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Abstract

The goal of this thesis is to present my research work following my PhD. My PhD thesis
was devoted to questions related to the existence and stability of standing waves solutions
to nonlinear dispersive PDE like the nonlinear Schrödinger and Klein-Gordon equations.
After my PhD, my interest shifted toward more elaborate solutions of dispersive PDE,
in particular the multi-solitons. Standing waves are still present in my work, not as
the main object of study, but as building blocks for the analysis of more complicated
nonlinear objects.

The first chapter of this document is devoted to a general presentation of the context
of my work.

The second chapter is devoted to basic facts concerning nonlinear Schrödinger equa-
tions and serves as a framework setting for many of the other works presented in this
document.

The third chapter is devoted to the presentation of my works on multi-solitons. We
start by presenting two existence results, one for excited states multi-solitons of nonlinear
Schrödinger equations and the other for multi-solitons of Klein-Gordon equations based
on stable solitons. We then show the existence of infinite trains of solitons in nonlinear
Schrödinger equations. We conclude this chapter by a stability result for the multi-
solitons of the derivative nonlinear Schrödinger equation.

The fourth chapter is devoted to the presentation of my results on blow-up and sta-
bility in different contexts. We start with a result on the existence of minimal mass
blowing up solutions for a Schrödinger equation with double power nonlinearity. Then
we study the Cauchy problem and the stationary states of a singularly perturbed Gross-
Pitaevskii equation. Next we investigate, using a variety of techniques, the stability of
space periodic standing waves of one dimensional cubic nonlinear Schrödinger equations.
We continue with considerations on nonlinear Schrödinger systems and we conclude with
results on stability of standing waves for semi-classical equations.

The fifth and last chapter is devoted to two works in progress. The first one concerns
the Manakov system: we exhibit a new family of standing waves and study their existence
and stability. The second one concerns the excited states of nonlinear Schrödinger
equations: we obtain the excited states by constructing numerical schemes inspired
from their variational characterizations.
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1 Introduction

Among nonlinear dispersive PDE, three main model equations can be distinguished. A
first model equation is the Korteweg-de Vries equation:

ut + uxxx + 2uux = 0.

A second model equation is the sine-Gordon equation, given by

utt − uxx + sin(u) = 0.

A third model equation is the nonlinear Schrödinger equation, here in dimension 1 and
with cubic focusing nonlinearity:

iut + uxx + |u|2u = 0.

Nonlinear dispersive PDE appear in many areas of physics. The Korteweg-de Vries
equation can model the propagation of waves in shallow water, e.g. in a canal [Kode95].
The sine-Gordon equation appears in the study of crystal dislocations [FrKo39], but was
first introduced in mathematics for the study of surfaces of constant negative curva-
ture [Bo62]. It can also model a chain of coupled pendulums [DaPe06]. The name
sine-Gordon is based on the analogy of the equation with its quasi-homophone the
Klein-Gordon equation. Other variants of this equation in higher dimensions and with
other nonlinearities are usually called nonlinear Klein-Gordon equations. The nonlinear
Schrödinger equation is used in the modeling of Bose-Einstein condensates [Gr61, Pi61]
or in nonlinear optics [Wh74].

A common feature of these three model nonlinear dispersive PDEs is that they admit
solitary wave solutions, i.e solutions whose behavior is given by a fixed profile, moving
via the time dependent action of a symmetry group of the equation. For example, the
Korteweg-de Vries equation is invariant under translation in space, and a solitary wave
is a solution of the form

u(t, x) = φ(x− ct),
for some speed c > 0. In this case, we speak of traveling waves. Another example, for
the nonlinear Schrödinger equation, is given by

u(t, x) = eiθtφ(x),

where θ ∈ R. In this case, the underlying symmetry is the phase invariance and we
speak of standing waves.
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1 Introduction

The three model PDE given above have in fact much more in common that admitting
solitary waves. All three are completely integrable Hamiltonian systems. In particu-
lar, they can be explicitly solved by the method of inverse scattering, have infinitely
many conservation laws and the interaction between solitary waves is smooth. Since
the interaction is smooth, the solitary waves are called solitons. The terminology has
however been extended in the PDE community to any kind of solitary waves. Hence we
might frequently refer to solitary waves as solitons, even in a non-integrable context. It
is well known that the slightest modification in these equations will most likely destroy
the integrability property. Solitary waves will pertain, as long as the modification does
not disturb the symmetry to which they are associated. The techniques I have devel-
oped were meant to be generically applicable; hence even if the equations on which I
am working are sometimes of integrable type (like the derivative nonlinear Schrödinger
equation or the periodic one dimensional cubic nonlinear Schrödinger equation), I have
not made use (so far) of this specificity and its associated features.

It was observed and proved for the Korteweg-de Vries equation that, generically, any
localized solution will eventually decompose into a sum of solitons and a dispersive term
[EcSc83, Sc86]. This type of behavior is thought to be generic for nonlinear dispersive
PDEs and this lead to the Soliton Resolution Conjecture, which (vaguely formulated)
states that any global solution of a nonlinear dispersive PDE will eventually decompose
at large time as a combination of non-scattering structures (e.g. a sum of solitary waves)
and a radiative term. Until recently, such conjecture had only been established for some
integrable models, e.g. the Korteweg-de Vries equation. The breakthrough approach
introduced by Duyckaerts, Kenig and Merle allowed to prove this conjecture for some
non-integrable equations such as the energy-critical wave equation [DuKeMe13] or the
equivariant wave maps to the sphere [Co15]. It remains an open problem for most of
the classical nonlinear dispersive equations.

The soliton resolution conjecture motivates the study of multi-soliton solutions for
nonlinear dispersive PDE, i.e. solutions which behave at large time as a sum of solitons,
and a large part of my research activity has been devoted to this study. After a second
chapter presenting well-known facts on nonlinear Schrödinger equations, the third chap-
ter of this thesis will be devoted to the presentation of my works on multi-solitons, of
which we now give a short overview.

My first work on multi-solitons was in collaboration with Raphaël Côte [CoLe11]
and was focused on the study of multi-solitons composed of excited states. Indeed,
most of the works involving solitary waves are in fact restricted to solitary waves whose
profiles are ground states, i.e. can be characterized as (constrained) minimizers of the
energy. The many properties of the ground states make them much easier to work with
than the other solitary waves profiles, the excited states. Nevertheless, under a high
relative speeds assumption, we proved in [CoLe11] the existence of multi-solitons where
the composing solitary waves have excited state profiles. To construct the excited state
multi-solitons, we relied on an energy technique. The idea is to adapt to the case of multi-
solitons the tools used for the stability theory of one soliton. Essentially, we construct a
Lyapunov type functional which is coercive up to a finite number of bad directions, and
the name of the game is to show that the flow avoids these bad directions. Using a similar
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1 Introduction

approach, in collaboration with Jacopo Bellazzini and Marco Ghimenti [BeGhLe14], I
established the existence of multi-solitons based on stable solitary waves. Here, beside
realizing that the previous scheme could be adapted to Klein-Gordon equations, the
core of the difficulty was to obtain a suitable variational characterization of the stable
solitary wave profiles in the context of the Klein-Gordon equation. To this aim, and
even if the Klein-Gordon equation is a scalar equation, we have worked in the vectorial
Hamiltonian setting adapted to the Klein-Gordon equation and established a variational
characterization of the wave profiles in this setting.

The infinite solitons trains are a natural extension of multi-solitons, where the number
of composing solitons is now infinite. However, the infinite number of solitons creates
numerous problems when one tries to adapt the techniques used for multi-solitons to
establish the existence of infinite trains. In particular, the energy technique is not
easily applicable to construct infinite trains of solitary waves, as by construction the
coercivity property of the linearized functionals associated to the waves becomes weaker
and weaker as the number of waves tends to infinity. Therefore, with Dong Li and
Tai-Peng Tsai [LeLiTs15, LeTs14, LeTs17], I developed a strategy to prove the existence
of infinite trains via a fixed point argument and the use of Strichartz estimates. As a
byproduct of our analysis, we also obtain the existence of kink-soliton solutions.

When existence of multi-solitons is granted, the next step toward a soliton resolution
conjecture is to study the dynamics close to the multi-solitons, in particular their stabil-
ity/instability. We naturally expect multi-solitons build with one unstable soliton to be
also unstable, and we have established a result of this type in [CoLe11]. The proof was
done by constructing a suitable approximation of a solution leaving the neighborhood
of the multi-soliton and obtaining the true solution via a fixed point argument.

For multi-solitons build on stable solitons, and if the interactions between solitons are
sufficiently small, we can hope to obtain stability. Whereas the construction of multi-
solitons requires essentially only a good knowledge of the properties of the linearized
action around a solitary wave profile, proving their stability systematically requires extra
properties, be it integrability of the equation or monotonicity formulas. In the setting
of Schrödinger equations, the only existing stability result was obtained by Martel,
Merle and Tsai [MaMeTs06] for Schrödinger equations with a twisted nonlinearity. In
collaboration with Yifei Wu [LeWu18], I have proved a stability result for the multi-
solitons of the derivative nonlinear Schrödinger equation. This specific equation is at
the same time L2-critical and has stable solitons, hence the multi-solitons can be proved
to be stable using an energy technique, without any need to twist the nonlinearity.

The soliton resolution conjecture holds for global solutions of homogeneous nonlinear
dispersive PDE set on non-compact spaces, but there are many other interesting phe-
nomena occurring when the solution is not global, when inhomogeneity in space appears
or when the space becomes compact. The fourth chapter of this thesis is devoted to
the presentation of my works in this type of settings, of which we now also give a quick
overview.

Solutions of nonlinear dispersive PDEs may cease to exist in finite time and undergo
blow-up at the ends of their maximal time interval of existence. It is not expected that
the blow-up behavior in nonlinear dispersive PDEs can be described with a statement
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1 Introduction

as universal as the soliton resolution conjecture. Depending on the equation considered,
the nature of the blowing up solutions varies drastically. For Schrödinger equations, the
theory of blow-up is particularly advanced in the mass-critical case. For the mass-critical
nonlinear Schrödinger equation, we know that global well-posedness holds for solutions
with small mass. At the threshold for global existence, there exists (see [Me93]) a
unique (up to symmetries) minimal blow-up mass solution, explicitly given by a pseudo-
conformal transformation of a standing wave, and which blows up at time T at rate
|t − T |−1. Above the minimal mass, one finds solutions blowing up at time T at the
so called log-log rate, given by

√
|ln|ln|t||| · |t− T |−1. These solutions were analyzed by

Perelman [Pe01] and Merle and Raphaël [MeRa03, MeRa04, MeRa05, MeRa06, Ra05].
Other blow-up behaviors hold for the critical Korteweg-de Vries equation (with quintic
nonlinearity), which was analyzed in detail recently in a series of papers by Martel,
Merle and Raphaël [MaMeRa15a, MaMeRa15b], and the wave equation, which was an-
alyzed in depth by Merle and Zaag [MeZa03, MeZa05, MeZa05a, MeZa07, MeZa08,
MeZa11, MeZa12, MeZa12a, MeZa12b, MeZa15, MeZa16]. Some questions might be
similar, for example the existence of multiple blow-up points solutions, which was inves-
tigated in [Me90] for the Schrödinger equation and in [CoZa13] for the wave equation.
Despite the growing body of works related to blow-up in nonlinear dispersive PDE,
the understanding of the phenomenon is still very partial, in particular in the non-
critical cases. One interesting question concerns the possible blow-up speeds, beside
the pseudo-conformal speed and the log-log speed. In a joint work with Yvan Martel
and Pierre Raphaël [LeMaRa16], I have exhibited an example of a double-power nonlin-
ear Schrödinger equation for which there exist solutions blowing up at rate |t − T |−σ,
with 1

2
< σ < 1, i.e. the rate for blow-up is strictly between the log-log one and the

pseudo-conformal one.
The existence of blowing-up solutions is also a motivation for considering singular

perturbations of model cases, for example the following singularly perturbed Gross-
Pitaevskii equation

iut + uxx − γδu+ (1− |u|2)u = 0,

where γ is a real parameter and δ denotes the Dirac distribution at 0. This type of
models is common in physics, where the Dirac distribution might model a very narrow
potential, e.g. linked to a wave close to or at the blow up time. The mathematical
analysis of this type of singular models started with the work of Goodman, Holmes
and Weinstein [GoHoWe04] and was followed by many contributions. As for the non-
perturbed problems, most of the existing works have been devoted to equations endowed
with standard Dirichlet boundary conditions on the whole space. However, it is perfectly
natural, and also relevant in physical situations, to ask what happens if we instead decide
to impose as boundary conditions |u| → 1 as |x| → ∞. The Cauchy Theory for this type
of problems in the absence of singular potential was figured out by Zhidkov [Zh01] in the
one dimensional case and by Gérard [Ge06, Ge08] in the higher dimensional case (see
also the work of Gallo [Ga08]). Extending this analysis to the singularly perturbed one
dimensional Gross-Pitaevskii equation turns out to be surprisingly difficult. One requires
in particular a specific knowledge of the propagator associated to the linear part of the
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1 Introduction

equation. We performed this analysis in a joint work [IaLeRo17] with Isabella Ianni and
Julien Royer, in which we also investigate the stability of stationary solutions.

In a spatially periodic setting, behaviors of solutions of nonlinear dispersive equations
will be much different from the one observed when the space is the whole line (or higher
dimensional equivalents). Whereas the study of solitary waves and their stability on
the line is well developed, the study of the stability of standing/traveling waves in a
periodic setting is still in its infancy. Indeed, if the perturbations considered are co-
periodic with the wave (i.e. they have a period which is the same as the fundamental
period of the wave), then the stability study can be carried out in a similar way as in
the whole space. However, it is also necessary in many cases to consider perturbations
whose period is a multiple of the fundamental period of the wave. In that kind of
situations, the usual modulational approach relying on modulation on translation and
phase is not sufficient to eliminate the directions preventing the linearized energy to be
coercive and the theory of the whole line fails. In the specific case of the one dimensional
cubic nonlinear Schrödinger equation, one can avoid the problem by using the complete
integrability of the equation and working with higher order functionals. In the general
case, methods are still to be developed to tackle this problem. In a joint work with
Stephen Gustafson and Tai-Peng Tsai [GuLeTs17], I have investigated the stability of
standing waves for the one-dimensional cubic nonlinear Schrödinger equation by means
of a variety of techniques not relying on integrability.

Coupled systems of nonlinear dispersive equations are often used in the modeling of
complex physical phenomena involving for example the interaction between different
instances of similar type (e.g. Bose-Einstein condensates). In collaboration with Is-
abella Ianni [IaLe14], and Fanny Delebecque and Rada-Maria Weishäupl [DeLeWe16] I
investigated solitary wave solutions of scalar nonlinear Schrödinger equations viewed as
special solutions of nonlinear Schrödinger systems. We have in particular observed that
the nonlinear coupling acts as a localizing factor in the analysis of these solutions and
performed numerical experiments.

The semi-classical setting provides another situation where interesting phenomena
appear (see e.g. [Ca08] and the references cited therein). In collaboration with Isabella
Ianni [IaLe09] and Marco Ghimenti and Marco Squassina [GhLeSq13] I investigated
the stability of standing waves in two semi-classical settings, a strongly inhomogeneous
nonlinear Schrödinger equation and a Klein-Gordon equation with potentials. In both
cases, we have used the semi-classical parameter to analyse by perturbation arguments
the spectrum of a linearized operator, which was a key step in the stability analysis.

In the fifth and last chapter of this thesis, we present two works in progress. The first
one concerns the Manakov system, a nonlinear Schrödinger system which has attracted
a lot of attention due to its integrable nature. It turns out that this system enjoys
more symmetries than other Schrödinger systems and therefore has more conservation
laws induced by Noether theorem. These additional conservation laws are however not
captured by integrable methods. The system also enjoys a type of standing waves linked
to the additional symmetries, which has not been considered before. In our project, we
start the study of these standing waves by establishing existence and stability results.

The second project concerns the numerical analysis of excited states. Numerous an-
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1 Introduction

alytical and numerical studies are devoted to ground states, but so far the literature
on excited states remains relatively sparse. Our goal in this project is to construct
numerical schemes that can capture excited states by relying on adapted variational
characterizations.

To summarize, the rest of this thesis is organized as follows. In Chapter 2, we present
basic facts on nonlinear Schrödinger equations. In Chapter 3, we present my work on
multi-solitons. In Chapter 4, we present my other works on blow-up and stability in
various settings. In Chapter 5 we present my work in progress on the Manakov system
and the numerical analysis of excited states.

6



2 The Nonlinear Schrödinger
Equation

A large part of my work is devoted to the study of solutions of nonlinear Schrödinger
equations. In this chapter, I will present the most basic facts about these equations
(linear theory, local well-posedness, solitary waves, etc.) on which I will rely in the next
chapters to study more elaborate solutions. The reader may refer to [Ca03, Ta06] and
the references cited therein for more on these topics. The presentation of basic facts
for the other equations that I have considered will be done in the relevant parts of this
thesis.

The nonlinear Schrödinger equation reads{
iut + ∆u+ f(u) = 0,

u(0) = u0.
(NLS)

Here, u = u(t, x) ∈ C is a complex valued function of time t ∈ R and space x ∈ Rd.
The nonlinearity f : C → C is gauge invariant (i.e. for any z ∈ R, f(z) = f(|z|)z/|z|)
and H1(Rd) subcritical (see later for more precise assumptions on f). For most of this
thesis, the reader may think of f as being a model case focusing power nonlinearity

f(z) = |z|p−1z, 1 < p < 1 +
4

(d− 2)+

.

In some situations we will want to be able to consider more generic nonlinearities like
double power nonlinearities

f(z) = |z|p−1z − |z|q−1z, 1 < p, q < 1 +
4

(d− 2)+

,

or even more complicated nonlinearities, e.g. (see [DuLaSz16] for other examples of
relevant nonlinearities)

f(z) = z − sin(|z|)
|z| z.

The nonlinear Schrödinger equation appears in various physical contexts like nonlinear
optics or Bose-Einstein condensation. From the mathematical point of view, it is of
particular interest as a model case for nonlinear dispersive partial differential equations,
along with its alter-ego the Korteweg-de Vries equation and the wave/Klein-Gordon
equation.

7



2 The Nonlinear Schrödinger Equation

2.1 The Linear Schrödinger Equation

In this section, we review some elements of the classical theory developed in the 80s for
the well-posedness of (NLS) in the energy space. We start with the analysis of the linear
Schrödinger equation {

iut + ∆u = 0,

u(0) = u0.
(LS)

This equation is solved in L2(Rd) using the classical theory of semi-group. Precisely,
solutions to (LS) may be expressed as

u(t) = e−it∆u0 = S(t) ? u0,

where e−it∆ denotes the (Schrödinger) unitary group generated by the operator −i∆
(cf e.g. [CaHa98, Pa83]). Moreover, an application of the Fourier transform allows to
compute the kernel S(t) and we get the explicit formula

S(0) = δ0, S(t) =
1

(4πit)
d
2

ei
|x|2
4t , for t > 0.

The inhomogeneous linear Schrödinger equation{
iut + ∆u = F,

u(0) = u0

is solved, when possible, with the Duhamel formula

u(t) = S(t) ? u0 − i
∫ t

0

S(t− s) ? F (s)ds.

As mentioned earlier, the linear equation (LS) is dispersive. From the explicit expression
of the kernel, we get the following dispersive inequality, which measures the dispersion.
For t ∈ R \ {0}, p ∈ [2,∞], and p′ its Hölder conjugate, we have∥∥e−it∆u0

∥∥
Lp
≤ 1

|4πt|
d
2

(
1
p′−

1
p

)‖u0‖Lp′ .

To obtain the dispersive inequality, we start by noting that the Schrödinger group is an
isometry on L2(Rd), hence we have∥∥e−it∆u0

∥∥
L2 = ‖u0‖L2 .

On the other hand, we use Young inequality and the explicit expression of the kernel to
find ∥∥e−it∆u0

∥∥
L∞

= ‖S(t) ? u0‖L∞ ≤ ‖S(t)‖L∞‖u0‖L1 ≤
1

|4πt| d2
‖u0‖L1 .

8



2 The Nonlinear Schrödinger Equation

The dispersive inequality then follows from Riesz-Thorin interpolation theorem.
For the study of the Cauchy problem for nonlinear Schrödinger equations, it is impor-

tant to have a precise measure of the dispersion. The dispersive inequality is sufficient
for this purpose when the underlying spaces have high enough regularity, but to study
the Cauchy problem in H1(Rd) (which is a natural space for (NLS), as it is the energy
space), one needs more refined tools. They come in the form of Strichartz estimates.
Before giving the statement of the estimates, we recall the definition of space-time norms.

For p, q ∈ [1,∞] and an interval I ⊂ R, define

‖u‖LptLqx(I) =

(∫
I

(∫
Rd
|u(t, x)|q

) p
q

dt

) 1
p

,

with obvious modifications when p or q is ∞.
The Strichartz estimates describe a type of smoothing effect of the Schrödinger equa-

tion, which is reflected in the gain of space integrability if one accepts to take an average
in time. Precisely, we want inequalities of the following form to be satisfied:

‖eit∆u0‖LptLqx ≤ C‖u0‖L2 . (2.1)

Obviously such inequalities cannot be true for any p and q. Injecting the scaling

eit∆(u0(λx)) = (eiλ
2t∆u0)(λx)

for λ > 0, we realize that (2.1) can hold only when p and q verify the relation
2

p
+
d

q
=
d

2
. (2.2)

We call a couple (p, q) verifying the relation (2.2) an admissible pair. For admissible pairs
(p, q) and (r, s) with 2 ≤ p, q, r, s ≤ ∞, (p, q, d) and (r, s, d) different from (2,∞, 2) the
following Strichartz estimates are satisfied. First, we have the homogeneous Strichartz
estimate

‖eit∆u0‖LptLqx(I) ≤ C‖u0‖L2 .

Second, we have the inhomogeneous Strichartz estimates: for t0 ∈ Ī, we have∥∥∥∥∫ t

t0

ei(t−τ)∆F (τ)dτ

∥∥∥∥
LptL

q
x(I)

≤ C‖F‖Lr′t Ls′x (I),

where r′ and s′ are the conjugated exponents of r and s. The constant C can be made
independent of (p, q), (r, s), and I (with the extra requirement to stay away from the
end point in dimension 2). We refer for example to [GiVe92] for the general case and to
[KeTa98] for the end point case (2, 2d

d−2
, d), d ≥ 3.

For any fixed space-time slab I × Rd, we define the Strichartz norm

‖u‖S(I) := sup
(q, r) admissible

‖u‖LqtLrx(I×Rd).

For d = 2, we need to further impose q > q1 in the above norm for some q1 slightly
larger than 2, so as to stay away from the forbidden endpoint. We use S(I) to denote
the closure of all test functions in R×Rd under this norm, which we call the Strichartz
space. We denote by N(I) the dual space of S(I) (see e.g. [Ta06, page 135]).

9



2 The Nonlinear Schrödinger Equation

2.2 The Nonlinear Schrödinger Equation

Before turning our attention to the Cauchy problem for (NLS), let us first review some
formal aspects of (NLS). First of all, the equation can be written in the form of a
Hamiltonian system

ut = −iE ′(u),

where the Hamiltonian E (later designated by energy) is

E(u) =
1

2
‖∇u‖2

L2 −
∫
Rd
F (u)dx, F (z) =

∫ |z|
0

f(s)ds.

The linear problem has a lot of symmetries, many of which continue to hold in the
nonlinear case. Let u denote a solution of (NLS). The nonlinear Schrödinger equation
(NLS) is invariant under time translations, space translations, and phase shifts, i.e. given
θ ∈ R, τ ∈ R, ξ ∈ Rd the function ũ defined by

ũ(t, x) = eiθu(t− τ, x− ξ)

is also a solution of (NLS). We have the possibility of time reversal : the function v
defined by

v(t, x) = u(−t, x)

is also solution of (NLS). A Galilean transformation preserves the flow of (NLS), i.e.
the function w defined by

w(t, x) = ei
1
2
v·x− |v|

2

4
tu(t, x− vt), v ∈ Rd

is also a solution of (NLS). If we impose further restrictions on the nonlinearity, then
more symmetries are preserved. For instance, if f(u) = |u|p−1u, then the scaling is
preserved and uλ is also a solution, where

uλ(t, x) =
1

λ
1
p−1

u

(
t

λ2
,
x

λ

)
, λ > 0.

If we further restrict the power to be the L2 critical power, i.e. f(u) = |u| 4du, then the
pseudo-conformal transform v of u is still a solution of (NLS), where

v(t, x) =
1

t
d
2

ei
|x|2
4t ū

(
1

t
,
x

t

)
.

Since (NLS) is Hamiltonian, the energy E (i.e. the Hamiltonian) is conserved along the
evolution in time. As expected from Noether’s principle, the symmetries allow to derive
(at least formally) two other conserved quantities, the mass and the momentum, defined
as follows

M(u) =
1

2
‖u‖2

2, P (u) =
1

2
=
∫
Rd
u∇ūdx.

10



2 The Nonlinear Schrödinger Equation

Another interesting quantity is the virial, whose evolution is driven by the virial identity
(valid in general but expressed here only for power type nonlinearities)

∂2

∂t2
‖xu‖2

L2 = 8P (u), P (u) = ‖∇u‖2
L2 −

d(p− 1)

2(p+ 1)
‖u‖p+1

Lp+1 .

