε > 0, there exists Cε > 0
such that for any t, h ≥ 0 with t+ h ≤ T

sup
n≥1

|gn(t) − gn(t+ h)| ≤ Cεh
H−ε.

Proof. Because θ satisfies (7.2.1), it is enough to prove that, for each fixed ε > 0, there exists
C > 0 such that

sup
n≥1

∫ h

0
(h− s)− 1

2
−ε|Kn(s)|ds ≤ ChH−ε, (7.5.10)

and

sup
n≥1

∫ t

0
(t− s)− 1

2
−ε|Kn(s) −Kn(h+ s)|ds ≤ ChH−ε, (7.5.11)
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for any t, h ≥ 0 with t+ h ≤ T . (7.5.10) being satisfied for the fractional kernel, it is enough
to establish ∫ h

0
(h− s)− 1

2
−ε|Kn(s) −K(s)|ds ≤ chH−ε.

In the proof of Lemma 7.12, it is shown that

∫ h

0
(h− s)− 1

2
−ε|Kn(s) −K(s)|ds

is bounded by (7.5.6), that is

∫ h

0
(h− s)− 1

2
−ε
∫ ∞

ηn
n

e−xsµ(dx)ds+
n∑

i=1

∫ h

0
(h− s)− 1

2
−ε|cni e−xn

i s −
∫ ηn

i

ηn
i−1

e−xsµ(dx)|ds.

The first term is dominated by

∫ h

0
(h− s)− 1

2
−ε
∫ ∞

0
e−xsµ(dx)ds = hH−ε B(1/2 − ε,H + 1/2)

B(1/2 −H,H + 1/2)
,

where B is the usual Beta function. Moreover thanks to (7.3.7) and Assumption 7.3.1, we
get

n∑

i=1

∫ h

0
(h− s)− 1

2
−ε|cni e−xn

i s −
∫ ηn

i

ηn
i−1

e−xsµ(dx)|ds ≤ ch
5
2

−ε,

yielding (7.5.10). Similarly, we obtain (7.5.11) by showing that

∫ t

0
(t− s)− 1

2
−ε |(Kn(s) − ∆hK

n(s)) − (K(s) − ∆hK(s))| ds ≤ chH−ε.

By similar computations as previously and using (7.5.9), we get that

∫ t

0
(t− s)− 1

2
−ε |(Kn(s) − ∆hK

n(s)) − (K(s) − ∆hK(s))| ds

is dominated by

c

(∫ t

0
(t− s)

1
2

−ε
∫ ∞

ηn
n

(1 − e−xh)e−xsµ(dx)ds+ h
n∑

i=1

∫ ηn
i

ηn
i−1

(x− xni )2µ(dx)

)
.

The first term being bounded by

∫ t

0
(t− s)

1
2

−ε
∫ ∞

0
(1 − e−xh)e−xsµ(dx)ds =

∫ t

0
(t− s)

1
2

−ε(K(s) −K(h+ s))ds ≤ chH−ε,

Assumption 7.3.1 leads to (7.5.11).

7.5.3 Proof of Theorem 7.9

Uniform boundedness : We start by showing the uniform boundedness of the unique
continuous solutions (ψn(·, a+ ib))n≥1 of (7.4.4).
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Proposition 7.15. For a fixed T > 0, there exists C > 0 such that

sup
n≥1

sup
t∈[0,T ]

|ψn(t, a+ ib)| ≤ C
(
1 + b2

)
,

for any a ∈ [0, 1] and b ∈ R.

Proof. Let z = a+ ib and start by noticing that ℜ(ψn(·, z)) is non-positive because it solves
the following linear Volterra equation with continuous coefficients

χ = Kn ∗
(
f +

(
ρνℜ(z) − λ+

ν2

2
ℜ(ψn(·, z))

)
χ

)
,

where

f =
1

2

(
a2 − a− (1 − ρ2)b2

)
− 1

2
(ρb+ νψn(·, z))2

is continuous non-positive, see Theorem 7.25. In the same way ℜ(ψ(·, z)) is also non-positive.
Moreover, observe that ψn(·, z) solves the following linear Volterra equation with continuous
coefficients

χ = Kn ∗
(

1

2
(z2 − z) + (ρνz − λ+

ν2

2
ψn(·, z))χ

)
,

and

ℜ
(
ρνz − λ+

ν2

2
ψn(·, z)

)
≤ ν − λ.

Therefore, Corollary 7.28 leads to

sup
t∈[0,T ]

|ψn(t, z)| ≤ 1

2
|z2 − z|

∫ T

0
Enν−λ(s)ds,

where Enν−λ denotes the canonical resolvent of Kn with parameter ν − λ, see Section 7.6
below. This resolvent converges in L1([0, T ],R) because Kn converges in L1([0, T ],R) to K,
see [69, Theorem 2.3.1]. Hence, (

∫ T
0 Enν−λ(s)ds)n≥1 is bounded, which ends the proof.

End of the proof of Theorem 7.9 : Set z = a+ ib and recall that

ψn(·, z) = Kn ∗ F (z, ψn(·, z)); ψ(·, z) = K ∗ F (z, ψ(·, z)).

with F (z, x) = 1
2

(
z2 − z

)
+ (ρνz − λ)x+ ν2

2 x
2. Hence, for t ∈ [0, T ],

ψ(t, z) − ψn(t, z) = hn(t, z) +K ∗ (F (z, ψ(·, z)) − F (z, ψn(·, z)))(t),

with hn(·, z) = (Kn −K) ∗ F (z, ψn(·, z)). Thanks to Proposition 7.15, we get the existence
of a positive constant C such that

sup
n≥1

sup
t∈[0,T ]

|hn(t, a+ ib)| ≤ C(1 + b4)

∫ T

0
|Kn(s) −K(s)|ds, (7.5.12)

for any b ∈ R and a ∈ [0, 1]. Moreover notice that (ψ − ψn − hn)(·, z) is solution of the
following linear Volterra equation with continuous coefficients

χ = K ∗
(
(
ρνz − λ+

ν2

2
(ψ + ψn)(·, z))(χ+ hn(·, z))

)
,
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and remark that the real part of ρνz − λ + ν2

2 (ψ + ψn)(·, z) is dominated by ν − λ because
ℜ(ψ(·, z)) and ℜ(ψn(·, z)) are non-positive. An application of Corollary 7.28 together with
(7.5.12) ends the proof.

7.5.4 Proof of Proposition 7.10

We consider for each n ≥ 1, (Sn, V n) defined by the multi-factor Heston model in Definition
7.4 with σ(x) = ν

√
x.

Tightness of (
∫ ·

0 V
n
s ds,

∫ ·
0

√
V n
s dBs,

∫ ·
0

√
V n
s dWs)n≥1 : Because the process

∫ ·
0 V

n
s ds is non-

decreasing, it is enough to show that

sup
n≥1

E[

∫ T

0
V n
t dt] < ∞, (7.5.13)

to obtain its tightness for the uniform topology. Recalling that supt∈[0,T ] E[V n
t ] < ∞ from

(7.7.2) below, we get

E

[∫ t

0

√
V n
s dWs

]
= 0,

and then by Fubini theorem

E[V n
t ] = gn(t) +

n∑

i=1

cni E[Un,it ],

with

E[Un,it ] =

∫ t

0
(−xni E[Un,is ] − λE[V n

s ])ds.

Thus t 7→ E[V n
t ] solves the following linear Volterra equation

χ(t) =

∫ t

0
Kn(t− s)

(
−λχ(s) + θ(s) + V0

s−H− 1
2

Γ(1/2 −H)

)
ds,

with Kn given by (7.3.4). Theorem 7.18 below leads to

E[V n
t ] =

∫ t

0
Enλ (t− s)

(
θ(s) + V0

s−H− 1
2

Γ(1
2 −H)

)
ds,

and then by Fubini theorem again

∫ t

0
E[V n

s ]ds =

∫ t

0

(∫ t−s

0
Enλ (u)du

)(
θ(s) + V0

s−H− 1
2

Γ(1
2 −H)

)
ds,

where Enλ is the canonical resolvent of Kn with parameter λ, defined in Section 7.6. Be-
cause (Kn)n≥1 converges to the fractional kernel K in L1([0, T ],R), we obtain the conver-
gence of Enλ in L1([0, T ],R) to the canonical resolvent of K with parameter λ, see [69,
Theorem 2.3.1]. In particular thanks to Corollary 7.26 below,

∫ t
0 E

n
λ (s)ds is uniformly

bounded in t ∈ [0, T ] and n ≥ 1. This leads to (7.5.13) and then to the tightness of
(
∫ ·

0 V
n
s ds,

∫ ·
0

√
V n
s dBs,

∫ ·
0

√
V n
s dWs)n≥1 by [77, Theorem VI-4.13].

Convergence of (Sn,
∫ ·

0 V
n
s ds)n≥1 : We set Mn,1

t =
∫ t

0

√
V n
s dBs and Mn,2

t =
∫ t

0

√
V n
s dWs.

Denote by (X,M1,M2) a limit in law for the uniform topology of a subsequence of the tight
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family (
∫ ·

0 V
n
s ds,M

n,1,Mn,2)n≥1. An application of stochastic Fubini theorem, see [111],
yields

∫ t

0
V n
s ds =

∫ t

0

∫ t−s

0
(Kn(u) −K(u))dudY n

s +

∫ t

0
K(t− s)Y n

s ds, t ∈ [0, T ], (7.5.14)

where Y n
t =

∫ t
0(s−H− 1

2
V0

Γ(1/2−H) + θ(s) −λV n
s )ds+ νMn,2

t . Because (Y n)n≥1 converges in law

for the uniform topology to Y = (Yt)t≤T given by Yt =
∫ t

0(s−H− 1
2

V0

Γ( 1
2

−H)
+ θ(s))ds− λXt +

νM2
t , we also get the convergence of (

∫ ·
0 K(· − s)Y n

s ds)n≥1 to
∫ ·

0 K(· − s)Ysds. Moreover, for
any t ∈ [0, T ],

∣∣∣∣∣

∫ t

0

∫ t−s

0
(Kn(u) −K(u))du

(
s−H− 1

2
V0

Γ(1
2 −H)

+ θ(s) − λV n
s

)
ds

∣∣∣∣∣

is bounded by

∫ t

0
|Kn(s) −K(s)|ds

(∫ t

0
(s−H− 1

2
V0

Γ(1
2 −H)

+ θ(s))ds+ λ

∫ t

0
V n
s ds

)
,

which converges in law for the uniform topology to zero thanks to the convergence of
(
∫ ·

0 V
n
s ds)n≥1 together with Proposition 7.5. Finally,

E

[∣∣∣∣
∫ t

0

∫ t−s

0
(Kn(u) −K(u))dudMn,2

s

∣∣∣∣
2
]

≤ c

∫ T

0
(Kn(s) −K(s))2dsE

[∫ t

0
V n
s ds

]
,

which goes to zero thanks to (7.5.13) and Proposition 7.5. Hence, by passing to the limit in
(7.5.14), we obtain

Xt =

∫ t

0
K(t− s)Ysds,

for any t ∈ [0, T ], almost surely. The processes being continuous, the equality holds on
[0, T ]. Then, by the stochastic Fubini theorem, we deduce that X =

∫ ·
0 Vsds, where V is a

continuous process defined by

Vt =

∫ t

0
K(t− s)dYs = V0 +

∫ t

0
K(t− s)(θ(s) − λVs)ds+ ν

∫ t

0
K(t− s)dM2

s .

Furthermore because (Mn,1,Mn,2) is a martingale with bracket

∫ ·

0
V n
s ds

(
1 ρ
ρ 1

)
,

[77, Theorem VI-6.26] implies that (M1,M2) is a local martingale with the following bracket

∫ ·

0
Vsds

(
1 ρ
ρ 1

)
.

By [101, Theorem V-3.9], there exists a two-dimensional Brownian motion (W̃ , B̃) with
d〈W̃ , B̃〉t = ρdt such that

M1
t =

∫ t

0

√
VsdW̃s, M2

t =

∫ t

0

√
VsdB̃s, t ∈ [0, T ].
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In particular V is solution of the fractional stochastic integral equation in Definition 7.1
with σ(x) = ν

√
x. Because Sn = exp(Mn,1 − 1

2

∫ ·
0 V

n
s ds), we deduce the convergence of

(Sn,
∫ ·

0 V
n
s ds)n≥1 to the limit point (S,

∫ ·
0 Vsds) that displays the rough-Heston dynamics of

Definition 7.1. The uniqueness of such dynamics, recall Chapters 5 and 6, enables us to
conclude that (Sn, V n)n≥1 admits a unique limit point and hence converges to the rough
Heston dynamics.

7.5.5 Proof of Proposition 7.11

We use the Lewis Fourier inversion method, see [87], to write

Cn(k, T ) − C(k, T ) = S0
e

k
2

2π

∫

b∈R

e−ibk

b2 + 1
4

(
L(T,

1

2
+ ib) − Ln(T,

1

2
+ ib)

)
dW.

