
HAL Id: tel-01960958
https://theses.hal.science/tel-01960958v1

Submitted on 19 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Definability and synthesis of transductions
Nathan Lhote

To cite this version:
Nathan Lhote. Definability and synthesis of transductions. Other [cs.OH]. Université de Bordeaux;
Université libre de Bruxelles (1970-..), 2018. English. �NNT : 2018BORD0185�. �tel-01960958�

https://theses.hal.science/tel-01960958v1
https://hal.archives-ouvertes.fr

Thèse en cotutelle présentée pour obtenir le grade de

Docteur de l’Université de Bordeaux
et de l’Université Libre de Bruxelles

École doctorale mathématiques et informatique
spécialité informatique

Par Nathan Lhote

Définissabilité et Synthèse
de Transductions

Definability and Synthesis
of Transductions

Sous la direction d’Emmanuel Filiot et d’Olivier Gauwin

Soutenue le 12 octobre 2018

Membres du Jury:

Miko laj Bojańczyk Professeur, Uniwersytet Warszawski Examinateur
Thomas Colcombet Directeur de recherche CNRS, Université Paris-Diderot Rapporteur
Emmanuel Filiot Chercheur qualifié FNRS, Université Libre de Bruxelles Directeur
Olivier Gauwin Mâıtre de conférences, Université de Bordeaux Directeur
Christof Löding Chercheur associé, RWTH Aachen Rapporteur
Anca Muscholl Professeure, Université de Bordeaux Examinatrice
Jean-François Raskin Professeur, Université Libre de Bruxelles Examinateur
Helmut Seidl Professeur, Technische Universität München Président

Définissabilité et Synthèse de Transductions

Titre Définissabilité et Synthèse de Transductions

Résumé Dans la première partie de ce manuscrit nous étudions les fonctions rationnelles,
c’est-à-dire définies par des transducteurs unidirectionnels. Notre objectif est d’étendre aux
transductions les nombreuses correspondances logique-algèbre qui ont été établies concernant les
langages, notamment le célèbre théorème de Schützenberger-McNaughton-Papert. Dans le cadre
des fonctions rationnelles sur les mots finis, nous obtenons une caractérisation à la Myhill-Nerode
en termes de congruences d’indice fini. Cette caractérisation nous permet d’obtenir un résultat
de transfert, à partir d’équivalences logique-algèbre pour les langages vers des équivalences pour
les transductions. En particulier nous montrons comment décider si une fonction rationnelle est
définissable en logique du premier ordre. Sur les mots infinis, nous pouvons également décider
la définissabilité en logique du premier ordre, mais avec des résultats moins généraux.

Dans la seconde partie nous introduisons une logique pour les transductions et nous résolvons
le problème de synthèse régulière: étant donnée une formule de la logique, peut-on obtenir
un transducteur bidirectionnel déterministe satisfaisant la formule ? Plus précisément nous
fournissons un algorithme qui produit toujours une fonction régulière satisfaisant une spécification
donnée en entrée. Nous exposons également un lien intéressant entre les transductions et les mots
avec données. Par conséquent nous obtenons une logique expressive pour les mots avec données,
pour laquelle le problème de satisfiabilité est décidable.

Mots-clefs Transductions, minimisation, congruence syntaxique, aperiodicité, logique du sec-
ond ordre monadique, logique du premier ordre, origine, vérification, synthèse, data words

Title Definability and Synthesis of Transductions

Abstract In the first part of this manuscript we focus on the study of rational functions,
functions defined by one-way transducers. Our goal is to extend to transductions the many
logic-algebra correspondences that have been established for languages, such as the celebrated
Schützenberger-McNaughton-Papert Theorem. In the case of rational functions over finite words,
we obtain a Myhill-Nerode-like characterization in terms of congruences of finite index. This
characterization allows us to obtain a transfer result from logic-algebra equivalences for languages
to logic-algebra equivalences for transductions. In particular, we show that one can decide if a
rational function can be defined in first-order logic. Over infinite words, we obtain weaker results
but are still able to decide first-order definability.

In the second part we introduce a logic for transductions and solve the regular synthesis
problem: given a formula in the logic, can we obtain a two-way deterministic transducer satisfying
the formula? More precisely, we give an algorithm that always produces a regular function
satisfying a given specification. We also exhibit an interesting link between transductions and
words with ordered data. Thus we obtain as a side result an expressive logic for data words with
decidable satisfiability.

Keywords Transductions, minimization, syntactic congruence, aperiodicity, monadic second-
order logic, first-order logic, origin, verification, synthesis, data words

Laboratoires d’accueil Laboratoire Bordelais de Recherche en Informatique, 351 Cours de
la Libération, 33405 Talence

Département d’informatique de l’Université Libre de Bruxelles, Bâtiment NO 8ème étage,
Campus de la Plaine, ULB CP212, boulevard du Triomphe, 1050 Bruxelles

ii

Remerciements

Ces années de thèse ont été une étape clef de ma vie pendant laquelle j’ai beaucoup appris
et beaucoup changé. Une constante durant ces années est le soutient que j’ai reçu de la part
des personnes qui m’entourent et qui ont contribué à rendre ces années heureuses. Je souhaite
commencer par remercier mes encadrants de thèse, Manu, Olivier et Anca bien sûr. Je me sens
extrêmement privilégié d’avoir eu trois encadrants d’une telle qualité et j’ai énormément appris
à leur contact pendant ces trois virgule cinq années.

Merci aux membres de mon jury et en particulier à Thomas et Christof d’avoir accepté de
relire mon manuscrit et merci pour vos remarques pertinentes.

Merci aux membres du LaBRI qui contribuent à une ambiance de travail très agréable. Merci
à Mohammed pour des discussions endiablées sur le cours du mitigeur, à Louis-Marie pour ses
calembours interstellaires, à Luis pour les parties de ping-pong acrobatique, à Filip pour son
amour des cheese nan kebabs, à Nath pour ses leçons d’escalade. Merci aux nombreux membres
du bureau 123 pour une bonne ambiance: Edon, Félix, Adithya, Varun, Jason, Paul, Karim,
Kinda, Rohan, etc. Merci également aux membres de l’ULB, merci à Luc de m’avoir supporté
dans son bureau, à Ismaël pour ses discussions matinales, à Guillermo pour la fondue, à Marie
pour les sablés, à Nicolas pour ses tenues rayées, à Léo pour les soirées musicales. Je souhaite
également remercier les gestionnaires du LaBRI et de l’ULB qui nous rendent la vie infiniment
plus facile, en particulier Emmanuelle, Véronique, Pascaline et Maryka.

Merci aux matheux de cette annexe du LaBRI qu’est L’IMB. Merci à Thibaut ’Magic’ Kritter
pour les parties de basket, merci à Elsa, Nicolas, Jonathan et les autres pour les verres en terrasse
et les nombreuses et inoubliables soirées \lambda.

Merci Elizabeth pour la dégustation de fruits de mer et merci Cannelle pour les verres lu-
mineux. Merci aux potes de Rennes, Vincent meilleur perdant que gagnant, Sarah pour ces
supers années coloc’, Lucile pour le voyage au bout du monde, Robert pour les soirées Ludo &
Robert , Ludo pour les soirées Ludo & Robert, Hélianthe pour avoir fait de moi la fashionista
que je suis aujourd’hui. Un merci tout particulier à Amélie sans qui je n’aurais sans doute pas
fait cette thèse.

Ensuite je souhaite remercier mes parents Dominique et Thierry que j’aime qui m’ont apporté
un soutient inconditionnel pendant des études longues et pas toujours linéaires. Et puis pour le
reste, merci aussi ! Merci à mes sœurs Rachel et Clara, mes deux personnes préférées ex æquo
que j’aime et que j’admire. Merci à Löıc et Nicolas et merci aussi à leurs enfants (respectifs)
Yaël, Marek, Côme et Talia, que j’adore voir grandir et apprendre à connâıtre. Merci à mes
grand-parents, Jacqueline, Geneviève aka GM, Armand (et André que j’ai peu connu), pour
l’amour et le soutient qu’ils m’ont apporté.

Enfin si j’ai beaucoup changé, beaucoup appris et si ces trois années ont été heureuses, c’est
grâce à toi Cécilia. Merci.

iii

Définissabilité et Synthèse de Transductions

iv

Résumé en français

Des langages aux transductions

L’étude des langages formels est l’un des piliers de l’informatique théorique et a permis de
développer de nombreux outils théoriques et pratiques dans différents domaines. Certaines classes
de langages se démarquent des autres car elles bénéficient de plusieurs descriptions différentes, par
exemple les langages récursivement énumérables peuvent être caractérisés en termes de machines
de Turing ou en termes de grammaires de type 0 dans la hiérarchie de Chomsky. Un exemple qui
nous intéresse particulièrement est celui de la classe des langages rationnels1 qui se situe au plus
bas niveau de la hiérarchie de Chomsky puisqu’elle est caractérisée par les grammaires régulières.
Les langages rationnels sont également caractérisés par les expressions rationnelles, les formules
de la logique monadique du second-ordre (MSO), les monöıdes finis (ou de manière équivalente
les congruences d’indice fini), les automates finis (ainsi que toutes leurs variantes: déterministes,
non-déterministes, alternants, unidirectionnels, bidirectionnels, etc), etc. Par exemple, le langage
des mots de longueur paire sur l’alphabet {a}, est reconnu par l’automate donné en Fig. 1, et
est défini par l’expression rationnelle (aa)∗.

0 1

a

a

Figure 1: Automate déterministe reconnaissant le langage (aa)∗.

La théorie de la calculabilité peut aussi être abordée du point de vue des fonctions et là
encore des classes particulières bénéficient de plusieurs descriptions différentes, par exemple, les
fonctions calculables peuvent être caractérisées en termes de machines de Turing, de fonctions
µ-récursives, ou d’expressions du lambda calcul. Dans le modèle de Turing, une machine (non-
déterministe) avec une bande d’entrée et une bande de sortie définit une relation sur les mots
appelée une transduction.

Une question importante à nos yeux est la suivante: quelle est la classe de transductions
homologue aux langages rationnels ? Il n’y a pas de réponse évidente à cette question puisque la
classe de transductions que l’on obtient dépend du modèle de calcul que l’on choisit de généraliser.
Par exemple, les transductions reconnaissables par monöıdes finis forment une des classes de
transductions les moins expressives et une telle transduction peut être décrite comme une union
finie de produits de langages rationnels (voir [Ber79]).

Un automate peut être promu en transducteur, c’est-à-dire un automate avec des sorties,
et il réalise ainsi une transduction. En Fig. 2 nous donnons deux exemples de transducteurs.

1Souvent appelés langages réguliers.

v

Définissabilité et Synthèse de Transductions

Le premier copie la moitié des lettres de son entrée tandis que le second double chaque let-
tre. Tandis qu’un automate peut être vu comme une machine de Turing avec une bande de
lecture seule, un transducteur est une machine de Turing avec une bande de lecture et une
bande d’écriture. Les variantes d’automates finis reconnaissent toutes la même classe de lan-
gages, cependant ce n’est pas le cas pour les transductions. Premièrement, un transducteur
déterministe doit réaliser une fonction puisqu’une certaine configuration de la bande d’entrée
ne permet qu’un unique calcul. Un transducteur non-déterministe au contraire peut réaliser
une relation non-fonctionnelle. Deuxièmement, les transducteurs unidirectionnels sont stricte-
ment moins expressifs que les transducteurs bidirectionnels, par exemple la fonction miroir,
qui inverse l’ordre d’un mot, peut uniquement être réalisée par un transducteur bidirectionnel.
Les transductions réalisées par des transducteurs unidirectionnels sont aussi définissables par
des expressions rationnelles sur une produit de monöıdes libres (voir [Ber79]) et ont donc été
nommées transductions rationnelles. Les fonctions réalisées par des transducteurs bidirection-
nels ont également été caractérisées par différents modèles, notamment les transductions MSO à
la Courcelle ainsi que les streaming string transducers (SST), des transducteurs unidirectionnels
augmentés de registres. Ces équivalences ont été montrées respectivement dans [EH01, AC10], et
les fonctions de cette classe sont souvent appelées fonctions régulières. Pour une vue d’ensemble
de ces différents modèles voir [Fil15, FR16].

0 1

a|a

a|ε

(a) an 7→ ad
n
2
e

0 1

a|aa

a|aa

(b) an 7→ a2n

Figure 2: Deux transducteurs séquentiels

Les problèmes

Les problèmes classiques de la théorie des langages formels peuvent être formulés en termes de
transductions. Nous considérons des questions de définissabilité et de minimisation, et nous
exposons quels résultats ont déjà été obtenus pour les langages rationnels et leurs extensions vers
les transductions. De plus de nouveaux types de problèmes se posent, en particulier les questions
de synthèse pour les transductions ont beaucoup été étudiées.

Problèmes de minimisation et formes canoniques Un problème de minimisation de-
mande, étant donné un objet syntaxique M2 (par exemple un automate) dans une classe C, avec
une interprétation sémantique JM2K, s’il existe un objet M1 ∈ C tel que JM1K = JM2K et M1

est “plus petit” que M2, pour une certaine définition de taille. Les problèmes de minimisation
sont omniprésents en informatique pour des raisons évidentes d’efficacité. De plus, les objets
minimaux sont souvent liés à des formes canoniques qui ont d’autres intérêts algorithmiques.
Une forme canonique pour des objets d’une certaine classe est une procédure qui prend en entrée
un objet M ∈ C et produit un objet M ′ qui ne dépend que de JMK et tel que JMK = JM ′K.
En particulier, le fait d’avoir une procédure pour calculer une forme canonique permet de tester
l’équivalence de deux objets. De plus une telle forme canonique permet souvent de tester d’autres
propriétés sémantiques d’un objet.

vi

Definability and Synthesis of Transductions

En ce qui concerne les langages rationnels, la minimisation a été résolue pour différents
modèles. Le monöıde syntaxique (de manière équivalente, la congruence syntaxique, voir [Ner63])
d’un langage rationnel est le plus petit monöıde reconnaissant le langage, et de plus ce monöıde
est minimal au sens fort où il divise n’importe quel monöıde reconnaissant le langage. À partir de
cela, on peut définir l’automate déterministe minimal d’un langage, qui est minimal en nombre
d’états parmi les automates déterministes reconnaissant le même langage. Une fois encore, cette
propriété de minimalité est en fait plus forte: l’automate minimal est un quotient de n’importe
quel automate déterministe reconnaissant le même langage, et cette structure supplémentaire
fournit des procédures de minimisation efficaces en PTime ([Moo56, Hop71]). Dans le cadre
des transducteurs séquentiels (des transducteurs unidirectionnels avec un automate sous-jacent
déterministe) un objet minimal similaire a été découvert par Choffrut avec la même propriété
de minimalité forte que le transducteur séquentiel minimal est un quotient de n’importe quel
transducteur séquentiel réalisant la même fonction. Cette caractérisation peut être trouvée
dans [Cho03], où l’auteur fournit également plusieurs algorithmes de minimisation en PTime,
similaires au cas des automates. L’existence de tels objets minimaux pour les automates et pour
les transducteurs séquentiels a été traduite en termes de théorie des catégories par [CP17]. Par
exemple le transducteur en Fig. 2(b) peut être minimisé en un transducteur avec un seul état.

Dans [BGMP16, BGMP17], les auteurs considèrent une approche différente de la minimisa-
tion: étant donné un transducteur bidirectionnel fonctionnel, ils montrent comment minimiser,
uniformément sur toutes les entrées, le nombre de changements de direction de la tête de lecture.
Une approche encore différente est étudiée dans [DRT16, DJRV17] où les auteurs considèrent des
SST avec des restrictions sur les opérations de registres et parviennent à minimiser le nombre de
registres en utilisant des propriétés de jumelage à la Choffrut.

Problèmes de définissabilité Le problème de C1-definissabilité pour C2 demande, pour un
objet syntaxique M2 (par exemple un automate, une formule, etc) dans une classe C2 avec une in-
terprétation sémantique JM2K, s’il existe un objet M1 ∈ C1 tel que JM1K = JM2K. Premièrement,
remarquons qu’un problème de minimisation peut être vu comme un cas particulier de problème
de définissabilité en prenant pour C1 une classe de petits objets de C2. Des problèmes de
définissabilité apparaissent dans de nombreux domaines de l’informatique lorsqu’on veut savoir
si un objet peut être défini dans un certain modèle de calcul.

Un fragment logique de MSO est un sous-ensemble des formules MSO défini par une restriction
syntaxique. Pour un tel fragment F, on a le problème de F-définissabilité pour les langages
réguliers. Beaucoup de tels problèmes ont été résolus par la théorie des variétiés de monöıdes
finis (parfois appelées pseudovariétés, voir [Str94]). En effet, les variétés de monöıdes sont closes
par division ce qui implique qu’un langage est reconnaissable par un monöıde dans une variété
V si et seulement si son monöıde syntaxique est dans V. De plus la théorie d’Eilenberg des
variétés, initiée par [Eil76], fournit une description équationnelle des variétés de monöıde ce qui
donne dans de nombreux cas une procédure pour décider si un langage est reconnaissable par un
monöıde dans une variété donnée.

Le premier exemple d’une telle équivalence est le théorème de Schützenberger/McNaughton-
Papert ([Sch65, MP71]) qui dit qu’un langage est définissable en logique du premier ordre si
et seulement si il est reconnaissable par un monöıde apériodique. Ceci fournit une procédure
pour décider la FO[≤]-définissabilité des langages rationnels: calculer le monöıde syntaxique (ou
l’automate minimal) puis tester l’apériodicité. Depuis, d’autres équivalences ont été établies
entre fragments logiques et variétés de monöıdes, voir [Str94, DK09] (et aussi Fig. 1.2) pour plus
de détails. La notion de variété de monöıde a aussi été généralisée aux variétés de monöıdes
ordonnés [Pin95] et aux variétés de timbres [CPS06].

vii

Définissabilité et Synthèse de Transductions

En ce qui concerne les transductions séquentielles on a, grâce à l’algorithme de minimisation
de Choffrut, une façon de décider si une fonction séquentielle peut être réalisée par un transduc-
teur séquentiel avec un monöıde de transition dans une variété donnée. Par exemple, les deux
transducteurs de Fig. 2 ne sont pas apériodiques puisqu’ils comptent modulo deux. Cependant,
bien que le premier est minimal le second ne l’est pas, et il se trouve que la fonction an 7→ a2n

est apériodique car elle peut être réalisée par un transducteur avec un unique état.

Pour la logique, une équivalence a été établie entre les transducteurs bidirectionnels fonc-
tionnels avec monöıde de transition apériodique et les FO[≤]-transductions dans [CD15]. Un
résultat similaire a été obtenu prouvant l’équivalence entre les SST avec monöıde de transition
apériodique et les FO[≤]-transductions dans [FKT14]. Ces équivalences ne fournissent cependant
pas de procédure pour décider si une transduction peut être réaliser par un FO[≤]-transducteur.
En effet pour les fonctions régulières on ne connâıt pas encore d’objet minimal avec de bonnes
propriétés tel que l’automate minimal ou le monöıde syntaxique dans le cas des langages ra-
tionnels.

Un point de vue différent a été considéré dans [CKLP15] où les auteurs fournissent une
procédure pour décider si une transduction séquentielle peut être exprimée par un circuit dans
AC0. Leur approche, qui utilise une notion de continuité des transduction par rapport à une
variété de monöıde a été étendue dans [CCP17].

Problèmes de synthèse Le problème de C1, C2-synthèse demande, étant donné un transduc-
teur T2 dans une classe C2 avec une interprétation sémantique JT2K et un domaine dom(JT2K), s’il
existe un transducteur T1 ∈ C1 uniformisant T2, c’est-à-dire tel que JT1K ⊆ JT2K et dom(JT1K) =
dom(JT2K). En termes de vérification, le transducteur T2 est nommé la spécification, qui est
censée capturer les comportements entrée/sortie acceptables, et T1, normalement fonctionnel,
peut être vu comme un programme qui satisfait la spécification. Les problèmes de synthèse sont
centraux en informatique puisqu’il s’agit d’obtenir automatiquement à partir d’une spécification
un programme qui la satisfait. Les problèmes de synthèse jouent également un rôle important
en théorie des jeux, où l’on souhaite produire une stratégie (programme) qui assure (satisfait)
une condition de victoire (spécification). Pour plus de détails sur l’histoire et les implications
des problèmes de synthèse voir [Tho09].

Le problème de synthèse de Church, énoncé dans l’article fondateur [Chu63] demande, étant
donné un circuit réalisant une transduction lettre-à-lettre si l’on peut synthétiser un transducteur
séquentiel lettre-à-lettre l’uniformisant. Dans [BL69] les auteurs montrèrent que si la spécification
est donnée comme une formule MSO réalisant une transduction lettre-à-lettre, alors le problème
est décidable. En utilisant comme spécifications des formules LTL, [PR89] ont fourni une solution
élémentaire au problème de synthèse ce qui insuffla beaucoup d’intérêt dans le domaine de la
synthèse réactive, par exemple la compétition SYNTCOMP co-située avec la conférence CAV
depuis 2014. Depuis, d’autres classes de transductions ont été considérées avec des résultats
positifs et négatifs. Dans [CL15], les auteurs ont montré que lorsque la restriction lettre-à-lettre
est retirée, le problème devient indécidable. Cependant, ils ont également montré que si seulement
la spécification est lettre-à-lettre alors le problème reste décidable. Dans [FJLW16] les auteurs
montrent que le problème de synthèse séquentielle est décidable lorsque la spécification est une
transduction finiment valuée (il existe une borne uniforme sur le nombre de sorties produites par
une entrée). Ils prouvent également que le problème est décidable si la spécification est donnée
par un transducteur déterministe (un automate déterministe à deux bandes). Ce problème a
également été étendu aux structures arborescentes, par exemple dans [LW17].

viii

Definability and Synthesis of Transductions

Contributions de la thèse

Ce manuscrit traite de certaines instances des questions mentionnées précédemment, minimisa-
tion, définissabilité et synthèse pour les transductions, et il est divisé en deux parties. Dans la
première partie nous considérons les fonctions rationnelles sur les mots, c’est-à-dire les fonctions
réalisées par des transducteurs unidirectionnels, sur des mots finis et infinis. Une restriction
naturelle des transducteurs MSO, nommés transducteurs préservant l’ordre, capture exactement
les fonctions rationnelles, voir [Boj14, Fil15]. Plusieurs questions de définissabilité peuvent donc
découler de cette remarque: étant donné un fragment logique F de MSO, peut on décider la
F-définissabilité des fonctions rationnelles ? Dans la première partie nous considérons de telles
questions que nous résolvons pour certains fragments (en particulier FO[≤]) par des techniques
de minimisation et de formes canoniques. Dans la seconde partie nous étudions des logiques
expressives pour les transductions et nous résolvons le problème de synthèse régulière pour ces
logiques. Nous établissons également un lien fort entre les transductions et les langages de mots
avec données ordonnées.

Caractérisation des fonctions rationnelles

L’objectif et la situation Dans ces travaux notre but a été d’étendre le succès de l’étude des
équivalences logique-algèbre des langages vers les transductions, afin de résoudre des problèmes
de définissabilité pour des fragments logiques de MSO. Pour les langages rationnels, la car-
actérisation effective de fragments de MSO repose souvent sur une équivalence avec une variété
de monöıdes. Ce qui veut dire, d’après les bonnes propriétés des variétés, que calculer l’automate
minimal est suffisant pour décider si un langage est reconnu par un monöıde dans la variété et
donc par une formule du fragment. En ce qui concerne les transductions séquentielles, comme
nous l’avons vu, un objet minimal existe également cependant toutes les fonctions rationnelles
ne sont pas séquentielles.

Dans [RS91], les auteurs donnent une procédure pour calculer une machine canonique pour
n’importe quelle fonction rationnelle. Les machines utilisées sont des bimachines, qui furent
introduites par [Sch61] puis nommées et étudiées par [Eil74]. Une bimachine peut être vue
comme un transducteur séquentiel avec “information en avant”, c’est-à-dire avec une information
rationnelle sur le suffixe du mot, où l’information en avant est donnée par un automate co-
déterministe. En particulier, la bimachine canonique de [RS91] a l’automate d’information en
avant minimal parmi toutes les bimachines réalisant la fonction. Cependant cette bimachine
n’est pas minimale en termes de monöıde de transition.

Les résultats Notre première contribution principale est de montrer que pour une transduction
sur les mots finis donnée, il existe un nombre fini de bimachines minimales réalisant la fonction
(minimales en termes de monöıde de transitions). Ainsi nous obtenons un algorithme pour
décider si une transduction donnée en entrée peut être réalisée par un transducteur avec un
monöıde de transitions dans une certaine variété (décidable).

De plus nous donnons un théorème de transfert d’équivalences logique-algèbre pour les langage
vers des équivalences logique-algèbre pour les transductions. Ce qu’il faut retenir de ce résultat de
transfert est que étant donné F un fragment logique de MSO équivalent à une variété de monöıdes,
si F a accès au prédicat d’ordre alors l’équivalence peut être étendue aux transductions.

En particulier on peut décider si une transduction donnée peut être exprimée en FO[≤]
logique du premier ordre, FO2[≤] logique du premier ordre avec deux variables, et BΣ1[≤] la
clôture booléenne du fragment existentiel de FO[≤]. De plus, dans le cas des transductions
apériodiques nous montrons que toutes les bimachines canoniques sont apériodiques, ce qui nous

ix

Définissabilité et Synthèse de Transductions

permet de prouver que la décision de la FO[≤]-définissabilité des fonctions rationnelles est un
problème PSpace-complet.

Sur les mots infinis, le tableau est moins complet. Premièrement nous étendons le résultat
de minimisation de Choffrut aux fonctions séquentielles sur les mots infinis. La difficulté est que
pour les langages de mots infinis, il n’y a pas de bonne définition d’automate minimal. Nous
contournons ce problème en ignorant le domaine de la transduction, et nous obtenons un unique
transducteur séquentiel minimal qui prolonge la fonction initiale sur la clôture de son domaine.

Nous définissons un automate canonique pour l’information en avant et nous obtenons une
bimachine canonique pour les fonctions rationnelles sur les mots infinis. Cependant cette bima-
chine n’a pas les même bonnes propriétés que celle de [RS91]: l’automate d’information en avant
n’a pas de propriété de minimalité. Néanmoins nous montrons que n’importe quelle transduc-
tion apériodique a une bimachine canonique apériodique et nous obtenons donc une procédure
de décision de la FO[≤]-définissabilité pour les fonctions rationnelles sur les mots infinis.

Spécification et synthèse pour les transductions

L’objectif Le but de ce travail était de définir un “bon” langage de spécification pour les
transductions. Notre objectif était d’obtenir un formalisme de haut niveau pour spécifier des
propriétés de transductions, pour lequel des problèmes classiques de vérification pourraient être
résolus: l’équivalence, la vérification de modèle et la synthèse par exemple. Nos trois exigences
principales étaient 1) ce formalisme devrait être de haut niveau, c’est-à-dire proche du lan-
gage humain, en d’autres termes une logique. 2) il devrait être suffisamment expressif et au
moins pouvoir exprimer les fonctions régulières, qui jouissent de nombreuses caractérisations
différentes notamment par des modèles d’automates déterministes ce qui semble pertinent pour
la vérification de modèle et la synthèse. 3) certains des problèmes mentionnés plus haut devraient
être décidables.

Un premier candidat évident serait le modèle de transducteurs NMSO de Courcelle. Ce modèle
rempli les points 2) et 3) mais nous arguons qu’il ne satisfait pas le point 1), bien qu’étant basé
sur MSO. Pour un transducteur NMSO on doit spécifier exactement comment l’entrée produit la
sortie, on n’a pas la possibilité de sous-spécifier. Par exemple la spécification “L’entrée contient
au moins une fois la lettre a et la sortie au plus deux fois la lettre b” ne peut être exprimée par
une transduction NMSO. En effet pour un transducteur NMSO un mot d’entrée ne peut produire
qu’un nombre fini de mots de sortie. Dans un certain sens, un transducteur NMSO est plus
proche d’un modèle de machine où les déplacements de la tête de lecture sont définis par des
formules MSO.

L’approche Notre approche est basée sur une remarque faite dans [Boj14], que la sémantique
de presque n’importe quel modèle de transducteurs peut être enrichie en sémantique avec origines.
Au lieu de paires de mots (u, v) où u est l’entrée et v la sortie, la sémantique avec origine considère
des paires de la forme (u, (v, o)) où u est l’entrée, v la sortie et o : dom(v)→ dom(u) est la fonction
d’origine qui, intuitivement, envoie une position de la sortie sur la position de l’entrée qui était
traitée lorsque la position de sortie a été produite.

On considère des graphes d’origine: des structures relationnelles à deux composantes, une
structure d’entrée, une structure de sortie ainsi qu’une fonction d’origine des positions de sortie
vers les positions d’entrée. Nous considérons principalement les graphes d’origine de mots vers
mots, c’est-à-dire quand les deux sous-structures sont des mots. Nous donnons en Fig. 3(a) un
graphe d’origine produit par l’automate de Fig. 2(a) et en Fig. 3(b) un graphe d’origine produit
par l’automate de Fig. 2(b).

x

Definability and Synthesis of Transductions

a a a

a a

(a)

a a a

a a a a a a

(b)

entrée

sortie

origine

Figure 3: Deux graphes d’origine.

Nous considérons MSO sur les graphes d’origine et nous montrons que cette logique est
indécidable (même pour des fragments faibles). Il faut cependant noter que dans [BDGP17] les
auteurs montrent que la vérification de modèle d’une fonction régulière contre une formule MSO
est décidable. Une façon d’obtenir ce résultat est d’observer que les graphes d’origine produits
par un transducteur bidirectionnel déterministe ont une largeur de chemin bornée. En utilisant
le théorème de Courcelle [Cou90] on obtient donc la décidabilité.

La logique Puisque la logique MSO entière est indécidable, notre approche a été de chercher
un fragment suffisamment faible pour être décidable mais suffisamment expressif pour capturer
au moins les fonctions régulières. Nous sommes parvenus à trouver une logique adéquate, après
plusieurs essais, appelée Lo. Puisque nous voulions avoir toute l’expressivité de MSO sur l’entrée
afin de capturer les fonctions régulière, nous avons défini une logique “asymétrique” dans le sens
où elle est restreinte dans son expressivité en ce qui concerne les positions de sortie. La logique
que nous définissons est la logique du premier ordre avec deux variables, avec l’ordre sur l’entrée
et sur la sortie et une fonction d’origine. En plus de cela nous ajoutons n’importe quel prédicat
MSO-définissable qui ne peut quantifier que sur l’entrée. Nous dénotons cette logique par Lo :=
FO2[≤out, o,MSO[≤in]], où ≤in et ≤out sont les ordres respectivement sur l’entrée et sur la sortie
et o est le symbole de fonction d’origine. Soit even(x, y) le prédicat binaire MSO[≤in]-définissable
disant que la distance entre les positions d’entrée x et y est paire. Considérons la formule Lo
suivante.

∀x, y out(x) ∧ out(y) ∧ a(x) ∧ b(y)→ 〈even(o(x), o(y))〉

Les chevrons 〈, 〉 sont seulement là pour séparer les prédicats MSO[≤in], dans un soucis de clarté.
Le prédicat out(x) est ajouté comme sucre syntaxique et peut être exprimé par exemple par
x ≤out x. La formule dit que deux positions de sortie étiquetées par a et b respectivement
doivent avoir des origines à distance paire.

Les résultats Nos techniques sont inspirées de [SZ12] où les auteurs obtiennent la décidabilité
de la logique du premier ordre avec deux variables sur les mots avec données ordonnées, avec
comme prédicats l’ordre sur les positions et l’ordre sur les données. Avant d’expliciter le lien
entre graphes d’origine et mots avec données, discutons des résultats obtenus.

Nous montrons tout d’abord que le problème de satisfiabilité de Lo sur les graphes d’origine
est décidable. En fait notre résultat est plus fort que cela puisque nous fournissons un algorithme
pour calculer un automate reconnaissant le domaine d’une transduction Lo. Puisque la logique est
close par opérations booléennes, nous obtenons la décidabilité de l’équivalence de formules. En
raffinant nos techniques, nous obtenons alors le résultat principal de cette partie: un algorithme
de synthèse régulière, c’est-à-dire une algorithme qui prend en entrée une formule Lo et qui
produit une fonction régulière l’uniformisant.

Nous donnons également deux extensions de la logique pour lesquelles notre algorithme
d’uniformisation fonctionne également. La première est ∃Lo qui étend Lo en ajoutant un bloc de

xi

Définissabilité et Synthèse de Transductions

quantificateurs monadiques existentiels. La seconde est Loso qui ajoute de nouveaux prédicats
pouvant parler de la sortie produite par une unique position d’entrée. Alors que Lo est incom-
parable en expressivité avec les transductions NMSO et les transductions rationnelles (unidirec-
tionnelles), ∃Lo et Loso englobent respectivement ces deux classes. Nous donnons les relations
entre les classes de transductions connues en Fig. 4.2 et Fig. 4.10.

Finalement, nous exhibons un lien très étroit entre les transductions et les langages de mots
avec données. Ce lien nous a guidé durant notre recherche d’une logique adéquate décidable:
les résultats d’indécidabilité pour les logiques de mots avec données peuvent être traduits en
résultats d’indécidabilité dans le contexte de logiques sur les graphes d’origine. Réciproquement,
de la décidabilité de Lo, nous obtenons la décidabilité de Ld := FO2[≤,MSO[4]] sur les mots avec
données où ≤ est l’ordre sur les positions, 4 est l’ordre sur les données et MSO[4] dénote les
prédicats MSO-définissables qui ne peuvent quantifier que sur les données et sur les ensembles
de données. Par exemple on pourrait exprimer dans cette logique que le nombre de données
différentes d’un mot est pair.

xii

Contents

Introduction 1

I Computational, Logical and Algebraic Characterizations of Ratio-
nal Word Functions 9

1 Rational languages and rational functions 11
1.1 Words and languages . 11

1.1.1 Words . 11
1.1.2 Languages . 12

1.2 Finite automata . 13
1.2.1 Automata . 13
1.2.2 Subclasses of automata . 14

1.3 Algebraic characterization of rational languages 14
1.3.1 Congruences . 14
1.3.2 Classes of congruences . 17
1.3.3 Aperiodicity . 18

1.4 Logics over words . 20
1.4.1 Monadic second-order logic . 20
1.4.2 MSO for words . 21

1.5 Onward to transductions . 22
1.5.1 Transductions and transducers . 23
1.5.2 Logical transducers . 24

2 Characterizations of rational functions over finite words 27
2.1 Sequential functions . 28

2.1.1 Algebraic characterization of sequential functions 28
2.1.2 Minimization of sequential transducers . 31
2.1.3 Determinization preserves aperiodicity . 33

2.2 Algebraic characterization of rational functions 35
2.2.1 Bimachines and transductions . 36
2.2.2 Bimachines and minimization . 38
2.2.3 Look-ahead versus labeling . 44
2.2.4 Canonical bimachine and characterization 47

2.3 Logical transducers . 51
2.3.1 2-F transducers . 52
2.3.2 2-F transducers and C-bimachines . 52

xiii

Contents

2.3.3 Logic-algebra transfer result . 53
2.3.4 Decidable fragments . 55

3 Characterizations of rational functions over infinite words 57
3.1 Sequential and quasi-sequential functions . 58

3.1.1 Algebraic characterization of sequential functions 59
3.1.2 Minimization of sequential transducers . 63
3.1.3 Quasi-sequential transductions . 65
3.1.4 Determinization preserves aperiodicity . 68

3.2 Canonical models for rational functions over infinite words 69
3.2.1 Bimachines and transductions . 69
3.2.2 Left minimization of bimachines . 70
3.2.3 Look-ahead versus labeling . 76
3.2.4 Delay look-ahead . 79
3.2.5 The ultimate look-ahead and a canonical bimachine for quasi-sequential

functions . 82
3.2.6 Composing look-aheads and a canonical bimachine 85

3.3 First-order definability of transductions over infinite words 86
3.3.1 Aperiocity and first-order definability . 86
3.3.2 Closure under composition . 88

II Specification and Synthesis of Transductions 89

4 Logics for transductions with origins 91
4.1 Transductions with origin . 93

4.1.1 Origin graphs . 93
4.1.2 Transductions . 93
4.1.3 MSO-transducers . 94

4.2 Logics with origins . 95
4.2.1 MSO over word-to-word origin graphs . 95
4.2.2 Model-checking . 96
4.2.3 Satisfiability, validity, equivalence . 96
4.2.4 Undecidable fragments . 96
4.2.5 A new fragment . 97
4.2.6 Expressing regular transductions . 97

4.3 Reduction of the regular synthesis problem . 99
4.3.1 Non-erasing transductions . 100
4.3.2 Scott Normal Form . 101
4.3.3 Output formulas . 102
4.3.4 Sets of constraints . 102

4.4 Uniformization algorithm . 103
4.4.1 Predicate automata . 104
4.4.2 Profiles . 105
4.4.3 Validity . 107
4.4.4 Consistency . 108
4.4.5 Complete profile sequences . 110
4.4.6 Soundness . 111
4.4.7 Profile automaton . 113

xiv

Definability and Synthesis of Transductions

4.4.8 Synthesis . 114
4.5 Words with ordered data . 115

4.5.1 A logic for data words . 116
4.5.2 From transductions to data words and back 116
4.5.3 Undecidable fragments . 118

4.6 Decidable extensions of Lo . 118
4.6.1 Existential extension . 119
4.6.2 Single-origin predicates . 120

Conclusion 125

xv

Definability and Synthesis of Transductions

xvi

Introduction

From languages to transductions

The study of formal languages is one of the cornerstones of theoretical computer science and has
been very fruitful in developing theoretical as well as practical tools in many domains. Some
language classes stand out from the crowd because they enjoy several different descriptions, for
instance the recursively enumerable languages which can be characterized both in terms of Turing
machines or in terms of type-0 grammars in the Chomsky hierarchy. An example of particular
interest to us is the class of rational languages2 which sits on the lowest level of the Chomsky
hierarchy as they are recognized by the regular grammars. The rational languages are also char-
acterized by rational expressions, monadic second-order logic (MSO) formulas, finite monoids
(or equivalently congruences of finite index), finite state automata (and all their variants: deter-
ministic, non-deterministic, alternating, one-way, two-way, etc), etc. For instance the language
of words of even length over the alphabet {a} is recognized by the automaton of Fig. 4, and is
defined by the rational expression (aa)∗.

0 1

a

a

Figure 4: Deterministic one-way automaton recognizing (aa)∗.

The theory of computability can also be considered from the point of view of functions and
there again particular classes enjoy many different descriptions, for instance the computable
functions can be characterized in terms of Turing machines, µ-recursive functions or in the
lambda calculus. In the model of Turing, a (non-deterministic) machine with an input tape and
an output tape defines a relation on words over a finite alphabet, called a transduction.

An important question to us is: what is the class of transductions homologous to the rational
languages? There is no straightforward answer to this question since the transduction classes
we obtain depend on the computational model we choose to generalize. For instance the trans-
ductions recognizable by finite monoids are one of the lowest classes of transductions in terms
of expressiveness and can be described as finite unions of products of rational languages (see
e.g. [Ber79]).

Automata can be promoted to transducers, i.e. automata with outputs, to realize transduc-
tions. In Fig. 5 on the next page we give two examples of transducers. The first one copies half
of the letters of its input while the second one doubles it. While an automaton can be thought

2Often called regular languages.

1

Definability and Synthesis of Transductions

of as a Turing machine with a read-only tape, a transducer is a Turing machine with one read-
only tape and one write-only tape. The different variants of automata all recognize the same
class of languages, however this is not the case at all for transductions. Firstly, deterministic
transducers can only realize (partial) functions since a particular configuration of the input tape
only allows for one computation. Non-deterministic transducers on the other hand may realize
non-functional relations. Secondly, one-way transducers are strictly less expressive than two-way
transducers, for instance the mirror function, which reverses the order of a word, can be realized
in the latter class but not in the former. The transductions realized by one-way transducers
are also the transductions definable by rational expressions over a product of free monoids (see
[Ber79]) and have thus been coined rational transductions. The functions realized by two-way
transducers have also been characterized by different models, namely the MSO-transductions à
la Courcelle as well as the so-called streaming string transducers, i.e. one way transducers with
registers. The equivalences have been shown in [EH01, AC10], respectively, and the functions
of this class are often called the regular functions. For an overview of the different models of
transducers, see the surveys [Fil15, FR16].

0 1

a|a

a|ε

(a) an 7→ ad
n
2
e

0 1

a|aa

a|aa

(b) an 7→ a2n

Figure 5: Two sequential transducers.

The problems

Classical problems in the theory of formal languages can be formulated in terms of transduc-
tions. We consider some minimization and definability questions and say what results have been
obtained for rational languages and their extensions to transductions. Additionally new kinds
of problems arise, and in particular synthesis questions for transductions have been extensively
studied.

Minimization problems and canonical forms A minimization problem asks given a syn-
tactic object M2 (e.g. an automaton) in a class C, with a semantic interpretation JM2K, whether
there exists an object M1 ∈ C such that JM1K = JM2K and M1 is “smaller” than M2, for some
definition of smaller. Minimization problems are pervasive in computer science, for obvious
efficiency reasons. Moreover, minimal objects are often linked to canonical forms which have
additional algorithmic interest. A canonical form for objects in a given class C is a procedure
which takes as input an object M ∈ C, and produces an object M ′ which only depends on JMK
and such that JMK = JM ′K. In particular, having a procedure to compute a canonical form gives
a way to test equivalence of two objects. Moreover such a canonical form may allow one to test
other semantic properties of an object.

For rational languages, minimization has been solved for different models. The syntactic
monoid (equivalently, syntactic congruence, see [Ner63]) of a rational language is the smallest
monoid recognizing the language, and moreover this monoid is minimal in the strong sense that it
divides any monoid recognizing the language. From this, one can define the minimal deterministic

2

Definability and Synthesis of Transductions

automaton of a language which is minimal in the number of states among other deterministic
automata recognizing the same language. Again this minimality property is stronger than just
having a minimal number of states: the minimal automaton is a quotient of any deterministic
automaton recognizing the same language, and this extra structure yields efficient minimization
procedures in PTime ([Moo56, Hop71]).

For sequential transducers (one-way transducers with a deterministic underlying automaton)
a similar minimal object was discovered by Choffrut with the same strong minimality property
that the minimal sequential transducer is a quotient of any sequential transducer realizing the
function. Alternatively, one could say that the transition monoid of the minimal sequential
transducer divides the transition monoid of any sequential transducer realizing the function.
This can be found in the survey [Cho03] where the author also gives several PTime minimization
procedures close to the automata case. The existence of such minimal objects for automata
and sequential transducers has been translated in category theoretical terms in [CP17]. As an
example, the transducer in Fig. 5(b) on the facing page can be minimized into a one state
transducer.

A different take on minimization has been considered in [BGMP16, BGMP17] where the
authors, given functional two-way transducer, are able to minimize the number of head reversals
uniformly over all input words. Yet another approach in [DRT16, DJRV17] considers streaming
string transducers, with some restrictions on the register operations, and is able to minimize the
number of registers, using twinning properties à la Choffrut.

Definability problems The C1-definability problem for C2 asks, given a syntactic object M2

(e.g. automaton, formula, etc) in a class C2, with a semantic interpretation JM2K, whether there
exists an object M1 ∈ C1 such that JM1K = JM2K. Let us first remark that minimization problems
can be thought of as particular cases of definability problems, by taking C1 a class of small objects
of C2. Definability problems occur in many areas of computer science when one wants to know
if an object can be expressed in a given computational model.

A logical fragment of MSO is a subset of MSO-formulas defined by a syntactic restriction. For
any such fragment F we have the associated F-definability problem for rational languages. Many
of such problems have been solved through the theory of monoid varieties (sometimes called
pseudovarieties, see [Str94]). Indeed many equivalences have been established between logical
fragments and monoid varieties. Moreover, monoid varieties are crucially closed under division
which means that a language is recognizable by a monoid in a pseudo-variety V if and only if
its syntactic monoid is in V. Furthermore, the Eilenberg theory of varieties, started in [Eil76],
provides an equational description of monoid varieties, which gives in many cases a decision
procedure to know if a language is recognizable by a monoid in a given variety.

The first example of such an equivalence is the Schützenberger/McNaughton-Papert Theo-
rem ([Sch65, MP71]) which states that languages definable in first-order logic, FO[≤], are exactly
the languages recognized by aperiodic monoids. This provides a procedure to decide the FO[≤]-
definability problem for rational languages: computing the syntactic monoid (or the minimal
automaton) and then checking for aperiodicity. Since then, other equivalences have been estab-
lished between logical fragments and monoid varieties, see [Str94, DK09] (and also Fig. 1.2 on
page 17) for more on this. The notion of monoid varieties has also been generalized to varieties
of ordered monoids [Pin95] and to stamp varieties [CPS06].

For sequential transductions, we also have, thanks to the Choffrut minimization algorithm,
a way to decide if a given sequential function can be realized by a sequential transducer with a
transition monoid in a given variety. For instance both transducers in Fig. 5 on the facing page
are not aperiodic since they count modulo two. However, while the first one is minimal, the

3

Definability and Synthesis of Transductions

second one is not and in fact the function an 7→ a2n is aperiodic because it can be realized by a
one-state transducer (which is thus aperiodic).

Concerning logics, an equivalence has been established between functional two-way transduc-
ers with an aperiodic transition monoid and FO[≤]-transductions in [CD15]. A similar result
was also obtained showing the equivalence between streaming string transducers with an aperi-
odic transition monoid and FO[≤]-transductions in [FKT14]. These equivalences however do not
provide a procedure to decide if a given transduction can be realized by an FO[≤]-transducer.
Indeed, regular functions lack a minimal object with good minimality properties such as the
minimal automaton or the syntactic monoid for rational languages.

From another point of view, in [CKLP15] the authors provided a procedure to decide if a
sequential transduction can be expressed as a circuit in AC0. Their approach, which uses a
notion of continuity of transductions with respect to a monoid variety, was extended in [CCP17].

Synthesis problems The C1, C2-synthesis problem asks, given a transducer T2 in a class C2
with semantic interpretation JT2K and domain dom(JT2K), if there exists a transducer T1 ∈
C1 uniformizing T2, i.e. such that JT1K ⊆ JT2K and dom(JT1K) = dom(JT2K). In verification
terms, the transducer T2 is called the specification, which is supposed to capture acceptable
input/output behaviors, and T1, usually functional, can be thought of as a program that satisfies
the specification. Synthesis problems are very central to computer science, since the goal is to
obtain automatically from a specification, a program that satisfies it (or realizes it). Synthesis
problems also play a huge role in game theory, where one often wants to produce a strategy
(program) that ensures (satisfies) a winning condition (specification). For more on the history
and implications of synthesis problems see [Tho09].

The Church synthesis problem, stated in the seminal article [Chu63], asks, given a circuit
realizing a letter-to-letter transduction if one can synthesize a sequential letter-to-letter trans-
ducer uniformizing it. In [BL69] the authors showed that when the specification is given as a
MSO-formula realizing a rational letter-to-letter transduction, then the problem is decidable.
Using specifications in LTL instead, [PR89] provided an elementary solution to the synthesis
problem which sparked a lot of interest in the domain of reactive synthesis, including the com-
petition SYNTCOMP co-located with CAV since 2014. Since then many other classes have
been considered with positive and negative results. In [CL15], the authors show that when the
letter-to-letter restriction is removed, then the problem becomes undecidable. However they also
show that if only the specification is required to be letter-to-letter, then the problem remains
decidable. In [FJLW16] the authors show that the sequential synthesis problem is also decidable
when the specification is a finite-valued rational transduction (there is a uniform bound on the
number of different outputs an input word may produce). They also solve the problem when
the specification is a given by a deterministic transducer (a deterministic two-tape automaton).
This problem has also been extended to tree structures for instance in [LW17].

Contributions of the thesis

This manuscript deals with some instances of the questions mentioned above, minimization,
definability and synthesis for transduction, and is divided into two main parts. In the first
part we focus on rational word functions, that is functions realized by one-way transducers over
words, finite and infinite. A natural restriction on MSO-transducers, called order-preserving
MSO-transducers was shown to capture exactly the rational functions in [Boj14, Fil15]. From
this fact many definability questions arise: for a logical fragment F of MSO, can one decide
F-definability of rational functions? In the first part we consider such questions which we solve
(for some fragments, including FO[≤]) using minimization and canonical forms for transducers.

4

Definability and Synthesis of Transductions

In the second part we study expressive logics for transductions and solve the regular synthesis
problem for them. We also establish a strong link between transductions and languages of data
words with an ordered data domain.

Characterizations of rational functions

The goal and the setting In this work, our goal was to extend the successful study of logic-
algebra equivalences from languages to transductions, to solve definability problems in logical
fragments of MSO. For rational languages, the effective characterizations of logical fragments of
MSO usually rely on an equivalence with a monoid variety. Then, by the good properties of
varieties, computing the minimal automaton is enough to decide if a language is recognized by
a monoid in the variety and thus by a formula in the fragment. For sequential transductions, as
we have seen, a similar minimal device exists, but not all rational functions are sequential.

In [RS91], the authors give a procedure to compute a canonical machine for any rational
function. The machines used in [RS91] are bimachines, which were introduced in [Sch61], and
named and further studied in [Eil74]. Bimachines can be thought of as sequential transducers
with look-ahead, where the look-ahead is given as a co-deterministic automaton. In particular,
the canonical bimachine of [RS91] has the minimal look-ahead automaton among all bimachines
realizing the function. However, this bimachine is not minimal in terms of transition monoid.

The results Our first main contribution is to show that for any given transduction over finite
words, there exists a finite number of minimal bimachines realizing the function (minimal in
terms of transition monoid). Thus we obtain an algorithm to decide if a given transduction can
be expressed by a transducer with a transition monoid in a given (decidable) variety.

Furthermore we obtain a transfer theorem from logic-algebra equivalences over languages to
logic-algebra equivalences over transductions. The main takeaway of this transfer theorem is
that given F a logical fragment of MSO equivalent to some monoid variety3, if F has access to
the linear order predicate then the equivalence transfers to transductions.

In particular we are able to decide if a given transduction can be expressed in FO[≤] first-
order logic, FO2[≤] first-order logic with two variables, and BΣ1[≤] the boolean closure of the
existential fragment of FO[≤]. Moreover, in the case of an aperiodic transduction, we are able
to show that all its minimal bimachines are aperiodic, which allows us to show that deciding
FO[≤]-definability of rational functions is PSpace-complete.

Over infinite words the picture is less complete. First we extend the minimization result
of Choffrut to sequential functions over infinite words. The difficulty here is that for rational
languages over infinite words, there is no known meaningful way to define a minimal automaton.
We circumvent this issue by ignoring the domain of the transduction, and what we obtain is a
unique minimal sequential transducer that extends the original one over the topological closure
of its domain.

We define a canonical look-ahead automaton and from that we obtain a canonical bimachine
for any rational function over infinite words. However this bimachine does not have the same
nice property as the one in [RS91] over finite words: its look-ahead automaton has no minimality
property. We nonetheless show that any aperiodic transduction has an aperiodic canonical
bimachine and thus we obtain a decision procedure of FO[≤]-definability for rational functions
over infinite words.

Specification and synthesis for transductions

3We actually consider more general classes of monoids

5

Definability and Synthesis of Transductions

The goal The goal of this work was to define a “good” specification language for transductions.
Our objective was to obtain a high-level formalism to specify properties of transductions, for
which classical verification problems could be solved: equivalence, model-checking and synthesis
for instance. Our three major requirements were 1) this formalism should be high-level, i.e. close
to a human language, in other words a logic. 2) it should be expressive enough, and our yardstick
for expressiveness was the class of regular functions, which enjoy many different characterizations
including deterministic automata models which seem relevant for model-checking and synthesis.
3) some of the aforementioned problems should be decidable.

A first obvious candidate for this are the NMSO-transducers of Courcelle. This model defi-
nitely fulfills requirements 2) and 3), but let us argue why, even though it is based on MSO it
does not fit the bill for 1), in our view. In an NMSO-transducer you have to specify exactly how
the input produces the output, you do not have the possibility to underspecify. For instance for
the specification “The input contains at least once the letter a and the output at most twice the
letter b”, there are no NMSO-transducer realizing all pairs of input/output words that satisfy
this specification. Indeed, in an NMSO-transducer each input word can only produce a finite
number of output words. In some sense an NMSO-transducer is closer to a machine model where
the moves are defined by MSO-formulas.

The approach Our approach is based on a remark made in [Boj14], that the semantics of
almost any reasonable transducer model can be extended to a richer origin semantics. Instead
of relating pairs of words (or other structures) (u, v) where u is the input structure and v the
output structure, the origin semantics considers pairs of the form (u, (v, o)) where u is the input
structure, v is the output structure and o : dom(v) → dom(u) is the origin function which
intuitively maps an output position to the input position that was being processed when the
output position was produced.

We consider origin-graphs: two-sorted relational structures with an input structure, an output
structure and an additional origin function from output positions to input positions. We mainly
focus on word-to-word origin-graphs: origin-graphs where the two substructures are words. We
give in Fig. 6(a) an origin graph produced by the automaton from Fig. 5(a) on page 2 and in
Fig. 6(b) an origin-graph produced by the automaton in Fig. 5(b) on page 2.

a a a

a a

(a)

a a a

a a a a a a

(b)

input

output

origin

Figure 6: Two origin graphs.

We consider MSO over origin-graphs and we show that the logic is undecidable (even for
weak fragments). Note however that in [BDGP17] the authors show that the model-checking of
regular functions against MSO-formulas is decidable. One way to obtain the result is to see that
the origin-graphs produced by a two-way deterministic transducer have bounded path-width,
and thus, using Courcelle’s theorem [Cou90] we obtain the decidability.

The logic Since the full MSO logic is undecidable, our approach was to find a fragment of
MSO weak enough to be decidable, but still expressive enough to capture at least the regular
functions. We managed to find a suitable logic, after some trial and error, called Lo. Since

6

Definability and Synthesis of Transductions

we wanted the full power of MSO over the input, in order to capture the regular function, we
defined an “asymmetric” logic in the sense that it is restricted in the way it can talk about
output positions. The logic we came up with is first-order logic with two-variables, with the
linear order predicate over the input and the output, and with an origin function symbol. To
this we added arbitrary MSO-definable predicates that can only quantify over input positions.
We denote the logic by Lo := FO2[≤out, o,MSO[≤in]], where ≤in and ≤out are the linear orders
over the input and output, respectively and o is the origin function symbol. Let even(x, y) be
the binary MSO[≤in]-predicate stating that the distance between positions x and y is even. Let
us consider the following Lo formula.

∀x, y out(x) ∧ out(y) ∧ a(x) ∧ b(y)→ 〈even(o(x), o(y))〉

The brackets 〈, 〉 are just here to separate the MSO[≤in]-predicates, for readability. The predicate
out(x) is added as syntactic sugar and can be expressed for instance by x ≤out x. The formula
states that two output positions labeled by a and b respectively must have origins at even
distance.