Linked to the virial identity is the pseudo-conformal conservation law discovered by
Ginibre and Velo [GiVe79-1, GiVe79-2, GiVe80]. When f is the L2 critical power non-
linearity (i.e. f(s) = |s| 4d s), the quantity P (u) = 2E(u) is constant in time and the
pseudo-conformal conservation law has a simple expression given by

PS(t) = ‖xu‖2
L2 + 4t=

∫
Rd
xu∇ūdx+ 8E(u)t2 = PS(0).

In order to give a rigorous setting to our study, we need to make a few assumptions
on f . These assumptions may not be the most general ones, but they are satisfied in
most practical cases.

Assumption 2.1 (Energy subcritical). The nonlinearity f(z) = g(|z|2)z is such that

• g ∈ C0([0,∞),R) ∩ C2((0,∞),R), g(0) = 0,

• There exists 1 < p ≤ q < 1 + 4
(d−2)+

such that for any s > 0 we have

|sg′(s)|+ |s2g′′(s)| . s
p−1
2 + s

q−1
2 .

This assumption essentially amounts to asking that f is regular enough and, more
importantly, that it is energy subcritical. The situation changes drastically for energy
critical and super-critical nonlinearities and we will not consider these types of problems
in this thesis. Under Assumption 2.1, we have the following well-posedness result.

Proposition 2.2. Assume Assumption 2.1. For any u0 ∈ H1(Rd) there exists a unique
maximal solution to (NLS)

u ∈ C((−T∗, T ∗), H1(Rd)) ∩ C1((−T∗, T ∗), H−1(Rd)).

Furthermore one has the following properties.

• The blow-up alternative : if T ∗ <∞, then limt→T ∗‖u‖H1 =∞ (same with T∗).

• Conservation of energy, mass, and momentum.

• Virial identity if xu0 ∈ L2(Rd).

The proof of Proposition 2.2 is rather involved and we only give some hints on how
to prove it. First, one uses a fixed point argument with the Duhamel formulation

u(t) = e−it∆u0 − i
∫ t

0

e−i(t−s)∆f(u(s))ds.

Then, one relies on density and approximation arguments to get the full result. The
reader may refer to [Ca03] for a detailed proof of Proposition 2.2 as well as historical
references.

11



2 The Nonlinear Schrödinger Equation

2.3 Large Time Behavior

In this thesis, we will be mainly concerned with the long time behavior of the solutions
to (NLS).

Essentially, three main types of behaviors can occur at large time. First, the nonlin-
earity may just induce a small perturbation of the linear behavior and after some time
the dynamics of (NLS) is essentially driven by the one of the linear flow, i.e. there exists
u? such that

u(t)− e−it∆u? → 0, when t→∞.
This is the scattering effect. Note that u? has no reason to be identical to u0 (see e.g.
[Ca01]).

A second effect is somewhat the opposite of the scattering effect : the dynamic is
completely dominated by the nonlinearity, which tends to concentrate the solution, up
to the point that there is a (finite) time where the solution exits its natural living space
and there is blow-up. This effect is called the focusing effect.
A third alternative is when the two previously mentioned effects balance and create

solutions of (NLS) that neither disperse nor focus. We generically call these solutions
non-scattering structures. The most simple example for this kind of solutions is a solitary
wave. A solitary wave is a solution of (NLS) which conserves a certain localized profile
invariant along the evolution in time, up to the symmetries of the equation, for example
it can be of the type

u(t, x) = eitQ

where Q is a fixed profile. But there may be many other type of non-scattering structure,
for example kinks, which are solitons with a non localized profile (in particular not in
L2). As explained in Chapter 1, a general conjecture for nonlinear dispersive PDEs is
the Soliton Resolution Conjecture, according to which any global solution of a dispersive
PDE will eventually decompose into a combination of non-scattering structures and a
scattering remainder.

We can also have existence of composed non-scattering structures, for example struc-
tures made with several solitons (which we will refer to as multi-solitons). Our goal in
this thesis is to review the classical theory of solitons and to show how to construct com-
posed non-scattering structures like multi-solitons, infinite soliton trains, kink-soliton
trains, etc. As much as possible, we have preferred to give the generic ideas behind
the proofs and refer to the original works for the technical details. The next sections
are devoted to more rigorous considerations on the large time behavior of solutions of
nonlinear Schrödinger equations.

2.4 Global Existence and Blow-Up

We now make some comments on global existence and finite time blow-up when f(u) =
|u|p−1u, 1 < p < 1 + 4

(d−2)+
.

12



2 The Nonlinear Schrödinger Equation

Define Q to be the unique radial positive [GiNiNi79, Kw89] solution of

−∆Q+Q−Qp = 0, Q ∈ H1(Rd).

It corresponds to the standing wave eitQ solution of (NLS) (we will come back on
standing waves in Section 2.5). We recall the Gagliardo-Nirenberg inequality

‖u‖p+1
Lp+1 ≤ Cp+1

GN ‖∇u‖
d(p−1)

2

L2 ‖u‖p+1− d(p−1)
2

L2 . (2.3)

The constant CGN can be expressed (see [We83]) in terms of Q by the formula

CGN =

(
2(p+ 1)

d(p− 1)‖Q‖p−1
L2

) 1
p+1

.

From the conservation of mass and energy and Gagliardo-Nirenberg inequality, the so-
lution u to (NLS) is global when p < 1 + 4

d
or if p = 1 + 4

d
and ‖u0‖L2 < ‖Q‖L2 .

Indeed, since the energy and the mass are conserved, for u solution of (NLS) we have

‖∇u(t)‖2
L2 = 2E(u(t)) +

2

p+ 1
‖u‖p+1

Lp+1 ≤ 2E(u0) +
2Cp+1

GN

p+ 1
‖∇u‖

d(p−1)
2

L2 ‖u0‖p+1− d(p−1)
2

L2 .

This gives global existence when d(p−1)
2

< 2, i.e. p < 1 + 4
d
. For p = 1 + 4

d
, one has to

assume further that ‖u0‖L2 < ‖Q‖L2 to get global existence from(
1−

(‖u0‖L2

‖Q‖L2

) 4
d

)
‖∇u(t)‖2

L2 ≤ E(u0).

If p ≥ 1 + 4
d
, then there exist solutions which blow up in finite time. In the critical

case p = 1 + 4
d
, one has an explicit example of a blowing up solution (with minimal mass

‖Q‖L2) by taking a pseudo conformal transform of eitQ, given by

1

t
d
2

ei
|y|2
4t e−

i
tQ
(x
t

)
.

This gives a solution of (NLS) blowing up at t = 0. For L2 super-critical exponents p >
1 + 4

d
, existence of blowing-up solutions can be obtained from an obstruction argument

by Glassey [Gl77] based on the virial identity. Indeed, assume that the initial data
u0 ∈ H1(Rd) is in the weighted space L2(Rd, |x|2) (so that xu ∈ L2(Rd) for all its
existence time) and furthermore assume that

E(u0) < 0.

Then u blows up in finite time both in negative and positive time. Indeed, from the
virial identity and the conservation of energy, we have

∂2

∂t2
‖xu‖2

L2 = 8P (u) = 16E(u)− 8

(
d(p− 1)− 4

2(p+ 1)

)
‖u‖p+1

Lp+1 < 16E(u0).
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2 The Nonlinear Schrödinger Equation

Integrating twice in time, we find that

‖xu‖2
L2 < 16E(u0)t2 + C(t+ 1).

Since E(u0) < 0, the right hand side becomes negative for large time, hence the obstruc-
tion to global existence for u. The assumption xu0 ∈ L2(Rd) can be relaxed to u0 radial
and d ≥ 2, see [OgTs91].

2.5 Solitary Waves

We review in this section the elementary theory for solitary waves.
As already mentioned, a solitary wave of (NLS) is a solution of the form

R(t, x) = Φ(x− vt− x0)ei(
1
2
v·x− 1

4
|v|2t+ωt+γ) = e

i

(
ω+
|v|2
4

)
t
Ψ(x− vt), (2.4)

where ω, γ ∈ R, v, x0 ∈ Rd and Φ ∈ H1(Rd) is a localized profile solution of the equation

−∆Φ + ωΦ + f(Φ) = 0. (SNLS)

It is sometimes convenient to express the solitary wave using the profile Ψ, which can
be obtained from Φ with the formula

Ψ(x) = ei
1
2
v·x+γΦ(x− x0).

With this formula and (SNLS), we infer that Ψ verifies

−∆Ψ +

(
ω +
|v|2
4

)
Ψ + iv · ∇Ψ + f(Ψ) = 0.

The profile Φ is a critical point of the functional

Sω = E + ωM,

whereas Ψ is a critical point of the functional

Sω,v = E +

(
ω +
|v|2
4

)
M + v · P.

Since (NLS) is invariant by a Galilean transform, it was historically assumed (with-
out loss of generality) that v = 0 for the study of solitary waves. However, for the
construction of multi-solitons we will need the theory for generic v ∈ Rd.
Assumption 2.1 is not sufficient to guarantee the existence of solutions to (SNLS). We

further need to assume that the nonlinearity f is focusing, in the following sense.

Assumption 2.3 (Focusing). There exists s0 > 0 such that F (s0) >
s20
2

(recall that
F (s) =

∫ s
0
f(σ)dσ).
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2 The Nonlinear Schrödinger Equation

The following existence result was obtained by Berestycki and Lions [BeLi83-1, BeLi83-2].

Theorem 2.4. Assume Assumptions 2.1 and 2.3. Let ω > 0. Then the following
assertions hold.

• All solutions to (SNLS) are C2-regular and exponentially decaying: for any ω′ < ω,
and for any Φ solution to (SNLS) we have

eω
′|x|Φ ∈ L∞(Rd).

• There exists a radial positive solution to (SNLS), usually denoted by Q = Qω. It
is a ground state, i.e. a minimizer of the action functional

Sω = E + ωM

among all solutions to (SNLS).

• If d = 1, up to translations and phase shifts, there are no other solutions.

• If d ≥ 2, there exists an infinite sequence of other solutions with increasing action.

In general, solutions of (SNLS) are called bound states. A solution with minimal action
will be called a ground state whereas a solution with non minimal action will be called
an excited state.

As they are considered to be the building blocks of the nonlinear dynamics of (NLS),
it is essential to have a good understanding of the stability properties of the solitary
waves. One essentially distinguishes three notions of stability : linear stability, orbital
stability and asymptotic stability.
The notion of linear stability is defined as follows. Given a solitary wave R(t, x) =

e
i

(
ω+
|v|2
4

)
t
Ψ(x− vt) and a solution u of (NLS) close to R at initial time, we define ε by

u(t, x) = e
i

(
ω+
|v|2
4

)
t
(Ψ(x− vt) + ε(t, x− vt)) .

The equation of the perturbation ε is written as

iεt + Lε = N (ε),

where Lε contains all terms which are linear (with respect to R) in ε and N (ε) contains
all nonlinear terms. We say that R is linearly stable if 0 is a stable solution of the linear
equation

iεt + Lε = 0.

Sometimes, one uses a weaker notion of stability, the so-called spectral stability, where
one requires the spectrum of the operator iL to be contained in the imaginary axis. But
even at the linear level, a spectrally stable R might be unstable, as having a spectrum
on iR does not prevent existence of linear solutions with polynomial growth.
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2 The Nonlinear Schrödinger Equation

The notion of orbital stability is defined as follows. The term orbit has to be taken
as orbit under the action of the Hamiltonian symmetries of (NLS), in the present case
phase shifts and translations (we refer to [DeGeRo15, DeRo18] for a discussion of the
notion of orbital stability). We say that a solitary wave is orbitally stable if any solution
of (NLS) with initial data close to the soliton profile will remain for all time close to the
orbit of the soliton under phase shifts and translation (see after for a more mathematical
definition).

The notion of asymptotic stability is defined as follows. A solitary wave is said to be
asymptotically stable if it is orbitally stable, and moreover any solution with initial data
in the neighborhood of the solitary wave will at large time converge (in some suitable
sense) to the solitary wave itself, up to modifications in the speed and frequency of the
solitary wave.

It can be proved that asymptotic stability implies orbital stability, which in turn
implies linear stability. There are counter-examples to the reverse implications. In the
sequel, we shall not deal with asymptotic stability and we will focus mainly on orbital
stability, for which we now give a precise definition.

Definition 2.5. A solitary wave R(t, x) = e
i

(
ω+
|v|2
4

)
t
Ψ(x − vt) is said to be orbitally

stable if for any ε > 0, there exists δ > 0 such that for any u0 ∈ H1(Rd) we have

‖u0 −Ψ‖H1 ≤ δ =⇒ sup
t∈R

inf
θ∈R,y∈Rd

‖eiθΨ(· − y)− u(t)‖H1 ≤ ε

for u the solution of (NLS) with u(0) = u0.

One cannot hope to remove the translations and phase shifts in the definition of orbital
stability. Indeed, two solitons starting with very close speeds and frequencies will keep
close profiles in the long range but with a dephasing in position and phase due to speed
and frequency differences. Orbital stability has been the subject of intensive research
since the beginning of the 80s. For nonlinear Schrödinger equations, orbital stability was
established for ground states of L2 subcritical equations by Cazenave and Lions [CaLi82]
using variational techniques. Weinstein [We85, We86] obtained a modulational stability
result (i.e. a more detailed result of orbital stability) from a spectral analysis of the
linearization of the action. Instability by blow up for ground state solitons for L2 critical
and supercritical nonlinearities was proven by Berestycki and Cazenave [BeCa81] and
Weinstein [We83]. A general theory to study stability/instability was developed by
Grillakis, Shatah and Strauss [GrShSt87, GrShSt90]. This theory was recently revisited,
improved and extended in the works of De Bièvre, Genoud, and Rota Nodari [DeGeRo15,
DeRo18]. As far as excited states are concerned, the conjecture is that they are all
unstable. However, only partial results in that direction are available (see e.g. [Gr88,
Jo88, Mi05-1, Mi07]).

We recall here only the most essential results concerning ground states. For simplicity,
we state the results for a power-type nonlinearity.
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2 The Nonlinear Schrödinger Equation

Theorem 2.6. Assume f(u) = |u|p−1u, 1 < p < 1 + 4
(d−2)+

. For ω > 0, let Qω be the
positive radial ground state of (SNLS). Take any v ∈ Rd and let Rω,v be the soliton
associated with ω, v and Qω,v = ei

1
2
v·xQω. The following assertions hold.

(i) If p < 1 + 4
d
, then Rω,v is orbitally stable.

(ii) If p ≥ 1 + 4
d
, then Rω,v is unstable (by blow-up).

The tools used to prove the existence of multi-solitons with an energy technique (see
Section 3.1) are based on those used to prove the stability of ground states solitons.
Hence we will present them in concise way and give a short proof of part (i) of Theorem
2.6.

It is relatively common when studying the stability to consider only the case of a
standing wave (i.e. a solitary wave with no speed, of the form eiωtQ), as a Galilean
transformation automatically transfer the stability result to solitary waves with any kind
of speed. However, when considering multi-solitons made of solitary waves traveling at
different speeds, it will not be possible anymore to use a Galilean transformation to set
all speeds equal to 0. We will need to have tools taking into account generic speeds and
that is why we do not restrict ourselves to the case of standing waves when proving part
(i) of Theorem 2.6.

The main ingredient on which we are going to rely is a coercivity property of the
linearization of the action functional around a soliton.

For the rest of this section, assume f(u) = |u|p−1u, take ω > 0 and let Q = Qω be the
unique positive ground state solution of (SNLS). Let v ∈ Rd and define Qω,v = ei

1
2
v·xQω.

Note that Qω,v and Rω,v are critical points of

S = E +

(
ω +
|v|2
4

)
M + v · P. (2.5)

Note also that S depends on the parameters of the soliton that we are considering.
The main tool in the stability analysis of solitons is the following coercivity property.

Proposition 2.7 (The coercivity property). Assume f(u) = |u|p−1u, p < 1 + 4
d
. For

any ε ∈ H1(Rd), define
H(t, ε) = 〈S ′′(Rω,v)ε, ε〉 .

Then
H(t, ε) & ‖ε‖2

H1 − (ε, Rω,v)
2
L2 − (ε,∇Rω,v)

2
L2 − (ε, iRω,v)

2
L2 .

Here, the space L2(Rd) is viewed as a real Hilbert space and

(u, v)L2 = <
∫
Rd
uv̄dx.

Proposition 2.7 relies on the variational characterization of Q as minimizer of the ac-
tion among functions having constant L2 norm (see [CaLi82]) and on the non-degeneracy
of Q as a critical point of the action (see [ChGuNaTs07, Kw89, We85]). We refer
to [MaMe06, MaMeTs06] for a proof of this statement.
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2 The Nonlinear Schrödinger Equation

If u is a solution of (NLS) and ε = u − Rω,v, then H provides a way to control ε,
up to a finite number of bad L2 directions. To deal with these bad L2 directions, one
uses modulation theory. Given u close to Rω,v, it consists into slightly shifting (i.e. to
modulate) the parameters of the soliton so that u will remain close to the modulated
soliton. By doing so, one gains orthogonality properties. More precisely, we have the
following statement.

Lemma 2.8 (Modulation). There exists δ > 0 such that for any u ∈ C(R, H1(Rd)) ∩
C1(R, H−1(Rd)), the following proposition is verified. If for any t ∈ R we have

inf
θ∈R,y∈Rd

‖u(t, ·)− eiθQω,v(· − y)‖H1 ≤ δ,

then there exist C1 functions of time ω̃ ∈ (0,∞), ỹ ∈ Rd, γ̃ ∈ R such that(
ε, R̃ω,v

)
L2

=
(
ε,∇R̃ω,v

)
L2

=
(
ε, iR̃ω,v

)
L2

= 0,

where R̃ω,v(t) = eiγ̃(t)Qω̃(t),v(· − ỹ(t)) and ε = u − R̃ω,v. If moreover u is a solution to
(NLS), the modulation parameters satisfy the following (approximated) dynamical system

|∂tω̃|+ |∂tỹ − v|2 +

∣∣∣∣∂tγ̃ − (ω̃ +
|v|2
4

)∣∣∣∣2 ≤ ‖ε‖2
H1

The proof of Lemma 2.8 is based on the Implicit Function Theorem and the equation
satisfied by ε.

Combining Proposition 2.7 and Lemma 2.8, we obtain the stability result Theorem
2.6.

2.6 Modulation

In Section 2.5, the motivation to introduce modulation was to cancel the L2-scalar
products of the coercivity inequality of Proposition 2.7. We may also interpret the
orthogonality conditions in the following way. Given a solution u of (NLS), we define a
modulated version v of u by

u(t, x) = ei(ζ·y+σ)λ
1
p−1v(τ, y), y = λ

1
2 (x− ξ) , ∂τ

∂t
= λ,

where ζ, ξ, λ, σ are time depending modulation parameters. Then the equation satisfied
by v is

ivτ +
(
∆v − v + |v|p−1v

)
+
(

1− στ + ζ · ξτλ
1
2 − |ζ|2

)
v

+ i
λτ
λ

(
1

p− 1
v +

1

2
y · ∇v

)
+ i
(

2ζ − ξτλ
1
2

)
· ∇v −

(
ζτ +

1

2

λτ
λ
ζ

)
· yv = 0
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It appear that v ≡ Q (where Q is Qω with ω = 1) is a solution if the modulation
parameters verify the dynamical system

ξτ = 2
ζ

λ
1
2

, στ = |ζ|2 + 1, ζτ = 0, λτ = 0,

or equivalently in the t variable

ξt = 2ζλ
1
2 , σt = |ζλ 1

2 |2 + λ, ζt = 0, λt = 0.

Given v ∈ Rd, x0 ∈ Rd, ω ∈ (0,∞), γ ∈ R, we have the solution for the dynamical
system

ξ = vt+ x0, σ =

(
ω +
|v|2
4

)
t+ γ, ζ =

v

2ω
1
2

, λ = ω, (2.6)

which indeed corresponds to the parameters of a soliton with speed v, frequency ω and
profile Qω,v with initial phase shift γ and initial position x0.

Assume now that u is a solution to (NLS) close toRω,v, and let η be such that v = Q+η.
The perturbation η lives at the scale of Q, whereas the perturbation ε = u− Rω,v lives
at the scale of Rω,v. One can pass from one to the other by a simple algebraic transform.
The equation verified by η is

iητ + Lη +N(η) +Mod(τ)(Q+ η) = 0

where L is a linear operator acting on the real and imaginary parts of η

Lη = −(L+<(η) + iL−=(η)), L+ = −∆ + 1− pQp−1, L− = −∆ + 1−Qp−1.

The term N(η) encodes the nonlinear terms in η and the term Mod(τ)(Q+ η) encodes
the terms involving the modulation parameters

Mod(τ)(Q+ η) =
(

1− στ + ζ · ξτλ
1
2 − |ζ|2

)
(Q+ η) + i

(
2ζ − ξτλ

1
2

)
· ∇(Q+ η)

+ i
λτ
λ

(
1

p− 1
(Q+ η) +

1

2
y · ∇(Q+ η)

)
−
(
ζτ +

1

2

λτ
λ
ζ

)
· y(Q+ η).

Setting aside the modulation parameters and the nonlinear terms, we consider the equa-
tion

iητ + Lη = 0,

or equivalently
ητ − iLη = 0. (2.7)

Since our final goal is to prove stability of the soliton, we have to eliminate any potential
source of instability. For the linear equation (2.7), instability may come either from an
eigenvalue of iL with positive real part, or from the generalized kernel of iL. We focus
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now on the generalized kernel. From the analysis of L+ and L− (see e.g. the discussion
in the paper [ChGuNaTs07] or the original paper of Weinstein [We85]), we know that
the generalized kernel Ng of iL (i.e. Ng(iL) = ∪k∈N ker((iL)k) is generated if p 6= 1 + 4

d

by
∇Q, iQ, ixQ, ΛQ.

where Λ is the scaling operator defined by ΛQ = 2
p−1

Q+ x · ∇Q. Indeed, we have from
direct calculations

L+∇Q = 0, L−xQ = −2∇Q, (xQ,∇Q)L2 6= 0,

L−Q = 0, L+ΛQ = −2Q, (ΛQ,Q)L2 6= 0,

We may present the result in the form of a diagram

L− 0 Q xQ

L+ 0 ∇Q ΛQ

If p = 1 + 4
d
, then the generalized kernel is bigger and generated by

∇Q, iQ, ixQ, ΛQ, i|x|2Q, ρ.

where ρ is such that L+ρ = |x|2Q. This follows from

L+∇Q = 0, L−xQ = −2∇Q, (xQ,∇Q)L2 6= 0,

L−Q = 0, L+ΛQ = −2Q, L−|x|2Q = −4ΛQ, L+ρ = |x|2Q, (ρ,Q)L2 6= 0,

The corresponding diagram is then

L− 0 Q xQ |x|2Q

L+ 0 ∇Q ΛQ ρ

We are in the case p < 1+ 4
d
. To make sure that no instability stems from the generalized

kernel of iL, we require that η satisfies the orthogonality conditions

(η,Q)L2 = (η, iQ)L2 = (η,∇Q)L2 = (η, ixQ)L2 = 0.

At the level of ε, this would correspond to

(ε, Rω,v)L2 = (ε, iRω,v)L2 = (ε,∇Rω,v)L2 = (ε, ixRω,v)L2 = 0,

provided we have chosen the parameters of the dynamical system to be as in (2.6).
We have one more orthogonality condition compare to the ones required in Proposition

2.7. This is however not a problem to get this additional orthogonality condition from
Lemma 2.8 by modulating on the last available parameter, the speed v.
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2 The Nonlinear Schrödinger Equation

2.7 Kinks

To end this preliminary section, we say a few words about kinks. Roughly speaking,
kinks are solutions of (NLS) with a fixed profile, which is non localized. In particular,
when the space dimension is 1, we speak of kinks when the profile has at least one limit
different from 0 at spatial infinity. One of the most well-known example of equations
admitting kinks is the Gross-Pitaevskii equation

iut + uxx + (1− |u|2)u = 0. (2.8)

The kinks appear frequently as traveling waves. A traveling wave is a solution u of (2.8)
of the form u(t, x) = φc(x − ct), for some speed c ∈ R. If |c| ≤

√
2, then there exist

standing waves whose profiles are given by

φc(x) =

√
2− c2

2
tanh

(
x
√

2− c2

2

)
+ i

c√
2
.

When c 6= 0, the traveling wave does not vanish and (2.8) can be considered in its hydro-
dynamical form (see [CaDaSa12] and the references cited therein). In this framework,
the problem of stability of traveling waves was first solved for c 6= 0 by Lin [Li02] using
the theory of Grillakis, Shatah and Strauss [GrShSt87, GrShSt90]. Still for c 6= 0, the
stability theory was later on revisited by Bethuel, Gravejat and Saut [BeGrSa08] using
the variational approach introduced by Cazenave and Lions [CaLi82]. The case c = 0
was much more difficult to handle, due in particular to the fact that no hydrodynam-
ical formulation is available for (2.8) in that case. When c = 0, it has been proved
recently by by Bethuel, Gravejat, Saut and Smets [BeGrSaSm08] that the stationary
wave is orbitally stable in the energy space (see [DiGa07] for a previous study of the
dynamics around the stationary solution), and by Gravejat and Smets [GrSm15] that
it is also asymptotically stable. Moreover, the stationary wave is also asymptotically
stable [BeGrSm15], in the sense that if a solution starts close to the stationary wave,
then it will eventually converge to a traveling wave with speed c∗ close to 0 (up to the
symmetries of the equation).

