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Chapter 1

Introduction

Wireless sensor networks (WSN) consist of many individual low-cost and low-power
sensor nodes, which achieve goals such as environmental monitoring by running micro
electrical chips and detection sensors. Due to wide applications in environmental
monitoring, health care, and the IoT embed WSN, WSN has caught researcher’s
attention and been developed rapidly [Han et al., 2015].

In many applications, sensors in WSNs observe some physical phenomenon and
gather the observations to an evaluate estimation of the original physical phenomenon.
This process is known as data fusion [Huang et al., 2003]. In order to perform this
task, the ability of sensors to estimate their physical location in some well chosen
frame and the knowledge of time for WSN to work under a universal synchronized
clock is essential. Synchronization among sensors is usually more important than
absolute synchronization with some reference high-accuracy clock. For instance,
real-time controller systems usually assume that events occur at predetermined time
instants, and that require sensors sampled at the assumed rate together, otherwise
the calculations might be wrong. This necessity is reflected by the development of a
significant number of algorithms for localization and time synchronization for sensor
networks in the recent past.

For example, many sensors can only detect the proximity of an observed object.
Higher-level information, such as speed, size, or shape of an object can then only be
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CHAPTER 1. INTRODUCTION

obtained by correlating data from multiple sensor nodes whose locations are known.
The shape or the velocity of a mobile object, for example, can be estimated by the
ratio of the spatial and temporal distances between two consecutive object sightings
by different sensor nodes. For example, a sensor node can detect measurements of a
widespread object, and the size and shape can be approximated by the information
of the sensor nodes.

In WSN, many applications are based on the ability of sensors nodes to esti-
mate the physical location and to synchronize the time with each other. Thus, a
significant number of algorithms for localization and clock synchronization for WSN
were studied in the recent years. However, due to the complexity and dynamicity of
the WSN, robust algorithms that can tolerate inaccurate measurements during the
communication and computation of WSN still have a tremendous demand.

For the synchronization problem, sensor nodes synchronize the clock value to
perform data fusion algorithms or speed computation [Sundararaman et al., 2005,
Solis et al., 2006, Su and Akyildiz, 2005]. The local physical clock is driven so that
the clock values are synchronized among sensors. A straightforward solution is to use
a source node to provide a coordinate universal time. This solution is not suitable
for WSN because the location of the sensor nodes is uncertain, so a source node may
not be able to send the message to all the nodes in the WSN and the propagation
delay is uncertain. Moreover, this solution is not robust, because a failure of the
source node can affect all the sensors in the network.

Considering the dynamicity, a distributed algorithm is proposed, which extend the
previous work from Függer et al. [2015b] and reduce the clock skew. In the new pulse-
coupled synchronization, time-wheel algorithm is introduced for sensors to exchange
the round number and averaging the pulses of the same round. Moreover drift
compensation is applied to reduce the clock skew. The convergence analysis shows
that the drift compensation reduces the clock skew and improves the convergence
rate. When considering a highly dynamic WSN, the algorithm converges the software
clock faster then in previous works. The proposed algorithm is successfully applied
to a vehicular network.

12



For the localization problem, sensors can try locating each other possibly with the
help of some anchor sensors in order to obtain a position estimation. A simple method
is to put a GPS receiver on each sensor [Yick et al., 2008]. With GPS receivers,
sensors can receive information from satellites and estimate the geographical position
themselves. However, GPS receivers drain the battery very quickly, so usually, only
a small portion of sensors in WSN have GPS receivers. For some applications, GPS
signal may not be received by the sensors (e.g., indoor, underwater scenarios).

For the second part of the thesis, we estimate the location of each sensor using
LSCR, which produces a non-asymptotic confidence region. The benefit of applying
LSCR to localization problem is that the noise assumption on the noise of RSS signal
is mild, so the confidence region can be estimated accurately. We analyze different
correlation functions of LSCR and found that only some correlation functions can
produce a well-shaped confidence region. We also implement alternative localization
algorithms, involving, e.g., a maximum likelihood estimator (MLE), semi-definite
programming (SDP), bounded error estimator (BE), robust bounded error estimator
(RBE). We compared the alternative methods and found that LSCR provides the
best localization results: its average error is smaller than other alternative methods.

In this thesis, we divide our work into two parts for viewers to understand the
backgrounds and methodologies for both clock synchronization and localization. In
the first part, the clock synchronization is discussed, and in the second part, the
wireless sensor localization is discussed.

For clock synchronization part, Chapter 3 introduces a formal model of the wire-
less sensor network and specify the clock synchronization problem. In Chapter 4, the
methodology used in this work is shown with the analysis of the clock skew and con-
vergence rate with mathematical derivation, which is followed by some experimental
results in Chapter 5, and finally, the conclusions of the survey and the direction of
future work are given in Chapter 6.

For the localization part, in Chapter 8, tools from Interval analysis is described,
which is used by some of the localization methods. With the knowledge of Interval
analysis, Chapter 9 introduces RSS localization model and specify several localiza-
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CHAPTER 1. INTRODUCTION

tion approaches. In Chapter 10, the methodology used in this work is shown and
compared with other localization approaches. The different correlation functions of
LSCR are also simulated and analyzed. Finally, the conclusions of the survey is given
in Chapter 12.
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Part I

Clock synchronization
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Chapter 2

Introduction

This chapter presents the importance of the clock synchronization problem. Previ-
ous works and proposed techniques are explained briefly. The chapter ends with a
description of the structure and contents of clock synchronization.

2.1 Motivation

Clock synchronization is a critical issue in sensor networks [Ganeriwal et al., 2003,
Munir et al., 2007, Syed et al., 2006, Sun et al., 2005]. In particular, it is a cor-
nerstone of data fusion, where algorithms work in a better way when data are pre-
cisely synchronized rather than only time stamped. Distributed data fusion of non-
synchronized data necessitates taking into account the shift between the time of the
measurement. Such shifts increase the data fusion imprecision results [Sundararaman
et al., 2005, Solis et al., 2006, Su and Akyildiz, 2005]. A quite large number of clock
synchronization protocols, mostly for wired networks, have been developed over the
past few decades. However, most of the protocols are unsuitable for wireless sensor
networks due to the dynamicity, low bandwidth, and often low-powered computing
nodes [Elson and Römer, 2003, Ganesan et al., 2004].

On the other hand, the hardware of the sensors are usually very restricted (lim-
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CHAPTER 2. INTRODUCTION

ited storage, slow computation) since the size of the sensors is small [Bertrand, 2011,
Sundararaman et al., 2005]. Energy consumption of wireless sensor networks can be
high when service constraints are high [Akyildiz et al., 2002, Sundararaman et al.,
2005]. The energy is usually provided by the battery with limited power for sensors,
so synchronization must be achieved while preserving energy [Ye et al., 2002]. For
those sensors, the limit on bandwidth directly influences message exchanges among
sensors [Al-Karaki and Kamal, 2004]. During the message delivery, the flux of in-
tensity of electromagnetic radiation is reduced through the medium. Therefore, the
message may not be delivered from the sender to the receiver if their distance is
long [Swain and Hansdah, 2015]. In addition, unlike wired networks, wireless sensor
networks are dynamic. Sensors may move and communication links may change.
In view of this, traditional clock synchronization methods for wired networks [Mills,
1996, Elson et al., 2002] are often not applicable for wireless sensor networks.

2.2 Background

Most clock synchronization algorithms for wireless sensor networks are packet-based
methods, where sensors exchange digital data to agree on a common time base.
Centralized approaches [Mills, 1991, Cristian, 1989, Kopetz and Ochsenreiter, 1987]
distribute the clock of a master node to other nodes and are not robust to any failure
of the master node. In the light of this, an average consensus-based protocol is
proposed in Schenato and Fiorentin [2011], where sensors exchange clock readings and
update its clock drift and offset by averaging the value of its neighbors. A maximum
consensus-based protocol based on Schenato and Fiorentin [2011] is proposed in He
et al. [2014] to improve the convergence rate. A second-order consensus method is
proposed in Carli and Zampieri [2014] to reduce the clock skew further.

For all the above packet synchronization [Schenato and Fiorentin, 2011, He et al.,
2014, Carli and Zampieri, 2014], nodes exchange data information (global time, fre-
quency, or system parameters) between its neighboring nodes and agree on some
parameters of the model to have a common notion of time. In large sensor networks,
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message delivery might be unreliable due to both dynamicity and sparsity of these
networks [Wu et al., 2011]. Most wireless sensor networks usually have stationary
sensor nodes. The network topology is usually fixed, so sensors can transmit pack-
ets without failure. However, for a sensor network, all the sensors move rapidly,
which makes it difficult to apply a common clock synchronization protocols such as
Schenato and Gamba [2007], Elson et al. [2002]. Also, during intensive transmission,
sensors suffer from the packet collision and delay [Pešović et al., 2009]. When a
sensor tries to send packets, it detects and waits until the medium is not occupied by
the other sensors, so the information transmission might be postponed. Moreover, if
sensors are far away, the sender cannot detect whether the medium is occupied near
the receiver, so the packet collision might happen when two senders transmit packets
to the receiver simultaneously.

An alternative to the packet-based synchronization approaches, pulse-coupled
synchronization, is proposed in Li and Rus [2006], where nodes only exchange pulses
instead of packets. The convergence properties of Li and Rus [2006] is studied
in Simeone and Spagnolini [2007] through linear algebra with different communi-
cation graphs. A different topology (scenario) of the network is investigated, and a
practical implementation is discussed. Also, the dynamic and bi-directional prop-
erties of pulse-coupled synchronization are analyzed in Függer et al. [2015b]. The
algorithm solves clock synchronization as long as the topology of the dynamic net-
work contains a directed spanning tree. Idle listening is introduced in Wang et al.
[2012] to reduce total energy consumption.

Pulse-coupled synchronization [Li and Rus, 2006, Simeone and Spagnolini, 2007,
Függer et al., 2015b, Wang et al., 2012] can be viewed as the first-order phase locked
loops [Simeone et al., 2008], which suffer from carrier frequency offset between sen-
sors resulting in a constant phase lag. Moreover, pulse frequency synchronization is
studied [Varanese et al., 2011].
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CHAPTER 2. INTRODUCTION

2.3 Objectives

The primary objective of the part I is to improve the limitations of the current
state-of-the-art techniques.

The specific objectives of this thesis are as follows.

• To implement a clock synchronization protocol is able to work well with any
number of nodes in a dynamic network.

• To implement a decentralized clock synchronization protocol, which tolerates
communication loss of the sensors in the network.

• To develop a new communication method to improve precision (clock skew) of
the clock synchronization.

• To relax the assumption of pulse-coupled clock synchronization with more ro-
bust information exchange protocol.

• To implement an energy efficient clock synchronization protocol that only per-
forms simple calculation instead of performing energy-consuming optimization.

This work extended and improved the algorithm of the previous time synchronization
protocols [Függer et al., 2015b] based on theory and experiment results in clock skew
and some other aspects.

2.4 Outline

Chapter 3 introduces a formal model of the wireless sensor network and specify the
clock synchronization problem. In chapter 4, the methodology used in this work is
shown with the analysis of the clock skew and convergence rate with mathematical
derivation, which is followed by some experimental results in Chapter 5, and finally,
the conclusions of the survey and the direction of future work are given in Chapter
6.
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Chapter 3

Formal Model and Problem
Formulation

3.1 Introduction

This chapter describes the formal model of the wireless sensor network and specifies
the problem of clock synchronization. First, the local physical clock will be intro-
duced. Second, the formal model of the wireless sensor network is defined. In the
end, an error function is presented to evaluate the quality of the clock synchroniza-
tion algorithm. Also, the existing state of the art techniques which deal with this
problem are described.

3.2 Formal Model and Problem Specification

The goal of clock synchronization is to synchronize the time of all sensors because
physical clocks of each sensor drift even if they have the same frequency, and these
frequencies might even change over time. Figure 3.1 shows the physical clocks of
sensor i and j. The frequency of the physical clocks for i and j are different due
to clock drift or hardware setup, so the time period of pulses are different as well.
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CHAPTER 3. FORMAL MODEL AND PROBLEM FORMULATION

Figure 3.1: The physical clocks of the sensor i and j without any corrections. The
frequency of the physical clock for both i and j can be different due to the clock drift
or hardware setup, so the time period of pulses are different. The time difference of
the ticks between sensors is evaluated using clock drift and clock skew. The clock
drift is the difference of clock periods between sensors and the clock skew is the
largest difference of time between pulses of sensors.

The quality of the clocks is evaluated using clock drift and clock skew. The clock
drift is the difference in clock periods between sensors. The clock skew is the largest
difference of time between pulses of sensors. The goal is to reduce the clock skew
and the clock drift as much as possible.

3.2.1 Formal Model of Wireless Sensor Network

A finite set N = {1, 2, . . . , n} of sensors communicating by message passing is consid-
ered. They are endowed with imperfect physical local clocks evolving in the time-base
T = [0,1) of nonnegative reals.

The sensor network is modeled by a set of graph Gt = (N ,Vt), t 2 T , where N

is the set of sensors and Vt is a set of directed edges. The relation (i, j) 2 Vt means
that sensor i can send a message to sensor j at time t. Mobility is modeled by having
a (possibly different) communication graph of different time instants.
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3.2. FORMAL MODEL AND PROBLEM SPECIFICATION

A local algorithm for a sensor comprises a set of local states S, a set of events E ,
and its state transition function f(s, e). The local state is the internal variables for
each sensor. The local state is initialized at s0 2 S. Local state changes only when
an event e 2 E occurs.

An execution of an algorithm in scenarios Gt is a sequence of events (eq)q�0,
which are triggered by sensors iq 2 N with its present states sq 2 S at a specific
time tq 2 T . The value of q is a sequence number of the event in the system. Thus,
the first event is e0 and the second event is e1 and so on. The sequence of events is
sorted by tq. At the beginning of the execution, every sensor triggers its first event
with its initial state s(q)0 at time tq = 0.

There are three types of event eb, em, et
⇢ E . The event eb represents the begin-

ning of the local algorithm. The event em indicates that a sensor receives a message.
The event et is triggered when the timer in a sensor reaches a certain value (sen-
sors can schedule this event when executing state transition functions). A sensor i

determines its next local state s0 using the state transition function f(s, e). A sen-
sor cannot access the global time, only the physical local clocks of the sensor are
obtained.

We assume all the sensors have the following features: A sensor i can send a
message to sensor j at time t if and only if (i, j) 2 Vt. A sensor i produces and sends
a message using its sending function: S ! M, where the S is the local state, and
M is the message. Sending function maps the state sk to message content. A sensor
j receives messages through a receive function when a message event em occurs. The
time difference between sending and receiving a message is assumed to be zero. The
assumption is reasonable if the message contains only a few bits. Notice that, the
noise caused the transmission delay leads to larger clock skew in the wireless sensor
network. However, with the pulse synchronization, sensors only exchange few bits,
so the transmission delay is neglectable.

A sensor i is equipped with a local physical clock with the clock period µi(c),
where µi is a function, which subsumes manufacturing defects, hardware differences,
and different temperatures for quartz oscillators. The variable c is a local physical
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counter, which is initiated at 0 and increases over time whenever the local physical
clock ticks. For simplicity of notation, assume that the nominal real time duration
of a local physical clock tick is equal to 1. With c, sensors read time ti as

ti(c) =
cX

m=0

µi(m). (3.1)

Assuming that (1 � %)µ  µi(c)  (1 + %)µ, where % represents the bound of the
clock period and µ is the manufacture specification of the clock period, one gets

(1� %)µc  ti(c)  (1 + %)µc, (3.2)

which indicates that the uncertainty becomes larger through time when c and ti

increase.
The main problem for clock synchronization to solve is that ci for each sensor

does not increase at the same pace. Therefore, in this framework, a sensor i is able to
calculate and exchange the round number ki. The round number ki for sensor i can
be viewed as a software clock for each sensor. The value of ki starts from zero and
increases periodically for each sensor i. With state transition functions, a sensors are
able to broadcast messages and try to increase ki in the same pace.

3.2.2 Evaluation Function

Sensors synchronize the value of ki, i 2 Gt and let ki increase periodically at a similar
pace using the state transition functions: f(s, eb), f(s, em), and f(s, et). To evaluate
the precision of an algorithm, the maximum skew of rounds between sensors is taken
into account:

�(k) = max
i1,i22Gt

|⌧i1(k)� ⌧i2(k)| , (3.3)

where ⌧i(k) represents the time instant when the value of ki changes to k. Maximum
clock skew of each round cannot reveal the accuracy of the algorithm, which needs
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to consider the errors between the clock ticks and the real time.
Equation 3.3 evaluates the precision of the algorithm. Sensors converge the soft-

ware clock. If the software clock is identical, then �(k) is zero.

3.3 State-of-the-art

This section describes the state of the art of clock synchronization including Av-
erage TimeSynch Protocol (ATS) [Schenato and Fiorentin, 2011], Robust Average
TimeSynch Protocol (RoATS) [Garone et al., 2015], and Average time synchroniza-
tion (ATSP) [Wu et al., 2012].

3.3.1 Average TimeSynch Protocol (ATS)

In ATS [Schenato and Fiorentin, 2011], Sensor i is equipped with a local physical
clock ci(t) 2 R, which is similar to the physical clock counter c but in real value.

ci(t) = ↵it+ �i, (3.4)

where ↵i and �i are the frequency and offset of the local physical clock, respectively.
Both variables ↵i and �i might be different for each sensor due to the imperfection of
the manufacturing, but the values are fixed during the synchronization. To correct
this difference of the local physical clock, each sensor i also has a software clock

ĉi(t) = ↵̂i(t)ci(t) + �̂i(t), (3.5)

where ↵̂i(t) and �̂i are tunable variables. With those variables, sensor i adjusts
the variables and converges its software clock with other sensors to achieve clock
synchronization.

During the ATS time synchronization [Schenato and Fiorentin, 2011], each sensor
sends a packet periodically. At the k-th updates, the sensor i receives a packet
from its neighbors j, which is a tuple (IDj, ↵̂j(tk), �̂j(tk), cj(tk)). The parameter IDj
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is denoted as sensor j0s identifier, which is a unique value for each sensor. The
parameters ↵̂j, �̂j and cj are the latest value of ↵̂j(t), �̂j(t), and cj(t), respectively at
the time instant when sensor j sends the packet. The packet is then saved to local
storage with the current local physical clock reading cij(tk).

if k > 1, sensor i performs drift estimate to calculate a relative drift ↵ij. The
Drift and offset compensation is also applied to update the value of both �̂i(t) and
↵̂i(t), respectively.

3.3.1.1 Drift estimation and compensation

During drift estimation, a relative drift ↵ij(tk) of sensor j to sensor i is estimated
using the following equation:

↵ij(tk) =
cj(tk)� cj(tk�1)

cij(tk)� cij(tk�1)
, (3.6)

where cij(tk) is the local clock time when sensor i receives the packet from sensor j.
With ↵ij(tk), the value of ↵̂i is updated as follows:

↵̂i(k) = ⇢↵↵̂(k−1) + (1−⇢↵)↵ij(tk)↵̂i(k−1), (3.7)

where ⇢↵ 2 (0, 1) is a user-defined parameter that adjust the convergence rate.

3.3.1.2 Offset compensation

In the offset compensation, the offset �i is updated using the difference of ĉj(tk) and
ĉi(tk).

�̂i(k) = ⇢��̂(k � 1) + (1� ⇢�) [ĉj(tk)� ĉi(tk)] (3.8)

Assume that ↵i and �i remain constant during the synchronization process, the
transmission delay between sensors is zero, and the scenario is fully connected, then
the software clocks ĉi(t) in the wireless sensor network eventually converge.
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ATS shows an elegant iterative method to converge the software clocks in the
wireless sensor network. However, it does not take into account the transmission
delay during the communication of the sensors. When considering the transmission
delay, original ATS [Schenato and Fiorentin, 2011] cannot ensure the convergence
of the software clocks as the incremental error is accumulated during the iteration
process.

3.3.2 Robust Average TimeSynch Protocol (RoATS)

Robust Average TimeSynch Protocol from Garone et al. [2015] is proposed to improve
the ATS method by adding an extra information exchange between sensors. In
RoATS, sensors take an extra step to exchange ↵ij and ↵ji, so that the clock drift
↵̂i(k) and ↵̂j(k) is updated symmetrically to each other for convergence.

The main advance of RoATS is the drift compensation. To describe the mod-
ification of RoATS to ATS, let ↵⇤

ij(tk) be the relative drift which considers noise.
Equation 3.7 is then reformulated as

↵̂i(k) = ↵̂(k−1) + (1−⇢↵)
⇥
↵⇤
ij(tk)↵̂i(k−1)� ↵̂(k−1)

⇤
, (3.9)

with
↵⇤
ij(tk) = ✏ij(tk)↵ij(tk), (3.10)

where
✏min =

1

1 + �ij,max
Tmin

 ✏ij(tk) 
1

1� �ij,max
Tmin

= ✏max. (3.11)

The variable �ij is the transmission delay, and T is the update period. To consider
noise during transmission, the bound of ↵ij(tk) and ↵ji(tk) can be derived using
Equation 3.11 and Equation 3.10.

↵⇤
ij(tk)

✏max


↵j(tk)

↵i(tk)


↵⇤
ij(tk)

✏min
, (3.12)
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and
✏min

↵⇤
ji(tk)


↵i(tk)

↵j(tk)


✏max

↵⇤
ji

, (3.13)

from which it follows

↵⇤
ij(tk)  ↵ij(tk) =

↵i(tk)

↵j(tk)
 ↵⇤

ij(tk), (3.14)

where
↵⇤
ij(tk) = max

⇢
↵ij

✏max
,
✏min

↵ji

�
, (3.15)

and
↵⇤
ij(tk) = min

⇢
↵ij

✏min
,
✏max

↵ji

�
. (3.16)

With the error bound calculated, the correction direction and magnitude are
computed locally. The direction sign s(k) is used to determine the convergence
direction. The range of direction sign s(k) is (�1, 0, 1), which is designed as follows:

s(k) =
1

2
sign

⇥
↵⇤
ij(tk)↵̂i(tk�1)� ↵̂(tk−1)

⇤

+
1

2
sign

⇥
↵⇤
ij(tk)↵̂i(tk−1)� ↵̂(tk−1)

⇤
.

Note that if the correction term ↵⇤
ij(tk)↵̂i(tk−1) � ↵̂(tk−1) is close to zero, then the

update direction cannot be decided due to the noise, so the two sign functions become
opposite and s(k) = 0.

The magnitude is computed using the smallest correction for both sensors i and
j to guarantee the value of update steps are the same.
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m(tk) = min {
��↵⇤

ij(tk)↵̂i(tk−1)� ↵̂(tk−1)
�� ,

��↵⇤
ij(tk)↵̂i(tk−1)� ↵̂(tk−1)

�� ,
����

1

↵⇤
ij(tk)

↵̂i(tk−1)� ↵̂(tk−1)

���� ,
����

1

↵⇤
ij(tk)

↵̂i(tk−1)� ↵̂(tk−1)

���� } .

Finally, the drift compensation is reformulated as

↵̂i(tk) = ↵̂(tk−1) + (1−⇢↵) [s(tk)m(tk)� ↵̂(tk−1)] (3.17)

With the term s(k)m(k), RoATS converges ĉi(t) considering the transmission
delay. RoATS inherit the benefit of the ATS, which is a decentralized and one hop
recursion algorithm. However, RoATS uses additional communication to perform the
synchronization, which is not possible when the communication graph is direct. With
the direct edge, when a sensor receives a message, it might not able to send back the
calculations. In RoATS, sensors need to perform back-and-forth communication to
achieve their clocks synchronized.

