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Chapter 1
Introduction générale

Ce manuscrit présente mes travaux de recherche, faits de Septembre 2015 a Mai 2018, au cours
de ma these sous la direction de Hans Henrik Rugh.

Le theme principal porte sur le développement de théorémes perturbatifs en théorie ergodique
des systeémes hyperboliques. En d’autres termes, il s’agit de comprendre comment les propriétés
statistiques d’une dynamique présentant des aspects chaotiques évoluent sous I'influence de per-
turbations extérieures.

Ces systémes chaotiques se caractérisent par la présence de la propriété de sensibilité auz
conditions initiales

3D >0, Va#yec X%3IN=N(z,y), dTz, TNy) > D (1.0.1)

En d’autres termes, deux orbites issues de points distincts s’éloignent exponentiellement vite
I'une de l'autre, jusqu’a un certain point. Cela rend peu pertinente I’étude topologique des
orbites individuelles et 1égitime une approche probabiliste de 1’étude de tels systémes. Une telle
étude probabiliste repose sur la méthode fonctionnelle, c’est-a-dire les propriétés spectrales de
Popérateur de transfert (2.2.7), (2.2.11) et les liens qu’elles entretiennent avec le comportement
ergodique du systeme : construction de mesures physiques et d’états d’équilibres, étude des
fonctions de corrélations et vitesse de mélange, théorémes limites. . .

Nous faisons quelques rappels sur la méthode fonctionnelle en §2.2.

Les travaux ici présentés portent essentiellement sur les applications présentant la propriété de
dilatation, c’est-a-dire augmentant les petites distances. Plus précisément, il s’agit d’applications
de classe C", r > 1 tel qu’il existe A > 1 vérifiant

VYo € M, Yv € T, M, ||DT(x).v]] > A|v]| (2.1.4)

Ces systeémes sont ’exemple le plus simple de dynamique chaotique au sens de (1.0.1), avec
une structure d’orbite véritablement complexe et des phénomeénes de récurrence non triviaux [483,

§1.7, p.41].

Au nombre des systémes dilatants présentant une "pertinence physique' (c’est-a-dire étudié
par d’autres que les mathématiciens), on peut citer les modeéles de turbulence de Pommeau-
Manneville ou encore les sous-décalages de type fing, initialement issus d’un modeéle de physique
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statistique de spins a 1’équilibre. Pour une discussion plus poussée des propriétés de tels systeémes,
ainsi que des exemples, nous renvoyons aux §2.1 et §2.4.

Au registre des critiques que 'on peut légitimement adresser a ce choix, on peut alléguer du
peu de pertinence physique d’un modele ne faisant intervenir que des applications dilatantes :
bien souvent les modeles issus de la physique, de la chimie, de la climatologie ou autres font
appel a des applications "Axiom A" ou partiellement hyperboliques.

Toutefois, le choix d’étudier des modeles dilatants plutdt que ceux-ci se justifie par la présence
de propriétés chaotiques similaires a celle de modeles plus complexes, mais dans un contexte tech-
niquement plus simple ou les idées-force se comprennent d’autant plus facilement. Par exemple,
lopérateur de transfert d’une application dilatante a de "bonnes" propriétés spectrales sur les es-
paces fonctionnels classiques (Sobolev [6, 75] ou Hélder [63, 64, 41]), alors que pour voir de telles
propriétés émerger pour des systemes Anosov, il faut travailler sur des espaces de distributions
anisotropes ad-hoc, dont la construction est beaucoup plus technique et I'apparition nettement
plus récente ([39, 40] [8]).

Par ailleurs, la semi-conjugaison entre systémes Anosov et sous-décalage de type fini, au coeur
du formalisme thermodynamique, justifie qu’historiquement on se soit intéressé aux systémes
dilatants.

Essayons de formaliser notre propos : étant donné r > 1 et (—a,a) C R un intervalle ouvert,
nous considérons une famille (7¢)cc(—q,q) d’applications C” sur une variété Riemannienne M, et
telle que

e Pour chaque € € (—a,a), T, admet une mesure physique v,(cf. §2.2 pour une définition)
e L’application € € (—a,a) — T, € C"(M) est de classe C* pour un s > 1.

Nous dirons que le systéme a la propriété de réponse linéaire si € € (—a,a) — v, est C! en
€ = 0 au sens des distributions, i.e il existe une mesure yu telle que pour toute ¢ € CY(M)

[ o] f

Illustrons tout de suite les notions précédentes en présentant un résultat de réponse linéaire
dans le cas le plus favorable, celui d’une perturbation analytique (i.e s = w) d’une application
uniformément dilatante du cercle :

Theorem 1.1
Soit a > 0, et pour € € (—a,a), on considére T. € A(S',St), définie par
T.(z) =2z + esin(2rxz) mod 1 (1.0.3)
Alors si on note L lopérateur de transfert associé d T., on a (quitte ¢ réduire a > 0)

(i) Pour chaque € € (—a,a), T, admet une mesure de probabilité invariante absolument con-
tinue par rapport a la mesure de Lebesgue, de densité he € A(SY).

(ii) L’application e € (—a,a) — h. € A(S) est analytique, et on a la formule suivante pour sa
dérivée en O :
[Ochele—o = (1 — L0) ™" [8cLe]=oho (1.0.4)
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Ce résultat fait partie du folklore : on en retrouve la trace dans [4, Exercice 2.25, p.135], ou
encore dans [61] par une méthode différente. Sa preuve repose sur les remarques suivantes

e [’existence de la densité de la mesure physique h. découle de la théorie classique des
perturbations (plus précisément de [47, IV, §3, Thm 3.12 et VII, § Thm 1.8]), car c’est un
point fixe de 'opérateur de transfert L..

e c € (—a,a) — L. € L(A(S!)) étant analytique, le second point provient du théoréme des
fonctions implicites pour applications analytiques sur des espaces de Banach.

Ce second point garantit que dans le cas décrit par le théoréme, il y a bien réponse linéaire,
et méme régularité en un sens plus fort, puisque c’est la densité de la mesure invariante qui est
analytique par rapport aux parametres.

La formule (1.0.4), dite formule de réponse linéaire, mérite quelques explications : le terme
de droite représente le changement quantitatif de la mesure physique lorsque la dynamique passe
de Ty a T,. 1l fait intervenir la résolvante de 'opérateur de transfert en 1, a priori mal définie
puisque celui-ci admet hg = 1 pour point fixe. Toutefois, en choisissant une bonne normalisation
pour h, on peut s’assurer que [0.L]c=oho se trouve dans un sous-espace ol cette résolvante est
bien définie (cf §2.4).

Malheureusement, dés que l'on sort du cadre analytique, I'opérateur de transfert, si naturel
pour décrire les propriétés statistiques du systéme, a une limitation intrinseque liée au fait qu’il
soit un opérateur de composition : cette limitation, c’est la perte de régularité, c’est-a-dire
I’absence de régularité par rapport aux parametres dans la topologie d’opérateur.

Pour illustrer notre propos, considérons I’exemple suivant : soit 0 < a < 1/4 et M, 'opérateur
de composition défini pour ¢ € C*([—1,1]) et € € [—a, a] par

Md(z) = o (e + g) (1.0.5)

Il apparait que si chaque M. est bien borné sur C'([—1,1]), Papplication € € [—a,a] — M, €
L(CY([-1,1])) n’est méme pas continue... En revanche, I’application

€ € [~a,a] — M, € L(C*([-1,1]),C°([-1,1])

est continue, et méme C!.

Ce phénomene se retrouve au niveau de 'opérateur de transfert lorsqu’on considere des per-
turbations en régularité finie. En effet, reprenons I'exemple du 1.1, modifié de la facon suivante
: au lieu de considérer une perturbation analytique de la dynamique Ty, considérons une pertur-
bation C! (i.e telle que € € (—a,a) — T. € C3(S,S') soit C1), suffisamment petite pour que 7
soit également une application uniformément dilatante de degré 2, de branches inverses 11 (¢) et
a(€). Par exemple, on peut prendre la fonction induite sur le cercle S' par

u(x) = sin(27x)
T.(z) =2z + 6u(x)5 sin () mod 1 (1.0.6)

L’opérateur de transfert de T, s’écrit alors



 oin(en) | dinle)
L) = i en) T T (dalea))

Comme dans 'exemple (1.0.5), 'application € € (—a,a) — L. € L(C?(S')) n’est pas continue.

La limitation apparaissant dans les exemples précédents sont typiques du genre de probléme
technique que 'on rencontre lors de I’étude de probleémes perturbatifs formulés dans le cadre
fonctionnel. Nous verrons comment surmonter ce probleme dans le chapitre 3, en adaptant I'idée
qui se dégage de lexemple (1.0.5) : échanger la régularité de 'espace fonctionnel sur lequel
Iopérateur agit contre de la régularité par rapport aux parametres.

Plus précisément, aprés avoir introduit la notion d’application différentiable graduée (3.1),
nous montrons le théoreme 3.1. Ce résultat est en un sens la base technique des travaux présentés
ici, puisqu’il permet une étude systématique des points fixes d’applications ayant une perte de
régularité. Nous présentons également une généralisation, le théoréme 3.2, afin d’étudier les cas
de différentiabilité d’ordre plus grand que 1.

Cet apport théorique nous permet de présenter au chapitre 4 une étude de la régularité par
rapport aux perturbations des propriétés statstiques des applications C”, r > 1, uniformément
dilatante sur une variété Riemannienne compacte, connexe de dimension finie.

En particulier, nous pouvons montrer le théoreme suivant :

Theorem 1.2
Soit T, € C3(S*,St) définie par (1.0.6). Alors on a (quitte a réduire a > 0):

e Pour chaque € € (—a,a), Te admet une mesure de probabilité invariante et absolument
continue, de densité h. € C*(S!).

o L’application € € (—a,a) — he € CY(SY) est dérivable, et on a la formule suivante pour sa
dérivée en 0
[aehﬁ]éio = (]l - EO)_1[86£6]6:Oh0 (412)

Encore une fois, le second point du théoréeme est une version forte de réponse linéaire. Par
rapport au théoréme 1.1, notons que, comme annoncé, il faut voir la densité invariante comme
une fonction moins réguliére que ce qu’elle n’est (C! au lieu de C?) pour gagner la régularité C!
par rapport aux parametres.

Le théoréme 1.2 fait encore une fois partie du folklore : on le retrouve dans [32, Lemma 1.2
ou dans [2, Theorem 2.2]. Nous présentons en §2.5 une bréve recension des méthodes de preuve
de 1.2 : méthode "pédestre" de [2], ou la méthode plus subtile de Gouézel-Liverani [39, Theorem

8.1], dite de perturbation spectrale faible, et qui a le mérite de se généraliser & toutes les situations
ou la régularité et ’hyperbolicité sont uniformes (voir par exemple [0, §2.5 et §5.3] ou les articles
originaux [39, 40]).

Plus généralement, les résultats présentés au chapitre 4 ne sont pas spécialement nouveaux.
La ou notre approche donne des résultats véritablement inédits concerne les produits aléatoires
d’applications dilatantes (chapitre 5),

T =Ty, ... T, (1.0.7)
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dirigés par un systéme dynamique mesurable (€2, 7, P). Ce formalisme permet I’étude de systémes
dynamique non-autonomes. Dans ce cadre 'objet dynamiquement pertinent devient le cocycle
d’opérateurs de transferts

LM = Loy .. Lo

et plus spécifiquement son spectre d’Oseledets-Lyapunov [29, 18], qui joue un rdle similaire &
celui du spectre de 'opérateur de transfert dans I’étude des propriétés statistiques d’un systéme
dynamique autonome.
En particulier il devient impossible d’utiliser ’approche spectrale de Gouézel-Keller-Liverani
pour étudier les problémes de perturbations des mesures (aléatoires) invariantes d’un tel systéme
non-autonome.

En combinant notre approche "fonctions implicites" (théorémes 3.1, 3.2) avec la théorie des
contractions de cones (pour laquelle nous donnons des rappels dans appendice A), nous constru-
isons 'unique mesure stationnaire absolument continue d’un produit aléatoire (1.0.7), et étudions
la régularité de sa densité aléatoire par rapport & un nombre fini de parameétres (théorémes 5.1,
5.2). Nous établissons également une formule de réponse linéaire dans ce contexte, & la fois
quenched (5.2.27 dans le théoreme 5.4) et annealed (5.2.39 dans le théoréme 5.5) : cest a la
connaissance de 'auteur la premiere fois que la réponse linéaire est établie pour des systémes
dynamiques non-autonomes.

Voici un exemple de théoréme que nous pouvons établir avec les outils du chapitre 5 : on

construit un produit aléatoire d’applications dilatantes du cercle de la maniére suivante. Si I'on

note
u(x) = sin(27x)

T.(z) = 2z + eu(x)® sin (u(lx)> mod 1 (1.0.8)

S.(x) = 3z + eu(xr)’ sin <u(1x)> mod 1

et que l'on considére de décalage de Bernoulli 7 sur Q = {0,1}%, muni de la mesure de
Bernoulli' ((1 — p)dp + pd1)®Z, on peut définir une application dilatante aléatoire T, ., w =
(wn)nez € {0,1}% sur le cercle S! par

Te(x) siwg =0

T e(x) := {Sé(x) owg = 1 (1.0.9)

On a alors le résultat suivant :
Theorem 1.3
Considérons le produit aléatoire engendré par (1.0.9)

TS = Trntgye . Te (1.0.10)

)

1l existe a > 0 tel que :

Io’est-a-dire la mesure de Markov associée au couple

1_
((1; g),<p,1-p>)

Plus généralement on peut prendre la mesure de Markov associé & n’importe quelle matrice stochastique P,
I'important étant que le systéme résultant soit ergodique.

11



e Pour chaque € € (—a,a), le skew-product F.(w,z) = (Tw, T, (x)) admet une unique
probabilité invariante, absolument continue, de densité aléatoire h, . € C*(St).

De plus, esssup,,cq [|hu,cllc2 sty < +o0.

o L’application € € (—a,a) — he € L>=(Q,CH(SY)) est différentiable, et on a les formules de
réponse linéaire suivantes :

0. [ / qﬁhw,edm] =3 / $oT™), DL ivohr—mivwodm  (1.0.11)
M =0 n—o/M ’

O [/ ¢hw,edmd1P] => / / ¢ 0 T 0Ly 1001 odmdP (1.0.12)
QJM e=0 n—pJ0JIM ’

Nous établissons également des résultats de régularité pour diverses quantités dynamiques
d’intérét : régularité de la variance dans le théoréme limite central vérifié par un produit aléatoires
d’applications dilatantes du tore (theoréme 5.3), régularité de la dimension de Hausdorff pour le
repeller associé a un produit aléatoire de cookies-cutters (§ 5.2.3).

12



Chapter 2

Préliminaires

2.1 QUELQUES PROPRIETES DES SYSTEMES DILATANTS

Soit (M, d) un espace métrique compact, connexe. Nous définissons une application (uniformé-
ment) dilatante continue comme une T : M — M continue, telle qu’il existe A > 1 et b > 0 pour
lesquels

d(T(x),T(z") > M\d(z,2") dés que d(x,2") < b (2.1.1)

Il est clair qu’un telle application satisfait (1.0.1). Donnons quelques exemples de systémes
satisfaisant cette propriété :

L’application de doublement de I’angle, définie sur le cercle S' par

T(x) =2z mod1
Plus généralement, toute A € M4(Z), telle que o(A) C {z,|z| > 1} induit une application
dilatante A : T¢ — T,

Toute 7" : [0,1] — [0,1] de classe C", r > 1, telle que infyy ;7 |T"| > 1 est une application
dilatante.

Soit I, I C [0,1] deux intervalles disjoints, et soit 7' : I; U Iy — [0,1] de classe C? telle
que :

— Tz, est affine pour i = 0,1
— T(I;) =[0,1] pour i = 0,1
- ian,i |T/| >1

Alors T est une application uniformément dilatante.

Soit I un ensemble fini, et soit 7 une matrice de taille || x |I], telle que 7; ; € {0,1} pour
tout (4,7) € I2. Considérons I'ensemble des suites admissibles

Y1 = {2 = (Tn)nen, Tn €1, T Tngpr — 1}
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et 7: X7 —= X5 le sous-décalage associé, défini par

((2))n = (Zn41)

Siz = (zn)nso € IV et y = (yn)n>0 € IV, on note k(x,y) := min{n > 0, x, # yn}, et
pour # € (0,1) on définit la distance dy sur I par

oz, y) = 65

Alors (X7,d) est une partie compacte de (IV, d), et le sous-décalage T : ¥; — ¥ est continu
et uniformément dilatant.

Certains systémes vérifient une propriété trés proche de (2.1.1), les applications non-uniformément

dilatantes. Elles vérifient (2.1.1), sauf en un point.
Un exemple important est le suivant : considérons la famille d’applications (Tu)ae(0,1), dites
intermittentes, définie sur [0, 1] par

x(1+2%%)si0<zx<1/2
T (z) == (2.1.2)
20—1sil/2<2<1
Chaque T, admet une discontinuité en 1/2, envoie chacun des deux intervalles [0,1/2] et
(1/2,1] sur [0, 1] tout entier, a une branche de droite affine et uniformément dilatante (de dérivée
plus grande que 2), mais la branche de gauche admet en 0 un point fixe neutre (i.e 7.,(0) = 1) :
ainsi T, n’est pas uniformément dilatante.

Nous allons dans cette section établir quelques unes des propriétés topologiques et géométriques
élémentaires de la classe des systemes uniformément dilatants. De bonnes références sur le sujet
sont la recension de Fan et Jiang [23], ainsi que le papier fondateur de Shub [74].

Les propositions et preuves qui suivent sont tirées de [23, §2].

Commencgons par remarquer qu'une application T : M — M satisfaisant 2.1.1 est un homéo-
morphisme local; en particulier, ¢c’est une application ouverte.

Proposition 2.1
Soit T : M — M wune application continue uniformément dilatante. Alors T est un homéomor-
phisme local.

En effet, on a que T : B(x,b) — T(B(x,b)) est un homéomorphisme : injectivité découle
directement de (2.1.1), la surjectivité est évidente, et comme c¢’est une bijection continue sur le
compact B(z,b), il en va de méme de sa réciproque, ce qui nous donne le résultat. O

On peut alors s’interroger sur les propriétés des branches inverses de T:

Proposition 2.2
Soit T : M — M une application continue et uniformément dilatante.

o Chaque y € M admet un nombre fini d’antécédents par T, et mieux encore, lorsque M est
conneze il existe p < +oo tel que #T(y) = p.

o [l existe a > 0 tel qu’en chaque y € M, T admette un nombre fini de branches inverses
(i)i=1..p, et les (Yi(B(y, a)))i=1..p soient 2 a 2 disjointes.
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e S5i0<r<a, et que v est une branche inverse de T définie sur B(y,r), alors pour tout
z,2 € B(y,r), on a
d(z,2")

d(w(=). v(:) < =5

Soit y € M. On commence par remarquer que T 1(y) est un ensemble fini, puisque discret
dans un compact: si tel n’était pas le cas, il existerait x € T=1(y), tel que B(z,r) N T~ 1(y) #
¢ pour tout r > 0: cela contredit le caractére d’homéomorphisme local de T. On a donc
#TYy) = p(y) < +oo. Considérons donc ... s Tp(y) les antécédents de y par T. Si on
note dy = min; j—1,.._ p(y) d(T4, 75), il est clair que dy > b.

Par la proposition précédente, pour tout 0 < r < 2, T': B(z;,r) — T(B(z;,7)) est un homéomor-
phisme, pour tout 7 € {1,...,p(y)}. Notons 1/Jz,y : T(B(z4,1)) — B(xy,7) les homéomorphismes
inverses.

Notons que y € 25 ) T(B(z;,7)), intersection finie d’ouverts, donc il existe r, > 0 tel que

Bly,ry) € (V2 T(B(wi, 7).
En particulier, les v;, : B(y,r,) — B(xi,r) sont tels que les ¢; ,(B(y,r,)) sont deux & deux
disjoints.

On considére désormais un nombre fini de boules de la forme B(y,7;), (B(y:,7}))i=1..p tel
que les B(y;,r}/2) forment un recouvrement (fini) de M.
Si on note a = min7}/2, alors les B(y;,a) vérifient la propriété voulue. En effet, pour tout
y€ M, onay € B(y;,r,/2) pour un certain ¢ € {1,...,p}, et donc B(y,a) C B(y;,r}). Ainsi les

B(y,a), i €{1,...,n}

sont les branches inverses de T en y, et vérifient bien la propriété voulue.

wi = wi,yi

Enfin, on peut remarquer que #7~!(y) < p est localement constant, donc constant puisque M
est connexe. O

Soit x € M, et soit 0 < r < a ou a est la constante donnée par la proposition précédente.
Alors pour toute branche inverse ¢ définie sur B(T(z), ), pour tout w, z € B(T(z),r), on a

d(P(w), P(2)) <

Cette propriété est parfois appelée pistage fort (ou strong shadowing en anglais), signifiant
que l'on dispose d’un controle fin sur les trajectoires passées de deux points proches (& défaut de
controler la distance entre les orbites futures)

d(w, z) (2.1.3)

> =

Introduisons maintenant la distance de Bowen
dn(@,y) == max d(f*(z, f'(y)))
ainsi que la boule de rayon r pour cette distance,
Bn(l‘7’l") = {y € Ma dn(a:,y) < 7"} = B(Z‘,T) n---nT™" (B(Tn(l‘)ﬂ“))

11 est clair que T': By(x,r) — B(T(x),r) est un homéomorphisme pour r < a. C’est encore
vrai pour les itérées de T:
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Proposition 2.3
Pour tout 0 <r < a, T" : By(z,r) = B(T"(x),r) est un homéomorphisme.

Il est clair que T" : B,(x,r) — B(T™(x),r) est injective. Vu la continuité de T sur le
compact By (z,r), il suffit de montrer qu’elle est surjective pour conclure que c’est un homéo-

morphisme.
Considérons = € M, et soit z,T(x),...,T™(x) les n premiers points de lorbite de z. On sait
qu’il existe des branches inverses 91, ..., ¥, telles que

Par la remarque précédant 1’énoncé de la proposition, on a que v, : B(T"(x),r) — By (T" 1(x),r)
est un homéomorphisme, des que 0 < r < a.
Supposons que ¥y, _x_1 0 -+ 0 P, (B(T™(x),7)) = Bp(T" *(z),r). Alors il s’ensuit que t,_ o
20 Y (BT (2),7) = fn_(By(T" (), 7).
Or, 2 € ¥p_1(Br(T"*(z),7)) & T(2) € Br.(T" *(z),r) ce qui équivaut a

Vie{0,...,k}, d(T" (), T *i(z)) < r

d(T(2), T *(x))

Mais comme d(z, T"*~1(z)) < < 1, on a également z € B(T" *~1(z),r),

d’ott 'on déduit que t,, _p(Br(T" % (x),7)) = Bry1 (T *~(z),r). Ainsi, par récurrence on a
montré que
Yoo (B(T"(x),r)) = Bu(z,7)

d’ou la surjectivité de T" : B, (z,r) — B(T™(x),). O

Etant donné (M, d) un espace métrique compact, nous rappelons les définitions suivantes :

Definition 2.1
e Une application continue T : M — M est dite topologiquement transitive s’il existe une
orbite dense pour T .

e Une application continue T : M — M est dite topologiquement mélangeante si pour tout
ouwvert U C M il existe n > 0 tel que T"(U) = M.

Pour une application T' continue uniformément dilatante et mélangeante, on a le résultat de
"mélange uniforme" suivant :
Proposition 2.4
Soit T : M — M une application continue, uniformément dilatante et topologiquement mélangeante.
Alors pour tout R > 0, il existe N = N(R) tel que TV (B(z,R)) = M pour tout v € M.

2.1.1 APPLICATIONS DILATANTES C!

Nous introduisons maintenant une généralisation des notions précédentes au cadre C". Soit M
une variété Riemannienne compacte, connexe, de dimension finie. On considére une application
T:M — M de classe C", r > 1, telle qu’il existe A > 1

Ve e M, Yv € T, M, ||DT(z).v] > Al|v|| (2.1.4)
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Il n’est pas difficile de voir que la condition (2.1.4) implique (2.1.1), et donc que les résultats
précédents s’appliquent.
On a le résultat suivant, qui montre que I’hypothese de mélange devient superflue en régularité
C" pour r > 1.

Theorem 2.1
Soit r > 1. Une application uniformément dilatante C" est topologiquement mélangeante.

Il est facile de voir que (2.1.4) est une condition ouverte dans C'*(M), et donc que I'ensemble
des appliations dilatantes C” est un ouvert de C"(M). Il est remarquable qu’une propriété a
priori bien plus forte, celle de stabilité structurelle, soit également vérifiée:

Definition 2.2
Soit M une variété Riemannienne, et soit T € C"(M), r>1. On dit que T est structurellement

stable si pour tout T suffisamment proche de T en topologie C”, il existe un homéomorphisme

h:M—)Mtelquef:hfloTOh.

Theorem 2.2
L’ensemble des applications dilatantes C" est structurellement stable.

2.2 RAPPELS DE THEORIE ERGODIQUE

Lorsqu’un systéme exhibe la propriété (1.0.1), il est impossible d’étudier (numériquement) les
orbites individuelles : en effet, la moindre erreur sur la localisation du point initial se traduira au
bout d’un nombre fini d’itérations par une erreur exponentielle sur la localisation de 'orbite; or
une telle erreur initiale est inévitable, ne serait-ce qu’en raison de la précision finie des ordinateurs.

Les limitations que cette impossibilité pratique impose expliquent pourquoi il est pertinent
d’étudier les dynamiques chaotiques d’un point de vue probabiliste, i.e de considérer 1’évolution
des mesures de probabilités sous 'effet de la dynamique au lieu de considérer des orbites individu-
elles (le point de vue topologique). Cette approche méne & définir 'opérateur de transfert,
objet d’une importance fondamentale dans ce qui va suivre : il s’agit de I'opérateur linéaire L,
agissant sur 1'espace P(M) des mesures de probabilités de M, et défini pour un borélien A C M
par

Lou(A) = p(T~(4)) (2.2.1)

En d’autres termes, nous considérons 1’évolution de "configurations de points" au lieu de
I’évolution d’une orbite individuelle.
Adopter ce point de vue sur la dynamique permet d’"échanger" une dynamique potentiellement
"compliquée" (car chaotique) mais agissant sur un espace & la topologie simple (une variété
Riemannienne de dimension finie), contre une dynamique "simple" car linéaire, mais agissant sur
un espace a la topologie "compliquée" (un espace de Banach de dimension infinie). L’usage de
Iopérateur de transfert vient de la mécanique statistique; la terminologie "transfert" découle de la
maniére dont cet opérateur "encode" dans ces propriétés spectrales les propriétés statistiques de
la dynamique sous-jacente : nous essaierons d’expliquer comment dans cette introduction. Dans
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cette perspective, les objets d’intérét sont les mesures invariantes, c’est-a-dire les p € P(X)
vérifiant

Lrp=p (2.2.2)

Lorsque nous parlons de propriétés statistiques, nous parlons donc des propriétés de 'opérateur
L, et de celles des mesures satisfaisant (2.2.2). On notera classiquement M I'ensemble des
mesures invariantes par 7. Il est remarquable que lorsque M est un espace métrique compact et
T est continue, ’ensemble M7 est non-vide, mais également convexe et compact: c’est 'objet
du théoréeme de Krylov-Bogolubov.

Theorem 2.3 (Théoréme de Krylov-Bogolubov)

Soit (M,d) un espace métrique compact, et soit T : M — M une application continue. Alors
Pensemble My :={pu € P(M), Lru = p} est non-vide.

Mieuz encore, si v € P(M), alors tout point d’accumulation de (vy)n>1 est dans Mrp, avec

1 n—1

Uy = - Z(L:T)"l/

k=0

Etant donné T : M — M, les mesures invariantes permettent de donner une information
asymptotique sur la probabilité de répartition des orbites. C’est le fameux théoreme ergodique
de Birkhoff, analogue dynamique de la loi des grands nombres en probabilités.

Theorem 2.4 (Théoréme ergodique de Birkhoff)
Soit (M, F, 1) un espace de probabilité et soit T : M — M un systéme dynamique préservant p.
Alors pour toute ¢ € LY(M, i), il existe un ensemble de p-mesure pleine sur lequel

LS 60T (@) — BiglF@) (223)
k=0

ot Fr désigne la o-algébre des sous-ensembles T-invariants, et E[¢|Fr] est l’espérance condi-
tionnelle de ¢ par rapport a Fr.
La convergence précédente d également lieu en topologie L.

Un autre résultat dans la méme veine, mais plus général, concerne le comportement asymp-
totique des moyennes de cocycles sous-additifs : c’est le théoréme ergodique sous additif de
Kingman.

Theorem 2.5 (Théoréme de Kingman)
Soit (M, F,u) un espace de probabilité, soit T : M — M préservant p et (¢n)nen une suite de
fonctions mesurables vérifiant la propriété de T-sous-additivité suivante :

Supposons que ¢ = max(0, ¢1) € L*(M, i), et notons

~ := inf lIE)((;Sn) e RU{—o0}

neN* n

alors on a :
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o La suite (%) converge p-presque partout vers une fonction 5 : M — RU{-oc0}
n /) >t

T-invariante et telle que ¢+ € L' (M, ). De plus,

B(6) — 7 =B ()

n—oo

o Si ¢, € LY(M, i) pour tout n € N, et que v > —o0, alors (E € LY(M, p) et la convergence
précédente a également lieu en topologie L' (M, ).

Les théoremes précédents 2.3, 2.4 semblent apporter une réponse satisfaisante a la question
des propriétés statistiques d’un systeme dynamique. Toutefois, ils ne nous donnent aucune in-
formation sur les mesures invariantes ainsi construites. En effet il peut y avoir de nombreuses
mesures invariantes pour un systéme donné. Par exemple, si T admet une orbite périodique
(T"(x))i=o0...p, alors la mesure p = p—j_l >0 o 0ri(z) est invariante. Pourtant, en tant que combi-
naison linéaire de masses de Dirac, elle ne fournit aucune information sur l’espace sous-jacent !

Nous voudrions donc exiger plus de nos mesures invariantes. Parmi ces propriétés, les plus
importantes sont les suivantes:

Definition 2.3
e On dit que la mesure i € My est ergodique si pour tout borélien A C M, T~1(A) = A
implique p(A) € {0,1}.

e On dit que la mesure p € My est mélangeante si pour tout couple de borélien (A, B), on
a p(T="(A) 1 B) — u(A)u(B).

e Soit ¢ : R — Ry, telle que lim;_, o ¢(t) = 0.
On dit que les corrélations décroissent a vitesse ¢ si pour tout couple de boréliens
(A,B), on a
W(T~"(4) 1 B) < Ca po(n) (2.2.5)

o On dit que p € My est une mesure physique du systéme si pour ¢ € C°(M), I’ensemble

. 1 N-—1
(re M, Jin oy 30074 = | oy

(appelé bassin ergodique de p) est de mesure de Lebesque strictement positive.

Remark 2.1
e Pour un systéme ergodique tout borélien invariant par la dynamique est trivial du point de
vue de la mesure : la propriété d’ergodicité est une propriété d’indécomposabilité.
De plus, ’ergodicité permet de préciser les conclusions des théorémes 2./ et 2.5: si (T, )
est ergodique, alors E[p|Fr] = fM odu (resp. 5 = infy>1 %E(gﬁn)) est constante dans la
conclusion du theoréme 2.4 (resp. théoréme 2.5)
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e Pour un systéme mélangeant, les événements T~ ™(A) et B sont asymptotiquement in-
dépendants : la dynamique "oublie" ces conditions initiales. Il est facile de voir que
"mélange=-ergodicité"

e La propriété de mélange étant lié 4 une convergence, il est naturel de poser la question
de la vitesse de convergence: cela méne a la notion de vitesse de mélange, ou encore de
décroissance des corrélations.

o Admettre une mesure physique est une question d’une grande importance pratique : elle sig-
nifie que les propriétés qualitatives et asymptotiques de la dynamique peuvent étre observées
numériquement.

Jusqu’ici, nous avons adopté le point de vue de I’évolution des mesures sous la dynamique. Il
est intéréssant de se restreindre a 1’évolution des mesures a densité par rapport a une certaine
mesure de référence (bien souvent la mesure de Lebesgue, mais pas toujours).

