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Abstract 

In the health care industry, the ever-increasing medical image data, the development 

of imaging technologies, the long-term retention of medical data and the increase of 

image resolution are causing a tremendous growth in data volume. In addition, the 

variety of acquisition devices and the difference in preferences of physicians or other 

health-care professionals have led to a high variety in data. Although today DICOM 

(Digital Imaging and Communication in Medicine) standard has been widely adopted 

to store and transfer the medical data, DICOM data still has the 3Vs characteristics of 

Big Data: high volume, high variety and high velocity. Besides, there is a variety of 

workloads including Online Transaction Processing (OLTP), Online Analytical 

Processing (OLAP) and mixed workloads. Existing systems have limitations dealing 

with these characteristics of data and workloads. In this thesis, we propose new 

efficient methods for storing and querying DICOM data.  

We propose a hybrid storage model of row and column stores, called HYTORMO, 

together with data storage and query processing strategies. First, HYTORMO is 

designed and implemented to be deployed on large-scale environment to make it 

possible to manage big medical data. Second, the data storage strategy combines the 

use of vertical partitioning and a hybrid store to create data storage configurations that 

can reduce storage space demand and increase workload performance. To achieve such 

a data storage configuration, one of two data storage design approaches can be applied: 

(1) expert-based design and (2) automated design. In the former approach, experts 

manually create data storage configurations by grouping attributes and selecting a 

suitable data layout for each column group. In the latter approach, we propose a hybrid 

automated design framework, called HADF. HADF depends on similarity measures 

(between attributes) that can take into consideration the combined impact of both 

workload- and data-specific information to generate data storage configurations: 

Hybrid Similarity (a weighted combination of Attribute Access and  Density Similarity 

measures) is used to group the attributes into column groups; Inter-Cluster Access 

Similarity is used to determine whether two column groups will be merged together or 

not (to reduce the number of joins); and Intra-Cluster Access Similarity is applied to 

decide whether a column group will be stored in a row or a column store. Finally, we 

propose a suitable and efficient query processing strategy built on top of HYTORMO. 

It considers the use of both inner joins and left-outer joins. Furthermore, an 

Intersection Bloom filter (IBF) is applied to reduce network I/O cost. 

We provide experimental evaluations to validate the benefits of the proposed 

methods over real DICOM datasets. Experimental results show that the mixed use of 

both row and column stores outperforms a pure row store and a pure column store. The 

combined impact of both workload-and data-specific information is helpful for HADF 

to be able to produce good data storage configurations. Moreover, the query processing 

strategy with the use of the IBF can improve the execution time of an experimental 

query up to 50% when compared to the case where no IBF is applied.    

Key words: DICOM, big data, sparse datasets, HYTORMO, hybrid storage model, 

row store, column store, hybrid similarity, Bloom filter, Intersection Bloom filter, join. 
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Résumé 

Dans le secteur des soins de santé, les données d'images médicales toujours 

croissantes, le développement de technologies d'imagerie, la conservation à long terme 

des données médicales et l'augmentation de la résolution des images entraînent une 

croissance considérable du volume de données. En outre, la variété des dispositifs 

d'acquisition et la différence de préférences des médecins ou d'autres professionnels 

de la santé ont conduit à une grande variété de données. Bien que la norme DICOM 

(Digital Imaging et Communication in Medicine) soit aujourd'hui largement adoptée 

pour stocker et transférer les données médicales, les données DICOM ont toujours les 

caractéristiques 3V du Big Data: volume élevé, grande variété et grande vélocité. En 

outre, il existe une variété de charges de travail, notamment le traitement transactionnel 

en ligne (en anglais Online Transaction Processing, abrégé en OLTP), le traitement 

analytique en ligne (anglais Online Analytical Processing, abrégé en OLAP) et les 

charges de travail mixtes. Les systèmes existants ont des limites concernant ces 

caractéristiques des données et des charges de travail. Dans cette thèse, nous proposons 

de nouvelles méthodes efficaces pour stocker et interroger des données DICOM.  

Nous proposons un modèle de stockage hybride des magasins de lignes et de 

colonnes, appelé HYTORMO, ainsi que des stratégies de stockage de données et de 

traitement des requêtes. Tout d'abord, HYTORMO est conçu et mis en œuvre pour être 

déployé sur un environnement à grande échelle afin de permettre la gestion de grandes 

données médicales. Deuxièmement, la stratégie de stockage de données combine 

l'utilisation du partitionnement vertical et un stockage hybride pour créer des 

configurations de stockage de données qui peuvent réduire la demande d'espace de 

stockage et augmenter les performances de la charge de travail. Pour réaliser une telle 

configuration de stockage de données, l'une des deux approches de conception de 

stockage de données peut être appliquée: (1) conception basée sur des experts et (2) 

conception automatisée. Dans la première approche, les experts créent manuellement 

des configurations de stockage de données en regroupant les attributs des données 

DICOM et en sélectionnant une disposition de stockage de données appropriée pour 

chaque groupe de colonnes. Dans la dernière approche, nous proposons un cadre de 

conception automatisé hybride, appelé HADF. HADF dépend des mesures de 

similarité (entre attributs) qui prennent en compte les impacts des informations 

spécifiques à la charge de travail et aux données pour générer automatiquement les 

configurations de stockage de données: Hybrid Similarity (combinaison pondérée de 

similarité d'accès d'attribut et de similarité de densité d'attribut) les attributs dans les 

groupes de colonnes; Inter-Cluster Access Similarity est utilisé pour déterminer si 

deux groupes de colonnes seront fusionnés ou non (pour réduire le nombre de jointures 

supplémentaires); et Intra-Cluster Access La similarité est appliquée pour décider si 

un groupe de colonnes sera stocké dans une ligne ou un magasin de colonnes. Enfin, 

nous proposons une stratégie de traitement des requêtes adaptée et efficace construite 

sur HYTORMO. Il considère l'utilisation des jointures internes et des jointures 

externes gauche pour empêcher la perte de données si vous utilisez uniquement des 

jointures internes entre des tables partitionnées verticalement. De plus, une intersection 

de filtres Bloom (intersection of Bloom filters, abrégé en IBF) est appliqué pour 



 

vi 

 

supprimer les données non pertinentes des tables d'entrée des opérations de jointure; 

cela permet de réduire les coûts d'E / S réseau. 

Nous fournissons des évaluations expérimentales pour valider les avantages des 

méthodes proposées par rapport aux jeux de données DICOM réels. Les résultats 

expérimentaux montrent que l'utilisation mixte des magasins de lignes et de colonnes 

surpasse le magasin de lignes pur et le magasin de colonnes pur. L'impact combiné des 

informations spécifiques à la charge de travail et aux données permet à HADF de 

produire de bonnes configurations de stockage de données. En utilisant l'IBF, la 

stratégie de traitement des requêtes peut améliorer le temps d'exécution d'une requête 

expérimentale jusqu'à 50% par rapport au cas où aucun IBF n'est appliqué. 

Mots clés : DICOM, donnees volumineuses, données clairsemées, HYTORMO, 

modele de stockage hybride, stockage en lignes, stockage en colonnes, similarite 

hybride, filtre Bloom, intersection de filtres Bloom, joindre.  
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Chapter 

 

Introduction 

1.1 Overview 

This chapter describes how thesis goals are connected to challenges in DICOM 

(Digital Imaging and Communication in Medicine) data management. The overview 

of the chapter is given in Table 1.1. 

Table 1.1: Overview over Chapter 1 

1.2 Research Context 

1.3 Motivation 

1.4 Research Scope and Approach  

1.5 Problem Statement 

1.6 Dissertation Goals 

1.7 Research Hypotheses 

1.8 Research Contributions 

1.9 Thesis Structure 

 

First of all, the chapter introduces the research context. Next, it presents the 

motivation to propose a new DICOM data management system. Then, the research 

scope and approach are described. After that, the chapter depicts the problem 

statement, the dissertation goals and hypotheses. It also points out the research 

contributions. Finally, a description of the thesis structure is given. 

1.2 Research Context 

In health-care industry, the development of imaging technologies, long-term retention, 

and increase of image resolution are causing a tremendous growth in data volume. 

Besides, the variety of acquisition devices and the differences in preferences of 

physicians or other health-care professionals have led to a high variety in data. 

Although DICOM standard [1] has been popularly used for storing the medical image 

data, DICOM data still has characteristics of Big Data such as high complexity, high 

variety, high and ever-increasing volume, and high velocity [2]. In addition, types of 

queries/retrieval operations on this data may be Online Transaction Processing 

(OLTP), an Online Analytical Processing (OLAP) or a mixture of both OLTP and 

OLAP. As a consequence, all of these have caused many issues in data management.  
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Metadata consists of : 

- patient’s name 

- patient’s ID 

- type of media  in 

imaging (CT, MRI, 

medical reports, 

etc.) 

- … 

 

Image data consists of 

image pixels 

 

Figure 1.1: Example of metadata and image data in a DICOM file 

The DICOM standard was released the first time in 1985 as ACR/NEMA standard. 

It includes a set of non-propriety specifications regarding structure, format, and 

exchange protocols for digital-based medical images. Each DICOM file contains a 

header, metadata and pixel data: the header is used to recognize if a file is a DICOM 

file; the metadata contains attributes storing information about real-world entities 

(such as Patient, Study, etc.) related to the corresponding image; and the pixel data 

represents actual image pixels. Figure 1.1 illustrates the data of a DICOM file.  

The wide use of the DICOM standard has led to the development of DICOM data 

management systems. In general, after a DICOM file is acquired using a specific 

medical equipment (e.g., a CT scanner, a MRI scanner, etc.), metadata and pixel data 

will be extracted, organized and stored according to a particular data storage strategy. 

Full-content images are usually stored in a file system from which they can be used 

for content-based image retrieval or for image parsing at pixel level. Furthermore, the 

attributes of the metadata can stored and indexed in metadata catalogs and/or databases 

in a way to provide more flexibility for users to perform query/retrieval operations [3]. 

However, due to the above-mentioned characteristics of DICOM data and workloads, 

existing systems still exist limitations in performance, efficiency, scalability, elasticity 

or supported query language. In fact, the manner in which DICOM data is stored has 

a strong impact on storage space demand and workload execution time.  

In this thesis, we analyze existing practices in DICOM data management and 

propose efficient methods to store and query DICOM data. 

1.3 Motivation 

Nowadays, the DICOM standard is used in most hospitals in America, Europe and 

Asia [4]. There is a real need to propose a new data storage model together with 

efficient methods to store and query DICOM data. Our study is motivated by our 

analysis on the characteristics of DICOM data and workloads. Additionally, we are 

motivated by recent researches in the field of database system: (1) optimizing query 
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performance for mixed OLTP and OLAP workloads; (2) reducing storage space 

demand for sparse datasets; (3) filtering the redundant input data of queries; and (4) 

applying cloud-based solutions. 

First, our analysis on the characteristics of DICOM data show that the following 

characteristics of DICOM data can cause challenges in data management:  (1) High 

Complexity: the information model (provided by the DICOM standard) consisting of 

many entities and relationships among the entities. Each entity may include a large 

number of attributes. (2)  High Variety:  data consists of images and metadata. 

Metadata schemas are heterogeneous and evolutive. The number of attributes is very 

large (more than 3500), but some of them are mandatory while others are optional. The 

number of attributes used in a DICOM file varies considerably based on a particular 

examination modality (e.g., CT and MRI). The used attributes can also be modified if 

an image acquisition device (e.g., CT scanner) is modified. (3) High Volume: data size 

is terabytes or petabytes.  For instance, in France, information and test results of a 

patient should be stored for up to 30 years [5]. (4) High Velocity: some applications 

need real-time processing of high-volume data streams, e.g., in-coming streams of 

images containing relevant information required for diagnosis. 

Our observations on real DICOM datasets revealed that as a result of the high 

complexity and the high variety, entities usually contain a large number of attributes, 

many of which have null values (e.g., optional attributes) while others seldom get null 

values (e.g., mandatory attributes). Thus, if storing such entities in single wide-tables, 

the presence of the null values may cause a waste of storage space. For example, the 

entity Patient consists of the following attributes: PatientName, PatientID,  

PatientBirthDate, PatientSex, EthnicGroup, IssuerOfPatientID, PatientBirthTime, 

PatientInsurancePlanCodeSequence, PatientPrimaryLanguageCodeSequence, 

PatientPrimaryLanguageModifierCodeSequence, OtherPatientIDs, OtherPatient-

Names, PatientBirthName, PatientTelephoneNumbers, SmokingStatus, Pregnancy, 

LastMenstrualDate, PatientReligiousPreference, PatientComments, PatientAddress, 

PatientMotherBirthName, and InsurancePlan Identification. Only the first three 

attributes, i.e., PatientName, PatientID, and PatientSex, have low values of null ratio 

(e.g., 0.00 - 1.48%), whereas the remaining attributes are very sparse (their null ratios 

are 83.55 - 100.00%). Obviously, if storing the entire entity Patient in a single wide 

table, the null values will cause a big storage overhead. Therefore, there is a need for 

a storage design approach to remove the null values. 

Besides the above characteristics of DICOM data, we analyzed several workloads 

and found that there is a variety of attribute usage and queries often consist of multi-

table join operations with highly selective predicates. Some attributes are accessed 

more frequently than others; some are frequently accessed together in the same 

queries. For instance, the first four attributes of the entity Patient, i.e., PatientName, 

PatientID, PatientBirthDate, and PatientSex, are frequently accessed together in the 

same queries, whereas the others are seldom accessed. Especially, two attributes 

Pregnancy and LastMenstrualDate are not frequently accessed, but once used, they 

often appear together. Therefore, depending on the given workloads, the attributes can 

be grouped and stored together so that the queries can mainly access the relevant 

attributes, thereby reducing the number of redundant data accesses. To achieve this, 

we need a data storage design approach to deal with various workloads. 
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Second, in database research community, vertical partitioning algorithms has been 

proposed to create efficient physical database designs. They can be classified into two 

approaches: workload-based and data-based. The former approach tries to group and 

store frequently-accessed-together attributes into the same tables [6-13] in a way to 

decrease the number of irrelevant data accesses (reducing I/O cost) and thus improve 

the workload performance. On the other hand, the latter approach attempts to group 

and store co-occurrence attributes (having non-null values) together [14-16] in order 

to avoid storing null values, thereby reducing the storage space demand. The vertical 

partitioning, therefore, would be a potential solution to the problems of DICOM data 

management (reducing storage space demand and query performance). 

In the last decades, several different data layouts have been applied deal with the 

different types of workloads of applications. Row stores (such as Oracle, DB2, and 

SQL Server) store all data associated with a row together. Each row contains attribute 

values for a single tuple/record and is stored sequentially on disk. This organization 

helps a system easily to add/modify a row and efficiently read all (many) columns of 

a single row at the same time. Therefore, the row stores are suitable for write-intensive 

(OLTP) workloads. However, they wastes I/O costs if only few attributes are needed 

to answer a query because all the attributes of a table have to be read into memory 

from disk, no matter how many attributes that query requires [17]. In contrast, column 

stores (such as MonetDB [18] and C-Store [19]) organize data by column. Each 

column contains data for a single attribute of a tuple and stored sequentially on disk. 

Using this organization, a system can read only relevant attributes and efficiently 

aggregates over many rows but only for a few attributes. Hence, the column stores are 

suitable for read-intensive (OLAP) workloads, but their tuple reconstruction cost in 

OLTP workloads is higher than that of the row stores. To overcome the gap between 

the row and column stores, some hybrid stores (e.g., HYRISE [12], SAP HANA [20]) 

have been proposed to optimize the performance for both types of the workloads. 

Using a hybrid store thus may be an efficient solution to store DICOM data as well.   

Third, with regards to the problem of high volume of data, cloud-based systems 

have provided solutions for high performance computing together with availability, 

reliability, scalability, elasticity and so on. For instance, Spark [21], an in-memory 

cluster computing system which can run on Hadoop, has been introduced to cope with 

the high latency problem and provide high performance for interactive queries. 

Therefore, if used for large-scale DICOM data management, such a cloud-based 

system can supply an opportunity to speed up interactive queries as well as a scalable 

data storage for the high volume of DICOM data. 

Fourth, besides storing data, due to the common use of highly selective predicates, 

the multi-table join queries usually involve a large amount of irrelevant data, not 

required in final results. There is an opportunity to improve performance of the queries 

by applying a query processing strategy that can reduce irrelevant data from input data. 

Bloom filters and Intersection Bloom filters [22-25] have shown their ability to filter 

redundant input data out of queries and thus can be applied to the context of DICOM 

data processing. 

In a nutshell, there is a real need to propose a new data management system 

together with efficient methods to store and query DICOM data. The vertical 

partitioning approaches show that they can reduce the redundant data accesses and the 
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storage space demand. The hybrid stores show their potential to improve the 

performance of queries in mixed OLTP and OLAP workloads. Bloom filters and 

Intersection Bloom filters can improve query performance by removing irrelevant 

input data. Besides, the cloud-based systems also introduce possible solutions to deal 

with the problem of high volume of data. We believe it would be beneficial if 

combining these approaches together to build a new data storage model and efficient 

methods for storing and querying DICOM data. 

1.4 Research Scope and Approach 

 

Figure 1.2: Research focus 

This section describes the research scope and research approach. A typical 

application case of DICOM data involves extracting metadata and pixel data from 

DICOM files, storing them into a data storage(s), processing queries and presenting 

results to users. Figure 1.2 illustrates our research focus. Data storage and query 

performance for such an application have been challenged from the perspective of Big 

Data characteristics (i.e., complexity, variety, volume and velocity) as well as the 

variety of workloads (i.e., ad-hoc, high selectivity, mixed OLTP and OLAP 

workloads).  

Our research focuses on efficient methods for storing and querying DICOM data. 

We attempt to provide a data storage strategy and a query processing strategy to reduce 

storage space and improve query performance. 

 Data storage strategy refers to the way in which the data is organized and stored 

in the data storage system.  

 Query processing strategy refers to strategies intended to improve efficiency of 

query processing. 

Both the above strategies are challenged by the characteristics of DICOM data and 

workloads. However, the scope of our research is limited to the problems raised by the 

first three characteristics of DICOM data (i.e., complexity, volume and variety) and 

the various workloads. This is because the velocity is usually involved in stream 

processing-based applications [26] rather than a business analytics application (i.e., 

interactive ad-hoc query and analysis) as our focus. 
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Research approach 

The research is carried out in six steps as given in Figure 1.3.  

 

Figure 1.3: Research approach 

1. State of the Practice Analysis: Practices and challenges of storing and querying 

DICOM data in current systems are analyzed. Problems and expected requirements are 

formulated. The results of this step are described in Chapter 2. 

2. Literature review: Papers in the field of database system, including relational, 

NoSQL and NewSQL databases, hybrid storage systems, cluster computing 

frameworks, data layouts, vertical partitioning and Bloom filter techniques are 

searched and reviewed to identify current approaches and potential solutions to the 

given problems. The results of this step are presented in Chapter 3. 

 3. Comparison: The current approaches are compared with respect to the expected 

requirements to find out their limitations and to select suitable approaches for a new 

DICOM data management system. The results of this step are described in Chapter 3.     

4. Approach/Model Design: A hybrid row-column storage model called HYTORMO, 

a hybrid automated design framework called HADF, and a query processing strategies 

with the integration of an Intersection Bloom filter (IBF) are proposed to satisfied the 

expected requirements. The results of this step are described in Chapters 4 and 5. 

5. Approach/Model Implementing: HYTORMO together with the proposed methods 

are implemented. The results of this step are partially presented in Chapter 6. 

6. Validation: To validate the proposed methods, real DICOM datasets are collected. 

Experiments are performed. The results of this step are described in Chapter 6. 
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1.5 Problem Statement 

In Section 1.3, we showed our observations on the characteristics of DICOM data and 

workloads and potential approaches to deal with the problems of storing and querying 

DICOM data, including vertical partitioning, hybrid stores, Bloom filters and cloud-

based solutions. With the research focus on storage space usage and query 

performance, we believe that it would be beneficial to combine those approaches 

together. However, this will introduce new research challenges: How to combine the 

current methods including vertical partitioning, row- and column-stores, Bloom filters 

and cloud-based solutions in a right way to obtain efficient methods for storing and 

querying DICOM data? How can we improve workload execution time while still 

decreasing storage space? What are knowledge gaps that need to be filled in order to 

achieve the efficient methods for storing and querying DICOM data? 

First, although some researches have proposed hybrid storage models such as 

HYRISE [12] and SAP HANA  [20], they have not been designed for storing DICOM 

data. For instance, they need additional storage space to store duplicate data across 

different data layouts and have not dealt with the problem of high volume and sparse 

data. Obviously, there is a need for a new DICOM data management system that is 

able to provide performance, efficiency, huge storage capacity, scalability, elasticity, 

normalized data, and declarative query language support, and to cope with the 

characteristics of DICOM data and workloads. The problem is how to provide a new 

hybrid storage model that can satisfy such requirements.   

Second, in Section 1.3 we showed that, based on workload- or data-specific 

information, several vertical partitioning algorithms have been proposed to improve 

query performance (by eliminating redundant data accesses) or to reduce storage space 

size (by removing null values). However, there is a lack of an algorithm or a data 

design advisory tool that is able to capture the combined impact of both workload- and 

data-specific information. Moreover, the existing algorithms are implicitly assumed 

that vertical partitioning results will be stored by using a single data layout (e.g., a row 

store), instead of a hybrid store. Therefore, a problem is how to propose a new data 

storage design approach that is able to provide sufficient decision-support for the 

decision makers in determining the combined impact of workload- and data-specific 

information and a hybrid store on the quality of a data storage configuration (including 

schemas and data layouts) that can reduce both query performance and data storage 

demand. 

Finally, another import problem is to provide a suitable and efficient query 

processing strategy built on top of the hybrid storage model. There is a need to propose 

a suitable query processing strategy that can correctly construct query results from 

vertically partitioned tables, e.g., inner and left-outer joins should be used. Besides, 

because queries usually consist of multi-table join operations with highly selective 

predicates, they may involve a large amount of irrelevant input data. As a result, when 

these queries are executed in a distributed query processing environment, the irrelevant 

input data may causes high network I/O cost and results in poor performance of the 

queries. In [25, 27], the authors proposed to apply an IBF computed from pre-

computed BFs to improve the performance of MapReduce queries. However, an 

existing problem is how to apply the IBF built from non pre-computed BFs. 
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Table 1.2 summarizes three problems P1 – P3 addressed by this thesis: 

Table 1.2: Problem statements 

P1 Inefficient data storage model for storing and querying DICOM data. 

P2 

Insufficient decision-support for decision makers in data design for DICOM data to 

create good data storage configurations (including schemas and their corresponding data 

layouts) in terms of storage space demand query performance. 

P3 
Lack of a suitable and efficient query processing, especially when high network I/O cost 

is caused by irrelevant data. 

1.6 Dissertation Goals 

Based on the problem statement presented in the previous section, this section 

highlights our research goals. As earlier mentioned, a single data storage technique 

may not provide the best performance for different types of workloads; instead, it is 

expected that a hybrid storage model will yield a better performance. We also need 

efficient methods to reduce storage space size, tuple reconstruction cost and disk and 

network I/Os. Besides, a cloud-based systems can provide high performance, 

efficiency, scalability, elasticity and so on. In Table 1.3, we list three goals O1 – O3 of 

the thesis.  

Table 1.3: Thesis goals 

O1 

Provide a new hybrid storage model, called HYTORMO, together with an efficient data 

storage strategy to improve query performance and decrease storage space size with 

respect to the characteristics of DICOM data and workloads. HYTORMO is able to 

provide high performance, efficiency, scalability, elasticity, normalized data and 

declarative query language. 

O2 

Provide a hybrid automated design framework, called HADF, to support decision 

making in database design for DICOM data. HADF is able to: 

 Take into account the combined impact of both workload-specific and data-specific 

information as well as the use of a hybrid store on the quality of a data storage 

configuration in terms of storage space size and query performance.  

 Generate a data storage configuration that can improve workload performance while 

still decreasing storage space demand.  

O3 

Provide a query processing strategy built on top the hybrid storage model with the use 

of inner joins, left-outer joins to create correct answers for queries and an IBF to remove 

irrelevant tuples from input tables of join operations. 

1.7 Research Hypotheses 

In order to evaluate the benefits of HYTORMO, data storage strategy, HADF and 

query processing strategy, three hypotheses are formulated: 

 H1 - Effectiveness of HYTORMO with respect to workload execution time: 

The hybrid storage model, i.e., HYTORMO, together with the proposed data 
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storage strategy, gives a faster workload execution time than a pure row store and 

a pure column store. This hypothesis is to assess Goal O1. 

 H2 - Usefulness of HADF for decision making in database design for DICOM 

data: The hybrid automated design framework, i.e., HADF, can support decision 

making in database design for DICOM data. To be useful as a decision-support 

model, two following aspects are evaluated: 

a) Taking into account the combined impact of both workload- and data-specific 

information can help HADF to produce better data storage configurations than 

using pure workload-specific information or pure data-specific information.  

b) HADF is able to generate a data storage configuration that can decrease storage 

space demand and workload execution time at the same time. 

This hypothesis is to assess Goal O2. 

 H3 – Effectiveness of the query processing with the integration of an 𝐈𝐁𝐅 with 

respect to query execution time: The query processing strategy with the 

integration of an IBF runs faster than without the IBF. This hypothesis is to assess 

Goal O3. 

In Figure 1.4, we describe the causal relationship between the problem statements, 

thesis goals and research hypotheses. The goals are referred to as the proposed 

solutions to the research problems, and the hypotheses show what will be validated to 

evaluate the benefits of such solutions. 

 

Figure 1.4: Causal relationship between problems, goals and research hypotheses 
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1.8 Research Contributions 

The thesis has the following contributions: 

- Comprehensive evaluation of the existing DICOM data management systems:  

The existing systems are evaluated against expected requirements in DICOM data 

management. The evaluation is described in Chapter 2. 

- State of the art review of the current databases: This state of the art review 

presents a comprehensive background of the most prevalent databases (relational, 

NoSQL and NewSQL databases). It highlights advantages and disadvantages of 

these databases with respect to their suitability when used for various workloads 

(i.e., OTLP and OLAP) and data structures (structured and semi/unstructured data). 

This state of the art review is described in Chapter 3. 

- HYTORMO together with a data storage strategy for DICOM data: 

HYTORMO provides high performance for mixed workloads. It is designed based 

on the relational data model to provide facilitates for users (e.g., to use DICOM 

entity tables and SQL language). It is implemented on top of an in-memory cluster 

computing framework, called Spark [21], to supply high performance for 

interactive workloads, huge storage capacity, scalability and elasticity. The data 

storage strategy aims to reduce storage space and query execution time. 

HYTORMO and the data storage strategy are shown in Chapter 4. 

- HADF - a hybrid automated design framework: HADF is proposed to provide 

decision-support for decision makers in selecting good data storage configurations. 

It is able to take into account the combined impact of both workload- and data-

specific information as well as the mixed use of both row and column stores to 

generate a data storage configuration. HADF is described in Chapter 4. 

- Query processing strategy with the integration of an 𝐈𝐁𝐅: The query processing 

strategy built on top of HYTORMO with the use of inner joins, left-outer joins and 

an IBF. This query processing strategy is given in Chapter 5. 

- Validations of the proposed methods: HYTORMO, the data storage strategy, 

HADF and the query processing strategy are validated using real DICOM datasets 

and different workloads. The validation results are presented in Chapter 6. 

1.9 Thesis Structure 

The remainder of this thesis is organized as follows: Chapter 2 gives general 

background on the DICOM standard, existing DICOM data management systems, 

problems and expected requirements for a new system. Chapter 3 presents the state of 

the art review of workload types, the most prevalent databases, cluster computing 

framework, data layouts, vertical partitioning and Bloom filter techniques, and key 

components of the new system. Chapter 4 presents HYTORMO and HADF. The query 

processing with the integration of an IBF is described in Chapter 5. The evaluation of 

the proposed methods is reported in Chapter 6. Chapter 7 concludes the thesis and 

introduces future works. 
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Chapter 

 

DICOM Data Management Systems 

and Requirements 

2.1 Overview 

This chapter presents background on existing DICOM data management systems and 

requirements for a new system. An overview of the chapter is shown in Table 2.1. 

Table 2.1: Overview over Chapter 2 

2.2 DICOM Standard and Data 

2.2.1 DICOM Standard 2.2.2 Characteristics of DICOM Data and Workloads  

2.3 DICOM Data Management Systems 

2.3.1 Expected Requirements  2.3.2 Existing Systems 2.3.3 Conclusion 

2.6 Summary and Conclusion 

First, the chapter gives an overview of background information on the DICOM 

standard. Next, we determine the major characteristics of DICOM data and workloads 

that may cause challenges in data management. Then, we present the expected 

requirements for a new DICOM data management system. After that, we give an 

overview of the existing DICOM data management systems as well as discuss their 

strengths and weaknesses. We make a comparison among these systems and conclude 

with their limitations in satisfying the expected requirements. We finally present 

summary and conclusion of the chapter.  

2.2 DICOM Standard and Data 

This section provides an overview of background information on the DICOM standard 

and then presents characteristics of DICOM data and workloads. 

2.2.1 DICOM Standard 

Information Model 

The DICOM standard defines an information model based on an object-oriented 

abstract data model to specify information and relationships among real world objects. 

The information model is built according to the way images created by different 

modalities managed in a department, e.g., radiology departments. Figure 2.1 illustrates 

the mapping of real-world examinations to the information model. There are four 
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levels of information: Patient, Study, Series and Image. The Patient level is the highest 

level where all information related to a single patient who has one or more studies. The 

Study level is the most important level because it keeps the result of a required 

examination for the patient. Most works in the department, where the modalities are 

managed, mainly concern on handling of the studies.  All information related to the 

same study is maintained. A single patient may have multiple studies, each of which 

may require several examinations performed on different modalities. This creates 

different series of one or more images. The Series level keeps information about 

date/time when the series are created, type of the used modality, used equipment and 

so on. The Image level is referred to as DICOM files that are stored for later use. 

 

Figure 2.1: Mapping real-world examinations to the information model [28] 

Service Classes and SOP Classes 

The data exchange between two systems (or partners) in a distributed processing 

environment is performed using the Service Class. This class describes the roles of 

each partners (a Service Class User or a Service Class Provider) and the context of the 

defined services. It also defines information and operations  [28]. For these works, the 

DICOM standard uses an object oriented class definition, called Service Object Class 

(SOP Class), to integrate information and operations together. The SOP Class 

definition combines a single Information Object Definition (IOD) with several 

services. Before any data exchange occurs, two partners must agree to use a SOP Class 

and must verify their role as described with regarding to the context. The type of the 

data exchange may be network or media. For example, a SOP Class, called Media 

Storage Service Class, stores information in a file on a media.  This class defines 

services permitting to use the media type of data exchange. The processes on both 

partners must agree on what information will be exchanged using the media type. 

Information Object Definitions (IODs) 

IODs are used to define the information part of a SOP Class. An IOD is regarded as a 

set of interrelated parts of information, kept in information entities. Each information 

entity (IE) represents information about a single real world object such as Patient, 

Study, Series, Equipment and Image [1]. Each IE in turn consists of a list of attributes 

describing the corresponding object. It is worthy to note that an IOD does not represent 

an instance of a real-world object; instead, it describes an object or a class of objects.  
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Figure 2.2: Transforming an object in real world into an IOD object 

Depending on requirement of the Service Class of the SOP Class, an IOD can 

contain a single information entity (called a normalized IOD or NIOD) or a mixture of 

several information entities (called composite IOD or CIOD). A NIOD represents a 

single real-world entity whose attributes inherently describe the corresponding real-

world entity. For example, a Patient NIOD only consists of attributes that inherently 

describe a patient such as Patient Name, Patient Identifier, Patient Date of Birth, 

Patient Sex and so on. Similarly, a Study NIOD only contains inherent attributes of a 

study such as Study Unique Identifier, Study Name, Study Time, Study ID, Referring 

Physician and so on, but it would not include any attribute of a patient such as Patient 

Name. The DICOM standard uses a data dictionary to maintain a list of all attributes. 

Each attribute belongs to one of value representations (VRs) types or data types, e.g., 

Person Name (PN), Unique Identifier (UI), Date (DA) and so on [1]. The process of 

transforming an object in real world into an IOD object is illustrated in Figure 2.2. In 

contrast to a NIOD, a CIOD contains inherent attributes as well as non-inherent 

attributes; it mixes several real-world entities or their parts.  

 

Figure 2.3: Detailed DICOM information model [28] 
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The semantically related attributes can be grouped together to create information 

object modules (IOMs) so that these IOMs can be used in one or more IODs. By this 

way, the DICOM standard can define an object-oriented abstract data model that 

represents the relationships among different IEs: Patient, Study, Series and Instance 

(e.g., Image). The information model shown in Figure 2.3 is a detail version of the one 

presented in Figure 2.1. Each rectangle block represents an information entity (IE) of 

a composite Information Object Definition (composite IOD) that is used in a SOP 

Instance. A relationship with cardinalities describes a relationship between IEs. For 

instance, the information model indicates that the Patient IE may have relationship 

with many Study IEs, each of which in turn may have multiple Series IEs, and so on. 

Modules 

Each type of image (e.g., CT, MRI) has a standard set of mandatory (M), conditional 

(C) and user optional (U) modules specified. A module is an abstract information entity 

that may contain an individual attribute or a set of attributes that are grouped together 

for describing a certain aspect of the context of the image. For instance, the Image 

Pixel module includes the attributes that describe the encoding and the format of the 

pixel matrix of the image such as Bits Allocated, Bits Stored, Pixel Data, etc. There is 

a list of modules defined in the DICOM standard [28].  Therefore, when building an 

IOD, the module can be selected from this list.  

Attributes (Data Elements) 

Each attribute or data element has a meaning and is listed in the DICOM data 

dictionary. Each attribute is composed of tag, value representation, value length and 

value, as shown in Figure 2.4.  

Tag VR Value Length Value  

Figure 2.4: Structure of a DICOM attribute (data element) 

These components are described as follows [29]: 

 A Tag identifies an attribute or an element. It is composed of two identifiers: 

(Group identifier, Element identifier), represented by hexadecimal numbers. The 

attributes are organized into groups corresponding to real-world entities, e.g., 

Patient (0010), Study (0008), etc. We can identify an attribute via its tag, e.g., 

Patient Name: (0010, 0010), Patient ID: (0010, 0020), Study Date: (0008, 0020), 

Study Time: (0008, 0030). 

 A Value Representation (VR) defines data type and format of an attribute value. 

Figure 2.5 lists a subset of attributes in a DICOM file. This file uses the following 

VRs: PN: Person Name; LO: Long String; DA: Date; CS: Code String; AS: Age 

String; DS: Decimal String; LT: Long Text; SH: Short String; IS: Integer String. 

 A Value Length specifies the length of the value (in bytes). 

 A Value contains the data of an attribute. 
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Figure 2.5: Some attributes used in a DICOM file 

As mentioned in Section 2.2.3, an OID object can contain a single information 

entity or a mixture of several information entities. In order to achieve this, attributes 

that have semantic relationship are organized in the same IOD. Table 2.2 gives an 

example of a subset of the attributes of the Study IOD.  

Table 2.2: A subset of the attributes in the Study IOD 

Tag Unique Attribute Name Attribute Description Type 

(0020,000D) Study Instance UID Unique identifier for the study 1 

(0008,0020) Study Date Date the study started 2 

(0008,0030) Study Time Time the study started 2 

(0020,0010) Study ID User or equipment generated study identifier 2 

(0008,0090) Referring Physician's Name Name of the patient's referring physician 2 

(0008,0050) Accession Number A generated number to identify  order of Study 2 

The type of an attribute in an IOD specifies not only whether the corresponding 

attribute is a mandatory or optional attribute, but also whether that attribute is required 

to represent with or without a value if it is a mandatory attribute.  In particular, a type 

is 1 for mandatory with an actual value, 2 for mandatory that is allowed to get a null 

value or 3 for optional. Furthermore, types 1 and 2 can add a ‘C’ (i.e., 1C and 2C, 

respectively) to make an attribute mandatory if certain conditions are met.  

It is possible to add new attributes that have not been defined in the DICOM 

standard. By this way, a vendor can define attributes specific to their own equipment. 

These attributes may not be used by other vendors. 
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2.2.2 Characteristics of DICOM Data and Workloads 

This section concentrates on the characteristics of DICOM data and its workloads that 

may cause challenges in data management. The characteristics of DICOM data include 

complexity, high variety, high and ever-increasing volume, and high velocity. DICOM 

data thus has the characteristics of Big Data (characterized by three V’s (or 3V’s): 

volume, variety and velocity [30, 31]. Additionally, there is a variety in workloads 

accessing this data such as OLAP, OLTP and mixed workloads. 

High Complexity 

The DICOM information model, introduced in Section 2.2.1, represents multiple IEs 

and the relationships among these IEs. The information of the IEs are interrelated to 

each other in some ways (directly or indirectly). All of this gives us an example of 

complex data.   

High Variety 

 

(a) CT image 

 

(b) CR image 

Figure 2.6: Different attributes used for Patient IE of CT and CR images 
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Variety of data usually refers to the fact that data can be represented in different 

data types and data structures [30, 31]. There is a high variety in the data type and the 

data structure of DICOM data: the data consists of image data and metadata; moreover, 

the metadata can be represented in the form of structured and semi/unstructured data. 

The schemas of metadata are heterogeneous and evolutive. 

Heterogeneous Schemas: The number of attributes stored in a DICOM file is very 

large, with more than 3,500 attributes (a full list of all standard DICOM attributes in 

Digital Imaging and Communications in Medicine (DICOM) - Part 6: Data Dictionary 

[32]). However, the attributes that are actually used in a particular context are often 

known just at the time when the DICOM files are created (for an examination modality 

such as CT, CR, MRI and so on). Some attributes are mandatory, while others are 

optional. Moreover, a vendor (such as Philip, Siemen or others) can have its own 

private attributes for its image acquisition equipment. Besides these reasons, different 

health-care professionals (e.g., physician, doctors) can make various decisions about 

what attributes are necessary for a particular case. Figure 2.6 illustrates a 

heterogeneous schema in which the used attributes may vary from one DICOM file to 

another: Figure 2.6(a) presents a CT image while Figure 2.6(b) presents a CR image. 

Here, we only focus on the attributes used for the Patient IE. In the former file, three 

attributes Other Patient IDs, Patient’s Age and Additional Patient History are used, 

but they are not used in the latter file.  

Evolutive Schemas: Schema evolution refers to changes in schemas of the metadata 

through time as attributes are modified. The schema evolution can occur in several 

ways: (1) a modality is newly added or modified, thus several private attributes for its 

equipment may need to be added or modified to the existing schemas; and (2) domain 

experts require to newly add or to modify some attributes with respect to their needs. 

High and Ever-increasing Volume 

Table 2.3: Example of DICOM file sizes 

Modality 
Typical 

Images/study 

Average size of 

images (MB) 

Typical study 

size (MB) 

Magnetic Resonance (MR)/Computed 

Tomography (CT) 
64 0.36 22 

Cardiac CT 2051 0.5 1031 

Visible Light (VL) 16 1.6 26 

Mammography (MG) 4 26.4 106 

Ultrasound (US) 1 27.5 28 

Pathology 4 1319 5276 

Volume refers to size of data. Sizes of DICOM files are usually large and vary 

considerably according to the following factors: digital imaging modality, vendor of 

the used equipment, resolution, image size, bit depth (number of bits per pixel) and 

color space (such as grayscale, RGB or CMYK). Increasing pixel bit depth will 

improve image quality, but will cause an increment of the file sizes. For instance, a 

computed radiography (CR) image that comprises of a 2,500 x 2,500 matrix with a 

grayscale bit depth of 12 bits will have a size of 2,500 x 2,500 x(12/8) = 9.375 MB. 
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Similarly, the size of a computed tomography (CT) examination containing 2,500 

images, each of which is made up of a 512 x 512 matrix at a grayscale bit depth of 16 

bits, is determined by 2,500 x 512 x 512 x (16/8) = 1.31072 GB [33].  

Table 2.3 gives another example of the DICOM file sizes in a benchmark dataset, 

presented in the white paper by Oracle [34]. This dataset contains the DICOM files 

created by six different digital imaging modalities. Its total size is about 2 terabytes, 

including 2.4 million images of 20,080 studies. 

Besides the high volume, the DICOM files collection is ever-growing because 

more and more DICOM files are produced and stored for a long periods of time. 

High Velocity 

Velocity is regarded as the speed of the coming data streams that need to be processed 

as fast as possible to satisfy requirements of applications [30, 31]. For example, in the 

context of DICOM data, the in-coming streams of images containing relevant 

information required for diagnosis applications usually have a high velocity.  

Various Workloads 

Besides the characteristics of data, queries over DICOM data often consist of multi-

table join operations with highly selective predicates on attributes of the entity tables 

that are used to store the IEs according to the DICOM information model. Additionally, 

there is a variety in attribute access patterns: Some attributes are frequently accessed 

together in the same queries while other attributes are seldom used. Some groups of 

attributes are used more frequently than others. These characteristics of queries imply 

that mixed OLTP and OLAP workloads may be applied to DICOM data.  

2.3 DICOM Data Management Systems 

In this section, we first lists expected requirements based on which new efficient 

methods will be proposed for storing and querying DICOM data to achieve the 

dissertation goals as given in Section 1.6 in Chapter 1. Next, we present the existing 

systems. Finally, we conclude the section based on an evaluation of the existing 

systems.  

2.3.1 Expected Requirements  

The Big Data characteristics of DICOM data have caused many challenges in data 

management. First, for the complexity of data, queries may require to integrate 

information from multiple IEs and thus may need a high computational cost for joining 

multiple tables of these IEs. Second, in order to handle the schema heterogeneity, 

suitable solutions should be proposed [35, 36]. If using a wide table of a relational 

database to store a large number of attributes, queries with different attribute access 

patterns in workloads generally make redundant attribute accesses which drastically 

decrease the system performance. Using such a wide table can also results in the waste 

of storage space as missing data values that are usually represented by sentinel values, 

e.g., “null”. Third, the schema evolution introduces other challenges. It is hard to 

efficiently manage the schema evolution in Relational Database Systems (RDBMSs) 
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since their relational data model is based on tables that do not supply flexible schema. 

Handling mutable schemas should be applied in a manner so that the current system 

still can continue to operate normally in the presence of “new version” schemas. 

Besides, the system should be easy to use; it can provide transparency to users so that 

it can use the last version of a schema without knowledge about how the corresponding 

data is stored on underlying storage. 

The high and ever-increasing volume of data has presented challenges to modern 

data management. Although there is no specific threshold to determine how much data 

is “high” or “big”, in order to manipulate and analyze the high volume of data, database 

systems, infrastructures, strategies for long-term storage and data processing should 

have the capability to deal with large-scale datasets [30, 31, 37].  A common solution 

is to add more computer resources (CPU, memory, storage space, and so on) to the 

existing system to guarantee the speed of processing [38]. However, this solution is 

expensive, but the system performance might not be significantly improved if the 

existing system infrastructure and database are not suitable for storing and processing 

such massive data. 

The high velocity has posed several issues in handling streams of large datasets 

because data processing operations (e.g., to retrieve and display a large set of images 

containing relevant information at the time when diagnostic decisions are being made) 

are relatively time-consuming and thus can cause considerable time delays. Therefore, 

the speed of data processing operations needs to be considered [39]. However, in our 

research we focus the attention on improving the speed of queries in mixed OLTP and 

OLAP workloads instead of data streams. 

The mixed OLTP and OLAP workloads may cause a negative impact on the 

performance of queries because of irrelevant attribute accesses, high tuple 

reconstruction cost, cache utilization inefficiency and so on. Thus, this characteristic 

of the workloads needs to be taken into account when proposing a suitable data 

management system for DICOM data. 

To tackle the above problems, we specify the expected requirements for a new 

DICOM data management system as the followings: 

R1) Flexible data: The system is able to deal with complexity of DICOM data by 

allowing users to easily represent the entity tables and their relationships in the 

DICOM information model. Normalized data needs to be created. Additionally, the 

system is able to deal with the variety of DICOM data by supporting flexible and 

schema-less design to handle heterogeneous and evolutive schemas. 

R2) Flexible querying: The system enables users to write SQL ad-hoc queries 

with join operations.  

R3) Efficiency of storage and CPU:  First, data needs to be organized based on 

both workload and data-specific information to reduce storage space demand and 

execution time of queries in mixed OLTP and OLAP workloads. More particularly, 

data needs to be organized and stored in a suitable way to reduce redundancy in 

storing data (e.g., avoiding to store null values), tuple reconstruction cost, and I/O 

costs. Second, the system is able to provide solutions for efficient query processing 

over large-scale DICOM datasets. Lastly, it is able to provide huge storage 

capacity, scalability and elasticity by supporting horizontal scaling. 
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2.3.2 Existing Systems 

PACSs 

PACSs (Picture Archiving and Communication Systems) refer to computer systems 

(comprised of both hardware and software) used for automatically acquiring, storing, 

distributing and displaying medical images. All the PACSs must follow the DICOM 

standard. A typical PACS includes the following components: (1) modality scanners 

such as X-Ray, MRI and CT scanners; (2) a secure network for transmitting images 

and patients’ information; (3) display workstations for displaying and interpreting 

patients’ images; and (4) long- and short-term storages for archiving images, patients’ 

information, and reports. A typical PACS-based workflow in a hospital can be 

described in Figure 2.7 with the following steps.  

1. A patient is prescribed by a doctor to undertake an examination using a 

particular modality such as a X-Ray, a MRI or a CT scanner. This requirement 

is sent to a Hospital  Information  System  (HIS) or a Radiology Information 

System (RIS),  and then to the coresponding modality via a DICOM Modality 

Worklist.   

2. A practitioner (e.g., physican) uses information from the DICOM Modality 

Worklist to scan the patient using a specified modality scanner. 

3. Patient’s images are sent to the modality console.  

4. Some processes are done on the modality console to create DICOM files.  

5. The DICOM files on the modality console are stored in a central storage of the 

PACS server. Then, they can be stored in a long-term archive. 

6. Professionals (doctor, physican, radiologist, health care worker, etc.) can use 

the display workstations that have PACS application software to display and 

perform image-manipulation techniques for interpreting patient’s images.  

 

Figure 2.7: Typical PACS-based workflow 
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The PACSs continue to evolve over the time to adapt to developments in medical 

image imaging. Their data storages have been able to cope with high and ever-

increasing volume of DICOM data [40]. Additionally, they have provided 

functionalities to help the professionals concurrently display images on different 

distributed display workstations (e.g., teleradiology network system on cloud) [41].   

However, there are several limitations to a PACS. First, the entire PACS depends 

on its modality devices that are often produced by one or more particular vendors, thus 

the DICOM files used in different PACSs may consist of different attributes. As a 

result, integrating data from different PACSs can cause challenges. Second, the data 

storage of a PACS is generally based on a row-oriented RDBMS such as Oracle, 

MySQL, SQL Server or PostgreSQL. Therefore, when the DICOM files are sent to the 

PACS server, the most important attributes are extracted to be archived in columns of 

database tables while the rest of the attributes are kept in the database as Objects such 

as BLOB (Oracle, MySQL), IMAGE (SQL server) or BYTEA (PostgreSQL). 

Although the RDBMSs have provided the tabular form to represent data, normalized 

data, SQL for easy-to-use and the robust index techniques for speeding of data retrieval 

operations, the PACSs mainly allow to use queries with predefined parameters (non-

ad-hoc queries). Their RDBMSs have not well supported for flexible and schema-less 

design and are also hard to scale up for high and ever-increasing volume of DICOM 

data.  

eDiaMoND 

eDiaMoND (Grid-enabled Medical Imaging Database) project was aimed to develop 

a prototype for a national medical imaging database of digital mammograms to support 

the United Kingdom’s breast cancer screening [42]. eDiaMoND database is a Grid-

enabled medical imaging database. It was designed to store DICOM files and it was 

intended to be used with two main applications: (1) teaching and training in clinical 

radiology; and (2) computer-aided diagnosis [43].  

In order to develop the eDiamond database, the object-relational approach and Grid 

technology (OGSA-DAI Grid Data Service [44]) were used. The former is applied to 

easily manage DICOM information entities. The latter provides a solution to the 

problem of data federation as well as effective collaboration between healthcare 

professionals; its aims are to provide inter-operability, scalability and elasticity. 

 

Figure 2.8: eDiaMoND architecture [42] 

To be able to handle all types of DICOM data, the architecture of the eDiaMoND 

database is logically separated into two parts: (1) repository and (2) clinical 

information store, as presented in Figures 2.8. When a DICOM file is inserted into the 
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eDiaMoND database, its metadata is extracted: all attributes (i.e., optional and private 

attributes) are stored in the repository while only currently-used data is stored in the 

clinical information store. The data is stored in the repository in an unnormalized 

fashion to prevent data loss, whereas the data is stored in the clinical information store 

in a normalized fashion to guarantee the data integrity. Because the clinical 

information store is keeping the data that also exists in the repository, the eDiaMoND 

provides an update mechanism to guarantee that the data between two parts is 

consistent. 

Figure 2.9 presents the architecture of the Grid Data Service. Users are not allowed 

to directly submit a SQL query to the eDiaMoND database. Instead, they will send it 

to the Query Service in a pre-determined format such as a XML document. After 

executed, the query result is returned in form of a XML document as well. 

 

Figure 2.9: Architecture of Grid Data Service [42] 

The eDiaMoND database can store all the attributes of the DICOM files, thus it 

can prevent loss of data and deal with the variety and evolution of DICOM data. 

Storing data in the tabular form make it easy to represent the entity tables and their 

relationships in the DICOM information model. However, eDiaMoND needs more 

disk space because, as mentioned above, some piece of data is stored twice (in the 

repository store and the clinical information store). Additionally, this database is based 

on a row-oriented RDBMS (DB2) [45], thus its query performance on very large 

datasets is limited (e.g., query processing cannot eliminate redundant read accesses if 

only a few attributes are required by a query). eDiaMoND only provides users with 

pre-determined queries. Moreover, although horizontal scaling is provided by using a 

Grid infrastructure, this scaling out is costly and technically complex in terms of Big 

Data. 

Oracle 

DICOM feature was first available to developers in Oracle Database 10g Release 2 

(10.2) [46]. In this release, ORDImage object type was supported to permit Oracle 

Multimedia to recognize DICOM content and to extract a subset of embedded DICOM 

attributes associating to the entities Patient, Study, Series, etc. Oracle Database 11g 

Release 1 (11.1) [47] continues not only to supply what an ORDImage had in the 

previous release, but also offers more complete DICOM supports by providing a new 

type, called ORDDicom object type. Oracle Database 12c supports what have been 
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provided in Oracle Database 11 and provides improvements. It has DICOM protocol 

to allow DICOM applications and devices to easily access DICOM data stored in 

Oracle Database. The DICOM content now can be stored or managed as a part of a 

clinical workflow. It can also be stored in and accessed from Oracle WebCenter 

Content to simplify the development and management of applications [48]. 

Oracle Real Application Clusters (Oracle RAC) 10g  [49], 11g [50] and 12c [51] 

enable to store and manage DICOM data in a cluster environment. Oracle RAC is 

a cluster database implemented in Oracle Database File System to allow data to be 

distributed and replicated across a pool of databases that do not share hardware and 

software. It can provide the following features to OLTP applications: (1) high 

availability of data in case of failure (because of a replication mechanism applied 

across nodes); (2) high performance (due to using a distributed and parallel data 

processing environment); and (3) scalability and elasticity, i.e., a database (or a node) 

can be added to an existing cluster database to increase overall system capacity. These 

features enable to build a large-scale storage system of DICOM images.  

 

Figure 2.10: Sample DICOM Image Database using Oracle 

Figure 2.10 depicts a sample DICOM image database containing a simple table 

used to store the DICOM content. Items in the figure includes: ① DICOM image 

database; ② DICOM image table created in the database; ③ ID; ④ DICOMImage; 

and ⑤ DICOM content stored in the ORDDicom object. At the high level, an 

ORDDicom object consists of five components [47]: (a) ORDDicom Object 

representation: an instance of the ORDDicom object contains attributes and methods, 

such as makeAnonymous(), setProperties(), extractValue() and so on, which are used 

to perform tasks on the ORDDicom object. (b) XML metadata document: the attributes 

are extracted from the DICOM content and stored in a XML metadata document. (c) 

DICOM content: the original DICOM content is stored within the database as a BLOB 

(binary large object) or stored in a local file system as a file accessed by using a pointer 

from the database. (d) General attributes: the attributes are frequently accessed such 

as SOP Instance UID, SOP Class UID, Study Instance UID, Series Instance UID and 

so on. (e) Other attributes: the attributes are used internally by Oracle.  

Using the Oracle Multimedia feature for a medical image management system 

gives several advantages. First, it provides mechanisms to handle unstructured data 

along with structured data inside a relational database. Second, it overcomes the 

shortcomings of the PACSs because it can provide a modality-independent and vendor-

neutral data storage. Finally, it allows users to write their own SQL queries (i.e., ad-

hoc queries) to obtain information related to the entities Patient, Study, Series, etc.  
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Table 2.4: Example of statements to manipulate DICOM data in Oracle 

SQL Statements User Code in Oracle 

CREATE TABLE 

DICOM_image_table 

CREATE TABLE DICOM_image_table (ID integer primary key, 

DICOMImage ordsys.ORDDicom) 

SELECT ID, 

PATIENT_NAME, 

PATIENT_ID, 

MODALITY FROM 

DICOM_image_table 

SELECT ID, extractValue(t.dicom.metadata, 

    '/DICOM_OBJECT/*[@name="Patient''s Name"]/VALUE', 

    'xmlns=http://xmlns.oracle.com/ord/dicom/metadata_1_0') as 

"PATIENT_NAME",  extractValue(t.dicom.metadata, 

    '/DICOM_OBJECT/*[@name="Patient ID"]', 

    'xmlns=http://xmlns.oracle.com/ord/dicom/metadata_1_0') as 

"PATIENT_ID",  extractValue(t.dicom.metadata, 

    '/DICOM_OBJECT/*[@name="Modality"]', 

    'xmlns=http://xmlns.oracle.com/ord/dicom/metadata_1_0') as 

"MODALITY" FROM DICOM_image_table 

However, there exist some limitations when using Oracle Multimedia feature. 

First, Oracle supports standard ANSI SQL, but users have to write queries in a quite 

complex and unnatural way. Table 2.4 shows sample statements used to create a table 

and to select attributes from that table. Second, Oracle is a row-oriented RDBMS, thus 

it can offer high throughput for write-intensive (OLTP) workloads but is not optimized 

for read-oriented (OLAP) workloads. Third, although Oracle RAC aims to provide 

availability and performance, it still has limitations in dealing with the characteristics 

of DICOM data and workloads; due to having to satisfy the ACID properties 

(Atomicity, Consistency, Isolation and Durability), it does not provide sufficient 

solutions to increase high availability and query performance. Finally, it is also is less 

scalable and elastic when compared with other databases that aim at handling Big Data 

(such as Cassandra [52] and MongoDB [53]). Implementing and scaling up a 

distributed and parallel data processing environment, e.g., by adding a new database 

to an existing Oracle cluster database, are costly and technically complex. 

DCMDSM 

 

Figure 2.11: Database tables in the DCMDSM model  [54] 
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DCMDSM (DICOM Decomposed Storage Model) [54] was aimed to handle the 

heterogeneity of DICOM data and to reduce the time required to answer 

queries/retrieval operations. To achieve these, the DCMDSM was designed based on 

the original decomposed storage model (DSM) [55]. In the DSM model, values of the 

same attribute have to be archived in exclusive tables, clustered by key and value; 

however, in the DCMDSM model, the attributes of the DICOM files are stored in 

different tables, according to their data types/domains. In particular, the DCMDSM 

model applies a vertical partitioning strategy that is based on Value Representations 

(VRs). The attributes from the DICOM files are extracted, parsed and stored in 

different tables according to their VRs. By this way, the DCMDSM model will create 

a single table per VR.  

Another difference between the DCMDSM and DSM models is the number of 

attributes per table: while the DSM model uses binary tables, i.e., each table contains 

a surrogate key (surrogate attribute) and an attribute value, the DCMDSM model uses 

n-ary tables, with n varying according to each VR. Figure 2.11 presents database tables 

in the DCMDSM model. There is hierarchical_key table and multiple VR-specific 

tables, e.g., lt_value for Long Text VR, da_value for Date VR and so on. The 

hierarchical_key table is used to build a relationship between values of the attributes 

that belong to the same DICOM file. The surrogate key of each VR-specific table is 

used as a foreign key in the hierarchical_key table. Each record of the VR-specific 

table consists of attributes extracted from a DICOM file such as tag order, type, group, 

element, value, length, etc. Additionally, indexes can be created on one or a 

combination of the attributes.  

The DCMDSM model brings some advantages. First, it can deal with the complex 

structure of DICOM data by using tables to represent DICOM data. Second, it can 

cope with heterogeneous/evolutive schemas of DICOM data. It allows new attributes 

to be added without significant modifications in the current database schemas: a new 

single database table is created per VR.  Third, it can reduce storage space requirement 

since null values are removed from vertically partitioned tables. Finally, storing each 

attribute in a separable table makes it possible to reduce I/O bandwidth when a query 

accesses only a few DICOM attributes. 

However, there are several disadvantages that should be considered before 

applying the DCMDSM model. First, the existing system has not validated for 

different workloads. In the cases of unpredictable workloads, the model may cause 

high CPU consumption for joining multiple small tables together. Second, the current 

model has not provided huge storage capacity, scalability and elasticity because it has 

been implemented on the top of a standard RDBMS using a single machine. Besides, 

the use of the RDBMS may suffer limitations in terms of query performance, storage 

capacity, scalability and elasticity as mentioned in the cases of PACSs, Oracle and 

eDiaMoND. Thus, the proposed model has not dealt with high and ever-increasing 

volume of DICOM data.  

Document-based Database 

To optimize size and performance of database, the authors in [40] proposed to use 

CouchDB, an open-source document-based database, for storing and querying 

DICOM data. In CouchDB database, every document is represented as a list of key-
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value pairs without predefined schemas. The document format is self-describing and 

encoded using standard formats such as XML and JSON. Additionally, attributes 

stored in a document can be changed from one document to another. Therefore, such 

a document can be used to hold semi-structured data.  

Figure 2.12 presents an example where DICOM data is extracted and stored in the 

CouchDB database. DICOM metadata is stored in a document; the values of attributes 

or data elements are stored in the document as key-value pairs. On the other hand, the 

relevant pixel data, i.e., binary data, can be stored as stand-alone or embedded 

attachments, i.e., the same way as attachments associated with e-mail. These 

attachments can be saved in different formats, e.g., DICOM and JPEG. 

Queries in the CouchDB database (retrieval, aggregation, etc.) are performed in 

parallel on multiple machines by batch-oriented processing that is implemented by 

using the MapReduce programming model. JavaScript is used to implement the 

MapReduce to compute data represented as a collection of key-value pairs [40]. 

 

Figure 2.12: Example of DICOM data stored in CouchDB [40] 

There are several advantages of using a document-based database such as the 

CouchDB database to manage DICOM data. Unlike RDBMSs, a document-based 

database can provide schema-free design, it thus is especially suited to archive the 

DICOM files which are subject to heterogeneous and evolutive schemas. All metadata 

is extracted from the DICOM files can be stored in the document-based database 

without loss of information. This database also reduces storage space demand because 

it can remove the need for storing null values. Besides, it offers features such as high 

performance, high availability, high reliability, high scalability and elasticity: the 

performance comes from easily scaling out the existing system while the availability 

and the reliability are obtained by replicating data across distributed machines. With 

these features, the document-based databases can solve issues of performance 

degradation caused from the rapidly growing volumes of DICOM data. 

However, some challenges have come up when using a document-based database 

to manage DICOM data. It is generally based on the key-value store model, thus it 
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does not provide SQL support. Developers will find it hard to implement a common 

query language like SQL. It is not efficient to build and maintain structured-table 

database formats as well as relationships between tables according to the DICOM 

information model. Additionally, data denormalization (using a merged tables to 

reduce the number of join operations across multiple small tables) are usually applied 

in the document-based database to improve the query performance; however, this 

results in data redundancy and data inconsistency (updates may not performed to all 

related data stored in different locations), i.e., the ACID properties are not guaranteed.  

Hybrid Cloud-enabled Storage System 

B. Mohamad, L. d'Orazio and L. Gruenwald [56, 57] proposed a hybrid (row-column) 

cloud-enabled storage system for DICOM data management. To store DICOM data 

into the system, first of all, the authors proposed to classify DICOM attributes into 

three categories: (1) Mandatory attributes; (2) Frequently-accessed-together 

attributes; and (3) Optional/private/seldom-accessed attributes. Next, the attributes 

are manually grouped together into column groups according to these categories. 