The results Our techniques are inspired by [SZ12], where the authors obtain decidability for
first-order logic with two variables over words with linearly ordered data, with the linear order
over positions and the order over data. Before explaining the link between origin-graphs and
data words, let us talk about our results.

We first show that the satisfiablility of Lo over origin-graphs is decidable. Actually our result
is stronger than that since we show a way to compute, for any Lo-transduction, an automaton
recognizing its domain. Since the logic is syntactically closed under boolean operations, we obtain
that the equivalence of formulas is also decidable. By refining our techniques, we are even able
to obtain the main result of this part: a regular synthesis algorithm, i.e. an algorithm that takes
as input an Lo formula and produces a regular function uniformizing it.

We also give two extensions of the logic for which our uniformization algorithm still works.
The first one is ∃Lo which extends Lo by adding a block of existential monadic quantifiers. The
second one is Loso which add new unary predicates that can talk about the output produced by a
single input position. While Lo is incomparable in expressiveness with both NMSO-transductions
and one-way transductions, ∃Lo and Loso subsume these two classes, respectively. We give the
relations between known classes of transductions in Fig. 4.2 on page 99 and Fig. 4.10 on page 119.

Finally we discovered a very tight connection between transductions and languages over data
words. This link helped us during our search of a suitable decidable logic for transductions:
undecidability results of logics for words with ordered data can be translated into undecidability
results in the context of logics over origin-graphs. Conversely, from the decidability of Lo, we
obtain the decidability of Ld := FO2[≤,MSO[4]] over data words where ≤ is the linear order
over positions, 4 is the order over data and MSO[4] denotes any MSO-definable predicate that
can only quantify over data and sets of data. For instance one could express that the number of
data values between the data of two positions is even.

7

Definability and Synthesis of Transductions

8

Part I

Computational, Logical and
Algebraic Characterizations of

Rational Word Functions

9

Chapter 1

Rational languages and rational
functions

“In the beginning there was nothing,
which exploded.”

– Terry Pratchett, Lords and ladies

Rational languages enjoy many different characterizations including finite automata, rational
expressions, monadic second-order logic and recognizability by congruences of finite index. In
this chapter we present important results concerning some of these characterizations and the
links between them, however we assume some knowledge of these notions and refer the reader
to the textbooks [Str94, Sak09, Pin18] for a good overview of the subject. More precisely,
we mention the tight connections existing between logical fragments of monadic second-order
logic and varieties of congruences which are, basically, sets of congruences with good closure
properties. These links, together with the existence of a syntactic congruence characterizing the
algebraic properties of a language, have yielded many definability results. A paramount example
is the Schützenberger/McNaughton-Papert theorem which gives a procedure to decide if a given
language is definable in first-order logic.

Rational functions also enjoy different characterizations such as finite transducers, logical
transducers à la Courcelle and rational expressions. In the case of functions however, much less
is known of the links between logics and algebra. Our main goal, throughout Chap. 2 and 3 will
be trying to establish such links.

1.1 Words and languages

1.1.1 Words

An alphabet is a finite set of symbols called letters. Let N denote the set of natural numbers and
N∗ denote the set of positive integers. Let n ∈ N∗ and let n denote the set {1, . . . , n} of positive
integers less than or equal to n. A finite word w of length n over an alphabet A is a sequence of
n letters of A. Formally, it is a function w : n→ A. The length of w is denoted by |w| and the
set of words of length n is denoted by An. Furthermore we represent the word w by the sequence
of its letters w = w(1) · · ·w(n), and w(i) is called the ith position of w. As a convention, the
empty word is the unique word of length 0 and is written ε. An ω-word (or infinite word) is an

11

Chapter 1. Rational languages and rational functions

infinite sequence of letters, i.e. a function x : N∗ → A, and as for finite words we often write
x = x(1)x(2) · · · and we set |x| := ∞. Given an infinite word x, we denote by Inf(x) the set of
letters which appear infinitely often in x.

Concatenation The concatenation of a finite word u and a finite (or infinite word) w, is the
word u ·w (or simply uw) of length |u|+ |w| (with the convention that ∀x ∈ N]{∞} x+∞ =∞)
defined by uw(i) := u(i) if 1 ≤ i ≤ |u|, uw(i) := w(i − |u|) if |u| < i ≤ |u| + |w|. Note that
the concatenation of two words u, v when u is infinite is undefined. The set of all finite words
A∗ =

⋃
n∈NA

n together with the concatenation of words is a monoid whose identity element is
the empty word ε. The set of non-empty words1 is denoted by A+, the set of infinite words is
denoted by Aω and the set of all words, finite or not, is denoted by A∞. Given a finite word
u ∈ A∗, we define the ω-power of u by uω = uuu · · · , with the convention that εω := ε. Given
a sequence of finite words u1, . . . , un (un may even be infinite), we denote the concatenation (in
the obvious order) of these words by

∏
i∈n ui. Similarly, given an infinite sequence of finite words

u1, u2, . . . we write
∏

1≤i ui to denote the infinite concatenation of these words.

Rational words We say that a word w is rational if there exist finite words u, v ∈ A∗ such
that w = uvω. In particular any finite word u is rational since u = uεω. Note that a given infinite
word may have different decompositions, such as (ba)ω = b(abab)ω. We say that a word uvω is
in normal form – with respect to some alphabetic order – if either v = ε, which means that the
word is finite, or v is minimal in the lexicographic order, among possible decompositions of the
word, and v is not a suffix of u. For instance, the normal form of (ba)ω is b(ab)ω.

Factors of a word Given two words u ∈ A∞, v ∈ A∞, u is a strict prefix of v if there exists
a non-empty word w ∈ A∞ such that uw = v which we denote by u < v, and we let u−1v
denote this word w. Given two words u, v ∈ A∞, we say that u is a prefix of v, denoted by
u ≤ v, if either u = v or u < v, and in the first case we set u−1v := ε. We extend this notation:
for K,L ⊆ A∞ we set K−1L :=

{
w | ∃(u, v) ∈ K × L, w = u−1v

}
. Given a non-empty word

w ∈ A∞, and integers 1 ≤ i ≤ j ≤ |w| the prefix of w of length i is denoted by w(:i), the
suffix of w from position i is the word w(i:) :=

∏
i≤k≤|w| w(k) and the infix (or factor) of w

from position i to position j is the word w(i:j) := w(i) · · ·w(j). As a convention, for any word
w ∈ A∞, w(:0) := ε and w(|w|+ 1:) := ε. Two infinite words are called ultimately equal if they
have a common infinite suffix.

1.1.2 Languages

A language (resp. ω-language, ∞-language) is a set of finite words (resp. infinite words, words)
and for L ⊆ A∞ a non-empty language,

∧
L denotes the longest common prefix (i.e. the infimum

with respect to ≤) of L. We denote by u ∧ v the longest common prefix of {u, v}, and the delay
between u and v is the pair del(u, v) =

(
(u ∧ v)−1u, (u ∧ v)−1v

)
. For instance aba ∧ abb = ab

and del(aba, abb) = (a, b). We define the prefix language of a language L ⊆ A∞, by ↓L :=
{u | ∃v ∈ L, u ≤ v}.

Metrics We define two different metrics over words, the delay distance which varies as the size
of the delay, and the prefix distance which varies as the inverse of the size of the longest common
prefix. We will mostly use the delay distance in Chap. 2 and the prefix distance in Chap. 3.

1A∗ and A+ are usually called the free monoid and the free semigroup generated by A, respectively.

12

1.2. Finite automata

0 1 2
a

b

b

a

a

Figure 1.1: Left automaton recognizing aA∗b.

The delay distance between two words u, v ∈ A∞ is defined by ‖u, v‖del := |del(u, v)| (where
|(x, y)| = |x|+ |y|). The prefix distance between two words u, v ∈ A∞ is defined by ‖u, v‖∧ := 0
if u = v, and ‖u, v‖∧ := 2−|u∧v| otherwise. The topological closure of a language L ⊆ Aω with
respect to the prefix distance can be alternatively defined as: L := {u | ∀v < u, ∃x vx ∈ L}.

1.2 Finite automata

1.2.1 Automata

Pre-automata A pre-automaton, over an alphabet A is a tuple A = (Q,∆, I) where Q is the
finite set of states, ∆ ⊆ Q×A×Q is the transition relation and I ⊆ Q is the set of initial states.
A run of A over a word w ∈ A∞ is itself a word r ∈ Q∞ such that |r| = |w| + 1 and for all
1 ≤ i < |r| we have (r(i), w(i), r(i+ 1)) ∈ ∆. A run r is initial if r(1) ∈ I. We use the notation

p
u−→A q (or just p

u−→ q) to denote that there is a finite run r of A over u such that r(1) = p

and r(|r|) = q. We write p
x−→A P to denote that there is an infinite run r of A over x such that

r(1) = p and Inf(r) = P .

Word automata We define three different models of automata: one over finite words, just
called automata, and two over infinite words, namely Büchi automata and Muller automata. We
use the generic term of word automata to refer to all three types at once, and ω-automata to
refer to Büchi or Muller automata. An automaton (of finite words) over an alphabet A is a tuple
A = (Q,∆, I, F) such that (Q,∆, I) is a pre-automaton, and F ⊆ Q. A run r of an automaton
is final if it is finite and r(|r|) ∈ F . A Büchi automaton is a tuple A = (Q,∆, I, F) such that
(Q,∆, I) is a pre-automaton, and F ⊆ Q. A run r of a Büchi automaton is final if it is infinite
and Inf(r) ∩ F 6= ∅. A Muller automaton is a tuple A = (Q,∆, I, F) such that (Q,∆, I) is a
pre-automaton, and F ⊆ 2Q (the powerset of Q). A run r of a Muller automaton is final if it
is infinite and Inf(r) ∈ F . We will sometimes need a notion of word automata without initial
states, which we will call final automata. A run of a word automaton is accepting if it is both
initial and final and we denote by JAK the language recognized by A, i.e. the set of words over
which A has an accepting run. A language (resp. ω-language) is rational if it is recognized by
some automaton (resp. ω-automaton).

Example 1.2.1. The automaton A of Fig. 1.1 recognizes the language L of words which start
with the letter a and end with b, i.e. L = aA∗b, and we have

∧
L = a. The initial state 0

is denoted by an ingoing arrow and the final state 2 by an outgoing arrow. A is trim and
deterministic but is not co-deterministic since, for instance, the word b has two distinct final
runs.

The same automaton seen as a Büchi automaton, recognizes the language K = a(a∗b)ω of
words which start with an a and have an infinite number of bs.

13

Chapter 1. Rational languages and rational functions

1.2.2 Subclasses of automata

A state q of a word automaton is accessible (resp. co-accessible) if there exists an initial (resp. fi-
nal) run ending (resp. starting) in q. By extension, a word automaton is called accessible (resp. co-
accessible) if all of its states are. A trim automaton is an automaton which is both accessible
and co-accessible. An automaton is deterministic2 (resp. co-deterministic) if it has at most one
initial (resp. final) run per word. An automaton is unambiguous if it has at most one accepting
run per word. An automaton over finite words (resp. infinite words) is complete if it has an initial
run over any finite word (resp. infinite word). Symmetrically we define co-completeness by con-
sidering final runs instead. An automaton over finite words is called left automaton (resp. right
automaton) if it is accessible (resp. co-accessible) and deterministic (resp. co-deterministic).

Determinization The famous powerset construction, due to [RS59], takes as input an automa-
ton (over finite words) and produces a deterministic automaton recognizing the same language,
at the cost of an exponential blow-up.

Theorem 1.2.2. From an automaton recognizing a language L of finite words, one can obtain
a deterministic automaton recognizing L.

Büchi automata cannot be determinized in general since some rational languages can only be
recognized but non-deterministic Büchi automata. However, one can transform any ω-automaton
into a deterministic Muller automaton [McN66].

Theorem 1.2.3. From an ω-automaton recognizing a language L, one can obtain a deterministic
Muller automaton recognizing L.

Although deterministic Büchi automata do not capture the whole class of rational languages
over infinite words, it was shown in [CM03] that any rational ω-language can be recognized
by a co-deterministic co-complete Büchi automaton, sometimes called prophetic or backward
deterministic automata.

Theorem 1.2.4. From an ω-automaton recognizing a language L, one can obtain a co-complete
co-deterministic Büchi automaton recognizing L.

1.3 Algebraic characterization of rational languages

In this section we present the algebraic aspect of rational languages. The syntactic congruence
associated with a language characterizes it and, as its name suggests, it is not dependent on a
particular description of the language. This yields an object which allows one to decide intrinsic
properties of language, such as definability in a given logic (see Sec. 1.4).

1.3.1 Congruences

Let ∼ be an equivalence relation over a set S. Given s ∈ S, we denote by [s]∼ (or just [s] when it
is clear from context) the equivalence class of s, i.e. the set {t | t ∼ s}. The index of a relation
is the number of its equivalence classes. Given two equivalence relations ∼1 and ∼2 over S, we
say that ∼1 is finer than ∼2 (or that ∼2 is coarser than ∼1), if any equivalence class of ∼2 is
a union of equivalence classes of ∼1. In other words ∼1 is included in ∼2, seen as subsets of

2Here we choose, as in [CPP08], global definitions of determinism and co-determinism which coincide with the
usual notions in the case of trim automata.

14

1.3. Algebraic characterization of rational languages

S × S, which we denote by ∼1 v ∼2. An equivalence relation ∼ over A∗ is a right congruence
if for any words u, v ∈ A∗ and any letter a ∈ A, u ∼ v ⇒ ua ∼ va. An equivalence relation
≈ over A∗ (resp. Aω) is a left congruence if for any words u, v ∈ A∗ (resp. Aω) and any letter
a ∈ A, u ≈ v ⇒ au ≈ av. A congruence over A∗ is an equivalence relation which is both a left
and a right congruence. The intersection of two right (resp. left) congruences ∼1,∼2 is also a
right (resp. left) congruence which we denote by ∼1 u ∼2. Let ≡ be a congruence over A∗, the
quotient A∗/≡ = {[u] | u ∈ A∗} is naturally endowed with a monoid structure with a product
defined by [u] · [v] = [uv] and identity element [ε]. A congruence ≡ of finite index over A∗ can
be seen as a surjective monoid morphism3 from A∗ to the finite monoid A∗/≡. Hence a finite
index congruence can be finitely described by a finite monoid M and a function A→M . In the
following we assume that finite index congruences are given that way.

Recognizability We say that a language over finite words L ⊆ A∗ is recognized by a right
(resp. left) congruence ∼ if L =

⋃
u∈L [u], i.e. it is a union of equivalence classes of ∼.

The algebraic notion of recognizability for ω-languages is more intricate than in the finite
case. There were several attempts, such as weak recognizability which lacked good properties
(e.g. the existence of a minimal syntactic object), and strong recognizability, before reaching the
more rewarding notions of ω-semigroups and Wilke algebras. In this manuscript we will only talk
about strong recognizability (called simply recognizability), but we refer the interested reader
to [CPP08] for more details concerning all these different notions. A language of infinite words
L ⊆ Aω is recognized by a congruence ≡ if we have: L =

⋃
uvω∈L [u] [v]

ω
. Notice that if we have

[u] [v]
ω∩L 6= ∅ then we must have [u] [v]

ω ⊆ L which is exactly the characterization of saturation
given in [Arn85, Lemma 1.1].

Syntactic congruences Let L be a language of finite words over A, we define the syntactic
right congruence ∼L, the syntactic left congruence ≈L and the syntactic congruence ≡L of L:

• u ∼L v if ∀x ∈ A∗, ux ∈ L ⇔ vx ∈ L

• u ≈L v if ∀x ∈ A∗, xu ∈ L ⇔ xv ∈ L

• u ≡L v if ∀x, y ∈ A∗, xuy ∈ L ⇔ xvy ∈ L

One can easily show that each of these relations recognizes L and that they are the coarsest to
do so among right congruences, left congruences and congruences, respectively.

Given a right congruence ∼, one can obtain the associated (complete deterministic acces-
sible) pre-automaton defined by A∼ := (A∗/∼, {([u] , a, [ua]) | a ∈ A, u ∈ A∗} , {[ε]}). Given a
language L recognized by ∼, then the automaton (A∼, {[u] | u ∈ L}) recognizes L. Symmet-
rically, given a left congruence ≈, one can obtain the associated (co-complete co-deterministic
co-accessible) final automaton defined by A≈ := (A∗/≈, {([au] , a, [u]) | a ∈ A, u ∈ A∗} , {[ε]})
(note that here {[ε]} is the set of final states).

The well-known Myhill-Nerode theorem [Ner63] states that a language L is rational if and
only if its syntactic right congruence has finite index. Furthermore ∼L gives a description of the
minimal automaton of a language L by AL = (A∼L , {[u] | u ∈ L}).

Theorem 1.3.1. Given a language of finite words L ⊆ A∗, ∼L has finite index if and only if
L is rational. Furthermore, the automaton AL has the least possible number of states among
complete deterministic automata recognizing L.

3Such a morphism is called a stamp in [CPS06].

15

Chapter 1. Rational languages and rational functions

Of course the same result holds if we consider the syntactic left congruence and co-complete
co-deterministic automata instead.

Remark 1.3.2. Given a left automaton L with state space Q, there is a bijection (up to adding
a sink state) between Q and the equivalence classes of ∼L. For this reason we will often identify
states of L with the equivalence classes of ∼L. Symmetrically we will identify the states of a right
automaton R with the equivalence classes of ≈R. Abusing notations we will often write L1 v L2

to denote that ∼L1
v ∼L2

. Symmetrically, we will write R1 v R2 instead of ≈R1
v ≈R2

.

The minimal automaton of a language is actually minimal in a stronger sense than just having
the least number of states among the deterministic complete automata recognizing it. Given a
complete deterministic automaton recognizing a language, it (seen as a right congruence) refines
the minimal automaton. Using this, a deterministic automaton can be minimized, in PTime, to
obtain the minimal automaton (up to isomorphism) of the language [Moo56, Hop71].

Theorem 1.3.3. Given a deterministic automaton recognizing a language of finite words L, one
can obtain the minimal automaton (up to isomorphism) of L in PTime.

The correspondence between automata and congruences over infinite words is less simple
than in the case of finite words. Let L ⊆ Aω be an ω-language, we define ≈L the syntactic
left congruence of L, just like in the case of finite words, by x ≈L y if ∀u ∈ A∗, ux ∈ L ⇔
uy ∈ L. The definition of syntactic congruence of an ω-language is due to [Arn85] and is a bit
more involved, but intuitive in the sense that for two words to be equivalent, they must behave
the same whatever the context, and also when raised to the ω power.

u ≡L v if ∀x, y, z
[
x(uy)ω ∈ L⇔ x(vy)ω ∈ L and
xuyzω ∈ L⇔ xvyzω ∈ L

Again one can easily see that ≡L is the coarsest congruence recognizing L.

Transition congruences Let A be a word automaton with state space Q, we define the right
transition congruence ∼A, the left transition congruence ≈A and the transition congruence ≡A
of A:

• u ∼A v if ∀q ∈ Q there exists an initial run over u ending in q ⇔ there is an initial run
over v ending in q

• u ≈A v if ∀q ∈ Q there exists a final run over u beginning in q ⇔ there is a final run over
v beginning in q

• u ≡A v if ∀p, q ∈ Q there exists a run over u from p to q ⇔ there is one over v

The following proposition states that the transition congruences of an automaton recognize the
language of the automaton.

Proposition 1.3.4. Let L be a language of finite words recognized by A, then ∼A, ≈A, ≡A all
recognize L and are thus finer than their respective syntactic relations ∼L, ≈L and ≡L.

Example 1.3.5. Let A = {a, b}, let L = aA∗b and let A be the automaton recognizing L of
Fig. 1.1 on page 13. We have that ∼L = ∼A, ≈L = ≈A and ≡L = ≡A. Let us describe these
equivalence relations by their equivalence classes: A∗/∼L = {ε, a+ aA∗a, bA∗, aA∗b}, A∗/≈L =
{ε, A∗a, b+ bA∗b, aA∗b} and A∗/≡L = {ε, a+ aA∗a, b+ bA∗b, aA∗b, bA∗a}.

16

1.3. Algebraic characterization of rational languages

Languages Logic Variety Equation
Rational MSO[≤] All -
Star-free FO[≤] A xπ = xπ+1

Unambiguous polynomials FO2[≤] DA (xy)πx(xy)π = (xy)π

Piecewise testable BΣ1[≤] J y(xy)π = (xy)π = (xy)πx
Idempotent I x = x2

Figure 1.2: Well-known correspondences for languages of finite words.

Seen as a Büchi automaton A recognizes K = a(a∗b)ω. The syntactic congruence of K is
given by A∗/≡K := {ε, a+, bA∗, aA∗bA∗}. Notice that ≡K 6= ≡A and furthermore, ≡A does not
even recognize4 K. For instance the word a · (aba)ω ∈ K, however [aba]A = aA∗a = [aa]A but
[a]A ([aa]A)ω 6⊆ K.

1.3.2 Classes of congruences

A class of congruences (class for short) C associates with any finite alphabet A a set of congru-
ences of finite index C(A) which is 1) closed under intersection of congruences 2) closed under
taking coarser congruences5. Note that we will often abuse notations and write C instead of
C(A). A class C is decidable if given a finite index congruence one can decide if it belongs to C.
In that case given a language, one can decide if it is a C-language

Let A be an alphabet and let ≡ be a congruence of finite index over A∗. We define π
the idempotent power of ≡ as the smallest positive integer such that for any word u ∈ A∗,
uπ ≡ u2π. The study of varieties of finite monoids (which can be seen as a particular case of
classes of congruences, with more closure properties, and are sometimes called pseudovarieties),
see e.g. [Str94], has been very successful in the algebraic characterization of rational languages
and has yielded many links between logics and algebra. These varieties enjoy an equational
characterization through Eilenberg variety theory [Eil76]. The point of such equations is that
varieties for which the explicit equations are known are decidable since one only has to check a
finite number of equalities. For instance the variety of idempotent congruences is characterized by
the equation x = x2 meaning that a congruence ≡ is idempotent if it satisfies u ≡ u2 for any word
u. We give in the table of Fig. 1.2 some well-known congruence classes with their corresponding
equations, and logics and we refer the reader to [DGK08] for a more precise description of these
classes of languages. Actually the symbol π in the equations represents something more subtle
than the idempotent power of a finite monoid in the theory of profinite topology, but this first
approximation is good enough for our purposes and we refer the reader to [Pin18] for details.
This table is not supposed to be exhaustive and just presents the main classes we will encounter
in the next chapter. The definitions of the logics as well as the references for the results are given
in Sec. 1.4. A class of particular interest to us is the class A of aperiodic congruences.

A language is called a C-language (sometimes we abuse definitions and say that the language
is in C) if it is recognized by a C-congruence. If C is a decidable class, since the syntactic
congruence of a rational language L is computable and is coarser than all congruences recognizing
L, and since classes are closed under taking coarser congruences, then one can decide if a language
is in C.

4In fact ≡A only weakly recognizes K, since K = [a] [b]ω (see [CPP08]).
5In other words, C(A) is a meet-semilattice with order v and meet operation u. It is furthermore bounded

and its greatest element is the trivial congruence: ∀u, v ∈ A∗, u ∼ v.

17

Chapter 1. Rational languages and rational functions

Theorem 1.3.6. Let C be a decidable class of congruences. Given a word automaton, one can
decide if the language it recognizes is a C-language.

An automaton whose transition congruence is a C-congruence is called a C-automaton. Note
that according to Prop. 1.3.4 and since classes of congruences are closed under coarser congru-
ences, a language of finite words is a C-language if and only if it is recognized by a C-automaton.
Concerning languages of infinite words, as we have seen in Ex. 1.3.5 the transition congruence of
an automaton is not necessarily finer than the syntactic congruence of the language recognized
by the automaton.

Example 1.3.7. Let us consider ≡, the syntactic congruence of L = aA∗b given in Ex. 1.3.5,
and let us determine to which of the congruence varieties given above it belongs. First it is
idempotent, we have indeed, a ≡ aa, b ≡ bb, ab ≡ abab, ba ≡ baba and of course ε ≡ ε · ε = ε.
From this we have for any word u, that uπ = u, hence we can show that ≡ is in DA and A
(indeed we have I ⊆ DA ⊆ A). However ≡ is not in J, since b(ab)π = bab 6≡ (ab)π = ab.

If we now consider the syntactic congruence of K = a(a∗b)ω given in Ex. 1.3.5, we can show
that it is also in I, DA and thus A but again not in J.

1.3.3 Aperiodicity

Aperiodic and counter-free automata In the particular case of A we do have that consid-
ering the transition congruence of an ω-automaton is enough to decide if a language is aperiodic:

Theorem 1.3.8 ([DG08]). A language of infinite words is aperiodic if and only it is recognized
by an aperiodic Büchi automaton.

A different characterization of aperiodic languages relies on the notion of counter-free au-
tomata. A word automaton A is counter-free if for any state p, any finite word u, and any

positive integer n we have p
un−−→ p ⇒ p

u−→ p. There is a close relationship between aperiodic
automata and counter-free automata. First, one can easily show that a counter-free automaton
is necessarily aperiodic. The converse does not hold in general, unless the automaton is not too
ambiguous. An automaton is polynomially ambiguous if the number of runs of the automaton
over a finite word is bounded by a polynomial in the size of the word.

Proposition 1.3.9. If an automaton is aperiodic and polynomially ambiguous then it is counter-
free.

Proof. Let A be an aperiodic and polynomially ambiguous automaton with state space Q. Let p
be a state of A, and let n be a positive integer larger than π, the idempotent power of ≡A. Let

us assume that p
un−−→ p, we want to show that p

u−→ p. By aperiodicity we know that p
un+1

−−−→ p. If

we consider the runs p
un−−→ p . . . p

un−−→ p and p
un+1

−−−→ p . . . p
un+1

−−−→ p over un(n+1) and assume that
they are different then we have a contradiction with the polynomial ambiguity of A. Indeed, the
word u(n(n+1))k has at least 2k different runs from p to p. This means that the two previous runs

are identical and we have in particular that p
un−−→ p

u−→ p, which concludes the proof.

Co-example 1.3.10. The automaton of Fig. 1.3 on the facing page has counters yet it is
aperiodic. However, it is exponentially ambiguous.

The following theorem characterizing languages recognized by counter-free automata is due
to [MP71] for finite words and to [DG08] for infinite words:

18

1.3. Algebraic characterization of rational languages

0 1

2

3

a

a

a

a

a

Figure 1.3: Aperiodic automaton with counters.

Theorem 1.3.11. A language of finite (resp. infinite) words is aperiodic if and only if it is
recognized by a counter-free automaton (resp. Büchi automaton).

Aperiodic deterministic Muller automata also characterize aperiodic languages. In fact in
[Tho81] the author shows that counter-free deterministic Rabin automata exactly characterize
aperiodic languages. A proof of this result can also be found in [DKT16].

Theorem 1.3.12. A language over infinite words is aperiodic if and only if it is recognized by
an aperiodic Muller automaton.

Similarly, we can show that the construction from [CM03] preserves aperiodicity.

Theorem 1.3.13. Given an aperiodic congruence recognizing a language over infinite words L,
one can obtain an aperiodic right Büchi automaton recognizing L in ExpTime.

Proof. Let us consider ≡ an aperiodic congruence over A∗, and let S := {[u] | u ∈ A+} be the
associated aperiodic semigroup. The construction from [CM03, Section 6.3.3] takes as input a
semigroup and outputs a Büchi automaton. Our goal is to argue why this construction gives an
aperiodic automaton, given an aperiodic semigroup. We use the same notations as in [CM03,
Section 6.3], we only give the main arguments and we refer the reader to the original paper
for more details on the construction. The states of the constructed automaton are of the form
([s, e] , (s1, . . . , sn)) where [s, e] denotes a conjugacy class of linked pairs and (s1, . . . , sn) is a chain
of R-classes. Since S is aperiodic, the left action on conjugacy classes is obviously aperiodic. More
precisely, if we have [un] =

[
un+1

]
, then in particular [[un] s, e] =

[[
un+1

]
s, e
]
. Similarly, one

can see that there is an integer n large enough such that for any word u, ρ(un+1) = ρ(un), and
thus ϕ̂(un+1w) = ϕ̂(unw).

Finally, the construction gives a Büchi automaton with a set of final transitions instead of
final states. However one can easily go from a transition Büchi automaton to a Büchi automaton,
while preserving aperiodicity, just by remembering in the states if the last transition seen is final
or not.

It was shown in [CH91] that deciding aperiodicity of language given as a deterministic au-
tomaton is PSpace-hard. Since it is known that one can decide aperiodicity of a language in
PSpace, then the problem is PSpace-complete, whether the input is a deterministic or non-
deterministic automaton (see [DG08]).

Theorem 1.3.14. The problem of deciding if a word automaton recognizes an aperiodic language
is PSpace-complete.

19

Chapter 1. Rational languages and rational functions

1.4 Logics over words

In this section we present Monadic Second-Order (MSO) logic over words, a high-level formalism
which is closer to natural language than say automata or congruences, and thus makes for a good
specification language.

1.4.1 Monadic second-order logic

We give generic, although succinct, definitions of signatures, MSO-formulas, logical structures,
etc and refer the reader to [EF95] for more details.

Signatures and logical structures A signature is a triple S = (P, F, ar) with P being the
set of predicate symbols, F the set of function symbols and ar : P] F → N the arity function.
A nullary function symbol is called a constant symbol. A structure M over S is given as a
set dom(M) called the domain of M , an interpretation for each predicate symbol p given by
pM ⊆ dom(M)ar(p) and for each function symbol f given by a total function fM : dom(M)ar(f) →
dom(M).

Monadic second-order formulas Monadic Second-Order formulas over a signature S, de-
noted by MSO[S], is the set of formulas given by the following grammar:

φ ::= ∃X φ | ∃x φ | (φ ∧ φ) | ¬φ | X(t) | p(t1, . . . , tn) | >

where X ranges over a countable set of second-order variables (often denoted by X,Y, Z . . .), x
ranges over a countable set of first-order variables (often denoted by x, y, z . . .), p is a predicate
of S of arity n, t1, . . . , tn are terms build from function symbols and first-order variables and >
is the true formula. We define universal quantifications and other boolean connectives as usual,
∀X φ := ¬∃X ¬φ, ∀x φ := ¬∃x ¬φ, (φ1∨φ2) := ¬(¬φ1∧¬φ2), (φ1 → φ2) := (¬φ1∨φ2), ⊥ := ¬>.
Instead of ∃x1 . . . ∃xn, we write ∃x1, . . . , xn, and we do the same for universal quantification and
second-order quantification.

Models A free variable is defined as usual as not being in the scope of a quantifier, and
given a formula φ, we will often write φ(x1, . . . , xm, X1, . . . , Xn) to denote that all free first-
order variables of φ belong to {x1, . . . , xm} and free second-order variables to {X1, . . . , Xm}. A
sentence is a formula without free variables. Let S be a signature, M be a structure over S, let
φ(x1, . . . , xm, X1, . . . , Xn) be an MSO[S]-formula and let s1, . . . , sm ∈ dom(M) and S1, . . . , Sn ⊆
dom(M). In the following we write x := x1, . . . , xm and X := X1, . . . , Xn and similarly for s
and S. We define a new signature Sx,X where each variable of x is a new constant symbols and

each variable of X is a new unary predicate symbol. We can thus define a structure over Sx,X ,

denoted by M, s, S with the interpretation xMi := si and XM
i := Si for each free occurrence

of the variables xi of x and Xi of X. We define by induction on formulas what it means for
M, s, S to satisfy φ (or to be a model of φ), which we denote by M, s, S |= φ. If φ is equal to the
true formula > then any structure is a model of φ, and M, s, S |= φ. If φ = p(t1, . . . , tk) with
first-order variables of the terms of t all belonging to variables of x, then the interpretations of
the variables and the function symbols extend to the terms of t, and we set that M, s, S |= φ if

and only if t
M,s ∈ pM . If φ = Xi(t), for some Xi of X and with the variables of t all belonging

to x, then we set that M, s, S |= φ if and only if tM,s ∈ Si. If φ = ¬ψ then we set M, s, S |= φ
if and only if M, s, S 6|= ψ. If φ = (φ1 ∧ φ2) then we set M, s, S |= φ if and only if M, s, S |= φ1

20

1.4. Logics over words

and M, s, S |= φ2. If φ = ∃x ψ, then we set that M, s, S |= φ if and only if there exists an
element s ∈ dom(M) such that M, s, s, S |= ψ, where free occurrences of x are interpreted as s.
If φ = ∃X ψ, then we set that M, s, S |= φ if and only if there exists a subset S ⊆ dom(M) such
that M, s, S, S |= ψ, where free occurrences of X are interpreted as S.

1.4.2 MSO for words

We now focus on MSO restricted to structures which are words.

Words as logical structures A word w over an alphabet A is seen as a logical structure w̃
over the signature SA with unary predicates a for each a ∈ A, a binary predicate ≤, and no
functions. The domain of w̃ is the set of its positions, the unary predicate a is interpreted as the
set of positions labeled by a and the binary predicate ≤ is interpreted as the linear order over
positions of w. For the sake of simplicity we will often write w instead of w̃. We rather write
MSO[≤] to denote formulas over SA, the alphabet often being implicit.

Formulas over finite and infinite words Let φ be an MSO[≤]-sentence, we define the finite
words semantics of φ by JφK∗ := {u ∈ A∗ | ũ |= φ}. Similarly, the infinite words semantics of φ is
defined by JφKω := {x ∈ Aω | x̃ |= φ}. Note that we will often write JφK, relying on the context,
and we say that φ defines, or recognizes the language JφK. We have the seminal theorem(s)
characterizing MSO[≤]-definable languages, due to [Bü60, Elg61, Tra61] for the finite case and
[Bü62, McN66] for the infinite case:

Theorem 1.4.1. A language (resp. ω-language) L is rational if and only if it is defined by some
MSO[≤]-formula.

Fragments of MSO A fragment F of MSO[S] is a subset of MSO[S]-formulas. Given a frag-
ment F and a language L, of finite or infinite words, we say that L is F-definable (or is an
F-language) if there exists an F-formula defining it. We say that F characterizes (or is equivalent
to) a congruence class C, if any language is an F-language if and only if it is a C-language.

The fragment of first-order logic FO[S] is the set of formulas which do not use second-order
variables. A famous theorem linking algebra and logics is due, in the finite case, to [Sch65] for
the algebraic part and to [MP71] on the logic side. The result was extended to infinite words
by [Per84] on the algebraic side and by [Lad77] and [Tho79] on the logic side. As a corollary,
FO[≤]-definability of rational languages is decidable.

Theorem 1.4.2. A language (resp. ω-language) L is aperiodic if and only if it is FO[≤]-definable.
Furthermore, one can decide in PSpace if a language given as a word automaton is FO[≤]-
definable.

First-order logic with two variables, FO2[S], is the set of first-order formulas which only use
(and possibly reuse) two first-order variables. The following theorem is due to [Sch76a], [PW95]
and [TW98] in the case of finite words. It was extended to infinite words by [DK09].

Theorem 1.4.3. A language (resp. ω-language) L is in DA if and only if it is FO2[≤]-definable.
As a consequence, one can decide if a language given as a word automaton is FO2[≤]-definable.

The existential fragment of first-order logic, denoted by Σ1[S], is the set of formulas of the
form ∃x1, . . . , xn φ, for some positive integer n and φ a quantifier-free formula. The boolean
closure of a fragment F is denoted BF. The following theorem is mainly due to a result of [Sim75]
(see [DGK08]).

21

Chapter 1. Rational languages and rational functions

i ab

ba

aa

bb

t
a|a

b|a

a|b

b|b

α|α

a|a

α|α

a|b
α|α

b|a
α|α

b|b

Figure 1.4: A transducer realizing fswap.

Theorem 1.4.4. A language L is in J if and only if it is BΣ1[≤]-definable. As a consequence,
one can decide if a language given as an automaton is BΣ1[≤]-definable.

Remark 1.4.5. The equivalence between BΣ1[≤] and J does not transfer to infinite words. An
ω-language which is BΣ1[≤]-definable is in particular in J, however the converse is not true.
There is an equational characterization of BΣ1[≤]-languages of infinite words but it relies on the
notion of ω-semigroup which we choose not to introduce in this work. We refer the interested
reader to [PP04].

Example 1.4.6. We define the minimum and maximum predicate by min(x) := ∀y x ≤ y and
max(x) := ∀y y ≤ x which are definable in FO2[≤] (and thus in FO[≤]). The language L = aA∗b
is thus definable by the FO2[≤]-formula: ∀x (min(x)→ a(x)) ∧ (max(x)→ b(x)). The language
K = a(a∗b)ω is definable by the FO2[≤]-formula: ∀x (min(x)→ a(x)) ∧ (∃y x < y ∧ b(y)). Since
we have seen in Ex. 1.3.7 that the syntactic congruence of L is not in J, we know from Th. 1.4.4
that L cannot be defined by a BΣ1[≤]-formula.

1.5 Onward to transductions

Rational transductions have also been characterized by different models: functional transducers,
(order-preserving) logical transducers and rational expressions, for instance. What is lacking is
a good understanding of the links between these characterizations, and in particular a syntactic
object which fully characterizes transducers. Such a syntactic object has been defined in the
particular case of sequential transducers (see [Cho03]), and a first attempt for the general case
of rational functions is given in [RS91]. In Chap. 2 and 3 we heavily rely on these two papers in
our attempt to algebraically characterize rational functions.

22

1.5. Onward to transductions

1.5.1 Transductions and transducers

Transducers are automata which read pairs of words and thus recognize relations instead of
languages. We refer the reader to [Ber79] for a detailed study of rational transductions.

Transducers A transduction (resp. ω-transduction) over alphabets A,B is a relation R ⊆
A∗ × B∗ (resp. R ⊆ Aω × B∞). A transducer6 (resp Büchi, Muller transducer) over alphabets
A,B is a tuple T = (A, i , o, t) (resp. T = (A, i , o)), with A = (Q,∆, I, F) an automaton
(resp. Büchi, Muller automaton) over A called the underlying automaton of T , i : Q → B∗

the initial function, o : ∆ → B∗ the output function and t : Q → B∗ the final function. Let
u ∈ A∗, let r be a run of A over u and let α :=

∏
1≤i<|r| o(r(i), u(i), r(i+ 1)). We denote this

by r(1)
u|α−−→T r(|r|) if u is finite, and by r(1)

u|α−−→T Inf(|r|) otherwise. Furthermore, if r is
accepting, let β := i(r(1)) · α · t(r(|r|)) if r is finite and β := i(r(1)) · α otherwise, then we
say that the pair (u, β) is realized by T and we let JT K denote the transduction realized by T ,
that is the set of pairs realized by T . We use the term ω-transducer to refer to a Büchi or
Muller transducer. A transduction (resp. ω-transduction) is called rational if it is realized by a
transducer (resp. ω-transducer).

Subclasses of transducers A transducer is letter-to-letter if for any transition t ∈ ∆, its
output o(t) is a single letter of A, and the initial and final output functions are constant equal
to ε. By extension a transduction realized by a letter-to-letter transducer is called letter-to-
letter. A transduction f which is a partial function is called functional and we rather denote
(u, α) ∈ f by f(u) = α. All the transductions we consider in Chap. 2 and 3 are functional. It
was shown in [Sch76b] that functionality of transducers over finite words is decidable. The result
has been improved, both in the case of finite words (see [GI83, BCPS00]) and infinite words (see
[Gir86, Pri02]), and functionality of transducers is actually decidable in PTime.

Theorem 1.5.1. Functionality of transducers, over finite or infinite words, can be decided in
PTime.

A transducer is called unambiguous when its underlying automaton is unambiguous and in
that case the transduction it realizes is necessarily functional. Moreover it has been shown in
[Eil74] that any functional transduction over finite words can be realized by some unambiguous
transducer. It is also the case over infinite words and this can be seen as a consequence of [Car10,
Theorem 1]. A transducer is called sequential7 if its underlying automaton is deterministic
and we extend the terminology to the function it realizes. Sequentiality of a transduction is
decidable, as it was shown in [Cho77] for finite words, and even in PTime, whether on finite
words [WK94, BCPS00] or on infinite words [BC04].

Theorem 1.5.2. Sequentiality of rational transductions, over finite or infinite words, can be
decided in PTime.

A right-sequential transducer over finite words is a transducer with a co-deterministic under-
lying automaton. For infinite words [Car10] proposed a definition of right-sequential transducers
over infinite words based on so-called prophetic automata, i.e. co-deterministic and co-complete
automata (see [CM03]). Intuitively a right-sequential transducer is deterministic but reads its
input from right to left. We mentioned above than any rational function can be realized by an

6In the literature these are sometimes called real-time transducers, i.e. transducers without ε-transitions.
7These are sometimes called subsequential in the literature, to denote that final outputs are allowed.

23

Chapter 1. Rational languages and rational functions

unambiguous transducer, but a stronger result from [EM65] states that any rational function can
be obtained as the composition (in both ways) of a sequential transducer with a right-sequential
transducer. In [Car10] a similar result (but only in one way) was obtained for transducers over
infinite words.

Theorem 1.5.3. Let f be a rational function over finite words, then there exist g sequential
(resp. right-sequential) and h letter-to-letter and right-sequential (resp. sequential) such that f =
g ◦ h.

Let f be a rational function over infinite words, then there exist g sequential and h letter-to-
letter and right-sequential such that f = g ◦ h.

C-transducers The transition congruence of a transducer is the transition congruence of its
underlying automaton. A transducer over finite words with a transition congruence in C is called
a C-transducer8. A transduction over finite words is C-rational (resp. C-sequential) if is is real-
ized by some functional (resp. sequential) C-transducer. Note that C-rational transductions are
sometimes called C-transductions for short. Over infinite words, as we have seen in Ex. 1.3.7,
considering only the transition congruence of an automaton is not justified in general to alge-
braically characterize a language. However according to Th. 1.3.8 it is justified for A, and we
will see in Chap. 3 that it is also justified in the case of transducers. A transducer over infinite
words is called aperiodic if its underlying automaton is aperiodic. An ω-transduction is called
aperiodic (resp. aperiodic-sequential) if it is realized by an aperiodic transducer (resp. aperiodic
and sequential transducer).

Example 1.5.4. Let A := {a, b}, we define the (partial) function fswap : A∗ → A∗, for any
α, β ∈ A, u ∈ A∗ by f(αuβ) := βuα. Figure 1.4 represents a transducer T realizing fswap, where
α denotes any letter of A.

We can compute ≡ the transition congruence of T and we obtain the following equivalence
classes: A∗/≡ = {ε, a, b, aA∗a, aA∗b, bA∗a, bA∗b}. One can show that ≡ is in DA (and hence A)
but not in I nor J. Hence we can conclude that fswap is a DA-transduction, however we cannot
say if it is an I (resp. J) transduction, because there might exist some I (resp. J) transducer
realizing it. Actually, the domain of fswap is not an I-language since a is not in it whereas aa is.
Because any transducer realizing fswap must recognize its domain we can conclude that fswap is
not an I-transduction. In order to decide if fswap is a J-transduction, we will need some algebraic
characterization of transductions, which we provide in Sec. 2.2.

1.5.2 Logical transducers

MSO-transducers are a formalism of graph transformations introduced by Courcelle (see [Cou94]).
In [EH01] the authors have shown that word-to-word MSO-transducers exactly capture functional
two-way transducers. Our definition of logical transducers is equivalent to the notion of order-
preserving MSO-transducers from [Fil15], a restriction which coincides with one-way transducers,
i.e. rational functions [Fil15, Theorem 4].

Pointed structures Let S be a signature and let F be a logical fragment. As we have seen
before, a formula with a free variable can actually be seen as a sentence over an extended
signature. We define the pointed version of S by Sc, which is S with an additional con-
stant symbol c. From this we can easily define the fragment Fc by all the F-formulas where

8Note that in [RS95] C-transductions are defined by unambiguous C-transducer. The two definitions turn out
to be equivalent (see Cor. 2.2.16).

24

1.5. Onward to transductions

c is substituted for arbitrary occurrences of first-order variables. The finite (resp. infinite)
pointed word semantics of an Fc-formula is given by JφK∗ := {(u, i) ∈ A∗ × {1, . . . , |u|} | ũ, i |= φ}
(resp. JφKω := {(x, i) ∈ Aω × |x| | x̃, i |= φ}). Again we will often rely on the context and simply
write JφK.

Remark 1.5.5. Pointed formulas can be intuitively seen as formulas with an extra variable which
cannot be quantified upon. We could have chosen a different definition of Fc, namely substitute
c for free occurrences of first-order variables. In fragments where the number of variables is not
bounded, these two definitions are equivalent. However in the case of FO2

c [≤], this alternative
definition is strictly less expressive than the one we chose, as it was noticed by [Boj15]. As an
example, the FO2

c [≤]-sentence ∃x a(x) ∧ (x < c) ∧ ∀y (x < y) → (c ≤ y) which states that the
position just before the pointed position is labeled by a cannot be expressed in the formalism
where only free occurrences of variables are replaced by c.

Example 1.5.6. Let us define the pointed FO2
c [≤]-sentence: φa,middle := a(c) ∧ ¬min(c) ∧

¬max(c), which states that the pointed position is labeled by a and is neither minimal nor
maximal.

Logical transducers Let F be a fragment of MSO[≤], an F-transducer over an alphabet A is
a tuple T =

(
K,φdom, (φα)α∈K

)
where K is a finite subset of A∗, φdom is an F-sentence, called

the domain formula, and for each α ∈ K, φα is an Fc-sentence. Let u be a word, finite or infinite,
satisfying φdom, and for each integer 1 ≤ i ≤ |u| let αi be such that (u, i) |= φαi , if it exists.
In that case we set α :=

∏
i αi, and we say that T realizes the pair (u, α). The finite words

(resp. infinite words) semantics of T is denoted by JT K∗ := {(u, α) | u ∈ A∗, T realizes (u, α)}
(resp. JT Kω := {(x, α) | x ∈ Aω, T realizes (x, α)}). Just as before we will rely on the context
and often write JT K. Note that this relation is not necessarily functional but in the following,
we always assume that it is and that its domain is equal to JφdomK.

Example 1.5.7. We define the FO2[≤]-transducer Tswap := ({a, b} , φdom, (φa, φb)) realizing the
function of Fig. 1.4 on page 22.

• φdom := ∃x, y x < y

• φa := (min(c) ∧ ∃x max(x) ∧ a(x)) ∨ (max(c) ∧ ∃x min(x) ∧ a(x)) ∨ φa,middle

• φb := (min(c) ∧ ∃x max(x) ∧ b(x)) ∨ (max(c) ∧ ∃x min(x) ∧ b(x)) ∨ φb,middle

where φa,middle is the formula given in Ex. 1.5.6

As mentioned above, the following result extends [Fil15, Theorem 4], where the author uses a
slightly different but equivalent formalism for logical transducers. This result easily transfers to
ω-transducers. It also generalizes to the equivalence between aperiodic transducers and FO[≤]-
transducers, both over finite and infinite words. It is the natural extension of the result of Büchi
from rational languages to rational functions.

Theorem 1.5.8. A functional transduction (resp. ω-transduction) is realizable by an unambigu-
ous transducer if and only if it is realizable by an MSO[≤]-transducer.

Proof. We give the proof of the equivalence between ω-transducers and MSO[≤]-transducers over
infinite words.

Let T = (A, i , o) be an unambiguous transducer realizing a function f : Aω → B∞, with
underlying automaton A = (Q,∆, I, F). Let p, q be states of A, let Lp,q ⊆ A∗ be the set of

25

Chapter 1. Rational languages and rational functions

finite words which can go from p to q and let Lq ⊆ Aω denote the set of infinite words having
a final run from q. Since Lp,q, Lq are rational, there are MSO[≤]-formulas φp,q, Lq recognizing
them, respectively. Given an MSO[≤]-formula φ we define inductively the MSOc[≤]-formula φ<c

by restricting the quantifications to the positions before c. Formally, if φ = ∃y ψ(y) then we set
φ<c := ∃y (y < c) ∧ ψ<c(y). Atomic formulas and boolean connectives are left unchanged.

Let us define T ′ =
(
K,φdom, (φv)v∈K

)
by:

• K := ({ε} ∪ i(I)) · o(∆)

• φdom :=
∨
p,q∈I×F φp,q

• φv(x) :=

[∨
i(p0)o(p0,a,q)=v

min(c) ∧ a(c) ∧ φ>c
q∨

o(p,a,q)=v,p0∈I ¬min(c) ∧ φ<c
p0,p ∧ a(c) ∧ φ>c

q

By construction, and since A is unambiguous, we have that T ′ realizes f .
Conversely, let T =

(
K,φdom, (φv)v∈K

)
be a logical transducer realizing a function f : Aω →

B∞. From T , we define an ω-language over the alphabet A×K. Let φ be an MSOc[≤]-formula,
we syntactically define φ′(c) an MSO[≤]-formula with one free variable. Each label predicate a(x)
is replaced syntactically by

∨
v∈K(a, v)(x). Then each occurrence of the constant symbol c is

replaced by a fresh free variable symbol c. For v ∈ K, we define a predicate v(x) :=
∨
a∈A(a, v)(x).

We define the formula:
φT := φ′dom ∧ ∀c

∨
v∈K

v(c) ∧ φ′v(c)

The formula φT recognizes words such that the projection over Aω is in dom(f). Furthermore
each position is labeled by its output. We define a trim automaton AT = (QT ,∆T , I, F) recog-
nizing the same language as φT . From this we naturally define a transducer T ′ := (A, i , o) with
A := (QT ,∆, I, F) by:

• ∆ := {(p, a, q) | (p, (a, v), q) ∈ ∆T }

• i : p 7→ ε

• o(p, a, q) := v such that (p, (a, v), q) ∈ ∆T

Note that o is well-defined since f is a function. By construction T ′ realizes f .

26

Chapter 2

Characterizations of rational
functions over finite words

“I love deadlines. I love the whooshing
noise they make as they go by.”

– Douglas Adams, The Salmon of Doubt

The existence of a syntactic object capturing all the algebraic properties of a language is a
cornerstone of the study of rational languages. The many correspondences between algebraic
varieties and logical fragments, together with the effective computation of the syntactic congru-
ence, has yielded a generic tool to effectively decide if a language is expressible in some logical
fragment.

The goal of this chapter is to try to obtain such an object for rational functions and see
which logic-algebra correspondences can be carried over to functions. In the case of sequential
functions, this has already been achieved: for any sequential function, one can compute a se-
quential transducer which is minimal in the strong sense that its right transition congruence is
the coarsest among those of sequential transducers realizing the function (see [Cho03]). In the
case of rational functions the result from [RS91] gives the construction of a canonical, i.e. not
machine dependent, transducer realizing a function. However this canonical machine does not
have the nice minimality properties which provide an algebraic characterization in the case of
languages.

Refining the techniques of [RS91], we are able to show the existence, and give the construc-
tions, of a finite number of minimal machines for any rational function. These machines are
minimal in the sense that the transition congruence of any transducer realizing the function
has to be finer than the transition congruence of one of the minimal machines. This gives us a
procedure, for any decidable class of congruences C, to decide if a transduction is in C. On the
logical side, we provide a transfer result which gives sufficient conditions on a logical fragment
so that an equivalence with a class of congruences can be carried over to transductions. These
conditions basically amount to having access to the linear order predicate. In these conditions
we are thus able to decide if a transduction is definable in a given logical fragment.

We start this chapter by studying the case of sequential functions, reformulating the results
of [Cho03] in our framework. We also show that the class of aperiodic transducers is robust to
determinization, which means that a transduction is A-sequential if and only if it is sequential
and in A, which is not true for an arbitrary class of congruences C. Then we define bimachines,

27

Chapter 2. Characterizations of rational functions over finite words

a model of computation for rational functions introduced in [Sch61], and named as such and
further studied by [Eil74]. A bimachine, as its name suggests, is given by two automata, one
deterministic and one co-deterministic. Intuitively it can be seen as a sequential transducer
with look-ahead where the look-ahead is given by a co-deterministic automaton. Of course the
model is completely symmetrical and could be seen as a right-sequential transducer with a look-
behind. We are able to minimize bimachines using a two-sided version of minimization à la
Choffrut, and then we show that the number of minimal bimachines is always finite. In the
particular case of aperiodic transductions, we show that the robustness of the class means that
if a transduction is aperiodic then all its minimal bimachines are. This property provides a
PSpace algorithm to decide aperiodicity of a transduction. Finally we consider the logical side
of rational transductions and establish some logic-algebra correspondences.

The results of this chapter can be found in [FGL16a, FGL16b]. Throughout this chapter, we
only consider finite words.

2.1 Sequential functions

Sequential transductions can be characterized by a right syntactic congruence which yields, as for
automata, a unique (up to shifting outputs) minimal machine realizing the function (see [Cho03]).
By the closure properties of classes of congruences, deciding C-sequentiality thus amounts to
computing the minimal sequential transducer and deciding if its transition congruence is in C.
In the case of a decidable class, this gives a decision procedure for C-sequentiality.

We describe this right syntactic congruence as well as a minimization procedure in PTime,
which can both be found in [Cho03] but which we will generalize later in the case of rational
functions. We then describe the determinization procedure of [BC02], which terminates for
sequential functions, and show that it preserves aperiodicity of transducers. This means that
deciding aperiodicity of a sequential function can be reduced to deciding A-sequentiality. In
particular, as we will see in Sec. 2.3 this gives a procedure to decide if a sequential function is
FO[≤]-definable.

2.1.1 Algebraic characterization of sequential functions

Here we describe the right syntactic congruence of a function and the minimal sequential trans-
ducer associated with it. This is very analogous to the Myhill-Nerode congruence of a language
and the corresponding minimal deterministic automaton.

Infimum of a function Let A,B be alphabets and let f : A∗ → B∗ be a (partial) function.

We define the infimum of f , f̂ : A∗ → B∗ by f̂(u) :=
∧
{f(v) | u ≤ v, v ∈ dom(f)}, which is

defined over ↓dom(f). In other words f̂(u) outputs the longest possible word that f can produce
by reading a word starting with u.

Example 2.1.1. Consider the function fswap given by the transducer of Fig. 1.4 on page 22.

Then we have f̂swap(u) = ε for any word u ∈ {a, b}∗. Let us also consider the function fidem

given by the transducer of Fig. 2.1 on the next page. We have that fidem(u) = ε if u ∈ {ε, a}
and fidem(u) = a if u ∈ aa+. One can easily see that f̂idem = fidem.

Right syntactic congruence

Definition 2.1.2. The right syntactic congruence of a function f : A∗ → B∗ is defined by
u ∼f v if:

28

2.1. Sequential functions

0

1

2
a|ε

a|a

a|ε

a|ε

Figure 2.1: A transducer realizing fidem.

• u−1dom(f) = v−1dom(f)

• for any w ∈ u−1dom(f), f̂(u)−1f(uw) = f̂(v)−1f(vw)

Proposition 2.1.3. Let f be a function, then ∼f is a right congruence.

