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Composition du jury

Rapporteurs : Radu IGNAT
Michael STRUWE

Examinateurs : Fabrice BETHUEL
Emmanuel HEBEY
Frank PACARD
Filippo SANTAMBROGIO
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General Introduction

Nonlinear partial differential equations (PDEs) occur in a wide variety of areas of math-
ematics. Since the 20th century, the analysis of PDEs has become a field in itself, with a
large number of research directions. This thesis is concerned with the analysis of singular-
ities in elliptic equations, focusing on problems from mathematical physics, mathematical
biology, and differential geometry. A diversity of phenomena will arise in the analysis of
the considered problems and different techniques will be applied.

The topics we will analyze are:

1. The three-dimensional Ginzburg-Landau model of superconductivity with external
magnetic field.

2. The critical Lin-Ni-Takagi problem in dimension three.

3. The Keller-Segel model of chemotaxis.

4. Conformal geometry.

Let us now give an overview on all these subjects. Individualized chapters will then be
devoted to describe in details each of these problems.

1.1 The Ginzburg-Landau model of superconductiv-

ity

Superconductors are certain metals and alloys, which, when cooled down below a critical
(typically very low) temperature, lose their resistivity, which allows permanent currents
to circulate without loss of energy. Superconductivity was discovered by Ohnes in 1911.
As a phenomenological description of this phenomenon, Ginzburg and Landau [GL50]
introduced in 1950 the Ginzburg-Landau model, which has been proven to effectively
predict the behavior of superconductors and that was subsequently justified as a limit
of the Bardeen-Cooper-Schrieffer (BCS) quantum theory [BCS57]. It is a model of great
importance in physics, with Nobel prizes awarded for it to Abrikosov, Ginzburg, and
Landau.

The model proposed by Ginzburg and Landau to describe the state of a superconduct-
ing sample confined in a domain Ω ⊂ Rn, with n = 2, 3, in an applied magnetic field Hex,
assuming that the temperature is fixed and below the critical one, can be written as

GLε(u,A) =
1

2

∫
Ω

|∇Au|2 +
1

2ε2
(1− |u|2)2 +

1

2

∫
Rn
|H −Hex|2.

1



General Introduction

Here

• Ω is a bounded domain of Rn, that we assume to be smooth and simply connected.

• u : Ω→ C is called the order parameter. Its modulus squared (the density of Cooper
pairs of superconducting electrons in the BCS quantum theory) indicates the local
state of the superconductor: where |u|2 ≈ 1 the material is in the superconducting
phase, where |u|2 ≈ 0 in the normal phase.

• A : Rn → Rn is the electromagnetic vector potential of the magnetic field H =
curlA, which is induced by the currents which appear in the superconductor in
response to the applied (or external) magnetic field Hex : Rn → Rn.

• The notation ∇A denotes the covariant gradient ∇− iA.

• The parameter ε > 0 is the inverse of the “Ginzburg-Landau parameter” usually
denoted κ, a non-dimensional parameter depending only on the material. It is also
the ratio between the “coherence length” usually denoted ξ (roughly the vortex-
core size) and the “penetration depth” of the magnetic field usually denoted λ.
We will be interested in the regime of small ε, corresponding to extreme type-II
superconductors.

An essential feature of type-II superconductors is the occurrence of vortices (similar to
those in fluid mechanics, but quantized) in the presence of an applied magnetic field.
Physically, they correspond to normal phase regions around which a superconducting
loop of current circulates. Since u is complex-valued, it can have zeroes with a nonzero
topological degree. Vortices are then topological defects of co-dimension 2 and are the
crucial objects of interest in the analysis of the model.

Observed configurations correspond to minimizers or critical points of GLε. Heuristi-
cally, we have that:

• In the regime of small ε, the term 1
4ε2

(1−|u|2)2 favors |u| to be close to 1. A scaling
argument hints that |u| is different from 1 in small tubes of radius O(ε).

• The magnetic term 1
2
|H −Hex|2 favors the applied magnetic field to penetrate the

superconductor in such a way that the induced magnetic field H equals Hex. We
also expect this term to be very close to zero away from the sample.

The behavior of type-II superconductors has been experimentally observed to strongly
depend on the strength of the applied magnetic field, defined as hex := ‖Hex‖L2(Ω,R3).
There are three main critical values of hex or critical fields Hc1 , Hc2 , and Hc3 , for which
phase transitions occur.

• If hex is below Hc1 , which is of order O(| log ε|), then the superconductor is every-
where in its superconducting phase, i.e. |u| is uniformly close to 1, and the applied
field is forced out from the material due to the occurrence of supercurrents near ∂Ω.
This phenomenon is known as the Meissner effect.

2



1.1. The Ginzburg-Landau model of superconductivity

• AtHc1 the first vortice(s) appear and the applied field penetrates the superconductor
through the vortice(s).

• Between Hc1 and Hc2 the superconducting and normal phases coexist in the sample.
As hex increases, so does the number of vortices. The vortices repeal each other,
while the external magnetic field confines them inside the sample. This competition
forces them to arrange themselves to form triangular lattices in the bulk of the mate-
rial, which was predicted by Abrikosov [Abr57], and later observed experimentally.

• At Hc2 ≈ 1
ε2

, the superconductivity is lost in the bulk of the sample.

• Between Hc2 and Hc3 , superconductivity persists only near the boundary.

• After Hc3 = O
(

1
ε2

)
, the applied magnetic field completely penetrates the sample

and the superconductivity is lost, i.e. u = 0.

For further details on the model, we refer to [Tin96, DG99, SS07]. In this thesis, we are
interested in the first critical field Hc1 . The study of Hc2 or higher applied fields requires
completely different techniques.

1.1.1 Mathematical work on the Ginzburg-Landau model

We introduce the Ginzburg-Landau free energy

Fε(u,A) =
1

2

∫
Ω

|∇Au|2 +
1

2ε2
(1− |u|2)2 + | curlA|2.

This functional is closely related to the simpler Ginzburg-Landau model without magnetic
field

Eε(u) =
1

2

∫
Ω

|∇u|2 +
1

2ε2
(1− |u|2)2.

In the 1990’s, mathematicians became interested in the Ginzburg-Landau model. In the
pioneer work [BBH94] in 2D, Bethuel, Brezis, and Hélein introduced systematic tools and
asymptotic estimates to study vortices in the model without magnetic field, which is a
complex-valued version of the Allen-Cahn model for phase transitions. A vortex in 2D is
an object centered at an isolated zero of u, around which the phase of u has a nonzero
winding number, called the degree of the vortex. A typical vortex centered at a point x0

behaves like u = ρeiϕ with ρ = f
(
|x−x0|
ε

)
, where f(0) = 0 and f tends to 1 as r → +∞,

i.e. its characteristic core size is ε, and

1

2π

∫
∂B(x0,Rε)

∂ϕ

∂τ
= d ∈ Z

is its degree (also defined as the topological-degree of the map u/|u| : ∂B(x0, Rε)→ S1).
In [BBH94], the effect of the external magnetic field was replaced by a Dirichlet boundary
condition u = g on ∂Ω, where g is an S1-valued map of winding degree d > 0. This
boundary condition triggers the occurrence of vortices, allowing only for a fixed number

3



General Introduction

of them. They proved that minimizers of Eε have d vortices of degree one and that the
following expansion of the energy holds:

Eε(u) ≈ πd| log ε|+W (a1, . . . , ad) as ε→ 0,

where W is the “renormalized energy”, a function depending only on the vortex-centers
ai, which repeal one another according to a coulombian interaction. This analysis was
then adapted to the study of the free-energy by Bethuel and Rivière [BR95], under a
Dirichlet boundary condition on ∂Ω that forces the presence of vortices and the (fixed)
number of them. However, a new approach was necessary to treat the case of the full
model when the number of vortices gets unbounded as ε → 0. Tools able of handling
this were developed after the works by Jerrard [Jer99] and Sandier [San98]. In a series
of works summarized in the book [SS07], Sandier and Serfaty analyzed the full model
and characterized the behavior of minimizers in different regimes of the applied field. In
particular, they mathematically deduced the experimentally observed phenomena when
hex is below Hc2 (see [SS00a,SS00b,SS00c,SS03]).

Rivière [Riv95], was the first to study the asymptotic behavior of minimizers of the
free energy (under a Dirichlet boundary condition) as ε → 0 in the 3D setting. Roughly
speaking, vortices in 3D are small tubes of radius O(ε) around the one dimensional zero-
set of u. In the limit ε → 0 vortices become curves Li with an integer multiplicity di,
whose cost is at least an order πdi|Li|| log ε| of energy, where |L| denotes the length of
L. In [Riv95], using an η-ellipticity result, Rivière identified the limiting one dimensional
singular set of minimizers of Fε with a mass minimizing current, which corresponds to a
minimal connection. This concept was introduced in the work by Brezis, Coron, and Lieb
[BCL86]. In the case without magnetic field, an alternative proof was given by Sandier
[San01]. This result was then extended by Bourgain, Brezis, and Mironescu [BBM04]
to allow for a general boundary condition. Generalizations to higher dimension of these
results in the case without magnetic field were developed in the works by Lin and Rivière
[LR99], Bethuel, Brezis, and Orlandi [BBO01], and Alberti, Baldo, and Orlandi [ABO05].
Other important results, that we comment later on, include [LR01, JS02, SS04, Chi05,
SS17].

Jerrard, Montero, and Sternberg [JMS04] established the existence of locally minimiz-
ing vortex solutions to the full Ginzburg-Landau energy in 3D, by using a construction
in the spirit of [MSZ04]. Later on, Alama, Bronsard, and Montero [ABM06] identified a
candidate expression for the first critical field in 3D in the case of the ball. Then, Baldo,
Jerrard, Orlandi, and Soner [BJOS12, BJOS13], via Γ-convergence arguments, described
the asymptotic behavior of the full model as ε→ 0 and characterized to leading order the
first critical field in 3D for a general bounded domain. We point out that many questions
remain open in 3D, in particular obtaining all the analogues of the 2D results contained
in [SS07]. This is due to the more complicated geometry of the vortices in 3D: they are
lines with no a priori regularity, and have to be understood in the framework of currents
and using geometric measure theory.

In addition to its importance in the modeling of superconductivity, the Ginzburg-
Landau model is mathematically extremely close to the Gross-Pitaevskii model for super-
fluidity (see for instance[TT90,Ser01]) and models for rotating Bose-Einstein condensates

4



1.1. The Ginzburg-Landau model of superconductivity

(see for example [Aft06]). In fact, the mathematical tools developed for Ginzburg-Landau
have been successfully exported to these models.

1.1.2 Essential tools

The Ginzburg-Landau model is known to be an U(1)-gauge theory. This means that all
the meaningful physical quantities are invariant under the gauge-transformations

u 7→ ueiΦ, A 7→ A+∇Φ,

where Φ is any smooth real-valued function. The Ginzburg-Landau energy and its asso-
ciated free energy are gauge invariant, as well as the density of superconducting Cooper
pairs |u|2, the induced magnetic field H, and the vorticity, defined, for any sufficiently
regular configuration (u,A), as

µ(u,A) = curl(iu,∇Au) + curlA,

where (·, ·) denotes the scalar product in C identified with R2 i.e. (a, b) = ab+ab
2

. This
quantity is the gauge-invariant version of the Jacobian determinant of u and is the ana-
logue of the vorticity of a fluid.

To analyze the vortices, authors have developed tools, in particular the ball construc-
tion method and Jacobian estimates. The first one was introduced independently by
Jerrard [Jer99] and Sandier [San98]. It allows one to obtain universal lower bounds for
two-dimensional Ginzburg-Landau energies in terms of the topology of the vortices. These
lower bounds capture the fact that vortices of degree d cost at least an order π|d| log 1

ε
of

energy. The second tool, that has been widely used in the analysis of the Ginzburg-Landau
model in any dimension after the work by Jerrard and Soner [JS02], is the Jacobian (or
vorticity) estimate, which allows one to relate the vorticity µ(u,A) with, roughly speak-
ing, Dirac masses supported on co-dimension 2 singularities. When n = 2, these masses
are supported on points naturally derived from the ball construction. The following result
presents an optimal version of these estimates in 2D.

Theorem 1.1.1 (Sandier and Serfaty [SS07]). Let n = 2. For any α ∈ (0, 1) there
exists ε0(α) > 0 such that, for any ε < ε0, if (uε, Aε) is a configuration such that
1
2

∫
Ω
|∇|uε||2 + 1

2ε2
(1 − |uε|2)2 ≤ εα−1, then for any r ∈ (ε

α
2 , 1), there exists a finite col-

lection of disjoint closed balls {B(ai, ri)}i of the sum of the radii r, covering {|uε| ≤
1− εα4 } ∩ {x ∈ Ω | dist(x, ∂Ω) ≥ ε} such that

1

2

∫
∪iB(ai,ri)

|∇Aεuε|2 +
1

2ε2
(1− |uε|2)2 + | curlAε|2 ≥ πD

(
log

r

Dε
− C

)
,

where D =
∑

i |di|, di = deg(u, ∂B(ai, ri)), and C is a universal constant, and, for any
β ∈ (0, 1), we have ∥∥∥∥∥µ(uε, Aε)− 2π

∑
i

diδai

∥∥∥∥∥
C0,β

0 (Ω)∗

≤ rβFε(uε, Aε).

5



General Introduction

The first goal of this thesis is to provide similar estimates in 3D. One of the important
features of the previous theorem is that the estimates are at the ε-level. When n = 3,
only results that work in the limit ε→ 0 can be found in the literature. Here, we provide
a quantitative three-dimensional vortex approximation construction for the Ginzburg-
Landau energy. This construction provides an approximation of vortex lines coupled to a
lower bound for the energy, optimal to leading order, analogous to the 2D ones, and valid
for the first time at the ε-level.

Theorem 1.1.2 ([Roma]). Let n = 3 and assume that ∂Ω is C2. For any m,M > 0
there exist C, ε0 > 0 such that, for any ε < ε0, if (uε, Aε) ∈ H1(Ω,C) × H1(Ω,R3) is a
configuration such that Fε(uε, Aε) ≤M | log ε|m then

1

2

∫
Sνε

|∇Aεuε|2 +
1

2ε2
(1− |uε|2)2 + | curlAε|2 ≥

1

2
|νε|(Ω)

(
log

1

ε
− C log log

1

ε

)
+ o(1),

where νε is a finite sum (in the sense of currents) of polygonal lines and |Sνε | = o(1) (with
supp(νε) ⊂ Sνε), and

‖µ(uε, Aε)− νε‖C0,γ
T (Ω)∗ ≤ o(1)

for any γ ∈ (0, 1], where C0,γ
T (Ω) denotes the space of vector fields in C0,γ(Ω) whose

tangential component vanishes on ∂Ω.

In this theorem and in the rest of this chapter o(1) denotes a function of ε tending
to zero as ε → 0. This result has been presented in a simplified form. A quantitative
version can be found in Chapter 1 of Part I. Besides, in the case Ω is only assumed to
have Lipschitz boundary then a similar theorem holds far from the boundary.

Let us point out that the ball construction used to prove Theorem 1.1.1 is purely two-
dimensional. For this reason, the three-dimensional analogue of this result is based on a
new vortex approximation construction. Through a procedure based on slicing of currents,
3D Jacobian estimates and lower bounds were proved in [JS02] and [SS04]. Alternatively,
a suitable application of the Federer-Fleming polyhedral deformation theorem was used
in [ABO05] and [BJOS12] to obtain results of the same type. But these constructions are
not sufficient for our purposes, because they cannot be made ε-quantitative.

Explained in simple words, our construction is made as follows. We consider a grid
of side-length δ = δ(ε) � 1. If appropriately positioned, the grid can be chosen so that
|uε| ≥ 5/8 on every edge of a cube. Then, 2D estimates imply that the restriction of
the vorticity to the boundary of every cube is well approximated by a linear combination
of Dirac masses. Using minimal connections, we connect the points of support of these
measures, which essentially yields our approximation.

To get an optimal and quantitative lower bound for the free energy, we use the co-
area formula and the fact that minimal connections satisfy a calibration property. This
method was used by Sandier [San01] to obtain a lower bound for the Ginzburg-Landau
energy without magnetic field, i.e. Eε(u) = Fε(u, 0). The analysis presented here is much
more involved due to the unboundedness of the number of vortices.
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1.1. The Ginzburg-Landau model of superconductivity

1.1.3 The first critical field

From now on we focus on the first critical field. Our objective is to describe the behavior
of global minimizers of GLε in 3D when hex is below and near the first critical field. We
begin by reviewing the work by Sandier and Serfaty in the 2D case.

1.1.3.1 The 2D case

When n = 2, after a series of reductions, one is left with studying the simpler functional

GL2D
ε (u,A) =

1

2

∫
Ω

|∇Au|2 +
1

2ε2
(1− |u|2)2 + |h− hex|2,

where h = curlA = ∂1A2 − ∂2A1 and hex > 0 is a parameter. Minimizers and critical
points of this functional solve the associated Euler-Lagrange system of equations{

−∇2
Au = 1

ε2
u(1− |u|2) in Ω

−∇⊥h = 〈iu,∇Au〉 in Ω.

where ∇⊥ = (−∂2, ∂1), with boundary conditions{
−∇Au · ν = 0 on ∂Ω

h = hex on ∂Ω.

By taking the curl of the second Ginzburg-Landau equation, we find{
−∆h+ h = µ(u,A) in Ω

h = hex on ∂Ω.

This equation relates the induced magnetic field in the sample with the vorticity and it
is usually called London equation in the physics literature. When the vorticity vanishes,
up to dividing by hex, the London equation becomes{

−∆h0 + h0 = 0 in Ω
h0 = 1 on ∂Ω.

Observe that A0 = ∇⊥h0 is such that curlA0 = h0. We then expect the configuration
(1, hexA0) to be a good approximation of the Meissner (vortex-free) solution, i.e. the
minimizer of GL2D

ε when hex is below Hc1 . Indeed, this is true. By writing A = A′+hexA0,
one can split the energy as

GL2D
ε (u,A) = h2

exJ0 + Fε(u,A
′) + hex

∫
Ω

µ(u,A′)ξ0 +R0

where ξ0 = h0 − 1 and solves

(1)


−∆2ξ0 + ∆ξ0 = 0 in Ω

ξ0 = 0 on ∂Ω
∆ξ0 = 1 on ∂Ω,
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J0 =
GL2D

ε (1, hexA0)

h2
ex

=
1

2

∫
Ω

|∇h0|2 + |h0 − 1|2 =
1

2
‖ξ0‖2

H1(Ω),

and R0 = o(1) when hex is bounded by a negative power of | log ε|. Using Theorem 1.1.1
and this splitting, a quick inspection leads to (formally) finding the leading order value
of the first critical field:

H2D
c1

=
1

2 max |ξ0|
| log ε|.

The rigorous proof of this heuristic was performed in a series of articles. First, Serfaty
minimized GL2D

ε in a subspace of H1(Ω,C)×H1(Ω,R2). Let us introduce the space

DM := {(u,A) | Eε(u) < πM | log ε|, divA = 0 in Ω, and A · ν = 0 on ∂Ω},

where Eε(u) := Fε(u, 0) = 1
2

∫
Ω
|∇u|2 + 1

2ε2
(1 − |u|2)2, i.e. the Ginzburg-Landau energy

without magnetic field. Roughly speaking, DM can be seen as the set of configurations
with less than M vortices. The following theorem concerns the minimization of the energy
in this space.

Theorem 1.1.3 (Serfaty [Ser99]). For any M > 0 there exists constants ε0 > 0 and C
such that:

1. For any ε < ε0 and hex < H2D
c1

+C − o(1) there exists a stable critical point (uε, Aε) of
GL2D

ε which is minimizing over DM . Any such critical point is such that |uε| does not
vanish.

2. For any ε < ε0 and hex > H2D
c1

+C − o(1) there exists a stable critical point (uε, Aε) of
GL2D

ε which is minimizing over DM . Any such critical point is such that |uε| vanishes.

This theorem shows that H2D
c1

is, up to a O(1), a critical value of the applied field, when
the minimization of GL2D

ε is restricted to DM . The use of this space was a technical com-
modity. To minimize the energy in the natural minimization space H1(Ω,C)×H1(Ω,R2),
one needs to handle an a-priori unbounded number of vortices. By combining the ε-level
tools with the energy splitting and a “clearing out” result (see [BBH94, Theorem III.3]),
Sandier and Serfaty were able to prove the following result.

Theorem 1.1.4 (Sandier and Serfaty [SS00a]). There exist constants ε0, K0 > 0 such that
for any ε < ε0 and any hex < H2D

c1
−K0 log | log ε|, the global minimizers (uε, Aε) of GL2D

ε

in H1(Ω,C)×H1(Ω,R2) are such that |uε| ≥ 1/2 in Ω and GL2D
ε (uε, Aε) = h2

exJ0 + o(1).

Thus, up to an imprecision of O(log | log ε|), minimizers of the energy below Hc1 are
vortex-less. A further analysis of the energy allowed them to prove that the set DM , for
M large enough, is the set where the global minimizers of the energy lie.

Theorem 1.1.5 (Sandier and Serfaty [SS03]). For any K > 0, there exists a constant
ε0 > 0 such that for any ε < ε0 and any hex < H2D

c1
+K log | log ε|, the global minimizers

of GL2D
ε in H1(Ω,C)×H1(Ω,R2) are gauge equivalent to an element of DM .
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1.1. The Ginzburg-Landau model of superconductivity

In particular, the above results show that the first critical field in 2D is given by
H2D
c1

+O(1). This theorem, which reduces the minimization problem in the natural space
H1(Ω,C) × H1(Ω,R2) to the space of configuration with less than M vortices, follows
from a deep result that we explain now.

Observe that

min
(u,A)∈H1(Ω,C)×H1(Ω,R2)

GL2D
ε (u,A) ≤ GL2D

ε (1, 0) =
1

2
|Ω|h2

ex,

where |Ω| denotes the measure of Ω. In particular, under the assumptions of Theorem
1.1.5, the energy of a minimizing configuration (uε, Aε) is bounded by a negative power
of | log ε|. We can then apply Theorem 1.1.1 to associate to (uε, Aε) a family of vortices
{(ai, di)}. One has the following result.

Theorem 1.1.6 (Sandier and Serfaty [SS03]). For any K > 0, there exist positive con-
stant ε0, C, α > 0 such that for any ε < ε0 and any hex < H2D

c1
+K log | log ε|, if (uε, Aε) is

a global minimizer of GL2D
ε in H1(Ω,C)×H1(Ω,R2) and {(ai, di} is an associated family

of vortices then

1. ∀i, di ≥ 0,

2. dist(ai,Λ) < C| log ε|−α for any i such that di 6= 0, where Λ is the subset of Ω where
the function ξ0 defined above attains its minimum, and

3.
∑

i di < C.

To prove this theorem, in particular one needs some information about the set Λ. It
turns out that the fact that Ω is simply connected implies that Λ is a finite set of points
and a single point if Ω is convex.

Lemma 1.1.1. The set of critical points of the function ξ0 defined above is a finite set
of points {p1, . . . , pk}. In particular the set Λ where ξ0 attains its minimum is finite and
there exist C,N > 0 such that

(2) ξ0(x) ≥ min
Ω
ξ0 + Cdist(x,Λ)N

for every x ∈ Ω.

We will comment on this result later on.

1.1.3.2 Back to 3D

In the 3D case, Alama, Bronsard, and Montero [ABM06] identified a candidate expression
for Hc1 in the case of the ball. Then, Baldo, Jerrard, Orlandi, and Soner [BJOS13], based
on a Γ-convergence result, characterized to leading order the first critical field in 3D for
a general bounded domain. Our purpose here is to derive with more precision this value,
by getting the analogues of the 2D results proved by Sandier and Serfaty.

We begin by observing that in this case the minimization problem cannot be reduced to
Ω as in the 2D case. In particular, the boundary of the domain plays a role in the analysis.
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Let us assume that Hex = hexH0,ex, where H0,ex is a fixed unit vector and hex represents
the intensity of the applied field. In particular, there exists Aex = hexA0,ex ∈ H1

loc(R3,R3)
such that

curlA0,ex = H0,ex, divA0,ex = 0 in R3 and A0,ex · ν = 0 on ∂Ω.

The natural space for the minimization of GLε in 3D is H1(Ω,C)× [Aex +Hcurl], where

Hcurl := {A ∈ H1
loc(R3,R3) | curlA ∈ L2(R3,R3)}.

Minimizers and critical points of GLε solve the associated Euler-Lagrange system of equa-
tions {

−(∇A)2u =
1

ε2
u(1− |u|2) in Ω

curl(H −Hex) = (iu,∇Au)χΩ in R3,

where χΩ is the characteristic function of Ω, with boundary conditions{
−∇Au · ν = 0 on ∂Ω

[H −Hex]× ν = 0 on ∂Ω,

where [ · ] denotes the jump across ∂Ω.
By taking the curl of the second Ginzburg-Landau equation, we find the London

equation

curl2(H −Hex) +HχΩ = µ(u,A)χΩ.

In order to find an approximation of the Meissner solution, we recall that any vector field
A ∈ H1(Ω,R3) admits the following Hodge decomposition:

A = curlBA +∇φA in Ω
BA × ν = 0 on ∂Ω
∇φA · ν = A · ν on ∂Ω.

Moreover, the vector field BA and the function φA are unique if chosen to satisfy divBA =
0 in Ω and

∫
Ω
φA = 0.

For reasons that we explain in Chapter 2 of Part I, a good approximation of the
Meissner solution is given by the configuration (u0, hexA0), where u0 = eihexφA0 and A0

minimizes in a suitable space the functional

J(A) :=
1

2

∫
Ω

| curlBA|2 +
1

2

∫
R3

| curl(A− A0,ex)|2.

We have that GLε(u0, hexA0) = h2
exJ(A0) and the divergence-free vector field B0 := BA0 ∈

C0,1
T (Ω,R3) satisfies 

∆2(B0 −B0,ex) + ∆B0 = 0 in Ω
B0 × ν = 0 on ∂Ω

[∆(B0 −B0,ex)]× ν = 0 on ∂Ω.

10



1.1. The Ginzburg-Landau model of superconductivity

This special vector field turns out to be the analogue of the function ξ0. By writing
u = u0u

′ and A = hexA0 + A′, we may split the energy as

GLε(u,A) = h2
exJ(A0) + Fε(u

′, A′) +
1

2

∫
R3\Ω
| curlA′|2 − hex

∫
Ω

µ(u′, A′) ∧B0 +R0,

where R0 is as before.
We let

‖B0‖∗ := sup
µ∈X

∫
Ω

µ ∧B0,

where X is the class of 1-currents such that ∂µ = 0 relative to Ω and |µ|(Ω) ≤ 1. By
combining the ε-level estimates and the energy splitting, we heuristically find the leading
order value of the first critical field:

H3D
c1

=
1

2‖B0‖∗
| log ε|.

Our goal is to prove that the first critical field in 3D is given by H3D
c1

+ O(1). Our first
result in this direction is the analogous of Theorem 1.1.4.

Theorem 1.1.7 ([Romb]). There exist constants ε0, K0 > 0 such that for any ε < ε0 and
hex ≤ H3D

c1
−K0 log | log ε|, the global minimizers (uε, Aε) of GLε in H1(Ω,C)×[Aex+Hcurl]

are such that |uε| ≥ 1/2 in Ω and GLε(uε, Aε) = h2
exJ(A0) + o(1).

By combining Theorem 1.1.2 and the energy splitting above, one can show that

Fε(u
′
ε, A

′
ε) ≤ o(1).

The Ginzburg-Landau equations satisfied by (uε, Aε) and this inequality allow us to use a
“clearing out” result proved by Chiron [Chi05], using ideas from [BOS04]), which implies
that |uε| ≥ 1/2 in Ω. The proof of this result is much more complicated than its analogue
in 2D. Results of the same kind were first proved by Rivière [Riv95] and Lin and Rivière
[LR01]. Very recently, Sandier and Shafrir [SS17] gave a simplified proof in the case
without magnetic field.

What we describe next is a work in preparation in collaboration with Etienne Sandier
and Sylvia Serfaty [RSS]. It corresponds to the analysis of the behavior of global min-
imizers of GLε in 3D near the first critical field. Our objective is to get the analogue
of Theorem 1.1.6. The main difficulty is that we need a certain kind of non-degeneracy
condition on B0, which in contrast to the two-dimensional case it is difficult to find.

In 3D, we deal with the functional

γ(B0) :=

∫
γ

B0 · τ,

defined for Lipschitz curves γ ∈ X, where X is defined as above. Here, τ denotes the
tangent vector to γ. In particular, we observe that |γ(B0)| ≤ ‖B0‖∗.

We introduce the following assumption.

11



General Introduction

Non-degeneracy condition in 3D: There exists a unique Lipschitz curve γ0 ∈ X such
that γ0(B0) = ‖B0‖∗. Moreover, there exist constants C,N > 0 such that for any Lipschitz
curve γ ∈ X if ‖γ − γ0‖∗ ≥ δ, for some δ ∈ (0, 1), then

γ(B0) ≤ γ0(B0)− CδN .

This is in the same spirit as the condition (2) satisfied by ξ0, but much weaker. As in the
2D case, we can apply Theorem 1.1.2 to associate to a minimizing configuration of the
energy near H3D

c1
a vorticity approximation νε. Moreover, we can decompose νε =

∑
i∈I γi,

where each γi is a multiplicity 1 Lipschitz curve in X.

Theorem 1.1.8 (Work in preparation). Assume the non-degeneracy condition above. For
any K > 0, there exist positive constant ε0, C, α > 0 such that for any ε < ε0 and any
hex < H3D

c1
+K log | log ε|, if (uε, Aε) is a global minimizer of GLε in H1(Ω,C)×[Aex+Hcurl]

and νε =
∑

i∈I γi is an associated vorticity approximation then

1. ∀i, γi/|γi|(B0) ≥ 0,

2. ‖γi/|γi| − γ0‖∗ < | log ε|− 1
2N for any i such that γi/|γi|(B0) > 0, and

3. |νε|(Ω) < C.

Of course, it is very important to verify if the proposed non-degeneracy condition
holds in a simple situation. For this purpose, let us consider the case Ω = B(0, R) and
H0,ex = ẑ, for which the vector B0 has an explicit expression. One can show that the
vertical diameter D1 oriented in the direction of ẑ and seen as a Lipschitz curve in X (in
particular |D1|(Ω) = 1) is such that

D1(B0) = ‖B0‖∗.

Moreover, we have the following result, which is a sort of generalization of a result that ap-
peared in [ABM06], where the authors deal with a functional similar to the one considered
here.

Theorem 1.1.9 (Work in preparation). Let Ω = B(0, 1) and H0,ex = ẑ. There exist
constants C,N > 0 such that for any Lipschitz curve γ ∈ X if ‖γ −D1‖∗ ≥ δ, for some
δ ∈ (0, 1), then

γ(B0) ≤ D1(B0)− CδN ,

where D1 is defined as above.

We remark that we expect to extend Theorem 1.1.8 by assuming a non-degeneracy
condition that allows for a finite set of optimal curves instead of only one, which is what
one predicts when Ω is non-convex. Even though the presented results do not imply that
the first critical field in 3D is given by H3D

c1
+ O(1), the key steps towards proving this

result have been made in this thesis. We foresee obtaining the result in future work.
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1.2. The Lin-Ni-Takagi problem

1.2 The Lin-Ni-Takagi problem

In 1972, Gierer and Meinhardt [GM72] proposed the following reaction-diffusion system
to model biological pattern formation:

∂a

∂t
= Da∆a− µaa+ ρa

(
ca
ap

hq
+ ρ0

)
∂h

∂t
= Dh∆h− µhh+ chρh

ar

hs
.

Here

• a(x, t) > 0 and h(x, t) > 0 represent the respective concentrations at a point x ∈ Rn

and at a time t ∈ R of biochemicals called activator and inhibitor. The activator
stimulates a change in cells or tissues so that cell differentiation (or division) occurs
at the position where the activator concentration is high. The inhibitor diffuses much
faster than the activator and tempers the self-enhancing growth of the activator
concentration, thereby stabilizing the system.

• Da, Dh, µa, µh, ca, ch, ρa, ρh are strictly positive constants, while ρ0 is a non-negative
constant.

• The exponents p, q, r, s are assumed to satisfy the conditions

p > 1, q, r > 0, s ≥ 0, and 0 <
p− 1

q
<

r

s+ 1
.

We assume that a and h occupy a smooth bounded domain Ω ⊂ Rn and that there is no
flux through the boundary, i.e.

∇a · ν = ∇h · ν = 0 on ∂Ω,

where ν denotes the unit outer normal to ∂Ω.
One observes that, by numerical simulations, when the ratio Da/Dh is small, the

Geirer-Meinhardt system seems to have stable stationary solutions with the property that
the activator concentration is localized around a finite number of points in Ω. Moreover, as
Da → 0 the pattern exhibits a “spike layer phenomenon”, i.e. the activator concentration
is localized in narrower and narrower regions around some points and eventually shrinks
to a certain set of points. Hereby the maximum value of the activator concentration
diverges to +∞.

Then, we consider the stationary Gierer-Meinhardt system (for ρ0 = 0)
−ε2∆A+ A− Ap

Hq
= 0, A > 0 in Ω

−D∆H + µH − Ar

Hs
= 0, H > 0 in Ω,

with homogeneous Neumann boundary conditions on ∂Ω. Here, the normalized unknowns
A(x) and H(x) are defined via the formulas

a(x) =

[(
µa
chρa

)q (
caρa
µa

)s+1
]λ
A(x) and h(x) =

[(
µa
chρa

)p−1(
caρa
µa

)r]λ
H(x),
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where

λ =
1

qr − (p− 1)(s+ 1)
, ε =

√
Daµa, D =

Dh

µa
, and µ =

µh
µa
.

This stationary system is quite difficult to solve since it has neither a variational structure
nor a priori estimates. One way to study this problem is to examine the so-called shadow
system. Namely, we let Dh →∞. By assuming that µH − Ar

Hs remains bounded, we find

∆H → 0 in Ω and ∇H · ν = 0 on ∂Ω.

This implies that H(x)→ ξ, where the constant ξ > 0 satisfies the equation

µξ|Ω| − ξ−s
∫

Ω

Ar = 0.

Then, by letting v(x) = ξ
p−1
q A(x) we are led to study the single equation{
−ε2∆v + v − vp = 0, v > 0 in Ω

∇v · ν = 0 on ∂Ω.

We rewrite this equation in a slightly different form, namely we define u(x) = λ
1
pv(x) and

λ = ε−
2p
p−1 . Therefore, we have

(3)

{
−∆u+ λu− up = 0, u > 0 in Ω

∇u · ν = 0 on ∂Ω.

This semilinear Neumann elliptic problem has been widely studied in the last 30 years.
In 1988, Lin, Ni, and Takagi [LNT88] initiated the study of this problem. The interested
reader can found an extensive list of known results about this equation and the Geirer-
Meinhdart system in the book by Wei and Winter [WW14] and the references therein.

From now on we focus on the critical case in dimension n = 3, i.e. when p = n+2
n−2

= 5.
It has been showed that this problem does not admit interior bubbling solutions if λ→ 0
or λ → ∞, for instance when Ω is assumed to be convex. By this, we mean solutions
that exhibit peaks of concentration around one or more points in Ω, while being very
small elsewhere. In a joint work with Manuel del Pino, Monica Musso, and Juncheng
Wei [dPMRW] we discovered a new phenomenon, which is the presence of a solution with
interior bubbling for values of λ near a number 0 < λ∗(Ω) < ∞ which can be explicitly
characterized.

Theorem 1.2.1 (del Pino, Musso, Román, and Wei [dPMRW]). Let n = 3 and p = 5.
There exists a number 0 < λ∗ < ∞ such that for any λ > λ∗, with λ − λ∗ sufficiently
small, there exists a solution to (3) with an asymptotic profile as λ→ λ+

∗ of the form

uλ(x) = 3
1
4

(
µλ

µ2
λ + |x− xλ|2

) 1
2

+O(µ
1
2
λ ) in Ω,

where the concentration parameter µλ = O(λ − λ∗) and the concentration point xλ ∈ Ω
stays uniformly away from ∂Ω.
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The number λ∗ and the asymptotic location of the point xλ can be characterized in
terms of the Robin’s function associated to this problem (see Chapter 1 of Part II). There
exists a connection between the number λ∗ and the so called Brezis-Nirenberg number
λ∗ = λ∗(Ω) > 0 given as the least value λ such that for any λ∗ < λ < λ1, where λ1 is the
first Dirichlet eigenvalue of the Laplacian, there exists a least energy solution of the 3D
Brezis-Nirenberg problem [BN83]{

−∆u− λu− up = 0, u > 0 in Ω
u = 0 on ∂Ω.

A parallel characterization of the number λ∗ in terms of a Dirichlet Green’s function
has been established in [Dru02] and its role in bubbling phenomena further explored in
[dPDM04].

The construction of our solution follows the finite dimensional Lyapunov-Schmidt re-
duction, which was introduced by Floer and Weinstein [FW86]. For the reader convenience
we briefly introduce the abstract set-up of this method.

1.2.1 The finite dimensional Lyapunov-Schmidt reduction

Let X, Y be Banach spaces and consider a C1 map S : X → Y . Our purpose is to find
solutions to the equation S(u) = 0. To do so, we first find a “good” approximation and
we then look for a true solution as a small perturbation of the approximation. Assume
that Uλ is the approximation, indexed by a parameter λ ∈ Λ (we think of this set as the
configuration space). By writing uλ = Uλ + φλ, we are led to solve

(4) L(φλ) +N(φλ) + E = 0,

where

L(φλ) = S ′(Uλ)(φλ), N(φλ) = S(Uλ + φλ)− S(Uλ)− S ′(Uλ)(φλ), and E = S(Uλ).

Here, S ′(Uλ) is the Fréchet derivate of S at Uλ, L(φλ) denotes the linear part and N(φλ)
the nonlinear part, and E is the error of the approximation. The strategy we follow here
is: We invert the linear operator L so that we can rephrase (4) as a fixed point problem.
That is, when L has a uniformly bounded inverse in a suitable space, one can rewrite this
equation as

φλ = −L−1(E +N(φλ)) =: A(φλ).

What is left is to use a fixed point argument, for instance the contraction mapping theo-
rem, to solve this equation.

The finite dimensional Lyapunov-Schmidt reduction deals with the situation when the
linear operator L is Fredholm and its eigenfunction space associated to small eigenvalues
is finite dimensional. Let {Z1, . . . , Zn} denote a basis of the eigenfunction space associated
to small eigenvalues of L. We divide the procedure of solving (4) into two steps:

1. To solve, for any λ ∈ Λ, the projected problem L(φλ) +N(φλ) + E =
n∑
j=1

cj(λ)Zj

〈φλ, Zj〉 = 0 ∀j = 1, . . . , n,
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where cj(λ) is defined via

〈L(φλ) +N(φλ) + E,Zj〉 = cj(λ)〈Zj, Zj〉

for any j = 1, . . . , n.

2. To solve the reduced problem

cj(λ) = 0 ∀j = 1, . . . , n

by adjusting the parameter λ in the configuration space Λ.

1.3 The Keller-Segel model of chemotaxis

Chemotaxis is the influence of chemical substances in the environment on the movement
of mobile species. This can lead to strictly oriented movement or to partially oriented and
partially tumbling movement. Positive chemotaxis occurs if the movement is towards a
higher concentration of the chemical substance; negative chemotaxis if the movement is
in the opposite direction. Chemotaxis is an important means for cellular communication
by chemical substances, which determines how cells arrange themselves, for instance in
living tissues.

In 1970, Keller and Segel [KS70] proposed a basic model for chemotaxis. They con-
sidered an advection-diffusion system consisting of two coupled parabolic equations for
the concentration of the considered species and that of the chemical released, respectively
represented by strictly positive quantities v(x, t) and u(x, t) defined on a bounded smooth
domain Ω ⊂ Rn. The system has the form

∂v

∂t
= Dv∆v − c div(v∇φ(u))

∂u

∂t
= Du∆u+ k(u, v),

with no flux through the boundary, i.e.

∇v · ν = ∇u · ν = 0 on ∂Ω.

Here

• Dv, Du, and c are strictly positive constants.

• φ, the so-called sensitive function, is a smooth function such that φ′(r) > 0 for
r > 0.

• k is a smooth function such that ∂k
∂v
≥ 0 and ∂k

∂u
≤ 0. It is typically chosen as −u+v.

An important property of this system is the so-called chemotactic collapse. This term
refers to the fact that the whole population of organisms concentrate at a single point
in finite or infinite time. When φ(u) = u, it is well-known that the chemotactic collapse
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depends strongly on the dimension of the space. Finite-time blow-up never occurs if
n = 1, whereas it always occurs if n ≥ 3. The two-dimensional case is critical: if the
initial distribution of organisms exceeds a certain threshold, then the solutions may blow-
up in finite time, whereas solutions exist globally in time if the initial mass is below
the threshold. We refer the interested reader to the survey by [Hor03,Hor04] for further
details about the model and a collection of known results.

Steady states of this system are of basic importance for the understanding of the global
dynamics. They correspond to the solutions to{

−Dv∆v + c div(v∇φ(u)) = 0, v > 0 in Ω
−Du∆u− u+ v = 0, u > 0 in Ω,

with homogeneous Neumann boundary conditions on ∂Ω.
This system can be reduced to a scalar equation depending on the function φ. Observe

that, the first equation can be rewritten as

div(v∇(log v − φ(u))) = 0.

By testing this equation against log v − φ(u) and by integrating by parts, one finds∫
Ω

v| log v − φ(u)|2 = 0,

which implies that v = Ceφ(u) for some constant C > 0.
In the most common formulation of the Keller-Segel model φ(u) = u. We are then led

to study the so-called Keller-Segel equation

(5)

{
−σ2∆u+ u− λeu = 0, u > 0 in Ω

∇u · ν = 0 on ∂Ω,

where the constants σ, λ depend on Dv, Du, and c. It is worth to mention that in the case
φ(u) = log u, we get {

−σ̃2∆u+ u− up = 0, u > 0 in Ω
∇u · ν = 0 on ∂Ω,

for some constants σ̃, p > 0, i.e. we recover the Lin-Ni-Takagi equation that we discussed
in the previous section. Let us observe that in dimension 2 the Keller-Segel equation is
critical, whereas the Lin-Ni-Takagi problem is subcritical.

From now on, we restrict ourselves to the case Ω = B(1, 0) ⊂ R2 and study the Keller-
Segel equation (without loss of generality) with d = 1. In a work in collaboration with
Denis Bonheure and Jean-Baptiste Casteras we construct radial solutions to this equation
that concentrate at the origin and on spheres belonging to the interior or the boundary
of B(1, 0). The following is our first result.

Theorem 1.3.1 (Bonheure, Casteras, and Román [BCR]). There exists λ0 > 0 such that
for any λ ∈ (0, λ0) there exists a radial solution uλ to (5) with σ = 1 such that

lim
λ→0

(uλ − Uλ) = 0

17
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uniformly on compact subsets of B(1, 0) \ {0}, where Uλ(r) solves, for ελ ≈ 1
| lnλ| , the

1-dimensional equation 
−U ′′λ −

1

r
U ′λ + Uλ = 0 in (0, 1)

lim
r→0+

Uλ(r)

− ln r
= 4

Uλ(1) =

√
2

ελ

In particular, this theorem shows that the Keller-Segel equation admits radial solution
that concentrate at the origin and on the boundary of the ball. Then, we prove a result
concerning blowing-up at the origin and on an interior sphere.

Theorem 1.3.2 (Bonheure, Casteras, and Román [BCR]). There exists λ1 > 0 such that
for any λ ∈ (0, λ1) there exists a radial solution uλ(r) to (5) with σ = 1 blowing-up at
r = 0 and r = α ∈ (0, 1).

The precise form of the solution can be found in Chapter 2 of Part II. Our final
result states that (5) admits a radial solution which is singular at the origin and that
concentrates on an internal sphere and on the boundary.

Theorem 1.3.3 (Bonheure, Casteras, and Román [BCR]). There exists λ1 > 0 such that
for any λ ∈ (0, λ1) there exists a radial solution uλ(r) to (5) with σ = 1 blowing-up at
r = 0, r = α ∈ (0, 1), and r = 1.

The proof of our results follows the finite dimensional Lyapunov-Schmidt reduction.
It is important to mention that the blow-up rate at the origin is different from the one at
the spheres located in the interior of the ball or at the boundary. Roughly speaking, what
we do is to glue suitable Green’s functions, which exhibit different singular behaviors. In
particular, finding good first approximations is the most complicated part of the method.

1.4 Conformal geometry

1.4.1 The prescribed Gaussian curvature problem

For a long time, conformal changes of metrics, i.e. angle preserving transformations of
metrics, have played an important role in the theory of surfaces in the three-dimensional
Euclidean space. A famous result is the uniformization theorem.

Theorem 1.4.1 (Uniformization theorem). Let M be a compact manifold of dimension
2 without boundary. Given any metric g on M , there exists a metric g̃ which is pointwise
conformal to g and has constant Gauss curvature.

This result provides a classification of two-dimensional surfaces and allows one to relate
topological questions with differential geometric ones. The theory of surfaces formed the
basis for developing the Riemannian differential geometry. In this field, an important and
natural question is to describe the set of curvatures that a given manifold can possess.
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In the case of 2-dimensional manifolds, there is essentially only one notion of curvature.
This problem then reduces to describing the set of Gaussian curvature functions.

Two metrics g and g̃ on a manifold M are said to be pointwise conformal (or conformal
for short) if there exists a smooth function u : M → R such that g̃ = eug. When M is
two-dimensional, the Gaussian curvature of the metric g̃ is given by the formula

Kg̃ = e−u(−∆gu+Kg),

where ∆g = divg∇g denotes the Laplace-Beltrami operator relative to the metric g. In
this case, the above question can be written as the prescribed Gaussian curvature problem
(with conformal change of metric): Given a metric g, which smooth functions h : M → R
can be realized as the Gaussian curvature Kg̃ of a metric g̃ conformal to g? We are then
led to solving the nonlinear elliptic equation

(6) −∆gu+Kg = heu on M.

Note that the uniformization theorem is equivalent to the solvability of this equation in
the special case h ≡ k, for some k ∈ R.

The Gauss-Bonnet theorem imposes a condition on h in terms of the topology of the
manifold. This theorem asserts that∫

M

hdµg̃ = 2πχ(M),

where dµg̃ denotes the element of area with respect to g̃ and χ(M) is the Euler charac-
teristic of M . One deduces that

• if χ(M) > 0 then h must be positive somewhere,

• if χ(M) = 0 then h must change sign or h ≡ 0,

• if χ(M) < 0 then h must be negative somewhere.

Necessary and sufficient conditions for existence of solutions to (6) can be found in the
classical references [KW74,CY87]. Concerning the structure of the set of solutions to (6),
there is little known.

During my master thesis, in a joint work with Manuel del Pino, we studied the case
χ(M) < 0, corresponding to manifolds of genus greater than 1. By the uniformization
theorem we may assume that g has constant Gauss curvature Kg, which in our case is
strictly negative.

This problem has a variational structure. One can easily show that if h ≤ 0, h 6≡ 0
then (6) has a unique solution, which corresponds to the unique minimizer of the energy.
Thus, it remains to investigate the case when h changes sign. The implicit function
theorem yields that the energy admits a relative minimizer if h changes sign and maxM f
is not “too large”. In particular, this holds for any smooth function hλ := h + λ2, where
h is a non-constant function with maxM h = 0 and λ > 0 is a small parameter. Ding and
Liu [DL95] proved that for any λ > 0 small the equation

(7) −∆gu+Kg = hλe
u on M,
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namely (6) with h ≡ hλ, admits at least two solutions, one of which is bounded as λ→ 0
while the other blows-up. However, this result gives no information about the geometric
shape of the solutions.

Borer, Galimberti, and Struwe [BGS15], using variational methods and a concentration
compactness argument, recently gave a new proof of the above result. In addition, they
established that blowing-up of the family of large solutions occurs only near the points of
maxima of h and their associated metrics exhibit bubbling behavior, namely Euclidean
spheres emerge around some of the zero-points of h. Inspired by this work, by matched
asymptotic expansion, in [dPR15] we constructed families of spherical bubbling metrics.
We substantially clarified the structure of the set of large solutions of (7), by using a
finite dimensional Lyapunov-Schmidt reduction that yields both multiplicity and accurate
estimates of their blowing-up behavior.

Theorem 1.4.2 (del Pino and Román [dPR15]). Let p1, . . . , pn be points such that h(pi) =
0 and D2h(pi) is negative definite for each i. Then, there exists a family of solutions uλ
to (7) such that, as λ→ 0,

λ2euλ ⇀ 8π
n∑
i=1

δpi

and uλ → G uniformly in compacts subsets of M \ {p1, . . . , pn}, where G is the nonlinear
Green’s function solution to

−∆gG+Kg = heG + 8π
n∑
i=1

δpi on M.

1.4.2 The prescribed scalar curvature problem

In 1960, Yamabe [Yam60] conjectured the following generalization of the uniformization
theorem.

Theorem 1.4.3 (Yamabe problem). Let M be a compact manifold without boundary of
dimension n ≥ 3. Given any Riemannian metric g on M , there exists a metric g̃ which
is conformal to g and has constant scalar curvature.

The scalar curvature is the complete contraction of the curvature tensor and represents
the amount by which the volume of a small geodesic ball in a Riemannian manifold
deviates from that of the standard ball in Euclidean space. In 2D, the scalar curvature
is twice the Gaussian curvature. Yamabe attempted to solve this problem, but his proof
contained an error. This theorem was proved by Aubin [Aub76a], Trudinger [Tru68], and
Schoen [Sch84]. We refer the interested reader to the survey by Lee and Parker [LP87],
for further material and references on this topic.

The generalization of the prescribed Gaussian curvature problem is the prescribed
scalar curvature problem (with conformal change of metric): Given a metric g, which
smooth function h : M → R can be realized as the scalar curvature Rg̃ of a metric g̃
conformal to g?
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When M is n-dimensional, with n ≥ 3, the scalar curvature Rg̃ of a metric g̃ = evg,
i.e. conformal to g, is given by the formula

Rg̃ = e−v
(
−2(n− 1)∆gv − (n− 1)(n− 2)|∇gv|2 +Rg

)
,

where ∆g denotes the Laplacian and ∇g the covariant derivate relative to the metric g.

By making the substitution ev = u
4

n−2 , for some smooth function u > 0, we find the
simplified identity

Rg̃ = u−
n+2
n−2

(
−c(n)−1∆gu+Rgu

)
,

where c(n) = n−2
4(n−1)

. We are then led to solving the nonlinear problem

(8) −∆gu+ c(n)Rg = c(n)hu
n+2
n−2 , u > 0 on M.

We note that the Yamabe problem corresponds to the special case h ≡ k, for some k ∈ R.
Theorem 1.4.3 allows us to assume that Rg is a constant. An exhaustive list of known
results about (8) is given in the book by Aubin [Aub98]. We also refer the reader to the
pioneer work by Kazdan and Warner [KW75].

Following [dPR15], we focus our attention on the case of prescribing a function of the
form hλ := h+ λ2, where h ∈ C2(M) and λ > 0 is a small parameter. Namely, we study
the problem

(9) −∆gu+ c(n)Rg = c(n)hλu
n+2
n−2 , u > 0 on M.

In collaboration with Angela Pistoia, we studied this equation in [PR17]. As in the 2D
case, our objective is to give some clarity in understanding the set of solutions to (9). We
next present two results. First, without any assumption on the sign of Rg, we prove that
this equation admits at least two solutions. To state our result, we need to introduce two
hypotheses on the function h. Roughly speaking, the conditions are the following (for the
detailed assumptions needed, we refer the reader to Chapter 1 of Part III).

• Global condition: There exists a non-degenerate solution u0 to (9) when λ = 0.

• Local condition: The function h admits a suitable critical point ξ on M such that
h(ξ) = 0 and which is not a local minimum.

We observe that, under the global condition, it is easy to prove that if λ is small enough
then (9) has a solution u0,λ ∈ C2(M) such that ‖u0,λ − u0‖C2(M) → 0 as λ→ 0. Our first
result concerns the multiplicity of solutions to (9). Roughly speaking, we show that, under
the global and local conditions above, this equation admits a second solution uλ ∈ C2(M)
of the form u0 plus a standard n-dimensional bubble properly scaled and centered close
to ξ.

Theorem 1.4.4 (Pistoia and Román [PR17]). Assume that the global and local conditions
above hold. If suitable conditions on the dimension n, the manifold M , and the critical
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point ξ of h are satisfied then, provided λ is small enough, there exists a solution uλ to
problem (9) which blows-up at the point ξ as λ→ 0. Moreover, as λ→ 0, we have∥∥∥∥∥∥uλ(x)− u0(x)− αnλ−

n−2
2 µλ

−n−2
2

(
1 +

∣∣∣∣dg(x, ξλ)µλ

∣∣∣∣2
)−n−2

2

∥∥∥∥∥∥
H1
g (M)

→ 0,

where the concentration point ξλ → ξ, the concentration parameter µλ → 0, and α(n) =

(n(n− 2))
n−2

4 .

This is the first multiplicity result for (9) when Rg ≥ 0 and extends a previous result
by Rauzy [Rau96] when Rg < 0.

Our second result concerns the existence of solutions to problem (9) when Rg > 0,
without need of the global condition above. The solution constructed here looks like a
standard n-dimensional bubble properly scaled and centered close to ξ.

Theorem 1.4.5 (Pistoia and Román [PR17]). Assume that the local condition above
holds. If suitable conditions on the dimension n, the manifold M , and the critical point ξ
of h are satisfied then, provided λ is small enough, there exists a solution uλ to problem
(9) which blows-up at the point ξ as λ→ 0. Moreover, as λ→ 0, we have∥∥∥∥∥∥uλ(x)− αnλ−

n−2
2 µλ

−n−2
2

(
1 +

∣∣∣∣dg(x, ξλ)µλ

∣∣∣∣2
)−n−2

2

∥∥∥∥∥∥
H1
g (M)

→ 0,

where the concentration point ξλ → ξ and the concentration parameter µλ → 0.
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The Ginzburg-Landau model of
superconductivity

23





Chapter 1

3D vortex approximation
construction and ε-level estimates

for the Ginzburg-Landau functional

Abstract

In this chapter, which is based on [Roma], we provide a quantitative three-dimensional
vortex approximation construction for the Ginzburg-Landau energy. This construction
gives an approximation of vortex lines coupled to a lower bound for the energy, optimal
to leading order, analogous to the 2D ones, and valid for the first time at the ε-level.
These tools allow for a new approach to analyze the behavior of global minimizers for
the Ginzburg-Landau functional below and near the first critical field in 3D, followed in
Chapter 2.
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1.1 Introduction

We are interested in studying the full Ginzburg-Landau functional with applied magnetic
field

GLε(u,A) =
1

2

∫
Ω

|∇Au|2 +
1

2ε2
(1− |u|2)2 +

1

2

∫
R3

|H −Hex|2,

which is a model for superconductors (in a magnetic field). Here, Ω is a bounded domain of
R3, that we assume to be smooth and simply connected, u : Ω→ C is the order parameter
indicating the local state of the material (normal or superconducting), A : R3 → R3 is
the electromagnetic vector potential of the magnetic field H = curlA, Hex : R3 → R3 is
a given external (or applied) magnetic field, and ε > 0 is the inverse of the Ginzburg-
Landau parameter, a material constant. We will be interested in the regime of small ε,
corresponding to extreme type-II superconductors. The notation∇A denotes the covariant
gradient ∇− iA.

An essential feature of type-II superconductors is the occurrence of vortices (similar
to those in fluid mechanics, but quantized) in the presence of an applied magnetic field.
Physically, they correspond to normal phase regions around which a superconducting
loop of current circulates. Since u is complex-valued, it can have zeroes with a nonzero
topological degree. Vortices are then topological defects of co-dimension 2 and are the
crucial objects of interest in the analysis of the model.

We introduce the Ginzburg-Landau free energy

Fε(u,A) =
1

2

∫
Ω

|∇Au|2 +
1

2ε2
(1− |u|2)2 + | curlA|2.

This functional is closely related to the simpler Ginzburg-Landau model without magnetic
field

Eε(u) =
1

2

∫
Ω

|∇u|2 +
1

2ε2
(1− |u|2)2.

Since the work by Bethuel, Brezis, and Hélein [BBH94], these functionals and the asso-
ciated vortices have been extensively studied in the mathematics literature. As a result,
the 2D situation is well understood. We refer the reader to the book by Sandier and Ser-
faty [SS07] and references therein for a detailed and exhaustive list of results in this case.
Conversely, many questions remain open in 3D, in particular obtaining all the analogues
of the 2D results contained in [SS07]. This is due to the more complicated geometry of
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the vortices in 3D: they are lines with a priori no regularity, and have to be understood
in the framework of currents and using geometric measure theory.

When the applied magnetic field is taken to be zero, its effect can be replaced with
the prescription of some vorticity on the boundary of the domain. In this case, Rivière in
[Riv95] was the first to study the asymptotic behavior of minimizers as ε→ 0 in the 3D
setting. Using an η-ellipticity result, he identified the limiting one dimensional singular
set with a mass minimizing current, which corresponds to a minimal connection. This
concept was introduced and shown to satisfy a calibration property in the work by Brezis,
Coron, and Lieb [BCL86]. A new approach by Sandier in [San01], combined this property
with a suitable growing-ball procedure to obtain the same result of Rivière in 3D and
extend it to higher dimension. We refer the interested reader to [LR99, BBO01, LR01,
JS02, BBM04, ABO05, SS17] for further results in dimensions 3 and higher, in the case
the external magnetic field is zero.

The key in Ginzburg-Landau analysis has proven to be a vortex ball construction
providing both approximation of the vorticity and lower bound. In 2D done in [San98,
Jer99,SS07]. In 3D started by [ABO05,BJOS12] but not quantitative.

1.1.1 ε-level estimates for the Ginzburg-Landau functional

The full Ginzburg-Landau model is known to be an U(1)-gauge theory. This means that
all the meaningful physical quantities are invariant under the gauge-transformations

u 7→ ueiΦ, A 7→ A+∇Φ,

where Φ is any smooth real-valued function. The full Ginzburg-Landau energy and the
free energy are gauge-invariant, as well as the density of superconducting Cooper pairs
|u|2, the induced magnetic field H, and the vorticity, defined, for any sufficiently regular
configuration (u,A), as

µ(u,A) = curl(iu,∇Au) + curlA,

where (·, ·) denotes the scalar product in C identified with R2 i.e. (a, b) = ab+ab
2

. This
quantity is the gauge-invariant version of the Jacobian determinant of u, and is the ana-
logue of the vorticity of a fluid.

