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“According to Darwin’s Origin of Species, it is not the most intellectual of the species that 

survives; it is not the strongest that survives; but the species that survives is the one that is 

able best to adapt and adjust to the changing environment in which it finds itself.” 

Leon Megginson, Lessons from Europe for American business. 
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Résumé étendu 

 Chapitre 1 : Introduction générale 

Différents mécanismes peuvent émerger comme réponse adaptative à l’hétérogénéité 

environnementale. Cette question de l’adaptation à l’hétérogénéité environnementale est 

particulièrement intéressante pour les anguilles tempérées, trois espèces catadromes et 

panmictiques qui se reproduisent en mer de Sargasses (l’anguille Européenne et l’anguille 

Américaine) (Schmidt, 1923; McCleave, 1993) et à l'ouest des îles Mariannes (l’anguille 

japonaise) (Tsukamoto, 1992). Cette reproduction est ensuite suivie d’un transport passif des 

larves par les courants océaniques jusqu’aux eaux continentales du Maroc à la Norvège pour 

l’anguille Européenne (Tesch, 2003), du Venezuela au Groenland pour l'anguille Américaine 

(Helfman et al., 1987) et du nord des Philippines à la Corée pour l'anguille Japonaise 

(Tsukamoto, 1992). Ces particularités, panmixie et longue dérive larvaire, sont des freins à 

l’adaptation locale. Pour autant, des patrons d’histoire de vies corrélées aux gradients 

environnementaux sont observés à l’échelle de l’aire de répartition et à l’échelle des bassins 

versants. Une hypothèse est que, à défaut d’adaptation locale, ces patrons puissent émerger de 

réponses adaptatives à l’hétérogénéité environnementale sous la forme de plasticité 

phénotypique (Vollestad, 1992; Daverat et al., 2006; Edeline, 2007; Geffroy and Bardonnet, 

2012), mais aussi de polymorphismes génétiques soumis à de la sélection spatialement 

variable et à de la sélection d’habitat sous influence génétique (Côté et al., 2009, 2014, 2015; 

Pujolar et al., 2011; Gagnaire et al., 2012; Boivin et al., 2015; Pavey et al., 2015). 

Comprendre les mécanismes adaptatifs qui expliquent la diversité phénotypique est essentiel 

pour la conservation et gestion des espèces (Brodersen and Seehausen, 2014). Les populations 

d’anguilles sont en déclin depuis les années 80-90, à tel point que l’anguille Européenne est 

classée aujourd’hui en danger critique d’extinction dans la liste rouge de l’UICN (Freyhof and 

Brooks, 2011) et les anguilles Américaine et Japonaise sont classées comme menacées 

(Jacoby et al., 2014; Jacoby and Gollock, 2014a). Plusieurs facteurs ont été proposés pour 

expliquer ces déclins (Jacoby et al., 2015), notamment les changements océaniques 

(Castonguay et al., 1994), la contamination et la dégradation de l'habitat (Byer et al., 2015; 

Belpaire et al., 2016), le parasitisme (Feunteun, 2002), les pêcheries (Dekker, 2003a), la 

fragmentation et la perte massive d'habitat (Kettle et al., 2011) et la mortalité induite par les 

turbines des centrales hydroélectriques (Castonguay et al., 1994). Compte tenu de cette 

situation, les mesures de conservation se sont multipliées pour les trois espèces. La forte 

hétérogénéité spatiale des pressions anthropiques sur les populations combinée à la variabilité 
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phénotypique spatiale à l’échelle des bassins versants et de l’aire de répartition sont des défis 

majeurs pour la gestion de ces espèces. 

Dans le contexte du changement global et des déclins des trois espèces, l’objectif principal de 

cette thèse était d'explorer l'écologie évolutive des anguilles tempérées pour comprendre les 

mécanismes impliqués dans leurs capacités d'adaptation à la variabilité environnementale et la 

manière dont ces capacités interagissent avec les pressions anthropiques. Dans ce but, la 

dynamique des populations d’anguilles a été analysée afin (i) de mieux comprendre les 

mécanismes évolutifs impliqués dans l’adaptation à l’hétérogénéité environnementale et de 

(ii) quantifier les effets de pressions anthropiques en prenant en compte ces mécanismes pour 

améliorer la conservation des anguilles tempérées. 

 Chapitre 2 

Dans ce contexte, une première approche de modélisation a été mise en œuvre dans le 

deuxième chapitre. GenEvEel (Genetics & Evolutionary Ecology-based model for Eel), la 

nouvelle version d’EvEel (Drouineau et al., 2014), est un modèle individu-centré. Le modèle 

repose sur un postulat d’optimisation de fitness et vise à explorer le rôle des mécanismes 

adaptatifs dans l’émergence des patrons spatiaux d’histoire de vie chez l’anguille. Ce modèle 

fait suite aux observations de Côté et al. (2015), en ajoutant au modèle EvEel un 

polymorphisme génétique sur la croissance, via le distinguo entre des individus à croissance 

lente et des individus à croissance rapide. Ainsi, chaque individu est caractérisé par un taux de 

croissance ; en cherchant à maximiser la fitness espéré, il détermine son sexe, sélectionne son 

habitat de croissance dans un bassin versant, puis mature à une longueur optimale. En utilisant 

les paramètres de la littérature, le modèle est capable de reproduire les patrons spatiaux 

observés dans les bassins versants : à la fois ceux sur les traits de vie, mais aussi ceux sur la 

distribution des génotypes. Une exploration numérique a été réalisée pour déterminer dans 

quelles combinaisons des paramètres tous les patrons spatiaux sont reproduits et montre que 

ces patrons sont respectés à condition que les individus à croissance lente ne soient pas trop 

pénalisés par rapport aux individus à croissance rapide.  

Nos résultats suggèrent que la sélection de l’habitat dépendant du génotype et la plasticité 

phénotypique peuvent être deux mécanismes adaptatifs complémentaires qui permettent à 

l’anguille de faire face à un environnement hétérogène. Le choix de l’habitat de croissance est 

le résultat du croisement entre les caractéristiques de l’environnement, le génotype de 

l’individu et la compétition intraspécifique. La plasticité phénotypique joue un rôle important 

dans la variabilité des traits d’histoire de vie et d’attributs démographiques induits par 
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l’environnement. Nos résultats aident à la compréhension de différentes stratégies de vie 

selon le sexe. Ils suggèrent que les individus choisiront leur stratégie selon leur croissance, 

qui elle-même présente une base génétique. Les individus à croissance rapide ont une 

mortalité plus élevée et choisissent préférentiellement des habitats à forte densité, une 

stratégie du temps minimal est favorisée. Les individus à croissance lente ont une mortalité 

intrinsèque plus faible et choisissent des habitats à plus faibles densités ce qui favorise une 

stratégie de taille maximale.  

La question immédiate est de comprendre la répercussion des pressions anthropiques sur la 

population, car si elles peuvent être une source de mortalité accrue, elles peuvent également 

affecter les traits d’histoire de vie (taille à maturité) et les attributs démographiques (sexe-

ratio) en jouant sur les effectifs et donc les mécanismes densité-dépendants ou sur les habitats 

accessibles, voir en affectant plus certains types d’individus que d’autres. Les conséquences 

de ces pressions seront différentes selon la nature des mécanismes adaptatifs qui modifient les 

caractères des individus : en favorisant des individus à croissance rapide (ou lente), en 

modifiant le sexe-ratio, la longueur à l’argenture ou la distribution spatiale. 

Ces résultats ont fait l’objet d’un premier article publié au Canadian Journal of Fisheries and 

Aquatic Sciences (2017) : Mateo M., Lambert P., Tétard S., Castonguay M., Ernande B. et 

Drouineau H. « Cause or consequence? Exploring the role of phenotypic plasticity and 

genetic polymorphism in the emergence of phenotypic spatial patterns for the European eel ».  

 Chapitre 3 

Compte tenu de l'état actuel des anguilles tempérées et comme mentionné précédemment, les 

mesures de conservation se sont multipliées. Pour autant, celles-ci se limitent souvent à viser 

à une baisse globale des mortalités anthropiques, sans regarder plus finement les 

conséquences en termes de traits d’histoire de vie et d’attributs démographiques. Dans ce 

contexte, une méthode est indispensable pour évaluer l'impact des pressions anthropiques et 

donner des éléments pour prioriser les actions de gestion. L’objectif du troisième était 

d’explorer l’effet des pressions anthropiques en allant au-delà des études existantes, c’est à 

dire en ne se limitant pas à quantifier les mortalités directes ou le nombre de survivants (on 

parle d’échappement à la dévalaison) mais aussi en regardant les conséquences sur les 

attributs démographiques de cet échappement. 

Ainsi, GenEveel a été adapté pour intégrer l’effet des pressions anthropiques au niveau des 

processus de colonisation et de dévalaison afin d'en quantifier les conséquences sur 

l’échappement des anguilles argentées, non seulement en termes de nombre d’anguilles, mais 
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aussi l’effet sur le sexe-ratio, les proportions des individus à croissance rapide/lente, la 

longueur à l’argenture et la production d’œufs, après une génération dans les eaux 

continentales soumises à différents types de pressions anthropiques. Le modèle a été donc 

structuré en représentant les événements et les processus du cycle de vie de l’anguille en 

milieux continentaux et en intégrant les effets des pressions anthropiques dans les 

simulations. La pêcherie civelière et les obstacles à la montaison impactent la détermination 

du sexe, la sélection de l’habitat, et indirectement la survie à l’argenture. Les survivants sont 

ensuite impactés par des pêcheries d’anguilles argentées et des turbines qui tuent les 

migrantes en dévalaison. Une exploration numérique a permis de comparer les effets de 

différentes pressions anthropiques sur la population. 

Nos résultats montrent que les impacts globaux sont complexes et que ce n’est pas forcément 

la pression qui tue le plus d’anguilles qui a le plus gros impact sur la biomasse féconde ou la 

production d’œufs. Nos résultats démontrent surtout que la plasticité permet de compenser les 

effets de certaines pressions (pêcherie civelière et obstacles à la montaison) et est source de 

résilience pour la population, alors que d’autres pressions ne bénéficiaient d’aucun effet de 

compensation (pêcherie argentée et turbines à la dévalaison). La plupart des pressions, sauf la 

pêcherie civelière, favorisent les individus à croissance rapide par rapport aux individus à 

croissance lente, démontrant que les pressions anthropiques peuvent être des pressions 

sélectives pour la population d’anguilles. Compte tenu du désavantage évolutif apparent des 

individus à croissance lente, on peut se demander comment ces individus ont pu être 

conservés par la sélection naturelle. Une explication plausible pourrait être que la plupart des 

femelles sont des individus à croissance lente avec une forte fécondité, ce qui peut devenir 

encore plus important dans un contexte de déclin de la population. 

Afin d’explorer la question sur la préservation des individus à croissance lente et rapide au 

cours des générations, un modèle multigénérationnel à l’échelle de l’aire de distribution est 

nécessaire. Cela permettra d’étudier les conditions dans lesquelles la plasticité phénotypique 

et le polymorphisme génétique peuvent être sélectionnés comme réponse à l’hétérogénéité 

environnementale et d’aborder l’échelle de la population plutôt que l’échelle du bassin 

versant.  

Ces résultats ont fait l’objet d’un deuxième article publié au Fisheries and Research (2017) : 

Mateo, M., Lambert, P., Tétard, B., Drouineau, H., « Impacts that cause the highest mortality 

of individuals do not necessarily have the greatest influence on temperate eel escapement ». 
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 Chapitre 4 

Un des postulats sur lequel reposent EvEel et GenEvEel est que la plasticité phénotypique 

chez l’anguille est une réponse adaptative émergeant de la sélection naturelle. Cela implique 

qu’elle a, au moins un moment, procuré un avantage évolutif supérieur aux coûts liés. Ce 

postulat est indispensable pour justifier l’utilisation d’une approche d’optimisation de la 

fitness dans la simulation des processus biologiques de ces modèles, mais doit être validé. 

Dans ce contexte, Maxime Olsommer, étudiant M2 en Biologie Marine (Nice), a réalisé un 

stage dont l’objectif était d’explorer dans quelles conditions, la plasticité phénotypique a pu 

être sélectionnée, puis de voir si, dans un contexte d’effondrement de population comme celui 

que connaît l’anguille, la plasticité reste adaptative ou non.  

MaxEel, un modèle individu-centré, a été développé afin de simuler l’évolution de normes de 

réaction, c’est-à-dire le range des phénotypes qu’un génotype peut produire en fonction des 

conditions environnementales, et de voir dans quelles conditions ces normes deviennent 

plastiques. Le modèle considère une population panmictique d’anguilles dont les individus 

colonisent aléatoirement trois bassins-versants contrastés en termes de croissance et de survie 

(selon la température du milieu). Dans le modèle, chaque individu est caractérisé par une 

norme de réaction propre (une longueur à argenture par bassin-versant) plus ou moins 

plastique (variance de ces longueurs à maturité). Au sein des bassins-versants, les individus 

ont une dynamique assez proche de celle décrite dans GenEveel : une croissance selon une 

courbe de von Bertalanffy, une survie densité-dépendante, et une maturation quand la taille à 

maturité (définie dans leur norme en fonction de leur bassin versant de résidence) est atteinte. 

Par contre, contrairement à GenEveel et Eveel, les bassins-versants ne sont constitués que 

d’une seule cellule (pas de gradient amont-aval), et contrairement à GenEveel, le 

polymorphisme sur les taux de croissance n’a pas été pris en compte. De plus, dans ce premier 

essai, seules les femelles ont été modélisées. 

Les individus ayant survécu jusqu’à la taille à maturité se reproduisent ensemble. Les 

descendants possèdent la même norme que leur mère, avec une possible mutation aléatoire 

autour de cette norme. L’ensemble des individus produits au cours d’un pas de temps (une 

année) sont ensuite répartis aléatoirement au sein des trois bassins-versants, mimant ainsi une 

dérive larvaire aléatoire. L’opération est répétée sur plusieurs générations et les normes de 

réactions sélectionnées dans la population finale sont analysées. Les indicateurs choisis pour 

explorer l’évolution de la norme de réaction sont : la variance et l’amplitude des normes de 

réaction, et le coût qui y est lié. Une exploration numérique a été réalisée afin de déterminer 

l’impact de (i) la répartition des larves entre bassins-versants (soit homogène, soit biaisée vers 
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l’habitat le plus favorable, soit biaisée vers l’habitat le moins favorable), (ii) le degré 

d’hétérogénéité entre les environnements (contrastes plus ou moins forts des taux de 

croissance et de survie), (iii) la densité-dépendance (mortalité densité-dépendante plus ou 

moins forte), (iv) l’intensité de coût de plasticité et (v) le type de coût (maintenance ou 

production) de la plasticité sur l’émergence de la norme de réaction.  

Sans surprise, c’est l’intensité de coût qui a l’effet le plus fort sur l’émergence ou non de la 

plasticité, c’est-à-dire le niveau de la variance de la norme de réaction. Ce résultat est logique 

puisque l’intensité du coût joue directement dans le trade-off avantage évolutif versus coût 

qui gouverne l’émergence de la plasticité (Pigliucci, 2005). Le second paramètre qui influence 

le plus est l’intensité de la densité-dépendance. Cela correspond bien aux résultats d’Ernande 

and Dieckmann (2004), qui avait démontré que la densité-dépendance était un facteur 

favorisant la plasticité phénotypique. Le type de coût représente le troisième paramètre plus 

impactant, les normes sont plus plastiques quand les coûts sont plus liés à des coûts de 

production plutôt qu’à des coûts de maintenance. Le degré d’hétérogénéité entre les bassins 

versants et la répartition des larves ont un effet moins important et quelques interactions 

peuvent moduler la valeur adaptative de la réponse plastique. 

Les scénarios avec une intensité de densité-dépendance nulle peuvent aussi être interprétés 

comme des situations où la compétition intraspécifique devient négligeable, ce qui est le cas 

quand la population s’est effondrée. Dans les scénarios sans densité-dépendance, la plasticité 

phénotypique est encore présente, mais très largement atténuée (les normes sont beaucoup 

moins variables). Cela montre que la plasticité présente encore un avantage évolutif, y 

compris dans un contexte d’effondrement de la population, mais que la plasticité sélectionnée 

dans un contexte de forte d’abondance est sans doute trop forte dans un contexte d’effectifs 

réduits, engendrant des coûts superflus, ce qui à défaut d’être une mal-adaptation, n’est pas 

une situation optimale. 

Finalement, un modèle démo-génétique a été décrit afin de déterminer dans quelles conditions 

écologiques, la plasticité phénotypique et le polymorphisme génétique (i) pourraient être 

sélectionnés par l’évolution et (ii) pourraient être maintenus dans le contexte actuel des 

populations effondrées. Les conditions écologiques à explorer sont: le gradient de température 

entre les bassins versants (comme un gradient latitudinal qui représente l’aire de distribution 

des anguilles), la variabilité spatiale dans les bassins versants (c'est-à-dire le gradient en 

amont et l'aval) et les paramètres démographiques, tels que l'abondance de la population. Pour 

analyser l'émergence évolutive de la plasticité phénotypique, nous explorons également l'effet 
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de ses coûts, car ils constituent des contraintes majeures pour l'avantage sélectif de ce 

mécanisme. 

Cette nouvelle version est basée sur certains aspects de GenEveel afin de reproduire la phase 

continentale et de MaxEel afin de représenter la phase océanique. La nouveauté du modèle 

réside dans le codage génétique des traits quantitatifs ainsi que sa transmission à la 

descendance. Chaque individu est initialement caractérisé par un taux de croissance 

intrinsèque, une fertilité, et des paramètres décrivant sa norme de réaction (longueur à 

l’argenture). Les descendants héritent de ses parents la valeur génétique de chaque un de ces 

traits, et une valeur stochastique est associée en représentant un bruit environnemental non 

hérité. 

Le modèle couvre tout le cycle de vie des anguilles tempérées. Les descendants issus de la 

reproduction sont distribués aléatoirement parmi les trois bassins versants et ils sont affectés 

par la mortalité lors de la dérive larvaire. Cette mortalité dépend des caractéristiques 

intrinsèques des larves, de la durée de la dérive et de la température de l'eau. Lorsqu'ils 

pénètrent dans les eaux continentales, les individus sélectionnent leur habitat de croissance 

(saumâtre ou eau douce dans la rivière) et déterminent leur sexe (femelle ou mâle) en 

cherchant à maximiser la fitness attendue. Ensuite, les individus grandissent et meurent au 

cours de la phase continentale, avec une croissance et une mortalité qui dépendent des 

caractéristiques des individus, de l'habitat et de la densité-dépendance. Lorsqu'ils atteignent 

une longueur à l'argenture, définie par une norme de réaction dépendante de l'environnement, 

ils migrent pour se reproduire. Les descendants héritent une partie des attributs de leurs 

parents et le cycle recommence. Le cycle est répété jusqu’aux patrons spatiaux sont stabilisés. 

Comme dans GenEveel, une approche par patron spatial est définie au sein des bassins 

versants (caractérisés par deux habitats, aval et amont), et entre bassins versants.  

Ce modèle reste un prototype et n’a pas pu être utilisé au cours de cette thèse ; l’ODD 

présenté ici est donc susceptible d’être modifié dès que les premiers résultats seront 

disponibles. La présentation de ce modèle répond à différents objectifs. D'abord, le modèle 

résume les connaissances sur le fonctionnement de la population de l'anguille acquis à la fin 

de cette thèse, et en particulier sur son adaptation à l'hétérogénéité environnementale. Il est 

basé sur la compréhension de l'adaptation obtenue avec GenEveel, combiné avec la 

dynamique de la population à l'échelle de l’aire de répartition, ce qui donne une perspective 

évolutive en complétant le cycle de vie et en permettant des simulations 

multigénérationnelles. Finalement, la présentation du modèle permet de présenter les 

perspectives de ce doctorat, notamment les applications du modèle afin d’explorer différentes 
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questions sur l'effet des pressions anthropiques, de la résilience de la population ou des 

mesures de conservation. 

 Chapitre 5 : Discussion et perspectives 

Malgré le grand intérêt pour les anguilles tempérées et la littérature scientifique sur des 

aspects particuliers et la dynamique de population de ces espèces, la compréhension des 

mécanismes adaptatifs des anguilles face à l’hétérogénéité environnementale a connu des 

avancées très récentes. Depuis longtemps, de nombreuses études ont montré des corrélations 

entre les traits d’histoire de vie et des gradients environnementaux, comme la longueur à 

l’argenture, le sexe-ratio, et les effets de la densité sur la croissance. Récemment, d’autres 

études expérimentales ont mis en évidence la base génétique de la variation des traits 

d’histoire de vie comme la croissance et des corrélations entre les conditions 

environnementales et l’expression génétique. Cependant, peu d’études ont analysé toutes ces 

observations simultanément afin de trouver une signification adaptative commune.  

Ce doctorat rassemble toutes les connaissances disponibles sur l’histoire de vie des anguilles 

afin d’analyser les caractéristiques vitales de cette espèce pendant sa phase continentale. À 

l'aide des modèles, nous avons donné un sens à toutes ces observations. Nous avons pu 

proposer un schéma général des mécanismes d'adaptation impliqués dans la réponse à 

l'hétérogénéité environnementale et fournir de nouvelles pistes pour la gestion. 

Basé sur les résultats du deuxième et troisième chapitre, le chapitre quatre propose un modèle 

qui résume notre compréhension actuelle de cette espèce énigmatique. Ce type de modèle est 

un outil pertinent pour évaluer l’influence du changement global sur la population d’anguilles 

et pour informer les politiques de gestion et de conservation. Ce modèle est aussi utile pour 

illustrer comment la conservation de la diversité génétique et de l’habitat est cruciale pour la 

viabilité des espèces. C’est un bon candidat pour explorer la pertinence des stratégies de 

gestion, comme le repeuplement qui est l’une des principales mesures de gestion utilisées 

pour restaurer la population d’anguilles (Wickström and Sjöberg, 2014; Dekker and 

Beaulaton, 2016). Le modèle peut également être utilisé pour explorer le risque de sélection 

des traits d’histoires de vie induits par l’homme. Des recherches supplémentaires sur le rôle 

des pressions anthropiques comme pressions de sélection permettront d’analyser si les 

individus à croissance lente sont encore conservés par la sélection naturelle et artificielle. 

La capacité d’adaptation des anguilles est basée sur la combinaison de la diversité génétique 

et la plasticité phénotypique qui sont source de la diversité des traits d’histoire de vie et 

permettent aux anguilles d’utiliser différents habitats. De ce fait, les anguilles représentent des 
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cas d’étude intéressants sur comment la diversité peut contribuer à la résilience et à la stabilité 

de la population. La grande variabilité des réponses à conditions environnementales pendant 

la phase continentale suggère que les mesures de gestion et de conservation devraient 

chercher à préserver la diversité des habitats, la diversité génétique et la diversité des traits de 

vie (Secor, 2015a). Ces diversités sont primordiales puisqu’ils sont source de portfolio et de 

storage effects (ICES, 2009; Secor, 2015b).  

La plupart des espèces sont menacées par le changement global. Dans ce contexte il faut 

améliorer les connaissances sur la capacité des espèces à l'adaptation et leur vitesse 

d'adaptation pour orienter des stratégies de gestion et des politiques de conservation. Ces 

dernières années, de nombreuses études ont abordé ce sujet, en se focalisant sur les 

mécanismes évolutifs et les avantages de la sélection par rapport à la plasticité phénotypique 

sur le taux d'adaptation. Ce travail contribue à ce débat en utilisant les anguilles à titre 

d'exemple. 
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Preface 

The thesis is structured in five chapters. A “foreword” introduces the positioning of each 

chapter in the overall approach of the PhD and a “take home message” section summarizes 

the main findings and the questions raised by the corresponding chapter (except for the 

introduction and the discussion). The second and the third chapter are based on manuscripts 

that have been published on international reviewed journals: 

- Chapter 2: Mateo M., Lambert P., Tétard S., Castonguay M., Ernande B., Drouineau 

H. 2017a. Cause or consequence? Exploring the role of phenotypic plasticity and 

genetic polymorphism in the emergence of spatial patterns of the European eel. 

Canadian Journal of Fisheries and Aquatic Sciences, 74: 987-999. doi: 10.1139/cjfas-

2016-0214. 

- Chapter 3: Mateo M., Lambert P., Tétard S., Drouineau H. 2017b. Impacts that cause 

the highest direct mortality of individuals do not necessarily have the greatest 

influence on temperate eel escapement. Fisheries Research, 193: 51-59. doi: 

10.1016/j.fishres.2017.03.024.  

Chapter four is partially based on the internship realised by Maxime Olsommer, a student 

(master level) that I supervised during six months in 2016 to explore the conditions in which 

phenotypic plasticity is adaptive. Chapter five is partially based on a manuscript submitted to 

Fish and Fisheries:  

- Drouineau H., Durif C., Castonguay M., Mateo M., Rochard E., Verreault G., 

Youkouchi K., Lambert P. Collapse of temperate eels: when synergetic effects of the 

five components of global change outpace species adaptation capacity. Submitted to 

Fish and Fisheries. 

Most of the contents of this work have been presented as oral presentations in international 

and national conferences: 

- Mateo M., Lambert P., Tétard S., Drouineau H. Assessing the impact of anthropogenic 

pressures on temperate eels using Genetics & Evolutionary ecology-based model for 

eels. 13ème Colloque de l’AFH (Association Française d’Halieutique). Nantes 

(France), June 2017. 

- Mateo M., Lambert P., Tétard S., Drouineau H. Assessing the impact of anthropogenic 

pressures on temperate eels using Genetics & Evolutionary ecology-based model for 

eels. The 1st International Eel Science Symposium. London (UK), June 2017. 
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- Mateo M., Lambert P., Tétard S., Drouineau H. Adaptation de l'anguille européenne à 

la variabilité environnementale : Mécanismes et conséquences. Hynes meeting (Irstea-

EDF team). Lyon (France), September 2016.  

- Mateo M., Lambert P., Tétard S., Drouineau H. Genetics & Evolutionary Ecology-

based model for Eel: GenEveel. Life History Theory, summer school. Groningen 

(Netherlands), September-October 2015. 

- Mateo M., Lambert P., Tétard S., Drouineau H. La plasticité phénotypique adaptative 

et la sélection spatialement variable chez l’anguille européenne modifient-elles l’effet 

des pressions anthropiques sur la population ? 12ème Colloque de l’AFH (Association 

Française d’Halieutique). Montpellier (France), July 2015. 

- Mateo M., Lambert P., Tétard S., Drouineau H. Consequences of adaptive phenotypic 

plasticity and local adaptation in the European eel: assessing population-level 

responses to anthropogenic pressures. Models in Ecology and Evolution. Montpellier 

(France), May 2015. 

This study was funded by the Hynes project between Irstea and EDF R&D. 
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1.1. Species adaptation to environmental heterogeneity and new 

challenges due to global change 

1.1.1. Environmental heterogeneity: constraints and adaptive 

mechanisms 

How organisms respond to their environment and the underlying mechanisms that allow these 

responses have always fascinated scientists. Nowadays, the Darwin evolutionary theory is the 

most accepted, becoming a milestone. Natural selection was defined by Darwin (1859) as the 

“principle by which each slight variation of a trait, if useful, is preserved”. This mechanism is 

based on (i) the variation of traits between individuals, (ii) the inheritance of individual 

variation from parents to offspring, and (iii) the competition for limited resources in a 

particular environment. Natural selection maintains and accumulates individual variation to 

allow the best reproductive success, or the expected number of offspring by individual. The 

increase in the frequency of this variation leads to adaptation of the population in their 

environment. At the individual scale, the fitness is a quantitative measure of the reproductive 

success of an individual, i.e. of its capacity to transmit its genotype or its phenotype to future 

generations.  

Understanding the relationships between environmental heterogeneity of habitats and 

individual traits is a key issue. Environments can be heterogeneous in a variety of ways, in 

space and time, having different consequences on the response of individuals and influencing 

population dynamics. Spatial environmental heterogeneity refers to the uneven distribution of 

environments across a region and offer different and spatially structured habitats (Chesson, 

2000; Oliver et al., 2010). In such  situation, individuals can choose to move between habitats 

(Forman, 1995), especially to find the one in which they increase their fitness by improving 

their growth and survival rates (Sergio and Newton, 2003). Alternatively, individuals can 

remain in a given habitat in which they merely survive and grow. Furthermore, natural 

selection that acts on an individual scale and includes the influence of environmental effects 

in the rate and sense of adaptation, needs to consider a coherent spatial scale with the species 

perception about their environments (Tews et al., 2004) because they are able to detect the 

spatial changes in the quality of the habitat. In this context, the scale should provide the 

spatial region that describes the habitat (or mesohabitat) use by individuals and it is related to 

mobility and other life history traits (Wiens, 1989; Levin, 1992). 
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Individuals must adapt to changes of selective pressures induced also by temporal 

environmental variability. If the environment remains temporally constant, i.e. coarse grained 

environment, and the individuals are able to select their habitat, they will tend to be more and 

more adapted to a specific habitat. On the other hand, if environment is temporally variable, 

i.e. fine grained environment, and individuals are not able to select their habitats, they will 

tend to become adapted to a wide range of environmental conditions (Levins, 1968). 

All organisms must adjust to conditions imposed by their environments in order to survive 

and reproduce. Adaptation refers to the progressive evolution of a trait that allows individuals 

to improve or maintain their fitness. The existence of a genetically determined phenotypic 

variation is necessary for the action of evolutionary processes (West-Eberhard, 2003). In fact, 

phenotypic differences between individuals may potentially induce differences of fitness and 

therefore have consequence on the evolutionary scale, favoring certain allelic variants over 

others. Within the mechanisms that maintain this genetic variation (soft sweeps, polygenic 

basis of adaptation, recurrent parallel evolution, epigenetics) (Bernatchez, 2016), balancing 

selection that benefits the variance of a phenotype and tends to generate or maintain genetic 

polymorphisms (multiple forms of a single gene), is likely to be the most useful mechanism 

within a population if the genetic variation is preserved by this mechanism (Whitlock, 2015). 

Examples of balancing selection include overdominance, frequency-dependent selection and 

temporal or spatial variation in selection (Mitchell-Olds et al., 2007). The latter or spatially 

varying selection may be prevalent in species occupying heterogeneous environments (figure 

1-1.A). Although this mechanism can be understood as a local adaptation because of the 

selective pressures imposed by the local environmental conditions, there are situations where 

local adaptation is impossible but adaptive genetic polymorphisms can be conserved by 

natural selection (Yeaman and Otto, 2011). In line with this, Bay and Palumbi (2014) studied 

the adaptation to climate change of table-top corals, and despite panmixia, they found genetic 

correlations with temperature suggesting that adaptive polymorphism would be maintained in 

heterogeneous habitats through balancing selection. However, phenotypic variability as a 

result of adaptation to heterogeneous environments is not exclusively due to genetic 

variability, but it may come from phenotypic plasticity or the capacity of an organism to 

produce different phenotypes by a single genotype in response to environmental changes 

(Pigliucci, 2005) (figure 1-1.B). This mechanism meets all the conditions required to be 

selected because it allows to increase the fitness of individuals and it can be inherited to 

offspring (Ernande et al., 2004). Adaptive phenotypic plasticity has been demonstrated for 

several species (Schlichting, 1986; Sultan, 1987; Scheiner, 1993; Pigliucci, 2005). 

