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Abstract

Assisting in the development and testing of secure applications
by Loukmen REGAINIA

Ensuring the security of an application through its life cycle is a tedious task. The choice, the

implementation and the evaluation of security solutions is difficult and error prone. Security

skills are not common in development teams. To overcome the lack of security skills, developers

and designers are provided with a plethora of documents about security problems and solutions

(i.e, vulnerabilities, attacks, security principles, security patterns, etc.). Abstract and informal,

these documents are provided by different sources, and their number is constantly growing.

Developers are drown in a sea of documentation, which inhibits their capacity to design,

implement, and the evaluate the overall application security. This thesis tackles these issues

and presents a set of approaches to help designers in the choice, the implementation and the

evaluation of security solutions required to overcome security problems. The problems are

materialized by weaknesses, vulnerabilities, attacks, etc. and security solutions are given by

security patterns.

This thesis first introduces a method to guide designers implement security patterns and

assess their effectiveness against vulnerabilities. Then, we present three methods associating

security patterns, attacks, weaknesses, etc. in a knowledge base. This allows automated

extraction of classifications and help designers quickly and accurately select security patterns

required to cure a weakness or to overcome an attack. Based on this knowledge base, we detail

a method to help designers in threat modeling and security test generation and execution. The

method is evaluated and results show that the method enhances the comprehensibility and the

accuracy of developers in the security solutions choice, threat modeling and in the writing of

security test cases.

Keywords. Security patterns, weaknesses, attacks, principles, life cycle, model checking,

security testing.
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Résumé

Assistance au développement et au test d’applications
sécurisées

par Loukmen REGAINIA

Garantir la sécurité d’une application tout au long de son cycle de vie est une tâche

fastidieuse. Le choix, l’implémentation et l’évaluation des solutions de sécurité est difficile

et sujette a des erreurs. De plus, les compétences en sécurité ne sont pas répandues dans

toutes les équipes de développement. Pour pallier à ces difficultés, les développeurs ont à leurs

dispositions une multitude de documents décrivant des problèmes de sécurité et des solutions

requises (vulnérabilités, attaques, principes de sécurité, patrons sécurité, etc.). Ces documents,

proposés par des sources hétérogènes, sont souvent abstraits et informels. De plus, leur nombre

est en constante croissance. Les développeurs sont noyés dans une multitude de documents ce

qui fait obstruction a leur capacité à choisir, implémenter et évaluer la sécurité d’une application.

Cette thèse aborde ces problématiques et propose un ensemble de méthodes pour aider les

développeurs à choisir, implémenter et évaluer les solutions de sécurité face à des problèmes de

sécurité. Ces derniers sont matérialisés par des vulnérabilités, des attaques, etc., et les solutions

fournies par des patrons de sécurité.

Cette thèse introduit en premier une méthode pour aider les développeurs dans l’instantiation

de patrons de sécurité dans un modèle et l’estimation de leurs efficacités face aux vulnérabilités.

Puis, elle présente trois méthodes associant patrons de sécurité, vulnérabilités et attaques au sein

d’une base de connaissance. Cette dernière permet une extraction automatique de classifications

de patrons et améliore la rapidité et la précision des développeurs dans le choix des patrons

de sécurité. En utilisant la base de connaissance, nous présentons une méthode pour aider

les développeurs dans la modélisation de menaces ainsi que la générations et l’exécution de

cas de test de sécurité. L’évaluation de la méthode montre qu’elle améliore l’efficacité, la

viii



compréhensibilité et la précision des développeurs dans le choix des patrons de sécurité et

l’écriture des cas de test de sécurité.

Mots-clés. Patrons de sécurité, failles, attaques, principes de sécurité, cycle de vie, vérifica-

tion des modèles, test de sécurité.
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Chapter 1

Introduction

1.1 General Context

Despite the indisputable improvements recently made in modeling, coding and testing, software

engineering is still regarded as a complex field. One reason for this complexity is well-known:

software engineering must not only address the functional aspects of an application, but also

have to cover other aspects such as security. Indeed, providing secure models and code is

recognized as an important factor of quality, but, devising them is a difficult task.

It is well admitted that software security is essential and has to be considered through all the

software life cycle. Many developers, researchers and organizations have hence made security

their hobby-horse and brought several improvements with the proposal of numerous digitized

security bases and documents. These documents take security into consideration at different

stages of the software life cycle and are presented with different viewpoints, abstraction levels

or contexts.

A large set of papers and tools have been proposed to help in the integration of security in

the software engineering steps [74, 30]. Among them, the pattern community proposed the

notion of security patterns as reusable solutions to security issues in the modeling stage [114].

Specifically, a pattern is a generic and reusable solution presented with a structure, a behavior,
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or some intents that have to be applied in models to meet security properties or to prevent

security problems.

In addition to security patterns, a plethora of software security documents, knowledge

bases or papers are publicly available. These numerous digitalized resources are also presented

with different viewpoints (attackers, defenders, etc.), formats (text, database, etc.), abstraction

levels (security principles, attack steps, exploits, etc.) or contexts (system, network, etc.).

Furthermore, these different documents provide interest at different stages of the software life

cycle.

This plethora of (often complex) documents exposes engineers to the difficult choice of the

most suitable security solutions in a given context. Indeed, they cannot be experts in any field

and they clearly lack of guidance for conceiving and testing secure software or systems.

We develop a little bit more each one of these issues in the next section, then we present the

main contributions of the thesis.

1.2 Open issues

Using security patterns in a whole threat management and secure design process is characterized

with many difficulties related to the nature of security patterns. Security pattern documents

are often expressed with at a high level of abstraction with texts and sometimes with UML

diagrams to be reusable in different kinds of context. Integrating a security pattern in an

application model requires an instantiation phase, i.e., adapting its structure and behavior to

meet the application model specificities. This phase is tricky and error especially when used

for the first time. Hence, designers should be guided when using security patterns and should

have at their disposal tools allowing to assess whether security pattern are instantiated correctly

in an application model.

Another issue is related to the growing number of security patterns. Since the introduction

of the first set of security patterns in 1997 [112], we are counting around 180 security patterns
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at the moment. Since the pattern documents are not structured in the same manner, the choice

of the most appropriate pattern to solve a security problem is difficult with regard to a given

context and somehow perilous for novice designers [4]. Indeed, a wrong choice may imply

the use of useless solutions or the addition of new vulnerabilities in the design and code of the

application. This is exacerbated with the fact that “a security pattern is not an island” [95]. In

other words, a security pattern can be related to a set of other patterns. If these related patterns

are not considered by the designer, the effectiveness of the security pattern against the aimed

problem is strongly harmed and, in the worst cases, security inconsistencies can be resulted in

the application model.

In order to help designers, many researchers emphasize the importance of classifying secu-

rity patterns [6, 4, 5, 110, 102, 4, 104]. Alvi et al. outlined 24 security patterns classifications

[5] and compared them against a set of desirable quality criteria (Comprehensibility, Usefulness,

etc.). They observed that several classifications were built in reference to a unique classification

attribute, which appears to be insufficient. After reviewing these classifications, we observed

that these classifications are steadily manually conceived by interpreting different documents

(e.g., weaknesses, attacks, and security patterns documents) to find abstract relationships.

Justifying these classifications or updating them is often difficult. The relations among patterns

are often not given, yet we noticed that some patterns are compatible together and that others

are conflicting. As a consequence, a designer may be still confused about the pattern choice.

So, it appears fruitful to provide security patterns classifications with regard to well known

security notions (e.g., Security principles, weaknesses, attacks) in order to enable a fast,

comprehensive and accurate choice of the appropriate security patterns to cure a weakness or

to overcome an attack. These classifications should be able to express the relationships among

security patterns and to be comprehensible by both novice and expert designers. In addition,

the steps of building the classification should be strictly presented to justify the classification

itself and to allow its replicability, maintenance and reusability.
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Besides the choice and the instantiation of security patterns, developers have to be able to

identify threats to which the application is faced, in addition to testing whether the application

is vulnerable to attacks and whether security solutions are applied.

We observed that developers lack of guidance to write threat models or test scripts in order

to detect security problems and to detect security patterns properties. The writing of detailed

threat models requires a lot of expert knowledge and of documents. Actually, developers are

neither guided the threat modeling phase nor provided with security solutions needed to prevent

security problems. Hence, developers lack of recommendation on how to write and structure

tests to make them at least reusable.

1.3 Contributions

With regard to the issues exposed in Section 1.2, we summarize here the main contributions

covered by this manuscript.

1. we present an original approach to guide designers for checking whether a set of security

patterns are correctly integrated into models of applications and whether vulnerabilities

are yet exposed in models despite the use of these patterns. This approach relies upon

the analysis of the structural and behavioral properties of security patterns and on formal

methods to check if these properties hold in the application model completed with

patterns. We also provide a metric computation to assess the integration quality of

patterns. Afterwards, our approach checks whether the vulnerability properties, which

should be cured by the use of patterns, are not detected in the application model;

2. we propose a set of semiautomatic methods of classifying security patterns and the

classifications themselves, which expose relationships among software weaknesses,

attacks, security principles and security patterns. They express which patterns cure a

given weakness or overcome an attack with respect to security principles. These methods
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are based on a set of data acquisition and integration steps, which anatomize patterns,

attacks and weaknesses into set of more precise sub-properties that are associated through

a hierarchical organization of security principles. These steps provide the detailed

justifications of the resulting classifications and allow their upgrade;

3. we propose a method, which assists developers from the Threat modeling stage to the

security test case writing and execution. The method firstly proposes a knowledge based

Attack Defense Trees (ADTrees) generation. These trees show attacks, steps and defenses

given under the form of security patterns. These trees are then used for the writing of

concrete security test cases. This approach also yields Test verdicts showing whether

attack scenarios of ADTrees hold and whether security patterns properties are detected

in the application behavior. We evaluate our approach on 24 participants and show

encouraging results on the use of data acquisition in software engineering;

1.4 Overview of the thesis

The remainder of this thesis is organized as follows :

1. Chapter 2: introduces the main notions on which the thesis is based. First, we give an

insight on some security concepts (weaknesses, vulnerabilities, attacks, etc.) used in

the manuscript. We present the notions of design and security patterns, some security

patterns catalogs and classifications. We also investigate on the reasons that make the

pattern choices and use difficult and error prone. Then, we present some formal and

informal security modeling methods used in the thesis;

2. Chapter 3: introduces an approach for guiding designers in the instantiations of security

patterns. We express security patterns and vulnerabilities with generic properties. Then

the approach assesses the instantiation quality of a set of security patterns and their

effectiveness against a set of vulnerabilities. The security pattern instantiation quality
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and the vulnerability of the application are exhibited with a set of indicators, these are

calculated along with the approach;

3. Chapter 4: presents three classifications of security patterns against security notions

(e.g., weaknesses, attacks, security principles, etc.) and the methods to perform these

classifications. The process building these classifications is also presented in the form of

a set of semiautomated data acquisition steps. A set of data-stores is built, associating

security patterns, weaknesses, attacks and security principles. In addition, these data-

stores allow an automated extraction of security patterns classifications. The readability

of theses classifications is enhanced by presenting them graphically in the form of Attack

Defense Trees (ADTrees) and Security Activity Graphs (SAG). The data-stores are used

in order to generate these models;

4. Chapter 5: takes advantage of the data acquisition and integration performed in the

previous chapter to devise an approach helping developers write concrete security test

cases. The approach firstly assist them in the Threat modeling. The resulting threat

model is used is then used to generate test cases. A tool is developed in order to help in

their generation and execution and verdicts are given. These assess whether attacks can

be performed on the application and whether security pattern properties can be observed

in its behavior. The method is evaluated with a public of 24 participants in order to assess

its Comprehensibility, Accuracy and Efficiency;

5. Chapter 6: closes the main body of the thesis with concluding comments and proposals

for future work;
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Chapter 2

State of the art

2.1 Introduction

The development of secure applications is a very difficult task, as security is not a common

skill in development teams. In addition, the security aspects are often considered lately in the

application life, which makes the security decisions and choices very clumsy. Hence, it is

very important to provide designers with a panoply of approaches, tools, methodologies and

resources in order to help them in designing and implementing secure applications.

Our work is based upon different notions: basic security notions (weaknesses, vulnerabil-

ities, attacks, etc), methods of security modeling, design and security patterns. This chapter

aims at pointing out these aspects. We firstly present the notion of patterns then its use in

software design and security. We highlight the challenges to which developers are faced in

using patterns. We give an insight on the different approaches of graphical security modeling

and analysis. We give an insight on the currently available security models and we illustrate

some of them through examples.

This chapter is structured as follows: in Section 2.2, we give a brief introduction of some

basic concepts of security. We present the differences among weaknesses, vulnerabilities,
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attacks and threats in addition to the relations among them. Then, we introduce some noticeable

publicly available data sources of weaknesses, attacks and vulnerabilities.

In Section 2.3, we give a chronological presentation of the notion of patterns and the design

patterns. We present the differences of presentation in design patterns documentation in addition

to a short vision on design patterns writing, selection and use. In Section 2.4, we introduce

security patterns by means of some examples, we describe the major difficulties in security

patterns selection and application in addition to the proposed approaches for helping designers

in these tasks. Hence, we give a birds eye on the different security patterns classifications,

repositories and relationships. Section 2.5 gives an insight on graphical models for security

analysis. We give some discussions in Section 3.6 and we conclude the chapter in Section 3.7.

2.2 Security concepts and databases

As we pointed out earlier, devising a secure application is a difficult task. The major reason

is that security concepts and artifacts are not common skills in development teams. Models

of applications, quickly designed, often contain flows, which harm the Confidentiality, the

Integrity and the Availability of the resources provided by the application. Indeed, an insecure

application often encloses Weaknesses, each weakness being an error that can lead to a

Vulnerability. A vulnerable application is Threatened by Attacks, each attack targets one

ore more vulnerabilities.

It is important that designers understand these concepts. In this section, we shortly recall

them and how they interact together. In addition, we present some public resources about

attacks and vulnerabilities available for designers.
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2.2.1 Weaknesses

A weakness in an application is a flow, a fault, a bug or an error in one or more levels of the

application. Hence, a weakness can be introduced in the implementation, code, design or the

architecture level [69, 76]. When a weakness is left untreated, this could result in a vulnerability.

Thus, a weakness is more abstract than a vulnerability since a weakness can be implemented

in different ways giving many vulnerabilities. Furthermore, a weakness can lead to either a

vulnerability or an exposure. An exposure is an error or a misconfiguration that can be used

by a hacker as “stepping-stone” into the application. In other words, an exposure does not

allow a direct compromise of the application security, but it can be considered as an important

step for a successful attack. For instance, an exposure can allow information gathering, hiding

the attacker activities or can be a primary entry-point to the application, etc [68]. Hence, a

weakness is more abstract and covers more notions than a vulnerability.

The most important resource of information about weaknesses is the CWE (Common

Weakness Enumeration) database. The CWE database lists 705 software weaknesses (Version

2.11) and makes available a specific and succinct definitions of each common weakness type.

The construction of the CWE database aims at providing a common unified baseline standard

for weakness identification, mitigation and prevention efforts [69].

2.2.2 Vulnerabilities

A vulnerability is a result of an untreated weakness introduced in the application, which should

be fixed once it is discovered. In contrast to a weakness, a vulnerability is specific to a distinct

version of a product. In other words, a weakness is a type of a failure that can occur in all the

applications in a context, while a vulnerability is defined for an individual version of a product.

The most important resource of vulnerabilities information is the CVE (Common Vulnera-

bilities and Exposures) database. The CVE database lists at the moment 85684 vulnerabilities

(May 16, 2017 version) and the number of vulnerabilities is continuously growing. In average
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4400 vulnerabilities are discovered each year. Figure 2.1 illustrates the number of vulnerabil-

ities discovered per year. Since 1999 the number of the vulnerabilities varied between 894

vulnerabilities and 7946 vulnerabilities [97].

Fig. 2.1 The Number of Vulnerabilities per year

The growing number and the frequent discoveries of vulnerabilities implies that maintaining

an up to date documentation is a tedious problem. It was vital to abstract these information in the

form of weaknesses in the CWE database in order to help practitioners in understanding software

security failures, which is impossible with the information provided with vulnerabilities.

2.2.3 Threats

A threat is a potential risk or cause of an undesirable incident that could harm or regress the

security of one ore more valuable resources of an application [25]. In other words, a threat
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is the possibility that a valuable asset of the application could be vulnerable to one or many

types of attacks. Security is often relative to the elements being protected, the skills and the

resources of stakeholders and the cost of the potential mitigations and countermeasures. Hence,

the threat management helps identify the potential security problems and evaluates their impact

and severity [78].

2.2.4 Attacks

An attack is the description of a sequencing of actions that an attacker would do in order to

compromise the Confidentiality, the Integrity or the Availability of the application assets. It is

important to be careful with describing a successiveness of actions when talking about attacks.

Understanding attacks is crucial for designers since it allows them to understand the attacker

point of view, capabilities, and how-to in order to protect their applications.

A noticeable resource of attacks is the Common Attack Pattern Enumeration and Classifica-

tion (CAPEC) base. The CAPEC base provides a publicly available list of 510 attack patterns

in a comprehensive schema [67]. In the CAPEC database, an attack pattern describes, through

a set of sections, the elements and techniques generally used in attacks against vulnerable

systems. In addition, it describes the execution steps of the attack, the prerequisites, solutions,

related attacks and weaknesses, etc.

2.2.5 Security principles

A security principle is a desirable property, structure or behavior of software that aims at

reducing the impact and the likelihood of a threat realization [106]. They give an insight on

the nature of close security tasks whose contexts are not taken into consideration. Saltzer and

Schroeder firstly proposed a set of eight best practices for system security [90], which were

widely expanded in the last decades to form security principles [106, 62]. We recall in the

following some basic security principles:
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1. Access Control: the access control security principle defines the mechanisms of the

Identification/Authentication of entities (users or services), the definition and the veri-

fication of their permissions and access rights in addition to the Accounting [94]. For

instance, it includes the implementation of the AAA (Authentication, Authorization,

Accounting) protocols;

2. In Depth Defense: inspired from a military strategy, this security principle aims at

protecting a system with a layered set of security facilities. It may include a set of

principles that interact with each other in a layered architecture like: The Complete

Mediation, Perimeter Security, Firewalling, etc [101];

3. Fault Tolerance: describes the ability of an application or a system to continue operating

normally (or in a reduced way) when the application is in case of failure, in addition to

enhancing the manageability of failures in the application [62];

4. Sensitive Data: this principle addresses the prevention of sensitive data disclosure. For

instance, it can describe the encryption, privacy, etc [62];

5. Configuration management: in software systems, it is crucial to protect the configura-

tion items, their storing, and the access to them. This principle expresses these needs, it

includes Configuration protection, Privilege management, Fail-safe defaults, etc [62];

6. Security Simplifictaion: As software complexity increases, so does the risk of vulnera-

bilities. This principle refers to the KISS (keep it simple stupid) concept. It includes the

economy of mechanisms, psychological acceptability, open design, etc [62, 106].
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2.2.6 Security by design

2.3 Patterns

Originally, the idea of patterns was laid by the architect Christopher Alexander. In the context

of urban planning and building architecture, Alexander and his team identified more than 250

patterns [96]. They were used by builders over centuries and, every time, these patterns were

adapted to the environment. They also noticed that even with the adaptations of the patterns,

some recurrences in conception solutions was very efficient [13]. Hence, they identified the

context-problem-solution of patterns, known as the Alexandrian form. This form is a pattern

language allowing non-architects to base their conceptions on patterns in order to build their

own solutions [13]. Hence, a pattern can be defined as a reusable solution, issued from human

experience, to a recurrent problem.

Applying the pattern approach in the software development was firstly introduced in 1987

by Ward Cunningham and Kent Beck. They adapted the Alexandrian form on software design

problems, they proposed five patterns dealing with the design of user interfaces. This marks the

birth of patterns in software engineering [95].

In 1994, Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides, four software

design experts, known as the “Gang-of-Four” (GoF) [32] in the patterns community, paved

the way for the acceptance of patterns in software engineering. They introduced a template

allowing the description of software patterns [107]. Numerous design experts followed this

path producing a large list of patterns [95]. Moreover, they distinguished different pattern

families for each step of software life-cycle. Namely, there is “Architectural”, “Analysis” and

“Design” patterns.

Whatever the context in which they are used, patterns present an effective mean to exchange

human knowledge and experience of experimented designers. A pattern allows the expression

of a reusable solution, practiced by an expert, to a problem that he/she met many times. Besides
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the advantage of being reusable, a pattern allows novice designers to take advantage of the

human experience in order to gain time and to produce a qualitative design. The abstract

nature of design patterns requires their adaptation to the application context, this task is called

“instantiation”. Nevertheless, the selection and the adaptation of a pattern in a specific context

is a difficult and error prone task because of the abstract and the textual nature of patterns and

the large number of available patterns in the literature.

In this section, we shortly recall the foundations of software patterns. We introduce the

different types of patterns and how they are expressed. Furthermore, we highlight the difficulty

of selecting and implementing a pattern for a specific context.

2.3.1 Design patterns

The aim of a design pattern is to describe an abstract, reusable and experimented solution

to a recurrent problem in the design phase of the software life cycle. It helps in reducing

considerably the time needed to solve design problem in addition to enhancing the quality, the

documentation and the maintainability of the application under design [13]. According to [64],

a design pattern have to be essentially described with a Name, Intent, Context, Problem, Forces,

Solution, and Consequences Table 2.1 gives an insight on each one of these sections.

The textual sections of a pattern document may differ from an author to another. Indeed,

some other elements may be added in order to make the pattern easier to understand. The pattern

document if often provided with concrete Examples showing how the pattern can be used in

code. In addition, section Known Uses points out the known occurrences of the pattern in

existing systems. The responsibilities of the different parts of the pattern (described in the class

diagram) and the interactions among them can be outlined in two sections named Participants

and Collaborations. Some sections may have different names from a documentation to another.

For instance, the section Context is some times called Motivation [96].
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Table 2.1 Design pattern sections

Name The name of a pattern has to be unique and evocative giving an image
of what the pattern is about. The relation between the pattern and its
name is determined according to the conventions established in the patterns
community.

Intent The description of what the pattern is about. In other words, it describes the
objective of using the pattern in an application.

Context The context of a pattern presents the environment in which the pattern can
be applied. The context shows in which situation the problem described by
the pattern may appear and where the pattern will work.

Problem It expressed the problem to which the pattern may be the solution. The prob-
lem targeted by the pattern has to be recurrent and non-trivial, which means
that it is a typical problem in the given context for which the appropriate
solution is known only by expert designers.

Forces The set of the forces of a pattern highlights its specificities making it better
in a given situation. It helps to determine why the choice of the pattern is
justified for a problem.

Solution It gives a proven solution to the stated problem. The solution has to be
abstract and reusable. Usually, it is described with UML diagrams but it
can also be described in different forms like textually, with petri networks,
etc. The solution described by a pattern has usually two faces, the first
one is structural expressed usually with a class diagram presenting how
to structure the application with the pattern, it allows also to outline the
participants of the pattern. The second face is behavioral, it can be expressed
with sequence or state diagrams in order to present how the application has
to behave with the application of the pattern.

Consequences The consequences of a pattern describe the impact of the pattern on the
structure and the behavior of the application in which it is used. In other
words, it describes how the application will be after the use of the pattern.

A design pattern can be characterized with a set of strong points. Firstly proposed by

Bouhours et al., strong points present are desirable structural and behavioral properties brought

by the pattern use [13]. Strong points are partially extracted from the pattern consequences and

forces text sections.

Furthermore, since “no pattern is an island” [95], a pattern is often related to other patterns.

There are many types of relationships among patterns [29]. For instance, the solution provided

by a pattern can be often implemented by another pattern resolving a sub-problem of the

general problem targeted by the original pattern, we talk here about a refinement relationship

15



State of the art

[95]. The use of a pattern may depend on the use of one or more patterns. In other words, the

application of a pattern A depending on a pattern B is possible only if the pattern B is also

applied. Therefore, a section called Related Patterns is often added to the documentation of

patterns to highlight the set of the related patterns and the nature of these relationships.

These differences in the pattern sections is one of the sources of heterogeneities in the

patterns documents. These heterogeneities lead to one of the major origins of difficulty for

understanding a pattern.

2.3.2 Patterns selection

As mentioned earlier, the use of a pattern in an application may lead to the use of a set of

related patterns. In addition, the number of patterns proposed in the literature is still growing

and the pattern documents are often heterogeneous. These results in the difficulty of choosing

the appropriate pattern in a given context, especially for novice designers.

A proposed solution to help designers in the patterns selection is the creation of collections

of patterns. The aim of a pattern collection is to provide a unique template to describe a

pattern set, making the documentation as homogeneous as possible. In [16], Buschmann et

al. identified three types of patterns collections “Pattern Catalogs”, “Pattern Systems” and

“Pattern Languages”, which are considered as the steps of a patterns collection evolution.

