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Relative motion is a key technology for future missions using formation flying. In my thesis, I hâve developed three different methods to study it, as function of its représentation.

Cartesian coordinates hâve been the main tool to study the relative motions, even if they présent some drawbacks in terms of équations linéarisation and introduction of perturbations.

These limitations can be overcome using differential orbital éléments. A third représentation of the relative motion is the local orbital éléments. They are very interesting to study relative trajectories.

The use of differential orbital éléments enable the introduction of the main perturbations. For low orbits, the dominant perturbation is the gravity field, and in particular, the oblateness of the Earth. For very high orbits, solar radiation pressure plays a main rôle when satellites do not hâve the same ratio surface to mass.

The study of relative motion is concluded with the analysis of two missions. First, I hâve analyzed the interest of formation flying for gravity field détermination. In order to do so, I hâve obtained the sensitivity équations of intersatelllite measurements to geophysical parameters. Second, I hâve worked on the characteristics of high eccentric orbits (HEO) for formation flying. I hâve analyzed different aspects of Simbol-X mission. Résumé Le mouvement relatif est un élément clé pour le développement des futures missions spatiales qui utiliseront les vols en formation. Dans cet ouvrage je développe trois méthodes différentes pour son étude, utilisant différentes représentations. Les coordonnées cartésiennes ont été pendant de nombreuses années l'outil principal pour étudier le mouvement relatif, même si elles présentent des limitations en terme de linéarisation des équations ou des perturbations. Ces limitations peuvent être dépassées grâce à. l'utilisation d'une représentation alternative: les différences d'éléments orbitaux. Une troisième représentation qui s'avère très intéressante pour l'étude des trajectoires utilise les éléments orbitaux locaux. L'utilisation des différences d'éléments orbitaux nous a permis d'étudier l'influence des per turbations les plus importantes. Pour les orbites basses, la perturbation dominante est le champ de gravité, et en particularier le second harmonique zonal lié l'aplatissement de la Terre. Pour les orbites très hautes, la pression de radiation solaire joue un rie dominant quand les satellites ne présentent pas le même rapport surface sur masse.

J'ai développé des études concrètes du mouvement relatif pour deux missions particulières. D'abord je me suis intéressé à l'intérêt des vols en formation pour l'étude du champ de gravité.

Pour cela, j'ai obtenu les équations de sensibilité des mesures intersatellitaires aux paramètres géophysiques. Je me suis également intéressé aux difficultés liées aux orbites très excentriques (HEO) pour les vols en formation en étudiant une mission du type SIMBOL-X.

The epicyclus of Apollonius of Perga Even if it seems to be a paradox, first pre-Keplerian attempts on astronomy were not far from the right description of the relative motion. Apollonius of Perga (262 BC -190 BC) introduced the concepts of deferent and epicycle that were used by Claudius Ptolemaeus (83-161 AD) later on to describe the motion of the planets around the Earth. Ptolemaeus is well-known as one of the greatest astronomers of the Antiquity because of his book 'Almagest'. In the 'Almagest' he describes the geocentric theory for the motion of the planets.

Geocentric theory describes the motion of the planets around the Earth as a perfect circle (deferent) perturbed by smaller circles described at the same orbital frequency around the deferent (epicycle). As we will see, this kind of motion matches well with the classical descrip tion of the relative motion, the Hill équations. Geocentric theory had to add a huge number of epicycles in order to match with the improving quality of astronomical observations. It was finally abandoned for Copernicus model during 16th century.

The Hill's Moon theory George William Hill (1838Hill ( -1914) ) is one of the greatest American mathematicians of 19th century. Since the beginning of his studies, he was especially interested in the work of Lacroix, Lagrange, Laplace and Legendre. His work treated basically on astronomical mathematics. In 1878 he published Researches in Lunar Theory in American Journal of Mathematics. This publication contains important new ideas on the three-body problem. In particular, he presented the so famous 'Hill équations' for the relative motion.

He spent the biggest part of his life in his family farm in West Nyack working in the theory of the orbit of the Moon, but also of Jupiter and Saturn.

The first space rendezvous It was until the race to the Moon between USA and USSR that the space rendezvous became a key technologies and théories of relative motion were deeply developed. The space rendezvous was an intermediary step towards the big goal:

the Moon. But lunar missions included a lunar rendezvous between the lunar lander and the orbiter. That's the reason why Gemini missions in USA, and Vostok missions in USSR, included tests of space rendezvous around Earth.

On August 12, 1962 two Vostok spacecrafts, Vostok 3 and Vostok 4, were placed into nearby orbits, separated just by some kilometers. But spacecrafts had not the capability to do final Lunar missions boosted the development of the équations of the relative motion. Probably the most important development was obtained through Lawden's équations. Good knowledge of relative motion was also a key point to become an astronaut, as it is shown by the Ph. D. degree of the astronaut Buzz Aldrin specialized in relative motions.

Since then, space rendezvous has been used largely in space missions. They are particularly important for resupply functions in Mir and ISS stations. Recent achievements took place on April 3, 2008 with the first ATV rendezvous with ISS.

The irruption of formation flying After the end of lunar missions, space rendezvous was a well-known subject. But, new concepts including groups of spacecrafts flying in close formation required a deeper knowledge of the relative motion. While in rendezvous the du ration of the relative motion is short (just some hours), in formation flying the configuration must be kept during ail the length of the mission (up to several years).

The first paper that I hâve found using a formation flying is the Labeyrie concept of a space interferometer using several satellites published in 1982 [START_REF] Labeyrie | Cohérent arrays of separate optical télescopes in space: project TRIO[END_REF]. This first concept, called Trio, consisted in three satellites, two mirrors and a combiner, to do space interferometry. At the same epoch, the European mission Cluster was proposed. It consisted in four satellites flying in a tetrahedral formation to study the magnetosphere. This mission was finally launched in 2000. This mission exemplifies the interest of multisatellite missions, even if it cannot be considered as a formation flying mission because the satellites are controlled independently.

In recent years, main space agencies hâve developed important programs to acquire required 1.1. For the future, a new génération of very challenging missions are currently being prepared.

HISTORY OF RELATIVE MOTION AND FORMATION FLYING

Formation flying could help to develop many fields of astronomy, fundamental physics, or Earth sciences. Darwin, Lisa or Simbol-X are just some examples of future missions.

These new missions présent new challenges in different engineering fields. They will need autonomous navigation, very précisé knowledge of their relative positions (less than the micrometer) and also autonomous relative control algorithms. Moreover, each mission présents its own difficulties. At the sight of ail these new projects, there is still a lot of research to do on relative motion. 

Définition of formation flying

Space missions that use a certain number of satellites to accomplish the same goal are con stellations of satellites (GPS, Galileo) and formation flying missions. Two criteria are usually used to differentiate between them: (i) the GNC (Guidance, Navigation, Control) System of the mission, and (ii) the relative dynamics between the satellites.

From a GNC point of view, a formation flying is controlled through the relative positions and relative velocities between satellites, while in constellations each satellite is controlled individually through its absolute position and velocity. In formation flying, relative position is important for the success of the mission. For example, in interferometry missions, relative position must be known with great accuracy in order to détermine the path of the light of different télescopes.

From a dynamical point of view, in formation flying, satellites are near one from each other, while in constellations they are far. Of course, near and far, are not précisé terms. We try to define them in the following Unes.

First of ail, the relative distance (p) must not be considered in absolute, but with respect to the semi-major axis of the orbit of the satellites (a). It is not the same a relative distance between satellites of 1000 km when they are orbiting the Earth than when they are orbiting the Sun.

Ail along the document, I consider that two satellites are near when: The dynamics of one satellite with respect to another can be studied using the Taylor's development of the dynamics around the second one and this development is convergent. In most of cases, the linear term is enough for a good accuracy. In these conditions, the précision is given by the parameter (S)-

Classification of missions from a dynamical point of view

Formation flying can be classified with different criteria. In [START_REF] Boutonnet | Déploiement optimal contraint et robuste de satellites volant en formations invariantes[END_REF], they are classified following three criteria: the dynamics, the guidance, and the geometry. For our purposes, we are interested only in the dynamics criteria.

We adopt the same dynamical classification as in [START_REF] Boutonnet | Déploiement optimal contraint et robuste de satellites volant en formations invariantes[END_REF] adding a second division. It is, we separate formation flying in (i) missions around Lagrange points, and (ii) missions around a central body. The missions around a central body can be also separated in (ii.a) small intersatellite distance, and (ii.b) large intersatellite distance. This classification is schematized in figure 1.4 The dynamics around the Lagrange points is a restricted three-body problem, where the gravitational attractions of two attractive bodies are equal. The dynamics around these points is completely different from a central body dynamics; that is why the two problems must be studied separately. The study of Lagrange points is beyond the scoop of this thesis and I focus only on the central body dynamics.

The différence of relative motions around a central body with a big intersatellite distance or a small one, is not so relevant. It deals with the accuracy of the linear model and the interest of introducing no linear effects.

CHAPTER 1. INTRODUCTION with a précision of the micrometer, and known with a précision of the nanometer. These spécifications corne from the interferometer technology.

http://darwin.esa.int/science-e/www/area/index.cfm?fareaid=28

LIS A: It is a future mission issued from a collaboration between NASA and ES A composed of a three satellites interferometer. The orbits of the satellites will be similar to the Earth's, but will trail behind our planet at distances of around 50 million kilométrés, équivalent to 20 degrees. Launching date is about 2018 with a mission lifetime of 5 years. The three satellites form an équilatéral triangle (5 million km. between satellites) facing the Sun, slanting at 60 degrees to the plane of the Earth's orbit and revolving with the Earth around the Sun.

The main goal of the mission is the détection of gravitational waves. They are predicted by Einstein theory but they hâve never been directly detected in spite of very performing experiments. The tiny size of the waves, and the number of perturbations on Earth are the two factors that hâve prevented their détection. Their détection would certainly open another door for the exploration of the Universe. Nowadays, natural relative motion of the formation is not adapted for the goal of the mission. For interferometer purposes, satellites should keep constant interdistance and angle, but natural motion of the satellites introduces a kind of is the potential successor to XMM-Newton, ESA's current X-ray observatory. With 5m2

of collecting area at 1 keV and 2m? at 7 keV, an imaging resolution of 5" half-energy width (HEW) and a goal of 2" HEW, XEUS will hâve a limiting sensitivity around 200 times deeper than XMM-Newton. XEUS requires a focal length of around 35m to reach a collecting area of 5m2 at 1 keV. Given this long focal length, a dual spacecraft configuration is favoured. A Halo orbit around the second Lagrangian point of the Sun-Earth System (L2) provides optimal conditions. The chosen orbit can be reached in about one month with an almost full-year launch window. L2 provides the necessary low gravity-gradient environment for economical formation flying, long observing Windows and optimal cooling for the instruments.

http://sci.esa.int/science-e/www/object/index. cfm?fobjectid=42271

New Worlds Observer: The New Worlds Mission is a project funded by NASA Institute for Advanced Concepts (NIAC), headed by Dr. Webster Cash of the University of Colorado at Boulder in conjunction with Bail Aerospace & Technologies Corp., Northrop Grumman, Southwest Research Institute and others. The project plans to build a large occulter in space designed to block the light of nearby stars, in order to observe their orbiting planets. The observations could be taken with an existing space telescope, possibly the James Webb Space Telescope when it launches, or a dedicated visible light telescope optimally designed for the task of finding exoplanets. New World Observer is one of the possible configurations for the mission. New Worlds Observer would use two spacecraft and two starshades increase the angular resolution and allow better analysis of the exoplanet's composition.

http: / / newworlds.colorado.edu /

Major areas of development

The domains for which we note the most intense activity are the followings:

• Modelling relative motions: Even if important progress hâve been recently done in this direction, some aspects remain unresolved. Modellisation of non-conservative perturba tions, or simplified expressions for non-linear effects are two of them. First part of this thesis is dedicated to this modellisation.

• Control laws: The control of the formation can be done using different control laws.

They must be evaluated in terms of efficiency, précision, and propellant consumption.

This problem has two different approaches when we consider continuons thrust or isolated maneuvers.

• Optimal reconfiguration: The problem consists in changing relative positions or deploying the formation after the insertion by consuming the minimum of energy. This is a very complex optimization problem because of the number of parameters: time, number of manoeuvres, initial and final positions. Particular techniques exist to deal with it.

In some cases, the problem can be simplified into a two maneuvers strategy.

• Non-drift orbits: When satellites are not in operation for a while, they remain in a lowenergy State. During this period, in a general configuration, natural forces could drift 1.4.

PLAN OF THE THESIS away satellites. This could be a problem for posterior recovery of the mission. That is the reason why satellites are placed in non-drift orbits. The détermination of non-drift orbits is a current problem for formation flying missions.

• Navigation techniques: Navigation in formation flying is spécifie because it is not always easy to hâve measurements of the distance between satellites with précision. The two main techniques are laser link between satellites and radar measurements. Problem of both of them is that they are very directional. The challenge is to obtain a completely on-board navigation System. Détermination of absolute and relative motions at the same time could présent advantages for the accuracy of the détermination, but at the same time, it could présent instabilities.

This different problems involve different scientific areas: orbital mechanics, automatics, optimal control or filtering are just some of them.

Plan of the thesis

The origin of the interest for formation flying within the team Géodésie et Mécanique Céleste of the Observatoire de la Côte d'Azur is linked with space geodesy. At the sight of the success of GRACE mission, and considering future needs of space geodesy, it seems reasonable to start preparing future GRACE 'follow-on' missions. The first fundamental question about this hypothetical missions is the configuration of the formation flying. GRACE configura tion présents several technological advantages (same orientation of the satellites, same drag effects,..), but, are there other configurations more sensitive to the gravity field?

In order to answer this question, we wanted to sweep ail the possible configurations. Analytical models seem to be the most suited for fast numerical sweeping. I realized that a in-depth study of relative motion was necessary to get an accurate analytical model standing for gravity field effects. So, I started doing an exhaustive research of analytical models for relative motion. In some cases, when I considered that the model was not accurate enough, I did necessary improvements. In a second time, I studied geodesy missions.

Thanks to my contacts with the French space agency (CNES) and Thaïes Alenia Space, I discovered a very challenging formation flying: Simbol-X. I also collaborate with them in the mission analysis.

The document is divided into three parts, the two first are devoted to the relative motion (first part to the Keplerian motion, and second part to the perturbations), and the third part Second condition will be used to assume the convergence of a polynomial development.

We consider that bodies describe a keplerian motion around a central body. Later on, we will introduce perturbations on the motion.

Notations

In the whole text, we use the well-known keplerian éléments: the semi-major axis a, the eccentricity e, the inclination i, the right ascension of ascending node fl, the argument of perigee ca, and the mean anomaly M. We also use the true anomaly /, an intermediary variable r) = V1 -e2, and the sum of the perigee and the anomaly: u -u + /. We will also use in chapter [START_REF] Balmino | Paramétrage mixte des orbites des deux satellites de Grâce, Note technique CNES[END_REF] Delaunay variables (L, G, H, Z, /z) defined as follows:

h = fl -6 9 = 0} l = M L = y/JLâ G = y/fia( 1 -e2) H -G cos z
where 0 is the sidereal Greenwhich time. The motion, studied in an inertial reference frame denoted IJK, is described through temporal sériés of keplerian éléments as well as of positions ~t\ijk and velocities ~v\ijk-We use the following notations:

->1 { r \ijk X\IJK = ->| \ V I IJK J
We will consider a reference orbit which will be described by its orbital éléments or by its position and velocity. This reference orbit can be the orbit of one of the satellites of the formation (~ra) or it can correspond to a fictitious point. For clarity, we will name it the Previous conditions can be accomplished in different cases in space missions:

• Formation Flying: two or more satellites flying together with the same mission around a central body. As I explained in the introduction, formation flying can also be placed on Lagrange points. This case is not treated in this thesis.

• Space rendezvous: one spacecraft maneuvering to dock into a second spacecraft. It was at the origin of the interest in formation flying.

• Asteroids: In asteroid belts, there may be groups of bodies flying in close positions.

Their motions can be studied independently or as a relative motion.

• Space débris: After a collision or the explosion of an spacecraft, a certain number of pièces may rest in similar orbits. Equations of relative motion may be interesting in order to describe the évolution of the population.

The various représentations

I hâve divided our study as function of the different représentations of the relative motion.

Here, we describe the three possible représentations:

• cartesian coordinates: Their temporal évolution is driven by classical Hill équations and Lawden équations, the classical one.

• Differential orbital éléments: It is very useful to introduce perturbations thanks to precedent expérience on orbital mechanics. 

Linearization of the équations

The use of exact expressions of the relative motion leads to very complicated analytical expressions which are not well-adapted for analytical manipulations. In order to simplify them, we linearize these équations with respect to the distance as follows:

The motion of two points around a central body is given by generic expressions:

~Xa(t) = f Çxa{to),t) (2.9) ~ÎCb(t) = 7 (~Xb(to),t)
where the subscript 0 stands for initial conditions. Here, the first body plays the rôle of the reference orbit and the second is the satellite that we analyze. The relative position is:

~p (t) = le b(t) -le a{t) (2.

10)

We can rewrite the motion of the second body as:

Moreover, assuming:

(2.11) We can do the Taylor expansion of the function supposed to be convergent:

7(t) = àfïb1 b"(fo) Cp («o))2 + 3) (2.13)
Usually, first terms of the development are sufficient to obtain a good précision. In table 2.1 we give the error of the linear approach for different missions. The parameter which détermines the précision of the linear approach is where ar is the semi-major axis of the reference orbit. In certain cases, second order might be interesting. Some efforts hâve been done in this direction in [START_REF] Sengupta | Second-order State transition for relative motion near perturbed, elliptic orbits[END_REF].

Next chapters are devoted to different methods used to study the relative motions. We présent a linear approach, but for ail représentations it would be possible to introduce second order effects.

The approach in terms of a polynomial development is a very deep change in the structure of the motion. The nature of the keplerian motion is periodical, and a polynomial development The choice of the reference orbit détermines the interest of the relative motion. The précision of the reference orbit plays a rôle on the précision of obtained results. Hereafter, we présent the most common reference orbits:

• The real orbit of one of the satellites: This orbit should be used in order to obtain the exact relative motion. But this orbit is quite complicated to describe analytically and it is usually given numerically, that is not well suited for analytical use. It is necessary to obtain high précision variations of distance, but the effects of neglecting some variations on the reference orbit are really small. We will not use it.