Hence,

|Cn(k, T ) − C(k, T )| ≤ S0
e

k
2

2π

∫

b∈R

1

b2 + 1
4

∣∣∣∣L(T,
1

2
+ ib) − Ln(T,

1

2
+ ib)

∣∣∣∣ dW. (7.5.15)

Because L(T, z) and Ln(T, z) satisfy respectively the formulas (7.4.1) and (7.4.3) with g and
gn given by

g(t) =

∫ t

0
K(t−s)(V0

s−H− 1
2

Γ(1/2 −H)
+θ(s)

)
ds, gn(t) =

∫ t

0
Kn(t−s)(V0

s−H− 1
2

Γ(1/2 −H)
+θ(s)

)
ds,

and ψ(·, z) and ψn(·, z) solve respectively (7.4.2) and (7.4.4), we use the Fubini theorem to
deduce that

L(T, z) = exp

(∫ T

0
ψ(T − s, z)

(
V0

s−H− 1
2

Γ(1/2 −H)
+ θ(s)

)
ds

)
, (7.5.16)

and

Ln(T, z) = exp

(∫ T

0
ψn(T − s, z)

(
V0

s−H− 1
2

Γ(1/2 −H)
+ θ(s)

)
ds

)
, (7.5.17)

with z = 1/2 + ib. Therefore, relying on the local Lipschitz property of the exponential
function, it suffices to find an upper bound for ℜ(ψn(·, z)) in order to get an error for the
price of the call from (7.5.15). This is the object of the next proposition.

Upper bound of ℜ(ψn(·, z)) : We denote by φnη (·, b) the unique continuous function satis-
fying the following Riccati Volterra equation

φnη (·, b) = Kn ∗
(

−b+ ηφnη (·, b) +
ν2

2
φnη (·, b)2

)
,

with b ≥ 0 and η, ν ∈ R.

Proposition 7.16. Fix b0, t0 ≥ 0 and η ∈ R. The functions b 7→ φnη (t0, b) and t 7→ φnη (t, b0)
are non-increasing on R+. Furthermore

φnη (t, b) ≤
1 −

√
1 + 2bν2(

∫ t
0 E

n
η (s)ds)2

ν2
∫ t

0 E
n
η (s)ds

, t > 0,
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where Enη is the canonical resolvent of Kn with parameter η defined in Section 7.6 below.

Proof. The claimed monotonicity of b 7→ φnη (t0, b) is directly obtained from Theorem 7.25.
Consider now h, b0 > 0. It is easy to see that ∆hφ

n
η (·, b0) solves the following Volterra

equation

∆hφ
n
η (b0, t) =

(
∆tK

n ∗ F (φnη (·, b0))
)

(h) +
(
Kn ∗ F (∆hφ

n
η (·, b0))

)
(t)

with F (b, x) = −b+ηx+ ν2

2 x
2. Notice that t → −

(
∆tK

n ∗ F (φnη (·, b0))
)

(h) ∈ GK , as defined

in (6.2.5), thanks to Theorem 7.25 below. φnη (·, b)−∆hφ
n
η (·, b) being solution of the following

linear Volterra integral equation with continuous coefficients,

x(t) = −
(
∆tK

n ∗ F (b, φnη (·, b0))
)

(h) +

(
Kn ∗

((
η +

ν2

2
(φnη (·, b) + ∆hφ

n
η (·, b))

)
x

))
(t),

we deduce its non-negativity using again Theorem 7.25. Thus, t ∈ R+ → φnη (t, b0) is non-
increasing and consequently sups∈[0,t] |φη(s, b)| = |φnη (t, b0)| as φnη (0, b) = 0. Hence, Theorem
7.18 below leads to

φnη (t, b) =

∫ t

0
Enη (t− s)(−b+

ν2

2
φnη (s, b)2) ≤

∫ t

0
Enη (s)ds

(
−b+

ν2

2
φnη (t, b)2

)
.

We end the proof by solving this inequality of second order in φnη (t, b) and using that φnη is

non-positive. Notice that
∫ t

0 E
n
η (s)ds > 0 for each t > 0, see Corollary 7.26 below.

Corollary 7.17. Fix a ∈ [0, 1]. We have, for any t ∈ (0, T ] and b ∈ R,

sup
n≥1

ℜ(ψn(t, a+ ib)) ≤ 1 −
√

1 + (a− a2 + (1 − ρ2)b2)ν2m(t)2

ν2m(t)

where m(t) = infn≥1
∫ t

0 E
n
ρνa−λ(s)ds > 0 for all t ∈ (0, T ] and Enη is the canonical resolvent

of Kn with parameter η defined in Section 7.6.

Proof. Let r = a− a2 + (1 − ρ2)b2 and η = ρνa− λ. φnη (·, r) − ℜ(ψn(·, a+ ib)) being solution
of the following linear Volterra equation with continuous coefficients

χ = K ∗
(

1

2
(ρb+ νℑ(ψn(·, a+ ib)))2 +

(
ρνa− λ+

ν2

2
(ℜ(ψn(·, a+ ib)) + φη(·, r))

)
χ

)
,

we use Theorem 7.25 together with Proposition 7.16 to get, for all t ∈ [0, T ] and b ∈ R,

ℜ(ψn(t, a+ ib)) ≤
1 −

√
1 + 2rν2(

∫ t
0 E

n
η (s)ds)2

ν2
∫ t

0 E
n
η (s)ds

. (7.5.18)

Moreover for any t ∈ [0, T ],
∫ t

0 E
n
η (s)ds converges as n goes to infinity to

∫ t
0 Eη(s)ds because

Kn converges to K in L1([0, T ],R), see [69, Theorem 2.3.1], where Eη denotes the canonical
resolvent of K with parameter η. Therefore, m(t) = infn≥1

∫ t
0 E

n
η (s)ds > 0, for all t ∈ (0, T ],

because
∫ t

0 Eη(s)ds > 0 and
∫ t

0 E
n
η (s)ds > 0 for all n ≥ 1, see Corollary 7.26. Finally we end

the proof by using (7.5.18) together with the fact that x 7→ 1−
√

1+2rν2x2

ν2x
is non-increasing on

(0,∞).
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End of the proof of Proposition 7.11 : Assume that |ρ| < 1 and fix a = 1/2. By
dominated convergence theorem,

∫ T

0

1 −
√

1 + (a− a2 + (1 − ρ2)b2)ν2m(T − s)2

ν2m(T − s)
(θ(s) + V0

s−H− 1
2

Γ(1
2 −H)

)ds

is equivalent to

−|b|
√

1 − ρ2

ν

∫ T

0
(θ(s) + V0

s−H− 1
2

Γ(1
2 −H)

)ds,

as b tends to infinity. Hence, thanks to Corollary 7.17, there exists C > 0 such that for any
b ∈ R

sup
n≥1

ℜ(ψn(t, a+ ib)) ≤ C(1 − |b|). (7.5.19)

Recalling that

∀z1, z2 ∈ C such that ℜ(z1),ℜ(z2) ≤ c, |ez1 − ez2 | ≤ ec|z1 − z2|,

we obtain

|Ln(a+ib, T )−L(a+ib, T )| ≤ eC(1−|b|)sup
t∈[0,T ]

|ψn(t, a+ib)−ψ(t, a+ib)|
∫ T

0
(θ(s)+V0

s−H− 1
2

Γ(1
2 −H)

)ds,

from (7.5.16), (7.5.17) and (7.5.19). We deduce Proposition 7.11 thanks to (7.5.15) and

Theorem 7.9 together with the fact that
∫
b∈R

b4+1
b2+ 1

4

eC(1−|b|)dW < ∞.

7.6 Resolvent of the second kind

We recall some properties of the resolvent of the second kind. We consider a kernel K ∈
L1

loc(R+,R) and define the resolvent of the second kind of K as the unique function RK ∈
L1

loc(R+,R) such that
K −RK = K ∗RK .

For λ ∈ R, we define the canonical resolvent of K with parameter λ as the unique solution
Eλ ∈ L1

loc(R+,R) of
Eλ −K = λK ∗ Eλ.

This means that Eλ = −R−λK/λ, when λ 6= 0 and E0 = K. The existence and uniqueness of
RK and Eλ is ensured by [69, Theorem 2.3.1] together with the continuity of K → Eλ(K) in
the topology of L1

loc(R+,R). Moreover, if K ∈ L2
loc(R+,R) so does Eλ due to [69, Theorem

2.3.5].

We recall [69, Theorem 2.3.5] regarding the existence and uniqueness of a solution of linear
Volterra integral equations in L1

loc(R+,R).

Theorem 7.18. Let f ∈ L1
loc(R+,R). The integral equation

x = f + λK ∗ x

admits a unique solution x ∈ L1
loc(R+,R) given by

x = f + λEλ ∗ f.
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When K and λ are positive, Eλ is also positive, see [69, Proposition 9.8.1]. In that case, we
have a Grönwall type inequality given by [69, Lemma 9.8.2].

Lemma 7.19. Let x, f ∈ L1
loc(R+,R) such that

x(t) ≤ (λK ∗ x)(t) + f(t), t ≥ 0, a.e.

Then,
x(t) ≤ f(t) + (λEλ ∗ f)(t), t ≥ 0, a.e.

Note that the definition of the resolvent of the second kind and canonical resolvent can be
extended for matrix-valued kernels. In that case, Theorem 7.18 still holds.

Remark 7.20. The canonical resolvent of the fractional kernel K(t) = tH−
1
2

Γ(H+1/2) with param-
eter λ is given by

tα−1Eα(−λtα),

where Eα(x) =
∑
k≥0

xk

Γ(α(k+1)) is the Mittag-Leffler function and α = H + 1/2 for H ∈
(0, 1/2).

7.7 Additional existence results for stochastic Volterra equa-

tions

We derive additional existence results for stochastic Volterra equations extending those of
the previous chapters. We fix T > 0 and consider the d-dimensional stochastic Volterra
equation

Xt = g(t) +

∫ t

0
K(t− s)b(Xs)ds+

∫ t

0
K(t− s)σ(Xs)dWs, t ∈ [0, T ], (7.7.1)

where b : Rd 7→ Rd, σ : Rd 7→ Rd×m are continuous functions with linear growth, K ∈
L2([0, T ],Rd×d) is a kernel admitting a resolvent of the first kind L, g : [0, T ] 7→ Rd is a
continuous function and W is a m-dimensional Brownian motion on a filtered probability
space (Ω,F ,F,P). Recall that under the following regularity assumption:

Assumption 7.7.1. There exists γ > 0 and C > 0 such that for any t, h ≥ 0 with t+ h ≤ T ,

|g(t+ h) − g(t)|2 +

∫ h

0
|K(s)|2ds+

∫ T−h

0
|K(h+ s) −K(s)|2ds ≤ Ch2γ .

(7.7.1) admits a continuous weak solutionX = (Xt)t≤T thanks to Theorem 6.10(ii). Moreover
X satisfies

sup
t∈[0,T ]

E[|Xt|p] < ∞, p > 0, (7.7.2)

and admits Hölder continuous paths on [0, T ] of any order strictly less than γ.

In particular, for the fractional kernel, this yields the following result.

Corollary 7.21. Fix H ∈ (0, 1/2) and θ : [0, T ] 7→ R satisfying

∀ε > 0, ∃Cε > 0; ∀u ∈ (0, T ] |θ(u)| ≤ Cεu
− 1

2
−ε.
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The fractional stochastic integral equation

Xt = X0+
1

Γ(H + 1/2)

∫ t

0
(t−u)H− 1

2 (θ(u)+b(Xu))du+
1

Γ(H + 1/2)

∫ t

0
(t−u)H− 1

2σ(Xu)dWu,

admits a weak continuous solution X = (Xt)t≤T for any X0 ∈ R. Moreover X satisfies
(7.7.2) and admits Hölder continuous paths on [0, T ] of any order strictly less than H.

Proof. It is enough to notice that the fractional stochastic integral equation is a particular

case of (7.7.1) with d = m = 1, K(t) = tH−
1
2

Γ(H+1/2) the fractional kernel, which admits a
resolvent of the first kind, recall Table 5.1, and

g(t) = X0 +
1

Γ(1/2 +H)

∫ t

0
(t− u)H−1/2θ(u)du.

As t 7→ t1/2+εθ(t) is bounded on [0, T ], we may show that g is H − ε Hölder continuous for
any ε > 0. Hence, Assumption 7.7.1 is satisfied yielding the claimed result.

We now establish the strong existence and uniqueness of (7.7.1) in the particular case of
smooth kernels. This is done by extending the Yamada-Watanabe pathwise uniqueness proof
in [115].

Proposition 7.22. Fix m = d = 1 and assume that g is Hölder continuous, K ∈ C1([0, T ],R)
admitting a resolvent of the first kind and that there exists C > 0 and η ∈ [1/2, 1] such that
for any x, y ∈ R,

|b(x) − b(y)| ≤ C|x− y|, |σ(x) − σ(y)| ≤ C|x− y|η.

Then, the stochastic Volterra equation (7.7.1) admits a unique strong continuous solution.

Proof. We start by noticing that, K being smooth, it satisfies Assumption 7.7.1 yielding the
existence of a weak continuous solution to (7.7.1). It is therefore enough to prove pathwise
uniqueness. We proceed similarly to [115] by considering a0 = 1, ak−1 > ak for k ≥ 1 with∫ ak−1
ak

x−2ηdx = k and ϕk ∈ C2(R,R) such that ϕk(x) = ϕk(−x), ϕk(0) = 0 and for x > 0

• ϕ′
k(x) = 0 for x ≤ ak, ϕ

′
k(x) = 1 for x ≥ ak−1 and ϕ′

k(x) ∈ [0, 1] for ak < x < ak−1,

• ϕ′′
k(x) ∈ [0, 2

kx
−2η] for ak < x < ak−1.

