

Étude de la région centrale de l'Amas Mel 111 dans la constellation Coma Bérénices

Loth Bounatiro

▶ To cite this version:

Loth Bounatiro. Étude de la région centrale de l'Amas Mel 111 dans la constellation Coma Bérénices. Astrophysique [astro-ph]. Observatoire de Paris, 1986. Français. NNT: . tel-01958577

HAL Id: tel-01958577 https://theses.hal.science/tel-01958577

Submitted on 18 Dec 2018

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

THESE

présentée pour obtenir le grade de

DOCTEUR DE L'OBSERVATOIRE DE PARIS 860BSP 0002

PAR

Loth BOUNATIRO

SPECIALITE :

ASTRONOMIE STATISTIQUE ET DYNAMIQUE - GEODESIE

<u>Sujet</u> : Etude de la région centrale de l'amas galactique Mel 111 dans la Constellation Coma Berenices.

Soutenue le 7 mai 1986 devant la Commission d'examen :

Mme	G.	CAYREL	directeur de recherche, C.N.R.S.
М.	J.	DELHAYE	astronome titulaire, Observatoire de Paris
Μ.	C.	JASCHEK	professeur, Université de Strasbourg
Μ.	F.	NAHON	professeur, Université de Paris VI
Mme	Α.	GOMEZ	astronome, Observatoire de Paris

THESE

présentée pour obtenir le grade de

DOCTEUR DE L'OBSERVATOIRE DE PARIS

PAR

Loth BOUNATIRO

SPECIALITE :

NRE

OBS

cl

ASTRONOMIE STATISTIQUE ET DYNAMIQUE - GEODESIE

<u>Sujet</u> : Etude de la région centrale de l'amas galactique Mel 111 dans la Constellation Coma Berenices.

Soutenue le 7 mai 1986 devant la Commission d'examen :

Mme	G.	CAYREL	directeur de recherche, C.N.R.S.
М.	J.	DELHAYE	astronome titulaire, Observatoire de Paris
М.	C.	JASCHEK	professeur, Université de Strasbourg
М.	F.	NAHON	professeur, Université de Paris VI
Mme	Α.	GOMEZ	astronome, Observatoire de Paris

A mes parents A ma femme A ma fille

REMERCIEMENTS

Je voudrai tout d'abord témoigner ma profonde reconnaissance et mes vifs remerciements à Monsieur Jean DELHAYE, astronome titulaire de l'Observatoire de Paris, de m'avoir conseillé et appris beaucoup de choses en astronomie ainsi qu'à Madame Giusa CAYREL, directeur de recherche auprès du CNRS qui en a fait autant pour la seconde partie de mon travail.

Je tiens aussi à remercier Monsieur Carlos JASCHEK et Monsieur Fernand NAHON d'avoir accepté de faire partie de mon jury.

Jadresse également mes respectueux remerciements au gouvernement Algérien qui a subvenu à mes besoins financiers ainsi qu'à mon Oncle Latif BOUNATIRO qui m'a aussi beaucoup aidé.

Merci à Mesdames Claude MEGESSIER, Danièle MORIN et Monsieur Nobuo ARIMOTO de leurs étroites collaborations.

Je suis aussi reconnaissant à Madame Martine LEMIERE qui a bien voulu faire la frappe de mon mémoire ainsi qu'à Madame Renée WEINSTEIN, Monsieur Pierre NOGIER et Madame Josette ALEXANDRE qui m'ont rendu beaucoup de service sans oublier tout le personnel sympathique de l'Observatoire de Paris-Meudon. PREMIERE PARTIE

ETUDE ASTROMETRIQUE

I	-	INTRODUCTION	5
11	_	ETUDE STATISTIQUE DE LA REGION CENTRALE DE L'AMAS COMA	6
		A) – Introduction	7
		B) – Test de King (1979) 1°) Description 2°) Application	8
111	-	ETUDE DE LA REGION AVOISINANTE	17
IV	-	EXAMEN PHOTOMETRIQUE	22
		A) – Liste définitive	23
		B) – Correction de LACROUTE et CORBIN	27
		C) – Liste complémentaire	31
	-	D) – Comparaison avec la liste de Trumpler	32
		E) – Examen photométrique du groupe de 14 étoiles observé lors de l'application du test de King	32
v	-	TEST DE SCHWARZSCHILD APPLIQUE AU CHAMP RESULTANT	34
		A) – Description	35
		 B) - Application et détermination de l'apex et du vertex : après l'étude statistique, après l'examen photométrique 1°) Détermination de l'apex 2°) Détermination du vertex 	36
VI	-	GRANDEURS ASTROMETRIQUES DEFINISSANT L'AMAS	40
		A) – Mouvement propre moyen	41
		B) – Distance	41
		C) – Vitesse radiale et Vitesse spatiale	42
		D) – Coordonnées du centre	43
		E) – Diamètre angulaire et taux de concentration des étoiles	43

.

۲

CHAPITRE I

INTRODUCTION

L'existence d'un amas ouvert dans la partie Nord-Ouest de la constellation COMA BERENICES est connue depuis longtemps. Le premier catalogue dans lequel il est mentionné est celui de Melotte (1915) ; il a ensuite retenu l'attention de plusieurs auteurs, en particulier celle de Trumpler (1938) qui dressa une liste de ses membres, liste qui sert encore de référence.

Le but du présent travail est d'établir à nouveau une telle liste, indépendamment de celle de Trumpler, en la limitant aux étoiles plus brillantes que 12, cette limite étant imposée par l'utilisation de l'AGK3 qui présente l'avantage de fournir des mouvements propres précis et homogènes.

La sélection des membres de l'amas par leurs mouvements propres ne résulte pas d'une simple inspection portant sur leur grandeur, mais de l'application d'une méthode statistique proposée par King (1979). Elle est accompagnée de différents tests statistiques portant sur l'amas aussi bien que sur le champ stellaire qui l'entoure. La vitesse et les propriétés photométriques sont aussi considérées. Une liste des membres brillants de l'amas en résulte.

Cette liste permet de construire le diagramme H-R de l'amas (jusqu'au type solaire), d'en déduire la population correspondante et d'estimer certains paramètres qui caractérisent l'amas, en particulier sa distance, ses dimensions, son âge et sa composition chimique.

5.

CHAPITRE II

ETUDE STATISTIQUE DE LA REGION CENTRALE DE L'AMAS

.

A) INTRODUCTION

Le centre de l'amas Coma Berenices par rapport au repère de l'époque 1900 est d'après Trumpler (1938) :

> $\alpha = 12h 18mn,$ $\delta = + 260 30',$

Les coordonnées équatoriales du centre ramenées à 1950 pour être conformes au catalogue AGK3 deviennent :

 $\alpha_{1950} = 12h \ 20mn,$ $\delta_{1950} = + 26^{\circ} \ 13'$.

On se propose alors d'étudier la région de l'amas définie par :

 $\alpha_{\text{centre}} - 3^{\circ} < \alpha < \alpha_{\text{centre}} + 3^{\circ},$ $\delta_{\text{centre}} - 3^{\circ} < \delta < \delta_{\text{centre}} + 3^{\circ}.$

On dénombre dans le catalogue AGK3 227 étoiles qui ont leur mouvement propre mesuré ; de cette liste on retire 21 étoiles de mouvement propre certainement trop élevé en comparaison avec le mouvement propre moyen de l'amas calculé par Trumpler, à savoir :

$$\frac{\mu_{\alpha} \cos \delta}{\mu_{\delta}} = -0".013 / an,$$

$$\frac{\mu_{\delta}}{\mu_{\delta}} = -0".017 / an.$$

on se fixe pour l'étude des mouvements propres un intervalle qui couvre largement le mouvement propre total de l'amas, soit :

 $0".000 \leq \mu_{\rm T} \leq 0".100.$

Il nous reste finalement 202 étoiles ayant un mouvement propre compris dans cet intervalle.

B) - TEST DE KING (1979)

Il consiste en une étude statistique des mouvements propres des étoiles afin de discriminer les étoiles de l'amas.

10) Description du Test de King (1979)

Signalons tout d'abord que ce test s'applique uniquement aux amas ouverts parce que l'on peut dénombrer leurs étoiles.

Il permet d'estimer la probabilité d'appartenance à l'amas par la simple considération du mouvement propre en ascension droite et en déclinaison de l'étoile.

On définit alors une fonction de fréquence gaussienne à deux variables à l'aide de l'équation suivante :

$$\Phi (\mu_i; \nu_i) = \Phi_i^C + \Phi_i^a$$
, avec :

- fonction de fréquence gaussienne à deux variables ellipsoïdales pour le champ
- fonction de fréquence gaussienne à deux variables circulaires pour l'amas
 pour l'amas
 i
 i
- µi : mouvement propre de l'étoile en ascension droite

vi : mouvement propre de l'étoile en déclinaison.

Les µi, vi sont centrés sur le mouvement propre moyen de l'amas.

$$\Phi (\mu_{i}; \nu_{i}) = \frac{N_{c}}{2\pi \sum x \sum y} \exp \left\{ -\frac{1}{2} \left[\frac{(\mu_{i} - X_{c})^{2}}{\sum x^{2}} + \frac{(\nu_{i} - Y_{c})^{2}}{\sum y^{2}} \right] \right\}$$

+
$$\frac{N_a}{2\pi \sigma_a^2} \exp \left\{ -\frac{1}{2} \left[\frac{\mu_i^2 + \nu_i^2}{\sigma_a^2} \right] \right\}$$

$$= \frac{N_{c}}{2\pi \sum x \sum y} \alpha + \frac{N_{a}}{2\pi \sigma_{a}^{2}} \beta \qquad (1)$$

- σ_a : dispersion des mouvements propres totaux des étoiles de l'amas,
- N_C : nombre d'étoiles du champ,
- Na : nombre d'étoiles de l'amas,
- X_C ; Y_C : centre de la distribution des mouvements propres du champ,

 E_x ; E_y : dispersions respectives autour des valeurs moyennes X_c ; Y_c ,

 μ_i ; ν_i : mouvements propres en α et δ de l'étoile i en centièmes de seconde par an.

La méthode du maximum de vraisemblance donne les équations de conditions non linéaires suivantes :

$$N : \qquad \Sigma_{i} \frac{1}{\Phi} \left\{ \begin{array}{cc} \frac{\alpha}{\Sigma_{x}\Sigma_{y}} - \frac{\beta}{\sigma_{a}^{2}} \end{array} \right\} = 0$$

$$X_{c} : \qquad \Sigma_{i} \frac{\alpha}{\Phi} \left\{ \begin{array}{cc} \mu_{i} - x_{c} \end{array} \right\} = 0$$

$$Y_{c} : \qquad \Sigma_{i} \frac{\alpha}{\Phi} \left\{ \begin{array}{cc} \nu_{i} - y_{c} \end{array} \right\} = 0$$

$$\Sigma_{x} : \qquad \Sigma_{i} \frac{\alpha}{\Phi} \left\{ \begin{array}{cc} \frac{(\mu_{i} - x_{c})^{2}}{\Sigma_{x}^{2}} - 1 \end{array} \right\} = 0$$

$$\Sigma_{y} : \qquad \Sigma_{i} \frac{\alpha}{\Phi} \left\{ \begin{array}{cc} \frac{(\nu_{i} - y_{c})^{2}}{\Sigma_{y}^{2}} - 1 \end{array} \right\} = 0$$

$$\sigma_{a} : \qquad \Sigma_{i} \frac{\beta}{\Phi} \left\{ \begin{array}{cc} \frac{\mu_{i}^{2} + \nu_{i}^{2}}{\sigma_{d}^{2}} - 2 \end{array} \right\} = 0$$

La somme s'effectue sur la totalité de la population $N_a + N_c$. De préférence on ajoute une autre équation qui rend compte de la rotation d'angle Θ due à l'amas telle que :

 $\begin{array}{c|cccc} \mu_{i} & \Phi & - & \mu_{i} & \Phi' & = & 0 \\ \nu_{i} & \Phi & - & \nu_{i} & \Phi' & = & 0 \end{array} \end{array} \begin{array}{c|ccccc} \Phi' & \text{représentant la dérivée} \\ & \text{première de } \Phi \end{array}$

θ est ainsi défini par l'équation :

$$\sum_{i} \frac{\alpha}{\Phi} \left[\frac{\nu_{i}(\mu_{i} - X_{c})}{\Sigma_{x}^{2}} - \frac{\mu_{i}(\nu_{i} - Y_{c})}{\Sigma_{y}^{2}} \right] = 0$$

Les sept équations précédentes sont résolues en prenant des valeurs initiales et en calculant les valeurs des paramètres de chaque équation qui leur sont associées. Après différentes itérations, les paramètres convergent dans tous les cas étudiés. Ainsi on détermine pour une étoile donnée, la probabilité d'appartenance à l'amas :

$$\Pi_{i}^{a} = \frac{\Phi_{i}^{a}}{\Phi_{i}^{a} + \Phi_{i}^{C}}$$
(2)

Un seul aspect a été négligé, c'est celui où la distribution des mouvements propres des étoiles n'est pas normale, ce à quoi conduisent le mouvement local et la rotation différentielle.

Dans ce cas on fait appel au test de χ^2 (statistique) pour essayer de trouver un compromis entre la normalité de la distribution du champ et de celle de l'amas, en changeant les affectations de certaines étoiles au champ ou à l'amas et vice-versa.

Ces réajustements vont porter essentiellement sur les étoiles se trouvant aux extrémités de chaque distribution, car ce sont ces valeurs extrêmes des mouvements propres qui perturbent le plus la distribution.

Ainsi pour l'amas ouvert NGC 4103, KING trouve un compromis après un réajustement portant sur 15 étoiles comme le montre son tableau :

	χ^2		Nobs	N _{cal} .
N * réajustées	Champ.	,amas.	, Champ -	Cimas.
2	17.49	18.23	3.60	19.10
3	4.38	3.64	2.55	14. G4
6	1.75	8.18	- 0.87	11.48
8	1.68	7.22	0.35	11 . 23
13	1.09	5.58	_ 0.60	3.23
Λ4	G. 42	1.24	- 2.10	0.43
٨S	2.22	0.55	- 3.40	_ 0.41
16	2.79	2.78	_ 1.52	- 3.12
17	2.67	2.06	_ 1.27	_ 2.67.

TABLEAU I

2°) Application du test de KING :

La valeur moyenne des mouvements propres totaux de la population des 202 étoiles est :

 $\mu_{\rm TT}^-$ = (0.037 ± 0.020)"/an

La probabilité pour que cette population forme une distribution normale est pratiquement nulle, soit 0.002 (voir table 1). Nous sommes donc ramenés à la recherche d'un compromis entre les distributions des étoiles du champ et de l'amas.

A cet effet nous devons sélectionner a-priori quelques étoiles de l'amas en nous basant sur les grandeurs des mouvements propres estimés par Trumpler en 1938.

Ainsi on calculera les grandeurs σ_a ; Σ_x ; Σ_y ; N_a ; N_c et enfin les fonctions Φ_i^a et Φ_i^c pour en déduire la probabilité Π_1^a de chaque étoile d'appartenir à l'amas (voir tableau II – annexe I).

La répartition initiale affecte 37 membres à l'amas et 165 étoiles au champ. On enrichit ensuite l'amas au détriment du champ en procédant par pas successifs. Les résultats de l'opération sont donnés dans le tableau III et les tests de χ^2 relatifs à chaque distribution dans l'annexe I.

	L'an	nas.		Le champ.				
N , it strikes	$\chi^2(\mathcal{P}(\gamma^2)).$	Noto-Nal.	Table	N it étrikes	$\gamma^{2}(\mathcal{P}(\gamma^{2}))$	Nobs Ncal.	Table	
- 37	4.23 (0.52)	0.033	2	165	33. 18 (0.02)	5.623	11	
40	6.77 (0.75)	0.086	3	162	34.16 (0.012)	1.422	12	
44	6.09 (0.81)	0.018	μ	158-14*	15.03(0.66)	5.877	13	
I US	6. 8 3(0. 58)	0.06	5	157	24.32 (0.15)	4.307	14	
53	6.85 (0.37)	0.076	6	149	19.42 (0.34)	H. 857	15	
55	7.87(0.45)	0.077	7	147	19 17 (0. 38)		16	
60	12.50		8	142			_	
31	41.19		9	131		_	_	
74	18.43		٥N	128		-	-	

TABLEAU III

$$\begin{array}{c} 158 \ \text{itribo} \ \text{is} \ \text{itribo} \ \text{itribo} \ \text{is} \ \text{itribo} \ \text{itribo} \ \text{is} \ \text{itribo} \ \text{is} \ \text{itribo} \ \text{itribo} \ \text{itribo} \ \text{itribo} \ \text{is} \ \text{itribo} \ \text$$

FIGURE:1 IGURE:1 Fig:1c Groupe des 14 étoiles. Fig:1d 158-14=144 étoiles du champ.

.

÷

14.

On constate qu'il existe deux compromis possibles et que le premier présente des valeurs de $\Pi(\chi^2)$ nettement meilleures, à condition toutefois de retirer 14 étoiles qui faussent considérablement la distribution normale du champ à l'une des extrémités de celle-ci comme le montre le test de χ^2 relatif à ce champ (Table 12 – annexe I).

De plus ces 14 étoiles semblent avoir des propriétés cinématiques communes. Cet excès sur un intervalle réduit 0.000 $\leq \mu_{t} \leq$ 0.015, nous incite à regarder de près les propriétés physiques de toutes les étoiles qui couvrent un intervalle un peu plus large.

On constate alors qu'il existe effectivement 14 étoiles qui ont sensiblement le même mouvement propre, des magnitudes photographiques variant entre 10 et 12, des types spectraux avancés et la classe de luminosité III.

De plus la distribution de leurs mouvements propres est normale à 90 % (voir table 17). Malheureusement on ne possède que deux vitesses radiales observées – 16 km/s et – 19 km/s. Un programme a été mis au point pour observer les 14 étoiles citées. Une étude plus détaillée sera donnée ultérieurement. Le tableau IV regroupe ces étoiles :

NE BOUNA TIRD	BD	НО	μi x10-3	Di x10 ⁻³	mpg.	Sp.	VR (km/s)	$\mathcal{P}_{i}^{,\mu}$
1	26 2337		-5	- 6	11.2	K1 D		0.5707
L	29 22 93		-7	-6	10.3	КИШ	-	0.5805
3	29 22 71		-5	- 8	A0.8	M3 04		0.6289
4	26 23 18		- 10	-2	10.7	KOT	-16.0(x)	0.5082
5	27 24 49	107742	-5	-9	٩٥	K2页	- 19.0 (.c)	0.6613
ß	302250		- 6	- 11	10.3	Ko		0.7398
з	24 24 45		- 10	- 9	9.4	Ko		0.1781
8	302273		- 10	- 8	10.3	Мощ		0.7220
g	272279	106857	-7	-12	9.7	MII		0.5857
Jo	23 24 30		-13	-5	11.8	F8		0.5750
11	30 22 90		-1	_14	11.42	A2		0.7462
12	24 2448		-14	-6	10.5	K2		0.6195
13	272107		- 18	-5	10.1	K11		0,6913
44	301264		-5	- 7	11.0	68 II		0.6000

Enfin, Il nous reste un champ (statistique) de 144 étoiles dont les mouvements propres ont une distribution normale avec une probabilité de 66%. Nous leur appliquerons, ultérieurement, un test que nous appellerons "test de SCHWARZSCHILD".

Il est à signaler que les valeurs des probabilités obtenues pour le champ et pour l'amas sont entachées d'une part d'une incertitude sur les mouvements propres de l'AGK3 étudiée par LACROUTE en 1970 et par CORBIN en 1978 et affectées d'autre part de la rotation différentielle qui comme nous l'avons dit favorise des écarts par rapport à la distribution normale.

Avant de poursuivre la suite logique de notre travail, nous avons jugé utile de tenter d'enrichir la liste (statistique) des étoiles de l'amas en étendant la région centrale jusque là étudiée. CHAPITRE III

ETUDE DE LA REGION AVOISINANTE

.

Ξ.

.

Nous nous proposons d'étudier dans ce paragraphe, les champs "voisins". Nous couvrirons alors largement le cercle de rayon 4°23' qui circonscrit le carré de notre région centrale en définissant quatre autres régions, désignées par les chiffres romains I, II, III et IV ; leurs limites en α et δ sont les suivantes : (Fig:3).

I	12 h 08 mn < α < 12 h 32 mn 29° < δ < 37°	;	$II \begin{bmatrix} 12 h 08 mn < \alpha < 12 h 32 mn \\ 14^{\circ} < \delta < 23^{\circ} \end{bmatrix}$
III {	- 11 h 30 mn < α < 12 h 08 mn 23° < δ < 29°	;	$IV \left\{ \begin{array}{cccc} 12 \text{ h } 32 \text{ mn } < \alpha < 13 \text{ h } 08 \text{ mn} \\ 23^{\circ} & < \delta < 29^{\circ} \end{array} \right.$

-1

FLG: 3

18.

On dénombre dans les régions I, II, III et IV 1147 étoiles ayant un mouvement propre mesuré dans l'AGK3.

Lors de notre étude statistique de la région centrale nous avons sélectionné les étoiles ayant un mouvement propre voisin de celui de l'amas.

A présent nous allons les utiliser comme "témoins" pour les étoiles des nouveaux champs. Nous pourrons alors par une simple inspection reconnaître si telle étoile est suspecte où non d'appartenir à l'amas.

Cette manière de faire est moins précise mais permet cependant d'avoir unc estimation de l'étalement de l'amas.

On trouve 76 étoiles ayant des mouvements propres comparables à ceux de la région centrale, ce qui porte la population de notre liste à 120 étoiles (voir tableau V – annexe I). Le test de χ^2 concernant la normalité de la distribution des mouvements propres de ces étoiles donne une probabilité de 87% (voir Fig. 4 et table 18 – annexe I).

Le schéma suivant illustre l'étalement de l'amas.

Fig:4a Représentation des 120 étoiles de l'amas dans
le plan (
$$\mu_{\alpha} \cos \delta$$
, μ_{δ}).
FIGURE:4 Fig:4b Histogramme des \mathcal{M}_{tot} . des 120 étoiles.

20.

L'amas apparaît plus étendu en ascension droite qu'en déclinaison. Rappelons que la liste ainsi obtenue est basée comme la première sur la seule considération des mouvements propres. Une confirmation par l'inspection des vitesses radiales et un examen photométrique sont nécessaires et une comparaison avec la liste de Trumpler sera intéressante. CHAPITRE IV

EXAMEN PHOTOMETRIQUE DE LA LISTE STATISTIQUE DE Coma

.

A) LISTE DEFINITIVE

Le tableau (V) donne les caractéristiques physiques de la liste (statistique) des 120 étoiles jusque là étudiées. Les premières 44 étoiles représentent la liste obtenue lors de notre étude de la région centrale (202 étoiles).

Les autres ont été sélectionnées dans les régions "voisines", I, II, III et IV.

A cette liste on ajoutera les étoiles du champ appartenant à la région centrale qui ont un mouvement propre proche des valeurs extrêmes de la distribution de l'amas pour éviter un rejet injustifié.

Les magnitudes visuelles ont été obtenues à partir des magnitudes apparentes photographiques données par l'AGK3 d'après la formule classique :

 $m_{pq} - m_v = indice de couleur$

L'indice de couleur, lui, est lié au type spectral conformément à la figure 5a (Encyclopédie Universalis).

Les magnitudes photoélectriques V et les indices de couleur (B-V; U-B) adoptés dans la région centrale ainsi que les types spectraux sont ceux donnés par J.C. Mermilliod (1976).

Pour les régions avoisinantes (I, II, III, IV) nous avons adopté les valeurs communiquées par le C.D.S. (Centre de Données Stellaires de Strasbourg).

Les magnitudes absolues ont été estimées à partir du type spectral en utilisant la table que l'on trouve dans "Basic astronomical Data" (K.Aa.Strand, 1980).

Enfin, pour les indices de couleur intrinsèques, nous avons utilisé la table donnée par Mihalas and Binney (1980).

Les corrections d'extinction ont été calculées d'après la formule classique :

$$A \simeq 3 E(B-V) \tag{4}$$

avec $E(B-V) = (B-V)_{obs} - (B-V)_{int.}$: excès de couleur. Cela permet de corriger la magnitude apparente observée :

$$m = m_{\rm Obs} - A \tag{5}$$

Le calcul de l'extinction moyenne des 120 étoiles du tableau V donne :

.

$$A = (0.06 \pm 0.03) mag.$$

Cependant on rencontre deux valeurs certainement erronées de l'extinction A = 1.05 et A = 1.65, dues probablement à une mauvaise détermination du type spectral.

Quand celui-ci n'existait pas, on l'a estimé en considérant le graphe théorique à deux couleurs (U-B ; B-V) pour les classes de luminosité III, V (Fig. 5b).

Nous avons ainsi constaté que les étoiles désignées par con dans la dernière colonne du tableau (V) ne pouvaient pas être considérées comme des membres confirmés de l'amas ; la considération de leurs indices de couleur, de leurs magnitudes et de leurs positions dans le diagramme H.R par rapport à la séquence de l'amas démontrent qu'elles sont en fait des géantes considérablement plus éloignées que l'amas.

Par contre les étoiles désignées par "Coma" (au nombre de 17) et qui appartenaient statistiquement parlant au champ deviennent membres justifiés de l'amas à cause de leurs caractéristiques photométriques et, pour certaines, de leur vitesse radiale. Ces étoiles se trouvaient aux deux extrémités de la distribution normale de l'amas et ont échappé à celle-ci pour des raisons déjà citées.

pour l'estimation de la classe de luminosite des etoiles. On recense 51 étoiles groupées dans le tableau (VI) qui donne la liste définitive de l'amas.

La normalité du "champ" résultant connaît un gain de probabilité de 0.07 (voir Fig. 6 et table 19 – Annexe I).

En revanche, la distribution des mouvements propres des étoiles du tableau (VI) n'est plus normale (voir table 20 – Annexe I), mais cela est naturel car nous avons ajouté 17 - 10 = 7 étoiles aux deux extrémités de celle-ci.

Il serait donc intéressant de voir si les corrections apportées aux mouvements propres du catalogue AGK3 par Lacroute en 1970 et Corbin en 1978 ne permettent pas d'expliquer de tels grands écarts pour les mouvements propres. Ceci sera le but de notre prochain paragraphe.

B) CORRECTIONS DE LACROUTE ET CORBIN

Les étoiles de la liste définitive de l'amas Coma Berenices sont classées dans la Table VI dans l'ordre de probabilité d'appartenance à l'amas décroissante.

Dans la colonne 19 du tableau V (annexe I) nous avons attribué une (*) aux étoiles qui ont un "bon" mouvement propre, une deuxième (*) à celles qui ont une "bonne" vitesse radiale et une troisième (*) à celles qui ont de "bons" indices de couleur. On constate qu'il y a 14 étoiles qui n'ont pas le "bon" mouvement propre (ne pas confondre avec le groupe des 14 étoiles).