Proof. Let f : A → B be a function, let u ∼f v and let a ∈ A. We want to show that
ua ∼f va. First (ua)−1dom(f) = a−1(u−1dom(f)) = (va)−1dom(f). We know that for any

word w ∈ u−1dom(f), f̂(u)−1f(uw) = f̂(v)−1f(vw), and we let g(w) denote this word. Let
aw ∈ u−1dom(f).

f̂(ua)−1f(uaw) = (
∧
z f(uaz))

−1
f(uaw)

=
(∧

z f̂(u)g(az)
)−1

f̂(u)g(aw)

=
(
f̂(u)

∧
z g(az)

)−1

f̂(u)g(aw)

= (
∧
z g(az))

−1
g(aw)

= f̂(va)−1f(vaw)

Hence ua ∼f va which concludes the proof.

Minimal sequential transducer The minimal sequential transducer of a transduction f :
A∗ → B∗ is defined, using the right syntactic congruence, by Tf = (Af , if , of , tf), with Af =
(Qf ,∆f , If , Ff) where:

• Qf := {[u] | u ∈ ↓dom(f)}

• ∆f := {([u] , a, [ua]) | a ∈ A}

• If := {[ε]}

• Ff := {[u] | u ∈ dom(f)}

• if ([ε]) := f̂(ε)

• of ([u] , a, [ua]) := f̂(u)−1f̂(ua)

• tf ([u]) := f̂(u)−1f(u)

Intuitively, the minimal sequential transducer outputs over a word u the longest possible word,
knowing that the input begins with u.

29

Chapter 2. Characterizations of rational functions over finite words

ε a aa
a|ε a|a

a|ε

Figure 2.2: The minimal sequential transducer of fidem.

Remark 2.1.4. Note that we have defined a transducer which has an infinite number of states,
in general. Of course this definition applies to arbitrary functions, but will yield a finite machine
when the function considered is a sequential function.

Notice that ∼Af = ∼f , by definition, and that the number of states of Af is the number of
equivalence classes of ∼f (up to adding a sink state).

Proposition 2.1.5. The outputs of the minimal sequential transducer of a function are well-
defined.

Proof. We show that the output functions are well-defined. Let f : A∗ → B∗. The initial output
function is obviously well-defined. Let u ∼f v and let a ∈ A such that ua ∈ ↓dom(f). We want

to show that the output function o is well-defined, meaning that f̂(u)−1f̂(ua) = f̂(v)−1f̂(va).

As before we have that f̂(u)−1f(uw) = f̂(v)−1f(vw), for any w ∈ u−1dom(f), and we denote
this word by g(w).

f̂(u)−1f̂(ua) = (
∧
z f(uz))

−1∧
z f(uaz)

=
(∧

z f̂(u)g(z)
)−1∧

z f̂(u)g(az)

= (
∧
z ĝ(z))

−1∧
z g(az)

= f̂(v)−1f̂(va)

The final output function is well-defined, since f̂(u)−1f(u) = f̂(v)−1f(v) for u, v ∈ dom(f), by
definition of ∼f .

Example 2.1.6. Let us consider again the functions fswap and fidem, given by their respective

transducers of Fig. 1.4 on page 22 and 2.1. As we have seen f̂swap is the constant function equal
to ε. Hence, one can show that the right syntactic congruence of fswap is the finest congruence,
separating all words. The minimal sequential transducer of fswap has an infinite number of states,

and the final output function outputs fswap(u) for u ∈ dom(f) since f̂swap is constant, equal to
ε. This simply means that the function is not sequential.

The syntactic congruence of fidem has three classes, namely ε, a and aa+, and the minimal
sequential transducer is given in Fig. 2.2.

Theorem 2.1.7. The transducer Tf realizes f .

Proof. Let f : A∗ → B∗ be a function, and let u ∈ dom(f). By definition of the outputs of Tf ,

JTf K(u) = f̂(ε) ·
(∏

0≤i<|u| f̂(u(:i))−1f̂(u(:i+ 1))
)
· f̂(u)−1f(u) = f(u).

We now give the theorem which justifies the name of minimal sequential transducer.

Theorem 2.1.8. Let f be a sequential function realized by a sequential transducer with under-
lying automaton A, then ∼A v ∼f .

30

2.1. Sequential functions

Proof. Let T = (A, i , o, t) be a sequential transducer with A = (Q,∆, {q0} , F) realizing f ,
let u ∼A v and let p be the state of A reached from the initial state by u and v. Let
Tp := (Ap, p 7→ ε, o, t) with Ap := (Q,∆, {p} , F), and let fp := JTpK. We have u−1dom(f) =
v−1dom(f) since this set is the language of words which have a final run from p.

Let w ∈ u−1dom(f), we want to show that f̂(u)−1f(uw) = f̂(v)−1f(vw). Let us de-

note the initial runs of T over u and v by q0
u|α−−→ p and q0

v|β−−→ p, respectively. Let γ :=∧
{fp(x) | x ∈ dom(fp)}, and let p

w|δ−−→ qf . Thus we have f̂(u) = i(q0)αγ, f̂(v) = i(q0)βγ,

f(uw) = i(q0)αδt(qf) and f(vw) = i(q0)βδt(qf). Hence we obtain that f̂(u)−1f(uw) =

γ−1δt(qf) = f̂(v)−1f(vw).

Corollary 2.1.9. For any class of congruences C, a transduction is C-sequential if and only if
its minimal sequential transducer is in C.

Proof. Let T be a sequential transducer with underlying automaton A realizing a function f ,
such that ≡A∈ C. Let ≡ be the transition congruence of Af , the underlying automaton of the
minimal sequential transducer of f . According to Th. 2.1.8, we have that ∼A v ∼f . Let u ≡A v,

let [w]f be a state of Af , and let [w]f
u−→Af [wu]f denote the run of Af over u from [w]f . Since

u ≡A v, we have in particular that wu ∼A wv, and thus wu ∼f wv. Hence we have a run

[w]f
v−→Af [wu]f , and we obtain ≡A v ≡.

2.1.2 Minimization of sequential transducers

The minimization of sequential transducers is very similar to the minimization of deterministic
automata. Here we describe a Moore-like minimization algorithm, which works by partitioning
the states too coarsely and then refining the partition until a fixpoint is reached, which we show
gives the syntactic congruence. The algorithm also relies on a preprocessing step to output words
as early as possible [Cho03].

Let T = (A, i , o, t) be a transducer, let p be a state and let the longest common prefix of

outputs from p be αp :=
∧{

α | p u|β−−→ q, α = βt(q)

}
. Then T is called in earliest form if for

any state p, αp = ε.

Proposition 2.1.10. Given a transducer T , one can obtain in PTime a new transducer T̂ in
earliest form realizing the same function.

Proof. We give the definition of T̂ , show that it realizes the same function and is indeed in
earliest form, and finally we give a procedure to compute it. Let T = (A, i , o, t) be a transducer
realizing a function f , let p be a state of A and let αp denote the longest common prefix of

outputs from p. We define T̂ =
(
A, î , ô, t̂

)
by:

• î(p) := i(p)αp

• ô(p, a, q) := α−1
p o(p, a, q)αq

• t̂(p) := α−1
p t(p)

One can easily see that all the αps cancel out, and thus T̂ realizes f as well.

Let p
u|β−−→T q and p

u|β′−−→T̂ q, we have that β′ t̂(q) = α−1
p βt(q), which means that the longest

common prefix of outputs from p for T̂ is equal to α−1
p αp = ε.

31

Chapter 2. Characterizations of rational functions over finite words

To show that computing the αps can be done in PTime, we refer the reader to [Cho03,
Section 5] which surveys different approaches as well as their precise complexities.

We now give the minimization theorem, which can be found in [Cho03].

Theorem 2.1.11. Given a sequential transducer, one can compute (up to renaming states) the
associated minimal sequential transducer in PTime.

Proof. Let T = (A, i , o, t), with A = (Q,∆, I, F) be a sequential transducer realizing a function
f . According to Prop. 2.1.10 we can assume without loss of generality that T is in earliest form.

Now the idea is to compute an equivalence relation by successive refinements. The idea is
very similar to Moore’s deterministic automata minimization algorithm [Moo56], except that the
initial relation also has to be compatible with the output functions.

In the following we identify the states of A with the equivalence classes of ∼A. The initial
partition is given for all words u, v by u ∼0 v if: 1) [u]A ∈ F ⇔ [v]A ∈ F and t([u]A) = t([v]A)
and 2) ∀a ∈ A, o([u]A , a, [ua]A) = o([v]A , a, [va]A).

Let i ∈ N, we define inductively for all words u, v, u ∼i+1 v by: u ∼i v and ∀a ∈ A, ua ∼i va.
Of course we have ∀i ∈ N that ∼A v ∼i+1 v ∼i, which means that we reach a fixpoint relation
for some i, which we denote by ∼∗.

Let us first show that ∼∗ is fine enough to realize f , which means that ∼∗ v ∼f according
to Th. 2.1.8. The relation ∼∗ is a right congruence since it is a fixpoint for right multiplication.
Let T∗ = (A∗, i∗, o∗, t∗) with A∗ = (Q∗,∆∗, I∗, F∗) be defined as:

• Q∗ := {[u]∗ | u ∈ ↓dom(f)}

• ∆∗ := {([u]∗ , a, [ua]∗) | a ∈ A}

• I∗ := {[ε]∗}

• F∗ := {[u]∗ | [u]A ∈ F}

• i∗([ε]∗) := i([ε]A)

• o∗([u]∗ , a, [ua]∗) := o([u]A , a, [ua]A)

• t∗([u]∗) := t([u]A)

The final states and the final outputs are well defined according to point 1) in the definition of
∼0 given above. The output function is well-defined according to point 2). Given a word in the
domain of f , its outputs for T∗ will be exactly the same as for T which means that T∗ realizes f
and hence ∼∗ v ∼f .

We only have left to show that ∼f v ∼∗, which we do by showing by induction on i ≥ 0 that
∼f v ∼i. First, let us remark that since T is in earliest form and is sequential, the function

computed by T without final outputs is exactly f̂ . Let u ∼f v we have 1) u ∈ dom(f) ⇔
v ∈ dom(f), which means that [u]A ∈ F ⇔ [v]A ∈ F . According to the previous remark,

f̂(u)−1f(u) = t([u]A) and since f̂(u)−1f(u) = f̂(v)−1f(v) we have t([u]A) = t([v]A). Similarly,

according to the proof of Prop. 2.1.5, we have for any letter a that f̂(u)−1f̂(ua) = f̂(v)−1f̂(va).
Again according to the remark above, we obtain 2) o([u]A , a, [ua]A) = o([v]A , a, [va]A). Hence
∼f v ∼0. Now let us assume that for some i ∈ N we have ∼f v ∼i. Let u ∼f v, we have by
hypothesis that u ∼i v. Since ∼f is a right congruence we also have for any a ∈ A that ua ∼f va
which means that ua ∼i va, and hence u ∼i+1 v, which concludes the proof of correctness.

The fact that this procedure takes polynomial time can be argued just like for Moore’s
algorithm: each refinement step takes polynomial time and since each step merges at least two
states, the number of steps is linear in the number of states of the transducer.

32

2.1. Sequential functions

Corollary 2.1.12. Let C be a decidable class of congruence, then C-sequentiality of sequential
transductions is decidable.

Proof. Let T be a sequential transducer realizing f , according to Th. 2.1.11 we can compute the
minimal sequential transducer of f . According to Cor. 2.1.9, f is C-sequential if and only if Tf
is a C-transducer, which we can decide since C is decidable by assumption.

2.1.3 Determinization preserves aperiodicity

Here we study the determinization of transducers. Determinization is not always possible since
not all rational functions are sequential, such as fswap of Ex. 1.4. There is however an algorithm
which terminates in the case of sequential functions which we call powerset construction with
delays. This algorithm is similar to the usual powerset construction, and the idea is to output
on a transition the longest common prefix of all possible outputs. In order to obtain the original
function, the macro-states of the construction thus have to contain not only states but pairs
composed of a state and a remaining output (called a delay). Like for automata this construction,
when it terminates, yields a deterministic machine at the cost of an exponential blow-up.

We describe the algorithm given in [BC02] and show that if the initial transducer is aperiodic
then the resulting one also is. As a corollary this gives us, as we will see in Sec. 2.3, a procedure
to decide if a sequential transduction is FO[≤]-definable.

C-sequentiality vs C-rationality Let C be a class of congruences. We start by stating that,
in the case of sequential functions, C-sequentiality and C-rationality are not equivalent.

Theorem 2.1.13. There exists a class of congruences C, and a sequential C-transduction which
is not C-sequential.

Proof. Let C = I, the class of idempotent congruences. Let fidem be the function given by
the transducers T1 and T2 of Fig. 2.1 on page 29 and 2.2, respectively. The transducer T1 is
idempotent and non-sequential whereas T2 is sequential and not in I. Furthermore T2 is actually
the minimal sequential transducer of fidem which means, according to Cor. 2.1.9, that fidem is
not I-sequential.

Determinization algorithm We describe the powerset construction with delays which builds
a sequential transducer realizing the same function as the input transducer. Since not all func-
tions are sequential, the algorithm may not terminate in general. When it does terminate, one
can show that the lengths of the delays are polynomial in the input transducer, which means
that the overall worst-case complexity is, as for automata determinization, exponential.

Let T = (A, i , o, t) be a transducer, with underlying automaton A = (Q,∆, I, F), realizing
a function f . We describe S := (D, i ′, o′, t ′), with D := (Q′,∆′, S0, F

′), which also realizes f .
Note that S is sequential by definition but may have an infinite number of states when f is not
sequential. We assume that T is trim and in earliest form, without loss of generality.

Let α :=
∧
q∈I i(q) and let S0 :=

{
(q, α−1i(q)) | q ∈ I

}
, with i ′(S0) := α. We build Q′ and

∆′ up from S0 using the following steps. Let P be a state already constructed in Q′ and let a ∈ A.

We define R :=

{
(q, βγ) | (p, β) ∈ P, and p

a|γ−−→ q

}
. Let α :=

∧
(q,β)∈R β, then we add the state

S :=
{

(q, α−1β) | (q, β) ∈ R
}

to Q′ and the transition P
a|α−−→ S to ∆′. We only have left to

define F ′ and t ′. F ′ := {P | ∃(p, α) ∈ P, p ∈ F} and t ′(P) := αt(p) such that (p, α) ∈ P and
p ∈ F . Note that the definition of t ′ may seem ambiguous but it is not due to the functionality
of f (T is assumed trim).

33

Chapter 2. Characterizations of rational functions over finite words

The previous construction as well as the following theorem are taken from [BC02].

Theorem 2.1.14. Let T be a transducer realizing a sequential function f and let S be the
transducer obtained by powerset construction with delays. Then S is finite and realizes f .

Aperiodicity As we have seen determinization does not preserve transition congruence of a
machine. However determinization of an aperiodic transducer always produces an aperiodic
transducer.

Lemma 2.1.15. Let T be an aperiodic transducer realizing a sequential function f and let S be
the transducer obtained by powerset construction with delays. Then S is aperiodic.

Proof. Let T = (A, i , o, t), with A = (Q,∆, I, F), be an A-transducer realizing a sequential
function f : A∗ → B∗. Let S = (D, i ′, o′, t ′), with D = (Q′,∆′, S0, F

′), be the sequential
transducer obtained from T by powerset construction with delays. We want to show that S
is aperiodic and actually we will show that D is counter-free, which is equivalent according to
Prop. 1.3.9 since S is sequential. A is aperiodic so there is an integer n such that ∀u ∈ A∗,
un ≡A un+1.

Let u ∈ A+ be a word, let k be a positive integer and let R0
u|α0−−−→S R1 . . . Rk−1

u|αk−1−−−−→S R0

denote a counter in S. Let us assume that k is the size of the smallest such counter, which means
that all Rjs are pairwise distinct, we want to show k = 1.

Let Γ0 := α0 · · ·αk−1, for 1 ≤ j < k let Γj := αj · · ·αk−1α0 · · ·αj−1 and let us note that
Γjαj = αjΓj+1 mod k. Let R = {q1, . . . , qm} denote the states appearing in R0. For 0 ≤ j < k,
the states of Rj are exactly the states which can be reached in A from some state of R0 by
reading ukn+j ≡A ukn. This means that the states of Rj are the same as the states of R0,
namely q1, . . . , qm. Thus let Rj = {(q1, β1,j), . . . , (qm, βm,j)}.

Let i, i′ ∈m, and let qi
u|αi,i′−−−−→T qi′ denote a run in T when it exists. By definition of S, we

have for any 0 ≤ j < k:
βi,jαi,i′ = αjβi′,j+1 mod k

Let qi0
u−→A . . . qit−1

u−→A qit such that t is a multiple of k. Thus we obtain for any 0 ≤ j, j′ < k:

βi0,jαi0,i1 · · ·αit−1,it = αj · · ·αj−1βit,j
βi0,j′αi0,i1 · · ·αit−1,it = αj′ · · ·αj′−1βit,j′

Since Q is finite there must be a state ql ∈ R, such that ql loops by reading a power of u,

meaning that there is an integer t such that ql
ut−→ ql. For a large enough t we can assume by

aperiodicity that t is of the form t = ks + 1. Let l, i1, . . . , it−1, l denote the state indices of the
previous run from ql to ql over ut. Let Φ := αl,i1 · · ·αit−1,l. We have:

βl,jΦ = Γsjαjβl,j+1 (1)

βl,jΦ
k = Γks+1

j βl,j (2)

βl,j+1Φk = Γks+1
j+1 βl,j+1 (3)

From (2) we have |Φ| = (ks + 1) |Γ0|
k . From (1) we thus obtain: |βl,j+1| − |βl,j | = |Γ0|

k − |αj |.
Notice that this holds for any looping state ql but the difference does not depend on the state
itself.

Let us now consider qi, a state which is not necessarily a looping state. Any state must be
reachable from some looping state, since all states in R can be reached from some state of R by an

34

2.2. Algebraic characterization of rational functions

arbitrarily large power of u. Let ql be a looping state which can reach qi by a run over uks. Again
let l, i′1, . . . , i

′
ks−1, i denote the sequence of indices of such a run and let Ψ := αl,i′1 · · ·αi′ks−1,i

.
We have:

βl,jΨ = Γksj βi,j (4)
βl,j+1Ψ = Γksj+1βi,j+1 (5)

Taking the lengths of words of (4) and (5), and taking the difference between the two equalities

we obtain: |βi,j+1|− |βi,j | = |βl,j+1|− |βl,j | = |Γ0|
k −|αj | which again does not depend on i. Thus

we obtain that for any state qi ∈ R, looping or otherwise, |βi,j+1| − |βi,j | = |Γ0|
k − |αj |.

If we assume that Γ0 = ε, then in particular |βi,j+1| = |βi,j | for any state qi. From (1),
we have that βl,j = βl,j+1 for any looping state ql. Then combining (4) and (5) we obtain
βi,j = βi,j+1 for any state qi. Hence all Rjs are identical which means that k = 1.

Let us now assume that Γ0 6= ε. Since equations (4) and (5) can have an arbitrarily large
common suffix, we know that for any state qi, either βi,j is a suffix of βi,j+1 or vice versa. Let
{x, y} = {j, j + 1} such that βi,x = γiβi,y. Note that x, y do not depend on i since |βi,j+1| −
|βi,j | = |Γ0|

k − |αj |, and furthermore the size of γi does not depend on i either. If x = j, since (4)
and (5) can have an arbitrarily large common suffix, we have that γi is a suffix of Γksj+1 which
does not depend on i. Hence γi is a common prefix of βi′,j for all i′ ∈ m, which means that
γi = ε by definition of S. Thus all Rjs are equal which means that k = 1. Similarly, if x = j+ 1,
then γi is a suffix of Γksj , and with the same reasoning, we conclude that k = 1.

Theorem 2.1.16. A sequential function is A-rational if and only if it is A-sequential.

Proof. Let f be sequential function. If f is A-sequential then in particular it is A-rational. If f
is A-rational, then there exists an aperiodic transducer realizing it. According to Lem. 2.1.15,
the sequential transducer obtained by powerset construction with delays is also aperiodic which
means that f is A-sequential.

Remark 2.1.17. Note that all the results of this section can easily be extended symmetrically
to right sequential function.

2.2 Algebraic characterization of rational functions

The goal of this section is to obtain an algorithm to decide C-rationality of transductions,
for a decidable class of congruences C. The algebraic characterization in the case of rational
languages is tied to the existence of a deterministic model, deterministic automata. This is
the main reason why sequential functions can be characterized by a syntactic object. We thus
consider a deterministic model of transductions called bimachines. A bimachine is a model of
computation introduced in [Sch61] and named as such by [Eil74]. Bimachines are equivalent in
expressive power to functional transducers and one of their main features is that they work in
a deterministic fashion. As the name suggests, bimachines are made up of two automata: one
deterministic, called the left automaton, and one co-deterministic, called the right automaton.
Intuitively, a bimachine can be seen as a sequential transducer with look-ahead, where the look-
ahead information is given by the right automaton. However we also use the fact that the roles
of the two automata are completely symmetrical.

We define bimachines and show how one can go from a bimachine to an unambiguous trans-
ducer while preserving the transition congruence, which was already known [RS95]. This allows
us to reduce the study of C-transductions to the study of C-bimachines, for any class C. Then
we introduce the syntactic congruence of a function with respect to a fixed look-ahead, an object

35

Chapter 2. Characterizations of rational functions over finite words

l0

la1 la2

lb1 lb2

a

a, b

a, b
b

a, b

ra2

rb2

ra1

rb1

r0

a

a, b

a, b
b

a, b

l α r o(l, α, r)
l0 α rγj γ
lβi α r0 β
lβi α rγj α

Figure 2.3: Left and right automata and output table of a bimachine realizing fswap.

introduced in [RS91] and we use it to minimize bimachines through a two-sided Choffrut-like
minimization. Finally we introduce the delay congruence, a syntactic object (also taken from
[RS91]) which yields a minimal look-ahead, and thus a canonical bimachine. As it was noticed in
[RS91] however, this canonical bimachine does not necessarily capture all the algebraic properties
of a transduction. Refining the techniques of [RS91] we are able to show that any rational func-
tion has a finite number of minimal bimachines, which was conjectured in [RS91]. It turns out
that we can bound the size of minimal bimachines, using the canonical bimachine, and thus we
obtain the main result of this section: an algorithm to decide C-definability of rational functions,
for any decidable class of congruences C.

2.2.1 Bimachines and transductions

We define bimachines, and the related notions. We also show how to go from a bimachine to a
transducer while preserving transition congruences.

Bimachines A bimachine over alphabets A,B is given as a tuple B = (L,R, i , o, t) where
L = (QL,∆La, {l0} , FL) is a deterministic accessible automaton, called the left automaton of B,
R = (QR,∆R, IR, {r0}) is a co-deterministic co-accessible and co-complete automaton, called
the right automaton of B, i : QR → B∗ is the initial function, o : QL × A × QR → B∗ is the
output function and t : QL → B∗ is the final function. We also add the semantic restriction that
L and R must recognize the same language1.

Let u be a word and let l and r be runs of L and R, respectively, over u. We extend o to
QL × A∗ × QR by setting o(l(1), u, r(|r|)) :=

∏
1≤j≤|u| o(l(j), u(j), r(j + 1)). Furthermore if l

and r are accepting, let α := i(r(|r|)) · o(l(1), u, r(|r|)) · t(l(|l|)). We say that the pair (u, α) is
realized by B and we denote by JBK the set of pairs realized by B.

Example 2.2.1. Let us consider the bimachine Bswap = (L,R, i , o, t) with L andR the automata
of Fig. 2.3. We set i : r 7→ ε, t : l 7→ ε. Let α, β, γ ∈ {a, b} and i, j ∈ 2, we define o(l0, α, rγj) := γ,
o(lβi, α, r0) := β and in all other cases, o(l, α, r) := α. The function realized by B is fswap

(cf. Ex. 1.5.4), and in Fig. 2.4 on the facing page we give an example of a run of Bswap over the
word aabb.

C-bimachines Let i ∈ 2, and let Bi be a bimachine with left and right automata Li and Ri,
respectively. We say that B1 is finer than B2, which we denote by B1 v B2, if we have both

1This can be decided in PTime by checking the emptiness of the product of R with the complement of L and
vice versa.

36

2.2. Algebraic characterization of rational functions

l0 la1 la2 la2 la2

a a b b

r0rb1rb2rb2rb2

b a b a

o o o o

run of L

input:

run of R

output:

Figure 2.4: A run of Bswap over the word aabb.

L1 v L2 and R1 v R2. A bimachine realizing a function f is called minimal if there is no coarser
bimachine realizing f . Two bimachines are called equivalent if they realize the same function
and are both finer than each other. We will often abuse definitions and say that two bimachines
are equal instead of equivalent. The transition congruence of a bimachine B with automata L
and R is defined as ≡B := (≡L u ≡R). Let C be a class of congruences, a bimachine is called a
C-bimachine if both its automata are C-automata. Equivalently, by closure under intersection
and coarser congruences, a bimachine is a C-bimachine if and only if its transition congruence
is in C.

Proposition 2.2.2. There exists a function f for which there is more than one equivalence class
of minimal bimachines.

Proof. Let us consider fidem the function given by the sequential transducer of Fig. 2.2 on
page 30. Any sequential transducer realizing a total function can be seen as a bimachine with
a trivial right automaton. Let B be such a bimachine with the underlying automaton of the
minimal sequential transducer as left automaton and the trivial automaton as right automaton.
There cannot be a bimachine realizing fidem with coarser automata otherwise we would obtain a
sequential transducer smaller than the minimal one. Hence B is a minimal bimachine. However,
one can easily see that fidem is also a right sequential function, and can be realized by a bimachine
with a trivial left automaton. Hence fidem has at least two incomparable minimal bimachines.

From bimachines to transducers It is quite easy to show that from a C-bimachine one can
obtain an unambiguous C-transducer realizing the same function, and this was already noticed
in [RS95].

Proposition 2.2.3. Let B be a bimachine realizing a function f with left and right automata L
and R, respectively. Then one can construct in PTime an unambiguous transducer realizing f
with underlying automaton L ×R.

Proof. Let B = (L,R, i , o, t) be a bimachine realizing a function f with left automaton L =
(QL,∆La, {l0} , FL) and right automaton R = (QR,∆R, IR, {r0}). The main idea is to consider
the product of the two automata. The transducer will guess the run of the right automaton,
and co-determinism ensures that there is only one possible run. We define a transducer T :=
(A, i ′, o′, t ′) with A := (Q,∆, I, F) by:

• Q := QL ×QR

• ∆ := {((l, r′), a, (l′, r)) | a ∈ A, (l, a, l′) ∈ ∆L, (r′, a, r) ∈ ∆R}

37

Chapter 2. Characterizations of rational functions over finite words

• I := {l0} × IR

• F := FL × {r0}

• i ′(l0, r) := i(r)

• o′((l, r′), a, (l′, r)) := o(l, a, r)

• t ′(l, r0) := t(l)

By construction T realizes f and its underlying automaton is indeed L ×R.

Corollary 2.2.4. Let C be a class of congruences. A transduction realized by a C-bimachine is
a C-transduction.

Proof. Let B be a bimachine realizing a function f with C-automata L and R. Let T be the
transducer obtained from Prop. 2.2.3, with underlying automaton L ×R. Let u, v ∈ A∗ be two
words such that u ≡L v and u ≡R v. This means that u ≡L×R v, and thus (≡L u ≡R) v ≡L×R.
Since C is closed under intersection of congruences and coarser congruences, this means that
≡L×R is in C, hence T is a C-transducer and f is a C-transduction.

In [RS95] it was noticed that one can easily go from an unambiguous transducer to a bimachine
while preserving the transition congruence. We show later in this section a stronger result, namely
that the transducer needs not be unambiguous for the proposition to hold. The result however
is not trivial and relies on the notions of canonical bimachine, and bimachine minimization.

2.2.2 Bimachines and minimization

Just like for sequential functions, the minimization of bimachines relies on a syntactic congruence.
We define two different minimizations which are completely symmetrical: left minimization and
right minimization. Left minimization consists in fixing the right automaton and then computing
the minimal left automaton possible given the look-ahead information provided by the right
automaton. Our main conceptual tool is the syntactic congruence of a function with respect to
a fixed right automaton, taken from [RS91]. From this we are able to compute, just like for
sequential functions, a minimal left automaton in PTime. We also show that composing left
and right minimization (either way) always produces a minimal bimachine. Finally we obtain
that one can go from a (possibly ambiguous) transducer to a bimachine while preserving the
transition congruence.

R-syntactic congruence Let f : A∗ → B∗ be a function and let R be a right automaton
recognizing dom(f). We define for each state of R, i.e. each equivalence class [v]R of ≈R, a

function f̂[v]R
: u 7→

∧
{f(uw) | w ≈R v}, which is defined over dom(f)v−1. Note that the right

automaton will often be implicit and we will rather write f̂v. Intuitively, this function outputs
over a word u the longest possible word, with the look-ahead information that the suffix is in
[v]R.

Definition 2.2.5. Let f : A∗ → B∗ be a function and let R be a right automaton recognizing
dom(f). The R-syntactic congruence of f is defined for u, v ∈ A∗ by: u ∼Rf v if

• u−1dom(f) = v−1dom(f) and

• ∀w ∈ A∗, f̂w(u)−1f(uw) = f̂w(v)−1f(vw)

38

2.2. Algebraic characterization of rational functions

Intuitively, u and v are equivalent if when we remove the contributions of u and v from f(uw)
and f(vw), respectively, we obtain the same word left to write. Note here that the contributions
of u and v are computed with the knowledge that the suffix is equivalent to w, with respect to
R.

Proposition 2.2.6. Let f be a function and let R be a right automaton recognizing dom(f),
then ∼Rf is a right congruence.

Proof. Let f : A∗ → B∗ be a function, letR be a right automaton recognizing dom(f), let u ∼Rf v

and let a ∈ A. We want to show that ua ∼Rf va. First (ua)−1dom(f) = a−1(u−1dom(f)) =

(va)−1dom(f). We know that for any word w ∈ u−1dom(f), f̂w(u)−1f(uw) = f̂w(v)−1f(vw),
and we let g(w) denote this word. Let aw ∈ u−1dom(f).

f̂w(ua)−1f(uaw) =
(∧

z≈Rw f(uaz)
)−1

f(uaw)

=
(∧

z≈Rw f̂aw(u)g(az)
)−1

f̂aw(u)g(aw)

=
(
f̂aw(u)

∧
z≈Rw g(az)

)−1

f̂aw(u)g(aw)

=
(∧

z≈Rw g(az)
)−1

g(aw)

= f̂w(va)−1f(vaw)

Hence ua ∼Rf va which concludes the proof.

Example 2.2.7. Let us consider again the function fswap and R the right automaton of Bswap

given in Ex. 2.2.1. We give the classes of the congruence ∼Rfswap
: {ε, a, b, aA+, bA+} which exactly

coincides with the states of the left automaton of Fig. 2.3 on page 36.

Left minimal bimachine Let f : A∗ → B∗ be a function and let R := (QR,∆R, IR, {r0})
be a right automaton recognizing dom(f). Using the R-syntactic congruence of f we define
the left minimal bimachine of f with respect to R. We set Bf (R) := (Lf (R),R, i , o, t) with
Lf (R) := (QL,∆L, l0, FL) defined by:

• QL :=
{

[u]
R
f | u ∈ ↓dom(f)

}
• ∆L :=

{
([u]
R
f , a, [ua]

R
f)
}

• l0 := [ε]
R
f

• FL :=
{

[u]
R
f | u ∈ dom(f)

}
• i([u]R) := f̂u(ε)

• o([u]
R
f , a, [v]R) := f̂av(u)−1f̂v(ua)

• t([u]
R
f) := f̂ε(u)−1f(u)

The definition of the left minimal bimachine of a function f with respect to a right automaton R
is very similar to the definition of the minimal sequential transducer of a function. Intuitively, it
outputs over a word u, and given a class [w]R, the longest possible word knowing that the input
begins with u and ends with a word equivalent to w. Again this bimachine may have an infinite
number of states, in general.

39

Chapter 2. Characterizations of rational functions over finite words

Remark 2.2.8. When f is a total function, and R is the trivial right automaton with only one
state, then ∼Rf = ∼f and since Bf (R) does not make use of R, it is basically the same as Tf .

Note that, as for sequential functions, ∼Lf (R) = ∼Rf . In particular, when ∼Rf has infinite
index then the “bimachine” Bf (R) is actually infinite.

We show, as for the minimal sequential transducer of Section 2.1, that the outputs of the
machine we obtain from ∼Rf are well-defined.

Proposition 2.2.9. Let f be a function and let R be a right automaton recognizing dom(f).
The outputs of Bf (R) are R is well-defined.

Proof. Let f be a function and letR be a right automaton recognizing dom(f). We show that the
output functions of Bf (R) are well-defined. The initial output function is obviously well-defined.
Let u ∼Rf v and let a ∈ A such that ua ∈ ↓dom(f). We want to show that the output function

o is well-defined, meaning that ∀w, f̂aw(u)−1f̂w(ua) = f̂aw(v)−1f̂w(va). As before we have that

f̂aw(u)−1f(uaw) = f̂aw(v)−1f(vaw), for any a ∈ A, aw ∈ u−1dom(f), and we denote this word
by g(aw).

f̂aw(u)−1f̂w(ua) =
(∧

z≈Raw f(uz)
)−1∧

z≈Rw f(uaz)

=
(∧

z≈Raw f̂aw(u)g(z)
)−1∧

z≈Rw f̂aw(u)g(az)

=
(∧

z≈Raw g(z)
)−1∧

z≈Rw g(az)

= f̂aw(v)−1f̂w(va)

The final output function is well-defined, since f̂ε(u)−1f(u) = f̂ε(v)−1f(v) for u, v ∈ dom(f), by
definition of ∼Rf .

We now can show that Bf (R) realizes f . However, Bf (R) may be infinite if R does not give
enough look-ahead information to realize f sequentially.

Theorem 2.2.10. Let f be a function and let R be a right automaton recognizing dom(f). The
bimachine Bf (R) realizes f .

Proof. Let f : A∗ → B∗ be a function, let R be a right automaton recognizing dom(f) and let
u ∈ dom(f). By definition of the outputs of the left minimal bimachine Bf (R), JBf (R)K(u) =

f̂u(ε) ·
(∏

0≤i<|u| f̂u(i+1:)(u(:i))−1f̂u(i+2:)(u(:i+ 1))
)
· f̂ε(u)−1f(u) = f(u).

We now show that the left minimal bimachine with respect to some right automaton is indeed
minimal among bimachines realizing the same function with the same right automaton. This
was already shown in [RS91], but only in the case of total functions.

Theorem 2.2.11. Let f be a transduction realized by a bimachine with left and right automata
L and R, respectively. Then ∼L v ∼Rf .

Proof. Let B = (L,R, i , o, t) be a bimachine with automata L = (QL,∆L, {l0} , FL) and R =
(QR,∆R, IR, {r0}) realizing f and let u ∼L v. We have u−1dom(f) = v−1dom(f) since L
recognizes dom(f).

Let w ∈ u−1dom(f), we want to show that f̂w(u)−1f(uw) = f̂w(v)−1f(vw). Let α :=
i([uw]R)o(l0, u, [w]R) and β := i([vw]R)o(l0, v, [w]R) denote the outputs before reading w of
the runs of B over uw and vw respectively. Let γ :=

∧
{o([u]L , z, r0)t([uz]L) | z ≈R w}

be the longest common prefix of outputs from state [u]L with look-ahead information [w]R.

40

2.2. Algebraic characterization of rational functions

Then we have f̂w(u) = αγ, f̂w(v) = βγ, f(uw) = αo([u]L , w, r0)t([uw]L) and also f(vw) =

βo([u]L , w, r0)t([uw]L). Finally we obtain that f̂w(u)−1f(uw) = γ−1o([u]L , w, r0)t([uw]L) =

f̂w(v)−1f(vw).

Corollary 2.2.12. Let f be a function and let R be a right automaton recognizing dom(f).
Then there exists a bimachine realizing f with right automaton R if and only if ∼Rf has finite
index.

Proof. If B is a bimachine realizing f with left and right automata L and R, respectively, then
according to Th. 2.2.11, ∼Lv∼Rf which means that ∼Rf has finite index. Conversely, let us

assume that ∼Rf has finite index, then Bf (R) is finite and realizes f , from Prop. 2.2.10.

Left minimization algorithm Just like for sequential transducers, we show how to minimize
the left automaton of a bimachine by successive refinements. In this context we require a notion
of earliest bimachine to apply the refinement technique.

Let B = (L,R, i , o, t) be a bimachine, let u, v ∈ A∗ such that uv ∈ dom(f). Let αu,v :=∧
{o([u]L , w, r0)t([uw]L) | w ≈R v} be the longest common prefix of outputs from [u]L with

look-ahead [v]R. Then B is called in earliest form if for any u, v ∈ A∗, we have αu,v = ε (note
that we safely write αu,v instead of α[u]L,[v]R

to simplify the notations).

Proposition 2.2.13. Given a bimachine B, one can obtain in PTime a new bimachine B̂ in
earliest form realizing the same function.

Proof. We give the definition of B̂, show that it realizes the same function and is indeed in earliest
form, and finally we give a procedure to compute it. Let B = (L,R, i , o, t) be a bimachine
realizing a function f and let u, v ∈ A∗. Let αu,v denote the longest common prefix of outputs

from [u]L with look-ahead [v]R. We define B̂ =
(
L,R, î , ô, t̂

)
by:

• î([v]R) := i([v]R)αε,[v]R

• ô([u]L , a, [v]R) := α−1
u,avo([u]L , a, [v]R)αua,v

• t̂([u]L) := α−1
u,εt([u]L)

One can easily see that all the αu,vs cancel out, and thus B̂ realizes f as well. By construction,

B̂ is in earliest form.
To show that computing the αu,vs can be done in PTime, one can consider the transducer

obtained from Prop. 2.2.3 and put it in earliest form, which can be done using the result from
[BC00] for instance.

We now give the minimization theorem:

Theorem 2.2.14. Given a bimachine with right automaton R realizing a function f , one can
compute in PTime Bf (R), the left minimal bimachine with respect to R.

Proof. Let B = (L,R, i , o, t) be a bimachine realizing a function f with left and right automata
L = (QL,∆L, {l0} , FL) and R = (QR,∆R, IR, {r0}), respectively. According to Prop. 2.2.13 we
can assume without loss of generality that B is in earliest form.

We use the same ideas as in the sequential case, but the original partition depends on the
outputs for all letters and all states of R.

41

Chapter 2. Characterizations of rational functions over finite words

As usual, we identify the states of L with the classes of ∼L. The initial partition is given for all
words u, v by u ∼0 v if: 1) [u]L ∈ FL ⇔ [v]L ∈ FL and t([u]L) = t([v]L) and 2) ∀a ∈ A, w ∈ A∗,
o([u]L , a, [w]R) = o([v]L , a, [w]R).

Let i ∈ N, we define inductively for all words u, v, u ∼i+1 v by: u ∼i v and ∀a ∈ A, ua ∼i va.
Of course we have ∀i ∈ N that ∼L v ∼i+1 v ∼i, which means that we reach a fixpoint relation
for some i, which we denote by ∼∗.

Let us first show that ∼∗ is fine enough to realize f with R as right automaton, which means
that ∼∗ v ∼Rf according to Th. 2.2.11. The relation ∼∗ is a right congruence since it is a fixpoint
for right multiplication. Let B∗ = (L∗,R, i∗, o∗, t∗) with L∗ = (Q∗,∆∗, I∗, F∗) be defined as:

• Q∗ := {[u]∗ | u ∈ ↓dom(f)}

• ∆∗ := {([u]∗ , a, [ua]∗) | a ∈ A}

• I∗ := {[ε]∗}

• F∗ := {[u]∗ | [u]L ∈ FL}

• i∗([u]R) := i [u]R

• o∗([u]∗ , a, [v]R) := o([u]L , a, [v]R)

• t∗([u]∗) := t([u]L)

The final states and the final outputs are well defined according to point 1) in the definition of
∼0 given above. The output function is well-defined according to point 2). Given a word in the
domain of f , its outputs for B∗ will be exactly the same as for B which means that B∗ realizes
f and hence ∼∗ v ∼Rf , according to Th. 2.2.11.

We only have left to show that ∼Rf v ∼∗, which we do by showing by induction on i ≥ 0

that ∼Rf v ∼i. First, let us remark that since B is in earliest form, the function computed

by B without final outputs and with [v]R as final state is exactly f̂v. Let u ∼Rf v we have 1)
u ∈ dom(f) ⇔ v ∈ dom(f), which means that [u]L ∈ F ⇔ [v]L ∈ F . According to the previous

remark, f̂ε(u)−1f(u) = t([u]L) and since f̂ε(u)−1f(u) = f̂ε(v)−1f(v) we have t([u]L) = t([v]L).
Similarly, according to the proof of Prop. 2.2.9, we have for any letter a and for any word w
that f̂aw(u)−1f̂w(ua) = f̂aw(v)−1f̂w(va). Again according to the remark above, we obtain 2)
o([u]L , a, [w]R) = o([v]L , a, [w]R). Hence ∼Rf v ∼0. Now let us assume that for some i ∈ N we

have ∼Rf v ∼i. Let u ∼f v, we have by hypothesis that u ∼i v. Since ∼Rf is a right congruence

we also have for any a ∈ A that ua ∼Rf va which means that ua ∼i va, and hence u ∼i+1 v,
which concludes the proof.

From transducers to bimachines In [RS95] the authors observe that one can go from bi-
machines to unambiguous transducers and back while preserving the transition congruence. We
now have the tools to extend this result to arbitrary transducers, and show that one can go from
a (possibly ambiguous) transducer to a bimachine while preserving the transition congruence.
Unsurprisingly this construction causes an exponential blow-up of size.

Theorem 2.2.15. Let T be a transducer with underlying automaton A realizing a function f .
One can obtain a bimachine realizing f with left and right automata coarser than ∼A and ≈A,
respectively.

42

2.2. Algebraic characterization of rational functions

lε la
a

a

ra rε
a

a

Figure 2.5: Automata of a bimachine realizing fidem.

Proof. Let T = (A, i , o, t) be a transducer with underlying automaton A = (Q,∆, I, F) realizing
f . Let R be the right automaton associated with ≈A recognizing dom(f). We want to show
that ∼A v ∼Rf which will conclude the proof, since Bf (R) realizes f according to Th. 2.2.10.

Let u ∼A v, our goal is to show that u ∼Rf v. We have of course that u−1dom(f) = v−1dom(f).

Let w ∈ u−1dom(f), and let r1, . . . , rn ∈ Q denote the states of A which can be reached from I

by reading u (or v) and from which there is a final run by reading w. Let i ∈ n, let pi
u|αi−−−→ ri

and qi
v|βi−−→ ri denote initial runs over u and v respectively to ri. Let ri

w|γi−−−→ si denote a final

run over w from ri, and let δi :=
∧{

δt(s) | ri
z|δ−−→ s, z ≈A w

}
. Then for any i ∈ n we have

f̂w(u) = i(pi)αiδi, f(uw) = i(pi)αiγit(si), f̂w(v) = i(qi)βiδi and f(vw) = i(qi)βiγit(si). Taking

for instance i = 1, we obtain f̂w(u)−1f(uw) = δ−1
1 γ1t(s1) = f̂w(v)−1f(vw), hence u ∼Rf v which

concludes the proof.

As an important corollary, we obtain for any class of congruences C that one only needs to
study C-bimachines in order to study C-rationality.

Corollary 2.2.16. Let C be a class of congruences and let f be a function. The function f is
C-rational if and only if it is realized by a C-bimachine.

Proof. This is a simple consequence of both Cor. 2.2.4 and Th. 2.2.15.

Example 2.2.17. We give in Fig. 2.5 the automata of the bimachine obtained from the trans-
ducer of Fig. 2.1 on page 29 using the construction of Th. 2.2.15. The outputs of the bimachine
are defined by o(lε, a, ra) := a and all other outputs are set to ε. Notice that this bimachine is
in I while the minimal sequential transducer of the function fidem, given in Fig. 2.2 on page 30
is not. We can observe that fidem has three different minimal bimachines: one where all the
information is given by the left automaton (see Fig. 2.2 on page 30), i.e. the right automaton is
trivial, one where the left automaton is trivial and one where the information is split between
the two, as in Fig. 2.5.

Remark 2.2.18. Symmetrically, we define ≈Lf , the L-syntactic congruence of a function f , by
considering the longest common suffix instead of the longest common prefix. Our minimization
results and algorithm obviously extend to the symmetric case, and we naturally define Bf (L)
and Rf (L), the minimal bimachine with left automaton L and its right automaton. We continue
to only state our results in one direction, for readability.

Left-right minimization We show that composing left and right minimization yields a min-
imal bimachine but before we show two useful lemmas.

The intuition behind this first lemma is very simple: if an automaton is fine enough to realize
a function, then a finer automaton will also do, a fortiori.

43

Chapter 2. Characterizations of rational functions over finite words

Lemma 2.2.19. Let L1 v L2 be two left automata and let R1 v R2 be two right automata all
recognizing the same language. Let B2 be a bimachine realizing a function f with left and right
automata L2 and R2, respectively. One can obtain a bimachine B1 realizing f with left and right
automata L1 and R1, respectively.

Proof. Intuitively, since L1 and R1 keep more information than L2 and R2 respectively, B1 can
simulate the behavior of B2. Let B2 = (L2,R2, i , o, t). We define B1 := (L1,R1, i1, o1, t1) by:
i1([v]R1

) := i([v]R2
), o1([u]L1

, a, [v]R1
) := o2([u]L2

, a, [v]R2
) and t1([u]L1

) := t([u]L2
). Since the

automata of B1 are finer than those of B2, then B1 is well defined and simulates B2, hence they
realize the same function.

The following lemmas explicits a trade-off between the two automata of a bimachine: the
finer an automaton is, the coarser the other automaton can be.

Lemma 2.2.20. Let B1 and B2 be bimachines realizing f with their respective right automata
verifying R1 v R2. Then Lf (R1) w Lf (R2).

Proof. Let B1 and B2 be bimachines realizing f with their respective right automata verifying
R1 v R2. Let us consider Bf (R2) which has automata Lf (R2) and R2. Since R1 v R2,
according to Lem. 2.2.19, we can obtain a bimachine realizing f with automata Lf (R2) and R1.
By minimality of Lf (R1), we have according to Th. 2.2.11 that Lf (R2) v Lf (R1).

Remark 2.2.21. The previous lemma explicitly tells us that for a given function, there is a
trade-off between the coarseness of the left and the right automata. The finer the left automaton
is, the coarser the right automaton can be, and vice versa. Intuitively this means that the more
information the one automaton gives the less the other is required to give. In fancy terms we
have, for any given function, a Galois connection between the set of minimal left automata and
the set of minimal right automata (with partial orders v).

Theorem 2.2.22. Let B be a bimachine with right automaton R realizing a function f . Then
Bf (Lf (R)) is minimal.

Proof. Let us first remark that minimal bimachines are exactly the bimachines whose automata
are unchanged (up to isomorphism) by both left minimization and right minimization. Since
left and right minimization are idempotent operators, we only have to show that Bf (Lf (R)) is a
fixpoint for left minimization. Let L = Lf (Rf (Lf (R))), we want to show that L = Lf (R). By
Th. 2.2.11 we have Lf (R) v L. Considering B and Bf (Lf (R)), with R v Rf (Lf (R)) we obtain
from Lem. 2.2.20 that L v Lf (R).

2.2.3 Look-ahead versus labeling

Here we link the notion of bimachines with Th. 1.5.3 (from [EM65]), which says that any rational
function is the composition of a left and a right sequential function.

Labeling Let f : A∗ → B∗ be a function and let R be a right automaton recognizing
dom(f). We define the labeling function associated with R by the right sequential transducer
`(R) := (R, i , o, t) with i : r 7→ ε, t : [ε]R 7→ ε and o([au]R , a, [u]R) := (a, [u]R). We define
the transduction fR := f ◦ J`(R)K−1. Note that fR is a function, since `(R) is injective (by
unambiguity of R). Intuitively, fR produces the same output as f over an input annotated by
the look-ahead information given by R.

Our goal is to link the sequentiality of fR with the fact that R gives enough look-ahead to
have a bimachine with R as a right automaton. We begin with the easy direction.

44

2.2. Algebraic characterization of rational functions

q0 q1 q2

(α, rβ)|βα

(α, rβ)|α

(α, rε)|ε

(α, rε)|α

α, β ∈ {a, b}

ra

rε

rb

a

b

a, b

a, b

Figure 2.6: Transducer realizing flast,R and right automaton R.

Proposition 2.2.23. Let f be a transduction and let R be a right automaton recognizing dom(f).
If ∼Rf has finite index then fR is sequential.

Proof. Let f be such that ∼Rf has finite index. Then according to Cor. 2.2.12 there exists a
bimachine B = (L,R, i , o, t) with L = (QL,∆L, l0, FL) realizing f . Let us consider the sequential
transducer T := (A, i ′, o′, t ′) with A := (Q,∆, I, F) defined by:

• Q := {q0}]QL ×QR

• ∆ :=
{((l, r′), (a, r), (l′, r)) | (l, a, l′) ∈ ∆L, (r′, a, r) ∈ ∆R}
∪ {(q0, (a, [u]R), (l′, [u]R)) | (l0, a, l

′) ∈ ∆L, au ∈ dom(f)}

• I := {q0}

• F := FL × {r0} (or FL × {r0} ∪ {q0} if ε ∈ dom(f))

• i ′(q0) = ε

• o′((l, r′), (a, r), (l′, r)) := o(l, a, r) and o′(q0, (a, [u]R), (l′, [u]R)) := i([au]R)o(l0, a, [u]R)

• t ′(l) := t(l) (and t ′(q0) := i(r0)t(l0) if ε ∈ dom(f))

Example 2.2.24. Let flast be the function defined by f(uα) = αu, for α ∈ A = {a, b} and
u ∈ A∗. We consider the right automaton R given in Fig. 2.6 and give a transducer realizing
flast,R in the same figure. Notice that flast is not sequential while flast,R is.

We can now consider the converse result, which is harder to show. We give a constructive
proof of the result by exhibiting when possible a bimachine with R as a right automaton. As a
side result, we show that this construction preserves aperiodicity.

Lemma 2.2.25. Let T be a transducer realizing a function f and let R be a right automaton
recognizing dom(f). If fR is sequential then ∼Rf has finite index. In that case one can compute
Bf (R) in 2ExpTime. Furthermore if T and R are aperiodic then Bf (R) also is.

45

Chapter 2. Characterizations of rational functions over finite words

Proof. Let T = (A, i , o, t) with A = (Q,∆, I, F) be a transducer realizing a function f , let
R = (QR,∆R, IR, {r0}) be a right automaton recognizing dom(f) and let us assume that fR is
sequential. Let us describe the steps of the proof. Step 1) we construct a transducer realizing fR
by taking the product of T and R. Step 2) we determinize this transducer using the powerset
construction with delays of [BC02], in ExpTime. We thus obtain S a sequential transducer
realizing fR, of exponential size with respect to T . Step 3) we project the input alphabet of
S, which is A × QR, to A, to obtain a transducer realizing f . Step 4) we consider the product
automaton of the underlying automaton of this transducer with R, and determinize it, using
the usual powerset construction, again with an ExpTime complexity to obtain a deterministic
automaton D. We are then able to exhibit a bimachine with D and R as automata realizing f .
Finally we left minimize this bimachine to obtain Bf (R) (recall that ∼Rf = ∼Lf). We also show
that each of the four steps preserves aperiodicity.

1) From T and R we can obtain a transducer realizing fR, by just taking T and using the
states of R to label the input. Let T ′ := (A′, i ′, o′, t ′) with A′ := (Q′,∆′, I ′, F ′) be defined by:

• Q′ := Q×QR

• ∆′ := {((p, s), (a, r), (q, r)) | (p, a, q) ∈ ∆, (s, a, r) ∈ ∆R}

• I ′ := I × IR

• F ′ := F × {r0}

• i ′(q, r) := i(q)

• o′((p, s), (a, r), (q, r)) := o(p, a, q)

• t ′(q, r) := t(q)

By construction T ′ realizes fR. Let us assume that A and R are aperiodic, and let us show that
A′ then must be aperiodic also. Let u ∈ (A × QR)∗ be a word and let u denote the projection
of u onto the alphabet A. Let p, q be states of A and let v ∈ A∗. We assume that we have for

some integer n, (p, [unv]R)
un−−→ (q, [v]R). By construction of A′, we know that the last letter of

u is (a, [v]R) for some a ∈ A. If n > 1, then from the definition of A′, we know that we must

have [ux] = [x]. By aperiodicity of A we know that p = p0
u−→ p1 . . . pn

u−→ pn+1 = q, for n large

enough. We have for any 0 ≤ k ≤ n that (pk, [v]R)
u−→ (pk+1, [v]R). Hence we can conclude that

(p, [v]R)
un+1

−−−→ (q, [v]R) which means that A′ is aperiodic.

2) We use the powerset construction of [BC02] on T ′, presented in Sec. 2.1, to obtain a se-
quential transducer S realizing fR in ExpTime, since fR is sequential by assumption. According
to Lem. 2.1.15, this procedure preserves aperiodicity.

3) We project away the labels of the input letters of S to obtain a transducer realizing
f . Furthermore this transducer is unambiguous, otherwise some word would have two distinct
labelings. Let us show that this procedure preserves aperiodicity. Let AS be the deterministic
underlying automaton of S , which we assume to be aperiodic. We consider AS , the same
automaton but with the input labels projected onto A. Let u ∈ A∗, let p, q be states of AS , let

n be a positive integer such that p
un−−→AS q. Let v ∈ A∗ be a word such that there is a final run

of AS over v from q. This means that there is a labeling z of un, i.e. z = un, ending in (a, [v]R)

46

2.2. Algebraic characterization of rational functions

for some a ∈ A, such that: p
z−→AS q. Since R is aperiodic, we know that for m large enough,

umv ≈R um+1v. Let y be the labeling of u with last letter (a, [umv]R), then z = ykz′ with z′ a

labeling of um. By aperiodicity of AS , if k is large enough we have a run p
yk+1z′−−−−→AS q. Since

yk+1z′ = un+1, we finally have p
un+1

−−−→AS q, which concludes the proof.

4) Let us consider the product of automata AS andR, and let D be the automaton obtained
by the usual powerset construction of automata. This construction preserves aperiodicity, and
is in ExpTime. We only have left to show that we can obtain a bimachine realizing f with D
and R as automata. Indeed, if it is the case and D is aperiodic, we have according to Th. 2.2.11
that D v Lf (R) which means that B is aperiodic a fortiori.