Finally, a suitable data layout is chosen to store each column group. For simplicity, we 

use terms “row table” and “column table” to refer to a table being stored in a row and 

a column store, respectively. The selection of data layouts for the column groups is 

described as follows: 

- Attributes that belong to the first two categories (i.e., mandatory and frequently-

accessed-together) are grouped together and stored in row tables. This strategy 

aims at reducing tuple reconstruction cost.  

- Attributes that belong to the last category (i.e., optional/private/seldom-accessed) 

are stored in column tables. The aim of this strategy is to save I/O cost if only few 

attributes are required by a query. 

 

Figure 2.13: DICOM attributes stored over row- and column-oriented layers [57] 
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Figure 2.13 illustrates the storing of a subset of attributes in row- and column-

oriented layers of row and column stores. The mandatory attributes including 

PatientID, PatientNameBirthDate, and Sex and the frequently-accessed-together 

attributes consisting of StudyDate and Modality are stored in row tables. On the other 

hands, the optional/private/seldom-accessed attributes including Age, SmokingStatus, 

PatientAddress, EthnicGroup and HeartRate are stored in a column table. 

The above grouping is non-overlapping; that is, each attribute belongs to only one 

column group (or vertical partition). However, the attribute UID is needed in every 

column group because it will be used to join the corresponding tables storing these 

column groups together. Besides, null-rows will be deleted from the vertical partitions 

to save storage space. 

Furthermore, the hybrid (row-column) cloud-enabled storage system was 

implemented using a distributed mediator, as shown in Figure 2.14. The Oracle and 

MonetDB were used as row and column stores, respectively.  The mediator will control 

the query processing across the storage engines; it routes a SQL user query to be 

executed on the most suitable storage engine.  

 

Figure 2.14: Distributed Mediator [57] 

The hybrid cloud-enabled storage system can deal with the high complexity and 

the high variety (heterogeneous/evolutive schemas) of DICOM data. The system 

provides normalized data, SQL and (ad-hoc) multiple-table join queries. I/Os and tuple 

reconstruction cost are decreased. However, the proposed system exists some 

disadvantages. First, grouping of the attributes into the column groups and selecting 

of suitable data layouts for them are manually performed. In this thesis, we call this 

approach expert-based. Hence, it is difficult and tedious for experts (e.g., database 

designers) to do this work in such a way, especially when the number of attributes is 

very large. Second, the query performance is limited because the distributed mediator 

has to decide the most suitable storage engine to perform a query, and data needs to be 

moved between storage engines for the query execution. Finally, the system is hard to 

scale-up (i.e., adding a new node to the current system), thus it is not well suited for 

the high and ever-increasing volume of DICOM data. 

2.3.3 Conclusion 

The expected requirements listed in Section 2.3.1 are used as criteria of comparison of 

the existing DICOM data management systems. Table 2.5 shows the comparison 

result. In general, the systems using relational databases, including PACSs, 

eDiaMoND and Oracle/Oracle RAC, can deal with high complexity of data, create  

normalized data, and provide SQL and join supports. However, they lacks solutions 
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to: (1) organize data based on both workload and data-specific information to reduce 

storage space demand (sparseness) and to improve performance of queries in OLTP 

and OLAP workloads; (2) provide an efficient query processing strategy; and (3) 

provide huge storage capacity, scalability and elasticity. 

Table 2.5: Comparison of the existing systems  

Existing DICOM data management 

systems 

Expected Requirements 

R1 R2 R3 

PACSs 0 - - 

eDiaMoND + - - 

Oracle/Oracle RAC + 0 - 

DCMDSM + 0 - 

Document-based Database + - 0 

Hybrid Cloud-enabled Storage System + + 0 

+ Featured supported, 0 partial, - not supported 

The DCMDSM model can help to improve OLAP queries and reduce storage space 

demand due to depending on the DSM model. Nevertheless, execution cost of OLTP 

queries may be high because of multi-table joins. Moreover, the existing system was 

designed and validated using a single machine, thus may has limitations at query 

performance, storage capacity, scalability and elasticity. 

The document-based database and hybrid cloud-enabled storage system have many 

features that can cope with the characteristics of DICOM data and workloads. The 

document-based database is a NoSQL database designed to handle Big Data, thus it 

can deal with the high variety of DICOM data and provide high query performance, 

huge storage capacity, scalability and elasticity in nature. On the other hand, hybrid 

cloud-enabled storage system provided solutions depending on both workload and 

data-specific information to organize and store DICOM data in a manner to improve 

workload performance and to reduce storage space demand. However, both these 

systems lacks the following features: 

 An automated design approach that uses both workload and data-specific 

information to design and store DICOM data in a way to reduce both workload 

execution time and storage space demand. 

 Efficient solutions for query processing over large-scale datasets, especially, to 

reduce network I/Os in a distributed query processing environment.  

2.4 Summary and Conclusion 

DICOM data has caused challenges in data management due to the characteristics of 

DICOM data and workloads. Several data management systems have been proposed 

for storing and querying this data. With regards to the data storage model, the main 

classifications of databases used in the existing systems include row-oriented database, 

vertically-decomposed row-oriented database, NoSQL document-based database and 

hybrid cloud-enabled storage system. They have their own strengths and weaknesses. 
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Therefore, the main goals of our study are to propose efficient methods for storing 

and querying DICOM data that will be applied to build a new DICOM data 

management system. To fill the gaps in the existing systems, the new DICOM data 

management system needs to meet the following expected requirements: (R1) Flexible 

data (dealing with high complexity, variety and high and ever-growing volume of data 

and providing normalized data); (R2) Flexible querying (supporting SQL ad-hoc 

queries with joins); and (R3) Efficiency of storage and CPU (based on both workload 

and data-specific information to organize and store data in a manner that  reduces both 

storage space demand and execution time of queries in mixed OLTP and OLAP 

workloads; providing solutions for efficient query processing over on large-scale 

datasets; providing huge storage capacity, scalability and elasticity).  

The document-based database and hybrid cloud-enabled storage system have 

showed many features that are able to satisfy the above requirements. However, they 

still lack an automated design approach that is able to use both workload- and data-

specific information to organize and store DICOM data in a manner to reduce both 

storage space demand and workload execution time. In addition, they lack efficient 

solutions for query processing over large-scale datasets, especially in a distributed 

query processing environment. 

Key Points  

 We gave an overview of background information on DICOM standard. 

 We determined the characteristics of DICOM data and workloads that may 

cause challenges in DICOM data management. 

 We reviewed the existing DICOM data management systems and discuss their 

strengths and weaknesses. 

 We conclude with the limitations of the existing systems with respect to the 

expected requirements for a new DICOM data management system. 

 



 

33 

 

Chapter 

 

Databases and Related Techniques 

3.1 Overview 

An overview of this chapter is shown in Table 3.1. 

Table 3.1: Overview over Chapter 3 

3.2 Classifications 

3.2.1 OLTP and OLAP Workloads 3.2.2 Relational Databases  

3.2.3 NoSQL Databases 3.2.4 NewSQL Databases  

3.3 Cluster Computing Frameworks  

3.3.1 MapReduce 3.3.2 Spark 

3.4 Data Layouts 

3.4.1 Row-oriented Storage Model 3.4. 2 Column-oriented Storage Model 

3.4.3 Hybrid Storage Models  

3.5 Vertical Partitioning and Bloom Filter Techniques  

3.5.1 Vertical Partitioning 3.5.2 Bloom Filter and Intersection Bloom Filter 

3.6 Key Components of the New System 

3.6.1 Data Model 3.6.2 Data Storage Model 

3.6.3 Data Schema 3.6.4 Query Processing 

3.7 Summary and Conclusion 

We first present backgrounds of different workload types including OLTP and 

OLAP. Next, we provide comprehensive backgrounds of the most prevalent databases 

used for Big Data, including relational, NoSQL and NewSQL databases. We elucidates 

about their advantages and disadvantages. Then, we review common cluster 

computing frameworks including MapReduce and Spark. The former is based on 

batch-oriented processing while the latter is regarded as a low-latency version of the 

MapReduce and popularly used for interactive ad-hoc query and analysis. After that, 

we present backgrounds on data layouts. Following that, we concentrate on the vertical 

partitioning techniques that are applied to reduce storage space for the relational 

databases (especially for sparse datasets). We present Bloom filter (BF) and 

Intersection Bloom filter (IBF) techniques that can be applied to improve query 

performance in distributed query processing environments. Next, we discuss about key 

components of a new DICOM data management system. Finally, we summarize and 

conclude the chapter by selecting solutions for these key components.  
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3.2 Classifications 

3.2.1 OLTP and OLAP Workloads 

OLTP Workloads 

OLTP (Online Transaction Processing) is a computer technology term referring to 

systems that facilitate and efficiently support transaction-oriented applications where 

the most frequently-used operations are to insert, delete, update or retrieve all (or most) 

of columns of a table, e.g., to return all information about a specific patient.  

The OLTP systems require very fast query processing and maintain data integrity 

in multi-access environments. Their databases should optimize write operations; 

besides, they need to support data normalization that minimizes data redundancy and 

thus improves performance of the write operations. Row-oriented databases are 

primarily designed for OLTP applications.  

OLAP Workloads 

OLAP (Online Analytical Processing) is a computer technology term referring to 

systems that support for analytical applications, which typically focus on analyzing 

data in their database. In these systems, data is seldom updated, but it is frequently 

read and aggregated. In other words, OLAP workloads consist of read-intensive 

queries that need to access or aggregate over many rows but only for a few columns.  

Databases should optimize read and aggregation operations. Column-oriented 

databases are read-optimized, and are thus usually used for the OLAP applications.  

3.2.2 Relational Databases 

Nowadays, the most popular databases are Relational Databases which have 

implemented the relational data model proposed by E. F. Codd in 1970 [58]. This data 

model was originally designed for structured data and predefined schemas. A schema 

is a logical database design. A relation is used to hold information about entities in the 

real world. A relation and a relationship among relations are represented as a table 

made up of rows and column. Each row represents a tuple (record) which describes a 

single element of the entity while each column represents an attribute (field) of that 

entity. A relation instance is a set of rows, each of which conforms to the schema of 

the corresponding relation. Figure 3.1 illustrates a table storing a relation instance of 

the relation Patient with the following attributes: PatientID, PatientName, 

PatientBirthDate, PatientSex and EthnicGroup.  

PatientID PatientName PatientBirthDate PatientSex EthnicGroup  

P40028 Smith 19610712 F Whites 

P40029 Muller 19500101 M Whites 

P40030 Young 19700509 M Asians 

P40031 Carol 19900122   

P40032 Garcia 19990515  Blacks 

Figure 3.1: Relation instance of the relation Patient 
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3.2.3 NoSQL Databases 

However, with the explosion of Big Data, the relational data model finds it difficult to 

handle semi/unstructured data. There is a trend moving towards NoSQL databases 

(Not Only SQL database). A NoSQL database is any database whose organization is 

not based on the relational data model. The NoSQL databases are not a replacement 

for the RDBMSs, but they are able to fill the gaps of the RDBMSs because they have 

been built to handle unstructured data and to provide horizontal scalability and high 

availability with low administrative cost. 

 

Figure 3.2: Examples of NoSQL databases 

NoSQL databases are usually classified into four categories: key-value stores, 

column-family stores, document stores and graph databases [59]. Figure 3.2 gives 

examples of the NoSQL databases storing the same set of frequently-accessed-together 

attributes that provide information about patients and physicians involving in the 

patients’ studies. These attributes include PatientName, PatientAge, PregnancyStatus, 

Referring-PhysicianName and PerformingPhysicianName. With the use of self-

describing structures, these databases can represent only non-null values of tuples. 

 Key-value stores: Key-value stores represent data as a set of key-value pairs such 

that values are indexed by keys. The key-value model is the most flexible NoSQL 

model for modeling data, rapidly changing data structure because it does not 

enforce any structure on data (e.g., tables). It is also very efficient for storing 

distributed data and retrieving information by keys, and facilitates for 

decomposition and replication of data to provide high scalability and scalability. 

However, a key-value store is not a good choice for applications that require fixed-

structured data or multiple-key transactions cross-document operations. Amazon’s 

Dynamo [60] and Linkedin’s Voldemort [61] are using this data model. 
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 Column-family stores: Column-family stores extend the key-value model by re-

representing data in forms of table-like data structures. However, unlike strictly 

structured tables in relational databases, to be able to deal with sparse columns and 

no fixed schema, the column-family stores are based on a flexible data model: each 

row consists of a set of columns, where each single column contains a key-value 

pair; the key is the column name; the value may have an arbitrary data type such 

as a integer, a string, JSON document or a binary image; additionally, each row 

may have a different number of columns. Some column-family stores have been 

commonly used such as Google Bigtable [62], HBase [63] and Cassandra [52]. 

 Document stores: Document stores are regarded as a variation of the key-value 

stores. They store a set of documents, typically encoded using a standard format 

such as XML, JSON, BSON or others. For instance, MongoDB  [53]  uses BSON 

format while CouchDB [64] applies JSON format. Documents may have different 

formats. By this way, each document can have a complex format, e.g., containing 

nested objects inside it, in order to be able to support for efficiently storing semi-

structured documents (e.g., email messages). Besides, the document stores allow 

to create primary indexes on keys and secondary indexes on contents (instead of 

only on keys as in the case of key-value stores) such that they can provide fully 

searching either by keys or values. However, similarly to the key-value stores, they 

are not efficiently used for cross-document transactions. 

 Graph databases: Graph databases use graph structures as their data model where 

nodes represent entities, and edges represent relationships among the entities. 

These entities and relationships are described by key-value pairs. The graph 

databases are efficiently used for handling the interconnections among different 

entities because they can apply well-studied graph algorithms to explore 

relationships among their data [59]. Some graph databases have been commonly 

known such as Neo4J, DEX Infinite Graph, Infogrid, HyperGraphDB, Trinity, 

Titan and Allegro Graph [65-67]. 

3.2.4 NewSQL Databases 

NewSQL databases are regarded as modern relational database management systems. 

They are based on the relational data model, but are able to provide horizontal 

scalability and high performance as NoSQL databases while still ensuring the 

traditional ACID guarantees of relational databases. A noticeable characteristic of the 

NewSQL databases is that although they can use different physical storage layouts 

(e.g., key-value stores and column-oriented stores), they still provide users with the 

relational schemas (i.e., tables or relations) and SQL as main mechanisms to interact 

with any application. They also allow the users to create relationships between tables 

[68]. Additionally, they can apply shared-nothing architectures of cloud computing to 

offer horizontal scalability. Some NewSQL databases have commonly known such as 

VoltDB [69], Clustrix  [70], NuoDB [71], Google Spanner [68]. 
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3.3 Cluster Computing Frameworks 

There are several large-scale data processing techniques in order to deal with a variety 

of workloads: (1) Batch-oriented processing: processing recurring tasks such data 

mining or aggregation over very large datasets; (2) Stream processing: processing data 

streams arriving continuously at real time; (3) OLTP: processing transactions using 

NoSQL databases; (4) Interactive ad-hoc query and analysis: processing ad-hoc 

queries and analyses with user interaction; and (5) Search over semi-structured data 

items and documents: retrieving information that satisfies users’ need from a high 

volume of structured and semi/unstructured data [26, 72]. Because our study is scoped 

to focus on the interactive, ad hoc query and analysis technique (mentioned in Section 

1.4 in Chapter 1), we concentrate an in-memory cluster computing framework called 

on Spark that is able to provide high performance for interactive workloads. Besides, 

Spark has been developed in order to avoid high latency of MapReduce, a successful 

batch-oriented programming model, thus we also present backgrounds of MapReduce.  

3.3.1 MapReduce 

The batch-oriented processing technique processes a high volume of data by splitting 

a job into multiple tasks which are performed in parallel on multiple nodes (machines). 

The typical stages of a batch job include split, sort and merge.  

MapReduce, originally introduced by Google, has been a successful batch-oriented 

programming model for recurring tasks such data mining or aggregation over very 

large datasets on large clusters of commodity nodes [73]. In order to facilitate the 

development of programs, the MapReduce operates on the top of a distributed file 

system (DFS) such as Google File System (GFS) or Apache Hadoop Distributed File 

System (HDFS). MapReduce run-time environments (e.g., Hadoop) are responsible 

for tasks, including data partitioning, replication, job scheduling and communication 

between nodes in the cluster such that developers do not have to care about these tasks 

In this programming model, a MapReduce job execution plan is divided into two main 

phases, namely Map and Reduce, whose computation is expressed employing two 

user-defined functions: Map() and Reduce(). Besides, there is a hidden phase between 

these two phases, called Shuffle and Sort, which is also regarded as the first step of the 

Reduce phase. The input and output formats of these phases are depicted in Table 3.2.  

Table 3.2: Input and output formats of the phases in MapReduce 

Phase/Step Input Output 

Map (k1, v1) List(k2, v2) 

Shuffle and Sort List(k2, v2) (k2, List(v2)) 

Reduce (k2, List(v2)) List(k3, v3) 

Map: When a MapReduce job is sent to the MapReduce run-time environment, 

Mappers (also known as Map tasks) are started in parallel on nodes in the cluster. Each 

Mapper reads key-value pairs, (k1, v1), from DFS and applies the Map function to 

transform them into a list of intermediate key-value pairs, List(k2,v2), where each key 

may have multiple values. Intermediate results are stored in the local file system, where 

the Mappers are running.   
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Shuffle and Sort: Each Reducer task will transparently start the Shuffle and Sort step 

as its first step. All the intermediate results from all the Mappers are grouped by key 

and are split among the Reducers; each Reducer takes all the values associated with 

the same key. After all the data of the Mappers are sent (shuffled) to the nodes of the 

Reducers (in their local file system), the key-value pairs are merged and sorted into a 

larger list of key-value pairs. Next, this list is grouped by key to generate a new list of 

key-value pairs, (k2, List(v2)), where all the key-value pairs sharing a common key are 

grouped into a single key-value pair. In addition, the resulting key-value pairs are 

buffered as r local files, where r is the number of Reducers.  

Reduce: When all actions in the Shuffle and Sort step complete, the Reducers load the 

key-value pairs from the local output files in parallel. Each Reducer applies the 

computation defined in the Reduce function to the values having the same key and 

generates a new list of key-value pairs, (List(k3, v3)). Finally, the results of all the 

Reduce tasks are written back to DFS and used as the job result. 

 

Figure 3.3: A job that counts the number of patients by sex using MapReduce 

When a SQL query execution engine is built on top of the MapReduce (e.g., Pig  

[74] and Hive [75]), to execute a SQL query, its query optimizer generates a query 

execution plan consisting of a set of one or more MapReduce jobs. The parallelism 

only occurs within each job. Figure 3.3 describes an example of the computation of a 

SQL query: the query is transformed into a sequence of three sub-queries executed by 

three MapReduce jobs 1, 2 and 3. Assume that job 2 is used to compute the sub-query 

SELECT COUNT(*) FROM Patient GROUP BY Sex (to count the number of patients 

by sex). We also assume that MapReduce environment is using 3 Mappers and 2 

Reducers. Here, the input table Patient contains only two columns, PatientID and Sex, 

with 9 tuples. It is split into 3 splits, each of which contains 3 tuples.  

 In the Map phase, each Mapper receives each line in the split (assigned for it) as a 

key-value pair (Patient ID, Sex), such as (P40028, F), (P40029, M), etc., and 

respectively outputs a corresponding intermediate key-value pair (Sex, 1), such as 

(F, 1), (M, 1), etc., where each occurrence of either F or M will be counted as 1. 

By this way, each Mapper will output a list of intermediate key-value pairs 

List(Sex, 1) for its input data, e.g., Mapper 1 produces (F, 1), (M, 1) and (M, 1).  
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 In the Reduce phase, first of all, the Shuffle and Sort step is performed as follows: 

key-value pairs having the same value of the key Sex will be sent to the same 

Reducer; then they are merged, sorted and grouped by this key. For instance, after 

this step, Reducer 1 obtains one key-value pair (F, [1, 1, 1, 1, 1]). As soon as the 

Shuffle and Sort step finishes, each Reducer loads the key-value pairs from its local 

output file, computes the sum of the values of the same key Sex, and generates a 

new list of key-value pairs List(Sex, Sum), e.g., the Reducer 1 loads the key-value 

pair (F, [1, 1, 1, 1, 1]), computes the sum and generates the pair (F, 5). Finally, the 

results of all the Reducers are written back to DFS.  

MapReduce provides a suitable solution for parallel processing of large-scale data 

because it increases the locality of data and processing at the nodes where the data is 

kept. Besides, this programming model is simple since its parallel data processing 

approach is mainly based on two phases Map and Reduce. However, the execution of 

each MapReduce job needs to replicate data for local computation at the nodes and has 

to perform a lot of reads and writes for sharing data across the phases. As a 

consequence, data replication, disk I/Os and network latency will cause a lot of delays 

in the architecture of the MapReduce. 

Pig [74] and Hive [75] are two software frameworks that facilitate querying and 

managing Big Data. Both of them provide SQL-like languages, i.e., Pig Latin and Hive 

QL, respectively. Pig’s engine excels at processing complex data flows in parallel, 

whereas Hive’s engine is more suited for Big Data analytics applications, e.g., data 

summarization and analysis. Their compilers will produce sequences of Map-Reduce 

programs running in parallel on Hadoop clusters. However, both Pig and Hive are 

dependent on the Hadoop and MapReduce executions; thus, their queries may have 

delay time in data processing in HDFS. This implies that they may not be suitable for 

Big Data analytics applications that need rapid response times. 

3.3.2 Spark 

The interactive ad-hoc query and analysis technique refers to processes designed to 

use current data for answering single specific questions or domain specific analyses 

whose results are analytic reports, statistical models, or other forms of data 

summarization. These processes are often done through interactions between humans 

and computer systems. Therefore, they need low-latency so that users can 

directly perform ad-hoc queries and analyses and can react to current circumstances. 

Although traditional OLAP systems have supported for these requirements, how to 

provide fast query response times on any huge business data is still a big challenge.  

Batch-oriented processing model of MapReduce is not well suited for the 

interactive ad-hoc queries and analyses due to its high latency. In recent years, some 

innovation systems have been proposed for performing interactive ad-hoc analyses at 

scale such as Apache Drill [26], Hive on LLAP (Live Long and Process) [76], 

BigQuery  [77], CitusDB  [78] Hadapt [79], HAWQ [80], Impala [81], Phoenix [82] 

and Spark [83]. These systems provide low-latency queries, user queries written in a 

human-readable syntax (e.g. SQL), NoSQL stores (e.g. HDFS) and data presented in 

tabular or nested form.  Below, we give more information about Spark. 
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Spark [21, 83] is an in-memory cluster computing system which can run on 

Hadoop and is usually referred to as a low-latency version of the MapReduce. To 

reduce latency which is caused by data replication and disk I/O operations performed 

across steps in MapReduce phases, Spark tries to keep the intermediate data in memory 

as much as physically possible to reduce the need to write the data to disks. 

 

Figure 3.4: Comparison between Hadoop MapReduce and Spark 

Figure 3.4 presents a comparison between Hadoop MapReduce and Spark: while 

the Hadoop MapReduce (Figure 3.3(a)) incurs a high I/O cost (reads and writes) during 

the query execution, Spark (Figure 3.3(b)) reduces this cost by trying to keep the data 

in memory. To achieve this, Spark provides a new storage primitive called resilient 

distributed datasets (RDDs) so that developers can use them to store the data that needs 

to be processed. Spark then attempts to keep these RDDs in the memory and controls 

their partitioning to optimize data placement across all nodes in the cluster. Another 

benefit of the RDDs is its ability to fault tolerance without requiring replication 

through a notion of lineage: if a partition of an RDD is lost, the RDD will track how 

to re-compute just that partition from base data on disk. This helps Spark runs faster 

than other typical distributed systems such as the MapReduce. Besides, DataFrames 

in Spark allow users to represent data in form of tables. Spark enables querying the 

data using a SQL-like language integrated with MapReduce-based computations [21]. 

3.4 Data Layouts 

3.4.1 Row-oriented Storage Model 

 

Figure 3.5: NSM layout of the relation Patient 

Row-oriented storage model (N-ary Storage Model or NSM) has been used in 

traditional RDBMSs (such as Oracle, DB2, SQL Server, etc.). In this model, all 

attributes of the same tuple are stored consecutively on disk. Figure 3.5 presents the 

row-oriented storage model corresponding to the relation Patient given in Figure 3.1.  
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This model is write-optimized, thus it is efficiently used for OLTP workloads. This 

advantage is achieved because, co-locating the attributes of the same tuple leads to 

better cache locality. The entire tuple can be read or written with a single disk seek. 

Besides, the tuple reconstruction cost is also low. 

The row-oriented storage model has been widely applied to represent data due to 

its simplicity to implement horizontal schemas of relational tables. This solution 

is known as horizontal representation [14, 84]. However, the horizontal representation 

is not well-suited for handling the variety of data. For instance, if data is sparse, storing 

a large number of null values in a table will cause waste of storage space. The row-

oriented storage model is also inefficient when used for OLAP workloads because if 

only a few attributes of a table are required by a query, the entire table still needs to be 

read into memory from disk before any projections are performed. This causes a lot of 

redundant attribute accesses and thus degrades query performance. 

3.4.2 Column-oriented Storage Model 

In contrast to the row-oriented storage model, column-oriented storage model has been 

applied in column-oriented RDBMs such as MonetDB [18] and C-Store [19]. This 

model is built based the Decomposed Storage Model (DSM) [55] where a n-ary table 

of an horizontal representation (i.e., horizontal table) is vertically decomposed into n 

binary tables, each of which has two columns: surrogate (sur) and attribute.  

 

Figure 3.6: DSM layout of the relation Patient 

Figure 3.6 gives an example of the DSM model corresponding to the relation 

Patient given in Figure 3.1. Here, the horizontal table of the relation Patient is divided 

into five separate binary tables, where only non-null values of the attributes are stored. 

The use of the surrogate enables values of different attributes (having the same 

surrogate value) to be tied together to reconstruct the original tuple. Figure 3.7 presents 

the physical stores corresponding to the above the DSM layout of the relation Patient.  

 

Figure 3.7: Physical representation of the DSM layout of the relation Patient 
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In general, the column-oriented storage model is read-optimized because it enables 

to read only the required columns while the rest of columns are ignored. This reduces 

disk I/Os during the query execution. Thus, it is well-suited for analytic applications 

(OLAP workloads). However, this model has high cost for writing or reading a 

complete tuple: writing a new tuple requires updating each of the columns of that tuple; 

reading a complete tuple requires locating the correct value from each column of that 

tuple in order to reconstruct the original tuple format. As a result, this model performs 

full tuple operations more slowly than the row-oriented storage model [85].  

3.4.3 Hybrid Storage Models  

The data storage models presented in the previous sections are optimized for either an 

OLTP or an OLAP workload, but not both. Therefore, if an application is involving to 

a mixed OLTP and OLAP workload, system performance requirement is hard to be 

satisfied. To overcome this limitation, several hybrid storage models have been 

introduced. In this section, we present the following models: column-group storage 

models, Mirror and Fractured Mirrors [86], HyPer [87], Trojan Columns [13] and SAP 

HANA database [20].  

Column-Group Storage Models 

Column-group storage models are regarded as hybrid storage models because they are 

built by organizing column groups in a row-oriented storage layout, a column-oriented 

storage layout or both of them in order to efficiently process mixed workloads. In this 

section, we present such storage models including Partition Attributes Across (PAX) 

[88], Data Morphing  [10], and HYRISE [12]. 

Some researches [88-90] have shown that the performance of modern database 

systems are impacted not only by the number of disk I/O operations but also by the 

delays related to their processors (CPUs). Since cost of main memory is decreasing, 

there has been a trend that the modern database systems attempt to keep a large amount 

of data in main memory to reduce I/Os between disk and main memory [91]. However, 

in this way, the performance bottleneck is transferred to the access latency between the 

processor and the main memory [92]. To reduce this bottleneck, the modern database 

systems have used a cache memory (that is small, fast but expensive) between the 

processor and the main memory to supplement for the workings of the processor [90]. 

If required data is already cached, the overall speed of processing data will increase, 

otherwise the cache misses will cause the processor to request the required data from 

the slower main memory. Besides, loading useless data into the cache causes waste of 

bandwidth and leads to the need of replacing the current data with the relevant data in 

the future. Therefore, to speed up the data processing, the frequently-used data should 

be stored in cache to reduce the cache misses.  

Partition Attributes Across: Partition Attributes Across (PAX) [88] was 

introduced as a new storage model to overcome the problem of low cache utilization 

in the DSM model. To achieve this, the PAX model modifies the data organization 

within each disk page of the NSM model. Similarly to the NSM model, the PAX model 

also proposed that all attribute values of the same tuple will be stored in the same disk 

page (i.e., logical block) as in a normal row store. However, unlike the NSM model, 
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now the PAX model decomposes a disk page into multiple mini-pages, and then groups 

all values of a particular attribute together on the same mini-page. Figure 3.8 depicts a 

disk page of the PAX layout used to store the relation Patient given in Figure 3.1. Here, 

the PAX model divides a disk page into five mini-pages, each of which contains only 

the values of a particular attribute.  

 

Figure 3.8: A disk page of PAX layout of the relation Patient 

The PAX model has several advantages and disadvantages. It can fully utilize the 

cache because only the values of required attributes are loaded into cache from main 

memory. In addition, tuple reconstruction cost of the PAX model is negligible because 

only tuples within a disk page need to be reconstructed; this cost is expensive in the 

case of the DSM model. Therefore, the PAX model combines the advantages of both 

the NSM and DSM models. Unfortunately, this advantage will be lost, if many 

columns from a table need to be accessed together to answer a query. Scanning many 

columns from a table will cause more cache misses because the PAX model has to 

jump from one column to another in memory. Hence, a decision to use the PAX model 

should be based on attribute usage.  

Data Morphing: Data Morphing [10] is considered as the first approach that was 

proposed to group the frequently-accessed-together attributes and then keep them 

together in the same place in a data storage. Similarly to the PAX model, the main 

focus of the Data Morphing model is to increase the CPU cache performance. 

Furthermore, it extended the PAX model to achieve a more flexible storage model. A 

disk page of the Data Morphing model is decomposed into zones instead of mini-

pages. Each zone stores the values of the same attribute group of the relation. For 

example, Figure 3.9 depicts a disk page with four zones of Data Morphing layout 

corresponding to the relation Patient given in Figure 3.1. Here, we assume that two 

attributes Patient Name and Patient Birth Date are frequently accessed together, so 

their values are kept in the same zone 2.  
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Figure 3.9: A disk page of Data Morphing layout of the relation Patient 

Besides the above data organization, the Data Morphing model proposed a hill-

climbing algorithm to determine the optimal attribute groups depending on a given 

workload. The Data Morphing model is able to reduce cache misses when performing 

queries accessing to only a few or multiple attributes. However, the proposed hill-

climbing algorithm has an exponential time complexity, with respect to the number of 

attributes, thus it does not scale to large relations, for example, with hundreds of 

attributes.  

HYRISE: HYRISE [12] is a main-memory hybrid database system. To achieve 

high performance in a mixed workload environment, it provides an automated database 

design tool to automatically partition a table into multiple vertical partitions (or column 

groups) with varying widths depending on attribute access patterns. In particular, for 

OLAP queries, the tool prefers to suggest narrow partitions because such queries 

frequently access just a few columns of a table. In contrast, for OLTP queries, wide 

vertical partitions are more efficient to reduce cache misses than narrow ones because 

these queries usually access all (or most) columns of a table. The HYRISE is referred 

to as an in-memory column-oriented database system since it creates vertical 

partitions, each of which is composed of frequently-accessed-together attributes and 

represented by a data structure, called container that is allocated in main memory.  

The main improvements of the HYRISE over the Data Morphing model are as 

follows: The cache-miss model of the HYRISE is able to capture several additional 

key concepts such as partial projections, data alignment and query plans [12] (which 

were missed in the Data Morphing model), thus it can accurately estimate the number 

of cache misses incurred in a particular partitioning with respective to the attribute 

access patterns. This helps the HYRISE achieve significantly better query performance 

than the Data Morphing model. Besides, the grouping and pruning algorithms 

proposed in the HYRISE are able to scale to tables with hundreds of columns (the Data 

Morphing model cannot scale to wide tables). Nevertheless, the disadvantage of the 

HYRISE is that it is a main-memory database system, so it may be suitable for storing 

small databases, whose size should be smaller than the amount of the physical 

available memory. This limitation may make the system have performance problems 

and less efficient when used to handle high and ever-growing volume of data (as 

DICOM data). 
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Mirrors and Fractured Mirrors  

The mirrors and fractured mirrors approaches [86] try to store data using both the 

NSM and the DSM layouts to retain their own advantages for mixed workloads.  

 

Figure 3.10: Mirrors and fractured mirrors [86] 

In the mirrors approach, two disks are used. The (original) data is completely 

replicated into two copies (replicas): one uses the NSM layout while the other uses the 

DSM layout; each copy is put on one disk, as illustrated in Figure 3.10(a). The query 

optimizer will redirect each query to its preferred data layout. This approach is simple 

but exists two limitations: First, if the workload is skewed towards one of the two data 

layouts, the majority of queries will be executed using data stored on one disk. The 

workload thus cannot be distributed uniformly across both disks. Second, random 

seeks cannot be distributed equally across replicas because different methods can be 

used to retrieve data on each disk: the NSM layout can retrieve a full tuple via a single 

access while the DSM layout has to perform index lookups on a surrogate on a table.  

To overcome the above problems, the fractured mirrors approach extended the 

mirrors approach so that each disk has a complete copy of data stored in multiple data 

layouts, as illustrated in Figure 3.10(b). This approach can be described as follows: 

First, like the mirrors approach, the (original) data is completely replicated into two 

copies using different data layouts: NSM and DSM. Next, the NSM copy is declustered 

into two horizontal partitions: NSM0 is put on disk 1 while NSM1 is put disk 2. 

Similarly, the DSM copy is also declustered into two horizontal partitions: DSM0 is 

put on disk 2 while DSM1 is put on disk 1. By this way, the workload can be spread 

evenly across both disks even if it is skewed; additionally, the random seeks can be 

divided equally between disks as well.  

The advantage of mirrors and fractured mirrors approaches is that the query 

optimizer can choose an appropriate data layout (NSM or DSM) to achieve a better 

query performance. In addition, the approaches ensure against data loss in the event of 

a hard drive failure. However, there exist several disadvantages of these approaches. 

First, they need more storage space to store multiple copies. Second, they require 

complicate data management to ensure data integrity in two copies. Third, the 

approaches have been implemented in software, instead of hardware, thus they 

will be inefficient. Last, the current approaches simply create round-robin based 

schemas, thus they cannot produce efficient schemas for various workloads.  

Hyper 

HyPer [87] is a hybrid OLTP & OLAP main-memory database system that can handle 

both OLTP and OLAP workloads simultaneously. The HyPer separates two types of 
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workloads and controls concurrency transactions by creating transaction-consistent 

snapshot of the database via hardware-assisted virtual memory management of the 

operating system. OLTP queries are executed serially by the original process, using 

original physical memory segments. When many OLTP queries concurrently updates 

the same memory segments, the operating system creates a physical copy of the data 

to preserve the snapshot consistent. To avoid any interaction with OLTP, when the 

HyPer needs to execute an OLAP processing, it performs a fork operation to create a 

virtual memory snapshot. The forked child process (OLAP) gets an exact copy of the 

address space of the parent process (OLTP), as illustrated in Figure 3.11. However, 

because the HyPer uses the virtual memory snapshot functionality, it does not 

physically copy the memory segments. Instead, it applies a lazy copy-on-update 

mechanism. At beginning, the parent process (OLTP) and the child process (OLAP) 

use the same physical memory segments. Then the operating system reroutes 

(translates) the virtual memory accesses, e.g., to a data item a, to the original physical 

memory segments.  At this time, the virtual memory page has not yet created. Once 

the data item, e.g., a, is updated, the copy-on-update mechanism is activated to 

replicate the virtual memory page storing the data item a. Afterwards, the OLTP 

process can accessed to a new state of the data item, i.e., a’, while the OLAP process 

can still access the old state of the data item, i.e., a. 

 

Figure 3.11: Copy-on-update mechanism [93] 

The advantage of the HyPer is that it provides an efficient concurrency control 

mechanism as it deals with simultaneous mixed OLTP and OLAP workloads. The 

HyPer is regarded as an in-memory column-oriented database system since it 

transforms the database tables into the column-oriented data layout in vector-based 

virtual memory. To better utilize the main memory, the column-oriented data is 

horizontally partitioned and each resulting partition is classified by its access 

frequency. The seldom-accessed data will be compressed before stored in the main 

memory. The disadvantage of the HyPer is that it is a main-memory database system, 

so the problem of main memory limitation will lead to the performance problem.  

SAP HANA Database 

SAP HANA database (or SAP HANA DB) [20, 94, 95] is an in-memory column-

oriented database system. It can handle both OLTP and OLAP workloads and deal with 

different characteristics of data, such as structured, semi- and unstructured data within 

the same system. To achieve these features, it uses multiple data processing engines: 
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Relational engine is responsible for managing relational data (structured data) that can 

be represented in either row-oriented or column-oriented tables. This engine can 

process the relational tables represented in both row- and column-oriented storage 

layouts. Additionally, row- and column-oriented tables can be used together in the 

same SQL statement. The graph and text engine are respectively responsible for 

processing semi- and unstructured data: graph and text data.  

To obtain the best performance, the SAP HANA DB pays more attention to 

organizing data in main memory, instead of disk, for better cache utilization. The data 

processing engines try to store as much data as possible in main memory.  The column-

oriented data can be compressed to reduce the size of the data before migrating them 

into main memory. In addition, the data will be classified as hot or cold data depending 

on access frequency [95]: the hot data will be cached in the main memory, otherwise 

stored on disk. The hot data for OLTP workloads usually includes the most recently 

accessed tuples, while the hot data for OLAP workloads typically consists of the most 

recently scanned or aggregated columns.  

The limitation of the SAP HANA DB is that a system administrator needs to 

manually determine at definition time whether a new table will be stored in a row- or 

a column-oriented data layout, and then modify the application to query suitable tables. 

That is, there is a lack of tool support for automating these works. 

3.5 Vertical Partitioning and Bloom Filter Techniques 

This section provides background information of common techniques used for schema 

design of relational databases and query performance improvement. We pay attention 

on vertical partitioning techniques that are able to reduce workload execution time and 

storage space size for sparse datasets. Besides, 𝐵𝐹 and 𝐼𝐵𝐹 techniques can reduce 

network and disk I/O costs in distributed query processing environments.   

3.5.1 Vertical Partitioning 

The vertical partitioning is a technique to divide a table into a number of sub-tables. It 

aims at reducing I/O costs. Existing vertical partitioning algorithms are usually 

classified into different approaches based on some dimensions: (1) measure: cost-

based or affinity-based; (2) search strategy: top-down or bottom-up. However, because 

we are looking for an algorithm that can take into account the combined impact of both 

the characteristics of data (e.g., sparseness) and workloads (e.g., mixed OLTP and 

OLAP workloads) on the quality of vertical partitioning results, in order to easily find 

out the gaps in existing studies, we add a new dimension called input information. By 

this way, we can classify the existing algorithms into workload-based or data-based. 

The classifications of the current approaches corresponding to these dimensions are 

discussed below.  

Cost-based vs. Affinity-based Approaches 

Cost-based algorithms [96-98] need an objective function (a cost function) to 

minimize the total workload execution cost of a current system. Such an objective 

function usually represents a combination of several cost components such as CPU, 
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I/O and communication costs. The traditional optimization-based techniques such as 

hill climbing, simulated annealing and genetic algorithm [99-101] can be applied to 

find out a set of vertical partitions to minimize the objective function. However, a 

problem is that it is usually hard to build cost functions that accurately express complex 

execution mechanisms of query optimizers/engines of the current systems [11].  

On the other hand, affinity-based algorithms [6, 102-104] are based on attribute 

affinity (which shows how often attributes are simultaneously accessed by the same 

queries in a given workload) to cluster the attributes into clusters. A limitation of the 

affinity-based algorithms is that affinity measures are usually independent from the 

execution of the corresponding query optimizers or query engines of current systems. 

Thus, the resulting clusters should be further validated on the targeted systems [11].  

Top-down vs. Bottom-up Approaches 

Top-down algorithms [6-8] usually begin with a schema containing all attributes; and 

for each step, they decompose that schema into two smaller schemas. This procedure 

is repeated similarly for each resulting schema until the given objective function (a 

cost model to compute the total workload execution cost in a given workload) cannot 

be further improved.  

In opposite to the top-down algorithms, bottom-down algorithms [9-13] begin with 

a set of minimally small vertical partitions (i.e., small schemas), each of which may 

contain either a single attribute or a subset of attributes; and for each step, a pair of 

vertical partitions are merged together into a larger vertical partition. This procedure 

is repeated similarly until the objective function cannot be further improved. 

Workload-based vs. Data-based Approaches  

Workload-based algorithms are the ones depending on workload-specific information 

(e.g., attribute usage of queries) in order to generate vertical partitions.  As such, the 

above-mentioned approaches (i.e., cost-based, affinity-based, top-down or bottom-up) 

can be also classified as workload-based approaches if they are using workload-

specific information as their input. For instance, we can refer to the vertical 

partitioning algorithm applying a bottom-down strategy in [13] as a workload-based 

algorithm. The advantage of the workload-based algorithms is that they can improve 

the workload performance corresponding to given attribute access patterns. However, 

they do not take data-specific information (e.g., data sparseness) into consideration, 

thus they do not mainly focus on reducing storage space size.  

In contrast, data-based algorithms usually have no knowledge about the workload; 

instead, they depend on the data-specific information to perform vertical partitioning. 

Most studies proposed the data-based algorithms to design schemas for sparse 

datasets. Generally, these algorithms used the data-specific information as their input 

in order to cluster a set of attributes into a number of subspaces (i.e., column groups) 

in a manner to minimize the sparseness of data. For instance, B. Cui et al. [14] 

proposed an approach called HoVer that clusters a sparse data space into multiple 

subspaces. To achieve this, they defined a correlation measure and used it in a heuristic 

clustering algorithm to group highly correlated attributes (which are frequently co-

active) into subspaces. On the other hand, Levandoski and Mokbel [15] proposed data-

centric approach that uses a two-phase algorithm to create tables from RDF triples: 
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first, the clustering phase uses a support threshold to cluster a set of attributes into a 

number of column groups in order to reduce the number of joins; then, the partitioning 

phase tries to optimize storage space by reducing the number of null values. However, 

this approach do not make any assumption about the query workload statistics. 

Besides, E. Chu et al. [16] proposed wide-table approach to extract hidden schemas 

from a sparse dataset. To achieve this goal, they applied the Jaccard’s coefficient to 

measure the similarity between any two attributes in terms of the co-occurrence (i.e., 

simultaneously having non-null values), and implemented a k-NN clustering 

algorithm, given in CLUTO [105], to group co-occurring attributes together into the 

same subspace. By this way, hidden schemas can be explored from the sparse datasets. 

There is lack of studies that are able to take into consideration the combined impact 

of both workload- and data-specific information on the quality of vertical partitioning 

results. Although studies in [14-16] provided solutions to find out schemas from sparse 

datasets in a way to reduce storage space demand, from which the query performance 

can be improved, they replies only on the data-specific information. In fact, the data-

centric approach did not assume a particular query workload. Alternatively, the HoVer 

and wide-table approaches regarded the data-specific information as the workload-

specific information: They implicitly assumed that the attributes concurrently having 

non-null values (or active values) on the same rows in a horizontal table are frequently 

accessed together by the same queries. However, this assumption does not always hold 

in the context of DICOM data because the non-null attributes may not be frequently 

accessed together by the same queries and vice versa. Therefore, the combined impact 

of both the workload- and data-specific information on both storage space size and 

query performance has not been explored clearly. Moreover, most studies have not 

taken into consideration the use of different data layouts to store the vertical 

partitioning results. 

3.5.2 Bloom Filter and Intersection Bloom Filter  

Definitions  

Bloom filter [22] is a space-efficient probabilistic data structure used for membership 

test with little error allowable. Let 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a finite set of 𝑛 elements 

from a universe set 𝑈. A Bloom filter (𝐵𝐹) for representing 𝑆 is described by an array 

of 𝑚 bits and a set of 𝑘 uniform and independent hash functions ℎ1(𝑥), ℎ2(𝑥), …, 

ℎ𝑘(𝑥). Initially, all 𝑚 bits of 𝐵𝐹 are set to 0 (empty 𝐵𝐹). Then, when an element 𝑥 is 

inserted into 𝐵𝐹, all positions ℎ𝑖(𝑥) (1 ≤ 𝑖 ≤ 𝑘) of the bit array are set to 1. 

Bloom filters allow to answer membership queries like “Is 𝑥 in S?” without the 

need of the original set 𝑆. To check whether an element 𝑥 ∈ 𝑆, we need to check 

whether all the positions ℎ𝑖(𝑥) (1 ≤ 𝑖 ≤ 𝑘) of the bit array are set to 1. We then can 

conclude that 𝑥 is not presenting in the original set 𝑆 if at least one of the bit positions 

ℎ𝑖(𝑥) is set to 0; otherwise, we conclude that 𝑥 is probably is a member of 𝑆.  

Due to hash collisions, there exists an error, also known as a “false positive”, such 

that an element 𝑥 ∉  𝑆 has all the positions ℎ𝑖(𝑥) set to 1. However, there does not 

exist a false negative when using the 𝐵𝐹. The probability of any random bit of the 𝐵𝐹 

to be set to 1 is 𝑃𝑆𝐸𝑇1 = 1 − (1 − 𝑚−1)𝑘𝑛. Thus, the probability where all 𝑘 bits for a 
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random element are set to 1 is 𝑃𝐵𝐹 = (𝑃𝑆𝐸𝑇1)𝑘; this probability is regarded as the 

probability of a false positive for an element not in the original set. The false positive 

probability of the 𝐵𝐹 can be computed by Formula (3.6.1) [24]. 

𝑃𝐵𝐹 = ((1 −  (1 −  
1

𝑚
)

𝑘𝑛

))

𝑘

≈ (1 − 𝑒−𝑘𝑛/𝑚)
𝑘
 (3.6.1) 

To minimize the false positive probability, the information density of the 𝐵𝐹 has 

to be optimized. This density is determined by a ratio between the number of true bits 

(1s) and the length of the 𝐵𝐹. The minimum value of the false positive probability 

occurs when this density is 0.5 [24]; this is achieved when setting the number of hash 

functions to 𝑘 ≈
𝑚

𝑛
× 𝑙𝑛 (2).  

Bloom Filter Based Joins 

The 𝐵𝐹s have been applied in order to filter unnecessary data out of input data of join 

operations before these operations are performed. Especially in distributed query 

processing environments, where data is distributed across multiple nodes, the 𝐵𝐹s can 

help to reduce network communication cost for join operations [23]. 

 

Figure 3.12: Example of the application of a Bloom filter 

Figure 3.12 illustrates an example of the application of a Bloom filter for a 

distributed join operation. Assume that we need to compute a join 𝑇1 ⋈𝑈𝐼𝐷 𝑇2 where 

𝑇1 and 𝑇2 are two input tables stored at two different nodes Node 𝑇1 and Node 𝑇2, 

respectively, and 𝑈𝐼𝐷 is the common join attribute. We also suppose that the join 

operation will be performed on the Node 𝑇1. In order to reduce the amount of data 

transferred between two nodes, a Bloom filer will be built and applied to remove 

irrelevant data out of the join inputs. In particular, a join algorithm can be performed 

in the following steps: (1) The Bloom filter 𝐵𝐹1 is built on values of the join attribute 

𝑈𝐼𝐷 of the table 𝑇1; here, 𝐵𝐹1 is an array of 10 bits; it uses one hash function h(x) = 

LastFiveNumbers(UID) % 10 that returns the remainder after dividing the last five 

numbers of UID by 10. (2) 𝐵𝐹1 is sent to the Node 𝑇2 and applied for checking whether 

values of the join attribute 𝑈𝐼𝐷 of the table 𝑇2 are contained in 𝐵𝐹1. (3) The rest of 
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tuples of the table 𝑇2 (whose 𝑈𝐼𝐷𝑠 is contained in 𝐵𝐹1) produce a new table 𝑇2
′ and 

this table is transferred to the Node 𝑇1. (4) Finally, 𝑇2
′ is joined with 𝑇1; during this 

join, all false positives will be removed from the join result (e.g., in 𝑇2
′, P40999 is a 

false positive and it will be removed).  

As such, the Bloom filters can be applied to remove irrelevant tuples out of input 

data of the join operations. This helps to avoid transferring unnecessary data over the 

network as well as to reduce computation cost, due to less input data for processing.  

Intersection Bloom Filter 

An IBF is used to represent an approximate intersection set of sets [23]. The IBF can 

be simply computed by performing bitwise AND operations on all the BFs built from 

input tables. In a distributed query processing environment, the IBF has been proved 

that they can help join operations to reduce the amount of data transmission on network 

with a false positive probability less than that of individual component Bloom filters 

[23, 25]. T.-C. Phan, L. d'Orazio, and P. Rigaux in [25, 27] proposed to use an IBF that 

is computed from precomputed BFs to filter irrelevant tuples out of input tables of join 

operations in MapReduce environment. Their experimental results show that amount 

of intermediate results is reduced and the query performance is increased. On other 

hands, J. J. Brito et al. in [106] proposed the Spark Bloom-Filtered Cascade Join that 

applies the BFs to reduce disk spill and network communication by removing 

irrelevant tuples from input tables of a sequence of joins of the star joins in Spark, in-

memory cluster computing framework [21], thereby minimizing the query execution 

time.  

In the context of DICOM data management, to provide the high performance for 

interactive workloads, Spark is a suitable choice to implement a DICOM data 

management system. Besides, users’ multiple-table join queries may involve a large 

amount or redundant input data due to high selectivity of predicates. Therefore, a query 

processing strategy with the integration of the IBF is a potential solution is to improve 

the performance of the queries. However, there is a lack of studies that apply the IBF 

that is computed from non-precomputed BFs in a distributed query processing 

environment, e.g., Spark. Moreover, we need to determine how to integrate an IBF in 

a particular execution plan and conduct a cost-benefit analysis for this application.  

3.6 Key Components of the New System 

The main goals of our study are to propose efficient methods to store and to query 

DICOM data. These methods will be applied to build a new DICOM data management 

system that satisfies the expected requirements: (R1) Flexible data; (R2) Flexible 

querying; and (R3) Efficiency of storage and CPU, as introduced in Section 2.3.1.  

In order to meet the above requirements, we further specify requirements for key 

components of the new DICOM data management system: data model, data storage 

model, data schema and query processing. 
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3.6.1 Data Model 

A data model such as the relational data model or the NoSQL data models (key-value, 

column-family, document and graph) specifies the way data is represented to users. In 

our study, we need to choose a data model so that it can satisfy the following 

requirements: First, it is able to easily represent the information entities (Patient, 

Study, Series, etc.) and their relationships in the DICOM information model. Second, 

it is able to provide normalized. Third, it is able to provide users with a SQL interface 

for writing their own queries. Fourth, it is able to provide a huge storage capacity, 

scalability and elasticity. Lastly, it is able to offer high query performance over high 

and ever-growing volume of DICOM data. 

3.6.2 Data Storage Model 

Data storage model is also regarded as data layout (e.g., row-oriented, column-oriented 

and hybrid-oriented layouts) that defines how data in a database is physically 

organized on hard disk(s). In our study, a suitable data storage model is proposed in 

order to improve the performance of queries in mixed OLTP and OLAP workloads. 

More particularly, we will focus on reducing the following costs: disk I/O cost (caused 

by redundant data accesses) and tuple reconstruction cost (caused by join operations). 

3.6.3 Data Schema  

The requirements for schemas are given as follows: First, the schemas need to be 

designed not only to easily represent entities and their relationships in the DICOM 

information model, but also to increase the efficiency in storing and querying DICOM 

data. Besides, to provide ease of use, names of entity tables should be directly used in 

users’ queries instead of other complex forms, e.g., vertically partitioned tables. 

Second, the variety of DICOM data usually results in sparseness, thus null values need 

to be removed to save storage space. Third, the schemas need to be designed to increase 

the performance of queries in mixed OLTP and OLAP workloads. Lastly, an automated 

design approach need to be proposed to generate data storage configurations that can 

reduce both storage space demand and workload execution time. 

3.6.4 Query Processing 

The requirements for query processing can be listed as follows: First, the new DICOM 

data management system is able to process SQL ad-hoc queries with joins to obtain 

information from DICOM entities (e.g., Patient, Study, etc.). Second, the query 

processing strategy is well-suited to automatically access tables created as results of 

schema designing (as mentioned above). Lastly, to deal with high and ever-growing 

volume of DICOM data, the query processing strategy needs to be designed for 

distributed query processing environment. Furthermore, because the users’ queries are 

usually contain multiple joins with single- and multi-criteria predicates [54], the query 

processing strategy is needed to remove unnecessary data. 
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3.7 Summary and Conclusion 

In this chapter, we concentrated on reviewing the state of the art of workload types and 

prevalent databases used for Big Data, cluster computing frameworks, data layouts, 

vertical partitioning and Bloom filter techniques. We also specify the requirements for 

key components of the new DICOM data management system so that it is able to 

efficiently store and query DICOM data: 

 Data model: The relational data model should be applied for DICOM database. 

There are a number of reasons for this. Although relational and NoSQL databases 

have their own benefits, a relational data model excels at providing the following 

features: First, it is well-suited for representing entities and relationships among 

these entities in the DICOM information model. This helps to manage the 

complexity of DICOM data. Second, the relational data model can provide users 

with SQL ad-hoc queries with joins. Third, using the relational data model, 

DICOM data can be stored in a normalized way in order to reduce data redundancy 

and storage space. However, compared to NoSQL databases, relational databases 

have limitations to provide high query performance, huge data storage and 

horizontal scalability to deal with the high and ever-growing DICOM data. Thus, 

it is clear that a pure relational database or a pure NoSQL database alone does not 

provide all required features. We thus move towards a NoSQL database but need 

to support to use SQL effectively and to represent data in form of tables. 

 Data Storage model: A new hybrid storage model should be proposed to store 

DICOM data. The reason is that a pure row store or a pure column store is 

optimized for either an OLTP or an OLAP workload, but not both. Moreover, the 

existing hybrid storage models, such as PAX, Data Morphing, HYRISE, Fractured 

Mirrors, Trojan Columns and SAP HANA, have some limitations to handle the 

high and ever-growing volume of data. As a result, we need to design and 

implement a new hybrid storage model that has a cluster-based storage, e.g., 

HDFS, to offer huge data storage space, scalability and elasticity.  

 Data schema: Schemas need to be capable of easily and efficiently representing 

entities and their relationships in the DICOM information model. The DICOM 

information model has not optimized in terms of storage space demand and query 

performance. For instance, wide entity tables can cause data sparseness and 

redundant data accesses. Existing vertical partitioning algorithms showed their 

usefulness in schema design, but there is a lack a solution that can take into 

consideration the combined use of workload- and data-specific information and a 

hybrid store to automatically create schemas that can reduce both workload 

execution time and storage space demand. Therefore, there is a need for a novel 

vertical partitioning approach to overcome this limitation. 

 Query processing: The query processing needs to provide high performance for 

interactive workloads. The batch-oriented processing model of MapReduce is not 

well suited for the interactive workloads due to its high latency. In contrast, the 

interactive ad-hoc query and analysis technique is good fit to this context; Spark 

should be chosen because of its ability to offer low latency, high performance, 

scalability and elasticity. Furthermore, to create the correct answers for join 
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operations between vertically partitioned tables, inner and left-outer joins need to 

be applied. Additionally, the BF and IBF should be applied to reduce network I/Os 

in distributed query processing environment for DICOM data as well. 

Key Points  

 We present backgrounds of workload types and prevalent databases. 

 We review the cluster computing frameworks: MapReduce and Spark.  

 We present different types of data layouts. 

 We presents related works about the vertical partitioning, BF and IBF. 

 We presents the requirements for key components (data model, data storage 

model, data schema and query processing) of the new system. 
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Chapter 

 

HYTORMO and HADF 

4.1 Overview 

In Chapter 2, we specified the expected requirements for a new DICOM data 

management system. In Chapter 3, we presented the solution ideas to efficiently store 

and query DICOM data. This chapter describes HYTORMO together with data storage 

and query processing strategies. An overview of the chapter is given in Table 4.1. 

Table 4.1: Overview over Chapter 4 

4.2 HYTORMO and Strategies 

4.2.1 HYTORMO Architecture 4.2.2 Data Storage Strategy 

4.2.3 Query Processing Strategy  

4.3 Automated Design Approach for DICOM Data 

4.3.1 Observations 4.3.2 Formal Representation  

4.3.3 Configuration Cost Estimation  

4.4 Hybrid Automated Design Framework   

4.4.1 Overview of the Framework 4.4.2 Similarity Measures 

4.4.3 Implementation of the Framework 4.4.4 Examples 

4.5 Summary and Conclusion 

First of all, HYTORMO and the data storage and query processing strategies are 

briefly described in a nutshell. HYTORMO provides high performance for interactive 

and mixed workloads, huge storage capability, scalability and elasticity. The storage 

strategy aims at improving workload performance and reducing data storage demand; 

it combines the use of both vertical partitioning and a hybrid storage model. A high-

level query processing strategy is also introduced for HYTORMO.  

In order to achieve a data storage configuration according to the above data storage 

strategy, one of two design approaches, expert-based and automated, can be applied. 

The former approach was proposed by B. Mohamad, L. d'Orazio and L. Gruenwald 

[56, 57], whereas we propose the latter approach is able to automatically generate data 

storage configurations for DICOM data. We describe our observations from which the 

formal representation of the automated design problem and cost models are built. 

However, the solution search space for an optimal data storage configuration is very 

large, thus we further propose a heuristic approach, a hybrid automated design 

framework, to rapidly generate good data storage configurations. We describe the 

framework, similarity measures, implementation of this framework and examples. 



HYTORMO and HADF
 

58  

 

4.2 HYTORMO and Strategies 

In this section, we present an overview and key components of HYTORMO.  First, we 

describes its architecture. Next, we describe the proposed data storage strategy: what 

need to be done in a systematic way to extract, organize and store DICOM data in the 

hybrid store of row and column stores. Finally, we introduce an overview of the 

proposed query processing strategy and query form.  

4.2.1 HYTORMO Architecture 

 

Figure 4.1: Architecture of HYTORMO 

Figure 4.1 describes the architecture of HYTORMO. There are two key 

components: Centralized System and Distributed Nodes.  The query processing is 

tightly integrated in both Centralized System (a master node) and Distributed Nodes 

(slave nodes). Query processing tasks are distributed among multiple nodes. DICOM 

data (metadata and pixel data) are stored across the Distributed Nodes using a 

distributed file system, e.g., HDFS, which can support for storing DICOM data in both 

row- and column-oriented storage layouts. HYTORMO is implemented on top of an 

in-memory cluster computing framework, Spark [21, 83], in order to provide high 

performance for interactive workloads. 

In the following section, the proposed data storage strategy is presented in detail.  

4.2.2 Data Storage Strategy 

The goals of the data storage strategy are to optimize query performance and storage 

space over a mixed OLTP and OLAP workload. To achieve these goals, metadata and 

image data of DICOM files are extracted, organized and stored in a manner to reduce 

storage space, tuple construction cost and I/O costs. 
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Figure 4.2: Process of extracting, organizing and storing DICOM data 

The process of extracting, organizing and storing DICOM data is shown in Figure 

4.2. Assume that DICOM files have been produced by specific modalities, and now 

we need to extract DICOM data from these files, organize and store it in the hybrid 

store of HYTORMO. First of all, metadata and image data are extracted and stored in 

a local file system (i.e., DICOM archive). Because we intend to maintain entities and 

their relationships according to the DICOM information model (presented in Chapter 

2), the metadata will be organized into entity tables (relational tables) such as Patient, 

Study, Series, Image, etc. For instance, the entity Patient consists of the following 

attributes: PatientName, PatientID, PatientDateofBirth, PatientSex, etc., while the 

entity Image contains ImageNumber, ImageSize, ImageType, HighBit, PatientID, …, 

and ImageLink (the ImageLink attribute stores the path name of the corresponding 

image file stored in disk). In our study, we refer to a relational table as a horizontal 

table (which has not been vertically partitioned yet). The entity-relationship model can 

be used to visually describe the entities and their relationships.  

In order to achieve optimization of storage space and query performance, the 

proposed data storage strategy is performed as follows: First of all, the entity tables 

need to be decomposed into multiple sub-tables (i.e., vertically partitioned tables). 

Next, these sub-tables will be stored in row and column stores of the hybrid store of 

HYTORMO (in a distributed file system).  