3.3.3 Average time synchronization (ATSP)

In ATSP [Wu et al., 2012], the two neighboring nodes exchange their clock values and
calculate the average value. In the k-th update round, three packets are transmitted
between sensor i and sensor j. The three packet protocol is as follows:

1. For the first packet, sensor i sends a message at its local physical clock cs1
i (k�

1) to sensor j, and sensor j receives the message at its local physical clock
cr1
j (k � 1). Then cr1

j (k � 1) = cs1
i (k � 1) + d + �, where d is the transmission

delay and � is the clock offset.

2. For the second packet, sensor j sends the second packet back to sensor i at
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cs2j (k � 1) as soon as the first packet is received. The second packet contains
the information of both cr1

j (k� 1) , and cs2
j (k� 1). When sensor i receiving the

second packet at cr1
i (k � 1), it estimates the average delay as

d =
1

2

�
cr1j (k � 1)� cs1i (k � 1)

�
+

1

2

�
cr2
i (k � 1)� cs2j (k � 1)

�
(3.18)

and updates its clock to

ci(k) =
1

2
cr2
i (k � 1) +

1

2

�
cs2
j (k � 1) + d

�
, (3.19)

3. In order to obtain the time average synchronization, the third packet is required
to send the information back from sensor i to sensor j. Similar to the second
packet, when sensor i receives the second packet, it sends the third packet at
cs3
i (k�1) immediately. The third packet contains the information of cr2i (k�1),
cs3
i (k � 1), and the updated clock ci(k). When receiving the packet, sensor j

updates its clock as follows:

cj(k) =
1

2
cr3
j (k � 1) +

1

2

�
cs3
i (k � 1) + d

�
. (3.20)

ATSP uses pairwise messages exchanges to reduce the clock offset. ATSP apply
the third packet transmission to update the clocks of both the paired sensor. The
disadvantage is that the communication method is relatively complicated. In the
real environment, communication between sensors in the wireless network might
have many communication faults, which reduce the convergence rate significantly.

3.4 Conclusion

This chapter states the problem formulation of clock synchronization and reviews
three state-of-the-art methods widely used. We also highlight their main advantages
and drawbacks. Clock synchronization is still an open problem due to its complexity,
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limitation of the energy of sensors, and high wireless communication fault rate com-
pared to the static wired networks. Research on energy efficient and fault tolerant
protocol that can be applied to dynamic sensor network are the objectives of many
research works. Next chapter presents our pulse synchronization protocol, which
intends to overcome the limitation of the state-of-the-art algorithms.
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Chapter 4

Time Wheel Algorithm with Drift
Compensation

In this chapter, we introduce the pulse-coupled algorithm. First, the synchronization
function for different events is detailed. The synchronization function is executed by
a local sensor, which predicts the pulse of next round. The synchronization function
saves the timing information of pulses in the time wheel and use it to calculate the
next pulse. The synchronization function calculates the offset and the time period of
pulses, and then synchronizes the pulse of the next round with the neighboring sensor
nodes. To synchronize the pulses, both offset and drift compensation are applied.
Finally, the convergence rate of the algorithm is analyzed.

4.1 Introduction

In the previous chapter, the events eb, em, et
⇢ E are introduced, which occur during

the clock synchronization. A sensor uses synchronization functions to handle the
event. When executing synchronization functions, a sensor can broadcast messages
to its neighbors and to setup a timer. The timer is used to estimate the timing for
the next pulse to broadcast. The timer is set by the timer set function to correct the
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Figure 4.1: When sensor i receives a pulse with a tag pj from sensor j, it appends
the physical local clock time ci to the list of pj-th slot of wi.

clock offset and drift. The sections below detail the process.

4.2 Synchronization functions

We start by describing the general round-structure that our algorithm operates in.
At the beginning of each round, i.e., when the round number ki changes, sensor i

broadcasts an electromagnetic pulse to its neighbors, where the pulse is a short burst
of electromagnetic energy. By recording the local time of pulses in the present round,
sensors are able to converge the timing and switch to the next round.

Sensors start in round ki = 0 and broadcast a pulse in round ki � 1. A sensor
i waits for a period Ti(k), which is subject to its local clock drift. Because the
durations Ti(k) and the round start times may not be the same for different sensors,
pulses are not perfectly synchronized with each other. Therefore, corrections must
be computed using information of previous pulses from neighboring sensors.

In previous work [Függer et al., 2015b], round numbers are assumed to be known
for all sensors, which is not always realistic, because rounds estimated by sensors can
be faster or slower. In our work, sensor i broadcasts a value pi 2 Z, 0  p  pmax�1.
The value pmax is usually small so p can be represented by different frequency of
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the pulse. The value pi serves a similar role as ki, which increases every round,
except when pi reaches pmax, it returns to zero for the next round. When pmax = 1,
it is not possible for sensors to distinguish the different rounds. With higher pmax,
sensors are able to converge the pi. However, if pmax is higher, it takes more time to
converge due to the algorithm converge process. In our experiment, we discover that
pmax = 2 is sufficient for the sensors to synchronize efficiently. If pmax is large, then
sensors need to transmit more bits, which leads to transmission delay. If pmax = 0 or
pmax = 1, then it is difficult for sensors to distinguish the round numbers. In a view
of implementation, broadcasting pmax can be represented using different frequency
or wave pattern of the pulses.

A sensor i uses a circular buffer called time wheel wi to record pj from neighboring
sensor j. Figure 4.1 shows the structure of the time wheel wi. A time wheel of sensor
i has pmax slots. The pointer in the center of time wheel is directed to the value of
pj just broadcasted by sensor j. When sensor i receives a pulse with a tag pj from
sensor j, it appends the local clock time ci to the list of pj-th slot of wi. The timing
information in wi will be used to estimate the pulse for the next round.

Each sensor runs the pseudo-code given in Algorithm 4.1. The code is divided
into three parts: initial function (line 1), receive function (line 5), and state transition
function (line 9). These three parts are not executed in sequence. Instead, they are
triggered by different events. The initial function is executed once when the sensors
start to synchronize the clock. The receive function is executed whenever a pulse
with a pointer value pj is received. The state transition function is executed when a
new round starts.

Initial function At the beginning of the algorithm, sensor i initializes an empty
time wheel wi with pmax slots (line 2). The sensor reset pi (line 3) to zero. The
variable ci is the counter of the physical clock started at initialization, which increases
subject to the clock drift. The sensor also broadcasts pi to its neighbors (line 4).
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Algorithm 4.1 State transitions for sensor i

1: if eb
then

2: wi = TimeWheel(smax)
3: pi = 0
4: sending_function(pi)
5: else if em

then

6: Obtain pj from m
7: Append ci to the list in pj-th slot
8: ⌧(k + 1) = timer_set_function(wi, ⌧(k)) and set the count down timer
9: else if et

then

10: Clear the pi-th slot
11: pi = (pi + 1) mod (pmax)
12: sending_function(pi)
13: end if

Receive function When sensor i receives a message from sensor j, with a tag pj

(line 6). Sensor i appends the current local time ci of the received message to the list
of the pj-th slot (line 7). Recall that the time between broadcasting and receiving a
pulse is assumed to be negligible, since sensors only exchange zero or few bit pulses.
A sensor also schedules its next state transition by setting its count down timer to
⌧i(k + 1) � ci, which is the time period for the next pulse to broadcast. (line 8).
Details of the timer set function can be found in section 4.2.

State transition function When the timer reaches zero, the sensor executes its
state transition function and start the next round. First, the sensor clears the current
slot from the current slot pi (line 10), because the information in the slot is used.
Second, it updates pi (line 11). In the end, it broadcasts pi to its neighboring sensors
(line 12).

In previous work from Függer et al. [2015b], the rounds are assumed known by
sensors and the pulses in the same round is assumed to have small differences, in
this work, the time wheel is applied to improve the robustness of the algorithm, so
the assumption is no longer needed.
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Figure 4.2: Illustration of a pulse synchronization. At the first round, sensors broad-
cast pulses at a similar time. In the second round, R is equal to 5 for all the
sensors. However, the constant clock ticks R do not represent the constant time
period due to the manufacturing defects and clock drifts. The difference of clock
period causes divergence of the timing of pulses. In the third round, sensors adjust
its R0 = R + corr1i + corr2i , so that the clock skew becomes smaller. Notice that we
setup kmax = 3, so the round number can be 3.

The timer set function in Algorithm 4.1 (line 8) estimates the counter value for
next pulse ⌧(k + 1) according to the following formula:

⌧i(k + 1) = ⌧i(k) +R + corr1i (k) + corr2i (k), (4.1)

where R is a constant representing the time period between the next and present
rounds. All sensors use the same value of R, but the time period between pulses
Ti(k + 1) may be different due to frequency variation of local clocks described in
Equation 3.2. The corrections corr1i (k) and corr2i (k) are the adjustment of the tim-
ing to reduce the clock skew. These corrections adjust the pulse period using the
information saved in the time wheel w. Figure 4.2 illustrates the pulse synchroniza-
tion method. In the first round, sensors broadcast pulses at a similar time. In the
second round, R is equal to 5 for all the sensors. However, the constant clock ticks R
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do not represent the constant time period due to the manufacturing defects and clock
drifts. The difference of clock period causes divergence of timing of pulses. At the
third round, sensors adjust its R0 = R + corr1i (k) + corr2i (k), so that the clock skew
becomes smaller. Notice that both corr1i (k) and corr2i (k) depend on the previous
round k.

Each sensor only communicates through pulses and additional round information
ci. The overall benefit of the method is that sensors do not require to identify their
neighboring sensor and their pulses, so the message is short and robust.

4.2.1 Offset compensation

The term corr1i is used for correcting the offset of the pulses for all the sensors in
previous work [Függer et al., 2015b]. corr1i is a time difference between the average
pulse of the neighboring sensors and the pulse of sensor i itself in round k:

corr1i (k) =
1

|Ini(k + 1)|

X

j2Ini(k+1)

(⌧j(k)� ⌧i(k)) (4.2)

where |Ini(k + 1)| is the number of incoming messages at the k + 1-th round and
P

j2Ini(k+1) (⌧j(k)� ⌧i(k)) is calculated by averaging the values in the current slot of
wheel wi. Compared to the original next pulse ⌧i(k + 1) = ⌧i(k) + R, the equation
considering corr1i becomes

⌧i(k + 1) =
�
⌧i(k) + corr1i

�
+R

=
1

|Ini(k + 1)|

X

j2Ini(k+1)

⌧j(k) +R.

The equation shows that instead of using its previous pulse, sensor i uses the average
of the previous pulses of its neighbors to estimate the timing of the next pulse. Thus,
the precision of the next pulse tends to increase. However, the constant clock ticks
R do not represent the constant time period due to the manufacturing defects and
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clock drifts. In order to further reduce the clock skew of the next pulse, R should
also adjust to adapt the variation of local physical clocks.

4.2.2 Drift compensation

The goal of drift compensation is to let sensors agree on a global clock cycle. Since
sensor i converges the previous pulses ⌧i(k) with (⌧i(k) + corr1i (k)), where corr1i (k)
is the correction for the previous pulse ⌧i(k). We obtain an approximation of time
period (in terms of the number of clock ticks) (R + corr2i (k)) in the current round as
follows:

R + corr2i (k) =
�
⌧i(k) + corr1i (k)

� 1
k
, (4.3)

or

corr2i (k) =
�
⌧i(k) + corr1i

� 1
k
�R. (4.4)

In our experiment, if drift compensation is enabled at the beginning, the consen-
sus may not converge under some extreme cases, so the round filter is applied to
Equation 4.4:

corr2i (k) =

8
<

:
0 k  `

(⌧i(k) + corr1i (k)) 1
k �R else

. (4.5)

By using Equation 4.5, the drift compensation only enabled after the `-th round.
The reason to add this filter will be derived and discussed mathematically in the
next section.

4.3 Convergence Analysis

In this section, we analyze first the effect of OC algorithm (the correction with only
offset correction), then analyze the effect of OCDC algorithm (the correction for both
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offset Correction and drift Correction).

4.3.1 Convergence Analysis for OC algorithm

In OC algorithm, only corr1i is enabled. Recall that the relation between time and
the counter of the local clock of sensors is as follows:

ti(k) =
⌧i(k)X

c=1

µi(c), (4.6)

where ti(k) represents the time of k-th pulse broadcasted by sensor i. ⌧i(k) is the
local physical clock counter of sensor i when it broadcasts k-th pulse. µi(c) is the
time period of a clock cycle, which is bounded by

(1� %)µ  µi(c)  (1 + %)µ. (4.7)

The incremental physical clock counter in each sensor is assumed to be discrete.
Each value of the physical clock counter represents a period of time.

Definition 1. Denote by ⌧i(k) the local tick number of sensor i at which sensor i

starts its kth round and by ti(k) the corresponding real time. Denote by ⌧ ij(k) the
local tick number of sensor i at which it receives the pulse of sensor j for round k.

A sensor i reads the clock timing of the pulse from sensor j within the bound:

⌧ ij (k)�1X

c=1

µi(c)  tj(k) 

⌧ ij (k)X

c=1

µi(c), (4.8)

with the assumption that the transmission delay between sensors is zero. The variable
tj(k) is the real world time of k-th pulse broadcasted by sensor j, and ⌧ ij(k) is the
physical local clock counter of sensor i when it receive the k-th pulse from sensor j.
The variable tj(k) and ⌧ ij(k) indicate that Equation 4.8 only holds if sensor i receives
the message from sensor j in round k.
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Lemma 1. The relationship of the local clock difference ⌧ ij(k) � ⌧i(k) and the time
difference tj(k)� ti(k) is

⌧ ij(k)� ⌧i(k) = (tj(k)� ti(k)) /�
i
j(k) + ↵i

j(k), (4.9)

where �i
j(k) 2 [µ(1 � %), µ(1 + %)] is caused by clock skew and ↵i

j(k) 2 [�1, 1] is
caused by imprecision of the discrete time.

Proof. According to Equation 3.1 and Equation 4.8, the timing of the pulse is as-
sumed to be within the bound:

⌧ ij (k)�1X

c=1

µi(c)  tj(k) 

⌧ ij (k)X

c=1

µi(c), (4.10)

and

⌧i(k)�1X

c=1

µi(c)  ti(k) 
⌧i(k)X

c=1

µi(c). (4.11)

Combining Equation 4.11 and Equation 4.10, we have

⌧ ij (k)�1X

c=1

µi(c)�
⌧i(k)X

c=1

µi(c)  tj(k)� ti(k) 

⌧ ij (k)X

c=1

µi(c)�
⌧i(k)�1X

c=1

µi(c), (4.12)

If ⌧ ij(k) � 1 � ⌧i(k), the left-hand side of Equation 4.12 is reformulated using
Equation 4.7:

⌧ ij (k)�1X

c=1

µi(c)�
⌧i(k)X

c=1

µi(c) =

⌧ ij (k)�1X

c=⌧i(k)+1

µi(c) (4.13)

�
�
⌧ ij(k)� ⌧i(k)� 1

�
(1� %) . (4.14)
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If ⌧ ij(k) � 1  ⌧i(k), with the similar derivation as Equation 4.14, the left-hand
side of Equation 4.12 is

⌧ ij (k)�1X

c=1

µi(c)�
⌧i(k)X

c=1

µi(c) = �

⌧ i(k)X

c=⌧ ij (k)

µi(c) (4.15)

� �
�
⌧i(k)� ⌧ ij(k) + 1

�
(1� %)µ (4.16)

=
�
⌧ ij(k)� ⌧i(k)� 1

�
(1� %)µ, (4.17)

With Equation 4.14 and Equation 4.17, we have

⌧ ij (k)�1X

c=1

µi(c)�
⌧i(k)X

c=1

µi(c) �
�
⌧ ij(k)� ⌧i(k)� 1

�
(1� %)µ, (4.18)

With the similar derivation as Equation 4.18, the right-hand-side of Equation 4.12
is

⌧ ij (k)X

c=1

µi(c)�
⌧i(k)�1X

c=1

µi(c) 
�
⌧ ij(k)� ⌧i(k) + 1

�
(1 + %)µ. (4.19)

Combining Equation 4.18, Equation 4.19 with Equation 4.12, we have

�
⌧ ij(k)� ⌧i(k)� 1

�
(1� %)µ  tj(k)� ti(k) 

�
⌧ ij(k)� ⌧i(k) + 1

�
(1 + %)µ (4.20)

From Equation 4.20, we get

tj(k)� ti(k) =
�
⌧ ij(k)� ⌧i(k)� ↵i

j(k)
�
�i
j(k) (4.21)

with

�i
j(k) 2 [µ(1� %), µ(1 + %)] (4.22)
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and
↵i
j(k) 2 [�1, 1] (4.23)

to build Equation 4.9.

Lemma 2. The relationship of the local clock difference ⌧ ij(k + 1) � ⌧i(k) and the
time difference tj(k + 1)� tj(k) is

⌧i(k + 1)� ⌧i(k) = (ti(k + 1)� ti(k)) /�i(k) + ↵i(k) (4.24)

where �i(k) 2 [µ(1� %), µ(1 + %)] and ↵i(k) 2 [�1, 1] .

Proof. The timing of the pulse from sensor j to i is received as a discrete time event.
According to Equation 3.1 and Equation 4.8, we get:

⌧i(k+1)�1X

c=1

µi(c)  ti(k + 1) 
⌧i(k+1)X

c=1

µi(c). (4.25)

Combining with Equation 4.7, we have

⌧i(k+1)�1X

c=1

µi(c)�
⌧i(k)X

c=1

µi(c)  ti(k + 1)� ti(k) 
⌧i(k+1)X

c=1

µi(c)�
⌧i(k)�1X

c=1

µi(c), (4.26)

If ⌧i(k + 1) � ⌧i(k) + 1, the left-hand side of Equation 4.26 is

⌧i(k+1)�1X

c=1

µi(c)�
⌧i(k)X

c=1

µi(c) =
⌧i(k+1)�1X

c=⌧i(k)+1

µi(c) (4.27)

� (⌧i(k + 1)� ⌧i(k)� 1) (1� ⇢)µ. (4.28)

If ⌧i(k + 1)� 1  ⌧i(k), the left-hand side of Equation 4.26 is
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⌧i(k+1)�1X

c=1

µi(c)�
⌧i(k)X

c=1

µi(c) = �

⌧i(k)X

c=⌧i(k+1)

µi(c) (4.29)

� � (⌧i(k)� ⌧i(k + 1) + 1) (1� ⇢)µ (4.30)

� (⌧i(k + 1)� ⌧i(k)� 1) (1� ⇢)µ, (4.31)

With Equation 4.28 and Equation 4.31 we have

⌧i(k+1)�1X

c=1

µi(c)�
⌧i(k)X

c=1

µi(c) � (⌧i(k + 1)� ⌧i(k)� 1) (1� ⇢)µ, (4.32)

With the similar derivation, the right-hand-side of Equation 4.26 is

⌧i(k+1)X

c=1

µi(c)�
⌧i(k)�1X

c=1

µi(c)  (⌧i(k + 1)� ⌧i(k) + 1) (1 + ⇢)µ. (4.33)

Combining Equation 4.32, Equation 4.33 with Equation 4.26, we have

(⌧i(k + 1)� ⌧i(k)� 1) (1� %)µ  tj(k)� ti(k)  (⌧i(k + 1)� ⌧i(k) + 1) (1 + %)µ

(4.34)
From Equation 4.34, we get

ti(k + 1)� ti(k) = (⌧i(k + 1)� ⌧i(k)� ↵i(k)) �i(k) (4.35)

where

�i(k) 2 [µ(1� %), µ(1 + %)] (4.36)

and
↵i(k) 2 [�1, 1] (4.37)

to build Equation 4.24.
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For the duration of round k + 1, the algorithm sets its timer to the following
number of local clock ticks:

⌧i(k + 1)� ⌧i(k) =
1

|Ini(k)|

X

j2Ini(k)

�
⌧ ij(k)� ⌧i(k)

�
+R, (4.38)

where R is the original number of clock ticks between pulses.
To calculate the maximum pulse skew differences of sensors in round k, the Do-

brushin semi-norm is introduced as follows defined on real vectors x by

�(x) = max
i,j

|xi � xj|. (4.39)

By setting x = t(k), t(k) = [t1(k), ..., tn(k)]T , we calculate the maximum pulse skew
in the round k. Using properties of the Dobrushin seminorm, we are able to calculate
the upper bound of the maximum pulse skew. The following conditions hold for all
vector x and y 2 Rn, and any scalar c.

• 1. �(x) � 0,

• 2. �(cx) = |c| �(x), and

• 3. �(x+ y)  �(x) + �(y)

To estimate the averaging operation of sensors, the network Gt of WSN can be
interpreted as A(k):

A(k)i,j =

8
<

:

1
|Ini(k)| (i, j) 2 V

0 else
. (4.40)

Note that with (i, j) 2 V , the matrix A(k) is stochastic because the sum of row
Pn

j=1 A(k)i,j is equal to one for 1  j  n. The Dobrushin semi-norm can be apply
to a real matrix A as follows.

�(A) = sup
x2Rn,�(x) 6=0

�(Ax)

�(x)
. (4.41)
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The properties of the stochastic matrix and the Dobrushin semi-norm described as
follows:

Lemma 3. (Charron-Bost [2013]). Let A,B 2 Rn⇥n . If A is stochastic, we have
�(AB)  �(A)�(B) .

When A is stochastic, we have �(A)  1. We call stochastic matrices as a
scrambling matrices if the strict inequality holds.

Lemma 4. (Hajnal and Bartlett [1958]) Let A be a stochastic matrix with and min-
imal positive entry �. Then,

�(A) = 1−min
i1,i2

X

j

min {Ai1,j, Ai2,j} . (4.42)

Since the network is a non-split graph, the matrix A has the scrambling property.
With scrambling property and Lemma Equation 4.42, we have �(A)  1 � �, where
� is the minimal positive entry of all matrices A(k) during the execution.

Since 0  A(k)i,j  1 according to Equation 4.40, it is a scrambling matrix, then

�

 
kY

`=1

A(k)

!
=

kY

`=1

� (A(k))  (1� �)k , (4.43)

In the worse case scenario, sensors are disconnect from each other. Performing av-
eraging method will not help since A = I, �(A) = 1 and �

⇣Qk
`=1 A(k)

⌘
= 1. In a

better scenario, a connected network (connected graph), each sensor has neighbors,
i.e., |Ini(k)| > 1, so � < 1 and the value can be converge through the averaging
process.

.

Lemma 5. Equation 4.38 can be transformed to real time in matrix form

t(k + 1) = A(k)t(k) + b(k) + c(k), (4.44)
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where A(k) is a weighted adjacency matrix, which satisfies

Ai,j(k) =

8
<

:
1/|Ini(k)| if j 2 Ini(k)

0 else .
(4.45)

and

bi(k) =

 
�i(k)

�i
j(k)

� 1

!⇣�
A(k)t(k)

�
i
� ti(k)

⌘
(4.46)

and
ci(k) =

⇣
�↵i(k) + ↵i

j(k) +R
⌘
�(k). (4.47)

with the existence of some �i
j(k) 2 [µ(1� %), µ(1 + %)] and ↵i

j(k) 2 [�1, 1].