Let S = (AS , iS , oS , tS) with AS = (QS ,∆S , {q0} , FS). Let us define the output functions of
B := (D,R, iB, oB, tB). Let i([u]R) := iS(q0). Let P := {(p1, [v1]R), . . . , (pn, [vn]R)} be a state of
D, let a ∈ A and let v ∈ A∗, we define oB(P, a, [v]R) := oS(pi, (a, [v]), q) such that vi ≈R av and
(pi, (a, [v]R), q) ∈ δS . Let us show that oB is well-defined. Let i, j ∈ n, such that vi = vj = av.
This means that there exists a word which can reach both pi and pj in AS and that there is a
final run over v from both pi and pj . Since AS is unambiguous, we have pi = pj . Furthermore,
since AS is deterministic, the state q is uniquely defined. Let t(P) := tS(pi) such that pi is final.
Again, by the unambiguous nature of AS , this state is uniquely defined. One can easily see that
the outputs of B exactly match those of S, which means that B realizes f .

We now obtain the result linking the existence of a bimachine realizing a function f with
right automaton R, with the sequentiality of fR.

Theorem 2.2.26. Let f be a transduction and let R be a right automaton recognizing dom(f).
There exists a bimachine realizing f with right automaton R if and only if fR is sequential.

Proof. This is a consequence of Prop. 2.2.23 and Lem. 2.2.25.

2.2.4 Canonical bimachine and characterization

Here we define the second key notion from [RS91], the delay congruence of a function. This
congruence yields the coarsest look-ahead possible to realize the function sequentially. Combining
this with the previously introduced minimization, the authors of [RS91] obtained a canonical
bimachine for rational functions. Refining their method, we show that the number of minimal
bimachines of a rational function is finite, which was conjectured in [RS91]. Since we bound the
size of all minimal bimachines, we obtain an algorithm to decide C-rationality (for a decidable
C).

Delay congruence

Definition 2.2.27. Let f : A∗ → B∗ be a function, the left delay congruence of f is defined for

u, v ∈ A∗ by u
∆

≈f v if:

• dom(f)u−1 = dom(f)v−1

• sup {‖f(wu), f(wv)‖del | wu ∈ dom(f)} <∞ (recall that ‖x, y‖del = |x|+ |y| − 2|x ∧ y|)

Furthermore, let Rf denote the right automaton with left transition congruence
∆

≈f and recog-
nizing dom(f).

47

Chapter 2. Characterizations of rational functions over finite words

First we show that this left congruence is coarser than any left transition congruence of a
machine realizing a given function.

Theorem 2.2.28. Let T (resp. B) be a transducer (resp. bimachine) with underlying automaton

A (resp. right automaton R) realizing a function f . Then ≈A v
∆

≈f (resp. ≈R v
∆

≈f).

Proof. We give the proof for a bimachine, the proof for a transducer can be obtained as a
consequence of Th. 2.2.15. Let B = (L,R, i , o, t) be a bimachine and let u ≈R v, we want to

show that u
∆

≈f v. Since ≈R recognizes dom(f) we have dom(f)u−1 = dom(f)v−1.
Let w ∈ dom(f)u−1, let us bound the size of del(f(wu), f(wv)). We have that f(wu) =

i([wu]R)o([ε]L , w, [u]R)o([w]L , u, [ε]R)t([wu]L) and since u ≈R v we also have that f(wv) =
i([wu]R)o([ε]L , w, [u]R)o([w]L , v, [ε]R)t([wv]L). If we remove the longest common prefix, we ob-
tain that del(f(wu), f(wv)) ≤ |o([w]L , u, [ε]R)t([wu]L)| + |o([w]L , v, [ε]R)t([wv]L)| ≤ k(|u| +
|v| + 2) where k is the maximum size of words in the range of i , o, t . Finally we obtain

supw∈A∗‖f(wu), f(wv)‖del ≤ k(|u|+ |v|+ 2) <∞ which means that u
∆

≈f v.

We now show how to compute the right automaton Rf .

Theorem 2.2.29. Let B be a bimachine realizing a function f . One can compute Rf in PTime.

Proof. Let B = be a bimachine with left and right automata L and R, respectively. According
to Th. 2.2.28, we know that R v Rf . Let [u1]R , [u2]R be two states of R, we can choose

u1, u2 of size linear in QR. Thus we only have to show how to decide if u1
∆

≈f u2 in PTime.
First we can easily check that dom(f)u−1

1 = dom(f)u−1
2 . Now we want to check whether we

have supw∈A∗‖f(wu1), f(wu2)‖del <∞. From B, for any word x ∈ A∗ we can easily construct a
transducer Tx which realizes the function fx : w 7→ f(wx). We can take the transducer T obtained
from B by the construction of Prop. 2.2.3, we set as final states the states from which T has a
final run over x, and we define the final output function to recover the missing output of x. Thus

deciding whether u1
∆

≈f u2 amounts to deciding if ‖fu1 , fu2‖del := supw∈A∗‖fu1(w), fu2(w)‖del <
∞.

We define a twinning-like property which will be equivalent to ‖fu1
, fu2
‖del <∞. This notion

is equivalent to that of adjacent functions defined in [RS91]. Let T1 and T2 be two transducers
with the same domain. We say that T1 and T2 satisfy the adjacency twinning property if for any

pair of initial runs p1
x|α1−−−→T1

q1
y|β1−−−→T1

q1 and p2
x|α2−−−→T2

q2
y|β2−−−→T2

q2 such that there is a word
z with a final run from both q1 and q2 we have: del(i(p1)α1, i(p2)α2) = del(i(p1)α1β1, i(p2)α2β2)

Claim: ‖JT1K, JT2K‖del <∞ if and only if T1 and T2 satisfy the adjacency twinning property.
Let us show this claim. Assume that T1 and T2 do not satisfy the adjacency twinning

property. Then let p1
x|α1−−−→T1

q1
y|β1−−−→T1

q1 and p2
x|α2−−−→T2

q2
y|β2−−−→T2

q2 be two initial runs
such that there is a word z with a final run from both q1 and q2 and: del(i(p1)α1, i(p2)α2) 6=
del(i(p1)α1β1, i(p2)α2β2). Then we obtain that for any integer n, ‖fu1(xynz), fu2(xynz)‖del <
‖fu1(xyn+1z), fu2(xyn+1z)‖del and hence ‖fu1 , fu2‖del = ∞. Conversely, let us assume that T1

and T2 satisfy the adjacency twinning property. This basically means that over synchronized
loops, the delay between T1 and T2 cannot increase. For any word, one can decompose its runs
over T1 and T2 into small parts of bounded size and a bounded number of synchronized loops.
Overall, the delay must stay bounded.

Now we only have left to show that one can decide the adjacency twinning property in
PTime. To do this we use the result of [FMR18] which allows to state properties of transducer
and check them in PTime (actually NLogSpace), for a fixed property. The formalism used is
called pattern logic and allows to quantify over runs of a machine and express constraints on

48

2.2. Algebraic characterization of rational functions

these runs, their input and their output. Using the syntax of the article and considering the
union of the two transducers, the adjacency twinning property is expressed by (the negation of):

∃π1 : p1
x|α1−−−→ q1,∃π′1 : q1

y|β1−−−→ q1,∃π′′1 : q1
z|γ1−−→ r1,

∃π2 : p1
x|α2−−−→ q2,∃π′2 : q2

y|β2−−−→ q2,∃π′′1 : q1
z|γ2−−→ r2,

init(p1) ∧ init(p2) ∧ final(r1) ∧ final(r1) ∧ SDel6=(α1, β1, α2, β2)

Note that the only difference with the twinning property is that the word z has to be the same
for the two runs. Thus we have a PTime algorithm, which concludes the proof.

Canonical bimachine We now show that Rf always gives a sufficient look-ahead to realize
the function f , by exhibiting the canonical bimachine of [RS91]. The bimachine Bf (Rf) is called
the canonical bimachine of f .

Theorem 2.2.30. Let f be a rational transduction, then Bf (Rf) is finite.

Proof. Using Lem. 2.2.25, we only have to show that fRf is sequential. For this we use the
twinning property of [Cho77]. A transducer T (assumed trim) is said to satisfy the twinning

property if for any words u, v ∈ A∗, for any initial runs p1
u|α1−−−→ q1

v|β1−−−→ q1 and p2
u|α2−−−→

q2
v|β2−−−→ q2, we have del(i(p1)α1, i(p2)α2) = del(i(p1)α1β1, i(p2)α2β2). According to [Cho77,

Proposition 3.4], a transducer realizes a sequential sequential function if and only if it sat-
isfies the twinning property. Let T be a trim transducer realizing fRf , and let us assume
that T does not satisfy the twinning property. Let u, v ∈ (A × QR)∗ be annotated words

and let p1
u|α1−−−→ q1

v|β1−−−→ q1 and p2
u|α2−−−→ q2

v|β2−−−→ q2 be initial runs such that we have
del(i(p1)α1, i(p2)α2) 6= del(i(p1)α1β1, i(p2)α2β2). Let (a, [w]Rf) ∈ A × QRf be the last let-
ter of v. Let x1, x2 be two words over which there is a final run from q1 and q2, respectively.
Then, since uvx1, uvx2 ∈ dom(fRf) we must have x1 ≈Rf w ≈Rf x2. Hence we obtain that
for any n, ‖fRf (uvnx1), fRf (uvnx2)‖del < ‖fRf (uvn+1x1), fRf (uvn+1x2)‖del. Finally we have
supn∈N‖f(uvnx1), f(uvnx2)‖del = ∞ which is in contradiction with x1 ≈Rf x2, and fRf is
sequential.

From this theorem we are now able to show that Rf is the minimal look-ahead automaton
needed to realize the function f .

Theorem 2.2.31. Let f be a function and let R be a right automaton recognizing dom(f). There
exists a bimachine with R as right automaton if and only if R v Rf .

Proof. Let f be a transduction realized by a bimachine with right automaton R. According
to Th. 2.2.28, we have R v Rf . Let R be a right automaton recognizing dom(f) such that
R v Rf . Then since Bf (Rf) is a bimachine realizing f , we can obtain from Lem. 2.2.19 a
bimachine realizing f with R as right automaton.

However the canonical bimachine does not capture all the algebraic properties of a transduc-
tion in general.

Proposition 2.2.32. There exists a class of congruences C and a function f such that f is a
C-transduction and the canonical bimachine of f is not a C-bimachine.

Proof. Let C = I. The function fidem is sequential and has a total domain, thus its minimal right
automaton is trivial. This means that the left automaton of its canonical bimachine is simply

49

Chapter 2. Characterizations of rational functions over finite words

the underlying automaton of its minimal sequential transducer, given in Fig. 2.2 on page 30.
This automaton is not idempotent, however the bimachine of Fig. 2.5 on page 43 is idempotent
and realizes fidem.

Example 2.2.33. If we consider the function fswap, then its canonical bimachine is actually the
bimachine given in Ex. 2.2.1. One can also show that it is the only minimal bimachine of the
function since Lfswap

= Lfswap
(Rfswap

). Since this bimachine is not a J-bimachine, this means
that fswap is not in J.

Bounding minimal bimachines As we have seen, looking at the canonical bimachine is not
enough to decide C-rationality in general, and we might need to consider all minimal bimachines.
Here we show that we can bound the size of all minimal bimachines realizing a given function f .
We start by comparing the size of a minimal bimachine with respect to the canonical bimachine.

Theorem 2.2.34. Let B be a minimal bimachine with left automaton L realizing a function f .
Then Lf (Rf) v L.

Proof. Intuitively, since Rf is coarser than any right automaton of a bimachine realizing f , then
Lf (Rf) is the finest minimal left automaton on could need to realize f . Let B be a minimal
bimachine with automata L and R realizing a function f . By minimality of B, we know that
Lf (R) = L. According to Th. 2.2.28, we have R v Rf and from Lem. 2.2.20 we thus obtain
that L = Lf (R) w Lf (Rf).

In particular, we obtain a bound on the size of the minimal bimachines.

Theorem 2.2.35. Let B be a bimachine realizing a function f . Then any minimal bimachine
realizing f has size at most 2-exponential in the size of B.

Proof. Let B be a bimachine realizing a function f . From Th. 2.2.28, we know that Rf is smaller
than B’s right automaton. From Lem. 2.2.25 we know that the size of Lf (Rf) is at most 2-
exponential in the size of B. Symmetrically we can bound the size of Rf (Lf) in the same way.
Overall, from Th. 2.2.34, we know that the size of a minimal bimachine is at most 2-exponential
in the size of B.

Example 2.2.36. We give an example of a minimal bimachine which is exponentially larger
than an equivalent bimachine. Let A = {a, b}, let n ∈ N and let fn(uv) := v for u ∈ A∗ and
v ∈ An and fn(v) = v if |v| < n. The function fn is both sequential and right-sequential.
However, while a right sequential transducer only needs n + 1 states to realize fn, a sequential
transducer needs 2n+1 − 1 states since it needs to remember the last n letters read.

Remark 2.2.37. We have shown in Ex. 2.2.36 that a minimal bimachine may be exponentially
bigger than another bimachine. However, Th. 2.2.35 gives a doubly exponential upper bound.
Up until now we still don’t know if this upper bound is met or not.

Deciding C-rationality We now state our main result of this section, the decision of C-
rationality for rational functions.

Theorem 2.2.38. Let C be a decidable class of congruences such that one can decide if
an automaton A is in C in space K(|A|). Then one can decide if a bimachine B realizes a

C-rational function with space K(22P (|B|)
) for some polynomial P .

50

2.3. Logical transducers

Proof. Let C be a decidable class, and let f be a transduction given as a bimachine B. Since
the size of any minimal bimachine of f is at most 2-exponential in the size of B (Th. 2.2.35), one
can enumerate all the minimal bimachines of f with 2-exponential space and test whether one of
them is in C or not. By property of minimality, and since C is closed under coarser congruences,
there exists a C-bimachine realizing f if and only if there exists a minimal bimachine of f in
C. Furthermore according to Cor. 2.2.16, a transduction is a C-transduction if and only if it is
realized by a C-bimachine, which concludes the proof.

Deciding aperiodicity According to [CH91], testing aperiodicity of an automaton, and hence
a bimachine is PSpace-complete. Hence with the algorithm presented in Th. 2.2.38 we can decide
A-rationality in 2ExpSpace. However, by the robustness of A to determinization, we are able
to improve this complexity.

Theorem 2.2.39. A rational transduction is aperiodic if and only if its canonical bimachine is.

Proof. If f ’s canonical bimachine is aperiodic then f is aperiodic. Let us assume that f is realized
by an aperiodic transducer T . Then according to Th. 2.2.28, Rf is aperiodic as well. Thus from
Lem. 2.2.25, we obtain that the canonical bimachine of f is aperiodic.

This tells us that instead of computing all minimal bimachines of f and test them for aperiod-
icity, one only needs to compute the canonical bimachine. However, since deciding aperiodicity
of a bimachine is PSpace-complete, this stills yields a 2ExpSpace complexity.

Theorem 2.2.40. A rational transduction is aperiodic if and only if all its minimal bimachines
are aperiodic.

Proof. Let us show the one non-trivial direction. Let f be an aperiodic transduction, and let B be
a minimal bimachine of f . According to Th. 2.2.39, we know that Bf (Rf) is aperiodic, and hence
Lf (Rf) is aperiodic. Symmetrically, we have that Rf (Lf) is aperiodic. From Th. 2.2.34, we
obtain that the left and right automata of B are coarser than Lf (Rf) and Rf (Lf), respectively,
and are thus aperiodic.

We obtain our second main result of this section:

Theorem 2.2.41. Deciding if a bimachine realizes an aperiodic function is PSpace-complete.

Proof. From [CH91] we know that the problem is PSpace-hard. Let B be a bimachine with right
automaton R, then from Th. 2.2.14 one can obtain the bimachine B′ := Rf (Lf (R)) in PTime.
Furthermore from Th. 2.2.22, B′ is a minimal bimachine for f . Finally from Th. 2.2.40, we know
that f is aperiodic if and only if B′ is, which we can check in PSpace ([CH91]).

Remark 2.2.42. We leave open the question whether one can decide the same problem in
PSpace when the input is given as a transducer. Deciding whether an automaton recognizes an
aperiodic language can be done in PSpace (see [DG08]), however the proof does not seem to
transfer straightforwardly to transducers.

2.3 Logical transducers

The goal of this section is to establish a transfer theorem of logic-algebra equivalences from
languages to functions. We start by defining, for a logical fragment F, 2-F transducers, an ad hoc
model of logical transducers which exactly coincides with bimachines. Then we give sufficient

51

Chapter 2. Characterizations of rational functions over finite words

conditions under which 2-F transducers and F are equivalent. Under some conditions on a logical
fragment F equivalent to some decidable class of congruences C, we thus obtain an algorithm to
decide F-definability of rational functions, using the result of Section 2.2. In particular we show
the decidability of FO-definability of rational functions.

2.3.1 2-F transducers

We define 2-F transducers, a different formalism from F-transducers defined in Section 1.5.2,
and show their equivalence with C-transducers, under the equivalence of F-languages and C-
languages.

Pairs of formulas We define pairs of formulas, a logical formalism for pointed languages,
where the first component talks about the prefix of the word up to the pointed position and the
second component talks about the suffix from the pointed position. Let F be a logical fragment of
MSO[≤], we define 2-F-sentences over an alphabet A by the following grammar, where φ denotes
an F-sentence and a ∈ A:

F ::= F ∨ F | (φ, φ)a

Let us define by induction on 2-MSO[≤] sentences what it means for a pointed word to satisfy
a 2-MSO[≤] sentence. Let (u, i) be a pointed word over A and let F = (φ1, φ2)a be a 2-MSO[≤]
atomic sentence. Then we say that (u, i) |= F if the following three conditions are satisfied: 1)
u(i) = a 2) u(:i− 1) |= φ1 and 3) u(i+ 1:) |= φ2. Let F := F1 ∨ F2, then (u, i) |= F if either
(u, i) |= F1 or (u, i) |= F2.

Example 2.3.1. We define the same pointed language as in Ex. 1.5.6, Fa,middle := (∃x>,∃x>)a.
This 2-formula states that the pointed position is labeled by a and that the prefix and suffix are
not empty.

2-transducers We define an alternative formalism of logical transducers from the one defined
in Section 1.5.2. Let F be a fragment of MSO[≤], a 2-F transducer over an alphabet A is a tuple
T =

(
K,φdom, (φα)α∈K

)
where K is a finite subset of A∗, φdom is an F-sentence, called the

domain formula, and for each α ∈ K, φα is a 2-F sentence. The semantics is defined exactly as
for F-transducers.

2.3.2 2-F transducers and C-bimachines

Pure machines A transducer or a bimachine is called pure if its initial and final outputs
are all equal to ε. A class of congruences C is called pure if for any alphabet A, {ε} is a
C(A)-language. In other words a class C is pure if for any alphabet A, the congruence ≡ε :=
{(u, v) | u, v 6= ε} ∪ {(ε, ε)} is in C(A).

Proposition 2.3.2. Let C be a pure class of congruences, then any C-transduction can be
realized by a pure C-bimachine.

Proof. Let C be a pure class. Let B = (L,R, i , o, t) be a bimachine realizing a function f ,
with C-automata L := (QL,∆L, {l0} , FL) and R := (QR,∆R, IR, {r0}). We define L′ by taking
∼L′ := ∼Lu≡ε and we define R′ the same way. Since C is pure, and is closed under intersection,
we have that L′ andR′ are still C-automata. We define a new C-bimachine B′ := (L′,R′, i ′, o′, t ′)
by i ′ : r 7→ ε, t ′ : l 7→ ε. Let u, v ∈ A+ be non-empty words and let a ∈ A be a letter, we define
the new output function by:

52

2.3. Logical transducers

• o′([ε]L′ , a, [ε]R′) := i([a]R′)o([ε]L′ , a, [ε]R′)t([a]L′)

• o′([ε]L′ , a, [v]R′) := i([av]R′)o([ε]L′ , a, [v]R′)

• o′([u]L′ , a, [ε]R′) := o([u]L′ , a, [ε]R′)t([ua]L′)

• o′([u]L′ , a, [v]R′) := o([u]L′ , a, [v]R′)

By construction the pure C-bimachine B′ realizes f , which concludes the proof.

Theorem 2.3.3. Let C be a pure class of congruences equivalent to some logical fragment F.
Then C-transductions are exactly the 2-F transductions.

Proof. Let B = (L,R, i , o, t), be a C-bimachine realizing a function f . Since C is pure, we can
assume from Prop. 2.3.2 that B is pure. Since L and R are C-automata, we have for any word
w ∈ A∗ that [w]L and [w]R are C-languages. From the equivalence between C and F, there
exist F-formulas φ[w]L

and φ[w]R
recognizing these languages, respectively. We define the 2-F

transducer T :=
(
K,φdom, (φα)α∈K

)
by:

• K := {o([u]L , a, [v]R) | a ∈ A, u ∈ A∗, v ∈ A∗}

• φdom :=
∨
u∈dom(f) φ[u]L

• φα :=
∨

o([u]L,a,[v]R)=α(φ[u]L
, φ[v]R

)a

We thus obtain a 2-F transducer realizing f .
Let T =

(
K,φdom, (φα)α∈K

)
be a 2-F transducer. Let α ∈ K and let us write the 2-F

formula φα =
∨
i∈nα(φα,i, ψα,i)aα,i . For a formula φ, we define ≡φ the syntactic congruence of

JφK. By equivalence between C and F, the congruences ≡φα,i and ≡ψα,i are in C. Let L be
the left automaton recognizing dom(f) with right transition congruence ≡φdom

d
α,i∈nα ≡φα,i .

Symmetrically we define R as the right automaton recognizing dom(f) with right transition
congruence ≡φdom

d
α,i∈nα ≡ψα,i . We define the pure C-bimachine B := (L,R, i , o, t), with

o([u]L , a, [v]R) := α if there is i ∈ nα such that (uav, |u|+ 1) |= (φα,i, ψα,i)aα,i . By construction
B realizes f which concludes the proof.

2.3.3 Logic-algebra transfer result

Here we give sufficient conditions on a fragment F so that 2-F and Fc (the pointed version of F,
see Section 1.5.2) recognize the same pointed languages. This means, according to Th. 2.3.3, that
these conditions are sufficient to transfer a logic algebra equivalence from languages to functions.

Languages over a pointed alphabet A pointed word over an alphabet A can alternatively
be seen as a words over an extended alphabet A] Ȧ. Of course not all words over this extended
alphabet are pointed words, but in most logics one can define a formula to enforce the existence
of a unique pointed position. A language L over the extended alphabet A] Ȧ is called pointed
if any word of L has exactly one position with a pointed letter, i.e. L ⊆ A∗ȦA∗.

Example 2.3.4. Let A = {a, b} be an alphabet, we define a formula φpointed := ∃x Ȧ(x)∧∀y y =
x ∨ A(y), where A(x) is a macro defined as

∨
a∈A a(x). We define the same language as in

Ex. 1.5.6, but seen as a language over a pointed alphabet: φa,middle := φpointed ∧ ∃x ȧ(x) ∧
¬min(x) ∧ ¬max(x).

53

Chapter 2. Characterizations of rational functions over finite words

Sufficient conditions Let F be a logical fragment of MSO[≤]. Our goal is to show that 2-
F and Fc coincide under assumptions (1)-(3), and assumption (4) will ensure that the class of
congruences we consider is pure.

(1) Fc-formulas over an alphabet A and F-formulas over an alphabet A] Ȧ define the same
pointed languages.

(2) A language over an alphabet A is definable by a F-formula over A if and only if it is
definable by a F-formula over a larger alphabet A ∪B.

(3) F-languages are closed under pointed concatenation, meaning that for two F-languages
L1, L2 over an alphabet A, the language L1]L2 is an F-language over A] {]}.

(4) {ε} is an F-language over some alphabet.

Remark 2.3.5. As we will see these assumptions hold for most known logical fragments which
have access to the linear order predicate, and which are equivalent to some class of congruences.
A co-example is the fragment of first-order logic with successor predicate, FO[+1], which does
not satisfy property (3).

From pairs of formulas to pointed formulas and back We now show the equivalence of
2-F and F under assumptions (2) and (3).

Lemma 2.3.6. Let F be a logical fragment equivalent to some class of congruences C. Under
assumption (2), any F-definable pointed language is 2-F definable.

Proof. Let F be a logical fragment equivalent to some class of congruences C and satisfying
property (2). Let φ be an F-formula recognizing a pointed language L over the alphabet A] Ȧ.
Let A be C(A] Ȧ)-automaton recognizing L, with a transition relation ∆. Let us define

F :=
∨

(p,ȧ,q)∈∆

(φpI , φ
F
q)a

where φpI and φFq denote F-formulas recognizing the languages of words which have an initial run

to p and a final run from q, respectively. We know that these languages are C(A] Ȧ)-languages
since they are recognized by automata obtained from A by changing the initial and final states,
which does not change the transition congruence. From the equivalence between F and C, these
languages are definable by F-formulas over the extended alphabet A] Ȧ. From assumption (2)
we thus obtain that these languages can be defined by F-formulas over A.

Lemma 2.3.7. Let F be a logical fragment equivalent to some class of congruences C. Under
assumptions (2)-(3), any 2-F definable pointed language is F-definable.

Proof. Let F be a logical fragment equivalent to some class C, satisfying assumptions (2)-(3).
Let F =

∨
i∈n(φi, ψi)ai be a 2-F formula over an alphabet A. We define the languages Li :=

JφiKȧiJψiK which are pointed concatenations of F-langugages, and are thus each F-languages
over A] {ȧi}, respectively, from property (3). Using (2) we have that each Li is a pointed F-
language over A] Ȧ. Since F is equivalent to C, and since C-languages are closed under boolean
combinations, we have that

⋃
i∈n Li is a pointed F-language over A] Ȧ.

By combining the two previous lemmas we obtain the correspondence between Fc and 2-F
pointed languages.

Corollary 2.3.8. Let F be a logical fragment equivalent to some class of congruences C. Under
assumptions (1)-(3), Fc and 2-F define the same pointed languages.

54

2.3. Logical transducers

Proof. Let F be a logical fragment equivalent to some class of congruences C satisfying (1)-(3).
From Lem. 2.3.6 and 2.3.7 we know that F and 2-F define the same pointed languages. Using
(1) we obtain our result.

Lemma 2.3.9. Let F be a logical fragment equivalent to some class of congruences C. Under
assumptions (2) and (4), C is pure.

Proof. According to (4), {ε} is an F-language over some alphabet A, which means, according to
(2) that {ε} is an F-language over any alphabet. By equivalence with C, we obtain that C is
pure.

We are now able to state our main transfer theorem.

Theorem 2.3.10. Let F be a logical fragment satisfying properties (1)-(4) and equivalent to a
class of congruences C. Then any transduction is F-definable if and only if it is C-definable.

Proof. From Lem. 2.3.9, we know that C is pure. From (1)-(3) and Cor. 2.3.8 we have an
equivalence between 2-F transducers and F-transducers. From Th. 2.3.3 we have the equiva-
lence between 2-F transducers and C-bimachines. Hence we obtain the equivalence between
F-transducers and C-bimachines.

2.3.4 Decidable fragments

We apply our transfer theorem to three well-known fragments of MSO[≤], namely first-order logic
FO[≤], two-variable logic FO2[≤] and the boolean closure of existential first-order logic BΣ1[≤].

Proposition 2.3.11. The fragments FO[≤], FO2[≤] and BΣ1[≤] all satisfy properties (1)-(4).

Proof. Let us show that FO2[≤] satisfies properties (1)-(4).
Let us show property (1). Let φ be an FO2[≤]-formula defining a pointed language over the

alphabet A] Ȧ. We define φ′ the FO2
c [≤]-formula obtained by substituting (x = c) ∧ a(x) for

each occurrence of a predicate ȧ(x). Then the FO2
c [≤]-formula φ′ recognizes the same pointed

language as φ. Let φ be an FO2
c [≤]-formula over A, and let φpointed denote the FO2[≤]-formula

from Ex. 2.3.4 defining the language of pointed words over A] Ȧ. Let φ′ be the FO2[≤]-formula
obtained from φ by the following syntactic substitutions. Each occurrence of a predicate a(x) is
replaced by a(x)∨ ȧ(x), a(c) is replaced by ∃x ȧ(x), and x < c is replaced by ∃y Ȧ(y)∧ (x < y).
Finally, the formula φpointed ∧ φ′ is in FO2[≤] and defines the same pointed language as φ.

Let us show (2). Let φ be an FO2[≤]-formula over an alphabet A recognizing a language L.
In particular, φ is an FO2[≤]-formula over A]B, but it may recognize a language larger than L
in (A] B)∗. Let φA := ∀x A(x) be the formula stating that each position is labeled by a letter
of A. Then φ ∧ φA defines L over A] B. Let φ be an FO2[≤]-formula over an alphabet A] B
recognizing a language L ⊆ A∗. Let φ′ be the formula obtained from φ by substituting ⊥ for any
predicate b(x) for b ∈ B. Then any word is a model for φ over A] B if and only it is a model
for φ′ over A.

Let us show (3). Given a formula φ in the fragment FO2[≤], we define inductively the guarded
FO2

c [≤]-formula φ<c by restricting every quantification to positions before the position of c. More
formally, if φ = ∃x ψ(x), then we define φ<c := ∃x (x < c) ∧ ψ<c(x). Boolean connectives and
atomic formulas are not affected. Let L1, L2 be two languages over A recognized by the FO2[≤]-
formulas φ1, φ2 respectively, and let] /∈ A. We define the FO2

c [≤]-formula φ := φ<c
1 ∧](c) ∧ φ<c

2

which recognizes the pointed language L1]̇L2. Using (1), we know that this language can be
recognized by an FO2[≤]-formula.

55

Chapter 2. Characterizations of rational functions over finite words

Property (4) is satisfied since φempty := ∀x ⊥ defines the language {ε}.
The same arguments work for FO[≤], and adapting them slightly gives a proof for BΣ1[≤].

Now we have all the ingredients to state the main result of this section.

Theorem 2.3.12. Given a bimachine realizing a function f , one can decide if f is:

• FO[≤]-definable (in PSpace)

• FO2[≤]-definable

• BΣ1[≤]-definable

Proof. The equivalence between FO[≤] and A is due to [Sch65, MP71]. In [TW98], the authors
show the equivalence between FO2[≤] and DA. The equivalence between BΣ1[≤] and J is partly
due to [Sim75] and can be found in [DGK08]. From Prop. 2.3.11 and Th. 2.3.10 we have that
these equivalences transfer to transductions. Furthermore the equivalences described above are
effective, meaning that classes of congruences A, DA and J are decidable. Hence from Th. 2.2.38,
we obtain our result. In the particular case of FO[≤], Th. 2.2.41 says that one can decide FO[≤]-
definability in PSpace.

56

Chapter 3

Characterizations of rational
functions over infinite words

“Le café est un breuvage qui fait dormir
quand on n’en prend pas.”

– Alphonse Allais

Rational ω-languages inherit many of the good properties of rational languages over finite
words. Most of the celebrated results for rational languages over finite words have been success-
fully transferred to infinite words, often at some cost, if not conceptual then at least technical.
Our goal is to apply the same program as for rational functions over finite words. With this
plan in mind, new difficulties arise (we count four main ones) which can be classified into three
categories: those that we overcome with a satisfying solution, those that are overcome but at
some cost of elegance or importance and those which we have not been able to overcome yet.

Our first obstacle manifests itself already for sequential ω-functions, and even for rational
ω-languages. As we mentioned in Chap. 1, the link between right congruences and deterministic
automata is not as tight for ω-languages as it is in the finite case. Concretely, there is no canon-
ical (nor indeed minimal) deterministic automaton recognizing a given ω-language. Somewhat
surprisingly we are however able to circumvent this issue for sequential ω-functions. We show, in
some precise way, that the problem of realizing a sequential transduction with a minimal device
and the problem of recognizing the domain of the function can be considered independently, and
we are thus able to minimize sequential ω-transducers.

Although finding a suitable notion of right-sequential transducer is not straightforward, Car-
ton proposed in [Car10] a solution based on prophetic automata (see [CM03]). This solution
seems natural and in [Car10] the author even obtained an Elgot-Mezei theorem for rational
functions over infinite words.

Perhaps the biggest issue in the case of ω-functions, is the breaking of the symmetry between
sequential and right sequential ω-functions. However, we have not been able to obtain a canonical
way to realize a right sequential function. This problem transfers to bimachines where we are
able to minimize left automata with respect to a fixed right automaton, but not the other way
around. This problem does not seem easy to overcome, which gives little hope of characterizing
all minimal bimachines for rational ω-functions.

Our third issue is the definition of the delay congruence which does not make sense when
applied directly to infinite words. Using a slight variation, originating from [BLN12], we are

57

Chapter 3. Characterizations of rational functions over infinite words

a ¬a

b|b
c|c

a|ε

a|ε

b|b
c|c

Figure 3.1: A sequential Büchi transducer realizing ferase.

however able to recover this congruence which has the same minimality property as in the finite
case. However, this congruence just falls short of giving enough information to realize a function
sequentially, in the general case, which brings us to the fourth issue.

In order to compensate for the lack of information given by the delay congruence, we define
a second canonical look-ahead congruence, which we call the ultimate congruence, and which
does give enough information to realize any function sequentially. We thus regain a canonical
bimachine for rational ω-functions. This ultimate congruence comes at some cost however,
since we have not been able to show any minimality property. Obtaining a minimal look-ahead
automaton would be much more satisfying (especially since we have not been able to characterize
the minimal bimachines) and we are still working towards this goal.

Let us now describe the results of this section. The first is the extension of the minimization
results of sequential functions (from [Cho03]) to sequential ω-functions. The second result is
an Elgot-Mezei theorem for rational ω-functions, which was already half-obtained in [Car10].
Our third result is the definition of a canonical look-ahead which gives, together with a left
minimization procedure, a canonical bimachine to realize a rational ω-transduction. Finally we
show that this canonical bimachine is aperiodic for any aperiodic transduction which gives, as a
corollary, a procedure to decide FO-definability of rational ω-transductions.

3.1 Sequential and quasi-sequential functions

Here we extend the results from [Cho03] to sequential ω-functions. Given a sequential ω-function
f we define the minimal sequential transducer realizing an extension of f . We show that this
minimal transducer is coarser than any transducer realizing f , and we show how to obtain this
minimal transducer in PTime, from a sequential transducer realizing f . The main difference
with the finite case is that one cannot define a minimal automaton recognizing a given rational
ω-language. To circumvent this issue we extend any sequential function over the topological
closure (for the prefix distance) of its domain, in a canonical way.

Another difference with the finite case is that having a syntactic right congruence of finite
index is no longer sufficient for a function to be sequential, but rather characterizes a larger
class of functions that we call quasi-sequential. Quasi-sequential functions can be thought of
as the generalization of sub-sequential transductions from finite words to infinite words. A
function is quasi-sequential if it can be realized by a sequential transducer extended with the
possibility to append a (possibly infinite) word at the “end” of the computation. It turns out
that quasi-sequential functions are exactly the functions for which the determinization procedure
from [BC04] terminates. However the procedure is not always correct when the function is not
sequential. We also show, just like for the finite case, that determinization preserves aperiodicity
of ω-transducers.

58

3.1. Sequential and quasi-sequential functions

3.1.1 Algebraic characterization of sequential functions

We define the right syntactic congruence of an ω-function. For that we need the notions of
infimum and liminf of a function. As we show below, the liminf of a sequential function extends
it over the topological closure of its domain. The minimality result we obtain holds for liminfs but
we also show that the minimal sequential transducer for a liminf is coarser than any sequential
transducer realizing the original function.

Inf and liminf Let A,B be alphabets. Let f : Aω → B∞ be a partial function. We define
f̂ : A∗ → B∞ the infimum of f over ↓dom(f) ∩ A∗ by f̂(u) :=

∧
{f(ux) | ux ∈ dom(f)}.

Intuitively, f̂ outputs over a word u the longest possible word, knowing that the input begins
with u. We also define f : Aω → B∞ the limit infimum of f over dom(f) by f(x) := limu<x f̂(u).

Example 3.1.1. Let ferase : (a∗(b+ c))ω → (b+ c)ω be the function which erases as of infinite
words with an infinite number of non a letters over A = {a, b, c} (given in Fig. 3.1 on the

preceding page). f̂erase : A∗ → (b + c)∗ is simply the morphism which erases as and leaves b
and c unchanged. Thus f erase is defined over dom(f) = Aω and erases as and leaves bs and cs
unchanged. The function f erase can be given by the transducer of Fig. 3.1 on the facing page,
by making all states final. We can see that the sequential function f erase extends the sequential
function ferase.

Let f#a : (a + b)ω → (a + b)ω be defined by f#a(x) = aω if a ∈ Inf(x) and f#a(x) = bω

otherwise. Here for any finite word u, we have f̂#a(u) = ε, and hence for any infinite word x we
have f#a(x) = ε, thus f#a does not extend f#a.

Let A = {a, b}, let un ∈ AA+ for any n ∈ N and let x =
∏
n∈N(un#), we define fblocks :

(AA+#)ω → (a + b + #)ω by fblocks(x) =
∏
n∈N(fswap(un)#). Then we obtain the infi-

mum function f̂blocks(u1# · · ·#un) = fswap(u1)# · · ·#fswap(un−1)#. Let x ∈ Aω, then the
liminf extends fblocks over words with a finite number of #s, by fblocks(u1# · · ·#un#x) =
fswap(u1)# · · ·#fswap(un−1)#.

Here we show that the liminf of a sequential function is an extension of it.

Proposition 3.1.2. Let f be a sequential ω-function, then f |dom(f) = f .

Proof. Let T = (A, i , o) be a sequential transducer realizing a function f : Aω → B∞, and let
x ∈ dom(f). Let us first remark that f(x) ≤ f(x). If f(x) is a finite word then we have the initial

run q0
u|α−−→ p, with i(q0)α = f(x) for some u < x. Thus we have f(x) ≤ f̂(u) ≤ f(x) ≤ f(x).

Let us now assume that f(x) is infinite and let q0
x(:n)|αn−−−−−→ pn denote the initial run of the prefix

of x of size n ∈ N. We have that i(q0)αn ≤ f̂(x(:n)) for any n ∈ N, and by taking the limit we
obtain: f(x) ≤ f(x) and thus f(x) = f(x).

Remark 3.1.3. From this we deduce that the function f#a given in Ex. 3.1.1 is not sequential.
Since the function fblocks is not sequential, we also deduce that the above condition is necessary
but not sufficient to be sequential.

Syntactic congruence

Definition 3.1.4. The syntactic congruence of a function f : Aω → B∞ is defined by u ∼f v if:

• u−1dom(f) = v−1dom(f).

59

Chapter 3. Characterizations of rational functions over infinite words

• either f̂(u) and f̂(v) are both infinite and ultimately equal, or ∀x ∈ Aω, such that ux, vx ∈
dom(f) we have f̂(u)−1f(ux) = f̂(v)−1f(vx).

Proposition 3.1.5. Let f : Aω → B∞ be a rational ω-function, then ∼f is a right congruence.

Proof. The proof goes almost like in the finite case. Let f : Aω → B∞ be a rational ω-function,
let u ∼f v and let a ∈ A. We want to show that ua ∼f va. First (ua)−1dom(f) = (va)−1dom(f).

Let x ∈ Aω such that uax, vax ∈ dom(f). If f̂(u) and f̂(v) are ultimately equal, then it is also the

case for f̂(ua) and f̂(va). If f̂(u) and f̂(v) are finite then let g(y) := f̂(u)−1f(uy) = f̂(v)−1f(vy).

If
∧
y g(ay) is infinite then it is an infinite suffix of f̂(ua) and f̂(va) which are thus ultimately

equal. Let us assume
∧
y g(ay) is finite:

f̂(ua)−1f(uax) =
(∧

y f(uay)
)−1

f(uax)

=
(∧

y f̂(u)g(ay)
)−1

f̂(u)g(ax)

=
(
f̂(u)

∧
y g(ay)

)−1

f̂(u)g(ax)

=
(∧

y g(ay)
)−1

g(ax)

= f̂(va)−1f(vaw)

Hence ua ∼f va which concludes the proof.

Example 3.1.6. We compute for the three functions of Ex. 3.1.1 the right syntactic congruence.
We have for any word ux ∈ Aω that f̂erase(u)−1ferase(ux) = ferase(x), and thus for any finite
words u, v we have u ∼ferase

v. Hence ∼ferase
is just the trivial congruence.

Similarly we have f̂#a(u)−1f#a(ux) = f#a(x), and thus ∼f#a
is also trivial.

Let u ∈ (a+b)∗, α ∈ (a+b), and let x := (#aa)ω then we have f̂blocks(αuα)−1fblocks(αuαx) =
fblocks(αuαx) = αuαx, which means that the right syntactic congruence of fblocks has an infinite
index.

Lemma 3.1.7. Let f : Aω → B∞ be a rational ω-function, then for any finite word u ∈ A∗,
f̂(u) is a rational word.

Proof. Let T be an ω-transducer realizing the function f . Let u ∈ A∗ be a finite word, we can
define an automaton recognizing L(u), the words in B∞ which can be output by reading a word

beginning with u. Thus L(u) is a rational subset of B∞, and thus f̂(u) =
∧
L(u) is a rational

word.

In the following, when a Büchi automaton has only final states, we will rather write it
as a triple (Q,∆, I) instead of a quadruple (Q,∆, I, Q), for simplicity. We call this class of
deterministic automata left automata. Note that a left automaton recognizes a closed language.
A sequential transducer whose underlying automaton is a left automaton is called left-sequential.

Let f be a rational ω-function. Based on the right syntactic congruence ∼f , we define
Tf := (Af , i , o) with Af := (Qf ,∆f , If , Ff) the minimal sequential transducer of f by:

• Qf := {[u] | u ∈ ↓dom(f) ∩A∗}

• ∆f := {([u] , a, [ua]) | a ∈ A}

• If := {[ε]}

60

3.1. Sequential and quasi-sequential functions

• Ff := Qf

• i([ε]) :=

[
f̂(ε) if f̂(ε) is finite

α if f̂(ε) = αβω (in normal form) and β 6= ε

• o([u] , a, [ua]) :=

 f̂(u)−1f̂(ua) if f̂(ua) is finite

β if f̂(u) = αβω (in n.f.) and β 6= ε

α if f̂(u) finite, f̂(u)−1f̂(ua) = αβω (in n.f.) and β 6= ε

Remark 3.1.8. Just like for the case of finite words, notice that ∼Af = ∼f , by definition, and
that the number of states of Af is the number of equivalence classes of ∼f (up to adding a sink
state). In particular if ∼f has infinite index then Af actually has an infinite number of states.

Proposition 3.1.9. The outputs of the minimal sequential transducer of a rational ω-function
are well-defined.

Proof. Let f : Aω → B∞ be a rational ω-function. We show that the output functions are
well-defined, i.e. do not depend on the choice of representative. According to Lem. 3.1.7, for
any finite word u ∈ A∗, f̂(u) is rational, and in particular f̂(ε), hence i is well-defined. Let
u ∼f v and let a ∈ A such that ua ∈ ↓dom(f). We want to show that the output function o

is well-defined. Let us assume that f̂(u) is infinite, then according to Lem. 3.1.7, there exists

α ∈ A∗, β ∈ A+ such that f̂(u) = αβω (in normal form). Since u ∼f v, we know that f̂(u) and

f̂(v) are ultimately equal and in particular, f̂(v) = γβω for some γ ∈ B∗. Let us now assume

that f̂(u) is finite, in that case, so is f̂(v). Since u ∼f v we have f̂(u)−1f(ux) = f̂(v)−1f(vx),
for any x ∈ Aω such that ux, vx ∈ dom(f), and we denote this word by g(x).

f̂(u)−1f̂(ua) = (
∧
x f(ux))

−1∧
x f(uax)

=
(∧

x f̂(u)g(x)
)−1∧

x f̂(u)g(ax)

= (
∧
x g(x))

−1∧
x g(ax)

= f̂(v)−1f̂(va)

Hence we obtain that o([u] , a, [ua]) is well-defined.

Theorem 3.1.10. The transducer Tf realizes f .

Proof. Let f : Aω → B∞ be a rational ω-function and let g denote the function realized by Tf .

Let us first remark that dom(g) = dom(f) = dom(f). Let x ∈ dom(f). Let us assume that

f̂(ε) = αβω is infinite. Then we have i([ε]) = α and the output of any transition in Tf is equal

to β. This means that f and g are both the constant function equal to αβω over dom(f).

We now assume that there exists a letter a and a prefix of x, u < ua < x such that f̂(u) is

finite and f̂(ua) is infinite (and thus equal to f(x)). Let [ε]
ua|γ−−−→Tf [ua] denote the initial run

of Tf over ua. Let f̂(u)−1f̂(ua) = αβω, with β 6= ε by assumption. By definition of Tf we have

that i([ε])γ = f̂(u)α, and we also know that all the transitions after [ua] will output β. Hence

g(x) = f̂(u)αβω = f̂(ua) = f(x).

Let us finally assume that for all prefixes u < x we have f̂(u) finite. By definition of the

outputs of Tf , g(x) = f̂(ε) ·
(∏

i∈N f̂(x(:i))−1f̂(x(:i+ 1))
)

= limi∈N f̂(x(:i)) = f(x).

61

Chapter 3. Characterizations of rational functions over infinite words

In contrast with the case of finite words, the minimal sequential transducer of a function f
is actually the minimal sequential transducer of f . We still show that this minimal sequential
transducer is coarser than any sequential transducer realizing f .

Theorem 3.1.11. Let f be a sequential ω-function realized by a sequential ω-transducer with
underlying automaton A, then ∼A v ∼f .

Proof. Let T = (A, i , o) be a sequential ω-transducer realizing f with A = (Q,∆, {q0} , F)
deterministic. Let u ∼A v and let p be the state of A reached from the initial state by u and v.
Let Tp := (Ap, p 7→ ε, o) with Ap := (Q,∆, {p} , F), and let fp := JTpK. We have x ∈ u−1dom(f),
if and only if the run of A from p over x always stays in the co-accessible part of A, and thus in
particular u−1dom(f) = v−1dom(f).

Let x ∈ Aω such that ux, vx ∈ dom(f). Let us denote the initial runs of T over u and v by

q0
u|γ−−→ p and q0

v|γ′−−→ p, respectively. Let αβω :=
∧
{fp(y) | y ∈ dom(fp)}, and let p

x|δ−−→ F . If

β 6= ε then f̂(u) = i(q0)γαβω and f̂(v) = i(q0)γ′αβω are ultimately equal. If β = ε, we have

f̂(u) = i(q0)γα, f̂(v) = i(q0)γ′α, f(ux) = i(q0)γδ and f(vx) = i(q0)γ′δ. Hence we obtain that

f̂(u)−1f(ux) = α−1δ = f̂(v)−1f(vx), and thus u ∼f v.

We obtain a Myhill-Nerode-like characterization for sequential functions. As we will see later,
this characterization is closely related to the characterization given in [BC04] in terms of weak
twinning property and continuity.

Theorem 3.1.12. A rational ω-function f is sequential if and only if the two following conditions
hold:

• ∼f has finite index

• f extends f

Proof. If f is sequential then from Th. 3.1.11, we know that ∼f has finite index. Furthermore,
according to Prop. 3.1.2, f extends f . Conversely, If ∼f has finite index, then Tf is a finite
transducer realizing f , according to Th. 3.1.10. Since f is rational, then so is its domain, thus
by taking the product of Tf with a deterministic (Muller) automaton recognizing dom(f), we
obtain a sequential transducer realizing f |dom(f), which is equal to f by assumption.

Remark 3.1.13. The characterization of Th. 3.1.12 is tightly linked to the one from [BC04]
which is expressed in terms of the weak twinning property (defined below) and continuity of
the function for the prefix distance. As we will see below, the finite index of the syntactic
congruence is actually equivalent to being realized by a transducer satisfying the weak twinning
property. Over functions which only produce infinite words then we also have an equivalence
between continuity and the liminf extending the function. In the general case however, the
liminf extending the function does not mean continuity for the prefix distance topology but for
the topology induced by the prefix partial-order (both topologies coincide over infinite words).

Example 3.1.14. As we have seen in Ex 3.1.1, the function fblocks extends fblocks. However,
from in Ex. 3.1.6 we have that the right syntactic congruence of fblocks is infinite, and thus the
function is not sequential.

From Ex. 3.1.6 we know that ∼f#a
has index 1. However, in Ex. 3.1.1 we have seen that f#a

does not extend f#a. Hence ∼f#a
is not sequential either.

62

3.1. Sequential and quasi-sequential functions

3.1.2 Minimization of sequential transducers

Minimization of sequential transducers over infinite words works in almost the same way as in
the finite case. The difference is that we actually minimize the transducer of the liminf of the
function.

Let T = (A, i , o) be an ω-transducer, let p be a state and let the longest common prefix of

outputs from p be αpβ
ω
p :=

∧{
α | p u|α−−→ P final

}
, in normal form. In the following, a state p

such that βp 6= ε is called a constant state. Then T is called in earliest normal form if 1) for any
state p, αp = ε and 2) for any transition (p, a, q) such that p is constant, we have o(p, a, q) = βp.

Proposition 3.1.15. Given an ω-transducer T , one can obtain in PTime a new transducer T̂
in earliest normal form realizing the same function.

Proof. We give the definition of T̂ , show that it realizes the same function and is indeed in
earliest normal form, and finally we give a procedure to compute it. Let T = (A, i , o, t) be a
transducer realizing a function f , let p be a state of A and let αpβ

ω
p denote the longest common

prefix of outputs from p in normal form. We define T̂ =
(
A, î , ô

)
by:

• î(p) := i(p)αp

• ô(p, a, q) :=

[
α−1
p o(p, a, q)αq if βp = ε
βp if βp 6= ε

If x is a word for which T never reaches a constant state in an accepting run, one can easily
see that all the αps cancel out, and thus JT̂ K(x) = f(x). If T reaches a constant state q in an
accepting run over x, then up until this constant state, all the αps cancel out except for αq and

then all transitions output βq, which means again that JT̂ K(x) = f(x).

By construction, T̂ is in earliest normal form. We have left to show that we can compute the
words αp, βp in PTime. We denote by Ap the automaton recognizing Lp the language of words
produced from p. Ap is obtained from A by replacing the labels of transitions by their outputs.

We split the proof into three distinct case: 1) Lp contains a finite word, 2) Lp contains a
unique infinite word and 3) Lp contains at least two distinct infinite words. To decide if the
first case holds, one only has to remove all non ε-transition and check if there is a circuit of
ε-transitions from a state which is reachable from p and which is final. This can be done in
PTime and in that case βp = ε, and the size of αp is at most linear in |Q|. This means that
we can reduce the problem to computing the longest common prefix of an automaton on finite
words and thus, using [BC00] we obtain αp in PTime.

If we are not in case 1), let us show how to decide if 2) or 3) holds, in PTime. We can
check for emptiness of Lp, and if it is not empty then we can obtain an infinite word uvω, in
PTime. From this, assuming Ap is trim, we can check if there is a finite word w such that
w(|w|) 6= uvω(|w|), in NLogSpace. If there is no such word, then αpβ

ω
p = uvω, so we only have

to put uvω in normal form. Otherwise, if there is such a w, then there is one of polynomial size,
and again using the result of [BC00], we obtain αp in PTime.

We now give the minimization theorem for sequential ω-transducers, but before that we need
two small lemmas.

Lemma 3.1.16. Let f : Aω → B∞ be a function. Then ∼f v ∼f .

63

Chapter 3. Characterizations of rational functions over infinite words

Proof. Let f : Aω → B∞ be a function, and let u ∼f v. Of course we have dom(f) = dom(f).

Let us notice that we have f̂ = f̂ . Let x be such that ux, vx ∈ dom(f). Let us assume

that f̂(u) is infinite, then since u ∼f v, we know that f̂(v) is also infinite and they are ulti-

mately equal. If we assume that f̂(u) is finite then f̂(u)−1f(ux) = f̂(u)−1 limn∈N f̂(ux(:n)) =

limn∈N f̂(u)−1f̂(ux(:n)). However, according to the proof of Prop. 3.1.9 we have for any word w

that f̂(u)−1f̂(uw) = f̂(v)−1f̂(vw), and thus we obtain that f̂(u)−1f(ux) = f̂(v)−1f(vx) which
concludes the proof.

Lemma 3.1.17. Let f : Aω → B∞ be a function such that f extends f . Then ∼f v ∼f .

Proof. Let f : Aω → B∞ be such that f extends f . Again we have dom(f) = dom(f), and

f̂ = f̂ . Let u ∼f v, and let x be such that ux, vx ∈ dom(f), then in particular, ux, vx ∈
dom(f),f(ux) = f(ux) and f(vx) = f(vx). If f̂(u) is infinite then f̂(v) is also infinite and

they are ultimately equal since u ∼f v. If f̂(u) is finite then f̂(u)−1f(ux) = f̂(u)−1f(ux) =

f̂(v)−1f(vx) = f̂(v)−1f(vx).

Corollary 3.1.18. Let f be a sequential ω-function, then ∼f = ∼f .

Proof. We conclude using Lem. 3.1.16 on one hand, and Prop. 3.1.2 and Lem. 3.1.17 on the other
hand.

We can now state and prove our minimization result.

Theorem 3.1.19. Given a sequential ω-transducer, one can compute the associated minimal
sequential transducer (up to renaming states) in PTime.

Proof. Let T = (A, i , o), with A = (Q,∆, I, F) be a sequential transducer realizing a function f .
According to Prop. 3.1.15 we can assume without loss of generality that T is in earliest normal
form.

The algorithm is almost the same as in the finite case.
In the following we identify the states of A with the equivalence classes of ∼A. The initial

partition is given for all words u, v by u ∼0 v if: 1) u−1dom(f) = v−1dom(f) and 2) ∀a ∈ A,
o([u]A , a, [ua]A) = o([v]A , a, [va]A).

Let i ∈ N, we define inductively for all words u, v, u ∼i+1 v by: u ∼i v and ∀a ∈ A, ua ∼i va.
Of course we have ∀i ∈ N that ∼A v ∼i+1 v ∼i, which means that we reach a fixpoint relation
for some i, which we denote by ∼∗.

Let us first show that ∼∗ is finer than ∼f . We will actually show that ∼∗ v ∼f , since
we have ∼f = ∼f from Cor. 3.1.18. For this we construct a sequential transducer with right

transition congruence ∼∗ and which realizes f . Then according to Th. 3.1.11, we do obtain
∼∗ v ∼f . The relation ∼∗ is a right congruence since it is a fixpoint for right multiplication.
Let T∗ = (A∗, i∗, o∗, t∗) with A∗ = (Q∗,∆∗, I∗) be defined as:

• Q∗ := {[u]∗ | u ∈ ↓dom(f) ∩A∗}

• ∆∗ := {([u]∗ , a, [ua]∗) | a ∈ A}

• I∗ := {[ε]∗}

• i∗([ε]∗) := i([ε]A)

• o∗([u]∗ , a, [ua]∗) := o([u]A , a, [ua]A)

64

3.1. Sequential and quasi-sequential functions

The output function is well-defined according to point 2). Given a word in the closure of the
domain of f , its outputs for T∗ will be exactly the same as for T . Since T is in earliest normal
form, we can see that T∗ thus realizes f .