To analyze the vortices, people have been developing tools, in particular the ball
construction method and Jacobian estimates. The first one was introduced independently
by Jerrard [Jer99] and Sandier [San98]. It allows one to obtain universal lower bounds
for two-dimensional Ginzburg-Landau energies in terms of the topology of the vortices.
These lower bounds capture the known fact that vortices of degree d cost at least an
order π|d| log 1

ε
of energy. The second tool, that has been widely used in the analysis

of the Ginzburg-Landau model in any dimension after the work by Jerrard and Soner
[JS02], is the Jacobian (or vorticity) estimate. This estimate allows one to relate the
vorticity µ(u,A) with Dirac masses (supported on co-dimension 2 objects), which in 2D
are naturally derived from the ball construction method.

Optimal versions of these results in 2D can be found in [SS07]. These tools are known
to work at the ε-level and therefore to play a crucial role in the study of the behavior of
global minimizers for GLε in different regimes of the applied field in 2D. This analysis was
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performed by Sandier and Serfaty in a series of papers (see [SS00a,SS00b,SS03][SS00c]).
To do a similar analysis in 3D, analogous tools are needed.

Through a procedure based on slicing of currents, 3D Jacobian estimates and lower
bounds were proved in [JS02] and [SS04]. Alternatively, a suitable application of the
Federer-Fleming polyhedral deformation theorem was used in [ABO05] and [BJOS12] to
obtain results of the same type. The lower bounds provided in these works are valid only
in the limit ε → 0 and therefore they are not sufficient for our purposes, because they
cannot be made ε-quantitative.

In this chapter we present a new 3D vortex approximation construction based on
a 2D vorticity estimate and on minimal connections. More precisely, for configurations
(uε, Aε) whose free energy satisfy a suitable upper bound, we consider a grid of side-length
δ = δ(ε). If appropriately positioned, the grid can be taken to satisfy that |uε| > 5/8
on every edge of a cube. Then a 2D vorticity estimate implies that the restriction of
µ(uε, Aε) to the boundary of every cube is well approximated by a linear combination
of Dirac masses. Using minimal connections, we connect the points of support of these
measures. Finally, by considering the distance

d∂Ω(x, y) = min{|x− y|, d(x, ∂Ω) + d(y, ∂Ω)},

we construct our approximation close to ∂Ω, using minimal connections defined in terms of
d∂Ω. This process yields a closed polyhedral 1-dimensional current νε, or, more precisely,
a sum in the sense of currents of Lipschitz curves, that approximates well the vorticity
µ(uε, Aε) in a suitable norm.

This is the first 3D construction which is at the ε-level and yields optimal estimates
analogous to the 2D ones. The following is our main result.

Theorem 1.1.1 (ε-level estimates for Ginzburg-Landau in 3D). Assume that ∂Ω has
strictly positive Gauss curvature at every point. For any m,n,M > 0 there exist C, ε0 > 0
depending only on m,n,M, and ∂Ω, such that, for any ε < ε0, if (uε, Aε) ∈ H1(Ω,C) ×
H1(Ω,R3) is a configuration such that Fε(uε, Aε) ≤M | log ε|m then there exists a polyhe-
dral 1-dimensional current νε such that νε/π is integer multiplicity, ∂νε = 0 relative to Ω,
supp(νε) ⊂ Sνε ⊂ Ω with |Sνε| ≤ C| log ε|−m−s−1, where s := max

(
n, m+3n−2

2

)
,

(1.1)
1

2

∫
Sνε

|∇Aεuε|2 +
1

2ε2
(1− |uε|2)2 + | curlAε|2 ≥

1

2
|νε|(Ω)

(
log

1

ε
− C log log

1

ε

)
− C

| log ε|n
,

and for any γ ∈ (0, 1] there exists a constant Cγ depending only on γ,m, n,M , and ∂Ω,
such that we have

(1.2) ‖µ(uε, Aε)− νε‖C0,γ
T (Ω)∗ ≤

Cγ| log ε|m(1−γ)

| log ε|(s+1)γ
.

Notation and definitions of the objects and spaces involved in this result can be found
in the preliminaries (see Section 1.2).

This theorem also holds when we only assume that ∂Ω is C2, but the proof presented
here uses the additional technical assumption that ∂Ω has strictly positive Gauss curvature
at every point. A word about the proof in the general case can be found in the Appendix.
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Remark 1.1.1. Alternatively the constants C and Cγ appearing in the previous theorem
can be expressed in terms of the free energy Fε(uε, Aε) of the configuration (uε, Aε) and a
length δ = δ(ε), which measures how “close” µε(uε, Aε) is to νε, and which is a parameter
of the construction (the side-length of the aforementioned grid). This will be done in the
rest of the chapter.

In future work we hope to be able to extend this result to configurations (uε, Aε)
satisfying a less restrictive upper bound of the kind: Fε(uε, Aε) ≤ ε−γ for some γ ∈ (0, 1).

The following result can be stated for a general bounded simply connected domain Ω
with Lipschitz boundary.

Theorem 1.1.2. For any m,n,M > 0 there exist C1, ε0 > 0 depending only on m,n, and
M , such that, for any ε < ε0, if (uε, Aε) ∈ H1(Ω,C)×H1(Ω,R3) is a configuration such
that Fε(uε, Aε) ≤M | log ε|m then, letting s = max

(
n, m+3n−2

2

)
and defining

Ωε = {x ∈ Ω | d(x, ∂Ω) ≥ 2| log ε|−m−s−1},

there exists a polyhedral 1-dimensional current νε such that νε/π is integer multiplicity,
∂νε = 0 relative to Ω, supp(νε) ⊂ Sνε ⊂ Ω with |Sνε| ≤ C| log ε|−m−s−1,

1

2

∫
Sνε

|∇Aεuε|2 +
1

2ε2
(1−|uε|2)2 + | curlAε|2 ≥

1

2
|νε|(Ωε)

(
log

1

ε
− C1 log log

1

ε

)
− C1

| log ε|n
,

and (1.2) holds true in the space C0,γ
0 (Ω)∗ instead of C0,γ

T ∗, for γ ∈ (0, 1] and for constants
C and Cγ as in Theorem 1.1.1.

As a direct consequence of our main result, we recover and improve within our work
setting, a well known result concerning the convergence as ε→ 0 of the vorticity of families
of configurations whose free energy is bounded above by a constant times a power of | log ε|.
Results of the same kind can be found in [JS02,JMS04,SS04,ABO05,BJOS12].

Theorem 1.1.3. Assume that ∂Ω has strictly positive Gauss curvature. Let {(uε, Aε)}ε
be a family of configurations of H1(Ω,C) × H1(Ω,R3) such that Fε(uε, Aε) ≤ M | log ε|m
for some m ≥ 1 and M > 0. Then, up to extraction,

µ(uε, Aε)

| log ε|m−1
⇀ µ in C0,γ

T (Ω)∗

for any γ ∈ (0, 1], where µ is a 1-dimensional current such that µ/π is integer multiplicity
and ∂µ = 0 relative to Ω. If m = 1 then µ is in addition rectifiable. Moreover,

lim inf
ε→0

Fε(uε, Aε)

| log ε|m
≥ |µ|(Ω).

1.1.2 Application to the full Ginzburg-Landau functional

The behavior of global minimizers for GLε is determined by the strength of the external
magnetic field Hex. This model is known to exhibit several phase-transitions, which occur
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Chapter 1. 3D vortex approximation construction and estimates for Ginzburg-Landau

for certain critical values of the intensity of Hex. In the next chapter, we analyze the
so-called first critical field, usually denoted by Hc1 . The first critical field is defined by
the fact that below Hc1 minimizers of the full Ginzburg-Landau functional do not have
vortices, while they do for applied fields whose strength is higher than Hc1 .

Let us assume that Hex ∈ L2
loc(R3,R3) is such that divHex = 0. Then, there exists a

vector-potential Aex ∈ H1
loc(R3,R3) such that

curlAex = Hex, divAex = 0 in R3 and Aex · ν = 0 on ∂Ω,

where hereafter ν denotes the outer unit normal to ∂Ω. We remark that the divergence-
free assumption is in accordance with the fact that magnetic monopoles do not exist in
Maxwell’s electromagnetism theory.

Let us introduce the space

Hcurl := {A ∈ H1
loc(R3,R3) | curlA ∈ L2(R3,R3)}.

The functional GLε(u,A) is well defined for any pair (u,A) ∈ H1(Ω,C) × [Aex + Hcurl].
We have the following result.

Corollary 1.1.1. Theorem 1.1.1 holds true if the hypothesis that (uε, Aε) ∈ H1(Ω,C) ×
H1(Ω,R3) is a configuration such that E(uε, Aε) ≤M | log ε|m is replaced with the assump-
tions that (uε, Aε) ∈ H1(Ω,C)× [Aex + Hcurl] is a minimizing configuration for GLε and
that

∫
Ω
|Hex|2 ≤M | log ε|m.

By observing that

Fε(u,A) ≤ GLε(u,A) +
1

2

∫
Ω

|Hex|2

and that

inf
(u,A)∈H1(Ω,C)×[Aex+Hcurl]

GLε(u,A) ≤ GLε(1, Aex) =

∫
Ω

|Aex|2 ≤ C

∫
Ω

|Hex|2,

for a universal constant C, the corollary immediately follows from our main theorem.

In future work we will present a quantitative three-dimensional version of the product-
estimate for Ginzburg-Landau proved by Sandier and Serfaty in [SS04], which will be
applied to the situation of Ginzburg-Landau vortex dynamics.

1.1.3 A word about the proof of the main result

Since our construction ensures that (the restriction of) the vorticity is well approximated
on every boundary of a cube of the grid, and because it is made at a small scale δ, the
2D vorticity estimate shown in Section 1.4 yields that νε is a good approximation of the
vorticity in 3D.

The subtle point of the proof is then to obtain a lower bound for the free energy at the
ε-level. Here is where minimal connections play a role. The idea of obtaining lower bounds
for Ginzburg-Landau energies via the use of minimal connections was first introduced in
[San01]. When trying to apply this kind of method to obtain lower bounds for the full
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functional, the main obstacle that as soon as the external magnetic field is of the order
of the first critical field, the number of vortices is a priori unbounded as ε → 0. The
main challenge in getting a lower bound that works at the ε-level is thus to keep track of
the dependence of all the estimates on ε and δ, keeping into account that the number of
vortices may be unbounded.

Our method goes as follows: The choice of grid allows us to show that the restriction
of the vorticity to the boundary of a cube C can be well approximated by

2π

(
k∑
i=1

δpi −
k∑
i=1

δni

)
,

where the points pi’s are the (non-necessarily distinct) positive singularities and the points
ni’s are the (non-necessarily distinct) negative singularities. We remark that the number
of points and their locations depend on ε and that (a priori) it may blow up as ε→ 0.

It is well known (see [BCL86]) that there exists a 1-Lipschitz function ζ such that

k∑
i=1

ζ(pi)−
k∑
i=1

ζ(ni) = L(A ),

where L(A ) is the length of the minimal connection associated to the configuration of
points A = {p1, . . . , pk, n1, . . . , nk}. Since |∇ζ| ≤ 1, the co-area formula gives∫

C

eε(uε) ≥
∫

C

eε(uε)|∇ζ| ≥
∫
t∈R

∫
Σt

eε(uε)dH2dt,

where eε(uε) = 1
2
|∇uε|2 + 1

4ε2
(1− |uε|2)2 and Σt = {ζ = t} ∩ C .

At this point, a vortex ball construction on a surface is necessary. Roughly speaking,
if Σt is nice enough and |uε| ≥ 1/2 on ∂Σt, then the 2D ball construction estimate would
give us ∫

Σt

eε(uε)dH2 ≥ πdeg(uε/|uε|, ∂Σt)

(
log

1

ε
−O(log | log ε|)

)
.

It turns out that, for most t’s, we have

deg(uε/|uε|, ∂Σt) = #{i | ζ(pi) > t} −#{i | ζ(ni) > t}.

By noting that∫
t∈R

#{i | ζ(pi) > t} −#{i | ζ(ni) > t}dt =
k∑
i=1

ζ(pi)−
k∑
i=1

ζ(ni) = L(A ) ≈ 1

2π
|νε|(C ),

we are led to ∫
C

eε(uε) ≥
1

2
|νε|(C )

(
log

1

ε
−O(log | log ε|)

)
+ small error.

Unfortunately, we cannot really use the function ζ in the previous argument, because its
regularity is not sufficient to apply the ball construction on most of its level sets. To
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Chapter 1. 3D vortex approximation construction and estimates for Ginzburg-Landau

bypass this issue, we construct a smooth approximation of this function. The difficulties
appear when trying to control the errors involved in the previously described method,
because a quantitative bound on the second fundamental form of most of the level sets of
our smooth approximation of the function ζ is needed.

In a similar but more involved way we can obtain a lower bound close to the boundary
of the domain. We point out that our technical assumption on ∂Ω comes into play when
we smoothly approximate the function ζ for d∂Ω. When we only assume that the domain
has a C2 boundary then this argument needs to be modified (see the Appendix).

1.1.4 Outline of the chapter

The chapter is organized as follows: in Section 1.2 we introduce some basic objects and
spaces that are used throughout the chapter, we recall some facts from the theory of
currents and differential forms, and we describe the choice of grid.

In Section 1.3 we provide the ball construction method on a surface, which is one of
the key tools used to obtain the lower bound for the free energy.

In Section 1.4 we show a 2D vorticity estimate. The main difference with classical
result of the same kind is the space in which we prove this result.

In Section 1.5 we start by reviewing the concept of minimal connection. Then, we
introduce the function ζ and the function ζ for d∂Ω, and state two technical propositions
concerning a suitable smooth approximation of these functions. Finally, we present our
3D vortex approximation construction.

Section 1.6 is devoted to the proof of a lower bound for the energy without magnetic
field in the union of cubes of the grid, while in Section 1.7 we provide a similar estimate
near the boundary of the domain. In these proofs we crucially use the results of Section
1.3 and Section 1.5.

In Section 1.8 we present the proof of Theorem 1.1.1, which uses the lower bounds
obtained in Section 1.6 and Section 1.7, as well as the 2D vorticity estimate shown in
Section 1.4.

In Appendix 1.A we construct a suitable smooth approximation of the function ζ. We
do the same in Appendix 1.B for the function ζ for d∂Ω. These are the most technical
parts of the chapter.

1.2 Preliminaries

It is useful to introduce certain concepts and notation from the theory of currents and
differential forms. We recall that in Euclidean spaces vector fields can be identified with
1-forms. Indeed, the vector field F = (Fx1 , Fx2 , Fx3) can be identified with the 1-form
Fx1dx1 + Fx2dx2 + Fx3dx3. We use the same notation for both the vector field and the
1-form.

It is also convenient to recall that a vector field F satisfying the boundary condition
F × ν = 0 on ∂Ω is equivalent to a 1-form F such that FT = 0 on ∂Ω. Here FT denotes
the tangential component of F on ∂Ω.
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We define the superconducting current of a pair (u,A) ∈ H1(Ω,C)×H1(Ω,R3) as the
1-form

j(u,A) = (iu, dAu) =
3∑

k=1

(iu, ∂ku− iAku)dxk.

It is related to the vorticity µ(u,A) of a configuration (u,A) through

(1.3) µ(u,A) = dj(u,A) + dA.

Thus µ(u,A) is an exact 2-form in Ω acting on couples of vector fields (X, Y ) ∈ R3 × R3

with the standard rule that dxi ∧ dxj(X, Y ) = XiYj − XjYi. It can also be seen as a
1-dimensional current, which is defined through its action on 1-forms by the relation

µ(u,A)(φ) =

∫
Ω

µ(u,A) ∧ φ.

We recall that the boundary of a 1-current T relative to the set Ω, is the 0-current ∂T
defined by

∂T (φ) = T (dφ)

for all smooth compactly supported 0-form φ defined in Ω. In particular, an integration
by parts shows that the 1-dimensional current µ(u,A) has zero boundary relative to Ω.
We denote by |T |(Ω) the mass of a 1-current T in Ω.

For α ∈ (0, 1] we let C0,α(Ω) denote the space of 1-forms φ such that ‖φ‖C0,α(Ω) <∞.

C0,α
0 (Ω) denotes the space of 1-forms φ ∈ C0,α(Ω) such that φ = 0 on ∂Ω, while C0,α

T (Ω)
denotes the space of 1-forms φ ∈ C0,α(Ω) such that φT = 0 on ∂Ω. The symbol ∗ is used
to denote their dual spaces.

We next recall the definition of topological degree.

Definition 1.2.1. Let Σ be a complete oriented surface in R3. If Θ ⊂ Σ is a smooth
domain, and the map u : Σ → C does not vanish on ∂Θ, we can define the degree
deg(u/|u|, ∂Θ) of u restricted to ∂Θ to be the winding number of the map u/|u| : ∂Θ→ S1.

We observe that, because Σ is assumed to be oriented, ∂Θ carries a natural orienta-
tion. In the case that ∂Θ is not smooth, the topological degree can still be defined by
approximation.

Throughout this chapter |X| denotes the Lebesgue measure of the set X and Hd

denotes the d-dimensional Hausdorff measure, for d ∈ N. When meaningful, we sometimes
use the notation

Fε(u,A,Θ) :=

∫
Θ

eε(u,A)dH2, Eε(u,Θ) :=

∫
Θ

eε(u)dH2,

with eε(u,A) := 1
2
|∇Au|2 + 1

4ε2
(1− |u|2)2 + | curlA|2, eε(u) := 1

2
|∇u|2 + 1

4ε2
(1− |u|2)2.
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1.2.1 Choice of grid

Let us fix an orthonormal basis (e1, e2, e3) of R3 and consider a grid G = G(a,R, δ) given
by the collection of (closed) cubes Ci ⊂ R3 of side-length δ = δ(ε) (conditions on this
parameter are given in the lemma below). In the grid we use a system of coordinates with
origin in a ∈ Ω and orthonormal directions given by the rotation of the basis (e1, e2, e3)
with respect to R ∈ SO(3). From now on we denote by R1 (respectively R2) the union
of all edges (respectively faces) of the cubes of the grid. We have the following lemma.

Lemma 1.2.1 (Choice of grid). For any γ ∈ (0, 1) there exists a rotation R0(γ) ∈ SO(3)
and constants c0(γ), c1(γ) > 0, δ0(Ω) ∈ (0, 1) such that, for any ε, δ > 0 satisfying

ε
1−γ

2 ≤ c0 and c1ε
1−γ

4 ≤ δ ≤ δ0,

if (uε, Aε) ∈ H1(Ω,C) × H1(Ω,R3) is a configuration such that Fε(uε, Aε) ≤ ε−γ then
there exists bε ∈ Ω such that the grid G(bε, R0, δ) satisfies

(1.4a) |uε| > 5/8 on R1(G(bε, R0, δ)) ∩ Ω,

(1.4b)

∫
R1(G(bε,R0,δ))∩Ω

eε(uε, Aε)dH1 ≤ Cδ−2Fε(uε, Aε),

(1.4c)

∫
R2(G(bε,R0,δ))∩Ω

eε(uε, Aε)dH2 ≤ Cδ−1Fε(uε, Aε),

where C is a universal constant.

Proof. First, let us observe that, by the Cauchy-Schwarz inequality and the co-area for-
mula, we have

4Fε(uε, Aε) ≥
∫

Ω

|∇|uε||2 +
1

ε2
(1− |uε|2)2

≥
∫

Ω

|∇|uε||(1− |uε|2)

ε

=

∫ ∞
t=0

(∫
{|u|=t}

(1− t2)

ε
dH2

)
dt

Define T := {t ∈ [5/8, 3/4] | Area({|uε| = t}) ≤ εα} for α := 1−γ
2

. From the previous
estimate we deduce that

|T | ≥ 1/8− Cε1−αFε(uε, Aε),

where hereafter C > 0 denotes a universal constant that may change from line to line. It
is easy to check that there exists a constant c0(γ) > 0 such that |T | > 0 for any ε > 0

satisfying ε
1−γ

2 ≤ c0.
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We observe that by integral geometry formulae (see for instance [Lan15, San04]), for
any t ∈ [0, 3/4], we have

Area({|uε| = t}) = c

∫
R∈SO(3)

∫
h∈R3

# ({|uε| = t} ∩ LR,h ∩ Ω) dL(h)dL(R),

where LR,h is the rotation with respect to R ∈ SO(3) and the translation with respect to
h ∈ R3 of a fixed line L in R3, #(A) denotes the number of points of the set A, and c is
a constant depending only on the dimension of the euclidean space.

We fix a point a ∈ Ω and choose δ0 = δ0(Ω) ∈ (0, 1) such that {a + [0, δ]3} ⊂ Ω for
any 0 < δ < δ0. Observe that, up to an adjustment of c, we have

Area({|uε| = t}) =
c

δ

∫
R∈SO(3)

∫
b∈{a+[0,δ]3}

# ({|uε| = t} ∩R1(G(b, R, δ)) ∩ Ω) dL(b)dL(R).

Fix t0 ∈ T and define

G0 := {(R, b) | R ∈ SO(3), b ∈ {a+ [0, δ]3}, {|uε| = t0} ∩R1(G(b, R, δ) 6= ∅}.

By noting that

|G0| ≤
δ

c
Area({|uε| = t0}) ≤

δεα

c
,

we deduce that there exists a fixed rotation R0 ∈ SO(3) such that

BI := {b ∈ {a+ [0, δ]3} | {|uε| = t0} ∩R1(G(b, R0, δ) 6= ∅}

satisfies |BI | ≤ Cδεα.
We observe that, for any b ∈ {a+ [0, δ]3} \BI ,

either |uε| > t0 or |uε| < t0 on R1(G(b, R0, δ)) ∩ Ω.

We let
BII := {b ∈ {a+ [0, δ]3} \BI , {|uε| < t0} ∩R1(G(b, R0, δ) 6= ∅}

and observe that, for every b ∈ BII , we have (1− |uε|2) ≥ (1− t20). This implies that

(1− t20)2

4ε2
|BII | ≤

∫
b∈BII

∫
R1(G(b,R0,δ))∩Ω

eε(uε, Aε)dH1dL(b) ≤ Fε(uε, Aε)

and thus |BII | ≤ Cε2Fε(uε, Aε).
Now, we define Bgood := {a+ [0, δ]3} \ (BI ∪BII). Observe that

|Bgood| ≥ δ3 − C(δεα + ε2−γ)

and that there exists a constant c1 > 0 such that |Bgood| ≥ δ3/2 for any ε, δ > 0 satisfying
c1ε

α
2 ≤ δ. Moreover, for any b ∈ Bgood, we have

|uε| > t0 on R1(G(b, R0, δ)) ∩ Ω.
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Next, using a mean value argument we choose b = bε ∈ Bgood in such a way that∫
Rn(G(bε,R0,δ))∩Ω

eε(uε, Aε)dHn ≤ Cδn−3Fε(uε, Aε) for n = 1, 2.

First, by [ABO05, Lemma 8.4] there exists bε ∈ Bgood such that, for n = 1, 2,∫
Rn(G(bε,R0,δ))∩Ω

eε(uε, Aε)dHn ≤ 2

|Bgood|

∫
Bgood

∫
Rn(G(b,R0,δ))∩Ω

eε(uε, Aε)dHndL(b).

Second, arguing as in the proof of [ABO05, Lemma 3.11], we have

1

δ3

∫
{a+[0,δ]3}

δ3−n
∫

Rn(G(b,R0,δ))∩Ω

eε(uε, Aε)dHndL(b) = CFε(uε, Aε) for n = 1, 2.

Then, we deduce that∫
Rn(G(bε,R0,δ))∩Ω

eε(uε, Aε)dHn ≤ C
δ3

|Bgood|
δn−3Fε(uε, Aε) for n = 1, 2.

Recalling that |Bgood| ≤ δ3/2, the lemma follows.

From now on we drop the cubes of the grid G(bε, R0, δ), given by Lemma 1.2.1, whose
intersection with R3 \ Ω is non-empty. We also define

(1.5) Θ := Ω \ ∪Cl∈GCl and ∂G := ∂ (∪Cl∈GCl) .

Observe that, in particular, ∂Θ = ∂G ∪ ∂Ω.
We remark that G(bε, R0, δ) carries a natural orientation. The boundary of every cube

of the grid will be oriented accordingly to this orientation. Each time we refer to a face
ω of a cube C , it will be considered to be oriented with the same orientation of ∂C . If
we refer to a face ω ⊂ ∂G, then the orientation used is the same of ∂G.

1.3 The ball construction method on a surface

In this section we use the method of Jerrard introduced in [Jer99] in order to construct
balls containing all the zeros of u on a surface. This allows us to obtain a lower bound
for the energy without magnetic field. The construction given here follows the one made
by Sandier in [San01] that corresponds to an adaptation of the method of Jerrard. The
following is the main result of this section, which is an extension of [San01, Proposition
3.5].

Proposition 1.3.1. Let Σ̃ be a complete oriented surface in R3 whose second fundamental
form is bounded by 1. Let Σ be a bounded open subset of Σ̃. For any m,M > 0 there
exists ε0(m,M) > 0 such that, for any ε < ε0, if uε ∈ H1(Σ,C) satisfies

(1.6) Eε(uε,Σ) ≤M | log ε|m
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and

|u(x)| ≥ 1

2
if d(x, ∂Σ) < 1,

where d(·, ·) denotes the distance function in Σ̃, then, letting d be the winding number of
uε/|uε| : ∂Σ→ S1 and Mε = Eε(uε,Σ), we have

Eε(uε,Σ) ≥ π|d|
(

log
1

ε
− logMε

)
.

To prove Proposition 1.3.1 we follow almost readily the proofs of [Jer99] and [San01].

1.3.1 Main steps

Let us define the essential null set SE(uε) of uε to be the union of those connected
components Ui of {x | |uε(x)| < 1/2} such that deg(uε/|uε|, ∂Ui) 6= 0.

In the rest of this section each time we refer to a ball B of radius r we mean a geodesic
ball of radius r in Σ̃.

First, we include SE(uε) in the union of well-chosen disjoint “small” balls Bi of radii
ri > ε such that

Eε(uε, Bi) ≥
ri
Cε

,

where the constant C does not depend on the second fundamental form of Σ when it is
assumed to be bounded by 1. This is possible according to the following lemma.

Lemma 1.3.1. Under the hypotheses of Proposition 1.3.1, there exist C, r0 > 0 such that,
for any ε > 0, there exist disjoint balls B1, . . . , Bk of radii ri such that

1. ri ≥ ε for all i ∈ {1, . . . , k}.

2. SE(u) ⊂ ∪iBi and Bi ∩ SE(u) 6= ∅ for all i ∈ {1, . . . , k}.

3. For all i ∈ {1, . . . , k},

Eε(uε, Bi ∩ Σ) ≥ min{ri, r0, 1}
Cε

.

The proof then involves dilating the balls Bi into balls B′i by combining them with
annuli. A lower bound for Eε(uε, B

′
i) is obtained by combining the lower bound for

Eε(uε, Bi) and a lower bound for Eε(uε, B
′
i \Bi).

Lemma 1.3.2. Under the hypotheses of Proposition 1.3.1, there exist C, ε0, r0 > 0 such
that, for any 0 < ε < s < r < r0, if Br, Bs ⊂ Σ are two concentric balls and if SE(uε) ∩
(Br \Bs) = ∅ then, letting d := deg(uε/|uε|, ∂Br),

Eε(uε, Br \Bs) ≥ |d|
(

Λε

(
r

|d|

)
− Λε

(
s

|d|

))
,

where Λε : R+ → R+ is a function that satisfies the following properties
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1. Λε(t)/t is decreasing.

2. supt∈R+
Λε(t)/t ≤ 1/(Cε).

3. If 0 < ε < ε0 and ε < t < r0 then∣∣∣∣Λε(t)− π log
t

ε

∣∣∣∣ ≤ C.

By taking into consideration the following adaptation of [San01, Lemma 3.12], the
proofs of the previous two lemmas are straightforward modifications of the proofs of
[San01, Lemma 3.8] and of [San01, Lemma 3.9].

Lemma 1.3.3. Let St(x) denote the geodesic circle in Σ̃ of radius t centered at x ∈ Σ.
Under the hypotheses of Proposition 1.3.1, there exist C, ε0, r0 > 0 such that, for any
x ∈ Σ and for any ε, t > 0 satisfying ε < ε0 and ε < t < r0, if |uε| ≤ 1 on St(x) then

Eε(uε, St(x)) ≥ πm2

(
|d|
t
− C

)+

+
(1−m)C

Cε
,

where m := inf
y∈St
|uε(y)| and

d :=

{
deg(uε/|uε|, St(x)) m 6= 0

0 m = 0.

Proof. By observing that the constants r0, r, and C involved in (B.8), (B.9), and (B.12) in
the proof of [San01, Lemma 3.12] can be chosen independently of the second fundamental
form of Σ̃ when it is assumed to be bounded by 1, then the proof is verbatim the same
as that of [San01, Lemma 3.2].

Lemma 1.3.1 and Lemma 1.3.2 allow one to prove the following result, whose proof is
a straightforward modification of the proof of [San01, Proposition 3.10].

Proposition 1.3.2. For any ε > 0, let {Bi}i be the family of balls of radii ri given by
Lemma 1.3.1. Let

di :=

{
deg(uε/|uε|, ∂Bi) if Bi ⊂ Σε

0 otherwise,

and
t0 := min

{i | di 6=0}

ri
|di|

(with t0 := +∞ if di = 0 for every i).

Then, for any t ≥ t0, there exists a family of disjoint geodesic balls B1(t), . . . , Bk(t)(t) of

radii ri(t) in Σ̃ such that

1. SE(u) ⊂ ∪iBi(t) and SE(u) ∩Bi(t) 6= ∅ for all i ∈ {1, . . . , k(t)}.

2. For all i ∈ {1, . . . , k(t)}, if Bi(t) ⊂ Σ then ri(t) ≥ t|di(t)|, where

di(t) := deg(uε/|uε|, ∂Bi(t)).
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3. For all i ∈ {1, . . . , k(t)},

Eε(uε, Bi(t) ∩ Σ) ≥ min{ri(t), r0, 1}
Λε(t)

t
.

Proof of Proposition 1.3.1. We assume that d 6= 0, otherwise the result is trivial. Apply
Lemma 1.3.1, call the resulting balls B1, . . . , Bk, and call r1, . . . , rk their radii. From
Lemma 1.3.1 and (1.6), we have

min{ri, r0, 1} ≤ CεEε(uε, Bi ∩ Σ) ≤ CεMε ≤ Cε| log ε|m,

where throughout the proof C = C(M) > 0 denotes a constant that may change from
line to line. We deduce that there exists ε0(m,M) > 0 such that, for any i ∈ {1, . . . , k}
and for any ε < ε0,

(1.7) ri = min{ri, r0, 1} ≤ CεMε and ri ≤
1

2
.

Since d(SE(uε), ∂Σ) < 1 and Bi ∩ SE(uε) 6= 0, we conclude that Bi ⊂ Σ. Thus

(1.8)
k∑
i=1

deg(uε/|uε|, Bi) = d 6= 0.

As in Proposition 1.3.2, let

t0 = min
{i | di 6=0}

ri
|di|

.

From (1.7) and (1.8), we get that t0 ≤ CεMε. Fix α ∈ (0, 1). By reducing the constant
ε0, we deduce that t0 ≤M−1

ε | log ε|α for any ε < ε0. Therefore, we may apply Proposition
1.3.2 with t = M−1

ε | log ε|α. This yields balls B1(t), . . . , Bk(t)(t) with radii ri(t) and degrees
di(t) such that

min{ri(t), r0, 1} ≤ Eε(uε, Bi(t) ∩ Σ)
t

Λε(t)
.

From Lemma 1.3.2, we have

ri(t) = min{ri(t), r0, 1} ≤Mε
M−1

ε | log ε|α

C| log ε|
≤ C| log ε|α−1.

In particular, by possibly further reducing the constant ε0, we deduce that Bi(t) ⊂ Σ for

any i ∈ {1, . . . , k(t)} and for any ε < ε0. Hence d =
∑k(t)

i=1 di(t). Then, from Proposition
1.3.2, ri(t) ≥ t|di(t)| and therefore

Eε(uε,Σ) ≥
k(t)∑
i=1

|di(t)|Λε(t).

Since
∑k(t)

i=1 |di(t)| ≥ |d|, Lemma 1.3.2 implies that, for any ε < ε0,

Eε(u,Σ) ≥ π|d|
(

log
t

ε
− C

)
≥ π|d|

(
log

1

ε
− logMε

)
.

The proposition is proved.
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Corollary 1.3.1. Let Σ̃ be a complete oriented surface in R3 whose second fundamental
form is bounded by Qε = Q| log ε|q, where q,Q > 0 are given numbers. Let Σ be a bounded
open subset of Σ̃. For any m,M > 0 there exists ε0(m, q,M,Q) > 0 such that, for any
ε < ε0, if uε ∈ H1(Σ,C) satisfies

Eε(uε,Σ) ≤M | log ε|m

and

|u(x)| ≥ 1

2
if d(x, ∂Σ) < Q−1

ε ,

where d(·, ·) denotes the distance function in Σ̃, then, letting d be the winding number of
uε/|uε| : ∂Σ→ S1 and Mε = Eε(uε,Σ) we have

Eε(uε,Σ) ≥ π|d|
(

log
1

ε
− logMεQε

)
.

Proof. Let us consider the transformation

ũε(y) = uε

(
y

Qε

)
for y ∈ Σε := QεΣ.

We let Σ̃ε := QεΣ̃. Observe that, by a change of variables, we have

Eε(uε,Σ) = Eε̃(ũε,Σε),

where ε̃ := εQε. It is easy to check that the second fundamental form of Σ̃ε is bounded
by 1. Then a direct application of Proposition 1.3.1 shows that

Eε(uε,Σ) = Eε̃(ũε,Σε) ≥ π|d|
(

log
1

ε̃
− logMε

)
= π|d|

(
log

1

ε
− logMεQε

)
for any 0 < ε < ε1 = ε0Q

−1
ε , where ε0 is the constant appearing in the proposition.

1.4 A 2D vorticity estimate

Let ω be a two-dimensional domain. For a given function u : ω → C and a given vector
field A : ω → R2 we define

j(u,A) = (iu,∇Au), µ(u,A) = dj(u,A) + dA.

We also let

Fε(u,A, ω) =

∫
ω

eε(u,A), Fε(u,A, ∂ω) =

∫
∂ω

eε(u,A)dH1,

where

eε(u,A) = |∇Au|2 +
1

2ε2
(1− |u|2)2 + | curlA|2.

We have the following 2D vorticity estimate.
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Theorem 1.4.1. Let ω ⊂ R2 be a bounded domain with Lipschitz boundary. Let u : ω →
C and A : ω → R2 be C1(ω) and such that |u| ≥ 5/8 on ∂ω. Let {Si}i∈I be the collection
of connected component of {|u(x)| ≤ 1/2} whose degree di = deg(u/|u|, ∂Si) 6= 0. Then,
letting r =

∑
i∈I diam(Si) and assuming ε, r ≤ 1, we have

(1.9)

∥∥∥∥∥µ(u,A)− 2π
∑
i∈I

diδai

∥∥∥∥∥
C0,1(ω)∗

≤ C max(ε, r)(1 + Fε(u,A, ω) + Fε(u,A, ∂ω)),

where ai is the centroid of Si and C is a universal constant.

Proof. As in [SS07, Chapter 6], we set χ : R+ → R+ to be defined by
χ(x) = 2x if x ∈

[
0, 1

2

]
χ(x) = 1 if x ∈

[
1
2
, 3

2

]
χ(x) = 1 + 2

(
x− 3

2

)
if x ∈

[
3
2
, 2
]

χ(x) = x if x ∈ [2,+∞).

We then set ũ : ω → C by

ũ(x) =
χ(|u|)
|u|

u

and let
j̃ := (iũ, dAũ) , µ̃ := dj̃ + dA.

Observe that |ũ| = 1 and µ̃ = 0 outside of ∪i∈ISi. We claim that

‖µ(u,A)− µ̃‖C0,1(ω)∗ ≤ Cε(Fε(u,A, ω) + Fε(u,A, ∂ω)).

In fact, by integration by parts, for any function ζ ∈ C0,1(ω) we have∣∣∣∣∫
ω

ζ(µ(u,A)− µ̃)

∣∣∣∣ ≤ ∣∣∣∣∫
ω

(
∇ζ)⊥ · (j(u,A)− j̃

)∣∣∣∣+

∣∣∣∣∫
∂ω

ζ
(
j(u,A)− j̃

)
· ϑ⊥

∣∣∣∣ ,
where ϑ is the outer unit normal to ∂ω and x⊥ = (−x2, x1) for any vector x = (x1, x2).
Arguing as in [SS07, Lemma 6.2], we get∣∣∣∣∫

ω

(
∇ζ)⊥ · (j(u,A)− j̃

)∣∣∣∣ ≤ ‖∇ζ‖L∞(ω)

∫
ω

||u|2 − |ũ|2|
|u|

|∇Au|

≤ 3‖∇ζ‖L∞(ω)

∫
ω

|1− |u|||∇Au|

≤ C‖∇ζ‖L∞(ω)εFε(u,A, ω).

Since |ũ| = 1 on ∂ω, a simple computation shows that∣∣j(u,A)− j̃
∣∣ ≤ 2(1− |u|2) |∇Au| on ∂ω.

By the Cauchy-Schwarz inequality, we find∣∣∣∣∫
∂ω

ζ
(
j(u,A)− j̃

)
· ϑ⊥

∣∣∣∣ ≤ 2‖ζ‖C0,1(ω)

∫
∂ω

(1− |u|2) |∇Au| dH1
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≤ C‖ζ‖C0,1(ω)εFε(u,A, ∂ω).

Thus
‖µ(u,A)− µ̃‖C0,1(ω)∗ ≤ Cε(Fε(u,A, ω) + Fε(u,A, ∂ω)),

for some universal constant C. The proof then reduces to proving that∥∥∥∥∥µ̃− 2π
∑
i∈I

diδai

∥∥∥∥∥
C0,1(ω)∗

≤ C max(r, ε)(1 + Fε(u,A, ω) + Fε(u,A, ∂ω)).

Let ζ ∈ C0,1(ω) and observe that∫
ω

ζµ̃ =
∑
i∈I

∫
Si

ζµ̃ =
∑
i∈I

ζ(ai)

∫
Si

µ̃+
∑
i∈I

∫
Si

(ζ − ζ(ai))µ̃.

Since wherever |ũ| = 1 we have µ̃ = d(iu, du), Stokes’ theorem yields∫
Si

µ̃ =

∫
∂Si

(iu,∇u) · τ = 2πdi.

Thus ∑
i∈I

ζ(ai)

∫
Si

µ̃ = 2π
∑
i∈I

diζ(ai) = 2π
∑
i∈I

di

∫
ω

ζδai

We also observe that, since ζ is a Lipschitz function, we have

|ζ(x)− ζ(ai)| ≤ ‖ζ‖C0,1(ω)|x− ai| ≤ ‖ζ‖C0,1(ω)diam(Si)

for all x ∈ Si.
On the other hand, noting that

µ̃ = 2(∂x1ũ− iAx1ũ)× (∂x2ũ− iAx2ũ) + curlA,

we deduce that |µ̃| ≤ 2|∇Au|2 + | curlA|. Then, letting Fε(u,A, Si) =

∫
Si

eε(u,A), the

Cauchy-Schwarz inequality gives∫
Si

|µ̃| ≤ 4
(
Fε(u,A, Si) + |Si|

1
2Fε(u,A, Si)

1
2

)
.

Observe that, by Jung’s theorem, we have |Si| ≤ Cdiam(Si)
2. Collecting our previous

computations, we find∣∣∣∣∣∑
i∈I

∫
Si

(ζ − ζ(ai))µ̃

∣∣∣∣∣ ≤ Cr‖ζ‖C0,1(ω)

(
Fε(u,A, ω) + rFε(u,A, ω)

1
2

)
.

Remembering that
√
x ≤ 1 + x, we get∣∣∣∣∣

∫
ω

ζµ̃− 2π
∑
i∈I

di

∫
ω

ζδai

∣∣∣∣∣ ≤ Cr‖ζ‖C0,1(ω) (1 + Fε(u,A, ω)) .

This concludes the proof of (1.9).
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1.4. A 2D vorticity estimate

Given a three-dimensional Lipschitz domain ω ⊂ Ω contained in a plane, we let (s, t, 0)
denote coordinates in R3 such that ω ⊂ {(s, t, 0) ∈ Ω}. We define µε := µε(u,A)[∂s, ∂t],
and write µε,ω its restriction to ω. Theorem 1.4.1 immediately yields the following corol-
lary.

Corollary 1.4.1. Let γ ∈ (0, 1) and assume that (uε, Aε) ∈ H1(Ω,C) × H1(Ω,R3) is a
configuration such that Fε(uε, Aε) ≤ ε−γ, so that, by Lemma 1.2.1, there exists a grid
G(bε, R0, δ) satisfying (1.4). Then there exist ε0(γ) such that, for any ε < ε0 and for
any face ω ⊂ R2(G(bε, R0, δ)) of a cube of the grid G(bε, R0, δ), letting {Si,ω}i∈Iω be
the collection of connected components of {x ∈ ω | |uε(x)| ≤ 1/2} whose degree di,ω :=
deg(uε/|uε|, ∂Si,ω) 6= 0, we have∥∥∥∥∥µε,ω − 2π

∑
i∈Iω

di,ωδai,ω

∥∥∥∥∥
C0,1(ω)∗

≤

C max(rω, ε)

(
1 +

∫
ω

eε(uε, Aε)dH2 +

∫
∂ω

eε(uε, Aε)dH1

)
,

where ai,ω is the centroid of Si,ω, rω :=
∑

i∈Iω diam(Si,ω), and C is a universal constant.

In view of the previous corollary it is important to find upper bounds for rω, di,ω, and
|Iω|. Prior to doing so let us recall the following result adapted from [Jer99].

Lemma 1.4.1. Under the hypotheses of Corollary 1.4.1, there exists ε0(γ) such that, for
any ε < ε0 and for any face ω ⊂ R2(G(bε, R0, δ)) of a cube of the grid G(bε, R0, δ), letting
{Si,ω}i∈Iω be the collection of connected components of {x ∈ ω | |u(x)| ≤ 1/2} whose
degree di,ω 6= 0, we have

|di,ω| ≤ C

∫
Si,ω

|∇Aεuε|2,

where C is a universal constant.

With the aid of the previous lemma we prove the following result.

Lemma 1.4.2. Under the hypotheses of Corollary 1.4.1, there exists ε0(γ) such that, for
any ε < ε0 and for any face ω ⊂ R2(G(bε, R0, δ)) of a cube of the grid G(bε, R0, δ), letting
{Si,ω}i∈Iω be the collection of connected components of {x ∈ ω | |u(x)| ≤ 1/2} whose
degree di,ω 6= 0, we have

|Iω| ≤
∑
i∈Iω

|di,ω| ≤ C

∫
ω

eε(uε, Aε)dH2,

rω ≤ Cε

∫
ω

eε(uε, Aε)dH2,(1.10)

where C is a universal constant.
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Proof. The first assertion immediately follows from Lemma 1.4.1. To prove (1.10) observe
that, by the Cauchy-Schwarz inequality and the co-area formula, we have∫

ω

eε(uε, Aε)dH2 ≥
∫
ω

|∇|uε||2 +
1

ε2
(1− |uε|2)2dH2

≥
∫
ω

|∇|uε||(1− |uε|2)

ε
dH2

=

∫ ∞
t=0

(1− t2)

ε
H1({x ∈ ω | |uε(x)| = t})dt.

Thus the compact set {x ∈ ω | |u(x)| ≤ 1/2} can be covered by a finite collection of
disjoint balls of total radius smaller than Cε

∫
ω
eε(uε, Aε)dH2, which implies (1.10).

Remark 1.4.1. By combining Lemma 1.4.2 with (1.4c), we obtain∑
ω⊂R2(G(bε,R0,δ))

|Iω| ≤ C

∫
R2(G(bε,R0,δ))

eε(uε, Aε)dH2 ≤ Cδ−1Fε(uε, Aε),(1.11)

∑
ω⊂R2(G(bε,R0,δ))

∑
i∈Iω

|di,ω| ≤ C

∫
R2(G(bε,R0,δ))

eε(uε, Aε)dH2 ≤ Cδ−1Fε(uε, Aε),(1.12)

rG :=
∑

ω⊂R2(G(bε,R0,δ))

rω ≤ Cε

∫
R2(G(bε,R0,δ))

eε(uε, Aε)dH2 ≤ Cεδ−1Fε(uε, Aε),(1.13)

where
∑

ω⊂R2(G(bε,R0,δ))
denotes the sum over all the faces ω of cubes of the grid G(bε, R0, δ).

1.5 3D vortex approximation construction

In this section we construct a new polyhedral approximation of the vorticity µ(uε, Aε)
of a configuration (uε, Aε) ∈ H1(Ω,C) ×H1(Ω,R3) such that Fε(uε, Aε) ≤ ε−γ, for some
γ ∈ (0, 1). The notion of minimal connection, first introduced in [BCL86], plays a key role
in our construction. We begin this section by reviewing this concept. Then the definition
of the function ζ is given and two technical propositions are stated. Lastly, the 3D vortex
approximation construction is provided.

1.5.1 Minimal connections

Consider a collection A = {p1, . . . , pk, n1, . . . , nk} of 2k points, where the pi’s are the
(non necessarily distinct) positive points and the ni’s are the (non necessarily distinct)
negative points. We define the length of a minimal connection joining the pi’s to the ni’s
by

(1.14) L(A ) := min
σ∈Sk

k∑
i=1

|pi − nσ(i)|,
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where Sk is the set of permutations of k indices and hereafter | · | denotes the euclidean
distance in R3. We also define the 1-current L(A ), a minimal connection associated to
A , as the sum in the sense of currents of the segments joining pi to nσ(i), where σ ∈ Sk is
a permutation achieving the minimum in (1.14). Although there can be several minimal
connections associated to a collection A , make an arbitrary choice of one, so that L(A )
will be unambiguous.

Let us now consider the distance

d∂Ω(x1, x2) := min{|x1 − x2|, d(x1, ∂Ω) + d(x2, ∂Ω)} x1, x2 ∈ R3.

We define the length of a minimal connection joining the pi’s to the ni’s through ∂Ω by

(1.15) L∂Ω(A ) = min
σ∈Sk

k∑
i=1

d∂Ω(pi, nσ(i)).

In this case we define the 1-current L∂Ω(A ), a minimal connection through ∂Ω associ-
ated to A , as the sum in the sense of currents of the segments joining pi to nσ(i) when
d∂Ω(pi, nσ(i)) = |pi − nσi | and the (properly oriented) segments joining pi, ni to ∂Ω when
d∂Ω(pi, nσ(i)) = d(pi, ∂Ω) + d(nσ(i), ∂Ω), where σ ∈ Sk is a permutation achieving the
minimum in (1.15). For the sake of unambiguity, uniqueness is once again assumed.

1.5.1.1 The function ζ

The following lemma is a particular case of a well-known result proved in [BCL86].

Lemma 1.5.1. Let A = {p1, . . . , pk, n1, . . . , nk} be a configuration of positive and nega-
tive points. Assume, relabeling the points if necessary, that L(A ) =

∑k
i=1 |pi − ni|. Then

there exists a 1-Lipschitz function ζ∗ : ∪i=1,...,k{pi, ni} → R such that

L(A ) =
k∑
i=1

ζ∗(pi)− ζ∗(ni) and ζ∗(ni) = ζ∗(pi)− |pi − ni|.

Definition 1.5.1 (The function ζ). Let A = {p1, . . . , pk, n1, . . . , nk} be a configuration
of positive and negative points. Denote by ζ∗ the 1-Lipschitz function given by Lemma
1.5.1. We define the function ζ : R3 → R via the formula

ζ(x) := max
i∈{1,...,k}

(
ζ∗(pi)− max

j∈{1,...,2k}
d(i,j)(x)

)
,

where

d(i,j)(x) := 〈pi − x, ν(i,j)〉, ν(i,j) :=

{ pi−aj
|pi−aj | if pi 6= aj

0 if pi = aj
,

where here and in the rest of the chapter the points ai are defined as follows: if j ∈
{1, . . . , k} then aj = pj, if j ∈ {k + 1, . . . , 2k} then aj = nj−k.
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Lemma 1.5.2. Let A = {p1, . . . , pk, n1, . . . , nk} be a configuration of positive and nega-
tive points. Denote by ζ∗ : ∪i=1,...,k{pi, ni} → R the function given by Lemma 1.5.1 and
define ζ : R3 → R as in Definition 1.5.1. Then ζ is a 1-Lipschitz extension of ζ∗ to R3.

Proof. It is easy to see that ζ is a 1-Lipschitz function. Let us check that

ζ(pi) = ζ∗(pi) and ζ(ni) = ζ∗(ni)

for every i ∈ {1, . . . , k}. Observe that

|d(i,j)(x)| = |〈pi − x, ν(i,j)〉| ≤ |pi − x|.

But
d(i,j)(al) = |pi − al| for any al ∈ A .

Thus
ζ(al) = max

i∈{1,...,k}
(ζ∗(pi)− |pi − al|).

Since ζ∗ is 1-Lipschitz, we deduce that ζ(al) ≤ ζ∗(al). It follows that ζ(pl) = ζ∗(pl) for
every l ∈ {1, . . . , k}. We conclude the proof by noting that, for any l ∈ {1, . . . , k},

ζ(nl) ≥ ζ∗(pl)− |pl − nl| = ζ∗(nl).

By displacing the points of the collection A it is possible to construct a smooth
approximation of the function ζ, which in addition satisfies extra (quantitative) properties.

Proposition 1.5.1. Let A = {p1, . . . , pk, n1, . . . , nk} be a configuration of positive and
negative points. Assume, relabeling the points if necessary, that L(A ) =

∑k
i=1 |pi − ni|.

Define DA := maxai,aj∈A |ai − aj| to be the maximum euclidean distance between any of
the points of A . Then there exist C,C0, C1 > 0 such that, for any ρ ∈ (0, 1/2) and for
any 0 < λ < λ0(ρ) := (C0(2k)−6)1/ρ, there exists a smooth function ζλ : R3 → R satisfying

1. |L(A )−
∑k

i=1 ζλ(pi)− ζλ(ni)| ≤ C(DA (2k)6λρ + 2kλ).

2. ‖∇ζλ‖L∞(R3) ≤ 1.

3. There exists a set Pλ ⊂ R3 such that |ζλ(Pλ)| ≤ 2λk2 and that, for any 0 < κ < λ2ρ/3,

Cκ := {x | |∇ζλ(x)| < κ} \ Pλ

can be covered by Bκ, a collection of at most (2k)8 balls of radius Cλ/(λ2ρ − 3κ).
Moreover, defining

(1.16) Tκ := ζλ (∪B∈BκB) ,

we have that, for any t ∈ R \ (Tκ ∪ ζλ(Pλ)), {x | ζλ(x) = t} is a complete submanifold
of R3 whose second fundamental form is bounded by C1(λ2κ)−1.

The proof of this result is technical and is postponed to the appendix.
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1.5.1.2 The function ζ for d∂Ω

When the Euclidean distance is replaced with the distance through ∂Ω the following
lemma can be proved (see [BCL86]).

Lemma 1.5.3. Let A = {p1, . . . , pk, n1, . . . , nk} ⊂ Ω be a configuration of positive and
negative points. Assume, relabeling the points if necessary, that L∂Ω(A ) =

∑k
i=1 d∂Ω(pi, ni).

Then there exists a function ζ∗ : ∪i=1,...,k{pi, ni} → R, 1-Lipschitz for the distance d∂Ω,
such that

L∂Ω(A ) =
k∑
i=1

ζ∗(pi)− ζ∗(ni) and ζ∗(ni) = ζ∗(pi)− d∂Ω(pi, ni).

Definition 1.5.2 (The function ζ for d∂Ω). Let A = {p1, . . . , pk, n1, . . . , nk} be a config-
uration of positive and negative points. Denote by ζ∗ the function given by Lemma 1.5.1.
We define the function ζ : R3 → R for d∂Ω via the formula

ζ(x) := max
i∈{1,...,k}

(ζ∗(pi)− di(x, ∂Ω)) ,

where

di(x, ∂Ω) := min

[
max

(
max

j∈{1,...,2k}
d(i,j)(x), d(pi, ∂Ω)− d(x, ∂Ω)

)
, d(pi, ∂Ω) + d(x, ∂Ω)

]
,

with

d(i,j)(x) = 〈pi − x, ν(i,j)〉, ν(i,j) =

{ pi−aj
|pi−aj | if pi 6= aj

0 if pi = aj
.

Lemma 1.5.4. Let A = {p1, . . . , pk, n1, . . . , nk} be a configuration of positive and nega-
tive points. Denote by ζ∗ : ∪i=1,...,k{pi, ni} → R the function given by Lemma 1.5.3 and
define ζ : R3 → R as in Definition 1.5.2. Then ζ is a 1-Lipschitz extension of ζ∗ to R3,
which is constant on ∂Ω.

Proof. It is easy to see that ζ is a 1-Lipschitz function. Let us check that

ζ(pi) = ζ∗(pi) and ζ(ni) = ζ∗(ni)

for every i ∈ {1, . . . , k}. By the proof of Lemma 1.5.2, we know that

d(i,j)(al) = |pi − al| for any al ∈ A .

By the triangular inequality, we deduce that

max (|pi − al|, d(pi, ∂Ω)− d(al, ∂Ω)) = |pi − al|.

Then
di(al, ∂Ω) = min (|pi − al|, d(pi, ∂Ω)− d(al, ∂Ω)) = d∂Ω(pi, al),

which implies that
ζ(al) = max

i∈{1,...,k}
(ζ∗(pi)− d∂Ω(pi, al)).
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Since ζ∗ is 1-Lipschitz for the distance d∂Ω, we have that ζ(al) ≤ ζ∗(al). It follows that
ζ(pl) = ζ∗(pl) for every l ∈ {1, . . . , k}. But

ζ(nl) ≥ ζ∗(pl)− d∂Ω(pl, nl) = ζ∗(nl).

Finally, observe that, for all x ∈ ∂Ω,

di(x, ∂Ω) := min

[
max

(
max

j∈{1,...,2k}
d(i,j)(x), d(pi, ∂Ω)

)
, d(pi, ∂Ω)

]
= d(pi, ∂Ω).

Thus
ζ(x) = max

i∈{1,...,k}
(ζ∗(pi)− d(pi, ∂Ω))

for all x ∈ ∂Ω.

By displacing the points of the collection A and performing a polyhedral approxi-
mation of the boundary ∂Ω it is possible to construct a smooth approximation of the
function ζ for d∂Ω, which in addition satisfies extra (quantitative) properties. This pro-
cedure requires the domain Ω to satisfy a technical assumption.

Proposition 1.5.2. Let Ω be a C2 bounded domain such that ∂Ω has strictly positive
Gauss curvature. Let A = {p1, . . . , pk, n1, . . . , nk} ⊂ Ω be a configuration of posi-
tive and negative points. Assume, relabeling the points if necessary, that L∂Ω(A ) =∑k

i=1 d∂Ω(pi, ni). Then there exist τ0, C, C0, C1, that depend only on ∂Ω, and a universal
constant C2 > 0 such that, for any τ < τ0, for any ρ ∈ (0, 1/2), and for any

0 < λ < λ0(ρ, τ) :=
(
C0 min

{
(2k)−6, (2k)−4τ 2, (2k)−2τ 4, τ 5

})1/ρ
,

there exists a smooth function ζλ : R3 → R satisfying

1. |L∂Ω(A )−
∑k

i=1 ζλ(pi)− ζλ(ni)| ≤ C (((2k)6 + (2k)4τ−2 + (2k)2τ−4)λρ + 2k(τ 2 + λ)).

2. Letting
Ωλ := {x ∈ Ω | dist(x, ∂Ω) > 2λ},

we have ‖∇ζλ‖L∞(Ωλ) ≤ 1.

3. |ζλ(Ω \ Ωλ)| ≤ C(τ 2 + λ).

4. There exists a set Pλ ⊂ R3 such that |ζλ(Pλ)| ≤ 2λk2 and that, for any 0 < κ < λ2ρ/3,

Cκ := {x ∈ Ωλ | |∇ζλ(x)| < κ} \ Pλ

can be covered by Bκ, a collection of at most C((2k)8 + τ−8) balls of radius C2λ/(λ
2ρ−

3κ). Moreover, defining

(1.17) Tκ := ζλ (∪B∈BκB) ,

we have that, for any t ∈ ζλ(Ωλ) \ (Tκ ∪ ζλ(Pλ)), {x | ζλ(x) = t} is a complete
submanifold of R3 whose second fundamental form is bounded by C1(λ2κ)−1.

The proof of this proposition is deferred to the appendix.
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1.5.2 Construction of the vorticity approximation

Let γ ∈ (0, 1) and consider a configuration (uε, Aε) ∈ H1(Ω,C) × H1(Ω,R3) such that
Fε(uε, Aε) ≤ ε−γ. Then Lemma 1.2.1 provides a grid G(bε, R0, δ) satisfying (1.4). We
begin by constructing our approximation in the cubes of the grid. For each cube Cl ∈
G(bε, R0, δ), Corollary 1.4.1 gives the existence of points ai,ω and integers di,ω 6= 0 such
that

µε,ω ≈ 2π
∑
i∈Iω

di,ωδai,ω ,

for each of the six faces ω ⊂ ∂Cl of the cube Cl. Observe that, since ∂µ(uε, Aε) = 0
relative to Cl, we have ∑

ω⊂∂Cl

∑
i∈Iω

di,ω = 0.

Then, we define a configuration Al := {p1, . . . , pkl , n1, . . . , nkl} of positive and negative
points associated to ∂Cl, by repeating the points ai,ω according to their degree di,ω, for
each of the six faces ω of the cube Cl. The previous observation implies that the number
of positive points pi’s and negative points ni’s of the collection Al are equal. We note
that

2kl =
∑
ω⊂∂Cl

∑
i∈Iω

|di,ω|.

Consider the minimal connection L(Al) associated to Al. It may happen that the segment
connecting some pi to nσ(i) in L(Al) belongs to one of the faces ω of the cube Cl. In this

case we define a new connection L̃(Al) by replacing the original segment connecting pi to
nσ(i) with a Lipschitz curve connecting pi to nσ(i) (preserving the orientation) and such
that its intersection with ∂Cl is given by {pi, nσ(i)}. This process can be performed in

such a way that |L(Al) − |L̃(Al)|| is less than an arbitrarily small number. We remark
that the resulting connection L̃(Al) is a polyhedral 1-current whose intersection with ∂Cl

is equal to ∪i=1,...,kl{pi, ni}. We define

νε,Cl := 2πL̃(Al) in Cl,

for every cube Cl ∈ G(bε, R0, δ).