For simplicity, we refer to (sub-) tables stored in a row store as row tables, and 

tables stored in a column store as column tables. After all DICOM data is transferred 

from the local file system to the hybrid store of HYTORMO, it can be removed from 

the local file system to save storage space. It is worthy to note that the complexity of 

the vertical partitioning of the entity tables is transparent to users so that they only 

need to concentrate on writing interactive and ad-hoc queries by using names of the 

entity tables in their SQL queries.  

In order to achieve a data storage configuration according to the above data storage 

strategy, one of two design approaches can be applied: expert-based and automated. 

In this chapter, before the new automated design approach is introduced, we apply the 
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expert-based design approach to create data storage configurations, as presented in 

[107]. In the expert-based design approach, first of all, DICOM attributes are classified 

into three categories: mandatory; frequently-accessed-together; and 

optional/private/seldom-accessed (for short, we sometimes call this “optional”). Next, 

the attributes of the first two groups will be stored in a row store while the attributes 

of the last group will be stored in a column store. In addition to this application, our 

contribution to this approach is to provide clearly-defined classification of attribute 

groups in terms of characteristics of both data and workload as follows: 

1. Mandatory attributes are not allowed to get null values.  

2. Frequently-accessed-together attributes are allowed to get null values and are 

frequently accessed together.  

3. Optional attributes are allowed to get null values but are not frequently accessed 

together. 

As such, the above classification has taken into consideration the similarity 

relationship among the attributes based on both workload-specific information (i.e., 

regular attribute access patterns) and data-specific information (i.e., data sparseness) 

at the same time in order to group the attributes into clusters (i.e., column groups).  

In addition to the above definitions, unlike the expert-based design approach in 

[56, 57] in which a subset of attributes of DICOM files are classified and stored into 

row and column stores, in this thesis, we use the entity tables (e.g., Patient, Study, etc.) 

as a starting point, from which these entity tables will be decomposed into sub-tables. 

For example, given the entity Patient with the following attributes: PatientName, 

PatientID,  PatientBirthDate, PatientSex, EthnicGroup, IssuerOfPatientID, Patient-

BirthTime, PatientInsurancePlanCodeSequence, PatientPrimaryLanguageCode-

Sequence, PatientPrimaryLanguageModifierCodeSequence, OtherPatientIDs, 

OtherPatient-Names, PatientBirthName, PatientTelephoneNumbers, SmokingStatus, 

Pregnancy, LastMenstrualDate, PatientReligiousPreference, PatientComments, 

PatientAddress, PatientMotherBirthName, and InsurancePlan Identification, we will 

store this entity table as shown in Figure 4.3:  

- PatientName, PatientID, PatientBirthDate, PatientSex, and EthnicGroup are 

classified as mandatory attributes and stored in a row table, namely RowPatient. 

On the other hand, PregnancyStatus and LastMenstrualDate are classified as 

frequently-accessed-together attributes and also stored in a row table, namely 

RowPregnancy. 

- IssuerOfPatientID, PatientBirthTime, PatientInsurancePlanCodeSequence, 

PatientPrimaryLanguageCodeSequence, PatientPrimaryLanguageModifierCode-

Sequence, OtherPatientIDs, OtherPatientNames, PatientBirthName, PatientTele-

PhoneNumbers, SmokingStatus, PatientReligiousPreference, PatientComments, 

PatientAddress, PatientMotherBirthName and InsurancePlanIdentification are 

classified as optional attributes and stored in a column store.   

The above grouping of the attributes is non-overlapping; each attribute belongs to 

only one column group except the attribute UID that is used to join the tables together. 

The null rows will be removed from the vertically partitioned tables. The image data 

is stored in separate files whose path names are stored in an attribute in relevant tables.  
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Figure 4.3: Row and column tables of the entity Patient 

As mentioned earlier, the decomposition of the entity tables is transparent to users. 

For this purpose, the information about data storage configurations of the entity tables 

needs to be registered with the Metadata Store of HYTORMO (shown in Figure 4.1): 

(1) schemas of the entity tables; (2) schemas of the corresponding sub-tables; and (3) 

data layouts applied to these sub-tables. For instance, assume that the entity Patient 

has been vertically partitioned into two tables RowPatient and ColumnPatient. 

However, users may need no knowledge about how Patient is vertically partitioned 

and what data layouts are applied to the corresponding sub-tables. Instead, they simply 

use name “Patient” in their queries.   

From the above data storage strategy, we can see clearly that  if a query requires to 

collect information from one or more tables/sub-tables, HYTORMO needs a suitable 

and efficient query processing strategy to perform join operations across these tables 

to reconstruct result tuples.   
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4.2.3 Query Processing Strategy 

This section describes the high-level query processing strategy proposed for 

HYTORMO. Its details will be provided in Chapter 5. The goal of the query processing 

strategy can be described as follows:  Given DICOM data stored in row and column 

tables in the distributed file system of HYTORMO, find a well-suited and efficient 

query processing strategy. In general, both inner joins and left-outer joins are applied. 

Furthermore, in order to improve query performance, the number of left-outer joins 

and irrelevant tuples in the input tables of join operations need to be reduced.  

An Overview of the Query Processing Strategy 

The query processing includes the following phases: query parsing, query 

decomposition, query optimization and query execution, as shown in Figure 4.1. The 

Parser parses a user query (in SQL form). It accesses the Metadata Store to get 

information about data storage configurations of the entity tables used by the query. 

The Decomposer splits the query into a set of sub-queries in a way so that the sub-

queries access only the relevant row and column tables (containing the attributes 

required by the query).  This helps HYTORMO not only to reduce the size of input 

data of the query but also to utilize strengths of both row- and column-oriented storage 

layouts. After the Decomposer completes its works, the Execution Plan Generator 

generates candidate global execution plans. It consults historical statistics (e.g., 

cardinality of tables) in the Metadata Store to estimate the execution cost of each plan; 

after that, it will choose the cheapest one. Since the given query could have a large 

number of candidate global execution plans due to different join ordering possibilities, 

an exhaustive search for an optimal execution plan is too expensive. We thus adopt to 

use a left-deep sequential tree plan introduced by M. Steinbrunn et al. [108]. After 

achieving an execution plan, the Query Execution Engine will execute the query using 

this execution plan. The sub-queries are executed one after another (across nodes of 

the Distributed Nodes) according to the join order given in the execution plan. Besides, 

during the execution of the plan, (Intersection) Bloom Filters, created by the Bloom 

Filter Generator, are applied to filter irrelevant tuples out of input tables of join 

operations. Finally, the intermediate results are retrieved and integrated to produce the 

final query result. It is worthy to remind that when a user submits a query, names of 

entity tables are used in the query. The query will be automatically rewritten in an 

equivalent form using a set of sub-queries accessing relevant row and column tables.   

Query Form  

Our study mainly focuses on user queries consisting of select, project, join and 

aggregate operations. In order to avoid loss of generality, we present a user query Q 

in a general form given in Figure 4.4. Q is typically a multiple-table join query (or 

multi-way join query).  It can have selection predicates (e.g., comparison predicates 

consisting of , , , , , etc.) in WHERE clause, aggregate predicates in HAVING 

clause, a set of attributes in GROUP BY clause and join operations. The entity tables 

TI, TJ and TK are joined together on the attribute 𝑈𝐼𝐷. Because the attributes of these 

entity tables may being physically stored in row or column tables, we use the 

superscripts Rm, Rf, and C to indicate that the corresponding attribute is being stored 
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in a row table of mandatory attributes, a row table of frequently-accessed-together 

attributes or a column table of optional attributes, respectively, and RC to denote that 

the corresponding attribute is being stored in both row and column tables. It is worthy 

to note that these superscripts are invisible to users. 

Q:   SELECT TI.UIDRC, TI.atta
Rm, TI.attb

C, TJ.attx
Rm, TJ.atty

Rf, TK.attz
C 

FROM {TI, TJ, TK} 

WHERE {TI.UIDRC = TJ.UIDRC} AND {TJ.UIDRC = TK.UIDRC} 

{TI.atta
Rm  valuea

Rm} AND {TI.attb
C  valueb

C} AND 

{TJ.attx
Rm  valuex

Rm} OR {TK.attz
C  valuez

C} 

GROUP BY TI.att_*, TJ.att_*, or TK.att_* 

HAVING aggregation_operator(TI.att_*, TJ.att_* or TK.att_*); 

where: 

○ TI, TJ, TK: entity tables;  

○ TI(UIDRC, att_Rm, …, att_
Rf, …, att_

C, …): schema of TI; 

○ TJ(UIDRC, att_Rm, …, att_
Rf, …, att_

C, …): schema of TJ; 

○ TK(UIDRC, att_Rm, …, att_
Rf, …, att_

C, …): schema of TK; 

○ att_
Rm: a mandatory attribute is stored in a row table; 

○ att_
Rf: a frequently-accessed-together attribute is stored in a row table; 

○ att_
C

 : an optional/private/seldom-accessed attribute is stored in a column table; 

○ value_
Rm, value_

Rf, value_
C: constant values; 

○ att_*: a certain attribute of an entity table, such as att_
Rm

, att_
Rf or att_

C; 

○  : one of {, , , , , etc.}; 

○ aggregation_operator: MIN, MAX, SUM, COUNT, etc. 

Figure 4.4: General form of a user query 

Table 4.2 gives examples of user queries: Q1 – Q3. 

Table 4.2: Examples of user queries 

Query SQL Statement Explanation 

Q1 SELECT count(*) FROM Patient Count the number of tuples in 

the entity Patient. 

Q2 SELECT UID, PatientName, PatientID, 

PatientBirthDate, EthnicGroup FROM Patient WHERE 

PatientSex = ’M’ AND EthnicGroup LIKE ’%Asian%’ 

View information about UID, 

PatientName, PatientID, 

BirthDate and EthnicGroup of 

male patients and Asian Ethic. 

Q3 SELECT p.UID, p.PatientID, p.PatientName, 

p.PatientBirthDate, p.PatientSex, p.EthnicGroup, 

p.SmokingStatus, s.PatientAge, s.PatientWeight, 

s.PatientSize, i.GeneralNames, i.GeneralValues, q.UID, 

q.SequenceTags, q.SequenceVRs,  q.SequenceNames, 

q.SequenceValues FROM Patient p, Study s, 

GeneralInfoTable i, SequenceAttributes q  

WHERE p.UID = s.UID AND p.UID = i.UID AND  

p.UID = q.UID AND p.PatientSexR = ’M’ AND 

p.SmokingStatus  = ‘NO’ AND s.PatientAge >= x  AND 

q.SequenceNames LIKE ‘%X-ray%’ 

View detail information of X-

ray images of male, non-

smoking and over x-year-old 

patients. 

We introduce the automated design approach for DICOM data in the next section. 
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4.3 Automated Design Approach for DICOM Data 

In Section 4.2, we introduced the expert-based design approach to create data storage 

configurations for DICOM data. In this approach, experts manually decompose the 

entity tables into a number of vertically partitioned tables and then select suitable data 

layouts for them. Unfortunately, in practice, experts may be challenged to manually 

evaluate the similarity relationship among a large number of attributes based on both 

workload- and data-specific information at the same time as well as to determine which 

data layout is suitable for each column group. For this reason, in this section, we 

provide a formal representation of the automated design problem and cost models 

which are used to evaluate the quality of a data storage configuration in terms of 

storage and workload execution costs. All of this will be used as fundamentals to build 

an automated design approach for DICOM data.  

First of all, we present our observations on the mixed use of both vertical 

partitioning and hybrid store to create data storage configurations.  

4.3.1 Observations 

We refer to a data storage configuration of a horizontal table 𝑇 as a set of its vertically 

partitioned tables together with the corresponding data layouts (i.e., row- and column-

oriented data layouts) applied to these tables. Based on given workload- and data-

specific information, a large number of candidate data storage configurations can be 

created for 𝑇. An automated design approach can be used to support decision makers 

(e.g., database designers) in selecting a good data storage configuration with respect 

to expected requirements on storage space demand and workload execution time. 

  

Figure 4.5: Combined use of vertical partitioning and a hybrid store 
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Figure 4.5 shows an example of the combined use of vertical partitioning and a 

hybrid store to create candidate data storage configurations for a horizontal table 𝑇. 

Here, we consider 4 different configurations: (1) 𝐺1: the entire 𝑇 is stored in a single 

row table; (2) 𝐺2: 𝑇 is decomposed into two vertically partition tables, stored in a row 

store; (3) 𝐺3: 𝑇 is stored in single-attribute tables, stored in a row store;  (2) 𝐺4: two 

vertically partition tables of 𝐺2 are merged and stored in a single column table. Unlike 

the DSM layout, shown in Section 3.4.2, from this point henceforth, we assume that a 

column table still keeps null values in rows (like 𝐺4) unless all values of these rows 

have null values.  

Given a workload of 8 queries 𝑞1- 𝑞8, our observations can be described as follows: 

Using Configuration 𝐺1 (just a row table) is beneficial for 𝑞1 because it avoids the 

tuple reconstruction cost. In contrast, using Configuration 𝐺3 (single-attribute tables) 

can help queries 𝑞2, 𝑞3, 𝑞4 and 𝑞5 avoid redundant data accesses because only relevant 

single-attribute tables are read for these queries. Similarly, using Configuration 𝐺2 

(two vertically partitioned tables) is beneficial for two queries 𝑞6 and 𝑞7 because only 

relevant tables are read. However, choosing a suitable configuration for 𝑞8 is 

challenged because this query accesses overlapping attribute sets: 𝑞8 incurs cost of 

redundant data accesses if using Configuration 𝐺1; in contrast, it has to perform 

additional join operations if using Configurations 𝐺2 or 𝐺3. According to these 

observations, our hypothesis is that if merging two vertically partitioned tables, e.g., 

the ones in Configuration 𝐺2, to create a merged table and then store this table in a 

single column store, e.g., the one in Configuration 𝐺4, the performance of a query, e.g., 

𝑞8, will be improved because the query incurs neither irrelevant data access (only 

reading required attributes) nor extra join.  Assume that the tuple reconstruction cost 

of a query is trivial when using a single column table, but this cost is slightly higher 

than that of a single row table. 

The query performance is negatively impacted if the query execution needs to 

perform many join operations or to access irrelevant attributes. Besides, the storage 

space demand of the horizontal table 𝑇 may be varied in different configurations. In 

general, null rows can be removed from vertically partitioned tables. However, 

additional storage space may be required to store the surrogate attribute 𝑈𝐼𝐷 in the 

vertically partitioned tables; this attribute is used to reconstruct result tuples.  

It is not difficult to compute the storage space size of a table by depending on the 

size of its attributes; however, in this study, for simplicity, we assume that the storage 

space size is represented by the total number of data cells of the table (a data cell is 

defined as an intersection point between a row and a column of the table). As such, we 

have assumed that all the attributes of 𝑇 have the same size. In addition, the storage 

space size of a data storage configuration is computed as the total number of data cells 

used to store all of vertically partitioned tables of that configuration. In our future 

work, in order to increase the accuracy of the storage cost estimation, we intend to take 

into account the varied sizes of the attributes in the vertical partitioning process; in 

order to obtain this, the storage space size of a table can be computed as the sum of the 

number of data cells of each attribute multiplied by its corresponding size (in bytes). 

Such a method was introduced in [109]. For instance, the total number of data cells 

used for Configurations 𝐺1, 𝐺2, 𝐺3, and 𝐺4 are 15, 15, 16, and 15, respectively; thus, 

in this example, the vertical partitioning have not reduced the storage space size.  
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In a nutshell, given a horizontal table 𝑇 and a workload, if most of the attributes of  

𝑇 are frequently accessed together by the same queries, storing the entire 𝑇 in a single 

row table will reduce tuple reconstruction cost. In contrast, if each attribute of 𝑇 is 

often accessed separately, storing each attribute of 𝑇 in a single-attribute table will 

reduce I/O cost. If only a few of the attributes of 𝑇 are frequently accessed together by 

the same queries, splitting 𝑇 into multiple vertically partitioned tables and then 

merging some of these tables into column tables may provide a trade-off between the 

I/O cost and the tuple reconstruction cost. Besides the improvement of workload 

performance, if 𝑇 is very sparse, storing 𝑇 in multiple vertically partitioned tables can 

reduce storage space size because many null rows can be removed from these tables.  

In the next section, we present the formulation of the automated design problem. 

4.3.2 Formal Representation 

In this section, we present the formal representation of the automated design problem, 

including representations of workload-specific information, data-specific information 

and objective function used to search the best data storage configuration. 

Workload-specific Information 

Formally, we describe a workload 𝑊 = (𝐴, 𝑄, 𝐴𝑈𝑀, 𝐹) with four components:  

 𝐴 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, … , 𝑎𝑛} is a set of attributes of a horizontal table 𝑇. (𝑈𝐼𝐷 is a 

unique identifier attribute).  

 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑚} is a set of queries executed over 𝑇.  

 𝐴𝑈𝑀 is an Attribute Usage Matrix of size m x n. Each row represents a query and 

each column represents an attribute: if a query 𝑞𝑖 accesses an attribute 𝑎𝑗, the entry 

𝐴𝑈𝑀[𝑖, 𝑗] is equal to 1; otherwise, 𝐴𝑈𝑀[𝑖, 𝑗] is equal to 0. Each query in 𝐴𝑈𝑀 is 

unique, i.e., there are no two queries accessing to the same subset of the attributes.  

 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚} is a set of query frequencies. It consists of a set of total 

frequency counts of the most frequently-used queries in the workload.  

 

 

Figure 4.6: Example of Attribute Usage Matrix and query frequencies 

Figures 4.6(a) and (b) respectively illustrate two data structures 𝐴𝑈𝑀 and 𝐹 of a 

sample workload of a horizontal table 𝑇. This workload consists of 6 queries 𝑞1, 𝑞2, …, 

and 𝑞6 accessing 6 attributes 𝑎1, 𝑎2, …, and 𝑎6. Each query accesses to a subset of the 

attributes with a particular frequency. For instance, 𝑞1 needs to access 5 attributes 𝑎2, 

𝑎3, 𝑎4 , 𝑎5 and 𝑎6, with a frequency of 600. In our study, as default, the attribute 𝑈𝐼𝐷 

is included in all vertically partition tables, thus it is not included in the 𝐴𝑈𝑀. 
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Data-specific Information 

Characteristics of data can be directly derived from data stored in a horizontal table 𝑇. 

Figure 4.7 shows an example of the horizontal table 𝑇 which consists of 10 tuples for 

a set of 7 attributes, 𝐴 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6}. In this table, an empty data cell 

stands for a null value. The data-specific information includes the sparseness of data 

and column groups which simultaneously have non-null values in the same rows. 

These information can be used as inputs for the vertical partitioning in order to 

determine decisions which attributes should be grouped and stored together in a way 

to reduce storage space demand. 

 

Figure 4.7: Example of the horizontal table 𝑇 

Representation of a Data Storage Configuration 

Let 𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"}  denote a set of available data layouts. 

Without loss of generality, we denote a set of candidate data storage configurations for 

the horizontal table 𝑇 as 𝐺 = {𝐺1, 𝐺2, … , 𝐺𝐾}, where 𝐺𝑖   is a candidate data storage 

configuration and 𝐾 is the number of possible candidate data storage configurations. 

Each configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) consists of two components: a set of column groups 

(i.e., vertical partitions) 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧} and a set of data layouts 

 𝐿𝑖 = {𝐿𝑑1
(𝐶𝑖,1), 𝐿𝑑2

(𝐶𝑖,2), … , 𝐿𝑑𝑧
(𝐶𝑖,𝑧)}  applied to those column groups. Here, 

𝐿𝑑𝑥
(𝐶𝑖,𝑥) denotes that the column group 𝐶𝑖,𝑥 is stored in data layout dx, where 𝑑𝑥 ∊ 𝑆. 

The set 𝐶𝑖  is produced as a result of applying a data storage strategy (as presented in 

Section 4.2.2) to the horizontal table 𝑇. Each column group 

𝐶𝑖,𝑥 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, . . . ,   𝑎ℎ} is a subset of the attributes in 𝑇 such that  

∪𝐶𝑖,𝑥∊ 𝐶𝑖
𝐶𝑖,𝑥 = 𝐴 and  𝐶𝑖,𝑥 ∩  𝐶𝑖,𝑦 = {𝑈𝐼𝐷} for any x ≠ y. (The column groups are non-

overlapping, meaning that they share no common attribute except the attribute 𝑈𝐼𝐷.)  

For example, using the horizontal table 𝑇 in Figure 4.7, we can create some data 

storage configurations as follows: Configuration 𝐺1 = (𝐶1, 𝐿1), where 𝐶1 = {𝐶1,1}, 

 𝐶1,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6} and  𝐿1 = {𝐿"𝑟𝑜𝑤−𝑠𝑡𝑜𝑟𝑒"(𝐶1,1)}, means that the 

entire 𝑇 is stored in a single row table.  Alternatively, Configuration 𝐺2 = (𝐶2, 𝐿2), 

where 𝐶2 = {𝐶2,1, 𝐶2,2}, where 𝐶2,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4}, 𝐶2,2 = {𝑈𝐼𝐷, 𝑎5, 𝑎6} 

and 𝐿2 = {𝐿"𝑟𝑜𝑤−𝑠𝑡𝑜𝑟𝑒"(𝐶2,1), 𝐿"𝑐𝑜𝑙𝑢𝑚𝑛−𝑠𝑡𝑜𝑟𝑒"(𝐶2,2)}. This configuration implies that 

𝑇 has been vertically partitioned into two column groups  𝐶2,1 and  𝐶2,2: the first is 

stored in a row table while the second is stored in a column table. 
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Objective Function 

The problem of the automated design can be formulated as follows: Given a horizontal 

table 𝑇 and a workload 𝑊, find a data storage configuration 𝐺𝑖  for 𝑇 in order to 

minimize the value of both cost functions: STORAGE_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖) and 

EXECUTION_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖). The objective function is described as follows: 

{
𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖) → 𝑚𝑖𝑛

𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖) → 𝑚𝑖𝑛
  (4.3.1) 

where the cost 𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖) is the total number of data cells used to store 

all column groups of 𝐺𝑖 while the cost 𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖) is the execution 

cost of all queries in the workload 𝑊 using 𝐺𝑖. 

Each candidate data storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) is produced as the result of 

applying a particular data storage strategy to generate a set of column groups 𝐶𝑖  and a 

set  of corresponding data layouts  𝐿𝑖 applied to 𝐶𝑖. For instance, in Section 4.2.2, we 

introduced the expert-based design approach to achieve such a storage configuration.  

An alternative way to represent the above objective function is to use a cost-benefit 

function. Initially, we create a baseline data storage configuration for the given 

horizontal table 𝑇 by storing all the attributes 𝑈𝐼𝐷, 𝑎1 , 𝑎2, …, and 𝑎𝑛 of 𝑇 in just a 

single row table. This configuration can be represented as 𝐺1 = (𝐶1, 𝐿1), where  

𝐶1 = {𝐶1,1},  𝐶1,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, … , 𝑎𝑛} and  𝐿1 = {𝐿"𝑟𝑜𝑤−𝑠𝑡𝑜𝑟𝑒"(𝐶1,1)}. By this way, 

we can find the best data storage configuration within a set of possible data storage 

configurations 𝐺 = {𝐺1, 𝐺2, … , 𝐺𝐾}, where 𝐾 is the number of possible data storage 

configurations, by estimating cost-benefit of each 𝐺𝑖 compared with the baseline 𝐺1:  

{
𝑆𝑡𝑜𝑟𝑎𝑔𝑒_𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑊, 𝐺𝑖) =  max (0, 𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝑊, 𝐺1) − 𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖))

𝑇𝑖𝑚𝑒_𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑊, 𝐺𝑖) =  max(0, 𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑊, 𝐺1) − 𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖))
  (4.3.2) 

The best data storage configuration is the one giving the most beneficial values in 

terms of both the storage space demand and the workload execution cost. In the next 

section, we show how to estimate the costs. 

4.3.3 Configuration Cost Estimation 

It is less likely that all the attributes of the horizontal table 𝑇 are required once per 

query. In typical cases, only a subset of the attributes in 𝑇 is used once per query. This 

causes irrelevant attribute accesses if 𝑇 is stored in a single row table. Moreover, if 𝑇 

is highly sparse, a large number of null values may result in waste of storage space. 

Although the vertical partitioning of 𝑇 into several tables can help to reduce the 

number of irrelevant attributes accesses as well as null values, this approach may needs 

extra joins to reconstruct result tuples as well as additional storage space for a surrogate 

attribute, e.g., 𝑈𝐼𝐷, added to each vertically partitioned tables. Therefore, selecting a 

data storage configuration should take into consideration of the storage space demand, 

the number of null values, the number of irrelevant attribute accesses and the number 

of extra joins needed to reconstruct result tuples. In general, a data storage 

configuration can be evaluated based on two main costs: storage cost and workload 

execution cost. The mathematical expression of these costs is presented below. 
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Storage Cost  

We estimate the storage cost of a data storage configuration in terms of the number of 

data cells. It is easy to observe that there is a general trend toward the decrease in the 

number of null values if we split the given horizontal table 𝑇 into multiple vertically 

partitioned tables; this is because null rows can be removed from the vertically 

partitioned tables. However, this is followed by adding a surrogate attribute to each 

vertically partitioned table; thus, the storage space demand may be increased if the 

number of removed null values has not been large enough. Therefore, the overall 

storage cost of a data storage configuration needs to include storage space demand 

required for that surrogate attribute.  

 

Figure 4.8: Four difference configurations of the horizontal table 𝑇 

Figure 4.8 re-presents four different data storage configurations 𝐺1, 𝐺2, 𝐺3, and 𝐺4 

of the horizontal table 𝑇, shown in Figure 4.5. If all the attributes of  𝑇 are stored in a 

single row table, i.e., 𝐺1 in Figure 4.8(a), or a single column table, i.e., 𝐺4 in Figure 

4.8(d), the storage cost is the same, i.e., 15 (data cells). If 𝑇 is decomposed into two 

vertically partitioned tables and stored in a row store, i.e., 𝐺2 in Figure 4.8(b), the 

storage cost is 15 (data cells). If 𝑇 is decomposed into four single-attribute tables, 

stored in a row store, i.e., 𝐺3 in Figure 4.8(c), the storage cost is 16 (data cells).  

Without loss of generality, given a horizontal table 𝑇 and its data storage 

configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖), the size of each column group 

𝐶𝑖,𝑥 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, . . . ,   𝑎ℎ}, where  𝐶𝑖,𝑥 ∊ 𝐶𝑖, can be approximately estimated by 

using Formula (4.3.3). This estimation has included the cost to store the surrogate 

attribute 𝑈𝐼𝐷 in  𝐶𝑖,𝑥.  

𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸(𝐶𝑖,𝑥) = ⌈𝐿𝑒𝑛𝑔𝑡ℎ(𝑇) × (1 −

                                                                               𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜(𝐶𝑖,𝑥)) × |𝐶𝑖,𝑥|⌉, (4.3.3) 

where 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇) is the length of 𝑇 and is computed as the number of tuples (rows); 

𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜(𝐶𝑖,𝑥) is the null-ratio and is computed as the number of null rows 

divided by 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇); ⌈ ⌉ is a ceiling function; 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇) × (1 −

𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜(𝐶𝑖,𝑥)) represents the length of 𝐶𝑖,𝑥 after removing all null rows; 

|𝐶𝑖,𝑥| represents the number of attributes of 𝐶𝑖,𝑥 which includes the attribute 𝑈𝐼𝐷. 

Hence,  ⌈𝐿𝑒𝑛𝑔𝑡ℎ(𝑇) × (1 − 𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜(𝐶𝑖,𝑥)) × |𝐶𝑖,𝑥|⌉  gives the total size 

of 𝐶𝑖,𝑥. 

Assume the null ratio of each attribute is independent from others, and the 

distribution of null values within the same attribute is uniform. The null-row ratio of 

the column group 𝐶𝑖,𝑥 can be estimated approximately as follows: 
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𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜(𝐶𝑖,𝑥) = ∏ 𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎𝑘) 𝑎𝑘∈𝐶𝑖,𝑥
 , (4.3.4) 

where 𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎𝑘) is the null ratio of an attribute 𝑎𝑘 with 𝑎𝑘  ≠ 𝑈𝐼𝐷 (the attribute 

UID always has non-null value). 

The storage cost of a data storage configuration 𝐺𝑖 is assimilated to the total 

number of data cells of all column groups  𝐶𝑖,𝑥 of 𝐺𝑖 (after removing all null rows):  

𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺𝑖) = ∑ 𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸(𝐶𝑖,𝑥)

 𝐶𝑖∈𝐺𝑖,
 𝐶𝑖,𝑥∈𝐶𝑖

 

 
(4.3.5) 

Now, we can estimate the reduction in the storage space size of the data storage 

configuration 𝐺𝑖 when compared with the baseline 𝐺1 (where all the attributes of the 

horizontal table 𝑇 are stored in a single row table) by Formula (4.3.6): 

𝑅𝐸𝐷𝑈𝐶𝑇𝐼𝑂𝑁_𝑆𝐼𝑍𝐸(𝐺𝑖, 𝐺1) = (1 −
𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺𝑖)

𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺1)
) × 100 (4.3.6) 

Formula (4.3.6) returns the percentage decrease of the storage space size.  

The above approximate estimation can be used to rapidly estimate the storage cost 

of a data storage configuration without scanning vertically partitioned tables (storing 

data for column groups) because providing an accurate estimate for a large number of 

candidate storage configurations over a large number of attributes may consume time.  

For example, given the horizontal table 𝑇 as shown in Figure 4.8(a), we can 

estimate the storage space size for Configuration 𝐺2, shown in Figure 4.8(b) as 

follows: First of all, based on the horizontal table 𝑇 as shown in Figure 4.8(a), we 

obtain the length of 𝑇 is 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇) = 3 and the null ratios of its attributes are: 

𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎1) = 𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎4) = 1/3; 𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎2) = 0 and 

𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎3) = 2/3. Next, using these values, the null-row ratios of two column 

groups {𝑎1, 𝑎2} and {𝑎3, 𝑎4} of Configuration 𝐺2 can be estimated by Formula (4.3.4): 

 𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜({𝑎1, 𝑎2}) =
1

3
 × 0 = 0. 

 𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜({𝑎3, 𝑎4}) =
2

3
 × 

1

3
 = 

2

9
. 

Then, the storage space size of the above two column groups (including their 

surrogate attribute) can be estimated by Formula (4.3.3): 

 𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸({𝑎1, 𝑎2}) = ⌈3 × (1 − 0) × 3⌉  = 9 (the actual value is 9). 

 𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸({𝑎3, 𝑎4}) =  ⌈3 × (1 −
2

9
) × 3⌉  = 7 (the actual value is 6). 

After that, using the above results, the storage cost of the configuration 𝐺2 can be 

estimated by Formula (4.3.5):  

       𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺2) = 

           𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸({𝑎1, 𝑎2}) + 𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸({𝑎3, 𝑎4}) = 16. 

Finally, we use Configuration 𝐺1 as a baseline configuration. Its storage cost is 15 

(data cells). We can estimate the reduction in the storage space size of 𝐺2 when 

compared with 𝐺1 by using Formula (4.3.6) as follows: 
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𝑅𝐸𝐷𝑈𝐶𝑇𝐼𝑂𝑁_𝑆𝐼𝑍𝐸(𝐺2, 𝐺1) = (1 −
𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺2)

𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺1)
) × 100 = (1 −

16

15
) × 100.

= −7 %. 

The above result implies that the storage cost of 𝐺2 is 7% larger than that of 𝐺1. 

That is, there is no benefit in terms of storage space demand when applying 𝐺2. 

In short, if a data storage configuration is created by applying the vertical 

partitioning and if the number of removed null values is not large enough, that 

configuration would not benefit in terms of storage cost due to the additional storage 

cost required for the surrogate attribute. However, it may benefit from the reduction in 

the query execution time because of avoiding to expensive reconstruction cost and/or 

irrelevant attribute accesses.  

Reconstruction Cost of a Configuration 

Reading Cost: Before measuring the reading cost of a data storage configuration, we 

assume that scanning a data cell needs a uniform cost of 1 unit. This is because we 

target to compare the benefit among different candidate storage configurations rather 

than to obtain accurate estimates of their physical storage sizes.  

Given a horizontal table 𝑇 with a set of attributes 𝐴, a query 𝑞, a data storage 

configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) of 𝑇, let 𝐴𝑞 ⊆ 𝐴 be a set of the attributes that the query 𝑞 

actually requires, and let 𝐶𝑖
𝑞 ⊆ 𝐶𝑖 denote a set of column groups required to answer 𝑞 

if 𝑞 is using 𝐺𝑖, i.e., 𝐶𝑖
𝑞 = {𝐶𝑖,𝑥 ∈ 𝐶𝑖 | 𝐶𝑖,𝑥 ∩ 𝐴𝑞 ≠ ∅}.  

We define a new intersection operation ∩𝐿 between two attribute sets X and Y so 

that it can take into consideration the impact of the data layout 𝑑𝑥 used to store the left 

argument (i.e., X) on the result of this intersection operation: 

𝐿𝑑𝑥
(𝑋) ∩𝐿 𝑌    

     =  {

𝑋 𝑖𝑓 𝑋 𝑖𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛  𝑎 𝑟𝑜𝑤 𝑡𝑎𝑏𝑙𝑒 (𝑖. 𝑒. , 𝑑𝑥 = "row-store") 𝑎𝑛𝑑 𝑋 ∩ 𝑌 ≠ ∅

∅ 𝑖𝑓 𝑋 𝑖𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛  𝑎 𝑟𝑜𝑤 𝑡𝑎𝑏𝑙𝑒 (𝑖. 𝑒. , 𝑑𝑥 = "row-store") 𝑎𝑛𝑑 𝑋 ∩ 𝑌 = ∅
𝑋 ∩ 𝑌 𝑖𝑓 𝑋 𝑖𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛  𝑎 𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑎𝑏𝑙𝑒 (𝑖. 𝑒. , 𝑑𝑥 = "column-store")

 
,  (4.3.7) 

where X stands for a column group stored using the data layout 𝑑𝑥 while Y stands for 

the attributes required by the query 𝑞. Hence, the Formula (4.3.7) will return a set of 

attributes that are actually scanned for answering the query 𝑞. The result is based on 

the data layout used to store X.        

Now, we apply the Formula (4.3.7) to estimate the reading cost for a data storage 

configuration 𝐺𝑖. For each column group 𝐶𝑖,𝑥 ∈ 𝐶𝑖
𝑞 

 of 𝐺𝑖, the number of attributes of 

the column group 𝐶𝑖,𝑥 that is scanned by the query 𝑞 depends on the data layout 𝑑𝑥 

used to store 𝐶𝑖,𝑥 and is expressed by the Formula (4.3.7) as follows: |𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞|. 

Let 𝑟𝑖,𝑥
𝑞

 denote the number of tuples (rows) in 𝐶𝑖,𝑥 that the query 𝑞 has to scan. We 

assume that we do not use indexes and horizontal partitioning, thus all tuples of 

𝐶𝑖,𝑥 need to be read. In this case, 𝑟𝑖,𝑥
𝑞

 is exactly equal to the number of rows in 𝐶𝑖,𝑥, i.e., 

𝑟𝑖,𝑥
𝑞 = 𝑟𝑖,𝑥. Additionally, the surrogate attribute is always added to each column group 

𝐶𝑖,𝑥, thus the additional reading cost required for this attribute is also included into the 
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total reading cost. The reading cost required for the query 𝑞 to read 𝐶𝑖,𝑥 is 

(|𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞|) × 𝑟𝑖,𝑥

𝑞
. 

 

Figure 4.9: Reading effectiveness in (a) a column store and (b) a row store 

Figure 4.9 shows an example of reading effectiveness. Here, the given horizontal 

table consists of 5 attributes 𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4 and 3 tuples (this horizontal table is the 

same as the one given in Figure 4.5); it contains 15 data cells. Assume that a query 𝑞 

needs to access only 3 attributes 𝑈𝐼𝐷, 𝑎1 and 𝑎2. If this table is stored in a single 

column table, as shown in Figure 4.9(a), only 9 data cells are read to answer 𝑞 while 

the remaining data cells are ignored. In contrast, if it is stored in a single row table, as 

shown in Figure 4.9(b), all of the 15 data cells are read (𝑞 has to access all the 

attributes, including two irrelevant attributes 𝑎3 and 𝑎4).  

The total reading cost for the query 𝑞 when using the data storage configuration 

𝐺𝑖 = (𝐶𝑖, 𝐿𝑖)  is estimated as follows: 

𝑅𝐸𝐴𝐷_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖) = ∑ [(|𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞|) × 𝑟𝑖,𝑥

𝑞
 ]𝐶𝑖∈𝐺𝑖

 ,𝐶
𝑖
𝑞

∈𝐶𝑖,
 𝐶𝑖,𝑥∈𝐶

𝑖
𝑞

, 𝐿𝑑𝑥∊𝐿𝑖   
 , (4.3.8) 

where 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧},  𝐿𝑖 = {𝐿𝑑1
(𝐶𝑖,1), 𝐿𝑑2

(𝐶𝑖,2), … , 𝐿𝑑𝑧
(𝐶𝑖,𝑧)}, 𝑑𝑥 ∈ 𝑆 and 

𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"}.  

Formula (4.3.8) computes the total reading cost for the query 𝑞 when the data 

storage configuration 𝐺𝑖 is used. It shows clearly that the reading effectiveness is 

achieved mainly when a column store is used:  

 If 𝐶𝑖,𝑥 is stored using a row table, all the attributes of 𝐶𝑖,𝑥 have to be read by 𝑞: 

|𝐿"𝑟𝑜𝑤−𝑠𝑡𝑜𝑟𝑒"(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞| = |𝐶𝑖,𝑥|. 

 If 𝐶𝑖,𝑥 is stored using a column table, only the relevant attributes of 𝐶𝑖,𝑥 are read by 

𝑞: |𝐿"𝑐𝑜𝑙𝑢𝑚𝑛−𝑠𝑡𝑜𝑟𝑒"(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞| ≤ |𝐶𝑖,𝑥|. 

Tuple Reconstruction Cost: As mentioned earlier, when a user write a query 𝑞, names 

of entity tables (e.g., Patient, Study, Series, etc.) are used in 𝑞. We refer to these tables 

as horizontal tables.  Then, each horizontal table may be decomposed into a number 

of vertically partitioned tables. As a result, if the query 𝑞 needs to access attributes 

across several column groups, i.e., |𝐶𝑖
𝑞| > 1, HYTORMO has to perform additional 

join operations to reconstruct the original tuples from the relevant vertically partitioned 

tables. Thus, the tuple reconstruction cost needs to be taken into consideration when 

selecting a data storage configuration.  

HYTORMO will automatically rewrite the query 𝑞 into a sequence of inner and/or 

left-outer joins between relevant vertically partitioned. The attribute 𝑈𝐼𝐷 will be used 

as a join attribute to join the vertically partitioned tables together. A similar approach 
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has been presented by B. Cui et al. [14]. In general, given a data storage configuration 

𝐺𝑖 of the horizontal table 𝑇 and a set of column groups 𝐶𝑖
𝑞
 that is required to answer 

the query 𝑞, the query 𝑞 can be easily translated into a relational algebraic expression 

as given in Formula (4.3.9): 

𝑞 = π𝑎1,…,𝑎𝑚
[π𝑈𝐼𝐷(𝑇) ⟕  (⟕𝑥=1

|𝐶𝑖
𝑞

|
σ𝑃𝑖,𝑥

(𝐶𝑖,𝑥) )], (4.3.9) 

where the selection operation σ𝑃𝑖,𝑥
(𝐶𝑖,𝑥) returns only tuples of the table storing data 

for the column group 𝐶𝑖,𝑥 for which the predicate (or condition) 𝑃𝑖,𝑥 is fulfilled. The 

projection operation π𝑈𝐼𝐷(𝑇) returns a list of all 𝑈𝐼𝐷s of the horizontal table 𝑇. 

However, this projection operation may not be required if this join sequence begins 

with a column group 𝐶𝑖,𝑥 containing mandatory attributes of DICOM data. This is 

because, in this case, 𝐶𝑖,𝑥 already consists of a list of all 𝑈𝐼𝐷s. The projection operation 

π𝑎1,…,𝑎𝑚
[… ] returns all tuples of the query result, where only the attributes 𝑎1, … , 𝑎𝑚 

listed behind the keyword SELECT of the query 𝑞 appear. 

For example, given the data storage configuration 𝐺3 of the horizontal table 𝑇, as 

given in Figure 4.8(c), the query 𝑞 = SELECT 𝑎1, 𝑎2, 𝑎4 FROM 𝑇 can be translated 

into a relational algebraic expression as follows: 

𝑞 = π𝑎1,𝑎2 ,𝑎4 (π𝑈𝐼𝐷(𝑇) ⟕  𝐶3,1 ⟕  𝐶3,2 ⟕  𝐶3,4 ), 

where 𝐶3,1, 𝐶3,2 and  𝐶3,4, respectively, represent three row tables storing data of three 

column groups {𝑈𝐼𝐷, 𝑎1},  {𝑈𝐼𝐷, 𝑎2} and {𝑈𝐼𝐷, 𝑎4} of 𝐺3.  Here, the result tuples of 

𝑞 are reconstructed by using a sequence of left-outer joins.  

A complete estimate for the tuple reconstruction cost is quite complex due to a 

mixed use of both inner and left-outer joins in the same join sequence. Furthermore, 

the tuple reconstruction cost is aimed to be used for comparing several data storage 

configurations at the time the query execution plan may not well defined. Therefore, 

the scope of our study is limited to two cases: (1) left-outer join operations in a join 

sequence can be rewritten as inner join operations and (2) left-deep plans are used. 

(These two cases are mentioned in Chapter 5.) With these two cases, given a data 

storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) and a query 𝑞 that needs to access a set of relevant 

column groups 𝐶𝑖
𝑞
, the tuple reconstruction cost is estimated by Formula (4.3.10): 

𝑅𝐸𝐶𝑂𝑁𝑆𝑇𝑅𝑈𝐶𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖)

= ∑ 𝐽𝑂𝐼𝑁_𝑆𝐼𝑍𝐸(𝐶𝑖,1, 𝐶𝑖,2, … , 𝐶𝑖,|𝐶𝑖
𝑞

|)

𝐶𝑖∈𝐺𝑖
 ,𝐶

𝑖
𝑞

∈𝐶𝑖
 ,𝐶𝑖,𝑥∈𝐶

𝑖
𝑞

 (4.3.10) 

The tuple reconstruction cost is estimated as the total size of the intermediate 

results yielded by the execution of a sequence of join operations applied on the relevant 

vertically partitioned tables. The size of the intermediate result of a join operation 

between two vertically partitioned tables storing two column groups 𝐶𝑖,𝑥 and 𝐶𝑖,𝑦 can 

be estimated by Formula (4.3.11): 

𝐽𝑂𝐼𝑁_𝑆𝐼𝑍𝐸(𝐶𝑖,𝑥 , 𝐶𝑖,𝑦) = 

            (|𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞| × 𝑟𝑖,𝑥

𝑞
) × (|𝐿𝑑𝑦

(𝐶𝑖,𝑦) ∩𝐿 𝐴𝑞| × 𝑟𝑖,𝑦
𝑞

) × Sel(𝐶𝑖,𝑥, 𝐶𝑖,𝑦) 
,     (4.3.11) 
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where |𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞| × 𝑟𝑖,𝑥

𝑞
 and |𝐿𝑑𝑦

(𝐶𝑖,𝑦) ∩𝐿 𝐴𝑞| × 𝑟𝑖,𝑦
𝑞

 denote the sizes of inputs 

that are actually read from two vertically partitioned tables storing two column groups 

𝐶𝑖,𝑥 and 𝐶𝑖,𝑦, respectively; 𝑑𝑥  and 𝑑𝑦 ∈ 𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"} 

(see Formula (4.3.7)) are data layouts used to store 𝐶𝑖,𝑥 and 𝐶𝑖,𝑦, respectively. We 

assume that all tuples (rows) of 𝐶𝑖,𝑥 and 𝐶𝑖,𝑦 will be read by 𝑞, i.e., 𝑟𝑖,𝑥
𝑞 = 𝑟𝑖,𝑥 and  

𝑟𝑖,𝑦
𝑞 = 𝑟𝑖,𝑦, respectively. 𝑆𝑒𝑙(𝐶𝑖,𝑥, 𝐶𝑖,𝑦) represents the join selectivity associated with 

two vertically partitioned tables storing 𝐶𝑖,𝑥 and 𝐶𝑖,𝑦.  

When a query only requires data from a single column group, the tuple 

reconstruction cost is zero. Let us now consider the case where the query needs to 

access multiple column groups. As mentioned earlier, the reading cost for the query 𝑞 

to read all tuples of the column group 𝐶𝑖,𝑥 is (|𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞|) × 𝑟𝑖,𝑥

𝑞
, where 

|𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞| represents the number of attributes accessed from 𝐶𝑖,𝑥. Therefore, 

the tuple reconstruction cost of the query 𝑞 when applying data storage configuration 

𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) can be rewritten in detail as follows: 

𝑅𝐸𝐶𝑂𝑁𝑆𝑇𝑅𝑈𝐶𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖)

= {
∑ ∏[(|𝐿𝑑𝑥

(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞|) × 𝑟𝑖,𝑥
𝑞

] ×

𝑦

𝑥=1

∏ Sel(𝐶𝑖,𝑡, 𝐶𝑖,𝑥)

𝑡<𝑥𝐶𝑖∈𝐺𝑖
 ,𝐶𝑖

𝑞
∈𝐶𝑖

 ,𝐶𝑖,𝑥∈𝐶𝑖
𝑞

,𝑦=2..|𝐶𝑖
𝑞

|, 𝐿𝑑𝑥∈ 𝐿𝑖

 𝑖𝑓 |𝐶𝑖
𝑞

| > 1

0                                               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 
, (4.3.12) 

where 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧},  𝐿𝑖 = {𝐿𝑑1
(𝐶𝑖,1), 𝐿𝑑2

(𝐶𝑖,2), … , 𝐿𝑑𝑧
(𝐶𝑖,𝑧)}, 𝑑𝑥 ∈ 𝑆, 

𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"}. 

Using Formulas (4.3.8) and (4.3.12), the execution cost of the query 𝑞 when using 

the configuration 𝐺𝑖 is denoted by the cost function 𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖):  

𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖)

= 𝑅𝐸𝐴𝐷_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖) + 𝑅𝐸𝐶𝑂𝑁𝑆𝑇𝑅𝑈𝐶𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖) 
(4.3.13) 

The execution cost of a workload 𝑊 when applying the configuration 𝐺𝑖 can be 

estimated by adding the execution cost of each query 𝑞 in this workload as follows:  

𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(W, 𝐺𝑖) = ∑ 𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖)

𝑞∈𝑊

 (4.3.14) 

Intuitively, the workload execution cost when using a data storage configuration 

can be reduced when the storage cost, the number of irrelevant attributes and the 

number of relevant column groups are reduced. Relying on how sparse the given 

horizontal table is and how often the attributes of this table are frequently accessed 

together, an automated design approach can vertically partition this table into multiple 

tables of various widths, and suggest suitable data layouts for them. A good data 

storage configuration needs to reduce both the storage space demand and the workload 

execution time.  

However, the solution search space for an optimal data storage configuration that 

can minimize both storage cost and execution cost, as shown in Formula (4.3.1), is 

very large due to the need of exploring all possible combinations of the column groups 

and the data layouts. In practice, it is infeasible to discover all possible data storage 

configurations. To overcome this limitation, in the next section, we propose a new 
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hybrid automated design framework that uses a heuristic approach to assist experts in 

rapidly obtaining a good data storage configuration for a given horizontal table. 

4.4 Hybrid Automated Design Framework   

As mentioned in Section 3.5.1, some studies proposed different algorithms to design 

schemas for sparse datasets such as HoVer approach [14], data-centric approach [15], 

wide-table approach [16]. These algorithms have benefits in reducing the search space 

of solutions while automatically finding schemas from sparse datasets. However, they 

still exist some limitations: First, they do not distinguish clearly between the impact of 

workload- and data-specific information on the quality of vertical partitioning results. 

The reason is that they are typically based on an assumption that co-occurring 

attributes (i.e., having non-null values in the same rows of a given horizontal table) are 

also frequently accessed together by the same queries. However, this assumption does 

not strictly hold in the context of DICOM data where many non-null attributes may 

not be frequently accessed together and vice versa. Second, they also assume that all 

the vertical partitioning results will be stored using the same data layout, e.g., a row-

oriented data layout, instead of both row- and column-oriented data layouts. To 

overcome these limitations, we propose a new hybrid automated design framework, 

called HADF.  

4.4.1 Overview of the Framework 

In this section, we introduce HADF that is a heuristic approach using both workload- 

and data-specific information to automatically produce data storage configurations for 

DICOM data. For this reason, we say that HADF is a workload- and data-based 

automated design approach.  

Figure 4.10 shows an overall HADF that uses given inputs to perform two phases, 

namely clustering and merging-selecting, to automatically generate a candidate data 

storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) that consists of a set of column groups  

𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧} and a set of data layouts  

𝐿𝑖 = {𝐿𝑑1
(𝐶𝑖,1), 𝐿𝑑2

(𝐶𝑖,2), … , 𝐿𝑑𝑧
(𝐶𝑖,𝑧)} applied for these column groups. 𝐿𝑑𝑥

(𝐶𝑖,𝑥) 

represents that a column group 𝐶𝑖,𝑥 is stored by using a data layout dx, where 𝑑𝑥 ∊ 𝑆 

and 𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"}. 

To achieve a candidate configuration 𝐺𝑖, three groups of inputs are  required for 

HADF: (1) Workload-specific inputs include AUM (Attribute Usage Matrix) and F 

(query frequencies). (2) Data-specific input includes the horizontal table 𝑇. (3) 

Parameters include a weight 𝛼 for prioritizing similarity measures, a threshold 𝛽 for 

clustering attributes, a threshold 𝜃 for merging a pair of clusters together, and a 

threshold 𝜆 for selecting a suitable data layout. 
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Figure 4.10: Overview of HADF 

Using the above inputs, HADF, in turn, performs two phases clustering and 

merging-selecting as follows. 

 Clustering Phase: This phase aims at decreasing storage space demand (by 

reducing null values) and improving query performance (by reducing irrelevant 

attribute accesses). In order to achieve these aims, the clustering phase takes into 

consideration the combined impact of both workload- and data specific 

information on the quality of vertical partitioning results. First, we compute two 

similarity measures Attribute Access Similarity and Attribute Density Similarity 

between every pair of the attributes of the given horizontal table 𝑇. The former 

measure will capture the workload-specific information, while the later measure 

will capture the data-specific information. The Attribute Access Similarity 

between two attributes is computed using information about attribute usage, given 

in Attribute Usage Matrix (𝐴𝑈𝑀) and query frequencies (𝐹). Attribute Access 

Similarity Matrix (AASM) is built to represent the Attribute Access Similarity of 

every pair of the attributes. In general, two attributes has a high value of the 

Attribute Access Similarity if they are frequently accessed together in the same 
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queries. On the other hand, the Attribute Density Similarity is computed by 

exploiting the information about co-occurrence of two attributes, shown in the 

given horizontal table 𝑇; Attribute Density Similarity Matrix (ADSM) is built to 

represent the Attribute Density Similarity of every pair of the attributes. Two 

attributes has a high value of the Attribute Density Similarity if they 

simultaneously occur (i.e., non-null values) in all (or most) rows in 𝑇. Next, the 

Hybrid Similarity between each pair of attributes is computed by combining their 

Attribute Access Similarity and Attribute Density Similarity with the weight 𝛼. 

Hybrid Similarity Matrix (HSM) is built to represent the Hybrid Similarity between 

every pair of the attributes. Finally, using this HSM, the clustering phase will 

cluster the attributes into subspaces (i.e., column groups) so that the Hybrid 

Similarity between every pair of attributes in the same subspace is greater than or 

equal to the threshold 𝛽. (We say that all the attributes in the same subspace are 

similar with each other). The output of the clustering phase is a set of resulting 

column groups 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧}.  

 Merging-Selecting Phase: This phase aims at further improving the query 

performance by reducing both the tuple reconstruction cost (by reducing the 

number of additional joins) and the number of irrelevant attribute accesses. To 

achieve these, the underlying solution idea is to take into consideration the use of 

a hybrid store instead of just a row store or a column store. The resulting column 

groups yielded by the clustering phase are used as an initial input for this phase. 

Additionally, by the default, at initial time, all these column groups are regarded 

as using a row store. The merging-selecting phase begins with the computation of 

Inter-Cluster Similarity depending on the Attribute Access Similarity. It measures 

the overlapping access ratio between every pair of column groups (how often two 

column groups are simultaneously accessed by the same queries). A pair of column 

groups are chosen and merged together to create a new column group if their Inter-

Cluster Similarity is greater than or equal to the threshold 𝜃. Furthermore, a column 

group is stored in a row store if its Intra-Cluster Similarity that measures the 

attribute access ratio to the same column group (over the overall workload) is 

greater than or equal to the threshold 𝜆; otherwise, it is stored in a column store. 

As illustrated in Figure 4.10, two column groups 𝐶𝑖,2 and 𝐶𝑖,3 are merged into a 

new column group 𝐶𝑖,2.3. Then,  𝐶𝑖,2.3 is stored in a column store. This procedure 

is repeated similarly until all pairs of the column groups are considered. The output 

of the merging-selecting phase is a candidate data storage configuration  

𝐺𝑖 = (𝐶𝑖, 𝐿𝑖). For example, two components 𝐶𝑖 and  𝐿𝑖 in Figure 4.10 are 

represented as follows: 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧}, and 

 𝐿𝑖 = {𝐿"row-store"(𝐶𝑖,1), … , 𝐿"𝑐𝑜𝑙𝑢𝑚𝑛-store"(𝐶𝑖,23), … , 𝐿"row-store"(𝐶𝑖,𝑧)}. 

In the followings, we provide more details about four parameters used by HADF:  

𝛼  (weight of similarity), 𝛽  (clustering threshold), 𝜃 (merging threshold) and 𝜆 (data 

layout threshold).  

 𝛼 ranges from 0 to 1. It is used in the clustering phase to control the combined 

impact of the Attribute Access Similarity and the Attribute Density Similarity on 

the Hybrid Similarity between two attributes ax and ay:  𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) =
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α × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) + (1 − α) × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦). 

As such, the higher value 𝛼 gets, the more impact of the Attribute Access Similarity 

on the clustering result and vice-versa. 

 𝛽 ranges from 0 to 1. It is a clustering threshold used in the clustering phase. It is 

regarded as a threshold of similarity degree between two attributes (in terms of the 

Hybrid Similarity). The lower value 𝛽 gets, the larger number of attributes (with 

low similarity degree) each resulting cluster can have and vice-versa.  

 𝜃 ranges from 0 to 1. It is a merging threshold used in the merging-selecting phase. 

It indicates how often two clusters are accessed together by the same queries in a 

given workload. When the Inter-Cluster Access Similarity of two clusters has a 

value of 0, it means that these two clusters have not been accessed together by any 

query; in contrast, a value of 1 indicates that these two clusters are always used 

together by all the queries. In general, if two clusters are frequently accessed 

together by the majority of the queries, their Inter-Cluster Access Similarity will 

be high; in this case, they should be merged into a new cluster to reduce the number 

of additional joins. We use the threshold 𝜃 for the Inter-Cluster Access Similarity 

to indicate whether two clusters will be merged together or not.  

 𝜆 ranges from 0 to 1. It is a data layout threshold used in the merging-selecting 

phase. It indicates how often the attributes of the same cluster are accessed together 

by the same queries in a given workload. If all (or most) attributes of a cluster are 

frequently accessed together, the value of the Intra-Cluster Access Similarity will 

be high, thus the cluster should be stored in a row table in order to reduce the tuple 

reconstruction cost; otherwise, it should be stored in a column table in order to 

reduce irrelevant attribute accesses. We apply the threshold 𝜆 for the Intra-Cluster 

Access Similarity to determine which data layout will be applied to a cluster. 

To deal with the evolution of data (i.e., adding new attributes), new attributes can 

be stored temporarily in a separated column group. After that, HADF can be used to 

determine where to store them. However, this work is beyond the scope of this thesis.  

In the following section, we present how to compute the similarity measures. 

4.4.2 Similarity Measures 

In this section, we present in detail the mathematic formalization of the used similarity 

measures.  These similarity measures are computed using the following inputs:  

 The workload-specific inputs include components used to represent information 

about a workload. A workload 𝑊 = (𝐴, 𝑄, 𝐴𝑈𝑀, 𝐹) contains the following 

components:  (1) 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} is a set of attributes of a horizontal table 𝑇. 

(2) 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑚} is a set of queries. (3) 𝐴𝑈𝑀 is an Attribute Usage Matrix 

of size m × n. (4) 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚} represents a set of total frequency counts 𝑓𝑖’s 

of queries 𝑞𝑖’s. 

 The data-specific input includes the horizontal table 𝑇.  
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Attribute Access Similarity  

We define the notion of Attribute Access Similarity between two attributes 𝑎𝑥 and 𝑎𝑦 

based on the Jaccard’s coefficient [110, 111] as follows:   

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦)

=      
∑ [(𝐴𝑈𝑀[𝑖][𝑎𝑥] ⋀ 𝐴𝑈𝑀[𝑖][𝑎𝑦]) × 𝑓𝑖]𝑚

𝑖=1

∑ (𝐴𝑈𝑀[𝑖][𝑎𝑥] × 𝑓𝑖)𝑚
𝑖=1 − ∑ [(𝐴𝑈𝑀[𝑖][𝑎𝑥] ⋀ 𝐴𝑈𝑀[𝑖][𝑎𝑦]) × 𝑓𝑖]𝑚

𝑖=1 + ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑦] × 𝑓𝑖)𝑚
𝑖=1

 
,   (4.4.1) 

where ∧ is a binary bitwise AND operator and 𝑚 represents the number of queries in 

the given workload W. An entry 𝐴𝑈𝑀[𝑖][𝑎𝑥]  (resp.  𝐴𝑈𝑀[𝑖][𝑎𝑦]) indicates whether 

the attribute 𝑎𝑥 (resp. 𝑎𝑦) is accessed by the query 𝑞𝑖 or not. In particular, if the 

attribute 𝑎𝑥 (resp. 𝑎𝑦) is accessed by the query 𝑞𝑖, 𝐴𝑈𝑀[𝑖][𝑎𝑥] (resp. 𝐴𝑈𝑀[𝑖][𝑎𝑦]) is 

equal to 1; otherwise, 𝐴𝑈𝑀[𝑖][𝑎𝑥] (resp. 𝐴𝑈𝑀[𝑖][𝑎𝑦]) is equal to 0. m represents the 

number of queries in the given workload W. Hence, ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑥] × 𝑓𝑖)𝑚
𝑖=1  (resp. 

∑ (𝐴𝑈𝑀[𝑖][𝑎𝑦] × 𝑓𝑖)
𝑚
𝑖=1 ) represents the total number of times in which the attribute 𝑎𝑥 

(resp. 𝑎𝑦) is accessed by all the queries. ∑ [(𝐴𝑈𝑀[𝑖][𝑎𝑥] ⋀ 𝐴𝑈𝑀[𝑖][𝑎𝑦]) × 𝑓𝑖]𝑚
𝑖=1  

represents the total number of times in which both attributes 𝑎𝑥 and 𝑎𝑦 are accessed 

simultaneously by all the queries. ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑥] × 𝑓𝑖)
𝑚
𝑖=1 −

∑ [(𝐴𝑈𝑀[𝑖][𝑎𝑥] ⋀ 𝐴𝑈𝑀[𝑖][𝑎𝑦]) × 𝑓𝑖]𝑚
𝑖=1 + ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑦] × 𝑓𝑖)𝑚

𝑖=1  is the total 

number of times in which at least one of the two attributes 𝑎𝑥 and 𝑎𝑦 is accessed. In 

general, we can depict the relationship among three components, ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑥] ×𝑚
𝑖=1

𝑓𝑖), ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑦] × 𝑓𝑖)𝑚
𝑖=1  and ∑ [(𝐴𝑈𝑀[𝑖][𝑎𝑥] ⋀ 𝐴𝑈𝑀[𝑖][𝑎𝑦]) × 𝑓𝑖]𝑚

𝑖=1 , in a Venn 

diagram as shown in Figure 4.11. 

 

Figure 4.11: Venn diagram 

Therefore, the Attribute Access Similarity is defined as the ratio between the total 

number of times in which a pair of attributes 𝑎𝑥 and 𝑎𝑦 are simultaneously accessed 

by the same queries 𝑞𝑖’s in the workload 𝑊 and the total number of times in which at 

least one of the two attributes is accessed. Its value ranges from 0 to 1. It returns a 

value of 1 if two attributes 𝑎𝑥 and 𝑎𝑦 are always accessed together by the same queries 

and 0 if these two attributes have never been accessed together by any query. 

Using Formula (4.4.1), we construct the Attribute Access Similarity Matrix, AASM 

∊ ℝ|A|×|A|, to represent the Attribute Access Similarity of all pairs of the attributes. 