Still in dimension 1 but for generic nonlinearities, the existence of traveling waves with
non-localized profiles was investigated by Chiron in [Ch12] and their stability/instability
in [Ch13]. In higher dimensions, the question of existence of such traveling wave was a
long-time open problem solved recently by Maris (see [Ma13] and the references therein
for previous results). Stability/instability is still an open problem for most cases.

In the previously quoted works, all non-localized profiles satisfy a boundary condition
on the modulus, e.g. |u| → 1 as |x| → ∞ in the case of (2.8). In this thesis, we will be
concerned with a different type of profiles for the kinks. We work in dimension 1 and
assume that the profile is 0 at one side of the real line and its modulus is non-zero on
the other side. The following proposition gives conditions that guarantee the existence
of such profiles.
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Proposition 2.9. Assume Assumption 2.1 and suppose that for some ω > 0, there is a
(first) b > 0 such that for h(s) = ωs− f(s), we have

h(b) = 0,

∫ b

0

h(s)ds = 0.

Assume moreover that h′(b) > 0, and for some r ∈ [p, q],

|f ′(b+ s)|+ |s||f ′′(b+ s)| ≤ C|s|r−1 + C|s|q, for all s ∈ R.

Then, there is a solution φ(s) of

φ′′ = ωφ− f(φ)

such that 0 < φ(s) < b, and

lim
s→−∞

φ(s) = b, φ′(s) < 0 for all s ∈ R, φ′(0) = minφ′, lim
s→+∞

φ(s) = 0,

and that, for any 0 < a < min(ω, h′(b)), there is Ca > 0 so that

1s<0(b− φ(s)) + 1s≥0 φ(s) + |φ′(s)| ≤ Cae
−a|s|, for all s ∈ R.

An example of a situation where the assumptions of Proposition 2.9 are satisfied is
given by

ω = 1, f(s) = −s+ 4|s|2s− 3|s|4s,
in which case there exists a unique (up to translation) kink connecting b = 1 to 0, given
by the formula

φ(x) =
1√

1 + e2x

This concludes this preliminary section collecting basic facts on the nonlinear Schrödinger
equation.
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3 Finite and Infinite Soliton Trains

We start by explaining more precisely what we mean by multi-solitons and what is
the motivation to study them. As mentioned in Chapter 1, according to the generic
Decomposition Conjecture for nonlinear dispersive PDEs, a global solution decomposes
at large time in a combination of non-scattering structures and a dispersive part. When
the non-scattering structures are solitons, we call this conjecture the Soliton Resolution
Conjecture. For example, in the case of the Korteweg-de Vries equation, for a large class
of initial data, all solutions are global and eventually decompose into a finite sum of
solitons going to the right and a dispersive part going to the left [EcSc83, Sc86]. Hence
investigating the existence and properties of solutions of dispersive equations made of a
combination of non-scattering structures is a first step toward a proof of a Decomposition
Conjecture.

Multi-solitons are one of the simplest examples of a combination of non-scattering
structures. We give now a precise definition, in the case of the Schrödinger equation

iut + ∆u+ f(u) = 0. (NLS)

Consider N ∈ N, take a set of parameters (ωj, θj, vj, xj)1≤j≤N ∈ R+ × R× Rd × Rd and
profiles (Φj)1≤j≤N solutions of

−∆Φj + ωjΦj + f(Φj) = 0. (SNLS)

Let (Rj)1≤j≤N be the associated solitary waves, given by formula (2.4). Define the sum
of solitons by

R(t, x) =
N∑
j=1

Rj(t, x).

As (NLS) is a nonlinear equation, the sum R is not a solution of (NLS). What we call
a multi-soliton is a solution u of (NLS) on some interval [T0,∞) such that

lim
t→∞
‖u−R‖X([t,∞),Rd) = 0.

Here, ‖·‖X([t,∞),Rd) denotes some space-time norm. For example, ifX = L∞([t,∞), H1(Rd)),
then the above condition is simply

lim
t→∞
‖u(t)−R(t)‖H1 = 0.

Several methods are available to obtain multi-solitons. They have been first con-
structed for (NLS) in the one dimensional cubic focusing case by Zakharov and Sha-
bat [ZaSh72] using the inverse scattering transform method (IST). The IST is a pow-
erful tool to study nonlinear dispersive equations and to exhibit non-trivial nonlinear
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3 Finite and Infinite Soliton Trains

dynamics for these equations. However, the IST application is restricted to equations
which enjoy a particular algebraic structure, i.e. they are completely integrable. This
is for example the case of the Korteweg-de Vries equation and of the cubic nonlinear
Schrödinger equation in dimension 1. However, integrability probably does not hold any
more in higher dimension, or with different nonlinearities, even of power-type.

A method to construct multi-soliton solutions of non-integrable equations was in-
troduced by Martel, Merle and Tsai [MaMeTs02] for generalized Korteweg-de Vries
equations and later developed in the case of L2-subcritical nonlinear Schrödinger equa-
tions [MaMe06, MaMeTs06]. The method was later fine-tuned to allow the treatment of
L2 supercritical equations [CoMaMe11]. In collaboration with Raphaël Côte [CoLe11], I
treated the case of profiles made with excited states. In collaboration with Jacopo Bel-
lazzini and Marco Ghimenti [BeGhLe14], I proved the existence of multi-solitons made of
stable solitons for the nonlinear Klein-Gordon equation. The method uses tools usually
called energy techniques, in the sense that it rely on the use of the second variation of
the energy as a Lyapunov functional to control the difference of a solution u with the
soliton sum R.
In collaboration with Dong Li and Tai-Peng Tsai [LeLiTs15, LeTs14], I introduced

another approach to deal with more generic non-scattering structures, in particular with
kinks, or with infinite sums of solitons, which are hardly obtainable with the energy
method. The technique consists into doing a fixed point argument around the desired
profile. To close the fixed point argument, we use a combination of Strichartz estimates
and dispersive estimates, and we use a high relative speed hypothesis to control the error
between a true solution and a sum of solitons.

When existence of multi-solitons is granted, it opens a wide range of possible directions
of investigation.

It is natural to wonder about the classification of the possible multi-soliton solutions.
In the case of generalized Korteweg-de Vries equation, this classification was obtained
by Martel [Ma05] in the subcritical case and by Combet [Co11] for critical and super-
critical cases. In the case of nonlinear Schrödinger equation, only partial results are
available [Co14a].

It is also natural to wonder about the stability of multi-solitons. If one of the com-
posing soliton is unstable, it is reasonable to believe that the multi-soliton will also
be unstable. In the case of nonlinear Schrödinger equations, I obtained with Raphaël
Côte [CoLe11] an instability result for multi-solitons when one of the composing soli-
ton is linearly unstable. To the contrary, we expect that multi-solitons composed of
stable solitons will also be stable. A proof of this fact was obtained by Martel, Merle
and Tsai [MaMeTs02] for multi-solitons of the subcritical generalized Korteweg-de Vries
equations. Later on, the same authors [MaMeTs06] obtained a stability result for the
multi-solitons of the nonlinear Schrödinger equation, with restrictive assumptions on the
nonlinearity excluding pure power nonlinearities. Indeed, the admissible nonlinearities
in [MaMeTs06] needed to be at the same time L2 critical or supercritical at infinity,
and generating stable solitons, two contradictory facts for pure power nonlinearities.
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However, I observed that the derivative nonlinear Schrödinger equation

iut + uxx + i|u|2ux = 0

is at the same time L2-critical and admits stable solitons. In collaboration with Yifei
Wu [LeWu18], I proved the stability (under some technical assumptions) of the multi-
solitons of the derivative nonlinear Schrödinger equation.

3.1 Multi-Solitons

In this section, we present the existence results for multi-solitons of nonlinear Schrödinger
and Klein-Gordon equations that we have obtained in [CoLe11, BeGhLe14] and we give
some elements of the proofs. In both cases, the proofs follow the general scheme laid
down by Martel, Merle and Tsai [MaMeTs02] for the Korteweg-de Vries equation and
that we explain now for Schrödinger equations (the scheme being the same for Klein-
Gordon equations, mutatis mutandis).

The idea of the method is to adapt the technical tools used for the study of stability
of solitons (modulation, coercivity of the second variation of the energy, conservation
laws) to the context of multi-solitons. We first choose an increasing sequence of times
(Tn)n∈N with Tn →∞ as n→∞. Then we define solutions un to (NLS) with final data
un(Tn) = R(Tn). It means that we solve (NLS) backward in time for each n and that
un will exist on an interval of time (tn, Tn). By passing to the limit, un will converge to
u, a multi-soliton solution of (NLS). Two ingredients will be necessary to authorize this
passage to the limit. First, un will have to satisfy uniform estimates of the form

‖un(t)−R(t)‖ ≤ e−α
√
ω?v?t, (3.1)

for all t in the interval [T0, Tn], with T0 independent of n, and α, ω? and v? are positive
constants which will be specified later on. The second ingredient is a compactness
argument : the sequence of initial data un(T0) converges strongly in L2(Rd) to a function
u0 ∈ H1(Rd). Thanks to the well-posedness of the Cauchy Problem of (NLS), we can
conclude that u0 gives rise to a solution u of (NLS) which satisfies (3.1) on [T0,∞).
Hence u is a multi-soliton.

3.1.1 Excited Multi-Solitons of Nonlinear Schrödinger Equations

In collaboration with Raphaël Côte [CoLe11], I proved the following result.

Theorem 3.1. Let f(z) = |z|p−1z with 1 < p < 1 + 4
(d−2)+

. Consider N ∈ N, take a set
of parameters (ωj, θj, vj, xj)1≤j≤N ∈ R+ ×R×Rd ×Rd and profiles (Φj)1≤j≤N solutions
of (SNLS) (with ω replaced by ωj). Let (Rj)1≤j≤N be the associated solitons. Define

ω? = min{ωj : j = 1, ..., N}, v? = min{|vj − vk| : j, k = 1, ..., N, j 6= k}.
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3 Finite and Infinite Soliton Trains

Then there exist α > 0 and v] ∈ [0,∞), such that if v? > v] then there exist T0 ∈ R and
a solution u of (NLS) on [T0,∞) such that

∥∥∥u(t)−
N∑
j=1

Rj(t)
∥∥∥
H1
≤ e−α

√
ω?v?t for all t ∈ [T0,∞).

For the sake of simplicity in the argument, the result is stated here only for power-
type nonlinearities. It may be extended to other types of nonlinearities, see [CoLe11].
The constants ω?, v? are called the minimal frequency and the minimal relative speed.
For technical reasons, we need the restrictive assumption that the relative speed is large
enough (i.e. v? � 1). It is an open problem whether or not there exist multi-solitons
based on excited states and with small minimal relative speed.

In the rest of this section, we give a streamlined proof of Theorem 3.1.
From now on, we assume that we are given N ∈ N, a set of parameters (ωj, θj, vj, xj)

in R+×R×Rd×Rd and profiles (Φj) solutions of (SNLS) for 1 ≤ j ≤ N . Let R be the
corresponding sum of solitons:

R(t, x) =
N∑
j=1

Rj(t, x).

We first remark that the product between two given solitons Rj and Rk verifies the
following bound

|Rj(t, x)Rk(t, x)| . e−
1
2

√
ω?v?tB(t, x)

with B ∈ L∞t L1
x ∩L∞t L∞x (Rd,R). This can be easily proved using the exponential decay

of the profiles of the solitons. Hence the interaction between two solitons is expected to
be exponentially small at time and space infinity.
Take an increasing sequence of times (Tn)n∈N with Tn → ∞ as n → ∞ and define

solutions (un) to (NLS) with final data un(Tn) = R(Tn).
We rely on the two following propositions to perform the proof of Theorem 3.1.

Proposition 3.2 (Uniform Estimates). There exist α > 0, v] > 0 and T0 ∈ R indepen-
dent of n such if v? > v] then for n large enough un exists on [T0, Tn] and satisfies for
any t ∈ [T0, Tn] the estimate

‖un(t)−R(t)‖H1 ≤ e−α
√
ω?v?t.

Proposition 3.3 (Compactness). There exists u0 ∈ H1(Rd) such that

lim
n→∞
‖un(T0)− u0‖L2 = 0.

We postpone the proofs of Propositions 3.2 and 3.3 and prove Theorem 3.1.

Proof of Theorem 3.1. Let u be the solution of (NLS) such that u(T0) = u0. From the
well-posedness of the Cauchy Problem in Hs(Rd) for some s ∈ (0, 1) (see e.g. [CaWe90]),
we infer that for any t ∈ [T0,∞) we have un(t)→ u(t) strongly in L2(Rd), and un(t) ⇀
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u(t) weakly in H1(Rd). Hence, from weak lower semi-continuity of the H1 norm, for any
t ∈ [T0,∞) we have

‖u(t)−R(t)‖H1 ≤ lim inf
n→∞

‖un(t)−R(t)‖H1 ≤ e−α
√
ω?v?t.

Hence u is the desired solution.

As in [MaMe06], the compactness property is proved using the virial identity and
assuming the uniform estimates.

Proof of Proposition 3.3. Choose δ > 0. We want to show that there exists rδ such that
for any n large enough we have ∫

|x|>rδ
|un(T0)|2dx < δ.

Let Tδ be such that e−α
√
ω?v?Tδ <

√
δ/8. Therefore, if n is large enough, we have, by the

uniform estimates of Proposition 3.2,

‖un(Tδ)−R(Tδ)‖2
L2 ≤

δ

8
. (3.2)

Take r̃δ such that ∫
|x|>r̃δ

|R(Tδ)|2dx ≤
δ

8
.

Then we can infer from (3.2) that∫
|x|>r̃δ

|un(Tδ)|2dx ≤
δ

2
. (3.3)

We want to transfer this smallness up to T0. To that purpose, we use a virial argument.
Let χ : R→ R be a C1 cut-off function such that

χ(s) = 0 for s < 0, χ(s) = 1 for s > 1, χ(s) ∈ [0, 1] for s ∈ R, ‖χ′‖L∞ ≤ 2.

Take r̂δ > 0 to be fixed later and set

V (t) =
1

2

∫
Rd
|un(t)|2χ

( |x| − r̃δ
r̂δ

)
dx.

Differentiating in t and using the equation for un, we get

V ′(t) =
1

r̂δ

∫
Rd
=
(
ūn(t)

x

|x| · ∇un
)
χ′
( |x| − r̃δ

r̂δ

)
dx. (3.4)

By the uniform estimates, we know that (un) is uniformly bounded in H1(Rd) and thus
from (3.4) we have

|V ′(t)| ≤ C

r̂δ
.
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Choose now r̂δ such that C(Tδ − T0)/r̂δ < δ/2. Then

V (T0)− V (Tδ) =

∫ T0

Tδ

V ′(t)dt ≤ C(Tδ − T0)

r̂δ
<
δ

2
. (3.5)

Define rδ = r̃δ + r̂δ. Combining (3.3), (3.5) and the definition of χ, we have∫
|x|>rδ

|un(T0)| ≤ δ.

This is the desired conclusion and the sequence (un(T0)) is therefore compact in L2(Rd),
which finishes the proof.

The rest of this section is devoted to the proof of the uniform estimates. It relies on the
following bootstrap argument: given n ∈ N, if for any t in some interval [t0, Tn] ⊂ [T0, Tn],
the following estimate holds:

‖un(t)−R(t)‖H1 ≤ e−α
√
ω?v?t, (3.6)

then in fact on [t0, Tn] the following better estimate holds:

‖un(t)−R(t)‖H1 ≤
1

2
e−α

√
ω?v?t. (3.7)

Here, T0 is a time before which we cannot run the bootstrap anymore and is determined
by the proof. Proposition 3.2 is then an easy consequence of the bootstrap property.

From now on we assume that we are given n ∈ N, that (3.6) holds on some interval
[t0, Tn] ⊂ [T0, Tn] for T0 to be determined and we want to prove that in fact (3.7) holds
on [t0, Tn].
Our task is to find a way to control the difference un − R in H1(Rd). If there were

only one soliton, we would know how to control this difference: the tools used for the
proof of stability (modulation and energy control) are designed for that purpose. The
idea for multi-solitons will be to use these tools for each of the composing solitons. For
that, we need a localization procedure.

Let φ : R → R be such that φ(s) = 0 if s ≤ −1, φ(s) = 1 if s ≥ 1, 0 ≤ φ(s) ≤ 1 for
any s ∈ R and ‖φ′‖L∞ ≤ 2.
Recall that each soliton Rj is centered on the line xj + vjt. For convenience, we

choose a particular direction of propagation (see e.g. [CoLe11, Claim 13]): without loss
of generality, we assume that the first components of the speeds verify

v1
1 < · · · < v1

j < · · · < v1
N ,

where the superscript 1 denotes the first component.
We define the bisector lines by

mj(t) =
v1
j + v1

j+1

2
t+

x1
j + x1

j+1

2
,
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and a partition of unity (ψj) (see Figure 3.1) with the j-th member weighting around
the j-th soliton by

ψ1(t, x) = φ

(
x1 −m1(t)√

t

)
,

ψj(t, x) = φ

(
x1 −mj(t)√

t

)
− φ

(
x1 −mj−1(t)√

t

)
for j = 2, . . . , N − 1,

ψN(t, x) = 1− φ
(
x1 −mN−1(t)√

t

)
.

mj−1(t)−
√
t

mj−1(t) +
√
t

vjt+ xj

mj(t)−
√
t

mj(t) +
√
t x

t

Figure 3.1: Schematic representation for the partition of unity (ψj) (in red)

We can now define localized quantities which will turn out to be almost conserved.
For j = 1, . . . , N , let

Mj(t, u) =
1

2

∫
Rd
|u|2ψjdx, Pj(t, u) =

1

2

∫
Rd
= (u∇ū)ψjdx.

In the case of a single soliton, the action functional S defined in (2.5) was the suitable
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tool to deal with stability. For multi-solitons, we define

S(t, u) = E(u) +
N∑
j=1

(
ωj +

|vj|2
4

)
Mj(t, u) +

N∑
j=1

vj · Pj(t, u).

We also introduce a functional which will play the role of the Hessian for S: define

H(t, ε) = ‖ε‖2
H1 −

N∑
j=1

∫
Rd

(
|Rj|p−1|ε|2 + (p− 1)|u|p−2<(uε̄)2

)
dx

+
N∑
j=1

ωj

∫
Rd
|ε|2ψjdx+

N∑
j=1

vj ·
∫
Rd
= (ε∇ε̄)ψjdx.

Roughly speaking, when ε is concentrated close to the j-th soliton, then H(t, ε) is like
Hj(t, ε), where we have set

Hj(t, ε) = 〈S ′′(Rj)ε, ε〉 .
In fact, we have the following Taylor-like expansion:

S(t, R + ε)− S(t, R) = H(t, ε) + o
(
‖ε‖2

H1

)
+O

(
e−α

√
ω?v?t

)
.

If Rj has a stable ground state profile, then a fairly precise description of the defect
of coercivity of Hj is given by Proposition 2.7. If not, then all we can say is that Hj

is coercive up to a finite number of L2 directions. Precisely, there exist (ξkj )k=1,...,Kj ⊂
L2(Rd) such that

Hj(t, ε) & ‖ε‖2
H1 −

Kj∑
k=1

(
ξkj , ε

)2

L2 .

Using the exponential localization of solitons and the coercivity property for each Hj,
we can prove the following lemma.

Lemma 3.4 (Coercivity). For every ε ∈ H1(Rd) we have

H(t, ε) & ‖ε‖2
H1 −

N∑
j=1

Kj∑
k=1

(
ξkj , ε

)2

L2 −O
(
e−α

√
ω?v?t

)
. (3.8)

The above Lemma provides a control on the difference between εn = un−R, provided
we are able to prove that the L2-products in (3.8) are small for εn. If all Rj have
stable ground state profiles, then it can be done via modulation (as it will be the case in
Section 3.1.2 for multi-solitons of the Klein-Gordon equation). If not, then we can obtain
the smallness of the L2-scalar product by the following argument. Using the equation
verified by ε and the bootstrap assumption, we have∣∣∣∣12 ∂

∂t
‖ε(t)‖2

L2

∣∣∣∣ ≤ <∫
Rd
|ε(t)ε̄t(t)|dx . ‖ε(t)‖2

H1 . e−2α
√
ω?v?t.
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Integrating in time and remembering that ε(Tn) = 0, we get

‖ε(t)‖2
L2 .

1

2α
√
ω?v?

e−2α
√
ω?v?t.

Choosing v? large enough gives a smallness on ‖ε‖L2 , which in turn allows to control the
bad L2-directions for coercivity.

3.1.2 Multi-Solitons of the Klein-Gordon Equation

In this section, I present a result of existence of multi-solitons for the Klein-Gordon
equation obtained in collaboration with Jacopo Bellazzini and Marco Ghimenti. The
composing solitons are made of stable ground states. The existence of the multi-soliton
is obtained with the energy technique. This result was the main result of [BeGhLe14].
In [CoMu14], Côte and Munoz treated another case, where multi-solitons are composed
of unstable real valued ground states traveling waves. More recently, Côte and Mar-
tel [CoMa18] obtained an existence result for multi-solitons made of real valued excited
states.

We will be working in this section with the nonlinear Klein-Gordon equation with
power-type nonlinearity: {

utt −∆u+mu− |u|p−1u = 0,

u|t=0 = u0
1, ut|t=0 = u0

2.
(NLKG)

Herem > 0, the unknown u : R×Rd → C is a complex valued function of time t ∈ R and
space x ∈ Rd, and the exponent 1 < p < 1 + 4

(d−2)+
is energy subcritical. Remark that

we are considering the Klein-Gordon equation with complex valued solutions, whereas
the works [CoMa18, CoMu14] are concerned only with real valued solutions.

It is common and convenient to express (NLKG) in its Hamiltonian form. Setting
U = (u1, u2)T = (u, ut)

T , the equation becomes

Ut = JE ′KG(U), (3.9)

where the energy EKG and the symplectic matrix J are defined by

EKG(U) =
1

2
‖u2‖2

L2 +
1

2
‖∇u1‖2

L2 +
m

2
‖u1‖2

L2 −
1

p+ 1
‖u1‖p+1

Lp+1 , J =

(
0 1
−1 0

)
.

From the Hamiltonian formulation, we immediately infer that the energy EKG is (at
least formally) a conserved quantity for the flow of (NLKG). Moreover, the invari-
ances by translation and gauge transformation yield two other conserved quantities, the
momentum PKG and the charge QKG, given by

PKG(U) = <
∫
R
∇u1ū2dx, QKG(U) = =

∫
R
u1ū2dx.
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3 Finite and Infinite Soliton Trains

The Cauchy Theory for (NLKG) has been worked out in the 80s by Ginibre and
Velo [GiVe85, GiVe89] (see also the recent review in [KiStVi14, Section 2]). In par-
ticular, for any initial data U0 = (u0

1, u
0
2)T ∈ H1(Rd) × L2(Rd) there exist 0 < T ≤ ∞

and a unique solution U ∈ C([0, T ), H1 × L2) ∩ C1([0, T ), L2 × H−1) of (3.9) such that
U(0) = U0. In addition to the existence and uniqueness of a solution, we also have
continuous dependance on the initial data, and (rigorous) conservation of energy, charge
and momentum. Our proof requires in fact a slightly different result of well-posedness in
Hs(R)×Hs−1(R) for some s < 1, which was obtained by Nakamura and Ozawa [NaOz01].

An interesting property of the linear Klein-Gordon equation which survives in its
nonlinear version is the uniqueness in light cones. Given U0 ∈ H1(Rd)×L2(Rd) an initial
data and two solutions U and Ũ of (3.9) on [0, T ) for some T > 0 with Ũ(0) = U(0) = U0

in {x ∈ Rd : |x− x0| < T} for some x0 ∈ Rd, then U ≡ Ũ on the backward light cone

{(t, x) ∈ [0, T )× Rd : |x− x0| < T − t}.

As a consequence, finite speed of propagation holds for (3.9). Precisely, let U = (u1, u2)T ∈
C((−∞, T ∗], H1 × L2). There exists a constant C0 > 0 such that the following property
is satisfied. For all ε > 0 and M > 0 for which∫

|x|>M
(|∇u1(T ∗)|2 + |u1(T ∗)|2 + |u2(T ∗)|2)dx < ε,

and for all t ∈ (−∞, T ∗], we have∫
|x|>2M+(T ∗−t)

(|∇u1(T )|2 + |u1(T )|2 + |u2(T )|2)dx < C0ε.

The nonlinear Klein-Gordon equation is invariant by Lorentz transform. Precisely, for
v ∈ Rd with |v| < 1, define the Lorentz transform of the function U = (u1, u2) of t and
x by

LvU(t, x) =

(
u1(τ, y)

γu2(τ, y)− v · ∇yu1(τ, y)

)
,

where the new variables (τ, y) are defined by

τ = γ(t− v · x), y = x− xv + γ(xv − vt),

with the Lorentz factor γ and the projection xv given by

γ =
1√

1− |v|2
, xv =

x · v
|v|2 v.

If U is a solution of (3.9), then LvU is also a solution of (3.9).
The nonlinear Klein-Gordon equation admits stationary solutions and standing waves.