• The non-perturbed orbit of a satellite: It is the most current choice. This has the advantage of an easy analytical représentation and a level of précision usually high enough for mission analysis. It can also be interesting to study the effects of perturbations on a single satellite mission.

• The orbit of a fictitious point: It can be useful when the choice of a reference satellite might be problematic. In general no gain in précision should be obtained by changing the reference orbit since the gain in one side should be lost in the other side. An example of such a reference orbit is [START_REF] Balmino | Paramétrage mixte des orbites des deux satellites de Grâce, Note technique CNES[END_REF] Chapter 3

The classical approach

In this chapter we présent classical developments about relative motion. They are based on the cartesian représentation of the formation flying. The most well-known are Hill équations [START_REF] Hill | Researches on the Lunar theory[END_REF] for the circular reference orbit case (also known as Clohessy-Wilthsire équations [START_REF] Clohessy | Terminal Guidance System for Satellite Rendezvous[END_REF]), and

Lawden équations [START_REF] Lawden | Optimal trajectories for space navigation[END_REF] for the eccentric reference orbit case. In both cases, two simplifications are done: équations are linearized, and the motion is purely keplerian.

In the first section, we présent the general équations of relative motion in the framework of classical non-relativistic mechanics. Two following sections are dedicated to Hill and Lawden équations respectively. We finish the chapter with some notes on further developments of precedent équations in order to take into account perturbations or non-linear effects.

The équations of the relative motion

Classical mechanics gives the expression of the relative accélération with respect to a noninertial frame (see figure 3.1) with an angular velocity Tu and an accélération ~aref.

Using previous notions, the équations of the relative motion in a rotating reference frame become:

~p -~a sat -~&ref ~2u? x ~p -To x ~p -To x {To x ~p) where ~asat is the absolute accélération of the body and the dot stands for the dérivatives with respect to time. These équations use three variables: (i) the relative position and its dérivatives, (ii) the différence of accélérations between the two satellites, and (iii) the rotation of the reference frame, also with its dérivatives. Relative position is the unknown, and the other two variables can be modeled in different ways. Both of them dépend on the reference orbit. The easiest way for modeling them, is to take a non-perturbed circular reference orbit.

This choice leads to the well-known Hill or Clohessy-Wiltshire équations. They are described as follows. The use of a non-perturbed elliptical reference orbit leads to Lawden équations.

At the end of the chapter we will introduce the effects of perturbations.

Hill équations

We particularise precedent équations to the case of two satellites orbiting around a central body following non-perturbed keplerian motions. We place the non-inertial reference frame in the orbit of one satellite and we suppose the orbit to be circular. The non-inertial reference frame is orientated as follows: first axe follows radial direction (~e r), the third one follows the direction normal to the motion (~e n), and the second one complétés an orthogonal System (fer)-In the circular case the second axis coincides with the direction of the velocity, but this is not the general case.

In the non-perturbed circular motion the rotation of the reference frame reads:

Tj = n~e n (3.2)
with n = and p is the product between the gravitational constant and the mass The intégration of these équations is immédiate:

3.3. LAWDEN EQUATIONS 29 pR(t) = -sinnt -(2^^^+SÔR(to) \ cosnt n \ n J + (2^)+4p^0)) Prit) = 2^^^cos nt+( + QpR(to)\sin nt n \ n0 J + |-2-+ prit0)^-(3pr(to) + 6npR(to)) t pn if) -PNf0) cos nt + -N ^sin nt n 3.

Lawden équations

In [START_REF] Lawden | Optimal trajectories for space navigation[END_REF], Lawden introduced the solution for the relative motion with eccentric non-perturbed reference orbit. Hereafter, we summarize and comment his results.

When working with eccentric reference orbits, the orbital rotation is no more constant: Intégral I\ has been the object of a reference [START_REF] Carter | New form for the optimal rendezvous équations near a keplerian orbit[END_REF] where I\ is decomposed as a sum of elementary functions. Lawden also gives a closed form of the solution, but does not give parameters A, B,C, D, E, F as function of initial conditions. Lawden's solution has been used in some papers to study the control of formations [START_REF] Carter | Fuel-optimal rendezvous near a point in general keplerian orbit[END_REF], [START_REF] Inalhan | Relative Dynamics and Control of Spacecraft Formations in Eccentric Orbits[END_REF].

" = (1 _ g2)3/2 (1 + ecos/)2 (3.6) 
Lawden solution, to our point of view, has two weak points: first, the parameters of his solution (A, H, C, D, E, F) are not expressed as function of initial conditions; second, his solution is not convenient because of the intégral I\.

Relative velocity versus différences of velocity

A determining choice is the coordinates that we use for the motion. Since we use a local reference frame, we can project the relative motion in this reference frame, or we can study the relative motion with respect to the reference frame. The différence between projection and dérivation has later effects on the relations between the cartesian représentation and the other ones. Each possibility has some advantages and drawbacks:

• Relative position and velocity: represented by ~p or (pr, Pt, Pn)T Hill and Lawden équations are written using these coordinates. For GNC purposes, these équations are also well adapted because what we need for GNC is the expression of the dérivatives of the variables: the velocity.

• Projection of différences of position and velocity: represented by A~t\rtn, ^^\rtn, or also as:

AV|RrA, = (AR,AT,AN)t

AV|ft77\r = (A

The advantage of these coordinates is their physical meaning, which enables a direct use for the observable, while the other coordinates must be transformed before. The main disadvantage is that they cannot be used for GNC since the différence of the projection of the velocity is not the dérivative of the projection of the différence of positions:

&~v\RTN 7^^(^~^\rTn) (3.10) The relations between both coordinates are quite easy to be derived: 

A~ff\RTN = Ô ( 3 

Further developments

Lawden's équations présent a double drawback: (i) they ignore non-linear effects, and (ii) they ignore perturbations of the keplerian motion. Several authors hâve worked in order to improve the équations considering the effects that hâve been neglected.

Perturbations

Cartesian coordinates are not well suited for the introduction of perturbations because they must be taken into account in two different ways. First, perturbations must be introduced in the différence of accélérations, and second in the rotation of the reference frame. This double action of perturbations leads to complex differential équations which usually do not hâve an analytical solution. If we are interested in obtaining simplified expressions, we could think to use a simplified non-perturbed reference orbit. To do so, we should neglect the effects of the perturbation on uj , but the différence of accélération must always consider the perturbations.

J2 effects In [START_REF] Schweighart | A perturbative analysis of geopotential disturbances for satellite cluster formation flying[END_REF], the author présents a method to introduce J2 perturbations on the The first two terms correspond to the keplerian motion. The third term corresponds to the J2 effects on the satellite orbit, and the last terms are the mean J2 effects on the reference orbit. As usual, the author linearizes previous équation:

y^sat) = y^ref) + + ()) (3.18) 
He also averages the differential effects of J2 The detailed solution of this équation can be found in [START_REF] Schweighart | A perturbative analysis of geopotential disturbances for satellite cluster formation flying[END_REF]. Another interesting work that has been with J2 is [78] Gravity field effects Also a very interesting development to introduce perturbations is presented in [START_REF] Métris | Analyse des perturbations dues à la gravité, cours d'été GRGS[END_REF]. First, the author finds an analytical solution for Hill équations perturbed where the coefficients are given as function of initial conditions and perturbing forces.

The second step consists in introducing differential gravitational perturbations as periodic perturbations. For sake of brevity I do not reproduce the results that can be found in [START_REF] Métris | Analyse des perturbations dues à la gravité, cours d'été GRGS[END_REF].

The author do not introduce perturbations on the reference frame. It means that the angular velocity of the reference frame is the keplerian one. Certainly, this simplification does not affect précision for short periods of time, but it might be an important source of error for long extrapolations.

3.5.2

The non-linear effects

The most interesting work developing non-linear effects using cartesian coordinates are [START_REF] Gômez | Zéro relative radial accél ération cônes and controlled motions suitable for formation flying[END_REF], [START_REF] Richardson | A third order analytical solution for relative motion with a circular reference orbit[END_REF], and [START_REF] Karlgaard | Second order relative motion équations[END_REF]. In [START_REF] Gômez | Zéro relative radial accél ération cônes and controlled motions suitable for formation flying[END_REF], the authors présent a semi-analytical method to consider the whole non-linear effects on Hill équations. This is the generalization of paper [START_REF] Richardson | A third order analytical solution for relative motion with a circular reference orbit[END_REF], where only second and third order effects are considered.

The departure point in [START_REF] Gômez | Zéro relative radial accél ération cônes and controlled motions suitable for formation flying[END_REF] are the non-linearized Hill équations: This function is expanded as a sériés using Legendre polynoms and is solved using Lindstedt-Poincaré Procedure.

In [START_REF] Karlgaard | Second order relative motion équations[END_REF], the author obtain only the second order terms of circulai' problem using spherical coordinates.

Conclusions

In this chapter we hâve presented the classical équations of the relative motion, their advantages and their disadvantages. At the end of the chapter we can conclude that, even if they are very useful, they are not well-adapted for the introduction of perturbations. The method presented in the next chapter is very complementary because it is specially developed for the introduction of perturbations.

Chapter 4

An alternative approach

Introduction

In this chapter we présent an alternative method to study the dynamics of formation flying.

The principle of the method is simple. The représentation of the motion is done in a local or bital frame, but the extrapolation is done using the équivalent différences of orbital éléments.

To use this method it is necessary to hâve transformations between the two représentations:

the différence of orbital éléments and the local orbital frame. Historically, the first article that presented these transformations was [START_REF] Casotto | Position and velocity perturbations in the orbital frame in terms of classical element perturbations[END_REF], but the author did not use them for relative motion. Other transformations were used by Garrison et al. [START_REF] Garrison | Relative motion in Highly Elliptical Orbits[END_REF] to obtain the équations of the relative motion for an eccentric reference orbit. Alfriend proposed another way to obtain the transformations and introduced another set of orbital éléments in [START_REF] Alfriend | Gravitational perturbations, nonlinearity and circular orbit assumption effects on formation flying control strategies[END_REF]. Using Alfriend's method, also called 'geometric method', Gim [START_REF] Gim | Satellite relative motion using differential equinoctial élé ments[END_REF] introduced J2 perturbations and Sengupta introduced second order efïects [START_REF] Sengupta | Second-order State transition for relative motion near perturbed, elliptic orbits[END_REF]. This solution has none of the drawbacks of Hill and Lawden équations. It can take into account second order efïects, eccentric reference orbit, and perturbations. This solution is very well-adapted for control and navigation.

Our method présents some différences with respect to previous work. First, we use classical orbital éléments with mean anomaly. This set of orbital éléments keeps simple analytical expressions, but has a double singularity for zéro eccentricity and zéro inclination. A sec ond différence is the use of the différence of absolute velocities instead of relative velocities.

These variables are better adapted for mission analysis because Doppler effect measures this différence of velocities, while relative velocities are well-adapted for control and navigation.

Third, we présent an analytical procedure to inverse the transformation matrix, when this was done numerically in other articles. Moreover, in following chapters we use this method to introduce not only the efïects of the gravity field, but also the perturbation produced by the solar radiation pressure.

This chapter is organized with the following structure. In the second section, we présent our general strategy to propagate relative motions by combining the différences of orbital éléments and the rectangular coordinates. The third section is dedicated to linear transformations us ing the Poisson brackets. In section four, we apply our method to the linear, keplerian case.

We finish by particularizing the équations for the circular case. 

Propagation method for relative motions

Principles of the method The principle of our approach consists in using the différences of orbital éléments to study the dynamics of the motion, while rectangular coordinates are used to give a better insight of the formation. Our goal is to obtain final expressions:

A~x (:t) = /(Air (t0), EOref{t),t) (

The method consists in a double transformation. The initial différence of orbital éléments is deduced from the initial conditions given as a différence of position and velocity at the epoch to:

Air (£o)|j?tjv -» AEO(to) (4.2)

This transformation does not imply the dynamics of the problem; consequently, the per turbations do not change these relations. Once the initial conditions are known as différences of orbital éléments, we propagate the reference orbit and the relative motion. The extrap olation of reference orbit can be done with one of the various analytical théories available in orbital éléments. Lagrange équations, Gauss équations or Kaula's method are some tools that can be used:

EOrefit) = f(EOref(to),t) (4.3) 
The same analytical théories can be used to express the différence of orbital éléments :

AEO{t) = f(EOsat(to),t) -f(EOref(t0),t) (4.4)

In most of cases we can use the differentiated form: AEO(t) = g (AEO(t0), EOref(t),t) (

Such an expression séparâtes the effects of a perturbation on the reference orbit and on the relative motion. It is also possible to choose different perturbations for the reference orbit and the formation.

Finally, once the temporal évolution of the différences of orbital éléments is known, these différences can be reprojected in terms of différences of position and velocity:

AEO(t) -> Air |RTN(t) (4.6)
As a resuit, the évolution of the relative motion can be described in the local reference frame defined by the reference orbit. The combination of these three steps gives the expression:

Air {t) = /(AT*(t0), EOref{t), t) (4.7) 

AËÔ(t) = [C(ËÔref(to))]AËÔ(to) A~x(t)\RTN -[M(EOref)]AEO(t)
where the matrices Ai and Ai~1 are:

M(ËOref) = dx^N M-l(ËÔrcf) = JE°(4.9)
dEO dx\RTN and the matrix £ gives the linearised temporal évolution of initial différences of orbital éléments. For the linear case, the final resuit given by the combination of three matrices reads:

A~x (t)\RTN [M(ËÔref(t)) C(ËOref(t)) • M-\ËOref(tü))\RTN A ~x(to) (4.10) 
The matrix C dépends on the perturbations, but not the matrices Ai and Ai~l. The matrix Ai corresponding to the direct transformation can be found in the literature [START_REF] Casotto | Position and velocity perturbations in the orbital frame in terms of classical element perturbations[END_REF], but not the matrix At~1 corresponding to the inverse transformation. Next section explains how both matrices can be obtained. The only non-linear approach that we hâve found actually is [START_REF] Sengupta | Second-order State transition for relative motion near perturbed, elliptic orbits[END_REF].

Transformations between représentations

The aim of this section is to find direct and inverse transformations between the two repré sentations, A~x\rtn and AEO, through explicit expressions of matrices Ai and Ai~l.

Direct transformation

The différences of position and velocity in terms of différences of orbital éléments is detailed by Casotto in [START_REF] Casotto | Position and velocity perturbations in the orbital frame in terms of classical element perturbations[END_REF]. Here, we just quote it to link his approach with ours. To compute Ai, with the matrix M(EO) -7Z~lJf. 

The inverse transformation using Poisson brackets

Different possibilities can be investigated to obtain the inverse transformation. The first idea is the direct inversion of the matrix A4. Even if possible, this method leads to complex results, very difficult to simplify. Another method could be a direct différentiation of expres sions EO -f~lÇx) with later projection in orbital frame, using the same schéma as Casotto.

But, since équations EO -are not explicit, this is very complex to achieve. There, we propose to take advantage of the properties of canonical variables, using Poisson brackets.

The Poisson bracket of two functions /, g is defined by: {fi9}q,p -53 3=i where qj,Pj (j -1 ...s) are canonical conjugated variables. Using the theorem that proves that a transformation, (pj,qj) -* (Pj,Qj), is canonical, if, and only if it keeps the Poisson bracket [START_REF] Goldstein | Mécanique Classique[END_REF], it is well-known that for two sets of canonical variables (q; p) = (qi, q<i,...., qs ; p\, p2,...., ps ), and (Q; P) = (Qi, Q2, 

The interest of these équations lies in the possibility to compute the dérivatives of each orbital element with respect to canonical variables using the dérivatives of these canonical variables with respect to orbital éléments. Poisson brackets of orbital éléments are well-known [START_REF] Fitzpatrick | Principles of Celestial Mechanics[END_REF]:

Ail other brackets are equal to zéro. Since the position and the velocity in the inertial frame form a set of canonical variables [START_REF] Goldstein | Mécanique Classique[END_REF] we can use them in équations (7.12), (7.27) and Ano-n(to) " vV-e/ +' A«)3(<o) ^a^f(t0) (4' 26)

The variation of the differential mean anomaly AM is linear with respect to the différences of orbital frequencies Ano, but not with respect to the initial différence of semi-major axis (Aao). In the framework of a linear approach, it is consistent to use: These équations are équivalent to Lawden's équations [START_REF] Lawden | Optimal trajectories for space navigation[END_REF] that we hâve presented in the precedent chapter. We can see the advantage of this second method because we hâve obtained the constants as function of initial conditions and we hâve avoid the introduction of the intégrais as in Lawden [START_REF] Lawden | Optimal trajectories for space navigation[END_REF].

The circular reference orbit

The matrix A4-1 is singular in case of circular orbit. Since the perigee is not defined in the circular case, it is necessary to use the non-singular éléments defined in (2.4). Linear With these éléments, in circular case, linear approach leads to:

A ENS{t0) = AENS(t) = A~x (t)\nTN = [AT l(ENSref)]A~x (to)\RTN [jC(ËNSref(t))]AËNS(t0) [Af(ENSref)]AENS(t)
with matrices Af and Af 1

(4.32) Af\e-0 1 -a cos A 0 0 -a sin A 0 \ 0 2a sin A 0 a cos z -2a cos A a 0 0 a sin A -a sin i cos A 0 0 0 -na sin A 0 -na cos i na cos A -na n 2 na cos A 0 0 na sin A 0 0 0 na cos A na sin i sin A 0 o / 2 0 0 2 0 cos A sin A 0 n \ sin A 2 cos A a a na na 0 0 sin A 0 0 0 0 cos A 0 0 sin A cos A a sin i 0 cos A 2 sin A a a na na 0 -1 a cos A a tan i 2_ na 0 0 \ 0 cos A na sin A na sin i 0 _ sin A j natan i '
The matrix C is not modified. Applying the same composition of matrices as in the eccentric case (4.10) we obtain the linear non-perturbed équations for the circular reference or bit:

AR(t) -( ATo + AVr0\ n0 AVro sin no {t -to) -2 + ARq cos no (t -to) + 2 AT(t) = 2 ( AT0 + J n0 AVro , AVtq n0 + 2ARq cos no (t -to) + ( 4 + 2AI?o ) sin no (t -to) n0 - 2 + ATq ) -3 (AVro + noARo) (t -£q) , AVrq n0 AN(t) -ANo cosno(t -to) + sinno(t -to) n0 (4.33)
These équations are équivalent to Hill solution introduced in chapter 3 but expressed in terms of différences of velocity (3.13).

