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Abstract

This PhD thesis deals with the automatic continuous Cued Speech (CS) recognition in French
based on the images of subjects without using any artificial landmark. In order to realize this
objective, we extract high-level features of three information flows (lips, hand positions and
shapes), and find an optimal approach to merge them for a robust CS recognition system. We
first introduce a novel and powerful deep learning method based on the Convolutional Neural
Network (CNN) for extracting the lips and hand shape features from raw images. The adap-
tie background mizture models (ABMMSs) are applied to obtain the hand position features for
the first time. Meanwhile, based on an advanced machine learning method Constrained Local
Neural Fields (CLNF), we propose the Modified CLNF' to extract the inner lips parameters
(lips width A and lips height B), as well as another method named adaptive ellipse model. All
these methods make significant contributions to the feature extraction in CS. Then, due to the
asynchrony problem of three feature flows (i.e., lips, hand shapes and hand positions) in CS,
the fusion of them is a challenging issue. In order to resolve it, firstly, a new resynchronization
procedure is proposed to align hand and lips features based on the study of the temporal hand
movement in CS. Then, we propose several approaches including feature-level and model-level
fusion strategies combined with the context-dependent HMM. To achieve the CS recognition,
we propose three tandem CNN-HMDMs architectures. All these architectures are evaluated on
the corpus without any artifice, and the CS recognition performance confirms the efficiency
of our proposed methods. The result of 72.67% continuous phoneme recognition is compara-
ble to the state of the art, which used the corpus with artifices and was for the isolated CS
recognition case. In parallel, we investigate a specific study about the temporal organization
of hand movements in CS, especially about its temporal segmentation, and the evaluations
confirm the superior performance of our methods. In summary, this PhD thesis applies the
advanced machine learning (especially the deep learning) methods to CS recognition work,
which makes a significant step to the general automatic conversion problem of CS to audio
speech.

Keywords: Cued Speech, Automatic Continuous Speech Recognition, Automatic Feature

Extraction, Machine Learning, Deep Learning, Multi-modal Fusion, Context-dependent Mod-
eling, CNN-HMMs.
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Résumé

Cette thése de doctorat traite de la reconnaissance automatique de la langue francgaise Par-
lée Complétée (LPC), version frangaise du Cued Speech (CS), a partir de 'image vidéo et
sans marquage de l'information préalable a I’enregistrement vidéo. Afin de réaliser cet objec-
tif, nous cherchons & extraire les caractéristiques de haut niveau de trois flux d’information
(levres, positions de la main et formes), et fusionner ces trois modalités dans une approche
optimale pour un systéme de reconnaissance de LPC robuste. Dans ce travail, nous avons
introduit une méthode d’apprentissage profond avec les réseaux neurono convolutifs (CNN)
pour extraire les formes de main et de lévres a partir d’images brutes. Un modéle de mélange
de fond adaptatif (ABMM) est proposé pour obtenir la position de la main. De plus, deux
nouvelles méthodes nommeées Modified Constraint Local Neural Fields (CLNF Modifié) et le
modéle Adaptive Ellipse Model ont été proposés pour extraire les paramétres du contour in-
terne des lévres (étirement et ouverture aux lévres). Le premier s’appuie sur une méthode
avancée d’apprentissage automatique (CLNF) en vision par ordinateur. Toutes ces méthodes
constituent des contributions significatives pour I'extraction des caractéristiques du LPC. En
outre, en raison de l'asynchronie des trois flux caractéristiques du LPC, leur fusion est un en-
jeu important dans cette thése. Afin de le résoudre, nous avons proposé plusieurs approches,
y compris les stratégies de fusion au niveau données et modéle avec une modélisation HMM
dépendant du contexte. Pour obtenir le décodage, nous avons proposé trois architectures
CNN-HMMs. Toutes ces architectures sont évaluées sur un corpus de phrases codées en LPC
en parole continue sans aucun artifice, et la performance de reconnaissance du LPC confirme
Pefficacité de nos méthodes proposées. Le résultat (72.67%) est comparable a ’état de l'art
qui utilisait des bases de données ot 'information pertinente était préalablement repérée. En
méme temps, nous avons réalisé une étude spécifique concernant ’organisation temporelle des
mouvements de la main, révélant une avance de la main en relation avec ’emplacement dans la
phrase. En résumé, ce travail de doctorat propose les méthodes avancées d’apprentissage au-
tomatique issues du domaine de la vision par ordinateur et les méthodologies d’apprentissage
profond dans le travail de reconnaissance du LPC, qui constituent un pas important vers le
probléme général de conversion automatique du LPC en parole audio.

Mot-clés: Reconnaissance automatique du LPC en continu, Extraction automatique de
caractéristiques, Apprentissage automatique et Apprentissage profond, Fusion multimodale,
Modéle dépendant du contexte, CNN-HMMs.
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(zeneral Introduction

Motivation

It was reported by World Health Organization (WHO)! that over 5% of the world’s population
(about 432 million adults and 34 million children) have a disabling hearing loss nowadays, and
it is estimated that this number will rise over 900 million by 2050. Therefore, there will be
a serious demand of automatic methods to help these people communicate easier and better.
In fact, in the community of orally educated deaf people, lip reading [1]-[3] is still one of the
main modalities of perceiving speech, and its benefits have been widely admitted in the world
for a long time. However, the speech cannot be easily perceived thoroughly if the lip reader
has no knowledge about the semantic context due to the ambiguity of the visual patterns in
lip reading. In fact, many phonemes which look identical on lips (e.g., [p], [b] and |m]) cannot
be well perceived only by the lips information. For example, for the moment, one of the best
automatic lip readers Watch, Listen, Attend and Spell (WLAS) network [4] still obtains a
23.8% word error rate on the Lip Reading in the Wild (LRW) dataset.

To overcome the low performance of lip reading and improve the reading ability of deaf
children, in 1967, Cornett [5] developed the Cued Speech (CS) system [5]-[9] which uses
the hand gestures to complement the lips information to make all the phonemes of spoken
languages clearly visible. Therefore, the similar lips shapes can be distinguished by adding the
hand information, which allows the deaf people to completely understand spoken languages
using the lips and hand information. This cuing system allows the people who are deaf, hard
of hearing to access the basic, fundamental properties of spoken languages by the vision.

To improve the communications between the hearing impaired people and normal hearing
people, it will be meaningful to realize an automatic conversion from visual modality to audio
modality and inversely from audio modality to visual modality. This PhD thesis focuses on
the automatic continuous recognition of CS in French in the conversion from visual modality
to the text?(phonemes). Its framework lies in the multi-modal (audio-visual) speech processing,
and intersects with the human machine communication, Artificial Intelligence and computer
vision.

Challenges

A CS recognition system requires an automatic recognition to decode not only the lips of the
speakers but also the movements of their hand. In this thesis, the CS recognition contains
three main procedures: feature extraction, multi-stream (lips and hand) fusion and continuous

! http://www.who.int/en/
21n fact, this conversion is an important step in the process of visual modality to audio.
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2 General Introduction

CS recognition, which can be seen in Fig. 1.

Video

Loy o e

‘—|=;fm
u-r‘: -hnl

Figure 1: Framework of the automatic CS recognition from visual modality to phonemes.

In the process of realizing the automatic CS recognition in Fig. 1, there are three main
challenges, which can be summarized as follows.

(1) The first challenge is the feature extraction without using any artificial landmark. In fact,
in the state of the art [10], [11], the corpus was recorded with artifices for the convenience
of the lips and hand feature extraction. To the best of our knowledge, no work has
been dedicated to extracting the lips and hand features based on the raw images in CS.
Therefore, to get rid of these artifices in the feature extraction step is our first challenge.

(2) The second one is the temporal segmentation of the hand movements in CS. Assuming
that lips movement is synchronized with the audio sound [12]-[14], we can obtain the
temporal segmentation of lips by temporally aligning the audio sound. However, since
lips, hand position and hand shape are asynchronous in CS, hand can not share the same
temporal segmentation with the lips movement. In the state of the art [10], [11], the tem-
poral segmentation of the lips, hand position and shape streams was all directly realized
by the audio signal. Thus, in this thesis, our second challenge is to take into account
this asynchrony issue among these three streams, and propose methods to automatically
segment the hand position and hand shape movement temporally.

(3) The third one is the continuous CS recognition system which takes into account the fusion
of the asynchronous feature streams. In this thesis, the continuous CS recognition follows
two conditions: the data is composed of continuous sentences®; and the temporal boundary
is not given(i.e., every image frame is fed to the recognizer) in the test step. In the state of
the art [10], [11], either the isolated CS recognition was studied in a continuous sentence
corpus, or the continuous CS recognition was studied in an isolated word corpus, and the
context information of CS was not modeled. In this thesis, we deal with the continuous
CS recognition based on a continuous sentence corpus, and thus it is much more difficult.
On the other hand, the multi-modalities in CS lead to another problem of how to merge
the features from different streams. Therefore, how to realize the CS recognition taking
into account the fusion of different modalities, as well as the context information of feature
flows, is our third challenge.

3 The continuous sentence is made up of continuous words (i.e., not isolated words), but there is a time gap
between sentence and sentence.
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Methodologies

To realize the automatic continuous recognition of French CS in the conversion from visual

modality to phonemes, based on the corpora of five speakers, we develop several approaches
and algorithms in this thesis. Corresponding to the above three challenges, these approaches
and algorithms can be summarized as follows.

(1)

For the first challenge, we propose two novel methods named Modified Constrained Local
Neural Fields (Modified CLNF) [15], [16] and adaptive ellipse model [17] to extract the
inner lips parameters. Meanwhile, Convolutional Neural Network (CNN) [18], [19] is
applied on the raw lips Region of Interest (ROI) to extract the high-level pixel based lips
features. For hand position features, we propose to use the Adaptive Background Mixture
Model (ABMM) [20]-]22] to extract the hand position, which is taken as the center of the
hand ROI. After the hand ROI is tracked, CNNs are then applied to extract hand shape
features from ROI of the raw images.

For the second challenge, we propose a hand preceding model to automatically predict the
temporal segmentation of hand position movement by exploring the relationship between
hand preceding time (i.e., the time that hand precedes lips movements) and the vowel
positions in sentences. To evaluate the performance of the proposed method, hand position
recognition is realized with the multi-Gaussian and Long Short-Term Memory (LSTM)
[23] using different temporal segmentations of hand position. The results show that using
the temporal segmentation predicted by the proposed method significantly improves the
recognition performance compared with that using the audio based segmentation. For
the hand shape stream, we propose the optimal temporal segmentation for hand shape
realization based on the hand preceding model of the hand position.

For the third challenge, the asynchronous multi-modal fusion and the continuous CS
recognition are realized thanks to several new tandem architectures which combine the
CNNs, Hidden Markov Model (HMM) [24], [25], different fusion strategies and context-
dependent modeling. A new resynchronization procedure aligned concatenation (AC) is
proposed to pre-process the multi-modal features in order to reduce the effect of the
asynchrony and guarantee the quality of fusion. Without exploiting any dictionary or
language model, the best proposed tandem CNN-HMM architecture can correctly identify
about 72.7% of the continuous phonemes using the hand position given by ABMMs and
76.6% using the ground truth hand position. Notably, this result is comparable to the
state of the art [10], which was for isolated CS recognition and used the corpus with
artifices. In fact, this thesis is the first work to deal with the continuous CS recognition
based on a sentence corpus without using any artifice.

Organization

This PhD thesis is organized as follows.



4 General Introduction

In Part I, we present the background of CS and the state of the art of the automatic
CS recognition, as well as CS materials which will be used in this thesis. The methods of
deep learning and multi-modal fusion are also introduced. In Chapter 1, we first introduce the
history and development of CS, as well as the principles of its construction. Some other studies
like CS perception, production and the automatic CS processing are also reported. Then, we
report some previous work about the automatic lip reading, hand feature extraction, automatic
CS recognition system and some other related topics. In Chapter 2, the experimental setup
and the corpus are introduced, as well as the phonetic transcription, automatic alignment,
the definition of the lips and hand parameters, and the classical pixel based feature extraction
methods. In Chapter 3, we focus on the deep learning methods. A general framework of the
artificial intelligence, machine learning and deep learning related with this thesis is presented,
and the standard Multi-Layer Perceptron (MLP), CNN, Recurrent Neural Network (RNN)
[26] and related deep learning methods are presented. In Chapter 4, we introduce the Hidden
Markov Model (HMM) and the classical multi-modal fusion strategies as well as deep learning
based fusion methods in Audio Visual Speech Recognition (AVSR). Then context-dependent
modeling is presented. The ideas about the application of these methods in the CS recognition
are also discussed.

In Part II, we first propose the methods for extracting the lips and hand features in CS.
The temporal segmentation of the hand movements in CS is then studied, as well as the
automatic continuous CS recognition. In Chapter 5, we present two studies for estimating the
inner lips parameters. One is the Modified CLNF [15], [16] which effectively estimates the
inner lips parameters even in different contexts, e.g., with hand occlusion or different lighting
conditions. The other is the adaptive ellipse model [17| which is able to extract the inner lips
parameters for any lips shape. In Chapter 6, We focus on the extraction of the hand position
and hand ROI in CS. The hand position is tracked by the ABMMs [20], [21], [27], which model
the background of the image by Gaussian Mixture Model (GMM), and the hand ROI is then
determined based on the hand position. In Chapter 7, an automatic method is developed to
segment the hand movements temporally. For the hand position movements, a hand preceding
model which investigates the relationship between the vowel position in sentences and the hand
preceding time is proposed. Based on the hand position result, the hand preceding model for
hand shape is built. In Chapter 8, we propose several tandem CNN-HMM architectures for
the CS recognition. The Artificial Neural Network (ANN) is applied for processing the hand
position features, and CNNs are used for extracting the features of hand shapes and lips. A
resynchronization procedure combined with the feature-level and model-level fusion methods
[28] are used to merge the lips and hand streams within a context-dependent HMM-GMM
decoder. Then the viseme, vowel, consonant and phoneme recognitions are conducted to
evaluate these CNN-HMM architectures.

Finally, we summarize the main contributions and results of this thesis and give some
suggestions for the future work.



Part 1






CHAPTER 1

State of the art of Cued Speech
Automatic Processing

Contents
1.1 Introduction to Cued Speech . . ... ... ... ... .. .0 7
1.1.1 The motivation of Cued Speech . . . . . . ... ... ... ... ...... 8
1.1.2  The construction of Cued Speech . . . . . ... .. .. ... ... ..... 9
1.1.3  Other studies of Cued Speech . . . . . . . ... ... ... ... ...... 11
1.2 The state of the art of Cued Speech Recognition ... ......... 15
1.2.1 The state of the art of lips feature extraction . . . . ... ... ... ... 15
1.2.2 Hand feature extraction . . . . . . . . . . ... ... ... 16
1.2.3  Cued Speech recognition . . . . . . . ... L oo 19

1.1 Introduction to Cued Speech

Cued Speech (CS) is a system! using the hand codes as a complement to the natural lip
reading, invented by Cornett [5] in 1967, to make the hearing impaired people access spoken
language easier (see Fig. 1.1). In this system, as a combination of different hand shapes and
positions near the face, the hand coding complements the lip reading to enhance the speech
perception. More precisely, the hand shapes are used to code the consonants, while the hand
positions on one side of the face or the neck are used to code the vowels.

CS is now becoming more and more attended by the world and has been adapted to
over 60 languages for the moment. The National Cued Speech Association (NCSA)? for
American English CS and Cued Speech Association UK (CSAUK)? for British English CS
have been established to generalize this system. For the French CS, which is named Langue
frangaise Parlée Complétée (LPC) [7], the Association Nationale de la Langue Frangaise Parlée
Complétée (ALPC)?* has been established as well. These associations have been trying their

" https://www.youtube.com/watch?v=jn4e9V3oigs
2http://www.cuedspeech.org/
3http://www.cuedspeech.co.uk/
“http://alpc.asso.fr/
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best to improve the communications between the deaf or hearing impaired children and the
normal hearing family members through the CS system.

In this chapter, we first present the CS system with a brief history of its background and
construction. Then, other studies of CS such as the speech perception and automatic CS
processing are reported. Finally, we explore the state of the art of CS recognition as well as
the lips and hand feature extraction.

1.1.1 The motivation of Cued Speech

CS is invented to augment lip reading to improve the communication abilities of the hearing
impaired people. Now we first briefly introduce the lip reading, also known as the speech
reading, which is a way of perceiving speech by interpreting the movements of the mouth, lips
and tongue visually when there is no available sound. A more common way of understanding
the lip reading is to interpret the movements of only lips, which is adopted in this thesis.
One of the most important applications of lip reading is to help the deaf or hearing impaired
people access the spoken speech, which has undoubtedly improved the communication of these
people a lot. However, there still exists a problem in this approach, which can only provide
insufficient information sometimes. More precisely, it does not allow to recover some contrasts,
for example [p] vs. [m]|, which is caused by the similarity of labial shapes. As a result, this
problem makes it difficult for deaf or hearing impaired people to access speech only by the
traditional oral education. Many methods have been proposed to overcome this problem up
to now, and most of them use hand codings to provide additional information.

r'

Figure 1.1: Examples of cueing American English CS (from the NCSA).

Now we present a more detailed description of how CS overcomes the limit of lip reading.
As we know, spoken English has more than 40 phonemes, and spoken French has 36 phonemes.
The normal hearing people can distinguish these different phonemes from auditory speech.
However, some of them may look similar on the mouth, and thus it is difficult to distinguish
them visually. As a result, a skilled lip reader cannot discern all the information during a
conversational discourse without the help of the semantic and syntax context. The amount of
information, which can be perceived, ranges from only about 20% to 60% [29]. For example,
the phonemes [m, b|, and |p| look very similar on the mouth. If one says the following
two sentences (in French) without voice or in a high-noise environment, it would be almost
impossible for the lip readers to distinguish them:
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1l mange des frites;

1l marche trés vite.
It is possible that the logic based on the context information may help an adult to figure out
such pair of sentences. Take the following two sentences for example:

1l marche trés vite;

1l marche des frites.
It is easy to see that the first one is the sentence we are listening to, while the second one is
impossible. However, it is difficult for a child, who is two, three or four years old, to perceive
higher-level context and logic thinking. Even for the adult people, if some of the details are
missing or uncertain in the process of discourse, it will be difficult for them to keep on track.
This is the reason why the CS system is introduced. A cue-reader in this system has access to
all of the information through visual information. For the above problem (e.g., the confusion
among |m|, [b] and [p]), different hand shapes are used to distinguish these phonemes which
look very similar on the lips shape.

The CS solves some concrete problems which are confronted by a large number of hearing
impaired children. These problems® are summarized by Dr. Cornett as follows.

(1) "The limited communication in the early years, resulting in retarded personality develop-
ment and delayed social maturation.

(2) The delayed and limited acquisition of verbal language, including its vocabulary, syntax,
and common idioms. Rapid early verbal language rarely occurs in the very young child
through only traditional methods, e.g., Sign Language (SL) and oral education.

(3) Failure to acquire an accurate and extensive model of the phonological details of the spoken
language. Such a model is indispensable for accurate speech patterns and maximum
development of speech reading ability. The needed base for reading is constituted by
the needed linguistic competence in vocabulary, syntax, and idioms, together with the
phonological model. The six years old child needs this base to learn to read easily and
enjoyably.

(4) The lack of a convenient method of clear communication in the classroom, at home, and
elsewhere, for use in interaction, for instruction, for clearing up the disagreement, for
making clear pronunciation, and for increased awareness of and involvement in whatever
is going on."

1.1.2 The construction of Cued Speech

In this subsection, we will introduce the criteria of the CS construction, especially about the
American English CS and LPC.

®http://www.cuedspeech.org/cued- speech-what-and-why . php


http://www.cuedspeech.org/cued-speech-what-and-why.php

10 Chapter 1. State of the art of Cued Speech Automatic Processing

1.1.2.1 The criteria of Cued Speech

The first CS system was built for the American English by Cornett [5] based on four hand
positions and eight hand shapes (see Fig. 1.2), in which two major criteria were set: the
minimum effort for encoding, and the maximum visual contrast. The number of hand shapes
and hand positions is limited in order to save the energy for encoding CS. In CS, the basic unit
is C'V (consonant-vowel) syllable. Hand shape codes consonants and position codes vowels of
syllables. To optimize the CS system, consonants with similar lips shapes should be grouped
into different hand shape groups. The same principle is used for the vowel case. The other
point is to maximize the visual contrast for each group. In American English CS system,
Dr. Cornett used the frequency tables in [30] to group all the phonemes. The aim is to
make the coding spend minimum energy and facilitate the hand movement in CS coding. As
special cases, the isolated consonants and vowels are coded by the corresponding shape and
the neutral shape (No. 5), respectively, at the side position (see Fig. 1.2).

As a result of above criteria, the most commonly used consonants such as [t|, [m] and [f]
are encoded by the shape No. 5 which is easier to remember and perform. For the vowels,
Dr. Cornett defined three lips configurations: open, flattened-relaxed and round. According
to the vowel viseme, hand positions are distributed to distinguish the vowels in a viseme. The
diphthongs are encoded by shifting the hand between two vowel positions.

Cues for vowels and diphthongs

- ‘-. & -, [ _r'.l
T " |‘ t L o ﬁ i
Side (*) Mouth Chin Throat Side-throat | Chin-throat
a: (father) i (see) a: (tall) # (that) e (day ) ar (my)
A (but) a: (her) e (tent) 1 (is) a (boy) au (how )
au (home) w (blue) u (book)
a (the)

Cues for consonants

‘

Configuration 1

®

Configuration 2

Configuration 3

p (picture) k (caves) s (sea) b (both)

d (deep) v (visual) r (rate) n (name)

5 (treasure) 4 (the) h (horse) w (white)
z (cues)

Configuration 4

Configuration 5
t (training)
m (mother})
f (father)
(*)

Configuration 6
I (look)
[ (shell)
w (wet)

Configuration 7

g (give)
0 (thin)
ds (Jogger)

Configuration 8
i (you)
i (young)
tf (child)

Figure 1.2: Manual cues of American English CS (from [31]).
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1.1.2.2 LPC: The French version of Cued Speech

The French CS was called Langage Codé Cornett when it was first introduced in 1977. Then,
it evolved into Langage Parlé Complété, and was finally changed to Langue frangaise Parlée
Complétée (LPC) [7] (see Fig. 1.1) to show that it is completely based on the French language.
LPC possess the two criteria as American English CS, as well as the functioning principle and
the coding unit (see Fig. 1.3). However, there are still some difference between LPC and
American English CS. LPC uses five hand positions to code French vowels instead of four.
Besides, French language does not have diphthongs. Therefore, there is not rules for coding
diphthongs by sliding the hand position movements. In order to make an easier adaptation of
LPC, the hand shape codings are similar to the American English CS.

d (dos) s (sel) b (bar)
p (per) R (rat) n (non)
3 (oue) Yy (lwi)
I (1a) H g (gare) § (fle)

k (<car)
v (wa)
z (base)

t (bar)

m (mare) J (ehar) n (camping)
f (fa) n (wigne)

‘ w (fa)
Side Cheekbone Mouth
(v ¥} a (ma) = : £ (main) A5 3} i (mi)
- o (maux) @ (few) e\ 3 (ton)
| @ (teuf-teul) \ @ (man)

Chin Throat
¥ <) £ (mals) = <; @ (un)
u (mou) y ()
> (fort) i e (lée)

Figure 1.3: Manual cues of LPC (from [10]).

1.1.3 Other studies of Cued Speech

Concerning other studies of CS, one frequent question is what is the difference between CS
and Sign Language (SL). In this subsection, we will first introduce the SL and then show the
main difference between CS and SL. Moreover, the studies of CS in speech perception and
automatic CS processing will be introduced.

1.1.3.1 Comparisons between Cued Speech and Sign Language

We first briefly introduce Sign Language (SL), which is a widely used communication method
for deaf people. SL is a language that uses manual communication to convey a speaker’s ideas.
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The manual communication may include the hand gestures, movement, the orientation of the
fingers, arms or body, and facial expressions simultaneously. An example signing "Hello" in
SL can be seen in Fig. 1.4. SL should not be confused with the "body language", since SL
is a full language as other spoken languages and has its specific grammar rule. However,
body language is not a language like SL, and it is a non-verbal communication system which
expresses or conveys the information by physical behaviors, including the facial expression,
body posture, gesture, eye movement and touch.

Figure 1.4: One example of SL, signing "hello"S.

Now we show the differences between these two approaches. Firstly, SL was developed in
the early 18th century while CS was invented in 1967. This may be the main reason why CS
is not so popular as SL. Secondly, SL is a language with its own grammar and syntax, while
CS is a visual representation of the spoken languages. SL is developed to show a language
by signs with a word as the unit, instead of a phonetic unit in the CS system. For example,
the signs for "dog" do not show the phonetic properties of the word as [dog]. The signs for
"cat" do not indicate the phonemes [cat|. However, CS codes in phonetic level. Thirdly, to
become fluent, any new language including SL often needs to take several years, while CS can
be learned in a fast 20 hours training. It was reported in [32] that parents worry about that
if there is no available SL model, their child may have some delay of the first-language.

Dr. Cornett pointed out that SL would always be a part of the deaf community and the
CS is not going to replace the SL. However, the deaf children are able to master and learn
native language easily by using CS.

1.1.3.2 The studies of Cued Speech in speech perception

Improving the speech perception efficiently is an important point of CS [6], [10], [33]-[35]. In
practice, CS has shown good performance for normal hearing parents communicating with

Shttps://www.babysignlanguage.com/dictionary/first-signs/?v=11aedd0e4327.
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their hearing impaired children, as well as the communication between teachers and hearing
impaired children in the class.

Now we briefly introduce two well-known studies on CS perception. Nicholls et al. [6]
carried an experiment to test if it is workable for hearing impaired children to perceive English
words only based on visual information without any audio sound. The result gave a positive
answer and confirmed the effectiveness of CS to improve the speech perception for hearing
impaired children. In [35], thirty-one French deaf children were asked to perceive the French
words and pseudo-words. The result confirmed that LPC can reduce the ambiguities of lip
reading, and deaf children can understand the words and pseudo-words easier and faster using
LPC (with very similar performance compared with the normal hearing people). A more
detailed review of the effectiveness of LPC for the development of French language perception
can be referred to [36].

1.1.3.3 The studies of Cued Speech production

The CS production mainly focuses on the temporal organization of lips and hand movements.
In 1967, Cornett |5] emphasized that audio speech should leave some time for hand realization.
In 1988, Cornett [31] proposed the Autocuer system, in which the LED lighting was derived
from a phoneme recognition of the audio speech signal. The result showed that hand precedes
the sound production about 150 to 200 ms. The first systematic study on the CS production
was [37], where Attina et al. found that the hand reaches its target roughly between 171 to 256
ms before the phoneme being visible at lips. Their corpus is constituted by nonsense French
syllabic sequences decomposed as C1V1C1V1C2V2C1V1 (such as "mamabuma" logatome).
Besides, in [38], Aboutabit et al. found that the hand precedes lips movement about 144.17
=+ 80.68ms based on the syllables extracted from continuous sentences, which is coherent with
[37].

1.1.3.4 Temporal segmentation of hand movement in Cued Speech

As we know, lips and hand are asynchronous in CS. Therefore, the temporal segmentations
of them should be different. There are some automatic methods to obtain the audio based
segmentation [12], [13], [39], which can be used for lips. For the hand position movement,
the prior work [38], [40], [41] proposed an automatic method to temporally segment the hand
movement based on the corpus with color marks. As hand positions can be extracted by
tracking the blue color on subject’s hand, the temporal segmentation of hand movement can
be obtained based on Gaussian modeling of the hand positions and a minimum of the velocity.
More precisely, as shown in Fig. 1.5, by plotting the smoothed x and y coordinates of the hand
position, some local plateau defined by a set of successive identical position numbers will be
obtained.

Firstly, five trained Gaussian classifiers corresponding to five positions are used to classify
the hand positions in each frame. Sequential frames with a sequence number (1-5) are ob-
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tained. Then a threshold is applied to the velocity to specify the boundaries of the target. The
position where velocity is higher than the threshold is considered as a transition. Otherwise,
it is the target hand position. By the above two criteria, the beginning and the end of each
hand position interval can be determined.
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Figure 1.5: The automatic method to temporally segment the hand movement based on artificial blue
marks. Two curves are the smoothed z and y coordinates of hand positions with plateaus, respectively.
The black points are the classified hand positions obtained by Gaussian classifier (from [38]).

However, this method needs both spatial positions of the hand back and target finger, and
thus it is not possible to directly apply this method to the database without painting any
artificial mark.

1.1.3.5 The studies of automatic Cued Speech processing

The automatic processing of CS is located in the domains of synthesis and recognition. For the
synthesis domain, it started with the AutoCuer system [42] in the field of assistive technology.
Then, Duchnowski et al. [43] continued the idea of using audio recognition for American
English, and developed a video system that displays a synthesis hand in superimposition to
the image of the speaker’s face. To improve their system for better use of CS deaf lip readers,
the authors empirically advanced the hand with 100ms before the temporal segmentation was
given by the recognition system. In 2004, at the Institut de la Communication Parlée (ICP)
in Grenoble, Attina et al. [37] completed the pioneer work on CS production that pointed
out an advance of the hand cues to the lips (between 171 to 256ms). They presented the first
text to visual speech synthesizer including rules for the hand advance. In 2005, Gibert et al.
[44] realized an articulatory 3D synthesizer from the analysis of a VICON recording’. Finally,
Ming. et al. [45] built a mapping of CS hand positions from audio speech spectral parameters
using the Gaussian Mixture Model (GMM).

The work on automatic processing of CS was extended to the recognition field with the
first result on vowel recognition from image videos in [40], which was conducted in the context
of French ANR TELMA project [46]. Then, the isolated CS phoneme recognition was realized

" This recording was conducted in the context of French ANR ARTUS project.
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in [10]. After, the continuous CS speech based on an isolated word corpus was conducted in
[11]. In all the previous work on CS recognition, the video images were recorded with artifices
applied to the CS speaker before the recording (blue sticks on the lips, blue marks on the hand
and forehead) in order to mark the pertinent information and make their further extraction
easier.

1.2 The state of the art of Cued Speech Recognition

CS recognition aims to develop an automatic system to enable or enhance the communication
between the deaf and hearing people. This automatic system has to recognize lips shapes
and hand gestures (hand positions and hand shapes) to recognize CS. As in Section 1.1.3.5,
researchers have been trying to explore the CS recognition which consists of lips, hand feature
extraction and recognition. In this section, we present the state of the art of them.

1.2.1 The state of the art of lips feature extraction

Lips feature extraction is one of the most active and challenging research areas in speech
processing and computer vision, and it is certainly an important task for CS recognition as
well. We now introduce the lips feature extraction in CS case, and the general methods in
some other fields.

In the literature, a common way [10], [11] to extract lips feature was realized by tracking
the color landmarks on speaker’s lips (see Fig. 1.6). A threshold was applied to this gray level
image to segment the blue lips. In [10], they obtained 68% accuracy for vowel recognition and
52.1% accuracy for consonant recognition using only lips features. However, the disadvantage
of this approach is that the threshold for detecting the blue color is difficult to satisfy in some
cases such as when the hand overlaps lips area or the lighting condition changes slightly.

The machine learning methods have also been used for lips feature extraction in CS.
Stillitano et al. [47] used active contours combined with parametric models to extract the
lips contour in CS. Their algorithm could get an accurate segmentation of the lips contour.
However, this algorithm sets many thresholds for the lips parameter model, and is not robust
for unstable experimental conditions.

The lips feature detection is also an essential problem in some other areas. Given the lips
ROI, several algorithms such as snakes model [48|, templates based methods [49], and active
shape and appearance models [50]-[52] can be used to obtain the lips contour. In order to
extract the nonlinear properties of the lips image, several deep learning approaches for visual
speech recognition have been presented recently. Hlavac [53| applied the Convolutional Neural
Network (CNN) [26] to the lips landmark detection. The error is 0.97 pixels per point on the
test data. Most errors come from the chin area, since no robust feature could lock the exact
positions of the landmarks. Noda et al. [54] extracted the visual features using CNN for each
frame from raw images. Using only the visual features, the accuracy of their method is about
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Figure 1.6: Three steps for lips shape and hand gesture detection based on blue marks in CS. From
the left to right, it shows the original image, the feature map extracted from the blue component and
the effect after applying the thresholds for the blue marks (from [10]).

20% for recognition of Japanese phonemes. Using only the lips features, Li et al. [55] proposed
a lip reading approach to the isolated word recognition based on a dynamic feature and CNN,
and 71.76% accuracy was obtained.

1.2.2 Hand feature extraction

Let’s us recall that hand coding is used to complement the lip reading to make the phonemes
visible in CS, and thus it carries a lot of significant information. Moreover, it is also an
essential topic in other research fields like motion capture system, SL recognition. Now we
present the hand tracking in CS and some other fields.