La considération de ces signes (*) insérés dans le tableau (V) conduit ainsi à examiner si les corrections proposées par Lacroute et Corbin ne ramèneraient pas le mouvement propre à l'intérieur des limites définissant le critère d'appartenance à l'amas (voir tableau suivant).

		AGK3		LACI	LACROUTE		CORBIN		LACROUTE	CORBIN
	BD.	MICON	46	W. Cos	۶ų	14.65	٨ć	mv.	μ _T	μ _τ
1	26 2354	-38	-26	-44	- 27			5.29	0.049	
2	252517	-10	- 11	- 14	-15	- 12	- 15	5.38	0.020	0.019
ვ	252482	-43	-21	-34	-19	- 40	-29	8.8	0.039	0.049
4	24 24{5	+37	- 15	+36	-42			6.03	0.052	
5	2324 47	- 10	-9	- 12	- 11			8.6	0.016	
6	28 21 34	-26	-9	-26	-5	-28	-8	8.8	0.026	0.023
7	302287	+2	- 14	-	-	- AL	-19	7.6		0.024
8	272128	-26	-7	-26	+ 6			10.9	0.027	
9	232433	- 10	-8	- 19	- 5			8.39	0.020	
10	25 25 23	- 18	-8	-26	- 3	-18	- 10	6.02	0.026	0.021
M	26 23 30	- 28	f 1	- 26	+6			9.1	0.027	
12	28 21 33	-30	+3	- 29	+2	- 17	+3	1.7	0. 029	0.017
13	29 2087	-31	-4	-29	- 5	- 9	- 11	8.12	0,029	0.014
14	23 24 48	-45	-7	- 23	+2	- 22	-18	6.08	0.023	0.028.

Signalons d'abord que les 37 étoiles qui possèdent un "bon" mouvement propre, désignées par (*;*) et (*;*;*), forment une distribution normale à 30 % (voir Fig. 6 - table 21 - Annexe I).

En appliquant la seule correction de Lacroute (1970) aux étoiles qui, parmi les 14, en ont une, on trouve, pour 42 étoiles, une distribution normale à 50 %, soit un gain de 20 % (voir table 22 - Annexe I).

SI maintenant l'on applique la seule correction de Corbin (1978), aux mêmes 14 étoiles, on trouve pour 43 étoiles une distribution normale à 39 % (voir table 23 – Annexe I), soit un gain de 9 % par rapport à la distribution des 37 étoiles dont le mouvement propre n'a pas été corrigé. Si l'on applique à la fois les corrections de Lacroute et de Corbin, en préférant celles-ci (parce que plus récentes) quand ces deux corrections existent pour une même étoile, on obtient alors, pour 45 étoiles, une distribution normale à 75 % soit un gain de 45 % (voir table 24 – Annexe I).

	Étales de l'amas sans correction.	, Connection LACROUTE 1970	Connection CORBIN 1978	Connection L+C.
N ^{bre} d'étoiles	37	42	43	45
μ _T	0.027	0.026	0.026	0.026
σ'n	0.004	0.005	D. 00H	0.005
χ^2	6.010	5.31	6.26	3.42
$\mathcal{P}(\gamma^{\epsilon})$	0. 30	o.	0.39	0.75.

TABLEAU VII

En résumé, nous avons sélectionné statistiquement 44 étoiles dans la région centrale de l'amas, l'examen de leurs propriétés photométriques en retient 34 sur 44 et en rajoute 11 sur 17 suspectes, soit finalement un total de 45 étoiles.

Nous nous trouvons ainsi devant une liste définitive de 51 étoiles (tableau VI), parmi lesquelles nous sommes en droit de considérer 45 comme des membres "certains" de l'amas, les 6 autres n'étant au stade actuel que des membres "très probables" (Fig. 6).

A ces 51 étoiles qui appartiennent à la région centrale, nous pouvons en ajouter 19 qui appartiennent aux régions voisines (I, II, III, IV) et que nous pouvons considérer comme des membres "probables" (et non "très probables" parce qu'elles ont été sélectionnées par une simple inspection de leurs mouvements propres sans être soumises au test de KING).

FIG:6

Repartition des differentes distribtion apres l'examen photometrique de la liste statistique de l'amas Coma.

C) LISTE COMPLEMENTAIRE

Mermilliod a publié en 1976 un catalogue de photométrie relatif à la région centrale de l'amas.

Nous avons jugé utile de voir s'il n'y avait pas d'étoiles de ce catalogue qui ont échappé à notre sélection statistique.

Pour ce faire, nous avons écarté de la liste de Mermilliod toutes les étoiles de l'AGK3 pris comme échantillon lors de notre étude statistique de la région centrale. Nous avons alors constaté qu'il nous restait 29 étoiles identifiables et bien d'autres non identifiables et donc nouvellement observées photométriquement parlant. Une étude cinématique de ces étoiles serait intéressante pour enrichir la liste des membres certains dc l'amas qui reste encore pauvre faute d'observations.

Parmi les 29 étoiles identifiables rassemblées dans le tableau VII – annexe I, 6 se trouvent à proximité du champ choisi pour notre étude de la région centrale de l'amas et appartiennent donc aux régions avoisinantes. 8 autres étoiles n'ont pas de mouvements propres mesurés dans l'AGK3 et ne pouvaient donc être sélectionnées par notre étude statistique.

Enfin, 12 étoiles ont un mouvement propre jugé trop élevé en comparaison avec celui de l'amas et ont donc été dès le début écartées de notre étude.

Nous n'avons alors retenu que deux étoiles qui ont le même mouvement propre que celui de l'amas et de "bons" indices de couleur. Afin de lever toute incertitude sur les mouvements propres, nous avons bien sur tenu compte des corrections de Lacroute et Corbin (voir tableau VII annexe I).

Il nous reste maintenant à comparer notre liste définitive (tableau VI) à celle de Trumpler (1938).

D) COMPARAISON AVEC LA LISTE DE TRUMPLER

Le point noir figurant dans la 3ème colonne du tableau VI – annexe I, signale les étoiles communes à notre liste et à celle de Trumpler, soit 34 étoiles presque toutes situées dans la région centrale de l'amas.

Remarquons que Tr : 132 n'a pas d'autre identification ; que Tr : 39 (BD 24 2443) possède une vitesse radiale trop élevée (- 27.7 km/s) ; que (BD 23 2453) a un mouvement propre de -0.002 en α et -0.014 en δ , se trouve dans la région avoisinante, et peut être membre moyennant des corrections de mouvement propre de Lacroute ou Corbin comme nous l'avons fait pour l'étoile BD : 30 2287 ($\mu\alpha$ cos = +0.002 et $\mu\delta$ = -0.014), de la région centrale.

Toutes les autres étoiles dépourvues de points noirs sont des étoiles apparues à la suite de notre étude comme étant des membres incontestables de l'amas. On compte 12 étoiles dans la région centrale et 11 dans les régions voisines (I, II, III, IV) auxquelles 35 sont susceptibles de s'ajouter moyennant une meilleure connaissance de leurs caractéristiques photométriques.

E) EXAMEN PHOTOMETRIQUE DU GROUPE DES 14 ETOILES

Les grandeurs physiques adoptées dans le tableau VIII – annexe I ont les mêmes références que celles du tableau III relatif aux étoiles de l'amas Coma.

Les étoiles du champ proches, en mouvements propres, des valeurs extrêmes de la distribution des 14 étoiles seront aussi examinées. Nous constatons, alors, que les étoiles munies d'un point noir dans la deuxième colonne ont les mêmes caractéristiques spectrophotométriques. C'est-à-dire que leurs magnitudes photoélectriques V sont en concordance avec leurs types spectraux.
Elles sont donc toutes à la même distance du soleil (~ 650 pc), bien plus loin que l'amas Coma (mais dans la même direction).

De plus leurs magnitudes V et leurs indices de couleur B–V leur attribuent dans le diagramme H–R (V, B–V) des positions qui semblent suivre une isochrone (Fig. 7).

Une détermination de leur parallaxe permettant de les placer avec précision dans le diagramme H-R sera intéressante pour la détermination de leur âge.

Ainsi la liste du tableau IV se trouve confirmée par cet examen photométrique. Nous pouvons alors dire que ces étoiles semblent former un groupe distinct sous réserve de connaître leurs vitesses radiales.

Fig:7 Diagramme H-R (B-V,V) du groupe des 14 étoiles.

CHAPITRE V

TEST DE SCHWARZSCHILD APPLIQUE AU CHAMP RESULTANT

.

Après avoir retiré l'amas Coma et le groupe des 14 étoiles, il nous reste, comme nous l'avons vu, un champ résultant où, après une étude statistique, la distribution des mouvements propres paraît normale à 66 %, cette normalité passant à 73 % après un examen photométrique fait sur l'amas Coma et sur le groupe des 14 étoiles. Nous allons à présent déterminer la direction du mouvement du soleil par rapport à ces étoiles du champ et celle du grand axe de l'ellipse des vitesses. A cet effet, nous appliquerons la méthode de Schwarzschild :

A) - DESCRIPTION

Cette méthode consiste à représenter les mouvements propres des étoiles sur le plan ($\mu_{\alpha} \cos \delta$; μ_{δ}), et à partager ce plan en secteurs égaux ayant pour sommet l'origine ($\mu_{\alpha} \cos \delta = 0$; $\mu_{\delta} = 0$). On dénombre alors les étoiles dans chaque secteur et on représente les nombres obtenus par des segments de droite de longueur proportionnelle à ces nombres, portés par la bissectrice de chaque secteur. Les extrémités de ces segments s'alignent sur une courbe ; la surface limitée par cette courbe est partagée en deux parties égales par la projection de la direction du mouvement du soleil sur le plan ($\mu_{\alpha} \cos \delta, \mu_{\delta}$).

B) - APPLICATION DU TEST DE SCHWARZSCHILD

1º) Détermination de l'apex

Si l'on adopte le mouvement du soleil "standard",

V = 19 km/s; A = 18 h; $D = 30 ^{\circ}$,

on peut calculer l'angle de position de cette direction :

X = V CosA cosD	suivant	$\alpha = Oh ; \delta = O$
Y = V sinA cosD	suivant	$\alpha = 6h ; \delta = 0$
Z = V sinD	suivant	δ = 900

 $\mu \alpha \cos \delta = \frac{1}{4.74r} \left[-X \sin \alpha + Y \cos \alpha \right]$ $\mu \delta = \frac{1}{4.74r} \left[-X \cos \alpha \sin \delta - Y \sin \alpha \cos \delta + Z \cos \delta \right]$ $--> tg \theta = \frac{\mu \alpha \cos \delta}{\mu \delta} \quad --> \quad \theta = \operatorname{Arctg} \frac{\mu \alpha \cos \delta}{\mu \delta} \quad (6)$

on trouve $\theta = 26^{\circ}$, 6 compté à partir de $\mu\alpha \cos \delta = 0$.

Notre test va consister à comparer à cette valeur théorique de Θ , la direction (issue de l'origine, dans le plan $\mu \alpha \cos \delta$, $\mu \delta$) qui partage en deux parties égales la surface limitée par la courbe que nous avions obtenue expérimentalement.

En posant :

N1	=	nombre	d'étoiles	dans	le	secteur			θ	>	θ	+	1800
N ₂	-	nombre	d'étoiles	dans	le	secteur	θ	+	1800	>	θ	+	3600

on trace le graphe $N_1-N_2 = f(\Theta)$ (Fig. 8a, table 25 – Annexe I). L'angle Θ pour lequel le nombre (N_1-N_2) s'annule correspond à la direction cherchée. Le graphe (fig. 8c, d) nous donne les deux angles qui déterminent le mouvement du soleil avant et après l'examen photométrique. Les deux angles sont sensiblement égaux (fig. 8d) (IIs sont comptés à partir de $\mu\alpha \cos \delta = 0$).

> θ = 35° avant l'examen photométrique. θ = 40° après l'examen photométrique.

La valeur théorique diffère de la valeur observationnelle d'environ une dizaine de degrés, ce qui peut-être considéré comme satisfaisant.

20) Détermination du Vertex

Si l'on considère que la direction théorique du vertex est l = o, b = o celle-ci correspond dans le plan ($\mu_{\alpha} \cos \delta$, μ_{δ}) à une direction β calculée d'après la formule (6) :

$$tg\beta = \frac{\mu_{\alpha} \cos \delta}{\mu_{\delta}}$$

Comme nous l'avons fait pour la direction de l'apex, nous allons à présent comparer à cette valeur théorique de β , la direction (issue de l'origine, dans le plan $\mu_{\alpha} \cos \delta$, μ_{δ}) obtenue expérimentalement pour le vertex.

A cet effet, nous définissons tout d'abord les quantités $l_1,\ l_2,\ l_3,$ l_4 comme suit :

Fig:8 Determination de l'apex et du vertex a partir du champ resultant, apres l'etude statistique et apres l'examen photometrique.

on trace alors la courbe $(l_1l_3 - l_2l_4) = f(\beta)$ (voir Fig. 8b). Le vertex correspond à l'angle pour lequel la quantité $(l_1l_3 - l_2l_4)$ s'annule. Nous obtenons dans notre cas deux directions pour le vertex (Fig. 8b) :

 $\beta_1 = 74^\circ$, $\beta_2 = 162^\circ$ (après l'examen photométrique) $\beta'_1 = 65^\circ$, $\beta'_2 = 160^\circ$ (après l'étude statistique).

La méthodo pormottant d'effectuor le choix est décrite dans Smart, Stellar Dynamics, chapitre 5 paragraphe 5-54 (p. 168). On trouve ici $\beta_2 = 162^\circ$ en accord satisfaisant avec la direction théorique, $\beta = 150^\circ$, ce qui confirme qu'il n'y a pas parmi les étoiles du champ un nombre significatif de membres de l'amas qui auraient été "oubliés". CHAPITRE VI

.

40.

GRANDEURS ASTROMETRIQUES DEFINISSANT L'AMAS Coma

.

A) MOUVEMENT PROPRE MOYEN

D'après le tableau VI – Annexe II relatif à la liste définitive de l'amas Coma et en ne considérant que les 45 étoiles quasi-certaines, nous trouvons :

$$\frac{\mu_{\alpha} \cos \delta}{\mu_{\delta}} = (-0.018 \pm 0.001)''/\text{an}$$

$$\frac{1}{\mu_{\delta}} = (-0.017 \pm 0.001)''/\text{an}.$$

B) DISTANCE DE L'AMAS

Une première estimation de la distance a été calculée avec les étoiles ayant une parallaxe mesurée et présentant une probabilité d'appartenance (définie dans le premier paragraphe) à l'amas supérieur à 95 %. On trouve, pour ces étoiles :

Une deuxième estimation a été faite en calculant la distance de étoile (à ľaide de la formule classique chaque de l'amas $m_v - M_v = 5 - 5 \log D - A$) à l'exception des étoiles Ap et Am qui présentent un excès de couleur dù à leurs propriétés intrinsèques et non à une présence de gaz interstellaire. Nous avons aussi omis les étoiles de classe IV à cause de la mauvaise détermination de leur magnitude absolue à partir du type spectral. Pour les autres étoiles restantes, nous avons estimé leurs magnitudes visuelles à partir de leurs types spectraux en utilisant la table donnée par Mihalas and Binney (1980).

Nous obtenons alors la distance moyenne suivante :

 \overline{D} = (83,25 ± 2.5)pc

C) VITESSE RADIALE MOYENNE ET VITESSE SPATIALE

Sur les 45 étoiles quasi-certaines, seules 36 ont une vitesse radiale mesurée ; parmi celles-ci, deux étoiles sont des variables. Elles ne seront pas considérées dans le calcul. On obtient alors :

 $||\overline{VR}|| = (-0.60 \pm 0.46) \text{kms/s}$

la vitesse spatiale devient alors :

 $||\overline{VS}|| = (\sqrt{(\mu\alpha \cos\delta 4.74.D)^2 + (\mu\delta 4.74.D)^2 + (VR)^2}) \text{ km/s}$ (7)

 $||\overline{vs}|| = (9.5 \pm 3) \text{ km/s}$ dans la direction $\alpha = 23h \ 32mn$, $\delta = -6\circ5$, ce qui correspond à $I \simeq 75\circ$, $b \simeq 60\circ$.

D) COORDONNES DU CENTRE

La moyenne des coordonnées équatoriales en α et δ de toutes les étoiles de la liste définitive de l'amas Coma ayant une forte probabilité d'appartenance (Pi^a > 0.90) donne :

$$\alpha_{1950} = 12h \ 21mn \ 55s,$$

 $\delta_{1950} = 26^{\circ} \ 47', 5.$

E) DIAMEMTRE ANGULAIRE ET TAUX DE CONCENTRATION DES ETOILES

La Fig. 9 montre la distribution des étoiles dans le plan tangent à la sphère céleste. La table 28 suivante donne la distribution de ces étoiles en fonction de la distance au centre.

	Distance angulaire	₹0 .5	\$ 1°	\$ 1.5	≰ 2°	€2. 5	≼ ક'	\$ 3.3	≤ 4°	\$4.5	₹ 5°.
	Nombre d'étoiles	4	12	19	25	31	36	41	44	44	45.
0	Pourcentage.	9%	27%	42%	<u> ۲</u> ۲۷۷	69%	80%	91%	98%	98%	100%.

On voit bien que la moitié des étoiles de l'amas Coma sont contenues dans un cercle de rayon angulaire 2°, que 75 % des étoiles sont contenues dans un rayon angulaire de 3°, et que la valeur de 5° est sans doute une bonne estimation (quoique approchée) du rayon de l'amas.

Le tableau ci-dessus contient aussi une information sur le taux de "concentration" des membres à l'intérieur du volume occupé par l'amas.

La pauvreté des données disponibles amène à faire l'hypothèse que l'amas est sphérique. La formule de Von Zeipel :

$$f(x) = 2 \int_{x}^{R} \frac{r \phi(r) dr}{(r^2 - x^2)^{12}}$$
(8)

établie pour les amas globulaires est alors applicable ; elle relie la densité "superficielle" (de la distribution des étoiles en projection sur le plan tangent à la sphère céleste), f(x) (x étant la distance au centre projetée de l'amas) et la densité "volumique" (de la distribution des étoiles dans l'espace), $\phi(x)$ (x étant la distance au centre de l'amas).

Nous prendrons comme unité, pour x et pour r, la longueur d'un segment vu sous un angle de 1° à la distance qui sépare l'amas du soleil (1,4 pc environ).

Une première hypothèse consiste à supposer que les membres de l'amas sont distribués uniformément ($\phi_0(x) = 0.086$) dans un volume de 5° de rayon. La fonction $f_0(x)$ est représentée sur la Fig. 10, en même temps que la fonction f(x) observée ; on y ajoute les fonctions $n_0(x)$ et n(x), n étant le nombre des étoiles contenues dans les couronnes circulaires successives définies dans la table 28. Il apparaît clairement que cette hypothèse est à rejeter.

Notre deuxième hypothèse consistera à représenter la distribution des étoiles dans l'amas par la somme de trois distributions uniformes définies comme suit :

-	une	sphère	de	rayon	=	10,	densité	Φι
-	une	sphère	de	rayon	=	2°,5,	densité	Φ2
_	une	sphère	de	rayon	=	50,	densité	φą.

Fig:9 Representation des 45 etoiles quasi-certaines de l'amas Coma dans le plan (α, δ).

Les densités réelles s'écrivent :

- jusqu'à l°, $\phi_*(r) = \phi_1 + \phi_2 + \phi_3$ - de l° à 2°,5 $\phi_*(r) = \phi_2 + \phi_3$ - de 2°,5 à 5° $\phi_*(r) = \phi_3$.

Les résultats des calculs correspondants sont représentés par les courbes $f_*(x)$ et $n_*(x)$ dans la Fig. 10b et par la courbe $\phi_*(r)$ donnée par la Fig. 10c.

L'accord entre $f_*(x)$ et f(x) apparaît satisfaisant, et une assez forte concentration vers le centre de l'amas est bien mise en évidence par la courbe $\phi_*(r)$ représentée dans la Fig. 10c.

Les valeurs observées pour $\varphi_1,\;\varphi_2,\;\varphi_3$ et φ_{\star} sont les suivantes :

```
 \phi_1 = 1.56 
\phi_2 = 0.23 
\phi_3 = 0.052 
jusqu'à 1°, <math>\phi_*(x) = 1.84 
\phi_*(r) de 1°à 2°,5, <math>\phi_*(r) = 0.28 \\ de 2°,5 à 5°, \phi_*(r) = 0.052.
```

Dans ce modèle on trouve que 51 % des étoiles sont contenus dans une sphère de 2° de rayon et 72 % dans une sphère de 3° de rayon. Les valeurs observées pour ces deux nombres sont respectivement de 55 % et de 80 %. On peut considérer ce calcul comme une nouvelle justification de la liste des étoiles retenues comme les membres les plus certains de l'amas, pour la population étudiée.

Fig:10 Densité spatiale de l'amas Coma:

- " no(x) répartition observeé des etoiles.
 - f_o(x) densité projeté obsérvée des etoiles.
- n_o(x) et f_o(x) les mêmes fonctions calculeés dans l'hypothese d'une seule sphére constante.
- n_{*}(x) et f_{*}(x) les mêmes fonctions calculeés dans l'hypothèse de trois sphères concentriques constantes.
- $\phi_*(r)$ densité spatiale calculée.

DEUXIEME PARTIE

.

•

•

ETUDE SPECTROPHOTOMETRIQUE

I	-	INTRODUCTION AU DIAGRAMME H-R	51
11	-	DIAGRAMME H-R DE Coma Berenices	57
		A) Détermination de la température effective et de la magnitude bolométrique	58
		B) Interprétation du diagramme H-R	62
<i>III</i>	_	GRANDEURS PHYSIQUES DEFINISSANT L'AMAS	65
		A) Composition chimique de l'amas	66
		B) Age de l'amas	70
		C) Fonction de luminosité de l'amas	75
		D) Distance de l'amas	79
		E) Comparaison des résultats avec les études précédentes	81

.

•

V - <u>CONCLUSION</u>

83

Lors de notre étude statistique (1ère partie) nous avons dénombré dans la région centrale de l'amas Coma 45 étoiles qui paraissent être des membres quasi-certains de l'amas et 6 étoiles qui en sont probablement membres.

Dans les régions I, II, III, IV nous avons dénombré 19 étoiles qui appartiennent probablement aussi à l'amas.

A l'aide de cet échantillon, choisi pour être le plus pur possible, nous allons établir le diagramme H-R de l'amas Coma Berenices.

Ce diagramme nous permettra en premier lieu de vérifier que la population de notre échantillon correspond bien à un diagramme d'amas ouvert. En second lieu, il nous permettra de déterminer une grandeur physique de grande importance : l'âge de l'amas et d'obtenir une estimation de sa composition chimique.

En outre, nous pourrons vérifier la valeur du module de distance de l'amas, par l'ajustement de sa série principale à une série principale standard. CHAPITRE I

INTRODUCTION AU DIAGRAMME H-R

.

OBSERVATOIRE DE PARIS En 1913, Hertzsprung et Russell ont proposé un diagramme à deux dimensions, reliant les magnitudes absolues des étoiles à leurs températures (Fig. 1).

Le diagramme H-R peut être construit de différentes manières : théoriquement, on porte en abscisse la température effective et en ordonnée la magnitude bolométrique ou la luminosité (logL*/Lo) des étoiles ; observationnellement, on choisit comme abscisse le type spectral ou l'indice de couleur et comme ordonnée la magnitude absolue de l'étoile.

La position d'une étoile sur un diagramme H–R dépend essentiellement de sa masse et de sa composition chimique (théorème de Vogt–Russell) mais requiert la prise en compte de tous les processus physiques ayant lieu dans les différentes couches de l'étoile.

Les points correspondants à des modèles homogènes qui n'ont pas encore brûlé une partie appréciable de l'hydrogène de leur noyau définissent une courbe appelée ZAMS (en anglais : zero-age main séquence). Ces modèles s'alignent le long de cette courbe en fonction de leur masse. Observationnellement, les étoiles non encore évoluées (appelées naines) constituent une bande qui traverse le diagramme H-R appelée série principale.

Fig:1 Diagramme H-R classique:My=F(teff).

La durée de vie d'une étoile sur la série principale est fonction de sa masse. Lorsqu'une étoile a épuisé l'hydrogène de son noyau, elle quitte la série principale, parcourt un trajet bien déterminé, fonction de sa masse, et évolue vers la région des géantes dans le diagramme H-R.

A partir de mesures de masses d'étoiles doubles, on a constaté que la luminosité d'une étoile sur la série principale augmentait selon une puissance de sa masse (L ~ m^n), l'exposant n \in]2,4[variant avec la composition chimique.

La forme du diagramme H–R dépend de l'échantillon d'étoiles que l'on étudie.

Dans le plan (LogTeff, M_{bol}) et pour une certaine gamme de masse et une composition chimique donnée, nous pouvons suivre l'évolution d'une série de modèles d'étoiles représentée par une courbe appelée "trajet evolutif" qui s'étend de la séquence principale à la branche des géantes (Fig. 2).

Les courbes en pointillé sur le diagramme évolutif de la figure 2 ont été obtenues en joignant par des lignes continues les points où les modèles évolutifs correspondant à des masses différentes ont le même âge. Ces courbes sont appelés "isochrones" et sont utilisées pour déterminer l'âge d'un ensemble d'étoiles, comme un amas ouvert ou globulaire. On admet généralement que les étoiles d'un amas se sont formées à une même époque à partir d'un même nuage interstellaire.

En pratique, on cherche quelle est l'isochrone théorique qui s'ajuste le mieux à l'isochrone observationnelle que définissent les étoiles de l'amas.

Les géantes et surtout les supergéantes sont des étoiles à grand éclat intrinsèque qui se placent au dessus de la série principale, elles traversent le diagramme H-R quasi-horizontalement. En effet, dans chacune des bandes qui leur correspondent, la luminosité varie peu avec la température.

Fig:2 Diagramme H-R composite des trajéts d'evolution(traits pleins) et d'isochrones(traits discontinus).

Enfin, il existe quelques rares étoiles chaudes appelées naines blanches qui ont un petit éclat : ce sont des étoiles dégénérées de type O, A, F situées au dessous de la série principale. CHAPITRE II

DIAGRAMME H-R DE L'AMAS Coma

.

A) DETERMINATION DE LA TEMPERATURE EFFECTIVE ET DE LA MAGNITUDE BOLOMETRIQUE

Signalons tout d'abord que, dans la région centrale de l'amas, il n'y a que 39 étoiles parmi les 45 quasi-certaines et 3 parmi les 6 probables qui ont des mesures photométriques figurant dans le catalogue de Mermilliod.

Dans les régions I, II, III, IV nous n'avons pu trouver de données photométriques dans la base du C.D.S. (Centre de données stellaires) que pour 7 étoiles parmi les 19 probables. Ceci porte à 49 le nombre total des étoiles qui vont contribuer à l'établissement du diagramme H-R de l'amas Coma. D'autres observations photométriques seraient nécessaires pour inclure dans cette étude les 8 plus 18 étoiles restantes du tableau II (1ère partie) qui possèdent des caractéristiques cinématiques voisines de celles de l'amas.