Conclusions

In this chapter we hâve presented a new method to obtain analytical expressions of rela tive motion expressed in cartesian coordinates as function of initial conditions and time, A~x(t) -f (to), EOref(t), t). This method can be applied to different kind of pertur bations, for eccentric reference orbit. In order to apply this method, we hâve first used the properties of Poisson brackets to dérivé linear relations between two représentations of rela tive motion, différences of position and velocity (Aà?|rtn) and différences of orbital éléments (AËÔ).

This work follows the direction marked by precedent works of Casotto, Garrison, and Alfriend. It is, the use of différences of orbital éléments for orbit extrapolation, and transfor mations between different représentations to project the results in the local orbital frame.

The orbital éléments hâve been chosen because they are well suited for the introduction of the gravity field, and to keep simple analytical expressions. The use of différences of velocities {A~v\rtn) instead of relative velocities is determined by the further utilisation of équations, since these variables are better adapted for mission analysis.

In the second part of the thesis, differential orbital éléments will be used extensively in order to obtain the effects of different perturbations. It will be applied to the gravity field and to the solar radiation pressure. This method can be applied to ail kind of perturbations with the only condition that perturbative force must be conservative.

Chapter 5

The local orbital éléments

Introduction

Two precedent chapters were devoted to the dérivation of the équations of the relative motion.

But, the resulting équations do not enable an insight of the relative trajectories. That is why we hâve worked in obtaining an alternative représentation with a better physical meaning.

Inspired by the two-body problem, we propose an alternative représentation of the relative motion. Under certain conditions, it is possible to define an adapted set of orbital éléments with respect to the local reference frame that we name local orbital éléments. The local orbital éléments are well suited when the relative motion describes a trajectory close to an ellipse. In this chapter we présent the necessary conditions for having elliptical motions and the relations between other représentations and local orbital éléments for the unperturbed case.

Section two is devoted to the relative motion in the case of circular reference orbit and to the définition of the local orbital éléments. In section three, we study the case of the non-circular reference orbit.

The équations of the relative motion

As we explained in precedent chapter, we can obtain the équations of motion combining Thereafter, we analyze the resulting motion described by équations (5.2). We note that they correspond to the standard parametrical équation of an ellipse centered on the origin of the local frame except for two kind of terms:

• terms providing from a différence of semi-major axis: a différence of semi-major axis leads to different orbital frequencies which produce a secular growth of the AT term.

As this effect destroys the formation in a short period of time, we impose: Aao -0.

This hypothesis may not be true for docking or rendezvous operations, but it is always fulfilled in Keplerian formation flying.

• constant term on the T axis: this term, (AAo + cosirADo)> can be removed just by a shift on the origin of the axis. That is why we ignore it.

Disgarding foregoing terms, équations (5.2) rewrite:

A R = -arACo cos A -ar ASo sin A AT --2ar ASo cos A + 2ar ACo sin A (5.3) AN = -ar AQq cos A -1-ar Aio sin A which correspond to the elliptical trajectory. As it is usually done in the two-body problem, the elliptical motion will be parametrized through a set of orbital éléments called local orbital éléments (ëo/): semi-major axis (a/), eccentricity (ej), inclination (ii), longitude of ascending node (Qi), longitude of perigee (cj[) and anomaly (Mj).

There are two main différences with respect to classical keplerian elliptical motion (i) the origin of the axis does not correspond to a focus of the ellipse, but to the center. This leads to an ambiguity on the définition of the longitude of the perigee which is solved by imposing that u> G [0,7r] (ii) the angular velocity is not dépendent on the distance to the origin, but is constant and equal to the angular velocity of the reference frame. That is, the period of any local orbit corresponds to the period of the reference frame.

Thereafter, we dérivé the analytical relations between the initial conditions expressed in terms of AENS and the local orbital éléments. (cosQ/ cosl oi ~si nQ/ si nl oi cosk ~cos^l si nl oi ~si n cos^l cosz/ sin Qi cos loi + cos H/ sin loi cos i/ -sin f2/ sin loi + cos fl/ cos loi cos i/ sin loi sin k cos loi sin z/

THE CIRCULAR REFERENCE ORBIT CASE

As temporal évolution of the motion is described by the angle A in équations (5.4) and by the angle M/ in équations (5.5), both angles must be equal up to a constant phase: M/ = À-cp/.

In order to obtain the relations between P and ëo/, we do the following operations. First, we identify the vector h = (hx, hy, hz)T normal to the plan of the ellipse, expressed as function (5.9)

Second, we write the expressions of the distance to the center of an ellipse expressed through its parametric form, and through its local orbital éléments. According to (5.4), the distance expressed in terms of P is:

d2 -(A2 + C2 + E2) cos2 A + {B2 + D2 + F2) sin2 A+ + (AB F CD + EF) sin 2A
The distance, using équation (5.5) is:

(5.10)

d2 -(a2 cos2 ip + a2rj2 sin2 tp) cos2 A + (a2 sin2 p + a2r]2 cos2 cp) sin2 A+ + (a2rj2 -a2) sin <pcos <p sin 2A (5.11) The identification of the coefficients of cos2 A, sin2 A and sin2A in équations (5.10) and

(5.11) yields:

af sin 2ipi (l -rfî) = K3

a2 ( 1 T = + K2 (5.12) a2 cos 2(fil (l -rjf) = Kl -K2

where:

Ki = A2 + C2 + E2 K2 = B2 + D2 + F2 Ks = 2(AB + CD + EF) (5.13)
The resolution of the System (5.13) gives:

2af = K1 + K2 + ^J(K1-K2Y + K% (5.14) 1 -= A = 2 --A- (5.15) • o ^3 ATi -K2 . . sin2w| = -k-s- cos 2 y?/ - ^- (5.16) alei aiei
To compute the longitude of the local perigee, we identify the expression of AN given by équation (5.4) and by équation (5.6)

E cos À + F sin A = ai cos À -(pi sin lüi sin ii + a/77/ sin À -<pi cos a;/ sin 2/ [START_REF] Aksnes | Short-period and long-period perturbations of a spherical satellite due to direct solar radiation[END_REF][START_REF] Balmino | Comparison of geopotential recovery capabilities of some future satellite missions[END_REF][START_REF] Balmino | Paramétrage mixte des orbites des deux satellites de Grâce, Note technique CNES[END_REF][START_REF] Biggs | A search for invariant relative satellite motion[END_REF][START_REF] Boutonnet | Déploiement optimal contraint et robuste de satellites volant en formations invariantes[END_REF][START_REF] Brouwer | Solution of the problem of artificial satellite theory without drag[END_REF][START_REF] Brouwer | Methods of Celestial Mechanics[END_REF][START_REF] Bryant | The effect of solar radiation pressure on the motion of an artificial satellite[END_REF][START_REF] Carter | Fuel-optimal rendezvous near a point in general keplerian orbit[END_REF][START_REF] Carter | New form for the optimal rendezvous équations near a keplerian orbit[END_REF][START_REF] Casotto | Position and velocity perturbations in the orbital frame in terms of classical element perturbations[END_REF][START_REF] Casotto | The mapping of Kaula's solution into the orbital reference frame[END_REF][START_REF] Colombo | System noise analysis of the dumbbell tethered satellite for gravity gradient measurements[END_REF] which leads to:

E -a sin i cos lü cos ipi (tan lü -77 tan tpi)

F -a sin i cos lü cos </?/ (tan lü tan ÇIq + 77)

The solution for lüi writes: The size (a/) and the constant phase (<£>/) can always be chosen to our convenience. The other four parameters may be separated in two groups: the éléments which give the form of the local orbit (ei,cui), and the éléments which give the orientation of the plan of the local orbit (il, fil). One group détermines the other. We hâve decided to express the local eccentricity and the local perigee as function of other variables (ii,fli). Tedious, but simple, algebraic 

Non-elliptical motions

Second particular case corresponds to the eccentricity equal to one. If we impose e = 1 in équation (5.15), we find the following conditions for the initial différences of non-singular éléments: AC* = 0, AS = 0, corresponding to h = 0 . As a conséquence, the local inclination and the longitude of the local ascending node are no more defined. In fact, using third équation of (5.9), we can compute: This particular case is not a parabolic motion as expected in the two-body problem when e = 1, but a periodic motion in the N axis. The combination of this motion with a constant term in the T axis (AAo-coszrAf2o) gives very interesting configurations for flight formations:

the second satellite follows the first one with a constant offset on the T axis and a variable term on the N axis. Thus, choosing the adéquate values for the N axis term, it is possible to obtain formations with the same ground track for ail the satellites. This characteristic is fundamental for Earth observation missions. Some examples are A-TRAIN and TOPEX-JASON satellites.

5.3

The eccentric reference orbit case In these équations we identify different terms:

• constant terms: There are constant terms not only along the T axis (as in the circular case) but also along the N axis. Once again, they can be cancelled by changing the origin of the axis.

• elliptical terms cos A and sin A: Their coefficients differ from the coefficients of the circular reference orbit case. The local orbital éléments can be computed using équations • double orbital frequency terras: due to these terms, the trajectory is no longer an ellipse.

Mean and osculating local orbital éléments

As non-elliptic terms are proportional to the eccentricity, they are small compared to the elliptical terms. Consequently, the motion is near-elliptical and we can still use the local orbital éléments. We define the mean local orbital éléments and the instantaneous osculating local orbital éléments.

Mean orbital éléments are defined as the local éléments corresponding to the relative mo tion without double orbital frequency terms. They can be computed using équations (5.20).

Instantaneous osculating local orbital éléments are defined as the local orbital éléments cor responding to an ellipse that would hâve the same position and velocity at the same moment.

Mean orbital éléments do not correspond with the mean value of the osculating orbital élé ments.

To compute the osculating local orbital éléments, it is necessary to use the relative position and velocity following the steps:

1. compute the relative position using équations (5.27) and the relative velocity using the dérivatives of équations (5.27).

2. compute the parameters P corresponding to the instantaneous ellipse using following équations: The main modification with respect to the circular reference orbit case is the new rôle of AA. While in the circular case AA détermines only a constant, in the low eccentricity refer ence orbit case it has an impact on the mean local orbital éléments and on the perturbations (double orbital frequency terms). But, as ail these effects are proportional to the eccentricity of the reference orbit, they are only corrections of main contributions. So, the topology of the motion will be only slightly modified with respect to the circular reference orbit case.

A -x( 1 ) cos A - sin A n C -x{2) cos A - ^sin A n E = x(3) cos A - sin A n B -x(l) sin A + ^cos A n D = x{2) sin A + cos A n F -x{2>) sin A + cos A

The high eccentric reference orbit case

When the reference orbit is highly eccentric, relative motion is far from being an ellipse. In order to analyze it, we hâve rearranged the équations of the relative motion. We hâve minimized the number of the parameters of the motion, and we hâve decomposed their effect on inplane and out-of-plane motion.

Our departure point is équations (5.1). For the same precedent reasons, we impose A a = 0, obtaining équations: K\,K2 parameterize the in-plane motion and Ks,K4 the out-of-plane motion. The out-ofplane motion is given by the sum of a sinus and a cosinus functions divided by (1 + ecos/r).

The in-plane motion is more complicated. K\ produces a circular motion:

x = y -Ki = -cos fr + eK\ sin f1 eK\ cos fr + sin fr (5.34) and K2 produces a motion only on the y axis:

-eK2 cos fr y-K2 = -j-

1 + e COS Jr
The values of these constants détermine the form of the in-plane motion. In figure (5.5) we plot the form of the in-plane motion for different values of K\,K2, when the reference orbit eccentricity is 0.6. We verify that for high values of K1 the motion is circular while K2

gives linear motions on the T axis. When the reference orbit is not circular, the set of équations (5.27) reveals that it is not possible to find perfect circular local motions. But, our analysis of these équations enables to establish the necessary conditions to provide local motions as close as possible to a circle.

When changing the parameterization (5.27) by using differential orbital éléments we obtain: The first set of initial conditions is parameterized by a différence of eccentricity, while the second set is parameterized by a différence of anomaly. Thereafter, we refer to the set 1 as "différence of eccentricity" and to set 1 as "différence of anomaly". Resulting motion is not circular because of double orbital frequency terms. In figure (5.6) we compare the variation of the distance from the origin for each set of initial conditions. Both sets of conditions produce double orbital frequency terms in the N axis, but, Ae produces also these terms in the T axis.

That is why the variations are more important in the left part of the figure (5.6). Comparing the two sets, we identify the transformation of elliptical terms when the eccentricity of the reference orbit grows. We identify the following terms:

-cos / + e sin / (5.8) show how, for very big reference orbit eccentricities, motion is far from being circular.

Conclusions

This chapter présents an alternative représentation of the relative motion for the circular and the low eccentric reference cases. A parallelism between the two body problem and the relative motion can be done since the relative trajectory is, under certain conditions, an ellipse. This argumentation has lead us to the définition of the local orbital éléments. They enable a better understanding of the motion because we are familiar with orbital éléments.

We also hâve found conditions for obtaining local circular motions for circular reference orbit.

In the eccentric reference orbit case, local circular orbits do not exist, and we hâve found the conditions leading to local near circular motions. The Jo effects

Introduction

The most important perturbation acting on a satellite in orbit around the Earth is the oblateness of the Earth represented by the corresponding coefficient in spherical harmonies, J2. The effects of this perturbation on the absolute orbit are well-known and they are given by several théories [START_REF] Brouwer | Solution of the problem of artificial satellite theory without drag[END_REF], [START_REF] Kaula | Theory of Satellite Geodesy[END_REF]. These effects are usually divided in secular, short period and long period effects. In this chapter we focus only on secular effects because they can be particularly harmful for formation flying. If ail the satellites do not undergo the same secular effects, they tend naturally to scatter. Large amounts of propellant are necessary to avoid this effect.

That is why formations are usually designed to avoid this differential effect. Periodic effects are studied in following chapter with the rest of the gravity field.

The effects of J2 on formation flying hâve been largely studied in the literature. A particular interest is given to the research of invariant configurations. In order to do so, different methods are used. Some authors use the differential orbital éléments [START_REF] Hamel | Linearized dynamics of formation flying spacecraft on a J2 perturbed elliptical orbit[END_REF], [START_REF] Mishne | Formation control of satellites subject to drag variations and J2 perturbations[END_REF], [START_REF] Schaub | J2 Invariant Relative Orbits for Spacecraft Formations[END_REF], [78], other authors use a hamiltonian approach [START_REF] Koon | J2 Dynamics and formation flight[END_REF], [START_REF] Biggs | A search for invariant relative satellite motion[END_REF], while others use the cartesian coordinates [START_REF] Schweighart | Development and analysis of a high fidelity J2 model for satellite forma tion flying[END_REF].

Here, we use the differential orbital éléments. We focus on circular reference orbits and local circular orbits. We also use the local orbital éléments in order to enlarge the compréhension of the trajectory.

In the first section of the chapter, we compute the secular effects of J2 in terms of differential orbital éléments. Dérivation of differential effects in terms of differential orbital éléments was done before in [START_REF] Schaub | J2 Invariant Relative Orbits for Spacecraft Formations[END_REF]. We hâve enlarged its solution by including the effects on circular reference orbits. As we explain, J2 effects on circular orbits are particular because of the non-definition of the perigee.

In second section, we dérivé necessary conditions for avoiding drift between satellites. Obtained general conditions agréé with precedent results in [START_REF] Schaub | J2 Invariant Relative Orbits for Spacecraft Formations[END_REF]. We particularize this conditions to the circular relative motions. We prove that there is a particular local circular motion for which the drift is minimized.

Third section is devoted to the computation of the effects of J2 in terms of local orbital élé ments. As we show, J2 effects always increase the local semi-major axis and the perigee.

6.2

The transition matrix 6.2.1

The eccentric case

In this section, we apply the methodology described in chapter 4 to obtain the transition matrix of the J2 secular effects noted £j2. Methods consists in (i) writing the potential of the force, (ii) using Lagrange planetary équations to obtain the differential équations of the effects on the orbital éléments, (iii) integrating the precedent équations, (iv) deriving the obtained équations with respect to the orbital éléments.

The potential of the secular part of J2 is obtained by averaging on the orbit the angular variables. It writes:

Uj2 = ~1 /f 4 a (R\2 (1 -3cos2 i) W (1 -e2)3/2 J2 (6.1)
where /i is the product between the gravitational constant (G) and the mass of the central 

I (f) * t (~) nh COSÎ U-) nJ2 (1 -e2)2 1 -5 cos2 i (1 -e2)2 1 -3 cos2 i (1 -e2)s (t ~to) (t -to) ('t ~t0) (6.3) (6.4)
Linearization of precedent équations give final Cj2 matrix:

Cj2 = Kj2
with the constant:

0 0 0 0 0 0 \ 0 0 0 0 0 0 0 0 0 0 0 0 --cos i a 8e rp cosi -2 sin i 0 0 0 -^(l-5C°s2i) 4e
Vf (1-5 cos2 i) 10 cos i sin i 0 0 0 "++ -3cos2i) oe V (i-3 cos2 i) 677 cos i sin i 0 0 0 / (6.5) nJï-j »74 Neglected periodic terms hâve also an effect on secular terms through the initial conditions.

Computed secular effects are not exact because we use the osculating initial conditions instead of using mean initial conditions. In the relative motion these effects are small. They can be taken into account but resulting équations become cumbersome. We prefer to keep a simple model.

Circular reference orbit

As we do ail along the document, the circular reference orbit case is studied through the non-singular éléments defined in équations (2.4). We transform équations (6. C and S éléments do not hâve anymore secular perturbations in circular (or near-circular) orbits. They are excited in an équivalent way to the harmonie oscillator.

Since perturbations in C and S are linear, and C and S are very small or null, J2 perturbations on C and S become neglectable with respect to J3. The phenomenology of the perigee for very low eccentricities is completely detailed in [START_REF] Deleflie | Long period variations of the eccentricity vector valid also for near circular orbits around a non-spherical body[END_REF], and [START_REF] Deleflie | An analytical solution of the Lagrange équations valid also for very low eccentricities: influence of a central potential[END_REF]. We do not consider these effects because they are not secular.