Nevertheless, there are costs associated to it: maintenance costs linked to the start-up of 
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sensorial receptors and regulatory mechanisms, and production costs related to the production 

of a specific phenotype. For been selected, the benefits provided by plasticity must therefore 

be greater than these associated costs (DeWitt et al., 1998). 

 

Figure 1-1. Schematic representations of two adaptations that deal with heterogeneous environments. 

The circles represent individuals with particular phenotypes (colours) in specific environments 

(rectangles). For example, a yellow individual can only survive in a yellow habitat, and therefore these 

phenotypes are determined genetically and local selection acts on them (A), or an individual can 

potentially express the phenotypes, and will express the phenotype corresponding to its habitat, so the 

phenotypes are induced environmentally by phenotypic plasticity (B). 

Mechanisms of evolutionary adaptation exhibits different time-scales. Genetic evolution acts 

on a long time scale: the frequency of adapted genotypes will increase over generations while 

the frequency of maladapted genotypes will decrease or even irreversibly disappear. On the 

short time scale, phenotypic plasticity allows rapid and reversible phenotypic responses to 

environmental modifications (Charmantier et al., 2008). In this situation, each individual is 

able to express different phenotypes with its own genotype depending on the environmental 

conditions. Contrary to natural selection, the phenotype is not transmitted to the offspring 

which remain plastic. More recently, epigenetics has proved to be an intermediate 

mechanism: it refers to modifications of the phenotypes without modification of the 

genotypes that occur at the individual scale (similarly to the phenotypic plasticity) but which 

are, at least partially, heritable (similarly to the genetic selection) (Bossdorf et al., 2008). A 

possible non-genetic inheritance mechanism is the strategy of bet hedging, in which the 

unpredictable environmental variability favors genotypes that maximize the geometric mean 

of fitness, decreasing its variance (Hopper, 1999). 
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This thesis brings different approaches together to study the evolutionary mechanisms that 

determine the phenotypic variability to environmental heterogeneity and human impacts. 

Population genetics is the study of genetic variation within populations, investigating (genetic 

or phenotypic) changes in population distribution, under the influence of selective pressures 

(Hedrick, 2005; Hartl and Clark, 2007). R. Fisher, J. Haldane and S. Wright were the main 

founders of this field, conciliating Darwin’s Theory of Evolution with Mendelian genetics. 

Evolutionary ecology focuses on how environment tend to favor specific phenotypic traits. It 

seeks to explain why some individual behavior, physiology or demography are more adapted 

to environmental conditions than others (Fox et al., 2001). Therefore, by combining 

population genetics and evolutionary ecology, we simultaneously explain how genes control 

the variation of phenotypic characters and how environments influence the selection of those 

characters. Integrating the inheritance of phenotypic traits with the study of ecological 

features associated to those characters allow to determine their evolutionary potential and 

fitness of individuals. 

Disentanglement of both mechanisms to explain the observed phenotypic variability facing to 

environmental heterogeneity remains a challenge that is even more crucial because human 

impacts on population dynamics could be different according to these evolutionary 

mechanisms. 

1.1.2. Global change: a challenge for species adaptation 

capacities 

Global change refers to the deep modifications of ecosystems due to anthropogenic activities 

(Steffen et al., 2005). There are five main components of global change: (i) global warming 

and oceanic changes, which are due to increased greenhouse gas emission by human activities 

(IPCC and Pachauri, 2015) and is the most well-documented, (ii) the increasing nutrient, 

contaminant and pesticide loads in the ecosystem due to industries, agriculture and 

urbanization (Verhoeven et al., 2006), (iii) the fragmentation of aquatic and terrestrial 

ecosystems and the modification of habitats due to anthropogenic land use (Collinge, 1996; 

Fischer and Lindenmayer, 2007; Brook et al., 2008), (iv)  biological invasion and biodiversity 

modifications (Vitousek et al., 1997; Occhipinti-Ambrogi and Savini, 2003; Ricciardi, 2007), 

(v) the over-exploitation of natural resources (Brook et al., 2008). 

In the current context of global change, one of the central questions is whether species will 

survive by adapting to the new environmental conditions (Lavergne et al., 2010; Hoffmann 

and Sgrò, 2011). Indeed, the intensity and the rate of variations due to global changes are a 
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challenge for species adaptation (Spurgeon, 2000; Donner et al., 2005; Visser, 2008; Cahill et 

al., 2012; Urban, 2015): to survive, they must cope with the new constraints by displaying 

adaptive responses (Hughes, 2000). Hughes (2000) listed different responses to the global 

change: physiological modifications, phenological changes, modifications of distribution area 

or local adaptation. This question of adaptation to new conditions has been raised for a great 

amount of species (Collins and Bell, 2004; Hendry et al., 2008; Ozgul et al., 2009; Van 

Doorslaer et al., 2009; Boutin and Lane, 2014; Charmantier and Gienapp, 2014; Crozier and 

Hutchings, 2014; Reusch, 2014). This thesis focuses on temperate eels’ responses to 

environmental challenges, species that have proved strong adaptation capacities but are now 

considered to be critically endangered. 

1.1.3. A conceptual framework: from life history theory to 

population dynamics 

In the previous section, we detailed how population genetics (gene frequency) and 

evolutionary ecology (trait) explore adaptation mechanisms to deal with environmental 

heterogeneity. Life history theory, a branch of evolutionary ecology, analyzes the evolution of 

all the components of fitness, or the contribution of an individual to new generations in terms 

of offspring (McNamara and Houston, 1992; Giske et al., 1998). This theory focuses on 

specific life history traits, i.e. characters that affect directly the reproductive potential of an 

individual through its life, by modifying its survival or fecundity rates. Examples of life 

history traits include size at birth, growth, age and size at maturity, number and size of 

offspring, lifespan and reproductive investment (Roff, 1992).  

Life history traits evolve as a result of the interaction between two factors (Stearns, 2000): the 

direct ecological impact of the trait on the life cycle of individuals and the linkage among life 

history traits that constrain each other, i.e. trade-offs. A classical trade-off is the onset of 

reproduction, which usually restricts other traits such as growth, survival and even future 

reproductions (Reznick, 1983). Furthermore, natural selection acts under these trade-offs that 

will determine a specific combination of life history traits, defining a particular strategy. 

These life history strategies refer to the different adaptations that control how individuals 

allocate their available resources in reproduction and survival in face of a particular 

environment (Stearns, 1992).  

A classical approach to study the life history evolution is optimality (Parker and Maynard 

Smith, 1990). This approach studies how the design of phenotypes varies to achieve strategies 

that optimize fitness in a given environment (Mayhew, 2006). For example, the Optimal 
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Foraging Theory, described by MacArthur and Pianka (1966) postulates that natural selection 

favors the traits that minimize the energy expended to acquire a quantity of food. The 

limitations of optimality models have led to consider other theories. The Theory of Games is 

used to include ecological scenarios with frequency-dependence and study what happens 

when one or more phenotypes compete with others within a population (Maynard Smith, 

1982). In this case, natural selection tends to favor the most competitive genotype. Moreover, 

density-dependent processes, such as the competition of resources in the space or trade-offs 

between survival and fecundity, are strongly linked to the fluctuations on size of the 

population and its productivity which determines population dynamics (Wennersten and 

Forsman, 2012). This is considered in the adaptive dynamics or the evolutionary invasion 

analysis that includes the frequency-dependent processes (from the Theory of Games) with 

population dynamics to examine the selective pressures induced by population fluctuations in 

its environment, which generates eco-evolutionary feedbacks. This kind of model studies how 

an increase in fitness of a phenotype will depend in the frequency of others phenotypes within 

the population (Mylius and Diekmann, 1995; Dieckmann, 1997). 

1.2. Temperate eels: three old species that display fascinating life-

cycles 

1.2.1. Overview of phylogeny and distribution of the species 

Freshwater eels belong to the superorder Elopomorpha, an ancient group of teleost fishes that 

share the leptocephalus larval stage and dwell in varied marine habitats. Among the four 

orders of this group, Anguilliformes comprises more than 800 species and relates to the genus 

Anguilla. The genus includes 16 species and three subspecies that occupy areas all over the 

world except the coasts of South Atlantic and eastern Pacific. The genus Anguilla or 

freshwater eels appeared about 50 million years (Tsukamoto and Aoyama, 1998). Freshwater 

eels display remarkable migrations between freshwater and marine habitats, spend most of 

their lives in freshwater during the growth phase while the reproduction takes place in open 

ocean areas. This migratory behavior, called catadromy, could be inherited from Pleistocene 

glaciations, during which individuals that spent time in inland waters to build energy reserves 

would guarantee the migration from the refuge areas to the spawning grounds (Kettle et al., 

2011).  

According to their geographical distributions (figure 1-2), freshwater eels are divided into 

temperate and tropical eels. There are three temperate and 11 tropical eels. The three 
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temperate eels are: Anguilla japonica (Japanese eel) in the Pacific Ocean, A. rostrata 

(American eel) and A. anguilla (European eel) in the Atlantic Ocean. Spawning areas are 

located at tropical latitudes: the Sargasso Sea for A. anguilla and A. rostrata (Schmidt, 1923; 

McCleave, 1993) and west of the Mariana Islands for A. japonica (Tsukamoto, 1992). Their 

growth stage take place from Morocco to Norway (Tesch, 2003) for the European eel, from 

Venezuela to Greenland for the American eel (Helfman et al., 1987) and from Northern 

Philippines to Korea for the Japanese eel (Tsukamoto, 1992). Historically, A. japonica 

appeared about 15 million years (Lin et al., 2001), while A. rostrata and A. anguilla diverged 

about three million years ago because of the emergence of the Isthmus of Panama (Jacobsen 

et al., 2014). Specifically, the European eel have survived strong changes until now such as 

ice ages and the continental drift that has separated the spawning grounds from the nursery 

grounds (Knights, 2003). 

 

Figure 1-2. Distribution of temperate eels: American eel distribution is represented in orange, 

European eel distribution in purple and Japanese eel distribution in green. The supposed spawning 

grounds are indicated by circles (adapted from Drouineau et al., submitted). 

1.2.2. Description of the life cycle 

The three species display very similar life history (Daverat et al., 2006; Edeline, 2007). As 

mentioned earlier, temperate eels are catadromous species (figure 1-3). Since 1998, different 

studies have analyzed the ratio of strontium and calcium in otoliths of eels and showed that 

freshwater eels can spend their entire lifetime in brackish or saltwater, and therefore 

catadromy would be facultative (Tsukamoto and Arai, 2001). While reproduction takes place 

at sea, leptocephali larvae are subject to a long and passive trans-oceanic drift which duration 

is not perfectly known but estimates vary from seven months to more than two years 
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(Bonhommeau et al., 2010). Larvae metamorphose into glass eels when arriving on the 

continental shelf. Then glass eels enter into continental water and progressively become 

pigmented yellow eels (Tesch, 2003). The continental phase that corresponds to the growth 

phase, lasts between three to 30 years, depending on the region and the sex (Vollestad, 1992). 

Under the influence of environmental factors, as temperature or photoperiod, yellow eels 

metamorphose again into silver eels that are ready to migrate at the end of the summer. The 

seaward migration stage is then triggered by environmental factors that generate stronger 

water discharge and low light conditions (Trancart et al., 2017). Their sexual maturation is 

achieved while the eels migrate back to the spawning grounds. During this reproduction 

migration, silver eels do not eat. Consequently, they need sufficient lipid stores to achieve the 

migration and oocytes maturation (van Ginneken and van den Thillart, 2000; van den Thillart 

et al., 2004; Belpaire et al., 2009). The duration of this oceanic migration is still poorly 

known but recent observations suggest that it lasts several months and that eels make large 

(up to 600m) diel vertical migrations (Béguer-Pon et al., 2015; Righton et al., 2016). 

Although spawning has never been observed for the American and European eels - a first 

direct observation of a mature individual on the spawning ground occurred in 2012 for the 

Japanese eel (Tsukamoto et al., 2013) - they are supposed to die after reproduction. 

 

Figure 1-3. Life cycle of temperate eels (adapted from Drouineau et al., submitted and Dekker, 2000a) 

1.2.3. How does environmental variability shape life history of 

temperate eels? 

The species capacity to occupy and use a wide range of habitats is possible due to the 

establishment and maintenance of a population genetic structure, the upkeep of panmixia, and 

the acquisition of adaptive phenotypic plasticity for several life history traits linked to the 
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development of the species (Via and Conner, 1995; Via et al., 1995; Pelletier et al., 2007). 

Temperate eels can face very heterogeneous environments because of its large distribution 

area. Even at the river catchment scales, eels can be found in highly contrasted habitats: from 

marine waters, brackish estuaries to upstream freshwater habitats. How does the eel address 

this environmental heterogeneity? The three species are panmictic: all genotypes are 

randomly mated during the reproduction leading to a genetically uniform population (Palm et 

al., 2009; Han et al., 2010; Als et al., 2011a; Côté et al., 2013). Furthermore, eels cannot 

“select” a specific river catchment because of the passive larval drift. The combination of 

these panmixia and passive larval drift impairs the possibility of local adaptation by natural 

selection. However, life history of temperate eels is highly variable and extreme phenotypic 

variations, in terms of sex ratio (due to sex determination), growth rate and size at maturity 

are observed. Indeed, spatial patterns of life-history traits are correlated to environmental 

gradients at the distribution area and the river catchment scales (Vélez-Espino and Koops, 

2010), raising the question of whether they are the result of adaptive responses to 

environmental heterogeneity. 

 Sex ratio spatial patterns: adaptive environmental sex-determination 

Sex determination begins in the yellow eel stage and is metagamic, i.e. determined by the 

environmental conditions (Davey and Jellyman, 2005; Geffroy, 2012; Geffroy and Bardonnet, 

2015). Environmental sex determination is promoted when the fitness of males and females 

differ because of environmental factors, such as temperature, density or social interactions 

(Devlin and Nagahama, 2002; Mayhew, 2006). The influence of density on eel sex 

determination has been proposed because a male-biased sex ratio is observed at high density, 

while females predominate at low density (Tesch, 2003). This was confirmed by observations 

of fluctuations of sex ratio in natural catchments as a result of density modifications (Parsons 

et al., 1977; Poole et al., 1990; De Leo and Gatto, 1996; Roncarati et al., 1997; Tesch, 2003), 

and in controlled environment experiments (Colombo and G. Grandi, 1996; Beullens et al., 

1997; Holmgren et al., 1997). The global quality of the environment was also proposed as a 

factor that affects this mechanism (Geffroy, 2012).  

This question of sex-determination is especially important since males and females are 

supposed to have different life history strategies (Helfman et al., 1987). The reproductive 

success of males mostly depends on their survival to a minimum length that ensure successful 

migration: it corresponds to time-minimizing strategy in which males maximize their fitness 

by minimizing the time before their reproduction, and consequently their survival rate 

(Vollestad, 1992; Oliveira, 1999; Van Den Thillart et al., 2007). On the other hand, the 
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female reproductive success depends on their size, since fecundity increases with body size 

(Barbin and McCleave, 1997). Therefore, the reproductive success of females is the result of a 

trade-off between fecundity and survival to the size at maturity and females follow a size 

maximizing strategy. Drouineau et al. (2014) estimated the optimal length-at-silvering that is 

constrained by the trade-off of fecundity and survival (figure 1-4). Highly skewed sex ratios 

are observed at different spatial scales: in a latitudinal gradient, females are concentrated in 

the northern part of the distribution area, while males are concentrated in the southern part 

(Kettle et al., 2011). At the catchment scale, a male biased sex ratio is observed in 

downstream habitats (table 1.1) (Oliveira and McCleave, 2000; Tesch, 2003). 

 

Figure 1-4. Trade-off between fecundity, which increases with length-at-silvering, and survival, which 

decreases with length-at-silvering. The product between them estimates the resulting female fitness 

with the optimal length-at-silvering (Drouineau et al., 2014). 

 Patterns in habitat use: an adaptive trade-off between growth and survival? 

During the growth phase of eels, growth patterns depend on numerous factors, i.e. latitude, 

temperature, sex, population size and habitat characteristics that vary considerably according 

to the habitat used by the species. The influence of latitude reveals higher growth rates at 

Southern latitudes, regardless of sex (table 1-1) (Oliveira, 1999). Furthermore, the distance 

between the spawning ground and the inland waters plays also an important role since eels 

can settle in a wide range of habitats (from saltwater of coasts and brackish water of estuarine 

to freshwater of upstream habitats or lakes) (Tsukamoto et al., 1998; Daverat et al., 2006; 

Arai and Chino, 2012). Growth in saline conditions like marshes and estuaries is higher 

because these habitats are more accessible and favorable in terms of resources thus, enables a 

high density of eels (Lobón-Cerviá et al., 1995; Melià et al., 2006a; Daverat et al., 2012). In 
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the other hand, low growth is observed in upper habitats of river catchments, which would be 

compensated by low mortality through reduced intraspecific competition. The choice of these 

habitats is suggested as a conditional evolutionary strategy, in which individuals reach the 

same fitness adopting different migratory tactics (Edeline, 2007). However, Cairns et al. 

(2009) did not observe these variations in mortality rates between habitats. 

 Spatial patterns in length-at-silvering: adaptive trade-off between fecundity and 

survival due to specific life strategies? 

Closely related to the difference in life strategies of males and females are the spatial patterns 

of length-at-silvering that occur at the distribution area and the catchment scales (table 1-1).  

The difference in strategies explain why length-at-silvering is rather constant for the males 

(Vollestad, 1992; Oliveira, 1999) and correlated with the latitude for the females (Helfman et 

al., 1987; Davey and Jellyman, 2005; Jessop, 2010). In upstream habitats or in Northern 

habitats, length-at-silvering is generally longer than in Southern or downstream habitats. 

Indeed, in upstream and Northern habitats, slow growth rates are outweighed by lower 

mortality rates, so that females (which are predominant in such habitats) are thought to delay 

their maturation to increase their fecundity. Conversely, individuals (especially males) are 

thought to mature at smaller length to increase their survival. 

Figure 1-5 summarizes the life history traits and tactics characterized by spatial patterns and 

correlated to environmental gradients. It also outlines the possible relationships between 

Latitude Life history traits and demographic 
attributes 

Distance from the sea 
North South Saltwater Freshwater 

↗ ↘ Proportion of females ↘ ↗ 
↗ ↘ Female size at maturity   
↗ ↘ Male age at maturity   
↗ ↘ Longevity   
↘ ↗ VPL Growth coefficients   
↘ ↗ Somatic growth rates ↗ ↘ 
  Density ↗ ↘ 
  Fecundity ↘ ↗ 
  Mortality ↘ ↗ 
  Average of seaward migration ↘ ↗ 
  Average body size ↘ ↗ 
  Average age ↘ ↗ 

Table 1-1. Patterns described by Vélez-Espino and Koops (2010) about life history traits and 

demographic attributes through different gradients, the latitude and the distance from the sea 

(differentiated by saltwater and freshwater). 
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traits, tactics and demographic parameters that are influenced by environmental conditions 

and that would be maintained by adaptive mechanisms.  

 

Figure 1-5. Life cycle of temperate eels with life history traits and tactics that show spatial patterns 

depending on different environmental factors. In each stage, the individual mortality (M: natural 

mortality, F: fishing mortality, H: other kinds of anthropogenic mortality), the initial growth rate, K(r, 

1), and the growth rate through river catchment, K(r, i), appeared. 

1.2.4. Adaptive mechanisms to deal with environmental 

heterogeneity 

 Phenotypic plasticity 

The panmictic population of eels with the long and passive larval drift, and the broad 

distribution area promote the emergence of phenotypic plasticity rather than local genetic 

adaptation as an adaptive response to natural and anthropogenic changes in spatially 

structured environments (Hutchings et al., 2007). This mechanism has been proposed for 

several life history traits and tactics: the migratory behaviour of facultative catadromy 

(Tsukamoto and Arai, 2001; Daverat et al., 2006; Edeline, 2007; Thibault et al., 2007a), the 

head shape (Ide et al., 2011; De Meyer et al., 2015), the sex determination and the subsequent 

sex ratio (Davey and Jellyman, 2005), the growth rate (De Leo and Gatto, 1995; Côté et al., 

2009; Geffroy and Bardonnet, 2012), and the length-at-silvering (Vollestad, 1992). These 

features have been analyzed independently or by pairs and Drouineau et al. (2014) developed 

the first model, Eveel, which considers life history traits and tactical choices as adaptive 

response to spatially structured environments and density-dependence. Their results suggest 

that sex-determination, length-at-silvering and growth habitat use may be interpreted as the 
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result of adaptive phenotypic plasticity that maximizes individual fitness in high variable 

environments. 

 Genetic polymorphism maintained by natural selection (spatially varying 

selection and habitat selection) 

Despite panmixia, Pujolar (2014) showed correlations between allele frequencies at some loci 

and environmental variables in the European eel, and suggested that the selected 

polymorphisms would be maintained by spatially varying selection. Same results were found 

by Gagnaire et al. (2012) in American eel, although on different loci, probably because of 

different selection pressures (Ulrik et al., 2014). Pavey et al. (2015) demonstrated a polygenic 

basis of freshwater and brackish/saltwater ecotypes in the American eel. They assumed that 

spatially varying selection (imposed by local environmental conditions) do not result in a 

local adaptation because each disruption of allelic proportions would be deleted in each new 

generation during the reproduction. Common garden experiments tested the hypothesis on 

genetic versus environmental factors to the origin of phenotypic differences in glass eels from 

different origins. The results revealed genetic patterns of growth rates related to geographic 

zones in American eel (Côté et al., 2009, 2014, 2015). In line with this results, Boivin et al. 

(2015) studied how salinity and geographic origin influenced growth and habitat selection in 

the same species, and that differences in growth between glass eels reared in different areas 

had a genetic basis. 

1.3. Contemporary dynamics of eel populations and implications 

for management 

1.3.1. Status of temperate eels: dramatic declines and 

conservatory initiatives 

Over the last three decades, a worldwide decline of the temperate eel populations has been 

observed at all their life stages (figure 1-6) (Dekker, 2009; Dekker and Casselman, 2014; 

Jacoby et al., 2015). As a consequence of this, the IUCN classified the European eel (Anguilla 

anguilla) as critically endangered (Jacoby and Gollock, 2014b) and the American eel (A. 

rostrata) and the Japanese eel (A. japonica) as endangered (Jacoby and Gollock, 2014a; 

Jacoby et al., 2014). Several factors have been proposed to explain these declines (Jacoby et 

al., 2015) such as changes in oceanic conditions (Castonguay et al., 1994), contamination and 

habitat degradation (Byer et al., 2015; Belpaire et al., 2016), parasitism (Feunteun, 2002; 
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Kirk, 2003), fishing pressure (Dekker, 2003b), fragmentation including massive habitat loss 

(Kettle et al., 2011), and hydroelectricity induced mortality (Castonguay et al., 1994).  

 

Figure 1-6. Recruitment trends for temperate eels (adapted from Drouineau et al., submitted) 

In view of this recruitment decline, conservation regulations have been established for the 

three species. For the European eel, the European Commission enforced a regulation (Council 

of the European Union, 2007) in which each member state has to implement management 

measures to recover the stock reducing all anthropogenic mortalities and ensuring the 

escapement of at least 40% of the silver eel pristine biomass (best estimate of escapement that 

would have existed if no anthropogenic pressures had impacted the stock). In order to meet 

this target, EU countries have proposed measures such as: limiting fisheries, re-establishing 

connectivity through inland waters and restocking suitable inland habitats with young eels. 

For the latter, EU countries with glass eels fisheries need to reserve 60% of their catches for 

restocking. For the American eel, it was classified as “endangered” in 2008 under the Ontario 

Endangered Species Act, which provides advice and recommendations to governments in 

order to protect and restore suitable habitats, and reduce mortality (prohibiting fishing and 

trading) to enhance silver eel escapement (MacGregor et al., 2013). At the same time in 

Newfoundland and Labrador, the species was also listed as “vulnerable” under Endangered 

Species Act (Wildlife Division, 2010). According to these designations, the Canadian 

Government is conducting a consultation process on whether the species should be listed as 

“threatened” under the federal Species at Risk Act. The Japanese Ministry of Environment 

added the Japanese eel on its Red List in 2013, prohibiting the catches of juvenile and silver 

eels. 
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Among the challenges to assess the species status, the panmixia, the inter-individual 

variability in growth, the size dependent biological parameters, the density dependent process 

and the variable recruitment confound the current conservation efforts. Furthermore, to 

distinguish between local effects and stock status is difficult because of the contrast in life 

history traits and tactics displayed by eels to deal with heterogeneous environments and 

anthropogenic pressures at different scales. Finally, the fractal dimension of eel stock also 

challenges the assessment for the continental phase and a large scale management is necessary 

(Dekker, 2000a). 

1.3.2. Should management consider adaptive mechanisms: 

anthropogenic pressures as a selective pressure 

In population dynamics, the impact of anthropogenic pressures is often assessed by 

quantifying mortality rates. The European eel Regulation falls within this approach: it sets a 

target as a number (or a proportion) of escapees and enforces measures to reduce 

anthropogenic mortalities and to increase inland waters colonization and production 

(fishways, restocking). As such, the European Regulation mainly focuses on the number of 

spawners that survive to anthropogenic pressures, regardless their sex, size or quality (i.e. 

capacity to contribute to the next generation). This was thought to be consistent with a 

panmictic population in which all individuals were thought to be equivalent. However, 

adaptive mechanisms undermine this theory. All individuals are not strictly equivalent: 

individuals display different genotypes. Moreover, phenotypic plasticity may lead to 

modifications in demographic attributes such as sex ratio or average fecundity. In this context, 

it seems necessary to improve our understanding of adaptive mechanisms to inform on 

potential indirect effects of anthropogenic pressures on eel populations and ensure that 

mortality estimation is enough. 

Such knowledge would also contribute to the debate about restocking, one of the main  

controversial management measures used for the conservation of the species (Brämick et al., 

2016; Dekker and Beaulaton, 2016). For years, managers have restocked eels in specific areas 

where growth and survival were thought to be good. For example, a restocking plan was 

carried out in Canada by stocking glass eels caught in Nova Scotia and New Brunswick in 

Lake Ontario (Pratt and Threader, 2011). However, since all eels are not strictly equivalent, 

restocking may lead to unattended results, and Lake Ontario produced for the very first time 

very small silver eels whereas it had always produces very large females (Verreault et al., 

2010; Stacey et al., 2015). 
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1.4. Aims and outlines of the thesis 

In the context of global change and dramatic declines, the purpose of this thesis was to 

explore the evolutionary ecology of temperate eels to understand the mechanisms involved in 

their adaptation capacities, and how these capacities interact with anthropogenic pressures. In 

this purpose, we focused on how interactions among individuals, and interactions between 

individuals and their environment shape the eel population dynamics through adaptation 

mechanisms. We finally analyze the consequences of the resulting evolutionary processes on 

population dynamics. 

The approach adopted throughout the thesis is outlined in figure 1-7. Based on the phenotypic 

variability, adaptive responses can emerge to face environmental heterogeneity: different 

phenotypes in different environments induce differences in fitness of individuals throughout 

life history traits and strategies. The responses are provided by two mechanisms: individuals 

can genetically adapt to environmental conditions favoring allelic variants and the best 

genotypes are selected, or the responses are determined by the environment through 

phenotypic plasticity. Through fitness, life history traits and strategies also induce changes in 

demographic parameters of population, and therefore in the population structure, which will 

depend on the adaptation mechanisms implemented by individuals. Simultaneously, variation 

in demographic parameters influences life history traits, and consequently there is a feedback 

between life history and population dynamics mediated by the environment. In a context of 

global change, human activities lead to mortality of individuals that modifies the structure of 

population. The impacts of these activities in the environment also lead to changes in life 

history traits and strategies of individuals, which ultimately affect their fitness and can be 

selective pressures for the population.  

In this context, the aims of this study were to:  

(i) Improve the understanding of adaptation mechanisms to deal with environmental 

heterogeneity. For that, chapter two seeks to answer whether phenotypic plasticity 

and genetic polymorphism are adaptive responses for temperate eels that occupy 

heterogeneous environments. 

(ii) Quantify the effects of anthropogenic pressures considering previous mechanisms. 

On account of this, chapter three investigates how adaptive responses influence the 

impact of human activities on eel population dynamics. 

(iii) Explore the emergence and the evolution of adaptive responses of temperate eels. 

In chapter four, a first study focuses on the ecological conditions that favor the 
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selection of phenotypic plasticity and if this mechanism is still adaptive in the 

current context of depleted population of eels. This chapter also proposes the 

design of a demo-genetic model to study not only the emergence of plasticity, but 

also genetic polymorphism. 

To achieve these aims, a modelling approach is used, crossing concepts from evolutionary 

ecology, population dynamics and population genetics. In chapter two and three, the model is 

based on an optimality approach (with the basis of population genetics) to specify the 

adaptive mechanisms (phenotypic plasticity and genetic polymorphism) and validate them 

through the comparison of observed life history traits and strategies in heterogeneous 

environments. The integration of these mechanisms in a population dynamics model allows to 

quantify the impact of anthropogenic pressures. In chapter four, the approach is slightly 

different because the aim is the exploration of eel adaptations origin. 

 

Figure 1-7. Scheme of the thesis outline. 
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Foreword 

In a context of rapid global change and dwindling populations, the adaptation of temperate 

eels to environmental heterogeneity is becoming a crucial question. In view of this, a 

multidisciplinary approach is necessary to improve our understanding of the processes 

involved in the large phenotypic variability of those panmictic species, especially in 

correlation between life history traits and environmental gradients. In this chapter, we 

addressed the evolutionary mechanisms involved in this adaptation. We also explored whether 

life history spatial patterns can be mimicked. To do so, an optimization modelling approach 

was used. It incorporated eel population dynamics in the river basin and postulated both 

genetic polymorphism and adaptive phenotypic plasticity. In this individual-based population 

model, each individual is characterized by an intrinsic growth rate, it determines its sex, 

selects its growth habitat within the catchment and its length-at-maturity to optimize its 

density-dependent fitness. GenEveel uses a pattern modelling approach that carries out a 

numerical exploration to validate different assumptions, which are based on optimal foraging 

and life history theories. The approach can provide new insights on the continental phase of 

these species. The following figure summarizes the positioning of this chapter within the 

overall PhD project. 
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2.1. Abstract 

The European eel (Anguilla anguilla), and generally, temperate eels, are relevant species for 

studying adaptive mechanisms to environmental variability because of their large distribution 

areas and their limited capacity of local adaptation. In this context, GenEveel, an individual-

based optimization model, was developed to explore the role of adaptive phenotypic plasticity 

and genetic-dependent habitat selection, in the emergence of observed spatial life-history 

traits patterns for eels. Results suggest that an interaction of genetically and environmentally 

controlled growth may be the basis for genotype-dependent habitat selection, whereas 

plasticity plays a role in changes in life-history traits and demographic attributes. Therefore, 

this suggests that those mechanisms are responses to address environmental heterogeneity. 

Moreover, this brings new elements to explain the different life strategies of males and 

females. A sensitivity analysis showed that the parameters associated with the optimization of 

fitness and growth genotype were crucial in reproducing the spatial life-history patterns. 