In CS, hand feature includes the hand position and shape. The correct hand shape feature
is required for consonant recognition, and the correct hand position is required for vowel
recognition. In the literature, the classical methods to extract the hand features were based
on the artifices on subject’s hand. Heracleous et al. [10], [11] proposed a method based on the
x and y coordinates of the color landmarks placed on the fingers (see Fig. 1.7). The coordinates
of the color landmarks on the finger are used as features for the hand shape and hand position
modeling. Except for the above method which uses colored marks on the speaker’s hand, in
[56], speaker wore a one-colored glove in order to make the hand segmentation (see Fig. 1.8).

Figure 1.7: Hand shape feature extraction based on the projection of the blue marks. The left image
shows the CS speaker, and the right image shows the projection method to obtain the hand shape
features (from [10]).

Meanwhile, hand feature extraction is also very active in some other fields, such as SL
and gesture recognition. Lots of studies have also been dedicated to the hand tracking of
some other fields in the literature. For the hand shape feature extraction in SL, Gonzalez et
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Figure 1.8: Hand segmentation based on the detecting glove. The original images, similarity color
maps and segmented hand shapes are shown from left to right (from [56]).

al. [57] presented a method based on the combination of pixel color and edge orientation to
segment the hand over the face accurately. Experiments using the Dicta-Sign corpus® indicate
that this method can extract the hand effectively based on their own SL corpus. In [58], an
American Language recognition system was presented with a vocabulary of 30 words. An
appearance based representation was constructed and a hand classification was realized by
a Hidden Markov Model (HMM) [24], [25]. An error rate of 10.91% was achieved on the
RWTH-BOSTON-50 database. The approach in [59] used the Microsoft Kinect to extract
the appearance based hand features and track the 2D and 3D positions. The classification
results were obtained by comparing an HMM approach with the sequential pattern boosting
(SP-boosting). This resulted in an accuracy of 85.1% with 40 gestures. An Artificial Neural
Network (ANN) [60] was used for the classification. This method is able to recognize 20
Italian gestures with a cross-validation accuracy of 91.7%. On the other hand, in recent years,
some related work on SL recognition (hand shape recognition) based on deep learning has
been explored [59], [61]-[69]. Due to the availablity of large datasets like RWTHPHOENIX-
Weather-2014 [67], researchers paid more attention to the continuous hand shape recognition
using Deep Neural Network (DNN) in SL. CNNs were widely used in image processing and
with good performance. Pigou et al. [68] considered a hand recognition system using the
Microsoft Kinect (see Fig. 1.9), CNNs and Graphics Processing Unit (GPU) acceleration.
The DNN was combined with HMM-based temporal modeling in [66]. In 2017, Camgoz et al.
[62] proposed the deep learning architecture SubUNets for SL recognition. The result showed
this architecture achieved more than 30% improvements compared with the state of the art.

In the field of people’s affective and cognitive mental state recognition, it is also important
to analyze facial expressions and hand gestures. Mahmoud et al. [70] presented an auto-
matic detection for the hand-over-face gestures based on multi-modal Support Vector Machine

8http://www.sign-lang.uni-hamburg.de/dicta-sign/portal/
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(SVM) with the feature of Histogram of Oriented Gradients (HOG) and Space-Time Interest
Point (STIP). Experiments showed that the method recognizes the hand shape (fingers, open
hand, closed hand, two hands) with an accuracy of 36%, and the hand action (static and
dynamic) with an accuracy of 76%. Hand gesture recognition is also important for designing
touch-less interfaces in cars. Such interfaces are very friendly and allow drivers to concentrate
on driving while intercommunicating with other things, e.g., audio and air conditioning, and
thus improve drivers’ comfort and safety.

W R

(a) RGB (b) Depth map (c) User index (d) Skeleton

Figure 1.9: Hand recognition system using the Microsoft Kinect for SL (from [68]).

Hand Action | Static Dynamic

Hand Shape Fingers Open hand Closed hand

Facial Chin Middle face (Cheeks &
Region Nose)
Qccluded

Figure 1.10: The refined coding scheme for hand-over-face gesture descriptors (from [70]).

More importantly, it is worthy to mention the recent popular gesture pose tracking system
open-pose |[71]-[73], which is very robust even with the occlusion (see Fig. 1.11). This approach
learns the body guesteures by a non-parametric representation which called Part Affinity Field
(PAF). Motivated by its attractive advantages, we test it in our CS case for hand tracking,
and the experimental results will be presented in Section 2.3.4.
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Figure 1.11: A visualization of open-pose system for body gesture detection (from [73]).

1.2.3 Cued Speech recognition

Audio Visual Speech Recognition (AVSR) is a way which uses the information of lips to
help audio speech recognition, while Visual Speech Recognition (VSR) only considers the
information of video image such as lips and tongue. CS is located in VSR and can be considered
as a visual supplement component to augment lip reading. Automatic CS recognition shares
some issues with some other fields of multi-modal speech processing, such as AVSR? [28], VSR
(i.e., automatic lip reading) [74], silent speech interfaces |75], [76], and gesture recognition,
which includes the SL recognition introduced in Section 1.2.2. Now we present the state of
the art of the automatic lip reading and the CS recognition, and the fusion methodologies will
be introduced in Chapter 4.

Automatic lip reading

Automatic lip reading plays an important part in CS recognition. In the literature, many
studies [77]-[83] have been dedicated to this field. An extensive review of the automatic lip
reading can be referred to [84]. For the traditional methods, two steps are included generally.
The first is the visual feature extraction and the second is the classification. Besides, deep
learning is becoming very popular in automatic lip reading. The general framework includes
a CNN to extract the lips features and a Recurrent Neural Network (RNN) to construct
the model temporally. For example, the LipNet was proposed in [85] as the first end-to-
end sentence-level lip reading model. It achieved 95.2% accuracy on the GRID corpus [86],
outperforming the state of the art [87]. Chung et al. [88] developed the Watch, Listen, Attend
and Spell (WLAS) model based on Long Short-Term Memory (LSTM). This model used an

9Indeed, in a large scope, we usually think that CS recognition is located in the AVSR area since lip reading
can be seen as an audio articulatory activity.
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attention mechanism to operate the visual and audio data, and the evaluation on the BBC
television database confirmed the good performance.

Automatic Cued Speech recognition

For the automatic phoneme CS recognition, the fusion of three modalities (i.e., lips, hand
position and hand shape) is required. For vowel recognition, lips and hand position features
are merged. For consonant recognition, lips and hand shape features are merged. Now we
present the state of the art of automatic CS recognition including the isolated and continuous
cases, while a summary can be seen in Table 1.1.

Table 1.1: A summary of the previous studies on CS recognition. [11] is for the continuous recognition
case with corpus of French words, while others are for the isolated recognition case with corpus of
sentences. The audio-based temporal segmentations are used for the features of three streams, and
the recognition classifier is HMM-GMM except that the simple Gaussian classifier is used in [41].

Vowel recognition (lips 4+ hand positions)

Features Fusion strategy Results
Aboutabit et al. [41] Corpus with artifices decision-level 77.6%
Heracleous et al. [89] Corpus with artifices feature-level 85.1%
Heracleous et al. [10] Corpus with artifices model-level 87.6%
Heracleous et al. [11] Corpus with artifices feature-level 88.9%

Consonant recognition (lips + hand shapes)

Heracleous et al. {10], Corpus with artifices feature-level 78.9%
[11], [90]
Aboutabit et al. [91] Corpus with artifices model-level 79.6%
Phoneme recognition (lips + hand shapes + hand positions)
Heracleous et al. [10] Corpus with artifices feature-level 61.5%

decision-level (Two pass 70.9%

Heracleous et al. [10] Corpus with artifices schemes + two GMMs)

ision-level (T
Heracleous et al. [10] Corpus with artifices iiceli:;: +eve€;g}(1t V(‘;(i\/lpl\zjlsss) 74.4%
Heracleous et al. [11] Corpus with artifices feature-level 82.9%

For the isolated CS recognition, Aboutabit et al. [41] focused on the identification
of vowels by merging CS hand positions and lips information of SC corpus. Hand position
was conducted using the Gaussian classifier which took the 2D hand positions as input. The
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vowel recognition used the merged features of the lips and hand position, and obtained 77.6%
identification correctness.

In [10], Heracleous et al. used the context-independent HMM-GMMs to decode a set of
isolated phonemes extracted from CS sentences, i.e., the temporal boundaries of each phoneme
to be recognized in the video was given at the test stage. In fact, the audio based temporal
segmentation was used for the temporal alignments of the lips, hand position and shape. The
corpus was derived from a video recording of the CS speaker with blue colors on lips and hand
pronouncing and coding a set of 262 French sentences. The experiments concerning the vowel,
consonant and phoneme recognitions were presented.

For vowel and consonant recognitions, lips and hand features are merged using one stream
HMM and multi-stream HMMs. The results are shown in Fig. 1.12, we see that using GMMs
(with 32 components) and the model-level fusion, vowel recognition obtains 87.6% accuracy
(see Fig. 1.12(a)), and consonant recognition 78.9% (see Fig. 1.12(b)). We can observe that
the vowel and consonant recognition accuracy increased with the the increasing number of
Gaussian mixture components. Besides, the case combining lips and hand information clearly
outperformed the case using lips information only.

For the phoneme recognition, Heracleous et al. [10] proposed three approaches for the
feature fusion. The first method is simply concatenating lips, hand position and shape features,
while the second and third one are the one pass scheme and two-pass scheme, respectively.
More precisely, for the first pass, the input data are fed to GMMs. The input is considered
as a vowel or a consonant based on the likelihood of GMMs. When the likelihood of the
vowel-GMM is higher than that of the consonant-GMM, the decision is made for a vowel.
For the second pass, vowel and consonant recognitions are realized by HMMs. The second
and third methods have different numbers of GMMs and training units. Two GMMs are used
for training vowels and consonants in the second method, while eight GMMs are used for
training 3 vowel visemes and 5 consonant visemes in the third method. It is shown that the
third method gives the best phoneme recognition (74.4%). Besides, isolated word recognition
experiments based on the word corpus introduced in Section 2.2.1 were conducted [10]. The
normal hearing subject obtained a higher accuracy (94.9%) than the hearing impaired subject

(89%).

For the continuous CS recognition, the prior work [11] explored it based on context-
independent HMM-GMMs. However, the dataset in [11] is composed only of isolated words
repeated several times (not continuous sentences). Fig. 1.13(a) shows the phoneme correct-
ness using the information of lips only, hand shape only and merged feature in case of the
normal hearing speaker. We can observe that the correctness increase significantly when
merging the hand features and lips information. More precisely, it achieves correctness: vowel
88.9%, consonant 86%, and phoneme 82.9%. Compared with the consonant recognition, vowel
recognition achieved a higher recognition performance. It may be due to the limited visual
information of lips (e.g., [k|, [g]), which causes more confusions between different consonants.
Indeed, the lips contrast for vowel may be more evident than the consonant case.

The CS recognition results for deaf speakers are shown in Fig. 1.13(b). We can also see
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Figure 1.12: CS (a) vowel and (b) consonant recognition results based on the multi-stream HMM
model-level fusion in [10].
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that the recognition performance increases significantly when merging the lips and hand shape
information. The results of normal hearing and deaf speakers can be seen in Fig. 1.14, where
very slight difference is shown. Notably, we observe that deaf speaker shows better ability in
lip reading than the normal hearing subject. It is reasonable because they are used to the
lip reading in daily communication and have nice perception and production of lip reading.
Finally, the results of the intra-speakers experiment confirm that the normal hearing and deaf
speakers have very similar performance in CS recognition.
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2.1 Introduction

In current big data times, the database is very critical to any statistical analysis. In this
thesis, since there is no existing CS database without using any artificial mark, we employ CS
teachers and speakers to utter French words and sentences used in the LPC to record our own
database. In this chapter, we will introduce these databases. An organization of this chapter
is shown in Fig. 2.1. Firstly, the data preparation and recording setup will be presented in
Section 2.2. Then, in Section 2.3, we will focus on the data processing, which includes the
processing of texts (sentences or words), audio speech signals and CS videos.

2.2 Database preparation and recording

The data recording contains the speaker’s upper body (face and neck) and the audio sound.
It is carried out in a sound-proof room in Gipsa-lab, France. The CS speakers are professional
French CS translators. The speaker is seated in front of a computer screen which shows
the French words or sentences to be coded. A microphone and a camera are set up for the
recording. The RGB images are saved in BMP or PNG format with size 720x576 at the rate
of 50 Hz. The recorded audio sound signal is digitalized at 22,050 kHz, which is to help the
temporal segmentation of words and sentences.

25
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Figure 2.1: The organization of Chapter 2 including text, audio and video processing.

In this thesis, we work on five subjects named as MD, DB, ChS, SC and LM (see Fig. 2.3).
With audio speech sound, three of them (MD, DB and ChS) utter French words and others
(SC and LM) utter French sentences. The audio sound is synchronized with the CS video to
help us align the articulatory data. A summary of these five corpora is shown in Table 2.2.

2.2.1 Five corpora in this thesis

The word corpora contain a CS interpreter and two normal speakers. The corpus MD was
previously recorded, and was exploited by Ming et al. [45] for audio to lips and hand ges-

Table 2.1: A summary of the five corpora in this thesis.

Speaker Speech unit and amount Speech type Color landmarks

MD 50x10 words CS no landmark on lips

DB 50x10 words normal speaker no landmark on lips

ChS 50x10 words normal speaker no landmark on lips

SC 267 sentences CS blue landmarks on lips and hand
LM 238x2 sentences CS no landmark
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tures mapping in CS. The speaker MD is a female native speaker of French. In this corpus,
she pronounced and coded 50 isolated French words (see Appendix A.2). These words are
constituted by the digits from 0 to 31, twelve months, and six ordinary French words such as
Bonjour, and they were repeated ten times. For this speaker, one blue landmark was glued on
the forehead, and five blue landmarks were glued on the extremity of the right hand’s finger.
A pre-prepared grid paper was used in the recording in order to transfer the pixel unit to
centimeter (see Fig. 2.2). The two normal speakers (DB and ChS) are male French, and they
uttered the same French words as MD. Other recording setups are also the same as MD. The
main difference is that they speak normally instead of CS.

Figure 2.2: Experimental setup of the transformation from pixel to millimeter.

The sentence corpora without using any artifice are collected from one female normal
hearing CS speaker named LM. The experimental setup is the same as MD. The speaker LM
pronounced and coded a set of 238 French sentences derived from a corpus in [44], [92]. Each
sentence was repeated twice by the speaker resulting in a set of 476 sentences (totally 11772
phonemes). One example is Ma chemise est roussie. The sentence corpus named SC with
color marks was recorded for the previous study [10], [40]. The speaker’s lips and hand were
painted by blue color landmarks. She coded 262 French sentences which are also derived from
the corpus in [44], [92]. The sentences uttered by these two subjects are not the same but
with a large part of sentences in common.

To validate our proposed algorithms for other languages, we also recorded the first British
English CS corpus. It was coded by a CS expert from the CSAUK. The videos with 720x1280
RGB images (50 fps) were recorded. Until now, we have recorded 100 English sentences, and
the recording processing is still ongoing.

In order to see the balance status of phonemes in each corpus, we calculate the number of
vowels, consonants, and phonemes in the corpora MD, SC and LM (see Table 2.2). The word
corpora DB and ChS have the same amount of vowels, consonants and phonemes as MD. It
can be seen from Fig. 2.4 that the phonemes are not well balanced for all these three corpora.
Notably, the word corpus has a different distribution with the sentence corpus concerning the
phoneme amount. Note that there are some unbalance of the corpus MD since the selected
50 isolated French words are often made by some common phonemes such as vingt-et-un and
trente-et-un.
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Figure 2.3: Images of five subjects in this thesis. MD, DB and ChS utter French words, while LM
and SC utter French sentences.

Table 2.2: A summary of the vowels, consonants and phonemes for the corpora of this thesis.

Speakers Vowels Consonants Phonemes
MD 850 1290 2140
DB 850 1290 2140
ChS 850 1290 2140
SC 3152 3816 6968

LM 5404 6356 11760
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Table 2.3: Phoneme to viseme mapping in the French language (from [93]), including five consonant
visemes and three vowel visemes.

Consonants Vowels
Viseme Phonemes Viseme Phonemes
Cl Ipl, Ibl, Im/ V3 /31, Iyl, lo/
lel, lu/
C2 i1, v/ Vi lal, 1€/, Ii/
I/, lel, | ¢f
C3 , dl, Is/ V2 fal, 12/, loel
/z/, In/, In/
C4 /1, I3/
C5 K/, Ig/
v/, N/

Table 2.4: French phonetic reference table. Phonemes with blue color denote the labels with changes.

Simplified label p t k b d g f S s
Reference label p t k b d g f S i

Simplified label v Z 7" m n 1 r j w
Reference label v z 3 n n 1 T j W
Simplified label i e e’ a y X x" u o}

Reference label i e 3 a y 4 e u o}

Simplified label o” e” X~ a” o~ q

Reference label ) € 03 a 5 )

2.2.2 Definition of the lips viseme

We now introduce some prerequisites in this thesis. Firstly, a term named wiseme will be
introduced. As we know, in French, there are 36 phonemes including 17 consonants, 16
vowels, and 3 semi-vowels. Some consonants and vowels have very similar lips shapes. We
call these consonants and vowels with very similar lips shapes as a viseme. The phoneme to
viseme mapping [93] in the French language is shown in Table 2.3, where we can see that there
are five consonant visemes and three vowel visemes.

Secondly, in this thesis, we use some simple labels to mark some French phonemes (see
Table 2.4). For example, |f] for ‘s™” and [3] for ‘z~’. The reason is that, in the programming
of Matlab and Python, the simple labels can be directly used as the "char" variable, while the
standard French phonetic type needs extra controls.
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2.3 Data processing

As shown in Fig. 2.1, after the recording and preprocessing steps, we go to the data processing
which contains the processing of texts, audio speech signals and videos. The text processing
concerns the acquisition of the phonetic transcription. The audio speech signal is used to
obtain the alignment of each phoneme. In the video processing step, we will present the
definitions of lips and hand features, as well as some basic methods for the feature extraction.
It should be noted that our proposed methods for lips and hand feature extractions will be
introduced in Chapter 5 and Chapter 6, respectively.

2.3.1 Text data processing: phonetic transcription

The phonetic transcription is to translate the raw text characters (see Appendix A.1 and
Appendix A.2) into phonetic sequences without using any audio signal. More precisely, the
raw French sentences or words of the audio signals is first done manually in naturally written
text, and then translated into phone sequences using Lliaphon phonetizer' [94], which is
a text-to-speech application and translates the texts into phonetic descriptions. Lliaphon is
designed for French texts and it is free to use for non-commercial and non-military applications.
However, when directly applying it to our case, some errors appear. In fact, the errors in the
phonetic decoding are because of that the real audio sound or hand coding may not always
correspond to the phonetic pronunciation. In summary, in the phonetic transcription, there
are two types of errors. Now we illustrate these two aspects by two typical examples.

The first error is the phonetic transcription error when Lliaphon processes the raw text.
The following three main problems are shown in Fig. 2.5. (1) There should be a ‘z’, while
no ‘7 (silence) is inserted. (2) Lliaphon usually makes some confusions between ‘q" and ‘x’.
(3) A ¢ 7 should be added between two successive vowels (‘0~" and ‘o~
Besides, in most cases, when the syllable is ended by a consonant, one [o] should be added in

the acoustic speech, while it will not be added in the raw transcription. Given these errors,

)

in this sentence).

some problems will appear in the automatic alignment.

(_vada~zynkavkerlko~kekas?Y |

(_vada~zynkavkerlko~kekas\z|is

Figure 2.5: One example phonetic error from Lliaphon. The first row is the transcription by LLi-
aphon, while the second row is the ground truth.

The second error is mainly due to the various pronunciations or codings made by speak-
ers. For example, in the audio speech, [¢] and [o] are often confused, as well as [o] and [5],

" https://gna.org/projects/1liaphon
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since their pronunciations are very similar. At the same time, in the hand coding, [o] and [o]
are often mistakenly coded. For the vowel [o], the ground truth hand position is "side", but
it often mistakenly points to the "chin" which indicates the vowel [o].

The above errors will influence the performance not only on the temporal alignment but
also on the final automatic CS recognition. As a consequence, it is necessary to have a post
check for phonetic transcriptions.

2.3.2 Acoustic data alignment

In Section 2.3.1, we have converted the text of sentences into a sequence of phonemes including
the silence. Note that the speech signal is recorded synchronously with the CS data. Phoneme
sequences are then automatically aligned on audio signals using a standard speech recognition
system (based on a set of tied-state context-dependent phonetic HMM trained using the HTK
toolkit? and a forced alignment procedure). The forced alignment is a technique to take
an orthographic transcription of an audio file and generate a time-aligned version using a
pronunciation dictionary to look up phones for words. Also, depending on prior knowledge,
we define an initial transition probability between different phonemes. The feature will be
fed to a pre-trained acoustic model to obtain the likelihood score of the phoneme recognition
using the Viterb: algorithm. The phoneme with the maximum likelihood score will be the
right candidate of the current temporal boundary. We remark that different acoustic models
may produce slightly different forced alignment results.

However, even with a manual temporal segmentation, it is sometimes hard to determine
a correct temporal boundary of each phoneme. Thus, it is natural that the forced alignment
cannot obtain a perfect alignment. Now we give some examples showing the errors of automatic
alignment and the results of the post check alignment (see Fig. 2.6 and Fig. 2.7).

As in Fig. 2.6(a), the automatic alignment for the long sentence Annie s’ennuie loin de
mes parents is bad (especially in the middle of the sentence). The corrected alignment is
shown in Fig. 2.6(b). We observe that errors appear more evidently when there is a sequence
of voiced phonemes.

It is shown in Fig. 2.7 that if there is no silence between two successive vowels in the

phonetic transcription, the automatic alignment will perform badly as in the example ‘0~

~

and ‘o

2.3.3 Video data processing

In CS recognition, one essential step is the video image processing which contains the lips,
hand position and hand shape feature extraction. Now we briefly introduce the definitions of
parametric feature and some common basic pixel based feature extraction methods.

Zhttp://htk.eng.cam.ac.uk/
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5000 Hz|

4127 Hz|

Level 1
(31/36)

Figure 2.7: The alignment of the sentence Va dans une cave quelconque et caches-y ce drapeau
honteuz. (a) is the alignment obtained by the HMM automatic alignment algorithm. (b) is the ground
truth alignment.
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2.3.3.1 Lips features

The lips feature extraction is indispensable in CS recognition. In general, there are three
levels of lips feature: geometric parameter level, contour level and pixel level (based on image)
feature. In this thesis, we explore the lips feature in geometric parameter and pixel levels. In
terms of the geometric parameter, the lips opening height, width [90], [95]-]97] are considered
as lips features. Now we introduce the measures of geometric parameters of lips, as well as
the common pixel based methods, which includes Principal Component Analysis (PCA) [98],
[99] and Discrete Cosine Transform (DCT) [100]-[103].

Geometric parameters of lips

It was reported in [104] that the lips parameters such as the horizontal width, vertical height
and the area of inner and outer lips are used to describe the lips shape. One example of the
application is the AVSR task [105], [106]. In this thesis, we use the inner lips width A and
inner lips height B as the lips features. We observe that the inner lips area has a correlation
with the value Ax B, and the calculations of A and B can be referred to [3].

Figure 2.8: Lips parameters A and B.

As introduced in Section 1.2.1, the traditional methods used the artificial landmarks to
extract the lips contour to calculate these parameters. In Chapter 5, we will propose two
methods to calculate them without using any artificial landmark.

Pixel based lips features

Now we introduce two pixel based feature extraction methods (PCA and DCT), which are
both applied to the raw images and able to reduce the high dimension of features.
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(1) PCA based lips features

Principal Component Analysis (PCA) is widely used for the dimension reduction and feature
orthogonalization [98], [100], [107]-[116]. It is an unsupervised and linear technique which
aims at finding a decomposition basis that best explains the variation of pixel intensity in a
set of training frames. In this thesis, the PCA is performed on a set of N training frames
(normalized by its mean value in the pixel intensity domain at the training stage). The
resulting basis vectors are often called eigenlips [108] when applying this technique to the lips
images. At the feature extraction stage, each new frame is projected onto the set of these basis
vectors. Visual features are defined as the D first coordinates in that decomposition basis.
When applying PCA to the lips ROI in our case, in order to keep the eigenvectors that carry
85% of the variance, we set D = 22 (see Fig. 2.9). All the parameters of PCA are calculated
based on 1000 images which are randomly extracted from the whole database (for example,
corpus LM). The reconstruction of the lips based on different numbers of PCA components is
shown in Fig. 2.10. We can see that the image with 40 components (see Fig. 2.10(d)) is better
than the one with 22 components (see Fig. 2.10(c)). In this thesis, PCA will be used several
times as a baseline to be compared with our proposed methods.

0.9
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Figure 2.9: Variance ration of PCA components on lips ROI. The abscissa is the number of PCA
components and y axis is the variance ratio.

(2) DCT based lips feature

Apart from PCA, there are still some other popular linear image transforms [117] to obtain the
lip reading features, such as DCT [100]-[102], [109], [118], [119], Discrete Wavelet Transform
(DWT) [120], and the Hadamard and Haar transforms [119].

The energy located in the low frequency domain is packed by DCT. Therefore, we can
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(a) (b)

(c) (d)

Figure 2.10: Examples of the reconstruction of lips ROI based on the PCA coefficients. (a) is the
original lips ROL. (b) is the mean image of the lips ROL. (c) is the one with 22 components which can
explain 85% variance. (d) is the one with 40 components which can explain 90.5% variance.
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ignore the high frequency energy in order to reduce the dimension of the DCT feature.

In [45], a mask is used to select the most significant coefficients located in the top left of the
DCT matrix in order to reduce the dimension. We can see that the reconstructed images (see
Fig. 2.11(e) and Fig. 2.11(f)) can well represent the original gray-scale images (see Fig. 2.11(c)
and Fig. 2.11(d)).

(e) (f)

Figure 2.11: Examples of lips reconstruction based on DCT coefficients. (a) and (b) are original RGB
lips ROI. (c) and (d) are the corresponding original gray lips ROL (e) and (f) are the corresponding
inverse DCT reconstruction lips ROI.

In our experiment, we found that the DCT based feature extraction method is sensitive
to the environment noise such as rotations and lighting conditions, thus we do not use DCT
lips features for CS recognition. However, it will be used for building a closed and round lips
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detector in Section 5.2.2.6.

2.3.3.2 Hand position and hand shape features

Recall that the hand shape codes the consonant, and the hand position codes the vowel in
CS. The extracted features of hand shape and position are very essential in CS recognition.
Now we introduce the characteristics of the hand shape and position features.

Hand position features

Coordinates in the spatial space normally represent the hand position. However, there is no
unique point which permits to define the hand position. We present three possible points to
describe the hand position.

(1) The first point is on the hand back (see the blue point in Fig. 2.12), and we can track
this point without any interruption since it is always visible. This point could give a good
description of the whole hand movement. However, it is still difficult to automatically
extract this point without using any artifice. Therefore, the extraction of this point is
carried out manually, and this point is assumed to be a reference in this thesis.

(2) The second one is the target finger (see the green point in Fig. 2.12) which points to the
vowel position allowing CS readers to understand what the CS coders want to express.
Evidently, this is the best choice for the hand position recognition. However, the target
position is not always realized by the same finger since the hand shape is variable during
the coding process. The automatic CS hand finger tracking in 2D is still an unsolved
problem. Therefore, we manually extract the target finger in the following way: the 2D
position of the index finger is used if no middle finger appears.

(3) The third one is the gravity center of the hand, which will be introduced in Chapter 6.

The classical method in [10], [11], [40], [41] is to mark the information with the landmarks
placed on the subject’s hand back and finger’s extremity. Then a color detection algorithm is
applied to track the hand position. In Chapter 6, an automatic method will be presented to
track the gravity of the hand in case of no artificial color landmark.

Hand shape features

For the hand shape, there are two levels of descriptions: parameter and pixel. In the state
of the art [10], [11], different colors were painted on the finger’s extremity to define the hand
shape feature. To get rid of the artifices, we think about other approaches. One possible
way is to extract the hand contour to describe the hand shape, which is difficult due to the
dynamical changes of hand on both position and shape. The other way is to extract the
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Figure 2.12: Two classical points used to track the hand position movements. One is on the hand
back (blue point), and the other is the target finger point (green point).

pixel based hand features. In order to reach this goal, we need to determine a hand ROI (see
Fig. 2.13), which will be introduced in Chapter 6. Then, we apply PCA on the hand ROI to
extract the hand shape features. Other techniques for hand shape feature extraction will be
presented in Chapter 8.

Figure 2.13: Visualization of hand ROI (corpus LM).

Applying PCA to the hand shape ROI, we can obtain the PCA components and variance
of the hand shape (see Fig. 2.14). In order to keep the eigenvectors that carry 85% of the
variance, we set D = 34. The reconstruction of hand shapes based on different numbers of
PCA components is shown in Fig. 2.15. It can be seen that the image with 30 components
(see Fig. 2.15(c)) is sufficiently clear to describe the hand shape.
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Figure 2.14: PCA performance on the hand shape ROI.

2.3.4 Other methods in Cued Speech feature extraction

Except for the above classical statistical methods, some other approaches in computer vi-
sion fields were also tried for the CS feature extraction. Now, we briefly introduce the
Kanade-Lucas—-Tomasi (KLT) feature tracker [121], [122] and open-pose system [71]-[73].

KLT feature tracker

In computer vision, Kanade Lucas-Tomasi (KLT) [121], [122] feature tracker is an approach
to feature extraction. It is very effective for tracking the objects without changing the shape.
Note that the hand moves with shape changes in CS. KLT is not suitable for the hand shape
detection. However, we can use it for lips tracking since lips have less changes. The applications
of KLT to hand and lips ROI are shown in Fig. 2.16. The green points are the "good" target
feature points detected by KLT. In Fig. 2.17, we present different cases when applying KLT
to the real-time tracking of lips and hand in corpus LM. We found that most of the time, the
performance of lips tracking is better than the hand. In Fig. 2.17(c), the good feature of hand
even disappears. It may be due to the large variabilities of the hand shape and less changes
of the lips.

Open-pose system for human pose estimation

The open pose system is robust for the human pose estimation [71], [73], even with the
occlusion (see Fig. 1.11). It can be seen from Fig. 2.18(a) and Fig. 2.18(b) that the open-pose
system works perfectly for the gesture (facial feature, hand and body) estimation. However,
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(a) (b)

(c) (d)

Figure 2.15: (a) is the original hand. (b) is the mean image of the hand. (c) is the one with 30
components which can explain 80% of the variance. (d) is the one with 50 components which can
explain 85% of the variance.
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Detected features

Figure 2.16: Visualization of KLT for lips and hand tracking.

from Fig. 2.18(c) and Fig. 2.18(d), the open-pose system works well for the facial features
but not for the hand and body gestures estimation. The reason is that our corpus does not
record the whole upper body of the speaker in Fig. 2.18(c) and Fig. 2.18(d), and thus it does
not have enough good initial features. In order to use the open-pose system directly, speakers
need to expose their whole body in the recording, instead of only the body above neck in our
case. Therefore, it is not enough to validate this method. We may suggest to record the whole
body of CS speaker so that this method can be used in the future work.
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()

Figure 2.17: Real-time tracking of lips and hand by KLT. The white points are the good features
captured by KLT, and the yellow rectangle is the resulted ROI of hand and lips.
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(c) (d)

Figure 2.18: Visualization of open-pose for lips and hand tracking. (a) and (b) show the result for
the open-pose applied on the database which records the whole upper body of the subjects. (c) and
(d) show the result on our corpus LM, which only records part of the upper body.
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3.1 Introduction

Artificial Intelligence (AI) is a powerful tool that can make a machine act like a human.
As a significant step for Al, machine learning provides the machine with the necessary data
to learn how to do something without being explicitly programmed. Algorithms such as
decision tree learning, inductive logic programming, clustering or reinforcement learning help
them make sense of the input data. Furthermore, deep learning is a form of advanced machine
learning that enables computers to learn from experience and understand the world concerning
a hierarchy of concepts. If machine learning is a subset of the Al, then deep learning can be
called a subset of the machine learning (see Fig. 3.1).

In 1986, Rina Dechter firstly introduced the term deep learning to the machine learn-
ing field. It aims at automatically learning the data representations, which can be super-
vised, partially supervised or unsupervised [26], [123], [124]. Deep learning architectures [26],
e.g., Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN), have been
widely applied to many fields including computer vision [18], speech recognition |125|, natural
language processing [126] and audio recognition [127|, where the results are very nice [128] and
even sometimes outperform human experts [18]. As the two most popular ones, CNNs are
located at the heart of the image processing, while RNNs are very powerful in the continuous
sequence modeling.

"http://bisintek.com/science/2017/12/27 /knowing-basic-artificial-intelligence/
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Since an early flush of optimism in the 1950's, smaller subsets of artificial intelligence - first machine learning, then
deep learning, a subset of machine learning - have created ever larger disruptions.

Figure 3.1: The relationship and the development of AI, machine learning and deep learning’.