Proposition 2.5
Etant donné une application T : M — M, et une mesure d densité du = ¢dm, ¢ € L (m),
Uopérateur de transfert L1 agit sur ¢ par:

_dLrp
~ dm

i.e L7 est la dérivée de Radon-Nikodym de Lpp par rapport a m.

Lrd:

(2.2.6)

L’intérét de restreindre I’action de L7 aux mesures a densités vient du fait qu’il agisse alors
naturellement sur des espaces a la topologie ¢ priori mieux comprise que celle des espaces de
mesures, e.g des espaces de fonction LP(dm) (ou, comme nous le verrons plus tard, des espaces
Hélder C"(M), ou encore des espaces de Sobolev H}(M)).

L’opérateur de transfert admet d’autres expressions, parfois plus utiles:

Proposition 2.6
Soit T : M — M, et soit L1 son opérateur de transfert. Soit ¢ € C°(M). On a l’expression
suivante pour Lp¢:

_ ¢(y)
Lro(z) = T;x m (2.2.7)

La démonstration découle tout simplement de la formule de transfert en théorie de la mesure:
Si du = ¢dm, alors on a pour tout borélien A C M

Lra(a) =) = [ o im = / T;Mg;gy;(ymdm@ (228)

O
L’opérateur de transfert est le dual de 'opérateur de composition par T (aussi appelé opéra-
teur de Koopman dans la littérature physique) : c’est 1a une de ces propriétés remarquables.

Proposition 2.7
Soit T : M — M et (¢,) € LY (M) x L>(M). On a:

/ (b.qponm:/ Y Lrpdm (2.2.9)
M M

20



Une fois encore, la démonstration est élémentaire et découle de la formule de changement de

/M (@) (T () dm () = /M > M‘}S{F)(y)”wu')dm(x’) (2.2.10)

O

variable:

Remark 2.2
Nous avons jusqu’ici considéré un opérateur de transfert particulier, l’opérateur de Ruelle-Perron-
Frobenius. On peut également s’intéresser a des objets plus généraux, les opérateurs de transfert
a poids, définis par

Lrgpx) =Y 9(y)ey) (2.2.11)

Ty=x

ot g : M — R est une fonction C™~1. On la prendra souvent strictement positive (pour des
raisons spectrales qui seront précisées plus loin). Parmi les poids les plus fréquemment utilisés,
on peut citer:

e g = m, Uinverse du Jacobien de T, qui donne l’opérateur de Ruelle-Perron-
Frobenius que nous avons vu plus haut.

e g= m, ou s > 0 est un paramétre a ajuster. Cette variante du choiz précédent
est pertinente pour l'étude des ensembles de Julia associés a une dynamique donnée, plus
exactement la dimension de Hausdorff de cet ensemble.

e g = 1. Ce choix simple est pertinent par exemple pour I’étude de la mesure d’entropie
mazximale.

Il est bien connu que le spectre de I'opérateur de Koopman a des liens importants avec les
propriétés statistiques de la dynamique (cf par exemple [77]). Il n’est donc pas surprenant que
son opérateur dual soit lui aussi "spectralement pertinent" dans 1’étude des propriétés statistiques.

Proposition 2.8
Soit T : M — M, et soit uw € Mrp. Notons Kp Uopérateur de composition par T, défini sur
L*(M, p) par

Kr¢:=¢oT (2.2.12)

La mesure p est T-ergodique si et seulement si 1 est valeur propre simple de Kr.

Une preuve possible : Commencgons par remarquer qu’on a toujours 1 € o(Kr), puisque les
fonctions constantes sont nécessairement fixées par Kr.
Si p est T ergodique, soit f € L?(M,u) fixé par Kr, et soit a € R, et A = f~*({a}). Alors A
est invariant par T, et donc par ergodicité u(A) = 0 ou u(A) = 1. Ainsi, f est nécessairement
(1 presque partout) constante.
Inversement, si 1 est valeur propre simple de K, considérons un ensemble T-invariant A C M.
Si 1 4 désigne l'indicatrice de cet ensemble, alors

/CT(]IA) = ]lA ol = ]lT—l(A) = ]lA
Et donc par simplicité de la valeur propre 1, 1 4 est constante, i.e u(A) € {0,1}. O
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Nous venons de voir que les points fixes de 'opérateur de Koopman mesurent en un sens
Pergodicité du systéme (7, u). De méme, les points fixes de Uopérateur de transfert jouent un
role fondamental : & l'instar des points fixes de L, ils permettent de construire les mesures
invariantes du systeme:

Proposition 2.9
Soit ¢ € LY(M,m). Si LT¢p = ¢, alors du = ¢pdm est une mesure invariante du systéme.
Si de plus ¢ > 0, cette mesure est physique.

La preuve est élémentaire; si ¢ € L1(M,m) est un point fixe de Lr, alors on a:
w(T7HA) = / ddm = / ¢l g 0Tdm = / Lroladm = / ddm = p(A)  (2.2.13)
T-1(A) M M A

et donc du = ¢dm est bien T-invariante.
Le caractére physique vient de ’absolue continuité de la mesure p. En effet, d’apres le théoreme
ergodique de Birkhoff 2.4, pour tout ¢ € L*(M, i), on a sur un ensemble A de p-mesure pleine

N-1
1 k
¥ 2 eeTw) o, /deu
Or m(A) > 0 puisque ¢ > 0. |

On termine cette section par le théoréme de Krzyzewski et Szlenk [52], assurant que pour une
application dilatante suffisament réguliere, il existe une mesure invariante, absolument continue
et mélangeante:

Theorem 2.6

Soit T : M — M wune application C”, r > 1, A-dilatante sur une variété Riemannienne compacte
et conneze. T admet une unique mesure de probabilité invariante et absolument continue, u =
hdm, de densité positive h € C™Y(M), qui de plus est mélangeante.

Nous prouvons ce théoréme dans la section 2.4, en étudiant les propriétés spectrales de 'opérateur
de transfert.

Remark 2.3
e Le mélange est en fait exponentiel : cela résulte de la propriété de trou spectral (cf.(5.2.19) ).

o [l est indispensable de supposer une régularité r > 1. En effet, il est possible de construire
des contre-exemples au théoréme précédent si r =1 [30].

2.3 HOLDER SPACES (C"),>0

Most of the functional analysis (see e.g Theorem 2.9 or appendix B) we present in this document
takes place in the scale of Holder spaces (C"(M)),>o. As such we recall a few basic facts on
those spaces.
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Let U C R™ an open subset. Let f € C°(U), k € N, a € (0,1), and r = k + . We say that f
is a C" map on U if f is of class C*¥ on U and its k-th differential (seen as a k-multilinear map)
is a-Holder. We endowed the space of C™ maps of U with the norm

IFller = max(lflor, sup 2@ = D@
vty |z — yll*

It is a well-established fact that (C"(U), ||.]|c-) is a Banach space.
For U an open set in R”, and 0 < 8 < a < 1, one has the compact embedding :

) (2.3.1)

Ck""a(U) e C«k+B(U)

The proof of this compact embedding relies on the Arzela-Ascoli Theorem and the following
interpolation inequality :

Theorem 2.7
Let E,F be Banach spaces, U C E an open subset. Let 0 < a < <~y <1 andk € N.
Denote by p = jy_;g Then for every f € C**Y (U, F), one has

I Fllowss < Mallfllgwrall fllents (2.32)

We refer to [15] for a proof.

It is an unfortunate fact that the space of smooth functions C*°(U) is not dense in the Holder
spaces C"(U) for non-integer r > 0. This limits the range of tools we may use in our spectral
analysis of transfer operators (cf. lemma 4.2); to overcome this issue we introduce the little
Holder space

(U = o) er® (2.3.3)

By construction, smooth functions are dense in the little Holder space. The drawback here is
that ¢"(U) € C™(U), so that interesting functions may be missing from the little Holder spaces.

2.4 SPECTRA OF EXPANDING MAPS ON HOLDER SPACES

In this section, we will study the weighted transfer operator defined by

Lox) = Y g9)sy) (2:2.11)

y,Ty==z

It is remarkable that one can link statistical properties of the dynamic to spectral properties
of L acting on an appropriate Banach space ([4, 57, 6]). As a result, the spectral picture of
transfer operators for expanding maps has been thoroughly investigated, in the works of David
Ruelle [63, 64], Carlangelo Liverani[55, 57], the 2000 monograph by Viviane Baladi [1], or in a
2003 paper by Gundlash and Latushkin [41].

For example, we saw that fixed points of the transfer operator are physical measures, as soon
as those fixed points live in functional spaces with good properties. Linear response formulas

I I Y ’ ])

can also be computed from spectral data of the transfer operator (|
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Another motivating fact in the study of transfer operator’s spectral properties is that decay
of correlations can be linked to convergence of L™ towards its spectral projectors ([55, 4]). Given
dp = hdm a fixed point of L7 on L?(M,m), we define the correlation function for ¢, € L*(M, i)
by

Cost)i= [ woTvdu= [ odu [ wa (2.4.1)

It follows from the definition and the duality property of the transfer operator (2.2.9) that

Cypp(n) = /M AL (.h)dm — /M ¢ (/M ¢.hdm> hdm = | (ﬁ’:ﬁ(wh) - h/M w.hdm) dm
(2.4.2)

So that decay of correlations can be expressed as L? convergence of L% towards some rank
one projector : this convergence is itself connected to the concept of spectral gap. The operator
L acting on the Banach space B has a spectral gap if :

e There exists a simple, isolated eigenvalue A of maximal modulus, i.e [\| = p(L|g), called
the dominating eigenvalue.

e The rest of the spectrum is contained in a disk centered at 0 and of radius strictly smaller
than p(L|g).

In this case, one has the following decomposition :

£6 = NI(9) + R(9) (24.3)
where the operators II, R have the following properties:
e IR=RII=0
e II is the projector on the generalized eigenspace associated with .
e There exist 0 < o < 1, C > 0 such that |[A\""R"||g < Co™, i.e A ¢ o(R)

A weaker notion is quasi-compactness: for an operator £ acting on a Banach space B, we
define the essential spectral radius of £ on B, p.(L|g) as

pe(Li8) :=sup{D(0, p)° N o(L|z) only consists of isolated eigenvalues of finite multiplicity}
p>0

We say that L is quasi-compact on B when p.(L|5) < p(L|g). For such an operator, one has the

following decomposition
N

L= N(L+N)+R (2.4.4)

i=1

where II;, \V;, R have the following properties :
e II;, N; are the eigen-projection and eigen-nilpotent associated with \;
e p(R|g) < min |A;]
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o ILIL; = I;IT; = 6511, ILA; = NiIL; = NG, TLR = RIL; = 0, (A — L)I; = N;
One can also compute the essential spectral radius by the Nussbaum formula:
pe(ﬁ\B) = lﬁgli{.lg ||£n - KnHB (245)

where the (K,,),>0 have finite rank.

Connected to this formula is the spectral Theorem of Hennion [15], giving a quick way to
estimate the essential spectral radius:
Theorem 2.8
Let (B,].]]) be a Banach space, endowed with another norm |.|, and let L be an operator, bounded
for ||.||, such that:

1. L:(B,]|.l) = (B,].]) is compact.

1/n

2. There exists (Rp)nen and (1p)nen with Uiminf, o (r,)™ = r, such that for every x € B

1£7] < Ralel + rallal (2.46)
Then

1. pe(Lig) <.

2. If r < p(Lg), the operator L is quasi-compact on B.

Inequalities of the form (2.4.6) are often called Lasota-Yorke inequalities in the litterature,
in reference to the seminal paper of Lasota and Yorke [53] where they first appeared.

Lastly, we introduce the notion of topological pressure, which as we will see plays an essential
role in the spectral properties of transfer operators:
Definition 2.4
Letr >1,T: M — M be a C" M-expanding map and g : M — R be a C"~' function. We define
the topological pressure by

1/n

1/n
Pyop(log(lgl)) := lim | sup Z lg|™y = lim (sup ETﬁ|g1> (2.4.7)
zeM M

n—-+o0o n—-+o0o
Try=x

where the limit exists by sub-multiplicativity and Lt 4 is the weighted transfer operator defined
by (2.2.11).

In so many words, the topological pressure is a weighted version of the topological entropy.
As the latter, it satisfies a variational principle:

Paplon(a)) = e (1T) + [ 1os(a)in) (2.48)

HEMT
Although £ does not have a spectral gap on L?(M,m) or on C°(M) ([63]), a classical Theorem
of Ruelle ([63, 64]) shows that, assuming a little more regularity for the dynamic, the transfer
operator admits a spectral gap on the Banach spaces (C"(X));>o.

IThe concept originate from thermodynamic formalism. For more on this notion, we refer to [68, 77]
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Theorem 2.9 (Spectrum of the transfer operator on C"(X))

Let r > 0, X be a compact, connected Riemann manifold, of dimension d, and let T : X — X be
a C™1, expanding map, with dilation constant A > 1 and g : X — R a C" map.

Then the transfer operator defined by (2.2.11) is bounded on the space C"(X,R). Furthermore,

o We have the following estimates on its spectral radii

pesS([.:‘Cr) S A_T‘ePtop(loglg‘)
p(ﬁ‘cr) < ePf«OP(IOEWD

e If g is a positive function, the operator L acting on C" has a spectral gap, with dominating
eigenvalue efror(1089)

The associated eigenfunction £y for L* is a distribution of order 0, i.e a Radon measure,
and the eigenfunction ¢4 of L, normalized by (€4, ¢4) =1 is positive.

Finally, the measure mgy, defined by [ fdmg = (€y, f¢g4) is an invariant probability measure
for T, the so-called equilibrium state ? of T for log(g), i.e the measure mgy realizes the
mazimum in (2.4.8)

The proof relies on estimates on the (essential) spectral radius, first established by Ruelle in
[63, 64]. Those estimates were refined by Gundlash and Latushkin, in the paper [11], where they
give an exact formula for the essential spectral radius of the transfer operator acting on C"(X)
for r € Ry. Our strategy for obtaining those estimates rely on Lasota-Yorke inequalities and
Hennion result 2.8.

Proof of Theorem 2.9 For the first part of the Theorem, we follow [41, part 2, p.7]: for every
€ > 0, one can construct an open, finite cover (U;);c1..s3 of M such that :

1. For every i € {1,..,s}, diam(U;) < € : choosing e small enough, one can view each U; as
subset of RY.

2. For every i,j € {1,..,s} such that U; C T(U;), there exists a unique local inverse
;.5 : Uy — U;, which is A~ L-Lipschitz.

3. This construction is stable by C' perturbation, meaning that the same Uy, ..,Us can be
used for close enough T, T in C''-topology.

We define a s x s matrix w by:

Tij =

{1 if U; ¢ T(U;)

0 otherwise

Forx € M, i€ {l1,...,s}, we denote by iz the T preimage of x that lies in U;. We call the n-
tuple " =41...4, € {1,...,s}" admissible if m;, ;, = ... =7, ,;, = 1, and for each admissible

2The concept of equilibrium state originates from thermodynamic formalism: see Ruelle’s book [68,
§II, p.6, Theorem 1]
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n-tuple, let Ui = ¢y, 4, 0.0y, 4. (Us,), and "z = iy...i,x € U be the corresponding
preimage of x under T™.

We will work with the following version of the operator £ (that we denote, somewhat abu-
sively, by £ again), acting on @ C!'*(U;) by

Lo@) = Y glin)lia) (2.4.9)
i,ﬂ'iyjzl
for z € U;. In this context, the formula L"¢(y) = >_, 7n,—, g™ (z)¢(x), where
g™ = Hz;é g o TF is the cocycle generated by g : M — R above T, becomes, for z € U;,

Loy = Y g™ (i in-12)¢(ig.in 1) (2.4.10)

90--Tn—1

where the sum is over the admissible n-tuple % ...%,_; such that 7;, ,; =1.

Let r=k+a, keN, ae(0,1).

When estimating the C" norm of L"¢, there is a variety of terms, but it follows from Hennion
Theorem 2.8 that to bound the essential spectral radius on C"(M), it is enough to bound the

constant appearing before the term of highest regularity.

Differentiating k times (2.4.10) for ¢ € C"(U,,), one can write at (z,v) € TM

D*[L™(@)](x,v) = K"(D*¢)(z,v) + Ra(9)(z,v) (2.4.11)

where R, (¢) contains derivatives of ¢ up to order k — 1, but no derivative of order k: thus its
C"™ norm is bounded by a term of the form

cnll@llo (2.4.12)

where ¢, is a sub-exponential sequence, i.e there exists a constant C' such that for n large enough,
cp < C™.

By the argument preceding (2.4.11) the only term of interest to us is the one carrying the
a-Holder semi norm of D¥¢. This terms reads

o DEG(i") — DEp(ima’! e s e s
Y gt (ira) ( d()x ) ( ).[DT (i"z)Lo,..., DT (i"z) "1 v (2.4.13)
so that it is bounded by
d(i"x,i"z") 1"
k (n) (sm .0 o7 -1k )
|D ¢|a53}3#2}16p% E g™ @ =)[[|[ DT™ (i)~ || [d(x,x’) ] (2.4.14)

Thus, the version of the Lasota-Yorke inequality that we established reads, following [41,
Lemma 2.2, (2.11)],

I£¢llcr < s | D ¢lca + callgllcr (2.4.15)
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where

Sna =)  SUp g(”)(i”xl).H(DT"(inxg))1|k[ (2.4.16)

in x1,x2EM

d(inZL'l, Zn$2):| @
d(l‘l, 332)

Using Hennion Theorem 2.8, one concludes that the essential spectral radius of £ acting on

C"(M) is less or equal than s, := lim, 571/,?

But it is easy to see that

sni=sup sup y | (@"a)||| DT (")

in x,yeU,

in §n

d(i"z,i"y)|* 1 (n) (jn
[ i y) } < SathTa) SWP_Sup PNIARIGED]

in x,yeU,

in gn

so that, using lemma 2.4.7, one has

n—oo in x,Y€U;, in

sr < % lim exp (;IOg <sup sup Zlg(”)(i%))) < %eXp(P(log(\gl)))

which is the announced bound on the essential spectral radius °.

To obtain the bound p(Ljcr) < ePror(0819D) | one should study in more details the term R,,(¢)
appearing in (2.4.11), to give a finer bound on the sequence ¢,,. We refer to [63, Theorem 3.1]
for the details of the proof.

This last two bounds imply that the weighted transfer operator L7 4 of a C" expanding map
is quasi-compact on the scale of Hélder spaces (C*(M))se(0,r—1]-

To obtain the spectral gap one can use cone contraction theory: based on abstract results of
G.Birkhoff [9], this approach was first applied in [25] and successfully extended to the study of
mixing rates by C.Liverani [55]. A complete account of those works can be found in the mono-
graphs by M.Viana [70] or by V.Baladi[4]. Let us also mention the approach of Fan and Jiang

[23].

In our case, we refer to lemma 5.3, where it is shown that the transfer operator L1, for an
expanding map contracts a regular Birkhoff cone Cp z C C% (M): thus, by Krein-Rutman The-
orem, [51, Theorem 6.3], the transfer operator admits a spectral gap, with maximal eigenvalue
Ag = ePror(108(9)) and associated eigenvector hg € Int(Cr, z), which is thus a positive function.

Positivity of 4,4, the left eigenvector of Ly 4, follows from estimate (5.2.19). This yields that

mg(¢) = <€ga ¢hg>

defines a Radon measure. Up to choosing an appropriate normalization for the spectral data
({(€g, hg) = 1), my is a probability measure.

The T-invariance comes from the classical computation:
mg(¢oT) = (Ly, poThy) = e_PtDP(log(g))wm'CT,g((boThg» = e_PmP(log(g))wm ¢Lr,g(hg)) = (lg, Phg) = mgy(P)

O
To end this section, we deduce from Theorem 2.9 Krzyzewski and Szlenk Theorem 2.6

3In fact, the first bound, Pess (£|Cr) < s, is better. It is even possible to show that it is an equality see [11]
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1
Proof of Theorem 2.6 Note if one chooses the weight g = 3t(DT) in (2.2.11), one obtains
e

the Ruelle transfer operator (2.2.7); the results of Theorem 2.9 yields that it has a spectral
gap, with a simple eigenvalue at 1, and an associated positive eigenfunction h. The associated
eigenform is the Lebesgue measure £ = f a dm.

Normalizing h by [,, hdm = 1, one sees that the equilibrium state j = h ® £ is an invariant
absolutely continuous probability measure. Mixing (and even exponential decay of correlations
1) follows from the spectral gap estimate

Vo € CT(M), ||Lhe — (/M ¢dm> hller < CAP o]l er (5.2.19)

by virtue of (2.4.2). O

2.5 STABILITY AND RESPONSE TO PERTURBATIONS

In this section, we truly enter the heart of our subject: how does the statistical properties of a
chaotic system changes when one imposes an external perturbation ? How can one quantify this
change ?

We introduce here the concepts allowing us to rigorously ask those questions.

Definition 2.5

Let (Te)o<e<ey, Such that € — T, € CT(M) is a continuous map and for every 0 < e < €q, there

exists an invariant measure pe. The measure p € My is statistically stable if p. o in the
e—

sense of distributions, i.e if for every ¢ € C°(M),

/¢du6—>/ ¢du when € — 0
M M

This property is very important in practical applications: it means that the invariant measure
is "robust" to perturbations, so that it corresponds to some object that can be observed in reality.
One can give a more quantitative version of this concept: this is the notion of response:

Definition 2.6
Let (T.) € C*((—€0,€0),C"(M)), with 1 < s < r, such that for every e € (—eg,€9), Te has an
mvariant measure [ie.

o The system has the fractional response property if € — . is a-Hdélder for some a €
(0,1], at € = 0, in the sense of distributions, i.e if for every ¢ € C°(M)

/M Gdpe — /M pdpo = o(e”) (2.5.1)

o The system has the linear response property if € — . is differentiable in the sense of
distributions at € = 0, i.e if there exists a measure fi such that for every ¢ € C°(M)

o o] s
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In the following, we will try to give a glimpse of what results is known and which method

can be used with regards to stability and linear response for expanding systems, uniformly or
not, in a deterministic or random context.
We do not pretend to be comprehensive in any way : as such, we will not mention more general
hyperbolic systems, Anosov, Axiom A or partially hyperbolic: we refer the interested reader to
[65, 67, 66, 17], or to Ruelle’s review [69], and references therein, where the problem of linear
response for systems with hyperbolicity are treated. We will neither mention the linear response
question for hyperbolic flows, and refer to the paper [11].

2.5.1 WEAK SPECTRAL PERTURBATION AND STABILITY

In this section, we present results concerning the stability of two classes of expanding systems :

e Cousider [0, 1] endowed with the Lebesgue measure m. Let (I;);=1.. n be disjoint intervals
such that [0,1] = Uf;l I;, and let T : [0,1] — [0,1] be such that each T}, is C* and X
expanding, and [%h 1, is of bounded variation. Such a map is also called a Lasota-Yorke
transformation.

e Let M be a compact, finite-dimensional, connected Riemann manifold (e.g, M = S!),
endowed with its Lebesgue measure m. Let r > 1 and take T': M — M a A expanding
map.

Let us start by a result in the second setting, established in [7]. It concerns (stochastic)
perturbations of uniformly expanding systems in the sense of (2.1.4). The idea is to look at what
happens when one chooses at each step a random map in a small C" ball around some expanding
map, and then take the radius of the ball tends to 0: does the invariant density of the perturbed
map tends to the one of the original system ?

Formally the setting is as follows: Given a C", A expanding map T, consider the ball Be+ (T, €)
for some € > 0 small enough for every Te Ber (T €) to be A expanding. Now take a probability
space (Q,P.) and an invertible, measure preserving map 7.. One can then define a map F, :
Q¢ — Ber(T,€), and look at the random product (denoting F,, instead of F(w) omitting the e
index)

F"W .= F..,0---0F, (2.5.2)

Using cone contraction theory (actually, it is exactly the family of cones Cyp, g from (5.2.1)),
it is shown that the corresponding transfer operators

$(y)
Lo ep(z) = —_—
e szy_x det(DF, .(3))
are strict and uniform contractions of the Cy, z (under some conditions on L and @, see Theorem
5.3). It allows to derive a spectral gap with uniform bounds for the transfer operators £, ., and
to construct an invariant density hy, . € Cr g C C™=Y(M), for which strong structural stability
can be shown [7, Theorem 1.1], i.e

e = hllgr—s — 0 (2.5.3)
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Next, we present Keller result [19] on stochastic stability for one-dimensional piecewise ex-
panding systems. The main tool for this, and the backbone of weak spectral perturbation
is the Keller-Liverani Theorem, which allows one to obtain continuity w.r.t a parameter e of
the discrete spectrum of a quasi-compact operator P., in the case where the map € — P, is
continuous only in relative topology:

Theorem 2.10 ([50])
Let (B, ||.]l) be a Banach space, endowed with |.| a second norm, such that Id : (B,|.||) <= (B,|.])
is compact. For every bounded (for the ||.| norm) operator Q, let

QI := sup{|QfI, f € B, [ fll <1}

Let (P.)e>0 be a family of bounded (for the ||.|| norm) operators such that :

1. There exists Cy, M positive constants (independent of €) such that for every e >0, n € N,

[P < CiM™

2. There exists Co, C3 positive constants, and m € (0,1), m < M, such that for every e > 0,
n €N,
[P Il < Com™[|f|| + CsM™ | £

3. There exists a monotone, upper semi-continuous function 7 : [0, 400) — [0,00), such that
7(€) > 0 when € > 0, 7(e) = 0 and |||P. — Pol|| < 7e
€—>

Let 6 >0, m<r <M, and Vs, :={2€C,|z| <r, or d(z,0(P)) > d}.
Then there are positive constants €g = €(0,7), a = a(r) > 0 and b = b(d,r) > 0 such that for
every 0 < e < €, every z € V{T,

I(z = P)~* £l < all £ + bl f| (2.5.4)

For Lasota-Yorke type transformations, for the Banach space B = L'[0,1] with weak norm
Il.llzv (the bounded variation norm ) it is well known that there exists an absolutely continuous
invariant probability measure du = hdm, where h € BV. The aforementioned result allows one
to show that, given a C'! path € — T, of such maps, the map € — h, € L' is Hélder at any order.
More precisely, it is shown in [49] that

[he = hyllr < Cle = nllog(le —nl) (2.5.5)

Another case where the Keller-Liverani spectral perturbation method apply is the setting
of deterministic perturbation of expanding circle maps (see [3] for the original proof): given a
family of expanding maps T, € C3(S'), with € — T, of class C*, together with their invariant
measures ji. = hedm, he € C%(S') (which exists by Theorem 2.9), one can establish the uniform
Lasota-Yorke inequality (see the proof of Theorem 2.9) and the continuity in relative topology
(C2(S1),CH(SY)) (see e.g § 5.3), and therefore establish strong (deterministic) stability

lhe = hyllcr < Cle =)
i.e that the map € — h. € C1(S!) is Lipschitz (see [3] or Theorem 4.1).
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2.5.2 LINEAR RESPONSE FOR EXPANDING MAPS OF THE CIRCLE : A PEDESTRIAN APPROACH

Given the last result of Lipschitz continuity of the invariant density of an expanding map of the
circle, it is natural to wonder about higher-order regularity, such as differentiability. We present
an elementary approach for this question, following [57, 2]. It is indeed remarkable that one does
not any need sophisticated theory to treat linear linear response in dimension 1.

As before, we will be working with a family T, of C® maps acting on the circle S'. We assume
that the map € — T, € C3(S!) is of class C1. We introduce as before the Ruelle-Perron-Frobenius
operator L., acting on C?(S!), defined by

_ o(y)
Lep(x) = T;f () (2.5.6)

The result is as follows:
Theorem 2.11 (Thm 2.2, [2])
The map € — he € CH(SY) (i.e seeing h. € C*(S') as a C* map) is a C* map at € =0, and one
has the following linear response formula for its derivative

[aehe}ezo = (]1 - EO)_l[aeCe]e:OhO (2.5.7)

We give a sketch of proof for this result, and refer to Theorem 4.2 for a more detailed proof
in a higher-dimensional setting. It is noteworthy that this "three step" method is qualitatively
the same as ours (see chapter 4).

e Step 1 Establish a uniform spectral gap for £, on C'(S!), so that one can consider the
spectral projector II., defined by I (¢) = he [, ¢dm.

e Step 2 Considering L. as a bounded operator from C?(S!) to C*(S'), the map € > L. is
differentiable, with

¢OT. | POT,  POTT!
T! T2 )

€

ae£e(¢) = _ﬁe(

e Step 3 Using the first two steps, one has

[Ochee=o = (1 = Lo) ™} (1 = 1) [0 Le]e=oho (2.5.8)

This last equation is valid in a neighborhood of € = 0, thanks to step 1-2. If one were to
make assumptions on the form of the perturbation T¢, an additional step would be required (e.g,
in [2] it is assumed that 9.7, = X, o T, for some X, € C?(S!)).

2.5.3 WEAK SPECTRAL PERTURBATION AND RESPONSE

To deal with higher dimensional expanding systems in a systematic way, one has to use a more
intricate theory, namely weak spectral perturbation. Specifically, we are interested in the following
generalization of Theorem 2.10, devised by Gouézel and Liverani in their seminal paper [39] (see
also [37] for a slightly different version of this result):
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Theorem 2.12 (Theorem 8.1, [39])

Let (Bo, ||-llo) <= (B1, |l1) - - - <= Bk, ||-ll&), k € N be a family of continuously embedded Banach
spaces, let I C R be an interval containing 0, and let (Pe)ecr be a family of operators acting on
each B;, i € {1,...,k} . We assume that

1. There exists M > 0, such that for every e € I,
|1PMlo < CiM™ (2.5.9)

2. There exists a < M, such that for every e € I, every n € N,

I1PEoll < Caa(|glly + CsM™ [|¢]lo (2.5.10)

3. There exists operators Q1 ...Qk—1 so that
VJE {177k_1}7 Vi e {.777k} ||Qz|

Setting Aj(e) = P. — Py — 5;11 tQ;, one has

Bi—Bi_; < Cy (2.5.11)

Vie{l,....,k—1}, Yie{j,...,k}[A;(e)]

BB, < Csél (2.5.12)

Under those assumptions, and setting for z € Vs .

Re(e):=> "t > (2=P)'Qu(z—P) ™" ...(2 = P)'Qu,(z = P)""  (25.13)

i=0  j b+l =i

one has
Iz = P) ™ = Ri@) o < Cle*+ (2.5.14)

In so many words, this Theorem asserts that under a condition of uniformity on the discrete
spectrum (assumptions (2.5.9), (2.5.10)) and with an appropriate Taylor expansion (assumptions
(2.5.11), (2.5.12)), the resolvent of an operator having loss of regularity is C* (in fact C*~1*7)
when viewed as an operator from By to By.

This result is one of the main inspiration for our main result, Theorem 3.1 which is a gener-
alization to fixed points of (possibly non linear) maps having loss of regularity: for a detailed
comparison, we refer to the introduction of [73].

We briefly explain how one can derive linear response for C” (r>2) expanding maps in any
dimension, using Theorem 2.12 and following [0, §2.5]. We will use the family of Banach spaces
(C?(M))s>0. There are three main steps to follow:

e Step 1 Establish the uniform Lasota-Yorke inequalities (2.5.9) and (2.5.10) for the transfer
operator (L¢)o<e<e,: this is done in the proof of Theorem 2.9.

e Step 2 Establish the Taylor expansion (2.5.11), (2.5.12) for the map € € [0,¢] — L, €
L(C™=1,C%): this is usually done with ad-hoc estimates on the composition operator acting
on the proper scale of Banach space: in the case of Holder spaces, we give a detailed study
of such estimates in appendix B, in the spirit of [15]. For similar estimates on the scale of
Sobolev spaces, we refer to [6, Lemma 2.39].
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e Step 3 Using the first two steps, one can derive the linear response formula for the invariant
density
[Ochelemo = (1 — Lo) ™ (1 — o) [0cLe]e=oho (2.5.15)

Theorem 2.12 has many other applications, as it allows to study regularity with respect
to parameters for spectral data of transfer operators (possibly with weight). As we saw, this
spectral data is intimately connected to quantities of dynamical interest, such as topological
pressure (which is the logarithm of the top eigenvalue), Gibbs measure and variance in the
central limit Theorem (which are derivatives with respect to a small complex parameter of the
top eigenvalue), rate of mixing (which is given by the second biggest eigenvalue)...