C matrix As indicated in 6.2.1, we must calculate the dérivatives of ^and ^with respect to a,C,i,S in order to obtain the Cje matrix. First dérivatives of the secular effects with respect to C and S are zéro in circular orbits since their relations are of second order. A possible solution is to use Delaunay variable 77 as it is done in [START_REF] Schaub | J2 Invariant Relative Orbits for Spacecraft Formations[END_REF]. Mapping between ôrj and ÔC, ôS shows how the first terms in C and S are second order ones:

«57, = -(C(<5C) + S {SS)) -- + (<5S)2)
So, for circular orbits: AV0 = --(AC02 + AS02) (6.12)

We can no more use matrix formulation because we hâve introduced second order terms.

If we want to keep this formulation, we should use tensors. Instead of doing so, we prefer to ^(l -3cos2z) (5 -18 cos2 i) (ACq + ASq) + 9sin2zAzo -t) -

3 n 1 + a sin i cos AKj2 (t -to) 7 cos i---4 cos z (ACq + ASq) + 2sinzAzo 2 a Kj2 (6.14)

6.3

Looking for no drift configurations

The eccentric case

This section is devoted to the research of no drift orbits. This research has been done before in [START_REF] Schaub | J2 Invariant Relative Orbits for Spacecraft Formations[END_REF]. Here, we take up again his results and we particularize for the circular case. We also focus on the combination of no drifts and local circular orbits. As it is proved, no drift orbits exist only for the circular case.

Secular drift is given by secular terms in équations (6.8), (6.9) and (6.10). The no drift condition implies cancelling drift on the three angular variables (£2,u;,M): Ail the terms in these expressions, except the Keplerian term -|^-^-Aao, are linear with J2. Since J2 is very small for the Earth (J2 = 1,083. 10~3), Keplerian term is dominant in N axis. As a conséquence, we can neglect the term -1(1 -3cos2 and, as a conséquence Aao <$C (Aeo, Azo). So, we can also neglect the terms -7 cosz-2-and |(1 -5 cos2 i)^a. We obtain simplified équations:

0 = 0 = 0 = .Aao # • a • 8e -7 cos z 2smzAzo H-9 coszAeo --(1 -5 cos2 z)^^-+ 5sin2zAzo + -^(1 -5 cos2 z)Aeo
0 = -2sinzAzoH-^-cosiAeo (6.16) rjz 4e 0 = 5sin2zAzoH-^-(1 -5 cos2 z)Aeo rjz " . ^. A . 6e " 9.3nlA 0 = 3nsm2zAzoH (1 -3cos z)Aeo -----Aao j) 2 a Kj2
The last équation proves that the effects of the différence of semi-major axis are on the anomaly, and they corne from the Keplerian effects. It can be chosen in order to null the other effects on the anomaly.

These équations do not hâve any solution for arbitrary inclination (the circular case must be treated separately). A possibility to obtain a solution consists in null the sum of the argument of the perigee with the mean anomaly, instead of null them separately.

We obtain following condition for the ascending node: When the reference orbit is circular, we impose no drift conditions using équations (6.11).

After some computations, conditions become:

Arjo ---tanzAzo (6.19) The square root demands -^tani < ASo < 0, where AS'o is a free parameter.

If we desire to place more satellites describing a circle around a central point (as it is the case for LIS A mission with three satellites), the other satellites cannot hâve a null drift. We can impose just one condition: -0.

Numerical simulations

In order to prove the interest of precedent conditions, we hâve tested three different local circular orbits with the same reference orbit. Only the first amongst them accomplishes the non-drift condition for J2 secular perturbations. Simulations hâve been done with a simplified analytical model disregarding periodic perturbations.

The parameters of the reference orbit are: a = 7000 /cm, i -50°, e = 0, and the length of simulation is 10 days. The differential orbital parameters of the three satellites are given in The advantages of the first configuration with respect the two others are clear in figure 6.1. On the left side, there is the relative motion in the local axis RTN. S AT 1 is the only one where there is no significant drift. On the right side, the évolution of the distance to the origin proves that in S ATI the variations are very small (even if it is not perfectly circular)

while in SAT2 and SAT3 there is a linear growth of the size of the variations.

The effects of the perturbation on the osculating local orbital éléments are plotted in figure The form of the local orbit is given by its local semi-major axis ai and its local eccentricity ep We focus our study on these two éléments. We rewrite the définition of both: Ki = a2r(AC$ + 4A5'q + sin2 irAf^)

K$ = 2a2 (-3ACoA5o -sinîrAü2oAio) 2 af = Kl + K2 + + Kf K2 = af(ASo + 4ACo + Ai\) K!+K2 (6.22)
We remember that in the circular case (where the local orbital éléments are defined), only two local orbital éléments undergo J2 secular effects: AU and AA. AA does not take part in the définition of local orbital éléments. Only AU plays a rôle.

The introduction of the analytical expression of temporal perturbations of AU(£) leads to very complicated équations which do not give more insight in the compréhension of the problem.

We compute the dérivatives of the local orbital éléments with respect to the différence of ascending node. These dérivatives give the évolution of the variables.

= a2 (2 sin2 ir AUq) 

• short period: In the short term, the value of the différences which suffers from the secular effects keep values similar to static ones. The analysis of the effects during this period présents big difhculty, since ail the parameters play a rôle. Anyway, there is a first différence that we can establish in this relative motions. The motions that tend to collapse, and the motions than tend to spread.

• long period: In the long term, ail the formations spread. There are two different ways of spread due to J2: (i) It can be through a secular effect on the ascending node, or (ii) through a secular effect on the anomaly. In the first case, the dominant motion is a periodic motion on the N axis. In the second case, the motion is a secular drift on the T axis.

Conclusions

In this chapter we hâve analyzed the effects of J2 on formation flying. We hâve used two représentations: differential orbital éléments, and local orbital éléments. First représentation enables the description of the motion through simple analytical expressions, while second one, gives more compréhension of the resulting motion.

First conclusion is that, after long periods without thrust, J2 always spreads the formation, except for particular case: the no drift configurations. For short periods, J2 effects can also group the formation.

No drift configurations exist only when the reference orbit is circular. We hâve also detected local circular or bits with no drift. When reference orbit is not circular, there is an approximated solution to the no drift configuration, but it goes worst for high reference eccentricities. Introduction

This chapter is devoted to the effects induced on a formation flying by the whole gravity field. In a general point of view, perturbations produced by the gravity field are the main perturbation in low orbit satellites, but most important effects are J2 effects. Other terms of the gravity field are as relevant as J2 in a first approach. But, they are necessary when we prétend to analyze geodesy space missions. It is our first motivation when we study these effects.

Effects of the gravity field on the absolute motion of a single satellite hâve been largely studied in literature. There are several papers obtaining analytical expressions for temporal pertur bations. Two of them, among many others, are Kaula theory and Brouwer theory. Brouwer theory is not well adapted because it considers only J2 effects. Kaula theory has several mismodellisations that diminish the accuracy of the results. An interesting work improving previous work is [START_REF] Wnuk | Tesseral harmonies perturbations for high order and degree harmonies[END_REF]. In order to obtain a better accuracy, we hâve developed another solu tion based on the use of canonical Lie transformations.

The effects of gravity field perturbations on a formation flying mission hâve also been analyzed. Precedent studies were done in the frame of GRACE mission. In [START_REF] Colombo | The global mapping of gravity with two satellites[END_REF] a method based on Hill équations is presented for the intégration of gravitational perturbations in a two-satellites coplanar flight formation. Cheng [START_REF] Cheng | Gravitational perturbation theory for intersatellite tracking[END_REF] uses Casotto relations to introduce the gravitational effects in RTN reference frame and deduces observable functions. In [START_REF] Visser | Low-low satellite-to-satellite tracking: a comparison between analytical linear orbit perturbation theory and numerical intégration[END_REF], there is an improvement of Cheng solution. More recently, in [START_REF] Wyuk | The relative motion of Earth orbiting satellites[END_REF] there is a numerical approach to the problem. Our approach consists in combining our alternative intégration of gravity field effects with the differential orbital methods.

Second section is devoted to the different expressions of the gravity field potential that we find in the literature. In third section, we hâve analyzed the behavior of Kaula solution. We hâve detected its main weakness. In the fourth section we propose another solution based on the use of canonical Lie transformations. In fifth section we apply the differential orbital 

Complex form

A classical alternative of this représentation of gravitational potential is the complex form, as defined for example in [START_REF] Sneeuw | A semi-analytical approach to gravity field analysis from satellite observations[END_REF]:

nr E (-)11+1 É *SÂ(sin (7.6)

1=1 ^' m=-l where c superscript stands for complex variables. Even if coefficients Kfm are complex numbers, the total imaginary part of the potential is always zéro. The advantage of this formulation is its compactness, and its inconvénient is to double the number of coefficients.
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The coefficients and the polynomials hâve been normalized with a different normalization factor:

Nfm = (-irJ(2i + i) (l -m)\ (l + m)\
Relation between complex and real normalization is:

(-i)' Nlm '-Nlm -<5mü)
Relation between normalized and non-normalized coefficients is rather different: The previous expressions of the potential are in terms of spherical coordinates whereas classical orbital éléments are better suited for Lagrange équations.

Transformation between the two sets of coordinates Systems consists in a rotation of spherical harmonies as described in [START_REF] Sneeuw | A semi-analytical approach to gravity field analysis from satellite observations[END_REF] and [START_REF] Sneeuw | Représentation coefficients and their use in satellite geodesy[END_REF] for the introduction of the inclination, and a second transformation for the introduction of the eccentricities. An alternative less élégant method can be found in [START_REF] Kaula | Theory of Satellite Geodesy[END_REF]. It is beyond the scope of this thesis to deep on the details of these transformations and we will use just resulting relations.

Once again, real and complex inclination functions are not identical because of different normalizations and the complex component. We study both représentations in different para graphe.

Real formulation

In order to introduce the inclination, we use normalised real inclination functions: âmp = Nlmd,mkplk(0) (-Îf+Sl^l (7.11) dimk is issued of the rotation of the spherical harmonies: dlmk (/ + m)\ y, (l + k\ ( l-k \ (/ + /c)! ^V 1 )v-m-t) (-l)4cos2Z a^/?sina-/?

Details of this formula are given in [START_REF] Sneeuw | Représentation coefficients and their use in satellite geodesy[END_REF].

The introduction of the eccentricity is done through Hansen functions:

(7.12) and:

faim i Pim] - V-Sim.J J ' V VW l -m even\ l -m odd J (7.16) (f) = (l -2p)u + (l -2p + q)M + m(Q -6)
In [START_REF] Wnuk | The inclination functions for the high value of indices[END_REF] we find following one: Clm -Jim COS Xim &lm -sin (7.23) In these four cases, inclination functions are defined and normalized in the same way.

Complex formulation

In a parallel way the complex potential is developed:

l+1 i i Uc = ^Ë(f) È E E 1=1 ^' m=-l k=-l,2q--oo
KlmFimk Glpk e ,jm<p (7.24) with: 

0 = kuj + (k + q)M + m(Q -9) ( 7 

Kaula's intégration of the effects of the gravity field

Classical Kaula's intégration is detailed in [START_REF] Kaula | Theory of Satellite Geodesy[END_REF]. The author proceeds, first, to the development of the potental of the gravity field in terms of orbital éléments (as rewritten in precedent section), and, second, he proposes an analytical intégration of resulting Lagrange planetary équations. This solution has been used for many years, inspite of its drawbacks. We give here its solution and we analyze its main drawbacks. They justify the obtention of an improved Exact analytical intégration of resulting équations is not possible. In [START_REF] Kaula | Theory of Satellite Geodesy[END_REF], the author does an approximate intégration. It consists in introducing 1) the secular terms, supposing that the variables do not hâve short period variations, and 2) short and long period variations inserting only secular variations.

This method leads to the following secular effects: Ôü(t)\sec 

Main drawbacks of Kaula's intégration

In this subsection, we analyze the behavior of the analytical Kaula's solution with respect to a numerical intégration of the potential. We aim at to detect the main drawbacks of Kaula's intégration. We hâve used a LEO orbit for numerical applications defined by its orbital éléments: a0 = 7. 106 m e0 = 0,02 i0 = 40°ü 0 = 50°cüq = 60°M0 = 0 Initial date is 20th february 1996 at midnight and the model of the gravity field that we use is EGM96-95. By the following, we enumerate some of the main mismodelling.

The rôle of the inital conditions

Instantaneous value of orbital éléments, also known as osculating value artificially in two terms: the mean value (EO), and a periodic oscillation

ËÔ = EO + ÔEOper

Mean value evolves with secular perturbations of the gravity field: ÉO(t) = ÉO(to) + SEOsec (7.35) while periodic perturbations are given by short and long term perturbations. Secular perturbations are null at initial time (to), but it is not the case for periodic effects. So, at to, we can write:

(EO) can be split (ÔEOper). R is: Disrega.rding this terms has two conséquences:

(7.
• It produces a constant shift on ail the orbital éléments. In figure 7.1, we hâve plotted osculating values of the semi-major axis and the eccentricity ail over a day. In both éléments, there is a the constant shift.

• Since initial mean orbital éléments are not exact, secular terms (7.31) are neither. At the left side of figure 7.2 we hâve plotted the error (différence between the numerical and Kaula intégration) on the osculating value of the ascending node over one hundred years. The main error is the secular term due to the différence of initial conditions.

Second order effects on J2

Ail the effects that Kaula considers are linear with respect to the perturbation. Second order effects due to J2 are the main remaining error. To prove so, we hâve done the following expérience: at the right side of figure 7.2, we hâve plotted the error considering actual value of Earth J2 (1, 083.10~3), and the a fictitious value, the double (2,166.10-3). The figure proves that the error is quadratic with J2 as expected. In order to solve Kaula's intégration drawback's, we hâve developed a theory based on canonical Lie transformations in order to obtain a better extrapolation of gravity field perturbations.

The main advantage of the theory is that it takes into account secular effects proportional to J| and that also considers initial conditions. Furthermore, the main effects are in closed form, i.e., they are not expanded as power sériés of the eccentricity. The main limitation is that the method do not introduce the non-linear effects of J2 in the short periods.

By the following, we use Delaunay variables defined in (2.1) instead of orbital éléments because they form a set of canonical variables (necessary to use Hamiltonian formulation).

We use the Hamiltonian (JC) given by the gravity field potential written as in équation (7.22).

Moreover, to take into account that this potential is expressed in the Earth's frame rotating with an angular velocity ue (supposed to be constant):

JC = U-ujeH (7. 38 
)
The Hamiltonian is split in three parts, by decreasing magnitude of the perturbations:

AC = ACo + ACi + -AC2 (7.39) AC0 = K\ = [(1 -3cos2 i) -3sin2 i cos (2/+ 2</)] oo n n cc JC2 = -2 E E E E KîmFfmkGlpke™* n=2 771-0 p=0 <7=-oo
Zéro order includes Keplerian effects, the first order includes the J2 effects, and the second order the rest of the gravity field. This division enables to consider J2 effects separately from the rest of the gravity field.

Canonical transformations

We use the Deprit-Lie algorithm to obtain canonical transformations. The goal of the method is to obtain a hamiltonian that does not dépend on angular variables. In order to do so, we do two transformations. First one transforms the variables: CHAPTER 7. THE G RAVITY FIELD (H, G, L, h, g, l) -> (77', G', L\ h', g\ /') (7.40) and the hamiltonian:

/C^£' = /(£', G', #',</) (7.41) The first transformation removes the short period terms of the hamiltonian by averaging over the variables l and g. And the second transformation:

(H\ G', L',h',g', l') -(H", G", L", h", g", l") (7.42)

K' K" = (7.43)
The second transformation deals with the long periods. It is important to mention that when we construct the transformations, we respect only the lower order terms, but we may do some changes in higher terms.

Once this last hamiltonian obtained, its intégration is really simple. Using classical hamil tonian theory we know that: This method uses an exact intégration of the équations but the errors corne from the canonical transformations which neglect high order terms.

Use of the method

For simplicity sake, we transform our Delaunay variables in orbital éléments for its use. We use three sets of orbital éléments EO, EO', EO" corresponding to the three sets of Delaunay variables. The method is composed by three steps:

• Transformation of initial conditions:

EO'(to) = EO(to) + ôEO\Sp(to) (7.47) ËO"(to) = ËÔ'fo) + 6ËO'\ip(t0) (7.48) (7.49)

• Extrapolation of the motion including secular terms:

• Récupération of initial variables:

ËÔ'(t) = ËO"(t) -ÔËO"\ip{t) (7.50)

ËÔ{t) = ËÔ\t) -ôÊO'\sp(t) (7.51) The exact expressions of perturbations are detailed in annex A.

Numerical simulations

Numerical simualtions confirm that our new solutions works better than Kaula solution, and it also points the non-considered ternis. In order to improve our theory, these terms should be included. I hâve plotted the same errors, for the same orbital éléments, considering the effects of the third degree of the gravity field. Once again, the results are improved. Similar results are found for higher orders of the gravity field.

Differential effects

In this section, we explain how to obtain the matrix Cqf used in differential orbital éléments method in order to integrate gravity field effects on formation flying. We write extrapolation process on orbital éléments as follows (where we neglect vector sign in order to simplifiy expressions):

EO'(t0) = f(EO(to)) 

EO"{t0) = g(EO\t0)) EO"(t) = h(EO"{t0)) EO'{t) = g-\EO"{t EO{t) = f~1(EO'(t)) AEO\t0)= AEO"(t0) = A EO"(t)= A EO'(t) = A EO(t)=

Conclusions

First part of the chapter is devoted to clarify the different représentations of the gravity field potential. We hâve proved that they are équivalent but normalization and inclination functions are different. Once the potential settled, we présent two methods to compute its effects on the gravity field.

First method is Kaula's intégration. It is a very useful method but its précision is not very high. That's why we hâve developed an alternative method. The alternative method uses Lie canonical transformation to obtain a new hamiltonian that can be integrated in a trivial way.

Précision of this method is improved with respect to Kaula's method.

At last we use the differential orbital éléments in order to obtain the perturbative effects of the gravity field in the relative motion. Introduction

For high orbits, the effects of the Earth's gravity field are much reduced and the main per turbations are solar radiation pressure and lunisolar effects. As I will prove, solar radiation pressure may be prédominant in formation flying when satellites do not hâve the same area to mass ratio (-). That's the reason why we dedicate a chapter to obtain analytical expressions for the effects of solar radiation pressure on orbital éléments.