Because of the powerful capability of CNN for image feature extraction, in this thesis,
we propose to use CNNs for the lips and hand feature extraction without using any artificial
mark. On the other hand, it was shown in [129], [130] that the RNN based speech recognition
outperforms the state of the art. Note that CS is a kind of visual speech in which the temporal
context information is essential. We use the RNN based method for temporal information
acquisition in the CS recognition. Since the CS data is limited for phoneme recognition,
we will adapt the Long Short-Term Memory (LSTM) for CS hand position recognition in
Chapter 6.

In Section 3.2, we will first introduce the Multi-Layer Perceptron (MLP), as well as some
basic conceptions and properties in deep learning methods. Then, in Section 3.3 and Sec-
tion 3.4, we will introduce the CNNs and RNNSs, respectively.

3.2 Multi-Layer Perceptron

A Multi-Layer Perceptron (MLP) [131] is a basic feed-forward ANN, which is composed of at
least three layers of nodes (see Fig. 3.2). Except in the input layer, each node is a neuron
with a nonlinear activation function, which distinguishes the MLP from a linear perceptron.
Formally, a MLP with one hidden layer is a function f : RP? — R defined as

y=f(2) = GO® + WOh(2)), (3.1)
where D is the size of input vector x, L is the size of the output vector f(x) and

h(z) = s(b™ + W) (3.2)
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constitutes the hidden layer. In (3.1) and (3.2), b"),b) are the bias vectors, W) W) are
the weight matrices, and G and s are the activation functions. To learn the set of parameters

0 ={w® p@ W pn

in the training process, the MLP needs a supervised learning technique called the Back-
Propagation (BP) [26], which will be introduced in Section 3.2.1. Typical choices for the
activation function are the sigmoid and Hyperbolic Tangent function (tanh), which will be
introduced in Section 3.2.2.

Input layer (x) hidden layers (h) output layer (y)

1. Wx+b

4

2. Nonlinearlity:
h=s(Wx + b)

Figure 3.2: A MLP with two hidden layers.

3.2.1 Back-Propagation algorithm

For learning the parameters of an ANN, the Back-Propagation (BP) algorithm is the workhorse
of the gradient descent optimization algorithm? [132], which aims to calculate the gradient of
the loss function and then adjust the weights and biases.

Now we first introduce the error function E(y,y’), which is used to measure the compati-
bility between the ground truth ¢’ and the output y. The standard choice is the Mean Squared
Error (MSE), i.e., the square of the Euclidean distance. The error function over n training
examples can be written as a sum:

E= 3 ) @ | (33)

To train an ANN, an essential step is to optimize the parameters via minimizing (3.3), in which
a complete iteration includes the feed-forward step, BP step and updating the parameters.

2 This is a classical iterative algorithm to minimize a differentiable function in optimization theory.
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3.2.2 Nonlinear activation function

Nonlinearity is one of the most important properties in ANNs, which are considered as uni-
versal function approximators. In other words, they can compute and learn any functions,
and any process can be represented as a functional computation. Hence, we need to apply a
nonlinear activation function to make the network more powerful with the ability to repre-
sent nonlinear complex arbitrary functions between inputs and outputs. The other essential
feature of the activation function is the differentiability, which is needed to perform the BP
optimization strategy.

Three commonly used activation functions are (1) the sigmoid function in the form of
o(x) =1/(1+ e~*), which is a s-shaped curve (see Fig. 3.3) between 0 and 1; (2) Hyperbolic
Tangent function (tanh) in the form of tanh(z) = (1 — e~2*)/(1 4+ e~2%), whose output is
zero centered (see Fig. 3.4), and (3) Rectified Linear units (ReLU) function with the form
ReLU(z) = max(0,z) (see Fig. 3.5), which is proposed to deal with and rectify the gradient
vanishing problem [133], and has become very popular in the past few years.
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Figure 3.3: Sigmoid activation function.

3.3 Convolutional Neural Networks

Convolutional Neural Network (CNN) [26] is a special kind of feed-forward Deep Neural Net-
work (DNN), and has been doing very nice work in image recognition tasks. It includes
an input layer, output layer and multiple hidden layers (see Fig. 3.6), while a hidden layer
typically includes convolutional layers and pooling layers. In this section, we give a brief
description of the CNN, while more details can be referred to [26].

We take the CNN architecture in Fig. 3.6 as an example. The input of this example is a
RGB image of a bird. Firstly, several filters will be convoluted for this image with a nonlinear
activation function (normally it is ReL.U). The principle of 2D convolution calculation is
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Figure 3.4: tanh activation function.

Figure 3.5: ReLU activation function.
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shown in Fig. 3.7 and the feature map® is generated by applying ReLU to the output of the
convolutional layer. Then, one pooling process will be conducted on the current feature map,
and two Fully Connected (FC) layers will be used to combine all the elements of the feature
vector. After that, a softmax layer will be applied to compute the posterior probabilities of
all the classes. In this example, the posterior probabilities of being a bird, cat, sunset, dog,
flower and so on will be calculated by the softmax layer, and the class label corresponding to
the highest posterior probability will be the result of this classification problem.

N g~
0
bo
Lo sunset Peunset
5
— o) e o ~0
o o
] -] il Piog
] o o
-] o
o o ‘cat
N P -] o
convolution + max pooling vec |4 \:
nonlinearity | o
convolution + pooling layers fully connected layers ~ Nx binary classification

Figure 3.6: An example of CNN*.

A1l = f11%all+ f12%a12+f21* a21+f22* a22

2% filter F All
Stride =2

A12 = f11%al3+ f12*al4+f21* a23+f22* a24

f11 f12 A12

f21 f22

A22 = f11*a33+ f12*%a34+f21* a43+f22* a4

. —
Output
All | A12
A21

A21 = f11*a31+ f12*a32+f21* a41+f22* a42 A21 | A22

Figure 3.7: An example of 2D convolution calculation. We draw boxes with arrows to indicate how
the 2x2 filter moves (with stride 2). The output is formed by applying the kernel to the corresponding
region of the input image.

3 A feature map is the output activation for a given filter.
“https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-
Networks/
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The pooling process is used to reduce the dimensionality of each feature map while keeping
the most important information. This process can be of various types, such as Average, Maz
and Sum. In the average pooling, a spatial window with a certain size (for example, 2 x 2) is
defined, and then the average value of all the elements from the rectified feature map within
that window will be calculated and used. Instead of the average element, we could also take
the maximum (see Fig. 3.8) or the sum of all the elements in that window.

2*2 window
Stride =2

all

a4l

Average pooling: A11 = (all+al2+a21+a22)/4. Max pooling: A1l = max(all, al2, a21, a22).

Figure 3.8: The principle of Average and Max pooling.

For the training of CNNs, the BP algorithm is used based on the mini-batch gradient
descent [134], which is a variation of the gradient descent algorithm and splits the training
dataset into small batches for calculating the errors and updating the coefficients. Moreover,
the dropout technique [135] is often used to reduce the over-fitting [26] in the training process.

3.4 Recurrent Neural Networks

Unlike to the standard DNNs focusing on the static data, the Recurrent Neural Network
(RNN) [136] was proposed to process the dynamic sequential data. It possess the connections
between time steps (see Fig. 3.9), which allows to exhibit dynamical temporal behaviors. Some
parameters are trained to save the internal memory of the temporal information. In particular,
when coupled with a large dataset, RNN is very powerful. Recently, it has wide applications
such as unsegmented, connected handwriting recognition [137|, and speech recognition 138,
[139]. In this section, we will give a brief description of the RNN. More details can be referred
to [136], [140].
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3.4.1 Vanilla Recurrent Neural Networks

The Vanilla RNN was introduced in [141], and can be described as:

st = f(Ws—1 + Uxy),
o; = softmax(V's;),
at time t, where x; is the input, s; is the hidden state, o; is the output and U,V and W are

the weight matrices (see Fig. 3.9). In this model, s; is the "memory" of the network, and can
be calculated based on s;_1 and x;. The usual choice of activation function f is tanh or ReLU.
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Figure 3.9: Left is the folded RNN, while the right one is the unfolded RNN with time series®.
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Figure 3.10: Overview of BPTT. E, is the error function at time step ¢°.

Back-Propagation Through Time (BPTT) is a gradient-based technique for training the
RNN with the goal to minimize the error of the network outputs as in BP. It is an application

Shttp://www.wildml.com/2015/09/recurrent-neural-networks-tutorial-part-1-introduction-to-

ronns/
Shttp://www.wildml.com/2015/10/recurrent-neural-networks-tutorial-part-3-backpropagation-
through-time-and-vanishing-gradients/
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of the BP training algorithm to the sequential data. This technique works by unrolling all
the input time steps, and each time step has one input time step, one output time step and
one copy of the network (see Fig. 3.10). At each time step, the errors are calculated and
accumulated, and then the network is rolled back to update the weights.

3.4.2 Long Short-Term Memory

In oder to solve the gradient vanishing / exploding problem [133] in RNNs, the Long Short-
Term Memory (LSTM) was proposed in [140] and set accuracy records in multiple applications
domains. Since 2007, LSTM has been applied in various speech recognition tasks [124], [140],
[142]-[144] with good performance.

LSTM
f,oc,_ Ct
Ct—1 (X)L (F)= Cy Gating variables
@) £, = (Wylh_1,x,] +by)
e 0, o tanh(c;) ir = 0 (Wilhy_1,%] + b;)
o; =0 (Wylhi_1,x] + b,)
fi i b O Candidate (memory) cell state
i C 7 i ¢ = tanh (W[hy—1,x¢] + b.)
sigmoid tanh sigmoid sigmoid Cell & Hidden state
T T T T ci=foc,1+i0¢
h; 4 l h; h, = o, o tanh(c;)
Xt h;

Figure 3.11: A LSTM unit with input, forget and output gates’.

A LSTM unit is composed of a cell, an input gate iz, an output gate o; and a forget gate
ft (see Fig. 3.11), which are composited as follows:

7 o (l))l
Y| ¢ hi—1

o] — o W< Ty ) + b({ ’
Ct tanh .

c=fOc1+10g,
hi = o ® tanh(c),

where i, f, o are gate variables, ¢; is a cell responsible for "remembering" the values over
arbitrary time interval, h; is the hidden state and ¢, is a candidate variable that transfers the
information of input to the current cell ¢;.

T https://codeburst.io/generating-text-using-an-1lstm-network-no-libraries-2dff£88a3968
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Contents
4.1 Introduction . ... ... . . @ i i i i e e e e e e e 57
4.2 Hidden Markov Model . . . ... ... ... oo 58
4.3 Fusion techniques for multi-modal speech recognition ... ... ... 59
4.3.1 Classical fusion methods . . . . . . . . ... ... .. L. 59
4.3.2  Fusion methods based on deep learning . . . . . ... ... ... ... .. 61
4.4 Context-dependent modeling . . ... ... .. ..., 62

4.1 Introduction

In various domains, information about the same phenomenon can be acquired from different
types of sensors at the same time. The term modality is often used to denote each signal source.
In general, a system which is described by several modalities is called a multi-modal system. In
a multi-modal recognition framework, the fusion problem (i.e., merging these multi-modalities
to best represent this phenomenon) is very essential. Audio-visual multi-modality in speech
is probably the most intuitive [145], [146], since it uses two of our most informative senses
(i.e., audio and vision). In this case, audio and visual modalities are available and provide
information about the speech, such as phonetic units, or word sequences.

In a multi-modal system, each modality can be used alone to train a single classifier
to recognize the speech classes. However, the single modality can only carry one part of
the information. Thus, we expect that combining the multi-modalities will give rise to a
multi-modal classifier with superior performance [147]. The key point is how to merge these
information from different modalities, especially when they are not synchronized. As we
mentioned in Section 1.2.3, the automatic CS recognition is a typical multi-modal recognition
problem which has the lips and hand modalities. Therefore, in this thesis, the multi-modal
fusion problem is one of the most important challenges. In particular, the multi-modalities
(i.e., lips, hand shapes and positions) in CS are asynchronous. This makes the fusion problem
in CS recognition more complicated. In the state of the art [10], several fusion strategies are
used (see Section 1.2.3) but without taking into account the asynchrony between the lips and
hand modalities in CS.

o7
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It was reported in [148] that the contextual information, which enables some selective
weighting of one or the other modality during the fusion process, is more and more used in
AVSR systems and it turns out to be an essential ingredient for improving the robustness. In
the speech recognition task, a context-dependent modeling [149]-[151] is advantageous to take
into account the complexity of the co-articulations and variabilities in speech. This is because
of that the dependent context! can provide extra information related to the target. In the
prior studies [10], [11], context-independent modeling has been applied to the CS recognition?.
In this thesis, we will incorporate the context-dependent modeling into our CS recognition
framework. Besides, the language model [152] is also able to improve the robustness of the
recognition system. The reason is that the ambiguities (e.g., semantic, syntactic or lexical
errors) can be easier to resolve when the information from language model is incorporated.

Moreover, recently, with the popular trend of DNNs, an attention mechanism operating
across different modalities combined with the encoder-decoder is proposed to deal with the
multi-modal fusion issue. It uses the attention to fuse the modalities in a context-dependent
way. Indeed, we have tried to investigate the LSTM with an attention mechanism to capture
the context information and learn the relationship between lips and hand streams automat-
ically. Due to the limited dataset, we finally did not obtain a satisfied phoneme recognition
performance in the test set.

In this chapter, we will introduce the HMM, classical fusion methods, as well as the fusion
methods in deep learning. Then, a triphone context-dependent modeling based on HMM will
be presented. These methods will be applied to the CS recognition in Chapter 8.

4.2 Hidden Markov Model

Before further introduction, we present a brief description of HMM, which has been located
in the core position of speech recognition [25]. More details about HMM can be referred to
[14]. In this thesis, except that the context-dependent modeling (see in Section 4.4) is based
on HMM, it will be also used as the phonetic decoder of CS recognition in Chapter 8.

A diagram of the Hidden Markov Model (HMM) is shown in Fig. 4.1, where we can see
that each state has a transition probability to the next state, as well as an emission probability
distribution of the possible observation. We now recall three fundamental problems [25] in
HMM. (1) The first one is the evaluation problem, i.e., the way to compute the probability
of observation given the model parameters. Using a traditional probability calculation based
on the Bayesian formula, we have an exponential exploding computation complexity of this
probability. Therefore, the forward and backward algorithms are used to reduce the compu-
tation complexity. (2) The second one is the state decoding issue, i.e., the way to choose a
corresponding state sequence which best explains the observations. The solution is the well-

! The context is defined as the information about the target observation of audio-visual displays that happen
before or after this observation.

2Tt was assumed in [10], [11] that GMMs with a larger number of Gaussian components combined with the first
and second derivatives of features are used to take into account a short-term context.
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a2 azj

Figure 4.1: A diagram of the HMM. O; is the observation and S; is the hidden state. a;; is the
transition probability from S; to S, and b;; is the emission probability of O; at S; (from [153]).

known witerbi algorithm. (3) The third problem is the parameter estimation which aims to
optimize the model parameters to best describe the given observation sequence. The solution
is the Expectation Maximization (EM) algorithm.

4.3 Fusion techniques for multi-modal speech recognition

As introduced in Section 4.1, the fusion of different modalities is of great significance in the
multi-modal recognition problem. In this section, we will introduce some well-known classical
fusion strategies, as well as some novel fusion methods based on deep learning.

4.3.1 Classical fusion methods

A classification of the fusion models for AVSR can be seen in [154], which offers an interesting
framework to discuss the combination of the lips and hand movements in CS. In [148], [154],
four methods are proposed by Schwartz et al. to solve the multi-modal fusion problem. (1)
In the Direct Identification (DI) model, the components are concatenated in the same vector,
which is then considered in an early classification phase. (2) In the Dominant Recoding (DR)
model, one of the modalities is recoded in the dominant one, for instance, the audio modality
in AVSR. (3) The transformation of the data flow of each modality into a third common space
gives rise to the Motor Recoding (MR) model. (4) In the Separated Identification (ST) model,
each modality is first processed with a decision, and the final decision is a combination of all
the decisions in a later phase.
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Potamianos et al. [147| classified these four basic models into two categories: the fusion
of features and fusion of decisions. In the first category, a classifier is applied to a vector that
is a concatenation of the audio and visual data or their appropriate transformations. The DI,
DR and MR models belong to this category. In the second category, the methods are based on
the combination of decisions resulting from the processing of the audio and visual modalities.
The SI model belongs to this category.

We now discuss the applications of these models to CS. The MR fusion model refers to
a decoding process in the articulatory space. Let us take the vowel recognition in CS as an
example. In the audio speech, vowels are identified by their vocal tract shapes, defined by
the mandibular open-close, the opening at the lips and the position of tongue inside the vocal
tract. In the audio-visual fusion of speech, the tongue which is not always completely visible
can be directly derived from the two first formants when the oral vowels are considered. In CS,
the hand defines several possibilities for the vocal tract shape. Only one of these possibilities
is coherent with the lips. This final vocal tract can thus be submitted to a classification phase.
However, this approach needs additional data in the articulatory domain as a dictionary of
vocal tract shapes or an articulatory model, and thus it has not been tested. In the DR model,
one of the modalities is dominant and the other predicts specific "cues" in the dominant
space. In audio-visual speech, the audio is the dominant modality since it carries all the
speech information. The lips shapes of the non-dominant modality can predict, for example,
the specific spectra in the acoustic domain on the basis of existing correlations between lips
and spectral parameters. In CS, neither of the components carry the complete information on
speech without ambiguities. Thus, there is no evident dominant component. Moreover, the
lips and hand components are complementary to allow complete perception of speech. Thus,
no high correlation is expected. These two reasons make the DR model difficult to apply for
a successful classification.

In the DI model, the features of all the modalities are concatenated in a vector or ma-
trix, and a classifier is directly applied to these merged data or appropriate transformations.
We could apply it to CS, but the resynchronization of lips and hand is necessary. For SI,
the Master-Slave SI plays an important role. Heracleous et al. [10] implemented this fu-
sion method in the way of lips first and then hand for CS phoneme recognition. A vowel-
independent and a consonant-independent GMMs were first trained using lips shape param-
eters only. Then vowel or consonant recognition was realized using the feature vectors corre-
sponding to the vowel or consonant modeling. However, since the hand precedes lips in CS
coding, the hand first and then lips way [41] give better performance than the lips first and
then hand fusion.

HMM based fusion techniques have been widely considered in the literature for automatic
AVSR [95], [98], [100], [101], [107], [155], [156]. Apart from the above models, Potamianos
et al. [147] proposed several HMM based fusion techniques: early fusion (fusion of features),
middle (intermediate) fusion and late (decision) fusion. In fact, the early and middle fusions
can be seen as DI, and the late fusion is SI. In the early fusion, the audio and visual features
are concatenated as one vector, and followed by a transformation to reduce the dimension of
the obtained vector [101]. The resulting feature vector is fed to a one stream HMM [157]. In
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the middle fusion, multi-stream features are fed to a multi-stream HMM with certain weights,
and the output observation likelihood is the product of these signal streams weighted by their
proportions [158]. In the late fusion, the audio and visual features are modeled by two different
HMMs, and one technique will then be used to combine the output likelihoods of them [101].

In this thesis, we focus on the DI and DI-2 fusion methods in [148|, as well as the early
and middle fusion methods in [147]. Different from [147|, [154], we use the terminologies of
feature-level fusion, model-level fusion and decision-level fusion. In [10], the feature-level and
model-level fusions combined with HMM-GMMs are used to deal with the multi-modal fusion
in CS recognition. In this thesis, we implement the feature-level and model-level fusions in
HMM-GMMs decoding frameworks. More precisely, in case of feature-level fusion, one stream
HMM will be used and in case of the model-level fusion, multi-stream HMM will be used.

According to [148], we could expect that the feature-level fusion yields better performance
than other types, as only this model is able to exploit the joint time variations of the lips
and hand streams. However, it still has two problems. The first one is how to weight the
inputs in the case of context-dependent fusion. The second one, a major problem, comes from
the natural asynchrony between the lips and hand streams. For the first problem, we use a
cross-validation procedure to choose the best weights for lips and hand experimentally (see
Section 8.3.1). For the second one, we propose a novel resynchronization procedure, which
first pre-aligns the features from different streams and then merges them (see Section 8.2.3).

4.3.2 Fusion methods based on deep learning

Except for the classical fusion methods in Section 4.3.1, the deep learning based system for
the multi-modal fusion becomes more and more popular. In general, it is an end-to-end DNN
including the feature extraction, fusion and recognition. In this system, a popular approach
to learn the relationships between different modalities is the attention mechanism, which has
a long history in image recognition [159], [160]|. Recently, it has been widely used to improve
the ability of neural networks to derive good features, with applications in speech recognition
[161], video description [162]-[164], image captioning [165] and machine translation [166],
[167]. Now we give a brief description of it, and more details can be referred to [167].

Attention mechanism is often incorporated in the encoder-decoder [167], which is a neural
network based framework to handle the mapping between input and output data, and was
recently realized for the machine translation task [168|, [169]. The attention mechanism first
uses an encoder to process the original sequential data and return a representation feature
vector, which incorporates the context information of the sequential data. Then, it scores each
context vector to the current hidden state of the decoder.

We could think about applying the encoder-decoder to CS recognition, as this problem
can be seen as a multi-modal sequence-to-sequence learning problem. In this process, the CS
image sequence is first encoded to a fixed-dimensional observation vector. Then the output
sequence, i.e., phoneme or word sequence, is generated from the input vector. In CS recogni-
tion, each modality is modeled by an encoder-decoder with an attention, and the weights will
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be processed by a multi-modal fusion step. The encoder is modeled as a CNN for lips and
hand shapes (ANN for hand positions), while the decoder is modeled as a LSTM network for
each modality.

Another recent popular fusion method is the Deep Canonical Correlation Analysis (DCCA)
[170], which is to learn the complex nonlinear transformations between two data streams
such that the final representations are highly linearly correlated. The Canonical Correlation
Analysis (CCA) [171], [172] and Kernel Canonical Correlation Analysis (KCCA) [173] have
also been widely used for multi-modal fusion. In fact, the KCCA can be seen as an extension
of the CCA since it is correlated with the nonlinear projections. Their other applications
include the natural language processing |174|-[176|, speech processing [177|, [178|, computer
vision [179] and multi-modal signal processing[180], [181].

In [170], it was reported that CCA and KCCA have some problems when tackling with
the multi-modal fusion, which is not linearly correlated, while the DCCA does not suffer from
these drawbacks. In [182], based on DCCA, CNN-DCCA was proposed for the hearing loss
people in AVSR. The audio signal was first converted to the mel-frequency cepstrum (Mel)
Map, and then CNNs are applied to extract the features on the Mel map. Meanwhile, lips
landmarks are detected by Constrained Local Model (CLM) [183], [184] and interpolated by
a spline function to form a lips contour. CNNs are then applied to the image of lips contour
for feature extraction. Finally, the DCCA is applied to the two streams feature fusion. It is
shown that the DCCA can capture the time delay between two streams, and the evaluation
confirms that using DCCA outperforms the conventional fusion methods. This study provides
an approach to take the advantage of DCCA in our CS case, which will be the future work.

4.4 Context-dependent modeling

As introduced in Section 4.1, the features of lips and hand movements in CS are asynchronous.
Since this phenomenon is often correlated with the phonetic context in the word or sentence,
the context-dependent modeling could possibly help to make the recognition system more ro-
bust. This modeling has been widely used in the continuous Audio Speech Recognition (ASR)
due to the co-articulation and anticipation problem in nature human speech. For example,
in English words, the vowel [eh| has an evident feature difference in the frequency fields (see
Fig. 4.2). It has been shown in [148], [185]-[187] that the context-dependent modeling can
improve the accuracy of ASR. Similarly, for the CS recognition, the articulatory features are
also dependent on the context (e.g., hand rotation, anticipation or the asynchrony). For ex-
ample, for a given hand position, the hand movement trajectory depends on the corresponding
context information (i.e., hand position) of its neighbors, and three modalities may indicate
different phonetic targets at the same instant. Therefore, we could expect that the context-
dependent modeling could help the continuous CS recognition to have a better performance.
It should be noted that the this modeling is not a fusion method but a processing to overcome
the co-articulation and variabilities in CS by introducing the contextual information.

3https://blog.csdn.net/quheDiegooo/article/details/60873999
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Figure 4.2: Examples of the co-articulation in the speech?.

In this thesis, we will train a triphone context-dependent modeling, which adds the left
and right context information of each phoneme based on our CS data. We follow the steps as
introduced in [150]. The first step is to build a HMM system with the tied state to reduce
the larger number of HMM parameters in the training. The second step is to build a decision
binary tree to search the possible neighbor context (the left and right) for each state. It was
reported in [150] that the state tying HMM with decision tree clustering strategy is able to
reduce about 10-20% of the state number in HMM without any decrease in the recognition
performance.
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Automatic Inner Lips Parameter
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5.1 Introduction

Lips feature extraction is an active research topic since lips (especially inner lips) hold signif-
icant information on speech production, and plays an important role in AVSR. It is also vital
in our CS recognition work, since lips information is an indispensable part in CS. We have
reviewed the state of the art on the lips tracking in both CS and other fields in Section 1.2.1.
In particular, the method in [10], [11] for lips feature extraction needs to paint colors on the
speaker’s lips. In this chapter, instead of using the artificial color marks, we propose two new
approaches to extract the inner lips parameters (A and B). In fact, these approaches are able
to extract the inner lips contour not only in our CS case where the hands may occlude lips
but also non-CS case such as lip reading.

The first approach is based on the Constrained Local Neural Fields (CLNF), which was
introduced by Baltusaitis et al. [188] in 2013. The experiments in [188] showed that CLNF is
more accurate than many previous models, including the Active Shape Model (ASM) [189],
Active Appearance Model (AAM) [52| and Constrained Local Model (CLM) [183], [184]. The
reason is that CLNF is much more robust to occlusions, rotated faces and different lighting
conditions. However, when directly applied to our CS data, CLNF failed in about 41.4% of
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all the cases. In fact, the lower inner lips landmarks given by CLNF are often placed much
higher than the ground truth. Besides, the two endpoints of inner lips are far away from the
ground truth, especially when the lips shape is round. To improve its performance, we propose
a Hybrid Dynamic Correlation Template Method (HD-CTM) to correct the CLNF errors of
B parameter in inner lips tracking [15] and develop a periodic spline interpolation method for
A parameter correction. In this thesis, we call these two methods for B and A parameters
both as Modified CLNF [16], [190]. These methods were evaluated with three corpora: MD,
DB and ChS. We remark that another possibility is to adjust CLNF by retraining only lips
images. However, it needs a large training set, which is not available yet in our CS case.

The second approach is an adaptive ellipse model [17], which does not depend on any
additional lips landmark. It adopts an ellipse to approach the inner lips area until it finds
its optimal position and shape. In this approach, the color based image processing is first
applied to delimit preliminary inner lips area. A single discontinuity elimination combined
with interrupted region filling is used to obtain a binary inner lips image as complete as
possible. After the preprocessing steps, the optimal adaptive ellipse is determined to match
the inner lips, finally giving A and B parameters.

In Section 5.2, we will detailedly introduce the first approach, CLNF [188| based inner
lips parameter extraction methods, as well as the evaluation results. Then, in Section 5.3, the
second approach, adaptive ellipse model, and the evaluation will be presented. The advantages
and disadvantages of these two approaches will be discussed in Section 5.4.

5.2 CLNF based inner lips parameter extraction

In this section, we will present our approach to extract the inner lips parameters. It is based on
a recent new approach, CLNF, in computer vision, a very powerful tool in tracking the facial
feature landmarks. However, a direct application of CLNF to our CS data gives some errors.
Therefore, we propose an efficient post-processing method named Hybrid Dynamic Correlation
Template Method (HD-CTM) which allows correcting the errors concerning B parameter.
Also, we propose a periodical spline interpolation method to correct the errors concerning A
parameter. After introducing the CLNF model in Section 5.2.1, we describe the HD-CTM for
correcting B parameter in Section 5.2.2, and the periodical spline interpolation method for A
parameter in Section 5.2.2.7. The evaluation results will be presented in Section 5.2.3.

5.2.1 Constrained Local Neural Fields

The Constrained Local Model (CLM) [183], [184] includes two processes: model-building pro-
cess and CLM searching process, while the model-building process includes Point Distribution
Model (PDM) and patch model. CLM uses patch expert which is fitted to the current fea-
ture points to generate a template. Then, a fitting approach is used in the searching process.
More precisely, the feature templates are matched to the image using an efficient shape con-
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strained search of the template response surfaces. The most popular patch expert and fitting
approach in CLM [184] are linear Support Vector Machine (SVM) and Regularized Landmark
Mean-Shift (RLMS), respectively.

FRS:31

Figure 5.1: Application of CLNF to our database MD. Blue carders show the detected face ROI. 68
blue landmarks are located to describe the facial contour and 20 of them are used to describe the lips
contour. Only 8 points are used to indicate the inner lips contour.

The Constrained Local Neural Fields (CLNF) is a new instance of the CLM in aspects of
the patch expert and fitting approach, as shown in Fig. 5.2. It includes three main parts which
are a PDM, patch expert Local Neural Field (LNF) and fitting approach Non-Uniform RLMS.
In CLNF, 68 landmarks are placed on each face to describe the facial features, including
eight landmarks to describe the inner lips features (see Fig. 5.1). The LNF patch expert
is able to capture more complex information and incorporate spatial relationships between
neighbor pixels. The Non-Uniform RLMS is the fitting approach which takes into account the
reliabilities of the patches by adding weights. More details about CLNF can be referred to
[188].

5.2.2 Methodology and Experiment details

In this section, we first introduce our database and present the performance of CLNF to extract
the lips parameters on this database. The errors of CLNF when directly applied to our data
will be analyzed. In order to correct these errors, we then develop the post-processing approach
using HD-CTM for correcting B parameter, and propose the periodic spline interpolation for
correcting A parameter.
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Figure 5.2: Overview of CLNF model. Compared with CLM, two novelties are the new LNF patch
and the Non-uniform RLMS optimization (from [188]).
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5.2.2.1 Database

The database contains videos of 50 French words made of digits and daily used words. Each
word is uttered 10 times by 3 French subjects (MD, DB and ChS): one female CS speaker and
two male normal speakers. Words and vowels are annotated with Praat based on speech sound
signal. We use the first repetition of three speakers containing 4800 images corresponding to
all types of lips shape to evaluate the B parameter. In addition, 3184 images of vowels are
extracted from the data of the female CS subject. To evaluate the performance of CLNF
model and our proposed model, the ground truth inner lips contour is extracted manually by
an expert placing several landmarks on lips. Three visemes (lips shape) are often considered
which correspond to the 13 French vowels shown in Table 2.3. The first viseme corresponds
to the open vowels, the second viseme corresponds to the open round vowels and the third
viseme corresponds to the small-open round vowels.

5.2.2.2 Performance of CLNF for lips extraction on our data

The CLNF is first directly applied to all video of words in the database introduced in Sec-
tion 5.2.2.1. Among the 68 facial landmarks given by CLNF (see Fig. 5.1), eight landmarks
(six of them for inner lips and two for endpoints) are used to describe the inner lips contour
(see Fig. 5.1). Based on eight landmarks given by CLNF, we generate the whole inner lips
contour using the interpolation. A linear interpolation [191] is used for upper inner lips con-
tour and a spline interpolation [191] is applied to lower inner lips, because the upper inner lips
contour is less bending than the lower inner lips contour. The following experiment results
show that it does not have much influence on the precision of the A and B parameters. One
example of the excellent performance of CLNF is shown in Fig. 5.4(a), where the green curve
shows an interpolated inner lips. The A and B parameters are then calculated from the inner
lips contour using the classic method in [192] (see Section 2.3.3.1).

The applications of CLNF to different CS subjects are shown in Fig. 5.3. Recall that
the main advantage of CLNF is its robustness to the variable lighting conditions, presence of
occlusion and head movements. We can see that in most of the cases, CLNF gives a correct
estimation of the facial landmarks, but with some errors on the lips. The landmarks of the
lower lips are often poorly placed in a much higher position while almost no error is presented
for upper lips (see Fig. 5.4(b)). It causes wrong B parameter. This phenomenon can be
explained by the fact that the CLNF is based on a dictionary of training images. If the
lips shape and appearance are not properly taken into account during the training phase, it
may lack the template during the optimization step. In fact, the lower inner lips detection
is challenging since lips area is often very complex (tongue and teeth may be visible), and
lighting condition is variable.

On the other hand, the two endpoints of inner lips may be poorly placed (see Fig. 5.4(c)).
It causes mistaken A parameter. Indeed, from a "geometrical" perspective, two endpoints of
inner lips are not false because in this case, the inner contour can be these two endpoints.
However, in an articulatory-acoustic point of view, these two points do not define the proper
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Figure 5.3: Examples of application of CLNF to three speakers in our database. Some good and
bad performed cases are shown. For example, the first one is badly performed while the second one is
well performed.
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A parameter of inner lips.