Let X1 and X2 be two solutions of (7.7.1) driven by the same Brownian motion W . Notice
that, thanks to the smoothness of K, Xi − g are semimartingales and for i = 1, 2

d(Xi
t − g(t)) = K(0)dY i

t + (K ′ ∗ dY i)t dt,

with Y i
t =

∫ t
0 b(X

i
s)ds+

∫ t
0 σ(Xi

s)dWs. Using Itô’s formula, we write

ϕk(X
2
t −X1

t ) = I1
t + I2

t + I3
t ,

where

I1
t = K(0)

∫ t

0
ϕ′
k(X

2
s −X1

s )d(Y 1
s − Y 2

s ),
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I2
t =

∫ t

0
ϕ′
k(X

2
s −X1

s )(K ′ ∗ d(Y 1 − Y 2))sds,

I3
t =

K(0)2

2

∫ t

0
ϕ′′
k(X

2
s −X1

s )(σ(X2
s ) − σ(X1

s ))2ds.

Recalling that supt≤T E[(Xi
t)

2] < ∞ for i = 1, 2 from (7.7.2), we obtain that

E[I1
t ] ≤ E[K(0)

∫ t

0
|b(X2

s ) − b(X1
s )|ds] ≤ c

∫ t

0
E[|X2

s −X1
s |]ds,

and

E[I2
t ] ≤ c

∫ t

0
E[(|K ′| ∗ |b(X2) − b(X1)|)s]ds ≤ c

∫ t

0
E[|X2

s −X1
s |]ds,

because b is Lipschitz continuous and K ′ is bounded on [0, T ]. Finally by definition of ϕk
and the η-Hölder continuity of σ, we have

E[I3
t ] ≤ c

k
,

which goes to zero when k is large. Moreover E[ϕk(X
2
t − X1

t )] converges to E[|X2
t − X1

t |]
when k tends to infinity, thanks to the monotone convergence theorem. Thus, we pass to the
limit and obtain

E[|X2
t −X1

t |] ≤ c

∫ t

0
E[|X2

s −X1
s |]ds.

Grönwall’s lemma leads to E[|X2
t −X1

t |] = 0 yielding the claimed pathwise uniqueness.

Under additional conditions on g andK, one can obtain the existence of nonnegative solutions
to (7.7.1) in the case of d = m = 1. As in Theorem 6.11, the following assumption is needed.

Assumption 7.7.2. We assume that K ∈ L2([0, T ],R) is nonnegative, non-increasing and
continuous on (0, T ]. We also assume that its resolvent of the first kind L is nonnegative and
non-increasing in the sense that 0 ≤ L([s, s+ t]) ≤ L([0, t]) for all s, t ≥ 0 with s+ t ≤ T .

Then, for a wide class of admissible input curves g belonging to the set GK as defined in
(6.2.5), Theorem 6.11 yields the existence of a nonnegative solution X.

Remark 7.23. Note that any locally square-integrable completely monotone kernel6 that is
not identically zero satisfies Assumption 7.7.2, see Example 5.13. In particular, this is the
case for

• the fractional kernel K(t) = tH−1/2

Γ(H+1/2) , with H ∈ (0, 1/2).

• any weighted sum of exponentials K(t) =
∑n
i=1 cie

−xit such that ci, xi ≥ 0 for all
i ∈ {1, . . . , n} and ci > 0 for some i.

Remark 7.24. Theorem 6.11 will be used with functions g of the following form

g(t) = c+

∫ t

0
K(t− s)ξ(ds),

where ξ is a nonnegative measure of locally bounded variation and c is a nonnegative constant.
In that case, we may show that g belongs to GK , under Assumption 7.7.2.

6Recall that a kernel K ∈ L2
loc(R+,R) is said to be completely monotone, if it is infinitely differentiable

on (0, ∞) such that (−1)jK(j)(t) ≥ 0 for any t > 0 and j ≥ 0.
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7.8 Linear Volterra equation with continuous coefficients

In this section, we consider K ∈ L2
loc(R+,R) satisfying Assumption 7.7.2 with T = ∞ and

recall the definition of GK , that is

GK = {g : R+ 7→ R continuous satisfying (8.6.4) and g(0) ≥ 0} .

We denote by ‖.‖∞,T the usual uniform norm on [0, T ], for each T > 0.

Theorem 7.25. Let K ∈ L2
loc(R+,R) satisfying Assumption 7.7.2 and g, z, w : R+ 7→ R be

continuous functions. The linear Volterra equation

χ = g +K ∗ (zχ+ w) (7.8.1)

admits a unique continuous solution χ. Furthermore if g ∈ GK and w is nonnegative, then
χ is nonnegative and

∆t0χ = gt0 +K ∗ (∆t0z∆t0χ+ ∆t0w)

with gt0(t) = ∆t0g(t) + (∆tK ∗ (zχ+ w))(t0) ∈ GK , for all for t0, t ≥ 0.

Proof. The existence and uniqueness of such solution in χ ∈ L1
loc(R+,R) is obtained from

Lemma 5.35. Because χ is solution of (7.8.1), it is enough to show the local boundedness
of χ to get its continuity. This follows from Grönwall’s Lemma 7.19 applied on the following
inequality

|χ(t)| ≤ ‖g‖∞,T + (K ∗ (‖z‖∞,T |χ|(·) + ‖w‖∞,T )) (t),

for any t ∈ [0, T ] and for a fixed T > 0.

We assume now that g ∈ GK and w is nonnegative. The fact that gt0 ∈ GK , for t0 ≥ 0, is
proved by adapting the computations of the proof of Theorem 6.4 with ν = 0 provided that
χ is nonnegative. In order to establish the non-negativity of χ, we introduce, for each ε > 0,
χε as the unique continuous solution of

χε = g +K ∗ (zχε + w + ε) . (7.8.2)

It is enough to prove that χε is nonnegative, for every ε > 0, and that (χε)ε>0 converges
uniformly on every compact to χ as ε goes to zero.

Positivity of χε :It is easy to see that χε is nonnegative on a neighborhood of zero because,
for small t,

χε(t) = g(t) + (z(0)g(0) + w(0) + ε)

∫ t

0
K(s)ds+ o(

∫ t

0
K(s)ds),

as χ, z and w are continuous functions. Hence, t0 = inf{t > 0; χε(t) < 0} is positive. If we
assume that t0 < ∞, we get χε(t0) = 0 by continuity of χε. χε being the solution of (7.8.2),
we have

∆t0χε = gt0,ε +K ∗ (∆t0z∆t0χε + ∆t0w + ε),

with gt0,ε(t) = ∆t0g(t)+(∆tK∗(zχε+w+ε))(t0). Then, by using Lemma 5.6 with F = ∆tK,
we obtain

gt0,ε(t) = ∆t0g(t) − (d(∆tK ∗ L) ∗ g)(t0) − (∆tK ∗ L)(0)g(t0)

+ (d(∆tK ∗ L) ∗ χε)(t0) + (∆tK ∗ L)(0)χε(t0),
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which is continuous and nonnegative, because g ∈ GK and ∆tK ∗L is non-decreasing for any
t ≥ 0, see Remark 5.7. Hence, in the same way, ∆t0χε is nonnegative on a neighborhood of
zero. Thus t0 = ∞, which means that χε is nonnegative.

Uniform convergence of χε : We use the following inequality

|χ− χε|(t) ≤ (K ∗ (‖z‖∞,T |χ− χε| + ε)) (t), t ∈ [0, T ],

together with the Gronwall Lemma 7.19 to show the uniform convergence on [0, T ] of χε to
χ as ε goes to zero. In particular, χ is also nonnegative.

Corollary 7.26. Let K ∈ L2
loc(R+,R) satisfying Assumption 7.7.2 and define Eλ as the

canonical resolvent of K with parameter λ ∈ R − {0}. Then, t 7→ ∫ t
0 Eλ(s)ds is nonnegative

and non-decreasing on R+. Furthermore
∫ t

0 Eλ(s)ds is positive, if K does not vanish on [0, t]

Proof. The non-negativity of χ =
∫ ·

0 Eλ(s)ds is obtained from Theorem 7.25 and from the
fact that χ is solution of the following linear Volterra equation

χ = K ∗ (λχ+ 1),

by Theorem 7.18. For fixed t0 > 0, ∆t0χ satisfies

∆t0χ = gt0 +K ∗ (λ∆t0χ+ 1),

with gt0(t) =
(
∆tK ∗ (λ∆t0χ + 1)

)
(t0) ∈ GK , see Theorem 7.25. It follows that ∆t0χ − χ

solves
x = gt0 +K ∗ (λx).

Hence, another application of Theorem 7.25 yields that χ ≤ ∆t0χ, proving that t →∫ t
0 Eλ(s)ds is non-decreasing.

We now provide a version of Theorem 7.25 for complex valued solutions.

Theorem 7.27. Let z, w : R+ 7→ C be continuous functions and h0 ∈ C. The following
linear Volterra equation

h = h0 +K ∗ (zh+ w)

admits unique continuous solution h : R+ 7→ C such that

|h(t)| ≤ ψ(t), t ≥ 0,

where ψ : R+ 7→ R is the unique continuous solution of

ψ = |h0| +K ∗ (ℜ(z)ψ + |w|).

Proof. The existence and uniqueness of a continuous solution is obtained in the same way
as in the proof of Theorem 7.25. Consider now, for each ε > 0, ψε the unique continuous
solution of

ψε = |h0| +K ∗ (ℜ(z)ψ + |w| + ε).

As done in the proof of Theorem 7.25, ψε converges uniformly on every compact to ψ as ε
goes to zero. Thus, it is enough to show that, for every ε > 0 and t ≥ 0,

|h(t)| ≤ ψε(t).
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We start by showing the inequality in a neighborhood of zero. Because z, h, w and ψε are
continuous, we get, taking h0 = 0,

|h(t)| = |w(0)|
∫ t

0
K(s)ds+ o(

∫ t

0
K(s)ds), ψε(t) = (|w(0)| + ε)

∫ t

0
K(s)ds+ o(

∫ t

0
K(s)ds),

for small t. Hence, |h| ≤ ψε on a neighborhood of zero. This result still holds when h0 is not
zero. Indeed in that case, it is easy to show that for t going to zero,

|h(t)|2 = |h0|2 + 2ℜ(h0(z(0)h0 + w(0))
) ∫ t

0
K(s)ds+ o(

∫ t

0
K(s)ds),

and

|ψε(t)|2 = |h0|2 + 2
(ℜ(z(0))|h0|2 + |w(0)||h0| + ε|h0|))

∫ t

0
K(s)ds+ o(

∫ t

0
K(s)ds).

As |h0| is now positive, we conclude that |h| ≤ ψε on a neighborhood of zero by the Cauchy-
Schwarz inequality.

Hence, t0 = inf{t > 0; ψε(t) < |h(t)|} is positive. If we assume that t0 < ∞, we would get
that |h(t0)| = ψε(t0) by continuity of h and ψε. Moreover,

∆t0h = φh +K ∗ (∆t0z∆t0h+ ∆t0w),

and
∆t0ψε = φψε +K ∗ (∆t0ℜ(z)∆t0w + ∆t0 |w| + ε).

An application of Lemma 5.6 with F = ∆tK for t > 0, yields

φh(t) = h0(1 − (∆tK ∗ L)(t0)) + (d(∆tK ∗ L) ∗ h)(t0) + (∆tK ∗ L)(0)h(t0),

and

φψε(t) = |h0|(1 − (∆tK ∗ L)(t0)) + (d(∆tK ∗ L) ∗ ψε)(t0) + (∆tK ∗ L)(0)|h(t0)|.

Relying on the fact that d(∆tK ∗L) is a nonnegative measure and ∆tK ∗L ≤ 1, by Remark
5.7, together with the fact that |h(s)| ≤ ψε(s) for s ≤ t0, we get that |φh(t)| ≤ φψε(t). We
now notice that in the case h(t0) = 0, we have

∆t0h(t) = φh(t) + w(t0)

∫ t

0
K(s)ds+ o(

∫ t

0
K(s)ds),

and

∆t0ψε(t) = φψε(t) + (|w(t0)| + ε)

∫ t

0
K(s)ds+ o(

∫ t

0
K(s)ds),
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and in the case |h(t0)| > 0, we have

|∆t0h(t)|2 = 2
(ℜ(z(t0))|h(t0)|2 + ℜ(w(t0))ℜ(h(t0)) + ℑ(w(t0))ℑ(h(t0))

) ∫ t

0
K(s)ds

+ |φh(t)|2 + o(

∫ t

0
K(s)ds),

∆t0ψε(t)
2 = 2

(ℜ(z(t0))|h(t0)|2 + |w(t0)||h(t0)| + ε|h(t0)|))
∫ t

0
K(s)ds

+ φψε(t)2 + o(

∫ t

0
K(s)ds),

for small t, thanks to the continuity of z, w, h, φh, φψε and ψε. In both cases, we obtain that
|h| ≤ ψε on a neighborhood of t0. Therefore t0 = ∞ and for any t ≥ 0

|h(t)| ≤ ψε(t).

The following result is a direct consequence of Theorems 7.25 and 7.27.

Corollary 7.28. Let h0 ∈ C and z, w : R+ → C be continuous functions such that ℜ(z) ≤ λ
for some λ ∈ R. We define h : R+ → C as the unique continuous solution of

h = h0 +K ∗ (zh+ w).