• Pattern Catalogs: the first objective of a pattern catalog is to gather several patterns into

one bigger collection of patterns. The two main challenges of building a pattern catalog

are: to deal with the heterogeneity of the sources of patterns and to find the relationships

among patterns. Hence, a pattern catalog can be provided with a non-uniform structure

and presents a loosely coupled set of patterns [96];

• Pattern Systems: a pattern system is an evolution of a pattern catalog. In contrast to a

pattern catalog, a pattern system expresses a more uniform and a more precise description
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of the inter-pattern relations [96]. Therefore, this increases the readability and the

understandability of patterns, which helps in selecting and using patterns for a specific

problem. Hence, a pattern system is a more coupled set of patterns;

• Pattern Languages: they exhibit the last stage of a pattern collection evolution. A pattern

language is a tightly interlacing set of patterns as a “super-pattern” in which patterns

share a pre-defined goal and each pattern contributes in this goal at its level. Hence,

pattern languages are more robust and comprehensive than pattern systems. Nonetheless,

it remains difficult to prove the completeness of the patterns languages this is why some

experts prefer to talk about patterns systems [96].

Even though a pattern collection can help choose the right pattern, it is also important to provide

a pattern organization to enable concrete and fast choice of patterns. In other words, it is well

admitted that classifying patterns is important to make the choice of patterns easier to enhance

the accuracy of the selection and to reduce the time needed to the selection.

Since the birth of design patterns, a plethora of classifications have been proposed. A pattern

classification is an organization of patterns over some criteria. For instance, the GoF classifies

design patterns by two criteria: the first one is the purpose of the pattern (what the pattern

does) and the second one is the scope of the pattern (whether the pattern is related to classes or

objects) [96]. Buschmann et al. defined the POSA (Pattern Oriented Software Architecture)

approach in which they depicted the categories of patterns (Architectural patterns, Design

patterns and Idioms) from high to low level patterns [16]. Many other pattern classifications

have been proposed in the literature to organize patterns from different points of view.

After its selection, a pattern is adapted in order to meet the specific context of the application.

In other words, the abstract nature of patterns requires the instantiation of the pattern on the

context of the application under design.
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2.3.3 Patterns instantiation

After being chosen, a pattern has to be instantiated to meet the context and the environment

of the application under design. Instantiating a pattern in an application is an error prone task.

Indeed, a pattern is an abstracted solution. It can be misunderstood and misused, which can

lead to a considerable deterioration of the design [13]. Hence, the designer must ensure that the

pattern has been appropriately instantiated in an application model.

In order to help designers in this task, multiple works proposed the detection of design

patterns in models [7, 11, 41, 13, 46]. This field of research attracted researchers from academia

and industry. Al-Obeidallah et al. analyzed 32 works dealing with design pattern detection

and they classified these works into four families (Database Query Approaches, Metrics-

Based Approaches, UML Structure, Graph and Matrix Based Approaches and Miscellaneous

Approaches) in order to guide designers in the choice of the appropriate approach [3]. The

growing number of design patterns detection methods shows the difficulty of instantiating

patterns.

2.4 Security patterns and Security patterns classifications

Software designers usually keep in mind what the application should do (the functional require-

ments) and forget what the application should not allow to do (the non-functional requirements)

especially the security. Indeed, the security aspects in early stages of an application life-cycle

is often under-considered and then less documented than the functional requirements of the

application.

When the design of an application does not consider the security aspects, developers often

have to retrofit the application to meet security requirements in the implementation. This phase

is time consuming and very difficult. Considering security since the design phase enhances the

efficiency of implementing and maintaining the security mechanisms up to the last stages of the
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application life-cycle. Security patterns represent a solution to take into consideration security

at the design stage. Security patterns was proposed in order to capture human experience about

the frequently met security problems and to propose abstract an reusable solutions to these

problems since early stages of the application life cycle.

Based on the template of Gof, the first set of patterns dealing with security problems

was presented by Yoder and Barcalow in 1997, which makes them the pioneers of security

patterns. In their article “Architectural Patterns for Enabling Application Security” [112], they

proposed seven security patterns (Single Access Point, Check Point, Roles, Session, Full View

With Errors, Limited View and Secure Access Layer). They made analogy to a military base

in order to clarify the application contexts, the problems and the solutions of the proposed

patterns in addition to real-world software examples where these patterns were successfully

used. Furthermore, they recognized that security should be considered from the beginning of

any software development [112]. Step by step, the recognition of security patterns as a new

pattern category started to take place. Many security patterns have been proposed covering

most of the software security aspects. As a result, we count nowadays 176 security patterns

[87].

Schumacher et al. defined security patterns with: “A security pattern describes a particular

recurring security problem that arises in specific contexts, and presents a well-proven generic

solution for it. The solution consists of a set of interacting roles that can be arranged into

multiple concrete design structures, as well as a process to create one particular such structure”

[96]. From this definition, three concepts can be extracted, the first one is a security problem

frequently met in the design stage. The second concept is a context in which the security

problem arises. The third concept is the solution provided by the pattern, which has to be

reusable, abstract and adaptable into different concrete design structures. Therefore, a security

pattern SP can be defined with a triple SP := (C,P,S) where C is a security context, P a security

problem and S a security solution [96].
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In the next section, we present security patterns through some examples. Then, we highlight

some challenges in using security patterns, which mainly relate to the difficulties of selection

and the verification of their instantiations. For the pattern selection, we introduce some

noticeable collections of patterns and the different classifications of patterns proposed in the

literature along with quality criteria allowing to evaluate these classifications. Then, we outline

the different inter-patterns relationships and the importance of these relations in pattern driven

secure design.

2.4.1 Security patterns

The first two examples of patterns we chose to “Authorization Enforcer”. The Intent of these two

patterns is 1) to provide the application with the ability of controlling the access to a protected

component with an authentication mechanism 2) to check whether an entity is allowed to access

this component. Moreover, the instantiation of these patterns structures the application in such

a way that the implementation of custom authentication and authorization mechanisms is easier

[100].

Table 2.2 summarizes the pattern Authorization Enforcer description. It provides the

application with an encapsulated and centralized permission checking mechanism. By applying

Authorization Enforcer, the designer takes advantage of structuring the application in such

a way that access control implementation is easier and more maintainable. As illustrated in

Figure 2.2, the pattern Authorization Enforcer is composed of six classes: a Client, which is the

source of the request to the protected resource, Secure Base Action, which is a security front

controller offering an intercepting point. In addition, the Subject is an object gathering the user

identity, credential informations and a set of permissions stored in the Permissions Collection,

which are set by the Authentication Provider according to the user identity. Based on this set

of the permissions the Authorization Enforcer decides whether the requester is allowed or

not to access the protected component [100].
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Table 2.2 Authorization Enforcer [100]

Name Authorization Enforcer
Intent The intent of this pattern is to enable the application to verify that entities

requesting for protected components are properly allowed to access these
components.

Problem In complex applications, requests can cross multiple paths to access the
protected functionalities that the application provides. Authenticating these
entities is not sufficient since all the different roles in the application are
not allowed to access all the functionalities of the applications. Hence, the
application has to be able to verify the permissions of each entity requesting
these protected components. Therefore, the application has to be able to
check for each request whether the requesting entity is allowed or not to
access to the solicited functionality or component.

Forces Minimize the coupling between the view presentation and the security
controller. Authorization logic required to be centralized and should not
spread all over the code base in order to reduce risk of misuse or security
holes. Authorization should be segregated from the authentication logic to
allow for evolution of each without impacting the other.

Solution Structure Figure 2.2
Dynamics Figure 2.3

Consequences The application of Authorization Enforcer provides the application with
an encapsulated authorization mechanism, which is isolated from the func-
tional parts. This helps in reducing code and enhancing the reusability, the
readability and the maintainability of the application. In addition, Autho-
rization Enforcer promotes the separation of responsibility by decoupling
the authorization and the authentication mechanisms in order to allow the
implementation of more complex access control techniques.

Besides this structuration of the application provided by the instantiation of Authorization

Enforcer, Figure 2.3 illustrates the behavior aspect of the pattern. The Secure Base Action

retrieves the Subject from the Request Context then Secure Base Action invokes the “autho-

rize” method of Authorization Enforcer with the Subject as parameter. The Authorization

Enforcer delegates the authorization to the Authentication Provider, which retrieves the set

of permissions for the subject and creates a permission collection according the identity of

the Subject (stored in the subjects public credentials set). Afterwards, the Authorization

Enforcer retrieves the Subject permission collection in order to decide whether it is allowed

to access the protected component [100].
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Fig. 2.2 Authorization Enforcer Structure

Fig. 2.3 Authorization Enforcer Behavior

The ability of the pattern Authorization Enforcer to control access is conditioned by the

set of rights provided with the object Subject. To check the correctness of these rights, the

application of the Authorization Enforcer takes advantage on the use of Authentication Enforcer

in order to authenticate entities before giving an authorization decision.

Outlined in Table 2.3, the pattern Authentication Enforcer helps designers implement a

custom authentication mechanism. The use of this pattern aims at checking the identity of each

entity requesting the application and makes the authentication logic centralized and isolated

from the other parts of the application. Then, the authentication code is reduced and it is

less replicated over the application components. As illustrated in Figure 2.4, this pattern
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Table 2.3 Authentication Enforcer [100]

Name Authentication Enforcer
Intent The intent of this pattern is to enable the application to verify that each

request is from an authenticated entity.
Problem When an application contains a protected components, it is important to

check whether the requests to these components are from authenticated
entities. Since different classes can handle the requests, the authentication
code can spread over these classes, which leads to the replication of the
authentication code in many places in the application. In addition, im-
plementing the authentication mechanisms often implies changes in the
functional logic of the application, which harms the simplicity and the
maintainability of the application. Therefore, it is important to make the
authentication mechanism centralized, encapsulated and isolated from the
functional logic of the application. Moreover, the user credentials should
be kept secret and unreachable from the other parts of the application or the
other coexisting applications.

Forces Access to the application is restricted to valid users, and those users must
be properly authenticated. There may be multiple entry points into the
application, each requiring user authentication. It is desirable to centralize
authentication code and keep it isolated from the presentation and business
logic.

Solution Structure Figure 2.4
Dynamics Figure 2.5

Consequences With the use of the Authentication Enforcer pattern, the authentication
mechanism is centralized and isolated from the other parts of the application.
This allows the designer to benefit from the reduced code and the enhanced
maintainability and the readability of the code since the authentication logic
can change frequently in the lifetime of the application.

is composed of four classes: the Client requests are given to the Authentication Enforcer,

which aims at authenticating the Client with regard to the credentials of the user provided by

means of the Request Context. The Subject instance is created if the user is authenticated.

Figure 2.5 illustrates the behavior of Authentication Enforcer. The Client creates a Request

Context instance containing the user credentials. These credentials are retrieved from the

Authentication Enforcer and compared to those stored in the User Store. If the credentials

provided by the user are correct, an instance of Subject containing the user information and

credentials representing the users identity is created.
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Fig. 2.4 Authentication Enforcer Structure

Fig. 2.5 Authentication Enforcer Dynamics

24



2.4 Security patterns and Security patterns classifications

These examples show that the patternAuthorization enforcer is related to the Authentication

Enforcer and how it is important to highlight these relations in order to ease the use of these

two patterns. Indeed, one can consider that the authorization and the authentication are two

sequential steps.

Many security patterns are interrelated, and these inter-pattern relationships was heightened

since the presentation of the first set of the security patterns by Yoder and Barcalow [112].

2.4.2 Security pattern instantiation

The instantiation of a security pattern in an application consists in adapting the structural

and the behavioral properties of the security pattern [95] on the context of the application.

This implies that the designer has to understand both the security pattern properties and the

application context.

In this section, we illustrate a pattern instantiation example in addition to some examples of

classical errors. We present how a bad instantiation of security pattern harms its effectiveness.

We consider as example the security pattern “Intercepting Validator”, whose structure is

Fig. 2.6 Intercepting Validator Class Diagram

illustrated in Figure 2.6 and behavior is illustrated in Figure 2.7. It aims at providing the

application with a centralized validation mechanism for each data type used in the application

model. This validation mechanism is decoupled from the other parts of the application and
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Fig. 2.7 Intercepting Validator Sequence Diagram

each data supplied by the client is validated before being used. The validation of input data

prevents attackers from passing malformed input in order to inject malicious commands.

A security pattern is appropriately instantiated if the application model satisfies all of the

patterns strong points. Otherwise, the security pattern is not efficient against the targeted security

problem, or worst, its instantiation may imply security problems. The pattern “Intercepting

Validator” is characterized by four strong points:

• each input has to be validated before being used by the application;

• a validation logic for every data-type used in the application;

• a unique and centralized validation mechanism;

• the separation of the validation logic from the presentation logic;
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Fig. 2.8 Bad Instantiation of Intercepting Validator

Let us consider the UML class diagram of Figure 2.8 in which a designer has tried to

instantiate the security pattern. The security pattern structure seems to be into the model.

However, this instantiation is incorrect for two reasons: the client is directly connected to the

target, which means that some inputs can be passed to the target without validation. The second

reason is that the validators are directly connected to the target, which means that, in case

of the use of a new data-type, many elements of the application have to be modified. Hence,

the validation logic is not well decoupled from the functional logic of the application. Table

2.4 summarizes these issues; two strong points of the “Intercepting Validator” pattern are not

satisfied, which indicates that it is not properly instantiated.

Table 2.4 The satisfaction of Intercepting Validator String points in the example Figure 2.8

Satisfied Strong Point

X each input has to be validated before being used in the application

X a validation logic for every data-type used in the application

X a unique and centralized validation mechanism

X the separation of the validation logic from the presentation logic
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Hence, it is crucial for designers to well understand a security pattern before its use. They

have to be able to check that all the patterns strong points are present in the application model,

which is a difficult and error prone task.

2.4.3 Inter-patterns relationships

As stated previously, highlighting the inter-pattern relationships helps the designers select

patterns selection and combine them. These relations among patterns are outlined since the

proposition of the first set of patterns by Buschmann et al. in [16]. It worths mentioning that

these relations among patterns was also introduced in the GoF book [32].

Since the proposition of the first collection of security patterns, the template of security

patterns proposed by Yoder and Barcalow [112] was provided with a section called related

patterns. However, with the growing number of patterns, the choice of the appropriate solution

becomes a very difficult task.

Hafiz et al. proposed an organization of security patterns to highlight the different relations

among them [36]. They gathered a set of 97 security patterns from many sources and organized

them manually. As illustrated in Figure 2.9 the resulted map of their organization covers many

different types of relationships [35]. Hence, the designer has to look over this complex map

in order to choose the appropriate solution. In addition, she/he has to understand the natures

of these relationships to take decisions. Other works proposed to unify these relationships to

clarify the security pattern combination.

In the literature, two types of security patterns organization are proposed, vertical and

horizontal organizations. Vertical organizations present how more abstract patterns are related

to more concrete security patterns. Horizontal organizations deal with the different types of

collaborations among security patterns and how each couple of patterns work together.

Yskout et al. proposed in 2006 a horizontal unification of the inter-patterns relationships.

They considered that a pattern A can the following relations with a pattern B [116].
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Fig. 2.9 Organization of patterns proposed by Hafiz et al.
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• Depend: means that two patterns have to be used together: if a pattern A depends on a

pattern B, the pattern A can not be correctly implemented without the application of the

pattern B. For instance, the use of the security pattern Audit Interceptor to intercept and

audit requests and responses to and from the application strongly depends on the use

of Secure Logger pattern, which provides the application with a secure logging facility.

Otherwise, it is impossible to ensure the integrity of the audit trails [116];

“Depend” relationship is not symmetrical, if a pattern A depends on a pattern B it does

not mean that the pattern B depends also on the pattern A;

• Benefit: if a pattern A benefits from a pattern B, then the use of B will enhance the

security capability provided by the pattern A. For instance, Authorization Enforcer

benefits from Authentication Enforcer since the use of the authentication improves the

authorization by authenticating the identities;

“Benefit” relationship in not symmetrical, if a pattern A benefits from B this does mean

that B benefits from A. “Benefit” is also non-transitive. For instance, the Authentication

Enforcer benefits of the use of the pattern Secure Pipe to provide the application with

encrypted channels between the users and the application. Authorization Enforcer does

not necessarily benefits from the use of Secure Pipe;

• Alternative: this relationship indicates that two patterns, can have similar functional

capabilities. If A and B are alternative patterns, this means that if a pattern A is used in

an application, then A can be replaced by B without any negative impact on the overall

application structure and behavior. For example, the Limited View and Full View With

Errors patterns are alternative. While they are not totally equivalent (i.e., only authorized

operations are displayed using Limited view and all the functionalities are displayed with

Full View With Errors ), they are functionally equivalent since both of them prevent users

from using the application functionalities that they are not authorized to perform.
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The “alternative” relation is symmetrical, if A is alternative to B, then B is also alternative

to A. It is also a transitive relationship;

• Impair: this relation means that two patterns can harm each other when used together.

If a pattern A impairs a pattern B, then the use of A can decrease the correct functioning

of B. For instance, the Checkpointed System pattern structures the application so that it is

possible to store the application state and recover it in case of fail. This pattern impairs

the Audit Interceptor pattern. When an application fails, the actual operation might not

be completed so it can be reflected on the log as a false operation. It is important to

notice that when a pattern A impairs a pattern B it is not totally impossible to use them

together, however, the designer should take care on the inconsistencies that might result

on their simultaneous use.

The “impair” relation is symmetrical and non-transitive;

• Conflict: The use of two conflictual patterns considerably degrades the behavior of the

application. In other words, if a pattern A conflicts with a pattern B, then the use of

both patterns in the same application will result in inconsistencies. For example, the

use of the two alternative patterns Limited View and Full View With Errors would bring

inconsistencies in the application and might lead to privilege escalation, authorization

bypass, etc. “Conflicts” is symmetrical and non-transitive.

The difference between impair and conflict relationships is that if the pattern A impairs B

this means that the use of A can harm the efficiency of B, while if A and B are conflictual,

then the application will be vulnerable.

An exemplary vertical organization of security patterns was proposed by Delessy et al. in

2008 [22]. They categorized these relationships into four classes:

• Realization relationship: a pattern A realizes a pattern B when A is less abstract than B

and A provides the solution to the same problem as B in a more specific context;
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• Specialization relationship: a pattern A specializes a pattern B when the patterns can

be applied at the same architectural level and the pattern gives A a more detailed solution

than the pattern B for the same security problem. The relationships Specialization and

Realization are opposites;

• Containment relationship: a pattern A is contained in a pattern B when the security

problem solved by the pattern B includes the problem solved by the pattern A and the

functioning of B uses the pattern A in its solution;

• Collaboration relationship: two patterns A and B collaborates when the two patterns

are often used together, which means that A can depend or benefits of B.

Outlining the relations among security patterns in some collections helps considerably in

the selection and the combination of the security patterns. However, it is still very difficult for

novice designers to select the appropriate set of patterns in some specific contexts. Because of

the different documents about security patterns, some researchers proposed to classify them

[28].

2.4.4 Security patterns classifications

The classification of security patterns is considered by many authors as one of the important

means for helping designers in security patterns selection and use [28, 4, 6]. Indeed, since the

appearance of the security patterns, a plethora of classifications were proposed in the literature.

Classifying security patterns consists in categorizing the patterns in disjoint divisions with

regard to specific criteria. The classification criteria can have different forms: they can be based

on some pattern properties like the purpose, the consequences, etc. It also can be based on the

application contexts such as the life cycle, the architectural layers or the categories of users.

Moreover, classification criteria can be based on security concepts like vulnerabilities, attacks,
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weaknesses, threats, etc. A classification can also be built with multiple attributes, which is

considered as finer than relying on only one attribute [5].

The growing number of classifications shows the efforts of the security pattern community

in making them more understandable. The security patterns classification is a very difficult

and error prone task though because of the textual and the abstract nature of the patterns

documentation, and because of the diversity of the patterns sources. Hence, classifications are

often made manually comparisons and evaluations of the criteria.

In the following, we review some classifications proposed in the literature and their classifi-

cation schemes. Then we will discuss about the quality of these classifications.

2.4.5 Classification schemes

In 2001, Schumacher et al. [96] organized security patterns regard to application contexts.

More precisely, the proposed approach organizes security patterns according to two dimensions:

the first dimension is scaled on the software life-cycle phases and the second dimension on

the architectural layers of the application. Moreover, they considered that the pattern problem

domain can be seen as a third dimension. This classification does not consider the security

concepts (vulnerabilities, Weaknesses, etc.).

In 2002, Kienzle et al. gathered 29 security patterns into two types: structural and procedural

patterns [47]. They developed a system of security patterns called “public Web repository

system” as an experimental base for security patterns.

In 2006, Laverdiere et al. found five levels of security patterns representation quality

and defined them as “undesired properties” [53]. From better to worst, they considered that

security patterns can be over-specified, under-specified, lacking generality, lacking consensus,

or misrepresented. Then, they classified a set of security patterns over these criteria.

The same year, Hafiz et al. [36] proposed a multi-dimensional security patterns classifi-

cation. They firstly based the classification of security patterns on the CIA (Confidentiality,
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Integrity, Availability) model. Then, they classified the security mechanisms into three layers:

core, perimeter and exterior security mechanisms. They conjugated these three layers over

the STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Dos, Elevation of

privilege) method, which is one of the important threat modeling and management methods.

Then, they arranged 97 security patterns through these criteria. This repository of security

patterns is considered as one of the most important collection and classification of the security

patterns.

The classifications proposed in [6, 4] give another point of view by helping designers in the

choice of patterns to fix software vulnerabilities and weaknesses. This choice of categorization

seems quite interesting and meaningful since security vulnerabilities are often known by

designers and are the natural causes of attacks on software systems. Alvi et al. proposed a

vulnerability based scheme putting together security patterns and weaknesses documented

in the Common Weakness Enumeration (CWE [69]) database [4]. They considered that the

CWE weaknesses are appropriate to document flaws added through the design phase and they

manually linked security patterns to CWE weaknesses from their textual descriptions. Anand

et al. proposed another security pattern catalog composed of 12 families of vulnerabilities

and identified some missing security patterns [6]. They focused on vulnerabilities because

they considered that the CWE database is bigger than the scope of their work. They grouped

software vulnerabilities into families and manually collected relationships between families and

security patterns from the pattern textual descriptions and their vulnerability family definitions.

Besides classifying patterns against software vulnerabilities, other authors proposed security

pattern classifications with regard to the concept of attacks [110, 102, 4, 104]. Wiesauer et al.

initially presented in [110] a short taxonomy of security design patterns made from links found

in the textual descriptions of attacks and the purposes and intents of security patterns. Tondel et

al. presented in [102] the combination of three formalisms of security modeling (misuse cases,

attack trees and security activity models) in order to give a more complete security modeling
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approach. In their methodology of building attack trees, they linked some activities of attack

trees with CAPEC (Common Attack Patterns Enumeration and Classification) [67] attacks;

they also connected some activities of SAGs (security activity diagrams) with security patterns.

The relationships among security activities and security patterns are manually extracted from

documentation and are not explained.

Alvi et al. presented a natural classification scheme for security patterns putting together

CAPEC attacks and security patterns for the implementation phase of the software life cycle

[4]. They analyzed some security pattern templates available in the literature and proposed

a new template composed of the essential elements needed for designers. They manually

augmented the CAPEC attack documentation with a section named “Relevant security patterns”

composed of some patterns [4]. After inspecting the CAPEC base, we observed that this

section is seldom available, which limits its use and interest. Uzunov et al. proposed in [104] a

taxonomy of security threats and patterns specialized for distributed systems. They proposed a

library of threats and their relationships with security patterns in order to reduce the expertise

level required for the design of secure applications [104]. They considered that the use of

the CAPEC base is cumbersome and assumed that their threat patterns are abstract enough to

encompass security problems related to the specific context of distributed systems [4].

Motii et al. proposed in [71] a methodology to guide developers in the selection of security

patterns based on threat management and security pattern classification. In the latter, security

patterns are classified according to security properties and application domains.

2.4.6 Classification quality criteria

Alvi et al. performed a comparative study of 23 works dealing with the classification of security

patterns and depicted 29 classification attributes [5]. They observed that several classifications

were built in reference to a unique classification attribute, which appears to be insufficient.
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They indeed concluded that the use of multiple attributes enables the pattern selection in a

faster and more accurate manner [5].

They explained that a pertinent classification of security patterns has to satisfy a set of

properties in order to give a real help to the designers in the selection of the suitable set of

security patterns. A set of classification quality criteria was proposed in the literature [37, 40, 5].

In the following we present some of these classification quality criteria:

• Navigability: the ability of the classification to provide a guidance to the designers

among the collaborations and the relationships among patterns;

• Acceptability: the ability of the classification to be applicable to all the security patterns;

• Comprehensibility: the capacity of the classification to be accessible to be used for

expert and beginner designers;

• Determinism: the clearness of the classification definition and building process;

• Mutual Exclusivity: the ability of the classification to put each security pattern in one

and only one category;

• Repeatability: the ability of repeating and reusing the classification over time in addition

to the capacity of extending the classification on a bigger number of patterns;

• Unambiguity: each category presented in the classification has to be clearly defined;

• Usefulness: the ability of the classification to be used in an industrial collaborative

software development process.

It is very important to focus on these criteria in order to provide a suitable classification

of security patterns. A good classification of security patterns has to be able to present in a

comprehensive manner the categories of the patterns in addition to the classification process. In

addition it has to be helpful for all the designers, experts and novice, independently from the

application environment and its development process organization.
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2.5 Security modeling

In collaborative development environment, the security aspects are often loosely documented.

The textual nature of the current security documents is repeatedly a source of misunderstanding.