In order to evaluate the performance of CLNF, a comparison of B parameter between
CLNF and the ground truth is carried out. A statistical distribution of these errors is given
in Fig. 5.5, where the error Fornr is defined as:

EciNk = BoLNF — Bground truth-

We first observe that most of the errors (i.e., Ecpnr > 2) appear negative. It means that the
mistaken CLNF lower inner point is often placed above the ground truth points. Since there
is a large proportion of B parameter errors and inner lips height plays a very crucial role in
speech production, we have to pay particular attention to B parameter correction. It is shown
in Fig. 5.5 that CLNF only obtains about 58.6% accuracy on average (75.2% for speaker MD,
52.2% for speaker DB and 48.5% for speaker ChS).

To see the CLNF performance concerning A parameter, three visemes are plotted using the
first repetition of the CS speaker MD in A and B parameters plane (see Fig. 5.6). The Gaussian
ellipses present the distribution of each vowel. Fig. 5.6(a) corresponds to CLNF landmarks
and Fig. 5.6(b) corresponds to the ground truth. Recall that the error of B parameter is also
included in Fig. 5.6(a). Compared with the ground truth B parameter, the vertical direction is
much dispersed when using the B parameters estimated by the CLNF (for example, the blue
ellipse in these two figures). Due to the error of A parameter of CLNF, we observe that the
third viseme is considerably shifted to the right compared with the ground truth distribution.

(a) (b) (c)

Figure 5.4: Performance of CLNF on our data. Examples of twenty CLNF landmarks placed in the
full lips region. Eight points describe inner lips contour. (a) Good inner lips contour of CLNF even
with hand occlusion. Green curve is the inner lips contour obtained by interpolation. (b) Mistaken
CLNF landmarks in case of B parameter. (c) Mistaken CLNF: two end landmarks for round inner
lips (mistaken A parameter).

5.2.2.3 Parameter B correction based on hybrid dynamic correlation template
model

We now introduce the correction of B parameter in CLNF using our proposed HD-CTM. The
principle of this method will be first presented.

This method is based on the luminance variation along the middle CLNF landmarks of
lips. A suitable spline smoothing is first applied to this luminance variation as well as the first
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Figure 5.5: Red, green and blue histograms represent the CLNF errors of three speakers respectively.
Abscissa is the error values in pixel (when larger than two pixels, they are considered as mistakes) and
y-axis is the frequency of these errors.
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Figure 5.6: Vowel viseme distributions of (a) CLNF and (b) ground truth. The abscissa is the 4
parameter (in cm), and y-axis is the B parameter (in cm). Stars correspond to the first viseme. Circles
correspond to the second viseme. Triangles correspond to the third viseme. The color order is blue,

red, green, magenta and cyan for each vowel of viseme. They correspond to the vowel visemes (V1-V3)
in Table 2.3.
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derivative curve. The smoothing degree is carefully controlled so that the noise can be removed
without losing much useful information. A smoothing coefficient of p = 0.01 [193] is used for a
good compromise. We may expect to determine the inner lips position by searching the local
limit point in the first derivative of the smoothed luminance variation curve. However, this is
not always feasible since there are many local limit points (see Fig. 5.7) without a searching
interval. Even with a searching interval, the local limit position may be fuzzy or uncertain.
Moreover, it is sensitive to the noise and unable to guarantee coherent results for adjacent
sequential images. To overcome these problems, we propose the HD-CTM method for the
search of limit point .

Even using HD-CTM, inner lower lips detection may still remain challenging since this area
may be fuzzy, and several different cases have to be considered. For example, the luminance
variation from teeth to lower lips is not the same with that from tongue to lower lips. We call
the straight line across the middle inner lips landmark as middle inner lips line (see the blue
line in left figures of Fig. 5.7). It can be seen in Fig. 5.7(a) that the luminance decreasement
from teeth to lower lips corresponds to a local minimum point. However, in Fig. 5.7(b) and
Fig. 5.7(c), it becomes complicated to find one particular local minimal point corresponding
to the lower inner lips boundary.

By contrast, in the region of outer lower lips, the luminance variation is less complicated
than in inner lower lips region. In fact, the middle landmark (in the vertical sense) of the
lower lips is more enlightened and corresponds to a high luminance variation. When the
luminance goes down, it decreases rapidly as the color of the chin (the lower part of lower
lips) is darker. The first derivative of the luminance curve consequently shows a significant
‘V’ shape corresponding to the luminance variation. Therefore, as a proposed solution, the
HD-CTM is first applied to detect outer lower lips position. Then the inner lower lips position
is estimated by subtracting outer lower lips position from the Validated Lower Lips Thickness
(VLLT), which will be illustrated in Fig. 5.8. In all, the determination of the inner lower lips
is achieved by the combination of HD-CTM to determine the outer lower lips position and the
subtraction of VLLT from the outer lower lips.

5.2.2.4 Determination of the lower outer lips position

As discussed above, we first try to determine the lower outer lips position, which contains the
following two steps.

(1) Definition of the template.

Instead of directly finding a minimal local value in the first derivative curve, which is often
difficult due to its great sensitivity to noise, a hybrid dynamic template corresponding to a
typical derivative variation in the region around outer lower lips position is first established.
The template is obtained by training some derivative curves reflecting different lips shapes
except for closed lips. Template length Lj; is a key parameter since a very small template
length makes results sensitive to noise while a very large length reduces the detection precision.
If it is badly chosen, it will not be sufficiently pertinent to indicate the ‘V’ shape of the
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Figure 5.7: The left figures show lips ROI with CLNF lips landmarks (20 black stars). The blue line
is the middle inner lips line, and all the curves in the right figure are plotted along this blue line. In
the right figures, the blue curve is the original luminance variation. The red curve is the smoothed
luminance. The green curve is the first derivative of the smoothed luminance. Four straight lines
with blue, red, green and magenta color correspond to four middle CLNF landmarks around the blue
middle line in the left figures.



78 Chapter 5. Automatic Inner Lips Parameter Extraction

3 ; the left and right points:
corresponding (left and right) CLNF inner lower lips position - Delta

Delta: the vertical distance of Y and inner lower
lips middle landmarks given by CLNF

2nd : substracting VLLT from the vertical position of
point X to obtain inner lower
lips position

1st: using the HD-CTM to find the middle outer lower lips point X

Figure 5.8: Summarized procedure of the proposed method. Note that the inner lips landmarks
(black points) are mistakenly placed. Green point X is the middle outer lower lips position estimated
by the HD-CTM, and blue point Y is the middle inner lower lips position by subtracting the VLLT
from position of the blue point. Two orange points are the left and right key landmarks determined
by the 3rd step.



5.2. CLNF based inner lips parameter extraction 79

derivative curve. This length is set to 20 pixels experimentally so that a sudden rapid change
of outer lower lips position could be well considered. An example of the template is illustrated
in Fig. 5.9 by a magenta curve with circle. The template is not necessarily symmetric in our
case. In fact, a symmetric shape was tried, but it gave slightly larger errors.
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Figure 5.9: This figure is plotted along the middle inner lips line. Blue curve: original luminance
variation. Red curve: the smoothed luminance. Green curve: the smoothed first derivative. Magenta
curve with circles: hybrid dynamic template. Red curve with stars: correlation values between the
template and the first derivative curve in function of the position of the template. Vertical black line
around position 301 corresponds to the initial searching position. The bold red line around position
307 located in the maximum correlation value corresponds to the estimated lower outer lips position,
and the bold red line around position 287 corresponds to the estimated lower inner lips position. Two
cyan lines correspond to the lower inner lips and lower outer position given by CLNF.

In order to increase the capacity of the template to follow the variation of the derivative
curve, we use a hybrid dynamical template:

m(i) = amo(i) + (1 — a)my,(7),

where mg(i) denotes the fixed part of the above template. We denote by v~ (i) the derivative
curve of luminance variation for the previous lips image. The variable part of the template is
defined as:

my(i) = v (i) fori € [kl + L kN + L),

where kgl;cl is the optimal position of template for the previous lips image. « is the weight of

the fixed part which is set to be 0.75 experimentally in our case. We find that the performance
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of the proposed method is not very sensitive to this value, and a range of « between 0.7 and
0.9 gives comparable results.
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Figure 5.10: The red curve is the distance between the ground truth inner lower lips position and
the outer lower lips position obtained by HD-CTM. The abscissas is the number of image frames.

(2) Determination of the optimal outer lower lips.

To determine the optimal position of outer lower lips, correlation values are calculated
between the current derivative curve v; and the template m, (i) when the template scans
through the searching interval. This method using the correlation with template reduces the
influence of noise and gives a more consistent result for the adjacent image. The correlation
is defined as:

= Z v(k + 1)m(i). (5.1)

The optimal position of template, which will be considered as the optimal outer lower lips
position, is determined as
kopt = argmax(c), (5.2)
k

where k € [kg — 01, ko + J2] is the searching interval. kg is an initial searching position. d;
and Jo are two parameters determining the length of the searching interval. These parameters
(ko, 01 and d2) are determined as follows.

e The searching region for the first image.

For non-open lips, kg is the CLNF outer lower middle lips position, while for open lips,
ko is defined as:
kO = Pinnerilower + VLLT, (53)
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where Piper lower denotes the CLNF inner lower lips position, and V LLT will be de-
tailedly explained in Section 5.2.2.5. In this case, we take §; = 3 and do = 18 experi-
mentally.

e The searching region for images after the first image.
The optimal initial search position is estimated from the previous image so that a con-
tinuous tracking can be achieved. kg is defined as:

ko = k"L + AE, (5.4)

opt

where k:gp_tl denotes the optimal outer lower position for the previous image, and Ak is
an estimated translation of the current outer lower lips position concerning the previous
image. To calculate Ak, we take the previous derivative curve v"~1(7) in the interval
[kgp_tl — 10, kgp_tl + 10], as well as the current derivative curve v; in the same interval.
After calculating the cross-correlation between these two derivative curves, a searching of
its maximal value permits to determine Ak. This interval length is reduced when using
this automatic tracking method. In this case, we take §; = 3 and d9 = 6 experimentally.

The details of HD-CTM are shown by an example in Fig. 5.8.

5.2.2.5 Determination of the lower inner lips position

To estimate the inner lower lips based on the outer lower lips, which were determined in
Section 5.2.2.4, we first study the distance between the ground truth inner lower lips position
and the outer lower lips position obtained by the HD-CTM. It it found that this distance is
almost a perfect uniform distribution (see Fig. 5.10) except some errors from the detection
using HD-CTM. More importantly, the distance distribution is invariant no matter how the
lips shape varies. This distance floats slightly around a constant for each speaker. The distance
is 19.940.97 pixels for the speaker MD, and 19.740.89, 16.64+0.83 pixels for other two speakers
DB and ChS. The mean value of this distribution can be regarded as a VLLT, which can be
estimated by training their data for a given speaker. For our three subjects, VLLT is set to
be 20, 20 and 17 pixels, respectively. The inner lower lips position can then be estimated by
subtracting the outer lower inner lips position from the VLLT.

Someone may think of using the "lower lips height" estimated by CLNF landmarks instead
of the VLLT. In fact, by comparing them, we find that the "lower lips height" is poorly
estimated especially when CLNF gives mistaken lips landmarks. Moreover, the evaluation
performance shows that using "lower lips height" obtains a higher Root Mean Square Error
(RMSE) (1.49) than the VLLT (1.0).

It should be mentioned that, if the inner lower lips middle position value obtained by
Modified CLNF is less than that estimated by CLNF, the initial value is kept. A parallel
translation with the same distance as the inner middle lips point is proposed to locate two
neighbor inner lower points, which are the left and right points of the middle point (see
Fig. 5.8).
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5.2.2.6 Closed lips filter based on DCT analysis

If the upper and lower inner lips points given by the CLNF are close to each other, two cases
are possible: (1) the lips are not closed, but they are badly placed; (2) these points correctly
describe the closed lips (see Fig. 5.11). Therefore, it is not possible to distinguish them only
from the CLNF landmarks. However, the real closed lips do not need to be corrected. To
eliminate closed lips and remain good results of CLNF, a closed lips detector based on DCT
coefficients is developed. The lips ROI is first determined by the 20 landmarks of CLNF
which efficiently delimit the lips region and determine a precise center of this region. Then a
suitable-sized ROI is determined according to this center (see Fig. 5.12), and the size is 110x75
pixels in our case. By a large number of observations, we find that our detected lips ROl is as
precise as that determined by the blue marks on speaker’s front in most of the cases. However,
when speaker’s head rotates or shifts, it is not accurate using the blue mark method, while
our proposed method still gives an accurate result. It can be also seen in Fig. 5.12 that in
the left one, the lip is not well centered in the ROI, while in the right case, the lip is centered
inside ROL. In fact, the proposed method benefits from CLNF which is robust to the rotation
or shift of speaker’s head.

Figure 5.11: An example of ambiguous inner lips detected by CLNF. The left one shows the mistaken
CLNF landmarks for an open lip, while the right one corrects landmarks for a closed lip. Note that
CLNF landmarks are strongly similar in these two cases.

The DCT coefficients are calculated from the lips ROI, and 10x10 coefficients in the low-
frequency region are retained. Ten images of closed lips are chosen to build a closed lips
template (see Fig. 5.13). For closed lips detection, the euclidean distance is calculated between
the DCT coefficients of the given lips ROI and the template. A threshold permits to distinguish
the closed and open lips. The threshold is fixed as 80 experimentally for speaker MD. By
applying this method to all the images, we can extract the closed lips, which are skipped by
the HD-CTM.

5.2.2.7 Parameter A correction based on the periodical spline interpolation

Recall that for round lips, the two endpoints determined by CLNF are mistakenly placed from
the acoustic point of view. It will cause the wrong parameter A. Therefore, it is necessary to
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Figure 5.12: Left is the lips ROI determined by a blue mark in the front of the speaker. Right is the
lips ROI (same size) determined by a center point estimated from CLNF landmarks.

Figure 5.13: DCT coefficients derived from ten closed lips images. Ten curves with different colors
correspond to the ten closed lips. Abscissa is the number of coefficients, and y-axis is the DCT
coefficient values (in dB). The purple curve shows the mean vector of these DCT coeflicients, and it
is considered as a model for closed lips detection.
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correct these two endpoints. After a large number of observations, we consider that in case
of the round lips, the six points from CLNF (three upper points and three lower points) are
assumed to be correctly determined in a majority of cases (see Fig. 5.14(a)). We propose to
estimate the inner lips contour using the periodical spline interpolation based on these six
points. To realize this, these six points are firstly dilated in the vertical scale to form a square
(see Fig. 5.14(b)) in order to obtain a regular repartition of these points in the polar coordinate.
Cartesian coordinates of these points are then converted into polar coordinates. The center
of the polar coordinates is situated in the middle of the two middle landmarks of CLNF inner
lips. A spline interpolation is applied to the polar coordinates (see Fig. 5.14(c)). In order to
take into account the initial condition of the endpoints, the six points are periodized three
times to prepare for a periodical spline interpolation (see Fig. 5.14(d)). Finally, by returning
to the original scale, a full contour interpolation can be obtained (see Fig. 5.14(e)).

To apply this method, an automatic round lips detector is necessary to select the round lips
from the image sequence which contains all kinds of lips shapes. A similar method as the closed
lips filter mentioned in Section 5.2.2.6 is applied to detect the round lips. Firstly, a round lips
DCT template is trained from several round lips images. DCT coefficients are calculated from
the lips ROI. Secondly, this template scans through all the images, and the distance between
current image and template is computed. Lips are considered as round lips if its distance is
less than a threshold which is determined experimentally. The performance of the automatic
round lips detector is evaluated on 3184 lips images (10 repetitions of the speaker MD). Only
42 round lips are mistaken among 467 round lips images (about 9% error rate). We plot the
distribution of 3184 lips parameters in the A-B plane. The distribution before correcting A
parameter is shown in Fig. 5.15(a), while the one after correcting A parameter is shown in
Fig. 5.15(b). After correcting A parameter, we can see that the third viseme (triangle) is
shifted to the correct position corresponding to the small A parameter. We observe that some
triangles indicating the round lips are not shifted to the correct positions.

5.2.3 Evaluation and Results

To evaluate the performance of the proposed method, the A and B parameters estimated by
them are compared with the ground truth and CLNF.

5.2.3.1 Evaluation of B parameter

It is shown visually in Fig. 5.16 that the HD-CTM combined with the back-subtracting of
VLLT efficiently corrects B errors of CLNF. Besides, from Fig. 5.17, we see that the estimated
B parameters for the image sequence and the ground truth B parameters are very close to
each other in most of the cases. By contrast, the CLNF B parameter has an evident difference
with the ground truth, especially for the speakers DB and ChS. One can see that the errors
are significantly reduced after using our proposed method.

The accuracy of the proposed method can be measured by the Root Mean Square Error
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Figure 5.14: Illustration of the period spline interpolation method to correct the A parameter errors
for round lips. (a) Speaker’s lips with CLNF original landmarks (note that two endpoints of inner lips
contour are mistakenly placed). (b) Six center points are plotted with red stars which are dilated in
the vertical scale to form a square (black circles). They are then converted into polar coordinates. (c)
In polar coordinates, the six points are repeated 3 times. (d) Periodical spline interpolation is realized
and only the period inside two red lines (one period) is used to returned to Cartesian coordinates. (e)
The full interpolated inner lips contour.
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Figure 5.15: Performance of the round lips detection. Lips parameters distribution is plotted in the
parameter A-B plane (the third viseme is plotted with triangle). (a) CLNF with corrected B parameter,
but no correction of A parameter. (b) CLNF with corrected A parameter with the proposed method.
B parameter is the same as in (a). The black ellipse shows the distribution of the third viseme which
corresponds to the round lips.
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Figure 5.16: Examples of initial mistaken CLNF landmarks (orange points) and corrected landmarks
using the proposed method (green points) for inner lower lips.

Table 5.1: RMSE values of B parameter for CLNF and Modified CLNF (in pixels and mm).

RMSE MD DB ChS Total
CLNF 3.84(2.0mm) 4.02(2.lmm) 3.53(1.8mm)  3.81(2.0mm)
Modified CLNF  1.06(0.6mm)  0.90(0.5mm)  0.94(0.5mm)  0.99(0.5mm)

(RMSE) as follows:

N
1
I — )2
RMSE = N Z(yt Ye)?,
t=1
where t is the frame number, N is the total number of frames, 1, is the real value of the target
and 7; is the estimated value of the target.

The RMSE of the estimated B parameter is shown in Table 5.1. Total RMSE of the errors
is reduced to 1 pixel (0.5mm), instead of 4 pixels (2.0mm) when using CLNF. It outperforms
the result in [194] which gave about 1.0mm RMSE.

5.2.3.2 Evaluation of A parameter

The periodical spline interpolation method efficiently corrects A parameter errors of CLNF,
which is visually shown in Fig. 5.18. The evaluation of A parameter is based on the round
lips images which are selected using the DCT filter (Section 5.2.2.6). A total 927 round lips
images are selected (222 images for the speaker MD, 396 images for the speaker DB and 309
images for the speaker ChS). In Fig. 5.19, the errors between the A parameter estimated by
the adaptive ellipse model and the ground truth are shown. We can see that the error is much
less than using the CLNF. To further measure the error, we calculate the statistic error (see
Table 5.2). We observe that there is a huge bias regarding the mean value for CLNF error
which is much greater than the standard deviation (see Fig. 5.19). Therefore, we calculate the
RMSE to measure the precision of A parameter. It can be seen from Fig. 5.19 that the huge
RMSE of CLNF is significantly reduced, and this is comparable to the state of the art [194].

We note that, concerning the error of A parameter, the precision is not as demanding as
B parameter from speech production point of view, and the estimation of A parameter is less
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Figure 5.17: Performance of the HD-CTM for correcting B parameter. The figure shows the result
of three speakers MD, DB and ChS from top to bottom. Abscissa is the image frame number and
y-axis is the distance measured in pixels. Red curve: the ground truth B parameter (in pixels). Blue
curve: CLNF B parameter. Black curve: B parameter estimated by the proposed method (HD-CTM).
Green curve: errors of CLNF. Magenta curve: errors of the proposed method. The short blue lines at
the top are the boundaries for 50 words in the word database.

Figure 5.18: Visual result of periodical spline method for round lips. Green curve is the full inner
lips contour for round lips, and the blue point is the center of the inner lips landmarks.
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Table 5.2: RMSE values of A parameter for CLNF and the periodical spline interpolation method.

RMSE MD DB ChS Total
CLNF 39.64(22.4mm)  39.94(22.6mm)  32.55(18.4mm)  37.40(21.2mm)
Modified CLNF_ 8.03(4.5mm) __ 5.84(3.3mm) __ 5.07(2.8mm) __ 6.11(3.5mm)

precise in practice. Meanwhile, comparing the error of B parameter with that of A parameter,
we see that the error of B parameter is less than A parameter, which is coherent with the
result in [194].

Finally, to evaluate the joint performance of A and B parameters, we study the distribution
of three vowel visemes in A and B parameter plane. In Fig. 5.20, three visemes are plotted
using the first repetition of the speaker MD. The distribution of each vowel is presented by
a Gaussian ellipse. We see that three visemes of CLNF are mixed, especially for the third
viseme (see Fig. 5.20(a)). After the B parameter is corrected by the HD-CTM, these visemes
are well-distributed in the axis B (see Fig. 5.20(b)). After the A parameter is corrected by
the periodical spline interpolation, the third viseme is correctly distributed corresponding to
the axis A (see Fig. 5.20(c)). It can be seen that the distribution of three visemes corresponds
coherently [40] to the ground truth distribution in Fig. 5.20(d).

5.3 Adaptive Ellipse Model

In Section 5.2, we proposed a CLNF based model to estimate A and B parameters of inner
lips. In this section, we will explore a new method based on an adaptive ellipse model to
estimate A and B parameters without generating a whole inner lips contour. This model is
motivated to overcome the following shortcomings of the CLNF based method. Firstly, the
CLNF based method depends on the CLNF landmarks. Especially, in case of the round lips,
the real inner lips contour is inside the six inner points. It is difficult to estimate a correct
A parameter. Secondly, the CLNF based method needs a round lips detector introduced in
Section 5.2.2.7. Thirdly, the A parameter given by the CLNF is not only incorrectly placed
in the round lips shape case, but also in other cases.

This method can be summarized as follows. An image processing is first realized to segment
the inner lips as much as possible. To make the extracted inner lips more complete and
connected, a single discontinuity smoothing and an interrupted region filling are applied. Then,
an adaptive ellipse is used to match the inner lips and gives the best A and B parameters.
An outline of this process is shown in Fig. 5.21.

This section is organized as follows. Firstly, the experimental database is introduced in Sec-
tion 5.3.1.1. Then, we will describe each step of the adaptive ellipse model in Section 5.3.1.4.
Evaluation and results on the accuracy and robustness of the method are presented in Sec-
tion 5.3.2.
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Figure 5.19: Performance of the periodical spline method for A parameter. Three figures show the
results of three speakers MD, DB and ChS from top to bottom. Abscissa is the image frame number

and y-axis is the distance measured in pixels.

Red curve: the error between the values obtained by

the CLNF and the ground truth. Blue curve: the error between the values obtained by the periodical

spline method and the ground truth.



92 Chapter 5. Automatic Inner Lips Parameter Extraction

25 T T T T T 25

05 05

-0.5 : : : : : A 05

25 T T T T T 25

05 05

05 L I L I L 05

(c) (d)

Figure 5.20: Global performance of the proposed methods for both A and B parameters. The figures
are plotted in the parameter A-B plane with all the vowels in one repetition for the first subject. (a)
CLNF. (b) CLNF with corrected B parameter but no corrected A parameter for the round lips. (c)
CLNF with corrected B and A parameters for the third viseme, and automatic detection of the third
viseme. (d) The ground truth. Stars correspond to the first viseme, circles to the second viseme and
triangles to the third viseme. The color order is blue, red, green, magenta and cyan. They correspond
to the vowel order in Table 2.3.



5.3. Adaptive Ellipse Model 93

20 40 60 80 100 20 40 60 80 100
(a) (b)

20 40 60 80 100 20 40 60 80 100
(© (d)

Figure 5.21: Overview of the adaptive ellipse model for inner lips parameter estimation. (a) Raw
lips image in ROI with the optimal inner ellipse shown in red. Black stars are the inner lips landmarks
given by CLNF (for comparison). (b) Extraction of dark area (white region) and teeth (yellow region)
using image processing. (c¢) Adaptive searching for the optimal position and size of the ellipse. (d)
The final optimal ellipse determined after smoothing and scaling post-processing.
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5.3.1 Methodology and experiment details

In this subsection, we will first give a brief introduction of the experimental database, and
present the details of the adaptive ellipse model.

5.3.1.1 Database

We use the first repetition of the three speakers (MD, DB and ChS) corresponding to all
types of lips shapes to evaluate A and B parameters. The number of images in our database
for three subjects is 1377, 1744 and 1572, respectively (totally 4693 images). To evaluate the
performance of the proposed model, the ground truth inner lips contour is extracted manually
by an expert placing several landmarks on lips. In the application of CS vowel recognition, the
temporal boundaries of each phoneme are extracted from the audio signal using a conventional
ASR system and a forced alignment procedure.

5.3.1.2 Image processing for segmenting inner lips area

In order to estimate the inner lips parameters, the most important thing is to determine the
inner region of lips. More precisely, we propose to first extract the inner region of lips instead
of directly finding the lips. As we can see, the teeth and darker area inside inner lips have
different color properties from lips [47], [195], [196] (see Fig. 5.24), and thus a color based
method is proposed to delimit the inner lips and non-inner lips as much as possible. A lips
ROI is determined using the landmarks given by CLNF (see Section 5.2.2.6).

We first present an image processing approach to detecting the dark area inside inner lips.
In YCbCr space, the dark area has a lower luminance, and a threshold of Y value can be
used to distinguish it. Now we take the speaker MD as an example. In our experiment, a
threshold of 70 gives a satisfactory performance. The dark area extraction performances of
different thresholds are shown in Fig. 5.22. The effects of using thresholds 40, 70 and 100 are
shown in Fig. 5.22(b), (c) and (d), respectively. The best one is the threshold of 70. When
the threshold is too small, some dark areas will be omitted, while some extra areas will be
detected as dark area if the threshold is too large.

After detecting the dark areas inside inner lips, we now try to extract the teeth. In RGB
color space, teeth have a much whiter color than other regions. In comparison, lips have a
red-dominant color component. We thus consider the ratio R/G to efficiently distinguish the
teeth region. In addition, the luminance of teeth is bright, and can be detected either by
Y value or by G + B value. In this thesis, we consider the latter condition. After a large
number of observations, we find that a ratio R/G < 1.25 (coupled with G+B > 160) permits
to extract the teeth efficiently. The teeth extraction effects using different thresholds are
shown in Fig. 5.23. In order to distinguish the detected teeth region from the dark area, we
deliberately show the detected teeth region by different colors. Fig. 5.23(b), (c) and (d) are the
effects of thresholds 1.15, 1.25 and 1.35, respectively. We can see that the best performance
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Figure 5.22: Effects of the thresholds for extracting the dark areas of inner lips. In (b)-(d), the white
areas correspond to the detected dark areas inside the inner lips.

of teeth detection is obtained with threshold of 1.25 (see Fig. 5.23(c)), while an unsuitable
threshold will cause bad performance of teeth detection (see Fig. 5.23(b) and (d)).

It should be noted that the tongue has very similar color as lips and skin. It causes
difficulties to segment tongue and extract a complete inner lips region only by the color based
approach. After taking into account the dark area and teeth detection, the final effect of inner
lips segmentation is shown in Fig. 5.24. We can see that the inner lips area is well segmented
except the tongue.

After this preliminary image processing procedure, the pixel value of the detected inner
lips region is set to 255 (i.e., white pixel), and 0 (i.e., black pixel) for other regions inside
lips ROI. We mention that the image processing is subject-dependent and sensible to the
variable lighting conditions. For any speaker, the adjustable parameters are the thresholds for
extraction of dark area and teeth, and they can can be determined experimentally.

5.3.1.3 Single discontinuity smoothing and interrupted region filling

The previous image processing allows extracting the teeth and dark areas inside inner lips.
However, it is still not enough to form a whole inner contour since tongue and fuzzy invisible
teeth are not able to be detected. Matlab function imfill can be used to reduce the discon-
tinuity only when it is entirely surrounded by white pixels. But it is not suitable when the
extracted region is not connected. In order to solve this problem, we propose two methods:
the single discontinuity smoothing and interrupted region filling.
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Figure 5.23: Effects of the thresholds for the teeth detection of inner lips. (a) shows the original lips
ROL In (b)-(d), the dark red areas correspond to the detected teeth inside the inner lips area.

Figure 5.24: Example of teeth and dark area extraction for inner lips region. Left is the original lips
ROI, while right is the detected dark area (white part). The yellow area is the detected teeth. The
tongue is not detected, due to its similar color with lips.
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The single discontinuity smoothing aims at eliminating the single pixel which is not de-
tected inside inner lips. In the ten cases of Fig. 5.25, the central pixel (single rupture) will
be set to be "white". This procedure is implemented from top to bottom and then from left
to right of the inner lips area. The result of the single discontinuity smoothing is shown in
Fig. 5.26.

However, in some cases, one or several blocks of the black pixel remain after the single
discontinuity filling (see the bottom image of Fig. 5.26). The interrupted region filling is
proposed to solve this problem. It includes the processing in the horizontal and vertical
directions. We first examine each row in the lips rectangle ROI, moving from top to bottom.
In a row, the orange line in Fig. 5.27 is divided by several black intervals separated by white
intervals. Recall that the white part indicates the detected inner lips area, and the black
part is the non-inner lips area. If a black interval length is less than the sum of two adjacent
white intervals (i.e., b; < I; + l;+1), the black interval will be filled as a white interval. The
same procedure is then applied column by column from left to right. The result is shown in
Fig. 5.28.

E== .5 o O

.
. lin

Figure 5.25: Principle of the single discontinuity filling. When the center pixel is black and the
surrounding pixels are like these ten configurations, the black center pixel will be changed to white.

5.3.1.4 The process of adaptive ellipse searching

After the above pre-processing steps, a relatively well filled inner lips region is obtained. It
is a binary image where the detected inner lips region is white and other areas are black.
However, uncontrolled lighting conditions (especially when the hand gets close to face), highly
deformable of lips and the appearance of the tongue! cause great difficulties to extract a
complete inner lips region only by the color based approach.

1Tt has almost the same color with skin.
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Figure 5.26: One example showing the result of single discontinuity filling. The top one is the raw
inner lips region after teeth and dark area detection. The bottom one is the processed image by the
single discontinuity filling.

Figure 5.27: Principle of interrupted region filling. The white region in (a) is the inner lips region
processed by the single discontinuity filling. We first check this region row by row. The orange line is
one such line. The white and black intervals along this line are shown in (b) which are marked as [ and
b. When the length of [ and b satisfies certain criterion, the black interval will be filled as white. This
figure shows the processing in the horizontal direction, while the vertical interrupted region filling has
the same principle.
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Figure 5.28: One example showing the result of the interrupted region filling. The top one is the
inner lips region after single discontinuity filling. The bottom one is the processed image by the
interrupted region filling.
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Our idea is to fit an adaptive ellipse which can match the detected white area as good as
possible. The ellipse starts moving and growing up from the center of the image so that the
influence of the noise mentioned above can be efficiently eliminated. It should be noted that
we do not claim the inner lips shape is always an ellipse. We just try to find an equivalent
ellipse which optimally matches the lips parameters.

The adaptive ellipse model contains the following steps.

(1) Initial ellipse center and radius determination. Firstly, in order to reduce the noise,
a small rectangle with size 30 x 10 is established using the center of lips ROI. This size is then
adjusted until the white area in this rectangle takes a significant percentage. More precisely,
the small rectangle grows towards left and right by 3 pixels, and then towards up and down
by 3 pixels. If the increased white pixels are more than 20% of the increased rectangle area,
it continues expanding without exceeding the boundary of lips ROI. Otherwise, it stops. In
the end, this rectangle contains the main part of inner lips region.

Now we determine the center of lips region as:

SSRGS RG) (55)

where ¢ and j are the pixel index in the detected inner lips area, P,(7) is the sum of all the
horizontal luminance along the ith row and P,(j) is the sum of all the vertical luminance
along the jth column. (x,yo) will be the initial center of the adaptive ellipse. To determine
the semi-major axis a and the semi-minor axis b of initial ellipse, we calculate the inertial
moments about the two axes as:

S0 — 20)2Pa(i) 207 — 90)2P, ()
0_2:z : 0_2:] :
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and then take
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(2) Optimal ellipse searching. By using the center in (5.5) and the initial parameters in
(5.6), the initial ellipse is very small compared with the lips region (see Fig. 5.29). This small
ellipse starts to move and grow up successively in the four directions (up, right, down and left),

(5.6)

a =

one direction by a step. For each step, its radius and the center position (see Fig. 5.30(a)) will
be updated using (5.7). They will converge to the optimal position and size which matches
the inner lips best. This adaptation can be summarized as follows:

On4+1 = ap + Aa, bn+1 = bn + Ab,
:ngH = x4 + Awxo, ygﬂ = yg + Ao, (5.7)

where Aa, Ab, Axy and Ay are the strides of a, b, zg and g, respectively.