A cette liste on ajoutera les deux étoiles quasi-certaines obtenues en comparant le catalogue photométrique de Mermilliod à l'AGK3.

Du fait que les étoiles de l'amas sont pratiquement à la même distance du soleil, l'échelle des magnitudes apparentes diffèrera de celle des magnitudes absolues par une constante, le module de distance de l'amas :

$$M_v - m_v = 5-5 \log D$$
 (9)

Une première difficulté est ainsi levée dans la construction du diagramme H-R de l'amas.

Comme nous l'avons vu dans la première partie, sa distance moyenne a été estimée à D = 81 pc. Nous avons donc :

$$M_v - m_v = 4.54$$

ayant évidemment tenu compte de l'extinction lors de notre calcul de la distance moyenne (voir tableau V ; 1ère partie).

La correction bolométrique $M_{bol.} - M_v = C.B.$ est négative ou nulle par définition. Cette dernière varie énormément avec la température de l'étoile. Le graphique de la figure 3 donne les calibrations des corrections bolométriques en fonction de la température effective de l'étoile d'après Johnson (1966), Gustaffson (1985) et Vandenberg (1985). Les deux dernières calibrations sont très proches (Fig. 3).

Pour passer au système classique, nous allons prendre la correction bolométrique de Johnson égale à -0.07 pour le soleil. Le graphique de la figure 3 montre que ce problème ne se pose pas pour la correction bolométrique de Vandenberg.

Les températures effectives ont été obtenues à partir de l'indice de couleur (B–V), d'après les calibrations de Johnson (1955) et de Vandenberg (1985), comme le montre le graphique de la figure 4, où nous avons porté en abscisse le paramètre de température $\theta = 5040/\text{Teff}$.

A défaut d'avoir pu déterminer la température effective des 52 étoiles de la liste définitive par voie spectroscopique (analyse détaillée), on a jugé intéressant de comparer les deux séries de températures effectives et les deux séries de magnitudes bolométriques obtenues à l'aide des calibrations (B-V, 0eff) et (Teff; C.B.) de Johnson et Vandenberg.

Nous avons construit le diagramme H–R, une fois avec les températures effectives et magnitudes bolométriques obtenues à partir des

Fig:3 Calibration de la corréction bolométrique en fonction de la température éfféctive ($T_{éff.}$).

calibrations de Johnson et une autre fois avec celles de Vandenberg. Les graphiques des figures 5 et 6 représentent ces diagrammes observationnels. Le tableau I – Annexe II rassemble toutes les données d'observations et les paramètres physiques nécessaires à la construction de ces deux diagrammes H-R.

B) INTERPRETATION DU DIAGRAMME H-R DE Coma

Etant donné que les calibrations de températures effectives et les corrections bolométriques obtenues par Johnson (1966) reposent sur un matériel inhomogène et ancien, nous avons préféré interpréter seulement le diagramme H-R de Coma obtenu avec la calibration de Vandenberg (1985), d'autant plus qu'il est moins dispersé et correspond mieux à une isochrone d'amas ouvert. Ceci nous fait constater tout d'abord que l'échantillon des 52 étoiles de l'amas Coma, choisi lors de notre étude statistique (1ère partie) est très sûrement un échantillon pur.

La majeure partie des étoiles se groupent le long d'une bande étroite qui constitue la série principale de l'amas. Quelques autres étoiles se trouvent réparties autour du coude (turn-off) de ce diagramme H-R et une minorité s'alignent sur sa branche de géantes. On note cependant que les étoiles (BD : 262343 ; BD : 262347 ;) ne suivent pas l'allure générale du diagramme et se situent au-dessus de la série principale. Des vérifications successives ont montré que ces étoiles, tout en appartenant à l'amas par leurs propriétés cinématiques, sont doubles spectroscopiques. C'est l'effet de leur binarité qui en faussant leurs couleurs, donc aussi leurs indices de couleur, les place audessus de la série principale. Certaines autres étoiles mal placées sur le diagramme pourraient être des variables, comme l'étoile (BD : 242464). Cellecl est décalée de 0.9 magnitude par rapport à la branche des géantes. Elle se situe dans la région d'instabilité du diagramme H-R relative aux céphéïdes et pourraient donc en être une.

Fif:5 Diagramme H-R de l'amas Coma obtenu avec les calibrations de C.B. et T_{eff} de Johnson (1966).

Fig:6 Diagramme H-R de l'amas Coma obtenu avec les calibrations de C.B. et T_{eff} de Vandenberg (1983).

CHAPITRE III

DETERMINATION DES GRANDEURS PHYSIQUES DE L'AMAS

A) - LA COMPOSITION CHIMIQUE DE L'AMAS

Nous espérions pouvoir analyser en détail quelques spectres d'étoiles naines de l'amas Coma afin de connaître leur contenu en métaux. L'année dernière, nous avons établi un programme pour le télescope C.F.H. à Hawaii ; malheureusement, les conditions météorologiques ont empêché de mener à bien ces observations.

Heureusement, il existe une autre manière de connaître le contenu en métaux d'un amas. Il suffit de comparer sa série principale à celles d'autres amas pour lesquels une calibration en abondances en métaux a été possible grâce à une étude détaillée des spectres de quelques étoiles naines de leurs séries principales.

Les calculs de structure interne Iben (1967) ; Demarque (1975) ; Hejlisen (1975) ; Vandenberg (1985)) montrent que la position de la ZAMS dépend de la composition chimique initiale des modèles d'étoiles qui définissent celle-ci. Cette dépendance est bien illustrée dans le graphique de la figure 7 (X, Y, Z représentent respectivement les abondances en hydrogène (H) en Helium (He) et en éléments lourds pour une masse donnée. Le paramètre (Z) comprend tout élément plus lourd que l'hélium.

Fig:7 Dépendance de la ZAMS avec la composition chimique.

1.

Ainsi, sur le premier réseau, où seul Y a varié, nous pouvons voir que pour une masse donnée (à peu près égale à (lm_{\odot}) le modèle le plus riche en hélium est plus lumineux et plus chaud que les modèles plus pauvres en He (Fig. 7).

Par contre, sur le deuxième réseau, où seul Z a varié, nous pouvons voir que le modèle riche en métaux est moins lumineux et plus froid que les modèles plus pauvres en métaux (Fig. 7).

Nous nous servirons de ces résultats de calculs de structure interne pour interpréter le diagramme (LogTeff, M_{DOl}) observationnel de l'amas Coma. Cette interprétation fera intervenir une comparaison entre le diagramme H-R composite des amas Coma, Hyades et Ursa Major et un réseau de trois ZAMS calculé par Vandengerg en 1985 pour une composition chimique solaire (Y = 0.25 ; Z = 0.0169), une composition légèrement inférieure quant au contenu métallique (Y = 0.25 ; Z = 0.01) (voir figure 8) et une composition légèrement supérieure (Y=0.25; Z=0.09).

Les étoiles portées sur le diagramme composite sont : les étoiles naines de la liste définitive de l'amas Coma (1ère partie), quelques étoiles naines des Hyades et de Ursa-Major (voir table VII). Signalons que pour les étoiles de ces deux derniers amas, leurs températures effectives ont été obtenues directement par une analyse détaillée de leurs spectres et non par une calibration entre (B-V) et Teff, comme dans le cas des étoiles de l'amas Coma.

En comparant sur la figure 8 la position des séries principales des amas étudiés à celle des trois ZAMS, nous pouvons dire qu'il y a un bon accord entre la série de Ursa Major et la ZAMS pauvre en métaux.

La comparaison se fait plus délicate entre les séries principales de l'amas Coma et des Hyades et les ZAMS "normale" et "riche" en métaux. Il existe peut-être une indication que les étoiles de l'amas Coma sont plus proches de la ZAMS "normale", tandis que les Hyades semblent se placer sur une ZAMS à contenu en métaux intermédiaire, entre Z = 0.0169 et Z = 0.03.

On doit, cependant, regretter qu'il n'existe pas encore de déterminations d'abondance en métaux pour quelques étoiles naines de l'amas Coma : cela nous permettrait de tester les résultats (obtenus par une voie indirecte) que nous venons d'interpréter.

Dans le prochain paragraphe nous présenterons un diagramme H–R de toutes les étoiles de la liste définitive de l'amas Coma et nous verrons qu'il existe un très bon accord entre l'isochrone observationnelle de l'amas et l'isochrone calculée pour la composition chimique normale (solaire).

Ceci nous fait conclure que très probablement la composition chimique de l'amas Coma est solaire :

X = 0.75; Y = 0.25; Z = 0.0169

B) L'AGE DE L'AMAS Coma

Dans ce qui précède, on a vu que la théorie de la structure interne et de l'évolution stellaire sont assez bien connues pour que l'on arrive à calculer des trajets d'évolution qui sont en assez bon accord avec l'observation.

La construction d'une isochrone requiert le calcul d'un réseau de trajets évolutifs. D'un point de vue observationnel, les étoiles d'un amas constituent un échantillon idéal pour l'étude de l'évolution stellaire. En effet, les étoiles d'un amas sont nées, en même temps, d'un nuage chimiquement homogène. Elles sont donc toutes situées pratiquement à la même distance du soleil et ne se distinguent que par leurs masses. Elles représentent alors, une isochrone observationnelle. Les difficultés rencontrées pour la reproduction d'une bonne isochrone théorique sont :

a) choix de l'abondance en éléments lourds (Z).

b) choix de l'abondance en hélium (Y).

c) choix du paramètre de longueur de mélange dans le traitement.

d) choix des paramètres définissant les zones convectives.

e) choix de la loi d'opacité interne.

f) choix du modèle d'atmosphère.

Sans rentrer trop dans les détails, notons que, pour la détermination de l'âge d'un amas, il est essentiel de bien connaître les positions de la série principale, de son turn-off.

Pour dater un amas stellaire, on confronte son diagramme H–R observé a un réseau d'isochrones théoriques correspondant à différents âges et cela après l'avoir transformé en diagramme (M_{bol} ; LogTeff).

La détermination de l'âge se base sur un ajustement vertical de la luminosité qui repose sur une bonne détermination de la distance, et un ajustement horizontal de la température qui exige une bonne correction du rougissement. Dans tous les cas, le point où les étoiles quittent la série principale (turn-off) est l'endroit le plus important de l'isochrone.

Sachant que les étoiles de plus grande masse quittent les premières la série principale, le point correspondant au turn-off sera d'autant moins lumineux et plus froid que l'amas sera plus vieux. Il existe ici au moins, 3 possibilités d'ajustement :

- a) l'ajustement horizontal de la température pour le "turn-off".
- b) l'ajustement vertical de la luminosité pour la série principale et le turn-off.

c) l'ajustement vertical de la luminosité pour la branche horizontale.

Pour la détermination de l'âge de l'amas Coma, nous avons tout d'abord tracé, sur le plan (LogTeff, M_{bol}), les isochrones théoriques calculées pour des modèles élaborés par Vandenberg (1985, d'après un préprint soumis à ApJ SS) et correspondant à la composition chimique de l'amas, à savoir (voir Fig. 9) :

X = 0.75; Y = 0.25, Z = 0.0169

composition chimique qui comme nous l'avons vu correspond à celle du soleil.

Le diagramme H-R observationnel de l'amas a ensuite été superposé à ce réseau.

Afin de pouvoir choisir l'isochrone théorique qui coïncide le mieux avec l'isochrone observationnelle de notre amas, nous n'avons pas tenu compte des étoiles binaires du turn-off (qui présentent des excès de couleur perturbant la lecture de la "bonne" isochrone).

Nous observons alors que les étoiles : (BD : 272134 ; BD : 262344 ; BD : 262337 et BD : 282156), non binaires, suivent l'isochrone théorique t t=0.5 x 10° ans. L'âge de l'amas se trouve ainsi estimé.

Il semble intéressant d'observer que les étoiles du turn-off qui suivent l'isochrone de 500 millions d'années, sont toutes des étoiles Ap (particulières) et donc ayant l'âge de cette isochrone.

Fig:9 Reseau de trois isochrones d'age (Vandenberg 1986) pour la composition chimique solaire.

Cet état de fait nous a incité à regarder de près comment évolue "la particularité" des étoiles A à l'intérieur de l'ensemble des étoiles A appartenant à notre amas.

Pour ce faire, nous les avons rassemblées dans le tableau II-III – Annexe II ainsi que leurs compagnons quand ceux-ci étaient observés. Les données spectrophotométriques de ce tableau ont été prises dans le "Bright Stars Catalogue".

Nous nous sommes intéressés alors à la distribution des étoiles A (normales), Am (métalliques) et Ap (particulières), à l'intérieur de chaque intervalle [Ao ; Ai] où i représente le sous-type spectral. Le même travail ayant été fait pour l'amas des Hyades, légèrement plus âgé que l'amas Coma, soit près de 660 millions d'années (voir Fig. 10).

Nous avons rassemblé les résultats obtenus pour les deux amas dans la table suivante afin de mieux comparer les résultats.

	1		1			
	A _N (r	wrmales)	Am (n	netalliques	Ap (p	articulieres)
	, Com.a	Hyades	Coma	Hyades	Coma	Hyades
$A_0 - A_2$	0	0	2	5	3	0
A2 _ A4	1	1	1	2	0	0
A4 - A6	1	1	1	2	0	0
A6-A8	2	g	1	0	0	0
A8 - A9	0	2	0	0	0	0

Nous avons alors constaté, dans un premier temps, que l'amas Coma contenait bien moins d'étoiles A normales que l'amas des Hyades, autant d'étoiles Am (métalliques) et plus d'étoiles Ap (particulières). Ensuite nous avons remarqué que le nombre d'étoiles Ap décroît en partant des sous-types spectraux jeunes aux sous-types spectraux avancés.

Coci nous permet de dire que, très vraisemblablement, la "particularité" s'observe encore aux alentours de 500 millions d'années alors qu'aux alentours de 660 millions d'années elle a eu le temps de disparaître (voir Fig. 10).

Cette interprétation n'est pas en désaccord avec les estimations des spécialistes des étoiles Ap qui pensent que la "particularité" commence à se former entre 104 et 105 ans et qu'elle aura tout le temps de se former aux alentours de 107 ans et ils n'excluent pas le fait que l'on puisse trouver encore des étoiles Ap âgées de 10⁸ ans.

C) FONCTION DE MASSE INITIALE

La fonction de masse initiale représente la répartition des étoiles en fonction de leur masse à l'époque de leur formation. Elle nous permet de comprendre l'évolution chimique et dynamique des systèmes stellaires ainsi que la formation des étoiles elles-mêmes.

A cause du fait que l'on peut dénombrer presque toutes les étoiles de la série principale des amas ouverts, la fonction de masse initiale se voit mieux définie pour ceux-ci que pour les amas globulaires.

Généralement, on l'obtient à partir de la fonction de luminosité, c'est-à-dire de la répartition des étoiles par intervalles de magnitude bien définis. Ce nombre est proportionnel au temps d'évolution des étoiles selon leur masse et de la relation masse-luminosité adoptée. On admet, jusqu'à présent, que la fonction de masse initiale N(m) est proportionnelle à $m-\alpha$. Salpeter en 1955 a estimé α à 2.35. Taff en 1974, donne, pour 62 amas ouverts, la valeur de 1.75.

Afin de déterminer la fonction de masse initiale de notre amas, nous avons, tout d'abord, adopté la relation masse-luminosité calculée par Vandenberg (1985) pour l'isochrone théorique $t = 0.5 \times 10^9$ ans correspondant à l'isochrone observationnelle de l'amas Coma (voir table VIII et Fig. 11) que nous venons d'obtenir dans le paragraphe précédent.

Nous avons alors partagé le plan (Log Teff, M_{bol}) en intervalles à l'Intérieur desquels la masse peut être considérée comme constante. Ensuite nous avons dénombré les étoiles à l'intérieur de chacun de ces intervalles. Un histogramme est ainsi obtenu (fig. 12a).

Nous avons constaté, aux erreurs de fluctuations près, que la fonction de masse initiale et celle proposée par Salpeter :

$$N(m) = A m - \alpha$$
 (10)

Afin de calculer les paramètres A et α qui reproduisent le mieux l'histogramme observé, nous avons d'abord fait varier α entre 0.35 et 3.35 (de manière à couvrir largement les deux valeurs α données par Salpeter (1955) et Taff (1974), en adoptant dans un premier temps A = 1 (Fig. 12b).

Le tableau II annexe II montre que la meilleure valeur de α est 2.35 pour m d'étoiles comprises entre 1 et $2m_{\odot}$. Miller et Scallo en 1980 donnent les valeurs de α suivantes :

 $\alpha = 1.25 \quad pour \quad 0.4 < m \le 1.0 \\ \alpha = 2 \qquad pour \quad 1.0 < m \le 2.0 \\ \alpha = 2.3 \qquad pour \quad 2.0 < m \le 10.0 \\ \alpha = 3.3 \qquad pour \quad 10.0 < m \le 50.$

Fig:10 Diagramme composite des Turn-off des Hyades et de Coma.

Fig:ll Repartition de la fonction de luminosite dans le plan (M, ,LogTeff) obtenu par Vandenberg (1986) pour la composition chimique solaire et pour l'isochrone : 0.5x10 ans.

Un réseau de valeurs de N (m) a ensuite été calculé pour différentes valeurs du coefficient de proportionnalité A (A = 12, 14, 15, 16).

Après superposition avec l'histogramme observé, on observe que la fonction de masse initiale qui répond le mieux à l'observation est :

 $N(m) = 15 \times m^{-2,35}$ (Fig. 12c)

Signalons que la masse limite détectable dans l'amas Coma est de l'ordre de 1 mO puisque notre étude a été limitée aux étoiles de l'amas plus brillantes que la magnitude absolue visuelle 5.5, faute de n'avoir pu trouver, dans la bibliographie générale, de données photométriques pour certaines étoiles du tableau III relatif à la liste définitive de l'amas Coma, et d'autre part, à cause du fait que le catalogue photométrique de Mermilliod ne nous a fourni les indices de couleur que pour les étoiles ayant une magnitude visuelle plus brillante que 9.5.

D) DISTANCE DE L'AMAS Coma

Dans ce paragraphe, on se propose de comparer le module de distance de l'amas Coma obtenu par voie astrométrique (1ère partie) au module de distance qu'on déterminera par voie astrophysique et cela en comparant dans le plan (B-V, V), la série principale de notre amas à une série principale standard obtenue à partir de quelques étoiles du champ ayant une assez bonne parallaxe. Ces étoiles ont été observées par G. Cayrel en 1983. On se limitera à la région de la série principale, où sur une même verticale on peut rencontrer à la fols des étoiles du champ et celles de l'amas et cela dans le souci de mieux comparer les deux séries principales. Le tableau VI – Annexe Il rassemble les données d'observation de ces étoiles. Sur la Fig. 13 nous avons tout d'abord ajusté, par moindres carrés, la droite y = 6.04 x + 5.72 au nuage de points définissant la série principale de l'amas Coma. Ensuite pour déterminer la droite $y = 6.04 \times 1.16$ correspondant au nuage de points définissant la série principale standard, nous avons adopté la même pente que

la droite qui représente la série principale de l'amas Coma et cela parce que les deux séries principales doivent être à priori parallèles. L'ordonnée à l'origine a été obtenue par moindres carrés.

Le module de distance représente alors la différence des deux ordonnées à l'origine soit :

$$m_v - M_v = 5.72 - 1.16 = 4.56$$
 (Fig. 13)

Ce qui est peu différent du module de distance de l'amas obtenu par voie astrométrique (1ère partie) et qui était de :

$$m_v - M_v = 4.54.$$

E) - COMPARAISON DES RESULTATS AVEC LES ETUDES PRECEDENTES

Grandeurs	Notre étude.	Etudes précedentes.
coordonneis du centre	$\alpha_{c} = 12^{h} 21^{mn} 55^{5}$	$x_{c} = 12^{h} 18^{m^{m}}$
(x, 5)c	$\delta_c = +26^{\circ} \mu^{\frac{1}{2}} 30^{\prime}.$	$\delta_{c} = +26^{\circ} 30^{\prime}$.
Mailors & , Hg	-0.018.) -0.017.	_ 0.013. ; - 0.017.
<i>fl</i> tot	0.026"/an.	0.021"/an.
Vitesse radiale VR	-0.6 km/s.	- 0.4 km /6
Diame Ke angulaire	10° (14 pc).	8° (~M pc).
Distance	81 pc.	(75, 80, 85) pc.
Composition Chimique	[Fe/H] = 0 ± 0.03.	[Fe/H] = ~ 0.09 ± 0.03.
Age	0.6 × 10 ⁹ ans	10x(0.2,0.55,0.66) and
Fonction de masse initiale	N(m)= 15×m ^{-2.35} .	X=2.75; X=2.
Dennité	$\Psi_{\chi}(1^{\circ}) = 1.8 \mu$, $\Psi_{\chi}(2\gamma \zeta) = 0.23$	
	$\Psi_{\mathbf{x}}(S^{\circ}) = 0.052$.	
Masse totale	90mo < m < 120 mo	< 70 mo

Fig:13 Ajustement de la serie principale de l'amas Coma a une serie principale standard.

CONCLUSION

Nous avons proposé une liste de 45 étoiles qui peuvent être considérées comme des membres quasi-certains de l'amas, et une autre de 25 étoiles qui en sont très probablement membres.

Cette liste ayant été limitée à la magnitude apparente visuelle 11.5 par l'utilisation du catalogue AGK3, il serait donc nécessaire de l'enrichir en recensant les étoiles membres de l'amas ayant une magnitude apparente visuelle inférieure à 11.5.

Ceci nous permettra, entre autre, de connaître la fonction de masse initiale pour des étoiles de masse inférieure à $1m_0$ et de connaître la masse limite m_1 observée de cet amas.

En établissant cette liste, nous avons observé l'existence d'un groupe de 14 étoiles qui semblent avoir des propriétés communes. Il est opportun d'établir un programme d'observation (parallaxe, vitesse radiale, composition chimique) de ces étoiles afin de mieux les étudier.

Ensuite, nous avons construit le diagramme H-R pour la population brillante de Coma (Fig. 6 2ème partie) et estimé les grandeurs suivantes :

> Distance de l'amas, Diamètre de l'amas, L'âge de l'amas, Composition chimique de l'amas.

Madame CAYREL a récemment obtenu des spectres de quelques étoiles froides de l'amas Coma. La composition chimique de ces étoiles, déterminée à partir de ces spectres fournira un élément de comparaison avec nos résultats.

Nous avons pu enfin aborder le problème de la fonction de masse initiale de l'amas.

Après une étude comparative du diagramme H–R de l'amas de Coma et des Hyades, nous avons pu constater quelques caractéristiques concernant les étoiles Ap. Il serait intéressant de vérifier si les résultats obtenus pour l'amas Coma peuvent être étendus à d'autres amas galactiques.

ANNEXE I

.

TABLEAU I :	Compromis de KING de la distribution des mouvements propres des étoiles de l'amas NGC 4103 et celle du champ.	11
TABLEAU II :	Probabilité d'appartenance à l'amas Coma.	87
TABLEAU III :	Compromis de la distribution des mouvements propres de l'amas Coma et celle du champ.	12
TABLEAU IV :	Groupe des 14 étoiles.	15
TABLEAU V :	Liste des 110 étoiles plus les 17 étoiles du champ proches des valeurs extrêmes de la distribution de l'amas.	91
TABLEAU VI :	Liste définitive des étoiles de l'amas appartenant à la région centrale.	97
TABLEAU VII :	Liste des étolles appartenant au catalogue photométrique de Mermilliod et ne figurant pas dans l'AGK3.	99
TABLEAU VIII :	Liste du groupe des 14 étoiles plus 10 étoiles qui leurs sont proches en mouvements propres.	100
TABLE 1,,24	Test de χ² relatifs à différents distributions.	101
TABLE 25	Répartition des étoiles suivant des secteurs pour la détermination de l'apex et du vertex.	99
TABLE 26	Calcul de densité projeté des étoiles de Coma.	103
TABLE 27	Calcul de densité projeté dans l'hypothèse de 3 sphères constantes.	103
TABLE 28	Répartition projetée observée des étoiles de Coma.	43

Tableau: -II - (début).

Tableau: - II (suite).

										-								
Í		BD.	Pi	vi	μT	₽ ^c _i	₽,°	Pia	Ry.			BD	۲۰	٦i	μı	Φ_i^{c}	J.	\mathcal{P}_{i}^{a}
	1	28 21 20	+1	-3	0.003	44 521 . 52	46541.77	0. 5109		-	26	25 2528	_14	+1	0. 0.44	32550.67	32 783 09	0. 50 17
	2	25 2474	+5	+2	0.005	71974, 40	72860.45	0.5030			27	24 24 48	-14	- 6	0.015	12642.04	20664.85	0 6195
	2	28 5094	+2	-6	0.006	3988100	42942.30	0.5400			28	25 2517	- 10	м	0.015	8695.77	35461.13	0.8030
	5	94 200	+ C	+2	0.007	184(2 24	80949.69	0.5062			29	23 24 48	- 15	-7	0.016	10028.08	20877.86	0.6700
	4	2 410	-5		0.008	94 162 38	32.425.36	0.5707			30	26 2347	_ 12	-12	0.017	5565.29	57 499.72	0.8702
	6	92 2/36	14	-8	0 008	5288 16	47642.66	0.5872			31	27 2116	- Лн	410	0.017	73213.58	45340.23	0 5600
	r,	20 97 97 92	-2	-6	0.009	90362.76	28728 12	0. 5805			32	27 SA HIZ	43		0.017	32209.40	96123.88	€ \$490
	\$	29 9271	-5	-8	0.009	203.74.19	34 535 07	0.6289			33	EH (1302 AGK3)	+5	-17	0.018	38 0 36 . 11	AD 4 954 00	0. +2 83
	9	29 92 92	140	-1	0.010	78161 92	78488.82	0.5000			34	27 21 42	-12	4.14	0.018	98449.04	141813.48	0 5902
	J	26 12 18	4.10	2.	0.010	26663 40	1 553.46	0.5082			35	29 22 66	-19	+1	0.019	30426.53	30668.44	0.5019
		94 944		- 9	0.009	193.2 71	36:4.4 50	0. 66 13			36	25 25 23	-18	6	0.0.19	10749.07	187 50. 14	0.6353
	44	20 92 (1)	- 5	2	0.042	91 (12 04	32 003 14	0.6000			87	27 2109	-18	-5	0.019	129 56.48	18730.14	0.6400
	A/L	20 22 64		-7	0 n 42	11 (94 82	4/283 66	0 72.98			38	29 22 67	_ ^ 8	-7	0.019	8753.60	1960.77	0.6913
	45	30 2230	- 6	- 11	0.042	49.24.24	97 (22 14	0 1022			39	27 2120	- 15	+13	0.020	89882.89	1272 70.83	0.5860
4	лн 4/	29 2501	+12	4	0.043	HC . 01+10	6/ 4 <2 48	0.6380			40	27 2151	113	_15	0.020	66196. 11	115965.44	0 6366
	15	2H 24HS	- 10	-0	0.013	12793.58	91 0 (2 19	0.0781			44	28 2093	4 AD	18	0.024	\$5040.98	126 700.57	0.6971
	. A),	25 24 55	-10	- 0	0,043	A2740.58	94 401 44	0.010.0			42.	26 2361	- 21	- 3	0.021	1 29 17.88	19833 62	0 5267
	17	23 2447	-10		0.043	22020 (2		0.1200			43	27 2139	_ 16	. 14	0, 02.1	1231.32	44752.20	0.9698
	13	24 2444	43	+1	000	00009.65	3570.31	0.3010			μц	25 EXM	12	-18	0.021	4304.43	75 969.55	0.9464
	19	50 92 79	- 10	-9	0.013	11217.50	29 136 72	0.4000			HS	26 2326	- 11	18	0.021	5336.15	76996.45	0 4352
	20	25 25 46	- 8	+ 12	0. VAR	9 111 5 .85	A22963.68	0.3144 N 1852	Com		46	25 2514	- 13	18	0 022	3994.08	75057.6H	0.4567
	21	28 2097	- 3	-12	0014	11934.70	43 786 .68	0. 1857			41	28 2089	- 6	21	0.022	43653.01	141183.93	0.7638
	22	30 2287	+2	- 44	0.0.14	24724.08	13 140.46	0. 11 (2			1	96 92(2	20	_ 12	0.023	4681.15	33550.31	0.9523
	23	30 2240	- 1	- 14	0014	22329.25	65675.46	0.7462			1.9	96 92112	24	9	2.023	5209.12	23448.04	0. 84 66
	24	24 24 34	+2	- 14	0.0.44	29794.08	+ \$140.46	0.7105			1	97 9100	-2'	24	0.023	8645.77	10 62 30. 36	0.9243
1	1 0(1 92 91120	1 42	1 . (norts	16699.62	21926.08	0.5750.	1		1 20	01 424	- 10	·				

Rq.

com

Com

com

Lom

Com iom

Com

Com

com Com

Com

Tableau: I_ (Suite).

rableau: -11 - (sure).