They are solutions of the form U(t, x) = eiωtΦω(x) where (a priori) ω ∈ R and Φω =
(φ1, φ2)T solves {

−∆φ1 +mφ1 − |φ1|p−1φ1 + iωφ2 = 0,

φ2 − iωφ1 = 0.
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3 Finite and Infinite Soliton Trains

Therefore, Φω is of the form

Φω =

(
φω
iωφω

)
,

with φω verifying
−∆φω + (m− ω2)φω − |φω|p−1φω. (3.10)

We recognize here the equation for the equation for the soliton profiles of the nonlinear
Schrödinger equation (SNLS), with ω replaced by m − ω2. In particular, it is well-
known since the work of Berestycki and Lions [BeLi83-1], Kwong [Kw89] and Gidas, Ni
and Nirenberg [GiNiNi79] that this equation has a unique positive radially symmetric
ground state if m− ω2 > 0.
We assume in the sequel that

|ω| < √m.
Using a Lorentz boost, one can convert a standing wave U(t, x) = eiωtΦω(x) into a

solitary wave with speed v by setting

U(t, x) = Lv(eiωtΦω(x)) = ei
ω
γ
tΦω,v(x− vt).

The profile Φω,v satisfies
−∆φ1 +mφ1 − |φ1|p−1φ1 + i

ω

γ
φ2 − v · ∇φ2 = 0,

φ2 − i
ω

γ
φ1 + v · ∇φ1 = 0.

It is a critical point of the action functional defined by

SKG = EKG +
ω

γ
QKG + v · PKG.

We call Φω,v a ground state if the underlying solution φω of (3.10) is a ground state.
The orbital stability theory for the solitary waves of (NLKG) was initiated by Shatah

and Strauss [Sh85, ShSt85] and completed by Stuart [St01]. Solitary waves with ground
state profiles are orbitally stable if and only if (ω, v) are in the following range of pa-
rameters

Ostab =

{
(ω, v) ∈ R× R : |ω| < √m, |v| < 1,

1

1 + 4
p−1
− d <

ω2

m

}
.

This set is empty if p ≥ 1 + 4
d
. If p < 1 + 4

d
, then there exists 0 < ωc <

√
m such that for

all ω verifying ωc < |ω| <
√
m and for any v ∈ Rd with |v| < 1 we have (ω, v) ∈ Ostab.

Our result on the existence of multi-solitons for (NLKG) is the following.

Theorem 3.5. Assume that 1 < p < 1 + 4
d
. Take (ωj, vj)1≤j≤N ⊂ Ostab and (Φj)1≤j≤N

the corresponding ground states. Define

Rj(t, x) = e
i
ωj
γj
t
Φj(x− vjt),

v? = min{|vj − vk| : j, k = 1, . . . , N, j 6= k}, ω? = max{|ωj| : j = 1, . . . , N}.
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There exists α > 0 such that if v? > 0 then there exist T0 ∈ R and U solution of (3.9)
on [T0,∞) such that ∥∥∥∥U(t)−

N∑
j=1

Rj(t)

∥∥∥∥
H1×L2

≤ e−α
√
m−ω∗v? .

The proof of Theorem 3.5 is similar to the one introduced by Martel and Merle [MaMe06]
for the nonlinear Schrödinger equation. Our main contribution consists in obtaining a
coercivity property adapted to the Klein-Gordon setting. The proof goes as follows.
Let (Tn) be an increasing sequence of final times such that Tn → ∞ as n → ∞. We
define an approximate sequence of multi-solitons Un by setting Un(Tn) =

∑N
j=1Rj(Tn)

and solving (3.9) backward in time. The crux of the proof is to show that there exists
T0, independent of n, such that Un exists on the interval [T0, Tn]. To this aim, we rely
on uniform estimates on the distance between the approximate multi-solitons (Un) and
the profile

∑N
j=1Rj. These estimates are obtained from the combination of a coercivity

property of a global linearized action and modulation theory for the control of a few
negative directions. A compactness argument finally shows the existence of a solution
U∞ of (3.9) such that Un → U∞ uniformly. The solution U∞ is the desired solution.
One of the highlights of the proof is obtaining several variational characterizations of

the ground states Φω,v. Before stating the result, we define different critical level for the
action functional SKG. The mountain pass level is defined by

MP = inf
η∈Γ

sup
s∈[0,1]

SKG(η(s)), Γ = {η ∈ C([0, 1];H1 × L2) : η(0) = 0, SKG(η(1)) < 0}.

The Nehari level is given by

NL = min
{
SKG(W ) : 〈S ′KG(W ),W 〉 = 0, W ∈ H1 × L2 \ {(0, 0)T}

}
.

The least energy level is defined by

LE = min
{
SKG(W ) : S ′KG(W ) = 0, W ∈ H1 × L2 \ {(0, 0)T}

}
.

Proposition 3.6. Let 1 < p < 1 + 4
(d−2)+

and (ω, v) ∈ R × Rd such that ω2 < m and
|v| < 1. Then Φω,v verifies

SKG(Φω,v) = MP = NL = LE.

The variational characterizations of Proposition 3.6, along with the non-degeneracy
of the solution of (3.10) allow us to obtain the following coercivity property.

Proposition 3.7. For every Υ ∈ H1(Rd)× L2(Rd) we have

‖Υ‖2
H1×L2 . 〈S ′′KG(Φω,v)Υ,Υ〉+ (Υ,∇Φω,v)

2
L2×L2 + (Υ, iJΦω,v)

2
L2×L2 + (Υ, iΦω,v)

2
L2×L2 .
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In Section 3.1.1, the bad L2-directions of the coercivity result Lemma 3.4 were dealt
with using a large relative speed assumption. In the setting of the Klein-Gordon equa-
tion, this kind of trick is not possible anymore, since solitary waves cannot travel faster
than the speed of light (i.e. |v| ≤ 1 in the present normalization). This is why we work
here with ground states and we eliminate the bad L2-directions in the classical way by
using modulation theory. We can obtain the following uniform estimates.

Proposition 3.8 (Uniform Estimates). There exist α = α(d,N) > 0, and T0 ∈ R (in-
dependent of n) such that for n large enough the solution Un of (NLKG) with Un(T n) =∑N

j=1Rj(T
n) exists on [T0, T

n] and satisfies for all t ∈ [T0, T
n] the estimate∥∥∥∥Un(t)−

N∑
j=1

Rj(t)

∥∥∥∥
H1×L2

≤ e−α
√
m−ω2

?v?t

Proposition 3.8 establishes that the approximate multi-solitons Un all satisfy the de-
sired estimate on time intervals of the form [T0, T

n], with T0 independent of n.
The second ingredient of the proof of Theorem 3.5 is anH1×L2−compactness property

of the sequence of initial data of the approximate multi-solitons.

Lemma 3.9 (Compactness). Let T0 be given by Proposition 3.8. For any ε > 0 there
exists Mε such that for any n large enough Un verifies∫

|x|>Mε

|∇Un,1(T0)|2 + |Un,1(T0)|2 + |Un,2(T0)|2dx ≤ ε.

The argument for the proof of Lemma 3.9 is different from the similar result in the
Schrödinger equation case (Proposition 3.3). Indeed, we benefit with the Klein-Gordon
equation of the Finite Propagation Speed, which is not the case for Schrödinger equations
where one has to use virial identities.

Proof of Lemma 3.9. The result is a consequence of the Finite Speed of Propagation
and the uniform estimates of Proposition 3.8. Indeed, take ε > 0 and let T ? be such
that e−α

√
m−ω2

?v?T
?

<
√

ε
2
. Then it follows from Proposition 3.8 that for n large enough

we have
‖Un(T ?)−R(T ?)‖2

H1×L2 ≤
ε

2
. (3.11)

By exponential decay of the sum of solitons, there exists M̃ε such that∫
|x|>M̃ε

|∇(R(T ?)1)|2 + |(R(T ?))1|2 + |(R(T ?))2|2dx ≤
ε

2
. (3.12)

Combining (3.11) and (3.12), we get∫
|x|>M̃ε

|∇Un,1(T ?)|2 + |Un,1(T ?)|2 + |Un,2(T ?)|2dx ≤ ε.
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By Finite Speed of Propagation, this implies∫
|x|>2M̃ε+(T ?−T0)

|∇Un,1(T0)|2 + |Un,1(T0)|2 + |Un,2(T0)|2dx ≤ ε.

Setting Mε = 2M̃ε + (T ? − T0) finishes the proof.

Combining the Compactness Argument Lemma 3.9 and the Uniform Estimates Propo-
sition 3.8, we prove Theorem 3.5 in a similar fashion as Theorem 3.1.

3.2 Infinite Trains

We have seen in Section 3.1.2 how to construct a multi-soliton solution of (NLS). It is
natural to ask whether or not there may exist solutions of (NLS) which behave at large
time like an infinite sum of solitons. Before our works [LeLiTs15, LeTs14], answers to
this question existed only for integrable equations. The energy method is not suitable
to answer this question, in particular because the infinite sum profile may not be in the
energy space, and would have infinite energy (or, even worse, infinite L2 norm). This is
the reason why, in collaboration with Dong Li and Tai-Peng Tsai [LeLiTs15, LeTs14], I
developed techniques based on a fixed point argument to overcome this difficulty.

For the sake of simplicity, we restrict ourselves to the power-type nonlinearity case
and refer the interested reader to [LeTs14] for results with generic nonlinearities.

We want to construct an infinite train solution of (NLS), i.e. a solution which verifies∥∥∥∥u− ∞∑
j=1

Rj

∥∥∥∥→ 0 when t→∞,

in some (space-time) norm to be specified. To simplify the analysis, we choose the
solitons in the following way. We take a profile Φ ∈ H1(Rd) \ {0} solution of

−∆Φ + Φ− |Φ|p−1Φ = 0,

and infinite sequences of frequencies (ωj)j∈N ⊂ (0,∞) and speeds (vj)j∈N ⊂ Rd. We
define the profiles

Φωj = ω
1
p−1

j Φ
(
ω

1
2
j x
)
, Φωj ,vj = e

1
2
vj ·xΦωj ,

and we define the solitons as

Rj(t, x) = e
i

(
ωjt−

|vj |
2

4
t+ 1

2
vj ·x

)
Φωj(x− vjt) = e

i

(
ωj+

|vj |
2

4

)
t
Φωj ,vj(x− vjt).

For the sake of simplicity in notation we have removed the initial phases and positions
in the definition of the solitons. Instead of having a single profile Φ, we could have
drawn the profile of each soliton from a finite set of profiles {Φ1, . . . ,ΦN}, or even from
an infinite set, provided we assume some bounds on the profiles.
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The train profile is simply

R∞(t, x) =
∞∑
j=1

Rj(t, x).

This definition requires a little more care than for the finite sum of solitons. First of all,
it may very well be that the sum is infinite. Indeed, we have

‖Rj(t)‖L∞ = ‖Φωj‖L∞ ' ω
1
p−1

j .

To have a proper definition for the profile R∞, we require at least that ωj → 0 as j →∞
and

∑∞
j=1 ω

1
p−1

j <∞. In fact, we will need some integrability of the profile for our proof.
For q ∈ [1,∞], we have

‖Rj(t)‖Lq = ‖Φωj‖Lq ' ω
1
p−1
− d

2q

j .

So integrability of R∞ in Lq(Rd) holds if
∑∞

j=1 ω
1
p−1
− d

2q

j < ∞. Since ωj → 0 as j → ∞,
the previous sum can be finite only if 1

p−1
− d

2q
> 0, i.e. q > (p−1)d

2
. In particular, if

p > 1 + 4
d
, then the profile R∞ cannot be in L2(Rd). We will require the following

assumption.

Assumption 3.10 (Integrability). There exists r0 ∈
(
d(p−1)

2
, p+ 1

)
such that

∞∑
j=1

ω
1
p−1
− d

2r0
j <∞.

Remark 3.11. The lack of integrability of the profile R∞ could be even worse when one
considers its spatial derivative. Indeed,

‖∇Rj(t)‖L∞ = ‖vj · ∇Φωj + Φωj‖L∞ ' (|vj|+ 1)ω
1
p−1

j ,

and the apparence of the speed |vj| weakens the decay if the sequence (vj) is unbounded.

In the finite multi-soliton case, it is enough to assume that the speeds are different to
ensure that the interactions between solitons is exponentially decaying in time. How-
ever, with infinitely many solitons, the separation of speeds requirement is not anymore
sufficient to ensure the exponential smallness of the interactions. Recall that Φ decays
at least like e−

1
2
|x|, therefore the interaction between two solitons is measured by

|Rj(t, x)Rk(t, x)| . ω
1
p−1

j ω
1
p−1

k e−
1
2
ωj |x−vjt|e−

1
2
ωk|x−vkt| ≤ max{ωj, ωk}

2
p−1 e

1
2

min{ωj ,ωk}(|vj−vk|t).

To ensure that the constant in the exponential remains strictly positive, we will assume
the following control.
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Assumption 3.12 (High Relative Speeds). The following holds:

v? = min
j,k∈N,j 6=k

ωj|vj − vk| > 0.

Formally, we look for a solution u = R∞ + η of (NLS). Since each Rj satisfies (NLS),
this means that we want η to verify

iηt + ∆η + f(R∞ + η)− f(R∞) = −
(
f(R∞)−

∞∑
j=0

f(Rj)

)
.

In Duhamel formulation with data 0 at infinity, the equation for η becomes

η(t) = Ψ(η)(t) = −i
∫ ∞
t

e−i(t−s)∆ ((f(R∞ + η)− f(R∞)) +H) (s)ds,

where H = f(R∞)−
∞∑
j=0

f(Rj). (3.13)

The main result of this section is the following.

Theorem 3.13 (Infinite Trains). Assume Assumptions 3.10 and 3.12. There exist con-
stants α > 0 and v] � 1 such that if v? > v] then there exists a (unique) solution
η ∈ S(0,∞) to (3.13) such that for all t ≥ 0 we have

‖η‖S(t,∞) + ‖η(t)‖Lp+1 ≤ e−αv?t.

Theorem 3.13 gives us a solution u = R∞ + η of (NLS) which behaves at large time
as an infinite train of solitary waves. Here, the notion of solution has to be understood
in a weaker sense, as the function u = R∞ + η is only in L∞t L

(p+1)−
x ∩ L∞tx .

The uniqueness holds only in the class of functions η such that

‖η‖S(t,∞) + ‖η(t)‖Lp+1 ≤ e−αv?t.

Remark 3.14. • We have the following choice of parameters verifying Assumption
3.10 and v? > 0:

ωj = 2−j, vj = 2j v̄, v̄ ∈ Rd, |v̄| = v?.

• Assumptions 3.10 and 3.12 are naturally satisfied if the profile R∞ is replaced by
a finite sum of solitons RN , and the results of Theorem 3.13 also hold under the
same hypotheses. In that case, we recover the results obtained in Theorem 3.1.

The proof of Theorem 3.13 relies on a generic perturbation argument.

Proposition 3.15. Let 1 < p < 1 + 4/(d − 2)+. Let f(z) = |z|p−1z. Take W :
[0,∞) × Rd → C and H : [0,∞) × Rd → C such that there exist C1 > 0 and λ > 0
verifying for any t ∈ [0,∞) the estimate

‖W (t)‖Lp+1 + eλt‖H(t)‖
L
p+1
p
≤ C1.
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Consider the equation

η(t) = i

∫ ∞
t

ei(t−s)∆(f(W + η)− f(W ) +H)ds. (3.14)

There exists λ? � 1 such that if λ > λ? then there exists a unique η solution of (3.14)
on [0,∞) such that for any t ≥ 0 we have

‖η(t)‖Lp+1 ≤ C1e
−λt.

Moreover, for any t ≥ 0 the solution η satisfies

‖η‖S(t,∞) . e−λt.

It can be proved that (W,H) defined by

W = R∞, H = f(R∞)−
∞∑
j=0

f(Rj)

verify the hypotheses of Proposition 3.15, which thus implies Theorem 3.13. In what
follows, we give a streamlined proof of Proposition 3.15. For a detailed proof and further
results, we refer to [LeLiTs15, LeTs14].

Proof of Proposition 3.15. We write (3.14) as η = Ψ(η). We show that, for λ sufficiently
large, Ψ is a contraction in the ball

B =
{
η ∈ L∞t Lp+1

x :
∥∥eλt‖η(t)‖Lp+1

x

∥∥
L∞t (0,∞)

≤ C1

}
.

First, we prove that Ψ maps B into B. Define θ by

θ = d

(
1

2
− 1

p+ 1

)
.

By assumption, we have 1 < p < 1 + 4/(d − 2)+, therefore θ ∈ (0, 1). Recall that
f(z) = |z|p−1z verifies for all z1, z2 ∈ C the inequality

|f(z1)− f(z2)| . |z1 − z2|
(
|z1|p−1 + |z2|p−1

)
.

Therefore, we have

|f(W + η)− f(W )| . |η|
(
|W |p−1 + |η|p−1

)
.

Using this inequality and the dispersive estimate, we obtain

‖Ψ(η)(t)‖Lp+1 .
∫ ∞
t

|t− s|−θ
(
‖|W |p−1η‖

L
p+1
p

+ ‖|η|p‖
L
p+1
p

+ ‖H‖
L
p+1
p

)
ds.
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From Hölder inequality and combining with the assumptions on (W,H), we get

‖Ψ(η)(t)‖Lp+1 .
∫ ∞
t

|t− s|−θ
(
‖W‖p−1

Lp+1‖η‖Lp+1 + ‖η‖pLp+1 + ‖H‖
L
p+1
p

)
ds

.
∫ ∞
t

|t− s|−θ
(
Cp−1

1 C1e
−λs + Cp

1e
−λps + C1e

−λs) ds ≤ CC1e
−λtI1,

where C = C(d, p) and I1 is defined by

I1 = Cp−1
1

∫ ∞
0

τ−θe−λτdτ + Cp−1
1

∫ ∞
0

τ−θe−λpτdτ +

∫ ∞
0

τ−θe−λτdτ.

By a change of variable, we observe that∫ ∞
0

τ−θe−λτdτ =
1

λ1−θ

∫ ∞
0

τ−θe−τdτ.

Therefore, for λ large enough we have

CI1 ≤ 1.

Hence ‖Ψ(η)(t)‖Lp+1 ≤ C1e
−λt and Ψ maps B into B. Using similar arguments, we can

also prove that Ψ is a contraction on B. As a consequence, there exists a unique η ∈ B
such that

η = Ψ(η).

Having obtained the existence of the fixed point η in B, we now consider the properties
of η in the Strichartz space. Let a be such that

2

a
+

d

p+ 1
=
d

2
.

Since 1 < p < 1 + 4/(d− 2)+, we have 2 < a <∞. By Strichartz estimates, for all t ≥ 0
we have

‖η‖S([t,∞)) . ‖|η|(|W |p−1 + |η|p−1)‖
L

a
a−1
τ L

p+1
p

x ([t,∞))
+ ‖H‖

L
a
a−1
τ L

p+1
p

x ([t,∞))

. ‖W‖p−1

L∞τ L
p+1
x ([0,∞))

‖η‖
L

a
a−1
τ Lp+1

x ([t,∞))
+ ‖η‖p

L
a(p+1)
a−1

τ Lp+1
x ([t,∞))

+ ‖H‖
L

a
a−1
τ L

p+1
p

x ([t,∞))

. e−λt.

This concludes the proof.

3.3 Stability and Instability

Having obtained the existence of multi-soliton solutions of nonlinear dispersive equations,
the next step is to investigate whether or not they are generic objects for the dynamics
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of the corresponding equations, i.e. if they are stable of not. It is relatively natural
to expect that, at least when the interactions are local and the composing solitons
are exponentially decaying at infinity, a multi-soliton solution will be stable if all the
composing solitons are stable, and it will be unstable if at least one of the composing
solitons is unstable. In practice, proving that a multi-soliton containing an unstable
soliton is unstable is already a delicate task, that we carry out in Section 3.3.1 for excited
multi-solitons of the nonlinear Schrödinger equation. It is even harder to prove that a
multi-soliton containing only stable solitons will also be stable, and usually one needs
to use extra monotonicity properties of the equation to obtain the result. In Section
3.3.2, we obtain the stability of a family of multi-solitons for the derivative nonlinear
Schrödinger equation.

3.3.1 Instability of Multi-Solitons of NLS

In this section, we prove the instability of a multi-soliton containing a linearly unstable
soliton. This result was obtained in collaboration with Raphaël Côte [CoLe11].

We place ourselves in the following setting. The nonlinear Schrödinger equation is
considered with a nonlinearity f(z) = g(|z|2)z:{

iut + ∆u+ g(|u|2)u = 0,

u|t=0 = u0,
u : Rt × Rd

x → C, (NLS)

with the nonlinearity g verifying the following assumptions.

(A0) (regularity) The function g is smooth, i.e. g ∈ C∞([0,+∞),R).

(A1) (superlinearity) The function g verifies g(0) = 0, and lims→0 sg
′(s) = 0.

(A2) (H1-subcriticality) There exists p ∈ (1, 2? − 1) such that |s2g′(s2)| . sp−1 (s > 1).

(A3) (focusing property) There exists s0 such that F (s0) >
s20
2
; F (z) :=

∫ |z|
0
g(s2)sds.

The main restriction here on g is the smoothness requirement. If the composing
solitons have positive bound states profile, probably smoothness is needed only for z 6= 0,
which then allows g to be, for example, any subcritical power nonlinearity. For excited
states, g also has to be smooth at z = 0. For power nonlinearities, this restricts to odd
exponents. We can take for example g(|z|2)z = |z|4z in dimension d = 2.

As before, given a frequency ω > 0, a speed v ∈ Rd, an initial phase γ ∈ R, an initial
position x0 ∈ Rd, and a bound state solution Φ ∈ H1 to

−∆Φ + ωΦ− g(|Φ|2)Φ = 0, Φ ∈ H1,

a soliton is a solution of (NLS) traveling on the line x = x0 + vt and given by

R(t, x) := Φ(x− vt− x0)ei(
1
2
v·x− 1

4
|v|2t+ωt+γ).
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Recall that we say that a soliton R is spectrally unstable if there exists an eigenvalue
λ ∈ C with <(λ) > 0 of the linearization L of (NLS) around R (see Section 2.5). Remark
that the spectrum of L is symmetric with respect to the real and imaginary axes, i.e. if
λ is an eigenvalue, then so are −λ, λ̄, and −λ̄.
As a first step to obtain the instability of multi-solitons containing unstable solitons,

we prove the following existence and non-uniqueness result.

Theorem 3.16 (Existence of a one parameter family of multi-solitons). Assume (A0),
(A1), (A2) and (A3). Take a ∈ R and a sum of solitons

R =
N∑
j=1

Rj.

Assume that one of soliton (e.g. R1 ) is spectrally unstable. Define the minimal relative
speed by

v? = min{|vj − vk| : j, k = 1, . . . , N, j 6= k}.
There exists v\ > 0 such that if v? > v\ (large relative speeds) then there exist T0 and u
solution of (NLS) on [T0,+∞) such that for all t ≥ T0 we have

‖u(t)−R(t)− aY (t)‖H1 ≤ Ce−2<(λ)t,

where Y is of the form

Y (t) = e−<(λ)t(cos(=(λ)t)Y1 + sin(=(λ)t)Y2), |Y (t)| & e−<(λ)t,

for λ ∈ C an eigenvalue for the linearized operator around R1 with maximal real part
<(λ) > 0.

As a corollary, we have the following orbital instability result.

Corollary 3.17 (Orbital instability of the multi-soliton). Under the hypotheses of Theo-
rem 3.16, there exists ε > 0, such that for all n ∈ N\{0} and for all T ∈ R the following
holds. There exist In, Jn ∈ R, T ≤ In < Jn and a solution wn ∈ C([In, Jn], H1(Rd)) to
(NLS) such that

lim
n→+∞

‖wn(In)−R(In)‖H1 = 0,

inf
yj∈Rd,ϑj∈R,
j=1,...,N

∥∥∥∥∥wn(Jn)−
N∑
i=1

Φj(x− yj)ei(
1
2
vj ·x+ϑj)

∥∥∥∥∥
L2

≥ ε.

The instability stated in Corollary 3.17 is a forward in time instability. The instability
backward in time is a direct consequence of the existence result of Theorem 3.16 for
a 6= 0. To obtain the instability forward in time, we first use the result of Theorem 3.16
for one unstable soliton to construct a solution starting close to and going away from
this soliton in forward time. Then we use the initial data of this solution to construct
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a new solution, this time starting close to and going away from the sum of solitons in
forward time. We refer to [CoLe11] for the details of the proof.

To prove the existence of a one parameter family of multi-solitons as in Theorem 3.16,
we use a fixed point argument around a good approximation U of a solution of (NLS).
The properties of U are specified in the following proposition.

Proposition 3.18. Take N0 ∈ N and a ∈ R. Then there existWN0 ∈ C∞([0,+∞), H∞(Rd))
such that U = R + WN0 is a solution to (NLS) up to an order O(e−ρ(N0+1)t) when
t→ +∞, i.e.

iUt + ∆U + g(|U |2)U = Err = O(e−ρ(N0+1)t)

Given U as in Proposition 3.18, we define the map

w 7→ Ψ(w) = −i
∫ +∞

t

ei∆(t−τ)(f((U + w)(τ))− f(U(τ))− Err(τ))dτ.

To prove Theorem 3.16, we show that Ψ is a contraction in the space

Xσ
T0,N0

(B) :=

{
w ∈ C((T0,+∞), Hσ)

∣∣∣∣sup
t≥T0

e(N0+1)ρt‖w(t)‖Hσ < B

}
.

We omit the details of the proof of Theorem 3.16 here, and we focus on how to construct
a suitable approximate solution U as in Proposition 3.18.