In each iteration, only a and z¢ (or b and yp) in one direction are updated at the same time.
The signs of Azy and Ayp are changed according to the moving direction (for example, Az
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Figure 5.29: Parameters of the initial ellipse. The yellow region is the extracted inner lips area after
the previous preprocessing. The center point (xg,yo) of the yellow area is used as the initial ellipse
center. a and b are the semi-major axis and the semi-minor axis of the initial ellipse, respectively.

is positive if it moves to the right, negative if it moves to the left, etc.). In our experiment,
Axg is fixed to 0.5 and Ayyp is fixed to 0.2. Moreover, Aa is fixed to 0.5 and b = kAa, where
k = by /ay,. We denote by Sy, the area of the white region in the current ellipse, and by S, the
current ellipse area (see Fig. 5.31). The ellipse expansion will stop if

Sw <S¢ x 0.7,

or the searching region exceeds the lips ROI. When the expansion of one direction stops, the
expansion of other directions may continue. The optimal ellipse is obtained until it stops in
all the four directions (see Fig. 5.30(b)).

The parameters of final ellipse are used to estimate A and B parameters as follows:
A=7vx2a, B=vyx2b,

where v is logically equal to +/0.7 = 0.84. However, experimentally, v is set to be 0.87 to
make the estimation results more accurate.

5.3.2 Evaluation and Results

In this subsection, we will evaluate the precision of the A and B parameters estimated by
the proposed method. An RMSE is calculated between the predicted values and the ground
truth, and a vowel recognition using only lips parameters is carried out.

5.3.2.1 Evaluation of the precision of A and B parameters

The adaptive ellipse model efficiently estimates A and B parameters for all kinds of lips shapes,
and the performance for three subjects is shown in Fig. 5.32.

The proposed method is evaluated by comparing the estimated values with the ground
truth. In Fig. 5.33, we can see that the estimated A and B parameter curves are quite
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Ellipse step: n+1

Figure 5.30: Illustration of the ellipse expansion and movement. (a) Expansion and movement along
the right direction. From step n to n + 1, the major axis and center position are updated at the same
time. (b) The expansion and movement towards four directions (right, down, left and up). It will stop
when it satisfies the stopping criterion.
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Figure 5.31: Stopping criterion of the Ellipse expansion. The white region is the detected inner lips
area. The shaded region is the intersection of white area and orange ellipse. S, is the ellipse area and
Sw is the area of the shaded region inside the ellipse.

Figure 5.32: Results of the proposed model in different cases (MD, DB and ChS from left to right).
The green ellipse is the optimal one which can give a reasonable estimation of A and B parameters
for inner lips.
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Figure 5.33: Comparison of estimated parameters (A and B) with the ground truth (from top to
bottom, the figures correspond to three subjects). The abscissa is the number of images, and y-axis
is in pixels. Red curve: the ground truth A parameter. Blue curve: A parameter by the proposed
method. Magenta curve: the ground truth B parameter. Cyan curve: B parameter by the proposed
method. Blue vertical lines indicate the temporal boundary of each word. For better visualization, we
randomly choose several word (small rectangle) intervals of three speakers.
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Figure 5.34: Estimation errors (red curves) between (A4 and B) values of the proposed method and
the ground truth for corpus MD (total 1377 images in the first repetition).

close to the ground truth curves for all three speakers. In Fig. 5.34, estimation errors of A
and B parameters for the CS speaker MD are shown. We can see that except few jumped
singularities, a global uniform distribution is presented without any evident dependence on
the lips shape.

We compare the proposed method with the CLNF approach. Mean values and RMSE of A
and B parameters are calculated for these errors. Results are shown in Table 5.3 and Table 5.4.
The total RMSE is about 3.37mm for A parameter. It shows a better performance than [194]
with the RMSE of 4.5mm. Moreover, the proposed method significantly outperforms the
estimation results of CLNF which obtains the RMSE 8.55mm. For B parameter, the RMSE
for the adaptive ellipse model is only 0.84mm. It is better than that in [194] with a RMSE
1.0mm, and also outperform the CLNF with RMSE 1.99mm. In summary, our results show
a superior performance compared with the state of the art, and also are comparable to the
Modified CLNF.

Let’s recall that The CLNF is a very powerful algorithm trained on a substantial quantity
of images. The main advantage is its insensibility to variations of the luminance, occlusions of
the lips and movements of the head. However, CLNF is developed for facial tracking, and it
is less precise for the extraction of the lips parameters. From this point of view, the proposed
method achieves a very high precision in lips extraction but contains adjustable parameters
which depend on the subject and the brightness. Indeed, we sometimes need a high precision
extraction algorithm, even if we have to adjust some parameters experimentally.
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Table 5.3: Estimation error of A parameter for adaptive ellipse model and CLNF (in mm).

" Rwse | up | D5 | Cis | Tomlemr |

Adaptive ellipse 3.54mm 3.50mm 3.06mm 3.37mm
model

Modified CLNF 4.50mm 3.30mm 2.80mm 3.50mm
CLNF 10.97mm 6.88mm 7.81mm 8.55mm

Table 5.4: Estimation error of B parameter for adaptive ellipse model and CLNF (in pixels and mm).

““Ruse | wp | on | s | Touewor |

Adaptive ellipse 1.03mm 0.78mm 0.71mm 0.84mm
model

Modified CLNF 0.6mm 0.5mm 2.0mm 0.5mm
CLNF 2.00mm 2.40mm 2.14mm 1.99mm

Figure 5.35: White filled ellipse determined by the estimated A and B parameters.

5.3.2.2 Continuous CS recognition of vowel based on lips parameter only

In order to further evaluate the performance of the estimated inner lips parameters, French CS
recognition based on 13 vowels is carried out using the HMM-GMM recognizer. We use the
corpus of first CS speaker with ten repetitions. 80% of the data (randomly chosen) are used
for training, and the remaining 20% are used for test (without overlap between the training
and test sets). HMM-GMM decoder is built with a standard HMM configuration: context-
dependent, three-state, left-to-right, no-skip-phoneme. It is trained with the maximum like-
lihood estimation based on the EM algorithm. The lips features (A and B parameters) are
modeled together with their first derivative. At decoding stage, the most likely image se-
quence of vowels is estimated by decoding the HMM-GMM state posterior probabilities using
the Viterbi algorithm.

Now we show the details of the experiment implementation. An ellipse of white color
(with semi-major axis length A/2 and semi-minor axis B/2) is superimposed on lips region
(see Fig. 5.35). PCA is used to extract the good features on raw lips ROI and white filled
parametric ellipse lips. For 13 French vowels recognition in CS, 61.8% accuracy on average is
obtained using the Modified CLNF, 62% is achieved based on 50 PCA coefficients (explaining
90% variance) in the ellipse, and 59.8% is achieved based on the PCA coefficients in raw
ROI. This result is comparable to state of the art [10]. We can see that the recognition score
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Table 5.5: Average accuracy of vowel recognition based on the estimated A and B parameters and
PCA parameters (30 pca components) in CS. This recognition is conducted by HMM-GMM decoder.

Features Accuracy

A, B parameters using Modified CLNF 61.8%
PCA on parametric ellipse lips ROI 62.0%
PCA on raw lips ROI 59.8%

using white filled parametric ellipse lips is slightly higher than that using raw images. This
confirms the high precision of the estimated A and B parameters. The recognition experiment
is subject dependent.

Figure 5.36: An ellipse mask covers the real lips region.

In this study, we may think of that the recognition performance is not only thanks to the
white ellipse determined by A and B parameters, since other parts of the image in the ROI
also contribute to the recognition performance. In order to verify this point, we mask the
whole lips region by a bigger white ellipse for all images (see Fig. 5.36). The vowel recognition
decreases to about 30%. This is indeed an interesting result, which may be due to the chin
information of the lips ROI or the context-dependent model.

Discussion

As a discussion, we formulate several remarks concerning the above two proposed methods.

(1) In the first proposed method, Modified CLNF combined with the periodical spline in-
terpolation method is based on CLNF lips landmarks. When the real inner lips contour
is inside the six inner lips landmarks of CLNF, we cannot expect the proposed method
to give a satisfactory inner lips contour (the black inner lips contour in Fig. 5.37). The
adaptive ellipse model (the red inner lips contour in Fig. 5.37) can solve this problem since
it does not depend on CLNF landmarks.

(2) For the adaptive ellipse model, when the lips have the ‘W’ shape (see Fig. 5.38), it is
difficult to mimic the ellipse of inner lips. However, the proposed method still gives a
satisfactory performance.
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(3) In both two methods, there are several parameters needed to be optimized by training their
data for each subject. Ongoing work is to reduce the subject-dependency of parameters
in these methods.

Figure 5.37: An example showing an intrinsic problem of the first proposed method based on CLNF.
The blue points are the landmarks given by the CLNF, and the black curve is the inner lips contour
obtained by the periodical spline interpolation method. The real inner lips are inside the black inner
lips contour, and the red curve shows the estimated inner lips contour by the adaptive ellipse model.

Figure 5.38: An example showing an intrinsic problem of the lips parameter determination. When
the lips shape is like ‘W’ as in this figure, it is difficult to determine the suitable A, B parameters and
an ellipse to match the inner lips region.

5.4 Summary

In this chapter, we present two novel automatic methods for estimating the inner lips param-
eters without any artifice. One is based on the CLNF, which is robust for the facial landmark
detection. However, the CLNF presents mistakes in about 41.4% of cases for inner lips track-
ing. This work aims at correcting CLNF errors by post-processing procedure. We propose
two methods to correct B and A parameters, respectively. In the case of B parameter, an
efficient method named HD-CTM based on the correlation with a hybrid dynamic template
is investigated to detect the outer lower lips position. Then, the inner lower lips position is
determined by the back-subtracting of the VLLT. The evaluation of this method on about
4800 images of three speakers confirms its good performance. In fact, RMSE is reduced from
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4 pixels (2mm) to 1 pixel (0.5mm). For A parameter, the periodical spline interpolation based
on the dilated six CLNF inner lips points is used to estimate the A parameter for round lips.
An automatic round lips detector based on DCT coefficient of lips ROI is used to select the
third viseme (round lips). This method is tested on 927 round lips images. RMSE is reduced
from 21.2mm to 3.5mm using the proposed method. The remaining errors come from the
mistaken inner lips landmarks of CLNF.

Another efficient inner lips estimation method based on an adaptive ellipse model is pre-
sented. We deal with the parameter extraction of inner lips from video without using any
artifice. This method first extracts the inner region of lips with an image processing combined
with the single discontinuity elimination and interrupted region filling. Then, an adaptive
ellipse model is used to match the inner lips region and gives the best estimation of A and B
parameters. The parameter precision is evaluated on 4693 images of three French speakers.
The proposed method permits to obtain a RMSE of 3.37mm for A parameter and 0.84mm for
B parameter, which outperforms the state of the art. Finally, the CS recognition of 13 French
vowels also confirms the superior performance.
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6.1 Introduction

Hand feature extraction is an essential task in CS recognition. As introduced in Chapter 1,
the classical method for hand position and shape feature extraction is based on the artificial
marks. Our aim is to get rid of these artifices in this thesis. We notice that in CS, the hand can
be seen as a moving foreground when the speaker is coding in the experimental environment.
So the CS speaker’s hand position tracking can be regarded as a foreground extraction problem
which can be solved by the Adaptive Background Mixture Model (ABMM) [20]-[22]. After
determining the hand position, we build a hand ROI based on it. Then the hand shape
feature is extracted using the pixel based methods. In this chapter, we mainly focus on the
hand position while the hand shape feature extraction will be introduced in Chapter 8.

In the image processing, the foreground is an integral part of the image, and takes an
important advantage in many applications [197]-[200]. A classical and efficient approach for
the foreground extraction problem is based on the GMM. A novel method was presented in
[201] for the automatic foreground extraction based on the Difference of Gaussian (DoG),
which is employed to find the candidate key points. A multi-class statistical model was used
in [202] for the tracked objects, but it is a single Gaussian per pixel. In [21]|, the ABMM
was proposed for the foreground (running car) tracking (see Fig. 6.1). ABMMs model each
pixel of the image as GMMs instead of modeling all the pixels as one typical distribution.
Based on the change of the Gaussian’s variance, the Gaussian distribution corresponding to

111
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the background in the image can be determined. It was reported in |21] that this method is
robust to the lighting changes of the background.

Therefore, we take advantage of ABMMs [21] and use it for the CS hand position tracking.
In Section 6.2, we will give a brief description of the main content of adaptive background
mixture model, as well as its application to CS hand position tracking. The evaluation of this
method will be presented in Section 6.2.3.

Figure 6.1: The execution of the adaptive background mixture model in car tracking scenario. (a)
the current image. (b) the determined background by ABMMs. (c) the detected foreground pixels.
(d) the current image with tracked objects (from [21]).

6.2 Adaptive background mixture model for hand tracking

6.2.1 Adaptive background mixture model

The Adaptive Background Mixture Model (ABMM) was proposed in [21] for the real-time
segmentation of moving regions in image sequences. In fact, the moving regions can be seen
as the foreground, while other regions can be seen as the background. In this model, a simple
way is used to evaluate the Gaussians to determine the background, while other pixel values
are grouped using the connected components. Then a multiple hypothesis tracker is used to
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track these connected components from frame to frame. This process is illustrated in Fig. 6.1.
Now we briefly introduce the ABMM. More details can be referred to [21].

Suppose that I is a image sequence, and (g, o) is a fixed pixel of this sequence. The
information of this pixel at time ¢ is

{X1, ... Xo} = {I(20,90,7) : 1 < j < t}. (6.1)

Note that there often exist lighting variations, scene changes, or moving objects in 1. We need
to model (6.1) by a mixture of more than one Gaussians. More precisely,

K
P(Xy) =Y wim(Xe, i, Tir), (6.2)
i=1
where K is the number of Gaussians, n is a Gaussian probability density function, wj, p;+
and X;,; are the weight, mean value and covariance matrix of the ith Gaussian at time ¢,
respectively.

Any new X; is checked against K Gaussians until a match is found, which means that
this pixel value is suited within 2.5 standard deviations of the distribution. If no match is
found, the least probable distribution is replaced with a distribution, which has an initially
high variance, low prior weight, and takes the current value as the mean value.

Then we study what portion of the mixture model best represents the background in order
to determine the Gaussian, which is most likely produced by the background. The pixel values
which do not fit the background distribution are considered as the foreground, while others
belong to the background.

6.2.2 Automatic hand position and shape ROI determination

Recall that the hand position is obtained by tracking the colors on the subject’s hand in the
literature, as mentioned in Section 1.2.2. To get rid of these color marks, we now use the
above ABMMs to track the hand position automatically.

The hand can be seen as a moving foreground when the CS speaker is coding. In order to
guarantee that the hand is the only foreground in the image, we mask the lips (see Fig. 6.2).
Therefore, the ABMM is applied to track all the pixels which belong to the hand area, and
the gravity center of all these pixels is taken as the hand position. GMMs with five Gaussian
components are used to characterize the individual pixel of the image. For each new image
frame, the GMM will be updated, and each pixel in the current image is matched with the
mixture Gaussian model. If it is matched, this point will be regarded as a background point.
Otherwise, it will be classified as a foreground point. Moreover, a rectangle with a suitable
size! (150x175) for the hand shape is built based on the hand position to form a hand ROI
(see Fig. 6.3). The hand ROI is resized to a 64x64 pixel image using cubic interpolation and
converted to gray-scale.

! This suitable size 150x 175 is determined experimentally.



114 Chapter 6. Hand Feature Extraction in Cued Speech

original image foreground image

background image

(a) (b) (c)

Figure 6.2: Illustration of hand extraction using ABMMs in our data. (a) the raw image with masked
lips. (b) the background after applying the ABMMs. (c) white pixels for the foreground. The hand
position is taken as the gravity of all the detected hand shape pixels in (c).

(c)

Figure 6.3: Visualization of the hand ROI based on the hand position estimated by ABMMs. The
estimated hand position is considered as the center (green point) of this hand ROI (green rectangle).
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Table 6.1: Estimation precision (in pixels and mm) of the hand position by the proposed method.

Hand position (X direction) Hand position (Y direction)
Mean error -13.05 (-6.5mm) 23.32 (14.1mm)
Standard deviation 28.11 (11.7mm) 36.64 (18.3mm)

6.2.3 Evaluation of the proposed hand tracking method

A number of 138 sentences from LM corpus are used to evaluate the ABMMs for the hand
position extraction. First, we compare the obtained hand position with the ground truth hand
back position. A good example is shown in Fig. 6.4(a) and Fig. 6.4(c). We can see that the
position values estimated by the proposed method are close to the ground truth. A more
complicated example is shown in Fig. 6.4(b) and Fig. 6.4(d). However, in some time interval,
we can see a significant difference between them. In this case, the estimated value given by
the proposed method seems to be difficult to reach the extreme position in both X and Y
directions. For all the images in the subset of 138 sentences, the mean error and the standard
deviation can be seen in Table 6.1.

X direction X direction

f\\
\,/ \v\

(c) (d)

Figure 6.4: Evaluation of ABMMs for hand position estimation. The abscissa is the image frame
number, while y-axis is the hand position in pixels. Red curve: the ground truth value. Blue curve:
the hand position obtained by ABMMs. (a) and (c) represent the hand position trajectory for one
sentence, and (b) and (d) represent the hand position trajectory for the other sentence. (a) and (b)
are hand positions in the X direction. (c) and (d) are hand positions in the Y direction.

It is also interesting to see their relative spatial distribution of the hand position. For
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this purpose, the five groups of hand position distributions are plotted in Fig. 6.5. As we
can see, compared with the ground truth hand position in Fig. 6.5(b), the distribution of the
five estimated positions are more confused (see Fig. 6.5(a)). However, we can still see that in
Fig. 6.5(a), these five hand position distributions are not in disorder. Their spatial order is
basically kept. In another word, apart from the blue points, other four groups of points are
toughly distinguishable.
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Figure 6.5: Hand position distributions with two different extraction methods. (a) the hand positions
obtained by the proposed method. (b) the ground truth hand position of the hand back. The ground
truth temporal segmentations are used for both cases. Five groups of points correspond to different
hand positions. Red points: cheekbone; green points: mouth; black points: throat; cyan points: chin;
blue points: side position.

In order to see the influence of the estimated hand position when applying them in the
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recognition task, based on the 138 sentences of corpus LM, we compare the hand position
recognition performances using the estimated hand position with the ground truth hand posi-
tion (see Fig. 6.6). In this case, we use a simple Gaussian classifier to indicate the divisibility of
hand positions. It can be seen in Fig. 6.6 that using the estimated hand position is not as good

as using the ground truth hand position in all cases of four different temporal segmentations?.

100
90 85.98
80 69.54 70.31
70
59.48 62.26
60 53.85 54.4
50 45.41
40
30
20
10
0
audio-based extended audio- hand preceding the ground truth
based model

m Foreground hand position  m back hand point

Figure 6.6: Hand position recognition accuracy using the estimated hand position (foreground hand
position with blue) and the ground truth hand position (hand back point with red). Different temporal
segmentations are used: audio-based, extended audio-based, predicted with hand preceding model and
the ground truth segmentation.

6.3 Summary

In this chapter, we describe the application of the ABMMs to extract the hand position of CS
speaker. This method is based on a GMM foreground and background extraction approach
[20]-]22|. In fact, the speaker’s deformable hand is regarded as the foreground in a video. Five
Gaussian models are used to characterize the foreground and background pixels in an image.
The gravity center of the detected foreground pixels is considered as the hand position. In order
to evaluate the performance, we first compare the estimated hand positions with the ground
truth, and then perform a hand position recognition using Gaussian classifier. In case of the
ground truth temporal segmentation, the recognition results show that using our estimated
hand position gives 62.26% while the ground truth hand back position attains 85.98%. Even
though this automatic hand position extraction method cannot reach the performance of the
ground truth, it permits to track the hand position with a certain precision. On the other

2 Audio-based temporal segmentation is the temporal segmentation of the raw audio speech signal. The extended
audio-based segmentation and that based on the hand preceding model will be introduced in Chapter 7.
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hand, based on the proposed method, a hand shape ROI can be built, and the hand shape
feature extraction will be introduced in Chapter 8.
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7.1 Introduction

In CS, lip reading and hand coding work together to make the syllable visible. Hand and
lips movements in CS are coherent and complementary to realize an efficient communication
system. However, they follow their own movement rules. The hand movement is more related
to the speech syllabic cycle, while the lips movement is more related to the phoneme produc-
tion. These two movements are not well synchronized. Attina et al. [37], [203] investigated
the temporal organization of hand and lips movements, and found that the hand reaches its
target roughly 200ms (between 171 and 256ms) before the vowel being visible at lips.

The supervised automatic CS recognition system needs a proper alignment and annotation
of the data streams. More precisely, in the training step, the boundaries should be provided
to indicate which segment in the stream corresponds to a given phoneme. CS recognition is
a multi-stream task with the asynchronous data streams. This means that we must realize a
proper temporal segmentation for each stream. Note that the lips movement is relatively well

119
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synchronized with the acoustic signal. It is possible to realize the automatic segmentation of
lips via the acoustic signal which offers a comparably good quality (see Section 2.3.2). However,
performing an automatic segmentation of the hand movement is still an open question, and it
is also a challenge in this thesis.

As far as our knowledge, no previous work has explored the automatic method to obtain
a proper temporal segmentation of hand movements in CS based on the corpus without any
artificial mark. In fact, the prior work [38] investigated the temporal segmentation of hand
position stream by using the color marks on subject’s hand. The temporal segmentation of
hand position is obtained based on the Gaussian modeling of hand positions and the velocity
of hand position movement. However, this method needs both position on the hand back and
the target finger position, and all these points are given by different color marks [38]. It is not
possible to directly apply this method to the database without any artificial mark. We may
think to use the deep learning methods like LSTM (see Chapter 3) to capture the asynchrony
between these different streams automatically. However, it needs a large amount of training
data which is not available in our case.

In this chapter, we focus on the temporal segmentation of the hand movements' from a
new perspective. It is to determine the instant of the target hand position which indicates the
realization of a vowel, and the intervals in which the hand shape is well formed to indicate a
consonant. We carry out three studies to efficiently resolve the temporal segmentation problem
of the hand movement, which will be used for the automatic CS recognition in Chapter 8.

(1) First, we carry out a detailed analysis of the hand movement in CS, and show that hand
movements are organized syllable by syllable. In fact, the hand shape is prepared during
the hand moving towards its target position, and reaches its most precise form at almost
the same time as the hand position reaching its target. This mechanism allows us to define
the best instant to locate the target position for the vowel, as well as the best instant to
determine the hand shape for the consonant.

(2) Based on (1), we perform a manual temporal segmentation of a subset of corpus LM to
establish a preceding model. This model is expected to describe the relationship between
the target instants for the hand position and the corresponding acoustic signal. It allows
us to predict the target moments for hand position, and segment the hand position stream
based on the audio signal. The evaluation shows that a much better vowel recognition
score is obtained than using the audio based segmentation.

(3) We are also interested in determining the best instant for locating the hand shape which
indicates a consonant. Our analysis shows that the middle instant of this interval is about
60ms before the middle instant of the consonant on the acoustic signal. This allows a
segmentation of the hand shape stream based on the audio segmentation.

! Here, the hand movements contain the movements of hand position and hand shape.
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7.2 Hand movement characteristics in Cued Speech

7.2.1 Lips and hand asynchrony phenomenon

The asynchrony problem of three streams (lips, hand shape and hand position) in CS is a
challenging issue. Recall that the hand movement precedes acoustic sound realization 200ms
on average for a phoneme [37]. Now we illustrate the hand advance phenomenon by an
example of CS where the speaker utters "un petit". In Fig. 7.1(a), the CS speaker points
to the cheekbone position on the face for the vowel [¢] with the hand shape corresponding
to [p]. The red line corresponds to the instance in the acoustic signal which is neither the
position for [¢] nor [p|. In Fig. 7.1(b), the hand starts changing its shape for the consonant [t|
while the mouth is still closed for [p| at an instant (see the red line) before the acoustic burst.
In Fig. 7.1(c), the speaker shows round lips corresponding to the vowel [¢]. However, the
hand shows the shape corresponding to the subsequent [t| consonant and the hand position is
already in vowel [i].

(a) (b) (c)

Figure 7.1: Illustration of the asynchrony phenomena in the CS lips-hand movement. The context
of the [& p ¢ t i] sequence is extracted from the French sentence un petit. Top is the lips and hand
zoomed from the whole images in the middle row. These images are taken at different instants of the
speech signal (bottom) indicated by red lines.

7.2.2 Analysis on temporal organization of the hand movement

The goal of this subsection is to specify several fundamental rules concerning the hand move-
ments in CS, as well as the asynchrony problem between lips and hand movements.
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Without loss of generality, we only consider the syllables which consist of a consonant
followed by a vowel (i.e., in the form of C'V'). When the speaker organizes the sentence syllable
by syllable, at each target instant, the hand position indicates the concerned vowel while the
hand shape indicates the corresponding consonant of the syllable. The movements of hand
positions and hand shapes seem to be organized in such a way that the hand shape reaches
its final shape at almost the same time when the hand position reaches its target for a vowel.
In the duration of two target positions, the hand prepares its shape to indicate the next
consonant.

The principle of the temporal organization of hand movement in the unit of the syllable is
shown in Fig. 7.2. The rectangles on the top row indicate the time intervals in which the hand
reaches its target position. For hand position movements, these intervals are relatively short
(about 60ms on average, three images). The rectangles on the bottom row indicate the time
intervals in which the hand prepares its shape to indicate the consonant. During this period,
the hand shape is almost formed, but the hand continues moving and rotating. Therefore,
these intervals are relatively long (about 200ms). In fact, the hand begins to leave the target
position once a syllable codes completely, and the fingers move quickly to prepare the next
hand shape. We can see that each rectangle on the bottom starts immediately just after the
previous syllable.

The definition of different parameters

As described in Section 7.2.1, in CS, the hand reaches its target position before lips pronounc-
ing the corresponding vowel. We are now interested in how long time the hand precedes the lips
movement. Now we detailedly study this phenomenon and propose a hand preceding model,
which can be used to predict the temporal segmentation of hand movement automatically.

We first give some definitions about the different parameters. As shown in Fig. 7.3, for
a vowel in a syllable, the instant corresponding to the middle instant of the vowel in the
acoustic speech signal is denoted by ¢,, and the target instant for the hand position movement
is denoted by t¢qr . Compared with ty4, 4, the advance of ¢, is denoted by A,. D, (about
60ms) is the time interval in which the hand reaches its target position, while D, is the time
interval in which a hand shape is nearly formed but continues moving and rotating. We define
the hand preceding time as the time difference between the hand target instant and acoustic
target instant. In other words, in case of vowel, the hand preceding time (in ms) is

Ay =ty — tiar o (7.1)

For the consonant in a syllable, the middle instant of the consonant in the acoustic signal
is denoted by t.. As we just mentioned, . necessarily precedes t,. We consider that the
complete hand shape is formed at the same time as the target position i, ,. However, this
best hand shape does not correspond to a single instant but a certain duration naturally.
Moreover, this time interval is before ¢4, ., because after this moment the hand shape begins
to change immediately. Let D. denote the time duration corresponding to the best interval to
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Figure 7.2: Temporal organization of the hand movement (hand shape and hand position). The
concerned two syllables are [f €] and [d e]. The top row shows different hand positions, while the bottom
row shows different hand shapes. Two middle rows present different instants of the corresponding
vowels and consonants.
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Figure 7.3: Definitions of the target instant and hand preceding time. The blue signal is the audio
speech signal for a syllable. The red line t, indicates the acoustic target instant for this vowel, and
the green line t. indicates the target instant for this consonant. The red line t;4, , indicates the
target instant for hand movement: at this moment, the hand reaches its target positi07n for this vowel.
The green line t4, . indicates the best instant for identifying a hand shape corresponding to a given
consonant.
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identify a given hand shape. The middle of this time interval will be denoted by #:4, . which
is the target instant for the hand shape realization.

7.3 Experimental setup

In this section, we will introduce the database for the temporal segmentation of hand stream.
The measurement of hand preceding time will also be presented. Using these measurements,
a statistical model is built which indicates the hand preceding time according to the vowel
instant in a sentence.

7.3.1 Database

The database is composed of two female normal hearing CS speakers LM and SC. As in
Chapter 2, the corpus LM is recorded without using any artificial mark, and the corpus SC
was recorded before with artificial marks (but the marks are not used). The speaker LM
pronounces and codes a set of 238 French sentences in CS derived from a corpus in [40],
[44]. Each sentence is repeated twice resulting in a set of 476 sentences. The corpus SC is
made of 267 sentences which come from the large database in [38]. We take a subset of the
whole database to build the hand preceding model, which contains 138 sentences with 88 short
sentences and 50 long sentences from corpus LM (totally 1066 vowels), and 44 short sentences
(196 vowels) from corpus SC.

7.3.2 Measurement of the hand preceding time

This experiment is to establish the relationship between the hand preceding time and vowel
instant in sentences. For this purpose, it is necessary to first measure the instant where the
hand reaches a vowel target precisely.

It should be mentioned that the accurate automatic CS hand finger tracking in 2D image
is still an open problem. Therefore, to obtain the accurate hand movements data, we manually
track the 2D position of the target finger of the CS speaker (see Fig. 2.12). The target finger
which directly points to the vowel position allows the CS reader to understand what the CS
coders want to express. However, the target is not always realized by the same finger since the
hand shape is variable during the coding process. We choose the position in the following way:
the 2D position of the index finger is used if no middle finger appears. In order to constitute a
solid base for studying the hand movement, the point on the hand back (see Fig. 2.12) is also
tracked. One advantage is that this hand point is always visible in the CS coding process, so
that all the points on the hand back can be collected without any interruption.

To make the manual segmentation easier, we calculate a hand movement velocity curve
from the coordinates of the tracked points. This calculation can be done using the target
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finger point or the hand back point. In our case, we use the latter one. This procedure was
also used in [38] but with blue marks on the speaker’s hand. The particularity is that we first
apply a suitable smoothing method (spline function with p = 0.1 [193]) to = coordinate and
y coordinate. This smoothing method gives two speed rates in = and y directions, denoted
as vy and vy. The velocity of the hand movement in the direction of its trajectory is then

v = /vt (7.2)

In Fig. 7.4, an illustration of the velocity of the hand movement is given. Note that we do
not need to know the exact value of this speed rate, and only its evolution is sufficient to help

calculated as:

us in the segmentation task. This velocity curve of the hand movement offers an important
indication to localize the vowel target instants in sentences since in general, the hand moves
rapidly between two target positions and moves slowly or even stops at target positions. Thus
the minimum value of the curve indicates that the hand reaches its target position. However,
not every minimum value of the speed rate corresponds to a vowel target. This phenomenon
makes the automatic temporal segmentation more complex. Even in some cases, the vowel
target does not correspond to a minimum speed especially in the case of side position.

A manual temporal segmentation of vowels and consonants for each sentence is accom-
plished by using the movie editor Magix [204], [205]. We translate the velocity curve using
(7.2) into a speed rate signal so that it can be visualized in Magix with a perfect synchrony
(see the second row in Fig. 7.5). In this way, video, hand movement speed rate and sound
can be visualized in one window which benefits the segmentation process a lot. The temporal
target interval which contains several images around the hand target position is considered in
this segmentation.

The above manual segmentation for vowels allows localizing the target instant ty4, , of
the hand movement for each vowel. Thanks to the audio based segmentation localizing each
vowel in the acoustic signal, the hand preceding time A, can be calculated for all vowels of
the sentences (totally 1066 vowels for LM) by (7.1).

7.4 Hand preceding model for the hand position movement

In this section, we detailedly describe how to establish a hand preceding model for the vowels
coded by hand positions [206]. It allows us to know the hand preceding time according to the
vowel instant in the sentence. Then we propose a temporal segmentation method for the hand
position stream.

7.4.1 Hand preceding model for vowel

The hand preceding time in function of vowel instant of 138 sentences for the subject LM
is shown in Fig. 7.6(a). We align all the sentences by their end instead of their beginning
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Figure 7.4: Hand movement speed rate of the sentence Je suis a bout. The abscissa indicates
the image frame number, and y-axis is the hand position. The red curve is the hand position in z
coordinate, and green curve in y coordinate. Black curve with circle dots shows the hand movement
speed rate.

Figure 7.5: The software Magix used to study the hand movement in CS. This example shows the
sentences Je suis 4 bout. The first row is the image sequence of this sentence. The second row shows
the hand movement speed rate curve. The third row gives the hand target position of vowels: each
purple temporal rectangle presents an interval in which the hand reaches its target position to indicate
one vowel. The last row gives the temporal interval in which the hand shape is more or less formed to
indicate a consonant but the hand continues its movement and rotation.
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since we observe a common law of the relationship between the hand preceding time and the
vowel position for all the sentences. From the beginning of a sentence to a certain instant
(about one second before the end of the sentence), the hand preceding time seems to remain
a constant. More precisely, the statistical repartition of the hand preceding time has almost
no change from the beginning to about one second before the end. Then the hand preceding
time decreases when the vowel instant approaches the end of the sentence. By aligning all
the sentences by the end, this phenomenon becomes very evident. Indeed, the distributions of
short sentences and long sentences are superposed entirely at the end of the sentence. Besides,
the vowels from speakers LM and SC follow the same repartition as shown in Fig. 7.6(b).