Finally, it raises the question of the impact of anthropogenic pressures that can cause direct 

mortalities but also modify demographic traits, and act as a selection pressure. 

Keywords: phenotypic plasticity, Anguilla anguilla, genetic polymorphism, life history 

theory, modeling 
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2.2. Introduction 

Life-history theory posits that the schedule and duration of life-history traits are the result of 

natural selection to optimize individual fitness (Clark, 1993; Giske et al., 1998). Optimal 

solutions greatly depend on environmental conditions, and consequently, living organisms 

have developed different adaptive mechanisms to address environmental variability. Among 

them, local adaptation theory posits that natural selection favors the most well adapted 

genotypes in each type of environment. In a context of limited genetic exchange between 

environments, this may lead to isolation and speciation (Williams, 1996; Kawecki and Ebert, 

2004). Phenotypic plasticity might also be an adaptive response to an heterogeneous 

environment (Levins, 1963; Gotthard and Nylin, 1995; Pigliucci, 2005). Phenotypic plasticity 

refers to the possibility of a genotype to produce different phenotypes depending on 

environmental conditions. In some cases, increases in fitness occur because of plastic 

phenotypes compared to non-plastic ones, and that consequently, phenotypic plasticity may 

be selected by natural selection (Schlichting, 1986; Sultan, 1987; Travis, 1994).  

Adaptation to environment heterogeneity is a key issue for temperate anguilids, Anguilla 

anguilla, A. japonica, A. rostrata, three catadromous species that display remarkable 

similarities in their life-history traits (Daverat et al., 2006; Edeline, 2007). The European eel 

(A. anguilla) is widely distributed from Norway to Morocco, grows in contrasting 

environments, and displays considerable phenotypic variation. The species displays a 

complex life cycle: reproduction takes place in the Sargasso Sea, larvae (or leptocephali) are 

transported by ocean currents to European and North African waters, where they experience 

their first metamorphosis to become glass eels. These juveniles colonize continental waters 

and undergo progressive pigmentation changes to become yellow eels. The growth phase lasts 

between two and 20 years depending upon the region and sex of the eels (Vollestad, 1992). At 

the end of this stage, yellow eels metamorphose again into silver eels, which mature during 

the migration to their spawning area in the Sargasso Sea. The population is panmictic, 

resulting in a homogeneous population, from a genetic viewpoint (Palm et al., 2009; Als et 

al., 2011b; Côté et al., 2013). This panmixia combined with a long and passive larval drift 

limit the possibility of adaptation to local environments. However, spatial patterns of different 

life traits, including growth rate (Daverat et al., 2012; Geffroy and Bardonnet, 2012), sex 

(Helfman et al., 1987; Tesch, 2003; Davey and Jellyman, 2005), length at maturity 

(Vollestad, 1992; Oliveira, 1999), and habitat use (De Leo and Gatto, 1995; Daverat et al., 

2006; Edeline, 2007) are observed and correlated with environmental patterns. 
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Growth rates greatly vary depending on latitude, temperature, sex (Helfman et al., 1987) but 

also on habitat characteristics (Cairns et al., 2009). Indeed, eel can settle in a wide range of 

habitats (De Leo and Gatto, 1995; Daverat et al. 2006; Geffroy and Bardonnet, 2012) and 

faster growth is observed in brackish waters than in freshwater (Daverat et al., 2012). Slower 

growth in freshwater habitats is sometimes assumed to be compensated for by lower 

mortalities and Edeline (2007) suggested that habitat choice could be the result of a 

conditional evolutionary stable strategy. However, Cairns et al. (2009) questioned this 

assumption because they did not observe strong variation in mortality rates between habitats. 

Spatial patterns were also observed with respect to sex ratios, with female biased sex ratios in 

the upper part of river catchments (Tesch, 2003) and in the northern part of the distribution 

range (Helfman et al., 1987; Davey and Jellyman, 2005). However, sex is not determined at 

birth but is determined by environmental factors (Oliveira, 2001; Davey and Jellyman, 2005; 

Geffroy and Bardonnet, 2012). Population density also plays a role in this mechanism: males 

are favored at high densities, whereas low densities favor females (Tesch, 2003). This is 

important because males and females have different life-history strategies (Helfman et al., 

1987). The reproductive success of a male does not vary with body size, and consequently, 

males are assumed to follow a time-minimizing strategy, leaving continental waters as soon as 

they have enough energy to migrate to the spawning grounds (Vollestad, 1992). However, a 

female’s reproductive success is constrained by a trade-off between fecundity, which 

increases with length, and survival, which decreases with length. Consequently, females are 

assumed to adopt a size-maximizing strategy (Helfman et al., 1987). Strong differences in 

female length at silvering were observed among habitats and latitudes (Oliveira, 1999).  

Because local adaptation is impossible, this raises two questions: (i) are those life-history trait 

patterns resulting from an adaptive response to environmental heterogeneity, and (ii) which 

adaptation mechanisms have been selected. Despite panmixia, previous researchers (Gagnaire 

et al., 2012; Ulrik et al., 2014; Pavey et al., 2015) have detected genetic differences correlated 

with environmental gradients and assumed that those differences were reshuffled at each 

generation. Common garden experiments have been used to test the respective contributions 

of genetic and plastic mechanisms on phenotypic differences observed in glass eels found in 

distinct locations. The results revealed genetic patterns related to geographic zones in 

American eels, whereas individual growth rates had a genetic basis and could be sex-

dependent (Côté et al., 2009, 2014, 2015). Building on this, Boivin et al. (2015) studied the 

influence of salinity preferences and geographic origin on habitat selection and growth in 

American eels, demonstrating genetic-based differences for growth between glass eels from 

different origins. However, these experiments also confirmed the contribution of phenotypic 
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plasticity that allowed individuals to develop quick and effective responses to environmental 

variability (Hutchings et al., 2007). Several traits have been proposed as plastic: growth 

habitats (Daverat et al., 2006; Edeline, 2007), growth rates (Geffroy and Bardonnet, 2012), 

and length at silvering (Vollestad, 1992). Understanding the adaptive mechanisms that 

explain this diversity is crucial to environmental conservation and management (Brodersen 

and Seehausen, 2014).  

As a result of a decline observed since the 1980s, the European eel is now listed as critically 

endangered in the IUCN Red List (Jacoby and Gollock, 2014c) and the European 

Commission enforced a European Regulation, which requires a reduction in all sources of 

anthropogenic mortality (obstacles, loss of habitat, fisheries, pollution, and global change) 

(Council of the European Union, 2007). However, those anthropogenic pressures are not 

uniformly distributed (Dekker, 2003a) and acts on specific fractions of the stock isolated in 

river catchments (Dekker, 2000a), with heterogeneous life-history traits because of the spatial 

phenotypic variability. This strong spatial heterogeneity of anthropogenic pressures affecting 

the eel population in Europe combined with this spatial phenotypic variability at both the 

distribution area and river catchment scales causes specific challenges for management, 

because it impairs our ability to assess the effect of anthropogenic pressures on the whole 

stock and to coordinate management actions (Dekker, 2003a, 2009). 

Recently, a model called EvEel (evolutionary ecology-based model for eel) was developed to 

explore the contribution of adaptive phenotypic plasticity in the emergence of observed 

phenotypic patterns: sex ratio, length at silvering, and habitat use (Drouineau et al., 2014). 

Assuming fitness maximization, the model was able to mimic most observed patterns at both 

river catchment and distribution area scales. The result confirmed the probable role of 

adaptive phenotypic plasticity in response to environmental variability. However, recent 

findings demonstrated the existence of genetic differences in growth traits in a wide range of 

different habitats (Côté et al., 2009, 2014, 2015; Boivin et al., 2015). Building on these new 

results, we developed GenEveel, a new version of EvEel, which introduces a bimodal growth 

distribution (fast and slow growers) for individuals, as observed by Côté et al. (2015), and 

considers phenotypic plasticity in life-history traits and demographic attributes as in EvEel. 

Because individuals have different intrinsic growth and mortality rates, they can be favored 

differently among environments, opening the door to conditional habitat selection. In this 

study, we used GenEveel to test whether simultaneously considering genetically distinct 

individuals and phenotypic plasticity improves model performance. Pattern orienting 



Cause or consequence? Exploring the role of phenotypic plasticity and genetic polymorphism in the emergence 
of phenotypic spatial patterns of the European eel - 25 

 
 

modelling was used to detect the reproduced spatial patterns of EvEel and other patterns 

based on the distribution of the different types of individuals. 

2.3. Materials and methods 

2.3.1. Model description 

The model description follows the Overview, Design concepts, and Details (ODD) protocol 

(Grimm et al., 2006, 2010): 

2.3.1.1. Overview 

2.3.1.1.1. Purpose 

GenEveel is a model based on a former model called EvEel (Drouineau et al., 2014), but 

includes a genetic component. It is an individual-based population model that predicts 

emergent life-history spatial patterns depending on adaptive mechanisms and environmental 

heterogeneity. Emergent patterns can later be compared to observed spatial patterns in 

freshwater life stages of European eels in order to (i) confirm that observed phenotypic 

patterns can plausibly result from adaptive responses to environmental heterogeneity, (ii) 

validate that phenotypic plasticity for length at silvering, sex determination, habitat choice, 

and genetic polymorphism (slow growers and fast growers) with conditional habitat selection 

can explain those patterns. 

2.3.1.1.2. State variables and scales 

Temporal scales: the model simulates a population generation. It has no sensu stricto time 

steps, but rather successive events: sex-determination and habitat selection, survival, and 

growth until maturation. 

Entities and spatial scales: a von Bertalanffy growth function is assumed for individual 

growth. Each individual i is characterized by an intrinsic Brody growth coefficient Ki and a 

natural mortality rate Mi.  Based on Côté et al. (2015), who observed two clusters in growth 

rates, we build a simple quantitative-genetic model assuming that growth is coded for by a 

single gene with two variations. Therefore, we assumed that there are two types of individuals 

called (i) fast-growing individuals for which Ki = Kfast and Mi = Mfast and (ii) slow-growing 

individuals for which Ki = Kslow and Mi = Mslow. At the end of the simulation, individuals 

are characterized by a sex, length at silvering, corresponding fecundity (if female), position in 

the river catchment, and survival rate until silvering. 
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The river catchment environment was represented by a sequence of cells of the same size. The 

first cell represents the river mouth, whereas the nth cell represents the source of the river. 

Because it was observed that an individual grows faster downstream than upstream (Acou et 

al., 2003; Melià et al., 2006), we assumed that realized growth rate in a cell depends on both 

intrinsic growth rate and position in the catchment (i.e., cell) (see submodel section). Realized 

natural mortalities depend both on individual intrinsic mortality rates, position of the cell in 

the catchment, and number of individuals in the catchment (to mimic density-dependent 

mortality).  

2.3.1.1.3. Process overview and scheduling 

The model has two main steps. In a first step, individuals select their growth habitat (a cell in 

the catchment) and determine a sex (male or female) one after another (random order). To do 

that, fitness is calculated for each combination of sex and cell (a quasi-Newton algorithm is 

used to estimate the lengths at silvering that optimize female fitness in each cell). Individuals 

are assumed to select the combination with highest fitness given the choices made by former 

individuals. Once this step is finished (i.e., all individuals have a growth habitat and sex), 

using the quasi-Newton algorithm we estimated the optimal length at silvering for all females 

(males have a constant length at silvering) given the positions of fishes from step 1, and then 

compute corresponding survival rates until silvering and fecundity determination (figure 2-1).  

 

Figure 2-1. Flow chart representing the fish biological pathway. 
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The process mentioned above is defined by the computer algorithm (figure 2-2): 

(1) For each individual i: 

 For each cell x: 

o Compute πm(x) given positions of individuals {1,…,i-1} 

o Compute 
 ff

fLs
Lsx,πaxm

 given positions of individuals {1,…,i-1} 

 Put individual and determine sex by selecting maximum values within 

 ff
fLs

Lsx,πaxm

and πm(x) 

(2) For each individual i: 

 For each cell x: 

o if sex(i) = male 

Ls(i) = Lsm 

o else 

Ls(i) = argL max (πf(x, Lsf)) given positions of individuals {1,…,n} 

where fitness is defined in equations 0 and 0 for females and males respectively. 

2.3.1.2. Design concept 

2.3.1.2.1. Basic principles 

Consistent with life-history theory and optimal foraging theory, the model uses an 

optimization approach in which individuals “respond to choices” so as to select and fix the 

adaptive traits, maximizing their expected fitness given their environment (Parker and 

Maynard Smith, 1990; McNamara and Houston, 1992; Giske et al., 1998; Railsback and 

Harvey, 2013).  

2.3.1.2.2. Emergence 

Using the pattern-oriented modelling approach (Grimm and Railsback, 2012), GenEveel 

compares predicted spatial patterns with those observed in real river catchments. Five 

emergent population spatial patterns were analyzed from the literature: 

(i) higher density downstream than upstream 

(ii) higher length at silvering upstream than downstream 

(iii) male-biased sex ratio downstream and female-biased sex ratio upstream 

(iv) more individuals characterized with the fast-growing genotype downstream than 

upstream, which was mainly characterized by the slow-growing genotype 
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(v) the phenotypic response led to faster growth rate downstream than upstream. 

 

Figure 2-2. Algorithm of the model GenEveel. 

2.3.1.2.3. Adaptation 

Individuals have three adaptive traits: sex-determination, length at silvering for females, and 

choice of growth habitat (cell in the grid). These traits are assumed to maximize the predicted 

objective function (i.e., the individual fitness). 

2.3.1.2.4. Predictions 

We assumed that individuals could perfectly predict expected fitness given previous choices 

and could make the most appropriate choices.  

2.3.1.2.5. Sensing 

In the model, individuals are able to “sense” fitness, which was a function of a density-

dependent mortality and growth rate. In the real world, temperature and density would 
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probably be the proximal cues because natural mortality and growth rates are strongly 

influenced by temperature (Bevacqua et al., 2011; Daverat et al., 2012). 

2.3.1.2.6. Interaction 

Interactions occurred through growth habitat selection, sex determination, and density-

dependent mortality. 

2.3.1.2.7. Stochasticity 

Stochasticity occurred at two levels. First, individuals were randomly affected by a slow-

growing genotype (Pr = 0.5) or by a fast-growing genotype (Pr = 0.5). Then stochasticity 

occurred in the order of individuals for step 1. 

2.3.1.2.8. Observations 

Five spatial patterns were computed at the end of the simulation: 

(i) number of individuals per cell 

(ii) mean length at silvering per cell 

(iii) sex ratio (proportion of females) per cell 

(iv) ratio of fast-growing genotype per cell 

(v) phenotypic response of mean realized growth rate per cell. 

These five patterns corresponded to five patterns available in the literature. Simulated patterns 

(i), (iv), (v) was said to be consistent with the literature when a negative trend from 

downstream to upstream was observed, whereas patterns (ii), (iii) were said to be consistent 

with the literature when a positive trend was observed from downstream to upstream. 

2.3.1.3. Details 

2.3.1.3.1. Initialization 

At the beginning of the simulation, the catchment was empty. N individuals were created and 

attributed to the slow-growing or fast-growing genotype with probability 0.5 and had a length 

7.5 cm. They had not yet entered the river catchment. 

2.3.1.3.2. Input data 

We tested the model using a reference simulation. Values of parameters were obtained from 

the literature (table 2-1). The outputs of the model were identified based on spatial patterns as 

previously defined in Observations. 
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2.3.1.3.3. Submodels 

Most of the submodels were similar to submodels from EvEel. Consequently, we provide here 

only the novelties and the equations that are required for a better understanding of the model. 

Further details are provided in Drouineau et al. (2014). 

Growth and silvering: growth rate was assumed the outcome of an intrinsic Brody growth 

coefficient (Ki), which is modulated by an environmental effect. This combination resulted in 

a phenotypic growth rate. Within the river, growth rates were significantly faster downstream 

than upstream (even for the same individual). Therefore, we assumed that individual i would 

have a growth rate K(i, x) in cell x given by: 

(1)          
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where rK defined the ratio between upstream and downstream growth rate, K(i, 1) is the 

growth rate in cell 1, n is the total cells in the river catchment and cauchit was a mathematical 

function similar to the sigmoid function, but which allowed asymmetrical patterns (by 

modifying the parameter γ) to model, for example, a small brackish area in the downstream 

part of the catchment and a large freshwater zone upstream. 

Individual’s growth was simulated by a von Bertalanffy function: 

(3)  
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where L(t, i, x) was the length at time t and L∞ and K(i, x), the von Bertalanffy parameters in 

cell x for individual i. 

From this equation, we could calculate the time required to reach the length at silvering. 

(4)      
















xi,L

LL

xi,K
=xi,

g

s
s L

log
1

A  

where Lg was the length at recruitment and Ls(i, x) was the length at silvering, which was 

constant for males, and a fitness maximizing variable for females. 

Survival: mortality rate was assumed the result of three factors: density-dependence, intrinsic 

growth rate, and Mi modulated by an environmental effect. Because natural mortality was 
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sometimes assumed to be smaller upstream than downstream (Moriarty, 2003; Daverat and 

Tomás, 2006), we assumed that the instantaneous natural mortality without density-

dependence in cell x for individual i, M(i, x) was: 

(5)          





 Mn

x
MMrM+MMr=M γ,cauchitn i,1 i,n i,x i,  

where rM is the ratio between upstream and downstream instantaneous mortality rate and M(i, 

1) was the natural mortality in cell 1. 

To account for the additional density-dependent mortality, we assumed that natural mortality 

increased linearly with an intensity of density α as in EvEel: 

(6)       αN+MdM x i,x i, = x i,  

where N was the number of competitors in cell x. An eel was assumed a competitor if it had 

an intrinsic growth rate greater or equal to Ki. This corresponded to an asymmetric growth 

rate with larger individuals harassing smaller individuals. The basis of this assumption was 

the intraspecific competition, which leads to compete for limited resources between 

individuals of different sizes (Francis, 1983; Juanes et al., 2002). 

Given equation 0 and this survival rate, we could calculate the probability of surviving until 

silvering as: 

(7)      
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Fitness: in any optimization model, an important component is the computation of the fitness. 

Because sexes adopt different life strategies, and following Drouineau et al. (2014), we 

assumed sex-specific fitness functions. Males were known to adopt a time minimizing 

strategy (Helfman et al., 1987), with constant length at silvering. Therefore, male fitness was 

proportional to survival rate until length at silvering. However, females follow a size-

maximizing strategy in which length at silvering was constrained by a trade-off between 

survival and fecundity (Helfman et al., 1987). Consequently, we assumed that female fitness 

was the product of fecundity at an optimal length at silvering (based on an allometric 

relationship, fecundity is assumed to be a power function of length) multiplied by the 

probability of survival until this length at silvering. In the model, individuals were assumed to 

determine their sex according to the relative potential male and female fitness. To make 

fitness values comparable, we rescaled male fitness (which was the probability of survival) 

into an expectation of egg production (the scale of female fitness). To do that, we multiplied 
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the male survival by a constant that would be similar to fertility. Hence, we had to specify a 

value for fertility with an order of magnitude similar to fecundity. The first solution might be 

to fix the fertility value equal to the fecundity of silver females having a length equal to male 

length at silvering. However, with this solution, female fitness will always be greater (because 

females can optimize their length at silvering). Consequently, fertility has to be slightly 

greater such that male fitness can be sometimes be greater than female fitness (but not too 

much, to avoid male fitness always being superior). These resulted in the following equations: 

(8)     



















 bxi,
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where a1, a and b are the parameters of the allometric relationship linking fecundity and 

female length at silvering Lsf(i, x) (Andrello et al., 2011; Melia et al., 2006). 

(9)      
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2.3.2. Model exploration 

2.3.2.1. Reference simulation 

The reference simulation consisted of a simulation using parameter values in table 2-1, i.e. the 

best set of values found in the literature. After simulating this scenario, we analyzed the 

different patterns. Mann-Kendall tests were implemented on each pattern to detect a 

monotonic upward or downward trend of the variable of interest confirming the spatial 

patterns previously defined. The correlation coefficient of this non-parametric test was 

denoted by τ. 

2.3.2.2. Experimental design 

Simulation design is a classical tool to explore complex models. Typically, the goal is to 

assess the sensitivity of results to uncertain model parameters. We developed such an 

experimental design to (i) assess the influence of uncertain parameters on the simulated 
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patterns (table 2-1) and (ii) derive environmental and population dynamics for all the patterns 

that were correctly modelled.  

Parameter Description 
Reference 
value 

(-) 
modality 

(+) 
modality 

Reference 

n Cells of river catchment 30 24 36 (Drouineau et al., 2014) 

N 
Number of glass eels 
that colonize freshwater 

30 000 24 000 36 000 (Drouineau et al. 2014) 

a1 
Regression coefficient 
from fecundity at length 

8 846 - - (Andrello et al., 2011) 

a 
Regression coefficient 
from fecundity at length 

1.3877119 - - 
(Melià et al., 2006b; 
Andrello et al., 2011) 

b 
Regression exponent 
from fecundity at length 

3.22 2.576 3.864 (Melià et al., 2006b) 

L∞ (cm) Asymptotic length 76.2 60.96 91.44 (De Leo and Gatto, 1995) 

Lsm (cm) Male length at silvering 40.5 38.15 42.85 (Vollestad, 1992) 

Lg (cm) Length at recruitment 7.5 6 9 
(Desaunay and Guerault, 
1997; Dekker, 1998; 
Desaunay et al., 2012) 

fertility 
Constant of male 
fertility 

43 40.5 45.5 - 

Kfast(i,1), year-1 Fast intrinsic growth rate 0.315 0.295 0.335 (De Leo and Gatto, 1995) 

Kslow(i,1), year-1 
Slow intrinsic growth 
rate 

0.253 0.233 0.273 (De Leo and Gatto, 1995) 

propK 
Proportion of 
individuals that grow 
slowly 

0.5 0.4 0.6 - 

Mfast(i,1), year-1 
Fast intrinsic mortality 
rate 

0.38 0.405 0.355 - 

Mslow(i,1), year-1 
Slow intrinsic mortality 
rate 

0.138 0.15 0.127 (Dekker, 2000a) 

α 
Intensity of density-
dependence 

0.0001 0.00008 0.00012 (Drouineau et al., 2014) 

rK 
Ratio between upstream 
and downstream growth 
rate 

0.5 0.4 0.6 (Drouineau et al., 2014) 

rM 
Ratio between upstream 
and downstream 
mortality rate 

1 0.8 1.02 (Drouineau et al., 2014) 

ΥK 
Shape parameter of 
growth 

0.05 0.049 0.051 (Drouineau et al., 2014) 

ΥM 
Shape parameter of 
mortality 

0.05 0.049 0.051 (Drouineau et al., 2014) 

Table 2-1.  GenEveel parameter descriptions with reference values and modalities (- and +) for the 17 

parameters involved in the experimental design. 
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Seventeen uncertain parameters were identified in the model (table 2-1) and they were 

dispatched into twelve groups: number of glass eel entering the catchment freshwater (N), 

parameters that impact the male fitness (fertility and male length at silvering, Lsm), fast 

growing genotype (Kfast(i, 1) and Mfast(i, 1)), slow-growing genotype (Kslow(i, 1) and 

Mslow(i, 1)), proportion of individuals that grow slowly (propK), intensity of density-

dependence (α), cells of river catchment (n), regression coefficient from fecundity at length 

(b), asymptotic length (L∞), length at recruitment (Lg), ratio between upstream and 

downstream instantaneous growth and mortality rates (rK and rM), and the shape parameter of 

growth and mortality (γK and γM). Groups were composed of parameters that have are 

assumed to influence the model in similar directions, a method called group-screening 

(Kleijnen, 1987). A low and high value was set for each parameter around the reference value, 

with 20% variation (Drouineau et al., 2006; Rougier et al., 2015), except for three sets of 

parameters: fertility and Lsm (as a minimum value, fertility corresponded to the fecundity of a 

female with a length at silvering equals to male length at silvering; otherwise, female fitness 

would always be superior to male fitness), and growth genotypes (to avoid overlap between 

them), where the range of variation was less.  We then conducted a fractional factorial design 

of resolution V (212-4 = 256 combinations). This kind of orthogonal designs allows to 

explore main effects and first order interactions without confusion. To account for model 

stochasticity, we conducted 10 replicates for each of the 256 combinations leading to 2560 

simulations. The five patterns were calculated for each simulation producing an output table 

with 2560 lines (one per simulation) and five columns containing the tau value of the Mann-

Kendall trend tests for each pattern (a negative tau value indicates a negative trend from 

downstream to upstream while a positive tau indicates a positive trend from downstream to 

upstream). 

2.4. Results 

2.4.1. Reference simulation 

In the reference simulation, GenEveel mimicked the five spatial patterns at the catchment 

scale (figure 2-3). Males were concentrated in the downstream section of the river where 

density was higher (Helfman et al., 1987; Tesch, 2003; Davey and Jellyman, 2005). Fast 

growers preferentially settled in downstream habitats, whereas slow growers tended to move 

upstream to avoid competition (De Leo and Gatto, 1995; Daverat et al., 2006, 2012; 

Drouineau et al., 2006; Edeline, 2007; Geffroy and Bardonnet, 2012). Regarding mean length 

at silvering (for males and females), a smaller size at maturity was simulated in the 
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downstream section of the river, whereas larger lengths were occurred gradually throughout 

the catchment (Vollestad, 1992; Oliveira, 1999).  

 

Figure 2-3. Output values for the five spatial patterns resulting from the reference simulation. 

The Mann-Kendall test confirmed that the five patterns were mimicked in the simulation. 

More specifically, negative tau values confirmed a decreasing trend for density, ratio of fast 

growers and mean realized growth rate; while positive tau values pointed to an increasing 

trend for ratio of females and mean length at silvering (table 2-2). 

Spatial pattern Tau 

Abundance -1 

Mean length at silvering 0.98 

Sex ratio (proportion of females) 0.57 

Ratio of fast growers -0.78 

Mean realized growth rate -1 

Table 2-2. Results of Mann-Kendall test of reference simulation. 
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2.4.2. Model exploration 

For each combination, the 10 replicates provided the same results, confirming that the 

patterns were not sensitive to stochasticity. 

Interestingly, 310 simulations produced only females while 640 simulations produced only 

males. Simulations with only females corresponded to simulation where density-dependence 

α, L∞ and the fecundity exponent b were simultaneously strong. Conversely, simulations with 

only males corresponded to simulations with a low b and a low L∞. With only one sex, it was 

not possible to calculate a spatial trend in sex ratio and with only males, it was not possible to 

calculate a trend of length at silvering. 

Two questions were addressed here. In a first time, we compared the five patterns to see 

which of those patterns were frequently mimicked and which were less frequently mimicked. 

Then, we compared the sensitivity of the model to each group of parameters. To quantify this 

sensitivity to a group of parameters values, we compared the number of simulations that 

reproduce a given pattern when the group had modality (-) with the number of simulations 

and when the group had modality (+). A strong discrepancy indicated a high sensitivity to the 

group of parameters.  

The Mann-Kendall tests of spatial patterns confirmed that the simulated patterns of 

abundance, ratio of fast growers, and mean realized growth rate were consistent with the 

literature in each of the 2560 combinations (table 2-3). This result indicates that these model 

outputs do not depend on parameters values in the parameter space considered. Consequently, 

the assumptions about asymmetrical density-dependence and growth genotypes were enough 

to simulate catchment colonization. 

Regarding length at silvering pattern, patterns were consistent in 1300 simulations of the 1920 

simulations for which it was possible to calculate a pattern (table 2-3, figure 2-4 for several 

examples). This meant that, in situations where some females were produced, the pattern was 

consistent in about 2/3 of the simulations. Length at silvering pattern appeared to be sensitive 

to most of the parameters. The two most important were L∞ and b: consistent pattern were 

much more frequent with a modality (+) (respectively 990 and 940 simulations) for these two 

parameters than with modality (-) (respectively 310 and 360 simulations). This is not 

surprising since with modality (-) for those parameters, the model produced only males in 640 

simulations. Two other groups of parameters had a strong influence: male fertility/ male 

length at silvering and density-dependence. Consistent patterns were more frequent with low 
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male fertility and length at silvering (800 with modality (-) vs 500 with modality (+)), and 

with limited density dependence (810 with modality (-) vs 490 with modality (+)). 

Parameters 
group 

Abundance 

2560 

Mean length 
at silvering 

1920 

Sex ratio 

(proportion 
of females) 

1610 

Ratio of fast 
growers 

2560 

Mean 
realized 
growth rate 

2560 

The five 
spatial 
patterns 

1610 

N 
(-) 1280/1280 

(+) 1280/1280 

(-) 650/960 

(+) 650/960 

(-) 70/800 

(+) 60/810 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 70/800 

(+) 60/810 

fertility and 
Lsm 

(-) 1280/1280 

(+) 1280/1280 

(-) 800/960 

(+) 500/960 

(-) 130/800 

(+) 0/810 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 130/800 

(+) 0/810 

Kfast(i, 1) 
and Mfast(i, 
1) 

(-) 1280/1280 

(+) 1280/1280 

(-) 650/960 

(+) 650/960 

(-) 70/810 

(+) 60/800 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 70/810 

(+) 60/800 

Kslow(i, 1) 
and Mslow(i, 
1) 

(-) 1280/1280 

(+) 1280/1280 

(-) 710/960 

(+) 590/960 

(-) 0/810 

(+) 130/800 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 0/810 

(+) 130/800 

propK 
(-) 1280/1280 

(+) 1280/1280 

(-) 650/960 

(+) 650/960 

(-) 90/810 

(+) 40/800 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 90/810 

(+) 40/800 

α 
(-) 1280/1280 

(+) 1280/1280 

(-) 810/960 

(+) 490/960 

(-) 60/960 

(+) 70/650 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 60/960 

(+) 70/650 

n 
(-) 1280/1280 

(+) 1280/1280 

(-) 660/960 

(+) 640/960 

(-) 60/810 

(+) 70/800 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 60/810 

(+) 70/800 

b 
(-) 1280/1280 

(+) 1280/1280 

(-) 360/640 

(+) 940/1280 

(-) 10/640 

(+) 120/970 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 10/640 

(+) 120/970 

L∞ 
(-) 1280/1280 

(+) 1280/1280 

(-) 310/640 

(+) 990/1280 

(-) 120/640 

(+) 10/970 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 120/640 

(+) 10/970 

Lg 
(-) 1280/1280 

(+) 1280/1280 

(-) 650/960 

(+) 650/960 

(-) 60/800 

(+) 70/810 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 60/800 

(+) 70/810 

rK and rM 
(-) 1280/1280 

(+) 1280/1280 

(-) 630/960 

(+) 670/960 

(-) 40/810 

(+) 90/800 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 40/810 

(+) 90/800 

γK and γM 
(-) 1280/1280 

(+) 1280/1280 

(-) 730/960 

(+) 570/960 

(-) 60/810 

(+) 70/800 

(-) 1280/1280 

(+) 1280/1280 

(-) 1280/1280 

(+) 1280/1280 

(-) 60/810 

(+) 70/800 

Table 2-3. Number of simulations with consistent patterns for each modality of the groups of 

parameters, over the number of simulations for which it was possible to calculate a pattern. The 

columns represent the spatial patterns and the numbers of simulations for which it was possible to 

estimate a pattern. 
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Figure 2-4. Simulated mean length at silvering patterns in the 13 combinations of parameters that 

consistently mimic the pattern described in the literature. These 13 combinations correspond to the 13 

combinations that generate consistent patterns for all the five spatial patterns. Each plot stands for a 

combination (the number is an identifier of the combination that can be found in table 2-4) and each 

line stands for a replicate. 