Attribute Density Similarity 

Similarly to the Attribute Access Similarity, we also define Attribute Density Similarity 

based on the Jaccard’s Coefficient as follows:  
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𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦)

=
∑ (𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑥]) ⋀ 𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑦]))

|𝑇|
𝑖=1

∑ 𝑇𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑥]) 
|𝑇|

𝑖=1 − ∑ (𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑥]) ⋀ 𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑦]))
|𝑇|

𝑖=1 + ∑ 𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑦]) 
|𝑇|

𝑖=1

 
,  (4.4.2) 

where 𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑥]) (resp. 𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑦])) represents a Boolean 

function which returns 1 if the attribute 𝑎𝑥 (resp. 𝑎𝑦) in i-th row of the horizontal table 

𝑇 has a non-null value; otherwise, 0. We use |𝑇| to denote the number of rows in 𝑇.  

Therefore, the Attribute Density Similarity is defined as the ratio of the total 

number of rows in which both attributes 𝑎𝑥 and 𝑎𝑦 simultaneously have non-null 

values and the total number of rows in which at least one of these two attributes has a 

non-null value. Its value ranges from 0 to 1. It returns a value of 1 when both two 

attributes 𝑎𝑥 and 𝑎𝑦  always co-occur (i.e., having non-null values) in the same rows 

of 𝑇 and 0 when they have never co-occurred in any row of 𝑇. 

Using Formula (4.4.2), we construct the Attribute Density Similarity Matrix ADSM 

∊ ℝ|A|×|A| to represent the Attribute Density Similarity of all pairs of the attributes. 

Hybrid Similarity 

We propose to measure the Hybrid Similarity between two attributes 𝑎𝑥 and 𝑎𝑦 by 

using a weighted combination between the Attribute Access Similarity and the 

Attribute Density Similarity of these two attributes as follows: 

𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) = α × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦)  +  

 (1 − α) × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) 
,    (4.4.3) 

where 𝛼  is a user-specified weight parameter that controls the combined impact of  the 

Attribute Access Similarity and the Attribute Density Similarity on the result of the 

clustering phase. Its value is between 0 and 1.   

Now, we can construct the Hybrid Similarity Matrix, HSM ∊ ℝ|A|×|A|, to represent 

the Hybrid Similarity of all pairs of the attributes as follows: 

𝐻𝑆𝑀 = α × 𝐴𝐴𝑆𝑀 +  (1 − α) × 𝐴𝐷𝑆𝑀 (4.4.4) 

The matrix HSM is used in the clustering phase, as shown in Figure 4.10. 

Intra- and Inter-cluster Access Similarity  

The Intra-Cluster Access Similarity of a single cluster  𝐶𝑖,𝑢 of a data storage 

configuration 𝐺𝑖 is defined as an average access similarity of all pairs of the attributes 

within this cluster: 

𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝐶𝑖,𝑢)                

     = {

∑ 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦)𝑎𝑥∈𝐶𝑖,𝑢, 𝑎𝑦∈𝐶𝑖,𝑢,   𝑥≠𝑦  

|𝐶𝑖,𝑢| × (|𝐶𝑖,𝑢| − 1)
, 𝑖𝑓 |𝐶𝑖,𝑢| > 1

1,           𝑖𝑓 |𝐶𝑖,𝑢| = 1

 
(4.4.5) 

The value of the Intra-Cluster Access Similarity ranges from 0 to 1. We set the 

Intra-Cluster Access Similarity to 1 if 𝐶𝑖,𝑢 contains only one attribute, i.e., |𝐶𝑖,𝑢| = 1.  



HYTORMO and HADF 
 

    81 

 

The Inter-Cluster Access Similarity between two clusters 𝐶𝑖,𝑢 and 𝐶𝑖,𝑣 of a data 

storage configuration 𝐺𝑖  is computed as the average of the total access similarity over 

every pair of the attributes between these two clusters:  

𝐼𝑛𝑡𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝐶𝑖,𝑢, 𝐶𝑖,𝑣)

=
∑ 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦)   𝑎𝑥∈𝐶𝑖,𝑢, 𝑎𝑦∈𝐶𝑖,𝑣 

|𝐶𝑖,𝑢| × |𝐶𝑖,𝑣|
, 

(4.4.6) 

where 𝐶𝑖,𝑢 ≠  𝐶𝑖,𝑣. 

Similarly to the Intra-Cluster Access Similarity, the value of the Inter-Cluster 

Access Similarity ranges from 0 to 1.  

The Intra-Cluster Access Similarity and the Inter-Cluster Access Similarity are 

used in the merging-selecting phase, as shown in Figure 4.10. Because the goal of this 

phase is to improve the query performance by reducing the number of joins and the 

number of irrelevant attribute accesses, we only use the Attribute Access Similarity 

between every pair of the attributes (given in the matrix AASM) to compute these two 

similarity measures.  

The Intra-Cluster Access Similarity and the Inter-Cluster Access Similarity have 

been widely applied to determine the quality of a clustering result. In general, the 

objective of the clustering is to maximize the Intra-Cluster Access Similarity and 

minimize the Inter-Cluster Access Similarity [112]. By applying these measures, in the 

following section, we describe the implementation of HADF.  

4.4.3 Implementation of the Framework 

HADF applies algorithms to produce data storage configurations from given inputs. 

The implementation of HADF is described through five algorithms, Algorithms 1 – 5, 

to compute inputs and to perform two phases clustering and merging-selecting. 

Algorithm 1: Generating a Candidate Storage Configuration 

Algorithm 1: GenerateStorageConfiguration 

 Input : 𝐴𝑈𝑀: Attribute Usage Matrix; 𝐹: Query frequencies; 𝑇: Horizontal table; 

𝑆: A set of available data layouts; 𝛼: Weight parameter; 

𝛽: Clustering threshold; 𝜃: Merging threshold; 𝜆: Data layout threshold;  

n: Number of attributes; 

Output : 𝐺𝑖: A candidate data storage configuration 𝐺𝑖, consisting of column groups and 

their corresponding data layouts; 

 1: AACM = ConstructAttributeAccessCorrelationMatrix(𝐴𝑈𝑀, m, n , 𝐹); 

 2: ADCM = ConstructAttributeDensityCorrelationMatrix(𝑇, m, n); 

 3: AASM = ConstructAttributeAccessSimilarityMatrix(𝐴𝑈𝑀, m, n, 𝐹); 

 4: ADSM = ConstructAttributeDensitySimilarityMatrix(𝑇, m, n); 

 5: HSM = ConstructHybridSimilarityMatrix(AASM, ADSM, n); 

 6: 𝐶𝑖  = ClusterAttributes(AACM, ADCM, HSM, 𝛼, 𝛽, n); 

 7: 𝐺𝑖  = MergeAndSelectStores(𝐶𝑖, 𝑆, AASM,  𝜃, 𝜆, n); 

 8: return 𝐺𝑖; 

Algorithm 1 is implemented in the function GenerateStorageConfiguration(). It 

computes the inputs related to workload- and data-specific information and calls other 
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functions to perform two phases clustering and merging-selecting. Its pseudo code is 

described as follows: First of all, the function ConstructAttributeAccessCorrelation-

Matrix() (line 1) is performed to create the Attribute Access Correlation Matrix 

(AACM) that describes the correlation between every pair of attributes in terms of the 

number of times in which two attributes are simultaneously accessed.  Next, the 

function ConstructAttributeDensityCorrelationMatrix() (line 2) is called to compute 

the Attribute Density Correlation Matrix (ADCM) that describes the correlation 

between every pair of attributes in terms of the number of times in which two attributes 

simultaneously have non-null values. Then, Algorithm 1 calls two functions 

ConstructAttributeAccessSimilarityMatrix() (line 3) and ConstructAttributeDensity-

SimilarityMatrix() (line 4) in order to respectively compute two matrices Attribute 

Access Similarity Matrix (AASM) and Attribute Density Similarity Matrix (ADSM), 

which present the similarity between every pair of the attributes in terms of the 

Attribute Access Similarity and the Attribute Density Similarity. After that, these two 

matrices are combined to construct the Hybrid Similarity Matrix (HSM) (line 5).  

Following that, Algorithm 1 employs the function ClusterAttributes() (line 6) to 

perform the clustering phase which uses a clustering threshold 𝛽 and the matrix HSM 

to group the attributes of the given horizontal table 𝑇 into clusters such that the Hybrid 

Similarity between every pair of the attributes in the same cluster is greater than or 

equal to the given clustering threshold 𝛽. By this way, the function ClusterAttributes() 

will return a set of resulting clusters 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧}. Finally, Algorithm 1 

calls the function MergeAndSelectStores() (line 7) to perform the merging-selecting 

phase which depends on the Inter-Cluster Access Similarity between two clusters in 𝐶𝑖 

and the given merging threshold 𝜃 to determine which pair of clusters is merged 

together to create a new cluster.  This procedure is repeated to consider every pair of 

clusters in 𝐶𝑖. After that, the merging-selecting phase depends on the Intra-Cluster 

Access Similarity and the given data layout threshold 𝜆 to decide whether a cluster 

will be stored in a row or a column store. The function MergeAndSelectStores() returns 

a candidate data storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖), including a set of clusters 𝐶𝑖 and 

a set of suggested data layouts 𝐿𝑖. This configuration is returned as the result of the 

function GenerateStorageConfiguration() (line 8).   

A new candidate data storage configuration 𝐺𝑖  will be generated corresponding to 

a new set of values of the input parameters: 𝛼, 𝛽, 𝜃 and 𝜆. It is worthy to note that 

some real DICOM datasets can be used as sample data to obtain the inputs (i.e., 

Attribute Usage Matrix AUM, query frequencies 𝐹, and horizontal table 𝑇) for this 

algorithm.  

Algorithm 2: Constructing an Attribute Access Correlation Matrix 

This algorithm is used to implement the function ConstructAttributeAccess-

CorrelationMatrix() that computes the Attribute Access Correlation Matrix (AACM), 

a square matrix of size n × n, to represent the correlation between every pair of n 

attributes of the given horizontal table 𝑇 in terms of concurrent access degree. An 

element AACM[i][j] (i ≤ j) represents the total number of times in which both attributes 

i and j are simultaneously accessed. Because the attribute 𝑈𝐼𝐷 is always needed in all 

vertical partitions, we do not need to add it into the matrix 𝐴𝑈𝑀.  
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Algorithm 2: ConstructAttributeAccessCorrelationMatrix 

 Input : 𝐴𝑈𝑀: Attribute Usage Matrix (size is m × n);  

m: Number of rows in 𝐴𝑈𝑀; n: Number of attributes; 𝐹: Query frequencies; 

Output : AACM: Attribute Access Correlation Matrix (a square matrix of size n × n);  

 1: 

2: 

for i = 1 to n do 

      for j = i to n do 

 3:             AACM[i][j] = 0;    

 4: 

5: 

6: 

7: 

 end for  

end for 

for q = 1 to m do 

      for k = 1 to n do 

 8:             if 𝐴𝑈𝑀[𝑞][𝑘] = 1 then  

 9:                   𝑟𝑜𝑤[𝑘] = 1;     

 10:             else 

 11:                   𝑟𝑜𝑤[𝑘] = 0;       

 12: 

13: 

14: 

 end if 

       end for  

      for i = 1 to n do 

 15:             if 𝑟𝑜𝑤𝑙[𝑖] = 1 then  

 16:                  for j = i to n do 

 17:                         AACM[i][j] = AACM[i][j] + 𝑟𝑜𝑤[𝑗] ∗ 𝐹[𝑞]; 

 18: 

19: 

20: 

21: 

22: 

                 end for         

            end if 

       end for  

end for 

return AACM; 

The pseudo code of Algorithm 2 is described as follows: First, we initialize the 

matrix AACM by setting its elements to 0 (lines 1 - 5). Next, the matrix 𝐴𝑈𝑀 is read 

row by row from top to bottom (lines 6 - 21). For each row 𝑞, we store it into an array 

𝑟𝑜𝑤: each element 𝑟𝑜𝑤[𝑘] (1 ≤ 𝑘 ≤ 𝑛) ) is assigned the value of 1 if the attribute k-

th is used by the query 𝑞; otherwise, it is assigned a value of 0. Then, we compute the 

total number of times in which both attributes i and j are simultaneously accessed: for 

each attribute i that is being used by the query 𝑞, we increase  AACM[i][j] by  𝑟𝑜𝑤𝑙[𝑗] ∗

𝐹[𝑞] if both attributes i and j are simultaneously accessed by the query 𝑞 (𝐹[𝑞] is the 

frequency of the query 𝑞) (lines 14 - 20). Finally, the matrix AACM is returned as the 

result of the function ConstructAttributeAccessCorrelationMatrix() (line 22).  

For example, given the matrix 𝐴𝑈𝑀 and 𝐹 as presented in Figure 4.6, the matrix 

AACM is computed and shown in Figure 4.12. The element AACM[1][1] = 1200 means 

that the attribute 𝑎1 is accessed 1200 times while element AACM[3][5] = 1100 means 

that both attributes 𝑎3 and 𝑎5 are simultaneously accessed 1100 times.  

 

Figure 4.12: Attribute Access Correlation Matrix 
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Algorithm 3: Constructing an Attribute Density Correlation Matrix 

Algorithm 3 is used to implement the function ConstructAttributeDensity-

CorrelationMatrix() that computes the Attribute Density Correlation Matrix (ADCM), 

a square matrix of size n × n, to describe the correlation between every pair of n 

attributes of the given horizontal table 𝑇 in terms of concurrent occurrence degree. An 

element ADCM[i][j] (i ≤ j) represents the total number of times in which both attributes 

i and j concurrently have non-null values. 

Algorithm 3: ConstructAttributeDensityCorrelationMatrix 

 Input : 𝑇: Horizontal table; m: Number of tuples (rows) in 𝑇; n: Number of attributes of 𝑇; 

Output : ADCM: Attribute Density Correlation Matrix (a square matrix of size n × n); 

 1: 

2: 

for i = 1 to n do 

      for j = i to n do 

 3:             ADCM[i][j] = 0; 

 4: 

5: 

6: 

7: 

      end for  

end for 

for t = 1 to m do 

      for k = 1 to n do 

 8:             if  isNotNull(𝑇[𝑡][𝑘]) then  

 9:                   𝑟𝑜𝑤[𝑘] = 1;   

 10:             else 

 11:                   𝑟𝑜𝑤[𝑘] = 0; 

 12: 

13: 

14: 

            end if 

       end for  

      for i = 1  do 

 15:             if 𝑟𝑜𝑤[𝑖] = 1 then  

 16:                  for j = i to n do 

 17:                         ADCM[i][j] = ADCM[i][j] + 𝑟𝑜𝑤[𝑗]; 

 18: 

19: 

20: 

21: 

22: 

                 end for         

            end if 

       end for  

end for 

return ADCM; 

The pseudo code of Algorithm 3 is described as follows: First of all, we initialize 

the matrix ADCM by setting its elements to 0 (lines 1 - 5). Next, the horizontal table 𝑇 

is read row by row from top to bottom (lines 6 - 21). For each row, we store it into an 

array 𝑟𝑜𝑤: each element 𝑟𝑜𝑤[𝑘] (1 ≤ 𝑘 ≤ 𝑛) is assigned the value of 1 if the attribute 

k-th is not a null value; otherwise, it is assigned a value of 0.  After that, we count the 

total number of times in which both attributes i and j simultaneously have non-null 

values: for each attribute i having a non-null value, we increase ADCM[i][j] by  𝑟𝑜𝑤[𝑗] 
if both attributes i and j simultaneously have non-null values (lines 14 - 20). Finally, 

the matrix ADCM is returned as the result of the function 

ConstructAttributeDensityCorrelationMatrix (line 22).  

For example, given the horizontal table 𝑇 as shown in Figure 4.7, the 

corresponding matrix ADCM is computed and presented in Figure 4.13. The element 

ADCM[1][1] = 10 means that the attribute 𝑎1 has non-null values in 10 tuples while 

the element ADCM[2][4] = 8 indicates that both attributes 𝑎2 and 𝑎4 simultaneously 

have non-null values in 8 tuples.  
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Figure 4.13: Attribute Density Correlation Matrix 

Algorithm 4: Clustering Attributes 

Algorithm 4 is used to implement the function ClusterAttributes() that performs the 

clustering phase. We implement it by extending the clustering algorithm proposed by 

B. Cui et al. [14]. Instead of only taking into consideration the impact of the data-

specific information on the clustering result as proposed in [14], our algorithm takes 

into account the combined impact of both workload- and data-specific information. 

Algorithm 4 tries to group attributes of a given horizontal table 𝑇 into a set of clusters 

𝐶𝑖 in a way to reduce both storage space demand and improve workload performance 

at the same time. In order to achieve this, given three matrices AACM, ADCM and 

HSM and two parameters 𝛼 and 𝛽, Algorithm 4 starts by creating an initial (empty) set 

of clusters of attributes. Next, it repeatedly adds a new cluster into this set. Such a new 

cluster is created in a way so that the Hybrid Similarity between any two attributes in 

the same cluster is not less than the clustering threshold 𝛽. This procedure is repeated 

until all unclustered attributes are added into clusters.  

The above clusters will be created in the descending order of the importance level 

of the attributes. This importance level is specified in terms of either attribute access 

frequency or data density. To achieve this, first of all, we look at the value of weight 

parameter 𝛼 to determine whether the attribute access frequency or the data density 

should be used: the former is chosen if 𝛼 is greater than or equal to 0.5; otherwise, the 

latter is chosen. Next, we create a new empty cluster. Then, an attribute having the 

highest value of the importance level among the unclustered attributes will be selected 

to become the first element of that new cluster. After that, each of other unclustered 

attributes will be added into this current new cluster if the Hybrid Similarity between 

it and every attribute in this cluster is not less than the clustering threshold 𝛽. By this 

way, the attributes having a high value of the importance level will be clustered before 

the others. Therefore, the important attributes will have more chances to be stored 

together. This heuristic way can help to reduce search space and create good results. 

For instance, it can avoid storing dense and spare attributes together to reduce the 

number of null values; or it can avoid storing frequently-used and seldom-used 

attributes together to decrease redundant data accesses. 

The pseudo code of Algorithm 4 is described as follows: First of all, depending on 

the value of 𝛼, one of two matrices AACM and ADCM will be used as the priority 

matrix, i.e., PriM, from which the attributes are selected one after another to be 

considered for clustering attributes (lines 1-6). Next, we create a new empty set of 

clusters, i.e., 𝐶𝑖 = Ø, and a new empty cluster, i.e., 𝐶𝑖,𝑥 = Ø (line 7). Because we will 

create non-overlapping clusters, only the attributes that have not been clustered are 

considered (line 8). Then, we find the most important attribute 𝑎𝑖𝑚 in terms of either 

the attribute access frequency or the data density (lines 10 - 16) and add it into the new 
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cluster 𝐶𝑖,𝑥 (line 18). After that, for each of other unclustered attributes 𝑎, if the Hybrid 

Similarity between 𝑎 and every attribute 𝑎′ ∊ 𝐶𝑖,𝑥 is not less than 𝛽, we add 𝑎 into 𝐶𝑖,𝑥 

(lines 20 - 31). Once all unclustered attributes have been considered, the resulting 

cluster 𝐶𝑖,𝑥 will be added into the set of clusters 𝐶𝑖 (line 33). Finally, 𝐶𝑖 is returned as 

the clustering result of the function ClusterAttributes() (line 35). 

Algorithm 4: ClusterAttributes 

 Input : AACM: Attribute Access Correlation Matrix;  

ADCM: Attribute Density Correlation Matrix; HSM: Hybrid Similarity Matrix; 

𝛼: Weight parameter; 𝛽: Clustering threshold; n: Number of attributes; 

Output : 𝐶𝑖: A set of resulting clusters (column groups); 

 1: //choose the priority matrix from which an ordered list of its attributes will be considered 

 2: if 𝛼 ≥ 0.5 then  

 3: 

4: 

5: 

6: 

         PriM = AACM;      

else 

         PriM = ADCM; 

end if 

 7: 𝐶𝑖 = Ø; x = 1; 𝐶𝑖,𝑥 = Ø ; 

 8: 

9: 

10: 

11: 

12: 

13: 

14: 

15: 

16: 

17: 

while there exists an unclustered attribute do 

          //find the most important attribute, 𝑎𝑖𝑚, in terms of workload or data density  

         𝑎𝑖𝑚 = 0;  PriM_max = 0; 

         for each unclustered attribute a do 

                 if PriM[a][a] > PriM_max then 

                          PriM_max = PriM[a][a]; // an element on the main diagonal of the PriM 

                          𝑎𝑖𝑚 = 𝑎; 

                 end if 

         end for 

         //create a new cluster 

 18:          𝐶𝑖,𝑥 = 𝐶𝑖,𝑥  ⋃  {𝑎𝑖𝑚}; 

 19: 

20: 

21: 

22: 

          //generate a cluster c that contains highly similarity attributes 

         for each unclustered attribute 𝑎 do 
                 similarity = true; 

                 foreach attribute 𝑎′ in 𝐶𝑖,𝑥 do 

 23:                           if (𝑎′ < 𝑎 and 𝐻𝑆𝑀[𝑎′][𝑎] < 𝛽) or  (𝑎′ > 𝑎 and 𝐻𝑆𝑀[𝑎][𝑎′] < 𝛽) then 

 24: 

25: 

26: 

27: 

                                   similarity = false; 

                                   break; 

                          end if 

                 end for   

 28:                  if similarity = true then 

 29:                           𝐶𝑖,𝑥 = 𝐶𝑖,𝑥  ⋃  {𝑎}; 
 30: 

31: 

32: 

                 end if 

         end for 

         // add cluster 𝐶𝑖,𝑥 into the set of clusters 𝐶𝑖 

 33:         𝐶𝑖 = 𝐶𝑖  ⋃  {𝐶𝑖,𝑥}; x = x + 1;    

 34: 

35: 

end while 

return 𝐶𝑖; 

The value of 𝛽 can be chosen based on experiments. In general, if the value of 𝛽 

is small, a large number of attributes having a low value of the Hybrid Similarity will 

be clustered into the same cluster. This results in a small number of large clusters such 

that we will create wide tables to store those resulting clusters. Consequently, such 

wide tables may cause a large number of null values or a large number of irrelevant 
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attribute accesses. In contrast, if the value of 𝛽 is large, only pairs of the attributes that 

have a high similarity value are grouped into the same cluster. This results in a large 

number of narrow tables created to store the resulting clusters. This helps to reduce the 

number of null values; however, multiple expensive join operations may be needed to 

reconstruct result tuples from the attributes stored across narrow tables.  

Algorithm 5: Merging and Selecting Stores 

Algorithm 5 is used to implement the function MergeAndSelectStores(). It aims to 

improve the query performance.  Because an attribute is only clustered into one cluster 

(i.e., non-overlapping clustering), it is usually impossible to avoid joining vertically 

partitioned tables to answer queries. As a consequence, the additional join operations 

may reduce the query performance. In response to this problem, the merging-selecting 

phase tries to improve the query performance by reducing both the number of 

additional join operations and the number of irrelevant attribute accesses. 

 

Figure 4.14: Example of cluster usage of a workload 

Figure 4.14 presents an example of a set of resulting clusters 

𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, … , 𝐶𝑖,6}  and a set of queries 𝑄 = {𝑞1, 𝑞2, … , 𝑞16} in a workload. We 

assume that these clusters have been generated by the clustering phase such that the 

attributes within each cluster are grouped together based on the Hybrid Similarity. 

Here, the clusters are being viewed based on cluster usage of the queries: size of a 

circle representing a cluster denotes the total frequency count of all queries accessing 

that cluster; a point in a cluster denotes a query accessing one or more attributes of the 

cluster. It is clear that some queries need to access only one cluster while others may 

need to access several clusters. A query in a common intersection part of two or more 

clusters implies that it is accessing the attributes of these clusters. For instance, three 

queries 𝑞1, 𝑞2 and 𝑞3 access only the attributes of cluster 𝐶𝑖,5; thus, no join operation 

is required to answer these queries. Similarly, each of the queries 𝑞5, 𝑞6, 𝑞8, 𝑞12, 𝑞13, 

𝑞15 and 𝑞16 requires to access the attributes of single clusters. When a query needs to 

use the attributes of several different clusters, it has to perform join operations across 

these clusters. For example, 𝑞4 requires to join two tables of clusters 𝐶𝑖,4 and 𝐶𝑖,6 while 

𝑞11 has to join three tables of three clusters 𝐶𝑖,1, 𝐶𝑖,2 and 𝐶𝑖,3.   

The authors in [11] proposed a two-phase algorithm, called AutoPart, to reduce 

I/O costs and the number of additional joins. This algorithm can be described as 

follows: First of all, a categorical partitioning is performed to produce a set of resulting 

fragments that can reduce the unnecessary data accesses from a given workload. Next, 

the resulting fragments are passed through a heuristic procedure of pair-wise merges 

of the most used fragments in the given workload to reduce the number of joins across 
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fragments. This thus improves query performance. The merging procedure is repeated 

until the impact of merging pairs of fragments cannot further improve the overall 

workload performance. Besides, to remove the overhead joins caused by the need of 

accessing attributes in different fragments, some attributes are replicated across 

different fragments. However, this approach has some limitations: the merging of 

fragments would help to reduce the joining overheads, but queries may access more 

irrelevant attributes and thus I/O costs may be increased again; additionally, replicating 

the same attributes in different fragments certainly requires more space storage.  

To circumvent the above limitations, our merging-selecting phase uses an 

alternative heuristic way to reduce the number of additional joins and irrelevant 

attribute accesses. It performs the following two steps:  In the first step, it is based on 

the Inter-Cluster Access Similarity between two clusters to decide whether these two 

clusters are merged together or not. In the second step, it suggests a suitable data layout 

(i.e., a row- or a column-oriented data layout) for each resulting cluster. 

The pseudo-code of Algorithm 5 is described as follows:  

Algorithm 5: MergeAndSelectStores 

 Input : 𝐶𝑖: A set of clusters 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧}; 

𝑆: A set of available data layouts 𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"}; 

AASM: Attribute Access Similarity Matrix;  

𝜃: Merging threshold; 𝜆: Data layout threshold; n: Number of attributes; 

Output : 𝐺𝑖: A candidate data storage configuration 𝐺𝑖 = (𝐶𝑖 , 𝐿𝑖); 

 1: 

2: 

//Step 1: Merge two clusters together based on its Inter-Cluster Access Similarity 

do 

 3:       𝑀𝑎𝑥𝑆𝑖𝑚 = 0.0; 𝑓𝑜𝑢𝑛𝑑 = 0; 

 4: 

5: 

       for u = 1 to |Ci|- 1 do 

 for v = u + 1 to |Ci| do 

 6:            𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑖𝑚 =  𝐼𝑛𝑡𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚𝐹𝑢𝑛𝑐(𝐶𝑖,𝑢, 𝐶𝑖,𝑣 , 𝐴𝐴𝑆𝑀); 

 7:                            if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑖𝑚 ≥ 𝜃 and 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑖𝑚 > 𝑀𝑎𝑥𝑆𝑖𝑚 then 

 8:                                    𝑀𝑎𝑥𝑆𝑖𝑚 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑖𝑚; 

 9:                     𝑢𝑚𝑎𝑥 = 𝑢; 𝑣𝑚𝑎𝑥 = 𝑣; 

 10:                    𝑓𝑜𝑢𝑛𝑑 = 1; 

 11: 

12: 

13: 

            end if 

 end for 

        end for 

 14:        if 𝑓𝑜𝑢𝑛𝑑 = 1 then 

 15:                𝐶𝑖,𝑢.𝑣 = Merge(𝐶𝑖,𝑢, 𝐶𝑖,𝑣); 𝐶𝑖 = 𝐶𝑖⋃ {𝐶𝑖,𝑢.𝑣}; 

 16:                𝐶𝑖 = 𝐶𝑖\{𝐶𝑖,𝑢}; 𝐶𝑖 = 𝐶𝑖\{𝐶𝑖,𝑣};      

 17:        end if 

 18: while 𝑓𝑜𝑢𝑛𝑑 ! = 0; 

 19: //Step 2: Select a data layout for each cluster based on its Inter-Cluster Access Similarity 

 20: 𝐿𝑖 = Ø; 

 21: for x = 1 to |Ci| do    

 22:        if 𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚𝐹𝑢𝑛𝑐(𝐶𝑖,𝑥 , 𝐴𝐴𝑆𝑀) ≥ 𝜆 then 

 23:                  𝐿𝑖 = 𝐿𝑖  ⋃ 𝐿"𝑟𝑜𝑤−𝑠𝑡𝑜𝑟𝑒"(𝐶𝑖,𝑥); 

 24:        else   𝐿𝑖 = 𝐿𝑖  ⋃ 𝐿"𝑐𝑜𝑙𝑢𝑚𝑛−𝑠𝑡𝑜𝑟𝑒"(𝐶𝑖,𝑥); 

 25: 

26: 

       end if 

end for 

 27: 𝐺𝑖 = (𝐶𝑖 , 𝐿𝑖); 

 28: return 𝐺𝑖; 
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 Step 1: This step aims at reducing the number of additional joins. To achieve this 

goal, it performs a repeated procedure of pair-wise merges of clusters. In particular, 

given a set of clusters (i.e., output of the clustering phase), each pair of clusters 

will be merged together if their Inter-Cluster Similarity is greater than or equal to 

a given merging threshold 𝜃. In Algorithm 5, this step is presented in lines 1 - 18. 

Using the given set of clusters 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧},  Step 1 will find a pair of 

clusters 𝐶𝑖,𝑢 and 𝐶𝑖,𝑣 where 𝐶𝑖,𝑢 ∊ 𝐶𝑖   and 𝐶𝑖,𝑣 ∊ 𝐶𝑖  (𝑢 ≠ 𝑣) so that they satisfy the 

following merging criteria: the Inter-Cluster Access Similarity between 𝐶𝑖,𝑢 and 

𝐶𝑖,𝑣 has the highest value among all possible pairs of clusters and this value is 

greater than or equal to 𝜃 (lines 3 - 13). Here, we implement the  function 

𝐼𝑛𝑡𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚𝐹𝑢𝑛𝑐(𝐶𝑖,𝑢, 𝐶𝑖,𝑣, 𝐴𝐴𝑆𝑀) that applies Formula (4.4.6) and 

uses the matrix AASM to compute the Inter-Cluster Access Similarity between two 

clusters 𝐶𝑖,𝑢 and 𝐶𝑖,𝑣. We also define the function 𝑀𝑒𝑟𝑔𝑒(𝐶𝑖,𝑢, 𝐶𝑖,𝑣) that merges 

two clusters 𝐶𝑖,𝑢 and 𝐶𝑖,𝑣 together and returns a new cluster. Thus, if the merging 

criteria is satisfied, two clusters 𝐶𝑖,𝑢and 𝐶𝑖,𝑣 are merged together to form a new 

cluster 𝐶𝑖,𝑢.𝑣. Then, 𝐶𝑖,𝑢.𝑣 is used to replace both 𝐶𝑖,𝑢and 𝐶𝑖,𝑣 in 𝐶𝑖 (lines 14 - 17). 

This procedure is repeated until we cannot find a pair of clusters that satisfy the 

above merging criteria. 

 Step 2: This step aims at reducing the number of irrelevant attribute accesses. To 

achieve goal, each of resulting clusters received from Step 1 is considered to 

determine whether it will be stored in a row store or a column store. In particular, 

we first compute the Intra-Cluster Access Similarity for each cluster, and then 

compare it with the given data layout threshold 𝜆. To achieve this, we build the 

function 𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚𝐹𝑢𝑛𝑐(𝐶𝑖,𝑥, 𝐴𝐴𝑆𝑀) that applies Formula (4.4.5) 

and uses the matrix AASM to compute the Intra-Cluster Access Similarity for the 

cluster 𝐶𝑖,𝑥. If this Intra-Cluster Access Similarity is greater than or equal to 𝜆, the 

corresponding cluster is stored in a row store (in this case, the attributes in the same 

cluster are very frequently accessed together); otherwise, a column store is used 

for it (in this case, most attributes in the same resulting cluster are not very 

frequently accessed together). In Algorithm 5, Step 2 is presented in lines 19 - 26. 

A list of suggested data layouts 𝐿𝑖 for the corresponding clusters is created during 

this step. Finally, a candidate data storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) is returned 

as a result of the merging-selection phase (lines 27 and 28).  

In short, given a set of inputs, Algorithm 1 first calls functions to compute matrices 

that represent the correlation and the similarity between attributes. Next, it calls 

Algorithm 4 for clustering attributes, and it calls Algorithm 5 for merging pairs of 

clusters and selecting suitable data layouts for them. Algorithm 5 will return a 

candidate data storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖), where 𝐶𝑖 represents a set of 

resulting clusters and 𝐿𝑖 represents the corresponding data layouts. The values of 

parameters 𝛼, 𝛽, 𝜃 and 𝜆 can be chosen based on observations on experiments.  

4.4.4 Examples 

Given workload-and data-specific information, we will demonstrate the application of 

HADF to generate different data storage configurations for the same horizontal table. 
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We also perform a quantitative evaluation of results in terms of storage space and 

workload performance.  

 

Figure 4.15: Workload- and data-specific information of the horizontal table 𝑇 

The workload-specific information is re-presented in the matrix AUM and the 

frequency F, shown in Figures 4.15(a) and (b), respectively, while the data-specific 

information is re-presented in the horizontal table 𝑇, given in Figures 4.15(c). (These 

information have been respectively given in Figure 4.6 and 4.7 in Section 4.3.2.) In 

this workload, some attribute access patterns can be expressed as follows: the query 

𝑞1 accesses five attributes 𝑎2, 𝑎3, 𝑎4, 𝑎5 and 𝑎6 with a frequency of 600; and the query 

𝑞2 accesses to four attributes 𝑎3, 𝑎4, 𝑎5 and 𝑎6 with a frequency of 500. Data is 

expressed in the horizontal table 𝑇 with 10 tuples, each of which is presented in a single 

row; three attributes 𝑎1, 𝑎2 and 𝑎3 always have non-null values; the attribute 𝑎4 has 

two null values; and two attributes 𝑎5 and 𝑎6 are very sparse. 

In practice, in order to easily apply HADF, a user interface can be designed to 

enable users to explore different data storage configurations corresponding to different 

values of four parameters 𝛼, 𝛽, 𝜃 and 𝜆. For instance, in [113], Sellam and Kersten 

introduced an user interface for cluster-driven navigation. Due to space limitations, 

below we only present three different data storage configurations created for 𝑇.  

Data Storage Configuration 1: We create a baseline data storage configuration by 

storing the entire horizontal table 𝑇 in a single row table. This configuration can be 

obtained by setting 𝛽 = 0, 𝜆 = 0 and using arbitrary values for 𝛼 and 𝜃, e.g., 𝛼 =

0 and  𝜃 = 0. The clustering phase produces two clusters 𝐶1,1 and 𝐶1,2:  

 𝐶1,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2}; 

 𝐶1,2 = {𝑈𝐼𝐷, 𝑎3, 𝑎4, 𝑎5, 𝑎6}. 

Then, the merging-selecting phase merges the above two clusters into a single 

cluster 𝐶1,1.2 and suggest to store it in a row store:  

 𝐶1,1.2 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒. 

Figure 4.16 presents the single row table 𝑇1 created to store the cluster 𝐶1,1.2. Since 

only one table is used, no join is required to execute the given workload. However, the 

number of irrelevant attributes is relatively large. 
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Figure 4.16: Table created for Configuration 1 

Particularly, we achieve the following statistics from the workload execution:  

 The storage cost (in terms of the number of data cells): 70.  

 NullRatio = 28.33% (the ratio between the total number of null values, i.e., 17, and 

the total number of possible values, except the 𝑈𝐼𝐷 attribute, i.e., 60).  

 The total number of joins (between two tables over the given workload): 0. 

 The total number of scanned data cells (over the given workload): 238,000. 

Data Storage Configuration 2: The clustering phase is performed with the following 

settings: 𝛼 = 0 and 𝛽 = 0.4. Thus, it only takes into account the impact of the data-

specific information and creates three clusters 𝐶2,1, 𝐶2,2, and 𝐶2,3:  

 𝐶2,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4}; 

 𝐶2,2 = {𝑈𝐼𝐷, 𝑎5}; 

 𝐶2,3 = {𝑈𝐼𝐷, 𝑎6}. 

Now, we apply the merging-selecting phase with the settings: 𝜃 = 0.5 and 𝜆 = 0.6. 

It keeps the cluster 𝐶2,1, but merges 𝐶2,2 and 𝐶2,3 together into a new cluster 𝐶2,2.3. 

Additionally, it suggests to store 𝐶2,1 in a column store, but 𝐶2,2.3 in a row store:  

 𝐶2,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒;  

 𝐶2,2.3 = {𝑈𝐼𝐷, 𝑎5, 𝑎6} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒. 

 

Figure 4.17: Two tables created for Configuration 2 

Figure 4.17 provides two tables 𝑇1 and 𝑇2 created to store two clusters 𝐶2,1 and 

𝐶2,2.3. The table 𝑇1 is stored in a column store, whereas the table 𝑇2 is stores in a row 

store. This configuration use less storage space than Configurations 1 because the most 
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two sparse columns 𝑎5 and 𝑎6 have been stored together in a separate table, i.e., 𝑇2, 

from which null rows are removed. This result shows that when we set the parameters 

to get the highest impact of the data-specific information on the clustering result, the 

number of null values is reduced. Besides, by storing the table 𝑇1 in a column store, 

the given workload avoid accessing to irrelevant attributes. However, some queries 

such as 𝑞1, 𝑞2 and 𝑞3 require additional joins between two tables 𝑇1 and 𝑇2. 

This data storage configuration gives us the following statistics:  

 The storage cost: 62. 

 NullRatio = 8.33%. 

 The total number of joins: 1,800. 

 The total number of scanned data cells: 71,600. 

Data Storage Configuration 3: The clustering phase is performed with the settings: 

𝛼 = 0.5 and 𝛽 = 0.4. Thus, it will take into consideration the combined impact of both 

the workload- and data-specific information and create two clusters 𝐶3,1 and 𝐶3,2: 

 𝐶3,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3}; 

 𝐶3,2 = {𝑈𝐼𝐷, 𝑎4, 𝑎5, 𝑎6}. 

Then, the merging-selecting phase is performed with the settings: 𝜃 = 0.5 and 𝜆 =

0.6. The above two clusters are kept. The data layouts are suggested as follows:  

 𝐶3,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒; 

 𝐶3,2 = {𝑈𝐼𝐷, 𝑎4, 𝑎5, 𝑎6} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒. 

 

Figure 4.18: Two tables created for Configuration 3 

Figure 4.18 presents two tables 𝑇1 and 𝑇2 created to store 𝐶3,1 and 𝐶3,2. The table 

𝑇1 is stored in a column store, whereas the table 𝑇2 is stored in a row store. Compared 

to Configuration 2, the combined impact of both the workload- and data-specific 

information has helped Configuration 3 to reduce the number of null values as well as 

the number of additional joins at the same time.  

This data storage configuration gives us the following statistics:  

 The storage cost:  72. 

 NullRatio = 18.33%. 

 The total number of joins: 1,100. 

 The total number of scanned data cells: 107,600. 
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In conclusion, we can say that HADF can provide good support for designing 

DICOM data. It is able to take into consideration the combined impact of both 

workload- and data-specific information on the quality of suggested data storage 

configurations. From the HADF-generated data storage configurations, we can choose 

a good one in terms of storage space and/or workload execution time. In Chapter 6, we 

will again analyze these impacts through experiments.  

4.5 Summary and Conclusion 

The characteristics of DICOM data and workloads have posed challenges on how to 

represent and manage data in a manner to reduce storage space demand and workload 

execution time. This chapter has presented the architecture of a novel hybrid storage 

model, called HYTORMO, and strategies for efficiently storing DICOM data. 

The HYTORMO architecture is designed and built on top of an in-memory cluster 

computing framework, Spark, which can provide high performance, huge storage 

capability, scalability and elasticity. The combined use of row and column stores is to 

offer high performance for mixed workloads. DICOM data is organized based on the 

relational data model that facilitates the use of entity tables and SQL language.  

The data storage strategy aims at reducing both storage space demand and 

workload execution time. The overall data storage strategy is based on the combined 

use of both vertical partitioning and a hybrid store in order to generate data storage 

configurations. To obtain a data storage configuration according to this data storage 

strategy, one of two different design approaches can be applied: expert-based and 

automated. The formal approach has been proposed by B. Mohamad, L. d'Orazio and 

L. Gruenwald [56, 57] where DICOM attributes are classified into three categories: 

mandatory and frequently-accessed-together attributes are stored in row store, whereas 

optional/private/seldom-accessed are stored in column store. In in this thesis, we use 

the entity tables in the DICOM information model (e.g., Patient, Study, Series, etc.) as 

a starting point from which to create data storage configurations. However, when 

applying the expert-based design approach, it is difficult for experts to manually 

determine what attributes should be grouped together and what data layout should be 

applied for those column group so that both workload execution time and storage space 

demand are decreased, especially when the number of attributes is very large. To 

overcome this limitation, we formulate the automated design problem as the problem 

of selecting a data storage configuration to minimize both storage cost and workload 

execution cost. However, the solution search space for an optimal data storage 

configuration that minimizes both storage cost and execution cost is very large. 

Therefore, we proposed a hybrid automated design framework, called HADF.  

HADF aims to support experts (e.g., database designers) in choosing good data 

storage configurations. It can fill the gaps between the workload-based and data-based 

partitioning approaches by taking into account the combined impact of both workload- 

and data-specific information as well as the use of a hybrid store. It includes two phases 

clustering and merging-selecting. The clustering phase is to reduce storage space 

demand and irrelevant attribute accesses. To achieve this, it groups high similar 

attributes in terms of Hybrid Similarity into the same clusters. The merging-selecting 

phase is to reduce both tuple reconstruction cost and irrelevant attribute accesses. It 
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contains two steps: first, the Inter-Cluster Access Similarity is used to determine 

whether a pair of clusters should be merged into a new cluster or not; then, the Inter-

Cluster Access Similarity is applied to determine a suitable data layout for each cluster.  

Besides, a suitable query processing strategy needs to be built on the top of 

HYTORMO. In the next chapter, we present in detail our approaches to create correct 

answers for queries and to improve the performance of the queries in distributed query 

processing environment. 

Key Points  

 We introduce a hybrid storage model, called HYTORMO.  

 We introduce a data storage strategy: a mixed use of vertical partitioning and a 

hybrid store to reduce both storage space size and workload execution time.  

 We present the application of the expert-based design approach.  

 We provide a formal representation for the automated design approach.  

 We describe the details of HADF. 
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Chapter 

 

Query Processing for HYTORMO 

5.1 Overview 

This chapter presents the proposed methods to improve the performance of queries for 

HYTORMO. An overview of the chapter is given in Table 5.1. 

Table 5.1: Overview over Chapter 5 

5.2 Query Rewriting 

5.2.1 Examples 5.2.2 Query Execution Plan 

5.2.3 Determining Left-Outer Joins 5.2.4 Reducing the Number of Left-outer Joins 

5.3  Intersection Bloom Filter  

5.3.1 Query Execution Plan with the IBF 5.3.2 Cost-effectiveness Analysis 

5.3.3 Incremental Intersection Bloom Filter 

5.4 Summary and Conclusion 

In the previous chapter, on a high level, the query processing strategy built on top 

of HYTORMO was introduced. In general, entity tables in users’ queries will be 

decomposed into sub-queries to be able to access relevant vertically partitioned tables. 

In order to correctly answer queries, in some cases, left-outer join operations are 

applied to prevent data loss that may occur if using only inner join operations. 

However, this may negatively impact on the query performance because this join type 

does not remove any tuple from their left tables. In this chapter, first of all, we analyze 

the cases where to use left-outer join operations. Next, we depict an execution plan. 

Then, we propose heuristic rules that are used to determine where to apply left-outer 

join operations and to reduce the number of left-outer join operations.  

Besides, although the vertical partitioning and the hybrid store can help to improve 

the performance of queries by reducing I/O cost at attribute level (because of 

decreasing the number of irrelevant attribute accesses), they cannot reduce I/O cost at 

tuple level. A large number of irrelevant tuples are still read and propagated through a 

sequence of joins in queries before removed due to not satisfying join predicates. This 

can dramatically decrease performance of the queries due to expensive data 

transmission cost over the network in distributed query processing environments. This 

motivated us to integrate an IBF into query processing to reduce the size of 

intermediate results and network I/Os. We provide a cost-effectiveness analysis for the 

IBF. Additionally, we also propose an incremental IBF as an alternative to the IBF.  
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5.2 Query Rewriting 

5.2.1 Examples  

In our examples, the following four entity tables are used in users’ queries: Patient, 

Study, GeneralInfoTable and SequenceAttributes. We assume that the expert-based 

design approach, described in Chapter 4, has been applied to generate data storage 

configurations (including schemas and their data layouts). The details of data storage 

configurations for these entity tables are as follows:  

 Patient(UIDRC, PatientNameRm, PatientIDRm,  PatientBirthDateRm, PatientSexRm, 

EthnicGroupRm, IssuerOfPatientIDC, PatientBirthTimeC, PatientInsurancePlanCode-

SequenceC, PatientPrimaryLanguageCodeSequenceC, PatientPrimaryLanguageModifier-

CodeSequenceC, OtherPatientIDsC, OtherPatientNamesC, PatientBirthNameC, 

PatientTelephoneNumbersC, SmokingStatusC, PregnancyStatusRf, LastMenstrualDateRf, 

PatientReligiousPreferenceC, PatientCommentsC, PatientAddressC, 

PatientMotherBirthNameC, InsurancePlanIdentificationC) 

 Study(UIDRC, StudyInstanceUIDRm, StudyDateRm, StudyTimeRm, 

ReferringPhysicianNameRm, StudyIDRm, AccessionNumberRm, StudyDescriptionRm, 

PatientAgeC, PatientWeightC, PatientSizeC, OccupationC, AdditionalPatientHistoryC, 

MedicalRecordLocatorC, MedicalAlertsC) 

 GeneralInfoTable(UIDRC, GeneralTagsC, GeneralVRsC, GeneralNamesC, 

GeneralValuesC) 

 SequenceAttributes(UIDRC, SequenceTagsRm, SequenceVRsRm, SequenceNamesRm, 

SequenceValuesRm) 

In the above schemas, we use superscripts Rm, Rf, and C to denote that the 

corresponding attribute is stored in a row table of mandatory attributes, a row table of 

frequently-accessed-together attributes and a column table of optional attributes, 

respectively. Additionally, a superscript RC is used to denote that the corresponding 

attribute is stored in both row and column tables; however, in our DICOM data, only 

the attribute UID has been marked with RC because this attribute appears in all 

(vertically partitioned) tables to be used for tuple reconstruction. In any cases, all of 

these superscripts are hidden from end users.  

According to the above suggested data storage configurations, in Table 5.2, we 

show the corresponding row and column tables used to store the above entity tables. 

Table 5.2: Row and column tables used to store the entity tables 

The schema of each entity table has not changed or has been decomposed into 

several vertically partitioned tables. Each vertically partitioned table is then suggested 

to be stored into a row or a column store: (1) The entity table Patient is decomposed 

into three vertically partitioned tables: RowPatient, RowPregnancy and ColPatient; 

Entity 
Row table of “Rm” 

attributes 

Row table of “Rf” 

attributes 

Column table of  

“C” attributes 

Patient RowPatient RowPregnancy ColPatient 

Study RowStudy - ColStudy 

GeneralInfoTable - - ColGeneralInfoTable 

SequenceAttributes RowSequenceAttributes - - 
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the first two tables are stored in a row store, whereas the last one is stored in a column 

store. (2) The entity table Study is decomposed into two vertically partitioned tables: 

RowStudy and ColStudy; the first one is stored in a row store while the second one is 

stored in a column store. (3) The two entity tables GeneralInfoTable and 

SequenceAttributes have not been decomposed; they are respectively stored in a 

column and a row store with names ColGeneralInfoTable and RowSequenceAttributes. 

 

Figure 5.1: Representation of (a) the query 𝑄1 and (b) its execution plan tree 

Figure 5.1(a) presents the query 𝑄1 which uses four entity tables: Patient, Study, 

GeneralInfoTable and SequenceAttributes. The attributes appearing in the SELECT 

and WHERE clauses are marked by superscripts Rm, C, and RC to indicate the 

corresponding data layout used to store the corresponding attribute (i.e., a row table, a 

column table or both types of tables). This query aims at retrieving the information 

stored in X-ray DICOM files of non-smoking men who are greater than or equal to x 

years old. The query has been based on TPC-H query 3 and 4 [114]. 

In Chapter 4, we mentioned that when a user writes a query, names of entity tables, 

e.g., Patient, Study, etc., are used. Then, HYTORMO will automatically decompose 

the query into multiple sub-queries so that each sub-query can only access relevant 

vertically partitioned tables. A left-deep sequential tree plan whose leaf nodes 

represent sub-queries is applied to execute the query. The join order is heuristically 

chosen in a way to keep intermediate results as small as possible. Once the execution 

plan is completely determined, the sub-queries will be processed using this plan. 

Finally their intermediate results will be integrated. 

Applying the above query processing strategy, we achieve an execution plan for 

the query 𝑄1, as shown in Figure 5.1(b). First, 𝑄1 is decomposed into a set of sub-

queries 𝑠𝑄1, 𝑠𝑄2,  𝑠𝑄3, and  𝑠𝑄4 accessing the entity tables Study, Patient, 

SequenceAttributes and GeneralInfoTable, respectively. Then, each of these sub-

queries can be further decomposed into the deeper level sub-queries for directly 

accessing the underlying row and column tables stored in the hybrid store of 
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HYTORMO: 𝑠𝑄1 is decomposed into  𝑠𝑄1,1 and  𝑠𝑄1,2 in order to access two tables 

RowPatient and ColPatient, respectively, because it uses only the attributes of these 

two tables; on the other hand, each of the sub-queries  𝑠𝑄2,  𝑠𝑄3, and  𝑠𝑄4 is not 

decomposed, but is rewritten for only accessing the relevant tables ColStudy, 

RowSequenceAttributes and ColGeneralInfoTable, respectively. This execution plan 

tree is a left-deep processing tree in which relational operations are scheduled to be 

executed step by step while trying to keep intermediate results as small as possible. 

During the execution of a sequence of joins, the results of the sub-queries are joined 

together over the common join attribute 𝑈𝐼𝐷. Finally, all the attributes listed behind 

the keyword SELECT of 𝑄1 will be presented in the final query result. 

The Need to Use Left-Outer Join 

The execution plan for query 𝑄1 in Figure 5.1(b) does not contain any left-outer join 

because every right-hand side table of join operations in this plan already belongs to 

one of three following cases: (1) It is either a row table of frequently-accessed-together 

attributes or a column table of optional attributes and there exist non-null constraints 

(predicates) on the attributes of these tables. For instance, there are non-null constraints 

on two attributes SmokingStatus and PatientAge of two tables ColPatient and 

ColStudy, respectively. (2) It is a row table of mandatory attributes (containing all 

values of the attribute 𝑈𝐼𝐷 of the entity table), e.g., RowSequenceAttributes. (3) It is 

the only sub-table that is decomposed from the entity table (containing the original 

schema of the entity table), e.g., ColGeneralInfoTable. For these three cases, the use 

of inner joins does not cause data loss in the results of the queries. 

Table 5.3: Sample data of the table RowPatient 

UID PatientName PatientID PatientBirthDate PatientSex EthnicGroup 

1440034811466 Smith P40028 19610712 F Whites 

1440108680455 Muller P40029 19500101 M Whites 

1440108686946 Young P40030 19700509 M Asians 

1440108686950 Carol P40031 19900122 (null) (null) 

1440108680459 Garcia P40032 19990515 (null) Blacks 

Table 5.4: Sample data of the table RowPregnancy 

UID PregnancyStatus LastMenstrualDate 

1440108686950 4 20140212 

1440108680459 4 20160511 

However, in some other cases, several join operations in the execution plan need 

to be evaluated as left-outer join operations in order to prevent data loss in the results 

of the queries. For example, assume that sample data of two tables RowPatient and 

RowPregnancy (i.e., vertically partitioned tables) is given in Tables 5.3 and 5.4, 

respectively. Now, let us consider the user query 𝑄2a, shown in Figure 5.2(a), to view 

the content of the entity table Patient. Because there does not exist a physical table 

storing all the required attributes, in order to answer 𝑄2𝑎, HYTORMO will decompose 

𝑄2a into two sub-queries 𝑠𝑄1,1 and 𝑠𝑄1,2 to respectively access two tables RowPatient 

and RowPregnancy. 𝑄2a also needs to be rewritten into 𝑄′2𝑎 using a left-outer join, as 

shown in Figure 5.2(a). The corresponding execution plan is given in Figure 5(b). 
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Figure 5.2: Transformation of the query 𝑄2𝑎 using a left-outer join 

With the use of a left-outer join, 𝑄2a returns all the rows from the table RowPatient 

and just the rows from the table RowPregnancy in which the join predicate  

rpt.UID = rpy.UID is satisfied. Additionally, rows from the left-hand side table that do 

not match any row in the right-hand side table will be still returned, but null values are 

inserted into each column of the right-hand side table. Table 5.5 shows the query result.  

Table 5.5: Result of the query 𝑄2a when using a left-outer join  

UID PatientID 
Patient-

Name 

Patient-

BirthDate 

Patient-

Sex 

Ethnic-

Group 

Pregnancy-

Status 

LastMenstrual-

Date 

1440108686950 P40031 Carol 19900122 (null) (null) 4 20140212 

1440108680459 P40032 Garcia 19990515 (null) Blacks 4 20160511 

1440108686946 P40030 Young 19700509 M Asians (null) (null) 

1440034811466 P40028 Smith 19610712 F Whites (null) (null) 

1440108680455 P40029 Muller 19500101 M Whites (null) (null) 

It is worth to note that if HYTORMO does not use a left-outer join for 𝑄2a, the 

query result cannot consist of many rows of the entity table Patient if the 

corresponding values of both attributes PregnancyStatus and  LastMenstrualDate are 

null or empty. In Figure 5.3(a), we rewrite query 𝑄2a into 𝑄′′2𝑎 using an inner join. Its 

corresponding execution plan is given in Figure 5.3(b). Table 5.6 presents the result of 

query 𝑄2a when using this execution plan. This is a wrong result. 

 

Figure 5.3: Transformation of the query 𝑄2𝑎 using an inner join 
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Table 5.6: The wrong result of the query 𝑄2a when using an inner join 

UID PatientID 
Patient-

Name 

Patient-

BirthDate 

Patient-

Sex 

Ethnic-

Group 

Pregnancy-

Status 

LastMenstrual-

Date 

1440108686950 P40031 Carol 19900122 (null) (null) 4 20140212 

1440108680459 P40032 Garcia 19990515 (null) Blacks 4 20160511 

The reason of the result in Table 5.6 is that null rows are not stored in the table 

RowPregnancy, and thus when the query processing evaluates the join predicate 

rpt.UID = rpy.UID, there is not existing a rpy.UID for a null row of the table 

RowPregnancy. Therefore, this execution plan will not applied to HYTORMO. 

In short, HYTORMO uses a left-deep sequential tree plan to join intermediate 

results of sub-queries that access entity tables. However, these sub-queries are usually 

further decomposed into smaller sub-queries in order to access to relevant vertical 

partitioning tables. Thus, although join operations between entity tables are explicitly 

determined in users’ queries, some join operations need to be rewritten to left-outer 

joins in order to avoid data loss caused by tuples discarded by only using inner joins.  

Impact of Irrelevant Input Tuples on Query Performance 

We can re-express the execution plan of query 𝑄1, shown in Figure 5.1(b), in form of 

a join sequence: 𝑄1 = ((( 𝑠𝑄1,1 ⋈𝑈𝐼𝐷 𝑠𝑄1,2) ⋈𝑈𝐼𝐷 𝑠𝑄2) ⋈𝑈𝐼𝐷 𝑠𝑄3)  ⋈𝑈𝐼𝐷 𝑠𝑄4. In 

this join sequence, the execution of a sub-query is distributed across computer nodes 

and it is independent from others. The results of the sub-queries will be integrated 

during the execution of the join sequence. We assume that in this join sequence, a tuple 

t has been produced by first sub-query, 𝑠𝑄1,1, and after that 𝑡 is passed through the next 

two join operations 𝑠𝑄1,1 ⋈𝑈𝐼𝐷 𝑠𝑄1,2 and (… ) ⋈𝑈𝐼𝐷 𝑠𝑄2. However, finally it is 

discarded since it does not satisfy a join predicate of the third join operation 

(… ) ⋈𝑈𝐼𝐷 𝑠𝑄3. It is clear that such propagations of 𝑡 through the join sequence have 

caused a waste of disk and network I/Os. Besides, irrelevant data also cause 

many wasted CPU cycles. Hence, in order to improve query performance, irrelevant 

data should be discarded as early as possible.      

5.2.2 Query Execution Plan 

 

Figure 5.4: Execution plan transformation for the query 𝑄 
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This section presents the query execution plan with main focus on how row and 

column tables are used in join operations. We describe this execution plan for a user 

query 𝑄, which is represented in a general form, given in Figure 4.4 in Section 4.2.3.  

Figure 5.4(a) presents the initial execution plan for 𝑄. Here, 𝑄 is decomposed into 

sub-queries 𝑄𝐼,  𝑄𝐽 and  𝑄𝐾 to respectively access entity tables 𝑇𝐼,  𝑇𝐽 and  𝑇𝐾. (In 

DICOM data, these entity tables may be Patient, Study, Series, etc.) This execution 

plan can be mathematically written as 𝑄 = 𝑄𝐼 ⋈𝑈𝐼𝐷  𝑄𝐽 ⋈𝑈𝐼𝐷  𝑄𝐾. As such, the names 

of the entity tables are used in the user query, and the types of join operations between 

any two entity tables are also explicitly identified by the user. In this example, the user 

is using only inner joins to join three entity tables 𝑇𝐼,  𝑇𝐽 and  𝑇𝐾 together. We assume 

that each of the entity tables has been vertically partitioned into several sub-tables and 

stored in row or column stores by applying the expert-based design approach or the 

automated design approach, as introduced in Chapter 4. We also assume that only few 

attributes of the entity tables are used by 𝑄 such that the sub-queries 𝑄𝐼,  𝑄𝐽 and  𝑄𝐾 

need to be further decomposed into smaller sub-queries 𝑄𝐼,1, 𝑄𝐼,2, 𝑄𝐽,1,  𝑄𝐽,2 and  𝑄𝐾,1 

to only access the sub-tables containing the attributes relevant to 𝑄. Figure 5.4(b) 

presents the transformed execution plan for 𝑄: 𝑄𝐼,1 and 𝑄𝐼,2 access respectively 𝑇1 

and 𝑇2 (which are sub-tables of 𝑇𝐼); 𝑄𝐽,1 and 𝑄𝐽,2 access  respectively 𝑇3 and 𝑇4 (which 

are sub-tables of 𝑇𝐽); similarly,  𝑄𝐾,1 accesses only 𝑇𝑁 (which is a sub-table of 𝑇𝐾). 

Some join operations between sub-tables need to be evaluated as left-outer joins. 

In a nutshell, the query processing strategy can be described as follows: 

HYTORMO will decompose the user query using entity tables into sub-queries to be 

able to access necessary row and column tables. A left-deep sequential tree plan is 

applied. Some join operations between the result tables of the sub-queries need to be 

evaluated as left-outer joins to prevent data loss caused by the tuples discarded by 

inner joins. HYTORMO will automatically determine the types of join operations.  

5.2.3 Determining Left-Outer Joins 

We propose the heuristic rules to determine when a left-outer join is used. 

Rule 1: In a join between two sub-tables of the same entity table, if the left-hand 

side table is a row table of mandatory attributes while the right-hand side table is 

either a column table of optional attributes or a row table of frequently-accessed-

together attributes, this join needs to be evaluated as a left-outer join. 

In Figure 5.4(b), both sub-queries 𝑄𝐼 = 𝑄𝐼,1⟕𝑈𝐼𝐷 𝑄𝐼,2 and 

𝑄𝐽 = 𝑄𝐽,1⟕𝑈𝐼𝐷 𝑄𝐽,2 are evaluated as left-outer joins  because 𝑄𝐼,1 and  𝑄𝐽,1, 

respectively, access two row tables of mandatory attributes 𝑇1 and 𝑇3 while 𝑄𝐼,2 

and 𝑄𝐽,2 access a column table of optional attributes 𝑇2 and a row table of frequently-

accessed-together attributes 𝑇4, respectively.     