					-												
	BD	Mi	٦ _i	ſ ^u Ţ	Φ_i^{c}	Φ_i^{A}	Si ^a	Rq.		BD	<i>P</i> i	٦;	μ _T	Φ ^c	Φ_{i}^{α}	Pia	Rq.
51	24 24 72	- 22	-7	0.023	9753.60	19617.97	0.5703		16	27 21 08	- 13	-23	0.026	8282.33	125 122 . 43	0.9390	com
12	25 2486	- 8	-22	0.023	125121.91	119564.05	0.9051	Com	-11	23 2467	+20	+ 18	0.027	18 104.18	21694.58	0.5450	
53	26 2326	- 15	-18	0.023	1937.53	73604.31	0.9743	com	78	24 24 62	27		0.027	1 2185(6.81	290243 66	0 5700	
SH	25 24 83	- 20	_13	0.024	945.65	38343.65	0.9759.	ívm	-79	87 21 28	-26	-7	0.027	10645.17	21571.08	0.6685	
55	26 2323	-16	- 18	0.024	1394.32	73059.89	0.9813	Com	80	28 21 14	+ 27	-5	0 027	146 777 . 17	152 347.94	0.5093	
SC	26 23 53	_ 14	-19	0.024	3130.48	92978.28	0.9636	com	81	28 21 34	- 26	-9	0.027	7333 26	25285-69	0 7752	
57	27 2130	18	_16	0.024	142.76	56876.77	0.9957	com	82	29 2280	-23	- 14	0.027	966.45	44343.06	0.4787	io m.
58	23 2475	-2	. 24	0.024	26388.06	153772.90	0.8535		83	25 25 24	-26	_10	0.028	5367.42	28121.68	0 82 49	
59	25 2508	-21	- 11	0.024	2687.49	29472.46	0-01 бн	com	84	26 23 30	-28	+1	0.028	34 249 .98	34516.21	0.5019	
60	26 2340	- 14	- 19	0.024	3130.47	82 478 . 28	0.9636	iom	85	25 24 92	- 26	-10	0.023	5967.42	28 121.68	0. 8249	
6.1	28 2116	+8	-23	0.024	52789.22	169723.48	0.7629		86	24 24 64	- 26	10	0.028	5967.42	28 121.68	0.8249	
62	28 2123	18	_18	0.025	663.05	12335.52	0.4909	com	87	25 25 26	- 28	2+	0.028	50220.94	55794.86	0.5263	
63	27 2117	- 23	-9	0.025	5694.74	23638.62	0.8058		88	24 24 43	- 28	- 8	0.029	10608.75	24 807.08	0.7004	
64	29 5284	- ^^	_23	0.025	10064.31	127061.74	D. 9266	iom	89	26 2345	_ ^7	-23	0.029	5694.74	122701-74	0.9556	Com
65	25 2495	17	-18	0.025	966.49	72636. 45	0. 4869	Com	90	26 2355	-23	18	0.029	966 .49	72650.76	0.9869	îim
66	24 2457	_ 16	_20	0. 026	2652.19	31128.40	0.9717	iom	91	2524948	- 23	-17	0.029	651.28	64595.16	0.9900	Com
64	24 24 60	- 25	-8	0.026	8244.85	20431.64	0.7313		92	282115	-23	_18	0.029	966.49	12150.76	0.9869	iom
68	25 24 83	- 25	-8	0.026	8241.35	20 434 64	0.7313		93	26 2356	+ 27	_^H	0.030	1 34483.70	177971.82	0.5694	
69	27 21 03	- 13	23	0.026	\$132.33	125122.43	0.9390	com	94	26 2344	26	- 15	0.030	2289.90	52.088.58	0.92.48	com
70	27 2138	-23	. 12	0.026	2227.26	34.103.93	0.9387	Com	95	282109	-15	- 26	0. 030	N2024.45	16 1 53 7 . 39	0.9307	
49	27 21 27	-5	-26	0.026	24 162 -38	17-3663.82	0.8775		96	27 21 29	- 26	-15	0.030	2239.90	72050.76	0.4863	com
72	27 2134	- 24	- 11	0.026	3597.84	30 340.57	0 3941	iom	97	292269	- 23	_19	0.030	14 91-85	81358.81	0 9820	
13	29 2277	24	.9	0.026	61 19 57	34 066.15	0.7972		98	28 21 53	- 30	+3	0.030	44 000	46042.13	0.5113	
-14	30 22 81	M	20	0.026	2227.36	907-25.51	0.4760	Com	93	24 24 67	+ 12	-29	0.031	49403 39	265902.06	0. 16 89	
1	24 2452	-26	+2	0.026	36228.19	37 151.69	0.5061		100	252522	-30	-7	0.031	14579.81	25468.09	0.6359	

		/ ·· `	
10 11 10 011		Cuito 1	
inneun		Sunci	

Tableau : II - (Suite).

	1				1	1	1	1	1 -					•		/		
	BD	μι	₹.	Мт	Φ_i^{\sim}	Φ_i^a	\mathcal{F}_{i}^{a}	Rq.			BD	Pi	ĺ ₽ _i	PT	Φ_i^{ρ}	Ψi ^Δ	\mathcal{P}_{i}^{a}	Rq.
401	252412	-12	-29	0.031	216 41.32	207 639.99	0.9056			126	25 2601	+ 21	- 30	0 037	122 (13.44	321677.26	0.7240	
102	28 20 87	- 31	_ 4	0031	224 73 83	260 67.55	0.5370	2		127	29 22 68	- 36	11	0 038	18163 35	44997.49	0.7124	
103	28 20 95	- 27	-15	0 332	3078-86	32 880.40	0.9450			128	25 24 73	-8	-38	0.039	59594.21	378944.05	0.8640	
104	29 22 87	- 12	-29	0.031	216 41.32	207659.99	0.9056			129	23 24 55	+ 31	-15	0.040	197285.76	247124.09	0.5561	
105	24 2465	+12	-29	0.031	79903.39	265902.06	0.7689			130	28 21 08	-13	- 38	0 0 40	53828.70	373184.57	0.8739	
106	25 2518	+ 3	-31	0.051	55746.05	263275.42	0.8279			131	24 24 55	-31	- 15	0.040	47 644.38	674 82.72	0.4927	
101	26 23 32	+5	-31	0.031	61572.26	274102.54	0.8166			132	28 20 36	0	- 42	0.042	95304.62	485420.0	0.8359	
108	26 23 AH	- 21	-24	0.032	6785.30	134195-28	0.4519			133	26 (1250 AGK3)	_ 19	- 39	0.043	55643.84	392039.60	0.8757	
109	29 22 90	30	-12	0032	7750.12	39 648.02	0.8365			134	25 24 87	424	- 33	0.043	1 64429.29	405307.74	0.7114	
Mo	24 2453	- 31	-12	0.033	9624.60	40 326. 01	0.8193			135	24 2461	-31	+ 52	0.044	249429.61	475468.40	0.6561	
111	23 21 32	- 35	- ii	0.033	25 386.94	28988.01	0.5331			136	25 2512	- 14	+42	0.044	35563 43	745774.09	0.6771	
12	30 22 69	72	-34	૦,૦૩મ	71974.40	327629.68	0.8.199			137	27 21 11	33	-29	0.044	28013.74	214 066 . 74	0.9843	
113	25 24 94 5	-34	+1	0.084	42261.02	43548.64	0.5017			138	23 2460.	-27	- 36	0.045	45002.64	331654.94	0.8805	
A14	26 2330	- 30	- 13	0.034	6174.04	70139.25	0.9 191			139	30 2234	27	- 36	0.045	45002-64	331654.94	0.8805	
ins	25 24 35	-+ 16	-31	0.035	102295.02	314958.58	0. 1547			A40	24 2436	136	-21	рону	203036.48	364332.16	0.6421.	
116	27 2121	-22	-27	0.035	12956.413	174205.44	0.4308	Com		141	28 2131	+ 29	-34	0.045	179759.23	435461.43	0.7078	
117	27 2105	+1	- 35	c. 035	64 695.M	335608.69	0.838н			142	28 21 05	_12	-43	0.045	80481.71	489403.45	0.8588	
MAS	57 21 18	- 26	- 211	0 035	8909.44	136332.93	0.9386			143	26 2332	- 17	_ #3	0.046	77143.78	436075 86	0. 8630	
ANG	28 2425	- 34		0.035	15677.77	34359.62	0.7071			144	26 23 54	-38	26	0.046	30.170.66	179753.69	0.8563	
120	302263	- 32	+ .4H	0.035	103304.22	146709.25	0.5868			445	25 2596	-45	-15	0 047	380 36.11	37912-16	0.69 80	
121	26 2357	- 21	-29	0.036	178:7.88	203832.62	0.9196			146	27 21445	140	-24	0047	225207.37	352683.99	0.6103	
122	26 2331	-23	.28	0.036	45676.59	189 091.62	0.92.23			147	25 24 81	+12	- 46	0047	156 311. 11	624680.93	0.1994	
123	26 2339	4.1	-32	0. c 36	109982-60	336460.76	07536			148	23 24 34	-13	ĻЦ	0 047	91339 44	539185.70	0.8551	
124	26 2338	- 35	_ 11	0,037	162 31. 47	43112.03	0.7258			149	24 24518	- 44	_18	0.047	35317.53	107 142.19	D. 7518	
ARS	27 2104	-21	-30	0.037.	206 54.82	219718.64	D.9141.			150	30 22 61	HG	+14	noH1	1 17623.78	л44 SoS.06	0.5513	

			1	ableau	: _I-	(suite).						Tablec	ui: - II -	(suite).		
	BD	۴i	₹,	μT	Φ_i^{c}	Φ_i^A	$\mathcal{T}_{i}^{,a}$		BD	μi	٦;	μT	Φ_i^{k}	Φ_i^{a}	S_{i}^{μ}	Rq.
151	28 20 86	+29	- 38	0 0 4 8	196570.77	515965.28	0.1241.	196	24 24 68	- 54	- 31	0.062	93198.47	308494.98	0.7656	
152	25 24 82	- 43	21	0 048	34731. 63	132366.79	0.7921	144	29 22 94	- 58	- 24	0.063	94360.48	221958.52	0.7017	
153	25 2506	-48	-3	0.048	65337.88	67460.74	0.5080	178	28 2091	-62	- 16	0.064	107056.55	163992.97	0.60нд	
<u>NSH</u>	26 23 49	-49	0	0.049	77938.46	78076.52	0.5004	179	28 21 00	-66	+1	0.066	158785.15	159 256.77	0.5007	
کک۸	30 22 41	<u> </u>	-11	0049	502.7.49	77099.59	0.6056	180	27 21 03	- 66	+4	0.066	130448.16	174237.09	0.5055	
ASG	30 22 54	-50	45	0.050	156593 35	359415.59	0.8639	181	28 21 26	- 66	-2	0.006	449013.44	150148,53	0.5019	
157	25 2497	-33	-37	0.050	400917-49	106630.09	0.5136	182	241 24171	- 52	-¥0	0.066	122667.75	476669.38	0. 7953	
ASB	29 2285	30	- 32	0.050	48107.43	27 5356.42	0 8494	 183	26 23 17	- 67	-8	0.067	140783.06	155200.03	0 52:43	
159	24 2446	-25	707	0.051	392 240.59	84 0363. 17	0.6816	184	26 2359	- 65	-22	0.069	126679.45	235960.55	0.6497	
160	25 25 10	- 21	_48	0.052	107654.54	617218.36	0.8515	185	28 2090	- 63	1¥	0.069	140249.25	183 861.29	0.5673	
A 61	27 21 33	-48	_20	0.052	49261.84	137855.86	0. 1367	186	29 22 74	- 69	+14	0.070	248280.77	283900.63	0.5416	
162	29 2264	19	-49	0.052	MH484 22	645495.37	0.8513	187	25 2513	- 61	-37	0.071	148356.11	451 329.69	0.7526	
163	29 22 75	- 40	+ 33	0.052	276554.04	517482.55	0.6517	188	25 2498	-69	-20	0.072	147387.01	236132.31	0.6157	
164	29 (1261 AGK3)	- 32	-41	0.052	176554.70	87 0396.84	0.8311	189	29 26 96	- 52	- 50	0.072	193609.57	736649.67	0.3007	
165	27 21 43	-2	-54	0 054	171387.59	816272.43	0.8264	190	29 22 72	+40	- 61	0.073	431253.80	125 4259.26	0.7441	
166	23 24 11	- 8	-26	0056	176554.70	870396.84	0:8311	.191	26 (113 A 6 KS)	-74	9	0.074	182119.57	200 347.90	0.5238	
164	25(1351A6K3)	- 35	-44	0.056	96031.71	524255.99	0.8452	192	24 24 66	- 69	+31	0.076	377820.17	590 622.77	0.6048	
163	30 22 80	+ 12	_55	326.0	221960.30	34 2459.56	0 8005	193	26 2324	- 58	+53	0.078	587880.21	120 9248.80	0.6729	
169	25 24 76	-47	_ 31	0.056	12883.98	280539.85	D. 9163	 194	27 2150	+54	- 61	0.079	518707.59	134 1770.61	0. 72 12	
1'10	25 24 77	- 54	+23	0.059	22 4971.93	347-129.99	0 6015	195	23 2442	-75	-28	0.080	198716.59	372424.34	0.6521	
171	29 2297	- 59	- 3	0.059	110066.15	112256.09	0 5049	196	26 2351	- 82	-16	0.083	12793.58	26453.18	0.6781	
172	24 24 58	- 60	-+8	0. 0 CO	157624.99	17 1985.83	0.5218	197	302252	+26	- 80	0.084	558794.70	A97 4248.49	0.7794	
113	27 (1204 A6K3)	4 53	28	0.060	338545.56	512091.69	0.6020	198	23 2428	- 85	_ 14	0 036	256834.08	300595.67	0.5342	
17H	24 24 59	- 43	-43	0.061	108702.40	517722.18	0.8265	199	28 21 11	-74	- 51	0.090	305684.38	881220 40	0. 7424	
175	26 2316	- 46	. 40	0.061	101547.75	455515.57	0.8177	200	21 21 45	-49	-92	0 0 9 1	442013.35	1753312.56	0. 79 66	

Tableau: . I. (debut).

Tableau: - V - (debut)

	BD	НD	Ma mrg.	g.	X 1950	5,1950	Sp	Mains	۶ų
Å	25 25 17	108945	5.5	5.38	12 28 30. 82	24 50 35. 74	A2P	-10	_ ^4
2	23 2448	107168	6.2	6.08	16 47.72	23 1844.21	ASE	- 15	-7
3	26 2347	108102	8.8	8.08	22 31.88	25 SO 45.27	F8I	-12	-12
H	25 2523	109307	6.2	6.02	31 0.4.46	24 33 81.40	Am	-18	-6
٢	27 2109		11.3	10.1	13 44.31	27 15 16.56	К11	- 18	-5
6	29 2267	106.184	9.2	7.8	10 31. 23	28 54 45.98	кч₫	-18	-7
7	27 21 39		11.6	10.32	26 26.16	26 49 32.28	GII	- 16	-1H
8	25 2511		10.5	9.3	27 10.99	24 47 49.20	69 X	-12	-18
9	26 2336		10.3	9.58	19 26.86	25 57 47.22	(F8D)	-11	-18
/0	25 2514	108 806	9.9	8.7	27 29.99	24 49 27.55	K11	- 13	-18
11	26 23 52	108486	6.6	6.48	25 08.89	26 11 19.41	Am	- 20	_12
12	27 21 22	107977	9.1	3.5	21 10.64	27 AS 25. AO	FSZ	- 10	- 21
13	25 2486	107132	9.6	8.8	12 16 30.18	25 07 25.38	Go¥	- 8	- 22
14	26 2326	107131	6.5	6.38	16 30.85	26 17 09.36	Am	-15	-18
.15	25 24 88	107214	9.7	8.7	46 \$7.03	24 33 42.51	Got	- 20	-13
XG	26 2323	106946	8.5	8.02	15 19.51	25 50 56.78	F2X	- 16	-18
.17	26 2353	108652	6.8	6.63	26 14.78	26 10 33.20	Aop	- 14	-19
18	27 21 30		40.8	9.8	23 85.42	27 01 15.03	(652)	- 18	-16
19	25 2508	108467	9.6	8.4	25 04.57	54 30 13.80	C81	- 21	- 11
20	26 2340	107793	9.8	8.6	20 31.30	26 07 42.66	Fgi	_ 14	_19
21	28 2123	108834	9.9	8.62	27 45.28	27 50 07.97	KON	-18	-18
22	25 24 95	107513	7.5	7.38	18 55.77	25 16 27.62	Am	-^7	- 48
23	20 22 84		10.7	9.9	21 42.52	28 41 00.50	-	- 11	-23
24	24 2457	108154	9.0	8.2	22 52.82	23 30 31.55	F81	-16	_ 20
25	27 2108		10.7	9.42	13 14.34	26 34 24.52	KOTY	-13	-23

						· LAED	ut).		
	μ _T	VR(km/s)	V	B-V	U-B	(B-V) int.	Α	mp. , V, 54,8	Rq.
1	0.015	4 0.85	-	40.04	+ 0.420	0.060	_ 0. 0G	° * *	
٤	0.016	4 0.66	6.27	+ 0. 16:1	4 0. 147	0.450	+0.001	°×∗	
3	C. 0.17	1. 1 (6)	8.17	+0.513	-0.008	0.530	-0.030	* * *	
4	0.0.19	+ 1.03	6.29	+ 0.108	+0.096	0.000	+ 0.32	0 X ¥	
5	0.019	-	.10.24	+1.130	+ 1. 240			010	esta
G	0,019	+6.5	7.69	+1.590		1.520		0 * 0	9×
4	0. 021	-	-	-				¥ ? ¥	
8	0.021	+2.0	9.78	+ 0.776	+ 0.344	0.750	+0.08	***	
9	0.021	-12.5 (L)	9.55	+ 0. 440	+ 0.040	0.530	-0.27	* 0 0	Carle
10	0.022	+72.16	8.55	+ 1. 310		1.080	40.69	* • •	Gora
11	0.023	_ 0.61	6.7G	+0.163	40.096	0 000	40.49	***	
12	0.023	40.H(b)	8.42	+0.443	-0.024	0.440	+0.009	***	
13	0.023	+1.0 (r)	8.83	+ D. 510	40.0.3	0.600	-0.27	× × *	
14	0.023	+0.91	6.48	+0.181	+0.088	0.000	40.54	***	
15	0.024	-2.0 (L)	9.02	+0.566	+0.049	0.600	_ 0.10	***	
16	0.024	-1.1 (6)	7.89	+0.353	+0.058	0.570	- 0.05	* * *	
AF	0,024	-1.7(6)	6.65	40.207	+ 0.038	0.000	-10.62	X XX	
18.	0.024	+ 6.1(6)	9.:‡S	+ 0.800	+0.290	0.680	+ 0.36	* * 	
19	0.024	-3.0 (L)	8.79	F1.060		0.950	+0.33	*?0	Carlos
20	0. 224	-	9.12	+ 0.540	+ 0.014	0.570	- 0.09	* * *	
21	0.025	_ 0.82	8.50					¥ ? ?	
22	0.025	- t	7.42	+0.275	+0.026	0.000	+ 0.078	***	
23	0.025	-	-					¥ ? ?	
24	0.026	+2.3(6)	8.60	+ 0.453	-0.044	0. \$3	- 0, 23	** *	
عد	0.026	-	9.50	+ 1.000	4 0.850			* ? *	

		λ	1	Tal	rleau	: - I - (suite).									Tab	leau: -	¥-()	uite).		
		ВD	HD	M	ag. Imv.	X 1950.	5 1950.	Sp.	Mar con E	۶4			μ _T	V R (km/s)	ν	B-V	U-B	(B-V)	A	my, VR, U, Y,O	Rq.
ſ	26	27 21 38	108642	6.6	8.48	12 26 8.33	26° 30 12.28	A2m	-23	- 12		26	0.026	-0.8(6)	6.54	10.179	+ 0. 109	0.06	0.357	* * *	
	27	27 21 27	108 NS4	10.9	9.7	23 02.05	27 24 13.41	F81	- 5	-26		21	0.026	- 0.7	8.60	40.453	-0.044	0. 53	- 0.231	* * *	
	28	27 8134	108 382	5.1	5.02	24 29.39	27 06 08.49	AHP	- 24	-11		28	0.026	41.46	\$.00	+0.081	+ 0. 128	0.12	- 0, 120	* * *	
	29	29 22 71		41.3	10.CZ	15 34.10	29 18 17.26	KOI	_ 24	-9		29	0.026	-	10.32	+1.090	41.030	1.01	0.240	4?0	Conc
	30	30 1281		10.0	9.2	27 00.88	29 47 19.81	65(4)	-17	- 29		30	0.026		3.41	40.540		0.68	_0.420	* ? *	
	31	29 2280	107276	6.6	6.52	17 19.84	28 44 30.59	Am	- 23	-14		31	0.027	-2.3	6.67	40.141	+0.094	0.00	0.530	¥ ¥ *	
	32	26 2345	108007	6.4	6.2	21 56.30	25 51 34. 11	ASI	- 17	- 23		32	0.029	-5.66	6.42	+0.266	40.075	0.25	0.048	***	
	55	26 23 55		11.5	10.3	22 17.47	25 31 25.34	69 II	- 23	- 18	2	53	0.029	-	-			0.75		* ? *	
	34	25 2494P		11.9	11.1	18 48.60	25 22 27.34	Go	- 23	- 17		34	0.029	-	-					* ? ?	
	કડ	28 2115	108283	5.3	5.1	23 54.12	24 32 41.19	Fo(1)	- 23	- 18		ર્કડ	0.029	-4.2(6)	4.95	10.273	+0.180	0.30	-0.081	¥ ¥ ¥	
	36	26 2344	107966	5.2	5.12	21 48.11	26 22 32.57	A4p	-26	-15		36	0.030	+0.07	5.18	+0.076	+0.406	0.12	_ 0. 130	¥ ¥ ¥	
	54	28 2109	107 611	9.2	8.4	19 25.56	27 35 12.26	F6I	-15	-26		31	0.030	+ 2.4	8.55	+0.463	-0.030	0.43	- 0.021	* * *	
	38	27 21 29	108226	8.9	8.3	12 23 21.85	27 03 12.48	F6R	- 26	- 15		38	0.030	_1.0 (6)	8.37	+0.449	-0.022	0.47	-0.063	* * *	
	39	29 22 69	106419	9.7	8.7	12 20.21	28 10 28.06	690	_23	_ 19		39	0.030	_	8.69	+1.030		0.98	.0.150	¥ ? 0	Cona
	40	25 24 72		40.7	95	09 03.59	25 03 53.21	Kom	_12	-29		40	0.031	-	9.45	+1.060	11.060	A.J.1	0.150	4?0	Com
	41	28 20 35	106 678	8.7	7.98	13 31.14	28 19 35.30	F6I	- 27	- 15		41	0.031	-8.6	-	10.400		ə.47	- 0.210	* * *	-
	42	29 22 37		11.0	10	22 \$3. 91	28 54 57.48	69 <u>m</u>	- 12	- 29		42	0.031					0.49		\$?0	Ècre
·	43	26 23 14	105863	10.3	5.5	08 35.06	26 AG 05.86	Go	-21	-24		43	0.052	_						1 2 2 2	
	44	24 24 64		5.9		26 57.02	24 23 06.28	FSOL	-26	_ 10		44	0.028	_0.5	5.48	40.430	+0.09	0.45	-0.060	* * *	
>	- 45	14 25 14		10.8	9.73	30 41.79	14 16 30.01	K 2 (91	- 8	-22	>	45	0.023		9:13	1.17	1.18	1.16	0.030	¥?0	Corr
	4G	11, 25 10		10.9	10.5	28 48.99	14 18 25.46	Ga	_ 12	- 13		46	0.048		-					¥ ? 1	
	47	15 2454	105965	10.3	9.6	0g 10, 17	15 09 41 18	K2	-16	- 8		47	0 218		-					0??	
	48	17 2452		10.5	9.8	44 34.44	16 56 23.21	GS	-12	-15		48	0 0.19							* ? ?	
	49	16 2354		10.9	10	14 23.24	16 05 58.56	Ko	-12	_ 29	- 	μa	0.031							¥ ? ?	
	So	16 2345		10.7	10.3	08 54 71	16 18 01 16	FI	-9	-26			0.027							+ 17	

92

	80		M	ag.	~	5	C			1 1				N	0.		(0, 1)		
	00	ΠD	m 8g.	m .y	M AGSO	0 1950	2b	HXCOSO	μζ			μı	VK(lam/s)	Ŷ	N- a	0-8	(D-V) .int.	A	mp, Ve, U,V,B
51	18 26 24		9.4	9.2	12 30 22.10	17 53 50. 13	Go	- 12	- 13		51	0.018	:						*??
52	18 26 03		M.0	10.6	og	18 26 45.24	Go	-12	- 17		52	0.021							* ? ?
53	21 2348	106053	6.11	5.57	23	20 49 12.91	KoI-A	-20	- 25		53	0.032	-24.7 B	5.57	0.95		A.0.1	0.27	¥ 0 ¥
54	20 27 20		10.6	9.6	30	20 00 27.36	K2	-11	-1.8		54	0.021							¥ ??
55	21 2430	109283	8.8	7.9	10	20 42 38.82	GS	-9	18		22	0 030							* ; ;
56	22 24 So		9.4	8.45	26	21 99 28.78	Ko(13)	-11	-12		56	0.0.16		8.uS	1.00	0.83	1.01	-0.03	*? o
57	22 24 76 2			9.13	12	22 16 47.13	63(m)	-21	- 24		57	0.032		9.13	0.97	0.75	0.84	0.39	¥ ? 0
58	23 24 36		9.6	9.34	13	22 31 23,43	Fo(m)	_24	-9		58	0.026		9.3H	0.32	0. /4	0.27	0.06	* ? 0
59	23 24 38		9.7	3.2	AS	22, 42 18.59	Go	- 23	- 17		59	0.029							*??
60	22 2456		9.7	9.3	11 43	22 26 43.53	F8	-7	- 26		60	0.027							× ? ?
61			11.0	40.2	üС	23 18 20.37	60	-21	- 16		61	0.026							* 1 1
62	24 23 96		11.7	11.3	48	23 33 35.43	Go	-6	- 21		62	0.022							* ? ?
63	23 23 96		9.9	8.92	53	23 01 46.86	Ko(U)	-21	20		63	0.029		8.92	1.02	0.88	1.0.1	0.03	* ? 🧔
64	23 24 03		11.5	M.G	12 03	23 16 42.26	AGE	- 16	-15		64	0.022		41.60	0.26	0.06	0.24		* 10
65	24 2424	VOZOBS	7.6	7.51	43	23 28 58.42	FS(R)	-15	-21		65	0.026		7.49	0.33	0.02	0.45	. 0.33	x ? *
60	24 2490		9.6	9.3	йн	23 30 24.16	F2	-29	- 17		66	0.034							* ? ?
67	24 2492		10.5	9.54	03	23 58 58.06	Ko (Ø)	- 13	-21		6‡	0.025		9.54	1.03	1.04	1.01	0.06	* ? 0
68	23 2504		10.6	9.68	57	23 22 05.87	K\$(\$)	-29	- 16		68	0,033		9.68	0.97	0.73	1.0.1	- 0. 12	× ? c
69	23 2520		11.3	10.04	<u> </u>	23 26 01.23	Kx(0)	-13	-17		(g	0.021		10.04	1. M	1.04	A.04	0.3	¥ ? c
ło	23 2524		12.0	14.4	C 6	23 19 10.35	GS	-18	- 41		'to	0.021							¥ ? ?
71	25 24 6G		10.7	9.56	11 iil	24 58 45.04	KoIJ	-19	- 14		71	0.024		9.36	1.08	1.06	1.01	0.86	* ? 5
42	24 2386	101906	8.0	7.36	54	24 17 16.28	C2 E	-5	-18		12	0 019	45.3	7.36	0. 90	0.38	0. 64	0.16	¥ ¥ C
也	25 24 38		10.2	9.9	34	94 59 53.07	FS	_22	- 10		43	0 0 24							¥ ? *
74	25 2439		10.7	10.5	48	24 28 51.53	F٤	-17	-7		74	0.018							× ? ?
75	26 23 60		10.5	10.0		25 36 53.05	FS	- 13	-23		45	0.026							× ? ?

ablean: - I - (suite).