For a study of how the Gouézel-Liverani Theorem allows one to obtain this type of result, we
refer to [10, §8] and to [10, 12].

In chapter 4, we explain in detail how one can recover similar results using a different ap-
proach, based on the implicit function Theorem 3.1.

2.5.4 LINEAR RESPONSE IN NON-UNIFORMLY EXPANDING SYSTEMS

Until now, we only considered uniformly expanding maps, where we had both structural stability
and the spectral gap, and uniform regularity on the whole phase space (i.e no discontinuities for
the differential). One can wonder about what happens when one weaken those assumptions,
whether it is admitting non-uniform expanding behavior (like in the case of intermittent maps
(2.1.2)) or non-uniform regularity (like with the tent maps).

Failure of linear response: the example of the tent map

And indeed, one should be weary of weakening the regularity assumptions. The following exam-
ple, that we take from [5], shows that linear response does not hold as soon as the system has
one singularity !

For § € (1,2], let Ts be the tent map on [0, 1] with slope §, i.e such that Ts(z) = dx if
0<z<1/2and Ts(zx) =d6(1 —=x) for 1/2 <z <1.
This example is interesting for many reasons, one of them being that it is one of the rare cases
where one may compute explicitly the transfer operator £s acting on L!([0, 1]):

Lsd(x) = w 0(5)+o(1-3)] (2.5.16)

The presence of the indicator function 1y 5/ implies that the transfer operator of a family
of tent maps cannot preserve the space of Holder functions (except of course for § = 2). As such,
the natural Banach space on which one studies its spectral properties is the space of function
with bounded variations, BV ([0,1]): this is the space of L! functions whose derivative in the
sense of distributions is a Radon measure (i.e a distribution of order 0).

On BV/([0,1]), it is a classical fact that £s admits a spectral gap (see the seminal paper by
Lasota and Yorke, or [50] for a approach using Birkhoff cones): therefore £s has a simple and
maximal eigenvalue at 1, with associated eigenfunction hs € BV([0,1]), normalized so that
fol hs(x)dx = 1, which is the density of an invariant, absolutely continuous probability measure.
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Thus, it seems that one has all the ingredients for linear response. However, this is not the
case: denote by ¢, (d) = T7*(1/2) the critical orbit. We have

Theorem 2.13 ([5], Theorem 6.1)
There exists a C' map ¢, with $(0) = ¢(1), a sequence 8 with limg_, oo 8 = 2 such that
ck+2(0k) is a fized point of TF and

/¢h5kdx - /¢h2dx > Ck(2 — 6;) (2.5.17)

where C' > 0 is a constant, fgi)hgdsc =1 and hg is the invariant density of Ts.
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Chapter 3

Graded calculus

This chapter aims at building the theoretical framework to study the regularity of fixed points of
maps having loss of regularity, in the sense of example (1.0.5). As explained in the introduction,
this type of maps, of which composition operators are prime examples, naturally appear in
a dynamical context as one tries to construct and study invariant measures through transfer
operators method.

We start by introducing the notion of (differentiable) graded map between couples of Banach
spaces (def 3.1), and derive from there some elementary properties. We end by establishing an
abstract implicit function Theorem for those differentiable graded maps, Theorem 3.1, which is
at the heart of this work. Although its notations are heavy, it is noteworthy that its proof is
very simple. We give a natural generalization to several derivatives in Theorem 3.2.

The main applications of those concepts are given in chapter 4 and 5. However, it seems
natural to give some elementary, ad-hoc applications in §3.3, the first one being a development
of example 1.0.5. The second one is in the author opinion more original: it studies the fixed
point regularity (w.r.t parameters) of a non-linear composition operator.

3.1 GRADED CALCULUS : ELEMENTARY PROPERTIES

In this part, we present the definitions, motivating examples and first properties of "graded
calculus". We will this section by an implicit function Theorem, together with applications
illustrating the interest of this approach.

Given X, Y two Banach spaces, we will denote by X <% Y the situation where X C Y and
the inclusion map j: X — Y is bounded.

Definition 3.1
o Let X = (Xo,X1) et Y = (Yy, Y1) be 2 couples of Banach spaces, such that Xy e Xo, and

Yi A Yy. Let Fy : X1 — Y1, Fy: Xo — Yy be continuous maps.
If Fy, Fy satisfy
Jy o F1 =Fyoyx (3.1.1)

we will say that F = (Fy, Fy) is a graded map.
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o We will call a graded map differentiable at ¢g € 3x(X1) if there exists a bounded operator
Q= Qry, : Ix(X1) = Yo satisfying

Fo(do + 20) = Fo(do) + Q.20 + ||20]| x.€(21) (3.1.2)

where z1 € X1, 20 = J(71) € Xo and € : X1 — Yy are such that ||e(z)]]y, "
z X1—>0

Let us illustrate the interest of this construction by giving some examples.

e Let (X,Y) be two couples of Banach spaces as above and F' : Xo — Y} such that F(X;) C
Y1, and Fréchet-differentiable, i.e

F(¢o + z0) — F(do) = Df(¢o)-20 + || 20l x, €(20) (3.1.3)
where €(z) — 0 whenever |z||x, — 0. Then F induces a differentiable graded map on
(X,Y).

Indeed, if z; € Xy, then ||20]|x, < C||z1]lx, where zp = jx(21), so that z; — 0 in X3
implies zp — 0 in Xy, and thus €(zg) = €(z1), hence F satisfies 3.1.2.

e Given U C R? an open, relatively compact set, we consider Y1 = X; = CY(U,U) and
Yy = Xo = C'(U,U). Let ¢ € X;. Then:

The composition operator C := (f, g) — f o g is a differentiable graded map on X.
Indeed, consider (h,k) € X; x X3 and f,¢g € X1 X X;. By Taylor formula at order one,

one has
C(f+hg+k)=(f+h)o(g+k)=folg+k)+ho(g+k) (3.1.4)
=fog+dfogk+hog+dhogk+o(k) (3.1.5)
= C(f.0) +df o gk +hog + [klLx,e(h, k) (316)

where e(h,k) — 0 when h — 0 in C*-norm. The error term has the wanted form, and
furthermore we deduce that

QC,(f’g)(]% k) =dfogk+hog

e The "square" operator defined by F := ¢ — ¢ o ¢ is a differentiable graded map on X.
Indeed, consider h € X7; for each ¢ € X1, one has

F(p+h¢+h)=(d+h)o(p+h)=¢o(d+h)+ho(p+h) (3.1.7)
=¢op+dpod.h+hog+dhodd.h+o(h) (3.1.8)
=F(¢) +dgog.h+hod+|h|x,e(h) (3.1.9)

where €(h) — 0 when h — 0 in the C''-topology. The error term has the wanted form, and
furthermore we deduce that

QF@hzd(bO(b.h-i-hO(b

The next property studies the compatibility of differentiability for graded maps with some
elementary operations (i.e addition, product with a scalar, product with a linear form)
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Proposition 3.1

o Let A€ C, F, G be two differentiable graded maps on (X,Y). Then F + G (resp. A\.F) is
still a differentiable graded map.

o Let F, G be two differentiable graded maps on (X,R). Then the product F.G is still a
differentiable graded map.

o Let F be a differentiable graded map on (X,Y), and £ € Yy. Then the function (¢, F),
graded on (X,R) is differentiable.

Proof. The first two points are elementary, only the last one deserves to be made precise.
Write, for ¢; € X7 and z; € X; the Taylor expansion (3.1.2), and evaluate against ¢:

(€, Fo(do + 20)) = (£, Fo(¢o)) + (£, Qg,-20) + |10/ x,€ (21) (3.1.10)
where €'(z1) = (¢, €(z1)) ot 0. O

Another question is to study the behaviour of composed maps under this notion of differen-
tiation, i.e to give the correct version of the chain rule in that context.

Proposition 3.2
Let F, G be two differentiable graded maps on (X,Y) and (Y,Z) respectively, such that the
map Qcow, © Jy Y1) C Yo — Zo admits a bounded extension to Yo (that we will still denote

QGown : Yo = Zy). Then G o F is a differentiable graded map on (X, Z), and one has the
formula

Qcor,go = Qa.F (41)- QF.6, (3.1.11)

Proof: Write (3.1.2) for Gg at ¥g = Fy(¢g) € Yo, and zp € Xp:

Go(Fo(¢o+20))—Go(Fo(do)) = Qay,Fi(1)-(Fo(do+20)—Fo(¢o))+|| Foldo+z0)—Fo(do) v, e(Fi(d1+21)—F1(o1))

(3.1.12)
Injecting (3.1.2) for Fy at ¢q in the former formula, one gets
Go o F0(¢0 + Zo) — GO e} F0(¢0) — QGO,F1(¢1)'QFOa¢1'Z0 (3113)
= [l20ll %0 Qo1 (91)€ (1) + |Q Py 61 -20 + [[20]1 x0 €' (21) [Ivo €(F1 (1 + 21) — F1(¢1))
(3.1.14)

where the product Qg,, r,(40)-QFy,¢o 18 licit by the extension assumption. By continuity of
F} on X1, the right-hand term satisfies

||ZO||X0 [HQGO,Fl((bl)EI(Zl)“ZO + HQF(),QM”X(),YO + ||€/(Zl)||yo + Hen(zl)”YO] 21‘—>)0 0

hence

Go o Fo(do + 20) — Go 0 Fo(do) — Qo Fi (¢1)-QFo,61-20 = [|20 x,€(21) (3.1.15)

where €(z1) € Zyg — 0. O

z1—0
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Higher Order differentiability It is possible to generalize the notion of graded differentia-
bility at higher orders, i.e to allow several successive differentiations:

Definition 3.2 (Scale of Banach spaces)
Letn > 1. A family of Banach spaces Xg D X1 D --- D X, is said to be a scale if the injective
linear maps ji : Xpp1 — Xp are bounded (i.e 0 <i<j<n<& |.|x;, <|.lx.)

jn—l

We will denote a scale by X <]—0> X3 <j—1> oo Xy, or simply by (X, ..., X4, Xo)-

Definition 3.3
Let n > 1, and let X = (Xo,...,X,) be as in Definition 3.2. Consider a family of continuous
maps, F' = (Fy, ..., F,), such that

e For each k € {0,...,n}, F : X — Xy is continuous
e For each k € {0,...,n — 1}, ji 0 Fry1 = F} o ji

e There is a bounded multi-linear map Q) : (J—10--- ojn,l(Xn))k — Xo such that for

every ¢o = jo © -+ 0 ju_1(Pn), 20 = Jo © -+ 0 jn—1(2n) one has
Fo(do + 20) — Fo(do) = > QW 2k, 25-1) + Ran(zn) (3.1.16)
k=1

where zg = jg o -0 Jp_1(2zn) for 1 < € < n and Rnp(z,) = szol |z lli€(zn) where
le(zn)llx0 = 0

3.2 GRADED CALCULUS : AN IMPLICIT FUNCTION THEOREM

This Theorem can be thought of as a complement to the implicit function Theorem. Besides the
resemblance with [39, Thm 8.1] one can see an analogy with the Nash-Moser scheme [43], with
the use of a (finite) scale of spaces.

Note that scales of spaces already appeared in |
stability ([3, 50]).

, 39] and other previous works on spectral

Theorem 3.1 _

Let B, Xo, X1 be Banach spaces such that X, 2 X;.

Let Ay C X1 be non-empty, and Ay = jo(A1) C Xo.

Let ug € B, and U be a neighborhood of ug in B.

Consider maps F; : U x A; — A;, where i € {0, 1}, with the following property :

Fo(u, jo(¢1)) = jo o Fi(u, 1) (3.2.1)

foralluel, ¢ € Ay.
Moreover, we will assume that :

(i) For everyu € U, Fi(u,.): A1 — Ay admits a fived point ¢1(u) € A;.
Furthermore, the map v € U — ¢1(u) € X1 is continuous.

40



(it) Let ¢o(u) = jo(o1(u)).
For some (ug,$o(uo)) = (uo,¢0) € U X jo(A1), there exists Py = Py,.4, € L(B, Xo),
Qo = Quo,e0 € L(jo(X1),X0), such that

Fo(uo + h, ¢ + 20) — Fo(uo, ¢o) = Po.h + Qo-z0 + (|| 1|5 + [|20]| x, )€(h, 21) (3.2.2)

Xo

where h € B satisfies ug + h € U', z1 € Ay, z0 = jo(21) € Ao, and €(h, z1) —
(h,z1)—(0,0)

(iii) 1 — Qo € L(jo(X1),Xo) can be extended to a bounded, invertible operator of X into itself.
Then the following holds :
(i)’ Let ¢o(u) = jo(d1(u)). The map u € U — ¢o(u) € Xo is Fréchet differentiable at u = ug *.

(i)’ Its differential satisfies
Dy (uo) = (Id — Qo)™ Py (3.2.3)

Remark 3.1
If one were to take e(h, z1) in (3.2.2) depending only upon h, one could recover a condition similar
to [39, §8.1, (8.3)] (see lemma 4.1)

It can seem artificial to assume continuity of the map u € U — ¢1(u) € X7 without further
explanation. One of the cases where such an assumption is automatically satisfied is when one
of the iterates of Fy : U x A; — Ay, say F7" is a contraction w.r.t its second variable, a classical
result in fixed point theory:

Proposition 3.3

Let B, X be Banach spaces, U C B an open set and A C X be closed, non-empty. Let F :
Ux A — A be a continuous map, such that there exists n € N for which F™ is a contraction with
respect to its second variable.

Then for every uw € U, F(u,.) admits a unique fixed point ¢, € A, and furthermore the map
u €U ¢y € X is continuous.

Proof of proposition 3.3: We can apply the Banach contraction principle to F™ : U x A — A,
and thus obtain the existence of a fixed point ¢(u) € A for every u € U. We also have :

[o(u) = ¢(uo)llx = [1F" (u, ¢(u)) — F" (uo, p(uo))l| x (3.2.4)
= [|1F" (u, ¢(u)) = F"(uo, p(u)) + F" (uo, p(u)) — F" (uo, d(uo))[x  (32.5)
< Cllo(u) = duo)llx + [1F7 (u, (u)) — F" (uo, ¢(u))||x (3.2.6)

with C < 1, so that :

I9u) ~ dluo)lx < T

i.e there exists a bounded, linear operator D, ¢g (uo) : B — Xp such that

ll¢o(uo + h) — do(uo) — Dudo(uo)-hllx, = o(||h|5)
for all h € B such that ug + h € U.

[E" (u, ¢(u)) — F" (uo, d(u))]| x (3.2.7)

41



We can now conclude with the continuity of F': U x A — A.

Remark that if we were to demand a stronger condition on the regularity of F' with respect to
u, say Holder-continuity or Lipschitz continuity, the fixed point map v € U — ¢(u) € X would
mirror that condition. ]

3.2.1 TAKING THE FIRST DERIVATIVE : A PROOF OF THEOREM 3.1

Thanks to assumption (i4), we can estimate the difference zo(h) = ¢o(ug + h) — ¢o(ug) for h € B,
ug+h € U.

do(uo + h) — do(uo) = Fo(uo + h, ¢o(uo + h)) — Fo(uo, ¢o)
= Fo(uo + h, ¢o(uo) + z0(h) — Fo(uo, ¢o)
= Po.h + Qo-z0(h) + ([l + [|20(R) ]| x,)e(h, 21)

thus, by (4i):
z0(h) = (Id — Qo)™ Po.h + (Id — Qo) ™" (|| hlls + l|20(h)[|xo e (R, 21) (3.2.8)
Now, remark that :

e By continuity of u € U — ¢1(u) € X1 (which is assumption (7)), we have }llinb z1(h) =0 in
—
X1, so that €(h,z1(h)) = €(h) - 0in Xy as h — 0 in B.

e (Id— Qo) te(h,z1)||h|ls = o(h) in Xg as h — 0 in B

e For h small enough in B-norm,

1

1(7d = Qo) [l-lle(r) [ x, < 5 (3.2.9)

Thus, taking the Xgp-norm in (3.2.8) and choosing h small enough in B-norm, we obtain :

_ _ 1
l20(h)llxy < 1(Zd — Qo)™ Po.hllx, + |(Id — Qo) e(h, 21) || x, 1P|z + §||Z0(h)||X0
1 _ _
lz0(M)llx, < lI(1d = Qo) "Po.hlxo + [|(Id — Qo) "e(h, 21) || x, 11| 8 (3.2.10)

and thus :

zo(h) = O(h) (3.2.11)
Following (3.2.11), the second term of the sum in the right hand term of (3.2.8) becomes :

(Id = Qo) ([Ih]ls + O(h))e(h) = o(h) (32.12)
Finally, in the Xy-topology,

20(h) = (Id — Qo) "' Py.h + o(h) (3.2.13)
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and thus u € U — ¢o(u) € X, is differentiable at u = ug and

Dyugo(uo) = (Id — Qo) ' Py (3.2.14)

3.2.2 GENERALIZED IMPLICIT FUNCTION THEOREM

We aim to iterate this approach to differentiate further the fixed point map with respect to the
parameter. In order to do so, we define a notion of an n-graded family as such :

Definition 3.4 (Graded family) ‘ _ _

Letn > 1 be an integer, and consider a Banach space B, a scale X % X4 AN X, UCB
an open subset, A, C X,, a non-empty subset.

For 0 <k <l <n, we denote by ji,; the bounded linear map ji o jry1 0 ..0 ;1 : Xi41 — X, and
byjk :jko..ojnfltXn—)Xk,

Define, fori € {0,..,n—1}, A; = jin—1(An), and maps F; : U x A; — A;, i € {0,..,n} such
that :

(i) For everyu € U, ¢; € Ai, ji(Fiy1(u, diy1)) = Fi(u, ji(dpiv1))

(ii) There exists (u,¢n) € U x X,,, such that for every h € B such that u+ h € U, every
zn € Xy, such that ¢, + z, € Ap, for every 1 < k <n, F,_ satisfies

Fn—k(u+h7¢n—k+zn—k)_Fn—k(ua¢n—k) = Z Z Q(i’j)(u,¢¢)[h,Zg_1]+Rn(h,Zn)
b=n—k+1 (4,5)
=t (n—k)

(3.2.15)
where for every pair (i,7) so thati+j =1, 1 <{ <k, one has:

° Q(i’j)(%(bwn—k) € L(B x XZJFn—k—len*k) s a £-linear map

o Ry € COBXXy, Xy s such that R (h, 20) 1 x, . = (IRI + 21l ) (B 20).
We call a family of maps (F;)icqo,...n} acting on B, X SAN X4 AN iy X, and satisfying
(i)-(ii), an n-graded family.

Lemma 3.1

Let (F;)icqo,...n} be an n-graded family at (u, ¢r,), and 1 < k < n. Let ¢, € C°(U, Ay) dp(u) = ¢n
be a map with the property that for every £ € {0,...,k — 1}, the map ¢n—¢ := jn—o(dn) has a
Taylor expansion of order ¢ at uw € U.

Then the map u € U — Jp— © Fr(u,dn(u)) € X,—g has the following property: for every
1 <m <k, there exists Qm(u) € L™ (B, Xp—k) such that for every u € U where (3.2.15) holds,
one has

Tk © [P+ hy 6 (u+ 1)) = Fo(u, 6 ()] = (3.2.16)
k
Qo Bt 1) = D))+ 30 Qs 1]+ ()

where e(h) € X,_, — 0.
h—0

43



In other words, if one composes a n-graded family with a map admitting a Taylor expansion at
order k — 1, one gets a map admitting a Taylor expansion at order k, once seen in X,,_j. This
is a generalization of the idea behind Theorem 3.1.

Proof of lemma 3.1: From (3.2.15), one can write:

jn—ko[Fn(u+ha¢n(u+h))*Fn(ua(bn(u))] =F,_ k(u+h (bn k(u+h)) ( ¢n k( ))

k
=3 Y QU (bl b (- h) — S ()] + Ry 4 ) — G (w)
=

(4,5)

ipi=k—f+1
(3.2.17)
From our assumptions, for every £ € {1,...,k — 1}, ¢,_¢ admits a Taylor expansion of order
{ at w € U, so that one can write for every u € U and h € B such that u + h € U,
Ot + D) — dp_g(u) = PO (u).h+ -+ PO, ... ]+ ||h][%e(h) (3.2.18)

with PZ(T) (u) : B" — X,,_¢ a r-linear bounded map, and e(h) € X,,_y h—(>) 0.

—
The same Taylor expansion (at order k — 1) holds for ¢,—x = jn—k(Pn—k+1) at u € U. Injecting
(3.2.18) in (3.2.17) yields a variety of terms. Nonetheless for 1 < m < k, one may specify

which term are m linear in h (leaving side the term Qu o an (w)" [pn—k(u~+ h) — Prn_r(u)]), in
the following way:

Qu(u) =Q) (3.2.19)
=22 X @menu-n) [ Py ), P )] (3:2.20)
=2 (i,j) Ty

iti=C 44 +TJ:m

It is easy to see that each of the above define a bounded m-linear map B™ — X,,_j.
Furthermore, the error term has the form ||h||*e(h). Indeed, in (3.2.17), for fixed 1 < ¢ < k,
each of the terms of the sum of indices i + j = k — £ 4+ 1 contributes to the error term by a
i+jl=k+ (¢{—1)(j—1) >k power of ||h||. By definition and continuity of ¢,, at u € U, the
term R,, also gives an error of ||h|*e(h). This yields an error term of the announced form. [
Theorem 3.2

Let (Fy)icqo,...n} be a n-graded family. Let ug € U. We make the following assumptions :

o For every u € U, F,(u,.) admits a fized point ¢, (u). Furthermore, we assume that the
map u € U — ¢, (u) € X, is continuous.

(0,1)

o forevery0<k<n-1,1- Qu¢k+1(u)

is an invertible, bounded operator of Xj.

Then for every 1 < k < n the fized point map v € U — ¢p—k(u) = Jn—k(dn(w)) € Xp—r admits
a Taylor expansion of order k at uw € U:

Gk (u+ ) — dn_i( Zan w(W)[h, ... h] + ||h]|Fe(h) (3.2.21)
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where the bounded, m-linear maps Q,(u) : B™ — X,,_, are obtained recursively by (3.2.26).
Furthermore, if the former Taylor expansion holds at any point in some neighborhood U' of u
and if u € U — (QOV (u, dp_g41(w)), Qr.n—r(w)) is continuous, then the fized point map ¢,
is k-times differentiable at u?.

Proof of Theorem 3.2: We present a proof by finite and descending induction.

e For kK =1, Theorem 3.2 is simply Theorem 3.1, with

Qu-1(w) = Dudwa () = [£ = Q) ) 171QUD

e For k = 2, we write the Taylor expansion of F,,_o at (u, ¢,_2(u)):

Pn—2(u~+h) — dp_2(u) = Fr_o(u+h,¢pn_o(u+h)) — Fo_o(u, dp_z(u))
Qulat)n) N R Qiogj_l(u)~[¢n—2(u +h) — dp_2(u)]
+ 30 QU b (ot h) = G ()]

i+j=2
+ (I + lgn-1(u + h) = ¢n-1(w)|7_1) e(h, du(u + h) — ¢n(u))
(3.2.22)

By injecting the Taylor expansion at order 1 of ¢,,_1 at u € U, one obtains

1= QU ] Gnmaltob 1) = Guca(1) = QUST b 32 QUG e Qa1+ )
i+j
(3.2.23)

where the error terms ||h]|?e(h) stems from continuity of ¢,, (and ¢,,_1) at u, and the com-
position of the error term from the order one Taylor expansion of ¢,_1 with the bounded
bilinear maps Q(*7), for i + j = 2. Together with invertibility of 1 — QEB:;:?I(UV we get the
promised Taylor expansion at order two, with

Qono(u) = [11 —ngngl(u)} 3 QU 1 Quna (u) B (3.2.24)

i+j=2

e Assume that ¢,,_ry1 admits a Taylor expansion of order k — 1 at w. By lemma 3.1, and

invertibility of 1 — Qiog),k+1(u)7 one may write for ¢, _:

k -1
b+ h) = b)) = 3 [1-Q0Y 1 Qunn(@)lhy o B+ ] ()

m=1

(3.2.25)

2Unfortunately, the fact that the fixed point ¢,_; admits a Taylor expansion of order k is not sufficient to
guarantee the k-differentiability at w, which is why this last statement was added.
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with

Qme=:Q$£LM4 (3.2.26)
Qm,nfk(u) = Z Z Z Q(i’j) (u7 ¢n—(k—l) (u)) [‘7 er,n—(k—£+1) (u)a BEEE) er,n—(k—€+1) (u)}
=2 (D) (rpear;)

HI=L ey 4etri=m

The last statement follows from [14, Theorem 4.1] This concludes the proof. O

3.3 FIRST APPLICATIONS

In this section we present 2 elementary applications of our method to fixed points problems
having loss of regularity. If those examples do not have direct dynamical meaning (as with the
transfer operator example of Theorem 1.2), they provide a simple, yet non-trivial illustration of
the kind of functional techniques we will use in our main applications (chapter 4 and 5).

3.3.1 AN ELEMENTARY EXAMPLE

Let I = [—1,1], and consider the Banach space C°(I). Let 0 < ¢ < 1, and define the family of

maps (Fu)ue[—e,q by :

1 t+u

FW@M&=2¢(2>+gQU) (3.3.1)

1
with g : I x [—€,¢] — R a non-zero C? map, such that g, = g(.,u) € Bc2(0’§) for every
u € [—¢, €.

Under this condition, the map F, preserves B¢z (0, 1), the closed unit ball of C2. Furthermore,
it is not hard to see that for any u € [—e, €], F, is a contraction in C%-norm: indeed, take
@,1 € Bc2(0,1), one has:

1
1

1w, @) = F(u,9) lloo < 716 = dllo2
1

1£(u, §) = F(w,9) oo < 51l = Yl

So that one obtains || F(u, ¢) — F(u,¥)||cxr < 1/2||¢ — ¥|lcx, k € {0,1,2}.

Being a contraction of Bg2(0,1), F,, admits a fixed point, say ¢2(u) € Be2(0,1), by the
Banach contraction principle.

Unfortunately, (u,®) € [—€, €] x Be2(0,1) — F(u,¢) € C?(I) is not continuous: indeed,
taking for ¢ a C? bump function around u will result in a difference ||F(u,$) — F(v, )| c2
bounded from below by a non-zero constant.

Hence it is not possible to apply the implicit function Theorem. This is where our method
comes into play. We establish the following:
(i) The map (u,¢) € [—€,€] x Be2(0,1) — F(u,¢) € CY(I) is Lipschitz continuous: by
proposition 3.3, this implies that the fixed point map u € [—¢, €] + ¢1(u) € C1(I) is also
Lipschitz continuous.
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(ii) F satisfies the perturbed Taylor expansion (3.2.2) from C(I) to C°([)

(iii) The "partial derivative" Q. 4 admits an extension to C°(I), such that 1 — Q.4 is invertible
on CO(I).

We start by proving (i): Take (u,v) € [—¢, €)%, and ¢ € Bg2(0,1). Then one has
1
F0.0) = F(0.0)10) < (glolle2 + [l ) = o (333

F1,6) = P00 < ({10llor + e ) e~ o (3:3.4)

which indeed gives the announced Lipschitz continuity.

To prove (ii), one writes, for u+ h € [—¢, €] and ¢,z € C1(I),

Fluth,é+2) ~ Flu6) = 3 <¢> (‘M“) —¢(“+t>) + L <“+h+t> +g(ut ht) — glu,t)

2 2 2 2
1, /u+t 1 [fu+t
(4¢< . >+8ug(u,t)> .h+22( . )+0(h)+|h6(|z|ol)
= Pugh+ Qu-z + (|hl + [|2]l0) €(Ps [|2]|02) (3.3.5)

which is an expansion of the form (3.2.2). Note that here Q46 = Qu : 2 — %z (“T“) is
independent of ¢, and clearly admits a bounded extension to C%(I), that we still denote by Q..

Furthermore, one has
1
1Qu-2llo0 < 5llzlloc
which implies that ||Qu||/co < 1/2, so that 1 — Q,, is indeed invertible (with bounded inverse) on
Co(I).

This conclude our verification of the assumptions in Theorem 3.1. O

3.3.2 A NON LINEAR APPLICATION

We now give an application of Theorem 3.1 to the study of a fixed point of a non linear map.
Note also that the parameters lie in an infinite dimensional space.

Consider the interval I = [—1,1], and let C1'1(I) be the set of C! map on I with Lipschitz
derivative, endowed with the norm ||f|l11 = max(||f||c1, sup ‘f/(za)c%gl(y)’)
z,yel

, which makes it a

Ay
Banach space. Define the map F : C11(I) x Cb1(I) — CH(I) by?

F(u,¢) = %¢o¢+u (3.3.6)

We will show the following:

Theorem 3.3
Let I, CYY(I), and F : CHY(I) x CHY(I) — CYL(I) be as above. One has:

3Note that we could replace the coefficient 1/2 by any A < 1 in the definition of F.
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(i) Let U = Be1a(0,7") be an open ball in CHY(I). There is r,r' € (0,1), such that for every
u € U, Beia(0,7), F(u,.) is a contraction of Bera(0,7) in the Ct topology: therefore it
admits a fized point @, € Be1.1(0,7), and furthermore the map w € U — ¢, € C(I) is
continuous.

(ii) F acting on the scale (C1(I),C°(I)) satisfies a development of the form (3.2.2). Therefore
the map u € U + @, € CO(I) is differentiable.

Proof of Theorem 3.3:

(i) It is a straightforward computation: for every u € U, one has

1. 0)e < 1202 4

2
IDeF(, 6) o < “¢ e )
I Hoo.llsb’llup

I1DeF (u, §)l| Lip < (14116 lloo) + 'l i

Therefore we should choose r, 7" such that § +7" <, & + 7 <rand & s(1+r)+r <r
This conditions, which admits obvious Solutlons, insure us that F(u,.) preserves Bei,1(0,7).
From now on, we fix r,r’ so that those conditions are satisfied.

We now show that [|[F(u,¢) — F(u,¥)|cr < kl|¢ — ¢||cr, when ¢,¢ € Bera(0,r). It is
noteworthy that here, k is independent of u. One has:

1
1w, &) = Fu, 9)lloo < 51+ [[€llo0) 16 = Pllon
1
1D F(, ) = DeF (s $)lloo < 519" lloo + 16" Lipll6 |00 + 116"l|0) 16 = Pl

so that one need to impose the following conditions on 7: 1% <1, 2"’” < 1.

Not only do these conditions clearly have solutions, they are also compatlble with the
conditions imposed on r in (i). From now on, we assume that r,r’ satisfy both sets of
conditions.

Thus, for every u € Bev1(0,77), F(u,.) : Beia(0,7) = Beia(0,7) is a contraction in the C*!
topology. Hence it admits a fixed point ¢,, € Be1.1(0,7), and the map u € U — ¢, € C1(I)
is continuous (and even Lipschitz) by proposition 3.3.

e One can write, for u,h € C1Y(I) such that u, u+h € U and ¢,z € C1(I),
Flut+h,¢+z2)—F(u,¢) =h+ 3 [¢ ¢z +z00]+ (2 0 ).z + |2]lc€0(2)
where |leg(2)]|coc — 0 as ||z||cc —> 0. From there it is clear that with:
P, o.h=h
Qu,p-2 = %[qﬁ’ 0¢.z+ 20 ¢
e(h,z1) = (2 0 ¢).z + ||zl oc€0(2) = (21 © $).20 + [|20/loc €0(20)
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F satisfies a development of the form (3.2.2).

To conclude, we need to establish the invertibility (and boundedness of the inverse) of
Qu.p = Qg on CO(I).

It is easy to see that for every ¢ € Be1.1(0,7), [[Qg-2lloc < &(147)] 2]/oc, s0 that |Qgflco < 1
whenever r < 1 (which is insured by the sets of conditions in (i), (ii)). Therefore its
Neumann series converges in C°(I), and Id — Q4 has a bounded inverse in C°(I) for every
¢ € BC1,1(0,?"). ]
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Chapter 4

Top eigenvalue of transfer
operators: perturbations and
dynamical applications

4.1 INTRODUCTION AND MAIN RESULTS

This chapter presents the results of the article [73]: we study the linear response problem in the
context of smooth uniformly expanding maps, with the tools of Theorem 3.1.