Then, for any t ∈ [0, T ],

|h(t)| ≤ |h0| + (‖w‖∞,T + λ|h0|)
∫ T

0
Eλ(s)ds,

where Eλ is the canonical resolvent of K with parameter λ.

Proof. From Theorem 7.27, we obtain that |h| ≤ ψ1, where ψ1 is the unique continuous
solution of

ψ1 = |h0| +K ∗ (ℜ(z)ψ1 + |w|).
Moreover define ψ2 as the unique continuous solution of

ψ2 = |h0| +K ∗ (λψ2 + ‖w‖∞,T ).

Then, ψ2 − ψ1 solves
χ = K ∗ (λχ+ f),

with f = (λ − ℜ(z))ψ1 + ‖w‖∞,T − w, which is a nonnegative function on [0, T ]. Theorem
7.25 now yields

|h| ≤ ψ1 ≤ ψ2.

Finally, the claimed bound follows by noticing that, for t ∈ [0, T ],

ψ2(t) = |h0| + (‖w‖∞,T + λ|h0|)
∫ t

0
Eλ(s)ds,

by Theorem 7.18 and that
∫ ·

0 Eλ(s)ds is non-decreasing by Corollary 7.26.





Chapter 8

Lifting the Heston model

Summary

How to reconcile the classical Heston model with its rough counterpart? We introduce
a lifted version of the Heston model with n multi-factors, sharing the same Brownian
motion but mean reverting at different speeds. Our model nests as extreme cases the
classical Heston model (when n = 1), and the rough Heston model (when n goes to
infinity). We show that the lifted model enjoys the best of both worlds: Markovianity
and satisfactory fits of implied volatility smiles for short maturities with very few
parameters. Further, our approach speeds up the calibration time and opens the door
to time-efficient simulation schemes.

Based on [2]: Abi Jaber, E. (2018) Lifting the Heston model. In revision - Quantitative
Finance.

8.1 Introduction

Conventional one-dimensional continuous stochastic volatility models, including the renowned
Heston model [72]:

dSt = St
√
VtdBt, S0 > 0, (8.1.1)

dVt = λ(θ − Vt)dt+ ν
√
VtdWt, V0 ≥ 0, (8.1.2)

have struggled in capturing the risk of large price movements on a short timescale. In the
pricing world, this translates into failure to reproduce the at-the-money skew observed in the
market as illustrated on the following figure.

177
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Figure 8.1: Term structure of the at-the-money skew for the S&P index on June 20, 2018
(red dots) and a power-law fit t → 0.35 × t−0.41.

In view of improving the overall fit, several directions have been considered over the past
decades. Two of the most common extensions are adding jumps [32, 65] and stacking ad-
ditional random factors [18, 61], in order to jointly account for short and long timescales.
While the two approaches have structural differences, they both suffer from the curse of
dimensionality, as more parameters are introduced, slowing down the calibration process.
Recently, rough volatility models have been introduced as a fresh substitute with remarkable
fits of the implied volatility surface, see [66, 14, 50]. The rough variance process involves a
one-dimensional Brownian motion, keeps the number of parameters small and enjoys con-
tinuous paths. However, the price to pay is that rough volatility models leave the realm of
semimartingale and Markovian models, which makes pricing and hedging a challenging task,
while degrading the calibration time. Here, the curse of dimensionality hits us straight in
the face in the non-Markovianity of the process. Indeed, the rough model can be seen as an
infinite dimensional Markovian model, as shown in Chapter 6.

Going back to the standard Heston model (8.1.1)-(8.1.2), despite its lack of fit for short
maturities, it remains increasingly popular among practitioners. This is due to its high
tractability, by virtue of the closed form solution of the characteristic function, allowing
for fast pricing and calibration by Fourier inversion techniques [27, 55]. Recently, El Euch
and Rosenbaum [51] combined the tractability of the Heston model with the flexibility of
rough volatility models, to elegantly concoct a rough counterpart of (8.1.1)-(8.1.2), dubbed
the rough Heston model. More precisely, the rough model is constructed by replacing the
variance process (8.1.2) by a fractional square-root process as follows

dSt = St
√
VtdBt, S0 > 0, (8.1.3)

Vt = V0 +
1

Γ(H + 1/2)

∫ t

0
(t− s)H−1/2

(
λ(θ − Vs)ds+ ν

√
VsdWs

)
, (8.1.4)

where H ∈ (0, 1/2] has a physical interpretation, as it measures the regularity of the sample
paths of V , see [66, 15], the case H = 1/2 corresponding to the standard Heston model. More
precisely, the sample paths of V are locally Hölder continuous of any order strictly less than
H. As for the standard Heston model, the characteristic function of the log-price is known,
but only up to the solution of a certain fractional Riccati Volterra equation. Indeed, both



Chapter 8. Lifting the Heston model 179

models belong to the tractable and unifying class of affine Volterra processes introduced in
Chapter 5. The following table summarizes the characteristics of the two models.

Characteristics Heston Rough Heston

Markovian ✓ ✗

Semimartingale ✓ ✗

Simulation Fast Slow

Affine Volterra process ✓ ✓

Characteristic function Closed Fractional Riccati
Calibration Fast Slower

Fit short maturities ✗ ✓

Regularity of sample paths H = 0.5 0 < H ≤ 0.5

Table 8.1: Summary of the characteristics of the models.

In the present paper, we introduce a conventional multi-factor continuous stochastic volatility
model: the lifted Heston model. The variance process is constructed as a weighted sum of
n factors, driven by the same one-dimensional Brownian motion, but mean reverting at
different speeds, in order to accommodate a full spectrum of timescales. At first glance,
the model seems over-parametrized, with already 2n parameters for the mean reversions
and the weights. Inspired by the approximation results of Chapter 7, we provide a good
parametrization of these 2n parameters in terms of one single parameter H, which is nothing
else but the Hurst index of a limiting rough Heston model (8.1.3)-(8.1.4), obtained after
sending the numbers of factors to infinity.

The lifted model not only nests as extreme cases the classical Heston model (when n = 1)
and the rough Heston model (when n goes to infinity), but also enjoys the best of both
worlds: the flexibility of rough volatility models, and the Markovianity of their conventional
counterparts. Further, the model remains tractable, as it also belongs to the class of affine
Volterra processes. Here, the characteristic function of the log-price is known up to a solution
of a finite system of Riccati ordinary differential equations. From a practical viewpoint, we
demonstrate that the lifted Heston model:

• reproduces the same volatility surface as the rough Heston model for maturities ranging
from one week to two years,

• mimics the explosion of the at-the-money skew for short maturities,

• calibrates twenty times faster than its rough counterpart,

• is easier to simulate than the rough model.

All in all, the lifted Heston model can be more easily implemented than its rough counterpart,
while still retaining the precision of implied volatility fits of the rough Heston model. Further,
the lifted Heston model is able to generate a volatility surface, which cannot be generated by
the classical Heston model, with only one additional parameter. Finally, the stock price and
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the variance process enjoy continuous paths and only depend on a two-dimensional Brownian
motion, leading to simple and feasible hedging strategies.

The paper is outlined as follows. In Section 8.2 we introduce our lifted Heston model and
provide its existence, uniqueness and its affine Fourier-Laplace transform. Exploiting the
limiting rough model, we proceed in Section 8.3 to a reduction of the number of parameters
to calibrate. Numerical experiments for the model, with n = 20 factors, are illustrated in
Section 8.4, both for calibration and simulation. Finally, some technical material is postponed
to Section 8.6.

8.2 The lifted Heston model

We fix n ∈ N and we define the lifted Heston model as a conventional stochastic volatility
model, with n factors for the variance process:

dSnt = Snt

√
V n
t dBt, Sn0 > 0, (8.2.1)

V n
t = gn0 (t) +

n∑

i=1

cni U
n,i
t , (8.2.2)

dUn,it =
(
−xni Un,it − λV n

t

)
dt+ ν

√
V n
t dWt, Un,i0 = 0, i = 1, . . . , n, (8.2.3)

with parameters the function gn0 , λ, ν ∈ R+, cni , x
n
i ≥ 0, for i = 1, . . . , n, and B = ρW +√

1 − ρ2W⊥, with (W,W⊥) a two dimensional Brownian motion on a fixed filtered probability
space (Ω,F ,F := (Ft)t≥0,Q), with ρ ∈ [−1, 1].

We stress that all the factors (Un,i)1≤i≤n start from zero1 and share the same dynamics, with
the same one-dimensional Brownian motion W , except that they mean revert at different
speeds (xni )1≤i≤n. Further, the deterministic input curve gn0 allows one to plug-in initial
term-structure curves. More precisely, taking the expectation in (8.2.2) leads to the following
relation

E[V n
t ] + λ

n∑

i=1

cni

∫ t

0
e−xn

i (t−s)E[V n
s ]ds = gn0 (t), t ≥ 0.

In practice, the forward variance curve, up to a horizon T > 0, can be extracted from
variance swaps observed in the market and then plugged-in in place of (E[V n

t ])t≤T in the
previous expression. For a suitable choice of continuous curves gn0 , for instance if

gn0 is non-decreasing such that gn0 (0) ≥ 0, (8.2.4)

or

gn0 : t → V0 +
n∑

i=1

cni

∫ t

0
e−xn

i (t−s)θ(s)ds, with V0, θ ≥ 0, (8.2.5)

there exists a unique continuous F-adapted strong solution (Sn, V n, (Un,i)1≤i≤n) to (8.2.1)-
(8.2.3), such that V n

t ≥ 0, for all t ≥ 0, and Sn is a F-martingale. We refer to Section 8.6.1
below for more details and the exact definition of the set of admissible input curves gn0 .

1Notice that the initial value of the variance process V n is gn
0 (0).
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Since our main objective is to compare the lifted model to other existent models, we will
restrict to the case of input curves of the form

gn0 : t → V0 + θ
n∑

i=1

cni

∫ t

0
e−xn

i (t−s)ds, with V0, θ ≥ 0. (8.2.6)

Setting n = 1, c1
1 = 1 and x1

1 = 0, the lifted Heston model degenerates into the standard
Heston model (8.1.1)-(8.1.2). So far, the multi-factor extensions of the standard Heston
model have been considered by stacking additional square-root processes as in the double
Heston model2 of [31] and the multi-scale Heston model of [60], or by considering a Wishart
matrix-valued process as in [37]. In both cases, the dimension of the driving Brownian motion
for the variance process, along with the number of parameters, grows with the number of
factors. Clearly, the lifted Heston model differs from these extensions, one can compare
(8.2.1)-(8.2.3) for n = 2 with (8.2.7)-(8.2.8).

Just like the classical Heston model, the lifted Heston model remains tractable. Specifically,
fix u ∈ C such that Re(u) ∈ [0, 1]. By virtue of Section 8.6.2 below, the Fourier-Laplace
transform of the log-price is exponentially affine with respect to the factors (Un,i)1≤i≤n:

E
[
exp (u logSnt )

∣∣∣ Ft

]
= exp

(
φn(t, T ) + u logSnt +

n∑

i=1

cni ψ
n,i(T − t)Un,it

)
, (8.2.9)

for all t ≤ T , where (ψn,i)1≤i≤n solves the following n-dimensional system of Riccati ordinary
differential equations

(ψn,i)′ = −xni ψn,i + F


u,

n∑

j=1

cnj ψ
n,j


 , ψn,i(0) = 0, i = 1, . . . , n, (8.2.10)

with

F (u, v) =
1

2
(u2 − u) + (ρνu− λ)v +

ν2

2
v2,

and

φn(t, T ) =

∫ T−t

0
F

(
u,

n∑

i=1

cni ψ
n,i(s)

)
gn0 (T − s)ds, t ≤ T.

In particular, for t = 0, since Un,i0 = 0 for i = 1, . . . , n, the unconditional Fourier-Laplace
transform reads

E [exp (u logSnt )] = exp

(
u logSn0 +

∫ T

0
F

(
u,

n∑

i=1

cni ψ
n,i(s)

)
gn0 (T − s)ds

)
. (8.2.11)

2The double Heston model is defined in [31] as follows

dS
n
t = S

n
t

(√
U1

t dB
1
t +

√
U2

t dB
2
t

)
, (8.2.7)

dU
i
t = λi(θi − U

i
t )dt + νi

√
U i

t dW
i
t , U

i
0 ≥ 0, i ∈ {1, 2}, (8.2.8)

where Bi = ρiW
i +
√

1 − ρ2
i W i,⊥ with ρi ∈ [−1, 1] and (W 1, W 2, W 1,⊥, W 2,⊥) a four-dimensional Brownian

motion.
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A similar formula holds for the Fourier-Laplace transform of the joint process (logSn, V n)
with integrated log-price and variance, we refer to the Section 8.6.2 below for the precise
expression.

Consequently, the Fourier-Laplace transform of the lifted Heston model is known in closed-
form, up to the solution of a deterministic n-dimensional system of ordinary differential
equations (8.2.10), which can be solved numerically. Once there, standard Fourier inversion
techniques can be applied on (8.2.11) to deduce option prices. This is illustrated in the
following sections.