We only have left to show that ∼f v ∼∗, which we do by showing by induction on i ≥ 0

that ∼f v ∼i. Let u ∼f v we have 1) u−1dom(f) = v−1dom(f). Let us assume first f̂(u) is

infinite equal to αβω. This means that f̂(v) is ultimately equal to f̂(u) and thus of the form
α′βω. Since T is in earliest normal, we know that all the transitions after [u]A or [v]A have to

produce β, which proves 2). If we now assume that f̂(u) is finite, then so is f̂(v), and let us

consider the initial runs q0
u|γ−−→T p and q0

v|γ′−−→T p′. Since T is in earliest normal form, we have
that the longest common prefix of outputs from both p and p′ is ε, and thus f̂(u) = i(q0)γ and

f̂(v) = i(q0)γ′. Let a ∈ A, let f̂(ua) = αβω and let f̂(va) = α′βω (with possibly β = ε). Since

T is in earliest form, we have that p
a|α−−→ q and p′

a|α′−−→ q′. However, we know from the proof
of Prop. 3.1.9 that α = α′. Thus we obtain o(p, a, q) = o(p′, a, q′) which proves 2), and thus
u ∼0 v.

Now let us assume that for some i ∈ N we have ∼f v ∼i. Let u ∼f v, we have by hypothesis
that u ∼i v. Since ∼f is a right congruence we also have for any a ∈ A that ua ∼f va which
means that ua ∼i va, and hence u ∼i+1 v, which concludes the proof of correctness.

Like in the finite case, this algorithm runs in PTime.

3.1.3 Quasi-sequential transductions

Sequential functions over infinite words are characterized by the conditions given in Th. 3.1.12,
namely the finiteness of the index of the syntactic right congruence and the fact that the liminf
extends the function. If we remove the constraint on the liminf, we obtain a class of functions
that we call quasi-sequential functions, and which has already been (implicitly) studied in [BC04].
Intuitively, quasi-sequential functions can be thought of as the generalization of subsequential
functions from finite to infinite words, in the following way: they can be realized by sequential
transducers extended with the possibility to append a (possibly infinite) word at the “end”
of the run (if it produces a finite word) depending on some regular property of the input. A
typical example of quasi-sequential function which is not sequential is the function f#a from
Ex. 3.1.1 defined over the alphabet {a, b} by f#a(x) = aω if the number of as in x is infinite and
f#a(x) = bω otherwise.

We also show below that quasi-sequential functions can be characterized by the weak twinning
property, a machine characterization from [BC04] generalizing the one for finite words introduced
by Choffrut. Finally we show that quasi-sequential functions are exactly the functions for which
determinization terminates (although it is not always correct when the function is not sequential).

Determinization algorithm We define the determinization procedure from [BC04], which we
call (as in the finite case) powerset construction with delays, and we state some of its properties.
The construction is very similar to the case of finite words.

Let T = (A, i , o) be a transducer, with underlying automaton A = (Q,∆, I, F), realizing
a function f . We describe S := (D, i ′, o′), with D := (Q′,∆′, S0). Note that S is sequential
by definition but may have an infinite number of states in general, but the authors of [BC04]
show that S is finite and realizes f when f is sequential. Actually we show slightly more general
results, which are present in [BC04], but not explicitly. We assume that T is trim and in earliest
normal form, without loss of generality. Let C ⊆ Q be the set of constant states of T , and let
βωp denote the longest common prefix of outputs from state p of T .

65

Chapter 3. Characterizations of rational functions over infinite words

Let αβω :=
∧
q∈I i(q)βωq and let S0 :=

{
(q, α−1i(q)) | q ∈ I \ C

}
]
{

(q, α−1i(q)βωq
}

, with
i ′(S0) := α. We build Q′ and ∆′ up from S0 using the following steps. Let P be a state already
constructed in Q′ and let a ∈ A. We define:

R :=

{
(q, γβ) | (p, γ) ∈ P, p a|β−−→T q, q /∈ C

}
]
{

(q, γβω) | (p, γβω) ∈ P, p a−→A q, p ∈ C
}

]
{

(q, δγβωq) | (p, δ) ∈ P, p a|γ−−→T q, p /∈ C, q ∈ C
}

Let αβω :=
∧

(q,γ)∈R γ. If α 6= ε, then we add the new state S :=
{

(q, α−1γ) | (q, γ) ∈ R
}

to Q′

and the transition P
a|α−−→S S to ∆′. If α = ε, then we add the state R to Q′ and the transition

P
a|β−−→S S to ∆′.

Remark 3.1.20. Note that S is deterministic in its transitions but may not be finite in general.

Proposition 3.1.21. Let f be a rational ω-function realized by a transducer T and let S be the
transducer obtained by powerset construction with delays. Then S realizes f .

Proof. Let T be a transducer realizing a function f : Aω → B∞, let S be the transducer obtained
by powerset construction with delays and let g denote the function realized by S. We assume that
T is trim without loss of generality and we thus obtain that dom(S) = dom(f). Let x ∈ dom(f)

and let u < x. Let S0
u|α−−→ S denote the initial run of S over u. By construction of S, we know

that the output along the initial run is a common prefix to all outputs of initial runs of T over u
and thus we have i ′(S0)α ≤ f̂(u). Let S = {(p1, γ1), . . . , (pn, γn)}, for some n ∈ N. By definition
of S we have

∧
i∈n γi = βω (with β potentially empty).

Let us assume that for all u < x, f̂(u) is finite. Then we have that β = ε, and there are two
cases. Either γi = ε for some i ∈ n or we have γi ∧ γj = ε, for i, j ∈ n. In the latter case we have

that i ′(S0)α = f̂(u) since T is in earliest normal form. In the first case, if pi is constant then

we have i ′(S0)α = f̂(u). Finally if pi is non-constant this means there are two runs final from
pi producing words δ, δ′ such that δ ∧ δ′ = ε again because T is in earliest normal form. In all
cases, we obtain i ′(S0)α = f̂(u). Thus we have g(x) = limu<x f̂(u) = f(x).

Let us now assume that f̂(u) is infinite for some u < x. This must mean that β 6= ε and

actually we must have γi = βω for all i ∈ n, by definition of S. Thus we have f̂(u) = δβω and
i(S0)α = δβk for some integer k. Furthermore, by definition of S, any transition after P must
output β and thus we obtain g(x) = δβω = f(x).

Weak twinning property A transducer T is said to satisfy the weak twinning property

(WTP) if for any initial runs p1
u|α1−−−→ q1

v|β1−−−→ q1 and p2
u|α2−−−→ q2

v|β2−−−→ q2 the following holds:

• if q1, q2 are not constant then del(i(p1)α1, i(p2)α2) = del(i(p1)α1β1, i(p2)α2β2)

• if q1 is not constant and q2 is constant and produces the rational word γ, then either β1 = ε,
or i(p1)α1β

ω
1 = i(p2)α2γ.

Note that if q2 is constant and β2 6= ε then γ = βω2 .

Proposition 3.1.22 ([BC04]). Let T be a transducer satisfying the WTP, then the transducer
obtained by powerset construction with delays terminates. The procedure is in ExpTime.

66

3.1. Sequential and quasi-sequential functions

Proof. The authors of [BC04] have a very slightly different model of transducers where a run
has to produce an infinite word in order to be final. However this does not change the proofs
here and in particular, they show that the sizes of the delays are polynomial with respect to the
original transducer. Thus the construction causes, as for the finite case, an exponential blow-up
of the state space.

Characterizations of quasi-sequential transductions We need two lemmas before giving
the theorem characterizing quasi-sequential transductions.

Lemma 3.1.23. Let T be an ω-transducer, and let S be the ω-transducer obtained by powerset
construction with delays with underlying automaton D. Then ∼D v ∼f .

Proof. Let T be a transducer realizing a function f : Aω → B∞, and let S be the transducer
obtained by powerset construction with delays with underlying automaton D. Let u, v ∈ A∗

such that u ∼D v, and let S0
u|α−−→ S and

v|α′−−→ S denote the initial runs of S over u and v,
respectively. Our goal is to show that u ∼f v. First since S realizes f and dom(f) = dom(f),

we have u−1dom(f) = v−1dom(f). If S is constant and produces an infinite word γ, then

f̂(u) = i ′(S0)αγ and f̂(v) = i ′(S0)α′γ which are ultimately equal. Otherwise, there must
exist pairs (p1, γ1), (p2, γ2) ∈ S such that γ1 ∧ γ2 = ε. Since T is in normal form, we obtain

f̂(u) = i ′(S0)α and f̂(v) = i ′(S0)α′. Let x ∈ Aω and let (p, γ) ∈ S such that x has a final
run from p producing δ. If γ is infinite, we have f(ux) = i ′(S0)αγ and f(vx) = i ′(S0)α′γ,
and if γ is finite we have f(ux) = i ′(S0)αγδ and f(vx) = i ′(S0)α′γδ. Either way we obtain

f̂(u)−1f(ux) = f̂(u)−1f(ux), and thus u ∼f v.

Lemma 3.1.24. Let T be an ω-transducer realizing f such that ∼f has finite index. Then T
satisfies the WTP.

Proof. Let T be an ω-transducer realizing f such that ∼f has finite index. Let us assume towards

a contradiction that T does not satisfy the WTP. Let p1
u|α1−−−→ q1

v|β1−−−→ q1 and p2
u|α2−−−→ q2

v|β2−−−→ q2

denote two initial runs.
We first consider the case where q1, q2 are not constant states and del(i(p1)α1, i(p2)α2) 6=

del(i(p1)α1β1, i(p2)α2β2). If we have |β1| = |β2| this means that there exists a mismatch, i.e. a

position k such that i(p1)α1β1(k) 6= i(p2)α2β2(k). Hence we obtain that f̂(uvn) < i(p2)α2β2 for

any positive integer n, which means that there exists an integer N such that f̂(uvn) = f̂(uvN),
for n ≥ N . Since q2 is non-constant, and T is in earliest normal form, there is a word x
over which there is an accepting run from q2 producing γ such that γ ∧ β2 = ε. Thus we
have that f̂(uvn)−1f(uvnx) = f̂(uvN)−1i(p2)α2β

n
2 γ which takes an infinite number of different

values, contradicting the fact that ∼f has finite index. If |β1| 6= |β2|, we assume without loss
of generality that |β1| < |β2|. Since q1 is non constant and T is in earliest normal form, we

have for any n ∈ N that f̂(uvn) ≤ i(p1)α1β
n
1 . Hence we have that f̂(uvn)−1i(p2)α2β

n
2 takes

an infinite number of values. As above, using the fact that q2 is constant, we can obtain a
word x producing γ over a final run from q2 such that γ ∧ β2 = ε. Thus we obtain again that
f̂(uvn)−1f(uvnx) = f̂(uvn)−1i(p2)α2β

n
2 γ takes an infinite number of values, contradicting that

∼f has finite index.
Let us assume that q1 is non-constant and q2 is constant and produces γ (with T in earliest

normal form). We also assume that β1 6= ε and i(p1)α1β
ω
1 6= i(p2)α2γ. This means in particular

that there is an integer N such that for all n ≥ N , we have f̂(uvn) = f̂(uvN). Since q1 is not
constant, let x be a word producing δ over a final run from q1, such that β1 ∧ δ = ε. Then

67

Chapter 3. Characterizations of rational functions over infinite words

as before we obtain that for n ≥ N , f̂(uvn)−1f(uvnx) = f̂(uvN)−1i(p1)α1β
n
1 δ which takes an

infinite number of values, and thus contradicts the finite index of ∼f .

We can now state our result characterizing quasi-sequential transductions, which will prove
useful in the following section.

Theorem 3.1.25. Let T be an ω-transducer realizing a function f , and let S be the transducer
obtained by powerset construction with delays. The following are equivalent:

• T satisfies the WTP

• S is finite

• ∼f has finite index

Proof. The proof from (1) to (2) follows Prop. 3.1.22, the proof from (2) to (3) follows Lem. 3.1.23
and finally (3) to (1) comes from Lem. 3.1.24.

3.1.4 Determinization preserves aperiodicity

Just like in the finite case determinization preserves aperiodicity. This will allow us to show that
the canonical bimachine of an aperiodic transduction is aperiodic.

Lemma 3.1.26. Let T be an ω-transducer satisfying the WTP, and let S be the transducer
obtained by powerset construction with delays. If T is aperiodic then S is aperiodic.

Proof. We adapt the proof of Lem. 2.1.15 to the infinite case. Let T = (A, i , o), with A =
(Q,∆, I, F), be an A-transducer realizing a quasi-sequential function f : Aω → B∞. Let S =
(D, i ′, o′), with D = (Q′,∆′, S0), be the sequential transducer obtained from T by powerset
construction with delays. We want to show that S is aperiodic and actually we will show that D
is counter-free, which is equivalent according to Prop. 1.3.9 since S is sequential. A is aperiodic
so there is an integer n such that ∀u ∈ A∗, un ≡A un+1.

Let u ∈ A+ be a word, let k be a positive integer and let R0
u|α0−−−→S R1 . . . Rk−1

u|αk−1−−−−→S R0

denote a counter in S. Let us assume that k is the size of the smallest such counter, which means
that all Rjs are pairwise distinct, we want to show k = 1.

Let Γ0 := α0 · · ·αk−1, for 1 ≤ j < k let Γj := αj · · ·αk−1α0 · · ·αj−1 and let us note that
Γjαj = αjΓj+1 mod k. Let R = {q1, . . . , qm} denote the states appearing in R0. For 0 ≤ j < k,
the states of Rj are exactly the states which can be reached in A from some state of R0 by
reading ukn+j ≡A ukn. This means that the states of Rj are the same as the states of R0,
namely q1, . . . , qm. Thus let Rj = {(q1, β1,j), . . . , (qm, βm,j)}. Let us notice that βi,j is infinite if
and only if qi is constant and produces an infinite word. In that case all states reachable from qi
are constant with an infinite delay. If we assume that all states in R are constant with infinite
delay, then either they have an empty common prefix and thus αj = ε for any 0 ≤ j < k which
means that all Rjs are equal and thus k = 1, or they are all equal to some word in normal form
βω and αj = β for any 0 ≤ j < k and again k = 1. Note that the common prefix cannot be a
non-empty finite word, otherwise we could not loop back to R0.

Let us assume that some states have a finite delay and some have an infinite one. Let ql be a
constant state with infinite delay from which there is a run reading uω. Adapting equation (2)
in the proof of Lem. 2.1.15 we obtain that βl,j = Γωj . Similarly, if qi a constant state which can
be reached by such a state ql, we have by equation (4) that βi,j = Γωj .

For the states with finite delay, we use the proof of Lem. 2.1.15 and we obtain that for some
x ∈ {j, j + 1}, γ is a prefix of all finite βi,xs. However, γ is also a prefix of Γx, which means that
γ is a common prefix to all βi,xs, and thus γ = ε by definition of S.

68

3.2. Canonical models for rational functions over infinite words

As a corollary, we obtain a way to decide if a sequential ω-transduction is aperiodic.

Theorem 3.1.27. A sequential ω-transduction is A-rational if and only if its domain is aperiodic
and its minimal sequential transducer is aperiodic.

Proof. If f is sequential and in A, then there exists an aperiodic transducer realizing it. From
Lem. 3.1.26, we know that the determinization of the transducer produces an aperiodic trans-
ducer, which is finite (Th. 3.1.25) and realizes f (Th. 3.1.10). Furthermore, we have that the
minimal sequential transducer of f is the minimal sequential transducer of f , from Cor. 3.1.18.
Finally, if f is aperiodic, then in particular dom(f) is aperiodic.

Conversely, if dom(f) is aperiodic, then from Th. 1.3.12, there is an aperiodic deterministic
Muller automaton recognizing it. Thus by taking the product of the minimal sequential trans-
ducer and the deterministic automaton, we obtain an aperiodic sequential Muller transducer
realizing f .

3.2 Canonical models for rational functions over infinite
words

In this section we extend some of our results for transductions over finite words to transductions
over infinite words. We are not able to describe all the minimal bimachines of a transduction like
in the finite case, however we can at least exhibit a canonical way to compute a transduction.
In particular, we show that this canonical bimachine is always aperiodic for an aperiodic trans-
duction, which is the main result of the section. Unlike for the finite case, the delay look-ahead
does not always give enough information to realize the function sequentially. Indeed, when we
annotate the input with the delay look-ahead information, what we obtain is a quasi-sequential
transduction. For this reason we introduce a second look-ahead which is sufficient to make any
quasi-sequential transduction sequential. However this second look-ahead, called the ultimate
look-ahead, does not share the same minimality properties as the delay look-ahead. Composing
the two look-aheads, we obtain nonetheless a canonical look-ahead fine enough to realize any
rational transduction sequentially.

3.2.1 Bimachines and transductions

We define bimachines over infinite words and show that one can go from a bimachine to a
transducer while preserving the transition congruence, just like in the finite case.

Bimachines An ω-bimachine over alphabets A,B is given as a tuple B = (L,R, i , o) where L =
(QL,∆L, {l0}) is a deterministic accessible (Büchi) automaton with only accepting states, called
the left automaton of B, R = (QR,∆R, IR, FR) is a co-deterministic co-accessible automaton,
called the right automaton of B, i : QR → B∗ is the initial function, o : QL × A×QR → B∗ is
the output function. We also add the semantic restriction that JLK = JRK.

Let u ∈ A∗ be a finite word and let l and r be runs of L and R, respectively, over u. We
extend o to QL × A∗ × QR by setting o(l(1), u, r(|r|)) :=

∏
1≤j≤|u| o(l(j), u(j), r(j + 1)). Let

x ∈ Aω be an infinite word and let l and r be final runs of L and R, respectively, over x. We
extend o to QL×Aω by setting o(l(1), x) := limn∈N o(l(1), x(:n), r(n+ 1)). Furthermore if l and
r are accepting let α := i(r(1))o(l(1), x), then we say that (x, α) is realized by B and we denote
by JBK the set of pairs realized by B.

Example 3.2.1. The bimachine given in Fig. 3.2 on the next page realizes the function f#a :
{a, b}ω → {a, b}∞ which maps words with an infinite number of as to aω, and other words to bω.

69

Chapter 3. Characterizations of rational functions over infinite words

l0

a, b
abω bω

aω baω

a, b

a

b

a

a

b

b
l α r o(l, α, r)

abω b
bω b
baω a
aω a

Figure 3.2: Left and right Büchi automata and output table of a bimachine realizing f#a.

From bimachines to transducers As in the finite case, it is easy to show that from a
bimachine one can obtain an unambiguous transducer realizing the same function just by taking
the product of the two automata.

Proposition 3.2.2. Let B be a bimachine realizing a rational ω-function f with left and right
automata L and R, respectively. Then one can construct in PTime an unambiguous transducer
realizing f with underlying automaton L ×R.

Proof. Let B = (L,R, i , o) be a bimachine realizing a function f with left automaton L =
(QL,∆La, {l0}) and right automaton R = (QR,∆R, IR, FR). The main idea is to consider the
product of the two automata. The transducer will guess the run of the right automaton, and co-
determinism ensures that there is only one possible run. We define a transducer T := (A, i ′, o′)
with A := (Q,∆, I, F) by:

• Q := QL ×QR

• ∆ := {((l, r′), a, (l′, r)) | a ∈ A, (l, a, l′) ∈ ∆L, (r′, a, r) ∈ ∆R}

• I := {l0} × IR

• F := QL × FR if R is a Büchi automaton, and

F := {PL × PR | PL ⊆ QL, PR ∈ FR} if R is a Muller automaton.

• i ′(l0, r) := i(r)

• o′((l, r′), a, (l′, r)) := o(l, a, r)

By construction T realizes f and its underlying automaton is indeed L ×R.

Like in the case of transductions over finite words, we are able to show conversely that from
a transducer, one can obtain a bimachine with the same transition congruence. Again, we first
need the notion of bimachine left minimization before showing this result.

3.2.2 Left minimization of bimachines

We are able to minimize the left automaton of bimachines, but not the right one. We define the
syntactic right congruence of a function with respect to a fixed right automaton. This subsection
very closely follows the corresponding Subsec. 2.2.2 over finite words. All the main ideas needed
here are obtained by combining those of Subsec. 2.2.2 or Sec. 3.1.

70

3.2. Canonical models for rational functions over infinite words

R-syntactic congruence Let f : Aω → B∞ be a function and let R be a right automaton
recognizing dom(f). We define for each state of R, i.e. each equivalence class [x]R of ≈R, a

function f̂[x]R
: u 7→

∧
{f(uy) | y ≈R x}. Note that the right automaton will often be implicit

and we will rather write f̂x. Intuitively, this function outputs over a word u the longest possible

word, with the look-ahead information that the suffix is in [x]R. We define f
R

: Aω → B∞ by

f
R

(x) = limuy=x f̂y(u) for any x ∈ dom(f).

Definition 3.2.3. The R-syntactic congruence of f : Aω → B∞ is defined for u, v ∈ A∗ by
u ∼Rf v if:

• u−1dom(f) = v−1dom(f) and

• ∀x such that ux, vx ∈ dom(f), either f̂x(u) and f̂x(v) are ultimately equal or

f̂x(u)−1f(ux) = f̂x(v)−1f(vx)

Intuitively, u and v are equivalent if when we remove the contributions of u and v from f(ux)
and f(vx), respectively, we obtain the same word left to write. Note here that the contributions
of u and v are computed with the knowledge that the suffix is equivalent to x, with respect to
R.

Proposition 3.2.4. Let f be a function and let R be a right automaton recognizing dom(f),
then ∼Rf is a right congruence.

Proof. Let f : Aω → B∞ be a function and let R be a right automaton recognizing dom(f),
let u ∼Rf v and let a ∈ A. We want to show that ua ∼Rf va. First (ua)−1dom(f) =

a−1(u−1dom(f)) = (va)−1dom(f). Let x ∈ Aω such that ux, vx ∈ dom(f). If f̂ax(u) is in-

finite then it is ultimately equal to f̂ax(v). We have f̂x(ua) = f̂ax(u) and f̂x(va) = f̂ax(v)

and thus f̂x(ua) and f̂x(va) are ultimately equal. If f̂ax(u) and f̂ax(v) are finite then we have

f̂ax(u)−1f(uax) = f̂ax(v)−1f(vax), and we let g(x) denote this word. If
∧
y≈Rx g(y) is infinite

then f̂x(ua) and f̂x(va) are ultimately equal to this word. Otherwise, we have:

f̂x(ua)−1f(uax) =
(∧

y≈Rx f(uay)
)−1

f(uax)

=
(∧

y≈Rx f̂ax(u)g(y)
)−1

f̂ax(u)g(x)

=
(
f̂ax(u)

∧
y≈Rx g(y)

)−1

f̂ax(u)g(x)

=
(∧

y≈Rx g(y)
)−1

g(x)

= f̂x(va)−1f(vax)

Hence ua ∼Rf va which concludes the proof.

Example 3.2.5. Let R be the right automaton of Fig. 3.2 on the facing page. Then for any
finite word u ∈ A∗, we have f̂aω (u) = f̂baω (u) = aω and f̂bω (u) = f̂abω (u) = bω. This means that
∼Rf is the trivial congruence, which is consistent with the fact that the left automaton of the
bimachine in Fig. 3.2 on the preceding page is trivial.

Left minimal bimachine Let f : Aω → B∞ be a rational function over infinite words and
let R := (QR,∆R, IR, FR) be a right automaton recognizing dom(f). Using the R-syntactic
congruence of f we define the left minimal bimachine of f with respect to R. We set Bf (R) :=
(Lf (R),R, i , o) with Lf (R) := (QL,∆L, l0) defined by:

71

Chapter 3. Characterizations of rational functions over infinite words

• QL :=
{

[u]
R
f | u ∈ ↓dom(f) ∩A∗

}
• ∆L :=

{
([u]
R
f , a, [ua]

R
f)
}

• l0 := [ε]
R
f

• i([x]R) :=

[
f̂x(ε) if f̂x(ε) is finite

α if f̂x(ε) = αβω and β 6= ε

• o([u]
R
f , a, [x]R) :=

 f̂ax(u)−1f̂x(ua) if f̂x(ua) is finite

β if f̂ax(u) = αβω and β 6= ε

α if f̂ax(u) is finite, f̂ax(u)−1f̂x(ua) = αβω, β 6= ε

Like in the finite case, the left minimal bimachine outputs the longest possible word (except if it
is infinite), given the look-ahead information. Again this bimachine may have an infinite number
of states, in general, when the look-ahead is not fine enough.

We show that the outputs of the left minimal bimachine are well-defined.

Proposition 3.2.6. Let f be a rational ω-function and let R be a right automaton recognizing
dom(f). The outputs of Bf (R) are well-defined.

Proof. Let f : Aω → B∞ be a rational ω-function and let R be a right automaton recognizing
dom(f). We show that the output functions of Bf (R) are well-defined. Using Lem. 3.1.7, we

know that for any word x ∈ dom(f), we have that f̂x(ε) = f̂|[x]R
(ε) is rational and thus the

initial outputs of Bf (R) are well-defined.

Let u ∼Rf v, let a ∈ A and let x ∈ Aω such that uax, vax ∈ dom(f). If f̂ax(u) is infinite

then so is f̂ax(v) and since they are ultimately equal (and rational from Lem. 3.1.7) we know

that they have the same ultimate period. If f̂ax(u) is finite then we have for any y ≈R ax that

f̂ax(u)−1f(uy) = f̂ax(v)−1f(vy), and we denote this word by g(y).

f̂ax(u)−1f̂x(ua) =
(∧

y≈Rax f(uy)
)−1∧

y≈Rx f(uay)

=
(∧

y≈Rax f̂ax(u)g(y)
)−1∧

y≈Rx f̂ax(u)g(ay)

=
(∧

y≈Rax g(y)
)−1∧

y≈Rx g(ay)

= f̂ax(v)−1f̂x(va)

We now can show that Bf (R) realizes f . However, Bf (R) may be infinite if R does not give
enough look-ahead information to realize f sequentially.

Theorem 3.2.7. Let f be a rational ω-function and let R be a right automaton recognizing

dom(f). The bimachine Bf (R) realizes f
R

.

Proof. Let f : Aω → B∞ be a rational ω-function, let R be a right automaton recogniz-
ing dom(f) and let x ∈ dom(f). Let us first assume that for all uy = x, f̂y(u) is finite,

then by definition of the outputs of the left minimal bimachine Bf (R), JBf (R)K(x) = f̂u(ε) ·(∏
i∈N f̂x(i+1:)(x(:i))−1f̂x(i+2:)(x(:i+ 1))

)
= f

R
(x). If f̂x(ε) is infinite equal to αβω, then

72

3.2. Canonical models for rational functions over infinite words

i([x]R) = α and ∀uay = x, we have o([u]
R
f , a, [y]R) = β and thus we obtain JBf (R)K(x) =

f
R

(x). Similarly let us assume that uay = x, with a ∈ A such that f̂ay(u) is finite and

f̂y(ua) = f(uay) is infinite. By definition of Bf (R), we have i([x]R)o([ε]
R
f , u, [ay]R) = f̂(u).

Let f̂ay(u)−1f̂y(ua) = αβω in normal form. Then we have i([x]R)o([ε]
R
f , ua, [y]R) = f̂(u)α and

for any n ∈ N we have i([x]R)o([ε]
R
f , uay(:n), [y(n+ 1:)]R) = f̂(u)αβn. Finally, we obtain that

JBf (R)K(x) = f
R

(x).

We show that when a right automaton gives enough look-ahead information, then the asso-
ciated left minimal bimachine realizes the function.

Theorem 3.2.8. Let B be a bimachine with right automaton R realizing a function f . Then

f
R

= f .

Proof. Let B = (L,R, o) be a bimachine realizing f . We know that f
R ≤ f . Let ux ∈ dom(f),

and let α = i([ux]R)o([ε]L , u, [x]R). We must have that α ≤ f̂x(u) and thus by taking the limit

we have that f(ux) ≤ fR(x), which concludes the proof.

As in the finite case, the left minimal bimachine, with respect to a right automaton R, has
a coarser left automaton than any bimachine realizing f with R as right automaton.

Theorem 3.2.9. Let f be a transduction realized by a bimachine with left and right automata
L and R, respectively. Then ∼L v ∼Rf .

Proof. Let B = (L,R, i , o) be a bimachine with left and right automata L = (QL,∆L, {l0}) and
R = (QR,∆R, IR, FR) realizing f and let u ∼L v. We have u−1dom(f) = v−1dom(f) since L
recognizes dom(f).

Let x ∈ Aω be such that ux, vx ∈ dom(f), let α = i([ux]R)o([ε]L , u, [x]R), let β =
i([vx]R)o([ε]L , v, [x]R), let γ = o([u]L , x) and let δ =

∧
y≈Rx o([u]L , y). We have f(ux) = αγ,

f̂x(u) = αδ, f(vx) = βγ and f̂x(v) = βδ. If f̂x(u) is infinite, then it is ultimately equal to δ,

and so is f̂x(v). Otherwise, we have that f̂x(u)−1f(ux) = δ−1γ = f̂x(v)−1f(vx). Hence we have
shown that u ∼f v.

Left minimization algorithm In order to define the minimization algorithm, we need a
notion of earliest normal form for ω-bimachines.

Let B = (L,R, i , o) be a bimachine, and let ux ∈ dom(f). Let us denote by αu,xβ
ω
u,x :=∧

{o([u]L , y) | y ≈R x} the longest common prefix of outputs from [u]L with look-ahead [x]R
(in normal form). Then B is called in earliest normal form if for any ux ∈ dom(f), we have 1)
αu,x = ε and 2) if βu,ax 6= ε then o([u]L , a, [x]R) = βu,ax.

Proposition 3.2.10. Given a bimachine B, one can obtain in PTime a new bimachine B̂ in
earliest form realizing the same function.

Proof. We give the definition of B̂, show that it realizes the same function and is indeed in
earliest form, and finally we give a procedure to compute it. Let B = (L,R, i , o) be a bimachine
realizing a function f and let ux ∈ dom(f). Let αu,xβ

ω
u,x denote the longest common prefix of

outputs from [u]L with look-ahead [x]R. We define B̂ =
(
L,R, î , ô

)
by:

• î([x]R) := i([x]R)αε,[x]R

73

Chapter 3. Characterizations of rational functions over infinite words

• ô([u]L , a, [v]R) :=

[
α−1
u,axo([u]L , a, [x]R)αua,x if βu,ax = ε
βu,ax if βu,ax 6= ε

Let x be a word such that for all uy = x, f̂y(u) is finite. In that case, one can easily see

that all the αu,xs cancel out, and thus B̂ realizes f as well. If f̂x(ε) = αβω is infinite, then
we have βε,x = β, and i([x]R)αε,xβ

ω = f(x). For any uy = x, we have by definition that

ô([ε]L , u, [y]R) = β|u|, and thus we obtain JB̂K(x) = f(x). Similarly, if we have some uay =

x such that f̂ay(u) is finite and f̂y(ua) is infinite, then we have î([uay]R)ô([ε]L , u, [ay]R) =

f̂ay(u). Let f̂ay(u)−1f̂y(ua) = αβω, then we have î([uay]R)ô([ε]L , ua, [y]R) = f̂ay(u)α and also

î([uay]R)ô([ε]L , uay(:n), [y(n+ 1:)]R) = f̂ay(u)αβn for any n ∈ N. Thus we obtain that B̂
realizes f and by construction, B̂ is in earliest normal form.

Let u ∈ A∗, x ∈ Aω, we only have left to show that computing αu,x and βu,x can be done
in PTime. We consider the transducer T obtained from B by Prop. 3.2.2. The state space of
T is L × R and we have that the longest common prefix of outputs from state ([u]L , [x]R) is
α([u]L,[x]R)β

ω
([u]L,[x]R) = αu,xβ

ω
u,x. Thus using the same procedure as in the proof of Prop. 3.1.15

we can compute αu,x and βu,x in PTime.

We now give the minimization theorem:

Theorem 3.2.11. Given a bimachine with right automaton R realizing a rational ω-function,
one can compute in PTime Bf (R), the left minimal bimachine with respect to R.

Proof. Let B = (L,R, i , o) be a bimachine realizing a function f with left and right automata
L = (QL,∆L, {l0}) and R = (QR,∆R, IR, FR), respectively. According to Prop. 3.2.10 we can
assume without loss of generality that B is in earliest form.

We use exactly the same ideas as in the finite case.
As usual, we identify the states of L with the classes of ∼L. The initial partition is given for

all words u, v by u ∼0 v if: 1) u ∈ ↓dom(f)⇔ v ∈ ↓dom(f) and 2) ∀x with uax, vax ∈ dom(f),
we have o([u]L , a, [x]R) = o([v]L , a, [x]R).

Let i ∈ N, for all finite words u, v we define inductively u ∼i+1 v by: u ∼i v and ∀a ∈ A,
ua ∼i va. Of course we have ∀i ∈ N that ∼L v ∼i+1 v ∼i, which means that we reach a fixpoint
relation for some i, which we denote by ∼∗.

Let us first show that ∼∗ is fine enough to realize f with R as right automaton, which means
that ∼∗ v ∼Rf according to Th. 3.2.9. The relation ∼∗ is a right congruence since it is a fixpoint
for right multiplication. Let B∗ = (L∗,R, i∗, o∗) with L∗ = (Q∗,∆∗, I∗) be defined as:

• Q∗ := {[u]∗ | u ∈ ↓dom(f)}

• ∆∗ := {([u]∗ , a, [ua]∗) | a ∈ A}

• I∗ := {[ε]∗}

• i∗([u]R) := i([u]R)

• o∗([u]∗ , a, [x]R) := o([u]L , a, [x]R)

The output function is well-defined according to point 2). Given a word in the domain of f ,
its outputs for B∗ will be exactly the same as for B which means that B∗ realizes f and hence
∼∗ v ∼Rf , according to Th. 3.2.9.

We only have left to show that ∼Rf v ∼∗, which we do by showing by induction on i ≥ 0 that

∼Rf v ∼i.

74

3.2. Canonical models for rational functions over infinite words

Let u ∼Rf v, we have 1) u ∈ ↓dom(f) ⇔ v ∈ ↓dom(f). Let x be a word such that

uax, vax ∈ dom(f). If we assume that f̂ax(u) is finite, then so is f̂ax(v). Since B is in normal

form, we have that i([uax]R)o([ε]L , u, ax) = f̂ax(u) and i([vax]R)o([ε]L , v, ax) = f̂ax(v). Since

u ∼Rf v, we have f̂ax(u)−1f(uax) = f̂ax(v)f(vax) = αβω which means that o([u]L , a, [x]R) =

o([v]L , a, [x]R) = α. Similarly, if f̂ax(u) is infinite, then so is f̂ax(v), and let β their ultimate
period. In that case we have o([u]L , a, [x]R) = o([v]L , a, [x]R) = β. Hence ∼Rf v ∼0.

Now let us assume that for some i ∈ N we have ∼Rf v ∼i. Let u ∼f v, we have by hypothesis

that u ∼i v. Since ∼Rf is a right congruence we also have for any a ∈ A that ua ∼Rf va which
means that ua ∼i va, and hence u ∼i+1 v, which concludes the proof.

From transducers to bimachines We show how one can go from a transducer to a bimachine
while preserving the transition congruence.

Theorem 3.2.12. Let T be an ω-transducer with underlying automaton A realizing a function
f . Let R be a right automaton recognizing dom(f) such that ≈R v ≈A, then one can obtain a
bimachine with automata L and R such that ∼A v ∼L.

Proof. Let T = (A, i , o) be a transducer with underlying automaton A = (Q,∆, I, F) realizing f .
Let R be a right automaton, such that ≈R v ≈A and recognizing dom(f). We want to show that
∼A v ∼Rf which will conclude the proof, since Bf (R) realizes f according to Th. 3.2.7 and 3.2.8.

Let u ∼A v, our goal is to show that u ∼Rf v. We have of course that u−1dom(f) = v−1dom(f).
Let x be such that ux, vx ∈ dom(f), and let r1, . . . , rn ∈ Q denote the states of A which can be
reached from I by reading u (or v) and from which there is a final run by reading x. Let j ∈ n,

let pj
u|αj−−−→ rj and qj

v|βj−−−→ rj denote initial runs over u and v respectively to rj . Let rj
x|γj−−−→ Si

denote a final run over x from rj , and let δj :=
∧{

δ | rj
y|δ−−→ S final , y ≈A x

}
. Then for any

j ∈ n we have f̂x(u) = i(pj)αjδj , f(ux) = i(pj)αjγj , f̂x(v) = i(qj)βjδj and f(vx) = i(qj)βjγj .

Taking for instance j = 1, we obtain that either f̂x(u) and f̂x(v) are infinite and ultimately equal

to δ1 or f̂w(u)−1f(uw) = δ−1
1 γ1 = f̂w(v)−1f(vw), hence u ∼Rf v which concludes the proof.

A first corollary is that ω-bimachines realize all the rational ω-transductions.

Corollary 3.2.13. An ω-function is rational if and only if it is realized by some ω-bimachine.

In particular this transfers to aperiodic transductions.

Corollary 3.2.14. An ω-transduction is aperiodic if and only if it is realized by an aperiodic
bimachine.

Proof. Let B be an aperiodic bimachine. According to Prop. 3.2.2, we can obtain an aperiodic
transducer realizing the same function.

Let T be an ω-transducer, with underlying aperiodic automaton A = (Q,∆, I, F), realizing
a function f . Let us show that for any x ∈ Aω, {y | y ≈R x} is aperiodic. Given a state p,
the automaton Ap := (Q,∆, {p} , F) is aperiodic since its transition congruence is that of A.

Let P :=
{
p ∈ Q | ∃ a final run p

x−→A S
}

. Thus we have {y | y ≈R x} =
⋂
p∈P JApK, which is

aperiodic since aperiodic languages are closed under intersection. According to Th 1.3.13, we
can thus obtain an aperiodic right automaton R such that ≈R v ≈A. Finally, from Th. 3.2.12
we obtain our result.

75

Chapter 3. Characterizations of rational functions over infinite words

Another consequence is an Elgot-Mezei theorem for rational functions over infinite words,
which generalizes the result of [Car10]. Indeed a bimachine can be seen as realizing the composi-
tion of a left and a right sequential function (in both ways). Furthermore, we can always assume
that one of them is letter-to-letter.

Theorem 3.2.15. Let f be a rational ω-function over infinite words, then there exist g sequential
(resp. right-sequential) and h letter-to-letter and right-sequential (resp. sequential) such that f =
g ◦ h.

3.2.3 Look-ahead versus labeling

We introduce the notion of labeling, like in the finite case, and show the relationship between
labelings and look-aheads.

Labeling Let f : Aω → B∞ be an ω-function and let R be a right automaton recognizing
dom(f). We define the labeling function associated with R by the right sequential transducer
`(R) := (R, i , o) with i : r 7→ ε and o([ax]R , a, [x]R) := (a, [x]R). We define the transduction
fR := f ◦ J`(R)K−1. Note that fR is a function, since `(R) is injective (by unambiguity of
R). Intuitively, fR produces the same output as f over an input annotated by the look-ahead
information given by R.

Our goal is to link the sequentiality of fR with the fact that R gives enough look-ahead to
have a bimachine with R as a right automaton. We start with the easy direction.

Proposition 3.2.16. Let f be a rational ω-transduction realized by a bimachine with right
automaton R. Then fR is sequential.

Proof. Let B = (L,R, i , o) with L = (QL,∆L, {l0}) be a bimachine realizing f . Let us consider
the sequential transducer T := (A, i ′, o′) with A := (Q,∆, I, F) defined by:

• Q := {q0}]QL ×QR

• ∆ :=
{((l, r′), (a, r), (l′, r)) | (l, a, l′) ∈ ∆L, (r′, a, r) ∈ ∆R}
∪ {(q0, (a, [x]R), (l′, [x]R)) | (l0, a, l

′) ∈ ∆L, ax ∈ dom(f)}

• I := {q0}

• F := QL × FR if R is a Büchi automaton and

F := {PL × PR | PL ⊆ QL, PR ∈ FR} if R is a Muller automaton

• i ′(q0) = ε

• o′((l, r′), (a, r), (l′, r)) := o(l, a, r) and o′(q0, (a, [x]R), (l′, [x]R)) := i([ax]R)o(l0, a, [x]R)

The transducer T is sequential and realizes fR.

Example 3.2.17. We consider the right automaton R given in Fig. 3.2 on page 70 and give a
transducer realizing f#a,R in Fig. 3.3 on the facing page. Notice that f#a is not sequential while
f#a,R is.

We can now consider the converse result, which is harder to show but works exactly as
in the finite case. We give a constructive proof of the result by exhibiting when possible a
bimachine with R as a right automaton. As a side result, we show that this construction
preserves aperiodicity.

76

3.2. Canonical models for rational functions over infinite words

q0 baω

aω

abω

bω

(α, baω)|a

(α
, a
ω)|a

(α, abω)|b

(α, b ω
)|b

(b, baω)|a

(b, aω)|a
(a, baω)|a

(a, aω)|a

(α, abω)|b

(a, bω)|b

(b, bω)|b

Figure 3.3: Sequential transducer realizing f#a,R with R from Fig. 3.2 on page 70.

Lemma 3.2.18. Let T be an ω-transducer realizing a function f and let R be a right automaton
recognizing dom(f). If fR is sequential then there is a bimachine realizing f with right automaton
R. In that case one can compute Bf (R) in 2ExpTime. Furthermore if T and R are aperiodic
then Bf (R) also is.

Proof. Let T = (A, i , o) with A = (Q,∆, I, F) be a transducer realizing a function f , let
R = (QR,∆R, IR, FR) be a right automaton recognizing dom(f) and let us assume that fR
is sequential. Let us describe the steps of the proof. Step 1) we construct a transducer realizing
fR by taking the product of T and R. Step 2) we determinize this transducer using the powerset
construction with delays of [BC04], in ExpTime. We thus obtain S a sequential transducer
realizing fR, of exponential size with respect to T . Step 3) we project the input alphabet of
S, which is A × QR, to A, to obtain a transducer realizing f . Step 4) we consider the product
automaton of the underlying automaton of this transducer with R, and determinize it, using the
usual powerset construction for automata on finite words, again with an ExpTime complexity
to obtain a deterministic automaton D. We are then able to exhibit a bimachine with D and R
as automata realizing f . Finally we left minimize this bimachine to obtain Bf (R) (recall that
∼Rf = ∼Lf). We also show that each of the four steps preserves aperiodicity.

1) From T and R we can obtain a transducer realizing fR, by just taking T and using the
states of R to label the input. Let T ′ := (A′, i ′, o′) with A′ := (Q′,∆′, I ′, F ′) be defined by:

• Q′ := Q×QR

• ∆′ := {((p, s), (a, r), (q, r)) | (p, a, q) ∈ ∆, (s, a, r) ∈ ∆R}

• I ′ := I × IR

• F ′ := F × FR if A and R are Büchi automata. If one of the two is a Muller automaton,
we can assume that both are Muller automata by changing the final set. In that case we
define F ′ := {P × PR | P ∈ F, PR ∈ FR}.

• i ′(q, r) := i(q)

77

Chapter 3. Characterizations of rational functions over infinite words

• o′((p, s), (a, r), (q, r)) := o(p, a, q)

By construction T ′ realizes fR. Let us assume that A and R are aperiodic, and let us show that
A′ then must be aperiodic also. Let u ∈ (A × QR)∗ be a word and let u denote the projection
of u onto the alphabet A. Let p, q be states of A and let x ∈ Aω. We assume that we have for

some integer n, (p, [unx]R)
un−−→ (q, [x]R). By construction of A′, we know that the last letter of

u is (a, [x]R) for some a ∈ A. If n > 1, then from the definition of A′, we know that we must

have [ux]R = [x]R. By aperiodicity of A we have p = p0
u−→ p1 . . . pn

u−→ pn+1 = q, for n large

enough. We have for any 0 ≤ k ≤ n that (pk, [x]R)
u−→ (pk+1, [x]R). Hence we can conclude that

(p, [x]R)
un+1

−−−→ (q, [x]R) which means that A′ is aperiodic.

2) We use the powerset construction of [BC04] on T ′, presented in Sec. 3.1, to obtain a se-
quential transducer S realizing fR in ExpTime, since fR is sequential by assumption. According
to Lem. 3.1.26, this procedure preserves aperiodicity.

3) We project away the labels of the input letters of S to obtain a transducer realizing
f . Furthermore this transducer is unambiguous, otherwise some word would have two distinct
labelings. Let us show that this procedure preserves aperiodicity. Let AS be the deterministic
underlying automaton of S , which we assume to be aperiodic. We consider AS , the same
automaton but with the input labels projected onto A. Let u ∈ A∗, let p, q be states of AS , let

n be a positive integer such that p
un−−→AS q. Let x ∈ Aω be a word such that there is a final run

of AS over x from q. This means that there is a labeling w of un, i.e. w = un, ending in (a, [x]R)

for some a ∈ A, such that: p
w−→AS q. Since R is aperiodic, we know that for m large enough,

umx ≈R um+1x. Let v be the labeling of u with last letter (a, [umx]R), then w = vkw′ with w′

a labeling of um. By aperiodicity of AS , if k is large enough we have a run p
vk+1w′−−−−→AS q. Since

vk+1w′ = un+1, we finally have p
un+1

−−−→AS q, which concludes the proof.

4) Let us consider the product of automata AS and R, and let D be the left automaton
obtained by the usual powerset construction of automata over finite words. This construction
preserves aperiodicity, and is in ExpTime. We only have left to show that we can obtain a
bimachine B realizing f with D and R as automata. Indeed, if it is the case and D is aperiodic,
we have according to Th. 2.2.11 that D v Lf (R) which means that B is aperiodic a fortiori.

Let S = (AS , iS , oS) with AS = (QS ,∆S , {q0}). Let us define the output functions of
B := (D,R, iB, oB). Let iB([x]R) := iS(q0). Let P := {(p1, [x1]R), . . . , (pn, [xn]R)} be a state of
D, let a ∈ A and let x ∈ Aω, we define oB(P, a, [x]R) := oS(pi, (a, [x]R), q) such that xi ≈R ax and
(pi, (a, [x]R), q) ∈ δS . Let us show that oB is well-defined. Let i, j ∈ n, such that xi = xj = ax.
This means that there exists a word which can reach both pi and pj in AS and that there is a
final run over x from both pi and pj . Since AS is unambiguous, we have pi = pj . Furthermore,
since AS is deterministic, the state q is uniquely defined. One can easily see that the outputs of
B exactly match those of S, which means that B realizes f .

Let us now show a result about aperiodicity which will prove useful later.

Proposition 3.2.19. Let f be an aperiodic ω-function, and let R be an aperiodic right automaton
recognizing dom(f). Then fR is aperiodic.

78

3.2. Canonical models for rational functions over infinite words

Proof. If R is aperiodic, then `(R) is also aperiodic. Let us show that J`(R)K−1 is aperi-
odic, this will conclude the proof since aperiodic functions are closed under composition (see
Sec. 3.3). Let `(R)′ be the transducer realizing J`(R)K−1, obtained by exchanging the in-
put and output labels of transitions of R. Let R′ denote its transitions, such that we have
∆R′ = {([ax]R , (a, [x]R), [x]R) | a,∈ A, x ∈ Aω}. Let n ∈ N such that ∀u ∈ A∗, un+1 ≡R un.
Let u ∈ (A×QR)∗, and let π : (A×QR)∗ → A∗ denote the natural projection. Let k ≥ n and

let
[
π(u)kx

]
R

uk−→ [x]R denote a run of R′ over uk. Since we have
[
π(u)kx

]
= [π(u)nx], we know

that [π(u)nx]R
u−→ [π(u)nx]R, and thus

[
π(u)kx

]
R

uk+1

−−−→ [x]R, which concludes the proof.

We now obtain the result linking the existence of a bimachine realizing a function f with
right automaton R, with the sequentiality of fR.

Theorem 3.2.20. Let f be a rational ω-transduction and let R be a right automaton recognizing
dom(f). There exists a bimachine B realizing f with right automaton R if and only if fR is
sequential. Furthermore, if R is aperiodic, then f is aperiodic if and only if fR is.

Proof. This is a consequence of Prop. 3.2.16 and Lem. 3.2.18. The aperiodicty of fR follows from
Prop. 3.2.19.

3.2.4 Delay look-ahead

The delay congruence of a function over finite words was introduced in [RS91] and yields, as
we have seen in Chap. 2, the coarsest right automaton possible among all bimachines realizing
the function. However the definition of delay congruence does not apply to functions producing
infinite words. We rather use the alternative definition from [BLN12], which is equivalent to the
one from [RS91] in the finite case but also applies to the infinite case. We show that this delay
congruence has the same minimality property as in the finite case, but is only fine enough to
make the function quasi -sequential and not sequential, in general.

Delay congruence

Definition 3.2.21. Let f : Aω → B∞ be a function, the left delay congruence of f is defined

for x, y ∈ Aω by x
∆

≈f y if:

• ∀u ∈ A∗, ux ∈ dom(f)⇔ uy ∈ dom(f)

• |{del(f(ux), f(uy)) | ux ∈ dom(f)}| <∞

First we show that this left congruence is coarser than any left transition congruence of a
machine realizing a given function.

Theorem 3.2.22. Let T (resp. B) be a transducer (resp. bimachine) with underlying automaton

A (resp. right automaton R) realizing a rational ω-function f . Then ≈A v
∆

≈f (resp. ≈R v
∆

≈f).

Proof. We give the proof for a bimachine, the proof for a transducer can be obtained in the same

way. Let B = (L,R, i , o) be a bimachine and let x ≈R y, we want to show that x
∆

≈f y. Since
≈R recognizes dom(f) we have ∀u ∈ A∗, ux ∈ dom(f)⇔ uy ∈ dom(f).

Let u ∈ A∗ and let l0
u−→L l denote the initial run of L over u. Since x ≈R y we have

that del(f(ux), f(uy)) = del(o(l, x), o(l, y)), which only depends on the state l. Thus we obtain

|{del(f(ux), f(uy)) | ux ∈ dom(f)}| ≤ |L|, and hence x
∆

≈f y.

79

Chapter 3. Characterizations of rational functions over infinite words

Proposition 3.2.23. Let B be a bimachine realizing a rational ω-function f . Then one can

compute
∆

≈f in PTime.

Proof. Let B = (L,R, i , o) be a bimachine with left and right automata L and R, respectively.

According to Th. 3.2.22, we know that≈R v
∆

≈f . Let [u1v
ω
1]R , [u2v

ω
2]R be two states ofR, we can

choose u1, v1, u2, v2 of size linear inQR, and we write xi = uiv
ω
i , i ∈ 2. Thus we only have to show

how to decide if x1
∆

≈f x2 in PTime. First we can easily check that ∀u, ux1 ∈ dom(f)⇔ ux2 ∈
dom(f). Now we want to check whether the set {del(f(ux1), f(ux2)) | ux1 ∈ dom(f)} is finite.
For any word x ∈ Aω we define the function fx : u 7→ f(ux). From the bimachine B, we define
for any x ∈ Aω, a transducer Tx = (Ax, i , o, t) over finite words. The underlying automaton Ax
is obtained by taking the product of L and R and setting as final states the states (l, r) such that
r is the state from which R has a final run over x. The initial output function and the output
function are obtained naturally as in Th. 3.2.12, whereas the final function always outputs ε. Let
gx denote the function realized by Tx. We have that fx(u) = gx(u) · o([u]L , x). Thus deciding

whether x1
∆

≈f x2 amounts to deciding if {del(gx1
(u) · o([u]L , x1), gx2

(u) · o([u]L , x2)) | u ∈ A∗}
is finite.

We define a twinning-like property which will be equivalent to having a finite set of delays
{del(gx1

(u) · o([u]L , x1), gx2
(u) · o([u]L , x2)) | u ∈ A∗}. We say that a state p of a transducer T

is γ-constant if there exists a word δ such that for any final run outputting α from p we have
αγ = δ. Let T1 and T2 be two transducers with the same domain and let γ1, γ2 be two rational
words. We say that (T1, γ1) and (T2, γ2) satisfy the weak adjacency twinning property if for any

pair of initial runs p1
u|α1−−−→T1 q1

v|β1−−−→T1 q1 and p2
u|α2−−−→T2 q2

v|β2−−−→T2 q2 such that there is a word
w with a final run from both q1 and q2 the following hold:

• if q1, q2 are not γ1, γ2-constant, respectively, then we have that del(i(p1)α1, i(p2)α2) =
del(i(p1)α1β1, i(p2)α2β2)

• if qi is not γi-constant and pj is γj-constant, then we have del(i(pi)αi, i(pj)αjγj) =
del(i(pi)αiβi, i(pj)αjγj) for {i, j} = 2

Claim: {del(JT1(u)Kγ1, JT2(u)Kγ2)} is finite if and only if (T1, γ1) and (T2, γ2) satisfy the
weak adjacency twinning property.

Let us show this claim. Assume that T1 and T2 do not satisfy the weak adjacency twinning

property. Then let p1
u|α1−−−→T1

q1
v|β1−−−→T1

q1 and p2
u|α2−−−→T2

q2
v|β2−−−→T2

q2 be two initial runs such
that there is a word w with a final run from both q1 and q2 and let us assume that pi is not
γi-constant for all i ∈ 2. Then we have del(i(p1)α1, i(p2)α2) 6= del(i(p1)α1β1, i(p2)α2β2). Since
p2 is not γ2-constant , this means that we can choose two final runs from p2 producing µ, ν such
that µγ2∧νγ2 is a finite word. This means that either γ2 is finite or there is a mismatch between
µγ2 and νγ2. Either way we obtain∣∣∣∣{del(i(p1)α1β

n
1 δ1γ1, i(p2)α2β

n
2 δ2γ2) | n ∈ N, qi

w|δi−−−→Ti si final

}∣∣∣∣ =∞

Let us now assume that p1 is not γ1-constant and p2 is γ2-constant, and del(i(p1)α1, i(p2)α2γ2) 6=
del(i(p1)α1β1, i(p2)α2γ2). Using the same reasoning, we also obtain that either γ1 is finite or
we can find two final runs which yield a mismatch, and thus we obtain an infinite set of delays.
Conversely, let us assume that T1 and T2 satisfy the weak adjacency twinning property. This
basically means that over synchronized loops, the delay between T1 and T2 cannot increase. For
any word, one can decompose its runs over T1 and T2 into small parts of bounded size and a
bounded number of synchronized loops. Overall, the number of delays must stay bounded.

80

3.2. Canonical models for rational functions over infinite words

Now we only have left to show that one can decide the weak adjacency twinning property in
PTime. Let T1 and T2 be two transducers and let γ1 and γ2 be two output words. This is done
again using the pattern logic of [FMR18]. For each pair of states q1 of T1 and q2 of T2, such that qi
is not γi constant for all i ∈ 2 and both states are co-reachable by some common word, we consider
the transducer obtained by union of the two transducer T1, T2 and with final states q1 and q2. The
we check in PTime if this transducer satisfies the twinning property. If it does then it means in

particular that there are no pairs of runs p1
u|α1−−−→T1

q1
v|β1−−−→T1

q1 and p2
u|α2−−−→T2

q2
v|β2−−−→T2

q2 with
del(i(p1)α1, i(p2)α2) 6= del(i(p1)α1β1, i(p2)α2β2) which concludes the proof. Conversely, if the

transducer does not satisfy the twinning property, then there are two runs p1
u|α1−−−→T1

q′1
v|β1−−−→T1

q′1

and p2
u|α2−−−→T2

q′2
v|β2−−−→T2

q′2 with del(i(p1)α1, i(p2)α2) 6= del(i(p1)α1β1, i(p2)α2β2). Since q′i can
reach qi, this means that q′i is not γi constant for all i ∈ 2 and thus (T1, γ1) and (T2, γ2) do not
satisfy the WATP.