Based on these observations, we build the hand preceding model, which contains two parts.
The first part is the mean value of the hand preceding time (i.e., 139ms in our case) of all
the points from the beginning of the sentence to a turning point. After the turning point, the
second part is a linear model which can be obtained by linear regression (a slope of -0.213) of
the rest data. The turning point corresponds to the intersection of these two straight lines. In
our case, it situates at about 0.88s before the end of a sentence. Based on the above analysis,
we see that the hand preceding model fits all the sentences for two subjects.

We now propose a temporal segmentation method for the hand position based on the
hand preceding model. More precisely, based on the audio based segmentation, each temporal
segment for a vowel will be shifted by A; according to the instant of the vowel in the sentence.
The A, is calculated using the hand preceding time. An illustration of the segmentation using
the hand preceding model is shown in Fig. 7.7.

The audio-extended segmentation

Apart from the above temporal segmentation by the hand preceding model, a simple rule
based segmentation called the audio-ertended segmentation is also proposed.

Recall again that Attina et al. [37] focused on the temporal organization of manual cues of
hand and lips. They showed that the instant of the hand reaching its target can vary roughly
from 171ms to 256 ms, and is equal to the time length of one syllable on average. Based
on this, we investigate a simple procedure to derive the temporal segmentation of the hand
stream from the temporal segmentation of the audio stream. As shown in Fig. 7.8, the left
boundary of each phoneme (except the first phoneme) is extended to the beginning of the
previous phoneme. The boundary of the first phoneme in each sentence keeps it as the audio
based segmentation.

In the following experiments, the audio-extended segmentation will be used to compare
with the one estimated by the hand preceding model.
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Figure 7.6: Hand preceding time distribution and hand preceding model. The abscissa is the vowel
instant in a sentence. All sentences are aligned at the end, where the instant is 0. Y-axis: the preceding
time A, (in seconds). (a) The red circles show the distribution of the 50 long sentences, and the blue
stars show the 88 short sentences. The black curve shows the hand preceding model. (b) The blue stars
show the 88 short sentences for the subject LM, and the magenta stars show the 44 short sentences
for the subject SC.
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Figure 7.7: Application of the hand preceding model in temporal segmentation. The predicted A,
(orange interval) is shown for the sentence Ma chemise est roussie. (a) the audio signal. (b) the audio
based segmentation. (c) the segmentation predicted by the hand preceding model.
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Figure 7.8: The audio-extended segmentation of the sentence Ma chemise est roussie. (a) the audio
signal with its corresponding phonemes and temporal segmentations. (b) the audio based segmenta-
tion. (c) the audio-extended segmentation.



7.4. Hand preceding model for the hand position movement 131

7.4.2 Evaluation of hand preceding model for hand position

To evaluate the performance of the proposed hand position segmentation using the hand
preceding model, we compare the predicted temporal segmentation with the following three
temporal segmentations:

(1) The ground truth segmentation. During the manual segmentation of the corpus, the target
interval for all the vowels of the sentences is determined manually. It constitutes a golden
reference for the hand position recognition in CS.

(2) The audio based segmentation. In the history of CS studies [10], [11], the audio based
segmentation was applied to the hand position stream. It is necessary to compare the
performance of the audio based segmentation with the predicted one in order to see the
potential benefits of the proposed method.

(3) The audio-extended segmentation. This simple rule based segmentation was introduced in
Section 7.4.1. To guarantee the same experimental conditions, we let the audio-extended
segments have the same length as the audio based segmentation.

We compare the boundaries of different segmentations directly and visualize the hand
position distribution in a 2D image. Besides, we apply the Gaussian classifier and LSTM to
the hand position recognition using different temporal segmentations.

7.4.2.1 A direct comparison with the ground truth

To evaluate the efficiency of the hand preceding model, it makes sense to visualize the predicted
temporal segmentation and the manual ground truth segmentation.

In Fig. 7.9, the predicted temporal segmentation of a vowel is compared with the manually
determined hand position temporal target interval, as well as the audio based segmentation.
From the second and the third rows, we see that they have a coherent match in most of the
cases. But there still remain some errors (see the 4" vowel in Fig. 7.9(b)). It is normal
that the hand preceding model replaces a large statistical repartition only by its mean value.
On the other hand, we observe that the audio based vowel temporal segmentations are far
different from other two segmentations, especially at the beginning of sentences. Note that,
the predicted segmentation keeps the same length for each vowel as the audio segmentation,
while the length of the segment can vary in the case of manual hand based segmentation.

It is useful to see the hand position spatial distributions using different temporal segmenta-
tions. We expect that the better temporal segmentation should present a figure which makes
five hand position distributions distinguishable and separable.

The distribution of the finger points of 396 vowels (88 short sentences in the corpus LM )
using four segmentations is shown in Fig. 7.10. We see that the Gaussian ellipse becomes
more and more distinguishable from (a) to (d). The points in (a) have large parts of overlaps
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Figure 7.9: Different temporal segmentations of two sentences. For simplicity, the vowel number is
only marked in the third row. For each vowel, a line with two circles represents its beginning, and
a line without any circle represents its end. Top row (black lines): the audio based segmentations.
Middle row (red lines): the predicted segmentations. Bottom row (blue lines): the ground truth
segmentations.

for five positions, while the points in (d) are significantly separable. Some improvements in
(b) are observed compared with (a). In particular, we find that the throat position and chin
position are divided. More importantly, we see that the distribution of the Gaussian ellipse
in (c) is very close to that in (d) with only a few intersections between the ellipses. These
distributions efficiently illustrate the satisfied performance of the hand preceding model.

7.4.2.2 Hand position recognition in CS using the sub-database

To further evaluate the proposed segmentation method, we apply all these four segmentations
to the hand position recognition. A simple multi-Gaussian model is used as a recognizer on this
sub-database since the aim is just to evaluate the performance of the predicted segmentation.
Five Gaussian models are firstly trained for the five positions. Let X = (z,y) denotes the
mean hand position value of a sequence of images in the target time interval. Given any mean
hand position X, we calculate the probability of X for each model, and the model with the
highest likelihood value is the identified class.

We show the recognition results in Fig. 7.11. These results are obtained using both the
finger position and the point on the hand back. Moreover, we compare these two ground truth
cases with the automatic tracked hand position estimated by the ABMMs.

Fig. 7.11 gives us rich and interesting information. First, we examine the hand position
recognition results using the target finger position. We see that in the case of the ground truth
temporal segmentation, the highest score of 96.9% is achieved. This constitutes the golden
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Figure 7.10: Hand position distributions for different temporal segmentations and target finger
positions. (a) the audio based segmentation. (b) the extended-audio segmentation. (c) the predicted
segmentation by the hand preceding model. (d) the manual segmentation. Five groups of points
correspond to different hand positions. Red points: cheekbone; green points: mouth; black points:
throat; cyan points: chin; blue points: side position.
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Figure 7.11: Hand position recognition results using multi-Gaussian classifier based on different
temporal segmentations.

reference to the hand position recognition in CS. When using the predicted segmentation given
by the hand preceding model, a comparable high score of 82.35% is obtained, showing the
excellent performance of our proposed method. We observe that the audio-extended method
can give a result (78.53%), which does not differ too much from the score using the predicted
segmentation. However, when the audio based segmentation is used, the recognition score
becomes very low (64.23%). This shows the segmentation based on acoustic signal is indeed
not suitable to segmenting the hand position.

Now let us switch to the recognition results using the point on the hand back. The global
results have a similar trend with that using the finger but lower accuracy. It is due to the
less precision of the hand position on the back compared with the target finger position.
Finally, when the hand position is estimated by ABMMs, the scores decrease dramatically.
As already discussed in Chapter 6, ABMMs have some errors when tracking the hand position
automatically. We can expect a better recognition result when a more robust automatic hand
position tracker is applied.

7.4.2.3 Hand position recognition in CS using LSTM based on the whole database

To further evaluate the performance of the proposed method, we apply the hand preceding
model to the whole database (476 sentences, about 6000 vowels) of the subject LM. LSTM
is used for the continuous hand position recognition based on the automatic tracked hand
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position®. Results are shown in Fig. 7.12. In LSTM, two hidden layers of 500 cells, 200 epoch
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Figure 7.12: Hand position recognition results using the multi-Gaussian and LSTM based on the
audio based segmentation and the predicted segmentation, respectively.

are used. It is trained by the BPT'T with the cross-entropy cost function. Softmax layer
is used to compute the class probability. The final accuracy of LSTM is calculated using
max-voting (after softmax layer) which counts the most frequent label as the final label in
the corresponding segment. LSTM is implemented using the Keras toolkit [207] based on the
GPU-accelerated library.

In Fig. 7.12, the hand position recognition results confirm the advantages of the predicted
segmentation for both multi-Gaussian and LSTM. Moreover, LSTM obtains a higher accu-
racy than multi-Gaussian since it captures the long-term temporal information of the hand
movement. More importantly, the proposed temporal segmentation based on LSTM gets the
accuracy 61.91%, which almost reaches the upper limit 62.26% by the ground truth tempo-
ral segmentation in case of using the automatic tracked hand position (see Fig. 7.11). The
continuous hand position recognition score can be further improved when an accurate hand
position is provided.

Above all, we see that the proposed segmentation method can significantly improve the
recognition performance of the hand position. It is hopeful to adopt this novel temporal
segmentation method to the full CS recognition.

7.5 Hand preceding model for the hand shape movement

In Fig. 7.3, we show that the best interval to identify a hand shape is located just before the
vowel target instance t¢qr . This segment has a duration D, and its center t¢q, . is considered

2 Here, we do not have the ground truth hand position for 476 sentences. We only manually track the hand
position for 138 among 476 sentences.
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as the best instance for a consonant. Now we experimentally determine the hand preceding
time for a consonant
Ac = ttar_c — te.

L -
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Figure 7.13: Distribution of the time difference between t. and t,. The abscissa is the index of
vowels, and y-axis is the A, (in seconds). The blue curve is obtained from the vowels randomly
extracted from ten sentences in corpus LM. The red line is the mean value of all the A.,,.

Firstly, we perform a statistical study about the time difference
Acv =tc— 1y

for the vowel and consonant based on corpus LM. We randomly choose 10 sentences which
contain about 100 consonants. In Fig. 7.13, A, is plotted for these 10 sentences. A, varies
in a broad range, and we only consider its mean value (roughly 110ms). As A, is about 140ms
(see Section 7.4.1), we can deduce that ttar v precedes t. about 30ms (the difference between
140ms and 110ms). After a large number of observations, we assume that the duration D, is
about 60 ms (3 images). Consequently, ttar ¢ precedes t. about 60ms. This is an estimation
of A, for consonants.

Then we determine the optimal value of A, experimentally. We perform a hand shape
recognition based on the CNNs hand features (see Chapter 8 for more details) and the multi-
Gaussian classifier. In the recognition, we use several different segmentations which are derived
by shifting the audio based segmentation with different A, (from 0 to 160ms with a step of
10ms). In this way, the A, with the best recognition score will be regarded as the optimal
value A?.

A hand position recognition experiment using the database of all 476 sentences is con-
ducted, and the results are shown in Fig. 7.14, which gives the recognition score as a function
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of the monotonically increasing preceding time A.. We observe a convex curve (red curve)
with a local maximum value about 60ms. This is coherent with the theoretical analysis about
the A, of hand shape (see Section 7.2.2). Indeed, the peak region of this curve is relatively
smooth, but the presence of a clear maximum value confirms that there exists an optimal
value of A..
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Figure 7.14: Hand shape recognition results using different segmentations in function of A.. The red
curve represents the recognition score as a function of A., and the green circle highlights the optimal
recognition score.

The above results also constitute an evaluation of the segmentation method since there
exists a common maximum value A% (about 60ms). In addition, in Section 8.3.3, this proposed
temporal segmentation achieves 84.3% phoneme recognition correctness based on the hand
shape and lips information. This result outperforms the state of the art (79.8%) [10].

7.6 Summary

In this chapter, we investigate a specific study concerning the temporal hand movements in CS.
As we know, the asynchrony problem of lips and hand movements makes them difficult to share
a common temporal segmentation from the audio signal. We show that the speaker’s hand
movement is essentially organized syllable by syllable. For a typical C'V syllable, during the
hand movement, the objective of the speaker is to reach a specific position to indicate the vowel.
The hand shape changes to indicate the consonant of the syllable. We perform a detailed study
by measuring the hand preceding time for vowels and consonants. These measurements show
that the hand preceding time for vowels has almost the same distribution (with a mean value
of 140ms for LM ) from the beginning of a sentence to about 1s before the end. This preceding
time then decreases linearly until the end of the sentence. Our measurements permit to
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establish a hand preceding model which takes into account this phenomenon. This model
allows us to elaborate a segmentation method for CS hand movements using the audio based
temporal segmentation. In other words, this method permits to predict the instant where
the hand reaches its target position. Our evaluations confirm the superior performance of the
proposed method. In fact, hand position recognition score using the predicted segmentation
significantly outperforms that using the audio based segmentation, with the Gaussian classifier.
Moreover, on the whole dataset, using LSTM achieves a much higher recognition score than
using the audio based segmentation. We also observe that the optimal moment to identify a
hand shape indicating a consonant is situated about 60ms before the audio signal. It shows
that we could obtain the optimal result when this preceding time is used in the hand shape
recognition.
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8.1 Introduction

As introduced in Chapter 1, lip reading scarcely reaches perfection in speech recognition due
to the ambiguity of the visual pattern. Recall that CS system was invented to make the
spoken language visible combining the hand coding with lip reading. The main objective of
this chapter is to develop an automatic continuous CS recognition system [208] which transfers
the visual video information to the phoneme in the form of text.

Recall that the automatic recognition of CS was explored in [10], [11], [40] with visual arti-
fices to track the lips and hand features (see Fig. 8.1(a)). In this thesis, the first motivation
is to get rid of these artificial visual marks.

139
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Concerning the recognition stage, the classification of static hand shapes in CS was ad-
dressed in [209] using an ANN. In [10], [11], HMM-GMM was used for CS phoneme recognition.
In [10], context-independent HMM-GMMs were used to decode a set of isolated phonemes ex-
tracted from CS sentences, i.e., the temporal boundaries of each phoneme to recognize in the
video were known at the test stage. In [11], the continuous phoneme recognition was also
performed by the context-independent HMM-GMMSs. However, the dataset in that study was
only composed of isolated words repeated several times (not continuous sentences). To the
best of our knowledge, no study has addressed the continuous recognition of CS or used the
context information of CS. Solving this challenging task is the second motivation of the
present study.

CNN features on
raw lips ROI

CNN features on
raw hand ROI

The center of
Hand position —— | hand ROI (x and
y coordinates)

(b)

Figure 8.1: Comparison of the feature extraction between the state of the art [10], [11] and this
thesis. (a) Lips shape, hand position and shape feature extraction based on blue colors in the state of
the art (from [10]). (b) Overview of the feature extraction without using any artifice.

For the first motivation, we explore the benefits of using CNNs to extract the lips and
hand features based on raw ROI images' (see Fig. 8.1(b)). For the second motivation, the
context-dependent HMM-GMM combined with the feature-level and model-level fusions for
CS recognition is explored. In fact, another possible approach could use a LSTM to learn the
context information between the phonemes and capture the long memory of the CS. In this
thesis, we choose to use the context-dependent HMM-GMM.

! Raw image here means that no artifice is placed on the speaker’s face or hand.
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In our case, CNNs are applied in a supervised manner which means that it needs a proper
alignment of data in the training step. As we know, in CS, there are three data streams,
and they are asynchronous during the CS coding. As a consequence, three different temporal
segmentations for them are necessary. The temporal segmentation of audio signal can be used
for the lips stream. In this thesis, the hand preceding model (see Chapter 7) is used to predict
the temporal segmentation of the hand position and hand shape. It should be noted that
different temporal segmentations are only used for the feature extraction by CNNs.

In this thesis, CNNs are combined with an HMM-GMM classifier that models the dy-
namic feature trajectories for each phonetic context [208]. Recall that in conventional ASR,
this combination is often referred to as a tandem architecture. This chapter is arranged as
follows. Firstly, the experiment database, methodologies, and the experimental implementa-
tions will be presented in Section 8.2. Then, experimental metric, evaluation and results will
be presented in Section 8.3.

8.2 Methodologies and experimental implementations

In this section, we will first introduce the experimental database in CS recognition. Then
the used context-dependent modeling will be presented. Finally, several tandem CNN-HMM
architectures will be investigated.

8.2.1 Database

The database for vowel, consonant and phoneme recognition experiments are collected from
the normal hearing CS speaker LM without using any artifice?. A set of 238 French sentences
is also derived from a corpus in [44]. Each sentence is repeated twice® by the speaker LM
resulting in a set of 476 sentences (11772 phonemes totally). One example is Ma chemise
est roussie (in English: My shirt is scorched). In this experiment, we use 14 vowels and
18 consonants, since the amount of consonants [y] and [pn] is not sufficient in this database.
The French CS is described with 8 lips visemes, 8 hand shapes and 5 hand positions. As
mentioned in Section 2.3.2, the phonetic transcription is extracted automatically and post-
checked manually by carefully listening to and observing the recorded audio signal.

8.2.2 HMM based context-dependent modeling

Recall that the second motivation in this thesis is to realize the continuous CS recognition
which incorporates the context information. As introduced in Section 4.4, modeling a sufficient
amount of contexts is very important for improving the robustness of a continuous CS recog-
nition system. In CS, the articulatory features (i.e., lips and hand) are very sensitive to the

% This database is publicly available on Zenodo (https://doi.org/10.5281/zenodo.1206001).
3 The aim is firstly to increase the size of data and secondly to correct potential errors.


https://doi.org/10.5281/zenodo.1206001

142 Chapter 8. Continuous Cued Speech Recognition based on CNN-HMMs

effect of context like the co-articulation, anticipation and variabilities due to the asynchrony.

In this thesis, we model the context information in CS by adding the left and right phoneme
context for the current phoneme, which is usually called the triphone model (see Fig. 8.2) in
ASR. More precisely, 34 HMMs are first built to model 34 French monophones using the
same procedure in ASR. Then, using the tree-based state-tying modeling [150] introduced in
Section 4.4, we can generate models for triphones (including unseen triphones). Finally, the
decision trees are used to find the most possible model for any given triphone.

__-a+q __-14q
i-g+a q-a+a~
a-a~+1i a~-i+a
i-a+y a-y+a
y-a+a a-g+i

g-i+en i-en+u
en-u+i u-i+

Figure 8.2: Examples of the triphone in our context-dependent modeling. Syllable ‘~” represents the
link to the left phoneme, while ‘+’ represents the link to the right one.

8.2.3 A resynchronization procedure of multi-modalities in CS

In fact, it was investigated that the hand reaches its target on average 239ms [37] (based on
non sense syllables logatome, like ‘mamuma’), and 144.19ms [38] (based on syllables extracted
from French sentences) before the vowel being visible at the lips in case of CV syllables,
respectively. If we directly concatenate lips, hand shape and position features without any
pre-alignment, we can image that the effect of this direct fusion will not be optimal since the
asynchrony of lips and hand. In the state of the art [10], [11], a direct feature fusion was applied
without taking into account the asynchrony of the multi-modalities in CS. However, it is not
suitable for the asynchronous multi-modalities problem. Therefore, in this thesis, we propose a
preprocessing resynchronization procedure which is named as Aligned Concatenation (AC). It
first pre-aligns the hand shape and position features with lips features, and then concatenates
them as a whole feature. The initial idea of AC fusion originates from the Direct Identification
(DI) model proposed by Schwartz et al. [154]|. In [41], to take into account the asynchrony
of lips and hand, Aboutabit et al. applied the SI model to merge the decisions derived first
from the hand at hand target instant and then from the lips at lips target instant for isolated
vowels extracted from sentences. In this thesis, AC fusion is applied to merge lips and hand
features in a continuous way for the whole sentence (the transitions of CS movements are
included). More precisely, there is no need to indicate the exact target instant of lips, hand
shape and positions.

Fig. 8.3(a) shows the audio signal and its alignments and annotation for the sentence
Ma chemise est roussie. This sentence contains 12 phonemes (6 vowels and 6 consonants).
We remark that this audio-based temporal segmentation is directly used for the lips feature
stream. For the hand movement, we take the hand position case as an example and show the
principles of direct and AC fusions. Fig. 8.3(b) shows the hand movement by plotting the
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x coordinate of the hand back point. The aligned hand position feature (see Fig. 8.3(c)) is
obtained by positively shifting (delaying) the original hand position with time interval A,. It
is equal to 140ms, which is derived from the hand preceding model for vowels (see Chapter 7).
Note that 140ms is the average value of the hand preceding model. This may not be the
optimal value, but the most reasonable and straightforward one without the ground truth
hand preceding time for each vowel. As we can see, the temporal boundary of the vowel |i]
(the one after [m]) is [t,,—1,tn]. We remark that the red dots represent the time instant when
the hand reaches its target position. If we use this boundary to extract the original hand
position feature directly, the ground truth hand position does not correspond to the vowel [i].
The direct fusion will not give a good performance. However, when we use this boundary to
extract the aligned hand feature, the extracted hand position well corresponds to the vowel
[i]. As a consequence, the lips and hand correspond to each other better and this should help
the fusion of their parameters for recognition.

speccn signar
Audio signal

‘ Wl |
(a) . ‘ “ | ‘“” T Ml -

e l 1t
[ | W I .
m| a ) !1!" ) d [r S i
i i

71 n i
Hand position coordinate (x) 2

Original hand position
®) a
B u
1

Aligned hand position

©

t Time/image frame

Figure 8.3: Direct fusion and AC fusion. (a) the audio speech with its alignments and phonetic
annotation. (b) the original hand position (i.e., z coordinate of the hand back point). (c) The aligned
hand position derived by shifting the original hand position in (b) with A,. Two green lines correspond
to the temporal boundaries of the vowel [i].

Notably, the aligned hand shape feature follows the same rule as the hand position case.
A, is 60ms according to the result in Chapter 7. In fact, hand position stream is more sensitive
to the asynchrony problem than the hand shape stream. The reason is that hand position
often remains at the target position for a short time interval. If the temporal boundaries are
not precise, the corresponding correct hand position features will be missed. However, for the
hand shape, the complete hand shape often maintains for a certain time. It makes hand shape
stream less sensitive to the precision of the temporal boundary.

Due to the fact that the direct feature fusion without pre-resynchronization is not really
suitable for CS case, in the following experiments considering vowel, consonant and phonemes
recognition, we will only present the result of AC feature concatenation types in Section 8.3.4.
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The effect of using the resynchronization procedure AC will be presented in Section 8.3.5.

8.2.4 The proposed CNN based architecture

As introduced in Section 3.3, a standard CNN contains several convolutional layers which
are composed of convolutional filtering activation function, pooling, stacked with FC layers
using softmax function, and an output layer giving the posterior probability of each class
to decode. In this study, we employ 2D CNNs to extract the lips and hand shape features
directly from the raw ROI images. Because of the limited size of our current dataset, we
only investigate several CNN based architectures which contain two convolutional layers, two
pooling layers, two FC layers, and one output (softmax layer). The cross-validation is used
to optimize some hyper-parameters for each layer (i.e., the number of filters, the kernel size
for the 2D convolutions, the down-sampling factor for the pooling layer, and the number of
neurons in the FC layer). Finally, for all the architectures, two convolutional layers with 8
filters, a kernel size of 7x7 pixels, a down-sampling factor of 3 (in both vertical and horizontal
directions), the number of epoch 300, the pooling size 3x3, the batch size 2048 and 64 hidden
neurons in the FC layer are used.

At the training stage, a mini-batch gradient descent algorithm based on the RMSprop
adaptive learning rate method (with a learning rate 0.001) and a batch size of 2048 frames,
is used to estimate the CNN parameters. The categorical cross-entropy is used as the loss
function. Over-fitting is controlled using (1) an early stopping strategy, i.e. 20% of the
training set is used as a validation set and the training is stopped when the error on this
dataset stops decreasing during 10 epochs, and (2) a dropout mechanism (with a dropout
probability of 0.25). All models are implemented using the Keras Python library [207], and
trained using GPU acceleration.

CNNs are trained in a supervised manner. Therefore, the CNN training process is sensitive
to the temporal alignment in its training process The temporal segmentation of the lips is
derived directly from the audio signal (the asynchrony between lips and audio is neglected
here). However, in CS, the hand generally precedes the lips. To take this phenomenon into
account, we apply the hand preceding model (see Chapter 7) to predict the optimal temporal
segmentation (with an average hand preceding time 60 ms) of the hand shape from the audio
speech signal for each phoneme.

For the automatic recognition of continuous CS, we mainly have the following considera-
tions: (1) one single ROI containing both the lips and hand or two distinct ROI focusing on
the lips and hand, respectively; (2) the feature-level and model-level fusion strategies that the
lips and hand features are combined within the HMM-GMM decoder; (3) the visual feature
extraction techniques: an unsupervised and linear technique based on PCA and a supervised
and non-linear technique based on CNN.

Based on these considerations, we propose several architectures S1-53 based on CNN, and
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s1-s3 based on PCA*. The CNN-HMMs architecture in case of S3 is shown in Fig. 8.6.

(1) In Sy, the single CNN jointly models the lips, hand position and shape. A unique bounding
box is set large enough® to contain both lips and hand, and it is anchored on the lips ROI.
More precisely, the lips and hand are regarded as a global ROI in CS. The audio-based
temporal segmentation is used to train CNNs in S;. CNN is trained with 34 phonetic
classes as targets (see Fig. 8.5(a)). CNNs are applied to extract features based on this
global ROI. Then, these features will be fed to the one stream HMM-GMM for phonetic
decoding.

(2) In Sy and S5, each CNN focuses on the lips or hand shape separately. In So, three-
stream features are concatenated (i.e., feature-level fusion) in a single feature vector (see
Fig. 8.5(b)). In S3, lips and hand information are combined at the state level using a
3-stream HMM-GMM (model-level fusion) (see Fig. 8.5(c)). As for the training in CNN,
features are trained with a set of lips visemes, hand shape groups and hand position
groups, respectively. More precisely, except for one silence class, there are eight lips
visemes defined in Table 2.3. Five hand positions and eight hand shape groups are given
by the definition of LPC (see Fig. 1.3).

Besides the lips and hand shape, for Sy and S3, the hand position (coordinates of the ROI
center) is first extracted automatically by ABMMs. Then these values are processed by a
simple feed-forward neural network (ANN) with one single FC layer (with ReL.U activation
function) and one output softmax layer trained with a similar procedure as CNN.

Hand shape feature extraction based on CNN

In Chapter 6, we introduced the ABMM for hand position feature extraction, and the hand
shape ROI was located based on the estimated hand position. Now we have a look at the
hand shape feature extraction using CNN. In fact, the hand shape feature extraction in CS
is a challenging problem due to the nature of hand coding. For instance, the same hand
shape (with the same linguistic meaning) may result in rather different appearances due to
the rotation and movement of the hand (see Fig. 8.4). We will use nonlinear CNNs to extract
the high-level hand shape features. More precisely, after obtaining the hand shape ROI image
by the ABMMs, we feed it to CNNs as the input, and finally extract the visual feature vector,
which is the output of the last FC layer (before softmax). In the following CS recognition of
this study, lips features are also extracted by the same procedure (CNNs) as the hand shape
feature®.

4 The only difference between s;-s3 and S1-S3 is the feature exaction.

5 The center of the lips and hand ROI is used for the bounding box. The length and width of the bounding box
are determined experimentally.

5 The lips parameters in Chapter 5 can be also used. Here, in order to keep the lips and hand feature dimension
at the same level, we use CNN for the lips feature extraction in CS recognition.
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(b) (c)

Figure 8.4: Visualizations of the same hand shape with different rotations.

HMM-GMM decoder

Sequences of visual features extracted using either PCA or CNN (ANN for hand position in
Sy and S3) are modeled, together with their first derivatives, by a set of context-dependent
triphone HMM-GMMs. A standard topology is used with three emitting states (with no
connection between the initial and final states). HMM-GMMs are trained using HTK 3.4
[14]. The number of components of each GMM emission probability iteratively increases from
1 to 4. The parameters are estimated by the EM algorithm. For all the architectures, at the
decoding stage, the most likely sequence of phonemes is estimated by decoding the HMM-
GMM using the Viterbi algorithm. The model insertion penalty is optimized on the training
set. Currently, neither pronunciation dictionary nor language model is used in this study. In
fact, we aim at evaluating only the ability of the system to extract the phonetic information
from raw data without any prior linguistic knowledge (indeed, the global performance should
be significantly higher when using such information).

The implementation details of CNN and ANN

In order to further see how CNN and ANN work for the feature extraction, we now show the
implementation schematic diagram.

In cases of Ss and S3, the implementation details of CNNs for lips and hand shapes are
shown in Fig. 8.7. It shows the layers and dimensions of input and output in each layer. We
can see that the inputs (lips and hand shape ROI) are resized to 64x64 and converted to a 2D
gray image. They are first fed to a 2D convolutional layer equipped with eight different kernel
filters, while the output of this layer is a 64x64x8 tensor. The ReLU activation function will
be used to process this tensor, without changing the dimension of the output. Then it will
pass the max-pooling layer, dropout layer. After, the above process will repeat once. Then,
the flatten layer is used to reshape the output at this node in order to feed it to a FC layer.
The dimension of the FC layer is 9 with one silence class. Besides, the implementation details
of CNNs for S are shown in Fig. 8.8.

The implementation details of ANN (standard FC layer) for hand position processing can
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o One stream
—| CNNs |——
7- - e

One stream
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Multistream
" | HMM-GMM Sa

Figure 8.5: Three different architectures (S;-S3) of the continuous CS phoneme recognition based
on CNN and HMM-GMM decoder.
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Figure 8.6: CNN-based feature extraction and HMM-GMM decoding in case of S3. Lips and hand
shape features are extracted by CNNs, and the hand position coordinates are processed by the standard
ANN.

be seen in Fig. 8.9. The size of the features is resized to 64 x 64 at the beginning. After
softmax layer, it will output the posterior probability of the target classes with dimension 6.

8.2.5 The baseline PCA architectures

As shown in Section 2.3.3.1, PCA technique, also known as the EigenFaces technique [116], is
an unsupervised and linear technique which aims at finding a decomposition basis that best
explains the variation of pixel intensity in a set of training frames. At the training stage,
the PCA is performed on a set of N training frames (in our case, N = 1000). The resulting
basis vectors are often called FigenLips [108] when applying this technique to lips images.
At feature extraction stage, each new frame is projected onto the set of these basis vectors.
Visual features are defined as the D first coordinates in the decomposition basis. To keep the
eigenvectors that carry 85% of the variance, we set D = 40 when encoding jointly lips and
hand in Sy, D = 34 for lips, and D = 45 for hand in S5 and S35 when considering the lips and
hand separately.

PCA-based features are decoded using si-s3 (see Fig. 8.10). The implementation princi-
ples of sj-s3 are similar with the CNN-HMM (S1-S3). It should be noted that PCA is an
unsupervised learning method, and thus it is not sensitive when using different alignments of
the data streams in the training process.
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input: | (None, 64, 64, 1)
output: | (None, 64, 64, 1)

convolution2d_1_input: InputLayer

input: | (None, 64, 64, 1)
output: | (None, 64, 64, 8)

convolution2d_1: Conv2D

input: | (None, 64, 64, 8)
output: | (None, 64, 64, 8)

activation_2: Activation

input: | (None, 64, 64, 8)

output: | (None, 21, 21, 8)

maxpooling2d_1: MaxPooling2D

input: | (None, 21, 21, 8)

output: | (None, 21, 21, 8)

dropout_2: Dropout

input: | (None, 21, 21, 8)
output: | (None, 15, 15, 8)

convolution2d_2: Conv2D

input: (None, 15, 15, 8)

activation_3: Activation —
output: | (None, 15, 15, 8)

Y

input: (None, 15, 15, 8)

maxpooling2d_2: MaxPooling2D

output: (None, 5, 5, 8)

Y
input: | (None, 5, 5, 8)

dropout_3: Dropout
potl— P output: | (None, 5, 5, 8)

input: | (None, 5, 5, 8)

flatten_1: Flatten

output: (None, 200)

input: | (None, 200)
output: | (None, 64)

dense_2: Dense

A i

input: | (None, 64)

activation_4: Activation
output: | (None, 64)

i

input: | (None, 64)

dropout_4: Dropout

output: | (None, 64)

|

input: | (None, 64)

before softmax: Dense

output: | (None, 9)

i

o o input: | (None, 9)
activation_5: Activation

output: | (None, 9)

Figure 8.7: Detailed implementation configuration of the CNN architecture for the recognition of
nine hand shapes (eight hand shapes + one silence) or nine lips visemes (eight lips visemes + one
silence) in cases of Sy and Ss.
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input: | (None, 64, 64, 1)

convolution2d_1_input: InputLayer
output: | (None, 64, 64, 1)

input: (None, 64, 64, 1)
output: | (None, 64, 64, 16)

convolution2d_1: Conv2D

Y
input: | (None, 64, 64, 16)
output: | (None, 64, 64, 16)

activation_l: Activation

 J

input: | (None, 64, 64, 16)
output: | (None, 32, 32, 16)

maxpooling2d_1: MaxPooling2D

input: | (None, 32, 32, 16)
output: | (None, 32, 32, 16)

dropout_1: Dropout

input: | (None, 32, 32, 16)
output: (None, 16384)

flatten_1: Flatten

input: | (None, 16384)
output: (None, 34)

before_sofimax: Dense

|

input: | (None, 34)

activation_2: Activation

output: | (None, 34)

Figure 8.8: The CNN architecture of S; for the recognition of 34 phonemes.
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input: | (None, 4)

dense_1_input: InputLayer

output: | (None, 4)

input: (None, 4)

dense_1: Dense
output: | (None, 64)

input: | (None, 64)
output: | (None, 64)

dropout_1: Dropout

input: | (None, 64)

before_softmax: Dense

output: | (None, 6)

\

input: | (None, 6)

activation_1: Activation

output: | (None, 6)

Figure 8.9: Detailed implementation configuration of the ANN architecture for the recognition of six
hand positions (five hand positions + one silence) in cases of Sz and Ss.