We now construct our vorticity approximation in Θ (recall (1.5)). Once again Corollary
1.4.1 gives the existence of points ai,ω and integers di,ω 6= 0 such that

µε,ω ≈ 2π
∑
i∈Iω

di,ωδai,ω ,

for each face ω ⊂ R2(G(bε, R0, δ)) of a cube of the grid such that ω ⊂ ∂G. Then, we
define a configuration A∂G := {p1, . . . , pk∂G , n1, . . . , nk∂G} of positive and negative points
associated to ∂G by repeating the points ai,ω according to their degree di,ω, for each
face ω ∈ R2(G(bε, R0, δ)) of a cube of the grid such that ω ⊂ ∂G. Observe that, since
∂µ(uε, Aε) = 0 relative to ∂G, we have∑

ω⊂∂G

∑
i∈Iω

di,ω = 0,
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which ensures that the number of positive points p′is and negative points n′is of the
collection A∂Ω are equal. Consider now the minimal connection L∂Ω(A∂G) through ∂Ω
associated to A∂G. We note that

2k∂G =
∑
ω⊂∂G

∑
i∈Iω

|di,ω|.

Performing a replacement argument in Θ analogous to the one described above, we define
a new connection L̃∂Ω(A∂G), with |L∂Ω(A∂G)− |L̃∂Ω(A∂G)|| less than an arbitrarily small
number, whose intersection with ∂G is equal to ∪i=1,...,k∂G{pi, ni}. We define

νε,Θ := 2πL̃∂Ω(A∂G) in Θ.

Finally, we define our polyhedral approximation νε of the vorticity µ(uε, Aε) by

(1.18) νε :=
∑

Cl∈G(bε,R0,δ)

νε,Cl + νε,Θ,

where the sums are understood in the sense of currents.
We observe that the topological degree depends on the orientation of the domain in

which it is computed. If a face ω ⊂ R2(G(bε, R0, δ)) belongs to two cubes C1 and C2 of the
grid, then its associated collection of degrees di,ω’s for C1 is equal to minus its associated
collection of degrees for C2. Of course the same occurs for those faces ω belonging to one
of the cubes of the grid and to ∂G.

On the other hand (1.4a) implies that, for any face ω ⊂ R2(G(bε, R0, δ)), the intersec-
ction between the collection of points ai,ω’s and R1(G(bε, R0, δ)) is empty.

By combining these arguments we conclude that the 1-currents νCl ’s and νΘ have a
good compatibility condition between each other. Hence, by construction, νε is a polyhe-
dral 1-current such that ∂νε = 0 relative to Ω. In addition it approximates well µ(uε, Aε)
in an appropiate norm, as we shall show in Section 1.8.

To end this section we present a lemma about the support of νε.

Lemma 1.5.5. Let γ ∈ (0, 1) and assume that (uε, Aε) ∈ H1(Ω,C) × H1(Ω,R3) is a
configuration such that Fε(uε, Aε) ≤ ε−γ, so that, by Lemma 1.2.1, there exists a grid
G(bε, R0, δ) satisfying (1.4). For each face ω ⊂ R2(G(bε, R0, δ)) of a cube of the grid, let
|Iω| be the number of connected components of {x ∈ ω | |uε(x)| ≤ 1/2} whose degree is
different from zero. Then, letting

(1.19) G0 := {Cl ∈ G |
∑

ω⊂∂Cl
|Iω| > 0}

and defining νε by (1.18), we have

supp(νε) ⊂ Sνε :=
⋃

Cl∈G0

Cl ∪
{

Θ if
∑

ω⊂∂G |Iω| > 0
∅ if

∑
ω⊂∂G |Iω| = 0

.

Moreover
|Sνε| ≤ Cδ(1 + δFε(uε, Aε)),

where C is a constant depending only ∂Ω.
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Proof. The first assertion follows readily from the definition of νε. Recall that, by (1.11),
the number of faces ω ∈ R2(G(bε, R0, δ)) of a cube of the grid such that |Iω| > 0 is
bounded above by Cδ−1Fε(uε, Aε). We deduce that #({l | Cl ∈ G0}) is bounded above
by Cδ−1Fε(uε, Aε). By noting that |Θ| ≤ Cδ, for a constant C depending only on ∂Ω, we
conclude that

|Sνε| ≤
∑

Cl∈G0

|Cl|+ |Θ| ≤ δ3#({l | Cl ∈ G0}) + Cδ ≤ Cδ(1 + δFε(uε, Aε)).

1.6 Lower bound for Eε(uε) far from the boundary

In this section we prove a lower bound, in the spirit of (1.1), for the energy without
magnetic field Eε(uε) in the union of cubes of the grid G(bε, R0, δ) given by Lemma 1.2.1.
The proof relies on a slicing procedure based on the level sets of the smooth approximation
of the function ζ constructed in the appendix and on the ball construction method on a
surface of Section 1.3.

Theorem 1.6.1. Let m,M > 0 and assume that (uε, Aε) ∈ H1(Ω,C) × H1(Ω,R3) is a
configuration such that Fε(uε, Aε) = Mε ≤ M | log ε|m. For any s > 0, there exists ε0 > 0
depending only on m, s, and M , such that, for any ε < ε0, letting G(bε, R0, δ) denote the
grid given by Lemma 1.2.1 with δ = δ(ε) = | log ε|−m−s−1, and defining νε by (1.18) and
G0 by (1.19), if

(1.20) Eε(uε,∪Cl∈G0Cl) ≤ KMε and
∑

Cl∈G0

∫
∂Cl

eε(uε)dH2 ≤ Kδ−1Mε,

for some universal constant K, then

Eε(uε,∪Cl∈G0Cl) ≥
1

2

∑
Cl∈G0

|νε,Cl |
(

log
1

ε
− logC

M56
ε | log ε|7+s

δ55

)
− C

| log ε|s
,

where C is a universal constant.

Proof. Let us first find an estimate for each cube of the grid. We consider a cube Cl ∈
G0. For each of the six faces ω of Cl, denote by {Si,ω}i∈Iω the collection of connected
components of {x ∈ ω | |uε(x)| ≤ 1/2}. We define

Sl := ∪ω⊂∂Cl ∪i∈Iω Si,ω.

Note that |uε(x)| > 1/2 for any x ∈ ∂Cl \ Sl.
Denote by Al = {p1, . . . pkl , n1, . . . , nkl} the configuration of positive and negative

points associated to the cube Cl (see Subsection 1.5.2). For ρ ∈ (0, 1/2) and λ = λ(l) ≤
(C0(2kl)

−6)1/ρ to be chosen later on, let ζλ be the smooth function associated to Al
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by Proposition 1.5.1. Here the constant C0 is the universal constant appearing in the
proposition. For κ = κ(l) < λ2ρ/3 consider the set Tκ defined by (1.16) and observe that

|Tκ| ≤ C(2kl)
8λ/(λ2ρ − 3κ),

where throughout the proof C > 0 denotes a universal constant that may change from
line to line. Letting

C̃l := {x | d(x,Cl) < C1λ
2κ, projClx 6∈ Sl},

where C1 is the universal constant appearing in the third statement of Proposition 1.5.1,
we define vε : C̃l → C via the formula

vε(x) = uε(projClx) x ∈ C̃l.

Observe that

Eε(uε,Cl) ≥ Eε(vε, C̃l)− C1λ
2κ

∫
∂Cl\Sl

eε(uε)dH2.

In particular, if λ2κ is small enough then Eε(vε, C̃l) ≤ 2Mε. We also define

Uλ := ζλ({x ∈ ∂C̃l | projClx ∈ Sl})

and note that
|Uλ| ≤

∑
ω⊂∂Cl

∑
i∈Iω

diam(Si,ω) + (2kl)C1λ
2κ.

Since |∇ζλ| ≤ 1, using the co-area formula, we deduce that

Eε(vε, C̃l) ≥
∫

C̃l

eε(vε)|∇ζλ| =
∫
t∈R

∫
{ζλ=t}∩C̃l

eε(vε)dH2dt.

We now would like to apply the results proved in Section 1.3. Let us consider a small
number γ > 0 and define

Vγ :=

{
t ∈ R

∫
{ζλ=t}∩C̃l

eε(vε)dH2 >
1

γ
Mε

}
.

Note that |Vγ| ≤ 2Kγ. Finally, let us define Tbad = Tκ ∪ Uλ ∪ Vγ ∪ ζλ(Pλ) (where Pλ is

the set appearing in Proposition 1.5.1), Σt := {ζλ = t} ∩ C̃l, t∗ := minai∈Al ζλ(ai), and
t∗ := maxai∈Al ζλ(ai). For t ∈ Tgood := [t∗, t

∗] \ Tbad it holds that:

•
∫

Σt
eε(vε)dH2 ≤ γ−1Mε.

• {ζλ = t} is a surface whose second fundamental form is bounded by C1(λ2κ)−1.
Note that this surface is necessarily oriented since it is a level set of ζλ.

• ∂Σt = {ζλ = t} ∩ ∂C̃l.

• |vε(x)| > 1/2 if d(x, ∂Σt) < C1λ
2κ.
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1.6. Lower bound for Eε(uε) far from the boundary

Then Corollary 1.3.1 yields that, for any t ∈ Tgood,∫
Σt

eε(vε)dH2 ≥ π|deg(vε, ∂Σt)|
(

log
1

ε
− log

C1Mε

λ2κγ

)
,

Noting that ∂Σt = ∂({ζλ ≥ t} ∩ ∂C̃l), we deduce that

deg(vε, ∂Σt) = d(t) := #{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}.

By combining our previous estimates, we find

Eε(vε, C̃l) ≥
∫
t∈Tgood

∫
Σt

eε(vε)dH2dt

≥ π

(
log

1

ε
− log

C1Mε

λ2κγ

)∫
t∈Tgood

d(t)dt

≥ π

(
log

1

ε
− log

C1Mε

λ2κγ

)(∫ t∗

t∗

d(t)dt−
∫
t∈Tbad

|d(t)|dt
)
.

But, for any t ∈ Tbad,

|d(t)| = |#{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}| ≤ kl.

Then ∫
t∈Tbad

|d(t)|dt ≤ kl|Tbad| ≤ kl(|Tκ|+ |Uλ|+ |Vγ|+ |ζλ(Pλ)|).

On the other hand, observe that∫ t∗

t∗

d(t)dt =

∫ t∗

t∗

(#{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}) dt =

kλ∑
i=1

ζλ(pi)− ζλ(ni).

Remembering that∣∣∣∣∣L(Al)−
kl∑
i=1

ζλ(pi)− ζλ(ni)

∣∣∣∣∣ ≤ CDAl(2kl)
6λρ + (2kl)λ ≤ Cδ(2kl)

6λρ + (2kl)λ

and that |2πL(Al)− |νε,Cl || can be taken arbitrarily small, we conclude that∫ t∗

t∗

d(t)dt ≥ 1

2π
|νε,Cl | − C

(
δ(2kl)

6λρ + (2kl)λ
)
.

Collecting our previous computations, we find

Eε(uε,Cl) ≥
1

2
|νε,Cl |

(
log

1

ε
− log

C1Mε

λ2κγ

)
− El,

where

El :=C
(
δ(2kl)

6λρ + (2kl)λ+ kl(|Tκ|+ |Uλ|+ |Vγ|+ |ζλ(Pλ)|)
)

log
1

ε
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+ C1λ
2κ

∫
∂Cl\Sl

eε(uε)dH2.

We now want to combine the estimates found for cubes in G0. Observe that if λ and
κ are chosen independent of l then

Eε(uε,∪Cl∈G0Cl) ≥
1

2

∑
Cl∈G0

|νε,Cl |
(

log
1

ε
− log

C1Mε

λ2κγ

)
−
∑

Cl⊂G0

El.

Our objective is then to choose the parameters λ, κ = κ(λ), and γ independent of l and
such that

∑
Cl⊂G0

El ≤ C| log ε|−s. To do so, let us observe that (1.12) implies that∑
Cl∈G0

2kl ≤ Cδ−1Mε.

We deduce that such parameters can be found provided that λ ≤ (C0(Cδ−1Mε)
−6)1/ρ. We

let κ = λ2ρ/6. Using (1.12), (1.13), and (1.20) one can check that

∑
Cl∈G0

El ≤ C log
1

ε

(
M6

ε

δ5
λρ +

M9
ε

δ9
λ1−2ρ +

M2
ε

δ2
ε+

Mε

δ
γ

)
.

We optimize over ρ ∈ (0, 1/2) to find the least possible restrictions on λ. Observe that
we require that λ ≤ C min{(δM−1

ε )6/ρ, (δM−1
ε )9/(1−2ρ)}. Then we set ρ = 6/21. Finally,

choosing

λ =

(
1

| log ε|1+s

δ9

M9
ε

) 21
9

and γ =
1

| log ε|1+s

δ

Mε

,

we easily check that there exists ε0 > 0 depending only on m, s, and M , such that∑
Cl∈G0

El ≤ C| log ε|−s for any 0 < ε < ε0. Thus

Eε(uε,∪Cl∈G0Cl) ≥
1

2

∑
Cl∈G0

|νε,Cl |
(

log
1

ε
− logC

M56
ε | log ε|7+s

δ55

)
− C

| log ε|s
.

The theorem is proved.

1.7 Lower bound for Eε(uε) close to the boundary

In this section we prove a lower bound, in the spirit of (1.1), for the energy without
magnetic field Eε(uε) in Θ. The proof relies on a slicing procedure based on the level sets
of the smooth approximation of the function ζ for d∂Ω constructed in the appendix and
on the ball construction method on a surface of Section 1.3.

Theorem 1.7.1. Let Ω be a smooth bounded domain such that ∂Ω has strictly positive
Gauss curvature. Let m,M > 0 and assume that (uε, Aε) ∈ H1(Ω,C) × H1(Ω,R3) is a
configuration such that Fε(uε, Aε) = Mε ≤ M | log ε|m. For any s > 0, there exists ε0 > 0
depending only on m, s,M , and ∂Ω, such that, for any ε < ε0, letting G(bε, R0, δ) denote
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the grid given by Lemma 1.2.1 with δ = δ(ε) = | log ε|−m−s−1, and defining νε by (1.18)
and Θ, ∂G by (1.5), if

(1.21) Eε(uε,Θ) ≤ KMε and

∫
∂G

eε(uε)dH2 ≤ Kδ−1Mε,

for a universal constant K > 0, then

Eε(uε,Θ) ≥ 1

2
|νε,Θ|

(
log

1

ε
− logC

M56
ε | log ε|7+s

δ55

)
− CδMε| log ε| − C

| log ε|s
,

where C is a universal constant.

Proof. For each face ω ∈ R2(G(bε, R0, δ)) of a cube of the grid such that ω ⊂ ∂G, denote
by {Si,ω}i∈Iω the collection of connected components of {x ∈ ω | |uε(x)| ≤ 1/2}. We
define

S∂G := ∪ω⊂∂G ∪i∈Iω Si,ω.
Note that |uε(x)| > 1/2 for any x ∈ ∂G \ S∂G.

Denote by A∂G = {p1, . . . pk∂G , n1, . . . , nk∂G} ⊂ Ω the configuration of positive and
negative points associated to ∂G (see Subsection 1.5.2). Observe that (1.12) implies that

(2k∂G) ≤ Cδ−1Mε.

For τ = δ, ρ ∈ (0, 1/2), and λ ≤ (C0(Cδ−1Mε)
−6)

1/ρ
to be chosen later on, let ζλ be the

smooth function associated to A∂G by Proposition 1.5.2. Here the constant C0 = C0(∂Ω)
is the constant appearing in the proposition. For κ < λ2ρ/3 consider the set Tκ defined
by (1.17) and observe that

|Tκ| ≤ Cδ−8M8
ε λ/(λ

2ρ − 3κ),

where throughout the proof C > 0 denotes a constant depending only on ∂Ω, that may
change from line to line.

Let
∂G̃ = {x ∈ Ω \Θ | min

y∈∂G
‖x− y‖∞ = C1λ

2κ},

where C1 is the universal constant appearing in the fourth statement of Proposition 1.5.2.
Observe that ∂G̃ corresponds to a shrunk version of the polyhedron ∂G, or, in other
words, a smaller version of ∂G with the same shape. Each face ω ⊂ ∂G has a parallel
counterpart face ω̃ ⊂ ∂̃G which corresponds to a translated and in some cases also a
shrunk version of ω. It is easy to see that there exists a bijective function f : ∂G→ ∂∂̃G
mapping any x ∈ ω ⊂ ∂G to its unique counterpart point x̃ ∈ ω̃ ⊂ ∂G. One immediately
checks that for any x, y ∈ ω ⊂ ∂G

|f(x)− x| ≤
√

2C1λ
2κ and

1√
2
|x− y| ≤ |f(x)− f(y)| ≤ |x− y|.

Denoting by O the open region enclosed by ∂G and ∂G̃, we observe that for any y ∈ O
there exists a unique xy ∈ ∂G and a unique ty ∈ [0, 1] such that y = tx + (1 − t)f(x).
Letting

Õ := {y ∈ O | xy 6∈ S∂G},
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we define vε : Θ ∪ Õ → C by

vε(y) = uε(y) if y ∈ Θ, vε(y) = uε(xy) if y ∈ Õ.

Note that vε is a H1-extension of uε and that

Eε(vε, Õ) ≤ Eε(vε,O) ≤
√

2C1λ
2κ

∫
∂G̃

eε(vε)dH2 ≤ 2C1λ
2κ

∫
∂G

eε(uε)dH2.

Thus

Eε(uε,Θ) ≥ Eε(vε,Θ ∪ Õ)− Eε(vε, Õ) ≥ Eε(vε,Θ ∪ Õ)− 2C1λ
2κ

∫
∂G

eε(uε)dH2.

In particular, if λ2κ is small enough then Eε(vε,Θ ∪ Õ) ≤ 2Mε. We also define

Uλ := ζλ({y ∈ ∂(Θ ∪ Õ) \ ∂Ω | xy ∈ S∂G})

and note that by (1.12) and (1.13), we have

|Uλ| ≤ |S∂G|+
√

2(2k∂Ω)C1λ
2κ ≤ Cεδ−1Mε + Cδ−1Mελ

2κ.

Since |∇ζλ| ≤ 1, using the co-area formula, we deduce that

Eε(vε,Θ ∪ Õ) ≥
∫

Θ∪Õ
eε(vε)|∇ζλ| =

∫
t∈R

∫
{ζλ=t}∩(Θ∪Õ)

eε(vε)dH2dt.

We would like now to apply the results proved in Section 1.3. Let us consider a small
number γ > 0 and define

Vγ :=

{
t ∈ R

∫
{ζλ=t}∩(Θ∪Õ)

eε(vε)dH2 >
1

γ
Mε

}
.

Note that |Vγ| ≤ 2Kγ. Finally, let us define Tbad = Tκ ∪ Uλ ∪ Vγ ∪ ζλ(Ω \ Ωλ) ∪ ζλ(Pλ)
(where Pλ is the set appearing in Proposition 1.5.2), Σt := {ζλ = t} ∩ (Θ ∪ Õ), t∗ :=
minai∈A∂G ζλ(ai), and t∗ := maxai∈A∂G ζλ(ai). For t ∈ Tgood := [t∗, t

∗] \ Tbad it holds that:

•
∫

Σt
eε(vε)dH2 ≤ γ−1Mε.

• {ζλ = t} = {x ∈ Ωλ | ζλ(x) = t} is a surface whose second fundamental form is
bounded by C1(λ2κ)−1. Note that this surface is necessarily oriented since it is a
level set of ζλ.

• ∂Σt = {ζλ = t} ∩ (∂(Θ ∪ Õ) \ ∂Ω).

• |vε(x)| > 1/2 if d(x, ∂Σt) < C1λ
2κ.
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Then Corollary 1.3.1 yields that, for any t ∈ Tgood,∫
Σt

eε(vε)dH2 ≥ π|deg(vε, ∂Σt)|
(

log
1

ε
− log

C1Mε

λ2κγ

)
,

Noting that ∂Σt = ∂({ζλ ≥ t} ∩ (∂(Θ ∪ Õ) \ ∂Ω)), we deduce that

deg(vε, ∂Σt) = d(t) := #{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}.

By combining our previous estimates, we find

Eε(vε,Θ ∪ Õ) ≥
∫
t∈Tgood

∫
Σt

eε(vε)dH2dt

≥ π

(
log

1

ε
− log

C1Mε

λ2κγ

)∫
t∈Tgood

d(t)dt

≥ π

(
log

1

ε
− log

C1Mε

λ2κγ

)(∫ t∗

t∗

d(t)dt−
∫
t∈Tbad

|d(t)|dt
)
.

But, for any t ∈ Tbad,

|d(t)| = |#{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}| ≤ k∂G.

Then ∫
t∈Tbad

|d(t)|dt ≤ k∂G|Tbad| ≤ k∂G(|Tκ|+ |Uλ|+ |Vγ|+ |ζλ(Ω \ Ωλ)|+ |ζλ(Pλ)|).

On the other hand, observe that∫ t∗

t∗

d(t)dt =

∫ t∗

t∗

(#{i | ζλ(pi) > t} −#{i | ζλ(ni) > t}) dt =

k∂G∑
i=1

ζλ(pi)− ζλ(ni).

Remembering that∣∣∣∣∣L(A∂G)−
k∂G∑
i=1

ζλ(pi)− ζλ(ni)

∣∣∣∣∣ ≤
C
(
((2k∂G)6 + (2k∂G)4δ−2 + (2k∂G)2δ−4)λρ + (2k∂G)(δ2 + λ)

)
and that |2πL(A∂G)− |νε,Θ|| can be taken arbitrarily small. We conclude that∫ t∗

t∗

d(t)dt ≥ 1

2π
|νε,Θ| − C

(
((2k∂G)6 + (2k∂G)4δ−2 + (2k∂G)2δ−4)λρ + (2k∂G)(δ2 + λ)

)
.

Collecting our previous computations, we find

Eε(uε,Θ) ≥ 1

2
|νε,Θ|

(
log

1

ε
− log

C1Mε

λ2κγ

)
− EΘ,
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where

EΘ :=C
(
((2k∂G)6 + (2k∂G)4δ−2 + (2k∂G)2δ−4)λρ + (2k∂G)(δ2 + λ)

)
log

1

ε

+ k∂G

(
|Tκ|+ |Uλ|+ |Vγ|+ |ζλ(Ω \ Ωλ)|+ |ζλ(Pλ)|

)
log

1

ε
+ 2C1λ

2κ

∫
∂G

eε(uε)dH2.

We now choose the parameters ρ, λ, κ(λ) and γ. We let κ = λ2ρ/6. Using (1.12) and
(1.21) one can check that

EΘ ≤ C log
1

ε

(
M6

ε

δ6
λρ + δMε +

M9
ε

δ9
λ1−2ρ +

M2
ε

δ2
ε+

Mε

δ
γ

)
We choose ρ = 6/21,

λ =

(
1

| log ε|1+s

δ9

M9
ε

) 21
9

, and γ =
1

| log ε|1+s

δ

Mε

.

We easily check that there exists ε0 > 0 depending only on m, s,M , and ∂Ω, such that
EΘ ≤ CδMε| log ε|+ C| log ε|−s for any 0 < ε < ε0. Thus

Eε(uε,Θ) ≥ 1

2
|νε,Θ|

(
log

1

ε
− logC

M56
ε | log ε|7+s

δ55

)
− CδMε| log ε| − C

| log ε|s
.

This concludes the proof.

1.8 Proof of the main result

First, using the results of the previous two sections we prove (1.1).

Proof of (1.1). Since the energy Fε(uε, Aε) is gauge invariant, it is enough to prove the
result in the Coulomb gauge, i.e.

divAε = 0 in Ω and Aε · ν = 0 on ∂Ω.

We immediately check that

‖Aε‖H1(Ω,R3) ≤ C‖ curlAε‖L2(Ω,R3),

where throughout the proof C > 0 denotes a universal constant that may change from
line to line. By Sobolev embedding theorem we have

‖Aε‖Lp(Ω,R3) ≤ C‖Aε‖H1(Ω,R3)

for any 1 ≤ p ≤ 6. Observe that∫
Ω

|∇uε|2 ≤
∫

Ω

|∇Aεuε|2 + |uε|2|Aε|2 ≤
∫

Ω

|∇Aεuε|2 + (|uε|2 − 1)|Aε|2 + |Aε|2

58



1.8. Proof of the main result

By the Cauchy-Schwarz inequality, we have∫
Ω

(|uε|2 − 1)|Aε|2 ≤
(∫

Ω

(1− |uε|2)2

) 1
2
(∫

Ω

|Aε|4
) 1

2

≤ CεFε(uε, Aε).

Thus
Eε(uε) ≤ CFε(uε, Aε).

Let us consider the grid G(bε, R0, δ) given by Lemma 1.2.1. It is not hard to see that,
up to an adjustment of the constant appearing in the lemma, we can require our grid to
additionally satisfy the inequalities
(1.22)∫

R1(G(bε,R0,δ))

eε(uε)dH1 ≤ Cδ−2Fε(uε, Aε),

∫
R2(G(bε,R0,δ))

eε(uε)dH2 ≤ Cδ−1Fε(uε, Aε).

We define the polyhedral 1-current νε by (1.18). We recall the notation introduced in
Lemma 1.5.5 and observe that∫

Sνε

|∇uε|2 ≤
∫
Sνε

|∇Aεuε|2 +

∫
Sνε

(|uε|2 − 1)|Aε|2 +

∫
Sνε

|Aε|2.

Using Hölder’s inequality, we find∫
Sνε

(|uε|2 − 1)|Aε|2 ≤ ‖|uε|2 − 1‖L2(Sνε )|Sνε|
1
6‖Aε‖2

L6(Sνε ,R3)

and ∫
Sνε

|Aε|2 ≤ |Sνε|
2
3‖Aε‖2

L6(Sνε ,R3).

We are led to ∫
Sνε

|∇uε|2 ≤
∫
Sνε

|∇Aεuε|2 + CFε(uε, Aε)
(
ε|Sνε|

1
6 + |Sνε|

2
3

)
,

which implies that
(1.23)
1

2

∫
Sνε

|∇Aεuε|2+
1

2ε2
(1−|uε|2)2 ≥ Eε(uε, Sνε)−CFε(uε, Aε)

(
ε|Sνε |

1
6Fε(uε, Aε)

1
2 + |Sνε |

2
3

)
.

Thanks to (1.22), we can apply Theorem 1.6.1 and Theorem 1.7.1 with s > 0. We then
deduce that there exists ε0 > 0, depending only on m, s,M, and ∂Ω, such that, for any
0 < ε < ε0,

Eε(uε, Sνε) ≥
1

2
|νε|(Ω)

(
log

1

ε
− logC

M56
ε | log ε|7+s

δ55

)
− CδMε| log ε| − C

| log ε|s
,

where δ = δ(ε) = | log ε|−m−s−1. By combining this with Lemma 1.5.5 and (1.23), we are
led to

1

2

∫
Sνε

|∇Aεuε|2 +
1

2ε2
(1− |uε|2)2 + | curlAε|2 ≥

1

2
|νε|(Ω)

(
log

1

ε
− logC

M56
ε | log ε|7+s

δ55

)
− CδMε| log ε| − CMεδ

2
3 − C| log ε|−s.

By letting s = s(m,n) = max
(
n, m+3n−2

2

)
, the result follows.
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Before presenting the proof of (1.2) for γ = 1, let us prove the following lemma.

Lemma 1.8.1. Let (uε, Aε) ∈ H1(Ω,C)×H1(Ω,R3). Then there exists a constant C > 0
depending only on ∂Ω, such that

(1.24) ‖µ(uε, Aε)‖C0(Ω)∗ ≤ CFε(uε, Aε).

Proof. By definition

µ(uε, Aε) =
i

2
d (uεdAεūε − ūεdAεuε) + dAε

=
i

2
(duε ∧ dAεūε + uεd(dAεūε)− dūε ∧ dAεuε − ūεd(dAεuε)) + dAε.

Simple computations show that

µ(uε, Aε) =
i

2
(duε ∧ dAεūε − iuεdūε ∧ Aε − dūε ∧ dAεuε + iūεduε ∧ Aε) + dAε

=
i

2
(dAεuε ∧ dAεūε − dAεūε ∧ dAεuε) + dAε = idAεuε ∧ dAεūε + dAε.

Integrating on Ω and using the Cauchy-Schwarz inequality, we find∫
Ω

µ(uε, Aε) ≤ 2
(
Fε(uε, Aε) + Fε(uε, Aε)

1
2 |Ω|

1
2

)
.

Then we easily check that there exists a constant C(∂Ω) > 0 such that∣∣∣∣∫
Ω

µ(uε, Aε) ∧ φ
∣∣∣∣ ≤ C‖φ‖C0(Ω)Fε(uε, Aε),

for any continuous 1-form φ, which implies (1.24).

Proof of (1.2) for γ = 1. As in the previous proof, we consider the grid G(bε, R0, δ) given
by Lemma 1.2.1 and the polyhedral 1-current νε defined by (1.18). The quantities δ = δ(ε)
and s = s(m,n) are defined as above.

Let φ ∈ C0,1
T (Ω) be a 1-form. Note that

(1.25)

∣∣∣∣∫
Ω

(µ(uε, Aε)− νε) ∧ φ
∣∣∣∣ ≤∑

Cl∈G(bε,R0,δ)

∣∣∣∣∫
Cl

(µ(uε, Aε)− νε,Cl) ∧ φ
∣∣∣∣+

∣∣∣∣∫
Θ

(µ(uε, Aε)− νε,Θ) ∧ φ
∣∣∣∣ .

First, we consider a cube Cl ∈ G(bε, R0, δ) and define φl =
∫

Cl
φ. Observe that

(1.26) ‖φ− φl‖C0(Cl) ≤ δ‖φ‖C0,1(Cl)

and that
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1.8. Proof of the main result∣∣∣∣∫
Cl

(µ(uε, Aε)− νε,Cl) ∧ φ
∣∣∣∣ ≤∣∣∣∣∫

Cl

(µ(uε, Aε)− νε,Cl) ∧ (φ− φl)
∣∣∣∣+

∣∣∣∣∫
Cl

(µ(uε, Aε)− νε,Cl) ∧ φl
∣∣∣∣ .

Using (1.26), we deduce that

(1.27)

∣∣∣∣∫
Cl

(µ(uε, Aε)− νε,Cl) ∧ (φ− φl)
∣∣∣∣ ≤ δ‖µ(uε, Aε)− νε,Cl‖C0(Cl)∗‖φ‖C0,1(Cl).

On the other hand, since φl is a constant, there exists a function fl such that

φl = dfl,

∫
Cl

fl = 0.

In particular

‖fl‖C0,1(Cl) ≤ |φl|.

By an integration by parts, we have∫
Cl

(µ(uε, Aε)− νε,Cl) ∧ φl =
∑
ω⊂∂Cl

∫
ω

(
µε,ω − 2π

∑
i∈Iω

di,ωδai,ω

)
fl.

Here, we have used the notation introduced in Section 1.4 and the fact that the restriction
of νε,Cl to each of the six faces ω of the cube Cl is equal to 2π

∑
i∈Iω di,ωδai,ω . Corollary

1.4.1 then yields that

(1.28)

∣∣∣∣∫
Cl

(µε(uε, Aε)− νε,Cl) ∧ φl
∣∣∣∣ ≤

C0

∑
ω⊂∂Cl

max(rω, ε)

(
1 +

∫
ω

eε(uε, Aε)dH2 +

∫
∂ω

eε(uε, Aε)dH1

)
‖fl‖C0,1(Cl).

where throughout the proof C0 denotes a universal constant that may change from line
to line. Using (1.27) and (1.28), we deduce that

‖µ(uε, Aε)− νε,Cl‖C0,1(Cl)∗ ≤ δ‖µ(uε, Aε)− νε,Cl‖C0(Cl)∗

+ C0

∑
ω⊂∂Cl

max(rω, ε)

(
1 +

∫
ω

eε(uε, Aε)dH2 +

∫
∂ω

eε(uε, Aε)dH1

)

for any cube Cl ∈ G(bε, R0, δ). Then by summing over the cubes of the grid, we obtain

‖µ(uε, Aε)− νε‖C0,1(Ω\Θ)∗ ≤ δ‖µ(uε, Aε)− νε‖C0(Ω\Θ)∗

+ C0 max(rG, ε)

(
1 + 2

∫
R2(G(bε,R0,δ))

eε(uε, Aε)dH2 +8

∫
R1(G(bε,R0,δ))

eε(uε, Aε)dH1

)
.
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Using (1.4b), (1.4c), and (1.13), we find

‖µ(uε, Aε)− νε‖C0,1(Ω\Θ)∗ ≤ δ‖µ(uε, Aε)− νε‖C0(Ω\Θ)∗(1.29)

+ C0 max
(
εδ−1Fε(uε, Aε), ε

) (
1 + δ−2Fε(uε, Aε)

)
We now provide an estimate for the last term in (1.25). Observe that if ε is sufficiently

small and ∂Ω smooth enough then, for any y ∈ Θ, there exists a unique xy = proj∂Ωy
such that y = xy − tyν(xy), for some ty ≥ 0, where ν(xy) is the outer unit normal to ∂Ω
at xy. We define f : Θ→ R by

f(y) = f(xy − tyν(x)) = −tyφ(xy) · ν(xy).

By noting that, for any y ∈ Θ,

∇f(y) = (φ(xy) · ν(xy)) ν(xy) = φ(xy),

one can easily check that

‖f‖C0,1(Θ) ≤ ‖φ‖C0,1(Θ) and ‖φ−∇f‖C0(Θ) ≤ δ‖φ‖C0,1(Θ).

We now write∫
Θ

(µ(uε, Aε)− νε,Θ) ∧ φ =

∫
Θ

(µ(uε, Aε)− νε,Θ) ∧ (φ− df) +

∫
Θ

(µ(uε, Aε)− νε,Θ) ∧ df.

Observe that∣∣∣∣∫
Θ

(µ(uε, Aε)− νε,Θ) ∧ (φ− df)

∣∣∣∣ ≤ ‖µ(uε, Aε)− νε,Θ‖C0(Θ)∗‖φ− df‖C0(Θ).

On the other hand, by an integration by parts, we find∫
Θ

(µ(uε, Aε)− νε,Θ) ∧ df =
∑
ω⊂∂G

∫
ω

(µε,ω − 2π
∑
i∈Iω

di,ωδai,ω)f.

Here, we have used the fact that the restriction of νε,Θ to each of the faces ω of a cube of
the grid such that ω ⊂ ∂G is equal to 2π

∑
i∈Iω di,ωδai,ω . We then deduce that∣∣∣∣∫

Θ

(µ(uε, Aε)− νε,Θ) ∧ φ
∣∣∣∣ ≤ δ‖µ(uε, Aε)− νε‖C0(Θ)∗

+ C0 max
(
εδ−1Fε(uε, Aε), ε

) (
1 + δ−2Fε(uε, Aε)

)
‖φ‖C0,1(Θ).

By combining this with (1.25) and (1.29), we find

‖µ(uε, Aε)− νε‖C0,1
T (Ω)∗ ≤ δ‖µ(uε, Aε)− νε‖C0(Ω)∗

+ C0 max
(
εδ−1Fε(uε, Aε), ε

) (
1 + δ−2Fε(uε, Aε)

)
.
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Observe now that

‖µ(uε, Aε)− νε‖C0(Ω)∗ ≤ ‖µ(uε, Aε)‖C0(Ω)∗ + ‖νε‖C0(Ω)∗ .

From (1.1), we deduce that

‖νε‖C0(Ω)∗ ≤ C0
Fε(uε, Aε)

| log ε|

By combining the previous two estimates with (1.24), we get

(1.30) ‖µ(uε, Aε)− νε‖C0(Ω)∗ ≤ CFε(uε, Aε),

where C is a constant depending only on ∂Ω. This implies that

‖µ(uε, Aε)− νε‖C0,1
T (Ω)∗ ≤ CδFε(uε, Aε) + C0 max

(
εδ−1Fε(uε, Aε), ε

) (
1 + δ−2Fε(uε, Aε)

)
.

From this, (1.2) follows.

The proof of (1.2) for γ ∈ (0, 1) uses the following simple interpolation fact, as in
[JS02].

Lemma 1.8.2. Assume µ is a Radon measure on Ω. Then for any γ ∈ (0, 1),

‖µ‖C0,γ
0 (Ω)∗ ≤ ‖µ‖

1−γ
C0

0 (Ω)∗
‖µ‖γ

C0,1
0 (Ω)∗

.

Proof of (1.2) for γ ∈ (0, 1). Note that ‖µ‖C0,γ
0 (Ω)∗ ≤ ‖µ‖C0,γ

T (Ω)∗ for any 1-current µ. By

combining the previous lemma with (1.2) and (1.30), we are led to

‖µ(uε, Aε)− νε‖C0,γ
0 (Ω)∗ ≤ CFε(uε, Aε)

1−γ max (δγFε(uε, Aε)
γ, εγ) ≤ CδγFε(uε, Aε)

for any γ ∈ (0, 1), where C > 0 is a constant depending only on γ and ∂Ω. The proof then
reduces to proving that this estimate is still valid when we replace the norm ‖ · ‖C0,γ

0 (Ω)∗

with ‖ · ‖C0,γ
T (Ω)∗ . Arguing as in the proof of [JMS04, Proposition 3.1], we conclude that

(1.2) holds for γ ∈ (0, 1).

Next, we give the proof of Theorem 1.1.2.

Proof of Theorem 1.1.2. The only part of the proof that needs a modification is the vor-
ticity estimate close to the boundary. Since we work in the space C0,1

0 (Ω)∗, we can use
the fact that for a test 1-form φ ∈ C0,1

0 (Ω) one has

‖φ‖C0,1
0 (Ω\Ωε) ≤ Cδ,

where δ is defined as above and C is a universal constant. Therefore∣∣∣∣∫
Ω\Ωε

(µ(uε, Aε)− νε) ∧ φ
∣∣∣∣ ≤ CFε(uε, Aε)δ.

The rest of the proof follows as above.
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1.A Smooth approximation of the function ζ

The main goal of this section of the appendix is to prove Proposition 1.5.1. We begin by
proving some basic geometric properties.

Lemma 1.A.1. Consider four points x1, x2, x3, x4 ∈ R3 with x1 6= x2 and a number

D ≥ max
1≤i<j≤4

|xi − xj|.

There exists ϑ1 > 0 independent of D such that for any 0 < ϑ < ϑ1 there exists a point
x′4 ∈ R3 such that

(1.31)

∣∣∣∣ x2 − x1

|x2 − x1|
× x′4 − x3

|x′4 − x3|

∣∣∣∣ ≥ ϑ

and

(1.32) |x4 − x′4| ≤ 3Dϑ, max
1≤i≤3

|xi − x′4| ≤ D.

By translating the points it is enough to prove the following lemma.

Lemma 1.A.2. Consider three points x1, x2, x3 ∈ R3 with x1 6= x2 and a number

D ≥ max
1≤i<j≤3

|xi − xj|.

There exists ϑ2 > 0 independent of D such that for any 0 < ϑ < ϑ2 there exists a point
x′3 ∈ R3 such that ∣∣∣∣ x2 − x1

|x2 − x1|
× x′3 − x1

|x′3 − x1|

∣∣∣∣ , ∣∣∣∣ x2 − x1

|x2 − x1|
× x′3 − x2

|x′3 − x2|

∣∣∣∣ ≥ ϑ

and
|x3 − x′3| ≤ 3Dϑ, max

1≤i≤2
|xi − x′3| ≤ D.

Proof. Let us consider the cylinder whose axis is {tx1 + (1 − t)x2 | t ∈ [−D,D]} and

whose radius is r = ϑ
√

2D√
(1−ϑ2)

. Note that r < 2Dϑ for ϑ ≤ 1 − 2−1/2. Remembering that

|u× v| = |u||v|| sin θ|, where θ is the angle formed by u and v, it is easy to check that the
cylinder previously defined contains all the points y ∈ R3 with |x1− y|, |x2− y| ≤ D such
that ∣∣∣∣ x2 − x1

|x2 − x1|
× y − x1

|y − x1|

∣∣∣∣ < ϑ or

∣∣∣∣ x2 − x1

|x2 − x1|
× y − x2

|y − x2|

∣∣∣∣ < ϑ.

Then simple trigonometric manipulations show that there exists a point x′3 ∈ R3 such
that

|x3 − x′3| ≤ r +
r2

D
≤ 3Dϑ, max

1≤i≤2
|xi − x′3| ≤ D,

and ∣∣∣∣ x2 − x1

|x2 − x1|
× x′3 − x1

|x′3 − x1|

∣∣∣∣ , ∣∣∣∣ x2 − x1

|x2 − x1|
× x′3 − x2

|x′3 − x2|

∣∣∣∣ ≥ ϑ

for any ϑ small enough.
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Lemma 1.A.3. Consider six points x1, x2, x3, x4, x5, x6 ∈ R3 and a number

D ≥ max
1≤i<j≤6

|xi − xj|.

There exists ϑ3 > 0 independent of D such that for any 0 < ϑ < ϑ3, if∣∣∣∣ x2 − x1

|x2 − x1|
× x4 − x3

|x4 − x3|

∣∣∣∣ ≥ ϑ

then there exists a point x′6 ∈ R3 such that

(1.33)

∣∣∣∣det

(
x2 − x1

|x2 − x1|
,
x4 − x3

|x4 − x3|
,
x′6 − x5

|x′6 − x5|

)∣∣∣∣ ≥ ϑ2

and

(1.34) |x6 − x′6| ≤ 3Dϑ, max
1≤i≤5

|xi − x′6| ≤ D.

By translating the points it is enough to prove the following lemma.

Lemma 1.A.4. Consider four points x1, x2, x3, x4 ∈ R3 and a number

D ≥ max
1≤i<j≤4

|xi − xj|.

There exists ϑ4 > 0 independent of D such that for any 0 < ϑ < ϑ4, if∣∣∣∣ x2 − x1

|x2 − x1|
× x3 − x1

|x3 − x1|

∣∣∣∣ ≥ ϑ

then there exists a point x′4 ∈ R3 such that∣∣∣∣det

(
x2 − x1

|x2 − x1|
,
x3 − x1

|x3 − x1|
,
x′4 − x1

|x′4 − x1|

)∣∣∣∣ ≥ ϑ2

and

|x4 − x′4| ≤ 3Dϑ, max
1≤i≤3

|xi − x′4| ≤ D.

Proof. Let P denote the plane where the points x1, x2, x3 are contained. Given any point
y ∈ R3 \ P , observe that∣∣∣∣det

(
x2 − x1

|x2 − x1|
,
x3 − x1

|x3 − x1|
,
y − x1

|y − x1|

)∣∣∣∣ = h ·
∣∣∣∣ x2 − x1

|x2 − x1|
× x3 − x1

|x3 − x1|

∣∣∣∣ ≥ hϑ,

where h denotes the height of the parallelepiped formed by the vectors

x2 − x1

|x2 − x1|
,
x3 − x1

|x3 − x1|
,
y − x1

|y − x1|
.
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It is easy to check that

h =
dist(y, P )

|y − x1|
.

Choosing h = ϑ we are left with finding a point x′4 such that ϑ|x′4 − x1| = dist(y, P ).
Then simple trigonometric manipulations show that there exists a point x′4 such that

|x4 − x′4| ≤ 3Dϑ, max
1≤≤3
|xi − x′4| ≤ D, and ϑ|x′4 − x1| = dist(x′4, P ),

for any ϑ small enough.

The previous lemmas allow us to prove the following result.

Proposition 1.A.1. Let A = {a1, . . . , am} be a collection of m non necessarily distinct
points. Define DA := max1≤i<j≤m |ai−aj| to be the maximum euclidean distance between
any of the points of A and assume that DA > 0. Then there exists a collection of points
A ′ = {b1, . . . , bm} such that for any ϑ < min{m−6, ϑ1, ϑ3}, where the numbers ϑ1, ϑ3 are
the constants appearing in Lemma 1.A.1 and Lemma 1.A.3 respectively, the following hold

1. bi 6= bj for any i 6= j.

2. Define

ν(i,j) :=
bi − bj
|bi − bj|

for (i, j) ∈ Λm := {(p, q) | 1 ≤ p < q ≤ m}.

Then for any α, β, γ ∈ Λm with α 6= β 6= γ, we have

|να × νβ| ≥ ϑ and |det(να, νβ, νγ)| ≥ ϑ2.

3. |al − bl| ≤ CDA l
5ϑ for any l ∈ {1, . . . ,m}, where C is a universal constant.

4. max1≤i<j≤m |bi − bj| ≤ CDA , where C is a universal constant.

Proof. We proceed by induction. Without loss of generality we may assume that a1 6= a2.
We define b1 = a1, b2 = a2, d1 = d2 = 0 and D1 = D2 = DA .

Assume that we have defined a collection {b1, . . . , bl} with 2 < l < m such that

• For any α, β, γ ∈ Λl with α 6= β 6= γ, we have

|να × νβ| ≥ ϑ and |det(να, νβ, νγ)| ≥ ϑ2.

• |ai − bi| ≤ dl for any i ∈ {1, . . . , l}.

• |bi − bj| ≤ Dl for any i, j ∈ {1, . . . , l}.

Observe that by applying Lemma 1.A.1 with the points x1 = b1, x2 = b2, x3 = b1,
x4 = al+1, and the number D = Dl + dl, we find a point x′4 satisfying (1.31) and (1.32).
By repeating this argument at most l3 times, we find a point b′l+1 such that the collection
{b1, . . . , bl, b

′
l+1} satisfies

|να × νβ| ≥ ϑ
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for any α, β ∈ Λl+1 with α 6= β. Moreover

|al+1 − b′l+1| ≤ 3l3(Dl + dl)ϑ and |bi − b′l+1| ≤ Dl + dl for any i ∈ {1, . . . , l}.

We further displace the point b′l+1 in order to additionally satisfy the condition on the
determinants. Applying Lemma 1.A.3 with x1 = b1, x2 = b2, x3 = b1, x4 = b3, x5 = b1,
x6 = b′l+1 andD = Dl+dl, we find a point x′6 satisfying (1.33) and (1.34). By repeating this
argument at most l5 times, we find a point bl+1 such that the collection {b1, . . . , bl, bl+1}
satisfies

|να × νβ| ≥ ϑ and |det(να, νβ, νγ)| ≥ ϑ2

for any α, β, γ ∈ Λl+1 with α 6= β 6= γ. Moreover

|al+1 − bl+1| ≤ 3(l3 + l5)(Dl + dl)ϑ and |bi − bl+1| ≤ Dl + dl for any i ∈ {1, . . . , l}.

Summarizing, the collection {b1, . . . , bl, bl+1} satisfies

• For any α, β, γ ∈ Λl+1 with α 6= β 6= γ, we have

|να × νβ| ≥ ϑ and |det(να, νβ, νγ)| ≥ ϑ2.

• |ai − bi| ≤ dl+1 := 6l5(Dl + dl)ϑ for any i ∈ {1, . . . , l + 1}.

• |bi − bj| ≤ Dl+1 := Dl + dl for any i, j ∈ {1, . . . , l + 1}.

This concludes the induction step. It only remains to find upper bounds for the recursively
defined distances dl and Dl. Observe that

Dl+1 = Dl + dl ≤ Dl + 6(l − 1)5(Dl−1 + dl−1)ϑ ≤ Dl(1 + 6l5ϑ), D1 = D2 = DA .

We immediately check that if ϑ ≤ m−6 then, for any l ∈ {1, . . . ,m},

Dl ≤ Dm ≤ DA (1 + 6m5ϑ)m ≤ DA

(
1 +

6

m

)m
≤ CDA ,

where C is a universal constant. Moreover if ϑ ≤ m−6 then, for any l ∈ {1, . . . ,m},

dl ≤ 6l5Dl−1ϑ ≤ 6CDA l
5ϑ.

We are now in position to prove Proposition 1.5.1.

Proof of Proposition 1.5.1. Let A ′ = {p′1, . . . , p′k, n′1, . . . , n′k} be the collection of points
given by Proposition 1.A.1 for D = DA . Observe that for any ϑ ≤ C0(2k)−6, where
C0 = min(1, ϑ1, ϑ3), we have

L(A ′) ≤
k∑
i=1

|p′i − n′i| ≤
k∑
i=1

|pi − ni|+ |pi − p′i|+ |ni − n′i| ≤ L(A ) + CDA (2k)6ϑ.
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An analogous argument shows that L(A ) ≤ L(A ′) + CDA (2k)6ϑ. Therefore

(1.35) |L(A )− L(A ′)| ≤ CDA (2k)6ϑ,

where throughout the proof C > 0 denotes a universal constant that may change from
line to line. Remember that by Lemma 1.5.1 there exists a 1-Lipschitz function ζ∗ :
∪i=1,...,k{p′i, n′i} → R such that

L(A ′) =
k∑
i=1

ζ∗(p′i)− ζ∗(n′i).

Define the function ζ as in Definition 1.5.1, i.e. set

ζ(x) := max
i∈{1,...,k}

(
ζ∗(p′i)− max

j∈{1,...,2k}
d(i,j)(x)

)
,

where

d(i,j)(x) := 〈p′i − x, ν(i,j)〉, ν(i,j) =

{
p′i−a′j
|p′i−a′j |

if p′i 6= a′j

0 if p′i = a′j
.

Lemma 1.5.2 yields that ζ : R3 → R is a 1-Lipschitz function such that

k∑
i=1

ζ(p′i)− ζ(n′i) =
k∑
i=1

ζ∗(p′i)− ζ∗(n′i) = L(A ′).

Next, we regularize the function ζ. Let ϕ ∈ C∞c (B(0, 1),R+) be a mollifier such that∫
R3 ϕ(x)dx = 1. Letting

(1.36) λ := ϑ1/ρ for ρ > 0,

we define

ζλ(·) := ϕλ ∗ ζ(·) =

∫
R3

ϕλ(· − y)ζ(y)dy with ϕλ(·) =
1

λ
ϕ
( ·
λ

)
.

First, observe that ‖ζ − ζλ‖L∞(R3) ≤ λ from which we deduce that

(1.37)

∣∣∣∣∣L(A ′)−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ 2kλ.

By combining (1.35) with (1.37), we obtain

(1.38)

∣∣∣∣∣L(A )−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ CDA (2k)6ϑ+ 2kλ.

On the other hand, note that∣∣∣∣∣
k∑
i=1

ζ(pi)− ζ(ni)−
k∑
i=1

ζ(p′i)− ζ(n′i)

∣∣∣∣∣ ≤
k∑
i=1

|pi − ni|+ |p′i − n′i| ≤ CDA (2k)6ϑ.
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By combining the previous estimate with (1.37), we get

(1.39)

∣∣∣∣∣
k∑
i=1

ζ(pi)− ζ(ni)−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ CDA (2k)6ϑ+ 2kλ.

Then by (1.38) and (1.39), we deduce that∣∣∣∣∣L(A )−
k∑
i=1

ζλ(pi)− ζλ(ni)

∣∣∣∣∣ ≤ C(DA (2k)6λρ + 2kλ).

Second, note that

(1.40) ∇ζλ(x) =

∫
B(x,λ)

ϕλ(x− y)∇ζ(y)dy

for any x ∈ R3. We define

Λ := {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k, i 6= j}.

Then, letting
ζ(i,j)(·) := ζ(p′i)− d(i,j)(·) for (i, j) ∈ Λ,

observe that, for almost every y ∈ R3,

∇ζ(y) = ν(i,j) if ζ(y) = ζ(i,j)(y) for some (i, j) ∈ Λ.

Since |ν(i,j)| = 1 for any (i, j) ∈ Λ, we have

|∇ζλ(x)| ≤
∫
B(x,λ)

ϕλ(x− y)|∇ζ(y)|dy ≤
∫
B(x,λ)

ϕλ(x− y)dy = 1

for any x ∈ R3.
We now analyze the set of points whose gradient is small in modulus. From (1.40),

we deduce that

∇ζλ(x) =
∑
α∈Λ

σανα, where σα =

∫
B(x,λ)

ϕλ(x− y)1{ζ(y)=ζα(y)}dy for α ∈ Λ.

Observe that σα ∈ [0, 1] and that
∑

α∈Λ σα = 1. We conclude that, for any x ∈ R3,
∇ζλ(x) is a convex combination of the vectors να’s, α ∈ Λ. By Caratheodory’s theorem,
we deduce that ∇ζλ(x) is a convex combination of at most four of them.

Let us consider indices i, j ∈ {1, . . . , k} with i 6= j. We let

Pi,j := {y ∈ R3 | ζ(i,j)(y) = ζ(j,i)(y)}

and observe that

Pi,j = {ζ(p′i)− ζ(p′j)− 〈p′i + p′j − 2y, ν(i,j)〉 = 0}.
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A simple computation shows that

〈y1 − y2, ν(i,j)〉 = 0

for any y1, y2 ∈ Pi,j with y1 6= y2. This implies that Pi,j is a plane whose normal is ν(i,j)

and therefore

ζ(i,j)(y) = ζ(j,i)(y) =
ζ∗(p′i) + ζ∗(p′j)− 〈p′i + p′j, ν(i,j)〉

2
for any y ∈ Pi,j. We define

Pλ := {y ∈ R3 | d(y, P ) ≤ 2λ}, where P := ∪1≤i<j≤kPi,j.

We immediately check that |ζλ(Pλ)| ≤ Cλk2.
Consider a number κ < ϑ2/3 and a point

x ∈ {y ∈ R3 | |∇ζλ(y)| < κ} \ Pλ.

We observe that, since x 6∈ Pλ, if there exists a point y ∈ B(x, λ) and indices i, j ∈
{1, . . . , k} with i 6= j such that

ζ(y) = ζ(i,j)(y)

then, for any z ∈ B(x, λ),
ζ(z) 6= ζ(j,i)(z)

This implies that ∇ζλ(x) is a convex combination of at most four vectors, where if one of
them happens to be ν(i,j) for some i, j ∈ {1, . . . , k} with i 6= j then all the other vectors
are different from ν(j,i) = −ν(i,j). Recalling that the points of the collection A ′ are such
that

|να × νβ| > ϑ and |det(να, νβ, νγ)| > ϑ2

for any α, β, γ ∈ {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k, i < j} ( Λ with α 6= β 6= γ we deduce
that ∇ζλ(x) is a convex combination of at most four vectors that satisfy the previous
property.

Let us now show that ∇ζλ(x) cannot be a convex combination of three or fewer of the
vectors να’s, α ∈ Λ. We have three cases to consider:

• If there exists α ∈ Λ such that ∇ζλ = να in B(x, λ) then

|∇ζλ(x)| = |να| = 1 in B(x, λ).

• If there exist α, β ∈ Λ with α 6= β such that

∇ζλ(x) = σνα + (1− σ)νβ in B(x, λ),

for some σ ∈ (0, 1), then

|∇ζλ(x)| = |σνα + (1− σ)νβ|
≥ max {|∇ζλ(x)× να|, |∇ζλ(x)× νβ|}
= max {(1− σ)|να × νβ|, σ|να × νβ|}

≥ max{σ, 1− σ}ϑ ≥ ϑ

2
.
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• If there exist α, β, γ ∈ Λ with α 6= β 6= γ such that

∇ζλ(x) = σανα + σβνβ + σγνγ in B(x, λ),

for some numbers σα, σβ, σγ ∈ (0, 1) with σα + σβ + σγ = 1, then, assuming without
loss of generality that σα ≥ 1

3
, we have

|∇ζλ(x)| ≥ σα|να · (νβ × νγ)| = σα|det(να, νβ, νγ)| ≥
ϑ2

3
.

Since κ < ϑ2

3
we deduce that the three cases considered above cannot occur. Therefore

we conclude that there exist α, β, γ, η ∈ Λ with α 6= β 6= γ 6= η such that

∇ζλ(x) = σανα + σβνβ + σγνγ + σηνη in B(x, λ),

for some σα, σβ, σγ, ση ∈ (0, 1) with σα + σβ + σγ + ση = 1.
Let us solve consider the system of equations

(1.41) ζα(y) = ζβ(y) = ζγ(y) = ζη(y).

We claim that this system admits a unique solution y ∈ R3 which in addition satisfies

|x− y| ≤ Cλ

(ϑ2 − 3κ)
.

Writing ỹ = y − x, we observe that ỹ satisfies the linear system of equations Aỹ = B,
where

A =

 να − νβ
νγ − νβ
νη − νβ

 and B =

 ζα(x)− ζβ(x)
ζγ(x)− ζβ(x)
ζη(x)− ζβ(x)

 .

Let us check that |det(A)| ≥ 4(ϑ2 − 3κ). Note that without loss of generality we can
assume that σα ≤ 1

4
. Observe that

∇ζλ(x)− νβ = σα(να − νβ) + σγ(νγ − νβ) + ση(νη − νβ).

By Cramer’s rule, we have

σα =
det(∇ζλ(x)− νβ, νγ − νβ, νη − νβ)

det(να − νβ, νγ − νβ, νη − νβ)
.

Simple computations show that

det(∇ζλ(x)− νβ, νγ − νβ, νη − νβ) = −det(νβ, νγ, νη) + f(∇ζλ(x)),

where |f(∇ζλ(x))| ≤ 3|∇ζλ(x)| ≤ 3κ. Therefore

|det(∇ζλ(x)− νβ, νγ − νβ, νη − νβ)| ≥ |det(νβ, νγ, νη)| − |f(∇ζλ(x))| ≥ ϑ2 − 3κ.
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We deduce that

|det(να − νβ, νγ − νβ, νη − νβ)| = |det(∇ζλ(x)− νβ, νγ − νβ, νη − νβ)|
σα

≥ 4(ϑ2 − 3κ).

On the other hand, note that there exist xα, xβ, xγ, xη in B(x, λ) such that

ζ(xα) = ζα(xα), ζ(xβ) = ζβ(xβ), ζ(xγ) = ζγ(xγ), ζ(xη) = ζη(xη).

Since

B =

 ζα(x)− ζα(xα) + ζ(xα)− ζ(xβ) + ζβ(xβ)− ζβ(x)
ζγ(x)− ζγ(xγ) + ζ(xγ)− ζ(xβ) + ζβ(xβ)− ζβ(x)
ζη(x)− ζη(xη) + ζ(xη)− ζ(xβ) + ζβ(xβ)− ζβ(x)

 ,

we deduce that |B| ≤ 3λ. Hence the linear system of equations Aỹ = B admits a unique
solution which satisfies

|ỹ| = |y − x| = |A−1B| ≤ Cλ

ϑ2 − 3κ
.

Summarizing, if x ∈ {y ∈ R3 | |∇ζλ(y)| < κ} \ Pλ with κ < ϑ2/3 then there exist
α, β, γ, η ∈ Λ with α 6= β 6= γ 6= η such that the unique solution y ∈ R3 to (1.41) lies in
the ball B(x,Cλ/(ϑ2 − 3κ)). We conclude that the set

Cκ = {x | |∇ζλ(x)| < κ} \ Pλ

can be covered by Bκ, a collection of at most
(|Λ|

4

)
≤ (2k)8 balls of radius Cλ/(ϑ2 − 3κ).