Let q1 be a non γ1-constant state of T1 and let q2 be a γ2-constant state of T2, such that
both states are co-reachable for some common word. Again we consider the union of T1 and T2

with final states q1 q2. We also modify the outputs from q2 such that it produces γ2 which does
not change the final value since q2 is γ2 constant. This time we do not check for the twinning
property but only for absence of a mismatch. Again if we do not find a mismatch then it means

that there are no pairs of runs p1
u|α1−−−→T1 q1

v|β1−−−→T1 q1 and p2
u|α2−−−→T2 q2

v|β2−−−→T2 q2 such that
del(i(p1)α1, i(p2)α2γ2) 6= del(i(p1)α1β1, i(p2)α2γ2). Conversely, if there exists a mismatch for a
different pair of states, then a fortiori (T1, γ1) and (T2, γ2) do not satisfy the WATP.

Thus by checking properties for each pair of states of T1, T2 we can decide if (T1, γ1) and
(T2, γ2) satisfy the WATP in PTime.

Example 3.2.24. We consider the functions defined in Ex. 3.1.1.

Since del(ferase(ux), ferase(uy)) = del(ferase(x), ferase(y)) then we have that
∆

≈ferase
is trivial,

and the same goes for f#a.
The equivalence classes of the delay congruence of fblocks depend on the first letter of the

words. Indeed, let x = (#aa)ω, then del(f(anax), f(anbx)) = (aanx, banx) for any positive

integer n which means that ax 6∆≈fblocks
bx .

We show in the two following lemmas that the right automata R fine enough to have fR
quasi-sequential are exactly those finer than

∆

≈f .

Lemma 3.2.25. Let f be a rational ω-function and let R be a right automaton recognizing

dom(f). If ≈R v
∆

≈f then fR is quasi-sequential.

Proof. Let f : Aω → B∞ be a rational ω-function and let R be a right automaton recognizing

dom(f), such that ≈R v
∆

≈f . Let T be a transducer realizing f . Let us consider two initial runs

p1
u|α1−−−→ q1

v|β1−−−→ q1 and p2
u|α2−−−→ q2

v|β2−−−→ q2. Up to taking u′ = uv, we can assume that u and v
have the same last letter (a, r), without loss of generality. Let π : (A× SR)∞ → A∞ denote the

natural projection, such that π◦J`(R)K = Id. Let q1
x1|γ1−−−→ P1 and q2

x2|γ2−−−→ P2 denote final runs,
we must have that π(x1) ≈R π(x2) since the two words have a final run from r. Let us first con-
sider the case where p1, p2 are non-constant, and we assume towards a contradiction that we have
del(i(p1)α1, i(p2)α2) 6= del(i(p1)α1β1, i(p2)α2β2). Since p1, p2 are non constant, we can choose xi
such that βωi 6= γi, for i ∈ 2. This means that the set {del(i(p1)α1β

n
1 γ1, i(p2)α2β

n
2 γ2) | n ∈ N}

is infinite and thus π(x1) 6≈R π(x2), which yields a contradiction. Let us now assume that
p1 is non constant and p2 is constant. We assume that β1 6= ε, and i(p1)α1β

ω
1 6= i(p2)α2γ2.

81

Chapter 3. Characterizations of rational functions over infinite words

Since q1 is non-constant, we can choose x1 such that βω1 6= γ1, and thus we obtain that the
set {del(i(p1)α1β

n
1 γ1, i(p2)α2γ2) | n ∈ N} is infinite. Finally we conclude that π(x1) 6≈R π(x2),

which yields a contradiction, thus T does satisfy the WTP.

Lemma 3.2.26. Let f be a rational ω-function and let R be a right automaton recognizing

dom(f). If fR is quasi-sequential then ≈R v
∆

≈f .

Proof. Let f : Aω → B∞ be a rational ω-function and let R be a right automaton recognizing
dom(f). Let T be a transducer realizing fR, and let us assume that T satisfies the WTP.

Let x1, x2 ∈ Aω such that x1 ≈R x2, our goal is to show that x1
∆

≈f x2. Since R recognizes
dom(f), we have ∀u, ux1 ∈ dom(f)⇔ ux2 ∈ dom(f). Let us consider two initial runs of T over

u = u1u2u3 with a simultaneous loop, p1
u1|α1−−−→ q1

u2|β1−−−→ q1
u3|γ1−−−→ r1 and p2

u1|α2−−−→ q2
u2|β2−−−→

q2
u3|γ2−−−→ r2, such that there is a final run from r1 over x1 producing δ1 and a final run from r2

over x2 producing δ2.
If q1 and q2 are constant, then we have del(f(ux1), f(ux2)) = del(α1δ1, α2δ2). If q1 and q2

are non-constant, then by WTP, we have del(f(ux1), f(ux2)) = del(α1γ1δ1, α2γ2δ2). If q1 is non-
constant and q2 is constant then del(f(ux1), f(ux2)) = del(α1γ1δ1, α2δ2). In all cases, we see
that we can remove the simultaneous loops of u without changing the delays, and thus we obtain
that |{del(f(ux1), f(ux2)) | u ∈ A∗}| ≤ |A|(k+1)|Q|2 where k is the size of the longest output of
T .

Theorem 3.2.27. Let f be a rational ω-function and let R be a right automaton recognizing

dom(f). Then fR is quasi-sequential if and only if ≈R v
∆

≈f .

Proof. This is a consequence of the two previous results, Lem. 3.2.25 and 3.2.26.

3.2.5 The ultimate look-ahead and a canonical bimachine for quasi-
sequential functions

The look-ahead given by the delay congruence is only fine enough to make a function quasi-
sequential. We define a second canonical left congruence, the ultimate left congruence, which
will be fine enough to make any quasi-sequential function sequential. Although it is defined in a
machine independent way, this congruence does not share the same minimality property as the
delay congruence. Nevertheless, combining the two look-aheads we are able to define a canonical
bimachine for any rational ω-transduction.

Ultimate left congruence

Definition 3.2.28. The ultimate left congruence of a function f : Aω → B∞ is defined by

setting x
∪
≈f y if ∀u ∈ A∗:

• ux ∈ dom(f)⇔ uy ∈ dom(f)

• if ux ∈ dom(f) then 1) f̂(u) = f(ux) ⇔ f̂(u) = f(uy) and 2) if f̂(ux) = f(ux) then
f(ux) = f(vx)

Observe that f̂(u) ≤ f(ux), so the intuition for f̂(u) = f(ux) is that nothing more can be
output sequentially after reading u over ux. The idea behind point 2) is that the missing outputs
f(ux)−1f(ux) and f(uy)−1f(uy) should be equal, which means that f(ux) = f(uy) from point

1). Intuitively, a sequential transducer with the look-ahead given by
∪
≈f would have enough

information to produce the missing output, and know when to start producing it.

82

3.2. Canonical models for rational functions over infinite words

Proposition 3.2.29. Let f : Aω → B∞ be a function,
∪
≈f is a left congruence.

Proof. Let f : Aω → B∞ be a function, let x
∪
≈f y and let a ∈ A, our goal is to show that

ax
∪
≈f ay. Let u ∈ A∗, of course we have that uax ∈ dom(f) ⇔ uay ∈ dom(f). Let us assume

that uax ∈ dom(f), we know that f̂(ua) = f(uax) ⇔ f̂(ua) = f(uay). If f̂(u) = f̂(ua) then

we have 1) f̂(u) = f(uax) ⇔ f̂(u) = f(uay). In the case where f̂(u) = f(uax), then we have

f̂(ua) = f(uax) and thus f(uax) = f(uay) which proves 2). If f̂(u) < f̂(ua), then we know

that f̂(u) 6= f(uax) and f̂(u) 6= f(uay), and thus we trivially obtain 1) and 2). Hence we have

ax
∪
≈f ay, which concludes the proof.

Example 3.2.30. Recall the function f#a, which maps words with an infinite number of a
letters to aω and other words to bω, over the alphabet A = {a, b}. One can see that the ultimate
left congruence of f#a contains two classes, (b∗a)ω and A∗bω.

Theorem 3.2.31. Let f be a quasi-sequential function, the ultimate left congruence of f has

finite index. If f is given as a bimachine, one can compute
∪
≈f in 2ExpTime. Furthermore, if

f is aperiodic, then so is
∪
≈f .

Proof. Let B be a bimachine with automata L and R realizing a quasi-sequential function f :
Aω → B∞. Let S be the sequential transducer obtained by powerset construction from the
transducer with underlying automaton L×R (Prop. 3.2.2). Since f is quasi-sequential we know
that S is finite (Th. 3.1.25), furthermore S realizes f (Prop. 3.1.21), and has exponential size

with respect to B. Our approach here is to define a left congruence ≈ such that ≈ v ∪
≈f , show

that ≈ has a doubly exponential size with respect to B and show that if B is aperiodic then so

is ≈. Finally, we show how to obtain
∪
≈f from ≈.

Let x, y ∈ Aω, we set x ≈ y if for any state (r, P) of R×S the two following conditions hold:

• the final runs over x and y from (r, P) visit the same states infinitely often

• the run of S from P produces ε over x if and only if it produces ε over y

Let us show that ≈ is a left congruence. Let x ≈ y, let a ∈ A and let (r, P) be a state of
R× S. If there exists a state r′ of R such that (r, a, r′) is a transition of R, and x, y both have
final runs from r′, then let P ′ be the successor state of P by reading a in S, and we have that
the final runs from (r, P) over ax, ay visit infinitely often the same states as the final runs from
(r′, P ′) over x, y, and hence we obtain 1). Now let us assume that the runs from P ′ over x, y
don’t produce ε. Then the runs from P over ax, ay don’t produce ε either. If the runs from P ′ do
produce ε, then the runs from P over ax, ay produce ε if and only if the output of the transition
(P, a, P ′) is equal to ε, which proves 2).

Let x ≈ y, we want to show that x
∪
≈f y. Since x, y are equivalent with respect to R, we

know that ∀u, ux ∈ dom(f) ⇔ uy ∈ dom(f). Let u ∈ A∗ such that ux ∈ dom(f). If f̂(u)

is infinite then f̂(u) = f(ux) = f(ux) = f(uy) = f(uy) = f̂(u). Let us assume that f̂(ux) is

finite, then by definition of S, we have iS(S0)α = f̂(u), where S0
u|α−−→S P denotes the initial

run of S over u. If f̂(u) < f(ux), then the run from P over x has to produce something, and

thus the run from P over y also produces something and we have f̂(u) < f(uy). Let us assume

f̂(u) = f(ux) = f(uy) and let (r, S) be a state appearing infinitely often in the final runs from
([x]R , P) over x, y. By determinism of L, there must be one state l such that ((l, r), β) ∈ S.

Thus we obtain that f(ux) = iS(S0)αβ = f(uy), which means that x
∪
≈f y.

83

Chapter 3. Characterizations of rational functions over infinite words

One can see that the index of ≈ is exponential in the size of S and thus doubly exponential in

B. Now that we have ≈ v ∪
≈f we show how to decide given x, y (rational) whether x

∪
≈f y. Let P

be a state of S, and let rest(x,R) denote the word w if x produces ε from R and the missing output

is w, and ⊥ otherwise. Then one can see that x
∪
≈f y if and only if ∀R, rest(x,R) = rest(y,R).

In order to show that
∪
≈f is aperiodic, we only have to show that ≈ is aperiodic, given that

B is aperiodic. By assumption, R is aperiodic, and from Th. 3.1.26, we know that S is also
aperiodic. Let P,R be states of S, let LP,R denote the language of finite words that have a run
from P to R, and let LR denote the language of infinite words that have a final run (i.e. a run
since all states of S are accepting) from R. Since S is aperiodic, these languages are aperiodic.

Let R
a|α−−→S S be a producing transition such that α 6= ε. Then the language LP · (LP,R ·a ·LS)c

of words which have a final run from P and never use this producing transition is aperiodic. Since
aperiodic languages are closed under concatenation and complement, this language is aperiodic.
Furthermore, since aperiodic languages are closed under intersection, then the language of words
which produce ε from P is aperiodic. Furthermore, let us consider R× S, we can fix any set of
set of states as Muller acceptance condition, the obtained automaton is still aperiodic. Thus we
have that any congruence class of ≈ is aperiodic, which concludes the proof.

Canonical bimachine for quasi-sequential functions Let f : Aω → B∞ be a quasi-

sequential function, and let R be a right automaton recognizing dom(f) such that ≈R v
∪
≈f .

We define the bimachine Uf (R) := (Af ,R, if , oR), with Af and if defined as in Sec. 3.1, by:

oR([u]f , a, [x]R) =

 f̂(u)−1f̂(ua) if f̂(ua) < f(uax)

α if f̂(u) < f̂(ua) = f(uax) and f̂(u)−1f(uax) = αβω

β if f̂(u) = f(uax) and f(uax) = αβω

Remark 3.2.32. Let us note that given f quasi-sequential we have that Af is finite from
Th. 3.1.25, and thus Uf (R) is also finite.

Let us first show that the outputs of the above bimachine are well-defined.

Proposition 3.2.33. Let f : Aω → B∞ be a quasi-sequential function, let R be a right automa-

ton recognizing dom(f) such that ≈R v
∪
≈f . The outputs of Uf (R) are well-defined.

Proof. Let f : Aω → B∞ be a rational ω-function, let R be a right automaton recognizing

dom(f) such that ≈R v
∪
≈f . We want to show that the output function oR does not depend

on the choice of representatives. Let u ∼f v, let x
∪
≈f y and let a ∈ A. Let us first show

that oR([u]f , a, [x]R) = oR([v]f , a, [x]R). If f̂(u) is infinite, then f̂(v) is also infinite and they

have the same ultimate period. If f̂(u) is finite, then we know that f̂(v) is also finite and

f̂(u)−1f(uax) = f̂(v)−1f(vax) by definition of ∼f . We also have by the proof of Prop. 3.1.9

that f̂(u)−1f̂(ua) = f̂(v)−1f̂(va). In all cases we obtain oR([u]f , a, [x]R) = oR([v]f , a, [x]R).

Let us now show oR([u]f , a, [x]R) = oR([u]f , a, [y]R). If f̂(ua) < f(uax), then we have that

f̂(ua) < f(uay) since x
∪
≈f y. If f̂(u) < f̂(ua) = f(uax), then we have f̂(ua) = f(uay) since

x
∪
≈f y. This means that f(uax) = f(uay) and thus in particular f̂(u)−1f(uax) = f̂(u)−1f(uay).

Finally, if f̂(u) = f(uax), then f̂(u) = f(uay) since ax
∪
≈f ay. Thus we have f(uax) = f(uay)

which proves oR([u]f , a, [x]R) = oR([u]f , a, [y]R).

84

3.2. Canonical models for rational functions over infinite words

Theorem 3.2.34. Let f : Aω → B∞ be a quasi-sequential function, and let R be a right

automaton recognizing dom(f) such that ≈R v
∪
≈f . Then the bimachine Uf (R) is finite and

realizes f .

Proof. The fact that Uf (R) is finite comes from Th. 3.1.25 which says that ∼f is finite. We only
have to show that Uf (R) realizes f . Let g be the function realized by Uf (R), and let x ∈ dom(f).
One can see that f(x) ≤ g(x) ≤ f(x). If f(x) is infinite, then of course g(x) = f(x). If f(x) is

finite, let u < ua < x such that f̂(u) < f̂(ua) = f(x). Let f(x) = f̂(u)αβω, then the transition
after reading u produces α and all other subsequent transitions produce β, by definition, and
thus g(x) = f(x).

Remark 3.2.35. If we consider as right automaton R the automaton obtained by the con-
struction of [CM03], we obtain Uf (R), a completely canonical bimachine for f quasi-sequential.
However we can always left minimize this bimachine and thus a “more canonical” bimachine
would be Bf (R). Note here that unlike in the finite case, our notion of canonicity depends on a
particular construction to obtain a right automaton.

3.2.6 Composing look-aheads and a canonical bimachine

We defined one canonical look-ahead which makes any rational ω-function quasi-sequential, and
one which makes any quasi-sequential function sequential. Here we show how to compose these
look-aheads to obtain a canonical bimachine for any transduction. We also show that an aperiodic
function has an aperiodic canonical bimachine.

Composing look-aheads Let us first make clear what we mean by composition of look-aheads.
Let R1 = (Q1,∆1, I1, F1) be a right automaton over an alphabet A. Let R2 = (Q2,∆2, I2, F2)
be a right automaton over the alphabet A×Q1. We define the Muller automaton R1 ./ R2 :=
(Q1 ×Q2,∆1,2, I1 × I2, F1,2) by:

• ∆1,2 := {(s1, s2), a, (r1, r2) | (s1, a, r1) ∈ ∆1 and (s2, (a, r1), r2) ∈ ∆2}

• F1,2 := {S | {p | (p, q) ∈ S} ∈ F1, {q | (p, q) ∈ S} ∈ F2}

Lemma 3.2.36. Let R1 be an automaton with state space Q1 over A and let Q2 be an automaton
over A × Q1. Then J`(R2)K ◦ J`(R1)K = J`(R1 ./ R2)K (up to the isomorphism between (A ×
Q1)×Q2 and A× (Q1 ×Q2)).

Proof. Let x ∈ Aω, let r be the run of R1 ./ R2 over x. By definition of R1 ./ R2, the first
component of r depends only on the run of R1 over x. Then we have that the second component
of r is exactly the run of R2 over J`(R1)K(x), which concludes the proof.

Canonical bimachine We now have all the tools to show the main theorem of this chapter.
In particular, this theorem shows that one can decide whether a given rational function over
infinite words is aperiodic.

Theorem 3.2.37. Let f be a rational ω-transduction given by a bimachine B. Let R1 be the

right automaton associated with
∆

≈f and let R2 be the right automaton associated with
∪
≈fR1

.
Then the bimachine Bf (R1 ./ R2) realizes f . Furthermore, if f is aperiodic, then Bf (R1 ./ R2)
is aperiodic.

85

Chapter 3. Characterizations of rational functions over infinite words

Proof. Let f be a rational ω-transduction given by a bimachine B. LetR1 be the right automaton

obtained by the construction from [CM03], recognizing the delay congruence
∆

≈f . Let R2 be the

right automaton recognizing the ultimate congruence
∪
≈fR1

. Since ≈R1 v
∆

≈f , we have according

to Lem. 3.2.25 fR1
is quasi-sequential. Hence sinceR2 is finer than

∪
≈fR1

, we know from Th. 3.2.34
that UfR1

(R2) realizes fR1 . From Th. 3.2.20 we thus have that the function (fR1)R2 , obtained
by composing the labelings of `(R2) and `(R1), is sequential. Using Lem. 3.1.17, we obtain that
fR1./R2

is sequential, and from Th. 3.2.20 we know that there exists a bimachine realizing f
with R1 ./ R2 as right automaton. In particular we have that Bf (R1 ./ R2) realizes f .

If f is aperiodic, we have from Th. 3.2.22 that
∆

≈f is aperiodic, and from Th. 1.3.13 R1 is thus

aperiodic, and from Th. 3.2.20 we have that fR1
is aperiodic. From Th. 3.2.31, we have that

∪
≈fR1

is aperiodic and thus R2 is aperiodic (Th. 1.3.13). Again from Th. 3.2.20, (fR1
)R2

= fR1./R2
is

aperiodic. A third time from Th. 3.2.20, we have that Bf (R1 ./ R2) is aperiodic, which concludes
the proof.

Remark 3.2.38. The complexity of the above construction is several folds exponential (a simple
analysis gives 7ExpTime!). We strongly suspect that the complexity can be lowered quite a bit.

Also note that the automata of the canonical bimachine are Büchi automata.

3.3 First-order definability of transductions over infinite
words

This section is less general than in the finite case. Indeed here we only focus on first-order-
definable ω-transductions. We show the equivalence with the aperiodic ω-transductions, and
thus from Th. 3.2.37 we can decide FO-definability of rational ω-functions. For completeness
we also show that FO[≤]-transductions are closed under composition, which is unsurprising for
transductions à la Courcelle.

3.3.1 Aperiocity and first-order definability

Theorem 3.3.1. An ω-transduction is aperiodic if and only if it is realizable by an FO[≤]-
transducer.

Proof. We take the proof of Th. 1.5.8, and adapt it to the aperiodic case.
Let T = (A, i , o) be an aperiodic transducer realizing a function f : Aω → B∞, with

underlying automaton A = (Q,∆, I, F). According to Th. 3.2.37 there is an aperiodic bimachine
realizing f and from Prop. 3.2.2T can be assumed unambiguous. Let p, q be states of A, let
Lp,q ⊆ A∗ be the set of finite words which can go from p to q and let Lq ⊆ Aω denote the
set of infinite words having a final run from q. Since Lp,q, Lq are aperiodic, there are FO[≤]-
formulas φp,q, Lq recognizing them respectively. Given an FO[≤]-formula φ we define inductively
the FOc[≤]-formula φ<c by restricting the quantifications to the positions before c. Formally, if
φ = ∃y ψ(y) then we set φ<c := ∃y (y < c) ∧ ψ<c(y). Atomic formulas and boolean connectives
are left unchanged.

Let us define the FO[≤]-transducer T ′ =
(
K,φdom, (φv)v∈K

)
by:

• K := ({ε} ∪ i(I)) · o(∆)

• φdom :=
∨
p,q∈I×F φp,q

86

3.3. First-order definability of transductions over infinite words

• φv :=

[∨
i(p0)o(p0,a,q)=v

min(c) ∧ a(c) ∧ φ>c
q∨

o(p,a,q)=v,p0∈I ¬min(c) ∧ φ<c
p0,p ∧ a(c) ∧ φ>c

q

By construction, and since A is unambiguous, we have that T ′ is an FO[≤]-transducer realizing
f .

Conversely, let T =
(
K,φdom, (φv)v∈K

)
be an FO[≤]-transducer realizing a function f : Aω →

B∞. From T , we define an ω-language over the alphabet A ×K. Let φ be an FOc[≤]-formula,
we syntactically define φ′(c) an FO[≤]-formula with one free variable. Each label predicate a(x)
is replaced syntactically by

∨
v∈K(a, v)(x). Then each occurrence of the constant symbol c is

replaced by a fresh free variable symbol c. For v ∈ K, we define a predicate v(x) :=
∨
a∈A(a, v)(x).

We define the FO[≤]-formula:

φT := φ′dom ∧ ∀c
∨
v∈K

v(c) ∧ φ′v(c)

The formula φT recognizes words such that the projection over Aω is in dom(f). Furthermore
each position is labeled by its output. We define an aperiodic deterministic Muller automaton
AT = (QT ,∆T , I, F) recognizing the same language as φT (Th. 1.3.12). From this we naturally
define a transducer T ′ := (A, i , o) with A := (QT ,∆, I, F) by:

• ∆ := {(p, a, q) | (p, (a, v), q) ∈ ∆T }

• i : p 7→ ε

• o(p, a, q) := v such that (p, (a, v), q) ∈ ∆T

Note that o is well-defined since f is a function. By construction T ′ realizes f .

We only have left to show that A is aperiodic. Let us first remark that A is unambiguous,
otherwise some input word would have two different images. Let u ∈ A+ be a finite word and let

p
un|w−−−→A p denote a run of T ′ over un. Let p0

u1−→A p be an initial run and let p
x−→A P be a final

run. Let i ∈ {1, . . . , |u|}, j ∈ {0, . . . , n− 1}, and let yi,j := (u1u
3nx, |u1||u|n+j + i) denote the

pointed word where the ith position in the jth middle occurrence of u is pointed. Since u1u
3nx

is in the domain of f , ∀ i ∈ {1, . . . , |u|} , j ∈ {0, . . . , n− 1} there is a word vi,j ∈ K such that
yi,j |= φvi,j . Since T is first-order, if n is large enough, we have for any j, j′ ∈ {0, . . . , n− 1}
that vi,j = vi,j′ (this can be obtained via an Ehrenfeucht-Fräıssé game argument). This means

that we have p
sn−→AT p with πA(s) = u, πB(s) = v and vn = w, where πA is the projection over

the first component and πB is the concatenation of the words of the second component. Since
AT is aperiodic and deterministic, it is counter-free (Prop. 1.3.9). This means that p

s−→AT p,

and thus p
u−→A p, hence A is counter-free.

Now that we have shown the equivalence of aperiodic and FO[≤]-definable ω-transductions,
we get the main decidability result of this chapter.

Theorem 3.3.2. One can decide if an ω-transducer realizes an FO[≤]-definable function.

Proof. This is a direct consequence of the fact that the canonical bimachine of an aperiodic
function is aperiodic (Th. 3.2.37), and of the equivalence between aperiodic transducers and
FO[≤]-transducer (Th. 3.3.1).

87

Chapter 3. Characterizations of rational functions over infinite words

3.3.2 Closure under composition

We finally show that FO[≤]-transductions are closed under compositions. This is obtained via
classical FO[≤]-interpretations of logical structures, but we state it in our formalism.

Theorem 3.3.3. Let f : Aω → Bω and g : Bω → C∞ be FO[≤]-definable ω-transductions. Then
g ◦ f is FO[≤]-definable.

Proof. Let f : Aω → Bω and g : Bω → C∞ be given by the FO[≤]-transducers T1 :=(
K1, φdom,1, (φv,1)v∈K1

)
and T2 :=

(
K2, φdom,2, (φv,2)v∈K2

)
, respectively. Let k := maxv∈K1

|v|
be the maximum size of an output of T1. The main idea is to interpret formulas for words
in Bω over words of Aω. Let φ be a formula over the alphabet B, we define φf to recognize
the words of Aω which are sent by f to words satisfying φ. If φ := ∃x ψ(x), then we set
φk := ∃x1, . . . , xk

∨
i∈k ψ(xi), with each variable annotated by an integer in k. From φk, we

define φ′k by substituting the atomic formulas (xi < xj) by the boolean (i < j). For b ∈ B, we
also replace b(xi) by

∨
v∈K,v(i)=b φv,1(xi). Finally we set φf := φdom,1 ∧ φ′k. By definition the

words satisfying φf are exactly the words sent by f to words satisfying φ. Additionally, if φ is
an FOc[≤]-formula, let v ∈ K1, and let j ∈ {1, . . . , |v|} then we define φf,v,j by taking φf defined
as above and substituting each b(c) predicate by v(j) = b.

We define T :=
(
K,φdom, (φv)v∈K

)
by:

• K :=
⋃
i∈kK

i
2 where k = maxv∈K1

• φdom := φfdom,2

• φv1···vi∈Ki
2

:=
∨
v∈K1,|v|=i φ

f
v,1

∧
l∈i,j≤|vl| φ

f,v,j
vl,2

By construction, T realizes the transduction g ◦ f , which concludes the proof.

88

Part II

Specification and Synthesis of
Transductions

89

Chapter 4

Logics for transductions with
origins

“I pressed down the mental accelerator.
The old lemon throbbed fiercely. I got an
idea.”

– P.G. Wodehouse

Transductions with origins were introduced in [Boj14], as a richer semantics for transducer
models. A classical transduction (or transduction without origins) is a set of pairs of words,
whereas a transduction with origins adds for each position of the output word the information
of which input position “produced it”. It was remarked in [Boj14] that most known models
of transducers can be naturally extended with an origin semantics. This includes in particular
models of finite state transducers, where the origin of an output position is naturally given by
the position of the input head when the letter was produced, as well as logical transducers à
la Courcelle. Furthermore the known transformations from one model to another preserve ori-
gins, so that inclusions of transduction classes are preserved when going to transductions with
origins. Of course, transductions with origins can be considered over other structures such as
infinite words, trees, graphs etc; however in this chapter we choose to focus on word-to-word
transductions. One particular class of interest is the so-called regular transductions which enjoys
several different characterizations. In [EH01] it was shown that MSO-transducers and deter-
ministic two-way transducers both characterize the class of functional regular transductions. A
result not presented in this manuscript is that functional regular transductions are also captured
by reversible (i.e. deterministic and co-deterministic) two-way transducers [DFJL17], whereas
reversible one-way transducers do not capture all the rational functions. A model of one-way
deterministic transducers with registers (called streaming string transducers) was introduced in
[AC10] where the authors showed that this model also captures regular transductions. Finally,
regular expressions for transducers were shown in [AFR14] to also capture the regular func-
tions and have since been a topic of interest (see e.g. [ADR15, BR18, DGK18]). All of these
equivalences carry over to the origin semantics.

The main model of transducers we study is MSO logic over origin-graphs, i.e. two-sorted
graphs composed of an input structure, an output structure (words here) and an origin function
from output positions to input positions. The main problems we consider are emptiness, model-
checking and synthesis problems. Let C be a class of transducers, the C-emptiness problem asks,

91

Chapter 4. Logics for transductions with origins

given a transducer T in C whether JT K = ∅ (or equivalently JT Ko = ∅). We first notice that the
satisfiability (emptiness) problem for MSO over word-to-word origin graphs is (unsurprisingly)
undecidable.

A transduction R1 (with or without origins) is said to uniformize1 a transduction R2 if we
have R1 ⊆ R2 and dom(R1) = dom(R2). Let C1, C2 be classes of transducers, the model-checking
problem of C1 against C2 asks given transducers T1 ∈ C1, T2 ∈ C2 if the transduction realized
by T1 uniformizes the transduction realized by T2, called the specification. The model-checking
of regular transductions against MSO-formulas was shown to be decidable in [BDGP17], in the
origin semantics. This is not the proof used in the article, but one way to obtain this result is to
observe that the origin-graphs recognized by a deterministic two-way transducer have bounded
tree-width (even path-width) hence, according to Courcelle’s theorem ([Cou90]), we obtain the
decidability result.

The C1, C2-synthesis problem asks given a transducer T2 in C2 if one can effectively construct
a transducer T1 in C1 such that the transduction realized by T1 uniformizes the specification
given by T2. The Church synthesis problem, introduced in the seminal article [Chu63], considers
letter-to-letter transductions over infinite words and asks whether one can synthesize a sequential
letter-to-letter transducer uniformizing the input relation. It was shown in [BL69] that when
the specification is a rational letter-to-letter relation over infinite words, then the problem is
decidable. When removing the letter-to-letter restriction, the problem (without origins) becomes
undecidable (see [CL15]) because of the asynchronicity between the input and the output. We
consider the origin semantics and we show that the synthesis problem is undecidable when one
wants to synthesize a regular function from an MSO-formula over origin-graphs. Our main
contribution is to exhibit a fragment of MSO, called Lo, for which synthesis of a regular function
is always possible, by providing a uniformization algorithm.

The logic Lo has many interesting properties. First, the satisfiability problem is decidable and
the domain of an Lo-transduction is always effectively rational, meaning that one can compute
an automaton recognizing it from any Lo-formula. Actually, our synthesis result is even stronger
than that since we have a uniformization algorithm which takes as input an Lo-formula and out-
puts a regular function uniformizing it (given for instance as an MSO-transducer). Furthermore,
since Lo is closed under boolean operations, one can decide equivalence of Lo-transductions with
origins. The fragment Lo is expressive enough to capture all the regular functions. Moreover,
we define two extensions of the logic for which we can extend our uniformization algorithm.
The first extension, called ∃Lo, adds a block of existential monadic second-order quantifications
in front of the formula, and just by considering a larger alphabet our synthesis result transfers
to ∃Lo. The fragment ∃Lo subsumes in expressiveness the non-deterministic MSO-transducers,
while the latter class is incomparable with Lo. A second extension adds new unary predicates,
called single-origin predicates, which allow one to speak about rational properties of the sub-
word of all output positions which originate from a single input position. This second extension
subsumes the class of one-way non-deterministic transducers, which is again incomparable with
Lo-transductions.

We start the chapter by introducing transductions with origins and the known models of
transductions, and in particular MSO-transductions à la Courcelle. Then we study the frontier
of decidability of fragments of MSO over origin graphs, and we compare Lo-transductions to
the known classes of transductions. In the third section, we show our main result which is the
regular uniformization algorithm for Lo-transductions. The fourth section deals with the two
extensions of Lo mentioned above. Finally we introduce data words, i.e. words over an infinite
alphabet, which have been a recent focus of study (see [BDM+11, SZ12] for instance). We exhibit

1Usually, R1 is assumed functional.

92

4.1. Transductions with origin

a b a

c d c

a b a

c d c

input

output

origin

Figure 4.1: Two different origin-graphs, with the same pair of input and output words.

a very tight connection between origin-graphs and data words with linearly ordered data. As a
consequence, we obtain a decidable logic for data words strictly more expressive than the one
from [SZ12], which is shown to be decidable in the article.

The results in this chapter can be found in the article [DFL18].

4.1 Transductions with origin

We define origin-graphs, transductions with or without origins and known models of transduc-
tions.

4.1.1 Origin graphs

Let S1,S2 be two signatures without function symbols, called the input and output signature,
respectively. Let u be a (non-empty) S1-structure called the input structure, let v be a S2-
structure called the output structure and let o : dom(v)→ dom(u) be a total function which we
call origin function from v to u. We define a new signature S1,2

o which contains the disjoint union
of the predicate symbols of S1 and S2, plus a new unary function symbol o, called the origin
symbol. We define the origin-graph (u, (v, o)) as a S1,2

o -structure of domain dom(u)] dom(v).
Predicates symbols are interpreted naturally in the structure (u, (v, o)) by either restricting to
u or v. The origin symbol o is interpreted as o over dom(v) and as the identity function2 over
dom(u). An origin-graph is called non-erasing if any input position is the origin of at least one
output position. Given alphabets A,B an origin-graph over SA,SB is called a word-to-word
origin-graph over A,B if its input and output structures are words. In the following, the origin-
graphs we consider will mostly be word-to-word. Note that we exclude the empty word as a
possible input word but this does not weaken the models we consider, up to adding a special
symbol at the beginning of words, for instance.

4.1.2 Transductions

Let S1,S2 be two signatures, an origin-free transduction (or just transduction) over S1,S2 is
a set of pairs (u, v) such that u is a (non-empty) S1-structure and v is a S2-structure. The
domain of a transduction R is the set dom(R) := {u | (u, v) ∈ R}. A transduction with origin
(or origin-transduction) over S1,S2 is a set τ of origin-graphs (u, (v, o)) such that u is a S1-
structure, v is a S2-structure and o : dom(v) → dom(u) is the origin function. Given an
origin-transduction τ , we define its origin-free projection p(τ) := {(u, v) | ∃(u, (v, o)) ∈ τ}. The
domain of an origin-transduction τ is the set dom(τ) := dom(p(τ)). An origin-transduction τ
is called functional if for any structure u ∈ dom(τ) there exists a unique pair (v, o) such that
(u, (v, o)) ∈ τ . The composition of origin-transductions τ1 over S1,S2 and τ2 over S2,S3 is
defined by τ2 ◦ τ1 := {(u1, (v2, o1 ◦ o2) | (ui, (vi, oi)) ∈ τi, i ∈ 2, v1 = u2}. Note that we have

2The extension of the origin function to dom(u) is just a technicality so that o can be interpreted as a total
function.

93

Chapter 4. Logics for transductions with origins

p(τ2◦τ1) = p(τ2)◦p(τ1), which justifies the notation. An origin-transduction is called non-erasing
if all its origin-graphs are non-erasing. Given alphabets A,B a transduction over SA,SB is called
a word-to-word transduction over A,B if all its origin-graphs are word-to-word. We tend to write
origin-transductions with Greek letters and origin-free transductions with capital Latin letters.

4.1.3 MSO-transducers

Courcelle MSO-transducers (see [Cou94]), generalize the order-preserving definition we gave in
Ch. 1. In general they define transductions from relational structures over one signature to
structures over a second signature, but we will mostly focus on word-to-word transductions.
Let S1,S2 be two signatures without function symbols. We start by defining non-deterministic
MSO-transducers and then we define the deterministic version, MSO-transducers, as a particular
restriction. An NMSO-transducer over signatures S1 and S2 is a tuple

T =

k, l, φdom,
(
φipos(x,X1, . . . , Xl)

)
i∈k ,

(
φi1,...,imR (x1, . . . , xm, X1, . . . , Xl)

)
i1,...,im∈k

ar2(R)=m

where k is a positive integer (called the number of copies), l is an integer (called the number
of parameters), φdom is an MSO[S1]-sentence, for i ∈ k, φipos is an MSO[S1]-formula, for R a

relation symbol of S2 of arity m and for i1, . . . , im ∈ k, φi1,...,imR is an MSO[S1]-formula. From
u a S1-structure, and for P1, . . . , Pl ⊆ dom(u) we define a S2 structure v by:

• dom(v) :=
{

(i, j) | i ∈ dom(u), j ∈ k, u |= φjpos(i, P1, . . . , Pl)
}

• Rv :=
{

((i1, j1), . . . , (im, jm)) ∈ dom(v)m | u |= φj1,...,jmR (i1, . . . , im, P1, . . . , Pl)
}

where R is a S2 relation symbol of arity m

We now define naturally an origin function o : dom(v)→ dom(u) by o(i, j) = i. We say that the
origin-graph (u, (v, o)) is realized by T . We define two semantics for transductions: the origin-
transduction realized by T is the set JT Ko of origin-graphs realized by it, while the origin-free
transduction realized by T is defined by JT K := p(JT Ko). An MSO-transduction is a particular
case of NMSO-transduction with no parameters, i.e. l = 0. In that case, we will simply omit l in
the tuple. Note that MSO-transductions (with or without origins) are functional by definition. A
regular word-to-word transduction over alphabets A,B is an NMSO-transduction over signatures
SA, SB with the semantic restriction to word-to-word origin graphs (note that this restriction
can be enforced in MSO[≤]). A word-to-word MSO-transduction is called a regular function.

Example 4.1.1. We give an example of an NMSO-transducer over words with alphabets A,A.
We define an NMSO-transducer which copies some subword of the input twice. We define a
transducer with one parameter variable X which will denote the positions of the copied subword.

Let Td :=

(
2, 1,>,

(
φipos(x,X)

)
i∈2 , (a(x))a∈A ,

(
φi,j≤ (x, y,X)

)
i,j∈2

)
with ∀i ∈ 2, φipos(x,X) :=

x ∈ X, φi,i≤ (x, y,X) := x ≤ y, φ1,2
≤ (x, y,X) := > and φ2,1

≤ (x, y,X) := ⊥. The transduction we
obtain is JTdK = {(u, vv) | v subword of u}.

Similarly, we define a NMSO-transducer which does the same but only when the subword has
even length. Let even(X) be formula saying that X contains an even number of positions, then

Td,e :=

(
2, 1, even(X),

(
φipos(x,X)

)
i∈2 , (a(x))a∈A ,

(
φi,j≤ (x, y,X)

)
i,j∈2

)
. Here we have JTd,eK =

{(u, vv) | v subword of u, |v| = 0 mod 2}.

94

4.2. Logics with origins

The equivalence between MSO-transducers and deterministic two-way transducers is due to
[EH01]. The equivalence between SSTs and MSO-transducers is due to [AC10]. As it was
remarked in [Boj14], the equivalences carry over to origin semantics.

Theorem 4.1.2. The following models characterize the regular word-to-word functions (with or
without origins):

• deterministic two-way transducers

• MSO-transducers

• streaming string transducers

It was also shown in [AD11] that one of the above equivalences generalizes to the non-
deterministic case.

Theorem 4.1.3. The following models characterize the regular word-to-word relations (with or
without origins):

• NMSO-transducers

• non-deterministic streaming string transducers

However, non-deterministic two-way (and even one-way) transducers are incomparable in
expressiveness with NMSO-transducers.

4.2 Logics with origins

A logic over origin-graphs defines a class of transductions. We consider several fragments of MSO
over word-to-word origin graphs, and study their respective expressiveness and the decidability
of the problems mentioned above: emptiness, model-checking and synthesis of regular functions.

4.2.1 MSO over word-to-word origin graphs

We denote by MSOo = MSO[A,B,≤out,≤in, o] the logic over word-to-word origin-graphs with
≤in,≤out the input and output linear orders and A,B the input and output alphabets, respectively
and o the origin function. Note that, unless specified, the alphabets are implicitly known and
we write MSO[≤out,≤in, o], instead. Given an MSOo-formula φ, we define by JφKo the set of
origin-graphs satisfying φ and by JφK := p(JφKo) the origin-free semantics of φ.

Example 4.2.1. We define several macros for MSOo, which will make notations easier. We
define in(x) := x ≤in x and out(x) := x ≤out x, the input and output predicates, respectively. We
naturally define the predicates =, <in, <out. We also define quantifiers restricted to either input
or output positions: let α ∈ {in, out} then ∃αx φ := ∃x α(x) ∧ φ, ∀αx φ := ∀x α(x) → φ. Note
that ∀αx φ = ¬∃αx ¬φ.

We define several formulas with (hopefully) transparent names:

• φinj := ∀outx, y o(x) = o(y)→ x = y, states that o is injective

• φsurj := ∀inx ∃outy o(y) = x, states that o is surjective

• φlab := ∀outx
∧
a∈A a(o(x))→ a(x), states that labels are preserved

• φshuffle := φinj ∧ φsurj ∧ φlab

95

Chapter 4. Logics for transductions with origins

• φid := φshuffle ∧ ∀outx, y o(x) ≤in o(y)→ x ≤out y

• φmirror := φshuffle ∧ ∀outx, y o(x) ≤in o(y)→ x ≥out y

The formula φshuffle recognizes origin graphs where the output word is a permutation of the input
word. φid recognizes the identity transduction while φmirror recognizes the mirror transduction,
which reverses the linear order of words.

4.2.2 Model-checking

We state the following theorem from [BDGP17], which solves the model-checking problem in a
quite general context. The theorem would actually hold for any device recognizing origin-graphs
of bounded tree-width, thanks to the Courcelle Theorem [Cou90]. One should keep in mind
however that model-checking with origins is a more restricted form of model-checking, where
the specification has to say how the output is produced. The statement talks about NSSTs, a
non-deterministic variant of the SSTs of [AC10], which was shown to be expressively equivalent
to MSO-transducers in [AD11].

Theorem 4.2.2. The model-checking of NSSTs against MSOo-formulas is decidable, in the
origin semantics.

4.2.3 Satisfiability, validity, equivalence

We define several problems for logics in general. The problem which will interest us the most
is the satisfiability problem since a decidable satisfiability problem for a fragment closed under
boolean operations entails the decidability of the other two. Let F be a logical fragment of MSO
over some signature and letM be a set of structures. The satisfiability (emptiness) problem asks,
given as input an F-formula φ, whether there exists a structure M ∈M such that M |= φ. A logic
with decidable satisfiability problem is sometimes called decidable. The validity (universality)
problem asks, given as input an F-formula φ, whether for any structure M ∈ M it holds that
M |= φ. The equivalence problem asks, given as input two F-formulas φ1, φ2, whether for any
structure M ∈M it holds that M |= φ1 ⇔M |= φ2.

4.2.4 Undecidable fragments

We exhibit some fragments of MSOo for which satisfiability of formulas is undecidable. Since the
results rely on the comparison between origin-graphs and data words we give the proofs in Sec. 4.5
In the following theorem we consider the logic FO2[≤out, Sout,≤in, o] of first-order formulas with
only two variables, where Sout denotes the successor predicate over the output word. The proof
is inspired by the undecidability result of [BDM+11] over data words.

Theorem 4.2.3. The satisfiability problem for FO2[≤out, Sout,≤in, o] is undecidable.

We now consider the logic FO2[Sout, Sin, o] with Sin, Sout denoting the successor predicates
over the input and output, respectively. It is well known that the successor predicate of a linear
order is not definable in FO2. The proof uses the result of [MSZ13] over data words.

Theorem 4.2.4. The satisfiability problem for FO2[Sout, Sin, o] is undecidable.

96

4.2. Logics with origins

4.2.5 A new fragment

As we have just seen, even very weak fragments of MSOo still have an undecidable satisfiability
problem. Our objective is to find a fragment of MSOo which is weak enough to be decidable, but
still as expressive as possible. Our initial objective was to find a fragment expressive enough to
capture at least the regular functions.

We define Lo, a fragment of MSOo which does capture regular functions (and much more).
We show in Sec. 4.4 that the satisfiability problem is decidable for Lo, and we even show a
stronger result: an algorithm that takes an Lo-formulas as an input and outputs a regular
function uniformizing it. Intuitively, Lo is an extension of FO2[A,B,≤in,≤out, o], with additional
binary predicates. These predicates are arbitrary predicates definable in MSO[A,≤in], i.e. regular
predicates which can only talk about the input.

Definition 4.2.5. We define over alphabets A,B the logic Lo := FO2[B,≤out, o,MSO[A,≤in]]

In order to make formulas more readable we write MSO[A,≤in] predicates, called input predi-
cates, in between chevrons 〈, 〉. Note that from now on, the input predicates are viewed as atomic
formulas. Furthermore, since we only have two first-order variables, we can assume without loss
of generality that the input predicates have at most two free first-order variables.

Example 4.2.6. All the transductions given in Ex. 4.2.1 are actually definable in Lo. For
instance we define equivalently φinj := ∀outx, y 〈z =in t〉(o(x), o(y)) → x = y. To simplify
notations, we will often substitute the terms for the variables in the predicates 〈φ〉. For instance
we write φinj := ∀outx, y 〈o(x) =in o(y)〉 → x = y. Let us give the other previous examples in
this formalism.

• φsurj := ∀inx ∃outy 〈o(y) =in x〉, states that o is surjective

• φlab := ∀outx
∧
a∈A〈a(o(x))〉 → a(x), states that labels are preserved

• φshuffle := φinj ∧ φsurj ∧ φlab

• φid := φshuffle ∧ ∀outx, y 〈o(x) ≤in o(y)〉 → x ≤out y

• φmirror := φshuffle ∧ ∀outx, y 〈o(x) ≤in o(y)〉 → x ≥out y

Let us now give another example which actually makes use of a third variable. Note that the
use of the third variable is made inside an MSO predicate and so is allowed in Lo: ∃outx, y a(x)∧
a(y)∧ 〈o(x) <in o(y)〉 ∧ 〈∀inz z ≤in o(x)∨ o(y) ≤in z〉. This formula recognizes origin-graphs such
that there are two output positions labeled by a whose respective origins are adjacent.

4.2.6 Expressing regular transductions

Regular functions We show how to express regular functions in Lo.

Theorem 4.2.7. Any regular function can be expressed in Lo.

Proof. We consider T :=

(
k, φdom,

(
φipos(x)

)
i∈k ,

(
φia(x)

)
i∈k,a∈B ,

(
φi,j≤ (x, y)

)
i,j∈k

)
a word-to-

word MSO-transducer over A,B. Given an MSO[A,≤]-formula φ of T , we will abuse notations
and write 〈φ〉 to denote the predicate where ≤in and ∃in have been substituted for ≤ and ∃,
respectively.

97

Chapter 4. Logics for transductions with origins

Let us start by defining formulas which talk about the output produced by some input position
x. Let P ⊆ k. We define the formula saying which copies of x are used.

φP (x) :=
∧
i∈P

φipos(x)
∧
i/∈P

¬φipos(x)

Let i1, . . . , il be a non-repeating sequence of integers in k, we define a formula specifying the
order of the copies of x.

φi1,...,il(x) := φ{i1,...,il}(x)
∧

1≤m<n≤l

φim,in≤ (x, x)

Let v ∈ Bl, we define a formula saying that x produces v.

φi1,...,il,v(x) := φi1,...,il(x)
∧
j∈l

φ
ij
v(j)(x)

Now we define inductively formulas to state that an output position has at least i positions
to its left with the same origin for i ≥ 0.

D0(x) := out(x)

Di+1(x) := ∃outy y ≤out x ∧ 〈o(y) =in o(x)〉 ∧Di(y)

From this we define Ci+1(x) := Di(x) ∧ ¬Di+1(x) which states that x is exactly the i + 1st
position with origin x.

We are now able to define the final formula defining the same origin-transduction as T .

〈φdom〉∧
(
∀inx 〈φ∅(x)〉 ↔ ∀outy 〈o(y) 6=in x〉

)
∧∀outx

∨
l,i1,...,il,∈k,a∈B,p∈l
Cp(x) ∧ 〈φi1,...,il〉(o(x)) ∧ 〈φipa 〉(o(x)) ∧ a(x)

∧∀outx, y
∧
l,m,i1,...,il,j1,...,jm∈k,a,b∈B,p∈l,q∈m
Cp(x) ∧ Cq(y) ∧ 〈φi1,...,il〉(o(x)) ∧ 〈φj1,...,jm〉(o(y))

∧〈φipa 〉(o(x)) ∧ 〈φjqb 〉(o(y)) ∧ 〈φip,jq≤ (o(x), o(y))〉
→ a(x) ∧ b(y) ∧ (x ≤out y)

The formula can seem scary but it can be decomposed into three main parts: in the first line
we state that the input satisfies the domain formula and that an input position which does not
produce anything must satisfy φ∅. The big disjunction states that any output position must
correspond to some copy of its origin. The big conjunction makes sure that the output positions
do satisfy the properties enforced by T .

Existential logic We define a new logic over origin-graphs ∃Lo, which consists in formulas of
the form ∃X1 . . . ∃Xn φ where φ is an Lo-formula with additional unary predicates X1, . . . , Xn

available both for input and output positions. We show that this extension captures NMSO-
transductions.

Theorem 4.2.8. Any regular transduction can be expressed in ∃Lo.

Proof. The proof is very similar to the one for regular origin-functions. Indeed, an NMSO-
transducer can be thought of as an MSO-transducer but over a larger alphabet. If T is an
NMSO-transducer with parameters X1, . . . , Xn, then we define an ∃Lo formula ∃X1, . . . , Xn φ
where φ is an Lo-formula over a signature extended with new unary predicates. The Lo formula
φ is defined exactly as in the proof of Th. 4.2.7.

98

4.3. Reduction of the regular synthesis problem

2NFT

1NFT

Lo

NMSO

fREG

MSOo

Figure 4.2: Classes of transductions.

Example 4.2.9. We give examples of transductions which belong to some classes of Fig. 4.2 but
not others. A transduction which is not a function but in all other classes could be {(a, a), (a, b)}.
A typical example of a transduction which cannot be done by a one-way transducer (1NFT) is
the mirror function given by φmirror from Ex. 4.2.6. An example which is definable by an NMSO-
transduction or in Lo but cannot be done by a two-way transducer (2NFT) is given by Td

from Ex. 4.1.1 which intuitively needs to make twice the same non-deterministic choice on each
position. An origin-transduction which can be done by a 1NFT, or an NMSO-transducer but not
in Lo is keeping an even number of positions and erasing the others. The intuition behind this is
that parity cannot be expressed in FO2[≤]. Finally an example which cannot be realized by an
NMSO-transduction is {a} ×A∗ since NMSO-transductions can only have a linear size increase,
meaning that for any regular transduction there is a uniform constant k such that the output is
at most k times the size of the input.

Combining these we can obtain a transduction in any part of the diagram of Fig. 4.2. Let
us give an example of MSOo-transduction that does not belong to the other classes. Let φcfl :=
φshuffle∧φina∗b∗ ∧φout(ab)∗ , where φshuffle is the formula from Ex. 4.2.1 which says that the output is a

permutation of the input. The formula φina∗b∗ states that the input belongs to a∗b∗ which can be
expressed in first-order logic with two variables with either Sin or ≤in. On the other hand φout(ab)∗

states that the output belongs to (ab)∗, which is famously not expressible in in first-order logic
with two variables and ≤out but is of course expressible with Sout. This means that the domain
of the transduction defined by φcfl is the language {anbn | n ≥ 1} which is famously not rational.
However as we will see in the next sections, Lo-transductions always have a rational domain.

4.3 Reduction of the regular synthesis problem

The Lo regular synthesis problem asks, for an origin transduction given as an Lo-formula if
one can obtain a regular function (given as an MSO-transducer for instance) uniformizing it.
Before tackling the regular synthesis problem for Lo-formulas, we start by reducing the problem
several times to simpler problems. First we show how to restrict the problem to non-erasing
transductions. This can easily be done by adding a copy of the input at the beginning of the
output word. Second, we put formulas in Scott Normal Form (SNF), which is a classical method
when dealing with first-order logic with two variables, allowing one to reduce the quantification
rank of a formula to two (see [GO99]). Third, we show that over non-erasing origin-graphs, we

99

Chapter 4. Logics for transductions with origins

a b a

c d d a b a] c d d

a b a

Figure 4.3: Transforming an origin-graph into a non-erasing origin-graph.

can restrict quantifications to output positions since any input position is the origin of some
output position. Finally we replace these simple low quantifier rank formulas by sets of simple
constraints called MSO constraints. From these reductions we can describe the uniformization
algorithm. First we start by transforming the input formula following the previous steps. Then
we describe a uniformization algorithm for MSO constraints. Finally we work backwards to
retrieve a uniformization of the initial transduction.

4.3.1 Non-erasing transductions

Let g = (u, (v, o)) be an origin-graph over alphabets A,B, we define a non-erasing origin-graph
over A,B]{]}]A by gne := (u, (u]v, o′)) such that for i ∈ {1, . . . , |u|}, o′(i) := i, o′(|u|+1) := 1
and for i > |u|+ 1, o′(i) := o(i− |u| − 1). Intuitively, we add on the left of v a copy of the input
and separate the two by a] symbol. This is illustrated in Fig. 4.3. We now show that we only
have to find a uniformization algorithm for non-erasing formulas.

Theorem 4.3.1. Let φ be an Lo-formula. We can define a non-erasing Lo-formula φne such
that for any origin-graph g, g |= φ⇔ gne |= φne.

Proof. Let φ be an Lo-formula over alphabets A,B. The main idea of the proof is to restrict
quantifications to either positions before or after a special symbol]. Then, we say that the
output restricted to positions before the] satisfies the identity formula and the output restricted
to positions after the] satisfies φ.

We start by defining ψ] := ∃outx](x)∧∀outx, y (](x)∧](y))→ x = y, stating that there exists
exactly one output position labeled by]. Then, we can define the predicates <](x) := ∃outy x <out

y∧](y) and >](x) := ∃outy y <out x∧](y). We also define ψA]B := ψ]∧∀outx <](x)↔ (
∨
a∈A a(x))

to ensure that the alphabets are respected. Given an Lo-formula ψ, we define inductively ψ<],
by restricting the output quantifications to positions before the]. If ψ = ∃outx θ(x) then we
define ψ<] := ∃outx <](x)∧ θ<](x). Predicates and boolean connectives are not affected by this.
Similarly we define ψ>]. We can define the final formula:

φne := ψA]B ∧ φ<]id ∧ φ
>]

where φid is the formula defining the identity origin-transduction given in Ex. 4.2.1.