Hence, it is important to come up with user-friendly, intuitive and visual approaches in order to

analyze qualitatively and quantitatively security concepts [52].

Many graphical security analysis approaches were proposed in the literature. The main

objective of these approaches is to facilitate threat assessment and risk management with visual

and formal facilities. The first graphical security model was proposed in 1991 by Weiss et

al. [109]. This model corresponds to a kind of threat logic tree, which is considered as the

origin of most of the attack tree models found in the literature. Kordy et al. counted more

than 30 different models in 2013 [52]. They depicted 13 classification aspects (purpose, yearn

tool availability, etc). We present in Table 2.5 these works through four aspects: 1) whether

the model is formally defined, hence, we distinguish three types of approaches, Formal, Semi-

Formal and Informal models; 2) whether the model is about modeling attacks or defenses;

3) the capacity of the formalism to express order dependencies; 4) we present the number of

papers dealing the model in order to give an idea about its usability.

In this section, we briefly recall some model examples. We present examples of informal,

semi-formal and formal models.

2.5.1 Vulnerability Cause Graphs (VCG)

The informal approaches are textually described without providing a mathematical structure.

An example of informal approaches is the Vulnerability cause graphs. Proposed by Byers et al.

in 2006 as a structured method for analyzing and documenting the causes of a vulnerability,

Vulnerability cause graphs relate vulnerabilities with their causes [17].

A vulnerability cause graph is a directed acyclic graph in which each node has an outgoing

directed edge, except for the root that is the vulnerability. All the other nodes are the causes
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Table 2.5 Security Models [52]

Name of the model Attack or
defense

Sequential
or static

Formalization Paper count

Attack countermeasure
trees [89]

Both Static Formal 4

Attack–defense trees [51] Both Static Formal 6
Attack trees [109] Attack Static Formal >100
Augmented attack trees
[80]

Attack Static Formal 6

Bayesian attack graphs
[55]

Attack Sequential Formal 10

Bayesian defense graphs
[99]

Both Sequential Formal 5

Bayesian networks for se-
curity [79]

Attack Sequential Formal 14

Parallel model for multi-
parameter attack trees [15]

Attack Static Formal 5

Protection trees [24] Defense Static Informal 4
Security activity graphs [8] Both Static Semi-Formal 2
Security goal indicator
trees [77]

Defense Sequential Semi-Formal 3

Security goal models [60] Both Sequential Formal 2
Serial model for multi-
parameter attack trees [45]

Attack Sequential Formal 3

Vulnerability cause graphs Attack Sequential Informal 4
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Fig. 2.10 The types of the nodes in a Vulnerability Cause Graphs [17]

of the vulnerability (one vulnerability is presented by each VCG) [17, 52]. As illustrated in

Figure 2.10 four types of visual presentations are available: simple nodes address the causes

that may lead to the vulnerability, they are the basic elements of a Vulnerability Cause Graph.

Compound nodes can be considered as functions or procedures in software development. They

enhance the reusability and readability of the models. The Conjunctions are associations among

two or more nodes of different types excluding the exit node. The exit node represents the

vulnerability studied in the graph.

For instance, the vulnerability CVE-2003-0161, which refers to the incapacity of properly

handling the conversions from char and int can be expressed with the vulnerability cause graph

of Figure 2.11. The main cause of the vulnerability is the capacity of copying external data

to an internal buffer. This can lead to a data copied to an unchecked buffer, then either to an

unsafe conditional length check (i.e., the length check is disabled) or that range check will be

separated from the copy location, which means that the mechanism checks another input than

the input of interest.
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Fig. 2.11 CVE-2003-0161 Vulnerability Cause Graph [17]

The capacity of VCGs to express compound nodes helps model elements from different

abstraction layers. In addition, VCG are considered as the starting point of building Security

Activity Graphs (SAG) [52].

2.5.2 Security Activity Graphs (SAG)

With semi-formal models, some parts of the model are formally described while the other parts

are described textually. Security activity graphs is one of these models.

A Security Activity Graph is a graphical representation of first order predicate calculus

proposed by Ardi et al. [8]. A SAG illustrates the possible mitigations of the vulnerability

causes presented in a VCG.

As illustrated in Figure 2.12, a Security Activity Graph is a graph whose root is the

Vulnerability. It is compound of Activity nodes connected with gate nodes (Conjunctive,

Disjunctive and Split gates) in order to mitigate the Vulnerability.

For instance one of the mitigations of the vulnerability CVE-2003-0161 is about the use of

“strcat” primitive in order to properly concatenate strings. As illustrated in Figure 2.13, the use

of “strcat” is composed of the conjunction of four sub actions, each one is the disjunction of

two activities. These activities are described as bellow:
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Fig. 2.12 The elements of a SAG [8]

• A: Use preprocessor to prevent calls to strcat;

• B: Use strlcat instead of strcat;

• C: Use preprocessor to prevent calls to strcat;

• D: Use safe string library;

• E: Use code inspection to find calls to strcat;

• F: Use strlcat instead of strcat;
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• G: Use code inspection to find calls to strcat;

• H: Use safe string library.

In this way, a Security Activity Graph helps in the analysis and the combination of activities

in order to perform actions to countermeasure security problems. While the authors provide a

formal description of the elements (nodes and gates) of the model, the approach is not totally

formally described. Hence it is considered as a semi-formal model [52].

Fig. 2.13 strcat Security Activity Graph [17]

2.5.3 Attack Defense Trees ADTree

The formal models are clearly described with formal frameworks and proper syntaxes. Attack

Defense Trees is an example of formal security graphical modeling approaches. Proposed by

Kordy et al. in 2010 [50], an Attack Defense Tree (ADTree) is a node labeled and rooted tree

allowing the description the attackers and defenders actions in an attack scenario.

As illustrated in Figure 2.14, an ADTree is compound of two types of nodes: the first

type is the description of the actions an attacker can make in order to achieve an attack on a

system (red circles). The second type of nodes is the expression of the actions a defender can

make in order to protect the system (green squares). Each node can have many nodes of the

same type, which is a refinement relationship, and one node of different type, which is the

countermeasure relationship. In an ADTree, sibling nodes can be related with two types of

operators: Conjunctive (AND) and Disjunctive (OR) [51].
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Fig. 2.14 Nodes and operators of an ADTree [51]

Fig. 2.15 Example of an ADTree [49]

For instance, Figure 2.15 presents an example of an ADTree expressing attack and defense

actions in a bank account hack. The root of the tree is the attacker goal, which can be done

either online or by means of an Automated Teller Machines (ATM). In order to get the money

from an account using an ATM, we have to get the card and the pin, the latter can be got

by eavesdropping, forcing or by finding a note. The countermeasure of the last attack is to

memorize the pin.

Besides the visual aspect of ADTrees, they are provided with a mathematical framework.

An ADTree T is described with an algebra associating attack and defense actions with a set of
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Fig. 2.16 ADTerms [50]

Attack Defense Terms (ADTerms) noted ι(T ). Figure 2.16 gives the ADTerms of the possible

ADTree refinements. ADTerms allow the expression of two types of roles: opponent “o”, and

proponent “o” in addition to two types of operators: Conjunction (∧o/p) and Disjunction (∨o/p)

of attack and defense actions (o/p) [50]. The countermeasure relationship between two actions

a and b is notated co/p(a,b).

However, ADTree is a static model, which means that it does not allow the expression of

order among actions [52]. In order to allow the expression of this order notion, the authors

proposed an attack tree extension named SANDTree. In addition to the operators supplied with

ADTrees, SANDTrees are provided with a Conjunction operator called the Sequential And

(SAND) denoted (
−−→
∧o/p) [44, 31].

For instance, in the example of SANDTree presented in Figure 2.17, getting money from a

bank account has to be preceded by supplying the pin code, which is preceded by inserting the

card. However, SANDTrees does not provide the capacity of modeling defense nodes since it

only expresses attack actions.
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Fig. 2.17 SANDTree Example

The same authors provide a tool called ADTool (The Attack-Defense Tree Tool), which

is used to model and analyze attack-defense scenarios represented with ADTrees and SAND

trees 1.

2.6 Chapter conclusions

In this chapter, we reviewed the challenges faced to devise secure applications by designers.

We portrayed how security patterns can help novice designers in taking advantage of experts

knowledge in order to give solutions to recurrent security problems. Even with the use of

security patterns, secure application design is still a difficult task though. The growing number

and the abstract textual nature of security patterns are the major challenges to which designers

are faced when using security patterns.

Security patterns catalogs, classifications and relations was proposed in order to help

designers in security patterns choices. But, many improvements has to be done in order to

make these organizations of security patterns more useful. We observed that many of these

classifications lack of navigability among patterns , which is an important property defined

as the ability to guide the choice of designers among related patterns [5]. More precisely, we

noticed that some patterns for the same vulnerability family are not compatible together. As a

consequence, a designer may be confused about the appropriate selection of patterns.

1http://satoss.uni.lu/members/piotr/adtool/
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We also observed that the main issue of many security patterns classifications lies in

the lack of a precise methodology to build the classification. All of them are based upon

the interpretation of different documents, which are converted to abstract relationships. The

first consequence is that understanding the structure of categories and relationships found

in classifications is sometimes tricky. In addition, it becomes very difficult to extend these

classifications.

Another issue of using security patterns is related to their abstract nature. Adding a security

pattern in an application requires an instantiation step, which is not a trivial step. Hence, it

is crucial to guide designers in the instantiation and the verification of security patterns. In

the next chapter, we propose a model based checking approach to help designers in assess the

instantiation quality of security patterns and their effectiveness against a set of vulnerabilities.
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Chapter 3

Assisting Designers in Security Pattern

Integration

3.1 Introduction

Despite the large improvements recently made in modeling, coding and testing, software

engineering is still regarded as a very complex field. This complexity is due to many aspects,

one of these is that software engineering has to address both functional and non-functional

requirements. Functional requirements usually express what the application has to do or

what the application is about, while non-functional requirements express the other criteria of

the application such as its quality, fault tolerance, security, etc. Security is often expressed

with more refined properties such as the confidentiality, the integrity or the availability of the

application valuable assets.

Security patterns are proposed to help designers devise secure applications. We mentioned

in the previous chapter that it is difficult to use security patterns because of their abstract nature,

growing number and the complex relationships.

In this chapter we focus on these problems and propose an approach that aims at evaluating

the instantiation quality of a security pattern. We first present in Section 3.2 the context and

47



Assisting Designers in Security Pattern Integration

the motivations of the proposed approach. Next, we present in Section 3.3 the prerequisites of

the approach, which helps designers check whether a set of security patterns is appropriately

instantiated in the UML model of an application, and whether the model, augmented with

patterns, is protected against a set of vulnerabilities. We present in Section 3.4 the manual

and automated steps of our approach. In Section 3.5, we illustrate a case study based on the

Moodle educational platform, more precisely on its Quiz engine 1. In Section 3.6 we discuss

the practical use of the approach and the possible enhancements. We conclude the chapter in

Section 3.7.

3.2 Context and Motivations

We presented in Chapter 2 how the security pattern classifications can help software designers in

the selection of security patterns. However, the pattern documents do not cover the instantiation

of security patterns in a model, since its instantiation may be different with regard to the

application. It is very difficult for novice designers to judge whether a security pattern is

properly instantiated. Furthermore, pattern classifications do not provide a mean to assess

whether the application security is enhanced. Hence, we observed two important points related

to the difficulty of instantiating security patterns. The first point is that security patterns

documents lack of sturdiness (formal expressions, etc.), which makes the assessment of the

instantiation quality of the security patterns difficult. The second point is the difficulty of

checking security properties in an application model:

1. Konrad et al. outlined in [48] the difficulties frequently met by designers to clearly

understand security patterns (e.g., the lack of comprehensive structure, the difficulty

of identifying patterns and to assess their effectiveness). Therefore, they introduced a

novel security patterns presentation. The structural part of a security pattern is given with

1https://moodle.org/

48



3.2 Context and Motivations

UML (Unified Modeling Language) and the behavioral aspect of the patterns is defined

with LTL (Linear Temporal Logic) [33]. This way, they formally provided the security

constraints supported by a pattern, which allows designer to check, with model checking

tools, which constraint is satisfied in the application model. Motii et al. proposed in [73]

a methodology for security patterns integration and verification based on UML and OCL,

they illustrated their methodology through a VPN security pattern;

2. a plethora of works addressed the verification of security properties on applications mod-

els, we summarize some of them below. Security properties can be expressed formally,

especially with temporal logics [2, 56, 102]. For instance, Tanvir et al. proposed in [2] a

methodology for the verification of the security properties and the impact of the Role

Based Acess Control (RBAC) security pattern in CSCW (Computer Supported Coopera-

tive Work) systems. The global security requirements of the system are expressed as LTL

formulas, the system is modeled with the PROMELA language and then requirements

are verified with Spin [42] on the PROMELA specification of the application model. In

[56], Mallouli et al. combined two modeling formalisms in order to express both the

functional and security requirements of a system. The functional behavior is modeled

using TEFSM (Timed Extended Finite State Machine) and the security requirements are

specified with the Nomad language, which allows the expression of security properties

with time considerations. The resulting model allows security properties checking and

correction. In [102], Tøndel et al. proposed an approach using misuse cases, attack trees

and UML activity graphs to describe how a threat can be mitigated with regard to the

behavioral aspect of the application model, expressed with UML activity graphs;

3. Hamid et al. proposed in [39] a framework and a methodology associating model-driven

paradigm and a repository of security and dependability patterns to support the design of

trusted Resource Constrained Embedded System (RCES) applications. A set of artifacts

is generated from each security pattern and then the conformance the security pattern
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instantiation is validated with regard to these artifacts. They evaluated the approach and

results show that designers are satisfied and the approach paved the way to let them

organize themselves their own Pattern-based System Engineering (PBSE) methodology.

Most of these approaches are still difficult to use and error prone for designers because they

have to write LTL or OCL formulas. They do not propose a reusable way to cover a big number

of patterns and security properties, because security properties are often not generic and they

have to be rewritten for each application. The approach we propose in this chapter considers

the previous points, but it especially contributes to propose a complete process, which can

be followed by designers in order to check the instantiation quality of security patterns and

their effectiveness against security problems. In contrast with the approach proposed in [39],

we propose to express the security patterns structural and behavioral properties with formal

and reusable properties. These are used to check and evaluate the correct security pattern

instantiation in the application model. In the same way, we model the vulnerabilities with

reusable formal properties and we check the effectiveness of the security patterns in protecting

the application model against vulnerabilities.

3.3 Prerequisites

As explained in Chapter 2, the instantiation of a security pattern in an application model is

a difficult and error prone task. A pattern can be steadily misunderstood and then misused,

which considerably harms its security purposes in the application. As illustrated in Figure 3.1,

the approach we present in this section aims at helping designers instantiate a set of security

patterns. Then, it checks whether the application model, including a set of security patterns,

does not have a set of vulnerabilities.

We assume that the UML model of the application, denoted M , describes both structural

and behavioral aspects of the application. The application model structure is described with
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Fig. 3.1 The context of the proposed approach

a class diagram. Its behavior aspects are described with sequence diagrams and statecharts.

Ideally, each class of M is completed with a statechart in order to detail its behaviors. In

addition, we assume the designer has chosen a set of vulnerabilities V = {v1, ...vl} and a set of

security patterns SP = {Sp1, ...Spk} that are supposed to be the solutions to the vulnerabilities.

Table 3.1 The symbols of the LTL

Symbol Signification Diagram

� φ Globally : means that φ is always true

⃝φ Next: means that φ will be true in the next state

♦φ Eventually: means that φ will finally be true

ψU φ Until: ψ is true till the occurrence of φ

As stated previously, Konrad et al. [48] extended the security pattern template with a set of

LTL formulas to formally express the behavioral properties of a security pattern. A behavioral

property is considered as a precise sequencing of actions. Modeling the behavioral properties of

a security pattern in LTL allows to check whether the model M satisfies the behavior intended

by the security pattern.

We recall that the Linear Temporal Logic (LTL) is a first order logic augmented with

supplementary temporal operators. In addition to negation “!”, disjunction “∨”, conjunction

“∧”, etc, the LTL is provided with a set of temporal operators. Illustrated in Table 3.1, the

temporal operators aim at specifying in which time a propositional variable is true. We present

51



Assisting Designers in Security Pattern Integration

for each operator (first column), its semantic signification (second column), and a linear diagram

addressing how the operator is traduced over the time.

Aderhold et al. [1] presented in 2010 an exemplary set of secure coding guidelines formally

described in LTL. They considered that validating input, enforcing authentication, etc, can

be written in LTL formulas. We considered this form of secure coding properties to describe

vulnerability properties. Therefore, we consider that a vulnerability v j can also be expressed by

a set of LTL properties.

3.4 Assisting designers in the security pattern instantiation

Now we are ready to expose the approach. It aims at helping designers in two ways: it assists

designers in the security pattern instantiation by checking whether the model M meets every

structural and behavioral property PSpi ∈ SP with SP a set of security patterns. In addition, the

approach checks the effectiveness of the security patterns SP against the vulnerability set V by

checking whether the model M meets any property Pv j of any vulnerability v j ∈V .

The approach is composed of four steps, illustrated in Figure 3.2. In a nutshell, the first

one is the instantiation of a security pattern set SP in the UML model M. The next step aims at

checking whether the structural properties Ps(Spi) of each security pattern Spi are satisfied in

the model M. A structural instantiation quality coefficient cs(Spi) is calculated. Then, we check

whether the behavioral properties Pb(Spi) of each security pattern are satisfied and compute a

behavioral instantiation quality coefficient cb(Spi) . Based on these coefficients, the overall

instantiation quality of the security patterns set Q is calculated.

If the patterns are well instantiated, then the next step aims at checking whether the model

M has security flows. Hence we check whether the model M meets the properties set Pv j of

each vulnerability v j ∈V . If M, is still vulnerable, the designer has to review the choice of the

security pattern set.

The steps of the approach are detailed bellow:
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Fig. 3.2 An approach to assist designers to devise more secure applications
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Step 1: Security pattern instantiation

Because of the abstract and generic nature of security patterns, the initial step of designers is

the instantiation of each security pattern Spi ∈ SP on the application model M. To do so, the

security patterns structural and behavioral properties are adapted on the application specific

context. Concretely, the designer have to modify the UML diagrams by adding classes (in the

class diagram) in order to meet the pattern structure. In addition to interactions (in the sequence

diagram) and behaviors (in state charts).

Step 2: Security patterns structural instantiation quality

In this step, we check whether each security pattern structural property holds in the application

model M. We use the tool proposed in [14] to extract the structural properties Ps(Spi) of each

security pattern.

An OCL request is automatically generated for a pattern Spi expressing its structural

properties. These requests are then executed on the model M using Neptune tool [93]. A list

< (p1,C1,c1), ...,(pm,Cm,cm)> is obtained, where Ci is a class of M, pi a class of the security

pattern Spi and 0 6 ci 6 1 expresses the proximity of Ci and Pi, denoted proximity coefficient.

The more the structure of Ci is close to the one of pi, the more ci tends to 1. This way, a

proximity coefficient is calculated for each set of classes of M in order to express its proximity

to the security pattern Spi.

The set of classes ∈ M having the highest coefficients, noted cs(Spi), is proposed to be the

instance of the security pattern Sp j in M. However, the designer can choose another part of M

with a lower coefficient as the instance of the security pattern. We consider that the security

pattern Spi is structurally well instantiated if the coefficient cs(Spi) tends to 1. In this case the

designer can start the next step. Otherwise, the designer has to review the instantiation of the

security pattern.
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Step 3: Security pattern behavioral instantiation quality

This step aims at checking whether the application model M satisfies the behavioral properties

Pb(Spi) of each security pattern Spi.

These behavioral properties, written in LTL, are extracted from the pattern description. As

these properties are generic, the designer has to concretize them with regard to the elements of

the model M.

To check the satisfiability of these properties, M is automatically translated into a Promela

(PROtocol MEta LAnguage) specification with the HugoRT tool [63]. The Promela specifica-

tion is achieved by traducing the state diagrams of each class of the model M on a finite state

automaton within a scenario presented by a sequence diagram in the model M. The automaton

expresses the overall interactions among the objects of the model M in a specific scenario.

With the Spin LTL model checker [42], we check whether the Promela specification of the

model M satisfies each behavioral property p ∈ Pb(Spi) of each security pattern Spi.

A behavioral instantiation quality coefficient cb(Spi) is computed from the results of Spin

for each security pattern Spi. We define a function: mc : Pb(Spi)−→{0,1}, expressing whether

M satisfies the behavioral property p, with mc(p) = 1 if M � p and mc(p) = 0 otherwise. Then,

cb(Spi) is defined by:

0 ≤ cb(Spi) = ∑
p∈Pb(Spi)

mc(p).wp ≤ 1

where mc(p) expresses the satisfiability of each behavioral property p ∈ Pb(Spi), and wp

reflects the designer preferences about the behavioral properties of a security pattern Spi. The

weights of the security pattern properties are defined with a Simple Additive Weighting (SAW)

technique [113] with wp ∈ R+
0 and ∑p∈Pb(Spi)wp = 1. Initially, all wp are identical and equal

1/card(Pb(Sp j)).

The closer cb(Spi) is to 1, the more M respects the behavioral properties Pb(Spi). However,

the interest of this coefficient is conditioned by the cardinality of the set Pb(Spi).
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Step 4: Overall security patterns instantiation quality

In the previous two steps two coefficients are calculated for each security pattern Spi: a

coefficient cs(Spi), expressing the structural instantiation quality and cb(Spi) the behavioral

instantiation quality coefficient.

Based on these two coefficients, the final instantiation quality q(Spi) of a security pattern

Spi is defined as:

0 ≤ q(Spi) =
(Cs(Spi)+Cb(Spi))

2
≤ 1

• When q(Spi) = 1, the security pattern Spi is structurally and behaviorally well instan-

tiated. However, if the properties set PSpi (Ps(Spi)
⋃

Pb(Spi)) has a low cardinality, it

remains difficult to assess the behavioral instantiation quality of Spi;

• If q(Spi) is close to 1, and either Cs(Spi) or Cb(Spi) is low, then the designer has to

review the structural or the behavioral instantiation of the security pattern Spi;

• If q(Spi) is close to 0, then the designer has to review the overall instantiation of the

security pattern.

For the set of security patterns SP = {Sp1, ..Spk}, the overall security pattern set instantia-

tion quality coefficient, denoted Q, is defined as:

0 ≤ Q =
k

∑
i=1

q(Spi).wSpi ≤ 1

with wSpi ∈ R+
0 and ∑Spi∈SP wSpi = 1 reflecting the preferences of the designers about the

security patterns.

If Q is equal to 1, then all the security patterns are structurally and behaviorally instantiated

in the model M. Otherwise, enhancements can be performed on the instantiation of a pattern

Spi with regard to the coefficient Cs(Spi) or Cb(Spi). In addition, as explained by Yskout et

al. [116], the instantiation quality of a security pattern Sp1 can be reduced by another security
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pattern Sp2 since two security patterns Sp1, Sp2 might be conflictual. Moreover, Q depends

on the size of properties set PSpi of a security pattern Spi. In other terms, the more a pattern

is formulated with generic properties, the more accurate the coefficient will be. A complete

documentation of a security pattern Spi enhances considerably the precision of q(Spi).

Step 5: Application vulnerability assessment

This last step occurs when the designer judges that each security pattern Spi ∈ SP is appropri-

ately instantiated in the model M. This step aims at checking the effectiveness of the set SP of

security patterns to protect the model M from every vulnerability vi ∈V .

In addition to detect vulnerabilities this step may help designers to:

1. ensure that the chosen security pattern set as the solution to these vulnerabilities. If the

model M, after a good instantiation of the security pattern set, is still vulnerable, then the

pattern choice has to be reviewed. For instance, the pattern set has to be completed;

2. detect inconsistencies in M, which can be caused by the use of conflicting patterns. As

presented in [116], when two security patterns are conflictual, their use in the model M

can lead to vulnerabilities.

We assumed that a vulnerability vi ∈V is defined with a set of LTL properties Pvi describing

behaviors that should never happen. These properties are generic and reusable. The designer

has to instantiate these properties in accordance with the model M. Then, we call the tool

Spin to automatically generate a never claim for each LTL property. A never-claim is a finite

state automaton describing the negation of the vulnerability property. Next, the never-claim

is compared against the Promela model of M. An execution (counter-example) is returned by

Spin if the model M meets the never-claim. This means that M is vulnerable to the vulnerability

vi.
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Table 3.2 Coefficients values and interpretations

Result Signification
q(Spi) = 1 The security pattern Spi is well instantiated in the application model. The

instantiation quality strongly depends on the size of the properties set
P(Spi).

cs(Spi) −→ 1,
cb(Spi)−→ 1

Some structural and behavioral instantiation of Spi have to be reviewed.

cs(Spi) −→ 0,
cb(Spi)−→ 1

The structural instantiation of Spi has to be reviewed, the security pattern
structure has not been detected in the application model.

cs(Spi) −→ 1,
cb(Spi)−→ 0

The behavioral instantiation of Spi has to be reviewed, security pattern
properties have not been satisfied in the application model.

cs(Spi) −→ 0,
cb(Spi)−→ 0

Both behavioral and structural patterns have to be reviewed.