Observing that

|D2ζλ(x)| ≤ C

λ2

for any x ∈ R3, and letting
Tκ = ζλ(∪B∈BκB),

we deduce that, for any t ∈ R \ (Tκ ∪ ζλ(Pλ)), {x | ζλ(x) = t} is a complete submanifold
of R3 whose second fundamental form is bounded by

C
supR3 |D2ζλ|

infR3\((∪B∈BκB)∪Pλ) |∇ζλ|
≤ C

λ2κ
.

Recalling the relation between λ and ϑ (see (1.36)), the proposition follows.

1.B Smooth approximation of the function ζ for d∂Ω

The chief goal of this section of the appendix is to prove Proposition 1.5.2. First, let us
denote by X = {x1, . . . , xn} a collection of points belonging to ∂Ω such that

(1.42)
3

2
τ ≤ min

1≤i<j≤n
d(xi, xj) and max

1≤i≤n
d(z, xi) ≤

5

2
τ for any z ∈ ∂Ω,
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where from now on d denotes the geodesic distance on ∂Ω and τ > 0 is a given number.
For any xi ∈X let us denote by ν(xi) the outer unit normal to ∂Ω. Define

ΩX := ∩1≤i≤n{z | 〈z − xi, ν(xi)〉 < 0}.

It is easy to see that ∂ΩX is a polyhedral approximation of ∂Ω which in addition is convex
if Ω is convex.

In the next lemma we show that the points of the collection X can be displaced in
order to make the normals ν(xi)’s, xi ∈ X satisfy extra conditions, when Ω is assumed
to be a C2 bounded domain such that ∂Ω has strictly positive Gauss curvature.

Lemma 1.B.1. Let Ω ⊂ R3 be a C2 bounded domain such that ∂Ω has strictly positive
Gauss curvature at every point and let X = {x1, . . . , xn} be a collection of points belonging
to ∂Ω satisfying (1.42) for a number τ > 0. Then there exist constants τ0, C0, C > 0
depending only on ∂Ω, such that for any 0 < τ < τ0 there exists a collection X ′ =
{y1, . . . , yn} ⊂ ∂Ω such that for any 0 < ϑ < C0τ

5 the following hold

1. τ ≤ min1≤i<j≤n d(yi, yj) and max1≤i≤n d(z, yi) ≤ 3τ for any z ∈ ∂Ω.

2. Letting
ΩX ′ := ∩1≤i≤n{z | 〈z − yi, ν(yi)〉 < 0},

where ν(yi) is the outer unit normal to ∂Ω at yi, we have

|d(z, ∂ΩX ′)− d(z, ∂Ω)| ≤ Cτ 2

for any z ∈ R3.

3. For any i, j, k ∈ {1, . . . , n} with i 6= j 6= k, we have

|ν(yi)× ν(yj)| ≥ ϑ and |det(ν(yi), ν(yj), ν(yk))| ≥ ϑ2.

Proof. Since we assume that ∂Ω has strictly positive Gauss curvature at every point, we
have that there exists a constant K0(∂Ω) > 0 such that for any point x ∈ ∂Ω the minimal
principal curvature of ∂Ω at x is bounded below by K0.

Simple geometric arguments show that there exist constants C, ϑ0, R0 > 0 depending
only on ∂Ω, such that for any x ∈ ∂Ω and for any 0 < ϑ < ϑ0 if v ∈ R3 with |v| = 1 is
such that

θ(ν(x), v) < ϑ,

where θ(ν(x), v) is the angle formed by ν(x) and v, then for any y ∈ ∂Ω satisfying

CK0ϑ ≤ d(x, y) ≤ R0,

we have
θ(ν(y), v) ≥ ϑ.

We easily deduce that, up to an adjustment of the constants, for any x ∈ ∂Ω and for any
0 < ϑ < ϑ0 if v ∈ R3 with |v| = 1 is such that

|ν(x)× v| < ϑ,
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then for any y ∈ ∂Ω satisfying CK0ϑ ≤ d(x, y) ≤ R0, we have

(1.43) |ν(y)× v| ≥ ϑ.

Moreover, for any x ∈ ∂Ω and for any 0 < ϑ < ϑ0 if v, w ∈ R3 with |v| = |w| = 1 are such
that

|v × w| ≥ ϑ and | det(ν(x), v, w)| < ϑ2,

then for any y ∈ ∂Ω satisfying CK0ϑ ≤ d(x, y) ≤ R0, we have

(1.44) | det(ν(y), v, w)| ≥ ϑ2.

Then, we proceed by induction. We define y1 = x1.
Assume that we have defined a collection {y1, . . . , yl} ⊂ ∂Ω with 1 < l < n such that

for any i, j, k ∈ {1, . . . , l} with i 6= j 6= k, we have

|ν(yi)× ν(yj)| ≥ ϑ and |det(ν(yi), ν(yj), ν(yk))| ≥ ϑ2.

From our previous observations we deduce that there exists a point y ∈ ∂Ω, such that
d(xl+1, y) ≤ CK0ϑ, satisfying (1.43) for v = ν(y1). By repeating this procedure at most l
times, we find a point y′l+1 with

d(xl+1, y
′
l+1) ≤ ClK0ϑ

such that, for any i ∈ {1, . . . , l},

|ν(yi)× ν(y′l+1)| ≥ ϑ.

We further displace the point y′l+1 in order to additionally satisfy the condition on the
determinants (when l ≥ 3). Once again from our previous observations we deduce that
there exists a point y ∈ ∂Ω, such that d(y′l+1, y) ≤ CK0ϑ, satisfying (1.44) for v = ν(y1)
and w = ν(y2). By repeating this procedure at most l2 times, we find a point yl+1 with

d(y′l+1, yl+1) ≤ Cl2K0ϑ

such that the collection {y1, . . . , yl+1} ⊂ ∂Ω satisfies

|ν(yi)× ν(yj)| ≥ ϑ and |det(ν(yi), ν(yj), ν(yk))| ≥ ϑ2

for any i, j, k ∈ {1, . . . , l + 1} with i 6= j 6= k. This concludes the induction step and the
proof of the third assertion. Note that

d(xl, yl) ≤ 2C(l − 1)2ϑ ≤ 2Cn2ϑ

for any l ∈ {1, . . . , n}. Observing that n ≤ Cτ−2 for a universal constant C > 0, we
deduce that, for any 1 ≤ l ≤ n,

d(xl, yl) ≤ Cτ−4ϑ.

Therefore, if Cτ−4ϑ ≤ 1/2τ then the first assertion is satisfied. Finally, geometric manip-
ulations show the validity of the second assertion (see [Gru93, Theorem 4] for a proof).
This concludes the proof.
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With the aid of Lemmas 1.A.1, 1.A.3, and 1.B.1 we prove the following result.

Lemma 1.B.2. Let Ω ⊂ R3 be a C2 bounded domain such that ∂Ω has strictly positive
Gauss curvature at every point. Let A = {a1, . . . , am} ⊂ Ω be a collection of m non
necessarily distinct points. Consider a collection X = {x1, . . . , xn} ⊂ ∂Ω satisfying (1.42)
and let X ′ = {y1, . . . , yn} ⊂ ∂Ω denote the collection of points given by Lemma 1.B.1
for a number τ < τ0, where τ0 is the constant appearing in the lemma. Then there exist
constant C0, C1 > 0 depending only on ∂Ω, and a collection of points A ′ = {b1, . . . , bm}
such that for any

ϑ < C0 min{m−6,m−4τ 2,m−2τ 4, τ 5}

the following hold

1. bi 6= bj for any i 6= j.

2. Define

ν(i,j) :=
bi − bj
|bi − bj|

for (i, j) ∈ Λm := {(p, q) | 1 ≤ p < q ≤ m}

and
V := {ν(i,j) | (i, j) ∈ Λm} ∪ {ν(yi) | yi ∈X ′}.

Then for any u, v, w ∈ V with u 6= v 6= w, we have

|u× v| ≥ ϑ and |det(u, v, w)| ≥ ϑ2.

3. |al − bl| ≤ C1(l5 + l3τ−2 + lτ−4)ϑ for any l ∈ {1, . . . ,m}.

Proof. Assume ϑ ≤ C0τ
5, where C0 is the constant appearing in Lemma 1.B.1, so that

for any i, j, k ∈ {1, . . . , n} with i 6= j 6= k, we have

|ν(yi)× ν(yj)| ≥ ϑ and |det(ν(yi), ν(yj), ν(yk))| ≥ ϑ2.

We proceed by induction. We define b1 = a1, d1 = 0 and D1 = diam(Ω) + 1.
Assume that we have defined a collection {b1, . . . , bl} with 2 ≤ l < m such that

• Letting
Vl = {ν(i,j) | (i, j) ∈ Λl} ∪ {ν(yi) | yi ∈X ′},

then for any u, v, w ∈ Vl with u 6= v 6= w, we have

|u× v| ≥ ϑ and |det(u, v, w)| ≥ ϑ2.

• |ai − bi| ≤ dl for any i ∈ {1, . . . , l}.

• |bi − bj| ≤ Dl for any i, j ∈ {1, . . . , l}.

Using Lemma 1.A.1, Lemma 1.A.3, and arguing as in the proof of Proposition 1.A.1 we
find a point b′l+1 such that the collection {b1, . . . , bl, b

′
l+1} satisfies:

75



Chapter 1. 3D vortex approximation construction and estimates for Ginzburg-Landau

• For any α, β, γ ∈ Λl+1 with α 6= β 6= γ, we have

|να × νβ| ≥ ϑ and |det(να, νβ, νγ)| ≥ ϑ2.

• |ai − bi| ≤ dl+1 = 6l5(Dl + dl)ϑ for any i ∈ {1, . . . , l + 1}.

• |bi − bj| ≤ Dl+1 = Dl + dl for any i, j ∈ {1, . . . , l + 1}.

We displace the point b′l+1 in order to additionally satisfy the conditions involving the
vectors of the collection X ′.

First, applying Lemma 1.A.1 with the points x1 = y1, x2 = y1 + ν(y1), x3 = b1,
x4 = b′l+1, and the number D = Dl + dl, we find a point x′4 satisfying (1.31) and (1.32).
We recall that n ≤ Cτ−2, where throughout the proof C denotes a universal constant
that may change from line to line. By repeating this argument at most Cτ−2l times, we
find a point b′′l+1 with

|al+1 − b′′l+1| ≤ (6l5 + 3Cτ−2l)(Dl + dl)ϑ

such that the collection {b1, . . . , bl, b
′′
l+1}, in addition to the previous properties, satisfies

|ν(i,l+1) × ν(yj)| ≥ ϑ for any i ∈ {1, . . . , l} and j ∈ {1, . . . , n}.

When l > 2, we further displace the point b′′l+1. Applying Lemma 1.A.3 with the points
x1 = y1, x2 = y1 +ν(y1), x3 = b1, x4 = b2, x5 = b1, x6 = b′′l+1 and the number D = Dl+dl,
we find a point x′6 satisfying (1.33) and (1.34). By repeating this argument at most Cτ−2l3

times, we find a point b′′′l+1 with

|al+1 − b′′′l+1| ≤ (6l5 + 3Cτ−2l + 3Cτ−2l3)(Dl + dl)ϑ

such that the collection {b1, . . . , bl, b
′′′
l+1}, in addition to the previous properties, satisfies

|det(ν(i,l+1), να, ν(yj))| ≥ ϑ2 for any i ∈ {1, . . . , l}, α ∈ Λl, and j ∈ {1, . . . , n}.

Finally, applying Lemma 1.A.3 with the points x1 = y1, x2 = y1 + ν(y1), x3 = y2,
x4 = y2 + ν(y2), x5 = b1, x6 = b′′′l+1 and the number D = Dl + dl, we find a point x′6
satisfying (1.33) and (1.34). By repeating this argument at most C2τ−4l times, we find a
point bl+1 with

|al+1 − bl+1| ≤ (6l5 + 3Cτ−2l + 3Cτ−2l3 + 3C2τ−4l)(Dl + dl)ϑ

such that the collection {b1, . . . , bl, bl+1}, in addition to the previous properties, satisfies

|det(ν(i,l+1), ν(yj), ν(yk))| ≥ ϑ2 for any i ∈ {1, . . . , l} and j, k ∈ {1, . . . , n} with j 6= k.

Summarizing, the collection {b1, . . . , bl, bl+1} satisfies

• Letting
Vl+1 = {ν(i,j) | (i, j) ∈ Λl+1} ∪ {ν(yi) | yi ∈X ′},

then for any u, v, w ∈ Vl with u 6= v 6= w, we have

|u× v| ≥ ϑ and |det(u, v, w)| ≥ ϑ2.
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• |ai − bi| ≤ dl+1 = C(l5 + τ−2l3 + τ−4l)(Dl + dl)ϑ for any i ∈ {1, . . . , l+ 1}, where C
is a universal constant.

• |bi − bj| ≤ Dl+1 = Dl + dl for any i, j ∈ {1, . . . , l + 1}.

This concludes the induction step. Arguing as in the proof of Proposition 1.A.1 we find
upper bounds for the recursively defined distances dl and Dl. Observe that

Dl+1 ≤ Dl(1 + C(l5 + τ−2l3 + τ−4l)ϑ), D1 = diam(Ω) + 1.

We immediately check that if ϑ ≤ min{ϑ1, ϑ3,m
−6 + τ 2m−4 + τ 4m−2}, where ϑ1 and ϑ3

are the constants appearing in Lemma 1.A.1 and Lemma 1.A.3 respectively, then for any
l ∈ {1, . . . ,m}

Dl ≤ Dm ≤ D1(1 + C(m5 + τ−2m3 + τ−4m)ϑ)m ≤ D1

(
1 +

C

m

)m
≤ C(diam(Ω) + 1),

Moreover if ϑ ≤ m−6 + τ 2m−4 + τ 4m−2 then for any l ∈ {1, . . . ,m}

dl ≤ C(diam(Ω) + 1)(l5 + τ−2l3 + τ−4l)ϑ.

Thus, provided that

ϑ < C0 min{m−6,m−4τ 2,m−2τ 4, τ 5},

where the constant C0 depends only on Ω, the proposition follows.

We are now in position to prove Proposition 1.5.2.

Proof of Proposition 1.5.2. Let X = {x1, . . . , xn} ⊂ ∂Ω be a collection of points sat-
isfying (1.42) for a number τ > 0. Apply Lemma 1.B.1 to obtain a collection X ′ =
{y1, . . . , yn} for 0 < τ < τ0, where τ0 is the constant appearing in the statement of the
lemma. Then apply Proposition 1.B.2 with the collection of points A ⊂ Ω to obtain a
collection A ′ = {p′1, . . . , p′k, n′1, . . . , n′k}. We consider a number

ϑ < C0 min{(2k)−6, (2k)−4τ 2, (2k)−2τ 4, τ 5},

where C0 = C0(∂Ω) is the constant appearing in the statement of the lemma. Observe
that

L∂Ω(A ′) ≤
k∑
i=1

d∂Ω(p′i, n
′
i) ≤

k∑
i=1

d∂Ω(pi, ni) + d∂Ω(pi, p
′
i) + d∂Ω(ni, n

′
i)

≤ L∂Ω(A ) + C(2k)
(
(2k)5 + (2k)3τ−2 + (2k)τ−4

)
ϑ,

where throughout the proof C denotes a constant depending only on ∂Ω, that may change
from line to line. An analogous argument shows that

L∂Ω(A ) ≤ L∂Ω(A ′) + C(2k)
(
(2k)5 + (2k)3τ−2 + (2k)τ−4

)
ϑ.
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Therefore

(1.45) |L∂Ω(A )− L∂Ω(A ′)| ≤ C(2k)
(
(2k)5 + (2k)3τ−2 + (2k)τ−4

)
ϑ.

Remember that by Lemma 1.5.3 there exists a 1-Lipschitz function ζ∗ : ∪i=1,...,k{p′i, n′i} →
R such that

L∂Ω(A ′) =
k∑
i=1

ζ∗(p′i)− ζ∗(n′i).

Define the function ζ for d∂Ω as in Definition 1.5.2, i.e. set

ζ(x) := max
i∈{1,...,k}

(ζ∗(p′i)− di(x, ∂Ω)) ,

where

di(x, ∂Ω) := min

[
max

(
max

j∈{1,...,2k}
d(i,j)(x), d(p′i, ∂Ω)− d(x, ∂Ω)

)
, d(p′i, ∂Ω) + d(x, ∂Ω)

]
,

and

d(i,j)(x) := 〈p′i − x, ν(i,j)〉, ν(i,j) =

{
p′i−a′j
|p′i−a′j |

if p′i 6= a′j

0 if p′i = a′j
.

Lemma 1.5.4 yields that ζ : R3 → R is a 1-Lipschitz function such that

k∑
i=1

ζ(p′i)− ζ(n′i) =
k∑
i=1

ζ∗(p′i)− ζ∗(n′i) = L∂Ω(A ′).

Recall that by Lemma 1.B.1, letting

ΩX ′ := ∩1≤l≤n{z | 〈z − yl, ν(yl)〉 < 0},

where ν(yl) is the outer unit normal to ∂Ω at yl, we have

(1.46) |d(x, ∂ΩX ′)− d(x, ∂Ω)| ≤ Cτ 2

for any x ∈ R3. Observe that, since Ω is convex, Ω ⊂ ΩX ′ and that for any z ∈ ΩX ′

d(x, ∂ΩX ′) = min
1≤l≤n

〈yl − x, ν(yl)〉.

In order to take advantage of this fact, we define a new function by replacing the distance
to ∂Ω with the distance to ∂ΩX ′ . More precisely, we let

ζ̃(x) := max
i∈{1,...,k}

(ζ∗(p′i)− di(x, ∂ΩX ′)).

From (1.46), we deduce that

(1.47)

∣∣∣∣∣L∂Ω(A ′)−
k∑
i=1

ζ̃(p′i)− ζ̃(n′i)

∣∣∣∣∣ ≤ C(2k)τ 2.
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Next, we regularize the function ζ̃. Let ϕ ∈ C∞c (B(0, 1),R+) be a mollifier such that∫
R3 ϕ(x)dx = 1. Letting

(1.48) λ := ϑ1/ρ for ρ > 0,

we define

ζλ(·) := ϕλ ∗ ζ̃(·) =

∫
R3

ϕλ(· − z)ζ̃(z)dz with ϕλ(·) =
1

λ
ϕ
( ·
λ

)
.

First, observe that ‖ζ̃ − ζλ‖L∞(R3) ≤ λ. We deduce that

(1.49)

∣∣∣∣∣
k∑
i=1

ζ̃(p′i)− ζ̃(n′i)−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ 2kλ.

By combining (1.45) with (1.47) and (1.49), we obtain

(1.50)

∣∣∣∣∣L∂Ω(A )−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ C(((2k)6 +(2k)4τ−2 +(2k)2τ−4)ϑ+2k(τ 2 +λ)).

On the other hand, note that∣∣∣∣∣
k∑
i=1

ζ(pi)− ζ(ni)−
k∑
i=1

ζ(p′i)− ζ(n′i)

∣∣∣∣∣ ≤
k∑
i=1

|pi − ni|+ |p′i − n′i|

≤ C(2k)
(
(2k)5 + (2k)3τ−2 + (2k)τ−4

)
ϑ.

By combining the previous estimate with (1.46) and (1.47), we get
(1.51)∣∣∣∣∣
k∑
i=1

ζ(pi)− ζ(ni)−
k∑
i=1

ζλ(p
′
i)− ζλ(n′i)

∣∣∣∣∣ ≤ C(((2k)6 +(2k)4τ−2 +(2k)2τ−4)ϑ+2k(τ 2 +λ)).

Then by (1.50) and (1.51), we deduce that∣∣∣∣∣L∂Ω(A )−
k∑
i=1

ζλ(pi)− ζλ(ni)

∣∣∣∣∣ ≤ C(((2k)6 + (2k)4τ−2 + (2k)2τ−4)ϑ+ 2k(τ 2 + λ)).

Second, note that

(1.52) ∇ζλ(x) =

∫
B(x,λ)

ϕλ(x− z)∇ζ̃(z)dz

for any x ∈ R3. We define

Λ := {(i, j) | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k, i 6= j} and c := max
i∈{1,...,k}

(ζ∗(p′i)− d(p′i, ∂ΩX ′)).
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Then, letting

ζ(i,j)(·) := ζ∗(p′i)− d(i,j)(·) for (i, j) ∈ Λ

ζl,+(·) := c+ 〈· − yl, ν(yl)〉 for l ∈ {1, . . . , n}
ζl,−(·) := c− 〈· − yl, ν(yl)〉 for l ∈ {1, . . . , n},

observe that, for almost every z ∈ ΩX ′ ,

∇ζ̃(z) =


ν(i,j) if ζ̃(z) = ζ(i,j)(z) for some (i, j) ∈ Λ

ν(yl) if ζ̃(z) = ζl,+(z) for some l ∈ {1, . . . , n}
−ν(yl) if ζ̃(z) = ζl,−(z) for some l ∈ {1, . . . , n},

In particular |∇ζ̃(z)| = 1 for almost every z ∈ ΩX ′ . Thus

|∇ζλ(x)| ≤
∫
B(x,λ)

ϕλ(x− z)|∇ζ̃(z)|dz ≤
∫
B(x,λ)

ϕλ(x− z)dz = 1

for any x ∈ Ωλ.
Third, observe that

ζ̃(x) = c for any x ∈ ∂ΩX ′ .

Thus
|ζλ(Ω \ Ωλ)| ≤ C(τ 2 + λ).

We now analyze the set of points in Ωλ whose gradient is small in modulus. From (1.52),
we deduce that

∇ζλ(x) =
∑
α∈Λ

σανα +
n∑
l=1

σl,+ν(yl) +
n∑
l=1

σl,−(−ν(yl)),

where

σα =

∫
B(x,λ)

ϕλ(x− z)1ζ̃(z)=ζα(z)dz for α ∈ Λ,

σl,+ =

∫
B(x,λ)

ϕλ(x− z)1ζ̃(z)=ζl,+(z)dz for l ∈ {1, . . . , n},

σl,− =

∫
B(x,λ)

ϕλ(x− z)1ζ̃(z)=ζl,−(z)dz for l ∈ {1, . . . , n}.

Observe that σα, σl,+, σl,− ∈ [0, 1] and that
∑

α∈Λ σα +
∑n

l=1 σl,+ +
∑n

l=1 σl,− = 1. We
conclude that, for any x ∈ Ωλ, ∇ζλ(x) is a convex combination of the vectors να’s, ν(yl)’s,
and −ν(yl)’s with α ∈ Λ, l ∈ {1, . . . , n}. By Caratheodory’s theorem, we deduce that
∇ζλ(z) is a convex combination of at most four of them.

We define
Pλ := {z ∈ R3 | d(z, P ) ≤ 2λ},

where
P := ∪1≤i<j≤kPi,j, Pi,j := {z ∈ R3 | ζ(i,j)(y) = ζ(j,i)(y)}.
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Arguing as in the proof of Proposition 1.5.1, we deduce that |ζλ(Pλ)| ≤ 2λk2.
Consider a number κ < ϑ2/3 and a point

x ∈ {z ∈ Ωλ | |∇ζλ(z)| < κ} \ Pλ.

We observe that, since x 6∈ Pλ, if there exists a point y ∈ B(x, λ) and indices i, j ∈
{1, . . . , k} with i 6= j such that

ζ(y) = ζ(i,j)(y)

then, for any z ∈ B(x, λ),
ζ(z) 6= ζ(j,i)(z)

On the other hand, since x ∈ Ωλ, if there exist a point z+ ∈ B(x, λ) and an index
l ∈ {1, . . . , n} such that

ζ̃(z+) = ζl,+(z+)

then, for any z ∈ B(x, λ),
ζ̃(z) 6= ζl,−(z).

Arguing by contradiction, assume that there exist points z+, z− ∈ B(x, λ) and an index
l ∈ {1, . . . , n} such that

ζ̃(z+) = ζl,+(z+) and ζ̃(z−) = ζl,−(z−).

Observe that
|ζ̃(z+)− ζ̃(z−)| ≤ λ and |ζl,−(z−)− ζl,−(z+)| ≤ λ

and that
|ζl,+(z+)− ζl,−(z+)| = 2d(z+, ∂ΩX ′) ≥ 2d(z+, ∂Ω) > 2λ.

But
|ζl,+(z+)− ζl,−(z+)| = |ζ̃(z+)− ζ̃(z−) + ζl,−(z−)− ζl,−(z+)| ≤ 2λ,

which yields a contradiction with the previous computation.
Analogously, if there exist a point z− ∈ B(x, λ) and an index l ∈ {1, . . . , n} such that

ζ̃(z−) = ζl,−(z−)

then, for any z ∈ B(x, λ),
ζ̃(z) 6= ζl,+(z).

This implies that ∇ζλ(x) is a convex combination of at most four vectors, where if one
them happens to be ν(i,j) for some i, j ∈ {1, . . . , k} with i 6= j then all the other vectors are
different from ν(j,i) = −ν(i,j) and if one of them happens to be ν(yl) (respectively −ν(yl))
for some l ∈ {1, . . . , n} then all the other vectors are different from −ν(yl) (respectively
ν(yl)). Recalling that by Lemma 1.B.2, we have

|v1 × v2| ≥ ϑ and | det(v1, v2, v3)| ≥ ϑ2

for any v1, v2, v3 ∈ {ν(i,j) | 1 ≤ i ≤ k, 1 ≤ j ≤ 2k, i < j} ∪ {ν(yl) | 1 ≤ l ≤ n} with
v1 6= v2 6= v3 we deduce that ∇ζλ(x) is a convex combination of at most four vector that
satisfy the previous property.
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Arguing as in the proof of Proposition 1.5.1 we conclude that if x ∈ {y ∈ Ωλ | |∇ζλ(y)| <
κ} \ Pλ with κ < ϑ2/3, then there exist four different functions

ζ1, ζ2, ζ3, ζ4 ∈ {ζ(i,j) | (i, j) ∈ Λ} ∪ {ζl,+ | yl ∈X ′} ∪ {ζl,− | yl ∈X ′},

where if ζa = ζ(i,j) for some (i, j) ∈ Λ and a ∈ {1, 2, 3, 4} then ζb 6= ζ(j,i) for any b ∈
{1, 2, 3, 4} \ {a} and if ζa = ζl,+ (respectively ζa = ζl,−) for some l ∈ {1, . . . , n} and
a ∈ {1, 2, 3, 4} then ζb 6= ζl,− (respectively ζb 6= ζl,+) for any b ∈ {1, 2, 3, 4} \ {a}, such
that the unique solution z ∈ R3 to the linear system of equations

ζ1(z) = ζ2(z) = ζ3(z) = ζ4(z)

lies in the ball B(x,Cλ/(ϑ2 − 3κ)). We conclude that the set

Cκ := {x ∈ Ωλ | |∇ζλ(x)| < κ} \ Pλ

can be covered by Bκ, a collection of at most
(|Λ|+2|X ′|

4

)
≤ C0((2k)8 + τ−8) balls of radius

Cλ/(ϑ2 − 3κ). Observing that

|D2ζλ(x)| ≤ C

λ2

for any x ∈ Ωλ, and letting

Tκ := ζλ(∪B∈BκB),

we deduce that, for any t ∈ ζλ(Ωλ)\(Tκ∪ζλ(Pλ)), {x | ζλ(x) = t} is a complete submanifold
of R3 whose second fundamental form is bounded by

C
supΩλ

|D2ζλ|
infΩλ\((∪B∈BκB)∪Pλ) |∇ζλ|

≤ C

λ2κ
.

Recalling the relation between λ and ϑ (see (1.48)), the proposition follows.

1.B.1 The general case

In order to get rid of the assumption that ∂Ω has strictly positive Gauss curvature at
every point, a new approach is needed. We will smoothly approximate the function ζ for
d∂Ω defined in Definition 1.5.2, after displacing the points ai as in Appendix 1.A. The
main difference with respect to the strategy followed in Appendix 1.B, is that we do not
approximate the boundary of the domain. The commodity of doing this is that (where
well-defined) the gradient of the function d(·, ∂Ω′X ) is equal to the normal to ∂Ω at some
point of the discrete set X ′.

In our new approach, the main points to consider are:

• If we reduce the analysis to a small neighborhood close to the boundary, then the
gradient of the distance to the boundary at every point of this neighborhood is given
by the normal to the boundary at the unique projection to the boundary of this
point.
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1.B. Smooth approximation of the function ζ for d∂Ω

• We need to understand the set where the distance to the boundary is equal to one
or two of the functions ζi,j’s, while the gradient vectors of these functions do not
satisfy a good angle condition between each other, in the sense described in the
previous two sections. One can show that the image of this set has small measure.
To prove this fact, the strategy is to combine the first observation with a delicate
analysis based on the curvature of the boundary. An important fact is that we
need to assume that the boundary is of class C2, which in particular gives an upper
bound for the maximal principal curvature at each point. Roughly speaking, this
means that the boundary “cannot wiggle too much”.

• We need to adapt the last part of the proof of Proposition 1.5.2. Arguing in the
same fashion, but using a quantitative version of the inverse function theorem, we
can show that the set where the distance to the boundary is equal to three of the
functions ζi,j’s can be covered by a finite number of small balls.

We remark that once this is done, the proofs presented in Sections 1.6, 1.7, and 1.8 will
follow (almost) without modification.
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Chapter 2

Global minimizers for the 3D
Ginzburg-Landau functional below

and near the first critical field

Abstract

In this chapter, which is based on [Romb] and on a work in preparation in collaboration
with Etienne Sandier and Sylvia Serfaty [RSS], we analyze the behavior of global
minimizers of the three-dimensional Ginzburg-Landau functional below and near the
first critical field. First, we prove that minimizing configurations below the first critical
field are vortex-less. Second, in a work in progress, we prove that near the first critical
field, global minimizers have bounded vorticity, under a suitable non-degeneracy
condition.
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Chapter 2. Global minimizers for the 3D Ginzburg-Landau functional

2.1 Introduction

The aim of this chapter is to give a precise estimate of the first critical field Hc1 and
to study the behavior of global minimizers of the full Ginzburg-Landau functional with
applied magnetic field (introduced in Chapter 1) below and near Hc1 . Physically, this
value is characterized as follows. Below Hc1 , the superconductor is everywhere in its su-
perconducting phase |u| ≈ 1 and the external magnetic field is forced out by the material.
This phenomenon is known as the M eissner effect. At Hc1 , which is of order of | log ε| as
ε→ 0, the first vortice(s) appear and the external magnetic field penetrates the material
through the vortice(s).

In the works [Ser99, SS00a, SS03,SS00c], Sandier and Serfaty derived with high pre-
cision the value of the first critical field and rigorously described the behavior of global
minimizers of GLε below and near Hc1 in 2D. In the 3D case, Alama, Bronsard, and
Montero [ABM06] identified a candidate expression for Hc1 in the case of the ball. Then,
Baldo, Jerrard, Orlandi, and Soner [BJOS13] characterized to leading order the first criti-
cal field in 3D for a general bounded domain, via a Γ-convergence argument. Our purpose
here is to derive with more precision this value. To do so, we crucially use the ε-level
estimates proved in the previous chapter.

Throughout this chapter, we assume that Hex = hexH0,ex, where H0,ex is a fixed unit
vector and hex denotes the intensity of the applied field. In particular, there exists Aex =
hexA0,ex ∈ H1

loc(R3,R3) such that

curlA0,ex = H0,ex, divA0,ex = 0 in R3 and A0,ex · ν = 0 on ∂Ω.

The natural space for the minimization of GLε in 3D is H1(Ω,C)× [Aex +Hcurl], where

Hcurl := {A ∈ H1
loc(R3,R3) | curlA ∈ L2(R3,R3)}.

Let us also introduce the homogeneous Sobolev space Ḣ1(R3,R3), which is defined as the
completion of C∞0 (R3,R3) with respect to the norm ‖∇(·)‖L2(R3,R3). We observe that, by
Sobolev embedding, there exists a constant C > 0 such that

(2.1) ‖A‖L6(R3,R3) ≤ C‖∇A‖L2(R3,R3)

for any A ∈ Ḣ1(R3,R3). Moreover, by [KS91, Proposition 2.4], we have

Ḣ1(R3,R3) = {A ∈ L6(R3,R3) | ∇A ∈ L2(R3,R3)}.

It is also convenient to define the subspace

Ḣ1
div=0 := {A ∈ Ḣ1(R3,R3) | divA = 0 in R3}.

In this subspace, one has

(2.2) ‖∇A‖L2(R3,R3) = ‖ curlA‖L2(R3,R3).

Let us recall that any vector field A ∈ H1(Ω,R3) can be decomposed as
A = curlBA +∇φA in Ω

BA × ν = 0 on ∂Ω
∇φA · ν = A · ν on ∂Ω,
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2.1. Introduction

where the vector field BA and the function φA are unique if properly chosen.
We consider the unique minimizer A0 ∈ Ḣ1

div=0 of the functional

J(A) :=
1

2

∫
Ω

| curlBA|2 +
1

2

∫
R3

| curl(A− A0,ex)|2

and define the Meissner configuration (u0, hexA0), where u0 = eihexφA0 . We observe that
GLε(u0, hexA0) = h2

exJ(A0). Finally, letting B0 := BA0 ∈ C
0,1
T (Ω,R3), where C0,1

T denotes
the space of vector fields in C0,1 whose tangential component vanishes on ∂Ω, we define

‖B0‖∗ := sup
µ∈X

∫
Ω

µ ∧B0,

where X is the class of 1-currents such that ∂µ = 0 relative to Ω and |µ|(Ω) ≤ 1.
Our goal is to prove that the first critical field in 3D is given by H3D

c1
+O(1). Our first

result concerns the behavior of global miniminizers of GLε below H3D
c1

.

Theorem 2.1.1. There exist constants ε0, K0 > 0 such that for any ε < ε0 and hex ≤
H3D
c1
−K0 log | log ε|, the global minimizers (uε, Aε) of GLε in H1(Ω,C)× [Aex +Hcurl] are

such that |uε| ≥ 1/2 in Ω and GLε(uε, Aε) = h2
exJ(A0) + o(1).

The next result, which is a work in preparation in collaboration with Etienne Sandier
and Sylvia Serfaty, concerns the behavior of global minimizers near H3D

c1
. Before stating

the result, we need to introduce a non-degeneracy condition.
Let us consider the functional

γ(B0) :=

∫
γ

B0 · τ,

defined for Lipschitz curves γ ∈ X. Here, τ denotes the tangent vector to γ. In particular,
we observe that |γ(B0)| ≤ ‖B0‖∗.

We introduce the following assumption.
Non-degeneracy condition in 3D: There exists a unique Lipschitz curve γ0 ∈ X such
that γ0(B0) = ‖B0‖∗. Moreover, there exist constants C,N > 0 such that for any Lipschitz
curve γ ∈ X if ‖γ − γ0‖∗ ≥ δ, for some δ ∈ (0, 1), then

γ(B0) ≤ γ0(B0)− CδN .

Theorem 2.1.2. Assume the non-degeneracy condition above. For any K > 0, there exist
positive constant ε0, C, α > 0 such that for any ε < ε0 and any hex < H3D

c1
+K log | log ε|,

if (uε, Aε) is a global minimizer of GLε in H1(Ω,C) × [Aex + Hcurl] and ν ′ε =
∑

i∈I γi is
the vorticity approximation associated to the configuration (u′ε, A

′
ε) defined by (uε, Aε) =

(u0u
′
ε, hexA0 + A′ε), then

1. ∀i, γi/|γi|(B0) ≥ 0,

2. ‖γi/|γi| − γ0‖∗ < | log ε|− 1
2N for any i such that γi/|γi|(B0) > 0, and

3. |νε|(Ω) < C.
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Chapter 2. Global minimizers for the 3D Ginzburg-Landau functional

In this theorem, we use the decomposition ν ′ε =
∑

i∈I γi, where each γi is a multiplicity
1 Lipschitz curve in X. This result essentially states that the vorticity of minimizing
configuration µ(uε, Aε) is bounded when the strength of the applied field is below slightly
above H3D

c1
, but also provides extra information about the finite sum (in the sense of

currents) of polygonal lines ν ′ε. The author believes that the previous two theorems are
the key ingredients to prove that the first critical field is given by H3D

c1
+O(1) in 3D. This

requires extra work, that we do not present here.
Finally, let us point out that in a work in preparation we show that the non-degeneracy

condition presented above holds when Ω = B(0, R) and H0,ex = ẑ. In this case, one can
show that the vertical diameter D1 oriented in the direction of ẑ and seen as a Lipschitz
curve in X (in particular |D1|(Ω) = 1) is such that

D1(B0) = ‖B0‖∗.

Moreover, we have the following result.

Theorem 2.1.3. Let Ω = B(0, R) and H0,ex = ẑ. There exists constants C,N > 0 such
that for any Lipschitz curve γ ∈ X if ‖γ −D1‖∗ ≥ δ, for some δ ∈ (0, 1), then

γ(B0) ≤ D1(B0)− CδN ,

where D1 is defined as above.

2.2 Preliminaries

2.2.1 Hodge decompositions

We begin by giving a decomposition of vector fields in Hcurl.

Lemma 2.2.1. Every vector field A ∈ Hcurl can be decomposed as

A = curlB +∇Φ,

where B, curlB ∈ Ḣ1
div=0 and Φ ∈ H2

loc(R3).

Proof. First, let us observe that there exists a function Φ1 ∈ H2
loc(R3,R3) such that

∆Φ1 = divA ∈ L2
loc(R3,R3).

Second, we consider the problem

curl2B = curlA ∈ L2(R3,R3), divB = 0.

By observing that curl2B = −∆B, [KS91, Theorem 1] provides the existence of a solution
B ∈ Ḣ1

div=0 to this problem such that curlB ∈ Ḣ1
div=0.

Finally, by noting that

curl(A−∇Φ1 − curlB) = div(A−∇Φ1 − curlB) = 0,

we deduce that
A−∇Φ1 − curlB = ∇Φ2,

for a harmonic function Φ2 ∈ H2
loc(R3,R3). By writing Φ = Φ1 + Φ2, we obtain the

lemma.
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2.2. Preliminaries

Next, we recall a decomposition of vector fields in H1(Ω,R3). The proof of this result
can be found in [BBO01, Appendix A].

Lemma 2.2.2. There exists a constant C = C(Ω) such that for every A ∈ H1(Ω,R3)
there exist a unique vector field BA ∈ {B ∈ H2(Ω,R3) | divB = 0 in Ω} and a unique
function φA ∈ {φ ∈ H2(Ω) |

∫
Ω
φA = 0} satisfying
A = curlBA +∇φA in Ω

BA × ν = 0 on ∂Ω
∇φA · ν = A · ν on ∂Ω,

and
‖BA‖H2(Ω,R3) + ‖φA‖H2(Ω) ≤ C‖A‖H1(Ω,R3).

2.2.2 Ginzburg-Landau equations

Definition 2.2.1 (Critical point of GLε). We say that (u,A) ∈ H1(Ω,C)× [Aex +Hcurl]
is a critical point of GLε if for every smooth and compactly supported configuration (v,B)
we have

d

dt
Gε(u+ tv, A+ tB)|t=0 = 0.

Next, we provide the Euler-Lagrange equations satisfied by critical points of GLε.

Proposition 2.2.1. If (u,A) ∈ H1(Ω,C) × Hcurl is a critical point of GLε then (u,A)
satisfies the system of equations

(GL)


−(∇A)2u =

1

ε2
u(1− |u|2) in Ω

curl(H −Hex) = (iu,∇Au)χΩ in R3

∇Au · ν = 0 on ∂Ω
[H −Hex]× ν = 0 on ∂Ω,

where χΩ is the characteristic function of Ω, [ · ] denotes the jump across ∂Ω, and the
covariant Laplacian is defined by

(∇A)2u = (div−iA·)∇Au.

Proof. We have

d

dt
GLε(u+ tv, A)|t=0 =

∫
Ω

(∇Au,∇Av)− 1

ε2

∫
Ω

(u, v)(1− |u|2).

By noting that
(∇Au,∇Av) = div(∇Au, v)− ((∇A)2u, v),

where (∇Au, v) = ((∂1u− iA1u, v), (∂2u− iA2u, v), (∂3u− iA3u, v)), and by integrating by
parts, we obtain

d

dt
GLε(u+ tv, A)|t=0 =

∫
∂Ω

(∇Au · ν, v)−
∫

Ω

((∇A)2u, v)− 1

ε2

∫
Ω

(u, v)(1− |u|2).
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Chapter 2. Global minimizers for the 3D Ginzburg-Landau functional

Since this is true for any v, we find

(∇A)2u =
1

ε2
u(1− |u|2) in Ω and ∇Au · ν = 0 on ∂Ω.

On the other hand, we have

d

dt
GLε(u,A+ tB)|t=0 = −

∫
Ω

(iBu,∇Au) +

∫
R3

(H −Hex) · curlB.

By integration by parts, we get

d

dt
GLε(u,A+ tB)|t=0 = −

∫
Ω

(iu,∇Au) ·B +

∫
R3

curl(H −Hex) ·B.

We deduce that
curl(H −Hex) = (iu,∇Au)χΩ in R3.

By testing this equation against B and by integrating by parts over Ω, we find∫
Ω

(H −Hex) · curlB −
∫
∂Ω

((H −Hex)× ν) ·B −
∫

Ω

(iu,∇Au) ·B = 0.

Now, by integrating by parts over R3 \ Ω, we get∫
R3\Ω

(H −Hex) · curlB +

∫
∂(R3\Ω)

((H −Hex)× ν) ·B = 0.

Thus ∫
∂Ω

([H −Hex]× ν) ·B = 0,

and therefore [H −Hex]× ν = 0 on ∂Ω.

Remark 2.2.1. By taking the curl of the second Ginzburg-Landau equation, we find

(2.3) curl2(H −Hex) +HχΩ = µ(u,A)χΩ,

in the sense of currents. We will come back to this equation later on.

2.3 Global minimizers below the first critical field

2.3.1 The Meissner solution

Physically, when the strength of the applied magnetic field is below the first critical field
one observes that the superconductor is everywhere in its superconducting phase |u| ≈ 1
and that the external magnetic field is forced out by the material.

We then expect global minimizers of GLε below Hc1 to be vortex-less configurations
(u,A) such that µ(u,A) ≈ 0. We next a pair (u0, hexA0), usually called the Meissner
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2.3. Global minimizers below the first critical field

solution, which satisfies (2.3) with zero right hand side and whose energy turns out to be
a good approximation of the energy of global minimizers below the first critical field.

Let us consider a configuration of the form (eiφ, hexA0), with φ ∈ H2(Ω) and A0 ∈
Aex + Ḣ1

div=0. Observe that, by using Lemma 2.2.2 and by letting u0 := eiφ, we have

GLε(u0, hexA0) =
1

2

∫
Ω

|∇φ− hex(curlBA0 +∇φA0)|2 +
1

2

∫
R3

|hex curlA0 −Hex|2

=
1

2

∫
Ω

|∇(φ0 − hexφA0)|2 + h2
ex| curlBA0|2 +

h2
ex

2

∫
R3

| curl(A0 − A0,ex)|2

By choosing φ = hexφA0 , we obtain

GLε(u0, A0) =
h2

ex

2

∫
Ω

| curlBA0|2 +
h2

ex

2

∫
R3

| curl(A0 − A0,ex)|2 =: h2
exJ(A0).

We choose A0 to be the minimizer of J in the space (Aex + Ḣ1
div=0, ‖ curl · ‖L2(R3,R3)),

whose existence and uniqueness follows by noting that J is continuous, coercive, and
strictly convex in this Hilbert space (recall (2.1) and (2.2)).

We let H0 = curlA0. One can easily check that, for any A ∈ Ḣ1
div=0, we have∫

Ω

curlBA0 · curlBA +

∫
R3

(H0 −H0,ex) · curlA = 0

Because
∫

Ω
curlBA0 · ∇φA = 0, we have

(2.4)

∫
Ω

curlBA0 · A+

∫
R3

(H0 −H0,ex) · curlA = 0

Moreover, Lemma 2.2.1 implies that this equality holds in the larger space Hcurl.
Then, an integrating by parts yields∫

Ω

curlBA0 · A+

∫
R3

curl(H0 −H0,ex) · A = 0.

Therefore A0 satisfies the Euler-Lagrange equation

(2.5) curl(H0 −H0,ex) + curlBA0χΩ = 0 in R3.

In addition, the boundary condition [H0 −H0,ex] = 0 on ∂Ω is satisfied.
By taking the curl of the previous equation, we find

curl2(H0 −H0,ex) +H0χΩ = 0 in R3,

namely (up to dividing by hex) (2.3) with µ(u0, A0) = 0.
Observe that, by minimality of A0, we have

J(A0) ≤ J(A0,ex) =
1

2

∫
Ω

| curlBA0,ex|2 ≤ C

∫
Ω

|H0,ex|2 = C|Ω||H0,ex|2.
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Chapter 2. Global minimizers for the 3D Ginzburg-Landau functional

By Sobolev embedding, we deduce that

‖BA0‖H2(R3,R3) ≤ C|Ω||H0,ex|2.

Then, by standard elliptic regularity, we get

‖BA0‖C0,1
T (R3,R3) ≤ C|Ω||H0,ex|2.

Remark 2.3.1. Observe that the divergence-free vector field B0 ∈ C0,1
T (Ω,R3) satisfies

∆2(B0 −B0,ex) + ∆B0 = 0 in Ω
B0 × ν = 0 on ∂Ω

[∆(B0 −B0,ex)]× ν = 0 on ∂Ω.

This normalized vector field is then the analog of the function ξ0 defined in (1), which has
been used to analyze similar questions in 2D. As we shall see below, B0 plays an important
role in our 3D analysis.

2.3.2 Energy-splitting

Next, by using the Meissner solution, we present a splitting of GLε.

Proposition 2.3.1 (Energy-splitting). For any (u,A) ∈ H1(Ω,C)× [Aex +Hcurl], letting
u = u0u

′ and A = hexA0 + A′, where (u0, hexA0) is the Meissner solution, we have

(2.6) GLε(u,A) = h2
exJ(A0) +Fε(u

′, A′) +
1

2

∫
R3\Ω
| curlA′|2− hex

∫
Ω

µ(u′, A′)∧B0 +R0,

where Fε(u
′, A′) is the free energy of the configuration (u′, A′) ∈ H1(Ω,C)×Hcurl, i.e.

Fε(u
′, A′) =

1

2

∫
Ω

|∇A′u
′|2 +

1

2ε2
(1− |u′|2)2 + | curlA′|2

and

R0 =
h2

ex

2

∫
Ω

(|u|2 − 1)| curlB0|2.

In particular, R0 ≤ Cεh2
exEε(|u|)

1
2 , with Eε(|u|) =

1

2

∫
Ω

|∇|u||2 +
1

2ε2
(1− |u|2)2.

Proof. One immediately checks that A′ ∈ Hcurl and that u′ = u−1
0 u = e−ihexφA0u. In

particular, because φA0 ∈ H2(Ω,C), by Sobolev embedding we deduce that u′ ∈ H1(Ω,C).
Writing u = u0u

′ and A = hexA0 + A′ and plugging them into GLε(u,A), we obtain

GLε(u,A) =
1

2

∫
Ω

|∇A′u
′−ihex curlB0u

′|2+
1

2ε2
(1−|u′|2)2+

1

2

∫
R3

| curlA′+hex(H0−H0,ex)|2.

By expanding the square terms, we get

GLε(u,A) =
1

2

∫
Ω

|∇A′u
′|2 + h2

ex| curlB0|2|u′|2 − 2hex(∇A′u
′, iu′) · curlB0 +

1

2ε2
(1− |u′|2)2
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2.3. Global minimizers below the first critical field

+
1

2

∫
R3

| curlA′|2 + h2
ex|H0 −H0,ex|2 + 2hex curlA′ · (H0 −H0,ex).

Observe that, by (2.4), we have∫
R3

curlA′ · (H0 −H0,ex) = −
∫

Ω

A′ · curlB0.

Therefore, grouping terms and writing |u′|2 as 1 + (|u′|2 − 1), we find

GLε(u,A) = h2
exJ(A0)+Fε(u

′, A′)+
1

2

∫
R3\Ω
| curlA′|2−hex

∫
Ω

(j(u′, A′)+A′) ·curlB0 +R0.

Then, an integration by parts yields∫
Ω

(j(u′, A′) + A′) · curlB0 =

∫
Ω

µ(u′, A′) ∧B0 −
∫
∂Ω

(j(u′, A′) + A′) · (B0 × ν).

By using the boundary condition B0 × ν = 0 on ∂Ω, we find (2.6). The inequality for R0

follows directly from the Cauchy-Schwarz inequality.

Remark 2.3.2. Let φ ∈ C0,1
T (Ω) be a 1-form. Observe that∫

Ω

µ(u,A)∧φ =

∫
Ω

µ(u′, A′+hex curlB0)∧φ =

∫
Ω

µ(u′, A′)∧φ+hex

∫
Ω

(1−|u|2) curlB0 ·φ.

Moreover, the Cauchy-Schwarz inequality yields

(2.7) ‖µ(u,A)− µ(u′, A′)‖C0,1
T (Ω)∗ ≤ CεhexEε(|u|)

1
2 .

2.3.3 Proof of Theorem 2.1.1

Proof of Theorem 2.1.1. By minimality, we have

(2.8) inf
(u,A)∈H1(Ω,C)×[Aex+Hcurl]

GLε(u,A) ≤ GLε(u0, hexA0) = h2
exJ(A0),

where throughout the proof (u0, hexA0) is the Meissner solution.
Writing (uε, Aε) = (u0u

′
ε, hexA0 + A′ε), Proposition 2.6 implies that

(2.9) GLε(uε, Aε) ≥ h2
exJ(A0) + Fε(u

′
ε, A

′
ε)− hex

∫
Ω

µ(u′ε, A
′
ε) ∧B0 + o(ε

1
2 ).

Let us observe that

Fε(u
′
ε, A

′
ε) = Fε(uε, Aε − hex curlB0) ≤ 2Fε(uε, Aε) + 2Fε(1, hex curlB0)

≤ 2Fε(uε, Aε) + h2
exJ(A0),

which combined with (2.8) implies that

Fε(u
′
ε, A

′
ε) ≤M | log ε|2.
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Chapter 2. Global minimizers for the 3D Ginzburg-Landau functional

We may then apply Theorem 1.1.1 to obtain

Fε(u
′
ε, A

′
ε)− hex

∫
Ω

µ(u′ε, A
′
ε) ∧B0 ≥

1

2
|ν ′ε|(Ω)

(
log

1

ε
− C log log

1

ε

)
− hex

∫
Ω

ν ′ε ∧B0 + o(| log ε|−2),

where C > 0 is a universal constant and ν ′ε denotes the polyhedral 1-dimensional current
associated to the configuration (u′ε, A

′
ε) by Theorem 1.1.1.

By noting that

(2.10)

∫
Ω

ν ′ε ∧B0 ≤ |ν ′ε|(Ω)‖B0‖∗,

we find

Fε(u
′
ε, A

′
ε)− hex

∫
Ω

µ(u′ε, A
′
ε) ∧B0 ≥

1

2
|ν ′ε|(Ω)

(
log

1

ε
− 2‖B0‖∗hex − C log log

1

ε

)
+ o(| log ε|−2),

Writing hex = H3D
c1
−K0 log | log ε|, with H3D

c1
=

1

2‖B0‖∗
| log ε|, we get

GLε(uε, Aε) ≥ h2
exJ(A0) +

1

2
|ν ′ε|(Ω) (2‖B0‖∗K0 − C) log log

1

ε
+ o(| log ε|−2).

By using (2.8), we deduce that

o(| log ε|−2) ≥ |ν ′ε|(Ω) (2‖B0‖∗K0 − C) log log
1

ε
.

Therefore, by letting K0 := (2‖B0‖∗)−1C + 1, we deduce that |ν ′ε| = o(| log ε|−2). In
particular, this implies that hex

∫
Ω
µ(u′ε, A

′
ε) ∧ B0 = o(| log ε|−1). Therefore, from (2.8)

and (2.9), we obtain

(2.11) Fε(u
′
ε, A

′
ε) ≤ o(| log ε|−1).

To conclude, we use a “clearing out” result. Let us define

vε := e−iϕεu′ε and Xε := A′ε −∇ϕε,

where ϕε satisfies {
∆ϕε = divA′ε in Ω
∂ϕε
∂ν

= A′ε · ν on ∂Ω.

This implies that

(2.12)

{
divXε = 0 in Ω
Xε · ν = 0 on ∂Ω.
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2.3. Global minimizers below the first critical field

Since the configuration (uε, Aε) minimizes GLε, it satisfies the Ginzburg-Landau equations
(GL). By observing that the configurations (uε, Aε) and (vε, Xε + hex curlB0) are gauge
equivalent in Ω, we deduce that vε satisfies{

−(∇Xε+hex curlB0)2vε =
1

ε2
vε(1− |vε|2) in Ω

∇Xε+hex curlB0vε · ν = 0 on ∂Ω.

Expanding the covariant Laplacian, and using (2.12) and curlB0 · ν = 0 on ∂Ω, which
follows from B0 × ν = 0 on ∂Ω, one can rewrite this system in the form

(2.13)


−∆vε + i| log ε|~c(x) · ∇vε + d(x)vε =

1

ε2
vε(1− |vε|2) in Ω

∂vε
∂ν

= 0 on ∂Ω,

where

~c(x) :=
2(Xε + hex curlB0)

| log ε|
and d(x) :=

|Xε + hex curlB0|2

| log ε|2
.

By standard elliptic regularity theory, one can check that

(2.14) ‖~c‖L∞(Ω,R3), ‖∇~c‖L∞(Ω,R3), ‖d‖L∞(Ω), ‖∇d‖L∞(Ω) ≤ Λ0,

for some universal constant Λ0 > 0.

By gauge invariance, we have

F (u′ε, A
′
ε) = Fε(vε, Xε).

Since (vε, Xε) is in the Coulomb gauge, i.e. it satisfies (2.12), one easily checks that

Eε(vε) ≤ CFε(vε, Xε),

for some universal constant C > 0. By letting aε(x) = 1− d(x)ε2| log ε|2, we observe that

Ẽε(vε) :=
1

2

∫
Ω

|∇vε|2 +
1

2ε2
(aε(x)− |vε|2)2 ≤ Eε(vε) +O(ε2| log ε|4).

This, combined with (2.11) implies that

(2.15) Ẽε(vε) = o(| log ε|−1).

Finally, by Remark 2.3.1, (2.12), (2.13), (2.14), and (2.15), we conclude that all the
hypotheses of [Chi05, Theorem 3] are fulfilled, which implies that |uε| = |vε| ≥ 1

2
. The

equality

GLε(uε, Aε) = h2
exJ(A0) + o(1)

easily follows from the computations above. This concludes the proof of the theorem.
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2.4 Global minimizers near the first critical field

We next sketch the proof of Theorem 2.1.2. This part is work in preparation.

Sketch of proof of Theorem 2.1.2. We write (uε, Aε) = (u0u
′
ε, hexA0+A′ε), where (u0, hexA0)

is the Meissner solution. Arguing as in the proof above, we can associate to the configu-
ration (u′ε, A

′
ε) the vorticity approximation ν ′ε given by Theorem 1.1.1.

Combining the energy splitting (2.6) with Theorem 1.1.1, we get

GLε(uε, Aε) ≥ h2
exJ(A0) + |ν ′ε|(Ω)

(
log

1

ε
− C log log

1

ε

)
− hex

∫
Ω

ν ′ε ∧B0(2.16)

+
1

2

∫
Ω\Ω′
|∇A′εu

′
ε|2 +

1

2

∫
R3

| curlA′ε|2 + o(| log ε|−2),

We decompose

ν ′ε =
∑
i∈I

γi,

where each γi is a polygonal curve of multiplicity 1. In particular,

ν ′ε =
∑
i∈I

|γi|
γi
|γi|

.

Step 1: We let

I+ =

{
i ∈ I γi

|γi|
(B0) > 0

}
, I− = I\I+, |ν ′ε|+ =

∑
i∈I+

|γi|, and |ν ′ε|− = |ν ′ε|(Ω)−|ν ′ε|+.

Observe that

−H3D
c1

∫
Ω

ν ′ε ∧B0 ≥ −H3D
c1

∑
i∈I+

|γi|
γi
|γi|

(B0) ≥ −H3D
c1

∑
i∈I+

|γi|‖B0‖∗ = −1

2
|ν ′ε|+| log ε|.

Writing hex = H3D
c1

+K log | log ε| and using (2.16) and the previous inequality, we deduce
that

GLε(uε, Aε) ≥ h2
exJ(A0) +

1

2
|ν ′ε|(Ω)

(
log

1

ε
− C log log

1

ε

)
− 1

2
|ν ′ε|+

(
log

1

ε
+ 2K‖B0‖∗ log log

1

ε

)
+ o(| log ε|−2),

By recalling that

(2.17) inf
(u,A)∈H1(Ω,C)×[Aex+Hcurl]

GLε(u,A) ≤ GLε(u0, hexA0) = h2
exJ(A0),

from the previous two inequalities we deduce that

|ν ′ε|(Ω) (C + 2K‖B0‖∗) log log
1

ε
+ o(| log ε|−2) ≥ |ν ′ε|− log

1

ε
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2.4. Global minimizers near the first critical field

Hence, for a constant C̃ depending on K, we have

(2.18) C̃|ν ′ε|+
log | log ε|

log ε
+ o(| log ε|−3) ≥ |νε|−.

Step 2: Let us recall the non-degeneracy condition assumption: There exists a unique
Lipschitz curve γ0 ∈ X such that γ0(B0) = ‖B0‖∗. Moreover, there exist constants
C1, N > 0 such that for any Lipschitz curve γ ∈ X if ‖γ − γ0‖∗ ≥ δ, for some δ ∈ (0, 1),
then

γ(B0) ≤ γ0(B0)− C1δ
N .

Let us define

I0 =

{
i ∈ I

∥∥∥∥ γi|γi| − γ0

∥∥∥∥
∗
<

1

| log ε| 1
2N

}
and |ν ′ε|0 =

∑
i∈I0

|γi|.

Observe that, if i 6∈ I0 then

− γi
|γi|

(B0) ≥ −γ0(B0) +
C1

| log ε| 12
= −‖B0‖∗ +

C1

| log ε| 12
,

while, if i ∈ I0, we have the obvious inequality

− γi
|γi|

(B0) ≥ −γ0(B0) = −‖B0‖∗.