8.3 Parameter reduction and the choice of the number of fac-
tors

In this section, we proceed to a reduction of the number of parameters to calibrate. Our
inspiration stems from rough volatility. In a first step, for every n, we provide a parametriza-
tion of the weights and the mean reversions (cni , x

n
i )1≤i≤n in terms of the Hurst index H

of a limiting rough volatility model and one additional parameter rn. Then, we specify the
number of factors n and the value of the additional parameter rn so that the lifted model
reproduces the same volatility surface as the rough Heston model for maturities ranging from
one week up to two years, while calibrating twenty times faster than its rough counterpart.
Benchmarking against rough volatility models is justified by the fact that one of the main
strengths of these models is their ability to achieve better fits of the implied volatility surface
than conventional stochastic volatility models. This has been illustrated on real market data
in [14, 50]. Finally, for the sake of completeness, we provide a comparison with the standard
Heston model.

8.3.1 Parametrization in terms of the Hurst index

For an initial input curve of the form (8.2.6), the lifted Heston model (8.2.1)-(8.2.3) has
the same five parameters (V0, θ, λ, ν, ρ) of the Heston model, plus 2n additional parameters
for the weights and the mean reversions (cni , x

n
i )1≤i≤n.3 At first sight, the model seems to

suffer from the curse of dimensionality, as it requires the calibration of (2n+ 5) parameters.
This is where the exciting theory of rough volatility finally comes into play. Inspired by the
approximation result Theorem 7.7, we suggest to use a parametrization of (cni , x

n
i )1≤i≤n in

terms of two well-chosen parameter. By doing so, we reduce the 2n additional parameters
to calibrate to only two effective parameters.

Qualitatively, we choose the weights and mean reversions (cni , x
n
i )1≤i≤n in such a way that

sending the number of factors n → ∞ would yield the convergence of the lifted Heston
model towards a rough Heston model (8.1.3)-(8.1.4), with parameters (V0, θ, λ, ν, ρ,H). The
additional parameter H ∈ (0, 1/2) is the so-called Hurst index of the limiting fractional
variance process (8.1.4), and it measures the regularity of its sample paths.

3If one chooses gn
0 to match the forward variance curve, then, the parameters (V0, θ) can be eliminated

from both models.
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More precisely, for a fixed even number of factors n, we fix rn > 1 and we consider the
following parametrization for the weights and the mean reversions

cni =
(r1−α
n − 1)r

(α−1)(1+n/2)
n

Γ(α)Γ(2 − α)
r(1−α)i
n , xni =

1 − α

2 − α

r2−α
n − 1

r1−α
n − 1

ri−1−n/2
n , i = 1, . . . , n, (8.3.1)

where α := H + 1/2 for some H ∈ (0, 1/2).4

If in addition, the sequence (rn)n≥1 satisfies

rn ↓ 1 and n ln rn → ∞, as n → ∞, (8.3.2)

then, Theorem 8.4 below ensures the convergence of the lifted model towards the rough
Heston model, as n goes to infinity. We refer to Section 8.6.1 below for more details.

In order to visualize this convergence, we first define the following sequence

rn = 1 + 10n−0.9, n ≥ 1, (8.3.3)

which clearly satisfies (8.3.2). Then, we generate our benchmark implied volatility surface,

for 9 maturities T ∈ {1w, 1m, 2m, 3m, 6m, 9m, 1y, 1.5y, 2y}, (8.3.4)

with up to 80 strikes K per maturity, (8.3.5)

with a rough Heston model5 with parameters Θ0 := (V0, θ, λ, ν, ρ,H) given by

V0 = 0.02, θ = 0.02, λ = 0.3, ν = 0.3, ρ = −0.7 and H = 0.1. (8.3.6)

The generated implied volatility is kept fixed and is denoted by σ∞(K,T ; Θ0), for every pair
(K,T ) in (8.3.4)-(8.3.5).

Then, for each n ∈ {10, 20, 50, 100, 500}, we generate the implied volatility surface of the
lifted Heston model6 with n-factors, with the same set of parameters Θ0 as in (8.3.6), and
(8.3.3) plugged in (8.3.1). For each n, the generated surface is denoted by σn(K,T ; rn,Θ0),
for every pair (K,T ) in (8.3.4)-(8.3.5).

Because the sequence (rn)n≥1 defined in (8.3.3) satisfies condition (8.3.2), as n grows,

σn(K,T ; rn,Θ0) → σ∞(K,T ; Θ0),

4This corresponds to equation (7.3.6) of Chapter 7 with the geometric partition ηn
i = r

i−n/2
n for i =

0, . . . , n, which is in the spirit of [26] for the approximation of the factional Brownian motion.
5The implied volatility surface is generated by first solving numerically the corresponding fractional Riccati

equations with the Adams Predictor-Corrector scheme [44] with 200 time steps, see [50, Appendix A] for
more details. Then, call prices are computed via the cosine method [55] for the inversion of the characteristic
function. We note that other Fourier inversion techniques can be used for the second step, for instance, the
Carr-Madan method [27], as done in [50]. As illustrated in [55], for the same level of accuracy, the cosine
method is approximately 20 times faster than the Carr-Madan method, and needs drastically less evaluation
points of the characteristic function (E [exp (ui log Sn

t )])i∈I (|I| = 160 for the cosine methods and |I| = 4096
for the Carr-Madan method). This latter point is crucial in our case since, for every i ∈ I, evaluation of
E [exp (ui log Sn

t )] requires a numerical discretization of the corresponding Riccati equation.
6The implied volatility surface is generated by first solving numerically the n-dimensional Riccati equations

with the explicit-implicit scheme (8.6.11) detailed in the Appendix with a number of time steps N = 300.
As before, the call prices are then computed via the cosine method [55] for the inversion of the characteristic
function.
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by virtue of Theorem 8.4 below. This convergence phenomenon is illustrated in Figure 8.2
below for two maturity slices, one week and one year.
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Figure 8.2: Convergence of the implied volatility surface of the lifted model
σn(k, T ; rn,Θ0), with rn = 1 + 10n−0.9, towards its rough counterpart σ∞(k, T ; Θ0), il-
lustrated on two maturities slices T ∈ {1 week, 1 year}. Here k := ln(K/S0) stands for the

log-moneyness.

In view of assessing the proximity between the implied volatility surface σn(K,T ; rn,Θ0) of
the lifted Heston model and that of the rough Heston model σ∞(K,T ; Θ0), we compute the
mean squared error (MSE) between the two volatility surfaces defined as follows

1∑
(K′,T ′)w(K ′, T ′)

∑

(K,T )

w(K,T )(σn(K,T ; rn,Θ0) − σ∞(K,T ; Θ0))2,

where we sum over all pairs (K,T ) as in (8.3.4)-(8.3.5). Here, w stands for a matrix of weights,
where we put more weight on options near the money and with short time to maturity (one
could also set w(K,T ) = 1 for all (K,T )).

The corresponding mean squared errors of Figure 8.2 are reported in Table 8.2 below, along
with the computational time7 for generating the whole volatility surface, for all pairs (K,T )
as in (8.3.4)-(8.3.5), that is, for 9 maturities slices with up to 80 strikes per maturity.8

7All cpu times are computed on a laptop with Intel core i7 processor at 2.2GHz and 16GB of memory.
The code, written in R, is far from being optimized.

8One cannot draw definite quantitative conclusions regarding the comparison between the computational
times of the lifted surface and the one of the rough surface. Indeed, one needs a more careful study of the
discretization errors of the corresponding Riccati equations before comparing the computational times needed
to reach the same level of accuracy. We omit to do so here. However, even if one reduces the number of time
steps from 200 to 150 in the Adams scheme, it still takes 67.2 seconds to compute the rough surface. Recall
that we used N = 300 time steps for the n-dimensional Riccati equation of the lifted model. In any case,
it should be clear that solving the 20-dimensional Riccati equations is considerably faster then solving the
fractional Riccati equation.
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n rn = 1 + 10n−0.9 Time (seconds) MSE

Lifted Heston 10 2.26 3.9 1.20e-03
20 1.67 4.4 1.85e-04
50 1.3 5.2 6.81e-05
100 1.16 6.6 2.54e-05
500 1.04 17.4 3.66e-06

Rough Heston n → ∞ rn ↓ 1 106.8

Table 8.2: Convergence of the lifted model towards its rough counterpart for rn = 1 +
10n−0.9, with the corresponding computational time in seconds for generating the implied

volatility surface (8.3.4)-(8.3.5).

All in all, we notice that the number of effective parameters remains constant and does not de-
pend on the number of factors n. This has to be contrasted with the usual multi-factor exten-
sions: the double Heston model (8.2.7)-(8.2.8) already has 10 parameters (U i0, θi, λi, νi, ρi)i∈{1,2},
the multi-scale model of [60] also suffers from over-parametrization.

In the subsequent subsection, we will explain how to fix n and rn, so that the parameters
to calibrate are reduced to only six effective parameters (V0, θ, λ, ν, ρ,H), one additional
parameter than the standard Heston model!

8.3.2 Practical choice of n and rn

We suggest to fix the following values

n = 20 and r20 = 2.5. (8.3.7)

Our choice will be based on the numerical comparison with the rough Heston model of the
previous section.

We start by explaining our choice for the number of factors n in (8.3.7). Based on Table
8.2, we choose n with a good trade-off between time-efficiency and proximity to the rough
volatility surface. Fixing n = 20 seems to be a good choice. Visually, as already shown
on Figure 8.2, the two implied volatility slices have almost identical shapes. Whence, one
would expect that by letting the parameters r20 free, one could achieve a perfect fit of the
rough surface with only n = 20 factors. This can be formulated as follows: keeping the six
parameters of the lifted model fixed as in (8.3.6), can one find r∗

20(Θ0) > 1 such that

σ20(K,T ; r∗
20(Θ0),Θ0) ≈ σ∞(K,T ; Θ0), for all K,T?

The next subsection provides a positive answer.

Mimicking roughness by increasing r20

First, one needs to understand the influence of the parameter rn on the lifted Heston model.
Increasing rn has the effect of boosting the parameters (cni , x

n
i )1≤i≤n in (8.3.1), leading to

an increase of the vol-of-vol parameter of the lifted model given by ν
∑n
i=1 c

n
i , together with

faster mean-reversions (xni )1≤i≤n for the factors. In analogy with conventional stochastic
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volatility models, such as the standard Heston model (8.1.1)-(8.1.2), increasing the vol-of-vol
parameter together with the speed of mean reversion yields a steeper skew at the short-
maturity end of the volatility surface. Consequently, increasing the parameter rn in the
lifted model should steepen the implied volatility slice for short-maturities. Figure 8.3 below
confirms that this is indeed the case when one increases the value of r20 from 1.67 to 2.8, for
the 20-dimensional lifted model, as the two slices now almost perfectly match:
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Figure 8.3: Implied volatility of the 20-dimensional lifted model σ20(k, T ; r20,Θ0), for
different values of r20 ranging from 1.67 to 2.8, and the rough surface σ∞(k, T ; Θ0), for two

maturities slices T ∈ {1 week, 1 year}.

The corresponding mean squared errors of Figure 8.3 are collected in Table 8.3 below.

Lifted Heston (n = 20)

r20 MSE

1.67 1.85e-04
1.90 4.16e-05
2.20 8.72e-06
2.50 3.64e-06
2.80 2.81e-06

Table 8.3: Mean squared errors between the 20-dimensional lifted model σ20(k, T ; r20,Θ0)
and the rough model σ∞(k, T ; Θ0), for different values of r20.

Because rn has to converge to 1, when n goes to infinity, recall (8.3.2), we seek to keep rn
as small as possible. For n = 20, fixing r∗

20(Θ0) = 2.5 yields already satisfactory results,
improving the mean squared error of 1.85e-04 in Table 8.2 to 3.64e-06. Further, this choice
yields the same order of precision as with n = 500 factors given in Table 8.2.

Before moving to a physical justification of the choice of r20, we proceed to the full calibra-
tion of the lifted Heston model with n = 20 and r20 = 2.5 to the rough volatility surface
σ∞(K,T ; Θ0). That is, we let the six effective parameters (V0, θ, λ, ν, ρ,H) of the lifted model
free. The calibrated values Θ̂0 := (V̂0, θ̂, λ̂, ν̂, ρ̂, Ĥ), provided in Table 8.4, agree with (8.3.6).
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At the visual level, as shown on Figure 8.10 below, the calibrated lifted surface is indistin-
guishable from the rough surface σ∞(K,T ; Θ0) for all maturities ranging from one week to
two years, with a mean squared error of order 4.01e-07.

Parameters Calibrated values

V̂0 0.02012504

θ̂ 0.02007956

λ̂ 0.29300681
ν̂ 0.30527694
ρ̂ -0.70241116

Ĥ 0.09973346

Table 8.4: Calibrated lifted Heston model parameters.

We now provide another physical justification for the choice of r20 based on an infinite-
dimensional Markovian representation of the limiting rough variance process (8.1.4) due to
Chapter 6, which we recall in the following remark.

Remark 8.1 (Representation of the limiting rough process). The fractional kernel appearing
in the limiting rough process (8.1.4) admits the following Laplace representation

tH−1/2

Γ(H + 1/2)
=

∫ ∞

0
e−xtµ(dx), with µ(dx) =

x−H−1/2

Γ(1/2 −H)Γ(H + 1/2)
,

so that the stochastic Fubini theorem, after setting V0 ≡ 0 in (8.1.4), leads to

Vt =

∫ ∞

0
Ut(x)µ(dx), x > 0,

where, for all x > 0,

Ut(x) :=

∫ t

0
e−x(t−s)

(
λ(θ − Vs)ds+ ν

√
VsdWs

)
.