Q = 1 All the security patterns of the set SP are correctly instantiated in the
application model.

Q −→ 1 Some structural or behavioral properties of the security patterns are not
satisfied. Inconsistencies can be detected by means of cs(Spi), cb(Spi).

Q −→ 0 It strongly recommended to review all the application model. Inconsisten-
cies can be brought by the use of conflictual patterns.

cv(vi) = 0 The application model does not contain the vulnerability vi.
cv(vi) ̸= 0 The application model contains the vulnerability vi the choice of the

security patterns has to be reconsidered or some conflictual patterns have
been used.

Once all the properties of Pvi have been addressed, a vulnerability coefficient cv(vi) is

calculated as:

0 ≤ cv(vi) =
∑p∈Pvi

Sat(p)

card(Pvi)
≤ 1

with Sat : Pvi −→ {0,1} and Sat(p) = 1 if p holds in the application model M, and 0

otherwise. When cv(vi) is equal to 0 then we consider that the application model M does not

contain the vulnerability vi. Otherwise, the application model M has to be reconsidered.

The counter-examples given by Spin are presented as trails in a scenario. Presented

graphically, these trails can be used by the designer to backtrack the source of the problem in

the application behavior. An example of trail will be given in the next section.
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Table 3.2 summarizes the different kinds of results that can be obtained. Each one is related

to an action that the designer should do.

3.5 Case study

In this section we present a case study, which illustrates the steps defined previously. We

consider the security pattern “Intercepting validator” and the vulnerability “CWE-89 SQL

Injection”. We have taken as example the UML model of the application Moodle Quiz Engine

(MQE) (part of the Moodle educational platform) 2. The structure of MQE, as illustrated in

Figure 3.3, is composed of a client interface (attempt.php), which requests the quiz engine

to get the question_behavior. The question_behavior class gathers the set of questions and

interactions (the mechanisms dealing with a user choices and answers).

Fig. 3.3 Moodle Quiz Engine Classe Diagram

Figure 3.4 illustrates the sequence diagram of the scenario dealing with the retrieval of the

questions. The client accesses his questionnaire question_behavior with a request of the form

“GET /moodle/quiz/attempt.php?id=123”. With this request, the student is identified with the

variable “id=123” and a questionnaire (question_behavior) is created by the quizEngine. Then,

the questions and their correspondent interactions are retrieved from the database and returned

to the user in order to start the exam. This model exhibits several security flows. For instance,

it allows code injections.

2https://moodle.org/
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Indeed, the MQE documentation does not express the need to an input validation logic.

Therefore, the request “GET /moodle/quiz/attempt.php?id=123” can be manually modified

with malicious values of id (e.g. an SQL command) in order to alter the database.

 : attempt.php  : quizEngine

 : question_behaviour

 : qustion_attempt  : question : interaction : browser

1 : GET /moodle/quiz/attempt.php?id=123

2 : load_usage_id(123)
3

<<create>>

4
5 : render()

6 : get_renderer()

78 : render()

9
10

11
12

Fig. 3.4 Moodle Quiz Engine Sequence Diagram

An application allowing this type of interactions is vulnerable to the weakness “CWE-

89 SQL Injection”. This weakness is targeted by well known SQL Injection attacks. Since

2004, 17 SQL injection vulnerabilities was published for Moodle educational platform [68].

Recently, in 2017, the vulnerability “CVE-2017-26413” was published. It describes that SQL

injections can occur via user preferences in the versions 2.x and 3.x of Moodle. In addition, the

vulnerability “CVE-2015-2273”4 describes that in the quiz module of many Moodle versions,

identity usurpation is possible and allow students to craft identities in order to interact with the

quiz module.

In the literature, “Intercepting Validator” is often considered as the solution to the “CWE-

89” weakness [4, 110, 36, 117] as it supplies the application with a centralized validation

mechanism. The interest of this validation mechanism is that it protects the application from

mis-formed inputs by checking each input coming to the application.

3https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2017-2641
4https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2015-2273

60



3.5 Case study

In this section, we illustrate the proposed approach with this pattern. We start by instantiat-

ing Intercepting Validator in the MQE model. We check the instantiation quality of the security

pattern in the context of the application. Then, we check whether the application model is still

vulnerable to “CWE-89”.

Step 1: Security pattern instantiation

We firstly contextualized the structure of the security pattern, presented in Figure 2.6, on

the class diagram of Figure 3.3. The inputs are supplied through attempt.php, and used as

parameter by quizEngine without verification of its content. An “Intercepting Validator” has

to be instantiated between the Client (attempt.php) and the target of the request (quizEngine).

The resulting class diagram is given in Figure 3.5. Classes in white are provided from the

initial class diagram of MQE (Figure 3.3) and the yellow classes come from the security pattern

“Intercepting Validator” instantiated in the application model in order to validate each input

providing from the client before being used in the quizEngine.

attempt.php quizEngine question_behaviour

+id*1

qustion_attempt

question interaction

*1

1

1

11

1

1

browser secBase

inputValidator
validator

<<interface>>
sqlValidator

Fig. 3.5 Structural instantiation of intercepting validator

Then, the security pattern sequence diagram of Figure 2.7, is instantiated in the sequence

diagram of MQE of Figure 3.4. Figure 3.6 depicts the UML sequence diagram obtained after

this instantiation.
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IsValidalt

[not_valid]

[valid]

Attempt : attempt.phpStudent : browser qe : quizEngine QuBa : question_behaviour qa : qustion_attemptsecBase : secBase inVal : inputValidator

sqlVal : sqlValidator

que : questioninte : interaction

1

<<create>>

2
3 : GET /moodle/quiz/attempt.php?id=123()

4 : load_usage('123')
5 : validate('123')

6 : validate_SQL()

7

8

9 : generic_err_msg

10 : err_page

11 : load_usage(123) 12 : create_ba(id=123)

13 : render() 14 : get_renderer()

1516 : render()

17

18

19
2021

Fig. 3.6 Behavioral instantiation of intercepting validator

The id of the user is now intercepted by the class secure_base_action, which calls inputVal-

idator. When the client request is validated, it is later processed in the application. Otherwise,

an error message is returned to the user [100].

In addition, all the classes have be completed with state-charts in order to express their

behaviors. For instance, the behavior of the class inputValidator is given in Figure 3.7. This

statechart gives some details about the states of the class. It has two activities referring

to the creation and the communication with the sqlValidator. The statechart expresses that

inputValidator creates the validator then it waits for inputs. When an input is forwarded to

inputValiator, the input is forwarded to sqlValidator, then the the validation verdict is returned

to secBase.

Now, the security pattern instantiation quality assessment can be calculated in two parts.

Step 2: Security pattern structural instantiation quality

In this step, we check whether the structural properties are satisfied in the model M, (Figures

3.5 and 3.6). As stated in the previous section, we use the methodology proposed by Bouhours

et al. [14] in order to generate a set of OCL requests from the class diagram of the security

pattern “Intercepting Validator”. The Neptune tool executes these requests with regard to the
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Fig. 3.7 inputValidator Statechart

class diagram of the application model M, illustrated in Figure 3.5. The tool returns a set of

tuples < (p1,C1,c1), ...,(pm,Cm,cm) >, with pi a class of the security pattern, Ci is class of

the model M and ci is a structural proximity coefficient. In our example, the security pattern

structure is detected on the model M with cs(InterceptingValidator) = 1, illustrated in yellow

on the Figure 3.5. This detection is precise because of the simplicity of our model. In more

complex diagrams, two or more instances of the security pattern might be detected. In this case,

the designer has to choose the appropriate one.

Step 3: Security patterns behavioral instantiation quality

This step evaluates the behavioral instantiation quality of “Intercepting Validator”. The behav-

ioral properties of the security pattern, presented in Chapter 3, Table 2.4, are modeled with LTL

formulas.

For instance, the property “a validation logic for every data-type used in the application”

means that for each data-type used in the application, a corresponding validator has to be

created before any validation of inputs. This behavioral property can be written as :

p2 : � (Clientinput(Data)→!Validate(data)

U createValidator(Data.type))
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Table 3.3 Behavioral properties of Intercepting Validator

P Generic LTL property instantiated LTL property
p1 �(Clientinput(Data) →

!CallTarget(Data) U Validate(data))
� (attempt.inState(input))→ (! quizEngine.inState(loadUsage) U
secBase.inState(valid)))

p2 �(Clientinput(Data) →
!Validate(Data)U createValidator( data : type))

� (attempt.inState(input)) → (! secBase :
inState(WaintingValidation) U inVal.inState(validatorsCreated)))

p3 �(inputValdiator.isUnique) �(secBase.isUnique∧ inVal.isUnique)
p4 �(clientInput(data)∧!ServerValidate(data) ∧

♦ ServerValidate(data)) →
(!returnGeneric(message) U
ServerValidate(data))

�((attempt.inState(input)∧!secBase.inState(nonvalid) ∧
♦secBase.inState(nonvalid))→!attempt.inState(err−page) U
secBase.inState(nonvalid))

which literally means that globally (�), for each client input, the data should not be validated

until (U ) the creation of a validator. This formula is abstract and requires an instantiation step

before checking its satisfiability in the application model M of Figure 3.6. This means that the

generic terms have to be replaced by some concrete terms of M.

With regard to the behavioral properties of M, the Clientinput is replaced with the state

input of the class attempt.php and Validate(data) corresponds to the state WaitingValidation of

the class secureBaseAction.

When all the terms of the formula p2 are substituted with the events of the model M, then

the formula is instantiated. Otherwise, if there is no concrete events in the application model to

express the generic items of the formula, then the application model has to be completed.

The formula p′2, given bellow, is the result of the instantiation of p2 with respect to M.

p′2 : � (attempt.inState(input)→!secBase.inState(WaitingVal)

U inVal.inState (valCreated))

Table 3.3 gives the generic behavioral properties of the security pattern “Intercepting

Validator” and the instantiated properties with regard to model M Figure 3.6.
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Because of the semi formal nature of the UML diagrams, checking the LTL behavioral

properties of the security pattern in the model M is not possible. Hence, we convert the model

M into PROtocol MEta LAnguage (Promela) specification [12] by using the tool HugoRt tool.

With the model-checker Spin [42], each instantiated formula is automatically traduced

into a claim, which corresponds to an automaton expressing the formula. Then, each claim

is checked in the Promela specification of the application model M. If a property is not

satisfied in the application, Spin returns a counter-example. The counter-example is given as a

trail of the actions leading to the unsatisfiability of the behavioral property. In our example,

all the behavioral properties are satisfied, which means that cb(InterceptingValidator) =

(1/4)+(1/4)+(1/4)+(1/4) = 1, if we consider that all the properties have the same weight

wi. The coefficient cb shows that the security pattern “Intercepting Validator ” is behaviorally

well instantiated in the application model M.

Step 4: Overall security pattern instantiation quality

In the two last steps, two quality coefficients was calculated, (cs(InterceptingValidator) =

1) and (cb(InterceptingValidator) = 1). The instantiation quality of the security pattern is

(q(InterceptingValidator) = 1), which means that the security pattern Intercepting Validator

is structurally and behaviorally well instantiated in the application model.

In case q(InterceptingValidator) tends to 0, the structural or the behavioral instantiation of

the security pattern should be reviewed with regard to the values of (cs(InterceptingValidator))

or (cb(InterceptingValidator)).

Step 5: Application vulnerability assessment

Once the security pattern “Intercepting Validator” has been instantiated correctly in the ap-

plication model M, it remains to check its effectiveness to protect M against the vulnerability

“CWE-89 SQL Injection”.
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The documentation of this vulnerability [69] shows that an application is vulnerable to SQL

Injection attacks if it meets the properties:

1. v1 : Inputs are not validated;

2. v2 : Bad Input validation;

3. v3 : Bad privilege management;

4. v4 : Information disclosure in error messages.

For instance, the property v1 expresses that, with no input validation, SQL Injections are

possible to occur. This property can be written in LTL as :

v1 : �(clientInput(data)→ ♦invokeTarget(data))

which means that each client input provided to the target component is directly processed

without a prior verification. As previously, these formula have to be instantiated with regard to

M. The instantiation of v1 is :

v′1 : �(attempt.inState(input) → ♦ quizEngine.inState(loadUsage))

where attempt.php is the client Input event and the generic term invokeTarget is replaced

by quizEngine in the state loadUsage, because at this event the input is processed in the class

quizEngine.

Table 3.4, gives the generic properties of the vulnerability and the instantiated properties

with regard to the model M.

We may denote that the application model does not contain the required events to substitute

all the terms of a generic LTL property. Indeed, the property v3 in Table 3.4 cannot be

instantiated in M because there is no states or events in the application model M dealing with

identities and rights (client.right()). The application model should be improved to address
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Table 3.4 CWE-89 properties

V Generic property Instantiated property Sat
v1 �(clientInput(data) →

♦invokeTarget(data))
�(attempt.inState(input) →
♦quizEngine.inState(loadUsage))

0

v2 �(clientInput(data) →
�(!Valid(data) →
♦invokeTarget(data)))

�(attempt.inState(input) →
�(!secBase.inState(nonvalid) →
♦(quizEngine.inState(loadUsage))))

0

v3 �(clientInput(data) ∧
client.right(Min) →
♦client.right(Max))

? ?

v4 �(!valid(data) →
♦(!genMessage))

�(secBase.inState(nonvalid) →
♦ (!attempt.inState(err_page)))

1

these elements. In our case, the designer has to search a complementary security pattern

allowing the management of rights and privileges. For instance, the pattern Least Privileges

meets these needs.

Then, each instantiated property is automatically traduced into a never-claim, with Spin,

which is the negation of the property.

For instance, the buchi automaton of the never-claim corresponding to the negation of the

formula v′1 is illustrated in Figure 3.8. It models a behavior that should never occur, otherwise,

the application is vulnerable. We call once more Spin to check if the never-claims hold in the

Promela specification of M.

When Spin builds an execution that satisfies the vulnerability property in the Promela,

it detects that the specification is vulnerable. In this case, Sat(vi) = 1 and the execution is

returned by Spin. The counter-example has the form of a trail, which retraces the steps of the

application behavior leading to the vulnerability occurrence. Otherwise, Sat(vi) = 0 and the

vulnerability property is not satisfied.

Table 3.4 shows the results with our example. The two properties v′1 and v′2 was not detected

in the model M. The property v′3 cannot be instantiated in the application model because of

the absence of the rights and roles notions in the application model. So, v3 cannot be used

to check whether the application satisfies the least privilege property. The property v′4 was
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Fig. 3.8 The buchi automaton corresponding to the negation of v′1

satisfied, an execution is returned by Spin, a part of this trail is presented in Figure 3.9. When

the sqlValidator (Top of blue part) detects that an input contains an SQL command in the input

(blue part), the quizEngine is initialized (green part) and in the attempt.php (the client interface)

an error message is returned (red part) by means of the client interface attempt.php. One can

deduce that there is no output filtering mechanism in the application model and some critical

information about the application can be returned in error messages.

The vulnerability coefficient cv(CWE − 89) is calculated with the coefficient Sat(p) for

each property p ∈ Pvi . In our example cv(CWE −89) ̸= 0, since the vulnerability property v4 is

detected in the application.

Therefore, the application model is vulnerable to the vulnerability “CWE-89: SQL Injec-

tion”. In addition, the application model does not address rights and privileges properties (v3),

which means that an attacker can perform a privilege escalation.

We conclude that the security pattern “Intercepting Validator” cannot be considered as a

silver-bullet against the vulnerability “CWE-89: SQL Injection” and has to be combined with

other patterns. For instance, the use of this security pattern has to be completed with the output

filtering mechanism of the security pattern “Exception Shielding” [36] or output guard security
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[116]. In addition, the application has to be able to manage rights using the pattern “least

privilege”, “Trust partitioning”, “Authorization Enforcer”, etc.

Fig. 3.9 A part of v4 couter example trail

3.6 Discussion

In this chapter, we proposed a model-oriented approach, composed of manual and automated

steps, to help designers secure an application model against a set of vulnerabilities using

a set of security patterns. The proposed approach is based upon the formalization of the
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security patterns and vulnerability properties with LTL formula. This can be perceived as a

supplementary level of difficulty. Yet, this work trend the bond of using formal languages or

methods with patterns, in order to automate some steps of the approach. We believe this kind

of approach is realistic, seeing the growing number of works pointing to the formal verification

of protocols and application models in order to detect security problems e.g., [9, 20, 23].

We considered properties to model vulnerabilities and patterns. These are generic and

reusable. The use of these properties requires an instantiation phase though, which consists

in substituting the events presented in the properties with the corresponding events of the

application model. This can be a considered as a disadvantage of the approach. In this area,

some works are based on “text-mining techniques” for inferring LTL properties [54]. They

introduced the tool TEXADA 5, which dynamically mines LTL properties from application

activity traces in order to investigate its behavior.

In [19] a language framework is proposed to help in write behavioral software properties

with the use of a set of reusable patterns of LTL properties. Alavi et al. also presented in 6 a set

of reusable LTL patterns. Illustrated in Figure 3.10, these reusable LTL formulas are distributed

over two dimensions, Scopes and Behaviors:

1. Scopes: illustrated in Figure 3.10b, they express in which part of the application model

the property is verified (in the global application behavior, before/after an event or

between two events);

2. Behavioral patterns: illustrated in Figure 3.10a, they express the “kinds” of application

behaviors. They are divided into two classes:

(a) Occurrence patterns: they express the occurrence of an event or a state in the

application behavior;

5https://bitbucket.org/bestchai/texada/overview
6http://patterns.projects.cs.ksu.edu/documentation/patterns/ltl.shtml
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(b) Order patterns: they express the order among events or states in an application

behavior.

(a) Behavior (b) Scope

Fig. 3.10 LTL patterns

For instance, checking the cause effect property in an application behavior corresponds

to the junction of the behavioral pattern Response with the scope Globally. As illustrated in

Figure 3.11(surrounded with a red square), a cause effect relation between two events (S,P)

globally in the application behavior is written as:

F : �(P −→ ♦S)

which means that an occurrence of P is always followed with an occurrence of S. If we take

back as example the formula v1 in Table 3.4, it expresses a cause effect relationship between

the clientInput event and the invocation event (invokeTarget). We search to assess whether the

invocation of the target always responds to the receipt of a client input.

v1 : �(clientInput(data)→ ♦invokeTarget(data))

clientInput(data) substitutes the cause P and invokeTarget(data) substitutes the effect

S. This way, with 5 scopes and 8 behavioral patterns, a set of 40 reusable LTL properties is

proposed. In addition, these LTL properties can be combined to address more complex ones.

We believe that, besides a good documentation of security patterns and vulnerabilities, writing

LTL properties can be facilitated with the use of this LTL language framework.
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Fig. 3.11 “Response” LTL pattern

3.7 Chapter Conclusions

We proposed in this chapter a method to help designers devise secure applications. The method

evaluates the instantiation of a security patterns set in a UML model of an application. In

addition, it checks whether the application model does not include a set of vulnerabilities,

supposed cured by the security patterns.

We proposed to express security patterns and vulnerability properties with OCL and generic

LTL formulas. The security pattern properties express the structural and behavioral properties.

Vulnerability properties express the behavioral properties that application model should not
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hold. Thus, the generic nature of the proposed LTL properties makes them reusable regardless

the application context.

We observed, through a case study, that it is not trivial to choose the appropriate security

patterns to protect an application against a vulnerability set. Security patterns can have similar

objectives and some patterns can depend on other ones. Some patterns cannot be used together,

otherwise it will results in security inconsistencies in the application model.

We conclude here that it sounds interesting to organize security patterns in order to help

designers in the security patterns choice. This is actually the topic of the next chapter. It

proposes three methods to classify security patterns with regard to weaknesses, attacks and

security principles.

The works presented in this chapter have been published in [81, 86, 82].
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Chapter 4

Security analysis with patterns and

pattern classifications

4.1 Introduction

As stated in the previous chapter, security patterns provide designers with reusable solutions to

recurrent security problems. The choice and the use of security patterns is difficult because of

their abstract nature and growing number. The choice of the appropriate security patterns for a

security problem is difficult for two main reasons:

1. the growing number of security patterns and their relationships implies that designers

can be lost while reading their descriptions;

2. the association of security patterns with other security notions (e.g., vulnerabilities,

weaknesses, attacks, etc) is a tricky problem, because security patterns are very abstract

by nature. Hence, including security patterns in the software life-cycle and approaches is

still tedious at the moment.

In order to ease the selection of security patterns, many works classify them according to

various criteria [4, 96, 53, 36, 6, 119, 71]. We showed in Section 2.4 the difficulties and the
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solutions employed to organize them. We also gave an insight on the different classification

schemes and the quality factors assessing the usefulness of a security pattern classification for

fast and accurate choice.

In this chapter, we propose a new approach to generate pattern classifications by using

the concept of data acquisition with respect to classification quality criteria. This chapter is

structured as follows. In Section 4.2 we recall some related works and we give the motivations

and the main contributions of this chapter. In Section 4.3, we present the data sources considered

by our approach and the architecture of the databases used to gather security notions, e.g.,

security patterns, weaknesses, attacks and security principles. In Section 4.4, we detail the set

of manual and automated steps of three methods for later generate classifications. We exhibit in

Section 4.5 three classifications extracted from the resulting databases. In addition, we give the

generation of graphical representations of these classifications given under SAGs and ADTrees.

In Section 4.6, we discuss on the quality criteria of the obtained classifications along with some

statistical results extracted from the databases. Finally, we conclude this chapter in Section 4.7.

4.2 Context and motivations

Several security pattern catalogs are available in the literature [35, 87, 116], gathering a total of

176 patterns. These catalogs make difficult the choice of the appropriate patterns for overcoming

a security problem. Many classifications were proposed in the literature to ease the pattern

choice with regard to a given context [6, 4, 5, 110, 102, 4, 104, 72].

After reviewing these classifications, we observed these all are manually conceived by

interpreting different documents to find abstract relationships. Justifying these classifications

or updating them is often unfeasible.

Since most of the security pattern classifications do not define the steps to build the

classification, they are not deterministic [5] and they are difficult to reproduce and update. In

addition, the relationships among security patterns are often not given making classifications
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not navigable [5], yet we noticed that some patterns are compatible together and that others

are conflicting. As a consequence, a designer may be still confused about the pattern choice.

We tackle these issues in this chapter and we present three methods to generate three different

pattern classifications associating security patterns, security principles, attack patterns and

weaknesses. These steps break out security notions and data into sub-properties that can be

linked with more evidence (i.e., less ambiguity). Security data are transformed and integrated

(data acquisition) into data-stores.

The data-stores allow an automated extraction of security pattern classifications. The main

contributions of this chapter are:

• we describe the data-stores architectures required to integrate security data to generate

security pattern classifications;

• we list the steps required to fulfill the data-stores with security data publicly available.

Security patterns, attacks and weaknesses are split into properties that are associated

with manual or automatic steps. We avoid the direct textual comparison of security

patterns with weaknesses or attacks. In addition, this helps in the reproduction of the

data integration and the classifications extraction;

• we automatically generate three classifications: the first one organizes patterns with

regard to weaknesses and shows the pattern combination that can cure a weakness. The

two other ones organize patterns with regard to attacks. They give the pattern combi-

nations that counter a given attack. The two classifications are obtained with different

kinds of data and give different viewpoints. We generate the graphical representations of

these classifications by means of SAGs and ADTrees, in order to help the analysis of the

relationships between a weakness or an attack with a set of security patterns. We believe

these models help designers in understanding the security problems and their related

solutions regardless their security skills. This way, we increase the Comprehensibility of

the generated classifications;
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• as a proof of concept, we applied these methods on the Web applications context. The

data-stores gather 215 CAPEC attacks, 136 CWE weaknesses, 66 security principles and

26 security patterns. Databases and classifications extraction tools are publicly available

in [84];

4.3 Data-stores architectures

In this section, we firstly present the security data sources we studied to define the meta-models

of the data-stores required for the data acquisition. Then, we expose the meta-models used by

the pattern classification methods.

4.3.1 Data sources

After reviewing the literature and the publicly sources available available on Internet, we choose

to focus on four security notions : security patterns, weaknesses, attack patterns and security

principles. These give detailed information about the security problems, methods, solutions,

etc. that a developer should consider.

1. Mitre corporation gathers most of the security problems from many points of view. They

provide both researchers and security professionals with a plethora of security databases.

These databases are periodically updated by the community for a better comprehensibility

of vulnerabilities, attacks, weaknesses, etc. Among these public databases, we chose to

focus on CAPEC database [67] and CWE database [69] the weaknesses (CWE) and attack

patterns (CAPEC) databases. We chose to focus on these bases to extract information

about security weaknesses and attacks because these appear to be the most complete

bases composed of the largest number of attacks and weaknesses explained in detail

(mitigations, steps, techniques, risks, countermeasures, etc.);
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2. we considered a set of security patterns catalogs [116, 35, 100, 87]. The completeness of

the documentations (including forces, consequences, related patterns, etc.), the number

of patterns and the relations among them are the main criteria of security pattern catalogs

choice. These are not exposed in all of these sources, hence, we mostly worked with

detailed patterns repositories [116, 100];

3. we also explored the security principles and good practices proposed in many works

[106, 90, 62, 94]. We reviewed these works and we extracted a set of security principles

having different abstraction levels.