Writing hex = H3D
c1

+K log | log ε| and using (2.16), (2.17), and the previous inequalities,
we find

o(| log ε|−2) ≥ 1

2
|ν ′ε|(Ω)

(
log

1

ε
− C log log

1

ε

)
− 1

2
|ν ′ε|0

(
log

1

ε
+ 2K‖B0‖∗ log log

1

ε

)
− 1

2
(|ν ′ε|(Ω)− |ν ′ε|0)

(
log

1

ε
+ 2K‖B0‖∗ log log

1

ε

)(
1− C1

‖B0‖∗| log ε| 12

)

From this, we get

1

2
|ν ′ε|(Ω) (C + 2K‖B0‖∗) log log

1

ε
+ o(| log ε|−2) ≥ 1

2
(|ν ′ε|(Ω)− |ν ′ε|0)

C1| log ε| 12
‖B0‖∗

and then

|ν ′ε|(Ω)
C + 2K‖B0‖∗
C1‖B0‖−1

∗

log | log ε|
| log ε| 12

+ o(| log ε|−
5
2 ) ≥ |ν ′ε|(Ω)− |ν ′ε|0.

Hence, for a constant C̃ depending on K, we have

(2.19) C̃|ν ′ε|0
log | log ε|
| log ε| 12

+ o(| log ε|−
5
2 ) ≥ |ν ′ε|(Ω)− |ν ′ε|0.
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Chapter 2. Global minimizers for the 3D Ginzburg-Landau functional

Step 3: Let us write
∫

Ω
|∇A′u|2 as∫

Ω′
|∇A′u|2 +

1

2

∫
Ω\Ω′
|∇A′u|2,

where Ω′ := Sνε is the set defined in Theorem 1.1.1.
Since the configurations (uε, Aε) and (u′ε, A

′
ε + hex curlB0) are gauge equivalent in Ω

and because (uε, Aε) minimizes GLε, we deduce that

curl2A′ε + curl(H0 −Hex) = (iu′ε,∇A′εu
′
ε)− |u′ε|2hex curlB0 in Ω.

Combining this with (2.5), we find

curl2A′ε = (iu′ε,∇A′εu
′
ε) + (1− |u′ε|2)hex curlB0 in Ω.

Since |u′ε| = |uε| ≤ 1, we deduce that

| curl2A′ε|2 ≤ |∇A′εu
′
ε|2 + (1− |u′ε|2)2h2

ex| curlB0|2 + 2|∇A′εu
′
ε|(1− |u′ε|2)hex| curlB0|

and therefore ∫
Ω\Ω′
|∇A′εu

′
ε|2 ≥

∫
Ω\Ω′
| curl2A′ε|2 + o(ε

1
2 ).

This inequality combined with (2.16), gives

GLε(uε, Aε) ≥ h2
exJ(A0) + |ν ′ε|(Ω)

(
log

1

ε
− C log log

1

ε

)
− hex

∫
Ω

ν ′ε ∧B0

+
1

2

∫
Ω\Ω′
| curl2A′ε|2 +

1

2

∫
R3

| curlA′ε|2 + o(| log ε|−2).

The argument then reduces to show that

(2.20)
1

2

∫
Ω\Ω′
| curl2(A− Aex)|2 +

1

2

∫
R3

| curl(A− Aex)|2 ≥ C̃|ν ′ε|2(Ω) log log
1

ε
+ o(1).

Indeed, once this is proved, by writing hex = H3D
c1

+ K(log | log ε|) and using (2.10), we
deduce that

GLε(uε, Aε) ≥ h2
exJ(A0)− |ν ′ε|(Ω) log log

1

ε
(C + 2K‖B0‖∗) + C̃|ν ′ε|2(Ω) log log

1

ε
+ o(1).

Combining this with (2.8), we find

−|ν ′ε|(Ω) log log
1

ε
(C + 2K‖B0‖∗) + C̃|ν ′ε|2(Ω) log log

1

ε
≤ o(1),

yielding a uniform bound on |ν ′ε|(Ω). To prove (2.20), our strategy is to first combine the
Ginzburg-Landau equations satisfied by (uε, Aε) with the fact that |u′ε| ≈ 1 in Ω′. Then,
a slicing procedure together with an integration on big 2D circles, in the spirit of the one
performed in the proof of Theorem 2 in [SS03], should give the inequality. Finally, the
bounds (2.18) and (2.19) prove the other assertions of Theorem 2.1.2.
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2.4. Global minimizers near the first critical field

2.4.1 Non-degeneracy condition in the case of the ball

Next, we give the idea of proof of Theorem 2.1.3

Idea of proof of Theorem 2.1.3. When Ω = B(0, R) and H0,ex = ẑ, the vector B0 can be
explicitly computed (see [ABM06]). By using spherical coordinates (r, θ, φ), where r is
the Euclidean distance from the origin, θ is the polar angle, and φ is the azimuthal angle,
we have

B0−cẑ = − 3R

r2 sinhR

(
cosh r − sinh r

r

)
cos θr̂− 3R

2r2 sinhR

(
cosh r − 1 + r2

r
sinh r

)
sin θθ̂,

where c = − 3

2R sinhR

(
coshR− 1 +R2

R
sinhR

)
. In particular, we observe that B0 does

not depend on the azimuthal angle and it is constant along φ̂.
Let γ be a Lipschitz curve such that ∂γ = 0 relative to Ω. We assume that, for some

δ ∈ (0, 1), we have

(2.21)

∥∥∥∥ γ|γ| −D1

∥∥∥∥
∗
≥ δ.

By following an idea of [ABM06], we will project γ along the azimuthal angle onto
B(0, R)2D,+ := {(x, z) ∈ R2 | x2 + z2 < R2, x ≥ 0}. We consider the map q : B(0, R) ⊂
R3 → B(0, R)2D,+ defined by

q(r, θ, φ) = (r sin θ, r cos θ),

and we let
γ2D := γ ◦ q

It is easy to check that ∂γ2D = 0 relative to the two-dimensional ball B(0, R)2D,

γ(B0) ≤ γ2D(B0), and |γ| ≥ |γ2D|.

We assume that γ(B0), otherwise the result is trivial. Let us observe that if

|γ2D|
|γ|

< (1− δ2)

then
γ

|γ|
(B0) ≤ |γ2D|

|γ|
γ2D

|γ2D|
(B0) < (1− δ2)D1(B0),

thus
D1(B0)− γ

|γ|
(B0) ≥ δ2D1(B0) = δ2‖B0‖∗,

which proves the result in this case. Therefore, we now assume

|γ2D|
|γ|
≥ (1− δ2).
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By combining this with (2.21), it is not hard to see that there exists a universal constant
C̃ > 0 such that

(2.22)

∥∥∥∥ γ2D

|γ2D|
−D1

∥∥∥∥
∗
≥ C̃δ.

Since ∂γ2D = 0 relative to B(0, R)2D, γ2D partitions B(0, R)2D into two domains, each with
boundary consisting of γ2D perhaps with some piece of ∂B(0, R)2D, properly oriented. We
denote by Dγ2D

the domain for which the positively oriented normal vector is ŷ. Observe
that this domain is contained in B(0, R)2D,+. Since B0 × ν = 0 on B(0, R)2D, the Stokes’
theorem yields

γ2D(B0) =

∫
∂Dγ2D

B0 · τ =

∫
Dγ2D

curlB0 · ŷdxdz.

An explicit computation shows that

curlB0 · ŷ = c(R)

(
cosh r − sinh r

r

)
sin θ

r
, with c(R) :=

3R

2 sinhR
.

In particular, this quantity is positive in B(0, R)2D,+. We have three cases to consider:

1. First, we assume that |γ2D| is not too large. Observe that, for a universal constant
c > 0, we have

γ2D(B0) ≤ c‖ curlB0‖∞|γ2D|2.

Then
D1(B0)− γ2D

|γ2D|
(B0) ≥ ‖B0‖∗ − c‖ curlB0‖∞|γ2D| ≥ δ,

provided that 0 ≤ |γ2D| ≤ ‖B0‖∗−δ
c‖ curlB0‖∞ .

2. Second, we assume that |γ2D| ≥ 2R. Observe that, there exists γη, a parallel line to
the vertical diameter at distance η and contained in B(0, R)2D,+, such that

(2.23)

∫
Dγη

curlB0 · ŷdxdz =

∫
Dγ2D

curlB0 · ŷdxdz,

where Dγη is defined as above. It follows that

γη
|γη|

(B0) >
γ2D

|γ2D|
(B0),

and therefore

D1(B0)− γ2D

|γ2D|
(B0) > D1(B0)− γη

|γη|
(B0) =

∫
B(0,R)2D,+\Dγη

curlB0 · ŷdxdz.

Observe that∫ η

0

∫ π

0

c(R)

(
cosh r − sinh r

r

)
sin θdθdr = 2c(R)

(
sinh η −

∫ η

0

sinh r

r
dr

)
.
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By noting that

(2.24) sinh η −
∫ η

0

sinh r

r
dr ≥ η3

9

for η small, to conclude the result one needs to quantify η in terms of δ, which should
follow from (2.22) and (2.23).

3. Finally, we consider the intermediate case ‖B0‖∗−δ
c‖ curlB0‖∞ ≤ |γ2D| < 2R. It is not hard to

see that we can choose γη, a parallel line to the vertical diameter at distance η and
contained in B(0, R)2D,+, such that

γ2D

|γ2D|
(B0) =

γη
|γη|

(B0).

Then, by letting α ∈ (0, π) be the angle between ẑ and a ray that passes through the
origin and the intersection between the boundary of B(0, R)2D and γη for x ≥ 0, we
have ∫

Dγη

curlB0 · ŷdxdz <
∫ R

η

∫ π−α

α

c(R)

(
cosh r − sinh r

r

)
sin θdθdr

= 2 cosαc(R)

∫ R

η

(
cosh r − sinh r

r

)
dr

Observe that |γη| = 2R cosα. Therefore

γη
|γη|

(B0) <
c(R)

R

∫ R

η

(
cosh r − sinh r

r

)
dr.

But

D1(B0) =
1

2R

∫ R

0

∫ π

0

c(R)

(
cosh r − sinh r

r

)
sin θdθdr

=
c(R)

R

∫ R

0

(
cosh r − sinh r

r

)
dr.

Hence

D1(B0)− γη
|γη|

(B0) = D1(B0)− γ2D

|γ2D|
(B0) =

c(R)

R

∫ η

0

(
cosh r − sinh r

r

)
dr

=
c(R)

R

(
sinh η −

∫ η

0

sinh r

r
dr

)
.

By recalling (2.24), the proof then follows if one quantifies η in terms of δ.
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Problems from mathematical biology

103





Chapter 1

The Lin-Ni-Takagi problem in
dimension 3

Abstract

In this chapter, which is based on a joint work with Manuel del Pino, Monica Musso,
and Juncheng Wei [dPMRW] that has been accepted for publication in the Journal
d’Analyse Mathématique, we consider the problem of finding positive solutions of the
problem ∆u− λu+ u5 = 0 in a bounded smooth domain Ω in R3, under zero Neumann
boundary conditions. Here, λ is a positive number. We analyze the role of the Green’s
function of −∆ + λ in the presence of solutions exhibiting single bubbling behavior at
one point of the domain when λ is regarded as a parameter. As a special case of our
results, we find and characterize a positive value λ∗ such that if λ− λ∗ > 0 is sufficiently
small, then this problem is solvable by a solution uλ which blows up by bubbling at a
certain interior point of Ω as λ ↓ λ∗.
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Chapter 1. The Lin-Ni-Takagi problem in dimension 3

1.1 Introduction

Let Ω be a bounded smooth domain in Rn. This chapter deals with the boundary value
problem

(1.1)

{
∆u− λu+ up = 0, u > 0 in Ω

∂u

∂ν
= 0 on ∂Ω,

where p > 1. A large literature has been devoted to this problem when 1 ≤ p ≤ n+2
n−2

for asymptotic values of the parameter λ. A very interesting feature of this problem is
the presence of families of solutions uλ with point concentration phenomena. This means
solutions that exhibit peaks of concentration around one or more points of Ω or ∂Ω, while
being very small elsewhere. For 1 < p < n+2

n−2
, solutions with this feature around points of

the boundary where first discovered by Lin, Ni, and Takagi in [LNT88] as λ→ +∞. It is
found in [LNT88,NT91,NT93] that a mountain pass or least energy positive solution uλ
to (1.1) for λ→ +∞ must look like

uλ(x) ∼ λ
1
p−1V (λ

1
2 (x− xλ))

where V is the unique positive radial solution to

(1.2) ∆V − V + V p = 0 in Rn, with lim
|y|→∞

V (y) = 0,

and xλ ∈ ∂Ω approaches a point of maximum mean curvature of ∂Ω. See [DPF99] for
a short proof of this fact. Higher energy solutions with this asymptotic profile near
one or several points of the boundary or the interior of Ω have been constructed and
analyzed in many works, see for instance [dPFW99, GW99, DY99, GPW00, LNW07] and
their references. In particular, solutions with any given number of interior and boundary
concentration points are known to exist as λ→ +∞.

The case of the critical exponent p = n+2
n−2

is in fact quite different. In particular,
no positive solutions of (1.2) exist. In this situation solutions uλ to (1.1) do exist for
sufficiently large values of λ with concentration now in the form

(1.3) uλ(x) ∼ µ
−n−2

2
λ U

(
µ−1
λ (x− xλ)

)
,

where µλ = o(λ−
1
2 )→ 0 as λ→ +∞. Here

U(x) = αn

(
1

1 + |y|2

)n−2
2

, with αn = (n(n− 2))
n−2

4 ,

is the standard bubble, which up to scalings and translations, is the unique positive solution
of the Yamabe equation

(1.4) ∆U + U
n+2
n−2 = 0 in Rn.
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1.1. Introduction

Solutions with boundary bubbling have been built and their dimension-dependent bub-
bling rates µλ analyzed in various works (see [AM91,NPT92,APY93,Wan96,GG98,GL02,
WY07,WWY10,DRW12] and references therein). Boundary bubbling by small perturba-
tions of the exponent p above and below the critical exponent has been found in [dPMP05].

Unlike the subcritical range, for p = n+2
n−2

solutions with interior bubbling points as
λ → +∞ are harder to be found. They do not exist for n = 3 or n ≥ 7 (see [Rey99,
Rey02, Esp07]), and in all dimensions interior bubbling can only coexist with boundary

bubbling (see [Rey02]). To be noticed is that the constant function uλ := λ
1
p−1 represents

a trivial solution to (1.1). A compactness argument yields that this constant is the unique
solution to (1.1) for 1 < p < n+2

n−2
and for any sufficiently small λ (see [LNT88]). The Lin-

Ni conjecture, raised in [LN88], is that this is also true for p = n+2
n−2

. The issue turns out to
be quite subtle. In [AY91,AY97], it is found that radial nontrivial solutions for all small
λ > 0 exist when Ω is a ball in dimensions n = 4, 5, 6, while no radial solutions exist for
small λ if n = 3 or n ≥ 7. For a general convex domain, the Lin-Ni conjecture is true
in dimension n = 3 [Zhu99, WX05]. See [DRW12] for the extension to the mean convex
case and related references. In [RW05] solutions with multiple interior bubbling points
when λ → 0+ were found when n = 5, in particular showing that Lin-Ni’s conjecture
fails in arbitrary domains in this dimension. This result is the only example present in
the literature of its type. The authors conjecture that a similar result should hold for
n = 4, 6.

In the case n = 3, interior bubbling is not possible if λ→ +∞ or if λ→ 0+, for instance
in a convex domain. In this chapter we show a new phenomenon, which is the presence of
a solution uλ with interior bubbling for values of λ near a number 0 < λ∗(Ω) < +∞ which
can be explicitly characterized. Thus, in what follows we consider the critical problem

(1.5)

{
∆u− λu+ u5 = 0, u > 0 in Ω

∂u

∂ν
= 0 on ∂Ω,

where Ω ⊂ R3 is smooth and bounded. The following is our main result.

Theorem 1.1.1. There exists a number 0 < λ∗ < +∞ such that for all λ > λ∗ with λ−λ∗
sufficiently small, a nontrivial solution uλ to (1.5) exists, with an asymptotic profile as
λ→ λ+

∗ of the form

uλ(x) = 3
1
4

(
µλ

µ2
λ + |x− xλ|2

) 1
2

+O(µ
1
2
λ ) in Ω,

where µλ = O(λ− λ∗) and the points xλ ∈ Ω stay uniformly away from ∂Ω.

The number λ∗ and the asymptotic location of the point xλ can be characterized as
follows. For λ > 0, we let Gλ(x, y) be the Green function of the problem{

∆xGλ(x, y)− λGλ(x, y) + δy(x) = 0 in Ω
∂Gλ

∂ν
(x, y) = 0 on ∂Ω,
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so that, by definition

(1.6) Gλ(x, y) = Γ(x, y)−Hλ(x, y)

where Γ(x, y) = 1
4π|x−y| and Hλ, the regular part of Gλ, satisfies

(1.7)


∆xHλ(x, y)− λHλ(x, y) =

1

4π|x− y|
in Ω

∂Hλ

∂ν
(x, y) =

∂

∂ν

1

4π|x− y|
on ∂Ω,

Let us consider the diagonal of the regular part (or Robin’s function)

(1.8) gλ(x) := Hλ(x, x), x ∈ Ω.

Then, we have (see Lemma 1.2.2)

gλ(x)→ −∞, as x→ ∂Ω.

The number λ∗(Ω) in Theorem 1.1.1 is characterized as

(1.9) λ∗(Ω) := inf{λ > 0 | sup
x∈Ω

gλ(x) < 0}.

In addition, we have that the points xλ ∈ Ω are such that

(1.10) lim
λ↓λ∗

gλ(xλ) = sup
Ω
gλ∗ = 0.

As we will see in Section 1.2, when Ω = B(0, 1), the number λ∗ is the unique number λ
such that √

λ− 1√
λ+ 1

exp (2
√
λ) = 1,

so that λ∗ ≈ 1.43923.

It is worthwhile to emphasize the connection between the number λ∗ and the so called
Brezis-Nirenberg number λ̃∗(Ω) > 0 given as the least value λ such that for all λ̃∗ < λ < λ1,
where λ1 is the first Dirichlet eigenvalue of the Laplacian, there exists a least energy
solution to the 3D Brezis-Nirenberg problem (see [BN83])

(1.11)

{
∆u+ λu+ up = 0, u > 0 in Ω

u = 0 on ∂Ω,

A parallel characterization of the number λ̃∗ in terms of a Dirichlet Green’s function
has been established in [Dru02] and its role in bubbling phenomena further explored in
[dPDM04]. It is important to remark that the topological nature of the solution we find is
not that of a least energy, mountain pass type solution (which is actually just the constant
for small λ). In fact the construction formally yields that its Morse index is 4.
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1.2. Properties of gλ and statement of the main result

Figure 1.1: Bifurcation diagram for solutions to 1.1, p = n+2
n−2

Our result can be (formally) depicted as a bifurcation diagram from the branch of
constant solutions u = uλ (see Figure 1.1). At least in the radial case, what our result
suggests is that the bifurcation branch which stems from the trivial solutions at the value
λ = λ2/4, where λ2 is the first nonzero radial eigenvalue of −∆ under zero Neumann
boundary conditions in the unit ball, goes left and ends at λ = λ∗. In dimensions n =
4, 5, 6 the branch ends at λ = 0 while for n ≥ 7 it blows up to the right.

Theorem 1.1.1 and the additional properties stated above will be found as consequences
of a more general result, Theorem 1.2.1 below, which concerns critical points with value
zero for the function gλ0 at a value λ0 > 0. We state this result and find Theorem 1.1.1 as
a corollary in Section 1.2, as a consequence of general properties of the function gλ. The
remaining sections will be devoted to the proof of Theorem 1.2.1.

1.2 Properties of gλ and statement of the main result

Let gλ(x) be the function defined in (1.8). Our main result states that an interior bubbling
solution is present as λ ↓ λ0, whenever gλ0 has either a local maximum or a non-degenerate
critical point with value 0.

Theorem 1.2.1. Let us assume that for a number λ0 > 0 one of the following two
situations holds: (a) There is an open subset D of Ω such that

(1.12) 0 = sup
D
gλ0 > sup

∂D
gλ0 ;

(b) There is a point x0 ∈ Ω such that gλ0(x0) = 0, ∇gλ0(x0) = 0, and D2
xgλ0(x0) is

non-singular; then for all λ > λ0 sufficiently close to λ0 there exists a solution uλ to (1.1)
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of the form

(1.13) uλ(x) = 31/4

(
µλ

µ2
λ + |x− xλ|2

) 1
2

+O(µ
1
2
λ ), with µλ = γ

gλ(xλ)

λ
> 0,

for some γ > 0. Here, xλ ∈ D if (a) holds and xλ → x0 if (b) holds. Besides, for certain
positive numbers α, β we have that

(1.14) α(λ− λ0) ≤ gλ(xλ) ≤ β(λ− λ0).

Of course, a natural question is whether or not values λ0 with the above characteristic
do exist. We shall prove that the number λ∗ defined by (1.9) is indeed positive and finite,
and that λ0 = λ∗ satisfies (1.12). That indeed proves Theorem 1.1.1 as a corollary of
Theorem 1.2.1.

Implicit in condition (b) is the fact that gλ0(x) is a smooth function and in (1.14) the
fact that gλ increases with λ. Next, we prove that gλ(x) is a smooth function, which is
strictly increasing in λ.

Lemma 1.2.1. The function gλ is of class C∞(Ω). Furthermore, the function ∂gλ
∂λ

is well
defined, smooth, and strictly positive in Ω. Its derivatives depend continuously on λ.

Proof. We show that gλ ∈ Ck for any k. Fix x ∈ Ω. Let h1,λ be the function defined in
Ω× Ω by the relation

Hλ(x, y) = β1 |x− y|+ h1,λ(x, y) ,

where β1 = − λ
8π

. Then h1,λ satisfies the boundary value problem{
−∆yh1,λ + λh1,λ = −λβ1|x− y| in Ω

∂h1,λ(x,y)

∂ν
= ∂Γ(x−y)

∂ν
− β1

∂|x−y|
∂ν

on ∂Ω.

Elliptic regularity then yields that h1,λ(x, ·) ∈ C2(Ω). Its derivatives are clearly con-
tinuous as functions of the joint variable. Let us observe that the function Hλ(x, y) is
symmetric, thus so is h1, and then h1,λ(·, y) is also of class C2 with derivatives jointly
continuous. It follows that h1,λ(x, y) is a function of class C2(Ω × Ω). Iterating this
procedure, we get that, for any k

Hλ(x, y) =
k∑
j=1

βj|x− y|2j−1 + hk,λ(x, y)

with βj+1 = −λβj/((2j + 1)(2j + 2)) and hk,λ solution of the boundary value problem{
−∆yhk,λ + λhk,λ = −λβk|x− y|2k−1 in Ω

∂hk,λ(x,y)

∂ν
= ∂Γ(x−y)

∂ν
−
∑k

j=1 βj
∂|x−y|2j−1

∂ν
on ∂Ω.

We may remark that −∆yhk+1,λ + λhk,λ = 0 in Ω . Elliptic regularity then yields that
hk,λ, is a function of class Ck+1(Ω × Ω). Let us observe now that by definition of gλ we
have gλ(x) = hk,λ(x, x), and this concludes the proof of the first part of the lemma.
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1.2. Properties of gλ and statement of the main result

For a fixed given x ∈ Ω, consider now the unique solution F (y) of

−∆yF + λF = G(x, y) y ∈ Ω,
∂F

∂ν
= 0 y ∈ ∂Ω.

Elliptic regularity yields that F is at least of class C0,α. A convergence argument shows
that actually F (y) = ∂Hλ

∂λ
(x, y) . Since λ > 0 and G is positive in Ω, using F− as a test

function we get that F− = 0 in Ω, thus F > 0. Hence, in particular ∂gλ
∂λ

(x) = F (x) > 0 .
Arguing as before, this function turns out to be smooth in x. The resulting expansions
easily provide the continuous dependence in λ of its derivatives in the x-variable.

Lemma 1.2.2. For each fixed λ > 0 we have that

(1.15) gλ(x)→ −∞, as x→ ∂Ω.

We define
Mλ = sup

x∈Ω
gλ(x).

Then

(1.16) Mλ → −∞ as λ→ 0+,

and

(1.17) Mλ > 0 as λ→ +∞.

Proof. We prove first (1.15). Let x ∈ Ω be such that d := dist(x, ∂Ω) is small. Then
there exists a unique x̄ ∈ ∂Ω so that d = |x − x̄|. It is not restrictive to assume that
x̄ = 0 and that the outer normal at x̄ to ∂Ω points toward the x3-direction. Let x∗ be
the reflexion point, namely x∗ = (0, 0,−d) and consider H∗(y, x) = 1

4π|y−x∗| . The function

y → H∗(y, x) solves

−∆yφ+ λφ = λΓ(y − x∗), y ∈ Ω,
∂φ

∂ν
=
∂Γ

∂ν
(y − x∗), y ∈ ∂Ω.

Observe now that

Γ(y − x∗) =
1

4π|x− y|
+

1

4π

[
|y − x| − |y − x∗|
|y − x| |y − x∗|

]
=

1

4π|x− y|
+O(1),

with O(1) uniformly bounded, as d → 0, for y ∈ ∂Ω. This gives that Hλ(y, x) =
−H∗(y, x) +O(1), as d→ 0. Thus

Hλ(x, x) = − 1

4πdist(x, ∂Ω)
+O(1),

as d→ 0. So we conclude the validity of (1.15).
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Next we prove (1.16) and (1.17).
Proof of (1.16). Let p(x) := 1

|Ω|

∫
Ω
Hλ(x, y) dy. Observe that

p(x) =
1

|Ω|

∫
Ω

Γ(x− y) dy +
1

λ|Ω|

∫
Ω

∆Hλ(x, y) dy =

1

|Ω|

∫
Ω

Γ(x− y) dy +
1

λ|Ω|

∫
∂Ω

∂Hλ

∂ν
dσ(y) =

1

|Ω|

∫
Ω

Γ(x− y) dy +
1

λ|Ω|

∫
∂Ω

∂Γ

∂ν
(x− y) dσ(y) = − a

λ|Ω|
+ p0(x)

where a is a positive constant and p0(x) is a bounded function. Define now H0(x, y) to
be the bounded solution to

−∆H0 =
a

|Ω|
,

∂H0

∂ν
=
∂Γ

∂ν
(x− y) y ∈ ∂Ω,

∫
Ω

H0 = 0.

We write

(1.18) Hλ(x, y) = − a

λ|Ω|
+ p0(x)︸ ︷︷ ︸

=p(x)

+H0(x, y) + Ĥ(x, y).

By definition, Ĥ solves

−∆Ĥ + λĤ = λ [Γ(x− y)−H0(x, y) + p0(x)] ,
∂Ĥ

∂ν
= 0 on ∂Ω,

∫
Ω

Ĥ = 0.

Thus we have that Ĥ = O(1), as λ → 0. Taking this into account, from decomposition
(1.18) we conclude that

max
x∈Ω

gλ(x) := max
x∈Ω

Hλ(x, x) ≤ − a

λ|Ω|
+O(1)→ −∞, as λ→ 0.

This proves (1.16).

Proof of (1.17). Assume, by contradiction, that for some sequence λn →∞, as n→∞,
one has maxx∈Ω gλn(x) ≤ − 1

n
. Fix x0 ∈ Ω, so that dist (x0, ∂Ω) = maxx∈Ω dist(x, ∂Ω).

Thus we have that −∆yHλn(y, x0) → ∞, as n → ∞. But on the other hand, a direct
application of divergence theorem gives∫

Ω

(−∆yHλn(y, x0)) dy = −
∫
∂Ω

∂Γ

∂ν
(x0 − y)dσ(y).

The left side of the above identity converges to ∞ as n→∞, while the right and side is
bounded. Thus we reach a contradiction, and (1.17) is proved.

The above considerations yield Theorem 1.1.1 as a consequence of Theorem 1.2.1.
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Corollary 1.2.1. The number λ∗ given by (1.9) is well-defined and 0 < λ∗ < +∞.
Besides, the statement of Theorem 1.1.1 holds true.

Proof. From Lemma 1.2.1, and relations (1.16) and (1.17), we deduce that the number λ∗
is finite and positive. Besides, by its definition and the continuity of gλ, it clearly follows
that

sup
x∈Ω

gλ∗(x) = 0.

and that there is an open set D with compact closure inside Ω such that

sup
∂D

gλ∗ < sup
D
gλ∗ = 0.

Hence, Theorem 1.1.1 follows from Theorem 1.2.1.

As it was stated in the introduction, the number λ∗(Ω) can be explicitly computed in
the case Ω = B(0, 1) as the following Lemma shows.

Lemma 1.2.3. Let Ω = B(0, 1). The number λ∗ defined in (1.9) is the unique solution
of the equation √

λ− 1√
λ+ 1

exp (2
√
λ) = 1,

so that λ∗ ≈ 1.43923.

Proof. The maximum of Hλ(x, x) is attained at x = 0. We compute the value Hλ(0, 0)
for λ > 0. The function Gλ(0, y) is radially symmetric and it satisfies the equation

(1.19) −∆yGλ + λGλ = δ0 y ∈ B(0, 1), ∂rGλ(0, y) = 0 y ∈ ∂B(0, 1).

Letting r = |y|, we have

(1.20) Gλ(0, y) =
1

4πr

e−√λr +
2 sinh(

√
λr)

1 +
√
λ−1√
λ+1

exp (2
√
λ)

 .
Indeed, e

√
λr

r
and e−

√
λr

r
are radial solutions to ∆φ+ λφ = 0 for |y| > 0. If we define

GA(r) =
A

r

[
e
√
λr + e2

√
λ

√
λ− 1√
λ+ 1

e−
√
λr

]
,

where A is a constant, then ∂rGA = 0 on ∂B(0, 1). Since lim|y|→0 |y|Gλ(0, y) = 1
4π

, if we
choose

Aλ =
1

4π

1

1 +
√
λ−1√
λ+1

exp (2
√
λ)

then GAλ satisfies (1.19). By uniqueness GAλ = Gλ(0, y), and we get (1.20). Thus

Hλ(0, y) =
1

4πr

(1− e−
√
λr)− 2 sinh(

√
λr)

1 +
√
λ−1√
λ+1

exp (2
√
λ)

 ,
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and

gλ(0) = Hλ(0, 0) =
1

4π

√λ− 2
√
λ

1 +
√
λ−1√
λ+1

exp 2
√
λ

 .
We deduce that λ∗ is the unique value such that gλ∗(0) = 0, therefore λ∗ satisfies

√
λ− 1√
λ+ 1

exp (2
√
λ) = 1.

Then λ∗ ≈ 1.43923.

The rest of this work will be devoted to the proof of Theorem 1.2.1. In Section 1.3 we
define an approximate solution Uζ,µ, for any given point ζ ∈ Ω, and any positive number
µ, and we compute its energy Eλ(Uζ,µ), where

(1.21) Eλ(u) =
1

2

∫
Ω

|∇u|2 +
λ

2

∫
Ω

|u|2 − 1

6

∫
Ω

|u|6.

In Section 1.4 we establish that in the situation of Theorem 1.2.1 there are critical points
of Eλ(Uµ,ζ) which persist under properly small perturbations of the functional. Observe
now that, for ε > 0, if we consider the transformation

u(x) =
1

ε1/2
v
(x
ε

)
then v solves the problem

(1.22)

{
−∆v + ε2λv − v5 = 0, v > 0 in Ωε,

∂v
∂ν

= 0 on ∂Ωε,

where Ωε = ε−1Ω. We will look for a solution of (1.22) of the form v = V + φ, where V is
defined as Uζ,µ(x) = 1

ε1/2
V
(
x
ε

)
, and φ is a smaller perturtation. In Section 1.5 we discuss

a linear problem that will be useful to find the perturbation φ. This is done in Section
1.6. We conclude our construction in the final argument, in Section 1.7.

1.3 Energy expansion

We fix a point ζ ∈ Ω and a positive number µ. We denote in what follows

wζ,µ(x) = 31/4 µ1/2√
µ2 + |x− ζ|2

which correspond to all positive solutions of the problem

−∆w − w5 = 0, in R3.

We define πζ,µ(x) to be the unique solution of the problem

(1.23)

{
−∆πζ,µ + λπζ,µ = −λwζ,µ in Ω

∂πζ,µ
∂ν

= −∂wζ,µ
∂ν

on ∂Ω.
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We consider as a first approximation of the solution of (1.1) one of the form

(1.24) Uζ,µ = wζ,µ + πζ,µ.

Observe that Uζ,µ satisfies the problem

(1.25)

{
−∆Uζ,µ + λUζ,µ = w5

ζ,µ in Ω
∂Uζ,µ
∂ν

= 0 on ∂Ω.

Let us also observe that ∫
Ω

w5
ζ,µ = Cµ1/2 (1 + o(1)) , as µ→ 0,

which implies that
w5
ζ,µ∫

Ω w
5
ζ,µ
→ 0, as µ → 0, uniformly on compacts subsets of Ω \ {ζ}. It

follows that on each of this subsets

(1.26) Uζ,µ(x) =

(∫
Ω

w5
ζ,µ

)
G(x, ζ) = Cµ1/2 (1 + o(1))Gλ(x, ζ)

where Gλ(x, ζ) denotes the Green’s function defined in (1.6).

Using the transformation Uζ,µ(x) = 1
ε1/2

V
(
x
ε

)
we see that V solves the problem{

−∆V + ε2λV − w5
ζ′,µ′ = 0 in Ωε
∂V
∂ν

= 0 on ∂Ωε,

where wζ′,µ′(x) = 31/4 µ′1/2√
µ′2+|x−ζ′|2

and ζ ′ = ε−1ζ, µ′ = ε−1µ.

The following lemma establishes the relationship between the functions πζ,µ(x) and
the regular part of the Green’s function Gλ(ζ, x). Let us consider the (unique) radial
solution D0(z) of the problem in entire space, −∆D0 = λ31/4

[
1√

1+|z|2
− 1
|z|

]
in R3

D0 → 0 as |z| → ∞.

D0(z) is a C0,1 function with D0(z) ∼ |z|−1 log |z|, as |z| → ∞.

Lemma 1.3.1. For any σ > 0 we have the validity of the following expansion as µ→ 0

(1.27) µ−1/2πµ,ζ(x) = −4π31/4Hλ(ζ, x)− µD0

(
x− ζ
µ

)
+ µ2−σθ(ζ, µ, x).

where for j = 0, 1, 2, i = 0, 1 i+j ≤ 2, the function µj ∂i+j

∂ζi∂µj
θ(ζ, µ, x) is bounded uniformly

on x ∈ Ω, all small µ and ζ, in compacts subsets of Ω. We recall that Hλ is the function
defined in (1.7).
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Proof. Let us set D1(x) = µD0(µ−1(x− ζ)), so that D1 satisfies{
−∆D1 = λ

[
µ−1/2wζ,µ(x)− 4π31/4Γ(x− ζ)

]
in Ω

∂D1

∂ν
∼ µ3 log µ on ∂Ω, as µ→ 0.

Let us write S1(x) = µ−1/2πζ,µ(x) + 4π31/4Hλ(ζ, x) +D1(x). With the notation of Lemma
1.3.1, this means

S1(x) = µ2−σθ(µ, ζ, x).

Observe that for x ∈ ∂Ω, as µ→ 0,

∇(µ−1/2wζ,µ(x) + 4π31/4Γ(x− ζ)) · ν ∼ µ2|x− ζ|−5.

Using the above equations we find that S1 satisfies

(1.28)

{
−∆S1 + λS1 = λD1 in Ω

∂S1

∂ν
= O(µ3 log µ) on ∂Ω.

Observe that, for any p > 3,∫
Ω

|D1(x)|pdx ≤ µp+3

∫
R3

|D0(x)|pdx,

so that ‖D1‖Lp ≤ Cpµ
1+3/p. Elliptic estimates applied to problem (1.28) yield that, for

any σ > 0, ‖S1‖∞ = O(µ2−σ) uniformly on ζ in compacts subsets of Ω. This yields the
assertion of the lemma for i, j = 0.

We consider now the quantity S2 = ∂ζS1. Observe that S2 satisfies{
−∆S2 + λS2 = λ∂ζD1 x ∈ Ω,

∂S2

∂ν
= O(µ3 log µ) on ∂Ω.

Observe that ∂ζD1(x) = −∇D0

(
x−ζ
µ

)
, so that for any p > 3,∫

Ω

|∂ζD1(x)|pdx ≤ µ3+p

∫
R3

|∇D0(x)|pdx

We conclude that ‖S2‖∞ = O(µ2−σ), for any σ > 0. This gives the proof of the lemma
for i = 1, j = 0. Now we consider S3 = µ∂µS1. Then{

−∆S3 + λS3 = λµ∂µD1 x ∈ Ω,
∂S3

∂ν
= O(µ3 log µ) on ∂Ω.

Observe that

µ∂µD1(x) = µ(D0 −D0)

(
x− ζ
µ

)
,

where D0(z) = ∇D0(z) ·z. Thus, similarly as the estimate for S1 itself we obtain ‖S3‖∞ =
O(µ2−σ), for any σ > 0. This yields the assertion of the lemma for i = 0, j = 1. The proof
of the remaining estimates comes after applying again µ∂µ to the equations obtained for
S2 and S3 above, and the desired result comes after exactly the same arguments. This
concludes the proof.
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Classical solutions to (1.1) correspond to critical points of the energy functional (1.21).
If there was a solution very close to Uζ∗,µ∗ for a certain pair (ζ∗, µ∗), then we would
formally expect Eλ to be nearly stationary with respect to variations of (ζ, µ) on Uζ,µ
around this point. It seems important to understand critical points of the functional
(ζ, µ)→ Eλ(Uζ,µ). In the following lemma we find explicit asymptotic expressions for this
functional.

Lemma 1.3.2. For any σ > 0, as µ→ 0, the following expansion holds

(1.29) Eλ(Uζ,µ) = a0 + a1µgλ(ζ)− a2µ
2λ− a3µ

2g2
λ(ζ) + µ3−σθ(ζ, µ)

where for j = 0, 1, 2, i = 0, 1, i+ j ≤ 2, the function µj ∂i+j

∂ζi∂µj
θ(ζ, µ) is bounded uniformly

on all small µ and ζ in compact subsets of Ω. The ai’s are explicit positive constants,
given by relation (1.33) below.

Proof. Observe that
Eλ(Uζ,µ) = I + II + III + IV + V + VI,

where

I =

∫
Ω

(
1

2
|∇wζ,µ|2 −

1

6
w6
ζ,µ

)
, II =

∫
Ω

(
∇wζ,µ · ∇πζ,µ − w5

ζ,µπζ,µ
)
,

III =
1

2

∫
Ω

[
|∇πζ,µ|2 + λ(wζ,µ + πζ,µ)πζ,µ

]
,

IV =
λ

2

∫
Ω

(wζ,µ + πζ,µ)wζ,µ, V = −5

2

∫
Ω

w4
ζ,µπ

2
ζ,µ,

VI = −1

6

∫
Ω

[
(wζ,µ + πζ,µ)6 − w6

ζ,µ − 6w5
ζ,µπζ,µ − 15w4

ζ,µπ
2
ζ,µ

]
.

Multiplying equation −∆wζ,µ = w5
ζ,µ by wζ,µ and integrating by parts in Ω we obtain

I =
1

2

∫
∂Ω

∂wζ,µ
∂ν

wζ,µ +
1

3

∫
Ω

w6
ζ,µ

=
1

2

∫
∂Ω

∂wζ,µ
∂ν

wζ,µ +
1

3

∫
R3

w6
ζ,µ −

1

3

∫
R3\Ω

w6
ζ,µ.

Now, testing the same equation against πζ,µ, we find

II =

∫
∂Ω

∂wζ,µ
∂ν

πζ,µ = −
∫
∂Ω

∂πζ,µ
∂ν

πζ,µ,

where we have used the fact that πζ,µ solves problem (1.23). Testing the equation−∆πζ,µ+
λπζ,µ = −λwζ,µ against πζ,µ and integrating by parts in Ω, we get

III =
1

2

∫
∂Ω

∂πζ,µ
∂ν

πζ,µ.

Testing equation −∆wζ,µ = w5
ζ,µ against Uζ,µ = wζ,µ+πζ,µ and integrating by parts twice,

we obtain

IV =
1

2

∫
∂Ω

∂πζ,µ
∂ν

πζ,µ −
1

2

∫
∂Ω

∂wζ,µ
∂ν

wζ,µ −
1

2

∫
Ω

w5
ζ,µπζ,µ.
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From the mean value formula, we get

VI = −10

∫ 1

0

ds(1− s)2

∫
Ω

(wζ,µ + sπζ,µ)3π3
ζ,µ.

Adding up the previous expressions we get so far

(1.30) Eλ(Uζ,µ) =
1

3

∫
R3

w6
ζ,µ −

1

2

∫
Ω

w5
ζ,µπζ,µ −

5

2

∫
Ω

w4
ζ,µπ

2
ζ,µ +R1,

where

(1.31) R1 = −1

3

∫
R3\Ω

w6
ζ,µ − 10

∫ 1

0

ds(1− s)2

∫
Ω

(wζ,µ + sπζ,µ)3π3
ζ,µ.

We will expand the second integral term of expression (1.30). Using the change of variable
x = ζ + µz and calling Ωµ = µ−1(Ω− ζ), we find that

A1 =

∫
Ω

w5
ζ,µπζ,µdx = µ

∫
Ωµ

w5
0,1(z)µ−1/2πζ,µ(ζ + µz)dz.

From Lemma 1.3.1, we have the expansion

µ−1/2πζ,µ(ζ + µz) = −4π31/4Hλ(ζ + µz, ζ)− µD0(z) + µ2−σθ(ζ, µ, ζ + µz).

According to Lemma 1.2.1,

Hλ(ζ + µz, ζ) = gλ(ζ)− λ

8π
µ|z|+ Θ(ζ, ζ + µz),

where Θ is a function of class C2 with Θ(ζ, ζ) = 0. Using this fact , we obtain

A1 = −4π31/4µgλ(ζ)

∫
R3

w5
0,1(z)dz − µ2

∫
R3

w5
0,1(z)

[
D0(z)− 31/4

2
λ|z|

]
dz +R2

with

R2 =µ

∫
Ωµ

w5
0,1(z)[Θ(ζ, ζ + µz) + µ2−σθ(ζ, µ, ζ + µz)]dz(1.32)

+ µ2

∫
R3\Ωµ

w5
0,1(z)

[
D0(z)− 31/4

2
λ|z|

]
dz + 4π31/4µgλ(ζ)

∫
R3\Ωµ

w5
0,1(z)dz.

Let us recall that −∆D0 = 31/4λ

[
1√

1+|z|2
− 1
|z|

]
, so that,

−
∫
R3

w5
0,1D0(z) =

∫
R3

∆w0,1D0(z)

=

∫
R3

w0,1∆D0(z) = 31/4λ

∫
R3

w0,1

[
1

|z|
− 1√

1 + |z|2

]
.
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Combining the above relations we get

A1 =− 4π31/4µgλ(ζ)

∫
R3

w5
0,1(z)dz

− µ2λ31/4

∫
R3

[
w0,1(z)

(
1√

1 + |z|2
− 1

|z|

)
− 1

2
w5

0,1|z|

]
dz +R2.

Let us consider now A2 =
∫

Ω
w4
ζ,µπ

2
ζ,µ. We have

A2 =µ

∫
Ωµ

w4
0,1(z)π2

ζ,µ(ζ + µz)dz

=µ2

∫
Ωµ

w4
0,1(z)

[
−4π31/4Hλ(ζ + µz, ζ)− µD0(z) + µ2−σθ(ζ, µ, ζ + µz)

]2
dz,

which we expand as

A2 = µ2g2
λ(ζ)16π231/2

∫
R3

w4
0,1 +R3.

Combining relation (1.30) with the above expressions, we get so far

Eλ(Uζ,µ) = a0 + a1µgλ(ζ)− a2λµ
2 − a3µ

2g2
λ(ζ) +R1 −

1

2
R2 −

5

2
R3,

where

a0 =
1

3

∫
R3

w6
0,1, a1 = 2π31/4

∫
R3

w5
0,1, a3 = 40π231/2

∫
R3

w4
0,1

a2 =
31/4

2

∫
R3

[
w0,1(z)

(
1

|z|
− 1√

1 + |z|2

)
+

1

2
w5

0,1|z|

]
dz.

An explicit computation shows that

(1.33) a0 =
1

4

√
3π2, a1 = 8

√
3π2, a2 =

√
3π2, a3 = 120

√
3π4.

Finally, we want to establish the estimate µj ∂i+j

∂ζi∂µj
Rl = O(µ3−σ), for each j = 0, 1, 2,

i = 0, 1, i + j ≤ 2, l = 1, 2, 3, uniformly on all small µ and ζ in compact subsets of Ω.
Arguing as in the proof of Lemma 2.1 in [dPMP05] we get the validity of the previous
estimates. This concludes the proof.

1.4 Critical single-bubbling

The purpose of this section is to establish that in the situation of Theorem 1.2.1 there
are critical points of Eλ(Uµ,ζ) which persist under properly small perturbations of the
functional. As we shall rigorously establish later, this analysis does provide critical points
of the full functional Eλ, namely solutions of (1.1), close to a single bubble of the form
Uµ,ζ .
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Let us suppose the situation (a) of local maximizer:

0 = sup
x∈D

gλ0(x) > sup
x∈∂D

gλ0(x) .

Then for λ close to λ0, λ > λ0, we have

sup
x∈D

gλ(x) > A (λ− λ0), A > 0.

Let us consider the shrinking set

Dλ =

{
y ∈ D : gλ(x) >

A

2
(λ− λ0)

}
.

Assume λ > λ0 is sufficiently close to λ0 so that gλ = A
2
(λ− λ0) on ∂Dλ.

Now, let us consider the situation of Part (b). Since gλ(ζ) has a non-degenerate critical
point at λ = λ0 and ζ = ζ0, this is also the case at a certain critical point ζλ for all λ
close to λ0 where |ζλ − ζ0| = O(λ− λ0).

Besides, for some intermediate point ζ̃λ,

gλ(ζλ) = gλ(ζ0) +Dgλ(ζ̃λ)(ζλ − ζ0) ≥ A(λ− λ0) + o(λ− λ0)

for a certain A > 0. Let us consider the ball Bλ
ρ with center ζλ and radius ρ (λ − λ0)

for fixed and small ρ > 0. Then we have that gλ(ζ) > A
2
(λ − λ0) for all ζ ∈ Bλ

ρ . In this
situation we set Dλ = Bλ

ρ .

It is convenient to make the following relabeling of the parameter µ. Let us set

(1.34) µ ≡ a1

2 a2

gλ(ζ)

λ
Λ ,

where ζ ∈ Dλ, and a1, a2 are the constants introduced in (1.29). We have the following
result.

Lemma 1.4.1. Assume the validity of one of the conditions (a) or (b) of Theorem 1.2.1,
and consider a functional of the form

(1.35) ψλ(Λ, ζ) = Eλ(Uµ,ζ) + gλ(ζ)2 θλ(Λ, ζ)

where µ is given by (1.34) and

(1.36) |θλ|+ |∇θλ|+ |∇∂Λθλ| → 0, as λ ↓ λ0

uniformly on ζ ∈ Dλ and Λ ∈ (δ, δ−1). Then ψλ has a critical point (Λλ, ζλ) with ζλ ∈ Dλ,
Λλ → 1.
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Proof. Using the expansion for the energy with µ given by (1.34) we find now that
(1.37)

ψλ(Λ, ζ) ≡ Eλ(Uζ,µ) + gλ(ζ)2 θλ(Λ, ζ) = a0 +
a2

1

4 a2

gλ(ζ)2

λ

[
2 Λ− Λ2

]
+ gλ(ζ)2 θλ(Λ, ζ)

where θλ satisfies property (1.36). Observe then that ∂Λψλ = 0 if and only if

(1.38) Λ = 1 + o(1) θλ(Λ, ζ) ,

where θλ is bounded in C1-sense, as λ ↓ λ0. This implies the existence of a unique solution
close to 1 of this equation, Λ = Λλ(ζ) = 1 + o(1) with o(1) small in C1 sense, as λ ↓ λ0.
Thus we get a critical point of ψλ if we have one of

(1.39) pλ(ζ) ≡ ψλ(Λλ(ζ), ζ) = a0 + c gλ(ζ)2 [1 + o(1)]

with o(1) → 0 as λ ↓ λ0 in C1-sense and c > 0. In the case of Part (a), i.e. of the
maximizer, it is clear that we get a local maximum in the region Dλ and therefore a
critical point.

Let us consider the case (b). With the same definition for pλ as above, we have

(1.40) ∇pλ(ζ) = 2cgλ(ζ)
[
∇gλ + o(1) gλ

]
.

Consider a point ζ ∈ ∂Dλ = ∂Bλ
ρ . Then |∇gλ(ζ)| = |D2gλ(x̃)(ζ − ζλ)| ≥ αρ(λ − λ0),

for some α > 0, when λ is close to λ0. We also have gλ(ζ) = O(λ − λ0), as λ ↓ λ0. We
conclude that for all t ∈ (0, 1), the function ∇gλ + t o(1) gλ does not have zeros on the
boundary of this ball, provided that λ− λ0 is small. In conclusion, its degree on the ball
is constant along t. Since for t = 0 is not zero, thanks to non-degeneracy of the critical
point ζλ, we conclude the existence of a zero of ∇pλ(ζ) inside Dλ. This concludes the
proof.

1.5 The linear problem

Hereafter we will look for a solution of (1.22) of the form v = V + φ, so that φ solves the
problem

(1.41)

{
L(φ) = N(φ) + E in Ωε

∂φ
∂ν

= 0 on ∂Ωε,

where

L(φ) = −∆φ+ ε2λφ− 5V 4φ, N(φ) = (V + φ)5 − V 5 − 5V 4φ, E = V 5 − w5
ζ′,µ′ .

Here V is defined as Uζ,µ(x) = 1
ε1/2

V
(
x
ε

)
, where Uζ,µ is given by (1.24), while ζ ′ = ε−1ζ,

and µ′ = ε−1µ.
Let us recall that the only bounded solutions of the linear problem

∆z + 5w4
ζ′,µ′z = 0 in R3
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are given by linear combinations of the functions

zi(x) =
∂wζ′,µ′

∂ζ ′i
(x), i = 1, 2, 3, z4(x) =

∂wζ′,µ′

∂µ′
(x).

In fact, the functions zi, i = 1, 2, 3, 4 span the space of all bounded functions of the kernel
of L in the case ε = 0. Observe also that∫

R3

zjzk = 0, if j 6= k.

Rather than solving (1.41) directly, we will look for a solution of the following problem
first: Find a function φ such that for certain numbers ci,

(1.42)


L(φ) = N(φ) + E +

∑4
i=1 ciw

4
ζ′,µ′zi in Ωε

∂φ
∂ν

= 0 on ∂Ωε∫
Ωε
w4
ζ′,µ′ziφ = 0 for i = 1, 2, 3, 4.

We next study the linear part of the problem (1.42). Given a function h, we consider the
linear problem of finding φ and numbers ci, i = 1, 2, 3, 4 such that

(1.43)


L(φ) = h+

∑4
i=1 ciw

4
ζ′,µ′zi in Ωε

∂φ
∂ν

= 0 on ∂Ωε∫
Ωε
w4
ζ′,µ′ziφ = 0 for i = 1, 2, 3, 4.

Given a fixed number 0 < σ < 1 we define the following norms

‖f‖∗ := sup
x∈Ωε

(1 + |x− ζ ′|σ)|f(x)|, ‖f‖∗∗ := sup
x∈Ωε

(1 + |x− ζ ′|2+σ)|f(x)|.

Proposition 1.5.1. There exist positive numbers δ0, ε0, α0, β0 and a constant C > 0
such that if

(1.44) dist(ζ ′, ∂Ωε) >
δ0

ε
and α0 < µ′ < β0,

then for any h ∈ C0,α(Ωε) with ‖h‖∗∗ < ∞ and for all ε < ε0, problem (1.43) admits a
unique solution φ = T (h) ∈ C2,α(Ωε). Besides,

(1.45) ‖T (h)‖∗ ≤ C‖h‖∗∗ and |ci| ≤ C‖h‖∗∗, i = 1, 2, 3, 4.

For the proof of Proposition 1.5.1 we will need the next

Lemma 1.5.1. Assume the existence of a sequences (µ′n)n∈N, (ζ ′n)n∈N, (εn)n∈N such that
α0 < µ′n < β0, dist(ζ ′n, ∂Ωε) >

δ0
εn

, εn → 0 and for certain functions φn and hn with
‖hn‖∗∗ → 0 and scalars cni , i = 1, 2, 3, 4, one has

L(φn) = hn +
∑4

i=1 c
n
i w

4
ζ′n,µ

′
n
zni in Ωεn

∂φn
∂ν

= 0 on ∂Ωεn∫
Ωεn

w4
ζ′n,µ

′
n
zni φn = 0 for i = 1, 2, 3, 4,
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where
zni = ∂(ζ′n)iwζ′n,µ′n , i = 1, 2, 3, zn4 = ∂µnwζ′n,µ′n

then
lim
n→∞

‖φn‖∗ = 0

Proof. By contradiction, we may assume that ‖φn‖∗ = 1. We will prove first the weaker
assertion that

lim
n→∞

‖φn‖∞ = 0.

Also, by contradiction, we may assume up to a subsequence that limn→∞ ‖φn‖∞ = γ,
where 0 < γ ≤ 1. Let us see that

lim
n→∞

cni = 0, i = 1, 2, 3, 4.

Up to subsequence, we can suppose that µ′n → µ′, where α0 ≤ µ′ ≤ β0. Testing the above
equation against znj (x) and integrating by parts twice we get the relation

∫
Ωεn

L(znj )φn +

∫
∂Ωεn

∂znj
∂ν

φn =

∫
Ωεn

hnz
n
j +

4∑
i=1

cni

∫
Ωεn

w4
ζ′n,µ

′
n
zni z

n
j .

Observe that∣∣∣∣∫
Ωεn

L(znj )φn +

∫
∂Ωεn

∂znj
∂ν

φn −
∫

Ωεn

hnz
n
j

∣∣∣∣ ≤ C‖hn‖∗ + o(1)‖φn‖∗,∫
Ωεn

w4
ζ′n,µ

′
n
zni z

n
j = Cδi,j + o(1).

Hence as n→∞, cni → 0, i = 1, 2, 3, 4.
Let xn ∈ Ωεn be such that supx∈Ωεn

φn(x) = φn(xn), so that φn maximizes at this
point. We claim that there exists R > 0 such that

|xn − ζ ′n| ≤ R, ∀n ∈ N.

This fact follows immediately from the assumption ‖φn‖∗ = 1. We define φ̃n(x) = φ(x+ζ ′n)
Hence, up to subsequence, φ̃n converges uniformly over compacts of R3 to a nontrivial
bounded solution of {

−∆φ̃− 5w4
0,µ′φ̃ = 0 in R3∫

R3 w
4
0,µ′ziφ̃ = 0 for i = 1, 2, 3, 4,

where zi is defined in terms of µ′ and ζ ′ = 0. Then φ̃ =
∑4

i=1 αizi(x). From the orthogo-

nality conditions
∫
R3 w

4
0,µ′ziφ̃ = 0, i = 1, 2, 3, 4, we deduce that αi = 0, i = 1, 2, 3, 4. This

implies that φ̃ = 0, which is a contradiction with the hypothesis limn→∞ ‖φn‖∞ = γ > 0.

Now we prove the stronger result: limn→∞ ‖φn‖∗ = 0. Let us observe that ζn is a
bounded sequence, so ζn → ζ, as n → ∞, up to subsequence. Let R > 0 be a fixed
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number. Without loss of generality we can assume that |ζn − ζ| ≤ R/2, for all n ∈ N
and B(ζ, R) ⊆ Ω. We define ψn(x) = 1

εσn
φn

(
x
εn

)
, x ∈ Ω (here we suppose without loss of

generality that µn > 0, ∀n ∈ N). From the assumption limn→∞ ‖φn‖∗ = 1 we deduce that

|ψn(x)| ≤ 1

|x− ζn|σ
, for x ∈ B(ζ, R).

Also, ψn(x) solves the problem{
−∆ψn + λψn = ε

−(2+σ)
n {5(ε

1/2
n Uζn,µn)4ψ + gn +

∑4
i=1 c

n
i ε

2
nw

4
ζn,µn

Zn
i } in Ω

∂ψn
∂ν

= 0 on ∂Ω,

where gn(x) = hn

(
x
εn

)
and Zn

i (x) = zni

(
x
εn

)
. Since limn→∞ ‖hn‖∗∗ = 0, we know that

|gn(x)| ≤ o(1)
ε2+σ
n

ε2+σ
n + |x− ζn|2+σ

, for x ∈ Ω.

Also, by (1.26), we see that

(1.46) (ε1/2
n Uζn,µn(x))4 = Cε4

n(1 + o(1))G(x, ζn)

away from ζn. It’s easy to see that ε−σn
∑4

i=1 c
n
i w

4
ζn,µn

Zi = o(1) as εn → 0, away from ζn.
We conclude (by a diagonal convergence method) that ψn(x) converges uniformly over
compacts of Ω \ {ζ} to ψ(x), a bounded solution of

−∆ψ + λψ = 0 in Ω \ {ζ}, ∂ψ

∂ν
= 0 on ∂Ω,

such that |ψ(x)| ≤ 1
|x−ζ|σ in B(ζ, R). So ψ has a removable singularity at ζ, and we

conclude that ψ(x) = 0. This implies that over compacts of Ω \ {ζ}, we have

|ψn(x)| = o(1)εσn.

In particular, we conclude that for all x ∈ Ω\B(ζn, R/2) we have |ψn(x)| ≤ o(1)εσn, which
traduces into the following for φn

(1.47) |φn(x)| ≤ o(1)εσn, for all x ∈ Ωεn \B(ζ ′n, R/2εn).

Consider a fixed number M , such that M < R/2εn, for all n. Observe that ‖φn‖∞ = o(1),
so

(1.48) (1 + |x|σ)|φn(x)| ≤ o(1) for all x ∈ B(ζ ′n,M).

We claim that

(1.49) (1 + |x|σ)|φn(x)| ≤ o(1) for all x ∈ Aεn,M ,
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where Aεn,M = B(ζ ′n, R/2εn) \ B(ζ ′n,M). This assertion follows from the fact that the
operator L satisfies the weak maximum principle in Aεn,M (choosing a larger M and a
subsequence if necessary): If u satisfies L(u) ≤ 0 in Aεn,M and u ≤ 0 in ∂Aεn,M , then
u ≤ 0 in Aεn,M . This result is just a consequence of the fact that L(|x − ζ ′n|−σ) ≥ 0 in
Aεn,M , if M is larger enough but independent of n.

We now prove (1.49) with the use of a suitable barrier. Observe that from (1.47)
we deduce the existence of η1

n → 0, as n → 0 such that ε−σn |φn(x)| ≤ η1
n, for all x such

that |x| = R/2εn. From (1.48) we deduce the existence of η2
n → 0, as n → ∞ such that

Mσ|φn(x)| ≤ η2
n, for all x such that |x| = M . Also, there exists η3

n → 0, as n → ∞ such
that

|x+ ζ ′n|2+σ|L(φn)| ≤ η3
n in Aεn,M .