-

lablean: - V. (suité).

A

1 65

0.463

1.05

0.39

0.12

-0.27

0.12

0.06

0.03

0.12

- 0.06

2.42

0.09

0.09

0.36

-0.03

-0.3

imp, VR, U, B, V Rq.

* ? *

* ? ≯ * ? o

* ? o

* ! ¥

*;;

* ? ?

*] O

¥ ¥ ° ¥ ? ¤

¥ ¥ ¥ ¥ ! o

¥? ¤

* ? 0

¥¥

* ? 0 Dom * ? 0 Dom

XX0 DOM

¥00 DM

¥ ! 0 Com.

* ? 0 tom

¥ ! ¥ |

Com

Com

Com

Com

Com

Long

Con

Dona

		BD	HD	May.	X 1950	6 14350	Sp	Mars	45		μт	VR (bm/s)	V	B-V	U-B	(B-Y)	
	46	25 24 57		11.5 10:2	12 03 44.03	25 00 20.61	GC	-18	- 2D	76	0.027				-	imir	
	77	26 23 12		11.3 9.56	09 45.15	25 30 26.05	K1(m)	-13	18	41	0.025		9.56	4 114	1.118	1.07	
	78	26 24 02	111 878	9.1 8.87	49 44.92	25 38 44 95	FRE	- 10	-13	18	0.025						
	79	27 22 23		11.4 10.45	13 08 02.38	26 33 01.56	GO(E)	- 20	. 12	19	0.023		AO HY	0 89	0.00	0.92	
	80	26 2368		1.2 10.07	12 33 31.94	26 0.1 50.54	6811	- 25	-15	30	0.029		10 07	A DS	0.00	0.30	
	81	26 24 0S	112313	9.7 8.31	13 07,75	26 28 45.06	GS(X)	. 13	- 23	81	0.026		8.81	0.81	0.24	0.68	
	82	27 20 40		11.0 10.3	11 35 34.57	26 25 SA 66	Es	4.8	-15	82	0.023						
	83	27 20 42		10.3 10.4	36 44.53	26 29 14.65	60	-15	- 12	83	0.019						
	84	27 20 78		10.8 10.1	56 27.48	26 48 10.32	6815	- 20	-7	84	0.021						
	85	27 20 91		M. 8 A1. H	12 01 SD.01	27 27 56.30	Go	- 25	- 14	28	0.029						
	86	27 20 96		10.9 10.37	04 27.82	27 17 39.66	660	-14	-22	86	0.026		10.37	0.73	0.44	0.69	
	87	28 21 48 A	110 883	8.5 7.46	42 36.20	27 40 OA.A3	K211	-15	-25	87	0.029	+7.0	7.47	1.07	0.95	1.16	
	88	28 24 54	111748	AO.H 9.72	48 49.78	27 36 44.80	690	-17	-20	88	0.026		9:12	1.02	0.84	0.98	
	89	28 21 56	111 8/2	5.8 4.94	49 45.85	27 48 44.52	Gow	- 21	_23	89	0.031	_1.48	મ. ગંમ	0.67	0.20	0 65	
	<u>g</u> o	28 20 14		10. 4 9.01	11 32 20.97	27 32 11.63	Ho(I)	_ 14	-29	90	0. 032		9.0.1	1.58	1.92	1.57	
	91	27 20 53		10.6 9.49	43 28 34	27 40 31.SS	Ko(四)	-21	_^6	31	0.026		9.49	105		1.01	
	92	28 2465		10.9 9.79	12 52 25.01	28 11 02.07	KII	-13	-21	92	0.025		9.79	1.36	1.58		
	93	28 21 66	112233	9.4 9.60	52 34.45	27 15 48.42	For	-11	- 23	93	0.024		9.60	0.28	0.13	0 30	
-	gн	29 2354		10 2 9 35	57 29.87	28 54 02.70 (56a	-21	_^7	9u	0.027		9.35	0.83	0.45	0 69	
	95	28 21 82		9.7 9.36	13 04 07.41	28 20 28.66 1	FOR	-13	_10	95	0.021	-6.00	9.36	0.42	_0.02		
	96	29 2307	109823	9.3 826	12 35 10.36	28 54 15.84 0	DOI	_20	-24	96	0.031	+8.2					
	97	29 21 48		10.3 10.24	11 40 19 ST	28 49 18 66 1	42(B)	-13	-11	97	0 0 13	-47.00	10.24	0.09	0.13	0.06	
-	98	29 2204		11 0 9.8:	42 02.49	28 42 25.28 K	2 (m)	- 10	_^}	98	0.020		9.81	1.19	1 12	1.46	
	99	29 2309		11.1 10.29	12 36 M. 98	29 A2 48.24 G	30	- 10	- 21	99	0.023		10.29	0.81		0.69	
1	100	30 23 13		10.4 10.3	39 18.47	29 SH SE. 87 F	-S(X)	_12	-15	106	0.019		10.26	0.43		0.44	

Tableau: . I_ (suite).

Tableau: I (suite).

	BD	HD	M	ay.	X 1950	6,1950	Sp	hacons	48		μT	VR (Em/s)	٧	8V	U.B	(B-V)	A	mp. , VR , U, B,V	Rq.	
101	30 23 24	111 004	9.5	9.31	12 43 35.06	29 52 24.03	F81	-22	-17	101	0.028	÷	9.31	0.40	0.03	0.47	_0.3	x ? *		
102			10.5		58 37.29	29 25 19.47	G	_ 24	_15	102	0.028							¥ ? ?		
1.03	29 21 94		11.1	10.3	11 37 27.51	29 22 29.78	F2	-22	_13	103	0.025							* ! !		
104	30 2221		10.4	9.9	12 03 38.73	29 40 50.62	Go	- 18	- 20	Лоц	0.027							¥??		
YOR	29 22 19		10.7	9.47	07 18.27	29 12 23.17	KoII	-13	-14	105	0.024		9.47	1.08	0.97	1.01	0.24	* : 0	Cona	
106	312386		11.8	40.8	33 05.33	30 SE 50.20	K2 1	-18	-12	106	0.022							*??	13kg	
1.03	92 22 57		10.9	10.2	32 46.77	31 41 40.91	GS	-13	- 25	107	0.028							\$? ?		
108	82 22 86	107512	97	9.1u	18 50.85	32 27 14.35	Go(I)	- 13	-22	108	0.025		9.14	0.54	0.10	0.60	-0.18	× ? *		
109	33 22 30		10,1	9.7	20 42.75	33 13 20.32	F2(11)	_20	_13	109	0.024		9.54	0.38		0.31	0.03	\$? 0	Both	
110	34 2323		10.S	9.2	29 16.91	33 45 47.75	×47	-20	-9	110	0.022		9.16	1.56		1.15	A. A14	¥ ? 0	Com	
AAA	33 22 47		10.5	10.8	30 03.22	33 60 14.12	G8 II	-12	_ 18	1.1.1	0.022		10.52	0.99	0.78	0.95	0.12	¥ ! o	Com	
AA2	332250		11.2	10.8	32 41.48	33 OS 19.14	F8	-13	-10	112	0.016							* ? ?		95
113	36 22 61		1a.H	10.4	17 53.79	35 58 53.80	K2 II	-28	_14	113	0.031		A0.0U	1.21	1.28	1.16	0.15	* ? o	Com	
114	36 2278		10.3	5.7	30 03 81	35 36 25.26	60(\$)	- 16	-25	A1H	0.050		9.71	0.63		0.60	0.09	* ? *		
MAS	56 2275		10.7		27 58.60	36 24 00.31	F2	- 20	- 18	115	0.027							×??		
116	37 2248	109530	7.7	7.26	32 44.55	36 42 02.99	F212	-20	-7	116	0.022		7.27	0.44	0.00	0.38	6.21	* * *		
MAR	36 22 83		1.9	10.0	32 HH-72	36 14 52.54	G8 III	_14	-9	117	0.047							* ? ?		
118	38 23 42	108674	9.7	9.07	26 30.05	37 52 16.64	F41	-24	-14	118	0.028		9.10	0.38		0.42	- 0.06	* ? *		
119	25 2597		10.0	3.5	13 04 27.14	25 02 09.00	Go	-22	-25	119	0.033							197		
120	29 208 н		6.4	5.88	12 08 13 80	27 33 34.90	A4¥	-18	- 26	 120	0.032							*::		
121	23 24 47	107067	9.4	8-6	16 04.66	23 23 St. 70	F8(\$)	_ 10	-9	121	0.013	_1.1 B	8.73	0.52	0.02	0.53	0.03	0.03	Com	
122	30 12 37		8.0	7.6	29 21.88	29 35 24.26	Fox	+2	- 14	122	0.014		7.55	0.30		0.30	0 00	0.00	Com	
123	28 21 25		9.4	3.4	28 33.93	28 00 22.99	F6\$	-34	-10	123	0.035	186	8.61	0.48	- 0.04	0.47	0.03	0.03	Com	
124	27 21 17		10.4	9.3	19 18.30	26 49 35.08	Go(X)	-23	- 9	124	0.025	.2.18	9.33	0-59	0.06	0.60	-0.03	0.03	Com	
125	26 2343		6.7	6.58	21 32.97	26 07 41.88	Am	-21	- 9	125	0.023	-3.17	6.72	0.23	0.053	0.00	0.69	0.69	Com	

				inolan :	•	(Jun)	•						
	μ _T	VR (bm/s)	V	B-V	U_B	(B -))	A	mp, V _R , V, B, V	Rg.		BD	HD	m
126	0.035	1.5	9.13	0.41	- 0.04			0 * *	Cóm	126	26 23 21	106691	8
127	0.036	45.0	4:30	0.49	0.26	0.65	0.48	0 ¥¥	Com	127	26 23 37		5
128	0.028	+2.0	9.10	0.55	0.03	0.60	-0.16	0 _{* *}	Com	128	26 23 30		9
129	0.031	+ 0.2 B	8.12	0.40	-0.03	0.44	-0.12	0 ¥ ¥	Com	1:4	28 20 87	106 103	8
130	0.027							0 ? ?		130	27 21 28		1
131	0.027							0 ? ?		132	29 21 34	109483	40
132	0.013	-11.0 (c)						0 ¥ ?		132	23 24 33	106293	19
133	0.046	- 2.77	5.29	2005	-0.012	0.00	0.15	0 * *	Com	155	26 2354	103 662	1
134	0,048	-3.5	8.90	0.52	0. c 8	0.53	- 0.03	0 * *	Com	134	25 24 82	106 147	9
135	0,050	- 6.9	л.					0 * ?		135	28 21 33	109 306	
136	0.025	-2.1B	9.33	0.59	0.06	0.60	-0.03	0 * *		136	27 21 17		Ĭ
137	0.035	-14 Var	. 9.36	0.59	0.08		- 0.04	0 * *	Com	136	272121		0
										-			

.

.

						v -			
	BD	HD	Ma m pg.	g. m.v.	K 1950	61950	Sp	H _K and	٢٤
126	26 23 21	106691	8.6	8.0	12 13 36.75	26 34 24.52	FSD	-23	- 28
127	26 23 37		5.2	4.9	19 59.60	26 07 24.08	66B-12	-21	-29
128	26 23 30		9.64	9.1	48 44.58	26 02 26.45	60.X	-28	+1
129	28 20 87	106 103	8.52	8.12	og 52.86	27 39 20.13	FST	- 32	-4
130	27 21 28		11.9	10.9	23 02.90	27 22 06.08	65	-27	- 4
132	29 21 34	109483	40.0	88	32 25.65	27 43 51.88	Go	-26	- 9
132	23 24 33	106293	8.5	8.09	11 .11.72	23 09 57.92	FSR	_10	- 8
155	26 2354	103662	5.24	5.24	26 24.92	26 11 21.63	AOP	- 33	- 26
134	25 24 82	106 147	9.32	3.8	15 16.27	25 19 55.75	FAR	-43	-21
135	Dy 21 33	109 306	9.4	8.7	31 08.28	28 21 25.23	F3%	- 20	43
13G	27 21 17		9.5	9.2	19 18.30	26 49 35.09	60(1)	-23	_9
136	272121		9.93	9.36	21 11.40	26 52 42.74	48	- 22	-27

•

- 96.

·

Tableau: _ VI - (début).

Tableau: _ VI - (dient).

				1			1			7		
NE BOUNA TIRD.	N≗ TRUMP LER.	BD.	HD.	mrg.	2g. m.v.	X 1050	5 1050	4,000	۴٤		Nº BOUNA TIRO	μ
A	120	27 2130		10.8	9.8	h mn-s 1223 35.42	27 01 15.03	- 18	- 16		1	0.05
2	156	28 21 23	108834	9.9	8.62	27 45.28	24 50 07.97	- 18	_18		٤	0.0
3		25 24 448		11.9	11.1	18 48.60	25 22 27.84	- 23	-17		3	0.02
4	49	26 2323.	106946	8.5	8.02	AS 19.51	25 50 56.78	_16	_18		ц	0.0
٤	162	28 9125.	108976	9.08	8.54	28 35.93	28 00 22.99	- 34	- 10		5	0.0
6	128	27 2129 .	108226	8.9	8.3	23 \$4.85	27 03 12.48	-26	_15		G	0.0
4	82	25 2495.	107513	7.5	7.38	18 55.47	25 16 17.61	_17	_18		7	0.0
8	125	·28 21 15°.	1-8283	5.3	5.1	23 54.18	27 32 41.49	-23	- 18		8	0.0
9	60	26 23 26.	107 131	6.5	6.38	16 30.85	26 A7 03.36	_15	_18		9	0.0
AD	65	252488°.	107214	9-7	8.7	16 57.03	24 33 42.51	_20	- 13		10	0. 03
11	114	24 2457.	108154	9.0	8.2	22 51.81	23 30 31.55	-16	-20		11	0.0
12		30 22 81		40	9.2	27 00.88	29 47 19.81	-17	- 20		12	0.0
ЛЗ	68	29 2280°.	107246	6.6	6.52	12 17 19.84	28 44 30.59	-23	- 44		43	0.0
A4		27 2139		14.6	10.32	26 26.76	26 49 32.28	-16	-14		14	0.0.
٨٢	145	26 2353	108651	6.8	6.68	26 14.48	26 10 33.20	-14	-19		٢٢	D.J
16	97	26 2340	107793	9.8	8.6	20 \$7.79	26 07 42.66	- 14	-14		16	0.02
17	139	26 2352 .	408486	6.6	6.48	25 68.39	26 11 19.41	- 20	-12		14	0.02
18	409	26 23 45°.	108007	6.4	6.2	21 56.30	25 SA 34.11	-17	-23		18	შ.თ
19		26 2314	105863	10.3	92	08 35.06	26 16 05.86	-21	-24		19	0.0
20	NSO	252511 .		10.5	9.3	27 10.99	24 47 49.20	- 12	- 18		Lo	0.0
21		28 20 95	106678	8.7	7.98	13 31.14	28 19 35.30	-27	-15		21	0.03
22		27 2108		10.7	9.42	13 14.51	26 34 24.52	- 13	-23		22	0.03
23	144	27 2131.	108642	6.6	6.48	26 08.38	26 30 12.28	-23	- 12		23	0.0
24	86	28 21 09.	107611	9.2	8.u	19 25.56	27 35 12.36	- <i>N</i> S	-26		24	0.02
25	102	27 2121		9.95	9.36	21 11.40	26 52 42.74	- 22	- 27		25	0.03
						1		'				

		_				L _	albuc).		
12 UNA IRO	μ _T	V _R (iam/5)	Parallaxe	\mathcal{P}_{i}^{a}	Sp	V	B-V	Ø-B	D(p)
1	0.024	46.1 B		0.9957	(05)	9.75	0.80	0.29	81.28
	0.025			0. 9909	KOTE	8.50			-
3	0.029			0.9900	Go	-	-		-
4	0.024	-1.1(4)		0.9813	F2 7	7.89	0.353	0.058	94.52
s	0.035	-0.5		0.9850	F612	8.61	0. 니才이	-0.040	95.94
6	0.030	-1.0(%)		0.9869	F6X	8.37	0.450	-0.020	-85.90
7	0.025	-0.82		0.9869	Am	4.42	0.275	0.026	-
8	0.029	- 4.23	0.014	6.9869	Fottp	4.95	0.273	e,180	-
3	0.023	0.97		0.9743	Am	6.48	0.181	0.038	75.86
0	0. 024	- 2.0		0.9759	Got	9.02	0.566	0.049	84.00
1	0.026	-2.3		0.9717	F81	8.50	0.453	-0.044	\$3.17
2	0.026			0.9760	GS(X)	9.41	0.540		69.50
3	0.027	_2.3		0.9787	Am	6.67	0.177	0.094	-
4	0.021			0.9698	Ĝ9IE		-	-	-
٤	D. J24	-1.7(6)		0.9635	Aop	6.65	0.207	0.088	96.н
6	0.024	- 3.0		0.9636	FGF	G. 12	0. 540	0.011	-
4	0.023	_0.61		0.9523	Am	6.46	0.163	0.096	-
8	0.029	_ S. 66	0.0.11	0.9556	A9,1	6.42	0.266	0.025	61.00
9	0.032	42.0		0.9519	Go	-	-	-	-
D	0.021	4		0. 9464	GII	9.78	0.776	0.314	65.46
1	0.031	- 8.63		0.9450	F6£	-	0.400		82.41
2	0.026			0.9390	KOTE	9.50	+ 1.00	0.850	-
3	0.026	- 0.8		0.9387	Alm	6.54	0.179	0.109	A06.66
4	0.030	+2.4		0.9307	FG¥	8.55	0.463	-0.019	97.30
5	0.035	-14 Vor.		0.9301	GS(¥)	9.36	0.590	0.080	67.42

TOU.	0011	٠	VI

lablean: - Xe -

			100	www						-									
Nº Bouna TIRO	Nº TRUMP LER	BD	HD	m r3	ay. . M v.	X NASO	5 1950	Wex coo o	46	Nº BOUNA TIRO	μτ	VR(km/5)	Parallaxe	Pia	Sp	V	B_V	U_B	D(pr).
26	101	27 2122.	107877	9.1	8.5	h mn. s 12 21 10.64	27 15 25. 10	- 10	- 21	20	0.023	40.4(6)		0.9243	FSE	8.42	0.443	-0.024	101
27		29 22 84		10.7	9.9	21 42.52	28 41 00.50	-11	-23	27	0025			0.9266		-	-		-
28	107	26 23 44 .	107966	5.2	5.12	21 48.11	26 22 32.37	- 26	-15	28	0.030	+0.07	40.009	0.9248	Aup	5.18	0.076	0.106	
23	36	26 238.1.	106691	8.6	8.0	13 36.75	26 34 24.52	-23	- 28	29	0.036	+1.5		0. 9234	FSE	8.13	0.410	- 0.040	
30	91	26 235 th	107700	5.2	4.9	19 59.60	26 07 24.08	-21	-29	30	0.036	45.0	+0.014	0. 3196	GOTT	4.80	0.490	0.260	69.2
31	36	25 2486.	107 132	9.1	8.5	16 30.18	25 07 25.38	-8	- 22	31	0.023	+1 69		0.9051	607	8.83	0.510	0.013	76.56
32	130	27 2134.	108332	5.1	5.02	24 29.39	27 06 08.49	-24	- 11	32	0.026	+ 1.10	40.024	0.8942	Aup	5.00	0.081	0.128	
33	MAS	27 2127	108154	10.3	9.7	23 02.05	27 24 13.41	-5	-26	33	0.026	- 0.7		0,8779	F82	8.60	0.453	-0.044	83.17
34	111	26 2347.	108102	8.8	8.08	22 31.88	25 50 16.27	-12	-12	34	0.017	- 1.1 (6)		0.8705	F8I	8.17	0.518	- 0.008	68.
રડ	28	27 2117.		9.3	9.2	19 18.30	26 49 35.08	- 23	-9	કડ	0.025	-2.18	v.	0.8058	60(X)	1.33	0.590	0.060	91.20
36	149	24 2464.		5.94	5.5	\$6 57.02	24 23 06.28	-26	-10	36	0.028	_ 0. 5		0.6249	FST	5.48	0.430	0.090	95.50
57	A04	26 2343	107935	6.95	6.12	29 -32-97	26 07 41.88	-11	-9	81	0.023	- 3.17		0.8163	Am	6.72	0.230	0.050	
38	AGO	25 2517.	108945	5.5	5.38	28 30.82	24 50 35.74	_ 10	- 11	38	O. CAS	+ 0.35		0 8030	A2p		0.040	0.120	71.12
39	53	23 2447.	107067	g. ii	8.6	A 12 16 04.66	23 23 51-70	-10	-9	39	0.013	_1.10		0.4200	F8(1)	8.73	0.520	0.020	83.47
40		28 2134	109483	10.0	8.8	32 25.65	27 43 51.88	_26	-9	40	0.027			0.7752	Go				
41		30 22 87		8.0	7.6	29 21.88	29 35 24.26	42	-14	41	0. 0/H			0.4105	For	7.55	0.300		100
42		23 2433	106293	8.5	8.0g	11 44.76	23 09 S7.92	- 10	-8	42	0.013	-11.0(C)		0.6781	FST				
43	183	25 25.23.	109307	6.2	6.02	31 04.76	24 33 81.40	- 18	_6	43	0.019	+1.03		0.6353	A42m	6.29	0.108	0.096	75.50
44	19	29 20 87.	106103	8.52	8.12	09 52.86	27 39 30.13	- 31	-4	44	0.031	+ 0,10		0. \$370	FST	8.12	0 400	- 0.030	37.90
45	62	23 2443	1.07 168	6.2	6.08	16 47.72	23 18 44.21	_^5	-7	45	0.016	4 0.66		0.6700	ASI	6.27	0.169	0.147	
46	146	26 23 54.	108662	5.24	5.29	26 24.93	26 11 21.63	-38	_26	46	0.046	_2.47	+0.021	0.8563	Aop	5.29	- 0.05	_0.012	
47	<i></i> 48	25 24 82	406947	9.32	8.8	15 16.27	25 19 55.75	_43	-21	47	0.048	-3.7		0.7922	FAX	8.80	0.520	0.080	.100
48	113	24 24 55	108123	7.13	6.13	12 44.29	24 12 12.27	-57	-15	48	0.040	- 5.38	40.007	0. 1927	Kom	6.03	1.100	.1.000	
49		27 21 28		11.0	10.9	13 02.90	27 22 06.08	-26	-7	49	0.027			0.6685	65				
So	76	26 2330 .		9.64	9.1	A8 14.58	26 02 36.15	-28	+1	50	0.028	+2.0		0.5019	GOT	g.10	0.550	0.030	87.
54		28 21 53	109306	9.4	87	31 08.29	28 21 25.23	-30	+3	St	0.030	-6.98		0.5113	F3X				

Tableau: - VII. (.dibut).

Tableau: _ VII. (fin).