4.3.2 Data-stores Meta-models

We initially studied the meta-models proposed in [103, 65]. Figure 4.1 illustrates an insight on

the relations among countermeasures and the security artifacts presented in Section 2.2.

Fig. 4.1 Relations among security artifacts

• Countermeasures are the solutions implemented in order to reduce the impact of a threat

on an asset and protect the application from being vulnerable to attacks. Countermeasures

follow more abstract security notions expressed by security principles;
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• Vulnerabilities are the specialization of weaknesses since a weakness (CWEi) can be im-

plemented by different vulnerabilities (CV E j) regarding products, technologies, versions,

etc;

• An attack is the specialization of an attack pattern in a specific technology, product,

version, etc.

After reviewing the meta-model of Figure 4.1 and the literature, we observed the following

relations among attacks, weaknesses, patterns and security principles.

1. Security patterns are defined with a set of strong points, which are extracted from the

sections forces and consequences of pattern documents. In addition, a security pattern

is related to other patterns. The binary relation between two security patterns (a,b) is

defined as follows:

• a Depends on b: the use of b is required when using a;

• a Benefits of b: the pattern a effectiveness is enhanced when using b;

• a is Alternative to b: a and b have similitudes and a can be substituted by b;

• a Impairs b: the pattern a effectiveness is harmed when using b;

• a Conflicts b: inconsistencies can be resulted from using a and b together;

2. the Weaknesse documents provided in the CWE database show that a weakness can be

cured by a set of mitigations. A mitigation is exposed in the CWE database with an id, a

mitigation strategy and a textual description;

3. Attacks are organized hierarchically from the more abstract attacks to the more concrete

ones. An attack can target a set of weaknesses, the relationships among attacks and

weaknesses are already provided in the databases CAPEC and CWE. Attacks are split up

in the CAPEC data-base into an ordered sequence of steps. Each step can be detected,
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corrected, or prevented by a set of countermeasures, which are presented under the

section Security controls of each step. In addition, a step is materialized by a set of

concrete techniques allowing the implementation of the attack step;

4. All these relations breach the general security notions (attacks, weaknesses, etc.) into

more concrete properties, which can be associated more precisely. These more pre-

cise relations shall help generate precise security pattern classifications. But it still

remains to associate the strong points of security patterns with either mitigation cluster

or countermeasure clusters.

To do so, we rely on Security principles as intermediary. In other words, a strong point

is related to a mitigation or a countermeasure if they target the same security notion

expressed by a security principle.

Mitigations and countermeasures are often more concrete and detailed compared to

security principles. Though, we chose here to group these solutions in groups or Clusters

in order to meet the abstraction level of the security principles. A security principle

reflects the security notions of a set of analogous mitigations or countermeasures.

As result, in order to later generate classifications, three meta-models are built (WSPC:

Weaknesses based Security Patterns Classification, AWSPC: Attacks and Weaknesses based

Security Patterns Classification and ASSPC: Attack Steps based Security Patterns Classifica-

tion):

1. WSPC meta-model (Figure 4.2) organizes security patterns with regard to the weak-

ness notion. Security patterns (respectively weaknesses) are interrelated and associated

to a set of strong points (respectively mitigations). Mitigations are grouped in clusters,

and related to strong points with regard to in common security principles. The latter

are hierarchically organized;
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Fig. 4.2 WSPC: Weaknesses based Security Patterns Classification

2. AWSPC meta-model (Figure 4.3) associates attacks and patterns with regard to weak-

nesses. It is an extension of WSPC with attacks such that an attack targets a set of

weaknesses;

3. ASSPC meta-model (Figure 4.4) also associates attacks and security patterns from

another point of view. Attacks are divided into steps, each one is characterized with a

set of techniques and countermeasures. As in WSPC, countermeasures are grouped

into clusters, which are associated to strong points relying on security principles.

4.4 Data integration

In this section, we detail the set of manual and automatic steps used to fulfill the databases of

Figures 4.2, 4.3 and 4.4 with elements extracted from the data sources described in Section 4.3.

We implemented these steps by means of the Extraction Transformation and Loading (ETL)
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Fig. 4.3 AWSPC: Attacks and Weaknesses based Security Patterns Classification

Fig. 4.4 ASSPC: Attack Steps based Security Patterns Classification

tool Talend 1. As a proof of concept, we focused the data-integration on the web application

context. The data integration steps can be divided into four phases:
1https://www.talend.com/
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4.4.1 Integrating security patterns and security principles

As illustrated in Figure 4.5, we integrate security patterns and security principles in three steps

as follows:

Fig. 4.5 Integrating Security patterns and Security principles

Step 1: hierarchical organization of security principles

We manually collected 66 security principles found in the literature and organized them into a

hierarchy of principles from the most abstract (those nearest the top) to the most concrete ones

(those nearest the bottom). The resulted hierarchical arrangement is depicted in Figure 4.6.

This organization was manually established with regard to the textual presentation of

security principles. The proposed organization is not exhaustive but covers the security notions

considered in this chapter. This hierarchical organization shall give a complete overview (from

the most abstract to the most concrete principles) on the nature of the security mechanisms

that are required to remove a weakness or to prevent an attack and, in the same time, that are

provided by security patterns.
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Fig. 4.6 Exemplary hierarchical organization of ecurity principles
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Step 2: Security pattern integration

We manually extracted two relations among patterns and strong points from the catalogs

[100, 116]:

1. the first one is a many-to-many relation between security patterns and strong points, each

pattern being characterized by a set of strong points that can be shared with other patterns.

For example, the patterns “Authorization enforcer” and “Container managed security”

share the strong point “Providing the application with authorization mechanism”. This

relation is established by manually extracting the strong points of each pattern from its

textual description (forces and consequences of the pattern);

2. the second relation materializes the inter-pattern relationships, annotated “depend”,

“benefit”, “impair” or “alternative” [116]. With P a set of patterns, this relation is

defined as a mapping from P2 to the annotation set {“depend”, “bene f it”, “impair”,

“alternative”}, which provides for every pair of patterns (p1, p2) an annotation about

the relationship between p1 and p2.

We collected 26 patterns and 36 strong points.

Step 3: associating strong points with security principles

As introduced in [108], security patterns are classifiable with regard to security principles.

Instead of looking for a direct relation between patterns and security principles, we focus on

the strong points, which are more precise properties.

This step establishes a many-to-many relation between strong points and principles. It was

manually done since strong points and principles are mostly presented with textual documents.

During this step, we observed that the abstraction level of strong points better fit with the most

concrete principles exposed in our hierarchical organization of Figure 4.6. But, if a strong point
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is related to a principle sp that is not at the lowest level, then we also link the strong point with

all the children of sp.

For example, the strong point “Minimize the decoupling between authorization and business

logics” of the pattern “Authorization Enforcer” has a security objective also found in the

principle “Economy of mechanism”, which is a sub-principle of “Security simplification”.

All these elements are automatically consolidated into an intermediary database denoted

IDB1 storing information about security patterns and security principles.

4.4.2 Integrating security patterns and weaknesses

In this second phase, we integrate security patterns and CWE weaknesses in two steps:

Step 1: Weakness and mitigation extraction

As illustrated in Figure 4.7, we automatically extracted the weaknesses from the CWE database

(Version 2.9), and for each weakness, its potential mitigations. These weaknesses are organized

in the CWE base into a hierarchy of four levels reflecting their abstraction levels (Category,

Class, Base, Variant).

This extraction process is implemented under Talend and the result is stored in the database

denoted IDB2, which gathers information about 185 CWE weaknesses and 65 mitigations.

For example, the weakness “CWE-285: Improper Authorization” is commonly found in

Web applications and occurs when an application does not correctly manage authorization

checks. When the application does not have a correct authorization mechanism, it exposes

several vulnerabilities, e.g., denial of service or arbitrary code execution. This weakness can be

fixed by means of several mitigations [69]. We expose some of them here:

• Use of a framework that correctly performs the authorization checks;

• Divide the software into anonymous, normal, privileged, and administrative areas;
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• Use Role Based Access Control;

• Default deny in access control lists (ACLs);

• Authorization correctly enforced at the server side;

• Restrict access to requests having an active authenticated session.

Fig. 4.7 Integrating weaknesses and mitigations

Step 2: Associations between weaknesses and security patterns

This step associates weaknesses and security patterns as follows :

1. mitigations are automatically grouped into clusters to meet the abstraction level of

security principles. A set of mitigations are grouped into a cluster if they have the same

Strategy (defined in the Section “Mitigation Strategy” of the CWE database);

2. A) in Figure 4.8, with the use of the database IDB2 we associate mitigations clusters

and security principles This was manually done by interpreting the strategies found

in mitigations. Indeed, the meaning of a mitigation strategy is often very close or

comprised into some security principle definitions. As a strategy may cover several

security principles, we have to consider a many-to-many relation here;
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For instance, the weakness “CWE-285: Improper Authorization” can be fixed with the

mitigation “Divide the software into anonymous, normal, privileged, and administrative

areas”, which is related to two security principles:

• Least common mechanisms: so that a failure in an area does not affect another area;

• Privilege separation: so that a privilege given in an area is not valid in the other area.

A spoofed identity does not give the possibility to compromise all the authorization

in the application;

Mitigations are usually described with concrete mechanisms given with a low abstraction

level. Hence, we observed that mitigations are often associated with the most concrete

security principles in reference to the hierarchical organization of Figure 4.6;

3. B) With the use of the databases IDB1 and IDB2, we associate security patterns and

mitigations clusters by means of security principles. On the one hand IDB1 stores the

relations among weaknesses, mitigations and security principles. On the other hand,

IDB2 stores the relations among security patterns, strong points and security principles.

It is now manifest that the security principle hierarchy becomes the central point that

helps match attacks with security patterns. Afterwards, these elements are consolidated

under Talend into the database WSPC associating 26 Security patterns, 36 strong points,

185 weaknesses, 65 mitigations and 66 security principles.

Fig. 4.8 Integrating weaknesses, mitigations and security patterns
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If the weakness belongs to the level “category” or “class” then we consider the mitigations

related to its children. While if variant, we consider the mitigations given for its alternatives

(variants).

4.4.3 Attacks and security patterns integration (v1)

In this phase, as illustrated in Figures 4.9, 4.10, we extract attack information from the CAPEC

database (version 2.8) and link them to security patterns with regard to the weaknesses targeted

by each attack and the relations among weaknesses and security patterns previously established

in the database WSPC.

Step 1: CAPEC attack extraction and organisation

The attack acquisition and integration is illustrated in Figure 4.9. We automatically extracted

attacks of the CAPEC base and organized them into a single tree, which describes a hierarchy of

attacks from the most abstract to the most concrete ones, so that we can get all the sub-attacks

of a given attack. To reach that purpose, we rely on the relationships among attack descriptions

found in the CAPEC section called “Related Attack Patterns”. By scrutinizing all the CAPEC

documents, it becomes possible to develop a hierarchical tree whose root node is unlabeled

and connected to the most abstract attacks of the type “Category”. These nodes are parents

of attacks that belong to the type “Meta Attack pattern” and so on. The leaves are the most

concrete attacks of the type “Detailed attack pattern”.

The abstraction level of an attack is expressed in the column “Type” (C stands for Category,

M for Meta pattern, S for Standard pattern and D for Detailed pattern), the links with other

attacks are listed in the column “Related Attack Patterns Nature”.

From the section “Related Weaknesses” of the CAPEC documents, we extracted for each

attack the set of weaknesses directly targeted by the attack. Thus, each CAPEC attack is

related to CWE weaknesses. These relationships are provided by the CAPEC database and
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are extracted automatically. Weaknesses are grouped into two categories, “Targeted” and

“Secondary” ranking the impact degree of the attack on a weakness. We only focused on the

type “Targeted” even though it could also be relevant to consider both types.

The outcome of this systematic extraction encodes an intermediary database IDB3 mapping

from 215 attacks to 185 CWE weaknesses. Unsurprisingly, we observed that the attacks having

a high level of abstraction (those of Category and Meta Pattern) are not related to any CWE

weakness.

Fig. 4.9 Attacks extraction and hierarchical orgnisations

Step 2: associations of attacks and security patterns

As illustrated in Figure 4.10, this step consolidates the two databases IDB3 and WSPC. On the

one hand, WSPC holds relations among weaknesses and security patterns, and on the other

hand IDB3 gathers relations among attacks (hierarchically organized) and weaknesses. Hence,

we combine and consolidate these two databases in order to dress relations among attacks and

security patterns.

This step is performed automatically (implemented under Talend) and provides the database

AWSPC gathering the CAPEC attacks organized hierarchically in one big tree, the set of CWE

weaknesses targeted by each attack and the security patterns related to each CWE weakness.

Hence, each attack is now related to a set of weaknesses and each weakness is related to a set

of security patterns. We consider that an attack is possible on an application if the application

contains at least one of the weaknesses targeted by the attack.
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Fig. 4.10 Weaknesses based attacks and security patterns integration

4.4.4 Attacks and security patterns integration (v2)

In this second approach, we want to link attacks and security patterns with regard to the coun-

termeasures provided in the CAPEC database (version 2.8) and not according to weaknesses.

We collected for each attack (from the section “Attack Execution Flow”) its ordered set of steps.

Each step may be composed of more concrete sub-steps. Then, for each step, we extracted

the corresponding techniques and countermeasures. From the CAPEC base Version 2.8, we

extracted these elements automatically under Talend and collected them in the intermediary

database IDB3, which gathers 215 attacks, 209 steps, 448 techniques and 217 countermeasures,

knowing that attacks can share steps, techniques, etc.

This phase of data integration is illustrated in Figure 4.11 and explained bellow:

Step 1: Countermeasures hierarchical clustering

The countermeasure number grows quickly while reading the attacks of the CAPEC base.

Many of them have a close meaning though, which can be explained by the number of different

contributors that added them. These countermeasures can be hence grouped into families to be

later associated with security principles (Part A in Figure 4.11).

We semi-automated this process by applying a hierarchical clustering technique of doc-

uments. We firstly used the tool KHcoder 2 to measure similarities among countermeasure

2http://khc.sourceforge.net/en/
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Fig. 4.11 Integrating attacks and security patterns (Second approach)

descriptions. KHcoder is a free tool, referred by numerous works, which performs quantitative

content analysis (text mining). We applied KHcoder as follows:

1. the Stanford (Part Of Speech) POS tagger is called to sort the keywords (log, input,

credentials, etc.) by their frequencies and types (noun, verb, adverb, etc.). In addition,

we defined a set of ignored words (stop words) like {punctuations, and, therefore, or,

etc.};

2. from the frequencies, weights are computed and scaled with the Jaccard coefficient to

measure a distance among countermeasures. The distance between two countermeasures

a,b is defined by: 0 ≤ da,b = q+ r/p+q+ r ≤ 1 where p is the number of keywords

occurring in a and b, q is the number of keywords occurring in a and not in b and r is the

number keywords occurring in b and not in a. At the end of this step, a distance matrix

is obtained for all the countermeasures. The distance between two countermeasures is

minimized when they have more common key words;

3. we used Ward, an agglomerative hierarchical clustering method, to make a hierar-

chy of countermeasures clusters [111]. Given two clusters A = {a1,a2, ...,an},B =

{b1,b2, ...,bn}, the distance between the clusters A,B is calculated with the formula:

△A,B = ( nAnB
nA+nB

)( 1
nA+nB

)∑
nA
i=0 ∑

nB
j=0 d(ai,b j) where nA (resp nB) is the number of the ele-

ments in the cluster A (resp B) and d(ai,b j) is the Jaccard distance between the elements

ai,b j of the two clusters A,B [75].
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We chose to use Ward methodology because this is a supervised technique that has the

advantage to construct small clusters that are merged iteratively. This avoids the construction

of a too big cluster, which might cover a lot of countermeasures an a lot of different security

aspects.

Algorithm 1 Hierarchical clustering
Require: Jaccard distance matrix;
Require: Ward distance matrix;

repeat
Find the closest pair o f clusters (A,B);
Merge them;
U pdate Ward distance matrix f or (A,B);

until T here is one cluster

Its algorithm is recalled in Algorithm 1. At the beginning, every countermeasure is en-

compassed into a new cluster. The algorithm merges the pairs of clusters if having the closest

distance. The algorithm re-calculates the weight of the new cluster with regard to the Jaccard

coefficient and updates the matrix distance. At the end of the process, all the clusters are

grouped into one big cluster.

Finally, the number of clusters to select is chosen manually, as it is supervised in the domain

of natural languages [118]. The cluster number can be selected with a dendrogram. Figure 4.12

illustrates an example of dendrogram, obtained with 23 countermeasures. At the lowest level,

the dendrogram shows all the countermeasures and its top level represents one final cluster.

The choice of the number of clusters comes down to draw an horizontal line in the dendrogram

and to enumerate the number of cut vertical lines. There are two basic criteria to consider

when inserting the line: a low cut is divisive, i.e., it may place two similar countermeasures in

different clusters; a high cut is agglomerative, i.e., it may put in the same cluster two unrelated

countermeasures. Therefore, in order to get a coherent clustering, the most suitable level has

to be chosen after some iterations by checking whether the countermeasures obtained in the

clusters refer to the same security principle or set of principles. In the example of Figure 4.12,
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Fig. 4.12 Exemplary dendogram

we obtained four clusters. From the 217 countermeasures collected in the database IDB3 we

obtained 21 clusters of countermeasures.

Step 2: Associating security patterns and clusters of countermeasures

We manually established a many-to-many relation between countermeasures clusters (obtained

in the previous step) and the hierarchical organization of security principles, illustrated in Figure

4.6 (part B Figure 4.11). The clusters obtained in the previous step include countermeasures

sharing the same security aspects, e.g., Input validation, authentication, authorization, etc.

Once these aspects are manually deduced, linking clusters and security principles becomes

straightforward.

Then, these information are automatically consolidated under Talend, which results in the

database ASSPC associating 215 attacks organized hierarchically, 217 countermeasures, 21

countermeasures clusters, 36 strong points and 66 principles organized hierarchically.
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4.5 Classification extraction and SAG/ADTree generation

We presented in Section 4.4 a set of consecutive steps for populating three data-stores(WSPC,

AWSPCS and ASSPC). They associate security patterns, weaknesses, attacks and security

principles. Based on theses databases, we automatically generate three security patterns

classifications which are :

• WSPC: Weakness oriented Classification of Security Patterns;

• AWSPC: Attack and Weakness Classification of Security Patterns;

• ASSPC: Attack Steps Classification of Security Patterns;

In addition, we graphically represent these classifications with Security Activity Graphs

(SAGs) and Attack Defense Trees (ADTrees). We present how we generate these visual

supports for each CWE weakness and CAPEC attack available in the stated databases.

4.5.1 Weakness Security Patterns Classification (WSPC)

The information about security patterns, weaknesses and security principles and the relation-

ships among them are gathered in the database WSPC. The later is used to extract a firs security

pattern classification expressing the combinations of patterns that can cure a given weakness.

We automatically extract for every weakness w:

• the information about w (name, identifier, description, etc.);

• the complete hierarchy of security principles Sp related to w, i.e. the arrangements of

principles from the most abstract ones to the most concrete principles. The principles

of Sp are associated with the weakness according to its potential mitigations given by

the CWE database (Section 4.4.1). The latter does not precise if one of the proposed

mitigations is sufficient to fix the weakness or if all the mitigations have to be applied.
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Table 4.1 Extraction of the pattern classification for the weakness CWE-285
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As a consequence, we suppose that all the security principles have to be considered to

overcome the weakness;

• for every principle sp ∈ Sp, the set of patterns Psp, the set of patterns Psp2 not in Psp

that have relations with any pattern of Psp, and the nature of these relations defined for

couples of patterns by the annotations in {“depend”, “bene f it”, “impair”, “alternative”,

“con f lict”}.

Table 4.1 shows an example of data extraction achieved for the weakness “CWE-285:

Improper Authorization”. The tabular provides the ID and the name of the weakness (col. 1,2),

the security principles and their levels in the tree of Figure 4.6 (col. 3-5), the related security

patterns (col. 6) and the relations with patterns (col. 7,8). After applying these steps on all

the weaknesses, we obtain the security patterns classification under the form of tabular. This

classification is available in [84].

4.5.2 Security Activity Graph (SAGs) generation

At this stage, we think that Comprehensibility, which refers to the ability to use the classification

by experts or novices, is not yet totally satisfied. Indeed, the classification is given under a

tabular form only, which does not appear to be the most user-friendly way of representation.

Hence, we propose here to portray this classification with SAGs, organizing the security

principles and patterns related to a weakness. SAGs are semi-automatically drawn by these

steps:

1. a weakness w has its own SAG whose root is labeled by the identifier of w. The root

node is linked to the most abstract principles found in Sp connected together with the

AND operator, since we consider that all the security principles have to be considered to

remove the weakness. The security principles are themselves connected, from the most

to the less abstract ones, by keeping the hierarchical ordering depicted in Figure 4.6;
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2. as our classification provides the relations among patterns, we propose, to complete the

SAG with new nodes encoding these relations. We replace these relations with logic

operators to infer a Boolean expression from all these relations. Given a security principle

sp in Sp and a couple of patterns (p1, p2) of the set Psp, if we have:

• (p1 depend p2) or (p1 bene f it p2), we use the expression (p1 AND p2);

• (p1 alternative p2), we use (p1 OR p2). The use of these two patterns together

increases the complexity of the system, but is not problematic;

• (p1 impair p2), we use (p1 XOR p2) since the presence of p2 can decrease the

efficiency of p1;

• (p1 con f lict p2), we use the expression (p1 XOR p2) meaning that only one of the

pattern should be used;

• p1 having no relation with any pattern p2 ∈ Psp, we add the term p1;

• All these expressions are assembled with the “AND” operation.

3. the number of relations among patterns may be large and not always relevant. As

a consequence, a designer may still be confused about the choice of the patterns to

use, especially when there are conflicted patterns. Hence, we propose to simplify the

Boolean expressions and to update SAGs. The Boolean expression reduction is here

performed with the tool BExpRed 3. For instance, with the three patterns p1, p2 and

p3 having the relations (p1 bene f it p2), (p1 alternative p3) and (p2 alternative p3), we

obtain (p1 AND p2) AND (p2 OR p3) AND (p1 OR p3), which can be simplified into

the expression (p1 AND p2). It is manifest that this expression is clearer than the first

one. The resulting Boolean expression is graphically shaped with an expression tree,

whose nodes are logic operations and leaves are patterns. The resulting expression tree is

linked to the hierarchical organization of security principles sp obtained in step 1.

3https://sourceforge.net/projects/bexpred
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Fig. 4.13 CWE-285 Security patterns tree

A SAG achieved by these steps depicts the combinations of patterns, which overcome a

weakness. We believe that these SAGs offer a good point of view on the potential solutions to a

weakness, Figure 4.13 depicts the final SAG obtained for the weakness CWE-285. It shows that

designers can implement either the security patterns “Authorization Enforcer” or “Container

managed security” and should implement all the other patterns (“PBAC”, “RBAC”, “Least

privileges”, etc.) in order to fix the weakness. The SAG also shows the security principles

applied here.

4.5.3 Attacks and Security Patterns Classification (v1)

We propose here to catalog the combinations of patterns that aim to mitigate a given attack. With

the use of the second data-store AWSPC, which associates attacks, weaknesses and security

patterns. The classification is extracted as follows. Given an attack Att ∈ AWSPC, we extract:

• the information about Att (name, identifier, description, etc.);
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• the hierarchical organization of the sub-attacks of Att;

• the set of weaknesses W targeted by Att (resp its sub-attacks);

• the set of security principles related to each weaknesses cluster;

• the set of patterns P that are related to every w and the set of patterns P2 not in P that

have relations with any pattern of P, and the nature of these relations.

Table 4.2 depicts an extraction example for the attack “CAPEC-39: Manipulating Opaque

Client-based Data Tokens”. The tabular gives the attack ID and name (col. 1,2), the security

patterns allowing to prevent the attack (col. 3), the relationships with other patterns (col. 4,5).

As the attack “CAPEC-39”, has a sub attack “CAPEC-31 Accessing/Intercepting/Modifying

HTTP Cookies”, (col. 6-10) also give the security patterns allowing to overcome the attack

CAPEC-31 and their relations with other patterns.

4.5.4 ADTree generation (v1)

We propose to generate ADTrees, organizing the attacks and their related security patterns. We

recall that, with ADTrees, attacks are illustrated with red nodes, which can be conjunctively or

disjunctively refined. An attack node can be mitigated with one defense node (in green squares)

composed of sub defenses.

In our context, an ADTree shall be rooted by an attack of the CAPEC (stored in the database

AWSPC). This root node can be connected to other attack nodes, expressing sub-attacks, which

can be connected to defense nodes, representing security patterns. Figure 4.14a illustrates a

general form of the ADTrees we generate.