We define the barrier function ϕn(x) = ηn
1

|x−ζ′n|σ
, with ηn = max{η1

n, η
2
n, η

3
n}. Observe that

L(ϕn) = σ(1 − σ)ηn
1

|x−ζ′n|2+σ + (ε2
nλ − 5V 4)ηn

1
|x−ζ′n|σ

. It’s not hard to see that |L(φn)| ≤
CL(ϕn) in Aµn,M and |φn(x)| ≤ Cϕn in ∂Aεn,M , where C is a constant independent of
n. From the weak maximum principle we deduce (1.49) and the fact ‖φn‖∞ = o(1).
From (1.47), (1.48), (1.49), and ‖φn‖∞ = o(1) we conclude that ‖φn‖∗ = o(1) which is a
contradiction with the assumption ‖φn‖∗ = 1. The proof of Lemma (1.5.1) is completed.

Proof of proposition 1.5.1. Let us consider the space

H =

{
φ ∈ H1(Ω)

∫
Ωε

w4
ζ′,µ′ziφ = 0, i = 1, 2, 3, 4

}
endowed with the inner product, [φ, ψ] =

∫
Ωε
∇φ∇ψ + ε2λ

∫
Ωε
φψ. Problem (1.43) ex-

pressed in the weak form is equivalent to that of finding φ ∈ H such that

[φ, ψ] =

∫
Ωε

[
5V 4φ+ h+

4∑
i=1

ciw
4
ζ′,µ′zi

]
ψ for all ψ ∈ H.

The a priori estimate ‖T (h)‖∗ ≤ C‖h‖∗∗ implies that for h ≡ 0 the only solution is 0. With
the aid of Riesz’s representation theorem, this equation gets rewritten in H in operational
form as one in which Fredholm’s alternative is applicable, and its unique solvability thus
follows. Besides, it is easy to conclude (1.45) from an application of Lemma (1.5.1).

It is important, for later purposes, to understand the differentiability of the operator
T : h → φ, with respect to the variables µ′ and ζ ′, for a fixed ε (we only let µ and ζ to
vary). We have the following result

Proposition 1.5.2. Under the conditions of Proposition 1.5.1, the map T is of class C1

and the derivative ∇ζ′,µ′∂µ′T exists and is a continuous function. Besides, we have

‖∇ζ′,µ′T (h)‖∗ + ‖∇ζ′,µ′∂µ′T (h)‖∗+ ≤ C‖h‖∗∗.
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Proof. Let us consider differentiation with respect to the variable ζ ′k, k = 1, 2, 3. For
notational simplicity we write ∂

∂ζ′k
= ∂ζ′k . Let us set, still formally, Xk = ∂ζ′kφ. Observe

that Xk satisfies the following equation

L(Xk) = 5∂ζ′k(V
4)φ+

4∑
i=1

dkiw
4
ζ′,µ′zi +

4∑
i=1

ci∂ζ′k(w
4
ζ′,µ′zi) in Ωε.

Here dki = ∂ζ′kci, i = 1, 2, 3. Besides, from differentiating the orthogonality conditions∫
Ωε
w4
ζ′,µ′zi = 0, i = 1, 2, 3, 4, we further obtain the relations∫

Ωε

Xkw
4
ζ′,µ′zi = −

∫
Ωε

φ∂ζ′k(w
4
ζ′,µ′zi) i = 1, 2, 3, 4.

Let us consider constants bi, i = 1, 2, 3, 4, such that∫
Ωε

(
Xk −

4∑
i=1

bizi

)
w4
ζ′,µ′zj = 0 j = 1, 2, 3, 4.

These relations amount to

4∑
i=1

bi

∫
Ωε

wζ′,µ′zizj =

∫
Ωε

φ∂ζ′k(w
4
ζ′,µ′zj) j = 1, 2, 3, 4.

Since this system is diagonal dominant with uniformly bounded coefficients, we see that
it is uniquely solvable and that

bi = O(‖φ‖∗)
uniformly on ζ ′, µ′ in the considered region. Also, it is not hard to see that

‖φ∂ζ′k(V
4)‖∗∗ ≤ C‖φ‖∗.

From Proposition (1.45), we conclude∥∥∥∥∥
4∑
i=1

ci∂ζ′k(w
4
ζ′,µ′zi)

∥∥∥∥∥
∗∗

≤ C‖h‖∗∗.

We set X = Xk −
∑4

i=1 bizi, so X satisfies

L(X) = f +
4∑
i=1

bkiw
4
ζ′,µ′zi, in Ωε,

where

f = 5∂ζ′k(V
4)φ

4∑
i=1

biL(zi) +
4∑
i=1

ci∂ζ′,µ′(w
4
ζ′,µ′zi)

Observe that also, ∫
Ωε

Xw4
ζ′,µ′zi = 0 i = 1, 2, 3, 4.
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This computation is not just formal. Indeed, one gets, as arguing directly by definition
shows,

∂ξ′kφ =
4∑
i=1

bizi + T (f) and ‖∂ξ′kφ‖∗ ≤ C‖h‖∗∗.

The corresponding result for differentiation with respect to µ′ follows similarly. This
concludes the proof.

1.6 The nonlinear problem

We recall that our goal is to solve (1.41). Rather than doing so directly, we shall solve
first the intermediate nonlinear problem (1.42) using the theory developed in the previous
section. We have the next result.

Lemma 1.6.1. Under the assumptions of Proposition 1.5.1, there exist numbers ε1 > 0,
C1 > 0, such that for all ε ∈ (0, ε1) problem (1.42) has a unique solution φ which satisfies

‖φ‖∗ ≤ C1ε.

Proof. First we assume that µ and ζ are such that ‖E‖∗∗ < ε1. In terms of the operator
T defined in Proposition (1.5.1), problem (1.42) becomes

φ = T (N(φ) + E) ≡ A(φ).

For a given γ > 0, let us consider the region Fγ := {φ ∈ C(Ωε) ‖φ‖∗ ≤ γ‖E‖∗∗}. From
Proposition (1.5.1), we get

‖A(φ)‖∗ ≤ C [‖N(φ)‖∗∗ + ‖E‖∗∗] .

The definition of N immediately yields ‖N(φ)‖∗∗ ≤ C0‖φ‖2
∗. It is also easily checked that

N satisfies, for φ1, φ2 ∈ Fγ,

‖N(φ1)−N(φ2)‖∗∗ ≤ C0γ‖E‖∗∗‖φ1 − φ2‖∗.

Hence for a constant C1 depending on C0, C, we get

‖A(φ)‖∗ ≤ C1

[
γ2‖E‖∗∗ + 1

]
‖E‖∗∗, ‖A(φ1)− A(φ2)‖∗ ≤ C1γ‖E‖∗∗‖φ1 − φ2‖∗.

Choosing γ = C1, ε1 = 1
2C2

1
, we conclude that A is a contraction mapping of Fγ, and

therefore a unique fixed point of A exists in this region.

Assume now that µ′ and ζ ′ satisfy conditions (1.44). Recall that the error introduced
by our first approximation is

E = V 5 − w5
ζ′,µ′ = (wµ′,ξ′(y) +

√
επ(εy))5 − w5

ζ′,µ′(y) y ∈ Ωε.

Using several times estimate (1.27), we get

‖E‖∗∗ = O
(
‖
√
επ(εy)wζ′,µ′(y)4‖∗∗

)
= O

(∥∥∥∥ε µ′2

(µ′2 + |y − ζ ′|2)2

∥∥∥∥
∗∗

)
= O(ε),

as ε→ 0. This concludes the proof of the Lemma.
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We shall next analyze the differentiability of the map (ζ ′, µ′) → φ. We start by
computing the ‖ · ‖∗∗-norm of the partial derivatives of E with respect to µ′ and ζ ′.
Observe that

∂µ′wζ′,µ′ =
1

2
√
µ′
|y − ζ ′|2 − µ′2

(|y − ζ ′|2 + µ′2)
3
2

.

We derive E with respect to µ′ and deduce

‖∂µ′E‖∗∗ = O
(
‖
√
επ(εy)w3

ζ′,µ′∂µ′wζ′,µ′‖∗∗
)

+O
(
‖ε

3
2w4

ζ′,µ′∂µπ(εy)‖∗∗
)

= O

(∥∥∥∥εµ′(|y − ζ ′|2 − µ′2)

(µ′2 + |y − ζ2|)3

∥∥∥∥
∗∗

)
+O

(∥∥∥∥ε 3
2

µ′2

(µ′2 + |y − ζ ′|2)2

∥∥∥∥
∗∗

)
= O(ε) as ε→ 0.

Note that

|∂ζ′iwζ′,µ′ | =
√
µ′|y − ζ ′|

(µ′2 + |y − ζ ′|2)
3
2

for i = 1, 2, 3.

We derive E with respect to ζ ′i and deduce for i = 1, 2, 3

‖∂ζ′iE‖∗∗ = O
(
‖
√
επ(εy)w3

ζ′,µ′∂ζ′iwζ′,µ′‖∗∗
)

+O
(
‖ε

3
2w4

ζ′,µ′∂ζiπ(εy)‖∗∗
)

= O

(∥∥∥∥ε µ′2|y − ζ ′|
(µ′2 + |y − ζ2|)3

∥∥∥∥
∗∗

)
+O

(∥∥∥∥ε 3
2

µ′2

(µ′2 + |y − ζ ′|2)2

∥∥∥∥
∗∗

)
= O(ε), as ε→ 0.

Moreover, a similar computation shows that

‖∇ζ′,µ′∂µ′E‖∗∗ ≤ O(ε) as ε→ 0.

Collecting all the previous computations we conclude there exists a positive constant
C > 0 such that

‖E‖∗∗ + ‖∇ζ′,µ′E‖∗∗ + ‖∇ζ′,µ′∂µ′E‖∗∗ ≤ Cε.

Concerning the differentiability of the function φ(ζ ′), let us write

A(x, ϕ) = ϕ− T (N(ϕ) + E).

Observe that A(ζ ′, φ) = 0 and ∂φA(ζ ′, φ) = I + O(ε). It follows that for small ε, the
linear operator ∂φA(ζ ′, φ) is invertible, with uniformly bounded inverse. It also depends
continuously on its parameters. Differentiating respect to ζ ′ we obtain

∂ζ′A(ζ ′, φ) = −(∂ζ′T )(N(φ) + E)− T (∂ζ′N(φ) + ∂ζ′R).

where the previous expression depend continuously on their parameters. Hence the im-
plicit function theorem yields that φ(ζ ′) is a C1 function. Moreover, we have

∂ζ′φ = −(∂φA(ζ ′, φ))−1[∂ζ′A(ζ ′, φ)].
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By Taylor expansion we conclude that

‖∂ζ′N(φ)‖∗∗ ≤ C(‖φ‖∗ + ‖∂ζ′φ‖∗)‖φ‖∗ ≤ C(‖E‖∗∗ + ‖∂ζ′φ‖∗)‖E‖∗∗.

Using Proposition (1.5.2), we have

‖∂ζ′φ‖∗ ≤ C(‖N(φ) + E‖∗∗ + ‖∂ζ′N(φ)‖∗∗ + ‖∂ζ′E‖∗∗),

for some constant C > 0. Hence, we conclude that

‖∂ζ′φ‖∗ ≤ C(‖E‖∗∗ + ‖∂ζ′E‖∗∗).

A similar argument shows that, as well

‖∂µ′φ‖∗ ≤ C(‖E‖∗∗ + ‖∂µ′E‖∗∗),

and moreover

‖∇ζ′,µ′∂µ′φ‖∗ ≤ C(‖E‖∗∗ + ‖∇ζ′,µ′E‖∗∗ + ‖∇ζ′,µ′∂µ′E‖∗∗).

This can be summarized as follows.

Lemma 1.6.2. Under the assumptions of Propositions 1.5.1 and 1.6.1, consider the map

(ζ ′, µ′)→ φ.

The partial derivatives ∇ζ′φ, ∇µ′φ, ∇ζ′,µ′∂µ′ exist and define continuous functions of
(ζ ′, µ′). Besides, there exist a constant C2 > 0, such that

‖∇ζ′,µ′φ‖∗ + ‖∇ζ′,µ′∂µ′φ‖∗ ≤ C2ε

for all ε > 0 small enough.

After Problem (1.41) has been solved, we will find solutions to the full problem (1.42)
if we manage to adjust the pair (ζ ′, µ′) in such a way that ci(ζ

′, µ′) = 0, i = 1, 2, 3, 4. This
is the reduced problem. A nice feature of this system of equations is that it turns out to
be equivalent to finding critical points of a functional of the pair (ζ ′, µ′) which is close, in
appropriate sense, to the energy of the single bubble U .

1.7 Final argument

In order to obtain a solution of (1.1) we need to solve the system of equations

(1.50) cj(ζ
′, µ′) = 0 for all j = 1, . . . , 4 .

If (1.50) holds, then v = V + φ will be a solution to (1.41). This system turns out to be
equivalent to a variational problem. We define

F (ζ ′, µ′) = Eε(V + φ),
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where φ = φ(ζ ′, µ′) is the unique solution of (1.42) that we found in the previous section,
and Eε is the scaled energy functional

Eε(U) =
1

2

∫
Ω

|∇U |2 +
ε2λ

2

∫
Ω

|U |2 − 1

6

∫
Ω

|U |6.

Observe that Eλ(Uζ′,µ′) = Eε(V ).

Critical points of F correspond to solutions of (1.50), under the assumption that the
error E is small enough.

Lemma 1.7.1. Under the assumptions of Propositions 1.5.1 and 1.6.1, the functional
F (ζ ′, µ′) is of class C1 and for all ε sufficiently small, if ∇F = 0 then (ζ ′, µ′) satisfies
system (1.50).

Proof. Let us differentiate with respect to µ′.

∂µ′F (ζ ′, µ′) = DEε(V + φ)[∂µ′V + ∂µ′φ] =
4∑
j=1

∫
Ωε

cjw
4
ζ′,µ′zj[∂µ′V + ∂µ′φ].

From the results of the previous section, we deduce ∂µ′F is continuous. If ∂µ′F (ζ ′, µ′) = 0,
then

4∑
j=1

∫
Ωε

cjw
4
ζ′,µ′zj[∂µ′V + ∂µ′φ] = 0.

Since ‖∂µ′‖∗ ≤ C(‖E‖∗∗+‖∂µ′E‖∗∗), we have, as ε→ 0, ∂µ′V +∂µ′φ = z4 +o(1), with o(1)
small in terms of the ∗ ∗ −norm as ε→ 0. Similarly, we check that ∂ζ′kF is continuous,

∂ζ′kF (ζ ′, µ′) = DEε(V + φ)[∂ζ′kV + ∂ζ′kφ] =
4∑
j=1

∫
Ωε

cjw
4
ζ′,µ′zj[∂ζ′kV + ∂ζ′kφ] = 0,

and ∂ζ′kV + ∂ζ′kφ = zk + o(1), for k = 1, 2, 3.

We conclude that if ∇F = 0 then

4∑
j=1

∫
Ωε

w4
ζ′,µ′zj[zi + o(1)] = 0 i = 1, 2, 3, 4,

with o(1) small in the sense of ∗∗−norm as ε→ 0. The above system is diagonal dominant
and we thus get cj = 0 for all j = 1, 2, 3, 4.

In the following Lemma we find an expansion for the functional F .

Lemma 1.7.2. Under the assumptions of Propositions 1.5.1 and 1.6.1, the following
expansion holds

F (ζ ′, µ′) = Eε(V ) + [‖E‖∗∗ + ‖∇ζ′,µ′E‖∗∗ + ‖∇ζ′,µ′∂µ′E‖∗∗] θ(ζ ′, µ′),

where θ satisfies
|θ|+ |∇ζ′,µ′θ|+ |∇ζ′,µ′∂µ′θ| ≤ C,

for a positive constant C.
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1.7. Final argument

Proof. Using the fact that DF (V + φ)[φ] = 0, a Taylor expansion gives

F (V + φ)− F (V ) =

∫ 1

0

D2F (V + tφ)[φ, φ](1− t)dt

=

∫ 1

0

(∫
Ωε

[N(φ) + E]φ+

∫
Ωε

5
[
V 4 − (V + tφ)4

]
φ2

)
(1− t)dt.

Since ‖φ‖∗ ≤ C‖E‖∗∗, we get

F (V + φ)− F (V ) = O(‖E‖2
∗∗).

Observe that

∇ζ′,µ′ [F (V + φ)− F (V )]

=

∫ 1

0

(∫
Ωε

∇ζ′,µ′ [(N(φ) + E)φ] +

∫
Ωε

5∇ζ′,µ′
[(
V 4 − (V + tφ)4

)
φ2
])

(1− t)dt.

Since ‖∇ζ′,µ′φ‖∗ ≤ C[‖E‖∗∗ + ‖∇ζ′,µ′E‖∗∗], we easily see that

∇ζ′,µ′ [F (V + φ)− F (V )] = O(‖E‖2
∗∗ + ‖∇ζ′,µ′E‖2

∗∗).

A similar computation yields the result.

We have now all the elements to prove our main result.

Proof of Theorem 1.2.1. We choose

µ =
a1gλ(ζ)

2a2λ
Λ,

where ζ ∈ Dλ. A similar computation to the one performed in the previous section, based
in the estimate (1.27), allows us to show that

‖E‖∗∗ + ‖∇ζ′,µ′E‖∗∗ + ‖∇ζ′,µ′∂µ′E‖∗∗ ≤ Cµ
1
2 ε

1
2 δλ,

where δλ = supDλ(|gλ|+ |∇gλ|). Since α0 < µ′ < β0, we have

F (ζ ′, µ′) = Eε(V ) + µ2δ2
λθ(ζ

′, µ′),

with |θ|+ |∇ζ′,µ′θ|+ |∇ζ′,µ′∂µ′θ| ≤ C. We define ψλ(Λ, ζ) = F (ζ ′, µ′). We conclude that

ψλ(Λ, ζ) = Eλ(Uζ,µ) + gλ(ζ)2θλ(ζ,Λ),

where θλ is as in Lemma 1.4.1. Thus, ψλ has a critical point as in the statement of Lemma
1.4.1. This concludes the proof of our main result, with the constant γ = a1

2a2
.
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Chapter 2

The Keller-Segel model of
chemotaxis

Abstract

In this chapter, which is based on a joint work with Denis Bonheure and Jean-Baptiste
Casteras [BCR], we construct several families of radial solutions to the stationary
Keller-Segel equation in the two-dimensional unit ball. The first family consists in
solutions which blow up at the origin of the ball and concentrate on the boundary of the
unit ball. The second family is made of solutions which blow up at the origin and
concentrate on an interior sphere, while the solutions of the third type blow up at the
origin and concentrate simultaneously on an interior sphere and on the boundary of the
unit ball. We also show how to construct other families of multi-layered radial solutions,
under a suitable non-degeneracy assumption.
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2.1 Introduction

Chemotaxis is the influence of chemical substances in an environment on the movement
of organisms. In order to modelize the aggregation of cellular slime molds like the Dic-
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tyostelium discoideum, Keller and Segel introduced in 1970 a system of two strongly
coupled parabolic differential equations involving :

• u(x, t) the myxamoebae density of the cellular slime molds at time t and point x,

• v(x, t) the chemoattractant concentration.

More precisely, the system has the form

(2.1)


∂v

∂t
= ∆v −∇(v∇u), v > 0 in Ω

∂u

∂t
= ∆u− u+ v, u > 0 in Ω

∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω,

where Ω ⊂ Rn is a smooth bounded domain and ν is the inner unit normal vector of ∂Ω.
In order to understand the global dynamics of this system, it is important to study

steady state solutions of it, namely solutions to

(2.2)


∆v −∇(v∇u) = 0, v > 0 in Ω

∆u− u+ v = 0, u > 0 in Ω
∂u

∂ν
=
∂v

∂ν
= 0 on ∂Ω.

Let us notice that the system (2.2) reduces to a scalar equation. Indeed, observe that
v = λeu for some positive constant λ, solves the first equation. Thus the second equation
becomes the so-called Keller-Segel equation

(2.3)

{ −∆u+ u− λeu = 0, u > 0 in Ω
∂u

∂ν
= 0 on ∂Ω.

In the one-dimensional case, Schaaf [Sch85] proved the existence of non-trivial solutions
to (2.3). In higher dimension, when Ω is a ball, radial solutions to (2.3) have been
constructed by Biler [Bil98]. For general two-dimensional domains, the first existence
results were obtained by Wang and Wei [WW02] and independently by Senba and Suzuki
[SS00d], when the parameter λ is small enough. Moreover, Senba and Suzuki [SS00d,SS02]
studied the asymptotic behavior when λ→ 0 of solutions uλ to (2.3) with finite mass

lim
λ→0

λ

∫
Ω

euλ = C0 > 0.

Let G(x, y), y ∈ Ω̄ be the Green’s function of the problem

−∆xG + G = δy in Ω,
∂G
∂νx

= 0 on ∂Ω.

Senba and Suzuki showed that there exist points ξi ∈ Ω, i ≤ k and ηi ∈ ∂Ω, k < i ≤ m
for which

(2.4) uλ(x)
λ→0→

k∑
i=1

8πG(x, ξi) +
m∑

i=k+1

4πG(x, ηi),
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uniformly on compact subsets of Ω̄\{ξ1, . . . , ξk}. The counter part of this result has been
obtained by del Pino and Wei [dPW06] where they constructed, for any given integers k
and l, a family of solutions to (2.3) satisfying (2.4) for a suitable choice of points ξi, ηi.

Recently, the study of solutions to (2.3) concentrating on higher dimensional set with
unbounded mass has been initiated. When Ω = B1(0) ⊂ Rn, n ≥ 2, Pistoia and Vaira
[PV15] constructed a family uλ of radial solutions blowing-up in all the boundary of Ω
and such that

lim
λ→0

∫
B1(0)

λeuλ(x)dx =∞.

More precisely, their solutions satisfy

lim
λ→0

ελuλ =
√

2U ,

C0-uniformly on compact sets of Ω where ελ ≈ − 1
lnλ

and U is the unique radial solution
to

−U ′′ − n− 1

r
U ′ + U = 0 in Ω, U = 1 on ∂Ω.

Near the boundary ∂B1(0), their solutions, up to rescaling, behave like the one-dimensional
half standard bubble i.e.

−w′′ = ew on R, s.t.

∫
R
ew <∞.

Let us also point out that del Pino, Pistoia and Vaira [dPPV16] constructed a similar
family of solutions to (2.3) for general two-dimensional domains concentrating on the
whole boundary. Very recently, existence of solutions concentrating on sub-manifolds of
the boundary has also been investigated. Agudelo and Pistoia [AP16] consider domains
of the following form

Ω = {(y1, x
′) ∈ RN−1 × R : (|y1|, x′) ∈ D},

where D is a smooth bounded domain in R2 such that

D̄ ⊂ {(x1, x
′) ∈ R× R : x1 > 0}.

Looking for solutions of (2.3) invariant under the action of the group of linear isometries
Γ of RN−1 given by

g(y1, x
′) = (gy1, x

′),

namely solutions of the form v(y1, x
′) = u(|y1|, x′), we see that (2.3) can be rewritten as

(2.5) −div(a(x)∇u) + a(x)u = λa(x)eu in D, ∂νu = 0 on ∂D,

where a(x) = xN−2
1 . Under suitable assumptions, Agudelo and Pistoia are able to con-

struct families of solutions to (2.5) concentrating at points on the boundary of ∂D or
converging to points belonging to ∂D when λ → 0. Up to rescaling, their solutions
behave near the concentration points like the unique solution to

−∆U = eU in R2,

∫
R2

eUdx <∞.
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Observe that the solutions they construct for (2.5) correspond to solutions of (2.3) con-
centrating along (N − 2)-dimensional minimal manifolds of the boundary (or converging
to the boundary) of Ω diffeomorphic to the unit sphere of dimension N − 2.

In all the following, we will suppose that Ω = B1(0) ⊂ RN , N ≥ 2. In [BCN17b], we
performed a bifurcation analysis of radial solutions to (2.3). First, let us notice that for
λ < 1/e, it is possible to show that (2.3) is equivalent to

(2.6)

{
−∆v + v = eµ(v−1), v > 0 in B1(0)

∂νv = 0 on ∂B1(0)

for µ > 1. Observe that this equation admits two constant solutions v ≡ 1 and another
one denoted by vµ < 1. Let λradi be the i-th eigenvalue of the operator −∆ + Id in B1(0)
with Neumann boundary conditions, restricted to the radial functions. We obtained the
following bifurcation result.

Theorem 2.1.1 ([BCN17b]). For every i ≥ 2, (λradi , 1) is a bifurcation point for problem
(2.6). Let Bi be the continuum that branches out of (λradi , 1). It holds that:

(i) the branches Bi are unbounded and do not intersect; close to (λradi , 1), Bi is a C1-
curve;

(ii) if uµ ∈ Bi then uµ > 0;

(iii) each branch consists of two connected components: the component B−i , along which
uµ(0) < 1, and the component B+

i , along which uµ(0) > 1;

(iv) if uµ ∈ Bi then uµ − 1 has exactly i − 1 zeros, u′µ has exactly i − 2 zeros and each
zero of u′µ lies between two zeros of uµ − 1;

(v) the functions satisfying uµ(0) < 1 are uniformly bounded in the C1-norm.

In term of this bifurcation result, we believe that the solutions constructed by Pistoia
and Vaira [PV15] belong to B−1 while the solutions constructed by del Pino and Wei
[dPW06] (when restricted to the 2-dimensional ball) belong to B+

1 . In [BCN17b], we
also constructed multi-layer solutions, namely solutions concentrating along an arbitrary
number of internal spheres, by combining variational and perturbative methods. Using a
different approach based on a fixed point argument, we were able in [BCN17a] to prove
the existence and to obtain very precise asymptotics of these solutions provided that a
non-degeneracy condition holds true (we will comment on it later).

In the present chapter, we restrict ourselves to the case where Ω = B1(0) ⊂ R2. In
view of Theorem 2.1.1, our goal is to construct and characterize solutions belonging to
B+
i for i ≥ 2. More precisely, we want to construct solutions to (2.3) concentrating at

the origin and on spheres (belonging to the interior or the boundary of B1(0)). Our first
result deals with the case of solutions concentrating at the origin and along ∂B1(0).

Theorem 2.1.2. There exists λ̄ > 0 such that, for all λ ∈ (0, λ̄), there exists a radial
solution uλ of (2.3) such that

lim
λ→0

λ

∫
B1(0)

euλ(x)dx =∞,
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lim
λ→0

(uλ − Uλ) = 0

uniformly on compact subsets of B1(0)\{0},

λeuλ ⇀ 8πδ0 in B1/2(0),

and √
2λeuλ + (|∂νUλ(1)|)−1δ{x∈RN | |x|=1} ⇀ 0 in B1(0)\B1/2(0),

where ελ ≈ 1/| lnλ| and Uλ is a solution to
−U ′′λ −

1

r
U ′λ + Uλ = 0 in (0, 1),

lim
r→0+

Uλ(r)

− ln r
= 4, Uλ(1) =

√
2

ελ
.

Next, we investigate multi-layered solutions. It is well-known that the localization
of the layers are linked with the existence of certains Green’s functions. Extending the
results of [BGNT16], we construct singular at the origin Green’s function having k local
maximum normalized to 1. Moreover, at each of these maxima, the derivative of the
Green’s function satisfies a weak reflexion’s law. More precisely, we have

Theorem 2.1.3. Let k ∈ N\{0}. For any constant b > 0 small enough, we have that:

(i) There exists a configuration 0 = α0 < α1 < . . . < αk = 1 and a continuous function
Ub,k such that 

−U ′′b,k −
1

r
U ′b,k + Ub,k = 0 in ∪k−1

i=0 (αi, αi+1)

limr→0+ −Ub,k(r)
ln r

= b

Ub,k(αi) = 1 for every i = 1, . . . , k

and satisfying the reflection law

(2.7) lim
ε→0−

Ub,k(αi + ε)− Ub,k(αi)
ε

= − lim
ε→0+

Ub,k(αi + ε)− Ub,k(αi)
ε

for every i = 1, . . . , k − 1.

(ii) There exists a configuration 0 = α̃0 < α̃1 < . . . < α̃k < α̃k+1 = 1 and a continuous
function Ũb,k such that

−Ũ ′′b,k −
1

r
Ũ ′b,k + Ũb,k = 0 in ∪ki=0 (α̃i, α̃i+1)

limr→0+ − Ũb,k(r)
ln r

= b

Ũ ′b,k(1) = 0

Ũb,k(α̃i) = 1 for every i = 1, . . . , k

and satisfying the reflection law

(2.8) lim
ε→0−

Ũb,k(α̃i + ε)− Ũb,k(α̃i)
ε

= − lim
ε→0+

Ũb,k(α̃i + ε)− Ũb,k(α̃i)
ε

for every i = 1, . . . , k.
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As in [BCN17a], in order to construct multi-layered solutions, we will need a certain
non-degeneracy condition on the Green’s function. This condition depends on the deter-
minant Mk of the squared matrix Ai,j of k× k entries defined as follows. The elements of
the diagonal are given by

Ai,i = (U ′+σi + U ′−σi )(αi) for i = 1, . . . , k,

the elements of the subdiagonal are given by

Ai+1,i = U ′−σi (αi+1) for i = 1, . . . , k − 1,

the elements of the superdiagonal are given by

Ai,i+1 = U ′+σi+1
(αi) for i = 1, . . . , k − 1,

and the rest of the entries of the matrix are 0. Here,

U ′±σi (αj) =
∂

∂σi
(U ′±ε,a,b,σ(αj + σj))|ε,a,b,σ=0,

where Uε,a,b,σ is defined in (2.51). Let us point out that this determinant played the same
role in the construction of multi-layered solutions regular at the origin (see [BCN17a]).
Assuming that Mk 6= 0, we are able to construct two families of k-layers solutions singular
at the origin of (2.3) in B1(0), modeled on Uk+1 and on Ũk respectively. Numerical
simulations and explicit computations in dimension 3 suggest that Mk > 0 for any k ∈
N\{0}, however we are only able to prove it for k = 1. In this case, our results read as
follows

Theorem 2.1.4 (Internal layer solution singular at the origin of the ball). There exists
λ(1) > 0 such that for all λ ∈ (0, λ(1)), there exists a family of radial solutions ũλ to (2.3)
in B1(0) such that

lim
λ→0

(
uλ −

√
2

ελ
Ũ4

ελ√
2
,1

)
= 0,

uniformly on compact subsets of B1(0)\{0},

λeuλ ⇀ 8πδ0 in Bα1/2(0)

and
ελλe

uλ + (|∂νŨ4
ελ√

2
,1(α1)|)−1δ1 ⇀ 0 in B1(0)\{0},

where ελ ≈ 1/| lnλ|.

Theorem 2.1.5 (Singular solution at the origin of the ball with an internal layer and
a boundary layer). There exists λ(2) > 0 such that for all λ ∈ (0, λ(2)), there exists a
family of radial solutions uλ to (2.3) in B1(0) such that

lim
λ→0

(
uλ −

√
2

ελ
U4

ελ√
2
,2

)
= 0
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uniformly on compact subsets of B1(0)\{0},

λeuλ ⇀ 8πδ0 in Bα1/2(0),

and

ελλe
uλ + (|∂νU4

ελ√
2
,2(α1)|)−1δα1 + (|∂νU4

ελ√
2
,2(1)|)−1δ1 ⇀ 0 in B1(0)\{0},

where ελ ≈ 1/| lnλ|.

The plan of this chapter is the following. In Section 2.2, we describe the ansatz of
solution we will use to prove Theorem 2.1.2. We then estimate the error introduced by our
ansatz in Section 2.3. In Section 2.4, we prove the solvability of the linearized equation
in our ansatz. This allows us to use a fixed point argument to prove Theorem 2.1.2.
We then give the proof of Theorem 2.5.1 leading to Theorems 2.1.4 and 2.1.5 in Section
2.5. Finally, we prove Theorem 2.1.3 and the non-degeneracy condition M1 6= 0 in the
Appendix.

2.2 The approximate solution

We recall that we are looking for a radial solution of (2.3) concentrating at 0 and on
∂B1(0). In order to do so, we take an ansatz of solution of the form

U =



u0 in [0, δ),

u1 in [δ, 2δ),

u2 in [2δ, 1− 2δ1),

u3 in [1− 2δ1, 1− δ1),

u4 in [1− δ1, 1].

In a first time, let us describe intuitively our ansatz. In the previous definition, δ and
δ1 are suitable constants depending on λ. Near the origin, we want U = u0 to behave
approximately like U0, the two dimensional standard bubble given by

(2.9) U0(r) = ln
8µ2

(µ2λ+ r2)2
,

for some constant µ > 0. Let us recall that these functions correspond to all solutions of
the problem  −∆U0 = λeU0 in R2

λ

∫
R2

eU0dx < +∞.

Near the unit sphere ∂B1(0), we want that U = u4 behaves up to rescaling like Wµ̃− lnλ
where Wµ̃ is the one dimensional standard bubble solving −w′′ = ew in R given by

(2.10) Wµ̃(r) = ln

 4

µ̃2

e−
√

2(r−1)
µ̃(

1 + e−
√

2(r−1)
µ̃

)2

 ,
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for some µ̃ depending on λ to be determined later. Far from the origin and ∂B1(0), we
choose U = G where G is the singular at the origin Green’s function given in Lemma
2.A.2 for some suitable constant b̃ depending on λ. Finally, we choose u1 and u3 to be
linear interpolations between ui−1 and ui+1, for i = 1, 3, namely,

(2.11) ui(r) = χi(r)ui−1(r) + (1− χi(r))ui+1(r),

where χi ∈ C2((0, 1)) are cut-off functions such that

χ1(r) ≡ 1 in (0, δ), χ1(r) ≡ 0 in (2δ, 1), |χ1(r)| ≤ 1, |χ′1(r)| ≤ c, |χ′′1(r)| ≤ c

and

χ3 ≡ 1 in (0, 1− 2δ1), χ3 ≡ 0 in (1− δ1, 1), |χ3(r)| ≤ 1, |χ′3(r)| ≤ c, |χ′′3(r)| ≤ c.

2.2.1 Construction of u4

First, we set ε such that

(2.12) ln
4

ε2
− lnλ =

√
2

ε

and choose δ1 = εη, for some η ∈
(

2
3
, 1
)
. We define u4 in the same way as the function

“u1” of [PV15] (or [BCN17a]) with r0 = 1. The construction of this function is quite
lengthy so we only briefly recall it and refer to the above two papers for more details. We
take u4 as follows

u4 = Wµ̃ − lnλ+ αε︸ ︷︷ ︸
1st order approx.

+ vε + βε︸ ︷︷ ︸
2nd order

+ zε︸︷︷︸
3rd order

,

where

• Wµ̃ is defined in (2.10) for some µ̃ = O(ε) (see Subsection 2.2.2 for the precise defini-
tion). We also set

W

(
r − 1

µ̃

)
+ ln

4

µ̃2
− ln 4 = Wµ̃(r).

• αε satisfies −(αε)
′′ − n− 1

r
(αε)

′ =
n− 1

r
(wiε)

′ − wiε + lnλ in (0, 1)

αε(1) = (αε)
′(1) = 0,

and the following estimate holds, for s ≤ 0,

(2.13) αε(µ̃s+ 1) = µ̃(αε)1(s) + µ̃2(αε)2(s) +O(µ̃3s4),

where

(αε)1(s) = −(n− 1)

∫ s

0

W (σ)dσ +
µ̃√
2ε
s2,
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and

(αiε)2(s) =

∫ s

0

∫ σ

0

(W (ρ)− ln 4)dρdσ + (n− 1)(n− 2)

∫ s

0

∫ σ

0

W (ρ)dρdσ

+ (n− 1)

∫ s

0

σW (σ)dσ − s2 ln

(
µ̃

ε

)
.

• vε satisfies −(vε)
′′ − eWµ̃vε = µ̃eWµ̃(αε)1

(
r − 1

µ̃

)
in R

vε(1) = (vε)
′(1) = 0,

where (αiε)1 is defined in (2.13). Moreover, we have

(2.14) vε(r) = ν1(r − 1) + ν2µ̃+O(µ̃e−
|r−1|
µ̃ ),

where

ν2 ∈ R, ν1 = −2(n− 1)(1− ln 2) + 2 ln 2
µ̃

ε
.

We also set

vε(r) = µ̃v

(
r − 1

µ̃

)
.

• βε satisfies −(βε)
′′ − n− 1

r
(βε)

′ =
n− 1

r
(vε)

′ in (0, 1)

βε(1) = (βε)
′(1) = 0,

and the following estimate holds, for s ≤ 0,

βε(µ̃s+ 1) = µ̃2(βε)1(s) +O(µ̃3s3),

where

(βε)1(s) = −(n− 1)

∫ s

0

∫ σ

0

v′(ρ)dρdσ.

• Finally zε satisfies

− (zε)
′′ − eWµ̃zε =

µ̃2eWµ̃

[
(αε)2

(
r − 1

µ̃

)
+ (βε)1

(
r − 1

µ̃

)
+

1

2

(
(αε)1

(
r − 1

µ̃

)
+ v

(
r − 1

µ̃

))2
]
,

under the boundary conditions

zε(1) = (zε)
′(1) = 0.

There holds

(2.15) zε(r) = µ̃ζ1(r − 1) + ζ2µ̃
2 +O(µ̃2e−

|r−1|
µ̃ ),

for some ζj ∈ R, j = 1, 2.
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2.2.2 Construction of u2.

Thanks to Lemma 2.57, we know that, for any b small enough, there exists a function Gb

satisfying 
−G′′b −

1

r
G′b +Gb = 0 in (0, 1)

limr→0+

Gb(r)

− ln r
= b, Gb(1) = 1.

Using the same argument as in Lemma 2.8 of [dPPV16] (see also Lemma 2.5.1 for a more
complicated situation), we can perturb the function Gb in the following way: there exists
ε0 such that for all ε ∈ (0, ε0), there exist γε ∈ R and a radial function Uε solution to

−∆Uε + Uε = 0 in (0, 1)

limr→0+

Uε(r)

− ln r
=

4√
2
ε

Uε(1) = 1 +

√
2

ε
(− ln(γε)

2 + εγεν2)

U ′ε(1) =
1

γε
+

ε√
2

(−2 + 2γε ln 2 + εγεζ1)

where ν2 and ζ1 are defined respectively in (2.14) and (2.15). We then define u2 as

(2.16) u2(r) =

√
2

ε
Uε(r).

Observe that there exists r̃ ∈ (0, 1) such that u′2(r̃) = 0 and we have r̃ = O(
√
ε). We

denote by H the regular part of u2, namely

(2.17) H(r) = u2(r) + 4 ln r.

Observe that thanks to (2.58) and (2.59), we have, for some constant C > 0,

(2.18) H(0) < 0, |H(0)| ≤ C

ε
and lim

r→0+
H ′(r) = 0.

We choose µ̃ in (2.10) as µ̃ = εγε. Thanks to our choices of u2 and u4, one can show
proceeding as in [BCN17a] the following estimate.

Lemma 2.2.1. For any δ1 < |r − 1| < 2δ1, we have

u4(r)− u2(r) = O

(
ε2 + ε|r − 1|2 + |r − 1|3 +

|r − 1|4

ε
+ exp

(
−|r − 1|

ε

))
,

and

u′4(r)− u′2(r) = O

(
ε|r − 1|+ |r − 1|2 +

|r − 1|3

ε
+

1

ε
exp

(
−|r − 1|

ε

))
.
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2.2.3 Construction of u0.

We define u0 = U0 + H0 where U0 is the function defined in (2.9) and H0 is the solution
to

(2.19)

{
−∆H0 +H0 = −U0 in (0, r̃)

H ′0(r̃) = −U ′0(r̃).

We introduced the function H0 in order to get a better matching between u0 and u2. We
choose δ such that 2δ < r̃ and δ = O(

√
ε). Proceeding as in Lemma 2.1 of [dPW06], we

obtain the following lemma.

Lemma 2.2.2. For any α ∈
(

0,
1

2

)
, we have, for r ∈ (0, r̃),

(2.20) H0(r) = H(r)− ln(8µ2) +O(λα),

C0,γ(Br̃)–uniformly, for γ ∈ [0, 1), where H(r) is defined in (2.17). Moreover, (2.20)

holds uniformly in C1(B2δ\Bδ). Finally, choosing µ2 =
eH(0)

8
, and recalling (2.18), the

estimate

(2.21) H0(r) = O(λα +
r2

ε
),

holds true for r ∈ (0, r̃).

Proof. Let us consider the function z = H0 −H + ln 8µ2. It satisfies
−∆z + z = − ln

1

(µ2λ+ r2)2
+ ln

1

r4
in (0, r̃)

z′(r̃) =
4r̃

µ2λ+ r̃2
− 4

r̃
.

Recalling (2.12) and that we have r̃ = O(
√
ε), we deduce that

z′(r̃) =
4µ2λ

r̃(µ2λ+ r̃2)
= O(λα),

for any α ∈
(
0, 1

2

)
. We set f = − ln

1

(µ2λ+ r2)2
+ ln

1

r4
. Let 2 < p. We have

∫
Br̃

|f |pdx =

∫
Br̃\Bµ√λ

|f |pdx+

∫
Bµ
√
λ

|f |pdx.

It is easy to see that ∫
Bµ
√
λ

|f |pdx ≤ Cλ| lnλ|p,
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and, using that |f(r)| ≤ C
√
λ

r
,∫

Br̃\Bµ√λ

|f |pdx ≤ Cλp/2r̃2−p ≤ λp/2.

Using elliptic regularity theory (see Lemma 2.A.5), we deduce that

‖z‖C0,γ(Br̃) ≤ Cλα,

for all γ ∈ (0, 1) and any α ∈
(
0, 1

2

)
.

On the other hand, for any q ≥ 2, since δ = O(ε2), we have∫
B2δ\Bδ

|f |qdx ≤ Cλq/2δ2−q ≤ Cλq/2ε2(2−q) ≤ Cλαq,

for any α ∈
(
0, 1

2

)
. We deduce

‖z‖C1(B2δ\Bδ) ≤ Cλα.

Finally, (2.21) is a direct consequence of the fact that H ∈ C1,β(Br̃), β ∈ (0, 1).

Thanks to the previous lemma, we are able to show that u0 and u2 are very close for
the C1–norm in the interval [δ, 2δ].

Lemma 2.2.3. For δ ≤ r ≤ 2δ, we have

|u0(r)− u2(r)| = O(λα), |u′0(r)− u′2(r)| = O(λα),

for any α ∈
(
0, 1

2

)
.

Proof. The proof is a direct consequence of Lemma 2.2.2. Indeed, by definition, we have,
for r ∈ [δ, 2δ],

u0(r) = U0(r) +H0(r) = ln
8µ2

(µ2λ+ r2)2
+H(r)− ln 8µ2 +O(λα),

and
u2(r) = −4 ln r +H(r).

It follows that

u0(r)− u2(r) = −2 ln

(
1 +

µ2λ

r2

)
+O(λα)

= O(λα).

In the same way, one can show that

u′0(r)− u′2(r) = O

(
µ2λ

δ3

)
+O(λα) = O(λα).
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We look for a solution of (2.3) of the form U + φ. Let us observe that U + φ is a
solution to (2.3) if and only if φ is a solution to the problem

(2.22)

{
L(φ) = N(φ) +R(U) in (0, 1)

φ′(0) = φ′(1) = 0,

where

L(φ) = −∆φ+ φ− λeUφ,(2.23)

N(φ) = λ(eU+φ − eU − eUφ) and,(2.24)

R(U) = −∆U + U − λeU .

2.3 The error estimate

In this section, we estimate the terms R(U) and N(φ). In order to apply directly all the
estimates of [PV15], we are going to work with the norm ‖ · ‖∗ (see (2.31)) which is a
weighted L∞ norm on B 1

2
and a L1-norm elsewhere. We begin by estimating N(φ).

Lemma 2.3.1. We have, for any β > 0,

N(φ) ≤ C|φ|2


8µ2

λ

(
µ2 +

(
r√
λ

)2
)2 if r ≤ 2δ

εβ if 2δ ≤ r ≤ 1− 2δ1

and

(2.25) ‖N(φ)‖
L1

(
B1\B 1

2

) ≤ Cε−1‖φ‖2

L∞
(
B1\B 1

2

).
Proof. First, using a Taylor’s expansion, it is immediate to see that

N(φ) ≤ CλeU |φ|2.

Therefore, the proof reduces to estimate eU . First, we consider the case r ∈ [0, 2δ]. In
this range, using (2.21) and a Taylor’s expansion, we see that

eu0 = eU0+H0 =
8µ2

(µ2λ+ r2)2
eO(λα+ r2

ε
) = O(

8µ2

(µ2λ+ r2)2
).

Next, we consider r ∈ [δ, 1 − 2δ1]. By definition of u2, we know that it is decreasing in
r ∈ (0, r̃) and increasing elsewhere. So, we have, for r ∈ [δ, 1− 2δ1],

eu2(r) ≤ eu2(δ) + eu2(1−2δ1).

Making a Taylor’s expansion and using (2.16), we obtain, for some θ ∈ (1− 2δ1, 1),

u2(1− 2δ1) = u2(1)− 2δ1u
′
2(1) + 2δ2

1u
′′
2(θ) ≤

√
2

ε
− δ1u

′
2(1).
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Thus, we have, recalling the relation (2.12), and the definition of δ1,

λeu2(1−2δ1) ≤ Cε−2e
√

2
ε

(−δ1u′2(1)) ≤ Cεβ,

for any β > 0. On the other hand, using (2.16), we see that eu2(δ) ≤ C

δ4
≤ Cε−8. The

estimate follows noticing that λε−8 ≤ εβ, for any β > 0. Finally, we refer to Lemma 4.3
of [PV15] for the proof of (2.25).

Next, we estimate R(U).

Lemma 2.3.2. Let α ∈
(
0, 1

2

)
be the constant defined in Lemma 2.2.2. We have

R(U) ≤ C


8µ2

λ

(
µ2 +

(
r√
λ

)2
)2 (λα +

r2

ε
) if r ≤ δ,

εβ if δ ≤ r ≤ 1− 2δ1

for any β > 0, and
‖R(U)‖

L1

(
B1\B 1

2

) ≤ Cε1+σ,

for some σ > 0.

Proof. First, we consider the case r ≤ δ. In this case, U(r) = u0(r) = U0(r) + H0(r).
Using (2.9),(2.19) and (2.21), we have

R(u0) = −∆(U0 +H0) + U0 +H0 − λeU0+H0

= λeU0
(
1− eH0

)
≤ C

8µ2

λ

(
µ2 +

(
r√
λ

)2
)2 (λα +

r2

ε
).(2.26)

Next, when 2δ ≤ r ≤ 1− 2δ1, then U(r) = u2(r). Arguing as in the previous lemma, we
obtain

(2.27) R(u2(r)) = λeu2(r) ≤ Cεβ,

for any β > 0.
On the other hand, it has be proved in Lemma 4.2 of [PV15] that

(2.28) ‖R(u4)‖L1(B1\B1−δ1) = O(ε1+σ) for some σ > 0.

Finally, we consider the two intermediate regimes. First, let us consider the case δ ≤ r ≤
2δ. In this interval, U(r) = u1(r). Using (2.11), we have

R(u1) = χ1R(u0) + (1− χ1)R(u2)− 2χ′1(u′0 − u′2) + (−∆χ1 + χ1)(u0 − u2)

+ λχ1e
u0 + λ(1− χ1)eu2 − λeχ1u0+(1−χ1)u2
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≤ R(u0) +R(u2) + C

(
|u′0 − u′2|

δ
+
|u0 − u2|

δ2

)
+ λeu2 + λeu0

(
e(χ1−1)(u2−u0) − 1

)
.(2.29)

First, doing a Taylor’s expansion and using Lemma 2.2.3, we have

λeu0
(
e(χ1−1)(u2−u0) − 1

)
≤ λeu0|u0 − u2| ≤ λ1+αeu0 .

Using again Lemma 2.2.3, we get

|u′0 − u′2|
δ

+
|u0 − u2|

δ2
≤ Cλαδ−2.

Plugging these two last estimates into (2.29) and using (2.26), (2.27), we obtain

R(u1) = O

 sup
δ≤r≤2δ

8µ2

λ

(
µ2 +

(
r√
λ

)2
)2 + εβ +

λα

δ2


= O

(
λ

δ3
+ εβ +

λα

δ2

)
= O

(
εβ
)
.

Finally, when 1− 2δ1 ≤ r ≤ 1− δ1, arguing as previously, we have

R(u3) = χ3R(u2) + (1− χ3)R(u4)− 2χ′3(u′4 − u′2) + (−∆χ3 + χ3)(u4 − u2)

+ λχ3e
u4 + λ(1− χ3)eu2 − λeχ3u4+(1−χ3)u2

≤ R(u2) +R(u4) + C

(
|u′4 − u′2|

δ
+
|u4 − u2|

δ2

)
+ λeu2 + λeu4 |u4 − u2| .(2.30)

Using Lemma 2.2.1, we see that∫ 1−δ1

1−2δ1

(
|u′4 − u′2|

δ
+
|u4 − u2|

δ2

)
rdr = O(δ2

1) = O(ε1+σ),

and ∫ 1−δ1

1−2δ1

λeu4 |u4 − u2| rdr = O(λε2).

Thanks to (2.27) and (2.28), we see that∫ 1−δ1

1−2δ1

(R(u2) +R(u4) + λeu2) rdr = O(ε1+σ).

Plugging the three previous estimates into (2.30), we obtain

‖R(u3)‖
L1

(
B1\B 1

2

) = O(ε1+σ).

This concludes the proof of the lemma.
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2.4 Inversibility of the linearized operator

In this section we develop an inversibility theory for the operator L defined in (2.23).
To do so, we utilize ideas used in [dPKM05, dPR15, dPW06, PV15]. First, we define the
norms

‖u‖∗ = max {| log λ|‖χ̃1u‖?, ‖χ̃2u‖L1}(2.31)

and

‖u‖∗∗ = max {‖χ̃1u‖?, ‖χ̃2u‖L1} ,(2.32)

where

χ̃1(r) =

{
1 if r ≤ 1

2

0 if r ≥ 3
4

χ̃2(r) =

{
1 if r ≥ 1

2

0 if r ≤ 1
4

and

‖u‖? = sup
λ|u(r)|

λ+
(

1 + r√
λ

)−2−ν = sup fλ(r)|u(r)|

for some ν ∈ (0, 1). The main result of this section is the following proposition.

Proposition 2.4.1. There exist positive constants λ0 and C such that for any λ ∈ (0, λ0)
and for any h ∈ L∞(B1), there exists a unique radial function φ ∈ W 2,2(B1) solution of
the problem

(2.33)

{
L(φ) = h in B1

φ′(1) = 0,

which satisfies

(2.34) ‖φ‖L∞(B1) ≤ C ‖h‖∗ .

Rather than proving Proposition 2.4.1 directly, we prove first a priori estimates for
problem (2.33) when φ satisfies an orthogonality condition against the function

z0(r) =
r2 − λµ2

r2 + λµ2
.

It is important to notice that z0 satisfies the equation

(2.35) −∆z0 =
8λµ2

(λµ2 + r2)2
z0,

which correspond to the linearized equation of −∆v = ev around the radial solution
v(r) = U0(r) + log λ = log 8λµ2

(λµ2+|r|2)2 . It turns out that the only bounded radial solutions

of (2.35) are multiples of z0 (see Lemma 2.1 of [CL02]). Additionally, let us consider
a large but fixed number R0 > 0 and a radial smooth cut-off function χ(r) such that
χ(r) = 1 if r ≤ R0

√
λ and χ(r) = 0 if r > (R0 + 1)

√
λ. We have the following lemma.
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2.4. Inversibility of the linearized operator

Lemma 2.4.1. There exist positive constants λ0 and C such that for, any λ ∈ (0, λ0),
any radial solution φ ∈ W 2,2(B1) to problem

(2.36)


L(φ) = h in B1,
φ′(1) = 0∫

B1

χz0φ dx = 0,

satisfies

‖φ‖L∞(B1) ≤ C ‖h‖∗∗ .

Proof of Lemma 2.4.1. Assume by contradiction that there exist a sequence of positive
numbers λn → 0 and a sequence of solutions φn to (2.36) such that

(2.37) ‖φn‖L∞(B1) = 1, ‖hn‖∗∗ −→n→∞ 0.

We denote by εn the sequence defined by the relation

ln
4

ε2
n

− lnλn =

√
2

εn
.

We also use the notation on(1) to denote functions fn(r) such that lim
n→∞

fn(r) = 0, uni-

formly in r. Our goal is to prove that φn(r) = on(1), for any r ∈ [0, 1], which yields to a
contradiction with (2.37). We split the proof into 4 steps. In the first one we prove that
φn(r) = Cφn(1/2) + on(1) for r ∈

[
2δ, 1

2

]
and some constant C ∈ R. In the second step

we show that φn = on(1) when r ∈
[

1
2
, 1
]

and finally in the last two steps we consider the
case r ∈ [0, 2δ].

Step 1. There holds φn(r) = on(1) for r ∈
[
2δ, 1

2

]
.

First, we recall that for r ∈
[
2δ, 1

2

]
, U(r) = u2(r). Observe that thanks to (2.27), we

have λne
u2 = O(ε1+σ

n ), for any σ > 0. Since by assumption ‖hn‖∞ → 0, it is easy to
see that, up to subsequence, φn converges uniformly on compact subsets of B 1

2
\ {0} to a

function φ̂ ∈ H1
(
B 1

2

)
∩ L∞

(
B 1

2

)
solution to

(2.38) −∆φ̂+ φ̂ = 0 in B 1
2
\ {0}.

We claim that φ̂ ≡ 0. In order to prove our claim, let us consider the unique radial
solution Φ of the problem {

−∆Φ + Φ = δ0 in B 1
2
,

Φ
(

1
2

)
= 0.

It is well-known that

Φ(x) = − 1

2π
log |x|+H(x),
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for some smooth function H. Since φ̂ ∈ L∞
(
B 1

2

)
, we have that for any sufficiently small

ε̃ and τ ,
|φ̂(τ)− φ̂(1/2)| ≤ ε̃Φ(τ).

Multiplying (2.38) by ϕ = max(φ̂− φ̂(1/2)− ε̃Φ, 0), integrating by parts over B 1
2
\Bτ and

using that ϕ = 0 on ∂(B 1
2
\Bτ ), we obtain ϕ ≡ 0, i.e. φ̂− φ̂(1/2) ≤ ε̃Φ in B 1

2
\Bτ . Using

the same argument with ϕ = min(φ̂− φ̂(1/2)+ ε̃Φ, 0), we conclude that |φ̂− φ̂(1/2)| ≤ ε̃Φ
in B 1

2
\Bτ . Passing to the limit ε̃→ 0 and then τ → 0, we deduce that φ̂ ≡ φ̂(1/2). Since

the only constant solution to (2.38) is zero, we deduce φ̂(1/2) ≡ φ̂ ≡ 0. This implies that
φn(r) = on(1) for r ∈

[
2δ, 1

2

]
.

Step 2. We have that φn(r) = on(1) for r ∈
[

1
2
, 1
]
.

We set ψn(s) = φn(εns+ 1) for s ∈ [−ε−1
n , 0]. Then, since ψn is bounded, it is possible

to show, proceeding as in Proposition 5.1 of [PV15], that ψn → ψ C2–uniformly on
compact subsets of (−∞, 0] where ψ satisfies{

−ψ′′ = eψ in R−,
ψ′(0) = 0, ‖ψ‖L∞ ≤ 1.

We know (see [Gro06]) that any solution ψ to −ψ′′ = eψ is of the form

ψ(s) = a
e
√

2s − 1

e
√

2s + 1
+ b

(
−2 +

√
2s
e
√

2s − 1

e
√

2s + 1

)
,

for some a, b ∈ R. However, since ‖ψ‖∞ ≤ 1, we deduce that a = b = 0.
Next, we denote by G(r, t) the radial Green’s function associated to the operator (−∆·+ ·)
satisfying G

(
r, 1

2

)
= G′(r, 1) = 0 and singular at the point r ∈

(
1
2
, 1
)
. Now, using Green’s

formula, we have, for 1
2
≤ r ≤ 1,

φn(r)−G′
(
r,

1

2

)
φn

(
1

2

)
=

∫ 1

1
2

G(r, t)hn(t)dt+ λn

∫ 1

1
2

G(r, t)eUλnφn(t)dt

=

∫ 1

1
2

G(r, t)hn(t)dt+G(r, 1)εnλn

∫ 0

− 1
2εn

eUλn (εns+1)ψn(s)ds

+ εnλn

∫ 0

− 1
2εn

(G(r, εns+ 1)−G(r, 1))eUλn (εns+1)ψn(s)ds.

From Step 1, ‖hn‖∗∗ → 0 as n→∞ and since G is C1 bounded, we get that

G′
(
r,

1

2

)
φn

(
1

2

)
+

∫ 1

1
2

G(r, t)hn(t)dt = on(1).

Arguing as in [PV15], it is possible to show that

εnλn

∫ 0

− 1
2εn

(G(r, εns+ 1)−G(r, 1))euλn (εns+1)ψn(s)ds = on(1).
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2.4. Inversibility of the linearized operator

From this we get
φn(r) = CnG(r, 1) + on(1),

where Cn = εnλn
∫ 0

− 1
2εn

eUλn (εns+1)ψn(s)ds. Evaluating the previous expression at r = 1

we get
φn(1) = ψn(0) = on(1) = CnG(1, 1) + on(1).

Since G(1, 1) 6= 0, we deduce Cn = 0 and therefore φn = on(1) for r ∈
[

1
2
, 1
]
.

In the following steps it is convenient to work with rescaled variables. We set s = r√
λn

,

φ̃n(s) = φn(
√
λns) and denote by Ũ(s) = U(

√
λns) + 2 lnλn, h̃n(s) = λnhn(

√
λns) and

L̃ = −∆ + λn − eŨ . We also define, by abuse of notation,

(2.39) ‖h̃‖? := sup
s∈[0,λ

−1/2
n /4]

h̃(s)

λn + (1 + s)−2−ν = ‖h‖?,

for functions h̃ defined in the rescaled variable.

Step 3. Up to subsequence, we have that φ̃n → 0 as n→∞ uniformly over compact
sets of R2.

It is easy to see that φ̃n satisfies

L̃(φ̃n(s)) = h̃n(s).

Elliptic estimates imply that, up to subsequence, φ̃n converges uniformly over compact
sets of R2 to a bounded solution φ̃ of

−∆φ̃ = eÛ φ̃ in R2.