More precisely, we illustrate the abstract Theorem 3.1 by applying it to a positive, linear
transfer operator L, , associated with a family (T}, )ycy of C1T® expanding maps on a Riemann
manifold X, acting on C17®(X), that admit an isolated, simple eigenvalue \,, of maximal modulus
(i.e a spectral gap). For that, we work with the nonlinear map F : U x C1T%(X), defined for
u € U a neighborhood of up € B and ¢ & ker L} 4,,,, by

F(u,¢) = b (4.1.1)

[ Lugdly,
where ¢, (resp. ¢,) is the left (vesp. right) eigenvector of £,, chosen so that [ L,¢,dl, = .
For u € U, we chose ¢, so that (€,,,¢,) =1 (this will prove useful in § 4.3).

This (nonlinear) renormalization originates from cone contraction theory, and has been used
e.g in [70, 71]. Satisfying assumption (iii) in Theorem 3.1 is the main reason why one is lead
to introduce (4.1.1): indeed, working with the naive guess A; 'L, (for which ¢, is an obvious
fixed point) cannot give a bounded and invertible second partial differential, by definition of an
eigenvalue... It is also worth noting that the normalized maps F satisfy condition (i) in Theorem
3.1 thanks to proposition 3.3.

The main results of this chapter are as follows:
First we establish, through a simple and direct argument, a strong statistical stability result for
the invariant density of a family of expanding maps:
Theorem 4.1
For every 0 < 8 < a, u €U, one has
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e F(u,.) acts continuously (and even analytically) on CIT*(X)* == {f € C1*(X), f >
0 and f # 0}

e Consider F(u,.): C{T*(X)* — Ci"’B(X)*. Then uw € U — F(u,.) is Holder continuous,
with exponent v := o — (.

o F(u,.) admits a unique fized point ¢(u) € C1T*(X)*, and u € U — ¢(u) € O+ (X) is
v-Hélder.

We establish this result in §4.3. It is noteworthy that the method of proof is very simple, and
should certainly generalize to more general hyperbolic maps with a similar spectral picture (that
is a spectral gap on an appropriated Banach space, such as Anosov or Axiom A maps).

Theorem 4.1 also establishes the first assumption of Theorem 3.1, and is therefore instrumen-
tal in proving the following:

Theorem 4.2

Let 0 < B < a <1, uy € B, U a neighborhood of ug, (T)ueu be a family of C*+*, expanding
maps of a Riemann manifold X. For each uw € U, let L, be a weighted transfer operator on
Cre(X), associated with T, defined by (4.2.1).

Let Ay > 0 be its dominating eigenvalue, ¢(u) € C(X), €, € (C*T*(X))* be the associated
eigenvectors of L, and L} respectively. We denote by 11, the associated spectral projector, and
let Ry, = Ly, — M1, (¢f Theorem 2.9).

Then the following holds true:

e The map u € U — ¢p(u) € CP(X) is differentiable.

o We have the following linear response formula for the derivative with respect to u at u = ug:

1

(Id — Ay Ruy) ™ (Id — Iy )00 L(u0, duy ) (4.1.2)

We establish this result in §4.4, by applying Theorem 3.1 to F acting on the scale (C1T4(X), C# (X))
for any 0 < 8 < . We show that F satisfies to a Taylor expansion of the form (3.2.2), with (see

formulas 4.4.6, 4.4.3 )
1

PO = (Id - Huo)au£u|u=ug¢0

ug

Our strategy of proof is the following:

e We first show regularity results (Holder and Lipschitz continuity, differentiability in the
sense of (3.2.2)) for the transfer operator £, acting on Hoélder spaces, with respect to w:
see lemma, 4.1

e We then establish Theorem 4.1 by a direct argument (see § 4.3).

e We finally prove Theorem 4.2 by applying Theorem 3.1 to the map F' defined by (4.1.1),
acting on the scale (C1TA(X),CP(X)) (see § 4.4).
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4.2 PERTURBATIONS OF THE TRANSFER OPERATOR

Letd>1,¢>0,U = (—¢,6)% 0 < a<1and (Ty)uew € C*H(X) be a O family of C1+e
expanding maps. For example, T}, can be a C''*® perturbation of an original expanding map Ty:
by openness of the expanding condition, 7}, is also expanding for u € U/ small enough.

Let g : U x X — R be a C'T® map. For every u € U, define the associated transfer operators
(e.g, on L>(X)) by

Lupx) = Y g(u,y)d(y) (4.2.1)

y, Tuy=z
Recall that the spectral features of interest appear when the transfer operator acts on Holder
spaces (cf appendix 2.4). In the next proposition, we study the regularity of £, with respect to
the parameter u.

Lemma 4.1 (Regularity of the perturbed transfer operator)
Let 0< B <a<l,andy:=a—p. Let X,U and g,Ty, L, be as above.

e uclU— L, € L(CH(X),CP(X)) is y-Holder.
In particular, it is a continuous map.

o For every h € B such that ug + h € U, every 0 < 8 < a, we can define a bounded operator
OuL(ug,.).h : CYP(X) — CP(X), such that for every ¢ € C*HP(X),

Lo + hy 6) — L{ug, @) — duLluo, 6)-h = ||| se(h) (4.2.2)

with e(h) = 0 in CP(X)
—
Furthermore, L satisfies (3.2.2) in Theorem 5.1, with the scale (C*8(X), C#(X)).

Proof. By a standard argument (see [63, 11]), one can construct a family of open sets covering
X, small enough to be identified with open sets in R4™(X) and such that on each of these open
sets, the transfer operator is a (finite) sum of operators of the form W, ¢ := (g,.¢) o ¥, with
¢ € CHH(W), ¢ € C*(U x V,W) is a contraction in its second variable (and a local inverse
branch of T,), g € C'T*(U x W) with compact support, and V, W open sets in RIm(X),
We will apply the results of appendix B to the operators W,,.

For the first item, one needs to estimate, for ¢ € C1T(W), [|(Wy—W,) ¢l c1+s = max(||(We—

Wv)‘z’HCl, ||Dz(Wu - Wv)¢”05)~
Assume first that the weight ¢ is independent of the parameter. Then by lemma B.1, (B.1.1),

Wy = Wy)0|cr+s < C||@]|crta

u—vl|” (4.2.3)
with C' = O(aa B, ||g||Cl7 ||wu||cl7 ||¢U‘|01+Q7L0a L()a LOHL:X)'

Now if g also depends on u € U, computing | W, — W,)é||c1+s with ¢ € C*F* would yield
an additional term of the form [(g(u,.) —g(v,.))¢] o9 (u,.), whose C'*# norm would be bounded
by C||¢||cr+e.|ju — v]|7, with C a constant.

Thus, u € U + L, € L(CHH2(X),C*P(X)) is (locally) y-Holder.
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Let ¢ € C1**(W). The C! regularity of the inverse branches (w.r.t to u) allows one to
consider the (partial) differential of W with respect to u. Again, assume for the time being that
g does not depends on u. Define x,, : X — L(B,TX) such that Dy, = —Xu © ¥y, one gets :

auw(uv ¢) = [Dg(wu) o Du'l/)u]-qS © wu +go wu[DQS(q[}u) o Du¢u] (424)

The previous formula defines a bounded operator 9,W € L(B,L(C*t*(W),C%(W))), by
virtue of lemma B.2.

One can easily extend the former to £,, and define a "partial differential" 0, L, taking value
in L(B, L(C'*(X),C*(X))). To what extend is it a "true" partial differential ? To answer that
question one has to estimate ||L(ug + h, ) — L(uo, #) — Oy.L(uo, @).h||cs, for ¢ € CT*(X)

Let x € X. One has

Wuo+n® = Wao ¢ — 0. (w0, ¢).h)(x) = (I) + (I1) + (I11)

where

(1) = oY (uo, x))[g(P(uo + h, ) — g(¥(uo, x)) + Dg(v(uo, 7)) © Xuo (2)-h]
(1) = g(¥(uo, 2))[p(¢(uo + h, ) = ¢(¥(uo, ) + Dp(th(uo, ) © Xuo (2)-h]
(L11) = [p(¢(uo + b, x)) = d((uo, 2))][g(¥(uo + b, x)) — g(¥(uo, )]

By lemma B.4, (B.2.1), and lemma B.2, (B.1.4) (I), (II) and (III) can be bounded as follows:

I(Dllea < Cligllos IR gllors
IID)lloe < Clgllos IRl gl
ITIDlcs < CIRI-NIllor+allglicr+e

From the latter !, it is straightforward that
L(uo + h, ¢) — L(uo, ¢) — OuL(uo, ¢)-h = [|h]|se(h, |lgllcr+s, |9l cr+5) (4.2.5)

where €(h, [|gllc1+s, [6llc1+s) = O([[h]5)-

Let us now show that £ satisfies the Taylor expansion (3.2.2) in the assumptions of Theorem
3.1.
We start by recalling the following Taylor estimate, found in [15]?:
Letting E,F,G be Banach spaces, Y C E, V C F be open sets, 0 < f < a < 1, and f,h €
CY™PU,V) g,k € CH(V,G), one has

(g+k)o(f+h)=gof+kof+][dgo fl.h+ Ry s(h, k) (4.2.6)
where there exists some 0 < p < 1 such that the remainder term Ry (h, k) satisfies

IR, s (h, K)o < CUIRNIGALs + Ihllorss [kl cr+e) (4.2.7)

IFrom the previous bounds, one can even conclude that the map v € U — L(u,p) € CP(X) is CT7 for
¢ € CM(X), which is precisely the conclusion drawn from the Taylor expansion at first order in Gouézel-
Liverani’s paper ([39, §8.1, (8.3)]).

2We specifically refer to estimate (6.7) after Theorem 6.10
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This, together with the definition of 9,W,, yields for (¢,2) € C*+*(W)

Wag+n(P + 2) = Wao () — 0uW(uo, ¢).h — W, (2)
= D(g¢) o wu(J'(d)qurh — Yug — aud}uwh) + (wqurh - wumgﬂ) (4'2'8)

where Ry = Ry, from 4.2.7. We start by bounding the first term. One has

1
Vg — g — Outhug b = /O [Outb(tto + th) — Butb(uo)]-hdt (4.2.9)

which leads us to estimate a term of the form ||df (¥ (uo)). fol [Out(ug + th) — Outp(uo)].hdt||cs.
Following the trick used in the proof of lemma B.4, we get

de(d)(m))-/ [0ut)(uo + th) — Buth(uo)]-hdt|| cs

A

< [Calldf a1 (u0) [ 2x + Colldflloc] T (4.2.10)
Now for R; we write, following estimate (4.2.7):
IRillca < MR + [[B]l.(Cullzllcr+a + Collllc)] (4.2.11)

with C7, Cy depending on «, | g|

ces llgllere.
Therefore, we obtained the following bound for (4.2.8) :

M[RIF? + MY + Gzl et + CallR]-lizlce = (1Al + 12|

calelh, 214a)  (4.2.12)

where 214, is z in C**® topology and €(h, 2114) —>  0in C#(X).
(h,z1+a)~>0

In the case of a weight g depending on the parameter u, the partial derivative 9, W is given
by

W (u, @) = ([Du(g) (W)]6) 0 () + Da(g) o (u). Duth(u) (4.2.13)

Thus, the Taylor expansion at (ug, ¢) now has an additional term

[(g(uo +h) — g(uo) — Du(g)(uo)-h)¢] o ¥(uo)

This term can be bounded (in C#-norm), with upper bound of the form C/||g||c1+«||R||}T7, where
C = C(||¢(uo)||cr+a, ||@||c1+«) is a constant, as outlined in lemma B.4.

It follows that the transfer operator defined in (4.2.1) also has a Taylor expansion of the form
(3.2.2). O
Remark 4.1

The previous regularity results are given for L, acting on the scale (C*T#(X), CP(X)), 0 <
8 < a < 1. Following the method outlined in [15], and using Theorem 3.2, one can show (by

induction) that L, acting on the scale C*+P(X), C*=3+P(X) has a Taylor development of the
form (3.2.15) at order j, with 0 < j < k integers.
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4.3 HOLDER CONTINUITY OF THE SPECTRAL DATA : PROOF OF THEOREM 4.1

This section is devoted to establish Theorem 4.1, by a direct argument. Note that this type
of result is already known for a one-dimensional parameter, with previous works on spectral
stability [3, 50], or in the context of piecewise expanding maps of the interval [19].

Let 0 < 8 < a < 1, and (Ty)uey be a family of C'T® expanding maps, on a Riemann
manifold X. Let g : X — R be a positive * C**< function.
It follows from Ruelle Theorem [(3] that the transfer operator (£, )ucys admits a spectral gap in
C't(X). Let A, be the dominating eigenvalue of Ly, ¢, € C't*(X) (resp £, € (C*F*(X))")
be the right (resp left) eigenvector of £, associated with A,, chosen so that (£,,¢,) = 1. Let
F U x C*2(X), defined for u € U and ¢ & ker L L, by

L9

Flu0) =7 79

(4.1.1)

Note that F trivially inherits every regularity property of (u,¢) € U x C’_1~_+0‘ (X)* — Lo,
so in particular it is y-Hélder in v € U when considered as an operator from C}_*"I(X )* to
C}r+’8(X)*. Hence the first point.

The second item follows from the former remark and the fact that ¢,, admits a bounded
extension to C14(X), for every 0 < 8 < a (cf [63]).
Let ¢, € C17*(X)* be an eigenvector for \,, the dominating eigenvalue of £,. Then one has

Auy Pu
F(u, ¢y) = - 4.3.1
(000 = 3 s~ Wy ) (31
For every u € U, fix a ¢, € ker(\, — £,) such that (¢,,,¢,) = 1. Such a ¢, is unique in

ker(A, — £,,) and verifies

so that F(u,.) has a unique fixed point ¢, in C’rro‘ (X)* for every u € U.
Remark that for every k € N*, for every u € U, every ¢ & ker((L%)*0,,),

F*(u,¢) = _Lu(@) (4.3.3)

(Cuo, L25(0))

by an immediate induction
Now note that, for every k € N* u € U,

d(u) = ¢(uo) = F*(u, ¢(u)) — F*(uo, ¢(u)) + F*(uo, ¢(u)) — F*(uo, ¢(uo)) (4.3.4)
and that

Ly, (¢(w))
(Cuqs L (6(u)

3Note that we only need the positivity of the weight to insure the simplicity of the maximal eigenvalue.

F¥(uo, ¢(u)) = F* (uo, ¢(uo)) = — ¢(uo) = A\ Ry, ($(u) — ¢(uo))  (4.3.5)
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Recall that there is a 0 < o < 1 such that [[A;*RE |c1+s < Co* (cf § 2.9), so that for k large

0
enough, one has

1" (uo, $(w)) — F* (uo, ¢(uo))llor+s < %I|¢(U) — ¢(uo)llcr+s (4.3.6)

From there,(4.3.4) yields

1
lo(w) = d(uo)llcrrs < Crullu —uoll” + Fll6(u) = dluo)llor+s

[o(w) = ¢(uo)llcr+s < 2Ck ullu — uol|”

where Cy.., = ||F*(., ¢(u))||c1+5. Thus, u € U — ¢(u) € C*HP(X) is y-Holder. O

4.4 DIFFERENTIABILITY OF THE SPECTRAL DATA : PROOF OF THEOREM 4.2

Let 0 < 8 < a < 1. This section is devoted to establish Theorem 4.2 by applying Theorem 3.1
to the map F from (4.1.1) acting on the scale (C'T4(X), C8(X)).

The first hypothesis, i.e existence, for every u € U, of a fixed point ¢,, for the map F(u,.) :
CiH(X)* — CT*(X)* from (4.1.1) and continuity of the map u € U ~— ¢, € CH#(X), has
already been addressed in Theorem 4.1.

We now turn to assumption (i4). We showed the perturbed Taylor development for £ act-
ing on (C'*A(X),C#(X)) in lemma 4.1 : it immediately follows that F acting on the scale
(CP(X),CP(X)) satisfies the perturbed Taylor development (3.2.2).

We now check assumption (i77). We start by remarking for every z € C1T4(X),

1
Qu,g-2 = m[ﬁ(uv 2){lug> L(1, @) — L1, §)(Cuy, L(u, 2))] (4.4.1)

Thus, for ¢ = ¢,,, we obtain

Qu,p, -2 = —(L(u,2) = (lyy, L(u, 2)) D) (4.4.2)

1
Au
and for u = uyg :

1
Qu07¢u0 = TL(UO) — Iy, = T Ry, (4.4.3)
U

where T,z = (buy, 2)bu,, 2 € C'FP(X) is the spectral projector on the (one-dimensional)
eigenspace associated to A,,. It is also noteworthy that the previous expression is independent
of ¢u,-
From (4.4.3), one sees that there is a N > 1 such that HQ%HCA < Co¥, for some C > 0 and
o € (0,1) (cf appendix 2.4, (2.4.3)): therefore its Neumann series converges towards (Id—Q,,) !
This proves (iii) in the assumptions of Theorem 3.1.
We can therefore conclude that

If ¢, € CYA(X), u € U — ¢, € CP(X) is differentiable.
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and that its differential satisfies

Dyu¢(uo) = (Id = Quo,éy) ™ Pug.u, (4.4.4)
Furthermore,
OuL(u,®) (Cuy, OuL(u, @)
Pug = - L(u, ¢ 4.4.5
. W<>><Www>(’ 49
which simplifies, for (u, ¢) = (ug, u,), t
Pu01¢u0 - (a ’C(uov ¢uo) - <‘€’U40; auﬁ(u(% ¢U0)>¢UO) (446)
- %(Id ~TL,) 0 0L 0, buy) (447
uo
This, together with (4.4.3), proves formula (4.1.2). O

4.5 REGULARITY FOR VARIOUS DYNAMICAL QUANTITIES

We now derive a few consequences of Theorems 4.1 and 4.2 for various dynamical quantities of
interest :

Corollary 4.1 (Regularity of the topological pressure)

We place ourselves in the same setting as in Theorem J.2. The topological pressure P(u) is dif-
ferentiable with respect to the parameter, i.e the real valued map u € U — P(u) is differentiable.

Proof. Let uy € B, and U C B be a neighborhood of ug. Given the normalization chosen for
Ly, and ¢, (cf chapter 4, (4.1.1)) for every u € U one has

Au = (lug, L(u, Pu)) (4.5.1)

Thus, injecting (3.2.2) and using the Holder continuity (resp differentiability) of u € U — ¢, €
C1H8(X) (resp CP(X)), one gets the differentiability of the map u € U + \,,.

Fix a up € U. One has from Theorem 2.9 (or from Theorem 5.3) that A,, > 0, so that
P(u) = log(\,) is well-defined and differentiable in a neighborhood of uy € U, giving the desired
conclusion. 0
Corollary 4.2 (Regularity of the Gibbs measure)

We place ourselves in the same setting as in Theorem J.2. Let m,, be defined on CP(X) by
my(f) = (bu, féu). Then it is a Radon measure, and for every f € CP(X), the map u € U —
my(f) is C*.

In particular, one has:

e Linear response for the S.R.B measure u € U — fM foudm is C1, with the following
formula for its differential:

+o0
%MWWiwngﬂmm%m (152)

e Regularity for the maximal entropy measure
If myop(u) is the measure of mazimal entropy of Ty, the map u € U — myop(u)[f] is C*.
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Proof. We present a standard positivity argument by which we extend continuously ¢, to
C°(X).
Fix a w € Y. From Theorem 5.3, the transfer operator £, contracts a family of cones, (K4)q>0 C
CA(X) U CY(X). Consequently, the decomposition (2.4.3) holds true in C?(X), for every 0 <
8 <1, and one can write
_ cr
ANLud = dullu, @) (4.5.3)

n—-4o0o

Now, let ¢ € CP(X) U C9(X), and remark that by (4.2.1),

L) = > e"Vo(y) >0 (4.5.4)

y, Tuy=z

i.e L, is a positive operator.
Therefore, by virtue of (4.5.3) and positivity of ¢, £, is also positive on C?(X). It is then
automatically continuous on (C#(X), ||.|co) : for every, ¢ € C#(X) U CY(X), every z € X, we
have

—llgllco < ¢(z) < [|llco (4.5.5)

so that
|(Cus @) < (u, 1)@ 0o (4.5.6)

with (0u, 1) = (bu, 5-¢u) = [ g-dmy > 0.
" 5 %

Therefore, every (£,)uey is bounded on (C?(X), ||.||co). From there, we can apply one of many
classical extensions Theorem, such as the extension Theorem for uniformly continuous maps on
a dense subset, to conclude that £, admits a bounded extension to C°(X). It naturally follows
that m, is a Radon measure.

For s € D(0,1) C C, u € U and A € C1T%(X), we introduce the parameter
u=(s,u) € D(0,1) xU C Cx B and the weighted transfer operator (with weight €9, g : X — R)
Ly defined on C'T(X) by

Lap = Lsw = Lou(e*P) (4.5.7)

Note that L, is an analytical perturbation of £, (at a fixed u € U). Hence, L;,, also has
a spectral gap for s € D(0,r), with » = r(u) small enough (cf. [47, IV, §3, Thm 3.12 et VII,
§ Thm 1.8]), and we will write As ., @, for its simple, maximal eigenvalue and the associated
eigenvector (which is not necessarily a positive function, nor even a real valued one).
It follows from Ruelle Theorem 2.9 that A, = eP(5:1) with P(s,u) the topological pressure
associated with the dynamic T, and the weight es4+9.
We now state a version of a well-known formula (cf. [68]), connecting topological pressure and
the expectation of the observable A under the Gibbs measure m,,, suited to our needs.

Proposition 4.1
Let uw e U. The map s € D(0,r,) — P(s,u) is analytical and one has

0sP(0,u) = my(A) (4.5.8)
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Proof. Fix u € Y. For s € D(0,r), with » = r(u) small enough, one can write

Lsubsu = ef (s’“)qbs,u. The first statement follows from analytic perturbation theory, see [17,
IV, §3, Thm 3.12 et VII, § Thm 1.8], as well as analyticity of s — (s, with ¢, ,, the eigenform
for Ag .

Furthermore, from the normalization (€s .y, ¢s.) = 1, one gets (Cs .y, Lsu@su) = eP(54) and

by differentiating this last equality with respect to s, one has
asP(sau)eP(s7u) = (<(95€(s,u), ¢s,u> + (gs,ua as¢s,u>) ef(w) + <€s7ua as'cs,U¢s7u> (4-5-9)
—_— —
€3] (1)

On one hand, from (¢, ., ¢s.) = 1, one gets (I) = 0.
On the other hand 05L; sy = L5 APsu, so that we get (IT) = ePsu) s, Ads )
Finally, one has, at s =0

Fix a ug € U: thus Aoy, = Ayy > 0.
One easily has, for all y € X,

Loud(y) = X e 090 g(a)

a:ETu_ly

From Theorem 4.1, it holds that there is a neighborhood D(0,r) x B(ug,d) such that (s,u) €
D(0,r) x B(ug,d) implies [Ag .y — Ayy| < )‘ZO.
In particular, r is independent of u and A, is a positive real number. Hence P(s, u) is correctly

defined, and continuous with respect to u € B(uy, d), for s € D(0, 7).

From Theorem 4.2, it holds that there is a neighborhood D(0,r’) x B(ug,d’) on which
(s,u) — P(s,u) is C'. In particular, 9, P(s,u) exists and is continuous with respect to u €
B(ug,d") for s € D(0,r"). Once again, r’ is a priori independent of w.

From analytical perturbation theory, it holds that s € D(0,r”) — P(s,u) is analytical for
u € B(ug,d”), where r” = min(r,r’") and §” = min(,0"). Therefore, one can write, following
Cauchy formula and (4.5.8)

My (A) :/ Pls.u) (4.5.10)
cory S

where C(0,r”) is the circle of radius r” centered at 0.
By Lebesgue’s Theorem, u € B(ug,8”) — my(A) is a C! map. Up to a change in constants,
this can be done for every ug € U, thus concluding this proof. O

The last two points derive immediately from the general proposition, with the choice of weight
and g, = 1. The linear response formula (4.5.2) follows from (4.1.2), the fact

1

| det(DTy,)|’
(2.2.9). O

1
Je = Tdet(DT)|

that for the weight g, = one has A\, =1, ¢, = [ u -dm and the duality property
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It is a classical fact (deriving, e.g, from the Nagaev-Guivarc’h spectral method, see [38])
that for a uniformly expanding, C?T® map T}, and Hélder observable A : M — R, the random
processes (Ao T)'),>o satisfies a central limit Theorem, with a centered limit distribution and
variance ¥.2(A) given by

+oo
2 (A) ;:/ A2dmu+22/ AoT" Adm,, (4.5.11)
M —Jum

1

with m,, the S.R.B measure, i.e the equilibrium state associated to the weight ————.
| det(DT.,)|

Corollary 4.3 (Regularity of the variance in the central limit Theorem)
We place ourselves in the same setting as in Theorem J.2. Then the map u € U — X2 is C*.

Proof of Corollary 4.3 Placing ourselves in the same setting as in the proof of the last
proposition, we work with the analytically perturbed Ruelle transfer operator L., := L, (e*4.)
for observable A € C1*+%(M) and small complex s € C, with an original weight g, := m.
Still denoting by P(s,u) = log(As,) the maximal eigenvalue of L ,, we use the well-known
formula

92P(0,u) = 2(A) (4.5.12)

Indeed, starting from 95 P(s,u) = (€54, Aps ) and differentiating with respect to s (which is
licit by analytic perturbation theory), one obtains at s = 0.

O2P(0, 1) = (Dlo.u, Adu) + (Lus ADsho.u) (4.5.13)

Now, recall that for any fixed u € U, by analytic perturbation theory* one has the following:

Osto,u = (1 = L)™' 0L ubu (4.5.14)
Doy = (1= L)1 0L, (4.5.15)

taking into account that £, = fM(.)dm and 5L = Ls 4, (A.), we obtain

Dstpou = (1= L)™' Lu[Ady] (4.5.16)
Oslow = (1 — L) " A*LE (dm) (4.5.17)
so that (4.5.13) yields
O2P(0,u) = / A LA Jdm + / A £2[AdJdm (4.5.18)
M n=0 M n=1
- / A2dm +2) / AoTr Ap,dm (4.5.19)
M /M

4The formula we obtain is similar to 4.1.2, but the fact that it is valid also for the left eigenvector ls o is
specific to the analytical case, where s+ {5 4, is analytic for small s
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by using the duality property (2.2.9), boundedness of the linear form dm on Holder spaces,
together with the spectral gap property of L,.

From there, the conclusion follows from a Cauchy formula at order 2, similarly to the end of
the proof of corollary 4.2. O

4.6 GENERALIZATION TO THE DISCRETE SPECTRUM

For now, we were able to establish regularity result for the maximal eigenvalue of the transfer
operator, and associated spectral data. In turn, this allowed us to study the regularity of some
dynamical data. But not every dynamical data of interest is related to the top eigenvalue of
the transfer operator: some are connected with other spectral data (e.g, the rate of mixing is
bounded by the second largest eigenvalue [4, Prop 1.1]), which is why it is natural to investigate
the regularity of the rest of the discrete spectrum.

Theorem 4.3

Let M be a smooth compact, connected, boundaryless Riemann manifold of finite dimension, B
be a Banach space, and ug € B.

Let 0 < B < o, and (T,)weu be a Ct family of C1T* expanding maps, and let g € C*F(U x M)
be a (positive) function. Let Lq1, = L, be the weighted transfer operator, acting on the little
Hélder space (M) defined by (2.3.3).

Let A & 0(Ly,), and R(\,ug) = (A1 — L,,)~! be the resolvent operator. Then there exists a
(small enough) open neighborhood U C B such that

e For any u € U, the resolvent R(\,u) € L(c***(M)) is well-defined. Furthermore, the map
u €U — R\ u) € L(cHT(M), P (M)) is v := o —  Hélder.

e uclU— R(\u) € L(ctTP(M),cP(M)) is differentiable, and its differential satisfies
RN u) = =R\ u)0uL,R(A, uw) (4.6.1)
We want to deduce from Theorem 4.3 the regularity of the spectral projector II, on the

eigenspace associated with A,. In order to achieve that goal, our strategy consists in applying
Theorem 3.1, to a map constructed from the resolvent operator R(A,u) = (A1 — £,,)~ .

Let A € 0(Ly,) and f € ¢"(M), r € {B,a,1+ 8,1+ a}. For every u € U, define the affine
map F :U X ¢"(M) — ¢" (M) by
F(U¢)'—lf—l£¢> (4.6.2)
DY AT h
Given our choice of A, there is a unique ¢,, € ¢"(M) such that Mgy, — Luypu, = f, i.e the

map F'(ug,.) admits ¢,, = R(\, ug)f as a unique fixed point.

We will establish Theorem 4.3 by applying Theorem 3.1 to the map F. The first step consists
in establishing both existence of R(\,u)f € ¢! T%(M) for u € U, and (Holder) continuity of the
map u € U — R(A\,u)f € L(c+(M), 0.
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Proposition 4.2
Let M be a Riemann manifold, B be a Banach space, and U C B be an open subset. Let (T,)ueu
be a Lipschitz family of C*** expanding maps, and let g € C*+(U x M) be a (positive) function.
Let Ly 1, = L, be the weighted transfer operator defined by (4.2.1), acting on ¢ T*(M).
Let ug € U and N &€ o(Ly,), and R(\,ug) = (A1 — L,,)~* be the resolvent operator. Let
0<B8<a,andy:=a—0.

Then there is a neighborhood ug € U' C U such that R(\,u) € L(c***(M)) is well defined
for every u € U', and the map u € U — R(\,u) € L(c'T¥(M), P (M) is y-Hélder.

Proof. This proposition is mostly a consequence of the Keller-Liverani Theorem 2.10, whose
assumptions have been established at various places in this text (uniform Lasota-Yorke inequal-
ities in Theorem 2.9, continuity in relative topology in §4.3).

Let A € 0(Ly,) and u,v € U’. Then by Theorem 2.10, R(A,u) and R(A,v) are well-defined
on ¢!t (M). We have this easy variant of the famous resolvent formula :

ROvu) —ROA0) = (M —L)70 (Lu—L)) (ML= L) (4.6.3)
—— —_————
EL(cH+a(M),c+8 (M) EL(MHB(M)) €L(cH+e(M),c1+8 (M) €L(cl+e (M)

This formula allows one to reduce the problem of regularity for v € U — R(\u) €
L(c*e (M), ct*+P(M)) to the regularity of u € U — L, € L(CYT*(M),C A (M)), which was
established in lemma 4.1.

10 = Lollor e, ores < Cla,v)]Ju —v]|" (4.6.4)

with C(u,v) a constant, depending on the Lipschitz and Holder norms of the inverse branches of
the dynamic, which can be chosen uniform in (u,v) if they lie in a (small enough) neighborhood
of a ug € U (cf. the proof of lemma 4.1, also in [73, Lemma 5, section 3.2]).

Interpreting R(\, v) as an operator on C'+®, L, — £, as an operator from C'** to C'*# and
R(\,u) as an operator on C'*5 one gets for every f € C1T% every u,v € U

IR, u) = R, v) fllervs < IR w)l[erslll[Lu = Loflcrta o146 [[R(A, 0) fllorse
< Cu, V)[R, w)ller+s ][R )l [ore| | flloree|lu = vf[7

Under those conditions, one gets
IR, w) = R(A,0)llcrve crvs < Cluo)[|[R(A, w)llcr+s|[R(A v)|[crelfu —vf[T - (4.6.5)

so that u € U — R(\,u) € L(ctT®(M), !B (M)) is (locally) Hélder, and therefore continuous
at every ug € U, if one can get uniform (in u) bounds on the C'**, C'# norms of R(\, u).
This last fact follows from Keller-Liverani Theorem 2.10. We can now conclude with (2.5.4) that

IR w) = RO, o)) e < Clug)llu— vl (4.6.6)

It is noteworthy that we obtain uniform bounds on the resolvent, both in v and in f, i.e that
we obtain Holder continuity for the resolvent in the operator topology. ]
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The second step of the proof of Theorem 4.3 consists in establishing that (u,¢) € U x
(M) — §£u¢—|— %f satisfies (3.2.2). But A, f are independent of (u, ¢), so that it is enough
to establish (3.2.2) for (u,¢) € U x (M) +— L,¢ € ¢’ (M). This is what was done in lemma
4.1, in the space C#(M). Tt extends unchanged to the present setting, as the norms used are the
same.