Proof. Substitute ⌧ ij(k)� ⌧i(k) in Definition 1 using Lemma 1, we get

⌧i(k + 1)� ⌧i(k) =
1

|Ini(k)|

X

j2Ini(k)

�
⌧ ij(k)� ⌧i(k)

�
+R

=
1

|Ini(k)|

X

j2Ini(k)

�
(tj(k)� ti(k)) /�

i
j(k) + ↵i

j(k)
�
+R.

=
1

|Ini(k)|

X

j2Ini(k)

(tj(k)� ti(k)) /�
i
j(k) +

1

|Ini(k)|

X

j2Ini(k)

↵i
j(k) +R.
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The lower bound can be calculated by taking the largest �i
j(k) and smallest ↵i

j(k).

⌧i(k + 1)� ⌧i(k) �
1

|Ini(k)|

X

j2Ini(k)

(tj(k)� ti(k)) /µ (1 + %)�
1

|Ini(k)|

X

j2Ini(k)

1 +R

=
1

|Ini(k)|

0

@
X

j2Ini(k)

(tj(k)� ti(k))

1

A |Ini(k)|

µ (1 + %)
�

1

|Ini(k)|
|Ini(k)|+R

=
1

|Ini(k)|

1

µ (1 + %)

0

@
X

j2Ini(k)

(tj(k)� ti(k))

1

A� 1 +R. (4.48)

With the similar derivation, the upper bound can be calculated as well.

⌧i(k + 1)� ⌧i(k) 
1

|Ini(k)|

1

µ (1� %)

0

@
X

j2Ini(k)

(tj(k)� ti(k))

1

A+ 1 +R (4.49)

Combining Equation 4.48 and Equation 4.49, we get the existence of some �i
j(k) 2

[µ(1� %), µ(1 + %)] and ↵i
j(k) 2 [�1, 1] such that

⌧i(k + 1)� ⌧i(k) =
1

|Ini(k)| �i
j(k)

X

j2Ini(k)

(tj(k)� ti(k)) + ↵i
j(k) +R (4.50)

Combining Lemma 2 and Equation 4.50 , we get

(ti(k + 1)� ti(k)) =
�i(k)

|Ini(k)| �i
j(k)

X

j2Ini(k)

(tj(k)� ti(k)) +
⇣
�↵i(k) + ↵i

j(k) +R
⌘
�i(k)
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Putting �i(k) =
�i(k)

�i
j(k)

� 1 and adding ti(k) on both sides of the equation, we get

ti(k + 1) =
1

|Ini(k)|

X

j2Ini(k)

tj(k) +
�i(k)

|Ini(k)|

X

j2Ini(k)

�
tj(k)� ti(k)

�
+
⇣
�↵i(k) + ↵i

j(k) +R
⌘
�i(k)

=
�
A(k)t(k)

�
i
+ �i(k)

⇣�
A(k)t(k)

�
i
� ti(k)

⌘
+
⇣
�↵i(k) + ↵i

j(k) +R
⌘
· �i(k)

(4.51)

or in vector form as Equation 4.44.

Lemma 6. Semi-norm of b(k) is

�
�
b(k)

�
= �

  
�i(k)

�i
j(k)

� 1

!⇣�
A(k)t(k)

�
� t(k)

⌘!


4%

1� %
�(k), (4.52)

where �(k) is a simplified symbol represents the clock skew � (t(k)) in round k.

Proof. According to Equation 4.39, suppose we have ti1 and ti2 such that �(k) =

(ti1(k)� ti2(k)), and since A(k) is a stochastic matrix, i.e.,
P

j [A(k)]i,j = 1, we have
ti2(k)  A(k)t(k)  ti1(k), which implies

�
��
A(k)t(k)

�
� t(k)

�
i
 �(k). (4.53)

The bound of
✓
�i(k)

�i
j(k)

� 1

◆
is

�
2%

1 + %


 
�i(k)

�i
j(k)

� 1

!


2%

1� %
, (4.54)

Considering Equation 4.53 and Equation 4.54 with Equation 4.46, we get

�
2%

1� %
� (k)  bi(k) 

2%

1� %
� (k) , (4.55)
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which means that

� (b(k))  max
i1

bi1(k)�min
i2

bi2(k) 
4%

1� %
�(k). (4.56)

Lemma 7. By assuming original number of clock ticks between pulses R > 2, the
maximum difference of the vector c(k) is

�(c(k))  (4 + 2%R)µ (4.57)

Proof. If R > 2, we have ci(k) � 0 in Equation 4.47, so ci(k) is within a bound:

(�2 +R)µ(1� %)  ci(k)  (2 +R)µ(1 + %), (4.58)

which means that

�(c(k))  max
i1,i2

|ci1(k)� ci2(k)| (4.59)

 (2 +R)µ(1 + %)� (�2 +R)µ(1� %) (4.60)

= (4 + 2%R)µ (4.61)

Theorem 1. The clock skew � (k) is within a bound:

� (k) 

✓
1� � +

4%

1� %

◆k

�(0) + (4 + 2%R)µ
1� (1� �)k

�
(4.62)

Proof. Transforming Equation 4.44 to precision domain using Lemma 6 and Lemma 7,
we get

� (k + 1) 

✓
� (A(k)) +

4%

1� %

◆
�(k) + � (c(k)) , (4.63)
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Expanding the right-hand side of the equation gives:

�(k) 
k�1Y

m=0

✓
� (A(k)) +

4%

1� %

◆
�(0) +

k�1X

`=0

 
k�1Y

m=`

� (A(m)) � (c(k))

!

=

✓
1� � +

4%

1� %

◆k

�(0) + (4 + 2%R)µ
k�1X

`=0

(1� �)k�`



✓
1� � +

4%

1� %

◆k

�(0) + (4 + 2%R)µ
1� (1� �)k

�
, (4.64)

As a sanity check, by assuming � > 4%
1�% , we can let k ! 1 and find

lim
k!1

�(k)  (4 + 2%R)
µ

�
. (4.65)

4.3.2 Convergence Analysis for OCDC Algorithm

In previous section the converge property is analyzed for corr1i . In this section the
converge property of the OCDC algorithm with both corr1i and corr2i is also analyzed.
We start by a slightly different relation between ⌧i(k + 1) and ⌧i(k) due to the
additional correction corr2i .

Lemma 8. With corr2(k), Equation 4.38 becomes

⌧i(k + 1)� ⌧i(k) =
1

|Ini(k)|

X

j2Ini(k)

�
⌧ ij(k)� ⌧i(k)

� k + 1

k
. (4.66)

Lemma 9. Lemma 8 can be reformulated with matrix form

t(k + 1) = A(k)t(k) + b(k) + c(k), (4.67)
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where

Ai,j(k) =

8
<

:
1/|Ini(k)| if j 2 Ini(k)

0 else .
(4.68)

and

bi(k) =

 
(k + 1)�i(k)

k�i
j(k)

� 1

!⇣�
A(k)t(k)

�
i
� ti(k)

⌘
(4.69)

and
ci(k) =

✓
�↵i(k) +

k + 1

k
↵i
j(k)

◆
�(k) (4.70)

with the existence of some �i
j(k) 2 [µ(1� %), µ(1 + %)] and ↵i

j(k) 2 [�1, 1].

Proof. Substitute ⌧ ij(k)� ⌧i(k) in Definition 8 using Lemma 1, we get

⌧i(k + 1)� ⌧i(k) =
1

|Ini(k)|

X

j2Ini(k)

�
⌧ ij(k)� ⌧i(k)

�k + 1

k

=
1

|Ini(k)|

X

j2Ini(k)

�
(tj(k)� ti(k)) /�

i
j(k) + ↵i

j(k)
� k + 1

k

For the average, we get the existence of some �i
j(k) 2 [µ(1 � %), µ(1 + %)] and

↵i
j(k) 2 [�1, 1] such that

⌧i(k + 1)� ⌧i(k) =
1

|Ini(k)| �i
j

X

j2Ini(k)

(tj(k)� ti(k))
k + 1

k
+

k + 1

k
↵i
j(k) (4.71)

Combining Lemma 2 and Equation 4.71 , we get

(ti(k + 1)� ti(k)) =
�i(k)

|Ini(k)| �i
j(k)

X

j2Ini(k)

(tj(k)� ti(k))
k + 1

k
+

✓
�↵i(k) +

k + 1

k
↵i
j(k)

◆
�i(k)
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Putting �i(k) =
(k+1)�i(k)

k�i
j(k)

� 1 and adding ti(k) on both sides of the equation, we
get

ti(k + 1) =
1

|Ini(k)|

X

j2Ini(k)

tj(k) +
�i(k)

|Ini(k)|

X

j2Ini(k)

�
tj(k)� ti(k)

�
+

✓
�↵i(k) +

k + 1

k
↵i
j(k)

◆
�i(k)

=
�
A(k)t(k)

�
i
+ �i(k)

⇣�
A(k)t(k)

�
i
� ti(k)

⌘
+

✓
�↵i(k) +

k + 1

k
↵i
j(k)

◆
�i(k)

(4.72)

or in vector form as Equation 4.67.

Lemma 10. The variable b(k) has the following constraint:

�
�
b(k)

�


4%

1� %

k + 1

k
�(k). (4.73)

Proof. With �(k) is the maximum difference of pulses in the same round, we have

�
��
A(k)t(k)

�
i
� ti(k)

�
 �(k). (4.74)

The bound of �i = (k+1)�i(k)

k�i
j(k)

� 1 is

�
2%

1 + %

k + 1

k
 �i(k) 

2%

1� %

k + 1

k
, (4.75)

Considering Equation 4.74 and Equation 4.75 with Equation 4.46, we get

�
2%

1� %

k + 1

k
� (k)  bi(k) 

2%

1� %

k + 1

k
� (k) , (4.76)

which means that

� (b(k))  max
i1

bi1(k)�min
i2

bi2(k) 
4%

1� %

k + 1

k
�(k). (4.77)
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Lemma 11. By assuming R > 2, the maximum difference of the vector c(k) is

�(c(k)) 

✓
4k + 2

k

◆
µ (4.78)

Proof. If R > 2, we get ci(k) � 0 in Equation 4.70, so ci(k) is within a bound:

(�1�
k + 1

k
)µ(1� %)  ci(k)  (1 +

k + 1

k
)µ(1 + %), (4.79)

which means that

�(c(k))  max
i1,i2

|ci1(k)� ci2(k)| (4.80)

 (1 +
k + 1

k
)µ(1 + %)� (�1�

k + 1

k
)µ(1� %) (4.81)

=

✓
4k + 2

k

◆
µ (4.82)

Theorem 2. The clock skew � (k) is within a bound:

� (k) 

✓
1� � +

4%

1� %

k + 1

k

◆k

�(0) + (4 + 2%R)µ
1� (1� �)k

�
(4.83)

Proof. Transforming Equation 4.67 to precision domain using Lemma 10 and Lemma 11,
we get

� (k + 1) 

✓
� (A(k)) +

4%

1� %

k + 1

k

◆
�(k) + � (c(k)) , (4.84)

Expanding the right-hand side of the equation gives:
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, (4.85)

As a sanity check, by assuming � > 4%
1�%

k+1
k , we can let k ! 1 and find

lim
k!1

�(k)  4
µ

�
, (4.86)

which is much smaller than Equation 4.65.
1

4.4 Conclusion

In this chapter, a new pulse-coupled clock synchronization method is proposed (OCDC
algorithm), which improves the pulse-coupled synchronization (OC algorithm) by in-
troducing a time-wheel algorithm and drift compensation. The time-wheel algorithm
enables sensors to exchange the information of the rounds during clock synchroniza-
tion. Drift compensation applies an additional correction to clock skew. We also

1To obtain the Equation 4.86, the first term in Equation 4.85 is removed because

limk!1

⇣
1� � + 4%

1�%
k+1
k

⌘k
= 0, where the term 1 � � + 4%

1�%
k+1
k < 0 since we assume that

� > 4%
1�%

k+1
k . It is a reasonable assumption because % is much smaller than 1, so the value of 4%

1�%
k+1
k

is small. Moreover, the term µ 1�(1��)k

� in Equation 4.85 becomes µ
� when k approach to infinity

because limk!1(1��)k = 0. The term 4k+2
k in Equation 4.85 becomes 4 since limk!1

4k
k = 4 and

limk!1
2
k = 0. With these calculations, Equation 4.86 is obtained.
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derive the convergence rate of both algorithms to show the improvements of the al-
gorithm. In order the view the properties of our proposed algorithm, in the next
chapter, simulations are performed to compare our proposed algorithm with the
previous work Függer et al. [2015a].
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Chapter 5

Simulation Results

5.1 Introduction

In this chapter, we perform several simulations to compare the proposed approach
to its previous work [Függer et al., 2015a]. The simulation environment is written
in Python3 and run on the MacOS operating system with 2 GHz Intel dual Core
i7 processor and 8 gigabyte RAM. A different scenario is build to test the limit of
the algorithm. At first, a simple environment is setup and simulated. We setup
different environment to test the robustness of the algorithm. In the end, a dynamic
real-world vehicular network is simulated to compare the algorithms.

5.2 Dense Scene

Figure 5.1 shows the layout of the simple environment, n = 10 sensors are randomly
scattered. The average connectivity of scene kVk

kNk is 5.2 per node. Each node has
different sensing range to detect the pulses from neighboring sensors. Sensors can
only sense the neighbors within the distance ri 2 R, which is bounded within a range:
r(1� ✏)  ri  r(1 + ✏). The average of sensing range for all the sensors r = 30 and
✏ = 0.5. The size of the environment is 50 ⇥ 50 m2. We set Ti(k) = R(1 + �i + �k)
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Figure 5.1: Scene in the experiment

with |�i|  30% and |�k|  1% and R = 0.03 second for different sensors. �i is a
sensor varying variable and �k is a sensor and time varying variable. The variation
�i is the different frequency for different sensor, which only be randomly chosen once
when sensor is initialized. The variation �k is the different frequency in each round
for each sensor, which affects the frequency of the clock every round. A realistic
value of �k is 10�2% to 10�4% according to Mills [1998]. We setup all the sensors
waking up at time 0 and starting to broadcast at time Ti(0) for every sensor.

We compare three different algorithms in the same environment:

1. an algorithm without any correction

2. clock synchronization using only corr1i (OC algorithm)
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3. clock synchronization using corr1i + corr2i (OCDC algorithm)

The second algorithm is the previous work from Függer et al. [2015a], and the third
is our proposed technique. We take corr2i into account at the sixth round. Figure 5.2
and Figure 5.3 show the comparison of these three algorithms. Figure 5.2 shows the
waveform of the pulses for the three algorithms. The x-axis indicates time in seconds,
and the y-axis shows a value one whenever any pulse is broadcasted, otherwise it
shows 0. The blue and red colors indicate the different round: k = 0 and k = 1. The
thiner the width of a colored rectangle (blue or red) is, the more synchronized the
pulses (of the various sensors) are, which means low clock skews. The clock skew of
OCDC (the third figure of Figure 5.2) is much smaller than OC (the second figure
of Figure 5.2). Figure 5.3 shows the timing of pulses for each round. Dots linked
by lines with different colors indicate that the pulses are broadcasted by the same
sensor. One can observe that if no clock synchronization technique is applied, the
pulses for each round is diverging (the first figure in Figure 5.3). Pulses in the same
round for algorithm corr1i are successfully trapped within an interval, but the interval
will not reduce as time goes on (the second figure in Figure 5.3). In contrast, pulses
from the OCDC algorithm are broadcasted more orderly than OC algorithm as time
goes on (the third figure in Figure 5.3).

Figure 5.4 shows the size of clock skew for each round. We calculate clock skew
by considering the nearest pulse from all sensors in the same round k to the target
sensor. Clock skew for first five rounds are the same, because OCDC algorithm does
not enable corr2 yet. As soon as corr2 is enable, the clock skew reduces dramatically.
The clock skew of OCDC algorithm is approximately 7 times smaller than the clock
skew of OC algorithm after they are stable.

5.3 Clock Drift Analysis

In this experiment, we analyze the methods: OC and OCDC algorithm in situations
that �i and �k is different. We set �i and �k at different values to verify the robustness
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Figure 5.2: The figure of waveform of the pulses for all sensors. The x-axis indicates
time in seconds and y-axis shows a value one whenever any pulse is broadcasted,
otherwise it shows zero. The blue and red colors indicate the different round: k = 0
and k = 1. The first figure shows the waveform without any correction. The second
figure shows the pulses are bounded in an interval thanks to corr1i . The last figure
shows the pulses with much smaller clock skew thanks to both corr1i and corr2i .
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Figure 5.3: Timing of pulses at each round. This figure shows the timing of pulses
for each round. Dots linked by lines with different colors indicate that the pulses
is broadcasted by a same sensor. One can observe that if no clock synchronization
technique is applied, the pulses for each round is diverging (column 1). Pulses in
the same round for OC algorithm are successfully trapped within an interval, but
the interval will not reduce as time goes on (column 2). In contrast, pulses from the
OCDC algorithm are broadcasted more orderly than OC as time goes on (column
3).
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Figure 5.4: Clock skew comparison between OC algorithm (red) and OCDC algo-
rithm (blue). The x-axis represents the round number and the y-axis represent the
maximum clock skew of each round

of OC and OCDC algorithm. In order to test the edge cases, the total variation of
�i + �k is ±20% of the constant R. Figure 5.5 on the facing page shows the five
different situations. The environment is the same except �i and �k are changed. In
these five simulations, the error for OC algorithm becomes small when �i decrease,
which shows that it can handle random uncertainty of clock drift �k better than
OCDC algorithm. In contrast, the error for OCDC algorithm increases when �k

increases. It shows that large amount of additional random clock drift has chance
to let OCDC algorithm become worse than OC algorithm. Notice that we test the
edge cases here, in normal case, �k is smaller than 10�4%.

5.3.1 Sudden Change of Clock Frequency

Clock drift can suddenly change due to a sensor turning into power-saving mode.
There we setup an extreme experiment where all sensors change their frequency in
the environment with �i = 30%, and �k = 1% during the 13th and 14th round in
the simulation. Figure 5.6 shows the result of this experiment. Both of the methods
suffer from the instant change of clock frequency at the 14-th round but converge
afterward.
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case1 case2 case3 case4 case5
�i,max  20%  15%  10%  5%  0%
�k,max  0%  5%  10%  15%  20%

Figure 5.5: This figure shows the five different situations. The environment is exactly
the same except �i and �k is changed. In these five simulations, the error for method
corr1i becomes small when the �i decreases, which shows that it can handle random
uncertainty of clock drift �k better than corr1i + corr2i . In contrast, the error for
method corr1i + corr2i increase when �k increases. It shows that large amount of
additional random clock drift has chance to let corr1i + corr2i become worse than
corr1i .
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Figure 5.6: An extreme experiment where all sensors change their frequency in the
environment with �i = 30%, and �k = 1% during the 13th and 14th round in the
simulation. If the connectivity remains zero, the pulses in the same round diverge
through time if the clock skew is not zero.
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Figure 5.7: Experimental results of OC algorithm (left) and using OCDC algorithm
(right). The figure on the left shows the round and the pulses using OC algorithm.
There is one line diverge at the fifth second of simulation, which means that there is
a sensor that does not follow the pace of the network. The figure on the right shows
that with OCDC algorithm, all sensors remain stable even if the connectivity is zero
because corr2i modifies the local clock period according to local history data. It does
not need to use the pulses from neighboring sensors to compute corr2i , so the round
remains regular even if the network is changed. If the connectivity remains zero, the
pulses in the same round diverge through time if the clock skew is not zero.

5.3.2 Sudden Change of a communication graph

In the wireless sensor network, sensors will not remain at one location, so the neigh-
boring sensors will not be the same in different rounds. In this experiment, we want
to discover the stability of the two methods OC and OCDC algorithm considering
the changes of communication graph G(k). In this environment, all the parameters
are the same as in the first experiment. In order to test our algorithm under the
extreme case, all the sensors are relocated suddenly, and communication graph G(k)

becomes different at the fifth second in the simulation.
Figure 5.7 shows the comparison of the two methods. Figure 5.7(left) shows the

round and the pulses using OC algorithm. There is one line diverge at the fifth
second of simulation, which means that there is a sensor that does not follow the
pace of the network. Figure 5.7 (right) shows that with OCDC algorithm, all sensors
remain stable even if the connectivity is 0, because corr2i modify the local clock period
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Figure 5.8: Time of each round of a random walk sensor network. The left figure
shows the round and the pulses using OC algorithm. We discover that some sensors
may have few or 0 neighboring node. In that case, corr1 is difficult to correct the
timing of pulses, because corr1 only depend on the pulses from neighboring sensors.
The right figure shows the round and the pulses using OCDC algorithm. It is obvious
that the pulses are aligned.

according to local history data. It does not need to use the pulses from neighboring
sensors to compute corr2i , so the round remains regular even if the network is changed.

5.3.3 Random walk communication graph

We further analysis a rational environment to approximate the movement of the
animals. In the environment, sensors are initially setup as Figure 5.1 but start to
random walk with a speed s 2 [0, 2] m/s. Figure 5.8 shows the comparison of the
two methods. Figure 5.8 (left) shows the round and the pulses using only corr1. We
discover that some sensors may have few or zero neighboring node. In that case,
corr1 is difficult to correct the timing of pulses, because corr1 only depends on the
pulses from neighboring sensors. Figure 5.8 (right) shows the round and the pulses
using both OC and OCDC algorithm. It is obvious that the pulses are aligned. That
is because the calculation of corr2 only involve the pulses of the sensor itself, which
is accessible even if the sensor has no neighbor.
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Figure 5.9: Experiment in harsh environment. A comparison between pulses broad-
casted using corr1i (upper curve) and using corr1i + corr2i (lower curve). The y-axis
represents the value of the maximum clock skew during the simulation.

5.4 Extreme Environment

In the simulation, to drive our algorithm to the extreme, 50 sensors are randomly
spread in a 217 ⇥ 217 m2 environment. The connection for every sensor is distance
r = 15 ± 7.5 m2. Moreover, the sensors are dynamic and randomly relocated every
0.05 second. We set kmax = 3 and �i = 20% and �k = 1%. Figure 5.9 shows the
convergence result, where corr1 + corr2 not only converge faster but also have much
smaller clock skew then corr1.

5.5 Vehicular Network

Vehicular network is a categories of wireless sensor network, where vehicles commu-
nicate to each other to perform data fusion. With vehicular network, the vehicles
are able to corporate to increase the road safety or improve the traffic. We simulate
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Figure 5.10: Static vehicle network simulation scenario. The width and height of the
scenario is 1500 and 1000 meters. The pink squares represent the blocks. Black lines
represent the road, and the blue circles are the position of the vehicles. The green
area is the Jardin du Palais Royal.

a vehicle network thanks to the Simulation of Urban MObility (SUMO) [Behrisch
et al., 2011]. The simulation environment is the 2nd district of Paris, downloaded
from OpenStreetMap [OpenStreetMap contributors, 2017].