This implies that there exists a constant C0 such that φ̃ = C0Z̃0(s), where

Z̃0(s) = z0,n(
√
λns), z0,n =

r2 − λnµ2

r2 + λnµ2
.

From the orthogonality condition on φn we have∫
B1

χz0,nφndx = λn

∫
B
λ
−1/2
n

χ̃Z̃0φ̃ndx = 0,

where χ̃(s) = χ(
√
λns). Passing to the limit yields to

∫
R2

χ̃Z̃0φ̃dx = 0, which implies

C0 = 0. This gives the result.
The final step is based on a maximum principle argument.

Step 4. We have that φn(r) = on(1), for r ≤ 2δ.

Let δ̃ > 0 be a fixed constant such that 2δ < 2δ̃ < 1/4. Next, we show that there
exists a constant C > 0, independent of n, such that

(2.40) ‖φ̃n‖
L∞

(
B

2δ̃λ
−1/2
n

) ≤ C

[
sup
s≤R
|φ̃n(s)|+ ‖h̃n‖?

]
,
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where R > 0 is a large but fixed real number. To prove the previous estimate, we need
the following version of the maximum principle:

There exists a fixed number R1 > 0 such that for all R > R1 if L̃(Z) > 0 in Aδ̃ :=
B

2δ̃λ
−1/2
n
\BR and Z ≥ 0 on ∂Aδ̃ then Z ≥ 0 in Aδ̃.

To prove this statement let us consider the function Z0(s) = s2−1
s2+1

. Observe that it
satisfies

−∆Z0 =
8

(1 + s2)2
Z0 s ∈ R2.

We define the function Z(s) = Z0(αs), for some constant α that we will fix afterwards.
Observe that

−∆Z =
8α2

(α2s2 + 1)2

α2s2 − 1

α2s2 + 1

In particular if α2s2 > 100 then −∆Z ≥ 2
α2s4

. On the other hand, we have

eŨZ = O

(
8µ2

(µ2 + s2)2

)
α2s2 − 1

α2s2 + 1
≤ C

s4
,

where C is a constant independent of α. We get

L̃(Z) = −∆Z + λnZ − eŨZ ≥
1

s4

(
2

α2
− C

)
.

Hence if α is chosen small and fixed, and R > 0 is sufficiently large depending on α, then
we have L̃(Z) > 0 and Z > 0 in Aδ̃, which gives the result.

Thanks to this maximum principle, we are in position to prove (2.40). Let R2 >
max{R1, R0}. Consider ψ0

n the unique solution of
−∆ψ0

n + λnψ
0
n − λn = 0 in B

2δ̃λ
−1/2
n
\BR2

ψ0
n = 0 on ∂BR2

ψ0
n = |φ̃n| on ∂B

2δ̃λ
−1/2
n

and let ψ1 = 1− s−ν . We set ψn = ψ0
n + ψ1. For s > R2, we have

L̃(ψn) ≥ λn + ν2s−2−ν −O(eŨ) ≥ ν2

2
s−2−ν + λn,

since

eŨ = O(s−4).

We set φ̄n = C1

[
maxs∈(0,R2) |φ̃n(s)|+ ‖h̃n‖?

]
ψn, for a constant C1 independent of n.

Observe that, if C1 ≥
4

ν2
, we have

L̃(φ̄n) ≥ 2‖h̃n‖?(s−2−ν + λn) ≥ |h̃n|
2(s−2−ν + λn)

((1 + s)−2−ν + λn)
≥ |h̃n| = |L̃(φ̃n)|,
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2.4. Inversibility of the linearized operator

in B
2δ̃λ
−1/2
n
\ BR2 ,since

2(s−2−ν + λn)

((1 + s)−2−ν + λn)
≥ 1, for s ∈ [R2,+∞) (taking R2 larger if

necessary). On the other hand, for C1 ≥ (1−R−ν2 )−1 we have

φ̄n ≥ |φ̃n| on ∂B
2δ̃λ
−1/2
n
\BR2 .

Applying the maximum principle, and taking into account that ψn is uniformly bounded
(since |φ̃n| ≤ 1, for all n), we get

|φ̃n(s)| ≤ C

[
max

s∈(0,R2)
|φ̃n(s)|+ ‖h̃n‖?

]
.

for every s ∈ B
2δ̃λ
−1/2
n
\BR2 . From this we deduce (2.40).

Noting that ‖h̃n‖? ≤ ‖hn‖∗∗, by Steps 1-4 we conclude that ‖φn‖L∞(B1) = on(1) which
yields to a contradiction with the fact that ‖φn‖L∞(B1) = 1. This finishes the proof of the
lemma.

Now we are now ready to prove Proposition 2.4.1.

Proof of Proposition 2.4.1. Here we use the notation introduced in the proof of the pre-
vious lemma. For a scaled function g̃(s) = λg(

√
λs), s = r/

√
λ we define

(2.41) ‖g̃‖∗∗ := ‖g‖∗∗.

Let R > R2 + 1 be a large fixed number, δ < 1/4 and ẑ0 be the solution of the problem{
−∆ẑ0 = 8µ2

(µ2+s2)2 ẑ0 in Bδλ−1/2\BR,

ẑ0(R) = Z̃0(R), ẑ0

(
δ√
λ

)
= 0,

where Z̃0 is defined in Step 3 of Lemma 2.4.1. A direct computation shows that

ẑ0(s) = Z̃0(s)

1−

∫ s

R

dt

tZ̃2
0(t)∫ δ√

λ

R

dt

tZ̃2
0(t)

 .
We consider smooth cut-off functions η1(s) and η2(s) with the following properties: η1(s) =
1 for s < R, η1(s) = 0 for s > R + 1, |η′1(s)| ≤ 2, η2(s) = 1 for s < δ

2
√
λ
, η2(s) = 0 for

s > δ√
λ
, |η′2(s)| ≤ C

√
λ, |η′′2(s)| ≤ Cλ. We then define the test function

z̃0 = η1Z̃0 + (1− η1)η2ẑ0.

Let φ be a solution to (2.33). As previously, we denote φ̃(s) = φ(
√
λs) and we let

χ̃(s) = χ(
√
λs). Next, we modify φ̃ so that the orthogonality condition with respect to

z̃0 is satisfied. We let
φ̂ = φ̃+ Az̃0,
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where the number A satisfies

A

∫
B
λ−1/2

χ̃|z̃0|2dx+

∫
B
λ−1/2

χ̃z̃0φ̃dx = 0.

Then

(2.42) L̃(φ̂) = h̃+ AL̃(z̃0),

and

∫
B
λ−1/2

χ̃z̃0φ̂dx = 0. Recalling (2.41), the previous lemma thus allows us to estimate

(2.43) ‖φ‖L∞(B1) = ‖φ̂‖L∞(B
λ−1/2 ) ≤ C

[
‖h̃‖∗∗ + |A|‖L̃(z̃0)‖∗∗

]
,

Observe that z̃0 = 0 for s > λ−1/2/4. Thus, remembering (2.39), we have

‖L̃(z̃0)‖∗∗ = ‖L̃(z̃0)‖?.

Now, let us estimate the size of |A|‖L̃(z̃0)‖?. Testing equation (2.42) against z̃0 and
integrating by parts, we find

〈φ̂, L̃(z̃0)〉 = 〈h̃, z̃0〉+ A〈L̃(z̃0), z̃0〉,

where 〈f, g〉 =

∫
B
λ−1/2

fgdx. This relation in combination with (2.43) and the fact that

∫
B
λ−1/2

|φ̂||L̃(z̃0)|dx ≤ C‖φ̂‖∞‖L̃(z̃0)‖? and

∫
B
λ−1/2

|h̃||z̃0|dx ≤ C‖h̃‖?,

yield to

(2.44) A〈L̃(z̃0), z̃0〉 ≤ C‖h̃‖?
[
1 + ‖L̃(z̃0)‖?

]
+ C|A|‖L̃(z̃0)‖2

?.

Next we measure the size of ‖L̃(z̃0)‖?. We have

(2.45) L̃(z̃0) = λz̃0 + 2∇η1∇(ẑ0 − Z̃0) + ∆η1(ẑ0 − Z̃0)− 2∇η2∇ẑ0 −∆η2ẑ0.

It is easy to observe that, for s ∈ (R,R + 1), we have

|Z̃0 − ẑ0| = |Z̃0

∫ r

R

dt

tZ̃2
0(t)∫ δ√

λ

R

dt

tZ̃2
0(t)

| ≤ C| log λ|−1, |Z̃ ′0 − ẑ′0| ≤ C| log λ|−1.

On the other hand for s ∈
(

δ
2
√
λ
, δ√

λ

)
, we have

(2.46) |ẑ0| ≤ C| log λ|−1 and |ẑ′0| ≤ C
√
λ| log λ|−1.
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We conclude that

(2.47) ‖L̃(z̃0)‖? ≤ C| log λ|−1.

Finally, we estimate 〈L̃(z̃0), z̃0〉. We decompose

〈L̃(z̃0), z̃0〉 =

∫
BR+1\BR

L̃(z̃0)z̃0dx+

∫
B δ√

λ

\B δ
2
√
λ

L̃(z̃0)z̃0dx+O(
√
λ).

Using (2.45) and (2.46), we get that∣∣∣∣∣∣
∫
B δ√

λ

\B δ
2
√
λ

L̃(z̃0)z̃0dx

∣∣∣∣∣∣ ≤ C

∫
B δ√

λ

\B δ
2
√
λ

|∇η2||∇ẑ0||ẑ0|dx+ C

∫
B δ√

λ

\B δ
2
√
λ

|∆η2||ẑ0|2x

+ λ

∫
B δ√

λ

\B δ
2
√
λ

|ẑ0|2dx

≤ C| log λ|−2.(2.48)

On the other hand, we have

I :=

∫
BR+1\BR

L̃(z̃0)z̃0dx =

2

∫
BR+1\BR

∇η1∇(ẑ0 − Z̃0)z̃0dx+

∫
BR+1\BR

∆η1(ẑ0 − Z̃0)z̃0dx+O(
√
λ).

Thus integrating by parts we find

I =

∫
BR+1\BR

∇η1∇(ẑ0 − Z̃0)z̃0dx−
∫
BR+1\BR

∇η1(ẑ0 − Z̃0)∇z̃0dx+O(
√
λ).

We now observe that, for s ∈ (R,R + 1), we have

|Z̃0(s)− ẑ0(s)| ≤ C| log λ|−1

and

|z̃′0(s)| ≤ 1

R3
+

1

R
| log λ|−1.

Thus ∣∣∣∣∣
∫
BR+1\BR

∇η1(ẑ0 − Z̃0)∇z̃0dx

∣∣∣∣∣ ≤ D

R3
| log λ|−1,

where D is a constant not depending on R. Now,∫
BR+1\BR

∇η1∇(ẑ0 − Z̃0)z̃0dx = 2π

∫ R+1

R

η′1(ẑ0 − Z̃0)′Z̃0tdt+ +O(| log λ|−2)
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= − 2π∫ 1

δ
√
λ

R
dt

tZ̃2
0 (t)

∫ R+1

R

η′1

1− 4
(µt)2Z̃0

∫ t
R

ds
sZ̃2

0 (s)

(µ2 + t2)2

 dt
+O(| log λ|−2)

= E| log λ|−1
[
1 +O(| log λ|−1)

]
,

where E is a positive constant independent of λ. Thus we conclude, choosing R large
enough, that I ∼ −E| log λ|−1. Combining this and (2.48) we find

〈L̃(z̃0), z̃0〉 = − E

| log λ|
[
1 +O(R−3 +O(| log λ|−1))

]
.

Combining the previous estimate, (2.44) and (2.47), we deduce that

|A| ≤ C| log λ|‖h̃‖?.

We thus conclude, using the definition of φ̂ and estimate (2.43), that

‖φ̃‖L∞(B
λ−1/2 ) ≤ C(‖h̃‖∗∗ + | log λ|‖h̃‖?).

Observe that

‖h̃‖? = sup
s∈[0,λ−1/2/4]

h̃(s)

λ+ (1 + s)−2−ν)
≤ sup

r∈[0,1/4]

λ|h(r)|

λ+
(

1 + r√
λ

)−2−ν ≤ ‖χ̃1h‖?.

The previous two inequalities yield

‖φ‖L∞(B1) ≤ C(‖h‖∗∗ + | log λ|‖χ1h‖?).

Recalling the definition of the norm ‖ · ‖∗, we conclude

‖φ‖L∞(B1) ≤ C‖h‖∗.

It only remains to prove the existence assertion. For this purpose we consider the space

H =
{
φ ∈ H1(B1) | φ is radial and φ′(1) = 0

}
,

endowed with the inner product 〈φ, ψ〉H1 =
∫
B1
∇φ∇ψdx +

∫
B1
φψdx. Problem (2.33)

expressed in weak form is equivalent to finding φ ∈ H such that

〈φ, ψ〉H1 =

∫
B1

[λeUφ+ h]ψdx for all ψ ∈ H.

By Fredholm’s alternative this is equivalent to the uniqueness of solutions to this problem,
which is guaranteed by estimate (2.34).

We are now in position to prove Theorem 2.1.2.
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2.4. Inversibility of the linearized operator

Proof of Theorem 2.1.2. Thanks to the previous proposition, we know that the operator
L is invertible. Therefore, we can rewrite (2.22) as

φ = T (φ) = L−1[R(U) +N(φ)].

Let ρ be a fixed number. We define

Aρ =
{
φ ∈ L∞(B1) : ‖φ‖L∞(B1) ≤ ρε1+σ

}
,

where σ is the constant defined in Lemma 2.3.2. We will show that the map T : Aρ → Aρ
is a contraction. Using Lemma 2.3.1, recalling the definition of ‖ · ‖∗ given in (2.31) and
since | log λ| = O (ε−1), we see that

∥∥λeU∥∥∗ ≤ C max

| log λ| sup
r≤2δ

fλ(r)
µ2

λ

(
µ2 +

(
r√
λ

)2
)2 , | log λ| sup

δ≤r≤1−δ1
fλ(r)ε

β, ε−1


≤ Cε−1.

From this and recalling the definition of N(·) (see (2.24)), we deduce that, for φ, ψ ∈ Aρ,

(2.49) ‖N(φ)‖∗ ≤
∥∥λeU∥∥∗ ‖φ‖2

L∞(BR1
\BR0

) ≤ Cε−1 ‖φ‖2
L∞(B1) ,

and

‖Nλ(φ)−Nλ(ψ)‖∗ ≤ Cε−1 max
{
‖φ‖L∞(B1) , ‖ψ‖L∞(B1)

}
‖φ− ψ‖L∞(B1) .

Next, using Lemma 2.3.2, we obtain that

‖R(U)‖∗ ≤ C max(| log λ| sup
r≤2δ

fλ(r)
µ2(λα +

r2

ε
)

λ(µ2 + ( r√
λ
)2)2

, | log λ| sup
δ≤r≤1−δ1

fλ(r)ε
α, ε1+σ)

≤ Cε1+σ.(2.50)

Thus, combining (2.49) and (2.50), we get that, for φ ∈ Aρ and some ρ > 0,

‖T (φ)‖L∞(B1) ≤ C(‖N(φ)‖∗ + ‖R(U)‖∗) ≤ ρε1+σ,

and, for φ ∈ Aρ and ψ ∈ Aρ,

‖Tλ(φ)− Tλ(ψ)‖L∞(B1) ≤ C ‖Nλ(φ)−Nλ(ψ)‖∗ ≤ Cεσ ‖φ− ψ‖L∞(B1) .

This implies that T is a contradiction mapping on Aρ, for a suitable ρ. Therefore, we
conclude that T has a unique fixed point in Aρ. This establishes the theorem.

157



Chapter 2. The Keller-Segel model of chemotaxis

2.5 Multi-layered solutions

In this section, we will establish Theorems 2.1.4 and 2.1.5. More generally, we will con-
struct solutions which concentrate at an arbitrary number of spheres provided that the
non-degeneracy condition Mk 6= 0 holds. More precisely, we have

Theorem 2.5.1. Let k ∈ N\{0}.

(i) Suppose that Mk−1 6= 0. There exists λk > 0 such that for all λ ∈ (0, λk), there
exists a family of radial solutions uλ to (2.3) in B1(0) such that, for ελ defined as
previously,

lim
λ→0

(
ελuλ −

√
2U4

ελ√
2
,k

)
= 0,

uniformly on compact subsets of Bα1(0) ∪k−1
i=1 Bαi+1

(0)\Bαi(0),

λeuλ ⇀ 8πδ0, in Bα1/2(0),

and

ελλe
uλ +

k∑
i=1

(|∂νU4
ελ√

2
,k(αi)|)−1δαi ⇀ 0, in B1(0)\{0}.

(ii) Suppose that Mk 6= 0. There exists λ̃k > 0 such that for all λ ∈ (0, λ̃k), there exists
a family of radial solutions ũλ to (2.3) in B1(0) such that

lim
λ→0

(
ελũλ −

√
2Ũ4

ελ√
2
,k

)
= 0,

uniformly on compact subsets of Bα1(0) ∪k−1
i=1 Bαi+1

(0)\Bαi(0),

λeũλ ⇀ 8πδ0, in Bα1/2(0),

and

ελλe
ũλ +

k∑
i=1

(|∂νŨ4
ελ√

2
,k(αi)|)−1δαi ⇀ 0, in B1(0)\{0}.

We will only prove Theorem 2.5.1 (i) (the proof of (ii) can be done following the same
lines). We are looking for a solution of the form

ūλ(r) =


u0 in (0, δ)

(u0
trans)

i(r) in (β̃i−1 + δ1, β̃i−1 + 2δ1)

uiint(r) in (β̃i−1 + 2δ1, β̃i − 2δ1)

(u1
trans)

i(r) in (β̃i − 2δ1, β̃i − δ1)

uipeak(r) in (β̃i − δ1, β̃i + δ1),

where i = 1, . . . , k, for some constants β̃i depending on ε (see below) to be determined
later such that 0 = β̃0 < β̃1 < β̃2 < . . . < β̃k = 1, with the convention that β̃0 + 2δ1 = δ
and β̃k + δ1 = αk = 1. We define ε as

ln
4

ε2
− lnλ =

√
2

ε
,
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and let δ and δ1 be defined as in Section 2.2.We define the functions uipeak as in Section 3

of [BCN17a] substituting the Ri’s by β̃i’s and for some µi = O(ε). They satisfy

‖Rλ‖L1(β̃i−δ1,β̃i+δ1) = O(ε1+σ) for some σ > 0.

The functions (u0
trans)

i resp. (u1
trans)

i are linear interpolation between uiint and ui−1
peak resp.

uipeak. Next, we are going to define uiint which will be shaped on

√
2

ε
Uk with Uk defined

in Theorem 2.1.3(i).
Fix α = (α1, . . . , αk−1, αk) as in Theorem 2.1.3 (i). For a = (a1, . . . , ak), σ =

(σ1, . . . , σk−1, 0), where σi ∈
(
αi − αi−1

4
,
αi+1 − αi

4

)
, for i ∈ {1, . . . , k − 1} and b, ε > 0,

let us denote by Uε,a,b,σ the solution of the following problem

(2.51)


−U ′′ε,a,b,σ −

n− 1

r
U ′ε,a,b,σ + Uε,a,b,σ = 0 in ∪k−1

i=0 (αi, αi+1)

limr→0+ −Uε,a,b,σ(r)

ln r
= b

Uε,a,b,σ(αi + σi) = 1 + εai i ∈ {1, . . . , k}.

Note that U0,a,0 = Uk as defined in Theorem 2.1.3 (i). To prove Theorem 2.5.1 (ii), we
defined Uε,a,σ as an analogous perturbation of Ũk. Next, we define the following operator

F (1 + εa, α + σ) =



(U ′ε,a,b,σ)−(α1 + σ1)
(U ′ε,a,b,σ)+(α1 + σ1)

...
(U ′ε,a,b,σ)−(αk−1 + σk−1)
(U ′ε,a,b,σ)+(αk−1 + σk−1)

(U ′ε,a,b,σ)−(1)


,

where

(U ′ε,a,b,σ)±(αi + σi) = lim
ε→0±

Uε,a,b,σ(αi + σi + ε)− Uε,a,b,σ(αi + σi)

ε
.

Notice that the reflexion law (2.7) implies, for any i ∈ {1, . . . , k − 1},

(2.52) (U ′b,k)
+(αi) + (U ′b,k)

−(αi) = 0.

Let also ϕε : R2 → Rk and ϕ̃ε : R→ Rk be given by

ϕε(x, t) = (ϕ1
ε(x, t), . . . , ϕ

k
ε(x, t)), with ϕiε(x, t) =

1√
2

(
2(n− 1)

t
− 2x ln 2− εxζ i1

)
,

ϕ̃ε(x) = (ϕ̃1
ε(x), . . . , ϕ̃kε(x)), with ϕ̃iε(x) =

1√
2

(− lnx2 + εxνi2),

where ζ i1 and νi2 are some constants (see [BCN17a] for more details).
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Lemma 2.5.1. Let b sufficiently small. There exists ε0 > 0 such that for all ε ∈ (0, ε0),

there exists a solution (γε, σε) ∈ Rk × Rk where (σε)i ∈ (
αi − αi−1

4
,
αi+1 − αi

4
), for i 6= k

and (αε)k = 1 to the equation

F (1 + εϕ̃ε(γε), α + σε) =


− 1
γ1
ε

+ εϕ1
ε(γ

1
ε , α1 + (σε)1)

1
γ1
ε

+ εϕ1
ε(γ

1
ε , α1 + (σε)1)
...

− 1
γkε

+ εϕkε(γ
k
ε , 1)

 .

In addition, recalling the definition of Ub,k defined in Theorem 2.1.3 (i), we have, for
i ∈ {1, . . . , k},

(2.53) lim
ε→0

γiε = − 1

|U ′b,k(αi)|
.

Proof. We define, for x ∈ Rk and σ ∈ (0, 1)k such that σi ∈ (
αi − αi−1

4
,
αi+1 − αi

4
), for

i 6= k and αk = 1,

H(ε;x;σ) = F (1 + εϕ̃ε(x), α + σ)−


− 1
x1

+ εϕ1
ε(x1, α1 + σ1)

1
x1

+ εϕ1
ε(x1, α1 + σ1)

...
− 1
xk

+ εϕkε(xk, 1)

 .

Evaluating H at ε = 0, xi = − 1
(U ′k)−(αi)

, i ∈ {1, . . . , k}, σ = 0, we find, using (2.52),

that

H

(
0;− 1

(U ′k)
−(α1)

,− 1

(U ′b,k)
−(α2)

, . . . ,− 1

(U ′b,k)
−(1)

; 0

)
=

(U ′b,k)
−(α1)

(U ′b,k)
+(α1)
...

(U ′b,k)
−(1)

−


(U ′b,k)
−(α1)

−(U ′b,k)
−(α1)

...
(U ′b,k)

−(1)

 = 0.

Moreover, we have

∂

∂ξi
H

0;−
1

(U′
b,k

)−(α1)
,−

1

(U′
b,k

)−(α2)
, . . . ,−

1

(U′
b,k

)−(1)
; 0



=



−|U′k(α1)|2 0 . . . 0 ∂k+1F1(b, 1, α) ∂k+2F1(b, 1, α) . . . ∂2k−1F1(b, 1, α)

|U′k(α1)|2 0 . . . 0 ∂k+1F2(b, 1, α) ∂k+2F2(b, 1, α) . . . ∂2k−1F2(b, 1, α)

0 −|U′k(α2)|2 0 . . . 0 ∂k+1F3(b, 1, α) ∂k+2F3(b, 1, α) . . . ∂2k−1F3(b, 1, α)

0 |U′k(α2)|2 0 . . . 0 ∂k+1F4(b, 1, α) ∂k+2F4(b, 1, α) . . . ∂2k−1F4(b, 1, α)
. . .

0 . . . −|U′k(1)|2 ∂k+1F2k(b, 1, α) ∂k+2F2k(b, 1, α) . . . ∂2k−1F2k(b, 1, α)


= Nk,(2.54)

where ξi = xi and ξk+i = σi, for i ∈ {1, . . . , k}. It is shown in the Appendix of [BCN17a]
that detNk = Mk−1. Therefore, by assumption, we have that detNk 6= 0. Then, using the
Implicit Function Theorem, the proof follows.
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Thanks to the previous lemma, we can make explicit our choice of µi and β̃i as

µi = εγiε and β̃i = αi + (σi)ε.

We are now able to define the function uiint as follows

uiint =

√
2

ε
Uε,4ε/

√
2,ϕ̃ε(γε),σε

.

Then the proof follows along the same lines as the proof of Theorem 2.1.2.

2.A Appendix

This appendix is devoted to the study of Green’s functions. In particular, we will prove
Theorem 2.1.3. First, let us recall the following lemma [BCN17b] which generalized
previous results of [Cat09],[GN12] when N = 2.

Lemma 2.A.1. There exist two positive, linearly independent solutions ζ ∈ C2((0, 1])
and ξ ∈ C2([0, 1]) of the equation

−u′′ − 1

r
u′ + u = 0 in(0, 1),

satisfying

ξ′(0) = ζ ′(1) = 0, r(ξ′(r)ζ(r)− ξ(r)ζ ′(r)) = 1 ∀r ∈ (0, 1].

We have that ξ is bounded and increasing in [0, 1], ζ is decreasing in (0, 1] and

ξ(0) = 1, lim
r→0+

ζ(r)

− ln r
= 1, lim

r→0+
(−rζ ′(r)) = 1.

Moreover, as r goes to 0, we have

(2.55) − 2

π
ζ(r) =

2

π
(log r − ln 2 + γ)− r2

2π
(ln r − ln 2 + γ − 1) +O(r3)

and

(2.56) − 2

π
ζ ′(r) =

2

πr
− r(−2 ln r − 2γ + 1 + log 4)

2π
+O(r2),

where γ ≈ 0.577 is the Euler-Mascheroni constant.

Using the previous lemma, we are able to construct a radial Green’s function on the
unit ball B1(0) blowing up at 0 and equal to 1 on ∂B1(0). The family of solutions defined
in Theorem 2.1.2 will behaves like this Green’s function far from the origin and from
∂B1(0).
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Lemma 2.A.2. Let b̃ be a small enough fixed constant. There exists a positive radial
function G solution to

(2.57) −G′′ − 1

r
G′ +G = 0 in (0, 1),

such that

lim
r→0+

G(r)

− ln r
= b̃, lim

r→0+
rG′(r) = b̃, G(1) = 1.

There exists r̃ ∈ (0, 1) such that G′(r̃) = 0 and r̃ = O(
√
b̃). Moreover, when r goes to

zero, we have

(2.58) G(r) + b̃ ln r =
b̃π

2
(γ − ln 2) + o(r)

and

(2.59) G′(r) +
b̃

r
= O(r ln r).

Proof. Using the properties of the functions ξ and ζ (defined in Lemma 2.A.1), it is
immediate to see that, for any b ∈ (0, 1),

ub(r) =
ξ′(b)ζ(r)− ξ(r)ζ ′(b)
ξ′(b)ζ(1)− ξ(1)ζ ′(b)

is a solution to (2.57) such that

ub(1) = 1 and lim
r→0+

ub(r)

− ln r
=

ξ′(b)

ξ′(b)ζ(1)− ξ(1)ζ ′(b)
.

Using the properties of ξ and ζ, we have, for b small enough,{
ξ′(b)ζ(1)− ξ(1)ζ ′(b) = ξ(1)b−1 + o(b−1)

ξ′(b) = δb+ o(b),

for some positive constant δ not depending on b. Therefore, for b small enough, we have,
for some constant C0 not depending on b,

lim
r→0+

ub(r)

− ln r
= C0b

2 + o(b2).

Multiplying ub by a suitable constant, we get the result. The estimates (2.58) and (2.59)
follows from (2.55) and (2.56) and the fact that ξ(0) = ξ′(0) = 0.

Next, we are going to construct two Green’s functions one singular at the origin and
in an interior sphere and the other also singular at ∂B1(0). Before, proceeding, we recall
the following useful lemma.
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Lemma 2.A.3. Let 0 ≤ a < b ≤ 1. Denote by ux, x ∈ (a, b), the function satisfying−u′′x(r)−
1

r
u′x(r) + ux(r) = 0 r ∈ (a, x)

u′x(a) = 0, ux(x) = 1.

Then the function x → u′x(x) is strictly increasing. Moreover let vx, x ∈ (a, b), the
function satisfying −v′′x(r)− 1

r
v′x(r) + vx(r) = 0 r ∈ (x, b)

vx(x) = vx(b) = 1.

Then the function x→ v′x(x) is strictly increasing.

Proof. We refer to (2.21) of [BGNT16] for the proof of the first point and to the Propo-
sition A.1 of [BCN17a] for the second one.

Thanks to the previous lemma, we are able to prove the existence and uniqueness of
the two Green’s functions mentioned above.

Lemma 2.A.4. Let 0 < β ≤ 1. Then for any b̃ > 0 small enough, there exist a unique α
and a unique continuous function U solution to

−U ′′ − 1

r
U ′ + U = 0 in (0, α) ∪ (α, β),

lim
r→0+

−U(r)

ln r
= b̃, U ′(β) = 0, U(α) = 1.

satisfying the reflection law

lim
ε→0−

U(α + ε)− U(α)

ε
= − lim

ε→0+

U(α + ε)− U(α)

ε
.

We also have that, for any b̃ > 0 small enough, there exist a unique α and a unique
continuous function V solution to

−V ′′ − 1

r
V ′ + V = 0 in (0, α) ∪ (α, β),

lim
r→0+

−V (r)

ln r
= b̃, V (α) = V (β) = 1.

satisfying the reflection law

lim
ε→0−

V (α + ε)− V (α)

ε
= − lim

ε→0+

V (α + ε)− V (α)

ε
.

Proof. We restrict ourselves to the proof of the second point. Let b < β be a small enough
fixed constant and consider the function u : (0, β)× (b, β) defined as

(2.60) u(r, α) =


ξ′(b)ζ(r)− ξ(r)ζ ′(b)
ξ′(b)ζ(α)− ξ(α)ζ ′(b)

r ∈ (0, α)

ξ′(β)ζ(r)− ξ(r)ζ ′(β)

ξ′(β)ζ(α)− ξ(α)ζ ′(β)
r ∈ (α, β),
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where the functions ξ and ζ are the ones defined in Lemma 2.A.1. Notice that u(r, α)
satisfies the equation

−u′′ − 1

r
u′ + u = 0 in (0, α) ∪ (α, β)

and u(α, α) = u(β, α) = 1. Moreover, proceeding as in Lemma 2.A.2, we see that

lim
r→0+

−u(r, α)

ln r
=

ξ′′(0)

ξ(α)
b2 + o(b2). Thus, for any b̃ sufficiently small, by choosing b =(

ξ(α)

ξ′′(0)
b̃

)1/2

, we have lim
r→0+

−u(r, α)

ln r
= b̃. It remains to prove that there exists a unique

α1 ∈ (b, 1) such that

F (α1) = (u′(α1, α1))+ + (u′(α1, α1))− = 0,

where

(u′(α, α)± = lim
ε→0±

u(α + ε, α)− u(α, α)

ε
.

Observe that F can be rewritten as

F (α) =
ξ′(b)ζ ′(α)− ξ′(α)ζ ′(b)

ξ′(b)ζ(α)− ξ(α)ζ ′(b)
+
ξ′(β)ζ ′(α)− ξ′(α)ζ ′(β)

ξ′(β)ζ(α)− ξ(α)ζ ′(β)
.

Thanks to Lemma 2.A.3, we already know that the function α → (u′(α, α))+ is strictly
increasing. We are going to prove that α→ (u′(α, α))− is also strictly increasing. Indeed,

recalling that b = (
ξ(α)

ξ′′(0)
b̃)1/2, for some b̃ small enough, we see that

∂

∂α

(
ξ′(b)ζ ′(α)− ξ′(α)ζ ′(b)

ξ′(b)ζ(α)− ξ(α)ζ ′(b)

)
=
ζ ′(b)2(ξ(α)ξ′′(α)− ξ′(α)2)

(ξ′(b)ζ(α)− ξ(α)ζ ′(b))2
+ o(1) > 0.

So, in order to prove the existence of α1, since F is continuous, it is sufficient to show
that lim

α→b+
F (α) < 0 and lim

α→1−
F (α) > 0. First, thanks to Lemma 2.A.1, we notice that,

for α→ b+, we have
ξ′(b)ζ(α)− ξ(α)ζ ′(b) = 1/b+ o(1/b)

and

ξ′(b)ζ ′(α)− ξ′(α)ζ ′(b) = − b
α
ξ′′(0) + ξ′′(0)

α

b
+ o(

α

b
) > 0.

For α→ b+, we also have

ξ′(β)ζ(α)− ξ(α)ζ ′(β) = −ξ′(β) lnα + o(lnα)

and
ξ′(β)ζ ′(α)− ξ′(α)ζ ′(β) = −ξ′(β)1/α + o(1/α).

Combining the previous estimates, we deduce that, for α→ b+,

F (α) = −b
2

α
ξ′′(0) + ξ′′(0)α +

1

α lnα
+ o(

1

α lnα
) < 0.
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On the other hand, for α→ β−, we have

ξ′(b)ζ(α)− ξ(α)ζ ′(b) = ξ(β)(1/b) + o(1/b),

and

ξ′(b)ζ ′(α)− ξ′(α)ζ ′(b) = bξ′′(0)ζ ′(β) + ξ′(β)(1/b)

=
ξ′(β)

b
+ o(

1

b
).

Since limα→β− ξ
′(β)ζ(α) − ξ(α)ζ ′(β) = 1/β, and ξ′(β)ζ ′(α) − ξ′(α)ζ ′(β) = O(α − β), we

get that, for α→ β−,

F (α) =
ξ′(β)

ξ(β)
+ o(1) > 0.

This concludes the proof.

Remark 2.A.1. Observe that along the proof, we also show that M1 6= 0.

Proof of Theorem 2.1.3. The proof can be done as the one of [BGNT16, Theorem 2.14]
substituting u∞,1−layer(β1; 0, β1) by the function U defined in the previous lemma with
β = β1.

Finally, we show a very rough elliptic estimate which is needed in the proof of Lemma
2.2.3.

Notations

Lemma 2.A.5. Let R > 0 and u ∈ H1(BR(0)) be a radial solution to{
−∆u+ u = f in BR(0)

u′(R) = g

for some f ∈ Lq(BR(0)), q > 2. Then, we have

‖u‖L∞(BR(0)) ≤ C(
1

R
+ | lnR|+R)(R2(1−2/q)‖f‖Lq(BR(0)) + (1 +R| lnR|)‖g‖L∞(∂BR(0))),

and
‖u′‖L∞(BR(0)) ≤ C(R2(1−2/q)‖f‖Lq(BR(0)) + (1 +R| lnR|)‖g‖L∞(∂BR(0))),

for some constant C not depending on R.

Proof. Multiplying the equation by u and integrating by parts, we get

(2.61) ‖u‖2
H1(BR) ≤ ‖f‖L2(BR)‖u‖H1(BR) +R|u′(R)||u(R)|.

Since u(R)− u(r) =
∫ R
r
u′(s)ds, one can show that

|u(R)|2 ≤ C[|u(r)|2 + ‖u′‖2
L2(BR) ln

R

r
],
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where here and in the following, C denotes constant not depending on R. Multiplying by
r and integrating, we find

R2|u(R)|2 ≤ C[‖u‖2
L2(BR) + ‖u′‖2

L2(BR
R2| lnR|].

This implies that

(2.62) |u(R)| ≤ C[
1

R
+ | lnR|]‖u‖H1(BR).

From (2.61) and (2.62) and using that u′(R) = g, we obtain that

‖u‖2
H1(BR) ≤ ‖f‖L2(BR)‖u‖H1(BR) + C(1 +R| lnR|)‖g‖L∞(∂BR)‖u‖H1(BR).

Thanks to Hölder inequality, we find that

(2.63) ‖u‖H1(BR) ≤ C[R2(1−1/q)‖f‖Lq(BR) + (1 +R| lnR|)‖g‖L∞(∂BR)].

Next, observe that we can rewrite the equation as, for any s ∈ (0, R),

u′(s)s =

∫ s

0

(u− f)rdr.

From Hölder inequality, we obtain that

|u′(s)| ≤ C‖u− f‖L2(BR) ≤ C(‖u‖L2(BR) +R2(1−2/q)‖f‖Lq(BR)).

We deduce from (2.63) that

‖u′‖L∞(BR) ≤ C(R2(1−1/q)‖f‖Lq(BR) + (1 +R| lnR|)‖g‖L∞(∂BR)).

Noticing once more that

u(R)− u(s̃) =

∫ R

s̃

u′(r)dr,

we get from (2.62) that

‖u‖L∞(BR) ≤ C([
1

R
+ | lnR|]‖u‖H1(BR) +R‖u′‖L∞(BR))

≤ C(
1

R
+ | lnR|+R)(R2(1−2/q)‖f‖Lq(BR) + (1 +R| lnR|)‖g‖L∞(∂BR)).

This concludes the proof.
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Chapter 1

The prescribed scalar curvature
problem

Abstract

In this chapter, which is based on a joint work with Angela Pistoia [PR17] that has been
accepted for publication in the Journal of Differential Equations, we are interested in
the problem of prescribing the scalar curvature on an n-dimensional compact Riemannian
manifold (M, g). More precisely, let h be a smooth function on M and assume that it has a
critical point ξ ∈M such that h(ξ) = 0 and which satisfies a suitable flatness assumption.

We are interested in finding conformal metrics gλ = u
4

n−2

λ g, with u > 0, whose scalar
curvature is the prescribed function hλ := λ2 + h, where λ is a small parameter.

In the positive case, i.e. when the scalar curvature Rg is strictly positive, we find a
family of “bubbling” metrics gλ, where uλ blows up at the point ξ and approaches zero
far from ξ as λ goes to zero.

In the general case, if in addition we assume that there exists a non-degenerate

conformal metric g0 = u
4

n−2

0 g, with u0 > 0, whose scalar curvature is equal to h, then

there exists a bounded family of conformal metrics g0,λ = u
4

n−2

0,λ g, with u0,λ > 0, which
satisfies u0,λ → u0 uniformly as λ→ 0. Here, we build a second family of “bubbling”
metrics gλ, where uλ blows up at the point ξ and approaches u0 far from ξ as λ goes to
zero. In particular, this shows that this problem admits more than one solution.
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1.A.4 The reduced energy . . . . . . . . . . . . . . . . . . . . . . 192

1.1 Introduction

Let (M, g) be a smooth compact manifold without boundary of dimension n ≥ 3. The
prescribed scalar curvature problem (with conformal change of metric) is

given a function h on M does there exist a metric g̃ conformal to g such that the scalar
curvature of g̃ equals h?

Given a metric g̃ conformal to g, i.e. g̃ = u
4

n−2 g where the conformal factor u is smooth
and strictly positive, this problem is equivalent to finding a solution to

(1.1) −∆gu+ c(n)Rgu = hup, u > 0 on M,

where ∆g = divg∇g is the Laplace-Beltrami operator, c(n) = n−2
4(n−1)

, p = n+2
n−2

, and Rg

denotes the scalar curvature associated to the metric g.
We suppose that h is not constant, otherwise we would be in the special case of the

Yamabe problem which has been completely solved in the works by Yamabe [Yam60],
Trudinger [Tru68], Aubin [Aub76a], and Schoen [Sch84]. For this reason we can assume
in (1.1) that Rg is a constant.

In the book [Aub98, Chapter 6], Aubin gives an exhaustive description of known
results. Next, we briefly recall some of them.

• The negative case, i.e. Rg < 0.

A necessary condition for existence is that
∫
M

hdνg < 0 (a more general result can be

found in [KW75]).

When h < 0, (1.1) has a unique solution (see for instance [KW75, Aub76a]). The
situation turns out to be more complicated when h vanishes somewhere on M or if
it changes sign. When maxM h = 0, Kazdan and Warner [KW75], Ouyang [Ouy91],
Vázquez and Véron [VV91], and del Pino [dP94] proved the existence of a unique
solution, provided that a lower bound on Rg, depending on the zero set of h, is satisfied.
The general case was studied by Rauzy in [Rau95], who extended the previous results
to the case when h changes sign. Letting h− := min{h, 0} and h+ := max{h, 0}, the
theorem proved in [Rau95] reads as follows.
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Theorem 1.1.1. Let A :=

{
u ∈ H1

g (M) | u ≥ 0, u 6≡ 0,
∫
M

h−udνg = 0

}
and

Λ0 := inf
u∈A

∫
M

|∇u|2dνg∫
M

u2dνg
,

with Λ0 = +∞ if A = ∅. There exists a constant C(h) > 0, depending only on minM h−∫
M

h−dνg
,

such that if

(1.2) −c(n)Rg < Λ0 and
maxM h+∫
M

|h−|dνg
< C(h)

then (1.1) has a solution.

The dependence of the constant C(h) on the function h− can be found in [AB97]. An
interesting feature is that if h changes sign then the uniqueness is not true anymore, as
showed by Rauzy in [Rau96].

Theorem 1.1.2. Assume (1.2) and let ξ ∈ M such that h(ξ) = max
M

h > 0. If one of

the following conditions hold:

1. 6 ≤ n ≤ 9 and ∆gh(ξ) = 0;

2. n ≥ 10, the manifold is not locally conformally flat, and ∆gh(ξ) = ∆2
gh(ξ) = 0;

then (1.1) admits at least two distinct solutions.

• The zero case, i.e. Rg = 0.

Necessary conditions for existence are that h changes sign and
∫
M

hdνg < 0. Some of the

existence results proved by Escobar and Schoen [ES86], Aubin and Hebey [AH91], and
Bismuth [Bis98] can be summarized as follows.

Theorem 1.1.3. Let ξ ∈ M such that h(ξ) = max
M

h > 0. If one of the following

conditions hold:

1. 3 ≤ n ≤ 5 and all the derivatives of h at the point ξ up to order n− 3 vanish;

2. (M, g) is locally conformally flat, n ≥ 6 and all the derivatives of h at the point ξ
up to order n− 3 vanish;

3. the Weyl’s tensor at ξ does not vanish, [n = 6 and ∆gh(ξ) = 0], or [n ≥ 7 and
∆gh(ξ) = ∆2

gh(ξ) = 0];

then (1.1) has a solution
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• The positive case, i.e. Rg > 0.

A necessary condition for existence is that maxM h > 0. Some of the existence re-
sults proved by Escobar and Schoen [ES86], Aubin and Hebey [AH91], and Hebey and
Vaugon [HV93] can be summarized as follows.

Theorem 1.1.4. Assume that (M, g) is not conformal to the standard sphere (Sn, g0).
Let ξ ∈M such that h(ξ) = max

M
h > 0. If one of the following conditions hold:

1. n = 3 or [n ≥ 4, (M, g) is locally conformally flat, and all the derivatives of h at the
point ξ up to order n− 2 vanish];

2. the Weyl’s tensor at ξ does not vanish, [n = 6 and ∆gh(ξ) = 0], or [n ≥ 7 and
∆gh(ξ) = ∆2

gh(ξ) = 0];

then (1.1) has a solution.

The prescribed scalar curvature problem on the standard sphere has also been largely
studied. We refer the interested reader to [HV92,Li95,Li96].

In the rest of this chapter, we focus our attention on the case hλ(x) := λ2 +h(x) where
h ∈ C2(M) and λ > 0 is a small parameter. Namely, we study the problem

(1.3) −∆gu+ c(n)Rgu = (λ2 + h)up, u > 0 on M.

In order to state our main results, let us introduce two assumptions. In our first theorem
we assume that h satisfies the following global condition:

there exists a non-degenerate solution u0 to

−∆gu0 + c(n)Rgu0 = hup0, u0 > 0 on M.(1.4)

The existence of a solution to (1.4) is guaranteed if h is as in Theorems 1.1.1, 1.1.3, or
1.1.4. The non-degeneracy condition is a delicate issue and it is discussed in Subsection
1.2.3. It would be interesting to see if for “generic” functions h the solutions of (1.4) are
non-degenerate.

Under this assumption, it is clear that if λ is small enough then (1.3) has a solution
u0,λ ∈ C2(M) such that ‖u0,λ − u0‖C2(M) → 0 as λ→ 0.

In addition, the following local condition is assumed in both of our results:

There exist a point ξ ∈M and some real numbers γ ≥ 2, a1, . . . , an 6= 0, with
n∑
i=1

ai > 0,

such that, in some geodesic normal coordinate system centered at ξ, we have

h(y) = −
n∑
i=1

ai|yi|γ +R(y) if y ∈ B(0, r), for some r > 0,(1.5)

where R satisfies lim
y→0

R(y)|y|−γ = 0.
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In particular, h(ξ) = ∇h(ξ) = 0. The number γ is called the order of flatness of h at the
point ξ. Observe that ξ cannot be a minimum point and that if all the ai’s are positive
then ξ is a local maximum point of h.

Let us now introduce the standard n-dimensional bubbles, which are defined via

Uµ,y(x) = µ−
n−2

2 U

(
x− y
µ

)
, µ > 0, y ∈ Rn,

where U(x) = αn
1

(1 + |x|2)
n−2

2

, αn = [n(n− 2)]
n−2

4 .

These functions are all the positive solutions to the critical problem (see [Aub76b,Tal76])

−∆U = Up in Rn.

Our first result concerns the multiplicity of solutions to problem (1.3).

Theorem 1.1.5. Assume that (M, g) is not conformal to the standard sphere (Sn, g0),
(1.4), and (1.5). If one of the following conditions hold:

1. 3 ≤ n ≤ 5 and ξ is a non-degenerate critical point of h, i.e. γ = 2;

2. n = 6 and γ ∈ (2, 4);

3. 7 ≤ n ≤ 9 and γ = 4;

4. n ≥ 10, (M, g) is locally conformally flat , and γ ∈
(
n−2

2
, n

2

)
;

(5) n ≥ 10, the Weyl’s tensor at ξ does not vanish, and γ ∈ (4, 4 + ε) for some ε > 0;

then, provided λ is small enough, there exists a solution uλ to problem (1.3) which blows-up
at the point ξ as λ→ 0. Moreover, as λ→ 0, we have∥∥∥∥uλ(x)− u0(x)− λ−

n−2
2 µλ

−n−2
2 U

(
dg(x, ξλ)

µλ

)∥∥∥∥
H1
g (M)

→ 0,

where the concentration point ξλ → ξ and the concentration parameter µλ → 0 with a
suitable rate with respect to λ, which depends on the order of flatness γ (see (1.10), (1.12),
(1.13), (1.17)).

Finally, if h ∈ C∞(M), then λ2 +h is the scalar curvature of a metric conformal to g.

This is the first multiplicity result in the zero and positive cases. In the negative
case, it extends the results of Theorem 1.1.2 to locally conformally flat manifolds, to low-
dimensional manifolds (i.e. 3 ≤ n ≤ 5), to higher-dimensional manifolds (i.e. 6 ≤ n ≤ 9)
when the order of flatness at the maximum point ξ is at least 2, and to non-locally
conformally manifolds when n ≥ 10 and the order of flatness at the maximum point ξ is
at least 4. Moreover, it also provides an accurate description of the profile of the solution
as λ approaches zero.

Our second result concerns the existence of solutions to problem (1.3) in the positive
case, without need of the global condition (1.4) on h.
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Theorem 1.1.6. Assume that (M, g) is not conformal to the standard sphere (Sn, g0),
Rg > 0, and (1.5). If one of the following conditions hold:

1. n = 3, 4, 5 or [n ≥ 6 and (M, g) is locally conformally flat] and γ ∈ (n− 2, n);

2. n ≥ 6, the Weyl’s tensor at ξ does not vanish, and γ ∈ (4, n);

then, provided λ is small enough, there exists a solution uλ to problem (1.3) which blows-up
at the point ξ as λ→ 0. Moreover, as λ→ 0, we have∥∥∥∥uλ(x)− λ−

n−2
2 µλ

−n−2
2 U

(
dg(x, ξλ)

µλ

)∥∥∥∥
H1
g (M)

→ 0,

where the concentration point ξλ → ξ and the concentration parameter µλ → 0 with a
suitable rate with respect to λ, which depends on the order of flatness γ (see (1.33)).

Finally, if h ∈ C∞(M), then λ2 +h is the scalar curvature of a metric conformal to g.

Our results have been inspired by the recent papers by Borer, Galimberti, and Struwe
[BGS15] and del Pino and Román [dPR15], where the authors studied the prescribed
Gauss curvature problem on a surface of dimension 2 in the negative case. In particular,
they built large conformal metrics with prescribed Gauss curvature κ, which exhibit a
bubbling behavior around maximum points of κ at zero level.

The proof of our results relies on a Lyapunov-Schmidt procedure (see for instance
[BLR95, dPFM03]). To prove Theorem 1.1.5, we look for solutions to (1.3) which share
a suitable bubbling profile close to the point ξ and the profile of the solution to the
unperturbed problem (1.4) far from the point ξ. The accurate description of the ansatz is
given in Section 1.2, which also contains a non-degeneracy result. The finite dimensional
reduction is performed in Section 1.3, which also includes the proof of Theorem 1.1.5. All
the technical estimates are postponed in the Appendix. In Section 1.4 we prove Theorem
1.1.6, which can be easily deduced by combining the results proved in Section 1.3 and
in the Appendix with some recent results obtained by Esposito, Pistoia, and Vétois in
[EPV14].

1.2 The approximated solution

1.2.1 The ansatz

To build the approximated solution close to the point ξ we use some ideas introduced in
[EP14,RV13]. The main order of the approximated solution close to the point ξ looks like
the bubble

(1.6) λ−
n−2

2 Ut,τ (x) := λ−
n−2

2 µ−
n−2

2 U

(
exp−1

ξ (x)

µ
− τ

)
if dg(x, ξ) ≤ r,

where the point τ ∈ Rn depends on λ and the parameter µ = µλ(t) satisfies

(1.7) µ = tλβ for some t > 0 and β > 1.
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The choice of β depends on n, on the geometry of the manifold at the point ξ, i.e. the
Weyl’s tensor at ξ and on the order of flatness of the function h at ξ, i.e. the number
γ := 2 + α in (1.5).

Let us be more precise. Let r ∈ (0, ig(M)) be fixed, where ig(M) is the injectivity
radius of (M, g), which is strictly positive since the manifold is compact. Let χ ∈ C∞(R)
be a cut-off function such that 0 ≤ χ ≤ 1 in R, χ = 1 in [−r/2, r/2] and χ = 0 in
R \ (−r, r). We denote by dg the geodesic distance in (M, g) and by exp−1

ξ the associated
geodesic coordinate system. We look for solutions of (1.3) of the form

(1.8) uλ(x) = u0(x) + λ−
n−2

2 Wt,τ (x) + φλ(x),

where the definition of the blowing-up termWt,τ depends on the dimension of the manifold
and also on its geometric properties. The higher order term φλ belongs to a suitable space
which will be introduced in the next section. More precisely, Wt,τ is defined in three
different ways:

• The case n = 3, 4, 5.

It is enough to assume

(1.9) Wt,τ (x) = χ (dg(x, ξ))Ut,τ (x),

where Ut,τ is defined in (1.6). The concentration parameter µ satisfies

(1.10) µ = tλ
n+2

2α−n+6 , with t > 0 provided 0 ≤ α < n− 2.

• The cases n ≥ 10 when Weylg(ξ) is non-zero and 6 ≤ n ≤ 9.

It is necessary to correct the bubble Ut,τ defined in (1.6) by adding a higher order term
as in [EP14], namely

(1.11) Wt,τ (x) = χ (dg(x, ξ))
(
Ut,τ (x) + µ2Vt,τ (x)

)
where

Vt,τ (x) = µ−
n−2

2 V

(
exp−1

ξ (x)

µ
− τ

)
if dg(x, ξ) ≤ r.

The choice of parameter µ depends on n. More precisely if n ≥ 10 and the Weyl’s
tensor at ξ is non-zero we choose

(1.12) µ = tλ
2

α−2 , with t > 0 provided 2 < α <
2n

n− 2
.

If 6 ≤ n ≤ 9 we choose

(1.13) µ = tλ
n+2

2α−n+6 , with t > 0 provided
n− 6

2
< α < min

{
16

n− 2
,
n2 − 6n+ 16

2(n− 2)

}
.

The function V is defined as follows. If we write u(x) = u
(
exp−1

ξ (x)
)

for x ∈ Bg(ξ, r)
and y = expξ (x) ∈ B(0, r), then a comparison between the conformal Laplacian Lg =
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−∆g + c(n)Rg with the euclidean Laplacian shows that there is an error, which at main
order looks like

(1.14) Lgu+ ∆u ∼ +
1

3

n∑
a,b,i,j=1

Riabj(ξ)yayb∂
2
iju+

n∑
i,l,k=1

∂lΓ
k
ii(ξ)yl∂ku+ c(n)Rg(ξ)u.

Here Riabj denotes the Riemann curvature tensor, Γkij the Christoffel’s symbols and Rg

the scalar curvature. This easily follows by standard properties of the exponential map,
which imply

−∆gu = −∆u− (gij − δij)∂2
iju+ gijΓkij∂ku,

with

gij(y) = δij(y)− 1

3
Riabj(ξ)yayb +O(|y|3) and gij(y)Γkij(y) = ∂lΓ

k
ii(ξ)yl +O(|y|2).

To build our solution it shall be necessary to kill the R.H.S of (1.14) by adding to the
bubble a higher order term V whose existence has been established in [EP14]. To be
more precise, we need to remind (see [BE91]) that all the solutions to the linear problem

−∆v = pUp−1v in Rn,

are linear combinations of the functions

(1.15) Z0 (x) = x · ∇U(x) +
n− 2

2
U(x), Zi (x) = ∂iU(x), i = 1, . . . , n.

The correction term V is built in the following Proposition (see Section 2.2 in [EP14]).

Proposition 1.2.1. There exist ν(ξ) ∈ R and a function V ∈ D1,2(Rn) solution to

−∆V − f ′(U)V =

−
n∑

a,b,i,j=1

1

3
Riabj(ξ)yayb∂

2
ijU −

n∑
i,l,k=1

∂lΓ
k
ii(ξ)yl∂kU − c(n)Rg(ξ)U + ν(ξ)Z0,

in Rn, with ∫
Rn

V (y)Zi(y)dy = 0, i = 0, 1, . . . , n

and

|V (y)|+ |y| |∂kV (y)|+ |y|2
∣∣∂2
ijV (y)

∣∣ = O

(
1

(1 + |y|2)
n−4

2

)
, y ∈ Rn.

• The case n ≥ 10 when (M, g) is locally conformally flat.

In this case it is necessary to perform a conformal change of metric as in [RV13]. Indeed,

there exists a function Λξ ∈ C∞(M) such that the conformal metric gξ = Λ
4

(n−2)

ξ g is flat
in Bg(ξ, r). The metric can be chosen so that Λξ(ξ) = 1. Then, we choose

(1.16) Wt,τ (x) = χ
(
dgξ(x, ξ)

)
Λξ(x)Ut,τ (x),
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where Ut,τ is defined in (1.6) and the exponential map is taken with respect to the new
metric gξ. In this case, the concentration parameter µ satisfies

(1.17) µ = tλ
n+2

2α−n+6 , with t > 0 provided
n− 6

2
< α <

n2 − 6n+ 16

2(n− 2)
.

1.2.2 The higher order term

Let us consider the Sobolev space H1
g (M) equipped with the scalar product

(u, v) =

∫
M

(〈∇gu,∇gv〉g + uv) dνg,

and let ‖ · ‖ be the induced norm. Let us introduce the space where the higher order term
φλ in (1.8) belongs to. Let Z0, Z1, . . . , Zn be the functions introduced in (1.15). We define

Zi,t,τ (x) = µ−
n−2

2 χ(dgξ(x, ξ))Λξ(x)Zi

(
exp−1

ξ (x)

µ
− τ

)
i = 0, 1, . . . , n,

where gξ and Λξ are defined as in (1.16) and we also agree that gξ ≡ g, Λξ(x) ≡ 1 if the
ansatz is (1.9) or (1.11). Therefore, φλ ∈ H⊥ where

H⊥ :=

{
φ ∈ H1

g (M) :

∫
M

φZi,t,τdνg = 0 for any i = 0, 1, . . . , n

}
.

1.2.3 A non-degeneracy result

When the solution u0 of (1.4) is a minimum point of the energy functional naturally
associated with the problem, the non-degeneracy is not difficult to obtain as showed in
Lemma 1.2.1. In the general case u0 is a critical point of the energy of a min-max type
and so the non-degeneracy is a more delicate issue. As far as we know there are no results
in this direction.

Lemma 1.2.1. Assume Rg < 0, maxM h = 0, and the set {x ∈ M | h(x) = 0} has
empty interior set. Then the unique solution u0 to (1.4) is non-degenerate, i.e. the linear
problem

−∆gψ + c(n)Rgψ − ph(x)up−1
0 ψ = 0 on M,

admits only the trivial solution.

Proof. Del Pino in [dP94] proved that problem (1.4) has a unique solution, which is a
minimum point of the energy functional

J(u) :=
1

2

∫
M

(
|∇gu|2g + c(n)Rgu

2
)
dνg −

1

p+ 1

∫
M

h|u|p+1dνg.

Therefore the quadratic form

D2J(u0)[φ, φ] =

∫
M

(
|∇gφ|2g + c(n)Rgφ

2 − phup−1
0 φ2

)
dνg, φ ∈ H1

g (M)
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is positive definite. In particular, the problem

(1.18) −∆gφi + c(n)Rgφi − phup−1
0 φi = λiφi on M,

has a non-negative first eigenvalue λ1 with associated eigenfunction φ1 > 0 on M .

If λ1 = 0 then we test (1.4) against φ1 and (1.18) against u0, we subtract and we get

(p− 1)

∫
M

hup0φ1dνg = 0,

which gives a contradiction because h 6= 0 a.e. in M and u0 > 0 on M .

1.3 The finite dimensional reduction

We are going to solve problem

(1.19) Lgu =
(
λ2 + h

)
f(u) on M,

where Lg is the conformal Laplacian and f(u) = (u+)p, u+(x) := max{u(x), 0}, using a
Ljapunov-Schmidt procedure. We rewrite (1.19) as

(1.20) L(φλ) = −E + (λ2 + h)N(φλ) on M,

where setting

(1.21) Uλ(x) = Uλ,t,τ (x) := λ−
n−2

2 Wt,τ (x) + u0(x),

the linear operator L(·) is defined by

(1.22) L(φ) := Lgφ− (λ2 + h)f ′(Uλ)φ,

the error term is defined by

(1.23) E := LgUλ − (λ2 + h)f(Uλ)

and the higher order term N(·) is defined by

N(φ) := f (Uλ + φ)− f (Uλ)− f ′ (Uλ)φ.

First of all, it is necessary to estimate the error term E.