Rule 2: In a join between two entity tables, if the right-hand side table has been 

replaced with a sub-table that is either a row table of frequently-accessed-together or 

a column table of optional attributes (because the user query uses only the attributes 

from this sub-table) and this sub-table is not the only child of its parent table, this join 

needs to be evaluated as a left-outer join. 
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For instance, in the query 𝑄 = 𝑄𝐼 ⋈𝑈𝐼𝐷  𝑄𝐽 ⋈𝑈𝐼𝐷  𝑄𝐾, given in Figure 5.4(a),  we 

focus on the join operation related to 𝑄𝐾, i.e., (… ) ⋈𝑈𝐼𝐷 𝑄𝐾. 𝑄𝐾 has been changed 

(rewritten) to  𝑄𝐾,1 accessing the column table of optional attributes, 𝑇𝑁. Assume that 

𝑇𝑁 is not the only child of its parent table, 𝑇𝐾, by applying Rule 2, the join operation 

using the result of  𝑄𝐾,1 will be rewritten to a left-outer join, as illustrated in Figure 

5.4(b).  

As such, Rule 1 is applied to consider a join operation between two sub-tables of 

the same entity table. On the other hand, Rule 2 is applied to consider a join operation 

between two entity tables in which the right-hand side table has been changed to a sub-

table. In the scope of our study, we only concern on the execution plans using the inner 

joins and the above-mentioned two cases of left-outer joins. Optimization for queries 

with left-outer joins can be referenced in [115]. 

5.2.4 Reducing the Number of Left-Outer Joins 

In the previous section, we introduced two heuristic rules, Rule 1 and 2, to determine 

whether a join operation needs to be evaluated as a left-outer join or not. In order to 

improve the query performance, the number of left-outer joins should be minimized as 

small as possible. Below, we introduce another heuristic rule - Rule 3, used for 

deciding whether or not a left-outer join should be rewritten to an inner join: 

Rule 3: Given a left-outer join 𝑇1⟕𝑈𝐼𝐷𝑇2, if there are not any non-null constraints 

on attributes of the right-hand side table 𝑇2, this left-outer join should be rewritten to 

an inner join in order to improve query performance. 

This heuristic rule is based on the fact that, in the left-outer join 𝑇1⟕𝑈𝐼𝐷𝑇2, if  there 

are not any non-null constraints on attributes of 𝑇2, the left-outer join returns all the 

matching tuples between 𝑇1 and 𝑇2, like an inner join. Additionally, the unmatched 

tuples are also preserved from 𝑇1 and are supplied with nulls for the attributes from 𝑇2. 

Thus, in this case, the left-outer join is kept (no change). However, if there is a non-

null constraint on an attribute of the right-hand-side table, i.e., 𝑇2, this constraint must 

be evaluated to be TRUE to form a tuple in the query result. They also remove any 

null rows from 𝑇2. Therefore, in this case, it is unnecessary to use left-outer join. The 

join operation should be rewritten to an inner join. 

Let us consider the user query 𝑄2𝑏 as shown in Figure 5.5(a), which will display 

information about Patient, including UID, PatientID, PatientName, PatientBirthDate, 

PatientSex, EthnicGroup, PregnancyStatus and LastMenstrualDate. This query is 

similar to the query 𝑄2a,  given in Figure 5.2, but has a constraint  

LastMenstrualDate >= ’2016’ in WHERE clause to find all the patients whose 

LastMenstrualDate from year 2016 onwards. There does not exist a physical table with 

all the attributes relevant to this query, thus 𝑄2𝑏 is decomposed into two sub-queries 

𝑠𝑄1,1 and 𝑠𝑄1,2 to access two vertically partitioned tables RowPatient and 

RowPregnancy, respectively,  to obtain the required attributes. 𝑄2𝑏 is written to 𝑄′2𝑏, 

presented in Figure 5.5(a), which uses an left-outer join according to Rule 1. The 

corresponding execution plan tree is given in Figure 5.5(b). 
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Figure 5.5: Transformation of the query 𝑄2𝑏 to two equivalent execution plans 

Using the execution plan given in Figure 5.5(b), the results of two sub-queries 𝑠𝑄1,1 

and 𝑠𝑄1,2 is joined together by using a left-outer join. The constraint 

LastMenstrualDate >= ’2016’ in WHERE clause must be evaluated to TRUE to form 

a row in the result of 𝑄2𝑏.  If there is an unmatched row in this left-outer, the columns 

from the right-hand side table, i.e., RowPregnancy, are inserted by null values. That 

is, on the unmatched rows, the column LastMenstrualDate also gets null values that 

cannot make the constraint in WHERE clause become TRUE. Thus, those unmatched 

rows will be removed from the result of 𝑄2𝑏. Clearly, in this case, a left-outer join is 

unnecessary, and 𝑄′2𝑏 should be rewritten to 𝑄′′2𝑏, as shown in Figure 5.5(a), which 

uses an inner join as suggested by Rule 3. Its corresponding execution plan tree in 

Figure 5.5(c). Table 5.7 presents the correct result of query 𝑄2b. (Both execution plans 

given respectively in Figures 5.5(b) and (c) give the same result.) 

Table 5.7: Correct result of the query 𝑄2b  

UID PatientID 
Patient-

Name 

Patient-

BirthDate 

Patient-

Sex 

Ethnic-

Group 

Pregnancy-

Status 

LastMenstrual-

Date 

1440108680459 P40032 Garcia 19990515 (null) Blacks 4 20160511 

In general, given an execution plan, we will apply Rule 1, then Rule 2, followed by 

Rule 3. Below we present how the execution plan of the user query, 

𝑄 = 𝑄𝐼 ⋈𝑈𝐼𝐷  𝑄𝐽 ⋈𝑈𝐼𝐷  𝑄𝐾, is transformed when applying these rules. Figure 5.6(a) 

presents the execution plan tree of 𝑄 over three entity tables 𝑇𝐼,  𝑇𝐽 and  𝑇𝐾. Because 

these entity tables has been decomposed into several sub-tables and stored in row or 

column stores, 𝑄 needs to be decomposed into sub-queries 𝑄𝐼,  𝑄𝐽 and  𝑄𝐾  which then 

are further decomposed into smaller sub-queries 𝑄𝐼,1, 𝑄𝐼,2, 𝑄𝐽,1, 𝑄𝐽,2 and  𝑄𝐾,1 to be 

able to access, respectively, the row and column tables, 𝑇1, 𝑇2, 𝑇3, 𝑇4 and 𝑇𝑁, 
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containing attributes relevant to 𝑄. Besides, some join operations need to be evaluated 

as left-outers: (1) by applying Rule 1 to consider joins between two sub-tables, we 

determine two left-outer joins: 𝑄𝐼,1⟕𝑈𝐼𝐷𝑄𝐼,2 and 𝑄𝐽,1⟕𝑈𝐼𝐷𝑄𝐽,2; and (2) by applying 

Rule 2 to consider join operations between two entity tables, we determine a left-outer 

join for third join: (𝑄𝐼 ⋈𝑈𝐼𝐷 𝑄𝐽)⟕𝑈𝐼𝐷𝑄𝐾,1, as shown in Figure 5.6(b). 

 

Figure 5.6: Transformation of the execution plan after applying Rule 3 

Furthermore, we apply the Rule 3 to transform the execution plan tree in Figure 

5.6(b) to the one in Figure 5.6(c) as follows: First, we check whether there exist non-

null constraints on the attributes of the right-hand side table of each left-outer join. 

Here, we assume that 𝐶2
 and 𝐶𝑁

 are non-null constraints on the attributes of the 

tables 𝑇2 and 𝑇𝑁, respectively (as shown in Figure 5.6(b)). Thus, we replace two left-

outer joins 𝑄𝐼,1⟕𝑈𝐼𝐷𝑄𝐼,2 and (𝑄𝐼 ⋈𝑈𝐼𝐷 𝑄𝐽)⟕𝑈𝐼𝐷𝑄𝐾,1 with two inner joins 

𝑄𝐼,1 ⋈𝑈𝐼𝐷 𝑄𝐼,2 and (𝑄𝐼 ⋈𝑈𝐼𝐷 𝑄𝐽) ⋈𝑈𝐼𝐷 𝑄𝐾,1, respectively (as shown in Figure 5.6(c)). 

5.3 Intersection Bloom Filter 

In this section, we first describe how to integrate an IBF into the query processing. 

Then we present in detail the cost-effectiveness analysis of the IBF. Finally, we 

introduce an alternative form of the IBF, called incremental IBF. 

5.3.1 Query Execution Plan with the 𝐈𝐁𝐅 

In Chapter 3, we presented background about BF and IBF which are used to remove 

irrelevant tuples out of input tables of join operations. In this section, we propose a 

method to integrate an IBF into the query processing strategy built on top of 

HYTORMO. An IBF is used instead of BFs because of its benefits. For instance, its 

error probability is significantly less than that of the BF, or the application of the IBF 

in a distributed query processing environment can reduce more network I/Os than  the 

BF [23-25, 116]. In our study, the application of the IBF is considered in two phases, 

namely (1) build phase, where the IBF is built for input tables, and (2) probe phase, 
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where the IBF is applied to remove irrelevant tuples from input tables of multiple-table 

join queries. In the followings, we depict how to perform these phases.  

In order to avoid loss of generality, we consider the integration of the IBF into the 

query processing for a user query 𝑄 which is written in a general form supported by 

HYTORMO, as presented in Figure 4.4 in Section 4.2.3: 𝑄 is a multi-way join query 

on common join attributes. We assume that 𝑄 can be decomposed into a set of sub-

queries 𝑄𝐼, 𝑄𝐽 and 𝑄𝐾, each of which can be further decomposed into smaller sub-

queries to be able to access, respectively, the underlying row and column tables, 𝑇1, 

𝑇2, …, 𝑇𝑁, containing the attributes relevant to 𝑄. Because HYTORMO has used a  

left-deep sequential tree plan, we focus on the application of the IBF to this query 

execution plan. Although the underlying input tables 𝑇1, 𝑇2,…, 𝑇𝑁 might have some 

common join attributes, in the scope of our study, we assume that these tables share 

only a common join attribute 𝑈𝐼𝐷 (which is an unique identification attribute in 

DICOM database tables). Under this assumption, we can build and probe a common 

IBF on the join attribute 𝑈𝐼𝐷 of the input tables.  

 

Figure 5.7: Query execution plan with the IBF 

Figure 5.7(a) and (b) describes the build and probe phases of the IBF, respectively. 

First of all, we assume that three heuristic rules, Rules 1, 2 and 3 (as introduced in the 

previous section), have been applied to determine the suitable join types and to reduce 

the number of left-outer joins in the query execution plan. This results in the execution 

plan tree as shown in Figure 5.7(a). Then, in order to build the IBF for this execution 

plan tree, we need to compute a set of Bloom filters 𝐵𝐹𝑖′s (using the same 

configuration: the same size and the same set of hash functions) on the join attribute 

𝑈𝐼𝐷 for the intermediate result tables 𝐷1, 𝐷2, 𝐷3, 𝐷4 and 𝐷𝑁, which are generated as 

the results of the sub-queries 𝑄𝐼,1, 𝑄𝐼,2, 𝑄𝐽,1, 𝑄𝐽,2 and 𝑄𝐾,1, respectively. After obtaining 

the set of 𝐵𝐹𝑖′s, the IBF is computed by applying bitwise AND operations on these 

BFs. It is worth noting that, in our study, a Bloom filter is only applied for inner joins. 

Hence, during the build phase of the IBF, we do not create a Bloom filter for the right-

hand side table of a left-outer join if there does not exit any non-null constraint on the 

attributes of this table. For instance, we do not create a BF for the table 𝐷4 (i.e., the 



Query Processing for Hybrid Storage Model
 

106  

 

result of 𝑄𝐽,2), as shown in Figure 5.7(a), because it is a right-hand side table of a left-

outer join and there are not any non-null constraints on its attributes. This is due to the 

fact that 𝑄𝐽,1⟕𝑈𝐼𝐷𝑄𝐽,2 is not equivalent to 𝑄𝐽,1 ⋈𝑈𝐼𝐷 𝑄𝐽,2, thus using a BF for 𝐷4 will 

cause data loss caused by tuples discarded when 𝐴𝑁𝐷𝑖𝑛𝑔 this BF with others in order 

to compute the IBF. Once the IBF is completely computed, the probe phase of the IBF 

is started, as given in Figure 5.7(b). The IBF is applied to filter irrelevant input tuples 

out of the input tables of joins before these joins are performed. It is worthy to note 

that although a BF have not built on the table 𝐷4, the IBF is still applied to this table. 

5.3.2 Cost-effectiveness Analysis 

In this section, we provide a cost-effectiveness analysis of the IBF when applied for 

HYTORMO. Our objective is to evaluate the benefit of the IBF in terms of query 

performance. Although there exist several research works that attempted to integrate 

the BFs in the processing of distributed queries [117] and MapReduce framework [118-

120], our application context differs from theirs since we use the IBF instead of the BFs. 

Besides these research works, P. Koutris [116] theoretically made cost-effectiveness 

analyses of using the BFs within a single MapReduce but did not provide specific detail 

costs in practice; moreover, the impacts of the BFs  on the execution cost of particular 

operations, such as disk and network I/Os, have not been evaluated clearly. More 

recently, the authors in [25] proposed several approaches for integrating the IBF into 

the MapReduce framework. They also presented cost models for join operations for the 

application of the IBF in MapReduce environment. However, in the context of 

HYTORMO, the query processing is performed on top of an in-memory cluster 

computing framework, called Spark, where the detailed execution of Map and Reduce 

phases will not concerned, instead we mainly focused on join operations to integrate 

the intermediate result tables. Therefore, we need to determine how to perform build 

and probe phases of the IBF and how to build cost models that provide detailed analysis 

of disk and network I/Os corresponding to this context. 

Because there are many cases in which the IBF can be applied, in our study, we 

focus on the cases where the IBF is used for a sequential join sequence of 𝑁 tables 

joined. We assume that the IBF is created by applying bitwise AND operations on the 

BFs on all input tables. Additionally, although the type of each join operation in the 

join sequence may be either an inner join or a left-outer join, to make the cost models 

simple, we assume that all left-outer join operations in the join sequence have been 

successfully transformed to the corresponding inner join operations, i.e., the join 

sequence now only consists of inner join operations. Formally, with these assumptions, 

we will provide a cost-effectiveness analysis of the application of the IBF to execute 

the multi-way join query 𝑄 = 𝐷1 ⋈𝑈𝐼𝐷 𝐷2 ⋈𝑈𝐼𝐷 … ⋈𝑈𝐼𝐷 𝐷𝑁, where 𝐷1, 𝐷2,…, 𝐷𝑁 are 

input tables. Besides, since the execution cost of the query 𝑄 depends on the processing 

order of its input tables, we assume that |𝐷𝑖| ≤ |𝐷𝑖+1|, where 𝑖 ∊ [1, 𝑁 − 1], such that 

the join sequence of the input tables can be expressed as     

𝑄 = (((𝐷1 ⋈𝑈𝐼𝐷 𝐷2) ⋈𝑈𝐼𝐷 … ) ⋈𝑈𝐼𝐷 𝐷𝑁−1)  ⋈𝑈𝐼𝐷 𝐷𝑁. 

The left-deep sequential tree plan with the application of the IBF for the above join 

sequence is presented in Figure 5.8. The input tables 𝐷1, 𝐷2, …, 𝐷𝑁 and the 
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intermediate result tables 𝐼1, 𝐼2, …, 𝐼𝑁−1 are used as inputs of join operations. Here, we 

are setting 𝐼1 = 𝐷1 and 𝐼𝑁 = < final query result >.  

 

Figure 5.8: Left-deep sequential execution plan with the application of the IBF 

Definitions and Basic Mathematical Concepts 

Before building the cost models, we provide some definitions and basic mathematical 

concepts related to the configuration of the IBF.  

 

Figure 5.9: Phases of the IBF with component 𝐵𝐹𝑖′s and hash functions  

The build and probe phases of the IBF are quite simple and can be briefly described 

as follows: First of all, the IBF is computed by 𝐴𝑁𝐷𝑖𝑛𝑔 all 𝐵𝐹𝑖′s  created on the join 

attribute 𝑈𝐼𝐷 of the input tables, as illustrated in Figure 5.9. Next, the IBF is probed 

to filter the irrelevant input tuples out of these input tables. In this phase, the following 

steps are performed: checking the membership of a value v of the join attribute 𝑈𝐼𝐷 in 

each input table 𝐷𝑖, where 𝑖 ∊ [1, 𝑁], will only require to compute 𝑘 hash functions 

and to access 𝑘 bits of the IBF; if the value 𝑣 makes all of 𝑘 hash functions ℎ1(𝑣), 

ℎ2(𝑣), …, ℎ𝑘(𝑣) true (= 1), the corresponding tuple is accepted; otherwise it is 

discarded from the input table 𝐷𝑖. Figure 5.9 shows that when checking the input table 

𝐷𝑖, value 𝑣 = 𝑖𝑑1 makes all of 𝑘 hash functions true, so the corresponding tuple is 

accepted. In contrast, value 𝑣 = 𝑖𝑑2 does not make all of 𝑘 hash functions true, e.g., 

ℎ2(𝑖𝑑2) = 0, thus the corresponding tuple is discarded.  

 



Query Processing for Hybrid Storage Model
 

108  

 

In Table 5.8, we summarize notations used in the cost models.  

Table 5.8: Notations 

Notation Explanation 

𝐷𝑖  Table that is used as either a build or a probe table. 

𝐼𝑖  Intermediate result table of the sequential join sequence. 

𝐵𝐹𝑖  Bloom filter that is built on the table 𝐷𝑖 . 

𝐼𝐵𝐹 Intersection Bloom filter. 

𝜌𝐷𝑗,𝐷𝑖
 Selectivity of the table 𝐷𝑗  on the table 𝐷𝑖  in the join 𝐷𝑖 ⋈𝑈𝐼𝐷 𝐷𝑗. 

𝜌𝐵𝐹𝑗,𝐷𝑖  Selectivity of the 𝐵𝐹𝑗 that is built on the table 𝐷𝑗  and then is probed on the table 𝐷𝑖 . 

𝜌𝐼𝐵𝐹,𝐷𝑖  
Selectivity of the IBF that is computed on the input tables 𝐷1, 𝐷2, … ,  𝐷𝑁  and probed 

on the table 𝐷𝑖 . 

𝑃𝐵𝐹𝑖
 False positive (due to hash collisions) of the 𝐵𝐹𝑖 that is built on the table 𝐷𝑖 . 

𝑃𝐼𝐵𝐹  
False positive of the IBF that is computed from the Bloom filters 

𝐵𝐹1, 𝐵𝐹2, … , 𝐵𝐹𝑁 of the input tables 𝐷1, 𝐷2, … ,  𝐷𝑁, respectively.  

Probability of a false positive of the Bloom filter 

The probability of a false positive of a Bloom filter 𝐵𝐹𝑖 due to hash collisions can be 

computed by Formula (5.3.1) [24]. 

𝑃𝐵𝐹𝑖
=  (1 − (1 − 𝑚−1)𝑘𝑛𝑖)𝑘 ≈ (1 − 𝑒−

𝑘𝑛𝑖
𝑚 )

𝑘

, (5.3.1) 

where the Bloom filter 𝐵𝐹𝑖 represents a set of 𝑛𝑖  values (i.e., the number of values of 

the join attribute 𝑈𝐼𝐷 of the input table 𝐷𝑖) in a vector of 𝑚 bits and using 𝑘 

independent hash functions. The value of 𝑃𝐵𝐹𝑖
 ranges from 0 to 1. 

According to [24], to store a set of 𝑛𝑖  values in a 𝑚-bit Bloom filter 𝐵𝐹𝑖,  the larger 

𝑚 the smaller probability of a false positive is. If the 𝑚 is fixed, in order to minimize 

the probability of a false positive, we can choose the number of hash functions 𝑘 and 

the minimum probability of the false positive 𝑃𝐵𝐹𝑖
 by using the Formulas (5.3.2) and 

(5.3.3), respectively: 

𝑘 = ln(2) ×
𝑚

𝑛𝑖
. (5.3.2) 

𝑃𝐵𝐹𝑖
= (

1

2
)

𝑘

= (0.6185)𝑚/𝑛𝑖 .  (5.3.3) 

Furthermore, based on Formulas (5.3.2) and (5.3.3), we conduct Formula (5.3.4) 

to compute the number of bits 𝑚 needed for the Bloom filter 𝐵𝐹𝑖: 

𝑚 =  
−𝑛𝑖 × ln(𝑃𝐵𝐹𝑖

)

(ln (2))2
. (5.3.4) 

For example, given a set of 200,000 values (𝑛𝑖 = 200,000) and an acceptable 

probability of false positive 𝑃𝐵𝐹𝑖
= 0.01, the number of bits 𝑚 and the number of hash 

functions 𝑘 (required to achieve such a probability of the false positive 𝑃𝐵𝐹𝑖
 of the 𝐵𝐹𝑖) 

can be respectively computed using Formulas (5.3.4) and (5.3.2) as bellows: 
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 𝑚 =  
−200,000×ln(0.01)

(ln (2))2  = 1,917,011.68 bits (1,917,012 bits ≈ 2 MB). 

 𝑘 = ln (2)  ×
1,917,012 

200,000
 = 6.64 hash functions (7 hash functions) 

Selectivity of a Bloom filter 

We define the selectivity of a Bloom filter 𝐵𝐹𝑗 that is created from the input table 𝐷𝑗  

and then probed on the input table 𝐷𝑖 is the probability in which a tuple t will be 

accepted by the Bloom filter 𝐵𝐹𝑗. This selectivity is computed by Formula (5.3.5): 

𝜌𝐵𝐹𝑗,𝐷𝑖
=  𝜌𝐷𝑗,𝐷𝑖

+ (1 −  𝜌𝐷𝑗,𝐷𝑖
) × 𝑃𝐵𝐹𝑗

, (5.3.5) 

where: 

 𝜌𝐷𝑗,𝐷𝑖
: selectivity of the table 𝐷𝑗 on the table 𝐷𝑖 in the join 𝐷𝑖 ⋈𝑈𝐼𝐷 𝐷𝑗; 

 𝑃𝐵𝐹𝑗
: error probability of the Bloom filter 𝐵𝐹𝑗 that is created from the table 𝐷𝑗; 

 (1 − 𝜌𝐷𝑗,𝐷𝑖
) × 𝑃𝐵𝐹𝑗

: fraction of tuples from the probe table 𝐷𝑖 that are not discarded by 

𝐵𝐹𝑗 and do not join with any tuples in the build table 𝐷𝑗; we set  𝜌𝐷𝑗,𝐷𝑖
+ (1 −  𝜌𝐷𝑗,𝐷𝑖

) ×

𝑃𝐵𝐹𝑗
= 1 when 𝑗 = 𝑖.  

Selectivity of an Intersection Bloom filter 

The selectivity of the IBF, which is built from a set of Bloom filters 𝐵𝐹𝑗′s of the input 

tables 𝐷𝑗′s, where j ∊ [1, 𝑁], and then probed on each input table 𝐷𝑖, can be determined 

by Formula (5.3.6): 

𝜌𝐼𝐵𝐹,𝐷𝑖
=  ∏ 𝜌𝐵𝐹𝑗,𝐷𝑖

𝑁

𝑗=1

 ,                                     (5.3.6) 

The selectivity of the IBF is regarded as the probability in which a tuple t of the 

input table 𝐷𝑖 will be accepted by all of its component Bloom filters 𝐵𝐹𝑗′s (𝑗 ∊ [1, 𝑁]). 

Comparing two Formulas (5.3.5) and (5.3.6), it is easy to see that 𝜌𝐼𝐵𝐹,𝐷𝑖
 is usually 

much less than 𝜌𝐵𝐹𝑗,𝐷𝑖
. This means that using an IBF can help to remove more 

irrelevant tuples than using just a single Bloom filter. 

False positive of an Intersection Bloom filter 

We can compute the false positive 𝑃𝐼𝐵𝐹 of the IBF  by Formula (5.3.7) as follows:  

𝑃𝐼𝐵𝐹 = ∏ 𝑃𝐵𝐹𝑖
=

𝑁

𝑖=1

 ∏(1 − 𝑒−𝑘𝑛𝑖/𝑚)
𝑘

𝑁

𝑖=1

 ,                 (5.3.7) 

where 𝑁 is the number of component Bloom filters 𝐵𝐹𝑖′s with an assumption that there 

exists a 𝐵𝐹𝑖 on each table 𝐷𝑖.  

A comparison between Formula (5.3.1) and Formula (5.3.7) shows that 𝑃𝐼𝐵𝐹  is 

much less than 𝑃𝐵𝐹𝑖
. This implies that applying an IBF offers a lower amount of false 

positive errors than only applying a single Bloom filter.  
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Network I/O cost and disk I/O cost 

The execution cost of a multi-way join query in a cluster is usually determined by 

network I/O cost and disk I/O cost, we thus will use these costs to analysis the cost-

effectiveness of the IBF. 

In order to estimate the network I/O cost and the disk I/O cost, we depend on the 

steps performed in the build and probe phases of the IBF, as shown in Figures 5.7(a) 

and (b). These steps include:  

Step 1. Execute sub-queries to create intermediate result tables 𝐷1, 𝐷2, … ,  𝐷𝑁 .. 

Step 2. Compute 𝐵𝐹1, 𝐵𝐹2, … ,  𝐵𝐹𝑁 on values of 𝑈𝐼𝐷′𝑠 of the input tables 𝐷1, 𝐷2, … ,  𝐷𝑁, 

respectively. 

Step 3. Compute 𝐼𝐵𝐹 = 𝐵𝐹1˄𝐵𝐹2˄ …  ˄ 𝐵𝐹𝑁 (each ˄ is a binary bitwise AND operator). 

Step 4. Broadcast the 𝐼𝐵𝐹 to all slave nodes of the cluster. 

Step 5. Apply the 𝐼𝐵𝐹 to the input tables 𝐷1, 𝐷2, … ,  𝐷𝑁 to obtain the filtered input tables 

𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), 𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), … ,  𝐷𝑁(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑). 

Step 6. Execute the sequential join sequence using the filtered input tables 

𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), 𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), … ,  𝐷𝑁(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) as input tables. 

The first three steps are in the build phase, whereas the rest of the steps are in the 

probe phase. We assume that the first step has been performed and we will start to 

estimate the costs from the second step. 

Network I/O Cost: Since each join operation in the sequential join sequence will join 

an intermediate result table (created by the previous join operation) with an input table 

𝐷𝑖, the network I/O cost when the IBF is not used, 𝐶𝑁𝑒𝑡
𝑁𝑜𝐼𝐵𝐹, can be computed by 

Formula (5.3.8): 

𝐶𝑁𝑒𝑡
𝑁𝑜𝐼𝐵𝐹 = ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖)

𝑁

𝑖=1

+ ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖) × 𝑠𝑖𝑧𝑒(𝐷𝑖+1) × 𝜌𝐷𝑖+1,𝐼𝑖  

𝑁−1

𝑖=1

 ,             (5.3.8) 

where: 

 𝑠𝑖𝑧𝑒(𝐷𝑖) =  |𝐷𝑖| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖
): size of the input table 𝐷𝑖; 

 ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖)𝑁
𝑖=1 : cost of sending the input tables; 

 𝜌𝐷𝑖+1,𝐼𝑖
: selectivity of the table 𝐷𝑖+1 on the table 𝐼𝑖 in the join 𝐼𝑖 ⋈𝑈𝐼𝐷 𝐷𝑖+1; 

 𝑠𝑖𝑧𝑒(𝐼𝑖) =  |𝐼𝑖| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐼𝑖
): size of the intermediate result table 𝐼𝑖; 

 ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖) × 𝑠𝑖𝑧𝑒(𝐷𝑖+1) × 𝜌𝐷𝑖+1,𝐼𝑖 
𝑁−1
𝑖=1 : cost of sending the intermediate results. 

The cost 𝐶𝑁𝑒𝑡
𝑁𝑜𝐼𝐵𝐹 consists of cost of sending the input tables and the intermediate 

result tables over the network. Assume that no replication is done on the input tables.  

The network I/O cost when the 𝐼𝐵𝐹 is used, 𝐶𝑁𝑒𝑡
𝐼𝐵𝐹, is computed by Formula (5.3.9): 

𝐶𝑁𝑒𝑡
𝐼𝐵𝐹 = 𝑐 × 𝑠𝑖𝑧𝑒(𝐼𝐵𝐹) +  ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))

𝑁

𝑖=1

+    ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖) × 𝑠𝑖𝑧𝑒(𝐷𝑖+1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) × 𝜌𝐷𝑖+1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑),𝐼𝑖 

𝑁−1

𝑖=1

 

,        (5.3.9) 
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where: 

 𝑐 × 𝑠𝑖𝑧𝑒(𝐼𝐵𝐹): cost of sending the IBF to 𝑐 slave nodes; 

 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) =  |𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖
): size of the filtered input table 𝐷𝑖; 

 𝑠𝑖𝑧𝑒(𝐼𝑖): size of the intermediate result table 𝐼𝑖. 

The cost 𝐶𝑁𝑒𝑡
𝐼𝐵𝐹 consists of the cost of sending (broadcast) the IBF to all slave nodes 

of the cluster and the cost of sending the filtered input tables and intermediate result 

tables over the network. Here, we do not apply the IBF to filter intermediate results. 

A comparison between Formula (5.3.8) and Formula (5.3.9) shows that 

𝑐 × 𝑠𝑖𝑧𝑒(𝐼𝐵𝐹) is usually small and 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) ≪  𝑠𝑖𝑧𝑒(𝐷𝑖); therefore, 𝐶𝑁𝑒𝑡
𝐼𝐵𝐹 is 

usually less than 𝐶𝑁𝑒𝑡
𝑁𝑜𝐼𝐵𝐹. 

Disk I/O Cost: The disk I/O cost without using the IBF, 𝐶𝐼/𝑂
𝑁𝑜𝐼𝐵𝐹, is computed by 

Formula (5.3.10).  

𝐶𝐼/𝑂
𝑁𝑜𝐼𝐵𝐹 = ∑[𝑠𝑖𝑧𝑒(𝐼𝑖) + 𝑠𝑖𝑧𝑒(𝐷𝑖+1)]

𝑁−1

𝑖=1

+ ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖)

𝑁

𝑖=2

 ,                (5.3.10) 

where: 

 ∑ [𝑠𝑖𝑧𝑒(𝐼𝑖) + 𝑠𝑖𝑧𝑒(𝐷𝑖+1)]𝑁−1
𝑖=1 : cost of reading the inputs for join operations; 

 ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖)𝑁
𝑖=2 : cost of writing the intermediate results of join operations to disks (here, we 

are setting 𝐼1 = 𝐷1). 

The disk I/O cost with the use of the 𝐼𝐵𝐹, 𝐶𝐼/𝑂
𝐼𝐵𝐹, is computed by Formula (5.3.11). 

𝐶𝐼/𝑂
𝐼𝐵𝐹 = 2 × ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖)

𝑁

𝑖=1

+ ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))

𝑁

𝑖=1

+ 

                       ∑[𝑠𝑖𝑧𝑒(𝐼𝑖) + 𝑠𝑖𝑧𝑒(𝐷𝑖+1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))]

𝑁−1

𝑖=1

+ ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖)

𝑁

𝑖=2

 

,                   (5.3.11) 

where: 

 2 × ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖)𝑁
𝑖=1 : cost of reading the input tables two times (to build and probe the IBF); 

 ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))𝑁
𝑖=1 : cost of writing the filtered input tables to disks after they are 

filtered by using the IBF; 

 ∑ [𝑠𝑖𝑧𝑒(𝐼𝑖) + 𝑠𝑖𝑧𝑒(𝐷𝑖+1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))]𝑁−1
𝑖=1 : cost of reading the intermediate results and the 

filtered input tables to be used as inputs of join operations; 

 ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖)𝑁
𝑖=2 : cost of writing the intermediate results to disks (here, we set 𝐼1 = 𝐷1). 

We assume that the IBF and the BFs are small enough to be stored in internal 

memories of the slave nodes. Thus, no disk I/O costs are needed for them. A 

comparison between Formula (5.3.10) and Formula (5.3.11) shows that 𝐶𝐼/𝑂
𝐼𝐵𝐹 includes 

extra costs to read and to write the input tables during the build and probe phases. 

However, after that the joins will use filtered input tables as their inputs. Therefore, if 

𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) ≈ 𝑠𝑖𝑧𝑒(𝐷𝑖), there is no benefit when applying the IBF; otherwise, if 

𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) ≪ 𝑠𝑖𝑧𝑒(𝐷𝑖), we can achieve 𝐶𝐼/𝑂
𝐼𝐵𝐹 ≈  𝐶𝐼/𝑂

𝑁𝑜𝐼𝐵𝐹. 
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Cost-Effectiveness Analysis 

According to the above analysis, we can observe that, on one side, the IBF may help 

to reduce the network I/O cost, 𝐶𝑁𝑒𝑡
𝐼𝐵𝐹, and the disk I/O cost, 𝐶𝐼/𝑂

𝐼𝐵𝐹 , because it may 

remove irrelevant tuples from the input tables. However, on another side, the IBF needs 

the disk and network I/O costs to build and send it to the slave nodes of the cluster and 

to probe it. Therefore, its benefit is only achieved when it can remove a large number 

of the irrelevant tuples. Below, we further analysis the cost-effectiveness of the IBF. 

As mentioned earlier, we assumed that the IBF is computed from the 𝐵𝐹𝑖′s  created 

from 𝑁 input tables 𝐷𝑖′s, where 𝑖 ∊ [1, 𝑁], and then it is applied to filter each input 

table 𝐷𝑖  to produce a corresponding filtered input table 𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑). The number of 

tuples of each filtered input table 𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) can be computed by Formula (5.3.12):  

|𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| = |𝐷𝑖| × 𝜌𝐼𝐵𝐹,𝐷𝑖 , (5.3.12) 

where: 

 |𝐷𝑖|: the number of tuples in the i-th input table 𝐷𝑖; 

 𝜌𝐼𝐵𝐹: selectivity of the IBF. 

Based on Formulas (5.3.5) and (5.3.6), we rewrite Formula (5.3.12) as below:  

|𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| = |𝐷𝑖| × ∏ [𝜌𝐷𝑗,𝐷𝑖
+ (1 −  𝜌𝐷𝑗,𝐷𝑖

) × 𝑃𝐵𝐹𝑗
]

𝑁

𝑗=1

 ,       (5.3.13) 

where: 

 |𝐷𝑖|: the number of tuples in the i-th input table 𝐷𝑖; 

 𝜌𝐷𝑗,𝐷𝑖
: selectivity of the table 𝐷𝑗 on the table 𝐷𝑖 in the join 𝐷𝑖 ⋈𝑈𝐼𝐷 𝐷𝑗; 

 𝑃𝐵𝐹𝑗
: error probability of the Bloom filter 𝐵𝐹𝑗 that is built on the table 𝐷𝑗; 

 (1 − 𝜌𝐷𝑗,𝐷𝑖
) × 𝑃𝐵𝐹𝑗

: fraction of tuples from the probe table 𝐷𝑖 that are not discarded by 

the 𝐵𝐹𝑗 and do not join with any tuples in the build table 𝐷𝑗. 

To reduce the network I/O cost and disk I/O cost, we need to apply the IBF if it is 

beneficial. Formula (5.3.13) shows that in order to achieve |𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| ≪ |𝐷𝑖|, the 

value of ∏ [𝜌
𝐷𝑗,𝐷𝑖

+ (1 −  𝜌
𝐷𝑗,𝐷𝑖

) × 𝑃𝐵𝐹𝑗
]𝑁

𝑗=1  needs to be low. This means that the given 

join sequence needs to contain one or more joins between two input tables 𝐷𝑖 ⋈𝑈𝐼𝐷 𝐷𝑗 

in which the selectivity 𝜌𝐷𝑗,𝐷𝑖
 of table 𝐷𝑗  on 𝐷𝑖 and the error probability 𝑃𝐵𝐹𝑗

 of their 

Bloom filter 𝐵𝐹𝑗 are low; otherwise, the IBF may give no benefit.  

Besides the above condition, no matter whether the IBF is applied or not, the size 

of intermediate results, i.e., 𝑠𝑖𝑧𝑒(𝐼𝑖) in Formulas (5.3.8) – (5.3.11), should be 

minimized by choosing a suitable join processing order for the input tables. 

Example of Evaluating the Benefit of the 𝐈𝐁𝐅 

The objective of the example is to show how the cost models can be applied to evaluate 

the cost-effectiveness of applying the IBF to a multi-way join query. For this objective, 

we consider a simple query 𝑄 having join operations across three input tables 𝐷1, 𝐷2 
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and 𝐷3, i.e., 𝑄 = 𝐷1 ⋈𝑈𝐼𝐷 𝐷2 ⋈𝑈𝐼𝐷 𝐷3. For simplicity, we follow the following 

assumptions: (1) the query 𝑄 has a common join attribute 𝑈𝐼𝐷 on its input tables; (2) 

the input tables are using a row-oriented data layout; (3) the sizes of the input tables 

and the selectivity factors of join operations between each pair of input tables are given 

in Table 5.9; and (4) the number of slave nodes c = 10. 

Table 5.9: Example of table sizes and selectivity factors of join operations 

Input table 

(𝑫𝒊) 

Number of 

tuples (𝒏𝒊) 

Tuple size 

(MB) 

Table size 

(MB) 
Selectivity factor (𝝆𝑫𝒋,𝑫𝒊

) 

D1 200,000 0.05 10,000 𝜌𝐷1,𝐷1
= 1; 𝜌𝐷2,𝐷1

= 0.3; 𝜌𝐷3,𝐷1
= 0.4 

D2 100,000 0.05 5,000 𝜌𝐷1,𝐷2
= 0.3; 𝜌𝐷2,𝐷2

= 1; 𝜌𝐷3,𝐷2
= 0.2 

D3 50,000 0.16 8,000 𝜌𝐷1,𝐷3
= 0.4; 𝜌𝐷2,𝐷3

= 0.5; 𝜌𝐷3,𝐷3
= 1 

Under the above assumptions, we can compute the IBF by 𝐴𝑁𝐷𝑖𝑛𝑔 Bloom filters 

𝐵𝐹1, 𝐵𝐹2 and 𝐵𝐹3 created on the common join attribute 𝑈𝐼𝐷 of the input tables 𝐷1, 𝐷2 

and 𝐷3, respectively. The IBF and all the 𝐵𝐹𝑖′s (i = 1, 2, 3) need to follow the same 

configuration: the number of bits of vectors and the number of hash functions. There 

is a challenge to build the IBF and all the 𝐵𝐹𝑖′s  with the same configuration because 

each of them may have its own optimal configuration corresponding to its own number 

of tuples. To overcome this challenge, we first find an optimal configuration for the 

Bloom filter 𝐵𝐹1 created from the attribute 𝑈𝐼𝐷 of the biggest input table, i.e., 𝐷1, and 

then apply this configuration to the IBF and the other Bloom filters  𝐵𝐹𝑖′s (i = 2, 3). In 

particular, given that the table 𝐷1 contains a set of 200,000 tuples (i.e., 𝑛1 = 200,000)  

and assumedly we want to achieve a probability of false positives bounded by  

𝑃𝐵𝐹1
= 0.01, the number of bits 𝑚 and the number of hash functions 𝑘 that are required 

for 𝐵𝐹1 to obtain the above bounded value of 𝑃𝐵𝐹1
 can be computed using two 

Formulas (5.3.4) and (5.3.2), respectively: 𝑚 = 1,917,012 (≈ 2 MB) and 𝑘 = 7. (This 

is identical to the example shown at the start of this section).  

Using the above configuration, we compute the error probabilities for 𝐵𝐹2, 𝐵𝐹3 

and IBF according to Formulas (5.3.1) and (5.3.7):   

 𝑃𝐵𝐹2
=  (1 − 𝑒

−7×
100,000

1,917,012)
7

= 0.00025. 

 𝑃𝐵𝐹3
=  (1 − 𝑒

−7×
50,000

1,917,012)
7

= 0.0000036. 

 𝑃𝐼𝐵𝐹 = ∏ 𝑃𝐵𝐹𝑖
=3

𝑖=1 0.01 × 0.00025 × 0.0000036 =  0.000000000009. 

Up to this point, we have already obtained the following information of the IBF 

and 𝐵𝐹𝑖′s (i = 1, 2, 3): the number of bits, the number of hash functions and the error 

probabilities of the IBF and 𝐵𝐹𝑖′s. In the next step, we need to estimate the number of 

tuples in filtered input tables 𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) (i = 1, 2, 3) by using Formula (5.3.12).  This 

step, in turn, requires us to compute the selectivity  𝜌𝐵𝐹𝑗,𝐷𝑖
 of the Bloom filter 𝐵𝐹𝑗 on 

the input table 𝐷𝑖  by using Formula (5.3.5) and the selectivity 𝜌𝐼𝐵𝐹,𝐷𝑖  of the IBF on 𝐷𝑖 

by using Formula (5.3.6). The results of our calculations are shown below:  

 The selectivity of 𝐵𝐹𝑖′s on each input table computed using Formula (5.3.5): 

o 𝜌𝐵𝐹1,𝐷1
= 1. 



Query Processing for Hybrid Storage Model
 

114  

 

o 𝜌𝐵𝐹2,𝐷1
= 𝜌𝐷2,𝐷1

+ (1 − 𝜌𝐷2,𝐷1
) × 𝑃𝐵𝐹2

= 0.3 + 0.7 × 0.00025 = 0.300175. 

o 𝜌𝐵𝐹3,𝐷1
= 𝜌𝐷3,𝐷1

+ (1 − 𝜌𝐷3,𝐷1
) × 𝑃𝐵𝐹3

= 0.4 + 0.6 × 0.0000036 =  0.40000216. 

o 𝜌𝐵𝐹1,𝐷2
= 𝜌𝐷1,𝐷2

+ (1 − 𝜌𝐷1𝐷2
) × 𝑃𝐵𝐹1

= 0.3 + 0.7 × 0.01 = 0.307. 

o 𝜌𝐵𝐹2,𝐷2
= 1. 

o 𝜌𝐵𝐹3,𝐷2
= 𝜌𝐷3,𝐷2

+ (1 − 𝜌𝐷3,𝐷2
) × 𝑃𝐵𝐹3

= 0.2 − 0.8 × 0.0000036 = 0.19999712. 

o 𝜌𝐵𝐹1,𝐷3
= 𝜌𝐷1,𝐷3

+ (1 − 𝜌𝐷1,𝐷3
) × 𝑃𝐵𝐹1

= 0.4 − 0.6 × 0.01 = 0.394. 

o 𝜌𝐵𝐹2,𝐷3
= 𝜌𝐷2,𝐷3

+ (1 − 𝜌𝐷2,𝐷3
) × 𝑃𝐵𝐹2

= 0.5 − 0.5 × 0.00025 = 0.499875. 

o 𝜌𝐵𝐹3,𝐷3
= 1. 

 The selectivity of the IBF on each input table computed using Formula (5.3.6): 

o 𝜌𝐼𝐵𝐹,𝐷1
=  ∏ 𝜌𝐵𝐹𝑗,𝐷1

3
𝑗=1 = 𝜌𝐵𝐹1,𝐷1

× 𝜌𝐵𝐹2,𝐷1
× 𝜌𝐵𝐹3,𝐷1

= 0.120070648. 

o 𝜌𝐼𝐵𝐹,𝐷2
=  ∏ 𝜌𝐵𝐹𝑗,𝐷2

3
𝑗=1 = 𝜌𝐵𝐹1,𝐷2

× 𝜌𝐵𝐹2,𝐷2
× 𝜌𝐵𝐹3,𝐷2

= 0.06139911584. 

o 𝜌𝐼𝐵𝐹,𝐷3
=  ∏ 𝜌𝐵𝐹𝑗,𝐷3

3
𝑗=1 = 𝜌𝐵𝐹1,𝐷3

× 𝜌𝐵𝐹2,𝐷3
× 𝜌𝐵𝐹3,𝐷3

= 0.19695075. 

 The number of tuples of the filtered input tables computed using Formula (5.3.12): 

o |𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| = |𝐷1| × 𝜌𝐼𝐵𝐹,𝐷1 = 200,000 × 0.120070648 = 24,014 (𝑟𝑒𝑑𝑢𝑐𝑒𝑑 88%). 

o |𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| = |𝐷2| × 𝜌𝐼𝐵𝐹,𝐷2 = 100,000 × 0.06139911584 = 6,140 (𝑟𝑒𝑑𝑢𝑐𝑒𝑑 94%). 

o |𝐷3(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| = |𝐷3| × 𝜌𝐼𝐵𝐹,𝐷3 = 50,000 × 0.19695075 = 9,848 (𝑟𝑒𝑑𝑢𝑐𝑒𝑑 80%). 

Since the given query may have a large number of candidate execution plans due 

to different join ordering possibilities, an exhaustive search for an optimal execution 

plan is too expensive. Hence, we adopt to apply the minimum selectivity heuristic 

strategy introduced by M. Steinbrunn et al. [108] to build a left-deep processing tree 

step by step by attempting to keep intermediate results as small as possible. First of 

all, a table 𝐷𝑖 that has the smallest cardinality will be chosen to become an initial 

intermediate result, i.e., 𝐼1 = 𝐷𝑖. Then, for each step, a table 𝐷𝑗  having the smallest 

selectivity factor 𝜌𝐷𝑗,𝐼𝑖 for the join operation 𝐼𝑖 ⋈𝑈𝐼𝐷 𝐷𝑗 is chosen. Our study takes into 

account the integration of the IBF into this left-deep sequential tree plan of 𝑁 tables.  

Now, we will apply the above execution plan to the query  

𝑄 = 𝐷1 ⋈𝑈𝐼𝐷 𝐷2 ⋈𝑈𝐼𝐷 𝐷3. Based on the information given in Table 5.9, we see that 

|𝐷3| ≤ |𝐷2| ≤ |𝐷1|, thus we select the initial intermediate result 𝐼1 = 𝐷3. Besides, by 

looking at the selectivity factors of other tables on table 𝐷3, we see that  

𝜌𝐷1,𝐷3
= 0.4 <  𝜌𝐷2,𝐷3

= 0.5, hence we choose table 𝐷1 instead of 𝐷2 to join with the 

current intermediate result 𝐼𝑖. By continuing in this way, we achieve a left-deep 

sequential tree plan for 𝑄. Finally, we integrate the IBF into this execution plan, as 

shown in Figure 5.10. 

 

Figure 5.10: Left-deep processing tree of the query Q with the use of the IBF 
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The evaluation of the cost-effectiveness of applying the IBF to the query 𝑄 in terms 

of network I/O cost and disk I/O cost is given as follows. 

Network I/O Cost: 

 When not using the IBF, to compute the network I/O cost, we use Formula (5.3.8): 

𝐶𝑁𝑒𝑡
𝑁𝑜𝐼𝐵𝐹 = ∑ (|𝐷𝑖| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖

))

3

𝑖=1

+ |𝐷3| × |𝐷1| × 𝜌𝐷1,𝐷3

× ((𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

)) + |𝐷2| × 𝜌𝐷2,𝐷3
× 𝜌𝐷2,𝐷1

× (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2
))). 

               = 23,000 + 50,000 × 200,000 × 0.4 × 

                          ((0.16 + 0.05) + 100,000 × 0.5 × 0.3 × (0.16 + 0.05 + 0.05)). 

              = 15,600,840,023,000 (𝑀𝐵). 

 When using the IBF, to compute the network I/O cost, we use Formula (5.3.9): 

𝐶𝑁𝑒𝑡
𝐼𝐵𝐹 = 10 ∗ 𝑠𝑖𝑧𝑒(𝐼𝐵𝐹) + 

                         ∑ (|𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖
))

3

𝑖=1

+ |𝐷3(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × |𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝜌𝐷1,𝐷3

× ((𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

)) + |𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝜌𝐷2,𝐷3
× 𝜌𝐷2,𝐷1

× (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2
))). 

         = 20 + (24,014 × 0.05 + 6,140 × 0.05 + 9,848 × 0.16) + 9,848 × 24,014 × 0.4

× ((0.16 + 0.05) + 6,140 × 0.5 × 0.3 × (0.16 + 0.05 + 0.05)). 

         = 22,671,814,152(𝑀𝐵)(𝑟𝑒𝑑𝑢𝑐𝑒𝑑 99%).  

Disk I/O Cost:  

 When not using the IBF, we can compute the disk I/O cost using Formula (5.3.10): 

     𝐶𝐼/𝑂
𝑁𝑜𝐼𝐵𝐹 = (|𝐷3| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3

) + |𝐷3| × |𝐷1| × 𝜌𝐷1,𝐷3
 × (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1
))

+ (|𝐷1| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1
) + 𝑠𝑖𝑧𝑒(𝐷3) + |𝐷2| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2

)))

+ (|𝐷3| × |𝐷1| × 𝜌𝐷1,𝐷3

× ((𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

)) + |𝐷2| × 𝜌𝐷2,𝐷3
× 𝜌𝐷2,𝐷1

× (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2
)))). 

        = (50,000 × 0.16 + 50,000 × 200,000 × 0.4 × (0.16 + 0.05)

+ (200,000 × 0.05 + 100,000 × 0.05))

+ (50,000 × 200,000 × 0.4

× ((0.16 + 0.05) + 100,000 × 0.5 × 0.3 × (0.16 + 0.05 + 0.05))). 

            = 15,601,680,023,000 (𝑀𝐵). 

 When using the IBF, we can compute the disk I/O cost by using Formula (5.3.11): 
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𝐶𝐼/𝑂
𝐼𝐵𝐹 = 2 × ∑|𝐷𝑖| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖

)

3

𝑖=1

+ ∑|𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖
)

3

𝑖=1

+ (|𝐷3(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + |𝐷3(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × |𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)|

× 𝜌𝐷1,𝐷3
× (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1
))

+ (|𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1
) + 𝑠𝑖𝑧𝑒(𝐷3) + |𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)|

× 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2
)))

+ (|𝐷3(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × |𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝜌𝐷1,𝐷3

× ((𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

)) + |𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝜌𝐷2,𝐷3
× 𝜌𝐷2,𝐷1

× (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2
)))). 

          = 2 × (23,000) + (24,014 × 0.05 + 6,140 × 0.05 + 9,848 × 0.16)

+ (9,848 × 0.16 + 9,848 × 24,014 × 0.4 × (0.16 + 0.05)

+ (24,014 × 0.05 + 6,140 × 0.05))

+ (9,848 × 24,014 × 0.4

× ((0.16 + 0.05) + 6,140 × 0.5 × 0.3 × (0.16 + 0.05 + 0.05))). 

          = 22,691,728,365 (𝑀𝐵)(𝑟𝑒𝑑𝑢𝑐𝑒𝑑 99%). 

Based on the above estimation results, the impact of the application of the IBF on 

both the network I/O cost and the disk I/O cost has been shown clearly. The estimation 

results show that the benefit of the IBF is achieved when the given join sequence 

contains one or more join operations whose selectivity factors are very highly selective  

5.3.3 Incremental Intersection Bloom Filter  

In the previous section, we showed that the disk I/O cost required for building and 

probing the IBF is quite high because of a large number of reading and writing 

operations on intermediate result tables and filtered intermediate result tables. To 

reduce this cost, instead of building a complete IBF from all Bloom filters of all input 

tables before probing it, we can build and probe the IBF incrementally during the 

execution of join operations. For simplicity, we refer to this IBF as an incremental 𝐼𝐵𝐹. 

Figure 5.11(a) illustrates the integration of the incremental IBF into the execution plan 

of the query 𝑄 = 𝑄𝐼 ⋈𝑈𝐼𝐷  𝑄𝐽 ⋈𝑈𝐼𝐷  𝑄𝐾, which was given in Figure 5.6(c). 

The steps of build and probe phases of the incremental IBF given in Figure 5.11(a):  

 Execute the sub-query 𝑄𝐼,1 and create the intermediate result table 𝐷1
′ . 

 Compute the Bloom filter 𝐵𝐹1 on values of the attribute 𝑈𝐼𝐷 of 𝐷1
′  and then 

compute an incremental IBF: 𝐼𝐵𝐹1 = 𝐵𝐹1. 

 Execute the sub-query 𝑄𝐼,2 with the application of the current incremental 𝐼𝐵𝐹1 as 

a local predicate on the input table 𝑇2 and create the intermediate result table 𝐷2
′  

(i.e., 𝐷2
′  only consists of the tuples whose values are already represented in 𝐼𝐵𝐹1).  

 Compute the Bloom filter 𝐵𝐹2 on values of the attribute 𝑈𝐼𝐷 of 𝐷2
′  and recompute 

the incremental IBF: 𝐼𝐵𝐹2 = 𝐼𝐵𝐹1 ˄ 𝐵𝐹2. 
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 … 

 The above steps are similarly performed for the next sub-queries. Finally, we 

obtain all the intermediate result tables 𝐷1
′ , 𝐷2

′ , … , 𝐷𝑁
′  of the sub-queries. We also 

achieve the newest incremental IBF: 𝐼𝐵𝐹𝑁, i.e., in general, 𝐼𝐵𝐹𝑁 = 𝐼𝐵𝐹𝑁−1˄ 𝐵𝐹𝑁. 

It is worthy to note that a Bloom filter is not computed on a right-hand side table 

of a left-outer join and no non-null constraint found on it, e.g., 𝐷4
′ .  Besides, it is 

unnecessary to recompute the 𝐼𝐵𝐹𝑁 from the intermediate result table 𝐷𝑁
′  of the 

uppermost sub-query  𝑄𝐾,1 because it will not be used any more.  

 

Figure 5.11: Query execution plan with the incremental IBF 

Finally, the intermediate result tables 𝐷1
′ , 𝐷2

′ , … , 𝐷𝑁
′  are used as input tables for join 

operations in the execution plan, as illustrated in Figure 5.11(b). This means that these 

intermediate result tables do not need to be re-filtered as in the case of the IBF approach 

presented in Section 5.3.1. Thus, the disk I/O cost is significantly saved when the 

incremental IBF is applied. However, when using the incremental IBF, the sizes of 

input tables of join operations is generally larger than those in the case of the IBF 

approach (presented in Section 5.3.1). This is due to that fact that when using the 

incremental IBF, an input table is filtered by the incremental IBF that is being 

incrementally computed by just using the BFs of the lower input tables in the execution 

plan rather than using all the BFs of all the input tables. Therefore, approximately, we 

have 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) ≤ 𝑠𝑖𝑧𝑒(𝐷𝑖
′) ≤ 𝑠𝑖𝑧𝑒(𝐷𝑖) (𝑖 = 1, … , 𝑁), where 𝐷𝑖

′ is an 

intermediate result table in the case the incremental IBF is applied, whereas 𝐷𝑖 and 

𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), respectively, are the intermediate result table and the filtered input table 

in the case of the IBF approach. Moreover, when the incremental IBF is applied, each 

sub-query produces only one intermediate result table 𝐷𝑖
′, instead of two intermediate 

result tables, i.e.,  𝐷𝑖 and 𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), as in the case of the IBF approach. Due to 

𝑠𝑖𝑧𝑒(𝐷𝑖
′) ≤ 𝑠𝑖𝑧𝑒(𝐷𝑖) + 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)), the disk I/O cost is required for the build 

and probe phases of the incremental IBF is less than that of the IBF. 

The incremental IBF can offer the best benefit when it is incrementally built from 

intermediate result tables of highly selective sub-queries of lowermost join operations 
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of the execution plan tree and then used as a local predicate to filter irrelevant inputs 

out of the intermediate result tables of the sub-queries of upper join operations.  

5.4 Summary and Conclusion 

Querying DICOM data from the hybrid store of HYTORMO has posed some 

challenges. Entity tables of the DICOM data have been decomposed into a number of 

vertically partitioned tables and are stored using row or column data layouts, thus the 

query processing strategy needs to be designed to suit with such a data storage strategy. 

Besides, although the proposed data storage strategy is able to reduce the I/O cost at 

attribute level by attempting to reduce the number of irrelevant attribute accesses, it 

cannot reduce the I/O cost at tuple level. The irrelevant tuples that will not pass join 

predicates in multiple-table join queries are still read and sent over the network before 

discarded from join results. This decreases query performance. 

To address the above problems, we designed and implemented a query processing 

strategy built on top of HYTORMO: a query execution plan with inner and left-outer 

joins on vertically partitioned tables. The left-outer joins are used to prevent the data 

loss when the inner joins are performed on the vertically partitioned tables. 

Furthermore, we proposed heuristic rules to determine when a left-outer join operation 

needs to be used and when a left-outer join operation should be rewritten into an inner-

join operation. On the other hand, the integrating of the IBF into the query processing 

aims to minimize the irrelevant input data and the intermediate results during the query 

execution; this helps to reduce network communication cost. We presented a cost-

effectiveness analysis of the application of the IBF. Finally, we introduce an 

alternative IBF approach, called incremental IBF for saving the disk I/O cost required 

for build and probe phases of the IBF approach. Experimental evaluation of the benefit 

of the IBF will be presented in the next chapter. 

Key Points  

 We provide heuristic rules to choose the suitable join types.  

 We propose a query processing with IBF and give cost-effectiveness analysis. 

 We propose an alternative IBF approach, called incremental IBF. 
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Chapter 

 

Performance Evaluation 

6.1 Overview 

This chapter presents the evaluation results and lessons learned from applying 

HYTORMO, the data storage strategy, HADF and the query processing strategy with 

the use of an IBF. An overview of the chapter is given in Table 6.1. 

Table 6.1: Overview over Chapter 6 

6.2 Experimental Environment 

6.2.1 Spark Cluster  6.2.2 Datasets 6.2.3 Workloads 

6.3 Experiment Execution 

6.3.1 Experiment 1 6.3.2 Experiment 2 6.3.3 Experiment 3 6.3.4 Experiment 4 

6.4 Analysis and Interpretation 

6.4.1 H1 - Effectiveness of HYTORMO 6.4.2 H2 - Usefulness of HADF 

6.4.3 H3 - Effectiveness of the Query Processing Strategy 

6.5 Summary and Conclusion 

Our experiments aim at providing empirical evidences that the proposed methods 

are helpful as well as isolating the lessons learned and determining the critical aspects 

of successful applying the proposed methods. The experiments concentrate on 

answering the following questions:   

 Does the combined use of the hybrid storage model, HYTORMO, offer a better 

workload performance than only using a pure row store or a pure column store? 

 Does HADF with taking into account the combined impact of both workload- and 

data-specific information as well as the use of both row and column stores help us 

to generate better data storage configurations in terms of storage space size and 

workload execution time?  

 Does the query processing strategy with the integration of an IBF improve query 

performance? 

The above questions are respectively related to three hypotheses H1 – H3 proposed 

to evaluate the proposed methods, shown in Section 1.7 in Chapter 1: the first one 

concerns on the benefit of HYTORMO; the second one concerns on the benefit of 

HADF; and the last one concerns on the benefit of the IBF. To get the answers for these 

questions, we first describe the experimental environment. Next, we execute the 

experiments. After that, we analyze and interpret the results to evaluate the hypotheses.  
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6.2 Experimental Environment 

6.2.1 Spark Cluster 

We used Hadoop 2.7.1, Hive 1.2.1 and Spark 1.6.0 to install a cluster. The hardware 

of the cluster consists of 9 different nodes: 1 × Master node: Intel(R) core(TM) i7-

3770 CPU @ 3.40GHz, 8GB RAM, 2TB hard disk and 1GBit network connection; 

and 8 × Slave nodes: Intel(R) core(TM) i7-3770 CPU @ 3.40GHz, 6GB RAM, 500GB 

hard disk and 1GBit network connection (GALACTICA: https://horizon.isima.fr). 

HDFS was used for the hybrid store of HYTORMO. We ran 1 Namenode and 8 

Datanodes using the standard configuration of HDFS with a modification: we set the 

replication factor of HDFS to 2 (instead of 3 as default) in order to save storage space. 

We implemented execution plans for queries in workloads using Spark [21]. 

6.2.2 Datasets 

We used real DICOM datasets [121-126] whose statistics (including the number of 

DICOM files, the number of extracted attributes, the size of extracted metadata in text 

format and the total size of files) are given in Table 6.2. We performed four different 

experiments in order to validate the benefits of the hybrid store, HADF and IBF. Each 

experiment used different parts of the DICOM datasets. For simplicity, we created two 

mixed datasets: (1) MDB1 consisted of DICOM files of the first five DICOM datasets: 

CTColonography, Dclunie, Idoimaging, LungCancer and MIDAS; and (2) MDB2 

consisted of all DICOM datasets: CTColonography, Dclunie, Idoimaging, 

LungCancer, MIDAS and CIAD. In order to reduce the complexity of processing and 

analyzing a large amount of data, Experiment 1 used only MDB1 as a sample dataset 

to provide data-specific information for HADF. This is because the distribution of null 

ratios of attributes in MDB1 is similar to that of MDB2. Experiment 2 used MDB1 

and MDB2 separately. Experiment 3 and 4 used only MDB2. 