For the female ratio pattern, 130 simulations produced consistent patterns over the 1610 

simulations for which it was possible to calculate a pattern (table 2-3). This pattern was 

mostly sensitive to four groups of parameters which correspond to the four most influential 

groups for the pattern of length at silvering. Patterns were consistent only when male 

fertility/length at silvering had modality (-) whereas Kslow/Mslow had modality (+). 

Moreover, consistent patterns were more frequent when L∞ had a modality (-) and b a 

modality (+). 

On the whole, 130 of the 2560 combinations produced results which were consistent for all 

the five patterns (table 2-4, figure 2-4 and table S2-1). These 130 simulations corresponded 

exactly to the 130 simulations that produced consistent sex ratio patterns, demonstrating that 

this last pattern was the more constraining (figure 2-5). Consequently, the interpretation 

regarding sensitive parameters was similar. 
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N 

fertility, 
Lsm  

Kfast(i, 1), 
Mfast(i, 1) 

Kslow(i, 1), 
Mslow(i, 1) 

propK α n b L∞ Lg 
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1 - - - + + + + + - - + + ↘ ↗ 

2 + - - + - + + + - + + + ↘ ↗ 

3 + - - + + - + + - + + - ↘ ↗ 

4 - - - + - - + + - - + - ↘ ↗ 

5 + - + + + - - + - - + - ↘ ↗ 

6 + - - + - - - + - + - - ↘ ↗ 

7 - - - + - + + - + + + + ↘ ↗ 

8 - - + + - - - + - + + - ↘ ↗ 

9 - - + + + + - + - + + + ↘ ↗ 

10 - - + + - + + + - + - + ↘ ↗ 

11 + - + + - + - + - - + + ↘ ↗ 

12 - - - + - + - + - - - + ↘ ↗ 

13 + - + + - - + + - - - - ↘ ↗ 

Table 2-4. Results of the 13 combinations that generated five consistent patterns. The signs +/- refer to 

the modalities of the parameters groups. The two last columns represent the five spatial patterns. An 

ascendant arrows stands for positive Mann-Kendall tau value (increasing trend from downstream to 

upstream). Conversely, a descendant arrow stands for a negative Mann-Kendall tau value. 

To make a summary of those results: in situations where females’ fitness was favored because 

of a strong L∞ or a strong b, i.e. a high fecundity, the model produced only females. 

Conversely, when females were too penalised, model produced only males. Therefore, an 

equilibrium was required between males and females fitnesses to mimic all patterns. The 

patterns in length at silvering and sex ratio were the two most constraining patterns and were 

mainly sensitive to four groups of patterns. 

These groups of parameters set the equilibrium between males and females fitnesses (male 

fertility and length at silvering, b and L∞) and the advantages between slow and fast growers. 

Density-dependence was also important regarding the pattern on length at silvering. We can 

observe that the five patterns were consistent mostly when slow growers and females were not 

too penalized with respect to males and fast-growers. 

Some of the patterns were indeed very constrained by model assumptions so it is hardly 

surprising that they were mimicked by the model. For example, our constraints on mortality 

and growth really constrained the distribution of fishes and probably the pattern of realized 

growth rates in the catchment. However, those constraints were based on various observations 

in the literature that have rarely been considered together to see if they make sense in a 
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context of adaptive response. We do not specify any constraints on the sex ratio, length at 

maturity and relationships between sex ratio and slow/fast growers. Those results are really 

emerging patterns that are consistent with the literature. 

 

Figure 2-5. Simulated sex ratio (proportions of females) patterns in the 13 combinations of parameters 

that consistently mimic the pattern described in the literature. These 13 combinations correspond to 

the 13 combinations that generate consistent patterns for all the five spatial patterns. Each plot stands 

for a combination (the number is an identifier of the combination that can be found in table 2-4) and 

each line stands for a replicate. 

2.5. Discussion 

2.5.1. Adaptation to environmental variability: phenotypic 

plasticity and genetic polymorphism of European eel 

The European eels, and more generally, temperate eels, display fascinating characteristics: 

catadromy with a long larval drift, large distribution area with contrasted growth habitats, 

panmixia, and strong phenotypic and tactic variability at different spatial scales. 

Consequently, this species is relevant to explore adaptive mechanisms to environmental 

variability. Phenotypic plasticity has been proposed as one such mechanism because of 

random mating and larval dispersal that prevent local selection pressures to generate habitat-
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specific adaptations, or local adaptation, from one generation to the next. Drouineau et al. 

(2014) developed the first model to explore the major role of phenotypic plasticity in both 

life-history traits and tactical choices as an adaptive response to spatially structured 

environments and density dependence. However, recently Gagnaire et al. (2012), Pujolar et 

al. (2014), Boivin et al. (2015), Côté et al. (2015) and Pavey et al. (2015) demonstrated the 

existence of genetic differences correlated with the environment, suggesting that part of the 

observed phenotypic variability had a genetic basis. 

Based on the approach developed by Drouineau et al. (2014), the objective of this study was 

to propose a model based on life-history theory and optimal foraging theory to explore the 

role of both adaptive phenotypic plasticity and genetic polymorphism with genetic-dependent 

habitat selection, in the emergence of phenotypic patterns. To that end, we used a pattern-

oriented modelling approach, as developed by Grimm et al. (1996). This kind of approach 

compared field observed patterns to simulated patterns and postulated that those patterns are 

similar, the model is likely to contain the mechanisms generating these patterns.  

2.5.2. In which conditions were the patterns mimicked? 

Similarly to Eveel, a main limitation of our approach was that it was based on a simulation 

model with a pattern-oriented approach. Consequently, our results demonstrated that our 

assumptions were plausible, but did not demonstrate that they were correct. Such a 

demonstration would require demonstrating underlying mechanisms, for example by 

conducting complementary controlled experiments. 

We built a full experimental design to explore the model. This type of approach is classical in 

complex model exploration (de Castro et al., 2001; Faivre et al., 2013). For example, in the 

context of sensitivity analysis of complex simulation models (Drouineau et al., 2006). Our 

exploration goals were to generate simulations from the parameter space and analyze the 

qualitative differences in the model output to (i) study the impact of parameters on the model 

output, (ii) determine which parameters were the most important, and (iii) identify the 

combinations of parameters required to mimic all observed spatial patterns. In this study, 17 

parameters grouped in 12 set of parameters, were chosen to define the region of the parameter 

space where all spatial patterns were reproduced. 

To assess the influence of stochasticity, we made 10 replicates per combination. This can 

appear limited, however, it was impossible to increase the number of simulations and we 

preferred to have a better exploration of uncertainty due to uncertain parameters rather than 
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on stochasticity which is rather limited in our model. Stochasticity occurs during the 

initialization process when randomly building slow or fast value with a given probability. 

This corresponds to a binomial distribution which has, given the large number of individuals, 

a very small variance. Stochasticity also occurs in the order of individuals for step 1, but this 

is closely linked to the previous process and consequently also has a limited variability. This 

limited effect of stochasticity was confirmed by our results since patterns per combination 

were always consistent among replicates (figure 2-4 and 2-5). 

One hundred thirty simulations among the 2560 mimicked the five spatial patterns. The fourth 

pattern stated that fast growers and slow growers had different spatial distributions. Fulfilling 

this pattern demonstrated that genetically different individuals have different habitat selection 

strategies to maximize their respective fitnesses. Consequently, fulfilling the five patterns 

suggested that, at least in certain conditions, genotype-dependent habitat selection and 

phenotypic plasticity could explain observed phenotypic patterns. The level of sensitivity was 

variable among groups of parameters, but four main groups of parameters were crucial: 

males’ fertility and length at silvering, growth and mortality rates of slow growers, fecundity, 

and L∞. Density-dependence was also an important parameter regarding length at silvering. In 

summary, the patterns were mimicked in simulations with dominants and dominated but when 

dominated individuals, mainly females, were not too penalized with respect to dominants, 

mainly males.  

Regarding the spatial patterns, higher density, higher proportions of fast growers, and faster 

growth rates in downstream regions were mimicked for all combinations of parameters. This 

suggested that in the range of variation considered, none of the parameters had effects on 

model outputs. This probably means that the gradient in environmental conditions and the 

population dynamics in the model were sufficient to reproduce these patterns, regardless of 

the competitive advantage of fast growers with respect to slow growers, confirming that 

phenotypic plasticity plays an important role in environmentally induced changes in life-

history traits and demographic attributes. Concerning the two other patterns (sex ratio and 

length at silvering), additional hypotheses are needed regarding competition and genetic 

polymorphism. They were fulfilled in conditions of weak competition and when growth 

differences were not too strong between the two genotypes. 

2.5.3. Consequences of intra-specific competition 

In our model, we assumed the existence of asymmetrical density dependence between fast and 

slow growers. We assumed that smaller individuals would avoid engaging in competition 
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with larger ones (regardless of sex) and would consequently be more affected by density 

dependence. This assumption seems ecologically realistic. Asymmetrical density dependence 

has been observed in plants (Weiner, 1990), insects (Varley et al., 1973), and fish (DingsØr et 

al., 2007). Intraspecific competition is a very common mechanism of density dependence, 

favoring large body size in fishes (Francis, 1983; Juanes et al., 2002). In anguillid eels, this 

may be manifested through agonistic interactions (Knights, 1987; Bardonnet et al., 2005), 

including cannibalism (Edeline and Elie, 2004). Such behaviors have been observed in yellow 

eels under artificial rearing conditions (Peters et al. ,1980; Degani and Levanon, 1983; 

Knights, 1987). 

We modelled this asymmetric competition by specifying different levels of density-dependent 

mortality for slow and fast growers. Interestingly, the spatial patterns were still reproduced 

when setting these parameters to a similar value (not presented here). Indeed, even with 

similar intensity of density dependence, slow growers needed more time to reach their length 

at silvering and consequently, suffered competition longer. Thus, even if competition has the 

same impact on instantaneous mortality rates of slow and fast-growers, density dependence 

produces asymmetric impacts on their respective fitness. In EvEel, Drouineau et al. (2014) 

assumed the existence of asymmetric competition between males and females, with females 

being more affected by competition. Interestingly, we observed in our results that females had 

a higher proportion of slow growers than males. This means that the gender-based asymmetry 

proposed by Drouineau et al. (2014) may be an indirect result of an asymmetry between two 

genetically distinct types of individuals with respect to growth. 

The asymmetric competition implies that fitness of individuals having a given growth 

genotype depends on the number of individuals having the other growth genotype, which may 

lead to frequency-dependent selection (Heino et al,. 1998). This has several implications. In 

the model, we assumed that individual fitness corresponded to the lifetime reproductive 

success called R0, and that this fitness is maximized. However, in a frequency-dependent 

selection context (i) natural selection does not necessarily lead in fitness maximization 

(Mylius and Diekmann, 1995; Metz et al., 2008), and (ii) fitness may need to be defined as an 

invasion criterion (Metz et al., 1992). Even when fitness maximization applies, r, the 

population growth rate, may be a more appropriate measure of fitness than R0 depending on 

how density-dependence acts (Mylius and Diekmann, 1995). To ensure that our assumptions 

about fitness definition and maximization were valid would require a multi-generational 

model at the scale of the population distribution area. This would allow computing fitness for 

the whole life-cycle across all potential habitat types of the distribution area while accounting 
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for population structure in terms of genotypes or clusters. At this point, it would be interesting 

to explore the heritability of the different traits and the intra-generational spatially varying 

selection, a mechanism suggested by the SNP differences according to latitude (Pujolar et al., 

2011; Gagnaire et al., 2012; Ulrik et al., 2014). 

This was not possible because of difficulties to develop a whole life-cycle model. More 

specifically, the fractal dimension of the eel population makes it very difficult to develop a 

population dynamics model for the continental phase at the distribution area scale. Moreover, 

such a model would require the use of stock-recruitment relationships, which is very difficult 

for the European eels because of insufficient data, long larval drift, and different recruitment 

trends through the distribution area. In this context, we had to use intra-generational model 

and a R0 fitness function, restricted to a single catchment and a portion of the whole life-

cycle, and to postulate that this R0 was maximized. 

2.5.4. Reinterpreting the time-minimizing and size-maximizing 

strategies 

To summarize the results for combinations of parameters that mimicked observed patterns, 

we observed a high proportion of individuals, mainly fast growers, in the downstream 

environment, which corresponded to marine or brackish water. These individuals were mainly 

males with a constant length at silvering. In upstream areas, we found mainly slow growers, 

primarily females with higher length at silvering. This can aid in the reinterpretation of gender 

difference in life tactics (i.e., males with a time-maximizing strategy and females with a size-

maximizing strategy). Our results suggest that these tactics were possibly based on the 

existence of two genotypes for growth. Fast growers grow fast but suffer higher mortality 

(because they inhabit downstream habitats with higher mortality and density); a time-

minimizing strategy is suitable for them. Slow growers grow slowly but suffer lower 

mortality, consequently they can stay longer in continental habitats, and a size-maximizing 

strategy is suitable for them. 

Another interesting question is whether cues are used by individuals to select their growth 

habitat. In the model, individuals were omnipotent and omniscient: they were able to assess 

the potential fitness in each cell and move in the most suitable cell. This would mean that they 

were able to assess the natural mortality, growth rate, and density in each cell. Drouineau et 

al. (2014) suggested that temperature might be one of the main proximal cue used by 

individuals to assess the suitability. Regarding density-dependence, reaction to aggressiveness 

(Geffroy and Bardonnet, 2012) or cons-specific odors (Schmucker et al., 2016) were observed 



Cause or consequence? Exploring the role of phenotypic plasticity and genetic polymorphism in the emergence 
of phenotypic spatial patterns of the European eel - 45 

 
 

on growth and propensity to migrate. Vélez-Espino and Koops (2010) also revealed 

temperature as main factor explaining variation in life-history traits. Our model suggested that 

density in various habitats was also probably a main cue, especially for slow growers, which 

tended to minimize competition. 

2.5.5. Perspectives 

 Exploring conditions in which phenotypic plasticity is adaptive 

It has been demonstrated that phenotypic plasticity allows short-term adaptation to 

environmental heterogeneity for many species (Schlichting, 1986; Sultan, 1987; Scheiner, 

1993; Pigliucci, 2005). However, the fitness gain arising from phenotypic plasticity should 

overcome its cost to be selected. This last point has not been demonstrated for eels. One 

possibility would be to simulate the evolution of a plastic reaction norm, for example length at 

silvering, close to the model developed by Marty et al. (2011). Following Ernande et al. 

(2004) and based on adaptive dynamics models (Mylius and Diekmann, 1995), it would be 

interesting to explore in which environmental and density-dependence conditions, phenotypic 

plasticity may be selected as an adaptive mechanism despite its costs, and if plasticity is still 

adaptive in a context of low densities after a population collapse. 

 Assessing the impact of anthropogenic pressures at the distribution area scale 

Another perspective is to assess the impact of anthropogenic pressures on eel populations. 

Drouineau et al. (2014) mentioned that, because of phenotypic plasticity, anthropogenic 

pressures are not only a source of mortality, but may also affect sex ratio or mean length at 

silvering. The existence of two genotypes for growth suggests that anthropogenic activities 

may act as selective forces. Recently, Podgorniak et al. (2015) demonstrated that human-

induced obstacles to migration could act as an evolutionary pressure. Concerning this, 

Boulenger et al. (2016) highlighted that human pressures impact survival, leading to different 

life-history strategies. 

To conclude, our model provided new insights on eel adaptive mechanisms to heterogeneous 

environments. Phenotypic plasticity and genotype-dependent habitat selection are two types 

of mechanisms that can explain the patterns in life-history traits observed in natural 

environments at the river catchment scale. A better understanding of these mechanisms is 

crucial to interpret the observations made in the environment, the effects of anthropogenic 

pressures on the population, and to understand if eels are still adapted in the context of 

depleted population size and climate change. 
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Take-home messages 

 Phenotypic plasticity and genotype-dependent habitat selection maintained by 

genetic polymorphism may be complementary adaptive mechanisms to deal with 

environmental heterogeneity. In such a scheme:  

Phenotypic plasticity plays an important role in the spatial correlations between life history 

traits, demographic parameters and environmental gradients. Habitat selection and sex-

determination are the result of an interaction between the environmental conditions, the 

genotype of individuals and the intraspecific competition. 

 The different life history strategies used by males and females could be 

reinterpreted: 

Sex determination, which subsequently determines individual life strategies, is partially 

related to growth that is under the influence of environmental conditions and individual 

genotypes. In the model, fast-growing individuals had higher intrinsic mortality rates and tend 

to settle in habitats with high densities, favoring a time-minimizing strategy. Conversely, 

slow-growing individuals had lower intrinsic mortality rates and avoid competition by settling 

habitats with lower densities, favoring a size-maximizing strategy. 

 Spatial patterns are mimicked in particular conditions of parameters: 

In the reference simulation all spatial patterns were mimicked. The model exploration shows 

that patterns are especially sensitive to a set of parameters: all patterns were mimicked with 

parameters that ensure slow-growing individuals and females were not too penalized with 

respect fast-growing individuals and males.   

To go further  

These results raise an immediate question about the consequences of anthropogenic pressures 

on the population. Since anthropogenic pressures take place in different habitats and affect 

different types of individuals, they are likely to interplay with adaptive mechanisms and have 

indirect consequences on life history traits, such as size at maturity, or demographic 

parameters, such as sex ratio in addition to be sources of direct mortality. The consequences 

of these pressures will be different and in accordance to the adaptive mechanisms that modify 

the traits of individuals. 

  



 

Chapter 3:  

Impacts that cause the highest direct mortality of 

individuals do not necessarily have the greatest influence 

on temperate eel escapement  

Published article: Mateo, M., Lambert, P., Tétard, B., Drouineau, H., 2017. Impacts that 

cause the highest mortality of individuals do not necessarily have the greatest influence on 

temperate eel escapement. Fisheries Research, 197: 51-59. 
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Foreword 

Given the current status of temperate eels, conservation initiatives have flourished to reduce 

sources of anthropogenic mortalities. In this context, there is a need of a method to assess the 

impact of those pressures to prioritize management actions. However, most studies and the 

management target enforced by the EU Regulation, focus on direct mortality rates that 

neglects the adaptive processes shaping individuals' response to their environment and 

exploitation. In view of this, we incorporated different anthropogenic pressures within 

GenEveel: glass eel and silver eel fisheries, obstacles to upstream migration and hydropower 

facilities. Each anthropogenic pressure affects specific life stages in specific habitats of the 

river basin. A numerical exploration of the model was carried out using a Latin Hypercube 

Sampling design and General Additive Model. These analyses assessed the impact of each 

anthropogenic pressure, in terms of mortalities rates, and on other life history traits and 

demographic parameters (sex ratio, proportion of slow-growing individuals, average length-

at-silvering and overall egg production). The following figure summarizes the positioning of 

this chapter within the overall PhD project. 
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3.1. Abstract 

Temperate eels are three panmictic catadromous species with a long period of oceanic passive 

larval drift and large distribution areas in contrasting environments. Spatial patterns of life 

history traits have been observed, and are correlated with environmental gradients, and may 

arise from both adaptive phenotypic plasticity and genetic polymorphism. This raises the 

question of the effect of spatially heterogeneous anthropogenic pressures on these 

populations. In this context, we used GenEveel, an individual-based optimization model that 

includes both phenotypic plasticity and genetic polymorphism, to explore the effects of 

different kinds of anthropogenic pressures: glass eel and silver eel fisheries, obstacles to 

upstream migration, and turbine mortality. More specifically, we analyzed the effects of these 

pressures on five output variables: the number of escapees, the proportion of females, the 

proportion of slow growers, the mean length-at-silvering and the resulting egg production. 

Our results suggest that phenotypic plasticity could act as a compensatory mechanism that 

mitigates the effects of some pressures (glass eel fishery and obstacles to upstream migration) 

and could be a source of resilience for the population, while other pressures did not show any 

compensatory effect (silver eel fishery and turbine mortality). Therefore, global impacts are 

very hard to assess, and the pressure that kills the most individuals does not necessarily have 

the biggest impact on the spawning biomass. 

Keywords: Temperate eels; anthropogenic pressures; adaptive mechanisms; life history traits; 

modeling 
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3.2. Introduction 

Temperate eels (Anguilla rostrata, A. anguilla, A. japonica) are three catadromous species 

that reproduce at sea and grow in continental waters. They display remarkable similarities in 

life history traits (Daverat et al., 2006; Edeline, 2007). The three populations are panmictic 

(Als et al., 2011; Han et al., 2010; Pujolar, 2013). Reproduction occurs in the Sargasso Sea 

for A. anguilla and A. rostrata (McCleave, 1993; Schmidt, 1923) and west of the Mariana 

Islands for A. japonica (Tsukamoto, 1992). Larvae (known as leptocephali) are subject to a 

long and passive trans-oceanic drift. When arriving on the continental shelves, leptocephali 

metamorphose into young and transparent eels, called glass eels (Tesch, 2003), and enter 

continental waters, where they become pigmented yellow eels, the immature adult stage. 

After a variable period, generally lasting from three to 15 years, yellow eels metamorphose 

again into silver eels (this metamorphosis is generally called “silvering”), the seaward 

migration stage. They achieve their sexual maturation while migrating back to spawning 

grounds. Because of the long larval drift, their distribution area is very large, and the growth 

phase can occur in very heterogeneous river basins, from Morocco to Norway (Tesch, 2003) 

for the European eel, from Venezuela to Greenland for A. rostrata (Helfman et al., 1987), and 

from the northern Philippines to Korea for A. japonica (Tsukamoto, 1992). 

Concomitantly to this environmental heterogeneity, temperate eels display remarkable life 

history trait patterns at both distribution and river catchment scales (Vélez-Espino and Koops, 

2009). Among them, the sex ratio is highly variable at different spatial scales: female-biased 

sex ratios are generally observed in the northern part of the distribution area, while male-

biased sex ratios are observed in the southern part (Kettle et al., 2011). At the catchment 

scale, sex ratios are male biased in downstream habitats (Oliveira and Mccleave, 2000; Tesch, 

2003). This question of sex ratio is relevant since eel sex is not genetically determined, but 

depends on environmental conditions (Davey and Jellyman, 2005; Geffroy, 2012; Geffroy 

and Bardonnet, 2015), and males and females display very different life history tactics 

(Helfman et al., 1987). Males are assumed to have a time-minimizing strategy; since their 

reproductive success does not depend on their size, they are assumed to leave continental 

waters as soon as they reach the minimal size required to successfully migrate back to 

spawning grounds (Oliveira, 1999; Van Den Thillart et al., 2007; Vollestad, 1992). On the 

other hand, female reproductive success is assumed to be a trade-off between size at maturity 

(known as length-at-silvering) and survival, called a size-maximizing strategy. This size-

maximizing strategy assumption is supported by the observation of larger females in the 
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northern part of the distribution area (slow growth but lower mortality) than in the southern 

part (Davey and Jellyman, 2005; Helfman et al., 1984). 

Indeed, eels display a large range of tactics in terms of habitat use for growth, with some 

settling in estuarine waters, while others moving far upstream in river catchments (Arai and 

Chino, 2012; Daverat et al., 2006; Tsukamoto et al., 1998). Higher densities are observed in 

downstream habitats, which are the most accessible and the most favorable in terms of growth 

rates (Daverat et al., 2012; Helfman et al., 1984; Melià et al., 2006). However, other eels also 

settle in the upper parts of river catchments. Edeline (2007) proposed that more limited 

intraspecific competition may overcome migratory energy costs, such as loss in growth rate. 

This assumption was challenged by Cairns et al. (2009), who did not observe a decrease in 

natural mortality in upstream habitats that would outweigh the cost of migration and the 

decrease in growth rate. 

Few studies have explored whether the observed spatial phenotypic patterns are the result of 

adaptive mechanisms to environmental variability, and they therefore remain poorly 

understood. The panmixia and long and passive larval drifts impair the possibility of local 

adaptation. Phenotypic plasticity has been proposed as an adaptive response to environment 

variability for many species (Gotthard and Nylin, 1995; Levins, 1963; Pigliucci, 2005), and 

Ernande and Dieckmann (2004) demonstrated that density dependence favors the selection of 

plastic phenotypes. In this context, assuming that phenotypic plasticity is an adaptive response 

to environmental variability, Drouineau et al. (2014) developed an optimization model that 

was able to mimic most of the observed patterns at both the distribution area and river 

catchment scales. The existence of correlations between genotypic patterns and environmental 

conditions have been observed (Boivin et al., 2015; Côté et al., 2015, 2014, 2009; Gagnaire et 

al., 2012; Pujolar et al., 2014; Ulrik et al., 2014). Côté et al. (2014, 2009) and Boivin et al. 

(2015) observed differences in growth rates depending on eel origin that were preserved after 

several months in common garden experiments. Pujolar et al. (2014), Gagnaire et al. (2012) 

and Ulrik et al. (2014) observed patterns in single-nucleotide polymorphisms correlated with 

environmental conditions. They assumed that individual genetic differences contribute to the 

emergence of phenotypic spatial patterns because of differential selection by the environment, 

but that these differences are reshuffled in each generation because of panmixia. In this 

context, Mateo et al. (2017a) developed a new model, called GenEveel that was able to mimic 

all observed patterns assuming the existence of genetic polymorphism in growth rate and 

adaptive phenotypic plasticity. It suggested that the genetic polymorphism and phenotypic 

plasticity may have been selected by natural selection as an adaptation to environmental 
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heterogeneity and density dependence. In this context, selection of growth habitats, length-at-

silvering and sex determination would be plastic traits that enable individuals to optimize 

their fitness in a wide range of environments. 

This issue of adaptation to environmental variability is presently crucial because temperate 

eels have suffered dramatic collapses (Dekker, 2009; Dekker and Casselman, 2014; Jacoby et 

al., 2015), and A. anguilla is classified as critically endangered by the IUCN (Jacoby and 

Gollock, 2014b), while A. rostrata and A. japonica are classified as endangered (Jacoby et al., 

2014; Jacoby and Gollock, 2014ba). Several factors have been proposed to explain these 

declines (Jacoby et al., 2015), including changes in oceanic conditions (Castonguay et al., 

1994), contamination and habitat degradation (Belpaire et al., 2016; Byer et al., 2015), 

parasitism (Feunteun, 2002; Kirk, 2003), fishing pressure (Dekker, 2003a), fragmentation 

including massive habitat loss (Kettle et al., 2011), and hydroelectricity-induced mortality 

(Castonguay et al., 1994). In view of this situation, the European Commission introduced 

European Regulation N° 1100/2007, imposing a new set of measures designed to reverse the 

decline. Since eel management is under the responsibility of member states, each member 

state was required to implement Eel Management Plans, enforcing management measures to 

decrease all sources of anthropogenic mortalities. Because of the heterogeneity in 

anthropogenic pressures, these measures are quite heterogeneous, targeting different types of 

pressures among countries and regions. The impact of anthropogenic pressures is indeed 

generally assessed by quantifying the induced mortality rates. Indeed, the European 

Regulation uses the biomass of escapees as a management target (the Regulation required that 

management measures should be implemented to ensure that silver eel escapement is at least 

40% of the escapement in pristine conditions). However, in the presence of genetic 

polymorphism and phenotypic plasticity, anthropogenic pressures can have a wide range of 

effects in terms of life history traits. They can be a selective pressure advantaging fast or slow 

growers or have consequences in terms of the sex ratio, length-at-silvering or spatial 

distribution by affecting plastic traits. 

In view of this, we decided to use GenEveel (Mateo et al., 2017a) to assess the impact of 

anthropogenic pressures on silver eel escapement, not only by quantifying the number of 

escapees, but also by assessing their effect on the sex ratio, the proportions of slow and fast 

growers, the length-at-silvering and the resulting egg production after a generation in 

continental waters exposed to different kinds of anthropogenic pressures. We chose to focus 

on four kinds of anthropogenic pressures: (i) the glass eel fishery, (ii) obstacles to upstream 

migration, (iii) turbine mortality during downstream migration, and (iv) the silver eel fishery. 
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(i) Glass eel fishing is a widespread activity in France, the UK, Spain, Portugal and Italy 

(ICES, 2016), in some North American rivers (Cairns et al., 2008; Dutil et al., 2009; Jessop, 

1998) and in Asian waters (Tatsukawa, 2003). In the Bay of Biscay, the glass eel fishery used 

to be the most important fishery in France in terms of turnover (Castelnaud, 2000), and the 

Bay of Biscay is assumed to receive the main part of the total recruitment (Dekker, 2000). 

These fisheries harvest young, sexually undetermined individuals entering continental waters. 

In some river basins, the glass eel fishery can catch nearly all individuals entering the basins, 

such as in the Vilaine River, where the recruitment rate is less than 5% some years (Briand et 

al., 2005). (ii) Fragmentation by human-induced obstacles can impact upstream migration 

(Drouineau et al., 2015; Tremblay et al., 2016). By blocking individuals during their upstream 

migration, they confine them into restricted parts of river basins (Kettle et al., 2011). (iii) 

During downstream migration, they can impair migration to the sea (Drouineau et al., 2017; 

Tremblay et al., 2016), especially because of mortality induced by passage through 

hydropower facilities (Pedersen et al., 2012; Winter et al., 2006). (iv) Finally, silver eel 

fishing is a widespread activity (Aalto et al., 2016; Amilhat et al., 2008; Bernotas et al., 2016; 

Verreault et al., 2012; Westerberg and Wickström, 2016) that targets large silvers when they 

migrate back to sea. 

We adapted the GenEveel model and developed five output indicators (number of escapees, 

proportion of females, egg production, length-at-silvering, and proportion of slow growers) to 

consider the impact of anthropogenic pressures on population dynamics. We carried out a 

numerical exploration of the model and fitted statistical models to assess the effects of the 

anthropogenic pressures on the outputs. This enables us to quantify the impact of pressures on 

the different components and to discuss the implications. 

3.3. Materials and methods 

3.3.1. GenEveel 

GenEveel is an individual-based model. It postulates that the population is composed of two 

types of individuals (slow and fast growing) based on a genetic polymorphism and that 

individuals determine their sex and select their growth habitat and length-at-silvering to 

optimize their fitness. Assuming that males follow a time-minimizing strategy, their fitness is 

assumed to be proportional to their survival rate until a constant length-at-silvering is reached. 

On the other hand, females are assumed to follow a size-maximizing strategy, and their fitness 

is constrained by a trade-off between fecundity at length-at-silvering and the survival rate to 

this length, with the length-at-silvering selected to optimize this trade-off. Growth is assumed 
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to be a combination of intrinsic growth rates (slow and fast growers) modulated by 

environmental effects, with faster growth rates in downstream habitats. Survival is a product 

of environmental effects and density dependence. 

The environment, a single river catchment, is represented by 30 contiguous cells (growth 

habitat) with prespecified effects on individual growth and mortality rates. One by one, 

individuals determine their sex and select their growth habitat and length-at-silvering based 

on the combination that maximizes fitness. 