The last step of the proof consists in showing the invertibility (and boundedness of the inverse)
for the partial differential (w.r.t ¢) of the map (u, ) € U x c!+*(M) — %Eugb + %f in the space
c?(M). But it is trivial to see that this partial differential is just Id— %ﬁu, so that its invertibility
on ¢ boils down to the invariance of peripheral spectrum for £,, when changing spaces to ¢®(M)
from c'T(M). This last fact is a consequence of the following result (its proof can be found in
[6, Appendix A, p.212, lemma A.3])

Lemma 4.2

Let B be a separated topological linear space, and let (By,]].||1) and (Ba,||.||2) be Banach spaces,
continuously embedded in B. Suppose there is a subspace By C By N By that is dense in both
(B1,|111), (Ba,||-|l2). Let L : B — B be a linear continuous map, preserving By, Bi, Bz, and
such that its restriction to By, By are bounded operators, whose essential spectral radii are both
strictly smaller than some p > 0. Then the eigenvalues of L|p, and L|p, on {z € C, |z| > p}
coincide. Furthermore, the corresponding generalized eigenspaces coincide and are contained in
By N Bs.

This allows us to conclude that for every f € ¢!**(M), the map u € U — R(\,u)f € c?(M)
is differentiable, i.e point-wise differentiability of the resolvent operator viewed as an element of
L(c***(M),c?(M)).

A natural question is therefore the possibility to extend that result in the operator topology,
i.e to show differentiability of u € U — R(\,u) € L(c!T*(M),c?(M)). Writing (3.2.2) for the
map F at (ug, R(\, ug)f), one gets

[R()\7 ug + h) - R()\, Uo) + R()\, U())PUOR()\, uo)] f (467)
= e([hlls, IR, uo + h) f = R(A uo) fllcr+e) [l s + | (R(A, uo + k) = R(A, u0)) flic]
Looking carefully at the error term €(||h||g, [|R(A, uo + h)f — R(A, ug) fllcr+6), we see that it

is bounded uniformly in ||f||ci+e (take z = R(A, ug + h)f — R(A uo)f in (4.2.12)). Therefore,
we obtain

sup [ [R(A;uo + 1) = R(A, uo) + R(A, u0) Pug R(A, wo)] flles = [|h]|se(h) (4.6.8)

[fllgr+a <1
ieurs R\ u) € L(c'T(M),c?(M)) is differentiable at ug € U. O
The final part of this note is to deduce regularity of the spectral projector map u € U —
I, € L(c** (M), P (M)).

Theorem 4.4
Let M be a smooth compact, connected, boundaryless Riemann manifold of finite dimension, B
be a Banach space, and U C B be an open subset. Let 0 < 8 < a, and (Ty)ueu be a C1 family
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of C**2 expanding maps, and let g € C*T*(U x M) be a (positive) function. Let Ly, = L, be
the weighted transfer operator, acting on the little Holder space c!*®(M). Let A\, be a discrete
eigenvalue of finite multiplicity, with |Ay| > pess(Ly), and I, be the spectral projector on the
associated generalized eigenspace. Then we have the following :

o The map u € U w11, € L(c'T (M), TB(M)) is v := a — 8 Hélder.
o uclU 1L, € L(c'TP(M),cP(M)) is differentiable.

Proof.

Recall the formula defining a spectral projector: denoting by A an isolated eigenvalue of a bounded
operator £, and letting C be a circle centered at A\, small enough not to encounter the rest of the
spectrum, one has

1
I=_—
2im I

(z— L) tdz

In our setting, this reads Il = ﬁ fc R(A, u)dA, with C,, any closed curve encircling A, (and
no other element of £,’s spectrum). The most natural idea now is to use a "regularity under the
integral" result.

The first step is to pick a closed curve that is independent of u € U, at least in a neighborhood
of a ug € U. Let ug € U, and take u in a (small enough) neighborhood U’ of ug. It follows from
Keller-Liverani Theorem 2.10 that whenever u € U’ — £,, € L(c'T%(M), P (M)) is (uniformly)
continuous, then any finite set of isolated points A\ (u),.., A\x(u) in £,’s discrete spectrum also
depends (uniformly) continuously on u € U’. Therefore one can pick a radius r,, such that for
every u € U’, A, € D(Ay,, 252) and there is no other element of the spectrum of (L,)ycr in this
disk. Tt is then natural to pick Cy, = C(Ayg, T;”) the circle centered in A, of radius —>. Hence
one can write, for any u € U":

1

Hu = 5.
20w

/ R\, u)dA (4.6.9)
Cug

The second step is to bound 9, R(A, u) € L(c!T%(M),c?(M)) independently of u € U’.
Up to reduce further U’, one has the formula 9, R(A\, u)f = —R(\, u)0, L, R(\ u)f for u € U'.
Through a standard trick, one can show that 9, R(A, u) f —0, R (A, up) f is a sum of terms involving
only products of the terms (R(X, u) — R(A, ug)), (OuLly — 0uluy), R(A, ug) and 9, L,,. Thus it is
enough to bound the first two above (independently of u € U’). Bounding the first expression,
one gets [|R(A, u) = R(\, up)||cr+a,ce < Clug, A)diam(U’)*7, thanks to estimate (3.1.18) in [73,
p.13, lemma 4].
To bound (9,L,, — 0, Ly,) in CP-norm, note that one has the formula:

OuLyd = —£u[¢%g.Mu + d¢.M,] (4.6.10)

with M, (z) = (dT,(z))™ 0 8, Tu(z) : B — L(Tr,.M, T, M) is linear and bounded for every
x € M. Therefore it is enough to establish that :

(1) |[Ly = Lugl|cr+a s is bounded independently of u € U’.
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(2) M, can be bounded independently of v € U’

The first item is just another avatar of estimate (3.1.18) in [73, p.13, lemma 4]. The second
naturally follows from the regularity hypothesis made on v € U — T,,, as one has immediately:

[ My (z)]] < SUDPy s |\DTJ”|L(TTuwM,T£M)||3uTu(JU)\|L(B,TTWM)-

One then gets a bound for ||0,R(A, u)||cs, independent of u in U’, and trivially integrable
in A on C,,. Therefore, one can apply the Lebesgue’s Theorem for differentiability under the
integral, and get the announced result. O
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Chapter 5

Top characteristic exponent of
cocycles of transfer operators :
perturbations and dynamical
applications

5.1 INTRODUCTION

5.1.1 THE PROBLEM

Let (Q, F,P) be a probability space and 7 : Q —  a measure-preserving, invertible, and ergodic
map. Let B be a Banach space and &/ C B an open subset. Let M be a compact, connected
Riemann manifold, and let M = M x Q be a (trivial) bundle over Q, with M, = M x {w} the
fiber above w € ).

For w € Q, u € U, and r > 1, we assume that T, ,, : M, — M, is a uniformly expanding
C"™ map (see (5.2.20)-(5.2.22) for precise conditions), and we consider the random product of
expanding maps above (€, 7) defined by

T = Tynry 00Ty, (5.1.1)

If g, = (Guu)wea € L®(Q,C"1(M)), we let L., : ES = C*(M,) — EZ,, be the (weighted)
transfer operator associated with T, ,,, acting on ¢ € C*(M) by

Lowd®) = D Gou(®)d(x) (5.1.2)

z, T, wT=Yy

for every y € M. This transfer operator generates a random cocycle L&"L by taking the
product along the 7 orbit:

L0 = Lon-140,0..0 Lo (5.1.3)
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Under the additional assumption that log ||Le. . ||c: € L' (€2, P) (which comes naturally from
uniform boundedness assumptions on the weights g, ), Kingman’s theorem 2.5 insures the
existence of the top characteristic exponent of the cocycle, defined for every u € U by'

1
Xw.u = limsup— log || £(™) ||, (5.1.4)
n—oo N ’

By the ergodicity assumption on 7, one has that x, . = Xy is P almost surely independent of
w € Q.
One of the goals of this chapter is to study the map u € U — x,, regularity.

Throughout this chapter, we will consider measurability of maps from € to a Banach space
B (e.g Holder spaces (C"(M)),r>0) in the sense of Bochner, i.e that each measurable function
¢ : Q — Bis a (point-wise) limit of simple (i.e linear combination of indicator functions) maps.
If the Banach space B is separable (which is the case for Holder spaces C" (M) if and only if
r € N), Bochner measurability coincides with standard measurability.

It is of major interest that the top characteristic exponent of (5.1.3) (and more generally
its Oseledets-Lyapunov spectrum) plays a key role in the study of the dynamical properties of
random products of maps, similar in many aspects to the one played by the spectrum of the
transfer operator in the study of statistical properties of autonomous dynamical systems.

If this general philosophy was already driving the first studies of random product of matrices
with the seminal papers of Oseledets, [60], this approach was first applied to cocycles of transfer
operators by Froyland&al (see [28, 29, 35]).

However, the problem of (parameter-wise) regularity for the top characteristic exponent has
been widely investigated, both in the framework of cone contraction and in a more general
setting: starting from Ruelle seminal paper [62], to Le Page [54], establishing Holder and smooth
regularity in the case of an ii.d product of matrices, as well as Hennion’s paper [14]. More
recent works on Lyapunov exponents stability, formulated in the framework of transfer operator
cocycles, include [26, 27, 19]. One may also mention [16], where the genericity of analyticity
of Lyapunov exponents for random bounded linear operators is shown. This investigation on
characteristic exponent regularity w.r.t parameters was also recently used to establish a random
analogue of the Nagaev-Guivarc’h method (see [18]).

In the setting of cone contractions, one can think of Dubois article on analytical regularity
of the top characteristic exponent for an analytically perturbed cone contracting operator [20],
or to Rugh’s paper [71] generalizing Ruelle and Dubois results to the framework of C-cones.

Another goal of this chapter is to show how one can use (complex) cone contraction theory to
establish the existence of a stationary measure for a random product of expanding maps on M,
and to study its parameter dependency. In fact, we will see that we can construct an absolutely
continuous invariant probability measure, and that it is intimately related to the Oseledets space
associated with the top characteristic exponent. The question of its dependence w.r.t parameters
is thus a natural extension of our previous one.

Tt is a priori not clear whether x is independent of the norm ||.||s, or that it is finite (i.e not —oo0). We will
see that it is in fact the case.
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The approach of using cone contraction to construct (quenched) stationary measures for random
product of expanding maps, and to study their dependencies on parameters is not new: e.g,
it is used in the study of stochastic stability and random correlations for a random product of
expanding maps in [7].

More recently, there was a surge of interest in the question of linear response for random dy-
namical systems, with the recent preprints [1, 30], and the question of regularity and response of
stationary measures in the context of random dynamics is certainly of major interest in many ap-
plications, notably for climate science: see the seminal paper by Hairer and Majda [42], Lucarini’s
work [58], or the surveys by Ghil&al [33, 13].

5.1.2 MAIN RESULT AND OUTLINE OF THE STRATEGY

It is well known ([55],[4, Chap.2]) that for a C", r > 1 expanding dynamic T', acting on a Riemann
manifold M, one can construct the unique invariant density in the following way: the associated
transfer operator Lr is a cone contraction, i.e there exists a Birkhoff cone C (see def.A.2) in the
functional space on which £ acts (e.g, C"~1(M)) that is strictly mapped on its interior (cf §5.2).
When C is endowed with the proper projective metric (the so-called Hilbert projective metric,
see definition A.3), this makes £ a (strict and uniform) contraction of a Cauchy space, therefore
allowing one to use the Banach contraction principle to construct a "fixed point" in the projective
space (i.e an eigenfunction for £). Properly normalized, this fixed point is actually the invariant
density of the dynamical system T

Here instead of iterating a fixed map, at each step we choose at random an expanding map

(with uniform conditions on the dilation constant), and then perturb it in a smooth way. In this
context, can one construct an invariant density ?
At the level of transfer operators, it is akin to fixing a cone C with good geometric properties
(namely that it is a regular Birkhoff cone) and choosing at random an operator contracting
the cone C, perturb in a (unfortunately) non-smooth way the cocycle it generates. Can we
still construct a generalized eigenvector for the transfer operator cocycle ? If so, how does this
generalized eigenvector respond to the perturbation ? Can we still give a dynamical interpretation
of this construction ?

Before formulating precisely our answers, we need to introduce a few notations and spec-
ify a few things: in this chapter, the objects we will consider have a dual interpretation: first
as a "fiber-wise" object, and second as a "global", bundle object. We will denote in simple
characters the first and in bold characters the second. For example, each family (¢, )ueq €
C"(M) with esssup,eq [|¢wlcr(ary < +00 induces a map ¢ € L>*(Q,C"(M)). In the same
spirit, under the assumption esssup,cq [[Lollcr(ar) < +0o the cocycle of transfer operator
L, € L(C"(M,),C" (M), induces a bundle operator £ € L(L*>®(Q,C"(M))), acting on ¢ €
L>®(Q,C"(M)) by

(£¢)w = £‘r‘1w¢'r_1w
Our strategy is to exploit the regularity condition on some well-chosen cone C of a Banach space
E. This property allows us to consider ¢ € E* a linear form, non zero on C* (see Appendix A),
so that we can consider 7, the projection on the affine hyperplane {¢ = 1}, defined by

‘CT*lw(b'r*lw
<£7 ET*1w¢T*1w>
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for ¢ € L*(Q,CN{L=1}).

It is shown in appendix A that this projector is indeed a contraction of L (2,CN{¢ =1}), so
that one can construct its (unique) fixed point h : Q — E. This map is measurable and bounded.
Furthermore, for a cocycle of transfer operators, this fixed point is the generalized eigenvector
we alluded to earlier, i.e

J T

as well as the (random) invariant density of the random product (see the beginning of section
5.2 and Proposition 5.1).

In what follows, we give abstract theorems that presents our results on parameter dependency
of this fixed point. Given a cone C in a Banach space E, we will be interested in M (A, p) the
set of all bounded operators £ : E — E who are strict contractions of C with uniform control on
the size of £(C) (see Definition A.8 for the precise definition).

Definition 5.1

Letr >0, and (Bs)se(o,r) be Banach spaces, such that for 0 < s < s', By C B, and the injection
is a bounded operator (which we will denote By — Bs). We call such a family (Bs)sc(o,r of
Banach spaces a scale of Banach spaces.

Theorem 5.1
Let (2, F,P) be a probability space, and let 7 : Q@ — Q be a measure-preserving, P-ergodic,
invertible map.

Let B, By & Bi, U C B be an open subset, and for u € U we let L, be a family of cocycles above
(Q,7) such that:

(i) For every u € U, for every s € {0,1}, L, € L>®(Q, L(Bs))

(ii) For every u € U, every s € {0,1}, log||L.||5, € L*(Q,P).

(iii) The map u € U — L, € L*>°(Q, L(By,By)) is Lipschitz.

(iv) Let ug € U, and s € {0,1}. There exists a regular Birkhoff cone Cs C B, such that
L, € Mc, (A, p) (i.e Lo s a strict and uniform contraction of the cone Cy) for every
uw €U close enough to ug.

Furthermore, we assume that j(C1) C Co, and that the outer reqularity form fy extend £y,
i.e that by o j= (1.

Then the fized point map u € U — h,, € L (Q, By) is Lipschitz. Furthermore, the top character-
istic exponent x, is independent of the chosen norm, and is a Lipschitz map of the parameter.

It is natural to ask for higher-order regularity results concerning the fixed point map u €
U — h, and characteristic exponent u € U — x,. Following chapter 3 (or [73, §2.3]), we will
use the notion of graded calculus. More precisely, we can show the following;:

Theorem 5.2
We make the same assumptions as in theorem 5.1. Let By <= By <= ... <> B,.. Furthermore, we
assume that
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(iv) The map (u, @) €U X By — Ly € L=(Q, By) admits the following "Taylor expansion”:

There exist random operators (Q(i’j))iﬂ-g, Q') e L=(Q, L(B' x Bzf(iﬂ.),
every u € U, every v € B for which u+ v € B, every (¢r, z.) € B, one has

Bo)), and for

L(u~+v,¢o+ 20) — L(u, o) = Z Z Q" (u, ¢p) [v, zp—1] + R(v, 2,.) (5.1.6)

p=1 (4,5)
itj=p

where R(h, z;) = [||hllg + |z0ll6]) €(v, z-) and €(v, z,) — 0 in the L (2, By) topology.
zp—0
Then the fized point map ho, € L>®(S, By), and the top characteristic exponent x,, of L, are
r-1 times differentiable with respect to u € U.

Furthermore, one has the following Taylor expansion®:

—1
Bio — By = []1 — QU (u, hu)] QL0 (u, hy).w

—1 .
+ [11 — QWO (y, hu)} ‘22 QU9 (u, hy)[v, Duho.v] + o(|[0]|3) (5.1.7)

1 _
Yudo — Xu = /Q F%’ B0+ L1 = QY (u, b)) QY (u, b)) v)dIP

u

+/Qi<€o, 3" Qv Dyhyv] + QD D2k v])dP + of|[v]3) (5.1.8)

u (i)
itj=2

It is possible to go even further, and to prove Taylor expansions for the random a.c.i.m and
the top characteristic exponent at every order. But to quote Gouézel [37], "the computations are
straightforward, but the notations are awful". Therefore, in order to keep sane both our reader
and the author, we will stop at order 2.

The chapter is organized as follows: the abstract theorems 5.1 and 5.2 are proven in §5.3.

In §5.2, we exhibit a family of regular Birkhoff cones in C* spaces that are contracted in a
strict and uniform way by the transfer operators of a broad class of expanding maps. In turns,
it allows us to apply theorems 5.1 and 5.2, and to derive a variety of consequence: quenched
and annealed linear response for the random physical measure (theorems 5.4 and 5.5), regularity
of the variance in the central limit theorem satisfied by a random product of expanding maps
(theorem 5.3), or of the Hausdorff dimension of the repeller associated to a random product of
one-dimensional expanding maps (so-called "cookie-cutters").

In appendix A material on (Birkhoff and complex) cone contraction, as well as random products
of such operators is collected. Technical lemmas on regularity of random composition operators
on Holder spaces are presented in appendix B.

5.2 DYNAMICAL APPLICATIONS

In this section, we will work with C” uniformly expanding maps on M and Holder spaces
(C*(M))o<s<r. Our strategy is to study the fixed point h, € L*(Q,C*(M)) to study regu-
larity of both the stationary measure and top characteristic exponent, by an extensive use of

2The formula (4.2.8) should be understood in By. We omitted the indices on h to keep the formula readable.
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theorem 3.1.
To apply this theorem and establish regularity for the map v € U4 — h,, we will need the
following ingredients:

o Existence of a family of regular R-cones in C*(M), stable by the transfer operators L, ,.
e Existence of the top characteristic exponent, based on Kingman’s ergodic theorem 2.5.

e Establish continuity of u € U — L,,, and show the perturbed Taylor development (3.2.2),
for £, through ad-hoc estimates for random compositions operators on the scale (C*(M))s<,

In the rest of this section, we will consider a uniformly expanding C” map T : M — M, with
dilation constant A > 1.
Let k € N. Denoting by @ := (aq,...,ax) we consider the family of real cones

Craim {¢ € C*(M), 6> 0, Y 2,y € M, % < exp(Ld(e,y)), V1< j <k, |Di(@)]| < a@(m)}
(5.2.1)

defined for L > 0 and a4, ...,a; € R}. Based on the definition, it is clear that it contains
an open ball in C*(M) (around the constant function equal to 1 for example). Thus it is inner
regular. The next lemma studies its outer regularity.

Lemma 5.1
For any integer k, any ¢ € Cp g C Cﬁ(M), one has

/ gdm > C||d o
M

where the constant C' depends only on L,d and diam(M).

Proof. First, we start by remarking that for every z,y € M, one has e~ Fd(@y) > ldiam(M)

so that for every y € M, any ¢ € Cy g,

d(y) > ||l cce™ H M) (5.2.2)

Furthermore, for any 1 < j < k, any =,y € M, one has also
1D g()[| < ajp(x) < ajgly)e"emtD

so that taking the supremum in x € M one obtains

ajp(y) = e~ P OD| [ DIg) o (5-2.3)
Summing (5.2.2),...,(5.2.3) from 1 to k yields, for every y € M
67Ldia7n(M)
W2 ol
In particular, one has
Ce—Ldiam(M)
[ oim =€ int o) > 1l (52.4)
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O

From 5.2.4 and the preliminary remark, one sees that the cones (Cr z) L>0,acRk are regular
Birkhoff cones. We claim that the transfer operator L1 4 € L(C"(M)), defined by

Lrgoly)= Y gla)(x) (5.2.5)

z,Tx=y

with g € C"(M) is a strict and uniform contraction of the cones Cr, z, in the following
sense:

Theorem 5.3 ([7] Lemma 3.2)
Let A > 1 and o € (%,1). There exists Lo > 0, functions A; : Rifl =Ry, 1 <j <k, such
that for every C™t1 uniformly expanding map T : M — M with dilation constant greater than X

every L > Lo, and a; > Aj(a1,...,a;-1), one has
L(Cra) CCoL,oa (5.2.6)
, 1+o .
diame, ;Cor,0a < 2log 1o + 20 Ldiam(M) < +o0 (5.2.7)

Furthermore, there exist p > 0, depending only on L,d,c,diam(M) such that for every ¢ € Cp z
B(Lr4¢,pl|Lrg0l) CCL,a (5.2.8)

Proof. From now on we fix A > 1, and consider a C" expanding map T : M — M with dilation
constant greater than A\. We will note £ := L 4.

For the first statement, we start by considering the case where r = 1 + «, with a > 0. Then
one has, for every y,y’ € M

Y ow)-ow) < glalendtyy)” (5.2.9)

’

e9(y

We now consider z, 2’ € M. The so-called strong backward shadowing property insures us that
we can pair the preimages y € T7!(z) and y' € T7'(2/) so that d(y,y’) < td(z,2’) (i.e the
inverse branches of T" are %—contraction).

By the former remark, we have for any ¢ € Cr,

Lo(z) = Z eg(y)¢(y) < Z eg(y’)¢(y/)e(lglca+L)d(y,y')a (52.10)
Ty=x Ty=z
< Z eg(y/)¢(y/)] exp (lglce + i)d(% x') _ Ed)(x/) exp (lgce —I-fgd(a?,l‘/)a

Ty =z’
(5.2.11)

It thus follows that for any o € (5%,1), one has £(C}) C Cor, and that the smallest such L is
given by
LO = |g‘C°‘

L
0 — 3a
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We now consider the case of an integer r > 2, and a C"! expanding map T of M with
dilation constant A > % We want to show that ['(Cz,a) C CoL.oa-
Letting ¢ € C}, ; one has

Do(y Dg(y
|DLA(z)| < Z eg(y)w + eg(y)(b(y)w (5.2.12)
Ty=x
Dyl
< Z eg(y)qg(y)% (5.2.13)
Ty=x
Dyl| o
— Lo(a) B2 HA gl (5.2.14)
which entails that one can take
4 1Dl
YT N -1
For the second differential, one has
2 [Dg(y)|I” + 2a1[[Dg(y)ll + [ D*9(y)|| + a2 | ~IDg()ll + a1
Do < 3 oty [ e +OE
(5.2.15)
Dg||%, + 2a1||Dgl|oe + | D?gllo0 Dyl
< coto)[1Dalfe + 201 Dalle + D0l e | WDalver] (s

with C a constant depending on the C? norm of T. It follows that one can take
_ 1Dgl3 +2a1[Dgllc + 1D%glle , C [1Dgllo + a1
Ao —1 A Ao —1
For derivative of order j > 3, one can write
. s
1D/ L) < pi(Nsar,- a1, Cllgler) Y e Poly) + 5 > e/@o(y) (5.2.17)

M\
Ty=x Ty=x

AQI

where p; is a polynomial, which ends the proof of the first statement.
For a proof of the second statement, we refer to [7, Lemma 3.2].

The last statement follows from lemma A.3. O

Remark 5.1
o It is noteworthy that lemma 5.3 applies to any C"™T' expanding map with dilation
constant greater than X\ > 1. In particular, if it holds for some T, it will for any T €
Ber+1 (T €) if € is small enough.

e From lemma 5.3, we draw the (classical) conclusion that the transfer operator Lr g of
a uniformly expanding map T on M admits a spectral gap on C"(M), i.e there exists

Ag = psp(Lr,g), hg € CT(M) and py € C™(M)' such that

L1 ghg = Aghg (5.2.18)
/:;“,gﬂg = Aglig
Y6 € CT(M), 0" Ly (g Ohllcr < COToller (5219)
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Going back to the setting of a random product of C"*!(M) uniformly expanding maps,
(To u)wea,ueu, we consider the associated transfer operator cocycle above (2, 7), £,. To insure
that the results of §5.1.2 apply, and to clarify our regularity hypothesis, we will make the following
assumptions on the expanding maps (Ti, u)weo,ueus :

e Uniform lower bound on the dilation constant There exists A > 1, such that for a.e
w € Q, every u € U, every x € M and every v € T, M

| DT (@)l > Al (5.2.20)

e Uniform boundedness of the inverse branches C" norms Let us recall the following
standard (see [64, p.2]) fact: there is a finite family of open, connected subsets Vi,...,V,,
such that Uf:l Vi = M, with an associated partition of unity (x;)j=1...p, such that:

— For each 1 < j < p, the map (7,,)|v, has degree N, ;, with N : Q@ x {1,...,p} = N
measurable.

— For each 1 < ¢ < N, ;, the inverse branches of 7T, , are % Lipschitz maps 9y v, :
Vi — M.

— There are (random) operators W, 4 j,; € L(C"(M)), defined explicitly by

X5 (U)(Gus,u,i®) © Ywugi(y) if y €V

(5.2.21)
0 otherwise

Ww,u,j,i¢(y) = {

In particular, they are random composition operators, to which we may apply the
results of appendix B.3.

This allow us to formulate our assumptions: we will assume that there exists a constant
C > 0, such that for every u € U, every j € {1,...,p} aew € Q, every 1 <i < N, ;

ess S;lep [Yw,ugilleruxvy) < C (5.2.22)
we

One may thus write the random transfer operator as a sum of the type

p Noj

£w,u¢ = Z Z Ww,u,j,i¢ (5223)

j=1 i=1
and extend the results of appendix B.3 to the present case. In particular, the perturbed Taylor
expansion (5.1.6) is satisfied by transfer operators of random expanding maps.

5.2.1 RANDOM PHYSICAL MEASURE AND QUENCHED LINEAR RESPONSE

1
In this section, we will fix the weight of the transfer operator g := m e C"(M). Tt is

then a straightforward consequence of the definition of transfer operator that L preserves the

integral, i.e
/ Lrodm = / odm
M M
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Under assumptions (5.2.20)-(5.2.22), the transfer operator cocycle associated to the random
product of expanding maps takes its values in Mc, (A, p) for some (L,d, A, p) : this follows

straightforwardly from the proof of theorem 5.3.

Assumptions (5.2.20)-(5.2.22) are satisfied for a wide range of situations, including (but not
limited to) the case where one chooses at random in a i.i.d way an expanding map among a
finite set A (i.e Q = A% and 7 is the full shift; this is the case e.g in theorem 1.3) or the case
where one chooses at random, in a i.i.d way an expanding map in a small C" ball Be- (T, €) (i.e

Q = Ber (T, €)% and T is the associated full shift)

In this setting, the coincidence of the outer regularity form of Cr, z and the left eigenvector
of L, ,” insures us that

e For almost every w € Q, every u € U,

Pwu = <£a£w,uhw,u> = / Ew,uhw,udm = / hw,udm =1
M M

In particular, the fixed point h, of m, is also a fixed point for £,, i.e for almost every
w E N, every u € U,
‘Cw,uhw,u = h‘rw,u

e The top characteristic exponent of this transfer operator cocycle is zero: by virtue of A.3.5,
one has

Xu = Eflog(p,)] =0

Lemma 5.3, together with the results of appendix A and B, insures us that theorem 5.1 and
5.2 apply, so that one can construct a map h : U x Q — C"(M) such that:

e For every u € U, the map h,, : Q — C" (M) is measurable and (essentially) bounded.
e The map u € U — h, € L>=(,C""2(M)) is differentiable.

The next property is a classical result, adapted to our context. A short proof is given for the
reader convenience.

Proposition 5.1
The linear form

Voo uld] = /M 6.hus udm (5.2.24)

defines an absolutely continuous (with respect to Lebesque’s measure) invariant probability for
T u, in the following sense: for any w € , any u €U,

Vw,u[(b o Tw,u] = V-rw,u[(b] (5225)

v, is called the random a.c.i.m *.

3This is a very particular case, and a small miracle in itself. It is a priori not true in general that the outer
regularity form of Cy, z and the left eigenvector of L., . coincide.

4A.c.i.m stands for absolutely continuous invariant measure. Depending on the context, it is also called the
random S.R.B measure (for Sinai-Ruelle-Bowen), or the random physical measure.
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Proof It is the consequence of a standard computation: letting w € , u € U, and ¢ € L*(M),
one has

Vw,u[¢ o Tw,u] = / (ZS o Tw,uhw,udm = /['w,u[gb o Tw,uhw,u}dm = /¢£w,u[hw,u]dm (5226)
M
:/ (ZShTw,udm = VTw,u[Qb]
M

since py, o = fﬁw,uhwyudm = 1. This establishes 5.2.25. O

We have now gathered the tools to formulate the main result of this section: a linear re-
sponse formula for the random a.c.i.m associated to a random product of expanding maps:

Theorem 5.4

Let T : QxU — C"(M) be a (random) family of uniformly expanding maps, and let (Ly,)ucu be
the transfer operator cocycle it generates above (Q,7), acting on C"~Y(M). Let v,, be the random
measure introduced in (5.2.24).

For every observable ¢ € L' (M), almost every w € Q, the map u € U + v,4,[¢] is differentiable
at u = ug, for every ug € U with

D, [ / ¢duw,u] =Y / 60T, o Protrt vy g By ) g (5.2.27)
M |lu=wug n=0vM

The proof of this result will need the following lemma: one can give an estimate on the speed
of convergence of the random product E&”BL towards its invariant line, analogous to the spectral
gap estimate (5.2.19).

Lemma 5.2

Let T : QxU — C™ (M) be a random set of expanding maps, with dilation constants all bounded
from below by some A > 1.

Let £, € L=(Q, Mc, (A, p)) be the associated transfer operator cocycle above (Q,7,IP), and let
h, € L>®(Q,C"~Y(M)) its fived point.

Then one has, for every integer 1 < s <r —1, for every ¢ € C*(M),

1£5206 = heneo /M gdmlc: < O~ H|llc (5.2.28)
where C' depends only on the cone Cr z and n < 1.
Proof Let n,p > 1. We write (A.3.3), at ¢7£5'p_)("+p)w7u1/}’ for some ¢, € Cp z C C*(M), such

that [,, ¥dm =1, to get

£ g A
L8 D i — Tl < e (5.2.20)
T "w,u T w,u fM ¢dm 2K
Cs
with K the sectional aperture of Cr, z, A = diamc, ;Cy1,0a < 00 and 7 = tanh (%)
Taking p — 400, one obtains
L, 0 A
hw u T et < — n-l 5230
“T T edm | T 2K (5:2:30)

CS
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which yields, with the "change of variables' w «» 7~ "w and once multiplied by 0 < | u Pdm <

In the general case ¢ € C*(M), note that the inner regularity of the cones Cy, z yields that
C*(M) = Cr g+ (—Crz). Furthermore, by Baire’s theorem and convexity of Cr, z, it is not
difficult to see that there exists a constant 0 < ¢ < 400 such that every ¢ € C*(M) decomposes
into ¢ = ¢1 — o, With (¢1, —¢2) € (Cr,3)* and [|¢1]lcs + [[p2lles < cf|¢llcs. Thus,

hT"w,u / ¢dm - E&nq)ﬁﬁ
o ,

hT"w,u/ ¢1dm - E((J,L?L(bl - [hT"'w,u/ ¢2dm - £<(UT,L'?1,¢2:|
M M

Cs ‘

Cs
< 2 lsillos + léaller] (5.231)
T 2K
AN
< ol . 5.2.32
< ol (5232
which conclude the proof in the general case ¢ € C*(M). O

Remark 5.2
e From estimate (5.2.28), we draw the following conclusion: if ¢ € C*(M) is such that
[y @dm = 0, then for any n > 1,

n cA ,_
1£87, llos < S lgl

T "w,u

CS

In particular, the limit > ", £ ¢ is well defined whenever fM odm = 0.