Table 6.2: Mixed DICOM datasets used in the experiments 

No. Datasets 

No. of 

DICOM 

files 

No. of 

extracted 

attributes 

Size of 

extracted 

metadata 

Total size 

of files 
Mixed dataset 

1 CTColonography  98,737 86 7.76 GB 48.6 GB 

MDB1 
MDB2 

2 Dclunie 541 86 86.0 MB 45.7 GB 

3 Idoimaging 1,111 86 53.9 MB 369 MB 

4 LungCancer 174,316 86 1.17 GB 76.0 GB 

5 MIDAS 2,454 86 63.4 MB 620 MB 

6 CIAD 3,763,894 86 61.5 GB 1.61 TB  

Metadata and pixel data were extracted from the DICOM files by using a Java 

program that calls methods in the library dcm4che-2.0.29 [127]. The extracted 

attributes were grouped together and stored in suitable storage layouts (a row- or a 

column-oriented data layout). This can be performed by using one of two design 

approaches: expert-based and automated. In the former approach, first of all, experts 

(e.g., database designers) manually group the attributes of each entity table into 

column groups (mandatory, frequently-accessed-together or optional/private/seldom-
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accessed attributes), then select a suitable data layout for each column group. In [107], 

we showed that the query performance when applying this approach is improved when 

compared with two other approaches: using a pure row store and a pure column store. 

In this chapter, we only present the experiments to assess the benefit of the later 

approach.  

HADF is applied to generate multiple data storage configurations depending on 

the combined impact of both workload- and data-specific information as well as the 

mixed use of both row and column stores. The HADF-generated data storage 

configurations were stored as follows: sequence files and ORC files in Hive [128] were  

used to store row and column tables, respectively.   

In order to manage completely DICOM data, many entity tables, such as Patient, 

Study, GeneralInfoTable, SequenceAttribute, ClinicalTrial, GeneralSeries, 

FileMetaElement and ImageInformation and so on, need to be stored. However, our 

experiments only concern on the following four entity tables:  

 Patient(UID, PatientName, PatientID,  PatientBirthDate, PatientSex, EthnicGroup, 

IssuerOfPatientID, PatientBirthTime, PatientInsurancePlanCodeSequence, 

PatientPrimaryLanguageCodeSequence, PatientPrimaryLanguageModifierCode-

Sequence, OtherPatientIDs, OtherPatientNames, PatientBirthName, 

PatientTelephoneNumbers, SmokingStatus, PregnancyStatus, LastMenstrualDate, 

PatientReligiousPreference, PatientComments, PatientAddress, 

PatientMotherBirthName, InsurancePlanIdentification) 

 Study(UID, StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName, 

StudyID, AccessionNumber, StudyDescription, PatientAge, PatientWeight, PatientSize, 

Occupation, AdditionalPatientHistory, MedicalRecordLocator, MedicalAlerts) 

 GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames, GeneralValues) 

 SequenceAttributes(UID, SequenceTags, SequenceVRs, SequenceNames, 

SequenceValues) 

Table 6.3 shows the sizes of the entity tables extracted from the dataset MDB1.  

Table 6.3: Sizes of the entity tables of the dataset MDB1 

Entity Table 
Total size 

Number of tuples Size 

Patient 120,306 20.788 MB 

Study 120,306 19.183 MB 

GeneralInfoTable 16,226,762 4,845,042 MB 

SequenceAttributes 4,149,395 389.433 MB 

The null ratios of the attributes of the entity tables of MDB1 are listed below: 

 The null ratios of the attributes of the entity table Patient:  

1 PatientName: 0.00% 12 OtherPatientNames: 100% 

2 PatientID: 0.00% 13 PatientBirthName: 100% 

3 PatientBirthDate: 83.55% 14 PatientTelephoneNumbers: 100% 

4 PatientSex: 1.48% 15 SmokingStatus: 97.48% 

5 EthnicGroup: 100% 16 PregnancyStatus: 90.01% 

6 IssuerOfPatientID: 100% 17 LastMenstrualDate: 97.72% 
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7 PatientBirthTime: 96.32% 18 PatientReligiousPreference: 100% 

8 PatientInsurancePlanCodeSequence: 100% 19 PatientComments: 99.64% 

9 PatientPrimaryLanguageCodeSequence: 100% 20 PatientAddress: 100% 

10 PatientPrimaryLanguageModifierCodeSequence: 100% 21 PatientMotherBirthName: 100% 

11 OtherPatientIDs: 100% 22 InsurancePlanIdentification: 100% 

 The null ratios of the attributes of the entity table Study:  

1 StudyInstanceUID: 0.00% 8 PatientAge: 11.23% 

2 StudyDate: 0.07% 9 PatientWeight: 14.18% 

3 StudyTime: 0.07% 10 PatientSize: 90.34% 

4 ReferringPhysicianName: 16.44% 11 Occupation: 99.63% 

5 StudyID: 15.65% 12 AdditionalPatientHistory: 71.64% 

6 AccessionNumber: 93.93% 13 MedicalRecordLocator: 100% 

7 StudyDescription: 0.48% 14 MedicalAlerts: 100% 

 The null ratios of the attributes of the entity table GeneralInfoTable:  

1 GeneralTags: 0.00% 3 GeneralNames: 0.00% 

2 GeneralVRs: 0.00% 4 GeneralValues: 13.97% 

 The null ratios of the attributes of the entity table SequenceAttributes:  

1 SequenceTags: 0.00% 3 SequenceNames: 0.00% 

2 SequenceVRs: 0.00% 4 SequenceValues: 0.34% 

Table 6.4 shows the sizes of the entity tables extracted from the dataset MDB2.  

Table 6.4: Sizes of the entity tables of the dataset MDB2 

Entity Table 
Total size 

Number of tuples Size 

Patient 1,802,376 324 MB 

Study 1,856,892 384 MB 

GeneralInfoTable 337,730,322 39.2 GB 

SequenceAttributes 75,314,902 7.64 GB 

The null ratios of the attributes of the entity tables of MDB2 are listed below.   

 The null ratios of the attributes of the entity table Patient:  

1 PatientName: 19.25% 12 OtherPatientNames: 100% 

2 PatientID: 0% 13 PatientBirthName: 100% 

3 PatientBirthDate: 96.70% 14 PatientTelephoneNumbers: 100% 

4 PatientSex: 11.99% 15 SmokingStatus: 79.33% 

5 EthnicGroup: 78.29% 16 PregnancyStatus: 36.36% 

6 IssuerOfPatientID: 100% 17 LastMenstrualDate: 99.85% 

7 PatientBirthTime: 99.75% 18 PatientReligiousPreference: 100% 

8 PatientInsurancePlanCodeSequence: 100% 19 PatientComments: 83.23% 

9 PatientPrimaryLanguageCodeSequence: 100% 20 PatientAddress: 100% 

10 PatientPrimaryLanguageModifierCodeSequence: 100% 21 PatientMotherBirthName: 100% 

11 OtherPatientIDs: 100% 22 InsurancePlanIdentification: 100% 
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 The null ratios of the attributes of the entity table Study:  

1 StudyInstanceUID:  2.72% 8 PatientAge: 29.78% 

2 StudyDate: 2.94% 9 PatientWeight: 27.11% 

3 StudyTime: 23.43 % 10 PatientSize: 33.12% 

4 ReferringPhysicianName: 87.63% 11 Occupation: 97.11% 

5 StudyID: 86.57% 12 AdditionalPatientHistory: 79.38% 

6 AccessionNumber: 24.58% 13 MedicalRecordLocator: 98.36% 

7 StudyDescription: 19.83% 14 MedicalAlerts: 98.21% 

 The null ratios of the attributes of the entity table GeneralInfoTable:  

1 GeneralTags: 0% 3 GeneralNames: 0% 

2 GeneralVRs: 0% 4 GeneralValues: 10.19% 

 The null ratios of the attributes of the entity table SequenceAttributes:  

1 SequenceTags: 0.2% 3 SequenceNames: 0.36% 

2 SequenceVRs: 0.36% 4 SequenceValues: 0.69% 

As shown above, the null ratios of the attributes of two entity tables Patient and 

Study are very high, thus we can refer to them as sparse tables. Conversely, two entity 

tables GeneralInfoTable and SequenceAttributes are regarded as dense tables because 

the null ratios of their attributes are very low.  

6.2.3 Workloads 

We simulated various workloads, each of which includes a set of queries and their 

occurrence frequency. There are the following types of the workloads: (1) OLAP-like 

workload contains queries using only a few attributes from each entity table; (2) OLTP-

like workload consists of queries using most (or all) attributes from each entity table; 

and (3) mixed OLTP and OLAP workload includes queries using an arbitrary number 

of attributes from the entity tables.  

Workload W1: This is an OLAP-like workload that mainly contains queries using 

only a few attributes of the entity table GeneralInfoTable (which is the largest entity 

table in terms of storage space size). Workload W1 aims at demonstrating the benefit 

of HADF when used for OLAP workloads. The set of queries and their occurrence 

frequency in this workload is given in Table 6.5.  

Table 6.5: Queries and their occurrence frequency in Workload W1 

Query Query Freq 

Q1,1 SELECT UID, GeneralTags, GeneralVRs, GeneralNames, GeneralValues FROM 

GeneralInfoTable  

100 

Q1,2 SELECT GeneralTags, count(GeneralValues) FROM GeneralInfoTable GROUP BY  

GeneralTags 

100 

Q1,3 SELECT UID, GeneralNames FROM GeneralInfoTable WHERE  GeneralNames = 

‘Modality’ 

100 

Q1,4 SELECT UID, GeneralVRs FROM GeneralInfoTable WHERE GeneralVRs = ‘DA’ 100 
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Workload W2: This is an OLTP-like workload that consists of queries using the 

majority of the attributes from the entity table SequenceAttributes. It aims at showing 

the application of HADF to OLTP workloads. We present this workload in Table 6.6.  

Table 6.6: Queries and their occurrence frequency in Workload W2 

Query Query Freq 

Q2,1 SELECT UID, SequenceTags, SequenceVRs,  SequenceNames, SequenceValues 

FROM SequenceAttributes WHERE SequenceNames LIKE ‘%X-Ray%’  

100 

Q2,2 SELECT SequenceTags, SequenceVRs, SequenceNames FROM SequenceAttributes 

WHERE SequenceVRs = ‘CS’ 

100 

Workload W3: This is a mixed OLTP and OLAP workload that uses an arbitrary 

number of attributes from the entity table Patient (which is the widest and sparsest 

entity table). Some attributes of the entity table Patient are frequently accessed 

together by the same queries (OLTP-like workload) while the others are seldom 

accessed together (OLAP-like workload). Workload W3 is shown in Table 6.7. 

Table 6.7: Queries and their occurrence frequency in Workload W3 

Query Query Freq 

Q3,1 SELECT UID, PatientName, PatientID, PatientBirthDate, PatientTelephoneNumbers, 

PatientSex, PatientBirthName, SmokingStatus, PatientComments, 

PatientMotherBirthName FROM Patient WHERE  PatientID = ‘P30013’ 

300 

Q3,2 SELECT UID, PatientName, PatientID, PatientBirthDate, PatientSex, EthnicGroup, 

IssuerOfPatientID, OtherPatientNames, PatientMotherBirthName, 

InsurancePlanIdentification FROM Patient  

100 

Q3,3 SELECT UID, PatientID, PatientName, PatientBirthDate, PatientSex, EthnicGroup, 

SmokingStatus FROM Patient WHERE  PatientSex = ‘M’ AND SmokingStatus = 

‘NO’ 

100 

Q3,4 SELECT UID, PatientName, PatientID, PatientBirthDate, EthnicGroup, 

PatientPrimaryLanguageModifierCodeSequence, OtherPatientIDs, PatientAddress 

FROM Patient  

100 

Q3,5 SELECT UID, PatientName, PatientID, PatientBirthDate, PatientBirthTime, 

PatientInsurancePlanCodeSequence, PregnancyStatus, LastMenstrualDate, 

PatientReligiousPreference FROM Patient  

100 

Q3,6 SELECT UID, PatientName, PatientID, PatientBirthDate, EthnicGroup, 

PregnancyStatus, LastMenstrualDate FROM Patient  

100 

This workload aims at illustrating the application of HADF to a mixed OLAP and 

OLTP workload and showing whether the combined use of both workload- and data-

specific information is helpful in reducing the storage space demand and the workload 

execution time.  

Workload W4: Similarly to Workload W3, this is a mixed OLTP and OLAP workload, 

using an arbitrary number of attributes from multiple entity tables Patient, Study, 

GeneralInfoTable and SequenceAttributes. Additionally, it contains multiple table join 

queries. Hence, it is used not only to demonstrate the application of HADF to mixed 

workloads but also to show the support of HYTORMO for multiple-table join queries. 

We introduce this workload in Table 6.8. 

 



Performance Evaluation
 

    125 

 

Table 6.8: Queries and their occurrence frequency in Workload W4 

Query Query Freq 

Q4,1 SELECT Patient.UID, Patient.PatientName, Patient.PatientID, Patient.PatientBirthDate,  

Patient.PatientTelephoneNumbers, Patient.PatientSex, Patient.PatientBirthName, 

Patient.SmokingStatus, Patient.PatientComments, Patient.PatientMotherBirthName, 

Study.StudyInstanceUID, Study.StudyDate, Study.StudyTime, 

Study.ReferringPhysicianName, Study.StudyID, Study.AccessionNumber, 

Study.MedicalAlerts FROM Patient, Study WHERE Patient.UID =  Study.UID AND 

and Patient.PatientID = ‘P30013’ AND Study.StudyDate >= ’20000101’ AND 

Study.StudyDate <= ’20150101’ 

300 

Q4,2 SELECT Patient.UID, Patient.PatientName, Patient.PatientID, Patient.PatientBirthDate, 

Patient.PatientSex, Patient.EthnicGroup, Patient.IssuerOfPatientID, 

Patient.OtherPatientNames, Patient.PatientMotherBirthName, 

Patient.InsurancePlanIdentification, Study.StudyInstanceUID, Study.StudyDate, 

Study.StudyTime, Study.ReferringPhysicianName, Study.StudyID, 

Study.MedicalRecordLocator FROM Patient, Study WHERE Patient.UID =  Study.UID 

AND Study.StudyID = ’20050920’ 

100 

Q4,3 SELECT Patient.UID, Patient.PatientID, Patient.PatientName, Patient.PatientBirthDate, 

Patient.PatientSex, Patient.EthnicGroup, Patient.SmokingStatus, Study.PatientAge, 

Study.PatientWeight, Study.PatientSize, GeneralInfoTable.GeneralNames, 

GeneralInfoTable.GeneralValues, SequenceAttributes.UID, 

SequenceAttributes.SequenceTags, SequenceAttributes.SequenceVRs,  

SequenceAttributes.SequenceNames, SequenceAttributes.SequenceValues  

FROM Patient, Study, GeneralInfoTable, SequenceAttributes 

WHERE Patient.UID = Study.UID AND Study.UID = GeneralInfoTable.UID 

AND Patient.UID = SequenceAttributes.UID AND Patient.PatientSex = ’M’ 

AND Patient.SmokingStatus  = ‘NO’ AND Study.PatientAge >= 90  

AND SequenceAttributes.SequenceNames LIKE ‘%X-Ray%’  

100 

Q4,4 SELECT Patient.UID, Patient.PatientName, Patient.PatientID, Patient.PatientBirthDate, 

Patient.EthnicGroup, Patient.PatientPrimaryLanguageModifierCodeSequence, 

Patient.OtherPatientIDs, Patient.PatientAddress, Study.UID, Study.StudyInstanceUID, 

Study.StudyDate, Study.StudyTime, Study.ReferringPhysicianName, 

Study.StudyID, Study.AccessionNumber, Study.PatientWeight, 

Study.AdditionalPatientHistory, GeneralInfoTable.GeneralTags, 

GeneralInfoTable.GeneralValues SequenceAttributes.SequenceTags, 

SequenceAttributes.SequenceVRs, SequenceAttributes.SequenceNames FROM Patient, 

Study, GeneralInfoTable, SequenceAttributes WHERE Patient.UID = Study.UID AND 

Patient.UID = GeneralInfoTable AND  Patient.UID = SequenceAttributes.UID AND 

SequenceAttributes. SequenceVRs = ’CS’ AND  GeneralInfoTable.GeneralTags LIKE 

‘0008%’ 

100 

Q4,5 SELECT Patient.UID, Patient.PatientName, Patient.PatientID, Patient.PatientBirthDate, 

Patient.PatientBirthTime, Patient.PatientInsurancePlanCodeSequence, 

Patient.PregnancyStatus, Patient.LastMenstrualDate,Patient.PatientReligiousPreference, 

Study.StudyInstanceUID, Study.StudyDate, Study.StudyTime, Study.StudyID, 

Study.PatientSize, Study.Occupation, GeneralInfoTable.GeneralNames FROM Patient, 

Study, GeneralInfoTable WHERE Patient.UID =  Study.UID AND Patient.UID = 

GeneralInfoTable.UID AND GeneralInfoTable.GeneralNames = ‘Modality’ 

100 

Q4,6 SELECT Patient.UID, Patient.PatientName, Patient.PatientID, Patient.PatientBirthDate, 

Patient.EthnicGroup, Patient.PregnancyStatus, Patient.LastMenstrualDate, 

Study.StudyInstanceUID, Study.StudyDate, Study.StudyTime, 

Study.ReferringPhysicianName, Study.StudyID, Study.StudyDescription, 

Study.PatientAge, GeneralInfoTable. GeneralVRs FROM Patient, Study, 

GeneralInfoTable WHERE Patient.UID =  Study.UID AND Patient.UID = 

GeneralInfoTable.UID AND Study.StudyDate >= ‘20000101’ AND Study.StudyDate <= 

‘20150101’ AND GeneralInfoTable.GeneralVRs = ‘DA’ 

100 
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6.3 Experiment Execution 

This section presents four different experiments used to evaluate the hypotheses.  

6.3.1 Experiment 1: Evaluating the Effectiveness of 

HYTORMO and the Usefulness of HADF 

Experiment 1 aims at assessing Hypotheses H1 and H2 in order to show the 

effectiveness of HYTORMO and the usefulness of HADF, respectively. Besides, a 

good data storage configuration for each entity table will be chosen from a set of 

HADF-generated data storage configurations.  

Table 6.9: Major steps of Experiment 1 

Conf 
Typical candidate data storage 

configuration 
Execution Measures 

Selection  

Criteria  

G1 

- Settings: 𝛼 = 0; 𝛽 = 0; 𝜃 = 0; and 𝜆 = 0. 

- HADF-generated data storage 

configurations: The entity table 𝑇𝑖  is 

stored in a single row table.  

- Run Workload 

Wj  
(j = 1, …, 4) 

relevant to the 

entity table 𝑇𝑖  

five time for 

each 

configuration. 

- Using the 

dataset MDB1. 

 

- Storage 

space size 

of 𝑇𝑖 . 

- Workload 

execution 

time.  

- A good 

configuratio

n is chosen 

for 𝑇𝑖  

according to: 

(1) storage 

space size; 

and/or (2) 

workload 

execution 

time. 

G2 

- Settings: 𝛼 = 0; 𝛽 = 0; 𝜃 = 0; and 𝜆 = 1. 

- HADF-generated data storage 

configurations: The entity table 𝑇𝑖  is in 

a single column table. 

G3 
_ 

G7 

- Settings: 𝛼 = 0, 0.3, 0.5, 0.7, 1; 𝛽 = 0.4; 

𝜃 = 0.5; and 𝜆 = 0.6. 

- HADF-generated data storage 

configurations: vertically partitioned 

tables and their data layouts. 

The major steps of the experiment are presented in detail in Table 6.9. First of all, 

to obtain a good configuration for each entity table 𝑇𝑖 (i.e., GeneralInfoTable, 

SequenceAttributes, Patient and Study) in the given workloads 𝑊𝑗, where j = 1, …, 4, 

we apply HADF to generate a set of 7 typical candidate data storage configurations 

corresponding to 7 different settings of the input parameters 𝛼, 𝛽, 𝜃  and 𝜆. Each 

HADF-generated data storage configuration will be represented in the form of a set of 

clusters together with their corresponding data layouts. Next, we build these 

configurations in HYTORMO. For each configuration, we run the relevant 

workload(s) five times; the average workload execution time is calculated. To reduce 

experiment time, this experiment uses only the dataset MDB1. A good configuration 

is chosen for 𝑇𝑖 based on storage space size and workload execution time.  

Below, we present the experimental results of four workloads W1 - W4. 

Execution of Workload W1 

Workload W1 uses the entity table GeneralInfoTable and a set of queries given in Table 

6.5. We first build the corresponding matrix AUM for this entity table, as shown in 

Figure 6.1. This is an OLAP-like workload since only a few of the attributes of the 
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entity table are accessed together by the same queries. As default, the attribute UID is 

added to all vertically partitioned tables, thus we do not need to add it into the AUM.  

 

Figure 6.1: AUM of the entity table GeneralInfoTable in Workload W1 

Table 6.10: Typical candidate configurations for GeneralInfoTable 

Conf 

Input Output 

Parameters Entity table 
Typical candidate data 

storage configuration 

No. of 

stored data 

cells 

Null 

ratio 

No. of 

joins 

No. of scanned  

data cells 

Exec. 

time 

(sec) 
𝛼 𝛽 𝜃 𝜆 

No. of data 

cells 

Null 

ratio 

G1 0 0 0 0 81,135,145 3.49% 𝐶1,1 = {𝑈𝐼𝐷, 𝑖1, 𝑖2, 𝑖3, 𝑖4} 

             => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

81,135,145 3.49% 0 32,454,058,000 15,180 

G2 0 0 0 1 81,135,145 3.49% 𝑪𝟐,𝟏 = {𝑼𝑰𝑫, 𝒊𝟏, 𝒊𝟐, 𝒊𝟑, 𝒊𝟒} 

          => 𝒄𝒐𝒍𝒖𝒎𝒏 𝒔𝒕𝒐𝒓𝒆  

81,135,145 3.49% 0 19,472,434,800 13,790 

G3 0 0.4 0.5 0.6 81,135,145 3.49% like G2 like G2 like G2 like 

G2 

like G2 like G2 

G4 0.3 0.4 0.5 0.6 81,135,145 3.49% like G2 like G2 like G2 like 

G2 

like G2 like G2 

G5 0.5 0.4 0.5 0.6 81,135,145 3.49% like G2 like G2 like G2 like 

G2 

like G2 like G2 

G6 0.7 0.4 0.5 0.6 81,135,145 3.49% like G2 like G2 like G2 like 

G2 

like G2 like G2 

G7 1 0.4 0.5 0.6 81,135,145 3.49% 𝐶7,1 = {𝑈𝐼𝐷, 𝑖1, 𝑖4} 

         => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

𝐶7,2 = {𝑈𝐼𝐷, 𝑖3} 

         => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

𝐶7,2 = {𝑈𝐼𝐷, 𝑖2} 

        => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

113,589,203 3.49% 200 22,717,840,600 

 

 

19,020 

Table 6.10 presents a set of 7 HADF-generated data storage configurations G1 - G7 

and their statistics for the entity table GeneralInfoTable, corresponding to 7 different 

settings of the input parameters (i.e., 𝛼, 𝛽, 𝜃 and 𝜆). Each row in the table describes a 

configuration. The columns represent: (1) the values for input parameters (2) the 

number of stored data cells of the original entity table; (3) the null ratio of the entity 

table; (4) the configuration represented in the forms of a set of column groups and their 

corresponding data layouts; (5) the number of stored data cells of the configuration; 

(6) the null ratio of the configuration; (7) the number of join operations needed by 

Workload W1; (8) the number of data cells scanned for Workload W1; and (9) the 

workload execution time (in second).  

Here, the null ratio of a table is computed by Formula (6.4.1): 

𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜 =  
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑙𝑙 𝑑𝑎𝑡𝑎 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡𝑎𝑏𝑙𝑒

𝑀 × 𝑁
 ,             (6.4.1) 

where 𝑀 and  𝑁 respectively represent the number of rows and columns in the table 

(not including the attribute UID). Similarly, the null ratio of a configuration is the ratio 
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between the total number of null data cells stored in all vertically partitioned tables 

and the total number of data cells stored for that configuration. 

Configurations G1 - G7 are described as follows: 

 Configuration G1: This configuration is referred to as a baseline configuration in 

which all the attributes of GeneralInfoTable are grouped into single cluster 𝐶1,1 =

{𝑈𝐼𝐷, 𝑖1, 𝑖2, 𝑖3, 𝑖4}, stored in a single row table. Some relevant statistics are as 

follows: (1) the number of stored data cells is 81,135,145; (2) the overall null ratio 

is 3.49%; (3) no join operation is required because the workload access only one 

table; (4) the number of data cells scanned by the workload is 32,454,058,000; and 

(5) the workload execution time is 15,180 seconds.  

 Configuration G2: This configuration is similar to Configuration G1: it groups all 

the attributes of GeneralInfoTable into a single cluster 𝐶2,1 = {𝑈𝐼𝐷, 𝑖1, 𝑖2, 𝑖3, 𝑖4}, 

but uses a column table, instead of a row table. Compared to G1, G2 also does not 

decrease the null ratio, but helps the workload significantly reduces the number of 

scanned data cells: 19,472,434,800 data cells are scanned. The reason is when a 

column store is used, only the columns relevant to the queries are read. Similarly 

to G1, no join operation is needed. As a result, the workload execution time is low: 

the workload is performed in 13,790 seconds. 

 Configuration G3 - G6: GeneralInfoTable is a dense table (its null ratio is very 

low: 3.49%) and most of its attributes are seldom accessed together (except query 

Q1,1). Thus, when the weight parameter 𝛼 is set, respectively, to 0, 0.3, 0.5 and 0.7, 

the clustering phase of HADF found that all the attributes of GeneralInfoTable are 

highly correlated with each other with respect to Hybrid Similarity in which 

Attribute Density Similarity has more impact on the result of the clustering than 

Attribute Access Similarity. Recall that the Hybrid Similarity between two 

attributes 𝑎𝑥 and 𝑎𝑦 is computed by Formula (4.4.3): 𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) = 

α × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) + (1 − α) × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦). 

Therefore, the clustering phase groups all the attributes into a single cluster, i.e., 

𝐶3,1 = 𝐶4,1 = 𝐶5,1 = 𝐶6,1 = {𝑈𝐼𝐷, 𝑖1, 𝑖2, 𝑖3, 𝑖4}. If this cluster is stored in a single 

row table, the number of redundant accesses from queries Q1,2, Q1,3 and Q1,4 will 

be large. However, the merging-selecting phase of HADF suggests to store the 

cluster in a single column table so that no join operation is required for Q1,1 while 

the number of redundant attribute accesses from queries Q1,2, Q1,3 and Q1,4 is 

reduced as well. Therefore, the workload execution time is low: 13,790 seconds. 

 Configuration G7: When 𝛼 is set to 1, the clustering phase of HADF only takes 

into account the impact of workload-specific information while the data-specific 

information has no impact on the clustering result, thus it decomposes 

GeneralInfoTable into multiple clusters: 𝐶7,1 = {𝑈𝐼𝐷, 𝑖1, 𝑖4},  𝐶7,2 = {𝑈𝐼𝐷, 𝑖3}, 

and 𝐶7,2 = {𝑈𝐼𝐷, 𝑖2}. Besides, the Inter-cluster Access Similarity between these 

clusters is not high enough such that the merging-selecting phase does not merge 

any pair of clusters together. Furthermore, Intra-cluster Access Similarity within 

each of those clusters is high enough such that they are stored in row tables. Using 

this configuration, the queries needs to scan a lightly higher number of data cells 

(i.e., 22,717,840,600) than Configurations G2 - G6 due to the need to scan the 
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attribute UID in each vertically partitioned tables. Besides, GeneralInfoTable is a 

dense entity table, storing it in multiple vertically partitioned tables does not help 

to reduce the storage space demand (i.e., not removing many null values) while 

additional data cells needed to store the attribute UID increase the storage space 

size of G7: 113,589,203 data cells are used. Moreover, a large number of additional 

join operations is needed to join the vertically partitioned tables together: 200 joins 

are peformed. All of this result in high workload execution time: 19,020 seconds. 

Configurations G2 - G6 are the same: storing GeneralInfoTable in a column table, 

thus we only need to compare the effectiveness of three distinct configurations G1, G2 

and G7. Our experiments put more focus on the workload execution time than the 

storage space demand, thus we choose G3, using a single column table, as a good 

configuration to store GeneralInfoTable. 

Execution of Workload W2 

 

Figure 6.2: AUM of the entity table SequenceAttributes in Workload W2 

Workload W2 uses the entity table SequenceAttributes and a set of queries given 

in Table 6.6. We first build the matrix AUM for SequenceAttributes, as presented in 

Figure 6.2. This is an OLTP workload since most of the attributes of the entity table 

are frequently accessed together. As default, the attribute UID is required in all 

vertically partitioned tables, so we do not need to include it into the AUM.   

Table 6.11 describes a set of 7 HADF-generated data storage configurations G1 - 

G7 and their statistics.  

Table 6.11: Typical candidate configurations for SequenceAttributes 

Conf 

Input Output 

Parameters Entity Table 
Candidate Data Storage 

Configuration 

No. of 

stored data 

cells 

Null 

ratio 

No. of 

joins 

No. of 

scanned  

data cells 

Exec. 

Time 

(sec) 
𝛼 𝛽 𝜃 𝜆 

No. of data 

cells 

Null 

ratio 

G1 0 0 0 0 20,746,975 0.086% 𝑪𝟏,𝟏 = {𝑼𝑰𝑫, 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒} 

             => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆 

20,746,975 0.086% 0 4,149,395,000 5,620 

G2 0 0 0 1 20,746,975 0.086% 𝐶2,1 = {𝑈𝐼𝐷, 𝑒1, 𝑒2, 𝑒3, 𝑒4} 

             => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒 

20,746,975 0.086% 0 3,734,455,500 5,780 

G3 0 0.4 0.5 0.6 20,746,975 0.086% like G1 like G1 like G1 like 

G1 
like G1 like 

G1 

G4 0.3 0.4 0.5 0.6 20,746,975 0.086% like G1 like G1 like G1 like 

G1 
like G1 like 

G1 

G5 0.5 0.4 0.5 0.6 20,746,975 0.086% like G1 like G1 like G1 like 

G1 
like G1 like 

G1 

G6 0.7 0.4 0.5 0.6 20,746,975 0.086% like G1 like G1 like G1 like 

G1 
like G1 like 

G1 

G7 1.0 0.4 0.5 0.6 20,746,975 0.086% like G1 like G1 like G1 like 

G1 
like G1 like 

G1 
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Configurations G1 - G7 in the table are described as follows: 

 Configuration G1: This configuration is referred to as a baseline configuration in 

which all the attributes of SequenceAttributes is grouped into a single cluster  

𝐶1,1 = {𝑈𝐼𝐷, 𝑒1, 𝑒2, 𝑒3, 𝑒4}, stored in a row table. Some statistics relevant to this 

configuration include: (1) the number of stored data cells is 20,746,975; (2) the 

null ratio is 0.086%; (3) no join operation is required; (4) the number of data cells 

scanned is 4,149,395,000; and (5) the workload execution time is 5,620 seconds. 

 Configuration G2: This configuration is similar to G1; it groups all the attributes 

of SequenceAttributes into a single cluster 𝐶2,1 = {𝑈𝐼𝐷, 𝑒1, 𝑒2, 𝑒3, 𝑒4}. However, it 

stores this cluster in a single column table, instead of a single row store. Compared 

to G1, it does not reduce the null ratio, but reduces the number of scanned data 

cells: 3,734,455,500 data cells are scanned. Like G1, no join operation is used, but 

the workload execution time when using G2 is lightly higher than that of G1: this 

time is 5,780 seconds. This is due to the fact that G2 is using a column store that 

incurs a high cost to reconstruct result tuples for an OLTP workload such as W2. 

 Configurations G3 - G7: SequenceAttributes is a dense table and all of its attributes 

are frequently accessed together. When 𝛼 is set, respectively, to 0, 0.3, 0.5, 0.7 and 

1, the clustering phase of HADF found that all the attributes are highly correlated 

depending on the combined impact of both Attribute Density Similarity and 

Attribute Access Similarity. Thus, it groups the attributes into a single cluster. 

Additionally, the Intra-cluster Access Similarity between every pair of attributes 

within this cluster is high enough such that the merging-selecting phase decides to 

store it in a row table.  

G1, G3, G4, G5, G6 and G7 are the same, thus we only need to compare two distinct 

configurations G1 and G2. We choose G3, which stores SequenceAttributes in a single 

row table, because this configuration gives a faster workload execution time. 

Execution of Workload W3 

 

Figure 6.3: AUM of the entity table Patient in Workload W3 
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Workload W3 uses the entity table Patient. Figure 6.3 presents the matrix AUM 

built using the set of queries given in Table 6.7. This is a mixed workload. Table 6.12 

presents a set of 7 HADF-generated data storage configurations and their statistics. 

Table 6.12: Typical candidate configurations for Patient 

Conf 

Input Output 

Parameters Entity Table 
Typical Candidate Data Storage 

Configuration 

No. of 

stored 

data cells 

Null 

ratio 

No. of 

joins 

No. of 

scanned  

data cells 

Exec. 

Time 

(sec) 
𝛼 𝛽 𝜃 𝜆 

No. of 

data cells 

Null 

ratio 

G1 0 0 0 0 2,767,038 84.83% 𝐶1,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 

  𝑝10, 𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝15, 𝑝16, 𝑝17, 𝑝18, 𝑝19, 

  𝑝20, 𝑝21, 𝑝22} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

2,767,038 84.83% 0 2,213,630,400 26,731 

 

G2 0 0 0 1 2,767,038 84.83% 𝐶2,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9, 

  𝑝10, 𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝15, 𝑝16, 𝑝17, 𝑝18, 𝑝19, 

  𝑝20, 𝑝21, 𝑝22} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒 

2,767,038 84.83% 0 878,233,800 24,260 

G3 0 0.4 0.5 0.6 2,767,038 84.83% 𝐶3,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝16 } 
             => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶3,2 = {𝑈𝐼𝐷, 𝑝7, 𝑝15, 𝑝17} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒  
𝐶3,3 = {𝑈𝐼𝐷, 𝑝13, 𝑝14, 𝑝19, 𝑝21} 

             => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶3,4 = {𝑈𝐼𝐷, 𝑝5} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶3,5 = {𝑈𝐼𝐷, 𝑝6, 𝑝12, 𝑝22} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶3,6 = {𝑈𝐼𝐷, 𝑝10, 𝑝11, 𝑝20} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

𝐶3,7 = {𝑈𝐼𝐷, 𝑝8, 𝑝18} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶3,8 = {𝑈𝐼𝐷, 𝑝9} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

741,743 8.12% 1,800 584,102,300 

 

 

29,482 

 

G4 0.3 0.4 0.5 0.6 2,767,038 84.83% 𝐶4,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶4,2 = {𝑈𝐼𝐷, 𝑝16, 𝑝17} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶4,3 = {𝑈𝐼𝐷, 𝑝7, 𝑝15} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒 

𝐶4,4 = {𝑈𝐼𝐷, 𝑝13, 𝑝14, 𝑝19, 𝑝21} 
             => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶4,5 = {𝑈𝐼𝐷, 𝑝5} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶4,6 = {𝑈𝐼𝐷, 𝑝6, 𝑝12, 𝑝22} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶4,7 = {𝑈𝐼𝐷, 𝑝10, 𝑝11, 𝑝20} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶4,8 = {𝑈𝐼𝐷, 𝑝8, 𝑝18} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶4,9 = {𝑈𝐼𝐷, 𝑝9} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

653,075 4.31% 1,900 493,742,000 

 

 

26,140 

G5 0.5 0.4 0.5 0.6 2,767,038 84.83% 𝐶5,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶5,2 = {𝑈𝐼𝐷, 𝑝13, 𝑝14, 𝑝19, 𝑝21} 

             => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶5,3 = {𝑈𝐼𝐷, 𝑝15, 𝑝17} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒 

𝐶5,4 = {𝑈𝐼𝐷, 𝑝5} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶5,5 = {𝑈𝐼𝐷, 𝑝7, 𝑝8, 𝑝16, 𝑝18} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶5,6 = {𝑈𝐼𝐷, 𝑝6, 𝑝12, 𝑝22} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

𝐶5,7 = {𝑈𝐼𝐷, 𝑝10, 𝑝11, 𝑝20} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

𝐶5,8 = {𝑈𝐼𝐷, 𝑝9} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

674,840 5.18% 1,900 498,143,000 

 

 

27,140 

 

G6 0.7 0.4 0.5 0.6 2,767,038 84.83% 𝑪𝟔,𝟏 = {𝑼𝑰𝑫, 𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒} => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆 

𝑪𝟔,𝟐 = {𝑼𝑰𝑫, 𝒑𝟏𝟑, 𝒑𝟏𝟒, 𝒑𝟏𝟓, 𝒑𝟏𝟗, 𝒑𝟐𝟏} 

             => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆 

𝑪𝟔,𝟑 = {𝑼𝑰𝑫, 𝒑𝟓} => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆 

𝑪𝟔,𝟒 = {𝑼𝑰𝑫, 𝒑𝟕, 𝒑𝟖, 𝒑𝟏𝟔, 𝒑𝟏𝟕, 𝒑𝟏𝟖} 

             => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆 

𝑪𝟔,𝟓 = {𝑼𝑰𝑫, 𝒑𝟔, 𝒑𝟏𝟐, 𝒑𝟐𝟐} => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆  

𝑪𝟔,𝟔 = {𝑼𝑰𝑫, 𝒑𝟏𝟎, 𝒑𝟏𝟏, 𝒑𝟐𝟎} => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆  

𝑪𝟔,𝟕 = {𝑼𝑰𝑫, 𝒑𝟗} => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆 

696,782 6.01% 1,400 506,520,200 

 

 

24,120 

 

G7 1 0.4 0.5 0.6 2,767,038 84.83% 𝐶7,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝13, 𝑝14, 

𝑝15, 𝑝19, 𝑝21} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶7,2 = {𝑈𝐼𝐷, 𝑝5} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶7,3 = {𝑈𝐼𝐷, 𝑝7, 𝑝8, 𝑝16, 𝑝17, 𝑝18} 
              => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶7,4 = {𝑈𝐼𝐷, 𝑝6, 𝑝12, 𝑝22} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

𝐶7,5 = {𝑈𝐼𝐷, 𝑝10, 𝑝11, 𝑝20} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

𝐶7,6 = {𝑈𝐼𝐷, 𝑝9} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

1,277,498 28.08% 900 977,337,200 

 

 

25,140 
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Configurations G1 - G7, as shown in the table, are described as follows: 

 Configuration G1: In this configuration, all the attributes of Patient is grouped 

into a single cluster 𝐶1,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, … , 𝑝22}, stored in a single row table. Some 

statistics relevant to this configuration are as follows: (1) the number of stored data 

cells is 2,767,038; (2) the null ratio is 84.83%; (3) no join operation is performed 

due to using only one table; (4) the number of data cells scanned by the workload 

is 2,213,630,400; and (5) the workload execution time is 26,731 seconds. 

 Configuration G2: This configuration is similar to G1 since all the attributes of 

Patient is grouped into a single cluster 𝐶2,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, … , 𝑝22}; however, it 

uses a single column table instead of a single row table. Like G1, it does not reduce 

the null ratio, but it helps the workload to significantly decrease the number of 

scanned data cells: only 878,233,800 data cells are scanned. The workload 

execution time when using G2 is less than using G1: G2 takes 24,260 seconds. 

 Configuration G3 - G6: Patient is a wide and sparse table. In addition, some of its 

attributes are frequently accessed together by the same queries, while others are 

seldom accessed together. This is clearly shown in the matrix AUM, given in Figure 

6.3. When 𝛼 is respectively set to 0, 0.3, 0.5 and 0.7, the clustering phase of HADF 

groups the attributes that are highly correlated with each other based on Hybrid 

Similarity. When 𝛼 = 0, only Attribute Density Similarity has impact on the 

clustering result. However, when 𝛼 is respectively set to  0.3, 0.5 and 0.7, there is 

a combined impact of both Attribute Density Similarity and Attribute Access 

Similarity on the clustering result such that the clustering phase groups the 

attributes into separate clusters. Storing Patient in multiple vertically partitioned 

tables will help to reduce the number of stored data cells, null values and scanned 

data cells. However, in general, Configurations G3 - G6 need a large number of join 

operations for tuple reconstruction, thus their workload execution time is not 

significantly reduced when compared to G1 and G2. Among Configurations G3 - 

G6, G6 gives the smallest number of joins (i.e., 1,400 joins); G6 also gives the 

shortest workload execution time as well (i.e., 24,120 seconds).   

 Configuration G7: This configuration is close to G6, but only takes into 

consideration the impact of the workload-specific information (due to setting 𝛼 = 

1). It uses a less number of vertically partitioned tables than Configurations G3 - 

G6, thus needs a less number of joins than these configurations. Because the data-

specific information has not been used, the null ratio and the number of stored data 

cells of G7 could not be reduced to as low as those of Configurations G3 - G6. 

We choose G6, which stores Patient in 7 different vertically partitioned tables, as a 

good configuration for the entity table Patient in terms of both the storage space size 

and the workload execution time. 

Execution of Workload W4 

Workload W4 is a mixed workload containing multiple-table join queries on the entity 

tables Patient, Study, GeneralInfoTable and SequenceAttributes. A good data storage 

configuration for this workload is created by combining the good ones of the entity 

tables. To achieve this, the following two steps are performed: (1) separate Workload 
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W4 into four sub-workloads, each of which is relevant to only one entity table; and (2) 

apply HADF to find a good data storage configuration for each entity table.  

The sub-workloads relevant to three entity tables GeneralInfoTable, 

SequenceAttributes and Patient are the same as Workloads W1, W2 and W3, 

respectively; their good configurations have been chosen above. Therefore, below we 

only describe the steps to find a good configuration for Study.  

Let us denote sW4 as the sub-workload including only the queries relevant to 

Study. In Table 6.13, we present the set of queries Q4,1s – Q4,6s in sW4, which are 

respectively separated from the original queries Q4,1 – Q4,6 in Workload W4 (given in 

Table 6.8).  

Table 6.13: Workload sW4 for the entity table Study  

Query Query Freq 

Q4,1s SELECT StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName, 

StudyID, AccessionNumber, MedicalAlerts FROM Study WHERE 

StudyDate >= ’20000101’ AND StudyDate <= ’20150101’ 

300 

Q4,2s SELECT StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName, 

StudyID, MedicalRecordLocator FROM Study WHERE StudyID = ’20050920’ 

100 

Q4,3s SELECT PatientAge, PatientWeight, PatientSize FROM Study WHERE 

PatientAge >= 90 

100 

Q4,4s SELECT UID, StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName, 

StudyID, AccessionNumber, PatientWeight, AdditionalPatientHistory FROM Study 

100 

Q4,5s SELECT StudyInstanceUID, StudyDate, StudyTime, StudyID, PatientSize, 

Occupation FROM Study 

100 

Q4,6s SELECT StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName, 

StudyID, StudyDescription, PatientAge FROM Study WHERE StudyDate >= 

‘20000101’ AND StudyDate <= ‘20150101’ 

100 

 

Figure 6.4 presents the matrix AUM of the entity table Study in Workload sW4.  

 

 Figure 6.4: AUM of the entity table Study in Workload sW4 

Similarly to the cases of Workloads W1, W2 and W3, we apply HADF to produce 

a set of 7 typical candidate data storage configurations G1 - G7 for the entity table 

Study. Table 6.14 shows these configurations together with their statistics. 

Configurations G1 - G7 in the table are explained as follows:  

 Configuration G1: In this configuration, all the attributes of Study is grouped into 

a single cluster 𝐶1,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, … , 𝑝14} which is stored in a row table. 
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 Configuration G2: Similar to G1, this configuration groups all the attributes of 

Study into a single column table, but stores it in a row table. 

Table 6.14: Typical candidate configurations for Study  

Conf 

Input Output 

Parameters Entity Table 
Candidate Data Storage 

Configuration 

No. of 

stored 

data cells 

Null 

ratio 

No. of 

joins 

No. of 

scanned  

data cells 

Exec. 

Time 

(sec) 
𝛼 𝛽 𝜃 𝜆 

No. of 

data cells 

Null 

ratio 

G1 0 0 0 0 1,804,590 43.83% 𝐶1,1 = {𝑈𝐼𝐷, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8, 

 𝑠9, 𝑠10, 𝑠11, 𝑠12, 𝑠13, 𝑠14} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

1,804,590 43.83% 0 1,443,672,00

0 

25,220 

G2 0 0 0 1 1,804,590 43.83% 𝑪𝟐,𝟏 = {𝑼𝑰𝑫, 𝒔𝟏, 𝒔𝟐, 𝒔𝟑, 𝒔𝟒, 𝒔𝟓, 𝒔𝟔, 𝒔𝟕, 

𝒔𝟖, 𝒔𝟗, 𝒔𝟏𝟎, 𝒔𝟏𝟏, 𝒔𝟏𝟐, 𝒔𝟏𝟑, 𝒔𝟏𝟒} 

             => 𝒄𝒐𝒍𝒖𝒎𝒏 𝒔𝒕𝒐𝒓𝒆 

1,804,590 43.83% 0 697,774,800 23,440 

G3 0 0.4 0.5 0.6 1,804,590 43.83% 𝐶3,1 = {𝑈𝐼𝐷, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠7, 𝑠8, 𝑠9 } 

              => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒 

𝐶3,2 = {𝑈𝐼𝐷, 𝑠12} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶3,3 = {𝑈𝐼𝐷, 𝑠10, 𝑠11} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶3,4 = {𝑈𝐼𝐷, 𝑠6, 𝑠14} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶3,5 = {𝑈𝐼𝐷, 𝑠13} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

1,207,777 5.25% 700 584,516,800 

 

 

26,600 

 

G4 0.3 0.4 0.5 0.6 1,804,590 43.83% like  G3 like  G3 like  G3 like  

G3 
like  G3 like3 

 

G5 0.5 0.4 0.5 0.6 1,804,590 43.83% like  G3 like  G3 like  G3 like  

G3 
like  G3 like   

G3 

G6 0.7 0.4 0.5 0.6 1,804,590 43.83% 𝐶6,1 = {𝑈𝐼𝐷, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠14 } 

              => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶6,2 = {𝑈𝐼𝐷, 𝑠8, 𝑠9} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒 

𝐶6,3 = {𝑈𝐼𝐷, 𝑠13} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶6,4 = {𝑈𝐼𝐷, 𝑠12} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶6,5 = {𝑈𝐼𝐷, 𝑠10, 𝑠11} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶6,6 = {𝑈𝐼𝐷, 𝑠7} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

1,665,910 18.63% 600 792,180,600 

 

 

25,400 

G7 1.0 0.4 0.5 0.6 1,804,590 43.83% 𝐶7,1 = {𝑈𝐼𝐷, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠14 } 

              => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶7,2 = {𝑈𝐼𝐷, 𝑠9, 𝑠12} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒 

𝐶7,3 = {𝑈𝐼𝐷, 𝑠7, 𝑠8} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒 

𝐶7,4 = {𝑈𝐼𝐷, 𝑠13} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶7,5 = {𝑈𝐼𝐷, 𝑠10, 𝑠11} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

1,676,028 22.08% 500 790,319,200 

 

25,980 

 Configuration G3 - G6: When 𝛼 is respectively set to 0, 0.3, 0.5 and 0.7, the 

clustering phase of HADF takes into account the impact of both workload- and 

data-specific information on the clustering result. The entity table Study is stored 

in several vertically partitioned tables using both row and column stores. The 

number of stored data cells, null values and scanned data cells are reduced when 

compared with G1 and G2. However, their workload execution time is lightly 

higher than that of G1 and G2 due to the costs needed for additional join operations. 

 Configuration G7: This configuration only takes into account the workload-

specific information on the clustering result (due to 𝛼 = 1). Therefore, although its 

number of join operations has been decreased to lower than that of Configurations 

G3 - G6, its number of null values and scanned data cells are still high. Its workload 

execution time is also lightly higher than that of Configurations G1, G2 and G6. 

We choose G2 which stores the entity table Study in single column table because it 

has the lowest workload execution time.  
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6.3.2 Experiment 2: Evaluating HYTORMO and HADF 

using More Data and Multiple-table Joins 

Similarly to Experiment 1, Experiment 2 also aims at evaluating Hypotheses H1 and 

H2, but it uses more data and multiple-table join queries.  

Table 6.15: Major steps of Experiment 2 

Conf Typical candidate configuration Execution Measures 

G* 

 

Good HADF-generated data storage configuration, i.e., 

the one is composed of good configurations of all the 

entity tables 𝑇𝑖′𝑠 chosen in Experiment 1. 

- Run Workload W4 

five times for each 

configuration. 

- Using two datasets 

MDB1 and MDB2 

separately. 

- Storage 

space 

size. 

- Execution 

time of 

W4. 

G1 Pure row tables (all 𝑇𝑖 ′𝑠 are stored in row tables). 

G2 Pure column tables (all 𝑇𝑖 ′𝑠 are stored in column tables). 

Table 6.15 presents the major steps of Experiment 2. First, we create three different 

configurations: (1) G*: a good HADF-generated data storage configuration, composed 

of good configurations of all the entity tables 𝑇𝑖′𝑠 chosen in Experiment 1 (𝑇𝑖 is 

Patient, Study, GeneralInfoTable or SequenceAttributes); (2) G1: pure row tables; and 

(3) G2: pure column tables. Next, we apply these configurations to execute Workload 

W4 using two datasets MDB1 and MDB2, separately: for each configuration, W4 is 

run five times; its average execution time is calculated. Finally, we compare these 

configurations in terms of storage space size and/or workload execution time.  

Tables 6.16, 6.17 and 6.18 present Configurations G*, G1 and G2, respectively, in 

the forms of vertically partitioned tables, instead of clusters as in Experiment 1.  

Table 6.16: Configuration G* of Experiment 2  

No. Entity Table Data Storage Configuration 

  

PatientP1P2P3P4(UID, PatientName, PatientID,  PatientBirthDate, 

PatientSex) => row store 

PatientP13P14P15P19P21(UID, PatientBirthName, 

PatientTelePhoneNumbers, SmokingStatus, PatientComments, 

PatientMotherBirthName) => row store 

PatientP5(UID, EthnicGroup) => row store 

PatientallP7P8P16P17P18(UID, PatientBirthTime, 

PatientInsurancePlanCodeSequence, PregnancyStatus, 

LastMenstrualDate, PatientReligiousPreference) => row store 

PatientP6P12P22(UID, IssuerOfPatientID, OtherPatientNames, 

InsurancePlanIdentification) => row store 

PatientP10P11P20(SOPInstanceUID, PatientPrimaryLanguageModifier-

CodeSequence, OtherPatientIDs, PatientAddress) => row store 

PatientP9(UID, PatientPrimaryLanguageCodeSequence) => row store 

2 Study 

Study(UID, StudyInstanceUID, StudyDate, StudyTime, Referring-

PhysicianName, StudyID, AccessionNumber, StudyDescription, 

PatientAge, PatientWeight, PatientSize, Occupation, AdditionalPatient-

History, MedicalRecordLocator, MedicalAlerts) => column store 

3 GeneralInfoTable 
GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames, 

GeneralValues) => column store 

4 SequenceAttributes 
SequenceAttributes(UID, SequenceTags, SequenceVRs, SequenceNames, 

SequenceValues) => row store 
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Table 6.17: Configuration G1 of Experiment 2 

No. Entity Table Data Storage Configuration 

1 Patient 

Patient (UID, PatientName, PatientID,  PatientBirthDate, PatientSex, 

EthnicGroup, IssuerOfPatientID, PatientBirthTime, PatientInsurancePlan-

CodeSequence, PatientPrimaryLanguageCodeSequence, 

PatientPrimaryLanguageModifierCodeSequence, OtherPatientIDs, 

OtherPatientNames, PatientBirthName, PatientTelePhoneNumbers, 

SmokingStatus, PregnancyStatus, LastMenstrualDate, 

PatientReligiousPreference, PatientComments, PatientAddress, 

PatientMotherBirthName, InsurancePlanIdentification) => row store 

2 Study 

Study(UID, StudyInstanceUID, StudyDate, StudyTime, 

ReferringPhysicianName, StudyID, AccessionNumber, StudyDescription, 

PatientAge, PatientWeight, PatientSize, Occupation, AdditionalPatient-

History, MedicalRecordLocator, MedicalAlerts) => row store 

3 GeneralInfoTable 
GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames, 

GeneralValues) => row store 

4 SequenceAttributes 
SequenceAttributes(UID, SequenceTags, SequenceVRs, SequenceNames, 

SequenceValues) => row store 

Table 6.18:  Configuration G2 of Experiment 2 

No. Entity Table Data Storage Configuration 

1 Patient 

Patient (UID, PatientName, PatientID,  PatientBirthDate, PatientSex, 

EthnicGroup, IssuerOfPatientID, PatientBirthTime, 

PatientInsurancePlanCodeSequence, 

PatientPrimaryLanguageCodeSequence, 

PatientPrimaryLanguageModifierCodeSequence, OtherPatientIDs, 

OtherPatientNames, PatientBirthName, PatientTelePhoneNumbers, 

SmokingStatus, PregnancyStatus, LastMenstrualDate, 

PatientReligiousPreference, PatientComments, PatientAddress, 

PatientMotherBirthName, InsurancePlanIdentification) => column store 

2 Study 

Study(UID, StudyInstanceUID, StudyDate, StudyTime, 

ReferringPhysicianName, StudyID, AccessionNumber, StudyDescription, 

PatientAge, PatientWeight, PatientSize, Occupation, 

AdditionalPatientHistory, MedicalRecordLocator, MedicalAlerts)  

=> column store 

3 GeneralInfoTable 
GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames, 

GeneralValues) => column store 

4 SequenceAttributes 
SequenceAttributes(UID, SequenceTags, SequenceVRs, 

SequenceNames, SequenceValues) => column store 

Tables 6.19 and 6.20 respectively present the average workload execution time 

obtained over five runs when applying three Configurations G*, G1 and G2 

corresponding to two different cases: (1) using the dataset MDB1; and (2) using the 

dataset MDB2. The experimental results show that G* provides the shortest workload 

execution time among these three configurations: it takes 35,940 seconds to perform 

W4 on MDB1, and 118,940 seconds to perform W4 on MDB2. In addition, two data 

storage configurations G1 and G2 have the same storage space requirement, whereas  

Configuration G* has the smallest storage space size because the entity table Patient 

has been reduced by 75% (as shown in Experiment 1) after removing null rows from 

its vertical partitions.  
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Table 6.19: Execution time of Workload W4 over 3 configurations using MDB1 

Conf Data Storage Configuration 
Exec. Time 

(sec) 

G* Good HADF-generated data storage configuration  35,940 

G1 Pure row tables 37,860 

G2 Pure column tables 36,960 

Table 6.20: Execution time of Workload W4 over 3 configurations using MDB2 

Conf Data Storage Configuration 
Exec. Time 

(sec) 

G* Good HADF-generated data storage configuration  118,940 

G1 Pure row tables 161,040 

G2 Pure column tables 120,120 

6.3.3 Experiment 3: Comparison between HADF and HoVer 

Experiment 3 aims at further evaluating Hypothesis H2a that shows the usefulness of 

the combined use of both workload- and data-specific information in HADF. To obtain 

this, we compare HADF and HoVer approach that was proposed by B. Cui et al. [14]. 

The experiment is performed according to the major steps as given in Table 6.21.  

Table 6.21: Major steps of Experiment 3 

Conf Typical candidate configuration Execution Measures 

G* 

 

Good HADF-generated data storage 

configuration that is chosen for the entity table 

𝑇𝑖  in workload 𝑊𝑗′𝑠, where  𝑗 = 1, 2. 

- Run Workload 

Wj (j = 1, 2) five 

times for each 

configuration. 

- Using the dataset 

MDB2. 

- Storage space 

size of 𝑇𝑖 . 

- Workload 

execution 

time.  G1 - G6
 - Setting: 𝛽 = 0, 0.2, 0.4, 0.6, 0.8, 1. 

- HoVer-generated data storage configuration 

for the entity table 𝑇𝑖  is stored in row tables.  

First of all, we prepare the following configurations: (1) Configuration G* is a 

good HADF-generated data storage configuration, obtained in Experiment 1, for the 

entity table 𝑇𝑖 , where 𝑇𝑖 is used to refer to GeneralInfoTable or Sequenceattributes, in 

workload 𝑊𝑗′𝑠, where  𝑗 = 1, 2; (2) Configurations G1 - G6  are configurations 

generated by applying the HoVer approach. It is worthy to remind that the HoVer 

approach is similar to the clustering phase of HADF; it is a clustering algorithm that 

groups the similar attributes into the same column groups. However, the HoVer 

approach only uses Attribute Density Similarity, a clustering threshold 𝛽 and a row 

store, instead of using a Hybrid Similarity, 𝛼, 𝛽, 𝜃, 𝜆 and a hybrid store as the 

clustering phase of HADF. In other words, the HoVer approach uses only the data-

specific information and the row store instead of a combined use of both workload- 

and data-specific information together with a hybrid store. Therefore, to achieve a set 

of 6 data storage configurations, we will set 𝛽 to 0, 0.2, 0.4, 0.6, 0.8 and 1 for the 

HoVer approach. Next, we build these configurations in HYTORMO and execute the 

workloads 𝑊𝑗′𝑠 (𝑗 = 1, 2) using the dataset MDB2. Each workload is also run five 

time for each configurations; its average execution time is calculated. Finally, we 

compare these configurations.  
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Following the above steps, the results of the executions of two workloads W1 and 

W2 are given below. 

Execution of Workload W1 

Workload W1 uses only the entity table GeneralInfoTable and its queries are shown in 

Table 6.5. First, we apply the good HADF-generated configuration, i.e., Configuration 

G* of GeneralInfoTable obtained in Experiment 1, to execute this workload. This 

configuration store GeneralInfoTable in a single column table. Table 6.22 presents the 

result obtained from the execution. 

Table 6.22: Good HADF-generated configuration for GeneralInfoTable 

Conf 

Input Output 

Parameters Entity Table 
Typical Candidate Data 

Storage Configuration 

No. of stored 

data cells 

Null 

ratio 

No. of 

joins 

No. of scanned  

data cells 

Exec. 

Time 

(sec) 
𝜶 𝜷 𝜽 𝝀 

No. of data 

cells 

Null 

ratio 

G* 0 0.4 0.5 0.6 1,688,651,610 2.55% 𝑪𝟑,𝟏 = {𝑼𝑰𝑫, 𝒊𝟏, 𝒊𝟐, 𝒊𝟑, 𝒊𝟒} 

       => 𝒄𝒐𝒍𝒖𝒎𝒏 𝒔𝒕𝒐𝒓𝒆  

1,688,651,610 2.55% 0 405,276,386,400 23,520 

(𝑖1: GeneralTags;  𝑖2: GeneralVRs;  𝑖3: GeneralNames; 𝑖4: GeneralValues) 

Next, we apply the Hover approach [14] to generate a set of 6 typical candidate 

data storage configurations G1 - G6 for the entity table GeneralInfoTable. These 

configurations are described in Table 6.23. These configurations can be also obtained 

by applying HADF with the following values of its parameters: (1) 𝛽 = 0, 0.2, 0.4, 0.6, 

0.8 and 1; (2) α = 0 (i.e., only taking into account the impact of data-specific 

information); (3) θ =1 (i.e., not merging any pair of clusters together); and (4) λ = 0 

(i.e., column groups are always stored in a row store).  

Table 6.23: HoVer-generated configurations for GeneralInfoTable 

Conf 

Input Output 

Para-

meter 

𝜷 

Entity Table 
Typical Candidate Data Storage 

Configuration 

No. of stored 

data cells 

Null 

ratio 

No. of 

joins 

No. of scanned  

data cells 

Exec. 

Time 

(sec) 
No. of data 

cells 

Null 

ratio 

G1 0 1,688,651,610 2.55% 𝑪𝟏,𝟏 = {𝑼𝑰𝑫, 𝒊𝟏, 𝒊𝟐, 𝒊𝟑, 𝒊𝟒}  

            => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆  

1,688,651,610 2.55% 0 675,460,644,000 26,940 

G2- 

G5 

0.2;0.

4;0.6;

0.8 

1,688,651,610 2.55% like G1 like G1 like G1 like 

G1 
like G1 like G1 

G6 1 1,688,651,610 2.55% 𝐶6,1 = {𝑈𝐼𝐷, 𝑖1} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

𝐶6,2 = {𝑈𝐼𝐷, 𝑖2} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

𝐶6,3 = {𝑈𝐼𝐷, 𝑖3} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶6,4 = {𝑈𝐼𝐷, 𝑖4} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

2,633,036,392  0.00%  400  526,607,278,400  475,990  

(𝑖1: GeneralTags;  𝑖2: GeneralVRs;  𝑖3: GeneralNames; 𝑖4: GeneralValues) 

When applying HADF, we found that: GeneralInfoTable is a dense table, the 

similarity between any pair of two attributes in terms of Attribute Density Similarity 

is high, while the similarity between any pair of two attributes in terms of Attribute 

Access Similarity is low (because the attributes of GeneralInfoTable are seldom access 

together). However, since HADF can take into account the combined impact of both 

workload- and data-specific information on the clustering result, it found that Hybrid 

Similarity between any pair of two attributes is high enough such that all the attributes 

are grouped into a single cluster. Besides, Intra-Cluster Similarity of this cluster is not 
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high enough such that HADF decides to store it cluster in a column table, which is G* 

in Table 6.22. On the other hand, when applying the HoVer approach, if the values of 

𝛽 is set to 0, 0.2, 0.4, 0.6 or 0.8 (i.e., G1 - G5 in Table 6.23), the clustering algorithm 

of the Hover approach also found that Attribute Density Similarity between any pair 

of two attributes is always greater than or equal to the corresponding value of 𝛽 such 

that all the attributes of GeneralInfoTable are grouped and stored together in a single 

row table. When 𝛽 is set to 1, the entity table GeneralInfoTable is decomposed and 

stored in single-attribute tables in row store (i.e., G6 in Table 6.23).  