We automatically build ADTrees from the database AWSPC as follows:

1. every attack Att found in AWSPC has its own ADTree whose root node is labeled by its

identifier. This root node is linked to other attack nodes with a disjunctive refinement
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Table 4.2 Data extraction for the attack CAPEC-39
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(a) Generic example of ADTree
(first method)

(b) Conflicting pattern representa-
tion with ADTree

Fig. 4.14 Generic ADTree

if Att has sub-attacks. This step is repeated for every sub-attack. In other words, we

generate a sub-tree of the original hierarchical tree extracted in AWSPC, whose root is

Att;

2. thanks to the relations defined in the meta-model AWSPC (Figure 4.3) for every attack

node A, we collect the set P of security patterns that counter the attack. The inter-pattern

relationships are illustrated in the ADTree with new nodes and logic operations. Given a

couple of patterns (p1,p2) ∈ P, if we have:

• (p1 R p2) with R a relation ∈ {depend,bene f it}, we build three defense nodes, one

parent node labeled by p1 R p2 and two nodes labeled by p1, p2 combined with

this parent defense node by a conjunctive refinement;

• (p1 alternative p2), we build three defense nodes, one parent node labeled by

p1 alternative p2 and two nodes labeled by p1, p2, which are linked by a disjunctive

refinement to the parent node;

• (p1 R p2) with R a relation in {impair,con f lict}. In this particular case, we would

want to use the xor operation since both patterns can be used but the implementation
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of p2 decreases the efficiency or conflicts with p1. Unfortunately, this operation

is not available with this tree model. Therefore, we replace the operator by the

classical formula (A xor B)−→ ((A or B) and not (A and B)). The not operation

is here replaced by an attack node meaning that two conflicting security patterns

used together constitute a kind of attack. The corresponding sub-tree is depicted in

Figure 4.14b;

• p1 having no relation with any pattern p2 in P, we add one parent defense node

labeled with p1.

The parent defense nodes, resulting from the above steps, are combined to a defense

node labeled by “Pattern Composition” with a conjunctive refinement. This last defense

node is linked to the attack node A.

If we take back our example of CAPEC-39 attack, we obtain the ADTree of Figure 4.15,

which shows that the attack has the sub-attack CAPEC-31. Unlike the SAG generation (Section

4.5.2), we do not express graphically the hierarchical organization of security principles

(ADTrees are not tailored for this kind of purpose). The security patterns are here directly

related to each attack. In the version 2.8 of the CAPEC database, the two attacks CAPEC-39

and CAPEC-31 target 17 weaknesses (6 for the CAPEC-39 and 11 for the CAPEC-31). The

attack and all its concrete forms can be countered by several combinations over 10 security

patterns. The number of security patterns related to both attacks CAPEC-39 and CAPEC-31 is

explained here by the diversity of the targeted weaknesses. We assume for the classification

generation that all of them have to be mitigated. As these ones cover different security issues

here, e.g., input validation problems, privilege management, encryption problems, external

control of the application state, etc., several patterns are required to fix the weaknesses and

hence block the attacks.

This example illustrates that a designer can follow the concrete materializations of an attack

in an ADTree. He/she can choose the most appropriate attack with respect to the context of the
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Fig. 4.15 ADTree of the attack CAPEC-39

application being designed. The ADTree provides the different security pattern combinations

that have to be used to prevent this attack.
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In the worst case, an attack node is not linked to a defense node, which means that either the

classification is incomplete (the related weaknesses are not provided in the CAPEC database)

or the attack is relatively new and cannot be yet overcame by security patterns.

4.5.5 Attacks and Security Patterns Classification (v2)

The third database ASSPC holds other information about attacks that can be used to classify

security patterns that counter attacks by means of another point of view. The database gathers

the hierarchical organization of attacks, the sequences of steps required to successfully apply

attacks, attack techniques and countermeasures. We propose here to use these relations to

automatically generate a third pattern classification denoted ASSPC.

Given an attack Att ∈ ASSPC, the following data and relations are hence extracted:

• the information about Att (name, identifier, description);

• the tree T (Att) of the sub-attacks of Att (Section 4.5.3), whose root is Att;

• For every attack found in T (Att), we extract the sequence of its attack steps. These can be

also refined by more concrete steps. We extract also the a set of techniques implementing

a step;

• for each step st, the complete hierarchy of security principles Sp(st) by means of the

successive relations established among st, countermeasure clusters and security principles

in the database AWSPC Figure 4.3. Sp(st) represents the complete hierarchy of security

principles related to a step, i.e., if a principle sp associated to the step st is not a leaf of

our hierarchical organization, then we also extract all the principle sub-tree whose root is

sp;

• for each principle sp ∈ Sp(st), the set of security patterns Psp, the set of patterns Psp2

not in Psp that have relations with any pattern of Psp, and the nature of these relations
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defined for couples of patterns by the annotations in {“depend”, “bene f it”, “impair”,

“alternative”, “con f lict”}.

Table 4.3 depicts an extraction example for the CAPEC attack 34 “HTTP Response Split-

ting”. The first col gives the ID of the chosen attack. This attack belongs to the category

“Detailed” of the CAPEC, therefore it has no sub attacks (otherwise, the next columns would

list them too). Cols 2 to 4 index the attack steps and techniques. For instance, we illustrate the

step “Experiment” of the attack. The security patterns allowing to prevent the step are given in

col 5. These four patterns have to be contextualized in the application model and implemented

to prevent the attack. The last two cols add the security patterns being associated with the

patterns of col 5 and their relations. Figure 4.3 shows that “Application Firewall” and “Input

guard” are alternative patterns, hence using one of them is enough (although using both is not

incorrect).

4.5.6 ADTree generation (v2)

Once more, we propose to generate ADTrees with the general form illustrated in Figure 4.16.

This ADTree points out how an attack is sequenced with steps and how to prevent them with

countermeasures given under the form of security pattern combinations. An ADTree root node

is labeled by an attack ID. In comparison to the ADTrees of Section 4.5.4, an attack node is

refined with other nodes expressing steps and techniques.

We automatically generate these ADTrees from the data-store ASSPC as follows:

1. every attack Att ∈ ASSPC has its own ADTree whose root node is labeled by its identifier.

This root node is linked to other attack nodes with a disjunctive refinement if the attack

has sub-attacks. This step is repeated for every sub-attack;

2. for each attack Att of the preceding tree, we collect its sequence of steps. The node

labeled by Att is refined with a sequential conjunction of attack nodes, one for each step.
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Table 4.3 Data extraction for the attack CAPEC-34
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Fig. 4.16 Generic example of ADTree (second method)

We repeat this process if a step is itself composed of steps. In the same way, for each step

St, the related techniques are extracted from the data-store ASSPC and are associated to

the node labeled by St with a disjunctive refinement;

3. for each step St, we extract from the data-store ASSPC the set P of security patterns

that are countermeasures of St. Given a couple of patterns (p1, p2) ∈ P, we illustrate

these relations with new defense nodes in the same way as the previous ADTree given in

Section 4.5.3.

Figure 4.17 illustrates the ADTree obtained for the attack CAPEC 34. The root of the tree

is the main goal of the attacker. Its second and third levels relate to the attack steps. These

nodes are sequential conjunctive refinements of the root node. For instance, the step Exploit is

achieved if both steps 3.1 and 3.2 are successfully executed in the right order (from left to right).

An attack step has a disjunctive refinement of attack nodes labeled by techniques. The step is

achieved if one of the attack techniques is applied with success. Defense nodes (square nodes)

illustrate security pattern combinations. For instance, the step “1.1 Spider” refers to the Web

application exploration through Graphical user interfaces in order to get all the URLs of the
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Fig. 4.17 ADTree of the Attack CAPEC-34

application. This step can be prevented by designing the application with both patterns “Audit

interceptor” and “Secure logger”. “Audit interceptor” can be used to detect the application

crawling and to warn an administrator. The audit logs are secured by means of “Secure logger”.
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The latter guarantees that the audit logs cannot be accessed or altered by unauthorized users.

This example illustrates that a designer can easily follow the concrete materializations of an

attack in an ADTree and can directly choose security patterns.

Table 4.4 Attack techniques descriptions

Attack
technique

Technique description

1.1.1 Use a spidering tool to follow and record all links and analyze the web
pages to find entry points. Make special note of any links that include
parameters in the URL, forms found in the pages (like file upload, etc.).

1.1.2 Use a proxy tool to record all links visited during a manual traversal of the
web application.

1.1.3 Use a browser to manually explore the website and analyze how it is
constructed. Many browsers’ plugins are available to facilitate the analysis
or automate the discovery.

2.1.1 Use CR/LF characters (encoded or not) in the payloads in order to see if
the HTTP header can be split.

2.1.2 Use a proxy tool to record the HTTP responses headers.
3.1.1 Inject cross-site scripting payload preceded by response splitting syntax

(CR/LF) into user-controllable input identified as vulnerable in the Experi-
ment Phase.

3.2.1 The attacker decides to target the cache server by forging new responses.
The server will then cache the second request and response. The cached
response has most likely an attack vector like Cross-Site Scripting; this
attack will then be serve to many clients due to the caching system.

The description of the different techniques related to the attack CAPEC-34 steps are given

in Table 4.4, which gives an insight on how the different steps of the attack can be implemented.

4.6 Discussion

In Section 4.4, we proposed a set of manual and automatic steps integrating 185 CWE weak-

nesses, 215 CAPEC attacks, 26 security patterns and 66 security principles in three databases:

WSPC: Weaknesses based Security Patterns Classification, AWSPC: Attacks and Weaknesses

based Security Patterns Classification and ASSPC: Attack Steps based Security Patterns Clas-
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sification. These databases enable multi-attribute based decision since security patterns can be

selected according to: weaknesses, attacks, attack steps or security principles.

As presented in Section 4.5, several patterns classifications can be automatically extracted

from the databases. In addition, the readability of these classifications is enhanced by expressing

them graphically with SAGs and ADTrees. We have developed a tool in order to generate

ADTrees with the two methods (Sections 4.5.4, 4.5.4). It generates automatically for each

attack the corresponding ADTree in the form of an XML file, which can be loaded under

the tool ADTool 4 allowing designers the visualization and the analysis of each attack and

its related set of security patterns. We have evaluated the quality of our classification with

regard to the quality criteria defined by Alvi et al. [5], we have denoted that the proposed

classifications meet the following quality criteria:

• Navigability: our classifications, accompanied by SAGs and ADTrees, satisfy the

Navigability criteria the relations among security patterns are given. Thus, designers are

guided in the choice of the appropriate security patterns set by highlighting depended or

conflictual patterns;

• Determinism: the three classifications are clearly defined by means of the relations of

the methodology steps. All these steps justify the soundness of the classification;

• Unambiguity/Comprehensibility: patterns are classified with regard to defined cate-

gories, i.e., attacks, steps, weaknesses or security principles. This organization, which is

illustrated by means of SAGs/ADTrees, makes our classification readable and compre-

hensible even for novices in security patterns;

• Usefulness: we believe that the classifications can be used in practice since they are

based upon a known security pattern catalog [116] and upon the bases CAPEC [67]

and CWE [69], which are more and more employed in the industry. In addition, we

4http://satoss.uni.lu/members/piotr/adtool/
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the evaluation of Section 5.5, which we conducted with 24 participants, shows that our

method enhanced the Comprehensibility, the Accuracy and Efficiency of the participants

in choosing security patterns;

• Repeatability: the databases and the classifications can be updated and generated

semi-automatically. In addition, the classifications and the tools developed for the data

integration are available in [84].

A plethora of statistical information can be extracted from the obtained data-stores. For

instance, Figures 4.18, 4.19 and 4.20, illustrate that the patterns (“Input Guard”, “Application

Firewall”) cover a considerable part of weaknesses and attacks. From these graphics, one can

deduce that it is important to provide an application with an input validation mechanism using

the pattern “Input Guard” or “Application Firewall” since both of them partially cover up to

17% of the weaknesses and 27% of the attacks. These statistical information can be useful to

know the number of attacks or weaknesses partially cured by a security pattern (respectively a

set of security patterns).

Fig. 4.18 Distribution of fixed weaknesses per pattern
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Fig. 4.19 Distribution of fixed attacks per pattern (V1)

Fig. 4.20 Distribution of fixed attacks per pattern (V2)

4.6.1 Comparaison of the ADTrees generated with the approaches (v1,v2)

In this chapter, we classify security patterns and attacks and then we generate ADTrees with

two different approaches. In the classification AWSPC, we classify security patterns and attacks

with regard to the notion of weaknesses.
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We compared the ADTrees generated with the two classifications for 21 attacks and we

concluded that they are complementary. The first method is related to the static part of the attack

(weaknesses targeted by the attack), while the second is related to the dynamic part of the attack

(the sequencing of the attack steps). In the first one, attacks are related to a bigger number

of security patterns compared to the second one. But the patterns given by the classification

ASSPC seem to better target the security problem raised by the attack. Thus, the combination of

the two approaches provides a wider insight on the attack and the related solutions materialized

by the different combinations of security patterns. The ADTrees generated with the two

approaches are available in [84].

Attack purposes are subdivided by considering the related mitigations. As the CWE

base used by our data integration technique is rich, this classification offers a lot of patterns

combinations. Figure 4.21, illustrates an example of ADTree generated for the “CAPEC-

244: Cross-Site Scripting via Encoded URI Schemes”. In this example, the main solutions

provided by the set of the security patterns are input and output validation in addition to the

authentication.

Fig. 4.21 CAPEC-244 ADTree (AWSPC)
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With the second classification (ASSPC), each attack is subdivided into a sequence of steps

and each step is characterized with a set of countermeasures clusters, themselves associated to

patterns. The CAPEC base holds less information about countermeasures. As a consequence,

the classification provide less patterns per attack. Figure 4.22 illustrates the ADTree of the

attack CAPEC-244 generated from the classification ASSPC. The set of the security patterns

are related to input and output validation in addition to the logging and audit facilities.

Fig. 4.22 CAPEC-244 ADTree (ASSPC)

If we compare these two ADTrees (Figures 4.21, 4.22), the patterns in common are (Input

guard, Output guard and Application Firewall) related to input and output validation. The

contrast between the two approaches is that in the first one (4.21) the attack CAPEC-244 is

related to security patterns dealing with the authentication (Authentication enforcer, Controlled

object monitor and Container managed security). This is explained by the fact that many of

the weaknesses targeted by the attack (in version 2.8) (e.g., CWE-20, CWE-79, CWE-220)

are related to authentication flows. While in the second approach (Figure 4.22), the attack

CAPEC-244 is related to audit and logging mechanisms because of the importance of tracking
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the actions of the attacker expressed by the countermeasures. Hence, the two models are

complementary and allow a wider insight on the security patterns related to an attack.

Fig. 4.23 “CAPEC-66: SQL Injection” ADTree

4.6.2 Comparaison with other approaches

We compared our classification with the two papers providing relations between security

patterns and attacks [110, 4]. In these works, the security pattern intents are manually compared

to the summaries of the attacks. As these textual sections are abstract, few relations were

found. The largest contribution is provided by Alvi et al. who considered around 20 attacks
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and manually linked them to 5 patterns. In contrast to these works, our classification is more

complete: we provide 26 security patterns as solutions against 215 attacks of the CAPEC

base. Our classification exposes more pattern combinations per attack; the more choice is not

always the better though. After inspection, we observed that more than one or two patterns are

generally required to counter attacks. A last important point is that the classifications exposed

in [110, 4] do not contradict our relations between attack and patterns. For instance, the attack

“CAPEC-66 SQL Injection” is related to the security patterns “Intercepting Validator” and

“Input validation” in [110]. The attacks “CAPEC-244” and “CAPEC-66” are only associated

with the pattern “Intercepting Validator” in [4]. For these attacks, our method generates two

ADTrees, which provide 4 combinations of 7 patterns for the CAPEC-244 and 8 combinations

of 9 patterns for the CAPEC-66. As in [110, 4], the ADTrees exhibit the pattern “Input Guard”,

which can be implemented by “Intercepting Validator”. But, the ADTrees also list other patterns.

For the CAPEC-244, some of these patterns are alternative to “Input Guard”, e.g., “Application

Firewall”. Other patterns, e.g., “Authentication Enforcer” or “Controlled Object Monitor” are

related to specific weaknesses targeted by the attack CAPEC-244. We believe these patterns,

which are not given in the previous classifications, are required to counter the attack with regard

to the application context.

4.6.3 Limitations

Our classifications and methods present some limitations, which could lead to some research

future work:

• the notion of attack combination is not considered in these methods. Such a combination

could be seen as several attacks or as one particular attack. If an attack combination

can be identified and documented with its sub-attacks, then it can be integrated in our

data-store;
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• the ADTree size limit is not supported by our ADTree generator. When an attack has a

high level of abstraction, we observed that the resulting ADTree size can become large

because it includes a set of sub-attacks, themselves linked to several patterns. This is a

strong limitation since large trees are usually unreadable, which contradicts the method

purposes;

• the classification is not exhaustive: it includes 215 attacks out of 569 (for any kind of

application) and 26 security patterns out of 176. It can be completed with new attacks

automatically. But the completion of the data-store with new security patterns requires

some manual steps. It could be interesting to investigate whether text mining techniques

would help partially automate them. The classification exhaustiveness also depends on

the available security data. In the ADTree of Figure 4.17, all the lowest attack nodes

are linked to defense nodes. We sometimes observed that no defenses are provided with

other attacks. This can be usually explained by three main reasons:

1. security databases or pattern catalogs are incomplete (lack of mitigation, coun-

termeasure, etc.). More data are required while the data integration process. In

particular, we observed that some countermeasures are missing for some attacks of

the CAPEC base;

2. the attack is relatively new. It is not yet documented or no pattern based solution is

available;

3. security data are missing because we did not considered them in the manual data

integration steps. For instance, as the pattern descriptions do not clearly provide

strong points, it is easy to skip one of them;

• several steps require manual interventions, which are prone to errors. These steps may

lead to associations among security data that are bound to be controversial. We compared

our results with other papers in Section 4.6.1 , but this is insufficient to ensure all the
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associations are correct. Validating every relation is a hard problem. It could be partially

solved by the use of verification methods. But the writing of formal expressions for

modeling the entities and associations of our meta-model is another long and error-prone

task that should be addressed;

• the inter-pattern associations are defined with binary relations only, as presented in [33].

These relations could be updated to link several patterns together.

4.7 Chapter conclusion

In this chapter, we introduced the architectures of three databases gathering information about

security patterns, weaknesses, attacks and security principles.

We detailed a set of semi-automated data acquisition and integration steps allowing the

fulfillment of these data-stores (WSPC, AWSPC and ASSPC) with data extracted from security

pattern, weaknesse and attack documentations. These data-stores associate 215 attacks, 185

weaknesses, 26 security patterns and 66 security principles specialized to the Web applications

context. The data-store (ASSPC) allows the extraction of the attack steps sequences and will be

used in the next chapter (Chapter 5) for devising a test case generation method.

From these databases, three classifications are extracted:

• WSPC: Weaknesses based Security Patterns Classification;

• AWSPC: Attacks and Weaknesses based Security Patterns Classification;

• ASSPC: Attack Steps based Security Patterns Classification.

The goal of these classifications is to assist designers in the choice of the appropriate set

of security patterns to protect an application against a weakness or an attack. In addition, the

relations among security patterns are highlighted to help designers in the security patterns

choice. We enhance the readability of the obtained classifications by representing them
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graphically using Security Activity Graphs (SAGs) and Attack Defense Trees (ADTrees). The

visual support provided by SAGs and ADTrees helps designers understand the activities needed

to mitigate a weakness, the scenarios of attacks (steps, techniques, etc.) and the relations among

security patterns.

The three classifications and the tool-set allowing the generation of the classifications

and ADTrees are available in [84]. The work proposed in this chapter has been published in

[83, 85, 92].
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Chapter 5

Assisting developers in the generation of

security test cases

5.1 Introduction

We introduced in Chapter 4 pattern classification methods using a set of data-stores. These

draw up relationships among attacks, weaknesses and security patterns. The purpose of these

data-stores is to provide a developer with a set of information allowing him or her to choose

security patterns.

Developers often lack of expertise in security [96, 95] and we observed in the literature that

they still lack of guidance in conceiving and implementing security tests. This chapter focuses

on this issue and takes advantage of the data gathered in the data-stores developed in Chapter 4

to assist developers in the Threat modeling stage, the generation of security test cases and their

executions.

This chapter is organized as follows: Section 5.2 introduces the context and the motivations

of the proposed method. In section 5.3 we extend the data-store introduced in Chapter 4 to

include new relations and data required for the test case generation. We provide in Section
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5.4 the steps of test case generation and execution method. We perform an evaluation of the

method in Section 5.5. We finally conclude this chapter in Section 5.6.

5.2 Context and motivations

Model-based security testing has been broached by a plethora of works. Among these, we are

interested in those dealing with the non-functional aspect of an application, more precisely the

security aspect. We focused on works where models do not describe the functional behavior

of the application but rather express the attacker goals, interactions and resources along with

the causes of the system vulnerabilities [58, 59, 70, 98]. Among these papers, some authors

focused on the representations of security concerns with models such as Attack trees, Threat

trees, Security activity graphs, etc. expressing security problems and their associated solutions.

Besides the graphical expressions about threats, attacks or vulnerabilities these models provide,

they can be used for testing whether an application is vulnerable to attacks. Indeed, in many

works, security test cases are manually extracted from these graphical models. Below, we

present some of these works.

A security testing approach was introduced by Morais et al. to assess the security of

protocols [70]. From attack trees, a set of scenarios are manually extracted and then converted

to attack patterns and UML specifications. Based on these elements, attack scripts are then

manually written and completed with the injection of network faults. In [58], Marback et

al. proposed an approach deriving attack trees from data flow diagrams. From the obtained

attack trees, a set of events sequences are then extracted. These sequences are combined with

parameters associated to regular expressions in order to generate concrete values. These values

are finally replaced manually by blocks of code to produce security test cases. In [59], test

cases are derived from threat trees, which are completed with parameters associated to regular

expressions. Scenarios are then extracted from these threat trees and converted manually to

security test scripts. Shahmehri et al. proposed in [98] a passive testing approach in order
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to detect vulnerabilities. The undesired properties carried by vulnerabilities are materialized

graphically in the form of Security Goal Models (SGMs), which are kind of Directed Acyclic

Graphs (DAGs) expressing goals, vulnerabilities and eventually their associated mitigations.

The detection criteria are then semi-automatically extracted and given to a monitoring tool,

which returns test verdicts.

In these works, the proposed approaches take as input the threat models, which are often

manually drown. The test cases are also manually written. In addition, when models do not

express enough details about an attack or a vulnerability (steps, parameters, etc.) the resulting

test cases are often very abstract. As a consequence, test cases are still abstract, i.e., developers

have to concretize them

If we take back the notion of security patterns, few works tackled the problem of testing

their correct instantiation (i.e., the application satisfies their behavioral properties) or their

efficiency [115, 48]. Yoshizawa et al. proposed in [115] an approach to check whether the

structural and behavioral properties can be observed in the method calls and execution traces

of an instrumented application. For each security pattern, two test templates, materialized

by OCL expressions, are written to express the structure and the behavior of the security

pattern. In addition, developers have to write Selenium scripts to experiment the application.

The scripts stimulate the application, which returns traces. Then, the satisfiability of the

OCL expressions is checked against these traces. Konrad et al. proposed in [48] a testing

method where security requirements are modeled with UML State charts and security pattern

consequences are expressed with LTL formulas. They proposed to argument security pattern

Hence, the security patterns documentation is enhanced by adding a formal expressions

of the security patterns. These are used to check whether an application model satisfies the

security properties provided by a pattern. However, the LTL formulas are not generic, which

makes them hardly reusable. The developer has to write the LTL properties with regard to the

application model.
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On the one hand, the writing of detailed threat models requires a lot of expert knowledge

and of documents. The referred papers neither guide developers in the threat modeling phase

nor provide security solutions. On the other hand, some methods propose to generate test

cases from (formal) specifications. These test cases are often at an abstract level. They cannot

be directly used to experiment an application under test. Some methods tried to tackle this

problem using a mapping technique. However, this kind of technique is usually very limited in

its capability to translate abstract tests into concrete ones. Hence, most of the security testing

approaches, especially those taking threat models as inputs, rely on developers to write concrete

test cases. But, they do not give any recommendation on how to write and structure executable

tests or to make them reusable.

The contributions of this chapter aim to help developers in these tasks. Once he or she

has given its initial test requirements with a first ADTree, our approach semi-automatically

completes it with attack steps, techniques and defenses given under the form of security patterns.

Our approach assists the developer in the test suite generation, by structuring test cases and

by completing them with comments or blocks of code. The test case execution provides

verdicts expressing whether the application is vulnerable to the threats modeled in the ADTree

or whether its behavior includes the observable consequences of the security patterns. This

chapter provides an overview of the approach from the developer’s viewpoint, proposes to take

advantage of the ordering of the attack steps in ADTrees to reduce the test costs, revisits the test

verdict definitions, details the ADTree generation, and includes additional evaluation results

and examples.

The approach we propose relies on the data gathered in the data-store ASSPC (Section 4.5.5)

in order to automatically infer ADTrees. These express the steps, techniques, countermeasures

in addition to the set of interconnected security patterns allowing the implementation of these

countermeasures. Furthermore, Rojas et al. [88] studied the effects of using an automated

test generation tool during development and evaluated some criteria on human subjects. They
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concluded that the Readability of the test cases, the Integration of the test generation approaches

in the software life cycle and Education are the most important criteria to improve the Efficiency

and Effectiveness of developers. We have concentrated our efforts on these criteria to generate

readable and reusable test cases, which are clearly associated with some parts of the threat

model. Efficiency and Effectiveness are the criteria used for evaluating our approach.