Proof of Proposition 3.18. The construction is inspired by works of Duyckaerts, Merle
and Roudenko [DuMe08, DuMe09, DuRo10]. As a first step, we look at the linearization
of (NLS) around eiωtΦ(x), assuming that it is our spectrally unstable soliton. If u is a
solution of (NLS) and u = eiωt(Φ(x) + w), then w is a solution of

wt + LCw =MC(w),

where the linear operator LC and the nonlinear partMC are given by

LCw = −i∆w + iωw − idf(Φ).w,

MC(w) = if(Φ + w)− if(Φ)− idf(Φ).w.

We separate LC into real and imaginary parts:

LR2

(
wR
wI

)
=

(
J ∆− ω + I1

−∆ + ω − I2 −J

)(
wR
wI

)
.

with I1, I2 and J real valued potentials.
The profile will be constructed by induction. We start by constructing the profile at

order 1. We complexify the matrix operator LR2 and denote it by LC2 . By assumption,
there exists an eigenvalue of LC2 with positive real part. The essential spectrum of LC2

lies on the imaginary axis away from 0, and it can be proved (see [CoLe11]) that the
eigenvalues of LC2 are located in a compact subset of C. Hence there exists an eigenvalue

λ = ρ+ iθ
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with maximal real part ρ > 0. Let Z be an eigenvector associated with λ and denote

Z =

(
Z+

Z−

)
, Y1 = <(Z), Y2 = =(Z).

We consider the solution Y of
∂tY + LR2Y = 0

given by the explicit expression

Y (t) = e−ρt(cos(θt)Y1 + sin(θt)Y2).

This is our first order solution profile.
Now, to construct the solution at the order N0 ≥ 2, we proceed in the following way.

We look for WN0 in the form

W (t, x) =

N0∑
k=1

e−ρkt

(
k∑
j=0

Aj,k(x) cos(jθt) +Bj,k(x) sin(jθt)

)
.

Remark that

MR2(W ) =

N0∑
κ=2

e−κρt
κ∑
j=0

(
Ãj,κ(x) cos(jθt) + B̃j,κ(x) sin(jθt)

)
+HOT,

where the terms Ãj,κ and B̃j,κ depend only on Aj,k and Bj,k for k ≤ κ− 1 (see [CoLe11]
for details). In addition

(∂tW + LR2W ) =

N0∑
k=1

e−ρkt

(
k∑
j=0

(LR2Aj,k + jθBj,k − kρAj,k) cos(jθt)

+ (LR2Bj,k − jθAj,k − kρBj,k) sin(jθt)

)
.

Therefore to find a satisfying WN0 it is enough to solve for k ≥ 2{
LR2Aj,k + jθBj,k − kρAj,k = Ãj,k,

LR2Bj,k − jθAj,k − kρBj,k = B̃j,k,

which is possible because λ is of maximal real part.

3.3.2 Stability of Multi-Solitons of the Derivative Nonlinear
Schrödinger Equation

Obtaining the stability of a sum of soliton is not an easy task. In addition to the ingre-
dients from the energy method to prove existence, it is necessary to rely on additional
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features of the equation such as monotonicity properties. Stability of a sum of soli-
tary waves has been proved by Martel, Merle and Tsai [MaMeTs02] for the subcritical
Korteweg-de Vries equations. The setting is less favorable for nonlinear Schrödinger
equations and Martel, Merle and Tsai [MaMeTs06] had to work with a tweaked nonlin-
earity to adapt their strategy. Indeed, the monotonicity property required for the proof
holds only for super-critical power-type nonlinearities, whereas stability is expected only
for subcritical nonlinearities. Thus the idea in [MaMeTs06] was to construct a nonlin-
earity which was supercritical at the origin, but subcritical at infinity. As a rule of
thumb, one expects to be able to fully prove stability of a sum of soliton for equations
for which traveling waves and dispersion travel at different speeds. It is the case for the
Korteweg-de Vries equations considered in [MaMeTs02], where dispersion travels to the
left (with negative speed) and solitary waves to the right (with positive speed). For the
Gross-Pitaevskii equation (a 1-D cubic defocusing nonlinear Schrödinger equation with
non-zero boundary conditions), the dispersion travels at speeds v with |v| larger than
1, whereas solitary waves travel at speeds w with |w| smaller than 1. Hence dispersion
and solitary waves are also separated in the Gross-Pitaevskii equation, even though it
is in a more complicated way than for the Korteweg-de Vries equation. In [BeGrSm14],
Bethuel, Gravejat and Smets have been able to obtain the stability of a sum of solitary
waves in the Gross-Pitaevskii equation.

In collaboration with Yifei Wu [LeWu18], I have investigated the case of the derivative
nonlinear Schrödinger equation. Since the equation is critical and admits stable traveling
waves, we were expecting to be able to prove stability of a sum of solitary waves without
having to tweak the nonlinearity. We have indeed been able to obtain this stability result,
with however some restriction on the relation between the speeds and the frequencies of
the solitary waves, which we believe to be technical.

The derivative nonlinear Schrödinger equation takes the following form

iut + uxx + i|u|2ux = 0, (dNLS)

where u : R×R→ C. It appears in various area of physics, for example in the modeling
of Alfvén waves in plasma physics or for the description of ultrashort optical pulses. It
is also a model quasilinear equation [ChLeLi79]. Via the gauge transformation

v(t, x) = exp

(
ia

∫ x

−∞
|u(t, y)|2dy

)
u(t, x),

one can obtain different equivalent forms of the derivative nonlinear Schrödinger equa-
tion. Indeed, if u solves (dNLS), then v defined by the gauge transform solves

ivt + vxx + i(|v|2v)x = 0, if a = −1/2, (3.15)

ivt + vxx − iv2v̄x +
1

2
|v|4v = 0, if a = 1/4, (3.16)

ivt + vxx −
i

2
|v|2vx +

i

2
v2v̄x +

3

16
|v|4v = 0, if a = 1/2. (3.17)

The equation (dNLS) is usually referred to as the Chen-Lee-Liu equation, equation (3.15)
is called the Kaup-Newell equation and (3.16) the Gerdzhikov-Ivanov equation. The last
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form (3.17) has apparently not been christened yet, but it appears in a crucial way in
the analysis of the threshold for blow-up in [Wu13, Wu15].

As the nonlinear Schrödinger equations, the derivative nonlinear Schrödinger equation
may be written in Hamiltonian form. In the Chen-Lee-Liu version (dNLS), a Hamilto-
nian form is

iut = E ′(u),

where
E(u) =

1

2

∫
R
|ux|2dx+

1

4
=
∫
R
|u|2ūuxdx.

In the Kaup-Newell version (3.15), a Hamiltonian form is

vt = ∂xP
′(v),

where
P (v) =

1

2
=
∫
R
vv̄xdx−

1

4

∫
R
|v|4dx.

In terms of u, P is given by

P (u) =
1

2
=
∫
R
uūxdx

and is nothing but the momentum for (dNLS), which is also a conserved quantity.
Combining these two Hamiltonian forms and the gauge transformation one can infer a
bi-Hamiltonian structure for the derivative nonlinear Schrödinger equation [Le09a]. This
indicates that the derivative nonlinear Schrödinger equation is an integrable equation and
as such admits an infinity of conservation laws and is solvable via the inverse scattering
transform (see [ChLeLi79, KaNe78] for earlier works in this direction, and [JeLiPeSu17,
JeLiPeSu18, LiPeSu16, LiPeSu17, PeSh16, PeSaSh17] for recent developments). We
shall however not make use of this specific integrable structure.

The first Hamiltonian formulation for the derivative nonlinear Schrödinger equation
is similar to the one of the classical semi-linear Schrödinger equation, but the second
one is similar to the one of the Korteweg-de Vries equation. Hence one expects that the
derivative nonlinear Schrödinger equation will borrow features from both the nonlinear
Schrödinger equation and the Korteweg-de Vries equation.

As for the usual Schrödinger equations, the energy E, the momentum P (already
defined) and the mass

M(u) =
1

2
‖u‖2

L2

are conserved quantities for (dNLS).
We also have the following scaling invariance. If u solves (dNLS), then for any λ > 0

the function uλ defined by

uλ(t, x) =
1√
λ
u

(
t

λ2
,
x

λ

)
also solves (dNLS). Since

M(uλ) = M(u),
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the derivative Schrödinger equation is mass-critical. However, its dynamics is very
different from the one of its semi-linear mass-critical counterpart the 1D quintic nonlinear
Schrödinger equation. Indeed, the derivative Schrödinger equation is not invariant by
pseudo-conformal transformation, hence there exists no explicit blowing-up solution. In
fact, it is not even known whether or not there exists a blowing-up solution, as the
classical obstruction argument by Glassey [Gl77] based on the virial identity does not
apply here.

The analysis of the well-posedness for the Cauchy problem for (dNLS) was performed
by Hayashi and Ozawa [Ha93, HaOz92]. Using a semi-linear Schrödinger system gener-
ated from the derivative nonlinear Schrödinger equation, they have been able to prove
that for any u0 ∈ H1(R), there exists a unique u ∈ C((−T∗, T ∗), H1(R)) such that
u(0) = u0 and u is a solution of (dNLS). Moreover, the energy, the mass and the mo-
mentum are conserved, and the blow-up alternative holds: if T∗ < ∞ (resp. T ∗ < ∞)
then ‖u(t)‖H1 blows up as t → T∗ (resp. t → T ∗). Using the Gagliardo-Nirenberg in-
equality and conservation of mass and energy, it is not hard to prove that solutions with
mass smaller that π are in fact global. It has long been thought that π was the optimal
threshold for global existence. However, it was recently proved by Wu [Wu13, Wu15]
that the global existence holds in fact for solutions with mass less than 2π. The existence
of blowing-up solution at this threshold or above remains an open problem.
The derivative nonlinear Schrödinger equation admits solitary waves solutions. For all

(ω, c) ∈ R2 such that c2 < 4ω, there exists a unique (up to phase shifts and translations)
solitary wave solution of (dNLS) of the form eiωtφω,c(x−ct). The profile φω,c is explicitly
known and given by the formula

φω,c(x) = ϕω,c(x) exp

(
c

2
ix− i

4

∫ x

−∞
|ϕω,c(ξ)|2dξ

)
where

ϕω,c(x) =

( √
ω

4ω − c2

(
cosh

(
x
√

4ω − c2
)
− c

2
√
ω

))− 1
2

.

It is a critical point of the action functional

Sω,c = E + ωM + cP.

Remark here that the derivative Schrödinger equation is not invariant by Galilean trans-
formation, and it is not possible to transfer information on a solitary wave with speed
c 6= 0 from a standing wave (with c = 0).
The stability analysis for the solitary waves of (dNLS) was performed by Colin and

Ohta [CoOh06] (see also [GuWu95] for an earlier result). They proved that for any
(ω, c) ∈ R2 such that c2 < 4ω, the solitary wave eiωtφω,c(x− ct) is orbitally stable for the
flow of (dNLS), in the sense that for any ε > 0 there exists δ > 0 such that if u0 ∈ H1(R)
verifies

‖u0 − φω,c‖ < δ,
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then for all t ∈ R the associated solution of (dNLS) verifies

inf
θ∈R
y∈R

∥∥u(t)− eiθφω,c(· − y)
∥∥
H1 < ε.

At the threshold c2 = 4ω, there does not exist solitary waves if c = −
√

2ω. If c =
√

2ω,
then there exists a (unique) solitary wave with profile given by

ϕc =
√
cϕ1(cx), ϕ1(x) =

2
3
2√

1 + 4x2
.

We call this type of solitary wave the lump solitary wave. The intrinsic difference with
the case c2 < 4ω is the algebraic (and not exponential) decay at spatial infinity. This
is related to the absence of a spectral gap in the linearized action around the lump.
Consequently, stability cannot follow from the usual method. A weaker orbital stability
result (with scaling added) has been proved by Kwon and Wu [KwWu17].

Let N ∈ N. For j = 1, . . . , N let ωj ∈ (0,∞), cj ∈ (−2
√
ωj, 2
√
ωj). Let (φj) = (φωj ,cj)

be the corresponding solitary wave profiles. Recall that a multi-soliton with the above
parameters is a solution u of (dNLS) such that

lim
t→∞

∥∥∥∥∥u(t)−
N∑
j=1

eiωjtφj(x− cjt)
∥∥∥∥∥
H1

= 0.

Due to integrability of (dNLS), the existence of multi-solitons can be obtained via
the inverse scattering transform and explicit calculations [NaCh80]. Very recently, by
developing a set of tools linked to the integrability of the equation, Liu, Perry and
Sulem [JeLiPeSu17] have been able to obtain an outstanding result of soliton resolution
for the derivative nonlinear Schrödinger equation. A by-product of their result is the
asymptotic stability of multi-soliton configurations. The work [JeLiPeSu17] is set in the
weighted space

H2,2(R) = {u ∈ L2(R) : uxx ∈ L2(R), x2u ∈ L2(R)}.

This weighted space does not contain the lump soliton which decays too slowly. Since the
lump soliton is a good candidate for a possible blow-up profile, having global existence
in H2,2(R) does not preclude the possibility of blow-up in H1(R). Similarly, stability in
H2,2(R) does not imply stability stability inH1(R). In [LeWu18], we have been interested
in the orbital stability of multi-soliton configurations in the energy space H1(R). Our
technique does not rely on integrability and can be used in other settings. As a matter
of fact, a result of stability for two solitons configurations was obtained with a similar
technique for the generalized derivative NLS by Tang and Xu [TaXu18].
Our result is the following.

Theorem 3.19. Assume that for j = 2, . . . , N we have

2
ωj − ωj−1

cj − cj−1

> 0, cj−1 < 2
ωj − ωj−1

cj − cj−1

< cj. (3.18)
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For all ε > 0 there exists δ > 0 such that the following holds. If there exist parameters
(θj, xj) ⊂ R2 such that ∥∥∥∥u0 −

N∑
j=1

eiθjφj(· − xj)
∥∥∥∥
H1

≤ δ,

then there exist C1 functions x̃1(t), . . . , x̃N(t) ∈ R, and θ̃1(t), . . . , θ̃N(t) ∈ R, such that
for all t ≥ 0, ∥∥∥∥u(t)−

N∑
j=1

eiθ̃j(t)φj(· − x̃j(t))
∥∥∥∥
H1

≤ ε.

We can in fact describe more precisely the laws followed by the modulation parameters.
Indeed, θ̃j and x̃j verify the dynamical laws

∂tx̃j ∼ cj, ∂tθ̃j ∼ ωj.

The condition (3.18) is assumed for technical purposes. It has several important con-
sequences. First, the solitons must travel to the right, i.e. cj > 0 for all j = 2, ..., N ,
except maybe for the first one for which we can allow c1 < 0. The frequencies (and
thus the size of the solitons) need to be increasing ω1 < ω2 < · · · < ωN . These features
are reminiscent from what happens for the Korteweg-de Vries equation, for which all
solitons travels to the right, and the fastest is also the largest one. We can easily find
sets of parameters for which (3.18) is satisfied, for example

ωj = j2 + 1, cj = 2j, j = 1, . . . , N.

We do not cover the case c = 2
√
ω. Indeed, lump solitons are significantly different from

the other solitons (algebraic decay, weaker stability, etc.) and cannot be included in the
analysis.

Our strategy for the proof of Theorem 3.19 is adapted from the work of Martel, Merle
and Tsai on the twisted nonlinear Schrödinger equation [MaMeTs06] and is the following.
We obtain a bootstrap argument which, combined to the continuity of the flow, allows
to obtain the desired stability. The proof of the bootstrap result itself combines several
arguments. First, we obtain a coercivity property for the linearized action around a
solitary wave, up to orthogonality conditions. Then we extend this coercivity property to
a global linearized action defined by gluing together localized linearized actions around
each solitary wave. Modulation theory and monotonicity properties allow us to deal
with the orthogonality conditions and the control of modulation parameters. A stability
result for the two-solitons of the derivative nonlinear Schrödinger equation was obtained
independently with a similar strategy by Miao, Tang and Xu [MiTaXu17].

The bootstrap argument goes as follows.
Given A0, L, δ > 0, define a tubular neighborhood of the N -soliton profile by

V(δ, L,A0) =

{
u ∈ H1(R); inf

xj>xj−1+L
θj∈R

∥∥∥u− N∑
j=1

eiθjφj(· − xj)
∥∥∥
H1

< A0δ

}
.

We have the following bootstrap result.
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Proposition 3.20 (Bootstrap). There exists A0 > 1, fixed, such that for all L � 1,
0 < δ � 1 the following property is satisfied. If t? > 0 is such that for all t ∈ [0, t?] the
solution u of (dNLS) with u(0) = u0 verifies

u0 ∈ V(δ, L, 1), u(t) ∈ V(δ, L,A0), (3.19)

then for all t ∈ [0, t?] we have

u(t) ∈ V
(
δ, L,

A0

2

)
. (3.20)

From now on, we assume (3.19). Our aim is to present the main arguments that allow
us in [LeWu18] to show that in fact (3.20) holds.

One of the main task in our work [LeWu18] was to obtain the following coercivity
property for single solitary waves of (dNLS).

Proposition 3.21 (Coercivity for one solitary wave). For any ω, c ∈ R with 4ω > c2,
there exists µ ∈ R such that for any ε ∈ H1(R) verifying the orthogonality conditions

(ε, iφω,c)L2 = (ε, ∂xφω,c)L2 = (ε, φω,c + iµ∂xφω,c)L2 = 0,

we have
Hω,c(ε) :=

〈
S ′′ω,c(φω,c)ε, ε

〉
& ‖ε‖2

H1 .

If c < 0, then we can choose µ = 0. As a consequence of Proposition 3.21, we have
the orbital stability of solitary waves.

Corollary 3.22 (Orbital Stability). Solitary waves of (dNLS) with ω > c2/4 are or-
bitally stable.

The orbital stability of solitary waves in [CoOh06] was obtained by a different method
and the coercivity result Proposition 3.21 was not available in the literature. It was in
fact relatively subtle to obtain, as the parameter µ cannot be equal to 0 if c > 0. We
refer to [LeWu18] for the details of the proof of Proposition 3.21.
The stability that we want to obtain is orbital, meaning that a solution starting close

to a sum of solitary waves will remain close to a sum of solitary waves, possibly shifted
i.e. modulated. The modulation parameters are constructed via the implicit function
theorem. We have the following modulation result.

Proposition 3.23 (Modulation). Take δ, 1/L � 1. For j = 1, . . . , N there exist
(unique) C1-functions

θ̃j, ω̃j, x̃j, c̃j : [0, t?]→ R,

such that if we define modulated solitons R̃j and ε by

R̃j(t) = eiθ̃(t)φω̃j(t),c̃j(t)(· − x̃j(t)), ε(t) = u(t)−
N∑
j=1

R̃j(t),
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3 Finite and Infinite Soliton Trains

then ε satisfies for all t ∈ [0, t?] the orthogonality conditions(
ε, iR̃j

)
L2

=
(
ε, ∂xR̃j

)
L2

=
(
ε, R̃j + µji∂xR̃j

)
L2

= 0, j = 1, . . . , N.

Moreover, there exists C̃ > 0 such that for all t ∈ [0, t?] we have

‖ε(t)‖H1 +
N∑
j=1

(|ω̃j(t)− ωj|+ |c̃j(t)− cj|) ≤ C̃A0δ.

At t = 0 the estimate does not depend on A0 and

‖ε(0)‖H1 +
N∑
j=1

(|ω̃j(0)− ωj|+ |c̃j(0)− cj|) ≤ C̃δ.

The scaling and speed parameters are chosen to verify for all t ∈ [0, t?] and for any
j = 1, . . . , N the relationship

c̃j(t)− cj = µj(ω̃j(t)− ωj).

The set of modulation parameters verifies the following dynamical law

N∑
j=1

|∂tc̃j|+ |∂tω̃j|+
∣∣∣∂tθ̃j − ω̃j∣∣∣+ |∂tx̃j − c̃j| ≤ C̃‖ε(t)‖H1 +HOT.

As for the proof of the existence of multi-soliton, we define a global linearized action.
Let χj be a cut-off function localized around the j-th soliton. Set

Ij(t) =

∫
R

(
ω̃j|u|2 + c̃j=uūx

)
χj(t)dx, S(t) = E(u(t)) +

N∑
j=1

Ij(t).

We have the following Taylor-like expansion of the global action.

Proposition 3.24 (Taylor Expansion). We have

S(t) =
N∑
j=1

Sj(φω̃j(0),c̃j(0)) +
1

2
H(t) +

N∑
j=1

O
(
|ω̃j(t)− ω̃j(0)|2

)
+HOT,

for H defined by

H(t) = ‖εx‖2
L2 +

N∑
j=1

=
∫
R
|R̃j|2ε̄εx + R̃j∂xR̃j(ε̄)

2 + R̃j∂xR̃j|ε|2dx

+
N∑
j=1

(
ω̃j(t)

∫
R
|ε|2χjdx+ c̃j(t)=

∫
R
εε̄xχjdx

)
.
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3 Finite and Infinite Soliton Trains

Moreover, the global linearized action H is coercive, as a consequence of the coercivity
result Proposition 3.21.

Proposition 3.25 (Coercivity). For all t ∈ [0, t?], we have

H(t) & ‖ε‖2
H1 .

As a consequence, we have the following control on the distance of u to the sum of
modulated solitary waves.

Corollary 3.26. For all t ∈ [0, t?],

‖ε(t)‖2
H1 .

1

L
sup
s∈[0,t]

‖ε(s)‖2
L2 +

N∑
j=1

|ω̃j(t)− ω̃j(0)|2 +HOT.

It remains to find a way to control the modulation parameters. To this aim, we prove
a monotonicity result. This is the key point where the critical nature of (dNLS) is
favorable compare to the Schrödinger equations with power type nonlinearities. This is
also for the proof of this Proposition that we need the technical assumption (3.18).

Proposition 3.27 (Monotonicity One). If δ, 1/L� 1, then for all t ∈ [0, t?],

I(t)− I(0) .
1

L
sup
s∈[0,t]

‖ε(s)‖2
L2 +HOT,

where the functional I is given by

I(t) = ω̃1(0)M(u) + c̃1(0)P (u) +
N∑
j=2

(c̃j(0)− c̃j−1(0))Ij(t).

Using the modulation result to expand in the definition of I (see [LeWu18] for details),
we make the modulation parameters appear, and we obtain the following result.

Corollary 3.28 (Control of the Modulation Parameters). For all t ∈ [0, t?],

N∑
j=1

|ω̃j(t)− ω̃j(0)| . sup
s∈[0,t]

‖ε(s)‖2
H1 +HOT.

Combining Corollaries 3.26 and 3.28 gives the desired result.
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4 On Blow-Up and Stability

We present in this chapter a series of results on nonlinear dispersive partial differential
equations or systems of Schrödinger type. In Section 4.1, we show the existence of a
minimal mass blow-up solution for a nonlinear Schrödinger equation with a double power
nonlinearity. The surprising feature of this result is the non-standard blow-up speed of
the solution constructed. In Section 4.2, we investigate the Cauchy problem and the
stability of stationary solutions of a singularly perturbed Gross-Pitaevskii equation,
i.e. a nonlinear Schrödinger with a delta potential and set with non-zero boundary
condition. In Section 4.3, we are interested in the stability properties of the periodic (in
space) standing waves of one dimension cubic nonlinear Schrödinger equations. For our
investigations we use a variety of tools ranging from variational analysis to numerical
studies. In Section 4.4, the object of study are multi-components traveling waves of
nonlinear Schrödinger systems. Finally, in Section 4.5, we present two results of stability
of standing waves for semi-classical equations.

4.1 Blow-Up for a Double Power Nonlinear
Schrödinger Equation

The study of singularity formation in nonlinear Schrödinger equations has been the
subject of intensive investigations since the beginning of the 80s. In this section, we
present a result highlighting the existence of solutions blowing up at a speed which is
neither the conformal one nor the log-log one.

We consider the double-power nonlinear Schrödinger equation{
iut + ∆u+ |u| 4du+ η|u|p−1u = 0,

u|t=0 = u0,
u : Rt × Rd

x → C, η = {−1, 0, 1}. (4.1)

When η = 0, the blow-up behavior of (4.1) is (relatively) well-known, at least at the
minimal mass threshold and around the ground state and we will review some know
results shortly in the next pages. In problem (4.1), we are interested by the effect on the
blow-up of the second power when η = ±1. If p is super-critical, i.e. if p > 1 + 4

d
, then

we expect the new power to dominate the blow-up dynamics. Little is known in this
case. Hence we assume that the power is sub-critical, i.e. p < 1 + 4

d
and we investigate

how the new power modifies the blow-up at the minimal mass level.
From the classical theory of nonlinear Schrödinger equations which was recalled in

Chapter 2, the nonlinear Schrödinger equation (4.1) is locally well-posed in H1(Rd), i.e.
for any u0 ∈ H1(Rd) there exists a unique maximal solution u ∈ C((−T∗, T ∗), H1(Rd))∩
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4 On Blow-Up and Stability

C1((−T∗, T ∗), H−1(Rd)) of (4.1) with u(0) = u0. Moreover, we have conservation of the
energy and the mass, given by

E(u) =
1

2
‖∇u‖2

L2 −
1

2 + 4
d

‖u‖2+ 4
d

L2+ 4
d
− η

p+ 1
‖u‖p+1

Lp+1 , M(u) =
1

2
‖u‖2

L2 ,

and the blow-up alternative holds: If T ∗ <∞ (resp. T∗ <∞), then

lim
t→T ∗

(resp. t→T∗)

∫
Rd
|∇u|2dx =∞.

Conservation of mass and energy combined with Gagliardo-Nirenberg inequalities lead
to the following global well-posedness result. Let Q ∈ H1(Rd) be the unique positive
radial solution of

−∆Q+Q− |Q| 4dQ = 0.