This can be seen as the mild formulation of the following stochastic partial differential equa-
tion

dUt(x) =

(
−xUt(x) + λ

(
θ −

∫ ∞

0
Ut(y)µ(dy)

))
dt+ ν

√∫ ∞

0
Ut(y)µ(dy)dWt, (8.3.8)

U0(x) = 0, x > 0. (8.3.9)

Whence, the rough process can be reinterpreted as a superposition of infinitely many factors
(U·(x))x>0 sharing the same dynamics but mean reverting at different speeds x ∈ (0,∞). We
refer to Chapter 6 for the rigorous treatment of this representation. One makes the following
observations:

• multiple timescales are naturally encoded in rough volatility models, which can be
a plausible explanation for their ability to achieve better fits than conventional one-
dimensional models,

• the largest mean reversions going to infinity characterize the factors responsible of the
roughness of the process.
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We notice that for the lifted model, the mean reversions in (8.3.1) satisfy

xni ≥ ri−1−n/2
n , i = 1, . . . , n.

Therefore, based on Remark 8.1, for n = 20, one would like to force x20
20 to be large enough

in order to mimic roughness and account for very short timescales, while having x20
1 small

enough to accommodate a whole palette of timescales. Setting

r20 ≈ 2.5,

would cover mean reversions between 10−4 and 104.

The previous justification suggests that once n = 20 is fixed, one can choose r20 independently
of the parameters Θ. The next experiment shows that this is indeed the case.

Robustness of r20: a numerical test

Throughout this section, we fix the three parameters V0, θ = 0.02 and λ = 0. In order to
verify experimentally the robustness of r20 = 2.5, we proceed as follows.

1. Simulate M = 500 set of parameters (Θk := (0.02, 0.02, 0, νk, ρk, Hk))k=1,...,M uniformly
distributed with the following bounds

0.05 ≤ ν ≤ 0.5, −0.9 ≤ ρ ≤ −0.5, 0.05 ≤ H ≤ 0.2.

2. For each k = 1, . . . ,M :

(a) Generate the rough volatility surface σ∞(K,T ; Θk), for all pairs (T,K) in (8.3.4)-
(8.3.5),

(b) Generate the lifted volatility surface σ20(K,T ; r20 = 2.5,Θk), for all pairs (T,K)
in (8.3.4)-(8.3.5),

(c) Compute the mean squared error between the two volatility surfaces:

MSEk :=
1∑

(K′,T ′)w(K ′, T ′)

∑

(K,T )

w(K,T )(σ20(K,T ; r20 = 2.5,Θk) − σ∞(K,T ; Θk))
2.

The scatter plot and the empirical distribution of the mean squared error (MSEk)k=1,...,M

are illustrated in Figure 8.4 below.
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Figure 8.4: Scatter plot (left) and empirical distribution (right) of the mean squared error

(MSEk)k=1,...,M of the M = 500 simulated set of parameters (Θk)k=1,...,M .

The first twenty values of the simulated set of parameters with the corresponding mean
squared error are provided in Table 8.8 below. We observe that the lifted surfaces are quite
close to the rough surface, for any value of the simulated parameters. This is confirmed by
Table 8.5 below, where we collect the descriptive statistics of the computed mean squared
errors (MSEk)k=1,...,M .

MSE

Minimum 1.81e-06
1st Quantile 3.83e-06

Median 5.48e-06
3rd Quantile 4.91e-05
Maximum 2.42e-04

Table 8.5: Descriptive statistics of the mean squared error (MSEk)k=1,...,M of the M = 500
simulated set of parameters (Θk)k=1,...,M .

We now show that the mean squared errors can be improved by letting the three parameters
(ν, ρ,H) of the lifted model free. Specifically, consider the worst mean squared error of Table
8.5

max
Θk

MSEk = 2.42e-04, (8.3.10)

which is attained for the set of parameters Θ101 with

ν101 = 0.1537099, ρ101 = −0.8112745 and H101 = 0.1892725.

Keeping the first three parameters fixed V0, θ = 0.02 and λ = 0, we proceed to the calibration
of the lifted model to the rough surface σ∞(K,T ; Θ101). The calibration yields

ν̂ = 0.1647801, ρ̂ = −0.7961080 and Ĥ = 0.1957235,
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improving the previous mean squared error (8.3.10) to 1.62e-06. This shows that, by fine
tuning the parameters of the lifted model, for any rough volatility surface σ∞(K,T ; Θ) with
a realistic set of parameters Θ, one can find a set of parameters Θ̂, not too far from Θ, such
that

σ20(K,T ; r20 = 2.5, Θ̂) ≈ σ∞(K,T ; Θ), for any pair (K,T ) in (8.3.4)-(8.3.5).

To sum up, we showed so far that the lifted Heston model, with n = 20 and r20 = 2.5, is
able to produce the same volatility surfaces of the rough Heston model, for any realistic set
of parameters, for maturities ranging between one week and two years. Consequently, it can
be used directly to fit real market data instead of the rough Heston model.

Why is it more convenient to use the lifted Heston model rather than its rough counterpart?

On the one hand, it speeds-up calibration time. Indeed, solving numerically the 20-dimensional
system of Riccati ordinary differential equations (8.2.10) is up to twenty times faster than
the Adams scheme for the fractional Riccati equation. On the other hand, the lifted model
remains Markovian and semimartingale, which opens the door to time-efficient recursive
simulation schemes for pricing and hedging more complex exotic options. Before testing the
lifted model in practice, we compare it to the standard Heston model.

8.3.3 Comparison with the standard Heston model

For the sake of comparison, we calibrate a standard Heston model (8.1.1)-(8.1.2) to the full
rough volatility surface σ∞(K,T ; Θ0), with Θ0 as in (8.3.6). Recall that the standard Heston
model corresponds to the case n = 1, x1

1 = 0 and c1
1 = 1. The calibrated parameters of the

standard Heston are provided in Table 8.6 below. We observe that the calibrated values of
(V̂0, θ̂, ρ̂) have the same magnitude as the ones of (8.3.6). This is not surprising since these
parameters have the same interpretation in the two models: the first two parameters (V̂0, θ̂)
govern the level of the term structure of forward variance at time 0 while ρ dictates the
leverage effect between the stock price and its variance.

Parameters Calibrated values

V̂0 0.019841

θ̂ 0.032471

λ̂ 3.480784
ν̂ 0.908037
ρ̂ -0.710067

Table 8.6: Calibrated Heston model parameters.

Despite the extreme values of the calibrated mean reversion and vol-of-vol parameters (λ̂, ν̂),
the Heston model is not able to reproduce the steepness of the skew for short maturities as
shown on Figure 8.11 below, with a mean squared error of order 2.06e-03. For long maturities,
the fit is fairly good.

In order to compare our findings with the observed stylized fact of Figure 8.1, we plot on
Figure 8.5 below the term structure of the at-the-money skew of the three models: the rough
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Heston with parameters as in (8.3.6), the calibrated lifted Heston model of Table 8.4 and the
calibrated Heston model of Table 8.6. The Heston model fails in reproducing the explosive
behavior of the term structure of the at-the-money skew observed in the market. On the
contrary, this feature is captured by the lifted and rough counterparts. For long maturities,
all three model have the same behavior.
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Figure 8.5: Term structure of the at-the-money skew of the rough Heston model
σ∞(K,T ; Θ0) of (8.3.6) (red circles), the calibrated lifted Heston model σ20(K,T ; r20 =
2.5, Θ̂0) of Table 8.4 (blue triangles) and the calibrated Heston model of Table 8.6 (green

line).

In the sequel, we will show that, for n = 20 factors, the lifted Heston model provides an
appealing trade-off between consistency with market data and tractability. We stress that
r20 = 2.5 is kept fixed in the lifted model, which now has only six effective parameters to
calibrate (V0, θ, λ, ν, ρ,H). Again, in practice, V0 and Θ0 can be eliminated by specifying the
initial forward variance curve as input and λ can be set to 0, as mean reversions at different
speeds are naturally encoded in the lifted model through the family (xni )1≤i≤n. By doing so,
one reduces the effective number of parameters to only three (ν, ρ,H), as already done in
[50] for the rough Heston model.

8.4 Calibration on market data and simulation

In this section, we fix the number of factors to n = 20 and set r20 = 2.5 in (8.3.1). We
demonstrate that the lifted Heston model:

• captures the explosion of the at-the-money skew observed in the market,

• is easier to simulate than the rough model,

• tricks the human eye as well as the statistical estimator of the Hurst index.
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8.4.1 Calibration to the at-the-money skew

Going back to real market data, we calibrate the lifted model to the at-the-money skew of
Figure 8.1. Keeping the parameters V0 = 0.02, θ = 0.02 and λ = 0 fixed, the calibrated
parameters are given by

ν̂ = 0.3161844, ρ̂ = −0.6852625 and Ĥ = 0.1104290. (8.4.1)

The fit is illustrated on Figure 8.6 below.
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Figure 8.6: Term structure of the at-the-money skew for the S&P index on June 20, 2018
(red dots) and for the lifted model with calibrated parameters (8.4.1) (blue circles with

dashed line).

We notice the calibrated value Ĥ in (8.4.1) is coherent with the value (0.5 − 0.41) = 0.09,
which can be read off the power-law fit of Figure 8.1. Consequently, in the pricing world,
the parameter H quantifies the explosion of the at-the-money skew through a power-law
t → Ct0.5−H , see also [64].

We discuss briefly the simulation procedure of our lifted model in the next subsection.

8.4.2 Simulation and estimated roughness

Until now, there is no existing scheme to simulate the variance process (8.1.4) of the rough
Heston model, the crux resides in the non-Markovianity of the variance process, the singular-
ity of the kernel and the square-root dynamics. In contrast, numerous approximation schemes
have been developed for the simulation of the standard square-root process (8.1.2), see [7,
Chapters 3 and 4] and the references therein. Because the lifted Heston model (8.2.1)-(8.2.3)
is a Markovian and semimartingale model, one can adapt standard recursive Euler-Maruyama
schemes to simulate the variance process V n first, and then the stock price Sn. For T > 0,
we consider the modified explicit-implicit scheme (8.6.12)-(8.6.13) detailed in the Appendix
for the variance process V n.

We observe on Figure 8.7 below that the factors (U20,i)1≤i≤20 are highly correlated. We
can distinguish between the short-term factors with fast mean reversions, responsible of the
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‘roughness’, and the long-term factors, with slower mean reversions, determining the level
of the variance process. The variance process is then obtained by aggregating these factors
with respect to (8.2.2). We also notice that some of the factors (Un,i)1≤i≤n become negative,
but that the aggregated process V n remains nonnegative at all time.

Remark 8.2 (Nonnegativity of the variance process). Looking at the stochastic differential
equation (8.2.2)-(8.2.3), it is not straightforward at all why V n should stay nonnegative at
all time, even for the zero initial curve g0 ≡ 0. Indeed, some of the factors (Un,i)1≤i≤n may
become negative, but surprisingly enough, their aggregated sum V n remains nonnegative, at
all time. This is due to a very special underlying structure: equations (8.2.2)-(8.2.3) can be
recast as a stochastic Volterra equation of convolution type for a suitable kernel, we refer to
Section 8.6.1 below for more details.
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Figure 8.7: One sample path of the simulated factors (U20,i)1≤i≤20 with blue intensity
proportional to the speed of mean reversions (xni )1≤i≤20 (upper) and the corresponding
aggregated variance process V n (lower) with parameters V0 = 0.05, θ = 0.05, λ = 0.3,

ν = 0.1 and H = 0.1 for a time step of 0.001 and T = 1.

Visually, the sample path of the variance process seems rougher than the one of a standard
Brownian motion. As shown on Figure 8.8 below, at the daily timescale, the simulated
volatility process of the lifted Heston model not only tricks the human eye, but also misleads
the statistical estimator of the Hurst index constructed in [15]. Specifically, the estimator
recognizes a semimartingale model for the simulated volatility of the Heston model, with
an estimated Ĥ close to 0.5. However, it fails to do so for the lifted model, the estimator
displays Ĥ = 0.18. The lifted model is therefore capable of mimicking, up to some extent,
the ‘roughness’ of the volatility observed on the market, at least at the daily timescale. This
should be paralleled with the explosive-like behavior of the at-the-money skew encountered
earlier on Figures 8.5-8.6. Stated otherwise, if one is only provided the lower graph of Figure
8.8, one cannot say if the path has been generated by a rough volatility model with Hurst
index H = 0.18 or by our lifted model with H = 0.1. As the step size of the discretization
scheme goes to 0, the estimated H of the lifted model has to converge to 0.5, since V n is a
semimartingale, and therefore has the same regularity as a standard Brownian motion. The
convergence is illustrated on Figure 8.12 below.

On another note, the upper graph of Figure 8.8 highlights the physical interpretation of
the parameter H as it measures the roughness of the empirical realized volatility. Indeed,
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empirical studies on a very wide range of assets volatility time-series in [66, 15] revealed that
the dynamics of the log-volatility are close to that of a fractional Brownian motion with a
‘universal’ Hurst parameter H of order 0.1, from intra-day up to daily timescales.
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Figure 8.8: Estimated Hurst index of: the realized volatility of the S&P(a) (upper), a
sample path of the volatility process in the Heston model (middle), and a sample path of
the volatility process in the the lifted model with H = 0.1 (lower). The simulation is run

with N = 250 time steps for each year.
(a)The realized volatility data series can be downloaded from https://realized.oxford-man.ox.ac.uk/.