8.3 Evaluation and results

We have developed several architectures for the continuous CS recognition in Section 8.2.4,
which will be evaluated from three aspects in this section (see Fig. 8.11). The first phase is
about the viseme recognition, i.e., the single stream recognition (see Section 8.3.2), which will
offer us meaningful information to understand the contribution of each single stream. The
second phase is about the vowel recognition (see Section 8.3.3) and the consonant recognition
(see Section 8.3.3). This will allow us to evaluate the fusion of the lips stream and the hand
position stream, and the fusion of the lips stream and the hand shape stream, respectively.
The last phase is about the phoneme recognition (see Section 8.3.4), which will allow us to
see the full recognition performance combining all the three streams.

8.3.1 Protocol and metrics

In the following experiments, we randomly choose 80% of the dataset as the training set (with
20% used for validation in CNN), while the remaining 20% as the test set in HMM. Note that
the dataset contains the repetitions of some sentences. We allocate the repeated sentences in
the training or test set at the same time. For example, if the first sentence (001-1) is chosen
as a training sentence, its repeated sentence (001-2) will also be allocated to the training
set. For the CS vowel, consonant and phoneme recognitions, in the HMM training step, three
streams share the same temporal segmentation’. For the recognition results, two metrics are

" Note that in case of CNNs feature extraction, different temporal segmentations are used for these three streams.
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Figure 8.10: Three different architectures (si-s3) of continuous CS phoneme recognition based on
PCA and HMM-GMM decoder.



8.3. Evaluation and results

Visemes recognition

Vowels/consonants recognition

153
Lips visemes
recognition
“u
A Consonants
Hand shape recognition
visemes
recognition —+ Phoner.n.es
/ recognition
Hand positions Hand position ; Vowels
(% V) visemes recognition
recognition

Phonemes recognition

Figure 8.11: Different steps for evaluation of the proposed architecture. The first step is the viseme
recognition only using the single stream. The second step is the consonant and vowel recognition
using the combinations of two streams. The final step is the full phoneme recognition using all three

streams.
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used to assess the decoder performances. One is the correctness I, which only takes into
account the deletion error; the other is the accuracy T, which takes into account the deletion
and insertion errors at the same time. More precisely, they can be calculated as follows:

N-D-S N-D-S5-1
= Ta: .

T,
¢ N ’ N

(8.1)

In (8.1), D is the number of deletion errors, S is the number of substitutions, I is the number
of insertions and N is the dimension of the test data. In our case, I and D errors are balanced
for the accuracy in all the experiments.

The statistical significance of these measurements was assessed by calculating the Binomial
proportion confidence interval Agse, using the Wilson formula [210]:

\/X(l — X)/N + 2, /(4N?)
1+ t3, /N ’

Pgsgy = 23se, (8.2)

with t35% = 1.96 for T, or T,. It shows that for all the experiments in this thesis the confidence
interval Agsy is about 4%. In order to see the variations in the results, we also conduct ten
times of the experiments using different training and test sets. The standard deviation is
about 2%. We remark that all the experiment results in this thesis do not take into account
the CS coding errors. For all the multi-stream recognition experiments, the stream weights
are optimized empirically using the cross-validation. For the vowel recognition based on lips
and hand position, the ratio is 0.5 both for the lips and hand position. For the consonant
recognition based on the lips and hand shape, the ratio is 0.5 both for the lips and hand shape.
For the phoneme recognition, the optimal weight is 0.4 for lips, 0.4 for the hand shape and
0.2 for the hand position.

8.3.2 Viseme recognition in Cued Speech

Note that in CS recognition, a single stream cannot give enough information for the phoneme
recognition. The maximal information that it can provide is in the viseme level. For example,
the hand shape stream only carries the information about eight different hand shapes. It is
important for us to realize the recognition of each stream, which will help us to understand
the full recognition performance when merging the three streams. We extract the lips and
hand shape features by CNN, and the hand position features by ANN. The dimension of
lips and hand shape features is 18 (i.e., 9-dimensional original features with its A®), and the
dimension of hand position feature is 12 (i.e., 6-dimensional original features and its A). Then
the extracted features are fed to the context-dependent HMM for the recognition.

The recognition scores for the single stream in the viseme level are shown in Table 8.1,
where a relative homogeneity between the different modalities can be observed. We see that the
hand shape recognition obtains a relatively higher score, probably due to the good hand shape
features extracted by CNN and the significant contrast of eight hand shapes. Comparably, the

8 A means the first derivative.
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lips viseme recognition is around 10% lower than the hand shape recognition. In fact, from the
acoustic point of view, the lips shapes do not naturally constitute eight distinguished classes
of visemes. In other words, the eight lips visemes (in Table 2.3) may have some inherent
inter-class confusions. However, the lips viseme recognition correctness still outperforms the
result in [211], [212], which is based on the PCA, DCT and optical flow features. Concerning
the hand position, the 61.72% correctness is coherent with the result in Chapter 7. We can
expect that if the correct hand position features are available (instead of the automatic hand
position), a better recognition score better than 80% can be achieved.

Table 8.1: Results of the viseme recognition of three single streams based on CNN/ANN-HMM

architecture. T.% is the correctness and ‘— means that this case does not exist.
T.% 8 lips visemes 8 hand shapes 5 hand positions
CNN-HMM 65.79 76.34 —
ANN-HMM — — 61.72

In order to further analyze the results of the viseme recognition, we compute the confusion
matrix” for the recognition using these three single streams. Note that for all these confusion
matrices, the first element is the silence, the last column corresponds to the deletion error
D and the last row corresponds to the insertion error I. A red rectangle is drawn to mark
concerned visemes.

First, we consider the case of hand shape recognition. Recall that the hand shape recogni-
tion gives a higher recognition score (76.34%). We see that the confusion matrix in Fig. 8.12
(a) is highlighted by the diagonal elements. The dark elements in the diagonal (the last two
hand shape visemes) correspond to the less occurrence of the hand shapes, i.e., the No.7 and
No.8 shapes, which indicate [g] and [j], [p], respectively. It may be due to that CNN is trained
not properly if the data is not enough.

Moreover, in order to understand the behavior of the CNN-based feature extractor, in
Fig. 8.13, we show the output of the CNN for the hand shape images of one test sentence(i.e.,
the sequence of posterior probabilities for all possible hand shape classes). As expected, the
posterior probabilities evolve smoothly between consecutive hand targets (with the maximum
value achieved when the target is reached). This motivates a explicit modeling of the dynamic
of the extracted features, as performed by the HMM-GMM decoder. It is interesting that
the CNN seems to be robust to a small intra-class variation, e.g., between shapes No.3 (|d])
and No.5 ([3]) which are both correctly classified as [p], [d], [3] while the hand shape is quite
different (due to hand rotations).

Then, we switch to the lips case (see Fig. 8.12(b)). From this figure, we can see that
the first three visemes do not have many confusions while the other five visemes have much
more confusions. This is because of the fact that, from the speech production point of view,
the first three vowel visemes are distributed more contrastively than the consonant visemes.

9 All the confusion matrices are given in Appendix A.4.
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More precisely, the consonant visemes No.2 ([t], [d], [n]) and No.3 ([f], |v]) are easily confused
because they have similar lips shapes, as well as No.4 ([k], [g]) and No.5 (|f], [3])-

At last, we discuss the hand position case (see Fig. 8.12(c)). Globally, there are a lot
of confusions compared with the above two cases. It is coherent with the relatively low
recognition correctness (61.72%). The reason may come from the errors in the automatic
hand position features (see Fig. 6.5). We can see that the distribution of five positions using
the automatic hand position (see Fig. 6.5(a)) is more confused than the distribution using the
ground truth hand position (see Fig. 6.5(b)). Recall that using a Gaussian classifier, the hand
position recognition based on the automatic tracked hand position gives 54.4% correctness
while using the ground truth hand back position gets higher correctness 70.3%. On the other
hand, we see that the hand position recognition score using ANN-HMM (61.72%) is better
than the previous one using Gaussian classifier (54.4%). This difference is due to the fact
that context-dependent HMM takes into account the context information in the continuous
sequence of hand positions.

8.3.3 Vowel and consonant recognition in Cued Speech

After discussing the single stream viseme recognition, we now look at the vowel and consonant
recognition by the fused features of two streams. In this section, we use the single stream
(feature-level fusion) and multi-stream HMM (model-level fusion) to compare the benefits of
different fusion strategies. In addition, it constitutes a good reference for the full recognition
when using three-stream features.

Vowel recognition based on the fusion of lips and hand position

First, we mainly discuss the vowel recognition based on the fusion of the lips and hand position.
Besides, the single stream used for the vowel recognition is also presented.

Lips and hand position features are merged and fed to one or two-stream HMM. The vowel
labels are the targets. Results are shown in Table 8.2. We see that the vowel recognition using
the model-level fusion obtains a slightly higher correctness (70.12%) than using the feature-
level fusion strategy (68%). However, this vowel recognition correctness is about 10% lower
than the prior work [10], since the automatic hand position features usually have some errors.
For the single stream, only lips and only hand position give very similar and low correctness.
This is normal because lips and hand positions are supposed to be combined to recognize the
vowels. As we mentioned above, one stream carries only the viseme-level information.

We now examine the confusion matrix (see Fig. 8.14) of the vowel recognition using the
fused (lips and hand position) features. This result is based on the two-stream HMM. The
confusion matrix is highlighted by the diagonal elements which correspond to the correctness
70.12%. As expected, the errors mainly come from the vowels {[e], [€] }, {[o], [0] } and {[g],
[e] }, and the reasons may come from two aspects: (1) the wrong correspondence between
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the phonetic transcriptions and the real CS productions, and (2) in French language, the
distinction in the production between {[e|, [€] }, {[o], [2] } and {[g], [ce] } is very variable and
dependent on speaker’s origin (south, center, north of France).

Table 8.2: Vowel recognition results using lips and hand positions in CS. T, % is the correctness and
‘— means that this case does not exist.

1% single stream two streams (S3) two streams (S3)
only lips 34.88% — —

only hand positions 35.71% — —

lips + hand positions — 68.00% 70.12%

Consonant recognition based on the fusion of lips and hand shapes

After reporting the results of the vowel recognition, we now turn to the consonant recogni-
tion. Lips and hand shape features are merged and fed to the one or two-stream HMM. The
consonant labels are the targets. In Table 8.3, we show the recognition correctness using the
fused features based on the one stream (feature-level fusion) and multi-stream (model-level
fusion) HMM. Note that, in this case, the model-level fusion of HMM achieves much higher
correctness (84.35%) than the feature-level fusion (73.34%). In particular, the correctness
84.35% outperforms the state of the art [10]. Concerning the single stream, using lips and
hand shapes obtains a relatively higher score (compared with the lips and hand positions for
the vowel recognition) due to the high quality of CNN based hand shape features.

)

Table 8.3: Consonant recognition using lips and hand shapes in CS. T,.% is the correctness and ‘—
means that this case does not exist.

1% single stream two streams (52) two streams (S3)
only lips 42.25% — —

only hand shapes 56.99% — —

lips + hand shapes — 73.34% 84.35%

To see the details of the consonant recognition performance, we present the confusion
matrix in Fig. 8.15. Globally, it shows a very obvious diagonal structure with few confusions,
which is coherent with the high recognition score (84.35%).

8.3.4 Phoneme recognition in Cued Speech

We now pay attention to the three-stream (lips, hand shapes and hand positions) CS phoneme
recognition. In particular, we compare the CNN and PCA based methods to show the benefits



158 Chapter 8. Continuous Cued Speech Recognition based on CNN-HMMs

1

&
2

50
3

a
s
5 3
7

2
8
? w0
0

1 2 3 4 5 s 7 8 9 0

(a)

1
&

2
s

3

.
a0

5
5 2

7
2

8

o
10

0

1 2 3 s 5 6 7 ) ° 10

(b)

‘ E }
2

0
3

a0
N

E
s

2
6

w0
7

1 2 3 4 5 6 7

()

Figure 8.12: Confusion matrices for three single stream viseme recognition. (a), (b) and (c) are
recognitions based on 8 hand shapes, 8 lips visemes and 5 hand positions. The class "silence" (the
first element) is included in the confusion matrix. The red rectangle contains the concerning visemes.
The last column corresponds to the deletion error D, and the last row corresponds to the insertion
error I. The brighter element corresponds to the higher occurrence in these confusion matrices.
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Figure 8.13: Visualization of the representation of CNN softmax layer output. Top: the sequence of
target hand shapes (i.e., key frames) for the sentence voila des bougies. Bottom: The abscissas is the
number of image frame, and y-axis is the target class given by the posterior probability.

Figure 8.14: Confusion matrix of the vowel recognition based on the HMM model-level fusion of lips
and hand positions. The red rectangle contains 14 concerning vowels except the silence, insertion and
deletion error elements.
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Figure 8.15: Confusion matrix of the consonant recognition based on the HMM model-level fusion
of lips and hand shapes. The red rectangle contains 18 concerning consonants except the silence,
insertion and deletion error elements.

of the CNN based features.

Firstly, it should be noted that we only show the recognition results using the AC fea-
ture fusion (see Section 8.2.3). Compared with the direct fusion, AC fusion (i.e., using the
resynchronization procedure for multi-streams) can bring about 1.67% gains for the recog-
nition result (see Fig. 8.18). It confirms that after aligning the hand position and shape
features with lips, the fusion will give better performance than direct fusion without any pre-
alignment. Moreover, the alignments of hand position and hand shape to lips feature are
realized by shifting them with time interval 140ms and 60ms (according to the analysis and
results in Chapter 7), respectively. We can naturally image that if the shifted time interval is
not the average value (i.e., 140 and 60ms) of the hand preceding models but the ground truth
value, a more significant improvement can be obtained.

Then, for Table 8.4, we present some remarks on the recognition results of the phoneme
recognition.

Table 8.4: Performances of the proposed CNN and PCA based architectures for automatic continuous
CS recognition in terms of correctness T,.% and accuracy Ty, %.

TC(Ta) 51/51 SQ/SQ 83/53
PCA 45.2(32.3)  50.9(36.0) 51.0(36.5)
CNN 55.0(38.2)  68.3(58.4)  72.7(62.7)

(1) CNN clearly outperforms PCA for all the proposed architectures. This tends to validate
the gain of a non-linear and discriminative feature extraction technique for this task. More
importantly, the mechanisms for the superior performance of CNNs lie in its powerful non-
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linearity and also the robust adjustment for the weakly aligned data. Note that PCA based
methods do not have significant differences among s1, so and s3.

(2) The model-level fusion strategy outperforms the feature-level fusion. The best perfor-
mance is achieved using S3, with 72.7% accuracy. Using S, the accuracy is a little bit
lower (68.3%) than Ss.

(3) We can see that a much lower accuracy 55.0% of S; is obtained. This result seems to
show that it is more reasonable to treat lips, hand shapes, and hand positions separately
instead of treating them globally. One possible explanation for this unexpected result may
be related to the difference of spatial resolution between lips and hand when considering
only one ROI (i.e., the hand occupies much more space than the lips) in the image.
Extracting a dedicated ROI may help the CNN to better balance the information of lips
and hand.

(4) In the best configuration S3, without exploiting any dictionary or language model, the pro-
posed tandem CNN-HMM architecture can identify correctly about 72.6% of the phoneme
(62.7% when considering insertion errors). The performance in terms of T, is about 10%
lower than the one in terms of T,. Despite the fact that the model insertion penalty is
optimized, too many insertion errors remain. Indeed, this issue should be alleviated when
using a language model and a pronunciation dictionary. Nevertheless, there may be room
for improvements in the way we model the dynamics of lips and hand in continuous CS.

We remark that, in this study, the ground truth phonemes are given by the content of the
audio, instead of the actual phonemes encoded by the CS interpreter. A fair comparison with
the state of the art [10] is difficult, as they are not based on the same corpus. However, we
still get that the proposed tandem CNN-HMM gives a score 72.6% comparable to the result in
[10], where visual artifices are used to help the lips and hand tracking for the isolated phoneme
recognition.

According to Fig. 8.16, we can see that vowels have more confusions than consonants.
From the previous Section 8.3.3, we know that the performance of the hand position (vowel)
recognition is not very satisfied. Therefore, we can conclude that these confusions that ap-
pear on the vowel part may come from it. For the consonants, quite naturally, some of the
substitution errors are made on phonemes with similar lip shapes, such as {[p|, [b], [m]} and
{[f], [v]}. For other consonants which also have the similar lips shape such as {[t|, [d], [n]},
{Ik], [g]} and {[f], [3]}, no confusions appears. It shows that hand shape helps the lips to
distinguish these consonants. Moreover, It demonstrates the significant benefit of the CNN
based feature extractor.

In addition, we tried to use LSTM to replace the HMM-GMM decoder for the continuous
CS recognition to capture the long-term memory in the CS. In LSTM, two hidden layers of
500 cells, 200 epoch are used. It is trained by BPTT with the cross-entropy cost function.
Softmax layer is used to compute the class probability. LSTM is implemented using the Keras
toolkit [207] based on the GPU-accelerated library. The experimental result for the phoneme
recognition is shown in Fig. 8.20. We can see that, in the training set (350 sentences), the
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Figure 8.16: Confusion matrix of the CS phoneme recognition. The last row shows the insertion,
and the last column shows the deletion errors. The red rectangle contains 33 concerning phonemes
except the silence, insertion and deletion error elements.

recognition score is pretty high which means that the model fits well the training data, while
in the test set (150 sentences), the recognition score is much lower. This huge difference comes
from the over-fitting caused by the limited amount of the data.

8.3.5 Evaluation of the resynchronization procedure

In order to evaluate the proposed resynchronization procedure (i.e., AC concatenation) intro-
duced in Section 8.2.3, we apply the proposed resynchronization procedure to the continu-
ous CS phoneme recognition using S3_resyn (see Fig. 8.17). We compare the result of using
S3—_resyn With that using S3 which does not take into account the resynchronization procedure.
The results are shown in Fig. 8.18. We analyze the results and draw the following conclusions.

When using the hand position given by the ABMMs and the architecture S3, the contin-
uous CS phoneme recognition obtains a recognition correctness of 71.0% without using the
resynchronization procedure. When the proposed resynchronization is incorporated, the recog-
nition correctness increases to 72.7% (in Table 8.4) which shows a minor improvement (about
1.6%) compared with 71.0% (see 3rd and 4th columns in Fig. 8.18). However, we observe that
in the current recognition system, the triphone context-dependent modeling is helpful to cor-
rect the recognition errors which are the co-articulation or the asynchrony of the multi-streams
[148], |186], [187]. Thus, the use of the context-dependent modeling may hide the effect of
the resynchronization procedure. In order to get rid of this effect, we examine the correctness
of the CS phoneme recognition without using the context-dependent modeling. In this case,
a correctness of only 60.4%' is obtained without any resynchronization procedure, while the

0 This low correctness of 60.4% is obvious since no context-dependent modeling is used.
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correctness increases to 64.38% when using the proposed resynchronization procedure (see 1st
and 2nd columns in Fig. 8.18). We can see that about 4% improvement is achieved in this
case. This improvement is more evident than the case using the context-dependent modeling

(1.6%).

There are two reasons which can explain the above weak improvement: (1) only a weight
of 20% is applied to the hand position stream. This small weight reduces the importance of
the resynchronization procedure. (2) the hand position extracted by the ABMMs may have
some errors. This directly reduces the efficiency of the proposed resynchronization procedure
since the hand position target can be identified only if the correct hand position is used at a
good temporal boundary for vowels. Note that we assume that the CNN-based lips and hand
shape features are correct enough in Section 8.3.2.

Concerning the second reason, to use a correct hand position, we use the ground truth
hand position instead of the one given by the ABMMs. We manually determine the hand
position for all the images in the database. The continuous phoneme CS recognition results
using the ground truth hand position are shown in 5th to 8th columns of Fig. 8.18.

When the ground truth hand position is used, without context-dependent modeling and
the resynchronization procedure, we obtain a score of 62.83% which is similar to the result
60.4% based on the hand position given by ABMMs. It can be explained by the above first
reason. However, when the resynchronization procedure is used, a correctness of 70.1% is
achieved, which shows a significant improvement, i.e., 7.3% compared with 62.83% (see 5th
and 6th columns in Fig. 8.18).

Concerning the case that using the context-dependent modeling (see 7th and 8th columns
in Fig. 8.18), without using the resynchronization procedure, the recognition correctness is
72.04%. However, when combining them in the recognition system, an evidently higher score
of 76.63% is obtained (with an improvement of 4.6% compared with 72.04%). It outperforms
the state of the art 74.4% [10], which is for the isolated CS phoneme recognition case.

The proposed resynchronization procedure is specifically developed to solve the CS feature
fusion caused by asynchrony problem. Its excellent performance is confirmed especially when
the used hand position feature is correct.

Furthermore, in order to let the system learn the hand position automatically instead of
adding the pre-processed hand position either obtained by the ABMMSs automatically or man-
ually. We use CNNs to process the fixed hand ROI'! to obtain the hand position information
(see Fig. 8.19). Because the hand position information is included in a fixed hand ROI, using
this system obtains a phoneme recognition accuracy of 73.77% with a standard deviation 0.65.
In other words, using the hand position automatically obtained by CNN (processing the fixed
ROI) is better than using the hand position obtained by ABMMs (72.67%). However it is still
worse than using the ground truth hand position (76.63%).

' The fixed hand ROI means a rectangle containing hand shape with the reference of a fixed point in the image.
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Figure 8.18: The performance of the resynchronization procedure and the context-dependent mod-
eling in continuous CS phoneme recognition.

8.4 Summary

In this chapter, a set of tandem CNN-HMM architectures are proposed for the automatic
recognition of CS. Compared with the state of the art, main improvements are the recognition
of the continuous CS and the absence of visual artifices used to help the tracking of lips and
hand. In the viseme recognition, we find that the hand shape stream gives the highest recogni-
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Figure 8.19: Image level architectures of phoneme recognition.The hand position feature is obtained
by CNNs based on a fixed image.

tion score mainly thanks to the good hand shape features given by CNNs. This is exactly the
main reason of introducing CNNs to CS recognition framework. Combined with resynchro-
nization procedure, the best architecture is based on the model-level fusion strategy within
the HMM-GMM decoder. Combined with the feature-level and model-level fusion strategies,
a context-dependent HMM-GMM is used to tackle the asynchrony of lips and hand stream
in CS, as well as the variations in the continuous CS recognition. A satisfied performance of
Ss3 (correctness 72.6%) is comparable to the previous work (correctness 74.4%) which is for
the isolated recognition case. Moreover, from the recognition results of Ss, we see the signifi-
cant benefits of CNNs (with correctness 73.0%), compared with the non-discriminative PCA
method (correctness 51%). Moreover, an optimal performance 76.6% of the CS continuous
phoneme recognition is achieved using the ground truth hand position.
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Conclusion

In this PhD thesis, we focus on the automatic continuous Cued Speech (CS) recognition
which is situated in the multi-modal speech recognition. The feature extraction, multi-modal
fusion and automatic speech recognition problems are investigated by the methods in signal
processing, statistics, machine learning and deep learning. To conclude, this thesis mainly
contributes to the following three problems.

(1) Automatic CS feature extraction without using any artificial mark.

In the prior work, CS features were extracted by tracking the artificial landmarks on
speaker’s lips and hand. Our aim is to get rid of these artifices. Recall that the automatic
CS feature extraction contains lips, hand position and shape. Now we summarize our work
concerning the feature extraction.

Concerning the lips feature, we propose two novel methods to extract the inner lips
parameters based on the raw images. The first approach, Modified Constrained Local Neural
Fields (Modified CLNF), is based on Constrained Local Neural Fields (CLNF) which is robust
for facial landmark detection in current computer vision field. As CLNF presents mistakes in
about 41.4% of the cases for inner lips tracking, this method is developed to correct these errors
by a post-processing procedure in two steps corresponding to B and A parameters, respectively.
For B parameter, the Hybrid Dynamic Correlation Template Method (HD-CTM) based on
the correlation with a hybrid dynamic template is investigated to detect the outer lower lips
position. Then, the inner lower lips position is determined by the back-subtracting of Validated
Lower Lips Thickness (VLLT). The evaluation of this method on about 4800 images of three
speakers confirms the performance. In fact, the Root Mean Square Error (RMSE) reduces
from 4 pixels (2mm) to 1 pixel (0.5mm). For A parameter, the periodical spline interpolation
based on the dilated 6 CLNF inner lips points is investigated. This method is tested on 467
round lips images among 3184 vowel images. 91% of the vowels in the third viseme are located
in the proper position after the correction of A parameter.

The second approach is the adaptive ellipse model which is also proposed for the parameter
extraction of inner lips without using any artifice. This approach first extracts the inner
region of lips with image processing combined with the single discontinuity elimination and
the interrupted region filling. Then, an adaptive ellipse is used to match the inner lips region
and gives the best estimation of A and B parameters. The precision is evaluated on 4691
images of three speakers (MD, DB and ChS). This approach permits to obtain RMSE of
3.37mm for A parameter and 0.84mm for B parameter, which outperforms the state of the
art [3]. A recognition based on 13 French vowels also confirms the superior performance.

Concerning the hand position feature, we propose to use an efficient method to extract
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the hand position. This method is based on the Adaptive Background Mixture Model (ABMM)
which uses Gaussian Mixture Model (GMM)s to model the background of the image and
characterize the foreground and background pixels in an image. The speaker’s deformable
hand is regarded as a foreground in the video. The gravity center of the detected foreground
pixels is considered as the hand position in our case. In order to evaluate the performance,
we first compare the estimated hand positions with the ground truth, and then perform a
hand position recognition using Gaussian classifier. Even though this method cannot reach
the performance of the ground truth, it permits to track the hand position with a certain
accuracy (62.26%).

Concerning the hand shape feature, the classical methods Active Appearance Model
(AAM), Constrained Local Model (CLM) and Kanade-Lucas-Tomasi (KLT) do not work
very well since the hand shape keeps changing when the hand moves. In this thesis, instead
of extracting the hand contour, we apply a nonlinear Convolutional Neural Network (CNN)
to directly capture the high-level hand shape features from the raw images. This feature
extractor is able to adjust the weakly temporal segmented context. Compared with the linear
Principal Component Analysis (PCA), it achieves much better hand shape features with a
satisfied correctness (76.34%). The consonant recognition based on the fusion of lips and
hand shape features obtains a correctness of 84.35%, which outperforms the state of the art
[10].

(2) Temporal segmentation of the hand movements in CS.

We investigate a specific study concerning the temporal organization of the hand move-
ments in CS, especially concerning its temporal segmentation. As we know, the asynchrony
problem of lips and hand movement is a challenging issue for the CS recognition. This phe-
nomenon makes it difficult for the hand to share the same audio-based temporal segmentation
with the lips stream. In this thesis, we show that for a typical C'V syllable, during the hand
movement, the speaker tends to reach a specific position to indicate the vowel, and his hand
shape changes in order to prepare the consonant of the syllable. We perform a detailed study
by measuring the hand preceding time for hand positions (vowels) and hand shapes (conso-
nants). It is shown that the hand preceding time for vowels has almost the same distribution
(with a mean value of 140ms for corpus LM) from the beginning of a sentence to about 1s
before the end. Then this preceding time decreases linearly. We also observe that the best
moment to identify a hand shape is about 60ms before the target instant of the corresponding
audio signal. This allows us to elaborate a segmentation method for CS hand movements using
the audio-based temporal segmentation. In case of vowels, this method permits to predict the
instant where the hand reaches its target position and also provide a good base for the resyn-
chronization procedure. Our evaluations confirm the superior performance of the proposed
method. In fact, the hand position recognition performance using the predicted segmentation
significantly outperforms that using the audio based segmentation with the Gaussian classifier
and Long Short-Term Memory (LSTM).

(3) Continuous CS recognition which incorporates the multi-modal fusion and
context-dependent modeling.
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For the automatic continuous CS recognition, we investigate three CNN-HMM tandem
architectures S1-S3, which are composed of CNN and Hidden Markov Model (HMM) with
feature-level and model-level fusion methods. In these architectures, a triphone context-
dependent modeling is used to capture the context information for continuous CS. Meanwhile,
due to the asynchrony problem in CS, a resynchronization procedure Aligned Concatenation
(AC) is applied to the three modalities before the HMM modeling. In S, a single CNN jointly
models the lips, hand position and shape streams, which are regarded as a global Region of
Interest (ROI) in CS. Then the audio-based temporal segmentation is used to train the CNN
with 34 phonetic classes as targets, and the trained CNN is applied to extract the features.
Finally, these features are fed to a one-stream HMM-GMM for phonetic decoding. In So and
Ss, three streams are separated independently. We use a CNN for the lips or hand shape
stream, and an Artificial Neural Network (ANN) for the hand position. In S, three-stream
features are concatenated (i.e., feature-level fusion) in a single feature vector and fed to a
one-stream HMM-GMM. In S3, lips and hand information are combined at the state using a
three-stream HMM-GMM (i.e., model-level fusion). These two architectures are both trained
with a set of lips visemes, hand shape and position groups. In the best architecture Ss, with-
out exploiting any dictionary or language model, the accuracy at phonetic level is 62% (with
the correctness of 72.7%). In fact, in these architectures, we find that the context-dependent
modeling contributes about 10% in the recognition score. The result of S3 is comparable to
[10], which is for the isolated CS recognition with visual artifices. This architecture is a good
candidate for the practical use in CS recognition.

Based on the ground truth hand position and the resynchronization AC procedure, we find
that the phoneme recognition correctness increases about 8% compared with the one without
this procedure. The phoneme recognition achieves an optimal 76.6% correctness based on AC
procedure and context dependent modeling, which clearly outperforms the state of the art
[10].

Perspective

Apart from the above contributions, in CS recognition, there is still lots of work deserving
more research and attempts. Now we summarize these future work as follows.

(1) Use of a language model to decrease the insertion errors and improve the
robustness of the CS recognition system.

As introduced in Chapter 8, we observe a large number of insertion errors in the current CS
recognition system. It was shown in [213]-[215] that a language model could help to improve
the robustness of a recognition system, as it allows the recognizer to predict the probability
of each phoneme given the previous phonemes. Therefore, it will be interesting to apply a
language model to our CS recognition system in the future work.

(2) Design of an end-to-end CS recognition system combined with CNNs, RNNs
and CTC.
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It will be interesting to build an end-to-end CS recognition system by merging the CNNs,
LSTM and Connectionist Temporal Classification (CTC) as one global neural unit (see Fig. 2).
Firstly, CNNs extract the lips and hand shape features from raw images. Then, the Bi-LSTM
will be applied to model the temporal information of the features from CNNs. Finally, a C'TC
loss layer will be added to avoid pre-aligning the data.

Target sequences ‘

Connectionist Temporal Classification (CTC) Loss layer

CNNs (lipsand o+ Hand

CNNs (lips and o+ Hand CNNs (lips and Hand
hand shape) position

hand shape) position hand shape) position

 pe—
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Figure 2: Architecture of the end-to-end CS recognition system in the future work.

(3) The attention mechanism and DCCA for multi-modal fusion in CS. Besides,
based on our current tandem CNN-HMM architecture, the intermediate (i.e., the
product HMM'?) and decision fusion will be conducted.