A complete description of the model can be found in Mateo et al. (2017a). We parameterized 

the model as in the reference simulation in Mateo et al. (2017a) for this study, which 

consisted of the best set of values found in the literature for the European eel. Seventeen 

parameters were used in the model to characterize the environment (as cells in the river 

catchment) and individuals (demographic, growth and fitness parameters). 

3.3.2. Impacts of anthropogenic pressures 

3.3.2.1. Glass eel fishery 

The glass eel fishery was characterized by the catch rate, g, i.e., the proportion of individuals 

caught by the fishery. The glass eel fishery was assumed to harvest individuals before sex 

determination and habitat selection. Consequently, if N eels entered the catchment, glass eel 

catches were assumed to follow a binomial distribution, binomial(N, g), and the number of 

survivors was the complement. 

3.3.2.2. Obstacles to upstream migration 

We used two obstacles (0.66 and 0.1, respectively, according to the relative distance along the 

river and referring to the 20th and 3th cells of the 30 that represent the river catchment) 

characterized by their blockage rates (b0.66 and b0.1, respectively) and locations (po0.66 and 

po0.1, respectively, which represent cells of the catchments). For each individual, we restricted 

the possible combinations of growth habitat, length-at-silvering and sex to cells near the river 

mouth, po0.1, with a probability b0.1 and to cells near the river source, po0.66, with probability 

(1-b0.1)·(1-b0.66). 
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3.3.2.3. Turbine mortality 

The two obstacles also had turbine mortality rates (t0.66 and t0.1, respectively). Each individual 

located upstream of the obstacle and that survived until length-at-silvering were killed by 

turbines, with a probability corresponding to the mortality rates. 

3.3.2.4. Silver eel fishery 

The silver eel fishery was assumed to affect eels in a similar way to the mortality due to 

turbines. We assumed that two successive silver eel fisheries occur, one located near the river 

source at position ps0.66 and one near the river mouth at position ps0.1. These fisheries were 

characterized by catch rates of s0.66 and s0.1, respectively. Each individual located upstream of 

the obstacle and that survived until length-at-silvering were caught by silver eel fisheries with 

a probability corresponding to the catch rates. 

3.3.3. Model sequence 

The glass eel fishery occurred first, as it is the first source of mortality encountered by young 

eels. Then, GenEveel was used to position individuals in the catchment with restrictions due 

to obstacles to determine their sex, length-at-silvering and survival probability to length-at-

silvering. The survivors that reached maturity in the upper parts of the river migrated 

downstream and were impacted by the silver eel fishery and the turbine located near the river 

source. The remaining fish were then impacted by the silver eel fishery and the turbine 

located near the river mouth. 

Figure 3-1 represents the model sequence. A proportion, g, of recruits was first harvested by 

the glass eel fishery. Among the 1-g individuals that escaped the glass eel fishery, a 

proportion, b0.1, was constrained to settle downstream of the first obstacle, and only (1- 

b0.1)·(1- b0.66) were free to settle in the whole catchment. After sex determination and habitat 

selection (the combination that maximized the expected fitness), individuals underwent 

downstream migration and were harvested with a given probability if they passed a silver eel 

fishery or a turbine. 
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Figure 3-1. Conceptual representation of the catchment, indicating the seven anthropogenic pressures 

considered in the study: 1) g: catch rate by the glass eel fishery, 2) b0.66 and 3) b0.1: blockage rates 

(located near the river source and the river mouth, respectively), 4) t0.66 and 6) t0.1: turbine mortality 

rates (located near the river source and the river mouth, respectively), 5) s0.66 and 7) s0.1: catch rates by 

the silver eel fisheries (located near the river source and the river mouth, respectively). 

We computed five indicators based on the survivors (escapees): 

1. number of escapees (Ns); 

2. mean length-at-silvering (Ls); 

3. proportion of females (sex ratio) (SR); 

4. egg production (sum of female fecundity among survivors) (E); and 

5. proportion of slow growers (Sl) 

The first indicator is the traditional indicator for quantifying mortality and is generally used as 

a proxy of the spawning biomass, although not accounting for trait modifications. The next 

two indicators aim to measure the effect of anthropogenic pressures on two plastic traits. The 

fourth indicator quantifies the total effects of pressures on egg production and is a more direct 

proxy than the number of escapees because it combines both induced mortality and trait 

modifications. The last indicator is used to quantify the selective pressure induced by each 

anthropogenic pressure. 

3.3.4. Numerical exploration of the model and results analysis 

3.3.4.1. Experimental design 

Our objective was to compare the intensity of effects of anthropogenic pressures rather than 

locations. Therefore, we chose a set of parameters that were similar among pressures. For 

locations, pressure positions were set at the same cells in the catchment: ps0.66=po0.66=20 and 

ps0.1=po0.1=3. To explore the effect of pressure intensity, we used Latin hypercube sampling 

(LHS) (Iman and Conover, 1980; McKay, 1988; McKay et al., 2000). LHS is classical tool 

used to carry out global sensitivity analysis of models (Blower and Dowlatabadi, 1994; 

(1) g 1 - g (2) b0.1 1 - b0.1 (3) b0.66 1 - b0.66

(4) t0.66(5) s0.66(6) t0.1(7) s0.1

Upstream
migration

Downstream
migration
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Helton et al., 2005; Helton and Davis, 2003; Manache and Melching, 2004). It allows an 

efficient exploration of the input parameter space; estimation of output statistics, such as 

sensitivity indices; and variance decomposition. It subdivides each parameter into X intervals 

and then samples those intervals with probability 1/X (random sampling within intervals), 

ensuring that each parameter interval is sampled only once and that two parameters are not 

sampled in the same interval in the same experiment. By doing this, LHS ensures a random 

association of parameter values and allows their respective effects to be disentangled. 

In our LHS, the resulting design matrix is made up of all anthropogenic pressures (g, b0.66, 

b0.1, s0.66, s0.1, t0.66, t0.1) in columns, defined at an interval of 0 (no pressure) to 1 (impact all 

individuals). Intervals were then subdivided into 100 subintervals, corresponding to 

simulations in rows. We built 100 independent LHSs to account for model stochasticity, 

resulting in 10,000 simulations. 

3.3.4.2. Results analysis 

For each output Y, we fitted a generalized additive model on the 10,000 simulations using Y 

as a dependent variable and the anthropogenic pressures (g, b0.66, b0.1, s0.66, s0.1, t0.66, t0.1) as 

explanatory variables: 

(1) Y~ s(g) + s(s0.1) + s(s0.66) + s(b0.1) + s(b0.66) + s(t0.1) + s(t0.66) 

with s() as a smoother function. 

The Gaussian family was used for the number of escapees (Ns), length-at-silvering (Ls) and 

egg production (E) (a log transformation was used for Ns and E to normalize the distribution), 

while the binomial family was used for the proportion of females (SR) and slow growers (Sl). 

Generalized additive models (GAMs) were fitted using the package mgcv (Wood, 2011) in R 

(R Development Core Team, 2011). Plots of marginal effects were used to explore the 

relations between pressures and outputs. The signs of the regression coefficients indicated 

whether the pressure has a positive or negative impact on the indicator. The proportion of 

explained variance was used to compare the strength of the effects of anthropogenic 

pressures. 

We computed the partial rank correlation coefficients (PRCC) (Saltelli et al., 2000) to assess 

the global effects of pressures on each output variable using the package sensitivity (Pujol et 

al., 2016). These coefficients assessed the degree of association between an output variable 

and a predictor after removing the effects of other predictors. 



Impacts that cause the highest direct mortality of individuals do not necessarily have the greatest influence on 
temperate eel escapement - 59 

 
 

3.4. Results 

The PRCC are summarized in table 3-1. The glass eel fishery had the most important 

influence; it had negative effects on the number of escapees and positive effects on the length-

at-silvering and the proportion of females. Its influence was more limited on egg production 

(negative effects) and the proportion of slow growers (positive effects). Regarding egg 

production, the silver eel fishery and turbine located near the river mouth had negative effects 

that were similar to that of the glass eel fishery. Unsurprisingly, they also had important 

negative effects on the proportion of slow growers, the mean length-at-silvering and the 

number of escapees. Obstacles located near the river mouth had a great influence on all 

indicators except egg production; they had negative effects on the length-at-silvering and the 

proportion of females and positive effects on the number of escapees and the proportion of 

slow growers. The turbine and silver eel fishery located near the river source had lesser 

influences on the model outputs than the rest of the pressures. 

 Ns Ls SR E Sl 

g -0.95 0.94 0.95 -0.49 0.22 

b0.1 0.77 -0.75 -0.57 -0.01 0.88 

b0.66 0.02 0 0.01 0.01 0.02 

s0.1 -0.39 -0.33 -0.14 -0.42 -0.35 

s0.66 -0.02 0 0.01 -0.01 -0.03 

t0.1 -0.39 -0.33 -0.12 -0.4 -0.35 

t0.66 -0.01 -0.02 -0.01 -0.01 -0.01 

Table 3-1 Partial rank correlation coefficients between output variables (columns) and pressures 

(rows). A positive coefficient indicates a positive correlation. g: glass eel fishery, s0.66: silver eel 

fishery located near the river source, s0.1: silver eel fishery located near the river mouth, t0.66: turbine 

located near the river source, t0.1: turbine located near the river mouth, b0.66: obstacle to upstream 

migration, b0.1: obstacle to downstream migration. 

The GAM summaries are presented in table S3-1. All pressures had a negative impact on the 

number of escapees (Ns) except for obstacles located near the river mouth (b0.1), which had a 

positive impact (table 3-1 - figure 3-2). Indeed, they blocked individuals in a zone with faster 

growth rates, decreasing the time to length-at-silvering and increasing the survival until 

escapement. Interestingly, the slope of the glass eel fishery effect was more moderate for 

small intensities than for strong intensities (figure 3-2). At low intensities, fisheries led to a 

decrease in density and therefore to lower density-dependent mortality and a higher survival 

rate of the remaining individuals, which balanced the effect of the fishery. 
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Figure 3-2. Effects of the pressures on the five indicators estimated by the GAMs. g: glass eel fishery, 

s0.66 and s0.1: silver eel fisheries located near the river source and the river mouth, respectively, t0.66 and 

t0.1: turbines located near the river source and the river mouth, respectively, b0.66 and b0.1: obstacles 

located near the river source and the river mouth, respectively. 

Regarding the proportion of females (figure 3-2 - table 3-1), the glass eel fishery had the 

greatest impact by removing individuals. It drastically decreased the density and consequently 

the density-dependent mortality, favoring females, especially at high intensity (figure 3-2). 

The patterns were less obvious for the other pressures, except for obstacles located near the 

river mouth (b0.1); after a given level, an increasing blockage rate increased the density in 

downstream habitats, increasing the density-dependent mortality and favoring males (figure 

3-2).  
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The effects of other pressures (turbines and the silver eel fishery) was not due to density 

dependence, but rather the distribution of individuals in the river catchment; there was a 

female-biased sex ratio in the upstream habitat, and females were consequently more 

impacted by mortalities directed toward downstream migrants. 

Regarding the length-at-silvering (table 3-1 - figure 3-2), the results were very similar to the 

proportion of females since males have a constant and low length-at-silvering, while females 

have a variable and larger length-at-silvering. However, the effects of the silver eel fishery 

and the turbine located near the river mouth (s0.1 and t0.1, respectively) were much more 

obvious. 

Although obstacles located near the river mouth and the glass eel fishery (b0.1 and g, 

respectively) were the pressures most impacting the three first indicators, the silver eel fishery 

and the turbine located near the river mouth (s0.1 and t0.1, respectively) had similar influences 

on egg production, and they were more important than the glass eel fishery (g) (table 3-1). 

Indeed, the effect of g on the number of escapees was mitigated by the lower competition and 

the production of females in downstream zones of the catchment, explaining the flat effects 

observed for low g (figure 3-2). For obstacles located near the river mouth (b0.1), the increase 

in the number of escapees explained an increase in egg production when blockage was low. 

However, for high blockage rates, the increase in escapees (figure 3-2) was outweighed by a 

higher proportion of males (figure 3-2), leading to a decrease in egg production (figure 3-2). 

For the silver eel fishery and the turbine located near the river mouth (s0.1 and t0.1, 

respectively), their impacts on both the proportion of females and the number of escapees 

were negative, decreasing the effect on egg production. 

Finally, the silver eel fishery and the turbine located near the river mouth decreased the 

proportion of slow growers because those individuals tended to settle in upstream habitats and 

were consequently more impacted than fast growers (table 3-1 - figure 3-2). On the other 

hand, obstacles located near the river mouth tended to increase the proportion of slow 

growers; those individuals were blocked in downstream habitats where growth was faster, 

resulting in a better survival until length-at-silvering (as observed in the number of escapees 

(Ns), figure 3-2). However, blocked individuals were “constrained” to remain in downstream 

habitats, resulting in a decrease in their fitness and to strong competition with fast growers. 

Interestingly, the glass eel fishery, which harvested slow and fast growers equally, tended to 

favor fast growers at low intensities and slow growers at high intensities (figure 3-2; at high 

intensities, the very low density-dependent mortality strongly benefited slow growers by 

removing fast growers, which were dominant competitors). 
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3.5. Discussion 

3.5.1. Assessing the impact of anthropogenic pressures: why 

consider other indicators than only the number of 

escapees? 

The collapse in temperate eel populations required immediate actions (Dekker, 2009) to 

decrease all sources of anthropogenic pressures. This is the spirit of the European Regulation 

on the European eel and of subsequent eel management plans in European Union Member 

States. Logically, the first criteria used to assess the impact of anthropogenic pressures are 

mortality rates and escapement. However, given the large phenotypic variability observed at 

the distribution scale (Vélez-Espino and Koops, 2009), likely due to both phenotypic 

plasticity (Drouineau et al., 2014; Mateo et al., 2017a) and the consideration of genetic 

polymorphism (Côté et al., 2015), the number of escapees may not be sufficient, and it is 

worthwhile to explore the effects of anthropogenic pressures on other components. Thus, the 

aim of this study was to use the GenEveel model to explore the effects of different types of 

anthropogenic pressures on the number of escapees as well as other indicators accounting for 

life history traits and genetic polymorphism. 

3.5.2. Using a theoretical model to explore the possible 

consequences of anthropogenic pressures 

GenEveel is a theoretical model, but is parameterized with the best biological information 

available in the literature. Regarding the intensity, high levels have been observed for each 

type of pressure. For example, the exploitation rates of glass eels were found to be very high 

in some catchments: 13-30% in the Adour River (France) (Prouzet, 2002), 6.2-48.7% in the 

Oria River (Spain) (Aranburu et al., 2016), 30.8-51.8% in Nova Scotia (Jessop, 2000), 44.1-

75% in Shang-Chi (Taiwan) (Tzeng, 1984) and even 78.1-99.7% in the Vilaine River (France) 

(Briand et al., 2005). The passability for upstream migration was estimated to range between 

19.8 and 49.1% for an obstacle in the Canal des Etangs (France) (Drouineau et al., 2015). A 

similar result was obtained by Briand et al. (2005), who calculated an efficiency of the 

trapping ladder as 30% in the Vilaine catchment (France). Passability is probably even lower 

for obstacles not equipped with an eel ladder. Turbine impacts appear to vary considerably 

depending on study sites. On the Meuse River, Winter et al. (2007) estimated that the two 

hydropower plants induced an overall mortality of approximately 20-30%. In a Swedish river, 

Calles et al. (2010) found mortality rates of 40% and 60% induced by two plants. At a Polish 
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site, Dębowski et al. (2016) estimated a mortality rate of 55%. Mortality due to silver eel 

fisheries also varies from 22-26% in the Meuse River (Netherlands) (Winter et al., 2006) to 

82% mortality in the Gudenaa River and Randers Fjord (Denmark) (Aarestrup et al., 2008) 

and can reach even higher levels in some Mediterranean lagoons (Amilhat et al., 2008). 

Given the large variability in the pressure intensities, and the fact that they vary at the 

distribution area scale, we used a Latin hypercube sampling design to carry out the global 

exploration of their effects in a theoretical catchment in GenEveel. Consequently, the exercise 

is clearly theoretical, and our raw results should not be used to classify the effects of 

anthropogenic pressures. However, they provide valuable insights on the type of effects 

induced by the different pressures and indicate that the significance of these effects greatly 

depends on the considered output indicator. 

We did not consider the effects of yellow eel fisheries in this exercise for various reasons. 

First, the GenEveel model did not describe the growth phase precisely, so it is difficult to 

incorporate such mortalities. Moreover, most of the pressures occur in specific parts of the 

catchments (the estuary for glass eel fisheries, obstacles one after another) and at a specific 

times (migration), while yellow eel fisheries are more widespread and occur all along the 

growth phase, so comparisons of these pressures would be more uncertain. 

3.5.3. The effect of anthropogenic pressures depends on their 

location within the catchment 

Among the most obvious results, the impacts of anthropogenic pressures clearly depend on 

their location in the river catchment, and pressures located in the very upper parts of the 

catchment, where densities are low, have limited impacts. Although this result is obvious, its 

consequence at the population scale is less obvious because anthropogenic activities are not 

uniformly distributed across the distribution area. For example, in Europe, some hydropower 

facilities can be found in downstream areas of river catchments, similar to in Scandinavia, 

while they are located upstream in France. Silver eel fisheries are mainly located in 

Scandinavia and the Mediterranean Sea (Dekker, 2003b), while glass eel fisheries are 

dominant in France and Spain. Since life history patterns and differences in densities are also 

observed at the distribution area scale, it is very difficult to draw up an overall picture of the 

effect of each individual pressure at the population scale.  
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3.5.4. Effect of pressures on escapement: existence of 

compensatory mechanisms 

Another important message is that the number of escapees and the resulting egg production 

are not necessarily correlated. In our simulations, glass eel fisheries and migratory obstacles 

had the greatest influence on the number of escapees, the sex ratio and the length-at-silvering 

(although the effects were different depending on pressures). Nevertheless, the silver eel 

fishery and turbine mortality had similar negative impacts on egg production, which were 

greater than that of the glass eel fishery and were more significant than those of obstacles. 

This is explained by compensatory mechanisms that mitigate the negative effects of glass eel 

fisheries and obstacles to upstream migration, while there are no such mechanisms for those 

of silver eel fisheries and turbine mortality. For example, the decrease in escapement induced 

by the glass eel fishery can be compensated by the higher production of females. For 

obstacles to upstream migration, the decrease in female production is compensated by the 

better survival of individuals and consequently an increase in escapement. In other words, the 

pressure inducing the highest direct mortality does not necessarily have the greatest influence 

on silver eel escapement. Even pressures that do not induce any direct mortality, such as 

migratory obstacles, can influence some demographic attributes of escapees, such as the 

proportion of females or length-at-silvering. For example, obstacles close to the river mouth 

blocked individuals during their upstream migration in downstream habitats. As a 

consequence, slow growers that usually tend to settle in upstream habitats are forced to settle 

in downstream habitats with a faster growth rate and higher mortality due to competition. In 

these conditions, slow growers become males with a time-minimizing strategy, while they 

would have turned into females with a size-maximizing strategy in upstream habitats; this is 

why the proportion of females decreased. Since growth is fast in downstream habitats and 

those individuals mature very early (at male length-at-silvering), they have a higher survival 

rate until silvering than they would have known in upstream habitats, leading to an increase in 

the proportion of slow growers. However, they would have had higher fitness as a female in 

upstream habitats since the loss in survival would have been compensated by high fecundity. 

Interestingly, by decreasing the number of individuals that enter the river catchment, a 

simulation with a glass eel fishery “mimics” a simulation with a depleted population. It is 

interesting to note that in such a situation, a decrease in competition enables individuals to 

settle in downstream habitats, where growth is faster. More females are also produced 

because of these lower densities. As a result, egg production is less impacted than the number 
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of escapees. As such, the phenotypic plasticity of eels can be considered as a resilience factor 

in a depleted population. 

3.5.5. Anthropogenic pressures as selective pressures 

The final output of the model is the impact of anthropogenic pressures on slow and fast 

growers. Most pressures, except for the glass eel fishery, tend to favor fast growers over slow 

growers, and as such, anthropogenic pressures can be selective pressures. The selective 

pressure induced by obstacles on elver migration has already been observed at the gene 

expression level (Podgorniak et al., 2015a, 2015b, 2016). If most anthropogenic activities act 

as several pressures favoring fast growers, we can wonder how slow growers were preserved 

by natural selection. A possible explanation may be due to gender differences. Males are 

predominantly fast growers, while females are both slow and fast growers (Côté et al., 2015; 

Mateo et al., 2017a), but slow-growing females have a larger length-at-silvering and greater 

fecundity than fast-growing females (Mateo et al., 2017a). In a high-abundance context, we 

can assume that males are fast growers, females are predominantly slow growers, and the two 

types are necessary. In a collapsed population, anthropogenic pressures tend to favor males 

and fast growers (table 3-1), and egg production can become limiting. Consequently, the few 

remaining slow-growing females (which are less impacted by competition and can settle in 

downstream habitats) can become even more important, explaining their preservation to some 

extent. To validate this assumption, it would be interesting to carry out a similar simulation 

exercise at the population scale and with multiple generations to explore the impacts of 

anthropogenic pressures on the two types of individuals. Moreover, this would allow us to 

explore the assumption of spatially varying selection proposed by Gagnaire et al. (2012) and 

Côté et al. (2014) by simulating the arrival of slow and fast growers in random and 

contrasting river catchments, where they would suffer different mortalities and would 

consequently be more or less adapted. 

Selective pressure due to fishing activities on exploited marine stocks has been demonstrated 

for many fish stocks (Law, 2000; Pinsky and Palumbi, 2014). A major collapse in abundance 

is required to reduce the overall genetic diversity. Since current recruitment is now less than 

5% of historical recruitment and, for the American eel, recruitment has ceased in Lake 

Ontario and Upper Saint-Lawrence (Casselman, 2003), a loss of genetic diversity is not 

impossible This question of diversity at the individual level is crucial for eel conservation 

since it may contribute to population resilience through a storage and portfolio effect (Secor, 

2015a).  
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The misunderstanding of the effects of anthropogenic pressures also means that we poorly 

understand the effects of some mitigating measures. Stocking programs have been widely 

used (Couillard et al., 2014) and are still widely used by European countries (Brämick et al., 

2016; Josset et al., 2016; Simon et al., 2013). However, by modifying densities and moving 

slow or fast growers into habitats where they are not adapted, such measures can have 

unexpected effects on escapement. Such observations were made in Canada, where eels were 

stocked in the Great Lakes, and the escapees produced were more similar to escapees from 

their original sites than to native silver eels from the Great Lakes (Couillard et al., 2014; 

Stacey et al., 2015). Exploring this issue with GenEveel by artificially “moving” individuals 

after their sex and growth habitat have been determined will bring new insights into the ways 

stocking programs can affect the whole population. 

3.6. Conclusion 

Our theoretical exercise provided new insights on the impact of anthropogenic pressures, both 

direct and indirect. Since this simulation exercise is purely theoretical and because of the 

spatial heterogeneity in both anthropogenic pressures and eel life history traits, it is 

impossible to promote any specific management measures, which should be chosen according 

to the local conditions. However, our results imply that managers and scientists should not 

only assess the quantity of escapees but also their quality. Quantifying human-induced 

mortalities and the effects of anthropogenic pressures on the number of escapees is a main 

priority, given the dramatic situation of the three temperate eel populations. However, further 

research to investigate the possible impacts of anthropogenic pressures on phenotypic changes 

in life history traits and consequently the reproductive output of the spawning stock will be 

required to achieve sustainable management of the species. 
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Take-home messages  

 Impacts that cause the highest mortality do not necessarily have the greatest impact 

on overall egg production: 

Because of adaptive mechanisms, anthropogenic pressures can lead to modification of the 

population sex-ratio and the length-at-silvering. Consequently, even pressures that have killed 

few individuals can have drastic consequence on the overall egg production. 

 The phenotypic plasticity could act as a compensatory mechanism and could be 

source of resilience for the population: 

The phenotypic plasticity can mitigate the negative effects of some pressures (glass eel 

fishery and obstacle to upstream migrations) and it could be source of resilience for eel 

population, while there are no such compensatory mechanisms for other pressures (silver eel 

fisheries and turbine mortality).  

 Anthropogenic pressures can be selective pressures: 

Some pressures tend to favor fast-growing individuals against slow-growing individuals 

suggesting that these pressures can induce permanent selection. Given the disadvantage of 

slow-growing individuals, we can wonder how they were preserved by natural selection. A 

plausible explanation could be that most females are slow-growing individuals with high 

fecundity, which can become even more important in a context of populations in decline. 

To go further 

To explore the question of the preservation of slow-growing and fast-growing individuals 

over generations, a multi-generation model at the distribution scale is required. This would 

also allow us to study the situations in which adaptive phenotypic plasticity and genetic 

polymorphism may have been selected as a response to environmental heterogeneity. 

Moreover, will allow to have a more comprehensive overview of the impact of anthropogenic 

pressures over multiple generations.   



 

Chapter 4:  

Towards a life cycle model for eels to explore the 

emergence of adaptive mechanisms  
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Foreword 

This chapter presents the last step of this PhD. EvEel (Drouineau et al., 2014) and GenEveel 

(Mateo et al., 2017a) are based on the assumption that phenotypic plasticity is an adaptive 

response emerging from natural selection. This implies that phenotypic plasticity provides an 

evolutionary advantage greater than the related costs. The assumption is necessary to justify 

the use of a fitness optimization approach but has not been validated. In this context, I 

supervised a six-month trainee who developed MaxEel, a simple individual based model that 

explores in which ecological conditions, phenotypic plasticity would be selected despite its 

costs. In these conditions, we also explored if plasticity remained adaptive in a collapsed 

population. The model simulates the evolution of reaction norms and explores in which 

conditions these norms become plastic. It considers a panmictic population of eels whose 

individuals randomly colonize three river basins that are contrasted in terms of growth and 

survival (depending on the temperature of the environment). A numerical exploration was 

carried out to analyze the impact of ecological parameters on the emergence of the plastic 

lengths-at-silvering. To go one step further, the prototype of a demo-genetic model is 

described. It combines genetic polymorphism and phenotypic plasticity and is based on all 

precedent models. Contrary to MaxEel, this model is based on a much more realistic 

description of genetic inheritance process, it describes the whole life cycle and operates in the 

distribution area. As such, it summarizes our overall understanding of the functioning of 

adaptation mechanisms. Although the model is still a prototype and has not been used yet, we 

discuss the perspectives of use and the insights that such a model can bring to management. 

The following figure summarizes the positioning of this chapter within the overall PhD 

project. 
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4.1. Introduction 

Global change refers to the modifications of ecosystems due to anthropogenic pressures 

(Steffen et al., 2005) that threatens many species of extinction (Spurgeon, 2000; Thomas et 

al., 2004; Steffen et al., 2005; Brook et al., 2008; Cahill et al., 2012; Urban, 2015). The threat 

is not only due to the magnitude of the changes, but also due to its rate, which is occurring 

since the second half of the 20th century, the period called the “Great Acceleration” (Steffen 

et al., 2005, 2015). This acceleration may outpace species adaptation capacity (Donner et al., 

2005; Visser, 2008; Ayllón et al., 2016). The response of species with large distribution areas 

to global change is even more challenging due to the great range of environmental conditions 

and potentially many different selective pressures that these species have to deal with. In view 

of this, there is a need to improve our understanding of adaptive capacities of species to 

enhance conservation and restoration actions in the context of a changing environment.  

Phenotypic plasticity and selection are among the adaptive processes that shape the response 

of individuals to their environment and exploitation. These processes operate at different 

temporal scales and have different degrees of reversibility. Plastic responses are induced 

within a single generation and their costs are experienced at a physiological level of 

individuals (DeWitt et al., 1998; Schlichting and Pigliucci, 1998). On the other hand, 

selection implies genetic variations over several generations by selection of the more adapted 

genotypes but at risk of genetic diversity reduction within the population (Allendorf et al., 

2014; Pinsky and Palumbi, 2014). Therefore, understanding the adaptive potential of 

organisms requires information on plastic and genetic components, and on their relative 

contribution. Furthermore, phenotypic plasticity can be characterized by reaction norms that 

correspond to the set of phenotypes that would be produced by a single genotype across a 

range of environments (Schlichting and Pigliucci, 1998). The level of plasticity is measured 

by the slope of the genotype-specific environment-phenotype function (Pigliucci, 2005). 

Moreover, quantitative genetic parameters can be used to study the inheritance of varying 

traits and the maintenance of the genetic variability. They refer to the variance components of 

quantitative traits and provide information to estimate the heritability, i.e. a good predictor of 

the degree to which the population respond to selection (Falconer and Mackay, 1996). 

Despite the number of methods to quantify phenotypic plasticity and selection, it is difficult to 

demonstrate adaptive evolution in the wild because of the genetic basis of most life history 

traits are not known (Ellegren and Sheldon, 2008) and the estimation of natural selection 

remains a challenging issue (Hersch and Phillips, 2004). In view of this, models are useful 
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tools to provide a better understanding of the mechanisms involved in life history variation, 

becoming a guide for empirical studies or a predictive tool to explore the consequences of 

human impacts on threatened species. In recent years, several approaches have been 

developed to study the evolution of life history traits: the most employed are optimization 

models, quantitative genetics models and eco-genetic models. Optimization models (Stearns 

and Koella, 1986; Houston and McNamara, 1992; Sasaki and de Jong, 1999) search for the 

optimal strategy that maximizes fitness and focus on the ecological conditions that promote 

the evolution of traits. However, they do not consider the underlying genetic basis. GenEveel 

(Mateo et al., 2017a) and Eveel (Drouineau et al., 2014) belong to this kind of model. 

Quantitative genetic models (Via and Lande, 1985, 1987; Tienderen, 1991; Gomulkiewicz 

and Kirkpatrick, 1992; Gavrilets and Scheiner, 1993) include genetic variance of traits and 

genetic correlation between traits to study the response to selection of a population. 

Nevertheless, these models usually neglect the environmental effects on selection. The recent 

development of eco-genetic models (Dunlop et al., 2009) covers the genetic (the traits are 

inherited by the offspring from their parents and they are coded as polygenic quantitative 

characters) and the ecological components (including variables of individuals such as 

phenotypic plasticity and density dependent processes) leading to a detailed description of the 

life history of individuals. Andrello et al. (2011) developed a genetic-demographic model to 

explore how migrations of adults and larvae impact the genetic structure of the European eel 

along its continental distribution area. The results showed that low levels of mixing during 

different migration stages are enough to prevent genetic differentiation. They also showed 

that small scale temporal differences in the recruitment can arise if the spawning stock is 

subdivided into different reproductive groups. Nevertheless, the adaptive response of depleted 

population of temperate eels has not been fully investigated. 

In the last few years, conservation actions have flourished for the three eel species. However, 

the strong spatial heterogeneity of anthropogenic pressures affecting their populations 

combined with the spatial variability in life history traits at the distribution area and river 

catchment scales raise specific challenges for management. How temperate eels deal with 

environmental changes as a result of human activities is further complicated by the panmixia, 

the passive larval drift and their large distribution that promote the emergence of phenotypic 

plasticity rather than local adaptation.  