A consequence of the previous result is that a uniformization algorithm for non-erasing Lo-
formulas yields an algorithm for general Lo-formulas.

Lemma 4.3.2. Let phi be an Lo formula, and let T be an MSO-transducer uniformizing JφneKo.
Then we can obtain an MSO-transducer T ′ uniformizing JφKo

Proof. Let phi be an Lo formula over alphabets A,B, and let T be an MSO-transducer uniformiz-
ing JφneKo. Let Terase be an MSO-transducer defined over alphabets B]{]}]A, B which simply
erases all positions not labeled in B. According to Th. 4.3.1, we have that JTeraseKo◦JφneKo = JφKo.

100

4.3. Reduction of the regular synthesis problem

Since JφneKo and JφKo this means that if T uniformizes JφneKo, then JTeraseKo ◦ JT Ko uniformizes
JφKo. Furthermore, since MSO-transducers are closed under composition (see [Cou94]), we can
define an MSO-transducer T ′ realizing JTeraseKo ◦ JT Ko, which concludes the proof.

4.3.2 Scott Normal Form

We now describe the classical method (see [GO99]) used for two-variable logic, the Scott Normal
Form (SNF). The main idea is to reduce the quantification rank by augmenting the signature
with new unary predicates. The number of additional unary predicates is linear in the size of the
original formula. Let φ be an Lo-formula, and let ψ(x) be a subformula of φ with one quantifier.
Let φ′ be the formula φ where the predicate P (x) has been substituted for every occurrence
of ψ(x). Then the formula φ′ ∧ ∀x ψ(x) ↔ P (x) has the same models as φ, up to projecting
away the predicate P . Hence we obtain a new formula with a shallower syntactic tree, and by
repeating the process we obtain a formula of quantifier rank two.

Theorem 4.3.3. Let φ be an Lo-formula over alphabets A,B. One can obtain an Lo formula ψ
over alphabets A,B ×B′ such that:

• B′ is finite

• Up to projection π : B ×B′ → B of the output alphabet, φ and ψ have the same models

• ψ is of the form ∀x, y χ(x, y) ∧
∧
i∈n ∀x ∃y βi(x, y), where ∀i ∈ n χ, βi are quantifier-free.

Proof. First, we assume without loss of generality that negations only occur at the level of atomic
formulas. Let k denote the number of quantifiers in φ. We construct ψ iteratively, by defining
for i ≤ k formulas θi and ψi such that φ is equivalent to θi∧ψi (up to projecting over B), and ψi
has i less quantifiers than φ. We initialize by θ0 := > and ψ0 := φ. Let i > 0 and consider ξi(x) a
subformula of ψi−1 with one quantifier. Then ξi(x) is either of the form ∃y ρ(x, y) or ∀y ρ(x, y),
where ρ(x, y) is a quantifier-free formula. Either way let θi := θi−1 ∧∀x Pi(x)↔ ξi(x), where Pi
is a fresh unary predicate. The formula ψi is obtained by substituting Pi(x) for ξi(x) in ψi−1.

Since φ has k quantifiers, we know that ψk is quantifier-free. Furthermore, θ has two types
of conjuncts, ∀∀ or ∀∃. All ∀∀ conjuncts can be regrouped in one formula χ, and we obtain a
formula in the advertised form.

Let us now argue that φ and ψ are equivalent, up to projection over B. Let i ≤ k, we show
by induction on i that θi ∧ ψi is equivalent to φ. Let i < k and let us assume that the property
holds for i. Let gi be a model for θi∧ψi, we define gi+1 by adding the predicate Pi+1 interpreted
by {p ∈ dom(gi) | gi, p |= ξi+1(x)}. Of course gi+1 |= θi+1 since Pi+1 is interpreted exactly as
the positions in which ξi+1(x) holds. Similarly, since the positions satisfying ξi+1(x) are exactly
the ones satisfying Pi+1(x) we have that gi+1 |= ψi+1.

Conversely, let gi+1 |= θi+1 ∧ ψi+1. We define gi by projecting away the predicate Pi+1. We
have a fortiori that gi |= θi. Furthermore, all positions of gi+1 satisfying Pi+1(x) are exactly the
positions satisfying ξi+1(x). However the positions of gi which satisfy ξi+1(x) are exactly the
same as for gi+1, which means that gi |= ψi, and concludes the proof.

Remark 4.3.4. Note that the number of new predicates is linear in the size of the formula.
However, the number of new letters is exponential. Indeed the new predicates are not exclusive,
so we obtain 2k new letters.

Given a uniformization algorithm for Lo-formulas in SNF, we are thus able to retrieve an
algorithm for general Lo-formulas by projecting the output labels over the original alphabet.

101

Chapter 4. Logics for transductions with origins

Lemma 4.3.5. Let φ be an Lo-formula, let ψ be the obtained formula in SNF and let T be an
MSO-transducer uniformizing JψKo. One can define an MSO-transducer T ′ uniformizing JφKo.

Proof. Let φ be an Lo-formula, let ψ be the obtained formula in SNF and let T be an MSO-
transducer uniformizing JψK 6o =. According to Th. 4.3.3, φ and ψ have the same models up to
projection π : B×B′ → B. Hence we define Tπ a word-to-word MSO-transducer replacing every
label of the form (b, b′) ∈ B×B′ by b. Thus we have that JTπKo◦JψKo = JφKo. Since φ and ψ have
the same domain, then we have that JTπKo◦JT Ko uniformizes JφKo. Again since MSO-transducers
are closed under composition ([Cou94]), we can define T ′ realizing JTπKo ◦ JT Ko.

4.3.3 Output formulas

An output formula is a formula which only quantifies over output positions, except inside an input
predicate. We show that over non-erasing origin-graphs, any Lo-formula can be transformed into
an output formula. Intuitively, since we consider non-erasing origin-graphs, we can virtually
quantify over the input by quantifying over the output, through the origin function.

Theorem 4.3.6. Given an Lo-formula φ, one can define an output Lo-formula φout which is
equivalent, over non-erasing origin-graphs. Furthermore, if φ is in SNF, then so is φout.

Proof. We replace any quantification ∃x φ(x) by ∃outx φ(x)∨φ(o(x)), and ∀x φ(x) by ∀outx φ(x)∧
φ(o(x)). Since we only consider non-erasing origin-graphs, any input position is the origin of some
output position, which means that the new formula is equivalent to the old one (over non-erasing
origin-graphs). Since we don’t change the alternation of quantifiers, if φ is in SNF then so is
φout.

Remark 4.3.7. Given a non-erasing formula, we can obtain an output formula which defines
the same origin-graphs (when restricted to non-erasing origin-graphs). Hence if we have a uni-
formization algorithm for output formulas, we also have one for non-erasing formulas. In the
following we will write JφKne

o := {g ∈ JφKo | g non-erasing}.

Corollary 4.3.8. Let φ be an Lo-formula, and let T be an MSO-transducer uniformizing JφoutKne
o .

Then T uniformizes JφKo

Proof. This is a direct consequence of Th. 4.3.6.

4.3.4 Sets of constraints

With the previous three subsections we have shown that we only need to obtain a uniformization
algorithm for output formulas of quantifier rank two, restricted to non-erasing origin-graphs. In
the vein of [SZ12], we transform such a formula into a set of constraints, which are easier to
manipulate.

Let A,B be alphabets. An existential constraint is a pair (b, E) with b ∈ B, E a finite set
of triples (c, d, 〈φ〉) where c ∈ B, d ∈ {<out,=out, >out} and 〈φ〉 is an input predicate. Let g be
an origin graph and let p be an output position of g. We say that g, p satisfies the constraint
(b, E) if whenever p is labeled by b there exists an output position q and a triple (c, d, 〈φ〉) ∈ E
such that q is labeled by c, p, q are related by d and the origins of p, q satisfy 〈φ〉. In that case,
such a position q is called a witness of (b, E) for p. Formally, g, p satisfy the constraint if we
have g, p |= b(x)→ ∃outy

∨
(c,d,〈φ〉)∈E c(y) ∧ (x d y) ∧ 〈φ〉(o(x), o(y)). We say that g satisfies the

constraint if for any position p, we have that g, p satisfies the constraint.

102

4.4. Uniformization algorithm

A universal constraint is a tuple (b, c, d, 〈φ〉) with b, c ∈ B, d ∈ {<out,=out, >out} and
〈φ〉 is an input predicate. We say that a non-erasing origin-graph g and two output posi-
tions p, q do not satisfy the constraint if p, q are labeled b, c, respectively, ordered by d and
their origins satisfy 〈φ〉. Intuitively, a universal constraint can be thought of as a forbidden
pattern. Formally, a graph g and two output positions p, q satisfy the constraint if we have
g, p, q |= ¬ (b(x) ∧ c(y) ∧ (x d y) ∧ 〈φ〉(o(x), o(y))). The graph g satisfies the universal constraint
if for all output positions p, q then g, p, q satisfy it.

An instance of the MSO Constraint Problem (MCP) is a pair C = (C∃, C∀) of finite sets of
existential and universal constraints, respectively. A non-erasing origin-graph g is said to satisfy
(or model) C if it satisfies each of its constraints, and we denote it by g |= C. We write JCKo to
denote the set of non-erasing origin graphs satisfying C.

Theorem 4.3.9. Let φ be an output Lo-formula in SNF. We can construct C an MCP equivalent
to φ over non-erasing origin-graphs.

Proof. Let φ = ∀outx, y χ(x, y) ∧
∧
i∈n ∀outx ∃outy βi(x, y) be an output Lo-formula in SNF.

A atomic binary type for x, y is a truth value for all unary predicates P (x), P (y) and binary
predicates Q(x, y). Hence the formula χ(x, y) can be seen as a disjunction of all the allowed
atomic binary types. Thus we can define C∀ as the set of all forbidden atomic binary types.
Thus satisfying ∀outx, yχ(x, y) is equivalent to satisfying all the constraints of C∀.

By a case study analysis, we can rewrite the rest of the formula
∧
i∈n ∀outx ∃outy βi(x, y) as:

∀outx
∧
i∈m

bi(x)→ ∃outy
∨
j∈ni

ci,j(y) ∧ (x di,j y) ∧ 〈φi,j〉(o(x), o(y))

where m ∈ N, for all i ∈ m, ni ∈ N and for all j ∈ ni, ci,j ∈ B, di,j ∈ {<out,=out, >out}, and
〈φi,j〉 is an input predicate. For each i ∈ m we define an existential constraint (bi, Ei) with
Ei := {(ci,j , di,j , 〈φi,j〉) | j ∈ ni}. We define C∃ as the set of all such constraints and thus,
satisfying the original formula is equivalent to satisfying C∃.

Corollary 4.3.10. Let φ be an output Lo-formula in SNF, let C be the obtained equivalent MCP,
and let T be an MSO-transducer uniformizing JCKo.Then T uniformizes JφKne

o .

Proof. This is a direct consequence of Th. 4.3.9.

In the following lemma we sum up the reduction results of the section.

Lemma 4.3.11. Given a regular uniformization algorithm for the MCP, we have a regular
uniformization algorithm for Lo.

Proof. This is obtained by combining the reductions of the previous subsections, Lem. 4.3.2,
Lem. 4.3.5, Cor. 4.3.8 and Cor. 4.3.10.

4.4 Uniformization algorithm

We have reduced the initial synthesis problem to the regular synthesis problem of MCPs. Indeed,
according to Lem. 4.3.11, it suffices to exhibit a regular uniformization algorithm for MCPs in
order to obtain a regular uniformization algorithm for Lo. The main ideas used to solve this
problem are inspired from [SZ12] where the authors showed the decidability of first-order logic
with two variables over data words with the linear order and the data order. We extend these
ideas to our setting, and refine them to obtain not only decidable satisfiability but also effective

103

Chapter 4. Logics for transductions with origins

a b b a a

d c d c d d d

a b b a a

d

c

d

c

d

d

d

in

out

Figure 4.4: An origin-graph (left) seen as a two-dimensional structure (right).

qi qx qy qf
α α α

α α

q0 q1

α

α

Figure 4.5: Two predicate automata. The left one recognizes the successor predicate with se-
lecting pair (qx, qy). The right one recognizes the even distance predicate with selecting pairs
(q0, q0) and (q1, q1).

regular synthesis for Lo. MSO binary predicates are replaced by binary predicate automata
recognizing words with two distinguished positions x, y. We enrich origin-graphs with extra
information, and we call these new objects full profile graphs. A full profile graph contains for
each input position a copy of the output, with additional information about the binary predicates.
From a full profile graph we define its reduced profile graph, which only keeps a bounded number
of output positions for each input position. We show however that if a full graph satisfies an
existential or universal constraint, then its reduced graph also does. Finally we show that if a
reduced graph is valid (with respect to an MCP) and locally consistent (defined later) then one
can construct an associated full graph. Since these properties are regular, we can recognize the
set of valid and consistent reduced graphs, and by constructing the associated origin-graph, we
obtain a uniformization of the original transduction.

A very useful tool will be to visualize an origin graph as a two dimensional structure with
the input in the abscissa and the output in the ordinate, just as seen in Fig. 4.4.

4.4.1 Predicate automata

Before starting solving the problem, we replace MSO-formulas by automata, which are easier to
deal with. We define the notion of predicate automata, a common tool to study MSO queries
(see e.g. [NPTT05]).

A (binary) predicate automaton over an alphabet A is a pair (A, SP) where A is an automaton
and SP ⊆ Q×Q is the set of selecting pairs, with Q the set of states of A. Given a word u and

104

4.4. Uniformization algorithm

a b b a a

d,→,(q0,q0)

c,→,(q0,q1)

d, · ,(q0,q0)

c,→,(q0,q1)

d,→,(q0,q0)

d,→,(q0,q0)

d,→,(q0,q0)

d,→,(q1,q0)

c, · ,(q1,q1)

d,←,(q1,q0)

c,→,(q1,q1)

d,→,(q1,q0)

d,→,(q1,q0)

d,→,(q1,q0)

d, · ,(q0,q0)

c,←,(q0,q1)

d,←,(q0,q0)

c,→,(q0,q1)

d, · ,(q0,q0)

d,→,(q0,q0)

d, · ,(q0,q0)

d,←,(q1,q0)

c,←,(q1,q1)

d,←,(q1,q0)

c, · ,(q1,q1)

d,←,(q1,q0)

d,→,(q1,q0)

d,←,(q1,q0)

d,←,(q0,q0)

c,←,(q0,q1)

d,←,(q0,q0)

c,←,(q0,q1)

d,←,(q0,q0)

d, · ,(q0,q0)

d,←,(q0,q0)

in

out

Figure 4.6: The full profile sequence of an origin-graph.

two positions i, j ≤ |u|, we say that the triple u, i, j is recognized by (A, SP) if there exists an
accepting run r of A over u such that (r(i), r(j)) ∈ SP . Given φ(x, y) a binary MSO[≤]-definable
predicate over an alphabet A, we can define an equivalent predicate automaton (Aφ, Sφ) over
A. Given Φ = {φ1, . . . , φn} a set of binary MSO[≤] predicates, we can take the union of all the
predicate automata of each φi, i ∈ n, and thus we obtain a unique automaton AΦ and one set
of selecting pairs for each predicate, {SPφ1

, . . . , SPφn}.

Example 4.4.1. We give in Fig. 4.5 on the preceding page a predicate automaton for the
successor predicate, where the only selecting pair is {(qx, qy)}. We also give an automaton for
the even distance predicate.

4.4.2 Profiles

The notion of profile is a bit intricate but it is crucial to our approach. The profile of an input
position in an origin-graph keeps information about the output positions it produces and also
about other output positions.

Clauses Let A,B be alphabets, let C be an MCP instance, let AΦ be the automaton of the
MSO input predicates appearing in C, let QΦ be the state space of AΦ and let SΦ := 2QΦ×QΦ .
A clause for C is an element of the alphabet B×{·,→,←}×SΦ. Clauses of the form (b, ·, P) are
called local clauses and talk about the label of an output position, and the MSO type of its origin
(in a local clause P will only contain pairs of the form (p, p)). A clause of the form (b,→, P)
(resp. (b,←, P)) is called a consistency clause and states that there is an output position labeled
b whose origin is greater (resp. smaller) than the current position and such that the binary

105

Chapter 4. Logics for transductions with origins

a b b a a

d,→,(q0,q0)

c,→,(q0,q1)

d, · ,(q0,q0)

c,→,(q0,q1)

d,→,(q0,q0)

d,→,(q1,q0)

c, · ,(q1,q1)

d,←,(q1,q0)

c,→,(q1,q1)

d,→,(q1,q0)

d, · ,(q0,q0)

c,←,(q0,q1)

d,←,(q0,q0)

c,→,(q0,q1)

d,→,(q0,q0)

d, · ,(q0,q0)

d,←,(q1,q0)

c,←,(q1,q1)

c, · ,(q1,q1)

d,→,(q1,q0)

d,←,(q1,q0)

d,←,(q0,q0)

c,←,(q0,q1)

c,←,(q0,q1)

d, · ,(q0,q0)

d,←,(q0,q0)

in

out

Figure 4.7: The reduced profile sequence of an origin-graph.

MSO type of these two positions corresponds to the pairs of states P . The number of clauses is
bounded by NC := |B| · 3 · 2|QΦ|2 .

Profile A C-profile (or just profile for short) is a sequence of the form λ = (a, S,A1, . . . , Ak)
where a ∈ A, S ⊆ QΦ is a subset of states of the predicate automaton, and Aj is a clause for
any j ∈ k. A clause occurrence Aj in such a profile λ is called extremal if either for all clauses
Aj′ = Aj we have j′ ≤ j (Aj is maximal) or for all clauses Aj′ = Aj we have j′ ≥ j (Aj is
minimal). In the following, for j ∈ k we will often say the clause Aj to refer to the occurrence
of the clause corresponding to the jth clause of λ.

A profile is called reduced if any type of clause occurs at most two times. The reduction of a
profile λ is the reduced profile ρ(λ) obtained by removing all non extremal clauses, i.e. for each
type of clause only the two outermost occurrences are kept.

The input of a profile sequence s = λ1, . . . , λn, with λi =
(
ai, Si, A

i
1, . . . , A

i
ki

)
is the word

in(s) = a1 · · · an. Note that the number of reduced profiles is less than |A| · 2|QΦ| ·N2NC+1
C .

Let g = (u, (v, o)) be an origin-graph. The full profile of an input position i ∈ {1, . . . , |u|}
of g is the sequence λi := (a, S,A1, . . . , A|v|), where a = u(i), and S is the set of states p such
that there is an accepting run r of AΦ over u with r(i) = p. In short, the set S characterizes
the unary MSO-type of position i of u. For j ∈ {1, . . . , |v|}, we have Aj := (v(j), sj , Pj), where
sj is · if o(j) = i, → if o(j) > i and ← if o(j) < i. The set Pj is defined as the set of pairs of
states (p, q) such that there is an accepting run r of AΦ over u where r(i) = p and r(o(j)) = q.
Intuitively, the clause Aj keeps track of the label of position j as well as the binary predicates
satisfied at positions (i, o(j)). Note that if Aj is local, then Pj = {(p, p) | p ∈ S}. The reduced
profile (sometimes just profile) of an input position is the reduction of its full profile. The full
profile sequence of g = (u, (v, o)) is the sequence fSeq(g) = λ1, . . . , λ|u| where λi is the full

106

4.4. Uniformization algorithm

profile sequence of the ith position of u. The (reduced) profile sequence of q is the sequence
Seq(g) = ρ(λ1), . . . , ρ(λ|u|).

Example 4.4.2. In Fig. 4.6 and 4.7 we give the full profile sequence and the reduced profile
sequence, respectively, of the origin graph from Fig. 4.4 on page 104. The profiles contain the
information relative to the even distance predicate automaton from Fig. 4.5 on page 104. In this
two-dimensional representation, profiles are given vertically.

4.4.3 Validity

We define validity of profiles and of profile sequences with respect to an MCP instance C, and
show that origin-graphs satisfying C have valid full profile sequences, which in turn have valid
reduced profile sequences.

Let C be an MCP, and let λ = (a, S,A1, . . . , Ak) be a profile. Let (b, E) be an existential
constraint of C. We say that λ satisfies (b, E) if for all j ∈ {1, . . . , k} where Ak is a local clause
of the form (b, ·) there exist (c, d, 〈φ〉) ∈ E, and j′ ∈ {1, . . . , k} such that j d j′, Aj′ = (c, s, P),
and P ∩ SPφ 6= ∅. The clause Aj′ is called a witness of (b, E) for Aj . Let (b, c, d, 〈φ〉) be a
universal constraint. The profile λ satisfies (b, c, d, 〈φ〉) if for all j, j′ ∈ {1, . . . , k}, it is not the
case that Aj is a local clause with label b, Aj′ = (c, s, P), j d j′ and P ∩ SPφ 6= ∅. The profile
λ is valid for C if it satisfies each of its constraints. A profile sequence is called valid for C (or
just valid when C is clear from context) if each of its profiles is valid.

We now show the equivalence between being a model and having a valid full profile sequence.

Proposition 4.4.3. Let C be an MCP, then g |= C if and only if fSeq(g) is valid.

Proof. Let g = (u, (v, o)) be an origin-graph and let fSeq(g) = λ1, . . . , λ|u| be its full profile
sequence. We first show that g satisfies an existential constraint if and only if fSeq(g) does, and
then we do the same for universal constraints.

Let (b, E) be an existential constraint of C satisfied by fSeq(g) and let j ∈ {1, . . . , |v|} be
such that v(j) = b and o(j) = i ∈ {1, . . . , |u|}. Let λi = (a, S,A1, . . . , A|v|) be the ith full profile
of g, then we have Aj = (b, ·, P). Since λi satisfies the constraint, there exists Aj′ = (c, s, P ′),
j′ ∈ {1, . . . , |v|}, a witness of the constraint for Aj . This means that there exists (c, d, 〈φ〉) ∈ E
with j d j′ and P ′ ∩ SPφ 6= ∅. Hence, by definition of the predicate automaton, we have
u |= φ(i, o(j′)). Hence we have that g satisfies (b, E).

Conversely let us assume that g satisfies the constraint (b, E), let i ∈ {1, . . . , |u|}, let λi =(
a, S,A1, . . . , A|v|

)
and let Aj = (b, ·, P). Since g satisfies C, there is a witness j′ of (b, E) for j.

Thus we know that there is (c, d, 〈φ〉) ∈ E such that j d j′, v(j′) = c and u |= φ(o(j), o(j′)). By
definition we have Aj′ = (c, s, P) such that P ∩ SPφ 6= ∅. Hence, λi satisfies (b, E), and thus
fSeq(g) satisfies (b, E).

Let (b, c, d, 〈φ〉) be a universal constraint of C, and let us assume that λi violates the constraint
for some i ∈ {1, . . . , |u|}. This means that there exist j, j′ such that Aj = (b, ·, P), Aj′ = (c, s, P ′)
such that j d j′ and P ′ ∩SPφ 6= ∅. By definition of λ, this means that v(j) = b, v(j′) = c, j d j′

and u |= φ(o(j), o(j′)) and thus g also violates the constraint.
Let us finally assume that g violates a universal constraint. Let (b, c, d, 〈φ〉) be a universal

constraint and let j, j′ ∈ {1, . . . , |v|} such that v(j) = b, v(j′) = c, j d j′ and u |= φ(o(j), o(j′)).
This means, by definition of the full profile of i = o(j) that it has two clauses Aj = (b, ·, P) and
Aj′ = (c, s, P ′) where P ′ ∩ SPφ 6= ∅ and thus λi violates the constraint.

We now show that reduction of profiles preserves validity.

107

Chapter 4. Logics for transductions with origins

Proposition 4.4.4. Let C be an MCP, and let λ be a valid profile. The profile ρ(λ) is valid.

Proof. Let C be an MCP and let λ = (a, S,A1, . . . , Ak) be a valid profile. Since ρ(λ) is a
subsequence of λ, we have that ρ(λ) satisfies any universal constraint satisfied by λ.

Let l ≤ k and let 1 ≤ i1 ≤ . . . ≤ il ≤ k such that ρ(λ) = (a, S,Ai1 , . . . , Ail). Let (b, E) be an
existential constraint of C, and let j ∈ {1, . . . , l} such that Aij = (b, ·, P). Since λ is valid, there
exists Aj′ a witness of (b, E) for Aij with ij d j

′ (with d ∈ {=, <,>}). However, the reduction of
a profile does not remove extremal clauses, thus there exists j′′ ∈ {1, . . . , l} such that Aj′ = Aij′′
either j′ = ij′′ or j′′ d ij′′ . Either way we have that ij d ij′′ and thus Aij′′ is a witness of (b, E)
for Aij .

2-bounded origin-graphs We define a notion of small models which we call 2-bounded. An
origin-graph over A,B is called 2-bounded if for any input position and any output letter b ∈ B,
the input position produces at most two output positions labeled by b. Reduced profiles have at
most two occurrences of each local clause. Thus we will show that the profile sequence of any
origin-graph is equal to the profile sequence of some 2-bounded origin-graph. We show that a
2-bounded origin-graph satisfies an MCP C if and only if its reduced profile sequence is valid.

Proposition 4.4.5. Let C be an MCP and let g be a 2-bounded origin-graph. Then g |= C if
and only if Seq(g) is valid.

Proof. Let C be an MCP and let g = (u, (v, o)) be a 2-bounded origin-graph. If g |= C then
fSeq(g) is valid, according to Prop. 4.4.3. Then from Prop. 4.4.4, Seq(g) = ρ(fSeq(g)) is also
valid.

We have left to show that if Seq(g) is valid then so is fSeq(g). Let i ∈ {1, . . . , |u|} let
λi =

(
a, S,A1, . . . , A|v|

)
be the full profile of position i. Let 1 ≤ i1 ≤ . . . ≤ il ≤ k be such that

ρ(λi) = (a, S,Ai1 , . . . , Ail).
Let (b, E) be an existential constraint satisfied by ρ(λi), and let Aj = (b, ·, P). Since g is

2-bounded, reducing a profile cannot erase a local clause, thus we have Aj = Aim for some m ∈ l.
Since ρ(λi) satisfies (b, E) there exists Ain a witness of it for Aj . Thus Ain is also a witness of
(b, E) for Aj , since λi is a supersequence of ρ(λi). Hence λi also satisfies (b, E).

Let (b, c, d, 〈φ〉) be a universal constraint violated by λi, this means that there are two clauses
Aj = (b, ·, P) and Aj′ = (c, s, P ′) such that j d j′ and P ′ ∩ SPφ 6= ∅. Since Aj is a local clause,
it is not removed in ρ(λi). Furthermore, we can assume without loss of generality that Aj′ is an
extremal occurrence of the clause and thus it is not removed either in ρ(λi). Hence ρ(λi) also
violates the constraint, which concludes the proof.

4.4.4 Consistency

Consistency is a property of profile sequences that ensures compatibility of adjacent profiles.
Before defining consistency, we need the key notion of successor clauses.

Successor clauses We define the (unique) successor of a clause which is either local or pointing
to the left. Similarly, the predecessor of a clause either local or pointing to the right is also
unique. Let C be an MCP over A,B, let AΦ be the associated predicate automaton with
state space QΦ. Let a, a′ ∈ A, let S, S′ ⊆ QΦ and let K be a clause of the form (b, ·, P) or
(b,←, P). Then the successor of K with respect to a, a′, S, S′ is the clause K ′ = (b,←, P ′) with

P ′ =
{

(p′, q) ∈ S′ × S | ∃(p, q) ∈ P, p a−→AΦ
p′
}

. Let a, a′ ∈ A, let S, S′ ⊆ QΦ and let K ′ be a

108

4.4. Uniformization algorithm

a b b a a

d,→,(q0,q0)

c,→,(q0,q1)

d, · ,(q0,q0)

c,→,(q0,q1)

d,→,(q0,q0)

d,→,(q1,q0)

c, · ,(q1,q1)

d,←,(q1,q0)

c,→,(q1,q1)

d,→,(q1,q0)

d, · ,(q0,q0)

c,←,(q0,q1)

d,←,(q0,q0)

c,→,(q0,q1)

d,→,(q0,q0)

d, · ,(q0,q0)

d,←,(q1,q0)

c,←,(q1,q1)

c, · ,(q1,q1)

d,→,(q1,q0)

d,←,(q1,q0)

d,←,(q0,q0)

c,←,(q0,q1)

c,←,(q0,q1)

d, · ,(q0,q0)

d,←,(q0,q0)

in

out

Figure 4.8: The reduced profile sequence of an origin-graph, with linked clauses (dotted).

clause of the form (b, ·, P ′) or (b,→, P ′). Then the predecessor of K ′ with respect to a, a′, S, S′

is the clause K = (b,→, P) with P =
{

(p, q) ∈ S × S′ | ∃(p′, q) ∈ P ′, p a−→AΦ
p′
}

. A pair of

profiles K,K ′ such that either K ′ is a successor of K or K is a predecessor of K ′ is called an
adjacent pair of clauses.

Example 4.4.6. In particular all pairs of clauses linked by a dotted line in Fig. 4.8 are adjacent.

Linked clauses Before defining consistency, we define the notion of linked clauses in two
profiles. Let λ = (a, S,A1, . . . , Ak) and µ = (b, T,B1, . . . , Bl) be two profiles. Let i ∈ k, j ∈ l
such that Ai, Bj is an adjacent pair. We say that Ai and Bj are linked, with respect to λ, µ, if
one of the two following cases occurs:

• the index i is maximal among clauses of λ adjacent to Bj and the index j is maximal
among clauses of µ such that Ai is adjacent to them.

• the index i is minimal among clauses of λ adjacent to Bj and the index j is minimal among
clauses of µ such that Ai is adjacent to them.

We denote that Ai and Bj are linked by Ai `λ,µ Bj (the profiles λ, µ are often left implicit).
Given a profile sequence s = λ1, . . . , λn, we define the link closure of s by `∗s, the symmetric and
transitive closure of

⋃
1≤i<n `λi,λi+1 .

Example 4.4.7. The linked clauses are represented by dotted lines in Fig. 4.8.

Consistency of profiles Let us define the notion of consistent profiles. Intuitively, two profiles
are consistent if they are the reductions of two profiles of same size such that for any i the ith

109

Chapter 4. Logics for transductions with origins

clause of the first profile and the ith clause of the second are adjacent. Formally, let λ =
(a, S,A1, . . . , Ak) and µ = (b, T,B1, . . . , Bl) be two profiles. The pair λ, µ is called consistent if
1) each clause of λ is adjacent to some clause of µ and vice versa, 2) each clause is linked to at
most one clause, and 3) there are no crossing links i.e. links Ai, Bj and Ai′ , Bj′ such that i < i′

and j > j′, or such that i > i′ and j < j′. A profile sequence λ1, . . . , λn is consistent if for all
i ∈ {1, . . . , n− 1}, the pair λi, λi+1 is consistent.

Proposition 4.4.8. Let C be an MCP and let g be an origin-graph. The sequence Seq(g) is
consistent.

Proof. Let g = (u, (v, o)) be an origin-graph, and let us first show that its full profile sequence is
consistent. Let i ∈ {1, . . . , |u| − 1} and let λi = (a, S,A1, . . . , A|v|) and λi+1 = (b, T,B1, . . . , B|v|)
be the full profiles of positions i and i + 1, respectively. By definition, each pair Aj , Bj is an
adjacent pair, for j ∈ {1, . . . , |v|}. Since we never erase all occurrences of a clause, we have
that each clause of ρ(λi) is adjacent to some clause of ρ(λi+1), and vice versa. Furthermore, by
definition of linked clauses, non-extremal clauses can never be part of a linked pair for λi, λi+1.
Thus we obtain that linked pairs for λi, λi+1 are necessarily of the form Aj , Bj where both Aj and
Bj are both minimal or both maximal occurrences of their respective clause. Thus, by removing
non-extremal clauses, we preserve the linked pairs, and we don’t create new ones, which means
that each clause is linked to at most one other clause, and hence λi, λi+1 is consistent, which
concludes the proof.

4.4.5 Complete profile sequences

The notion of completeness pertains to profile sequences and ensures that all the set of states
and pairs of states in the profiles contain all possible states of accepting runs. A profile is called
initial if it does not contain a clause pointing to the left and final if it does not contain clauses
pointing to the right.

Link closure Before defining completeness, we need some properties of the link closure of
reduced and consistent profile sequences. Given a profile sequence s, we call the graph of l∗s the
graph of clause occurrences of s, with edges of l∗s .

Lemma 4.4.9. Let s be a consistent profile sequence. The following holds: each connected
component of `∗s is a path with at most one local clause.

Proof. By definition of consistency, a clause is linked at most once on the left and once on the
right, which means that connected components of `∗s are paths. A clause pointing to the right
can only be followed by a clause pointing to the right or a local clause, a local clause can only be
followed by a clause pointing to the left and clauses pointing to the left must be followed by a
clause pointing to the left. This means that each path of `∗s contains at most one local clause.

We consider the link closure of consistent reduced profile sequences and show that non-local
clauses are linked in the direction they point to.

Lemma 4.4.10. Let s = λ1, . . . , λn be a consistent reduced profile sequence, with n ≥ 2. For any
i ∈ {1, . . . , n− 1}, any clause of type (b,→, P) of λi is linked to a clause of λi+1. Symmetrically,
for any i ∈ {2, . . . , n}, any clause of type (b,←, P) of λi is linked a clause of λi−1.

Proof. Let s = λ1, . . . , λn be a consistent reduced profile sequence, with n ≥ 2. Let i ∈
{1, . . . , n− 1}, let λi = (a, S,A1, . . . , Ak) and let Aj = (b,→, P). Since λi is reduced, Aj is

110

4.4. Uniformization algorithm

either the maximal or minimal (or both) occurrence of the clause. Let us assume without loss of
generality that Aj is the maximal occurrence. If we consider all clauses of λi+1 whose predecessor
is Aj , then Aj is linked to the maximal of these clauses, by consistency. The symmetric case is
proved in the same way.

Combining the two previous lemmas we obtain the following property of consistent and re-
duced profile sequences.

Corollary 4.4.11. Let s be a consistent reduced profile sequence beginning with an initial profile
and ending with a final one. Each connected component of `∗s is a path with exactly one local
clause.

Proof. The result follows from Lem. 4.4.9 and 4.4.10.

Example 4.4.12. In Fig. 4.8 on page 109, we consider the reduced profile sequence of the
origin-graph from Fig. 4.4 on page 104 where we added the links between clauses. Note that
each linked component is a path and that each path contains exactly one local clause.

Complete sequences We now have the tools to define complete sequences. Intuitively, a
complete sequence does not conceal any predicate information in the clauses. Let s = λ1, . . . , λn
be a consistent reduced profile sequence beginning with an initial profile and ending with a final
one, and let u = in(s).

Let Aj = (b, d, P) be a clause of λi, let i′ be the index of the profile containing the local
clause linked to Aj by `∗ (which exists and is unique by Cor. 4.4.11). The clause Aj is complete
with respect to s if P is equal to the set of pairs (p, q) such that there is an accepting run r of
AΦ over u with r(i) = p and r(i′) = q. Then the sequence s is called complete if it satisfies the
following properties:

• For all i ∈ n, Si is equal to the set of states p such that there is an accepting run r of AΦ

over u with r(i) = p.

• For all i ∈ n, all clauses of λi are complete with respect to s.

We now show that the profile sequence of an origin-graph is complete.

Theorem 4.4.13. Let C be an MCP, and let g be an origin-graph. The sequence Seq(g) is
complete.

Proof. Let C be an MCP, and let g = (u, (v, o)) be an origin-graph. By definition, the first
profile of Seq(g) is initial and the last one is final. According to Prop. 4.4.8, Seq(g) is consistent.
Let Seq(g) = λ1, . . . , λn, let i ∈ n and let λi = (a, S,A1, . . . , Ak). Again, by definition, we have
that S is complete.

As we have seen in the proof of Prop. 4.4.8, links in Seq(g) coincide with the links in fSeq(g)
thus the local clause linked to a clause of Seq(g) is the same clause in fSeq(g), which is complete
by definition of full profiles. This means that all clauses of Seq(g) are complete.

4.4.6 Soundness

We have shown that a model of an MCP has a valid (Prop. 4.4.3 and 4.4.4) and a complete
(Th. 4.4.13) reduced profile sequence. Our goal is now to obtain the converse result that any
complete and valid profile sequence is the profile sequences of some model of C. Before that we
define a partial order on local clauses, the linearization of which will yield an origin graph.

111

Chapter 4. Logics for transductions with origins

Let s = λ1, . . . , λn be a consistent profile sequence. Let j < k be two integers such that
Aj and Bk are two distinct local clauses of some profiles of s. If there exists a profile λi =
(a, S,C1, . . . , Cm) with two clauses Cj′ , Ck′ such that Aj `

∗ Cj′ , Bk `
∗ Ck′ and j′ < k′ then we

set Aj →s Bk.

Example 4.4.14. Let us consider the profile sequence s of Fig. 4.8 on page 109, which is
consistent by Prop. 4.4.8. Let C2 be the local clause of the second profile and let C5 be the local
clause of the last profile. Since C2 is linked to a clause of the last profile, below C5, then we have
C2 →s C5. Let C1 be the local clause of the first profile, then C1 and C5 are incomparable with
respect to →s because their link paths never intersect the same profile.

Proposition 4.4.15. Let s be a consistent profile sequence, then →s over occurrences of local
clauses of s is acyclic.

Proof. Let s = λ1, . . . , λn be a consistent profile sequence. We map clause occurrences into the
two-dimensional plane such that if we have A →s B then A has a strictly lower ordinate than
B, which will conclude the proof. Let λi = (ai, Si, A

i
1, . . . , A

i
ki

) for i ∈ n. We start by setting

µ(A1
j) := (1, j), for j ∈ i1, and then we define µ by induction. For any clause Ai+1

j , if it is linked

to some clause Aij′ with µ(Aij′) = (i, q) then µ(Ai+1
j) := (i+ 1, q). Let 1 ≤ j1 < . . . < jk ≤ ki+1

be the indexes of the linked clauses and let q1 < . . . < qk be their respective ordinates (they are
ordered the same, since there are no crossing links by consistency). Let j < j1, then µ(Ai+1

j) :=

(i+ 1, q1− (j1− j)). Let jl < j < jl+1, then µ(Ai+1
j) := (i+ 1, ql +

j−jl
jl+1−jl (ql+1− ql). Let j > jk,

then µ(Ai+1
j) := (i+ 1, qk + (j − jk)). Hence by definition, linked pairs have the same ordinate,

while two clauses where A →s B implies that the ordinate of A is strictly smaller than that of
B, concluding the proof.

From complete sequences to origin-graphs We define a construction from a complete
profile sequence to an origin-graph and show some of its properties. Let s = λ1, . . . , λn be a
profile sequence with λi = (ai, Si, A

i
1, . . . , A

i
ki

) and let ≤s be a linear order over local clauses,
compatible with →s (i.e. A →s B ⇒ A ≤s B). Let us define g = (u, (v, o)) the origin-graph
of s induced by ≤s, by u := a1 · · · an, dom(v) :=

{
Aij local | i ∈ n, j ∈ ki

}
with ≤v := ≤s,

bv :=
{
Aij ∈ dom(v) | Aij = (b, ·, P)

}
for b ∈ B, and o(Aij) := i, for i ∈ n, j ∈ ki.

Lemma 4.4.16. Let s be a complete profile sequence, let ≤s be a linear order compatible with
→s and let g be the origin-graph of s induced by ≤s. Then Seq(g) = s.

Proof. Let s = λ1, . . . , λn be a complete sequence, let ≤s be a linear order compatible with
→s and let g = (u, (v, o)) be the origin-graph of s induced by ≤s. Let i ∈ n, and let λi =
(ai, Si, A

i
1, . . . , A

i
ki

), then we have a1 · · · an = u. Let s′ = fSeq(g) = λ′1, . . . , λ
′
n, let i ∈ n, and let

λ′i = (ai, S
′
i, A
′i
1 , . . . , A

′i
k′i

). The sets S′i only depend on u and i, and thus by completeness of s we

have S′i = Si. The local clauses of s′ are obtained from the local clauses of s and thus for each
profile, the number of occurrences as well as the respective order of the local clauses is preserved.

Let us first show that s is a subsequence of s′, the full profile sequence of g. Let i ∈ n, let
1 ≤ j < j′ ≤ ki, then Aij and Aij′ both point to some local clause in other profiles (Cor. 4.4.11).
We have that these positions must be ordered by →∗s (the transitive closure of →s) and thus by
≤s, which means that these two clauses appear in the same order in the ith full profile of g.

Let us assume that λi 6= ρ(λ′i). This means that there is an extremal (let’s assume maximal)
occurrence of a clause of λ′i which does not appear in λi. If the clause does not appear at all, then
by consistency we obtain a contradiction. If this clause does appear in λi but lower, then this

112

4.4. Uniformization algorithm

would imply crossing links with a clause that appears above in λi but below in λ′i, contradicting
consistency. Hence we have λi 6= ρ(λ′i), and thus s = Seq(g).

We now have all the tools to characterize complete and valid profile sequences.

Lemma 4.4.17. Let C be an MCP. We have {Seq(g) | g |= C} = {s | s is complete and valid}.
Proof. The left-to-right inclusion comes from Prop. 4.4.3 and 4.4.4 concerning validity and from
Th. 4.4.13 for completeness. The right to left inclusion comes from Lem. 4.4.16 and Prop. 4.4.5.

4.4.7 Profile automaton

We show that the language of complete and valid profile sequences is effectively rational. More-
over, we have shown that all models of an MCP have complete and valid profile sequences and
conversely that any complete and valid profile sequence is the profile sequence of some model.
Thus we obtain a way to compute the domain of an MCP. As a consequence, using the reductions
from Sec. 4.3, we can compute an automaton recognizing the domain of an Lo-transduction.

profile automaton

Lemma 4.4.18. Let C be an MCP. The set of complete and valid profile sequences is effectively
rational.

Proof. Let C be an MCP. We consider PC the alphabet of reduced profiles, and we show that
the set of complete and valid profile sequences is rational. To this end we show that consistency,
completeness and validity are all rational properties of a reduced profile sequence. First one can
easily see that validity of a sequence only depends on the alphabet of profiles, so by reducing
the alphabet to valid reduced profiles, we only consider valid sequences. Similarly, consistency
is a local property, and a profile sequence is consistent if any pair of two consecutive profiles is
consistent, which is a rational property. It is easy to check that the first profile of a sequence is
initial and that the last one is final.

We have left to show that completeness can be checked rationally. Actually we show that
non-completeness can be checked rationally. Let s = λ1, . . . , λn be a profile sequence where
λi =

(
ai, Si, A

i
1, . . . , A

i
ki

)
for i ∈ n. The sequence s is non-complete if either 1)there is a position

i ∈ n such that Si is not equal to the set of states reached in position i of an accepting run of
AΦ over a1 · · · an or 2) a clause of λi is not complete. To check non-completeness, we define an
automaton that guesses a position i satisfying 1) or 2) and checks that the guess was correct.

Rational domain As a consequence, we obtain that the domain of an MCP is also rational.

Corollary 4.4.19. The domain of an MCP instance is effectively rational.

Proof. Let C be an MCP instance over alphabets A,B. According to Lem. 4.4.17, we have
{Seq(g) | g |= C} = {s | s is complete and valid}. Furthermore we have for any origin graph
g = (u, (v, o)) that u = dom(Seq(g)). Thus dom(C) = {dom(s) | s is complete and valid},
which is rational by Lem. 4.4.18, by projection of profiles over A (since rational languages are
closed under projection).

By the previous reductions we have that the domain of an Lo-transduction is rational.

Theorem 4.4.20. The domain of an Lo-transduction is effectively rational.

Proof. Each of the reductions of Sec. 4.3 preserves the domain of a transduction thus, according
to Cor. 4.4.19, the domain of an Lo-transduction is rational.

113

Chapter 4. Logics for transductions with origins

Satisfiability, validity and equivalence As a corollary, we obtain the decidability of Lo.

Theorem 4.4.21. The satisfiability, validity and equivalence problems for Lo-formulas over
origin-graphs are decidable.

Proof. The decidability of the satisfiability problem is a consequence of Th. 4.4.20. The other
problems are solved using the closure of Lo under boolean combinations. Given a formula φ, it
is valid if and only if ¬φ is satisfiable. Similarly, given φ1, φ2, they are equivalent if and only if
φ1 ↔ φ2 is valid.

Remark 4.4.22. Note that the equivalence problem for Lo transductions is only decidable with
origins. Indeed it is well known that equivalence of transductions up to origins is undecidable.

Since we translate the input MSO-predicates into predicate automata, we obtain an unavoid-
able complexity in Tower for deciding satisfiability of Lo formulas. However when the input
predicates are given directly as predicate automata, we obtain a tight elementary complexity.

Theorem 4.4.23. The satisfiability of Lo is ExpSpace-complete if the input predicates are
given as predicate automata.

Proof. The hardness result comes from [SZ12], where it is shown that satisfiability of FO2[≤,4]
over data words is PSpace-hard. Equivalently (see Sec. 4.5) one can say that the satisfiability
of FO2[≤out,≤in, o] over non-erasing origin-graphs with a unary input alphabet is PSpace-hard.

To show that the problem can be decided in ExpSpace, we use the fact that one can de-
cide emptiness of the profile automaton in NLogSpace, with respect to the size of the profile
automaton. Let φ be an Lo-formula over alphabets A,B with input predicates given by the
predicate automaton AΦ with state space QΦ. Let us show that the profile automaton of the
associated MCP instance has size exponential in |φ| + |QΦ|. Transforming φ into a non-erasing
formula is linear, then putting it into SNF is also linear, however as we have seen, we obtain an
output alphabet B ×B′ where B′ has size exponential in φ. Finally going from a formula to an
output formula is also linear and doesn’t change the alphabet.

In Subsec. 4.4.2 we have seen that the number of different clauses is NC := |B×B′| ·3 ·2|QΦ|2

which is exponential. We have also seen that the number of reduced profiles is upper bounded by
|A| · 2|QΦ| ·N2NC+1

C which is doubly exponential. Since the set of states of the profile automaton
is just the set of reduced profile we obtain that the profile automaton has size doubly exponential
in φ and QΦ, which means that checking for emptiness can be done in ExpSpace.

4.4.8 Synthesis

The rationality of the language of complete and valid profile sequences actually gives us more than
rationality of the domain of Lo-transductions. We can indeed use this to effectively uniformize
Lo-transductions, and in particular solve the regular synthesis problem for Lo.

Theorem 4.4.24. Given an MCP instance, one can synthesize a regular function uniformizing
it.

Proof. Let C be an MCP instance, we define several MSO-transductions whose composition
uniformizes JCKo. We define R := flin ◦fDAG ◦flink ◦RSeq, where RSeq relates words u with valid
and complete profile sequences s such that in(s) = u, flink maps any consistent profile sequence
to the graph of clauses with links, fDAG maps a graph of clauses to the directed acyclic graph of
local clauses from Prop. 4.4.15 and flin linearizes a DAG into a word.

114

4.5. Words with ordered data

A transducer realizing RSeq is simply obtained from the profile automaton of Lem. 4.4.18,
by replacing a transition of the form (p, λ, q) where in(λ) = a, by a transition reading a and
outputting λ. To realize flink, we define an MSO-transduction, which reads input words over PC
(the alphabet of profiles), copies each input position the number of its clauses times and links
linked clauses. From the graph of clauses, we can define an MSO-transduction that erases all
non local clauses and adds the →s relation which is MSO-definable. According to Prop. 4.4.15,
the graph of local clauses with→s is a DAG. Finally we use a result of [Cou96] which states that
there is an NMSO-transduction that takes a DAG as an input and produces a linearization of it.
Additionally the DAG needs to be locally ordered, meaning that the successors of a given vertex
must be ordered. This is the case for the graphs of→s over local clauses since local clauses can be
ordered by the input order and then the profile order. Thus we can define an MSO-transduction
flin taking as input the graph of local clauses with →s, and linearizing it.

The equality of the domain of R and JCKo comes from Cor. 4.4.19 where we show that input
words of models of C are exactly the domain words of complete valid sequences. Furthermore,
the fact that this transduction uniformizes JCKo, comes from Lem. 4.4.16 which states that the
origin-graph obtained from a linearization of a valid and complete sequence is a model of C.
Finally since NMSO-transductions are closed under composition [Cou90], we obtain an NMSO-
transduction realizing R. Thus R can be uniformized by an MSO-transduction.

We finally obtain our main result, by reducing synthesis for Lo-transductions to synthesis for
MCP instances.

Theorem 4.4.25. Given an Lo-formula, one can synthesize a regular function which uni-
formizes it.

Proof. This is a simple consequence of the uniformization from Th. 4.4.24, and the properties
of the reductions from Sec. 4.3. Indeed we have seen in Lem. 4.3.11 that having a regular
uniformization algorithm for MCP instances yields a regular uniformization algorithm for Lo.

As a consequence we can decide if an Lo-transduction is functional.

Corollary 4.4.26. Given an Lo-formula φ, one can decide if JφKo is functional.

Proof. Let φ be an Lo-formula, and let T be an MSO-transducer uniformizing φ, which can be
obtained by Th. 4.4.25. According to Th. 4.2.7, one can define an Lo-formula φT such that
JφT Ko = JφKo. Thus the formula φ ↔ φT is valid if and only φ is functional, which is decidable
from Th. 4.4.21.

4.5 Words with ordered data

Data words have been studied recently as an extension of words over an infinite alphabet. Usually
the alphabet is split into a finite part and an infinite part where the infinite part is restricted to
only equality tests (see [Bou02]). Several attempts have been made to extend the expressiveness
with additional predicates talking about the data, for instance [BDM+11, SZ12] have given
decidable logics over data words with a linearly ordered data domain. However these extensions
come at a price and the logics have to be weakened to keep decidability. We make a bijective
connection between origin-graphs and typed data words which are just data words with ordered
data and a two-sorted finite alphabet. We then introduce a new logic, Ld over data words whose
decidability can be reduced to decidability of Lo. This logic extends the one of [SZ12] by adding
arbitrary MSO predicates that talk only about the data.

115

Chapter 4. Logics for transductions with origins

c d c c d

a a b
(c, 2, a)(d, 1, a)(c, 2, a)(c, 3, b)(d, 3, b)

GtD

DtG

Figure 4.9: An origin graph and its encoding as a data word.

4.5.1 A logic for data words

Typed data words We consider typed data words over an ordered data domain where each da-
tum carries a label (type) from a finite alphabet. Formally a typed data word of length n and data
size m over alphabets A,B is a word over the alphabet B×N×A: w = (b1, d1, a1) · · · (bn, dn, an)
such that {d1, . . . , dn} = m3 and for each i, j ∈ n, if di = dj then ai = aj . The letter ai is called
the type (sometimes label) of the data value di.

The data of a typed data word w induces a total pre-order over positions of w, defined by
i 4 j if di ≤ dj . We also define i ≺ j by di < dj and i ∼ j if di ≤ dj and di ≥ dj . Hence a typed
data word can be seen as a logical structure with one linear order and one total pre-order.

Logics for data words We know from [BDM+11] that MSO over (untyped) data words
(i.e. |A| = 1) is undecidable, even its first-order fragment. However, the fragment FO2[≤,4, S4]
is decidable, according to [SZ12]. The logic we define, called Ld, can be thought of as an extension
of FO2[≤], with any binary predicates which only talk about the data, generalizing the result of
[SZ12]. More precisely we define the binary predicates MSO[A,4] with the semantic restriction
that second-order quantification is restricted to sets closed under ∼4. Because of this restriction,
the binary MSO predicates can be thought of as formulas that quantify over data and sets of
data, see Rk. 4.5.2. For instance, the formula ∀y x 4 y states that the data value of x is the
smallest of all data values.

Definition 4.5.1. We define the logic Ld := FO2[B,≤,MSO[A,4]]

Remark 4.5.2. As we have said, MSO[A,4] predicates can only talk about data, let us make
this remark more explicit. Let w = (b1, d1, a1) · · · (bn, dn, an) be a data word over A,B of data
size m. The total preorder 4 induces a word over A, that is u = ai1 · · · aim where dik = k, for any
k ∈ m. By definition of typed data words, we have that di = dj implies ai = aj , which means
that u is well-defined. We call this word the data quotient of w. Then, the MSO predicates can
talk about properties of the word u, for instance “Positions with even pieces of data are labeled
by a” can be expressed in the logic.

4.5.2 From transductions to data words and back

Transforming models We describe encodings from non-erasing origin-graphs to typed data
words and back. Let g = (u, (v, o)) be a non-erasing origin-graph over alphabets A,B, we

3This assumption is made without loss of generality since our logic will only be able to talk about the relative
order of data values.

4This can actually be enforced syntactically by guarding quantifications ∃X φ by ∃X (∀x, y (x ∈ X∧x ∼ y)→
y ∈ X) ∧ φ.

116

4.5. Words with ordered data

define w = GtD(g) a data word of length |v| and data size |u|, by w(i) = (v(i), o(i), u(o(i))) for
i ∈ {1, . . . , |v|}.

Let w = (b1, d1, a1) · · · (bn, dn, an) be a data word of data size m over alphabets A,B. We
define the non-erasing origin-graph DtG(w) = (u, (v, o)) by v = b1 · · · bn, u is the data quotient
of w and o(i) = di for i ∈ n.

Proposition 4.5.3. The transformations GtD and DtG are inverses of one another.

Proof. Let g = (u, (v, o)) be a non-erasing origin-graph over alphabets A,B, let m = |u|, and
n = |v|. Let w = (b1, d1, a1) · · · (bn, dn, an) be a typed data word of data size m.

Let us assume that GtD(g) = w. Then w(i) = (v(i), o(i), u(o(i))), and let g′ = DtG(w) =
(u′, (v′, o′)). By definition, v′ = v(1) · · · v(|v|) = v, u′ = u(1) · · ·u(|u|) = u and o′(i) = o(i) for
any i ∈ {1, . . . , |u|}.

Conversely, let us assume that DtG(w) = g. Then v = b1 · · · bn, u = ai1 · · · aim where dik = k
for k ∈ m and o(i) = di for i ∈ n. Let w′ = GtD(g) = (b′1, d

′
1, a
′
1) · · · (b′n, d′n, a′n), then for any

i ∈ n, (b′i, d
′
i, a
′
1) = (v(i), o(i), u(o(i))) = (bi, di, ai) and thus w′ = w.

Transforming formulas We define a syntactic translation from Ld to Lo formulas that pre-
serves models up to the encodings GtD and DtG. First, an MSO[A,4] binary predicate χ is
transformed syntactically into an MSO[A,≤in] binary predicate χ′ by substituting ≤in for 4. Let
φ be an Ld-formula over A,B. We define an output Lo-formula φo inductively, by substitutions
of atomic formulas and by replacing quantifications by output quantifications. If:

• φ = 〈χ〉(x, y) then φo := 〈χ′〉(o(x), o(y))

• φ = b(x) with b ∈ B then φo := b(x)

• φ = x ≤ y then φo := x ≤out y

• φ = ∃x ψ(x) then φo := ∃outx ψo(x).