5.5.1 Static Vehicle Network

Figure 5.10 shows the simulation environment, where n = 75 vehicles are randomly
placed with an average number of 2.84 neighbors per vehicle. The average sensing
range for all the vehicles is r = 300 (m) and sensing range variation ✏ = 0.2. Sensing
range for each sensor node i is bounded

(1� ✏)r  ri  (1 + ✏)r. (5.1)

The number of slots of time wheel is smax = 2. Figure 5.11 shows the vehicle nodes
location and their connectivity. The numbers beside the nodes represent the identity
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Figure 5.11: Static vehicle network, where the x-axis and the y-axis is the location
represented in meters.

of the vehicles. The parameters in this simulation are listed as follows:

• n = 75 vehicles

• Low connectivity c = 2.84 (nodes in average)

• sensing range r = 300 (m)

• clock drift % = 0.2

• maximum round number smax is set to 2

• sensing range variation ✏ = 0.2
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Figure 5.12: Clock skew comparison between OC (red) and OCDC (blue) algorithm.
Clock skew for the first five rounds are the same because OCDC algorithm includes
the term corr2 = 0. As soon as corr2 is enabled, the clock skew reduces significantly.
The clock skew of OCDC algorithm is approximately 7 times smaller than the clock
skew of OC algorithm after both clock skew are stabilized.

We compare the two different algorithms in the same environment:

1. OC algorithm

2. OCDC algorithm

The first algorithm is a pulse synchronization algorithm considering a highly dynamic
network published by Függer et al. [2015b] and the second is our proposed technique.
We take corr2i into account after the sixth round. Figure 5.12 shows the comparison
of these algorithms. The OC algorithm (Figure 5.12 red) successfully converges all
the pulses in the same round within an interval, but the interval will not reduce as
time goes on (Figure 5.12 blue). In contrast, pulses from the OCDC algorithm are
broadcasted more orderly than corr1i as time goes on.

Figure 5.12 shows the clock skew for each round. Clock skew for first five rounds
are the same, because OCDC algorithm includes the term corr2 = 0. As soon as corr2
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is enabled, the clock skew reduces significantly. The clock skew of OCDC algorithm
is approximately seven times smaller than the clock skew of OC algorithm after both
clock skews are stabilized.

5.5.2 Pulse Frequency and Clock Skew

In this section, different frequencies of the pulse are considered. Same parameters as
the previous section are used. If the vehicles exchange pulses more frequently, then
the clock skew temp to converge faster. Fig Figure 5.13 illustrates four simulations
where the scene is setup the same as Fig Figure 5.10 except T (k), the default time
period between two pulses, which is different in the four simulations. If T (k) is
smaller, then the vehicle network converges faster then when T (k) is larger. However,
higher pulses frequently cost higher energy consumption considering the same time
period. The parameter T (k) can be chosen to balance the convergence rate and the
energy consumption. In the vehicle network, all pulses in the same round converge
regardless T (k). There is also a possibility to slow down the pulse exchange after
the clock synchronization has converged.

5.5.3 Moving Vehicle Network

Vehicles are initially setup as Figure 5.10. The acceleration and the deceleration of
each vehicle is 2.6 (m/s2) and 4.5 (m/s2), respectively, which is the default param-
eters in SUMO simulator. Vehicles slow down when they turn and stop when traffic
lights are red. There are 214 traffic lights on the map. The realist vehicle traces are
generated by SUMO.

Figure 5.14 shows the clock skew of OC and OCDC algorithm in the simulation.
The clock skew is initialized at 0.07 seconds and drops efficiently due to the correction
term corr1i . The communication graph is fully connected at the beginning, so the
clock skew is smaller after few seconds. During the simulation, some mobile vehicle
has no or few neighbors. In that case, the clock offset and drift cannot converge,
because there is no communication between the networks, so the clock skew starts
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Figure 5.13: Simulation result for different frequency of pulse. If T (k) is smaller,
then the vehicle network converges faster then when T (k) is larger.

to increase. For OC algorithm, the frequency of the pulses reverts to its original
frequency, causing relatively large clock skew. For OCDC algorithm, the clock skew
increase slowly due to unconnected topology of the communication graph. When the
nodes in the network are connected, pulses are re-synchronized, so the clock skew
drop. Overall OCDC algorithm has better performance than OC algorithm due
to the additional correction of corr2i , which is more robust in the dynamic vehicle
network.

5.6 Conclusion

In this chapter, the proposed clock synchronization is simulated and compared with
the previous work of Függer et al. [2015a]. From the simulation, it is clear to observe
that the clock skew is reduced dramatically compared to the previous work. A
random walk environment is simulated, which shows that with corr2i , sensors are
able to remember the corrected frequency even if they do not have any neighboring
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Figure 5.14: Time of each round of a dynamic vehicle network for 2 seconds. The
clock skew is initialized at 0.07 seconds and drop efficiently due to the correction
term corr1i . The communication graph is fully connected at the beginning, so the
clock skew is smaller after few seconds. During the simulation, some mobile vehicle
has no or few neighbors. In that case, the clock offset and drift cannot converge,
because there is no communication between the networks, so the clock skew starts
to increase. For OC algorithm, the frequency of the pulses reverts to its original
frequency, causing relatively large clock skew. For the OCDC algorithm, the clock
skew increase slowly due to the unconnected topology of the communication graph.

sensors. Two different types of clock drift are also analyzed to show the performance
of the corrections. A vehicle network is also simulated to show the benefit of adding
corr2i .
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Chapter 6

Conclusion

This chapter summarizes the principal contributions of the first part of this thesis.
Suggestions for further work in some of the subjects encompassed by the research
contained in this thesis are also included. At the end of the chapter, a list of related
publications is provided.

6.1 Conclusion and Contributions

We proposed a new pulse-coupled synchronization by introducing a time-wheel algo-
rithm and drift compensation. The time-wheel algorithm enables sensors to exchange
the information of the rounds during clock synchronization. Drift compensation ap-
plies an additional correction to clock skew. The simulation results show that the
proposed algorithm performs better than the compared algorithm, especially when
considering a highly dynamic wireless sensor network. The proposed algorithm is
successfully applied to the vehicular network with a real geometric location and dy-
namic vehicles.

This thesis represents a step forward in research into pulse-coupled clock synchro-
nization. The second correction reduces the clock skew of the sensors in a natural
and elegant way. Moreover, using a comparison with the state-of-the-art technique,
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it was proved that the proposed algorithm was more precise in most of the cases.
This work is published on the 29th IEEE Intelligent Vehicle Symposium Han et al.
[2018b].

6.2 Future Works

For future work, we intend to evaluate the algorithm using a practical wireless sensor
network. The next step will be to select an appropriate communication hardware
and to closely simulate it in a large scale network.
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Guaranteed confidence region
characterization for source
localization using LSCR
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Chapter 7

Introduction

Wireless sensor networks (WSNs) play an important role in applications such as
environmental monitoring, source tracking, etc. In WSNs, the locations of sensing
nodes are often required to make the collected information useful. Node localiza-
tion algorithms have thus been developed, usually relying on a number of anchor
nodes, whose locations are known. Localization is mainly performed considering the
received signal strength (RSS), the time of arrival (TOA), the time difference of ar-
rival (TDOA) of electromagnetic signals transmitted by a node to the anchor nodes
or by the anchor nodes to the node to localize, see [Gezici, 2008, Li et al., 2016, Iliev
and Paprotny, 2015].

In this chapter, one considers guaranteed confidence region characterization for
the location estimate of nodes using RSS measurements. In most of the papers, lo-
cation estimates are evaluated first, and approximate characterization of confidence
regions are then provided. Here, one evaluates first accurate confidence regions
with prescribed confidence levels. Estimates may then be obtained using classical
techniques, or may be evaluated as the barycenter of the confidence region. For
that purpose, the Leave-out Sign-dominant Correlated Regions (LSCR) [Campi and
Weyer, 2005] approach is employed to define a region in the parameter space guar-
anteed to contain the true value of the parameter with an arbitrary confidence level.
Confidence regions as defined by LSCR are valid even in the non-asymptotic regime,
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i.e., when only a small set of measurements is available.

7.1 Motivation

In most of the papers, the RSS measurement noise is assumed to be normal or log-
normal [Gholami et al., 2011, Vaghefi et al., 2013]. This allows one to apply classical
least-squares (LS), maximum likelihood (ML), or maximum a posteriori (MAP) esti-
mation techniques. The main difficulty is that the cost function associated to the LS,
ML, or MAP estimation problem may be non-convex, especially when the path-loss
exponent as well as the reference transmission power have to be estimated jointly
with the location. The differential RSS measurement localization approach proposed
in Wang et al. [2013]. With the differential RSS, one avoids estimating the reference
power and facilitates estimation, e.g., via the total least-squares approach consid-
ered in Rahimi et al. [2016]. Convex [Tomic et al., 2015] or semi-definite [Kim et al.,
2007, Lee and Buehrer, 2009, Wang and Yang, 2009], [Ouyang et al., 2010, Vaghefi
et al., 2013] relaxation techniques have been proposed, to facilitate the optimiza-
tion. The non-linear localization problem is relaxed to a convex problem and solved
by the semi-definite programming. Using a semi-definite relaxation, [Lohrasbipey-
deh et al., 2014] presents a minimax approach involving again the differential RSS
measurements. Minmax approach iteratively minimize the possible loss for a worst
case senario. In most of these approaches, the estimator confidence region is then
defined using the Cramér-Rao lower bound (CRLB) [Torrieri, 1990]. Nevertheless,
confidence regions obtained from CRLB are usually optimistic and provide a rela-
tively inaccurate confidence region when there are few measurements. Alternative
bounded-error estimation techniques have been proposed in Mourad et al. [2009],
Léger and Kieffer [2010], Mourad et al. [2011a] to get guaranteed set estimates. In
these latter approaches, the RSS measurement errors are assumed to be bounded
with known bounds. One tries to evaluate the set of all source locations that are
consistent with the measurement model and the noise bounds. The resulting set is
guaranteed to contain the true location of the source node, provided that the hy-
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potheses on the noise bounds are satisfied. Nevertheless, in practice, noise samples
do not really follow a normal or lognormal distribution, and the bounds considered
in bounded-error estimation are either often violated because they are too small and
result in an empty set estimate, or lead to huge solution sets when the bounds are
too large.

7.2 Leave-out Sign-dominant Correlated Regions

LSCR belongs to a family of recently-proposed techniques to define non-asymptotic
confidence regions (NACR) [Campi and Weyer, 2005, 2006, 2010, Csáji et al., 2012].
The main assumptions of LSCR are (i) that the system output corresponds to the
model output for a given true value of the parameter vector (ii) that the measure-
ment noise samples are independent and symmetrically distributed. Considering a
given confidence level, and a finite set of measurements, LSCR defines a subset of the
parameter space that is guaranteed to contain the true value of the parameter vector
with a probability equal to the confidence level. Considering relatively mild condi-
tions on the measurement noise, one is thus able to obtain guaranteed confidence
regions. Nevertheless, the confidence region as defined by LSCR may be non-convex
or even may consist of several disconnected components. As shown in Kieffer and
Walter [2014], using tools from interval analysis [Jaulin et al., 2001], one is able to
obtain inner and outer approximations of the confidence regions as defined by LSCR
using subpavings, i.e., set of non-overlapping interval vectors.

7.3 Outline

In Chapter 8, tools from Interval analysis is described, which is used by some of the
localization methods. With the knowledge of Interval analysis, chapter 9 introduces
RSS localization model and specify several localization approaches. In chapter 10,
the methodology used in this work is shown and compared with other localization
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approaches. The different correlation functions of LSCR are also simulated and
analyzed. Finally, the conclusions of the survey is given in Chapter 12.
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Chapter 8

Interval Analysis

To describe the problem formulation and the state-of-the-art solutions, it is necessary
to understand the powerful tool, interval analysis, which is used in several localization
approaches. Interval analysis help speed up the process for finding the confidence
region. This chapter describes the fundamental concept and the tools in interval
analysis.

8.1 Introduction

Interval analysis is a branch of mathematics considering intervals instead of numbers.
It allows us to put bounds on rounding and measurements errors, thus produces
reliable computed results. The guaranteed numerical methods are powerful tools for
approximating solution sets. Guaranteed means outer and inner approximations of
the sets of interest are obtained. It is possible for interval methods to characterize
a set of solutions for a problem described by non-linear equations and inequalities.
The main idea to be used for interval analysis is to enclose real numbers in intervals
and vectors in boxes. One of the benefits is that it is possible to obtain guaranteed
results directly using interval variables.
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8.2 Interval

The interval [x] is a connected subset of R. Even when the interval is not closed, we
shall keep the notation [x]. Whether the empty set ; should also be considered as
an interval is still a subject of discussion. The lower bound lb([x]) of an interval [x],
also denoted by x, is defined as

x = lb[x] , sup{a 2 [x]|8x 2 [x], a  x} (8.1)

Its upper bound ub([x]), also denoted by x̄, is defined as

x̄ = ub[x] , inf{b 2 [x]|8x 2 [x], x  b} (8.2)

Thus, x is the largest number on the left of [x] and x̄ is the smallest number on its
right. The width of an interval [x] is

w([x]) , x̄� x (8.3)

and the centre of any bounded and non-empty interval [x] is defined as

mid([x]) , x̄� x

2
. (8.4)

Also, the set-theoretic operations can be applied to intervals. The intersection of two
intervals [x] and [y] is defined by

[x] \ [y] , {z 2 R|z 2 [x] and z 2 [y]}, (8.5)

and the union of two intervals [x] and [y] is defined by

[x] [ [y] , {z 2 R|z 2 [x] or z 2 [y]}. (8.6)

There are four classical operations of real arithmetic, namely addition (+), sub-
traction (�), multiplication (⇤) and division (/). All of them can be extended to
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intervals as follows:

[x] + [y] = [x+ y, x̄+ ȳ]

[x]� [y] = [x� ȳ, x̄� y]

[x] ⇤ [y] = [min(x ⇤ y, x ⇤ ȳ, x̄ ⇤ y, x̄ ⇤ ȳ)]

[x]/[y] = [x] ⇤ (1/[y]). (8.7)

An interval vector [x] is a subset of Rn that can be defined as the Cartesian
product of n closed intervals. An interval vector [x] is also called a box, which is
written as [x] = [x1]⇥ [x2]⇥ ...⇥ [xn], with [xi] = [x, x̄] for i = 1, ..., n. Its ith interval
components [xi] is the projection of [x] onto the ith axis. Many of the operations
extend without difficulty to boxes.

x = lb(x) , (lb(x1), lb(x2), ..., lb(x3))
T

x̄ = ub(x) , (ub(x1), ub(x2), ..., ub(x3))
T

[x] + [y] = ([x1] + [y1])⇥ ([x2] + [y2])⇥ ...⇥ ([xn] + [yn])

[x]� [y] = ([x1]� [y1])⇥ ([x2]� [y2])⇥ ...⇥ ([xn]� [yn])

[x]T ⇤ [y] = [x1] ⇤ [y1] + [x2] ⇤ [y2] + ...+ [xn] ⇤ [yn]

mid([x]) , (mid(x1),mid(x2), ...,mid(xn))
T

w([x]) , max
1in

w([xi]) (8.8)

Let Rm⇥n be the set of all matrix with real coefficients, m rows and n columns.
A m⇥ n dimensional interval matrix is a subset of Rm⇥n that can be defined as the
Cartesian product of m⇥n closed interval matrix. The interval matrix [A] is written
in the following form:
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[A] =

0

BB@

[a11] . . . [a1n]
...

...
[am1] . . . [amn]

1

CCA , (8.9)

Many of the operations can be extended.

A = lb([A]) ,

0

BB@

[a11] . . . [a1n]
...

...
[am1] . . . [amn]

1

CCA

Ā = ub([A]) ,

0

BB@

[ā11] . . . [ā1n]
...

...
[ām1] . . . [āmn]

1

CCA

[A] + [B] =

0

BB@

[a11 + b11] . . . [a1n + b1n]
...

...
[am1 + bm1] . . . [amn + bnm]

1

CCA

[A]� [B] =

0

BB@

[a11 � b11] . . . [a1n � b1n]
...

...
[am1 � bm1] . . . [amn � bnm]

1

CCA

[A] ⇤ [x] =

 
nX

j=1

[aij] ⇤ [xj]

!

1im

mid([A]) , (mid([aij]))1im,1jn

w([A]) , max
1im,1jn

w([aij]) (8.10)

8.3 Inclusion Function

Inclusion functions are useful to evaluate the upper and lower bound of a function
with simple calculations. Consider a function f from Rn to Rm. The inclusion

86



8.3. INCLUSION FUNCTION

Figure 8.1: Inclusion functions

function [f ] from IRn to IRm satisfy the following statement.

8[x] 2 IRn, f([x]) ⇢ [f ]([x]). (8.11)

Figure 8.1 illustrates a function f from R2 to R2 with variable x1 and x2. The image
form of f([x]) can be any shape. Whatever the shape of f([x]), [f ]([x]) guarantee
to contain the shape. However, [f ]([x]) may be pessimistic as Figure 8.1, and the
resulted box is not minimum. The minimum inclusion function for f([x]) is denoted
by [f⇤]([x]), which is far from trivial in general situation.

8.3.1 Natural Inclusion Function

Natural inclusion function is similar to normal functions, except that variables and
functions are interval. One can easily convert a normal mathematical equation to
Natural inclusion function by replacing the variables to intervals. Natural inclusion
function are not minimum in general cases, because of the dependency effects. The
accuracy of the natural inclusion function depend on the expression of f .

Example Consider the function f = (x + 1)2, g = x2 + 2x + 1. It is obvious that
f = g. However, if one applies natural inclusion function to evaluate [f ] and [g] with
[x] = [�1, 1] then we get:
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[f ]([x]) = ([�1, 1] + 1)2 = [0, 4]

[g]([x]) = [�1, 1]2 + 2 ⇤ [�1, 1] + 1 = [0, 1] + [�2, 2] + 1 = [�2, 4] (8.12)

The results are different due to different expression of f and g. For same function but
different expression, if x occurs more times, the result tend to be more inaccuracy.

8.3.2 Centred Inclusion Function

Centred inclusion function can be applied to any function. Centred inclusion function
linearize the function respect to the input parameter [x]. Given any function f , we
can obtain its centred inclusion function as follow:

[f ]([x]) = f(m) + [Jf ]([x]) ⇤ ([x]�m), (8.13)

where m can be any point in [x] and [Jf ] is the Jacobian matrix of [f ].

8.3.3 Mix-Centred Inclusion Function

The centred inclusion function can be improved by a more complicated formulation.
The main idea for mix-centred inclusion function is to apply Equation 8.13 for n

times, where n is the number of the variables. The case n = 3 will be treated first,
to simplify the exposition. Next, we show an example for the mix-centred inclusion
function for any [f ]([x1], [x2], [x3]). To derive the mix-centred form, the function
[f ]([x1], [x2], [x3]) is modified to 1 variable form, for example f[x1],m3([x2]) , where the
[x2] is the only variable for this function and the subscripts are the fixed variables.
The interval [x1] is fixed and the value of [x3] is fixed at an point m3. According to
this formation, we enumerate the following 3 valid functions using Equation 8.13:

[fm2,m3 ]([x1]) = fm2,m3(m1) + [g1m2,m3
]([x1])([x1]�m1) (8.14)
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[f[x1],m3 ]([x2]) = [f[x1],m3 ](m2) + [g2[x1],m3
]([x2])([x2]�m2) (8.15)

[f[x1],[x2]]([x3]) = [f[x1],[x2]](m3) + [g3[x1],[x2]]([x3])([x3]�m3) (8.16)

Since [f[x1],[x2]](m3) in Equation 8.16 is equal to [f[x1],m3 ]([x2]) in Equation 8.15, it
can be substituted using Equation 8.15. Moreover, [f[x1],m3 ](m2) in Equation 8.15 is
equal to [fm2,m3 ]([x1]) in Equation 8.14, so it can be substituted to Equation 8.14.
After the substitutions, the equation become:

[f[x1],[x2]]([x3]) = fm2,m3(m1) +[g1m2,m3
]([x1])([x1]�m1)

+[g2[x1],m3
]([x2])([x2]�m2)

+[g3[x1],[x2]]([x3])([x3]�m3) (8.17)

It is the same equation as:

[f ]([x1], [x2], [x3]) = f(m1,m2,m3) + [g1]([x1],m2,m3) ⇤ ([x1]�m1)

+ [g2]([x1], [x2],m3) ⇤ ([x2]�m2)

+ [g3]([x1], [x2], [x3]) ⇤ ([x3]�m3). (8.18)

The expression can be generalize as follow:

f([x]) ⇢ f(m) +
nX

i=1

[gi]([x1], ..., [xi],mi+1, ...,mn) ⇤ ([xi]�mi) (8.19)
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8.3.4 Monotonic Inclusion Function

Monotonic inclusion function is a type of inclusion function that reduce the pes-
simism efficiently. Monotonic inclusion function performs well when the function is
monotonic, because it reduce the interval pessimism by checking whether f([x]) is
monotonic (lb( @[f ]@[xi]

) > 0 or ub( @[f ]@[xi]
) < 0) for each interval [xi]. If f([x]) is monotonic

for variable xi, we can further find out the x+
i , the desired value of xi which maximize

f([x]). We can also find out the x�
i the desired value of xi which minimize f([x]). If

f([x]) is monotonic increase, then we let x+
i = x̄i and x�

i = xi. If f([x]) is monotonic
decrease, then we let x+

i = xi and x�
i = x̄i.

Let f be a function defined on variables V of domains [V ]. Let X ✓ V be a
subset of monotonic variables. Consider the values x+

i and x�
i such that: if xi 2X

is an increasing variable, then x+
i = x̄i and x�

i = xi, and if xi 2 X is an decreasing
variable, then x+

i = xi and x�
i = x̄i.

Consider W = V \X the set of variables not detected monotonic. Then, fmin and
fmax are functions defined by:

fmin(W ) = f(x�
1 , x

�
2 , ..., x

�
n ,W )

fmax(W ) = f(x+
1 , x

+
2 , ..., x

+
n ,W ) (8.20)

Finally, the monotonicity-based extension [f ] of f in the box [V ] produces the
following interval vector:

[f ] = [[fmin](W ), [fmax](W )] (8.21)

Example Consider for example f(x1, x2, w) = �x2
1 + x1x2 + x2w � 3w in the box

[V ] = [6, 8]⇥ [2, 4]⇥ [7, 15].

90



8.4. SIVIA ALGORITHM

[f ]([x1], [x2], [w]) = �[6, 8]2 + [6, 8]⇥ [2, 4] + [2, 4]⇥ [7, 15]� 3⇥ [7, 15]

= [−83, 35]

@f

@x1
(x1, x2) = �2x1 + x2 (8.22)

[
@f

@x1
]([6, 8], [2, 4]) = [�14,�8]. (8.23)

Since [�14,�8] < 0, we deduce that f is decreasing w.r.t. x1. Similarly, we can get

@f

@x2
(w) = 1 + w (8.24)

[
@f

@x2
]([w]) = [8, 16] (8.25)

Since [8, 16] > 0, we deduce that x2 is increasing w.r.t x2. Finally, 0 2 [ @f@w ]([x1], [x2], [w]) =

[�1, 1], so that w is not deduced monotonic. The monotonicity-based evaluation
yields:

[f ]([V ]) = [[f ](x1, x2, [w]), [f ](x1, x2, [w])]

= [[f ](8, 2, [7, 15]), [f ](6, 4, [7, 15])]

= [−79, 27]

8.4 SIVIA algorithm

A set-inversion problem can be solved by SIVIA algorithm proposed by Jaulin and
Walter [1993b]. Let f be a possibly non-linear function from Rn to Rm and let Y be
a subset of Rm. Set inversion is the characterization of

X = {x 2 Rn
|f(x) 2 Y} = f�1(Y). (8.26)
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Algorithm 8.1 SIVIA algorithm
Require: [f ],Y, [x]
Ensure: X, X̄
1: if [f ]([x]) \ Y = ; return;
2: [f ]([x]) ⇢ Y then X := X [ [x]; X̄ := X̄ [ [x]; return;
3: w([x] < ") then X̄ := X̄ [ [x]; return;
4: SIVIA([f ],Y, L[x], ",X, X̄)
5: SIVIA([f ],Y, R[x], ",X, X̄)

For any Y ⇢ Rm and for any function f admitting a convergent inclusion function
[f ], two regular subpavings X and X̄ such that X ⇢ X ⇢ X̄. can be obtained with
the algorithm SIVIA (Set Inverter Via Interval Analysis).