Then Q is the optimizer for the Gagliardo-Nirenberg inequality (see [We83])

‖u‖2+ 4
d

L2+ 4
d
≤ C

2+ 4
d

GN ‖u‖
4
d

L2‖∇u‖2
L2 , C

2+ 4
d

GN =
2 + 4

d

2‖Q‖
4
d

L2

. (4.2)

Using conservation of energy and mass, the critical Gagliardo-Nirenberg inequality (4.2)
and the Gagliardo-Nirenberg inequality (2.3) for p+ 1, one shows that if u0 ∈ H1(Rd) is
such that ‖u0‖L2 < ‖Q‖L2 , then the associated solution u of (4.1) is globally well-posed
(independently of η), i.e. T∗ = T ∗ = ∞. Moreover, when η = 0, it was proved by
Dodson [Do15] that scattering holds for any solution with ‖u0‖L2 < ‖Q‖L2 .
It is natural to ask what happens at the threshold ‖u0‖L2 = ‖Q‖L2 . In particular,

does there exist a minimal mass blow-up element, i.e. a blowing up solution of (4.1)
with ‖u0‖L2 = ‖Q‖L2 ?
When η = 0, i.e. in the usual L2-critical nonlinear Schrödinger equation, the pseudo-

conformal transform of the solitary wave solution eitQ provides us with a family of
blowing up solutions. In particular, the function

S(t, x) =
1

|t| d2
Q

(
x

|t|

)
e−i

|x|2
4|t| e

i
|t| ,

is a solution of (4.1), has minimal mass and blows up at T = 0 at speed 1
|t| , precisely,

‖S(t)‖L2 = ‖Q‖L2 , ‖∇S(t)‖ ∼
t∼0−

1

|t| .

A classification result was obtained by Merle [Me93] for solutions with threshold mass:
If a solution u of (4.1) is such that

‖u0‖L2 = ‖Q‖L2 , T ∗ <∞,
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then, up to the symmetries of the flow, u is the pseudo-conformal blowing up solution,
i.e.

u ≡ S.

Away from the minimal mass threshold, solutions were constructed by perturbation
of S by Bourgain and Wang [BoWa97]. Roughly speaking, they obtained solutions in
the following form. Given u∗ flat at x = 0, there exists a solution u of (4.1) such that

(u− S)(t)→ u∗ as t→ 0.

These solutions were found to be unstable by Merle, Raphaël and Szeftel [MeRaSz14],
in the sense that for each of these Bourgain-Wang solutions there exists a continuous
curve passing through the solution and consisting of solutions blowing up with log-log
speed (see below) on one side and global solutions on the other side.

Beside solutions blowing up at the pseudo-conformal speed |t|−1, another family of
solutions exists, consisting of solutions blowing up at the so-called log-log speed, i.e.

‖∇u‖L2 ∼
t→T ∗

√
ln|ln(T ∗ − t)|

T ∗ − t .

An extensive study of this blow-up dynamics has been performed in a series of paper
by Perelman [Pe01] and by Merle and Raphaël [MeRa03, MeRa04, MeRa05, MeRa06,
Ra05]. In particular, it has been shown that this type of blow-up dynamics is stable.

In the case η = −1, the situation is rather simple, as global existence holds at the
minimal mass threshold.

Proposition 4.1. Set η = −1. If u0 ∈ H1(Rd) is such that ‖u0‖L2 = ‖Q‖L2, then the
associated solution of (4.1) is global and bounded in H1(Rd).

Proposition 4.1 is a consequence of the conservation of energy combined with a com-
pactness argument. We omit the proof here and refer to [LeMaRa16]. The following
result shows that the threshold ‖u0‖L2 = ‖Q‖L2 for global existence is optimal.

Proposition 4.2. Set η = −1. For every δ > 0 there exists u0 ∈ H1(Rd) such that
‖u0‖L2 = ‖Q‖L2 + δ and the associated solution of (4.1) blows-up in finite time.

Combining Propositions 4.1 and 4.2, we infer that there exists no minimal blow-up
mass solution when η = −1. Proposition 4.2 is proved using conservation of energy and
the virial identity (see [LeMaRa16]).
When η = 1, the situation is different and there indeed exists a minimal blow-up mass

solution. I obtained the following result in collaboration with Yvan Martel and Pierre
Raphaël [LeMaRa16].

Theorem 4.3. Set η = 1. Let d = 1, 2, 3 and 1 < p < 1 + 4
d
. Then for all energy level

E0 ∈ R, there exist t0 < 0 and a radially symmetric Cauchy data u(t0) ∈ H1(Rd) with

‖u(t0)‖L2 = ‖Q‖L2 , E(u(t0)) = E0,
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such that the corresponding solution u(t) of (4.1) blows up at time T ∗ = 0 with speed:

‖∇u(t)‖L2 =
C(p) + ot↑0(1)

|t|σ

for some universal constants

σ =
4

4 + d(p− 1)
∈
(

1

2
, 1

)
, C(p) > 0.

Uniqueness of the minimal mass blowing up solution was proved for the inhomogeneous
nonlinear Schrödinger equation in [RaSz11]. For the double power nonlinear Schrödinger
equation (4.1), proving uniqueness seems not to be an easy task and we have not pursued
in this direction.
The description of the blowing up solution of Theorem 4.3 is in fact very precise. We

have
u(t, x) =

1

λ
d
2 (t)

Q

(
x

λ(t)

)
e−iσ

|x|2
4t eiγ(t) + v (t, x) ,

where γ is a phase factor, v is a remainder in the L2 sense and the blow-up is driven by
λ as follows:

lim
t→0
‖v(t)‖2 = 0, λ(t) ∼ Cp|t|σ as t→ 0−.

If we make p vary from 1 to 1 + 4
d
, the blow-up rate |t|σ will vary continuously from |t|−1

(the conformal rate) to |t|− 1
2 (almost the log-log speed).

The key difference between the equation (4.1) with the focusing-focusing double power
nonlinearity (η = 1) and the L2 critical pure power nonlinearity (η = 0) is the absence
of scaling invariance in the former.

Understanding what kinds of blow-up speeds are possible for nonlinear Schrödinger
equations is still a widely open question. There has been recent progress by Martel and
Raphaël [MaRa15]. In the case of the L2-critical nonlinear Schrödinger equation, they
have been able to show the existence of solutions blowing up in infinite time at rate ln(t)
as t→∞. Via the pseudo-conformal transformation, this also yields the existence of a
solution blowing up in finite time at T = 0 at rate ln(|t|)|t|−1, a rate which is strictly
above the conformal one.
The proof of Theorem 4.3 goes as follows. We adapt the strategy introduced by

Raphaël and Szeftel [RaSz11] for the construction of minimal mass blowing up solu-
tions for the inhomogeneous L2-critical nonlinear Schrödinger equation. We first con-
struct a suitable blow-up profile U(t, x). Here lies the main difficulty compare to the
work [RaSz11], as the construction of the blow-up profile in the case of (4.1) has to be
done at any order of precision. The desired solution is then obtained by a backward
resolution of (4.1) before the blow-up time (which is set at T = 0) (rather than a fixed
point argument as in [BaCaDu11]): take an increasing sequence of times (tn) such that
tn → 0 as n→∞, and define un as the solution of (4.1) such that un(tn) = U(tn). Using
backward uniform estimates on un−U and a compactness argument, we are able to show
the existence of t0 < 0 and a solution u of (4.1) such that un → u uniformly on [t0, 0).
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The solution u is the desired solution. The uniform estimates are obtained after the
construction of a suitable Lyapunov functional controlling the difference un − U up to
orthogonality conditions. The orthogonality conditions are dealt with using modulation
theory. Solving the dynamical system for the modulation parameters leads us to the
new blow-up speed.

In the following, we indicate the first steps of the construction of the blow-up profile
U . The analysis presented here is only formal and we refer to [LeMaRa16] for rigorous
justifications.

As usual in the analysis of blow-up behaviors, we first rescale the problem by setting

u(t, x) =
1

λ
d
2 (s)

w(s, y)eiγ(s)−i b(s)|y|
2

4 ,
ds

dt
=

1

λ2
, y =

x

λ(s)
.

Here, λ, γ and b are modulation parameters whose values are to be determined later. If
u solves (4.1), then w solves

iws + ∆w − w + |w| 4dw
+λα|w|p−1w

−i
(
b+

λs
λ

)
Λw + (1− γs)w + (bs + b2)

|y|2
4
w − b

(
b+

λs
λ

) |y|2
2
w = 0,

(4.3)

where α = 2− d(p−1)
2
∈ (0, 2). If u is a blowing up solution of (4.1) with blow-up speed

driven by λ, then we expect w to be a global and bounded solution of (4.3). Constructing
a blow-up profile for (4.1) is equivalent to constructing a global and bounded solution
of (4.3) with a choice of modulation parameters such that λ→ 0 as s→∞ (i.e. t→ 0).
In the way we presented (4.3), one can readily see that a first order approximation is
given by

w(s, y) = Q(y), b+
λs
λ

= bs + b2 = 1− γs = 0.

After solving the dynamical system for the modulation parameters, one realizes that, in
the original variables, this solution is simply the pseudo-conformal blowing up solution S.
When taking w above defined as solution of (4.3), the error is λα|Q|p−1Q. This error

is too big for our purposes, and we try to refine the profile. Thus we make the ansatz
w = Q+ λαP̃1, substitute into the equation and realize that P̃1 needs to solve

L+P̃1 = Qp,

where L+ = −∆+1−
(
1 + 4

d

)
Q

4
d . Such a P̃1 can be found because it is well-known that

L+ invertible for radial functions. We keep the same modulation equations and the new
error is given by

iα
λs
λ
λαP̃1 = −iαbλαP̃1.

For the third order expansion, we make the ansatz w = Q + λαP̃1 + ibλαP2, substitute
into the equation and realize that P2 needs to solve

L−P2 = −αP̃1,
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where L− = −∆+1−Q 4
d . The operator L− is invertible on Q⊥, however we do not have

(P1, Q) = 0. To solve this problem, the solution introduced in [RaSz11] is to modify the
modulation law. We introduce a new P1 defined by

L+P1 = Qp + β
|y|2
4
Q,

where the parameter β is chosen such that

−1

2

(
Qp + β

|y|2
4
Q,ΛQ

)
L2

= (P1, Q)L2 = 0.

To compensate for the introduction of β, we replace the modulation law bs + b2 = 0 by

bs + b2 − βλα = 0.

The process can be continued indefinitely, with modifications in the modulation equation
for b each time the operator L− appears.

We now give some heuristics on how to solve the dynamical system solved by the
modulation parameters. For simplicity, we only consider here the exact system verified
at the first order of approximation:

bs + b2 − βλα = 0,

b+
λs
λ

= 0,

1− γs = 0,

ds

dt
=

1

λ
.

We first solve in s the system for b and λbs + b2 − βλα = 0,

b+
λs
λ

= 0.

We introduce the quantity µ = λ−1. It is easy to see that µ satisfies

µss − βµ1−α = 0.

After multiplying by µs and integrating we get

1

2
µ2
s −

β

2− αµ
2−α = 0,

where the integration constant has been chosen to be 0 (otherwise it would lead to a
lower order correction). At this point, we can note that we necessarily have β > 0. Then

µs

µ
2−α
2

=

√
2β

2− α.

58



4 On Blow-Up and Stability

Hence, we get

µ
α
2 =

(
α

2

√
2β

2− α

)
s,

where we have chosen the integration constant to be 0. Note that, since we expect µ > 0,
we need here to have α

2
= 1− d(p−1)

4
> 0, i.e. p < 1 + 4

d
. Therefore, we have

λ =

(
α

2

√
2β

2− α

)− 2
α

s−
2
α

and
b = −λs

λ
=

2

α
s−1.

In particular,
λα ∼ b2 ∼ bs.

Let us now come back to the original time variable. We have

ds

dt
=

1

λ2
=

(
α

2

√
2β

2− α

) 4
α

s
4
α .

Therefore −4− α
α

(
α

2

√
2β

2− α

) 4
α

t

−
α

4−α

= s.

As a consequence, the law of λ as a function of t is given by

λ(t) = Cλ|t|
2

4−α ,

for some explicit positive constant Cλ = Cλ(α, β) > 0. For b and γ, we have

b(t) = Cb|t|
α

4−α , γ = Cγ|t|−
α

4−α

for explicit constants Cb and Cγ.

4.2 A Singularly Perturbed Gross-Pitaevskii Equation

In this section, we consider the following singularly perturbed Gross-Pitaevskii equation

iut + uxx + (1− |u|2)u− γδu = 0, (GP)

where the unknown u : Rt × Rx → C is a complex valued function of time and space,
γ ∈ R is a constant and δ denotes the Dirac distribution at 0. The solutions will be
required to satisfy the boundary condition

|u| → 1 as x→ ±∞. (BC)
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The Dirac distribution appears in nonlinear Schrödinger equations in various contexts.
It can be considered as an asymptotic model for a nonlinear Schrödinger system when
one of the component undergoes blow-up [CaMa95]. In nonlinear optics, the Dirac dis-
tribution can model a defect in the propagation of light. The study of partial differential
equations on graphs has known recently an increasing interest. Equation (GP) can be
viewed as set on a very simple graph consisting of two half infinite edges and one vertex,
with jump boundary conditions at the vertex. One of the first mathematical work on
nonlinear Schrödinger equations with singular potentials was by Goodman, Holmes and
Weinstein [GoHoWe04] and has been followed by many others.

Compare to Dirichlet boundary condition on the line, boundary conditions of the
type (BC) are not very frequently considered in the mathematical literature on nonlin-
ear Schrödinger equations. Such non-zero boundary conditions are however perfectly
natural in many physical contexts, for example the modeling of Bose-Einstein conden-
sates [SeCaHo05] or in nonlinear optics [Ag07]. There not so frequent use stems from
the difficulty to work with functions verifying such boundary conditions: they do not
form a vector space.

Many interesting mathematical phenomena are generated by the presence of the Dirac
perturbation and the non-standard boundary conditions (BC) and this was our main
motivation for considering this problem.

Even with the Dirac perturbation, (GP) can still be written in Hamiltonian form

iut = E ′(u)

with the (renormalized) energy

E(u) =
1

2

∫
R
|ux|2dx+

1

4

∫
R
(1− |u|2)2dx+

γ

2
|u(0)|2.

Here, the potential part of the energy has been renormalized to take into account the
boundary conditions. With such a definition for the energy, a natural space to look for
solutions of (GP) is the energy space, defined by

E = {u ∈ H1
loc(R) : ux ∈ L2(R), (1− |u|2) ∈ L2(R)}.

As already mentioned, E is not a vector space. We can however endow it with a complete
metric structure, defining the distance between u, v ∈ E by

d0(u, v) = ‖ux − vx‖L2 +
∥∥|u|2 − |v|2∥∥

L2 + |u(0)− v(0)|.

The structural properties of the energy space were analyzed by Gérard [Ge06, Ge08]
(in any dimension). In our case, we will mainly rely on the following properties.

Lemma 4.4. Let E be endowed with the metric d0. The following properties hold.

• If u ∈ E, then u is uniformly continuous, bounded, and limx→±∞ |u(x)| = 1.

• If u ∈ E and v ∈ H1(R), then u+ v ∈ E.
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• The nonlinearity u 7→ (1− |u|2)u maps E into H1(R) smoothly with bounded Lip-
schitz constant on bounded sets of E.

A common strategy [AlGeHoHo88] to deal with the Dirac perturbation is to include
it in a linear operator build on the second derivative with a domain including a jump
condition. We define the operator Hγ by

Hγ : D(Hγ) ⊂ L2(R)→ L2(R)

u 7→ uxx

where the domain D(Hγ) is given by

D(Hγ) =
{
u ∈ H2(R \ {0}) ∩H1(R), ux(0

+)− ux(0−) = γu(0)
}
.

Formally, Hγ = −∂xx + γδ, as for u, v ∈ D(R) we indeed have

〈(−∂xx + γδ)u, v〉 =

∫
R
uv̄dx+ γu(0)v̄(0) = (Hγu, v) .

The first problem to consider when dealing with (GP) is the local well-posedness of
the Cauchy problem (preferably in the energy space).

When γ = 0, this was worked out in dimension 1 by Zhidkov [Zh01] and in higher
dimensions by Gérard [Ge06, Ge08] (see also Gallo [Ga08]). Local well-posedness can
be obtained from the usual fixed point procedure, provided the following observation is
made. The propagator e−it∂xx maps E to E . Indeed, taking u0 ∈ E and writing in Fourier
variable, we obtain

F(e−it∂xxu0 − u0) = (eitξ
2 − 1)û0 =

eitξ
2 − 1

iξ
∂̂xu0 ∈ H1(R).

Since E +H1(R) = E , this shows the desired property. Now, we write u(t) = eit∂xxu0 + v
and the equation (GP) becomes

ivt + vxx + f(eit∂xxu0 + v) = 0

where f(s) = (1 − |s|2)s. Since f maps E to H1(R), we can rewrite the equation for v
in Duhamel form

v(t) = i

∫ t

0

ei(t−s)∂xxf(eis∂xxu0 + v(s))ds,

and solve for v ∈ C(R, H1(R)).
When γ 6= 0, the main difficulty is to prove that e−itHγ maps E to E . Contrary to the

case γ = 0, this cannot be done using the Fourier transform and requires an in depth
investigation of the propagator e−itHγ . The following decomposition holds

e−itHγ = e−itH0 + Γ(t),
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where Γ(t) is an operator with kernel

Γ(t, x, y) = −γ
2

∫ +∞

0

e−
γs
2 K0(t, s+ |x|+ |y|)ds if γ > 0,

Γ(t, x, y) = −|γ|
2

∫ +∞

0

e−
|γ|s
2 K0(t, s− |x| − |y|)ds+

|γ|
2
ei
γ2t
4 e−

|γ|(|x|+|y|)
2 if γ < 0,

where K0 is the kernel of the free Schrödinger evolution, i.e.

K0(t, ζ) =
1√
4iπt

e−
ζ2

4it .

Thus to show that e−itHγ maps E to E , it is enough to show that Γ maps E to H1(R).
Using the explicit form of Γ and by astute manipulations of oscillatory integrals, we are
able to prove the following proposition.

Proposition 4.5. Let T > 0. There exists C > 0 such that for all t ∈ [−T, T ] and for
all u ∈ E we have

Γ(t)u ∈ H1(R),

‖Γ(t)u‖H1 ≤ C(‖ux‖L2 + |u(0)|).

In collaboration with Isabella Ianni and Julien Royer [IaLeRo17], I obtained the fol-
lowing well-posedness result.

Theorem 4.6. Let γ 6= 0. For all u0 there exists a unique global solution u ∈ C(R, E)
of (GP) such that u(0) = u0. Moreover, the energy E is conserved along the flow.

Obtaining the conservation of energy is not an easy task here. It is done by first
proving it for higher regularity solutions and then extending it with a density argument.
However, we need to take the Dirac singularity into account, and thus we work in a
space where regularity holds everywhere expect at 0, where we require only the jump
condition to be satisfied.

Having obtained the local well-posedness of the Cauchy Problem for (GP), we con-
sidered the stationary solutions of (GP) and obtained existence and stability/instability
results.

The stationary solutions of (GP) verify the equation

−uxx + γδu− (1− |u|2)u = 0.

From an elementary ordinary differential equation analysis, we see that all bounded
solutions (up to phase shift) are

κ(x) = tanh

(
x√
2

)
, bγ(x) = tanh

( |x| − cγ√
2

)
, b̃γ(x) = coth

( |x|+ cγ√
2

)
,
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Figure 4.1: Top Left: The stationary state κ = tanh
(

x√
2

)
.

Top Right: The stationary state b̃γ for γ = −1.
Bottom: The stationary state bγ for γ = −1 (left) and γ = 1 (right).

where b̃γ is well-defined only if γ < 0 and the translation parameter cγ is given by

cγ =
1√
2

arcsinh

(
−2
√

2

γ

)
.

Figure 4.1 provides a graphic representation of the stationary solutions.
Our main concern for the analysis of stationary solution was their stability under the

flow of (GP).
We first obtained a variational characterization for some of the stationary solutions.

Let γ ∈ R \ {0}. Then we have

mγ = inf{E(v)|v ∈ E} > −∞.

Let Gγ = {v ∈ E|E(v) = mγ}. Then we have

Gγ = {eiθbγ : θ ∈ R} if γ > 0,

Gγ = {eiθb̃γ : θ ∈ R} if γ < 0.

Moreover the minimizing sequences are compact.
As a consequence of this variational characterization, we have the following orbital

stability result.

Theorem 4.7. The set Gγ is stable for the flow of (GP), i.e

∀ε > 0, ∃δ > 0, ∀u0 ∈ E , d0(u0,Gγ) < δ =⇒ sup
t∈R

d0(u(t),Gγ) < ε.

The stationary solutions which are not minimizers are expected to be unstable. We
have proved a linear instability result for the kink κ when γ > 0. More precisely, write
u = κ+ η. If u is a solution of (GP), then κ solves

∂t

(<(η)

=(η)

)
= L

(<(η)

=(η)

)
+ nonlinear terms (4.4)
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where

L =

(
0 L−
−L+ 0

)
, L− = Hγ − (1− κ2), L+ = Hγ + 2− 3(1− κ2).

We say that κ is linearly unstable when 0 is an unstable solution of (4.4). In particular,
it is the case when L has an eigenvalue λ with <(λ) > 0.

Our result is the following.

Theorem 4.8. If γ > 0, then κ is linearly unstable.

The theorem is proved as follows. We first observe that the spectrum of L− and L+

is shifted to the right (resp. to the left) when γ > 0 (resp. γ < 0). When γ = 0,
the spectrum of L− and L+ can be explicitly calculated. For L−, there is only one
negative eigenvalue at −1/2 and the essential spectrum covers [0,∞). For L+, there is
no negative eigenvalue, 0 is a simple eigenvalue (with eigenvector κx) and the essential
spectrum covers [2,∞). When γ becomes positive, the eigenvalue of L− at −1/2 starts
shifting to the right, but never crosses 0.
If λ is an eigenvalue of L, for the eigenvector (u, v)T we have

L−v = λu, −L+u = λv,

and therefore −λ2 is an eigenvalue of L+L−, i.e.

L+L−v = −λ2v.

The operator L+L− is not self-adjoint. It is convenient to set w = L
− 1

2
+ v (which is

possible for γ > 0) to have
L

1
2
+L−L

1
2
+w = −λ2w.

The operator L
1
2
+L−L

1
2
+ is self-adjoint. Denote ξ a normalized eigenvector (depending on

γ) for the negative eigenvalue of L− . Set Ξ = L
− 1

2
+ ξ. Then〈

(L
1
2
+L−L

1
2
+)Ξ,Ξ

〉
= 〈L−ξ, ξ〉 < 0.

Therefore L
1
2
+L−L

1
2
+ has an eigenvalue Λ < 0. Thus λ =

√
−Λ > 0 is an eigenvalue of L,

with positive real part, and κ is indeed linearly unstable.

4.3 Periodic Waves of the One Dimensional Cubic
Nonlinear Schrödinger Equation

In this section, we consider the one dimensional cubic nonlinear Schrödinger equation
in the form {

iut + uxx + b|u|2u = 0,

u(0, x) = u0(x).
(4.5)
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where b ∈ R \ {0} and u : R× R→ C. We are interested in space-periodic solutions of
(4.5), i.e. solutions for which there exists a period T > 0 such that

u(t, x+ T ) = u(t, x)

for all x ∈ R. If basic phenomena such as existence and stability of solitary waves are
well understood for Schrödinger equations with Dirichlet boundary conditions on the
whole real line, there are currently few works dealing with the periodic case. We work
here with periodic functions on R, which is a more general situation than functions
set on the torus T. Indeed, e.g., we may consider stability of standing waves against
perturbations whose fundamental period is a multiple of the one of the wave.

In the work [GuLeTs17], in collaboration with Stephen Gustafson and Tai-Peng Tsai,
my goal was to better understand the stability of periodic standing waves against har-
monic (i.e. co-periodic) and subharmonic perturbations. We have focused our efforts on
the one dimensional cubic nonlinear Schrödinger equation because it was allowing us to
perform a number of explicit calculations which would not have been possible for more
generic equations. We however did not make us of the integrable nature of the equation
and our result could be carried out for other non-integrable equations such as the one
dimensional cubic Klein-Gordon equation.

Recall that standing waves are solutions of the form e−iatv(x) (we prefer in this section
to use a instead of ω, with the opposite sign convention), where a ∈ R and v : R → R
is a (periodic) solution of

vxx + av + b|v|2v = 0. (4.6)

For the sake of simplicity, we restrict ourselves to real-valued v. The real valued periodic
solutions of (4.6) are given by rescaled versions of the Jacobi elliptic functions cn, dn,
sn, whose definition we recall now. Let k ∈ (0, 1). The incomplete integral of the first
kind in trigonometric form is given by

x = F (φ, k) =

∫ φ

0

dθ√
1− k2 sin2(θ)

,

and the Jacobi elliptic functions are defined using the inverse of F (·, k) by

sn(x, k) = sin(φ), cn(x, k) = cos(φ), dn(x, k) =
√

1− k2 sin2(φ).

Therefore, we have the relations

cn2 + sn2 = dn2 +k2 sn2 = 1,

and for extreme values of k we recover the classical trigonometric functions for k = 0:

cn(x, 0) = cos(x), dn(x, 0) = 1, sn(x, 0) = sin(x).

and the hyperbolic functions for k = 1:

cn(x, 1) = dn(x, 1) = sech(x), sn(x, 1) = tanh(x).
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Defining the complete elliptic integral of the first kind

K(k) = F
(π

2
, k
)
.