T w,u

o [Estimate (5.2.28) has far reaching consequences: in particular, it can be used to establish
exponential decay of random correlations, in the same way (5.2.19) yields exponential decay
of correlations in the deterministic case (see (2.4.2)). We refer to [7, Thm B] for more
details on this.

Proof of theorem 5.4 To show the regularity of u € U — 1, ,[¢], our strategy is to use a
"regularity under the integral" type of result. It follows from (5.1.7) and (5.3.13) that the map
u €U s h, € L®(Q,C7"2(M)) is differentiable with

-1
Duhy = 1= QP D (u, )| QL (u, o) (5.2.33)
In our particular case, one may introduce Q,, := Q_(,P’l)(u, h,), such that
(Qu)w =Lr14u — </ .dm> he (5.2.34)
M
QU (w, b)) = Prtiy st — (/ Ple,uthw,udm> P, (5.2.35)
M

The normalization [, h,dm = 1 implies that [, Dyh,dm = 0. Similarly, [,, L,hudm =1
yields that

0= Du[/ Ew,uhw,u] = / Pw,uhw,udm +/ £w,uDuhw,udm = / Pw7uhw,udm
M M M M
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. 1,0
Hence, one obtains Qu,uDyhwu = Lr-14 4,hr-14 , and Qgr )(w, Uy Py i) = Pre1gy yhr—14 4,

A simple computation shows that
@) =Q™, =g _ ( / .dm) -
’ ’ M

and thus by (5.2.28), for any (essentially) bounded ¢ : Q — C"~(M), one has

([1 - Qu]_l (b)w = Z Q-(,-Ti)nw’u¢7'*"w (5236)
n=0

Let up € U. From this last equation and remark 5.2, one sees that (5.2.33) can be rewritten
as

Duhisug = 3L, o Pt gt (5.2.37)
n=0

which is valid both in L° and for almost every w € €. This last equation yields

o0
DoV [0] = / GDyhiy ydm = / S oL P e i dm (5.2.38)
M M p=o

which yields (5.2.27) by using boundedness of the integral on C'*(M) and the duality property
of the transfer operator [,, ¢Ly, wtpdm = [,, ¢ o T, ,bdm. O

We can also give an annealed version of theorem 5.4:

Theorem 5.5

Letr > 5, T : QxU — C"(M) be a (random) family of uniformly expanding maps, and let
(L.)ucu be the transfer operator cocycle it generates above (2, 7), acting on CT=(M). Let v,
be the random measure introduced in (5.2.24).

For every observable ¢ € L*(M), the map u € U — | UM (bduu] is differentiable at u = ug, for
every ug € U with

D, {E (/M qﬁduuﬂ =y /Q /M G0 T Priyy o Pr—100 o dmdP (5.2.39)
u=uo  p=0

Proof of theorem 5.5 The proof builds on theorem 5.4 and differentiation under the integral.
It follows from theorems 5.1 and 5.2 that if one sees h, € L°°(2,C""}(M)) as an application
hy € L%°(Q,C"=4(M)) is twice differentiable with respect to u € U.

Let ug € U. One can apply "differentiation under the integral" for the quantity It [ / Y (]5dl/u]7
since

o [y ®hr—1,, ,dm is differentiable (interpreting h, -1, ,, as an element of C"~3(M))

e Dy [y qﬁhrlw’udm]u:u0 is dominated by some element of L!(Q), since u € U + Dy, hy, 4, is
continuous, and thus bounded, in a neighborhood of uq (interpreting h,-1,,,, as an element
of C"=4(M))

79



Thus, one gets that u e Y — E [fM qbdl/u] is differentiable at u = ug, with

o)~ oo

/Z/ SLD, o Prontiy g By -1, dmdP
_Z/ de)o T "qu 7' —n—1y uoh-,— n—1., uoddeP

_Z// 60T Pyt g ot ug dmdP (5.2.39)
Q

where we used the change of variables w = 77 "w. Exchanging the infinite sum and E is
justified by boundedness of the latter linear form on L>(Q, CY(M)). O

Remark 5.3
The lower bound r > 5 on the regularity in theorem 5.5 is an artifact of the proof, and certainly
not optimal: we expect the result to hold for r > 4.

5.2.2 MEAN AND VARIANCE IN THE CENTRAL LIMIT THEOREM

In this section, we wish to study regularity, with respect to parameters, of the mean and variance
of the (quenched) central limit theorem satisfied by a random product of expanding maps (see
e.g [18, Theorem BJ)

Our strategy is to use tools from analytical perturbation theory by introducing (yet an-

other) small complex parameter in the weight of the transfer operator L, , 4. ., With g, 1=
—log(| det(DT,, u)|).
More precisely, given A € L*>(Q,C"(M)), and ¢t € D(0,¢) C C, we define

Lotud(@) =Ly () = Y edonvtiAvg(y) (5.2.40)

yETJ}lx
It is easy to see that the map t € D(0,¢€) — L, € L>®(Q,C"(M)) is analytical.

The major issue with this approach is that it forces us to work with complex-valued functions
and operators: in such a setting, the results of classical cone contraction theory (that is, Birkhoff
approach) no longer apply.

Fortunately, an analogous theory for "complex cones" was developed by Rugh and Dubois (see
[71]), which extends cone contraction results (notably spectral gap existence and estimates) to
complex Banach spaces. We recall the basic theory of C-cones in appendix A.

Here, we will be working with the so-called canonical complexification of the previously
introduced family of cones (Cr, z) L>0,GeRT, - We recall basic facts on the canonical complexification
of a (real) Banach space and a Birkhoff cone in §A.2.1 (see also the seminal papers [21, 71]).

In particular, it follows from theorem A.7 that if £ is a strict and uniform contraction of
the Birkhoff cone C, then its canonical complexification is also a strict and uniform contraction
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of Cc. This fact is instrumental in the proof of theorem 5.5, as it has the following (obvious)
consequence: any analytical perturbation ¢t € ID(0,¢) — L; of the original operator £ is also a
strict and uniform contraction of C¢, as long as one choose € sufficiently small.

In our case we will take € so small that for any ¢ € D(0, €)

p
||]l — etAHLoo(Q)L(C'r(M))) < Z (5.2.41)

where p is given by lemma A.3.

Going back to our random product of expanding maps, and to the perturbed transfer operator
(5.2.40), we consider its characteristic exponent, given as usual by (A.3.5):

Xt = E [log(|py u])] (5.2.42)

The next theorem studies its regularity at t = 0.
Lemma 5.3
Consider the cocycle above (2, 7) generated by the perturbed transfer operator (5.2.40). Let
Xt € R be its characteristic exponent. Then the map t € D(0,€) — X @5 analytical, and its
first and second derivative at t =0 are given by:

{d’“’“} —F [ Ahudm} (5.2.43)
at |, "
2 [e’s} 2
[d X;’“} = / / A2 hyudmdP + 2 / / Angy o TS Ayhyy wdmdP — / ( / Awhwodm) dP
g P QJMm i/ dMm ' o \Jm

(5.2.44)

In particular, the right-hand terms above are twice differentiable with respect to u € U.

Proof of lemma 5.3 It follows from theorem A.7 and our requirement on the size of the
perturbation (5.2.41) that one can apply [71, Theorem 10.2] to this situation: for any fixed
u € U, the map t € D(0, €) — x¢.. is analytic.

Furthermore, going over the proof of theorem 10.2 in [71], one sees that this follows from
analyticity of the maps t — p,, := [}, Leuheudm, and t = hy, € L®(Q,C71(M)) where
hy, € L>®(Q,C"(M)) is the generalized eigenvector of £, ,, (i.e the fixed point of 7 ,,), normal-
ized by fM hes tudm = 1.

One can use (A.3.5) and take the derivative, to obtain:
dXt,u - |:1 dpt,u:|

5.2.45
dt pt,u dt ( )

Now, one has

dpros s d
% = % |: " Ew,tuhw,t’udm}
dﬁw t.u / dhw t,u
= =, dm + Lot = —dm
/M dt w,t,u " tau dt
dhw t,u
= Lot u [Awhuh o+ - ] d
M " ' dt
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Take t = 0: using the duality property of L, ,, and the normalization fM Rt udm =1, one
obtains

{dpm’t’“] :/ A wdm (5.2.46)
dt t=0 M

Injecting this last equality in (5.2.45) (together with p,,, = 1 for all (w,u) €  x U and the

T-invariance of IP), we get
d
[X“‘} :// Aghi wdmdP (5.2.43)
dt |,—o JaJu

Note that one can use this to recover the regularity of u € U — E [[,, ¢dv,]. However, it
should be noted that it is not enough to recover the linear response formula (5.2.39): one still
needs to justify the differentiation under the integral.

For the second derivative, we start by introducing

»? :// Aihw,udmd]P—&—QZ// Agngy 0 T Ay, o dmdP
QJum —JeJm ’

We now have

1 fao ) Pl
A —E [_ (pta 0) + h (5247)

dt2 pt,’LL(]

From (5.2.45), we already know that dp”;l% = fM Lot uo [Awhio b ug) dm-i-fM Lot u00the tuedm.

Taking another derivative with respect to t, one gets (letting the ug indices out to keep the no-
tations readable)

&p,.,
§t2 ,t — / 8t£w,t [Awhw,t + Awﬁth%t] dm + / 8t£w7t(8thw7t)dm + / vatafhu%tdm
M M M

For t = 0, one obtains (noting that 9;Lu,0(.) = Lu,u(Aw.), and that [, 87he edm = 0)

|:d2p7'w,t :| —
dt2 +=0 M

In the second term of the right-hand term, we can give an explicit expression for [0;hq ¢]i=o0,

Aih%uodm + 2/ Aw[athw,t]tzodm (5248)
M

using formula (5.2.37):

[athw,t]t:O = Z ‘C,(,-n)nw UO‘CT_”_lw,uo [AT_"_lth_"_lw,uo] (5249)
n=0
- Z E,(rn)nw Juo AT*"th*"w,uo] (5250)
It thus follows that
Fpris A2 am+23 | A 7™ Aauh d 5.2.51
dtQ . w Juo @M + Z o TTw g T T MW T T W, uo m ( ce. )
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Re-injecting in (5.2.47), one gets

d2Xt w ?
10 =x2 — Aphy wgdm | dP (5.2.52)
dt2 —o uo Q M ,Uo

From theorem 5.2, we deduce that there exists €, > 0 (both independent of ) such that the
map (t,u) € D(0,€) x B(ug,d) — Xt is twice differentiable; furthermore, analytic perturbation
theory (here, [71, Theorem 10.2]) gives us a ¢ > 0, such that for every u € B(ug,d), t € D(0,€') —
Xt,u is analytic, so that one can write Cauchy’s formulas:

dXt,u ;
[Xt} - / X u) g (5.2.53)
dt =0 C(O,e’) S
d*xt
{ X, } - / X(S;)“) ds (5.2.54)
dt =0 C(O,e’) S
The result now follow from differentiation under the integral. |

5.2.3 APPLICATION: HAUSDORFF DIMENSION OF REPELLERS FOR 1D EXPANDING MAPS

In this section we are interested in the random product of one-dimensional maps, with uniform
dilation but not necessarily defined everywhere. More precisely, we are interested in the following
class of systems:

Definition 5.2
Let Ih,...Ixy C [0,1] be disjoints intervals, and r > 2. AC" map T : L U---U Iy — [0,1] is
called a cookie-cutter if it satisfies the following conditions:

o There exists some A > 1 such that inf |T'| > A
o Foreachie{l,...,n}, T(I;) =[0,1]

If T is a cookie-cutter, we introduce its repeller,

A={zeLhU---UlyN,T"(x) is well-defined for all n} = ﬂ T-([0,1]) (5.2.55)
i=1

We will denote by CC"([0,1]) the set of all C" cookie-cutters.

In other words, a cookie-cutter is a one-dimensional expanding map with full branches. It is a
well-known fact that the repeller associated to such a map is a Cantor set. How can one perturb
such a map ? It is a priori not clear as perturbing the map might change the intervals of definition
Iy,...,In. To circumvent that difficulty, we consider perturbations of the inverse branches of a
cookie-cutter.

Definition 5.3

Let U be an open subset of some Banach space B, and let ¥; : U x [0,1] — (0,1), i € {1,...,N}
be C” maps such that

o Foreveryi € {1,...,N}, [|0z¢illoc <1/A <1
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e Foreveryiec{l,...,N}, everyu € U, the intervals I; ., = 1; ,([0,1]) are pairwise disjoints.

This data defines a cookie-cutter map T,, on Iy, ..., Ny, by T, = 1/71 on I; . We call it

7,U
a perturbed cookie-cutter.
The question we want to study is the following: if one were to choose at each step a random
cookie-cutters, and then perturb it in the sense of definition 5.3, does the Hausdorff dimension
of the repeller change in a smooth way ?

The tool we propose to use to answer that question is a random version of the celebrated
Bowen formula, which connects the transfer operator cocycle’s top characteristic exponent and
the Hausdorff dimension of the associated (random) repeller (cf. theorem 5.6).

More precisely, one considers a random product Tu(,"ﬁ = Trn-1y 0 -0 Ty, with T
U — L>=(Q,0C7([0,1])). We assume furthermore that sup,¢;, E [log ||T%,||] < 400, and that
assumptions (5.2.20) and (5.2.22) are satisfied.

Associated to this random product is a random repeller, defined by

Aw = ﬁ (T;f;)_l ([0,1]) (5.2.56)

i=1
Given s > 0, we also define the transfer operator L, s, by

‘Cw,s,uﬂs(l’) = Z ¥¢(y) (5257)

o TP

It follows from theorem 5.3 that L, takes its values in Mc, .(A,p) for some A < 400
and p > 0. It is also clear from the definition that £, s, depends analytically of s > 0 (up to
considering a small complex extension of s), so that it follows from [71, Theorem 10.2] that for
every fixed ug € U, the map s — x5 4, is analytic.

We also introduce the following quantities:

M, (w,s,u) == sup LM 1(y) (5.2.58)
Yehnwu

mp(w,s,u) ;== inf L") 1(y) (5.2.59)
YEMn wu ]

N
where Ay u = Niep (Tf,%) ([0,1]), and finally we let

1 — 1
—00 < P(w, s,u) := liminf — log(m, (w, s,u)) < P(w, s,u) := limsup — log(M,,(w, s,u)) < 400
n n

Those last quantities exists by super-multiplicativity (resp. sub-multiplicativity) and King-
man’s ergodic theorem 2.5, and are IP-almost surely constant by ergodicity of 7.
One can show that those quantities almost surely agree, their common value being s, the top
characteristic exponent of the random product, and that s > 0 — x;., + slog(\) € R is strictly

decreasing (see [70, Lemma 3.5 and Theorem 4.4]).
Furthermore, this strictly decreasing map admits a unique zero that coincide with the (a.s)
Hausdorff dimension of the random repeller A, ,, (see [70, Theorem 4.4 and 5.3]):
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Theorem 5.6 ([72] Theorem 5.3)

Let 7 be an invertible and ergodic map of (A, P). Let T € L>*(Q,CC"([0,1])) be a random
product of cookie-cutters, such that E [log||T.,|lec] < c0.

Then PP-almost surely the Hausdorff dimension of the random repeller A, is given by the unique
zero z(T') of the top characteristic exponent x5 of the transfer operator cocycle L.

For a proof, we refer to [72, §4-5]. The question is now the dependence of that zero on the
parameter u :

Theorem 5.7

Let T € Q xU — CC™([0,1]) be a random cookie-cutter, such that for a.e w € Q, the map
ueld —T,, €C(0,1]) is C* for some s > 1. Assume furthermore that (5.2.20) and(5.2.22)
are satisfied.

Then the Hausdorff dimension of the random repeller defined by (5.2.56) is C* with respect to
uel.

Proof of theorem 5.7 Theorem 5.6 entails that the Hausdorff dimension of A, , is given
by some z(u) such that x.(,)., = 0. The most natural tool to investigate the question of the
parameter dependency of z is the implicit function theorem:

From theorem 5.6 and 5.2, one has that

e For every u € U, X (u)u =0
e The map (s,u) — s, is CT 72

The only assumption left in the implicit function theorem is that dsx at (s,ug) is non-zero,
which follows straightforwardly from the fact that for fixed u € U, s > 0 — x5, + slog(A) € R
is strictly decreasing. O

5.3 PROOF OF THE MAIN RESULTS

5.3.1 LIPSCHITZ REGULARITY OF THE TOP CHARACTERISTIC EXPONENT: A PROOF OF
THEOREM 5.1

In this section, we want to establish quantitative results concerning continuity of the map
u € U — xy. In order to do that, we will use the "convenient representation" (A.3.5) of the
characteristic exponent exploiting the fixed point h, and the regularity property of the cone
CsC B, s=0,1.

Let ug € U, s € {0,1}. By assumption (ii) in theorem 5.1, there exists some regulars Birkhoff
cones C; C Bj, such that for u € U close enough to ug, the operators L, ,, are strict and uniform
contractions of the cone Cy, i.e there are A independent of w € ©, p > 0 such that

Lou(C) CCS
diame (L,4,(CF)) < A
Bs(£w,u¢7 p“ﬁw,u¢||s) CCs

As such, one can readily apply the results of appendix A, and consider the fixed point h, €
L>(£, Bs) of the projection ,, defined by (5.1.5).
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Let u,v € U’ where U’ C U is a (small enough) neighborhood of uy. Then one can write, for
anyn € N, w e )
hrngu = hrng v = W&?&(h%u) - 778?1);<hw,v> (5.3.1)

Taking the By norm, and using a standard trick, one obtains:

hrnwu = RrnwwllB, < ||7T<E;7,L1)L(hw,u) - W(S;T,Lz);(hw,U)HBo + ||7T<E;7,Lq);(hw,u) - W(S;T,Lz);(hw,v)HBo (5.3.2)
< ||7T<E;7,L1)L(hw,u) - W(S;T,Lz);(hw,U)HBo + Knn_lA (5.3.3)

with the second inequality coming from the continuous inclusion By < By and (A.3.3). For the
other term, we use assumption (iii) on the Lipschitz continuity of u € U +— L,, € L>®(Q, L(By, Bo)):
by a straightforward induction it extends to u € U — 7}, so that one gets

1752 (hou) = 780 (hou) 18y < Cllu = vl Rull L= (0,8, (5.3.4)
with C = C(up) independent of w € Q. Therefore, for n big enough we have that
P Bl @0 < Cllu = vl e ) + (5.3.5)

and it follows that u € U’ — h,, € L*°(Q, Bp) is locally Lipschitz, as announced.

Now consider, for s € {0,1}, the normalization factor ps . = (€s, Lo uhw,w). By assumption
(iv), one has p1 4 u = Pow,u = Pw.u 18 independent of the chosen norm; thus the top characteristic
exponent x, is too by (A.3.5).

By the regularity property of Cs, this quantity stays strictly positive for u close enough to uy,
so that its logarithm is well-defined. Furthermore, by Lipschitz continuity of w € U — L, h, €
L>(€, By), one obtains Lipschitz continuity of v € U — log(p,,)-

It follows immediately from (A.3.5) that

Xu = Xv = / log <p"> dP (5.3.6)
Q Dy

and thus (by dominated convergence) u € U — X, is Lipschitz continuous. 0

5.3.2 DIFFERENTIABILITY OF THE TOP CHARACTERISTIC EXPONENT: A PROOF OF
THEOREM 5.2

We now turn to theorem 5.2. We want to establish the differentiability of u € U +— x4, and for
that we will use the strategy outlined in § 5.1.2, i.e studying the regularity of u € U — h, €
L>(Q, Bs_1) with theorem 3.1.

The only point left to prove is the invertibility (and boundedness of the inverse) of the partial
derivative Q, of 7, at up € U, on L>®(,Bs_1) (the first point was to establish continuity of
u €U h, € L*®(Q, Bs) for some 1 < s < r, which was done in theorem 5.1; the second follows
straightforwardly from assumption (5.1.6)).

Recall that for any s € (0,7], the operators L, , contracts almost surely a regular R-cone
Csu, for u € U close enough to uy. We also recall that Cs ,y = js.¢(Ctu,) for any 0 < s < ¢,
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and that the linear forms ¢5 o given by the regularity property of C; ., boundedly extend one
another.
Note that if y = z + tv, v € B,, s > 1, for |t| < r lemma A.1 gives us

2|jtvlls

de.(,x +tv) < +o(lt]) (5.3.7)

Using lemma A.2, one obtains the following estimate in B;_; norm, for a.e w € €, for any

¢,z € L>®(Q,Bs),

n n _ t
[ B AN R = | M 1(Kr||zﬂwl+o<|t>) (53.8)

which can be rewritten, by taking the L* norm

n n n— t
|wip — (P +t.2)|| LB, ) <0 " <M|Z”L‘X’(Q,l’>’51) + 0(|t|)> (5.3.9)

Dividing by t and taking the limit ¢ — 0, one obtains

n—1

O - < 5.3.10

1@ (u, )|~ (.5, 1) < T (5.3.10)
This last estimate is valid whenever ¢ € L>(£,C*_;) satisfies: there is r > 0, independent of

w € Q, such that Bs_1(¢,,r) C Ci_;. In particular, it holds almost surely at hy, .
Introducing Q,, := Q'®Y (u, h,), one has by chain rule Q" = Qﬁfﬁ)(u, h,). Hence
nnfl
" oo < 5.3.11
||QuHL (2,Bs-1) = Kr ( )

and it follows that 1 — @, is invertible on L>°(Q, Bs_1).

Note also that all the previous estimates are valid as soon as the cone contraction property
of L, is satisfied, i.e 1 — Q,, is bounded and invertible on L>°(Q, B;) if £, contracts a regular
R-cone in B;.

Therefore one can apply theorem 3.1 and obtain

Puiw —hy=(1-Q,) "Pyv+o0(v) (5.3.12)
where
1
Pwﬂ.b = Q%’O) (u7 hwau) = r [8u£w,uhw,u - <€7 8u£w7uhw7u>hrw,u} (5313)
1
Quu = QU (u,hy ) = (Lo — (€ Loy res ] (5.3.14)

Thus the differentiability of u € U — h,, € L (£, Bs_1) is proved.

For a fixed ug € U, Ly uohwu, € Cr_; almost surely, so that (€5_1, Ly, yhw) > 0 for u close
enough of ug.
Furthermore, one has

pu+v = <£07 ‘c’u+1Jhu+v> (5315)
= p, + (Lo, Po.v) + (lo, Lu[husv — hu]) + ([0l + [[Ruto — Pulls—1) €0, [[Ruto — Bolls)
(5.3.16)
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By the results of the previous section, the error term (||v]|s + [[Auto — Bulls—1) €, [[Ayry —
hy|ls) = o(v) for s < r. Therefore, one can write

Pytv — 1+ (o, Po.v) + <£07£u[hu+v — hU]>

+ o(v 5.3.17
Dy Dy Py ( ) ( )
P . u hu v hu
log (pu-i-v) _ <£07 0 U> + <£07 L [ + ]> + O(U) (5318)
Dy Dy D,

From this last estimate and (5.3.12), one obtains the following "Taylor expansion" at order one
for the characteristic exponent map € U — xy,

dP + o(v) (5.3.19)

/ <£0,P0.’U+£u[1 —Qu]_lpu,v>
Xutv = Xu =
Q Py

Twice differentiability As noticed previously, the invertibility of 1 — ng’l)(u, h,) on B;
remains as soon as the cone C; is contracted by L ,. For t = s — 2, we write the Taylor
expansion at u € U:

hs—2urv = hs—20 = Ts2utvhs—2,utv — Ts—2.uhs—20 (5.3.20)
= QW (u, hs_14)v+ QY (4, hs—1u)[hs—2,u+v — hs—2u]
+ QY (b)) + QP (b ) (st v — s1,4]
+ QU (1, ) [0, Bs—tuto — Rsm1u] + Ra(0, o — i)

Using differentiability of u € U +— hs_1,,, and taking only terms of order at most ||v||%, we
can write

1 - Q'(n(-)’l)(u; hs—l,u) (hs—Q,u—H) - hs—2,u) (5321)
= QU (u, hem1)v + QFV (u, ho ). [v] + QL (u, ho ) [Duhis—1,u-0]
+ Q‘(n-lJ)(uv hs’u)‘[% [Duhsfl,wv] + O(HUH%)

the o||v||?) term coming from bi-linearity of v € B — Q“’(.,.)[v] and the assumption on the
error term R (v, .)
With the invertibility of 1 — Q%Y (u, h,,) on B,_s, this yields

hses — hocan = [1- QU (uwhor)] QU0 hyy )0 (5.3.22)
+ 1= QP (k1) - (@2 (. h) 0] + QL (1, hg ) (Do 1,00
1= QU (k)] (@ () o, Dus i) + o)

which is the announced Taylor expansion of order 2.

We now turn to the similar expansion for u € U — x,,. We write
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Lu+vh572,u+v - Luhsflu = (5323)
QQ’O) (u h-s 1 u) v+ L [hs 2utv hs—2,u]

+ QLQ 0) (u hs u) v+ Q(O 2 (U7 hs,u)'[hsfl,quv - hstu] + ngl)(’uw hs,u)[va hsfl,qu'u - hsfl,u]
+ R( s 2 u+v T hs,u)

Using the previously established regularity results on u € U — h,_1 4, and taking the product
against ¢, we get

Puto —Pu = (6,QY (b1 1) 0+ Lou[Dyhy 1 40]) (5.3.24)
+(0,Q% Y (u, g u)0) + (£, Q9 (4, by ). [Diyhs_1..0])
+(6,Q% " (u, ) [V, Dubig_1.0]) + (£, £ D2hy_5..0) + o |v]|3)

Dividing by p,, > 0, and taking the integral over (€2, P) one has

Yato — Xu = /Qlog <p;+”) P (5.3.25)
=/qu<£ QU (u, By )0 + LoDy 0])dP
+ /Q 0@ )0+ @ (1 ). (Db ] P

/quw QU (u hg ) [0, Duhg—1,40] + Lo D2hy 3., 0)dP + of[[v][3)

which is the announced Taylor expansion at order 2. O
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Chapter 6
Conclusion and further research

6.1 LINEAR RESPONSE FOR ANOSOV SYSTEMS

In the latter parts, we have shown a variety of regularity (w.r.t parameters) results for quantities
of interest in the thermodynamic formalism of expanding maps: topological pressure and entropy,
Gibbs measures, variance in the central limit theorem, rate of mixing, rate of large deviations.

However, we have to acknowledge that the scope of those results remains limited, as it is
well known that expanding systems are but a toy model to the true mathematical models of
chaotic dynamics. In that spirit, it would be interesting to extend our results Anosov or Axiom
A diffeomorphisms. In what follows, we would like to discuss the possible generalizations of our
results to the hyperbolic case, and even more generalizations based on the same fixed-point based
method we developed.

Let’s briefly recall the definition of an Anosov system : Let T': M — M be a C", r > 1 map
of a Riemann manifold such that

e There exists A > 1, called the hyperbolicity factor of T', such that at every point x € M
there is a decomposition of the tangent space in invariant sub-bundles T, M = FE,(z) ®
E,(z), where

YV v € Eq(x), ||DT"(x).v]| < CA||v|| (6.1.1)
Vv e E,(x), || DT (z)v|| < CX7|v|| (6.1.2)

e T is topologically transitive, i.e there is a dense orbit.
Among those systems, one can give the example of the endomorphism induced on T? by the

matrix (f 1), the famous Arnold cat map.

Very broadly speaking, what one should remember from the last part is that, in order to
prove regularity with respect to the parameters of quantities of interest, one needs two majors
ingredients:

1. A spectral gap for the transfer operator, on a suitable scale of Banach spaces. This gives us
the existence of the fixed point (assumption (i) in theorem 3.1), and furthermore plays a
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key role in obtaining invertibility of the partial differential (assumption (iii)). In the setting
of expanding maps, Ruelle theorem tells us that such a gap exists on the scale (C"),>o.

2. Ad hoc estimates on the composition operator, acting on the space where the spectral gap
was previously obtained. This is the key point to obtain Holder and Lipschitz continuity
of the transfer operator with respect to the parameters (once seen as acting on suitable
spaces), as well as our differentiability condition. In the context of expanding maps, this
derives from our parameter-wise adaptation of de la Llave and Obaya regularity estimates
on the composition operator acting on Holder spaces.

With those two ingredients in mind, the question of whether one can generalize our approach
to hyperbolic systems boils down to the two following questions:

1. Can one construct a Banach space on which the (weighted) transfer operator associated to
an Anosov/Axiom A system admits a spectral gap ?

2. On the aforementioned spaces, can one establish regularity estimates for the composition
operator ?

Fortunately, the answer to both those questions is yes ! However, one should not be too
naive: the following result show that such a space cannot be a usual space of functions:

Proposition 6.1
Let T be a C*, volume preserving Anosov diffeomorphism with hyperbolicity factor A > 1. Let
Lp: fs foT™! be its transfer operator. Then its essential spectral radius on C* is > \F.

A great amount of work was devoted to construct so-called anisotropic Banach spaces, on
which the transfer operator £ associated to an hyperbolic map T admits a spectral gap, starting
with the seminal papers by Gouézel-Liverani [39, 40] (that we already mentioned, due to its
development of weak spectral perturbation theory. It is indeed a seminal paper...) and Baladi-
Tsujii [3].

Since then, a variety of such spaces have been constructed, in semi-classical analysis (see, e.g
[24]), in the study of smooth Anosov flows ([11, 34]), or other hyperbolic flows (e.g, Morse-Smale
flows in [Dang-Riviere]).

We will now lay a sort of blueprint for constructing those spaces, by explaining the properties
we expect them to have. Let B be an "anisotropic Banach space".

1. The transfer operator L1 of an hyperbolic map should have a spectral gap when acting on
B: it is after all, the main motivation !

2. It follows from Gouézel result (see prop 6.1) that B cannot be a classical function space. In
fact, it was already acknowledged by Rugh in the mid 90’s [Rugh94] that one should look
for distribution spaces instead. It should however contain smooth observables. Therefore,
we want that

crcBcCc(Ch)*

3. It should behave as a function space in the unstable direction, and as a distribution space
in the stable direction.
Indeed, we at least want L1 to mimic the spectral behavior of a transfer operator associated
to an expanding map when the observable is only defined on the unstable manifold.
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This informal discussion is helpful for visualizing what one expects from such spaces, but it
does not tell us how to effectively construct one. Such a construction is too long for us to expose
here, and instead we refer to the seminal papers [39, 8] for the details.

6.2 LIMIT THEOREM FOR RANDOM PRODUCT OF EXPANDING MAPS

In [18], the authors introduce a generalization to random dynamical systems of the well known
Nagaev-Guivarc’h spectral method, a powerful approach to establish limit theorems for (au-
tonomous) dynamical systems and Markov chains. Let us briefly recall how it operates, following
Gouézel review [38].

Very broadly speaking, the idea is to follow the elementary proof of the central limit theorem
for L2, i.i.d random variables.
Given a Lipschitz continuous dynamical system T acting on some metric space (M, d), we let
feC*(M) (a €]0,1]) be an observable, and consider the random process (f o T™),,. We would
like to study the (probabilistic) asymptotic behavior of the Birkhoff sums

n—1
Su(f)=>_ foT"
k=0

In that endeavor, we introduce the twisted transfer operator, acting on C*(M) by
Li¢ = Lp(e™ ) (6.2.1)
where Lr is the Ruelle transfer operator (2.2.7). Now, the proof relies on the following steps:
1. Represent I (e”+() as [, Li1dm
2. Establishing that £; admits a spectral gap on C*(M), with maximal eigenvalue A(t).
3. The map ¢ — A(t) is C?

In our setting, the first point is a straightforward consequence of the duality property (2.2.9),
the second and third follows from the spectral gap of L7 on C“ and standard perturbation theory
(note that £; is an analytic perturbation of L1 !). Here no loss of regularity happens, as one
perturbs only the weight and not the dynamic itself.

The steps explained here can be used to show a wide variety of limit theorem for dynamical
systems: we refer to [38] for more details on the subject.