SIVIA require a search box [x] to which X̄ is guaranteed to belong. The general
cases may be encountered:

1. If [f ]([x]) has a non-empty intersection with Y, but is not entirely in Y, then
[x] may contain a part of the solution set. [x] is said to be undetermined. If [x]
has a width greater than a pre-specified percision parameter ", then it should
be bisected and the test should be recursively applied to these newly generated
boxes.

2. If [f ]([x]) has an empty intersection with Y, then [x] does not belong to X and
can be cut off from the solution tree.

3. If [f ]([x]) is entirely in Y, then [x] belongs to the solution subpaving X, and is
stored in X and X̄.

4. If the box considered is undetermined, but its width is lower than ", then it is
deemed small enough to be considered in the outer approximation X̄ of X.

Algorithm 8.1 shows the SIVIA based on an inclusion function, where X and X̄ have
been initialized as empty.
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8.5 Contractors

Forward-backward contractor is a simple technique to contract interval using con-
straints. It can be used in wireless sensor localization problem. However, this con-
tractor only consider one equation at a time and solve equation independently. On
the other hand, Newton contractor and Krawczyk contractor are powerful since they
can consider multiple equations at the same time. In this thesis, we aim to com-
pare the forward-backward contractor between Newton contractor and Krawczyk
contractor.

8.5.1 Constraint Satisfaction problem (CSP)

Consider nx variables xi 2 R, i 2 {1, ..., nx} and nf constraint

fj(x1, x2, ..., xnx) = 0, j 2 {1, ..., nf} (8.27)

We assume that the prior domain for x is [x] = [x1]⇥ [x2]⇥ ...⇥ [xnx ]. Let f be the
function whose coordinate functions are the fjs. Equation 8.27 can be formulated as
a constraint satisfaction problem

H : (f(x) = 0,x 2 [x]) (8.28)

The solution set of H is defined as

S = {x 2 [x]|f(x) = 0} (8.29)

Contracting S means replacing [x] by a smaller domain which still contain the
solution set. The optimal contraction is to replace [x] by the smallest box that
contains S.
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8.5.2 Forward-Backward Contractor

The forward-backward contractor is based on constraint propagation. It decomposes
the function into forward constraints and backward constraints to reduce the size of
the potential search space. It tries to find a consistent solution for each equation in
ICSP. The forward-backward contractor only considers the equations in ICSP one by
one, so it can be applied on the ICSP where the number of functions and the number
of variables are different. Consider a simple constraint x3 = x1x2. This constraint
can be rewritten as forward phase and backward phase:

Forward phase: x3 = x1x2

Backward phase: x1 = x3/x2

x2 = x3/x1

If the box [x] = [x1]⇥ [x2]⇥ [x3] = [1, 4]⇥ [1, 4]⇥ [8, 40] is the intervals we want to
contract. The contractor can be build as

Forward phase: [x3] = [x3] \ ([x1][x2])

Backward phase: [x2] = [x2] \ ([x3]/[x1])

[x1] = [x1] \ ([x3]/[x2]) (8.30)

We can keep calculating Equation 8.30 until the width of [x1], [x2], and [x3] are no
longer shrink. The result box is reduced to [2, 4]⇥ [2, 4]⇥ [8, 16].

In Figure 8.2, two anchors a and b are located at (4, 3) and (�4, 3), respectively.
Both of the anchors can measure the distance d+ e to agent and send this informa-
tion to the agent, where e is the measurement noise with zero mean and variance �2.
There is one agent located at x = (0, 0), whose location need to be determined. The
observation location of the agent for anchors a and b are (ua1, ua2) and (ub1, ub2), re-
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spectively. We can model scenario of Figure 8.2 to a constraint satisfaction problem:

H :

8
>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>:

(ua1 � 4)2 + (ua2 � 3)2 � (d2a +N (0, �2)) = 0

(ub1 + 4)2 + (ub2 � 3)2 � (d2b +N (0, �2)) = 0

ua1 � x1 = 0

ub1 � x1 = 0

ua2 � x2 = 0

ub2 � x2 = 0

da � 5 = 0

db � 5 = 0

(8.31)

Since N (0, �2) is uncertain, it is difficult to calculate Equation 8.31. Instead, we can
model the Equation 8.31 to a interval constraint satisfaction problem (ICSP) given
3� = 0.2

H :

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

([ua1]� 4)2 + ([ua2]� 3)2 � [d2a] = 0

([ub1] + 4)2 + ([ub2]� 3)2 � [d2b ] = 0

[ua1]� [x1] = 0

[ub1]� [x1] = 0

[ua2]� [x2] = 0

[ub2]� [x2] = 0

[da] = [4.8, 5.2], [db] = [4.8, 5.2]

(8.32)

We assume the agent’s location is already known within the box [x] = [[�2, 2], [�2, 2]]T ,
but still have high uncertainty. By applying the forward-backward contractor, we
can reduce the x down to [�1.1, 1.1][�1.3, 2.0]. It is apparent that the result is not
optimized. Forward-backward contractor fails to reduce [x] to the minimum size of
the solution, so it is not an optimal contractor for this ICSP. Forward-backward can-
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Figure 8.2: A scenario of localization CSP problem. The two anchors a and b are lo-
cated at (4, 3) and (�4, 3), respectively. Both of the anchors can measure the distance
d + e to agent and send this information to the agent, where e is the measurement
noise with zero mean and variance �2. There is one agent located at x = (0, 0),
whose location need to be determined.

not consider multiple equations at the same time. Krawczyk and Newton contractor
are numerical contractors that consider ICSP as a matrix. They use the Jacobian
matrix to find the solution of ICSP. Since the Jacobian matrix can evaluate the slop
using multiple constraints instead of one. However, Krawczyk and Newton contrac-
tor cannot contract successfully when the slop of the constraints are dramatically
variant.

8.5.3 Newton Iteration Function

Here we introduce the newton iteration function because it is a preliminary used for
building Krawczyk and Newton contractors. Figure 8.3 shows the idea of Newton
iteration: one starts with an initial guess (x̂n) which is reasonably close to the true
root, then the function (f) is approximated by its tangent line (f̂), and one computes
the x-intercept of this tangent line (a point x̂n+1 such that f̂(x̂n+1) = 0 ). This
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Figure 8.3: Newton Iteration in one dimensional. One starts with an initial guess
(x̂n) which is reasonably close to the true root, then the function (f) is approximated
by its tangent line (f̂), and one computes the x-intercept of this tangent line (a point
x̂n+1 such that f̂(x̂n+1) = 0 ). This x-intercept is a better approximation to the
function’s root than the original guess, and the method can be iterated.

Figure 8.4: A scenario that newton iteration fails to converge the solution to root,
where x1, x2, and x3 are the results of each iteration. We can observe that from
the second to the third iteration, x3 is farther away from the root than x2, so the
solution is not converged.
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x-intercept is a better approximation to the function’s root than the original guess,
and the method can be iterated. If the initial guess is far away from the true root
and the function is not monotonic, this iterative procedure may not converge to the
solution point due to the bad approximation of the tangent lines. Figure 8.4 shows
a scenario that newton iteration fails to converge the solution to root, where x1, x2,
and x3 are the results of each iteration. We can observe that from the second to
the third iteration, x3 is farther away from the root than x2, so the solution is not
converged.

To introduce the newton iteration in a more formal way, we first assume that
f : Rk

! Rk is differential, and we have the first guess of the solution x̂n. Since
f(x̂n) 6= 0, we want to find a better solution x̂n+1. First, we approximated f by its
tangent line at x̂n

f(x) ⇡ f̂(x) = f(x̂n) + Jf (x̂n)(x� x̂n) (8.33)

Where Jf is the Jacobian matrix of f . Then, we solve f̂(x̂n+1) = 0 to get the
x-intercept of this tangent line. Equation 8.33 is reformulated as

x̂n+1 = x̂n � J�1
f (x̂n)f(x̂n) (8.34)

where x̂n+1 is the better approximation of the x̂n. We compute Equation 8.34
iteratively until an sufficient accurate value is obtained.

In Equation 8.34, the one has multiply with inverse of the k-by-k Jacobian ma-
trix J�1

f (x̂). This is the Newton iteration method solving a system of k equations.
Assume that the system has m variables and k equations with m > k. The New-
ton’s method can still be used if the algorithms use the generalized inverse of the
non-square Jacobian matrix J+ = ((JTJ)�1)JT (from Wikipedia) instead of the in-
verse of J. If the non-linear system has no solution, the method attempts to find
a solution in the non-linear least squares sense. For subsection 8.5.4 on the next
page and subsection 8.5.5 on page 100, we will demonstrate Krawczyk contractor
and Newton contractor using a system with k variables and k equations (invertible
matrix) for simplification.
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8.5.4 Krawczyk Contractor

Theoretically, we can compute the interval version of newton iteration by the follow-
ing equation, which is the inclusion function of Equation 8.34 where x̂n and x̂n+1 are
is replace by the interval [x] and [x0], respectively:

[x0] = [x]� [J�1
f ]([x])[f ]([x]) (8.35)

where [x0] is a fixed-point solver for CSP problem. [x] is the interval which contain
the solution set S, [f ] is the inclusion function of f and [Jf ] is the inclusion function
for the Jacobian matrix J of function f . However, Equation 8.35 is suffered from
too many occurrence of [x]. To reduce the occurrence, Krawczyk contractor replace
J�1
f ([x]) by J�1

f (x0) in Equation 8.35 to reduce the occurrence of x:

[ ]([x]) = [x]� J�1
f (x0)[f ]([x]) (8.36)

where x0 is a point near x. This equation is still a fixed-point solver because [f ]([x]) =
0 imply [ ]([x]) = [x] � J�1

f (x0) ⇤ 0 = [x]. Then, it linearize Equation 8.36 using
centred inclusion function. Combine Equation 8.36 and Equation 8.13 to get

[ ]([x]) =  (x0) + [J ]([x]) ⇤ ([x]� x0) (8.37)

where [J ] is an inclusion function for the Jacobian matrix of  . We can derive [J ]

using Equation 8.36. Notice that the Jf (x0) is only a scalar matrix, the differential
operation of Equation 8.36 become easier than Equation 8.34 and the occurrence of
[x] is reduced.

J (x) = Inclusion_Jacobian(x� J�1
f (x0)f(x)) (8.38)

= I � J�1
f (x0)Jf (x) (8.39)

From the centred inclusion fix-point function is obtained, the Krawczyk contractor
can be formulate as follow.
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CK : [x] 7! [x] \ ( (x0) + [J ]([x]) ⇤ ([x]� x0)) (8.40)

Equation 8.40 can be further modified by substitute  with Equation 8.36 and by
substitute [J ]([x]) with Equation 8.38.

CK : [x] 7! [x] \ (x0 � J�1
f (x0)f(x0) + (I � J�1

f (x0)[Jf ]([x])) ⇤ ([x]� x0)) (8.41)

8.5.5 Newton Contractor

Newton contractor is not a direct interval version of the newton iteration function.
Still, it approximates the function by its tangent lines. Given any x and x0 2 R and
a continuous function f , we can find a point ⇠ that satisfy the following equation:

f(x) = f(x0) + Jf (⇠)(x� x0). (8.42)

Since ⇠ is guaranteed within the interval [x], we turn Equation 8.42 into the interval
version as follow.

[f ]([x]) = f(x0) + [Jf ]([x])([x]� x0) (8.43)

where x0 can be any point in the interval [x]. According to mean-value theorem,
we can find an approximated slop of function within [x] such that the approximate
function has the same root as the original function, so Jf (⇠) is replaced by [Jf ]([x]).
Since the Jacobian matrix [Jf ]([x]) is a interval instead of a point. It enumerate all
the possibility of the approximated tangent lines. In order to find all the x-intercepts
of those tangent lines, we solve [f̂ ]([x]) = 0 using Equation 8.43 to get

[x] = x0 � [J�1
f ]([x])f(x0) (8.44)
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Figure 8.5: A simple example of newton contractor of a k = 1 (1 variable and 1
function) system. We use colors to distinguish different lines. The curve black line
represents the function f . The orange lines represent the interval [x] before (after)
the contraction. The green lines are the tangent lines with maximum and minimum
slop. The red lines are maximum and minimum slop shifted to the point (x0, f(x0)).
There are two gray triangle area represent all possibility of the tangent lines that
pass through the point (x0, f(x0)). Since the tangent lines are the approximation
of function f , we can find the better solution by finding all the x-intercepts of the
tangent lines.
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By applying Equation 8.30, the Newton Contractor can be derived as follows.

CN : [x] 7! [x] \ (x0 � [J�1
f ]([x])f(x0)), x̂ 2 [x] (8.45)

Figure 8.5 is a simple example of newton contractor of a k = 1 (1 variable and 1
function) system. We use colors to distinguish different lines. The curve black line
represents the function f . The orange lines represent the interval [x] before and after
the contraction. The green lines are the tangent lines with maximum and minimum
slop. The red lines are maximum and minimum slop shifted to the point (x0, f(x0)).
There are two gray triangle area represent all possibility of the tangent lines that
pass through the point (x0, f(x0)). Since the tangent lines are the approximation
of function f , we can find the better solution by intersecting x-axis and the triangle
area.

8.5.6 Gauss-Seidel Contractor

Gauss-Seidel contractor can be applied to calculate [J�1
f ]([x])f(x0) in Equation 8.45

efficiently. Gauss-Seidel contractor is a iterative interval matrix solver. Given a
problem: Ap = b, where A 2 [A],b 2 [b],p 2 [p]. Assume A is invertible. We
can decompose A as the sum of a diagonal matrix and a matrix with zeros on its
diagonal:

A = diag(A) + extdiag(A) (8.46)

Solving Ap = b is equivalent to

diag(A)p+ extdiag(A)p = b (8.47)

The equation can be rewritten as

p = diag(A)�1(b� extdiag(A)p) (8.48)

102



8.6. CONCLUSION

An inclusion function for Equation 8.48 is

[p] = diag([A])�1([b]� extdiag([A])[p]) (8.49)

We can contract p by applying Equation 8.49 iteratively until p is contracted.
To calculate [J�1

f ]([x])f(x0) using Gauss-Seidel contractor, one can take [A] =

[Jf ]([x]), [b] = f(x0), and [p] = x0 � [x]. The reason for [p] = x0 � [x] is because
Equation 8.43 imply that [J�1

f ]([x])f(x0) = x0 � [x].

8.6 Conclusion

This chapter introduces the tools of interval analysis. Interval analysis allow us to
consider the uncertainty as bounds. With the inclusion function, the bounded un-
certainty can propagate to different domains. A contractor is able to reduce the
solution space using multiple inclusion functions. For the next section several local-
ization algorithms, which are based on interval analysis will be discussed.
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Chapter 9

Problem Formulation and Related
Approaches

9.1 Introduction

Localization in a network of sensors is usually performed considering the received sig-
nal strength (RSS), the time of arrival (TOA), the time difference of arrival (TDOA)
of electromagnetic or acoustic signals transmitted by some anchor nodes, see [Gezici,
2008] for an overview. In this thesis, one will consider localization from RSS, which
has received significant attention for more than a decade. By measuring the received
power of agent node from a specify location, we are able to estimate the location of
an agent.

9.2 Problem Formulation and Assumptions

Consider a set of na anchor nodes situated on a plane, with fixed and known locations
✓i, i = 1, . . . , na, in some reference frame attached to the plane. This paper aims at
providing a guaranteed NACR for the unknown location ✓0 of some static node in
the x-y plane, i.e., for a given confidence level, to provide a subset of locations to
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which the node belongs with the considered confidence level. For that purpose, the
node periodically emits some electromagnetic or acoustic signal, which is received
by the anchors. The k-th RSS measurement performed by anchor node i is denoted
y (i, k). The anchor nodes transmit the RSS measurements to some central processing
unit in charge of estimating ✓0 and the associated confidence region from y (i, k),
i = 1, . . . , na, k = 1, . . . , n.

We assume that the k-th measurement obtained by anchor node i is described by
the Okumura-Hata model [Okumura et al., 1968]

y (i, k) = P0 � 10�P log10
k✓0 � ✓ik

d0
+ " (i, k) , (9.1)

where P0 is the signal power measured at some known reference distance d0, �P is the
path-loss exponent, k·k is the Euclidian norm, and " (i, k) is the measurement noise.
One assumes that �P is the same for all anchors. Usually, the " (i, k)s are assumed
to be realizations of some normal or log-normal random variables. In this paper,
one only assumes that the " (i, k)s are realizations of independently, not necessarily
identically distributed random variables with distributions symmetric around zero.
Since P0 and �P are not necessarily known by the anchors nodes, one considers the
parameter vector p =

⇥
✓T0 , P0, �P

⇤T for which a confidence region has to be estimated
and from which a confidence region for ✓0 may then be deduced. Notice that d0 = 1

is a fixed parameter linked with P0, thus it does not appear in p.

Assuming that there exists some true value p⇤ =
⇥
✓⇤T0 , P ⇤

0 , �
⇤
P
⇤
T of the parameter

vector, Equation 9.1 can be rewritten as

y(i, k) = ym (i,p⇤) + " (i, k) (9.2)

with
ym (i,p⇤) = P ⇤

0 � 10�⇤
P log10

k✓⇤0 � ✓ik

d0
. (9.3)

One assumes further that the search for the confidence region for p⇤ has to be done
in some known compact set P0, which may be chosen arbitrarily large.
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9.3 State-of-the-art Approaches

Range-based approaches consider the localization problem in mobile sensor networks
using interval analysis and other tools. Range-based approaches can take outliers
into account, i.e., data not matching the observation model. Some range-based
approaches perform a set-membership estimation, where only the maximal number of
outliers is required to be known. Mourad et al. [2011b], Léger and Kieffer [2010] Using
these algorithms, estimates consist of sets of boxes whose union surely contains the
correct location of the sensor, provided that the considered hypotheses are satisfied.

9.3.1 Bounded-Error Approach

BE estimation techniques Halbwachs and Meizel [1996], Jaulin and Walter [1993a]
assume that the noise samples " (i, k) in Equation 9.1 are bounded with known
bounds, i.e., that " (i, k) 2 [e (i, k) , e (i, k)], with w (i, k) and w (i, k) known for
all i = 1 . . . na and k = 1 . . . n. The set of all parameter vectors p belonging to
some initial search set P0 that are consistent with the measurement model, the
measurements, and the noise bounds is then characterized. This set may be defined
as

PBE = {p 2 P0|ym (i,p) 2 y (i, k)� [w (i, k) , w (i, k)] , i = 1 . . . na, k = 1 . . . n} .

(9.4)
Introducing

w (i) = (w̄ (i, 1) , . . . , w̄ (i, n))T

w (i) = (w (i, 1) , . . . , w (i, n))T

and
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w =
�
w̄T (1) , . . . , w̄T (na)

�T

w =
�
wT (1) , . . . ,wT (na)

�T

and
[y] = [y �w,y �w] , (9.5)

one may formulate (Equation 9.4) as a set-inversion problem

PBE = P0 \ y�1
m ([y]) , (9.6)

which may be characterized using SIVIA in section 8.4.

The resulting set PBE is guaranteed to contain the true value p⇤ of the parameter
vector provided that all noise samples are within the considered bounds.

9.3.2 Robust Bounded-Error Approach

BE approaches may provide an empty set PBE = ; as a result. Such result may be
due to noise bounds which were violated by some measurements, to the initial search
set which does not contain the solution set, or to the model which is a too coarse
approximation of reality.

RBE estimation methods [Jaulin et al., 1996, Pronzato and Walter, 1996, Léger
and Kieffer, 2010] have been proposed to improve the robustness to outliers of BE
estimation techniques. In (Equation 9.4), the solution set is defined as the set of
parameter vectors that are consistent with all measurements. With RBE estimation,
one tries to find the set of parameter vectors that are consistent with all but ⇠

measurements and related noise bounds. In this context, the solution set may be
formulated as
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PRBE,⇠ = {p 2 P0|⌧(p) 2 Y⇠} , (9.7)

where

⌧(p) =
naX

i=1

nX

k=1

⌧i,k (p) , (9.8)

⌧i,k (p) =

8
<

:
1 if ym (i,p) 2 y (i, k)� [w (i, k) , w (i, k)] ,

0 else
(9.9)

and Y⇠ = [nan� ⇠, nan].
Again, (Equation 9.4) can be viewed as a set-inversion problem

PRBE,⇠ = P0 \ ⌧�1 (Y⇠) , (9.10)

which may be solved using SIVIA.
This approach does not need to specify in advance which measurements have to

be considered as outliers. Considering a fixed value of ⇠, one obtains an estimator
robust against ⇠ outliers. If ⇠ is not fixed a priori, a possible strategy is to start
with ⇠ = 0, and to increase ⇠ as long as an empty solution is provided by SIVIA.
When a non-empty solution set has been obtained for some ⇠0 > 0, one may consider
⇠ = ⇠0 +1 or ⇠ = ⇠0 +2 and evaluate PRBE,⇠ to further increase the robustness of the
estimated set PRBE,⇠.

The resulting set PRBE,⇠ is guaranteed to contain the true value p⇤ of the param-
eter vector provided that there are actually less than ⇠ outliers.

9.3.3 Nonlinear ML estimate and Cramér-Rao Lower Bound

9.3.3.1 Maximum Likelihood Estimation (MLE)

In MLE [Ziskind and Wax, 1988], Assuming that the noise samples w(i, k) in Equa-
tion 9.1 are independently and identically distributed (iid) as zero-mean log-normal
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with variance �2 , one may obtain the MLE of p⇤ as

p̂MLE = argmax ⇡(y|p), (9.11)

where ⇡(y|p) is the likelihood function, which requires a precise knowledge of the
noise probability distribution. The cost function to minimize is usually non-convex
and has several local minimizers. Nevertheless, one may try to minimize it using, e.g.,
lsqnonlin of Matlab. The function applies Levenberg–Marquardt algorithm (LMA)
to solve the optimization problem. First, considering the logarithm of ⇡(y|p), we get

l(p) = log(⇡(y|p))

= log

 
naY

i=1

nY

j=1

1
p
2⇡�

exp

 
�
(y(i, j)� ym(i,p))2

2�2

!!
) (9.12)

= �c
naX

i=1

nX

j=1

(y(i, j)� ym(i,p)) 2, (9.13)

where c =
log

⇣
1p
2⇡�

⌘

2�2 .