	BD	V	B -V	Sp	<i>Мосиб</i> 16163	us Agks	Hains LACAUNTE	U 6 LACROUTE	NA LON & CORBIN	N6 CORBIN	Rq.
4	26 2307	8.50	0.41		t.10	-68	+0.07	- 63	1.21	- 64	Non
2	25 24 65	3.10	1.08	KOI	-47	- 9					Nin
3	27 2100	6 99	1.03	KoII	+ 62	-44					Non
н	25 24 66	5.36	103	Kon							D(p)780
5	26 23 11	9.25	1.53	×3152							D(p)>80
٢	26 23 12	9.56	1.41	KIR	-13	-18					christ 2 higi
7	252441	2.60		61.8	-109	_16	- 111	-12	- 126	_16	Non
8	26 23 15.	8.60		602	- 146	+69	- 145	+ *2			Non
9	27 21 12	9.87	0.65								?
10	28 21 03	8.95	0.45	618	- 206	- 129	- 203	- 123			Non
11	28 21 06	6.33	0.498	TSE	- 203	- 134	_ 193	- 128			Non.
42	26 2329	6.15	0.30	Fold	- 151	710	- 148	+ 22			Non
13	27 21.14	5.54	1.09	K1.D	-70	-112	- (7	- 103			Non
A H	27 2115	7.18	0.38	F3						1	?
15	272115	7.08	0.35	F33							?
16	94 9448	9.25	1.18		- 14	- 6]
13	25 24 93	1.32	c.88	Ko B	- 252	+ 126					Non
18	23 2453	8.56	0.461	FS₽	- 2	- 14	5	-23	- 12	- ^3	Bon.
19	Hp: 107701	8.62	0.535	FAR							1
20	992288	4.34	1.12	no	-97	-79	- 95	-88			Non
24	27 9135	8.23	1.03	kog	+ 98	-252	+95	_251			Non
22	28 21 12	1.13	0.27	ADE			. 26	15			Bon.
23	23 2463	3.96	0.65	CS	- 202	+ 21	_140	+12			Non
54	28 21 28	900		616	-97	- 126	- 89	-128			Non
94						1	1		1	1	

.....

							- U				
	BD	V	B-V	Sp	Цьб ЛЕКЗ	46 46K3	He LOS LACROUTE	46 LACCOUTE	HE LAS CURESH	HE	Rq.
25	28 21 29	9.00	0.80	67.01	-2	-24	- 2	_22			Non
26	29 23 00	9.20		6811-13	+52	- 101	+51	- 102			Non .
57	26 23 69	7.74	1.05	Ka-B	+19	- 52	116	- 54			Non
28	26 23 42	10.52	0.773	KoI							?
29	252502	10.00	0.193	631							?
-1	~3 × 3 × 0	10.00	v. 195	1038							

					Tal	te : :	25.					
		Après	2° etu	de st	atistiqu		Apris .	l'ésiame	n file	tometru	que.	
	La 0-+ 0+45	12	Lz Drusia, okio	L.H.	1.1.4.4. Ng-N2	ц <u>-</u> ц	L1 0-+0+90	Le	13	لب علادكو. فيده	હ્યુ .હુ.હુ	43-46.
J°	,	17	719	31	- 88	- 948	3	25	74	35	- 81	- 653
ານ	1	52	68	53	. 38	-1128	3	47	66	21	-37	- 789
40°	н	12	56	12	+9	-640	3	65	st	42	· 0	-560
60°	8	15	ыs	5	HS	- 150	8	11-	43	ł	34	- 355
80°	14	97	41	5	59	4400	13	11	38	н	53	+166
100	51	16	30	1	83	1034	રુમ	72	28	3	38	436
120°	66	58	15	4	105	4130	Se	58	17	3	97	\$29
140	14	48	,	4	411	598	41	46	44	(}	102	458
.160	86	43	4	9	115 -	0	80	Цо	C	14	103	Цо
1 80	*13	38	1	A4	89	-454	74	35	3	15	11	- 653
200	68	3	4	27	63	-714	66	21	3	47	54	-3:7
220	56	12	4	se	14	- 680	57	12	3	4	مد	- 789
240	45	6	ч	72	- 26	- 159	43	9	5	11	-13	-495
260	44	r	5	35	- 54	+ 279	38	4	1	82	-44	- 549
290	30	1	14	17	- 24	+732	28	3	13	12	-64	+110
300	19	4	37	*	- 94	1163	17	5	54	58	-86	136
320	40	ч	30	59	- 408	+496	44	1	59	41	- 94	\$29
340	ч	9	19	48	- MS	-20	c	44	11	40	-103	445
300	1	AH	96	43	- 102	-487	5	25	10	35	_11	40

ŀ

99.

								- /													
	BD	HD	m pa	ang.	d Agio		5 19	50	Sp	H Loob	MG		μ _τ	VR (km/s)	V	B-V	U-B	B-√	A	D(pc)	Ry
1	26 22 27		11.2	9.96	h mn. s 12 17 17.70	25	30	\$5.00	K111	-5	-6	1	0.008		9.89	1.13	1. 10	A . 10	0.09	990	Bon
2	29 2224		10.8	9 9	13 18.38	29	04	35.60	131	_5	-3	2	0.009		9.35	1.51	1.74	1.70	0.57	942	Ben
3	26 2318		10.7	9.5	25 43.86	25	18	31.10	Kott	- 10	-2	3	0.010	_16.0 (.c)	9.50		1.273	0.86	0.06	724	Ben
4	27 21 19	107742	10.0	8.72	20 08.67	27	24	38.60	K211	-5	-9	ii	0.010	_19.0 (c)	8-45	1.42	1.71	1.16	0.\$8	515	Ben
5	30 22 64		12.1	10.98	20 41.70	29	31	26.00	G8 TI	-5	-7	5	0.009						0.93		Bon
6	30 2279	108629	10.3	8.7	26 03.40	29	51	59.00	Нош	_10	-9	6	0.013		8.58	1.66		1.57	0.27	625	Bon
4	28 20 97	106814	9.7	7.8	AH 25.27	28	01	03.30	172页	-7	-12	7	0.014		8.07	1.61		1.57	0.12	517.6	Bon
8	30 22 50		10.3	9.1	14 15.10	29	SI	51.00	Kola	-6	- 11	8	0.012		10.03	0. 36		1.01	-	-	Bon
9	23 24 30		12.1	.11.5	69 17.30	23	oG	13.00	r 8	- 13	-5	9	0.0.14								Bon
10	24 2448		10.5	9.22	18 18.68	24	22	50.50	K2(11)	-14	-6	10	0.015		9.25	1.18	1.33	1.16	0.06	441	Bon
.11	29 2293		10.3	8.94	26 39.61	28	34	13.00	K418	_7	- 6	M	6000		8.91	1.49					bon
. 12	30 22 90		11.5	14.42	30 27.29	29	50	25.41	A2	- 1	-14	12	0014		MA. SO	0.22	0.05	0 0 6	0.48		Bon
13	27 21 09		11.3	10.06	12 13 44.31	27	٨S	16.56	K1.∰	_ ^8	-5	13	0.019		10.24	1.13	1.24	1.10	0.03		Bon
14	24 2445		6.4	8.6	16 26.79	23	So	46.50	K0(11)	- 10	-8	14	0.013		8.36	0.46	0. 75	1.01	_0.15		Bon
15	28 21 20		11.1	10.9	26 31.57	28	10	16.95	AS	+ 1	- 3	15	0.003						-		
46	25 24 74		12.0	14.2	10 25.92	24	46	08.87	60	+5	+2	16	200.0								
17	28 20 94		10.8	9.64	43 08.98	28	.10	28.06	6902	+ 2	- 6	.17	0.006		9:81	1.03	0.87	0 93	0.12	798	
18	24 24 34		11.0	10.28	cy 0.1.50	23	48	50.33	18(12)	+2	- 14	18	0.014								
19	25 2528		9.6	8.4	32 24. 44	24	47	25.96	Ko(U)	- 14	+1	1.9	0 0/4		8.42	0.97	0.74	1.01	-0.12	440	
20	29 2292	108675	9.3	8.66	26 27.40	29	09	47.07	F611-Y	+10	_1	Lo	0.040	_20.G	8.59	0.54	0.00	0.47	-0.02		
21	30 2287		80	7.6	29 24.88	29	રડ	24.26	FOR	+2	-14	21	0.014	+16.0(2)	7.55	0.30		0.30	0.00		
22	272136		11.0	5.88	24 51.04	27	26	44.93	69 D	+1	-9	22	0.008		10.12	1.493	1.750	0.93	1.68		
23	242444		11.0		16 06.00	23	ŝŚ	40.78	65(0)	-13	+1	23	0.013								
24	25 25 16		113	10.3	28 29.68	25	io	27.36	cs(m)	- 3	+ 12	24	0.014								
												÷									

Table: 1.	N = 2	02)	μ _T =	0.031)	$G_n = 0.020.$		
	N₀	,ui	3i	NL	No-Nc	Yi ² .	
0.000		- 1.8	0.0359				
O.OAD	12	- 1.3	0.0968	12.363	-0.363	0. 011	
0020	28		0.2418	23.345	4.655	0.928	
0.030	58	-0.3	0.3821	34.571	23.429	15.878	
0.040	33	-1 D.2	0.5792	40.044	-7.011	1.228	
0.050	27	0.7	0.7580	36.296	- 9.246	2.381	
D.CCO	NS	1.2	0.8849	25.761	- 10.361	4.495	
0.070	13	1.7	0.9554	AH. 311	-1.54	0. 120	
0.080	3	2.2	0.9861	6.232	2.768	1.229	
0.090	ц	2.7	0.9965	2.111	1. 888	1.690	
C. 100	3	3.2	0.9993	0.563	2.432	10.402	
	202	P		39.36			

Table: 2.	NبرN	,= 37	$\bar{\mu}_{\alpha} = 0$.0244 1	$\sigma_{nc} = 0.0042$.		
	N	μi	₽: _i	N _C	No - N _c	χ^2 :	
0.0025	0	-4.9	0.000	0.000	0.000	0.000	
0.0075	o	-4.024	0.0000	0.000	0.000	0.000	
0.0125	o	- 2 . 833	0.0023	0.085	-0.085	0.025	
0.0175	3	- 1.642	0.0503	1.776	1.224	0.843	
0.0225	i	-0.452	0.3256	AD. 186	- 4. 186	1.720	
0.0235	21	0.738	0.7697	AC. 431	4.568	1.270	
0.0325	6	1.928	0.9731	7.526	-1.526	0.309	
0.0575	1	3.49	0.9991	0.962	0.038	0.001	
	37	T,	(4.23) =	0.0329	4.230		

 $\sim +1$

2510 0

0.020

0 0225

0.025

0. 0175

0. 030

0 0325

0. 0 350

0.0375

0.040

4

3

4

13

9

3

4

0

0

40 %

- 1. 12

. 4. 10

- 0. 47

0.15

0. 17

1. 40

2 03

2.65

3.28

3 90

0.0413

0.1357

0. 3174

0.5546

0.7808

0.9492

0.9786

0.9959

0.9995

0. 9999

P10 (6.77)= 0.75.

4.28 15

5.6426

7. 918

9.4458

8. 148

5.5476

2.3466

0.6630

0. 1365

0. 0 187

- 0. 281

-0.643

-3 -818

3. 5542

-1. 627

2.6024

- 1. 3166

. 0. 163

- 0. 136

-0.018

0 686

0.061

0.001

4.345

1.375

0.307

4.254

0.945

0.665

0.156

0.018

6.77.

Tableau : . II - (suite).

	BD	μi	٦į	μĻ	Φ_i^{μ}	Φ_i^{A}	Pia	Rq.
20.1	29 22 86	-92	+3	0.092	352546.24	355013.27	0. 1699	
202	25 2507	- 70	-68	0.098	435833.44	4458736.28	0.7699.	

Table : 4	+ Na = 4	4,		μa	= 0.03	49)	σ _{ha} = 0.0041.		
	No	м		ę	<u>r</u>		Nc	N _o - N _c	Xi	
0.040	0	- 3.5	0	0.	0002		0.009	.0.009	0.00	3
0.0425	0	-2.9	5	0.0046			0. 6616	- 0.062	0 062	
0.015	1	-2.3	6	٥.	0.0092		0. 334	0.666	1 325	
0.0175	2	-1.8	D	٥.	0.0390		0.311	0.688	0.362	
0.010	3	-1.10		0. 1217		1	3.639	-0.639	0.442	
0.0225	4	-0.57	r	0.2833 0.5095		1	1.132	-3.132	1.375	
0.025	45	0.02				9	.931	3.069	0.948	
0.0275	9	0.62		0. 1320		9	790	- 0. 190	0.064	
0.030	8	1.21		08	877	6	028.	1.149	0.193	
0.0325	ú	1.80		0.0	3648	3	.392	0.608	0.109	
0.035	0	2.4	,	0.	3919	1	.192	-1.192	1. 192	
0.0375	0	5.00		0.4	936	0	.295	-0.295	0.245	
0.040	0	3.59		0.0	998	0	053	-0.053	0.053	
	44		P	$\binom{12}{0}(6.03) = 0.81.$			81.	0.018	6.09	
	Table :	1	la =	40	,	Į.	= 0.0244	, Jna = 0	.0040.	_ '
	Intervalle Hr No		д		Pi		Nc	NN.	Yi	1
	0.000									1
	0.010	0	- 3	6	0, 600	2	\$. 008	- 0.048	800.0	
	0.0+25	0	- 2.	47	0. 104	S	0. 0523	- 0. 2523	0. 523	
(0.0150	1	- 2.	35	0.009	4	3. 308a	0.6949	4.553	

101.

DBSERVATOIRE DE PARIS

Table: 5.	Na=	45,	$\overline{\mu}_{a} = 0$	0227)	Sna= 0.0057.		
	N,	<i>ب</i> از :	ſ?į	Nc	N _o - N _c	χ².	
0.0000		-3.98	D.0000	0	0.000	0.000	
0.0015	0	- 3.54	0.0002	0. 00:1	-0.004	0.007	
0.0075	0	-2.67	0.0004	0.008	_ 0.008	0.001	
0.0425	1	_1.19	0.0367	1.634	_0.634	0.246	
0.0175	8	-0.91	0.1808	6.484	1.515	0.354	
0.0225	7	- 0.03	0. 4860	A3.134	-6.734	3.302	
0.0275	20	0.84	0.3001	14.134	5.865	2.434	
0.0325	7	4.72	0.9572	7.069	_0.069	0.001	
· 0.03\$\$	2	2.60	0.9953	1.714	0.285	0.047	
0.0425	ъ	3.47	0.9997	0.193	- D. 148	0.198	
0.0475	0	4.35	D. 9999	0.009	- 0.009	0.009 .	
	45	Ç	j. (6.63)	= 0.58.	0.006	6.63.	
Table: 6.	Na	= 53)	μa =	0.0240)	(Tna = 0.00	63.	
	Ň٥	µi ±	- Pi	N _c	N _o _ N _c	χ_i^{i}	
0.0000		0.0001	-3.8	0.005	- 0.085	0.005	

- 3.41

-2.62

-1.82

_1.03

._ 0.24

0.55

1.35

2.14

2.43

3.73

 $S_{10}^{b}(6.16.) = 0.27$

0.013

0.216

1.567

6.207

13.10

16.156

10.633

3.845

0.765

0.083

-0.013

-0.216

-0.567

2.793

- 6. SOH

3.843

1.367

0.155

-0.765

-0.083

0.0.13

0.246

0.201

1.256

3 133

D.914

0.116

0.006

0.165

0.008

6.85

0.0003

0.0044

0.0339

0.1511

0.4059

0. 1107

0.9114

0.9839

0.9983

0.9999

Ò

0

٨

9

7

20

13

3

0

0

53.

0.0000

0.0025

0.0075

0.0125

0.0.175

0.0225

0.0275

0.0325

0.0375

0.0425

0.0475

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		No	Щi	$\mathcal{G}^{\mathcal{L}}_{\mathbf{A}}$	Nc	No - Nc	Yi
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0000		-3.8	0.0004	0.005	- 0.005	2.005
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0025	c	-3.56	0.0002	0.0085	- 0.0085	0.008
b. 0.0121 A -A. 92 0.0273 A. 3447 -D. 343 D. 088 0.0015 g -A. 40 0. 4360 I. 4647 3.0351 A. 5444 0.02151 P -D. 28 0.3610 I. 4.047 3.0351 A. 5444 0.02151 P -D. 28 0.3610 I. 4.047 3.0351 A. 5444 0.02151 P -D. 28 0.3610 I. 43.9810 -C. 984 3.486 0.02151 P -D. 28 0.3611 H. 8.351 0.0211 D. 0.472 D. 0.472 D. 0.472 0.03151 H 2.48 0.9152 A. 1425 -D. 472 D. 0.451 0.03151 H 2.48 0.9154 3.914 D. 0.29 D. 0.001 0.0121 D 3.00 0.9986 D. 7260 -D. 726 D. 722 0.0111 D 3.81 D. 9999 0.018 -U.001 0.001 J Ma G. Ma P. 0.0285 J. Take: 7.83. Take: 8. Na E. D. 0.0245 D. 0.0245 D. 0	0.0075	o	-2.74	0.0031	0.1600	_0.160	0.160
0.0415 g -4.40 0.4360 $f.4.47$ 3.035 A.5444 0.0115 7 -0.28 0.5451 43.4810 -6.984 3.485 0.0245 23 0.54 0.7057 11.3521 5.647 4.853 0.0315 11 4.36 0.9152 41.4425 -0.472 0.645 0.0315 14 2.48 0.9154 3.914 0.029 0.000 0.0315 14 2.48 0.9154 3.914 0.029 0.000 0.0415 0 3.00 0.9986 0.1260 -0.726 0.722 0.0415 0 3.84 0.9999 0.3018 -0.001 0.001 55 $\mathcal{P}_{00}^{0}(4.87) = 0.0255$ $\sigma_{na} = 0.0746$ 0.001 0.001 55 $\mathcal{P}_{00}^{0}(4.87) = 0.0255$ $\sigma_{na} = 0.0746$ 0.001 0.0000 -3.09 0.0024 0.042 0.042 0.442 0.0015 0 -2.46 0.0442 -0.442 0.442 0.0024 0.0442 0.0442 0.442 0.442	0.0125	1	-1.92	0.0275	1.3447	- 0.345	0.088
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0115	9	- 4.40	0. 1360	5.9647	3.035	Л. 544
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0225	7	-0.28	0.3902	13.9810	-6.931	3.486
0.0325 41 4.36 0.9452 41.4425 -0.442 0.045 0.0515 H 1.48 0.9354 3.914 0.029 0.000 0.0415 0 3.00 0.9986 0.1260 -0.726 0.1226 0.0415 0 3.81 0.9999 0.0018 -0.023 0.001 0.0415 0 3.81 0.9999 0.0018 -0.024 0.001 0.0415 0 3.81 0.9999 0.0018 -0.024 0.001 0.0415 0 3.81 0.9999 0.0018 -0.014 0.001 10.0115 0 3.81 0.9999 0.0018 -0.014 0.001 10.0115 N_0 M_1 \mathcal{P}_1 \mathcal{P}_2 0.014 0.014 0.0000 -2.40 0.0024 0.0026 -0.042 0.412 0.0015 0 -2.40 0.0146 0.886 -0.856 0.836 0.015 0 -2.40 0.0146 0.886 -0.856 0.836 0.015 0 -2.40 0.0146 0.886 -0.856 0.836 0.015 0 -2.40 0.0146 0.886 -0.856 0.9936 0.015 0 -2.40 0.0146 0.816 -0.856 0.925 0.015 0 -2.40 0.9439 5.76 2.624 2.959 0.0255 4 -0.451 0.846 -0.856 -0.856 0.925 0	0.0245	23	0.54	0.7057	17.3525	5.647	1.838
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0325	11	1.36	0.9152	41. 4425	-0.412	0.0.15
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0375	н	٤.18	0.9354	3.911	0.029	0.000
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.0425	0	3.00	0.9986	0.7260	-0.726	0.726
SS $\mathcal{P}_{10}^{(2)}(2.81) = 0.45.$ 0.077 $7.81.$ Table: 8. $N_{0} = 60$ $\mu_{a} = 0.0235$ $\sigma_{na} = 0.0076.$ N_{0} μ_{i} \mathcal{P}_{i} N_{c} $N_{0} - N_{c}$ $\tilde{\gamma}_{i}^{2}$ 0.0000 -3.09 0.0004 0.006 -0.006 -0.006 0.006 0.0025 0 -2.16 0.0024 0.006 -0.012 0.412 0.0015 0 -2.40 0.0146 0.886 -0.856 0.836 0.0155 0 -2.40 0.0146 0.886 -0.856 0.836 0.0155 6 $-A.44$ 0.0139 3.516 2.6244 2.039 0.0145 6 $-A.44$ 0.0139 3.516 2.6244 2.039 0.0145 8 -0.19 0.5449 8.460 -0.460 0.025 0.0145 8 -0.19 0.5449 8.460 -0.462 3.415 0.0255 10 4.1844 0.8848 $A0.832$ -0.372 0.760 0.0325 10 4.1844 0.9613 5.430 $A.590$ 0.633 0.0315 1 $A.844$ 0.9936 $A.540$ $-A.590$ $A.590$ 0.0445 0 5.16 0.9936 $A.540$ $-A.590$ $A.590$ 0.0445 0 5.16 0.9936 $A.540$ $-A.590$ $A.590$ 0.0445 0 5.16 0.9936 $A.540$ $-A.590$ $A.590$ 0.0445 0 <th< td=""><td>0.0475</td><td>0</td><td>3.81</td><td>0.9990</td><td>0, 2018</td><td>-0.001</td><td>0.001</td></th<>	0.0475	0	3.81	0.9990	0, 2018	-0.001	0.001
Table: 8. $N_a = 60$ $\mu_a = 0.0235$ $\sigma_{na} = 0.0046$ No μ_i \mathcal{P}_i N_x $N_o - N_c$ γ_i^2 0.0000-3.090.00040.006-0.0060.0060.00150-2.160.00290.142-0.4420.00150-2.400.01460.886-0.8860.0150-2.400.01460.886-0.8860.0150-2.400.01393.3162.6240.0150-2.400.01393.3162.6240.0150-0.4120.01393.3162.6240.01520.1498.460-0.4600.0250.0253-0.4310.4446A3.462-6.4623.4450.0135220.5260.3007A5.180C.3203.0640.031530.525404.1840.96335.430A.5400.6330.03153A.840.96335.430A.5400.6330.041503.160.9943A.540-A590A.5900.041503.160.994560 $\mathcal{P}_{A0}^{(A2.30)=}$		55	P.	(7.87) =	0.45.	0.077	7.84.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Table: 8.	Na =	60,	₽a =	0.0235 ,	(na = 0.0	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		N,	μί	З _і	Nc	No - Nc	χ^2_i
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.000.0		-3.09	0.0004	0.006	_0.006	0.006
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0025	ο	-2.76	0.0029	0.112	-0.42	0.1.12
0.0425 G $-A.45$ 0.0739 3.576 2.624 2.039 0.0415 3 -0.79 0.1449 8.460 -0.460 0.025 0.0225 3 -0.451 0.4476 $A3.462$ -6.462 3.475 0.0255 22 0.526 0.407 $A5.480$ $G.520$ 3.064 0.0325 40 $A.184$ 0.9673 $S.480$ $G.872$ 0.6760 0.0325 40 $A.184$ 0.9673 $S.430$ $A.570$ 0.683 0.0375 3.64 0.9953 $A.590$ $-A.590$ $A.590$ 0.0425 0 2.50 0.9953 $A.590$ $-A.590$ $A.590$ 0.0415 0 3.16 0.9945 $ 60$ $P_{A0}(A2.30) =$ $A2.30$ $A.230$ $A.230$	2500.0	0	-2.10	0.0.176	0 886	-0.886	0.836
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0. 0.425	Ĝ	_1.45	0.0739	3.576	2.624	2.039
0.0525 1 $.0.431$ 0.44146 $A3.462$ -6.462 3.475 0.0175 22 0.526 0.7007 $A5.480$ 6.820 3.064 0.0325 $A0$ $A.184$ 0.8848 $A0.872$ -0.872 0.760 0.0375 1 $A.84$ 0.9673 5.430 $A.870$ 0.683 0.0425 0 2.50 0.9958 $A.590$ $-A.590$ $A.590$ 0.0475 0 5.16 0.9942 $ 0.0475$ 0 5.16 0.9942 $ 0.0475$ 0 5.16 0.9942 $ 0.0475$ 0 5.16 0.9942 $ 0.0475$ 0 5.16 0.9942 $ 0.0475$ 0 5.16 0.9942 $ 0.0475$ 0 5.16 0.9942 $ 0.0475$ 0 5.16 0.9942 $ -$	0.0175	3	_ 0.19	0.5149	8.460	_ 0.460	0.025
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0925	7	. 0.431	0. 44:7 6	13.962	- 6.962	3.475
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0275	22	0.520	5007.0	15.180	6.820	3.064
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 0325	10	1.184	0.8818	10.872	-0.872	0.760
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0375	7	1.84	0.9673	5.130	1.870	0.683
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.0425	0	2.50	0.9953	1.590	- 1.590	1.590
$f_{A0}(12.30) = 12.30$	0.0475	σ	5 16	0. 9992 .	-	-	
			Q	$\frac{1}{10}(12.30) =$			10.0

 $N_{a=}$ SS , $\overline{\mu}_{a} = 0.0242$, $\sigma_{n_{a}} = 0.0064$.

Table: 7.

102.

۰.

. . . :

Table : 9.	Na =	. 94)	pa =	0.0277	ma= 0.0098		
	N,	μi	Si	No	No-Nc	γ_i^2	
0.0000		-2.83	0.002	0.004	- 0.084	4-404	
0.0025	0	- 2.57	0.0050	0. M2	-0.492	0.192	
0.0075	0	-2.06	0. 0496	1.037	-1.034 -1.897	1.037	
0.0425	1	4.55	0. 0604	2.317		1.242	
0.0175	9	- 4.04	0.1500	6.283	2 716	А.ЛЭЦ	
0.0125	7	- 0.53	0.2977	10.565	-3.565	A. 203	
0.0275	26	_ 0. 02	0.4920	13.795	12 205	10.797	
0.0325	41	0.49	0. 6819	13.909	-2.910 -3.391 -6.617 4.890	0.608	
0.0375	7	1.00	0.8413	10.891		1.348	
0.0425	0	1.51	0.9345	6.617		6.617	
0.0475	8	2.02	0.9183	3.110		7.190	
0.0111	1	2.53	0.9943	0.319	1.680	8.83	
0.0575	0	3.04	0.9988	0.319	-0.319	0.319	
0.0625	э	3.55	0. 9998	0.071	. 0 071	0.071	
	71	P12 13	(41. 19) =			41.19	
Table : 10.	Na	.= 74)	$\bar{\mu}_{a} =$	0.0279)	Tna = 0.00	93.	
	Ν,	Цi	Г <u>;</u>	Nc	No - Nc	γ. ^ε .	
0.0000		-3.0	0.001	0.307	- 0.807 0.00		

۱

x	N。	1 ₂	x1	n	$f(x) = n/\pi (x_2^2 - x_4^2)$
5 0.5	4	0.5	0	u	5.4
\$ 1.0	12	1.0	0.5	3	3.4
5 1.5	19	1.5	1.0	3	٨.8
\$ 2.0	25	2.0	1.5	6	1.1
\$ 2.5	34	2.5	2.0	6	0.9
\$ 3.0	36	30	2.5	5	0.6
\$ 3.5	щĄ	3.5	30	5	0.5
\$ 4.0	цн	μ .o	35	5	0.25
5 4.5	нц	H.S	4.0	•	D
\$ 5.0	чડ	5.0	4.5	1	0.4
	-	-		1	1

Table: .26.