The generalization of [18] goes along the same lines, in a random context: given (2, F,P) a
probabilistic space, 7 : Q@ — Q invertible and ergodic, we let T € M(Q,C“([0,1])) be a random
dynamical system over (2,7). We want to establish (quenched) limit theorem for processes of
the type (f, o TUS”))HZO where f: Q — BV([0,1]) is measurable.

For that purpose, the paper [18] introduce a twisted transfer operator L, defined by:

Lo 10(x) = Ly, (e=9) (6.2.2)

and suggests the following random analogue to the Nagaev-Guivarc’h method:
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1. Represent the quenched Birkhoff sums S, (f,,) := EZ;S o T%) as an integral involving
the n-th random product of twisted transfer operator.

2. Establish quasi-compactness of the transfer operator cocycle L, ; for ¢ small enough.

3. Show regularity w.r.t the parameter of the top characteristic exponent and associated
Oseledets space of the transfer operator cocycle.

The first item is usually straightforward, and we refer to the paper [18] for adequate expla-
nations and proofs.

Where I believe that it is possible to both extend and simplify the original approach concerns
the last two steps. This relies mostly on the use of the theory of complex cone contraction:
indeed, the twisted transfer operator associated e.g to some uniformly expanding map or some
tent maps is a strict and uniform contraction of a regular complex cone, which is the canonical
complexification of (5.2.1) in the first case, and the canonical complexification of the cone used
in [56]:

1
Co:={d € BV(0,1]),6 > 0, Vargy(d) < a / pdm)

Building on works of Dubois and Rugh[71, 21, 22] one may establish a complex analog to
[20, Theorem 3.1], thus establishing a gap in the Oseledets-Lyapunov spectrum of the twisted
transfer operator cocycle.

As for the third step, one may directly use theorem 5.3 and the bound (5.2.41), to establish
[71, Theorem 10.2] on the analyticity of the top characteristic exponent in this context.

Now this contrast greatly with the the techniques used in [18], where a great deal of effort
goes into showing twice differentiability of the top characteristic exponent w.r.t the parameter.
Here not only does this regularity comes in a simpler way, but it is a much stronger regularity:
analyticity vs. twice differentiability. Therefore not only can we recover all the limit theorem
of [18], but it might (this is at the moment just a conjecture) also be possible to establish finer
results, such as Berry-Essen estimates, in the spirit of [22].

6.3 RESPONSE FOR SYSTEMS WITH ADDITIVE NOISE

This project is an ongoing collaboration with Stefano Galatolo. It is similarly concerned with
a problem of response, linear or higher-order, but in a different context: instead of looking at
maps in the expanding class, or even with the expansiveness property (1.0.1), we will look at
deterministic systems perturbed by additive noise. In this context, we make no hyperbolicity
assumption on the deterministic part of the dynamic, and instead exploit the effects of additive
noise on the resulting dynamic: mixing and regularization.

More precisely, we are interested in systems of the following form

Tes5(x) = T(z) + X (6.3.1)

where Ts : [0,1] — [0,1] are maps of the interval, or of the circle S! and X¢ is a random
perturbation, given by a density kernel pe.
We study two major cases:
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1. The case of a uniformly distributed noise: p¢ = %]1[75/2’5/2] € BV ([0,1)).

2. The case of a Gaussian noise: pg = e /26 ¢ C§°(R).

At the level of transfer operator Ls¢, acting on (say) L' functions of the interval, this trans-
lates to

Lsed = pe* L1;¢ (6.3.2)
where L, is the transfer operator (2.2.7) of the map Ty, and * is the convolution product.

Using the Krylov-Bogolubov procedure, one can construct an invariant measure pse €
L'([0,1]) for the system, which is a fixed-point for the transfer operator. We are interested
in the question of the regularity of the map

(6,€) = pse € L*([0,1]) (6.3.3)

Those type of question has already been partially studied in a recent paper by Giulietti and
Galatolo [30], where they studied the question of C'* regularity of the aforementioned map (6.3.3),
and obtained a linear response formula, both for changes in the deterministic parameter § and
variations in the size of the random perturbation €.

More precisely, they based their approach on the following abstract linear response statement
in the presence of mixing and regularization, in the spaces BV ([0,1]), L'([0,1]) and BS([0,1])
the space of signed Borel measures endowed with the norm

1
/QW‘
0
Theorem 6.1 ([30], Thm 3)
Let (Ls)scio,q be a family of bounded Markov operators acting on BV ([0,1]).
Assume furthermore that

[pllw == sup
llgllip<1

1. For every § € [0,¢|, there is a hs € BV, such that Lshs = hs and ||hs||py < C for some
C > 0 independent of §.

2. Forany ¢ € Vi :={¢ € L', [j o()dz =0}, |L5llr — O

3. The unperturbed operator is reqularizing from W to L' and from L' to BV, i.e Lo : W — L*
and Lo : L' — BV is bounded.

4. Ls is a relatively continuous perturbation of Lo, i.e ||[Lo — Ls||py—rr < CO and similarly
Lo — Ls||L1sw < C8, and there exists a derivative operator Lhg € Vy, where Vi := Vlw
such that

1 .
H(S(EO — Ls)ho — Lhyg

=0 (6.3.4)
WA)
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Then one has the following: R(z,Ly) : Vo — W is a bounded operator, and

HM — R(1, Lo) Lhg

0 w
ied €[0,¢] > hs € W is Ct at § =0 and R(l,EO)LhO is the first-order term in the variation
of equilibrium measure in the family L.

— 0 (6.3.5)
5—0

Our approach to study the mixing properties of such systems relies on computer-assisted
proofs, i.e the use of a computer certified estimate to establish decay of the L' norm of the
unperturbed system Ty ¢ = Tp + Xe.

Using an Ulam method, one can construct a finite dimensional matrix approximating the
transfer operator in the L' norm. Calling L. ¢ this finite dimensional (of order roughly %)
approximation, we remark that it is also a weak contraction in the L' norm: the computer will
thus be able to find a couple (N, a) such that ||£2’£¢>||L1 < a < 1forevery ¢ € L, fol ¢dm = 0.
For more details on the inner workings of the algorithm, the precise estimates and motivations
behind it, we refer to [31, §3-4].

The fact that the additive noise produces mixing tells us that it will be an effective replacement
to hyperbolicity assumptions, allowing us to use the functional method based on the transfer
operator (2.2.7) spectral properties.

More particular to this situation is the effect of regularization, which will counter the loss of
regularity effect seen at play in deterministic systems or for general random products. Heuris-
tically, it can be understood as an averaging effect of randomness. Analytically, we already
see where the regularizing effect on (6.3.2), the regularity of a convolution product being the
regularity of the smoother term.

In particular, this yields that Cs¢ : L*([0,1]) — BV([0,1]) (vesp Ls¢ : L*([0,1]) = C§°(R))is
a bounded operator.

We plan to generalize this statement to the case of several derivatives and higher-order re-
sponse. This imply to find a proper functional framework to formulate this regularity: the scale
of Banach spaces W¥! — L1 < W= with W*! being the classical Sobolev space on [0, 1] and
W k1 the space of k-distributional derivatives of L' functions appears to be a natural candidate
in this endeavor.

We also need to find the proper generalization for the definition of the "derivatives operators"
and the kind of convergence towards it: it would seems that one needs some type of uniform
convergence for the smaller derivatives, when a point-wise convergence works for the higher-order
derivative.

The applications we have in mind concerns several models of physical and mathematical in-
terest: regularity for the Lyapunov exponent of a model of the Belusov Zhabotinski reaction,
response for tent maps in presence of noise, and particularly giving a rigorous proof of a phenom-
ena numerically observed by physicists [13] [DiGarbo, Private communication]: regularization of
the rotation number of Arnold standard circle map in the presence of noise. Indeed, it is well
known that the map 'rotation number vs driving frequency" is a natural example of devil’s
staircase, i.e of a map that is both non constant and with derivative zero on a dense set. It was
observed in numerical experiments that when noise is added (Gaussian or uniformly distributed),
this map becomes a smooth one.
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Other questions of interest to us include:
e The control problem for the invariant measure, as was sketched in [32].

e The case of systems with noise depending on the point, as it is very natural in many
applications.

e The "zero-noise" limit, where the regularizing effect is lost.
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Appendix A

Cone contraction theory: Birkhoff

cones and C-cones

In this section, £ will denote a real Banach space.

A.1 PROPERTIES OF BIRKHOFF CONES

Definition A.1
Let C C E. We say that C is a closed convex cone if

e R, C =2C, i.eC is stable by multiplication with a positive scalar.

e C is a closed and convex subset of E.

We will say that the cone is proper if CN (—C) = {0}. We also define the dual of the real closed
convez cone C to be the set of non-zero functionals on C, i.e

C':={meFE (mzx)#0VYreC"} (A.1.1)

where C* = C\{0}.

Definition A.2
Let C C E be a closed, convex cone. We say that C is

1.

inner regular if there exists x € C*, p > 0 such that Bg(x,p) C C, i.e C has non-empty
interior in E.

Let m € E' be non zero, we define the aperture of C relative to m by
] [[ull
K(C,m)=sup ———— € [1,+0 Al12
(Com) = sup EEL € (1,40 (A12)
We also define the aperture of C to be K(C) = inf exr K(C,m).
m#0
We say that C is outer regular (or of K-bounded aperture) if K(C) < +oo.

We say that C is of K-bounded sectional aperture if for every x,y € C, the sub-cone
Span(x,y) NC is of K-bounded aperture.
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4. A cone is said to be reproducing if there exists g < +oo such that every x € E decomposes
into x = x1 — X2, with x1,x2 € C and ||z1| + ||z2]| < gz

We will call a closed, convex proper cone a R-cone (or a Birkhoff cone). We will say that C is
regular if it is both inner and outer regular.

‘We also recall the definition of the Hilbert metric:
Definition A.3
Let C C FE be a closed, convex, proper cone, and let x,y € C*. We define

§(z,y) =inf{t >0, tr —y € C}
de(z,y) = log(d(x, y)d(y, x))

Then d¢ is a projective distance, called the Hilbert metric.

> >
A
o

Lemma A.1
Let C C E be a regular R-cone, and let de be the associated Hilbert metric. If there exists r > 0
such that B(z,r) C C*, then for every y € B(x,r)

r+lly — =

de(z,y) < log (r— ||y—x||) (A.1.5)
In the applications, it is of foremost importance to be able to compare the Hilbert metric

with the distance given by the norm of the ambient Banach space. It is the object of this next

lemma:

Lemma A.2

Let C C E be a real, proper convex closed cone. Assume furthermore that C is of K bounded

sectional aperture. Then for all x,y € C*, letting m € E’ be the non zero linear form given by

the bounded sectional aperture property, one has

Y

x
[es-mw

We can now state the main result of this section: a linear operator sending a cone inside
another shrinks the Hilbert metric.
Theorem A.1 (Birkhoff theorem)
Let Ey, E5 be Banach spaces, and C; C FEy, Co C E3 be proper, closed convexr cones. Let
L : E1 — Es be a linear map, such that L(C;) C C5. Let A = diamc,(L(CT)) € [0,400]. Then
one has

1
< — .

de,(Lx, Ly) < tanh (ﬁ) de, (z,y) (A.1.7)

This result has important consequences for the study of spectral properties of cone-preserving
operators: we will state two of them.

First, a quasi-compact operator (in the sense of §2.4) preserving a Birkhoff cone has a spectral
gap: this is the content of the Krein-Rutman theorem:

Theorem A.2 ([51], Theorem 6.3)
Let C be an inner reqular Birkhoff cone of a real Banach space E. Let L : E — E be a quasi-
compact operator, such that L(C*) C Int(C). Then L admits a spectral gap.
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Second, it is noteworthy that the conditions on the spectrum of the cone-contracting operator
can be replaced by geometrical assumptions on the cone: a linear operator preserving a repro-
ducing Birkhoff cone with bounded sectional aperture (e.g, if the cone is regular) has a spectral
gap, without condition on its spectrum: this a theorem of Birkhoff [9].

Theorem A.3

Let C C E be a reproducing Birkhoff cone with bounded sectional aperture. We assume that
L: E — FE is a strict cone contraction, i.e L(C*) C C* and diam¢(L(C*)) < +o00. Then L has a
spectral gap.

We end this section with an intuitive and useful lemma; as it is not clearly stated in any form
to the best of our knowledge, we provide a proof here.

Lemma A.3
Let Cy C Cy be two regular Birkhoff cones, such that A := diame,CY < +00. Then there exists a
p >0, such that for every v € C1, Bg(v, p||lv||g) C Ca.

Proof. As (C; is a regular Birkhoff cone, in particular it has non-empty interior in F, i.e there
exists > 0, and a € Cy, with norm 1 such that Bg(a,r) C C;. Let v € C;. As C; has finite
diameter for the Hilbert metric dc,, it follows that the projective distance between v and a is
finite: de,(v,a) < A < 400. We claim that this implies B(v, %HWHE) C Cy, where K is the
sectional aperture of Cs.

Indeed, start by remarking that if B(a,r) C Cy, then for any v € Cf, B(v,7d2(v,a)™1) C Co.
This is obvious when §(v,a) = +00, so that we can assume d§(v,a) to be finite. Note that one
can replace a and r by Aa and A\r, and by definition, é(v, Aa) = Aé(v,a) for all A > 0, so that
one can assume that d(v,a) > 1.

By closure of Cq, t = d2(v, a) satisfies tv — a € Cy, and stability by multiplication with a positive
scalar implies that b = 2 (tv — a) € Co. Now let u € E, |lul|g <, then a + u € B(a,r) C C1.
In particular, one has
L. gb—i—l(a—ku) eC
TR T T 2
for every u € Bg(0,7). It follows that Bg(v,ré(v,a)™!) := {v + tu, ||ullp <7} C Ca.

It is clear from the definition that dc,(v,a) < A implies that d>(v,a) ™! > e=*82(a,v). Now,
we show that if C5 has K-bounded sectional aperture, K > 1, then da(u,v) > Iyﬁ)ﬂlj\g};
It is obvious if d2(u,v) = 00, s0 we can assume ¢ = do(u, v) is finite. Let s := inf{\ € R, Au+v €
Cs2}. Note that s # —oo, because if it were, then one would have —u +v/n € Cy for every n > 1,
which would imply that —u € Ca: as Cs is proper, this is impossible. Thus, a = su+ v € Cs, and
b=tu—uv €Cy tut+v=>b+2v € Cy, and thus ¢t > s. Furthermore, (t + s)u = a + b € Ca, so
that ¢ + s > 0 by properness of Cs. Finally,

120 = (¢ = s)ull = [la = b]| < [lall + [[b]] < (¢,a) + (£,0) < Klla +b]| = K(t + 5)[|u]

by taking an outer regularity form ¢ of norm 1 for C,. This yields

t+s t—s
Il < Kllull == + llull—— < Ktlu]
which establishes the claim.
This proves the lemma, with p = K~ lre™2. |
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A.2 PROPERTIES OF COMPLEX CONES

In this section, we are interested in generalizing the previous results to the setting of complex
valued operators, acting on a complex Banach spaces E. The interest of such a generalization
comes from certain class of perturbative problems, where one naturally consider the dependency
on (small) complex parameters (e.g, to recover the Gibbs measure, or the variance in the central
limit theorem, from the topological pressure, see § 4.4 and theorem 4.5.8)

Unfortunately, the notion of positivity, or more generally the partial ordering induced by a
proper Birkhoff cone, which is crucial to define both the cones themselves and the Hilbert metric,
is now gone. It was Rugh’s idea [71] (also followed by Dubois) to replace the Hilbert metric with
a complex gauge. What follows is taken from [71].

Definition A.4
Let E be a complex Banach space.

o We say that C C E is a closed complex cone if it is a closed subset of E, C-invariant

and C # {0}.

o We say that the closed complex cone C is proper if it contains no complex planes, i.e if
x,y are independent vectors in E then Span(z,y) ¢ C.

A proper, closed, complex cone C will be refered to as a C-cone.
We now let C be the Riemann sphere, and define, for any pair (z,y) € C*
D(z,y) ={ eC:(1+Nz+(1-NyecC}cC

where co € D(z,y) if and only if z —y € C. We denote the interior (for the spherical topology
on C) of this "slice" by D°(z,v).

Recall that the standard hyperbolic metric on the complex unit disk I is defined by

2|d 1—zy _
do(z,y) =  inf / 2] o, (L8l ] =yl
~:[0,1]—D, C1 v 1— |Z|2 |1 7 xy‘ — |I’ — y‘

(v (0),y(1)=(=,y)

For any open connected subset U C C avoiding at least 3 points, we define a hyperbolic
metric on U by transporting the hyperbolic metric from D:

dy(z,y) = dp(¢™" (), 67" (1))

where ¢ : D — U is a bi-conformal map given by Riemann’s conformal mapping theorem. We
are now ready to define the complex gauge

Definition A.5
Given a C-cone C, we define the complex gauge dc : C* x C* — [0, +00] as follows:

o Ifx,y € C* are co-linear, we set de(x,y) = 0.

o If x;y € C* are linearly independent, and that -1 and 1 belong to the same connected
component U of D°(z,y), then we set

de(x,y) =dy(-1,1) >0 (A.2.1)
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e In all remaining cases, we set de(z,y) = co.

For C' C C a sub-cone of the C-cone C, one defines

diame(C") := sup de(x,y) € [0, +0o0] (A.2.2)
z,yel’
Note that the previously defined complex gauge d¢ is not necessarily a metric as it does not
separates co-linear vectors, nor necessarily verifies the triangular inequality !
However, we will see that the complex gauge d¢ is, in a sense, "similar enough" to a metric for
our purposes, particularly that it is symmetric and projective:

Lemma A.4
Let C be a C-cone, and let x,y € C*, and a € C*. Then one has

dc(ﬂ?,y) = dc(y,m) = dc(ax,y) = dc(a:,ay)

Lemma A.5

Let L : E1 — FEs be a complex linear map between topological vector spaces, and let C; C Eq,
Co C E3 be C-cone such that L(C}) C C5.

Then the map L : (Cy,de,) — (C5,dc,) is a contraction.

Furthermore, if the image has a finite diameter (i.e A = diamc; L(CT) < o0), then the
contraction is both strict and uniform. More precisely, there exists n < 1 depending only on A,
so that

Y,y € C; de, (C(:L‘% ‘C(y)) < nde, (‘Tvy)

Proof. Let z,y € Cf, and set Dy = D(x,y,C4) and Dy = D(L(x), L(y),C2), so that one has:
{-1,13cDycDycC

We can always assume that £(x), L(y) are linearly independent and that Dq, Dy are hyperbolic
(otherwise de, (L(z), L(y)) = 0 and we are done). Using the classical fact that decreasing a
domain increases hyperbolic distance, one gets

dCz (;C(.’II), ‘C(y)) < dCl (.’13, y)
ie L:(Cy,do,) = (C5,de,) is a (weak) contraction.

Now we assume that A < oo. Then —1,1 belong to the same connected component, V of DY,

and we can assume without loss of generality that —1, 1 belong to the same connected component
U of DY (else d¢, (z,y) = oo and we are done). It follows from our assumptions that U C V, and
that diamy (U) < oo.
One can thus choose a ¢ € U and a p € V\U for which dy(q,p) < A. Note that the inclusion
U — V\{p} as non expanding (for the hyperbolic metric) and that the inclusion V\{p} — Visa
contraction whose hyperbolic derivative is strictly smaller that some n = n(A) < 1 on By (p, A)*
the punctured A neighborhood of p. Therefore, the composed inclusion map U «= V\{p} — V
has hyperbolic derivative smaller than n(A) at A € By(p,A)*. One may take A lying on a
geodesic joining —1 and 1 in U, so that one gets

de, ([:(3;‘), [:(y)) = dV(_lv 1) < ndU(_L 1) = ndc, (l‘, y)
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The notion of regularity for Birkhoff cones, defined in def.A.2 can be transposed verbatim
to the setting of C-cones. Thus, we also get a way to compare the complex gauge d¢ and the
norm on the ambient Banach space:

Lemma A.6
Let C be a C-cone of K-bounded sectional aperture. If x,y € C*, and if £ = £, is the (outer)
reqularity functional associated to the sub-cone Span(x,y) NC, then one has:

x y 1K (dc(%y)> de(z,y)
- < — tanh < K—1= (A.2.3)
H(&I) (€, y)H 1] 4 4
Proof. Taking the regularity functional ¢ = ¢, , so that ||{|| = K, one can write for every

u € Span(z,y):

[ull < (€ uw)| < K. |[ul|
Consider 1 = ﬁ and y; = ﬁ, and let uy = (1 + N)axy + (1 — M)y for any A € C. When
uy € C, one has by regularity

lual < (€, ur)| =2 (A.2.4)
(Alllzy = ]l < Jualfler — ol < 4

Setting R = I# € [2,00], one sees that D(z1,y1) C B(0,R). As expanding the domain

[z1—y1 |l
decreases the hyperbolic distance, one has:

1+R
de(w,y) = dpo(z, 4, (—=1,1) > dp(o,r)(—~1,1) = dp(~1/R,1/R) = 2log (1—R>

Taking the inverse, one gets the announced bound:

oy —wll 1

1 = — < tanh (d¢(z,y)/4) < dc(z,y)/4

=

O

Lemma A.7
Let C be a C cone with K-bounded sectional aperture, and let x € C*, y € E. Suppose that there
exists a r > 0, such that x + ty € C* for every t € C, |t| <r. Then one has

2[s|
de(z, 7+ sy) < 7+Sgo(|5|) (A.2.6)

K
lyll < —ll=] (A.2.7)

Proof. Let |s| < r. Then one has

D(z,z+sy) ={AeC, 1+ Nz+ (1-\(z+sy) eC} (A.2.8)

={\eC, z+

sy € C} (A.2.9)
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by using that the cone is C invariant. Our assumptions imply that D(1, %) C D(z,z + sy), and
as shrinking the domain increases hyperbolic distance, one has

1+ |s|/r> 2]

de(@,z + sy) < dp(,2)(=1,1) = dp(0, |s]/r) = log (1_|5|/r ra o([s])

as announced.

For the second item, take the regularity functional ¢,, = ¢ associated with the sub-cone
Span(z,y) NC, normalized so that ||¢] = K.
By our assumption, for every ¢t € C, |t| < r, one has 0 < [{({,z + ty)| = [({,z) + t({,y)|, which
implies r|{(£, y)| < [(£, x)].
Up to multiplying z,y by some appropriate complex phase, we can assume (¢,z) > (¢,ry) > 0.
Thus we get

2rlly|l < llz+ryll + o —ryll < {6z +ry) + (€ —ry) = 2(0, 2) < 2K
which proves the claim.

The estimates in this lemma are key to obtain regularity and invertibility for the projection

onto the affine hyperplane {£ = 1} of a regular C-cone C with regularity functional . ]
We now turn to refinements of our contraction principle A.5:
Theorem A.4

Let E be a complex Banach space, C C E be a C-cone contraction with K-bounded sectional
aperture and let L € L(E) be a strict cone contraction (i.e L : C* — C* and A = diame-L(C*) <
00). Letn <1 be as in theorem A.5. Then:

o C contains a unique L-invariant complez line, Ch.
We define A € C* by L(h) = A.h. Then

o There exists constants R,C < oo and a map ¢ : C — C such that for every x € C and
n > 1, one has

AL — c(x)h| < Cn™ Y|z (A.2.10)
le(z)n]l < R (A.2.11)

Proof. We are going to construct the £ invariant line generator h € C* recursively, with a
Picard iteration scheme.

L(e

Let eg € C*, and define e; = Hﬂgoil. Given n > 1 and assuming e,, is constructed, we choose a
€0

regularity functional e, z., = ¢ associated to the sub-cone Span(e,, Le,) NC, and normalized

ln, Ley,
so that ||¢,]| = K. We set A, = w, and note that 0 < |\,| < K||L]|.

{€n,en)
The next element of the sequence (e, )n>0 is
A 1Le
e =_n ~n A.2.12
" N el (242
By (A.2.3) and an iterated use of theorem A.5, one has:
€n £6n . n /% n—1
| <dc(en, Len) < diameL™(C*) < Ap™~. (A.2.13)

ey~ T Leny
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Multiplying this last inequality by |(€,,, en)| (resp. [(€n, Len)|), and using | (€, )| < Kllen| =
K (resp [{£n, Len)| < K||L]|), one obtains

llen — A M Len|| < KAp™ ! (A.2.14)
I Anen — Len|| < || L] KA (A.2.15)
This first inequality, together with ||e,|| = 1 and continuity of x — ﬁ on E\{0} gives
x
llen — eng1] < 2KAp"1 (A.2.16)

showing that the sequence (ey),>0 is Cauchy, and thus converges towards h = lim,_, €y,
We have h € C* because the cone C was assumed to be closed.

Now we write
(Ans1 = An)enyr = (L= An)en + (Ang1 — L)ent1 + (£ — An)(ens1 — en)

Using (A.2.14) and (A.2.16), one gets

A = A1l < [[(An = A1) ensal] (A.2.17)
<L = An)enll + 1L = Anpr)entall + (£ = An) - lensr = enl| (A.2.18)
< K|L|Ap" Tt (14742 +2K) (A.2.19)

which establish the convergence A\, — A. But now note that ||[£(h) —A.h|| = lim,, ||Len, —Anen|| =
0, and thus Lh = \h € C*.
Therefore X\ # 0 and Ch C C is a L-invariant line.

For uniqueness, assume the existence of k € C* such that Ck C C is a L-invariant complex
line. Then
de(h k) = de(L™h, L7k) <" 1A < 00

for any n > 1, and thus d¢(h, k) = 0, i.e Ch = Ck.

We now turn to estimates (A.2.10). Let x € C*, and define for n > 1, z, = L"z. We
now take m,, € E’ the regularity functional associated to the sub-cone Span(z,,h) NC, and set
Cp = %, for which we have 0 < |c,| < K|[[A™"x,].
Using again lemma A.G, one gets
Ty h

(M, ) (Mg, h)

K
de(L"x, L™h) < ——diame(L"C*) <
et Tl )< T

This last inequality, written for A~"z,, and multiplied by |{m,, A™"x,)|, becomes

[ A"t (A2.20)

1< =&
”mn

N2, — cph|| < KA "z, || At (A.2.21)

Furthermore,
INT" " — A2 || = AL, — enh] + b — AT, | (A.2.22)
< [L+IAL)] KAy, [|Agm (A.2.23)
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This last bound yields
AT g || < L+ L+ IATELI] KA | A7 T AT |

so we get the following uniform bound:

Al < T [0+ [1+ I Ll] KA I 2 | (A.2.24)
k>0
o KA
< exp(l+ A 1lillm)llA LL|z| == Rz (A.2.25)

Now we write
(Cnt1 — cn)h = cny1h — Al AL [)\_"xn — cnh]

so that one has
lCn1 — cnl < (4 IXT' L)) KA ' Rl|z|

Thus ¢* = lim,,_, ¢, exists (the sequence is Cauchy) and using the rest in the above convergent
series, one gets the following bound:

VKRA|z] [n+ IA1L]]
1-nm

" —cn| < ™7
Using this last bound together with (A.2.21) and (A.2.24), one gets

A, = cthl < KAy"'Rla]| < Oy o

L+ AL
l—n
which implies that ¢* = ¢(z) only depends on the choice of z, not on the choice of m,,. We also

get the uniform bound

le(@)] = lle(x)h]] = lim A"z, || < Rl|z| (A.2.26)

00 We can now turn to our ultimate refinement
for the contraction principle: under an additional technical requirement for the cone C (namely
the reproducing condition), the map = € F + ¢(x) € C is linear (which is bounded by virtue of
(A.2.26)), i.e £ admits a spectral gap.

We start by defining what it means to be reproducing for a C-cone (note the analogy with
definition A.2).

Definition A.6
Let E be a complex Banach space, and let C C E be a C-cone. C is said to be reproducing if
there exists a (real) constant g < +o00, such that every x € E decomposes into x = x1 + x2 and

21| + ll22]l < gl (A.2.27)

Theorem A.5
Let L € L(E) and C C E be a C-cone of K-bounded sectional aperture and reproducing. Suppose
that L : C* — C* is a strict cone contraction, with A := diam¢LC* < 0o. Then L has a spectral

gap.

107



Proof. Let z € E, and take g be the reproducing constant from definition A.6. Taking x1,xo €
C so that @ = x1 + z2, and ||z1|| + ||z2]| < g||z||. Applying theorem A.2.10 to x; and x5 yields
the existence of ¢* := ¢(x1) + ¢(x2), which satisfies |¢*| < gR||z|. Furthermore,

INT L et < AT L (@) Al AT L e —c(w2)h]| < O o] + [la]]] < Cgnt Tl

so that one has ¢* = ¢(x) := lim, A\™"L"z = ¢(z1) + ¢(z2) depends only on = and nor on the
choice of decomposition x = z1 + x».

By linearity of £, x € E — ¢(z) € C is a linear form, bounded by virtue of (A.2.26) with norm
smaller than gR. From now on, we will denote (v, z) := ¢(z) € C.

We have shown that for every = € E, every n > 1,

INT"L 2 — h(v,z)|| < gOn™ Y|z (A.2.28)

Thus £ admits a spectral gap, with A € C* its maximal, simple eigenvalue, x +— (v, z).h the
associated eigenprojector, and the remainder of its spectrum contained in a disk of radius smaller
than n|Al. O

We now present a fundamental example of contracted cone:

Proposition A.1
For E a complex Banach space, we let h € E, v € E’ such that (v,h) = 1. Let P be the associated
one dimensional projector, i.e Pz := (v,z).h. For o € (0,400), we define the C-cone

Co:={z€FE: |lz— Pzx| <o|Px|} (A.2.29)
This family of C-cones has the following properties:
h
e For any o € (0,00), Cy is inner regular. More precisely, Bg(h, Hl;HJP”) cC.
— o

e K(Cy) < (1+40)||P]|, for any o € (0,400), i.e Cy is outer reqular (or of bounded aperture).
o Let 0 < o' < o < +oo. Then trivially Cyr C Cyp, and
diame,Cy < +00

Proof.

e For the first item, we proceed in 2 times: first we show that Bg(h,r,) C C,, where

a|hll .
re ;= ————————— and then that any ball Bg(h,r) C C, satisfies r < r,.
11— P| + 0| P
Let x € Bg(h,r,). Then one has that Pz € Bg(h, ||P||rs), so that ||Pz| > ||| — || P||7s-
Therefore,
[(1=Pz|| _ [1-=P|ro
< (A.2.30)
| Pz [l = lIPro
[1=Pllofh] [1—P|+alP|
- . (A.2.31)
1 =Pl +olP] 1= P|.[A]
5 (A.2.32)
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where we used in the first line (1 — P)z = (1 — P)(z — h).

Let 7 > 0 be such that Bg(h,r) C C,. Then one can write, as before

I = P)af _ (L= P)]r

< (A.2.33)
[P Al = ([ P]lr
the right-hand term satisfies % < ¢ if and only if
1A= P)[|r < o] — ol Pl|r (A.2.34)
r{I1 =Pl +ol[P[] < oAl (A.2.35)
h
oAl (A.2.36)

r<——————— =,
1 =Pl +ollP|
establishing the claim.

e For the second item, we start by remarking that for all x € E, || Pz|| = |(v, z)|.]|h||, so that
clearly |[P[| = [lv[|.[[A]]-
From the definition of C,, it follows immediately that

[zl < ([Pl + |(1 = P)z|| < (1 + o)[|Pz]| = (1+ o), z)|.[|A]

Multiplying by [[v, one gets [[v[|.[lz]| < (1 + o)|(v,)|[|P[|; so that by definition of the
aperture K (C,) of C,,
K(Co) < (1+0)|P

It follows from the first 2 items that C, is a regular C-cone: in particular, it has (uniformly)
bounded sectional aperture and it is reproducing.

e For the last statement, we refer to [59, §3] or to [71, Example 3.9] O
This family (C,)s0 of regular C-cone has a particularly nice property: in a sense, it charac-

terizes the spectral gap presence:

Theorem A.6
Let E be a complex Banach space, and let L : E — E be a bounded operator. Then L admits a
spectral gap if and only if it contracts a regular C-cone.

Proof. The reverse implication is the content of theorem A.5.