In order to find p̂MLE, we need to maximum ⇡(y|p), which implies minimizing

l0(p) =
naX

i=1

nX

j=1

(y(i, j)� ym(i,p))2. (9.14)

Given a start point of p, LMA replaces p by a new estimation p+�. To determine
�, the functions ym(i,p+ �) are approximated by their linearization.

ym(i,p+ �) ⇡ ym(i,p) +
@ym(i,p)

@p
� (9.15)
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Combining Equation 9.14 and Equation 9.15, we get

l0(p) ⇡ c
naX

i=1

nX

j=1

✓
y(i, j)� ym(i,p)�

@ym(i,p)

@p
�

◆2

. (9.16)

Reformulate Equation 9.16 in vector notation, we get

l0(p) ⇡ ky � ym(p)� J�k2 , (9.17)

= (y � ym(p))T (y � ym(p))� 2(y � ym(p))J� + �TJT j� (9.18)

where J is the Jacobian matrix of ym(i,p). The elements in the matrix is calculated
as

[J]ij =
[ym(i,p)]i

[p]j
. (9.19)

The operator [•]k in Equation 9.19 represents the k-th element in the vector or
matrix. Since we want to minimize the function Equation 9.17, we can take the
derivative with respect to � and setting the result to zero:

@l0(p)

@�
= 0 (9.20)

= �2(y � ym(p))J+ JTJ� (9.21)

� = 2(JTJ)�1[y � ym(p)]J. (9.22)

We apply Equation 9.20 for every iteration to replace p to p+�, until p has converged.

9.3.3.2 Cramér-Rao Lower Bound (CRLB)

Once an estimate p̂MLE has found, the CRLB Torrieri [1990] may be used to derive
an ellipsoidal confidence region in the parameter space. Assuming that p̂MLE is
unbiased, and introducing the estimator covariance matrix ⌃, one has

111



CHAPTER 9. PROBLEM FORMULATION AND RELATED APPROACHES

⌃ < J�1(p), (9.23)

where J(p) is the dim(p)⇥ dim(p) Fisher information matrix, with components

[J(p)] i1,i2 = �E


@2 ln ⇡(y|p)

@pi1@pi2

�
. (9.24)

The variable y demotes the observation vector in Equation 10.16, and ⇡(y|p) is the
join conditional probability density function of the observation given p. The variable
pi1 and pi2 are the i1-th and i2-th elements in p, respectively. When applying CRLB,
we need to determine the probability function of the noise. We assume the noises are
independent and identically distributed Gaussian random variables. The probability
density function of an observation for a RSS measurement in Equation 9.1 is

⇡i,j(y(i, j)|p) =
1

p
2⇡�

e�
(y(i,j)�ym(i,p))2

2�2 , (9.25)

where i represents the anchor node who measures the RSS value of a agent node.
Since all probability density functions for different RSS value measured by anchor
nodes are independent to each other. We can multiply all probability density function
to get the joint conditional probability density function.

⇡(y|p) =
naY

i=1

nY

j=1

⇡i,j(y(i, j)|p) (9.26)

Since each agent is localized individually. For a specific agent. By combining
Equation 9.25, Equation 9.26 and Equation 9.1, the joint conditional probability
density function of the observations is

⇡(y|p) =
NaY

a=1

1
p
2⇡�

exp

(
�
(y(a)� P0 + 10�p log10

k✓0�✓ik
d0

)2

2�2

)
. (9.27)

After the joint conditional probability density function of the observations is build,
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the fisher information matrix for localization is derived. We demonstrate fisher in-
formation matrix using three unknown variables for p.

J(p = [✓0,1, ✓0,2, P0]
T ) = �E

0

BB@

2

664

@2 ln⇡(y|p)
@✓0,1@✓0,1

@2 ln⇡(y|p)
@✓0,2@✓0,1

@2 ln⇡(y|p)
@P0@✓0,1

@2 ln⇡(y|p)
@✓0,1@✓0,2

@2 ln⇡(y|p)
@✓0,2@✓0,2

@2 ln⇡(y|p)
@P0@✓0,2

@2 ln⇡(y|p)
@✓0,1@P0

@2 ln⇡(y|p)
@✓0,2@P0

@2 ln⇡(y|p)
@P0@P0

3

775

1

CCA (9.28)

and

J(p = [✓0,1, ✓0,2, �p]
T ) = �E

0

BB@

2

664

@2 ln⇡(y|p)
@✓0,1@✓0,1

@2 ln⇡(y|p)
@✓0,2@✓0,1

@2 ln⇡(y|p)
@�p@✓0,1

@2 ln⇡(y|p)
@✓0,1@✓0,2

@2 ln⇡(y|p)
@✓2@✓0,2

@2 ln⇡(y|p)
@�p@✓0,2

@2 ln⇡(y|p)
@✓0,1@�p

@ ln⇡(y|p)
@✓0,2@�p

@2 ln⇡(y|p)
@�p@�p

3

775

1

CCA . (9.29)

The derivative elements in J(p = [✓0,1, ✓0,2, P0]T ) and J(p = [✓0,1, ✓0,2, �p]T ) are

@2 ln ⇡(y|p)

@✓1@✓1
=

(10�p)2

� ln 10

NaX

a=1

(✓0,1 � ✓a,1)2

k✓0 � ✓ak
4 , (9.30)

@2 ln ⇡(y|p)

@✓2@✓2
=

(10�p)2

� ln 10

NaX

a=1

(✓0,2 � ✓a,2)2

k✓0 � ✓ak
4 , (9.31)

@2 ln ⇡(y|p)

@✓0,1@✓0,2
=

@2 ln ⇡(y|p)

@✓0,2@✓0,1
=

(10�p)2

� ln 10

NaX

a=1

(✓0,1 � ✓a,1)(✓0,2 � ✓a,2)

k✓0 � ✓ak
4 , (9.32)

@2 ln ⇡(y|p)

@✓0,1@P0
=

@2 ln ⇡(y|p)

@P0@✓0,1
=

10�p

�2 ln 10

NaX

a=1

(✓0,1 � ✓a,1)

k✓0 � ✓ak
2 , (9.33)

@2 ln ⇡(y|p)

@✓0,2@P0
=

@2 ln ⇡(y|p)

@P0@✓0,2
=

10�p

�2 ln 10

NaX

i=1

(✓0,2 � ✓a,2)

k✓0 � ✓ak
2 , (9.34)

@2 ln ⇡(y|p)

@P0@P0
=

NaX

a=1

��2, (9.35)
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@2 ln ⇡(y|p)

@�p@✓0,1
=

@2 ln ⇡(y|p)

@✓0,1@�p
=

100�p

�2 ln(10)

NaX

a=1

(✓0,1 � ✓a,1) ln(k✓0 � ✓ak)

k✓0 � ✓ak
2 , (9.36)

@2 ln ⇡(y|p)

@�p@✓0,2
=

@2 ln ⇡(y|p)

@✓0,2@�p
=

100�p

�2 ln(10)

NaX

a=1

(✓0,2 � ✓a,2) ln(k✓0 � ✓ak)

k✓0 � ✓ak
2 , (9.37)

@2 ln ⇡(y|p)

@P0@�p
=

@2 ln p(y|p)

@�p@P0
= 0, (9.38)

and
@2 ln ⇡(y|p)

@�p@�p
= (

10

� ln(10)
)2

NaX

a=1

ln(k✓0 � ✓ak
2)

k✓0 � ✓ak
2 . (9.39)

As long as we have J(p = [✓0,1, ✓0,2, P0]T ) and J(p = [✓0,1, ✓0,2, �p]T ), we can ob-
tain the minimum covariance matrix of ⌃ by calculating the inversion of J(p =

[✓0,1, ✓0,2, P0]T ) and J(p = [✓0,1, ✓0,2, �p]T ), then we can illustrate CRLB as an error
ellipse. An error ellipse is often used as a visual aid or performance measure to
depict the accuracy or performance of an estimator, or other stochastic system. It
implies that there are two (or more) variables involved, and that they are normally
(Gaussian) distributed with known covariance.

Let us start with an 2-D zero mean random variable x =

"
x1

x2

#
. We assume

the covariance matrix of x is Cx =

"
�2
1 �1�2⇢

�1�2⇢ �2
2

#
. It has the probability density

function:

p(x) =
1

(2⇡)2
p
|Cx|

exp(�0.5xTC�1
x x), (9.40)

where C�1
x is:

C�1
x =

"
��2
1

�⇢
�1�2

�⇢
�1�2

��2
2

#
. (9.41)

Combining Equation 9.40 and Equation 9.41, we get
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pdf(x1, x2) =
1

2⇡�1�2
p
1� ⇢

exp

✓
�1

2(1� ⇢2)


1

�2
1

x2
1 �

2⇢

�1�2
x1x2 +

1

�2
1

x2
2

�◆
. (9.42)

We fix the value of the probability, i.e., p(x1, x2) = p⇤, so we can obtain

pdf⇤ =
1

2⇡�1�2
p
1� ⇢

exp

✓
�1

2(1� ⇢2)


1

�2
1

x2
1 �

2⇢

�1�2
x1x2 +

1

�2
1

x2
2

�◆
, (9.43)

which can be rewritten as

k2 =
�1

2(1� ⇢2)


1

�2
1

x2
1 �

2⇢

�1�2
x1x2 +

1

�2
1

x2
2

�
, (9.44)

where
k = 2 ln(p⇤2⇡�1�2

p
1� ⇢). (9.45)

We can observe that Equation 9.44 is an ellipse with x1 and x2 being coordinate axes.
A more practical way to describe Equation 9.44 for n random variables is in terms
of matrix. To draw the ellipse to unknown parameters of the localization problem,
we set x = p� p⇤, so that x is a vector of random variables with zero means.

k2 = xTCxx. (9.46)

Given a fixed value pdf⇤ and a covariance matrix Cx, we can find a set of point
b such that {b|k2 = bTCxb} to illustrate the lower bound of the confidence level
(n = 1 for an interval, n = 2 for an error ellipse, n = 3 for an ellipsoid).

To find the set b , Torrieri [1990] apply a transformation matrix A to let z = Ax,
where z’s components are independent standard normal. i.e., no correlation between
any of elements of z, and the variations of the elements in z are 1. After finding
A, the desired b can easily be found using b = A�1a, where a is a set of point of a
circle with unit radius.

To find the transformation matrix A, we first apply the covariance of cov(z) = I.
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Algorithm 9.1 Error Ellipse
1: Procedure for finding error ellipse
2: Input: desired confidence probability pdf⇤, Cx

3: Output: b
4: Compute the eigenvalues D and eigenvectors V.
5: Compute the transform matrix, A = D� 1

2V, and its inverse, A�1.
6: Compute k according to Equation 9.45.

7: Compute some points around a circle a = k2[
cos(✓)
sin(✓)

], ✓ = [0, ..., 2⇡]T .

8: Compute the error ellipse, b = A�1a.
9: Add the offset by the mean of the random variable x.

Recall the properties of multivariate transformation. If x is a random vector of n
variables with covariance Cx, and A is an n ⇥ n matrix, then z = Ax is a random
vector of n variables with covariance ACxAT . With this properties, we obtain

cov(z) = ACxA
T = I. (9.47)

Then, we turn to Eigendecomposition, which allows any square matrix Cx to be ex-
pressed as Cx = VDV�1, where V is an orthonormal square matrix of eigenvectors,
and D is a diagonal matrix of eigenvectors. Then we have

cov(z) = AVDV�1AT = AVD
1
2D

1
2V�1AT = I, (9.48)

which satisfied if D 1
2VAT = I. Thus, setting

A = D� 1
2V (9.49)

allows z = Ax to have a standard normal distribution. Working with z is much
easier than working with x because z has a standard normal distribution, and the
error ellipse is a circle. on the current page summarizes the procedure for finding the
error ellipse.

We also want to use CRLB to calculate the lower bound of the location error (e).

116



9.3. STATE-OF-THE-ART APPROACHES

For a 2-D dimension, we can obtain the lower bound of the variance of ✓0,1 and ✓0,2

, which are [J�1]1,1, [J�1]2,2, respectively. (The [M]1,1 means the element in first row
and first column; [M]2,2 means the element in the second row and second column)

p
E(e2) =

q
E[(✓⇤0,1 � ✓0,1)2] + E[(✓⇤0,2 � ✓0,2)2]

=
q

[J�1]1,1 + [J�1]2,2. (9.50)

CRLB evaluates the lower bound of the minimum estimator.

9.3.4 Semidefinite programming (SDP) with Cramér-Rao Lower

Bound

The approach considered in Vaghefi et al. [2013] consists in solving the localization
problem via semidefinite programming. The confidence region is then evaluated
considering confidence ellipsoid associated to the CRLB. This approach is briefly
recalled here.

Only ✓0 and P0 are assumed to be unknown. First, Equation 9.1 is reformulated
as

log10 d
2
i�i =

P0

5�P
+

w(i, k)

5�P
, (9.51)

where di = k✓0 � ✓ik and �i = 10y(i,k)/5�P . Introducing ↵ = 10P0/5�P , one deduces
that

d2i�i = ↵10w(i,k)/5�P . (9.52)

Assuming that the noise is sufficiently small, the right-hand side of Equation 9.52 is
expanded as

d2i�i = ↵ + ✏(i, k), (9.53)
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where ✏(i, k) = ln 10
5�P

w(i, k).

An estimator for p =
�
P0,✓

T
0

�T is then expressed as

bp = arg min
P0,✓0

X

i=1...na,k=1...n

�
d2i�i � ↵

�2
, (9.54)

Finding bp is difficult in general, since the cost function is non-linear and non-convex.
To address this issue, Vaghefi et al. [2013] introduce the auxiliary variable z = ✓T0 ✓0

to get the SDP problem
⇣
b↵, bz, b✓0

⌘
= min

↵,z,✓0

X

i=1...na,k=1...n

�
d2i�i � ↵

�2 (9.55)

subject to d2i =

"
✓i

�1

#T "
I2 ✓0

✓T0 z

#"
✓i

�1

#
, (9.56)

"
I2 ✓0

✓T0 z

#
⌫ 0. (9.57)

The solution of this problem may be obtained with standard SDP solvers such as
SDPT3 Toh et al. [1999]. An estimate bpSDP is then easily deduced from b↵, bz, and
b✓0. The confidence region in this case is again obtained from the CRLB.

9.4 Conclusion

In this chapter, state-of-the-art algorithms are described. Some of the methods
[Vaghefi et al., 2013, Torrieri, 1990, Ziskind and Wax, 1988] allows one to apply
maximum likelihood (ML), or maximum a posteriori (MAP) estimation techniques
to the localization problem. The main difficulty is that the cost function associated
to the ML, or MAP estimation problem may be non-convex, especially when the
path-loss exponent, as well as the reference transmission power have to be estimated
jointly with the location.

In the light of this, bounded error methods Mourad et al. [2009], Léger and Kieffer
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[2010], Mourad et al. [2011a] are proposed, where the RSS measurement errors are
assumed to be bounded with known bounds. One tries to evaluate the set of all source
locations that are consistent with the measurement model and the noise bounds. The
resulting set is guaranteed to contain the true location of the source node, provided
that the hypotheses on the noise bounds are satisfied. Nevertheless, in practice, noise
samples do not really follow a normal or lognormal distribution, and the bounds
considered in bounded-error estimation are either often violated because they are
too small and result in an empty set estimate, or lead to huge solution sets when
the bounds are too large. In the next chapter, we introduce our proposed technique,
which only uses mild assumptions on the noise, so the localization accuracy and the
robustness are improved.
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Chapter 10

Proposed LSCR Approach

This chapter proposes the localization method based on LSCR [Campi and Weyer,
2005, 2006]. The confidence region is defined and characterized using the tools from
Interval analysis.

10.1 Introduction

LSCR [Campi and Weyer, 2005, 2006] defines a set P ⇢ P0 that can be proved to
contain p⇤ with a prescribed probability. The main idea of LSCR is to consider
various estimates of the correlations of the prediction residuals, i.e., the differences
between the measurements and model outputs for some value p 2 P0. Then regions
of P0 are eliminated when too many correlation estimates have the same sign, which
contradicts the hypothesis that the noise samples are independent and symmetrically
distributed. The regions that were not eliminated constitute the non-asymptotic
confidence region P. In this chapter, LSCR for localization is analyzed. Different
configuration of the correlation functions in LSCR are discussed. Moreover, the
LSCR is compared to different localization approaches:

• Maximum likelihood estimator (MLE)

• Semidefinite programming (SDP)
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• Bounded-error approach (BE)

• Robust Bounded-error approach (RBE)

The goal of our experiments is to show the advantages of LSCR for localizing agents
using the measurements from anchors.

10.2 Confidence Regions as Defined by LSCR

First consider the vectors

y (i) = (y (i, 1) , . . . , y (i, n))T (10.1)

ym (i,p) = (ym (i,p) , . . . , ym (i,p))T (10.2)

gathering the RSS measurements and the model output for the i-th anchor node.
Then, consider the vectors

y =
�
yT (1) , . . . ,yT (na)

�T (10.3)

ym (p) =
�
yT

m (1,p) , . . . ,yT
m (na,p)

�T (10.4)

gathering in ny entries the na ⇥ n measurements and na ⇥ n model outputs. Con-
sidering some value p of the parameter vector, one may introduce the prediction
residual

w (p) = y � ym (p) . (10.5)

When p = p⇤, w (p⇤) contains the na ⇥ n realizations of the measurement noise for
all anchors at all measurement time instants.

To define a NACR, LSCR introduces three integers s > 0, m > 0, and q > 0, and
a vector e = (e0, ..., es)T of non-negative integers such that at least one ej , 0  j  s

is odd. Considering some p 2 P0, for t = 1, ..., ny � s, one can evaluate

ce
t,e (p) =

Y
wei

t+i (p) (10.6)
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where wt (p) is the t-th component of w (p). Then, using Equation 10.6, one may
compute several estimates of the correlation function of the prediction residuals, for
j = 1, . . . ,m

sj,e (p) =
1���Iny�s

j

���

X

`2Iny�s
j

c`,e (p) , (10.7)

where Iny�s
j is a subset of the set Iny�s = {1, . . . , ny � s} of indexes such that the

collection G =
n
Iny�s
1 , . . . , Iny�s

m

o
of these subsets forms a group under symmetric

difference, i.e., 8Ij 2 Gny�s and 8Ij0 2 Gny�s, one has (Ij [ Ij0)� (Ij \ Ij0) 2 Gny�s.
A procedure to build such Gny�s is described in section 10.3. In Equation 10.7,���Iny�s

j

��� is the cardinal number of Iny�s
j .

Then, the set

Pe,q,m =

(
p 2 P0|

mX

i=1

⌧�i,e (p) > q and
mX

i=1

⌧+i,e (p) > q

)
, (10.8)

where

⌧�i,e (p) =

8
>>><

>>>:

0 if si,e (p) < 0

B0.5 if si,e (p) = 0

1 if si,e (p)>0

(10.9)

and

⌧+i,e (p) =

8
>>><

>>>:

0 if si,e (p) > 0

0 if si,e (p) = 0

1 if si,e (p) < 0

(10.10)

has been shown in Campi and Weyer [2005] to be such that

Pr (p⇤
2 Pe,q,m) = 1�

2q

m
. (10.11)

In (12) and (13), B0.5 is a Bernoulli random variable with Pr (B0.5 = 0) =

Pr (B0.5 = 1) = 0.5 to solve ties.
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The set Pe,q,m contains all values of p 2 P0 such that at least q out of the m si,e (p)

are positive and q are negative. It is a NACR containing p⇤ with a probability that
is exactly 1� 2q

m .

10.3 Construction of the groups GN

Original LSCR uses GN to construct correlation functions sj,e(p) in Equation 10.7.
With the properties of GN , the probability of the confidence region inEquation 10.11
holds. The analysis of the behavior of the LSCR approach in the considered case
where different measurement models have to be considered requires a slight adapta-
tion of the construction of the groups GN used by the LSCR approach as presented
in Dalai et al. [2007b].

Consider the set IN = 1, ..., N and an integer m = 2µ.To build a group GN for the
symmetric difference operator, as in Dalai et al. [2007b], one considers first Gordon’s
iterative construction [Gordon, 1974]. One starts with R(1) = [1] and evaluate

2

64
R(k � 1) R(k � 1) 0

R(k � 1) J�R(k � 1) 1

0T 1T 1

3

75 , k = 1, . . . , µ, (10.12)

where J is the all-one matrix of appropriate size, and 0 and 1 are respectively the
all-zero and all-one vectors of appropriate size. Then one considers

Qm�1 =

"
R(k)

0T

#
= [q1, . . . ,qm�1], (10.13)

where the qis are the column vectors is repeated dN/(m� 1)e times so that Q has
at least N columns. The matrix G obtained selecting the first N columns of Q is
the incidence matrix of the group GN . Q is such that Qi,j = 1 if j 2 INi .
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10.4 Characterizing Confidence Regions

The characterization of confidence regions as defined by LSCR is performed in Campi
and Weyer [2005] by sampling points in P0 and determining whether they belong to
Pe,q,m. One thus gets an inner approximation of Pe,q,m, consisting of a union of
points in P0 which have been proved to belong to Pe,q,m. When the confidence region
is small, consists of several disconnected subsets, and when the number of sampling
points is not enough, there is a risk to be unable to find any point in Pe,q,m, except
with a fine gridding of P0.

An alternative approach based on interval analysis has been proposed in Kieffer
and Walter [2014]. Its main property is to yield inner and outer approximations of
Pe,q,m consisting of unions of non-overlapping boxes. This approach is briefly recalled
in what follows.

10.4.1 SIVIA

Characterizing Pe,q,m may be formulated as a set-inversion Jaulin and Walter [1993b]
problem:

Pe,q,m = {p 2 P0|fr,m(p) 2 Yq} = P0 \ f�1
e,m (Yq) , (10.14)

where

fe,m(p) =

"
f+
e,m(p)

f�
e,m(p)

#
=

" Pm
i=1 ⌧

+
i,e (p)Pm

i=1 ⌧
�
i,e (p)

#
, (10.15)

and

Yq =

"
Y+

q

Y�
q

#
=

"
[q,1[

[q,1[

#
, (10.16)

which may be efficiently solved via interval analysis [Jaulin et al., 2001, Moore, 1966]
using the SIVIA algorithm [Jaulin et al., 2001]. For that purpose, inclusion functions
for the fe,m are required. SIVIA in Algorithm 10.1 recursively partitions P0 into 3
different kinds of boxes: boxes proved to belong to Pe,q,m, boxes proved to have no
intersection with Pe,q,m, and undetermined boxes for which no conclusion can be
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Algorithm 10.1 LSCR with SIVIA
Require: [fe,m]([p]), [p], q, "
Ensure: Pe,q,m,Pe,q,m

1: if [fe,m]([p]) \ Yq = ; return;
2: if [fe,m]([p]) ⇢ Yq then Pe,q,m := Pe,q,m [ [p];Pe,q,m := Pe,q,m [ [p]; return;
3: if width([p]) < " then Pe,q,m := Pe,q,m [ [p]; return;
4: SIVIA([fe,m]([p]), L[p], q, ",Pe,q,m,Pe,q,m)
5: SIVIA([fe,m]([p]), R[p], q, ",Pe,q,m,Pe,q,m)

obtained. Undetermined boxes [p] are bisected into two subboxes L[p] and R[p] on
which SIVIA is applied again, until their width is less than some precision parameter
".

10.4.2 Contractor

Indetermination often results from range overestimation by inclusion functions. As
a consequence, boxes have to be bisected by SIVIA many times to allow one to
conclude on the position of the resulting boxes with respect to Pe,q,m. This may
entail a significant computational complexity, even for a moderate dimension of p.
Contractors may be useful in this context.