In the previous chapter, we have seen how optimization models were used to explore whether 

phenotypic plasticity (of length-at-silvering, sex-determination and habitat use) and the 

existence of genetically determined ecotypes (in growth) can be the result of adaptive 
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responses to environmental heterogeneity. We also show how, in such a situation, adaptive 

mechanisms can interfere with anthropogenic pressures to mitigate or worsen their effects. 

However, as optimization models, they postulate that phenotypic plasticity and genetic 

polymorphism (only for GenEveel) were selected by natural selection. This is a strong 

assumption since environmental conditions have changed quickly in the last decades. So, the 

response which used to be adapted in a context of abundant populations may not be adapted 

anymore in a context of depleted populations. Moreover, we have not considered costs of 

phenotypic plasticity that are a main constraint for the emergence of such an adaptive 

response (DeWitt et al., 1998). Finally, we have only worked at the river catchment scale and 

on a single generation whereas the emergence of adaptive responses should be considered in a 

multigenerational scale and at the distribution scale. In this context, this chapter proposes two 

different steps: 

(i) A preliminary model to determine ecological conditions in which phenotypic 

plasticity is indeed adaptive for eel populations. Phenotypic plasticity may 

facilitate adaptation allowing for a single genotype to produce phenotypes that are 

appropriate within their habitats (Bradshaw, 1965), as shown several species 

(Schlichting, 1986; Sultan, 1987; Scheiner, 1993; Pigliucci, 2005). The phenotypic 

plasticity is favored by environmental heterogeneity (Via et al., 1995) and by 

density-dependent mechanisms (Ernande et al., 2004). To be selected, the benefit 

of phenotypic plasticity must be higher than the associated costs (Tienderen, 1991; 

DeWitt et al., 1998). These costs may be subdivided into maintenance costs, i.e. 

the maintenance of energetic, regulator and sensorial mechanisms that induce the 

plastic responses, and production costs paid by a plastic individual (compared to a 

non-plastic individual). In view of this, Maxime Olsommer realized a research 

internship (under my direction and the co-supervision of Hilaire Drouineau) to 

explore in which ecological and density-dependent conditions the phenotypic 

plasticity can be selected as an adaptive response despite its costs. In such 

conditions, Maxime also analyzed if phenotypic plasticity remains adapted in a 

context of depleted populations. To this end, he developed a model named MaxEel 

that describes a simplistic life cycle of temperate eels. 

(ii) Building on MaxEel, a model is presented, which allows for phenotypic plasticity 

through plastic reaction norms of length-at-silvering and genetic polymorphism 

through individual intrinsic growth rates. Based on a quantitative genetic 

approach, the model aims to explore the emergence of ecotypes and phenotypic 

plasticity as a result of environmental heterogeneity. The model addresses 



Towards a life cycle model for eels to explore the emergence of adaptive mechanisms - 73 
 
 

MaxEel’s limitations by incorporating males in it to provide a better spatial 

resolution of river catchments and explicitly considers the genetic polymorphism. 

The model summarizes the understanding of eels adaptation mechanisms that we 

have at the end of this work. Ultimately, the model may be a relevant operating 

model to explore the effects of anthropogenic pressures and provide new insights 

for management. 

4.2. A model to explore the conditions favoring the emergence of 

phenotypic plasticity and if they are still gathered in the current 

context of a depleted population 

4.2.1. Model description 

In MaxEel, phenotypic plasticity was modelled by reaction norms, i.e. the range of 

phenotypes that a genotype can produce depending on environmental conditions (Dobzhansky 

and Spassky, 1944; Stearns and Koella, 1986). More specifically, reaction norms selected 

over generations were studied to explore the evolution of phenotypic plasticity. 

In MaxEel, a panmictic eel population was considered in which all individuals breed together 

and the offspring is distributed randomly to the three virtual river basins. Each river basin was 

characterized by a water temperature which was used to compute natural mortality and growth 

rates using empirical relationships from the literature (Pauly, 1980; Dekker, 2000b; Bevacqua 

et al., 2011). Each individual was characterized by a reaction norm (a length-at-silvering for 

each of the three river basins), which were more or less plastic (plasticity was measured as the 

variance of lengths-at-silvering). Within river basins, individuals followed a von Bertalanffy 

growth, suffered a density-dependent survival, and matured when reaching the length defined 

by its reaction norm for its river residence. Unlike GenEveel, the river basins were determined 

by only one cell (spatial gradient in the river was missing) for simplicity, and genetic 

polymorphism of growth was not incorporated. In this simple model, only females were 

represented. 

Only individuals that survived until length-at-silvering were able to reproduce. The number of 

offspring was a function of (i) the length-at-silvering through an allometric relationship 

(Andrello et al., 2011) and (ii) the costs of phenotypic plasticity (we assumed that the costs 

associated with a plastic reaction norm lead to a decrease of the number of offspring). 

Offspring inherited the reaction norms of their mothers, with possible random mutations 

(normal draw) around those norms. Offspring produced each time step (one year) are then 
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distributed randomly in one of three river basins to mimic a passive drift of larvae and 

therefore a non-selected growth habitat (figure 4-1). 

 

Figure 4-1. Conceptual diagram of eel life cycle represented in the model. 

The process mentioned above is defined by the following algorithm (see table 4-1 for 

parameter definitions): 

(1) For each catchment: 

 For each individual i in catchment c: 

o survive with a probability 
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 production of (fecundity – cost) with the same reaction norm as i, 

which are sent to the Sargasso Sea 

 individual i is discarded 

(2) In the Sargasso Sea: 

 if Rth(i)>R, Rth(i)-R offspring are randomly discarded 

 for each offspring o: 
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o for each catchment c: 

 Lso(c) mutates with probability pm (Bernouilli trial) – if mutation 

occurs, Lso(c) is multiplied by a random number drawn from a 

lognormal distribution LN~(0,σm) 

o offspring o is send to a river catchment according to a multinomial trial of 

probabilities {p1,p2,p3} 

Entity Parameter Definition 

Catchment c (from 1 to 3) Tc Temperature in catchment c 

 Mc 
Natural mortality rate in catchment c. Calculated using a 
statistical relationship between M and T from Bevacqua et 
al. (2011) 

 Kc 
Brody coefficient of the von Bertalanffy growth curve in 
catchment c. Calculated using a statistical relationship 
between M, K and T from Pauly (1980) 

 Nc(t) 
Number of living immature individual in catchment c at 
time step t 

Individual i Lsi 
Vector of three elements representing the reaction norms, 
i.e. the length at which individual i matures in each of the 
three catchments 

 Li(t) Length at time t 

 Ai(t) Age at time t 

Population a1, a, b 
Parameters of the fecundity allometric relationship from 
Andrelo et al. (2011) 

 α Intensity of natural mortality density-dependence 

 L∞ Asymptotic length of the von Bertalanffy growth curve 

 pm, σm 
Probability of mutation of the reaction norm and 
corresponding standard deviation 

 β 
Balance between maintenance and production costs for the 
phenotypic plasticity (0= maintenance, 1=production) 

 C 
Intensity of phenotypic plasticity cost (independent of the 
cost) 

Sargasso Sea composed of 
offspring o 

R Maximum total number of offspring per iteration 

 Rth(t) 
Theoretical number of offspring that would have been 
produced at time t in the absence of a threshold in the 
hockey stick stock recruitment relationship 

 {p1,p2,p3} 
Vector containing the probabilities to drift towards 
catchment c 

Table 4-1. Model parameters. 
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At the end of each simulation, reaction norms of length-at silvering of survivors were 

monitored. Then, we computed three indicators for each norm: its variance (of the three 

lengths-at-silvering), its range (difference between maximum and minimum) and the 

corresponding costs associated to phenotypic plasticity of the norm. The two first indicators 

quantified the degree of plasticity of selected norms while the third indicator quantified the 

costs paid by individuals for being plastic. 

4.2.2. Model exploration and results analysis 

We built an experimental design to determine the impacts of (i) larvae distribution within 

river basins, D, (either homogeneous, biased to the most favorable habitat or biased to the less 

favorable habitat), (ii) the degree of heterogeneity between environments, ΔT, (leading to 

contrasts in growth rate and survival probability), (iii) the intensity of density-dependence, α, 

(different density-dependent mortalities), (iv) the intensity of plasticity costs, c, and (v) the 

kind of costs, β,  (maintenance or production) of phenotypic plasticity on the emergence of 

plastic reaction norms. The reference value, a high and a low value around this one were set 

for each parameter and we built a full-simulation design consisting of all combinations of 

parameter values (35 = 243).  We carried out 10 replicates for each combination of parameters 

to account for model stochasticity, leading to 2430 simulations. Then a linear model was 

conducted for each indicator (variance and range of the three lengths-at-silvering, and costs of 

plasticity) and the best model was selected according to Akaike Information Criterion. The 

sign of the regression coefficient reveals the effect of the parameters on these indicators. We 

analyzed the proportion of variance explained by each parameter to compare their relative 

importance. 

4.2.3. Results and discussion 

The results of the linear models are summarized in table 4-2. The intensity of plasticity costs 

(c) had the largest (negative) impact whatever the indicator. The negative effect on the 

variance and the range of reactions norms confirmed that strong cost reduce the degree of 

plasticity that emerges from natural selection (DeWitt et al., 1998). Also, with no intensity of 

costs, plasticity increased. This is obvious but unreal in nature. The production of a plastic 

response requires the development of sensing mechanisms to collect information about the 

environment and it is costly in terms of energy to produce the phenotype that matches the 

environment (Tienderen, 1991; Fusco and Minelli, 2010). When the intensity of the costs 

increased, plasticity decreased and reaction norms tended to a constant phenotype, 
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independent of the environment (Ernande et al., 2004). When the intensity of costs is at the 

highest, there are no costs because individuals are not plastic anymore. 

The second most influencing parameter was density dependence intensity (α) (table 4-2), 

Consistently with (Ernande et al., 2004), the positive effect on all indicators confirmed that 

density-dependence favors the emergence of plasticity (figure 4-2). This point is especially 

important in a context of depleted population as, density-dependent mortality is reduced and 

has a minor influence on the population dynamics. In these scenarios without density-

dependence, the phenotypic plasticity was still present but very much decreased (the reaction 

norms are much less variable). Therefore, this suggests that plasticity can still have an 

evolutionary advantage even in a depleted population. Nevertheless, the degree of plasticity 

selected in a context of high abundance may be too high in this new context, because of 

unnecessary costs. This would not be a maladaptation but a suboptimal situation. 

Furthermore, the intensity of density dependence showed interactions with other parameters, 

e.g. the distribution of larvae (D), confirming that in some ecological situations the selected 

reaction norm in a high population context could be more distant than the optimal reaction 

norm for a depleted population. 

 

Figure 4-2. Variations in variance and range of reaction norms and the costs paid to be plastic across 

the three values of the density dependence intensity (α). 

The third most important parameter was the kind of costs (β) (table 4-2.). Norms are more 

plastic when costs are dominated by production costs (β = 1) than when they are dominated 

by maintenance costs (β = 0). This is because when maintenance cost predominates, 

individuals tend to “specialize” for the more favorable basin or for the basin in which they are 
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the most likely to grow, to avoid paying a cost for a phenotype they will rarely produce. This 

result is consistent with previous findings from (Ernande et al., 2004). The kind of costs had 

similar effects on the costs of plasticity. 

The distribution of larvae and the degree of heterogeneity between river catchments had fewer 

impacts on the degree of plasticity and no effect on the costs of a plastic response (table 4-2). 

Moreover, coefficients were small compared to interactions coefficients which meant that the 

distribution could not be interpreted alone but through its interaction with density-dependence 

and plasticity costs.  

When the river catchments were more contrasted in terms of temperature (ΔT = 5), the 

variance and the range of reaction norms increased, showing that plasticity facilitates 

adaptation (Pigliucci, 2005). Finally, some interactions between parameters can modulate the 

adaptive value of the plastic response. For example, a negative interaction was observed 

between the environmental heterogeneity (ΔT) and the intensity of costs (c) for the variance 

and the range of length-at-silvering (table 4-2), which decreased the degree of plasticity. 

When the river catchments were more contrasted (ΔT = 5), the reaction norms of length were 

more variable and the costs to be plastic increased also due to high plasticity, showing the 

trade-off between the advantage and costs of being plastic. 

4.3. A demo-genetic modelling proposal to explore the emergence 

of adaptive mechanisms 

4.3.1. Model description  

The model description follows the ODD (Overview, Design concepts, Details) protocol to 

describe individual-based models (Grimm et al., 2006, 2010). Through this section, an index i 

denotes an individual, x a habitat, c a river catchment, s a gender and t a time-step. 

4.3.1.1. Overview 

4.3.1.1.1. Purpose 

The aim of the model was to determine in which ecological conditions phenotypic plasticity 

and genetic polymorphism (i) could be selected by evolution and (ii) could be maintained in 

the current context of depleted populations. The ecological conditions to explore were: the 

temperature gradient between river catchments (as a latitudinal cline to represent the spatial 

distribution of eels), spatial variability within river catchments (i.e. upstream-downstream
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Table 4-2. Summary of linear models with estimated for each model parameter and the explained variance. P-values were not presented because significance 

tests are not recommended when analyzing simulation model results (White et al., 2014) 

Parameter Modality 
VARIANCE RANGE COSTS 

Estimate Explained variance Estimate Explained variance Estimate Explained variance 

c 
0 0.000 

59.342 
0.000 

59.359 
0.000 

9.075 0.5 -0.914 -0.907 0.000 

1 -1.219 -1.213 -0.447 

α 
0 0.000 

0.572 
0.000 

0.575 
0 

2.025 5.0×10-5 0.106 0.130 0.144 

1.0×10-4 0.183 0.156 0.191 

β 
0 0.000 

0.413 
0.000 

0.413 
0.000 

0.246 0.5 0.023 0.024 0.005 

1 0.096 0.096 0.079 

D 

best habitat 0.000 

0.379 

0.000 

0.377 

 

 homogeneous -0.161 -0.161  
worst habitat -0.003 -0.004  

ΔT 

0.5 0.000 

0.248 

0.000 

0.243 

 

 2 0.065 0.065  
5 0.209 0.207  

c: D 

0.5: homogenous 0.173 

0.535 

0.172 

0.533 

 

 
1: homogeneous 0.159 0.157  
0.5: worst habitat 0.114 0.112  
1: worst habitat 0.243 0.241  

α: D 

5.0×10-5: homogenous 0.012 

0.352 

0.014 

0.345 

 

 
1.0×10-4: homogeneous -0.078 -0.075  

5.0×10-5: worst habitat -0.171 -0.168  
1.0×10-4: worst habitat -0.118 -0.114  

c: ΔT 

0.5: 5 -0.211 

0.516 

-0.209 

0.509 

 

 
1: 5 -0.187 -0.185  

0.5: 2 -0.071 -0.068  
1: 2 0.031 0.029  

c: α 

0.5: 5.0×10-5  

 

-0.013   

0.387 
1: 5.0×10-5  -0.067 0.149 -0.099 

0.5: 1.0×10-4  0.007   

1: 1.0×10-4  0.070  0.124 
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gradient) and demographic parameters, such as the population abundance. To analyze the 

evolutionary emergence of phenotypic plasticity, we also explore the effect of its costs since 

they are expected to act as major constraints for the selective advantage of this mechanism. 

4.3.1.1.2. State variables and scales 

Temporal scales: the model has a yearly time step. The model is run until spatial patterns (see 

section Design concepts) are stable (assessed through a Mann-Kendall trend tests) over 100 

years. 

Entities and spatial scales: The environment is composed of an oceanic and a continental 

compartment. Reproduction, genetic inheritance, dispersion and larvae survival take place in 

the oceanic compartment. The continental phase is split into three river catchments with 

different temperatures reflecting a latitudinal cline. Each river catchment is represented by 

two “habitats” of similar size:  a first habitat represents brackish or salt water environment 

and a second habitat represents fresh water environment. Juvenile survival, growth and 

silvering occur throughout this phase. Each individual i is initially characterized by several 

parameters (table 4-4). Three types of parameters are considered to be coded genetically and 

consequently partially inherited by the offspring. For each of these types of parameters, the 

“genetic value” corresponds to the value which is indeed genetically coded and can be 

inherited, and is noted with an index g. A stochastic value is associated to each genetic value 

and accounts for a non-directed and non-heritable environmental noise (same notation without 

the index g).  

These parameters correspond to the standard set of traits that are recommended to investigate 

life history evolution (Dunlop et al., 2009). The first type of genetically coded parameters 

corresponds to the intrinsic growth rate (k(i) and kg(i)). It should be noted that k(i) also 

directly constrains an intrinsic mortality rate m(i). The second type of parameters plays a role 

in the sex-determination process (f(i) and fg(i)). Finally, the third type of parameters 

correspond to the intercept (lsµ(i) and lsµg(i)) and the slope (lsα(i) and lsαg(i)) of the length-

at-silvering reaction norms. At the end of each generation, each individual is described by a 

gender, a habitat location (in the river catchments), and a length-at-silvering. 

The population entity groups parameters common to all individuals, such as parameters of the 

stock-recruitment relationships, parameters of the larval drift, parameters that govern the 

inheritance process, and parameters that govern the influence of environment on biological 

processes. 
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4.3.1.1.3. Process overview and scheduling 

The model covers the whole life-cycle of the temperate eels. It is structured in different 

processes; offspring produced in each reproduction are distributed randomly among river 

catchments and suffered mortality during larval drift. This mortality depends on larvae 

intrinsic characteristics, the drift duration and water temperature. The differential mortality 

which depends on genetic characteristics of individuals and the characteristics of environment 

opens the door to spatially-variable selection operating as early as in the larval drift. When 

they enter in inland waters, individuals “select” their growth habitat (brackish or freshwater 

position in the river) and determine a sex (female or male) by maximizing their expected 

fitness. Then, they grow and die during the continental stage with a growth and a mortality 

that depend on individuals’ characteristics, habitat condition and density-dependence. When 

they reach a length-at-silvering, defined by an environment dependent reaction-norm, they 

migrate into the spawning areas to reproduce. Offspring inherit part of their parents attributes 

and the cycle starts again. 

 

Figure 4-3. Succession of processes. Blue circles stand for processes that take place within continental 

catchments whereas green circles stand for processes occurring in the marine environment (called 

Sargasso Sea for simplicity). 
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4.3.1.2. Design concepts 

4.3.1.2.1. Basic principles 

This individual-based model combines an eco-genetic structure (Dunlop et al., 2009), based 

on the premise that many genes and the environment act and interact to determine traits 

(Falconer and Mackay, 1996; Lynch and Walsh, 1998). The model design allows exploring 

the emergence of genetic polymorphism (eco-genetic structure) and adaptive phenotypic 

plasticity (optimization model). 

4.3.1.2.2. Emergence 

The pattern-oriented modelling approach (Grimm and Railsback, 2012) is used to compare 

predicted spatial patterns with those observed in real-world. Nine emergent population spatial 

patterns are analyzed from the literature: 

- Among river catchments: 

(Oi) male-biased sex ratio in the southern part of the distribution area and female-

biased sex ratio in the northern part, 

(Oii) male-biased sex ratio in an environment with high density, 

(Oiii) faster growth in southern latitudes, 

(Oiv) larger females in the northern part. 

- Within river catchments: 

(Ov) higher density downstream than upstream, 

(Ovi) higher length-at-silvering upstream than downstream, 

(Ovii) male-biased sex ratio downstream and female-biased sex ratio upstream, 

(Oviii) the phenotypic response led to faster growth rate downstream than upstream. 

A last (no spatial) pattern is defined regarding the population distribution in terms of growth: 

(Oix) males have strong genetic values of growth rate while females have a wider 

range of genetic values of growth rate. 

4.3.1.2.3. Adaptation 

At the individual scale, the selection of habitat within river basin is assumed to be adaptive. 

Length-at-silvering, sex-determination reaction norms and natural growth rate are also subject 

to natural selection to potentially address environmental heterogeneity (figure 4-3). 
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4.3.1.2.4. Prediction 

Individuals could predict expected fitness during the sex and habitat determination process. 

4.3.1.2.5. Sensing 

Individuals are assumed to sense the number of individuals and environmental conditions 

affecting their fitness. 

4.3.1.2.6. Interaction 

Interactions occurred through reproduction and density-dependent mortality. 

4.3.1.2.7. Stochasticity 

Stochasticity occurred at different levels. At the initialisation of the simulation, values of 

heritable traits are drawn from uniform distributions in order to reflect heterogeneity among 

individuals. Stochasticity is also used to distribute larvae into the river catchments. At each 

time step, each individual has a given probability of dying that depends on environmental 

conditions and densities of individuals. Finally, the recruitment function in reproduction is 

also based on stochastic events because parents are drawn randomly according to the 

probability of reaching the length-at-silvering. The inheritance transmission to each offspring 

is also stochastic. 

4.3.1.2.8. Observations 

Nine patterns are computed at the end of the simulation (table 4-3). They corresponded to 

those available in the literature: simulated patterns Si, Siv, Sv, and Sviii, according to 

observed patterns Oi, Ovi, Ov and Oviii, are validated when a negative trend is observed from 

north to south, and downstream to upstream; whereas patterns Sii, Siii, Svi, and Svii 

corresponds to observed patterns Oii, Oiii, Ovi and Ovii and are consistent with literature 

when a positive trend is observed from north to south and downstream to upstream. The last 

pattern (ix) is validated when a bimodal distribution by gender appears in the whole 

population distribution. 
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4.3.1.3. Details 

4.3.1.3.1. Initialization 

At the beginning of the simulation, three river catchments were empty. N individuals are 

created and their genetic values are randomly picked in uniform distributions. They have not 

yet entered the river catchment. 

4.3.1.3.2. Input data 

A reference simulation is used to test the model. Values of parameters were selected from 

literature (table 4-4). The model outputs were identified based on spatial patterns defined in 

Observations. 

Observed patterns Simulation outputs Reference 

Among river catchments:  

Oi. Male-biased sex ratio in the southern part of 
the distribution area and female-biased sex ratio 
in the northern part 

Si. Proportion of females per river catchments (Helfman et al., 1984, 
1987) 

Oii. Male-biased sex ratio in an environment 
with high density 

Sii. Number of individuals per river catchment (Tesch, 2003) 

Oiii. Faster growth in southern latitudes Siii. Phenotypic response of mean realized 
growth rate per river catchment 

(Hansen and Eversole, 
1984; Oliveira, 1999) 

Oiv. Larger females in the northern part Siv. Mean length-at-silvering per river 
catchment 

(Vollestad, 1992; 
Oliveira, 1999) 
(Oliveira, 1999) 

Within river catchments:  

Ov. Higher density downstream than upstream Sv. Number of individuals per cell in the river 
catchments 

(Tesch, 2003) 

Ovi. Higher length-at-silvering upstream than 
downstream 

Svi. Mean length-at-silvering per cell in the 
river catchments 

(Helfman et al., 1987; 
Vélez-Espino and 
Koops, 2010) 

Ovii. Male-biased sex ratio downstream and 
female-biased sex ratio upstream 

Svii. Proportion of females per cells in each 
river catchment 
 

(Oliveira and 
McCleave, 2000) 

Oviii. The phenotypic response led to faster 
growth rate downstream than upstream 

Sviii. phenotypic response of mean realized 
growth rate per cells in each river catchment 

(Thibault et al., 2007b)  

Regarding population distribution in terms 
of growth: 

  

Oix. Male growth distribution is mainly fast 
while females have a large variation in growth 

Six. Number of individuals by gender  
 

(Côté et al., 2015) 

Table 4-3. Description of the observed patterns (O) and those calculated in outputs from model (S). 
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Entities Parameters Notation Value Reference 

Individuals Intrinsic growth rate kg(i) Equation 11  

Intrinsic growth rate with 
undirected effect of environment 

k(i) Equation 12  

Genetic value of fertility fg(i) Equation 11  

Fertility with undirected effect 
of environment 

f(i) Equation 12  

Genetic value of intercept of 
female length-at-silvering 
reaction norm 

lsµg(i) Equation 11  

Intercept  of female length-at-
silvering reaction norm with 
undirected effect of environment 

lsµ(i) Equation 12  

Genetic value of slope of female 
length-at-silvering reaction 
norm 

lsαg(i)   

Slope of female length-at-
silvering reaction norm with 
undirected effect of environment 

lsα(i) Equation 11  

Intrinsic natural mortality rate 
with undirected effect of 
environment 

m(i) Equation 12  

Gender S(i) Fitness 
maximization 
(Sex-
determination 
and habitat 
selection) 

 

Length-at-silvering Ls(i) Equation 9 (Andrello et al., 
2011) 

Effective growth rate due to the 
directed effect of environment x 

K(i,x) Equation 7 (Drouineau et al., 
2014) 

Effective natural mortality due 
to the effective effect of 
environment at time t, without 
density dependence and with 
density-dependence 

M(i,x) and M(i,x,t) Equation 6 (Bonhommeau et 
al., 2009) 

Population Parameters from the length – 
fecundity allometric relationship 

a,a1 and b 8846, 

1.387, 

3.2 

(Melià et al., 
2006b; Andrello 
et al., 2011) 

Length of glass eel Lg 7.5 cm (Desaunay and 
Guerault, 1997; 
Dekker, 1998; 
Desaunay et al., 
2012) 

Asymptotic length L∞ 76.2 cm (De Leo and 
Gatto, 1995) 

Temperature of reference used Tref 11.4°C (Mitchell et 
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to scale intrinsic growth and 
mortality rates 

Jones 2005) 

Intensity of density-dependence β 0,00005  (Drouineau et al., 
2014) 

Males length-at-silvering Lsm 40.5 cm (Vollestad, 1992) 

Intensity of phenotypic 
plasticity costs 

c 0.5  

Relative weights of production 
costs 

ω 0.5 (Ernande and 
Dieckmann, 
2004) 

Sargasso 
sea 

Probability that a larvae reach 
catchment c 

pc 0.33, 0.33, 0.33  

Duration of larval drift to reach 
catchment c 

dc 21 months + 6 
months 

(Bonhommeau et 
al., 2009) 

Probability to achieve the 
spawning migration 

η 0.3 (Bonhommeau et 
al., 2009) 

Maximum number of offspring Rmax 0.777 × 106 (Andrello et al., 
2011) 

Genetic variances of inherited 
traits 

, , ls , ls  0.06 (Dunlop et al., 
2009; Enberg et 
al., 2009) 

Environmental variances of 
inherited traits 

, , ls , ls  0.20, ?, 8.3, 
0.11 

(Enberg et al., 
2009) 

Heritability of inherited traits ℎ ,ℎ ,ℎls ,ℎls  0.2 (Lynch and 
Walsh, 1998) 

River 
catchment 

Temperature in river catchment 
c 

Tc 5, 15, 25 (Drouineau et al., 
2014) 

Contrast of growth rate between 
brackish (1st cell of a catchment) 
and freshwater (2nd cell of a 
catchment) habitats 

νx 1, 0.5 (Cairns et al., 
2009) 

Number of individuals in habitat 
x at time t 

N(x,t) result of habitat 
selection and 
mortality during 
the growth stage 

 

Table 4-4. Parameter description with initial reference value. 

4.3.1.3.3. Submodels 

The model design consists of the following submodels:  

Fitness: Following Mateo et al. (2017a), fitness is sex-specific since eels have different life 

history strategies. Female fitness is assumed to be a trade-off between length-at-silvering, a 

proxy of fecundity, and survival since females are thought to follow a size maximizing 

strategy (Davey and Jellyman, 2005). Therefore, female fitness is defined by the probability 
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of surviving until length-at-silvering and fecundity. Fecundity is calculated using an 

allometric relationship, if individual i is a female, then  

(1) 




 b)x,i(La+a=)i(fecundity s1  

a1, a and b are the parameters to relate individual fecundity and female length-at-silvering  

(Melià et al., 2006b; Andrello et al., 2011). Then, the fitness (Drouineau et al., 2014) of the 

individual i is 

(2)       

 
 xi,K

t,xi,M

xi,LL
gLL

xi,Lsfecundity=t,xi,f
s

















  

With i,x,  the individual female fitness in habitat x, the asymptotic length, Lg is the 

length at recruitment, and 
i,x,

i,x
 is the ratio of natural mortality to growth rate. 

On the other hand, males adopt a time minimizing strategy, in which fitness does not depend 

on size but only in the probability to survive to a length that ensure successful migration 

(Helfman et al., 1987). Consequently, male fitness is defined as the probability of surviving 

until a length-at-silvering multiplied by the male fertility f(i), as an expectation of eggs to 

rescale male fitness relatively to female fitness (Mateo et al., 2017a):  

(3)      

 
 xi,K

t,xi,M

xi,LL
gLL

if=xi,m
s

















  

Larvae dispersion and survival: During the oceanic journey, the number of larvae distributed 

from the spawning area to the river catchments followed a multinomial probability. 

Bonhommeau et al. (2009) estimated a survival rate of larval drift based on a steady-state 

hypothesis in which two eggs per female should survive and reproduce successfully. On it, 

mortality rate of Mdrift=3.8 year-1 was estimated in 21 months of larval drift and a continental 

mortality rate of Mref = 0.14 year-1 was estimated for individuals. Using the relationship, we 

computed a probability to survive the larval drift as a function of its duration until reach each 

river basin (dc) and of the intrinsic mortality rate of the individual i: 

(4)  
cd

refM
im

driftM

e=c,i
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Juvenile survival and growth: 

 Scaling of natural mortality and growth rates: 

Each individual is characterized by an intrinsic growth rate. Nevertheless, we have to define 

how the environment modulates this intrinsic growth rate and how the intrinsic mortality rate 

can be defined based on the intrinsic growth rate. 

We assumed that the intrinsic growth rate corresponds to the growth rate that would occur at a 

reference temperature Tref. Using a statistical relationship from Pauly (1980), we can compute 

a corresponding intrinsic natural mortality rate at Tref : 

(5)     






 refTlog.+)i(klog.+)L(log..=)i(mln 1046340106543010279000660  

It is now necessary to find a way to scale natural mortality and growth rates for different 

temperatures. Bevacqua et al. (2011) proposed a formula that scales natural mortality to 

temperature as a function of a reference temperature and a mortality reference. So, we 

assumed that in any habitat x of catchment c, non-density dependent mortality rate is of 

individual i is: 

(6) refTcT
refTcTE

e)i(=m)x,i(M








 

Where refTT
refTTE

e
c

c







 is the Boltzmann-Arrhenius factor with E the activation energy, K the 

Boltzmann constant, Tc the temperature in catchment c and Tref the temperature at a reference 

mass used in MaxEel (the reference temperature is estimated in Rautjärvi Lake, in Evo, 

Finland, which has three river basins. CRU TS 2.1 data set is used (CRU TS pour Climate 

Resarch Units Time-series) (Mitchell and Jones, 2005)). 

We then compute back a growth rate, using again the Pauly relationship: 

(7) x)cT(log.)L(log..))x,i(M(log
.

)ln(
)x,i(K 






  1046340102790006601065430

10
 

With νx =1 in downstream habitat (1st cell of a catchment), and νx = 0.5 in upstream habitat 

(2nd cell of a catchment) since growth is faster in brackish environment than in freshwater 

habitats as observed by (Cairns et al., 2009a).  
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 Survival during the continental stage: 

At each time step until silvering, an individual i in habitat x has a probability to survive equals 

to )t,x,i(Me , with   )t,x(Nx,iM)t,x,i(M   assuming a density-dependent mortality and 

N(x,t) the number of individuals in habitat x at time t. 