8.5 Conclusion

We introduced the lifted Heston model, a conventional multi-factor stochastic volatility model,
where the factors share the same one-dimensional Brownian motion but mean revert at
different speeds corresponding to different timescales. The model nests as extreme cases the
standard Heston model (for n = 1 factor), and the rough Heston model (when n goes to
infinity). Inspired by rough volatility models, we provided a good parametrization of the
model reducing the number of parameters to calibrate: the model has only one additional
effective parameter than the standard Heston model, independently of the number of factors.
The first five parameters have the same interpretation as in the standard Heston model,
whereas the additional one has a physical interpretation as it is linked to the regularity of
the sample paths and the explosion of the at-the-money skew.

This sheds some new light on the reason behind the remarkable fits of rough volatility models.
Indeed, a rough variance process can be seen as a superposition of infinitely many factors
sharing the same one-dimensional Brownian motion but mean reverting at different speeds

https://realized.oxford-man.ox.ac.uk/
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ranging from 0+ to ∞. Each factor corresponds to a certain timescale. Therefore, time multi-
scaling is naturally encoded in rough volatility models, which explains why these models are
able to jointly handle different maturities in a satisfactory fashion.9

Finally, Table 8.7 below compares the characteristics of the three different models. As it
can be seen, the lifted Heston model possesses an appealing trade-off between flexibility and
tractability!

Stochastic volatility models

Characteristics Heston Rough Heston Lifted Heston

Markovian ✓ ✗ ✓

Semimartingale ✓ ✗ ✓

Simulation Fast Slow Fast

Affine Volterra process ✓ ✓ ✓

Characteristic function Closed Fractional Riccati n-Riccati

Calibration Fast Slower 20x rough(a)

Fit short maturities ✗ ✓ ✓

Estimated daily regularity H ≈ 0.5 H ≈ 0.1 H ≈ 0.2

Table 8.7: Summary of the characteristics of the different models. (a)for n = 20.

8.6 Appendices

8.6.1 Existence and uniqueness

In the sequel, the symbol ∗ stands for the convolution operation, that is (f ∗µ)(t) =
∫ t

0 f(t−
s)µ(ds) for any suitable function f and measure µ. For a right-continuous function f of locally
bounded variation, we denote by df the measure induced by its distributional derivative, that
is f(t) = f(0) +

∫
(0,t] df(s).

We provide in this appendix the strong existence and uniqueness of (8.2.1)-(8.2.3), for a fixed
n ∈ N. We start by noticing that (8.2.1) is equivalent to

Snt = E
(∫ t

0
V n
s dBs

)
, t ≥ 0,

where E is the Doléans-Dade exponential. Therefore, it suffices to prove the existence and
uniqueness of (8.2.2)-(8.2.3). Formally, starting from a solution to (8.2.2)-(8.2.3), the varia-
tion of constants formula on (8.2.3) yields

Un,it =

∫ t

0
e−xn

i (t−s)
(

−λV n
s ds+ ν

√
V n
s dWs

)
, i = 1, . . . , n, (8.6.1)

9Multiple timescales in the volatility process have been identified in the literature, see for instance [61,
Section 3.4].



Chapter 8. Lifting the Heston model 196

so that (8.2.2) reads

V n
t = gn0 (t) +

∫ t

0
Kn(t− s)

(
−λV n

s ds+ ν
√
V n
s dWs

)
, (8.6.2)

where Kn is the following completely monotone10 kernel

Kn(t) =
n∑

i=1

cni e
−xn

i t, t ≥ 0. (8.6.3)

Whence, if one proves the uniqueness of (8.6.2), then, uniqueness of (8.2.3) follows by virtue
of (8.6.1). Conversely, if one proves the existence of a nonnegative solution V n to (8.6.2),
then, one can define (Un,i)1≤i≤n as in (8.6.1), showing that (V n, (Un,i)1≤i≤n) is a solution to
(8.2.2)-(8.2.3). Therefore, the problem is reduced to proving the existence and uniqueness
for the stochastic Volterra equation (8.6.2).

In Chapter 6, the existence of a nonnegative solution to (8.6.2) is proved, provided the initial
input curve gn0 satisfies a certain ‘monotonicity’ condition. This condition is related to the
resolvent of the first kind Ln of the kernel (8.6.3), which is defined as the unique measure
satisfying ∫ t

0
Kn(t− s)Ln(ds) = 1, t ≥ 0.11

More precisely, denoting by ∆h the semigroup of right shifts acting on continuous functions,
i.e. ∆hf = f(h+ ·) for h ≥ 0, gn0 should satisfy

∆hg
n
0 − (∆hK

n ∗ Ln)(0)gn0 − d(∆hK
n ∗ Ln) ∗ gn0 ≥ 0, h ≥ 0, 12 (8.6.4)

leading to the following definition of the set GKn of admissible input curves:

GKn = {gn0 Hölder continuous of any order less than 1/2, satisfying (8.6.4) and gn0 (0) ≥ 0} .

It is shown in Example 6.2 that the two specifications of input curves (8.2.4)-(8.2.5) provided
earlier satisfy (8.6.4).

We now provide the rigorous existence and uniqueness result.

Theorem 8.3 (Existence and uniqueness). Fix n ∈ N, Sn0 > 0 and assume that gn0 ∈
GKn. Then, the stochastic differential equation (8.2.1)-(8.2.3) has a unique continuous strong
solution (Sn, V n, (Un,i)1≤i≤n) such that V n

t ≥ 0, for all t ≥ 0, almost surely. Further, the
process Sn is a martingale.

Proof. By virtue of the variation of constants formula on the factors, the lifted Heston model
is equivalent to a Volterra Heston model in the sense of Chapter 6 of the form

dSnt = Snt

√
V n
t dBt, Sn0 > 0, (8.6.5)

V n
t = gn0 (t) +

∫ t

0
Kn(t− s)

(
−λV n

s ds+ ν
√
V n
s dWs

)
, (8.6.6)

10A function f is said to be completely monotone, if it is infinitely differentiable on (0, ∞) such that
(−1)pf (p) ≥ 0, for all p ∈ N.

11The existence of Ln is ensured by the complete monoticity of Kn, see [69, Theorem 5.5.4].
12One can show that ∆hKn ∗ Ln is right-continuous and of locally bounded variation, thus the associated

measure d(∆hKn ∗ Ln) is well defined.
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with Kn given by (8.6.3). Since Kn is locally Lipschitz and completely monotone, the
assumptions of Theorem 6.1 are met. Consequently, the stochastic Volterra equation (8.6.5)-
(8.6.6) has a unique R2

+-valued weak continuous solution (Sn, V n) on some filtered probability
space (Ωn,Fn, (Fn

t )t≥0,Q
n) for any initial condition Sn0 > 0 and admissible input curve

gn0 ∈ GKn . Moreover, since Kn is differentiable, strong uniqueness is ensured by Proposition
7.22. The claimed existence and uniqueness statement now follows from (8.6.1). Finally, the
martingality of Sn follows along the lines of Theorem 5.24(iii).

We now discuss the convergence of the lifted Heston model towards the rough Heston model
(8.1.3)-(8.1.4), as the number of factors goes to infinity, we refer to Chapter 7 for more

details. We fix H ∈ (0, 1/2) and we denote by KH : t → tH− 1
2 /Γ(H + 1/2) the fractional

kernel of the rough Heston model appearing in (8.1.4). The kernel KH can be re-expressed
as a Laplace function

KH(t) =

∫ ∞

0
e−xtµ(dx), t ≥ 0,

with µ(dx) = x−α

Γ(α)Γ(1−α) and α = H+1/2. On the one hand, for a fixed n, the parametrization

(8.3.1) is linked to µ as follows:

cni =

∫ ηn
i

ηn
i−1

µ(dx), xni =
1

cni

∫ ηn
i

ηn
i−1

µ(dx), i = 1, . . . , n, (8.6.7)

where ηni = r
i−n/2
n , for i = 0, . . . , n. We will show that, under (8.3.2),

Kn → KH , as n goes to infinity, in the L2 sense. (8.6.8)

On the other hand, for each n ∈ N, we have proved the existence of a solution to (8.6.2).
One would therefore expect from (8.6.8) the convergence of the sequence of solutions of
(8.6.6) towards the solution of (8.1.4). This is indeed the case, as illustrated by the following
theorem, which adapts Theorem 7.7 to the geometric partition.

Theorem 8.4 (Convergence towards the rough Heston model). Consider a sequence (rn)n≥1

satisfying (8.3.2), and set gn0 as in (8.2.6) and (cni , x
n
i )1≤i≤n as in (8.3.1), for every even n =

2p, with p ≥ 1. Assume Sn0 = S0, for all n, then, the sequence of solutions (Sn, V n)n=2p,p≥1

to (8.2.1)-(8.2.2) converges weakly, on the space of continuous functions on [0, T ] endowed
with the uniform topology, towards the rough Heston model (8.1.3)-(8.1.4), for any T > 0.

We will only sketch the proof for the L2 convergence of the kernels (8.6.8), in order to highlight
the small adjustments that one needs to make to the proof of Theorem 7.7. Indeed, since
ηn0 6= 0 in our case, Theorem 7.7 cannot be directly applied, compare with Assumption 7.3.1
where the left-end point of the partition is zero. The following lemma adapts Proposition
7.5 to the geometric partition. The rest of the proof of Theorem 8.4 follows along the lines
of Theorem 7.7 by making the same small adjustments highlighted below, mainly to treat
the integral chunk between [0, ηn0 ].

Lemma 8.5 (Convergence of Kn towards KH). Let (rn)n≥1 as in (8.3.2), and (cni , x
n
i )1≤i≤n

given by (8.3.1). Define Kn by (8.6.3), then,

‖Kn −KH‖L2(0,T ) → 0, as n → ∞, (8.6.9)

for all T > 0.
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Proof. Set ηni = r
i−n/2
n , for i = 0, . . . , n. Using (8.6.7), we start by decomposing (KH −Kn)

as follows

KH −Kn =

∫ ∞

0
e−x(·)µ(dx) −

n∑

i=1

cni e
−xn

i (·)

=

∫ ηn
0

0
e−x(·)µ(dx) +

(
n∑

i=1

∫ ηn
i

ηn
i−1

(
e−x(·) − e−xn

i (·)
)
µ(dx)

)
+

∫ ∞

ηn
n

e−x(·)µ(dx)

:= Jn1 + Jn2 + Jn3 ,

so that

‖KH −Kn‖L2(0,T ) ≤ In1 + In2 + In3 ,

with Ink = ‖Jnk ‖L2(0,T ), for k = 1, 2, 3. We now prove that each Ink → 0, as n tends to ∞.
Relying on a second order Taylor expansion, along the lines of the proof of [33, Proposition
7.1], we get the following bound

∣∣∣∣∣

∫ ηn
i

ηn
i−1

(
e−xt − e−xn

i t
)
µ(dx)

∣∣∣∣∣ ≤ C t2 r1/2
n (rn − 1)2

∫ ηn
i

ηn
i−1

(1 ∧ x−1/2)µ(dx), t ≤ T,

for all i = 1, . . . , n, where C is a constant independent of n, i and t. Summation over
i = 1, . . . , n leads to

In2 ≤ C
T 5/2

√
5
r1/2
n (rn − 1)2

∫ ∞

0
(1 ∧ x−1/2)µ(dx),

so that In2 → 0, as n → ∞, by virtue of the first condition in (8.3.2). On another note,

In1 ≤
∫ ηn

0

0
µ(dx) =

(ηn0 )1−α

Γ(α)Γ(2 − α)
=

r
−(1−α)n/2
n

Γ(α)Γ(2 − α)
→ 0, when n → ∞,

thanks to the second condition in (8.3.2). Similarly,

In3 ≤
∫ ∞

ηn
n

√
1 − e−2xT

2x
µ(dx) ≤ r

(1/2−α)n/2
n

Γ(α)Γ(1 − α)(1/2 − α)
→ 0, when n → ∞.

Combining the above leads to (8.6.9).

8.6.2 The full Fourier-Laplace transform

We provide the full Fourier-Laplace transform for the joint process Xn := (logSn, V n) ex-
tending (8.2.9). The formula can be used to price path-dependent options on the stock price
Sn and the variance process V n.

Once again, this is a particular case of Section 6.4, by observing that Kn defined in (8.6.3)
is the Laplace transform of the following nonnegative measure

µn(dx) =
n∑

i=1

cni δxn
i
(dx).
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Fix row vectors u = (u1, u2) ∈ C2 and f ∈ L1
loc(R+, (C

2)) such that

Re (u1 + 1 ∗ f1) ∈ [0, 1], Reu2 ≤ 0 and Re f2 ≤ 0,

then, it follows from Remark 6.8 with µ =
∑n
i=1 c

n
i δxn

i
that the Fourier-Laplace transform of

Xn = (logSn, V n) is exponentially affine with respect to the family (Un,i)1≤i≤n,

E
[
exp (uXn

T + (f ∗Xn)T )
∣∣∣ Ft

]
= exp

(
φn(t, T ) + ψ1(T − t) logSnt +

n∑

i=1

cni ψ
n,i
2 (T − t)Un,it

)
,

for all t ≤ T , where (ψ1, (ψ
n,i
2 )1≤i≤n) are the unique solutions of the following system of

Riccati ordinary differential equations

ψ1 = u1 + 1 ∗ f1,

(ψn,i2 )′ = −xni ψn,i2 + F


ψ1,

n∑

j=1

cnj ψ
n,j
2


 , ψn,i2 (0) = u2, i = 1, . . . , n,

with

F (ψ1, ψ2) = f2 +
1

2

(
ψ2

1 − ψ1

)
+ (ρνψ1 − λ)ψ2 +

ν2

2
ψ2

2

and

φn(t, T ) = u2g
n
0 (T ) +

∫ T−t

0
F

(
ψ1,

n∑

i=1

cni ψ
n,i
2 (s)

)
gn0 (T − s)ds+

∫ t

0
f(T − s)Xsds, t ≤ T.