First section is devoted to the modellization of the solar radiation pressure. Different models are used in literature. We use the simplest one.

Under some simplifications, solar radiation pressure is a conservative force and dérivés from a potential. The effects of the potential on orbital éléments and the intégration of resulting équations is done in second section. A similar procedure is followed in [START_REF] Kozai | Effects of solar-radiation pressure on the motion of an artificial satellite[END_REF], [START_REF] Aksnes | Short-period and long-period perturbations of a spherical satellite due to direct solar radiation[END_REF], and [START_REF] Bryant | The effect of solar radiation pressure on the motion of an artificial satellite[END_REF], but we use mean anomaly instead of true anomaly as independent variable.

Last section is devoted to the differential effects. We prove that the effects induced by différ ence of -are usually much bigger than the effects induced by the différence of position.

Solar radiation pressure

Solar radiation pressure is the force exerted by solar radiation on objects within its reach.

The force can be expressed as:

ï = -(l + fflP,-(^] Usât (8.1)
7ïi \rs J where:

• /3 : index of reflection of the satellite. Its value is usually around 0.3

• Ps : it is a pressure, with a value: Ps = 4,6510~6 Pa In order to take into account perturbations induced by this force, two ways are possible.

(1) using the Gauss équations directly with the force, (2) computing the potential associated to the force, and use Lagrange planetary équations. Both methods are équivalent.

The main difficulty for both of them is the modellization of shadow régions, the régions where due to the cône of shadow projected by the Eartli over the satellite, there is no solar radiation pressure. In low orbits, shadow régions are computed numerically and considered apart. But, since we are interested in very high eccentric orbits, with high semi-major axis, shadow régions are negligible (for Simbol-X mission shadow régions are never bigger than a 4 % of total orbit).

By the following, we evaluate the perturbations of the SRP on the orbital éléments using its associated potential.

Intégration of the potential

If we neglect the shadow régions, precedent force is conservative, and its associated potential is:

with: Usrp = S G Tsat U sun • ^sat m (8.2) a = (1 + /3 (8-3)
and uSUn is the unit vector of the the position of the Sun with respect to the used reference frame. We work in a Earth-centered inertial équatorial frame. In this reference frame, the unit vector of the satellite is:

:\T u sat = (cos fl cos u -sin fl sin u cos i, sin fl cos u + cos fl sin u cos z, sin u sin ï)

To compute the unit vector of the Sun, we use the following simplified model:

In an Earth-centered ecliptic frame, the unit vector of the Sun is: where day number is the number of the day of the year. Transformation into Earthcentered inertial équatorial frame can be easily done using matrix: The last step consists in substituting the mean anomaly to the true anomaly in eq. (8.10) in order to use Lagrange planetary équations. We use the well-known classical development with Bessel functions, as can be found, for example, in [START_REF] Casotto | The mapping of Kaula's solution into the orbital reference frame[END_REF]:

r cos / - T r sin / = \ 2ar) y e 2 3
V"'' 2 T/ 2e+ÇUs' 00 -, (8.13) where Js(se) is the Bessel function of order s and argument se, and J's(se) are the dériva tives of Bessel functions with respect to the argument. We also compute the dérivatives of équations (8.13) with respect to the argument, se, because it is required thereafter: -T (2e + -) + E (2cossM:F (Ui(se) + y7"(se)) + 2sin sMÇ/ ( ^J'(se) --j^J3(se) e°s Exact intégration of these équations is not possible, but a first approach, considering just secular keplerian évolution of orbital éléments is done. This approach is similar to Kaula's approach for intégration of the gravity field.

In order to improve the précision, we should consider secular effects when computing short periods. It may also be possible to consider coupling between J2 effects and SRP introducing J2 effects as secular ones on the intégration. But, the obtained précision (relative error lower than 10%) using the Keplerian model for secular terms seems reasonable for our purposes.

We Our method has the same inconvénient that Kaula's method. It is, there is a différence between the osculating (EO) and the mean (EO) variables. This différence can be mitigated by taking into account the initial phase of the perturbation. It is: EO(t0) = EO(t0) -SEO(t0) (8.15) When considering mean éléments, we must include a second term on the évolution of the mean anomaly:

ôM^2\t) = ---Aa(to) (t -t0) In order to verify precedent équations, we hâve tested them using as bench mark numerical intégration of the forces. We use as test orbit a typical HEO orbit, for which the SRP effects are the most important in comparaison to other perturbations. Parameters of the orbit are: Some conclusions can be drawn from these simulations. First, we detect residual secular variations in the inclination and the ascending node. In fact, longer simulations show that in numerical intégrations we find not only secular effects, but also long periods which are not modeled in our analytical expressions. We hâve verified that these long periods are not linked with changing position of Sun with respect to the Earth.

In spite of these mismodellizations, results are accurate enough to provide necessary informa tion for mission analysis. That's the reason why in this section we hâve considered the effects providing from a différ ence of -and we disregard the effects providing from a différence of position.

Terms providing from a ^are not linear with the orbital éléments, but with A^. In 

Conclusions

In this chapter we hâve presented an analytical method to take into account the solar radiation pressure. Even if the accuracy of the method is not very high, it is well suited for our purposes of mission analysis. Simplifications are done in two ways: (i) in the modellization of the solar radiation pressure, and (ii) in the intégration of the potential. The model that we use neglects perpendicular forces, and shadow régions. The intégration is done considering Keplerian secular effect as the only variation.

In last section we présent differential effects on formation flying. Main effects are due to the différence of -. For big values of these variable, we join solar sails concept. It might be an interesting alternative to formation flying control.

Part III

Future missions for Earth and
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SPACE MISSIONS TO MEASURE THE G RAVITY FIELD

it is not based on the deformation of the trajectory but, in any case, the procedure to obtain the coefficients of the gravity field from the observations, is the following.

First, a model of the observable is done. The model includes the parameters characterising the gravity field and many others, as the initial position of the satellite, the Earth atmosphère, or other perturbations that can affect the motion of the satellite. In a general way, we write the model as:

obs -f (coef) (

We assign a priori values to ail the unknown coefficients of the model (coe/o) . With these values we compute the a priori values of the observation (obso), which are certainly different of the real observed values (obsc). Supposing that a priori values of the unknown coefficients are close enough to the real ones, we linearize the observables in order to obtain following matricial System:

^^^p ^ôbsc -obs0 = \-t (coefc -coef0) (9.2) dcoef J 
The dérivatives are computed with a priori values of the coefficients. The détermination of the coefficients can be obtained through the inversion of the matrix d l. J --> . The System dcoef'coef0 J can iterate until the convergence. If the matrix is overdetermined, one seeks those unknowns coef that minimize the weighted discrepancies in quadratic sense. Even if the principle of the resolution of a least squares method is simple, its practical application is a highly complicated technique on itself where several parameters play an important rôle (length of the arcs, combination of observations, considérer perturbations,...) and we do not deep on it. By the following, we summarize its main aspects.

Least squares method

We write precedent matricial form as follows:

y -Ax (

Since measurements contain noise by nature, the vector of observations is a stochastic variable, with an expectation:

E{y) = Ax (9.4) and a dispersion:

D{y} = Qy (9.5)
where Qy is the covariance matrix of the vector of observations. Least squares estimator gives the dispersion of the unknowns vector, also known as the posterior covariance matrix: D{x} = (ATPyA)~1 = N-1 = Qx (9.6) where Py = Qyl The posterior covariance matrix is the inverse of the normal matrix.

Analysis of the covariance matrix gives a lot of information about the observation System. In particular, it gives the error spectrum of the coefficients: diag(Q2) -> var(Â)m) = afm (9.7)

• One-Dimensional Error Spectrum: For représentation reasons we might be more interested in obtaining a one-dimensional parameter which is defined as follows:

i O1 = °lm m--l (9.8) 
RMS'-^2i + i°r (9.9)

New challenges

With the data received from GRACE mission, and expected data from GOCE mission, the knowledge of the Earth gravity field will be significantly improved. In [START_REF] Rummel | Geoid and Gravity in Earth Sciences -An overview[END_REF], following table is given for the remaining uncertainties:

Geoid (mm) Gravity (mGal) Spatial Scale (km) In the same paper, the author points out three areas which would benefit from an improvement of the knowledge of the global gravity field:

• Geoid and Gravity anomalies: They reflect primarily mass anomalies of the inner config uration of the Earth, in particular, the lithosphère and the upper mantle. The précision of 1 cm for the geoid with a spatial resolution of 100 km expected with GOCE should be increased to a lower space resolution, 50-60 km.

• Dynamic Océan Topography: Dynamic océan topography is given by the différence between actual océan surface (measured by satellite altimetry) and the geoid. An improvement of the geoid has direct repercussions on the dynamic océan topography. In this area, an ultimate goal could be the détermination of the geoid with a précision of 1 cm with a spatial resolution shorter than 50 km.

• Temporal Variations of the Gravitational Field: This item is the most complex because of the temporal dimension of the problem. A new variable appears: the time scale. This concept can hâve different uses: orbiting antennas, shuttle-borne tethered satellites, electrodynamic-powered tethers, space station tether Systems, or formation flying tethers.

Several missions has been launched (TSS-1, TiPS, MAST,...) in order to test the feasibility of the technology and detect its main technological difficulties. In this subsection, we focus on the interest of tethers for space geodesy.

They can be advantageous in two ways: (i) tethers can be used as a propulsion System in order to null drag effects and enable lower (so more sensitive) orbits. This direction is not explored in this report, even if there are previous work in this direction [START_REF] Gullahorn | Gravity gradiometry from the tetherd satellite System[END_REF], [START_REF] Lorenzini | Recent developments in gravity gradiometry from the space shuttle borne tethered satellite System[END_REF]; and (ii) tethers can be seen as very large base gradiometers [START_REF] Kalaghan | Gravity Gradient Détermination With Tethered Sys tems[END_REF], [START_REF] Colombo | System noise analysis of the dumbbell tethered satellite for gravity gradient measurements[END_REF], [START_REF] Gullahorn | Investigation of dynamic noise affecting geodynamics information in a tethered subsatellite[END_REF].

We suppose a satellite composed by two masses, nn\ and m2, joined by a thin cable, the tether with a length L and a negligible mass. Each mass undergoes the force of the gravity field, so they act as a gradiometer, but the distance between proof masses can be larger than in a onesatellite gradiometers. Since the differential effects are almost linear with the distance, the further are accelerometers from each other, the stronger are the effects that we look for. The tether is the paradigm of the gradiometer, for which the distance between detectors can reach several kilometers. But this method présents a.lso several drawbacks: from a dynamical point of view, tether is highly perturbed, and these effects must be perfectly modellized. From a technological point of view, tethers are not still operational, and technological missions should be scheduled before scientific applications.

Dynamical model

First, we will use an Earth-fixed coordinate System. The tethered System will be represented by a simple model with the aim of clarity. Furthermore, we consider a massless dumbbell 9.3.
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Figure 9.1: At the left side, an artistic view of a tether. At the right side, its modellization model, i.e., a rigid massless cable attaching two point masses. Tethers présent a unique equilibrium position: when the tether points to the radial direction. We suppose that the tether has the equilibrium configuration. In this particular case, equilibrium équations for each mass write:

Fa(fi) (-ur)-T = miQon Fa{r2) (-fir) + T = m2fîg (9.10) (9.11) where Fq is the gravitational force, T is the tension on the tether, f^o is the angular velocity of the System and fq, f2 the positions of the masses. Gravitational force, in spherical coordinates can be computed as: For the sake of compactness, the full gravitational model will be considered in its repré sentation on a sphere by means of spherical harmonies with complex-valued factors 7.6:

U(r,0, A) GM OO l l-0 m=-l x R 1+1 Kimyim{0, A) (9.13) 
in this expression, Yim{9, A) is the normalized spherical harmonie of degree l and order m:

Ÿlm = PlmejmX.
Introducing expressions (9.12) and (9.13) in the equilibrium équations, we obtain the angular velocity of the whole System: In order to describe the mass distribution of the tether we introduce the massic angle, G which is defined as follows:

cos2(£) = - sin2(£) = - (9.16) nn m v '
Setting e = -, these relations lead to: ri = (l -esin2 £) r\ = (l + ecos2 £) [START_REF] Boutonnet | Déploiement optimal contraint et robuste de satellites volant en formations invariantes[END_REF][START_REF] Brouwer | Solution of the problem of artificial satellite theory without drag[END_REF][START_REF] Brouwer | Methods of Celestial Mechanics[END_REF][START_REF] Bryant | The effect of solar radiation pressure on the motion of an artificial satellite[END_REF][START_REF] Carter | Fuel-optimal rendezvous near a point in general keplerian orbit[END_REF][START_REF] Carter | New form for the optimal rendezvous équations near a keplerian orbit[END_REF][START_REF] Casotto | Position and velocity perturbations in the orbital frame in terms of classical element perturbations[END_REF][START_REF] Casotto | The mapping of Kaula's solution into the orbital reference frame[END_REF][START_REF] Colombo | System noise analysis of the dumbbell tethered satellite for gravity gradient measurements[END_REF] Using the expressions (9.10)-(9.11) and (9.14), and after some computations we can obtain the tension T as a function of the spherical coordinates of the center of mass, and the System parameters:

°o i / t? \l r(rGAA;£,£) = 4rX(e,Ç)E E ffi(£,0(i + l)( -) ) (9.18) rG !=0m=-( VrG/ 
where the following auxiliary dimensionless functions are introduced:

X(e,0

(1 -e sin2(£))2(l + e cos2(£))2

(1 + e cos2(0)/+3 -(1 -e sin2(£)y+3 cos2 £ sin2 £ (l -esin2 £z+2) (1 + e cos2 £z+2) (9.19) (9.20) (9.21) 
These auxiliary functions dépend only on the mass configuration of the tethered System, therefore they are fixed once the tether parameters are established.

We will perforai the spectral analysis of this observable T in terms of the orbital éléments, so we introduce these éléments on the former relationship (9.18). In order to achieve that, we perforai a rotation of the spherical harmonies. After some computations the expression for The argument of latitude is u -eu + M and A = fl -6q is the longitude of the ascending node in an Earth-fixed System {9q , Greenwich sidéral time). FORMATION FLYING MISSIONS 101 éléments approach described in chapter 4. Initial conditions can be expressed in terms of differential orbital éléments, and the linear approach reads:

A X(t) = [M][jC\AËÔ(t0) (9.23) 
The introduction of the gravity field is detailed in chapter 7 where we obtained perturbative matrix Cqf-We obtained final expressions of relative motion: AX = f(EOref,AEO(to),Cim,Sim,t) (

This model is not well adapted for least square method because relations are not linear with coefficients. Linearized relations can be obtained by linearizing precedent équations or obtaining a simplified perturbative matrix Cqf• We hâve used the second method. Finally, we obtain the following matricial form:

AX = Q[Cim, Sim] (9.25) 
where:

Q = f(ËÔref,AËÔ (t0),t) (9.26) 
In these équations we see that the sensitivity of the observable dépends on the reference orbit as well as on the formation. The influence of the reference orbit in space geodesy is wellknown: usually, very low, near circular, and near polar orbits are used. But the influence of the formation has not been yet explored. Technological reasons encourage the leader-follower configuration, but, other configurations could be more sensitive to gravity field perturbations.

That is why we obtain an analytical expression for a general configuration, and we test it numerically.

First, we obtain a linear model of the effect of gravity field on the differential orbital éléments, and second, we transform it in terms of relative position. 

ôa(t) II IM Se(t) II IM ôi(t) II IM sn(t) II IM Suj(t) = E Imk 6M(t) = n(t 2 Ulmk na <j) V Uimk na2e <j) k(l-rt) -m + kcosi Uimk na2r] sin i ÿ j F Uimk na2r] sin i F ÿ jUimk / cos i F _ vG\ na2(f) yrjs'mi F eGJ (j) can be computed considering secular J2 effects.
In these équations, we disregard secular effects on differential orbital éléments because they tend to destroy the formation and they are periodically removed using maneuvers. Observa tions deal basically with the periodic perturbations. Moreover, the frequencial method that we use cannot stand for secular terms.

Cgf is obtained by the dérivation of precedent équations: = HE°f°AËO(t0) (9.32)

These expressions are valid for any initial configuration, with the exception of secular drifts that are not taken into account. Since main secular drifts are given by keplerian motion when there is a différence of semi-major axis, we suppose Aa(to) = 0. We do not consider the secular effects produced by J2 described in chapter 6. The lumped coefficients approach

In [START_REF] Sneeuw | A semi-analytical approach to gravity field analysis from satellite observations[END_REF] we hâve an original method to obtain the covariance matrix for different observables.

By the following we summarize the method and we apply it in following sections to formation flying and tethered Systems.

The method is developed specially for circular orbits which are the most used for geodesy purposes. For eccentric orbits, the method could be adapted.

At the sight of the complex form of the gravity field:

U* = ir Ê (")''+1 É É KlmFlmke^^(9.44) e 1=0 ' m=-l k=-l

The author develops the different observables in order to obtain the following form: The détermination of Amk can be done using the Fourier transformation of the temporal sériés of observables. Moreover, this method enables to separate the different coefficient of each degree m in different matricial Systems, enabling a very easy inversion of the System.

By the following, we use this methodology.

Normal matrices of tethered Systems and formation flying

In this section we compare the results obtained for precedent missions, with the results of tethered Systems and formation flying. In order to do so, we must do some hypothesis. The most difficult part is the estimation of the errors of the instruments. That is why our results are strongly dépendent on the technologies.

Tethered Systems

Then, the lumped coefficients could be written as: We will test different configurations to compare:

• classical gradiometry : It is used as a benchmark and also for comparison purposes with tethered Systems.

• tethered System: in a low Earth orbit.

• Leader-follower configuration: the same configuration as GRACE mission.

• Normal axis différence: It is complementary with previous one.

• LISA configuration: where ail the satellites keep initial configuration.

Conclusions

In this chapter we hâve applied the 'lumped coefficients' approach to the analysis of new technologies for the gravity field. Tethered Systems hâve been studied for a particular con figuration: with the tether aligned with the radial direction because the other directions are unstable. We hâve obtained analytical results doing a certain number of hypothesis. The results show that this observable may be very interesting, but there is a number of technological difficultés that hâve not been solved.