We now turn to the direct implication: suppose that £ admits a spectral gap, with dominating
eigenvalue A, associated eigenvectors h € FE and v € E’. One can construct the one dimensional
spectral projector Px := h(v,z), and given 6 € (n|A|,|A]), we define ||.||s by

|zllo = [Pzl + > 0~k L*[1 — Pla|
k>0

Our choice of # insures both convergence of the above sum and the equivalence of ||.||¢ and ||.|| -
We fix such a 0, and now we can define the family of regular C-cones (Cy.9)o>0 by (A.2.29) with
Illo instead of ||.||k.
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Let us now show that given a ¢ > 0, £ : CX — CJ is a strict and uniform contraction: in that
endeavor, one needs to estimate ||(1 — P)Lz||p. But it is easy to see that

1L = P)Lallo =Y 6~ L1 — Pl (A.2.37)

k>0
=0> 07F||LF1 - Pla| (A.2.38)

k>1
<0||(1—P)z|g (A.2.39)
6

< ﬁnpcxug (A.2.40)
where we used (1-P)* = 1-P, |[(1=P)zllg = Y>> 0~=F||£*[1— P)z|| and that LP = PL = \.P.
Therefore, L(C; 4) C C;/ p with o := \%IU < o, which shows that it is indeed a strict and uniform
cone contraction. O

A.2.1 CANONICAL COMPLEXIFICATION OF A BIRKHOFF CONE

Now that we saw how a complex cone generalizes the notion of a Birkhoff cone, one can wonder
how to construct a complex cone from a Birkhoff cone. It turns out that there is a canonical way
to do so, in an isometric way (with respect to the projective metric/complex gauge).
Definition A.7
o Let (X, ].|I) be a real Banach space. We define its canonical complexification Xc¢ by
Xc =X @iX. When endowed with the norm ||.||c, defined by

|z + dyllc := Zsup {6, 2) + it y)|}
ex’

llell 7 <1

it is a complex Banach space.

o Let C C X be a Birkhoff cone. We define its canonical complezification Cc by

Cc = {u € Xc, R((m,u)(l,u)) >0, Vm,£ €'} (A.2.41)
Equivalently, it can be defined by Cc := C* (C +iC).

Which geometric properties of the original Birkhoff cone remain after going through complexifi-
cation ? This natural question is answered in the next proposition:

Proposition A.2 ([71], Prop 5.4)

Let C C X be a Birkhoff cone. If C is inner reqular (respectively generating, outer regular, of
bounded sectional aperture), then so is its canonical complezification Cc.

One of the central tool of the theory of Birkhoff cones is the Hilbert projective metric d¢
(see definition A.3), which allows one to formulate a contraction principle theorem A.1. The
complex gauge of Dubois [21] d¢ is the analogue of the Hilbert metric in the setting of complex
cones, in the following sense:

Theorem A.7 ([22], theorem 4.3)
Let C be a Birkhoff cone, and let Cc denote its canonical complezification (A.2.41). Then one
has
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o The natural inclusion (C*,dc) — (Cc,0¢) is an isometric embedding.

o Let L be a bounded operator mapping C* to itself. Then the complexification of L (still
denoted by L) maps C& to itself.
Furthermore, if Ag := diamc(L(C)*) and Ac := sup, ,cc. Oc(Lz, Ly), then

Ac < 3Ag (A.2.42)

o Assume there exists a p > 0, such that B(Lo, p||Lp||) C C, for every ¢ € C*. Then

Be(Lo, £11£olc) € Cc

Proof of theorem A.7 The first 2 statements are taken from [22, theorem 4.3], and we refer
to this paper for a proof.

For the last point, we start by noting that if B(x,r) C C for some x € C, then Be(x, g) C Cc.
If ¢ € C&, we write ¢ = A(¢1 + ¢2), with (¢1, ¢2) € C?, and A € C*, then

Be(L6, ZIIL6llc) € A-Be(Lor, B La1l) + ABe(Loz, DliLoa]) € C (€ +iC) =Co (A2.43)

which establishes the claim. O

A.3 RANDOM PRODUCT OF CONE CONTRACTIONS

In this section, F will denote indifferently a real or complex Banach space.

Definition A.8
Let E be a Banach space, let C C E be a regular R cone, and let L : E — E, be a bounded
operator such that:

1. L(C*) c C*
2. diam(L(C*)) < A
3. There exists p > 0 such that for every ¢ € C*, Br(L, p||Ld]) C C.

We will denote by Mc(A, p) (or just M(A,p)) the set of all cone contractions subject to this
uniform bound.

Let (Q, F,P) be a probability space, and let 7 : @ — Q be an invertible and ergodic map.
Let E be a Banach space, and let (L,)wecq be a family of bounded operators on E such that the
map L£: w € Q— L, € M(A,p) is measurable and P-essentially bounded.

In other terms, we choose randomly (with probability distribution P) a strict and uniform con-
traction of the regular R-cone C. Then one has

Theorem A.8

Let C be a proper, closed, convex and regular cone.

Let £ € E' be the norm one linear form given by the outer reqularity of C, i.e such that there is
K > 0 such that for every x € C*, (¢, z) > @
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Let L € L>(Q, M(A,p)). We define the associated projection on CN{L =1}, m, : CN{L =
1} - Ccn{t=1}, by
L,x
w(@) = —— A31
mle) = s (A31)

for x € C*.
This induces an operator on L>°(2,C*), w: L>®(Q,C) — L>®(Q,CN{l=1}), by

(ﬁ(ﬁ)w = 7T.,.71w(¢7.71w).

Then ™ admits a fized point h = (hy)weq in L=®(Q,CN{¢ =1}), and one has for almost every
we, Ww(hw) = Nro.

Proof. Let C, L be as above. It is straightforward that

L, e,
(Trn(rb)w = 71—(ﬁ)n Gr-ny =Tr=14, 0" O Mrony@rny, = ¢ (A32)
" v <£7 ‘C,(,-’ri)7zw¢‘f'7"w>

where E&") = Ln-1,...L, is the cocycle above (€, 7) generated by the random operator L.
From lemma A.2, one obtains easily (by induction) the following estimate on 775,”): for w € €,
and z,y € C*,
() () () < B na A33
72, (@)~ 7 Wl < o (A33)
where n = tanh (%). It is noteworthy that the right hand side of the last estimate does not
depends on w, so that one has immediately

A
1" (@) = 7" ()| L=y < 5™ (A.3.4)

for any ¢, € L>*(Q,CN{l{=1}).

Take now a hg € L (Q,CN{¢ = 1}), and define recursively h,, 11 = mw(h,). By the previous
estimate, the sequence (h,,) is Cauchy in L>(Q, E), and therefore it converges towards a h €
L>°(Q, E), which is the announced fixed point. O

The result of this last theorem remains true for of regular Birkhoff cone, replacing the use of
lemma A.6 by lemma A.2.

‘We continue this section with a formula giving a convenient representation of the characteristic
exponent in terms of the fixed point h of .
Theorem A.9
Let C be a regular C-cone, with associated linear form £. Let £ € L (Q, Mc(A,p)), a cocycle
above (Q, 7). Let 7 be the projection of L on the affine hyperplan {£ = 1} (see 5.1.5), and h its
fixed point.
Assume furthermore that E,(log || L|]) < oo (i.e log||L|| € L'(n)). Then one has

1. The top characteristic exponent x = lim sup%log”ﬁ&")H exists and is p almost surely
constant.
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2. Furthermore, one has the following formula for x:

x=/log |peo|dp (A.3.5)
Q

where p, = (€, L—1,h-1,) for each w € Q.

For the second statement, we will need the following lemma:

Lemma A.8
Let K the sectional aperture of C, and for p > 0, let Clp] := {x € C, B(z,p||z|) CC}. If p >0
is sufficiently small, C|p] is not reduced to {0}.

Then for every x € Clp]*, one has
1]¢¢, Lx) K2 | (¢, Lx)
— <|Ll|lg € — A.3.6
K‘ N e Ll T (4.36)
Let y € E. Note that by assumption on z € C[p], one has x + ty € C* for every [t]| < p%.
Therefore, £(z + ty) € C* for such a ¢, and by the second estimate in lemma A.7, one has
Kyl
eyl < E1ely )
Pl
Together with the regularity condition ||z| > (¢, z)|%||z| for z € C*, we obtain
Lyl _ K* | (¢ La)
Iyl = p | {&2)
and thus the second inequality is proven.
The first one simply comes from
(6, Lx)| < [[L]].[|=]] < K|L].|¢€, )
g

Proof. The first statement is an immediate consequence of Kingman theorem and the ergodicity
of 7.

We can now prove formula (A.3.5).
Indeed, by construction of h, one has almost surely for w € 2

Ewhw = p'rwhﬂu (A37)

Taking the product along the 7 orbit, one obtains

LNy = Loy .. Lohy =[] prrwhene (A.3.8)
k=1
so that
1 1 — 1
k=1
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Note now that by lemma A.8, log(|p|) € L(u) if log(||£|]) € L* (). Thus, by Birkhoff ergodic
theorem

1 n
> log(ponl) . [ loglldut)
n n—oo Jo
k=1
It also follows from this lemma (with £ = £ and z = h.) that
! )y = 1 (n) !
Tlog(1£571) = og(| (¢ £ h)) + O() (A3.10)

As n tends to infinity, the left-hand term tends to x, and the right-hand term to [, log |p.|du(w)
giving us the wanted identity. |

Note that the same result remains true when C is assumed to be a regular Birkhoff cone.
Indeed, the only thing left that might change is the validity of lemma A.8 and the second estimate
in lemma A.7. Fortunately, lemma A.8 translates verbatim to the case of a regular Birkhoff cone
(just by dropping the modulus !), and the other estimate has the following (simple) proof in the
real case:

Indeed, if C is a regular Birkhoff cone, and there is r > 0 such that for every x € C*, y € F,
x +ty € C* for [t| < r, then one has, taking ¢ € E’ of norm one given by the outer regularity of

C
0< () +t{L,y)
0< (l,z) —t{l,y)

which gives
t|(6,y) < (¢, x)
so that r(¢,y) < (¢, z). Thus, by the triangular inequality:

2rllyll < llz+ryll + llz —ryll < K[{ 2 +ry) + {6z —ry)] < 2K (L x) < 2K]|2|

and thus [ly]| < £z,
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Appendix B

Regularity estimates for
composition operators on Holder
spaces

The main object of this section is to address the regularity problem for composition operators:
g+— [f — fog] in Holder spaces. An important inspiration for the results presented here is
a paper by de la Llave and Obaya, [15], particularly the following result:

Theorem B.1 ([15], Prop 6.2, (iii))

Let E,F,G be Banach spaces, and U C E, V C F open subsets. Let k > 1,0 < v < 1 and
t=k+~. Lets>tandr >t andletd C C"(U,F). Then for every g1 € U, there exists
0, p, M > 0, such that for every f € C*(V,G), every g2 € C" (U, F) which verifies ||g1—gz2|lcr < 9,
one has go € U, and

1fog1— fogllc: < M| fllesllgr — g2lle- (B.0.1)

The estimates we establish in the following (lemmas B.1, B.2, B.4 ) are parameter variants of
this theorem. They are used to prove lemma 4.1, which in turn is key for using theorem 3.1 to
prove theorem 4.2.

In the first lemma, g — [f — f o g] is Holder continuous from C**® to C1*# with exponent

vi=a—f

B.1 CONTINUITY ESTIMATES FOR THE COMPOSITION OPERATOR

Lemma B.1

Let B, E,F,G be Banach spaces, U C B, V C E, W C F be open and bounded domains. Let
0<B<a<l, ypelC®UxV,W) such that for every u € U, 1, = P (u,.) € CT*(V,W), and
every x € V, u — ¥(u, ) is Lipschitz continuous, u — Dg1p, is a-Holder.

Let f be such that for every u € U, f, € CYT*(W,G) and the map uw € U > f, € CY(W,G) is
a-Holder.
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Let ug €U, and h € B such that ug +h € U. Then fu,in © Yugths fuo © Yy are CHP(V,G)
maps, and we have

| fuotn0%ug+ b= fuooPusllcr+s(v,q) < [C1llfllcow,crtew,an+C2ll flloew,crow,aplllbll (B.1.1)

with Cy, Cy given by (B.1.2),(B.1.3).

Proof. We introduce the following notations:
Lo,y :=sup [Dethulloc Li0 := sup [ Dutall
ueld zeV

L0,1+o¢ ‘= Ssup HDacﬂ}uHC“ La,l ‘= sup ||D$1/}ac||C‘1
ueU zeV

For u,v € U one can write:

Hfu o0ty — fu o wv”CHﬁ < ”(fu - fv) o wu”H—B + ”fv o0y — fu owv”H-B

For the first term, we want to estimate

H(fu - fv) Owu”1+ﬁ = maX(”(fu - fv) O'@[}uHh |D(fu - fv) O¢u~Dwu|ﬁ)

It is easy to see that

H(fu - fv) Owu”C1 < HDz[fu - fv]HOOHDzwu”oo < L0,1|f‘Ca(Z/{,Cl(W,G))”u - v”a

Letting x,2’ € V, one has, when d(z,z') < ||u — v||g

D [ ful (W (u, 2)).Datp(u, ©) — De[ ful (b (u, 7). Dytp(u, ') |
< |[Dz[f1(w, ¥(u, 2)).[Dat(u, ) — Dotp(u, &' )]|| + [|[Da f (w, ¥(u, ¥)) — Do f (u, ¥ (u, 2"))]. Dot (u, z)]|
< [|Dxf(“7 Bl HDz%Hiia + HDrquOO|DI¢U‘Ca] d(z, mI)BHU —vf[”

< I flcow,crew,ey [Lo5™ + Loj+a] d(z,2") lu — |
and similarly when ||u —v||g < d(z,z’),

||Dxf(u,1/)(u,x))sz/;(u,m) - sz('l}, ?/J(Ua x))qu/)(u,x)H
< Do f (s %(u, @)oo || Datpul| oo lu = v]|d(2, 2')°

< I fllce@,crw.eyLollu — o] Yd(z, )P
Thus we obtain the following bound:

I(fu=fo)ovullores < 20 flloo@,ortaw,on (L8 1 + Loata) + 1 fllcew.orw.an Lo (2 + [[u = o] P)] [lu=v|?
(B.1.2)
The second term of the right hand can be treated as follows: we want to estimate

| fo 0w = fo 0 Wy|lcr+s = max(|| fu 0 Yu — fo 0 Yullcr, | Dz (fo 0 Yu) — Da(fu 0 ¥0)llcs)
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For x € V, one has :

”Dwf(vvw(uvx)) © Dac'l/)(uvx) - Dxf(vﬂ/’(%ff)) © DM/)(U@)H
<N Do f (0,9 (u, 2)) = Do f (v, (0, 2))[[- [ Datp(u, )| + | Da f (v, ¢ (0, 2))[|- [ Datp(u, ) — Datp(v, )|

< (Lo, LY o 4 Lol fllcow,crrew,ay llu — o]

For the Holder semi-norm | D, (f, 0 t¥) — Dz (fy © ¥y)|cs, we have the following :
Let x,2’ € V, such that ||d(x,2")|| < |Ju — v|. Then

| D f(v,9(u,2)) 0 Dotp(u, x) — Dy f (v, (u,2")) 0 Dytp(u, 2')]|

< || Daf (v, (u, 2)) = Do f (0,9 (uy ")) | [ Datp(w, )| + |1 Do f (0,900, 2) || |1 Datp(u, ) — Dyptp(u, )|
< Do f (v, )|ead(@(u, x) = P(u,2'))* + || Dy f(0,.)||co Lo,1+ad(z, 2')*

< (LG + Loasa) | fllcow,crvewiaydla, a')P flu — v]|*7

Similarly in the case d(x,2’) > ||u — v]|, one has :

| Ds f(v,¢(u,x)) 0 Dptp(u, x) — Dy f(v,9(v,2)) 0 Detp(v, z) ||
< I fllco@,crvew,ay (L5 Lot + Laa)|u — v||d(z, 2")°

Thus,
1D (footbu) =Dz (footrul)les < lIfllcow,ortamw,ay [(LToLoa + Lan)(2+ [lu = vl|”) + LE 1 + Loj+a] lu—v]”
(B.1.3)
(B.1.1) readily follows. U

We now turn to the case v = 1, i.e when considering the composition operator from C'+ to
ce.
Lemma B.2
Let B,E,F,G be Banach spaces, U C B, V C E, W C F be open subsets.
Let 0 < a <1 and ¢ € O U x V,W), f € CH{U,C*(W,Q)) such that for every u € U,
fu € CH(W,G).
Then for every ug € U, and every h € B such that ug+h € U, the maps fop(up+h,.), fow(ug,.)
are a-Hélder and one has the estimate:

|| f (uo + h) o 9p(uo + h) — f(uo) 0¥ (uo)|ce < [Cillfllcow,cr+ew,ay) + Collfllcrw,cow,ay] I1h]B
(B.1.4)
with C1,Cy given by (B.1.10).

Proof. The case where f is a constant with respect to u € U is a straightforward consequence
of the mean value theorem. Taking the C“-norm, one has for every x € V.

1
1 o (o + h) — f 0 (uo)llcw < 1] / IDf (o + th)) o Duth(uo + th) owdt  (B.15)
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It is enough to establish the Lipschitz continuity that we wanted. Yet it is convenient to get a
more precise estimate of || D f(¢(u)) o Dyt(u)||ce, for u € U.
Letting z, 2’ € W, and taking the operator norm, one gets

IDf(@(u, 2)) o Dutp(u, x) — Df (th(u, ")) o Dyp(u, ')
< Df((u,x)) = Df((u, ") Dutp(u, 2)|| + | Df (¢ (u, 2"))||[| Dutp(u, ) — Duth(u, 2')|
< [IDfleallDutbullco[$ullgs + 1D flloo | Dutbulloald(, )

so that
IDf (% (u)) o Dutp(u)lloa < [[fllcr+a [l Dutpullco | Datpullse + [Dutpulloa] (B.1.6)
Turning to the general case, we also write, by virtue of the mean value theorem:
1
[ fuo+h © Pug+h = fuo © Yuolla < |11 / [ Do f (o + thy (ug + th)) + Dy fuo + th, ¢ (ug + th)).Dytbcuo + th) | od
’ (B.1.7)

1
< ||n| /0 1D f (o + th, ¥(ug + th))||a + || Da f (uo + th, t(ug + th)).Dyth(ug + th)||adt
(B.1.8)

The second term in this last sum can be bounded by the same method as before. For the first
term, we need to estimate || Dy f(u, ¥ (u))||o. Using standard techniques, we can write

[Dof(u, ¥(u))lla < [ Duf(u, )llallDato(u, ) ll5dt (B.1.9)

which gives (B.1.4), with the following explicit bound on the constants Cy, Ca:

Cy < Liolgy +Lia (B.1.10)
Cy < L, (B.1.11)
O

Until now, we have treated the cases where 8 € [1 + «, 1], and the case § = a. Using an
interpolation inequality, it is possible to extend those results to the case 8 € (a, 1).

Lemma B.3 (Same setting as before)
Let f € CY(U x W,G) and ¢ € CYHYU x V,W). Let B € (a,1), ug € U, h € B such that

ug+h eU.
Then the maps fugt+h © Yug+h and fuy © Wy, are in CB(V, G) and one has

| fuos © Yuotn = fuo © Yusllorvey < Cllfllereeaoawa Iblls™ " (B.1.12)
with C an explicit constant depending on (B.1.2),(B.1.3), (B.1.10).
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Proof. Let n = % As announced, we will use the following interpolation inequality for
B € (a,1):

| fuo-+h © Pugth — fuo © ¢uo||Cﬁ(V,G) < Call fugth © Yugrn — fup © ¢uo||ncu(vvg)”fw+h © Yug+h — fup © 7/}710”1071?va)
(B.1.13)
— — 1-n)a
< CaCTCy " FlEsse gy |6 R gy I PIB RIS ™
(B.1.14)
< p||F e B.1.15
< CUllfller+ewxw,e 1Rl (B.1.15)

where C,, C1, Cy are explicitly computable constants (Cy, Cs given by (B.1.2),(B.1.3), (B.1.10)),
and we used that

max (|| fllcow,cr+ew.a) 1fllcew.crow.ans | fllerw,cew.ay) < Ifllcreewxw,a)

Noting that n + a(l —n) =14+ a — 3, we get (B.1.12). O

We now turn to differentiability estimates:

B.2 DIFFERENTIABILITY ESTIMATES FOR THE COMPOSITION OPERATOR

Lemma B.4
Let B,E,F,G be Banach spaces, U C B, V C E, W C F be open subsets.
Let0< B<a<landy € CHOUx V,W), feCH*UxW,G).
Let ug € U, and h € R? such that ug +h € U. Then f op(ug), fo(ug+h), Du(f o) (uo)
are C? maps, and we have

1f (wo+h) ot (o + 1) — f(uo) 0 (uo) — Du(f 09)(wo)-hllos < Cllflcrseuxw,ellhlI'™ (B.2.1)
with C' given by (B.2.4) and (B.2.7).

Proof. We introduce the following notations:

Lo,1 == sup [ Datp(u, )|l oo
uel
Ly = sup || Dutp(., 7)o
zeV
L1 :=sup || Dy (u,.)|lce
ueU
Lita,0 = sup [[Dyt(., )| a
zeV
Using the mean value theorem and taking the norm, one can write :
[1f (uo + h) o ¥(uo + h) — f(uo) © ¢ (uo) — Du(f © 1) (uo).hllcs

1
SMMAIWJWWHMMw+M»waNHM—DJWme»EMWMbMt@2%

(€3]

1
+ ||h||8/0 [ Duf (uo + th, P(uo +th)) — D f(uo, ¥ (uo))| pdt (B.2.3)

(1)
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To estimate (I):=||Dq f (uo + th, v (uo + th)) o Dutp(ug + th) — Dq f (uo, ¥ (uo)) © Dut(uo) |l cs
we apply the same method we used to establish (B.1.1).

Letting z,2’ € V, u,v € U, such that |ju — v|| < d(z,z") one obtains :

[Df(u, ¢ (u, x)) o Dutp(u, x) — Df (v, ¢(v, 7)) 0 Duth(v, )|
d(z,z")8

< [Iflerw.cowon IDut (@)llso + I1f oo @,crvaw,an (IDuth (W) 1% Dutbelloo + [Dutpelca)] llu — ||

Similarly, in the case d(x,2’) < |Ju — ||

1D, ¥, 2) 0 Duth(w,@) = DI (u, 9w &) © Dt DI oy oy o et iy (1 Do (@)]|% | Dt + [ Dt} ] [
d(z,z’)P ' ’
which gives the following explicit bound on (I):

2 « «
(1) < —— [Iflerw,ca@cy Lo + 1 flcoa,crremw,ay (L1h™ + LioLit + Livao + Lia)] [12I%

1+
(B.2.4)

We can also estimate (II) with our standard technique: in the case d(x,z’) < ||h||5, one has:

| Do f (uo + th,(ug + th,x)) — Dy f(uo, ¥ (ug, x)) — Du f(uo + th,¥(ug + th,z')) + Dy f(uo, Y(uo, z'))|
d(z,z")P

< 25up [ D f (11, o 5p | Dt ;)| 0] (B.2.5)
ueU ueU

and similarly in the case d(z,z") > ||h||s:

[ Do f (o + th, (ug + th,x)) — Dy f(uo, ¥ (ug, 7)) — (Duf(ug + th,¥(ug +th,a’)) — Dy f(uo, ¥ (uo,z")))|l

d(z,z")P
<2 5up D (1, Yo 50p [ Duth (o )2 + 5up | Duf (o)l | 1B (B.26)
ueU zeV yew
This gives us the following bound on (I7):
2 e} e}
(1) < THo [ fllor @,caw,an(Lia + LS o) + 1 fllcow,cr+e@,an ] 1Rl (B.2.7)

Injecting estimates B.2.4 and B.2.7 in (B.2.2), one gets the following :

| f(uo + h) o (ug + k) — f(uo) o Y(uo) — Du(f o) (uo)-hllcs

< [Cillfllcow,crvaw,cy) + Collfllorw,caw,cy) + Csll fller@i,cew,ay) + Call fllcoow,crve gy 1Rl

which gives the promised result with C7, Cs, C3, Cy4 given by the right-hand side on B.2.4 and
B.2.7. d

At order 2, the mechanism is the same, although the computation are heavier:
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Lemma B.5 (Same setting as in the previous cases)
Letp € C?*T(U x V,W) and f € C?>T(U x W, G).

Then the maps fuy+h © Yugth, fug © Yugs Dulf 0 %] (uo), D2[f o ¢](ug) are in C#(V,G) and
one has the following quantitative estimate:

| fuo+h © Yugh = Fuo ©Yug — Dulf 0] (u0)-hh = DE[f 0] (o) (h, W) | os < Cllfllcz+a@xw,cll]*F
(B.2.8)
with C a constant, given by (B.2.12),(B.2.13),(B.2.14).

Proof. We introduce the following notations:

Ly o := sup sup ||D31/)(u,x)|\
ueU xeV

L2,oz ‘= sup HDZL/)(U7 ')”C"‘
ueU
Loyao = sup | D2¢(, )| ca
zeV

As usual, we use the mean-value theorem (this time at order 2) and take the C# norm : this
yields

| fuoth © Yugth = fug © Yuy — Dulf 0 9](uo).h — Di [f o ¥](uo)(h, )| e (B.2.9)
1
<l [ NP2 ol + 1h) ~ DIS o o) losd
0
The second differential with respect to u of f o) is given by a classical computation:

DZ[f op|(u) = D'?Lf(”? Vo) + 2D Dy f(u, ) [Dutp(u), ] + D?cf(uv Vo) [DuPus Duthu] + Dy f (u, u’u)Diw(u)
(B.2.10)

which entails that

/O D217 o ¥l(uo + th) — D2F o () |cnc (B2.11)
< / D2 -+ th, Yot + th)) — D (g, (o)) := (1
+2 / IDa Dy kg + ths (g + t0)). Dy + 1), ] — Dy Do, ). (Do), Jlcndt = (11)
+ / D2 -+ th, (ot -+ th). 1Dty + ), Dyt + #1)] — D2, ). [Duth (o), Duth(uo) ol := (I1T)

1
+ /O 1D f (uo + th, ¥(ug + th)).Ditb(uo + th) — Do f (uo, 9 (uo)). Dt (uo)lloadt = (IV)

One thus needs to bound (I),(IT),(IIT) and (IV). We once again use our standard trick, and
we will skip the details as they are very similar to our previous computations.
For (I), one obtains

_ 2Jl

() < 1+~

Ifllez@,cow,en (L1 + LS o) + 1 flcoqw,cote @,ay] (B.2.12)
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For (IT), one obtains

2|1 )
(IT) < 2hls [1fllcr@,crvaw,ey (L1oLi s + L1 + Lia + Litao) + |1 fller (w,cr+e @,a))Lio)

T 14y
(B.2.13)
and similarly for (IIT) and (IV):
11D < 2R L? (L%, + L% 2L4 o(L L L?
(I1I) < 11+ 1 llco@,cotew,eny (L o(L6 1 + LS o) + 2L1,0(L1,a + Lita,0) + | fllc2ow,co @) Li o)
(B.2.14)
v <M Loo(LY Le L L L
(V) < 15y I fllco@,crvew,ay (L20(LT o + Li 1) + Lo, + Latao) + 1 fllerw,co@,c)) La.o)
(B.2.15)
which conclude the proof. O
Remark B.1

o Of particular interest to us will be the case where f(u,x) = g(u,x)p(x) Indeed, this is the
kind of expression one has to study when considering transfer operators. In this case, one
obtains that the composition operator W, defined by

Wu(9) == (gud) © Yu

is C"~% when seen as an operator from C" to C®, with s < r.

o [t is possible to lead a similar analysis at any order of differentiability (provided the regu-
larity of f,1 is big enough). However, as we just saw, it involves very heavy computation,
particularly to derive explicit bounds on the constants at play.

Those explicit bounds are of particular interest to extend lemmas B.1, B.2 and B.J to a
random context.

B.3 REGULARITY ESTIMATES FOR THE RANDOM COMPOSITION OPERATOR

We now consider the case where the maps we compose are chosen at random, according to some
probability law P. The crucial assumption here is the boundedness w.r.t the random parameter;
in that context, our previous results extends straightforwardly.
Lemma B.6
Let (2, 1) be a probability space, B, E, F,G be Banach spaces, U C B, V C E, W C F be open
domains.
Let 0 < f<a<l,y:=a—p8>0¢¢e L*Q, LiplU x V,W)). Furthermore, we assume that
for every u € U, Yy = (w,u,.) € CYT(V, W) and thatu — D), ., is a-Hdlder

Let f € L>®(Q,C1TU x W,Q)), let ug € U, and h € B such that ug +h € U. Then
fw,ug + h) oh(w,ug + h), flw,ug)oh(w,ug) € L=(Q,C*A(V,R)), and we have

[ f(uo + h) o(uo + h) — f(uo) o ¥(uo)|l L= (.16 (v.0)) (B.3.1)
< [Cullflz=@.cow,crrew,ay) + Coll fllLe=(@,cow,crw,am IRl
with C1,Cy given by taking an essential bound in (B.1.2),(B.1.3).

122



Proof. By virtue of lemma B.1, one can write, for each w € €,

[ foostt0+0 0% u04h = feo,uo W uo [lor+6 < [C1(w)[ fullco@,crvawie +Co (W)l full o .o wieyl IR ]5
(B.3.2)

with C4(w), Ca(w) given by (B.1.2),(B.1.3).

Our assumptions insures us that the right hand term in (B.3.2) admits an (essential) upper

bound. Taking the essential supremum, (B.3.1) follows straightforwardly. O

It is noteworthy that one should now take the following definitions for the quantities appearing
in constants C, Cs:

Lo1 = esssupsup || Dythy ulloo < 00, L1,0 = esssup sup ||[Dythy 2o < 00
weN ueld weNR zeV

Lo 14a :=esssup sup [Dythy ula < 00, Ly = esssup sup |[Dythy z]a < 00
weN uel weN xzeV

Lemma B.7

Let (Q, 1) be a probability space, B, E, F,G be Banach spaces, U C B, V. C E, W C F be open
domains.

Let0 < a <1, fe L®(Q,CH*UxW,Q)), and p € L=(Q,C*(Ux V,W)). Foruy €U, and
h € B such that ug+h € U, one has that f(ug+h)o(ug+h), f(ug)o(ug) € L=(Q,C*(V,G))
and

|1 f (uoth)orp(uo+h)— f (uo) ot (uo) | L (,co) < [Crllfll Lo (cow,crvew,cy)y + Call fll 1 @icowey ] [17I1B
(B.3.3)
with Cy,Cy given by (B.1.10).

Proof. Once again we write, for a fixed w € Q,(B.1.4):

[1f (w, uo+h) o (w, ug+h)— f (w, uo) oty (w, uo)lca < [Cr(W)|| fullco@,crtew.ay) + Co(W)l fullorw.cew.an] 1715
(B.3.4)

where the (random) constants C;(w) and Cy(w) are given by (B.1.10). The right-hand term in

(B.3.4) admits an essential upper-bound, and thus so does the left-hand side. (B.3.3) immediately

follows. O

The same generalizations hold for our differentiability estimates:

Lemma B.8 (Same setting as before)

Let v € L°(Q,C U x V,W)) and f € L>®(Q,CY U x W,G)). Let ugp € U, h € B such that
ug+heU.

Then the random maps fu.ug+h © Ve uo+hs fuug © P (W, u0), Dyl fuw 0 Y] (ug) are L=(Q, CP(V, G))

and one has

| fuo 4 © Yugth = fug © Yug — Dulf 09](u0)-hll (a0 (v.a)) < CllFllL=@.creeuxw.anlhls”
(B.3.5)
with C given by taking an essential bound in (B.2.1).
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Lemma B.9 (Same setting as before)
Let v € L*°(Q,C* U x V,W)) and f € L>®(Q,C?* U x W,G)). Let ug €U, h € B such that
ug+hel.

Then the random maps fu uo+h © Vw uo+hs fwuo © VW, u0), Dy[fuw © Yuw](uo), Di [fw © Vu](ug) are
L>(Q,C8(V,G)) and one has

1 o+ uth = fuo ©ug = Dulfov] (wo)-h=D [ f o] (uo) [, Ml 1= 0,08 (v, < Cllf e (@ 02+e@xwia Il
(B.3.6)
with C given by taking an essential bound in (B.2.8).
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