With regards to data storage space demand and workload execution time, we can 

clearly see that with the combined use of both the workload-specific and the data-

specific information together with a hybrid store, HADF can provide a better data 

storage configuration than the HoVer approach. It can suggest to store the piece of data 

used for an OLAP workload as Workload W1 in a column store. The execution time 

of Workload W1 when using the good HADF-generated data storage configuration is 

23,520 seconds (G* in Table 6.22), whereas this time when using the good HoVer-

generated data storage configuration is 26,940 second (G1 in Table 6.23). 

Execution of Workload W2 

Workload W2 uses only the entity table Sequenceattributes and its queries are shown 

in Table 6.6. First of all, we execute this workload using the good HADF-generated 

configuration, i.e., Configuration G* of Sequenceattributes obtained in Experiment 1. 

Table 6.24 shows the result of this execution.  

Table 6.24: Good HADF-generated configurations for Sequenceattributes 

Conf 

Input Output 

Parameters Entity Table 
Typical Candidate Data 

Storage Configuration 

No. of 

stored data 

cells 

Null 

ratio 

No. of 

joins 

No. of scanned  

data cells 

Exec. 

Time 

(sec) 
𝜶 𝜷 𝜽 𝝀 

No. of data 

cells 
Null ratio 

G*  0 0.4 0.5 0.6 376,574,510 0.082% 𝑪𝟑,𝟏 = {𝑼𝑰𝑫, 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒}  

             => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆  

376,574,510 0.082% 0 75,314,902,000 5,640 

(𝑒1: SequenceTags;  𝑒2: SequenceVRs;  𝑒3: SequenceNames; 𝑒4: SequenceValues) 

Sequenceattributes is a dense table, thus the similarity between any pair of two 

attributes in terms of either Attribute Density Similarity or Attribute Access Similarity 

is high. As a result, when HADF takes into account the combined impact of both 

workload- and data-specific information, it found that Hybrid Similarity between any 

pair of two attributes is very high such that all the attributes are grouped into a single 

cluster. Furthermore, Intra-Cluster Similarity of this cluster is high enough such that 

HADF decides to store the cluster in a row table.  

Alternatively, Table 6.25 presents the HoVer-generated configurations G1 - G6 and 

their statistics. When 𝛽 is set to 0, 0.2, 0.4, 0.6 or 0.8 (i.e., G1 - G5 in Table 6.25), the 

clustering algorithm of the HoVer approach found that the Attribute Density Similarity 

between any pair of two attributes is always greater than or equal to the corresponding 

value of 𝛽, thus it groups and stores all the attributes of Sequenceattributes together in 

the same row table. In contrast, if  𝛽 is set to 1, the entity table Sequenceattributes is 

decomposed and stored in four single-attribute tables in a row store (i.e., G6 in Table 

6.25). 
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Table 6.25: HoVer-generated configurations for Sequenceattributes 

Conf 

Input Output 

Parameter 

𝛽 

Entity Table 
Typical Candidate Data Storage 

Configuration 

No. of stored 

data cells 

Null 

ratio 

No. of 

joins 

No. of scanned  

data cells 

Exec. 

Time 

(sec) 
No. of data 

cells 

Null 

ratio 

G1 0 376,574,510 0.082% 𝑪𝟏,𝟏 = {𝑼𝑰𝑫, 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒}  

             => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆  

376,574,510 0.082

% 

0 75,314,902,000 5,640 

G2- 

G5 

0.2; 

0.4;0.6;0.8 

376,574,510 0.082% like G1 like G1 like G1 like 

G1 
like G1 like G1 

G6 1 376,574,510 0.082% 𝐶6,1 = {𝑈𝐼𝐷, 𝑒1} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

𝐶6,2 = {𝑈𝐼𝐷, 𝑒2} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒  

𝐶6,3 = {𝑈𝐼𝐷, 𝑒3} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

𝐶6,4 = {𝑈𝐼𝐷, 𝑒4} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒 

602,026,842 0.00% 500 105,391,543,000 31,280 

(𝑒1: SequenceTags;  𝑒2: SequenceVRs;  𝑒3: SequenceNames; 𝑒4: SequenceValues) 

Therefore, in the case of an OLTP workload as Workload W2, HADF is able to 

provide a data storage configuration that is as good as the configurations generated by 

the clustering algorithm of the HoVer approach. A row store is used to store the piece 

of data used for the OTLP workload. The execution time of Workload W2 when using 

the good HADF- or HoVer-generated data storage configuration is 5,640 seconds (G* 

in Table 6.24 and G1 in Table 6.25).  

6.3.4 Experiment 4: Evaluating the Effectiveness of  the 𝐈𝐁𝐅 

Experiment 4 aims at evaluating Hypothesis H3 that shows the benefit of the IBF. To 

achieve this, it compares the execution time of a query with and without using the IBF. 

Table 6.26: Major steps of Experiment 4 

Query Selectivity  Execution Measures 

- Choosing a t-th 

query 𝑄𝑊𝑗,𝑡   in 

Workload 𝑊𝑗. 

- Specifying 

predicate sets and 

their selectivity 

ratios used in 𝑄𝑊𝑗,𝑡. 

- Executing 𝑄𝑊𝑗,𝑡 five times for each 

predicate using the good configuration G* 

when (1) using IBF and (2) not using IBF. 

- Using the dataset MDB2. 

- Execution 

time of 

𝑄𝑊𝑗,𝑡.  

Table 6.26 presents the major steps of Experiment 4: (1) Choosing a query 𝑄𝑊𝑗,𝑡. 

(2) Specifying predicate sets and their selectivity ratios in 𝑄𝑊𝑗,𝑡. (3) Executing 𝑄𝑊𝑗,𝑡 

five times using the good configuration G* (chosen in Experiment 1) and the dataset 

MDB2 with respect to a particular predicate set for two cases: using and not using an 

IBF. The average query execution time obtained over five runs is calculated. (4) 

Comparing the query execution time. We use 𝑄4,3 in Workload W4 for 𝑄𝑊𝑗,𝑡:  

𝑄4,3: SELECT Patient.UID, Patient.PatientID, Patient.PatientName, Patient.PatientBirthDate, 

Patient.PatientSex, Patient.EthnicGroup, Patient.SmokingStatus, Study.PatientAge, 

Study.PatientWeight, Study.PatientSize, GeneralInfoTable.GeneralNames, 

GeneralInfoTable.GeneralValues, SequenceAttributes.UID, SequenceAttributes.SequenceTags, 

SequenceAttributes.SequenceVRs, SequenceAttributes.SequenceNames, 

SequenceAttributes.SequenceValues FROM Patient, Study, GeneralInfoTable, 

SequenceAttributes WHERE Patient.UID = Study.UID AND  

Patient.UID = GeneralInfoTable.UID AND Patient.UID = SequenceAttributes.UID AND  

Patient.PatientSex = ’M’AND Patient.SmokingStatus  = ‘NO’ AND Study.PatientAge >= 60 

AND SequenceAttributes.SequenceNames LIKE ‘%X-Ray%’  
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We use the query 𝑄4,3 because it is a typical multiple-table join query, where four 

entity tables Patient, Study, SequenceAttributes and GeneralInfoTable are joined with 

each other; additionally, the effectiveness of the query processing with the use of the 

IBF in other cases, e.g., using only one entity table, is similar to this case. 

The entity tables are stored in the hybrid store of HYTORMO according to the 

good data storage configuration G*, described in Table 6.16: Patient is decomposed 

into vertically partitioned tables and stored in a row store; Study and GeneralInfoTable 

are stored in a column store; and SequenceAttributes is stored in a row store. 

 

Figure 6.5: Execution plan for the query 𝑄4,3 

Figure 6.5 shows the execution plan tree used for the query 𝑄4,3. (This execution 

plan tree is different to the one presented in Figure 5.1 in Chapter 5, where the expert-

based design approach was applied to create data storage configurations.) Here, 𝑄4,3 

first is decomposed into a set of sub-queries 𝑠𝑄1,  𝑠𝑄2,  𝑠𝑄3, and  𝑠𝑄4 which access 

four entity tables Patient, Study, SequenceAttributes and GeneralInfoTable, 

respectively. Next, each of these sub-queries is further decomposed into smaller sub-

queries to be able to access relevant row and column tables. For instance, the sub-

query  𝑠𝑄1 is decomposed into three sub-queries 𝑠𝑄1,1,  𝑠𝑄1,2 and  𝑠𝑄1,3 to access three 

vertically partitioned tables PatientP1P2P3P4, PatientP13P14P15P19P21 and 

PatientP5, respectively. On the other hand, the sub-queries  𝑠𝑄2,  𝑠𝑄3 and  𝑠𝑄4 are not 

further decomposed because they can directly access the single tables Study, 

SequenceAttributes and GeneralInfoTable, respectively. This execution plan tree is a 

left-deep processing tree whose relational operators are scheduled to be executed step 

by step while trying to keep intermediate results as small as possible. During the query 

execution, the results of the sub-queries are joined over the attribute 𝑈𝐼𝐷. To prevent 

the data loss in the query result, the sub-query 𝑠𝑄1 consists of two left-outer joins:  

𝑠𝑄1                   

= (𝜎𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑆𝑒𝑥 = ’𝑀’(𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑃1𝑃2𝑃3𝑃4)   ⟕𝑈𝐼𝐷 𝜎𝑆𝑚𝑜𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑢𝑠 = ‘𝑁𝑂’(𝑃𝑎𝑡𝑖𝑒𝑛𝑡 ))P13P14P15P19   

                         ⟕𝑈𝐼𝐷 𝑃𝑎𝑡𝑖𝑒𝑛𝑡P5. 
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To improve the query performance, each left-outer join is rewritten to an inner join 

if there exists a non-null constraint on the right-hand side table of that left-outer join 

(applying Rule 3 given in Chapter 5).  𝑠𝑄1 contains a predicate  𝜎𝑆𝑚𝑜𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑢𝑠 = ‘𝑁𝑂’ 

on the table PatientP13P14P15P19P2, thus it is rewritten as follows:  

 𝑠𝑄1 = (𝜎𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑆𝑒𝑥 = ’𝑀’(𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑃1𝑃2𝑃3𝑃4) ⋈𝑈𝐼𝐷  𝜎𝑆𝑚𝑜𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑢𝑠 = ‘𝑁𝑂’(𝑃𝑎𝑡𝑖𝑒𝑛𝑡 ))P13P14P15P19  

                      ⟕𝑈𝐼𝐷 𝑃𝑎𝑡𝑖𝑒𝑛𝑡P5. 

 

Figure 6.6: Execution plan for the query 𝑄4,3 with the IBF 

Furthermore, an IBF is built from BFs created on the attribute 𝑈𝐼𝐷 of the result 

tables of the sub-queries  𝑠𝑄1,1,  𝑠𝑄1,2,  𝑠𝑄2,  𝑠𝑄3 and  𝑠𝑄4.  However, a BF will not be 

computed for a right-hand side table of a left-outer join, e.g., PatientP5. The IBF is 

computed by performing bitwise AND operations on all the BFs and applied to filler 

irrelevant tuples out of the input tables before joins occur. The new execution plan 

after reducing the number of left-outer joins and using the IBF is given in Figure 6.6. 

All the BFs and the IBF have the same configuration, i.e., a bit vector with a length 

of  𝑚 of and a set of 𝑘 hash functions, thus we need to choose a suitable configuration 

for them. The accuracy of a Bloom filter 𝐵𝐹𝑖  can be decided by ratio 𝑚/𝑛𝑖 where 𝑚 

is the length of bit vector and 𝑛𝑖   is the size of set represented in 𝐵𝐹𝑖. In our case, we 

already know the size 𝑛𝑖, which is the cardinality of the attribute 𝑈𝐼𝐷 of each input 

table 𝑇𝑖 (i.e., PatientP1P2P3P4, PatientP13P14P15P19P21, Study, Sequence-

Attributes and GeneralInfoTable), we thus need to determine the length 𝑚 of each 𝐵𝐹𝑖  

and the number of hash functions 𝑘 to obtain a high accuracy for each 𝐵𝐹𝑖. In 

particular, the false positive probability of 𝐵𝐹𝑖  is 𝑃𝐵𝐹𝑖
≈ (1 − 𝑒−𝑘𝑛𝑖/𝑚)

𝑘
when 𝐵𝐹𝑖 is 

using 𝑘 independent hash functions and a vector of 𝑚 bits used to represent a set of 

𝑛𝑖  values (see Formula (5.3.1)). This probability can achieve the minimum (
1

2
)

𝑘

or 

(0.6185)𝑚/𝑛𝑖 (see Formula (5.3.3)) when 𝑘 = ln(2) ×
𝑚

𝑛𝑖
 (see Formula (5.3.2)).  
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We use the cardinality of attribute 𝑈𝐼𝐷 of the entity table Patient of the dataset 

MDB2 for 𝑛𝑖, i.e., 𝑛𝑖 = 1,802,277. This is because the entity table Patient contains 

all values of the attribute 𝑈𝐼𝐷. Besides, 𝑚 = 8 × 𝑛𝑖 is regarded as a good tradeoff 

between accuracy and space storage used for a Bloom filter [22]; thus, we set  

𝑚 = 8 ×  𝑛𝑖 bits, i.e., 𝑚 = 14,418,216 ≈ 14MB. Then, we use Formula (5.3.2) in 

order to compute the corresponding number 𝑘 of hash functions: we get  

𝑘 = ln(2) × 8 ≈ 6 hash functions; and the false positive probability becomes 0.0156.  

Table 6.27: Sets of predicates on the attributes in the input tables 

Pre. 

Set 

PatientP1P2P3P4 PatientP13P14P15P19P21 Study SequenceAttributes 

Sel. Predicate Sel. Predicate Sel. Predicate Sel. Predicate 

1 1 No predicate 1 No predicate 1 No predicate 1 No predicate 

2 1 No predicate 1 No predicate 0.6327 PatientAge >= 10 1 No predicate 

3 0.4764 Patientsex = ’M’ 1 No predicate 0.6327 PatientAge >= 10 1 No predicate 

4 0.4764 Patientsex = ’M’ 1 No predicate 0.2462 PatientAge >= 60 1 No predicate 

5 0.4764 Patientsex = ’M’ 0.0017 smokingstatus ='NO' 0.2462 PatientAge >= 60 1 No predicate 

6 0.4764 Patientsex = ’M’ 

 

0.0017 

 

smokingstatus ='NO' 0.0061 PatientAge >= 90 0.0019 SequenceNames 

LIKE '%X-

Ray%' 

To assess the benefit of the IBF, we compare the query performance difference 

between two cases: using and not using the IBF. The query 𝑄4,3 consists of the 

predicates on the attributes PatientSex, SmokingStatus, PatientAge and 

SequenceNames of the input tables PatientP1P2P3P4, PatientP13P14P15P19P21, 

Study and SequenceAttributes; however, to observe the impact of the IBF over a range 

of situations, we will modify the predicates to change  the selectivity of the input tables. 

Table 6.27 presents six different sets of predicates (Pre. Set) on the attributes of the 

input tables. The selectivity (Sel.) of each individual predicate is also specified. (The 

query 𝑄4,3 in Figure 6.5 and 6.6 is corresponding to the 6th selectivity set in the table.) 

Table 6.28: Comparison of the execution time of using and not using the IBF 

Pre. Set 
Execution time when not using 𝐈𝐁𝐅  Execution time when using 𝐈𝐁𝐅  Reduced time 

ratio (%) Average (sec) Std. dev. Average (sec) Std. dev. 

1 1264.80 389.20 1007.20 176.89 20% 

2 1209.20 234.63 748.00 92.29 38% 

3 1068.40 438.10 962.80 197.97 10% 

4 1122.80 330.83 908.80 202.48 19% 

5 1215.80 407.01 964.80 189.23 21% 

6 1452.40 421.58 930.40 127.05 36% 

The IBF is computed and applied, no matter what set of predicates is used for the 

input tables. Table 6.28 presents a comparison of the execution time (obtained over 

five runs for each set of predicates) between using and not using the IBF: the average 

and the standard deviation (std. dev.) of the execution times are given. We also provide 

the reduced time ratio when using the IBF. This ratio is computed by Formula (6.4.2). 

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝐸𝑥𝑒𝑐𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹 − 𝐸𝑥𝑒𝑐𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹

𝐸𝑥𝑒𝑐𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹
 (6.4.2) 

The comparison of the query execution time between two cases, using and not 

using the IBF, shows that the performance query is significantly improved for all sets 
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of predicates. The query execution time is reduced to 10-38% of the time when the 

query processing strategy is not using the IBF. 

Table 6.29: Comparison of the sizes of the input tables before and after using IBF 

Pre. 

Set 

Patient-

P1P2P3P4 

Patient-

P13P14P15P19P21 
PatientP5 Study 

Sequence- 

Attributes 
GeneralInfoTable 

Size RISR Size RISR Size RISR Size RISR Size RISR Size RISR 

1 

 

Before 

using IBF: 

1,802,376 
 

After 

using IBF: 

543,963 

70% 

Before  

using IBF: 

579,605 
 

After using 

IBF: 

543,708 

58% 

Before  

using IBF: 

391,332 
 

After 

using IBF: 

243,241 

38% 

Before  

using IBF: 

1,856,892 
 

After 

using IBF: 

543,963 

71% 

Before  

using IBF: 

75,314,902 
 

After using 

IBF: 

28,750,207 

62% 

Before  using 

IBF: 

337,730,322 
 

After using 

IBF: 

129,188,521 

62% 

2 

 

Before  

using IBF: 

1,802,376 
 

After 

using IBF: 

392,871 

78% 

Before  

using IBF: 

579,605 
 

After using 

IBF: 

392,661 

60% 

Before  

using IBF: 

391,332 
 

After 

using IBF: 

231,159 

41% 

Before  

using IBF: 

1,174,845 
 

After 

using IBF: 

392,381 

67% 

Before  

using IBF: 

75,314,902 
 

After using 

IBF: 

21,926,259 

71% 

Before  using 

IBF: 

337,730,322 
 

After using 

IBF: 

92,537,771 

73% 

3 

 

Before  

using IBF: 

858,729 
 

After 

using IBF: 

179,414 

79% 

Before  

using IBF: 

579,605 
 

After using 

IBF: 

179,275 

69% 

Before  

using IBF: 

391,332 
 

After 

using IBF: 

179,275 

54% 

Before  

using IBF: 

1,174,845 
 

After 

using IBF: 

179,066 

85% 

Before  

using IBF: 

75,314,902 
 

After using 

IBF: 

10,414,222 

86% 

Before  using 

IBF: 

337,730,322 
 

After using 

IBF: 

41,966,822 

88% 

4 

 

Before  

using IBF: 

858,729 
 

After 

using IBF: 

74,868 

91% 

Before  

using IBF: 

579,605 
 

After using 

IBF: 

74,893 

90% 

Before  

using IBF: 

391,332 
 

After 

using IBF: 

57,018 

85% 

Before  

using IBF: 

457,115 
 

After 

using IBF: 

74,904 

84% 

Before  

using IBF: 

75,314,902 
 

After using 

IBF: 

4,512,373 

94% 

Before  using 

IBF: 

337,730,322 
 

After using 

IBF: 

17,798,449 

95% 

5 

 

Before  

using IBF: 

858,729 
 

After 

using IBF: 

0 

100% 

Before  

using IBF: 

3,034 
 

After using 

IBF: 

0 

100% 

Before  

using IBF: 

391,332 
 

After 

using IBF: 

0 

100% 

Before  

using IBF: 

457,115 
 

After 

using IBF: 

0 

100% 

Before  

using IBF: 

75,314,902 
 

After using 

IBF: 

0 

100% 

Before  using 

IBF: 

337,730,322 
 

After using 

IBF: 

0 

100% 

6 

 

Before  

using IBF: 

858,729 
 

After 

using IBF: 

0 

100% 

Before  

using IBF: 

3,034 
 

After using 

IBF: 

0 

100% 

Before  

using IBF: 

391,332 
 

After 

using IBF: 

0 

100% 

Before  

using IBF: 

11,372 
 

After 

using IBF: 

0 

100% 

Before  

using IBF: 

146,217 
 

After using 

IBF: 

0 

100% 

Before  using 

IBF: 

337,730,322 
 

After using 

IBF: 

0 

100% 

(RISR: the reduced input size ratio) 

Table 6.29 provides a comparison of the sizes of the input tables before and after 

using the IBF. The reduced input size ratio (RISR) is computed by Formula (6.4.3); 

besides, the size of the input tables is measured in terms of the number of tuples (rows). 

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 𝑟𝑎𝑡𝑖𝑜 =  
𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹 − 𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 𝑤𝑖𝑡ℎ 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹

𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹
 (6.4.3) 

The IBF has filtered out many irrelevant tuples from the input tables of joins.  The 

reduced input size ratio of the input tables increases when the selectivity of predicates 
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in the query increases. For instance, as shown in the table, the size of the input table 

GeneralInfoTable is reduced to 62-100% of the size without using the IBF.  

In this experiment, we also assess the effectiveness of an incremental IBF, 

introduced in Section 5.3.3 of Chapter 5. For this purpose, the incremental IBF is 

computed from Bloom filters created from the result tables of the sub-queries of the 

lower join operations in the execution plan. Then, it is applied as a local predicate of 

the sub-queries of the upper join operations of this execution plan. 

 

Figure 6.7: Execution plan for the query 𝑄4,3 with the incremental IBF 

Figure 6.7 illustrates the application of the incremental IBF to the execution plan 

of the query 𝑄4,3. First, the sub-query 𝑠𝑄1,1 is executed and produces the result table 

𝐷1
′ . The Bloom filter 𝐵𝐹1 is created from values of the attribute 𝑈𝐼𝐷 of 𝐷1

′ , and the 

incremental IBF is computed from this Bloom filter: 𝐼𝐵𝐹1 = 𝐵𝐹1. Next, the sub-

query 𝑠𝑄1,2 is executed with the application of 𝐼𝐵𝐹1 as its local predicate and produces 

the result table 𝐷2
′ . The Bloom filter 𝐵𝐹2 is computed on the values of the attribute 

𝑈𝐼𝐷 of 𝐷2
′ , and the incremental IBF is recomputed as follows: 𝐼𝐵𝐹2 = 𝐼𝐵𝐹1 ˄ 𝐵𝐹2. 

Then, the sub-query  𝑠𝑄1,3 is executed with the application of 𝐼𝐵𝐹2 as its local 

predicate in order to create intermediate result table 𝐷3
′ . Here, no Bloom filter is 

computed on the values of the attribute 𝑈𝐼𝐷 of 𝐷3
′  because this result table is a right-

hand side table of a left-outer join. Thus, the incremental IBF are not recomputed. 

Next, the sub-query 𝑠𝑄2 is executed with the application of 𝐼𝐵𝐹2 as its local predicate 

and produces the result table 𝐷4
′ . The Bloom filter 𝐵𝐹4 is created from values of the 

attribute 𝑈𝐼𝐷 of 𝐷4
′ , and the incremental IBF is recomputed as follows: 𝐼𝐵𝐹2 =

𝐼𝐵𝐹2 ˄ 𝐵𝐹4. Similarly, in the next steps, the sub-query  𝑠𝑄3 is executed with the 

application of 𝐼𝐵𝐹3 as its local predicate and produces the result table 𝐷5
′ . The Bloom 

filter 𝐵𝐹5 is created from values of the attribute 𝑈𝐼𝐷 of 𝐷5
′ , and the incremental IBF is 

recomputed: 𝐼𝐵𝐹4 = 𝐼𝐵𝐹3 ˄ 𝐵𝐹5. Afther that, the sub-query sQ4 is executed with the 

application of 𝐼𝐵𝐹4 as its local predicate and produces the result table 𝐷6
′ .  𝑠𝑄4 is the 

uppermost sub-query of the execution plan tree, thus the incremental IBF is not 
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recomputed. Finally, the join operations are executed using the above result tables as 

their inputs.  

Table 6.30 presents a comparison of query execution time between two cases: using 

the IBF and the incremental IBF. It shows that for all cases of predicate sets the query 

execution time is reduced when using an incremental IBF.  

Table 6.30: Comparison between the IBF and incremental IBF 

Pre. 

Set 

Execution time when using an 𝐈𝐁𝐅  Execution time when using an incremental 𝐈𝐁𝐅  Reduced time 

ratio (%) 
Average (sec) Std. dev. Average (sec) Std. dev. 

1 1007.20 176.89 862.60 242.25 14% 

2 748.00 92.29 925.40 198.97 -23% 

3 962.80 197.97 995.40 167.60 -3% 

4 908.80 202.48 901.80 216.55 1% 

5 964.80 189.23 779.00 98.02 19% 

6 930.40 127.05 729.80 202.91 22% 

Besides, the incremental IBF outperforms the IBF for the majority of sets of 

predicates. More particularly, for the first and last three sets of the predicates, the 

reduced time ratios are 14%, 1%, 19% and 22%, respectively, when the incremental 

IBF is applied (given as Table 6.30). In these cases, the incremental IBF is only 

computed from the BFs built on the result tables of highly selective sub-queries of the 

lower join operations, i.e.,  𝑠𝑄1.1,  𝑠𝑄1.2,  𝑠𝑄1.3 and  𝑠𝑄2, but it can still filter a large 

number of irrelevant tuples out of the input tables of the upper join operations, e.g., 

SequenceAttributes and GeneralInfoTable, especially when these tables are very large. 

On other words, when applying the incremental IBF to these cases, the amount of 

filtered data is very large while the high costs of building and probing the incremental 

IBF are trivial. However, for the second and the third sets of predicates, the IBF 

outperforms the incremental IBF. This is probably because the high cost of building 

and probing the IBF has been compensated significantly by amount of filtered data. 

6.4 Analysis and Interpretation 

This section assesses and presents results of the hypotheses.  

6.4.1 H1 - Effectiveness of HYTORMO 

The results of Experiment 1 show that a hybrid store should be used for DICOM data 

because a row or a column store has its own benefits for a specific workload type: 

- For OLAP workloads, a column store provides a higher performance than a row 

store. For instance, the performance of Workload W1 (OLAP-like workload) is 

improved when using the column table GeneralInfoTable. 

- For OLTP workloads, a row store offers a higher performance than a column store. 

For instance, for Workload W2 (OLTP-like workload), storing the entity table 

SequenceAttribute in a row table improved the workload execution time. 

Additionally, the results of Experiment 2 show that, for the mixed OLAP and OLTP 

workloads, a mixed use of both the row and column stores will improve the workload 
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execution time. For instance, Configuration G*, which stored the entity table 

SequenceAttribute and the vertical partitions of the entity table Patient in a row store, 

and two entity tables Study and GeneralInfoTable in a column store, gave a shorter 

workload execution time than Configuration G1 (using a pure row store) and  

Configuration G2 (using a pure column store).  

The above results indicate that it is beneficial to use the hybrid storage strategy of 

both row and column stores to store DICOM data. Hence, Hypothesis H1 is accepted. 

6.4.2 H2 - Usefulness of HADF 

Due to the variety of DICOM data and its workloads, taking into account the combined 

impact of both workload- and data-specific information allows HADF to be able to 

well support in choosing a good data storage configuration for each entity table. 

- In Experiments 1, 2 and 3, for the dense entity tables, e.g., GeneralInfoTable and 

SequenceAttribute, the data-specific information did not have a strong positive 

effect on reducing storage space size. In such cases, most of the attributes in the 

same entity table have low values of null ratios. Thus, if only depending on the 

data-specific information, most of the attributes are highly similar to each other in 

terms of Attribute Density Similarity such that they are grouped and stored together 

without the reduction of null values. However, for these cases, if the workload-

specific information is also taken into account, the merging-selecting phase of 

HADF found that an OLAP-like workload is being used for GeneralInfoTable and 

an OLTP-like workload is being used for SequenceAttribute. Therefore, at the end, 

it suggests to store GeneralInfoTable in a column store and SequenceAttribute in a 

row store. This improved the overall performance of Workloads W1, W2 and W4.  

- Conversely, in Experiments 1 and 2, for the wide and sparse entity tables, i.e., 

Patient and Study, the data-specific information had a strong effect on the vertical 

partitioning results. Multiple vertical partitions are created to remove null values. 

Therefore, the combined use of both workload- and data-specific information has 

positive effects on creating good configurations. Hence, Hypothesis H2a is accepted. 

Additionally, another important goal of HADF is to support decision makers in 

selecting data storage configurations where both the workload execution time and the 

storage space size are reduced at the same time. The results of Experiments 1 and 2 

show that this goal was achieved for very wide and sparse entity tables such as Patient. 

HADF decomposed these tables into multiple vertical partitions from which null rows 

are removed; besides, the reduction of tuple reconstruction cost and I/Os speeded up 

the workload execution time as well. It seems easier to improve the workload 

performance than to reduce the storage space size because the storage space size is 

mainly reduced for very wide and sparse entity tables. However, such entity tables are 

popularly used in the context of DICOM data. Thus, Hypothesis H2b is accepted. 

To the best of our knowledge, our work is among the first to consider a heuristic 

design approach that takes into consideration the combined impact of both workload- 

and data-specific information and the mixed use of both row and column stores while 

generating data storage configurations. Our HADF is inspired from the up-to-date 

vertical partitioning approach proposed by B. Cui et al. [14], which depends on only 
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the data-specific information in order to decompose a sparse table into multiple 

vertically partitioned tables and then stores these result tables in just a row store. 

However, their approach has been included as a part of our solution. In Experiments 

1, 2 and 3, we showed that the combined use of both workload- and data-specific 

information and the use of a hybrid store is able to generate better data storage 

configurations than only using the data-specific information and row store. 

6.4.3 H3 - Effectiveness of the Query Processing Strategy 

The results of Experiment 4 show that both the IBF and the incremental IBF 

significantly speeded up the query processing. The reason for this improvement is that 

the IBF helps to filter the irrelevant tuples out of the input tables of join operations. 

This leads to reduction of network I/Os, disk I/Os and CPU cost (because less input 

data will be processed at nodes or sent on the network). Hypothesis H3 is accepted. 

6.5 Summary and Conclusion 

This chapter presented the results of the validation of the proposed methods. 

HYTOMO was implemented using a Spark cluster of 9 nodes. Real DICOM datasets 

were collected and their metadata and image data were extracted. The workloads were 

also determined. The experimental results can be summarized below.  

The experimental results show that the hybrid storage strategy provides a better 

query performance than a pure row store and a pure column store in the context of 

DICOM data. The column store improves the performance of OLAP workloads while 

the row store improves the performance of OLTP workloads. Therefore, in order to 

improve the overall system performance, depending on the workloads associated with 

the attributes, we should apply a suitable data layout to store the particular attributes.  

Additionally, taking into account the combined impact of both workload- and data-

specific information is very helpful to generate a good data storage configurations in 

terms of storage space size and workload execution time. The experimental results 

show that, with the use of both sources of information, HADF can produce good data 

storage configurations. The workload-specific information has a strong effect on 

improving the workload performance while the data-specific information can help to 

reduce the storage space demand. Beside, HADF can generate a data storage 

configuration that decreases both storage space size and workload execution time; 

however, this is mainly achieved when an entity table is very wide and sparse.  

Finally, the query processing strategy with the use of the IBF or the incremental 

IBF improves the query performance. They can filter irrelevant tuples out of the input 

tables of join operations. This helps to reduce network I/Os, disk I/Os and CPU cost. 

Key Points  

 We execute the experiments to validate HYTORMO. 

 We execute the experiments to validate HADF. 

 We execute the experiments to validate IBF and incremental IBF.  
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Chapter 

 

Conclusion and Future Works 

7.1 Overview 

The dissertation deals with the Big Data issues in DICOM data management from 

one big question: how to efficiently store and query DICOM data? This chapter 

summarizes and concludes the dissertation. We also give an outlook for future 

research. An overview of the chapter is presented in Table 7.1. 

Table 7.1: Overview over Chapter 7 

7.2 Summary and Conclusion 

7.2.1 Existing DICOM Data Management Systems 

7.2.2 Current Databases and Related Techniques 

7.2.3 HYTORMO and DICOM Data Storage Strategy 

7.2.4 HADF 

7.2.5 Query Processing Strategy with the Use of an IBF 

7.2.6 Validations of Proposed Methods 

7.3  Future Works 

7.3.1 Hybrid Storage Model 

7.3.2 HADF 

7.3.3 Query Processing Strategy 

7.3.4 Non-precomputed and Precomputed BFs 

There are six main contributions emerged from our study: First, we performed a 

comprehensive evaluation of the existing DICOM data management systems and 

addressed their strengths and weaknesses. As a response to the shortcomings, we 

specified the expected requirements for a new DICOM data management system. 

Second, we provided a state of the art review of the current databases (relational, 

NoSQL and NewSQL databases) and the related techniques (including cluster 

computing frameworks, data layouts, vertical partitioning, BF and IBF techniques). 

Third, we proposed a hybrid storage model, called HYTORMO, together with a data 

storage strategy. Fourth, we proposed a hybrid automated design framework, called 

HADF. Fifth, we introduced a query processing strategy with the use of an IBF for 

HYTORMO. Finally, we performed validations to demonstrate the benefits of the 

proposed methods. 
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7.2 Summary and Conclusion 

7.2.1 Existing DICOM Data Management Systems  

Based on the characteristics of DICOM data and workloads, we specified that a new 

DICOM data management system needs to satisfy three expected requirements: (R1) 

Flexible data; (R2) Flexible querying; and (R3) Efficiency of storage and CPU. The 

requirement R1 requires that the system is able to deal with the complexity and the 

variety of DICOM data. The requirement R2 requires that the system enables users to 

write SQL ad-hoc queries with joins. The requirement R3 requires that DICOM data 

will be organized based on workload and data-specific information to reduce storage 

space demand and execution time of queries in mixed OLTP and OLAP workloads; 

additionally, it is able to provide efficient query processing over large-scale datasets, 

huge storage capacity, scalability and elasticity. 

We performed a comprehensive evaluation of the existing DICOM data 

management systems. With regards to data storage, the existing systems can be 

classified into four groups of solutions: row-oriented databases, vertically-

decomposed row-oriented databases, NoSQL document-based databases and hybrid 

cloud-enabled storage system. First, the systems that are using a row-oriented database 

such as PACSs [129], eDiaMoND [42], and commercial RDBMSs (Oracle) [130] store 

DICOM data in tables. These systems are optimized for write-intensive (OLTP) 

workloads in which all (or most) attributes of each tuple are frequently accessed 

together by queries. Unfortunately, they waste I/O bandwidth because all attributes of 

a table have to be read into memory from disk even if only few attributes are needed 

once per query. Second, in the system using a vertically-decomposed row-oriented 

database such as DCMDSM [54], data is vertically decomposed and stored into 

multiple tables. This strategy can help the system reduce disk I/Os, but it needs more 

CPU cost due to multi-table joins required for tuple reconstruction. Moreover, the 

proposed system has not been designed to operate in a distributed query processing 

environment. Third, the system using a NoSQL document-based database [40] could 

handle the heterogeneous schemas due to sharing non-relational design, but it does not 

provide a standardized declarative query language, e.g., SQL. Finally, the hybrid (row-

column) cloud-enabled storage system can reduce I/Os and tuple reconstruction cost 

and deal with the evolution of data. Nevertheless, it is hard to scale and has not 

provided an automated design approach to create data storage configurations.   

Therefore, the document-based database and hybrid cloud-enabled storage system 

have shown their ability or potential to satisfy the above-mentioned respected 

requirements. However, they still lack the following features that are addressed in our 

thesis:  

 An automated design approach that uses both workload and data-specific 

information to design and store DICOM data in a manner to reduce both 

workload execution time and storage space demand. 

 Efficient solutions for query processing over large-scale datasets, especially, to 

reduce network I/Os in a distributed query processing environment. 
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7.2.2 Current Databases and Related Techniques 

We performed a state of the art review of the current databases. Relational databases 

are based on the relational data model. They organize data in tables and provide users 

with SQL interfaces. The relational databases can handle the complexity of DICOM 

data because entities and relationships among the entities in the DICOM data model 

can be well represented by the entity-relationship model. However, they have some 

limitations in providing the following features: huge storage capacity, high query 

performance over high and ever-growing volume of data, scalability and elasticity. 

Thus, in general, they are not efficient to handle DICOM data. In contrast to the 

relational databases, NoSQL databases are designed to handle Big Data. They can deal 

with un/semi-structured data, process large amounts of data with high performance 

and scalability, provide huge storage capacity, elasticity and so on. However, they do 

not represent well data in tabular form, nor do they provide SQL support. Therefore, 

the relational and NoSQL databases alone do not provide all features required to 

manage DICOM data. For this reason, we move towards applying the concepts of 

NoSQL databases to build a data storage model that is able to support SQL and 

represent data in form of tables. 

Besides, we performed reviews on cluster computing frameworks, data layouts, 

vertical partitioning, BF and IBF techniques. First, the batch-oriented processing 

technique of MapReduce is not suitable for processing interactive workloads because 

of its high latency. In contrast, the interactive ad-hoc query and analysis technique, 

e.g., Spark, is able to provide high performance for interactive workloads. Second, row 

stores (Oracle, DB2, etc.) are optimized for write-intensive (OLTP) workloads, 

whereas column stores (MonetDB, C-Store, etc.) are well-suited for read-intensive 

(OLAP) workloads. To fill the gap between these two types of stores, hybrid stores 

(e.g., HYRISE, SAP HANA, etc.) have aimed at optimizing the performance for both 

types of workloads. Third, the vertical partitioning algorithms show that they can be 

applied to improve the query performance or to reduce storage space size especially 

for sparse datasets. However, they have not taken into consideration the combined 

impact of both workload- and data-specific information on vertical partitioning results. 

Additionally, they have assumed that resulting schemas will be stored in tables using 

just one kind of data layout, e.g., row-oriented data layout, instead of hybrid data 

layout. Finally, to improve query performance, the IBF have shown that they are able 

to reduce the network I/O cost with a false positive probability less than the BF.  

7.2.3 HYTORMO and DICOM Data Storage Strategy 

We proposed a new hybrid storage model, called HYTORMO:  

 To facilitate users, DICOM data in HYTORMO is organized based on the 

relational data model. Users can use entity tables in their SQL queries.  

HYTORMO will automatically decompose the users’ queries into sub-queries 

to access only relevant tables archived in row or column stores. 

 To provide huge storage capacity, high query performance, scalability and 

elasticity, we designed and implemented HYTORMO using an in-memory 

massively-parallel computation and storage techniques on large clusters of 
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nodes. In fact, HYTORMO was implemented on top of Spark: DICOM data is 

stored in a distributed file system (HDFS) and queries are processed in parallel.  

 To achieve a data storage configuration for DICOM data, one of two design 

approaches can be applied: expert-based and automated.  

7.2.4 HADF 

HADF is proposed to assist decision makers in selecting a good data storage 

configuration for each entity table. It can take into account the combined impact of 

both workload- and data-specific information as well as the combined use of both row 

and column stores to generate a new data storage configuration. In particular, HADF 

works through two phases: clustering and merging-selecting. The clustering phase 

aims at reducing storage space size and tuple reconstruction cost. To achieve this, it 

depends on Hybrid Similarity (a weighted combination of Attribute Access Similarity 

and Attribute Density Similarity) between every pair of attributes to cluster attributes 

into column groups such that attributes in each particular column group are similar and 

attributes in different column groups are dissimilar. The merging-selecting phase aims 

at reducing the number of join operations across vertically partitioned tables and the 

number of irrelevant attribute accesses. It uses Inter-Cluster Access Similarity to 

determine whether two clusters are merged together or not and uses Intra-Cluster 

Access Similarity to determine a suitable data layout for each column group.  

7.2.5 Query Processing Strategy with the Use of an 𝐈𝐁𝐅 

We proposed a query processing strategy built on top of HYTORMO that includes the 

use of inner joins, left-outer joins and an IBF. We scoped our work to only consider a 

left-deep sequential tree plan with inner joins and left-outer joins. Our proposed query 

processing strategy is designed for: (1) working with tables archived in both row and 

column stores; (2) reducing the number of left-outer joins; and (3) reducing the 

network communication cost by applying the IBF.  

7.2.6 Validations of Proposed Methods 

We performed experiments to validate the proposed methods using real DICOM 

datasets. Experimental results show that performance of the hybrid store is better than  

either a pure row store or a pure column store because it can combine the fundamental 

advantages of both row and column stores: pieces of data used by OLTP workloads are 

stored in row tables while pieces of data required by OLAP workloads are stored in 

column tables. The combined use of both workload- and data-specific information is 

necessary for HADF to generate good data storage configurations. The workload-

specific information has a strong effect on improving the workload performance while 

the data-specific information is helpful in reducing storage space demand. HADF is 

able to support in selecting a good data storage configuration that reduces both the 

storage space demand and the workload performance, but this is mainly achieved for 

wide and sparse tables. 

The experimental results also show that the IBF or the incremental IBF help to 

improve the query performance. The query execution time was reduced to 10-38% of 
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the time when applying the IBF. Besides, the incremental IBF outperforms the IBF in 

the majority of cases of predicate sets. Filtering irrelevant tuples out of input tables of 

join operations results in the reduction of disk and network I/Os and CPU cost. 

In short, the conclusions are as follows: using the hybrid storage model improves 

the workload execution time; taking into account the combined impact of both 

workload- and data-specific information is necessary to produce better data storage 

configurations; and the application of the IBF improves query performance.  

7.3 Future Works 

There are some open research axes that we can investigate and extend in future.  

7.3.1 Hybrid Storage Model 

HYTORMO was designed for storing and querying DICOM data. Nevertheless, we 

believe that it can be extended to be used for many various Big Data applications. 

Instead of just using row and column stores, we plan to extend the current model to 

support multiple stores: row store, column store, key-value store, etc. As such, it is 

well suited for the variety of data in many different applications. 

Recently, some systems using multiple data models and data stores have been 

proposed. For instance, CloudMdsQL Multistore System [131, 132] provides a SQL-

like language, called CloudMdsQL that is a common language for querying and 

integrating data from multiple heterogeneous cloud data stores. It can exploit the full 

performance of local data stores by allowing embedded invocations to each local data 

store native query interface. Another system, called BigDAWG Polystore System 

[133], also stores data in different storage engines by depending on the data access 

patterns. However, these systems lack an automated solution that is based on both the 

characteristics of data and workloads to determine the right stores for their data. 

7.3.2 HADF 

Some requirements would be performed to extend our work: We have based on 

experiments and experts’ opinion to select suitable values for the parameters of HADF 

(including α, β, θ and λ), thus it would be necessary to develop a method to 

automatically determine these values. For this requirement, we would investigate the 

application of optimization techniques that may give better results than our approach. 

In [134], the authors proposed an agglomerative clustering algorithm to automatically 

generate property table schemas that can balance storage efficiency and query 

performance for a very large RDF dataset. Unfortunately, a hybrid storage system has 

not used to store the property tables. As a future work, the authors in [134] planned to 

develop a hybrid approach by combine the triple store, vertical database, and property 

table schemes to have their own advantages in different situations. 

We will extend HADF to take into consideration the horizontal tables that may 

have different widths in their attributes. We plan to research the effect of compression 

on some pieces of data, e.g., column tables. We also plan to research how new 

attributes are added to an existing data storage configuration. For instance, HADF can 
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modify incrementally the existing configuration while still maintaining a trade-off 

between the storage space size and the query performance. In [135], the authors 

proposed an approach that consists of two phases: the vertical partitioning phase aims 

at reducing the number of join operations while the adjustment phase aims to maintain 

the query performance by adapting the underlying schema to react to the changes in 

the characteristics of the continuous query workload stream. However, the authors 

have not taken into account the storage space size during the adjustment phase. 

7.3.3 Query Processing Strategy 

We will explore the query execution plan with the use of inner joins and (full) outer 

joins (⟗), instead of inner joins and left-outer joins. In this way, given a data storage 

configuration 𝐺𝑖 of a horizontal table 𝑇, a query q and a set 𝐶𝑖
𝑞
 of column groups that 

are required to answer q, a relational algebraic expression using inner joins or left-

outer joins can be given as follows (see Formula (4.3.9) in Chapter 4): 

𝑞 = π𝑎1,…,𝑎𝑚
[π𝑈𝐼𝐷(𝑇) ⟕  (⟕𝑥=1

|𝐶𝑖
𝑞

|
σ𝑃𝑖,𝑥

(𝐶𝑖,𝑥) )],  

where the selection operation σ𝑃𝑖,𝑥
(𝐶𝑖,𝑥) returns only tuples of the table storing data of 

the column group 𝐶𝑖,𝑥 for which the predicate (or condition) 𝑃𝑖,𝑥 is fulfilled; the 

projection operation π𝑈𝐼𝐷(𝑇) returns a list of all 𝑈𝐼𝐷′s of the horizontal table 𝑇. We 

will consider the use of the full outer joins for 𝑞 because when this join type is applied, 

the resulting tuples of 𝑇 will be produced for each tuple in each joined vertical 

partition, no matter what the join order is. Thus, we can select a join order that can 

result in a better overall query performance:  

𝑞 = π𝑎1,…,𝑎𝑚
(⟗𝑥=1

|𝐶𝑖
𝑞

|
σ𝑃𝑖,𝑥

(𝐶𝑖,𝑥) ). 

Additionally, we will consider how to transform a left-deep tree plan to a bushy 

tree plan to increase parallelism in query processing. Although many studies have 

introduced different approaches for transforming a left-deep tree into a bushy tree 

[136-138], there is a lack of studies generating a bushy tree for a left-deep tree plan 

consisting of left or full outer joins as in our context. 

All the above changes introduce new research challenges. For instance, how is 

tuple reconstruction cost modelled? How is an IBF applied to a query execution plan 

using outer joins in a bushy tree plan? 

7.3.4 Non-precomputed and Precomputed 𝐁𝐅𝐬 

We believe it would be beneficial to combine both types of BFs: non-precomputed and 

precomputed BFs. The non-precomputed BFs are computed from input tables during 

query processing as used in our thesis. Alternatively, the precomputed BFs are 

computed beforehand to avoid additional computation steps required during query 

processing. For instance, in [139], the precomputed BFs were used to speed up 

SPARQL processing in the cloud. Based on usage frequency of the input tables, first 

we can precompute BFs as many as possible. Then, BFs of these two types can be 

combined by using bitwise AND-operations to build a common IBF.
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Chapitre 1 Introduction 

Dans le secteur de la santé, la norme DICOM (Digital Imaging and Communication in 

Medicine) est utilisée pour stocker les données d’imagerie médicale. Les données 

DICOM possèdent les caractéristiques du Big Data, telles que la haute complexité, la 

grande variété, de grands volumes, en augmentation constante, et une importante 

vélocité. De plus, il existe une variété de charges de travail, notamment le traitement 

transactionnel en ligne (Online Transaction Processing, abrégé en OLTP), le traitement 

analytique en ligne (Online Analytical Processing, abrégé en OLAP) et les charges de 

travail mixtes. Ces caractéristiques et charges de travail des données posent de 

nombreux problèmes dans la gestion des données. Les systèmes existants ont des 

limites concernant ces caractéristiques des données et des charges de travail. Dans cette 

thèse, nous proposons des méthodes efficaces pour stocker et interroger les données 

DICOM en termes de d’espace de stockage et de temps d’exécution. 

Dans la communauté de recherche de base de données, nombreuses techniques ont 

été proposées pour réduire la demande d'espace de stockage et améliorer la 

performance de la charge de travail pour les données à grande échelle telles que: (1) le 

partitionnement vertical pour réduire le nombre de valeurs nulles dans les ensembles 

de données éparses ou pour améliorer les performances des requêtes; (2) les modèles 

hybrides de stockage en lignes et en colonnes proposés pour augmenter les 

performances des charges de travail mixtes ; ou (3) des bases de données NoSQL qui 

sont bien adaptées pour traiter la grande variété et les volumes élevés de données.  

Cependant, il y a des manques : 

- Un modèle de stockage de données avec haute performance, évolutivité, 

disponibilité et élasticité pour les volumes élevés de données DICOM. 

- Une stratégie de stockage de données pour réduire à la fois l’espace de stockage et 

le temps d’exécution des requêtes. 

- Un modèle d’aide à la décision pour les décideurs (par exemple, les concepteurs 

de bases de données) dans la conception de schémas et la sélection de dispositifs 

de stockage de données appropriés. 

- Un traitement de requête adapté et efficace. 

En réponse aux problèmes ci-dessus, les objectifs de cette thèse sont de proposer : 

- Un nouveau modèle de stockage hybride appelé HYTORMO qui offre hautes 

performances, évolutivité, disponibilité et élasticité. 

- Une stratégie efficace de stockage de données qui est un moyen systématique de 

regrouper les attributs en groupes de colonnes et de suggérer des dispositions de 

stockage de données appropriées. 

- Un cadre de conception automatisé hybride, appelé HADF, qui prend en compte 

l'impact combiné des informations spécifiques à la charge de travail et aux données 

et un stockage hybride pour créer des configurations de stockage de données. 

- Un traitement de requête adapté et efficace pour HYTORMO avec l’intégration de 

filtres de Bloom (IBF) pour réduire les entrées/sorties sur le réseau. 

La thèse fournit également des expérimentations pour démontrer les avantages des 

méthodes proposées à l’aide de véritables ensembles de données DICOM.  
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Chapitre 2 Systèmes et Exigences de Gestion des 

Données DICOM 

Dans ce chapitre, nous déterminons d’abord les principales caractéristiques des 

données DICOM et des charges de travail susceptibles de poser des problèmes de 

gestion des données. Ensuite, nous présentons les exigences attendues. Ensuite, nous 

passons en revue les systèmes de gestion de données DICOM existants en mettant 

l’accent sur leurs forces et leurs faiblesses. Après cela, nous comparons ces systèmes 

et concluons avec leurs limites à satisfaire les exigences attendues. 

2.5 Caractéristiques des données et des charges de travail  

2.2.3 Complexité élevée 

 

Figure 2.1: Modèle d’information détaillé 

L’organisation des données DICOM est complexe. Le modèle d’information de la 

norme DICOM est utilisé pour décrire les informations sur les entités et leurs relations, 

comme illustré par la figure 2.1. Une entité d’information (IE : information entity) est 

utilisée pour représenter des informations pour un seul objet du monde réel tel que 

Patient, Study, etc. L’IE se compose à son tour d’une liste d’attributs. En outre, il existe 

des relations entre les IE. Par conséquent, les requêtes nécessitent généralement 

plusieurs jointures pour intégrer les informations des tables.  

2.2.4 Haute variété 

Les données DICOM sont très variées car elles incluent des données d'image et des 

métadonnées. En outre, il existe une hétérogénéité et une évolution des métadonnées. 

 Schéma hétérogène : Le nombre d’attributs est très important (plus de 3,500). Ils 

incluent des attributs obligatoires et facultatifs. Cela peut conduire aux problèmes 
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suivant : espace de stockage peut être gaspillé en raison de valeurs nulles ; les 

performances des requêtes peuvent être réduites en raison d’accès aux attributs non 

pertinents. 

 Schéma évolutif : L’évolution du schéma fait référence aux changements dans les 

schémas des métadonnées au cours du temps, à mesure que les attributs sont 

modifiés. Cela conduit à des problèmes de gestion des données. Par exemple, 

comment garder le système existant pour fonctionner normalement en présence de 

schémas de « nouvelle version » est un défi.  

2.2.5 Volume élevé et en constante augmentation 

Le volume élevé et toujours croissant de données a introduit des défis à la gestion 

moderne des données. Des stratégies efficaces de stockage à long terme et de 

traitement des données doivent être appliquées pour garantir la rapidité du traitement 

des données et réduire les entrées/sorties.  

2.2.6 Grande vélocité 

La vélocité est considérée comme la vitesse des flux de données à venir qui doivent 

être traités aussi rapidement que possible. Cependant, notre étude se concentre sur des 

méthodes efficaces pour améliorer la vitesse des requêtes OLAP, OLTP et des charges 

de travail mixtes, au lieu du traitement des flux de données. 

2.2.7 Diverses charges de travail  

Les charges de travail sont diverses (OLTP, OLAP, charges de travail mixtes). Les 

modèles d’accès aux attributs et les requêtes conduisent souvent à des opérations de 

jointure multi-tables. Certains attributs sont fréquemment accédés ensemble tandis que 

certains attributs sont rarement utilisés ensemble. De telles charges de travail peuvent 

avoir un impact négatif sur les performances des requêtes. 

2.6 Systèmes de gestion de données DICOM 

2.3.3 Besoins attendus 

Ci-dessous, nous spécifions les exigences attendues pour un nouveau système de 

gestion de données DICOM: 

R1) Données flexibles : le système est capable de gérer la complexité des 

données DICOM en permettant aux utilisateurs de représenter facilement les 

tables d'entités et leurs relations dans le modèle d'information DICOM. Des 

données normalisées doivent être créées. De plus, le système est capable de 

gérer la variété de données DICOM. 

R2) Requêtes flexibles : le système permet aux utilisateurs d'écrire des 

requêtes SQL ad hoc avec des opérations de jointure. 

R3) Efficacité du stockage et de traitement : tout d'abord, les données 

doivent être organisées en fonction d'informations sur la charge de travail et sur 
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les données afin de réduire la demande d'espace de stockage et l'exécution de 

requêtes dans des charges de travail OLTP et OLAP mixtes. Plus 

particulièrement, les données doivent être organisées et stockées de manière 

appropriée afin de réduire la redondance des données, le coût de reconstruction 

du n-uplet et les coûts d'E/S. Deuxièmement, le système est en mesure de 

fournir des solutions pour un traitement efficace des requêtes sur des jeux de 

données DICOM à grande échelle. Enfin, il est capable de fournir une capacité 

de stockage, une évolutivité et une élasticité énormes. 

2.3.4 Systèmes existants 

PACS : Les PACS (Picture Archiving and Communication System) utilisent 

principalement des SGBDR (systèmes de gestion de base de données) orientés ligne 

pour stocker, récupérer et distribuer des données d’images médicales. Ils fournissent 

des techniques d’index robustes pour l’accélération des opérations de récupération de 

données. Cependant, ils ne prennent en charge que les requêtes avec des attributs 

prédéfinis et ne gèrent pas les schémas hétérogènes. 

eDiaMoND : eDiaMoND (Grid-enabled Medical Imaging Database) stocke les 

données DICOM à l’aide d’une base de données d’images médicales basée sur une 

grille informatique (grid computing) qui est construite à partir de SGBDR orientés 

ligne. Le système vise à assurer l’interopérabilité, l’évolutivité et la flexibilité. 

Cependant, le développement de techniques d’optimisation de requêtes n’a pas été 

introduit. De plus, eDiaMoND ne fournit aux utilisateurs que des requêtes prédéfinies 

(sous forme de document XML). 

Oracle : Oracle est un SGBDR orienté ligne qui fournit des fonctionnalités pour 

stocker et gérer des référentiels à grande échelle de fichiers DICOM. Il ajoute un 

nouveau type de données qui permet à n’importe quelle colonne de ce type de stocker 

un contenu DICOM dans leur table de base de données. Depuis qu’un nouvel objet 

séparé est créé pour chaque fichier DICOM, l’espace de stockage est rapidement 

augmenté et diminue ainsi les performances globales du système. Oracle RACs permet 

de stocker et de gérer les données DICOM dans un environnement de type grappe 

(cluster) pour fournir disponibilité, performance, évolutivité et élasticité. Cette 

solution permet de fournir un débit élevé pour les charges de travail OLTP mais 

n’optimise pas les charges de travail OLAP. Cette approche est également moins 

évolutive que certaines bases de données NoSQL, telles que Cassandra et MongoDB.  

DCMDSM : DCMDSM (DICOM Decomposed Storage Model) partitionne 

verticalement les métadonnées DICOM en plusieurs petites tables. La méthode est 

capable de gérer les schémas évolutifs/hétérogènes et d’économiser de la bande 

passante. Cependant, le modèle utilise une approche de base de données centralisée 

développée au sommet d’un SGBDR orienté ligne et n’a pas été conçue pour 

fonctionner dans un environnement parallèle. En outre, ils peuvent entraîner des coûts 

plus élevés en raison des jointures supplémentaires nécessaires pour la reconstruction 

des n-uplets. 

Base de données documentaire : Une base de données basée sur des documents, telle 

que CouchDB, a été proposée pour stocker et interroger des données DICOM. Il 

partage la conception non relationnelle sans schéma des systèmes de stockage clé-
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valeur standards et peut donc gérer l’évolution des métadonnées. Cependant, il n’existe 

pas de langage de requête standard pour le système proposé. En outre, il est difficile 

de représenter les tables et leurs relations dans le modèle d’information DICOM. 

Système de stockage hybride compatible avec le cloud : Le système de stockage 

hybride basé sur le cloud stocke les données DICOM dans les magasins de lignes et 

de colonnes. Tout d'abord, les attributs DICOM sont classés en trois catégories : (1) 

attributs obligatoires ; (2) les attributs fréquemment accédés ensemble; et (3) les 

attributs facultatifs / privés / rarement accédés. Ensuite, les attributs sont regroupés 

manuellement selon ces catégories. Enfin, la sélection des dispositions de stockage de 

données pour les groupes de colonnes est décrite comme suit : 

– Les attributs appartenant aux deux premières catégories sont regroupés et stockés 

dans des tables de lignes afin de réduire le coût de reconstruction des n-uplets. 

– Les attributs appartenant à la dernière catégorie sont stockés dans des tables de 

colonnes afin d'économiser le coût d'E / S si seulement quelques attributs sont 

requis par une requête. 

Ce système peut gérer la complexité et l'évolution des données. Les coûts de 

reconstruction des E / S et des n-uplets sont diminués. Cependant, il y a certaines 

limites. Tout d'abord, le regroupement des attributs et la sélection des dispositions de 

stockage de données appropriées sont effectués manuellement. Nous appelons cette 

méthode approche d'expert. Deuxièmement, le médiateur distribué doit décider du 

moteur de stockage le plus approprié pour effectuer une requête et déplacer des 

données entre les moteurs de stockage. Enfin, le système ne passe pas facilement à 

l'échelle. 

2.3.5 Systèmes existants 

Les exigences attendues énumérées à la section 2.2.1 sont utilisées comme critères de 

comparaison des systèmes existants. Le tableau 2.1 montre le résultat de la 

comparaison. 

Table 2.1 : Comparaison des systèmes existants 

Systèmes de gestion de données DICOM existants 
Besoins attendus 

R1 R2 R3 

PACSs 0 - - 

eDiaMoND + - - 

Oracle/Oracle RAC + 0 - 

DCMDSM + 0 - 

Base de données documentaire + - 0 

Système de stockage hybride compatible avec le cloud + + 0 

+ pris en charge, 0 partiel, - non pris en charge 

Les systèmes utilisant des bases de données relationnelles, notamment les systèmes 

PACS, eDiaMoND et Oracle / Oracle RAC, peuvent traiter des données extrêmement 

complexes, créer des données normalisées et prendre en charge SQL et les jointures. 

Cependant, ils ne disposent pas de solutions pour : (1) organiser les données en 

fonction de la charge de travail et d'informations spécifiques afin de réduire la demande 
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d'espace de stockage et le temps d'exécution de la charge de travail ; (2) fournir une 

stratégie de traitement de requête efficace ; et (3) fournir une énorme capacité de 

stockage, évolutivité et élasticité. 

Le modèle DCMDSM peut aider à améliorer les requêtes OLAP et à réduire la 

demande d'espace de stockage en raison du modèle DSM. Néanmoins, le coût 

d'exécution des requêtes OLTP peut être élevé en raison des jointures multi-tables. De 

plus, le système existant a été conçu et validé en utilisant un environnement de 

traitement distribué. 

La base de données basée sur les documents et le système de stockage hybride 

compatible avec le cloud possèdent de nombreuses fonctionnalités capables de gérer 

les caractéristiques des données et des charges de travail DICOM. La base de données 

basée sur les documents est une base de données NoSQL. Elle peut donc gérer la 

grande variété de données DICOM et fournir des performances de requête élevées, une 

capacité de stockage importante, une évolutivité et une élasticité naturelles. Le système 

de stockage hybride en nuage a fourni des solutions en fonction de la charge de travail 

et d'informations spécifiques aux données pour organiser et stocker les données 

DICOM. Cependant, ces deux systèmes ne disposent pas des fonctionnalités suivantes 

: 

 Une approche de conception automatisée qui utilise des informations spécifiques 

à la charge de travail et aux données pour concevoir et stocker les données DICOM 

de manière à réduire à la fois le temps d'exécution des charges de travail et la 

demande d'espace de stockage. 