8.6.3 Discretization schemes

Riccati equations

The aim of this section is to design an approximation scheme of the n-dimensional Riccati
system of equations (8.2.10). In order to gain some insights, consider first the case where
F ≡ 0 so that (8.2.10) reduces to

(ψn,i)′ = −xni ψn,i, i = 1, . . . , n, (8.6.10)

and the solution is given by

ψn,i(t) = ψn,i(0)e−xn
i t, i = 1, . . . , n.

One could start with an explicit Euler scheme for (8.6.10), that is

ψ̂n,itk+1
= ψ̂n,itk − xni ∆tψ̂n,itk = (1 − xni ∆t) ψ̂n,itk , i = 1, . . . , n,

for a regular time grid tk = (kT )/N for all k = 1, . . . , N , where T is the terminal time, N the
number of time steps and ∆t = T/N . A sufficient condition for the stability of the scheme
reads

∆t ≤ min
1≤i≤n

1

xni
.

Recall from (8.3.1) that xnn grows very large as n increases. For instance, for n = 20, r20 = 2.5
and H = 0.1, xnn = 6417.74. Consequently, if one needs to ensure the stability of the explicit
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scheme, one needs a very large number of time steps N . In contrast, the implicit Euler
scheme

ψ̂n,itk+1
= ψ̂n,itk − xni ∆t ψ̂n,itk+1

, i = 1, . . . , n,

is stable for any number of time steps N and reads

ψ̂n,itk+1
=

1

1 + xni ∆t
ψ̂n,itk , i = 1, . . . , n.

For this reason, we consider the following explicit-implicit discretization scheme of the n-
dimensional Riccati system of equations (8.2.10)

ψ̂n,i0 = 0, ψ̂n,itk+1
=

1

1 + xni ∆t


ψ̂n,itk + ∆t F


u,

n∑

j=1

cnj ψ̂
n,j
tk




 , i = 1, . . . , n, (8.6.11)

for a regular time grid tk = k∆t for all k = 1, . . . , N , with time step size ∆t = T/N , terminal
time T and number of time steps N . Alternatively, one could also consider the exponential
scheme for the Riccati equations by replacing the term 1/(1 + xni ∆t) with e−xn

i ∆t. One
can also combine more involved discretization schemes for the explicit part involving the
quadratic function F , for instance higher order Runge-Kutta methods can be used, see [83].

Stochastic process

Similarly, we suggest to consider the following modified explicit-implicit scheme for the vari-
ance process V n:

V̂ n
tk

= gn0 (tk) +
n∑

i=1

cni Û
n,i
tk
, Ûn,i0 = 0, (8.6.12)

Ûn,itk+1
=

1

1 + xni ∆t

(
Ûn,itk

− λV̂ n
tk

∆t+ ν

√(
V̂ n
tk

)+ (
Wtk+1

−Wtk

)
)
, i = 1, . . . , n, (8.6.13)

for a regular time grid tk = k∆t, k = 1 . . . N , ∆t = T/N and (Wtk+1
− Wtk) ∼ N (0,∆t).

Notice that we take the positive part (·)+ since the simulated process can become negative.
Once there, simulating the spot-price process Sn is straightforward. We leave the theoretical
study of convergence and stability for future work. Numerically, the scheme seems stable.
Alternatively, one could also consider the exponential scheme for the stochastic process by
replacing the term 1/(1 + xni ∆t) with e−xn

i ∆t. As a final remark, one notices that (8.6.12)-
(8.6.13) corresponds to the space-time discretization of the integro-differential stochastic
partial differential equation (8.3.8)-(8.3.9). This is illustrated on Figure 8.9 below.
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Figure 8.9: Simulated path of the stochastic partial differential equation (8.3.8)-(8.3.9) by
using the scheme (8.6.12)-(8.6.13).
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Figure 8.10: Implied volatility surface of the rough Heston model σ∞(K,T ; Θ0) of (8.3.6)
(red) and the calibrated lifted Heston model σ20(K,T ; r20 = 2.5, Θ̂0) of Table 8.4 (blue) for

maturities ranging from 1 week to 2 years (MSE = 4.01e-07).



Chapter 8. Lifting the Heston model 203

0.10

0.15

0.20

0.25

0.30

0.90 0.95 1.00

 

Rough Heston

Calibrated Heston

1 week

0.1

0.2

0.3

0.4

0.6 0.8 1.0 1.2

 

3 months

0.1

0.2

0.3

0.4

0.50 0.75 1.00 1.25

 

1 year

0.10

0.15

0.20

0.25

0.90 0.95 1.00 1.05

 

1 month

0.1

0.2

0.3

0.4

0.50 0.75 1.00 1.25

 

6 months

0.15

0.20

0.25

0.30

0.35

0.50 0.75 1.00 1.25

 

1.5 years

0.10

0.15

0.20

0.25

0.30

0.35

0.7 0.8 0.9 1.0 1.1

 

2 months

0.1

0.2

0.3

0.4

0.50 0.75 1.00 1.25

 

9 months

0.15

0.20

0.25

0.30

0.50 0.75 1.00 1.25

 

2 years

Figure 8.11: Implied volatility surface of the rough Heston model σ∞(K,T ; Θ0) (red) and
the calibrated Heston model of Table 8.6 (green) for maturities ranging from 1 week to 2

years (MSE = 2.06e-03).
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Figure 8.12: Estimated Hurst index of the simulated sample path of the volatility process
in the lifted model with H = 0.1 as a function of the number of time steps per year.
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ν ρ H MSE

0.22 -0.67 0.09 3.63e-06
0.14 -0.54 0.19 5.34e-06
0.35 -0.65 0.19 8.17e-06
0.14 -0.83 0.06 9.74e-05
0.22 -0.59 0.15 4.60e-06
0.37 -0.50 0.12 4.55e-06
0.40 -0.53 0.11 4.56e-06
0.34 -0.85 0.08 3.45e-04
0.22 -0.89 0.09 1.25e-04
0.44 -0.76 0.11 2.79e-04
0.32 -0.70 0.12 4.56e-06
0.42 -0.63 0.08 5.22e-06
0.10 -0.61 0.17 3.69e-06
0.42 -0.64 0.11 4.81e-06
0.30 -0.69 0.17 5.96e-06
0.06 -0.71 0.17 2.98e-06
0.36 -0.71 0.16 6.14e-06
0.25 -0.80 0.18 1.63e-04
0.09 -0.77 0.06 2.87e-06
0.35 -0.74 0.13 1.44e-04

Table 8.8: Robustness of r20 = 2.5: First 20 values of the simulated parameters and the
corresponding mean squared error between the implied volatility surface of the lifted model

σ20(K,T ; 2.5,Θk) and the rough model σ∞(K,T ; Θk), for k = 1, . . . , 20.





Appendix A

Matrix tools

We collect in this Appendix some definitions and properties of matrix tools intensively used
in the proofs of the first part of this thesis. For a complete review and proofs we refer to
[90, 91, 98].

We start by recalling the definition of the Moore-Penrose pseudoinverse which generalizes
the concept of invertibility of square matrices, to non-singular and non-square matrices. In
the following, we denote by Rm×n the collection of m× n matrices.

Definition A.1 (Moore-Penrose pseudoinverse). Fix A ∈ Rm×n. The Moore-Penrose pseu-
doinverse of A is the unique n×m matrix A+ satisfying: AA+A = A, A+AA+ = A+, AA+

and A+A are Hermitian.

Proposition A.2. If A ∈ Rd×d has the spectral decomposition QΛQ⊤ for some orthogonal
matrix Q ∈ Rd×d and a diagonal matrix Λ = diag [(λi)i≤d] ∈ Rd×d. Then, A+ = QΛ+Q⊤ in

which Λ+ = diag
[
(λ−1
i 1{λi 6=0})i≤d

]
, and AA+ = Qdiag

[
(1{λi 6=0})i≤d

]
Q⊤. If moreover A is

positive semi-definite and B = A
1
2 , then B+ = Q(Λ+)

1
2Q⊤.

Proposition A.3. If A ∈ Rm×n, then AA+ is the orthogonal projection on the image of A.

We now collect some useful identities on the Kronecker product.

Definition A.4 (Kronecker product). Let A = (aij)i≤m1,j≤n1 ∈ Rm1×n1 and B ∈ Rm2×n2 .
The Kronecker product (A⊗B) is defined as the m1m2 × n1n2 matrix

A⊗B =




a11B · · · a1n1B
...

...
am11B · · · am1n1B


 .

Proposition A.5. Let A and B be as in Definition A.4, C ∈ Rn1×n3 and D ∈ Rn2×n4.
Then,

(A⊗B)(C ⊗D) = (AC ⊗BD),

A⊗B = A(In1 ⊗B) if m2 = 1,

A⊗B = B(A⊗ In2) if m1 = 1.

207
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The following definitions extend the concept of Jacobian matrix and show how to nicely
stack the partial derivatives of a matrix-valued function F : Rn×q 7→ Rm×p by using the
vectorization operator (see [91, Chapter 9]).

Definition A.6 (Vectorization operator). Let A ∈ Rm×n. The vectorization operator vec
transforms the matrix into a vector in Rmn by stacking all the columns of the matrix A one
underneath the other.

Definition A.7 (Jacobian matrix). Let F be a differentiable map from Rn×q to Rm×p. The
Jacobian matrix DF (X) of F at X is defined as the following mp× nq matrix:

DF (X) =
∂ vec(F (X))

∂ vec(X)⊤ .

Proposition A.8 (Product rule). Let G be a differentiable map from Rn×q to Rm×p and H
be a differentiable map from Rn×q to Rp×l. Then, D(GH) = (H⊤ ⊗ Im)DG+ (Il ⊗G)DH.



Bibliography

[1] Abi Jaber, E. Stochastic invariance of closed sets for jump-diffusions with non-
lipschitz coefficients. Electronic Communications in Probability 22 (2017).

[2] Abi Jaber, E. Lifting the Heston model. arXiv preprint arXiv:1810.04868 (2018).

[3] Abi Jaber, E., Bouchard, B., and Illand, C. Stochastic invariance of closed
sets with non-Lipschitz coefficients. arXiv preprint arXiv:1607.08717. Accepted for
publication in Stochastic Processes and their Applications (2016).

[4] Abi Jaber, E., and El Euch, O. Markovian structure of the Volterra Heston model.
arXiv preprint arXiv:1803.00477 (2018).

[5] Abi Jaber, E., and El Euch, O. Multi-factor approximation of rough volatility
models. arXiv preprint arXiv:1801.10359 (2018).

[6] Abi Jaber, E., Larsson, M., and Pulido, S. Affine Volterra processes. arXiv
preprint arXiv:1708.08796 (2017).

[7] Alfonsi, A. Affine diffusions and related processes: simulation, theory and applica-
tions, vol. 6 of Bocconi & Springer Series. Springer, Cham; Bocconi University Press,
Milan, 2015.
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Résumé

La présente thèse traite de la théorie
des équations stochastiques en di-
mension finie.
Dans la première partie,
nous dérivons des conditions
géométriques nécessaires et suff-
isantes sur les coefficients d’une
équation différentielle stochastique
pour l’existence d’une solution con-
trainte à rester dans un domaine
fermé, sous de faibles conditions de
régularité sur les coefficients.
Dans la seconde partie, nous abor-
dons des problèmes d’existence
et d’unicité d’équations de Volterra
stochastiques de type convolutif.
Ces équations sont en général non-
Markoviennes. Nous établissons leur
correspondance avec des équations
en dimension infinie ce qui nous
permet de les approximer par des
équations différentielles stochas-
tiques Markoviennes en dimension
finie.
Enfin, nous illustrons nos résultats
par une application en finance
mathématique, à savoir la
modélisation de la volatilité
rugueuse. En particulier, nous
proposons un modèle à volatilité
stochastique assurant un bon com-
promis entre flexibilité et tractabilité.

Mots Clés

Invariance stochastique, équations
de convolutions stochastiques, pro-
cessus affines, volatilité rugueuse.

Abstract

The present thesis deals with the the-
ory of finite dimensional stochastic
equations.
In the first part, we derive necessary
and sufficient geometric conditions
on the coefficients of a stochastic dif-
ferential equation for the existence of
a constrained solution, under weak
regularity on the coefficients.
In the second part, we tackle exis-
tence and uniqueness problems of
stochastic Volterra equations of con-
volution type. These equations are
in general non-Markovian. We es-
tablish their correspondence with infi-
nite dimensional equations which al-
lows us to approximate them by fi-
nite dimensional stochastic differen-
tial equations of Markovian type.
Finally, we illustrate our findings with
an application to mathematical fi-
nance, namely rough volatility mod-
eling. We design a stochastic volatil-
ity model with an appealing trade-off
between flexibility and tractability.

Keywords

Stochastic invariance, stochas-
tic convolution equations, affine
processes, rough volatility.
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