Proposition 1.3.1. Let a, b ∈ R+ be such that 0 < a < b and K be a compact set in
Rn. There exist positive numbers λ0, C and ε > 0 such that for any λ ∈ (0, λ0), for any
t ∈ [a, b] and for any point τ ∈ K we have

‖E‖
L

2n
n+2 (M)

≤ Cλ
2(n+2)−α(n−2)

2
+ε if (1.12) holds

or
‖E‖

L
2n
n+2 (M)

≤ Cλ
(n−2−α)(n−2)

2(2α−n+6)
+ε if (1.10) or (1.13) or (1.17) hold.
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Proof. The proof is postponed in Subsection 1.A.1.

Then, we develop a solvability theory for the linearized operator L defined in (1.22)
under suitable orthogonality conditions.

Proposition 1.3.2. Let a, b ∈ R+ be fixed numbers such that 0 < a < b and K be a
compact set in Rn. There exist positive numbers λ0 and C, such that for any λ ∈ (0, λ0),

for any t ∈ [a, b] and for any point τ ∈ K, given ` ∈ L
2n
n+2 (M) there is a unique function

φλ = φλ,t,τ (`) and unique scalars ci, i = 0, . . . , n which solve the linear problem

(1.24)


L(φ) = `+

n∑
i=0

ciZi,t,τ on M∫
M

φZi,t,τdνg = 0, for all i = 0, . . . , n.

Moreover,

(1.25) ‖φλ‖H1
g (M) ≤ C‖`‖

L
2n
n+2 (M)

.

Proof. The proof is postponed in Subsection 1.A.2.

Next, we reduce the problem to a finite-dimensional one by solving a non-linear prob-
lem.

Proposition 1.3.3. Let a, b ∈ R+ be fixed numbers such that 0 < a < b and K be a
compact set in Rn. There exist positive numbers λ0 and C, such that for any λ ∈ (0, λ0),
for any t ∈ [a, b] and for any point τ ∈ K, there is a unique function φλ = φλ,t,τ and
unique scalars ci, i = 0, . . . , n which solve the non-linear problem

(1.26)


L(φ) = −E + (λ2 + h)N(φ) +

n∑
i=0

ciZi,t,τ on M∫
M

φZi,t,τdνg = 0, for all i = 0, . . . , n.

Moreover,

(1.27) ‖φλ‖H1
g (M) ≤ C‖E‖

L
2n
n+2 (M)

and φλ is continuously differentiable with respect to t and τ.

Proof. The proof relies on standard arguments (see [EPV14]).

After Problem (1.26) has been solved, we find a solution to Problem (1.20) if we
manage to adjust (t, τ) in such a way that

(1.28) ci(t, τ) = 0 for all i = 0, . . . , n.
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This problem is indeed variational: it is equivalent to finding critical points of a function
of t, τ . To see that let us introduce the energy functional Jλ defined on H1

g (M) by

Jλ(u) =

∫
M

(
1

2
|∇gu|2g +

1

2
c(n)Rgu

2 − λ2

p+ 1
(u+)pu+

1

p+ 1
h(u+)pu

)
dνg.

An important fact is that the positive critical points of Jλ are solutions to (1.3). For any
number t > 0 and any point τ ∈ Rn, we define the reduced energy

(1.29) Jλ(t, τ) := Jλ(Uλ + φλ),

where Uλ = Uλ,t,τ is as in (1.21) and φλ = φλ,t,τ is given by Proposition 1.3.3. Critical
points of Jλ correspond to solutions of (1.28) for small λ, as the following result states.

Lemma 1.3.1. The following properties hold:

(I) There exists λ0 > 0 such that for any λ ∈ (0, λ0) if (tλ, τλ) is a critical point of Jλ
then the function uλ = Uλ + φλ,tλ,τλ is a solution to (1.19).

(II) Let a, b ∈ R+ be fixed numbers such that 0 < a < b and let K be a compact set in Rn.
There exists λ0 > 0 such that, for any λ ∈ (0, λ0), we have:

(a) if n ≥ 10, Weylg(ξ) 6= 0, and (1.12) holds then

(1.30) Jλ(t, τ) = A0−

λ
2(n+2)−α(n−2)

α−2


A1|Weylg(ξ)|2gt4 − A2t

2+α

n∑
i=1

∫
Rn

ai
|yi + τi|2+α

(1 + |y|2)n
dy


︸ ︷︷ ︸

Θ1(t,τ)

+o(1)


C1−uniformly with respect to t ∈ [a, b] and τ ∈ K;

(b) if one of the following conditions is satisfied:

(i) 3 ≤ n ≤ 5 and (1.10) holds;

(ii) 6 ≤ n ≤ 9 and (1.13) holds;

(iii) n ≥ 10, (M, g) is locally conformally flat, and (1.17) holds;

then

(1.31) Jλ(t, τ) = A0−

λ
(n−2−α)(n−2)

2α−n+6


A3u0(ξ)t

n−2
2 − A2t

2+α

n∑
i=1

∫
Rn

ai
|yi + τi|2+α

(1 + |y|2)n
dy


︸ ︷︷ ︸

Θ2(t,τ)

+o(1)


C1−uniformly with respect to t ∈ [a, b] and τ ∈ K.
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Here, A1, A2, and A3 are constants only depending on n and

A0 :=

∫
M

(
1

2
|∇gu0|2g +

1

2
c(n)Rgu

2
0 −

λ2

p+ 1
up+1

0 +
1

p+ 1
hup+1

0

)
dν

+

∫
Rn

(
1

2
|∇U |2 − 1

p+ 1
Up+1

)
dy.

(1.32)

Proof. The proof of (I) is standard (see [EPV14]). The proof of (II) is postponed in
Subsection 1.A.4.

The next result is essential to find solutions to (1.3).

Lemma 1.3.2. There exists λ0 > 0 such that for any λ ∈ (0, λ0) if (tλ, τλ) is a critical
point of Jλ then the function uλ = Uλ + φλ,tλ,τλ is a classical solution to (1.3).

Proof. By Lemma 1.3.1 we deduce that uλ solves (1.19). Arguing as in Appendix B of
[Str08], one easily sees that uλ ∈ C2(M).

It only remains to prove that uλ > 0 on M . This is immediate in the positive case,
i.e. Rg > 0, because the maximum principle holds. Let us consider the case Rg ≤ 0.

We consider the set Ωλ := {x ∈ M | (uλ − λ)− (x) < 0}. Let m0 := minM u0 > 0. By
the definition of uλ we immediately get that for all λ sufficiently small φλ < −m0

2
in Ωλ.

Thus, since φλ → 0 in L2(M), we deduce |Ωλ| → 0 as λ→ 0. Now, set v := uλ − λ.
Testing (1.19) against v− we get∫
Ωλ

|∇gv
−|2gdνg + c(n)Rg

∫
Ωλ

(v−)2dνg −
∫

0<uλ<λ

(λ2 + h)(u+
λ )p−1(v−)2dνg

+ λ

[
c(n)Rg

∫
Ωλ

v−dνg −
∫

0<uλ<λ

(h+ λ2)(u+
λ )p−1v−dνg

]
= 0

Poincaré’s inequality yields∫
Ωλ

|∇gv
−|2gdνg ≥ C(Ωλ)

∫
Ωλ

(v−)2dνg

where C(Ωλ) is a positive constant approaching +∞ as |Ωλ| goes to zero.
On the other hand∣∣∣∣∫

0<uλ<λ

(λ2 + h)(u+
λ )p−1(v−)2dνg

∣∣∣∣ ≤ Cλp−1‖v−‖2
L2(M),

and ∣∣∣∣∫
0<uλ<λ

(h+ λ2)(u+
λ )p−1v−dνg

∣∣∣∣ ≤ Cλp−1

∫
Ωλ

|v−|dν,
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for some positive constant C not depending on λ. Collecting the previous computations
we get(

C(Ωλ) + c(n)Rg − Cλp−1
)︸ ︷︷ ︸

>0 if λ≈0

‖v−‖2
L2(M) + λ

(
c(n)|Rg| − Cλp−1

)︸ ︷︷ ︸
>0 if λ≈0

∫
Ωλ

|v−|dνg ≤ 0,

which implies v− = 0 if λ is small enough. Since uλ ∈ C2(M) we deduce that uλ ≥ λ > 0
in M and the claim is proved.

1.3.1 Proof of the main result

Theorem 1.1.5 is an immediate consequence of the more general result.

Theorem 1.3.1. Assume (1.5) with γ := 2 + α. If one of the following conditions hold:

1. n ≥ 10, the Weyl’s tensor at ξ does not vanish, and 2 < α < 2n
n−2

;

2. 3 ≤ n ≤ 5 and 0 ≤ α < n− 2;

3. 6 ≤ n ≤ 9 and n−6
2
< α < min

{
16
n−2

, n
2−6n+16
2(n−2)

}
;

4. n ≥ 10, (M, g) is locally conformally flat, and n−6
2
< α < n2−6n+16

2(n−2)
;

then, provided λ is small enough, there exists a solution to (1.3) which blows-up at the
point ξ as λ→ 0.

Moreover, if h ∈ C∞(M) then λ2 + h is the scalar curvature of a metric conformal to
g.

Proof. We will show that the functions Θ1 and Θ2, defined respectively in (1.30) and

(1.31), have a non-degenerate critical point provided
n∑
i=1

ai > 0 and ai 6= 0 for any i. As a

consequence, provided λ is small enough, the reduced energy Jλ has a critical point and
by Lemma 1.3.2 we deduce the existence of a classical solution to problem (1.3), which
concludes the proof.

Without loss of generality, we can consider the function

Θ(t, τ) := tβ − tγ
n∑
i=1

ai

∫
Rn

|yi + τi|γf(y)dy, (t, τ) ∈ (0,+∞)× Rn,

where β = 4 or β = n−2
2

, γ = α + 2 and f(y) = A
(1+|y|2)n

for some positive constant A. It

is immediate to check that, because
n∑
i=1

ai > 0, this function has a critical point (t0, 0),

where t0 solves

βtβ = c1γt
γ

n∑
i=1

ai, with c1 :=

∫
Rn

|yi|γf(y)dy not depending on i,
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Moreover it is non-degenerate. Indeed, a straightforward computation shows that

D2φ(t0, 0) =

 β(β − γ)tβ−2
0 0 . . . 0

0 −γ(γ − 1)c2t
γ
0a1 . . . 0

0 0 . . . −γ(γ − 1)c2t
γ
0an

 ,

where c2 :=
∫
Rn
|yi|γ−2f(y)dy does not depend on i, which is invertible because β 6= γ,

β > 0, and ai 6= 0 for any i.

1.4 The positive case: proof of Theorem 1.1.6

In this section we find a solution to equation (1.3) in the positive case, i.e. Rg > 0 only
assuming the local behavior (1.5) of the function h around the local maximum point ξ. We
build solutions to problem (1.3) which blow-up at ξ as λ goes to zero, by combining the
ideas developed by Esposito, Pistoia and Vétois [EPV14], the Ljapunov-Schmidt argument
used in Section 1.3 and the estimates computed in the Appendix. We omit all the details
of the proof because they can be found (up to minor modifications) in [EPV14] and in the
Appendix. We only write the profile of the solutions we are looking for and the reduced
energy whose critical points produce solutions to our problem.

1.4.1 The ansatz

Let us recall the construction of the main order term of the solution performed in [EPV14].
In case (M, g) is locally conformally flat, there exists a family (gξ)ξ∈M of smooth conformal
metrics to g such that gξ is flat in the geodesic ball Bξ (r0). In case (M, g) is not locally
conformally flat, we fix N > n, and we find a family (gξ)ξ∈M of smooth conformal metrics
to g such that ∣∣exp∗ξ gξ

∣∣ (y) = 1 +O
(
|y|N

)
C1−uniformly with respect to ξ ∈ M and y ∈ TξM , |y| � 1, where

∣∣exp∗ξ gξ
∣∣ is the

determinant of gξ in geodesic normal coordinates of gξ around ξ. Such coordinates are
said to be conformal normal coordinates of order N on the manifold. Here, the exponential
map exp∗ξ is intended with respect to the metric gξ. For any ξ ∈ M , we let Λξ be the

smooth positive function on M such that gξ = Λ
4

n−2

ξ g. In both cases (locally conformally
flat or not), the metric gξ can be chosen smooth with respect to ξ and such that Λξ (ξ) = 1
and ∇Λξ (ξ) = 0. We let Gg and Ggξ be the respective Green’s functions of Lg and Lgξ .
Using the fact that Λξ (ξ) = 1, we deduce

Gg (·, ξ) = Λξ(·) Ggξ (·, ξ) .

We define

Wt,τ (x) = Gg (x, ξ) Ŵt,τ (x) ,
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with

Ŵt,τ (x) :=


βnλ

− (n−2)
2 µ−

n−2
2 dgξ (x, ξ)n−2 U

(
dgξ(x, ξ)

µ
− τ
)

if dgξ (x, ξ) ≤ r

βnλ
− (n−2)

2 µ−
n−2

2 rn−2U

(
r0

µ
− τ
)

if dgξ (x, ξ) > r,

where βn = (n − 2)ωn−1, ωn−1 is the volume of the unit (n− 1)–sphere, τ ∈ Rn and the
concentration parameter µ = µλ(t) with t > 0 is defined as (here α = γ − 2, being γ the
order of flatness of h at the point ξ)
(1.33)

µ =


tλ

2
4+α−n if n = 3, 4, 5 or [n ≥ 6 and (M, g) is lc.f.] with n− 4 < α < n− 2

t`−1
(
λ2
)

if n = 6 and Weylg(ξ) 6= 0 with 2 < α < 4

tλ
2

α−2 if n ≥ 7 and Weylg(ξ) 6= 0 with 2 < α < n− 2,

where the function ` (µ) := −µ2−α lnµ when µ is small. We look for a solution to (1.3) as
uλ =Wt,τ + φλ, where the higher order term is found arguing as in Section 1.3.

1.4.2 The reduced energy

Combining Lemma 1 in [EPV14] and Lemma 1.A.2 in the Appendix, the reduced energy
Jλ introduced in (1.29) (where the term Uλ is replaced by Wt,τ and in particular u0 = 0)
reads as

(a) if n = 3, 4, 5 or [n ≥ 6 and (M, g) is l.c.f.] with n − 4 < α < n − 2 and (1.33) holds
then

Jλ(t, τ) = A0 − λ
(n−6−α)(n−2)

4+α−n

A3m(ξ)tn−2 − A2t
2+α

n∑
i=1

∫
Rn

ai
|yi + τi|2+α

(1 + |y|2)n
dy + o(1)

 ,

where m(ξ) > 0 is the mass at the point ξ,

(b) if n = 6, Weylg(ξ) 6= 0, and (1.33) holds then

Jλ(t, τ) = A0−−A1|Weylg(ξ)|2g
µ4
λ(t) lnµλ(t)

λ4
− A2

µ2+α
λ (t)

λ6

6∑
i=1

∫
Rn

ai
|yi + τi|2+α

(1 + |y|2)6
dy + o(1)

 ,

(c) if n ≥ 7, Weylg(ξ) 6= 0 and (1.33) holds then

Jλ(t, τ) = A0−

λ
2(n+2)−α(n−2)

α−2

A1|Weylg(ξ)|2gt4 − A2t
2+α

n∑
i=1

∫
Rn

ai
|yi + τi|2+α

(1 + |y|2)n
dy + o(1)

 ,

C1−uniformly with respect to t in compact sets of (0,+∞) and τ in compact sets of Rn.
Here A1, A2 and A3 are constants only depending on n and A0 depends only on n and λ.
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1.A Appendix

We recall the following useful lemma (see, for example, [Li98]).

Lemma 1.A.1. For any a > 0 and b ∈ R we have

|((a+ b))q − aq| ≤
{
c(q) min {|b|q, aq−1|b|} if 0 < q < 1
c(q) (|b|q + aq−1|b|) if q ≥ 1,

and ∣∣∣((a+ b)+
)q+1 − aq+1 − (q + 1)aqb

∣∣∣ ≤ { c(q) min {|b|q+1, aq−1b2} if 0 < q < 1
c(q) (|b|q+1 + aq−1b2) if q ≥ 1.

1.A.1 Estimate of the error

Proof of Lemma 1.3.1. We split the error (1.23) into

E = (−∆g + c(n)Rg)
[
λ−

n−2
2 Wt,τ + u0

]
− (λ2 + h)

[
λ−

n−2
2 Wt,τ + u0

]p
= E1 + E2 + E3,

where

E1 = λ−
n−2

2

[
−∆gWt,τ + c(n)RgWt,τ +Wp

t,τ

]
,

E2 = −λ−
n−2

2

[
(Wt,τ + λ

n−2
2 u0)p −Wp

t,τ

]
,

E3 = λ−
n+2

2 h
[
(Wt,τ + λ

n−2
2 u0)p − (λ

n−2
2 u0)p

]
.

To estimate E2 and E3 we use the fact that the bubble Wt,τ satisfies in the three cases

(1.34) Wt,τ (expξ(y)) = O

(
µ
n−2

2

(µ2 + |y − µτ |2)
n−2

2

)
if |y − ξ| ≤ r.

Indeed by (1.34) and Lemma 1.A.1 we immediately deduce that

‖E2‖
L

2n
n+2 (M)

= O

(
λ−

n−2
2

∥∥∥λn−2
2 u0Wp−1

t,τ

∥∥∥
L

2n
n+2 (M)

)
+O

(
λ−

n−2
2

∥∥∥(λn−2
2 u0

)p∥∥∥
L

2n
n+2 (M)

)
= O

(∥∥Wp−1
t,τ

∥∥
L

2n
n+2 (M)

)
+O

(
λ2
)
,

with

∥∥Wp−1
t,τ

∥∥
L

2n
n+2 (M)

=


O
(
µ
n−2

2

)
if 3 ≤ n ≤ 5

O
(
µ2| lnµ|

2
3

)
if n = 6

O
(
µ2
)

if n ≥ 7,

and

‖E3‖
L

2n
n+2 (M)

= O

(
λ−

n+2
2

∥∥∥∥h(λn−2
2 u0

)p−1

Wt,τ

∥∥∥∥
L

2n
n+2 (M)

)
+O

(
λ−

n+2
2

∥∥hWp
t,τ

∥∥
L

2n
n+2 (M)

)
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= O
(
λ−

n−2
2 ‖hWt,τ‖

L
2n
n+2 (M)

)
+O

(
λ−

n+2
2

∥∥hWp
t,τ

∥∥
L

2n
n+2 (M)

)
,

with

‖hWt,τ‖
L

2n
n+2 (M)

=


O
(
µ
n−2

2

)
if n < 10 + 2α

O
(
µ
n−2

2 | lnµ|
n+2
2n

)
if n = 10 + 2α

O
(
µ4+α

)
if n > 10 + 2α,

and

∥∥hWp
t,τ

∥∥
L

2n
n+2 (M)

=


O
(
µ2+α

)
if 2α < n− 2

O
(
µ
n+2

2 | lnµ|
n+2
2n

)
if 2α = n− 2

O
(
µ
n+2

2

)
if 2α > n− 2.

Now, let us estimate E1. In the first two cases, we argue exactly as in Lemma 3.1 in
[EP14] and we deduce that

‖E1‖
L

2n
n+2 (M)

=



O

(
µ
n−2

2

λ
n−2

2

)
if 3 ≤ n ≤ 7

O

(
µ3| lnµ| 58

λ3

)
if n = 8

O

(
µ3

λ
7
2

)
if n = 9

O

(
µ2n+2

n−2

λ
n−2

2

)
if n ≥ 10.

In the third case, arguing exactly as in Lemma 7.1 of [RV13] we get

‖E1‖
L

2n
n+2 (M)

= O

(
µ
n−2

2

λ
n−2

2

)
.

Collecting all the previous estimates we get the claim.

1.A.2 The linear theory

Proof of Lemma 1.3.2. We prove (1.25) by contradiction. If the statement were false,
there would exist sequences (λm)m∈N, (tm)m∈N, (τm)m∈N such that (up to subsequence)
λm ↓ 0, µm

λm
↓ 0, tm → t0 > 0 and τm → τ0 ∈ Rn and functions φm, `m with ‖φm‖H1

g (M) = 1,
‖`m‖

L
2n
n+2
→ 0, such that for scalars cmi one has

(1.35)


L(φm) = `m +

n∑
i=0

cmi Zi,tm,τm on M∫
M

φmZi,tm,τmdνg = 0, for all i = 0, . . . , n.
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We change variable setting y =
exp−1

ξm
(x)

µm
− τm. We remark that dg(x, ξ) = | exp−1

ξ (x)| and
we set

φ̃m(y) = µ
n−2

2
m χ(µm|y + τm|)φm

(
expξm(µm(y + τm))

)
y ∈ Rn.

Since ‖φm‖H1
g (M) = 1, we deduce that the scaled function (φ̃m)m is bounded in D1,2(Rn).

Up to subsequence, φ̃m converges weakly to a function φ̃ ∈ D1,2(Rn) and thus in Lp+1(Rn)
due to the continuity of the embedding of D1,2(Rn) into Lp+1(Rn).

Step 1: We show that cmi → 0 as m→∞ for all i = 0, . . . , n.

We test (1.35) against Zi,tm,τm . Integration by parts gives∫
M

〈∇gφm,∇gZi,tm,τm〉gdνg +

∫
M

[
Rg − (λ2

m + h)f ′(Uλm)
]
φmZi,tm,τmdνg

=

∫
M

`mZi,tm,τmdνg +
n∑
j=0

cmi

∫
M

Zj,tm,τmZi,tm,τmdνg.
(1.36)

Observe that ∣∣∣∣∫
M

`mZi,tm,τmdνg

∣∣∣∣ ≤ ‖`m‖L 2n
n+2 (M)

‖Zi,tm,τm‖L 2n
n−2 (M)

= o(1).

By change of variables we have

cmj

∫
M

Zj,tm,τmZi,tm,τmdνg = cmj

∫
Rn
ZjZidy + o(1) = cmj δij

∫
Rn
Z2
j dy + o(1),

where δij = 1 if i = j and 0 otherwise.
Writing h̃(y) = h

(
expξm(µm(y + τm))

)
, note also that

Rg

∫
M

φmZi,tm,τmdνg +

∫
M

hf ′(Uλm)φmZi,tm,τmdνg

= Rgµ
2
m

∫
Rn
φ̃mZidy +

∫
Rn

h̃

λ2
m

φ̃mf
′(U)Zidy + o(1).

On the other hand, standard computations show that∫
M

〈∇gφm,∇gZi,tm,τm〉gdνg − λ2
m

∫
M

f ′(Uλm)φmZi,tm,τmdνg

=

∫
Rn
∇φ̃m · ∇Zidy −

∫
Rn
f ′(U)φ̃mZidy + o(1)

= −
∫
Rn

(∆Zi + f ′(U)Zi)φ̃mdy + o(1).

Since Zi satisfies −∆Zi = f ′(U)Zi in Rn, passing to the limit into (1.36) yields

n∑
j=0

lim
m→∞

cmi δij

∫
Rn
Z2
j dy = o(1).

187



Chapter 1. The prescribed scalar curvature problem

Hence limm→∞ c
m
i = 0, for all i = 0, . . . , n.

Step 2: We show that φ̃ ≡ 0.

Given any smooth function ψ̃ with compact support in Rn we define ψ by the relation

ψ(x) = µ
−n−2

2
m χ(dg(x, ξ))ψ̃

(
exp−1

ξm
(x)

µm
− τm

)
x ∈M.

We test (1.35) against ψ. Integration by parts gives∫
M

〈∇gφm,∇gψ〉gdνg +

∫
M

[
Rg − (λ2

m + h)f ′(Uλm)
]
φmψdνg

=

∫
M

`mψdνg +
n∑
j=0

cmi

∫
M

Zj,tm,τmψdνg.
(1.37)

By Step 1 it is easy to see that

(1.38)

∫
M

`mψdνg +
n∑
j=0

cmi

∫
M

Zj,tm,τmψdνg → 0 as m→∞.

On the other hand, by the same arguments given in the proof of Step 1, we have∫
M

〈∇gφm,∇gψ〉gdνg +

∫
M

[
Rg − (λ2

m + h)f ′(Uλm)
]
φmψdνg

→
∫
Rn
∇φ̃ · ∇ψ̃dy −

∫
Rn
f ′(U)φ̃ψ̃dy

as m→∞. Hence, passing to the limit into (1.37) and integrating by parts we get

−
∫
Rn

(∆φ̃+ f ′(U)φ̃)ψ̃dy = 0 for all ψ̃ ∈ C∞c (Rn).

We conclude that φ̃ is a solution in D1,2(Rn) to −∆v = f ′(U)v in Rn. Thus φ̃ =∑n
j=0 αjZj, for certain scalars αj. But

0 =

∫
M

φmZi,tm,τmdνg =

∫
Rn
φ̃mZidνg for all i = 0, . . . , n.

Passing to the limit we get
∫
Rn φ̃Zidνg = 0 for i = 0, . . . , n, which implies αi = 0 for all i.

Step 3: We show that, up to subsequence, φm ⇀ 0 in H1
g (M).

Since (φm)m is bounded in H1
g (M), up to subsequence, φm converges weakly to a

function φ ∈ H1
g (M), and thus in Lp+1(M) due to the continuity of the embedding of

H1
g (M) into Lp+1(M). Moreover, φm → φ strongly in L2(M).
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We test equation (1.24) against a function ψ ∈ H1
g (M). Integration by parts gives

(1.37). Once again, by Step 1 it is easy to see that (1.38) holds. By weak convergence∫
M

〈∇gφm,∇gψ〉gdνg +Rg

∫
M

φmψdνg

→
∫
M

〈∇gφ,∇gψ〉gdνg +Rg

∫
M

φψdνg as m→∞.

Claim: −
∫
M

(λ2
m + h)f ′(Uλm)φmψdνg →

∫
M

hf ′(u0)φψdνg as m→∞.

Assuming the claim is true, passing to the limit into (1.37) gives∫
M

〈∇gφ,∇gψ〉gdνg +Rg

∫
M

φψdνg +

∫
M

hf ′(u0)φψdνg = 0.

Elliptic estimates show that φ is a classical solution to −∆gφ+Rgφ = +hf ′(u0)φ on M .
Lemma 1.2.1 yields φ ≡ 0.

Proof of the claim: Note that

λ2
m

∫
M

f ′(Uλm)φmψdνg = λ2
m

∫
M

[f ′(Uλm)− f ′(u0)]φmψdνg + λ2
m

∫
M

f ′(u0)φmψdνg.

We have∣∣∣∣λ2
m

∫
M

f ′(u0)φmψdνg

∣∣∣∣ ≤ λ2
m‖f ′(u0)‖L∞(M)‖φm‖L2(M)‖ψ‖L2(M) → 0 as m→∞.

We define

ψ̃(y) = µ
n−2

2
m χ(µm|y + τm|)ψ(expξm(µm(y + τm))) y ∈ Rn.

By (1.21) and change of variables we have∣∣∣∣∣λ2
m

∫
M

[f ′(Uλm)− f ′(u0)]φmψdνg

∣∣∣∣∣
≤ C

∫
Rn

1

(1 + |y|2)2
|φ̃m(y)||ψ̃(y)|dy

≤ C

∥∥∥∥ 1

(1 + | · |2)2

∥∥∥∥
L

n

2−ε (n−2)
2 (Rn)

‖φ̃m‖
L

2n
n−2

1
1+ε (Rn)

‖ψ̃‖
L

2n
n−2 (Rn)

,

for 0 < ε� 1. Note that ‖ψ̃‖
L

2n
n−2 (Rn)

≤ C‖ψ‖
L

2n
n−2 (M)

. By Step 2 ‖φ̃m‖
L

2n
n−2

1
1+ε (Rn)

→ 0

as m→∞, since 2n
n−2

1
1+ε

< 2n
n−2

. Thus

λ2
m

∫
M

f ′(Uλm)φmψdνg → 0 as m→∞.

On the other hand∫
M

hf ′(Uλm)φmψdνg =

∫
M

h[f ′(Uλm)− f ′(u0)]φmψdνg +

∫
M

hf ′(u0)φmψdνg.
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Dominated convergence theorem yields∫
M

hf ′(u0)φmψdνg →
∫
M

hf ′(u0)φψdνg as m→∞.

By (1.21) and change of variables we have∣∣∣∣∫
M

h[f ′(Uλm)− f ′(u0)]φmψdνg

∣∣∣∣ ≤ C
µ2
m

λ2
m

∫
Rn

|y|2

(1 + |y|2)2
|φ̃m(y)||ψ̃(y)|dy

We have

µ2
m

λ2
m

∫
Rn
χ(µm|y|)

|y|2

(1 + |y|2)2
|φ̃m(y)||ψ̃(y)|dy

≤ C
µ2
m

λ2
m

∥∥∥∥ χ(µm| · |)
(1 + | · |2)

∥∥∥∥
L
n
2 (Rn)

‖φ̃m‖
L

2n
n−2 (Rn)

‖ψ̃‖
L

2n
n−2 (Rn)

≤ C
µ2
m

λ2
m

| lnµm|‖φ̃m‖
L

2n
n−2 (Rn)

‖ψ̃‖
L

2n
n−2 (Rn)

By Step 2 and our choice of µm in terms of λm (see (1.7)) we conclude that∣∣∣∣∫
M

h[f ′(Uλm)− f ′(u0)]φmψdνg

∣∣∣∣ as m→∞.

The claim is thus proved.

Step 4: We show that ‖φm‖H1
g (M) → 0.

We take in (1.37) ψ = φm. We get∫
M

|∇gφm|2gdνg +

∫
M

[
Rg − (λ2

m + h)f ′(Uλm)
]
φ2
mdνg

=

∫
M

`mφmdνg +
n∑
j=0

cmi

∫
M

Zj,tm,τmφmdνg.
(1.39)

By Step 1–3, passing to the limit into (1.39) gives

lim
m→∞

∫
M

|∇gφm|2gdνg = 0.

Since φm ⇀ 0 in H1
g (M), we conclude

‖φm‖H1
g (M) → 0 as m→∞,

which yields a contradiction with the fact that ‖φm‖H1
g (M) = 1. This concludes the proof

of (1.25).

The existence and uniqueness of φλ solution to Problem 1.24 follows from the Fredholm
alternative. This finishes the proof of Lemma 1.3.3.
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1.A.3 The non-linear problem

Proof of Lemma 1.3.3. The result of Proposition 1.3.2 implies that the unique solution

φλ = Tt,τ (`) of (1.24) defines a continuous linear map Tt,τ from the space L
2n
n+2 (M) into

H1
g (M). Moreover, a standard argument shows that the operator Tt,τ is continuously

differentiable with respect to t and τ .
In terms of the operator Tt,τ , Problem 1.26 becomes

φλ = Tt,τ (−E + (λ2 + h)N(φλ)) =: A(φλ).

We define the space

H =

{
φ ∈ H1

g (M)

∫
M

φZi,t,τdνg = 0, for all i = 0, . . . , n

}
.

For any positive real number η, let us consider the region

Fη ≡
{
φ ∈ H ‖φ‖H1

g (M) ≤ η‖E‖
L

2n
n+2 (M)

}
.

From (1.25), we get

‖A(φλ)‖H1
g (M) ≤ C

(
‖E‖

L
2n
n+2 (M)

+ ‖N(φλ)‖
L

2n
n+2 (M)

)
.

Observe that
‖N(φλ)‖

L
2n
n+2 (M)

≤ C‖φλ‖p
L

2n
n−2 (M)

≤ C‖φλ‖H1
g (M),

and
‖N(φ1)−N(φ2)‖

L
2n
n+2 (M)

≤ Cηp−1‖E‖p−1

L
2n
n−2 (M)

‖φ1 − φ2‖H1
g (M),

for φ1, φ2 ∈ Fη. By (1.27), we get

‖A(φλ)‖H1
g (M) ≤ C‖E‖

L
2n
n−2 (M)

(
ηp‖E‖p−1

L
2n
n−2 (M)

+ 1

)
,

and
‖A(φ1)− A(φ2)‖H1

g (M) ≤ Cηp−1‖E‖p−1

L
2n
n−2 (M)

‖φ1 − φ2‖H1
g (M),

for φ1, φ2 ∈ Fη.
Since p − 1 ∈ (0, 1) for n ≥ 3 and ‖E‖

L
2n
n−2 (M)

→ 0 as λ → 0, it follows that if η is

sufficiently large and λ0 is small enough then A is a contraction map from Fη into itself,
and therefore a unique fixed point of A exists in this region.

Moreover, since A depends continuously (in the L
2n
n+2 -norm) on t, τ the fixed point

characterization obviously yields so for the map t, τ → φ. Moreover, standard computa-
tions give that the partial derivatives ∂tφ, ∂τiφ, i = 1, . . . , n exist and define continuous
functions of t, τ . Besides, there exists a constant C > 0 such that for all i = 1, . . . , n

(1.40) ‖∂tφ‖H1
g (M) + ‖∂τiφ‖H1

g (M) ≤ C ‖E‖
L

2n
n+2 (M)

+ ‖∂tE‖
L

2n
n+2 (M)

+ ‖∂τiE‖L 2n
n+2 (M)

.

That concludes the proof.
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1.A.4 The reduced energy

It is quite standard to prove that, as λ→ 0, Jλ (Uλ + φλ) = Jλ (Uλ)+h.o.t. C1-uniformly
on compact sets of (0,+∞)× Rn (see [EPV14]). It only remains to compute Jλ (Uλ) .

Lemma 1.A.2. Let a, b ∈ R+ be fixed numbers such that 0 < a < b and let K be a
compact set in Rn. There exists a positive number λ0 such that for any λ ∈ (0, λ0) the
following expansions hold C1−uniformly with respect to t ∈ [a, b] and τ ∈ K:

(a) if n ≥ 10, |Weylg(ξ)| 6= 0, and (1.10) holds, we have

Jλ(Uλ) = A0−

λ
2(n+2)−α(n−2)

α−2

A1|Weylg(ξ)|2gt4 − A2t
2+α

n∑
i=1

∫
Rn

ai
|yi + τi|2+α

(1 + |y|2)n
dy + o(1)

 ,
(b) if one of the following conditions is satisfied:

(i) 3 ≤ n ≤ 5 and (1.10) holds;

(ii) 6 ≤ n ≤ 9 and (1.13) holds;

(iii) n ≥ 10, (M, g) is locally conformally flat, and (1.17) holds;

then

Jλ(Uλ) = A0 − λ
(n−2−α)(n−2)

2α−n+6

A3u0(ξ)t
n−2

2 − A2t
2+α

n∑
i=1

∫
Rn

ai
|yi + τi|2+α

(1 + |y|2)n
dy + o(1)

 .
Here A1, A2 and A3 are constants only depending on n and A0 is defined in (1.32).

Proof. We prove the C0−estimate. The C1−estimate can be carried out in a similar way
(see [EPV14]).

Let us first prove (a) and (ii) and (iii) of (b). It is useful to recall that

α <
2n

n− 2
< n− 2 if n ≥ 10, α <

n2 − 6n+ 16

2(n− 2)
< n− 2 if n ≥ 6.

Observe that

Jλ(Uλ) =
1

2

∫
M

|∇gu0|2gdνg +
1

2

∫
M

c(n)Rgu
2
0dνg +

1

p+ 1

∫
M

hup+1
0 dνg︸ ︷︷ ︸

independent on µ and τ

+ λ−(n−2)

[
1

2

∫
M

|∇gWt,τ |2gdνg +
1

2

∫
M

c(n)RgW2
t,τdνg −

1

p+ 1

∫
M

Wp+1
t,τ dνg

]
︸ ︷︷ ︸

leading term in case (a)
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+ λ−
n−2

2

[∫
M

〈∇gWt,τ ,∇gu0〉dνg +

∫
M

c(n)RgWt,τu0dνg

]
− λ−

n−2
2

∫
M

hWt,τu
p
0dνg︸ ︷︷ ︸

=0

− λ−(n−2) 1

p+ 1

∫
M

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

+ λ2 1

p+ 1

∫
M

up+1
0 dνg︸ ︷︷ ︸

independent of µ and τ

− λ−(n−2)

∫
M

Wp
t,τ

(
λ
n−2

2 u0

)
dνg︸ ︷︷ ︸

leading term in case (b)

− λ−(n−2)

∫
M

Wt,τ

(
λ
n−2

2 u0

)p
dνg

+ λ−n
1

p+ 1

∫
M

h

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

+ λ−n
1

p+ 1

∫
M

hWp+1
t,τ dνg︸ ︷︷ ︸

leading term in every case

+ λ−n
∫
M

hWp
t,τ

(
λ
n−2

2 u0

)
dνg

Concerning the leading terms, we need to distinguish two cases. If the manifold is not
locally conformally flat, by Lemma 3.1 in [EP14] we deduce

λ−(n−2)

[
1

2

∫
M

|∇gWt,τ |2gdνg +
1

2

∫
M

c(n)RgW2
t,τdνg −

1

p+ 1
Wp+1

t,τ dνg

]
=

{
λ−(n−2)

[
A(n)−B(n)|Weylg(ξ)|2gµ4 + o(µ4)

]
if n ≥ 7

λ−(n−2)
[
A(n)−B(n)|Weylg(ξ)|2gµ4| lnµ|+ o(µ4| lnµ|)

]
if n = 6.

(1.41)

If the manifold is locally conformally flat, by Lemma 5.2 in [RV13] we get

λ−(n−2)

[
1

2

(∫
M

|∇gWt,τ |2gdνg + c(n)RgW2
t,τ

)
dνg −

1

p+ 1
Wp+1

t,τ dνg

]
= A(n)+O

(
µn−2

λn−2

)
.

Here A(n)and B(n) are positive constants depending only on n. Moreover, straightforward
computations lead to

(1.42) λ−(n−2)

∫
M

Wp
t,τ

(
λ
n−2

2 u0

)
dνg = u0(ξ)

µ
n−2

2

λ
n−2

2

αpn

∫
Rn

1

(1 + |y|2)
n+2

2

dy + o

(
µ
n−2

2

λ
n−2

2

)
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and

(1.43) λ−n
1

p+ 1

∫
M

hWp+1
t,τ dνg =

µ2+α

λn
αp+1
n

p+ 1

n∑
i=1

∫
Rn
ai
|yi + τi|2+α

(1 + |y|2)n
dy + o

(
µ2+α

λn

)
,

because α < n− 2.

Now, if n ≥ 10 and the manifold is not locally conformally flat, we choose µ = tλ
2

α−2

so that the leading terms are (1.41) and (1.43), namely

µ4

λn−2
∼ µ2+α

λn
and

µ
n−2

2

λ
n−2

2

= o

(
µ4

λn−2

)
.

On the other hand, if 6 ≤ n ≤ 9 we choose µ = tλ
n+2

2α−n+6 so that the leading terms are
(1.42) and (1.43), namely

µ
n−2

2

λ
n−2

2

∼ µ2+α

λn
and

µ4

λn−2
= o

(
µ
n−2

2

λ
n−2

2

)
, provided that α <

16

n− 2
.

The higher order terms are estimated only taking into account that the bubble Wt,τ

satisfies (1.34).
A simple computation shows that

λ−(n−2)

∫
M

Wt,τ

(
λ
n−2

2 u0

)p
dνg = O

(
µ
n−2

2

λ
n−2

2

λ2

∫
B(0,r)

1

|y − µτ |n−2
dy

)
= o

(
µ
n−2

2

λ
n−2

2

)
and

λ−n
∫
M

hWp
t,τ

(
λ
n−2

2 u0

)
dνg = O

(
µ
n+2

2

λ
n+2

2

∫
B(0,r)

1

|y − µτ |n−α
dy

)
= o

(
µ
n−2

2

λ
n−2

2

)
.

If n = 6 then p+ 1 = 3. It follows that

λ−(n−2) 1

p+ 1

∫
M

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg = 0

and

λ−n
1

p+ 1

∫
M

h

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg = 0.

If n ≥ 7, we get

λ−(n−2) 1

p+ 1

∫
M

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1
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−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

= λ−(n−2) 1

p+ 1

∫
Bg(ξ,

√
µ)

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

+ λ−(n−2) 1

p+ 1

∫
M\Bg(ξ,

√
µ)

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

= o

(
µ
n−2

2

λ
n−2

2

)
,

because by Lemma 1.A.1

λ−(n−2) 1

p+ 1

∫
Bg(ξ,

√
µ)

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

= λ−(n−2) 1

p+ 1

∫
Bg(ξ,

√
µ)

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ − (p+ 1)Wp

t,τ

(
λ
n−2

2 u0

)]
dνg

− λ−(n−2) 1

p+ 1

∫
Bg(ξ,

√
µ)

(
λ
n−2

2 u0

)p+1

dνg − λ−(n−2)

∫
Bg(ξ,

√
µ)

Wt,τ

(
λ
n−2

2 u0

)p
dνg

= O

(
λ−(n−2)

∫
Bg(ξ,

√
µ)

(
λ
n−2

2 u0

)p+1

dνg

)
+O

(
λ−(n−2)

∫
Bg(ξ,

√
µ)

Wp−1
t,τ

(
λ
n−2

2 u0

)2

dνg

)

+O

(
λ−(n−2)

∫
Bg(ξ,

√
µ)

Wt,τ

(
λ
n−2

2 u0

)p
dνg

)

= O

(
λ2

∫
Bg(ξ,

√
µ)

up+1
0 dνg

)
+O

(
µ2

∫
B(0,
√
µ)

1

|y − µτ |4
dy

)

+O

(
µ
n−2

2

λ
n−6

2

∫
B(0,
√
µ)

1

|y − µτ |n−2
dy

)

= O
(
λ2µ

n
2

)
+O

(
µ2+n−4

2

)
+O

(
µ
n−2

2

λ
n−6

2

µ

)
= o

(
µ
n−2

2

λ
n−2

2

)
,

since if µ is small enough, for any q < n, we have

(1.44)

∫
B(0,
√
µ)

1

|y − µτ |q
dy =

∫
B(−µτ,√µ)

1

|y|q
dy ≤

∫
B(0,2

√
µ)

1

|y|q
dy = O

(
µ
n−q

2

)
and

λ−(n−2)

p+ 1

∫
M\Bg(ξ,

√
µ)

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1
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−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

=
λ−(n−2)

p+ 1

∫
M\Bg(ξ,

√
µ)

[(
Wt,τ + λ

n−2
2 u0

)p+1

−
(
λ
n−2

2 u0

)p+1

− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

− λ−(n−2)

p+ 1

∫
M\Bg(ξ,

√
µ)

Wp+1
t,τ dνg − λ−(n−2)

∫
M\Bg(ξ,

√
µ)

Wp
t,τ

(
λ
n−2

2 u0

)
dνg

= O

(
λ−(n−2)

∫
M\Bg(ξ,

√
µ)

W2
t,τ

(
λ
n−2

2 u0

)p−1

dνg

)
+O

(
λ−(n−2)

p+ 1

∫
M\Bg(ξ,

√
µ)

Wp+1
t,τ dνg

)

+O

(
λ−

n−2
2

∫
M\Bg(ξ,

√
µ)

Wp
t,τdνg

)

= O
(
λ−(n−4)µ

n
2

)
+O

(
−λ−(n−2)µ

n
2

)
+O

(
µ
n
2

λ
n−2

2

)
= o

(
µ
n−2

2

λ
n−2

2

)
,

Here, we used the fact that

µ
n
2

λn−2
= o

(
µ
n−2

2

λ
n−2

2

)
,

and our choice

α <
n2 − 6n+ 16

2(n− 2)
if 7 ≤ n ≤ 9,

n− 6

2
< α <

n2 − 6n+ 16

2(n− 2)
if n ≥ 10 and (M, g) is locally conformally flat,

α <
2n

n− 2
if n ≥ 10 and (M, g) is not locally conformally flat.

In a similar way, if n ≥ 7, we get

λ−n
1

p+ 1

∫
M

h

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

= λ−n
1

p+ 1

∫
Bg(ξ,

√
µ)

h

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

+ λ−n
1

p+ 1

∫
M\Bg(ξ,

√
µ)

h

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

= o

(
µ2+α

λn

)
,
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because by Lemma 1.A.1

λ−n
1

p+ 1

∫
Bg(ξ,

√
µ)

h

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

= λ−n
1

p+ 1

∫
Bg(ξ,

√
µ)

h

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ − (p+ 1)Wp

t,τ

(
λ
n−2

2 u0

)]
dνg

− λ−n 1

p+ 1

∫
Bg(ξ,

√
µ)

h
(
λ
n−2

2 u0

)p+1

dνg − λ−n
∫
Bg(ξ,

√
µ)

hWt,τ

(
λ
n−2

2 u0

)p
dνg

= O

(
λ−n

∫
Bg(ξ,

√
µ)

h
(
λ
n−2

2 u0

)p+1

dνg

)
+O

(
λ−n

∫
Bg(ξ,

√
µ)

hWp−1
t,τ

(
λ
n−2

2 u0

)2

dνg

)

+O

(
λ−n

∫
Bg(ξ,

√
µ)

hWt,τ

(
λ
n−2

2 u0

)p
dνg

)

= O

(∫
Bg(ξ,

√
µ)

(dg(x, ξ))
α+2 dνg

)
+O

(
µ2

λ2

∫
B(0,
√
µ)

|y|α+2

|y − µτ |4
dy

)

+O

(
µ
n−2

2

λ
n−2

2

∫
B(0,
√
µ)

|y|α+2

|y − µτ |n−2
dy

)

= O
(
µ
α+2+n

2

)
+O

(
µ
α+2+n

2

λ2

)
+O

(
µ
n−2

2

λ
n−2

2

µ
α+4

2

)
= o

(
µ2+α

λn

)

Here, we used (1.44) and

λ−n
1

p+ 1

∫
M\Bg(ξ,

√
µ)

h

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

=
λ−n

p+ 1

∫
M\Bg(ξ,

√
µ)

h

[(
Wt,τ + λ

n−2
2 u0

)p+1

−
(
λ
n−2

2 u0

)p+1

− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

− λ−n

p+ 1

∫
M\Bg(ξ,

√
µ)

hWp+1
t,τ dνg − λ−n

∫
M\Bg(ξ,

√
µ)

hWp
t,τ

(
λ
n−2

2 u0

)
dνg

= O

(
λ−n

∫
M\Bg(ξ,

√
µ)

hW2
t,τ

(
λ
n−2

2 u0

)p−1

dνg

)
+O

(
λ−n

∫
M\Bg(ξ,

√
µ)

hWp+1
t,τ dνg

)

+O

(
λ−

n+2
2

∫
M\Bg(ξ,

√
µ)

hWp
t,τdνg

)
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=


O

(
µ
α+2+n

2

λn−2

)
if α < n− 6

O

(
µ
α+2+n

2

λn−2

)
| lnµ| if α = n− 6

O
(
µn−2

λn−2

)
if α > n− 6

+O

(
µ
α+2+n

2

λn

)
+O

(
µ
n+2

2

λ
n+2

2

)

= o

(
µ2+α

λn

)
because α < n− 2.

Collecting the previous computations we get the result.

Let us now prove (i) of (b). Observe that

Jλ(Uλ)

=
1

2

∫
M

|∇gu0|2gdνg +
1

2

∫
M

c(n)Rgu
2
0dνg +

1

p+ 1

∫
M

hup+1
0 dνg︸ ︷︷ ︸

independent of µ and τ

+ λ−(n−2)

[
1

2

∫
M

|∇gWt,τ |2gdνg +
1

2

∫
M

c(n)RgW2
t,τdνg −

1

p+ 1

∫
M

Wp+1
t,τ dνg

]
+ λ−

n−2
2

[∫
M

〈∇gWt,τ ,∇gu0〉+

∫
M

c(n)RgWt,τu0

]
dνg − λ−

n−2
2

∫
M

hWt,τu
p
0dνg︸ ︷︷ ︸

=0

− λ−(n−2) 1

p+ 1

∫
M

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

+ λ2 1

p+ 1

∫
M

up+1
0 dνg︸ ︷︷ ︸

independent of µ and τ

− λ−(n−2)

∫
M

Wp
t,τ

(
λ
n−2

2 u0

)
dνg︸ ︷︷ ︸

leading term

− λ−(n−2)

∫
M

Wt,τ

(
λ
n−2

2 u0

)p
dνg

+ λ−n
1

p+ 1

∫
M

h

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

+ λ−n
1

p+ 1

∫
M

hWp+1
t,τ dνg︸ ︷︷ ︸

leading term

+ λ−n
∫
M

hWp
t,τ

(
λ
n−2

2 u0

)
dνg
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Concerning the leading terms, straightforward computations lead to

λ−(n−2)

∫
M

Wp
t,τ

(
λ
n−2

2 u0

)
dνg = u0(ξ)

µ
n−2

2

λ
n−2

2

αpn

∫
Rn

1

(1 + |y|2)
n+2

2

dy + o

(
µ
n−2

2

λ
n−2

2

)

and

λ−n
1

p+ 1

∫
M

hWp+1
t,τ dνg =

µ2+α

λn
αp+1
n

p+ 1

n∑
i=1

∫
Rn

ai
|yi + τi|2+α

(1 + |y|2)n
dy + o

(
µ2+α

λn

)
,

because α < n− 2.
The higher order terms are estimated as follows. By [MPV09], we deduce that

λ−(n−2)

[
1

2

∫
M

|∇gWt,τ |2gdνg +
1

2

∫
M

c(n)RgW2
t,τdνg −

1

p+ 1

∫
M

Wp+1
t,τ dνg

]

= λ−(n−2)A(n) +


O
(µ
λ

)
if n = 3

O

(
µ2| lnµ|
λ2

)
if n = 4

O

(
µ2

λ3

)
if n = 5

= λ−(n−2)A(n) + o

(
µ
n−2

2

λ
n−2

2

)
,

where A(n) is a constant that only depends on n. A simple computation shows that

λ−(n−2)

∫
M

Wt,τ

(
λ
n−2

2 u0

)p
dνg = O

(
µ
n−2

2

λ
n−2

2

λ2

∫
Bg(ξ,r)

1

(dg(x, ξ))
n−2dνg

)
= o

(
µ
n−2

2

λ
n−2

2

)

and

λ−n
∫
M

hWp
t,τ

(
λ
n−2

2 u0

)
dνg = O

(
µ
n+2

2

λ
n+2

2

∫
Bg(ξ,r)

1

(dg(x, ξ))
n−αdνg

)

=


O

(
µ
n+2

2

λ
n+2

2

)
if α > 0

O

(
µ
n+2

2

λ
n+2

2
| lnµ|

)
if α = 0

= o

(
µ
n−2

2

λ
n−2

2

)
.

Finally, by using that∣∣(a+ b)p+1 − ap+1 − bp+1 − (p+ 1)abp − (p+ 1)apb
∣∣ ≤ c(n)

(
a2bp−1 + ap−1b2

)
,
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which holds if p ≥ 2 (this is true if n = 3, 4, 5) for any a, b ≥ 0, we get

λ−(n−2) 1

p+ 1

∫
M

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

= O

(
λ−(n−2)

∫
M

W2
t,τ

(
λ
n−2

2 u0

)p−1

dνg

)
+O

(
λ−(n−2)

∫
M

Wp−1
t,τ

(
λ
n−2

2 u0

)2

dνg

)
= O

(
λ−(n−4)

∫
M

W2
t,τdνg

)
+O

(∫
M

Wp−1
t,τ dνg

)

=


O (λµ) if n = 3
O (µ2| lnµ|) if n = 4
O (λ−1µ2) if n = 5

+


O (µ) if n = 3
O (µ2| lnµ|) if n = 4
O (µ2) if n = 5

= o

(
µ
n−2

2

λ
n−2

2

)

and

λ−n
1

p+ 1

∫
M

h

[(
Wt,τ + λ

n−2
2 u0

)p+1

−Wp+1
t,τ −

(
λ
n−2

2 u0

)p+1

−(p+ 1)Wp
t,τ

(
λ
n−2

2 u0

)
− (p+ 1)Wt,τ

(
λ
n−2

2 u0

)p]
dνg

= O

(
λ−n

∫
M

hW2
t,τ

(
λ
n−2

2 u0

)p−1

dνg

)
+O

(
λ−n

∫
M

hWp−1
t,τ

(
λ
n−2

2 u0

)2

dνg

)
= O

(
λ−(n−2)

∫
M

hW2
t,τdνg

)
+O

(
λ−2

∫
M

hWp−1
t,τ dνg

)
= O

(
λ−(n−2)µn−2

)
+O

(
λ−2µ2

)
= o

(
µ
n−2

2

λ
n−2

2

)
.

Collecting the previous computations we get the result.
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multiplicité pour les problèmes de Nirenberg et Yamabe, Indiana Univ. Math. J. 41 (1992),
no. 2, 377–407. MR1183349

[HV93] E. Hebey and M. Vaugon, Le problème de Yamabe équivariant, Bull. Sci. Math. 117 (1993),
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Résumé

Cette thèse est consacrée à l’analyse des singularités apparaissant dans des équations
différentielles partielles elliptiques non linéaires découlant de la physique mathématique,
de la biologie mathématique, et de la géométrie conforme. Les thèmes abordés sont
le modèle de supraconductivité de Ginzburg-Landau, le problème de Lin-Ni-Takagi, le
modèle de Keller-Segel de la chimiotaxie, et le problème de courbure scalaire prescrite.

Le modèle de Ginzburg-Landau est une description phénoménologique de la supracon-
ductivité. Une caractéristique essentielle des supraconducteurs de type II est la présence
de vortex, qui apparaissent au-dessus d’une certaine valeur de la force du champ magnétique
appliqué, appelée premier champ critique. Nous nous intéressons au régime de ε petit, où
ε est l’inverse du paramètre de Ginzburg-Landau (une constante du matériau). Dans ce
régime, les vortex sont au premier ordre des singularités topologiques de co-dimension 2.
Nous fournissons une construction quantitative par approximation de vortex en dimension
trois pour l’énergie de Ginzburg-Landau, ce qui donne une approximation des lignes de
vortex ainsi qu’une borne inférieure pour l’énergie, qui est optimale au premier ordre et
vérifiée au niveau ε. En utilisant ces outils, nous analysons ensuite le comportement des
minimiseurs globaux en dessous et proche du premier champ critique. Nous montrons
que, en dessous de cette valeur critique, les minimiseurs de l’énergie de Ginzburg-Landau
sont des configurations sans vortex et que les minimiseurs, proche de cette valeur, ont une
vorticité bornée.

Le problème de Lin-Ni-Takagi apparait comme l’ombre (dans la littérature anglaise
“shadow”) du système de Gierer-Meinhardt d’équations de réaction-diffusion qui modélise
la formation de motifs biologiques. Ce problème est celui de trouver des solutions posi-
tives d’une équation critique dans un domaine régulier et borné de dimension trois, avec
une condition de Neumann homogène au bord. Dans cette thèse, nous construisons des
solutions à ce problème présentant un comportement explosif en un point du domaine,
lorsqu’un certain paramètre converge vers une valeur critique.

La chimiotaxie est l’influence de substances chimiques dans un environnement sur le
mouvement des organismes. Le modèle de Keller-Segel pour la chimiotaxie est un système
de diffusion-advection composé de deux équations paraboliques couplées. Ici, nous nous
intéressons aux états stationnaires radiaux de ce système. Nous sommes alors amenés à
étudier une équation critique dans la boule unité de dimension 2, avec une condition de
Neumann homogène au bord. Dans cette thèse, nous construisons plusieurs familles de
solutions radiales qui explosent à l’origine de la boule, et se concentrent sur le bord et/ou
sur une sphère intérieure, lorsqu’ un certain paramètre converge vers zéro.

Enfin, nous étudions le problème de la courbure scalaire prescrite. Étant donnée
une variété Riemannienne compacte de dimension n, nous voulons trouver des métriques
conformes dont la courbure scalaire soit une fonction prescrite, qui dépend d’un petit
paramètre. Nous supposons que cette fonction a un point critique qui satisfait une hy-



pothèse de platitude appropriée. Nous construisons plusieurs métriques, qui explosent
lorsque le paramètre converge vers zéro, avec courbure scalaire prescrite.

Mots-clés: Ginzburg-Landau, premier champ critique, estimations au niveau ε, vor-
tex, construction d’approximation de vortex, problème de Lin-Ni-Takagi, réduction de
Lyapunov-Schmidt, fonction de Robin, équation de Keller-Segel, courbure scalaire pre-
scrite, phénomènes d’explosion.



Abstract

This thesis is devoted to the analysis of singularities in nonlinear elliptic partial dif-
ferential equations arising in mathematical physics, mathematical biology, and conformal
geometry. The topics treated are the Ginzburg-Landau model of superconductivity, the
Lin-Ni-Takagi problem, the Keller-Segel model of chemotaxis, and the prescribed scalar
curvature problem.

The Ginzburg-Landau model is a phenomenological description of superconductivity.
An essential feature of type-II superconductors is the presence of vortices, which appear
above a certain value of the strength of the applied magnetic field called the first critical
field. We are interested in the regime of small ε, where ε is the inverse of the Ginzburg-
Landau parameter (a material constant). In this regime, the vortices are at main order
co-dimension 2 topological singularities. We provide a quantitative three-dimensional
vortex approximation construction for the Ginzburg-Landau energy, which gives an ap-
proximation of vortex lines coupled to a lower bound for the energy, which is optimal to
leading order and valid at the ε-level. By using these tools we then analyze the behavior of
global minimizers below and near the first critical field. We show that below this critical
value, minimizers of the Ginzburg-Landau energy are vortex-free configurations and that
near this value, minimizers have bounded vorticity.

The Lin-Ni-Takagi problem arises as the shadow of the Gierer-Meinhardt system
of reaction-diffusion equations that models biological pattern formation. This problem
is that of finding positive solutions of a critical equation in a bounded smooth three-
dimensional domain, under zero Neumann boundary conditions. In this thesis, we con-
struct solutions to this problem exhibiting single bubbling behavior at one point of the
domain, as a certain parameter converges to a critical value.

Chemotaxis is the influence of chemical substances in an environment on the movement
of organisms. The Keller-Segel model for chemotaxis is an advection-diffusion system
consisting of two coupled parabolic equations. Here, we are interested in radial steady
states of this system. We are then led to study a critical equation in the two-dimensional
unit ball, under zero Neumann boundary conditions. In this thesis, we construct several
families of radial solutions which blow up at the origin of the ball and concentrate on the
boundary and/or an interior sphere, as a certain parameter converges to zero.

Finally, we study the prescribed scalar curvature problem. Given an n-dimensional
compact Riemannian manifold, we are interested in finding bubbling metrics whose scalar
curvature is a prescribed function, depending on a small parameter. We assume that this
function has a critical point which satisfies a suitable flatness assumption. We construct
several metrics, which blow-up as the parameter goes to zero, with prescribed scalar
curvature.

Keywords: Ginzburg-Landau, first critical field, ε-level estimates, vortices, vortex ap-
proximation construction, Lin-Ni-Takagi problem, Lyapunov-Schmidt reduction, Robin’s
function, Keller-Segel equation, internal layer, boundary layer, prescribed scalar curva-
ture, blow-up phenomena.