 Des solutions efficaces pour le traitement des requêtes sur les jeux de données à 

grande échelle, en particulier pour réduire les E / S réseau dans un environnement 

de traitement de requêtes distribué.
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Chapitre 3 Bases de Données et Techniques 

Associées 
Ce chapitre fournit tout d’abord une analyse des types de charge de travail, des bases 

de données courantes, des structures d’informatique en cluster et des dispositions de 

données. Ensuite, nous nous concentrons sur les techniques de partitionnement vertical 

appliquées pour réduire l'espace de stockage (en particulier pour les jeux de données 

fragmentés) et pour améliorer les performances des requêtes. Après cela, nous 

introduisons des techniques de filtre de Bloom (BF) et de filtre de Bloom d’Intersection 

(IBF) qui peuvent être appliquées pour améliorer les performances des requêtes dans 

les environnements de traitement de requêtes distribuées. Enfin, nous résumons et 

concluons le chapitre en sélectionnant des solutions pour les composants clés d’un 

nouveau système de gestion de données DICOM.  

3.8 Classements 

3.4.4 Charges de travail OLTP et OLAP  

Les charges de travail OLTP contiennent des requêtes exigeantes en écriture qui 

doivent insérer, supprimer, mettre à jour ou extraire toutes les colonnes (ou la plupart 

des colonnes) d'une table. Les bases de données orientées lignes sont optimisées en 

écriture pour les applications OLTP. 

En revanche, les charges de travail OLAP sont principalement constituées de 

requêtes nécessitant une lecture intensive qui doivent accéder ou être agrégées sur 

plusieurs lignes, mais uniquement sur quelques colonnes. Les bases de données 

orientées colonnes sont optimisées en lecture, elles sont donc généralement utilisées 

pour les applications OLAP. 

3.4.5 Bases de données  

Bases de données relationnelles : Les bases de données relationnelles organisent les 

données en fonction du modèle de données relationnel qui utilise des tables ou des 

schémas pour organiser et récupérer des données. Elles sont conçues pour stocker des 

données structurées. 

Bases de données NoSQL : Les bases de données NoSQL sont basées sur des modèles 

de données flexibles sans avoir besoin de schémas prédéfinis. Elles peuvent donc gérer 

des données non structurées ou semi-structurées stockées dans des systèmes de 

stockage de clé-valeur, familles de colonnes, documents ou dans des systèmes de 

gestion de bases de données. 

Bases de données NewSQL : Les bases de données NewSQL (telles que VoltDB, 

Clustrix, NuoDB et Google Spanner) sont considérées comme des SGBDR modernes. 

Ils sont basés sur le modèle de données relationnelles, mais peuvent fournir une 

évolutivité horizontale et des performances élevées en tant que bases de données 

NoSQL tout en garantissant les garanties ACID traditionnelles et en fournissant du 

SQL. 
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3.9 Cadres de calcul en grappe 

Notre étude est axée sur la technique de requête et d'analyse interactive et ad hoc qui 

est généralement comparée à la technique de traitement par lots. Ainsi, dans cette 

section, nous nous concentrons uniquement sur deux modèles de calcul parallèles : 

MapReduce et Spark. La première technique utilisée est un modèle de programmation 

par lots performant, tandis que la dernière est une infrastructure informatique en 

grappe capable de fournir des performances élevées pour des charges de travail 

interactives. 

3.2.1 MapReduce 

MapReduce est un modèle de programmation par lots. Cette technique traite un grand 

volume de données en divisant un travail en plusieurs tâches qui sont effectuées en 

parallèle sur plusieurs nœuds (machines). Cependant, ce modèle entraîne des 

entrées/sorties disque et une latence réseau élevés car ses tâches doivent répliquer les 

données pour le calcul local au niveau des nœuds. 

3.2.2 Spark  

Le modèle de traitement par lots de MapReduce n'est pas adapté aux requêtes et 

analyses interactives ad-hoc en raison de sa latence élevée. En revanche, Spark est une 

infrastructure de calcul en mémoire pouvant s’exécuter sur Hadoop pour offrir des 

performances élevées aux charges de travail interactives. Pour réduire la latence, il 

essaie de conserver les données intermédiaires en mémoire autant que possible afin de 

réduire le besoin d'écrire les données sur des disques. De plus, les DataFrames dans 

Spark permettent aux utilisateurs de représenter des données sous forme de tables. 

Spark permet d'interroger les données à l'aide d'un langage de type SQL. 

3.10 Dispositions de données 

3.3.1 Modèle de stockage orienté ligne  

Le modèle de stockage orienté ligne qui est utilisé dans les SGBDR orientés ligne (tels 

qu’Oracle, DB2, SQL Server, etc.) stocke les données ligne par ligne. Ce modèle est 

optimisé en écriture pour les charges de travail OLTP où tous les attributs d’un n-uplet 

sont écrits une fois par requête. Cependant, il gaspille les entrées/sorties disque pour 

les charges de travail OLAP car toute la table doit encore être lue en mémoire à partir 

du disque, même si seulement quelques attributs sont requis.  

3.3.2 Modèle de stockage orienté colonne 

Le modèle de stockage orienté colonne qui est utilisé dans les SGBDR à colonnes (tels 

que MonetDB et C-Store) stocke les données sur le disque colonne par colonne. Ce 

modèle est optimisé en lecture car il permet de lire uniquement les colonnes requises. 

Ceci est bien adapté aux charges de travail OLAP où seul un petit nombre d’attributs 

d’une table peut être utilisé. 



Bases de Données et Techniques Associées 
 

11 

 

3.3.3 Modèle de stockage hybride 

Les modèles de stockage de données présentés dans les sections précédentes sont 

optimisés pour une charge de travail OLTP ou OLAP, mais pas pour les deux. Pour 

surmonter cette limite, des modèles hybrides de stockage de données ont été introduits, 

tels que des modèles de stockage de groupes de colonnes (PAX, Data Morphing, 

HYRISE), Mirror et Fractured Mirrors, HyPer, Colonnes de Trojan et SAP HANA. 

Cependant, ces modèles n’ont pas été conçus pour exploiter les données DICOM. Par 

exemple, il y a un manque de solutions pour réduire la demande d’espace de stockage 

et le temps d’exécution des requêtes. 

3.4 Partitionnement vertical et filtres de Bloom 

Les techniques de partitionnement vertical permettent de réduire le temps d'exécution 

de la charge de travail et la taille de l'espace de stockage pour les jeux de données 

fragmentés. En outre, les techniques de filtre de Bloom permettent de réduire les coûts 

d'E / S réseau et disque dans les environnements de traitement de requêtes distribuées.  

3.5.3 Partitionnement vertical 

Dans notre étude, nous classons les algorithmes de partitionnement vertical actuels en 

deux approches : l'approche basée sur la charge de travail et l'approche basée sur les 

données. La première catégorie utilise des informations sur l’utilisation des attributs 

des requêtes pour générer des partitions verticales de manière à améliorer les 

performances des requêtes. En revanche, la seconde approche utilise des informations 

spécifiques aux données (par exemple, l’écart des données) pour regrouper les attributs 

en grappes (c’est-à-dire, des partitions verticales). Cette approche vise principalement 

à réduire le nombre de valeurs nulles dans les ensembles de données épars. 

Cependant, il y a un manque d’études qui prennent en considération l’impact 

combiné des informations spécifiques à la charge de travail et aux données sur le 

résultat du partitionnement vertical et l’utilisation d’une disposition de stockage de 

données différente pour les stocker. 

3.5.4 Filtre de Bloom et l’intersection de filtres de Bloom 

Le filtre de Bloom (BF: Bloom filter) est une structure de données probabiliste 

compacte qui est utilisée pour les tests d’appartenance avec peu d’erreurs permises. 

Alternativement, une intersection de filtres de Bloom (abrégé en IBF) qui est calculée 

en effectuant des opérateurs AND au niveau des bits sur les BF peut être utilisée pour 

représenter une intersection approximative d’ensembles. Le BF et l’IBF peuvent tous 

deux être appliqués pour améliorer les performances des requêtes en filtrant les 

données non pertinentes parmi les entrées des opérations de jointure. La probabilité de 

faux positifs de l’IBF a été prouvée inférieure à celle de ses composantes BF.  

Dans le contexte de la gestion de données DICOM, les requêtes de jonction de 

tables multiples des utilisateurs peuvent impliquer une grande quantité ou des données 

d'entrée redondantes en raison de la grande sélectivité des prédicats. Par conséquent, 
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une stratégie de traitement de requête avec l'intégration de l'IBF est une solution 

potentielle pour améliorer la performance des requêtes. Cependant, il existe un manque 

d'études qui appliquent l'IBF qui est calculé à partir de fichiers BF non pré-calculés 

dans un environnement de traitement de requête distribué, par exemple, Spark. De 

plus, nous devons déterminer comment intégrer un IBF dans un plan d’exécution 

particulier et effectuer une analyse coûts-avantages pour cette application. 

3.5 Résumé et conclusion 

Les composants clés du nouveau système (modèle de données, modèle de stockage de 

données, schéma de données et traitement des requêtes) doivent être conçus de manière 

à satisfaire aux exigences attendues en matière de stockage et d'interrogation des 

données DICOM : (R1) données souples ; (R2) interrogation flexible ; et (R3) 

Efficacité du stockage et de la CPU :  

Modèle de données : Le modèle de données relationnel doit être appliqué pour 

représenter facilement les entités et les relations du modèle d’information DICOM, 

pour fournir du code SQL et pour pouvoir créer des données normalisées. Cependant, 

par rapport aux bases de données NoSQL, les bases de données relationnelles ont des 

limites pour fournir des performances de requête élevées, un stockage de données 

énorme et une évolutivité horizontale. Il est clair qu'une base de données relationnelle 

pure et une base de données NoSQL pure ne fournissent pas toutes les fonctionnalités 

requises. Nous nous orientons donc vers une base de données NoSQL, mais nous 

devons prendre en charge l’utilisation efficace du SQL et la représentation des données 

sous forme de tables. 

Modèle de stockage de données : En raison de la variété de la charge de travail 

(charge de travail mixte OLTP et OLAP), un modèle de stockage hybride en lignes et 

en colonnes est utilisé. En outre, les modèles de stockage hybride existants ont encore 

des limites pour gérer une grande quantité de données. Par conséquent, pour faire face 

au volume élevé et croissant de données DICOM, le nouveau modèle de stockage 

hybride doit être conçu et mis en œuvre. 

Schéma de données : Les algorithmes de partitionnement verticaux existants ont 

montré leur utilité dans la conception de schémas pour réduire le temps d'exécution de 

la charge de travail ou la taille de l'espace de stockage, mais il manque une solution 

pour prendre en compte utilisation de systèmes lignes et colonnes. Par conséquent, 

pour soutenir la prise de décision dans la conception de bases de données pour les 

données DICOM, il est nécessaire d'adopter une nouvelle approche de partitionnement 

vertical pour surmonter ces limites. 

Traitement des requêtes : Le traitement de la requête doit produire des réponses 

correctes et fournir des performances élevées pour les charges de travail interactives. 

Spark devrait être choisi pour traiter les requêtes ad hoc interactives en raison de sa 

capacité à offrir une faible latence, de hautes performances, de l'évolutivité et de 

l'élasticité. Les jointures interne et externe doivent être appliquées pour créer les 

réponses correctes pour les opérations de jointure entre des tables partitionnées 

verticalement. Les IBF ont montré leur capacité à réduire le coût des E / S réseau, et 

devraient donc être appliquées à la stratégie de traitement des requêtes.  
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Chapitre 4 HYTORMO et HADF 

Dans ce chapitre, nous introduisons d'abord l'architecture d'HYTORMO. Ensuite, nous 

introduisons deux approches de conception de base de données différentes, à savoir la 

conception par expert et la conception automatisée, pour créer des configurations de 

stockage de données pour les données DICOM. 

4.6 HYTORMO et stratégies 

4.2.4 Architecture d'HYTORMO 

 

Figure 4.1: Architecture d’HYTORMO 

La figure 4.1 décrit l’architecture de HYTORMO. Il existe deux composants clés : 

le système centralisé et les nœuds distribués. Les tâches de traitement des requêtes sont 

réparties entre plusieurs nœuds. Les données DICOM (métadonnées et données de 

pixel) sont stockées sur les nœuds distribués à l’aide d’un système de fichiers distribué, 

par exemple HDFS pouvant prendre en charge le stockage de données DICOM dans 

des dispositions de stockage en lignes et en colonnes. 

4.2.5 Stratégie de stockage de données  

Les objectifs de la stratégie de stockage des données sont d'optimiser les performances 

et l'espace de stockage des requêtes sur une charge de travail OLTP et OLAP mixte. 

Pour atteindre ces objectifs, les métadonnées et les données d’image des fichiers 

DICOM sont extraits, organisés et stockés de manière à réduire l’espace de stockage, 

le coût de construction des n-uplets et les coûts d’entrée / sortie. 

La stratégie de stockage de données proposée est exécutée comme suit : tout 

d'abord, les tables d'entités doivent être décomposées en plusieurs sous-tables (c'est-

à-dire, des tables partitionnées verticalement). Ensuite, ces sous-tables seront stockées 

dans des systèmes lignes et colonnes du système hybride de HYTORMO (dans un 

système de fichiers distribué). 
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Afin de réaliser une configuration de stockage de données conformément à la 

stratégie de stockage de données ci-dessus, l'une des deux approches de conception 

d'analyse est appliquée : basée sur des experts et automatisée. Dans cette section, nous 

présentons l’approche par experts. 

Tout d'abord, nous étendons l'approche basée sur l'expertise proposée par B. 

Mohamad, L. d'Orazio et Gruenwald en fournissant des définitions claires de trois 

catégories d'attributs, y compris Obligatoire, Fréquemment accédés ensemble et 

Optionnel/privé/rarement-accédé (parfois appelé « Optionnel ») : 

4. Les attributs obligatoires ne peuvent pas avoir pour valeur nulle et sont 

fréquemment accédés ensemble.  

5. Les attributs fréquemment accédés ensemble peuvent avoir pour valeur nulle et 

sont fréquemment accédés ensemble.  

6. Les attributs optionnels peuvent avoir la valeur nulle et ne sont pas fréquemment 

accédés ensemble. 

 

Figure 4.2: Tables en lignes et en colonnes de l’entité Patient 
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Ensuite, nous regroupons et stockons les attributs comme suit : 

1) Les attributs des deux premières catégories sont regroupés et stockés dans des 

tables en lignes afin de réduire le coût de la reconstruction des n-uplets, car ils sont 

fréquemment interrogés ensemble. 

2) Les attributs appartenant à la dernière catégorie (c’est-à-dire, optionnel) sont 

stockés dans des tables en colonnes afin d’économiser des coûts d’entrée/sortie si 

seulement quelques attributs sont accédés par requête à la fois. 

La figure 4.2 montre que les attributs de l’entité Patient sont stockés comme suit : 

RowPatient et RowPregnancy sont des tables en lignes stockant respectivement des 

attributs obligatoires et des attributs fréquemment accédés. D’un autre côté, 

ColumnPatient est une table en colonnes qui stocke des attributs optionnels. 

4.7 Approche de conception automatisée pour les données 

DICOM 

En pratique, il peut être difficile pour les experts d’évaluer manuellement la relation 

de similarité parmi un grand nombre d’attributs en fonction à la fois des informations 

spécifiques à la charge de travail et aux données, ainsi que de déterminer le format de 

données approprié pour chaque groupe de colonnes. Pour cette raison, dans cette 

section, nous fournissons une représentation formelle du problème de conception 

automatisée et des modèles de coûts. 

Informations spécifiques à la charge de travail 

Nous décrivons une charge de travail W = (A, Q, AUM, F) comme suit :  

 A = {UID, a1, a2, … , an} est un ensemble de tous les attributs d’une table 

horizontale T.  

 Q = {q1, q2, … , qm} est un ensemble de requêtes exécutées sur T.  

 AUM est une matrice d’utilisation des attributs (attribute usage matrix) de taille m 

x n.  

 F = {f1, f2, … , fm} est un ensemble de fréquences de requête (query frequency). 

 

 

Figure 4.3: Exemple de matrice d’utilisation des attributs et fréquences de requête 

Par exemple, la figure 4.3 présente deux composantes AUM et F de la charge de 

travail de la table horizontale T. Dans notre étude, par défaut, l’attribut UID est inclus 

dans toutes les tables de partition verticales, il n’est donc pas représenté dans l’AUM. 
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Informations spécifiques aux données 

Les caractéristiques des données sont dérivées de la table horizontale T. La figure 4.4 

montre un exemple de T avec 7 attributs, A = {UID, a1, a2, a3, a4, a5, a6}. 

 

Figure 4.4: Exemple de la table horizontale T 

Configuration Représentation d’une configuration de stockage de données 

Soit S = {"row-store", "column-store"} qui désigne un ensemble de dispositions de 

stockage de données disponibles. On note un ensemble de configurations de stockage 

de données candidates pour la table horizontale T comme G = {G1, G2, … , GK}. Chaque 

Gi = (Ci, Li) est constitué de deux composantes : un ensemble Ci = {Ci,1, Ci,2, . . .,

Ci,z}  des groupes de colonnes (c’est-à-dire, partitions verticales) et un ensemble  Li =

{Ld1
(Ci,1), Ld2

(Ci,2), … , Ldz
(Ci,z)} des dispositions de stockage de données suggérées. 

Ldx
(Ci,x)  indique que le groupe de colonnes Ci,x est stocké dans la structure de 

stockage de données dx ∊ S. 

Fonction objectif 

Le problème de la conception automatisée peut être formulé comme suit : À partir 

d'une table horizontale T et d'une charge de travail W, recherchez une configuration 

de stockage de données Gi pour T afin de minimiser la valeur des deux fonctions de 

coût: STORAGE_COST(W, Gi) et EXECUTION_COST(W, Gi). Cette fonction objectif 

est décrite comme suit : 

{
STORAGE_COST(W, Gi) → min

EXECUTION_COST(W, Gi) → min
  (4.2.1) 

où le coût STORAGE_COST(W, Gi) est le nombre total de cellules de données utilisées 

pour stocker tous les groupes de colonnes de Gi alors que le coût 

EXECUTION_COST(W, Gi) est le coût d'exécution de la charge de travail W.  

La configuration Gi = (Ci, Li) est produite à la suite de l’application de la stratégie 

de stockage de données proposée pour générer un ensemble Ci et un ensemble  Li. 

Le coût de stockage d'une configuration de stockage de données Gi est assimilé au 

nombre total de cellules de données de tous les groupes de colonnes  Ci,x de Gi (après 

suppression de toutes les lignes nulles): 

STORAGE_COST(Gi) = ∑ COLUMNGROUP_SIZE(Ci,x)

 Ci∈Gi,
 Ci,x∈Ci

 

 
(4.2.2) 
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Le coût d’exécution d’une requête q lors de l’utilisation de la configuration Gi peut 

être noté par la fonction coût EXECUTION_COST(q, Gi) comme suit : 

EXECUTION_COST(q, Gi)

= READ_COST(q, Gi) + RECONSTRUCTION_COST(q, Gi) 
(4.2.3) 

Le coût d’exécution de la charge de travail W peut être estimé comme suit: 

COST(W, Gi) = ∑ COST(q, Gi)

q∈W

 (4.2.4) 

Motivation 

L’espace de recherche de solution pour une configuration optimale qui peut minimiser 

la fonction d’objectif (montré dans la formule (4.2.1)) est très important. Pour pallier 

cette limite, nous proposons un cadre de conception automatisée hybride qui permet 

d’obtenir rapidement une bonne configuration. 

4.8 Cadre de conception automatisé hybride 

4.4.5 Aperçu du cadre 

 

Figure 4.5: Vue d’ensemble de HADF 
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Dans cette section, nous présentons un cadre de conception automatisé hybride, 

appelé HADF. HADF est une approche heuristique basée à la fois sur des informations 

spécifiques à la charge de travail et aux données pour produire automatiquement des 

configurations de stockage de données pour les données DICOM. Pour cette raison, 

nous disons que HADF dépend d'une approche de conception automatisée basée sur la 

charge de travail et les données. 

La figure 4.5 montre un HADF global qui utilise des entrées données pour effectuer 

deux phases, phase de regroupement (clustering phase) et phase de fusion-sélection 

(merging-selecting phase), pour générer automatiquement une configuration candidate 

Gi = (Ci, Li), où Ci = {Ci,1, Ci,2, . . ., Ci,z} est un ensemble de groupes de colonnes et 

 Li = {Ld1
(Ci,1), Ld2

(Ci,2), … , Ldz
(Ci,z)}  est un ensemble de dispositions de stockage 

de données suggérées. 

Pour réaliser une configuration candidate Gi, trois groupes d’entrées sont requis 

pour l’exécution de HADF : (1) Entrées spécifiques à la charge de travail : AUM et F. 

(2) Entrée spécifique aux données : T. (3) Paramètres : poids α pour gérer la priorité 

sur la similarité ; seuil β pour les attributs de regroupement ; seuil θ pour fusionner 

une paire de groupes ; et le seuil λ pour sélectionner une disposition de stockage de 

données appropriée. Ces paramètres vont de 0 à 1. 

Deux phases de HADF sont données ci-dessous : 

 Phase de regroupement : Cette phase vise à réduire l’espace de stockage et à 

améliorer les performances des requêtes en réduisant les accès aux attributs non 

pertinents. Il prend en compte l’impact combiné des informations spécifiques à la 

charge de travail (workload-specific information) et spécifiques aux données 

(data-specific information) sur la qualité du résultat du partitionnement vertical en 

termes d’espace de stockage et de performance des requêtes. Il calcule d’abord 

deux matrices de similarité : la matrice de similarité d’accès d’attribut AASM 

(Attribute Access Similarity Matrix) en utilisant AUM et F et la matrice de 

similarité de densité d’attribut ADSM (Attribute Density Similarity Matrix) en 

utilisant T. Ensuite, la matrice de similarité hybride HSM  (Hybrid Similarity 

Matrix) est calculée en combinant AASM et ADSM avec un poids α. Enfin, la phase 

de regroupement rapprochera les attributs en sous-espaces (c’est-à-dire des 

groupes de colonnes) de sorte que la similarité hybride (donnée dans HSM) entre 

deux attributs dans les mêmes sous-espaces soit supérieure ou égale à β. La sortie 

de cette phase est un ensemble Ci = {Ci,1, Ci,2, . . ., Ci,z}  des groupes de colonnes. 

 Phase de fusion-sélection : Cette phase vise à améliorer encore les performances 

de la requête en réduisant à la fois le coût de reconstruction des n-uplets (le nombre 

de jointures supplémentaires) et les accès aux attributs non pertinents. Les groupes 

de colonnes résultants de la phase de regroupement sont utilisés comme entrée 

initiale pour cette phase. La phase de fusion-sélection commence par le calcul de 

la similarité entre les groupes (Inter-Cluster Similarity) qui mesure le rapport 

d’accès qui se chevauchent entre les paires de groupes de colonnes. Une paire de 

groupes de colonnes est fusionnée pour créer un nouveau groupe de colonnes si 

leur similarité entre les groupes est supérieure ou égale à θ. En outre, un groupe de 

colonnes est stocké dans un stockage en lignes si sa similarité intra-cluster (Intra-

Cluster Similarity) qui mesure le rapport d’accès d’attribut à ce groupe de colonnes 
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est supérieure ou égale à λ; sinon, un stockage de colonnes est utilisé. Comme 

l’illustre la figure 4.5, deux groupes de colonnes Ci,2 et Ci,3 sont fusionnés dans 

Ci,2.3 qui est stocké dans un stockage en colonnes. Cette procédure est répétée de 

manière similaire jusqu’à ce que toutes les paires de groupes de colonnes soient 

prises en compte. Cette phase renvoie une configuration candidate Gi = (Ci, Li). 

4.4.6 Exemple 

 

Figure 4.6: Informations spécifiques à la charge de travail et aux données de T 

Étant donné les informations spécifiques à la charge de travail et aux données de 

la table horizontale T, comme le montre la figure 4.6, nous appliquons ici HADF pour 

générer deux configurations candidates différentes correspondant aux différents 

paramètres des paramètres α, β, θ et λ. 

Configuration 1 : Cette configuration peut également être obtenue en exécutant 

HADF avec β = 0, λ = 0 et en utilisant des valeurs arbitraires pour α et θ, par 

exemple, α = 0 et θ = 0. 

La phase de regroupement produit les deux groupes suivants : 

 C1,1 = {UID, a1, a2}  

 C1,2 = {UID, a3, a4, a5, a6}. 

Ensuite, la phase de fusion-sélection va fusionner les deux groupes ci-dessus en 

un seul et suggérer d’utiliser un stockage en lignes pour cela : 

 C1,1.2 = {UID, a1, a2, a3, a4, a5, a6} => stockage en lignes (row store).  

 

Figure 4.7: Table créée pour la configuration 1 
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La figure 4.7 illustre le groupe ci-dessus stocké dans une table unique orientée 

ligne T1. Aucune jointure n’est nécessaire durant l’exécution de la charge de travail, 

cependant des attributs non pertinents sont manipulés. 

Configuration 2 : La phase de regroupement est effectuée avec les paramètres 

suivants : α = 0.5  et β = 0.4. Ainsi, cette phase prendra en compte l’impact combiné 

des informations spécifiques à la charge de travail et aux données pour aboutir à deux 

groupes : 

 C2,1 = {UID, a1, a2, a3}  

 C2,2 = {UID, a4, a5, a6}. 

Ensuite, la phase de fusion-sélection est effectuée en utilisant les réglages suivants : 

θ = 0.5  et λ = 0.6. Il suggère la configuration de stockage de données suivante : 

 C2,1 = {UID, a1, a2, a3} => stockage en colonnes (column store); 

 C2,2 = {UID, a4, a5, a6} => stockage en lignes (row store) . 

La figure 4.8 présente deux tables T1 et T2 qui sont utilisées pour stocker les deux 

groupes ci-dessus dans différentes dispositions de stockage de données. La 

configuration 2 permet de réduire le nombre de valeurs nulles et le nombre 

d’opérations de jointure supplémentaires en même temps. 

 

Figure 4.8: Deux tables créées pour la configuration 2 

En conclusion, HADF peut fournir un bon support pour la conception de données 

DICOM qui peuvent prendre en compte l’impact combiné des informations 

spécifiques aux charges de travail et aux données sur la qualité des configurations de 

stockage de données suggérées. 
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Chapitre 5 Traitement de Requête pour HYTORMO 

Dans ce chapitre, nous présentons une stratégie de traitement de requêtes adaptée et 

efficace pour HYTORMO. Nous introduisons d’abord un plan d’exécution de requête 

qui peut prendre en compte une utilisation mixte des tables en lignes et en colonnes 

(row table and column table). Des heuristiques sont introduites pour sélectionner un 

type de jointure approprié (c’est-à-dire, jointure interne ou jointure externe gauche) 

pour une jointure particulière et pour réduire le nombre de jointures externes gauches 

dans une séquence de jointures. Ensuite, nous présentons comment intégrer un IBF 

dans le traitement des requêtes afin de réduire les entrées/sorties réseau. Ensuite, une 

analyse coût-bénéfice de cette intégration est fournie. Enfin, nous décrivons une 

approche IBF alternative, appelée IBF incrémentale. 

5.5 Stratégie de traitement des requêtes 

5.2.5 Plan d’exécution de requête  

La stratégie de traitement des requêtes peut être décrite comme suit : Une requête 

utilisateur sera décomposée en sous-requêtes pour pouvoir accéder aux tables en lignes 

et en colonnes nécessaires. HYTORMO utilise un plan d’arbre séquentiel gauche 

profond (left-deep sequential tree plan) pour joindre ensemble des tables pertinentes. 

Il est nécessaire d’évaluer certaines opérations de jointure entre ces sous-requêtes en 

tant que jointures externe gauche pour éviter la perte de données causée par les n-uplets 

rejetés par les jointures internes. HYTORMO déterminera automatiquement une 

jointure en tant que jointure interne ou externe gauche. 

 

Figure 5.1: Transformation du plan d’exécution pour la requête Q 

Dans la requête utilisateur, les types de jointures entre ces tables d’entités sont 

explicitement identifiés par les utilisateurs. Par exemple, dans la figure 5.1 (a), la 

requête utilisateur Q = QI ⋈UID  QJ ⋈UID  QK montre que les jointures internes sont 

utilisées pour joindre les tables d’entités TI,  TJ et  TK ensemble. Cependant, dans la 

figure 5.1 (b), certaines opérations de jointure entre les sous-tables de ces tables 

d’entités doivent être évaluées en tant que jointures externe gauche. 
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5.2.6 Détermination des jonctions gauches-extérieures 

Nous proposons des heuristiques pour déterminer quand une jointure externe 

gauche est utilisée : 

Règle 1 : Dans une jointure entre deux sous-tables de la même table d’entités, si 

la table de gauche est une table en lignes d’attributs obligatoires alors que la table de 

droite est soit une table en colonnes d’attributs optionnels, soit une table en lignes 

attributs fréquemment accédés ensemble, cette jointure doit être évaluée en tant que 

jointure externe gauche.  

Par exemple, dans la figure 5.1 (b), les deux sous-requêtes QI,1⟕UID QI,2 et 

QJ,1⟕UID QJ,2 sont évaluées comme jointures externes gauches. C’est parce que QI,1 

et QJ,1, respectivement, accèdent à deux tables en lignes d’attributs obligatoires, T1 et 

T3, tandis que QI,2 et QJ,2 accèdent à une table en colonnes d’attributs optionnels T2 et 

à une table en lignes d’attributs fréquemment accédés ensemble T4, respectivement. 

Règle 2 : Dans une opération de jointure entre deux tables d’entités, si la table de 

droite a été remplacée par une sous-table qui est soit une table en lignes d’accès 

d’attributs fréquemment accédés ensemble ou une table en colonnes d’attributs 

optionnels (parce que la requête utilisateur utilise uniquement les attributs de cette 

sous-table) et cette sous-table n’est pas le seul enfant de sa table parente, cette 

opération de jointure doit être évaluée en tant que jointure externe gauche. 

Par exemple, dans la requête Q = QI ⋈UID  QJ ⋈UID  QK, présentée dans la figure 

5.1 (a), nous nous intéressons à l’opération de jointure liée à  QK, c’est-à-dire, 

(… ) ⋈UID QK. La requête  QK a été réécrite en  QK,1 qui accède à la table en colonnes 

des attributs optionnels TN. Supposons que TN n’est pas le seul enfant de sa table 

parente,  TK. Ainsi, la jointure ci-dessus est réécrite en une jointure externe gauche, 

comme présenté dans la figure 5.1 (b). 

Dans notre étude, seuls les cas de jointures gauches-externes sont concernés. 

5.2.7 Réduire le nombre de jointures externes gauche  

Afin d’améliorer les performances de la requête, le nombre de jointures externes 

gauches doit être réduit le plus possible. Nous présentons la règle 3 ci-dessous. 

Règle 3 : Étant donné une jointure externe gauche T1⟕UIDT2, si la table de droite 

T2 contient une contrainte non nulle sur ses attributs, cette jointure externe gauche 

doit être réécrite dans une jointure interne afin d’améliorer la requête performance. 

Par exemple, comme le montre la figure 5.2, nous appliquons la règle 3 pour 

transformer l’arbre du plan d’exécution de la figure 5.2 (b) en celui de la figure  

5.2 (c) : Premièrement, nous vérifions s’il existe des contraintes non nulles sur la table 

de droite des jointures externes gauches. Ici, nous supposons que C2
 et CN

  sont des 

contraintes non nulles sur les attributs des tables T2 et TN, respectivement. Ainsi, deux 

jointures externes gauches QI,1⟕UIDQI,2 et (QI ⋈UID QJ)⟕UIDQK,1 sont réécrites 

comme deux jointures internes QI,1 ⋈UID QI,2 et (QI ⋈UID QJ) ⋈UID QK,1, 

respectivement. 
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Figure 5.2: Transformation du plan d’exécution après application de la règle 3 

5.6 Intégration de filtres de Bloom et rapport coût-bénéfice 

Dans cette section, nous présentons comment intégrer un IBF dans le traitement des 

requêtes et son rapport coût-bénéfice. 

5.3.4 Intersection des filtres de Bloom  

 

Figure 5.3: Plan d’exécution de requête avec l’IBF 

Afin d’éviter la perte de généralité, nous considérons l’intégration d’un IBF dans 

le traitement de la requête pour la forme générale d’une requête Q supportée par 

HYTORMO. Nous supposons que la requête Q peut être décomposée en sous-requêtes 

QI, QJ et QK, chacune pouvant être décomposée en sous-requêtes plus petites pour 

accéder respectivement aux tables en lignes et en colonnes T1, T2, …, TN. Après les 

heuristiques (les règles 1 à 3) sont appliquées pour sélectionner les types de jointures 

appropriés et pour réduire le nombre de jointures externes dans la séquence de jointure, 

nous pouvons construire (build) et consulter (probe) un IBF commun sur l’attribut UID 

des tables d’entrée, comme l'illustre la figure 5.3. 
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5.3.5 Analyse coût-bénéfice 

Comme il existe de nombreux cas dans lesquels l’IBF peut être appliqué, notre étude 

se concentre sur les cas où l’IBF est utilisé pour une séquence de jointures séquentielles 

de N tables jointes. Nous supposons que l’IBF est créé en croisant les BF sur toutes les 

tables d’entrée D1, D2,…, DN. En outre, nous supposons que toutes les opérations de 

jointure externe gauche dans la séquence de jointures ont été transformées avec succès 

en opérations de jointure internes correspondantes. De plus, nous supposons également 

que |Di| ≤ |Di+1|, où i ∊ [1, N-1], de sorte que la séquence de jointure peut être 

exprimée comme : Q = (((D1 ⋈UID D2) ⋈UID … ) ⋈UID DN-1)  ⋈UID DN. 

 

Figure 5.4: Phases de l’IBF 

La figure 5.4 illustre les phases de construction et de consultation de l’IBF. Dans 

la phase de construction, l’IBF est construit en appliquant un AND à tous les 

composant BFi créés à partir des attributs de jointure, par exemple, UID, des tables 

d’entrée D1, D2, …, DN. Après cela, dans la phase de consultation, l’IBF est appliqué 

pour filtrer les n-uplets non pertinents hors de ces tables d’entrée. En particulier, les 

étapes suivantes sont effectuées : vérification de l’appartenance d’une valeur v d’UID 

dans chaque table d’entrée Di; si pour la valeur v = idi de UID toutes les fonctions de 

hachage h1(v), h2(v), …, hk(v) retourne vrai (= 1), le n-uplet correspondant est 

accepté ; sinon, il est ignoré de Di. Par exemple, le tuple avec la valeur v = id1 de 

l’UID est accepté (conservé), tandis que le n-uplet avec la valeur v = id2  de l’UID est 

rejeté. 

Nous supposons que IBF est calculé à partir des entrées BFi créés à partir de N 

tables d’entrée Di, où i ∊ [1, N], puis il est appliqué pour filtrer chaque table d’entrée 

Di pour produire une table d’entrée filtrée Di(filtered). Le nombre de n-uplets de chaque 

table d’entrée filtrée Di(filtered) peut être calculé par la formule (5.2.1): 

|Di(filtered)| = |Di| × ρIBF,Di , (5.2.1) 

où : 

 |Di| nombre de n-uplets dans la i-ième table d′entrée Di; 

 ρIBF: sélectivité de l’IBF. 
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Par ailleurs, nous pouvons réécrire la formule (5.2.1) comme suit :  

|Di(filtered)| = |Di| × ∏ [ρDj,Di
+ (1- ρDj,Di

) × PBFj
] ,

N

j=1

 (5.2.2) 

où : 

 |Di|: nombre de n-uplets dans la i-ième table d’entrée Di ; 

 ρDj,Di
: sélectivité de la table Dj sur la table Di dans la jointure Di ⋈UID Dj; 

 PBFj
: probabilité d’erreur du filtre de Bloom BFj qui est construit sur la table Dj; 

 (1- ρDj,Di
) × PBFj

: fraction de n-uplets de la table de consultation Di qui ne sont pas rejetés 

par le BFj et ne se correspondent à aucun n-uplet de la table Dj dans la construction. 

Pour réduire le coût d’entrée/sortie du réseau et le coût d’entrée/sortie disque, nous 

devons appliquer l’IBF si cela est avantageux. La formule (5.2.2) montre que pour 

obtenir|Di(filtered)| ≪ |Di|, la valeur de ∏ [ρ
Dj,Di

+ (1- ρ
Dj,Di

) × PBFj
]N

j=1  doit être faible. 

Cela signifie que la séquence de jointure doit contenir une ou plusieurs jointures entre 

deux tables d’entrée Di ⋈UID Dj dans lesquelles la sélectivité ρDj,Di
 de la table Dj sur 

Di et la probabilité d’erreur PBFj
 de BFj sont faibles ; sinon, l’IBF peut ne pas être 

bénéfique au traitement de la requête.  

5.3.6 Intersection incrémentale de Filtres de Bloom 

 

Figure 5.5: Plan d’exécution avec l’IBF incrémental 

Pour réduire le coût d’entrée/sortie disque nécessaire pour construire et consulter l’IBF 

(causé par un grand nombre d’opérations de lecture et d’écriture sur les tables de 

résultats intermédiaires et sur les tables de résultats intermédiaires filtrés), nous 

pouvons construire et consulter l’IBF progressivement durant l’exécution des 

opérations de jointure dans le plan d’exécution. Nous appelons le nouvel IBF proposé 

IBF incrémental. La figure 5.5 (a) illustre l’intégration des phases de construction et 

de consultation de l’IBF incrémental dans le plan d’exécution de la requête 
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Q = QI ⋈UID  QJ ⋈UID  QK alors que la figure 5.5 (b) présente l’intégration des 

résultats intermédiaires des sous-requêtes.  
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Chapitre 6 Évaluation des Performances  

Ce chapitre présente les résultats de l’évaluation et les leçons tirées de l’application de 

HYTORMO et des méthodes proposées. 

6.6 Environnement expérimental 

Centre de traitement de données de Spark 

Nous avons utilisé Hadoop 2.7.1, Hive 1.2.1 et Spark 1.6.0 pour installer un centre de 

traitement de données. Ce centre est constitué de 9 nœuds différents : 1 × Nœud maître 

et 8 × Nœuds esclaves. Nous utilisons la configuration standard avec une modification : 

nous changeons le facteur de réplication de HDFS de 3 à 2 afin d’économiser de 

l’espace de stockage. Nous implémentons le plan d’exécution pour les requêtes 

utilisant un programme Spark. 

Jeux de données 

Nous avons utilisé les jeux de données DICOM réels : CTColonography, Dclunie, 

Idoimaging, LungCancer, MIDAS et CIAD. Leurs statistiques sont décrites dans le 

tableau 6.1. À partir de ces ensembles de données, nous créons deux ensembles de 

données mixtes : (1) MDB1; et (2) MDB2. 

Table 6.1: Les jeux de données DICOM mixtes utilisés dans les expériences 

No Jeux de données 

Le nombre 

de fichiers 

DICOM 

Le nombre 

d’attributs 

extraits 

Taille des 

métadonné

es extraites 

Taille totale 

des fichiers 

Jeux de données 

mixtes 

1 CTColonography  98,737 86 7.76 GB 48.6 GB 

MDB1 
MDB2 

2 Dclunie  541 86 86.0 MB 45.7 GB 

3 Idoimaging  1,111 86 53.9 MB 369 MB 

4 LungCancer  174,316 86 1.17 GB 76.0 GB 

5 MIDAS  2,454 86 63.4 MB 620 MB 

6 CIAD  3,763,894 86 61.5 GB 1.61 TB  

Les métadonnées et les données de pixels ont été extraites des fichiers DICOM en 

utilisant la bibliothèque dcm4che-2.0.29. Les expériences de ce chapitre concernent 

uniquement quatre tables d’entités Patient, Study, GeneralInfoTable et 

SequenceAttribute comme indiqué ci-dessous : 

 Patient(UID, PatientName, PatientID,  PatientBirthDate, PatientSex, EthnicGroup, 

IssuerOfPatientID, PatientBirthTime, PatientInsurancePlanCodeSequence, 

PatientPrimaryLanguageCodeSequence, PatientPrimaryLanguageModifierCodeSequence, 

OtherPatientIDs, OtherPatientNames, PatientBirthName, PatientTelephoneNumbers, 

SmokingStatus, PregnancyStatus, LastMenstrualDate, PatientReligiousPreference, 

PatientComments, PatientAddress, PatientMotherBirthName, InsurancePlanIdentification) 

 Study(UID, StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName, StudyID, 

AccessionNumber, StudyDescription, PatientAge, PatientWeight, PatientSize, Occupation, 

AdditionalPatientHistory, MedicalRecordLocator, MedicalAlerts) 

 GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames, GeneralValues) 

 SequenceAttributes(UID, SequenceTags, SequenceVRs, SequenceNames, SequenceValues) 
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Les charges de travail 

Nous utilisons quatre charges de travail différentes : La charge de travail W1 contient 

principalement des requêtes OLAP en utilisant la table d’entités GeneralInfoTable. La 

charge de travail W2 correspond principalement à des requêtes OLTP utilisant la table 

d’entités SequenceAttributes. La charge de travail W3 inclut à la fois les requêtes 

OLAP et OLTP à l’aide de la table d’entités Patient. La charge de travail W4 n’est pas 

seulement une charge de travail mixte (comme W3) mais elle inclut également des 

requêtes de jointure de tables multiples sur des tables d’entités. 

6.7 Exécution des expériences 

Expérience 1 : Évaluation de l'efficacité de HYTORMO et de l'utilité de HADF 

Cette expérience vise à évaluer les avantages du modèle de stockage hybride et HADF. 

Le jeu de données MDB1 et les charges de travail W1 à W4 sont utilisés. 

Nous exécutons HADF sur les charges de travail W1 - W4 l’une après l’autre pour 

choisir une bonne configuration de stockage de données en termes de demande 

d’espace de stockage et de temps d’exécution de charge de travail pour chaque table 

d’entités. Enfin, nous créons une configuration G* qui combine la bonne configuration 

de chaque table d’entités. Le tableau 6.2 présente la configuration G*. 

Table 6.2: Configuration G* 

No Table des entités Configuration de stockage de données 

1 Patient 

PatientP1P2P3P4(UID, PatientName, PatientID,  PatientBirthDate, 

PatientSex) => stockage en lignes 

PatientP13P14P15P19P21(UID, PatientBirthName, 

PatienttelePhoneNumbers, SmokingStatus, PatientComments, 

PatientMotherBirthName) => stockage en lignes 

PatientP5(UID, EthnicGroup) => stockage en lignes 

PatientallP7P8P16P17P18(UID, PatientBirthTime, 

PatientInsurancePlanCodeSequence, PregnancyStatus, 

LastMenstrualDate, PatientReligiousPreference) => stockage en lignes 

PatientP6P12P22(UID, IssuerOfPatientID, OtherPatientNames, 

InsurancePlanIdentification) => stockage en lignes 

PatientP10P11P20(SOPInstanceUID, PatientPrimaryLanguageModifier-

CodeSequence, OtherPatientIDs, PatientAddress) => stockage en lignes 

PatientP9(UID, PatientPrimaryLanguageCodeSequence)  

=> stockage en lignes 

2 Study 

Study(UID, StudyInstanceUID, StudyDate, StudyTime, 

ReferringPhysicianName, StudyID, AccessionNumber, 

StudyDescription, PatientAge, PatientWeight, PatientSize, Occupation, 

AdditionalPatientHistory, MedicalRecordLocator, MedicalAlerts) => 

stockage en colonnes 

3 GeneralInfoTable 
GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames, 

GeneralValues) => stockage en colonnes 

4 SequenceAttributes 
SequenceAttributes(UID, SequenceTags, SequenceVRs, 

SequenceNames, SequenceValues) => stockage en lignes 
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Expérience 2 : Évaluation de HYTORMO et de HADF à l'aide de davantage de 

jointures de données et de tables multiples 

Comme l’expérience 1, cette expérience vise à évaluer les avantages d'HYTORMO et 

de HADF. Cependant, il utilise plus de données et des requêtes de jointure à plusieurs 

tables. À ces fins, cette expérience compare l'efficacité de trois configurations : (1) G 

* qui est une bonne configuration obtenue à partir de l’expérience 1; (2) G1 qui stocke 

toutes les tables d’entités dans un stockage en lignes; et (3) G2 qui stocke toutes les 

tables d’entités dans un stockage en colonnes. La charge de travail W4 et deux jeux de 

données MDB1 et MDB2 sont utilisés. 

Les tableaux 6.3 et 6.4, représentent respectivement le temps d’exécution moyen 

(5 exécutions) de la charge de travail W4 en utilisant les trois configurations ci-dessus 

par rapport à deux cas différents: (1) utiliser MDB1 et (2) MDB2. Dans les deux cas, 

la configuration G* nécessite la plus petite demande d’espace de stockage car de 

nombreuses valeurs nulles sont supprimées de la table d’entités Patient. G* offre 

également le temps d’exécution de la charge de travail le plus rapide. 

Table 6.3: Temps d’exécution de la charge de travail W4 en utilisant MDB1 

Conf. Configuration de stockage de données Temps d’exéc (s) 

G* Bonne configuration de stockage de données générée par HADF, créée 

en combinant toutes les bonnes configurations des tables d'entités. 

35,940 

G1 Toutes les tables d’entités sont stockées dans le stockage en lignes. 37,860 

G2 Toutes les tables d’entités sont stockées dans le stockage en colonnes. 36,960 

Table 6.4: Temps d’exécution de la charge de travail W4 en utilisant MDB2 

Conf. Configuration de stockage de données Temps d’exéc (s) 

G* Bonne configuration de stockage de données générée par HADF, créée en 

combinant toutes les bonnes configurations des tables d'entités. 

118,940 

G1 All entity tables are stored in row stores. 161,040 

G2 All entity tables are stored in column stores. 120,120 

Expérience 3 : Comparaison entre HADF et HoVer 

Cette expérience vise à évaluer plus avant le bénéfice de l'utilisation combinée 

d'informations spécifiques à la charge de travail et aux données dans HADF. Nous 

comparons HADF avec l'approche HoVer proposée par Bin Cui et al. L'approche 

HoVer est un algorithme de clustering identique à la phase de clustering de HADF. 

Cependant, l'approche HoVer est basée uniquement sur de similarité de densité 

d'attributs (au lieu de similarité d'accès d'attribut et de similarité de densité d'attribut); 

de plus, l'approche HoVer utilise uniquement le stockage en lignes (au lieu de stockage 

en lignes et en colonnes). L'approche HoVer génère une configuration de stockage de 

données correspondant à une valeur donnée du seuil de regroupement β. 

Dans cette expérience, nous effectuons deux charges de travail W1 et W2, 

séparément, sur l'ensemble de données MDB2. Le résultat de l'expérience montre que : 

(1) Dans le cas d'une charge de travail OLAP (par exemple, W1), HADF peut fournir 

une meilleure configuration de stockage de données que l'approche HoVer. En effet, il 

est possible de suggérer de stocker la donnée utilisée pour une charge de travail OLAP 

dans un système colonnes. (2) Dans le cas d'une charge de travail OLTP (par exemple, 
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W2), HADF est capable de fournir une configuration aussi bonne que celles générées 

par l'approche HoVer. Un système lignes est utilisé pour stocker les données utilisées 

pour la charge de travail OTLP. 

Expérience 4 : Evaluer l'efficacité de l'IBF 

Cette expérience vise à évaluer l’efficacité de la stratégie de traitement des requêtes 

avec l’intégration d’un IBF. Nous utilisons l’ensemble de données MDB2 et la 

configuration G* pour stocker les tables d’entités. La requête suivante de jointure de 

plusieurs tables avec et sans utiliser un IBF est exécutée : 

SELECT Patient.UID, Patient.PatientID, Patient.PatientName, Patient.PatientBirthDate, 

Patient.PatientSex, Patient.EthnicGroup, Patient.SmokingStatus, Study.PatientAge, 

Study.PatientWeight, Study.PatientSize, GeneralInfoTable.GeneralNames, 

GeneralInfoTable.GeneralValues, SequenceAttributes.UID, 

SequenceAttributes.SequenceTags, SequenceAttributes.SequenceVRs, 

SequenceAttributes.SequenceNames, SequenceAttributes.SequenceValues 

FROM Patient, Study, GeneralInfoTable, SequenceAttributes 

WHERE Patient.UID = Study.UID AND Patient.UID = GeneralInfoTable.UID 

AND Patient.UID = SequenceAttributes.UID AND Patient.PatientSex = ‘M’ 

AND Patient.SmokingStatus  = ‘NO’ AND Study.PatientAge >= 60 

AND SequenceAttributes.SequenceNames LIKE ‘%X-Ray%’ 

Cependant, pour observer l’impact de l’IBF sur une gamme de situations, nous 

allons modifier la sélectivité (Sél.) des prédicats de la requête ci-dessus. Dans le 

tableau 6.5, nous fournissons six ensembles différents de prédicats (Ens. Pré.). 

Table 6.5: Ensembles de prédicats sur les attributs des tables d’entrée 

Ens. 

Pré. 

PatientP1P2P3P4 PatientP13P14P15P19P21 Study SequenceAttributes 

Sél. Prédicat Sél. Prédicat Sél. Prédicat  Sél. Prédicat  

1 1 Aucun prédicat 1 Aucun prédicat 1 Aucun prédicat 1 Aucun prédicat 

2 1 Aucun prédicat 1 Aucun prédicat 0.6327 PatientAge >= 10 1 Aucun prédicat 

3 0.4764 Patientsex = ‘M’ 1 Aucun prédicat 0.6327 PatientAge >= 10 1 Aucun prédicat 

4 0.4764 Patientsex = ‘M’ 1 Aucun prédicat 0.2462 PatientAge >= 60 1 Aucun prédicat 

5 0.4764 Patientsex = ‘M’ 0.0017 smokingstatus =‘NO’ 0.2462 PatientAge >= 60 1 Aucun prédicat 

6 0.4764 Patientsex = ‘M’ 

 

0.0017 

 

smokingstatus =‘NO’ 0.0061 PatientAge >= 90 0.0019 SequenceNames 

LIKE ‘%X-Ray%’; 

Dans le tableau 6.6, nous présentons une comparaison du temps d’exécution de la 

requête avec et sans IBF. Ce résultat montre que les performances de la requête sont 

significativement améliorées pour tous les ensembles de prédicats. Le temps 

d’exécution de la requête avec est réduit de 10 à 38% par rapport au temps sans  IBF. 

Table 6.6: Comparaison du temps d’exécution avec l’utilisation de l’IBF 

Ens. 

Pré. 

Temps d’exécution lorsque vous 

n’utilisez pas l’IBF 

Temps d’exécution lors de 

l’utilisation de l’IBF 
Rapport de temps 

réduit (%) 
Moyenne (s) Std. dev. Moyenne (s) Std. dev. 

1 1264.80 389.20 1007.20 176.89 20% 

2 1209.20 234.63 748.00 92.29 38% 

3 1068.40 438.10 962.80 197.97 10% 

4 1122.80 330.83 908.80 202.48 19% 

5 1215.80 407.01 964.80 189.23 21% 

6 1452.40 421.58 930.40 127.05 36% 
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Le tableau 6.7 représente une comparaison du temps d'exécution de la requête entre 

l'utilisation de l'IBF et de l'IBF incrémental. Il montre que, dans tous les cas 

d'ensembles de prédicats, le temps d'exécution de la requête est réduit lors de 

l'utilisation d'un IBF incrémental. 

Table 6.7: Comparaison entre l'IBF et l'IBF incrémental 

Ens. 

Pré. 

Temps d’exécution lors de 

l’utilisation de l’IBF 

Temps d'exécution lors de l'utilisation d'un 

IBF incrémentiel 
Rapport de 

temps réduit 

(%) Moyenne (s) Std. dev. Moyenne (s) Std. dev. 

1 1007.20 176.89 862.60 242.25 14% 

2 748.00 92.29 925.40 198.97 -23% 

3 962.80 197.97 995.40 167.60 -3% 

4 908.80 202.48 901.80 216.55 1% 

5 964.80 189.23 779.00 98.02 19% 

6 930.40 127.05 729.80 202.91 22% 

En tant que tel, pour cette requête, l’IBF incrémental donne de meilleures 

performances d’interrogation que l’IBF pour la majorité des ensembles de prédicats. 

Plus particulièrement, pour les premiers et derniers des trois ensembles de prédicats, 

les rapports temporels réduits sont respectivement de 14%, 1%, 19% et 22% lorsque 

l'IBF incrémental est appliqué. Cependant, pour les deuxièmes et troisième ensembles 

de prédicats, l'IBF surpasse l'IBF incrémental. Cela est probablement dû au fait que le 

coût élevé de la construction et de l’examen de l’IBF a été compensé de manière 

significative par la quantité de données filtrées. 

6.8 Analyse et interprétation 

Cette section évalue les résultats des expériences et les hypothèses.  

6.4.4 Résultats de l’hypothèse H1  

Hypothèse H1 : Le modèle de données hybride, c’est-à-dire HYTORMO, associé à la 

stratégie de stockage de données proposée, donne un temps d’exécution de charge de 

travail plus rapide que l’utilisation d’un stockage en lignes ou d’un stockage en 

colonnes. 

Les résultats de l’expérience 1 montrent que les stockages en lignes et en colonnes 

doivent être utilisés pour les données DICOM car chacun d’entre eux a ses propres 

avantages : 

- Un stockage en colonnes permet un traitement des requêtes plus rapide et plus 

efficace pour les charges de travail OLAP qu’un stockage en lignes. Par exemple, 

GeneralInfoTable est utilisé pour une charge de travail OLAP (W1) et donc suggéré 

d’être stocké dans un stockage en colonnes. 

- Un stockage en lignes offre des performances supérieures aux charges de travail 

OLTP qu’un stockage en colonnes. Par exemple, SequenceAttribute est utilisé pour 

une charge de travail OLTP (W2) et suggère d’être stocké dans un stockage en 

lignes. 
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Les résultats de l'expérience 2 montrent que, dans une charge de travail mixte 

OLAP et OLTP, une utilisation mixte des stockages en lignes et en colonnes donnera 

un temps d’exécution de charge de travail plus rapide qu’une seule utilisation d’un 

stockage en lignes ou en colonnes. Par exemple, la configuration G * qui utilise à la 

fois les tables en lignes et en colonnes est plus rapide que la configuration G1 (en 

utilisant des tables en lignes) et G2 (en utilisant des tables en colonnes). 

Les résultats ci-dessus indiquent qu’il est avantageux d’utiliser le modèle de 

stockage de données hybride pour stocker des données DICOM. Par conséquent, 

l’hypothèse H1 est validée. 

6.4.5 Résultats de l’hypothèse H2  

Hypothèse H2a : La prise en compte de l’impact combiné des informations spécifiques 

à la charge de travail et aux données peut aider HADF à produire de meilleures 

configurations de stockage de données que d’utiliser uniquement des informations 

spécifiques aux données ou uniquement des informations spécifiques à la charge de 

travail. 

Les expériences 1, 2 et 3 montrent ce qui suit : Pour les tables d’entités denses, 

telles que GeneralInfoTable et SequenceAttribute, l’utilisation d’informations 

spécifiques aux données n’a pas aidé à réduire l’espace de stockage. En revanche, 

l’utilisation d’informations spécifiques à la charge de travail est utile pour améliorer 

les performances de la charge de travail car elle a une incidence sur le résultat du 

partitionnement vertical et sur la sélection de dispositions de stockage de données 

appropriées. Pour les tables larges, telles que Patient et Study, l’utilisation 

d’informations spécifiques aux données un effet important sur le résultat du 

partitionnement vertical qui contribue à réduire la demande d’espace de stockage. 

Par conséquent, l’utilisation combinée d’informations spécifiques à la charge de 

travail et aux données est utile. A partir de ce résultat, l’hypothèse H2a est validée. 

Hypothèse H2b : HADF est capable de générer une configuration de stockage de 

données qui peut réduire la demande d’espace de stockage et le temps d’exécution de 

la charge de travail en même temps. 

Les résultats des expériences 1, 2 et 3 montrent que cet objectif a été atteint. Pour 

les tables larges très éparses, par exemple Patient, HADF les décompose en tables 

partitionnées verticalement à partir desquelles les lignes nulles sont supprimées (c’est-

à-dire que l’espace de stockage est réduit). En outre, les entrées/sorties réduites 

accéléraient l’exécution de la charge de travail. L’hypothèse H2b est validée. 

6.4.6 Résultats de l’hypothèse H3  

Hypothèse H3 : La stratégie de traitement de requête avec l’intégration d’un IBF 

conduit à de meilleures performances que de ne pas utiliser un IBF. 

Les résultats de l’expérience 4 montrent que l’IBF et l’IBF incrémental ont accéléré 

significativement le traitement des requêtes. Par conséquent, l’hypothèse H3 est 

validée. 
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Chapitre 7 Conclusion et Travaux Futurs  

Ce chapitre résume et conclut la thèse. Il présente également des recherches futures. 

7.3 Résumé et conclusion 

Six contributions principales ont émergé de notre travail : Premièrement, nous avons 

effectué une évaluation des systèmes de gestion de données DICOM existants en 

mettant l’accent sur les caractéristiques pour traiter les caractéristiques et les charges 

de travail des données DICOM. Deuxièmement, nous avons fourni une comparaison 

de des systèmes de gestion de données actuels. Troisièmement, nous avons proposé un 

modèle de stockage hybride, appelé HYTORMO, associé à une stratégie de stockage 

de données. Quatrièmement, nous avons proposé un cadre de conception automatisée 

hybride, appelé HADF. Cinquièmement, nous introduisons une stratégie de traitement 

des requêtes adaptée et efficace, basée sur HYTORMO. Enfin, nous validons les 

méthodes proposées. 

Les résultats expérimentaux montrent que le modèle de stockage de données 

hybride offre de meilleures performances de charge de travail que l’utilisation d’un 

stockage en lignes pur ou d’un stockage en colonnes pur. L’utilisation combinée 

d’informations spécifiques à la charge de travail et aux données est nécessaire pour 

générer des configurations de stockage de données pouvant réduire à la fois 

l’utilisation de l’espace de stockage et le temps d’exécution de la charge de travail. De 

plus, l’utilisation d’IBF améliore considérablement les performances de la requête. 

7.4 Travaux futurs 

Il existe des axes de recherche ouverts que nous pouvons étudier et étendre à l’avenir.  

Modèle de stockage hybride : Au lieu de simplement utiliser des stockages en lignes 

et en colonnes, nous prévoyons d’étendre HYTORMO pour prendre en charge 

plusieurs stockages, y compris les stockages en lignes, les stockages en colonnes, les 

stockages en valeurs-clés, etc., afin qu’il puisse être utilisés pour de nombreuses 

applications Big Data. 

Cadre heuristique pour la conception automatisée : Nous nous sommes, dans un 

premier temps, basés sur les expériences et les avis d’experts pour sélectionner des 

valeurs appropriées pour les paramètres d’entrée de HADF (c’est à dire, β, θ et λ), donc 

il faudrait développer une méthode pour déterminer ces valeurs. Nous étudierons 

l’application de techniques d’optimisation qui pourraient donner de meilleurs résultats 

que notre approche. Deuxièmement, HADF sera étendu pour sélectionner des 

configurations de stockage de données pour les tables horizontales dont les colonnes 

ont des largeurs différentes. Troisièmement, l’effet de la compression est également 

envisagé. Enfin, nous prévoyons de rechercher comment de nouveaux attributs 

DICOM sont ajoutés au stockage de données existant. 

Stratégie de traitement de requête : Nous allons explorer un plan d’exécution de 

requête avec l’utilisation de jointures internes et de jointures externes, au lieu de 
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seulement des jointures internes et des jointures externes gauches. En effet, si les 

jointures externes complètes sont utilisées, les n-uplets résultants d’une requête 

peuvent être reconstruits en joignant plusieurs tables partitionnées verticalement dans 

n’importe quel ordre de jointure. En outre, nous envisagerons d’appliquer bushy plans 

avec jointures n-aires pour augmenter le parallélisme dans le traitement des requêtes. 

BF non précalculés et précalculés : Nous pensons qu’il serait utile d’avoir deux types 

de BF: (1) Les BF non précalculés sont calculés à partir des tables d’entrée lors du 

traitement de la requête tels qu’utilisé dans notre thèse. (2) Les BF précalculés sont 

précalculés afin d’éviter des étapes de calcul supplémentaires requises lors du 

traitement de la requête.   

 

 

 