The functions cn and sn are 4K-periodic and 2K-anti-periodic (i.e. sn(x + 2K, k) =
− sn(x, k)) whereas dn is 2K-periodic. The Jacobi elliptic functions solve (4.6) for the
following choice of coefficients

a = 1 + k2, b = −2k2, for u = sn,

a = 1− 2k2, b = 2k2, for u = cn,

a = −(2− k2), b = 2, for u = dn .

For generic a and b, solutions of (4.6) can be obtained by rescaling (see [GuLeTs17,
Lemmas 2.1 and 2.2] for details). We will say that a function u is cnoidal if there exist
α, β > 0, k ∈ R such that

u(·) =
1

α
cn

( ·
β
, k

)
,

with equivalent definitions for dnoidal and snoidal functions.
Our main purpose is to investigate the stability of standing waves against various

types of perturbations. As usual, we say that a standing wave e−iatφ(x) is (orbitally)
stable in the Banach space X if for every ε > 0 there exists δ > 0 such that for any
u0 ∈ X verifying

‖u0 − φ‖X < δ,

the solution u of (4.5) with u(0) = u0 verifies for all time t ∈ R

inf
θ∈R
y∈R

‖u(t)− eiθφ(· − y)‖X < ε.

For T a period (not necessarily minimal) of φ, we set

PT = {f ∈ H1
loc(R,C) : f(x+ T ) = f(x) for all x ∈ R}.

If φ is anti-periodic of anti-period T (i.e φ(·+ T ) = −φ(·)), we define

AT = {f ∈ H1
loc(R,C) : f(x+ T ) = −f(x) for all x ∈ R}.

We endow PT and AT with the norm of H1(0, T ).
The main references for previous works regarding the stability of standing waves

in a periodic setting for Schrödinger equations are [An07, An09, BoDeNi11, GaHa07,
GaHa07a, GaPe15, IvLa08, Ro74]. For other equations, we refer to [BeMiRo16, BeNoRo13,
BeNoRo14] for the development of a theoretical approach to the stability/instability of
periodic waves with applications to the generalized Korteweg–de Vries equation and the
Euler–Korteweg system. We summarize the existing results in the next paragraphs.

For sn, orbital stability inA2K was obtained by Gallay and Haragus [GaHa07, GaHa07a]
using an approach based on the ideas of Grillakis, Shatah and Strauss [GrShSt87,
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GrShSt90]. A breakthrough came from the use of integrability techniques in [BoDeNi11,
GaPe15], where Bottman, Deconinck and Nivala first, and later Gallay and Pelinovsky,
were able to obtain orbital stability with respect to perturbation in P4nK for any n ∈ N
(recall that sn is 4K periodic), with an additional restriction that the perturbation
should also be in H2

loc. The strategy used in [BoDeNi11, GaPe15] relies on the construc-
tion of a Lyapunov functional based on higher order conserved quantities, which exist
only in the integrable 1-d cubic case. Hence it cannot be extended to other nonlinearities
or to higher dimensions.

For cn, Gallay and Haragus [GaHa07, GaHa07a] proved orbital stability when k � 1
(with a numerical proof for 0 < k < 1). Using tools of complete integrability, Ivey and
Lafortune [IvLa08] have been able to prove spectral stability in P4K . Instability in P4nK

for n large was established from formal calculations by Rowland [Ro74]. When k � 1,
it was established rigorously by Gallay and Haragus [GaHa07, GaHa07a].

For dn, orbital stability in P2K (recall that dn is 2K periodic) can be established
using a simple variational argument, and instability in P2nK for any n > 1 follows
from an eigenvalues count, see [GuLeTs17]. We also refer to the works of Angulo Pava
[An07, An09] for related results.

Our goal was to study stability using methods not based on integrability. We have
established the following results.

Theorem 4.9. Snoidal waves and cnoidal standing waves (for a range of parameters)
with fundamental period T are spectrally stable against T -periodic perturbations.

We also have established rigorously the instability of cn previously formally obtained
by Rowland [Ro74].

Theorem 4.10. Cnoidal waves are unstable against perturbations whose period is a
sufficiently large multiple of its own.

To obtain some of the above stability results, we have studied variational character-
izations of standing waves. We believe that these characterizations are of independent
interest.

The functionals involved for the variational characterizations will be the conserved
quantities of the flow of (4.5). Let T be a period of the solution of (NLS). The energy,
the mass and the momentum, given by

E(u) =
1

2

∫ T

0

|ux|2dx−
b

4

∫ T

0

|u|4dx, M(u) =
1

2

∫ T

0

|u|2dx, P (u) =
1

2
=
∫ T

0

uūxdx,

are conserved quantities. Due to the integrable nature of (4.5), there exist in fact many
more conserved quantities, but we restrict ourselves to the three one which pertain in
non-integrable settings.

Since the fundamental work of Cazenave and Lions [CaLi82], we know that orbital
stability can be obtained by characterizing the standing wave profile as a (global or local)
minimizer of the Hamiltonian (the energy) on fixed mass. In the present situation, if we
minimize the energy on the mass for functions in PT , we obtain without difficulties the
following result.
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Proposition 4.11. There exists a unique solution to the minimization problem

min{E(u) : u ∈ PT , M(u) = m > 0}.

If b < 0, or b > 0 and m ≤ π2

bT
, then the solution is the constant function u ≡

√
2m
T
.

If b > 0, and m > π2

bT
, then the solution is a dnoidal profile.

This readily gives us the orbital stability of dnoidal waves for co-periodic perturbation.
To catch the snoidal and cnoidal waves with a minimization procedure turns out to be
tricky. For cnoidal waves, we have been able to obtain the following result by restricting
the minimization to the class of anti-periodic functions.

Proposition 4.12. Assume that b > 0. There exists a unique solution to the minimiza-
tion problem

min{E(u) : u ∈ AT , M(u) = m > 0},
and it is a cnoidal function.

To prove Proposition 4.12, the key point is to show that minimizers are real valued.
This is usually an easy step which is achieved by replacing u by |u|, which preserves the
mass constraint and implies that E(|u|) < E(u) unless u is real-valued. However, such
an operation destroys the anti-periodicity of u. To overcome this difficulty, we use a
Fourier coefficients rearrangement. For u ∈ AT , there exists a decomposition

u(x) =
∑
j odd

uje
ij 2π
T
x.

We define v ∈ AT by

v(x) =
∑
j odd

vje
ij 2π
T
x, vj =

√
|uj|2 + |u−j|2

2
.

Then it can be proved (see [GuLeTs17]) that

‖v‖L2 = ‖u‖L2 , ‖∂xv‖L2 = ‖∂xu‖L2 , ‖v‖L4 ≥ ‖u‖L4 .

Hence by restricting the space of functions on which we minimize to anti-periodic
functions, we are able to characterize cn as a minimizer of the energy on a mass con-
straint.

It turns out that snoidal functions cannot be obtained as minimizers on the mass
constraint only. Indeed, we have the following result.

Proposition 4.13. Assume that b < 0. There exists a unique solution to the minimiza-
tion problem

min{E(u) : u ∈ AT , M(u) = m > 0},

and it is the plane wave
√

2m
T
e

2iπx
T .
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We conjecture that to obtain snoidal functions as minimizers, we need to had a mo-
mentum constraint.

Conjecture 4.14. Assume that b < 0. There exists a unique solution to the minimiza-
tion problem

min{E(u) : u ∈ AT , M(u) = m > 0, P (u) = 0},
and it is a snoidal function.

As before, the key to prove Conjecture 4.14 would be to show that the minimizers
are real-valued. However, the previous rearrangement cannot be used, as we need the
opposite inequality on the L4 norm. We have verified this conjecture using numerical
experiments. The numerical scheme consists in taking the discrete gradient flow for the
energy with at each step of time a renormalization of the mass and momentum of the
solution. On a semi-discrete level, this goes as follows. We define an increasing sequence
of time t0 < · · · < tn < · · · and take an initial data u0. Between tn and tn+1, we let
u(t, x) evolve along the gradient flow of the energy{

ut = −E ′(u) = uxx + b|u|2u,
u(tn, x) = un(x),

x ∈ R, tn < t < tn+1, n ≥ 0.

At each time step tn+1, the function is renormalized to satisfy the mass and momentum
constraints. To obtain the mass constraint, one can simply proceed to a rescaling and
set

un+1 = u(tn+1, x)

√
m

M(u(tn+1, x))
.

Things are however not so simple for the momentum constraint, as a 0 momentum
cannot be obtained by rescaling. Our strategy to overcome this difficulty is inspired by
the following observation (see [BaDu04]): the mass renormalization step is equivalent
to solving the ordinary differential equation

ut = µnu, tn < t < tn+1, µn =
1

tn+1 − tn
ln

(√
m

M(u(t))

)
. (4.7)

Therefore, we consider the following problem, which is an equivalent for the momentum
renormalization step:

ut = i$nux, x ∈ R, tn < t < tn+1, (4.8)

where $n is to be chosen in such a way that P (u(tn+1)) = 0. The equation (4.7) is
a linear ordinary differential equation, thus it can be solved explicitly easily. Things
are a bit more complicated for (4.8), which is a partial differential equation. It can
nevertheless be solved (at least formally) in the following way. Consider the Fourier
series representation of u given by

u(t, x) =
∑
j∈Z

cj(t)e
i 2π
T
jx, cj(t) =

1

T

∫ T

0

u(t, x)e−i
2π
T
jxdx.
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Then (4.8) is equivalent to

∂tcj = −2π

T
j$ncj, j ∈ Z, tn < t < tn+1.

The solution is given for each j ∈ Z and t ≥ tn by

cj(t) = exp

(
−2π

T
j$n(t− tn)

)
cj(tn).

Hence the solution u of (4.8) is

u(t, x) =
∑
j∈Z

exp

(
−2π

T
j$n(t− tn)

)
cj(tn)ei

2π
T
jx.

The value of $n is determined implicitly by the relation

P (u(tn+1)) = −
∑
j∈Z

πj exp

(
−2π

T
j$n(tn+1 − tn)

)
|cj(tn)|2 = 0.

Details of the implementation of the numerical method can be found in [GuLeTs17].
We have performed experiments to compare the outcome of the algorithm with the
theoretical results, and they have been each time in good agreement. In the case where
sn is suspected to be the minimizer, we have made the following observation, which
confirms our conjecture.

Observation 4.15. Take b < 0. The numerical algorithm constructed to find solutions
to

min{E(u) : u ∈ AT , M(u) = m > 0, P (u) = 0},
converges to a snoidal function.

4.4 Schrödinger Systems

In the works [IaLe14] and [DeLeWe16], in collaboration with Isabella Ianni, Fanny Dele-
becque and Rada-Maria Weishäupl, I have been interested by solitary wave solutions of
Schrödinger systems. This type of systems appears in various physical settings, where
they usually model similar phenomena as the scalar nonlinear Schrödinger equation, but
with additional physical properties taken into account. For example, in nonlinear op-
tics, the scalar Schrödinger equation modeling the propagation of light in optical fibers
becomes a system if polarization of light and birefringence of the fiber are taken into
account (see e.g. [Ag07]). From the mathematical point of view, systems have a richer
structure than scalar equations, hence one can expect to observe additional behaviors
which do not exist in scalar equations. This is in particular the case for the elliptic sta-
tionary version of Schrödinger systems, and there is an ever growing literature related
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to the existence and classification of solutions. We refer, for example and among many
others, to [AmCo07, LiWe05, MaMoPe06, Si07] for earlier works on the topic.

Our goal in [IaLe14, DeLeWe16] was to reinvest the techniques developed to prove the
existence of multi-solitary waves in the setting of nonlinear Schrödinger systems. Before
presenting our main results, we give some preliminaries.

We consider the nonlinear Schrödinger system{
i∂tu1 + ∆u1 + µ1|u1|2u1 + β|u2|2u1 = 0,

i∂tu2 + ∆u2 + µ2|u2|2u2 + β|u1|2u2 = 0.
(4.9)

where uj : R× Rd → C, µj > 0 for j = 1, 2, β ∈ R \ {0} and d = 1, 2, 3.
When u1 ≡ 0 or u2 ≡ 0, the system reduces to the scalar Schrödinger equation

i∂tu+ ∆u+ µ|u|2u = 0.

Therefore, the scalar solitary wave solutions of the nonlinear Schrödinger equation are
also solutions of the system, with the other component reduced to 0. We have con-
structed solutions, dubbed multi-speed solitary waves, which behaves at large time as
scalar solitary waves on each components of the system. Our main result in [IaLe14]
was the following.

Theorem 4.16. For j = 1, 2, take ωj > 0, γj ∈ R, xj, vj ∈ Rd and Φj ∈ H1(Rd)
solution to

−∆Φj + Φj − |Φj|2Φj = 0.

Define the scalar solitary wave Rj by

Rj(t, x) = exp

(
i

(
ωjt−

|vj|2t
4

+
1

2
vj · x+ γj

))√
ωj
µj

Φj(
√
ωj(x− vjt− xj)).

Define also v? and ω? by

v? = |v1 − v2|, ω? =
1

4
min{ω1, ω2}.

Then there exists v] > 0 such that if v? > v] then there exist T0 ∈ R and a solution
(u1, u2) of (4.9) defined on [T0,∞) and such that for all t ∈ [T0,∞) we have the following
estimate

‖(u1, u2)(t)− (R1, R2)(t)‖H1×H1 ≤ e−
√
ω?v?t.

The proof of Theorem 4.16 is relatively similar to the one of Theorem 3.1. In fact,
it turns out to be even simpler: we do not need to perform any localization procedure,
since, as we observed, the coupling term acts as a localizing factor. Remark also that
our result is independent of the coupling factor, which can be attractive or repulsive.
As for Theorem 3.1, we require a high relative speed assumption to obtain the existence
of multi-speed solitary waves. This is due to our lack of knowledge on the nature of the
profiles Φj (ground states or excited states, stable or unstable). When the profiles Φj are
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stable ground states of the scalar equation (which implies that we are in dimension 1),
we can follow the lines of the proof of the existence of multi-solitons for L2-subcritical
nonlinear Schrödinger equations [MaMe06] to obtain the following result, which is one
of the results that we obtained in [DeLeWe16].

Theorem 4.17. Let d = 1. Make the same hypotheses as in Theorem 4.16 and assume
moreover that the Φj are (stable) ground state profiles. Then v] can be taken v] = 0 and
there exist α > 0, T0 ∈ R and (u1, u2) solution to (4.9) on the time interval [T0,∞) such
that for all t ∈ [T0,∞) we have the following estimate

‖(u1, u2)(t)− (R1, R2)(t)‖H1×H1 ≤ e−α
√
ω?v?t.

The restriction to dimension 1 in Theorem 4.17 stems from the fact that the scalar
nonlinear Schrödinger equation with cubic nonlinearity has stable ground states only in
dimension 1. The strategy of the proof of Theorem 4.17 is similar to the one introduced
in [MaMe06]. Beside the modifications required to handle the fact that we are now
working with a system, the main novelty for the proof of Theorem 4.17 lies in a technical
artifact consisting in introducing arbitrary masses in the definition of the global action.
We refer to [DeLeWe16] for the details of the proof.

We complemented the analysis in [DeLeWe16] by numerical experiments. We have
used two numerical schemes. The first scheme is used to simulate the dynamics of
the nonlinear Schrödinger system (4.9) in one dimension. We solve the system on a
bounded interval (−a, a) with periodic boundary conditions (so as to be able to use a
Fourier decomposition). The number a is chosen large enough so that the influence of
the boundary does not show up too early in the simulation. We discretized the interval
(−a, a) with a uniform spatial grid with mesh size h > 0 and grid points xk = x0 + kh,
k = 0, . . . , K, K odd, h = 2a/K. We denote by t0 the initial time and τ the discrete
time step, so that the time grid is given by tn = t0 + nτ , n ∈ N. The discrete solution
(uj)

n
k approximate uj(tn, xk). We use a time-splitting algorithm. We split the system

(4.9) into two subsystems

i∂tuj = −µj|uj|2uj − β|u3−j|2uj, j = 1, 2, (4.10)
i∂tuj = −∂xxuj, j = 1, 2. (4.11)

The system (4.10) preserves the moduli |uj| (j = 1, 2), hence it is in fact a linear
differential system with constant coefficients and can be solved explicitly. The system
(4.11) is also linear, but involves a spatial second derivative. To solve it, we discretize in
space, perform a discrete Fourier transform, solve exactly in time and perform a reverse
discrete Fourier transform. We use a Strang time splitting scheme, which happens in
three steps.

Step 1: We solve (4.10) on [tn, tn + τ/2]:

(uj)
∗
k = exp

(
i
τ

2

(
µj|(uj)nk |2 + β|(u3−j)

n
k |2
))

(uj)
n
k , j = 1, 2, k = 0, . . . , K.
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Step 2: We solve (4.11) on [tn, tn + τ ]:

(uj)
∗∗
k =

1

K + 1

K
2∑
−K

2

exp(−iτν2
m)(ûj)

∗
m exp(iνm(xk − x0)), j = 1, 2,

where νm = 2πm/(xK − x0) and

(ûj)
∗
m =

K∑
l=0

(uj)
∗
l exp(−iνm(xl − x0)), m = −K

2
, . . . ,

K

2
.

Step 3: We repeat Step 1 on [tn + τ/2, tn+1] with (uj)
∗∗
k instead of (uj)

n
k and we obtain

(uj)
n+1
k .

The second scheme is used to calculate a ground state solution of the elliptic system{
−∂xxφ1 + ω1φ1 − µ1φ

3
1 − β|φ2|2φ1,

−∂xxφ2 + ω2φ2 − µ2φ
3
2 − β|φ1|2φ2.

(4.12)

We obtain the ground state by minimizing the energy

E(φ1, φ2) =
1

2
‖∂xφ1‖2

L2 +
1

2
‖∂xφ2‖2

L2 −
µ1

4
‖φ1‖4

L4 −
µ2

4
‖φ2‖4

L4 −
β

2

∫
R
|φ1|2|φ2|2dx,

on fixed masses

M(φ1) =
1

2
‖φ1‖2

L2 = m1, M(φ2) =
1

2
‖φ2‖2

L2 = m2.

Hence ω1 and ω2 are obtained as Lagrange multipliers for the above problem. We obtain
the ground state as solutions of the normalized gradient flow, which was in particular
studied for scalar Schrödinger equation in [BaDu03]. Starting from some initial data,
we let the solution evolve along the gradient flow of the energy, with renormalization of
the masses at each time step. We use the same notations as for the previous scheme
for the space and time grids. We denote by (φj)

n
k the approximation of φj(tn, xk).

The normalized gradient flow is discretized using a semi-implicit backward Euler finite
differences scheme, which we describe now.

Step 1: We solve on [tn, tn+1] with initial data (φj)
n
k by setting for j = 1, 2:

(φj)
∗
k − (φj)

n
k

τ
=

(φj)
∗
k+1 − 2(φj)

∗
k + (φj)

∗
k−1

h2
+ µj|(φj)nk |2(φj)

∗
k + β|(φ3−j)

n
k |2(φj)

∗
k.

Step 2: The result (φj)
∗
k of the previous step is normalized:

(φj)
n+1
k =

mj(φj)
∗
k

M((φj)∗)
.
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4 On Blow-Up and Stability

For t→∞, we expect the numerical scheme to converge toward an approximation of a
ground state solution (φ1, φ2) of (4.12).
We have performed various numerical simulations to observe the possible interactions

between solitary waves, varying the parameters of the system and of the solitary waves
considered. The multi-speed solitary waves constructed in Theorems 4.16 and 4.17 have
been observed in practice, which means that they should be (orbitally) stable. However,
we have not been able to establish this fact theoretically. We refer to [DeLeWe16]
for the details of the numerical experiments and the possible interactions (elastic and
inelastic interaction, reflection). We present here only an excerpt concerning the case of
symmetric collision.
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Figure 4.2: Position densities |u1(t, x)|2 and |u2(t, x)|2 as functions of space and time

We set µ1 = µ2 = 1 and β = 3. As initial data in the experiment, we take

uj(t0, x) = exp

(
i

(
ωjt0 −

v2
j

4
t+

1

2
vjx

))
Qωj(x−vjt0−xj), j = 1, 2, Qω =

√
ωQ(
√
ωx).

The system is simulated on the space interval (−200, 200), K = 4096, initial time t0 =
−10, time step τ = 10−3 and initial parameters ω1 = ω2 = 1, v1 = −v2 = 2, x1 = x2 = 0.

Therefore, we start with solitons located at ±20, moving toward each other at speed
2 with full collision at t = 0 and we observe them up to time t = 40. The collision can
be observed on Figure 4.2. The outcome of the collision are two large solitary waves
corresponding to the incoming solitary waves, which underwent extraction of a small part
at the collision time. The small extracted parts are traveling with the other component
after the collision.
At the final time, we have compared the left hand part and the right hand part with

(translated) ground state of the system calculated with the second algorithm. Precisely,
we set

u±j (x) = |uj(40, x)|2χ[0,∞)(±x), m±j =

∫
R
|u±j (x)|2dx, j = 1, 2.

to capture the mass of each component on the left and on the right. Then we run the
ground state algorithm with masses m±j and denote by φ±j the outcome. The comparison
between the solution at time 40 on the left and on the right u±j and the (translated)
ground state φ±j is made in Figure 4.3. We realize that they fit very well. Hence we
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4 On Blow-Up and Stability

conclude that in this case, the result of the collision is a new repartition of the mass and
energy so as to approximate a ground state profile.
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Figure 4.3: (a) Plots of |u−1 (40, x)|2 (continuous line) and |φ1(x + x1)|2 (’*’ dots) (b)
Plots of |u−2 (40, x)|2 and |φ2(x+x2)|2, where xj is the x corresponding to the
max |uj|2, with j = 1, 2.

4.5 Semi-classical Problems

In this Section, I present two results of orbital stability for semi-classical problems which
I have obtained in collaboration with Isabella Ianni [IaLe09] and Marco Ghimenti and
Marco Squassina [GhLeSq13]. The problem considered in [IaLe09] was the following
Schrödinger-Poisson equation

− iεΨt − ε2∆xΨ +W (x)Ψ +K(x)(|x|−1 ∗K(x)|Ψ|2)Ψ− |Ψ|p−1Ψ = 0. (4.13)

At the beginning of her PhD under the supervision of Antonio Ambrosetti (who was
also my post-doc supervisor at the time of the work [IaLe09]), Isabella Ianni obtained,
in collaboration with Guisi Vaira [IaVa08], the existence of single spikes standing wave
solutions Ψ(t, x) = eiωt/εv(x), where the profile v verifies

− ε2∆v + (W + ω)v +K(|x|−1 ∗Kv2)v − |v|p−1v = 0 (4.14)

and is concentrating at a non-degenerate critical point of the potential W . More pre-
cisely, the result was the following. Let p ∈ (1, 5) and make the following assumptions
on W and K.

(V1) W ∈ C∞(R3), W and its derivatives are uniformly bounded.

(V2) infR3 {W + ω} > 0.

(V3) There exists x0 ∈ R3 such that ∇W (x0) = 0.

(K1) K ∈ C∞(R3), K and its derivatives are uniformly bounded.
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4 On Blow-Up and Stability

(K2) K ≥ 0.

Let x0 be a non-degenerate critical point for W . Then, for ε small enough, there exists
vε ∈ H1(R3), vε > 0, such that vε is a solution of (4.14) and∥∥∥∥vε − Uλ( · − x0

ε

)∥∥∥∥
H1(R3)

→ 0 as ε→ 0,

where λ2 = W (x0) + ω and Uλ ∈ H1(R3) denotes the unique positive radial solution of

−∆u+ λ2u− up = 0.

Moreover there exist ξε ∈ R3 and wε ∈ H1(R3) such that

vε = Uλ

( · − x0

ε
− ξε

)
+ wε

( · − x0

ε

)
, ξε → 0 in R3, ‖wε‖H1(R3) ≤ Cε2.

Antonio Ambrosetti suggested to Isabella Ianni and myself to consider the orbital
stability of the standing waves constructed in [IaVa08]. The main difficulty with problem
(4.13) is that K and W are both non-trivial, hence strongly breaking any homogeneity
in space.

The main results in [IaLe09] are summarized in the following theorem.

Theorem 4.18. Let x0 be a non-degenerate critical point for the potential W . Let m
denote the number of negative eigenvalues of the matrix HessW (x0). Assume that the
parameter ε is small enough.

• Case p < 1+ 4
3
: Ψε is orbitally stable if x0 is a local minimum and orbitally unstable

if m is odd.

• Case p > 1 + 4
3
: Ψε is unstable if x0 is a local minimum or if m is even.

• Case p = 1 + 4
3
. Assume moreover that ∆W (x0) −K(x0)2 [W (x0) + ω]

2
p−1 C 6= 0,

where the constant C is explicitly known and positive. Then Ψε is orbitally stable
if x0 is a local minimum and

∆W (x0) > K(x0)2 [W (x0) + ω]
2
p−1 C,

while it is unstable if x0 is a local minimum and

∆W (x0) < K(x0)2 [W (x0) + ω]
2
p−1 C,

or if the quantity

m− 1

2

(
1 +

∆W (x0)−K(x0)2 [W (x0) + ω]
2
p−1 C

|∆W (x0)−K(x0)2 [W (x0) + ω]
2
p−1 C|

)
is even.
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In collaboration with Marco Ghimenti and Marco Squassina [GhLeSq13], I considered
the same type of question, this time for a semi-classical nonlinear Klein-Gordon equation
given by

ε2utt + 2iεV ut − ε2∆u+mu−Wu− |u|p−1u = 0, (4.15)

where u : R×Rd → C and V,W are real-valued potential functions. Standing waves are
solutions to (4.15) of the form eiωt/εφω(ε), where φω ∈ H1(Rd) verifies

−∆φω + (m− ω2 − 2ωV (εy)−W (εy))φω − |φω|p−1φω = 0 (4.16)

We assume that V and W satisfy

V,W ∈ C2(Rd) ∩W 2,∞(Rd).