5.3 Data-store extension and data integration

The approach introduced in this chapter strongly relies on the information gathered in the

data-store ASSPC detailed in Section 4.5.5. The latter stores information about attacks, the

ordered steps sequences of attacks, the countermeasures and the set of security patterns allowing

to counter an attack step. We provide in Section 4.5.6 a technique to generate ADTrees showing

the sequences of attack steps and security patterns compilations.

In this section, we extend the database ASSPC with supplementary information to generate

security test cases. We first introduce the meta-model of the extended data-store, then we

present the data acquisition and integration steps in order to fulfill the data-store.

5.3.1 Data-Store meta-model extension

We extend the meta-model of the data-store ASSPC (white entities in Figure 5.1) with the new

elements (yellow entities in Figure 5.1). We denote the resulting data-store Testing Data Store

(T DS).

In Figure 5.1, every security pattern is also characterized with a set of consequences,

which can be observed in the application behavior. These are enumerated under the section

“Consequences” in the security pattern documentation.

An attack step is now associated to one or several application contexts. Each one is related

to one test architecture. The context refers to an application family, e.g., Android applications,
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Fig. 5.1 Meta-model of Testing Data Store (T DS)

or Web sites. The test architecture entity refers to textual paragraphs explaining the points of

observation and control, testers or tools required to execute the attack step on an application,

which belongs to an application context. For instance, in the case of the Web applications

context, the test architecture requires:

1. a web proxy able to intercept both incoming an outgoing requests to the application;

2. the ability to read and write in both header and body of http requests;

3. a Web browser in order to interact with the application, in addition to the ability to

automate the interactions with the front of the web application (e.g., Selenium Web

driver).
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To make test cases readable and re-usable, we use the behavior driven approach using the

pattern “Given When Then” (shortened GWT) to break up test cases into several sections:

• Given sections aim at putting the application into a known state;

• When sections trigger some actions (stimuli);

• Then sections are used to check whether the conditions of success of the test case are

met with assertions. We consider two kinds of Then sections. We use Then sections to

check if an application is vulnerable to an attack step st. In this case, the Then section

returns the verdict “Passst”. Otherwise, it provides the verdict “Failst”. Furthermore,

we consider other Then sections for testing the detection of pattern consequences in

the application behavior. These Then sections return “Failsp” if a consequence of the

security pattern sp is not detected and “Passsp” otherwise.

Each test case section is linked to one procedure stored in the Procedure table of the data-

store T DS, which implements the section. A Given, When or Then section can be reused with

several attack steps or security patterns. With regard to the meta-model given in Figure 5.1, a

GWT test case section (and procedure) is classified according to one application context and

one attack step or pattern consequence. In some specific application contexts, the procedures

can be completed with comments or with blocks of code to ease the test case development.

When the procedure content can be reused with any application in a precise context, we call it

Generic procedure:

Definition 5.1 (Generic procedure). Let C be an Application context. A Generic procedure is a

block of code, related to a Given, When or Then test case section, that can be used with any

application of C;

The data-store must only contain Generic procedures related to an application context. It

worth mentioning that an empty procedure is generic.
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5.3.2 Data acquisition and integration

We developed a set of data acquisition and integration steps to complete the new tables of the

data-store T DS. We chose to focus on the CAPEC base to extract information about the attacks

(e.g., Indicators, Outcomes, prerequisites, etc.). We also based our method on the security

pattern catalog published in [116]. With the data-store ASSPC (Section 4.5.5), the security

pattern catalog and the CAPEC database, we fulfill the data-store as follows :

1. from the security patterns catalog, we extract for each pattern the set of its consequences.

These are manually extracted from the section consequences of the security pattern

documents;

2. from the CAPEC database, we automatically extracted, using Talend ETL, for each attack

step:

• application context of the attack step, which is the domain in which the attack step

is applicable (web, mobile, client/server, etc.);

• prerequisites and the ressources required, which the developer has to setup before

launching the attack. These are automatically extracted from the sections “Attack

Prerequisites” and “Resources Required” of the attack documentation;

• outcomes and the indicators of the attack step success are automatically extracted

from the sections “Outcomes” and “Indicators”;

3. for each application context, we manually supply its related test architecture. Thus,

an attack step can be applied in different application contexts using different test archi-

tectures;

4. the data is consolidated into the data-store T DS which will be used in the test generation

process.
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We provide each procedure with a set of guidelines, in the form of comments. The

information provided in these guidelines originate from the data-store T DS as follows:

• for the procedures of Given sections, we provide comments about what the developer

has to prepare before each attack step, which are extracted from the prerequisites and

resources required of the attack steps;

• for the procedures of When sections, we provide comments about the different techniques

that implement the attack step, which are provided in the attack step techniques of the

attack;

• for the procedures of Then sections, we add comments indicating:

1. how the developers can assert the success of the attack step the comments come

from indicators and outcomes of the attack steps;

2. how to detect security patterns consequences these comments come from the

consequence of Figure 5.1.

Besides the 215 attacks, 209 attack steps, 448 attack techniques, 217 countermeasures,

26 security patterns and 66 security principles already gathered in the original data-store, we

extended the data-store with 627 GWT test cases and 632 procedures automatically generated,

knowing that attack steps GWT sections can share procedures. In addition, we collected 43

security patterns consequences.

For the Web applications context, we observed that several procedures can be completed

with blocks of code calling penetration testing tools. We manually completed 32 procedures,

which cover 43 attack steps. We used the testing framework Selenium 1 and the penetration

testing tool ZAProxy2, which covers varied Web vulnerabilities. This set of procedures are

1http://www.seleniumhq.org/
2https://www.owasp.org/index.php/OWASPZedAttackProxyProject
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usable on any Web application. The scripts allowing the data integration and data-store update

are available in [84].

5.4 An approach for guiding developers devise more secure

applications

In this section, we present a security test case generation method that is based on the data-store

(T DS), Figure 5.2 illustrates the method steps.

Fig. 5.2 Test cases generation and execution steps
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The four first steps take place in the Threat modeling stage, the three last ones in the test

generation and execution.

5.4.1 Threat modelling

Step 1: Initial ADTree design

In this step, the developer initially analyzes and models the threats related to the application

context, resources, technologies, etc. Threat modeling aims at identifying and describing

the attackers goals and capabilities as well as the potential security problems to which the

application can be confronted. In order to help developers in this task, several threat modeling

approaches was proposed in the last decade, e.g., DREAD [76] or STRIDE [76, 43].

During the Threat modeling phase, we assume the developer initially devises a first ADTree

T whose root node represents the attacker’s main goal, which may be refined with children

nodes. We assume here that T has leaves labeled by attacks (CAPEC-id) available in the data-

store. Otherwise, a semantic alignment may be required to substitute the node descriptions.

Figure 5.3 illustrates an ADTree example whose goal, expressed by the root node, is to

inject malicious code into an application. The goal is disjunctively refined with two children

labeled by two attacks “CAPEC-66: SQL Injection” and “CAPEC-244: Cross-Site Scripting

via Encoded URI Schemes”.

Fig. 5.3 Initial ADTree example
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Technically, the developer can employ the tool ADTool3 for editing the initial ADTree,

which is exported as an XML file given to the next step.

Step 2: ADTree generation

The ADTree T is often abstract. As developers are often not expert in security, attacks are not

detailed, no or few countermeasures are given. This step aims at guiding developers to refine

the ADTree T .

For each node of the ADTree T labeled with an attack Att, an ADTree T (Att) is automati-

cally generated from the data-store T DS, which express the sub-attacks, the sequences of attack

steps, the techniques and the set of security patterns allowing to counter each attack step. We

reuse the technique proposed in section 4.5.6.

We developed a tool taking as input the XML file of the ADTree T and generating a set

of ADTrees. An XML file is automatically generated for each ADTree T (Att), which can be

loaded under ADTool in order to be visualized, analyzed or edited.

For instance, Figure 5.4 depicts the ADTree corresponding to the node CAPEC-66 in the

ADTree obtained in Step 1. Each lowest attack step node has a defense node expressing pattern

combinations.

The ADTrees obtained in Step 2 describe all the possible combinations of the security

patterns related to an attack step. For instance, for the Step 2.1, the security pattern “Application

Firewall” can be substituted with “Input Guard” or one of the two security patterns (“Output

Gaurd”, “Comparator Checked Fault Tolerant System”). “Output Gaurd” can be substituted

by “Comparator Checked Fault Tolerant System”. This is explained by the fact that a security

mechanism can be implemented following different strategies or using different techniques.

3http://satoss.uni.lu/members/piotr/adtool/
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Fig. 5.4 CAPEC-66 ADTree

Step 3: Security pattern choice

In this step, the developer has to choose the security patterns with regard to the application

context. As a result, each lowest node labeled by an attack step has to be related to a conjunction

of security patterns. Technically, each ADTree T (Att) can be loaded under ADTool and edited

by the developer with regard to his/her preferences. This step yields ADTrees that are formalized

with specific ADTerms:

Proposition 5.1. An ADTree T (Att) achieved by the steps 2 and 3 has an ADTerm ι(T (Att))

having one of these forms:

1. ∨p(t1, ..., tn) with ti(1 ≤ i ≤ n) an ADTerm also having a form given in 1 or 2;

2.
−→
∧p(t1, ..., tn) with ti(1 ≤ i ≤ n) an ADTerm having the form given in 2 or 3;
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3. cp(st,sp), with st and ADTerm expressing an attack step and sp an ADTerm expressing

a security patterns combination.

The first ADTerm expresses the description of an attack with more concrete ones. The

second one represents sequences of attack steps. The last expression is composed of an attack

step st refined with techniques, which can be prevented by a security patterns combination

sp. In the remainder of this chapter, we call the last expression Basic Attack Defense Step,

shortened as BADStep, which shall be particularly useful in the generation of GWT test case

stubs.

Definition 5.2 (Basic Attack Defence Step (BADStep)). A BADStep b is an ADTerm of the

form cp(st,sp), where st is an ADTerm modeling an attack step and sp an ADTerm of the form

sp1 or ∧o(sp1, ...,spm) modeling a security pattern conjunction.

defense(b) = {sp1 | b = cp(st,sp1)}∪{sp1, ...,spm |b = cp(st,∧o(sp1, ...,spm))}

Step 4: Final ADTree generation

In this step, each node labeled by an attack Att of the initial ADTree T is substituted by an

ADTree T (Att) given by Step 3. This can be done by substituting every term Att in the ADTerm

ι(T ) by ι(T (Att)). We denote Tf the resulting ADTree. It depicts a logical breakdown of the

various options available to adversary and the defenses, materialized with security patterns,

which have to be inserted in the application model.

In this step, we also extract from the data-store a description of the test architecture required

to run the attack steps given by Tf on the application under test and to observe its reactions.
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5.4.2 Test generation and execution

Step 5: Test suite generation

The semantics of an ADTree can be defined in terms of attack-defense scenarios. In general

terms, a scenario is a minimal combination of events leading to the root attack, minimal in

the sense that, if any event is omitted from the attack scenario, then the root goal will not

be achieved. The semantics of an ADTree Tf , i.e., its scenario set, can be extracted from its

ADTerm ι(Tf ):

Definition 5.3 (Attack scenarios). Let Tf be an ADTree and ι(Tf ) be its ADTerm. The set of

attack scenarios of Tf , denoted SC(Tf ) is the set of clauses of the disjunctive form of ι(Tf ) over

BADStep(Tf ).

An attack scenario s of SC(Tf ) is an ADterm over BADStep(s). BADStep(s) denotes the

set of BADSteps of s. We also denote SP(s) the security patterns set found in s : SP(s) =

{sp | ∃b ∈ BADStep(s) : sp ∈ de f ense(b)}. By extension, BADStep(Tf ) stands for the set of

BADSteps found in ι(Tf ); SP(Tf ) is the security patterns set of ι(Tf ), found in all its scenarios.

Let’s consider a security scenario s∈ SC(Tf ). Given a BADStep b= cp(st,sp)∈BADStep(s),

the approach generates the GWT test case TC(b), which aims at checking whether the applica-

tion under test is vulnerable to the attack step st and whether the consequences of the security

pattern in defense(b) can be detected from the behavior of the application. TC(b) is assembled

from the data-store by means of the following steps:

1. as illustrated in Figure 5.1, the data-store provides for each attack step st (with the

relations testG, testW and testT ) one Given section, one When and one Then section.

Each section is related to one procedure. The Then section aims at asserting the success

of the attack step st on the application;

2. the data-store provides from the security patterns in defense(b) a set of additional Then

sections, each related to one procedure. These then sections aim at checking whether the
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security pattern consequences can be observed in the application behavior (e.g., execution

traces, graphical user interfaces, etc.);

3. all these sections are assembled to make up a GWT test case stub TC(b).

Fig. 5.5 CAPEC-66 ADTree after patterns choice

By applying theses steps on all the scenarios of SC(Tf ), we obtain the test suite T S with

T S = {TC(b)|b = cp(st,sp) ∈ BADstep(s) and s ∈ SC(Tf )}.

Fig. 5.6 A GWT test case Example

We implemented these steps to yield GWT test case stubs compatible with the Cucumber

framework 4, which supports a large number of languages. Figure 5.6 shows a test case stub
4https://cucumber.io/
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example obtained with our tool from the first step of the attack CAPEC-66, depicted in Figure

5.5. The test case lists the Given When Then sections in a readable manner. Every section is

associated to a generic procedure stored into an other file.

Fig. 5.7 The procedure related to the When section of Figure 5.6

The procedure related to the When section is given in Figure 5.7. The comments are

provided by the data-store and are extracted from the CAPEC base. This procedure includes a

generic block of code which calls the penetration testing tool “ZAP proxy”. The “getSpider()”

method, which belongs to the ZAProxy API, calls a Web application crawler to cover the

application under test in parallel (ten threads). The depth is the number of levels into the

application that ZAProxy will reach when looking for URLs. In this example, the root URL is

”http://localhost:8080”.

Figure 5.8 illustrates an example of procedure for the Then section related to the pattern

“Input Guard”. If an application is conceived with “Input Guard”, then the receipt of unexpected

inputs should bring it to to a quiescent state (observed with the HTTP status 503, 408) or it

should return messages showing that errors have been detected. Furthermore, the fact that the

application stops its execution or crashes (which can be observed with the HTTP status 500) is

considered as a correct consequence for this pattern.
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@Then("Input Guard security pattern is present")

public void assinputguard(){

// in order to test the presence of input guard pattern

//try to assert one of the following consequences :

//no output or generic error message

assertThat(app.getdriver().getPageSource(), anyOf(equals(""),

containsString("error"),containsString("forbidden"),

containsString("unauthorized")));

//HTTP status(503, 408 for quiescent state, or for Unauthorized access)

assertThat(con.getResponseCode(),anyOf(is(200),is(503),is(408)

,is(401),is(403),is(405),is(409));

}

Fig. 5.8 The procedure related to the Then section (Input Guard) of Figure 5.6

Step 6: Test case stub completion

The developer has to complete the procedures related to the previous GWT test case stubs.

We believe that the separation of the test case into sections and its link to the ADTree Tf

(association among, steps, security patterns and procedures) make this step easier. In addition,

the Generic procedures, composed of comments or blocks of code should make the developer

more effective in the test case writing.

Step 7: Test suite execution

Once the GWT test case stubs are completed, these can be executed on the application under

test denoted I. The test architecture allowing the experimentation of I is described in the report

provided in Step 4.

After the execution of one test case TC(b) on I, a test report is obtained. Figure 5.9 depicts

an example of report obtained after the execution of the test case of Figure 5.6. This report

shows that the second Then section has failed. This means that the consequence of the security

pattern “Output Guard” is not detected from the application behavior.

To formalize these reports and to provide a variety of test verdicts, we here assume that the

test cases are correctly developed with assertions in Then sections. As a test case TC(b) is here
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Fig. 5.9 Test case Figure 5.6 result

composed of more than one assertion, its execution denoted TC(b)||I, may provide different

sets of verdicts messages of the form :

• {Passst} means that I is vulnerable to the attack step st although all the consequences of

the security patterns are detected;

• {Failst} means that I does not appear to be vulnerable to the attack step st and that the

consequences of the security patterns are detected;

• {Passst ,Failsp1 , ...,Failspk} shows I is vulnerable to the attack step st and that the conse-

quences of some security patterns sp1, ...,spk are not detected;

• {Failst ,Failsp1, ...,Failspk} means I does not appear to be vulnerable to the attack step st

but the consequences of the security patterns sp1, ...,spk are not detected.

Definition 5.4 (Test verdict sets). Let I be an application under test and Tf be an ADTree. Let

also b = cp(st,sp) be a BADStep of BADstep(Tf ) with de f ense(b) = {sp1, ...,spm}(m > 0)

and TC(b) ∈ T S be test case.

F stands for the lower set P({Failspi|spi ∈ de f ense(b)})\φ

The execution of TC(b) on I leads to a verdict sets, which can be:

• VUL = {Passst};

• NVUL = {Failst};
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• VUL/V IOLAT E = {Passst}×F ;

• NVUL/V IOLAT E = {Failst}×F .

Now, we can define the verdicts obtained after the execution of one test case :

Definition 5.5 (Local test verdict). Let I be an application under test, Tf an ADTree and TC(b)

a test case. The execution of TC(b) on I is denoted Verdict(TC(b)||I):

Verdict(TC(b)||I) =V with V ∈ {VUL,NVUL,VUL/V IOLAT E,NVUL/V IOLAT E}, iff

TC(b)||I returns a verdict set of V .

Subsequently, we define final test verdicts with regard to the ADTree Tf . These ver-

dicts are given with the predicates Vulnerable(Tf ), Unsatc(SP(Tf )) returning boolean values.

Vulnerable(b) is firstly defined to later apply a substitution σ : BADStep(s)→{true, f alse}

on an attack-defense scenario s. The substitution σ maps each BADStep b of s onto the

corresponding evaluation of Vulnerable(b). A scenario holds if the evaluation (eval(sσ)) of

applying the substitution σ to s (i.e. replacing every BADStep term bi with the evaluation of

Vulnerable(bi)) returns true. When a scenario of Tf holds, then the threat modeled by Tf can

be achieved on I. This is defined with the predicate Vulnerable(Tf ). Unsatc(SP(Tf )) expresses

whether the security pattern consequences are detected.

Definition 5.6 (Final test verdicts). Let I be an application under test, Tf be an ADTree, and

s ∈ SC(Tf ) a test scenario, with BADStep(s) = {b1, ...,bn}.

1. Vulnerable(b)= true with b∈BADStep(s), if Verdict(TC(b)||I)∈{VUL,VUL/V IOLAT E};

Vulnerable(b) = f alse otherwise;

2. σ : BADStep(s)→{true, f alse} is a substitution {b1 → (Vulnerable(b1), ...,

bn → Vulnerable(bn)};

3. Vulnerable(Tf ) = true if ∃ s ∈ SC(Tf ) : eval (sσ) returns true, Vulnerable(Tf ) = f alse

otherwise;
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4. Unsatc(SP(Tf )) = true if ∃ b ∈ BADStep(Tf ), Verdict(TC(b)||I)∈ {VUL/V IOLAT E,

NVUL/V IOLAT E}; Unsatc(SP(Tf )) = f alse otherwise.

With regard to these verdicts, a set of corrective actions can be applied on the application

model or code. Table 5.1 resumes some correctives for each combination of the values of

Vulnerable(Tf ) and Unsatc(SP(Tf )).

Table 5.1 Verdict Summary and solutions

Vulnerable(Tf ) Unsatc(SP(Tf )) Corrective actions
false false no issue detected
true false At least one attack-defense scenario is successfully ap-

plied on the application. Fix the pattern instantiation or
implementation. Or the chosen patterns are inconvenient,
choose other patterns.

false true Some pattern consequences are not detected from the ap-
plication behaviour. Check the pattern implementations.
A pattern may be incorrectly implemented or another
pattern conceals the consequences of the former.

true true The chosen security patterns are useless or incorrectly
implemented. Check and fix the security patterns choice,
models or implementation.

5.5 Evaluation

We empirically studied two scenarios on 24 participants to assess whether developers can take

profit of our method. The duration of each scenario was set at most to one hour and half.

The participants are third to fourth year computer science undergraduate students; most of

them have good skills in the design, development and test of Web applications (PHP, Javascript).

They have some knowledge about classical attacks and are used to handle design patterns, but

not security patterns.

The participants were given the task of choosing security pattern combinations to prevent

two attacks, CAPEC 244: Cross-Site Scripting via Encoded URI Schemes and CAPEC 66:
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SQL Injection, on two deliberately vulnerable Web applications, “RopeyTasks”5 and “The

Bodgeit Store”6. We also asked the participants to write test cases with the tool Selenium in

order to: show that both Web applications are vulnerable to the two attacks, test whether the

application behaviors include at least one consequence of the security pattern “Input Guard”

and at least one consequence of the security pattern “Output Guard”. As this last aspect was

considered as difficult for beginners, we expected some assertions but not all the assertions.

In the first scenario, denoted Part 1, we supplied these documents to the students: the

CAPEC base, two concrete examples detailing how to manually perform each attack along

with the expected outcomes, and the security pattern catalog published by Yskout et al. [116],

composed of 36 patterns. The participants had to: read the intents and consequences of the

patterns, follow our examples of attacks and read the CAPEC base to write concrete test cases.

In the second scenario, denoted Part 2, we supplied additional documents for the two attacks:

the ADTrees of the two attacks (Figure 4.23 is one if them) and the generated GWT test case

stubs (stored in Eclipse projects) for each step of the two attacks.

At the end of each scenario, the students were invited to fill in a form listing these questions:

• Q1: Was it difficult to choose security patterns?

• Q2: Was it difficult to use the CAPEC documentation (in Part 1) / our ADTrees (in Part

2)?

• Q3: Was it difficult to use the security pattern documents (in Part 1) / our ADTrees (in

Part 2)?

• Q4: What was your time spent for choosing security patterns?

• Q5: How confident are you in your pattern choice?

• Q6: Provide your chosen security patterns
5https://github.com/continuumsecurity/RopeyTasks
6https://github.com/psiinon/bodgeit
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• Q7: Was it easy to write test cases?

• Q8: What was the time you spent for writing test cases?

• Q9: How confident are you about the the test cases you wrote?

• Q10: Provide two test cases (or suites).

These questions was asked in order to evaluate the following criteria:

• C1: Comprehensibility: does our method ease the choice of the security patterns and the

test case implementation?

• C2: Accuracy: are the chosen patterns and the given test cases correct?

• C3: Efficiency: does the use of our method reduces the time needed to choose patterns

and to write tests?

5.5.1 Experiment Results

With the forms returned by the participants (available in [84]), we extracted the following

results.

Firstly, Figure 5.10 illustrates the percentages of answers of the questions Q1 to Q3. For

these, we proposed this four-valued scale: easy, fairly easy, difficult, very difficult. Similarly,

we collected the answers of Question Q7 (yet on this four-valued scale). Figure 5.11 depicts

the distribution of the participant opinions.

We collected the time spent by the participants for choosing patterns and writing test cases

(in Part 1 and 2 of the experimentation). In summary, for the security pattern choice (Question

Q4), response times varied between 15 and 60 minutes for Part 1, and between 4 and 30 minutes

for Part 2. For the test case writing, the participants spent between 15 and 70 minutes in Part 1,

while they took between 20 minutes and 86 minutes in Part 2.
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Fig. 5.10 Response rates for Q1 to Q3

The levels of confidence of the participants is estimated with Questions Q5 and Q9. The

possible answers were for both scenarios: very sure, sure, fairly sure, not sure. Figure 5.12

depicts the percentages of answers of Question Q5 dealing with their confidences about their

chosen set of security patterns and Figure 5.13 depicts the percentages of answers of Question

Q9 dealing with their confidences about their test cases.

We analyzed the security pattern combinations provided by the participants in Question Q6.

We organized these responses into four categories (ordered from the more to the less accurate):

1. Correct: several pattern combinations were accurate. When a participant gives one of

these combinations, its response belongs to this category;

2. Correct+Additional: this category includes the responses composed of a correct pattern

combination, completed with some other patterns;

3. Missing: we gather in this category, the incomplete pattern combinations without addi-

tional patterns;
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Fig. 5.11 Response rates for Q7

Fig. 5.12 Response rates for Q5

4. Missing+Additional: this category holds the worst responses, composed of unexpected

patterns eventually accompanied with some expected ones.

With these categories, we obtained the bar charts of Figure 5.14, which gives the number of

responses per category and per experiment scenario.

We finally analyzed the test cases given by the participants and evaluated their correctness

with regard to four aspects:
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Fig. 5.13 Response rates for Q9

Fig. 5.14 Pattern choice correctness (Q6)

1. one test case or more show that the application is vulnerable to the attack CAPEC 66

(SQL injection);

2. one test case or more show that the application is vulnerable to the attack CAPEC 244

(SQL Cross site injection);

3. one test case or more detects that the application behavior does not include the conse-

quences of the pattern “Input Guard”;
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4. one test case or more detects that the application behavior does not include the conse-

quences of the pattern “Output Guard”.

Figure 5.15 shows the number of participants per experiment scenario, who meet these

aspects.