Analytical model for formation flying is more simplified than model developed in chapter 7.

In particular, we hâve neglected secular terms because they tend to destroy the formation. are high eccentric orbits (HEO) around the Earth with very large semi-major axis. This kind of orbits has a short very perturbed passage around the perigee, which is not well-adapted for observations, and a very long weakly perturbed passage around the apogee, where the con ditions for observation are particulary good. Observations are possible since the formation is above Van Allen radiation belt. In some cases, more than 85% of the orbit can be used for observation. The dynamics of formations on HEO is quite particular. First, because of the so high eccentricity (larger than 0.7), and second because main perturbations are not the same as in low Earth orbits (LEO). While in LEO orbits drag and J2 perturbations hâve important effects, in HEO orbits main perturbations are solar radiation pressure (SRP) and lunisolar effects. Lunisolar differential perturbation on the formation remains small because of the small distance between satellites. Differential SRP remains the main perturbation when the satellites do not hâve the same area to mass ratio ( -) as can be seen in table 10.1. This is the case in many formations. In this chapter, we study the effects of SRP perturbations in formations on HEO orbits. We focus on three récurrent problems concerning formation flying: satellite formation keeping, risk collision and collision avoidance maneuvers (CAM).

The control System computes and applies continuously the necessary accélérations to force satellites to keep the desired relative trajectory for observations. As control method, I hâve Kepler 6.10 9 m/s2 used an open loop without errors. I hâve analyzed the influence of different factors on the maneuvers. In order to do so, it is necessary i) to model natural and desired accélérations, and ii) to do numerical simulations.

Modeling relative motion has been done through classical cartesian coordinates, with Lawden équations (3.8).

For numerical simulations, we use the parameters of the Italian-French formation flying Simbol-X. These simulations characterize the influence of the solar radiation pressure.

The second problem deals with the collision risk. It appears in case of failure of the propulsion System. In case of failure, relative trajectory is no more the necessary trajectory for observation, but natural non-propelled trajectory. The natural trajectory can lead to a collision between satellites. It is necessary to evaluate the risk associated to each observation depending on its direction and the epoch. This allows to classify observations and to avoid the most dangerous ones. Thus, for each of these numerous configurations, we hâve to extrapolate resulting natural motions since failure occurrence.

In order to do very fast extrapolations of natural motions, we hâve used the analytical model of the relative motion developed in chapter 4 based on the differential orbital éléments.

Collision avoidance maneuvers are the last studied problem. In case of failure of propulsion System, satellites must be placed in a safe and stable orbit called parking orbit. In parking orbit, natural relative motion between satellites do not drift away and respects a safety dis tance. We hâve worked on the définition of the parking orbit as well as in the computation of the maneuvers to reach it.

This chapter is structured as follows. Second section is devoted to the présentation of Universe observation mission. The third section is dedicated to the satellite formation keeping.

Section four deals with collision risk, and last section describes collision avoidance maneuvers.

Universe observation missions

In this section we présent the relative trajectories for a Universe observation mission, placed in a HEO orbit, using a single telescope with a large focal length. The mirrors of the téle scope would be distributed on two satellites. One satellite would be in free flight while the position of the second satellite would be forced to relative distance and observation direction.

The orbit of the first satellite will be used as reference orbit, and we will compute necessary maneuvers on the second satellite. For our simulations, we use the orbital parameters of the Italian-French mission Simbol-X [START_REF] Gamet | Simbol-X: A formation flying mission on HEO for exploring the Universe, 20th ISSFD[END_REF]. It is: 
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Mean anomaty (degrees) is concentrated around the perigee, while around the apogee thrust remains small and nearly constant. In both cases, observation direction does not play a major rôle. The mean value of thrust in unperturbed motion is 3.10"9m/s2, while it is 2, 5.10_8m/s2 in case of SRP perturbed motion. As we will see later, this différence is function of the parameter A-j-.

Influence of the epoch of the year Figures (10. The figure présents three régions: i) keplerian zone (A-< 10~4m2/kg), ii) transition zone (10~4m2/kg < A~< 2.10-3m2/%), iii) SRP zone (A-> 2.10~3m2/%). In the first zone SRP effects are negligible with respect to the keplerian effects: changes in the value of A;-hâve little impact on the total thrust which remains almost constant. In the third zone, Collision risk appears in case of propulsion System failure. Supposing that the failure may be recoverable after a while, it is necessary to verify that during this time satellites do not collide.

In order to do so, we hâve analyzed different observation trajectories and the influence of the parameter A^.

We hâve used differential orbital éléments including differential SRP effects for orbit extrap olation. It enables very fast computation and computation time is shorter than numerical intégration of the relative accélération.

For each observation trajectory we hâve defined two parameters:

• minimum distance: for different instants distributed along an observation orbit associated to an observation direction, we suppose a failure of the System and we propagate resulting non-propulsed motion during a security time. We détermine the smallest dis tance between satellites during this security time corresponding to the different instants of failure. Minimum distance is defined as the minimum of ail the smallest distances.

If minimum distance is larger than a safety radius, observation direction is safe. If not, the direction présents a risk. The second parameter évaluâtes this risk.

• percentage of orbit with collision risk: in the case where observation direction is not safe, this parameter is used to evaluate how risky it is. It measures the percentage of the observation trajectory associated to the observation direction for which a failure of the System leads to a no-propulsed trajectory violating the safety radius.

Safety radius (Rs) and security time (Ts) must be specified in mission requirements. In our simulations we use: Rs = 5 m, Ts = 1 orbit (4 days).

Figures (10.6), (10.7) hâve been obtained for Simbol-X mission, on 21th June 2012. Figure (10.6) shows the minimum distance as function of the direction of observation. A large part of observations présents no risk, while risky régions are concentrated around the pôles. Figure (10.7) represents the percentage of orbit with collision risk in the same precedent case. We remark that the observation régions for which the minimum distance computed in figure (10.6) approaches zéro, the collision risk is not restricted to a small part of the observation orbit, but exists ail along the orbit. (i. e. percentage of orbit with collision risk 100 %). We hâve computed the mean percentage of orbit with collision risk over ail the observation directions as function of the A-;. Figure (10.8) shows that larger values of A-are less risky than smaller ones. This was expected since the différence of SRP tends to separate the satellites. At the sight of the figure, parameter should be, at least, 4.10~4. We hâve obtained the same curve for different epochs proving that the epoch has minor influence on the resuit.

Collision avoidance maneuvers

In case of failure of propulsion System, it is necessary to place satellites in a stable relative orbit called parking orbit. Satellite keeps on the parking orbit while trying to recover the failure. In parking orbit no maneuvers are allowed. The problem can be split in two parts (i) the choice of the parking orbit , and (ii) the computation of optimal transfer between observation orbit and parking orbit. Both aspects of the problem are studied in this section. satellite must not violate a safety sphere. These two conditions are necessary to avoid collision risk during the no-maneuvers period, and to ensure an easy récupération of the observation configuration.

In this section we analyze different natural motions in order to detect the most suitable ones.

As we show in table 10.1, in HEO orbits, Keplerian effects and SRP effects hâve the same order of magnitude. But, for compréhension sake, we start with keplerian effects and in a second time we add SRP effects considered as perturbations. A global strategy is proposed after the analysis of these two effects.

Keplerian motion

Relative non-perturbed natural motion is given by équations (5.1). We rewrite them: A différence on the semi-major axis produces a secular drift on the R and T axis. It should be introduced only to null the other secular effects produced by SRP perturbations.
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In order to obtain a safe orbit, most interesting initial conditions are: AMo, AQo; Acjo, because they introduce a constant term on T axis that guarantees no collision with the reference orbit. Strategy for the définition of the parking orbit Relative motion in parking orbit is determined by the addition of Keplerian motion and SRP effects. We analyze this motion in order to find safe and stable orbits.

Completely stable orbits do not exist because of the SRP secular drift. The drift on the T axis can be controlled changing the différence of semi-major axis, but the other axis cannot be controlled.

Different strategies can be used to define the parking orbit. We propose the following one:

(i) ensure the security of the satellites through a minimal distance on the T axis (ii) neglect the motion on the other two axis, (iii) secular effects on the T axis should tend to move away the two satellites.

The orbit can be computed by the following steps: • Choice of the région where settle the satellite: Région must be chosen in order to anticipate natural drift of the formation and avoid null distance along the T axis. It is, if natural drift is positive, satellite should be placed in the positive side of T axis, and vice-versa.

• Computation of SRP periodic effects: Particularization of the SRP effects for the epoch of the year and the reference orbit. Compute the periodic effects on the T axis using équations 10.8 and 8.21.

• Choice of A a: In order to minimize the effects over the T axis.

• Choice of the initial values of the other AEO: Initial values of AEO must keep a minimal distance on the T axis (including SRP periodic effects). The values of the variables concerning the other two axis are irrelevant.

• Vérification of the orbit: A numerical simulation in order to verify that ail constraints are respected.

Transfer orbit

Transition between observation orbit and parking orbit uses an intermediary orbit called 'transfer orbit'. The transfer orbit is computed in order to minimize transition maneuvers.

The optimization of the maneuvers can be done in a global way; it is, considering that the number of maneuvers and their instants of applications are not defined. The resolution of an optimal control problem is very complex and far beyond the scoop of this thesis.

Here, we présent two different strategies: a 1 AP strategy, and a 2 AP strategy. Even if these strategies are not optimal in a global way, they can also be optimized.

1AP strategy

A 1AP strategy may be interesting to minimize the number of maneuvers. The main incon vénient of the strategy is that only a limited number of parking orbits is reachable.

In this strategy, there is no transfer orbit and the observation orbit becomes the parking orbit At the sight of these équations, we can conclude that only three éléments of the vector AEO can be chosen. The variations of the remaining three are fixed. We propose the three following constraints:

1. Choose the value of Aa (null or very small in order to null secular SRP effects on the T axis).

2. choose Ae = 0.

3. Choose the value of Au; in order to guarantee the safety of the formation.

2AV strategy

The main advantage of a 2 AV strategy is that ail parking orbits are achievable with a minimum number of maneuvers. Moreover, previous expérience shows that in other optimal transfer problems, the 2AV optimum is not far from the global optimum.

Statement of the problem We suppose a formation flying composed by two satellites.

First spacecraft is following a reference or bit which corresponds to its natural motion. At initial time to the second spacecraft is placed in a collision trajectory with a known relative position AT*o and a relative velocity AT*o. The natural trajectory of the second spacecraft which will be changed through two maneuvers AV*, and A Vf performed at instants ti and tf. The aim of the problem is to compute AV^and AVf in order to reach a final State AEOf(tf) at final instant tf.

Solution of the problem Initial relative motion at instant to is known through its rel ative position and velocity: A7VATV Natural extrapolation of the motion can be easily done using équations 4.10 in order to obtain conditions at instant i before the maneuver:

A~r*~, Alï~. So, collision trajectory is perfectly known.

Parking orbit is also perfectly defined through its differential orbital éléments. At the instant /, AEOf(tf) can be transformed in AT*AT*/ using équations 10.8.

As maneuvers change only the velocity but not the position, the position at the beginning and at the end of the transfer trajectory are also known: 

A^7 = AT7

The problem consists in finding the maneuvers necessary to get a natural motion that passes through points Ar $ at instant U and AT*y at instant tj. In order to do so, first, we compute the differential orbital éléments of the transfer orbit at instant t{ (AEOt), and, second, we transform them in différences of velocities at instants ti and tf.

Since we know the position at instant i A"r"*, we hâve three équations relating this position and AEOt{U):

AËÔtiti) = [M\M>i (10.11) Another équivalent set of three équations can be obtained for instant tf A ËÔt(tf) = [M]A!*f (10.12) Relations between AEOt(U) and AEOt(tf) can be easily obtained thanks to the matrix C. Numerical algorithm In order to optimize final AV, we can scan the values of U and tf.

Hereafter, we présent an algorithm to implement optimization process. This algorithm has been implemented and tested using FORTRAN language.

10.5.
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In order to prove the interest of our algorithm we hâve tested it on the following example for Simbol-X mission.

Collision orbit

We hâve chosen the following observation orbit to test our algorithm: Transfer orbit We hâve computed transfer orbit using keplerian équations (10.14). The choice of possible values of U and tf corresponds to a certain number of technical criteria.

In this example, we do not prétend to take into account these criteria. We hâve chosen a small région just in order to show the good behavior of the developed method. Results are summarized in figure (10.11). In this figure we show the influence of ti and tf on the total amount of propellant necessary for the maneuvers.

At the sight of these results, we propose following maneuvers as preliminary solution: • AVf = 1,288.10-2m/s, Tf = 50000s.

Conclusions

This chapter présents the advantage of using cartesian coordinates or differential orbital éléments to study different problems. Cartesian coordinates are well-adapted for control problems, but, they do not enable easy analytical intégration. On the other hand, for fast extrapolation of orbits, differential orbital éléments are better suited.

We hâve studied the effects of the SRP perturbation on HEO orbits for Universe observation.

We hâve focused on the rôle of the parameter A-•. We hâve showed how it plays an important rôle on the size of the maneuvers and how it can also be used to minimize the collision risk.

For Simbol-X, figures (10.5) and (10.8) suggest an optimal value of A-near 5.10~4. Bigger values (> 6.10-4) lead to more fuel consumer configurations, while smaller values (< 4.10-4) increase collision risk.

We also hâve presented a method to compute collision avoidance maneuvers. The method is based on the analytical model of the relative motion that we hâve developed taking into account solar radiation pressure perturbations. The method has the advantage to hâve a very simple formulation and to produce interesting results.

Chapter 11 Analytical models présent several advantages with respect to numerical simulations. First, they enable a better compréhension of the problem. Second, they enable fast computations.

Low computational time is interesting for onboard applications (anti-collision maneuvers for Simbol-X). Third, they give direct relations between certain parameters and the observables, which is necessary, for example, for analysis of space geodesy missions. I've proved it analysing two future missions.

Relative motions

The équations of non-perturbed motion can be obtained using classical developments (Hill and Lawden équations) or using differential orbital éléments. In circular reference case, obtained results are similar. In eccentric reference case, the advantage of using differential orbital is double: (i) we avoid the intégrais that appear in Lawden's solution, and (ii) we obtain the relations between the parameters of the motion and the initial conditions.

At the sight of the resulting équations, we can get some conclusions. First, a différence of semi-major axis splits the formation, as well as any kind of secular effect. When we consider a Keplerian motion, ail the satellites of the formation must hâve the same semi-major axis.

When there is no différence of semi-major axis and the référencé orbit is circular, the relative trajectory is an ellipse. This ellipse can be centered or not on the origin of the référencé frame.

We propose a new représentation to describe this ellipse: the local orbital éléments. The local orbital éléments enable to find relations between the parameters of the ellipse and the initial conditions. Among ail the possible ellipses, there are particularly interesting configurations.

The local circular motions are one of them. They exist in two particular plans: the invariant plans, where ail the initial configurations are constants on time.

When the reference orbit is not circular, relative motions are more complicated. We hâve done an effort to minimize the number of parameters describing the relative trajectories and we hâve reduced it to four. We also hâve explored the possibility to obtain local circular motions, unluckily, they do no exist.

We can conclude that when we consider non-perturbed linearized motion with circular ref erence orbit, we can find natural motions well-adapted for space missions. But, when we introduce eccentricity, second order effects, or perturbations, formations must be always controlled. Relative motions describe trajectory that présent secular effects and collision risk.

That's the reason why, when possible, formation flying uses a very simple leader-follower configuration where the satellites are separated only by a différence of semi-major axis.

Perturbations on formation flying

Even if some methods hâve been proposed to introduce perturbations in Hill or Lawden équations, the best représentation to introduce them are the differential orbital éléments.

The method has shown its interest for the introduction of the perturbations, in spite of the complexity of resulting analytical expressions.

When we consider perturbations, there are other secular effects in addition to the Keplerian secular effect produced by a différence of semi-major axis. Ail secular effects must be treated as a whole in order to null them and avoid the splitting of the formation. Existing studies shows that natural stable relative motions do not exist (with the exception of trivial cases).

Our expérience proves that formations inherit the characteristics of absolute motions. It means that main perturbations on absolute motion are also main perturbations on relative motion. The exceptions are the perturbations which dépend on the physical characteristics of the satellites instead of the relative distance; i. e., the atmospheric drag and the solar radiation pressure.

When considering perturbations, we must treat separately low and high orbits. Low orbits are dominated by the gravity field perturbations, mainly J2 effects. Secular effects of J2 should always be considered, because they can be very important. Trying to null them is not simple. It is possible for circular reference orbit, but not in the eccentric reference orbit. Instead to focus on the secular effect, it seems more reasonable to find a compromise between different criteria (global fuel consumption, collision risk, injection trajectory,...).

In this sense, numerical simulations are necessary. Things are different for HEO orbits.

First, high eccentricity leads to uncomfortable relative motions. Second, the effects of solar 11.4.

MISSION ANALYSIS

127 radiation pressure can be very important when the two satellites do not hâve the same ratio surface/mass. Our expérience on HEO orbits shows the interest to use the différence of as a kind of solar sail to do corrections of relative trajectories. The différence of pressure tends to spread the formation. It may be interesting in order to avoid collisions, but it can be expensive in terms of fuel because the formation is completely unstable. A second problem is the non-existence of stable orbits as we hâve proved using analytical developments.

Mission analysis

The last part of the thesis is dedicated to the application of precedent developments to mis sion analysis.

We hâve used classical analysis techniques to compare the theoretical performances of dif ferent configurations. Once again, the use of analytical developments enable to obtain the spectra of the gravity field perturbation as function of the configuration.

Moreover, we hâve introduced another technique which is very similar to formation flying: the space tether. A tether can be seen as a formation flying with an additional constraint on the relative distance. For geodesy purposes, tethers are complementary with formation flying because they do not suffer from differential drift due in particular to the différence of semi-major axis.

The second analysed mission is Simbol-X. The use of differential orbital éléments combined with cartesian coordiantes has shown its interest. We hâve obtained a completely analytical model of natural motion including solar radiation pressure perturbation. This model has been very useful to do the extrapolation of the orbit, compute the collision risk, the effects of the coefficient A-, and propose a method to compute collision avoidance manoeuvres.