The boolean connectives are left unchanged.

Lemma 4.5.4. Let φ be an Ld-formula, and let w be a typed data word. Then w |= φ if and
only if DtG(w) |= φo.

Proof. We show this by induction over Ld-formulas. Let w = (b1, d1, a1) · · · (bn, dn, an) be a data
word of data size m over alphabets A,B and let g = DtG(w) = (u, (v, o)). To simplify the
induction, the domain of g is denoted by {1, . . . , |v|} ∪ {(1, 1), . . . , (1, |u|)}. We show for φ an
Ld-formula and for i, j ∈ n that if w |= φ(i, j) then g |= φo(i, j). The converse is done in the
exact same way. Let φ = 〈χ〉(x, y), and let i, j ∈ n such that w |= 〈χ〉(i, j). Then we have that
u |= χ′(di, dj) where u can be seen as the word over A induced by 4 over w. Thus we have
g |= φo(i, j) = 〈χ′〉(o(i), o(j)). Let φ = b(x) and let i ∈ n such that w |= b(i). Then clearly
v(i) = b and we have g |= φo(i) = b(i) since we produce an output formula and we only quantify
over output positions. Let φ = x ≤ y and let i, j ∈ n such that w |= i ≤ j, then i ≤ j and we
have naturally g |= i ≤out j. Let φ = ∃x ψ(x, y) and let j ∈ n be such that w |= ∃x ψ(x, j). This
means that there is a position i ∈ n such that w |= ψ(i, j). By induction hypothesis we thus
have that g |= ψo(i, j), which concludes the proof.

Decidability As a corollary, we obtain the decidability of Ld, by reduction to Lo-formulas.

117

Chapter 4. Logics for transductions with origins

Theorem 4.5.5. The satisfiability problem for Ld over typed data words is decidable.

Proof. Let φ be an Ld-formula, and let φo be the obtained output Lo-formula. Since DtG is a
bijection between data words and non-erasing origin-graphs (Prop. 4.5.3), we have according to
Lem. 4.5.4 that DtG(JφK) = JφoKne

o . Thus, using Th. 4.4.21, satisfiability is decidable.

4.5.3 Undecidable fragments

We recall two undecidable logics over data words, and show as a consequence the undecidability
of two fragments of MSOo over origin-graphs. The main idea is to use the tight correspondence
between origin-graphs and data words, to show that the decidability of some fragment over origin-
graphs would entail the decidability of a fragment over data words, known to be undecidable. The
first one is the logic FO2[≤, S≤,4] over data words with the linear order predicate, the successor
predicate for the linear order and the data order predicate, which was shown to be undecidable in
[BDM+11]. As a consequence we obtain the undecidability of FO2[≤out, Sout,≤in, o] over origin-
graphs.

Proof of Theorem 4.2.3. We consider the previous construction which transforms an Ld formula
over typed data words into an output Lo-formula over non-erasing origin-graphs. We add to
the transformation by defining that if φ = S≤(x, y) then φo := Sout(x, y). In this context, the
proof of Lem. 4.5.4 still applies, which means that the decidability of FO2[≤out, Sout,≤in, o] over
origin-graphs would entail the decidability of FO2[≤, S≤,4] yielding a contradiction. Hence the
logic FO2[≤out, Sout,≤in, o] is undecidable over origin-graphs.

The second logic is FO2[S≤, S�] over data words with the successor for the linear order and
the successor for the data order which was shown to be undecidable in [MSZ13]. With the same
technique we obtain the undecidability of FO2[Sout, Sin, o] over origin-graphs.

Proof of Theorem 4.2.4. We consider the same construction from Ld-formulas to Lo-formulas.
We add again to the transformation that if φ = S≤(x, y) then φo := Sout(x, y). We also add
that if φ = S4(x, y) then φo := Sin(o(x), o(y)). Again, the proof of Lem. 4.5.4 means that the
decidability of FO2[Sout, Sin, o] over origin-graphs would entail the decidability of FO2[S≤, S�]
yielding a contradiction.

4.6 Decidable extensions of Lo

We present two different extensions of Lo for which our uniformization techniques still work.
This gives in particular the decidability of the two extensions and shows the robustness of Lo.
Furthermore these extensions can be translated in terms of data word logics and so give more
expressive decidable data word logics.

The first extension ∃Lo is a classical extension for logics with arbitrary unary predicates.
The logic ∃Lo is the set of formulas of the form ∃X1, . . . , Xnφ where φ is an Lo-formula with
additional unary predicates X1, . . . , Xn.

The second extension Loso, adds new unary predicates called single-origin predicates. Given
a rational language L ⊆ B∗, the semantics of a single-origin predicate L(x) is that the word of
positions with origin x belongs to L.

In Fig. 4.10 on the facing page we give a summary of the different transduction classes, their
relative inclusions and the frontier for regular synthesis and decidability of satisfiability and
equivalence.

118

4.6. Decidable extensions of Lo

1NFT
fREG

2NFT

Lo NMSO

Loso ∃Lo

∃Loso

MSOo

synthesis
+satisfiabilityequivalence

(with origins)

Figure 4.10: Summary of models for transductions and their relative inclusions. The gray lines
represent the decidability frontiers.

4.6.1 Existential extension

The fragment ∃Lo allows us to capture NMSO-transducers (Th. 4.2.8) while preserving the de-
cidability, and even the regular uniformization of the logic.

Theorem 4.6.1. Given an ∃Lo-formula, one can synthesize a regular transduction uniformizing
it.

Proof. Let φ = ∃X1 . . . Xnψ be an ∃Lo-formula over alphabets A,B. Then the formula ψ can be
seen as an Lo-formula over the alphabets A×2{X1,...,Xn}, B×2{X1,...,Xn}. Thus using Th. 4.4.25
we can obtain a two-way transducer T uniformizing the transduction of ψ over the extended
alphabets. Let T denote the transducer obtained from T by projecting the enriched alphabets
to the original alphabets A,B. Thus we have that JT Ko ⊆ JφKo and dom(JT Ko) = dom(JφKo).
However the transduction realized by T may not be functional. This can be easily solved by
a disambiguation procedure ([dS13]) which yields a transducer T ′ uniformizing T and thus
uniformizing φ as well.

As a consequence we obtain a more expressive decidable logic over data words: ∃Ld defined
by formulas of the form ∃X1, . . . , Xnφ where φ is an Ld-formula with additional unary predicates
X1, . . . , Xn. The same translation from formulas over data words to formulas over origin-graphs
works, just by considering extended alphabets.

Corollary 4.6.2. The logic ∃Ld is decidable over typed data words.

The previous results again give us the decidability of ∃Lo, but since the logic is not closed
under boolean operations, we cannot conclude that validity and equivalence are also decidable.
In fact it turns out that both problems are undecidable for ∃Lo.

Theorem 4.6.3. The validity and equivalence problems for ∃Lo-formulas over origin-graphs are
undecidable.

Proof. We prove that the validity problem is undecidable. In particular, the equivalence with
the formula > is thus undecidable. Since Lo is syntactically closed under negation, we actually
show that the satisfiability problem is undecidable for the logic ∀Lo, which consists in formulas
of the form ∀X1 . . . ∀Xnφ where φ is an Lo-formula.

The proof works by reduction from the Post Correspondence Problem. Let A be an alphabet,
let n ∈ N and let ui, vi ∈ A∗ for any i ∈ n. We define a formula φ in ∀Lo such that φ is satisfiable

119

Chapter 4. Logics for transductions with origins

if and only if there exists a sequence of indices i1, . . . , ik ∈ n such that ui1 · · ·uik = vi1 · · · vik . The
formula φ is defined over alphabets A,A×2, such that the projection of the output over A×{j}
is the identity, for j ∈ 2. Furthermore, the output word must be of the form (+i∈n1(ui)2(vi))

∗
,

where the morphism j : A∗ → (A× {j})∗ is defined by j(a) = (a, j) for a ∈ A and j ∈ 2.
We only have left to define the formula φ to conclude the proof. We define the formula

φ := ∀outX φwell−formed(X) ∧ φid,1 ∧ φid,2. The formulas φid,j , for j ∈ 2, stating that over each
copy of A the origin-graph belongs to the identity, are easily defined as in Ex. 4.2.6:

• j(x) :=
∨
a∈A(a, j)(x)

• φinj,j := ∀outx, y (j(x) ∧ j(y) ∧ 〈o(x) =in o(y)〉)→ x = y

• φsurj,j := ∀inx ∃outy 〈o(y) =in x〉 ∧ j(y)

• φlab,j := ∀outx
∧
a∈A(a, j)(x)→ 〈a(o(x))〉

• φshuffle,j := φinj,j ∧ φsurj,j ∧ φlab,j

• φid,j := φshuffle,j ∧ ∀outx, y (j(x) ∧ j(y) ∧ 〈o(x) ≤in o(y)〉)→ x ≤out y

We now have left to define φwell−formed(X) such that ∀outX φwell−formed(X) will ensure that the
output is indeed in the language L := (+i∈n1(ui)2(vi))

∗
. We first define a formula stating that

X is a contiguous set of positions:

cont(X) := ¬
(
∃outx x ∈ X ∧ (∃outy x <out y ∧ y /∈ X ∧ (∃outx ∧ y <out x ∧ x ∈ X))

)
Let m := max {|ui|+ |vi| | i ∈ n} + 1, then the words in L can be characterized by their

factors, prefix and suffix of length ≤ m. Let w ∈ (A × 2)∗ we define a predicate w(X,x) which
states that w is a subword of X starting at position x. The predicates are defined by induction on
the length of w. Let a ∈ A×2, then a(X,x) := x ∈ X ∧ a(x), aw(X,x) := a(X,x)∧∃outy x <out

y ∧ w(X, y). With the same technique we can define |X| = p for any integer p ∈ N. Let
F ⊆ (A× 2) be the set of factors of length m of L. Similarly, let P and S be the set of prefixes
and suffixes of length m in L, respectively. Let min(X) and max(X) denote that the minimum
position and the maximum position of the word belongs to X, respectively.

φwell-formed(X) := cont(X) ∧ |X| = m
→

∨
w∈F w(X)
∧
∨
w∈P min(X)→ w(X)

∧
∨
w∈S max(X)→ w(X)

Note that the formula does not consider the small PCP solutions, i.e. of the form ui = vi for
instance. Of course this is not a problem because if there exists a solution then there is a solution
of any arbitrary size.

4.6.2 Single-origin predicates

One problem with Lo is the impossibility to express arbitrary rational properties of the output
independently of the input. Of course as we have seen, just adding this ability without any
restriction would in fact cause undecidability of the logic (see the undecidability proof from
[BDM+11]). We find a middle ground and add predicates that talk about rational properties of
the output word, but restricted to positions with a single origin. For instance if the input word
contains only one position then Lo can only talk about FO2[≤out]-definable properties. However
in that case Loso can define any rational property of the output. As we have seen, the class of

120

4.6. Decidable extensions of Lo

rational transductions (i.e. realized by 1NFTs) is incomparable with Lo-transductions. However
these new single-origin predicates allow us to subsume the rational transductions

In terms of data words, the extension allows one to talk about any rational property of a
subword induced by a single piece of data. In particular, over data words with data size 1, we
recover the rational languages instead of FO2[≤]-definable languages.

Let A,B be alphabets, let L be a rational language over B∗ we define a new unary input
predicate L(x) with the semantic interpretation that the subword of positions with origin x
belongs to L. We define over alphabets A,B the logic with single-origin predicates, Loso :=
FO2[B,≤out, o,MSO[A] {L(x) | L rational} ,≤in]]

Example 4.6.4. Let A,B be alphabets. Let L = (ab)∗, we define the Loso-formula φ :=
∀outx a(x)→ 〈even(o(x))∧L(o(x))〉 which states that an output position labeled by a must have
an even origin and that the output word of positions with the same origin must belong to L.

We show that any rational transduction can be expressed by an Loso-formula. This is not the
case for Lo: for instance the transduction {a} × (aa)∗ cannot be expressed in the logic since the
input is trivial and the output is not FO2[≤out]-definable. Another example of such a transduction
is given in Ex. 4.2.9.

Theorem 4.6.5. Any rational transduction is Loso-definable.

Proof. Let T be a one-way transducer, our goal is to define an equivalent Loso-formula. We see
T as an automaton over the alphabet A] B, which we can assume to be deterministic, with
state space Q, initial state q0 ∈ Q and set of final states F ⊆ Q. Given a letter a ∈ A]B and a
state q ∈ Q, we denote by q.a the state reached from q after reading a. In order to simplify the
proof and without loss of generality, we assume that we can only read letters of A from q0. We
define the origin semantics of T : Let a1v1 . . . anvn be a word accepted by T , such that for i ∈ n,
ai ∈ A and vi ∈ B∗. We define the origin graph g := (u, (v, o)) with u := a1 · · · an, v := v1 · · · vn
and for j ∈ {1, . . . , |v|} such that |v1 · · · vj−1| < i ≤ |v1 · · · vj | we set o(j) := i. Then we say that
T realizes g which we denote by g ∈ JT Ko. Let q, r ∈ Q and let Lq,r ⊆ B∗ be the set of output
words that can go from q to r in T (without reading any input letter).

We define the Loso-formula φpres ∧ 〈∃p,q,r∈QXp
q,rφ〉 with φpres := ∀outx, y o(x) ≤in o(y) →

x ≤out y states that the input order is preserved in the output. The formula φ is a conjunction of
four formulas: φvar ∧φsucc∧φmin∧φmax. The formula φvar will encode that the input positions
in Xp

q,r can go from p to q by reading the letter and produce output words in Lq,r. The formula
φsucc ensures that two successive positions must belong to some sets Xp

q,r and Xr
s,t, respectively.

The formulas φmin and φmax encode that the first position starts in the initial state and that
the last one ends up in a final state, respectively.

φvar = ∀inx
∧
p,q,r∈QX

p
q,r(x)→

(
Lq,r(x)

∧
a∈A a(x)→ p.a = q

)
φsucc = ∀inx, y

∧
p,q,r∈Q

(
Sin(x, y) ∧Xp

q,r(x)→
∨
s,tX

r
s,t(x)

)
φmin = ∀inx min(x)→

∨
p,q∈QX

q0
p,q(x)

φmax = ∀inx max(x)→
∨
p,q∈Q,r∈F X

p
q,r(x)

By construction we have obtained an Loso-formula realizing JT Ko.

Our regular uniformization algorithm can be extended to the logic Loso.

Theorem 4.6.6. Given an Loso-formula, one can synthesize a regular transduction uniformizing
it.

121

Chapter 4. Logics for transductions with origins

a1 a2 a3

b1 b2 b3 b4 b5 b6

σ1 γ2 γ4 σ2 γ1 γ3 σ3 γ5 γ6

γ1 γ2 γ3 γ4 γ5 γ6

Figure 4.11: An origin-graph of φ and its translated version as an origin-graph of τ2.

Proof. Let φ be an Loso-formula over alphabets A,B. We view JφKo as the composition of
two transductions, τ2 ◦ τ1 where τ1 is a rational transduction (i.e. given by a 1NFT) and τ2 is
an Lo-transduction. From Th. 4.4.25, we can obtain a regular function f2 uniformizing τ2.
Before defining τ1 and τ2 let us show how one can use such a decomposition to prove the
statement. We define τ ′1, a restriction of the codomain of τ1 to dom(f2). Formally, τ ′1 :=
{(u, (v, o)) ∈ τ1 | v ∈ dom(f2)}. Since f2 is regular, its domain is a rational language and we
can define a 1NFT realizing τ ′1. Then we uniformize τ ′1, which can be done by an unambiguous
1NFT ([EM65]), and obtain a rational function f1, such that f2 ◦ f1 uniformizes JφKo.

The transduction τ1 is a rational transduction over A,A]B which after reading a letter a ∈ A
produces an arbitrary word in aB∗. The idea is that each letter produces its subword so that τ2
can talk about the input instead of the output. Let g = (u, (v, o)) be an origin-graph over A,B,
we define g′ = (u′, (v, o′)) over A]B,B: let Vi := {j ∈ dom(v) | o(j) = i}, for i ∈ dom(u). Let
vi =

∏
j∈Vi v(j), then u′ := u(1)v1 · · ·u(|u|)v|u|. Finally we set o′(j) := i + j for j ∈ Vi. We

illustrate this in Fig. 4.11.

We now transform φ syntactically into an Lo-formula φ′ over alphabets A] B,B. Our goal
is then to show that Jφ′Ko := {g′ | g |= φ}. We define a binary input predicate that relates an
input position y labeled in B to the previous input position x labeled in A, i.e. its “origin” with
respect to τ1 and which we call the virtual origin:

vo(x, y) := A(x) ∧B(y) ∧ x <in y ∧ ∀inz (x <in z <in y)→ B(z)

Let L be a regular language over B, we denote by φL an MSO[≤]-formula recognizing it. Our
syntactic transformations only modifies the input predicates and is done in three steps.

1) We guard all quantifications so that they only talk about input positions labeled in A:
(∃inx ψ(x))′ := ∃inx A(x) ∧ ψ′(x).

2) The binary predicates 〈φ(x, y)〉 are replaced by 〈∃inz, t vo(z, x)∧vo(t, y)∧φ′(z, t)〉. One can
see that g |= 〈φ(x, y)〉(o(i), o(j)) if and only if g′ |= 〈∃inz, t vo(z, x)∧vo(t, y)∧φ′(z, t)〉(o(i), o(j)).

3) Finally a single origin predicate is replaced by an input predicate which talk about the

input positions with a fixed virtual origin. A predicate L(x) is replaced by a formula φ
vo(x,)
L

defined from φL by restricting quantifications to positions with virtual origin x.

The final formula is φ′ ∧ φwell−formed where φwell−formed is the conjunction of:

• input positions labeled in A do not produce anything: ∀inx 〈A(x)〉 → ∀outy x 6= o(y)

• input positions labeled in B produce exactly one output position with the same label:
∀inx

(∧
b∈B b(x)→ ∃outy b(y) ∧ o(y) = x

)
∧ (∀outx, y o(x) = o(y)→ x = y)

• over a fixed virtual origin, the linear order is preserved which translates into the Lo-formula:
∀outx, y 〈∃inz vo(z, o(x)) ∧ vo(z, o(y) ∧ x <in y〉 → x <out y.

By construction τ2 := Jφ′ ∧ φwell−formedKo = {g′ | g |= φ}. Since we have indeed that τ2 ◦ τ1 =
JφKo, then this concludes the proof.

122

4.6. Decidable extensions of Lo

Remark 4.6.7. The same proof would actually work for ∃Loso. Moreover, let C1, C2 be classes
of transducers such that regular uniformization is possible for both classes and C1 is closed under
rational restriction of the codomain. Then one can uniformize any transduction of τ2 ◦ τ1 with τi
given by a Ci transducer, for i ∈ 2. For instance τ1 can be given by a two-way non-deterministic
transducer and τ2 by an Lo-formula.

As a consequence we obtain that the satisfiability problem for Loso is decidable and, since
Loso is closed under boolean operations, the validity and equivalence problems are also decidable.

Theorem 4.6.8. The satisfiability, validity and equivalence problems for Loso over origin-graphs
are decidable.

Proof. This is a direct consequence of Th. 4.6.5. Since one can uniformize an Loso-transduction,
in particular one can decide the emptiness of the domain. Furthermore, by closure under boolean
combinations, we obtain the decidability of the validity and equivalence problems.

123

Chapter 4. Logics for transductions with origins

124

Conclusion

In this manuscript we have studied definability and synthesis problems for word-to word trans-
ductions. In the first part, we tackled definability questions for classes of rational word functions
using algebraic and computational minimization techniques. In the second part, we introduced
an expressive logic for transductions from words to words and solved the regular uniformization
problem for this logic.

Rational functions and canonical models

Canonical models have proven to be very useful to study computational objects. In the case
of automata over finite words, having a canonical object is interesting for several reasons. The
first one is of course that equivalent automata correspond to the same minimal automaton. The
second reason is the size, i.e. the minimal automaton of a language has the least number of
states among deterministic automata recognizing the same language, hence the name. Another
property of the minimal automaton is that it can be obtained efficiently (in PTime) from any
deterministic automaton. Finally, the minimal automaton carries intrinsic algebraic properties
of the language, which has proven particularly useful in definability problems, and in particular
thanks to the many logic-algebra correspondences which have been established over the years
(see [Str94, DGK08] e.g.).

As it has been shown (see [Cho03]), almost all these good properties of the minimal automaton
carry over to the minimal sequential transducer for sequential functions. A first step had been
made in that direction with [RS91], but rational functions still lacked a good description of
minimal devices with the aforementioned good properties. In this manuscript we have shown that
rational functions have not one but a finite number of minimal bimachines. The difficulty comes
from the fact the we need to minimize two things at once: the look-ahead and the automaton.
In particular any bimachine minimal in the number of states is minimal in the algebraic sense
that its transition congruence is minimal. Furthermore, as in the language case, minimization of
bimachines can be done in PTime. We also have established a transfer theorem from logic-algebra
correspondences over languages to logic-algebra correspondences over functions. In particular
this yields an algorithm to decide definability of a rational function in first-order logic. In fact
we show that FO-definability is PSpace-complete for rational functions given as bimachines.

Open problems Some problems still remain open. We know (Ex. 2.2.36) that a minimal
bimachine can be exponentially larger than another bimachine realizing the same function. We
also know (Th. 2.2.35) that a minimal bimachine has size at most doubly exponential with respect
to any equivalent bimachine. The open question is what is the exact worst-case size of a minimal
bimachine? Another question is the complexity of deciding aperiodicity when the function is
given by a transducer instead of a bimachine. We know that the problem is PSpace-hard and
in ExpTime, but whether it can be done in PSpace remains open. Another direction of study,

125

Chapter 4. Logics for transductions with origins

already mentioned in [RS91], would be to characterize the functions which are both sequential
and right sequential. This would, we believe, help us to better understand the relationships
between the different minimal bimachines of a function.

Over infinite words we have more open questions. While the case of sequential functions has
been treated satisfactorily, it remains open whether one can minimize right-sequential functions.
Such a procedure would probably solve most of the remaining problems and yield a complete
description of minimal bimachines, as in the finite case. Another question is whether the ultimate
congruence has some minimality property, like the delay congruence. Answering these questions
would help us characterize more logical fragments, as in the case of finite words. Finally, the
complexity of computing a canonical bimachine is probably much lower than the one of our
current algorithm.

Future work Our approach has provided effective characterizations for classes of logical trans-
ductions. However the cases we cover are restricted to logical fragments with access to the linear
order predicate. One extension that would require new techniques would be to characterize the
transductions definable in FO[+1].

Over infinite words, it seems that continuity plays an important role, and we should be able,
for continuous rational functions, to obtain a unique minimal look-ahead congruence.

Obtaining a canonical device for regular functions seems to be a very difficult problem.
However restricting to sweeping transductions, i.e. functions realized by two-way transducers
that can only can direction at the ends of a word, it seems like some of the ideas of [RS91] could
be applied. A step in that direction has actually been made in [LLN+11]. In this article the
authors give a normal from for sequential transducers from trees to words. In particular, over
unary trees, their model correspond to a deterministic transducer with one forward pass and one
backward pass. It looks like this normal form should preserve aperiodicity. This would give good
hopes of defining a normal form for aperiodic transductions definable by two-way transducers
with two sweeps, and thus deciding FO[≤]-definability for these functions.

Another possible extension, using the same kind of normal form for tree-to-word transducers
[LLN+11, Boi16], would be to decide if a certain transducer is definable in some logical fragment
of MSO. Indeed, over tree languages several effective characterizations of logical fragments have
been obtain via an algebraic characterization (see [Boj08]).

Specification and synthesis of transductions

A computational model that takes inputs, performs some computation and then produces outputs
defines a transduction. In that framework natural verification questions arise. The model-
checking problem asks whether the model satisfies a given specification, which can itself be seen
as a (not necessarily functional) transduction of all acceptable acceptable input/output pairs, and
the problem amounts to deciding inclusion. The synthesis problem asks, given a specification,
whether one can produce a model in a given class which satisfies the specification. In both cases
a good specification language would be somewhat close to the natural language. Indeed, one
would want to express high-level properties of a model and check them or synthesize a model
from it. Good examples in the case of regular languages would be MSO, regular expressions, or
LTL which has some good algorithmic properties.

In the case of transductions, no such specification language existed. Of course the Cour-
celle NMSO-transducer do express logical properties but they are very limited in what they can
express. One of the big limitations of NMSO-transductions is that they cannot underspecify
properties, meaning that once an interpretation has been chosen for the parameters, the trans-
duction becomes functional. For instance the transduction A+ × B∗ cannot be expressed as an

126

4.6. Decidable extensions of Lo

NMSO-transducer. However any origin-graph satisfies the formula > over origin-graphs which
realizes the (origin-free) transduction A+ ×B∗.

We have introduced a new logic Lo for transductions, which we believe is well-suited as a
specification language for transductions. We have been able to provide a regular uniformization
algorithm for Lo-transductions, and as a consequence have obtained many results, such as decid-
ability of satisfiability, equivalence, functionality, etc. We have also shown that the logic can be
extended by additional predicates while preserving the uniformization capabilities.

Open problems We have been able to define decidable extensions of Lo that subsume the
classes of transductions definable by 1NFTs and by NMSO-transducers. However we have not
been able to come up with an extension that subsumes the transductions definable by 2NFTs, but
still has decidable satisfiability. This problem looks challenging, in particular the transduction
R = {(u, un) | u ∈ A∗, n ∈ N} seems difficult to express with only two variables.

In [BDGP17] the authors managed to characterize the origin-transductions definable by
NMSO-transducers. This characterization relies on a property they call bounded crossing. Given
the profile automaton of an Lo-transduction, one may be able to decide if the correspond trans-
duction has bounded crossing which would give an algorithm to decide if an Lo-transduction can
be realized by an NMSO-transducer.

Future work Other extensions of the logic Lo should be possible but the link with data words
shows how close we are to the undecidability frontier (see [MZ13]), and one should tread lightly.

This link between data words and origin-graphs, although surprising at first, has allowed us
to guide our search for an expressive and still decidable logic. While most models of computation
of data words allow full power on the word without data and restrict heavily the possibility to
compare data, our approach is quite different. We restrict the expressiveness on the word but
allow one to talk about any property that only involves the data. We think this link should prove
fruitful in the study of both data words and transductions.

We have high expectations that our method can be transfered to tree-to-word transductions
using tree-automata that recognize profile trees instead of profile sequences. The generalization
to tree-to-tree transductions (or even word-to-tree) transductions seems difficult. Indeed if one
wants to be able to express MSO-transductions, one quickly obtains transductions where the
domain is non-regular which would require a completely different approach. However, using the
Courcelle/Bojańczyk-Pilipczuk Theorem ([BP16]) we should obtain a regular synthesis-like result
(we would obtain a not necessarily functional NMSO-transduction in the end) for transductions
from graphs of bounded tree-width to words. Finally, in terms of data words, a tree-to-word
origin-graph can be seen as a data word where the data has more structure than a linear order,
i.e. a tree-structure. In [Tan14] the author mentions such a model, where data values are strings
ordered by the prefix order which gives a ranked tree structure to the data.

In our approach we manage to solve the problem of equivalence of transductions with origins.
Of course equivalence of transductions without origins is undecidable even for rational transduc-
tions. It may be interesting to investigate a notion of equivalence of transductions up to “small”
origin changes, similar to what was done in the case of rational transductions by [FJLW16].

127

Chapter 4. Logics for transductions with origins

128

Bibliography

[AC10] Rajeev Alur and Pavol Cerný, Expressiveness of streaming string transducers, IARCS
Annual Conference on Foundations of Software Technology and Theoretical Com-
puter Science, FSTTCS 2010, December 15-18, 2010, Chennai, India, 2010, pp. 1–12.
[Cited on pages vi, 2, 91, 95, and 96.]

[AD11] Rajeev Alur and Jyotirmoy V. Deshmukh, Nondeterministic streaming string trans-
ducers, Automata, Languages and Programming - 38th International Colloquium,
ICALP 2011, Zurich, Switzerland, July 4-8, 2011, Proceedings, Part II, 2011, pp. 1–
20. [Cited on pages 95 and 96.]

[ADR15] Rajeev Alur, Loris D’Antoni, and Mukund Raghothaman, Drex: A declarative lan-
guage for efficiently evaluating regular string transformations, Proceedings of the
42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL 2015, Mumbai, India, January 15-17, 2015, 2015, pp. 125–137.
[Cited on page 91.]

[AFR14] Rajeev Alur, Adam Freilich, and Mukund Raghothaman, Regular combinators for
string transformations, Joint Meeting of the Twenty-Third EACSL Annual Confer-
ence on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS), CSL-LICS ’14, Vienna, Austria,
July 14 - 18, 2014, 2014, pp. 9:1–9:10. [Cited on page 91.]

[Arn85] André Arnold, A syntactic congruence for rational omega-language, Theor. Comput.
Sci. 39 (1985), 333–335. [Cited on pages 15 and 16.]

[BC00] Marie-Pierre Béal and Olivier Carton, Computing the prefix of an automaton, ITA
34 (2000), no. 6, 503–514. [Cited on pages 41 and 63.]

[BC02] , Determinization of transducers over finite and infinite words, Theor. Com-
put. Sci. 289 (2002), no. 1, 225–251. [Cited on pages 28, 33, 34, and 46.]

[BC04] , Determinization of transducers over infinite words: The general case, Theory
Comput. Syst. 37 (2004), no. 4, 483–502. [Cited on pages 23, 58, 62, 65, 66, 67, 77,
and 78.]

[BCPS00] Marie-Pierre Béal, Olivier Carton, Christophe Prieur, and Jacques Sakarovitch,
Squaring transducers: An efficient procedure for deciding functionality and sequen-
tiality of transducers, LATIN 2000: Theoretical Informatics, 4th Latin American
Symposium, Punta del Este, Uruguay, April 10-14, 2000, Proceedings, 2000, pp. 397–
406. [Cited on page 23.]

129

Bibliography

[BDGP17] Miko laj Bojańczyk, Laure Daviaud, Bruno Guillon, and Vincent Penelle, Which
classes of origin graphs are generated by transducers, 44th International Colloquium
on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, War-
saw, Poland, 2017, pp. 114:1–114:13. [Cited on pages xi, 6, 92, 96, and 127.]

[BDM+11] Miko laj Bojańczyk, Claire David, Anca Muscholl, Thomas Schwentick, and Luc
Segoufin, Two-variable logic on data words, ACM Trans. Comput. Log. 12 (2011),
no. 4, 27:1–27:26. [Cited on pages 92, 96, 115, 116, 118, and 120.]

[Ber79] Jean Berstel, Transductions and context-free languages, Teubner Studienbücher : In-
formatik, vol. 38, Teubner, 1979. [Cited on pages v, vi, 1, 2, and 23.]

[BGMP16] Félix Baschenis, Olivier Gauwin, Anca Muscholl, and Gabriele Puppis, Minimizing
resources of sweeping and streaming string transducers, 43rd International Collo-
quium on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016,
Rome, Italy, 2016, pp. 114:1–114:14. [Cited on pages vii and 3.]

[BGMP17] , Untwisting two-way transducers in elementary time, 32nd Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2017, Reykjavik, Ice-
land, June 20-23, 2017, 2017, pp. 1–12. [Cited on pages vii and 3.]

[BL69] Julius Richard Büchi and Lawrence H. Landweber, Solving sequential conditions
by finite-state strategies, Transactions of the American Mathematical Society 138
(1969), 295–311. [Cited on pages viii, 4, and 92.]

[BLN12] Adrien Boiret, Aurélien Lemay, and Joachim Niehren, Learning rational functions,
Developments in Language Theory - 16th International Conference, DLT 2012,
Taipei, Taiwan, August 14-17, 2012. Proceedings, 2012, pp. 273–283. [Cited on
pages 57 and 79.]

[Boi16] Adrien Boiret, Normal form on linear tree-to-word transducers, Language and Au-
tomata Theory and Applications - 10th International Conference, LATA 2016,
Prague, Czech Republic, March 14-18, 2016, Proceedings, 2016, pp. 439–451. [Cited
on page 126.]

[Boj08] Miko laj Bojańczyk, Effective characterizations of tree logics, Proceedings of the
Twenty-Seventh ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, PODS 2008, June 9-11, 2008, Vancouver, BC, Canada, 2008,
pp. 53–66. [Cited on page 126.]

[Boj14] , Transducers with origin information, Automata, Languages, and Program-
ming - 41st International Colloquium, ICALP 2014, Copenhagen, Denmark, July
8-11, 2014, Proceedings, Part II, 2014, pp. 26–37. [Cited on pages ix, x, 4, 6, 91,
and 95.]

[Boj15] , Recognisable languages over monads, Developments in Language Theory -
19th International Conference, DLT 2015, Liverpool, UK, July 27-30, 2015, Proceed-
ings., 2015, pp. 1–13. [Cited on page 25.]

[Bou02] Patricia Bouyer, A logical characterization of data languages, Inf. Process. Lett. 84
(2002), no. 2, 75–85. [Cited on page 115.]

130

Bibliography

[BP16] Miko laj Bojańczyk and Michal Pilipczuk, Definability equals recognizability for graphs
of bounded treewidth, Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’16, New York, NY, USA, July 5-8, 2016, 2016,
pp. 407–416. [Cited on page 127.]

[BR18] Nicolas Baudru and Pierre-Alain Reynier, From two-way transducers to regular func-
tion expressions, Developments in Language Theory - 22nd International Confer-
ence, DLT 2018, Tokyo, Japan, September 10-14, 2018, Proceedings, 2018. [Cited on
page 91.]

[Bü60] Julius Richard Büchi, Weak second-order arithmetic and finite automata, Mathemat-
ical Logic Quarterly - MLQ 6 (1960), 66–92. [Cited on page 21.]

[Bü62] , On a decision method in restricted second order arithmetic, Proc. Interna-
tional Congress on Logic, Method, and Philosophy of Science, Stanford University
Press, 1962, pp. 1–12. [Cited on page 21.]

[Car10] Olivier Carton, Right-sequential functions on infinite words, Computer Science - The-
ory and Applications, 5th International Computer Science Symposium in Russia,
CSR 2010, Kazan, Russia, June 16-20, 2010. Proceedings, 2010, pp. 96–106. [Cited
on pages 23, 24, 57, 58, and 76.]

[CCP17] Michaël Cadilhac, Olivier Carton, and Charles Paperman, Continuity and rational
functions, 44th International Colloquium on Automata, Languages, and Program-
ming, ICALP 2017, July 10-14, 2017, Warsaw, Poland, 2017, pp. 115:1–115:14. [Cited
on pages viii and 4.]

[CD15] Olivier Carton and Luc Dartois, Aperiodic two-way transducers and fo-transductions,
24th EACSL Annual Conference on Computer Science Logic, CSL 2015, September
7-10, 2015, Berlin, Germany, 2015, pp. 160–174. [Cited on pages viii and 4.]

[CH91] Sang Cho and Dung T. Huynh, Finite-automaton aperiodicity is PSpace-complete,
Theor. Comput. Sci. 88 (1991), no. 1, 99–116. [Cited on pages 19 and 51.]

[Cho77] Christian Choffrut, Une caracterisation des fonctions sequentielles et des fonctions
sous-sequentielles en tant que relations rationnelles, Theor. Comput. Sci. 5 (1977),
no. 3, 325–337. [Cited on pages 23 and 49.]

[Cho03] , Minimizing subsequential transducers: a survey, Theor. Comput. Sci. 292
(2003), no. 1, 131–143. [Cited on pages vii, 3, 22, 27, 28, 31, 32, 58, and 125.]

[Chu63] Alonzo Church, Application of recursive arithmetic to the problem of circuit synthesis,
Journal of Symbolic Logic 28 (1963), no. 4, 289–290. [Cited on pages viii, 4, and 92.]

[CKLP15] Michaël Cadilhac, Andreas Krebs, Michael Ludwig, and Charles Paperman, A circuit
complexity approach to transductions, Mathematical Foundations of Computer Sci-
ence 2015 - 40th International Symposium, MFCS 2015, Milan, Italy, August 24-28,
2015, Proceedings, Part I, 2015, pp. 141–153. [Cited on pages viii and 4.]

[CL15] Arnaud Carayol and Christof Löding, Uniformization in automata theory, Logic,
Methodology and Philosophy of Science - Proceedings of the 14th International
Congress, Nancy, 2011, College Publications, 2015. [Cited on pages viii, 4, and 92.]

131

Bibliography

[CM03] Olivier Carton and Max Michel, Unambiguous Büchi automata, Theor. Comput. Sci.
297 (2003), no. 1-3, 37–81. [Cited on pages 14, 19, 23, 57, 85, and 86.]

[Cou90] Bruno Courcelle, The monadic second-order logic of graphs. i. recognizable sets of
finite graphs, Inf. Comput. 85 (1990), no. 1, 12–75. [Cited on pages xi, 6, 92, 96,
and 115.]

[Cou94] , Monadic second-order definable graph transductions: A survey, Theor. Com-
put. Sci. 126 (1994), no. 1, 53–75. [Cited on pages 24, 94, 101, and 102.]

[Cou96] , The monadic second-order logic of graphs X: linear orderings, Theor. Com-
put. Sci. 160 (1996), no. 1&2, 87–143. [Cited on page 115.]

[CP17] Thomas Colcombet and Daniela Petrisan, Automata minimization: a functorial ap-
proach, 7th Conference on Algebra and Coalgebra in Computer Science, CALCO
2017, June 12-16, 2017, Ljubljana, Slovenia, 2017, pp. 8:1–8:16. [Cited on pages vii
and 3.]

[CPP08] Olivier Carton, Dominique Perrin, and Jean-Éric Pin, Automata and semigroups
recognizing infinite words, Logic and Automata: History and Perspectives [in Honor
of Wolfgang Thomas]., 2008, pp. 133–168. [Cited on pages 14, 15, and 17.]

[CPS06] Laura Chaubard, Jean-Eric Pin, and Howard Straubing, Actions, wreath products
of C-varieties and concatenation product, Theor. Comput. Sci. 356 (2006), no. 1-2,
73–89. [Cited on pages vii, 3, and 15.]

[DFJL17] Luc Dartois, Paulin Fournier, Ismaël Jecker, and Nathan Lhote, On reversible trans-
ducers, 44th International Colloquium on Automata, Languages, and Programming,
ICALP 2017, July 10-14, 2017, Warsaw, Poland, 2017, pp. 113:1–113:12. [Cited on
page 91.]

[DFL18] Luc Dartois, Emmanuel Filiot, and Nathan Lhote, Logics for word transductions
with synthesis, Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, 2018, pp. 295–304.
[Cited on page 93.]

[DG08] Volker Diekert and Paul Gastin, First-order definable languages, Logic and Au-
tomata: History and Perspectives [in Honor of Wolfgang Thomas]., 2008, pp. 261–
306. [Cited on pages 18, 19, and 51.]

[DGK08] Volker Diekert, Paul Gastin, and Manfred Kufleitner, A survey on small fragments
of first-order logic over finite words, Int. J. Found. Comput. Sci. 19 (2008), no. 3,
513–548. [Cited on pages 17, 21, 56, and 125.]

[DGK18] Vrunda Dave, Paul Gastin, and Shankara Narayanan Krishna, Regular transducer
expressions for regular transformations over infinite words, Proceedings of the 33rd
Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18, Oxford,
United Kingdom, July 9-12, 2018, 2018. [Cited on page 91.]

[DJRV17] Laure Daviaud, Ismaël Jecker, Pierre-Alain Reynier, and Didier Villevalois, Degree
of sequentiality of weighted automata, Foundations of Software Science and Compu-
tation Structures - 20th International Conference, FOSSACS 2017, Held as Part of
the European Joint Conferences on Theory and Practice of Software, ETAPS 2017,

132

Bibliography

Uppsala, Sweden, April 22-29, 2017, Proceedings, 2017, pp. 215–230. [Cited on pages
vii and 3.]

[DK09] Volker Diekert and Manfred Kufleitner, Fragments of first-order logic over infinite
words, 26th International Symposium on Theoretical Aspects of Computer Science,
STACS 2009, February 26-28, 2009, Freiburg, Germany, Proceedings, 2009, pp. 325–
336. [Cited on pages vii, 3, and 21.]

[DKT16] Vrunda Dave, Shankara Narayanan Krishna, and Ashutosh Trivedi, Fo-definable
transformations of infinite strings, 36th IARCS Annual Conference on Foundations
of Software Technology and Theoretical Computer Science, FSTTCS 2016, December
13-15, 2016, Chennai, India, 2016, pp. 12:1–12:14. [Cited on page 19.]

[DRT16] Laure Daviaud, Pierre-Alain Reynier, and Jean-Marc Talbot, A generalised twinning
property for minimisation of cost register automata, Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY,
USA, July 5-8, 2016, 2016, pp. 857–866. [Cited on pages vii and 3.]

[dS13] Rodrigo de Souza, Uniformisation of two-way transducers, Language and Automata
Theory and Applications - 7th International Conference, LATA 2013, Bilbao, Spain,
April 2-5, 2013. Proceedings, 2013, pp. 547–558. [Cited on page 119.]

[EF95] Heinz-Dieter Ebbinghaus and Jörg Flum, Finite model theory, Perspectives in Math-
ematical Logic, Springer, 1995. [Cited on page 20.]

[EH01] Joost Engelfriet and Hendrik Jan Hoogeboom, MSO definable string transductions
and two-way finite-state transducers, ACM Trans. Comput. Log. 2 (2001), no. 2,
216–254. [Cited on pages vi, 2, 24, 91, and 95.]

[Eil74] Samuel Eilenberg, Automata, languages, and machines. A, Pure and applied mathe-
matics, Academic Press, 1974. [Cited on pages ix, 5, 23, 28, and 35.]

[Eil76] , Automata, languages, and machines., B, Pure and applied mathematics,
Academic Press, 1976. [Cited on pages vii, 3, and 17.]

[Elg61] Calvin C. Elgot, Decision problems of finite automata design and related arithmetics,
Transactions of the American Mathematical Society 98 (1961), no. 1, 21–51. [Cited
on page 21.]

[EM65] Calvin C. Elgot and Jorge E. Mezei, On relations defined by generalized finite au-
tomata, IBM Journal of Research and Development 9 (1965), no. 1, 47–68. [Cited
on pages 24, 44, and 122.]

[FGL16a] Emmanuel Filiot, Olivier Gauwin, and Nathan Lhote, First-order definability of
rational transductions: An algebraic approach, Proceedings of the 31st Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS ’16, New York, NY,
USA, July 5-8, 2016, 2016, pp. 387–396. [Cited on page 28.]

[FGL16b] , Aperiodicity of rational functions is PSpace-complete, 36th IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Sci-
ence, FSTTCS 2016, December 13-15, 2016, Chennai, India, 2016, pp. 13:1–13:15.
[Cited on page 28.]

133

Bibliography

[Fil15] Emmanuel Filiot, Logic-automata connections for transformations, Logic and Its Ap-
plications - 6th Indian Conference, ICLA 2015, Mumbai, India, January 8-10, 2015.
Proceedings, 2015, pp. 30–57. [Cited on pages vi, ix, 2, 4, 24, and 25.]

[FJLW16] Emmanuel Filiot, Ismaël Jecker, Christof Löding, and Sarah Winter, On equivalence
and uniformisation problems for finite transducers, 43rd International Colloquium
on Automata, Languages, and Programming, ICALP 2016, July 11-15, 2016, Rome,
Italy, 2016, pp. 125:1–125:14. [Cited on pages viii, 4, and 127.]

[FKT14] Emmanuel Filiot, Shankara Narayanan Krishna, and Ashutosh Trivedi, First-order
definable string transformations, 34th International Conference on Foundation of
Software Technology and Theoretical Computer Science, FSTTCS 2014, December
15-17, 2014, New Delhi, India, 2014, pp. 147–159. [Cited on pages viii and 4.]

[FMR18] Emmanuel Filiot, Nicolas Mazzocchi, and Jean-François Raskin, A pattern logic for
automata with outputs, Developments in Language Theory - 22nd International Con-
ference, DLT2018, Tokyo, Japan, Septemeber 10-14, 2018, Proceedings, 2018. [Cited
on pages 48 and 81.]

[FR16] Emmanuel Filiot and Pierre-Alain Reynier, Transducers, logic and algebra for func-
tions of finite words, SIGLOG News 3 (2016), no. 3, 4–19. [Cited on pages vi and 2.]

[GI83] Eitan M. Gurari and Oscar H. Ibarra, A note on finitely-valued and finitely ambigu-
ous transducers, Mathematical Systems Theory 16 (1983), no. 1, 61–66. [Cited on
page 23.]

[Gir86] Françoise Gire, Two decidability problems for infinite words, Inf. Process. Lett. 22
(1986), no. 3, 135–140. [Cited on page 23.]

[GO99] Erich Grädel and Martin Otto, On logics with two variables, Theor. Comput. Sci.
224 (1999), no. 1-2, 73–113. [Cited on pages 99 and 101.]

[Hop71] John E. Hopcroft, An n log n algorithm for minimizing states in a finite automaton,
Tech. report, Stanford University, Stanford, CA, USA, 1971. [Cited on pages vii, 3,
and 16.]

[Lad77] Richard E. Ladner, Application of model theoretic games to discrete linear orders
and finite automata, Information and Control 33 (1977), no. 4, 281–303. [Cited on
page 21.]

[LLN+11] Grégoire Laurence, Aurélien Lemay, Joachim Niehren, Slawek Staworko, and Marc
Tommasi, Normalization of sequential top-down tree-to-word transducers, Language
and Automata Theory and Applications - 5th International Conference, LATA 2011,
Tarragona, Spain, May 26-31, 2011. Proceedings, 2011, pp. 354–365. [Cited on
page 126.]

[LW17] Christof Löding and Sarah Winter, Synthesis of deterministic top-down tree trans-
ducers from automatic tree relations, Inf. Comput. 253 (2017), 336–354. [Cited on
pages viii and 4.]

[McN66] Robert McNaughton, Testing and generating infinite sequences by a finite automaton,
Information and Control 9 (1966), no. 5, 521–530. [Cited on pages 14 and 21.]

134

Bibliography

[Moo56] Edward F. Moore, Gedanken-experiments on sequential machines, Automata studies,
Annals of mathematics studies, no. 34, Princeton University Press, Princeton, N. J.,
1956, pp. 129–153. MR 0078059 [Cited on pages vii, 3, 16, and 32.]

[MP71] Robert McNaughton and Seymour Papert, Counter-free automata (M.I.T. research
monograph no. 65), The MIT Press, 1971. [Cited on pages vii, 3, 18, 21, and 56.]

[MSZ13] Amaldev Manuel, Thomas Schwentick, and Thomas Zeume, A short note on
two-variable logic with a linear order successor and a preorder successor, CoRR
abs/1306.3418 (2013). [Cited on pages 96 and 118.]

[MZ13] Amaldev Manuel and Thomas Zeume, Two-variable logic on 2-dimensional struc-
tures, Computer Science Logic 2013 (CSL 2013), CSL 2013, September 2-5, 2013,
Torino, Italy, 2013, pp. 484–499. [Cited on page 127.]

[Ner63] Anil Nerode, Linear automaton transformations, Journal of Symbolic Logic 28
(1963), no. 2, 173–174. [Cited on pages vii, 2, and 15.]

[NPTT05] Joachim Niehren, Laurent Planque, Jean-Marc Talbot, and Sophie Tison, N-ary
queries by tree automata, Database Programming Languages, 10th International
Symposium, DBPL 2005, Trondheim, Norway, August 28-29, 2005, Revised Selected
Papers, 2005, pp. 217–231. [Cited on page 104.]

[Per84] Dominique Perrin, Recent results on automata and infinite words, Mathematical
Foundations of Computer Science 1984 (Berlin, Heidelberg) (M. P. Chytil and
V. Koubek, eds.), Springer Berlin Heidelberg, 1984, pp. 134–148. [Cited on page 21.]

[Pin95] Jean-Éric Pin, A variety theorem without complementation., Russian Mathematics
(iz. VUZ) 39 (1995), 80–90. [Cited on pages vii and 3.]

[Pin18] , Mathematical foundations of automata theory, 2018. [Cited on pages 11
and 17.]

[PP04] Dominique Perrin and Jean-Eric Pin, Infinite Words, Automata, Semigroups, Logic
and Games, vol. 141, Elsevier, 2004. [Cited on page 22.]

[PR89] Amir Pnueli and Roni Rosner, On the synthesis of a reactive module, Conference
Record of the Sixteenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 11-13, 1989, 1989, pp. 179–190. [Cited on
pages viii and 4.]

[Pri02] Christophe Prieur, How to decide continuity of rational functions on infinite words,
Theor. Comput. Sci. 276 (2002), no. 1-2, 445–447. [Cited on page 23.]

[PW95] Jean-Éric Pin and Pascal Weil, Polynomial closure and unambiguous product, Au-
tomata, Languages and Programming, 22nd International Colloquium, ICALP95,
Szeged, Hungary, July 10-14, 1995, Proceedings, 1995, pp. 348–359. [Cited on
page 21.]

[RS59] Michael O. Rabin and Dana S. Scott, Finite automata and their decision problems,
IBM Journal of Research and Development 3 (1959), no. 2, 114–125. [Cited on
page 14.]

135

Bibliography

[RS91] Christophe Reutenauer and Marcel Paul Schützenberger, Minimization of rational
word functions, SIAM J. Comput. 20 (1991), no. 4, 669–685. [Cited on pages ix, x,
5, 22, 27, 36, 38, 40, 47, 48, 49, 79, 125, and 126.]

[RS95] , Variétés et fonctions rationnelles, Theor. Comput. Sci. 145 (1995), no. 1&2,
229–240. [Cited on pages 24, 35, 37, 38, and 42.]

[Sak09] Jacques Sakarovitch, Elements of automata theory, Cambridge University Press,
2009. [Cited on page 11.]

[Sch61] Marcel-Paul Schützenberger, A remark on finite transducers, Information and Con-
trol 4 (1961), no. 2-3, 185–196. [Cited on pages ix, 5, 28, and 35.]

[Sch65] , On finite monoids having only trivial subgroups, Information and Control 8
(1965), no. 2, 190–194. [Cited on pages vii, 3, 21, and 56.]

[Sch76a] , Sur le produit de concatenation non ambigu, Semigroup Forum 13 (1976),
no. 1, 47–75. [Cited on page 21.]

[Sch76b] , Sur les relations rationnelles entre monoides libres, Theor. Comput. Sci. 3
(1976), no. 2, 243–259. [Cited on page 23.]

[Sim75] Imre Simon, Piecewise testable events, Automata Theory and Formal Languages, 2nd
GI Conference, Kaiserslautern, May 20-23, 1975, 1975, pp. 214–222. [Cited on pages
21 and 56.]

[Str94] Howard Straubing, Finite automata, formal logic, and circuit complexity, Progress in
Computer Science and Applied Series, Birkhäuser, 1994. [Cited on pages vii, 3, 11,
17, and 125.]

[SZ12] Thomas Schwentick and Thomas Zeume, Two-variable logic with two order relations,
Logical Methods in Computer Science 8 (2012), no. 1. [Cited on pages xi, 7, 92, 93,
102, 103, 114, 115, and 116.]

[Tan14] Tony Tan, Extending two-variable logic on data trees with order on data values and its
automata, ACM Trans. Comput. Log. 15 (2014), no. 1, 8:1–8:39. [Cited on page 127.]

[Tho79] Wolfgang Thomas, Star-free regular sets of omega-sequences, Information and Control
42 (1979), no. 2, 148–156. [Cited on page 21.]

[Tho81] , A combinatorial approach to the theory of omega-automata, Information and
Control 48 (1981), no. 3, 261–283. [Cited on page 19.]

[Tho09] , Facets of synthesis: Revisiting church’s problem, Foundations of Software
Science and Computational Structures, 12th International Conference, FOSSACS
2009, Held as Part of the Joint European Conferences on Theory and Practice of
Software, ETAPS 2009, York, UK, March 22-29, 2009. Proceedings, 2009, pp. 1–14.
[Cited on pages viii and 4.]

[Tra61] Boris A. Trakhtenbrot, Finite automata and the logic of monadic predicates, Doklady
Akademii Nauk SSSR 140 (1961), 326–329 (Russian). [Cited on page 21.]

136

Bibliography

[TW98] Denis Thérien and Thomas Wilke, Over words, two variables are as powerful as one
quantifier alternation, Proceedings of the Thirtieth Annual ACM Symposium on the
Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, 1998, pp. 234–240.
[Cited on pages 21 and 56.]

[WK94] Andreas Weber and Reinhard Klemm, Economy of description for single-valued
transducers, STACS 94, 11th Annual Symposium on Theoretical Aspects of Com-
puter Science, Caen, France, February 24-26, 1994, Proceedings, 1994, pp. 607–618.
[Cited on page 23.]

137

	Introduction
	I Computational, Logical and Algebraic Characterizations of Rational Word Functions
	Rational languages and rational functions
	Words and languages
	Words
	Languages

	Finite automata
	Automata
	Subclasses of automata

	Algebraic characterization of rational languages
	Congruences
	Classes of congruences
	Aperiodicity

	Logics over words
	Monadic second-order logic
	MSO for words

	Onward to transductions
	Transductions and transducers
	Logical transducers

	Characterizations of rational functions over finite words
	Sequential functions
	Algebraic characterization of sequential functions
	Minimization of sequential transducers
	Determinization preserves aperiodicity

	Algebraic characterization of rational functions
	Bimachines and transductions
	Bimachines and minimization
	Look-ahead versus labeling
	Canonical bimachine and characterization

	Logical transducers
	2-F transducers
	2-F transducers and C-bimachines
	Logic-algebra transfer result
	Decidable fragments

	Characterizations of rational functions over infinite words
	Sequential and quasi-sequential functions
	Algebraic characterization of sequential functions
	Minimization of sequential transducers
	Quasi-sequential transductions
	Determinization preserves aperiodicity

	Canonical models for rational functions over infinite words
	Bimachines and transductions
	Left minimization of bimachines
	Look-ahead versus labeling
	Delay look-ahead
	The ultimate look-ahead and a canonical bimachine for quasi-sequential functions
	Composing look-aheads and a canonical bimachine

	First-order definability of transductions over infinite words
	Aperiocity and first-order definability
	Closure under composition

	II Specification and Synthesis of Transductions
	Logics for transductions with origins
	Transductions with origin
	Origin graphs
	Transductions
	MSO-transducers

	Logics with origins
	MSO over word-to-word origin graphs
	Model-checking
	Satisfiability, validity, equivalence
	Undecidable fragments
	A new fragment
	Expressing regular transductions

	Reduction of the regular synthesis problem
	Non-erasing transductions
	Scott Normal Form
	Output formulas
	Sets of constraints

	Uniformization algorithm
	Predicate automata
	Profiles
	Validity
	Consistency
	Complete profile sequences
	Soundness
	Profile automaton
	Synthesis

	Words with ordered data
	A logic for data words
	From transductions to data words and back
	Undecidable fragments

	Decidable extensions of Lo
	Existential extension
	Single-origin predicates

	Conclusion