One may rewrite Equation 10.14 as follows

Pe,q,m = P+
\ P� (10.17)

P+ = {p 2 P0|f
+
e,m(p) 2 Y+

q } = P0 \
�
f+
r,m

� �1
�
Y+

q

�
(10.18)

P� = {p 2 P0|f
�
e,m(p) 2 Y�

q } = P0 \
�
f�
r,m

� �1
�
Y�

q

�
. (10.19)

A contractor Cf+
e,m,Y+

q
associated, e.g., with the generic set-inversion problem Equa-

126



10.5. SIMULATION SETUP

tion 10.18 is a function taking a box [p] as input and returning a box Cf+
e,m,Y+

q
([p]) ⇢

[p] such that [p] \ P+ = Cf+
e,m,Y+

q
([p]) \ P+, so no part of P+ in [p] is lost after

contraction. Contractors eliminate parts of the candidate box [p] that do not belong
to P+, without bisection.

Since f+
e,m and f�

e,m are not differentiable, most classical contractors, such as
the forward-backward contractor, Newton’s contractor, etc. [Jaulin et al., 2001] and
[Chabert and Jaulin, 2009] cannot be used directly. To use contractors for the charac-
terization of P+, considering a generic box [p], one first builds a set of m subboxes of
[p]. The i-th subbox is obtained as the output of some contractor Csi,e,[0,1[, trying to
eliminate all p 2 [p] such that si,e (p) < 0, i = 1, ...,m. Similarly, for P�, m subboxes
of [p] are built, each obtained as the output of some contractor Csi,e,]�1,0], trying
to eliminate all p 2 [p] such that si,e (p) > 0, i = 1, ...,m. Assuming that ym (p)

is differentiable, the forward-backward contractor [Jaulin et al., 2001], the contrac-
tor based on the centred form Kieffer and Walter [2014], and the 3BCid contractor
[Chabert and Jaulin, 2009] may then be put at work. In a second step, the union of
all intersections of q out of the m subboxes is evaluated and has been shown in Ki-
effer and Walter [2014] to provide a contractor Cf+

e,m,Y+
q

associated with the generic
set-inversion problem Equation 10.18. A similar procedure may be considered for
Cf�

e,m,Y�
q

associated with the generic set-inversion problem Equation 10.19.

10.5 Simulation Setup

The simulation setup considered here is the same as that in Vaghefi et al. [2013]. Five
anchor nodes (na = 5) are placed in the corners and in the center of a square of 20m⇥

20m; they are represented by black circles in the following Table 10.4 and Table 10.5.
na = 32 agents are regularly placed in the square; their location is indicated by
crosses. At the beginning of the localization process, each agent broadcasts n =

10 times a message containing its identifier. We assume that, using appropriate
signaling, there is no collision between messages from different agents. Each anchor
measures the RSS (in dBm) of the messages as well as the agent identifier. These
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data are then transmitted to a central processing unit to determine an estimate of
the position of the agents and its corresponding confidence region.

One has thus ny = na ⇥ n = 50 measurements available for each agent. In the
simulations, the reference power P0 = 30 dBm at d0 = 1 m is the same for all agents.
The path loss exponent is taken as �P = 4. Data are corrupted by two types of
noise samples, assumed independent and identically distributed. In a first set of
experiments, the noise samples are realizations of iid zero-mean log-normal variables
with standard deviation �0 = 2 dBm. In a second set of experiments, the noise
samples are realizations of iid Gaussian-Bernouilli-Gaussian (GBG) variables. In
the latter case, with a probability p0 = 0.9, the noise is zero-mean log-normal with
standard deviation �0 = 2 dBm and with a probability p1 = 0.1, it is zero-mean
log-normal with standard deviation �1 = 5 dBm.

Three estimation problems are considered:

1. Only the location ✓0,i, i = 1, . . . , na of each agent has to be estimated, �P and
P0 are assumed to be known. The search box for ✓0,i is [0, 25]⇥ [0, 25] m2.

2. ✓0,i and P0,i, i = 1, . . . , na have to be determined for each agent, the unknown
reference power is not assumed to be the same for all agents, contrary to
�P which is assumed known. The search interval for the P0, i = 1, . . . , na is
[0 dBm, 40 dBm].

3. ✓0,i and �P, i = 1, . . . , na have to be determined for each agent, the reference
power P0,i is assumed to be known for all agents (e.g., transmitted in the packet
broadcast by each agent). The search interval for �P is [2, 8].

The goal is to get an estimate of the parameters in these three cases, as well as an
estimate of the associated confidence region. The proposed LSCR technique is run
for each agent taking q = 3, r = 1, and m = 63. To build G used in Campi and
Weyer [2005], Gordon’s procedure [Gordon, 1974] is used, but each Ij 2 G consists
only of the ny � r elements provided by the original procedure. The choice m = 63
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allows an exploitation of all data, and avoids having duplicate elements in G. As a
consequence, (m� 2q) /m ' 90% confidence regions are provided by LSCR.

10.6 Selection of the parameters of the LSCR ap-

proach

To apply the proposed LSCR technique, several parameters have to be chosen. The
most difficult to choose is e, which determines the considered statistic of the pre-
diction residuals. Considering s = 1 and e = (1, 1)T corresponds to the correlation
function considered in Equation 9.1, which provides satisfying results in the consid-
ered application, as will be seen in what follows.

Other choices are possible, but two aspects have to be taken into account. The
first is related to the characterization by SIVIA of NACRs. In the inclusion function
[fe,m] of fe,m used by SIVIA, all occurrences of the parameters are considered as
independent. The pessimism with which the range of fe,m is evaluated depends on
the number of occurrences of each parameter to be estimated in the formal expression
of fe,m, see Kieffer and Walter [2014]. Thus, statistics with large values of

Ps
i=0 ei

should be avoided to improve the efficiency of SIVIA. The second is related to the
LSCR method itself: the correlation functions should lead to small and regularly-
shaped confidence regions.

Some preliminary experiments have been conducted to evaluate the impact of e.
One has considered s = 0 and s = 1 as well as q = 3, and m = 63. To build G used
in Dalai et al. [2007b], Campi and Weyer [2005], Gordon’s procedure Gordon [1974]
is used, but each Ij 2 G consists only of the ny� s elements provided by the original
procedure. The choice m = 63 allows an exploitation of all data, and avoids having
duplicate elements in G. As a consequence, (m � 2q)/m ' 90% confidence regions
are provided by LSCR.

Table 10.1 represents the NACR for the location ✓0 of an agent represented by a
cross for different statistics Equation 10.6 used by LSCR. The correlation functions
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are defined by the vector e considering the organization of the measurement vector
introduced in Equation 10.3. The shape of the confidence regions is satisfying only
when e = (1, 1)T or when e = (3, 1)T . The sets in blue and red represent respectively
the projections on the (✓1, ✓2)-plane of the inner (blue boxes) and outer (blue and
red boxes) approximations, respectively of 90% NACRs.

Table 10.2 represents similar NACR but considering the following alternative
organization of the measurement vector

y(j) = (y(1, j), . . . ,y(na, j))
T (10.20)

y =
�
yT (1), . . . ,yT (n)

�T
. (10.21)

In that case, the shapes of the confidence regions are satisfying for none of the vectors
e. To interpret the previous results, one may consider the asymptotic analysis of the
behavior of the LSCR approach provided in [7]. A condition to get Pe,q,m shrinking
to p⇤ when ny = na⇥n tends to infinity is that for any p 6= p⇤, all sj,e(p) should have
the same sign as ny tends to infinity. In subsection 10.10.1 and subsection 10.10.2,
one shows that this property is satisfied when considering e = (1, 1)T or e = (3, 1)T

in Equation 10.6. Moreover, it is not possible to consider an organization of the
measurement vector as described in Equation 10.20.

10.7 Evaluation of the LSCR approach

First, one evaluates NACR as defined by LSCR for p = ✓0 only, using the plain
SIVIA algorithm and compares its performance to a characterization via gridding,
see Table 10.3. Both schemes provide sets of comparable shapes. When " decreases,
the set of boxes provided by SIVIA and the set of points obtained by gridding become
similar. Nevertheless, with " = 0.2 (resp. " = 0.05), characterization via SIVIA is
10 (resp. 100) times faster than via gridding. Gridding is faster than SIVIA only
for large values of ", which confirms results already obtained in Kieffer and Walter
[2014].
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e = (1) e = (1, 1)T

e = (2, 1)T e = (3, 1)T

Table 10.1: NACR as defined by LSCR for the location of a given agent represented
by a cross; the NACR are obtained for different statistics defined by e, with an
organization of the measurement vector as described by Equation 10.3.
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e = (1) e = (1, 1)T

e = (2, 1)T e = (3, 1)T

Table 10.2: NACR as defined by LSCR for the location of a given agent represented
by a cross; the NACR are obtained for different statistics defined by e, considering a
measurement vector obtained by stacking the data obtained by all anchor nodes at
each instant.
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Grid method LSCR
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Table 10.3: NACR as defined by LSCR: comparison of the sets obtained by gridding
and using SIVIA; computing time as a function of e (left) and set of points or
subpavings (right) for e = 0.2 and e = 0.05. Notice that this agent has five anchors.
The number of the agent can affect the size of the confidence region too. With more
anchors, one is able to obtain a smaller confidence region.
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Now, one aims at comparing SIVIA algorithm without contractor (NC), and vari-
ant of SIVIA involving the forward-backward contractor (FB), the 3BCid contractor
(3B), and the contractor based on the centred form (CF). In all cases, these contrac-
tors are used to build, for some box [p], the m subboxes of [p] such that sei,r (p) > 0,
i = 1, ...,m and the m subboxes of [p] such that si,e (p) 6 0, i = 1, ...,m, see Equa-
tion 10.9 and Equation 10.10. The q-intersection contractor Kieffer and Walter [2014]
is then applied on both subsets of m boxes.

Figure 10.1 shows the size of the confidence region for p = ✓0 when using the
plain SIVIA, SIVIA with FB, 3B, and CF contractors. For each technique, two lines
are provided. The upper lines represent the size of the outer approximation and the
lower lines represent the size of the inner approximation of the NACR. The outer and
inner approximation converge when the parameter " becomes smaller. For a given
value of ", the confidence region obtained with SIVIA and using contractors has a
smaller size than without contractors. The 3B and CF contractors provide the best
results.

Figure 10.2 shows the evolution of size of the outer and inner approximations of
the NACR as a function of the time required to obtain it with the different variants
of SIVIA without and with contractors. Clearly, NC provides the best compromise
between accuracy and computing time.

To understand the relative inefficiency of contractors in the context of NACR
characterization, Figure 10.3 shows the contraction obtained on each box processed
by SIVIA using the CF contractor. The x-axis represents the original surface of each
processed box and the y-axis represents the surface of the box after contraction.
One sees that large boxes are left unchanged. The CF contractor is only able to
contract relatively small boxes, which helps obtaining a more accurate description
of the NACR, but with a significantly increased computational complexity. The
computing time penalty to apply contractors is not compensated by the gain in
terms of reduction of the size of the search space provided by contractors.
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Figure 10.1: Size of the outer (upper lines) and inner (lower lines) approximation of
the confidence region as defined by LSCR provided by different variants of SIVIA,
without and with contractors for different values of the precision parameter "
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Figure 10.2: Size of the outer (upper lines) and inner (lower lines) approximation of
the confidence region as defined by LSCR provided by different variants of SIVIA,
without and with contractors as a function of the computing time (the curves are
parametrized in ")
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Figure 10.3: Evolution of the surface of boxes before and after processing by the CF
contractor. If the contractor can not reduce the size of the box, then the size of the
box remain the same after the contraction. One can see most of the boxes cannot be
contracted. Only small portion of the boxes is contract, so their size become smaller.
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10.8 Comparison with alternative methods

Table 10.4 summarizes an example of estimation results obtained with the approaches
described in chapter 10 and section 9.3 considering Gaussian noise only. The columns
correspond to different estimation problems. The rows correspond to the results
provided, respectively by LSCR, the BE, and the RBE estimators as well as the
estimate obtained using a MLE approach with confidence regions evaluated from the
CRLB approach presented in subsection 9.3.3 on page 109.

The intervals for the measurement noise are taken as [�3�0, 3�0] for the BE
approach and as [�2�0, 2�0] for the RBE approach. The plain SIVIA algorithm
without contractors is used with the LSCR, BE, and RBE approaches with " = 0.05.
The sets in green and yellow represent respectively the projections on the (✓1, ✓2)-
plane of the inner (blue boxes) and outer (blue and red boxes) approximations,
respectively, of 90 % NACRs (for LSCR), or of the set estimates (for the BE or RBE
approaches). For some cases, yellow part is too thin to verify. A triangle close to
a node location indicates that the set provided for the node is either empty or does
not contain the actual node location.

The initialization for the nonlinear MLE is taken at random within the convex
hull of the anchors. Optimization is performed using Matlab lsqnonlin non-linear
least-squares optimization function, which is detailed in subsection 9.3.3. With some
initialization, lsqnonlin provides estimates which projection on the (✓1, ✓2)-plane
are outside the [�5, 25]2 box. In that case, a new search is performed with an other
random initialization. This reinitialization is performed up to three times. The green
ellipses represent the 90% confidence region derived from the CRLB. The lines link
the estimated positions ✓̂ and true positions ✓⇤ of the agents.

Table 10.5 is similar to Table 10.4 but with results obtained from measurements
corrupted by GBG noise. The intervals for the measurement noise are again taken
as [�3�0, 3�0] for the BE approach and as [�2�0, 2�0] for the RBE approach.

Table 10.6 provides the estimates of ✓0 obtained with the SDP approach as-
suming that both ✓0 and P0 have to be estimated and the projection of the 90%

138



10.8. COMPARISON WITH ALTERNATIVE METHODS

confidence ellipsoid derived from the CRLB in the case of Gaussian noise only (left)
and Gaussian-Bernoulli-Gaussian noise (right).

Table 10.4 shows that when the number of the unknown variables increases, the
size of the sets provided by the LSCR, BE, and RBE approaches increases. This is
due to the fact that an uncertainty in P0 or �P translates directly in an uncertainty
in terms of node localization. One also see that an uncertainty in P0 or in �P have
comparable impacts on the size and shape of the obtained sets. This is consistent with
the identifiability issue mentioned in section 10.5. Sometimes, the sets provided by
LSCR are empty or do not contain the actual node location. This is consistent with
the definition of a 90% confidence region, which should contain the actual location
only in 90 % of the cases.

Considering GBG noise also increases the size of the sets obtained: confidence
regions in Table 10.5 tend to be larger then those in Table 10.4. This is not surprising,
since data corrupted by GBG noise contain less information about the node location
than data corrupted by log-normal noise.

Nonlinear MLE provides good results when only ✓0 has to be estimated. Nev-
ertheless, when both ✓0 and P0 or ✓0 and �P have to be estimated, the estimation
errors increases significantly. SDP is more robust than nonlinear MLE when sev-
eral parameters have to be estimated. In general, confidence regions derived from
the CRLB are by far too optimistic: agents seldom belong to the 90 % confidence
ellipsoid.

In Table 10.4, the sets evaluated using BE are in general larger than those ob-
tained with RBE or than the confidence regions defined by LSCR. In the case of
GBG noise, most of the sets provided by the BE approach is empty. This is not
surprising, since the assumption on the noise bounds is violated in many cases. The
size of the sets evaluated with the RBE approach is not much affected by the nature
of the noise, showing the robustness of the approach to variations of the noise char-
acteristics. Nevertheless, in some cases, in presence of GBG noise, the sets provided
by the RBE approach do not contain the true value of the location of some nodes.
This is due to the fact that not enough outliers where tolerated.
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Table 10.4: Simulations considering measurements disturbed by Gaussian noise: Pro-
jections on the (✓1, ✓2)-plane of inner and outer-approximations of set estimates ob-
tained by SIVIA in the case NACR as defined by LSCR, and in the case of Bounded-
Error (BE), and Robust Bounded-Error (RBE) estimation, as well as MLE with con-
fidence regions derived from the CRLB; nodes for which the set estimate is empty
or does not contain its actual location are marked by a triangle.
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Table 10.5: Simulations considering measurements disturbed by GBG noise: Projec-
tions on the (✓1, ✓2)-plane of inner and outer-approximations of set estimates obtained
by SIVIA in the case NACR as defined by LSCR, and in the case of Bounded-Error
(BE), and Robust Bounded-Error (RBE) estimation, as well as MLE with confidence
regions derived from the CRLB; nodes for which the set estimate is empty or does
not contain its actual location are marked by a triangle.
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Table 10.6: Projection on the (✓1, ✓2)-plane of estimates and confidence ellipsoids
obtained by the SDP method in Gaussian noise (left) and GBG noise (right)

10.9 Effect of the noise variance

In this chapter, one studies the effect of the noise variance on the size of the con-
fidence region and on the location estimation error. The same simulation setup as
in section 10.5 is considered, but now, N = 100 agents to be localized are randomly
placed in the square. Noise samples are realizations of iid zero-mean Gaussian ran-
dom variables with standard deviation starting from �0 = 0.5 to �0 = 4 dBm for
each simulation. Both ✓0,i and P0,i, i = 1, . . . , N have to be determined for each
agent.

10.9.1 Localization error

To evaluate the localization error of the LSCR, BE, and RBE approaches, one con-
siders the outer approximations Pr,q,m, PBE, and PRBE of Pe,q,m, PBE, and PRBE and
evaluate the center of mass of these sets defined, e.g., for PBE as

bpBE =
1

vol
�
PBE

�
X

[p]2PBE

vol ([p])mid ([p]) , (10.22)
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where [p] is a box contained in the list of non-overlapping boxes forming PBE, vol ([p])
and mid ([p]) are the volume and midpoint of [p]. The estimated location b✓0,BE is
the deduced from bpBE. When an empty set is provided by the LSCR or the BE
estimation techniques, no point estimate is evaluated.

Figure 10.4 shows the average value of the norm

� =
1

N

NX

i=1

���b✓0,i � ✓0,i
��� (10.23)

of the difference between the estimated location b✓0,i and the actual location ✓0,i as
a function of the measurement noise standard deviation. For the LSCR and BE
techniques, the average is only evaluated when the obtained sets are not empty.

For all estimation techniques, � decreases with �. The LSCR and RBE methods
provide the best results. The performance of SDP is due to the relaxation of the
constraints. MLE fails to provide reasonable estimates for some of the sensors due
to local minima of the cost function.

10.9.2 Characteristics of the confidence region

Figure 10.5 shows the proportion of agents actually located in the set estimates or
in the 90% confidence region provided by the LSCR or derived from the CRLB.
For BE, RBE, and LSCR, lower and upper bounds are provided, corresponding
to the inclusion in the inner and outer approximation of the sets PBE, PRBE, and
Pe,q,m, respectively. Figure 10.5 shows that the confidence regions associated to the
estimates provided by the MLE and SDP approaches are often too optimistic. LSCR,
BE and RBE can produces confidence regions or set estimates which are reliable.

Figure 10.6 shows the average surface of the projection on the (✓1, ✓2)-plane of
the NACR, of the BE and RBE set estimates, and of the confidence region derived
from the CRLB. The size of the confidence regions provided by the CRLB (MLE
and SDP approaches) are the smallest. Nevertheless, the regions are not realistic as
shown in Figure 10.6. The LSCR and RBE approaches provide sets of similar size,
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Figure 10.4: Evolution of the localization error as a function of �0

144



10.9. EFFECT OF THE NOISE VARIANCE

Figure 10.5: Proportions of realizations for which the true value of the agent location
is contained in the 90% NACR (left), in the BE set estimates (up), or in the 90 %
confidence regions derived from the CRLB (down)
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Figure 10.6: Evolution of the average surface of the projection on the (✓1, ✓2)-plane
of the NACRs, the set estimates, or the confidence region derived from the CRLB

while the size of the set provided by the BE approach is larger due to the larger noise
bounds considered.

10.10 Non-Asymptotic Confidence Region Analysis

In this section, one analyzes the behavior of sj,e(p), j = 1, ...,m when ny tends to
infinity, assuming that na anchor nodes provide each the same number n of measure-
ments tending to infinity. The parameters m and q are fixed. Our aim is to show
that for properly chosen vectors e, when p = p⇤ the functions sj,e(p), j = 1, ...,m

tend to have all the same sign as ny tends to infinity. Moreover, to ensure that the
NACR shrinks toward p⇤, one has to determine in which cases, p = p⇤ is the unique
solution of the equations sj,e(p) = 0, j = 1, ...,m. To perform this analysis, one
assumes that the wj are independent and identically distributed.

146



10.10. NON-ASYMPTOTIC CONFIDENCE REGION ANALYSIS

10.10.1 First organization of the vector of measurements

One considers first an organization of the measurement vector as described in Equa-
tion 10.3 on page 122 and e = (1, 1)T . Moreover, the groups Gny�s are assumed to be
constructed as described in section 10.3 on page 124. For a given `, one considers the
elements Iny�s of Gny�s with increasing ny and focus on values of ny�s = kna(m�1),
with k = 1, .... In that case, for a given j, one gets

sj,e(p) =
1

|Ikna(m�1)|

X

`2Ikna(m�1)

c`,e(p). (10.24)

Considering e = (1, 1)T , one get

ct,(1,1)(p) = wt(p)wt+1(p), (10.25)

which, with the measurement vector (6), may take two forms, depending on whether
wt(p) and wt+1(p) involve measurements from the same anchor node (most of the
cases), or from different anchor nodes, which is the case when t 2 {n, 2n, ..., (na �

1)n}. In the first case

ct,(1,1)(p) =

✓✓
P ⇤
0 � 10�⇤

P log10
k✓⇤0 � ✓itk

d0
+ wt

◆
�

✓
P ⇤
0 � 10�⇤

P log10
k✓0 � ✓itk

d0
+ wt

◆◆

✓✓
P ⇤
0 � 10�⇤

P log10
k✓⇤0 � ✓itk

d0
+ wt+1

◆
�

✓
P ⇤
0 � 10�⇤

P log10
k✓0 � ✓itk

d0
+ wt

◆◆

=

✓
10�⇤

P log10
k✓0 � ✓itk

k✓⇤0 � ✓itk
+ wt

◆✓
10�⇤

P log10
k✓0 � ✓itk

k✓⇤0 � ✓itk
+ wt+1

◆
, (10.26)

where it is the index of the anchor node which has produced measurement t. Simi-
larly, in the second case,

ct,(1,1)(p) =

✓
10�⇤

P log10
k✓0 � ✓itk

k✓⇤0 � ✓itk
+ wt

◆✓
10�⇤

P log10
k✓0 � ✓it+1k

k✓⇤0 � ✓it+1k
+ wt+1

◆
,

(10.27)

147



CHAPTER 10. PROPOSED LSCR APPROACH

One rewrite Equation 10.24 as

sj,e(p) = s(1)j,e(p) + s(2)j,e(p) (10.28)

with

s(1)j,e(p) =
1

|Ikna(m�1)|

naX

i=1

X

`2Ikna(m�1)
j \[(i�1)n+1in[

c`,e(p) (10.29)

and

s(2)j,e =
1

|Ikna(m�1)|

X

`2Ikna(m�1)\{n,...,(na�1)n}

c`,e(p)

=
1

k |Ina(m�1)|

X

`2Ikna(m�1)\{n,...,(na�1)n}

c`,e(p).