J

r

0.25

3.75

1.15

1.75

2.25

2.75

3 25

3.75

4.25

4.7S

0.65

0.57

0 45

0 17

-

7.60

6.61

5.27

3.12

6.13

6.74

6.05

4.03

S. da

14040.10.		1 - +4 1	$\mu_{\alpha} =$	0.0279	$)^{0}nu = 0.0095.$		
	N,	μι	₿.	Nc	No - Nc	γ.º.	
0.0000		-3.0	0.004	0.307	-0.807	0.007	
0.0025	0	- 2.13	0.0034	0.133	-0.133	0.155	
2105.0	0	_2.19	0.0441	0.812	-0.812	0.812	
22A0 0	1	-1.65	0.0439	2.571	-1.571	0.459	
0.0175	9	-1.12	0.1317	6.131	2.869	1.343	
0.0125	7	-0.58	0.2807	11.024	-4.025	1.469	
0.0275	26	-0.043	0.4323	14.955	11.045	8.156	
0.0525	12	0.495	0.6895	15.296	-3.296	0.110	
0.0315	7	1.03	0.8430	11.803	-4.803	1.054	
0.0425	3	1.57	0.941	6.859	-3.859	2.172	
0.0415	8	2.11	0.9825	3 219	4.481	1.376	
0 0 525	1	2.64	0.9959	0.992	0.003	0.000	
2820.0	D	3.18	0.9993	0.252	-D.252	0.252	
	74	F	D ¹⁰ (18.43)	=		18.43	

2(25.x ¹) ¹	f.(2)	$n_o(x)$	f1(2)	f2 (2)	f3(2)	$f_{\star}(\mathbf{x})$
9.99	0.36	0.68	5.06	A. Au	0. 52	4.72
4.84	c. 83	2.01	2.01	1.10	0.54	3.67
9.65	c.83	3.26		0.99	0.50	A. 49
5.37	0.81	H. 46		0.82	6.49	1.51
8.93	0.77	5.йц		0.50	0.46	0.96
1.35	0.72	6.12			0.43	0 43

Table: 27.

n_# (r) %

0.25

0.51

0.12

0.38

3.13

8.06

28.2

7.20

6 19

5 11

3.48

4.00

3 60

2.59

0.39

0.34

0.27

0.16

0 39

0.54

0 2}

6 16

42:11	. Nc	= 165	$\mu_{R} =$	0.0393)	0.021	³ . 10.	4.	lable:	42.	$N_{\rm C} = 162$)	He = 0.0390	, 0~~~	= 0.0212
	No	"Щ	₽:	Nr	N _o -N _c	γ_i^{i} .		Interval.	Nou	μί	Γ _i	Nc	N _o - N _c	$\chi^2_{:}$
0		_ 1.8us	0.0325					0.000		- 1.84	0.0329	3.484		
	2	_1.610	0.0534	3.480	- 1.48	0. 621		0.005	2	-1.60	~ 0.0SUS	5.071	-1.484	0. 632
	۸o	_1.515	0.0845	5.051	4.449	4.819		0.040	10	_ 1.51	0.0857	6.482	4 929	(4.192)?
	AS	-1.141	0.4269	6.954	8.046	9.357		0.045	NS	-1.13	0.1283	9. 121	8.0.18	11.64?
.	3	- 0.906	0.4325	9.118	-0.412	0.001		0.020	7	- 0.3	0 1851	44.243	- 2 . 120	0.493
	7	- 0 . 671	D 2511	14 070	-4.070	1.496		0.025	8	_ 0.66	0.2545	18.158	-3 243	0.935
	. 19	-0.436	D.3314	13.169	5.831	2-580		0.030	18	- 0.42	0.5356	14.515	4.862	4. 799
	20	_0.202	0.4199	ан. баң	5.436	2.073		0 035	مک	- 0.48	0.4252	15.463	5.485	2.072
	10	0.035	0.5151	AS. 285	-5.285	2.584		0.040	44	4 0.05	0.5188	15.004	-4 163	1. 143
	12	0.267	0.6052	AS.104	-3.104	0.638		0.045	ЛА	0.28	0.6114	14.045	- 4 601	A. 067
	46	0.502	0.6923	14.284	1.716	0.206		0.050	16	0.52	0-6481	12.425	1.9546	0.272
:	Э	0.157	0.4644	12.644	-5.644	2.515		0.055	P	0.75	0.7748	10.400	- 5.425	2.365
6	9	0.972	0.3342	10.627	-1. 627	0.249		0.060	3	0.99	0 3340	8.262	-2.400	0.554
\$	6	1.206	0.3861	8.511	-2.541	0.741		0.065	G	1.23	0.9900	6.133	- 2.262	0.613
0	ł	1.441	0.9152	6.412	0.588	0.053		0 070	7	4.46	0.9282	H.314	0.812	0.406
s	2	1.646	0.9531	H.576	0.424	0.039		0.025	5	1.64	0.9552	2.948	0 626	0.089
80	4	1.941	0.9720	3.099	0.900	0.261		J.080	ц	1.93	0 4154	1.379	1.052	0.375
5	2	2.145	0.9340	1.968	1.032	0.538	1	0.085	2	2.17	0.9850	4. 118	-0 979	0 411
0	1	2.330	0.9943	4.197	0.803	٤. 444		0.000	L	2.4	0.9919	0 648	0.822	0 636
5	2	2.615	0.9955	0.689	1.311	1.029		0.095	บ	2 64	0 3058		1.352	2.821
0	1	2.850	0.9918	0.317	0.623	Ļ		0.400	1	2.8	0.9980	0.340	0.660	1.279
	165	F	120 18 (33. 18) =	0.02.		33.18			162	P18 (34.	16) = 0.0	12.	$\Sigma = 4.422$	∑= 34.16

le : 13	3. N	$N_c = ASB - \frac{14}{7} \overline{\mu}_c = 0.042$		= 0.0425	ne = 0.0206.		Table: 14.	Table: 14. $N_c = \Lambda S_r^2$) $\mu_c = 0.0404$)		0 nc = 0.0240.	
	N _o ·	лі	S.	NL	N ₀ - N ₁	χ^{z}_{i} .		N,	μі	Г;	NL	No-Ne	γ_i^{t} .
30		-2.06	0.0.495				0.000		-1.42	0.0172			
20	2	- 1.32	0.0343	2.1312	- 0.131	0.008	200.0	2	- 1.68	0.04Sg	2.136	- 0.436	0.2483
40	μ	-1.53	0.0573	3.3120	0.688	D. 143	0.010	10	_1.45	0.0738	4.380	5.619	7.209
١ś	7	_ 1.33	0.0909	4.8310	2.162	0.966	210 0	8	_1.21	0. 1132	6.486	1.814	0.5320
ito	3	-1.03	0.1374	6.6960	0.304	0.014	0.020	э	- 0. 97	0.1656	3 227	- 0.267	0.0010
١ś	8	- 0. 35	0.1918	8.6976	-0.698	0.026	0.025	Ð	_0.73	0.2317	10.378	-2.373	1.0990
50	16	_0.61	0.5720	10.6850	5.315	2.644	0.030	18	- 0.49	0.3102	12.324	5.645	2.6152
25	- 18	-0.36	0.3579	12.3696	5.6304	2.563	0.035	19	_0.26	0.3985	13.363	5.137	1.9035
140	44	_0.42	0.4517	13.5072	-2.507	0. 465	0.040	^1	_ 0.01	0.4924	14.742	-3742	1.5250
245	11	0. 12	0.5483	13.9100	-2.910	0.609	0.045	11	0.22	0.5867	A4. 305	-3 805	0.5344
50	16	0.36	0.6421	13.5070	2.493	0.460	0.050	16	0.46	0.1762	14.0515	1.948	0.2700
221	7	0.61	0.7230	12.3696	.5.370	2.351	0.055	2	0.69	0.7565	12.604	-5.607	2.494
160	3	0.85	0.1012	NO. 6350	_2.685	0.675	0.060	9	0.93	0.8247	10.707	- 1.707	0.2722
165	6	4.09	0.8616	8.6980	-2.698	0.837	0.065	6	1.17	0.9793	8.572	-2.572	0.1718
D∤o	3	1.55	0.9090	6.6816	0.318	0.015	0.070	7	1.41	0.9206	6 484	0.516	0.0410
275	s	A. 58	0.9427	4.8530	0.447	0.004	0.075	5	N.65	0.9503	4.663	0.337	0.020ц
030	u	1.82	0.9(56	3.2976	0.702	0. 449	0.080	н	1.88	0.9703	3 140	0.860	0.2355
281	٤	2.06	0.9804	2.1342	-0.431	0 008	0.085	3	2.13	0. 9331	2.040	0.9904	0.4381
30	2	2.30	0.9894	1.2960	0.704	0.382	0 090	2	2.36	0.9969	1. 225	0.775	D 4909
095	2	2.55	0.9946	0.7489	4.251	2.091	0.095	2	2.60	0.9953	0.6903	1.309	2.4812
1 00	1	2.79	0 9914	0.4032	0.597	0.893	0.100	1	2.84	0 9977	0.377	0.6253	1.0307
	158	(P18 (15.03)	= 0.66.	5. 877	15.03.		157	P 20 ((24.32) =			24.32.

.

0404 , Jn = 0.024
1

Table: 15. $N_{e} = 149$, $\overline{\mu}_{e} = 0.0408$, $\overline{\eta}_{e} = 0.0216.105$. Table: 16. $N_{e} = 147$, $\overline{\mu}_{e} = 0.042$, $\overline{\eta}_{e} = 0.020$.

No Mi P_{L} No Mi P_{L} P_{L} No Mi P_{L} N_{L} N			د ،	, , ,		/ 110		-			,	, .			
0 680 A 89 0.645 0.000 -2.40 0.019 0 685 2 6.6 0.087 2.511 0.651 0.000 5 6.934 2.440 -0.422 0.005 8460 A0 4.03 0.6768 4.202 5.785 5.001 0.000 4 A.50 0.6451 2.440 0.455 0.441 0.440 0.455 0.445		N.	щ	· 9:	Nr	N _o - N _c	×i ² .			No	Цi	<i>Si</i>	Nc	N _e - N _e	7/2.
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0 000 6		- A. 89	0.0195					0.000		- 2.10	0.0179			
8.810 Ao -4.03 0.6764 9.202 5.385 8.001 0.010 4 -A.60 0.6445 5.550 0.4.00 0.453 8.815 3 -4.19 0.4462 5.356 5.444 0.485 0.010 4 -A.60 0.6415 4.437 0.202 0.020 9 -0.96 0.4677 3.535 A.326 0.229 0.020 3 -A.40 0.4556 6.914 A.244 0.452 0.030 45 -0.13 0.2334 9.440 -2.440 0.4125 0.005 3 -A.40 0.4366 6.914 A.244 0.452 0.030 45 -0.04 0.5554 A.354 3.661 A.452 0.855 0.848 -0.57 0.5918 A.244 0.4452 0.855 0.848 0.575 5.338 0.444 0.452 0.855 44 -0.04 0.4152 A.244 0.4452 0.855 0.855 0.444 A.244 0.452 0.855 44 -0.37 0.5918 A.234 0.452 0.455	200.0	2	_ 1.66	0.0487	2.861	-0.961	0.86.1		0.005	2	_4.85	0.0324	2.1.2	-0102	200.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8. 640	10	_ 4. 43	0.0769	4.202	5.798	8.001		0.040	ц	_1.60	0.0548	5.360	0.640	0. 113
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	210.0	1	_4. 19	0. 1162	5.856	2.444	0. 185		0.015	٢	_1.35	0.0385	4.487	0.042	0.000
$a = 0.13$ $0.23\lambda u$ $9.4v_0$ $-2.4u_0$ 0.425 0.025 8 -0.85 0.446 $9.4y_0$ $-A.56$ 0.452 0.050 45 0.050 45 0.055 4.4357 6.113 3.441 0.855 44 -0.27 0.5938 $A.2.37u$ $A.246$ 0.446 0.055 44 -0.55 0.5452 4.547 6.113 3.441 0.855 44 -0.01 0.4852 $A5.4u$ $3.54u$ 0.445 0.000 44 -0.10 0.4682 10.356 -3.556 0.754 0.754 0.4474 3344 0.935 0.045 42 0.144 0.5769 45.165 -4.673 0.752 0.000 44 0.452 10.435 -3.556 0.754 0.045 42 0.144 0.5769 45.163 0.752 0.005 $A6$ 0.400 0.6554 $A14.141$ 3344 0.935 0.051 47 0.390 0.3127 $A.377$	0 020	9	_0.96	0.1677	4.635	1.326	0.229		C 020	8	- 1.10	0.1356	6.971	1.024	0.152
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 025	3	- 0.13	0.2324	9.640	-2.640	0. †25		0.025	8	_0.85	0.4976	9.176	-1.+26	0 454
0 835 44 - 0.37 0.5983 A2.374 A.246 0.466 0 035 49 -0.55 0.3632 45 *72 5 328 4.42 0.640 A1 -0.04 0.4852 A5.444 -3.544 0.493 0.000 A1 -0.05 0.4620 14.56 -3.556 0.754 0.645 42 0.194 0.5769 A3.165 -A.663 0.702 0.045 A4 0.45 0.5564 A1.43 3.74 0.935 0.650 A6 0.45 0.559 A3.165 -A.663 0.702 0.045 A4 0.45 0.5594 A1.43 3.74 0.935 0.650 A6 0.45 0.659 A6 0.40 0.6594 44.43 0.754 0.554 0.754 0.556 0.651 7 0.66 0.3444 A1.847 -4.387 A.952 0.656 3.412 12.335 -5.545 2.656 0.655 6 A.15 0.348 6.437 -4.473 0.455 0.656 A.15 0.3492 -2.325 0.556	0.030	45	.0.50	0.5085	11.359	3.661	1.182		0.030	18	-0.60	0.2742	44.357	6.63	3.915
0.840 44 -0.04 0.485L $A5.444$ -3.544 0.435 0.000 44 -0.10 0.460L $III.356$ -3.55C 0.754L 0.045 42 0.194 0.5769 $A5.65$ -A.63 0.70L 0.045 $A4$ 0.450 $III.356$ -3.55C 0.754L 0.050 A6 0.03 0.6643 A3 M2 2.3887 0.436 0.050 A6 0.40 0.6554 $III.438$ $A.522$ 0.754 0.051 7 0.66 0.34444 $A1.845$ -4.477 0.436 0.050 A6 0.40 0.6554 $III.438$ $A.522$ 0.754 0.050 9 0.39 0.3127 $A0.477$ $A.477$ 0.436 0.060 7 0.66 $A1.41$ 0.912 2.7472 0.755 0.051 6 $A.42$ 0.3676 8.329 2.324 0.454 0.055 6 $A.15$ 0.9174 8.352 2.732 0.555 0.050 7 0.96 0.3442 4.357 0.356 0.055	0.055	14	_ 0.27	0.3943	12.784	1.216	0.416		0.035	49	_0.35	0.3632	13 12	5 328	2.**2
0.045 42 0.194 0.5769 45.165 -4.613 0.702 0.045 44 0.45 0.556 $A.444$ 3.344 0.935 0.050 A6 0.43 0.6644 A3.442 2.385 0.436 0.050 A6 0.40 0.6554 44.438 A.52 0.235 0.051 37 0.66 0.3444 4.845 -4.385 4.952 0.050 A6 0.40 0.6554 44.43 2.335 -5.34 0.255 0.050 9 0.39 0.3127 40.437 -4.385 4.952 0.050 3 0.90 0.3145 40.422 -2.422 0.755 0.050 7 0.451 0.055 6 A.15 0.422 -2.422 0.755 0.051 7 0.356 8.329 -2.324 0.451 0.065 6 A.15 0.3442 6.550 0.444 0.444 0.444 0.3442 0.556 0.422 0.755 0.655 0.556 0.556 0.556 0.556 0.556 0.556 0.556 0.556	0.040	11	-0.04	0.4852	43.544	-3.544	0.475		0.040	-11	_ 0.10	0.4602	14.356	-3.556	0.784
0.050 AG 0.u3 0.6643 A3 H2 2.883 0.436 0.050 A6 0.40 0.6554 44.433 A.822 0.23- 0.051 $\widehat{\gamma}$ 0.66 0.34444 44.845 -4.845 A.982 0.050 A6 0.40 0.6554 44.433 A.822 0.23- 0.050 9 0.36 0.34444 44.845 -4.845 A.982 0.050 7 0.65 0.3444 42.333 -5.845 2.653 0.050 9 0.90 0.3459 40.437 -4.479 0.436 0.060 7 0.655 0.3444 42.332 -2.322 0.355 0.050 3 0.90 0.3459 40.912 -2.422 0.356 0.051 4 4.55 0.348 5.437 A.533 0.557 0.655 6 A.15 0.3442 4.932 -2.332 0.356 0.055 4 A.54 0.9435 4.643 0.356 0.620 0.673 5 A.65 0.9465 4.652 0.5568 0.324 0.356	0.045	42	0. 194	0.5769	13.665	-1.663	0.702		0.045	41	0.15	0.5596	14. 441	3.711	0.936
0.051 3^{2} 0.66 0.34444 41.345 -4.384 4.952 0.055 7 0.65 0.3424 12.335 -5.345 2.65 0.050 9 0.39 0.3127 40.437 -4.137 0.436 0.060 3 0.90 0.3459 40.422 -2.422 0.755 0.050 7 0.65 6 $A.16$ 0.31424 42.325 -2.422 0.755 0.050 7 0.65 6 $A.16$ 0.31424 40.422 -2.422 0.755 0.050 7 0.90 0.3442 4.922 -2.4322 0.755 0.655 6 $A.16$ 0.3142 40.422 -2.4322 0.755 0.556 0.050 7 0.90 0.3442 0.422 0.2352 -2.332 0.556 0.0464 0.0565 6 $A.16$ 0.3442 0.556 0.444 0.055 0.344 0.422 0.234 0.556 0.234 0.556 0.234 0.556 0.234	0.050	16	0.43	0.6649	13 112	2.888	0.636		0.050	16	0.40	0.6554	44. 138	1.8.2	0.234
0.05c 9 0.89 0.3127 40.137 -A.173 0.136 0.060 8 0.90 0.1469 40.422 -2.422 0.757 0.056 C J.42 0.31626 $\overline{3.329}$ -2.324 0.451 0.065 6 A.15 0.1314 8.352 -2.332 0.854 0.030 A 4.35 0.9488 $\overline{5.437}$ A.503 0.579 0.040 A A.40 0.3442 C.556 0.0404 0.030 A 4.55 0.948 $\overline{5.437}$ A.503 0.579 0.040 A.40 0.3442 C.556 0.044 0.030 A A.56 0.9435 4.693 0.356 0.020 0.0735 S A.40 0.3461 4.652 0.568 0.024 0.030 A A.56 0.9465 3.243 0.7357 0.401 0.073 2 2.45 0.4743 3.645 0.4722 0.2568 0.024 0.090 4 A.90 0.9461 4.622 0.2568 0.024 0.2916 2.455 0.422 0.242 </td <td>220.0</td> <td>3</td> <td>0.66</td> <td>0.7444</td> <td>11.845</td> <td>-4.845</td> <td>1.982</td> <td></td> <td>کک ہ .0</td> <td>7</td> <td>0.65</td> <td>0.7421</td> <td>12.832</td> <td>-5.518</td> <td>2.650</td>	220.0	3	0.66	0.7444	11.845	-4.845	1.982		کک ہ .0	7	0.65	0.7421	12.832	-5.518	2.650
$C \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0 \ $	0.050	9	0.89	0.8123	10.177	-4.177	0.136		0.060	8	0.90	0.7A59	10.922	- 2.422	0.752
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	230.0	6	1.12	0.3636	8.329	_2.329	0.651		0.065	6	1.15	0. 8749	8.732	-2.732	0.854
0.075 5 $A.58$ 0.9433 4.643 0.306 0.020 0.073 5 $A.65$ 0.366 4.632 0.326 0.024 0.050 μ $A.54$ 0.9652 3.243 0.427 0.416 0.090 μ $A.30$ 0.9743 3.035 0.422 0.224 0.051 Σ 2.05 0.9436 2.445 -0.446 0.090 μ $A.30$ 0.9743 3.035 0.422 0.224 0.050 Σ 2.05 0.9436 2.445 -0.446 0.090 μ $A.30$ 0.9442 $A.469$ 0.042 0.075 2.545 0.4842 0.462 0.035 0.936 2.546 0.9442 0.422 0.224 0.050 2 2.40 0.9442 $A.469$ 0.0431 0.024 0.035 2 5.40 0.9916 $A.425$ 0.535 0.442 0.535 0.544 0.523 0.544 0.523 0.544 0.523 $A.52^{20}$	0 030	1	1.35	D. 9448	6.437	1.563	0.379		0.070	7	Л. ЦО	0.3492	6.556	0.404	0.003
0.020 μ $A.81$ 0.9652 3.243 0.7437 0.414 0.090 μ $A.90$ 0.4743 3.073 0.422 0.274 0.055 Σ 2.05 0.9196 2.145 -0.446 0.090 2 2.45 0.4943 3.073 0.422 0.274 0.050 Σ 2.05 0.9196 2.145 -0.446 0.090 Σ 2.45 0.4942 0.422 0.274 0.050 Σ 9.28 0.4186 4.344 0.659 0.095 Σ 2.45 0.4942 0.422 0.224 0.050 Σ 9.28 0.4186 4.344 0.659 0.095 Σ 2.44 0.499 0.031 0.095 2.51 0.4916 0.622 0.333 0.653 0.653 0.035 2.546 0.9916 0.422 0.533 0.553 0.654 0.0035 2.546 0.9916 0.544 0.553 0.553 0.564 0.100 1.900 0.4182	0.035	5	1.58	0.9435	4.613	0.306	0.020		0.075	5	1.65	0.9505	4.632	0.368	0.029
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0 020	4	1.81	0.9652	3 243	0.737	0.166		0.090 .	4	1.90	0.9713	3.035	0.422	0 226
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.055	٤	2.05	0.9:196	2.145	-0.446	0.003		0.085	2	2.15	0.9842	1.409	0 091	0 034
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.090	2	2.28	0.9186	1.341	0.659 -	0.324		0.090	2	2.40	0.9918	1.425	0.875	0.654
$0.4co$ 4 2.74 0.969 0.447 0.553 0.654 0.400 1 2.90 0.4181 0.544 0.653 4.55 149 \mathfrak{P}_{A1}^{20} $(19.41) = 0.54$ 4.857 19.41 $147.$ \mathfrak{P}_{A8}^{20} $0.474 = 0.58.$ 43.44	0 035	2	2.51	6.943-3	0.790	A. 240	1.955		0.095	2	2.65	0.9460	0.622	1.378	3.056
$149 \mathfrak{P}_{A5}^{20} (1941) = 0.54 4.357 19.44 147. \mathfrak{P}_{A8}^{50} (19.44) = 0.58. 19.43$	P. Aco	1	2.74	0.9969	0 447	0.553	0.684		0.100	1	2.90	0.9984	0.344	0.689	1.528
		149	S 11	(19 41) =	0.54	4.857	19.41			147.	P18	°(19.17)=	0.58.		49.42

i • • • •

Tuble: 17. N = Au ; $\bar{\mu}_{1} = 0.012$; $\sigma_{n} = 0.003$.

	N,	щ	ና <u>i</u>	Nc	No-Nr	7:
0. 000		- 4.00	0.0001	0.000	0.080	0.000
0. CC LI	0	_ 1.06	0.0038	0.0037	-0.004	0.004
0 008	4	_1.55	0.0912	1.224	_ 0.29H	0.041
0.012	2	o	0.4999	5.722	_ 0. 722	0.091
0.046	3	1.55	0.9088	5.725	1.275	0.284
0.010	4	2.66	0.9961	A. 122	- 0.272	0.040
0.014	0	4.00	0.9999	0.053	- 0. 053	0.013
	14	5) (0. 513)	= 0.90.	0.050	0. \$15

Table: 18. ' N. + 120 , \$\$\$\$ = 0.0251 , \$\$\$\$\$ = 0.0045.