As mentioned in Section 4.3.2, the multi-modal fusion in CS recognition can be seen as a
sequence-to-sequence mapping problem. One popular solution is to apply an encoder-decoder
framework, which is incorporated with the attention mechanism. Attention to the appropriate
modalities, as a function of the context, may help to improve the quality of the CS recognition
system. Notably, a recent popular method Deep Canonical Correlation Analysis (DCCA)
for feature fusion will be tested in our case concerning the vowel and consonant recognition
which just needs the integration of two stream features. However, multi-modal DCCA needs
to be developed for the CS phoneme recognition. Moreover, our current tandem CNN-HMM
architecture has implemented the feature-level and model-level fusion, but no intermediate
and decision fusion. Therefore, one possible future work is to incorporate them into the
CNN-HMM architecture.

12 The product HMM is able to take into account the asynchrony problem of multi-modalities.
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(4) Recording more CS database to make a more powerful experimental validation.

It is always important to have a large database in the deep learning framework, as it
is able to reduce the over-fitting. In this thesis, we are not able to validate our proposed
methods in the corpora of other languages. As mentioned in Chapter 2, the British English
CS corpus is in the recording process. Moreover, even though our current database is able to
validate the CNN based architectures, as we discussed in Chapter 8, when applying LSTM
to CS recognition, we have an inherent over-fitting problem caused by the limited amount of
database. A large CS database is a prerequisite for obtaining satisfied results when using the
deep learning methods.

(5) An improved method for the hand position feature extraction.

As mentioned in Chapter 6 and Chapter 8, given a correct hand position feature, the
correctness of vowel recognition and phoneme recognition can be improved by a large margin.
This motivates us to explore a more robust hand tracking method to extract the hand position
in CS. As introduced in Chapter 2, the open-pose system which incorporates the methods
in computer vision and deep learning has good performance in tracking the hand gestures.
However, this system cannot be directly used in our current database, since it requires a
database with the whole upper body of subjects. It will be meaningful to improve our CS
database in the future so that we can take advantage of this system.

(6) The Chinese Cued Speech system.

The CS system has been developed for more than 60 languages in the world!'?, but as
far as we know, no official research work'? has been dedicated to the Chinese version of
CS. According to the China Disabled Persons’ Federation'®, about 21 million people have
hearing loss out of the 60 million disabled people in China. For the moment, SL is the most
popular method for the communication among Chinese deaf people. It will be meaningful if
the Chinese Cued Speech (CCS) system can be developed, which will make the deaf people
(especially deaf children) in China have better communications. We propose a possible design
of this system in Fig. 3, which follows the main criterion that there is no intersection between
hand and lips codings (i.e., the phonemes with similar lips shape should be distinguished by
different codings). In Fig. 3, eight groups of hand positions and eight hand shapes are used to
code vowels and consonants'®, respectively. The phonetic transcriptions of Chinese characters
(including 23 consonants, 24 vowels and 16 whole syllables'”) are shown in Fig. A.1. In the
future work, we will focus on the analysis and exploration of the optimal approach to the CCS.

13 http://wuw.cuedspeech. org/cued- speech/about- cued- speech.

14 An analysis of Chinese CS can be referred to https://acroakingdalek.wordpress.com/2015/09/23/cued-
mandarin-planting-the-seed/.

5 http://www.cdpf.org.cn/english/.

16 1t should be noted that the CCS in Fig. 3 is just an initial trial, not the final validated version.

1" The whole syllables in Chinese language are some fixed matches of some specific initials and finals. The
pronunciation of the whole syllable will remain the same as the consonant even after adding a vowel behind
the consonant or these syllables are to be read directly without being spelling from consonant to vowel.
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71 [E 4 J51E K Chinese Cued Speech (CCS) #14F vowel

e (1) an (#) a () in ([A) ao (H) un (i) ang (&) en ()
u () ong (%) o (1) ii (Ir2) ui (i) ou (ER) iu (H) ei (1)
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Figure 3: An initial design of the CCS system.
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Contexte et motivation

La note de World Health Organization (WHO)'® indique que de nos jours plus de 5% de la
population mondiale (environ 432 millions d’adultes et 34 millions d’enfants) souffre d’une
perte auditive invalidante, et on estime que ce nombre augmentera de plus de 900 millions
d’ici 2050. Par conséquent, il y aura une demande sérieuse de méthodes automatiques pour
aider ces personnes & communiquer plus facilement et mieux. En fait, dans la communauté des
personnes sourdes utilisant la voie orale, la lecture des lévres est I'une des principales modalités
de perception de la parole, et ses avantages ont été largement admis depuis longtemps ([1]-
[3]). Cependant, la parole peut étre difficilement percue si le lecteur de lévres n’a aucune
connaissance du contexte sémantique en raison de 'ambiguité des lévres (différents phonémes
ayant des formes aux lévres similaires). Ainsi les meilleurs systémes automatiques de lecture
labiale atteignent seulement un taux de 76,2% en reconnaissance de mots (base de données
Lip Reading in the Wild (LRW) [4]).

Pour surmonter cette difficulté et améliorer la capacité de lecture des enfants sourds,
Cornett [5] en 1967 a développé le system du Cued Speech (CS) [5]-]9] qui utilise les gestes de
la main pour compléter 'information des lévres afin de rendre tous les phonémes des langues
parlées clairement visibles. Bien que de nombreux phonémes semblent identiques sur les lévres
(par exemple, [p], [b] et [m]), ils peuvent étre distingués grace au systéme du CS en ajoutant
les informations de la main, ce qui permet aux personnes sourdes utilisatrice de ce systéme de
percevoir complétement la parole & partir des informations conjointes de lévres et de main.

Pour améliorer les communications entre les personnes malentendantes et les personnes en-
tendantes, il sera utile de développer des systémes de conversion automatique de la modalité
visuelle & la modalité audio et inversement de la modalité audio & la modalité visuelle. Cette
thése porte sur la reconnaissance automatique et continue de la Langue francaise Parlée Com-
plétée (LPC), version en frangais du CS, dans la conversion de la modalité visuelle au texte
ou le texte jouerait le pivot entre le mode visuel et 'audio. Son cadre se situe dans le traite-
ment de la parole multi-modale, et est & la croisée de la Communication Homme-Machine,
I'Intelligence Artificielle et la vision par ordinateur.

Enjeux

Un systéme de reconnaissance du LPC nécessite une reconnaissance automatique sophistiquée
pour décoder non seulement les lévres du locuteur mais aussi les mouvements de sa main.
Dans cette thése, la reconnaissance du LPC est réalisée & partir de trois procédures principales:

8 http://www.who.int/en/
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lextraction de caractéristiques, la fusion multi-flux (lévres et main) et la reconnaissance du
CS en parole continue, qui peuvent étre schématisés par la Fig. 4.

Video Text
oy g c— e ff a
o b Y ‘1":, g f
§ In T mnp

o m I t

Figure 4: Cadre de la reconnaissance automatique du CS de la modalité visuelle au phonéme.

(1)

A partir de la Fig. 4, trois enjeux principaux peuvent étre résumés comme suit.

Le premier est I'extraction de caractéristiques sans utiliser de marquage de l'information
pertinente préalable & 'enregistrement des données. Dans I’état de I’art de la technique sur
la reconnaissance du LPC [10], [11], les données vidéo étaient enregistrées avec des artifices
(bleu sur les lévres, pastilles de couleur sur la main et le front) pour faciliter ’extraction
des paramétres des lévres et de la main. A notre connaissance, aucun travail n’a tenté
d’extraire des paramétres de lévres et de la main & partir des images brutes en LPC et
CS. Par conséquent, supprimer 'utilisation de ces artifices dans ’étape d’extraction des
caractéristiques du LPC est notre premier défi. Et au-dela du seul intérét de s’affranchir
de marqueurs, c’est la possibilité de pouvoir extraire d’autres paramétres plus riche en
information.

Le second est la segmentation temporelle des mouvements de la main en LPC. En sup-
posant que le mouvement des lévres est quasi-synchronisé avec le son audio [12|-[14], il
peut étre obtenu la segmentation temporelle des lévres a partir de ’alignement phonétique
sur 'audio. Cependant, puisqu’il est établi que les lévres, la position de la main et la forme
de la main sont asynchrones pour le LPC, la main ne peut pas partager la méme segmen-
tation temporelle avec le mouvement des lévres. Dans I’état de ’art sur la reconnaissance
du LPC [10], [11], la segmentation temporelle des lévres, de la position de la main et de
la forme a été directement réalisée par alignement sur le signal audio. Ainsi, dans cette
thése, notre deuxiéme défi est de prendre en compte ce probléme d’asynchronie entre ces
trois flux, et de proposer des méthodes pour segmenter automatiquement la position de
la main et le mouvement de la forme de la main en fonction du temps.

Le troisiéme est le systéme de reconnaissance de phonémes & partir du LPC en parole
continue qui prend en compte la fusion des flux caractéristiques désynchronisés. Pre-
miérement, concentrons-nous sur le mot-clé "continu". Ici, nous soulignons que dans
cette theése, une reconnaissance CS continue suit les deux conditions suivantes: (1) la don-
née est une phrase (i.e., pas un mot isolé), (2) dans I’étape de test, la limite temporelle
n’est pas donnée (c’est-a-dire que chaque image est envoyée au systéme de reconnaissance).
En outre, dans ’étape d’apprentissage, nous utilisons la segmentation temporelle continue
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(c’est-a-dire, pas d’espacement entre deux segments successifs). L’état de la technique [10]
traitait de la reconnaissance du CS a partir de phonémes extraits (c’est-a-dire, la limite
temporelle des phonémes dans I’ensemble de test est donnée) dans un corpus de phrases
continues. La reconnaissance continue en LPC a été initiée avec [11], mais avec un corpus
de mots isolés. De plus, les informations de contexte n’ont pas été modélisées dans [10]
et [11]. Dans cette thése, nous abordons la reconnaissance du LPC en parole continue a
partir d’un corpus de phrases continues, dans lequel les phrases sont prononcées et codées
normalement par les sujets. Ceci est beaucoup plus difficile que le cas isolé puisque la
limite temporelle du phonéme n’est pas donnée dans la phase de test. D’autre part com-
ment fusionner les différents flux d’information dans le contexte de parole continue et donc
d’une plus grande variabilité intra et inter modalités. En résumé, une reconnaissance LPC
robuste qui prend en compte la fusion des différentes modalités, ainsi que l'information
dépendant du contexte, est le troisiéme défi de cette thése.

Résumé des chapitres

Dans cette thése, les méthodologies de traitement du signal, de statistique, d’apprentissage
automatique et surtout d’apprentissage profond sont utilisées pour résoudre ces enjeux. Nous
avons développé dans ce mémoire plusieurs approches qui sont sont ci-aprés. Cette thése
contient deux parties: Part I et Part II.

Dans Part I (Chapter 1 a Chapter 4), nous présentons le contexte du CS et I’état de I'art
de la reconnaissance automatique du LPC, ainsi que les données en LPC qui seront utilisées
dans cette thése. Les méthodologies d’apprentissage profond et la fusion multimodale sont
également présentées.

Dans Part II, nous présentons nos principales contributions dans ’extraction de carac-
téristiques du LPC, 'organisation temporelle et la reconnaissance en parole continue du LPC.

(1) Dans Chapter 5, nous proposons deux nouvelles méthodes nommées Modified Constrained
Local Neural Fields (Modified CLNF) [15], [16] et adaptive ellipse model [17] pour extraire
les paramétres du contour interne des lévres. D’autre part, les réseaux Convolutional
Neural Network (CNN) [18], [19] sont appliqués sur la Région d’Intérét (ROI) des lévres
brutes pour extraire les caractéristiques de haut niveau extraites des pixels. Pour les
caractéristiques de la main (position et forme), nous proposons d’utiliser le Adaptive
Background Mixture Model (ABMM) [20]-[22] pour extraire la position de la main, qui
est pris comme le centre du ROI de la main. Aprés le suivi de la ROI manuelle, les CNN
sont ensuite appliqués pour extraire les caractéristiques manuelles de la ROI des images
brutes.

(2) Dans Chapter 6, nous concentrons sur l'extraction de la position de la main et la ROI
de la main dans CS. La position de la main est suivie par les ABMMs, qui modélisent
I'arriére-plan de I'image par Gaussian Mixture Model (GMM), et la ROI de la main est
ensuite déterminé en fonction de la position de la main.
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34 phonetic classes

HMM-GMM

Convolution +
MaxPooling ReLU MaxPooling connected layer

layer (ReLu) (softmax) . o []
— |
* —
15 :
. .
-

Convolution +
MaxPooling ReLU MaxPooling connected layer

layer (ReLu) (softmax)

Convolution + ReLU

Convolution + ReLU

Hand

positions

Fully-connected  Output
layer (RelLU) layer (softmax)

Figure 5: Extraction de caractéristiques basée sur CNN et décodage HMM-GMM dans le cas de Ss.
Les Lévres et les caractéristiques de forme de la main sont extraites par les CNN, et les coordonnées
de la position de la main sont traitées par I’ANN. La stratégie de fusion au niveau des caractéristiques
ou au niveau du modéle est utilisée en combinaison avec le décodeur HMM-GMM.
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(3)

Dans Chapter 7, nous proposons un modéle (hand preceding model) d’anticipation pour
prédire automatiquement la segmentation temporelle du mouvement de la main en explo-
rant la relation temporelle des mouvements des lévres et 'emplacement des voyelles dans
les phrases. Pour évaluer la performance de la méthode proposée, la reconnaissance des
positions de la main est réalisée par GMM et Long Short-Term Memory (LSTM) [23] en
utilisant différentes segmentations temporelles de la position de la main. Les résultats
montrent que I'utilisation de la segmentation temporelle prédite par la méthode proposée
améliore significativement les performances de reconnaissance par rapport a celle utilisant
la segmentation basée sur I'audio. Pour le flux de forme de la main, nous proposons une
segmentation temporelle optimale pour la réalisation de la forme de la main basée sur le
modéle d’anticipation de la main.

Dans Chapter 8, la fusion multi-modale asynchrone et la reconnaissance du LPC en con-
tinu sont réalisées en général grace & plusieurs nouvelles architectures en tandem qui
combinent CNN, Hidden Markov Model (HMM) [24], [25], différentes stratégies de fusion
et modélisation dépendant du contexte. Une nouvelle procédure re-synchronisée Aligned
Concatenation (AC) est proposée pour pré-traiter les entités multimodales afin de réduire
leffet de asynchronie et garantir la qualité de la fusion. Sans exploiter aucun diction-
naire ou modéle de langage, la meilleure architecture CNN-HMM (dans Fig. 5) proposée
contient un modéle dépendant du contexte propre au LPC et peut identifier correctement
environ 72.67% des phonémes en parole continue. Notamment, ce résultat est comparable
a l'état de Part [10], qui était obtenu pour la reconnaissance LPC de phonémes isolés
extraits d'un corpus de phrases et 1'utilisation de marqueur d’information. Enfin, cette
thése est le premier travail a traiter de la reconnaissance du LPC en continue & partir d’un
corpus de phrases sans aucun artifice.
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APPENDIX A

Additional Materials

A.1 Text file of sentences

This text file contains 238 French sentences, which were uttered twice by the subject LM using

CS.

Ma chemise est roussie.

Il se garantira du froid avec ce bon capuchon.

Voila des bougies.

Dés que le tambour bat les gens accourent.

Donne un petit coup.

Les deux camions se sont heurtés de face.

Tiens-toi assis.

Annie s’ennuie loin de mes parents.

Il a du gofit.

La vaisselle propre est mise sur 1’évier.

Elle m’étripa.

Une réponse ambigiie.

Louis pense a ca.

Un loup s’est jeté immeédiatement sur la petite chevre.
Un four touffu.

Nos dalmatiens campaient au camping & la montagne.
Un tour de magie.

Noam Chomsky balaye encore le club ce soir.

Voila du filet cru.

Huit jésuites trés huileux se font un brushing yougoslave.

La force du coup.
L’africa song s’emballe en juillet sur un walkman muet.
Préte lui seize écus.

Je souhaite que sa peau usée ne recoive jamais cette greffe ridicule.

Vous étes exclue.

Il abrase chaque jour un pneu ancien avec ses griffes pointues.

Il fait des achats.

Ce fou ordinaire fiche le turban indien dans le bain optionnel.

Chevalier du gué.
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Le géologue trouve finalement la houille en vrac dans le gave de Pau.
Le jeune hibou.

Va dans une cave quelconque et caches-y ce drapeau honteux.
Il fume son tabac.

Des ewoks habitent la maison en paille du centre spatial.

Un piége a poux.

La grive perchée sur I'if noir couve toujours ce canif chinois.
L’examen du cas.

Le loup oublie son plan astucieux dans une poche chinoise.
Je suis a bout.

Les keums du wharf rament évidemment dans le paysage.
Elle a chu.

Pose calmement ta dague pointue sur cette étoffe carrée.

Je vais chez ’abbé.

Cette phrase particuliére étouffe toute une strophe vertueuse.
Deux jolis boubous.

Il n’arrive nullement qu’une vague surgisse du hors-d’oeuvre.
Une belle rascasse.

La pin-up feind de tomber chez toi mais ne blague jamais.

Il part pour Vichy.

Faire la nouba.

C’est Louis qui joue.

Vous poussez des cris de colére.

C’est ma tribu.

David Bowie s’est rué sur le quai ot j'ai organisé ce must.
Gilles m’attaqua.

Tu houspilles ton amant onctueux qui louche réellement.

Pas plus de quatre rubis.

J’ai un scorpion sec dans mon talon aiguille.

Une rocaille moussue.

Le beau ouistiti suit le riche huissier & Waterloo.

Un pied fourchu.

Jean Nohain a chargé Watson de louer le huitiéme buisson.
C’est lui qui me poussa.

J’ail identifié un mohican dans un western pyrénéen.

La chaise du bout.

Ce buveur balte augmente sa masse veineuse & heure réguliére.
Trop d’abus.

Son gant entoure la valise trouvée sur la digue droite.

Jen ai assez.

Zola demande notamment du bon lait & un mage zurichois.
Jean est faché.

Miss Zazie effectue un travelling heureux sur un machin imposant.
Le pied du gars.
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Un pale zébu agnostique mange normalement une solide pizza.
Vous avez réussi.

La meilleure omelette du Larzac peut rivaliser avec le yachting normand.
Ils n’ont pas pu.

Des rides charmantes aérent cette robe choisie dans les pages jaunes.
Le vent mugit.

Aux lilas violets européens Corot eugéne préfére vingt-et-un oeillets.
Une autre roupie.

Un coup heureux et impétueux modifie un vulgaire pain onctueux en gnome.
Deux beaux bijoux.

Tu ris beaucoup.

Mon pére m’a donné ’autorisation.

Vend-on un cake intact & Hong-Kong.

L’avoué a besoin d’un joint sous huitaine.

La sueur suinte du thon huileux.

Tout winipeg attend Wendy sur le parking ouest.

Bud et Buck font un bon whist & Maubeuge.

Youri fouette I’ail ionique de Kohoutek.

Bing j’ai heurté le puits dans la lueur.

J’avais honte car la fille huait les who.

Vuitton fait cuire dix wapitis gotiteux.

Young fait un petit huit avec un joueur noueux.

Li-peng met du nuoc-mam dans son amuse-gueule.

J’ai Eugéne au téléphone qui cueille joliment du gui.

Ivanhoe a fait un bug au huitiéme essai.

Tu huiles I’étui du buzzer de deux watts.

C’est Hervé qui fuit dans un yacht en leasing.

J’ai étudié le parking huit a Plancoet.

Walid a hué les Pink Floyd & Rouen.

Eh oui les forums de 'accueil sont chouettes.

La famille ouistiti a éternué sous les dolmens.

Nous jouons aux billes dans les ruines muettes.

Le balai a fait un looping sur la toundra.

Ce tuyau a voyagé trés haut chez les martiens.

J’ai huilé un rayon du train huit a I’équinoxe.

Les calds jouent au ping-pong avec ’équipe de Bosnie.

J’ai eu les symptomes de la presbytie en huit jours.

Une agrafe géante a pu heurter son beau hors-bord.

De mauvaises gens privent Victor de sa coiffe bretonne.

Le vase zen a perdu aussi un anneau en roche grise.

La houle lave les hublots d’une case déserte.

Le photographe garantit un gag tordu au gotit incertain.

Le bateau heurta les housses du hublot un peu humides.

La feuille fut sertie avec une dent usée de la biche docile.
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Le prof mielleux triche souvent & ce jeu idiot.

Ce jazz rythmé est un cadeau inespéré.

Le veau heureux attend Eudes dans le hameau indien.
L’ane bégue voit que la vache de Joseph se vexe.
Lagaffe fabrique une ruche carrée si tu y coopéres.
Réves-y car 'extase vient de cette bague gracieuse.

Il élague curieusement la houpe qui est récalcitrante.
Le camp hostile coordonne le putsch dans la cohue.
Cette péche fameuse a vu onduler ’endive blanche.

11 se 1éve chaque jour et attend Hercule qui oublie.
Quand je souléve ma hache le banc ondule.

Un zébu heureux ne touche jamais au houblon.

Ce chant hideux rase son héros venu en héate.

Jean heurta une cuve large pleine de gouache verte.
Le vent établi séche bien le houx ot créche mon hibou.
Tchang 6te sa toge cintrée d’une main innocente.

Un trés bon vin en bouteille exige un planning idoine.
Don juan drague finalement une jeune fille mal faite.
A eux la soif zoologique du bourgeon ouvert.

Au yen la tache pénible de ce prét embarrassant.

En haut la guépe pense aux heures.

Objectez & Neuilly contre le gaz nocif des hommes.
L’anglaise lui offre ce qu’elle a au doigt ou a 'oreille.
Elle joue uniquement avec la neige chantante.

Oudini ignore le train ou doit se produire le spectacle.
Il est parti illico en avion ou en gondole.

Il gobe douze féves et béche tout mon jardin.

La caisse seule a enflé sur le ring en bois.

Votre crépe chaude vise bien le haut du feu.
Tailles-en un bien haut et travaille chaque nom.
Fernand oublie de moudre son café.

L’abeille n’engrange pas de miel sur un chemin.
Cherche ot est le thon obtus que je trouve sot.

Eole aide sa robe fendue a se soulever.

Bashung oublie aussi qu’il légue quelque chose.

Je passe chercher ce que j’ai lu avec vous.

Un zoom ferait ce que neuf demis pensent faire.

Le fou immerge son aiguille et brode finement.
Chaque bout du rail carré est une tige ténue.

Un argument élogieux échappe bien au rosbif.

Le malade guéri attrape mon solide microbe.

Cette dame veut galber un tube vertical.

Nous traquions bien Euler pendant son footing urbain.
J’ai vu un holding important sur un terre-plein escarpé.
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Pain et pudding gallois aident le petit hussard oublieux.

Une bouteille de riesling heurta le balcon humide.

Ce jeu invite un type joueur et une dame riche.

Une vache normande dirige rarement un jumping zélé.
Le Viking honteux a mal chuté sur cette petite nappe.
Le moteur du boeing ronronne dans la brouette.

Le pape vient en yamaha dans une bourgade curieuse.
Le rotring exige une page carrée dans une feuille verte.
Le lapin utilise son yoyo et a besoin d’aide.

Le dumping l’incite & jeter les prunes tombées.

Les yétis mal rasés ont la bouille pateuse.

Ils oubliérent chuck dans un tube carré.

Léon range le parking vendéen ol on aime zoner.

Le king charmeur porte une chemise rouge foncée.
Yasmine aime ton standing japonais.

Gaspard blague mollement sur le leasing omniprésent.

Nous draguions le torrent pour trouver des crabes noirs.

Eux aussi aiment la tripe glorieuse un peu euphorique.
Oeuvrez pour 'ove du globe bleu des yeux.

Mes juges vont manger ce fichu yaourt a la truelle.
Ce soldat un peu honteux fait un job glorieux.

Cet 7il globuleux porte une lentille luisante.

La sage baleine zoophile n’a aucune patte valide.
Le prieur brade tout centime gagné.

La caille revient sans eux dans I’herbage gourmand.
Une guenon heureuse a vu un balcon ombragé.
Chaque garcon aime que le soleil brille.

Il y a un truc qui ondule dans la cage murale.
Tapes-en au noir sur une petite zone.

La fausse reine en tailleur agace Guy.

Nous tuons chaque chiot qui a été heureux.
Flambes-y une crépe bretonne de gamme moyenne.
Chaque zéro est un looping tordu.

Un nain heurta une bogue charnue un onze janvier.

Une tombe ming ne passe jamais pour un karting belge.

Un homme jeune ne tombe pas pendant cette java.
La foule a aflué quand mon neveu heurta le RER.
Le thon heurta un bleuet.

Il a été heurté par un pécheur.

Intonnes un u ou un euh & intervalles réguliers.
Ceux des gueux bigleux veulent libérer Bob Taylor.
O était oxymel.

Le jeu 6tait illico au parfum oublié un fin bouquet d’embruns.
Le cousin chinois du tribun évalue au juge autrement le tissu invendu.
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Le CE isole les engins communs aux deux charlots.

Une québécoise pleurnicheuse brandit Euclide lors des réunions.
Moreau étale immanquablement un déficit commun & la queue de I'UE.
Aladin éléve chacun en symbiose avec le vieil ouzbek.

Chacun ignore son CE un peu un moment.

Avec un aplomb imparable nous avons chacun un CE énergique.
Cette énergie insensée gréve un quinziéme de Ugines.

Sur le zing chacun interpréte I'atlas humblement posé sur 'ancien jabot.
Sa tape un peu impolie heurta Bernache un peu trop violemment.
Sylvain ne suit pas le parfum imprévu.

Ce cabot ombrageux féte son accession au pouvoir.

Un noir de jais évoque le front eurasien.

Ce suspect heurta le bibelot ancien un peu lourdement.

Le bedeau euphorique secoue ’anneau un jour par an.

Jojo heurta le défunt et le tua.

A jeun Antoine le heurte et cet accident le hantera.

Le LPE insiste et les PME ont signé.

Regardes il zigzague un peu vite.

Un huit dans I’eau a huilé 'un des tiroirs.

Railles un bourrin oisif.

Prends-le Euclide.

Tailles huit brins ouatés.

Je m’huile le corps dans ce lieu iodé.

Jourdain rajoute un pneu huileux.

Il se ouate le teint rebelle.

Antoine avait ouint son numéro huit.

J’ai recu ton dessin hier.

Quantum suédois ou rituel wolof.

La secoueuse fait des percings linguaux.

Les gangs infligent des bings et des bangs périlleux sur une ile.
La horde de hors-la-loi alpague bientét I’épave galloise.

Ce soldat un peu honteux fait un job glorieux.

J’ai oublié le message.

A.2 Text file of words

This text file contains 50 French words, which were uttered ten times by the subjects MD,
DB and ChS.

annuler.
aout.
au-revoir.
avril.
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bonjour.
changer.
cing.
decembre.
deux.

dix.
dix-huit.
dix-neuf.
dix-sept.
douze.
fevrier.
heure.

huit.
janvier.
juillet.

juin.

mai.

mars.

neuf.
novembre.
octobre.
onze.
quatorze.
quatre.
quinze.
rendez-vous.
seize.

sept.
septembre.
Six.

treize.
trente.
trente-et-un.
trois.

un.

vingt.
vingt-cing.
vingt-deux.
vingt-et-un.
vingt-huit.
vingt-neuf.
vingt-quatre.
vingt-sept.
vingt-six.
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vingt-trois.
Z€ro.

A.3 Phonetic transcriptions of Chinese characters

In Chinese language, there are 23 consonants, 24 vowels and 16 whole syllables (see Fig. A.1).

RiEgHEFHR

Chinese Pinyin alphabet
# 4 % Consonant

e lpimitidltlng 1}
fgl k] hiid]alx|izhich
tshirizliclsiyiwl |

34 & Vowel
lalole]ijujijaifei

[ui !OOIOUriU b ie { Uet er fan

en}in juni}un |ang|eng! ingIong

%%‘i)&‘iﬁ:%*ﬁ Reading the whole syllable

Figure A.1: Phonetic transcriptions (consonants, vowels and reading the whole syllables) in Chinese’.

! https:/ /www.pinterest.com/pin/417568196678494389/
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A.4 Numerical details of confusion matrices

1. Confusion matrix (10x10) for the hand shape recognition in Fig. 8.12(a).

r190 0 0 0 0 0 0 0 0 07
0 156 O 3 2 3 3 0 1 26
0 9 164 O 1 1 2 1 5 15
0 8 0 105 1 4 2 1 3 31
0 4 1 6 203 1 0 3 1 26
0 5 4 6 0 120 3 1 0 15
0o 11 3 7 1 4 18 0 1 44
0 1 1 0 0 0 0 20 12 11
0 2 5 0 1 0 0 0 37 2

L0 8 10 23 13 10 13 8 7 O]

2. Confusion matrix (10x10) for the lips viseme recognition in Fig. 8.12(b).

Moo o0 o0 0 0 O 0o 0 O 07
0 18 1 0 0 O 0o 0 1 4
0 0O 73 1 0 O 0 0 0 1
0 5 8 369 13 31 14 18 7 131
0 2 0 4 8 0 1 2 19 9
0 4 6 29 3 123 40 14 11 112
0 4 5 1 1 15 614 5 2 60
0 5 1 4 2 11 1 89 26 24
0 3 5 11 7 23 17 44 313 75

L0 15 15 53 15 60 66 34 49 0 |

3. Confusion matrix (7x7) for the hand position recognition in Fig. 8.12(c).

192 0 0 O 0 0 O
131 6 19 3 o 44
48 56 34 22 27 93
27 6 128 3 24 47
3 1 4 167 9 22
11 3 14 6 143 26

40 14 34 27 50 O

SO

4. Confusion matrix (15x15) for vowel recognition in Fig. 8.14.

%0 o o 0 o0 O O O O O O O O 0 0 07
o = 2 6 1 0 0 0 o0 1 3 0 1 1 0 11
o 2 w7 3 0 1 0 1 0 0 4 0 3 0 9
o 1 1 3r 10 0 O 1 1 0 1 2 0 0 0 19
0o 100 2 3 113 0 2 o0 3 2 7 1 1 0 1 38
o o0 0 0 0 5% 0 4 0 O O 0 0 1 o0 4
o o o 1 o0 1 113 0 0 13 0 O 3 7 8 13
o o o0 o o0 2 0 21 0 0 0 0 2 1 5
o o0 o o o0 o0 1 o022 7 0 1 1 1 2 16
o o0 o o o0 1 8 0 3 12 0 2 2 4 2 14
o 6 2 0 3 0 0 0 0 0 21 0 0 0 0 19
o o 5 7 2 0 0 0 2 0 0 47 0 O 0 8
o o0 o o o0 0o 3 0 4 2 0 0 31 1 4 14
o o o o O 3 4 0 0 O 0 0 2 20 0 6
o o o0 o0 o0 o0 1 0 6 0 0 0 0 0 12 5
0 29 9 17 31 10 20 9 9 11 14 11 13 13 8 O
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5. Confusion matrix (20x20) for consonant recognition in Fig. 8.15.

T 1
comYYworo—amaSRmFno—o
coocococooococoo~ocOo—~ocoOo

00200100000002060%02

Ne}
0010100200002000“007

OOOOOOOOOOOOOOOMOOOAi
N —
0031000000000291000001

coNoHOOOoOoOooO—HRoooOoo®
cocojocooccococoo—oco—~oR
cococo—o—ococofYoo—~ococooo
coovYooococooXocooococoocoow
coococo-ooolioocoocococococo—
comooooofooocoocoooO—O
coocoocooRooaNNOoN—HOOOO®
coocococoPoooococoo—HooNON
coococoXoNOoO—FOA—O DO
cocofooococococo~coocoo0ow
coc¥ococoococovooco—o——o3
ColooOoOoFOoOoOoO—HANOOoOOD

0”008000000020000006

)
wOOOOOOOOOOOOOOOOOOO

6. Confusion matrix (34x34) for phoneme recognition in Fig. 8.16.

W2m90403345309w4%32B78%1H474518150
OO0 00000000O1000000OMONO—A—AFORS
OO OO0 ONOO000000OO—NNOOOO TR~
CONOOO0000000000000000OO—OOMOoORO—T
cCo~OoOoOoOoOOoOO0OoOOOMmOoOoNNHOoOoOooOoJocoor
OO0 COO~0000ONOOOO—~—o0oooN oo
OO~ O00000000OO—TOOFOOOO+—OFOMNNOOANN R
ONOOH—HOO0O00OoOHOMmMoooo—~ooaNaNTmo—~noins
CNM—HO0000000ONOOOOOOCOONTOR—NCOOFHO
000000010000100010000022W15000243%

0

00000000010000100lNOOOOOBKuOOOOOOOl

OOO01000OOO000010%0100000000001000

NeJ

000000000000000%020000000000000001

o
00300000000001H1102001200010200008

0011100000000%00000010000001100106
040060010000%000000100100000000008
00000400300%0000010000110100000001
0003000201%00100000001001200001002
000100000%000000000000000000000002
0000000O&OOOOO00000000000000000101
0022000%01200300600001100100000008
000000%007001010000101000000000003
00100M0200090101020000000010001004
0310%00000002200101200010002000012
00%1000010300120000000000100000007

O&OOnﬁOOOOOOOn&OOOOOOOOl000000000002

)
wOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO
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