In s(1)j,e(p), the second sum with indices ` 2 Ikna(m�1)
j

T
[(i� 1)n+ 1, in[ considers

only the c`,e(p) involving measurements from the same anchor node i. In s(2)j,e(p), the
sum with indices ` 2 Ikna(m�1)

j

T
{n, ..., (na�1)n} considers only the c`,e(p) involving

measurements from different anchor nodes.

Since Ikna(m�1)
j contains sequences of kna consecutive indices and Ina(m�1)

j con-
tains sequences of na consecutive indices, using Ina(m�1)

j one may deduce the indices
present in Ikna(m�1)

j . For example, if ` = 1 2 Ina(m�1)
j , then {1, . . . k} ⇢ Ikna(m�1)

j .
More generally, if ` 2 Ina(m�1)

j , then {(` � 1)k + 1, . . . `k} ⇢ Ikna(m�1)
j . Conse-
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quently, Equation 10.29 on the preceding page may be rewritten as

s(1)j,e(p) =
1

|Ikna(m�1)|

naX

i=1

X

`2Ikna(m�1)
j \[(i�1)n+1in[

c`,e(p)

=
1

|Ikna(m�1)|

naX

i=1

kX

=1

X

`2Ikna(m�1)
j ,(i�1)n+1(`�1)k+<in

c(`�1)k+,e(p)

=
1

k |Ikna(m�1)|

naX

i=1

X

`2Ikna(m�1)
j

X

=1,(i�1)n+1(`�1)k+<in

c(`�1)k+,e(p)

=
1

|Ikna(m�1)|

naX

i=1

1

k

X

`2Ikna(m�1)
j

X

=1,(i�1)n+1(`�1)k+<in

c(`�1)k+,e(p).

Then, using similar arguments as those considered in [Dalai et al. [2007a] Ap-
pendix A.2], for all p such that the associated ✓0 6= ✓i , i = 1, ..., na, in the case
e = (1, 1)T , one has

lim
k!1

1

k

X

=1,(i�1)n+1(`�1)k+<in

c(`�1)k+,(1,1)(p) =

✓
10�⇤

P log10
k✓0 � ✓ik

k✓⇤0 � ✓ik
+ wt

◆2

,

(10.30)
which is the expected value of ct,(1,1)(p) for some t such that it = i.

Moreover, since s(2)j,e(p) consists only in na terms, for all p such that the associated
✓0 6= ✓i, i = 1, ..., na, one has

lim
k!1

1

k |Ina(m�1)|

naX

i=1

X

`2Ikna(m�1)
j \{n,...,(na�1)n}

c`,e(p) = 0. (10.31)

Let ↵`,i > 0 be the proportion of indices in Iny�s corresponding to ct,(1,1)(p)

involving measurements of anchor node i only. When ny � s = kna(m � 1), these
proportions are independent of k. As a consequence, for all p such that the associated
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✓0 6= ✓i, i = 1, ..., na one has

s1j,(1,1)(p) = lim
k!1

sj,(1,1)(p)

=
naX

i=1

↵`,i

✓
10�⇤

P log10
k✓0 � ✓ik

k✓⇤0 � ✓ik

◆2

, (10.32)

which vanishes for all ✓0 such that

k✓0 � ✓ik = k✓⇤0 � ✓ik , i 2 {1, . . . , na|↵`,i > 0}. (10.33)

Provided that for each ` there are at least three non-aligned anchor nodes such that
↵`,i > 0, ✓0 = ✓i is the unique solution of the system of Equation 10.33. Any ✓0 6= ✓i
leads to strictly positive s1j,(1,1)(p).

In the case e = (3, 1)T , using similar derivations, one obtains

s1j,(3,1)(p) =
naX

i=1

↵`,i

✓
10�⇤

P log10
k✓0 � ✓ik

k✓⇤0 � ✓ik

◆4

,

and again, ✓0 = ✓i is the unique solution of the system of Equation 10.33.

In the case e = (2, 1)T , one obtains now

s1j,(3,1)(p) =
naX

i=1

↵`,i

✓
10�⇤

P log10
k✓0 � ✓ik

k✓⇤0 � ✓ik

◆3

.

where each term in the function can be positive or negative causing multiple solution
points. For this choice of e, the NACR will not shrink to p⇤ when ny tends to infinity.

When both ✓0 and P0 have to be estimated, in the case e = (1, 1)T , one obtains
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ct,(1,1)(p) =

✓✓
P ⇤
0 � 10�⇤

P log10
k✓⇤0 � ✓itk

d0
+ wt

◆
�

✓
P0 � 10�⇤

P log10
k✓0 � ✓itk

d0
+ wt

◆◆

✓✓
P ⇤
0 � 10�⇤

P log10
k✓⇤0 � ✓itk

d0
+ wt+1

◆
�

✓
P0 � 10�⇤

P log10
k✓0 � ✓itk

d0
+ wt

◆◆

=

✓
P ⇤
0 � P0 + 10�⇤

P log10
k✓0 � ✓itk

k✓⇤0 � ✓itk
+ wt

◆✓
P ⇤
0 � P0 + 10�⇤

P log10
k✓0 � ✓itk

k✓⇤0 � ✓itk
+ wt+1

◆
.

(10.34)

when measurements from the same sensors are combined. Then one gets

s1j,(1,1)(p) =
naX

i=1

↵`,i

✓
P ⇤
0 � P0 + 10�⇤

P log10
k✓0 � ✓ik

k✓⇤0 � ✓ik

◆2

, (10.35)

which vanishes for all (P0,✓0) such that

P ⇤
0 � P0 + 10�⇤

P log10
k✓0 � ✓ik

k✓⇤0 � ✓ik
= 0, i = 1, . . . , na. (10.36)

This condition may be rewritten as

k✓0 � ✓ik = k✓⇤0 � ✓ik ⇥ 10
P0�P⇤

0
10�⇤P , i = 1, . . . , na. (10.37)

If P0 is known to belong to some a priori search interval [P 0, P 0], then ✓0 has to
belong to the intersection of annulus centered in ✓i with radius between k✓⇤0 � ✓ik⇥

10
P0�P⇤

0
10�⇤P and k✓⇤0 � ✓ik⇥10

P0�P⇤
0

10�⇤P . The intersection of these annuli defines the NACR
for ✓0, and may also lead to a reduced confidence region for P0. Nevertheless, in this
case, the confidence region does not shrink to a single point in the search space.
Similar conclusions can be obtained when both ✓0 and �P or ✓0, P0, and �P have to
be estimated.
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10.10.2 Alternative organization of the vector of measure-

ments

Consider now an organization of the measurement vector as described in Equa-
tion 10.20 and e = (1, 1)T . The expression of ct,e(p) is still given by Equation 10.25,
but now, all ct,e(p) will involve measurements from two different anchor nodes. After
some derivations, one obtains now:

s1j,(1,1)(p) =
na�1X

i=1

�`,i

✓
10�⇤

P log10
k✓0 � ✓ik

k✓⇤0 � ✓ik

◆✓
10�⇤

P log10
k✓0 � ✓i+1k

k✓⇤0 � ✓i+1k

◆
, (10.38)

+ �`,na

✓
10�⇤

P log10
k✓0 � ✓nak

k✓⇤0 � ✓nak

◆✓
10�⇤

P log10
k✓0 � ✓1k

k✓⇤0 � ✓1k

◆
, (10.39)

where �`,i is the proportion in s1j,(1,1)(p) of terms ct,e(p) involving a measurement
provided by the i-th and the i + 1 mod na anchor nodes. In that case, s1j,(1,1)(p) is
positive for values of ✓0 far away from the anchor nodes, i.e., such that k✓0 � ✓ik >

k✓⇤0 � ✓ik for all i = 1, . . . , na. When ✓0 is close to ✓⇤0 the sign of s1j,(1,1)(p) is difficult
to predict and unlikely to be the same for all s1j,(1,1)(p), j = 1, . . .m.

10.11 Conclusion

In this chapter, the localization algorithm using LSCR is discussed. With a user
defined probability, the non-asymptotic confidence region NACR is defined. Origi-
nally, NACR is characterized using gridding method, where the points in the solution
space are generated and verify whether it is in the NACR one by one. With the help
of Interval analysis, the characterization is much faster when the required precision
is high. Moreover, by using SIVIA, the outer and inner approximation of NACR is
characterized, so the result is guaranteed.

This chapter also discusses the implementation and the result of LSCR local-
ization. Considering the system parameters of LSCR, only a subset of parameters
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are able to generate quality results. We also show the runtime of both SIVIA and
gridding under different precision. SIVIA is preferred than gridding if high precision
and dimension of the solution space are considered. We also compare LSCR with
some state-of-the-art approaches to show the robustness of LSCR. Finally, the error
of the center of the confidence region is compared, LSCR estimates the locations of
the sensors with higher accuracy than the alternative approaches. Different kinds of
LSCR arrangement are analyzed and show that only a subset of parameters e lead
to a robust and precise NACR.
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Chapter 11

Conclusions

The second part of the thesis showed that NACR may be obtained using the LSCR
approach applied to the problem of source localization from RSS measurements.
LSCR provides confidence locations of the sensors under mild assumptions on the
noise distribution. The noise is assumed to be symmetrically distributed around
zero. Inner and outer-approximations of the NACR are provided using tools from
interval analysis. Contrary to confidence regions provided by CRLB associated to
MLE or SDP techniques, NACR provided by LSCR contains the true value of the
parameter vector to be estimated with the prescribed confidence level. Furthermore,
LSCR provides the best localization result: its average error is smaller than other
compared methods (BE, RBE, MLE, SDP). This work is published in Han et al.
[2018a].
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Chapter 12

Conclusion for this thesis

This thesis focus on two important problems related to WSN: localization and time
synchronization. For clock synchronization, robustness of the algorithm is essential.
In WSN, mobile and low-cost sensors cause communication errors. Considering the
dynamicity, a distributed algorithm is proposed, which extends the previous work
from Függer et al. [2015b] and reduce the clock skew. In the new pulse-coupled syn-
chronization, time-wheel algorithm is introduced for sensors to exchange the round
number and average the pulses of the same round. Moreover drift compensation
is applied to reduce the clock skew. The convergence analysis shows that the drift
compensation reduces the clock skew and improves the convergence rate. When
considering a highly dynamic WSN, the algorithm converges faster than in previous
works. The proposed algorithm is successfully applied to a vehicular network.

For the second part of the thesis, we estimated the location of each sensor using
LSCR, which produces a non-asymptotic confidence region. The benefit of applying
LSCR to localization problem is that the assumptions on the noise of RSS signal
is mild, so the confidence region can be estimated accurately. We analyze differ-
ent correlation functions of LSCR and found that only some correlation function can
produce a satisfying confidence region. We also implement alternative localization al-
gorithms, such as maximum likelihood estimator (MLE), semi-definite programming
(SDP), bounded error estimator (BE), robust bounded error estimator (RBE). We
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compare the alternative methods and found that LSCR provides the best localization
result: its average error is smaller than other compared methods.

12.1 Summary and Contribution

WSNs have been widely studied in the past years, but research still needs to find
solutions to some of the challenges posed by power limitation, dynamicity, and low
computing clock rate. With the aim of contributing to the research on WSN, this
thesis proposes new algorithms for both clock synchronization and localization. The
detailed contributions of this thesis are summarized as follows.

• Chapter 3 described the formal model of the wireless sensor network and spec-
ified the problem of clock synchronization. The local physical clocks and the
formal model of the wireless sensor network is defined. An error function is
presented to evaluate the quality of the algorithm. Also, we summarize the
existing state-of-the-art techniques such as ATS, RoATS, ATSP.

• Chapter 4 introduced time-wheel algorithm and drift compensation to extend
the existing pulse-coupled synchronization [Függer et al., 2015a]. With our
time-wheel algorithm, sensors can synchronize round number during consensus.
With drift compensation, sensors estimate a better timing to broadcast pulse,
which improves the accuracy of clock synchronization.

• Chapter 5 gave the simulation result that compare this work to the previous
work [Függer et al., 2015a]. The result shows that the clock skew is reduced
dramatically compared to the previous work. A random walk environment
is simulated, which shows that with corr2i , sensors are able to remember the
corrected frequency even if they do not have any neighboring sensors. A vehicle
network is also simulated to show the benefit of adding corr2i .

• Chapter 8 introduced the tools of interval analysis. Interval analysis allow us to
consider the uncertainty as bounds. With the inclusion function, the bounded
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uncertainty can propagate to different domains. A contractor is able to reduce
the solution space considering multiple inclusion functions. SIVIA algorithm
is introduced to characterize the solution set.

• Chapter 9 described the localization algorithms. Numerical methods such as
MLE and SDP with CRLB are discussed. Interval-based methods such as BE
and RBE are also described. The main benefit and limitation of these algorithm
is described.

• Chapter 10 proposed the localization algorithm using LSCR. With a user de-
fined probability, the non-asymptotic confidence region NACR is defined under
mild assumptions. With the help of Interval Analysis, the characterization is
much faster when the required precision is high. Moreover, by using SIVIA, the
outer and inner approximation of NACR is characterized, so the result is guar-
anteed. This chapter also discusses the implementation and the result of LSCR
localization. Applying LSCR to solve localization problem achieve higher ac-
curacy than the alternative approaches. This chapter also analyzed different
kind of LSCR arrangement and find the best correlation function arrangement.

12.2 Future Work

This thesis represents a small contribution to the field of wireless sensor network.
Therefore, future research is certainly needed. Some subjects where the research
discussed in this thesis can continue are described in the following subsections.

12.2.1 Improve characterization speed of LSCR

The characterization of NACR using interval analysis is for the time being relatively
time consuming. More efficient contractors are currently searched to speed-up the
characterization process. Applications of the LSCR to recursive estimation is also
considered. In this thesis, we used many contractors and tried to reduce the runtime.
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However, the correlation functions are difficult to contractor, because there are too
many occurrence of the same variable in these functions. With many occurrence, it
is difficult for contractor to contract the boxes.

12.2.2 Applying LSCR to TOA or TDOA

This thesis applies LSCR to RSS signal measurements, one can also apply the tech-
nique to time of arrival (TOA) or time-difference of arrival (TDOA) localization.
With TOA, the distance of sensors is calculated from the time of arrival as radiation
signal travel with a known velocity. The transmission delay estimated from TOA or
TDOA can also be used in clock synchronization algorithms.

12.2.3 Implement the Approaches in Real World

Simulation is not enough to micmic the noise samples in the real world environment.
For future work, we intend to evaluate the algorithm using a practical wireless sensor
network. The first step will be to select an appropriate communication hardware and
to closely simulate it in a large scale network. With the real world environment, we
can start to consider the measurements that is affected by different obstacles such
as buildings in the vehicular network or walls in the indoor localization problem.

12.2.4 Dynamic Pulse Frequency for Clock Synchronization

For the wireless sensor network, the power that drive the sensors is usually limited.
With limited battery, it is difficult for sensors to explore the real world. Our proposed
clock synchronization method handles the problem of clock skew with the fixed pulse
frequency. If the frequency is dynamic, then sensors are able to reduce the pulse
frequency after the clock is synchronized, so the energy is preserved.
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12.2.5 Considering Transmission Delay

In the proposed method for clock synchronization, we assume the transmission delay
is zero because sensors only communicate with pulses. However, in order to com-
municate with pulses, the new protocol for wireless sensor network has to be setup.
If the proposed clock synchronization algorithm is applied on the regular WIFI or
ZEEBEE, then transmission delay is unavoidable. In order to increase the robustness
of the algorithm, we can also consider transmission delay in the future work.

12.2.6 Combining Approach

In the thesis, the clock synchronization and localization are two separated methods.
However, many research shows that the clock synchronization and localization face
the same difficulties and can be solved together. The both of the algorithms need
to consider transmit delay. It is possible for sensors to exchange messages for both
clock synchronization and localization at once to reduce the required bandwidth. For
moving sensors, better clock synchronization reduce the clock skew, which leads to
better localization result. It is interesting to merge the two different techniques to
solve the problems at once, so the algorithm becomes more efficient and robust.

12.3 Publications

• Guaranteed confidence region characterization for source localization using
LSCR.

– Han, Cheng-Yu, Michel Kieffer, and Alain Lambert.

– Summer Workshop on Interval Methods. 2016.

• Pulse synchronization for vehicular networks.

– Cheng-Yu Han, Thomas Nowak, and Alain Lambert.

– In Intelligent Vehicle Symposium, 2018b.
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• Guaranteed confidence region characterization for source localization using RSS
measurements.

– Cheng-Yu Han, Michel Kieffer, and Alain Lambert.

– Signal Processing, 152:104–117, 2018a.
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Résumé : Les réseaux de capteurs sans fil (WSN) jouent un 
rôle important dans des applications telles que la 
surveillance de l'environnement, le suivi de sources et la 
surveillance médicale. Dans les WSN, les capteurs ont la 
capacité d'acquérir des mesures, de réaliser des traitements 
simples et de communiquer les résultats de ces traitements. 
Pour effectuer ces tâches, la localisation et la 
synchronisation sont essentiels. 
Les WSN ont été largement étudiés ces dernières années et 
la littérature scientifique rapporte de nombreux résultats qui 
les rendent applicables pour de nombreuses applications. 
Pour d'autres, la recherche doit encore trouver des solutions 
à certains des défis posés par la limitation énergétique, la 
dynamicité et la faible puissance de calcul. Dans le but de 
contribuer à la recherche sur les WSN, cette thèse propose 
de nouveaux algorithmes pour la synchronisation d'horloge 
et la localisation. 
La synchronisation d'horloge est utile pour résoudre les 
problèmes de localisation, de fusion de données et de 
consensus. En appliquant l'algorithme de synchronisation 
d'horloge, les capteurs etablissent un consensus temporel et 
travaillent donc au même rythme. 
Compte tenu de la dynamicité, des faibles capacités de 
calcul et de la parcimonie des WSN, un nouvel algorithme 
de synchronisation décentralisée à impulsions couplées est 
proposé pour réduire le décalage d'horloge de la 
synchronisation. L'avantage de ce type d'algorithme est que 
les capteurs échangent des impulsions au lieu de paquets, de 
sorte que non seulement la communication est efficace, 
mais aussi robuste à toute défaillance des capteurs dans le 
réseau. 
La localisation de capteurs a été largement étudiée dans la 
littérature scientifique. Cependant, la qualité et la précision 
de la localisation peuvent encore étre améliore. Cette thèse 
applique l'algorithme LSCR (Régression de régions 
corrélées à signes dominants) au problème de localisation. 
Avec LSCR, on évalue des régions de confiance avec des 
niveaux de confiance prescrits, qui fournissent non 
seulement on emplacement mais aussi la confiance en cet 
emplacement. Dans cette thèse, plusieurs approches de 
localisation sont implémentées et comparées. Le résultat de 
la simulation montre que, sous hypothèses modérées, LSCR 
obtient des résultats compétitifs par rapport à d'autres 
méthodes. 
 
 

Cette thèse se concentre sur deux problèmes importants liés 
à WSN: la localisation et la synchronisation de l'heure. Pour 
la synchronisation d'horloge, la robustesse de l'algorithme 
est essentielle. Dans WSN, les capteurs mobiles et à faible 
coût provoquent des erreurs de communication. Compte 
tenu de la dynamicité, un algorithme distribué est proposé, 
qui prolonge les travaux précédents de Függer et al. (2015) 
et réduire le décalage d'horloge. Dans la nouvelle 
synchronisation à couplage d'impulsions, un algorithme de 
roue temporelle est introduit pour que les capteurs 
échangent le nombre de tours et calculent la moyenne des 
impulsions du même tour. De plus, une compensation de 
dérive est appliquée pour réduire le décalage d'horloge. 
L'analyse de convergence montre que la compensation de 
dérive réduit le décalage d'horloge et améliore le taux de 
convergence. Quand on considère un WSN hautement 
dynamique, l'algorithme converge plus rapidement que dans 
les travaux précédents. L'algorithme proposé est appliqué 
avec succès à un réseau de véhicules. 
Pour la deuxième partie de la thèse, nous estimons 
l'emplacement de chaque capteur à l'aide de LSCR, ce qui 
produit une région de confiance non asymptotique. 
L’application de la correction LSCR au problème de 
localisation présente l’avantage que les hypothèses sur le 
bruit du signal RSS sont faibles, de sorte que la région de 
confiance peut être estimée avec précision. Nous analysons 
différentes fonctions de corrélation de LSCR et avons 
constaté que seule une fonction de corrélation peut produire 
une région de confiance satisfaisante. Nous mettons 
également en œuvre d'autres algorithmes de localisation, 
tels que l'estimateur de maximum de vraisemblance (MLE), 
la programmation semi-définie (SDP), l'estimateur d'erreur 
bornée (BE), l'estimateur robuste d'erreur bornée (RBE). 
Nous comparons les méthodes alternatives et avons constaté 
que LSCR fournit le meilleur résultat de localisation: son 
erreur moyenne est inférieure à celle des autres méthodes 
comparées. 
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Title : Clock Synchronization and Localization for Wireless Sensor Network 
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Abstract : Wireless sensor networks (WSNs) 
play an important role in applications such as 
environmental monitoring, source tracking, and 
health care, etc . In WSN, sensors have the 
ability to perform data sampling, distributed 
computing and information fusion. To perform 
such complex tasks, clock synchronization and 
localization are two fundamental and essential 
algorithms. 
WSNs have been widely studied in the past 
years, and the scientific literature reports many 
outcomes that make them applicable for various 
fields such as environmental monitoring, health 
care, and the internet of things. For some others, 
research still needs to find solutions to some of 
the challenges posed by the limitations of 
sensors, such as battery limitation, dynamicity, 
and low computing clock rate. With the aim of 
contributing to the research on WSN, this thesis 
proposes new algorithms for both clock 
synchronization and localization. 
Synchronized clocks are useful for many 
reasons. WSN is often designed to realize some 
synchronized behavior, especially in real-time 
processing in factories, aircraft, space vehicles, 
and military applications. For clock 
synchronization, sensors synchronize their local 
physical clock to perform data fusion. By 
applying the clock synchronization algorithm, 
sensors synchronize the time difference and 
therefore work at the same rate. The difficulty 
comes from the fact that clocks embedded on 
WSN are usually low cost, and prone to drift.  
 

In view of dynamicity, low computing and low 
connectivity of WSN, a new pulse-coupled 
decentralized synchronization algorithm is 
proposed to reduce the clock skew of the 
synchronization. The benefit of this kind of 
algorithm is that sensors only exchange zero-bit 
pulse instead of packets, so not only the 
communication is efficient but also robust to any 
failure of the sensors in the network. The 
proposed synchronization algorithm is able to 
tolerant a low connectivity dynamic WSN with 
mush smaller clock skew than its previous work. 
Localization of sensors has been widely studied. 
However, the quality and the accuracy of the 
localization still have a large room to improve. 
Characterization of estimation uncertainty is 
usually overlooked. Mainly asymptotic 
techniques are employed, assuming that the 
noise is Gaussian and that many measurements 
are available. These hypotheses are seldom 
satisfied. This thesis apply Leave-out Sign-
dominant Correlated Regions (LSCR) algorithm 
to localization problem. With LSCR, one 
evaluates the accurate estimates of confidence 
regions with prescribed confidence levels, 
which provide not only the location but also the 
confidence of the estimation. In this thesis, 
several localization approaches are 
implemented and compared. The results show 
under mild assumptions, LSCR obtains 
competitive localization performance compared 
to other methods. 
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