 Growth during the continental stage: 

Growth was represented by a von Bertalanffy function (De Leo and Gatto, 1995): 

(8)         




  xi,Ket,xi,LLt,xi,L=t,xi,L 111  

Where L(t, i, x) was the length at time t and L∞ and K(i, x) are the von Bertalanffy parameters 

for individual i in position x of the river catchment. Growth continues until individual reaches 

the length-at-silvering or till its death. 

Sex-determination and habitat selection: once upon arrival in a catchment c, each individual i 

turns into male or female and select a habitat (first of second cell of the catchment) according 

to the following norm: the potential fitness is computed in each habitat and for each gender 

(equations 2, 3); the individual determines the gender and migrates to the habitat of maximum 

potential fitness. The fitness computation corresponds to the maximization of expected fitness 

given current conditions of densities in each habitat. 

Silvering: Silvering corresponds to the beginning of the maturation process and of the 

seaward migration towards the spawning area. It occurs at a variable length known as length-

at-silvering. This process is modelled using reaction norms of length-at-silvering for females 

and at a constant length for males.  

For females, the reaction norm describes how length-at-silvering varies according to 

environmental conditions. Since individual fitness varies as a function of growth rate (which 

depends on intrinsic growth rate and on temperature) and mortality rate (which depends on 

temperature, density-dependence and intrinsic growth rate), we assume that females length-at-

silvering is a linear function of the ratio M(i,x,t)/K(i,x). So an individual i silvers at time t if: 

(9)
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the right part of the female equation corresponds to a line. We choose by convention an 

intercept )(ils  which would correspond to the length-at-silvering at Tref in brackish water (at 

Tref, M(i,x,t)=m(i) and K(i,x)=k(i) according to equations 5 and 6) in an empty habitat. 

Adult migration: Following Bonhommeau et al. (2009), we assumed that each individual has 

a probability η=0.3 to achieve the reproduction migration successfully. 

Reproduction:  

 Number of offspring and cost of phenotypic plasticity: 

The number of offspring produced by a female is theoretically equal to its fecundity. 

However, their plasticity implies both maintenance costs (i.e. costs to maintain all the sensory 

and regulatory systems) and production costs (i.e. expenses to produce a given phenotype) 

(Ernande and Dieckmann, 2004), that should be accounted. Since phenotypic cost 

corresponds to an energetic expense, this energy is no longer available to produce offspring. 

Therefore, we assumed that phenotypic plasticity costs decrease the number of offspring. We 

do not account any costs for males: this is probably a simplifying assumption but we consider 

that they lose their plasticity in very early stages (during sex-determination) and do not have 

necessarily to produce and maintain dedicated sensory and regulatory systems. 

Following Ernande and Diekmann (2004), the cost of phenotypic plasticity,  is defined by 

the product of a constant intensity of cost (c) (expressed in terms of ovocytes), and the sum of 

maintenance and production components that depend on the difference between the expressed 

reaction norm of an individual and a reaction norm without plasticity, i.e. cost-free reaction 

norm ( ): 

(10)    
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21




ls

lsiLs
+lsc=)x,i(C   

lsα² is the slope of the reaction norms, therefore it measures the intensity of the potential 

phenotypic plasticity and corresponds to maintenance costs. The second term measures the 

effective difference of length-at-silvering and the length-at-silvering that would occur at Tref. 

Therefore it measures a production cost. Parameter ω makes the balance between production 

and maintenance costs.  

Then each female produces a number of offspring equals to its fecundity(Ls(i)) - C(i,x)  

rounded to the nearest integer. If the total number of offspring (sum over all silver females) is 
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greater than Rmax, we sample Rmax offspring (without replacement) to mimic a hockey-stick 

stock-recruitment relationship.  

 Genetic code and transmission (or genetic inheritance): 

Four traits have a genetic basis and consequently, can be partially transmitted to offspring: 

intrinsic growth rate k(i), fertility f(i), slope lsα(i) and intercept lsμ(i) of the female length-at-

silvering reaction norm. Each offspring inherits traits from its mother and from a “father” 

randomly sampled within the pool of males. 

We followed the approach of (Dunlop et al., 2009) to model the transmission of heritable 

traits. Trait inheritance is based on quantitative genetics theory: most of life-history traits are 

considered as polygenic quantitative characters (i.e. determined by many loci). An offspring 

inherits the genetic value from its parents: in a codominance system for a given trait, the 

genetic value of the offspring is the average of its parents’ genetic values plus a random noise 

to account for a noise due to other loci of minor importance (figure 4.4). For example, for the 

intrinsic growth rate, an offspring u of a father i and a mother j receives:  

(11)  
   

    










gk,u
gkθu

gkθ+
jgk+igk

=ugk 0Normal~       with
2

 

Then, the intrinsic growth rate is calculated by adding a random noise to account for 

undirected effect of environment: 

(12)          k,ukθukθugk=uk 1Normal~       with   



Towards a life cycle model for eels to explore the emergence of adaptive mechanisms - 92 
 
 

 

Figure 4-4. Transmission of genetic value of growth trait (kg) from parents (i, j) to its offspring (u). 

The phenotypic variance of a trait is decomposed into additive genetic and environmental 

variance: 

(13) 222
k+

gk=Pkσ   

The corresponding narrow-sense heritability1 hk
2 is defined by the ratio of these additive 

genetic and phenotypic variances (explaining how much of the phenotypic variance is 

explained by the additive genetic variance).  

(14) 222
Pkσ/

gk=kh   

Based on the (Carlson and Seamons, 2008), the heritability is fixed to 0.2 for life history traits 

associated with fitness in natural populations, so if we set the genetic variance, the 

environmental variance can be derived.  

                                                 
1 Making difference between “broad-sense heritability”, which achieves the proportion of phenotypic variation 

due to genetic variation that may include effects of dominance and epistasis, and “narrow-sense heritability” that 

explains only the proportion of genetic variation due to additive genetic values (Wray et al., 2008).  
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4.4. Discussion 

4.4.1. MaxEel: towards a demo-genetic model 

Vollestad (1992) highlighted geographic variations in length-at-silvering of the European eel 

due to phenotypic plasticity. Building on this observation, this exercise explored the 

conditions that would favor adaptive phenotypic plasticity. The results showed that adaptive 

phenotypic plasticity is optimal with extreme ecological conditions: i.e. highest density-

dependence intensity, more larvae distributed into the worst habitat, and strongest thermal 

contrast among river basins. This is consistent with results of (Ernande and Dieckmann, 2004) 

who showed that plasticity is especially adapted  when environments are more extremes in 

terms of intrinsic carrying capacity. Regarding plasticity costs, these results also illustrated 

the trade-off between fitness gains that arise from phenotypic plasticity and associated 

maintenance and production costs. 

As mentioned earlier, the results showed that strong density-dependent mortality favors 

phenotypic plasticity. In this exercise, phenotypic plasticity was still selected in a situation 

without density-dependence but with a limited magnitude. In a context of a depleted 

population, density-dependant mortality decreases. Therefore, the results suggest that the 

plasticity is not necessarily a maladaptation in a context of depleted population, but that its 

magnitude is not maximal anymore. In other words, the plasticity selected in conditions with 

high abundance is too strong when the number of individuals decreases as it, generates 

excessive costs. However, density plays an important role in others traits and, the costs and 

trade-offs of phenotypic plasticity are not well known, which impairs our ability to derive the 

cost/benefit ratio. Nevertheless, the magnitude of phenotypic plasticity may not be optimal in 

the current conditions, it may be adaptive again if the population recovers, and is an asset to 

adapt to the rapid changes caused by global change. 

4.4.2. Our demo-genetic model: a work in progress 

In this chapter, we presented a demo-genetic life cycle model for eels. This is clearly a work 

in progress: the model has not been implemented yet. So, we were not able to explore it to 

derive first results. Consequently, our ODD should be seen as a first prototype of the model, 

which will most likely be modified when first results will be available. However, it is 

important to present this prototype in this chapter for various reasons. First, the model 

summarizes all our understanding on the functioning of the eel population, especially on its 
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adaptation to environmental heterogeneity. It is based on our understanding of adaptation 

obtained with GenEveel, which combines it with population dynamics at the distribution scale 

and puts it into an evolutionary perspective by completing the life cycle and allowing multi-

generations simulations. Second, presenting the model allows us to present all the perspective 

of our work, especially by discussing how the model may be used to explore different 

questions about the effect of anthropogenic pressures, population resilience, or conservation 

measures. 

4.4.2.1. Could ecotypes arise from a quantitative 

genetic model?  

In the new model, we included a genetic basis for growth. Similarly to MaxEel, the aim is to 

explore the conditions that favor the emergence of phenotypic plasticity and genetic 

polymorphism. Because of the inheritance system and the panmixia, we expect that the 

distribution of growth rate would be normal at the beginning of the simulations, and evolving 

over generations but remaining symmetric.  However, the spatially structured environments 

defined in the model can act as spatially variable selective pressures. Thus, the duration of 

larval drift affects the larval survival differently depending on the intrinsic mortality rates of 

the individuals, the temperature of river catchments lead to different growth and mortality 

rates among individuals, salinity differences modify the gradient of growth rate within the 

river and biotic interactions such as resources competition leads to density-dependent 

mortalities. The expected results would be that specific values of traits would be favored in 

specific habitats. Since phenotypes have partly a genetic basis, we can expect an association 

between intrinsic growth rates and habitats. In such association, environmental conditions 

would act as filters that separate individuals into genetically homogenous clusters, generating 

ecotypes (figure 4-5). It would be interesting to check whether the model mimics the results 

of Côté et al. (2015) and Pavey et al. (2015). In them, genetic differences correlated with the 

environments lead to clusters of growth depending on sex, i.e. fast growing males and more 

variable female growth depending on environments (Côté et al., 2015). Additionally, we 

would be able to check the emergence of ecotypes proposed by Pavey et al. (2015) in which 

individuals reared in freshwater tend to grow slowly and become females, compared with 

those of brackish waters. In any case, validating these patterns of geographic variation in 

growth, depending on sex, would confirm that spatially varying selection and genetically 

dependent habitat selection are plausible to explain observed ecotypes, and complementary to 

the phenotypic plasticity known for this species. 
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Figure 4-5. Schematic representation of how spatially variable selection and genetically based habitat 

selection could act in each generation resulting in genetic differences among habitat, i.e. ecotypes. 

4.4.2.2. Do the anthropogenic pressures induce 

selection for length-at-silvering or ecotypes? 

The first use of the model would be to update results from chapter three which intends to 

explore the effects of anthropogenic pressures on eel population and their consequences on 

adaptive response of plastic traits. Many studies have revealed changes in life history traits, 

such as growth rates, age and size at maturity, and reproductive effort in harvested 

populations, which demonstrates that the strong and size-selective mortalities imposed by 

fisheries induce evolution in these traits (Edeline, 2007; Swain et al., 2007; Enberg et al., 

2012). Since all life stages of eel are exploited, it would be interesting to compare the effects 

of glass eels, yellow eels and silver eels fisheries. Glass-eels are generally located in 

downstream catchments and thus do not discriminate specific traits. In the other hand, yellow 
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eels fisheries effects probably depend on their location within the catchments while silver eels 

fisheries tends to select large silver eels. Bevacqua et al. (2012) have already studied yellow 

and silver eel fisheries using field data. They showed that fast growing yellow eels are 

removed because are preferentially targeted by fishermen. However, they suggested that 

fisheries induced evolution is difficult to confirm in the European eel, due to panmixia. It 

would be interesting to account for these fisheries in our model to compare with these results. 

Bevacqua et al. (2012) did not observe significant induced selection due to silver eel fisheries. 

Nevertheless, the sampling methods did not allow to have a real post-fishery sample and there 

were mostly males in the sampling sites (Mediterranean lagoons) limiting length-at-silvering 

contrasts. However, the largest individuals are probably more harvested than small silver eels 

in most silver eel fisheries. Such a selection would decrease the benefit of large length-at-

silvering and may lead to a maladaptation or a homogenization of phenotype, decreasing 

diversity and losing plasticity. These type of questions are relevant for fisheries and also for 

all anthropogenic pressures. The model can be used to explore which anthropogenic pressures 

are more likely to reduce the species genetic and phenotypic diversity and the consequences 

on species resilience. 

4.4.2.3. Are adaptive mechanisms sources of portfolio 

and storage effects? 

The capacity of eels to settle in a wide range of habitats can be viewed as a portfolio effect 

because the diversity of habitats smooths out environmental variations in each single habitat 

(Secor, 2015a). Using a model, (ICES, 2009) measured the portfolio effect in eel population 

and showed that the use of fresh and saltwater habitats have a great influence on the 

population dynamics and stability. It would be interesting to revisit this exercise with our 

model, to check whether the use of multiple river basins and multiple habitats within each 

basin increase the resilience of the population against environmental variations. Carrying out 

this exercise at the species distribution scale would contribute to study the effect of climatic 

change at large scale and to provide spatial scale insights to develop appropriate management 

and conservation actions.  

The storage effect refers a situation in complex life cycle in which a long and relatively stable 

stage buffers rapid variations of survival in a short stage (Secor, 2015a). For eels, the growth 

stage, especially in upstream habitat can be source of storage effect by buffering variations in 

recruitment (ICES, 2009). In view of this, we can use our model to study how the population 

responds to periods of unfavorable recruitments if upstream habitats are available and in if 
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these upstream habitats are absent or not.  We expect that unfavorable conditions would be 

buffered by the overlapping generations, which depend on the diversity of maturation rates. In 

our model, these maturation rates are related to growth during the continental phase, growth 

being under the joint influence of genetic and environmental conditions.  

4.4.2.4. How does the diversity loss affect eel 

population? 

Storage and portfolio effects are based on individual diversity that allows diversity of growth 

habitat use. Diversity is crucial for temperate eels to ensure population persistence, stability 

and resilience (Secor, 2015b).  In view of this, it would be interesting to explore how a 

decrease in diversity, for example as a result of anthropogenic pressures, affects the 

population. For example, we would like to explore the consequences of a reduction of genetic 

diversity. In such a case, if habitats remain heterogeneous, we expect that phenotypic 

plasticity would become even more important. However, some associations between 

genotypes and sex-determination or length-at-silvering, result in a reduction of genetic 

diversity that would produce a modification of the population sex-ratio and of the population 

length-at-silvering, and consequently on the overall fecundity. It would likely reduce the 

storage and portfolio effects and thus reduce the population resilience and stability.  

The model can also be used to explore the effect of habitat homogenization, which can be the 

result of human induced ecosystem fragmentation of habitat destruction. In such situation, we 

expect a reduction of genetic diversity and of plasticity and that individual would 

progressively become more and more adapted to the habitat, but at risk of extinction if 

environmental conditions change.  

4.4.2.5. Future applications: ecological and 

evolutionary consequences of restocking 

In view of worldwide eel decline, restocking or translocation of early eel life from high to low 

recruitment areas has been proposed as a conservation measure for eel populations 

conservation (Dekker and Beaulaton, 2016). Nevertheless, the efficiency of these programs 

remains unclear. For example, a large restocking program in the Saint-Lawrence River have 

yielded unexpected outcomes. It has resulted in the production of small silver eels in the lake 

Ontario which used to produce only very large silver eels (Verreault et al., 2010). More 

generally, stocked eels tended to display life history traits comparable to those observed in 
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their capture site than traits of the areas in which they were stocked (Stacey et al., 2015). This 

is probably because the adaptive mechanisms to environmental heterogeneity were not 

considered at all in the restocking programs. In this context, our demo-genetic model provides 

a useful tool to explore the consequences of this practice. Several questions could be 

addressed: (i) what are the consequences of moving individuals towards unsuitable habitats in 

terms of abundance and of life history traits? (ii) Should restocking program target specific 

types of individuals? (iii) Is it possible to propose restocking strategies that do not modify life 

history traits? These questions can be explored by simulating the transfer of a fix amount of 

individuals from a basin to a given habitat. This exercise will disrupt the genotype dependent 

habitat selection within river basin and the spatially variable selection that occurs during the 

larval drift in cases of restocking between distinct river basins. 
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Take-home messages  

 In which conditions evolutionary benefits of phenotypic plasticity surpass related 

costs? 

The intensity of costs had the strongest effect on the emergence of phenotypic plasticity. The 

intensity of the density dependence was the second factor favoring plasticity. Reaction norms 

were more plastic with production costs than maintenance costs. The degree of heterogeneity 

between river basins and the distribution of the larvae had less important effects on the 

adaptive value of phenotypic plasticity, but by their own, but can have significant influence 

through interactions. 

 The suboptimal situation of adaptive phenotypic plasticity in the context of depleted 

population: 

In absence of density dependence, such as in depleted population, phenotypic plasticity is still 

present, but very much attenuated. This shows that plasticity still has an evolutionary 

advantage, but is not an optimal situation. 

 The demo-genetic model a promising operating model: 

The model could not be used throughout this thesis. However, the model summarizes the 

knowledge of the functioning of the eel population acquired in this thesis. It is based on the 

understanding of the adaptation obtained in GenEveel, combined with the population 

dynamics at the distribution scale, providing an evolutionary perspective. 

To go further 

The prototype of the demo-genetic model represents a tool with many applications: assess the 

influence of global change in eel populations, display how the conservation of genetic 

diversity and the range of habitats are crucial for the species viability, search conservation 

strategies such as restocking programs and explore the anthropogenic pressures as selective 

pressures for life history traits of eels. 

  



 

Chapter 5:  

 Discussion and perspectives 
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5.1. The major contributions of this thesis 

Despite the great interest for temperate eels and the vast scientific literature dealing with 

particular aspects and population dynamics of these species, the progress about how eels cope 

with environmental heterogeneity have been developed in recent years. Many studies have 

documented correlations between one specific life-history trait and environmental gradients, 

such as length-at-silvering, sex ratio, and effects of density on growth. Recently, other 

experimental studies highlighted about the genetic basis of geographic variation of life history 

traits such as growth and the correlation between environmental conditions and gene 

expression. However, few studies have analyzed all these observations simultaneously, in 

order to find a common adaptive meaning. 

This PhD brings together all the available knowledge about life history of eels that comes 

from different research fields, in order to analyze vital features of eel during the continental 

phase. Using models, we gave a meaning to all these disparate observations. We were able to 

propose an overall scheme of the mechanisms involved in the adaptation to environmental 

heterogeneity and to provide new insights to management.  

More specifically in chapter two, we explored how genetic polymorphism in intrinsic growth 

rate might result in and how phenotypic plasticity can cause adaptations to environmental 

heterogeneity. This chapter provides new insights on the discrepancy of life strategies 

between males and females, suggesting that it could be caused by genetic differences in 

growth. Moreover, this work shows how density and environmental factors determine 

ecological patterns.  

Building on this, chapter three assesses the direct and indirect impact of several anthropogenic 

pressures on eel escapement. Since the model is not calibrated on real data, it is impossible to 

derive obvious management recommendations with this work. However results clearly show 

that the impact of management pressures can have unpredictable consequences on escapement 

because of the complex system of adaptation of the species. In view of this, it suggests that 

management should not focus only on mortality rates but also consider the consequences of 

anthropogenic activities on the diversity of eel traits and habitat selection. 

5.2. Perspectives: Applications of demo-genetic model 

Building on previous results, chapter four proposes a model that goes one step further and 

summarizes our current understanding of this enigmatic species. By predicting the effects of 
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anthropogenic pressures on eels, such model is a relevant tool to assess the influence of global 

change on eel populations and inform management and conservation policies. This model is 

also useful to illustrate how the preservation of both genetic and habitat diversity is crucial for 

the viability of the species. It is a good candidate to be an operating model to explore the 

relevance of management strategies. The latter perspective includes restocking that is one of 

the main management measure used to restore eel populations (Wickström and Sjöberg, 2014; 

Dekker and Beaulaton, 2016). The practice consists in translocating individuals of early life 

stages from natural habitats with high abundance to others, more or less distant habitats where 

survival is expected to be better. Stacey et al. (2015) compared American eels stocked into 

the St. Lawrence River basin originating from donor areas 200km far away, with those of 

natural recruits. Their results showed that stocked females experienced faster growth and were 

significantly larger than the natural recruits, and similar results were obtained on older ages of 

European eels in Lithuania (Lin et al., 2007). An explanation could be that environmentally 

induced plasticity on its own is not enough to explain the observed differences in life history 

traits and demographic attributes, and that those differences may also arise from different 

genes expression (Stacey et al., 2015). This could be the case if natural selection operates 

early, as the larval drift, through differential mortality for slow and fast-growing individuals. 

This would lead to early spatially variable selection and a “non-equivalence” of glass eels 

among river basins. In view of the lack of knowledge about these consequences on population 

dynamics, the relevance of restocking is strongly questioned and it should be applied with 

caution (Stacey et al., 2015). The examples mentioned before demonstrate why it is crucial to 

consider adaptive mechanisms to assess restocking as measure, and more generally, in the 

management of eel populations. The model that we propose can be a valuable exploration 

tool, especially when it will be calibrated with real data. 

The model can also be used to explore the risk of human induced selection of life history 

traits. Many studies have used similar models to explore fishing-induced changes on traits 

(Dunlop et al., 2007; Wang and Höök, 2009; Eikeset et al., 2016). Their results have shown 

possible altered growth rates, earlier maturation at smaller size and high reproductive effort in 

harvested populations, which demonstrates that the strong and size-selective mortalities 

imposed by fishing induce evolution in life history traits. In accordance to the different 

anthropogenic pressures that impact temperate eels, it would be interesting to adapt the model 

for some of them, as we did in chapter two. Further research of the role of anthropogenic 

pressures as selective pressures will allow to analyze whether slow-growing individuals are 

still preserved by natural and artificial selection (figure 5-1). Based on (Reed et al., 2011; 
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Ayllón et al., 2016), the evolution of life-history traits and population abundance under a 

range of climate change scenarios can be also explored, assuming a continuous linear increase 

in temperature through time. 

Figure 5-1. Scheme of the thesis outline. 

The calibration phase to fit the model on real data represents a challenging task if the aim is to 

use these models as tools to support decision-making and implement management. 

Modifications of the model may be necessary to achieve a successful calibration. For 

example, the model assumes that fishes are omniscient (perfect knowledge of the entire river 

catchment) and omnipotent (they are able to migrate to any part of the catchment without any 

delay). This is clearly untrue and probably additional assumptions will be required to fit field 

data. However, before modifying the model, the first step would be to collect enough data on 

available habitats and life history traits. Regarding habitats, it would be needed data on the 

amount of available habitats (freshwater and brackish) and on temperature within habitats. 

Regarding life-history traits, densities per habitats are available because of electrofishing data. 

However, data on sex ratio and length-at-silvering are not as widely available. Perhaps, recent 

findings on genetic basis for head shape, possibly correlated to intrinsic growth rates (De 

Meyer et al., 2017), would facilitate data collection since it is more easily measurable than 

sex or genotype. A second step would be to choose an appropriate spatial scale. If working at 

the European scale, it would be necessary to simplify the river basin scale. A possible solution 

would be to define a few geographic zones in which it is assumed that environmental and 

biologic features are similar. Each zone would correspond to a unique basin that would be 

subdivided into two habitats (brackish and freshwater). For example, it would be possible to 
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use the zones defined in the GEREM model (Bornarel et al., in press): Bay of Biscay, Iberian 

coast, Mediterranean Sea, North Sea, British Isles and English/Bristol Channel. These zones 

were defined because of similar oceanographic features and similar glass-eel recruitments 

trends. GEREM would provide time-series of recruitments that can be used to calibrate the 

larval drift and, more specifically, the distribution of recruitment among zones. Fitting the 

model at the European scale is an ambitious task and probably not realistic in the short term. 

A more reasonable solution would be to apply the model we presented in chapter three 

(GenEveel) on a single river basin. The Garonne-Dordogne river basin would be a relevant 

basin to work on because all anthropogenic pressures are present on it and datasets are largely 

available. Though less ambitious, such an exercise would already be relevant to management 

since river catchments constitute independent units during the continental stage and 

management measures are often prioritized at this spatial scale. 

5.3. Preserving eel diversity: need for a change of paradigm in 

conservation?  

Eels’ adaptation capacity is based on the combination of genetic diversity and phenotypic 

plasticity that are source of life history traits diversity and allow eels to use diverse habitats. 

As such, eels are also interesting examples of how diversity might contribute to population 

resilience and stability. The environmental conditions during the oceanic phase have been a 

major driver of contemporary population dynamic and they have probably contributed to 

shape the evolution of eels (Kettle et al., 2008; Munk et al., 2010; Baltazar-Soares, 2014). 

However, the large variability of habitat use during the continental phase should not be 

neglected. Eels that settle in freshwater habitats tend to become females, grow slowly and 

mature older than in others habitats, leading to slow but smoother population dynamics. 

Conversely, eels in brackish habitats tend to grow faster and mature earlier, leading to fast but 

more erratic population dynamics. Therefore, the great variation of responses to 

environmental conditions during the continental phase suggests that management and 

conservation measures should focus on the wide range of habitats; from brackish and 

saltwater habitats where the number of recruits is more important and the dynamics fast to 

freshwater habitats where dynamics is slower but can counterbalance fast oscillations of 

oceanic and brackish habitats conditions (Secor, 2015a). Furthermore, age diversity and 

spatial structure improve population resilience to environmental and anthropogenic pressures. 

The diversity in age structure of silver eels that emigrate from different continental growth 

conditions and the overlapping generations is source of the storage effect, while the 
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multiplicity of growth habitats is source of a portfolio effect (ICES, 2009; Secor, 2015a). 

Consequently, the use of diverse habitats is required for eel populations. Therefore, the 

protection of the genetic diversity and all mechanisms involved in phenotypic diversity are 

crucial for eels.  

In view of that, management strategies must consider the amount of change that these species 

can absorb, i.e. identify the population resilience, and anticipate the changes in environmental 

and anthropogenic conditions that impair this resilience (West et al., 2009). For that, 

ecological modelling studies are useful tools to explore the genetic and the plastic life history 

adaptations to new environments. It can also be used to explore, scenarios on management 

consequences that supporting environmental decision-making. 

5.4. Why temperate eels represent a model to study adaptation in 

the current context of global change? 

Most species are threatened by the unprecedented rate of change induced by global change. In 

this context, is needed to enhance our knowledge on the capacity of species to adaptation and 

on their adaptation speed to guide management strategies and conservation policies. In recent 

years, many studies have addressed this subject, focusing on evolutionary mechanisms, and 

the advantages of selection versus phenotypic plasticity on the rate of adaptation. This work 

contributes to this debate using eels as an example. But, why eels are illustrative model to 

explore such question? 

Temperate eels are interesting species from an ecological and evolutionary point of view. 

Panmixia and passive larval drift are the two major constraints to adapt in heterogeneous 

environments. Meanwhile, a large diversity in life history traits such as growth and length-at-

silvering, and in life history strategies such as migratory behaviour, has been observed. This is 

the result of the amazing adaptation capacity of eels that is based on the combination of 

adaptive phenotypic plasticity and genetic ecotypes that are shuffled at each generation. This 

original combination makes eels a very good example to study the relative advantages of 

phenotypic plasticity and genetic evolution in a context of global change. Because of its 

complex life-cycle, eels are good candidates to study whether panmixia and large distribution 

arears hinder species adaptation to global and climate change. In addition, because of the 

strong density dependence and the current decline of the population, eels also raise question 

about the maladaptation of phenotypic plasticity in depleted populations.  
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These species are a perfect candidate to research the effects of the global change components 

and their synergies. We have seen in the introduction that there are five main components of 

global change: (i) global warming and modifications of oceanic conditions, (ii) fragmentation 

of ecosystem and habitat loss, (iii) over-exploitation of natural resources, (iv) biodiversity 

modifications and biological invasions and (iv) contamination and increase of nutrient loads. 

Since the radiation of the genus Anguilla, about 20 million years ago (Lin et al., 2001), 

temperate eels have shown an incredible adaptation capacity: they survived to glacial periods 

and continental drift (which separated the spawning ground from growth habitats in 

continental waters), occupy a wide variety of habitats (saltwater, brackish water and 

freshwater) and have adapted to them even without choosing the habitat they will grow on 

(due to the passive larval drift). Why then in the brief period of 30 years eel populations have 

declined dramatically? Five main causes have been proposed, and each cause corresponds to 

one of the components of global change: 

1. Climate change and oceanic modifications affect eel populations in two ways: a decrease 

in prey quantity and quality for leptocephali larvae in the spawning grounds hindering the 

larval survival (Bonhommeau et al., 2008; Miller et al., 2016), and the negative effects 

on the larval transport of the Japanese eels (Kim et al., 2007; Zenimoto et al., 2009). 

2. Because of fragmentation and habitat loss mostly due to dam construction that has been 

intensified between the 1950s and the 1970s (World Commission on Dams, 2000),  

European eel has lost 50-80% of its habitat (Feunteun, 2002) while for the American eel, 

the Saint-Lawrence habitat has been reduced to 40-50% (Verreault et al., 2004). 

Furthermore, hydroelectric turbines from dams induce mortality in silver eels when they 

migrate downstream to leave continental waters. 

3. Fisheries harvest all life stages of eels. The demand for European glass eels for Asian 

aquaculture exploded in the 1970s and lead to a rapid increase in export price – about 

€500 per kg (Ringuet et al., 2002; Briand et al., 2007) – and therefore a rapid increase in 

fishing effort and landings. As a consequence, amazing exploitation rates were estimated 

at different river basins (Aprahamian et al., 2007; Briand et al., 2015; Drouineau et al., 

2016). For example, in the Vilaine River (France) 95% of the glass eel recruitment used 

to be harvested (Briand et al., 2005). Such example shows how glass eels fisheries have 

drastically changed since the second half of the 20th century. 

4. The natural parasite of Japanese glass eels, Anguillicoides crassus, was introduced in 

Europe. The parasite affects European eels and has colonized most continental water 

habitats during the 1970s-1980s. It was also introduced in Northern America and has 
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quickly spread in the United States and Canada (Barse and Secor, 1999; Hein et al., 

2014). This parasite alters the swim bladder of the fish that impairs the capacity of eels to 

complete the spawning migration (Kirk, 2003). 

5. Eels are especially impacted by contamination. Their high trophic position makes them 

subject to biomagnification of many compounds in trophic networks. Moreover, they are 

especially subject to bioaccumulation because of their high lipid storage that is required 

to achieve the spawning migration (they do not feed during the journey). This leads to an 

alter lipid metabolism that can impair migration success and pollutants can potentially be 

transferred to the offspring (Geeraerts and Belpaire, 2010). 

Consequently, by working on eels, is possible to explore the effect of each component of the 

global change in species and its potential role as selective pressures, altering life history traits 

and ecotypes in different ways (figure 5-2). Furthermore, it is also possible to analyze the 

synergies between components and how they interfere with species adaptation capacities. 

Typically, the demo-genetic model proposed in this thesis can be used to explore such 

questions. 

 

Figure 5-2. Adaptation mechanisms to environmental heterogeneity. A red arrow means 

“unfavorable”, a green arrow means “favorable”. A blue arrow means a relationship which is either 

favorable” or “unfavorable” depending on situations. (Drouineau et al., submitted). 
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Appendix 

Supplementary chapter 2 

Table S2.1. Results of the 256 combinations. The signs +/- refer to the modalities of the parameters groups. The last five columns represent the 

spatial patterns. An ascendant arrows stands for positive Mann-Kendall tau value (increasing trend from downstream to upstream). Conversely, a 

descendant arrow stands for a negative Mann-Kendall tau value. 