Fig. 5.15 Test case correctness (Q10)

5.5.2 Result interpretation

C1: Comprehensibility

We chose this criteria in order to evaluate how our methodology makes the patterns choice and

the test implementation easier. Figure 5.10 shows that 33% of the participants estimated that the

pattern choice was easy with our classification and ADTrees (Q1). In contrast, no participant

found that the choice was easy when using only the security pattern catalog. The rate of “Easy”

“Fairly Easy” increased by 70,8% between Part 1 and Part 2. With Question Q2, 41,7% of the

participants found “Fairly easy” the use of the CAPEC base, whereas 87,5% esteemed our

ADTrees “Easy” and “Fairly Easy” to use. Similarly, only 37,5% of the participants considered

“Easy” and “Fairly easy” the reading of the pattern catalog. This rate reaches 87,5% with
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our ADTrees. Consequently, Figure 5.10 shows that our generated ADTrees make the pattern

choice easier and that they are simpler to interpret than the security pattern catalog. In addition,

we observed that the confidence of the participants on their responses increased by 20,8%.

As for test cases, Figure 5.11 shows that 66,7% of the participants found that generating

tests is “difficult” in the first part against 41,7% in the second part. Additionally, 4,17% of them

found the test case development “very easy” in the first part against 12,5% in the second part.

Hence one quarter of the students found easier the test writing with our test case stubs. After

discussion with the participants, it turned out that the test case structure with the GWT template

made test cases more readable and that the link of the test case sections with the attack steps of

the ADTerms helped student understand what to develop.

Furthermore, Figure 5.13 shows that the confidence level of the participants about their test

cases increases by 20,83%.

As a whole, we can conclude that the participants found their tasks easier with our ADTrees

and GWT test case stubs thanks to the choice of modeling threats and counter-measures with

graphical trees, and of organizing test case stubs w.r.t. attack steps, which provides readability

and re-usability.

C2: Accuracy

Figure 5.14 reveals that no participant gave a correct pattern combination in Part 1. In contrast,

when they used our ADTrees, the number of correct responses rises to 15 out of 24 (62,5%).

Furthermore, the category of responses ”Missing+Additional” (worst responses) is strongly

reduced (62,5 % with Part 1 to 8% with Part 2). Consequently, the pattern choice is significantly

more accurate with our ADTrees. Nonetheless, despite the use of our ADTrees, the number of

participants that gave incomplete pattern combinations remains around in the same range (9 in

Part 1, 7 in Part 2). More efforts are required to help designers not forget patterns in ADTrees.
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Figure 5.15 depicts the results about the test case correctness. The columns “SQLi” and

“XSS” provide the number of test cases allowing to reveal that both attacks can be successfully

executed on the applications. In Part 1, few participants developed complete test cases. We

indeed observed that assertions were missing in most of them. If we leave aside assertions, the

number of test cases running the attacks rises to 14. The number of correct test cases strongly

increases in Part 2 thanks to the comments the participants found in the procedures. The

columns “Input Guard” and “Output Guard” give the number of Then sections (and procedures)

allowing to show that the consequences of these security patterns are not detected from the

application behaviors. This task was much more difficult for the students as they are not yet

expert in security pattern. Hence, it is not surprising to see that only one student was able to

write at least an assertion showing that the “Input Guard” consequences are not present. The

number of correct Then sections rises to 14 in Part 2 thanks to the comments found in the

procedures. With the pattern “Output guard”, the number of correct Then sections rises from 0

to 23 (almost all the participants) in Part 2. It worth noting here that this overly good result is

due to the provided Generic procedure, which were composed of some blocks of code.

Consequently, we can conclude that the test cases given by the participants are more

correct in Part 2, thanks to the amount of information (comments, blocks of code) found in the

procedures.

C3: Efficiency

This criteria addresses the participant efficiency in terms of time spent for choosing security

patterns and writing test cases. The average time spent by the participants for choosing patterns

is equal to 32 minutes in the first scenario (Part 1). This time delay decreases to 14 minutes

when the participants employed our ADTrees. Furthermore, no participants went over 30

minutes for choosing patterns in Part 2 (in contrast with 1 hour for Part 1). Hence, ADTrees,

composed of security pattern combinations, make the participants more efficient in the patterns
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choice. This is not really surprising as they only have to understand the ADTree terminology to

the deduce correct pattern combinations.

On average, the participants took 46 minutes for writing test cases from scratch and 60

minutes with the use of our method. We remark that they spent more time with the use of our

method. This can be explained when we focus on the test case accuracy along side. Indeed,

most of the test cases are not complete in Part 1, whereas almost all the test cases are correct in

Part 2 (more assertions, etc.). They also took more time for choosing patterns in Part 1 than in

Part 2, leaving less time for writing test cases. As most of them discovered for the first time the

framework Cucumber, we also believe that they took the required time for understanding how

it works.

As as consequence, these results show that the participant were more efficient for choosing

patterns with ADTrees. We prefer not to conclude on the test case writing efficiency with this

experimentation.

5.6 Chapter conclusion

We presented in this chapter a method taking advantage of data acquisition for guiding develop-

ers devise more secure applications from the Threat modeling to testing stage. ADTrees and test

case stubs are automatically generated allowing to check whether an application is vulnerable to

attacks and whether security patterns consequences are detected from the application behavior.

In order to enhance the Comprehensibility, the Usefulness and the Accuracy of the method

we take advantage of three notions:

1. the visual aspect provided by ADTrees in order to educate and help developers understand

attacks, their execution flows and the security patterns related to each attack step;
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2. the guidelines (comments) provided in generic procedures in addition to code blocks.

This considerably helps developers in the test cases completion. The richness of these

guidelines is obtained thanks to the data store;

3. the automatic generation of attack scenarios, test cases from ADtrees and verdicts by

means of a strict method.

We built a data-store gathering 215 attacks, 209 steps, 448 attack techniques, 217 counter-

measure, 26 security patterns 43 security patterns consequences, 209 GWT test cases and 632

generic procedures covering a plethora of security problems for Web application context. The

data-store and the tools for the generation of ADTrees and test cases are available in [84].

We evaluated our method on 24 participants to assess the criteria Comprehensibility,

Efficiency, and Accuracy. The results show that, with our method, the participants are more

accurate and have a better comprehension of attacks and security patterns. In addition, they felt

more confident about their chosen security patterns and the test cases they implemented. This

shows that our method and tools can be helpful in the software life cycle in order to integrate

the notion of security patterns and to perform security testing.

The work presented in this chapter has been published in [91].
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Chapter 6

Conclusions and perspectives

6.1 Summary of the achievements

We presented in Chapter 2 a set of notions, documents, models, tools along with an insight of

the work proposed in the literature and related to this thesis manuscript.

The latter tackles the difficulty to devise secure applications all over the life cycle stages and

proposes a set of approaches in order to help developers in the choice, the use and the testing

of security solutions. These are provided by security patterns, which are abstract, generic and

reusable solutions and “relate countermeasures (stated in the solution) to threats and attacks in

a given context” [96]. The main objectives of the thesis are to :

1. perform a systematic verification of the instantiation of a security pattern set and their

effectiveness against a security weakness;

2. establish security pattern classifications by means of a knowledge base to help design-

er/developer choose patterns;

3. help developers write threat models and concrete security test cases, again by means of a

knowledge base.
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More precisely, in Chapter 3, we tackled the first objective and we introduced a method to

help developers devise secure application models by assessing the instantiation of a security

pattern set in a UML model to cure a given vulnerability set. We detailed the approach

through a case study and we showed that a security pattern cannot be a “silver bullet” against a

vulnerability and often has to be completed with other patterns. We also emphasized that it is

difficult to choose the appropriate security pattern facing a security problem.

In Chapter 4, we introduced three methods for devising three multi-attribute classifications

of security patterns. Three data-stores are built to associate security patterns, weaknesses,

attacks and security principles. Security pattern classifications are automatically extracted from

these data-stores, such that a weakness or an attack can be hindered by a set of inter-related

security patterns. To enhance the readability of the classifications, we expose them graphically

under the form of Security Activity Graphs (SAGs) and Attach defense trees (ADTrees). These

visual supports make the security pattern choice easier. We also believe that that they should

promote the use of the security patterns in the Industry.

Even with security pattern classifications, developers still lack of guidance for writing and

executing security test cases. Based on the data-stores developed in Chapter 4, we present in

Chapter 5 a method to help developers in the Threat modeling and the writing and execution of

security test cases. The purposes of the generated test cases are to assess whether an attack can

be successfully executed on an application and to check whether security pattern consequences

can be detected in the application’s behavior. We evaluated the method on 24 participants to

assess its usefulness in terms of 3 criteria : 1) Comprehensibility; 2) Efficiency; 3) Accuracy.

The results show that the participants are more accurate in the security pattern choice and write

more accurate test cases. In addition, they felt more confident about their work, they better

understand the functioning of the patterns and of the attacks. We concluded that the method is

relevant to integrate security patterns throughout the application life cycle (Threat modeling,

Test case generation, execution, etc.).

156



6.2 Towards a complete toolkit

6.2 Towards a complete toolkit

The works introduced in this thesis are all accompanied with in a set of prototype tools. These

are based on existing research tools and public resources, which allow to automate many steps

of our approaches. However, our tools still require some manual steps. These manual steps

often needed to associate together abstract data or notions with other data or formal expressions.

To overcome these limitations we present in this section some perspectives in order to

devise a more complete toolkit.

6.2.1 Knowledge base completion

In Chapter 4, we constituted a knowledge base associating attacks, weaknesses, security

patterns.etc. This is far from being exhaustive. A first perspective is to produce a larger base

integrating a bigger number of security patterns, attacks, weaknesses, etc. The completion of

the knowledge base requires manual steps. It could be interesting to investigate whether text

mining techniques would help partially automate them. A bigger knowledge base gives a larger

insight on security problems, solutions and application contexts.

The relations among patterns given in [116] are actually binary. It would be fruitful

to provide relations among several patterns with regard to more elements (Specialization,

Containment, etc.). In addition, the notion of composite patterns (i.e., the combination of a set

of patterns to produce a new pattern) is not considered in this thesis manuscript.

In the security testing method introduced in Chapter 5, the generated test cases are imple-

mented with generic procedures. These generic procedures are completed with comment. We

completed some of them with code blocks calling penetration testing tools. We observed that a

bigger number of generic procedures can be completed with code blocks thanks to the use of

penetration testing tools. This would allow to :
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1. enlarge the use of the method on other application contexts (e.g., mobile, cloud, databases,

networks, etc.);

2. educate developers about security testing with well-known tools ;

3. enhance the usability of the testing method introduced in Chapter 5 with a bigger number

of generic GWT procedures.

6.2.2 Documentation Generation

In Chapters 4 and 5, we constituted a knowledge base associating several security notions. The

structure of this base allows automated extractions of security pattern classifications. Currently,

the extracted classifications are presented in tabular form, which limits its readability. We

proposed to expose these classifications graphically with SAGs and ADTrees. With the growing

number of test cases, test architectures, application contexts, etc. It appears important to provide

a complete documentation allowing developers to better understand the notions gathered in the

databases and the appropriate testing tools to use.

A perspective is to ease the navigation and the readability of the classifications by generating

a documentation from the knowledge base in the form of Web pages. For instance, the

presentation of an attack could expose the information about the attack, its related security

patterns, its ADTree, test cases, tools to implement tests, etc.

In addition, we could complete the CAPEC and CWE databases with security patterns,

SAGs and ADtrees. For instance, the current schema of the CAPEC database already provides

a set of sections (e.g., Relevant Security Patterns, Non-Recommended Design Patterns, etc.),

which relate CAPEC attacks and patterns. This illustrates the importance given to security

patterns for documenting attacks. However, these sections are not yet fulfilled with information.

We believe that our approach could be a first milestone to enrich the CAPEC database with

security patterns, test cases, ADTrees, etc.
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6.2.3 Runtime verification of security pattern properties in application

traces

In the approach introduced in Chapter 3, we expressed the behavioral properties of security

patterns with LTL formulas. A formula expresses an event sequence, which characterizes a

behavioral property of a pattern. In Section 3.6, we detailed some limitations of the method,

which are often related to the difficulty of writing LTL properties by developers. We introduced

some LTL patterns (e.g., LTL response pattern in Figure 3.11) and an example of their use in

order to express a security pattern strong point.

A perspective of this manuscript is to combine runtime verification and the methods

proposed in Chapters 3, 5 to check whether security pattern behavioral properties hold in

application traces. In the method introduced in Chapter 5, we test whether the consequences of

a security pattern can be detected in an application behavior. But two security patterns can have

the same consequences. We want here to complete the testing method proposed in Chapter 5 to

determine with more accuracy which pattern has been used as follows. Given a security pattern

Sp, an attack Att and an application A:

1. A is tested with Att by means of the method presented in Chapter 5 and traces of A are

collected;

2. the behavioral properties of Sp are expressed with a set of generic LTL properties P(Sp).

These are manually derived with regard to the Sections “Participants”, “Collaborations”

and “Dynamics” of the security pattern documentation. The LTL behavioral patterns1

could help in this task;

3. Lemieux et al. [54] introduced the tool TEXADA2, which dynamically mines LTL

properties from application traces. It allows to enumerate all the instances of an LTL

1http://patterns.projects.cs.ksu.edu/documentation/patterns.shtml
2https://bitbucket.org/bestchai/texada/overview
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property over the traces of an application. All the instances of a property p ∈ P(Sp)

in the traces obtained in step 1 are listed. This set of instances is denoted I(p). The

developer does not write LTL properties. He/she choose which property p of a pattern

Sp he/she wants to check;

4. because of the generic nature of the LTL properties P(Sp), the instances I(p) do not all

semantically correspond to Sp. We consider that an application satisfies a pattern property

p if ∃ i ∈ I(p) : semcor(i, p) with semcor(i, p) is true if i corresponds semantically to p.

It remains to define semcor(i, p) and, in particular, to find a way to evaluate it. The generic

and the textual nature of security patterns exposes the approach to some semantic challenges,

we expose some of them in the next section.

The documents about security patterns, weaknesses, attacks, principles, etc. are often

composed of texts. The information they provide are supplied by multiple authors who have

different purposes and skills. It results in an heterogeneous documentation. Some works

introduced the notion of “Security patterns language” [34, 36, 95]. Scumacher et al. [95]

defined a pattern language as “a network of tightly-interwoven patterns that defines a process

for resolving a set of related, interdependent software development problems systematically”.

However, all the security patterns are not organized in this way. The current security pattern

documentation lacks of standards to represent them. The proposed solutions are often very

informal. Hence the need of a strict documentation that concretizes patterns in specific contexts

emerges.

In the CAPEC and CWE bases, we are faced to the same challenge, which is often due to

the multitude of the authors that contribute in fulfilling the database. Hence, the same security

notion (e.g., security principle, mitigation, countermeasure, etc.) can be expressed differently,

which increases the difficulties encountered by security designers and developers. We proposed

the use of text mining techniques to group countermeasures. These techniques could be used to

leverage some semantic challenges and automate more tasks.
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6.3 Security pattern landscape

The growing number of security patterns makes them covering a plethora of security notions,

problems, contexts, etc. However, their abstract nature makes their integration in more technical

tasks very difficult. In this section, we present some perspectives for integrating security patterns

in well-known security methods all over the application life.

6.3.1 Threat management with security patterns

The integration of security patterns in the threat modeling stage has been tackled in some papers

[104, 103, 105, 34] and in Chapter 5, we presented how developers can be guided in the use of

security patterns. We supposed that developers know the set of threats to which an application

could be exposed. However, this is a strong assumption. STRIDE 3 a threat modeling method

that could help developers. It is provided with a plethora of tools and proved its effectiveness

in both academic and industrial contexts. One of these tools, “Microsoft Threat Analysis &

Modeling”4 allows threat modeling along with the architecture and the design of an application

or a system. The application functional requirements are decomposed into components (e.g.,

roles, data, uses cases) that can be contextualized in many types of technologies. Then, with

regard to these functional requirements, technical choices and a library of attacks, a set of

threats is given and explained to the developer. Each threat is expressed with a factor and a set

of possible attacks. A threat tree is automatically generated, which organizes hierarchically

threats, attacks and the potential countermeasures. Figure 6.1 draws an example of Injection

threat tree generated with this tool.

The hierarchy among all the attacks, threats and countermeasures is stored in an attack

library and the user can upload his/her own one. An attack library is an xml file storing

a hierarchical organization of attacks and countermeasures. In the data-stores presented in

3https://msdn.microsoft.com/en-us/library/ee823878(v=cs.20).aspx
4https://www.microsoft.com/en-us/download/details.aspx?id=14719
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Fig. 6.1 Injection Threat Tree

Chapter 4, attacks, weaknesses, patterns are already hierarchically organized and our tools

allow different kinds of extraction. Hence, it could be fruitful to connect our knowledge

base with STRIDE threat model. This could be done by automatically generating these XML

attack libraries from our base. Such a process would bring security patterns in STRIDE threat

management (threat modeling and analysis) and more generally in threat modeling with few

efforts. This approach could help developers identify threats (with regard to the functional

choices) and devise the initial ADTree in the first step of the method introduced in Chapter 5.

6.3.2 Security reference architectures

Building a complex architecture of a system or a software (Functional and non functional

requirements) is a hard task. If the application architecture is not well defined, it is almost

impossible to determine which security solutions are required. To design application architec-

tures, Fernandez et al. define a reference architecture “RA” as “an abstract architecture that

describes functionality without getting into implementation details” [27]. “A ‘RA’ provides a
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template-like solution that can be instantiated into a specific software architecture by adding

implementation-oriented aspects” [26]. “RAs” prove their usefulness in both academical and

professional contexts in order to understand, describe and build complex systems [27, 10, 61].

Security reference architectures “SRAs” are special “RAs” improved with security mechanisms,

which are added in appropriate places in the “RA” [27]. In the literature, some “SRAs” have

been proposed [18, 38, 27]. Fernandez et al. proposed in [27] a methodology for building a

security reference architecture for cloud systems. They describe the “SRA” with UML schemes

use patterns to build it. They indeed showed that it is possible to use security patterns to build

“SRAs”.

Steel et al. presented in [100] a set of interrelated security patterns distributed over four

component and logical tiers (Web tier, Business tier, Web service tier, Identity tier) to ensure an

end to end security of web based application architectures. With regard to these works and our

knowledge base, we believe that it would be possible to propose a supervised method to build

“SRAs” with security patterns. “SRAs” can considerably help understand complex systems or

applications and securing them with patterns. The ability of “RAs” of enhancing the visibility

on the overall application is combined with the ability of security patterns in giving reusable

solutions to build “SRAs”.

Furthermore, the approaches proposed in [26, 27] point that a “SRA” considerably help in

the evaluation of the overall security of an application or system. They defined a set of misuse

cases. They expressed, through an example (Publish a Malicious VM Image), the misuse cases

with sequence diagrams. The approach we presented in Chapter 5 could be combined with

“SRAs” building method to evaluate the overall application or system security in different

application contexts.
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6.4 Publications

The works presented in this thesis manuscript have been published in the following national

and international journals and conferences proceedings:

1. Regainia, L., Bouhours, C., and Salva, S. (2015). Une démarche pour l’assistance à

l’utilisation des patrons de sécurité. In 4ème Conférence en IngénieriE du Logiciel

(CIEL);

2. Regainia, L., Bouhours, C., and Salva, S. (2016a). Systematic approach to assist designers

in security pattern integration. In Second International Conference on Advances and

Trends in Software Engineering (SOFTENG), Lisbon, Portugal;

3. Regainia, L., Salva, S., and Bouhours, C. (2016b). A classification methodology for

security patterns to help fix software weaknesses. In 13th IEEE/ACS International

Conference of Computer Systems and Applications, AICCSA 2016, Agadir, Morocco,

November 29 - December 2, 2016, pages 1–8;

4. Regainia, L., Salva, S., and Bouhours, C. (2016c). Une démarche pour l’assistance à

l’utilisation des patrons de sécurité. Technique et Science Informatiques, 35(6):641–663;

5. Regainia, L. and Salva, S. (2017a). A methodology of security pattern classification and

of attack-defense tree generation. In Proceedings of the 3rd International Conference

on Information Systems Security and Privacy, ICISSP 2017, Porto, Portugal, February

19-21, 2017, pages 136–146;

6. Regainia, L., Bouhours, C., and Salva, S. (2017b). Un data-store pour la génération

de cas de test. In 16èmes journées AFADL Approches Formelles dans l’Assistance au

Développement de Logiciels GDR GPL DU 13 AU 16 JUIN 2017, MONTPELLIER;
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7. Salva, S. and Regainia, L. (2017c). Using data integration to help design more secure

applications. In Proceedings of the 12th International Conference on Risks and Security

of Internet and Systems, Dinard, France;

8. Salva, S. and Regainia, L. (2017d). Using data integration for security testing. In IFIP

International Conference on Testing Software and Systems, pages 178–194. Springer;
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Abstract

Assisting in the development and testing of secure applications
by Loukmen REGAINIA

Ensuring the security of an application through its life cycle is a tedious task. The choice, the

implementation and the evaluation of security solutions is difficult and error prone. Security

skills are not common in development teams. To overcome the lack of security skills, developers

and designers are provided with a plethora of documents about security problems and solutions

(i.e, vulnerabilities, attacks, security principles, security patterns, etc.). Abstract and informal,

these documents are provided by different sources, and their number is constantly growing.

Developers are drown in a sea of documentation, which inhibits their capacity to design,

implement, and the evaluate the overall application security. This thesis tackles these issues

and presents a set of approaches to help designers in the choice, the implementation and the

evaluation of security solutions required to overcome security problems. The problems are

materialized by weaknesses, vulnerabilities, attacks, etc. and security solutions are given by

security patterns.

This thesis first introduces a method to guide designers implement security patterns and

assess their effectiveness against vulnerabilities. Then, we present three methods associating

security patterns, attacks, weaknesses, etc. in a knowledge base. This allows automated

extraction of classifications and help designers quickly and accurately select security patterns

required to cure a weakness or to overcome an attack. Based on this knowledge base, we detail

a method to help designers in threat modeling and security test generation and execution. The

method is evaluated and results show that the method enhances the comprehensibility and the

accuracy of developers in the security solutions choice, threat modeling and in the writing of

security test cases.

Keywords. Security patterns, weaknesses, attacks, principles, life cycle, model checking,

security testing.


	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 General Context
	1.2 Open issues
	1.3 Contributions
	1.4 Overview of the thesis

	2 State of the art
	2.1 Introduction
	2.2 Security concepts and databases
	2.2.1 Weaknesses
	2.2.2 Vulnerabilities
	2.2.3 Threats
	2.2.4 Attacks
	2.2.5 Security principles
	2.2.6 Security by design

	2.3 Patterns
	2.3.1 Design patterns
	2.3.2 Patterns selection
	2.3.3 Patterns instantiation

	2.4 Security patterns and Security patterns classifications
	2.4.1 Security patterns
	2.4.2 Security pattern instantiation
	2.4.3 Inter-patterns relationships
	2.4.4 Security patterns classifications
	2.4.5 Classification schemes
	2.4.6 Classification quality criteria

	2.5 Security modeling
	2.5.1 Vulnerability Cause Graphs (VCG)
	2.5.2 Security Activity Graphs (SAG)
	2.5.3 Attack Defense Trees ADTree

	2.6 Chapter conclusions

	3 Assisting Designers in Security Pattern Integration
	3.1 Introduction
	3.2 Context and Motivations
	3.3 Prerequisites
	3.4 Assisting designers in the security pattern instantiation
	3.5 Case study
	3.6 Discussion
	3.7 Chapter Conclusions

	4 Security analysis with patterns and pattern classifications
	4.1 Introduction
	4.2 Context and motivations
	4.3 Data-stores architectures
	4.3.1 Data sources
	4.3.2 Data-stores Meta-models

	4.4 Data integration
	4.4.1 Integrating security patterns and security principles
	4.4.2 Integrating security patterns and weaknesses
	4.4.3 Attacks and security patterns integration (v1)
	4.4.4 Attacks and security patterns integration (v2)

	4.5 Classification extraction and SAG/ADTree generation
	4.5.1 Weakness Security Patterns Classification (WSPC)
	4.5.2 Security Activity Graph (SAGs) generation
	4.5.3 Attacks and Security Patterns Classification ( v1 )
	4.5.4 ADTree generation ( v1 )
	4.5.5 Attacks and Security Patterns Classification ( v2 )
	4.5.6 ADTree generation ( v2 )

	4.6 Discussion
	4.6.1 Comparaison of the ADTrees generated with the approaches ( v1, v2 )
	4.6.2 Comparaison with other approaches
	4.6.3 Limitations

	4.7 Chapter conclusion

	5 Assisting developers in the generation of security test cases 
	5.1 Introduction
	5.2 Context and motivations
	5.3 Data-store extension and data integration
	5.3.1 Data-Store meta-model extension
	5.3.2 Data acquisition and integration

	5.4 An approach for guiding developers devise more secure applications
	5.4.1 Threat modelling
	5.4.2 Test generation and execution

	5.5 Evaluation
	5.5.1 Experiment Results
	5.5.2 Result interpretation

	5.6 Chapter conclusion

	6 Conclusions and perspectives
	6.1 Summary of the achievements
	6.2 Towards a complete toolkit
	6.2.1 Knowledge base completion
	6.2.2 Documentation Generation
	6.2.3 Runtime verification of security pattern properties in application traces

	6.3 Security pattern landscape
	6.3.1 Threat management with security patterns
	6.3.2 Security reference architectures

	6.4 Publications

	References