		/		/		,,
	N,	بلا	?₊	N	No - Nc	72.
0 0000		- 5.57	0.000	0.000	0.000	0.000
0 2675	0	- 3. 30	0.000	0.000	0.000	0.000
2240 0	٥	- 2.80	0.0025	0.3037	- 0. 304	0.304
0.0175	7	_ 1.68	0.0456	5.2151	1.765	0.611
0 0 223	28	-0.57	0.28^7	23.5684	-0.568	0.011
0 6275	50	0.53	0.1011	50.4814	-0.414	0.019
0 6325	82	4.64	0.1414	29.3628	2.134	0.453
0 0575	3	2.75	0.9911	5.712	- 2.744	4.187
0 0415	0	3.80	0. 9939	0. 5388	- 0.335	0.339
	120	\mathcal{P}_{i}^{i}	(2.48) =	0.87.		2.48

able:19. Nc	- 43	۱ <u>)</u>	P.	= 0.0428) ⁽⁷ nc ²	0 0210
Internal Mr	N.	μί	3;	Nc	N ₀ _ N ₁	X
0.000		-2.03	0 014	-	-	-
0.005	2	-1.08	0.035	2.069	-0019	0.002
0.610	ч	-1.56	0.059	3.249	0 780	0 +39
210.0	2	-1.52	0.043	4.576	0.424	0.039
0. 020	8	- 1.08	0.435	6.302	1.648	0.457
0.025	3	_ 0.85	0.198	8.451	0.541	0 . 13
0.030	24	-0.61	0.274	9.974	5.026	2.535
0 035	47	- 0 37	0.355	19. 510	5.492	2.620
0.040	1	-0.13	0.447	12.540	- 4 540	A. 670
0.045	11	+0.10	0.542	12.414	-1.0)4	0 300
0.050	14	0.34	0 694	12.660	1.541	0.142
0.055	7	0.58	0.145	11. 686	- 4.656	+ 119
0.060	8	0.82	0.744	10.165	-2.465	0.46:
0.065	6	1.06	0 855	\$.384	-2.384	0.63
0.070	1	1.24	0.402	6.514	0.479	0035
250.0	1	4.53	0 457	4.745	0:05	0 00 9
0080	ч	1.77	0.962	3.5-9	0.674	o *55
0.085	2	2.01	0.911	2. 42	.0.42	0.0.7
0.090	2.	2.25	0 455	1.310	0 630	0 240
0.045	2	2.45	0. 443	0.245	1.215	1923
0. 100	1	1 72.	0.947	0.452	0 Su1	0 664
	137	P.	(14.04) =	0.73.	Z = 3 281	Z . 44 04

:

•	•	· u,) /	Ta) na	
Interval μ_{f}	N.	Hi	Si	Nc	$N_0 - N_c$	χ^{2}_{i}
0.000		- 6.30				
0,0.10	0	-3.50	0.0000			
200.0	0	_2.70	0.0029	0.107	-0.107	0.107
0.020	A	_1.60	0.0580	2.034	_ 1.033	0.529
0025	16	- 0.38	0.3516	10.863	5.137	2 .429
0.030	14	0.81	0.9909	16.254	-2.254	0.312
0.035	4	2.00	0.9772	6.893	- 2.893	1.214
0.040	2	3.20	0.9993	0.818	1.182	1.398
0.045	0		0.9999	0.022	- 0.022	0.022
	I=37		Pt 6.01)= 0.30		2 = 6.01
Table : 22		$N_a^L = 42$, ^µ _{τa} =	0.0263	Jna = 0	.0048
ntowal MT	No	Цi	<i>S</i> i	N _c	No-Nc	χ^2_i
0.000		-5.40	0.0000			
0.010	ο	-3.40	0.0003			
0.045	O	-2.30	0.0003	0.378	0-378	0.378
0.020	4	- 1.30	0.0947	3.587	0.413	0. 047
0.025	16	0.27	0.3933	12.541	3.459	0.954
0.030	NS	0.80	0.7796	16.225	-1.225	0.092
0.033	ц	1.80	0.9650	7.787	-3.787	1.841
0.0 H0	3	2.85	0.9978	1.378	1.622	1. 311
0.045	0	4	0. 3399	0.088	-0.088	0.088
	Z= 42		P6 (5.31)	= 0.50.		2= 5.31
					1	1

-

	a)	. a	·)				
Intowal Mr	No	μι	°₹,	Nc	N _o -N _e	γ²		
0.000		-5.70						
0.040	σ	- 3.50	0.0002					
0-015	1	-2.40	D. 00:72	0.301	0.699	A.623		
0.020	r	-1.30	0.0912	3.612	-1.612	0.419		
0.025	18	-0.22	0.4121	13.799	н. 201	1.279		
0,030	AG	+0.88	0.8130	17.239	-1.239	0.089		
0,035	4	2.00	0.9712	7.060	-3.061	1.326		
0.040	2	3.10	0.9991	0.942	1.058	1.189		
0.045	o	4.20	0.9999	0.034	-0.034	0.034		
	43	\mathcal{P}_{i}^{2}	^b (6.26)=	0.39.		6.26.		
Table: 24.	$N_a^{L,c} = 1$	μζ. ;	$\mu_a =$	0.0257 ;	$\sigma_{na}^{L,c} = 0.00$	948.		
Interval MT	No	μi	Pi	N _c	No-Nc	γ_{i}^{2}		
0.000		- 5.35						
0.0.10	0	- 3.27	0.0005					
0.015	1	- 2.20	0.0129	0.558	0.442	0.350		
0.020	4	-1.18	0.1175	4.707	- 0. 707	0.106		
0 025	18	_ 0.14	0.4420	14.602	3.347	0.790		
0. 030	16	0.89	0.8150	16.746	-0.776	0.036		
0.035	4	1.93	0.9740	7.146	-3.146	1.385		
0.040	2	2.97	D. 9985	1.120	0.379	0.690		
0.045	0.045 0 4.02		0. 9999	0.063.	_ 0.063	0.063		
	45			0.75.		3.4L		

ANNEXE II

TABLEAU	1	:	Liste définitive des étoiles qui contribuent au diagramme H–R.	109
TABLEAU	11	:	Etolles du turn-off des Hyades.	111
TABLEAU	 	:	Etoiles du turn-off de Coma.	111
TABLEAU	IV	:	Recherche du coefficient α de la I.M.F	112
TABLEAU	v	:	Recherche du coefficient A de I.M.F	112
TABLEAU	VI	:	Etoiles standards du champ pour l'estimation du module de distance de l'amas.	112
TABLEAU	VII	:	Etoiles naines de Ursa-Major et des Hyades.	96

.

Tableau: I. (début).

To eau: I. (debut .

Nº BOUNA TIRO	BD	٧	B-V	Mu	C.B Jonhson	Mbol.	Delf Jenhson	Tyl.	Log Teff.		Mv	C.B. VAN DENBERG	Mbol.	0 4f. VANDENBERG	Teff.	LogTeff.	
1	27 2130	9.45	0.80	5.21	- 0. 175	5.035	0.455	5277	3. \$22	A	5-21	-0.15	5.06	0.956	5.272	3.722	
2	28 21 93	8.50		3.96						2	3.96						
4	26 2323	7.89	0.353	3.35	0.025	3.55	0.745	6765	3.830	4	3.55	که.0 -	8.30	0.720	7000	3.845	
2	28 2125	8.61	0.47	4.07	_ 0.02	4.05	0. 820	6222	3.794	3	4.07	_ 0.05	4.02	0.790	6380	3.805	
6	27 2129	8.37	0.45	3.23	-0.01	3.82	0.800	6300	3.793	6	3.83	- 0.05	3.78	0.7775	6503	3.813	
1	25 2495	7.42	0.273	2.88	+ 0.05	3.02	0.700	7200	3.857	1	2.88	_0 05	2.93	0.674	7478	3.874	
8	28 2115	4.95	0.273	D,41	+0.05	0.46	0.700	7200	3.857	8	0.41	_ 0.05	0.36	0.673	7489	3.974	
9	26 2326	6.48	0.181	1.94	40.06	£.00	0,640	7875	3.896	9	1.94	_ 0.05	1-89	0.628	8155	3.911	
10	25 2488	9.02	0.566.	4.48	_ 0.05	4.43	0.850	5929	3.773	10	4.48	_ 0.06	4.42	0.842	5986	3.777	
11	24 2457	8.60	0.453	4.06	_ 0.0 4	4.05	0.840	6300	3.799	11	4.00	_ 0.05	4.01	0.778	6478	3.811	
12	30 2281	9.41	0.54.	4.87	_ 0.04	4-83	0.640	6000	3.778	12	4.83	-0.06	4-82	0.825	6109	3.786	
13	29 2280	6.67	0.177	2.13	+0.06	1.19	0.590	7875	3.896	13	2.13	- 0.05	2.07	0.616	8182	3.913	
15	26 23 53	6.65	0.107	5.11	40.05	216	0,625	8542	3.931	15	٤.11	_ 0,05	2.08	0.582	8660	3.938	
17	26 13 52	6.76	0. 163	2.22	40.06	2.28	0.695	8064	3.906	17	2.22	_ 0.05	2.47	0.608	8289	3.919	
18	26 23 45	6.42	0.266	1.88	20.05	1.92	0.945	7252	3.860	18	1.88	_0.05	1.33	0.665	7579	3.880	
20	252511	9.78	0.776	5.24	- 0.16	5.08	0.945	5300	3.727	20	5.2н	_ 0.15	5.09	0.946	5328	3.727	
21	28 2095	8.28	0.40.	3.7H	40.01	3.45	0.775	6503	3.813.	21	3.44	_ 0.03	3:11	0.750	67720	3.827	
23	27 21 58	6.54	0.179	2.00	40.06	2.06	0.640	+875	3.896.	23	2.00	0.05	1.95	0.620	-8129	3.910	
24	29 2109	8.55	0 463	4.01	_ 0.04	4.00	0.305	7875	3:796	ीम	4.01	- 2.05	3.96	0.790	6380	3.805	
25	27 21 21	9.36	0.59	4. 82	_ 0.055	i1.765	0.860	5860	3.468	25	н.82	_ 0.05	4.77	0.855	5895	3.770	
16	26 2340	3.12	0.54	4.58	- 0.04	н. Sy	0.840	6000	3.778	16	4.58	- 0.05	4.53	0.840	6000	3.178.	
26	27 2122	8.42	0.443	3.81	- 0.01	3.87	0.795	6339	3.802	20	3.88	_ 0.05	3.83	0.473	6520	3.814	
28	26 23 44	5.18	0.076	0.64	40.03	0.67	0.570	8842	3. 946	21	0.64	_ 0.05	0.59	0.566	3905	3. 450	
19	26 23 21	8.13	0.410	3,58	+0.01	3 39	0.780	6461	3.810	29	3.58	_ 0.05	3 .53	0.755	6675	3. 824 .	

Tableau: I. (Auite).

Tableau: _I_ (suite).

Nº BOUNA TIRO	BD	V	B-V	Mv	C.B. JONHSON.	Mibel.	Oulf. JONHSON.	T.H.	LogTeff.		Mv	C.B. VANDENBERG	Mbol.	BULL. VANDENBERG.	Tųį.	LogTeff.
30	26 2357	4.80	0. Hgo	0.26	-0.02	0.24	0.345	6189	3.191	30	0.26	0.05	0.21	0. 757	6324	3.801
31	25 2486	8.83	0.510	4.29	.0.03	4.26	0.925	6109	3.786	31	4.29	20.05	4.24	0.812	6207	3.795
32	27 21 54	5.00	0.081	0.46	+0.055	0.405	0.570	8942	3.946	32	0.46	-0.05	0.41	0. 573	8796	3.944
કુક	27 5127	8.60	0.453	4.06	-0.040	4.05	0.800	6300	3.799	36	4.06	-0.05	4.01	<u>ک</u> ا ب ۲. ۵	6503	3.843
34	26 2347	8.17	0.518	3.62	_ 0.03		0.830	60 72	3.783	34	3.62	_0.05	3.57	0.815	6184	3.791
કડ	27 21.13	9.53	0.590	4.79	-0.055		0.860	5860	3.168	ઝ	4.79	-0.06	4.73	0.855	5 895	3.770
46	26 235H	5.29	-0.050	0:74	_0.23		0.475	10610	4.026	46	0.74	_0.32	0.43	0.475	10611	4.026
36	24 21164 ·	5.48	0.430	0 43	0.00	0. 93	0.790	6390	3.805	ઝંદ	0.93	- 0.04	0.89	0.766	6580	3.818
31	26 2343	6.12	0.230	2.18	t0.06	2.13	0.670	4522	3.876	37	2.18	-0.05	2.13	0.645	7814	3.823
38	25 25 47	5.46	0.040	0.92	+0.005	0.36	0.550	916H	3.962	38	0.92	-0.05	0.87	0.546	9231	3.965
39	23 2447	8.13	0. 520	4.18	- 0.03	4.13	0.830	6072	3.783	39	4.18	-0.05	4.13	0.815	6184	3. 791
41	30 22 87	7.55	0.300	3.01	f 0.04	2-96	0.715	1049	3.848	41	3.01	-0.05	2.96	0.686	7349	3.866
43	25 25 23	6.29	0.108	1.25	+ 0.05	1.70	0.590	8542	3.931	43	۲.75	-0.05	1.70	0.582	8680	3.938
цц	28 2087	18.12	0.400	3.58	+0.005	3.53	0.775	6503	3.813	44	3.58	_ 0.05	3.53	0.750	6720	3.827
чŚ	23 2448	6.27	0.167	1.73	+0.06	1.68	0.630	8000	3,903	٤	1.73	-0.05	4.68	0. 608	8289	3.619
47	25 2482	8.80	0. 520	4.26	-0.06	4.20	1.120	4500	3.653	47	4.26	-0.06	4.20	1. 120	4500	3.153
48	24 2455	6.03	1.10	A.49	- 0.46	1.03	1.020	4500	5.653	48	1.49	- 0.46	1.03	1.020	4500	3.653
50	26 2330	9.10	0.550	4.56	-0.04	4.52	0.840	6000	3.778	ζo.	4.56	-0.05	4.52	0.840	6000	3.778.
	21 2348	5.57	0.950	1.03	_ 0.535	3.02	1.030	4893	3.639		1.03	-0-21	0.82	1. 1030	4870	3.6375
	87 22 98	7.27	0.440	2.73	_0.01	2.72	0:795	6340	3.802		2-73	-0.03	2.70	0. 195	6339	3-802
	36 2278	9 71	0.630	4.54	- 0.18	н . 40	0.975	5760	3.160		4.54	- 0.16	4.38	0.875	5760	3.760
	32 12 36	9.14	0.540	4.60	_0.04	4.56	0.840	6000	3.118		4.60	0.05	4.55	0.825	6709	3.786
	24 2424	1.49	0.330	2.95	+ 0.03	2.98	0.\$35	6857	3.836		1.95	-0.05	2.90	0.735	6857	3.836
	28 21 56	4.94	0.670	0.40.	. 0.0g	0.31	0. 8AS	5631	3. 754.		0.40	-0.03	0.31	0.725	6380	3.905

Tableau : II

Tableau : II

	HD	Binarité	Sp	V	B-V	Teff.	Mv	С.В.	Mboe.	LogTeff.
4	276850		Azm	5.72	0.22	5600	4.61	_v.vy	4.57	3.748
L	277 490		A1 m	5.64	0.30	7049	2.39	20.05	2.34	3.848
3	278 190		A9 R	4.30	٥. ٨٢	8129	A.\$\$	20.05	1.50	3.910
н	279340	в	ATOT	4.29	0. 13	7754	2.03	_0.05	1.89	3.889
٢	1= Compagnon		86TF	6.07	- 0.10	10080	2.77	-0.13	2.64	4-003
G	2ª Compagnon		ATE	5.28	0.25	÷				
3	273 460		ATE	5.28	0.25	8690	0.97	_0.06	0.91	3.939
8	279 620	в	AZTE	4-29	0.05	9164	1.04	20.02	0.99	3.962
9	tompaynon		B10	4.27	-0.23		0.97	-0.05	0.92	
10	280 240		A8¥	4.28	0.26	8400	1.03	که.ه _	0.98	3.924
11	282 260		Am	5.72	0.27	7469	2.47	20.02	2.42	3.173
12	283550		ATE	5.03	0.23	7522	1.78	-0.05	1.73	3.876
43	285270		AGE	H.78	0.17	8000	1.53	_0.05	1.48	3.903
14	285460		Am	5.48	0.26	5636	2.23	-0,18	2.05	3.883
NS	289100		A82	4.65	0.25	77-54	4.40	-0.04	1.36	3.889
16	293880		AGE	4.27	0.12	8615	1.02	_ 0. 05	C.97	3.435
17	294 990		Aśm	5.39	0.26	7636	2.14	که.ه_	2.09	3.833
13	294 880		ASE	4.69	0.15	8129	Л. НИ	_ 0.05	1.39	3.910
19	302100		Am	5.37	0.19	8195	2.12	- 0.05	2.07	3.913
20	307800		AJES	6.10	0.21	7937	1.88	-0.0U	1-84	3.899
٤٨	323040		AND	4.64	0.16	8400	1.39	-0.04	1.35	3. 324
22	332540		Asn	5.43	0 24	3554	2.18	-0.05	2-13	3.889
23	322040	В	ASm	8.175	0.72	5663	5.29	- 0.39	- 5.20	3 753
24	.Compaynon		6.951	0.27	0.04	5478				

		·.								
	BD.	Binarité	Sp	۷	B-V	Tuff.	Mv	C.8.	Mbol.	LogTeff.
1	262344		A38	5.18	80.0	8 9 0 5	0.64	-0.05	وک . ٥	3.050
٤	27-21-34		A42	5.00	0.08	.8796	0.46	. 0.05	0.41	3.944
3	26 2354		Aop	5,29	- 0.05	10 611	0.74	-0.32	0.43	4.026
н	262343	в	Am	6.42	0.237	7814	2.18	_ 0.05	2.13	3.823
5	, ion pagnon									
6	252517		A2p	5.46	0.05	9231	0.92	_0.05	0.87	3.965
7	252523		AHEm	6.24	0.11	.8680	1.75	- 0.05	1.70	3-938
8	२४ २५ वर									
9	26 23 26		Alicas	6.48	0.19	3155	1.94	-0.05	1.48	3.911
Λo	29 22 30	В	A618-2	6.69	0.18	8182	2.13	0.05	2-07	3.913
11	, Compagnon									
42	262353	В	Aop	665	0.22	8660	2.11	-0.05	2.06	3 938
13	, Compaynon		Ko	6.24	1.08	4590	1.75	_ 0.47	A.28	3.657
/ 4	26 23 52		Am	6.75	0-17	82 89	2.22	- 0.05	2.17	5 919
M	262345	в	APE	6.42	0.27	7579	1.88	.0.05	1.83	3.880
16	, Compagner		Bile	4.66	. 0.03	10391	0.12	-0.45	ວ. ວິວິ	H.017
17	27 21 38	В	A2m	6.54	0, 179	9129	2.00	-0.05	1.95	3.910
N	Companyon									

Tablean: IV

	Ø = 0.35.	X = 1.35.	X = 2.35.	X = 1.45	X = 3.35
ণাদ্	10x N(mg)	10 × N(m6)	lox N(mc)	lox N(mc)	10×N(114).
Л. ЛО	9.67	8.79	7.99	8.46	7.27
A. 30	8.12	7.02	5.40	6.32	4.15
4.50	8.68	5.78	\$.87	4·42	2.57
1.70	8.30	4.88	2-87	3.95	1.69
1. 30	7.99	4.20	2-21	3.25	1-16
2.10 .	7.71	3.67	1.75	2.43	0.93
2.30	4.47	3.25	A_ 41	2-33	0.61
2.50	7.26	2.9	1.16	2-01	0-46.
2 70					

Tableau: I, X = 2.35

	•	/			
m	10 × N(mc)	12 x N(mb)	13 x N (m)	14 x N(mc)	15x N(m).
1. to	7.99	9.60	10.40	A1.18	11. 98
1.30	5.40	6.48	4.02	7.56	8-10
A. So	3.37	4.64	5.03	5.42	5.80
1.70	2.87	3.44	3. 79	4.02	4.30
4.90	2.21	2.65	2.97	3.99	3.31
2.10	1.75	2.40	2.27	2.45	2.61
2,30	1.41	1.70	1.83	1.97	2.11
2.50	1.16	1.40	1.52	1.62	1.74
2. 10					

Tablean: VI

S. d.

;

· ·

		1						~
НD	V	8-∨	π	HD	V	B-V	Π	
1518	4.23	0.58	0.440	3652	5.57	0.85	0.095	
14802	5.20	0.60	0.076	3765	5.87	0.44	0.072	
20630	4.83	0.68	0. 107	17925	7.36	0. 57	0.127	
2079н	4.27	0-71	0.161	82885	6.04	0.77	0.109	
30495	5.51	0.63	0.077	101501	5.41	0.72	0.110	
39187	4.41	0.59	0. 101	131156	5.33	0.76	0.148	
43834	5.09	0.72	O. MAS	149661	4.55	0.32	0.090	L
52711	5.93	0.60	0.058	155885	5.75 5.06	0.36	0.184	1
76151	6.00	0.67	0.085	455886	5.09	0.36	0.184	
98230 8	3.80	0. 59	0.127	165341	ц.25	0.78	0.195	
98231 A	3.19	0.59	0.127	32147	6-22	1.06 -	0.109	
99492	6.50	0. 79	0.057	131977	5.74	1.49	0.180	
109358	4.26	0.59	0.006	219134	5.56	1.31	0.147	
3 4 43	5.57	0.72	0.93	119100	9.31	1-20	0.061	
201091	4.84	1.26	0.296	156026	6.34	1-16	0.184	
			1					

TABLE DES MATIERES

.

.

114.

<u>1ère PARTIE</u> : <u>ETUDE</u> ASTROMETRIQUE

1	-	INTRODUCTION	5
11	-	ETUDE STATISTIQUE DE LA REGION CENTRALE DE L'AMAS COMA	6
		A) – Introduction	7
		B) – Test de King (1979) 1º) Description 2º) Application	8
<i>III</i>	-	ETUDE DE LA REGION AVOISINANTE	17
IV	-	EXAMEN PHOTOMETRIQUE	22
		A) – Liste définitive	23
		B) – Correction de LACROUTE et CORBIN	27
		C) – Liste complémentaire	31
		D) – Comparaison avec la liste de Trumpler	32
		E) – Examen photométrique du groupe de 14 étoiles observé lors de l'application du test de King	32
v	-	TEST DE SCHWARZSCHILD APPLIQUE AU CHAMP RESULTANT	34
		A) – Description	35
		 B) - Application et détermination de l'apex et du vertex : après l'étude statistique, après l'examen photométrique 1°) Détermination de l'apex 2°) Détermination du vertex 	36
VI	-	GRANDEURS ASTROMETRIQUES DEFINISSANT L'AMAS	40
		A) – Mouvement propre moyen	41
		B) – Distance	41
		C) – Vitesse radiale et Vitesse spatiale	42
		D) – Coordonnées du centre	43
		E) – Diamètre angulaire et taux de concentration des étoiles	43

<u>2ème PARTIE</u> : <u>ETUDE SPECTROPHOTOMETRIQUE</u>

1	-	INTRODUCTION AU DIAGRAMME H-R	51
11	-	DIAGRAMME H-R DE Coma Berenices	57
		A) Détermination de la température effective et de la magnitude bolométrique	58
		B) Interprétation du diagramme H-R	62
111	-	GRANDEURS PHYSIQUES DEFINISSANT L'AMAS	65
		A) Composition chimique de l'amas	66
		B) Age de l'amas	70
		C) Fonction de luminosité de l'amas	75
-		D) Distance de l'amas	79
		E) Comparaison des résultats avec les études précédentes	81

V - <u>CONCLUSION</u>

83

TABLE DES FIGURES

1ère PARTIE

Figure	1	Différentes distributions du champ et de l'amas après l'étude statistique	13
Figure	2	Différents histogrammes du champ et de l'amas après l'étude statistique	14
Figure	3	Limite de la région avoisinante de l'amas Coma	18
Figure	4	Représentation et histogramme des 120 étoiles de l'amas	20
Figure	5a	Variation de l'Indice de couleur des étoiles en fonction de leur température	24
Figure	5b	Diagramme théorique à 2 couleurs	26
Figure	6	Répartition et distribution des étoiles du champ et de l'amas après l'examen photométrique	30
Figure	7	Diagramme H–R (B–V, V) du groupe des 14 étoiles	33
Figure	8	Détermination de l'apex et du vertex	38
Figure	9	Représentation des 45 étoiles de l'amas Coma dans le plan (α, δ)	45
Figure	10	Densité spatiale de l'amas Coma	47

.

.

2ème PARTIE

Figure	1	Diagramme H–R classique M _V = f(Teff)	53
Figure	2	Diagramme dévolution et disochrone	55
Figure	3	Calibration de la correction bolométrique en fonction de la température effective	60
Figure	4	Calibration de la température effective en fonction de l'indice de couleur	61
Figure	5	Diagramme H–R de ľamas Coma obtenu avec les calibrations de Johnson	63
Figure	6	Diagramme H–R de ľamas Coma obtenu avec les calibrations de Vandenberg	64
Figure	7	Dépendance de la ZAMS avec la composition chimique	67
Figure	8	Diagramme composite des 3 séries principales et 3 ZAMS de Coma, Hyades et Ursa-Major	69
Figure	9	, Réseau de 3 isochrones d'âge pour la composition chimique solaire	73
Figure	10	Diagramme composite des Turn-OfF des Hyades et de Coma	76
Figure	11	Répartition de la fonction de luminosité dans le plan (M _{bol} log Teff)	78
Figure	12	Fonction de masse initiale de l'amas Coma	80
Figure	13	Ajustement de la série principale de l'amas Coma à une série principale standard	82

.

ANNEXES 1 ET 2

TABLEAU I	:	Compromis de KING de la distribution des mouvements propres des étoiles de l'amas NGC 4103 et celle du champ.	11
TABLEAU II	:	Probabilité d'appartenance à l'amas Coma.	87
TABLEAU III	:	Compromis de la distribution des mouvements propres de l'amas Coma et celle du champ.	12
TABLEAU IV	:	Groupe des 14 étoiles.	15
TABLEAU V	:	Liste des 110 étoiles plus les 17 étoiles du champ proches des valeurs extrêmes de la distribution de l'amas.	91
TABLEAU VI	:	Liste définitive des étoiles de l'amas appartenant à la région centrale.	97
TABLEAU VII	:	Liste des étoiles appartenant au catalogue photométrique de Mermilliod et ne figurant pas dans l'AGK3.	99
TABLEAU VIII	:	Liste du groupe des 14 étoiles plus 10 étoiles qui leurs sont proches en mouvements propres.	100
TABLE 1,,2	4	Test de χ² relatifs à différents distributions.	101
TABLE 25		Répartition des étoiles suivant des secteurs pour la détermination de l'apex et du vertex.	99
TABLE 26		Calcul de densité projeté des étoiles de Coma.	103
TABLE 27		Calcul de densité projeté dans l'hypothèse de 3 sphères constantes.	103
TABLE 28		Répartition projetée observée des étoiles de Coma.	43
TABLEAU I	:	Liste définitive des étoiles qui contribuent au diagramme H–R.	109
TABLEAU II	:	Etoiles du turn-off des Hyades.	111
TABLEAU III	:	Etoiles du turn-off de Coma.	111
TABLEAU IV	:	Recherche du coefficient α de la I.M.F	112
TABLEAU V	:	Recherche du coefficient A de I.M.F	112
TABLEAU VI	:	Etoiles standards du champ pour l'estimation du module de distance de l'amas.	112
TABLEAU VII	:	Etoiles naines de Ursa-Maior et des Hyades.	96

.

.

l

REFERENCES BIBLIOGRAPHIQUES

AGK3 : 1975, star catalogue of positions and propers motions, volume 4, 5, 6, Braght stars catalogue : 1982, and supplément 1983.

C.D.S : centre de données stellaires de Strasbourg.

Corbin, P.M : 1978, Colloque nº48, IAU, 49.

Cayrel, G and Delhaye, J : 1982, Some remarks on the luminosity function of the nearest open clusters, 241.

Cayrel, G and Bentolila C : 1983, Astron. Astrophys. 119, 1-13.

Encyclopédie Scientifique de l'univers : 1979, les étoiles et le système solaire : 189, 251

Encyclopédie Universalis : 1980, Astronomie : 355.

Jonhson : 1966, Astro.infrared measurements : 197.

King, D.S, HL : 1979, Royal Society of New South wales, volume : 112, pp : <u>101</u>-104.

Gustafsson, B : 1979, Astron, Astrophys : 74, 313.

Lacroute, P : and Valbousquet, A : 1970, colloque nº 7, IUA, 153.

Mermilliod, J.C : 1976, Astr. and astrophys. supplement series, volume : 24 nº 2, 275.

Mihalas, D and Binney, J : 1980, Galactic astronomy, deuxième édition : <u>107</u>–108.

Milne, L.M and Thomson, M.A : 1148, Standard four. figure mathematical tables édition : <u>B</u>, 211.

Miller-Scolo : 1980, Ap. J. suppl. : 41,513.

Strano, K.A : 1980, basic astronomical data, volume : 3, 92.

Smart, W and. Adams, J.C : 1938, stellar dynamics, 168, 298.

Trumpler, R.J : 1938, lick observatory bulltin : 494, 167.

Vandenberg, D : 1985, Ap.J. suppl. serie : 51, 29,

Vandenberg, D : 1985, Ap.J. suppl. serie : 58, 711.