 
 

N 
fertility, 

Lsm 
Kfast(i, 1), 
Mfast(i, 1) 

Kslow(i, 1), 
Mslow(i, 1) 

propK α n b L∞ Lg 
rK, 
rM 

γK, 
γM 

Abundance 
Mean length 
at silvering 

Sex ratio 
Ratio of fast 

growers 
Mean realized 

growth rate 
1 - - - + + + + + - - + + ↘ ↗ ↗ ↘ ↘ 

2 + - - + - + + + - + + + ↘ ↗ ↗ ↘ ↘ 

3 + - - + + - + + - + + - ↘ ↗ ↗ ↘ ↘ 

4 - - - + - - + + - - + - ↘ ↗ ↗ ↘ ↘ 

5 + - + + + - - + - - + - ↘ ↗ ↗ ↘ ↘ 

6 + - - + - - - + - + - - ↘ ↗ ↗ ↘ ↘ 

7 - - - + - + + - + + + + ↘ ↗ ↗ ↘ ↘ 

8 - - + + - - - + - + + - ↘ ↗ ↗ ↘ ↘ 

9 - - + + + + - + - + + + ↘ ↗ ↗ ↘ ↘ 

10 - - + + - + + + - + - + ↘ ↗ ↗ ↘ ↘ 

11 + - + + - + - + - - + + ↘ ↗ ↗ ↘ ↘ 

12 - - - + - + - + - - - + ↘ ↗ ↗ ↘ ↘ 

13 + - + + - - + + - - - - ↘ ↗ ↗ ↘ ↘ 

14 - - - + - - - - + + - - ↘ ↗ ↘ ↘ ↘ 

15 + + + - - - + + - - + - ↘ ↗ ↘ ↘ ↘ 

16 + - - - - + + - + + - - ↘ ↗ ↘ ↘ ↘ 

17 - - - - + - + + - + - + ↘ ↗ ↘ ↘ ↘ 

18 + + + + + - - + + + - - ↘ ↗ ↘ ↘ ↘ 

19 + - - - - - - - + + + + ↘ ↗ ↘ ↘ ↘ 

20 - + + + + - + + + - + - ↘ ↗ ↘ ↘ ↘ 

21 + - - - - - + + - - - + ↘ ↗ ↘ ↘ ↘ 
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 N 
fertility, 

Lsm 
Kfast(i, 1), 
Mfast(i, 1) 

Kslow(i, 1), 
Mslow(i, 1) 

propK α n b L∞ Lg 
rK, 
rM 

γK, 
γM 

Abundance 
Mean length 
at silvering 

Sex ratio 
Ratio of fast 

growers 
Mean realized 

growth rate 
22 + - - + - - + - + - + - ↘ ↗ ↘ ↘ ↘ 

23 - - - - - - + - + - - + ↘ ↗ ↘ ↘ ↘ 

24 + - + - + - + + - + + + ↘ ↗ ↘ ↘ ↘ 

25 + + - + - - - + + - + - ↘ ↗ ↘ ↘ ↘ 

26 + - + - - - + + + + - - ↘ ↗ ↘ ↘ ↘ 

27 - - + - - - + + - - + + ↘ ↗ ↘ ↘ ↘ 

28 - - - + + - + - + + + - ↘ ↗ ↘ ↘ ↘ 

29 + + + - + - - + - - - - ↘ ↗ ↘ ↘ ↘ 

30 - - + - - - - + + - + - ↘ ↗ ↘ ↘ ↘ 

31 + - + - - + - - + - - - ↘ ↗ ↘ ↘ ↘ 

32 - + - - + - + + + - + + ↘ ↗ ↘ ↘ ↘ 

33 + + + + + - - - + - + + ↘ ↗ ↘ ↘ ↘ 

34 + - + + + + - - + + + + ↘ ↗ ↘ ↘ ↘ 

35 + + - + + - + + + - - - ↘ ↗ ↘ ↘ ↘ 

36 - + + - + - - + + + + + ↘ ↗ ↘ ↘ ↘ 

37 - - - + + - + + + - - + ↘ ↗ ↘ ↘ ↘ 

38 - + + - - - + + + + - + ↘ ↗ ↘ ↘ ↘ 

39 - + - + - - + + + + - - ↘ ↗ ↘ ↘ ↘ 

40 - + - - - - - + + - - + ↘ ↗ ↘ ↘ ↘ 

41 + + + - + - + - + + + - ↘ ↗ ↘ ↘ ↘ 

42 - + - + + - - + + + + - ↘ ↗ ↘ ↘ ↘ 

43 + - + + - - - + + - - + ↘ ↗ ↘ ↘ ↘ 

44 - - + - - + + - + + + - ↘ ↗ ↘ ↘ ↘ 

45 + - + + - - - - + + + - ↘ ↗ ↘ ↘ ↘ 

46 + - + + + - + + + - + + ↘ ↗ ↘ ↘ ↘ 

47 - - - + - - - + + - + + ↘ ↗ ↘ ↘ ↘ 

48 - - + + + - + + - + - - ↘ ↗ ↘ ↘ ↘ 

49 + - - + + - - + + + + + ↘ ↗ ↘ ↘ ↘ 

50 + + - - - + - + + + - - ↘ ↗ ↘ ↘ ↘ 

51 + - - - - - + + - - - + ↘ ↗ ↘ ↘ ↘ 

52 - - + + + - - + + + - + ↘ ↗ ↘ ↘ ↘ 

53 - - - - + - - - + - + + ↘ ↗ ↘ ↘ ↘ 
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 N 
fertility, 

Lsm 
Kfast(i, 1), 
Mfast(i, 1) 

Kslow(i, 1), 
Mslow(i, 1) 

propK α n b L∞ Lg 
rK, 
rM 

γK, 
γM 

Abundance 
Mean length 
at silvering 

Sex ratio 
Ratio of fast 

growers 
Mean realized 

growth rate 
54 - + - - + - + - + + - - ↘ ↗ ↘ ↘ ↘ 

55 - - - - + - - + + + - - ↘ ↗ ↘ ↘ ↘ 

56 - + + - - - - + - + - - ↘ ↗ ↘ ↘ ↘ 

57 - + + - - - + - + - + - ↘ ↗ ↘ ↘ ↘ 

58 - - - - - + - - + - + - ↘ ↗ ↘ ↘ ↘ 

59 + + + - - - - - + + - - ↘ ↗ ↘ ↘ ↘ 

60 - + - - - - + + - - - - ↘ ↗ ↘ ↘ ↘ 

61 - + + - + - - - + - - - ↘ ↗ ↘ ↘ ↘ 

62 + - + - + - - - + - - + ↘ ↗ ↘ ↘ ↘ 

63 + - + - - - + - + - + + ↘ ↗ ↘ ↘ ↘ 

64 + - - - + - + - + + - + ↘ ↗ ↘ ↘ ↘ 

65 - - - - + + + - + - - - ↘ ↗ ↘ ↘ ↘ 

66 + - - + - - + + + + - + ↘ ↗ ↘ ↘ ↘ 

67 - - + - + - - + - - - + ↘ ↗ ↘ ↘ ↘ 

68 - - - + + - - + - - - - ↘ ↗ ↘ ↘ ↘ 

69 - - + - + - + + + - - - ↘ ↗ ↘ ↘ ↘ 

70 - - + - + - + - + + + + ↘ ↗ ↘ ↘ ↘ 

71 + - - - + - + + + - + - ↘ ↗ ↘ ↘ ↘ 

72 - - + - - - - - + + - + ↘ ↗ ↘ ↘ ↘ 

73 - - - - - - + + + + + - ↘ ↗ ↘ ↘ ↘ 

74 + + - - + - - - + - + - ↘ ↗ ↘ ↘ ↘ 

75 + - - - + - - + - - + + ↘ ↗ ↘ ↘ ↘ 

75 - - + + - - + - + - - - ↘ ↗ ↘ ↘ ↘ 

76 - + - - - - - - + + + - ↘ ↗ ↘ ↘ ↘ 

78 + - - - + + - - + + + - ↘ ↗ ↘ ↘ ↘ 

79 + + + - + - + + + - - + ↘ ↗ ↘ ↘ ↘ 

80 - - + - + + - - + + - - ↘ ↗ ↘ ↘ ↘ 

81 - - + + + - - - + - + - ↘ ↗ ↘ ↘ ↘ 

82 - - + + + - - + + + - + ↘ ↗ ↘ ↘ ↘ 

83 + - + + + - + - + + - - ↘ ↗ ↘ ↘ ↘ 

84 + - + - - - - + - + - + ↘ ↗ ↘ ↘ ↘ 

85 + - - + + - - - + - - - ↘ ↗ ↘ ↘ ↘ 
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 N 
fertility, 

Lsm 
Kfast(i, 1), 
Mfast(i, 1) 

Kslow(i, 1), 
Mslow(i, 1) 

propK α n b L∞ Lg 
rK, 
rM 

γK, 
γM 

Abundance 
Mean length 
at silvering 

Sex ratio 
Ratio of fast 

growers 
Mean realized 

growth rate 
86 - + + + - - - + + - - - ↘ ↗ ↘ ↘ ↘ 

87 + + - - - - + + + + + + ↘ ↗ ↘ ↘ ↘ 

88 + - + - + - - + + + + - ↘ ↗ ↘ ↘ ↘ 

89 + + + + - + - - + - + - ↘ ↗ ↘ ↘ ↘ 

90 - - - - - - - + - + + + ↘ ↗ ↘ ↘ ↘ 

91 - + + - + - + + - + + - ↘ ↗ ↘ ↘ ↘ 

92 + + - - - - + - + - - - ↘ ↗ ↘ ↘ ↘ 

93 - - + + - - + + + + + + ↘ ↗ ↘ ↘ ↘ 

94 + + - - + - - + + + - + ↘ ↗ ↘ ↘ ↘ 

95 + + - - + - + + - + - - ↘ ↗ ↘ ↘ ↘ 

96 + + - - - - - + - + + - ↘ ↗ ↘ ↘ ↘ 

97 + - + - + + + - + - + - ↘ ↗ ↘ ↘ ↘ 

98 + + - + + - - + - - - + ↘ ↗ ↘ ↘ ↘ 

99 - + - - + - - + - - + - ↘ ↗ ↘ ↘ ↘ 

100 + - - - - - - + + - - - ↘ ↗ ↘ ↘ ↘ 

101 + + + + - - + + + + + - ↘ ↗ ↘ ↘ ↘ 

102 + - - + + + - + - + - + ↘ ↘ ↘ ↘ ↘ 

103 - + - - + + + + - - - + ↘ ↘ ↘ ↘ ↘ 

104 + + + - - + + - + + + + ↘ ↘ ↘ ↘ ↘ 

105 - + + + + + - - + + + - ↘ ↘ ↘ ↘ ↘ 

106 - + - + + - - - + - - + ↘ ↘ ↘ ↘ ↘ 

107 - + - - + + - - + + + + ↘ ↘ ↘ ↘ ↘ 

108 + + - + - - + + - - + + ↘ ↘ ↘ ↘ ↘ 

109 + + + + + - + + - + - + ↘ ↘ ↘ ↘ ↘ 

110 + + - + - - - - + + - + ↘ ↘ ↘ ↘ ↘ 

111 - + + + - - - - + + + + ↘ ↘ ↘ ↘ ↘ 

112 + + + + + + - + - + + - ↘ ↘ ↘ ↘ ↘ 

113 + - - - - + - + - - + - ↘ ↘ ↘ ↘ ↘ 

114 + + - + + - + - + + + + ↘ ↘ ↘ ↘ ↘ 

115 - + - + + + + - + - + - ↘ ↘ ↘ ↘ ↘ 

116 + + - + - + + - + + + - ↘ ↘ ↘ ↘ ↘ 

117 - - + - - + - + - - - - ↘ ↘ ↘ ↘ ↘ 
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 N 
fertility, 

Lsm 
Kfast(i, 1), 
Mfast(i, 1) 

Kslow(i, 1), 
Mslow(i, 1) 

propK α n b L∞ Lg 
rK, 
rM 

γK, 
γM 

Abundance 
Mean length 
at silvering 

Sex ratio 
Ratio of fast 

growers 
Mean realized 

growth rate 
118 + - - - + + + + - - - - ↘ ↘ ↘ ↘ ↘ 

119 + - - + + + + - + - + + ↘ ↘ ↘ ↘ ↘ 

120 - - - - + + - + - + + - ↘ ↘ ↘ ↘ ↘ 

121 - + - + - - + - + - + + ↘ ↘ ↘ ↘ ↘ 

122 - + + - + + - + - + - + ↘ ↘ ↘ ↘ ↘ 

123 + + - - + + + - + - - + ↘ ↘ ↘ ↘ ↘ 

124 - + - - - + - + - - + + ↘ ↘ ↘ ↘ ↘ 

125 + + + - + + + + - - + + ↘ ↘ ↘ ↘ ↘ 

126 - + - + - + - - + - - - ↘ ↘ ↘ ↘ ↘ 

127 + + - + - + - + - - - - ↘ ↘ ↘ ↘ ↘ 

128 - + + + + - - + - - + + ↘ ↘ ↘ ↘ ↘ 

129 + - + - - + + + - + + - ↘ ↘ ↘ ↘ ↘ 

130 - + - + + - + + - + + + ↘ ↘ ↘ ↘ ↘ 

131 - + + - - + - - + - - + ↘ ↘ ↘ ↘ ↘ 

132 - - + + + + + - + - - + ↘ ↘ ↘ ↘ ↘ 

133 - - - - - + + + - + - - ↘ ↘ ↘ ↘ ↘ 

134 - + + - - + + + - + + + ↘ ↘ ↘ ↘ ↘ 

135 + + + - - - - + + - + + ↘ ↘ ↘ ↘ ↘ 

136 + + + + - - + - + - - + ↘ ↘ ↘ ↘ ↘ 

137 - - + + - + - - + - + + ↘ ↘ ↘ ↘ ↘ 

138 + + - + + + - - + + - - ↘ ↘ ↘ ↘ ↘ 

139 - + + - + + + - + - + + ↘ ↘ ↘ ↘ ↘ 

140 - + - + - - - + - + - + ↘ ↘ ↘ ↘ ↘ 

141 + - - + - + - - + - - + ↘ ↘ ↘ ↘ ↘ 

142 + + - - - + - - + - + + ↘ ↘ ↘ ↘ ↘ 

143 - + - + + + - + - + - - ↘ ↘ ↘ ↘ ↘ 

144 + + - + + - + - + + + + ↘ ↘ ↘ ↘ ↘ 

145 + + - - - + + + - + - + ↘ ↘ ↘ ↘ ↘ 

146 - + + + - + - + - - + - ↘ ↘ ↘ ↘ ↘ 

147 + + + - + + - - + + - + ↘ ↘ ↘ ↘ ↘ 

148 - + - - - + + - + + - + ↘ ↘ ↘ ↘ ↘ 

149 + - + + + + + + - - - + ↘ ↘ ↘ ↘ ↘ 
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 N 
fertility, 

Lsm 
Kfast(i, 1), 
Mfast(i, 1) 

Kslow(i, 1), 
Mslow(i, 1) 

propK α n b L∞ Lg 
rK, 
rM 

γK, 
γM 

Abundance 
Mean length 
at silvering 

Sex ratio 
Ratio of fast 

growers 
Mean realized 

growth rate 
150 - - - + + + - - + + - + ↘ ↘ ↘ ↘ ↘ 

151 + + + + - - - + - + + + ↘ ↘ ↘ ↘ ↘ 

152 + - + - + + - + - + - - ↘ ↘ ↘ ↘ ↘ 

153 - + + + - - + + - - - + ↘ ↘ ↘ ↘ ↘ 

154 - + + + - + + - + + - - ↘ ↘ ↘ ↘ ↘ 

155 + + - + + + + + - - + - ↘ ↘ ↘ ↘ ↘ 

156 + + + - - + - + - - - + ↘ ↘ ↘ ↘ ↘ 

157 - + + + + - + - + + - + ↘ ↘ ↘ ↘ ↘ 

158 + + + + + + + - + - - - ↘ ↘ ↘ ↘ ↘ 

159 + + + + - + + + - + - - ↘ ↘ ↘ ↘ ↘ 

160 + + - - + + - + - + + + ↘ ↘ ↘ ↘ ↘ 

161 - + - + - + + + - + + - ↘ ↗ ↘ ↘ ↘ 

162 - - - + + + - + + - + - ↘ ↗ - ↘ ↘ 

163 - - + - - + + + + - - + ↘ ↗ - ↘ ↘ 

164 - + - + + + + + + + - + ↘ ↗ - ↘ ↘ 

165 - + + - + + + + + + - - ↘ ↗ - ↘ ↘ 

166 - + + + - + + + + - + + ↘ ↗ - ↘ ↘ 

167 - - - - + + + + + + + + ↘ ↗ - ↘ ↘ 

168 + + + - + + - + + - + - ↘ ↗ - ↘ ↘ 

169 + - + + + + - + + - - - ↘ ↗ - ↘ ↘ 

170 - + - - + + - + + - - - ↘ ↗ - ↘ ↘ 

171 - + + + + + - + + - - + ↘ ↗ - ↘ ↘ 

172 - - + + - + - + + + - - ↘ ↗ - ↘ ↘ 

173 + + - - + + + + + + + - ↘ ↗ - ↘ ↘ 

174 + - - + - + - + + + + - ↘ ↗ - ↘ ↘ 

175 + + + - - + + + + - - - ↘ ↗ - ↘ ↘ 

176 - - - + - + + + + - - - ↘ ↗ - ↘ ↘ 

177 + - - - - + + + + - + + ↘ ↗ - ↘ ↘ 

178 - + - + - + - + + + + + ↘ ↗ - ↘ ↘ 

179 - - + - + + - + + - + + ↘ ↗ - ↘ ↘ 

180 + + + + + + + + + + + + ↘ ↗ - ↘ ↘ 

181 + + - + - + + + + - - + ↘ ↗ - ↘ ↘ 
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 N 
fertility, 

Lsm 
Kfast(i, 1), 
Mfast(i, 1) 

Kslow(i, 1), 
Mslow(i, 1) 

propK α n b L∞ Lg 
rK, 
rM 

γK, 
γM 

Abundance 
Mean length 
at silvering 

Sex ratio 
Ratio of fast 

growers 
Mean realized 

growth rate 
182 + + - + + + - + + - + + ↘ ↗ - ↘ ↘ 

183 + - - + + + + + + + - - ↘ ↗ - ↘ ↘ 

184 + - + - - + - + + + + + ↘ ↗ - ↘ ↘ 

185 - - - - - + - + + + - + ↘ ↗ - ↘ ↘ 

186 + - - - + + - + + - - + ↘ ↗ - ↘ ↘ 

187 - - + + + + + + + + + - ↘ ↗ - ↘ ↘ 

188 + - + + - + + + + - + - ↘ ↗ - ↘ ↘ 

189 + - + - + + + + + + - + ↘ ↗ - ↘ ↘ 

190 - + - - - + + + + - + - ↘ ↗ - ↘ ↘ 

191 - + + - - + - + + + + - ↘  - ↘ ↘ 

192 + + - - - + + - - - + - ↘ - - ↘ ↘ 

193 - - + + - + + - - - + - ↘ - - ↘ ↘ 

194 + + - + + - - - - + + - ↘ - - ↘ ↘ 

195 + + + - + - - - - + + + ↘ - - ↘ ↘ 

196 - - - + + + + - - + - - ↘ - - ↘ ↘ 

197 - + + + + - - - - + - - ↘ - - ↘ ↘ 

198 - - - + + - - - - + + + ↘ - - ↘ ↘ 

199 + - + - + - + - - - - - ↘ - - ↘ ↘ 

200 - + + - - + + - - - - - ↘ - - ↘ ↘ 

201 + + + - - - + - - + - + ↘ - - ↘ ↘ 

202 - - + + + + - - - - - - ↘ - - ↘ ↘ 

203 - + - - - - + - - + + + ↘ - - ↘ ↘ 

204 + + - + - + - - - + + + ↘ - - ↘ ↘ 

205 - + + + - - + - - + + - ↘ - - ↘ ↘ 

206 - - - - + + - - - - - + ↘ - - ↘ ↘ 

207 + - + + - - + - - + + + ↘ - - ↘ ↘ 

208 - - + - + + + - - + - + ↘ - - ↘ ↘ 

209 - + + + + + + - - + + + ↘ - - ↘ ↘ 

210 - + - + + + - - - - + + ↘ - - ↘ ↘ 

211 + - - - + + + - - + + + ↘ - - ↘ ↘ 

212 - - - - - + + - - - + + ↘ - - ↘ ↘ 

213 - - + - - + - - - + + + ↘ - - ↘ ↘ 
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 N 
fertility, 

Lsm 
Kfast(i, 1), 
Mfast(i, 1) 

Kslow(i, 1), 
Mslow(i, 1) 

propK α n b L∞ Lg 
rK, 
rM 

γK, 
γM 

Abundance 
Mean length 
at silvering 

Sex ratio 
Ratio of fast 

growers 
Mean realized 

growth rate 
                  

214 + + - - - - - - - - - + ↘ - - ↘ ↘ 

215 - - - - - - - - - - - - ↘ - - ↘ ↘ 

216 + + + + + + - - - - - + ↘ - - ↘ ↘ 

217 - + + - + + - - - - + - ↘ - - ↘ ↘ 

218 - + + - - - - - - - + + ↘ - - ↘ ↘ 

219 - + - - + - - - - + - + ↘ - - ↘ ↘ 

220 - + + - + - + - - - - + ↘ - - ↘ ↘ 

221 - - + + - - - - - - - + ↘ - - ↘ ↘ 

223 + - - + + + - - - - + - ↘ - - ↘ ↘ 

224 + + - + + + + - - + - + ↘ - - ↘ ↘ 

225 - - + - - - + - - + - - ↘ - - ↘ ↘ 

227 + - - - - + - - - + - + ↘ - - ↘ ↘ 

228 + + + - - + - - - + + - ↘ - - ↘ ↘ 

229 + + + - + + + - - + - - ↘ - - ↘ ↘ 

230 + + - - + - + - - - + + ↘ - - ↘ ↘ 

231 - + + + - + - - - + - + ↘ - - ↘ ↘ 

232 + - - - + - - - - + - - ↘ - - ↘ ↘ 

233 - - - + - + - - - + + - ↘ - - ↘ ↘ 

234 + - + - + + - - - - + + ↘ - - ↘ ↘ 

235 + + - + - - + - - + - - ↘ - - ↘ ↘ 

236 + + - - + + - - - - - - ↘ - - ↘ ↘ 

237 - + - + + - + - - - - - ↘ - - ↘ ↘ 

238 - - + - + - - - - + + - ↘ - - ↘ ↘ 

239 + - - + - - - - - - + + ↘ - - ↘ ↘ 

240 - + - - - + - - - + - - ↘ - - ↘ ↘ 

241 + + + + + - + - - - + - ↘ - - ↘ ↘ 

242 - - - - + - + - - - + - ↘ - - ↘ ↘ 

243 + - + + - + - - - + - - ↘ - - ↘ ↘ 

244 - + - + - - - - - - + - ↘ - - ↘ ↘ 

245 + - + - - + + - - - - + ↘ - - ↘ ↘ 

246 + - - - - - + - - + + - ↘ - - ↘ ↘ 
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 N 
fertility, 

Lsm 
Kfast(i, 1), 
Mfast(i, 1) 

Kslow(i, 1), 
Mslow(i, 1) 

propK α n b L∞ Lg 
rK, 
rM 

γK, 
γM 

Abundance 
Mean length 
at silvering 

Sex ratio 
Ratio of fast 

growers 
Mean realized 

growth rate 
247 + - + + + - - - - + - + ↘ - - ↘ ↘ 

248 - - + + + - + - - - + + ↘ - - ↘ ↘ 

249 + - + + + + + - - + + - ↘ - - ↘ ↘ 

250 + + + + - - - - - - - - ↘ - - ↘ ↘ 

251 + - - + - + + - - - - - ↘ - - ↘ ↘ 

252 - + - - + + + - - + + - ↘ - - ↘ ↘ 

253 + - - + + - + - - - - + ↘ - - ↘ ↘ 

254 + + + + - + + - - - + + ↘ - - ↘ ↘ 

255 + - + - - - - - - - + - ↘ - - ↘ ↘ 

256 - + - + - + + - - - - + ↘ - - ↘ ↘ 
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Supplementary chapter 3 

Table S3.1. Summary of the GAM model. edf corresponds to the estimated degrees of 

freedom for each model parameter. F corresponds to the Fisher statistics when the Gaussian 

family is used and Chis.sq to the χ² statistics when the binomial family is used. P-values are 

not presented (although all are smaller than 0.05) because significance tests are not 

recommended when analyzing simulation model results (White et al., 2014). 

 Ns Ls SR E Sl 

 edf F edf F edf Chi.sq edf F edf Chi.sq 

s(g) 9 18517.8 8.6 14036.4 9.0 3849436.9 6.6 1257.1 9.0 23175.6 
s(s0.1) 5.0 266.2 3.3 451.8 8.8 56266.4 1.0 3906.1 8.7 52527.1 
s(s0.66) 1.0 7.7 2.2 1.6 8.8 485.7 6.8 2.1 8.1 592.6 
s(b0.1) 3.4 3066.9 5.2 3311.3 9.0 2598861.4 4.0 194.8 8.7 1001753.5 
s(b0.66) 1.0 5.3 1.0 0.3 8.7 515.9 1.0 4.3 8.9 783.7 
s(t0.1) 2.5 545.4 2.9 497.5 8.9 56169.5 1.0 3727.6 8.9 54605.7 

s(t0.66) 1.0 1.3 2.0 2.0 8.9 541.1 2.5 3.3 8.0 357.9 

 
 

  



Adaptive responses of temperate eels to environmental heterogeneity: evolutionary 

mechanisms, threats due to global change and implications for conservation 

The worldwide decline of temperate eels is due to a synergistic combination of several anthropogenic 

pressures. However, eels display very specific life-cycles and amazing adaptation capacities that 

impair our ability to assess the relative effects of each pressure. Temperate eels are three catadromous 

species with large spatially distribution area during their continental growth stage. Their panmixia and 

the passive larval drifts impair the possibility of local adaptation; however life history spatial patterns 

are correlated with environmental gradients at both river catchment and distribution area scales. This 

PhD aims (i) to explore whether these life history spatial patterns may result from two adaptive 

responses: genetic polymorphism and adaptive phenotypic plasticity, and (ii) to revisit the effect of 

different components of global change in consideration to these adaptive responses. In this context, 

GenEveel, an individual-based optimization model was developed. The model postulates that genetic-

dependent habitat selection and phenotypic plasticity are mechanisms to address environmental 

heterogeneity. With such assumptions, the model was able to mimic observed spatial patterns in 

length-at-silvering, sex ratio and distribution of ecotypes. Moreover, different types of anthropogenic 

pressures (glass eel fishery, silver eel fishery, obstacles to upstream migration, and mortality due to 

hydropower facilities) were integrated in the model. Then, the model was used to assess their impacts 

on the number of escapees and their attributes: sex ratio, repartition between genotypes, mean length-

at-silvering, and overall egg production. The results showed that the pressure that induces the highest 

direct mortality has not necessarily the greatest influence on the spawning biomass and does not 

necessarily exert the strongest selective pressure on the ecotypes. This demonstrates that phenotypic 

plasticity can be a source of resilience for the population and mitigates the effect of some but not all 

the pressures. It also suggests that management should not only focus on numbers and direct mortality 

but on the preservation of diversity within populations. Finally, a demo-genetic model is described 

summarizing our understanding of eel populations. Such model can be used in the future to explore the 

ecological conditions in which genetic polymorphism and phenotypic plasticity have been selected 

through generations and provide new insights for the conservation of endangered eel species. 

Keywords: Anguilla spp., adaptive mechanisms, global change, anthropogenic pressures, life history 

theory, modelling 

  



Réponses adaptatives des anguilles tempérées à l’hétérogénéité environnementale : 

mécanismes évolutifs, menaces liées au changement global et conséquences pour la 

conservation 

Le déclin mondial des anguilles tempérées est lié aux effets synergiques de multiples pressions 

anthropiques. Cependant, la complexité du cycle de vie des anguilles et leurs incroyables capacités 

d’adaptation font qu’il est très difficile de connaître le poids relatif de chacune des pressions. Les 

anguilles tempérées sont trois espèces catadromes qui ont de très grandes aires de répartition pendant 

leurs phases de croissance continentales. Leurs panmixies et les longues dérives larvaires passives sont 

des freins aux adaptations locales, cependant on observe des patrons spatiaux de traits d’histoire de vie 

corrélés aux gradients environnementaux, à l’échelle du bassin versant et de son aire de répartition. Ce 

doctorat vise à (i) démontrer si ces patrons spatiaux d’histoire de vie sont le résultat de deux réponses 

adaptatives : le polymorphisme génétique et la plasticité phénotypique adaptative, et (ii) à réévaluer 

l’effet des différentes composantes du changement global en prenant en compte ces réponses 

adaptatives. Dans ce cadre, GenEveel, un modèle d’optimisation individu-centré a été développé. Ce 

modèle postule que la sélection de l’habitat dépendant du génotype et la plasticité phénotypique sont 

deux mécanismes permettant de faire face à l’hétérogénéité environnementale. Avec de telles 

hypothèses, le modèle permet de reproduire les patrons spatiaux observés concernant la longueur à 

l’argenture, le sexe-ratio et la distribution des écotypes. Par la suite, différents types des pressions 

anthropiques - les pêcheries de civelles et d’anguilles argentées, les obstacles à la migration de 

montaison et les mortalités dues aux turbines hydroélectriques - ont été intégrés dans le modèle. 

L’objectif a été d’évaluer leurs impacts sur l’échappement, à la fois en nombre, mais aussi sur 

différents attributs comme le sexe-ratio, la répartition entre génotypes, la longueur à l’argenture 

moyenne, et la production globale d’œufs. Les résultats montrent que la pression qui induit la plus 

forte mortalité directe n’a pas forcément la plus forte influence sur la biomasse féconde et n’exerce pas 

nécessairement la pression sélective la plus forte sur les écotypes. Le modèle met aussi en évidence 

que la plasticité phénotypique peut être source de résilience pour la population et qu’elle atténue 

l’effet de certaines pressions, mais pas de toutes. Cela suggère également que la gestion ne doit pas 

seulement se concentrer sur les nombres de survivants et les mortalités directes, mais aussi sur la 

protection de la diversité au sein des populations. Finalement, un modèle démo-génétique est décrit 

pour résumer notre compréhension des populations d’anguilles. Un tel modèle pourra être utilisé à 

l’avenir pour explorer les conditions écologiques dans lesquelles le polymorphisme génétique et la 

plasticité phénotypique ont été sélectionnés à travers des générations et fournir de nouvelles 

recommandations pour la conservation des espèces d’anguilles en voie d’extinction. 

Mots clés : Anguilla spp., mécanismes adaptatifs, changement global, pressions anthropiques, théorie 

d’histoire de vie, modélisation 