Moreover, we assume that for the function Z defined by

Z(y) = m− ω2 − 2ωV (y)−W (y)

we have a lower bound
inf
x∈Rd

Z(x) > 0,

and there exists a critical point x0 ∈ Rd such that

∇Z(x0) = 0, ∇2Z(x0) is non-degenerate.

Under these hypotheses, and when ε is close to 0, the equation (4.16) admits a fam-
ily of positive, exponentially decaying solutions (φω,ε) ⊂ H1(Rd) (see e.g. [AmBaCi97,
AmMa06]). One of the main conclusions of [GhLeSq13] is the following stability/instability
result.

Theorem 4.19. Assume that (4.15) is locally well-posed in H1(Rd)× L2(Rd) and that
x0 is a non-degenerate local minimum of Z. Then for ε > 0 small enough the standing
waves eiωtφω are stable if p < 1 + 4/d and

Z(x0) < (ω + V (x0))2

(
4

p− 1
− d
)
,

and unstable if

Z(x0) > (ω + V (x0))2

(
4

p− 1
− d
)
,

or if p ≥ 1 + 4/d.

In [IaLe09] and in [GhLeSq13], the stability/instability results is obtained by working
in the framework developed by Grillakis, Shatah and Strauss [GrShSt87, GrShSt90].
We explain the strategy here using the notations of problem (4.13). In [GrShSt87,
GrShSt90], stability/instability is determine using two pieces of information:

77



4 On Blow-Up and Stability

• The spectral information: the number n(Lε) of negative eigenvalues of the lin-
earized action Lε around the standing wave profile.

• The slope information: the sign of ∂ωQ(φω). We set p(ω) = 0 if ∂ωQ(φω) < 0, and
p(ω) = 1 if ∂ωQ(φω) > 0.

Here, Q(φω) denotes the mass 1
2
‖u‖2

L2 for problem (4.13) and the charge 1
2
=
∫
uūtdx

for problem (4.15). According to the theory of [GrShSt87, GrShSt90], stability holds if
n(Lε) = p(ω). If n(Lε)− p(ω) is odd, then it was proved in [GrShSt87, GrShSt90] that
linear instability holds.
To obtain the spectral information, we proceed by a perturbation argument. When

ε → 0, the linearized operator Lε converges, at least formally, toward a limit operator
L0 whose spectrum turns out to be well-known. It follows from the perturbation theory
for linear operators that the spectrum of Lε is close to the one of L0. The main issue is
to determine whether the 0 eigenvalue of L0 is shifted for Lε to negative or positive side
of the real line. To solve this issue, we perform an ε-expansion of the eigenvalues close
to 0 of Lε. In the Schrödinger-Poisson case (4.13), we find that their sign is related to
the eigenvalues of the matrix ∇2W (x0).
To obtain the slope information, we again perform an ε expansion of the quantity

Q(φω). In the Schrödinger-Poisson case (4.13), it is not hard to obtain the slope in-
formation in the non-critical case p 6= 1 + 4

3
. However, in the critical case, there is a

degeneracy at ε = 0, as ∂ωQ(φω) = 0. A deeper investigation is required in that case,
we refer to [IaLe09] for the details.
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I present in this section two topics on which I am currently working. The first one is the
Manakov system. It is a Schrödinger system, which is completely integrable and hence
of specific interest. In our work in progress, we construct and study a large class of
standing wave solutions. Despite the numerous works devoted to this system, it seems
that this type of standing wave solutions was not previously considered in the literature.
The second project presented in this section concerns the excited states of nonlinear
Schrödinger equations. The goal of this work is to construct new type of numerical
methods for the numerical computation of excited states, using in particular variational
characterizations of nodal states.

5.1 The Manakov system

In collaboration with François Genoud, Simona Rota-Nodari and Stephan De Bièvre, I
am considering the system of coupled nonlinear Schrödinger equations:{

iut + uxx + λ(|u|2 + |v|2)u = 0,

ivt + vxx + λ(|u|2 + |v|2)v = 0.
(5.1)

Here, (t, x) ∈ R × K, where K is either the line R or the torus T, u, v : R × K → C
and λ = ±1. The system (5.1) is called the Manakov system. We say that the system
is focusing if λ = 1 and that it is defocusing if λ = −1. It is known to be a completely
integrable Hamiltonian system (see [AbPrTr04] and the references cited therein).

The Manakov system (5.1) is a specific case of a more generic type of Schrödinger
systems of the form {

iut + uxx + λ(α|u|2 + β|v|2)u = 0,

ivt + vxx + λ(β|u|2 + γ|v|2)v = 0.
(5.2)

If α, β and γ are such that the potential energy term in the Hamiltonian

H(u, v) =
1

2
‖ux‖2

L2 +
1

2
‖vx‖2

L2 − λ
(
α

4
‖u‖4

L4 +
γ

4
‖v‖4

L4 +
β

2

∫
K
|u|2|v|2dx

)
does not form a perfect square then the system is (a priori) not integrable. Namely,
(5.2) with (α, β) 6= (γ, γ) is not integrable. Systems with (α, β) = (γ, γ), γ 6= 0, are
equivalent to (5.1) by a simple rescaling.

The presence of symmetry in Hamiltonian systems has important consequences on
the dynamics, e.g. existence of conservation laws and of solitary waves solutions. We

79



5 Prospects

consider globally Hamiltonian symmetry groups, in the terminology of [DeGeRo15,
DeRo18]. Those are precisely the symmetry groups giving rise to conserved quantities via
Noether’s theorem. For non-integrable Schrödinger systems (5.2), the largest (globally
Hamiltonian) symmetry group is G = R2×R (which is isomorphic to U(1)×U(1)×R),
with group action Φg given by

(ΦgU)(x) =

(
eiθ1 0
0 eiθ2

)
U(x− a), g = (θ1, θ2, a) ∈ G.

The Manakov system (5.1) admits a much larger group of (globally Hamiltonian) sym-
metries, given by G = U(2) × R, and it is what makes it interesting to analyse. As
before, R stands for translations in the space variable x, while U(2) is the Lie group of
unitary matrices in dimension 2, i.e.

U(2) =
{
M ∈M2×2(C) : MM̄T = I

}
.

The group action of U(2) is simply multiplication of U (with components written in
column) by an element M of U(2). The group action Φg is thus given by

(ΦgU)(x) = M · U(x− a), g = (M,a) ∈ G.

Recall here that the special unitary group SU(2) is the (Lie) subgroup of unitary matrices
with determinant 1. The Lie algebra u(2) of U(2) is described by

u(2) =
{
M ∈M2×2(C) : M̄T = −M,

}
,

whereas the Lie algebra su(2) of SU(2) is described by

su(2) =
{
M ∈M2×2(C) : M̄T = −M, tr(M) = 0

}
.

Denote by σj, j = 0, 1, 2, 3 the Pauli matrices

σ0 = I =

(
1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

The Lie algebra u(2) (resp. su(2)) is generated by

iσ0, iσ1, iσ2, iσ3, (resp. iσ1, iσ2, iσ3).

The conserved quantities associated to each of these generators are the following:

〈σ0U,U〉 = ‖u‖2
L2 + ‖v‖2

L2 , 〈σ1U,U〉 = 2<
∫
K
uv̄dx,

〈σ2U,U〉 = 2=
∫
K
uv̄dx, 〈σ3U,U〉 = ‖u‖2

L2 − ‖v‖2
L2 .
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Combining the first and last conserved quantities gives conservation of the mass of each
component. We define

F1(U) =
1

2
‖u‖2

L2 , F2(U) =
1

2
‖v‖2

L2 ,

F3(U) = <
∫
K
uv̄dx, F4(U) = =

∫
K
uv̄dx.

The quantities F1 and F2 are conserved in all Schrödinger systems of the type (5.2),
whereas F3 and F4 are specific to the Manakov system (5.1).
Given µ ∈ R4, define

Σµ =
{
U ∈ L2(K)× L2(K) : F (U) = µ

}
,

and let U(2)Σµ be the subgroup of U(2) leaving Σµ invariant, i.e.

U(2)Σµ = {M ∈ U(2) : ∀U ∈ Σµ, MU ∈ Σµ} .

We give a description of U(2)Σµ in the next proposition.

Proposition 5.1. Let µ ∈ R4. Denote U(2)Σµ the subgroup of U(2) leaving the con-
straint Σµ invariant. Set µ̃ = (µ1 − µ2, µ3, µ4)T .

(i) If (µ1 − µ2, µ3, µ4) 6= (0, 0, 0), then U(2)Σµ is isomorphic to U(1)× U(1).

(ii) If (µ1 − µ2, µ3, µ4) = (0, 0, 0), then U(2)Σµ̃ = U(2).

It is a general fact that symmetries of Hamiltonian systems can lead to standing waves
solutions. For the Manakov system (5.1), the symmetries can be used to construct
standing waves (see [DeGeRo15] for a systematic derivation). Precisely, standing waves
of (5.1) are solutions of the form

U(t, x) = exp(tξ)Φ,

where Φ = (φ1, φ2) and ξ ∈ u(2). Using i(σ0 + σ3)/4, i(σ0 − σ3)/4, iσ1/2, iσ2/2 as a
basis of u(2), we may identify u(2) with R4. Representing ξ ∈ u(2) by its coordinates
ξ̃ = (ξ1, . . . , ξ4) ∈ R4, we obtain the following equation for Φ:

H ′(Φ) + ξ̃ · F ′(Φ) = 0,

where F = (F1, . . . , F4). Explicitly, we obtain the following system of linearly and
nonlinearly coupled elliptic equations:{

−∂xxφ1 − λ(|φ1|2 + |φ2|2)φ1 + ξ1φ1 + ξ3φ2 − iξ4φ2 = 0,

−∂xxφ2 − λ(|φ1|2 + |φ2|2)φ2 + ξ2φ2 + ξ3φ1 + iξ4φ1 = 0.
(5.3)

Being a solution to (5.3) is equivalent to being a critical point of the action functional
given by

S(Φ) = H(Φ) + ξ̃ · F (Φ).
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Existence and stability of standing waves for the Manakov are new open problems when
the full set of Lagrange multipliers ξ1, . . . , ξ4 is taken into account for the construction
of the profile. Here are some partial answers that we have been able to obtain so far.

First, we consider constant solutions of (5.3). Any couple of constants (φ1, φ2) ∈ C2

can be made into a solution of (5.3) with a suitable choice of ξ̃.

Lemma 5.2. Let (φ1, φ2) ∈ C2 and assume that φ1 6= 0. Then for any ξ2 ∈ R there
exist (unique) ξ1, ξ3, ξ4 ∈ R, explicitly given in terms of (φ1, φ2, ξ2, λ), such that (φ1, φ2)
is a solution of (5.3).

However, the dynamics of these constant solutions as standing wave of (5.1) is not
very rich; In particular, it is not richer than the dynamics of constant standing waves
solutions of scalar Schrödinger equations. Precisely, we have the following result.

Lemma 5.3. Let (φ1, φ2) ∈ C2 and assume that φ1 6= 0. Take ξ2 ∈ R, let ξ1, ξ3, ξ4 ∈ R
be given by Lemma 5.2 and define ξ ∈ u(2) by

ξ =
1

2

(
iξ1
σ0 + σ3

2
+ iξ2

σ0 − σ3

2
+ iξ3σ1 + iξ4σ2

)
.

Then the standing wave solution of (5.1) given by

exp (tξ)

(
φ1

φ2

)
reduces in fact to

exp
(
itλ
(
|φ1|2 + |φ2|2

))(φ1

φ2

)
.

The result follows from explicit (but cumbersome) calculations.
Assuming that K = S1/(2π) and given µ ∈ R4, we now look for constant solutions of

(5.3) on Σµ.

Lemma 5.4. Let µ = (µ1, . . . , µ4) ∈ R4 be such that (µ1, µ2) 6= (0, 0). There exists a
constant solution to (5.3) living on Σµ if and only if µ1, µ2 ≥ 0 and

4µ1µ2 = µ2
3 + µ2

4.

Standing waves with constant profiles are nonlinearly stable in H1(T) if λ < 0.

Proposition 5.5. Assume that λ < 0. For any Φ = (φ1, φ2) ∈ C2, the corresponding
standing wave of (5.1), given by eitλ(|φ1|2+|φ2|2)/2Φ is orbitally stable in the following
sense. For any ε > 0, there exists δ > 0 such that for any U0 ∈ H1(T) × H1(T) the
following property is verified. If

‖U0 − Φ‖H1(T) < δ,

then for any t ∈ R the corresponding solution U of (5.1) verifies

inf
θ1,θ2∈R

‖U(t)− (eiθ1φ1, e
iθ2φ2)‖H1(T) < ε.
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This is a direct consequence of the following variational characterization.

Lemma 5.6. Assume that λ < 0. Let m1,m2 ≥ 0. Consider the minimizing problem

µ = inf{E(u1, u2) : M(u1) = m1, M(u2) = m2, (u1, u2) ∈ H1(T)×H1(T)},

and the corresponding set of minimizers

G = {(φ1, φ2) ∈ H1(T)×H1(T) : E(φ1, φ2) = µ, M(φ1) = m1, M(φ2) = m2}.

The set G is non empty and contains only constants, i.e.

G = {(φ1, φ2) ∈ C2 : π|φ1|2 = m1, π|φ2|2 = m2}.

We remark here that if the coefficient of the nonlinearities of the Schrödinger system
(5.2) do not form a perfect square as in the Manakov system (5.1), then Lemma 5.6 is
true only if β2 ≤ αγ. Indeed, the energy can then be written as

E(u1, u2) =
1

2

(
‖∂xu1‖2

L2 + ‖∂xu2‖2
L2

)
− λ

4

(
‖√α|u1|2 +

√
γ|u2|2‖2

L2 + 2(β −√αγ)‖|u1||u2|‖2
L2

)
.

If β − √αγ < 0, then to minimize the energy one wants to increase ‖|u1||u2|‖L2 . We
achieve the maximum when |u1| is proportional to |u2|, which is the case for constants.
If β −√αγ > 0, then to minimize the energy one wants to decrease ‖|u1||u2|‖L2 . This
enters in competition with the other terms in the energy and constants are no longer
the only candidates for minimizers.

We now consider the linearization of (5.1) around a standing wave with constant
profile Φ = (φ1, φ2). As we have seen, we have a one parameter family of Lagrange
parameter (ξ) ⊂ R4, but which reduces in any case to following standing wave dynamics

exp
(
itλ(|φ1|2 + |φ2|2)

)
Φ.

Therefore, for U solution of (5.1) and Υ = (ε1, ε2) we set

U(t) = exp
(
itλ(|φ1|2 + |φ2|2)

)
(Φ + Υ(t)).

The system solved by the perturbation Υ is

iΥt − LΥ +N (Υ) = 0,

where the linear part LΥ is given by

LΥ =

(
−∂xxε1 − 2λφ1<(φ1ε̄1)− 2λφ1<(φ2ε̄2)
−∂xxε2 − 2λφ2<(φ1ε̄1)− 2λφ2<(φ2ε̄2)

)
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and N (Υ) encodes the remaining nonlinear terms. Writing Φ in cartesian coordinates
φ1 = a + ib, φ2 = c + id, and separating Υ in real and imaginary parts, the operator L
can be rewritten as

L =


−∂xx − 2λa2 −2λab −2λac −2λad
−2λba −2λb2 − ∂xx −2λbc −2λbd
−2λca −2λcb −∂xx − 2λc2 −2λcd
−2λda −2λdb −2λdc −∂xx − 2λd2

 .

From the analysis of L in Fourier variable, we infer that the spectrum of L is located on

[min(−2λ(a2 + b2 + c2 + d2), 0),∞)

If λ < 0, the spectrum is non-negative. This implies that, when K = T, the constant Φ
is a local minimizer of the action

E + Ξ · F, Ξ =
(
λ(|φ1|2 + |φ2|2), λ(|φ1|2 + |φ2|2), 0, 0

)
.

However, we observe a degeneracy here, as 0 is a triple eigenvalue, whereas the corre-
spond symmetry group only gives a two-dimensional subspace of the kernel (precisely
the subspace generated by (iφ1, 0) and (0, iφ2)).
From our understanding, the degeneracy comes from the fact that the constants are

not minimizers anymore if we consider a Schrödinger system such as (5.2) with λ < 0
and β2 > αγ. The Manakov system is a borderline case where a bifurcation occurs for
the minimizers. This however does not affect the orbital stability of the minimizer as
was proved previously. To our knowledge, this is one of the rare case where degeneracy
of the minimizer can be observed but where it does not affect the stability.

This was an excerpt of the results that we have been able to obtain concerning standing
waves constant in space. The analysis is still in progress for the spectral stability on the
whole line. We are also investigating standing waves solutions with plane wave profiles
and standing wave solutions which can be obtained as minimizers of the Hamiltonian
energy H on a set of fixed constraints combination of F1, . . . , F4.

5.2 Numerical Analysis of Excited States

In collaboration with Christophe Besse and Romain Dubosq, I am currently considering
the excited states of nonlinear Schrödinger equations from new angles. We give in this
section a sneak peek of our progress.

The equation for standing wave profiles in nonlinear Schrödinger equations

−∆u+ u− f(u) = 0, u ∈ H1(Rd,R). (5.4)

was considered in the classical works of Berestycki and Lions [BeLi83-1, BeLi83-2].
In [BeLi83-1], existence of ground state standing waves was shown, whereas in [BeLi83-2]
existence of infinite sequence of excited states with increasing energy was proved. Many
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works have then been devoted to the study of ground state profiles for themselves (regu-
larity, positivity, uniqueness, etc.) as well as for their dynamical properties as solutions
of nonlinear Schrödinger equations (or other equations like Klein-Gordon equations).
Due to intrinsic difficulties, much less works have been devoted to excited states.

In [BeLi83-2], excited states where obtained by a critical point argument, consisting
essentially in obtaining a topological min-max characterization of the excited states.
This argument is however not very constructive and not very adapted to uses in the
setting of nonlinear Schrödinger equations or for numerical purposes.

Another approach to the construction of excited state is based on the fact that ex-
cited states are necessarily nodal, whereas the ground state (if uniqueness holds) never
vanishes. Hence one might think of extending to nodal functions the approaches used
to obtain the ground states, in particular constraint minimization.

In this section, for simplicity reasons, we assume that the various functions under
considerations are all real-valued.

A typical example for f is the power-type nonlinearity f(u) = |u|p−1u, 1 < p < 2∗−1,
where 2∗ is the critical Sobolev exponent, i.e. 2∗ = 2d

d−2
if d ≥ 3, 2∗ = ∞ if d = 1, 2.

More generally, we assume that f : R→ R verifies the following hypotheses (which are
not optimal, but sufficient for our purpose).

(H1) (regularity) The function f is continuous and odd.

(H2) (subcriticality) There exists 1 < p < 2∗ − 1 such that for large s, |f(s)| . |s|p.

(H3) (superlinearity) At 0, lims→0
f(s)
s

= 0.

(H4) (focusing) There exists ξ0 > 0 such that F (ξ0) =
∫ ξ0

0
f(s)ds >

ξ20
2
.

Under (H1)-(H4), it was proved (see [BeGaKa83, BeLi83-1]) that there exist ground
state solutions, i.e. solutions with minimal action (see (5.5) for the definition of the
action) among all possible solutions to (5.4). Uniqueness of the ground state holds if
f satisfies in addition to (H1)-(H4) some complementary requirements, e.g. if f is of
power-type, see [Kw89]. When d ≥ 3 (in fact, this also holds if d ≥ 2), it was proved
in [BeLi83-2] that there exists an infinite sequence of excited states, i.e. solutions to (5.4)
whose action is not minimal (actually, the corresponding sequence of actions tends to
infinity). Moreover, if f is of power-type, then there exists only one radial excited state
with a given number of nodes, see [CoGaYa09, CoGaYa11].

Define the action functional by

S(u) =
1

2
‖∇u‖2

L2 +
1

2
‖u‖2

L2 −
∫
Rd
F (u)dx. (5.5)

Recall that S : H1(Rd) → R is a C1 functional (see e.g. [AmMa07]) and that u is a
solution of (5.4) if and only if S ′(u) = 0. We define the Nehari functional by

I(u) = 〈S ′(u), u〉 = ‖∇u‖2
L2 + ‖u‖2

L2 −
∫
Rd
f(u)udx.
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The Nehari manifold is defined by

N = {u ∈ H1(Rd) \ {0}|I(u) = 0}.

Define the Nehari level as
mN = inf{S(v)|v ∈ N}.

In addition to (H1)-(H4), we assume the following.

(H5) The function s→ f(s)
s

is increasing for s > 0.

(H6) (Ambrosetti-Rabinowitz superquadraticity condition) There exists θ > 2 such that
θF (s) < sf(s) for all s > 0.

Then under (H1)-(H6), the following holds (see e.g. [SzWe10] and the reference cited
therein).

Proposition 5.7. For every sequence (un) ∈ N such that

lim
n→∞

S(un) = mN

there exist u∞ ∈ N and (yn) ⊂ Rd such that

lim
n→∞
‖un(· − yn)− u∞‖H1 = 0.

Moreover, u∞ is a ground state solution of (5.4).

We now want to construct variational characterizations of excited states which can be
used in numerical approaches. Based on Proposition 5.7, it is natural to try to generalize
the Nehari manifold approach. Several directions of investigations are possible. The most
natural one is probably to define the Nehari nodal set as

Nnod = {u ∈ H1(Rd)|I(u+) = 0, I(u−) = 0, u± 6= 0}.

where u+ = max(u, 0) and u− = max(−u, 0). Define the Nehari nodal level by

mNnod
= inf{S(v)|v ∈ Nnod}.

We have
mNnod

= 2mN . (5.6)

Indeed, let u ∈ Nnod. Since u+ and u− are both in N , we have

S(u) = S(u+) + S(u−) ≥ 2mN ,

and therefore mNnod
≥ 2mN . Let u∞ be a minimizer for mN and for (yn) ⊂ Rd, define

un = u∞(·+ yn)− u∞(· − yn). (5.7)

86



5 Prospects

When |yn| → ∞, we have
S(un)→ 2mN ,

and this proves (5.6). Unfortunately, Nnod is not achieved. Indeed, suppose on the
contrary that u∞ realizes the minimum for mNnod

. Since u±∞ ∈ N and mNnod
= 2mN ,

both u+
∞ and u−∞ realize the minimum forN and are ground states of (5.4). In particular,

they are both regular, and by the maximum principle, both have to be positive on Rd,
which is a contradiction. Therefore mNnod

is not achieved. From (5.7), we can easily
guess that this is due to a loss of compactness in the minimizing sequences. To overcome
this issue, we can work in a radial setting (recall from Strauss’ Lemma [St77] that the
injection H1

rad(Rd) ↪→ Lq(Rd), 2 < q < 2∗ is compact whenever d ≥ 2). Define

Nnod,rad = {u ∈ H1
rad(Rd)|I(u+) = 0, I(u−) = 0, u± 6= 0},

and
mNnod,rad

= inf{S(v)|v ∈ Nnod,rad}.
Then the following result gives the existence of a minimizer for mNnod,rad

.

Theorem 5.8. For every sequence (un) ∈ Nnod,rad such that

lim
n→∞

S(un) = mNnod,rad

there exist u∞ ∈ Nnod,rad such that

lim
n→∞
‖un − u∞‖H1 = 0.

Moreover, u∞ is a nodal solution of (5.4) with exactly two nodal domains. We say that
u∞ is a least nodal excited state.

Remark 5.9. Minimizing on Nnod,rad is intrinsically more difficult that minimizing on N .
Indeed, Nnod,rad is not a manifold, as the functionals

u ∈ H1(Rd)→ ‖∇u±‖2
L2

are not C1 (see the discussion after Theorem 18 in [SzWe10]).

Remark 5.10. An approach based on minimization of the energy on mass constraints for
the positive and negative part of the function cannot work, as the minimizer that we
might obtain would be (formally) a solution of an equation of the form

E ′(u) + λ+M
′(u+) + λ−M

′(u−) = 0,

with potentially different Lagrange multipliers λ±. This issue is avoided with the Nehari
approach.
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It was proved in [CoGaYa09, CoGaYa11] that for power-type nonlinearities, there
exists only one radial excited state with a given number of nodes. It is natural to
implement numerically a shooting method to obtain approximation of radial excited
states with a given number of nodes. This approach was implemented by Christophe
Besse prior to the start of our collaboration. Beside the obvious issue of being restricted
to the radial setting, the shooting method also suffers from not being adapted to large
domains. Indeed, an extreme precision on the initial data is needed to obtain an accurate
decay at the boundary of the domain. We have implemented a series of numerical
schemes based on Theorem 5.8 and variations of it. Satisfactory results have been
obtained. In particular, the restriction to the radial setting has been removed (provided
compactness is preserved in some way) and the rate of decay is much more accurate
than with the shooting method. We will report on our results in a forthcoming article.
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