We hâve proved that actual configuration is not optimal from a dynamical point of view: the A-is too high and the formation is highly unstable. Main problem is not fuel consumption m C but the instability of the formation. The réduction of the différence of the coefficient -;

would be the solution to this problem. We hâve also obtained an analytical method to compute transfer maneuvers. The advantage of the method is its low computational effort and the possibility of onboard the algorithm. The drawback of the method is that it does not optimize the consumption in a global way because it is limited to two maneuvers.

Perspectives

There are still several dynamical problems with open questions:

• Second order effects: Introduction of second order effects in differential orbital éléments, and in local orbital éléments. This would be very interesting for missions with a large inter-satellite distance. For example, in LISA mission, second order effects introduce a sort of 'breathing' that must be canceled through control maneuvers.

• Drag perturbation: This perturbation may be especially complicated because it is not a conservative force. The method of differential orbital éléments is not useful since there is no satisfactory model of effects of drag perturbation on orbital éléments.

• Lagrange points: This problem represents a different challenge because the dynamics near these points is different from the dynamics around the Earth studied in this thesis.

In spite of this difficulty, this remains a very interesting study because of ail the future missions planed to flight near Lagrange points.

A good knowledge of the dynamics is also very interesting to treat other problems:

• Navigation problems: The inclusion of relative measurements in the navigation filters might improve précision but this could also generate instabilities.

• Control of the formation: In this category we can include the development of control laws but also optimal control problems. In both cases it is necessary to hâve a set of differential équations describing the System. Our studies plays a second rôle because the classical Hill and Lawden équations are the best suited for this problem. But, the compréhension of the dynamics enables the interprétation of the results. 

  History of relative motion and formation flying
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 11 Figure 1.1: On the left side, Apollonius of Perga. On the right side Claudius Ptolemaeus
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 12 Figure 1.2: On the left, George William Hill. On the right, Gemini 7 photographed from Gemini 6
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 13 Figure 1.3: Trio concept from Labeyrie on the left side. Artist view of Grâce mission on the right side.

  for Cosmic Vision ESA program, with a possible launch in 2018. XEUS

  is dedicated to formation flying missions.In the first part, I présent three different représentations of the relative motion. The first one is the cartesian coordinates. It is the most usual one. The second one is the differential orbital éléments. This représentation is quite recent, and is very well adapted for the introduction of the perturbations. The last représentation is local orbital éléments. Local orbital éléments are interesting for circular référencé orbit case. They are particularly well suited to get a good insight on the relative trajectory.In the second part I study two perturbations: the central gravity field and the solar radiation pressure. Gravity field is split in two chapters. The first one is dedicated to the J2 effects while the second one is dedicated to the rest of the gravity field. The effects of the solar radiation pressure are studied because they are the main perturbation of high eccentric orbits CHAPTER 1. INTRODUCTION (HEO). The last part is dedicated to space missions using formation flying technology. I study an Earth observation mission for the détermination of the Earth gravity field, and a Universe observation mission composed of a telescope distributed over two satellites in HEO orbit. The statement of the problem We want to study the relative motion of a body b with respect to a body a, both a and b being in orbit around the central body c. By convention, the orbit of a is designed as the reference orbit and we suppose that b is close to a. The notion of proximity is given by the convergence of the Taylor's development around a reference orbit. Moreover, we suppose these two conditions: mc » ma, mb (2.1) so as to neglect gravitational interaction between bodies a and b. The second condition is: |Ta -~Ÿb\ « |Ta -Td, [Ÿb -Td (2.2)
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 21 Figure 2.1: Local reference frame and local cartesian coordinates

  reference satellite indicated by the subscript ref. Inertial position and velocity can also be projected in the orbital local frame (RTN) (Radial ~e h, Transverse ~ëV, Normal ~e n) defined by a given reference orbit. Relations between the two projections are given by matrix 1Z(EO): ~r\ RTN = 'R'(EOref)~Ÿ\uK (2.5) K(EO) = cos fî cos u -sin Ll sin u cos i -cos flsinu -sin Ll cos u cos i sin Q sin i sin fl cos u + cos S2 sin u cos i -sin fl sin u + cos fl cos u cos i -cos fl sin i sin u sin i cos u sin i cos i (2.6) The relative motion between a satellite and the reference satellite can be described by the différence of absolute position and velocity projected in the orbital frame of the reference orbit: AVr, AVt,A Relative motion can also be described by the position and the velocity relatives to the reference orbit (~p ,~p) or their coordinates: ~P = (pr,Pt,Pn)T ~P = (Pr,Pt,Pn)T 2.1.1 Different cases of relative motion

Figure 2 . 3 :

 23 Figure 2.3: The three different représentations
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 31 Figure 3.1: At the left side, general inertial and non-inertial reference frames. At the right side, particularisation for a two-satellite formation flying

  V aref of the central body. The differential accélération has a simple expression: distance between satellites is small, we can linearize precedent équa tions to obtain:

  orbital éléments correspond to the reference orbit. It leads to a new set of differential équations: not hâve an exact explicit solution, Lawden gives an implicit one ([47], pag 85): pR(t) -A cos / + Be sin / + CI2 (3.8) pT{t) = -A sin / + B(1 + e cos /) + D --

14 )

 14 relative motion. He uses local spherical coordinates instead of cartesian coordinates in order to improve the précision of his solution. He modelizes the force due to J2 in the local orbital frame as follows:The motion of the reference orbit perturbed with the mean J2 effects reads: to a new mean rotational velocity which is computed as follows: ref)du(3.16) This first équation enables to introduce J2 perturbation on the rotation of the reference frame. The second effect of the perturbation must be introduced in the differential accéléra tion: ~üj A (Tj A ~r ref )ref ^^3 T sat T ^3 T re/^T J 2i' f' sat) J J 2^T ref)dll (3.17)

  Their technique consists in expanding the non-linear terms, which in their dimensionless form can be written as the dérivatives of the function:

  u + ecosijj) -sin i (sin u + e sin ui)

  interested in the dérivatives with respect to inertial position and velocity, projected in the orbital frame, we can keep the previous expressions just projected in the orbital frame (the canonicity is preserved under a rotation): not apply to relative position p and velocity ~p because they do not form a set of canonical variables.The dérivatives of position and velocity computed in section 4.3.1 (4.14) can be used in équation(4.22) to obtain following results: apply our method to the description of relative motion in the case of the nonperturbed linear keplerian motion described by équation (4.10). Since matrices M. and A4-1 are known, only the temporal évolution of orbital éléments and the matrix Ckep remain to be expressed. For the keplerian case, ail éléments keep constant values except the mean anomaly which is linear with time. EOiit) = EOi(t0) i = 1....5 (4.24) M(t) = M(t0) + no(t-t0) Initial orbital éléments at initial time (to) are referenced by the subscript o-Differential orbital éléments (AEO) evolve exactly in the same way: ail différences keep constant values except the différence of mean anomalies which evolves linearly: A EOi(t) = AEOi(t0) i = 1....5 (4.25) AM(t) = AM(to) + Ano(t -to) with:

  t) = K\ K2 cos / + A3 sin / ---K\ sin fit -to) (4.29)AT(t) = A2sin/-FA2-sin/+ -A3~--n7?Ai~(£ -t0) + A4-

  relations between the différences of non-singular and orbital éléments can be obtained by différentiation:

  matrices [.M][£][.M]"1. When we combine only two of them [Ad][T], in the keplerian case, we get the following équations: ) = rr sin urAio -ry sin ir cos ur AQo For clarity's sake, the subscript for the reference orbit is r instead of ref. These équations give temporal évolution of relative position projected in the local orbital frame as function of six parameters: AEO(tç>). Thereafter, we will describe resulting motion in two cases: (i) when the reference orbit is circular, (ii) when the reference orbit is eccentric. orbit case Direct particularization of équations (5.1) is not correct because of the singularity of orbital éléments in circular case. It is necessary to introduce non-singular éléments (defined in 2.4) in équations (5.1) to particularize to the circular case. We finally obtain: AR(t) = Aao -ar (cosàACq + sinAASo) AT(t) -ar sin AACo -2 cos AASo + AAo + cos irADq -^n(£ _ to)Aao^(5.2) AN(t) -ar (sin AAio -sin ir cos AADo)
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 515 Figure 5.1: définition of local orbital éléments

  of local orbital éléments on the one hand, and expressed as function of P on the other hand: sin ii sin fl/ -CF -DE hy = -h sin ii cos fl/ = BE -AF(5-7) hz = h cos ii = AD -

  (pi -E sin (pi) sin lüi -(F sin </?/ + F cos cpA(5.19) arT]r sin ir ar sm ir Once we hâve obtained the relations between F and ëo/, we express F as function of AENS using équations (5.3) and (5.4): A = -arACo C = -2arASo E = -ar sinirAflo > Ŵe summarize final relations between A ENS and eof. B --arASo D = 2arAC0 F = ar Aîq h = (2(AC0Afl0 -AS'oAio), ACoAio + AS0Afl0, -2(ACg + AS%)+ hl Ki = a2r(&Cl + 4A Si + sin2 ir An §) K.>, -2af( -3AC'oA.S'o -sin 2af = Ki + K2 + J(Ki -K2y + Kf <pi + A fl sin ir sin cpi ) aim sin ti sin lui = -(Ai sin ipi -Aflsmircosipi) ai sin î[(5.20)5.2.2 Topology of the relative motionOnly four différences of non-singular éléments contribute to the détermination of the six local orbital éléments defined above. Indeed, Aao has been fixed to zéro in order not to spread the formation and AÀo only contributes to shift the center of the local ellipse along the T axis.Conséquently, only four local orbital éléments are independent.

51 Figure 5 . 2 :Figure 5 . 3 :

 515253 Figure (5.2) présents two particular motions: (i) null local eccentricity (invariant plans), and (ii) local eccentricity equal to one (non-elliptical motion)

  value of the local inclination is %i = 90°as can be checked in figure(5.2). Setting AC = AS = 0 in the équations of motion (5.3) gives:AR(t) = 0 AT(t) = 0(5.26) AN(t) = ar (sin À Aîq -sin ir cos A Affo)

5. 3 . 1

 31 Low eccentric reference orbit case When the reference orbit is sligthly eccentric, we simplify équations (5.1) by means of an expansion of cos/r, sin/r in powers of the eccentricity up to first order: A (ACo + Sr AAo) -sin A (AS'o -Cr AAo) + Oie2) = sin A [2ACo + Sr (AAo -AQo coszr)] + cos A [-2ASo + Cr (AAo -AQo coszr)] g + (AAo -AQocosir) -Aeo(sin 2A cos 2tur -cos2Asin2cur) -f 0(e2) A A -sinAAio -cosAsinzrAQo + (coseu sinirAI2o -sinayAio) g + -cos 2A (cos ujr sin ir AQq + sin cor Aio) + -sin 2A (sin ur sin ir AQq -cos ujr Aio)

  (5.7-5.[START_REF] Cheng | Gravitational perturbation theory for intersatellite tracking[END_REF]) already used in the circular reference orbit case, but setting parameters P: A --cir (ACo T SV AAo) B = -ar (ASo -CrAAo) C = ar (-2ASb + Cr (AAo -Aflo coszr)) D = ar (2ACo -Sr (AAo -AUq cosir)) ^Ê --arsinirArîo F = arAio

n 3 . 55 Figure 5 . 4 :

 35554 Figure(5.4) shows the variation along the orbit of the osculating local eccentricity and its mean value, for different eccentricities of the reference orbit. We hâve used the following reference orbit: ar = 7.106,ir = 45°, Ür = 0°,cor -45°,Mr(^o) = 0°and the following différences of non-singular éléments: A a = 0, AC = 10~3 * 5, AS = 2.10~5, Ai = -\/3A 5, AQ -\/3ACy sinir, AA = 0 (which corresponds to an invariant plan when the reference orbit is

CHAPTER 5 .Finally

 5 THE LOCAL ORBITAL ELEMENTS AR(t) --ar cos/rAeo + sin/rAMo (5.29) Vr AT(t) = ar ( 1 + ^sin/rAeo + rr cosirA£2o + rrA<jüo + °r^r AMq V lrar J rr AN(t) = ry sinwrAzo -ry sinir cosurAf2oThe in-plane and out-of-plane motions can be decoupled doing the following change of variables:Au/ = Atu + AQcosir (5.30)AQ,' = AQsinir After, we break down the variable u = uj + / into its components:Ai' -sinuyAi -cosuyAQ7 (5.31)AQ" = cosoyAi + sinuyAf/ fr + Kl (1 + e cos fr) +1 + e COS Jr T-;-7 (AT3 COS fr + ÜQ Sin /r) Au; + cos ir A il)= T]2 (sin uy Ai -cos uy sin ir Afi) = rj2 (cos uy Ai + sin uy sin ir Ail)(5.33) These équations express ail the possible relative trajectories as function of four parameters.
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 55 Figure 5.5: In-plane motion as function of K\ and K2

  fr Ae + er sin frAM 2 sin fr Ae -er cos fr sin fr Ae + (AM + Au/) + er cos fr (AM -AM) (Ai! cos fr + AI}" sin fr) -er cos fr (Ai' cos fr + AI}" sin /r)(5.35) Considering only elliptical terms, the following initial conditions enable to obtain the same circular motion as in the circular reference orbit case (same local inclination and ascending node): -AM Au = -( 1 + VSer -AM AM = AM sm ir \ tan ir J
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 56 Figure 5.6: Distance to the origin for different initial conditions (left: différence of eccentric ity, right: différence of anomaly)

  as close as possible to a circle.In the following figures (5.7) and (5.8) we hâve drawn the évolution of the circular motion when the eccentricity of the reference orbit grows. The other parameters of the reference orbit play no rôle on the form of the trajectory (for the keplerian case). Figures(5.

  7) and

3 Figure 5 . 7 : 7 Figure 5 . 8 :

 357758 Figure 5.7: Evolution of the local circular motion produced by a différence of eccentricity when the eccentricity of the reference orbit grows

2 )

 2 body (M) R stands for the radius of the central body. Using Lagrange planetary équations we get the differential effects (keplerian effects non included) on the orbital éléments: Supposing constant a, e, i, the intégration of this set of differential équations is immédiate and gives the secular perturbation of J2:

(6. 6 ) 10 )

 610 Combination of J2 effects matrix Cj2 with keplerian effects matrix Ckep, with the matrix M. gives the temporal évolution of relative motion as function of initial reference orbit and initial différences of orbital éléments: (t) = [M] [Ckep + £j2] = / (^EOref, AEOfo),T he development of these équations reads: + ^^Aeo(l -3 cos2 ï)Kj2 -f -+ 7(1 -3 cos2 i)Kj2 e sin f{t -to) (6.8) AT(t) = a ( 1 H--1 sin /Aeo + r (coszAQo + Au;o) These équations give a closed form of the temporal évolution of the relative position with the true anomaly and the time as independent variables. Parametrization of the motion is done through initial différences of orbital éléments.

6. 3 . 13 )

 313 LOOKING FOR NO DRIFT CONFIGURATIONS 67 obtain general expressions of the perturbed motion. We write the dérivatives of the secular terms with respect to the metric variables:Thanks to these dérivatives, we obtain temporal évolution of motion as function of reference orbits, initial differential orbital éléments, and time:A R(t) = Aao -acosAACo -asinÀAS'o AT(t) = 2a sin AACo -2acosAAS'o + a (coszAQo + AAo) ) = a sin A Azq -a sin i cos AAQq + aKj2

17 )

 17 And the condition for the sum of the argument of the perigee and the anomaly reads: Azq tan z (1 -|--T])

Tb 3 -

 3 Aao = Kj2 tan i (63 cos2 z -5) Azo Local circular orbits with no drift In chapter 5, we hâve obtained the following condi tions for local circular orbits (5.24): AËNSi = (0, AC, -V3AS, V^AC', AS, A\)T smz AËNS2 = (0, AC, V3AS,-.AC, AS, AA)r smz (6.20)When we mix them with no drift conditions we finally obtain:

6. 2 .Figure 6 . 1 :

 261 Figure 6.1: Effects of J2 on the relative motion.

Figure 6 . 2 :

 62 Figure 6.2: Effects of J2 on the local orbital éléments.

  two temporal horizons on the évolution of the variables:(6.23) 

2 )

 2 methods to obtain the associated matrix Cgf-in spherical coordinatesWe use as departure point the generic expression of a potential created by a mass distribution in a point of the space (x,y,z): x,y,z) is the density at the point (x,y,z) and r(x,y,z) the distance to the satellite. This potential vérifiés Laplace équation outside the body: Classical solution of Laplace équation in terms of spherical coordinates, developed as a sériés of spherical harmonies is: C/ = TE 7 E (Cira cos m\ + Sim sin mX) Pim(sm 99, A) are the spherical coordinates distance, latitude, and longitude. P/m are associated Legendre polynomials. Each spherical harmonie is characterised by its coefficients Cim and Sim which hâve been normalized to avoid tiny values. Consequently, also Legendre polynomials are normalized. Normalization factor is: Working with unnormalized coefficients may lead to serious numerical problems. Since gravity field are usually given in their normalised form, computing their unnormalized form needs to compute coefficients Nim. They can give overflow problems for high degrees. It is seems advisable to work with normalised coefficients.

  j (-1)»^m <0Complex coefficients can also be written as function of normalised real ones:

  Hansen functions.Composing these two transformations, we obtain real potential in terms of orbital élé ments. Different représentations are used. Here, we give just some of them: EEE FlmpGIpq (c) jA/rn COS (f) T Pim sin 0

( 7

 7 -l)£l('-m'fl)/2] Another possible formulation, used in[START_REF] Métris | Analyse des perturbations dues à la gravité, cours d'été GRGS[END_REF] is:And a last that we will use in the following is: U = ^j S S S FlmpGiPq(e) cos (V -mA;771 7 i=l ^^m=0 p=0 Q--00

- 25 )FLk

 25 Two comments are relevant in this formulation. First, last summation index has been changed, instead of p, we use k. Relations between both is p = -k). Both indexes are équivalent, some authors prefer k because angular argument dépends only on two indices when working with k. Second, inclination functions are defined in a different way: ], the author does not give the normalization of this function dfmk. To obtain it, we consider the normalization of Legendre polynomials and of the coefficients Kim, and we suppose that the normalization of d function must match with them. We finally obtain:

  Ji = -Cifi. The periodical variations write:

  [START_REF] Hamel | Linearized dynamics of formation flying spacecraft on a J2 perturbed elliptical orbit[END_REF] EO(to) = EO(to) + ÔEOper (to)(7.36) In Kaula's intégration, initial periodic perturbations are disregard:
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 71 Figure 7.1: At the left side, order 2 perturbations on semi-major axis. At the right side, perturbations on the eccentricity

Figure 7 . 2 :

 72 Figure 7.2: At the left side, order 2 perturbations on ascending node over 100 days. At the right side, errors on semi-major axis considering a jïetitious J2

  Q are a couple of action-angle variables. Application of precedent équations leads
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 7374 Figure 7.3: Comparison of J2 errors between two analytical intégrations

  given by the compilation of ail the dérivatives:

  • -: area to mass ratio of the satellite • ratio distance to the Sun from satellite and from Earth rs • ~Usat'-unit vector of the position of the satellite in the used reference frame CHAPTER 8. THE SOLAR RADIATION PRESSURE

8 )

 8 the obliquity e = 23,4364°is the angle between the équatorial and the ecliptic planes of the Earth. We get: Introducing previous expressions for Sun and satellite position, we get following expression for the potential: U =-ct S a(l -e2) ' m 1 + e cos / . As (cos fl cos u -sin fl sin u cos i) + Bs (sin fl cos u + cos fl sin u cos i) + Cs sin u sin i We rewrite the potential introducing auxiliary functions: (8.9) T = As (cos fl cos u> -sin fl sin u> cos i) + Bs (sin D cos lu + cos fl sin u cos i) + Cs sin co sin i G = -As (cos fl sin u + sin fl cos u cos i) + Bs (-sin fl sin uj + cos fl cos co cos i) + Cs cos uj sin i to get: U = -cr-{cos fT {i, fl, u) + sin fÇ (i, fl, co)) (8.10) ml + e cos j We will also need the dérivatives of T and G with respect to the angles: Ti -(sin D sin i sin a;) -(cos D sin i sin a;) + cos 2 sin a; (8-11) To = A5 (-sin D cos a; -cos D cos i sin a;) + (cos D cos a; -sin II cos i sin a;) Tu = As (-cos fl sin lu -sin fl cos 2 cos a;) + Bs (-sin fl sin lü + cos fl cos 2 cos a;) + Cs sin 2 cos a; Gi = As (sin fl sin 2 cosu;) -Bs (cos fl sin 2 cos a;) + Cs cos 2 cos uj (8.12) Gn -A5 (sin O sin a; -cos D cos 2 cos a;) -R5 (cos Usina; + sin D cos 2 cos a;) Gu = -As (cos fl cos eu -sin fl cos 2 sin a;) -Bs (sin fl cos a; + cos fl cos i sin co) -Cs sin 2 sin a;

  anomaly introduced, the potential has the right form to use Lagrange équations: ~V (-2J'(se) sin sMJ7+-Js(se) cos sMç]

  20th february 1996, the duration of the simulation is 4 days and A-is 3. 10~3 m2/kg. Figure(8.1) shows obtained results using the analytical extrapolation and numerical intégration.

8. 2 . 3

 23 Differential effects Differential effects hâve two origins (i) a différence on the ratio --, and (ii) a différence of position. Figures 8.2 show the importance of each of them. Figures prove that, even for very large configurations, the effects due to the différence of -are dominant over the others.
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 8182 Figure 8.1: Numerical tests for solar radiation pressure effects

  Dimensional Error Spectrum: Inverting thet total normal matrix N yields the covariance matrix Qx of estimated parameters. Tins is the basic output of least square method error simulation. In particular the square root of the diagonal represents the standard déviations cqm of single coefficients. The full set of cr/m represents the error spectrum of the coefficients (in our case, Kim).

  Mass re-distribution of our planet can give information about global change phenomena IntroductionTethers hâve been studied since 1960's. It consists in a thin cable connecting two satellites.
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 1 -C0S Slw + n T -Wüm(l + 1) (-(9.14) a-esinW^2 (l + ecos2(î))!+2 \rG/ where two parameters hâve been introduced: the total mass of the System m, and the distance of the center of mass tq: m = mi + m2 mro -m\ r\ + V2 (9.15)

  model of formation flying has been described in detail in the two first parts of the thesis. In order to introduce the effects of the gravity field, we use the differential orbital 9.4.

9. 4 . 2

 42 Simplified perturbations model Our departure point is the expression of the gravity field potential, in terms of orbital éléments, where we keep the first term of the development in eccentricity (we suppose low eccentricity of the orbit). It reads: °°^^EM / R\ U = Y, E E -R-( -) KlmFi,m,pGltm,0ej* = ](co + M) -1-m(Ü -6q) (9.28) Application of planetary Lagrange équations, and a posteriori simplified intégration leads to:

29 )

 29 The exact expressions of the terms are given in annex. Introducing the potential, we can write this matrix as: initial conditions we obtain final perturbations on the orbital éléments:

35 )- 2 [

 352 positions and velocitiesConversion to relative position and velocity can be done using matrix A4, but the introduction of new frequencies makes it more difficult if we want to keep precedent formulation. That is why we explain in detail the procedure that we use. First, we write the matrix A4 simplified for small eccentricities:A R(t) = -acosMAe + aesinMAM CLG AT(t) = --sin2MAe + a(l -ecos M) coszAfl + a(l -ecosM)Acj + a( 1 + ecos M)AM AN(t) = a( 1 -e cos M) sin uAi -a(l + e cos M) sin i cos uAQ(9.33) We introduce in these équations, équations (9.31) in order to obtain expressions:AX(t) = E EE^ôk**-»** (9-34) l m kWe now dérivé the coefficients Hf^k; to do this, we must décomposé ail the frequencies that appear in the relative motion in order to obtain exclusively terms In order to do so, we use following trigonométrie relations: cos (u -eu) = cos u cos uj + sin u sin uj sin (u -uj) -sin u cos uj -cos u sin uj eju With these relations and a little bit of algebra, we obtain following expressions final expressions for three axis. R axis AR(*) = Y ( -e.0(t>+ [H^k(-acosu + jasinu) + (-aesmuj -jaecosu)] + l™k (9.36) + -^-e^[H^k(-acoscü -jasinuj) + H^k {-ae sin a; + jae cos uj)] ŵith: ej<p+ = e3<t>e3u e3<t> -e3<i>e-3u We introduce intermediary variables: A*m,l= 2 [Hfâk(-acosuj + jasinu) + (-aesinuj -jaecosLü)] A*ml = \ [H^k(-acosuj -jasinuj) + (-aesimj + jaecosw)] (9.37) AT = -[ej2u (j cos a; + sin 2u) + e"j2u (-j cos a; -sin 2a;)] Ae T a (cos iAf2 T Au T AM) CLC-eJU i.COSÜJ ~J sin a;) + e~JU (cos a; + j sin a;)] (cosiAQ + Aa; -AM) and the coefficients are: Aïlk'+) = °T Ü cos2w + sin 2uJ) Hfr Imk AïlV = -y (cosu; -3 sinu;) (cosiH^k + Hfmk -H^k) Aïmk -a (cos^/mfc + Hhnk + HImk) Atok = -Y (cosw + i sin") (cosiffimAr + ~Hlmk) AlM) = "T ("J cos 2üJ -sin 2w) Hf, sinu; -sini cosu;A£2) + e"j2n-(Ai sin a; -sini costuAfi) J [ô (Hlmk cos u + sin iHf^k sin u) + (H}mk sin u -sin i cosuH^)] Slïl üjHlmk + Y Sin Z COS Zmfc ' ) = \ 0Hîmk -sin iHfrnk) = "Y [HHimk cosu + sin sin u) -(Hllmk sinu; -sim cosuH^)]

  /ix(g,0)ffl(g,0)lmk «2 •^Zmfc(f)With this expressions, the tension expression reduces to: for formation flying are given in équations (9.36),(9.39)

Figure 9 . 2 :Figure 9 . 3 :

 9293 Figure 9.2: Different tested configurations for formation flying. On the left, leader-follower configuration, at center a différence on N axis, and on the right, the LISA configuration

  to the relative distance) 4.10-18 m/s2 SRP (due to the A-) 2.10-8 m/s2
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 333101 Figure 10.1: Thrust along orbit for Keplerian motion
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 102 Figure 10.2: Thrust along orbit for SRP perturbed motion

  Figures (10.1) and (10.2) show the variation of the thrust along the orbit. Different curves correspond to different observation directions. Simulations hâve been done with initial time 20th february 2012 at midnight. Figure (10.1) corresponds to Aa for keplerian motion, while figure (10.2) corresponds to motion perturbed with SRP. Both figures show that main thrust

Figure 10 . 3 :

 103 Figure 10.3: Thrust as function of observation position in summer
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 104 Figures (10.3) and (10.4) show how there are privileged régions where observations are less
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 105 Figure 10.5: Influence of A -on the thrust
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 106107 Figure 10.6: Minimum distance in case of propulsion failure
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 108 Figure 10.8: Influence of A-in the collision risk

Tl ( 5 -

 5 AR(t) --Aao -ar cos frAeo H-r-^~sin frAMo sin fr(t -to)ry sin urAio -rr sin ir cos urAQç> These équations show the relative motion induced by each différence of orbital element. We plot different relative motions in figure 10.5.1. At the sight of the figure we analyze the most interesting ones.
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 109 Figure 10.9: Possible relative motions
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 10 HEO FOR UNIVERSE OBSERVATION just with one maneuver. In order to compute this maneuver we use the équations that link the changes on the differential orbital éléments with the AV:

  Figure 10.10: Statement of the problem

Finally 13 )

 13 The effects of SRP on the relative position are linked to the SRP effects on differential orbital éléments by the équations: the SRP on the differential orbital éléments are given by matrix Csrp-If transfer time is short enough, équations (10.13) can be simplified to keplerian motion: _ § " sin //(*/ -ti) -!-?(*/ -u)

1. Détection of the collision trajectory at to 2 . 4 . 5 .

 245 Double loop to scan initial and final maneuvers instant of realization. U = to + Ati (10.15) tf = t{ + A tf 3. Compute initial and final transfer positions: Aï((,) = [M(U) C(ti) 7W-1(io)] AV(t0) Compute transfer differential orbital éléments at instant U (AEOt{U)) with keplerian équations (10.14) or including SRP effects (10.13) Compute initial and final transfer differential velocities: AVf = M(U)AËÔt(ti) A ~v~j = M(tf)AEOt(U) 6. Compute total maneuvers AV: SV = SVi + ôVi = Il AVf -AV.UI + Il A Vf -AVjll (10.16)
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 1011 Figure 10.11: Parking orbit

10 Figure 10 . 12 :

 101012 Figure 10.12: AV as function of U andtf

Conclusions 11 . 1

 111 Actual knowledge of formation flyingFormation flying is one of the most promising technologies for future space missions. It reduces risks, costs, and enables better performances. But this technology is difficult to master. Each mission has its own particularities. Quite often, the reader has the impression that each mission requires particular solutions.Fortunately, ail of them hâve a common point: satellites are not far from each other. This characteristic enables to treat them in a similar way. Different théories are used in formation flying papers. Only Hill équations (also known as Clohessy-Wilthsire) and Lawden équations (also known as Yamanaka-Ankersen) are used recurrently. But, when these équations are not well-adapted, several techniques appear. There is not a homogeneous basis about the relative motion. A first part of my work consisted in compiling and classifying precedent work.The goal of these studies would be to settle a certain number of common basis about the dynamical aspects of the relative motion that could be used in future applications. In several aspects, where I considered that precedent work was not sufficient, I go deeply in to the problem. In particular, I hâve worked on differential orbital éléments, in the topology of the relative motion, and in the search of invariant configurations. I hope my work complétés precedent research on dynamical aspects of formation flying, even if there are still several topics to investigate. It gives a basis for posterior applications larger than classical Lawden's or HilPs équations. For completeness sake, my work should be completed with an équivalent research about control techniques on formation flying.
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1: Linéarisation errors for different formation flying missions

table 6 .

 6 

	A ENS	SAT 1	SAT 2	SAT 3
	A a	-6,8304.10~2	5, 9544	-5,9729
	AC	1,0159.10~3	1,0108.103	1,0108.103
	Ai	1,7320.10"6	-1, 7493.10-4	-1,7493.10~4
	An	2,2970.10~3	2, 2856.10-3	2,2856.10-3

1. 

Only the first satellite respects the relations (6.21), while the two others respect only local circular orbit conditions (6.20).

AS -1.1(T6

Table 6 .

 6 1: Initial differential orbital éléments of satellites

			1,01.1er4	-1,01.10"4
	AA	1,4764.10-3	1,4691.10~4	1,4691.10-4
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	1	0.03	200
	10	0.2	100
	45	2.0	65

1: Static field: geoid and gravity uncertainties after GRACE and GOCE missions

Table 10 . 1 :

 101 Differential effects on HEO orbits for Simbol-X mission
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  keplerian ones. Since the perturbation is linear with A-^-, so it is the thrust. The second zone is the transition between the two régimes. It may be interesting to design spacecraft in order to operate in first zone.

	10.4.	COLLISION RISK	115
	SRP effects dominate 10.4 Collision risk
	10.4.1	Extrapolation of relative motion
	The extrapolation of the relative motion is done using the differential orbital éléments (chap-
	ter 4) including solar radiation pressure perturbations (chapter 8). The équations of the
	extrapolation in a matricial form reads:
			Air (t) -[A4] [Ckep + £srp\ • [A4]-1 Air (to)	(10-7)
	where matrices [A4] and [A4]-1 are given in (4.14) and (4.23), matrix Ckep in (4.28),
	and matrix Csrp in (8.21).
	10.4.2	Numerical simulations and results

Table 10 .

 10 2: SRP effects on Simbol-X mission • Computation of SRP secular effects: Particularization of the SRP effects for the epoch of the year and the reference orbit. Compute the secular effects on the T axis using équations (10.8) and (8.21).

nl,m,k-l ' /±l,m,k+1 T axis

Chapter 8

The solar radiation pressure 8.1

/cloudsat/main/index, html http://www.nasa.gov/mission_pages/calipso/main/index.html Italian(ASI) -French(CNES) mission composed by two satellites .gov/TPF/tpfJndex.cfm TechSat 21: It is a mission conducted by the US Air Force Research Laboratory to

//planetquest.jpl.nasa

Chapter 9

Space missions to measure the gravity fîeld

Introduction

One of the first scientific formation flying missions was GRACE. This mission is devoted to the study of the Earth gravity field. As it was described in chapter 1, the formation is composed of two satellites with the same orbit and separated by a différence of anomaly.

Data from GRACE missions hâve been analysed during the last six years producing new models of gravity field [START_REF] Tapley | The gravity recovery and climate experiment: mission overview and early results[END_REF], [START_REF] Tapley | GGM02-An improved Earth gravity field model from GRACE[END_REF]. Future gradiometry mission GOCE [START_REF] Albertella | GOCE: The Earth Field by Space Gradiometry[END_REF] will help to improve the accuracy of the gravity field. Data from these two missions will improve our knowledge of the gravity field, but some authors claim that the précision should be still improved. [START_REF] Rummel | Geoid and Gravity in Earth Sciences -An overview[END_REF], [START_REF] Flury | Future Satellite Gravimetry for Geodesy[END_REF], [1], [START_REF] Sneeuw | Science requirements on future mission and simulated mission scénarios[END_REF],

We hâve explored the possibilities of two different technologies for future space geodesy mis sions: (i) formation flying missions, and (ii) tethered Systems. In order to do so, I hâve analyzed the possibilities of the Systems through the study of its covariance matrix as explained in [START_REF] Koop | Global gravity field modeling using satellite gravity gradiometry[END_REF] and [START_REF] Sneeuw | A semi-analytical approach to gravity field analysis from satellite observations[END_REF].

The interest of formation flying for space geodesy has been studied before in [START_REF] Sneeuw | Satellite clusters for future gravity field missions[END_REF], [START_REF] Mackenzie | A geopotential error analysis for a non planar satellite to satellite tracking mission[END_REF]. We can find several studies in the literature about the sensitivity of the configuration to the gravity field [START_REF] Colombo | The global mapping of gravity with two satellites[END_REF], [START_REF] Kim | Simulation study of a low-low satellite-to-satellite tracking mission[END_REF], [START_REF] Sneeuw | A major STEP for Geodesy[END_REF], [START_REF] Balmino | Comparison of geopotential recovery capabilities of some future satellite missions[END_REF]. The originality of our method is the use of a completely analytical model of the perturbations of the gravity field. Tethers for gravity field détermination hâve been studied in [START_REF] Gullahorn | Gravity gradiometry from the tetherd satellite System[END_REF], but we do not hâve found any papers analyzing the covariance matrix.

In the first part of the chapter, we introduce the covariance matrix. In the second section, we analyze the future needs for gravity field détermination as well as the different available tech nologies. Section three and four deal with tethered Systems and formation flying respectively.

In the last section, we présent the sensitivity analysis. By the following, we présent two of them. We do not claim to be exhaustive in our research, but we focus only on the sensitivity of the observables to the gravity field.

Tethered Systems

In collaboration with Ph. D. candidate Manuel Sanjurjo from 'Universidad Politécnica de Madrid' , we hâve worked in order to analyze the interest of using a tethered System for the study of the gravity field.

9.3.1

Appendix A

Perturbations of the gravity field

Secular variations

For the keplerian and first order contributions

Secular variations proportional to J2 are 15e2 (8 -16s"2 + 7s"4) + I677" (4 -12s"2 + 9s"4) + IO77"2 (8 -20s"2 + 13s"4) ~Ê~=^722^o 5e"2 (88 -172s"2 + 77s"4) + 2477" (8 -22s"2 + 15s"4)

The remaining secular variations are due the other even zonal harmonies: Aûlp,j2 = 0

AeLp,j2 = -~^2r]"2e"s"2a" cos(2g")

A/lp,j2 = -72e//2s"c//Q//cos(2g")

A/iLP,J2 = -jlze"2c"fi" sin (2g")

AgLp,J2 = -72 (2 + e"2)S"V' -2e"V/2/3" sin(2g")

AZLPf* = -WVVsmp/). LP,pot = XX(^J sin ((n -2p)#" -en,0^)

In these formula, we hâve used following auxiliary expressions: