
HAL Id: tel-01961254
https://theses.hal.science/tel-01961254v1

Submitted on 19 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Workload- and Data-based Automated Design for a
Hybrid Row-Column Storage Model and Bloom

Filter-Based Query Processing for Large-Scale DICOM
Data Management

Cong-Danh Nguyen

To cite this version:
Cong-Danh Nguyen. Workload- and Data-based Automated Design for a Hybrid Row-Column
Storage Model and Bloom Filter-Based Query Processing for Large-Scale DICOM Data Manage-
ment. Databases [cs.DB]. Université Clermont Auvergne [2017-2020], 2018. English. �NNT :
2018CLFAC019�. �tel-01961254�

https://theses.hal.science/tel-01961254v1
https://hal.archives-ouvertes.fr

Order N°: XXX

EDSPIC : XXX

CLERMONT AUVERGNE UNIVERSITY

Doctoral School of Engineering Sciences

PHD THESIS
To obtain the degree of

DOCTOR OF PHILOSOPHY

Discipline: Computer Science

Defended by

Cong-Danh NGUYEN

Workload- and Data-Based Automated Design for

a Hybrid Row-Column Storage Model and Bloom Filter-Based

Query Processing for Large-Scale DICOM Data Management

Publicly defended on May 4th, 2018

Committee:

Reviewers:

Prof. Christine COLLET Institut polytechnique de Grenoble, France

Prof. Abdelkader HAMEURLAIN University of Paul Sabatier, Toulouse, France

Examiners:

Prof. Farouk TOUMANI University of Clermont Auvergne, France

Supervisors:

Prof. Laurent D’ORAZIO University of Rennes 1, France

Prof. Mohand-Said HACID University of Lyon, France

Msc. Nga TRAN Micro Focus - Vertica, Cambridge, Massachusetts, USA

i

Author

Cong-Danh NGUYEN - Ph.D student.

Email: nguyenda@isima.frr

 ncdanh@cit.ctu.edu.vn

Cong-Danh NGUYEN was born in Vinh Long,

Vietnam in 1977. He received his B.S degree in

Computer Science from Can Tho University, Vietnam

in 2000. In 2006, he received his M.S. degree in

Information Technology from King Mongkut’s

University of Technology North Bangkok, Thailand.

In 2009, he worked as a Researcher at the Software

Engineering Research Group (AGSE), the Technical

University of Kaiserslautern, Germany. In September

of 2014, he started working towards his PhD degree

in Computer Science at CNRS, LIMOS UMR 6158,

Clermont Auvergne University, France. His research

interests include Database System, Big Data,

Software Process, Software Cost Estimation and

Software Quality Assurance.

ii

Declaration

This thesis has been completed by Cong-Danh NGUYEN under the supervision of

Professor Laurent D’ORAZIO, Professor Mohand-Said HACID and Nga TRAN. It

has not been submitted for any other degree or professional qualification. I declare that

the work presented in this thesis is entirely my own except where indicated by full

references.

SIGNATURE

iii

Acknowledgements

First and foremost I would like to thank the Ministry of Education and Training of

Vietnam for offering me an International Postgraduate Research Scholarship (Project

911) to make my dream of pursuing a doctoral program come true. I would also like

to express my deep gratitude to the Can Tho University for allowing me to receive and

retain this scholarship.

I am extremely grateful to three PhD supervisors, Prof. Laurent d’Orazio, Prof.

Mohand-Said Hacid and Nga Tran for their guidance and help. Prof. Dr. Laurent

d’Orazio has been a wonderful professor who has brought me to the amazing world of

database research. He showed me the way to deal with a specific research

problem effectively and how to bring it up to a new level. He also provided me

necessary resources needed for performing my research. Many thanks to Prof.

Mohand-Said Hacid for his supervising the thesis and discussions. He supported the

research and provided many valuable advices on the work during its phases. Nga Tran

has been a very dedicated supervisor who has had significant experience in the

development and the application of modern database systems in industrial contexts. I

am also thankful for her support of my study and sharing her valuable experience and

knowledge. Once again, I would like to thank all of my supervisors who supported,

guided and reviewed the work through all of its phases.

Thanks especially to Prof. Christine Collet and Prof. Abdelkader Hameurlain for

your very careful review, and for the comments, corrections and suggestions made on

the thesis. Many thanks to Prof. Farouk Toumani who worked as an examiner and gave

the suggestions to the thesis. Thanks to all of you who also served as the members of

my defense committee.

Also, I would like to thank Frédéric Gaudet for technical support and help in

providing necessary machines and building a distributed query

processing environment.

It has never been easy for me to live and study in a foreign country. The

various challenges I faced throughout the duration of this study have been passed.

Many thanks to the good friends from Blaise Pascal University - Clermont II: To Baraa

Mohamad for providing valuable information related to the DICOM standard and for

giving me the initial idea of depending on expert opinion to organize DICOM data; To

Thuong-Cang Phan and Jean Connier for guiding many administrative procedures

during the study period.

Finally, I would like to thank my family for always being by my side in difficult

moments, motivating me.

Clermont-Ferrand, Mar 22, 2018

Cong-Danh NGUYEN

iv

Abstract

In the health care industry, the ever-increasing medical image data, the development

of imaging technologies, the long-term retention of medical data and the increase of

image resolution are causing a tremendous growth in data volume. In addition, the

variety of acquisition devices and the difference in preferences of physicians or other

health-care professionals have led to a high variety in data. Although today DICOM

(Digital Imaging and Communication in Medicine) standard has been widely adopted

to store and transfer the medical data, DICOM data still has the 3Vs characteristics of

Big Data: high volume, high variety and high velocity. Besides, there is a variety of

workloads including Online Transaction Processing (OLTP), Online Analytical

Processing (OLAP) and mixed workloads. Existing systems have limitations dealing

with these characteristics of data and workloads. In this thesis, we propose new

efficient methods for storing and querying DICOM data.

We propose a hybrid storage model of row and column stores, called HYTORMO,

together with data storage and query processing strategies. First, HYTORMO is

designed and implemented to be deployed on large-scale environment to make it

possible to manage big medical data. Second, the data storage strategy combines the

use of vertical partitioning and a hybrid store to create data storage configurations that

can reduce storage space demand and increase workload performance. To achieve such

a data storage configuration, one of two data storage design approaches can be applied:

(1) expert-based design and (2) automated design. In the former approach, experts

manually create data storage configurations by grouping attributes and selecting a

suitable data layout for each column group. In the latter approach, we propose a hybrid

automated design framework, called HADF. HADF depends on similarity measures

(between attributes) that can take into consideration the combined impact of both

workload- and data-specific information to generate data storage configurations:

Hybrid Similarity (a weighted combination of Attribute Access and Density Similarity

measures) is used to group the attributes into column groups; Inter-Cluster Access

Similarity is used to determine whether two column groups will be merged together or

not (to reduce the number of joins); and Intra-Cluster Access Similarity is applied to

decide whether a column group will be stored in a row or a column store. Finally, we

propose a suitable and efficient query processing strategy built on top of HYTORMO.

It considers the use of both inner joins and left-outer joins. Furthermore, an

Intersection Bloom filter (IBF) is applied to reduce network I/O cost.

We provide experimental evaluations to validate the benefits of the proposed

methods over real DICOM datasets. Experimental results show that the mixed use of

both row and column stores outperforms a pure row store and a pure column store. The

combined impact of both workload-and data-specific information is helpful for HADF

to be able to produce good data storage configurations. Moreover, the query processing

strategy with the use of the IBF can improve the execution time of an experimental

query up to 50% when compared to the case where no IBF is applied.

Key words: DICOM, big data, sparse datasets, HYTORMO, hybrid storage model,

row store, column store, hybrid similarity, Bloom filter, Intersection Bloom filter, join.

v

Résumé

Dans le secteur des soins de santé, les données d'images médicales toujours

croissantes, le développement de technologies d'imagerie, la conservation à long terme

des données médicales et l'augmentation de la résolution des images entraînent une

croissance considérable du volume de données. En outre, la variété des dispositifs

d'acquisition et la différence de préférences des médecins ou d'autres professionnels

de la santé ont conduit à une grande variété de données. Bien que la norme DICOM

(Digital Imaging et Communication in Medicine) soit aujourd'hui largement adoptée

pour stocker et transférer les données médicales, les données DICOM ont toujours les

caractéristiques 3V du Big Data: volume élevé, grande variété et grande vélocité. En

outre, il existe une variété de charges de travail, notamment le traitement transactionnel

en ligne (en anglais Online Transaction Processing, abrégé en OLTP), le traitement

analytique en ligne (anglais Online Analytical Processing, abrégé en OLAP) et les

charges de travail mixtes. Les systèmes existants ont des limites concernant ces

caractéristiques des données et des charges de travail. Dans cette thèse, nous proposons

de nouvelles méthodes efficaces pour stocker et interroger des données DICOM.

Nous proposons un modèle de stockage hybride des magasins de lignes et de

colonnes, appelé HYTORMO, ainsi que des stratégies de stockage de données et de

traitement des requêtes. Tout d'abord, HYTORMO est conçu et mis en œuvre pour être

déployé sur un environnement à grande échelle afin de permettre la gestion de grandes

données médicales. Deuxièmement, la stratégie de stockage de données combine

l'utilisation du partitionnement vertical et un stockage hybride pour créer des

configurations de stockage de données qui peuvent réduire la demande d'espace de

stockage et augmenter les performances de la charge de travail. Pour réaliser une telle

configuration de stockage de données, l'une des deux approches de conception de

stockage de données peut être appliquée: (1) conception basée sur des experts et (2)

conception automatisée. Dans la première approche, les experts créent manuellement

des configurations de stockage de données en regroupant les attributs des données

DICOM et en sélectionnant une disposition de stockage de données appropriée pour

chaque groupe de colonnes. Dans la dernière approche, nous proposons un cadre de

conception automatisé hybride, appelé HADF. HADF dépend des mesures de

similarité (entre attributs) qui prennent en compte les impacts des informations

spécifiques à la charge de travail et aux données pour générer automatiquement les

configurations de stockage de données: Hybrid Similarity (combinaison pondérée de

similarité d'accès d'attribut et de similarité de densité d'attribut) les attributs dans les

groupes de colonnes; Inter-Cluster Access Similarity est utilisé pour déterminer si

deux groupes de colonnes seront fusionnés ou non (pour réduire le nombre de jointures

supplémentaires); et Intra-Cluster Access La similarité est appliquée pour décider si

un groupe de colonnes sera stocké dans une ligne ou un magasin de colonnes. Enfin,

nous proposons une stratégie de traitement des requêtes adaptée et efficace construite

sur HYTORMO. Il considère l'utilisation des jointures internes et des jointures

externes gauche pour empêcher la perte de données si vous utilisez uniquement des

jointures internes entre des tables partitionnées verticalement. De plus, une intersection

de filtres Bloom (intersection of Bloom filters, abrégé en IBF) est appliqué pour

vi

supprimer les données non pertinentes des tables d'entrée des opérations de jointure;

cela permet de réduire les coûts d'E / S réseau.

Nous fournissons des évaluations expérimentales pour valider les avantages des

méthodes proposées par rapport aux jeux de données DICOM réels. Les résultats

expérimentaux montrent que l'utilisation mixte des magasins de lignes et de colonnes

surpasse le magasin de lignes pur et le magasin de colonnes pur. L'impact combiné des

informations spécifiques à la charge de travail et aux données permet à HADF de

produire de bonnes configurations de stockage de données. En utilisant l'IBF, la

stratégie de traitement des requêtes peut améliorer le temps d'exécution d'une requête

expérimentale jusqu'à 50% par rapport au cas où aucun IBF n'est appliqué.

Mots clés : DICOM, donnees volumineuses, données clairsemées, HYTORMO,

modele de stockage hybride, stockage en lignes, stockage en colonnes, similarite

hybride, filtre Bloom, intersection de filtres Bloom, joindre.

vii

Contents

Author .. i

Declaration ... ii

Acknowledgements ... iii

Abstract .. iv

Résumé .. v

Contents .. vii

List of Figures ... x

List of Tables ... xii

1 Introduction ... 1

1.1 Overview.. 1

1.2 Research Context ... 1

1.3 Motivation.. 2

1.4 Research Scope and Approach... 5

1.5 Problem Statement ... 7

1.6 Dissertation Goals .. 8

1.7 Research Hypotheses ... 8

1.8 Research Contributions .. 10

1.9 Thesis Structure ... 10

2 DICOM Data Management Systems and Requirements 13

2.1 Overview.. 13

2.2 DICOM Standard and Data ... 13

2.2.1 DICOM Standard ... 13

2.2.2 Characteristics of DICOM Data and Workloads 18

2.3 DICOM Data Management Systems ... 20

2.3.1 Expected Requirements .. 20

2.3.2 Existing Systems .. 22

2.3.3 Conclusion .. 30

2.4 Summary and Conclusion .. 31

3 Databases and Related Techniques ... 33

3.1 Overview.. 33

3.2 Classifications .. 34

3.2.1 OLTP and OLAP Workloads .. 34

3.2.2 Relational Databases .. 34

3.2.3 NoSQL Databases .. 35

3.2.4 NewSQL Databases .. 36

3.3 Cluster Computing Frameworks .. 37

viii

3.3.1 MapReduce .. 37

3.3.2 Spark .. 39

3.4 Data Layouts .. 40

3.4.1 Row-oriented Storage Model ... 40

3.4.2 Column-oriented Storage Model .. 41

3.4.3 Hybrid Storage Models .. 42

3.5 Vertical Partitioning and Bloom Filter Techniques...................................... 47

3.5.1 Vertical Partitioning ... 47

3.5.2 Bloom Filter and Intersection Bloom Filter 49

3.6 Key Components of the New System .. 51

3.6.1 Data Model ... 52

3.6.2 Data Storage Model .. 52

3.6.3 Data Schema ... 52

3.6.4 Query Processing ... 52

3.7 Summary and Conclusion .. 53

4 HYTORMO and HADF ... 57

4.1 Overview.. 57

4.2 HYTORMO and Strategies .. 58

4.2.1 HYTORMO Architecture ... 58

4.2.2 Data Storage Strategy ... 58

4.2.3 Query Processing Strategy ... 62

4.3 Automated Design Approach for DICOM Data .. 64

4.3.1 Observations ... 64

4.3.2 Formal Representation ... 66

4.3.3 Configuration Cost Estimation ... 68

4.4 Hybrid Automated Design Framework .. 75

4.4.1 Overview of the Framework .. 75

4.4.2 Similarity Measures ... 78

4.4.3 Implementation of the Framework ... 81

4.4.4 Examples .. 89

4.5 Summary and Conclusion .. 93

5 Query Processing for HYTORMO .. 95

5.1 Overview.. 95

5.2 Query Rewriting .. 96

5.2.1 Examples .. 96

5.2.2 Query Execution Plan .. 100

5.2.3 Determining Left-Outer Joins .. 101

5.2.4 Reducing the Number of Left-Outer Joins 102

5.3 Intersection Bloom Filter ... 104

ix

5.3.1 Query Execution Plan with the IBF .. 104

5.3.2 Cost-effectiveness Analysis.. 106

5.3.3 Incremental Intersection Bloom Filter .. 116

5.4 Summary and Conclusion ... 118

6 Performance Evaluation ... 119

6.1 Overview... 119

6.2 Experimental Environment .. 120

6.2.1 Spark Cluster .. 120

6.2.2 Datasets .. 120

6.2.3 Workloads ... 123

6.3 Experiment Execution ... 126

6.3.1 Experiment 1: Evaluating the Effectiveness of HYTORMO and the

Usefulness of HADF ... 126

6.3.2 Experiment 2: Evaluating HYTORMO and HADF using More Data

and Multiple-table Joins .. 135

6.3.3 Experiment 3: Comparison between HADF and HoVer 137

6.3.4 Experiment 4: Evaluating the Effectiveness of the IBF 140

6.4 Analysis and Interpretation .. 146

6.4.1 H1 - Effectiveness of HYTORMO ... 146

6.4.2 H2 - Usefulness of HADF .. 147

6.4.3 H3 - Effectiveness of the Query Processing Strategy 148

6.5 Summary and Conclusion .. 148

7 Conclusion and Future Works ... 149

7.1 Overview.. 149

7.2 Summary and Conclusion .. 150

7.2.1 Existing DICOM Data Management Systems 150

7.2.2 Current Databases and Related Techniques 151

7.2.3 HYTORMO and DICOM Data Storage Strategy 151

7.2.4 HADF ... 152

7.2.5 Query Processing Strategy with the Use of an IBF 152

7.2.6 Validations of Proposed Methods ... 152

7.3 Future Works .. 153

7.3.1 Hybrid Storage Model .. 153

7.3.2 HADF ... 153

7.3.3 Query Processing Strategy ... 154

7.3.4 Non-precomputed and Precomputed BFs ... 154

Bibliography ... 155

x

List of Figures

Figure 1.1: Example of metadata and image data in a DICOM file 2

Figure 1.2: Research focus ... 5

Figure 1.3: Research approach ... 6

Figure 1.4: Causal relationship between problems, goals and research hypotheses 9

Figure 2.1: Mapping real-world examinations to the information model [28] 14

Figure 2.2: Transforming an object in real world into an IOD object 15

Figure 2.3: Detailed DICOM information model [28] .. 15

Figure 2.4: Structure of a DICOM attribute (data element) 16

Figure 2.5: Some attributes used in a DICOM file .. 17

Figure 2.6: Different attributes used for Patient IE of CT and CR images 18

Figure 2.7: Typical PACS-based workflow ... 22

Figure 2.8: eDiaMoND architecture [42] .. 23

Figure 2.9: Architecture of Grid Data Service [42] ... 24

Figure 2.10: Sample DICOM Image Database using Oracle 25

Figure 2.11: Database tables in the DCMDSM model [54] 26

Figure 2.12: Example of DICOM data stored in CouchDB [40] 28

Figure 2.13: DICOM attributes stored over row- and column-oriented layers [57] .. 29

Figure 2.14: Distributed Mediator [57] .. 30

Figure 3.1: Relation instance of the relation Patient .. 34

Figure 3.2: Examples of NoSQL databases ... 35

Figure 3.3: A job that counts the number of patients by sex using MapReduce 38

Figure 3.4: Comparison between Hadoop MapReduce and Spark 40

Figure 3.5: NSM layout of the relation Patient .. 40

Figure 3.6: DSM layout of the relation Patient .. 41

Figure 3.7: Physical representation of the DSM layout of the relation Patient 41

Figure 3.8: A disk page of PAX layout of the relation Patient 43

Figure 3.9: A disk page of Data Morphing layout of the relation Patient 44

Figure 3.10: Mirrors and fractured mirrors [86] .. 45

Figure 3.11: Copy-on-update mechanism [93] .. 46

Figure 3.12: Example of the application of a Bloom filter .. 50

Figure 4.1: Architecture of HYTORMO .. 58

Figure 4.2: Process of extracting, organizing and storing DICOM data 59

Figure 4.3: Row and column tables of the entity Patient ... 61

Figure 4.4: General form of a user query ... 63

Figure 4.5: Combined use of vertical partitioning and a hybrid store 64

Figure 4.6: Example of Attribute Usage Matrix and query frequencies 66

xi

Figure 4.7: Example of the horizontal table T ... 67

Figure 4.8: Four difference configurations of the horizontal table T 69

Figure 4.9: Reading effectiveness in (a) a column store and (b) a row store 72

Figure 4.10: Overview of HADF ... 76

Figure 4.11: Venn diagram ... 79

Figure 4.12: Attribute Access Correlation Matrix ... 83

Figure 4.13: Attribute Density Correlation Matrix .. 85

Figure 4.14: Example of cluster usage of a workload ... 87

Figure 4.15: Workload- and data-specific information of the horizontal table T 90

Figure 4.16: Table created for Configuration 1 ... 91

Figure 4.17: Two tables created for Configuration 2 ... 91

Figure 4.18: Two tables created for Configuration 3 ... 92

Figure 5.1: Representation of (a) the query Q1 and (b) its execution plan tree 97

Figure 5.2: Transformation of the query Q2a using a left-outer join......................... 99

Figure 5.3: Transformation of the query Q2a using an inner join 99

Figure 5.4: Execution plan transformation for the query Q 100

Figure 5.5: Transformation of the query Q2b to two equivalent execution plans ... 103

Figure 5.6: Transformation of the execution plan after applying Rule 3 104

Figure 5.7: Query execution plan with the IBF .. 105

Figure 5.8: Left-deep sequential execution plan with the application of the IBF 107

Figure 5.9: Phases of the IBF with component BFi′s and hash functions 107

Figure 5.10: Left-deep processing tree of the query Q with the use of the IBF 114

Figure 5.11: Query execution plan with the incremental IBF 117

Figure 6.1: AUM of the entity table GeneralInfoTable in Workload W1 127

Figure 6.2: AUM of the entity table SequenceAttributes in Workload W2 129

Figure 6.3: AUM of the entity table Patient in Workload W3 130

Figure 6.4: AUM of the entity table Study in Workload sW4 133

Figure 6.5: Execution plan for the query Q4,3 .. 141

Figure 6.6: Execution plan for the query Q4,3 with the IBF 142

Figure 6.7: Execution plan for the query Q4,3 with the incremental IBF 145

xii

List of Tables

Table 1.1: Overview over Chapter 1 .. 1

Table 1.2: Problem statements ... 8

Table 1.3: Thesis goals .. 8

Table 2.1: Overview over Chapter 2 .. 13

Table 2.2: A subset of the attributes in the Study IOD .. 17

Table 2.3: Example of DICOM file sizes .. 19

Table 2.4: Example of statements to manipulate DICOM data in Oracle 26

Table 2.5: Comparison of the existing systems ... 31

Table 3.1: Overview over Chapter 3 .. 33

Table 3.2: Input and output formats of the phases in MapReduce 37

Table 4.1: Overview over Chapter 4 .. 57

Table 4.2: Examples of user queries .. 63

Table 5.1: Overview over Chapter 5 .. 95

Table 5.2: Row and column tables used to store the entity tables 96

Table 5.3: Sample data of the table RowPatient .. 98

Table 5.4: Sample data of the table RowPregnancy .. 98

Table 5.5: Result of the query Q2a when using a left-outer join 99

Table 5.6: The wrong result of the query Q2a when using an inner join 100

Table 5.7: Correct result of the query Q2b .. 103

Table 5.8: Notations ... 108

Table 5.9: Example of table sizes and selectivity factors of join operations 113

Table 6.1: Overview over Chapter 6 .. 119

Table 6.2: Mixed DICOM datasets used in the experiments 120

Table 6.3: Sizes of the entity tables of the dataset MDB1 121

Table 6.4: Sizes of the entity tables of the dataset MDB2 122

Table 6.5: Queries and their occurrence frequency in Workload W1 123

Table 6.6: Queries and their occurrence frequency in Workload W2 124

Table 6.7: Queries and their occurrence frequency in Workload W3 124

Table 6.8: Queries and their occurrence frequency in Workload W4 125

Table 6.9: Major steps of Experiment 1 .. 126

Table 6.10: Typical candidate configurations for GeneralInfoTable 127

Table 6.11: Typical candidate configurations for SequenceAttributes 129

Table 6.12: Typical candidate configurations for Patient .. 131

Table 6.13: Workload sW4 for the entity table Study ... 133

Table 6.14: Typical candidate configurations for Study .. 134

Table 6.15: Major steps of Experiment 2 .. 135

xiii

Table 6.16: Configuration G* of Experiment 2 ... 135

Table 6.17: Configuration G1 of Experiment 2 .. 136

Table 6.18: Configuration G2 of Experiment 2 ... 136

Table 6.19: Execution time of Workload W4 over 3 configurations using MDB1 . 137

Table 6.20: Execution time of Workload W4 over 3 configurations using MDB2 . 137

Table 6.21: Major steps of Experiment 3 .. 137

Table 6.22: Good HADF-generated configuration for GeneralInfoTable 138

Table 6.23: HoVer-generated configurations for GeneralInfoTable 138

Table 6.24: Good HADF-generated configurations for Sequenceattributes 139

Table 6.25: HoVer-generated configurations for Sequenceattributes 140

Table 6.26: Major steps of Experiment 4 .. 140

Table 6.27: Sets of predicates on the attributes in the input tables 143

Table 6.28: Comparison of the execution time of using and not using the IBF 143

Table 6.29: Comparison of the sizes of the input tables before and after using IBF 144

Table 6.30: Comparison between the IBF and incremental IBF 146

Table 7.1: Overview over Chapter 7 .. 149

1

Chapter

Introduction

1.1 Overview

This chapter describes how thesis goals are connected to challenges in DICOM

(Digital Imaging and Communication in Medicine) data management. The overview

of the chapter is given in Table 1.1.

Table 1.1: Overview over Chapter 1

1.2 Research Context

1.3 Motivation

1.4 Research Scope and Approach

1.5 Problem Statement

1.6 Dissertation Goals

1.7 Research Hypotheses

1.8 Research Contributions

1.9 Thesis Structure

First of all, the chapter introduces the research context. Next, it presents the

motivation to propose a new DICOM data management system. Then, the research

scope and approach are described. After that, the chapter depicts the problem

statement, the dissertation goals and hypotheses. It also points out the research

contributions. Finally, a description of the thesis structure is given.

1.2 Research Context

In health-care industry, the development of imaging technologies, long-term retention,

and increase of image resolution are causing a tremendous growth in data volume.

Besides, the variety of acquisition devices and the differences in preferences of

physicians or other health-care professionals have led to a high variety in data.

Although DICOM standard [1] has been popularly used for storing the medical image

data, DICOM data still has characteristics of Big Data such as high complexity, high

variety, high and ever-increasing volume, and high velocity [2]. In addition, types of

queries/retrieval operations on this data may be Online Transaction Processing

(OLTP), an Online Analytical Processing (OLAP) or a mixture of both OLTP and

OLAP. As a consequence, all of these have caused many issues in data management.

Introduction

2

Metadata consists of :

- patient’s name

- patient’s ID

- type of media in

imaging (CT, MRI,

medical reports,

etc.)

- …

Image data consists of

image pixels

Figure 1.1: Example of metadata and image data in a DICOM file

The DICOM standard was released the first time in 1985 as ACR/NEMA standard.

It includes a set of non-propriety specifications regarding structure, format, and

exchange protocols for digital-based medical images. Each DICOM file contains a

header, metadata and pixel data: the header is used to recognize if a file is a DICOM

file; the metadata contains attributes storing information about real-world entities

(such as Patient, Study, etc.) related to the corresponding image; and the pixel data

represents actual image pixels. Figure 1.1 illustrates the data of a DICOM file.

The wide use of the DICOM standard has led to the development of DICOM data

management systems. In general, after a DICOM file is acquired using a specific

medical equipment (e.g., a CT scanner, a MRI scanner, etc.), metadata and pixel data

will be extracted, organized and stored according to a particular data storage strategy.

Full-content images are usually stored in a file system from which they can be used

for content-based image retrieval or for image parsing at pixel level. Furthermore, the

attributes of the metadata can stored and indexed in metadata catalogs and/or databases

in a way to provide more flexibility for users to perform query/retrieval operations [3].

However, due to the above-mentioned characteristics of DICOM data and workloads,

existing systems still exist limitations in performance, efficiency, scalability, elasticity

or supported query language. In fact, the manner in which DICOM data is stored has

a strong impact on storage space demand and workload execution time.

In this thesis, we analyze existing practices in DICOM data management and

propose efficient methods to store and query DICOM data.

1.3 Motivation

Nowadays, the DICOM standard is used in most hospitals in America, Europe and

Asia [4]. There is a real need to propose a new data storage model together with

efficient methods to store and query DICOM data. Our study is motivated by our

analysis on the characteristics of DICOM data and workloads. Additionally, we are

motivated by recent researches in the field of database system: (1) optimizing query

Introduction

 3

performance for mixed OLTP and OLAP workloads; (2) reducing storage space

demand for sparse datasets; (3) filtering the redundant input data of queries; and (4)

applying cloud-based solutions.

First, our analysis on the characteristics of DICOM data show that the following

characteristics of DICOM data can cause challenges in data management: (1) High

Complexity: the information model (provided by the DICOM standard) consisting of

many entities and relationships among the entities. Each entity may include a large

number of attributes. (2) High Variety: data consists of images and metadata.

Metadata schemas are heterogeneous and evolutive. The number of attributes is very

large (more than 3500), but some of them are mandatory while others are optional. The

number of attributes used in a DICOM file varies considerably based on a particular

examination modality (e.g., CT and MRI). The used attributes can also be modified if

an image acquisition device (e.g., CT scanner) is modified. (3) High Volume: data size

is terabytes or petabytes. For instance, in France, information and test results of a

patient should be stored for up to 30 years [5]. (4) High Velocity: some applications

need real-time processing of high-volume data streams, e.g., in-coming streams of

images containing relevant information required for diagnosis.

Our observations on real DICOM datasets revealed that as a result of the high

complexity and the high variety, entities usually contain a large number of attributes,

many of which have null values (e.g., optional attributes) while others seldom get null

values (e.g., mandatory attributes). Thus, if storing such entities in single wide-tables,

the presence of the null values may cause a waste of storage space. For example, the

entity Patient consists of the following attributes: PatientName, PatientID,

PatientBirthDate, PatientSex, EthnicGroup, IssuerOfPatientID, PatientBirthTime,

PatientInsurancePlanCodeSequence, PatientPrimaryLanguageCodeSequence,

PatientPrimaryLanguageModifierCodeSequence, OtherPatientIDs, OtherPatient-

Names, PatientBirthName, PatientTelephoneNumbers, SmokingStatus, Pregnancy,

LastMenstrualDate, PatientReligiousPreference, PatientComments, PatientAddress,

PatientMotherBirthName, and InsurancePlan Identification. Only the first three

attributes, i.e., PatientName, PatientID, and PatientSex, have low values of null ratio

(e.g., 0.00 - 1.48%), whereas the remaining attributes are very sparse (their null ratios

are 83.55 - 100.00%). Obviously, if storing the entire entity Patient in a single wide

table, the null values will cause a big storage overhead. Therefore, there is a need for

a storage design approach to remove the null values.

Besides the above characteristics of DICOM data, we analyzed several workloads

and found that there is a variety of attribute usage and queries often consist of multi-

table join operations with highly selective predicates. Some attributes are accessed

more frequently than others; some are frequently accessed together in the same

queries. For instance, the first four attributes of the entity Patient, i.e., PatientName,

PatientID, PatientBirthDate, and PatientSex, are frequently accessed together in the

same queries, whereas the others are seldom accessed. Especially, two attributes

Pregnancy and LastMenstrualDate are not frequently accessed, but once used, they

often appear together. Therefore, depending on the given workloads, the attributes can

be grouped and stored together so that the queries can mainly access the relevant

attributes, thereby reducing the number of redundant data accesses. To achieve this,

we need a data storage design approach to deal with various workloads.

Introduction

4

Second, in database research community, vertical partitioning algorithms has been

proposed to create efficient physical database designs. They can be classified into two

approaches: workload-based and data-based. The former approach tries to group and

store frequently-accessed-together attributes into the same tables [6-13] in a way to

decrease the number of irrelevant data accesses (reducing I/O cost) and thus improve

the workload performance. On the other hand, the latter approach attempts to group

and store co-occurrence attributes (having non-null values) together [14-16] in order

to avoid storing null values, thereby reducing the storage space demand. The vertical

partitioning, therefore, would be a potential solution to the problems of DICOM data

management (reducing storage space demand and query performance).

In the last decades, several different data layouts have been applied deal with the

different types of workloads of applications. Row stores (such as Oracle, DB2, and

SQL Server) store all data associated with a row together. Each row contains attribute

values for a single tuple/record and is stored sequentially on disk. This organization

helps a system easily to add/modify a row and efficiently read all (many) columns of

a single row at the same time. Therefore, the row stores are suitable for write-intensive

(OLTP) workloads. However, they wastes I/O costs if only few attributes are needed

to answer a query because all the attributes of a table have to be read into memory

from disk, no matter how many attributes that query requires [17]. In contrast, column

stores (such as MonetDB [18] and C-Store [19]) organize data by column. Each

column contains data for a single attribute of a tuple and stored sequentially on disk.

Using this organization, a system can read only relevant attributes and efficiently

aggregates over many rows but only for a few attributes. Hence, the column stores are

suitable for read-intensive (OLAP) workloads, but their tuple reconstruction cost in

OLTP workloads is higher than that of the row stores. To overcome the gap between

the row and column stores, some hybrid stores (e.g., HYRISE [12], SAP HANA [20])

have been proposed to optimize the performance for both types of the workloads.

Using a hybrid store thus may be an efficient solution to store DICOM data as well.

Third, with regards to the problem of high volume of data, cloud-based systems

have provided solutions for high performance computing together with availability,

reliability, scalability, elasticity and so on. For instance, Spark [21], an in-memory

cluster computing system which can run on Hadoop, has been introduced to cope with

the high latency problem and provide high performance for interactive queries.

Therefore, if used for large-scale DICOM data management, such a cloud-based

system can supply an opportunity to speed up interactive queries as well as a scalable

data storage for the high volume of DICOM data.

Fourth, besides storing data, due to the common use of highly selective predicates,

the multi-table join queries usually involve a large amount of irrelevant data, not

required in final results. There is an opportunity to improve performance of the queries

by applying a query processing strategy that can reduce irrelevant data from input data.

Bloom filters and Intersection Bloom filters [22-25] have shown their ability to filter

redundant input data out of queries and thus can be applied to the context of DICOM

data processing.

In a nutshell, there is a real need to propose a new data management system

together with efficient methods to store and query DICOM data. The vertical

partitioning approaches show that they can reduce the redundant data accesses and the

Introduction

 5

storage space demand. The hybrid stores show their potential to improve the

performance of queries in mixed OLTP and OLAP workloads. Bloom filters and

Intersection Bloom filters can improve query performance by removing irrelevant

input data. Besides, the cloud-based systems also introduce possible solutions to deal

with the problem of high volume of data. We believe it would be beneficial if

combining these approaches together to build a new data storage model and efficient

methods for storing and querying DICOM data.

1.4 Research Scope and Approach

Figure 1.2: Research focus

This section describes the research scope and research approach. A typical

application case of DICOM data involves extracting metadata and pixel data from

DICOM files, storing them into a data storage(s), processing queries and presenting

results to users. Figure 1.2 illustrates our research focus. Data storage and query

performance for such an application have been challenged from the perspective of Big

Data characteristics (i.e., complexity, variety, volume and velocity) as well as the

variety of workloads (i.e., ad-hoc, high selectivity, mixed OLTP and OLAP

workloads).

Our research focuses on efficient methods for storing and querying DICOM data.

We attempt to provide a data storage strategy and a query processing strategy to reduce

storage space and improve query performance.

 Data storage strategy refers to the way in which the data is organized and stored

in the data storage system.

 Query processing strategy refers to strategies intended to improve efficiency of

query processing.

Both the above strategies are challenged by the characteristics of DICOM data and

workloads. However, the scope of our research is limited to the problems raised by the

first three characteristics of DICOM data (i.e., complexity, volume and variety) and

the various workloads. This is because the velocity is usually involved in stream

processing-based applications [26] rather than a business analytics application (i.e.,

interactive ad-hoc query and analysis) as our focus.

Introduction

6

Research approach

The research is carried out in six steps as given in Figure 1.3.

Figure 1.3: Research approach

1. State of the Practice Analysis: Practices and challenges of storing and querying

DICOM data in current systems are analyzed. Problems and expected requirements are

formulated. The results of this step are described in Chapter 2.

2. Literature review: Papers in the field of database system, including relational,

NoSQL and NewSQL databases, hybrid storage systems, cluster computing

frameworks, data layouts, vertical partitioning and Bloom filter techniques are

searched and reviewed to identify current approaches and potential solutions to the

given problems. The results of this step are presented in Chapter 3.

 3. Comparison: The current approaches are compared with respect to the expected

requirements to find out their limitations and to select suitable approaches for a new

DICOM data management system. The results of this step are described in Chapter 3.

4. Approach/Model Design: A hybrid row-column storage model called HYTORMO,

a hybrid automated design framework called HADF, and a query processing strategies

with the integration of an Intersection Bloom filter (IBF) are proposed to satisfied the

expected requirements. The results of this step are described in Chapters 4 and 5.

5. Approach/Model Implementing: HYTORMO together with the proposed methods

are implemented. The results of this step are partially presented in Chapter 6.

6. Validation: To validate the proposed methods, real DICOM datasets are collected.

Experiments are performed. The results of this step are described in Chapter 6.

Introduction

 7

1.5 Problem Statement

In Section 1.3, we showed our observations on the characteristics of DICOM data and

workloads and potential approaches to deal with the problems of storing and querying

DICOM data, including vertical partitioning, hybrid stores, Bloom filters and cloud-

based solutions. With the research focus on storage space usage and query

performance, we believe that it would be beneficial to combine those approaches

together. However, this will introduce new research challenges: How to combine the

current methods including vertical partitioning, row- and column-stores, Bloom filters

and cloud-based solutions in a right way to obtain efficient methods for storing and

querying DICOM data? How can we improve workload execution time while still

decreasing storage space? What are knowledge gaps that need to be filled in order to

achieve the efficient methods for storing and querying DICOM data?

First, although some researches have proposed hybrid storage models such as

HYRISE [12] and SAP HANA [20], they have not been designed for storing DICOM

data. For instance, they need additional storage space to store duplicate data across

different data layouts and have not dealt with the problem of high volume and sparse

data. Obviously, there is a need for a new DICOM data management system that is

able to provide performance, efficiency, huge storage capacity, scalability, elasticity,

normalized data, and declarative query language support, and to cope with the

characteristics of DICOM data and workloads. The problem is how to provide a new

hybrid storage model that can satisfy such requirements.

Second, in Section 1.3 we showed that, based on workload- or data-specific

information, several vertical partitioning algorithms have been proposed to improve

query performance (by eliminating redundant data accesses) or to reduce storage space

size (by removing null values). However, there is a lack of an algorithm or a data

design advisory tool that is able to capture the combined impact of both workload- and

data-specific information. Moreover, the existing algorithms are implicitly assumed

that vertical partitioning results will be stored by using a single data layout (e.g., a row

store), instead of a hybrid store. Therefore, a problem is how to propose a new data

storage design approach that is able to provide sufficient decision-support for the

decision makers in determining the combined impact of workload- and data-specific

information and a hybrid store on the quality of a data storage configuration (including

schemas and data layouts) that can reduce both query performance and data storage

demand.

Finally, another import problem is to provide a suitable and efficient query

processing strategy built on top of the hybrid storage model. There is a need to propose

a suitable query processing strategy that can correctly construct query results from

vertically partitioned tables, e.g., inner and left-outer joins should be used. Besides,

because queries usually consist of multi-table join operations with highly selective

predicates, they may involve a large amount of irrelevant input data. As a result, when

these queries are executed in a distributed query processing environment, the irrelevant

input data may causes high network I/O cost and results in poor performance of the

queries. In [25, 27], the authors proposed to apply an IBF computed from pre-

computed BFs to improve the performance of MapReduce queries. However, an

existing problem is how to apply the IBF built from non pre-computed BFs.

Introduction

8

Table 1.2 summarizes three problems P1 – P3 addressed by this thesis:

Table 1.2: Problem statements

P1 Inefficient data storage model for storing and querying DICOM data.

P2

Insufficient decision-support for decision makers in data design for DICOM data to

create good data storage configurations (including schemas and their corresponding data

layouts) in terms of storage space demand query performance.

P3
Lack of a suitable and efficient query processing, especially when high network I/O cost

is caused by irrelevant data.

1.6 Dissertation Goals

Based on the problem statement presented in the previous section, this section

highlights our research goals. As earlier mentioned, a single data storage technique

may not provide the best performance for different types of workloads; instead, it is

expected that a hybrid storage model will yield a better performance. We also need

efficient methods to reduce storage space size, tuple reconstruction cost and disk and

network I/Os. Besides, a cloud-based systems can provide high performance,

efficiency, scalability, elasticity and so on. In Table 1.3, we list three goals O1 – O3 of

the thesis.

Table 1.3: Thesis goals

O1

Provide a new hybrid storage model, called HYTORMO, together with an efficient data

storage strategy to improve query performance and decrease storage space size with

respect to the characteristics of DICOM data and workloads. HYTORMO is able to

provide high performance, efficiency, scalability, elasticity, normalized data and

declarative query language.

O2

Provide a hybrid automated design framework, called HADF, to support decision

making in database design for DICOM data. HADF is able to:

 Take into account the combined impact of both workload-specific and data-specific

information as well as the use of a hybrid store on the quality of a data storage

configuration in terms of storage space size and query performance.

 Generate a data storage configuration that can improve workload performance while

still decreasing storage space demand.

O3

Provide a query processing strategy built on top the hybrid storage model with the use

of inner joins, left-outer joins to create correct answers for queries and an IBF to remove

irrelevant tuples from input tables of join operations.

1.7 Research Hypotheses

In order to evaluate the benefits of HYTORMO, data storage strategy, HADF and

query processing strategy, three hypotheses are formulated:

 H1 - Effectiveness of HYTORMO with respect to workload execution time:

The hybrid storage model, i.e., HYTORMO, together with the proposed data

Introduction

 9

storage strategy, gives a faster workload execution time than a pure row store and

a pure column store. This hypothesis is to assess Goal O1.

 H2 - Usefulness of HADF for decision making in database design for DICOM

data: The hybrid automated design framework, i.e., HADF, can support decision

making in database design for DICOM data. To be useful as a decision-support

model, two following aspects are evaluated:

a) Taking into account the combined impact of both workload- and data-specific

information can help HADF to produce better data storage configurations than

using pure workload-specific information or pure data-specific information.

b) HADF is able to generate a data storage configuration that can decrease storage

space demand and workload execution time at the same time.

This hypothesis is to assess Goal O2.

 H3 – Effectiveness of the query processing with the integration of an 𝐈𝐁𝐅 with

respect to query execution time: The query processing strategy with the

integration of an IBF runs faster than without the IBF. This hypothesis is to assess

Goal O3.

In Figure 1.4, we describe the causal relationship between the problem statements,

thesis goals and research hypotheses. The goals are referred to as the proposed

solutions to the research problems, and the hypotheses show what will be validated to

evaluate the benefits of such solutions.

Figure 1.4: Causal relationship between problems, goals and research hypotheses

Introduction

10

1.8 Research Contributions

The thesis has the following contributions:

- Comprehensive evaluation of the existing DICOM data management systems:

The existing systems are evaluated against expected requirements in DICOM data

management. The evaluation is described in Chapter 2.

- State of the art review of the current databases: This state of the art review

presents a comprehensive background of the most prevalent databases (relational,

NoSQL and NewSQL databases). It highlights advantages and disadvantages of

these databases with respect to their suitability when used for various workloads

(i.e., OTLP and OLAP) and data structures (structured and semi/unstructured data).

This state of the art review is described in Chapter 3.

- HYTORMO together with a data storage strategy for DICOM data:

HYTORMO provides high performance for mixed workloads. It is designed based

on the relational data model to provide facilitates for users (e.g., to use DICOM

entity tables and SQL language). It is implemented on top of an in-memory cluster

computing framework, called Spark [21], to supply high performance for

interactive workloads, huge storage capacity, scalability and elasticity. The data

storage strategy aims to reduce storage space and query execution time.

HYTORMO and the data storage strategy are shown in Chapter 4.

- HADF - a hybrid automated design framework: HADF is proposed to provide

decision-support for decision makers in selecting good data storage configurations.

It is able to take into account the combined impact of both workload- and data-

specific information as well as the mixed use of both row and column stores to

generate a data storage configuration. HADF is described in Chapter 4.

- Query processing strategy with the integration of an 𝐈𝐁𝐅: The query processing

strategy built on top of HYTORMO with the use of inner joins, left-outer joins and

an IBF. This query processing strategy is given in Chapter 5.

- Validations of the proposed methods: HYTORMO, the data storage strategy,

HADF and the query processing strategy are validated using real DICOM datasets

and different workloads. The validation results are presented in Chapter 6.

1.9 Thesis Structure

The remainder of this thesis is organized as follows: Chapter 2 gives general

background on the DICOM standard, existing DICOM data management systems,

problems and expected requirements for a new system. Chapter 3 presents the state of

the art review of workload types, the most prevalent databases, cluster computing

framework, data layouts, vertical partitioning and Bloom filter techniques, and key

components of the new system. Chapter 4 presents HYTORMO and HADF. The query

processing with the integration of an IBF is described in Chapter 5. The evaluation of

the proposed methods is reported in Chapter 6. Chapter 7 concludes the thesis and

introduces future works.

11

PART I

BACKGROUND AND

RELATED WORKS

12

13

Chapter

DICOM Data Management Systems

and Requirements

2.1 Overview

This chapter presents background on existing DICOM data management systems and

requirements for a new system. An overview of the chapter is shown in Table 2.1.

Table 2.1: Overview over Chapter 2

2.2 DICOM Standard and Data

2.2.1 DICOM Standard 2.2.2 Characteristics of DICOM Data and Workloads

2.3 DICOM Data Management Systems

2.3.1 Expected Requirements 2.3.2 Existing Systems 2.3.3 Conclusion

2.6 Summary and Conclusion

First, the chapter gives an overview of background information on the DICOM

standard. Next, we determine the major characteristics of DICOM data and workloads

that may cause challenges in data management. Then, we present the expected

requirements for a new DICOM data management system. After that, we give an

overview of the existing DICOM data management systems as well as discuss their

strengths and weaknesses. We make a comparison among these systems and conclude

with their limitations in satisfying the expected requirements. We finally present

summary and conclusion of the chapter.

2.2 DICOM Standard and Data

This section provides an overview of background information on the DICOM standard

and then presents characteristics of DICOM data and workloads.

2.2.1 DICOM Standard

Information Model

The DICOM standard defines an information model based on an object-oriented

abstract data model to specify information and relationships among real world objects.

The information model is built according to the way images created by different

modalities managed in a department, e.g., radiology departments. Figure 2.1 illustrates

the mapping of real-world examinations to the information model. There are four

DICOM Data Management Systems and Requirements

14

levels of information: Patient, Study, Series and Image. The Patient level is the highest

level where all information related to a single patient who has one or more studies. The

Study level is the most important level because it keeps the result of a required

examination for the patient. Most works in the department, where the modalities are

managed, mainly concern on handling of the studies. All information related to the

same study is maintained. A single patient may have multiple studies, each of which

may require several examinations performed on different modalities. This creates

different series of one or more images. The Series level keeps information about

date/time when the series are created, type of the used modality, used equipment and

so on. The Image level is referred to as DICOM files that are stored for later use.

Figure 2.1: Mapping real-world examinations to the information model [28]

Service Classes and SOP Classes

The data exchange between two systems (or partners) in a distributed processing

environment is performed using the Service Class. This class describes the roles of

each partners (a Service Class User or a Service Class Provider) and the context of the

defined services. It also defines information and operations [28]. For these works, the

DICOM standard uses an object oriented class definition, called Service Object Class

(SOP Class), to integrate information and operations together. The SOP Class

definition combines a single Information Object Definition (IOD) with several

services. Before any data exchange occurs, two partners must agree to use a SOP Class

and must verify their role as described with regarding to the context. The type of the

data exchange may be network or media. For example, a SOP Class, called Media

Storage Service Class, stores information in a file on a media. This class defines

services permitting to use the media type of data exchange. The processes on both

partners must agree on what information will be exchanged using the media type.

Information Object Definitions (IODs)

IODs are used to define the information part of a SOP Class. An IOD is regarded as a

set of interrelated parts of information, kept in information entities. Each information

entity (IE) represents information about a single real world object such as Patient,

Study, Series, Equipment and Image [1]. Each IE in turn consists of a list of attributes

describing the corresponding object. It is worthy to note that an IOD does not represent

an instance of a real-world object; instead, it describes an object or a class of objects.

DICOM Data Management Systems and Requirements

 15

Figure 2.2: Transforming an object in real world into an IOD object

Depending on requirement of the Service Class of the SOP Class, an IOD can

contain a single information entity (called a normalized IOD or NIOD) or a mixture of

several information entities (called composite IOD or CIOD). A NIOD represents a

single real-world entity whose attributes inherently describe the corresponding real-

world entity. For example, a Patient NIOD only consists of attributes that inherently

describe a patient such as Patient Name, Patient Identifier, Patient Date of Birth,

Patient Sex and so on. Similarly, a Study NIOD only contains inherent attributes of a

study such as Study Unique Identifier, Study Name, Study Time, Study ID, Referring

Physician and so on, but it would not include any attribute of a patient such as Patient

Name. The DICOM standard uses a data dictionary to maintain a list of all attributes.

Each attribute belongs to one of value representations (VRs) types or data types, e.g.,

Person Name (PN), Unique Identifier (UI), Date (DA) and so on [1]. The process of

transforming an object in real world into an IOD object is illustrated in Figure 2.2. In

contrast to a NIOD, a CIOD contains inherent attributes as well as non-inherent

attributes; it mixes several real-world entities or their parts.

Figure 2.3: Detailed DICOM information model [28]

DICOM Data Management Systems and Requirements

16

The semantically related attributes can be grouped together to create information

object modules (IOMs) so that these IOMs can be used in one or more IODs. By this

way, the DICOM standard can define an object-oriented abstract data model that

represents the relationships among different IEs: Patient, Study, Series and Instance

(e.g., Image). The information model shown in Figure 2.3 is a detail version of the one

presented in Figure 2.1. Each rectangle block represents an information entity (IE) of

a composite Information Object Definition (composite IOD) that is used in a SOP

Instance. A relationship with cardinalities describes a relationship between IEs. For

instance, the information model indicates that the Patient IE may have relationship

with many Study IEs, each of which in turn may have multiple Series IEs, and so on.

Modules

Each type of image (e.g., CT, MRI) has a standard set of mandatory (M), conditional

(C) and user optional (U) modules specified. A module is an abstract information entity

that may contain an individual attribute or a set of attributes that are grouped together

for describing a certain aspect of the context of the image. For instance, the Image

Pixel module includes the attributes that describe the encoding and the format of the

pixel matrix of the image such as Bits Allocated, Bits Stored, Pixel Data, etc. There is

a list of modules defined in the DICOM standard [28]. Therefore, when building an

IOD, the module can be selected from this list.

Attributes (Data Elements)

Each attribute or data element has a meaning and is listed in the DICOM data

dictionary. Each attribute is composed of tag, value representation, value length and

value, as shown in Figure 2.4.

Tag VR Value Length Value

Figure 2.4: Structure of a DICOM attribute (data element)

These components are described as follows [29]:

 A Tag identifies an attribute or an element. It is composed of two identifiers:

(Group identifier, Element identifier), represented by hexadecimal numbers. The

attributes are organized into groups corresponding to real-world entities, e.g.,

Patient (0010), Study (0008), etc. We can identify an attribute via its tag, e.g.,

Patient Name: (0010, 0010), Patient ID: (0010, 0020), Study Date: (0008, 0020),

Study Time: (0008, 0030).

 A Value Representation (VR) defines data type and format of an attribute value.

Figure 2.5 lists a subset of attributes in a DICOM file. This file uses the following

VRs: PN: Person Name; LO: Long String; DA: Date; CS: Code String; AS: Age

String; DS: Decimal String; LT: Long Text; SH: Short String; IS: Integer String.

 A Value Length specifies the length of the value (in bytes).

 A Value contains the data of an attribute.

DICOM Data Management Systems and Requirements

 17

Figure 2.5: Some attributes used in a DICOM file

As mentioned in Section 2.2.3, an OID object can contain a single information

entity or a mixture of several information entities. In order to achieve this, attributes

that have semantic relationship are organized in the same IOD. Table 2.2 gives an

example of a subset of the attributes of the Study IOD.

Table 2.2: A subset of the attributes in the Study IOD

Tag Unique Attribute Name Attribute Description Type

(0020,000D) Study Instance UID Unique identifier for the study 1

(0008,0020) Study Date Date the study started 2

(0008,0030) Study Time Time the study started 2

(0020,0010) Study ID User or equipment generated study identifier 2

(0008,0090) Referring Physician's Name Name of the patient's referring physician 2

(0008,0050) Accession Number A generated number to identify order of Study 2

The type of an attribute in an IOD specifies not only whether the corresponding

attribute is a mandatory or optional attribute, but also whether that attribute is required

to represent with or without a value if it is a mandatory attribute. In particular, a type

is 1 for mandatory with an actual value, 2 for mandatory that is allowed to get a null

value or 3 for optional. Furthermore, types 1 and 2 can add a ‘C’ (i.e., 1C and 2C,

respectively) to make an attribute mandatory if certain conditions are met.

It is possible to add new attributes that have not been defined in the DICOM

standard. By this way, a vendor can define attributes specific to their own equipment.

These attributes may not be used by other vendors.

DICOM Data Management Systems and Requirements

18

2.2.2 Characteristics of DICOM Data and Workloads

This section concentrates on the characteristics of DICOM data and its workloads that

may cause challenges in data management. The characteristics of DICOM data include

complexity, high variety, high and ever-increasing volume, and high velocity. DICOM

data thus has the characteristics of Big Data (characterized by three V’s (or 3V’s):

volume, variety and velocity [30, 31]. Additionally, there is a variety in workloads

accessing this data such as OLAP, OLTP and mixed workloads.

High Complexity

The DICOM information model, introduced in Section 2.2.1, represents multiple IEs

and the relationships among these IEs. The information of the IEs are interrelated to

each other in some ways (directly or indirectly). All of this gives us an example of

complex data.

High Variety

(a) CT image

(b) CR image

Figure 2.6: Different attributes used for Patient IE of CT and CR images

DICOM Data Management Systems and Requirements

 19

Variety of data usually refers to the fact that data can be represented in different

data types and data structures [30, 31]. There is a high variety in the data type and the

data structure of DICOM data: the data consists of image data and metadata; moreover,

the metadata can be represented in the form of structured and semi/unstructured data.

The schemas of metadata are heterogeneous and evolutive.

Heterogeneous Schemas: The number of attributes stored in a DICOM file is very

large, with more than 3,500 attributes (a full list of all standard DICOM attributes in

Digital Imaging and Communications in Medicine (DICOM) - Part 6: Data Dictionary

[32]). However, the attributes that are actually used in a particular context are often

known just at the time when the DICOM files are created (for an examination modality

such as CT, CR, MRI and so on). Some attributes are mandatory, while others are

optional. Moreover, a vendor (such as Philip, Siemen or others) can have its own

private attributes for its image acquisition equipment. Besides these reasons, different

health-care professionals (e.g., physician, doctors) can make various decisions about

what attributes are necessary for a particular case. Figure 2.6 illustrates a

heterogeneous schema in which the used attributes may vary from one DICOM file to

another: Figure 2.6(a) presents a CT image while Figure 2.6(b) presents a CR image.

Here, we only focus on the attributes used for the Patient IE. In the former file, three

attributes Other Patient IDs, Patient’s Age and Additional Patient History are used,

but they are not used in the latter file.

Evolutive Schemas: Schema evolution refers to changes in schemas of the metadata

through time as attributes are modified. The schema evolution can occur in several

ways: (1) a modality is newly added or modified, thus several private attributes for its

equipment may need to be added or modified to the existing schemas; and (2) domain

experts require to newly add or to modify some attributes with respect to their needs.

High and Ever-increasing Volume

Table 2.3: Example of DICOM file sizes

Modality
Typical

Images/study

Average size of

images (MB)

Typical study

size (MB)

Magnetic Resonance (MR)/Computed

Tomography (CT)
64 0.36 22

Cardiac CT 2051 0.5 1031

Visible Light (VL) 16 1.6 26

Mammography (MG) 4 26.4 106

Ultrasound (US) 1 27.5 28

Pathology 4 1319 5276

Volume refers to size of data. Sizes of DICOM files are usually large and vary

considerably according to the following factors: digital imaging modality, vendor of

the used equipment, resolution, image size, bit depth (number of bits per pixel) and

color space (such as grayscale, RGB or CMYK). Increasing pixel bit depth will

improve image quality, but will cause an increment of the file sizes. For instance, a

computed radiography (CR) image that comprises of a 2,500 x 2,500 matrix with a

grayscale bit depth of 12 bits will have a size of 2,500 x 2,500 x(12/8) = 9.375 MB.

DICOM Data Management Systems and Requirements

20

Similarly, the size of a computed tomography (CT) examination containing 2,500

images, each of which is made up of a 512 x 512 matrix at a grayscale bit depth of 16

bits, is determined by 2,500 x 512 x 512 x (16/8) = 1.31072 GB [33].

Table 2.3 gives another example of the DICOM file sizes in a benchmark dataset,

presented in the white paper by Oracle [34]. This dataset contains the DICOM files

created by six different digital imaging modalities. Its total size is about 2 terabytes,

including 2.4 million images of 20,080 studies.

Besides the high volume, the DICOM files collection is ever-growing because

more and more DICOM files are produced and stored for a long periods of time.

High Velocity

Velocity is regarded as the speed of the coming data streams that need to be processed

as fast as possible to satisfy requirements of applications [30, 31]. For example, in the

context of DICOM data, the in-coming streams of images containing relevant

information required for diagnosis applications usually have a high velocity.

Various Workloads

Besides the characteristics of data, queries over DICOM data often consist of multi-

table join operations with highly selective predicates on attributes of the entity tables

that are used to store the IEs according to the DICOM information model. Additionally,

there is a variety in attribute access patterns: Some attributes are frequently accessed

together in the same queries while other attributes are seldom used. Some groups of

attributes are used more frequently than others. These characteristics of queries imply

that mixed OLTP and OLAP workloads may be applied to DICOM data.

2.3 DICOM Data Management Systems

In this section, we first lists expected requirements based on which new efficient

methods will be proposed for storing and querying DICOM data to achieve the

dissertation goals as given in Section 1.6 in Chapter 1. Next, we present the existing

systems. Finally, we conclude the section based on an evaluation of the existing

systems.

2.3.1 Expected Requirements

The Big Data characteristics of DICOM data have caused many challenges in data

management. First, for the complexity of data, queries may require to integrate

information from multiple IEs and thus may need a high computational cost for joining

multiple tables of these IEs. Second, in order to handle the schema heterogeneity,

suitable solutions should be proposed [35, 36]. If using a wide table of a relational

database to store a large number of attributes, queries with different attribute access

patterns in workloads generally make redundant attribute accesses which drastically

decrease the system performance. Using such a wide table can also results in the waste

of storage space as missing data values that are usually represented by sentinel values,

e.g., “null”. Third, the schema evolution introduces other challenges. It is hard to

efficiently manage the schema evolution in Relational Database Systems (RDBMSs)

DICOM Data Management Systems and Requirements

 21

since their relational data model is based on tables that do not supply flexible schema.

Handling mutable schemas should be applied in a manner so that the current system

still can continue to operate normally in the presence of “new version” schemas.

Besides, the system should be easy to use; it can provide transparency to users so that

it can use the last version of a schema without knowledge about how the corresponding

data is stored on underlying storage.

The high and ever-increasing volume of data has presented challenges to modern

data management. Although there is no specific threshold to determine how much data

is “high” or “big”, in order to manipulate and analyze the high volume of data, database

systems, infrastructures, strategies for long-term storage and data processing should

have the capability to deal with large-scale datasets [30, 31, 37]. A common solution

is to add more computer resources (CPU, memory, storage space, and so on) to the

existing system to guarantee the speed of processing [38]. However, this solution is

expensive, but the system performance might not be significantly improved if the

existing system infrastructure and database are not suitable for storing and processing

such massive data.

The high velocity has posed several issues in handling streams of large datasets

because data processing operations (e.g., to retrieve and display a large set of images

containing relevant information at the time when diagnostic decisions are being made)

are relatively time-consuming and thus can cause considerable time delays. Therefore,

the speed of data processing operations needs to be considered [39]. However, in our

research we focus the attention on improving the speed of queries in mixed OLTP and

OLAP workloads instead of data streams.

The mixed OLTP and OLAP workloads may cause a negative impact on the

performance of queries because of irrelevant attribute accesses, high tuple

reconstruction cost, cache utilization inefficiency and so on. Thus, this characteristic

of the workloads needs to be taken into account when proposing a suitable data

management system for DICOM data.

To tackle the above problems, we specify the expected requirements for a new

DICOM data management system as the followings:

R1) Flexible data: The system is able to deal with complexity of DICOM data by

allowing users to easily represent the entity tables and their relationships in the

DICOM information model. Normalized data needs to be created. Additionally, the

system is able to deal with the variety of DICOM data by supporting flexible and

schema-less design to handle heterogeneous and evolutive schemas.

R2) Flexible querying: The system enables users to write SQL ad-hoc queries

with join operations.

R3) Efficiency of storage and CPU: First, data needs to be organized based on

both workload and data-specific information to reduce storage space demand and

execution time of queries in mixed OLTP and OLAP workloads. More particularly,

data needs to be organized and stored in a suitable way to reduce redundancy in

storing data (e.g., avoiding to store null values), tuple reconstruction cost, and I/O

costs. Second, the system is able to provide solutions for efficient query processing

over large-scale DICOM datasets. Lastly, it is able to provide huge storage

capacity, scalability and elasticity by supporting horizontal scaling.

DICOM Data Management Systems and Requirements

22

2.3.2 Existing Systems

PACSs

PACSs (Picture Archiving and Communication Systems) refer to computer systems

(comprised of both hardware and software) used for automatically acquiring, storing,

distributing and displaying medical images. All the PACSs must follow the DICOM

standard. A typical PACS includes the following components: (1) modality scanners

such as X-Ray, MRI and CT scanners; (2) a secure network for transmitting images

and patients’ information; (3) display workstations for displaying and interpreting

patients’ images; and (4) long- and short-term storages for archiving images, patients’

information, and reports. A typical PACS-based workflow in a hospital can be

described in Figure 2.7 with the following steps.

1. A patient is prescribed by a doctor to undertake an examination using a

particular modality such as a X-Ray, a MRI or a CT scanner. This requirement

is sent to a Hospital Information System (HIS) or a Radiology Information

System (RIS), and then to the coresponding modality via a DICOM Modality

Worklist.

2. A practitioner (e.g., physican) uses information from the DICOM Modality

Worklist to scan the patient using a specified modality scanner.

3. Patient’s images are sent to the modality console.

4. Some processes are done on the modality console to create DICOM files.

5. The DICOM files on the modality console are stored in a central storage of the

PACS server. Then, they can be stored in a long-term archive.

6. Professionals (doctor, physican, radiologist, health care worker, etc.) can use

the display workstations that have PACS application software to display and

perform image-manipulation techniques for interpreting patient’s images.

Figure 2.7: Typical PACS-based workflow

DICOM Data Management Systems and Requirements

 23

The PACSs continue to evolve over the time to adapt to developments in medical

image imaging. Their data storages have been able to cope with high and ever-

increasing volume of DICOM data [40]. Additionally, they have provided

functionalities to help the professionals concurrently display images on different

distributed display workstations (e.g., teleradiology network system on cloud) [41].

However, there are several limitations to a PACS. First, the entire PACS depends

on its modality devices that are often produced by one or more particular vendors, thus

the DICOM files used in different PACSs may consist of different attributes. As a

result, integrating data from different PACSs can cause challenges. Second, the data

storage of a PACS is generally based on a row-oriented RDBMS such as Oracle,

MySQL, SQL Server or PostgreSQL. Therefore, when the DICOM files are sent to the

PACS server, the most important attributes are extracted to be archived in columns of

database tables while the rest of the attributes are kept in the database as Objects such

as BLOB (Oracle, MySQL), IMAGE (SQL server) or BYTEA (PostgreSQL).

Although the RDBMSs have provided the tabular form to represent data, normalized

data, SQL for easy-to-use and the robust index techniques for speeding of data retrieval

operations, the PACSs mainly allow to use queries with predefined parameters (non-

ad-hoc queries). Their RDBMSs have not well supported for flexible and schema-less

design and are also hard to scale up for high and ever-increasing volume of DICOM

data.

eDiaMoND

eDiaMoND (Grid-enabled Medical Imaging Database) project was aimed to develop

a prototype for a national medical imaging database of digital mammograms to support

the United Kingdom’s breast cancer screening [42]. eDiaMoND database is a Grid-

enabled medical imaging database. It was designed to store DICOM files and it was

intended to be used with two main applications: (1) teaching and training in clinical

radiology; and (2) computer-aided diagnosis [43].

In order to develop the eDiamond database, the object-relational approach and Grid

technology (OGSA-DAI Grid Data Service [44]) were used. The former is applied to

easily manage DICOM information entities. The latter provides a solution to the

problem of data federation as well as effective collaboration between healthcare

professionals; its aims are to provide inter-operability, scalability and elasticity.

Figure 2.8: eDiaMoND architecture [42]

To be able to handle all types of DICOM data, the architecture of the eDiaMoND

database is logically separated into two parts: (1) repository and (2) clinical

information store, as presented in Figures 2.8. When a DICOM file is inserted into the

DICOM Data Management Systems and Requirements

24

eDiaMoND database, its metadata is extracted: all attributes (i.e., optional and private

attributes) are stored in the repository while only currently-used data is stored in the

clinical information store. The data is stored in the repository in an unnormalized

fashion to prevent data loss, whereas the data is stored in the clinical information store

in a normalized fashion to guarantee the data integrity. Because the clinical

information store is keeping the data that also exists in the repository, the eDiaMoND

provides an update mechanism to guarantee that the data between two parts is

consistent.

Figure 2.9 presents the architecture of the Grid Data Service. Users are not allowed

to directly submit a SQL query to the eDiaMoND database. Instead, they will send it

to the Query Service in a pre-determined format such as a XML document. After

executed, the query result is returned in form of a XML document as well.

Figure 2.9: Architecture of Grid Data Service [42]

The eDiaMoND database can store all the attributes of the DICOM files, thus it

can prevent loss of data and deal with the variety and evolution of DICOM data.

Storing data in the tabular form make it easy to represent the entity tables and their

relationships in the DICOM information model. However, eDiaMoND needs more

disk space because, as mentioned above, some piece of data is stored twice (in the

repository store and the clinical information store). Additionally, this database is based

on a row-oriented RDBMS (DB2) [45], thus its query performance on very large

datasets is limited (e.g., query processing cannot eliminate redundant read accesses if

only a few attributes are required by a query). eDiaMoND only provides users with

pre-determined queries. Moreover, although horizontal scaling is provided by using a

Grid infrastructure, this scaling out is costly and technically complex in terms of Big

Data.

Oracle

DICOM feature was first available to developers in Oracle Database 10g Release 2

(10.2) [46]. In this release, ORDImage object type was supported to permit Oracle

Multimedia to recognize DICOM content and to extract a subset of embedded DICOM

attributes associating to the entities Patient, Study, Series, etc. Oracle Database 11g

Release 1 (11.1) [47] continues not only to supply what an ORDImage had in the

previous release, but also offers more complete DICOM supports by providing a new

type, called ORDDicom object type. Oracle Database 12c supports what have been

DICOM Data Management Systems and Requirements

 25

provided in Oracle Database 11 and provides improvements. It has DICOM protocol

to allow DICOM applications and devices to easily access DICOM data stored in

Oracle Database. The DICOM content now can be stored or managed as a part of a

clinical workflow. It can also be stored in and accessed from Oracle WebCenter

Content to simplify the development and management of applications [48].

Oracle Real Application Clusters (Oracle RAC) 10g [49], 11g [50] and 12c [51]

enable to store and manage DICOM data in a cluster environment. Oracle RAC is

a cluster database implemented in Oracle Database File System to allow data to be

distributed and replicated across a pool of databases that do not share hardware and

software. It can provide the following features to OLTP applications: (1) high

availability of data in case of failure (because of a replication mechanism applied

across nodes); (2) high performance (due to using a distributed and parallel data

processing environment); and (3) scalability and elasticity, i.e., a database (or a node)

can be added to an existing cluster database to increase overall system capacity. These

features enable to build a large-scale storage system of DICOM images.

Figure 2.10: Sample DICOM Image Database using Oracle

Figure 2.10 depicts a sample DICOM image database containing a simple table

used to store the DICOM content. Items in the figure includes: ① DICOM image

database; ② DICOM image table created in the database; ③ ID; ④ DICOMImage;

and ⑤ DICOM content stored in the ORDDicom object. At the high level, an

ORDDicom object consists of five components [47]: (a) ORDDicom Object

representation: an instance of the ORDDicom object contains attributes and methods,

such as makeAnonymous(), setProperties(), extractValue() and so on, which are used

to perform tasks on the ORDDicom object. (b) XML metadata document: the attributes

are extracted from the DICOM content and stored in a XML metadata document. (c)

DICOM content: the original DICOM content is stored within the database as a BLOB

(binary large object) or stored in a local file system as a file accessed by using a pointer

from the database. (d) General attributes: the attributes are frequently accessed such

as SOP Instance UID, SOP Class UID, Study Instance UID, Series Instance UID and

so on. (e) Other attributes: the attributes are used internally by Oracle.

Using the Oracle Multimedia feature for a medical image management system

gives several advantages. First, it provides mechanisms to handle unstructured data

along with structured data inside a relational database. Second, it overcomes the

shortcomings of the PACSs because it can provide a modality-independent and vendor-

neutral data storage. Finally, it allows users to write their own SQL queries (i.e., ad-

hoc queries) to obtain information related to the entities Patient, Study, Series, etc.

DICOM Data Management Systems and Requirements

26

Table 2.4: Example of statements to manipulate DICOM data in Oracle

SQL Statements User Code in Oracle

CREATE TABLE

DICOM_image_table

CREATE TABLE DICOM_image_table (ID integer primary key,

DICOMImage ordsys.ORDDicom)

SELECT ID,

PATIENT_NAME,

PATIENT_ID,

MODALITY FROM

DICOM_image_table

SELECT ID, extractValue(t.dicom.metadata,

 '/DICOM_OBJECT/*[@name="Patient''s Name"]/VALUE',

 'xmlns=http://xmlns.oracle.com/ord/dicom/metadata_1_0') as

"PATIENT_NAME", extractValue(t.dicom.metadata,

 '/DICOM_OBJECT/*[@name="Patient ID"]',

 'xmlns=http://xmlns.oracle.com/ord/dicom/metadata_1_0') as

"PATIENT_ID", extractValue(t.dicom.metadata,

 '/DICOM_OBJECT/*[@name="Modality"]',

 'xmlns=http://xmlns.oracle.com/ord/dicom/metadata_1_0') as

"MODALITY" FROM DICOM_image_table

However, there exist some limitations when using Oracle Multimedia feature.

First, Oracle supports standard ANSI SQL, but users have to write queries in a quite

complex and unnatural way. Table 2.4 shows sample statements used to create a table

and to select attributes from that table. Second, Oracle is a row-oriented RDBMS, thus

it can offer high throughput for write-intensive (OLTP) workloads but is not optimized

for read-oriented (OLAP) workloads. Third, although Oracle RAC aims to provide

availability and performance, it still has limitations in dealing with the characteristics

of DICOM data and workloads; due to having to satisfy the ACID properties

(Atomicity, Consistency, Isolation and Durability), it does not provide sufficient

solutions to increase high availability and query performance. Finally, it is also is less

scalable and elastic when compared with other databases that aim at handling Big Data

(such as Cassandra [52] and MongoDB [53]). Implementing and scaling up a

distributed and parallel data processing environment, e.g., by adding a new database

to an existing Oracle cluster database, are costly and technically complex.

DCMDSM

Figure 2.11: Database tables in the DCMDSM model [54]

DICOM Data Management Systems and Requirements

 27

DCMDSM (DICOM Decomposed Storage Model) [54] was aimed to handle the

heterogeneity of DICOM data and to reduce the time required to answer

queries/retrieval operations. To achieve these, the DCMDSM was designed based on

the original decomposed storage model (DSM) [55]. In the DSM model, values of the

same attribute have to be archived in exclusive tables, clustered by key and value;

however, in the DCMDSM model, the attributes of the DICOM files are stored in

different tables, according to their data types/domains. In particular, the DCMDSM

model applies a vertical partitioning strategy that is based on Value Representations

(VRs). The attributes from the DICOM files are extracted, parsed and stored in

different tables according to their VRs. By this way, the DCMDSM model will create

a single table per VR.

Another difference between the DCMDSM and DSM models is the number of

attributes per table: while the DSM model uses binary tables, i.e., each table contains

a surrogate key (surrogate attribute) and an attribute value, the DCMDSM model uses

n-ary tables, with n varying according to each VR. Figure 2.11 presents database tables

in the DCMDSM model. There is hierarchical_key table and multiple VR-specific

tables, e.g., lt_value for Long Text VR, da_value for Date VR and so on. The

hierarchical_key table is used to build a relationship between values of the attributes

that belong to the same DICOM file. The surrogate key of each VR-specific table is

used as a foreign key in the hierarchical_key table. Each record of the VR-specific

table consists of attributes extracted from a DICOM file such as tag order, type, group,

element, value, length, etc. Additionally, indexes can be created on one or a

combination of the attributes.

The DCMDSM model brings some advantages. First, it can deal with the complex

structure of DICOM data by using tables to represent DICOM data. Second, it can

cope with heterogeneous/evolutive schemas of DICOM data. It allows new attributes

to be added without significant modifications in the current database schemas: a new

single database table is created per VR. Third, it can reduce storage space requirement

since null values are removed from vertically partitioned tables. Finally, storing each

attribute in a separable table makes it possible to reduce I/O bandwidth when a query

accesses only a few DICOM attributes.

However, there are several disadvantages that should be considered before

applying the DCMDSM model. First, the existing system has not validated for

different workloads. In the cases of unpredictable workloads, the model may cause

high CPU consumption for joining multiple small tables together. Second, the current

model has not provided huge storage capacity, scalability and elasticity because it has

been implemented on the top of a standard RDBMS using a single machine. Besides,

the use of the RDBMS may suffer limitations in terms of query performance, storage

capacity, scalability and elasticity as mentioned in the cases of PACSs, Oracle and

eDiaMoND. Thus, the proposed model has not dealt with high and ever-increasing

volume of DICOM data.

Document-based Database

To optimize size and performance of database, the authors in [40] proposed to use

CouchDB, an open-source document-based database, for storing and querying

DICOM data. In CouchDB database, every document is represented as a list of key-

DICOM Data Management Systems and Requirements

28

value pairs without predefined schemas. The document format is self-describing and

encoded using standard formats such as XML and JSON. Additionally, attributes

stored in a document can be changed from one document to another. Therefore, such

a document can be used to hold semi-structured data.

Figure 2.12 presents an example where DICOM data is extracted and stored in the

CouchDB database. DICOM metadata is stored in a document; the values of attributes

or data elements are stored in the document as key-value pairs. On the other hand, the

relevant pixel data, i.e., binary data, can be stored as stand-alone or embedded

attachments, i.e., the same way as attachments associated with e-mail. These

attachments can be saved in different formats, e.g., DICOM and JPEG.

Queries in the CouchDB database (retrieval, aggregation, etc.) are performed in

parallel on multiple machines by batch-oriented processing that is implemented by

using the MapReduce programming model. JavaScript is used to implement the

MapReduce to compute data represented as a collection of key-value pairs [40].

Figure 2.12: Example of DICOM data stored in CouchDB [40]

There are several advantages of using a document-based database such as the

CouchDB database to manage DICOM data. Unlike RDBMSs, a document-based

database can provide schema-free design, it thus is especially suited to archive the

DICOM files which are subject to heterogeneous and evolutive schemas. All metadata

is extracted from the DICOM files can be stored in the document-based database

without loss of information. This database also reduces storage space demand because

it can remove the need for storing null values. Besides, it offers features such as high

performance, high availability, high reliability, high scalability and elasticity: the

performance comes from easily scaling out the existing system while the availability

and the reliability are obtained by replicating data across distributed machines. With

these features, the document-based databases can solve issues of performance

degradation caused from the rapidly growing volumes of DICOM data.

However, some challenges have come up when using a document-based database

to manage DICOM data. It is generally based on the key-value store model, thus it

DICOM Data Management Systems and Requirements

 29

does not provide SQL support. Developers will find it hard to implement a common

query language like SQL. It is not efficient to build and maintain structured-table

database formats as well as relationships between tables according to the DICOM

information model. Additionally, data denormalization (using a merged tables to

reduce the number of join operations across multiple small tables) are usually applied

in the document-based database to improve the query performance; however, this

results in data redundancy and data inconsistency (updates may not performed to all

related data stored in different locations), i.e., the ACID properties are not guaranteed.

Hybrid Cloud-enabled Storage System

B. Mohamad, L. d'Orazio and L. Gruenwald [56, 57] proposed a hybrid (row-column)

cloud-enabled storage system for DICOM data management. To store DICOM data

into the system, first of all, the authors proposed to classify DICOM attributes into

three categories: (1) Mandatory attributes; (2) Frequently-accessed-together

attributes; and (3) Optional/private/seldom-accessed attributes. Next, the attributes

are manually grouped together into column groups according to these categories.

Finally, a suitable data layout is chosen to store each column group. For simplicity, we

use terms “row table” and “column table” to refer to a table being stored in a row and

a column store, respectively. The selection of data layouts for the column groups is

described as follows:

- Attributes that belong to the first two categories (i.e., mandatory and frequently-

accessed-together) are grouped together and stored in row tables. This strategy

aims at reducing tuple reconstruction cost.

- Attributes that belong to the last category (i.e., optional/private/seldom-accessed)

are stored in column tables. The aim of this strategy is to save I/O cost if only few

attributes are required by a query.

Figure 2.13: DICOM attributes stored over row- and column-oriented layers [57]

DICOM Data Management Systems and Requirements

30

Figure 2.13 illustrates the storing of a subset of attributes in row- and column-

oriented layers of row and column stores. The mandatory attributes including

PatientID, PatientNameBirthDate, and Sex and the frequently-accessed-together

attributes consisting of StudyDate and Modality are stored in row tables. On the other

hands, the optional/private/seldom-accessed attributes including Age, SmokingStatus,

PatientAddress, EthnicGroup and HeartRate are stored in a column table.

The above grouping is non-overlapping; that is, each attribute belongs to only one

column group (or vertical partition). However, the attribute UID is needed in every

column group because it will be used to join the corresponding tables storing these

column groups together. Besides, null-rows will be deleted from the vertical partitions

to save storage space.

Furthermore, the hybrid (row-column) cloud-enabled storage system was

implemented using a distributed mediator, as shown in Figure 2.14. The Oracle and

MonetDB were used as row and column stores, respectively. The mediator will control

the query processing across the storage engines; it routes a SQL user query to be

executed on the most suitable storage engine.

Figure 2.14: Distributed Mediator [57]

The hybrid cloud-enabled storage system can deal with the high complexity and

the high variety (heterogeneous/evolutive schemas) of DICOM data. The system

provides normalized data, SQL and (ad-hoc) multiple-table join queries. I/Os and tuple

reconstruction cost are decreased. However, the proposed system exists some

disadvantages. First, grouping of the attributes into the column groups and selecting

of suitable data layouts for them are manually performed. In this thesis, we call this

approach expert-based. Hence, it is difficult and tedious for experts (e.g., database

designers) to do this work in such a way, especially when the number of attributes is

very large. Second, the query performance is limited because the distributed mediator

has to decide the most suitable storage engine to perform a query, and data needs to be

moved between storage engines for the query execution. Finally, the system is hard to

scale-up (i.e., adding a new node to the current system), thus it is not well suited for

the high and ever-increasing volume of DICOM data.

2.3.3 Conclusion

The expected requirements listed in Section 2.3.1 are used as criteria of comparison of

the existing DICOM data management systems. Table 2.5 shows the comparison

result. In general, the systems using relational databases, including PACSs,

eDiaMoND and Oracle/Oracle RAC, can deal with high complexity of data, create

normalized data, and provide SQL and join supports. However, they lacks solutions

DICOM Data Management Systems and Requirements

 31

to: (1) organize data based on both workload and data-specific information to reduce

storage space demand (sparseness) and to improve performance of queries in OLTP

and OLAP workloads; (2) provide an efficient query processing strategy; and (3)

provide huge storage capacity, scalability and elasticity.

Table 2.5: Comparison of the existing systems

Existing DICOM data management

systems

Expected Requirements

R1 R2 R3

PACSs 0 - -

eDiaMoND + - -

Oracle/Oracle RAC + 0 -

DCMDSM + 0 -

Document-based Database + - 0

Hybrid Cloud-enabled Storage System + + 0

+ Featured supported, 0 partial, - not supported

The DCMDSM model can help to improve OLAP queries and reduce storage space

demand due to depending on the DSM model. Nevertheless, execution cost of OLTP

queries may be high because of multi-table joins. Moreover, the existing system was

designed and validated using a single machine, thus may has limitations at query

performance, storage capacity, scalability and elasticity.

The document-based database and hybrid cloud-enabled storage system have many

features that can cope with the characteristics of DICOM data and workloads. The

document-based database is a NoSQL database designed to handle Big Data, thus it

can deal with the high variety of DICOM data and provide high query performance,

huge storage capacity, scalability and elasticity in nature. On the other hand, hybrid

cloud-enabled storage system provided solutions depending on both workload and

data-specific information to organize and store DICOM data in a manner to improve

workload performance and to reduce storage space demand. However, both these

systems lacks the following features:

 An automated design approach that uses both workload and data-specific

information to design and store DICOM data in a way to reduce both workload

execution time and storage space demand.

 Efficient solutions for query processing over large-scale datasets, especially, to

reduce network I/Os in a distributed query processing environment.

2.4 Summary and Conclusion

DICOM data has caused challenges in data management due to the characteristics of

DICOM data and workloads. Several data management systems have been proposed

for storing and querying this data. With regards to the data storage model, the main

classifications of databases used in the existing systems include row-oriented database,

vertically-decomposed row-oriented database, NoSQL document-based database and

hybrid cloud-enabled storage system. They have their own strengths and weaknesses.

DICOM Data Management Systems and Requirements

32

Therefore, the main goals of our study are to propose efficient methods for storing

and querying DICOM data that will be applied to build a new DICOM data

management system. To fill the gaps in the existing systems, the new DICOM data

management system needs to meet the following expected requirements: (R1) Flexible

data (dealing with high complexity, variety and high and ever-growing volume of data

and providing normalized data); (R2) Flexible querying (supporting SQL ad-hoc

queries with joins); and (R3) Efficiency of storage and CPU (based on both workload

and data-specific information to organize and store data in a manner that reduces both

storage space demand and execution time of queries in mixed OLTP and OLAP

workloads; providing solutions for efficient query processing over on large-scale

datasets; providing huge storage capacity, scalability and elasticity).

The document-based database and hybrid cloud-enabled storage system have

showed many features that are able to satisfy the above requirements. However, they

still lack an automated design approach that is able to use both workload- and data-

specific information to organize and store DICOM data in a manner to reduce both

storage space demand and workload execution time. In addition, they lack efficient

solutions for query processing over large-scale datasets, especially in a distributed

query processing environment.

Key Points

 We gave an overview of background information on DICOM standard.

 We determined the characteristics of DICOM data and workloads that may

cause challenges in DICOM data management.

 We reviewed the existing DICOM data management systems and discuss their

strengths and weaknesses.

 We conclude with the limitations of the existing systems with respect to the

expected requirements for a new DICOM data management system.

33

Chapter

Databases and Related Techniques

3.1 Overview

An overview of this chapter is shown in Table 3.1.

Table 3.1: Overview over Chapter 3

3.2 Classifications

3.2.1 OLTP and OLAP Workloads 3.2.2 Relational Databases

3.2.3 NoSQL Databases 3.2.4 NewSQL Databases

3.3 Cluster Computing Frameworks

3.3.1 MapReduce 3.3.2 Spark

3.4 Data Layouts

3.4.1 Row-oriented Storage Model 3.4. 2 Column-oriented Storage Model

3.4.3 Hybrid Storage Models

3.5 Vertical Partitioning and Bloom Filter Techniques

3.5.1 Vertical Partitioning 3.5.2 Bloom Filter and Intersection Bloom Filter

3.6 Key Components of the New System

3.6.1 Data Model 3.6.2 Data Storage Model

3.6.3 Data Schema 3.6.4 Query Processing

3.7 Summary and Conclusion

We first present backgrounds of different workload types including OLTP and

OLAP. Next, we provide comprehensive backgrounds of the most prevalent databases

used for Big Data, including relational, NoSQL and NewSQL databases. We elucidates

about their advantages and disadvantages. Then, we review common cluster

computing frameworks including MapReduce and Spark. The former is based on

batch-oriented processing while the latter is regarded as a low-latency version of the

MapReduce and popularly used for interactive ad-hoc query and analysis. After that,

we present backgrounds on data layouts. Following that, we concentrate on the vertical

partitioning techniques that are applied to reduce storage space for the relational

databases (especially for sparse datasets). We present Bloom filter (BF) and

Intersection Bloom filter (IBF) techniques that can be applied to improve query

performance in distributed query processing environments. Next, we discuss about key

components of a new DICOM data management system. Finally, we summarize and

conclude the chapter by selecting solutions for these key components.

Databases and Related Techniques

34

3.2 Classifications

3.2.1 OLTP and OLAP Workloads

OLTP Workloads

OLTP (Online Transaction Processing) is a computer technology term referring to

systems that facilitate and efficiently support transaction-oriented applications where

the most frequently-used operations are to insert, delete, update or retrieve all (or most)

of columns of a table, e.g., to return all information about a specific patient.

The OLTP systems require very fast query processing and maintain data integrity

in multi-access environments. Their databases should optimize write operations;

besides, they need to support data normalization that minimizes data redundancy and

thus improves performance of the write operations. Row-oriented databases are

primarily designed for OLTP applications.

OLAP Workloads

OLAP (Online Analytical Processing) is a computer technology term referring to

systems that support for analytical applications, which typically focus on analyzing

data in their database. In these systems, data is seldom updated, but it is frequently

read and aggregated. In other words, OLAP workloads consist of read-intensive

queries that need to access or aggregate over many rows but only for a few columns.

Databases should optimize read and aggregation operations. Column-oriented

databases are read-optimized, and are thus usually used for the OLAP applications.

3.2.2 Relational Databases

Nowadays, the most popular databases are Relational Databases which have

implemented the relational data model proposed by E. F. Codd in 1970 [58]. This data

model was originally designed for structured data and predefined schemas. A schema

is a logical database design. A relation is used to hold information about entities in the

real world. A relation and a relationship among relations are represented as a table

made up of rows and column. Each row represents a tuple (record) which describes a

single element of the entity while each column represents an attribute (field) of that

entity. A relation instance is a set of rows, each of which conforms to the schema of

the corresponding relation. Figure 3.1 illustrates a table storing a relation instance of

the relation Patient with the following attributes: PatientID, PatientName,

PatientBirthDate, PatientSex and EthnicGroup.

PatientID PatientName PatientBirthDate PatientSex EthnicGroup

P40028 Smith 19610712 F Whites

P40029 Muller 19500101 M Whites

P40030 Young 19700509 M Asians

P40031 Carol 19900122

P40032 Garcia 19990515 Blacks

Figure 3.1: Relation instance of the relation Patient

Databases and Related Techniques

 35

3.2.3 NoSQL Databases

However, with the explosion of Big Data, the relational data model finds it difficult to

handle semi/unstructured data. There is a trend moving towards NoSQL databases

(Not Only SQL database). A NoSQL database is any database whose organization is

not based on the relational data model. The NoSQL databases are not a replacement

for the RDBMSs, but they are able to fill the gaps of the RDBMSs because they have

been built to handle unstructured data and to provide horizontal scalability and high

availability with low administrative cost.

Figure 3.2: Examples of NoSQL databases

NoSQL databases are usually classified into four categories: key-value stores,

column-family stores, document stores and graph databases [59]. Figure 3.2 gives

examples of the NoSQL databases storing the same set of frequently-accessed-together

attributes that provide information about patients and physicians involving in the

patients’ studies. These attributes include PatientName, PatientAge, PregnancyStatus,

Referring-PhysicianName and PerformingPhysicianName. With the use of self-

describing structures, these databases can represent only non-null values of tuples.

 Key-value stores: Key-value stores represent data as a set of key-value pairs such

that values are indexed by keys. The key-value model is the most flexible NoSQL

model for modeling data, rapidly changing data structure because it does not

enforce any structure on data (e.g., tables). It is also very efficient for storing

distributed data and retrieving information by keys, and facilitates for

decomposition and replication of data to provide high scalability and scalability.

However, a key-value store is not a good choice for applications that require fixed-

structured data or multiple-key transactions cross-document operations. Amazon’s

Dynamo [60] and Linkedin’s Voldemort [61] are using this data model.

Databases and Related Techniques

36

 Column-family stores: Column-family stores extend the key-value model by re-

representing data in forms of table-like data structures. However, unlike strictly

structured tables in relational databases, to be able to deal with sparse columns and

no fixed schema, the column-family stores are based on a flexible data model: each

row consists of a set of columns, where each single column contains a key-value

pair; the key is the column name; the value may have an arbitrary data type such

as a integer, a string, JSON document or a binary image; additionally, each row

may have a different number of columns. Some column-family stores have been

commonly used such as Google Bigtable [62], HBase [63] and Cassandra [52].

 Document stores: Document stores are regarded as a variation of the key-value

stores. They store a set of documents, typically encoded using a standard format

such as XML, JSON, BSON or others. For instance, MongoDB [53] uses BSON

format while CouchDB [64] applies JSON format. Documents may have different

formats. By this way, each document can have a complex format, e.g., containing

nested objects inside it, in order to be able to support for efficiently storing semi-

structured documents (e.g., email messages). Besides, the document stores allow

to create primary indexes on keys and secondary indexes on contents (instead of

only on keys as in the case of key-value stores) such that they can provide fully

searching either by keys or values. However, similarly to the key-value stores, they

are not efficiently used for cross-document transactions.

 Graph databases: Graph databases use graph structures as their data model where

nodes represent entities, and edges represent relationships among the entities.

These entities and relationships are described by key-value pairs. The graph

databases are efficiently used for handling the interconnections among different

entities because they can apply well-studied graph algorithms to explore

relationships among their data [59]. Some graph databases have been commonly

known such as Neo4J, DEX Infinite Graph, Infogrid, HyperGraphDB, Trinity,

Titan and Allegro Graph [65-67].

3.2.4 NewSQL Databases

NewSQL databases are regarded as modern relational database management systems.

They are based on the relational data model, but are able to provide horizontal

scalability and high performance as NoSQL databases while still ensuring the

traditional ACID guarantees of relational databases. A noticeable characteristic of the

NewSQL databases is that although they can use different physical storage layouts

(e.g., key-value stores and column-oriented stores), they still provide users with the

relational schemas (i.e., tables or relations) and SQL as main mechanisms to interact

with any application. They also allow the users to create relationships between tables

[68]. Additionally, they can apply shared-nothing architectures of cloud computing to

offer horizontal scalability. Some NewSQL databases have commonly known such as

VoltDB [69], Clustrix [70], NuoDB [71], Google Spanner [68].

Databases and Related Techniques

 37

3.3 Cluster Computing Frameworks

There are several large-scale data processing techniques in order to deal with a variety

of workloads: (1) Batch-oriented processing: processing recurring tasks such data

mining or aggregation over very large datasets; (2) Stream processing: processing data

streams arriving continuously at real time; (3) OLTP: processing transactions using

NoSQL databases; (4) Interactive ad-hoc query and analysis: processing ad-hoc

queries and analyses with user interaction; and (5) Search over semi-structured data

items and documents: retrieving information that satisfies users’ need from a high

volume of structured and semi/unstructured data [26, 72]. Because our study is scoped

to focus on the interactive, ad hoc query and analysis technique (mentioned in Section

1.4 in Chapter 1), we concentrate an in-memory cluster computing framework called

on Spark that is able to provide high performance for interactive workloads. Besides,

Spark has been developed in order to avoid high latency of MapReduce, a successful

batch-oriented programming model, thus we also present backgrounds of MapReduce.

3.3.1 MapReduce

The batch-oriented processing technique processes a high volume of data by splitting

a job into multiple tasks which are performed in parallel on multiple nodes (machines).

The typical stages of a batch job include split, sort and merge.

MapReduce, originally introduced by Google, has been a successful batch-oriented

programming model for recurring tasks such data mining or aggregation over very

large datasets on large clusters of commodity nodes [73]. In order to facilitate the

development of programs, the MapReduce operates on the top of a distributed file

system (DFS) such as Google File System (GFS) or Apache Hadoop Distributed File

System (HDFS). MapReduce run-time environments (e.g., Hadoop) are responsible

for tasks, including data partitioning, replication, job scheduling and communication

between nodes in the cluster such that developers do not have to care about these tasks

In this programming model, a MapReduce job execution plan is divided into two main

phases, namely Map and Reduce, whose computation is expressed employing two

user-defined functions: Map() and Reduce(). Besides, there is a hidden phase between

these two phases, called Shuffle and Sort, which is also regarded as the first step of the

Reduce phase. The input and output formats of these phases are depicted in Table 3.2.

Table 3.2: Input and output formats of the phases in MapReduce

Phase/Step Input Output

Map (k1, v1) List(k2, v2)

Shuffle and Sort List(k2, v2) (k2, List(v2))

Reduce (k2, List(v2)) List(k3, v3)

Map: When a MapReduce job is sent to the MapReduce run-time environment,

Mappers (also known as Map tasks) are started in parallel on nodes in the cluster. Each

Mapper reads key-value pairs, (k1, v1), from DFS and applies the Map function to

transform them into a list of intermediate key-value pairs, List(k2,v2), where each key

may have multiple values. Intermediate results are stored in the local file system, where

the Mappers are running.

Databases and Related Techniques

38

Shuffle and Sort: Each Reducer task will transparently start the Shuffle and Sort step

as its first step. All the intermediate results from all the Mappers are grouped by key

and are split among the Reducers; each Reducer takes all the values associated with

the same key. After all the data of the Mappers are sent (shuffled) to the nodes of the

Reducers (in their local file system), the key-value pairs are merged and sorted into a

larger list of key-value pairs. Next, this list is grouped by key to generate a new list of

key-value pairs, (k2, List(v2)), where all the key-value pairs sharing a common key are

grouped into a single key-value pair. In addition, the resulting key-value pairs are

buffered as r local files, where r is the number of Reducers.

Reduce: When all actions in the Shuffle and Sort step complete, the Reducers load the

key-value pairs from the local output files in parallel. Each Reducer applies the

computation defined in the Reduce function to the values having the same key and

generates a new list of key-value pairs, (List(k3, v3)). Finally, the results of all the

Reduce tasks are written back to DFS and used as the job result.

Figure 3.3: A job that counts the number of patients by sex using MapReduce

When a SQL query execution engine is built on top of the MapReduce (e.g., Pig

[74] and Hive [75]), to execute a SQL query, its query optimizer generates a query

execution plan consisting of a set of one or more MapReduce jobs. The parallelism

only occurs within each job. Figure 3.3 describes an example of the computation of a

SQL query: the query is transformed into a sequence of three sub-queries executed by

three MapReduce jobs 1, 2 and 3. Assume that job 2 is used to compute the sub-query

SELECT COUNT(*) FROM Patient GROUP BY Sex (to count the number of patients

by sex). We also assume that MapReduce environment is using 3 Mappers and 2

Reducers. Here, the input table Patient contains only two columns, PatientID and Sex,

with 9 tuples. It is split into 3 splits, each of which contains 3 tuples.

 In the Map phase, each Mapper receives each line in the split (assigned for it) as a

key-value pair (Patient ID, Sex), such as (P40028, F), (P40029, M), etc., and

respectively outputs a corresponding intermediate key-value pair (Sex, 1), such as

(F, 1), (M, 1), etc., where each occurrence of either F or M will be counted as 1.

By this way, each Mapper will output a list of intermediate key-value pairs

List(Sex, 1) for its input data, e.g., Mapper 1 produces (F, 1), (M, 1) and (M, 1).

Databases and Related Techniques

 39

 In the Reduce phase, first of all, the Shuffle and Sort step is performed as follows:

key-value pairs having the same value of the key Sex will be sent to the same

Reducer; then they are merged, sorted and grouped by this key. For instance, after

this step, Reducer 1 obtains one key-value pair (F, [1, 1, 1, 1, 1]). As soon as the

Shuffle and Sort step finishes, each Reducer loads the key-value pairs from its local

output file, computes the sum of the values of the same key Sex, and generates a

new list of key-value pairs List(Sex, Sum), e.g., the Reducer 1 loads the key-value

pair (F, [1, 1, 1, 1, 1]), computes the sum and generates the pair (F, 5). Finally, the

results of all the Reducers are written back to DFS.

MapReduce provides a suitable solution for parallel processing of large-scale data

because it increases the locality of data and processing at the nodes where the data is

kept. Besides, this programming model is simple since its parallel data processing

approach is mainly based on two phases Map and Reduce. However, the execution of

each MapReduce job needs to replicate data for local computation at the nodes and has

to perform a lot of reads and writes for sharing data across the phases. As a

consequence, data replication, disk I/Os and network latency will cause a lot of delays

in the architecture of the MapReduce.

Pig [74] and Hive [75] are two software frameworks that facilitate querying and

managing Big Data. Both of them provide SQL-like languages, i.e., Pig Latin and Hive

QL, respectively. Pig’s engine excels at processing complex data flows in parallel,

whereas Hive’s engine is more suited for Big Data analytics applications, e.g., data

summarization and analysis. Their compilers will produce sequences of Map-Reduce

programs running in parallel on Hadoop clusters. However, both Pig and Hive are

dependent on the Hadoop and MapReduce executions; thus, their queries may have

delay time in data processing in HDFS. This implies that they may not be suitable for

Big Data analytics applications that need rapid response times.

3.3.2 Spark

The interactive ad-hoc query and analysis technique refers to processes designed to

use current data for answering single specific questions or domain specific analyses

whose results are analytic reports, statistical models, or other forms of data

summarization. These processes are often done through interactions between humans

and computer systems. Therefore, they need low-latency so that users can

directly perform ad-hoc queries and analyses and can react to current circumstances.

Although traditional OLAP systems have supported for these requirements, how to

provide fast query response times on any huge business data is still a big challenge.

Batch-oriented processing model of MapReduce is not well suited for the

interactive ad-hoc queries and analyses due to its high latency. In recent years, some

innovation systems have been proposed for performing interactive ad-hoc analyses at

scale such as Apache Drill [26], Hive on LLAP (Live Long and Process) [76],

BigQuery [77], CitusDB [78] Hadapt [79], HAWQ [80], Impala [81], Phoenix [82]

and Spark [83]. These systems provide low-latency queries, user queries written in a

human-readable syntax (e.g. SQL), NoSQL stores (e.g. HDFS) and data presented in

tabular or nested form. Below, we give more information about Spark.

Databases and Related Techniques

40

Spark [21, 83] is an in-memory cluster computing system which can run on

Hadoop and is usually referred to as a low-latency version of the MapReduce. To

reduce latency which is caused by data replication and disk I/O operations performed

across steps in MapReduce phases, Spark tries to keep the intermediate data in memory

as much as physically possible to reduce the need to write the data to disks.

Figure 3.4: Comparison between Hadoop MapReduce and Spark

Figure 3.4 presents a comparison between Hadoop MapReduce and Spark: while

the Hadoop MapReduce (Figure 3.3(a)) incurs a high I/O cost (reads and writes) during

the query execution, Spark (Figure 3.3(b)) reduces this cost by trying to keep the data

in memory. To achieve this, Spark provides a new storage primitive called resilient

distributed datasets (RDDs) so that developers can use them to store the data that needs

to be processed. Spark then attempts to keep these RDDs in the memory and controls

their partitioning to optimize data placement across all nodes in the cluster. Another

benefit of the RDDs is its ability to fault tolerance without requiring replication

through a notion of lineage: if a partition of an RDD is lost, the RDD will track how

to re-compute just that partition from base data on disk. This helps Spark runs faster

than other typical distributed systems such as the MapReduce. Besides, DataFrames

in Spark allow users to represent data in form of tables. Spark enables querying the

data using a SQL-like language integrated with MapReduce-based computations [21].

3.4 Data Layouts

3.4.1 Row-oriented Storage Model

Figure 3.5: NSM layout of the relation Patient

Row-oriented storage model (N-ary Storage Model or NSM) has been used in

traditional RDBMSs (such as Oracle, DB2, SQL Server, etc.). In this model, all

attributes of the same tuple are stored consecutively on disk. Figure 3.5 presents the

row-oriented storage model corresponding to the relation Patient given in Figure 3.1.

Databases and Related Techniques

 41

This model is write-optimized, thus it is efficiently used for OLTP workloads. This

advantage is achieved because, co-locating the attributes of the same tuple leads to

better cache locality. The entire tuple can be read or written with a single disk seek.

Besides, the tuple reconstruction cost is also low.

The row-oriented storage model has been widely applied to represent data due to

its simplicity to implement horizontal schemas of relational tables. This solution

is known as horizontal representation [14, 84]. However, the horizontal representation

is not well-suited for handling the variety of data. For instance, if data is sparse, storing

a large number of null values in a table will cause waste of storage space. The row-

oriented storage model is also inefficient when used for OLAP workloads because if

only a few attributes of a table are required by a query, the entire table still needs to be

read into memory from disk before any projections are performed. This causes a lot of

redundant attribute accesses and thus degrades query performance.

3.4.2 Column-oriented Storage Model

In contrast to the row-oriented storage model, column-oriented storage model has been

applied in column-oriented RDBMs such as MonetDB [18] and C-Store [19]. This

model is built based the Decomposed Storage Model (DSM) [55] where a n-ary table

of an horizontal representation (i.e., horizontal table) is vertically decomposed into n

binary tables, each of which has two columns: surrogate (sur) and attribute.

Figure 3.6: DSM layout of the relation Patient

Figure 3.6 gives an example of the DSM model corresponding to the relation

Patient given in Figure 3.1. Here, the horizontal table of the relation Patient is divided

into five separate binary tables, where only non-null values of the attributes are stored.

The use of the surrogate enables values of different attributes (having the same

surrogate value) to be tied together to reconstruct the original tuple. Figure 3.7 presents

the physical stores corresponding to the above the DSM layout of the relation Patient.

Figure 3.7: Physical representation of the DSM layout of the relation Patient

Databases and Related Techniques

42

In general, the column-oriented storage model is read-optimized because it enables

to read only the required columns while the rest of columns are ignored. This reduces

disk I/Os during the query execution. Thus, it is well-suited for analytic applications

(OLAP workloads). However, this model has high cost for writing or reading a

complete tuple: writing a new tuple requires updating each of the columns of that tuple;

reading a complete tuple requires locating the correct value from each column of that

tuple in order to reconstruct the original tuple format. As a result, this model performs

full tuple operations more slowly than the row-oriented storage model [85].

3.4.3 Hybrid Storage Models

The data storage models presented in the previous sections are optimized for either an

OLTP or an OLAP workload, but not both. Therefore, if an application is involving to

a mixed OLTP and OLAP workload, system performance requirement is hard to be

satisfied. To overcome this limitation, several hybrid storage models have been

introduced. In this section, we present the following models: column-group storage

models, Mirror and Fractured Mirrors [86], HyPer [87], Trojan Columns [13] and SAP

HANA database [20].

Column-Group Storage Models

Column-group storage models are regarded as hybrid storage models because they are

built by organizing column groups in a row-oriented storage layout, a column-oriented

storage layout or both of them in order to efficiently process mixed workloads. In this

section, we present such storage models including Partition Attributes Across (PAX)

[88], Data Morphing [10], and HYRISE [12].

Some researches [88-90] have shown that the performance of modern database

systems are impacted not only by the number of disk I/O operations but also by the

delays related to their processors (CPUs). Since cost of main memory is decreasing,

there has been a trend that the modern database systems attempt to keep a large amount

of data in main memory to reduce I/Os between disk and main memory [91]. However,

in this way, the performance bottleneck is transferred to the access latency between the

processor and the main memory [92]. To reduce this bottleneck, the modern database

systems have used a cache memory (that is small, fast but expensive) between the

processor and the main memory to supplement for the workings of the processor [90].

If required data is already cached, the overall speed of processing data will increase,

otherwise the cache misses will cause the processor to request the required data from

the slower main memory. Besides, loading useless data into the cache causes waste of

bandwidth and leads to the need of replacing the current data with the relevant data in

the future. Therefore, to speed up the data processing, the frequently-used data should

be stored in cache to reduce the cache misses.

Partition Attributes Across: Partition Attributes Across (PAX) [88] was

introduced as a new storage model to overcome the problem of low cache utilization

in the DSM model. To achieve this, the PAX model modifies the data organization

within each disk page of the NSM model. Similarly to the NSM model, the PAX model

also proposed that all attribute values of the same tuple will be stored in the same disk

page (i.e., logical block) as in a normal row store. However, unlike the NSM model,

Databases and Related Techniques

 43

now the PAX model decomposes a disk page into multiple mini-pages, and then groups

all values of a particular attribute together on the same mini-page. Figure 3.8 depicts a

disk page of the PAX layout used to store the relation Patient given in Figure 3.1. Here,

the PAX model divides a disk page into five mini-pages, each of which contains only

the values of a particular attribute.

Figure 3.8: A disk page of PAX layout of the relation Patient

The PAX model has several advantages and disadvantages. It can fully utilize the

cache because only the values of required attributes are loaded into cache from main

memory. In addition, tuple reconstruction cost of the PAX model is negligible because

only tuples within a disk page need to be reconstructed; this cost is expensive in the

case of the DSM model. Therefore, the PAX model combines the advantages of both

the NSM and DSM models. Unfortunately, this advantage will be lost, if many

columns from a table need to be accessed together to answer a query. Scanning many

columns from a table will cause more cache misses because the PAX model has to

jump from one column to another in memory. Hence, a decision to use the PAX model

should be based on attribute usage.

Data Morphing: Data Morphing [10] is considered as the first approach that was

proposed to group the frequently-accessed-together attributes and then keep them

together in the same place in a data storage. Similarly to the PAX model, the main

focus of the Data Morphing model is to increase the CPU cache performance.

Furthermore, it extended the PAX model to achieve a more flexible storage model. A

disk page of the Data Morphing model is decomposed into zones instead of mini-

pages. Each zone stores the values of the same attribute group of the relation. For

example, Figure 3.9 depicts a disk page with four zones of Data Morphing layout

corresponding to the relation Patient given in Figure 3.1. Here, we assume that two

attributes Patient Name and Patient Birth Date are frequently accessed together, so

their values are kept in the same zone 2.

Databases and Related Techniques

44

Figure 3.9: A disk page of Data Morphing layout of the relation Patient

Besides the above data organization, the Data Morphing model proposed a hill-

climbing algorithm to determine the optimal attribute groups depending on a given

workload. The Data Morphing model is able to reduce cache misses when performing

queries accessing to only a few or multiple attributes. However, the proposed hill-

climbing algorithm has an exponential time complexity, with respect to the number of

attributes, thus it does not scale to large relations, for example, with hundreds of

attributes.

HYRISE: HYRISE [12] is a main-memory hybrid database system. To achieve

high performance in a mixed workload environment, it provides an automated database

design tool to automatically partition a table into multiple vertical partitions (or column

groups) with varying widths depending on attribute access patterns. In particular, for

OLAP queries, the tool prefers to suggest narrow partitions because such queries

frequently access just a few columns of a table. In contrast, for OLTP queries, wide

vertical partitions are more efficient to reduce cache misses than narrow ones because

these queries usually access all (or most) columns of a table. The HYRISE is referred

to as an in-memory column-oriented database system since it creates vertical

partitions, each of which is composed of frequently-accessed-together attributes and

represented by a data structure, called container that is allocated in main memory.

The main improvements of the HYRISE over the Data Morphing model are as

follows: The cache-miss model of the HYRISE is able to capture several additional

key concepts such as partial projections, data alignment and query plans [12] (which

were missed in the Data Morphing model), thus it can accurately estimate the number

of cache misses incurred in a particular partitioning with respective to the attribute

access patterns. This helps the HYRISE achieve significantly better query performance

than the Data Morphing model. Besides, the grouping and pruning algorithms

proposed in the HYRISE are able to scale to tables with hundreds of columns (the Data

Morphing model cannot scale to wide tables). Nevertheless, the disadvantage of the

HYRISE is that it is a main-memory database system, so it may be suitable for storing

small databases, whose size should be smaller than the amount of the physical

available memory. This limitation may make the system have performance problems

and less efficient when used to handle high and ever-growing volume of data (as

DICOM data).

Databases and Related Techniques

 45

Mirrors and Fractured Mirrors

The mirrors and fractured mirrors approaches [86] try to store data using both the

NSM and the DSM layouts to retain their own advantages for mixed workloads.

Figure 3.10: Mirrors and fractured mirrors [86]

In the mirrors approach, two disks are used. The (original) data is completely

replicated into two copies (replicas): one uses the NSM layout while the other uses the

DSM layout; each copy is put on one disk, as illustrated in Figure 3.10(a). The query

optimizer will redirect each query to its preferred data layout. This approach is simple

but exists two limitations: First, if the workload is skewed towards one of the two data

layouts, the majority of queries will be executed using data stored on one disk. The

workload thus cannot be distributed uniformly across both disks. Second, random

seeks cannot be distributed equally across replicas because different methods can be

used to retrieve data on each disk: the NSM layout can retrieve a full tuple via a single

access while the DSM layout has to perform index lookups on a surrogate on a table.

To overcome the above problems, the fractured mirrors approach extended the

mirrors approach so that each disk has a complete copy of data stored in multiple data

layouts, as illustrated in Figure 3.10(b). This approach can be described as follows:

First, like the mirrors approach, the (original) data is completely replicated into two

copies using different data layouts: NSM and DSM. Next, the NSM copy is declustered

into two horizontal partitions: NSM0 is put on disk 1 while NSM1 is put disk 2.

Similarly, the DSM copy is also declustered into two horizontal partitions: DSM0 is

put on disk 2 while DSM1 is put on disk 1. By this way, the workload can be spread

evenly across both disks even if it is skewed; additionally, the random seeks can be

divided equally between disks as well.

The advantage of mirrors and fractured mirrors approaches is that the query

optimizer can choose an appropriate data layout (NSM or DSM) to achieve a better

query performance. In addition, the approaches ensure against data loss in the event of

a hard drive failure. However, there exist several disadvantages of these approaches.

First, they need more storage space to store multiple copies. Second, they require

complicate data management to ensure data integrity in two copies. Third, the

approaches have been implemented in software, instead of hardware, thus they

will be inefficient. Last, the current approaches simply create round-robin based

schemas, thus they cannot produce efficient schemas for various workloads.

Hyper

HyPer [87] is a hybrid OLTP & OLAP main-memory database system that can handle

both OLTP and OLAP workloads simultaneously. The HyPer separates two types of

Databases and Related Techniques

46

workloads and controls concurrency transactions by creating transaction-consistent

snapshot of the database via hardware-assisted virtual memory management of the

operating system. OLTP queries are executed serially by the original process, using

original physical memory segments. When many OLTP queries concurrently updates

the same memory segments, the operating system creates a physical copy of the data

to preserve the snapshot consistent. To avoid any interaction with OLTP, when the

HyPer needs to execute an OLAP processing, it performs a fork operation to create a

virtual memory snapshot. The forked child process (OLAP) gets an exact copy of the

address space of the parent process (OLTP), as illustrated in Figure 3.11. However,

because the HyPer uses the virtual memory snapshot functionality, it does not

physically copy the memory segments. Instead, it applies a lazy copy-on-update

mechanism. At beginning, the parent process (OLTP) and the child process (OLAP)

use the same physical memory segments. Then the operating system reroutes

(translates) the virtual memory accesses, e.g., to a data item a, to the original physical

memory segments. At this time, the virtual memory page has not yet created. Once

the data item, e.g., a, is updated, the copy-on-update mechanism is activated to

replicate the virtual memory page storing the data item a. Afterwards, the OLTP

process can accessed to a new state of the data item, i.e., a’, while the OLAP process

can still access the old state of the data item, i.e., a.

Figure 3.11: Copy-on-update mechanism [93]

The advantage of the HyPer is that it provides an efficient concurrency control

mechanism as it deals with simultaneous mixed OLTP and OLAP workloads. The

HyPer is regarded as an in-memory column-oriented database system since it

transforms the database tables into the column-oriented data layout in vector-based

virtual memory. To better utilize the main memory, the column-oriented data is

horizontally partitioned and each resulting partition is classified by its access

frequency. The seldom-accessed data will be compressed before stored in the main

memory. The disadvantage of the HyPer is that it is a main-memory database system,

so the problem of main memory limitation will lead to the performance problem.

SAP HANA Database

SAP HANA database (or SAP HANA DB) [20, 94, 95] is an in-memory column-

oriented database system. It can handle both OLTP and OLAP workloads and deal with

different characteristics of data, such as structured, semi- and unstructured data within

the same system. To achieve these features, it uses multiple data processing engines:

Databases and Related Techniques

 47

Relational engine is responsible for managing relational data (structured data) that can

be represented in either row-oriented or column-oriented tables. This engine can

process the relational tables represented in both row- and column-oriented storage

layouts. Additionally, row- and column-oriented tables can be used together in the

same SQL statement. The graph and text engine are respectively responsible for

processing semi- and unstructured data: graph and text data.

To obtain the best performance, the SAP HANA DB pays more attention to

organizing data in main memory, instead of disk, for better cache utilization. The data

processing engines try to store as much data as possible in main memory. The column-

oriented data can be compressed to reduce the size of the data before migrating them

into main memory. In addition, the data will be classified as hot or cold data depending

on access frequency [95]: the hot data will be cached in the main memory, otherwise

stored on disk. The hot data for OLTP workloads usually includes the most recently

accessed tuples, while the hot data for OLAP workloads typically consists of the most

recently scanned or aggregated columns.

The limitation of the SAP HANA DB is that a system administrator needs to

manually determine at definition time whether a new table will be stored in a row- or

a column-oriented data layout, and then modify the application to query suitable tables.

That is, there is a lack of tool support for automating these works.

3.5 Vertical Partitioning and Bloom Filter Techniques

This section provides background information of common techniques used for schema

design of relational databases and query performance improvement. We pay attention

on vertical partitioning techniques that are able to reduce workload execution time and

storage space size for sparse datasets. Besides, 𝐵𝐹 and 𝐼𝐵𝐹 techniques can reduce

network and disk I/O costs in distributed query processing environments.

3.5.1 Vertical Partitioning

The vertical partitioning is a technique to divide a table into a number of sub-tables. It

aims at reducing I/O costs. Existing vertical partitioning algorithms are usually

classified into different approaches based on some dimensions: (1) measure: cost-

based or affinity-based; (2) search strategy: top-down or bottom-up. However, because

we are looking for an algorithm that can take into account the combined impact of both

the characteristics of data (e.g., sparseness) and workloads (e.g., mixed OLTP and

OLAP workloads) on the quality of vertical partitioning results, in order to easily find

out the gaps in existing studies, we add a new dimension called input information. By

this way, we can classify the existing algorithms into workload-based or data-based.

The classifications of the current approaches corresponding to these dimensions are

discussed below.

Cost-based vs. Affinity-based Approaches

Cost-based algorithms [96-98] need an objective function (a cost function) to

minimize the total workload execution cost of a current system. Such an objective

function usually represents a combination of several cost components such as CPU,

Databases and Related Techniques

48

I/O and communication costs. The traditional optimization-based techniques such as

hill climbing, simulated annealing and genetic algorithm [99-101] can be applied to

find out a set of vertical partitions to minimize the objective function. However, a

problem is that it is usually hard to build cost functions that accurately express complex

execution mechanisms of query optimizers/engines of the current systems [11].

On the other hand, affinity-based algorithms [6, 102-104] are based on attribute

affinity (which shows how often attributes are simultaneously accessed by the same

queries in a given workload) to cluster the attributes into clusters. A limitation of the

affinity-based algorithms is that affinity measures are usually independent from the

execution of the corresponding query optimizers or query engines of current systems.

Thus, the resulting clusters should be further validated on the targeted systems [11].

Top-down vs. Bottom-up Approaches

Top-down algorithms [6-8] usually begin with a schema containing all attributes; and

for each step, they decompose that schema into two smaller schemas. This procedure

is repeated similarly for each resulting schema until the given objective function (a

cost model to compute the total workload execution cost in a given workload) cannot

be further improved.

In opposite to the top-down algorithms, bottom-down algorithms [9-13] begin with

a set of minimally small vertical partitions (i.e., small schemas), each of which may

contain either a single attribute or a subset of attributes; and for each step, a pair of

vertical partitions are merged together into a larger vertical partition. This procedure

is repeated similarly until the objective function cannot be further improved.

Workload-based vs. Data-based Approaches

Workload-based algorithms are the ones depending on workload-specific information

(e.g., attribute usage of queries) in order to generate vertical partitions. As such, the

above-mentioned approaches (i.e., cost-based, affinity-based, top-down or bottom-up)

can be also classified as workload-based approaches if they are using workload-

specific information as their input. For instance, we can refer to the vertical

partitioning algorithm applying a bottom-down strategy in [13] as a workload-based

algorithm. The advantage of the workload-based algorithms is that they can improve

the workload performance corresponding to given attribute access patterns. However,

they do not take data-specific information (e.g., data sparseness) into consideration,

thus they do not mainly focus on reducing storage space size.

In contrast, data-based algorithms usually have no knowledge about the workload;

instead, they depend on the data-specific information to perform vertical partitioning.

Most studies proposed the data-based algorithms to design schemas for sparse

datasets. Generally, these algorithms used the data-specific information as their input

in order to cluster a set of attributes into a number of subspaces (i.e., column groups)

in a manner to minimize the sparseness of data. For instance, B. Cui et al. [14]

proposed an approach called HoVer that clusters a sparse data space into multiple

subspaces. To achieve this, they defined a correlation measure and used it in a heuristic

clustering algorithm to group highly correlated attributes (which are frequently co-

active) into subspaces. On the other hand, Levandoski and Mokbel [15] proposed data-

centric approach that uses a two-phase algorithm to create tables from RDF triples:

Databases and Related Techniques

 49

first, the clustering phase uses a support threshold to cluster a set of attributes into a

number of column groups in order to reduce the number of joins; then, the partitioning

phase tries to optimize storage space by reducing the number of null values. However,

this approach do not make any assumption about the query workload statistics.

Besides, E. Chu et al. [16] proposed wide-table approach to extract hidden schemas

from a sparse dataset. To achieve this goal, they applied the Jaccard’s coefficient to

measure the similarity between any two attributes in terms of the co-occurrence (i.e.,

simultaneously having non-null values), and implemented a k-NN clustering

algorithm, given in CLUTO [105], to group co-occurring attributes together into the

same subspace. By this way, hidden schemas can be explored from the sparse datasets.

There is lack of studies that are able to take into consideration the combined impact

of both workload- and data-specific information on the quality of vertical partitioning

results. Although studies in [14-16] provided solutions to find out schemas from sparse

datasets in a way to reduce storage space demand, from which the query performance

can be improved, they replies only on the data-specific information. In fact, the data-

centric approach did not assume a particular query workload. Alternatively, the HoVer

and wide-table approaches regarded the data-specific information as the workload-

specific information: They implicitly assumed that the attributes concurrently having

non-null values (or active values) on the same rows in a horizontal table are frequently

accessed together by the same queries. However, this assumption does not always hold

in the context of DICOM data because the non-null attributes may not be frequently

accessed together by the same queries and vice versa. Therefore, the combined impact

of both the workload- and data-specific information on both storage space size and

query performance has not been explored clearly. Moreover, most studies have not

taken into consideration the use of different data layouts to store the vertical

partitioning results.

3.5.2 Bloom Filter and Intersection Bloom Filter

Definitions

Bloom filter [22] is a space-efficient probabilistic data structure used for membership

test with little error allowable. Let 𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑛} be a finite set of 𝑛 elements

from a universe set 𝑈. A Bloom filter (𝐵𝐹) for representing 𝑆 is described by an array

of 𝑚 bits and a set of 𝑘 uniform and independent hash functions ℎ1(𝑥), ℎ2(𝑥), …,

ℎ𝑘(𝑥). Initially, all 𝑚 bits of 𝐵𝐹 are set to 0 (empty 𝐵𝐹). Then, when an element 𝑥 is

inserted into 𝐵𝐹, all positions ℎ𝑖(𝑥) (1 ≤ 𝑖 ≤ 𝑘) of the bit array are set to 1.

Bloom filters allow to answer membership queries like “Is 𝑥 in S?” without the

need of the original set 𝑆. To check whether an element 𝑥 ∈ 𝑆, we need to check

whether all the positions ℎ𝑖(𝑥) (1 ≤ 𝑖 ≤ 𝑘) of the bit array are set to 1. We then can

conclude that 𝑥 is not presenting in the original set 𝑆 if at least one of the bit positions

ℎ𝑖(𝑥) is set to 0; otherwise, we conclude that 𝑥 is probably is a member of 𝑆.

Due to hash collisions, there exists an error, also known as a “false positive”, such

that an element 𝑥 ∉ 𝑆 has all the positions ℎ𝑖(𝑥) set to 1. However, there does not

exist a false negative when using the 𝐵𝐹. The probability of any random bit of the 𝐵𝐹

to be set to 1 is 𝑃𝑆𝐸𝑇1 = 1 − (1 − 𝑚−1)𝑘𝑛. Thus, the probability where all 𝑘 bits for a

Databases and Related Techniques

50

random element are set to 1 is 𝑃𝐵𝐹 = (𝑃𝑆𝐸𝑇1)𝑘; this probability is regarded as the

probability of a false positive for an element not in the original set. The false positive

probability of the 𝐵𝐹 can be computed by Formula (3.6.1) [24].

𝑃𝐵𝐹 = ((1 − (1 −
1

𝑚
)

𝑘𝑛

))

𝑘

≈ (1 − 𝑒−𝑘𝑛/𝑚)
𝑘
 (3.6.1)

To minimize the false positive probability, the information density of the 𝐵𝐹 has

to be optimized. This density is determined by a ratio between the number of true bits

(1s) and the length of the 𝐵𝐹. The minimum value of the false positive probability

occurs when this density is 0.5 [24]; this is achieved when setting the number of hash

functions to 𝑘 ≈
𝑚

𝑛
× 𝑙𝑛 (2).

Bloom Filter Based Joins

The 𝐵𝐹s have been applied in order to filter unnecessary data out of input data of join

operations before these operations are performed. Especially in distributed query

processing environments, where data is distributed across multiple nodes, the 𝐵𝐹s can

help to reduce network communication cost for join operations [23].

Figure 3.12: Example of the application of a Bloom filter

Figure 3.12 illustrates an example of the application of a Bloom filter for a

distributed join operation. Assume that we need to compute a join 𝑇1 ⋈𝑈𝐼𝐷 𝑇2 where

𝑇1 and 𝑇2 are two input tables stored at two different nodes Node 𝑇1 and Node 𝑇2,

respectively, and 𝑈𝐼𝐷 is the common join attribute. We also suppose that the join

operation will be performed on the Node 𝑇1. In order to reduce the amount of data

transferred between two nodes, a Bloom filer will be built and applied to remove

irrelevant data out of the join inputs. In particular, a join algorithm can be performed

in the following steps: (1) The Bloom filter 𝐵𝐹1 is built on values of the join attribute

𝑈𝐼𝐷 of the table 𝑇1; here, 𝐵𝐹1 is an array of 10 bits; it uses one hash function h(x) =

LastFiveNumbers(UID) % 10 that returns the remainder after dividing the last five

numbers of UID by 10. (2) 𝐵𝐹1 is sent to the Node 𝑇2 and applied for checking whether

values of the join attribute 𝑈𝐼𝐷 of the table 𝑇2 are contained in 𝐵𝐹1. (3) The rest of

Databases and Related Techniques

 51

tuples of the table 𝑇2 (whose 𝑈𝐼𝐷𝑠 is contained in 𝐵𝐹1) produce a new table 𝑇2
′ and

this table is transferred to the Node 𝑇1. (4) Finally, 𝑇2
′ is joined with 𝑇1; during this

join, all false positives will be removed from the join result (e.g., in 𝑇2
′, P40999 is a

false positive and it will be removed).

As such, the Bloom filters can be applied to remove irrelevant tuples out of input

data of the join operations. This helps to avoid transferring unnecessary data over the

network as well as to reduce computation cost, due to less input data for processing.

Intersection Bloom Filter

An IBF is used to represent an approximate intersection set of sets [23]. The IBF can

be simply computed by performing bitwise AND operations on all the BFs built from

input tables. In a distributed query processing environment, the IBF has been proved

that they can help join operations to reduce the amount of data transmission on network

with a false positive probability less than that of individual component Bloom filters

[23, 25]. T.-C. Phan, L. d'Orazio, and P. Rigaux in [25, 27] proposed to use an IBF that

is computed from precomputed BFs to filter irrelevant tuples out of input tables of join

operations in MapReduce environment. Their experimental results show that amount

of intermediate results is reduced and the query performance is increased. On other

hands, J. J. Brito et al. in [106] proposed the Spark Bloom-Filtered Cascade Join that

applies the BFs to reduce disk spill and network communication by removing

irrelevant tuples from input tables of a sequence of joins of the star joins in Spark, in-

memory cluster computing framework [21], thereby minimizing the query execution

time.

In the context of DICOM data management, to provide the high performance for

interactive workloads, Spark is a suitable choice to implement a DICOM data

management system. Besides, users’ multiple-table join queries may involve a large

amount or redundant input data due to high selectivity of predicates. Therefore, a query

processing strategy with the integration of the IBF is a potential solution is to improve

the performance of the queries. However, there is a lack of studies that apply the IBF

that is computed from non-precomputed BFs in a distributed query processing

environment, e.g., Spark. Moreover, we need to determine how to integrate an IBF in

a particular execution plan and conduct a cost-benefit analysis for this application.

3.6 Key Components of the New System

The main goals of our study are to propose efficient methods to store and to query

DICOM data. These methods will be applied to build a new DICOM data management

system that satisfies the expected requirements: (R1) Flexible data; (R2) Flexible

querying; and (R3) Efficiency of storage and CPU, as introduced in Section 2.3.1.

In order to meet the above requirements, we further specify requirements for key

components of the new DICOM data management system: data model, data storage

model, data schema and query processing.

Databases and Related Techniques

52

3.6.1 Data Model

A data model such as the relational data model or the NoSQL data models (key-value,

column-family, document and graph) specifies the way data is represented to users. In

our study, we need to choose a data model so that it can satisfy the following

requirements: First, it is able to easily represent the information entities (Patient,

Study, Series, etc.) and their relationships in the DICOM information model. Second,

it is able to provide normalized. Third, it is able to provide users with a SQL interface

for writing their own queries. Fourth, it is able to provide a huge storage capacity,

scalability and elasticity. Lastly, it is able to offer high query performance over high

and ever-growing volume of DICOM data.

3.6.2 Data Storage Model

Data storage model is also regarded as data layout (e.g., row-oriented, column-oriented

and hybrid-oriented layouts) that defines how data in a database is physically

organized on hard disk(s). In our study, a suitable data storage model is proposed in

order to improve the performance of queries in mixed OLTP and OLAP workloads.

More particularly, we will focus on reducing the following costs: disk I/O cost (caused

by redundant data accesses) and tuple reconstruction cost (caused by join operations).

3.6.3 Data Schema

The requirements for schemas are given as follows: First, the schemas need to be

designed not only to easily represent entities and their relationships in the DICOM

information model, but also to increase the efficiency in storing and querying DICOM

data. Besides, to provide ease of use, names of entity tables should be directly used in

users’ queries instead of other complex forms, e.g., vertically partitioned tables.

Second, the variety of DICOM data usually results in sparseness, thus null values need

to be removed to save storage space. Third, the schemas need to be designed to increase

the performance of queries in mixed OLTP and OLAP workloads. Lastly, an automated

design approach need to be proposed to generate data storage configurations that can

reduce both storage space demand and workload execution time.

3.6.4 Query Processing

The requirements for query processing can be listed as follows: First, the new DICOM

data management system is able to process SQL ad-hoc queries with joins to obtain

information from DICOM entities (e.g., Patient, Study, etc.). Second, the query

processing strategy is well-suited to automatically access tables created as results of

schema designing (as mentioned above). Lastly, to deal with high and ever-growing

volume of DICOM data, the query processing strategy needs to be designed for

distributed query processing environment. Furthermore, because the users’ queries are

usually contain multiple joins with single- and multi-criteria predicates [54], the query

processing strategy is needed to remove unnecessary data.

Databases and Related Techniques

 53

3.7 Summary and Conclusion

In this chapter, we concentrated on reviewing the state of the art of workload types and

prevalent databases used for Big Data, cluster computing frameworks, data layouts,

vertical partitioning and Bloom filter techniques. We also specify the requirements for

key components of the new DICOM data management system so that it is able to

efficiently store and query DICOM data:

 Data model: The relational data model should be applied for DICOM database.

There are a number of reasons for this. Although relational and NoSQL databases

have their own benefits, a relational data model excels at providing the following

features: First, it is well-suited for representing entities and relationships among

these entities in the DICOM information model. This helps to manage the

complexity of DICOM data. Second, the relational data model can provide users

with SQL ad-hoc queries with joins. Third, using the relational data model,

DICOM data can be stored in a normalized way in order to reduce data redundancy

and storage space. However, compared to NoSQL databases, relational databases

have limitations to provide high query performance, huge data storage and

horizontal scalability to deal with the high and ever-growing DICOM data. Thus,

it is clear that a pure relational database or a pure NoSQL database alone does not

provide all required features. We thus move towards a NoSQL database but need

to support to use SQL effectively and to represent data in form of tables.

 Data Storage model: A new hybrid storage model should be proposed to store

DICOM data. The reason is that a pure row store or a pure column store is

optimized for either an OLTP or an OLAP workload, but not both. Moreover, the

existing hybrid storage models, such as PAX, Data Morphing, HYRISE, Fractured

Mirrors, Trojan Columns and SAP HANA, have some limitations to handle the

high and ever-growing volume of data. As a result, we need to design and

implement a new hybrid storage model that has a cluster-based storage, e.g.,

HDFS, to offer huge data storage space, scalability and elasticity.

 Data schema: Schemas need to be capable of easily and efficiently representing

entities and their relationships in the DICOM information model. The DICOM

information model has not optimized in terms of storage space demand and query

performance. For instance, wide entity tables can cause data sparseness and

redundant data accesses. Existing vertical partitioning algorithms showed their

usefulness in schema design, but there is a lack a solution that can take into

consideration the combined use of workload- and data-specific information and a

hybrid store to automatically create schemas that can reduce both workload

execution time and storage space demand. Therefore, there is a need for a novel

vertical partitioning approach to overcome this limitation.

 Query processing: The query processing needs to provide high performance for

interactive workloads. The batch-oriented processing model of MapReduce is not

well suited for the interactive workloads due to its high latency. In contrast, the

interactive ad-hoc query and analysis technique is good fit to this context; Spark

should be chosen because of its ability to offer low latency, high performance,

scalability and elasticity. Furthermore, to create the correct answers for join

Databases and Related Techniques

54

operations between vertically partitioned tables, inner and left-outer joins need to

be applied. Additionally, the BF and IBF should be applied to reduce network I/Os

in distributed query processing environment for DICOM data as well.

Key Points

 We present backgrounds of workload types and prevalent databases.

 We review the cluster computing frameworks: MapReduce and Spark.

 We present different types of data layouts.

 We presents related works about the vertical partitioning, BF and IBF.

 We presents the requirements for key components (data model, data storage

model, data schema and query processing) of the new system.

55

 PART II

CONTRIBUTIONS

56

57

Chapter

HYTORMO and HADF

4.1 Overview

In Chapter 2, we specified the expected requirements for a new DICOM data

management system. In Chapter 3, we presented the solution ideas to efficiently store

and query DICOM data. This chapter describes HYTORMO together with data storage

and query processing strategies. An overview of the chapter is given in Table 4.1.

Table 4.1: Overview over Chapter 4

4.2 HYTORMO and Strategies

4.2.1 HYTORMO Architecture 4.2.2 Data Storage Strategy

4.2.3 Query Processing Strategy

4.3 Automated Design Approach for DICOM Data

4.3.1 Observations 4.3.2 Formal Representation

4.3.3 Configuration Cost Estimation

4.4 Hybrid Automated Design Framework

4.4.1 Overview of the Framework 4.4.2 Similarity Measures

4.4.3 Implementation of the Framework 4.4.4 Examples

4.5 Summary and Conclusion

First of all, HYTORMO and the data storage and query processing strategies are

briefly described in a nutshell. HYTORMO provides high performance for interactive

and mixed workloads, huge storage capability, scalability and elasticity. The storage

strategy aims at improving workload performance and reducing data storage demand;

it combines the use of both vertical partitioning and a hybrid storage model. A high-

level query processing strategy is also introduced for HYTORMO.

In order to achieve a data storage configuration according to the above data storage

strategy, one of two design approaches, expert-based and automated, can be applied.

The former approach was proposed by B. Mohamad, L. d'Orazio and L. Gruenwald

[56, 57], whereas we propose the latter approach is able to automatically generate data

storage configurations for DICOM data. We describe our observations from which the

formal representation of the automated design problem and cost models are built.

However, the solution search space for an optimal data storage configuration is very

large, thus we further propose a heuristic approach, a hybrid automated design

framework, to rapidly generate good data storage configurations. We describe the

framework, similarity measures, implementation of this framework and examples.

HYTORMO and HADF

58

4.2 HYTORMO and Strategies

In this section, we present an overview and key components of HYTORMO. First, we

describes its architecture. Next, we describe the proposed data storage strategy: what

need to be done in a systematic way to extract, organize and store DICOM data in the

hybrid store of row and column stores. Finally, we introduce an overview of the

proposed query processing strategy and query form.

4.2.1 HYTORMO Architecture

Figure 4.1: Architecture of HYTORMO

Figure 4.1 describes the architecture of HYTORMO. There are two key

components: Centralized System and Distributed Nodes. The query processing is

tightly integrated in both Centralized System (a master node) and Distributed Nodes

(slave nodes). Query processing tasks are distributed among multiple nodes. DICOM

data (metadata and pixel data) are stored across the Distributed Nodes using a

distributed file system, e.g., HDFS, which can support for storing DICOM data in both

row- and column-oriented storage layouts. HYTORMO is implemented on top of an

in-memory cluster computing framework, Spark [21, 83], in order to provide high

performance for interactive workloads.

In the following section, the proposed data storage strategy is presented in detail.

4.2.2 Data Storage Strategy

The goals of the data storage strategy are to optimize query performance and storage

space over a mixed OLTP and OLAP workload. To achieve these goals, metadata and

image data of DICOM files are extracted, organized and stored in a manner to reduce

storage space, tuple construction cost and I/O costs.

HYTORMO and HADF

 59

Figure 4.2: Process of extracting, organizing and storing DICOM data

The process of extracting, organizing and storing DICOM data is shown in Figure

4.2. Assume that DICOM files have been produced by specific modalities, and now

we need to extract DICOM data from these files, organize and store it in the hybrid

store of HYTORMO. First of all, metadata and image data are extracted and stored in

a local file system (i.e., DICOM archive). Because we intend to maintain entities and

their relationships according to the DICOM information model (presented in Chapter

2), the metadata will be organized into entity tables (relational tables) such as Patient,

Study, Series, Image, etc. For instance, the entity Patient consists of the following

attributes: PatientName, PatientID, PatientDateofBirth, PatientSex, etc., while the

entity Image contains ImageNumber, ImageSize, ImageType, HighBit, PatientID, …,

and ImageLink (the ImageLink attribute stores the path name of the corresponding

image file stored in disk). In our study, we refer to a relational table as a horizontal

table (which has not been vertically partitioned yet). The entity-relationship model can

be used to visually describe the entities and their relationships.

In order to achieve optimization of storage space and query performance, the

proposed data storage strategy is performed as follows: First of all, the entity tables

need to be decomposed into multiple sub-tables (i.e., vertically partitioned tables).

Next, these sub-tables will be stored in row and column stores of the hybrid store of

HYTORMO (in a distributed file system).

For simplicity, we refer to (sub-) tables stored in a row store as row tables, and

tables stored in a column store as column tables. After all DICOM data is transferred

from the local file system to the hybrid store of HYTORMO, it can be removed from

the local file system to save storage space. It is worthy to note that the complexity of

the vertical partitioning of the entity tables is transparent to users so that they only

need to concentrate on writing interactive and ad-hoc queries by using names of the

entity tables in their SQL queries.

In order to achieve a data storage configuration according to the above data storage

strategy, one of two design approaches can be applied: expert-based and automated.

In this chapter, before the new automated design approach is introduced, we apply the

HYTORMO and HADF

60

expert-based design approach to create data storage configurations, as presented in

[107]. In the expert-based design approach, first of all, DICOM attributes are classified

into three categories: mandatory; frequently-accessed-together; and

optional/private/seldom-accessed (for short, we sometimes call this “optional”). Next,

the attributes of the first two groups will be stored in a row store while the attributes

of the last group will be stored in a column store. In addition to this application, our

contribution to this approach is to provide clearly-defined classification of attribute

groups in terms of characteristics of both data and workload as follows:

1. Mandatory attributes are not allowed to get null values.

2. Frequently-accessed-together attributes are allowed to get null values and are

frequently accessed together.

3. Optional attributes are allowed to get null values but are not frequently accessed

together.

As such, the above classification has taken into consideration the similarity

relationship among the attributes based on both workload-specific information (i.e.,

regular attribute access patterns) and data-specific information (i.e., data sparseness)

at the same time in order to group the attributes into clusters (i.e., column groups).

In addition to the above definitions, unlike the expert-based design approach in

[56, 57] in which a subset of attributes of DICOM files are classified and stored into

row and column stores, in this thesis, we use the entity tables (e.g., Patient, Study, etc.)

as a starting point, from which these entity tables will be decomposed into sub-tables.

For example, given the entity Patient with the following attributes: PatientName,

PatientID, PatientBirthDate, PatientSex, EthnicGroup, IssuerOfPatientID, Patient-

BirthTime, PatientInsurancePlanCodeSequence, PatientPrimaryLanguageCode-

Sequence, PatientPrimaryLanguageModifierCodeSequence, OtherPatientIDs,

OtherPatient-Names, PatientBirthName, PatientTelephoneNumbers, SmokingStatus,

Pregnancy, LastMenstrualDate, PatientReligiousPreference, PatientComments,

PatientAddress, PatientMotherBirthName, and InsurancePlan Identification, we will

store this entity table as shown in Figure 4.3:

- PatientName, PatientID, PatientBirthDate, PatientSex, and EthnicGroup are

classified as mandatory attributes and stored in a row table, namely RowPatient.

On the other hand, PregnancyStatus and LastMenstrualDate are classified as

frequently-accessed-together attributes and also stored in a row table, namely

RowPregnancy.

- IssuerOfPatientID, PatientBirthTime, PatientInsurancePlanCodeSequence,

PatientPrimaryLanguageCodeSequence, PatientPrimaryLanguageModifierCode-

Sequence, OtherPatientIDs, OtherPatientNames, PatientBirthName, PatientTele-

PhoneNumbers, SmokingStatus, PatientReligiousPreference, PatientComments,

PatientAddress, PatientMotherBirthName and InsurancePlanIdentification are

classified as optional attributes and stored in a column store.

The above grouping of the attributes is non-overlapping; each attribute belongs to

only one column group except the attribute UID that is used to join the tables together.

The null rows will be removed from the vertically partitioned tables. The image data

is stored in separate files whose path names are stored in an attribute in relevant tables.

HYTORMO and HADF

 61

Figure 4.3: Row and column tables of the entity Patient

As mentioned earlier, the decomposition of the entity tables is transparent to users.

For this purpose, the information about data storage configurations of the entity tables

needs to be registered with the Metadata Store of HYTORMO (shown in Figure 4.1):

(1) schemas of the entity tables; (2) schemas of the corresponding sub-tables; and (3)

data layouts applied to these sub-tables. For instance, assume that the entity Patient

has been vertically partitioned into two tables RowPatient and ColumnPatient.

However, users may need no knowledge about how Patient is vertically partitioned

and what data layouts are applied to the corresponding sub-tables. Instead, they simply

use name “Patient” in their queries.

From the above data storage strategy, we can see clearly that if a query requires to

collect information from one or more tables/sub-tables, HYTORMO needs a suitable

and efficient query processing strategy to perform join operations across these tables

to reconstruct result tuples.

HYTORMO and HADF

62

4.2.3 Query Processing Strategy

This section describes the high-level query processing strategy proposed for

HYTORMO. Its details will be provided in Chapter 5. The goal of the query processing

strategy can be described as follows: Given DICOM data stored in row and column

tables in the distributed file system of HYTORMO, find a well-suited and efficient

query processing strategy. In general, both inner joins and left-outer joins are applied.

Furthermore, in order to improve query performance, the number of left-outer joins

and irrelevant tuples in the input tables of join operations need to be reduced.

An Overview of the Query Processing Strategy

The query processing includes the following phases: query parsing, query

decomposition, query optimization and query execution, as shown in Figure 4.1. The

Parser parses a user query (in SQL form). It accesses the Metadata Store to get

information about data storage configurations of the entity tables used by the query.

The Decomposer splits the query into a set of sub-queries in a way so that the sub-

queries access only the relevant row and column tables (containing the attributes

required by the query). This helps HYTORMO not only to reduce the size of input

data of the query but also to utilize strengths of both row- and column-oriented storage

layouts. After the Decomposer completes its works, the Execution Plan Generator

generates candidate global execution plans. It consults historical statistics (e.g.,

cardinality of tables) in the Metadata Store to estimate the execution cost of each plan;

after that, it will choose the cheapest one. Since the given query could have a large

number of candidate global execution plans due to different join ordering possibilities,

an exhaustive search for an optimal execution plan is too expensive. We thus adopt to

use a left-deep sequential tree plan introduced by M. Steinbrunn et al. [108]. After

achieving an execution plan, the Query Execution Engine will execute the query using

this execution plan. The sub-queries are executed one after another (across nodes of

the Distributed Nodes) according to the join order given in the execution plan. Besides,

during the execution of the plan, (Intersection) Bloom Filters, created by the Bloom

Filter Generator, are applied to filter irrelevant tuples out of input tables of join

operations. Finally, the intermediate results are retrieved and integrated to produce the

final query result. It is worthy to remind that when a user submits a query, names of

entity tables are used in the query. The query will be automatically rewritten in an

equivalent form using a set of sub-queries accessing relevant row and column tables.

Query Form

Our study mainly focuses on user queries consisting of select, project, join and

aggregate operations. In order to avoid loss of generality, we present a user query Q

in a general form given in Figure 4.4. Q is typically a multiple-table join query (or

multi-way join query). It can have selection predicates (e.g., comparison predicates

consisting of , , , , , etc.) in WHERE clause, aggregate predicates in HAVING

clause, a set of attributes in GROUP BY clause and join operations. The entity tables

TI, TJ and TK are joined together on the attribute 𝑈𝐼𝐷. Because the attributes of these

entity tables may being physically stored in row or column tables, we use the

superscripts Rm, Rf, and C to indicate that the corresponding attribute is being stored

HYTORMO and HADF

 63

in a row table of mandatory attributes, a row table of frequently-accessed-together

attributes or a column table of optional attributes, respectively, and RC to denote that

the corresponding attribute is being stored in both row and column tables. It is worthy

to note that these superscripts are invisible to users.

Q: SELECT TI.UIDRC, TI.atta
Rm, TI.attb

C, TJ.attx
Rm, TJ.atty

Rf, TK.attz
C

FROM {TI, TJ, TK}

WHERE {TI.UIDRC = TJ.UIDRC} AND {TJ.UIDRC = TK.UIDRC}

{TI.atta
Rm valuea

Rm} AND {TI.attb
C valueb

C} AND

{TJ.attx
Rm valuex

Rm} OR {TK.attz
C valuez

C}

GROUP BY TI.att_*, TJ.att_*, or TK.att_*

HAVING aggregation_operator(TI.att_*, TJ.att_* or TK.att_*);

where:

○ TI, TJ, TK: entity tables;

○ TI(UIDRC, att_Rm, …, att_
Rf, …, att_

C, …): schema of TI;

○ TJ(UIDRC, att_Rm, …, att_
Rf, …, att_

C, …): schema of TJ;

○ TK(UIDRC, att_Rm, …, att_
Rf, …, att_

C, …): schema of TK;

○ att_
Rm: a mandatory attribute is stored in a row table;

○ att_
Rf: a frequently-accessed-together attribute is stored in a row table;

○ att_
C

 : an optional/private/seldom-accessed attribute is stored in a column table;

○ value_
Rm, value_

Rf, value_
C: constant values;

○ att_*: a certain attribute of an entity table, such as att_
Rm

, att_
Rf or att_

C;

○ : one of {, , , , , etc.};

○ aggregation_operator: MIN, MAX, SUM, COUNT, etc.

Figure 4.4: General form of a user query

Table 4.2 gives examples of user queries: Q1 – Q3.

Table 4.2: Examples of user queries

Query SQL Statement Explanation

Q1 SELECT count(*) FROM Patient Count the number of tuples in

the entity Patient.

Q2 SELECT UID, PatientName, PatientID,

PatientBirthDate, EthnicGroup FROM Patient WHERE

PatientSex = ’M’ AND EthnicGroup LIKE ’%Asian%’

View information about UID,

PatientName, PatientID,

BirthDate and EthnicGroup of

male patients and Asian Ethic.

Q3 SELECT p.UID, p.PatientID, p.PatientName,

p.PatientBirthDate, p.PatientSex, p.EthnicGroup,

p.SmokingStatus, s.PatientAge, s.PatientWeight,

s.PatientSize, i.GeneralNames, i.GeneralValues, q.UID,

q.SequenceTags, q.SequenceVRs, q.SequenceNames,

q.SequenceValues FROM Patient p, Study s,

GeneralInfoTable i, SequenceAttributes q

WHERE p.UID = s.UID AND p.UID = i.UID AND

p.UID = q.UID AND p.PatientSexR = ’M’ AND

p.SmokingStatus = ‘NO’ AND s.PatientAge >= x AND

q.SequenceNames LIKE ‘%X-ray%’

View detail information of X-

ray images of male, non-

smoking and over x-year-old

patients.

We introduce the automated design approach for DICOM data in the next section.

HYTORMO and HADF

64

4.3 Automated Design Approach for DICOM Data

In Section 4.2, we introduced the expert-based design approach to create data storage

configurations for DICOM data. In this approach, experts manually decompose the

entity tables into a number of vertically partitioned tables and then select suitable data

layouts for them. Unfortunately, in practice, experts may be challenged to manually

evaluate the similarity relationship among a large number of attributes based on both

workload- and data-specific information at the same time as well as to determine which

data layout is suitable for each column group. For this reason, in this section, we

provide a formal representation of the automated design problem and cost models

which are used to evaluate the quality of a data storage configuration in terms of

storage and workload execution costs. All of this will be used as fundamentals to build

an automated design approach for DICOM data.

First of all, we present our observations on the mixed use of both vertical

partitioning and hybrid store to create data storage configurations.

4.3.1 Observations

We refer to a data storage configuration of a horizontal table 𝑇 as a set of its vertically

partitioned tables together with the corresponding data layouts (i.e., row- and column-

oriented data layouts) applied to these tables. Based on given workload- and data-

specific information, a large number of candidate data storage configurations can be

created for 𝑇. An automated design approach can be used to support decision makers

(e.g., database designers) in selecting a good data storage configuration with respect

to expected requirements on storage space demand and workload execution time.

Figure 4.5: Combined use of vertical partitioning and a hybrid store

HYTORMO and HADF

 65

Figure 4.5 shows an example of the combined use of vertical partitioning and a

hybrid store to create candidate data storage configurations for a horizontal table 𝑇.

Here, we consider 4 different configurations: (1) 𝐺1: the entire 𝑇 is stored in a single

row table; (2) 𝐺2: 𝑇 is decomposed into two vertically partition tables, stored in a row

store; (3) 𝐺3: 𝑇 is stored in single-attribute tables, stored in a row store; (2) 𝐺4: two

vertically partition tables of 𝐺2 are merged and stored in a single column table. Unlike

the DSM layout, shown in Section 3.4.2, from this point henceforth, we assume that a

column table still keeps null values in rows (like 𝐺4) unless all values of these rows

have null values.

Given a workload of 8 queries 𝑞1- 𝑞8, our observations can be described as follows:

Using Configuration 𝐺1 (just a row table) is beneficial for 𝑞1 because it avoids the

tuple reconstruction cost. In contrast, using Configuration 𝐺3 (single-attribute tables)

can help queries 𝑞2, 𝑞3, 𝑞4 and 𝑞5 avoid redundant data accesses because only relevant

single-attribute tables are read for these queries. Similarly, using Configuration 𝐺2

(two vertically partitioned tables) is beneficial for two queries 𝑞6 and 𝑞7 because only

relevant tables are read. However, choosing a suitable configuration for 𝑞8 is

challenged because this query accesses overlapping attribute sets: 𝑞8 incurs cost of

redundant data accesses if using Configuration 𝐺1; in contrast, it has to perform

additional join operations if using Configurations 𝐺2 or 𝐺3. According to these

observations, our hypothesis is that if merging two vertically partitioned tables, e.g.,

the ones in Configuration 𝐺2, to create a merged table and then store this table in a

single column store, e.g., the one in Configuration 𝐺4, the performance of a query, e.g.,

𝑞8, will be improved because the query incurs neither irrelevant data access (only

reading required attributes) nor extra join. Assume that the tuple reconstruction cost

of a query is trivial when using a single column table, but this cost is slightly higher

than that of a single row table.

The query performance is negatively impacted if the query execution needs to

perform many join operations or to access irrelevant attributes. Besides, the storage

space demand of the horizontal table 𝑇 may be varied in different configurations. In

general, null rows can be removed from vertically partitioned tables. However,

additional storage space may be required to store the surrogate attribute 𝑈𝐼𝐷 in the

vertically partitioned tables; this attribute is used to reconstruct result tuples.

It is not difficult to compute the storage space size of a table by depending on the

size of its attributes; however, in this study, for simplicity, we assume that the storage

space size is represented by the total number of data cells of the table (a data cell is

defined as an intersection point between a row and a column of the table). As such, we

have assumed that all the attributes of 𝑇 have the same size. In addition, the storage

space size of a data storage configuration is computed as the total number of data cells

used to store all of vertically partitioned tables of that configuration. In our future

work, in order to increase the accuracy of the storage cost estimation, we intend to take

into account the varied sizes of the attributes in the vertical partitioning process; in

order to obtain this, the storage space size of a table can be computed as the sum of the

number of data cells of each attribute multiplied by its corresponding size (in bytes).

Such a method was introduced in [109]. For instance, the total number of data cells

used for Configurations 𝐺1, 𝐺2, 𝐺3, and 𝐺4 are 15, 15, 16, and 15, respectively; thus,

in this example, the vertical partitioning have not reduced the storage space size.

HYTORMO and HADF

66

In a nutshell, given a horizontal table 𝑇 and a workload, if most of the attributes of

𝑇 are frequently accessed together by the same queries, storing the entire 𝑇 in a single

row table will reduce tuple reconstruction cost. In contrast, if each attribute of 𝑇 is

often accessed separately, storing each attribute of 𝑇 in a single-attribute table will

reduce I/O cost. If only a few of the attributes of 𝑇 are frequently accessed together by

the same queries, splitting 𝑇 into multiple vertically partitioned tables and then

merging some of these tables into column tables may provide a trade-off between the

I/O cost and the tuple reconstruction cost. Besides the improvement of workload

performance, if 𝑇 is very sparse, storing 𝑇 in multiple vertically partitioned tables can

reduce storage space size because many null rows can be removed from these tables.

In the next section, we present the formulation of the automated design problem.

4.3.2 Formal Representation

In this section, we present the formal representation of the automated design problem,

including representations of workload-specific information, data-specific information

and objective function used to search the best data storage configuration.

Workload-specific Information

Formally, we describe a workload 𝑊 = (𝐴, 𝑄, 𝐴𝑈𝑀, 𝐹) with four components:

 𝐴 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, … , 𝑎𝑛} is a set of attributes of a horizontal table 𝑇. (𝑈𝐼𝐷 is a

unique identifier attribute).

 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑚} is a set of queries executed over 𝑇.

 𝐴𝑈𝑀 is an Attribute Usage Matrix of size m x n. Each row represents a query and

each column represents an attribute: if a query 𝑞𝑖 accesses an attribute 𝑎𝑗, the entry

𝐴𝑈𝑀[𝑖, 𝑗] is equal to 1; otherwise, 𝐴𝑈𝑀[𝑖, 𝑗] is equal to 0. Each query in 𝐴𝑈𝑀 is

unique, i.e., there are no two queries accessing to the same subset of the attributes.

 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚} is a set of query frequencies. It consists of a set of total

frequency counts of the most frequently-used queries in the workload.

Figure 4.6: Example of Attribute Usage Matrix and query frequencies

Figures 4.6(a) and (b) respectively illustrate two data structures 𝐴𝑈𝑀 and 𝐹 of a

sample workload of a horizontal table 𝑇. This workload consists of 6 queries 𝑞1, 𝑞2, …,

and 𝑞6 accessing 6 attributes 𝑎1, 𝑎2, …, and 𝑎6. Each query accesses to a subset of the

attributes with a particular frequency. For instance, 𝑞1 needs to access 5 attributes 𝑎2,

𝑎3, 𝑎4 , 𝑎5 and 𝑎6, with a frequency of 600. In our study, as default, the attribute 𝑈𝐼𝐷

is included in all vertically partition tables, thus it is not included in the 𝐴𝑈𝑀.

HYTORMO and HADF

 67

Data-specific Information

Characteristics of data can be directly derived from data stored in a horizontal table 𝑇.

Figure 4.7 shows an example of the horizontal table 𝑇 which consists of 10 tuples for

a set of 7 attributes, 𝐴 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6}. In this table, an empty data cell

stands for a null value. The data-specific information includes the sparseness of data

and column groups which simultaneously have non-null values in the same rows.

These information can be used as inputs for the vertical partitioning in order to

determine decisions which attributes should be grouped and stored together in a way

to reduce storage space demand.

Figure 4.7: Example of the horizontal table 𝑇

Representation of a Data Storage Configuration

Let 𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"} denote a set of available data layouts.

Without loss of generality, we denote a set of candidate data storage configurations for

the horizontal table 𝑇 as 𝐺 = {𝐺1, 𝐺2, … , 𝐺𝐾}, where 𝐺𝑖 is a candidate data storage

configuration and 𝐾 is the number of possible candidate data storage configurations.

Each configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) consists of two components: a set of column groups

(i.e., vertical partitions) 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧} and a set of data layouts

 𝐿𝑖 = {𝐿𝑑1
(𝐶𝑖,1), 𝐿𝑑2

(𝐶𝑖,2), … , 𝐿𝑑𝑧
(𝐶𝑖,𝑧)} applied to those column groups. Here,

𝐿𝑑𝑥
(𝐶𝑖,𝑥) denotes that the column group 𝐶𝑖,𝑥 is stored in data layout dx, where 𝑑𝑥 ∊ 𝑆.

The set 𝐶𝑖 is produced as a result of applying a data storage strategy (as presented in

Section 4.2.2) to the horizontal table 𝑇. Each column group

𝐶𝑖,𝑥 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, . . . , 𝑎ℎ} is a subset of the attributes in 𝑇 such that

∪𝐶𝑖,𝑥∊ 𝐶𝑖
𝐶𝑖,𝑥 = 𝐴 and 𝐶𝑖,𝑥 ∩ 𝐶𝑖,𝑦 = {𝑈𝐼𝐷} for any x ≠ y. (The column groups are non-

overlapping, meaning that they share no common attribute except the attribute 𝑈𝐼𝐷.)

For example, using the horizontal table 𝑇 in Figure 4.7, we can create some data

storage configurations as follows: Configuration 𝐺1 = (𝐶1, 𝐿1), where 𝐶1 = {𝐶1,1},

 𝐶1,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6} and 𝐿1 = {𝐿"𝑟𝑜𝑤−𝑠𝑡𝑜𝑟𝑒"(𝐶1,1)}, means that the

entire 𝑇 is stored in a single row table. Alternatively, Configuration 𝐺2 = (𝐶2, 𝐿2),

where 𝐶2 = {𝐶2,1, 𝐶2,2}, where 𝐶2,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4}, 𝐶2,2 = {𝑈𝐼𝐷, 𝑎5, 𝑎6}

and 𝐿2 = {𝐿"𝑟𝑜𝑤−𝑠𝑡𝑜𝑟𝑒"(𝐶2,1), 𝐿"𝑐𝑜𝑙𝑢𝑚𝑛−𝑠𝑡𝑜𝑟𝑒"(𝐶2,2)}. This configuration implies that

𝑇 has been vertically partitioned into two column groups 𝐶2,1 and 𝐶2,2: the first is

stored in a row table while the second is stored in a column table.

HYTORMO and HADF

68

Objective Function

The problem of the automated design can be formulated as follows: Given a horizontal

table 𝑇 and a workload 𝑊, find a data storage configuration 𝐺𝑖 for 𝑇 in order to

minimize the value of both cost functions: STORAGE_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖) and

EXECUTION_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖). The objective function is described as follows:

{
𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖) → 𝑚𝑖𝑛

𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖) → 𝑚𝑖𝑛
 (4.3.1)

where the cost 𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖) is the total number of data cells used to store

all column groups of 𝐺𝑖 while the cost 𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖) is the execution

cost of all queries in the workload 𝑊 using 𝐺𝑖.

Each candidate data storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) is produced as the result of

applying a particular data storage strategy to generate a set of column groups 𝐶𝑖 and a

set of corresponding data layouts 𝐿𝑖 applied to 𝐶𝑖. For instance, in Section 4.2.2, we

introduced the expert-based design approach to achieve such a storage configuration.

An alternative way to represent the above objective function is to use a cost-benefit

function. Initially, we create a baseline data storage configuration for the given

horizontal table 𝑇 by storing all the attributes 𝑈𝐼𝐷, 𝑎1 , 𝑎2, …, and 𝑎𝑛 of 𝑇 in just a

single row table. This configuration can be represented as 𝐺1 = (𝐶1, 𝐿1), where

𝐶1 = {𝐶1,1}, 𝐶1,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, … , 𝑎𝑛} and 𝐿1 = {𝐿"𝑟𝑜𝑤−𝑠𝑡𝑜𝑟𝑒"(𝐶1,1)}. By this way,

we can find the best data storage configuration within a set of possible data storage

configurations 𝐺 = {𝐺1, 𝐺2, … , 𝐺𝐾}, where 𝐾 is the number of possible data storage

configurations, by estimating cost-benefit of each 𝐺𝑖 compared with the baseline 𝐺1:

{
𝑆𝑡𝑜𝑟𝑎𝑔𝑒_𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑊, 𝐺𝑖) = max (0, 𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝑊, 𝐺1) − 𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖))

𝑇𝑖𝑚𝑒_𝐵𝑒𝑛𝑒𝑓𝑖𝑡(𝑊, 𝐺𝑖) = max(0, 𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑊, 𝐺1) − 𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑊, 𝐺𝑖))
 (4.3.2)

The best data storage configuration is the one giving the most beneficial values in

terms of both the storage space demand and the workload execution cost. In the next

section, we show how to estimate the costs.

4.3.3 Configuration Cost Estimation

It is less likely that all the attributes of the horizontal table 𝑇 are required once per

query. In typical cases, only a subset of the attributes in 𝑇 is used once per query. This

causes irrelevant attribute accesses if 𝑇 is stored in a single row table. Moreover, if 𝑇

is highly sparse, a large number of null values may result in waste of storage space.

Although the vertical partitioning of 𝑇 into several tables can help to reduce the

number of irrelevant attributes accesses as well as null values, this approach may needs

extra joins to reconstruct result tuples as well as additional storage space for a surrogate

attribute, e.g., 𝑈𝐼𝐷, added to each vertically partitioned tables. Therefore, selecting a

data storage configuration should take into consideration of the storage space demand,

the number of null values, the number of irrelevant attribute accesses and the number

of extra joins needed to reconstruct result tuples. In general, a data storage

configuration can be evaluated based on two main costs: storage cost and workload

execution cost. The mathematical expression of these costs is presented below.

HYTORMO and HADF

 69

Storage Cost

We estimate the storage cost of a data storage configuration in terms of the number of

data cells. It is easy to observe that there is a general trend toward the decrease in the

number of null values if we split the given horizontal table 𝑇 into multiple vertically

partitioned tables; this is because null rows can be removed from the vertically

partitioned tables. However, this is followed by adding a surrogate attribute to each

vertically partitioned table; thus, the storage space demand may be increased if the

number of removed null values has not been large enough. Therefore, the overall

storage cost of a data storage configuration needs to include storage space demand

required for that surrogate attribute.

Figure 4.8: Four difference configurations of the horizontal table 𝑇

Figure 4.8 re-presents four different data storage configurations 𝐺1, 𝐺2, 𝐺3, and 𝐺4

of the horizontal table 𝑇, shown in Figure 4.5. If all the attributes of 𝑇 are stored in a

single row table, i.e., 𝐺1 in Figure 4.8(a), or a single column table, i.e., 𝐺4 in Figure

4.8(d), the storage cost is the same, i.e., 15 (data cells). If 𝑇 is decomposed into two

vertically partitioned tables and stored in a row store, i.e., 𝐺2 in Figure 4.8(b), the

storage cost is 15 (data cells). If 𝑇 is decomposed into four single-attribute tables,

stored in a row store, i.e., 𝐺3 in Figure 4.8(c), the storage cost is 16 (data cells).

Without loss of generality, given a horizontal table 𝑇 and its data storage

configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖), the size of each column group

𝐶𝑖,𝑥 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, . . . , 𝑎ℎ}, where 𝐶𝑖,𝑥 ∊ 𝐶𝑖, can be approximately estimated by

using Formula (4.3.3). This estimation has included the cost to store the surrogate

attribute 𝑈𝐼𝐷 in 𝐶𝑖,𝑥.

𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸(𝐶𝑖,𝑥) = ⌈𝐿𝑒𝑛𝑔𝑡ℎ(𝑇) × (1 −

 𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜(𝐶𝑖,𝑥)) × |𝐶𝑖,𝑥|⌉, (4.3.3)

where 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇) is the length of 𝑇 and is computed as the number of tuples (rows);

𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜(𝐶𝑖,𝑥) is the null-ratio and is computed as the number of null rows

divided by 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇); ⌈ ⌉ is a ceiling function; 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇) × (1 −

𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜(𝐶𝑖,𝑥)) represents the length of 𝐶𝑖,𝑥 after removing all null rows;

|𝐶𝑖,𝑥| represents the number of attributes of 𝐶𝑖,𝑥 which includes the attribute 𝑈𝐼𝐷.

Hence, ⌈𝐿𝑒𝑛𝑔𝑡ℎ(𝑇) × (1 − 𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜(𝐶𝑖,𝑥)) × |𝐶𝑖,𝑥|⌉ gives the total size

of 𝐶𝑖,𝑥.

Assume the null ratio of each attribute is independent from others, and the

distribution of null values within the same attribute is uniform. The null-row ratio of

the column group 𝐶𝑖,𝑥 can be estimated approximately as follows:

HYTORMO and HADF

70

𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜(𝐶𝑖,𝑥) = ∏ 𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎𝑘) 𝑎𝑘∈𝐶𝑖,𝑥
 , (4.3.4)

where 𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎𝑘) is the null ratio of an attribute 𝑎𝑘 with 𝑎𝑘 ≠ 𝑈𝐼𝐷 (the attribute

UID always has non-null value).

The storage cost of a data storage configuration 𝐺𝑖 is assimilated to the total

number of data cells of all column groups 𝐶𝑖,𝑥 of 𝐺𝑖 (after removing all null rows):

𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺𝑖) = ∑ 𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸(𝐶𝑖,𝑥)

 𝐶𝑖∈𝐺𝑖,
 𝐶𝑖,𝑥∈𝐶𝑖

(4.3.5)

Now, we can estimate the reduction in the storage space size of the data storage

configuration 𝐺𝑖 when compared with the baseline 𝐺1 (where all the attributes of the

horizontal table 𝑇 are stored in a single row table) by Formula (4.3.6):

𝑅𝐸𝐷𝑈𝐶𝑇𝐼𝑂𝑁_𝑆𝐼𝑍𝐸(𝐺𝑖, 𝐺1) = (1 −
𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺𝑖)

𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺1)
) × 100 (4.3.6)

Formula (4.3.6) returns the percentage decrease of the storage space size.

The above approximate estimation can be used to rapidly estimate the storage cost

of a data storage configuration without scanning vertically partitioned tables (storing

data for column groups) because providing an accurate estimate for a large number of

candidate storage configurations over a large number of attributes may consume time.

For example, given the horizontal table 𝑇 as shown in Figure 4.8(a), we can

estimate the storage space size for Configuration 𝐺2, shown in Figure 4.8(b) as

follows: First of all, based on the horizontal table 𝑇 as shown in Figure 4.8(a), we

obtain the length of 𝑇 is 𝐿𝑒𝑛𝑔𝑡ℎ(𝑇) = 3 and the null ratios of its attributes are:

𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎1) = 𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎4) = 1/3; 𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎2) = 0 and

𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜(𝑎3) = 2/3. Next, using these values, the null-row ratios of two column

groups {𝑎1, 𝑎2} and {𝑎3, 𝑎4} of Configuration 𝐺2 can be estimated by Formula (4.3.4):

 𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜({𝑎1, 𝑎2}) =
1

3
 × 0 = 0.

 𝑁𝑢𝑙𝑙𝑅𝑜𝑤𝑅𝑎𝑡𝑖𝑜({𝑎3, 𝑎4}) =
2

3
 ×

1

3
 =

2

9
.

Then, the storage space size of the above two column groups (including their

surrogate attribute) can be estimated by Formula (4.3.3):

 𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸({𝑎1, 𝑎2}) = ⌈3 × (1 − 0) × 3⌉ = 9 (the actual value is 9).

 𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸({𝑎3, 𝑎4}) = ⌈3 × (1 −
2

9
) × 3⌉ = 7 (the actual value is 6).

After that, using the above results, the storage cost of the configuration 𝐺2 can be

estimated by Formula (4.3.5):

 𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺2) =

 𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸({𝑎1, 𝑎2}) + 𝐶𝑂𝐿𝑈𝑀𝑁𝐺𝑅𝑂𝑈𝑃_𝑆𝐼𝑍𝐸({𝑎3, 𝑎4}) = 16.

Finally, we use Configuration 𝐺1 as a baseline configuration. Its storage cost is 15

(data cells). We can estimate the reduction in the storage space size of 𝐺2 when

compared with 𝐺1 by using Formula (4.3.6) as follows:

HYTORMO and HADF

 71

𝑅𝐸𝐷𝑈𝐶𝑇𝐼𝑂𝑁_𝑆𝐼𝑍𝐸(𝐺2, 𝐺1) = (1 −
𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺2)

𝑆𝑇𝑂𝑅𝐴𝐺𝐸_𝐶𝑂𝑆𝑇(𝐺1)
) × 100 = (1 −

16

15
) × 100.

= −7 %.

The above result implies that the storage cost of 𝐺2 is 7% larger than that of 𝐺1.

That is, there is no benefit in terms of storage space demand when applying 𝐺2.

In short, if a data storage configuration is created by applying the vertical

partitioning and if the number of removed null values is not large enough, that

configuration would not benefit in terms of storage cost due to the additional storage

cost required for the surrogate attribute. However, it may benefit from the reduction in

the query execution time because of avoiding to expensive reconstruction cost and/or

irrelevant attribute accesses.

Reconstruction Cost of a Configuration

Reading Cost: Before measuring the reading cost of a data storage configuration, we

assume that scanning a data cell needs a uniform cost of 1 unit. This is because we

target to compare the benefit among different candidate storage configurations rather

than to obtain accurate estimates of their physical storage sizes.

Given a horizontal table 𝑇 with a set of attributes 𝐴, a query 𝑞, a data storage

configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) of 𝑇, let 𝐴𝑞 ⊆ 𝐴 be a set of the attributes that the query 𝑞

actually requires, and let 𝐶𝑖
𝑞 ⊆ 𝐶𝑖 denote a set of column groups required to answer 𝑞

if 𝑞 is using 𝐺𝑖, i.e., 𝐶𝑖
𝑞 = {𝐶𝑖,𝑥 ∈ 𝐶𝑖 | 𝐶𝑖,𝑥 ∩ 𝐴𝑞 ≠ ∅}.

We define a new intersection operation ∩𝐿 between two attribute sets X and Y so

that it can take into consideration the impact of the data layout 𝑑𝑥 used to store the left

argument (i.e., X) on the result of this intersection operation:

𝐿𝑑𝑥
(𝑋) ∩𝐿 𝑌

 = {

𝑋 𝑖𝑓 𝑋 𝑖𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑎 𝑟𝑜𝑤 𝑡𝑎𝑏𝑙𝑒 (𝑖. 𝑒. , 𝑑𝑥 = "row-store") 𝑎𝑛𝑑 𝑋 ∩ 𝑌 ≠ ∅

∅ 𝑖𝑓 𝑋 𝑖𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑎 𝑟𝑜𝑤 𝑡𝑎𝑏𝑙𝑒 (𝑖. 𝑒. , 𝑑𝑥 = "row-store") 𝑎𝑛𝑑 𝑋 ∩ 𝑌 = ∅
𝑋 ∩ 𝑌 𝑖𝑓 𝑋 𝑖𝑠 𝑠𝑡𝑜𝑟𝑒𝑑 𝑖𝑛 𝑎 𝑐𝑜𝑙𝑢𝑚𝑛 𝑡𝑎𝑏𝑙𝑒 (𝑖. 𝑒. , 𝑑𝑥 = "column-store")

, (4.3.7)

where X stands for a column group stored using the data layout 𝑑𝑥 while Y stands for

the attributes required by the query 𝑞. Hence, the Formula (4.3.7) will return a set of

attributes that are actually scanned for answering the query 𝑞. The result is based on

the data layout used to store X.

Now, we apply the Formula (4.3.7) to estimate the reading cost for a data storage

configuration 𝐺𝑖. For each column group 𝐶𝑖,𝑥 ∈ 𝐶𝑖
𝑞

 of 𝐺𝑖, the number of attributes of

the column group 𝐶𝑖,𝑥 that is scanned by the query 𝑞 depends on the data layout 𝑑𝑥

used to store 𝐶𝑖,𝑥 and is expressed by the Formula (4.3.7) as follows: |𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞|.

Let 𝑟𝑖,𝑥
𝑞

 denote the number of tuples (rows) in 𝐶𝑖,𝑥 that the query 𝑞 has to scan. We

assume that we do not use indexes and horizontal partitioning, thus all tuples of

𝐶𝑖,𝑥 need to be read. In this case, 𝑟𝑖,𝑥
𝑞

 is exactly equal to the number of rows in 𝐶𝑖,𝑥, i.e.,

𝑟𝑖,𝑥
𝑞 = 𝑟𝑖,𝑥. Additionally, the surrogate attribute is always added to each column group

𝐶𝑖,𝑥, thus the additional reading cost required for this attribute is also included into the

HYTORMO and HADF

72

total reading cost. The reading cost required for the query 𝑞 to read 𝐶𝑖,𝑥 is

(|𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞|) × 𝑟𝑖,𝑥

𝑞
.

Figure 4.9: Reading effectiveness in (a) a column store and (b) a row store

Figure 4.9 shows an example of reading effectiveness. Here, the given horizontal

table consists of 5 attributes 𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4 and 3 tuples (this horizontal table is the

same as the one given in Figure 4.5); it contains 15 data cells. Assume that a query 𝑞

needs to access only 3 attributes 𝑈𝐼𝐷, 𝑎1 and 𝑎2. If this table is stored in a single

column table, as shown in Figure 4.9(a), only 9 data cells are read to answer 𝑞 while

the remaining data cells are ignored. In contrast, if it is stored in a single row table, as

shown in Figure 4.9(b), all of the 15 data cells are read (𝑞 has to access all the

attributes, including two irrelevant attributes 𝑎3 and 𝑎4).

The total reading cost for the query 𝑞 when using the data storage configuration

𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) is estimated as follows:

𝑅𝐸𝐴𝐷_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖) = ∑ [(|𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞|) × 𝑟𝑖,𝑥

𝑞
]𝐶𝑖∈𝐺𝑖

 ,𝐶
𝑖
𝑞

∈𝐶𝑖,
 𝐶𝑖,𝑥∈𝐶

𝑖
𝑞

, 𝐿𝑑𝑥∊𝐿𝑖
 , (4.3.8)

where 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧}, 𝐿𝑖 = {𝐿𝑑1
(𝐶𝑖,1), 𝐿𝑑2

(𝐶𝑖,2), … , 𝐿𝑑𝑧
(𝐶𝑖,𝑧)}, 𝑑𝑥 ∈ 𝑆 and

𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"}.

Formula (4.3.8) computes the total reading cost for the query 𝑞 when the data

storage configuration 𝐺𝑖 is used. It shows clearly that the reading effectiveness is

achieved mainly when a column store is used:

 If 𝐶𝑖,𝑥 is stored using a row table, all the attributes of 𝐶𝑖,𝑥 have to be read by 𝑞:

|𝐿"𝑟𝑜𝑤−𝑠𝑡𝑜𝑟𝑒"(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞| = |𝐶𝑖,𝑥|.

 If 𝐶𝑖,𝑥 is stored using a column table, only the relevant attributes of 𝐶𝑖,𝑥 are read by

𝑞: |𝐿"𝑐𝑜𝑙𝑢𝑚𝑛−𝑠𝑡𝑜𝑟𝑒"(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞| ≤ |𝐶𝑖,𝑥|.

Tuple Reconstruction Cost: As mentioned earlier, when a user write a query 𝑞, names

of entity tables (e.g., Patient, Study, Series, etc.) are used in 𝑞. We refer to these tables

as horizontal tables. Then, each horizontal table may be decomposed into a number

of vertically partitioned tables. As a result, if the query 𝑞 needs to access attributes

across several column groups, i.e., |𝐶𝑖
𝑞| > 1, HYTORMO has to perform additional

join operations to reconstruct the original tuples from the relevant vertically partitioned

tables. Thus, the tuple reconstruction cost needs to be taken into consideration when

selecting a data storage configuration.

HYTORMO will automatically rewrite the query 𝑞 into a sequence of inner and/or

left-outer joins between relevant vertically partitioned. The attribute 𝑈𝐼𝐷 will be used

as a join attribute to join the vertically partitioned tables together. A similar approach

HYTORMO and HADF

 73

has been presented by B. Cui et al. [14]. In general, given a data storage configuration

𝐺𝑖 of the horizontal table 𝑇 and a set of column groups 𝐶𝑖
𝑞
 that is required to answer

the query 𝑞, the query 𝑞 can be easily translated into a relational algebraic expression

as given in Formula (4.3.9):

𝑞 = π𝑎1,…,𝑎𝑚
[π𝑈𝐼𝐷(𝑇) ⟕ (⟕𝑥=1

|𝐶𝑖
𝑞

|
σ𝑃𝑖,𝑥

(𝐶𝑖,𝑥))], (4.3.9)

where the selection operation σ𝑃𝑖,𝑥
(𝐶𝑖,𝑥) returns only tuples of the table storing data

for the column group 𝐶𝑖,𝑥 for which the predicate (or condition) 𝑃𝑖,𝑥 is fulfilled. The

projection operation π𝑈𝐼𝐷(𝑇) returns a list of all 𝑈𝐼𝐷s of the horizontal table 𝑇.

However, this projection operation may not be required if this join sequence begins

with a column group 𝐶𝑖,𝑥 containing mandatory attributes of DICOM data. This is

because, in this case, 𝐶𝑖,𝑥 already consists of a list of all 𝑈𝐼𝐷s. The projection operation

π𝑎1,…,𝑎𝑚
[…] returns all tuples of the query result, where only the attributes 𝑎1, … , 𝑎𝑚

listed behind the keyword SELECT of the query 𝑞 appear.

For example, given the data storage configuration 𝐺3 of the horizontal table 𝑇, as

given in Figure 4.8(c), the query 𝑞 = SELECT 𝑎1, 𝑎2, 𝑎4 FROM 𝑇 can be translated

into a relational algebraic expression as follows:

𝑞 = π𝑎1,𝑎2 ,𝑎4 (π𝑈𝐼𝐷(𝑇) ⟕ 𝐶3,1 ⟕ 𝐶3,2 ⟕ 𝐶3,4),

where 𝐶3,1, 𝐶3,2 and 𝐶3,4, respectively, represent three row tables storing data of three

column groups {𝑈𝐼𝐷, 𝑎1}, {𝑈𝐼𝐷, 𝑎2} and {𝑈𝐼𝐷, 𝑎4} of 𝐺3. Here, the result tuples of

𝑞 are reconstructed by using a sequence of left-outer joins.

A complete estimate for the tuple reconstruction cost is quite complex due to a

mixed use of both inner and left-outer joins in the same join sequence. Furthermore,

the tuple reconstruction cost is aimed to be used for comparing several data storage

configurations at the time the query execution plan may not well defined. Therefore,

the scope of our study is limited to two cases: (1) left-outer join operations in a join

sequence can be rewritten as inner join operations and (2) left-deep plans are used.

(These two cases are mentioned in Chapter 5.) With these two cases, given a data

storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) and a query 𝑞 that needs to access a set of relevant

column groups 𝐶𝑖
𝑞
, the tuple reconstruction cost is estimated by Formula (4.3.10):

𝑅𝐸𝐶𝑂𝑁𝑆𝑇𝑅𝑈𝐶𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖)

= ∑ 𝐽𝑂𝐼𝑁_𝑆𝐼𝑍𝐸(𝐶𝑖,1, 𝐶𝑖,2, … , 𝐶𝑖,|𝐶𝑖
𝑞

|)

𝐶𝑖∈𝐺𝑖
 ,𝐶

𝑖
𝑞

∈𝐶𝑖
 ,𝐶𝑖,𝑥∈𝐶

𝑖
𝑞

 (4.3.10)

The tuple reconstruction cost is estimated as the total size of the intermediate

results yielded by the execution of a sequence of join operations applied on the relevant

vertically partitioned tables. The size of the intermediate result of a join operation

between two vertically partitioned tables storing two column groups 𝐶𝑖,𝑥 and 𝐶𝑖,𝑦 can

be estimated by Formula (4.3.11):

𝐽𝑂𝐼𝑁_𝑆𝐼𝑍𝐸(𝐶𝑖,𝑥 , 𝐶𝑖,𝑦) =

 (|𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞| × 𝑟𝑖,𝑥

𝑞
) × (|𝐿𝑑𝑦

(𝐶𝑖,𝑦) ∩𝐿 𝐴𝑞| × 𝑟𝑖,𝑦
𝑞

) × Sel(𝐶𝑖,𝑥, 𝐶𝑖,𝑦)
, (4.3.11)

HYTORMO and HADF

74

where |𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞| × 𝑟𝑖,𝑥

𝑞
 and |𝐿𝑑𝑦

(𝐶𝑖,𝑦) ∩𝐿 𝐴𝑞| × 𝑟𝑖,𝑦
𝑞

 denote the sizes of inputs

that are actually read from two vertically partitioned tables storing two column groups

𝐶𝑖,𝑥 and 𝐶𝑖,𝑦, respectively; 𝑑𝑥 and 𝑑𝑦 ∈ 𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"}

(see Formula (4.3.7)) are data layouts used to store 𝐶𝑖,𝑥 and 𝐶𝑖,𝑦, respectively. We

assume that all tuples (rows) of 𝐶𝑖,𝑥 and 𝐶𝑖,𝑦 will be read by 𝑞, i.e., 𝑟𝑖,𝑥
𝑞 = 𝑟𝑖,𝑥 and

𝑟𝑖,𝑦
𝑞 = 𝑟𝑖,𝑦, respectively. 𝑆𝑒𝑙(𝐶𝑖,𝑥, 𝐶𝑖,𝑦) represents the join selectivity associated with

two vertically partitioned tables storing 𝐶𝑖,𝑥 and 𝐶𝑖,𝑦.

When a query only requires data from a single column group, the tuple

reconstruction cost is zero. Let us now consider the case where the query needs to

access multiple column groups. As mentioned earlier, the reading cost for the query 𝑞

to read all tuples of the column group 𝐶𝑖,𝑥 is (|𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞|) × 𝑟𝑖,𝑥

𝑞
, where

|𝐿𝑑𝑥
(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞| represents the number of attributes accessed from 𝐶𝑖,𝑥. Therefore,

the tuple reconstruction cost of the query 𝑞 when applying data storage configuration

𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) can be rewritten in detail as follows:

𝑅𝐸𝐶𝑂𝑁𝑆𝑇𝑅𝑈𝐶𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖)

= {
∑ ∏[(|𝐿𝑑𝑥

(𝐶𝑖,𝑥) ∩𝐿 𝐴𝑞|) × 𝑟𝑖,𝑥
𝑞

] ×

𝑦

𝑥=1

∏ Sel(𝐶𝑖,𝑡, 𝐶𝑖,𝑥)

𝑡<𝑥𝐶𝑖∈𝐺𝑖
 ,𝐶𝑖

𝑞
∈𝐶𝑖

 ,𝐶𝑖,𝑥∈𝐶𝑖
𝑞

,𝑦=2..|𝐶𝑖
𝑞

|, 𝐿𝑑𝑥∈ 𝐿𝑖

 𝑖𝑓 |𝐶𝑖
𝑞

| > 1

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, (4.3.12)

where 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧}, 𝐿𝑖 = {𝐿𝑑1
(𝐶𝑖,1), 𝐿𝑑2

(𝐶𝑖,2), … , 𝐿𝑑𝑧
(𝐶𝑖,𝑧)}, 𝑑𝑥 ∈ 𝑆,

𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"}.

Using Formulas (4.3.8) and (4.3.12), the execution cost of the query 𝑞 when using

the configuration 𝐺𝑖 is denoted by the cost function 𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖):

𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖)

= 𝑅𝐸𝐴𝐷_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖) + 𝑅𝐸𝐶𝑂𝑁𝑆𝑇𝑅𝑈𝐶𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖)
(4.3.13)

The execution cost of a workload 𝑊 when applying the configuration 𝐺𝑖 can be

estimated by adding the execution cost of each query 𝑞 in this workload as follows:

𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(W, 𝐺𝑖) = ∑ 𝐸𝑋𝐸𝐶𝑈𝑇𝐼𝑂𝑁_𝐶𝑂𝑆𝑇(𝑞, 𝐺𝑖)

𝑞∈𝑊

 (4.3.14)

Intuitively, the workload execution cost when using a data storage configuration

can be reduced when the storage cost, the number of irrelevant attributes and the

number of relevant column groups are reduced. Relying on how sparse the given

horizontal table is and how often the attributes of this table are frequently accessed

together, an automated design approach can vertically partition this table into multiple

tables of various widths, and suggest suitable data layouts for them. A good data

storage configuration needs to reduce both the storage space demand and the workload

execution time.

However, the solution search space for an optimal data storage configuration that

can minimize both storage cost and execution cost, as shown in Formula (4.3.1), is

very large due to the need of exploring all possible combinations of the column groups

and the data layouts. In practice, it is infeasible to discover all possible data storage

configurations. To overcome this limitation, in the next section, we propose a new

HYTORMO and HADF

 75

hybrid automated design framework that uses a heuristic approach to assist experts in

rapidly obtaining a good data storage configuration for a given horizontal table.

4.4 Hybrid Automated Design Framework

As mentioned in Section 3.5.1, some studies proposed different algorithms to design

schemas for sparse datasets such as HoVer approach [14], data-centric approach [15],

wide-table approach [16]. These algorithms have benefits in reducing the search space

of solutions while automatically finding schemas from sparse datasets. However, they

still exist some limitations: First, they do not distinguish clearly between the impact of

workload- and data-specific information on the quality of vertical partitioning results.

The reason is that they are typically based on an assumption that co-occurring

attributes (i.e., having non-null values in the same rows of a given horizontal table) are

also frequently accessed together by the same queries. However, this assumption does

not strictly hold in the context of DICOM data where many non-null attributes may

not be frequently accessed together and vice versa. Second, they also assume that all

the vertical partitioning results will be stored using the same data layout, e.g., a row-

oriented data layout, instead of both row- and column-oriented data layouts. To

overcome these limitations, we propose a new hybrid automated design framework,

called HADF.

4.4.1 Overview of the Framework

In this section, we introduce HADF that is a heuristic approach using both workload-

and data-specific information to automatically produce data storage configurations for

DICOM data. For this reason, we say that HADF is a workload- and data-based

automated design approach.

Figure 4.10 shows an overall HADF that uses given inputs to perform two phases,

namely clustering and merging-selecting, to automatically generate a candidate data

storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) that consists of a set of column groups

𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧} and a set of data layouts

𝐿𝑖 = {𝐿𝑑1
(𝐶𝑖,1), 𝐿𝑑2

(𝐶𝑖,2), … , 𝐿𝑑𝑧
(𝐶𝑖,𝑧)} applied for these column groups. 𝐿𝑑𝑥

(𝐶𝑖,𝑥)

represents that a column group 𝐶𝑖,𝑥 is stored by using a data layout dx, where 𝑑𝑥 ∊ 𝑆

and 𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"}.

To achieve a candidate configuration 𝐺𝑖, three groups of inputs are required for

HADF: (1) Workload-specific inputs include AUM (Attribute Usage Matrix) and F

(query frequencies). (2) Data-specific input includes the horizontal table 𝑇. (3)

Parameters include a weight 𝛼 for prioritizing similarity measures, a threshold 𝛽 for

clustering attributes, a threshold 𝜃 for merging a pair of clusters together, and a

threshold 𝜆 for selecting a suitable data layout.

HYTORMO and HADF

76

Figure 4.10: Overview of HADF

Using the above inputs, HADF, in turn, performs two phases clustering and

merging-selecting as follows.

 Clustering Phase: This phase aims at decreasing storage space demand (by

reducing null values) and improving query performance (by reducing irrelevant

attribute accesses). In order to achieve these aims, the clustering phase takes into

consideration the combined impact of both workload- and data specific

information on the quality of vertical partitioning results. First, we compute two

similarity measures Attribute Access Similarity and Attribute Density Similarity

between every pair of the attributes of the given horizontal table 𝑇. The former

measure will capture the workload-specific information, while the later measure

will capture the data-specific information. The Attribute Access Similarity

between two attributes is computed using information about attribute usage, given

in Attribute Usage Matrix (𝐴𝑈𝑀) and query frequencies (𝐹). Attribute Access

Similarity Matrix (AASM) is built to represent the Attribute Access Similarity of

every pair of the attributes. In general, two attributes has a high value of the

Attribute Access Similarity if they are frequently accessed together in the same

HYTORMO and HADF

 77

queries. On the other hand, the Attribute Density Similarity is computed by

exploiting the information about co-occurrence of two attributes, shown in the

given horizontal table 𝑇; Attribute Density Similarity Matrix (ADSM) is built to

represent the Attribute Density Similarity of every pair of the attributes. Two

attributes has a high value of the Attribute Density Similarity if they

simultaneously occur (i.e., non-null values) in all (or most) rows in 𝑇. Next, the

Hybrid Similarity between each pair of attributes is computed by combining their

Attribute Access Similarity and Attribute Density Similarity with the weight 𝛼.

Hybrid Similarity Matrix (HSM) is built to represent the Hybrid Similarity between

every pair of the attributes. Finally, using this HSM, the clustering phase will

cluster the attributes into subspaces (i.e., column groups) so that the Hybrid

Similarity between every pair of attributes in the same subspace is greater than or

equal to the threshold 𝛽. (We say that all the attributes in the same subspace are

similar with each other). The output of the clustering phase is a set of resulting

column groups 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧}.

 Merging-Selecting Phase: This phase aims at further improving the query

performance by reducing both the tuple reconstruction cost (by reducing the

number of additional joins) and the number of irrelevant attribute accesses. To

achieve these, the underlying solution idea is to take into consideration the use of

a hybrid store instead of just a row store or a column store. The resulting column

groups yielded by the clustering phase are used as an initial input for this phase.

Additionally, by the default, at initial time, all these column groups are regarded

as using a row store. The merging-selecting phase begins with the computation of

Inter-Cluster Similarity depending on the Attribute Access Similarity. It measures

the overlapping access ratio between every pair of column groups (how often two

column groups are simultaneously accessed by the same queries). A pair of column

groups are chosen and merged together to create a new column group if their Inter-

Cluster Similarity is greater than or equal to the threshold 𝜃. Furthermore, a column

group is stored in a row store if its Intra-Cluster Similarity that measures the

attribute access ratio to the same column group (over the overall workload) is

greater than or equal to the threshold 𝜆; otherwise, it is stored in a column store.

As illustrated in Figure 4.10, two column groups 𝐶𝑖,2 and 𝐶𝑖,3 are merged into a

new column group 𝐶𝑖,2.3. Then, 𝐶𝑖,2.3 is stored in a column store. This procedure

is repeated similarly until all pairs of the column groups are considered. The output

of the merging-selecting phase is a candidate data storage configuration

𝐺𝑖 = (𝐶𝑖, 𝐿𝑖). For example, two components 𝐶𝑖 and 𝐿𝑖 in Figure 4.10 are

represented as follows: 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧}, and

 𝐿𝑖 = {𝐿"row-store"(𝐶𝑖,1), … , 𝐿"𝑐𝑜𝑙𝑢𝑚𝑛-store"(𝐶𝑖,23), … , 𝐿"row-store"(𝐶𝑖,𝑧)}.

In the followings, we provide more details about four parameters used by HADF:

𝛼 (weight of similarity), 𝛽 (clustering threshold), 𝜃 (merging threshold) and 𝜆 (data

layout threshold).

 𝛼 ranges from 0 to 1. It is used in the clustering phase to control the combined

impact of the Attribute Access Similarity and the Attribute Density Similarity on

the Hybrid Similarity between two attributes ax and ay: 𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) =

HYTORMO and HADF

78

α × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) + (1 − α) × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦).

As such, the higher value 𝛼 gets, the more impact of the Attribute Access Similarity

on the clustering result and vice-versa.

 𝛽 ranges from 0 to 1. It is a clustering threshold used in the clustering phase. It is

regarded as a threshold of similarity degree between two attributes (in terms of the

Hybrid Similarity). The lower value 𝛽 gets, the larger number of attributes (with

low similarity degree) each resulting cluster can have and vice-versa.

 𝜃 ranges from 0 to 1. It is a merging threshold used in the merging-selecting phase.

It indicates how often two clusters are accessed together by the same queries in a

given workload. When the Inter-Cluster Access Similarity of two clusters has a

value of 0, it means that these two clusters have not been accessed together by any

query; in contrast, a value of 1 indicates that these two clusters are always used

together by all the queries. In general, if two clusters are frequently accessed

together by the majority of the queries, their Inter-Cluster Access Similarity will

be high; in this case, they should be merged into a new cluster to reduce the number

of additional joins. We use the threshold 𝜃 for the Inter-Cluster Access Similarity

to indicate whether two clusters will be merged together or not.

 𝜆 ranges from 0 to 1. It is a data layout threshold used in the merging-selecting

phase. It indicates how often the attributes of the same cluster are accessed together

by the same queries in a given workload. If all (or most) attributes of a cluster are

frequently accessed together, the value of the Intra-Cluster Access Similarity will

be high, thus the cluster should be stored in a row table in order to reduce the tuple

reconstruction cost; otherwise, it should be stored in a column table in order to

reduce irrelevant attribute accesses. We apply the threshold 𝜆 for the Intra-Cluster

Access Similarity to determine which data layout will be applied to a cluster.

To deal with the evolution of data (i.e., adding new attributes), new attributes can

be stored temporarily in a separated column group. After that, HADF can be used to

determine where to store them. However, this work is beyond the scope of this thesis.

In the following section, we present how to compute the similarity measures.

4.4.2 Similarity Measures

In this section, we present in detail the mathematic formalization of the used similarity

measures. These similarity measures are computed using the following inputs:

 The workload-specific inputs include components used to represent information

about a workload. A workload 𝑊 = (𝐴, 𝑄, 𝐴𝑈𝑀, 𝐹) contains the following

components: (1) 𝐴 = {𝑎1, 𝑎2, … , 𝑎𝑛} is a set of attributes of a horizontal table 𝑇.

(2) 𝑄 = {𝑞1, 𝑞2, … , 𝑞𝑚} is a set of queries. (3) 𝐴𝑈𝑀 is an Attribute Usage Matrix

of size m × n. (4) 𝐹 = {𝑓1, 𝑓2, … , 𝑓𝑚} represents a set of total frequency counts 𝑓𝑖’s

of queries 𝑞𝑖’s.

 The data-specific input includes the horizontal table 𝑇.

HYTORMO and HADF

 79

Attribute Access Similarity

We define the notion of Attribute Access Similarity between two attributes 𝑎𝑥 and 𝑎𝑦

based on the Jaccard’s coefficient [110, 111] as follows:

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦)

=
∑ [(𝐴𝑈𝑀[𝑖][𝑎𝑥] ⋀ 𝐴𝑈𝑀[𝑖][𝑎𝑦]) × 𝑓𝑖]𝑚

𝑖=1

∑ (𝐴𝑈𝑀[𝑖][𝑎𝑥] × 𝑓𝑖)𝑚
𝑖=1 − ∑ [(𝐴𝑈𝑀[𝑖][𝑎𝑥] ⋀ 𝐴𝑈𝑀[𝑖][𝑎𝑦]) × 𝑓𝑖]𝑚

𝑖=1 + ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑦] × 𝑓𝑖)𝑚
𝑖=1

, (4.4.1)

where ∧ is a binary bitwise AND operator and 𝑚 represents the number of queries in

the given workload W. An entry 𝐴𝑈𝑀[𝑖][𝑎𝑥] (resp. 𝐴𝑈𝑀[𝑖][𝑎𝑦]) indicates whether

the attribute 𝑎𝑥 (resp. 𝑎𝑦) is accessed by the query 𝑞𝑖 or not. In particular, if the

attribute 𝑎𝑥 (resp. 𝑎𝑦) is accessed by the query 𝑞𝑖, 𝐴𝑈𝑀[𝑖][𝑎𝑥] (resp. 𝐴𝑈𝑀[𝑖][𝑎𝑦]) is

equal to 1; otherwise, 𝐴𝑈𝑀[𝑖][𝑎𝑥] (resp. 𝐴𝑈𝑀[𝑖][𝑎𝑦]) is equal to 0. m represents the

number of queries in the given workload W. Hence, ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑥] × 𝑓𝑖)𝑚
𝑖=1 (resp.

∑ (𝐴𝑈𝑀[𝑖][𝑎𝑦] × 𝑓𝑖)
𝑚
𝑖=1) represents the total number of times in which the attribute 𝑎𝑥

(resp. 𝑎𝑦) is accessed by all the queries. ∑ [(𝐴𝑈𝑀[𝑖][𝑎𝑥] ⋀ 𝐴𝑈𝑀[𝑖][𝑎𝑦]) × 𝑓𝑖]𝑚
𝑖=1

represents the total number of times in which both attributes 𝑎𝑥 and 𝑎𝑦 are accessed

simultaneously by all the queries. ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑥] × 𝑓𝑖)
𝑚
𝑖=1 −

∑ [(𝐴𝑈𝑀[𝑖][𝑎𝑥] ⋀ 𝐴𝑈𝑀[𝑖][𝑎𝑦]) × 𝑓𝑖]𝑚
𝑖=1 + ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑦] × 𝑓𝑖)𝑚

𝑖=1 is the total

number of times in which at least one of the two attributes 𝑎𝑥 and 𝑎𝑦 is accessed. In

general, we can depict the relationship among three components, ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑥] ×𝑚
𝑖=1

𝑓𝑖), ∑ (𝐴𝑈𝑀[𝑖][𝑎𝑦] × 𝑓𝑖)𝑚
𝑖=1 and ∑ [(𝐴𝑈𝑀[𝑖][𝑎𝑥] ⋀ 𝐴𝑈𝑀[𝑖][𝑎𝑦]) × 𝑓𝑖]𝑚

𝑖=1 , in a Venn

diagram as shown in Figure 4.11.

Figure 4.11: Venn diagram

Therefore, the Attribute Access Similarity is defined as the ratio between the total

number of times in which a pair of attributes 𝑎𝑥 and 𝑎𝑦 are simultaneously accessed

by the same queries 𝑞𝑖’s in the workload 𝑊 and the total number of times in which at

least one of the two attributes is accessed. Its value ranges from 0 to 1. It returns a

value of 1 if two attributes 𝑎𝑥 and 𝑎𝑦 are always accessed together by the same queries

and 0 if these two attributes have never been accessed together by any query.

Using Formula (4.4.1), we construct the Attribute Access Similarity Matrix, AASM

∊ ℝ|A|×|A|, to represent the Attribute Access Similarity of all pairs of the attributes.

Attribute Density Similarity

Similarly to the Attribute Access Similarity, we also define Attribute Density Similarity

based on the Jaccard’s Coefficient as follows:

HYTORMO and HADF

80

𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦)

=
∑ (𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑥]) ⋀ 𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑦]))

|𝑇|
𝑖=1

∑ 𝑇𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑥])
|𝑇|

𝑖=1 − ∑ (𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑥]) ⋀ 𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑦]))
|𝑇|

𝑖=1 + ∑ 𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑦])
|𝑇|

𝑖=1

, (4.4.2)

where 𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑥]) (resp. 𝑖𝑠𝑁𝑜𝑡𝑁𝑢𝑙𝑙(𝑇[𝑖][𝑎𝑦])) represents a Boolean

function which returns 1 if the attribute 𝑎𝑥 (resp. 𝑎𝑦) in i-th row of the horizontal table

𝑇 has a non-null value; otherwise, 0. We use |𝑇| to denote the number of rows in 𝑇.

Therefore, the Attribute Density Similarity is defined as the ratio of the total

number of rows in which both attributes 𝑎𝑥 and 𝑎𝑦 simultaneously have non-null

values and the total number of rows in which at least one of these two attributes has a

non-null value. Its value ranges from 0 to 1. It returns a value of 1 when both two

attributes 𝑎𝑥 and 𝑎𝑦 always co-occur (i.e., having non-null values) in the same rows

of 𝑇 and 0 when they have never co-occurred in any row of 𝑇.

Using Formula (4.4.2), we construct the Attribute Density Similarity Matrix ADSM

∊ ℝ|A|×|A| to represent the Attribute Density Similarity of all pairs of the attributes.

Hybrid Similarity

We propose to measure the Hybrid Similarity between two attributes 𝑎𝑥 and 𝑎𝑦 by

using a weighted combination between the Attribute Access Similarity and the

Attribute Density Similarity of these two attributes as follows:

𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) = α × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) +

 (1 − α) × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦)
, (4.4.3)

where 𝛼 is a user-specified weight parameter that controls the combined impact of the

Attribute Access Similarity and the Attribute Density Similarity on the result of the

clustering phase. Its value is between 0 and 1.

Now, we can construct the Hybrid Similarity Matrix, HSM ∊ ℝ|A|×|A|, to represent

the Hybrid Similarity of all pairs of the attributes as follows:

𝐻𝑆𝑀 = α × 𝐴𝐴𝑆𝑀 + (1 − α) × 𝐴𝐷𝑆𝑀 (4.4.4)

The matrix HSM is used in the clustering phase, as shown in Figure 4.10.

Intra- and Inter-cluster Access Similarity

The Intra-Cluster Access Similarity of a single cluster 𝐶𝑖,𝑢 of a data storage

configuration 𝐺𝑖 is defined as an average access similarity of all pairs of the attributes

within this cluster:

𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝐶𝑖,𝑢)

 = {

∑ 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦)𝑎𝑥∈𝐶𝑖,𝑢, 𝑎𝑦∈𝐶𝑖,𝑢, 𝑥≠𝑦

|𝐶𝑖,𝑢| × (|𝐶𝑖,𝑢| − 1)
, 𝑖𝑓 |𝐶𝑖,𝑢| > 1

1, 𝑖𝑓 |𝐶𝑖,𝑢| = 1

(4.4.5)

The value of the Intra-Cluster Access Similarity ranges from 0 to 1. We set the

Intra-Cluster Access Similarity to 1 if 𝐶𝑖,𝑢 contains only one attribute, i.e., |𝐶𝑖,𝑢| = 1.

HYTORMO and HADF

 81

The Inter-Cluster Access Similarity between two clusters 𝐶𝑖,𝑢 and 𝐶𝑖,𝑣 of a data

storage configuration 𝐺𝑖 is computed as the average of the total access similarity over

every pair of the attributes between these two clusters:

𝐼𝑛𝑡𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝐶𝑖,𝑢, 𝐶𝑖,𝑣)

=
∑ 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) 𝑎𝑥∈𝐶𝑖,𝑢, 𝑎𝑦∈𝐶𝑖,𝑣

|𝐶𝑖,𝑢| × |𝐶𝑖,𝑣|
,

(4.4.6)

where 𝐶𝑖,𝑢 ≠ 𝐶𝑖,𝑣.

Similarly to the Intra-Cluster Access Similarity, the value of the Inter-Cluster

Access Similarity ranges from 0 to 1.

The Intra-Cluster Access Similarity and the Inter-Cluster Access Similarity are

used in the merging-selecting phase, as shown in Figure 4.10. Because the goal of this

phase is to improve the query performance by reducing the number of joins and the

number of irrelevant attribute accesses, we only use the Attribute Access Similarity

between every pair of the attributes (given in the matrix AASM) to compute these two

similarity measures.

The Intra-Cluster Access Similarity and the Inter-Cluster Access Similarity have

been widely applied to determine the quality of a clustering result. In general, the

objective of the clustering is to maximize the Intra-Cluster Access Similarity and

minimize the Inter-Cluster Access Similarity [112]. By applying these measures, in the

following section, we describe the implementation of HADF.

4.4.3 Implementation of the Framework

HADF applies algorithms to produce data storage configurations from given inputs.

The implementation of HADF is described through five algorithms, Algorithms 1 – 5,

to compute inputs and to perform two phases clustering and merging-selecting.

Algorithm 1: Generating a Candidate Storage Configuration

Algorithm 1: GenerateStorageConfiguration

 Input : 𝐴𝑈𝑀: Attribute Usage Matrix; 𝐹: Query frequencies; 𝑇: Horizontal table;

𝑆: A set of available data layouts; 𝛼: Weight parameter;

𝛽: Clustering threshold; 𝜃: Merging threshold; 𝜆: Data layout threshold;

n: Number of attributes;

Output : 𝐺𝑖: A candidate data storage configuration 𝐺𝑖, consisting of column groups and

their corresponding data layouts;

 1: AACM = ConstructAttributeAccessCorrelationMatrix(𝐴𝑈𝑀, m, n , 𝐹);

 2: ADCM = ConstructAttributeDensityCorrelationMatrix(𝑇, m, n);

 3: AASM = ConstructAttributeAccessSimilarityMatrix(𝐴𝑈𝑀, m, n, 𝐹);

 4: ADSM = ConstructAttributeDensitySimilarityMatrix(𝑇, m, n);

 5: HSM = ConstructHybridSimilarityMatrix(AASM, ADSM, n);

 6: 𝐶𝑖 = ClusterAttributes(AACM, ADCM, HSM, 𝛼, 𝛽, n);

 7: 𝐺𝑖 = MergeAndSelectStores(𝐶𝑖, 𝑆, AASM, 𝜃, 𝜆, n);

 8: return 𝐺𝑖;

Algorithm 1 is implemented in the function GenerateStorageConfiguration(). It

computes the inputs related to workload- and data-specific information and calls other

HYTORMO and HADF

82

functions to perform two phases clustering and merging-selecting. Its pseudo code is

described as follows: First of all, the function ConstructAttributeAccessCorrelation-

Matrix() (line 1) is performed to create the Attribute Access Correlation Matrix

(AACM) that describes the correlation between every pair of attributes in terms of the

number of times in which two attributes are simultaneously accessed. Next, the

function ConstructAttributeDensityCorrelationMatrix() (line 2) is called to compute

the Attribute Density Correlation Matrix (ADCM) that describes the correlation

between every pair of attributes in terms of the number of times in which two attributes

simultaneously have non-null values. Then, Algorithm 1 calls two functions

ConstructAttributeAccessSimilarityMatrix() (line 3) and ConstructAttributeDensity-

SimilarityMatrix() (line 4) in order to respectively compute two matrices Attribute

Access Similarity Matrix (AASM) and Attribute Density Similarity Matrix (ADSM),

which present the similarity between every pair of the attributes in terms of the

Attribute Access Similarity and the Attribute Density Similarity. After that, these two

matrices are combined to construct the Hybrid Similarity Matrix (HSM) (line 5).

Following that, Algorithm 1 employs the function ClusterAttributes() (line 6) to

perform the clustering phase which uses a clustering threshold 𝛽 and the matrix HSM

to group the attributes of the given horizontal table 𝑇 into clusters such that the Hybrid

Similarity between every pair of the attributes in the same cluster is greater than or

equal to the given clustering threshold 𝛽. By this way, the function ClusterAttributes()

will return a set of resulting clusters 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧}. Finally, Algorithm 1

calls the function MergeAndSelectStores() (line 7) to perform the merging-selecting

phase which depends on the Inter-Cluster Access Similarity between two clusters in 𝐶𝑖

and the given merging threshold 𝜃 to determine which pair of clusters is merged

together to create a new cluster. This procedure is repeated to consider every pair of

clusters in 𝐶𝑖. After that, the merging-selecting phase depends on the Intra-Cluster

Access Similarity and the given data layout threshold 𝜆 to decide whether a cluster

will be stored in a row or a column store. The function MergeAndSelectStores() returns

a candidate data storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖), including a set of clusters 𝐶𝑖 and

a set of suggested data layouts 𝐿𝑖. This configuration is returned as the result of the

function GenerateStorageConfiguration() (line 8).

A new candidate data storage configuration 𝐺𝑖 will be generated corresponding to

a new set of values of the input parameters: 𝛼, 𝛽, 𝜃 and 𝜆. It is worthy to note that

some real DICOM datasets can be used as sample data to obtain the inputs (i.e.,

Attribute Usage Matrix AUM, query frequencies 𝐹, and horizontal table 𝑇) for this

algorithm.

Algorithm 2: Constructing an Attribute Access Correlation Matrix

This algorithm is used to implement the function ConstructAttributeAccess-

CorrelationMatrix() that computes the Attribute Access Correlation Matrix (AACM),

a square matrix of size n × n, to represent the correlation between every pair of n

attributes of the given horizontal table 𝑇 in terms of concurrent access degree. An

element AACM[i][j] (i ≤ j) represents the total number of times in which both attributes

i and j are simultaneously accessed. Because the attribute 𝑈𝐼𝐷 is always needed in all

vertical partitions, we do not need to add it into the matrix 𝐴𝑈𝑀.

HYTORMO and HADF

 83

Algorithm 2: ConstructAttributeAccessCorrelationMatrix

 Input : 𝐴𝑈𝑀: Attribute Usage Matrix (size is m × n);

m: Number of rows in 𝐴𝑈𝑀; n: Number of attributes; 𝐹: Query frequencies;

Output : AACM: Attribute Access Correlation Matrix (a square matrix of size n × n);

 1:

2:

for i = 1 to n do

 for j = i to n do

 3: AACM[i][j] = 0;

 4:

5:

6:

7:

 end for

end for

for q = 1 to m do

 for k = 1 to n do

 8: if 𝐴𝑈𝑀[𝑞][𝑘] = 1 then

 9: 𝑟𝑜𝑤[𝑘] = 1;

 10: else

 11: 𝑟𝑜𝑤[𝑘] = 0;

 12:

13:

14:

 end if

 end for

 for i = 1 to n do

 15: if 𝑟𝑜𝑤𝑙[𝑖] = 1 then

 16: for j = i to n do

 17: AACM[i][j] = AACM[i][j] + 𝑟𝑜𝑤[𝑗] ∗ 𝐹[𝑞];

 18:

19:

20:

21:

22:

 end for

 end if

 end for

end for

return AACM;

The pseudo code of Algorithm 2 is described as follows: First, we initialize the

matrix AACM by setting its elements to 0 (lines 1 - 5). Next, the matrix 𝐴𝑈𝑀 is read

row by row from top to bottom (lines 6 - 21). For each row 𝑞, we store it into an array

𝑟𝑜𝑤: each element 𝑟𝑜𝑤[𝑘] (1 ≤ 𝑘 ≤ 𝑛)) is assigned the value of 1 if the attribute k-

th is used by the query 𝑞; otherwise, it is assigned a value of 0. Then, we compute the

total number of times in which both attributes i and j are simultaneously accessed: for

each attribute i that is being used by the query 𝑞, we increase AACM[i][j] by 𝑟𝑜𝑤𝑙[𝑗] ∗

𝐹[𝑞] if both attributes i and j are simultaneously accessed by the query 𝑞 (𝐹[𝑞] is the

frequency of the query 𝑞) (lines 14 - 20). Finally, the matrix AACM is returned as the

result of the function ConstructAttributeAccessCorrelationMatrix() (line 22).

For example, given the matrix 𝐴𝑈𝑀 and 𝐹 as presented in Figure 4.6, the matrix

AACM is computed and shown in Figure 4.12. The element AACM[1][1] = 1200 means

that the attribute 𝑎1 is accessed 1200 times while element AACM[3][5] = 1100 means

that both attributes 𝑎3 and 𝑎5 are simultaneously accessed 1100 times.

Figure 4.12: Attribute Access Correlation Matrix

HYTORMO and HADF

84

Algorithm 3: Constructing an Attribute Density Correlation Matrix

Algorithm 3 is used to implement the function ConstructAttributeDensity-

CorrelationMatrix() that computes the Attribute Density Correlation Matrix (ADCM),

a square matrix of size n × n, to describe the correlation between every pair of n

attributes of the given horizontal table 𝑇 in terms of concurrent occurrence degree. An

element ADCM[i][j] (i ≤ j) represents the total number of times in which both attributes

i and j concurrently have non-null values.

Algorithm 3: ConstructAttributeDensityCorrelationMatrix

 Input : 𝑇: Horizontal table; m: Number of tuples (rows) in 𝑇; n: Number of attributes of 𝑇;

Output : ADCM: Attribute Density Correlation Matrix (a square matrix of size n × n);

 1:

2:

for i = 1 to n do

 for j = i to n do

 3: ADCM[i][j] = 0;

 4:

5:

6:

7:

 end for

end for

for t = 1 to m do

 for k = 1 to n do

 8: if isNotNull(𝑇[𝑡][𝑘]) then

 9: 𝑟𝑜𝑤[𝑘] = 1;

 10: else

 11: 𝑟𝑜𝑤[𝑘] = 0;

 12:

13:

14:

 end if

 end for

 for i = 1 do

 15: if 𝑟𝑜𝑤[𝑖] = 1 then

 16: for j = i to n do

 17: ADCM[i][j] = ADCM[i][j] + 𝑟𝑜𝑤[𝑗];

 18:

19:

20:

21:

22:

 end for

 end if

 end for

end for

return ADCM;

The pseudo code of Algorithm 3 is described as follows: First of all, we initialize

the matrix ADCM by setting its elements to 0 (lines 1 - 5). Next, the horizontal table 𝑇

is read row by row from top to bottom (lines 6 - 21). For each row, we store it into an

array 𝑟𝑜𝑤: each element 𝑟𝑜𝑤[𝑘] (1 ≤ 𝑘 ≤ 𝑛) is assigned the value of 1 if the attribute

k-th is not a null value; otherwise, it is assigned a value of 0. After that, we count the

total number of times in which both attributes i and j simultaneously have non-null

values: for each attribute i having a non-null value, we increase ADCM[i][j] by 𝑟𝑜𝑤[𝑗]
if both attributes i and j simultaneously have non-null values (lines 14 - 20). Finally,

the matrix ADCM is returned as the result of the function

ConstructAttributeDensityCorrelationMatrix (line 22).

For example, given the horizontal table 𝑇 as shown in Figure 4.7, the

corresponding matrix ADCM is computed and presented in Figure 4.13. The element

ADCM[1][1] = 10 means that the attribute 𝑎1 has non-null values in 10 tuples while

the element ADCM[2][4] = 8 indicates that both attributes 𝑎2 and 𝑎4 simultaneously

have non-null values in 8 tuples.

HYTORMO and HADF

 85

Figure 4.13: Attribute Density Correlation Matrix

Algorithm 4: Clustering Attributes

Algorithm 4 is used to implement the function ClusterAttributes() that performs the

clustering phase. We implement it by extending the clustering algorithm proposed by

B. Cui et al. [14]. Instead of only taking into consideration the impact of the data-

specific information on the clustering result as proposed in [14], our algorithm takes

into account the combined impact of both workload- and data-specific information.

Algorithm 4 tries to group attributes of a given horizontal table 𝑇 into a set of clusters

𝐶𝑖 in a way to reduce both storage space demand and improve workload performance

at the same time. In order to achieve this, given three matrices AACM, ADCM and

HSM and two parameters 𝛼 and 𝛽, Algorithm 4 starts by creating an initial (empty) set

of clusters of attributes. Next, it repeatedly adds a new cluster into this set. Such a new

cluster is created in a way so that the Hybrid Similarity between any two attributes in

the same cluster is not less than the clustering threshold 𝛽. This procedure is repeated

until all unclustered attributes are added into clusters.

The above clusters will be created in the descending order of the importance level

of the attributes. This importance level is specified in terms of either attribute access

frequency or data density. To achieve this, first of all, we look at the value of weight

parameter 𝛼 to determine whether the attribute access frequency or the data density

should be used: the former is chosen if 𝛼 is greater than or equal to 0.5; otherwise, the

latter is chosen. Next, we create a new empty cluster. Then, an attribute having the

highest value of the importance level among the unclustered attributes will be selected

to become the first element of that new cluster. After that, each of other unclustered

attributes will be added into this current new cluster if the Hybrid Similarity between

it and every attribute in this cluster is not less than the clustering threshold 𝛽. By this

way, the attributes having a high value of the importance level will be clustered before

the others. Therefore, the important attributes will have more chances to be stored

together. This heuristic way can help to reduce search space and create good results.

For instance, it can avoid storing dense and spare attributes together to reduce the

number of null values; or it can avoid storing frequently-used and seldom-used

attributes together to decrease redundant data accesses.

The pseudo code of Algorithm 4 is described as follows: First of all, depending on

the value of 𝛼, one of two matrices AACM and ADCM will be used as the priority

matrix, i.e., PriM, from which the attributes are selected one after another to be

considered for clustering attributes (lines 1-6). Next, we create a new empty set of

clusters, i.e., 𝐶𝑖 = Ø, and a new empty cluster, i.e., 𝐶𝑖,𝑥 = Ø (line 7). Because we will

create non-overlapping clusters, only the attributes that have not been clustered are

considered (line 8). Then, we find the most important attribute 𝑎𝑖𝑚 in terms of either

the attribute access frequency or the data density (lines 10 - 16) and add it into the new

HYTORMO and HADF

86

cluster 𝐶𝑖,𝑥 (line 18). After that, for each of other unclustered attributes 𝑎, if the Hybrid

Similarity between 𝑎 and every attribute 𝑎′ ∊ 𝐶𝑖,𝑥 is not less than 𝛽, we add 𝑎 into 𝐶𝑖,𝑥

(lines 20 - 31). Once all unclustered attributes have been considered, the resulting

cluster 𝐶𝑖,𝑥 will be added into the set of clusters 𝐶𝑖 (line 33). Finally, 𝐶𝑖 is returned as

the clustering result of the function ClusterAttributes() (line 35).

Algorithm 4: ClusterAttributes

 Input : AACM: Attribute Access Correlation Matrix;

ADCM: Attribute Density Correlation Matrix; HSM: Hybrid Similarity Matrix;

𝛼: Weight parameter; 𝛽: Clustering threshold; n: Number of attributes;

Output : 𝐶𝑖: A set of resulting clusters (column groups);

 1: //choose the priority matrix from which an ordered list of its attributes will be considered

 2: if 𝛼 ≥ 0.5 then

 3:

4:

5:

6:

 PriM = AACM;

else

 PriM = ADCM;

end if

 7: 𝐶𝑖 = Ø; x = 1; 𝐶𝑖,𝑥 = Ø ;

 8:

9:

10:

11:

12:

13:

14:

15:

16:

17:

while there exists an unclustered attribute do

 //find the most important attribute, 𝑎𝑖𝑚, in terms of workload or data density

 𝑎𝑖𝑚 = 0; PriM_max = 0;

 for each unclustered attribute a do

 if PriM[a][a] > PriM_max then

 PriM_max = PriM[a][a]; // an element on the main diagonal of the PriM

 𝑎𝑖𝑚 = 𝑎;

 end if

 end for

 //create a new cluster

 18: 𝐶𝑖,𝑥 = 𝐶𝑖,𝑥 ⋃ {𝑎𝑖𝑚};

 19:

20:

21:

22:

 //generate a cluster c that contains highly similarity attributes

 for each unclustered attribute 𝑎 do
 similarity = true;

 foreach attribute 𝑎′ in 𝐶𝑖,𝑥 do

 23: if (𝑎′ < 𝑎 and 𝐻𝑆𝑀[𝑎′][𝑎] < 𝛽) or (𝑎′ > 𝑎 and 𝐻𝑆𝑀[𝑎][𝑎′] < 𝛽) then

 24:

25:

26:

27:

 similarity = false;

 break;

 end if

 end for

 28: if similarity = true then

 29: 𝐶𝑖,𝑥 = 𝐶𝑖,𝑥 ⋃ {𝑎};
 30:

31:

32:

 end if

 end for

 // add cluster 𝐶𝑖,𝑥 into the set of clusters 𝐶𝑖

 33: 𝐶𝑖 = 𝐶𝑖 ⋃ {𝐶𝑖,𝑥}; x = x + 1;

 34:

35:

end while

return 𝐶𝑖;

The value of 𝛽 can be chosen based on experiments. In general, if the value of 𝛽

is small, a large number of attributes having a low value of the Hybrid Similarity will

be clustered into the same cluster. This results in a small number of large clusters such

that we will create wide tables to store those resulting clusters. Consequently, such

wide tables may cause a large number of null values or a large number of irrelevant

HYTORMO and HADF

 87

attribute accesses. In contrast, if the value of 𝛽 is large, only pairs of the attributes that

have a high similarity value are grouped into the same cluster. This results in a large

number of narrow tables created to store the resulting clusters. This helps to reduce the

number of null values; however, multiple expensive join operations may be needed to

reconstruct result tuples from the attributes stored across narrow tables.

Algorithm 5: Merging and Selecting Stores

Algorithm 5 is used to implement the function MergeAndSelectStores(). It aims to

improve the query performance. Because an attribute is only clustered into one cluster

(i.e., non-overlapping clustering), it is usually impossible to avoid joining vertically

partitioned tables to answer queries. As a consequence, the additional join operations

may reduce the query performance. In response to this problem, the merging-selecting

phase tries to improve the query performance by reducing both the number of

additional join operations and the number of irrelevant attribute accesses.

Figure 4.14: Example of cluster usage of a workload

Figure 4.14 presents an example of a set of resulting clusters

𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, … , 𝐶𝑖,6} and a set of queries 𝑄 = {𝑞1, 𝑞2, … , 𝑞16} in a workload. We

assume that these clusters have been generated by the clustering phase such that the

attributes within each cluster are grouped together based on the Hybrid Similarity.

Here, the clusters are being viewed based on cluster usage of the queries: size of a

circle representing a cluster denotes the total frequency count of all queries accessing

that cluster; a point in a cluster denotes a query accessing one or more attributes of the

cluster. It is clear that some queries need to access only one cluster while others may

need to access several clusters. A query in a common intersection part of two or more

clusters implies that it is accessing the attributes of these clusters. For instance, three

queries 𝑞1, 𝑞2 and 𝑞3 access only the attributes of cluster 𝐶𝑖,5; thus, no join operation

is required to answer these queries. Similarly, each of the queries 𝑞5, 𝑞6, 𝑞8, 𝑞12, 𝑞13,

𝑞15 and 𝑞16 requires to access the attributes of single clusters. When a query needs to

use the attributes of several different clusters, it has to perform join operations across

these clusters. For example, 𝑞4 requires to join two tables of clusters 𝐶𝑖,4 and 𝐶𝑖,6 while

𝑞11 has to join three tables of three clusters 𝐶𝑖,1, 𝐶𝑖,2 and 𝐶𝑖,3.

The authors in [11] proposed a two-phase algorithm, called AutoPart, to reduce

I/O costs and the number of additional joins. This algorithm can be described as

follows: First of all, a categorical partitioning is performed to produce a set of resulting

fragments that can reduce the unnecessary data accesses from a given workload. Next,

the resulting fragments are passed through a heuristic procedure of pair-wise merges

of the most used fragments in the given workload to reduce the number of joins across

HYTORMO and HADF

88

fragments. This thus improves query performance. The merging procedure is repeated

until the impact of merging pairs of fragments cannot further improve the overall

workload performance. Besides, to remove the overhead joins caused by the need of

accessing attributes in different fragments, some attributes are replicated across

different fragments. However, this approach has some limitations: the merging of

fragments would help to reduce the joining overheads, but queries may access more

irrelevant attributes and thus I/O costs may be increased again; additionally, replicating

the same attributes in different fragments certainly requires more space storage.

To circumvent the above limitations, our merging-selecting phase uses an

alternative heuristic way to reduce the number of additional joins and irrelevant

attribute accesses. It performs the following two steps: In the first step, it is based on

the Inter-Cluster Access Similarity between two clusters to decide whether these two

clusters are merged together or not. In the second step, it suggests a suitable data layout

(i.e., a row- or a column-oriented data layout) for each resulting cluster.

The pseudo-code of Algorithm 5 is described as follows:

Algorithm 5: MergeAndSelectStores

 Input : 𝐶𝑖: A set of clusters 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧};

𝑆: A set of available data layouts 𝑆 = {"𝑟𝑜𝑤 − 𝑠𝑡𝑜𝑟𝑒", "𝑐𝑜𝑙𝑢𝑚𝑛 − 𝑠𝑡𝑜𝑟𝑒"};

AASM: Attribute Access Similarity Matrix;

𝜃: Merging threshold; 𝜆: Data layout threshold; n: Number of attributes;

Output : 𝐺𝑖: A candidate data storage configuration 𝐺𝑖 = (𝐶𝑖 , 𝐿𝑖);

 1:

2:

//Step 1: Merge two clusters together based on its Inter-Cluster Access Similarity

do

 3: 𝑀𝑎𝑥𝑆𝑖𝑚 = 0.0; 𝑓𝑜𝑢𝑛𝑑 = 0;

 4:

5:

 for u = 1 to |Ci|- 1 do

 for v = u + 1 to |Ci| do

 6: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑖𝑚 = 𝐼𝑛𝑡𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚𝐹𝑢𝑛𝑐(𝐶𝑖,𝑢, 𝐶𝑖,𝑣 , 𝐴𝐴𝑆𝑀);

 7: if 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑖𝑚 ≥ 𝜃 and 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑖𝑚 > 𝑀𝑎𝑥𝑆𝑖𝑚 then

 8: 𝑀𝑎𝑥𝑆𝑖𝑚 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑖𝑚;

 9: 𝑢𝑚𝑎𝑥 = 𝑢; 𝑣𝑚𝑎𝑥 = 𝑣;

 10: 𝑓𝑜𝑢𝑛𝑑 = 1;

 11:

12:

13:

 end if

 end for

 end for

 14: if 𝑓𝑜𝑢𝑛𝑑 = 1 then

 15: 𝐶𝑖,𝑢.𝑣 = Merge(𝐶𝑖,𝑢, 𝐶𝑖,𝑣); 𝐶𝑖 = 𝐶𝑖⋃ {𝐶𝑖,𝑢.𝑣};

 16: 𝐶𝑖 = 𝐶𝑖\{𝐶𝑖,𝑢}; 𝐶𝑖 = 𝐶𝑖\{𝐶𝑖,𝑣};

 17: end if

 18: while 𝑓𝑜𝑢𝑛𝑑 ! = 0;

 19: //Step 2: Select a data layout for each cluster based on its Inter-Cluster Access Similarity

 20: 𝐿𝑖 = Ø;

 21: for x = 1 to |Ci| do

 22: if 𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚𝐹𝑢𝑛𝑐(𝐶𝑖,𝑥 , 𝐴𝐴𝑆𝑀) ≥ 𝜆 then

 23: 𝐿𝑖 = 𝐿𝑖 ⋃ 𝐿"𝑟𝑜𝑤−𝑠𝑡𝑜𝑟𝑒"(𝐶𝑖,𝑥);

 24: else 𝐿𝑖 = 𝐿𝑖 ⋃ 𝐿"𝑐𝑜𝑙𝑢𝑚𝑛−𝑠𝑡𝑜𝑟𝑒"(𝐶𝑖,𝑥);

 25:

26:

 end if

end for

 27: 𝐺𝑖 = (𝐶𝑖 , 𝐿𝑖);

 28: return 𝐺𝑖;

HYTORMO and HADF

 89

 Step 1: This step aims at reducing the number of additional joins. To achieve this

goal, it performs a repeated procedure of pair-wise merges of clusters. In particular,

given a set of clusters (i.e., output of the clustering phase), each pair of clusters

will be merged together if their Inter-Cluster Similarity is greater than or equal to

a given merging threshold 𝜃. In Algorithm 5, this step is presented in lines 1 - 18.

Using the given set of clusters 𝐶𝑖 = {𝐶𝑖,1, 𝐶𝑖,2, . . ., 𝐶𝑖,𝑧}, Step 1 will find a pair of

clusters 𝐶𝑖,𝑢 and 𝐶𝑖,𝑣 where 𝐶𝑖,𝑢 ∊ 𝐶𝑖 and 𝐶𝑖,𝑣 ∊ 𝐶𝑖 (𝑢 ≠ 𝑣) so that they satisfy the

following merging criteria: the Inter-Cluster Access Similarity between 𝐶𝑖,𝑢 and

𝐶𝑖,𝑣 has the highest value among all possible pairs of clusters and this value is

greater than or equal to 𝜃 (lines 3 - 13). Here, we implement the function

𝐼𝑛𝑡𝑒𝑟𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚𝐹𝑢𝑛𝑐(𝐶𝑖,𝑢, 𝐶𝑖,𝑣, 𝐴𝐴𝑆𝑀) that applies Formula (4.4.6) and

uses the matrix AASM to compute the Inter-Cluster Access Similarity between two

clusters 𝐶𝑖,𝑢 and 𝐶𝑖,𝑣. We also define the function 𝑀𝑒𝑟𝑔𝑒(𝐶𝑖,𝑢, 𝐶𝑖,𝑣) that merges

two clusters 𝐶𝑖,𝑢 and 𝐶𝑖,𝑣 together and returns a new cluster. Thus, if the merging

criteria is satisfied, two clusters 𝐶𝑖,𝑢and 𝐶𝑖,𝑣 are merged together to form a new

cluster 𝐶𝑖,𝑢.𝑣. Then, 𝐶𝑖,𝑢.𝑣 is used to replace both 𝐶𝑖,𝑢and 𝐶𝑖,𝑣 in 𝐶𝑖 (lines 14 - 17).

This procedure is repeated until we cannot find a pair of clusters that satisfy the

above merging criteria.

 Step 2: This step aims at reducing the number of irrelevant attribute accesses. To

achieve goal, each of resulting clusters received from Step 1 is considered to

determine whether it will be stored in a row store or a column store. In particular,

we first compute the Intra-Cluster Access Similarity for each cluster, and then

compare it with the given data layout threshold 𝜆. To achieve this, we build the

function 𝐼𝑛𝑡𝑟𝑎𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚𝐹𝑢𝑛𝑐(𝐶𝑖,𝑥, 𝐴𝐴𝑆𝑀) that applies Formula (4.4.5)

and uses the matrix AASM to compute the Intra-Cluster Access Similarity for the

cluster 𝐶𝑖,𝑥. If this Intra-Cluster Access Similarity is greater than or equal to 𝜆, the

corresponding cluster is stored in a row store (in this case, the attributes in the same

cluster are very frequently accessed together); otherwise, a column store is used

for it (in this case, most attributes in the same resulting cluster are not very

frequently accessed together). In Algorithm 5, Step 2 is presented in lines 19 - 26.

A list of suggested data layouts 𝐿𝑖 for the corresponding clusters is created during

this step. Finally, a candidate data storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖) is returned

as a result of the merging-selection phase (lines 27 and 28).

In short, given a set of inputs, Algorithm 1 first calls functions to compute matrices

that represent the correlation and the similarity between attributes. Next, it calls

Algorithm 4 for clustering attributes, and it calls Algorithm 5 for merging pairs of

clusters and selecting suitable data layouts for them. Algorithm 5 will return a

candidate data storage configuration 𝐺𝑖 = (𝐶𝑖, 𝐿𝑖), where 𝐶𝑖 represents a set of

resulting clusters and 𝐿𝑖 represents the corresponding data layouts. The values of

parameters 𝛼, 𝛽, 𝜃 and 𝜆 can be chosen based on observations on experiments.

4.4.4 Examples

Given workload-and data-specific information, we will demonstrate the application of

HADF to generate different data storage configurations for the same horizontal table.

HYTORMO and HADF

90

We also perform a quantitative evaluation of results in terms of storage space and

workload performance.

Figure 4.15: Workload- and data-specific information of the horizontal table 𝑇

The workload-specific information is re-presented in the matrix AUM and the

frequency F, shown in Figures 4.15(a) and (b), respectively, while the data-specific

information is re-presented in the horizontal table 𝑇, given in Figures 4.15(c). (These

information have been respectively given in Figure 4.6 and 4.7 in Section 4.3.2.) In

this workload, some attribute access patterns can be expressed as follows: the query

𝑞1 accesses five attributes 𝑎2, 𝑎3, 𝑎4, 𝑎5 and 𝑎6 with a frequency of 600; and the query

𝑞2 accesses to four attributes 𝑎3, 𝑎4, 𝑎5 and 𝑎6 with a frequency of 500. Data is

expressed in the horizontal table 𝑇 with 10 tuples, each of which is presented in a single

row; three attributes 𝑎1, 𝑎2 and 𝑎3 always have non-null values; the attribute 𝑎4 has

two null values; and two attributes 𝑎5 and 𝑎6 are very sparse.

In practice, in order to easily apply HADF, a user interface can be designed to

enable users to explore different data storage configurations corresponding to different

values of four parameters 𝛼, 𝛽, 𝜃 and 𝜆. For instance, in [113], Sellam and Kersten

introduced an user interface for cluster-driven navigation. Due to space limitations,

below we only present three different data storage configurations created for 𝑇.

Data Storage Configuration 1: We create a baseline data storage configuration by

storing the entire horizontal table 𝑇 in a single row table. This configuration can be

obtained by setting 𝛽 = 0, 𝜆 = 0 and using arbitrary values for 𝛼 and 𝜃, e.g., 𝛼 =

0 and 𝜃 = 0. The clustering phase produces two clusters 𝐶1,1 and 𝐶1,2:

 𝐶1,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2};

 𝐶1,2 = {𝑈𝐼𝐷, 𝑎3, 𝑎4, 𝑎5, 𝑎6}.

Then, the merging-selecting phase merges the above two clusters into a single

cluster 𝐶1,1.2 and suggest to store it in a row store:

 𝐶1,1.2 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎5, 𝑎6} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒.

Figure 4.16 presents the single row table 𝑇1 created to store the cluster 𝐶1,1.2. Since

only one table is used, no join is required to execute the given workload. However, the

number of irrelevant attributes is relatively large.

HYTORMO and HADF

 91

Figure 4.16: Table created for Configuration 1

Particularly, we achieve the following statistics from the workload execution:

 The storage cost (in terms of the number of data cells): 70.

 NullRatio = 28.33% (the ratio between the total number of null values, i.e., 17, and

the total number of possible values, except the 𝑈𝐼𝐷 attribute, i.e., 60).

 The total number of joins (between two tables over the given workload): 0.

 The total number of scanned data cells (over the given workload): 238,000.

Data Storage Configuration 2: The clustering phase is performed with the following

settings: 𝛼 = 0 and 𝛽 = 0.4. Thus, it only takes into account the impact of the data-

specific information and creates three clusters 𝐶2,1, 𝐶2,2, and 𝐶2,3:

 𝐶2,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4};

 𝐶2,2 = {𝑈𝐼𝐷, 𝑎5};

 𝐶2,3 = {𝑈𝐼𝐷, 𝑎6}.

Now, we apply the merging-selecting phase with the settings: 𝜃 = 0.5 and 𝜆 = 0.6.

It keeps the cluster 𝐶2,1, but merges 𝐶2,2 and 𝐶2,3 together into a new cluster 𝐶2,2.3.

Additionally, it suggests to store 𝐶2,1 in a column store, but 𝐶2,2.3 in a row store:

 𝐶2,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3, 𝑎4} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒;

 𝐶2,2.3 = {𝑈𝐼𝐷, 𝑎5, 𝑎6} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒.

Figure 4.17: Two tables created for Configuration 2

Figure 4.17 provides two tables 𝑇1 and 𝑇2 created to store two clusters 𝐶2,1 and

𝐶2,2.3. The table 𝑇1 is stored in a column store, whereas the table 𝑇2 is stores in a row

store. This configuration use less storage space than Configurations 1 because the most

HYTORMO and HADF

92

two sparse columns 𝑎5 and 𝑎6 have been stored together in a separate table, i.e., 𝑇2,

from which null rows are removed. This result shows that when we set the parameters

to get the highest impact of the data-specific information on the clustering result, the

number of null values is reduced. Besides, by storing the table 𝑇1 in a column store,

the given workload avoid accessing to irrelevant attributes. However, some queries

such as 𝑞1, 𝑞2 and 𝑞3 require additional joins between two tables 𝑇1 and 𝑇2.

This data storage configuration gives us the following statistics:

 The storage cost: 62.

 NullRatio = 8.33%.

 The total number of joins: 1,800.

 The total number of scanned data cells: 71,600.

Data Storage Configuration 3: The clustering phase is performed with the settings:

𝛼 = 0.5 and 𝛽 = 0.4. Thus, it will take into consideration the combined impact of both

the workload- and data-specific information and create two clusters 𝐶3,1 and 𝐶3,2:

 𝐶3,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3};

 𝐶3,2 = {𝑈𝐼𝐷, 𝑎4, 𝑎5, 𝑎6}.

Then, the merging-selecting phase is performed with the settings: 𝜃 = 0.5 and 𝜆 =

0.6. The above two clusters are kept. The data layouts are suggested as follows:

 𝐶3,1 = {𝑈𝐼𝐷, 𝑎1, 𝑎2, 𝑎3} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒;

 𝐶3,2 = {𝑈𝐼𝐷, 𝑎4, 𝑎5, 𝑎6} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒.

Figure 4.18: Two tables created for Configuration 3

Figure 4.18 presents two tables 𝑇1 and 𝑇2 created to store 𝐶3,1 and 𝐶3,2. The table

𝑇1 is stored in a column store, whereas the table 𝑇2 is stored in a row store. Compared

to Configuration 2, the combined impact of both the workload- and data-specific

information has helped Configuration 3 to reduce the number of null values as well as

the number of additional joins at the same time.

This data storage configuration gives us the following statistics:

 The storage cost: 72.

 NullRatio = 18.33%.

 The total number of joins: 1,100.

 The total number of scanned data cells: 107,600.

HYTORMO and HADF

 93

In conclusion, we can say that HADF can provide good support for designing

DICOM data. It is able to take into consideration the combined impact of both

workload- and data-specific information on the quality of suggested data storage

configurations. From the HADF-generated data storage configurations, we can choose

a good one in terms of storage space and/or workload execution time. In Chapter 6, we

will again analyze these impacts through experiments.

4.5 Summary and Conclusion

The characteristics of DICOM data and workloads have posed challenges on how to

represent and manage data in a manner to reduce storage space demand and workload

execution time. This chapter has presented the architecture of a novel hybrid storage

model, called HYTORMO, and strategies for efficiently storing DICOM data.

The HYTORMO architecture is designed and built on top of an in-memory cluster

computing framework, Spark, which can provide high performance, huge storage

capability, scalability and elasticity. The combined use of row and column stores is to

offer high performance for mixed workloads. DICOM data is organized based on the

relational data model that facilitates the use of entity tables and SQL language.

The data storage strategy aims at reducing both storage space demand and

workload execution time. The overall data storage strategy is based on the combined

use of both vertical partitioning and a hybrid store in order to generate data storage

configurations. To obtain a data storage configuration according to this data storage

strategy, one of two different design approaches can be applied: expert-based and

automated. The formal approach has been proposed by B. Mohamad, L. d'Orazio and

L. Gruenwald [56, 57] where DICOM attributes are classified into three categories:

mandatory and frequently-accessed-together attributes are stored in row store, whereas

optional/private/seldom-accessed are stored in column store. In in this thesis, we use

the entity tables in the DICOM information model (e.g., Patient, Study, Series, etc.) as

a starting point from which to create data storage configurations. However, when

applying the expert-based design approach, it is difficult for experts to manually

determine what attributes should be grouped together and what data layout should be

applied for those column group so that both workload execution time and storage space

demand are decreased, especially when the number of attributes is very large. To

overcome this limitation, we formulate the automated design problem as the problem

of selecting a data storage configuration to minimize both storage cost and workload

execution cost. However, the solution search space for an optimal data storage

configuration that minimizes both storage cost and execution cost is very large.

Therefore, we proposed a hybrid automated design framework, called HADF.

HADF aims to support experts (e.g., database designers) in choosing good data

storage configurations. It can fill the gaps between the workload-based and data-based

partitioning approaches by taking into account the combined impact of both workload-

and data-specific information as well as the use of a hybrid store. It includes two phases

clustering and merging-selecting. The clustering phase is to reduce storage space

demand and irrelevant attribute accesses. To achieve this, it groups high similar

attributes in terms of Hybrid Similarity into the same clusters. The merging-selecting

phase is to reduce both tuple reconstruction cost and irrelevant attribute accesses. It

HYTORMO and HADF

94

contains two steps: first, the Inter-Cluster Access Similarity is used to determine

whether a pair of clusters should be merged into a new cluster or not; then, the Inter-

Cluster Access Similarity is applied to determine a suitable data layout for each cluster.

Besides, a suitable query processing strategy needs to be built on the top of

HYTORMO. In the next chapter, we present in detail our approaches to create correct

answers for queries and to improve the performance of the queries in distributed query

processing environment.

Key Points

 We introduce a hybrid storage model, called HYTORMO.

 We introduce a data storage strategy: a mixed use of vertical partitioning and a

hybrid store to reduce both storage space size and workload execution time.

 We present the application of the expert-based design approach.

 We provide a formal representation for the automated design approach.

 We describe the details of HADF.

95

Chapter

Query Processing for HYTORMO

5.1 Overview

This chapter presents the proposed methods to improve the performance of queries for

HYTORMO. An overview of the chapter is given in Table 5.1.

Table 5.1: Overview over Chapter 5

5.2 Query Rewriting

5.2.1 Examples 5.2.2 Query Execution Plan

5.2.3 Determining Left-Outer Joins 5.2.4 Reducing the Number of Left-outer Joins

5.3 Intersection Bloom Filter

5.3.1 Query Execution Plan with the IBF 5.3.2 Cost-effectiveness Analysis

5.3.3 Incremental Intersection Bloom Filter

5.4 Summary and Conclusion

In the previous chapter, on a high level, the query processing strategy built on top

of HYTORMO was introduced. In general, entity tables in users’ queries will be

decomposed into sub-queries to be able to access relevant vertically partitioned tables.

In order to correctly answer queries, in some cases, left-outer join operations are

applied to prevent data loss that may occur if using only inner join operations.

However, this may negatively impact on the query performance because this join type

does not remove any tuple from their left tables. In this chapter, first of all, we analyze

the cases where to use left-outer join operations. Next, we depict an execution plan.

Then, we propose heuristic rules that are used to determine where to apply left-outer

join operations and to reduce the number of left-outer join operations.

Besides, although the vertical partitioning and the hybrid store can help to improve

the performance of queries by reducing I/O cost at attribute level (because of

decreasing the number of irrelevant attribute accesses), they cannot reduce I/O cost at

tuple level. A large number of irrelevant tuples are still read and propagated through a

sequence of joins in queries before removed due to not satisfying join predicates. This

can dramatically decrease performance of the queries due to expensive data

transmission cost over the network in distributed query processing environments. This

motivated us to integrate an IBF into query processing to reduce the size of

intermediate results and network I/Os. We provide a cost-effectiveness analysis for the

IBF. Additionally, we also propose an incremental IBF as an alternative to the IBF.

Query Processing for Hybrid Storage Model

96

5.2 Query Rewriting

5.2.1 Examples

In our examples, the following four entity tables are used in users’ queries: Patient,

Study, GeneralInfoTable and SequenceAttributes. We assume that the expert-based

design approach, described in Chapter 4, has been applied to generate data storage

configurations (including schemas and their data layouts). The details of data storage

configurations for these entity tables are as follows:

 Patient(UIDRC, PatientNameRm, PatientIDRm, PatientBirthDateRm, PatientSexRm,

EthnicGroupRm, IssuerOfPatientIDC, PatientBirthTimeC, PatientInsurancePlanCode-

SequenceC, PatientPrimaryLanguageCodeSequenceC, PatientPrimaryLanguageModifier-

CodeSequenceC, OtherPatientIDsC, OtherPatientNamesC, PatientBirthNameC,

PatientTelephoneNumbersC, SmokingStatusC, PregnancyStatusRf, LastMenstrualDateRf,

PatientReligiousPreferenceC, PatientCommentsC, PatientAddressC,

PatientMotherBirthNameC, InsurancePlanIdentificationC)

 Study(UIDRC, StudyInstanceUIDRm, StudyDateRm, StudyTimeRm,

ReferringPhysicianNameRm, StudyIDRm, AccessionNumberRm, StudyDescriptionRm,

PatientAgeC, PatientWeightC, PatientSizeC, OccupationC, AdditionalPatientHistoryC,

MedicalRecordLocatorC, MedicalAlertsC)

 GeneralInfoTable(UIDRC, GeneralTagsC, GeneralVRsC, GeneralNamesC,

GeneralValuesC)

 SequenceAttributes(UIDRC, SequenceTagsRm, SequenceVRsRm, SequenceNamesRm,

SequenceValuesRm)

In the above schemas, we use superscripts Rm, Rf, and C to denote that the

corresponding attribute is stored in a row table of mandatory attributes, a row table of

frequently-accessed-together attributes and a column table of optional attributes,

respectively. Additionally, a superscript RC is used to denote that the corresponding

attribute is stored in both row and column tables; however, in our DICOM data, only

the attribute UID has been marked with RC because this attribute appears in all

(vertically partitioned) tables to be used for tuple reconstruction. In any cases, all of

these superscripts are hidden from end users.

According to the above suggested data storage configurations, in Table 5.2, we

show the corresponding row and column tables used to store the above entity tables.

Table 5.2: Row and column tables used to store the entity tables

The schema of each entity table has not changed or has been decomposed into

several vertically partitioned tables. Each vertically partitioned table is then suggested

to be stored into a row or a column store: (1) The entity table Patient is decomposed

into three vertically partitioned tables: RowPatient, RowPregnancy and ColPatient;

Entity
Row table of “Rm”

attributes

Row table of “Rf”

attributes

Column table of

“C” attributes

Patient RowPatient RowPregnancy ColPatient

Study RowStudy - ColStudy

GeneralInfoTable - - ColGeneralInfoTable

SequenceAttributes RowSequenceAttributes - -

Query Processing for Hybrid Storage Model

 97

the first two tables are stored in a row store, whereas the last one is stored in a column

store. (2) The entity table Study is decomposed into two vertically partitioned tables:

RowStudy and ColStudy; the first one is stored in a row store while the second one is

stored in a column store. (3) The two entity tables GeneralInfoTable and

SequenceAttributes have not been decomposed; they are respectively stored in a

column and a row store with names ColGeneralInfoTable and RowSequenceAttributes.

Figure 5.1: Representation of (a) the query 𝑄1 and (b) its execution plan tree

Figure 5.1(a) presents the query 𝑄1 which uses four entity tables: Patient, Study,

GeneralInfoTable and SequenceAttributes. The attributes appearing in the SELECT

and WHERE clauses are marked by superscripts Rm, C, and RC to indicate the

corresponding data layout used to store the corresponding attribute (i.e., a row table, a

column table or both types of tables). This query aims at retrieving the information

stored in X-ray DICOM files of non-smoking men who are greater than or equal to x

years old. The query has been based on TPC-H query 3 and 4 [114].

In Chapter 4, we mentioned that when a user writes a query, names of entity tables,

e.g., Patient, Study, etc., are used. Then, HYTORMO will automatically decompose

the query into multiple sub-queries so that each sub-query can only access relevant

vertically partitioned tables. A left-deep sequential tree plan whose leaf nodes

represent sub-queries is applied to execute the query. The join order is heuristically

chosen in a way to keep intermediate results as small as possible. Once the execution

plan is completely determined, the sub-queries will be processed using this plan.

Finally their intermediate results will be integrated.

Applying the above query processing strategy, we achieve an execution plan for

the query 𝑄1, as shown in Figure 5.1(b). First, 𝑄1 is decomposed into a set of sub-

queries 𝑠𝑄1, 𝑠𝑄2, 𝑠𝑄3, and 𝑠𝑄4 accessing the entity tables Study, Patient,

SequenceAttributes and GeneralInfoTable, respectively. Then, each of these sub-

queries can be further decomposed into the deeper level sub-queries for directly

accessing the underlying row and column tables stored in the hybrid store of

Query Processing for Hybrid Storage Model

98

HYTORMO: 𝑠𝑄1 is decomposed into 𝑠𝑄1,1 and 𝑠𝑄1,2 in order to access two tables

RowPatient and ColPatient, respectively, because it uses only the attributes of these

two tables; on the other hand, each of the sub-queries 𝑠𝑄2, 𝑠𝑄3, and 𝑠𝑄4 is not

decomposed, but is rewritten for only accessing the relevant tables ColStudy,

RowSequenceAttributes and ColGeneralInfoTable, respectively. This execution plan

tree is a left-deep processing tree in which relational operations are scheduled to be

executed step by step while trying to keep intermediate results as small as possible.

During the execution of a sequence of joins, the results of the sub-queries are joined

together over the common join attribute 𝑈𝐼𝐷. Finally, all the attributes listed behind

the keyword SELECT of 𝑄1 will be presented in the final query result.

The Need to Use Left-Outer Join

The execution plan for query 𝑄1 in Figure 5.1(b) does not contain any left-outer join

because every right-hand side table of join operations in this plan already belongs to

one of three following cases: (1) It is either a row table of frequently-accessed-together

attributes or a column table of optional attributes and there exist non-null constraints

(predicates) on the attributes of these tables. For instance, there are non-null constraints

on two attributes SmokingStatus and PatientAge of two tables ColPatient and

ColStudy, respectively. (2) It is a row table of mandatory attributes (containing all

values of the attribute 𝑈𝐼𝐷 of the entity table), e.g., RowSequenceAttributes. (3) It is

the only sub-table that is decomposed from the entity table (containing the original

schema of the entity table), e.g., ColGeneralInfoTable. For these three cases, the use

of inner joins does not cause data loss in the results of the queries.

Table 5.3: Sample data of the table RowPatient

UID PatientName PatientID PatientBirthDate PatientSex EthnicGroup

1440034811466 Smith P40028 19610712 F Whites

1440108680455 Muller P40029 19500101 M Whites

1440108686946 Young P40030 19700509 M Asians

1440108686950 Carol P40031 19900122 (null) (null)

1440108680459 Garcia P40032 19990515 (null) Blacks

Table 5.4: Sample data of the table RowPregnancy

UID PregnancyStatus LastMenstrualDate

1440108686950 4 20140212

1440108680459 4 20160511

However, in some other cases, several join operations in the execution plan need

to be evaluated as left-outer join operations in order to prevent data loss in the results

of the queries. For example, assume that sample data of two tables RowPatient and

RowPregnancy (i.e., vertically partitioned tables) is given in Tables 5.3 and 5.4,

respectively. Now, let us consider the user query 𝑄2a, shown in Figure 5.2(a), to view

the content of the entity table Patient. Because there does not exist a physical table

storing all the required attributes, in order to answer 𝑄2𝑎, HYTORMO will decompose

𝑄2a into two sub-queries 𝑠𝑄1,1 and 𝑠𝑄1,2 to respectively access two tables RowPatient

and RowPregnancy. 𝑄2a also needs to be rewritten into 𝑄′2𝑎 using a left-outer join, as

shown in Figure 5.2(a). The corresponding execution plan is given in Figure 5(b).

Query Processing for Hybrid Storage Model

 99

Figure 5.2: Transformation of the query 𝑄2𝑎 using a left-outer join

With the use of a left-outer join, 𝑄2a returns all the rows from the table RowPatient

and just the rows from the table RowPregnancy in which the join predicate

rpt.UID = rpy.UID is satisfied. Additionally, rows from the left-hand side table that do

not match any row in the right-hand side table will be still returned, but null values are

inserted into each column of the right-hand side table. Table 5.5 shows the query result.

Table 5.5: Result of the query 𝑄2a when using a left-outer join

UID PatientID
Patient-

Name

Patient-

BirthDate

Patient-

Sex

Ethnic-

Group

Pregnancy-

Status

LastMenstrual-

Date

1440108686950 P40031 Carol 19900122 (null) (null) 4 20140212

1440108680459 P40032 Garcia 19990515 (null) Blacks 4 20160511

1440108686946 P40030 Young 19700509 M Asians (null) (null)

1440034811466 P40028 Smith 19610712 F Whites (null) (null)

1440108680455 P40029 Muller 19500101 M Whites (null) (null)

It is worth to note that if HYTORMO does not use a left-outer join for 𝑄2a, the

query result cannot consist of many rows of the entity table Patient if the

corresponding values of both attributes PregnancyStatus and LastMenstrualDate are

null or empty. In Figure 5.3(a), we rewrite query 𝑄2a into 𝑄′′2𝑎 using an inner join. Its

corresponding execution plan is given in Figure 5.3(b). Table 5.6 presents the result of

query 𝑄2a when using this execution plan. This is a wrong result.

Figure 5.3: Transformation of the query 𝑄2𝑎 using an inner join

Query Processing for Hybrid Storage Model

100

Table 5.6: The wrong result of the query 𝑄2a when using an inner join

UID PatientID
Patient-

Name

Patient-

BirthDate

Patient-

Sex

Ethnic-

Group

Pregnancy-

Status

LastMenstrual-

Date

1440108686950 P40031 Carol 19900122 (null) (null) 4 20140212

1440108680459 P40032 Garcia 19990515 (null) Blacks 4 20160511

The reason of the result in Table 5.6 is that null rows are not stored in the table

RowPregnancy, and thus when the query processing evaluates the join predicate

rpt.UID = rpy.UID, there is not existing a rpy.UID for a null row of the table

RowPregnancy. Therefore, this execution plan will not applied to HYTORMO.

In short, HYTORMO uses a left-deep sequential tree plan to join intermediate

results of sub-queries that access entity tables. However, these sub-queries are usually

further decomposed into smaller sub-queries in order to access to relevant vertical

partitioning tables. Thus, although join operations between entity tables are explicitly

determined in users’ queries, some join operations need to be rewritten to left-outer

joins in order to avoid data loss caused by tuples discarded by only using inner joins.

Impact of Irrelevant Input Tuples on Query Performance

We can re-express the execution plan of query 𝑄1, shown in Figure 5.1(b), in form of

a join sequence: 𝑄1 = (((𝑠𝑄1,1 ⋈𝑈𝐼𝐷 𝑠𝑄1,2) ⋈𝑈𝐼𝐷 𝑠𝑄2) ⋈𝑈𝐼𝐷 𝑠𝑄3) ⋈𝑈𝐼𝐷 𝑠𝑄4. In

this join sequence, the execution of a sub-query is distributed across computer nodes

and it is independent from others. The results of the sub-queries will be integrated

during the execution of the join sequence. We assume that in this join sequence, a tuple

t has been produced by first sub-query, 𝑠𝑄1,1, and after that 𝑡 is passed through the next

two join operations 𝑠𝑄1,1 ⋈𝑈𝐼𝐷 𝑠𝑄1,2 and (…) ⋈𝑈𝐼𝐷 𝑠𝑄2. However, finally it is

discarded since it does not satisfy a join predicate of the third join operation

(…) ⋈𝑈𝐼𝐷 𝑠𝑄3. It is clear that such propagations of 𝑡 through the join sequence have

caused a waste of disk and network I/Os. Besides, irrelevant data also cause

many wasted CPU cycles. Hence, in order to improve query performance, irrelevant

data should be discarded as early as possible.

5.2.2 Query Execution Plan

Figure 5.4: Execution plan transformation for the query 𝑄

Query Processing for Hybrid Storage Model

 101

This section presents the query execution plan with main focus on how row and

column tables are used in join operations. We describe this execution plan for a user

query 𝑄, which is represented in a general form, given in Figure 4.4 in Section 4.2.3.

Figure 5.4(a) presents the initial execution plan for 𝑄. Here, 𝑄 is decomposed into

sub-queries 𝑄𝐼, 𝑄𝐽 and 𝑄𝐾 to respectively access entity tables 𝑇𝐼, 𝑇𝐽 and 𝑇𝐾. (In

DICOM data, these entity tables may be Patient, Study, Series, etc.) This execution

plan can be mathematically written as 𝑄 = 𝑄𝐼 ⋈𝑈𝐼𝐷 𝑄𝐽 ⋈𝑈𝐼𝐷 𝑄𝐾. As such, the names

of the entity tables are used in the user query, and the types of join operations between

any two entity tables are also explicitly identified by the user. In this example, the user

is using only inner joins to join three entity tables 𝑇𝐼, 𝑇𝐽 and 𝑇𝐾 together. We assume

that each of the entity tables has been vertically partitioned into several sub-tables and

stored in row or column stores by applying the expert-based design approach or the

automated design approach, as introduced in Chapter 4. We also assume that only few

attributes of the entity tables are used by 𝑄 such that the sub-queries 𝑄𝐼, 𝑄𝐽 and 𝑄𝐾

need to be further decomposed into smaller sub-queries 𝑄𝐼,1, 𝑄𝐼,2, 𝑄𝐽,1, 𝑄𝐽,2 and 𝑄𝐾,1

to only access the sub-tables containing the attributes relevant to 𝑄. Figure 5.4(b)

presents the transformed execution plan for 𝑄: 𝑄𝐼,1 and 𝑄𝐼,2 access respectively 𝑇1

and 𝑇2 (which are sub-tables of 𝑇𝐼); 𝑄𝐽,1 and 𝑄𝐽,2 access respectively 𝑇3 and 𝑇4 (which

are sub-tables of 𝑇𝐽); similarly, 𝑄𝐾,1 accesses only 𝑇𝑁 (which is a sub-table of 𝑇𝐾).

Some join operations between sub-tables need to be evaluated as left-outer joins.

In a nutshell, the query processing strategy can be described as follows:

HYTORMO will decompose the user query using entity tables into sub-queries to be

able to access necessary row and column tables. A left-deep sequential tree plan is

applied. Some join operations between the result tables of the sub-queries need to be

evaluated as left-outer joins to prevent data loss caused by the tuples discarded by

inner joins. HYTORMO will automatically determine the types of join operations.

5.2.3 Determining Left-Outer Joins

We propose the heuristic rules to determine when a left-outer join is used.

Rule 1: In a join between two sub-tables of the same entity table, if the left-hand

side table is a row table of mandatory attributes while the right-hand side table is

either a column table of optional attributes or a row table of frequently-accessed-

together attributes, this join needs to be evaluated as a left-outer join.

In Figure 5.4(b), both sub-queries 𝑄𝐼 = 𝑄𝐼,1⟕𝑈𝐼𝐷 𝑄𝐼,2 and

𝑄𝐽 = 𝑄𝐽,1⟕𝑈𝐼𝐷 𝑄𝐽,2 are evaluated as left-outer joins because 𝑄𝐼,1 and 𝑄𝐽,1,

respectively, access two row tables of mandatory attributes 𝑇1 and 𝑇3 while 𝑄𝐼,2

and 𝑄𝐽,2 access a column table of optional attributes 𝑇2 and a row table of frequently-

accessed-together attributes 𝑇4, respectively.

Rule 2: In a join between two entity tables, if the right-hand side table has been

replaced with a sub-table that is either a row table of frequently-accessed-together or

a column table of optional attributes (because the user query uses only the attributes

from this sub-table) and this sub-table is not the only child of its parent table, this join

needs to be evaluated as a left-outer join.

Query Processing for Hybrid Storage Model

102

For instance, in the query 𝑄 = 𝑄𝐼 ⋈𝑈𝐼𝐷 𝑄𝐽 ⋈𝑈𝐼𝐷 𝑄𝐾, given in Figure 5.4(a), we

focus on the join operation related to 𝑄𝐾, i.e., (…) ⋈𝑈𝐼𝐷 𝑄𝐾. 𝑄𝐾 has been changed

(rewritten) to 𝑄𝐾,1 accessing the column table of optional attributes, 𝑇𝑁. Assume that

𝑇𝑁 is not the only child of its parent table, 𝑇𝐾, by applying Rule 2, the join operation

using the result of 𝑄𝐾,1 will be rewritten to a left-outer join, as illustrated in Figure

5.4(b).

As such, Rule 1 is applied to consider a join operation between two sub-tables of

the same entity table. On the other hand, Rule 2 is applied to consider a join operation

between two entity tables in which the right-hand side table has been changed to a sub-

table. In the scope of our study, we only concern on the execution plans using the inner

joins and the above-mentioned two cases of left-outer joins. Optimization for queries

with left-outer joins can be referenced in [115].

5.2.4 Reducing the Number of Left-Outer Joins

In the previous section, we introduced two heuristic rules, Rule 1 and 2, to determine

whether a join operation needs to be evaluated as a left-outer join or not. In order to

improve the query performance, the number of left-outer joins should be minimized as

small as possible. Below, we introduce another heuristic rule - Rule 3, used for

deciding whether or not a left-outer join should be rewritten to an inner join:

Rule 3: Given a left-outer join 𝑇1⟕𝑈𝐼𝐷𝑇2, if there are not any non-null constraints

on attributes of the right-hand side table 𝑇2, this left-outer join should be rewritten to

an inner join in order to improve query performance.

This heuristic rule is based on the fact that, in the left-outer join 𝑇1⟕𝑈𝐼𝐷𝑇2, if there

are not any non-null constraints on attributes of 𝑇2, the left-outer join returns all the

matching tuples between 𝑇1 and 𝑇2, like an inner join. Additionally, the unmatched

tuples are also preserved from 𝑇1 and are supplied with nulls for the attributes from 𝑇2.

Thus, in this case, the left-outer join is kept (no change). However, if there is a non-

null constraint on an attribute of the right-hand-side table, i.e., 𝑇2, this constraint must

be evaluated to be TRUE to form a tuple in the query result. They also remove any

null rows from 𝑇2. Therefore, in this case, it is unnecessary to use left-outer join. The

join operation should be rewritten to an inner join.

Let us consider the user query 𝑄2𝑏 as shown in Figure 5.5(a), which will display

information about Patient, including UID, PatientID, PatientName, PatientBirthDate,

PatientSex, EthnicGroup, PregnancyStatus and LastMenstrualDate. This query is

similar to the query 𝑄2a, given in Figure 5.2, but has a constraint

LastMenstrualDate >= ’2016’ in WHERE clause to find all the patients whose

LastMenstrualDate from year 2016 onwards. There does not exist a physical table with

all the attributes relevant to this query, thus 𝑄2𝑏 is decomposed into two sub-queries

𝑠𝑄1,1 and 𝑠𝑄1,2 to access two vertically partitioned tables RowPatient and

RowPregnancy, respectively, to obtain the required attributes. 𝑄2𝑏 is written to 𝑄′2𝑏,

presented in Figure 5.5(a), which uses an left-outer join according to Rule 1. The

corresponding execution plan tree is given in Figure 5.5(b).

Query Processing for Hybrid Storage Model

 103

Figure 5.5: Transformation of the query 𝑄2𝑏 to two equivalent execution plans

Using the execution plan given in Figure 5.5(b), the results of two sub-queries 𝑠𝑄1,1

and 𝑠𝑄1,2 is joined together by using a left-outer join. The constraint

LastMenstrualDate >= ’2016’ in WHERE clause must be evaluated to TRUE to form

a row in the result of 𝑄2𝑏. If there is an unmatched row in this left-outer, the columns

from the right-hand side table, i.e., RowPregnancy, are inserted by null values. That

is, on the unmatched rows, the column LastMenstrualDate also gets null values that

cannot make the constraint in WHERE clause become TRUE. Thus, those unmatched

rows will be removed from the result of 𝑄2𝑏. Clearly, in this case, a left-outer join is

unnecessary, and 𝑄′2𝑏 should be rewritten to 𝑄′′2𝑏, as shown in Figure 5.5(a), which

uses an inner join as suggested by Rule 3. Its corresponding execution plan tree in

Figure 5.5(c). Table 5.7 presents the correct result of query 𝑄2b. (Both execution plans

given respectively in Figures 5.5(b) and (c) give the same result.)

Table 5.7: Correct result of the query 𝑄2b

UID PatientID
Patient-

Name

Patient-

BirthDate

Patient-

Sex

Ethnic-

Group

Pregnancy-

Status

LastMenstrual-

Date

1440108680459 P40032 Garcia 19990515 (null) Blacks 4 20160511

In general, given an execution plan, we will apply Rule 1, then Rule 2, followed by

Rule 3. Below we present how the execution plan of the user query,

𝑄 = 𝑄𝐼 ⋈𝑈𝐼𝐷 𝑄𝐽 ⋈𝑈𝐼𝐷 𝑄𝐾, is transformed when applying these rules. Figure 5.6(a)

presents the execution plan tree of 𝑄 over three entity tables 𝑇𝐼, 𝑇𝐽 and 𝑇𝐾. Because

these entity tables has been decomposed into several sub-tables and stored in row or

column stores, 𝑄 needs to be decomposed into sub-queries 𝑄𝐼, 𝑄𝐽 and 𝑄𝐾 which then

are further decomposed into smaller sub-queries 𝑄𝐼,1, 𝑄𝐼,2, 𝑄𝐽,1, 𝑄𝐽,2 and 𝑄𝐾,1 to be

able to access, respectively, the row and column tables, 𝑇1, 𝑇2, 𝑇3, 𝑇4 and 𝑇𝑁,

Query Processing for Hybrid Storage Model

104

containing attributes relevant to 𝑄. Besides, some join operations need to be evaluated

as left-outers: (1) by applying Rule 1 to consider joins between two sub-tables, we

determine two left-outer joins: 𝑄𝐼,1⟕𝑈𝐼𝐷𝑄𝐼,2 and 𝑄𝐽,1⟕𝑈𝐼𝐷𝑄𝐽,2; and (2) by applying

Rule 2 to consider join operations between two entity tables, we determine a left-outer

join for third join: (𝑄𝐼 ⋈𝑈𝐼𝐷 𝑄𝐽)⟕𝑈𝐼𝐷𝑄𝐾,1, as shown in Figure 5.6(b).

Figure 5.6: Transformation of the execution plan after applying Rule 3

Furthermore, we apply the Rule 3 to transform the execution plan tree in Figure

5.6(b) to the one in Figure 5.6(c) as follows: First, we check whether there exist non-

null constraints on the attributes of the right-hand side table of each left-outer join.

Here, we assume that 𝐶2
 and 𝐶𝑁

 are non-null constraints on the attributes of the

tables 𝑇2 and 𝑇𝑁, respectively (as shown in Figure 5.6(b)). Thus, we replace two left-

outer joins 𝑄𝐼,1⟕𝑈𝐼𝐷𝑄𝐼,2 and (𝑄𝐼 ⋈𝑈𝐼𝐷 𝑄𝐽)⟕𝑈𝐼𝐷𝑄𝐾,1 with two inner joins

𝑄𝐼,1 ⋈𝑈𝐼𝐷 𝑄𝐼,2 and (𝑄𝐼 ⋈𝑈𝐼𝐷 𝑄𝐽) ⋈𝑈𝐼𝐷 𝑄𝐾,1, respectively (as shown in Figure 5.6(c)).

5.3 Intersection Bloom Filter

In this section, we first describe how to integrate an IBF into the query processing.

Then we present in detail the cost-effectiveness analysis of the IBF. Finally, we

introduce an alternative form of the IBF, called incremental IBF.

5.3.1 Query Execution Plan with the 𝐈𝐁𝐅

In Chapter 3, we presented background about BF and IBF which are used to remove

irrelevant tuples out of input tables of join operations. In this section, we propose a

method to integrate an IBF into the query processing strategy built on top of

HYTORMO. An IBF is used instead of BFs because of its benefits. For instance, its

error probability is significantly less than that of the BF, or the application of the IBF

in a distributed query processing environment can reduce more network I/Os than the

BF [23-25, 116]. In our study, the application of the IBF is considered in two phases,

namely (1) build phase, where the IBF is built for input tables, and (2) probe phase,

Query Processing for Hybrid Storage Model

 105

where the IBF is applied to remove irrelevant tuples from input tables of multiple-table

join queries. In the followings, we depict how to perform these phases.

In order to avoid loss of generality, we consider the integration of the IBF into the

query processing for a user query 𝑄 which is written in a general form supported by

HYTORMO, as presented in Figure 4.4 in Section 4.2.3: 𝑄 is a multi-way join query

on common join attributes. We assume that 𝑄 can be decomposed into a set of sub-

queries 𝑄𝐼, 𝑄𝐽 and 𝑄𝐾, each of which can be further decomposed into smaller sub-

queries to be able to access, respectively, the underlying row and column tables, 𝑇1,

𝑇2, …, 𝑇𝑁, containing the attributes relevant to 𝑄. Because HYTORMO has used a

left-deep sequential tree plan, we focus on the application of the IBF to this query

execution plan. Although the underlying input tables 𝑇1, 𝑇2,…, 𝑇𝑁 might have some

common join attributes, in the scope of our study, we assume that these tables share

only a common join attribute 𝑈𝐼𝐷 (which is an unique identification attribute in

DICOM database tables). Under this assumption, we can build and probe a common

IBF on the join attribute 𝑈𝐼𝐷 of the input tables.

Figure 5.7: Query execution plan with the IBF

Figure 5.7(a) and (b) describes the build and probe phases of the IBF, respectively.

First of all, we assume that three heuristic rules, Rules 1, 2 and 3 (as introduced in the

previous section), have been applied to determine the suitable join types and to reduce

the number of left-outer joins in the query execution plan. This results in the execution

plan tree as shown in Figure 5.7(a). Then, in order to build the IBF for this execution

plan tree, we need to compute a set of Bloom filters 𝐵𝐹𝑖′s (using the same

configuration: the same size and the same set of hash functions) on the join attribute

𝑈𝐼𝐷 for the intermediate result tables 𝐷1, 𝐷2, 𝐷3, 𝐷4 and 𝐷𝑁, which are generated as

the results of the sub-queries 𝑄𝐼,1, 𝑄𝐼,2, 𝑄𝐽,1, 𝑄𝐽,2 and 𝑄𝐾,1, respectively. After obtaining

the set of 𝐵𝐹𝑖′s, the IBF is computed by applying bitwise AND operations on these

BFs. It is worth noting that, in our study, a Bloom filter is only applied for inner joins.

Hence, during the build phase of the IBF, we do not create a Bloom filter for the right-

hand side table of a left-outer join if there does not exit any non-null constraint on the

attributes of this table. For instance, we do not create a BF for the table 𝐷4 (i.e., the

Query Processing for Hybrid Storage Model

106

result of 𝑄𝐽,2), as shown in Figure 5.7(a), because it is a right-hand side table of a left-

outer join and there are not any non-null constraints on its attributes. This is due to the

fact that 𝑄𝐽,1⟕𝑈𝐼𝐷𝑄𝐽,2 is not equivalent to 𝑄𝐽,1 ⋈𝑈𝐼𝐷 𝑄𝐽,2, thus using a BF for 𝐷4 will

cause data loss caused by tuples discarded when 𝐴𝑁𝐷𝑖𝑛𝑔 this BF with others in order

to compute the IBF. Once the IBF is completely computed, the probe phase of the IBF

is started, as given in Figure 5.7(b). The IBF is applied to filter irrelevant input tuples

out of the input tables of joins before these joins are performed. It is worthy to note

that although a BF have not built on the table 𝐷4, the IBF is still applied to this table.

5.3.2 Cost-effectiveness Analysis

In this section, we provide a cost-effectiveness analysis of the IBF when applied for

HYTORMO. Our objective is to evaluate the benefit of the IBF in terms of query

performance. Although there exist several research works that attempted to integrate

the BFs in the processing of distributed queries [117] and MapReduce framework [118-

120], our application context differs from theirs since we use the IBF instead of the BFs.

Besides these research works, P. Koutris [116] theoretically made cost-effectiveness

analyses of using the BFs within a single MapReduce but did not provide specific detail

costs in practice; moreover, the impacts of the BFs on the execution cost of particular

operations, such as disk and network I/Os, have not been evaluated clearly. More

recently, the authors in [25] proposed several approaches for integrating the IBF into

the MapReduce framework. They also presented cost models for join operations for the

application of the IBF in MapReduce environment. However, in the context of

HYTORMO, the query processing is performed on top of an in-memory cluster

computing framework, called Spark, where the detailed execution of Map and Reduce

phases will not concerned, instead we mainly focused on join operations to integrate

the intermediate result tables. Therefore, we need to determine how to perform build

and probe phases of the IBF and how to build cost models that provide detailed analysis

of disk and network I/Os corresponding to this context.

Because there are many cases in which the IBF can be applied, in our study, we

focus on the cases where the IBF is used for a sequential join sequence of 𝑁 tables

joined. We assume that the IBF is created by applying bitwise AND operations on the

BFs on all input tables. Additionally, although the type of each join operation in the

join sequence may be either an inner join or a left-outer join, to make the cost models

simple, we assume that all left-outer join operations in the join sequence have been

successfully transformed to the corresponding inner join operations, i.e., the join

sequence now only consists of inner join operations. Formally, with these assumptions,

we will provide a cost-effectiveness analysis of the application of the IBF to execute

the multi-way join query 𝑄 = 𝐷1 ⋈𝑈𝐼𝐷 𝐷2 ⋈𝑈𝐼𝐷 … ⋈𝑈𝐼𝐷 𝐷𝑁, where 𝐷1, 𝐷2,…, 𝐷𝑁 are

input tables. Besides, since the execution cost of the query 𝑄 depends on the processing

order of its input tables, we assume that |𝐷𝑖| ≤ |𝐷𝑖+1|, where 𝑖 ∊ [1, 𝑁 − 1], such that

the join sequence of the input tables can be expressed as

𝑄 = (((𝐷1 ⋈𝑈𝐼𝐷 𝐷2) ⋈𝑈𝐼𝐷 …) ⋈𝑈𝐼𝐷 𝐷𝑁−1) ⋈𝑈𝐼𝐷 𝐷𝑁.

The left-deep sequential tree plan with the application of the IBF for the above join

sequence is presented in Figure 5.8. The input tables 𝐷1, 𝐷2, …, 𝐷𝑁 and the

Query Processing for Hybrid Storage Model

 107

intermediate result tables 𝐼1, 𝐼2, …, 𝐼𝑁−1 are used as inputs of join operations. Here, we

are setting 𝐼1 = 𝐷1 and 𝐼𝑁 = < final query result >.

Figure 5.8: Left-deep sequential execution plan with the application of the IBF

Definitions and Basic Mathematical Concepts

Before building the cost models, we provide some definitions and basic mathematical

concepts related to the configuration of the IBF.

Figure 5.9: Phases of the IBF with component 𝐵𝐹𝑖′s and hash functions

The build and probe phases of the IBF are quite simple and can be briefly described

as follows: First of all, the IBF is computed by 𝐴𝑁𝐷𝑖𝑛𝑔 all 𝐵𝐹𝑖′s created on the join

attribute 𝑈𝐼𝐷 of the input tables, as illustrated in Figure 5.9. Next, the IBF is probed

to filter the irrelevant input tuples out of these input tables. In this phase, the following

steps are performed: checking the membership of a value v of the join attribute 𝑈𝐼𝐷 in

each input table 𝐷𝑖, where 𝑖 ∊ [1, 𝑁], will only require to compute 𝑘 hash functions

and to access 𝑘 bits of the IBF; if the value 𝑣 makes all of 𝑘 hash functions ℎ1(𝑣),

ℎ2(𝑣), …, ℎ𝑘(𝑣) true (= 1), the corresponding tuple is accepted; otherwise it is

discarded from the input table 𝐷𝑖. Figure 5.9 shows that when checking the input table

𝐷𝑖, value 𝑣 = 𝑖𝑑1 makes all of 𝑘 hash functions true, so the corresponding tuple is

accepted. In contrast, value 𝑣 = 𝑖𝑑2 does not make all of 𝑘 hash functions true, e.g.,

ℎ2(𝑖𝑑2) = 0, thus the corresponding tuple is discarded.

Query Processing for Hybrid Storage Model

108

In Table 5.8, we summarize notations used in the cost models.

Table 5.8: Notations

Notation Explanation

𝐷𝑖 Table that is used as either a build or a probe table.

𝐼𝑖 Intermediate result table of the sequential join sequence.

𝐵𝐹𝑖 Bloom filter that is built on the table 𝐷𝑖 .

𝐼𝐵𝐹 Intersection Bloom filter.

𝜌𝐷𝑗,𝐷𝑖
 Selectivity of the table 𝐷𝑗 on the table 𝐷𝑖 in the join 𝐷𝑖 ⋈𝑈𝐼𝐷 𝐷𝑗.

𝜌𝐵𝐹𝑗,𝐷𝑖 Selectivity of the 𝐵𝐹𝑗 that is built on the table 𝐷𝑗 and then is probed on the table 𝐷𝑖 .

𝜌𝐼𝐵𝐹,𝐷𝑖
Selectivity of the IBF that is computed on the input tables 𝐷1, 𝐷2, … , 𝐷𝑁 and probed

on the table 𝐷𝑖 .

𝑃𝐵𝐹𝑖
 False positive (due to hash collisions) of the 𝐵𝐹𝑖 that is built on the table 𝐷𝑖 .

𝑃𝐼𝐵𝐹
False positive of the IBF that is computed from the Bloom filters

𝐵𝐹1, 𝐵𝐹2, … , 𝐵𝐹𝑁 of the input tables 𝐷1, 𝐷2, … , 𝐷𝑁, respectively.

Probability of a false positive of the Bloom filter

The probability of a false positive of a Bloom filter 𝐵𝐹𝑖 due to hash collisions can be

computed by Formula (5.3.1) [24].

𝑃𝐵𝐹𝑖
= (1 − (1 − 𝑚−1)𝑘𝑛𝑖)𝑘 ≈ (1 − 𝑒−

𝑘𝑛𝑖
𝑚)

𝑘

, (5.3.1)

where the Bloom filter 𝐵𝐹𝑖 represents a set of 𝑛𝑖 values (i.e., the number of values of

the join attribute 𝑈𝐼𝐷 of the input table 𝐷𝑖) in a vector of 𝑚 bits and using 𝑘

independent hash functions. The value of 𝑃𝐵𝐹𝑖
 ranges from 0 to 1.

According to [24], to store a set of 𝑛𝑖 values in a 𝑚-bit Bloom filter 𝐵𝐹𝑖, the larger

𝑚 the smaller probability of a false positive is. If the 𝑚 is fixed, in order to minimize

the probability of a false positive, we can choose the number of hash functions 𝑘 and

the minimum probability of the false positive 𝑃𝐵𝐹𝑖
 by using the Formulas (5.3.2) and

(5.3.3), respectively:

𝑘 = ln(2) ×
𝑚

𝑛𝑖
. (5.3.2)

𝑃𝐵𝐹𝑖
= (

1

2
)

𝑘

= (0.6185)𝑚/𝑛𝑖 . (5.3.3)

Furthermore, based on Formulas (5.3.2) and (5.3.3), we conduct Formula (5.3.4)

to compute the number of bits 𝑚 needed for the Bloom filter 𝐵𝐹𝑖:

𝑚 =
−𝑛𝑖 × ln(𝑃𝐵𝐹𝑖

)

(ln (2))2
. (5.3.4)

For example, given a set of 200,000 values (𝑛𝑖 = 200,000) and an acceptable

probability of false positive 𝑃𝐵𝐹𝑖
= 0.01, the number of bits 𝑚 and the number of hash

functions 𝑘 (required to achieve such a probability of the false positive 𝑃𝐵𝐹𝑖
 of the 𝐵𝐹𝑖)

can be respectively computed using Formulas (5.3.4) and (5.3.2) as bellows:

Query Processing for Hybrid Storage Model

 109

 𝑚 =
−200,000×ln(0.01)

(ln (2))2 = 1,917,011.68 bits (1,917,012 bits ≈ 2 MB).

 𝑘 = ln (2) ×
1,917,012

200,000
 = 6.64 hash functions (7 hash functions)

Selectivity of a Bloom filter

We define the selectivity of a Bloom filter 𝐵𝐹𝑗 that is created from the input table 𝐷𝑗

and then probed on the input table 𝐷𝑖 is the probability in which a tuple t will be

accepted by the Bloom filter 𝐵𝐹𝑗. This selectivity is computed by Formula (5.3.5):

𝜌𝐵𝐹𝑗,𝐷𝑖
= 𝜌𝐷𝑗,𝐷𝑖

+ (1 − 𝜌𝐷𝑗,𝐷𝑖
) × 𝑃𝐵𝐹𝑗

, (5.3.5)

where:

 𝜌𝐷𝑗,𝐷𝑖
: selectivity of the table 𝐷𝑗 on the table 𝐷𝑖 in the join 𝐷𝑖 ⋈𝑈𝐼𝐷 𝐷𝑗;

 𝑃𝐵𝐹𝑗
: error probability of the Bloom filter 𝐵𝐹𝑗 that is created from the table 𝐷𝑗;

 (1 − 𝜌𝐷𝑗,𝐷𝑖
) × 𝑃𝐵𝐹𝑗

: fraction of tuples from the probe table 𝐷𝑖 that are not discarded by

𝐵𝐹𝑗 and do not join with any tuples in the build table 𝐷𝑗; we set 𝜌𝐷𝑗,𝐷𝑖
+ (1 − 𝜌𝐷𝑗,𝐷𝑖

) ×

𝑃𝐵𝐹𝑗
= 1 when 𝑗 = 𝑖.

Selectivity of an Intersection Bloom filter

The selectivity of the IBF, which is built from a set of Bloom filters 𝐵𝐹𝑗′s of the input

tables 𝐷𝑗′s, where j ∊ [1, 𝑁], and then probed on each input table 𝐷𝑖, can be determined

by Formula (5.3.6):

𝜌𝐼𝐵𝐹,𝐷𝑖
= ∏ 𝜌𝐵𝐹𝑗,𝐷𝑖

𝑁

𝑗=1

 , (5.3.6)

The selectivity of the IBF is regarded as the probability in which a tuple t of the

input table 𝐷𝑖 will be accepted by all of its component Bloom filters 𝐵𝐹𝑗′s (𝑗 ∊ [1, 𝑁]).

Comparing two Formulas (5.3.5) and (5.3.6), it is easy to see that 𝜌𝐼𝐵𝐹,𝐷𝑖
 is usually

much less than 𝜌𝐵𝐹𝑗,𝐷𝑖
. This means that using an IBF can help to remove more

irrelevant tuples than using just a single Bloom filter.

False positive of an Intersection Bloom filter

We can compute the false positive 𝑃𝐼𝐵𝐹 of the IBF by Formula (5.3.7) as follows:

𝑃𝐼𝐵𝐹 = ∏ 𝑃𝐵𝐹𝑖
=

𝑁

𝑖=1

 ∏(1 − 𝑒−𝑘𝑛𝑖/𝑚)
𝑘

𝑁

𝑖=1

 , (5.3.7)

where 𝑁 is the number of component Bloom filters 𝐵𝐹𝑖′s with an assumption that there

exists a 𝐵𝐹𝑖 on each table 𝐷𝑖.

A comparison between Formula (5.3.1) and Formula (5.3.7) shows that 𝑃𝐼𝐵𝐹 is

much less than 𝑃𝐵𝐹𝑖
. This implies that applying an IBF offers a lower amount of false

positive errors than only applying a single Bloom filter.

Query Processing for Hybrid Storage Model

110

Network I/O cost and disk I/O cost

The execution cost of a multi-way join query in a cluster is usually determined by

network I/O cost and disk I/O cost, we thus will use these costs to analysis the cost-

effectiveness of the IBF.

In order to estimate the network I/O cost and the disk I/O cost, we depend on the

steps performed in the build and probe phases of the IBF, as shown in Figures 5.7(a)

and (b). These steps include:

Step 1. Execute sub-queries to create intermediate result tables 𝐷1, 𝐷2, … , 𝐷𝑁 ..

Step 2. Compute 𝐵𝐹1, 𝐵𝐹2, … , 𝐵𝐹𝑁 on values of 𝑈𝐼𝐷′𝑠 of the input tables 𝐷1, 𝐷2, … , 𝐷𝑁,

respectively.

Step 3. Compute 𝐼𝐵𝐹 = 𝐵𝐹1˄𝐵𝐹2˄ … ˄ 𝐵𝐹𝑁 (each ˄ is a binary bitwise AND operator).

Step 4. Broadcast the 𝐼𝐵𝐹 to all slave nodes of the cluster.

Step 5. Apply the 𝐼𝐵𝐹 to the input tables 𝐷1, 𝐷2, … , 𝐷𝑁 to obtain the filtered input tables

𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), 𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), … , 𝐷𝑁(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑).

Step 6. Execute the sequential join sequence using the filtered input tables

𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), 𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), … , 𝐷𝑁(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) as input tables.

The first three steps are in the build phase, whereas the rest of the steps are in the

probe phase. We assume that the first step has been performed and we will start to

estimate the costs from the second step.

Network I/O Cost: Since each join operation in the sequential join sequence will join

an intermediate result table (created by the previous join operation) with an input table

𝐷𝑖, the network I/O cost when the IBF is not used, 𝐶𝑁𝑒𝑡
𝑁𝑜𝐼𝐵𝐹, can be computed by

Formula (5.3.8):

𝐶𝑁𝑒𝑡
𝑁𝑜𝐼𝐵𝐹 = ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖)

𝑁

𝑖=1

+ ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖) × 𝑠𝑖𝑧𝑒(𝐷𝑖+1) × 𝜌𝐷𝑖+1,𝐼𝑖

𝑁−1

𝑖=1

 , (5.3.8)

where:

 𝑠𝑖𝑧𝑒(𝐷𝑖) = |𝐷𝑖| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖
): size of the input table 𝐷𝑖;

 ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖)𝑁
𝑖=1 : cost of sending the input tables;

 𝜌𝐷𝑖+1,𝐼𝑖
: selectivity of the table 𝐷𝑖+1 on the table 𝐼𝑖 in the join 𝐼𝑖 ⋈𝑈𝐼𝐷 𝐷𝑖+1;

 𝑠𝑖𝑧𝑒(𝐼𝑖) = |𝐼𝑖| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐼𝑖
): size of the intermediate result table 𝐼𝑖;

 ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖) × 𝑠𝑖𝑧𝑒(𝐷𝑖+1) × 𝜌𝐷𝑖+1,𝐼𝑖
𝑁−1
𝑖=1 : cost of sending the intermediate results.

The cost 𝐶𝑁𝑒𝑡
𝑁𝑜𝐼𝐵𝐹 consists of cost of sending the input tables and the intermediate

result tables over the network. Assume that no replication is done on the input tables.

The network I/O cost when the 𝐼𝐵𝐹 is used, 𝐶𝑁𝑒𝑡
𝐼𝐵𝐹, is computed by Formula (5.3.9):

𝐶𝑁𝑒𝑡
𝐼𝐵𝐹 = 𝑐 × 𝑠𝑖𝑧𝑒(𝐼𝐵𝐹) + ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))

𝑁

𝑖=1

+ ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖) × 𝑠𝑖𝑧𝑒(𝐷𝑖+1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) × 𝜌𝐷𝑖+1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑),𝐼𝑖

𝑁−1

𝑖=1

, (5.3.9)

Query Processing for Hybrid Storage Model

 111

where:

 𝑐 × 𝑠𝑖𝑧𝑒(𝐼𝐵𝐹): cost of sending the IBF to 𝑐 slave nodes;

 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) = |𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖
): size of the filtered input table 𝐷𝑖;

 𝑠𝑖𝑧𝑒(𝐼𝑖): size of the intermediate result table 𝐼𝑖.

The cost 𝐶𝑁𝑒𝑡
𝐼𝐵𝐹 consists of the cost of sending (broadcast) the IBF to all slave nodes

of the cluster and the cost of sending the filtered input tables and intermediate result

tables over the network. Here, we do not apply the IBF to filter intermediate results.

A comparison between Formula (5.3.8) and Formula (5.3.9) shows that

𝑐 × 𝑠𝑖𝑧𝑒(𝐼𝐵𝐹) is usually small and 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) ≪ 𝑠𝑖𝑧𝑒(𝐷𝑖); therefore, 𝐶𝑁𝑒𝑡
𝐼𝐵𝐹 is

usually less than 𝐶𝑁𝑒𝑡
𝑁𝑜𝐼𝐵𝐹.

Disk I/O Cost: The disk I/O cost without using the IBF, 𝐶𝐼/𝑂
𝑁𝑜𝐼𝐵𝐹, is computed by

Formula (5.3.10).

𝐶𝐼/𝑂
𝑁𝑜𝐼𝐵𝐹 = ∑[𝑠𝑖𝑧𝑒(𝐼𝑖) + 𝑠𝑖𝑧𝑒(𝐷𝑖+1)]

𝑁−1

𝑖=1

+ ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖)

𝑁

𝑖=2

 , (5.3.10)

where:

 ∑ [𝑠𝑖𝑧𝑒(𝐼𝑖) + 𝑠𝑖𝑧𝑒(𝐷𝑖+1)]𝑁−1
𝑖=1 : cost of reading the inputs for join operations;

 ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖)𝑁
𝑖=2 : cost of writing the intermediate results of join operations to disks (here, we

are setting 𝐼1 = 𝐷1).

The disk I/O cost with the use of the 𝐼𝐵𝐹, 𝐶𝐼/𝑂
𝐼𝐵𝐹, is computed by Formula (5.3.11).

𝐶𝐼/𝑂
𝐼𝐵𝐹 = 2 × ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖)

𝑁

𝑖=1

+ ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))

𝑁

𝑖=1

+

 ∑[𝑠𝑖𝑧𝑒(𝐼𝑖) + 𝑠𝑖𝑧𝑒(𝐷𝑖+1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))]

𝑁−1

𝑖=1

+ ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖)

𝑁

𝑖=2

, (5.3.11)

where:

 2 × ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖)𝑁
𝑖=1 : cost of reading the input tables two times (to build and probe the IBF);

 ∑ 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))𝑁
𝑖=1 : cost of writing the filtered input tables to disks after they are

filtered by using the IBF;

 ∑ [𝑠𝑖𝑧𝑒(𝐼𝑖) + 𝑠𝑖𝑧𝑒(𝐷𝑖+1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑))]𝑁−1
𝑖=1 : cost of reading the intermediate results and the

filtered input tables to be used as inputs of join operations;

 ∑ 𝑠𝑖𝑧𝑒(𝐼𝑖)𝑁
𝑖=2 : cost of writing the intermediate results to disks (here, we set 𝐼1 = 𝐷1).

We assume that the IBF and the BFs are small enough to be stored in internal

memories of the slave nodes. Thus, no disk I/O costs are needed for them. A

comparison between Formula (5.3.10) and Formula (5.3.11) shows that 𝐶𝐼/𝑂
𝐼𝐵𝐹 includes

extra costs to read and to write the input tables during the build and probe phases.

However, after that the joins will use filtered input tables as their inputs. Therefore, if

𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) ≈ 𝑠𝑖𝑧𝑒(𝐷𝑖), there is no benefit when applying the IBF; otherwise, if

𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) ≪ 𝑠𝑖𝑧𝑒(𝐷𝑖), we can achieve 𝐶𝐼/𝑂
𝐼𝐵𝐹 ≈ 𝐶𝐼/𝑂

𝑁𝑜𝐼𝐵𝐹.

Query Processing for Hybrid Storage Model

112

Cost-Effectiveness Analysis

According to the above analysis, we can observe that, on one side, the IBF may help

to reduce the network I/O cost, 𝐶𝑁𝑒𝑡
𝐼𝐵𝐹, and the disk I/O cost, 𝐶𝐼/𝑂

𝐼𝐵𝐹 , because it may

remove irrelevant tuples from the input tables. However, on another side, the IBF needs

the disk and network I/O costs to build and send it to the slave nodes of the cluster and

to probe it. Therefore, its benefit is only achieved when it can remove a large number

of the irrelevant tuples. Below, we further analysis the cost-effectiveness of the IBF.

As mentioned earlier, we assumed that the IBF is computed from the 𝐵𝐹𝑖′s created

from 𝑁 input tables 𝐷𝑖′s, where 𝑖 ∊ [1, 𝑁], and then it is applied to filter each input

table 𝐷𝑖 to produce a corresponding filtered input table 𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑). The number of

tuples of each filtered input table 𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) can be computed by Formula (5.3.12):

|𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| = |𝐷𝑖| × 𝜌𝐼𝐵𝐹,𝐷𝑖 , (5.3.12)

where:

 |𝐷𝑖|: the number of tuples in the i-th input table 𝐷𝑖;

 𝜌𝐼𝐵𝐹: selectivity of the IBF.

Based on Formulas (5.3.5) and (5.3.6), we rewrite Formula (5.3.12) as below:

|𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| = |𝐷𝑖| × ∏ [𝜌𝐷𝑗,𝐷𝑖
+ (1 − 𝜌𝐷𝑗,𝐷𝑖

) × 𝑃𝐵𝐹𝑗
]

𝑁

𝑗=1

 , (5.3.13)

where:

 |𝐷𝑖|: the number of tuples in the i-th input table 𝐷𝑖;

 𝜌𝐷𝑗,𝐷𝑖
: selectivity of the table 𝐷𝑗 on the table 𝐷𝑖 in the join 𝐷𝑖 ⋈𝑈𝐼𝐷 𝐷𝑗;

 𝑃𝐵𝐹𝑗
: error probability of the Bloom filter 𝐵𝐹𝑗 that is built on the table 𝐷𝑗;

 (1 − 𝜌𝐷𝑗,𝐷𝑖
) × 𝑃𝐵𝐹𝑗

: fraction of tuples from the probe table 𝐷𝑖 that are not discarded by

the 𝐵𝐹𝑗 and do not join with any tuples in the build table 𝐷𝑗.

To reduce the network I/O cost and disk I/O cost, we need to apply the IBF if it is

beneficial. Formula (5.3.13) shows that in order to achieve |𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| ≪ |𝐷𝑖|, the

value of ∏ [𝜌
𝐷𝑗,𝐷𝑖

+ (1 − 𝜌
𝐷𝑗,𝐷𝑖

) × 𝑃𝐵𝐹𝑗
]𝑁

𝑗=1 needs to be low. This means that the given

join sequence needs to contain one or more joins between two input tables 𝐷𝑖 ⋈𝑈𝐼𝐷 𝐷𝑗

in which the selectivity 𝜌𝐷𝑗,𝐷𝑖
 of table 𝐷𝑗 on 𝐷𝑖 and the error probability 𝑃𝐵𝐹𝑗

 of their

Bloom filter 𝐵𝐹𝑗 are low; otherwise, the IBF may give no benefit.

Besides the above condition, no matter whether the IBF is applied or not, the size

of intermediate results, i.e., 𝑠𝑖𝑧𝑒(𝐼𝑖) in Formulas (5.3.8) – (5.3.11), should be

minimized by choosing a suitable join processing order for the input tables.

Example of Evaluating the Benefit of the 𝐈𝐁𝐅

The objective of the example is to show how the cost models can be applied to evaluate

the cost-effectiveness of applying the IBF to a multi-way join query. For this objective,

we consider a simple query 𝑄 having join operations across three input tables 𝐷1, 𝐷2

Query Processing for Hybrid Storage Model

 113

and 𝐷3, i.e., 𝑄 = 𝐷1 ⋈𝑈𝐼𝐷 𝐷2 ⋈𝑈𝐼𝐷 𝐷3. For simplicity, we follow the following

assumptions: (1) the query 𝑄 has a common join attribute 𝑈𝐼𝐷 on its input tables; (2)

the input tables are using a row-oriented data layout; (3) the sizes of the input tables

and the selectivity factors of join operations between each pair of input tables are given

in Table 5.9; and (4) the number of slave nodes c = 10.

Table 5.9: Example of table sizes and selectivity factors of join operations

Input table

(𝑫𝒊)

Number of

tuples (𝒏𝒊)

Tuple size

(MB)

Table size

(MB)
Selectivity factor (𝝆𝑫𝒋,𝑫𝒊

)

D1 200,000 0.05 10,000 𝜌𝐷1,𝐷1
= 1; 𝜌𝐷2,𝐷1

= 0.3; 𝜌𝐷3,𝐷1
= 0.4

D2 100,000 0.05 5,000 𝜌𝐷1,𝐷2
= 0.3; 𝜌𝐷2,𝐷2

= 1; 𝜌𝐷3,𝐷2
= 0.2

D3 50,000 0.16 8,000 𝜌𝐷1,𝐷3
= 0.4; 𝜌𝐷2,𝐷3

= 0.5; 𝜌𝐷3,𝐷3
= 1

Under the above assumptions, we can compute the IBF by 𝐴𝑁𝐷𝑖𝑛𝑔 Bloom filters

𝐵𝐹1, 𝐵𝐹2 and 𝐵𝐹3 created on the common join attribute 𝑈𝐼𝐷 of the input tables 𝐷1, 𝐷2

and 𝐷3, respectively. The IBF and all the 𝐵𝐹𝑖′s (i = 1, 2, 3) need to follow the same

configuration: the number of bits of vectors and the number of hash functions. There

is a challenge to build the IBF and all the 𝐵𝐹𝑖′s with the same configuration because

each of them may have its own optimal configuration corresponding to its own number

of tuples. To overcome this challenge, we first find an optimal configuration for the

Bloom filter 𝐵𝐹1 created from the attribute 𝑈𝐼𝐷 of the biggest input table, i.e., 𝐷1, and

then apply this configuration to the IBF and the other Bloom filters 𝐵𝐹𝑖′s (i = 2, 3). In

particular, given that the table 𝐷1 contains a set of 200,000 tuples (i.e., 𝑛1 = 200,000)

and assumedly we want to achieve a probability of false positives bounded by

𝑃𝐵𝐹1
= 0.01, the number of bits 𝑚 and the number of hash functions 𝑘 that are required

for 𝐵𝐹1 to obtain the above bounded value of 𝑃𝐵𝐹1
 can be computed using two

Formulas (5.3.4) and (5.3.2), respectively: 𝑚 = 1,917,012 (≈ 2 MB) and 𝑘 = 7. (This

is identical to the example shown at the start of this section).

Using the above configuration, we compute the error probabilities for 𝐵𝐹2, 𝐵𝐹3

and IBF according to Formulas (5.3.1) and (5.3.7):

 𝑃𝐵𝐹2
= (1 − 𝑒

−7×
100,000

1,917,012)
7

= 0.00025.

 𝑃𝐵𝐹3
= (1 − 𝑒

−7×
50,000

1,917,012)
7

= 0.0000036.

 𝑃𝐼𝐵𝐹 = ∏ 𝑃𝐵𝐹𝑖
=3

𝑖=1 0.01 × 0.00025 × 0.0000036 = 0.000000000009.

Up to this point, we have already obtained the following information of the IBF

and 𝐵𝐹𝑖′s (i = 1, 2, 3): the number of bits, the number of hash functions and the error

probabilities of the IBF and 𝐵𝐹𝑖′s. In the next step, we need to estimate the number of

tuples in filtered input tables 𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑) (i = 1, 2, 3) by using Formula (5.3.12). This

step, in turn, requires us to compute the selectivity 𝜌𝐵𝐹𝑗,𝐷𝑖
 of the Bloom filter 𝐵𝐹𝑗 on

the input table 𝐷𝑖 by using Formula (5.3.5) and the selectivity 𝜌𝐼𝐵𝐹,𝐷𝑖 of the IBF on 𝐷𝑖

by using Formula (5.3.6). The results of our calculations are shown below:

 The selectivity of 𝐵𝐹𝑖′s on each input table computed using Formula (5.3.5):

o 𝜌𝐵𝐹1,𝐷1
= 1.

Query Processing for Hybrid Storage Model

114

o 𝜌𝐵𝐹2,𝐷1
= 𝜌𝐷2,𝐷1

+ (1 − 𝜌𝐷2,𝐷1
) × 𝑃𝐵𝐹2

= 0.3 + 0.7 × 0.00025 = 0.300175.

o 𝜌𝐵𝐹3,𝐷1
= 𝜌𝐷3,𝐷1

+ (1 − 𝜌𝐷3,𝐷1
) × 𝑃𝐵𝐹3

= 0.4 + 0.6 × 0.0000036 = 0.40000216.

o 𝜌𝐵𝐹1,𝐷2
= 𝜌𝐷1,𝐷2

+ (1 − 𝜌𝐷1𝐷2
) × 𝑃𝐵𝐹1

= 0.3 + 0.7 × 0.01 = 0.307.

o 𝜌𝐵𝐹2,𝐷2
= 1.

o 𝜌𝐵𝐹3,𝐷2
= 𝜌𝐷3,𝐷2

+ (1 − 𝜌𝐷3,𝐷2
) × 𝑃𝐵𝐹3

= 0.2 − 0.8 × 0.0000036 = 0.19999712.

o 𝜌𝐵𝐹1,𝐷3
= 𝜌𝐷1,𝐷3

+ (1 − 𝜌𝐷1,𝐷3
) × 𝑃𝐵𝐹1

= 0.4 − 0.6 × 0.01 = 0.394.

o 𝜌𝐵𝐹2,𝐷3
= 𝜌𝐷2,𝐷3

+ (1 − 𝜌𝐷2,𝐷3
) × 𝑃𝐵𝐹2

= 0.5 − 0.5 × 0.00025 = 0.499875.

o 𝜌𝐵𝐹3,𝐷3
= 1.

 The selectivity of the IBF on each input table computed using Formula (5.3.6):

o 𝜌𝐼𝐵𝐹,𝐷1
= ∏ 𝜌𝐵𝐹𝑗,𝐷1

3
𝑗=1 = 𝜌𝐵𝐹1,𝐷1

× 𝜌𝐵𝐹2,𝐷1
× 𝜌𝐵𝐹3,𝐷1

= 0.120070648.

o 𝜌𝐼𝐵𝐹,𝐷2
= ∏ 𝜌𝐵𝐹𝑗,𝐷2

3
𝑗=1 = 𝜌𝐵𝐹1,𝐷2

× 𝜌𝐵𝐹2,𝐷2
× 𝜌𝐵𝐹3,𝐷2

= 0.06139911584.

o 𝜌𝐼𝐵𝐹,𝐷3
= ∏ 𝜌𝐵𝐹𝑗,𝐷3

3
𝑗=1 = 𝜌𝐵𝐹1,𝐷3

× 𝜌𝐵𝐹2,𝐷3
× 𝜌𝐵𝐹3,𝐷3

= 0.19695075.

 The number of tuples of the filtered input tables computed using Formula (5.3.12):

o |𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| = |𝐷1| × 𝜌𝐼𝐵𝐹,𝐷1 = 200,000 × 0.120070648 = 24,014 (𝑟𝑒𝑑𝑢𝑐𝑒𝑑 88%).

o |𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| = |𝐷2| × 𝜌𝐼𝐵𝐹,𝐷2 = 100,000 × 0.06139911584 = 6,140 (𝑟𝑒𝑑𝑢𝑐𝑒𝑑 94%).

o |𝐷3(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| = |𝐷3| × 𝜌𝐼𝐵𝐹,𝐷3 = 50,000 × 0.19695075 = 9,848 (𝑟𝑒𝑑𝑢𝑐𝑒𝑑 80%).

Since the given query may have a large number of candidate execution plans due

to different join ordering possibilities, an exhaustive search for an optimal execution

plan is too expensive. Hence, we adopt to apply the minimum selectivity heuristic

strategy introduced by M. Steinbrunn et al. [108] to build a left-deep processing tree

step by step by attempting to keep intermediate results as small as possible. First of

all, a table 𝐷𝑖 that has the smallest cardinality will be chosen to become an initial

intermediate result, i.e., 𝐼1 = 𝐷𝑖. Then, for each step, a table 𝐷𝑗 having the smallest

selectivity factor 𝜌𝐷𝑗,𝐼𝑖 for the join operation 𝐼𝑖 ⋈𝑈𝐼𝐷 𝐷𝑗 is chosen. Our study takes into

account the integration of the IBF into this left-deep sequential tree plan of 𝑁 tables.

Now, we will apply the above execution plan to the query

𝑄 = 𝐷1 ⋈𝑈𝐼𝐷 𝐷2 ⋈𝑈𝐼𝐷 𝐷3. Based on the information given in Table 5.9, we see that

|𝐷3| ≤ |𝐷2| ≤ |𝐷1|, thus we select the initial intermediate result 𝐼1 = 𝐷3. Besides, by

looking at the selectivity factors of other tables on table 𝐷3, we see that

𝜌𝐷1,𝐷3
= 0.4 < 𝜌𝐷2,𝐷3

= 0.5, hence we choose table 𝐷1 instead of 𝐷2 to join with the

current intermediate result 𝐼𝑖. By continuing in this way, we achieve a left-deep

sequential tree plan for 𝑄. Finally, we integrate the IBF into this execution plan, as

shown in Figure 5.10.

Figure 5.10: Left-deep processing tree of the query Q with the use of the IBF

Query Processing for Hybrid Storage Model

 115

The evaluation of the cost-effectiveness of applying the IBF to the query 𝑄 in terms

of network I/O cost and disk I/O cost is given as follows.

Network I/O Cost:

 When not using the IBF, to compute the network I/O cost, we use Formula (5.3.8):

𝐶𝑁𝑒𝑡
𝑁𝑜𝐼𝐵𝐹 = ∑ (|𝐷𝑖| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖

))

3

𝑖=1

+ |𝐷3| × |𝐷1| × 𝜌𝐷1,𝐷3

× ((𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

)) + |𝐷2| × 𝜌𝐷2,𝐷3
× 𝜌𝐷2,𝐷1

× (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2
))).

 = 23,000 + 50,000 × 200,000 × 0.4 ×

 ((0.16 + 0.05) + 100,000 × 0.5 × 0.3 × (0.16 + 0.05 + 0.05)).

 = 15,600,840,023,000 (𝑀𝐵).

 When using the IBF, to compute the network I/O cost, we use Formula (5.3.9):

𝐶𝑁𝑒𝑡
𝐼𝐵𝐹 = 10 ∗ 𝑠𝑖𝑧𝑒(𝐼𝐵𝐹) +

 ∑ (|𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖
))

3

𝑖=1

+ |𝐷3(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × |𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝜌𝐷1,𝐷3

× ((𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

)) + |𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝜌𝐷2,𝐷3
× 𝜌𝐷2,𝐷1

× (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2
))).

 = 20 + (24,014 × 0.05 + 6,140 × 0.05 + 9,848 × 0.16) + 9,848 × 24,014 × 0.4

× ((0.16 + 0.05) + 6,140 × 0.5 × 0.3 × (0.16 + 0.05 + 0.05)).

 = 22,671,814,152(𝑀𝐵)(𝑟𝑒𝑑𝑢𝑐𝑒𝑑 99%).

Disk I/O Cost:

 When not using the IBF, we can compute the disk I/O cost using Formula (5.3.10):

 𝐶𝐼/𝑂
𝑁𝑜𝐼𝐵𝐹 = (|𝐷3| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3

) + |𝐷3| × |𝐷1| × 𝜌𝐷1,𝐷3
 × (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1
))

+ (|𝐷1| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1
) + 𝑠𝑖𝑧𝑒(𝐷3) + |𝐷2| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2

)))

+ (|𝐷3| × |𝐷1| × 𝜌𝐷1,𝐷3

× ((𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

)) + |𝐷2| × 𝜌𝐷2,𝐷3
× 𝜌𝐷2,𝐷1

× (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2
)))).

 = (50,000 × 0.16 + 50,000 × 200,000 × 0.4 × (0.16 + 0.05)

+ (200,000 × 0.05 + 100,000 × 0.05))

+ (50,000 × 200,000 × 0.4

× ((0.16 + 0.05) + 100,000 × 0.5 × 0.3 × (0.16 + 0.05 + 0.05))).

 = 15,601,680,023,000 (𝑀𝐵).

 When using the IBF, we can compute the disk I/O cost by using Formula (5.3.11):

Query Processing for Hybrid Storage Model

116

𝐶𝐼/𝑂
𝐼𝐵𝐹 = 2 × ∑|𝐷𝑖| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖

)

3

𝑖=1

+ ∑|𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷𝑖
)

3

𝑖=1

+ (|𝐷3(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + |𝐷3(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × |𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)|

× 𝜌𝐷1,𝐷3
× (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1
))

+ (|𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1
) + 𝑠𝑖𝑧𝑒(𝐷3) + |𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)|

× 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2
)))

+ (|𝐷3(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × |𝐷1(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝜌𝐷1,𝐷3

× ((𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

)) + |𝐷2(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)| × 𝜌𝐷2,𝐷3
× 𝜌𝐷2,𝐷1

× (𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷3
) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷1

) + 𝑠𝑖𝑧𝑒(𝑡𝑢𝑝𝑙𝑒𝐷2
)))).

 = 2 × (23,000) + (24,014 × 0.05 + 6,140 × 0.05 + 9,848 × 0.16)

+ (9,848 × 0.16 + 9,848 × 24,014 × 0.4 × (0.16 + 0.05)

+ (24,014 × 0.05 + 6,140 × 0.05))

+ (9,848 × 24,014 × 0.4

× ((0.16 + 0.05) + 6,140 × 0.5 × 0.3 × (0.16 + 0.05 + 0.05))).

 = 22,691,728,365 (𝑀𝐵)(𝑟𝑒𝑑𝑢𝑐𝑒𝑑 99%).

Based on the above estimation results, the impact of the application of the IBF on

both the network I/O cost and the disk I/O cost has been shown clearly. The estimation

results show that the benefit of the IBF is achieved when the given join sequence

contains one or more join operations whose selectivity factors are very highly selective

5.3.3 Incremental Intersection Bloom Filter

In the previous section, we showed that the disk I/O cost required for building and

probing the IBF is quite high because of a large number of reading and writing

operations on intermediate result tables and filtered intermediate result tables. To

reduce this cost, instead of building a complete IBF from all Bloom filters of all input

tables before probing it, we can build and probe the IBF incrementally during the

execution of join operations. For simplicity, we refer to this IBF as an incremental 𝐼𝐵𝐹.

Figure 5.11(a) illustrates the integration of the incremental IBF into the execution plan

of the query 𝑄 = 𝑄𝐼 ⋈𝑈𝐼𝐷 𝑄𝐽 ⋈𝑈𝐼𝐷 𝑄𝐾, which was given in Figure 5.6(c).

The steps of build and probe phases of the incremental IBF given in Figure 5.11(a):

 Execute the sub-query 𝑄𝐼,1 and create the intermediate result table 𝐷1
′ .

 Compute the Bloom filter 𝐵𝐹1 on values of the attribute 𝑈𝐼𝐷 of 𝐷1
′ and then

compute an incremental IBF: 𝐼𝐵𝐹1 = 𝐵𝐹1.

 Execute the sub-query 𝑄𝐼,2 with the application of the current incremental 𝐼𝐵𝐹1 as

a local predicate on the input table 𝑇2 and create the intermediate result table 𝐷2
′

(i.e., 𝐷2
′ only consists of the tuples whose values are already represented in 𝐼𝐵𝐹1).

 Compute the Bloom filter 𝐵𝐹2 on values of the attribute 𝑈𝐼𝐷 of 𝐷2
′ and recompute

the incremental IBF: 𝐼𝐵𝐹2 = 𝐼𝐵𝐹1 ˄ 𝐵𝐹2.

Query Processing for Hybrid Storage Model

 117

 …

 The above steps are similarly performed for the next sub-queries. Finally, we

obtain all the intermediate result tables 𝐷1
′ , 𝐷2

′ , … , 𝐷𝑁
′ of the sub-queries. We also

achieve the newest incremental IBF: 𝐼𝐵𝐹𝑁, i.e., in general, 𝐼𝐵𝐹𝑁 = 𝐼𝐵𝐹𝑁−1˄ 𝐵𝐹𝑁.

It is worthy to note that a Bloom filter is not computed on a right-hand side table

of a left-outer join and no non-null constraint found on it, e.g., 𝐷4
′ . Besides, it is

unnecessary to recompute the 𝐼𝐵𝐹𝑁 from the intermediate result table 𝐷𝑁
′ of the

uppermost sub-query 𝑄𝐾,1 because it will not be used any more.

Figure 5.11: Query execution plan with the incremental IBF

Finally, the intermediate result tables 𝐷1
′ , 𝐷2

′ , … , 𝐷𝑁
′ are used as input tables for join

operations in the execution plan, as illustrated in Figure 5.11(b). This means that these

intermediate result tables do not need to be re-filtered as in the case of the IBF approach

presented in Section 5.3.1. Thus, the disk I/O cost is significantly saved when the

incremental IBF is applied. However, when using the incremental IBF, the sizes of

input tables of join operations is generally larger than those in the case of the IBF

approach (presented in Section 5.3.1). This is due to that fact that when using the

incremental IBF, an input table is filtered by the incremental IBF that is being

incrementally computed by just using the BFs of the lower input tables in the execution

plan rather than using all the BFs of all the input tables. Therefore, approximately, we

have 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)) ≤ 𝑠𝑖𝑧𝑒(𝐷𝑖
′) ≤ 𝑠𝑖𝑧𝑒(𝐷𝑖) (𝑖 = 1, … , 𝑁), where 𝐷𝑖

′ is an

intermediate result table in the case the incremental IBF is applied, whereas 𝐷𝑖 and

𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), respectively, are the intermediate result table and the filtered input table

in the case of the IBF approach. Moreover, when the incremental IBF is applied, each

sub-query produces only one intermediate result table 𝐷𝑖
′, instead of two intermediate

result tables, i.e., 𝐷𝑖 and 𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑), as in the case of the IBF approach. Due to

𝑠𝑖𝑧𝑒(𝐷𝑖
′) ≤ 𝑠𝑖𝑧𝑒(𝐷𝑖) + 𝑠𝑖𝑧𝑒(𝐷𝑖(𝑓𝑖𝑙𝑡𝑒𝑟𝑒𝑑)), the disk I/O cost is required for the build

and probe phases of the incremental IBF is less than that of the IBF.

The incremental IBF can offer the best benefit when it is incrementally built from

intermediate result tables of highly selective sub-queries of lowermost join operations

Query Processing for Hybrid Storage Model

118

of the execution plan tree and then used as a local predicate to filter irrelevant inputs

out of the intermediate result tables of the sub-queries of upper join operations.

5.4 Summary and Conclusion

Querying DICOM data from the hybrid store of HYTORMO has posed some

challenges. Entity tables of the DICOM data have been decomposed into a number of

vertically partitioned tables and are stored using row or column data layouts, thus the

query processing strategy needs to be designed to suit with such a data storage strategy.

Besides, although the proposed data storage strategy is able to reduce the I/O cost at

attribute level by attempting to reduce the number of irrelevant attribute accesses, it

cannot reduce the I/O cost at tuple level. The irrelevant tuples that will not pass join

predicates in multiple-table join queries are still read and sent over the network before

discarded from join results. This decreases query performance.

To address the above problems, we designed and implemented a query processing

strategy built on top of HYTORMO: a query execution plan with inner and left-outer

joins on vertically partitioned tables. The left-outer joins are used to prevent the data

loss when the inner joins are performed on the vertically partitioned tables.

Furthermore, we proposed heuristic rules to determine when a left-outer join operation

needs to be used and when a left-outer join operation should be rewritten into an inner-

join operation. On the other hand, the integrating of the IBF into the query processing

aims to minimize the irrelevant input data and the intermediate results during the query

execution; this helps to reduce network communication cost. We presented a cost-

effectiveness analysis of the application of the IBF. Finally, we introduce an

alternative IBF approach, called incremental IBF for saving the disk I/O cost required

for build and probe phases of the IBF approach. Experimental evaluation of the benefit

of the IBF will be presented in the next chapter.

Key Points

 We provide heuristic rules to choose the suitable join types.

 We propose a query processing with IBF and give cost-effectiveness analysis.

 We propose an alternative IBF approach, called incremental IBF.

119

Chapter

Performance Evaluation

6.1 Overview

This chapter presents the evaluation results and lessons learned from applying

HYTORMO, the data storage strategy, HADF and the query processing strategy with

the use of an IBF. An overview of the chapter is given in Table 6.1.

Table 6.1: Overview over Chapter 6

6.2 Experimental Environment

6.2.1 Spark Cluster 6.2.2 Datasets 6.2.3 Workloads

6.3 Experiment Execution

6.3.1 Experiment 1 6.3.2 Experiment 2 6.3.3 Experiment 3 6.3.4 Experiment 4

6.4 Analysis and Interpretation

6.4.1 H1 - Effectiveness of HYTORMO 6.4.2 H2 - Usefulness of HADF

6.4.3 H3 - Effectiveness of the Query Processing Strategy

6.5 Summary and Conclusion

Our experiments aim at providing empirical evidences that the proposed methods

are helpful as well as isolating the lessons learned and determining the critical aspects

of successful applying the proposed methods. The experiments concentrate on

answering the following questions:

 Does the combined use of the hybrid storage model, HYTORMO, offer a better

workload performance than only using a pure row store or a pure column store?

 Does HADF with taking into account the combined impact of both workload- and

data-specific information as well as the use of both row and column stores help us

to generate better data storage configurations in terms of storage space size and

workload execution time?

 Does the query processing strategy with the integration of an IBF improve query

performance?

The above questions are respectively related to three hypotheses H1 – H3 proposed

to evaluate the proposed methods, shown in Section 1.7 in Chapter 1: the first one

concerns on the benefit of HYTORMO; the second one concerns on the benefit of

HADF; and the last one concerns on the benefit of the IBF. To get the answers for these

questions, we first describe the experimental environment. Next, we execute the

experiments. After that, we analyze and interpret the results to evaluate the hypotheses.

Performance Evaluation

120

6.2 Experimental Environment

6.2.1 Spark Cluster

We used Hadoop 2.7.1, Hive 1.2.1 and Spark 1.6.0 to install a cluster. The hardware

of the cluster consists of 9 different nodes: 1 × Master node: Intel(R) core(TM) i7-

3770 CPU @ 3.40GHz, 8GB RAM, 2TB hard disk and 1GBit network connection;

and 8 × Slave nodes: Intel(R) core(TM) i7-3770 CPU @ 3.40GHz, 6GB RAM, 500GB

hard disk and 1GBit network connection (GALACTICA: https://horizon.isima.fr).

HDFS was used for the hybrid store of HYTORMO. We ran 1 Namenode and 8

Datanodes using the standard configuration of HDFS with a modification: we set the

replication factor of HDFS to 2 (instead of 3 as default) in order to save storage space.

We implemented execution plans for queries in workloads using Spark [21].

6.2.2 Datasets

We used real DICOM datasets [121-126] whose statistics (including the number of

DICOM files, the number of extracted attributes, the size of extracted metadata in text

format and the total size of files) are given in Table 6.2. We performed four different

experiments in order to validate the benefits of the hybrid store, HADF and IBF. Each

experiment used different parts of the DICOM datasets. For simplicity, we created two

mixed datasets: (1) MDB1 consisted of DICOM files of the first five DICOM datasets:

CTColonography, Dclunie, Idoimaging, LungCancer and MIDAS; and (2) MDB2

consisted of all DICOM datasets: CTColonography, Dclunie, Idoimaging,

LungCancer, MIDAS and CIAD. In order to reduce the complexity of processing and

analyzing a large amount of data, Experiment 1 used only MDB1 as a sample dataset

to provide data-specific information for HADF. This is because the distribution of null

ratios of attributes in MDB1 is similar to that of MDB2. Experiment 2 used MDB1

and MDB2 separately. Experiment 3 and 4 used only MDB2.

Table 6.2: Mixed DICOM datasets used in the experiments

No. Datasets

No. of

DICOM

files

No. of

extracted

attributes

Size of

extracted

metadata

Total size

of files
Mixed dataset

1 CTColonography 98,737 86 7.76 GB 48.6 GB

MDB1
MDB2

2 Dclunie 541 86 86.0 MB 45.7 GB

3 Idoimaging 1,111 86 53.9 MB 369 MB

4 LungCancer 174,316 86 1.17 GB 76.0 GB

5 MIDAS 2,454 86 63.4 MB 620 MB

6 CIAD 3,763,894 86 61.5 GB 1.61 TB

Metadata and pixel data were extracted from the DICOM files by using a Java

program that calls methods in the library dcm4che-2.0.29 [127]. The extracted

attributes were grouped together and stored in suitable storage layouts (a row- or a

column-oriented data layout). This can be performed by using one of two design

approaches: expert-based and automated. In the former approach, first of all, experts

(e.g., database designers) manually group the attributes of each entity table into

column groups (mandatory, frequently-accessed-together or optional/private/seldom-

Performance Evaluation

 121

accessed attributes), then select a suitable data layout for each column group. In [107],

we showed that the query performance when applying this approach is improved when

compared with two other approaches: using a pure row store and a pure column store.

In this chapter, we only present the experiments to assess the benefit of the later

approach.

HADF is applied to generate multiple data storage configurations depending on

the combined impact of both workload- and data-specific information as well as the

mixed use of both row and column stores. The HADF-generated data storage

configurations were stored as follows: sequence files and ORC files in Hive [128] were

used to store row and column tables, respectively.

In order to manage completely DICOM data, many entity tables, such as Patient,

Study, GeneralInfoTable, SequenceAttribute, ClinicalTrial, GeneralSeries,

FileMetaElement and ImageInformation and so on, need to be stored. However, our

experiments only concern on the following four entity tables:

 Patient(UID, PatientName, PatientID, PatientBirthDate, PatientSex, EthnicGroup,

IssuerOfPatientID, PatientBirthTime, PatientInsurancePlanCodeSequence,

PatientPrimaryLanguageCodeSequence, PatientPrimaryLanguageModifierCode-

Sequence, OtherPatientIDs, OtherPatientNames, PatientBirthName,

PatientTelephoneNumbers, SmokingStatus, PregnancyStatus, LastMenstrualDate,

PatientReligiousPreference, PatientComments, PatientAddress,

PatientMotherBirthName, InsurancePlanIdentification)

 Study(UID, StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName,

StudyID, AccessionNumber, StudyDescription, PatientAge, PatientWeight, PatientSize,

Occupation, AdditionalPatientHistory, MedicalRecordLocator, MedicalAlerts)

 GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames, GeneralValues)

 SequenceAttributes(UID, SequenceTags, SequenceVRs, SequenceNames,

SequenceValues)

Table 6.3 shows the sizes of the entity tables extracted from the dataset MDB1.

Table 6.3: Sizes of the entity tables of the dataset MDB1

Entity Table
Total size

Number of tuples Size

Patient 120,306 20.788 MB

Study 120,306 19.183 MB

GeneralInfoTable 16,226,762 4,845,042 MB

SequenceAttributes 4,149,395 389.433 MB

The null ratios of the attributes of the entity tables of MDB1 are listed below:

 The null ratios of the attributes of the entity table Patient:

1 PatientName: 0.00% 12 OtherPatientNames: 100%

2 PatientID: 0.00% 13 PatientBirthName: 100%

3 PatientBirthDate: 83.55% 14 PatientTelephoneNumbers: 100%

4 PatientSex: 1.48% 15 SmokingStatus: 97.48%

5 EthnicGroup: 100% 16 PregnancyStatus: 90.01%

6 IssuerOfPatientID: 100% 17 LastMenstrualDate: 97.72%

Performance Evaluation

122

7 PatientBirthTime: 96.32% 18 PatientReligiousPreference: 100%

8 PatientInsurancePlanCodeSequence: 100% 19 PatientComments: 99.64%

9 PatientPrimaryLanguageCodeSequence: 100% 20 PatientAddress: 100%

10 PatientPrimaryLanguageModifierCodeSequence: 100% 21 PatientMotherBirthName: 100%

11 OtherPatientIDs: 100% 22 InsurancePlanIdentification: 100%

 The null ratios of the attributes of the entity table Study:

1 StudyInstanceUID: 0.00% 8 PatientAge: 11.23%

2 StudyDate: 0.07% 9 PatientWeight: 14.18%

3 StudyTime: 0.07% 10 PatientSize: 90.34%

4 ReferringPhysicianName: 16.44% 11 Occupation: 99.63%

5 StudyID: 15.65% 12 AdditionalPatientHistory: 71.64%

6 AccessionNumber: 93.93% 13 MedicalRecordLocator: 100%

7 StudyDescription: 0.48% 14 MedicalAlerts: 100%

 The null ratios of the attributes of the entity table GeneralInfoTable:

1 GeneralTags: 0.00% 3 GeneralNames: 0.00%

2 GeneralVRs: 0.00% 4 GeneralValues: 13.97%

 The null ratios of the attributes of the entity table SequenceAttributes:

1 SequenceTags: 0.00% 3 SequenceNames: 0.00%

2 SequenceVRs: 0.00% 4 SequenceValues: 0.34%

Table 6.4 shows the sizes of the entity tables extracted from the dataset MDB2.

Table 6.4: Sizes of the entity tables of the dataset MDB2

Entity Table
Total size

Number of tuples Size

Patient 1,802,376 324 MB

Study 1,856,892 384 MB

GeneralInfoTable 337,730,322 39.2 GB

SequenceAttributes 75,314,902 7.64 GB

The null ratios of the attributes of the entity tables of MDB2 are listed below.

 The null ratios of the attributes of the entity table Patient:

1 PatientName: 19.25% 12 OtherPatientNames: 100%

2 PatientID: 0% 13 PatientBirthName: 100%

3 PatientBirthDate: 96.70% 14 PatientTelephoneNumbers: 100%

4 PatientSex: 11.99% 15 SmokingStatus: 79.33%

5 EthnicGroup: 78.29% 16 PregnancyStatus: 36.36%

6 IssuerOfPatientID: 100% 17 LastMenstrualDate: 99.85%

7 PatientBirthTime: 99.75% 18 PatientReligiousPreference: 100%

8 PatientInsurancePlanCodeSequence: 100% 19 PatientComments: 83.23%

9 PatientPrimaryLanguageCodeSequence: 100% 20 PatientAddress: 100%

10 PatientPrimaryLanguageModifierCodeSequence: 100% 21 PatientMotherBirthName: 100%

11 OtherPatientIDs: 100% 22 InsurancePlanIdentification: 100%

Performance Evaluation

 123

 The null ratios of the attributes of the entity table Study:

1 StudyInstanceUID: 2.72% 8 PatientAge: 29.78%

2 StudyDate: 2.94% 9 PatientWeight: 27.11%

3 StudyTime: 23.43 % 10 PatientSize: 33.12%

4 ReferringPhysicianName: 87.63% 11 Occupation: 97.11%

5 StudyID: 86.57% 12 AdditionalPatientHistory: 79.38%

6 AccessionNumber: 24.58% 13 MedicalRecordLocator: 98.36%

7 StudyDescription: 19.83% 14 MedicalAlerts: 98.21%

 The null ratios of the attributes of the entity table GeneralInfoTable:

1 GeneralTags: 0% 3 GeneralNames: 0%

2 GeneralVRs: 0% 4 GeneralValues: 10.19%

 The null ratios of the attributes of the entity table SequenceAttributes:

1 SequenceTags: 0.2% 3 SequenceNames: 0.36%

2 SequenceVRs: 0.36% 4 SequenceValues: 0.69%

As shown above, the null ratios of the attributes of two entity tables Patient and

Study are very high, thus we can refer to them as sparse tables. Conversely, two entity

tables GeneralInfoTable and SequenceAttributes are regarded as dense tables because

the null ratios of their attributes are very low.

6.2.3 Workloads

We simulated various workloads, each of which includes a set of queries and their

occurrence frequency. There are the following types of the workloads: (1) OLAP-like

workload contains queries using only a few attributes from each entity table; (2) OLTP-

like workload consists of queries using most (or all) attributes from each entity table;

and (3) mixed OLTP and OLAP workload includes queries using an arbitrary number

of attributes from the entity tables.

Workload W1: This is an OLAP-like workload that mainly contains queries using

only a few attributes of the entity table GeneralInfoTable (which is the largest entity

table in terms of storage space size). Workload W1 aims at demonstrating the benefit

of HADF when used for OLAP workloads. The set of queries and their occurrence

frequency in this workload is given in Table 6.5.

Table 6.5: Queries and their occurrence frequency in Workload W1

Query Query Freq

Q1,1 SELECT UID, GeneralTags, GeneralVRs, GeneralNames, GeneralValues FROM

GeneralInfoTable

100

Q1,2 SELECT GeneralTags, count(GeneralValues) FROM GeneralInfoTable GROUP BY

GeneralTags

100

Q1,3 SELECT UID, GeneralNames FROM GeneralInfoTable WHERE GeneralNames =

‘Modality’

100

Q1,4 SELECT UID, GeneralVRs FROM GeneralInfoTable WHERE GeneralVRs = ‘DA’ 100

Performance Evaluation

124

Workload W2: This is an OLTP-like workload that consists of queries using the

majority of the attributes from the entity table SequenceAttributes. It aims at showing

the application of HADF to OLTP workloads. We present this workload in Table 6.6.

Table 6.6: Queries and their occurrence frequency in Workload W2

Query Query Freq

Q2,1 SELECT UID, SequenceTags, SequenceVRs, SequenceNames, SequenceValues

FROM SequenceAttributes WHERE SequenceNames LIKE ‘%X-Ray%’

100

Q2,2 SELECT SequenceTags, SequenceVRs, SequenceNames FROM SequenceAttributes

WHERE SequenceVRs = ‘CS’

100

Workload W3: This is a mixed OLTP and OLAP workload that uses an arbitrary

number of attributes from the entity table Patient (which is the widest and sparsest

entity table). Some attributes of the entity table Patient are frequently accessed

together by the same queries (OLTP-like workload) while the others are seldom

accessed together (OLAP-like workload). Workload W3 is shown in Table 6.7.

Table 6.7: Queries and their occurrence frequency in Workload W3

Query Query Freq

Q3,1 SELECT UID, PatientName, PatientID, PatientBirthDate, PatientTelephoneNumbers,

PatientSex, PatientBirthName, SmokingStatus, PatientComments,

PatientMotherBirthName FROM Patient WHERE PatientID = ‘P30013’

300

Q3,2 SELECT UID, PatientName, PatientID, PatientBirthDate, PatientSex, EthnicGroup,

IssuerOfPatientID, OtherPatientNames, PatientMotherBirthName,

InsurancePlanIdentification FROM Patient

100

Q3,3 SELECT UID, PatientID, PatientName, PatientBirthDate, PatientSex, EthnicGroup,

SmokingStatus FROM Patient WHERE PatientSex = ‘M’ AND SmokingStatus =

‘NO’

100

Q3,4 SELECT UID, PatientName, PatientID, PatientBirthDate, EthnicGroup,

PatientPrimaryLanguageModifierCodeSequence, OtherPatientIDs, PatientAddress

FROM Patient

100

Q3,5 SELECT UID, PatientName, PatientID, PatientBirthDate, PatientBirthTime,

PatientInsurancePlanCodeSequence, PregnancyStatus, LastMenstrualDate,

PatientReligiousPreference FROM Patient

100

Q3,6 SELECT UID, PatientName, PatientID, PatientBirthDate, EthnicGroup,

PregnancyStatus, LastMenstrualDate FROM Patient

100

This workload aims at illustrating the application of HADF to a mixed OLAP and

OLTP workload and showing whether the combined use of both workload- and data-

specific information is helpful in reducing the storage space demand and the workload

execution time.

Workload W4: Similarly to Workload W3, this is a mixed OLTP and OLAP workload,

using an arbitrary number of attributes from multiple entity tables Patient, Study,

GeneralInfoTable and SequenceAttributes. Additionally, it contains multiple table join

queries. Hence, it is used not only to demonstrate the application of HADF to mixed

workloads but also to show the support of HYTORMO for multiple-table join queries.

We introduce this workload in Table 6.8.

Performance Evaluation

 125

Table 6.8: Queries and their occurrence frequency in Workload W4

Query Query Freq

Q4,1 SELECT Patient.UID, Patient.PatientName, Patient.PatientID, Patient.PatientBirthDate,

Patient.PatientTelephoneNumbers, Patient.PatientSex, Patient.PatientBirthName,

Patient.SmokingStatus, Patient.PatientComments, Patient.PatientMotherBirthName,

Study.StudyInstanceUID, Study.StudyDate, Study.StudyTime,

Study.ReferringPhysicianName, Study.StudyID, Study.AccessionNumber,

Study.MedicalAlerts FROM Patient, Study WHERE Patient.UID = Study.UID AND

and Patient.PatientID = ‘P30013’ AND Study.StudyDate >= ’20000101’ AND

Study.StudyDate <= ’20150101’

300

Q4,2 SELECT Patient.UID, Patient.PatientName, Patient.PatientID, Patient.PatientBirthDate,

Patient.PatientSex, Patient.EthnicGroup, Patient.IssuerOfPatientID,

Patient.OtherPatientNames, Patient.PatientMotherBirthName,

Patient.InsurancePlanIdentification, Study.StudyInstanceUID, Study.StudyDate,

Study.StudyTime, Study.ReferringPhysicianName, Study.StudyID,

Study.MedicalRecordLocator FROM Patient, Study WHERE Patient.UID = Study.UID

AND Study.StudyID = ’20050920’

100

Q4,3 SELECT Patient.UID, Patient.PatientID, Patient.PatientName, Patient.PatientBirthDate,

Patient.PatientSex, Patient.EthnicGroup, Patient.SmokingStatus, Study.PatientAge,

Study.PatientWeight, Study.PatientSize, GeneralInfoTable.GeneralNames,

GeneralInfoTable.GeneralValues, SequenceAttributes.UID,

SequenceAttributes.SequenceTags, SequenceAttributes.SequenceVRs,

SequenceAttributes.SequenceNames, SequenceAttributes.SequenceValues

FROM Patient, Study, GeneralInfoTable, SequenceAttributes

WHERE Patient.UID = Study.UID AND Study.UID = GeneralInfoTable.UID

AND Patient.UID = SequenceAttributes.UID AND Patient.PatientSex = ’M’

AND Patient.SmokingStatus = ‘NO’ AND Study.PatientAge >= 90

AND SequenceAttributes.SequenceNames LIKE ‘%X-Ray%’

100

Q4,4 SELECT Patient.UID, Patient.PatientName, Patient.PatientID, Patient.PatientBirthDate,

Patient.EthnicGroup, Patient.PatientPrimaryLanguageModifierCodeSequence,

Patient.OtherPatientIDs, Patient.PatientAddress, Study.UID, Study.StudyInstanceUID,

Study.StudyDate, Study.StudyTime, Study.ReferringPhysicianName,

Study.StudyID, Study.AccessionNumber, Study.PatientWeight,

Study.AdditionalPatientHistory, GeneralInfoTable.GeneralTags,

GeneralInfoTable.GeneralValues SequenceAttributes.SequenceTags,

SequenceAttributes.SequenceVRs, SequenceAttributes.SequenceNames FROM Patient,

Study, GeneralInfoTable, SequenceAttributes WHERE Patient.UID = Study.UID AND

Patient.UID = GeneralInfoTable AND Patient.UID = SequenceAttributes.UID AND

SequenceAttributes. SequenceVRs = ’CS’ AND GeneralInfoTable.GeneralTags LIKE

‘0008%’

100

Q4,5 SELECT Patient.UID, Patient.PatientName, Patient.PatientID, Patient.PatientBirthDate,

Patient.PatientBirthTime, Patient.PatientInsurancePlanCodeSequence,

Patient.PregnancyStatus, Patient.LastMenstrualDate,Patient.PatientReligiousPreference,

Study.StudyInstanceUID, Study.StudyDate, Study.StudyTime, Study.StudyID,

Study.PatientSize, Study.Occupation, GeneralInfoTable.GeneralNames FROM Patient,

Study, GeneralInfoTable WHERE Patient.UID = Study.UID AND Patient.UID =

GeneralInfoTable.UID AND GeneralInfoTable.GeneralNames = ‘Modality’

100

Q4,6 SELECT Patient.UID, Patient.PatientName, Patient.PatientID, Patient.PatientBirthDate,

Patient.EthnicGroup, Patient.PregnancyStatus, Patient.LastMenstrualDate,

Study.StudyInstanceUID, Study.StudyDate, Study.StudyTime,

Study.ReferringPhysicianName, Study.StudyID, Study.StudyDescription,

Study.PatientAge, GeneralInfoTable. GeneralVRs FROM Patient, Study,

GeneralInfoTable WHERE Patient.UID = Study.UID AND Patient.UID =

GeneralInfoTable.UID AND Study.StudyDate >= ‘20000101’ AND Study.StudyDate <=

‘20150101’ AND GeneralInfoTable.GeneralVRs = ‘DA’

100

Performance Evaluation

126

6.3 Experiment Execution

This section presents four different experiments used to evaluate the hypotheses.

6.3.1 Experiment 1: Evaluating the Effectiveness of

HYTORMO and the Usefulness of HADF

Experiment 1 aims at assessing Hypotheses H1 and H2 in order to show the

effectiveness of HYTORMO and the usefulness of HADF, respectively. Besides, a

good data storage configuration for each entity table will be chosen from a set of

HADF-generated data storage configurations.

Table 6.9: Major steps of Experiment 1

Conf
Typical candidate data storage

configuration
Execution Measures

Selection

Criteria

G1

- Settings: 𝛼 = 0; 𝛽 = 0; 𝜃 = 0; and 𝜆 = 0.

- HADF-generated data storage

configurations: The entity table 𝑇𝑖 is

stored in a single row table.

- Run Workload

Wj
(j = 1, …, 4)

relevant to the

entity table 𝑇𝑖

five time for

each

configuration.

- Using the

dataset MDB1.

- Storage

space size

of 𝑇𝑖 .

- Workload

execution

time.

- A good

configuratio

n is chosen

for 𝑇𝑖

according to:

(1) storage

space size;

and/or (2)

workload

execution

time.

G2

- Settings: 𝛼 = 0; 𝛽 = 0; 𝜃 = 0; and 𝜆 = 1.

- HADF-generated data storage

configurations: The entity table 𝑇𝑖 is in

a single column table.

G3
_

G7

- Settings: 𝛼 = 0, 0.3, 0.5, 0.7, 1; 𝛽 = 0.4;

𝜃 = 0.5; and 𝜆 = 0.6.

- HADF-generated data storage

configurations: vertically partitioned

tables and their data layouts.

The major steps of the experiment are presented in detail in Table 6.9. First of all,

to obtain a good configuration for each entity table 𝑇𝑖 (i.e., GeneralInfoTable,

SequenceAttributes, Patient and Study) in the given workloads 𝑊𝑗, where j = 1, …, 4,

we apply HADF to generate a set of 7 typical candidate data storage configurations

corresponding to 7 different settings of the input parameters 𝛼, 𝛽, 𝜃 and 𝜆. Each

HADF-generated data storage configuration will be represented in the form of a set of

clusters together with their corresponding data layouts. Next, we build these

configurations in HYTORMO. For each configuration, we run the relevant

workload(s) five times; the average workload execution time is calculated. To reduce

experiment time, this experiment uses only the dataset MDB1. A good configuration

is chosen for 𝑇𝑖 based on storage space size and workload execution time.

Below, we present the experimental results of four workloads W1 - W4.

Execution of Workload W1

Workload W1 uses the entity table GeneralInfoTable and a set of queries given in Table

6.5. We first build the corresponding matrix AUM for this entity table, as shown in

Figure 6.1. This is an OLAP-like workload since only a few of the attributes of the

Performance Evaluation

 127

entity table are accessed together by the same queries. As default, the attribute UID is

added to all vertically partitioned tables, thus we do not need to add it into the AUM.

Figure 6.1: AUM of the entity table GeneralInfoTable in Workload W1

Table 6.10: Typical candidate configurations for GeneralInfoTable

Conf

Input Output

Parameters Entity table
Typical candidate data

storage configuration

No. of

stored data

cells

Null

ratio

No. of

joins

No. of scanned

data cells

Exec.

time

(sec)
𝛼 𝛽 𝜃 𝜆

No. of data

cells

Null

ratio

G1 0 0 0 0 81,135,145 3.49% 𝐶1,1 = {𝑈𝐼𝐷, 𝑖1, 𝑖2, 𝑖3, 𝑖4}

 => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

81,135,145 3.49% 0 32,454,058,000 15,180

G2 0 0 0 1 81,135,145 3.49% 𝑪𝟐,𝟏 = {𝑼𝑰𝑫, 𝒊𝟏, 𝒊𝟐, 𝒊𝟑, 𝒊𝟒}

 => 𝒄𝒐𝒍𝒖𝒎𝒏 𝒔𝒕𝒐𝒓𝒆

81,135,145 3.49% 0 19,472,434,800 13,790

G3 0 0.4 0.5 0.6 81,135,145 3.49% like G2 like G2 like G2 like

G2

like G2 like G2

G4 0.3 0.4 0.5 0.6 81,135,145 3.49% like G2 like G2 like G2 like

G2

like G2 like G2

G5 0.5 0.4 0.5 0.6 81,135,145 3.49% like G2 like G2 like G2 like

G2

like G2 like G2

G6 0.7 0.4 0.5 0.6 81,135,145 3.49% like G2 like G2 like G2 like

G2

like G2 like G2

G7 1 0.4 0.5 0.6 81,135,145 3.49% 𝐶7,1 = {𝑈𝐼𝐷, 𝑖1, 𝑖4}

 => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶7,2 = {𝑈𝐼𝐷, 𝑖3}

 => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶7,2 = {𝑈𝐼𝐷, 𝑖2}

 => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

113,589,203 3.49% 200 22,717,840,600

19,020

Table 6.10 presents a set of 7 HADF-generated data storage configurations G1 - G7

and their statistics for the entity table GeneralInfoTable, corresponding to 7 different

settings of the input parameters (i.e., 𝛼, 𝛽, 𝜃 and 𝜆). Each row in the table describes a

configuration. The columns represent: (1) the values for input parameters (2) the

number of stored data cells of the original entity table; (3) the null ratio of the entity

table; (4) the configuration represented in the forms of a set of column groups and their

corresponding data layouts; (5) the number of stored data cells of the configuration;

(6) the null ratio of the configuration; (7) the number of join operations needed by

Workload W1; (8) the number of data cells scanned for Workload W1; and (9) the

workload execution time (in second).

Here, the null ratio of a table is computed by Formula (6.4.1):

𝑁𝑢𝑙𝑙𝑅𝑎𝑡𝑖𝑜 =
𝑇ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑢𝑙𝑙 𝑑𝑎𝑡𝑎 𝑐𝑒𝑙𝑙𝑠 𝑖𝑛 𝑡𝑎𝑏𝑙𝑒

𝑀 × 𝑁
 , (6.4.1)

where 𝑀 and 𝑁 respectively represent the number of rows and columns in the table

(not including the attribute UID). Similarly, the null ratio of a configuration is the ratio

Performance Evaluation

128

between the total number of null data cells stored in all vertically partitioned tables

and the total number of data cells stored for that configuration.

Configurations G1 - G7 are described as follows:

 Configuration G1: This configuration is referred to as a baseline configuration in

which all the attributes of GeneralInfoTable are grouped into single cluster 𝐶1,1 =

{𝑈𝐼𝐷, 𝑖1, 𝑖2, 𝑖3, 𝑖4}, stored in a single row table. Some relevant statistics are as

follows: (1) the number of stored data cells is 81,135,145; (2) the overall null ratio

is 3.49%; (3) no join operation is required because the workload access only one

table; (4) the number of data cells scanned by the workload is 32,454,058,000; and

(5) the workload execution time is 15,180 seconds.

 Configuration G2: This configuration is similar to Configuration G1: it groups all

the attributes of GeneralInfoTable into a single cluster 𝐶2,1 = {𝑈𝐼𝐷, 𝑖1, 𝑖2, 𝑖3, 𝑖4},

but uses a column table, instead of a row table. Compared to G1, G2 also does not

decrease the null ratio, but helps the workload significantly reduces the number of

scanned data cells: 19,472,434,800 data cells are scanned. The reason is when a

column store is used, only the columns relevant to the queries are read. Similarly

to G1, no join operation is needed. As a result, the workload execution time is low:

the workload is performed in 13,790 seconds.

 Configuration G3 - G6: GeneralInfoTable is a dense table (its null ratio is very

low: 3.49%) and most of its attributes are seldom accessed together (except query

Q1,1). Thus, when the weight parameter 𝛼 is set, respectively, to 0, 0.3, 0.5 and 0.7,

the clustering phase of HADF found that all the attributes of GeneralInfoTable are

highly correlated with each other with respect to Hybrid Similarity in which

Attribute Density Similarity has more impact on the result of the clustering than

Attribute Access Similarity. Recall that the Hybrid Similarity between two

attributes 𝑎𝑥 and 𝑎𝑦 is computed by Formula (4.4.3): 𝐻𝑦𝑏𝑟𝑖𝑑𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) =

α × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐴𝑐𝑐𝑒𝑠𝑠𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦) + (1 − α) × 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝐷𝑒𝑛𝑠𝑖𝑡𝑦𝑆𝑖𝑚(𝑎𝑥, 𝑎𝑦).

Therefore, the clustering phase groups all the attributes into a single cluster, i.e.,

𝐶3,1 = 𝐶4,1 = 𝐶5,1 = 𝐶6,1 = {𝑈𝐼𝐷, 𝑖1, 𝑖2, 𝑖3, 𝑖4}. If this cluster is stored in a single

row table, the number of redundant accesses from queries Q1,2, Q1,3 and Q1,4 will

be large. However, the merging-selecting phase of HADF suggests to store the

cluster in a single column table so that no join operation is required for Q1,1 while

the number of redundant attribute accesses from queries Q1,2, Q1,3 and Q1,4 is

reduced as well. Therefore, the workload execution time is low: 13,790 seconds.

 Configuration G7: When 𝛼 is set to 1, the clustering phase of HADF only takes

into account the impact of workload-specific information while the data-specific

information has no impact on the clustering result, thus it decomposes

GeneralInfoTable into multiple clusters: 𝐶7,1 = {𝑈𝐼𝐷, 𝑖1, 𝑖4}, 𝐶7,2 = {𝑈𝐼𝐷, 𝑖3},

and 𝐶7,2 = {𝑈𝐼𝐷, 𝑖2}. Besides, the Inter-cluster Access Similarity between these

clusters is not high enough such that the merging-selecting phase does not merge

any pair of clusters together. Furthermore, Intra-cluster Access Similarity within

each of those clusters is high enough such that they are stored in row tables. Using

this configuration, the queries needs to scan a lightly higher number of data cells

(i.e., 22,717,840,600) than Configurations G2 - G6 due to the need to scan the

Performance Evaluation

 129

attribute UID in each vertically partitioned tables. Besides, GeneralInfoTable is a

dense entity table, storing it in multiple vertically partitioned tables does not help

to reduce the storage space demand (i.e., not removing many null values) while

additional data cells needed to store the attribute UID increase the storage space

size of G7: 113,589,203 data cells are used. Moreover, a large number of additional

join operations is needed to join the vertically partitioned tables together: 200 joins

are peformed. All of this result in high workload execution time: 19,020 seconds.

Configurations G2 - G6 are the same: storing GeneralInfoTable in a column table,

thus we only need to compare the effectiveness of three distinct configurations G1, G2

and G7. Our experiments put more focus on the workload execution time than the

storage space demand, thus we choose G3, using a single column table, as a good

configuration to store GeneralInfoTable.

Execution of Workload W2

Figure 6.2: AUM of the entity table SequenceAttributes in Workload W2

Workload W2 uses the entity table SequenceAttributes and a set of queries given

in Table 6.6. We first build the matrix AUM for SequenceAttributes, as presented in

Figure 6.2. This is an OLTP workload since most of the attributes of the entity table

are frequently accessed together. As default, the attribute UID is required in all

vertically partitioned tables, so we do not need to include it into the AUM.

Table 6.11 describes a set of 7 HADF-generated data storage configurations G1 -

G7 and their statistics.

Table 6.11: Typical candidate configurations for SequenceAttributes

Conf

Input Output

Parameters Entity Table
Candidate Data Storage

Configuration

No. of

stored data

cells

Null

ratio

No. of

joins

No. of

scanned

data cells

Exec.

Time

(sec)
𝛼 𝛽 𝜃 𝜆

No. of data

cells

Null

ratio

G1 0 0 0 0 20,746,975 0.086% 𝑪𝟏,𝟏 = {𝑼𝑰𝑫, 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒}

 => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆

20,746,975 0.086% 0 4,149,395,000 5,620

G2 0 0 0 1 20,746,975 0.086% 𝐶2,1 = {𝑈𝐼𝐷, 𝑒1, 𝑒2, 𝑒3, 𝑒4}

 => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒

20,746,975 0.086% 0 3,734,455,500 5,780

G3 0 0.4 0.5 0.6 20,746,975 0.086% like G1 like G1 like G1 like

G1
like G1 like

G1

G4 0.3 0.4 0.5 0.6 20,746,975 0.086% like G1 like G1 like G1 like

G1
like G1 like

G1

G5 0.5 0.4 0.5 0.6 20,746,975 0.086% like G1 like G1 like G1 like

G1
like G1 like

G1

G6 0.7 0.4 0.5 0.6 20,746,975 0.086% like G1 like G1 like G1 like

G1
like G1 like

G1

G7 1.0 0.4 0.5 0.6 20,746,975 0.086% like G1 like G1 like G1 like

G1
like G1 like

G1

Performance Evaluation

130

Configurations G1 - G7 in the table are described as follows:

 Configuration G1: This configuration is referred to as a baseline configuration in

which all the attributes of SequenceAttributes is grouped into a single cluster

𝐶1,1 = {𝑈𝐼𝐷, 𝑒1, 𝑒2, 𝑒3, 𝑒4}, stored in a row table. Some statistics relevant to this

configuration include: (1) the number of stored data cells is 20,746,975; (2) the

null ratio is 0.086%; (3) no join operation is required; (4) the number of data cells

scanned is 4,149,395,000; and (5) the workload execution time is 5,620 seconds.

 Configuration G2: This configuration is similar to G1; it groups all the attributes

of SequenceAttributes into a single cluster 𝐶2,1 = {𝑈𝐼𝐷, 𝑒1, 𝑒2, 𝑒3, 𝑒4}. However, it

stores this cluster in a single column table, instead of a single row store. Compared

to G1, it does not reduce the null ratio, but reduces the number of scanned data

cells: 3,734,455,500 data cells are scanned. Like G1, no join operation is used, but

the workload execution time when using G2 is lightly higher than that of G1: this

time is 5,780 seconds. This is due to the fact that G2 is using a column store that

incurs a high cost to reconstruct result tuples for an OLTP workload such as W2.

 Configurations G3 - G7: SequenceAttributes is a dense table and all of its attributes

are frequently accessed together. When 𝛼 is set, respectively, to 0, 0.3, 0.5, 0.7 and

1, the clustering phase of HADF found that all the attributes are highly correlated

depending on the combined impact of both Attribute Density Similarity and

Attribute Access Similarity. Thus, it groups the attributes into a single cluster.

Additionally, the Intra-cluster Access Similarity between every pair of attributes

within this cluster is high enough such that the merging-selecting phase decides to

store it in a row table.

G1, G3, G4, G5, G6 and G7 are the same, thus we only need to compare two distinct

configurations G1 and G2. We choose G3, which stores SequenceAttributes in a single

row table, because this configuration gives a faster workload execution time.

Execution of Workload W3

Figure 6.3: AUM of the entity table Patient in Workload W3

Performance Evaluation

 131

Workload W3 uses the entity table Patient. Figure 6.3 presents the matrix AUM

built using the set of queries given in Table 6.7. This is a mixed workload. Table 6.12

presents a set of 7 HADF-generated data storage configurations and their statistics.

Table 6.12: Typical candidate configurations for Patient

Conf

Input Output

Parameters Entity Table
Typical Candidate Data Storage

Configuration

No. of

stored

data cells

Null

ratio

No. of

joins

No. of

scanned

data cells

Exec.

Time

(sec)
𝛼 𝛽 𝜃 𝜆

No. of

data cells

Null

ratio

G1 0 0 0 0 2,767,038 84.83% 𝐶1,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9,

 𝑝10, 𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝15, 𝑝16, 𝑝17, 𝑝18, 𝑝19,

 𝑝20, 𝑝21, 𝑝22} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

2,767,038 84.83% 0 2,213,630,400 26,731

G2 0 0 0 1 2,767,038 84.83% 𝐶2,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5, 𝑝6, 𝑝7, 𝑝8, 𝑝9,

 𝑝10, 𝑝11, 𝑝12, 𝑝13, 𝑝14, 𝑝15, 𝑝16, 𝑝17, 𝑝18, 𝑝19,

 𝑝20, 𝑝21, 𝑝22} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒

2,767,038 84.83% 0 878,233,800 24,260

G3 0 0.4 0.5 0.6 2,767,038 84.83% 𝐶3,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝16 }
 => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶3,2 = {𝑈𝐼𝐷, 𝑝7, 𝑝15, 𝑝17} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒
𝐶3,3 = {𝑈𝐼𝐷, 𝑝13, 𝑝14, 𝑝19, 𝑝21}

 => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶3,4 = {𝑈𝐼𝐷, 𝑝5} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶3,5 = {𝑈𝐼𝐷, 𝑝6, 𝑝12, 𝑝22} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶3,6 = {𝑈𝐼𝐷, 𝑝10, 𝑝11, 𝑝20} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶3,7 = {𝑈𝐼𝐷, 𝑝8, 𝑝18} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶3,8 = {𝑈𝐼𝐷, 𝑝9} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

741,743 8.12% 1,800 584,102,300

29,482

G4 0.3 0.4 0.5 0.6 2,767,038 84.83% 𝐶4,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶4,2 = {𝑈𝐼𝐷, 𝑝16, 𝑝17} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶4,3 = {𝑈𝐼𝐷, 𝑝7, 𝑝15} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒

𝐶4,4 = {𝑈𝐼𝐷, 𝑝13, 𝑝14, 𝑝19, 𝑝21}
 => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶4,5 = {𝑈𝐼𝐷, 𝑝5} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶4,6 = {𝑈𝐼𝐷, 𝑝6, 𝑝12, 𝑝22} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶4,7 = {𝑈𝐼𝐷, 𝑝10, 𝑝11, 𝑝20} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶4,8 = {𝑈𝐼𝐷, 𝑝8, 𝑝18} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶4,9 = {𝑈𝐼𝐷, 𝑝9} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

653,075 4.31% 1,900 493,742,000

26,140

G5 0.5 0.4 0.5 0.6 2,767,038 84.83% 𝐶5,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶5,2 = {𝑈𝐼𝐷, 𝑝13, 𝑝14, 𝑝19, 𝑝21}

 => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶5,3 = {𝑈𝐼𝐷, 𝑝15, 𝑝17} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒

𝐶5,4 = {𝑈𝐼𝐷, 𝑝5} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶5,5 = {𝑈𝐼𝐷, 𝑝7, 𝑝8, 𝑝16, 𝑝18} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶5,6 = {𝑈𝐼𝐷, 𝑝6, 𝑝12, 𝑝22} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶5,7 = {𝑈𝐼𝐷, 𝑝10, 𝑝11, 𝑝20} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶5,8 = {𝑈𝐼𝐷, 𝑝9} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

674,840 5.18% 1,900 498,143,000

27,140

G6 0.7 0.4 0.5 0.6 2,767,038 84.83% 𝑪𝟔,𝟏 = {𝑼𝑰𝑫, 𝒑𝟏, 𝒑𝟐, 𝒑𝟑, 𝒑𝟒} => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆

𝑪𝟔,𝟐 = {𝑼𝑰𝑫, 𝒑𝟏𝟑, 𝒑𝟏𝟒, 𝒑𝟏𝟓, 𝒑𝟏𝟗, 𝒑𝟐𝟏}

 => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆

𝑪𝟔,𝟑 = {𝑼𝑰𝑫, 𝒑𝟓} => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆

𝑪𝟔,𝟒 = {𝑼𝑰𝑫, 𝒑𝟕, 𝒑𝟖, 𝒑𝟏𝟔, 𝒑𝟏𝟕, 𝒑𝟏𝟖}

 => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆

𝑪𝟔,𝟓 = {𝑼𝑰𝑫, 𝒑𝟔, 𝒑𝟏𝟐, 𝒑𝟐𝟐} => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆

𝑪𝟔,𝟔 = {𝑼𝑰𝑫, 𝒑𝟏𝟎, 𝒑𝟏𝟏, 𝒑𝟐𝟎} => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆

𝑪𝟔,𝟕 = {𝑼𝑰𝑫, 𝒑𝟗} => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆

696,782 6.01% 1,400 506,520,200

24,120

G7 1 0.4 0.5 0.6 2,767,038 84.83% 𝐶7,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝13, 𝑝14,

𝑝15, 𝑝19, 𝑝21} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶7,2 = {𝑈𝐼𝐷, 𝑝5} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶7,3 = {𝑈𝐼𝐷, 𝑝7, 𝑝8, 𝑝16, 𝑝17, 𝑝18}
 => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶7,4 = {𝑈𝐼𝐷, 𝑝6, 𝑝12, 𝑝22} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶7,5 = {𝑈𝐼𝐷, 𝑝10, 𝑝11, 𝑝20} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶7,6 = {𝑈𝐼𝐷, 𝑝9} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

1,277,498 28.08% 900 977,337,200

25,140

Performance Evaluation

132

Configurations G1 - G7, as shown in the table, are described as follows:

 Configuration G1: In this configuration, all the attributes of Patient is grouped

into a single cluster 𝐶1,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, … , 𝑝22}, stored in a single row table. Some

statistics relevant to this configuration are as follows: (1) the number of stored data

cells is 2,767,038; (2) the null ratio is 84.83%; (3) no join operation is performed

due to using only one table; (4) the number of data cells scanned by the workload

is 2,213,630,400; and (5) the workload execution time is 26,731 seconds.

 Configuration G2: This configuration is similar to G1 since all the attributes of

Patient is grouped into a single cluster 𝐶2,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, … , 𝑝22}; however, it

uses a single column table instead of a single row table. Like G1, it does not reduce

the null ratio, but it helps the workload to significantly decrease the number of

scanned data cells: only 878,233,800 data cells are scanned. The workload

execution time when using G2 is less than using G1: G2 takes 24,260 seconds.

 Configuration G3 - G6: Patient is a wide and sparse table. In addition, some of its

attributes are frequently accessed together by the same queries, while others are

seldom accessed together. This is clearly shown in the matrix AUM, given in Figure

6.3. When 𝛼 is respectively set to 0, 0.3, 0.5 and 0.7, the clustering phase of HADF

groups the attributes that are highly correlated with each other based on Hybrid

Similarity. When 𝛼 = 0, only Attribute Density Similarity has impact on the

clustering result. However, when 𝛼 is respectively set to 0.3, 0.5 and 0.7, there is

a combined impact of both Attribute Density Similarity and Attribute Access

Similarity on the clustering result such that the clustering phase groups the

attributes into separate clusters. Storing Patient in multiple vertically partitioned

tables will help to reduce the number of stored data cells, null values and scanned

data cells. However, in general, Configurations G3 - G6 need a large number of join

operations for tuple reconstruction, thus their workload execution time is not

significantly reduced when compared to G1 and G2. Among Configurations G3 -

G6, G6 gives the smallest number of joins (i.e., 1,400 joins); G6 also gives the

shortest workload execution time as well (i.e., 24,120 seconds).

 Configuration G7: This configuration is close to G6, but only takes into

consideration the impact of the workload-specific information (due to setting 𝛼 =

1). It uses a less number of vertically partitioned tables than Configurations G3 -

G6, thus needs a less number of joins than these configurations. Because the data-

specific information has not been used, the null ratio and the number of stored data

cells of G7 could not be reduced to as low as those of Configurations G3 - G6.

We choose G6, which stores Patient in 7 different vertically partitioned tables, as a

good configuration for the entity table Patient in terms of both the storage space size

and the workload execution time.

Execution of Workload W4

Workload W4 is a mixed workload containing multiple-table join queries on the entity

tables Patient, Study, GeneralInfoTable and SequenceAttributes. A good data storage

configuration for this workload is created by combining the good ones of the entity

tables. To achieve this, the following two steps are performed: (1) separate Workload

Performance Evaluation

 133

W4 into four sub-workloads, each of which is relevant to only one entity table; and (2)

apply HADF to find a good data storage configuration for each entity table.

The sub-workloads relevant to three entity tables GeneralInfoTable,

SequenceAttributes and Patient are the same as Workloads W1, W2 and W3,

respectively; their good configurations have been chosen above. Therefore, below we

only describe the steps to find a good configuration for Study.

Let us denote sW4 as the sub-workload including only the queries relevant to

Study. In Table 6.13, we present the set of queries Q4,1s – Q4,6s in sW4, which are

respectively separated from the original queries Q4,1 – Q4,6 in Workload W4 (given in

Table 6.8).

Table 6.13: Workload sW4 for the entity table Study

Query Query Freq

Q4,1s SELECT StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName,

StudyID, AccessionNumber, MedicalAlerts FROM Study WHERE

StudyDate >= ’20000101’ AND StudyDate <= ’20150101’

300

Q4,2s SELECT StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName,

StudyID, MedicalRecordLocator FROM Study WHERE StudyID = ’20050920’

100

Q4,3s SELECT PatientAge, PatientWeight, PatientSize FROM Study WHERE

PatientAge >= 90

100

Q4,4s SELECT UID, StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName,

StudyID, AccessionNumber, PatientWeight, AdditionalPatientHistory FROM Study

100

Q4,5s SELECT StudyInstanceUID, StudyDate, StudyTime, StudyID, PatientSize,

Occupation FROM Study

100

Q4,6s SELECT StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName,

StudyID, StudyDescription, PatientAge FROM Study WHERE StudyDate >=

‘20000101’ AND StudyDate <= ‘20150101’

100

Figure 6.4 presents the matrix AUM of the entity table Study in Workload sW4.

 Figure 6.4: AUM of the entity table Study in Workload sW4

Similarly to the cases of Workloads W1, W2 and W3, we apply HADF to produce

a set of 7 typical candidate data storage configurations G1 - G7 for the entity table

Study. Table 6.14 shows these configurations together with their statistics.

Configurations G1 - G7 in the table are explained as follows:

 Configuration G1: In this configuration, all the attributes of Study is grouped into

a single cluster 𝐶1,1 = {𝑈𝐼𝐷, 𝑝1, 𝑝2, … , 𝑝14} which is stored in a row table.

Performance Evaluation

134

 Configuration G2: Similar to G1, this configuration groups all the attributes of

Study into a single column table, but stores it in a row table.

Table 6.14: Typical candidate configurations for Study

Conf

Input Output

Parameters Entity Table
Candidate Data Storage

Configuration

No. of

stored

data cells

Null

ratio

No. of

joins

No. of

scanned

data cells

Exec.

Time

(sec)
𝛼 𝛽 𝜃 𝜆

No. of

data cells

Null

ratio

G1 0 0 0 0 1,804,590 43.83% 𝐶1,1 = {𝑈𝐼𝐷, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠7, 𝑠8,

 𝑠9, 𝑠10, 𝑠11, 𝑠12, 𝑠13, 𝑠14} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

1,804,590 43.83% 0 1,443,672,00

0

25,220

G2 0 0 0 1 1,804,590 43.83% 𝑪𝟐,𝟏 = {𝑼𝑰𝑫, 𝒔𝟏, 𝒔𝟐, 𝒔𝟑, 𝒔𝟒, 𝒔𝟓, 𝒔𝟔, 𝒔𝟕,

𝒔𝟖, 𝒔𝟗, 𝒔𝟏𝟎, 𝒔𝟏𝟏, 𝒔𝟏𝟐, 𝒔𝟏𝟑, 𝒔𝟏𝟒}

 => 𝒄𝒐𝒍𝒖𝒎𝒏 𝒔𝒕𝒐𝒓𝒆

1,804,590 43.83% 0 697,774,800 23,440

G3 0 0.4 0.5 0.6 1,804,590 43.83% 𝐶3,1 = {𝑈𝐼𝐷, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠7, 𝑠8, 𝑠9 }

 => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒

𝐶3,2 = {𝑈𝐼𝐷, 𝑠12} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶3,3 = {𝑈𝐼𝐷, 𝑠10, 𝑠11} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶3,4 = {𝑈𝐼𝐷, 𝑠6, 𝑠14} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶3,5 = {𝑈𝐼𝐷, 𝑠13} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

1,207,777 5.25% 700 584,516,800

26,600

G4 0.3 0.4 0.5 0.6 1,804,590 43.83% like G3 like G3 like G3 like

G3
like G3 like3

G5 0.5 0.4 0.5 0.6 1,804,590 43.83% like G3 like G3 like G3 like

G3
like G3 like

G3

G6 0.7 0.4 0.5 0.6 1,804,590 43.83% 𝐶6,1 = {𝑈𝐼𝐷, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠14 }

 => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶6,2 = {𝑈𝐼𝐷, 𝑠8, 𝑠9} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒

𝐶6,3 = {𝑈𝐼𝐷, 𝑠13} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶6,4 = {𝑈𝐼𝐷, 𝑠12} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶6,5 = {𝑈𝐼𝐷, 𝑠10, 𝑠11} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶6,6 = {𝑈𝐼𝐷, 𝑠7} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

1,665,910 18.63% 600 792,180,600

25,400

G7 1.0 0.4 0.5 0.6 1,804,590 43.83% 𝐶7,1 = {𝑈𝐼𝐷, 𝑠1, 𝑠2, 𝑠3, 𝑠4, 𝑠5, 𝑠6, 𝑠14 }

 => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶7,2 = {𝑈𝐼𝐷, 𝑠9, 𝑠12} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒

𝐶7,3 = {𝑈𝐼𝐷, 𝑠7, 𝑠8} => 𝑐𝑜𝑙𝑢𝑚𝑛 𝑠𝑡𝑜𝑟𝑒

𝐶7,4 = {𝑈𝐼𝐷, 𝑠13} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶7,5 = {𝑈𝐼𝐷, 𝑠10, 𝑠11} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

1,676,028 22.08% 500 790,319,200

25,980

 Configuration G3 - G6: When 𝛼 is respectively set to 0, 0.3, 0.5 and 0.7, the

clustering phase of HADF takes into account the impact of both workload- and

data-specific information on the clustering result. The entity table Study is stored

in several vertically partitioned tables using both row and column stores. The

number of stored data cells, null values and scanned data cells are reduced when

compared with G1 and G2. However, their workload execution time is lightly

higher than that of G1 and G2 due to the costs needed for additional join operations.

 Configuration G7: This configuration only takes into account the workload-

specific information on the clustering result (due to 𝛼 = 1). Therefore, although its

number of join operations has been decreased to lower than that of Configurations

G3 - G6, its number of null values and scanned data cells are still high. Its workload

execution time is also lightly higher than that of Configurations G1, G2 and G6.

We choose G2 which stores the entity table Study in single column table because it

has the lowest workload execution time.

Performance Evaluation

 135

6.3.2 Experiment 2: Evaluating HYTORMO and HADF

using More Data and Multiple-table Joins

Similarly to Experiment 1, Experiment 2 also aims at evaluating Hypotheses H1 and

H2, but it uses more data and multiple-table join queries.

Table 6.15: Major steps of Experiment 2

Conf Typical candidate configuration Execution Measures

G*

Good HADF-generated data storage configuration, i.e.,

the one is composed of good configurations of all the

entity tables 𝑇𝑖′𝑠 chosen in Experiment 1.

- Run Workload W4

five times for each

configuration.

- Using two datasets

MDB1 and MDB2

separately.

- Storage

space

size.

- Execution

time of

W4.

G1 Pure row tables (all 𝑇𝑖 ′𝑠 are stored in row tables).

G2 Pure column tables (all 𝑇𝑖 ′𝑠 are stored in column tables).

Table 6.15 presents the major steps of Experiment 2. First, we create three different

configurations: (1) G*: a good HADF-generated data storage configuration, composed

of good configurations of all the entity tables 𝑇𝑖′𝑠 chosen in Experiment 1 (𝑇𝑖 is

Patient, Study, GeneralInfoTable or SequenceAttributes); (2) G1: pure row tables; and

(3) G2: pure column tables. Next, we apply these configurations to execute Workload

W4 using two datasets MDB1 and MDB2, separately: for each configuration, W4 is

run five times; its average execution time is calculated. Finally, we compare these

configurations in terms of storage space size and/or workload execution time.

Tables 6.16, 6.17 and 6.18 present Configurations G*, G1 and G2, respectively, in

the forms of vertically partitioned tables, instead of clusters as in Experiment 1.

Table 6.16: Configuration G* of Experiment 2

No. Entity Table Data Storage Configuration

PatientP1P2P3P4(UID, PatientName, PatientID, PatientBirthDate,

PatientSex) => row store

PatientP13P14P15P19P21(UID, PatientBirthName,

PatientTelePhoneNumbers, SmokingStatus, PatientComments,

PatientMotherBirthName) => row store

PatientP5(UID, EthnicGroup) => row store

PatientallP7P8P16P17P18(UID, PatientBirthTime,

PatientInsurancePlanCodeSequence, PregnancyStatus,

LastMenstrualDate, PatientReligiousPreference) => row store

PatientP6P12P22(UID, IssuerOfPatientID, OtherPatientNames,

InsurancePlanIdentification) => row store

PatientP10P11P20(SOPInstanceUID, PatientPrimaryLanguageModifier-

CodeSequence, OtherPatientIDs, PatientAddress) => row store

PatientP9(UID, PatientPrimaryLanguageCodeSequence) => row store

2 Study

Study(UID, StudyInstanceUID, StudyDate, StudyTime, Referring-

PhysicianName, StudyID, AccessionNumber, StudyDescription,

PatientAge, PatientWeight, PatientSize, Occupation, AdditionalPatient-

History, MedicalRecordLocator, MedicalAlerts) => column store

3 GeneralInfoTable
GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames,

GeneralValues) => column store

4 SequenceAttributes
SequenceAttributes(UID, SequenceTags, SequenceVRs, SequenceNames,

SequenceValues) => row store

Performance Evaluation

136

Table 6.17: Configuration G1 of Experiment 2

No. Entity Table Data Storage Configuration

1 Patient

Patient (UID, PatientName, PatientID, PatientBirthDate, PatientSex,

EthnicGroup, IssuerOfPatientID, PatientBirthTime, PatientInsurancePlan-

CodeSequence, PatientPrimaryLanguageCodeSequence,

PatientPrimaryLanguageModifierCodeSequence, OtherPatientIDs,

OtherPatientNames, PatientBirthName, PatientTelePhoneNumbers,

SmokingStatus, PregnancyStatus, LastMenstrualDate,

PatientReligiousPreference, PatientComments, PatientAddress,

PatientMotherBirthName, InsurancePlanIdentification) => row store

2 Study

Study(UID, StudyInstanceUID, StudyDate, StudyTime,

ReferringPhysicianName, StudyID, AccessionNumber, StudyDescription,

PatientAge, PatientWeight, PatientSize, Occupation, AdditionalPatient-

History, MedicalRecordLocator, MedicalAlerts) => row store

3 GeneralInfoTable
GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames,

GeneralValues) => row store

4 SequenceAttributes
SequenceAttributes(UID, SequenceTags, SequenceVRs, SequenceNames,

SequenceValues) => row store

Table 6.18: Configuration G2 of Experiment 2

No. Entity Table Data Storage Configuration

1 Patient

Patient (UID, PatientName, PatientID, PatientBirthDate, PatientSex,

EthnicGroup, IssuerOfPatientID, PatientBirthTime,

PatientInsurancePlanCodeSequence,

PatientPrimaryLanguageCodeSequence,

PatientPrimaryLanguageModifierCodeSequence, OtherPatientIDs,

OtherPatientNames, PatientBirthName, PatientTelePhoneNumbers,

SmokingStatus, PregnancyStatus, LastMenstrualDate,

PatientReligiousPreference, PatientComments, PatientAddress,

PatientMotherBirthName, InsurancePlanIdentification) => column store

2 Study

Study(UID, StudyInstanceUID, StudyDate, StudyTime,

ReferringPhysicianName, StudyID, AccessionNumber, StudyDescription,

PatientAge, PatientWeight, PatientSize, Occupation,

AdditionalPatientHistory, MedicalRecordLocator, MedicalAlerts)

=> column store

3 GeneralInfoTable
GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames,

GeneralValues) => column store

4 SequenceAttributes
SequenceAttributes(UID, SequenceTags, SequenceVRs,

SequenceNames, SequenceValues) => column store

Tables 6.19 and 6.20 respectively present the average workload execution time

obtained over five runs when applying three Configurations G*, G1 and G2

corresponding to two different cases: (1) using the dataset MDB1; and (2) using the

dataset MDB2. The experimental results show that G* provides the shortest workload

execution time among these three configurations: it takes 35,940 seconds to perform

W4 on MDB1, and 118,940 seconds to perform W4 on MDB2. In addition, two data

storage configurations G1 and G2 have the same storage space requirement, whereas

Configuration G* has the smallest storage space size because the entity table Patient

has been reduced by 75% (as shown in Experiment 1) after removing null rows from

its vertical partitions.

Performance Evaluation

 137

Table 6.19: Execution time of Workload W4 over 3 configurations using MDB1

Conf Data Storage Configuration
Exec. Time

(sec)

G* Good HADF-generated data storage configuration 35,940

G1 Pure row tables 37,860

G2 Pure column tables 36,960

Table 6.20: Execution time of Workload W4 over 3 configurations using MDB2

Conf Data Storage Configuration
Exec. Time

(sec)

G* Good HADF-generated data storage configuration 118,940

G1 Pure row tables 161,040

G2 Pure column tables 120,120

6.3.3 Experiment 3: Comparison between HADF and HoVer

Experiment 3 aims at further evaluating Hypothesis H2a that shows the usefulness of

the combined use of both workload- and data-specific information in HADF. To obtain

this, we compare HADF and HoVer approach that was proposed by B. Cui et al. [14].

The experiment is performed according to the major steps as given in Table 6.21.

Table 6.21: Major steps of Experiment 3

Conf Typical candidate configuration Execution Measures

G*

Good HADF-generated data storage

configuration that is chosen for the entity table

𝑇𝑖 in workload 𝑊𝑗′𝑠, where 𝑗 = 1, 2.

- Run Workload

Wj (j = 1, 2) five

times for each

configuration.

- Using the dataset

MDB2.

- Storage space

size of 𝑇𝑖 .

- Workload

execution

time. G1 - G6
 - Setting: 𝛽 = 0, 0.2, 0.4, 0.6, 0.8, 1.

- HoVer-generated data storage configuration

for the entity table 𝑇𝑖 is stored in row tables.

First of all, we prepare the following configurations: (1) Configuration G* is a

good HADF-generated data storage configuration, obtained in Experiment 1, for the

entity table 𝑇𝑖 , where 𝑇𝑖 is used to refer to GeneralInfoTable or Sequenceattributes, in

workload 𝑊𝑗′𝑠, where 𝑗 = 1, 2; (2) Configurations G1 - G6 are configurations

generated by applying the HoVer approach. It is worthy to remind that the HoVer

approach is similar to the clustering phase of HADF; it is a clustering algorithm that

groups the similar attributes into the same column groups. However, the HoVer

approach only uses Attribute Density Similarity, a clustering threshold 𝛽 and a row

store, instead of using a Hybrid Similarity, 𝛼, 𝛽, 𝜃, 𝜆 and a hybrid store as the

clustering phase of HADF. In other words, the HoVer approach uses only the data-

specific information and the row store instead of a combined use of both workload-

and data-specific information together with a hybrid store. Therefore, to achieve a set

of 6 data storage configurations, we will set 𝛽 to 0, 0.2, 0.4, 0.6, 0.8 and 1 for the

HoVer approach. Next, we build these configurations in HYTORMO and execute the

workloads 𝑊𝑗′𝑠 (𝑗 = 1, 2) using the dataset MDB2. Each workload is also run five

time for each configurations; its average execution time is calculated. Finally, we

compare these configurations.

Performance Evaluation

138

Following the above steps, the results of the executions of two workloads W1 and

W2 are given below.

Execution of Workload W1

Workload W1 uses only the entity table GeneralInfoTable and its queries are shown in

Table 6.5. First, we apply the good HADF-generated configuration, i.e., Configuration

G* of GeneralInfoTable obtained in Experiment 1, to execute this workload. This

configuration store GeneralInfoTable in a single column table. Table 6.22 presents the

result obtained from the execution.

Table 6.22: Good HADF-generated configuration for GeneralInfoTable

Conf

Input Output

Parameters Entity Table
Typical Candidate Data

Storage Configuration

No. of stored

data cells

Null

ratio

No. of

joins

No. of scanned

data cells

Exec.

Time

(sec)
𝜶 𝜷 𝜽 𝝀

No. of data

cells

Null

ratio

G* 0 0.4 0.5 0.6 1,688,651,610 2.55% 𝑪𝟑,𝟏 = {𝑼𝑰𝑫, 𝒊𝟏, 𝒊𝟐, 𝒊𝟑, 𝒊𝟒}

 => 𝒄𝒐𝒍𝒖𝒎𝒏 𝒔𝒕𝒐𝒓𝒆

1,688,651,610 2.55% 0 405,276,386,400 23,520

(𝑖1: GeneralTags; 𝑖2: GeneralVRs; 𝑖3: GeneralNames; 𝑖4: GeneralValues)

Next, we apply the Hover approach [14] to generate a set of 6 typical candidate

data storage configurations G1 - G6 for the entity table GeneralInfoTable. These

configurations are described in Table 6.23. These configurations can be also obtained

by applying HADF with the following values of its parameters: (1) 𝛽 = 0, 0.2, 0.4, 0.6,

0.8 and 1; (2) α = 0 (i.e., only taking into account the impact of data-specific

information); (3) θ =1 (i.e., not merging any pair of clusters together); and (4) λ = 0

(i.e., column groups are always stored in a row store).

Table 6.23: HoVer-generated configurations for GeneralInfoTable

Conf

Input Output

Para-

meter

𝜷

Entity Table
Typical Candidate Data Storage

Configuration

No. of stored

data cells

Null

ratio

No. of

joins

No. of scanned

data cells

Exec.

Time

(sec)
No. of data

cells

Null

ratio

G1 0 1,688,651,610 2.55% 𝑪𝟏,𝟏 = {𝑼𝑰𝑫, 𝒊𝟏, 𝒊𝟐, 𝒊𝟑, 𝒊𝟒}

 => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆

1,688,651,610 2.55% 0 675,460,644,000 26,940

G2-

G5

0.2;0.

4;0.6;

0.8

1,688,651,610 2.55% like G1 like G1 like G1 like

G1
like G1 like G1

G6 1 1,688,651,610 2.55% 𝐶6,1 = {𝑈𝐼𝐷, 𝑖1} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶6,2 = {𝑈𝐼𝐷, 𝑖2} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶6,3 = {𝑈𝐼𝐷, 𝑖3} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶6,4 = {𝑈𝐼𝐷, 𝑖4} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

2,633,036,392 0.00% 400 526,607,278,400 475,990

(𝑖1: GeneralTags; 𝑖2: GeneralVRs; 𝑖3: GeneralNames; 𝑖4: GeneralValues)

When applying HADF, we found that: GeneralInfoTable is a dense table, the

similarity between any pair of two attributes in terms of Attribute Density Similarity

is high, while the similarity between any pair of two attributes in terms of Attribute

Access Similarity is low (because the attributes of GeneralInfoTable are seldom access

together). However, since HADF can take into account the combined impact of both

workload- and data-specific information on the clustering result, it found that Hybrid

Similarity between any pair of two attributes is high enough such that all the attributes

are grouped into a single cluster. Besides, Intra-Cluster Similarity of this cluster is not

Performance Evaluation

 139

high enough such that HADF decides to store it cluster in a column table, which is G*

in Table 6.22. On the other hand, when applying the HoVer approach, if the values of

𝛽 is set to 0, 0.2, 0.4, 0.6 or 0.8 (i.e., G1 - G5 in Table 6.23), the clustering algorithm

of the Hover approach also found that Attribute Density Similarity between any pair

of two attributes is always greater than or equal to the corresponding value of 𝛽 such

that all the attributes of GeneralInfoTable are grouped and stored together in a single

row table. When 𝛽 is set to 1, the entity table GeneralInfoTable is decomposed and

stored in single-attribute tables in row store (i.e., G6 in Table 6.23).

With regards to data storage space demand and workload execution time, we can

clearly see that with the combined use of both the workload-specific and the data-

specific information together with a hybrid store, HADF can provide a better data

storage configuration than the HoVer approach. It can suggest to store the piece of data

used for an OLAP workload as Workload W1 in a column store. The execution time

of Workload W1 when using the good HADF-generated data storage configuration is

23,520 seconds (G* in Table 6.22), whereas this time when using the good HoVer-

generated data storage configuration is 26,940 second (G1 in Table 6.23).

Execution of Workload W2

Workload W2 uses only the entity table Sequenceattributes and its queries are shown

in Table 6.6. First of all, we execute this workload using the good HADF-generated

configuration, i.e., Configuration G* of Sequenceattributes obtained in Experiment 1.

Table 6.24 shows the result of this execution.

Table 6.24: Good HADF-generated configurations for Sequenceattributes

Conf

Input Output

Parameters Entity Table
Typical Candidate Data

Storage Configuration

No. of

stored data

cells

Null

ratio

No. of

joins

No. of scanned

data cells

Exec.

Time

(sec)
𝜶 𝜷 𝜽 𝝀

No. of data

cells
Null ratio

G* 0 0.4 0.5 0.6 376,574,510 0.082% 𝑪𝟑,𝟏 = {𝑼𝑰𝑫, 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒}

 => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆

376,574,510 0.082% 0 75,314,902,000 5,640

(𝑒1: SequenceTags; 𝑒2: SequenceVRs; 𝑒3: SequenceNames; 𝑒4: SequenceValues)

Sequenceattributes is a dense table, thus the similarity between any pair of two

attributes in terms of either Attribute Density Similarity or Attribute Access Similarity

is high. As a result, when HADF takes into account the combined impact of both

workload- and data-specific information, it found that Hybrid Similarity between any

pair of two attributes is very high such that all the attributes are grouped into a single

cluster. Furthermore, Intra-Cluster Similarity of this cluster is high enough such that

HADF decides to store the cluster in a row table.

Alternatively, Table 6.25 presents the HoVer-generated configurations G1 - G6 and

their statistics. When 𝛽 is set to 0, 0.2, 0.4, 0.6 or 0.8 (i.e., G1 - G5 in Table 6.25), the

clustering algorithm of the HoVer approach found that the Attribute Density Similarity

between any pair of two attributes is always greater than or equal to the corresponding

value of 𝛽, thus it groups and stores all the attributes of Sequenceattributes together in

the same row table. In contrast, if 𝛽 is set to 1, the entity table Sequenceattributes is

decomposed and stored in four single-attribute tables in a row store (i.e., G6 in Table

6.25).

Performance Evaluation

140

Table 6.25: HoVer-generated configurations for Sequenceattributes

Conf

Input Output

Parameter

𝛽

Entity Table
Typical Candidate Data Storage

Configuration

No. of stored

data cells

Null

ratio

No. of

joins

No. of scanned

data cells

Exec.

Time

(sec)
No. of data

cells

Null

ratio

G1 0 376,574,510 0.082% 𝑪𝟏,𝟏 = {𝑼𝑰𝑫, 𝒆𝟏, 𝒆𝟐, 𝒆𝟑, 𝒆𝟒}

 => 𝒓𝒐𝒘 𝒔𝒕𝒐𝒓𝒆

376,574,510 0.082

%

0 75,314,902,000 5,640

G2-

G5

0.2;

0.4;0.6;0.8

376,574,510 0.082% like G1 like G1 like G1 like

G1
like G1 like G1

G6 1 376,574,510 0.082% 𝐶6,1 = {𝑈𝐼𝐷, 𝑒1} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶6,2 = {𝑈𝐼𝐷, 𝑒2} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶6,3 = {𝑈𝐼𝐷, 𝑒3} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

𝐶6,4 = {𝑈𝐼𝐷, 𝑒4} => 𝑟𝑜𝑤 𝑠𝑡𝑜𝑟𝑒

602,026,842 0.00% 500 105,391,543,000 31,280

(𝑒1: SequenceTags; 𝑒2: SequenceVRs; 𝑒3: SequenceNames; 𝑒4: SequenceValues)

Therefore, in the case of an OLTP workload as Workload W2, HADF is able to

provide a data storage configuration that is as good as the configurations generated by

the clustering algorithm of the HoVer approach. A row store is used to store the piece

of data used for the OTLP workload. The execution time of Workload W2 when using

the good HADF- or HoVer-generated data storage configuration is 5,640 seconds (G*

in Table 6.24 and G1 in Table 6.25).

6.3.4 Experiment 4: Evaluating the Effectiveness of the 𝐈𝐁𝐅

Experiment 4 aims at evaluating Hypothesis H3 that shows the benefit of the IBF. To

achieve this, it compares the execution time of a query with and without using the IBF.

Table 6.26: Major steps of Experiment 4

Query Selectivity Execution Measures

- Choosing a t-th

query 𝑄𝑊𝑗,𝑡 in

Workload 𝑊𝑗.

- Specifying

predicate sets and

their selectivity

ratios used in 𝑄𝑊𝑗,𝑡.

- Executing 𝑄𝑊𝑗,𝑡 five times for each

predicate using the good configuration G*

when (1) using IBF and (2) not using IBF.

- Using the dataset MDB2.

- Execution

time of

𝑄𝑊𝑗,𝑡.

Table 6.26 presents the major steps of Experiment 4: (1) Choosing a query 𝑄𝑊𝑗,𝑡.

(2) Specifying predicate sets and their selectivity ratios in 𝑄𝑊𝑗,𝑡. (3) Executing 𝑄𝑊𝑗,𝑡

five times using the good configuration G* (chosen in Experiment 1) and the dataset

MDB2 with respect to a particular predicate set for two cases: using and not using an

IBF. The average query execution time obtained over five runs is calculated. (4)

Comparing the query execution time. We use 𝑄4,3 in Workload W4 for 𝑄𝑊𝑗,𝑡:

𝑄4,3: SELECT Patient.UID, Patient.PatientID, Patient.PatientName, Patient.PatientBirthDate,

Patient.PatientSex, Patient.EthnicGroup, Patient.SmokingStatus, Study.PatientAge,

Study.PatientWeight, Study.PatientSize, GeneralInfoTable.GeneralNames,

GeneralInfoTable.GeneralValues, SequenceAttributes.UID, SequenceAttributes.SequenceTags,

SequenceAttributes.SequenceVRs, SequenceAttributes.SequenceNames,

SequenceAttributes.SequenceValues FROM Patient, Study, GeneralInfoTable,

SequenceAttributes WHERE Patient.UID = Study.UID AND

Patient.UID = GeneralInfoTable.UID AND Patient.UID = SequenceAttributes.UID AND

Patient.PatientSex = ’M’AND Patient.SmokingStatus = ‘NO’ AND Study.PatientAge >= 60

AND SequenceAttributes.SequenceNames LIKE ‘%X-Ray%’

Performance Evaluation

 141

We use the query 𝑄4,3 because it is a typical multiple-table join query, where four

entity tables Patient, Study, SequenceAttributes and GeneralInfoTable are joined with

each other; additionally, the effectiveness of the query processing with the use of the

IBF in other cases, e.g., using only one entity table, is similar to this case.

The entity tables are stored in the hybrid store of HYTORMO according to the

good data storage configuration G*, described in Table 6.16: Patient is decomposed

into vertically partitioned tables and stored in a row store; Study and GeneralInfoTable

are stored in a column store; and SequenceAttributes is stored in a row store.

Figure 6.5: Execution plan for the query 𝑄4,3

Figure 6.5 shows the execution plan tree used for the query 𝑄4,3. (This execution

plan tree is different to the one presented in Figure 5.1 in Chapter 5, where the expert-

based design approach was applied to create data storage configurations.) Here, 𝑄4,3

first is decomposed into a set of sub-queries 𝑠𝑄1, 𝑠𝑄2, 𝑠𝑄3, and 𝑠𝑄4 which access

four entity tables Patient, Study, SequenceAttributes and GeneralInfoTable,

respectively. Next, each of these sub-queries is further decomposed into smaller sub-

queries to be able to access relevant row and column tables. For instance, the sub-

query 𝑠𝑄1 is decomposed into three sub-queries 𝑠𝑄1,1, 𝑠𝑄1,2 and 𝑠𝑄1,3 to access three

vertically partitioned tables PatientP1P2P3P4, PatientP13P14P15P19P21 and

PatientP5, respectively. On the other hand, the sub-queries 𝑠𝑄2, 𝑠𝑄3 and 𝑠𝑄4 are not

further decomposed because they can directly access the single tables Study,

SequenceAttributes and GeneralInfoTable, respectively. This execution plan tree is a

left-deep processing tree whose relational operators are scheduled to be executed step

by step while trying to keep intermediate results as small as possible. During the query

execution, the results of the sub-queries are joined over the attribute 𝑈𝐼𝐷. To prevent

the data loss in the query result, the sub-query 𝑠𝑄1 consists of two left-outer joins:

𝑠𝑄1

= (𝜎𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑆𝑒𝑥 = ’𝑀’(𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑃1𝑃2𝑃3𝑃4) ⟕𝑈𝐼𝐷 𝜎𝑆𝑚𝑜𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑢𝑠 = ‘𝑁𝑂’(𝑃𝑎𝑡𝑖𝑒𝑛𝑡))P13P14P15P19

 ⟕𝑈𝐼𝐷 𝑃𝑎𝑡𝑖𝑒𝑛𝑡P5.

Performance Evaluation

142

To improve the query performance, each left-outer join is rewritten to an inner join

if there exists a non-null constraint on the right-hand side table of that left-outer join

(applying Rule 3 given in Chapter 5). 𝑠𝑄1 contains a predicate 𝜎𝑆𝑚𝑜𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑢𝑠 = ‘𝑁𝑂’

on the table PatientP13P14P15P19P2, thus it is rewritten as follows:

 𝑠𝑄1 = (𝜎𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑆𝑒𝑥 = ’𝑀’(𝑃𝑎𝑡𝑖𝑒𝑛𝑡𝑃1𝑃2𝑃3𝑃4) ⋈𝑈𝐼𝐷 𝜎𝑆𝑚𝑜𝑘𝑖𝑛𝑔𝑆𝑡𝑎𝑡𝑢𝑠 = ‘𝑁𝑂’(𝑃𝑎𝑡𝑖𝑒𝑛𝑡))P13P14P15P19

 ⟕𝑈𝐼𝐷 𝑃𝑎𝑡𝑖𝑒𝑛𝑡P5.

Figure 6.6: Execution plan for the query 𝑄4,3 with the IBF

Furthermore, an IBF is built from BFs created on the attribute 𝑈𝐼𝐷 of the result

tables of the sub-queries 𝑠𝑄1,1, 𝑠𝑄1,2, 𝑠𝑄2, 𝑠𝑄3 and 𝑠𝑄4. However, a BF will not be

computed for a right-hand side table of a left-outer join, e.g., PatientP5. The IBF is

computed by performing bitwise AND operations on all the BFs and applied to filler

irrelevant tuples out of the input tables before joins occur. The new execution plan

after reducing the number of left-outer joins and using the IBF is given in Figure 6.6.

All the BFs and the IBF have the same configuration, i.e., a bit vector with a length

of 𝑚 of and a set of 𝑘 hash functions, thus we need to choose a suitable configuration

for them. The accuracy of a Bloom filter 𝐵𝐹𝑖 can be decided by ratio 𝑚/𝑛𝑖 where 𝑚

is the length of bit vector and 𝑛𝑖 is the size of set represented in 𝐵𝐹𝑖. In our case, we

already know the size 𝑛𝑖, which is the cardinality of the attribute 𝑈𝐼𝐷 of each input

table 𝑇𝑖 (i.e., PatientP1P2P3P4, PatientP13P14P15P19P21, Study, Sequence-

Attributes and GeneralInfoTable), we thus need to determine the length 𝑚 of each 𝐵𝐹𝑖

and the number of hash functions 𝑘 to obtain a high accuracy for each 𝐵𝐹𝑖. In

particular, the false positive probability of 𝐵𝐹𝑖 is 𝑃𝐵𝐹𝑖
≈ (1 − 𝑒−𝑘𝑛𝑖/𝑚)

𝑘
when 𝐵𝐹𝑖 is

using 𝑘 independent hash functions and a vector of 𝑚 bits used to represent a set of

𝑛𝑖 values (see Formula (5.3.1)). This probability can achieve the minimum (
1

2
)

𝑘

or

(0.6185)𝑚/𝑛𝑖 (see Formula (5.3.3)) when 𝑘 = ln(2) ×
𝑚

𝑛𝑖
 (see Formula (5.3.2)).

Performance Evaluation

 143

We use the cardinality of attribute 𝑈𝐼𝐷 of the entity table Patient of the dataset

MDB2 for 𝑛𝑖, i.e., 𝑛𝑖 = 1,802,277. This is because the entity table Patient contains

all values of the attribute 𝑈𝐼𝐷. Besides, 𝑚 = 8 × 𝑛𝑖 is regarded as a good tradeoff

between accuracy and space storage used for a Bloom filter [22]; thus, we set

𝑚 = 8 × 𝑛𝑖 bits, i.e., 𝑚 = 14,418,216 ≈ 14MB. Then, we use Formula (5.3.2) in

order to compute the corresponding number 𝑘 of hash functions: we get

𝑘 = ln(2) × 8 ≈ 6 hash functions; and the false positive probability becomes 0.0156.

Table 6.27: Sets of predicates on the attributes in the input tables

Pre.

Set

PatientP1P2P3P4 PatientP13P14P15P19P21 Study SequenceAttributes

Sel. Predicate Sel. Predicate Sel. Predicate Sel. Predicate

1 1 No predicate 1 No predicate 1 No predicate 1 No predicate

2 1 No predicate 1 No predicate 0.6327 PatientAge >= 10 1 No predicate

3 0.4764 Patientsex = ’M’ 1 No predicate 0.6327 PatientAge >= 10 1 No predicate

4 0.4764 Patientsex = ’M’ 1 No predicate 0.2462 PatientAge >= 60 1 No predicate

5 0.4764 Patientsex = ’M’ 0.0017 smokingstatus ='NO' 0.2462 PatientAge >= 60 1 No predicate

6 0.4764 Patientsex = ’M’

0.0017

smokingstatus ='NO' 0.0061 PatientAge >= 90 0.0019 SequenceNames

LIKE '%X-

Ray%'

To assess the benefit of the IBF, we compare the query performance difference

between two cases: using and not using the IBF. The query 𝑄4,3 consists of the

predicates on the attributes PatientSex, SmokingStatus, PatientAge and

SequenceNames of the input tables PatientP1P2P3P4, PatientP13P14P15P19P21,

Study and SequenceAttributes; however, to observe the impact of the IBF over a range

of situations, we will modify the predicates to change the selectivity of the input tables.

Table 6.27 presents six different sets of predicates (Pre. Set) on the attributes of the

input tables. The selectivity (Sel.) of each individual predicate is also specified. (The

query 𝑄4,3 in Figure 6.5 and 6.6 is corresponding to the 6th selectivity set in the table.)

Table 6.28: Comparison of the execution time of using and not using the IBF

Pre. Set
Execution time when not using 𝐈𝐁𝐅 Execution time when using 𝐈𝐁𝐅 Reduced time

ratio (%) Average (sec) Std. dev. Average (sec) Std. dev.

1 1264.80 389.20 1007.20 176.89 20%

2 1209.20 234.63 748.00 92.29 38%

3 1068.40 438.10 962.80 197.97 10%

4 1122.80 330.83 908.80 202.48 19%

5 1215.80 407.01 964.80 189.23 21%

6 1452.40 421.58 930.40 127.05 36%

The IBF is computed and applied, no matter what set of predicates is used for the

input tables. Table 6.28 presents a comparison of the execution time (obtained over

five runs for each set of predicates) between using and not using the IBF: the average

and the standard deviation (std. dev.) of the execution times are given. We also provide

the reduced time ratio when using the IBF. This ratio is computed by Formula (6.4.2).

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑡𝑖𝑚𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝐸𝑥𝑒𝑐𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹 − 𝐸𝑥𝑒𝑐𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹

𝐸𝑥𝑒𝑐𝑖𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹
 (6.4.2)

The comparison of the query execution time between two cases, using and not

using the IBF, shows that the performance query is significantly improved for all sets

Performance Evaluation

144

of predicates. The query execution time is reduced to 10-38% of the time when the

query processing strategy is not using the IBF.

Table 6.29: Comparison of the sizes of the input tables before and after using IBF

Pre.

Set

Patient-

P1P2P3P4

Patient-

P13P14P15P19P21
PatientP5 Study

Sequence-

Attributes
GeneralInfoTable

Size RISR Size RISR Size RISR Size RISR Size RISR Size RISR

1

Before

using IBF:

1,802,376

After

using IBF:

543,963

70%

Before

using IBF:

579,605

After using

IBF:

543,708

58%

Before

using IBF:

391,332

After

using IBF:

243,241

38%

Before

using IBF:

1,856,892

After

using IBF:

543,963

71%

Before

using IBF:

75,314,902

After using

IBF:

28,750,207

62%

Before using

IBF:

337,730,322

After using

IBF:

129,188,521

62%

2

Before

using IBF:

1,802,376

After

using IBF:

392,871

78%

Before

using IBF:

579,605

After using

IBF:

392,661

60%

Before

using IBF:

391,332

After

using IBF:

231,159

41%

Before

using IBF:

1,174,845

After

using IBF:

392,381

67%

Before

using IBF:

75,314,902

After using

IBF:

21,926,259

71%

Before using

IBF:

337,730,322

After using

IBF:

92,537,771

73%

3

Before

using IBF:

858,729

After

using IBF:

179,414

79%

Before

using IBF:

579,605

After using

IBF:

179,275

69%

Before

using IBF:

391,332

After

using IBF:

179,275

54%

Before

using IBF:

1,174,845

After

using IBF:

179,066

85%

Before

using IBF:

75,314,902

After using

IBF:

10,414,222

86%

Before using

IBF:

337,730,322

After using

IBF:

41,966,822

88%

4

Before

using IBF:

858,729

After

using IBF:

74,868

91%

Before

using IBF:

579,605

After using

IBF:

74,893

90%

Before

using IBF:

391,332

After

using IBF:

57,018

85%

Before

using IBF:

457,115

After

using IBF:

74,904

84%

Before

using IBF:

75,314,902

After using

IBF:

4,512,373

94%

Before using

IBF:

337,730,322

After using

IBF:

17,798,449

95%

5

Before

using IBF:

858,729

After

using IBF:

0

100%

Before

using IBF:

3,034

After using

IBF:

0

100%

Before

using IBF:

391,332

After

using IBF:

0

100%

Before

using IBF:

457,115

After

using IBF:

0

100%

Before

using IBF:

75,314,902

After using

IBF:

0

100%

Before using

IBF:

337,730,322

After using

IBF:

0

100%

6

Before

using IBF:

858,729

After

using IBF:

0

100%

Before

using IBF:

3,034

After using

IBF:

0

100%

Before

using IBF:

391,332

After

using IBF:

0

100%

Before

using IBF:

11,372

After

using IBF:

0

100%

Before

using IBF:

146,217

After using

IBF:

0

100%

Before using

IBF:

337,730,322

After using

IBF:

0

100%

(RISR: the reduced input size ratio)

Table 6.29 provides a comparison of the sizes of the input tables before and after

using the IBF. The reduced input size ratio (RISR) is computed by Formula (6.4.3);

besides, the size of the input tables is measured in terms of the number of tuples (rows).

𝑅𝑒𝑑𝑢𝑐𝑒𝑑 𝑖𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹 − 𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 𝑤𝑖𝑡ℎ 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹

𝐼𝑛𝑝𝑢𝑡 𝑠𝑖𝑧𝑒 𝑤𝑖𝑡ℎ𝑜𝑢𝑡 𝑢𝑠𝑖𝑛𝑔 𝐼𝐵𝐹
 (6.4.3)

The IBF has filtered out many irrelevant tuples from the input tables of joins. The

reduced input size ratio of the input tables increases when the selectivity of predicates

Performance Evaluation

 145

in the query increases. For instance, as shown in the table, the size of the input table

GeneralInfoTable is reduced to 62-100% of the size without using the IBF.

In this experiment, we also assess the effectiveness of an incremental IBF,

introduced in Section 5.3.3 of Chapter 5. For this purpose, the incremental IBF is

computed from Bloom filters created from the result tables of the sub-queries of the

lower join operations in the execution plan. Then, it is applied as a local predicate of

the sub-queries of the upper join operations of this execution plan.

Figure 6.7: Execution plan for the query 𝑄4,3 with the incremental IBF

Figure 6.7 illustrates the application of the incremental IBF to the execution plan

of the query 𝑄4,3. First, the sub-query 𝑠𝑄1,1 is executed and produces the result table

𝐷1
′ . The Bloom filter 𝐵𝐹1 is created from values of the attribute 𝑈𝐼𝐷 of 𝐷1

′ , and the

incremental IBF is computed from this Bloom filter: 𝐼𝐵𝐹1 = 𝐵𝐹1. Next, the sub-

query 𝑠𝑄1,2 is executed with the application of 𝐼𝐵𝐹1 as its local predicate and produces

the result table 𝐷2
′ . The Bloom filter 𝐵𝐹2 is computed on the values of the attribute

𝑈𝐼𝐷 of 𝐷2
′ , and the incremental IBF is recomputed as follows: 𝐼𝐵𝐹2 = 𝐼𝐵𝐹1 ˄ 𝐵𝐹2.

Then, the sub-query 𝑠𝑄1,3 is executed with the application of 𝐼𝐵𝐹2 as its local

predicate in order to create intermediate result table 𝐷3
′ . Here, no Bloom filter is

computed on the values of the attribute 𝑈𝐼𝐷 of 𝐷3
′ because this result table is a right-

hand side table of a left-outer join. Thus, the incremental IBF are not recomputed.

Next, the sub-query 𝑠𝑄2 is executed with the application of 𝐼𝐵𝐹2 as its local predicate

and produces the result table 𝐷4
′ . The Bloom filter 𝐵𝐹4 is created from values of the

attribute 𝑈𝐼𝐷 of 𝐷4
′ , and the incremental IBF is recomputed as follows: 𝐼𝐵𝐹2 =

𝐼𝐵𝐹2 ˄ 𝐵𝐹4. Similarly, in the next steps, the sub-query 𝑠𝑄3 is executed with the

application of 𝐼𝐵𝐹3 as its local predicate and produces the result table 𝐷5
′ . The Bloom

filter 𝐵𝐹5 is created from values of the attribute 𝑈𝐼𝐷 of 𝐷5
′ , and the incremental IBF is

recomputed: 𝐼𝐵𝐹4 = 𝐼𝐵𝐹3 ˄ 𝐵𝐹5. Afther that, the sub-query sQ4 is executed with the

application of 𝐼𝐵𝐹4 as its local predicate and produces the result table 𝐷6
′ . 𝑠𝑄4 is the

uppermost sub-query of the execution plan tree, thus the incremental IBF is not

Performance Evaluation

146

recomputed. Finally, the join operations are executed using the above result tables as

their inputs.

Table 6.30 presents a comparison of query execution time between two cases: using

the IBF and the incremental IBF. It shows that for all cases of predicate sets the query

execution time is reduced when using an incremental IBF.

Table 6.30: Comparison between the IBF and incremental IBF

Pre.

Set

Execution time when using an 𝐈𝐁𝐅 Execution time when using an incremental 𝐈𝐁𝐅 Reduced time

ratio (%)
Average (sec) Std. dev. Average (sec) Std. dev.

1 1007.20 176.89 862.60 242.25 14%

2 748.00 92.29 925.40 198.97 -23%

3 962.80 197.97 995.40 167.60 -3%

4 908.80 202.48 901.80 216.55 1%

5 964.80 189.23 779.00 98.02 19%

6 930.40 127.05 729.80 202.91 22%

Besides, the incremental IBF outperforms the IBF for the majority of sets of

predicates. More particularly, for the first and last three sets of the predicates, the

reduced time ratios are 14%, 1%, 19% and 22%, respectively, when the incremental

IBF is applied (given as Table 6.30). In these cases, the incremental IBF is only

computed from the BFs built on the result tables of highly selective sub-queries of the

lower join operations, i.e., 𝑠𝑄1.1, 𝑠𝑄1.2, 𝑠𝑄1.3 and 𝑠𝑄2, but it can still filter a large

number of irrelevant tuples out of the input tables of the upper join operations, e.g.,

SequenceAttributes and GeneralInfoTable, especially when these tables are very large.

On other words, when applying the incremental IBF to these cases, the amount of

filtered data is very large while the high costs of building and probing the incremental

IBF are trivial. However, for the second and the third sets of predicates, the IBF

outperforms the incremental IBF. This is probably because the high cost of building

and probing the IBF has been compensated significantly by amount of filtered data.

6.4 Analysis and Interpretation

This section assesses and presents results of the hypotheses.

6.4.1 H1 - Effectiveness of HYTORMO

The results of Experiment 1 show that a hybrid store should be used for DICOM data

because a row or a column store has its own benefits for a specific workload type:

- For OLAP workloads, a column store provides a higher performance than a row

store. For instance, the performance of Workload W1 (OLAP-like workload) is

improved when using the column table GeneralInfoTable.

- For OLTP workloads, a row store offers a higher performance than a column store.

For instance, for Workload W2 (OLTP-like workload), storing the entity table

SequenceAttribute in a row table improved the workload execution time.

Additionally, the results of Experiment 2 show that, for the mixed OLAP and OLTP

workloads, a mixed use of both the row and column stores will improve the workload

Performance Evaluation

 147

execution time. For instance, Configuration G*, which stored the entity table

SequenceAttribute and the vertical partitions of the entity table Patient in a row store,

and two entity tables Study and GeneralInfoTable in a column store, gave a shorter

workload execution time than Configuration G1 (using a pure row store) and

Configuration G2 (using a pure column store).

The above results indicate that it is beneficial to use the hybrid storage strategy of

both row and column stores to store DICOM data. Hence, Hypothesis H1 is accepted.

6.4.2 H2 - Usefulness of HADF

Due to the variety of DICOM data and its workloads, taking into account the combined

impact of both workload- and data-specific information allows HADF to be able to

well support in choosing a good data storage configuration for each entity table.

- In Experiments 1, 2 and 3, for the dense entity tables, e.g., GeneralInfoTable and

SequenceAttribute, the data-specific information did not have a strong positive

effect on reducing storage space size. In such cases, most of the attributes in the

same entity table have low values of null ratios. Thus, if only depending on the

data-specific information, most of the attributes are highly similar to each other in

terms of Attribute Density Similarity such that they are grouped and stored together

without the reduction of null values. However, for these cases, if the workload-

specific information is also taken into account, the merging-selecting phase of

HADF found that an OLAP-like workload is being used for GeneralInfoTable and

an OLTP-like workload is being used for SequenceAttribute. Therefore, at the end,

it suggests to store GeneralInfoTable in a column store and SequenceAttribute in a

row store. This improved the overall performance of Workloads W1, W2 and W4.

- Conversely, in Experiments 1 and 2, for the wide and sparse entity tables, i.e.,

Patient and Study, the data-specific information had a strong effect on the vertical

partitioning results. Multiple vertical partitions are created to remove null values.

Therefore, the combined use of both workload- and data-specific information has

positive effects on creating good configurations. Hence, Hypothesis H2a is accepted.

Additionally, another important goal of HADF is to support decision makers in

selecting data storage configurations where both the workload execution time and the

storage space size are reduced at the same time. The results of Experiments 1 and 2

show that this goal was achieved for very wide and sparse entity tables such as Patient.

HADF decomposed these tables into multiple vertical partitions from which null rows

are removed; besides, the reduction of tuple reconstruction cost and I/Os speeded up

the workload execution time as well. It seems easier to improve the workload

performance than to reduce the storage space size because the storage space size is

mainly reduced for very wide and sparse entity tables. However, such entity tables are

popularly used in the context of DICOM data. Thus, Hypothesis H2b is accepted.

To the best of our knowledge, our work is among the first to consider a heuristic

design approach that takes into consideration the combined impact of both workload-

and data-specific information and the mixed use of both row and column stores while

generating data storage configurations. Our HADF is inspired from the up-to-date

vertical partitioning approach proposed by B. Cui et al. [14], which depends on only

Performance Evaluation

148

the data-specific information in order to decompose a sparse table into multiple

vertically partitioned tables and then stores these result tables in just a row store.

However, their approach has been included as a part of our solution. In Experiments

1, 2 and 3, we showed that the combined use of both workload- and data-specific

information and the use of a hybrid store is able to generate better data storage

configurations than only using the data-specific information and row store.

6.4.3 H3 - Effectiveness of the Query Processing Strategy

The results of Experiment 4 show that both the IBF and the incremental IBF

significantly speeded up the query processing. The reason for this improvement is that

the IBF helps to filter the irrelevant tuples out of the input tables of join operations.

This leads to reduction of network I/Os, disk I/Os and CPU cost (because less input

data will be processed at nodes or sent on the network). Hypothesis H3 is accepted.

6.5 Summary and Conclusion

This chapter presented the results of the validation of the proposed methods.

HYTOMO was implemented using a Spark cluster of 9 nodes. Real DICOM datasets

were collected and their metadata and image data were extracted. The workloads were

also determined. The experimental results can be summarized below.

The experimental results show that the hybrid storage strategy provides a better

query performance than a pure row store and a pure column store in the context of

DICOM data. The column store improves the performance of OLAP workloads while

the row store improves the performance of OLTP workloads. Therefore, in order to

improve the overall system performance, depending on the workloads associated with

the attributes, we should apply a suitable data layout to store the particular attributes.

Additionally, taking into account the combined impact of both workload- and data-

specific information is very helpful to generate a good data storage configurations in

terms of storage space size and workload execution time. The experimental results

show that, with the use of both sources of information, HADF can produce good data

storage configurations. The workload-specific information has a strong effect on

improving the workload performance while the data-specific information can help to

reduce the storage space demand. Beside, HADF can generate a data storage

configuration that decreases both storage space size and workload execution time;

however, this is mainly achieved when an entity table is very wide and sparse.

Finally, the query processing strategy with the use of the IBF or the incremental

IBF improves the query performance. They can filter irrelevant tuples out of the input

tables of join operations. This helps to reduce network I/Os, disk I/Os and CPU cost.

Key Points

 We execute the experiments to validate HYTORMO.

 We execute the experiments to validate HADF.

 We execute the experiments to validate IBF and incremental IBF.

149

Chapter

Conclusion and Future Works

7.1 Overview

The dissertation deals with the Big Data issues in DICOM data management from

one big question: how to efficiently store and query DICOM data? This chapter

summarizes and concludes the dissertation. We also give an outlook for future

research. An overview of the chapter is presented in Table 7.1.

Table 7.1: Overview over Chapter 7

7.2 Summary and Conclusion

7.2.1 Existing DICOM Data Management Systems

7.2.2 Current Databases and Related Techniques

7.2.3 HYTORMO and DICOM Data Storage Strategy

7.2.4 HADF

7.2.5 Query Processing Strategy with the Use of an IBF

7.2.6 Validations of Proposed Methods

7.3 Future Works

7.3.1 Hybrid Storage Model

7.3.2 HADF

7.3.3 Query Processing Strategy

7.3.4 Non-precomputed and Precomputed BFs

There are six main contributions emerged from our study: First, we performed a

comprehensive evaluation of the existing DICOM data management systems and

addressed their strengths and weaknesses. As a response to the shortcomings, we

specified the expected requirements for a new DICOM data management system.

Second, we provided a state of the art review of the current databases (relational,

NoSQL and NewSQL databases) and the related techniques (including cluster

computing frameworks, data layouts, vertical partitioning, BF and IBF techniques).

Third, we proposed a hybrid storage model, called HYTORMO, together with a data

storage strategy. Fourth, we proposed a hybrid automated design framework, called

HADF. Fifth, we introduced a query processing strategy with the use of an IBF for

HYTORMO. Finally, we performed validations to demonstrate the benefits of the

proposed methods.

Conclusion and Future Works

150

7.2 Summary and Conclusion

7.2.1 Existing DICOM Data Management Systems

Based on the characteristics of DICOM data and workloads, we specified that a new

DICOM data management system needs to satisfy three expected requirements: (R1)

Flexible data; (R2) Flexible querying; and (R3) Efficiency of storage and CPU. The

requirement R1 requires that the system is able to deal with the complexity and the

variety of DICOM data. The requirement R2 requires that the system enables users to

write SQL ad-hoc queries with joins. The requirement R3 requires that DICOM data

will be organized based on workload and data-specific information to reduce storage

space demand and execution time of queries in mixed OLTP and OLAP workloads;

additionally, it is able to provide efficient query processing over large-scale datasets,

huge storage capacity, scalability and elasticity.

We performed a comprehensive evaluation of the existing DICOM data

management systems. With regards to data storage, the existing systems can be

classified into four groups of solutions: row-oriented databases, vertically-

decomposed row-oriented databases, NoSQL document-based databases and hybrid

cloud-enabled storage system. First, the systems that are using a row-oriented database

such as PACSs [129], eDiaMoND [42], and commercial RDBMSs (Oracle) [130] store

DICOM data in tables. These systems are optimized for write-intensive (OLTP)

workloads in which all (or most) attributes of each tuple are frequently accessed

together by queries. Unfortunately, they waste I/O bandwidth because all attributes of

a table have to be read into memory from disk even if only few attributes are needed

once per query. Second, in the system using a vertically-decomposed row-oriented

database such as DCMDSM [54], data is vertically decomposed and stored into

multiple tables. This strategy can help the system reduce disk I/Os, but it needs more

CPU cost due to multi-table joins required for tuple reconstruction. Moreover, the

proposed system has not been designed to operate in a distributed query processing

environment. Third, the system using a NoSQL document-based database [40] could

handle the heterogeneous schemas due to sharing non-relational design, but it does not

provide a standardized declarative query language, e.g., SQL. Finally, the hybrid (row-

column) cloud-enabled storage system can reduce I/Os and tuple reconstruction cost

and deal with the evolution of data. Nevertheless, it is hard to scale and has not

provided an automated design approach to create data storage configurations.

Therefore, the document-based database and hybrid cloud-enabled storage system

have shown their ability or potential to satisfy the above-mentioned respected

requirements. However, they still lack the following features that are addressed in our

thesis:

 An automated design approach that uses both workload and data-specific

information to design and store DICOM data in a manner to reduce both

workload execution time and storage space demand.

 Efficient solutions for query processing over large-scale datasets, especially, to

reduce network I/Os in a distributed query processing environment.

Conclusion and Future Works

 151

7.2.2 Current Databases and Related Techniques

We performed a state of the art review of the current databases. Relational databases

are based on the relational data model. They organize data in tables and provide users

with SQL interfaces. The relational databases can handle the complexity of DICOM

data because entities and relationships among the entities in the DICOM data model

can be well represented by the entity-relationship model. However, they have some

limitations in providing the following features: huge storage capacity, high query

performance over high and ever-growing volume of data, scalability and elasticity.

Thus, in general, they are not efficient to handle DICOM data. In contrast to the

relational databases, NoSQL databases are designed to handle Big Data. They can deal

with un/semi-structured data, process large amounts of data with high performance

and scalability, provide huge storage capacity, elasticity and so on. However, they do

not represent well data in tabular form, nor do they provide SQL support. Therefore,

the relational and NoSQL databases alone do not provide all features required to

manage DICOM data. For this reason, we move towards applying the concepts of

NoSQL databases to build a data storage model that is able to support SQL and

represent data in form of tables.

Besides, we performed reviews on cluster computing frameworks, data layouts,

vertical partitioning, BF and IBF techniques. First, the batch-oriented processing

technique of MapReduce is not suitable for processing interactive workloads because

of its high latency. In contrast, the interactive ad-hoc query and analysis technique,

e.g., Spark, is able to provide high performance for interactive workloads. Second, row

stores (Oracle, DB2, etc.) are optimized for write-intensive (OLTP) workloads,

whereas column stores (MonetDB, C-Store, etc.) are well-suited for read-intensive

(OLAP) workloads. To fill the gap between these two types of stores, hybrid stores

(e.g., HYRISE, SAP HANA, etc.) have aimed at optimizing the performance for both

types of workloads. Third, the vertical partitioning algorithms show that they can be

applied to improve the query performance or to reduce storage space size especially

for sparse datasets. However, they have not taken into consideration the combined

impact of both workload- and data-specific information on vertical partitioning results.

Additionally, they have assumed that resulting schemas will be stored in tables using

just one kind of data layout, e.g., row-oriented data layout, instead of hybrid data

layout. Finally, to improve query performance, the IBF have shown that they are able

to reduce the network I/O cost with a false positive probability less than the BF.

7.2.3 HYTORMO and DICOM Data Storage Strategy

We proposed a new hybrid storage model, called HYTORMO:

 To facilitate users, DICOM data in HYTORMO is organized based on the

relational data model. Users can use entity tables in their SQL queries.

HYTORMO will automatically decompose the users’ queries into sub-queries

to access only relevant tables archived in row or column stores.

 To provide huge storage capacity, high query performance, scalability and

elasticity, we designed and implemented HYTORMO using an in-memory

massively-parallel computation and storage techniques on large clusters of

Conclusion and Future Works

152

nodes. In fact, HYTORMO was implemented on top of Spark: DICOM data is

stored in a distributed file system (HDFS) and queries are processed in parallel.

 To achieve a data storage configuration for DICOM data, one of two design

approaches can be applied: expert-based and automated.

7.2.4 HADF

HADF is proposed to assist decision makers in selecting a good data storage

configuration for each entity table. It can take into account the combined impact of

both workload- and data-specific information as well as the combined use of both row

and column stores to generate a new data storage configuration. In particular, HADF

works through two phases: clustering and merging-selecting. The clustering phase

aims at reducing storage space size and tuple reconstruction cost. To achieve this, it

depends on Hybrid Similarity (a weighted combination of Attribute Access Similarity

and Attribute Density Similarity) between every pair of attributes to cluster attributes

into column groups such that attributes in each particular column group are similar and

attributes in different column groups are dissimilar. The merging-selecting phase aims

at reducing the number of join operations across vertically partitioned tables and the

number of irrelevant attribute accesses. It uses Inter-Cluster Access Similarity to

determine whether two clusters are merged together or not and uses Intra-Cluster

Access Similarity to determine a suitable data layout for each column group.

7.2.5 Query Processing Strategy with the Use of an 𝐈𝐁𝐅

We proposed a query processing strategy built on top of HYTORMO that includes the

use of inner joins, left-outer joins and an IBF. We scoped our work to only consider a

left-deep sequential tree plan with inner joins and left-outer joins. Our proposed query

processing strategy is designed for: (1) working with tables archived in both row and

column stores; (2) reducing the number of left-outer joins; and (3) reducing the

network communication cost by applying the IBF.

7.2.6 Validations of Proposed Methods

We performed experiments to validate the proposed methods using real DICOM

datasets. Experimental results show that performance of the hybrid store is better than

either a pure row store or a pure column store because it can combine the fundamental

advantages of both row and column stores: pieces of data used by OLTP workloads are

stored in row tables while pieces of data required by OLAP workloads are stored in

column tables. The combined use of both workload- and data-specific information is

necessary for HADF to generate good data storage configurations. The workload-

specific information has a strong effect on improving the workload performance while

the data-specific information is helpful in reducing storage space demand. HADF is

able to support in selecting a good data storage configuration that reduces both the

storage space demand and the workload performance, but this is mainly achieved for

wide and sparse tables.

The experimental results also show that the IBF or the incremental IBF help to

improve the query performance. The query execution time was reduced to 10-38% of

Conclusion and Future Works

 153

the time when applying the IBF. Besides, the incremental IBF outperforms the IBF in

the majority of cases of predicate sets. Filtering irrelevant tuples out of input tables of

join operations results in the reduction of disk and network I/Os and CPU cost.

In short, the conclusions are as follows: using the hybrid storage model improves

the workload execution time; taking into account the combined impact of both

workload- and data-specific information is necessary to produce better data storage

configurations; and the application of the IBF improves query performance.

7.3 Future Works

There are some open research axes that we can investigate and extend in future.

7.3.1 Hybrid Storage Model

HYTORMO was designed for storing and querying DICOM data. Nevertheless, we

believe that it can be extended to be used for many various Big Data applications.

Instead of just using row and column stores, we plan to extend the current model to

support multiple stores: row store, column store, key-value store, etc. As such, it is

well suited for the variety of data in many different applications.

Recently, some systems using multiple data models and data stores have been

proposed. For instance, CloudMdsQL Multistore System [131, 132] provides a SQL-

like language, called CloudMdsQL that is a common language for querying and

integrating data from multiple heterogeneous cloud data stores. It can exploit the full

performance of local data stores by allowing embedded invocations to each local data

store native query interface. Another system, called BigDAWG Polystore System

[133], also stores data in different storage engines by depending on the data access

patterns. However, these systems lack an automated solution that is based on both the

characteristics of data and workloads to determine the right stores for their data.

7.3.2 HADF

Some requirements would be performed to extend our work: We have based on

experiments and experts’ opinion to select suitable values for the parameters of HADF

(including α, β, θ and λ), thus it would be necessary to develop a method to

automatically determine these values. For this requirement, we would investigate the

application of optimization techniques that may give better results than our approach.

In [134], the authors proposed an agglomerative clustering algorithm to automatically

generate property table schemas that can balance storage efficiency and query

performance for a very large RDF dataset. Unfortunately, a hybrid storage system has

not used to store the property tables. As a future work, the authors in [134] planned to

develop a hybrid approach by combine the triple store, vertical database, and property

table schemes to have their own advantages in different situations.

We will extend HADF to take into consideration the horizontal tables that may

have different widths in their attributes. We plan to research the effect of compression

on some pieces of data, e.g., column tables. We also plan to research how new

attributes are added to an existing data storage configuration. For instance, HADF can

Conclusion and Future Works

154

modify incrementally the existing configuration while still maintaining a trade-off

between the storage space size and the query performance. In [135], the authors

proposed an approach that consists of two phases: the vertical partitioning phase aims

at reducing the number of join operations while the adjustment phase aims to maintain

the query performance by adapting the underlying schema to react to the changes in

the characteristics of the continuous query workload stream. However, the authors

have not taken into account the storage space size during the adjustment phase.

7.3.3 Query Processing Strategy

We will explore the query execution plan with the use of inner joins and (full) outer

joins (⟗), instead of inner joins and left-outer joins. In this way, given a data storage

configuration 𝐺𝑖 of a horizontal table 𝑇, a query q and a set 𝐶𝑖
𝑞
 of column groups that

are required to answer q, a relational algebraic expression using inner joins or left-

outer joins can be given as follows (see Formula (4.3.9) in Chapter 4):

𝑞 = π𝑎1,…,𝑎𝑚
[π𝑈𝐼𝐷(𝑇) ⟕ (⟕𝑥=1

|𝐶𝑖
𝑞

|
σ𝑃𝑖,𝑥

(𝐶𝑖,𝑥))],

where the selection operation σ𝑃𝑖,𝑥
(𝐶𝑖,𝑥) returns only tuples of the table storing data of

the column group 𝐶𝑖,𝑥 for which the predicate (or condition) 𝑃𝑖,𝑥 is fulfilled; the

projection operation π𝑈𝐼𝐷(𝑇) returns a list of all 𝑈𝐼𝐷′s of the horizontal table 𝑇. We

will consider the use of the full outer joins for 𝑞 because when this join type is applied,

the resulting tuples of 𝑇 will be produced for each tuple in each joined vertical

partition, no matter what the join order is. Thus, we can select a join order that can

result in a better overall query performance:

𝑞 = π𝑎1,…,𝑎𝑚
(⟗𝑥=1

|𝐶𝑖
𝑞

|
σ𝑃𝑖,𝑥

(𝐶𝑖,𝑥)).

Additionally, we will consider how to transform a left-deep tree plan to a bushy

tree plan to increase parallelism in query processing. Although many studies have

introduced different approaches for transforming a left-deep tree into a bushy tree

[136-138], there is a lack of studies generating a bushy tree for a left-deep tree plan

consisting of left or full outer joins as in our context.

All the above changes introduce new research challenges. For instance, how is

tuple reconstruction cost modelled? How is an IBF applied to a query execution plan

using outer joins in a bushy tree plan?

7.3.4 Non-precomputed and Precomputed 𝐁𝐅𝐬

We believe it would be beneficial to combine both types of BFs: non-precomputed and

precomputed BFs. The non-precomputed BFs are computed from input tables during

query processing as used in our thesis. Alternatively, the precomputed BFs are

computed beforehand to avoid additional computation steps required during query

processing. For instance, in [139], the precomputed BFs were used to speed up

SPARQL processing in the cloud. Based on usage frequency of the input tables, first

we can precompute BFs as many as possible. Then, BFs of these two types can be

combined by using bitwise AND-operations to build a common IBF.

155

Bibliography

[1] O. S. Pianykh, Digital Imaging and Communications in Medicine (DICOM):

Springer-Verlag Berlin Heidelberg, 2008.

[2] I. Merelli, H. Pérez-Sánchez, S. Gesing, and D. D’Agostino, “Managing,

Analysing, and Integrating Big Data in Medical Bioinformatics: Open

Problems and Future Perspectives,” BioMed Research International, vol. 2014,

2014.

[3] N. Chandrashekar, S. M. Gautam, K. S. Srinivas, and J. Vijayananda, “Design

Considerations for a Reusable Medical Database,” in Proceedings of 19th IEEE

Symposium on Computer-Based Medical Systems, 2006, pp. 69-74.

[4] C. Parisot. "The Basic Structure of DICOM," 1 Oct 2017;

http://www.ssrpm.ch/old/dicom/parisot1.pdf.

[5] OECD, Genetic Testing: A Survey of Quality Assurance and Proficiency

Standards: OECD Publishing, October 2007.

[6] S. Navathe, S. Ceri, G. Wiederhold, and J. Dou, “Vertical partitioning

algorithms for database design,” Transactions on Database Systems (TODS),

vol. 9, no. 4, pp. 680-710, 1984.

[7] W. W. Chu, and I. T. Ieong, “A transaction-based approach to vertical

partitioning for relational database systems,” IEEE Transactions on Software

Engineering, vol. 19, no. 8, pp. 804-812, 1993.

[8] S. Agrawal, V. Narasayya, and B. Yang, “Integrating vertical and horizontal

partitioning into automated physical database design,” in Proc. ACM

SIGMOD, 2004, pp. 359-370.

[9] M. Hammer, and B. Niamir, “A heuristic approach to attribute partitioning,” in

Proc. ACM SIGMOD, 1979, pp. 93-101.

[10] R. A. Hankins, and J. M. Patel, “Data morphing: an adaptive, cache-conscious

storage technique,” in PVLDB, 2003, pp. 417-428.

[11] S. Papadomanolakis, and A. Ailamaki, “AutoPart: automating schema design

for large scientific databases using data partitioning,” in Proceedings of 16th

International Conference on Scientific and Statistical Database Management,

2004, pp. 383-392.

[12] M. Grund, J. Krüger, H. Plattner, A. Zeier, P. Cudre-Mauroux, and S. Madden,

“HYRISE: a main memory hybrid storage engine,” in Proc. VLDB Endow.,

2010, pp. 105-116.

[13] A. Jindal, J.-A. Quiané-Ruiz, and J. Dittrich, “Trojan data layouts: right shoes

for a running elephant,” in Proceedings of the 2nd ACM Symposium on Cloud

Computing, 2011, pp. 1-14.

[14] B. Cui, J. Zhao, and D. Yang, “Exploring Correlated Subspaces for Efficient

Query Processing in Sparse Databases,” IEEE Transactions on Knowledge and

Data Engineering, vol. 22, no. 2, pp. 219-233, 2010.

http://www.ssrpm.ch/old/dicom/parisot1.pdf

Bibliography

156

[15] J. J. Levandoski, and M. F. Mokbel, “RDF Data - Centric Storage,” in

Proceedings of 2009 IEEE International Conference on Web Services, 2009,

pp. 911-918.

[16] E. Chu, J. Beckmann, and J. Naughton, “The case for a wide-table approach to

manage sparse relational data sets,” in Proc. ACM SIGMOD, 2007, pp. 821-

832.

[17] S. Harizopoulos, V. Liang, D. J. Abadi, and S. Madden, “Performance tradeoffs

in read-optimized databases,” in Proceedings of the 32nd international

conference on Very large data bases, Seoul, Korea, 2006, pp. 487-498.

[18] P. A. Boncz, M. Zukowski, and N. Nes, “MonetDB/X100: Hyper-Pipelining

Query Execution,” in CIDR, 2005.

[19] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen, M. Cherniack, M. Ferreira,

E. Lau, A. Lin, S. Madden, E. O'Neil, P. O'Neil, A. Rasin, N. Tran, and S.

Zdonik, “C-store: a column-oriented DBMS,” in PVLDB, 2005, pp. 553-564.

[20] F. Färber, S. K. Cha, J. Primsch, C. Bornh, C. Bornhövd, S. Sigg, and W.

Lehner, “SAP HANA database: data management for modern business

applications,” SIGMOD Rec., vol. 40, no. 4, pp. 45-51, 2012.

[21] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng, T.

Kaftan, M. J. Franklin, A. Ghodsi, and M. Zaharia, “Spark SQL: Relational

Data Processing in Spark,” in Proceedings of SIGMOD, 2015, pp. 1383-1394.

[22] B. H. Bloom, “Space/time trade-offs in hash coding with allowable errors,”

Commun. ACM, vol. 13, no. 7, pp. 422-426, 1970.

[23] L. Michael, W. Nejdl, O. Papapetrou, and W. Siberski, “Improving distributed

join efficiency with extended bloom filter operations,” in The 21st

International Conference on Advanced Information Networking and

Applications, 2007, pp. 187-194.

[24] A. Broder, and M. Mitzenmacher, “Network Applications of Bloom Filters: A

Survey,” Internet Mathematics vol. 1, no. 4, pp. 485-509, 2003.

[25] T.-C. Phan, L. d'Orazio, and P. Rigaux, “Toward intersection filter-based

optimization for joins in MapReduce,” in Proceedings of the 2nd International

Workshop on Cloud Intelligence, Riva del Garda, Trento, Italy, 2013, pp. 1-2.

[26] M. Hausenblas, and J. Nadeau, “Apache Drill: Interactive Ad-Hoc Analysis at

Scale,” Big Data, vol. 1, pp. 100-104, 2013.

[27] T.-C. Phan, “Optimization for Big Joins and Recursive Query Evaluation using

Intersection and Difference Filters in MapReduce,” PhD Thesis, Blaise Pascal

University - Clermont II, 2014.

[28] B. Revet, DICOM Cookbook for Implementations in Modalities (Technical

Report): Philips medical systems, 1997.

[29] NEMA, Digital Imaging and Communications in Medicine (DICOM) - Part 5:

Data Structures and Encoding, National Electrical Manufacturers Association

(NEMA), 2011.

[30] D. Laney, 3D Data Management: Controlling Data Volume, Velocity, and

Variety, Technical Report, 2001.

[31] M. A. Beyer, and D. Laney, “The Importance of 'Big Data': A Definition,”

Gartner, Stamford, CT, 2012.

Bibliography

 157

[32] NEMA, Digital Imaging and Communications in Medicine (DICOM) - Part 6:

Data Dictionary, National Electrical Manufacturers Association (NEMA),

2017.

[33] R. R. Carlton, and A. M. Adler, Principles of Radiographic Imaging : An Art

and a Science, Clifton Park, New York: Delmar/Cengage Learning, 2013.

[34] Oracle, Performance Evaluation of Storage and Retrieval of DICOM Image

Content in Oracle Database 11g Using HP Blade Servers and Intel Processors,

Oracle Ltd, July 2008.

[35] H. Chen, R. H. L. Chiang, and V. C. Storey, “Business intelligence and

analytics: from big data to big impact,” MIS Quarterly, vol. 36, no. 4, pp. 1165-

1188, 2012.

[36] H. V. Jagadish, J. Gehrke, A. Labrinidis, Y. Papakonstantinou, J. M. Patel, R.

Ramakrishnan, and C. Shahabi, “Big data and its technical challenges,”

Commun. ACM, vol. 57, no. 7, pp. 86-94, 2014.

[37] D. R. Voellmy, O. Handgrätinger, S. Wildermuth, B. Fröhlich, and B.

Marincek, “Total cost of high volume multi-detector CT data management,”

International Congress Series, vol. 1268, pp. 249-253, June 2004.

[38] A. A. TOLE, “Big Data Challenges,” Database Systems Journal, vol. IV, no.

3, 2013.

[39] N. S. Ujgare, and S. P. Baviskar, “Conversion of DICOM Image in to JPEG,

BMP and PNG Image Format,” International Journal of Computer

Applications (0975 – 8887), vol. 62, no. 11, January 2012.

[40] S. J. Rascovsky, J. A. Delgado, A. Sanz, V. D. Calvo, and G. Castrillón,

“Informatics in Radiology: Use of CouchDB for Document-based Storage of

DICOM Objects,” RadioGraphics, vol. 32, no. 3, pp. 913-927, 2012.

[41] H. Satoh, N. Niki, K. Eguchi, H. Ohmatsu, M. Kusumoto, M. Kaneko, and N.

Moriyama, “Teleradiology network system on cloud using the web medical

image conference system with a new information security solution,” in SPIE

Medical Imaging, 2013, pp. 9.

[42] D. Power, E. Politou, M. Slaymaker, S. Harris, and A. Simpson, “A relational

approach to the capture of DICOM files for Grid-enabled medical imaging

databases,” in Proceedings of the 2004 ACM symposium on Applied

computing, Nicosia, Cyprus, 2004, pp. 272-279.

[43] M. Brady, D. Gavaghan, A. Simpson, M. M. Parada, and R. Highnam,

"eDiamond: A Grid-Enabled Federated Database of Annotated

Mammograms," Grid Computing, pp. 923-943: John Wiley & Sons, Ltd, 2003.

[44] "Open Grid Services Architecture -Data Access and Integration," 5 May 2017;

http://www.ogsadai.org.uk/.

[45] M. Oevers, B. M. Collins, A. Knox, and J. Williams, “The Use of OGSA-DAI

with IBM DB2 Content Manager for Multiplatforms in the eDiaMoND

Project,” in Proceedings of the Future of Grid Data Environments Workshop at

the Global Grid Forum 10 meeting, March 2004.

[46] Oracle, Oracle Database 10g Release 2: A Revolution in Database Technology,

An Oracle White Paper, Oracle Ltd, May 2005.

[47] Oracle, Oracle Multimedia DICOM Developer's Guide, 11g Release 1, Oracle

White Paper, Oracle Ltd, 2009.

http://www.ogsadai.org.uk/

Bibliography

158

[48] Oracle, Unstructured Data Management with Oracle Database 12c, Oracle

White Paper, Oracle Ltd, November 2016.

[49] Oracle, Oracle RAC: Oracle Real Application Clusters 10g, Oracle Technical

White Paper, Oracle Ltd, May 2005.

[50] Oracle, Oracle RAC: Oracle Real Application Clusters 11g Release 2, Oracle

White Paper, Oracle Ltd, November 2010.

[51] Oracle, Oracle RAC: Oracle Database 12c Release 2: Oracle Real Application

Clusters, Oracle White Paper, Oracle Ltd, March 2017.

[52] E. Hewitt, Cassandra: The Definitive Guide: O’Reilly Media, November 2010.

[53] K. Chodorow, MongoDB: The Definitive Guide, 2nd ed.: O’Reilly Media, May

2013.

[54] A. Savaris, T. Härder, and A. von Wangenheim, “DCMDSM: a DICOM

decomposed storage model,” Journal of the American Medical Informatics

Association : JAMIA, vol. 21, no. 5, pp. 917-924, 2014.

[55] G. P. Copeland, and S. N. Khoshafian, “A decomposition storage model,” in

Proc. ACM SIGMOD, 1985, pp. 268-279.

[56] B. Mohamad, L. d'Orazio, and L. Gruenwald, “Towards a hybrid row-column

database for a cloud-based medical data management system,” in Proceedings

of the 1st International Workshop on Cloud Intelligence, Istanbul, Turkey,

2012, pp. 1-4.

[57] B. Mohamad, “Medical Data Management on the Cloud,” PhD Thesis, Blaise

Pascal University - Clermont II, 2015.

[58] E. F. Codd, “A relational model of data for large shared data banks,” Commun.

ACM, vol. 13, no. 6, pp. 377-387, 1970.

[59] R. Hecht, and S. Jablonski, “NoSQL evaluation: A use case oriented survey,”

in Proceedings of 2011 International Conference on Cloud and Service

Computing, 2011, pp. 336-341.

[60] A. B. M. Moniruzzaman, and S. Hossain, “NoSQL Database: New Era of

Databases for Big data Analytics - Classification, Characteristics and

Comparison,” International Journal of Database Theory and Application, vol.

6, pp. 1-14, 2013.

[61] A. Auradkar, C. Botev, S. Das, D. D. Maagd, A. Feinberg, P. Ganti, L. Gao, B.

Ghosh, K. Gopalakrishna, B. Harris, J. Koshy, K. Krawez, J. Kreps, S. Lu, S.

Nagaraj, N. Narkhede, S. Pachev, I. Perisic, L. Qiao, T. Quiggle, J. Rao, B.

Schulman, A. Sebastian, O. Seeliger, A. Silberstein, B. Shkolnik, C. Soman, R.

Sumbaly, K. Surlaker, S. Topiwala, C. Tran, B. Varadarajan, J. Westerman, Z.

White, D. Zhang, and J. Zhang, “Data Infrastructure at LinkedIn,” in

Proceedings of 2012 IEEE 28th International Conference on Data Engineering,

2012, pp. 1370-1381.

[62] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.

Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A Distributed Storage System

for Structured Data,” ACM Trans. Comput. Syst., vol. 26, no. 2, pp. 1-26, 2008.

[63] "Welcome to Apache HBase," April 24, 2017; https://hbase.apache.org.

[64] "Apache CouchDB," April 18, 2017; http://couchdb.apache.org/.

[65] "Neo4j - What is a Graph Database? ," September 19, 2017;

http://www.neo4j.org/.

https://hbase.apache.org/
http://couchdb.apache.org/
http://www.neo4j.org/

Bibliography

 159

[66] "AllegroGraph," http://www.franz.com/agraph/allegrograph.

[67] R. k. Kaliyar, “Graph databases: A survey,” in Proceedings of International

Conference on Computing, Communication & Automation, 2015, pp. 785-790.

[68] J. C. Corbett, J. Dean, M. Epstein, A. Fikes, C. Frost, J. J. Furman, S.

Ghemawat, A. Gubarev, C. Heiser, P. Hochschild, W. Hsieh, S. Kanthak, E.

Kogan, H. Li, A. Lloyd, S. Melnik, D. Mwaura, D. Nagle, S. Quinlan, R. Rao,

L. Rolig, Y. Saito, M. Szymaniak, C. Taylor, R. Wang, and D. Woodford,

“Spanner: Google’s Globally Distributed Database,” ACM Trans. Comput.

Syst., vol. 31, no. 3, pp. 1-22, 2013.

[69] VoltDB, Technical Overview: High performance, scalable RDBMS for Big

Data and Real-time Analytics, White paper

(http://voltdb.com/downloads/datasheets_collateral/technical_overview.pdf),

VoltDB.

[70] "A New Approach: Clustrix Sierra Database Engine," April 20, 2017;

http://www.clustrix.com.

[71] NuoDB, NuoDB Emergent Architecture: A 21st Century Transactional

Relational Database Founded On Partial, On-Demand Replication,

Greenbook, NuoDB Inc., 2013.

[72] A. Ribeiro, A. Silva, and A. R. d. Silva, “Data Modeling and Data Analytics:

A Survey from a Big Data Perspective,” Journal of Software Engineering and

Applications, vol. 8, pp. 617-634, 2015.

[73] J. Dean, and S. Ghemawat, “Mapreduce: Simplified data processing on large

clusters,” in Proceedings of Sixth Symposium on Operating System Design and

Implementation (OSDI'04), San Francisco, CA, 2004.

[74] C. Olston, B. Reed, U. Srivastava, R. Kumar, and A. Tomkins, “Pig latin: a not-

so-foreign language for data processing,” in Proc. ACM SIGMOD, 2008, pp.

1099-1110.

[75] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P.

Wyckoff, and R. Murthy, “Hive: a warehousing solution over a map-reduce

framework,” in Proc. VLDB Endow., 2009, pp. 1626-1629.

[76] S. Shaw, A. F. Vermeulen, A. Gupta, and D. Kjerrumgaard, The Future of Hive:

Apress, Berkeley, CA, 2016.

[77] "BigQuery," April 25, 2017; https://developers.google.com/bigquery.

[78] "CitusDB," April 25, 2017; http://citusdata.com/docs.

[79] "Hadapt," April 25, 2017; http://hadapt.com/product.

[80] "HAWQ," April 25, 2017;

http://www.greenplum.com/blog/topics/hadoop/introducing-pivotal-hd.

[81] "Impala," April 25, 2017; https://github.com/cloudera/impala.

[82] S. Akhtar, and R. Magham, Pro Apache Phoenix: An SQL Driver for HBase,

1st ed.: Apress, Berkeley, CA, 2017.

[83] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.

Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: a fault-

tolerant abstraction for in-memory cluster computing,” in Proceedings of the

9th USENIX conference on Networked Systems Design and Implementation,

San Jose, CA, 2012, pp. 2-2.

http://www.franz.com/agraph/allegrograph
http://voltdb.com/downloads/datasheets_collateral/technical_overview.pdf
http://www.clustrix.com/
https://developers.google.com/bigquery
http://citusdata.com/docs
http://hadapt.com/product
http://www.greenplum.com/blog/topics/hadoop/introducing-pivotal-hd
https://github.com/cloudera/impala

Bibliography

160

[84] R. Agrawal, A. Somani, and Y. Xu, “Storage and Querying of E-Commerce

Data,” in PVLDB, 2001, pp. 149-158.

[85] J. Foley, Comparison of Data Warehousing DBMS Platforms, illuminate

Solutions, Barcelona, Spain, 2013.

[86] R. Ramamurthy, D. J. DeWitt, and Q. Su, “A case for fractured mirrors,” The

VLDB Journal, vol. 12, no. 2, pp. 89-101, 2003.

[87] A. Kemper, and T. Neumann, “HyPer: A hybrid OLTP&OLAP main memory

database system based on virtual memory snapshots,” in Proceedings of 2011

IEEE 27th International Conference on Data Engineering, 2011, pp. 195-206.

[88] A. Ailamaki, D. J. DeWitt, M. D. Hill, and M. Skounakis, “Weaving Relations

for Cache Performance,” in Proc. VLDB, 2001, pp. 169-180.

[89] A. Shatdal, C. Kant, and J. F. Naughton, “Cache Conscious Algorithms for

Relational Query Processing,” in Proceedings of the 20th International

Conference on Very Large Data Bases, 1994, pp. 510-521.

[90] A. Ailamaki, D. J. DeWitt, M. D. Hill, and D. A. Wood, “DBMSs on a Modern

Processor: Where Does Time Go?,” in Proceedings of the 25th International

Conference on Very Large Data Bases, 1999, pp. 266-277.

[91] P. Bernstein, M. Brodie, S. Ceri, D. DeWitt, M. Franklin, H. Garcia-Molina, J.

Gray, J. Held, J. Hellerstein, H. V. Jagadish, M. Lesk, D. Maier, J. Naughton,

H. Pirahesh, M. Stonebraker, and J. Ullman, “The Asilomar report on database

research,” SIGMOD Rec., vol. 27, no. 4, pp. 74-80, 1998.

[92] P. A. Boncz, S. Manegold, and M. L. Kersten, “Database Architecture

Optimized for the New Bottleneck: Memory Access,” in Proceedings of the

25th International Conference on Very Large Data Bases, 1999, pp. 54-65.

[93] A. Kemper, T. Neumann, F. Funke, V. Leis, and H. Mühe, “HyPer: Adapting

Columnar Main-Memory Data Management for Transactional AND Query

Processing,” IEEE. Data Eng. Bull. (DEBU), vol. 35 (1), pp. 46-51, 2012.

[94] F. Farber, N. May, W. Lehner, P. Große, I. Müller, H. Rauhe, and J. Dees, “The

SAP HANA Database - An Architecture Overview,” IEEE Data Eng. Bull., vol.

35(1), pp. 28–33, 2012.

[95] C. Meyer, M. Boissier, A. Michaud, J. O. Vollmer, K. Taylor, D. Schwalb, M.

Uflacker, and K. Roedszus, “Dynamic and Transparent Data Tiering for In-

Memory Databases in Mixed Workload Environments,” ADMS@VLDB, pp.

37-48, 2015.

[96] C. Pai-Cheng, “A transaction-oriented approach to attribute partitioning,”

Information Systems, vol. 17, no. 4, pp. 329-342, 1992.

[97] D. W. Cornell, and P. S. Yu, “A Vertical Partitioning Algorithm for Relational

Databases,” in Proceedings of the Third International Conference on Data

Engineering, 1987, pp. 30-35.

[98] C.-W. Fung, K. Karlapalem, and Q. Li, “Cost-driven vertical class partitioning

for methods in object oriented databases,” The VLDB Journal, vol. 12, no. 3,

pp. 187-210, 2003.

[99] L. Bellatreche, A. Cuzzocrea, and S. Benkrid, “Effectively and Efficiently

Designing and Querying Parallel Relational Data Warehouses on

Heterogeneous Database Clusters: The F&A Approach,” J. Database Manage.,

vol. 23, no. 4, pp. 17-51, 2012.

Bibliography

 161

[100] S. K. Song, and N. Gorla, “A Genetic Algorithm for Vertical Fragmentation

and Access Path Selection,” The Computer Journal, vol. 43, no. 1, pp. 81-93,

2000.

[101] J. Pèrez, R. Pazos, J. Frausto, D. Romero, and L. Cruz, “Vertical Fragmentation

and Allocation in Distributed Databases with Site Capacity Restrictions Using

the Threshold Accepting Algorithm,” Parallel Distributed Comput Syst, pp.

210–213, 1998.

[102] J. A. Hoffer, and D. G. Severance, “The use of cluster analysis in physical data

base design,” in Proc. VLDB, 1975, pp. 69-86.

[103] J. Muthuraj, S. Chakravarthy, R. Varadarajan, and S. B. Navathe, “A formal

approach to the vertical partitioning problem in distributed database design,”

in Proceedings of the Second International Conference on Parallel and

Distributed Information Systems, 1993, pp. 26-34.

[104] S. B. Navathe, and M. Ra, “Vertical partitioning for database design: a

graphical algorithm,” in SIGMOD Record, 1989, pp. 440-450.

[105] "CLUstering TOolkit (CLUTO)," April 10, 2017;

http://www.cs.umn.edu/karypis/cluto.

[106] J. J. Brito, T. Mosqueiro, R. R. Ciferri, and C. D. d. A. Ciferri, “Faster cloud

Star Joins with Reduced Disk Spill and Network Communication,” Procedia

Computer Science, vol. 80, pp. 74-85, 2016/01/01/, 2016.

[107] D. Nguyen-Cong, L. D'Orazio, N. Tran, and M.-S. Hacid, “Storing and

Querying DICOM Data with HYTORMO,” in Proceedings of the Second

International Workshop on Data Management and Analytics for Medicine and

Healthcare - Volume 10186, 2017, pp. 43-61.

[108] M. Steinbrunn, G. Moerkotte, and A. Kemper, “Heuristic and randomized

optimization for the join ordering problem,” The VLDB Journal, vol. 6, no. 3,

pp. 191-208, August 01, 1997.

[109] L. Rodríguez-Mazahua, G. Alor-Hernández, J. Cervantes, A. López-Chau, and

J. L. Sánchez-Cervantes, “A hybrid partitioning method for multimedia

databases,” Dyna, vol. 83, no. 198, pp. 59-67, 2016.

[110] B. Markines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, and G. Stumme,

“Evaluating similarity measures for emergent semantics of social tagging,” in

Proceedings of the 18th international conference on World wide web, Madrid,

Spain, 2009, pp. 641-650.

[111] T. V. V. Kumar, and K. Devi, “Frequent queries identification for constructing

materialized views,” in 2011 3rd International Conference on Electronics

Computer Technology, 2011, pp. 177-181.

[112] A. Strehl, and J. Ghosh, “Value-based customer grouping from large retail data

sets,” in Proc. SPIE, 2000, pp. 33–42.

[113] T. Sellam, and M. Kersten, “Cluster-Driven Navigation of the Query Space,”

IEEE Transactions on Knowledge and Data Engineering, vol. 28, no. 5, pp.

1118-1131, 2016.

[114] "TPC-H specification 2.8.0," http://www.tpc.org/tpch/.

[115] L. Byung Suk, and G. Wiederhold, “Outer joins and filters for instantiating

objects from relational databases through views,” IEEE Transactions on

Knowledge and Data Engineering, vol. 6, no. 1, pp. 108-119, 1994.

http://www.cs.umn.edu/karypis/cluto
http://www.tpc.org/tpch/

Bibliography

162

[116] P. Koutris, “Bloom Filters in Distributed Query Execution,” University of

Washington, 2011.

[117] L. F. Mackert, and G. M. Lohman, “R* optimizer validation and performance

evaluation for distributed queries,” in VLDB, 1986, pp. 149-159.

[118] C. Zhang, L. Wu, and J. Li, “Efficient Processing Distributed Joins with

Bloomfilter using MapReduce,” International Journal of Grid and Distributed

Computing, vol. 6, pp. 43–58, 2013.

[119] T. Lee, K. Kim, and H.-J. Kim, “Join processing using Bloom filter in

MapReduce,” in Proceedings of the 2012 ACM Research in Applied

Computation Symposium, San Antonio, Texas, 2012, pp. 100-105.

[120] F. N. Afrati, and J. D. Ullman, “Optimizing joins in a map-reduce

environment,” in Proceedings of Proceedings of EDBT '10, 2010, pp. 99-110.

[121] "CT Colonography," October 11, 2015; https://idash.ucsd.edu.

[122] "David Clunie's Medical Image Format Site," October 15, 2015;

http://www.dclunie.com.

[123] "Sample Data," October 12, 2015; http://idoimaging.com.

[124] "Lung Cancer Datasets," October 11, 2015; http://giveascan.org.

[125] "MIDAS Datasets," October 12, 2015; http://www.insight-journal.org.

[126] "Cancer Imaging Archive Database (CIAD)," October 28, 2017;

https://public.cancerimagingarchive.net.

[127] "Open Source Clinical Image and Object Management," October 02, 2015;

http://www.dcm4che.org.

[128] T. White, Hadoop: The Definitive Guide, Fourth Edition: O’Reilly Media,

2015.

[129] M. Möller, and S. Mukherjee, “Context-Driven Ontological Annotations in

DICOM Images - Towards Semantic Pacs,” in Proceedings of the Second

International Conference on Health Informatics, HEALTHINF 2009, Porto,

Portugal, 2009, pp. 294-299.

[130] M. Annamalai, D. Guo, M. Susan, and J. Steiner, “An oracle white paper:

oracle database 11g DICOM medical image support,” 2009.

[131] B. Kolev, P. Valduriez, C. Bondiombouy, R. Jiménez-Peris, R. Pau, and J.

Pereira, “CloudMdsQL: querying heterogeneous cloud data stores with a

common language,” Distributed and Parallel Databases, vol. 34, no. 4, pp.

463-503, 2016/12/01, 2016.

[132] B. Kolev, C. Bondiombouy, P. Valduriez, R. Jiménez-Peris, R. Pau, and J.

Pereira, “The CloudMdsQL Multistore System,” in SIGMOD, San Francisco,

United States, 2016.

[133] J. Duggan, A. J. Elmore, M. Stonebraker, M. Balazinska, B. Howe, J. Kepner,

S. Madden, D. Maier, T. Mattson, and S. Zdonik, “The BigDAWG Polystore

System,” SIGMOD Rec., vol. 44, no. 2, pp. 11-16, 2015.

[134] Thomas Y. Lee, D. W., Cheung, Jimmy Chiu, S.D. Lee, Hailey Zhu, Patrick

Yee, and W. Yuan, Automating Relational Database Schema Design for Very

Large Semantic Datasets, TR-2013-02, Technical report, Department of

Computer Science, University of Hong Kong, 2013.

https://idash.ucsd.edu/
http://www.dclunie.com/
http://idoimaging.com/
http://giveascan.org/
http://www.insight-journal.org/
https://public.cancerimagingarchive.net/
http://www.dcm4che.org/

Bibliography

 163

[135] M. Hooran, and S. Sherif, “AdaptRDF: adaptive storage management for RDF

databases,” International Journal of Web Information Systems, vol. 8, no. 2,

pp. 234-250, 2012.

[136] R. Ahmed, R. Sen, M. Poess, and S. Chakkappen, “Of snowstorms and bushy

trees,” Proc. VLDB Endow., vol. 7, no. 13, pp. 1452-1461, 2014.

[137] W. Du, M.-C. Shan, and U. Dayal, “Reducing multidatabase query response

time by tree balancing,” in Proceedings of the 1995 ACM SIGMOD

international conference on Management of data, San Jose, California, USA,

1995, pp. 293-303.

[138] G. Moerkotte, and T. Neumann, “Analysis of two existing and one new

dynamic programming algorithm for the generation of optimal bushy join trees

without cross products,” in Proceedings of the 32nd international conference

on Very large data bases, Seoul, Korea, 2006, pp. 930-941.

[139] S. Groppe, T. Kiencke, S. Werner, D. Heinrich, M. Stelzner, and L. Gruenwald,

“P-LUPOSDATE: Using Precomputed Bloom Filters to Speed Up SPARQL

Processing in the Cloud,” OJSW, vol. 1, no. 2, pp. 25-55, 2014.

N° d’ordre : XXX

EDSPIC : XXX

Université Clermont Auvergne

École Doctorale des Sciences pour l’Ingénieur

Thèse

pour l’obtention du grade de

DOCTEUR D’UNIVERSITÉ

Discipline : Informatique

Présentée par

Cong-Danh NGUYEN

Conception Automatisée Basée sur la Charge de Travail et les

Données pour un Modèle de Stockage Hybride Ligne-Colonne

et le Traitement des Requêtes à l’aide de Filtres de Bloom pour

la Gestion de Données DICOM à Grande Échelle

Soutenue publiquement le 4 Mai 2018

Composition du jury :

Rapporteurs :

Prof. Christine COLLET Institut polytechnique de Grenoble, France

Prof. Abdelkader HAMEURLAIN Université de Paul Sabatier, Toulouse, France

Examinateur :

Prof. Farouk TOUMANI Université Clermont Auvergne, France

Directeurs de thèse :

Prof. Laurent d’Orazio Université Rennes 1, France

Prof. Mohand-Said HACID Université de Lyon, France

Msc. Nga TRAN Micro Focus - Vertica, Cambridge, Massachusetts, USA

i

Contents

Chapitre 1 Introduction .. 1

Chapitre 2 Systèmes et Exigences de Gestion des Données DICOM 3

2.1 Caractéristiques des données et des charges de travail 3

2.1.1 Complexité élevée .. 3

2.1.2 Haute variété .. 3

2.1.3 Volume élevé et en constante augmentation .. 4

2.1.4 Grande vélocité .. 4

2.1.5 Diverses charges de travail ... 4

2.2 Systèmes de gestion de données DICOM .. 4

2.2.1 Besoins attendus ... 4

2.2.2 Systèmes existants .. 5

2.2.3 Systèmes existants .. 6

Chapitre 3 Bases de Données et Techniques Associées ... 9

3.1 Classements ... 9

3.1.1 Charges de travail OLTP et OLAP ... 9

3.1.2 Bases de données .. 9

3.2 Cadres de calcul en grappe .. 10

3.2.1 MapReduce .. 10

3.2.2 Spark .. 10

3.3 Dispositions de données .. 10

3.3.1 Modèle de stockage orienté ligne ... 10

3.3.2 Modèle de stockage orienté colonne .. 10

3.3.3 Modèle de stockage hybride .. 11

3.4 Partitionnement vertical et filtres de Bloom ... 11

3.4.1 Partitionnement vertical .. 11

3.4.2 Filtre de Bloom et l’intersection de filtres de Bloom 11

3.5 Résumé et conclusion .. 12

Chapitre 4 HYTORMO et HADF .. 13

4.1 HYTORMO et stratégies ... 13

4.1.1 Architecture d'HYTORMO .. 13

4.1.2 Stratégie de stockage de données ... 13

4.2 Approche de conception automatisée pour les données DICOM 15

4.3 Cadre de conception automatisé hybride ... 17

4.3.1 Aperçu du cadre ... 17

4.3.2 Exemple .. 19

Chapitre 5 Traitement de Requête pour HYTORMO .. 21

5.1 Stratégie de traitement des requêtes .. 21

ii

5.1.1 Plan d’exécution de requête ... 21

5.1.2 Détermination des jonctions gauches-extérieures 22

5.1.3 Réduire le nombre de jointures externes gauche 22

5.2 Intégration de filtres de Bloom et rapport coût-bénéfice 23

5.2.1 Intersection des filtres de Bloom .. 23

5.2.2 Analyse coût-bénéfice .. 24

5.2.3 Intersection incrémentale de Filtres de Bloom 25

Chapitre 6 Évaluation des Performances .. 27

6.1 Environnement expérimental ... 27

6.2 Exécution des expériences ... 28

6.3 Analyse et interprétation .. 31

6.3.1 Résultats de l’hypothèse H1 ... 31

6.3.2 Résultats de l’hypothèse H2 ... 32

6.3.3 Résultats de l’hypothèse H3 ... 32

Chapitre 7 Conclusion et Travaux Futurs ... 33

7.1 Résumé et conclusion .. 33

7.2 Travaux futurs .. 33

Mots clés : DICOM, données volumineuses, données clairsemées, HYTORMO,

modèle de stockage hybride, stockage en lignes, stockage en colonnes, similarité

hybride, filtre de Bloom, conception automatisée, jointure.

1

Chapitre 1 Introduction

Dans le secteur de la santé, la norme DICOM (Digital Imaging and Communication in

Medicine) est utilisée pour stocker les données d’imagerie médicale. Les données

DICOM possèdent les caractéristiques du Big Data, telles que la haute complexité, la

grande variété, de grands volumes, en augmentation constante, et une importante

vélocité. De plus, il existe une variété de charges de travail, notamment le traitement

transactionnel en ligne (Online Transaction Processing, abrégé en OLTP), le traitement

analytique en ligne (Online Analytical Processing, abrégé en OLAP) et les charges de

travail mixtes. Ces caractéristiques et charges de travail des données posent de

nombreux problèmes dans la gestion des données. Les systèmes existants ont des

limites concernant ces caractéristiques des données et des charges de travail. Dans cette

thèse, nous proposons des méthodes efficaces pour stocker et interroger les données

DICOM en termes de d’espace de stockage et de temps d’exécution.

Dans la communauté de recherche de base de données, nombreuses techniques ont

été proposées pour réduire la demande d'espace de stockage et améliorer la

performance de la charge de travail pour les données à grande échelle telles que: (1) le

partitionnement vertical pour réduire le nombre de valeurs nulles dans les ensembles

de données éparses ou pour améliorer les performances des requêtes; (2) les modèles

hybrides de stockage en lignes et en colonnes proposés pour augmenter les

performances des charges de travail mixtes ; ou (3) des bases de données NoSQL qui

sont bien adaptées pour traiter la grande variété et les volumes élevés de données.

Cependant, il y a des manques :

- Un modèle de stockage de données avec haute performance, évolutivité,

disponibilité et élasticité pour les volumes élevés de données DICOM.

- Une stratégie de stockage de données pour réduire à la fois l’espace de stockage et

le temps d’exécution des requêtes.

- Un modèle d’aide à la décision pour les décideurs (par exemple, les concepteurs

de bases de données) dans la conception de schémas et la sélection de dispositifs

de stockage de données appropriés.

- Un traitement de requête adapté et efficace.

En réponse aux problèmes ci-dessus, les objectifs de cette thèse sont de proposer :

- Un nouveau modèle de stockage hybride appelé HYTORMO qui offre hautes

performances, évolutivité, disponibilité et élasticité.

- Une stratégie efficace de stockage de données qui est un moyen systématique de

regrouper les attributs en groupes de colonnes et de suggérer des dispositions de

stockage de données appropriées.

- Un cadre de conception automatisé hybride, appelé HADF, qui prend en compte

l'impact combiné des informations spécifiques à la charge de travail et aux données

et un stockage hybride pour créer des configurations de stockage de données.

- Un traitement de requête adapté et efficace pour HYTORMO avec l’intégration de

filtres de Bloom (IBF) pour réduire les entrées/sorties sur le réseau.

La thèse fournit également des expérimentations pour démontrer les avantages des

méthodes proposées à l’aide de véritables ensembles de données DICOM.

Introduction

2

Systèmes et Exigences de Gestion des Données DICOM

3

Chapitre 2 Systèmes et Exigences de Gestion des

Données DICOM

Dans ce chapitre, nous déterminons d’abord les principales caractéristiques des

données DICOM et des charges de travail susceptibles de poser des problèmes de

gestion des données. Ensuite, nous présentons les exigences attendues. Ensuite, nous

passons en revue les systèmes de gestion de données DICOM existants en mettant

l’accent sur leurs forces et leurs faiblesses. Après cela, nous comparons ces systèmes

et concluons avec leurs limites à satisfaire les exigences attendues.

2.5 Caractéristiques des données et des charges de travail

2.2.3 Complexité élevée

Figure 2.1: Modèle d’information détaillé

L’organisation des données DICOM est complexe. Le modèle d’information de la

norme DICOM est utilisé pour décrire les informations sur les entités et leurs relations,

comme illustré par la figure 2.1. Une entité d’information (IE : information entity) est

utilisée pour représenter des informations pour un seul objet du monde réel tel que

Patient, Study, etc. L’IE se compose à son tour d’une liste d’attributs. En outre, il existe

des relations entre les IE. Par conséquent, les requêtes nécessitent généralement

plusieurs jointures pour intégrer les informations des tables.

2.2.4 Haute variété

Les données DICOM sont très variées car elles incluent des données d'image et des

métadonnées. En outre, il existe une hétérogénéité et une évolution des métadonnées.

 Schéma hétérogène : Le nombre d’attributs est très important (plus de 3,500). Ils

incluent des attributs obligatoires et facultatifs. Cela peut conduire aux problèmes

Systèmes et Exigences de Gestion des Données DICOM

4

suivant : espace de stockage peut être gaspillé en raison de valeurs nulles ; les

performances des requêtes peuvent être réduites en raison d’accès aux attributs non

pertinents.

 Schéma évolutif : L’évolution du schéma fait référence aux changements dans les

schémas des métadonnées au cours du temps, à mesure que les attributs sont

modifiés. Cela conduit à des problèmes de gestion des données. Par exemple,

comment garder le système existant pour fonctionner normalement en présence de

schémas de « nouvelle version » est un défi.

2.2.5 Volume élevé et en constante augmentation

Le volume élevé et toujours croissant de données a introduit des défis à la gestion

moderne des données. Des stratégies efficaces de stockage à long terme et de

traitement des données doivent être appliquées pour garantir la rapidité du traitement

des données et réduire les entrées/sorties.

2.2.6 Grande vélocité

La vélocité est considérée comme la vitesse des flux de données à venir qui doivent

être traités aussi rapidement que possible. Cependant, notre étude se concentre sur des

méthodes efficaces pour améliorer la vitesse des requêtes OLAP, OLTP et des charges

de travail mixtes, au lieu du traitement des flux de données.

2.2.7 Diverses charges de travail

Les charges de travail sont diverses (OLTP, OLAP, charges de travail mixtes). Les

modèles d’accès aux attributs et les requêtes conduisent souvent à des opérations de

jointure multi-tables. Certains attributs sont fréquemment accédés ensemble tandis que

certains attributs sont rarement utilisés ensemble. De telles charges de travail peuvent

avoir un impact négatif sur les performances des requêtes.

2.6 Systèmes de gestion de données DICOM

2.3.3 Besoins attendus

Ci-dessous, nous spécifions les exigences attendues pour un nouveau système de

gestion de données DICOM:

R1) Données flexibles : le système est capable de gérer la complexité des

données DICOM en permettant aux utilisateurs de représenter facilement les

tables d'entités et leurs relations dans le modèle d'information DICOM. Des

données normalisées doivent être créées. De plus, le système est capable de

gérer la variété de données DICOM.

R2) Requêtes flexibles : le système permet aux utilisateurs d'écrire des

requêtes SQL ad hoc avec des opérations de jointure.

R3) Efficacité du stockage et de traitement : tout d'abord, les données

doivent être organisées en fonction d'informations sur la charge de travail et sur

Systèmes et Exigences de Gestion des Données DICOM

5

les données afin de réduire la demande d'espace de stockage et l'exécution de

requêtes dans des charges de travail OLTP et OLAP mixtes. Plus

particulièrement, les données doivent être organisées et stockées de manière

appropriée afin de réduire la redondance des données, le coût de reconstruction

du n-uplet et les coûts d'E/S. Deuxièmement, le système est en mesure de

fournir des solutions pour un traitement efficace des requêtes sur des jeux de

données DICOM à grande échelle. Enfin, il est capable de fournir une capacité

de stockage, une évolutivité et une élasticité énormes.

2.3.4 Systèmes existants

PACS : Les PACS (Picture Archiving and Communication System) utilisent

principalement des SGBDR (systèmes de gestion de base de données) orientés ligne

pour stocker, récupérer et distribuer des données d’images médicales. Ils fournissent

des techniques d’index robustes pour l’accélération des opérations de récupération de

données. Cependant, ils ne prennent en charge que les requêtes avec des attributs

prédéfinis et ne gèrent pas les schémas hétérogènes.

eDiaMoND : eDiaMoND (Grid-enabled Medical Imaging Database) stocke les

données DICOM à l’aide d’une base de données d’images médicales basée sur une

grille informatique (grid computing) qui est construite à partir de SGBDR orientés

ligne. Le système vise à assurer l’interopérabilité, l’évolutivité et la flexibilité.

Cependant, le développement de techniques d’optimisation de requêtes n’a pas été

introduit. De plus, eDiaMoND ne fournit aux utilisateurs que des requêtes prédéfinies

(sous forme de document XML).

Oracle : Oracle est un SGBDR orienté ligne qui fournit des fonctionnalités pour

stocker et gérer des référentiels à grande échelle de fichiers DICOM. Il ajoute un

nouveau type de données qui permet à n’importe quelle colonne de ce type de stocker

un contenu DICOM dans leur table de base de données. Depuis qu’un nouvel objet

séparé est créé pour chaque fichier DICOM, l’espace de stockage est rapidement

augmenté et diminue ainsi les performances globales du système. Oracle RACs permet

de stocker et de gérer les données DICOM dans un environnement de type grappe

(cluster) pour fournir disponibilité, performance, évolutivité et élasticité. Cette

solution permet de fournir un débit élevé pour les charges de travail OLTP mais

n’optimise pas les charges de travail OLAP. Cette approche est également moins

évolutive que certaines bases de données NoSQL, telles que Cassandra et MongoDB.

DCMDSM : DCMDSM (DICOM Decomposed Storage Model) partitionne

verticalement les métadonnées DICOM en plusieurs petites tables. La méthode est

capable de gérer les schémas évolutifs/hétérogènes et d’économiser de la bande

passante. Cependant, le modèle utilise une approche de base de données centralisée

développée au sommet d’un SGBDR orienté ligne et n’a pas été conçue pour

fonctionner dans un environnement parallèle. En outre, ils peuvent entraîner des coûts

plus élevés en raison des jointures supplémentaires nécessaires pour la reconstruction

des n-uplets.

Base de données documentaire : Une base de données basée sur des documents, telle

que CouchDB, a été proposée pour stocker et interroger des données DICOM. Il

partage la conception non relationnelle sans schéma des systèmes de stockage clé-

Systèmes et Exigences de Gestion des Données DICOM

6

valeur standards et peut donc gérer l’évolution des métadonnées. Cependant, il n’existe

pas de langage de requête standard pour le système proposé. En outre, il est difficile

de représenter les tables et leurs relations dans le modèle d’information DICOM.

Système de stockage hybride compatible avec le cloud : Le système de stockage

hybride basé sur le cloud stocke les données DICOM dans les magasins de lignes et

de colonnes. Tout d'abord, les attributs DICOM sont classés en trois catégories : (1)

attributs obligatoires ; (2) les attributs fréquemment accédés ensemble; et (3) les

attributs facultatifs / privés / rarement accédés. Ensuite, les attributs sont regroupés

manuellement selon ces catégories. Enfin, la sélection des dispositions de stockage de

données pour les groupes de colonnes est décrite comme suit :

– Les attributs appartenant aux deux premières catégories sont regroupés et stockés

dans des tables de lignes afin de réduire le coût de reconstruction des n-uplets.

– Les attributs appartenant à la dernière catégorie sont stockés dans des tables de

colonnes afin d'économiser le coût d'E / S si seulement quelques attributs sont

requis par une requête.

Ce système peut gérer la complexité et l'évolution des données. Les coûts de

reconstruction des E / S et des n-uplets sont diminués. Cependant, il y a certaines

limites. Tout d'abord, le regroupement des attributs et la sélection des dispositions de

stockage de données appropriées sont effectués manuellement. Nous appelons cette

méthode approche d'expert. Deuxièmement, le médiateur distribué doit décider du

moteur de stockage le plus approprié pour effectuer une requête et déplacer des

données entre les moteurs de stockage. Enfin, le système ne passe pas facilement à

l'échelle.

2.3.5 Systèmes existants

Les exigences attendues énumérées à la section 2.2.1 sont utilisées comme critères de

comparaison des systèmes existants. Le tableau 2.1 montre le résultat de la

comparaison.

Table 2.1 : Comparaison des systèmes existants

Systèmes de gestion de données DICOM existants
Besoins attendus

R1 R2 R3

PACSs 0 - -

eDiaMoND + - -

Oracle/Oracle RAC + 0 -

DCMDSM + 0 -

Base de données documentaire + - 0

Système de stockage hybride compatible avec le cloud + + 0

+ pris en charge, 0 partiel, - non pris en charge

Les systèmes utilisant des bases de données relationnelles, notamment les systèmes

PACS, eDiaMoND et Oracle / Oracle RAC, peuvent traiter des données extrêmement

complexes, créer des données normalisées et prendre en charge SQL et les jointures.

Cependant, ils ne disposent pas de solutions pour : (1) organiser les données en

fonction de la charge de travail et d'informations spécifiques afin de réduire la demande

Systèmes et Exigences de Gestion des Données DICOM

7

d'espace de stockage et le temps d'exécution de la charge de travail ; (2) fournir une

stratégie de traitement de requête efficace ; et (3) fournir une énorme capacité de

stockage, évolutivité et élasticité.

Le modèle DCMDSM peut aider à améliorer les requêtes OLAP et à réduire la

demande d'espace de stockage en raison du modèle DSM. Néanmoins, le coût

d'exécution des requêtes OLTP peut être élevé en raison des jointures multi-tables. De

plus, le système existant a été conçu et validé en utilisant un environnement de

traitement distribué.

La base de données basée sur les documents et le système de stockage hybride

compatible avec le cloud possèdent de nombreuses fonctionnalités capables de gérer

les caractéristiques des données et des charges de travail DICOM. La base de données

basée sur les documents est une base de données NoSQL. Elle peut donc gérer la

grande variété de données DICOM et fournir des performances de requête élevées, une

capacité de stockage importante, une évolutivité et une élasticité naturelles. Le système

de stockage hybride en nuage a fourni des solutions en fonction de la charge de travail

et d'informations spécifiques aux données pour organiser et stocker les données

DICOM. Cependant, ces deux systèmes ne disposent pas des fonctionnalités suivantes

:

 Une approche de conception automatisée qui utilise des informations spécifiques

à la charge de travail et aux données pour concevoir et stocker les données DICOM

de manière à réduire à la fois le temps d'exécution des charges de travail et la

demande d'espace de stockage.

 Des solutions efficaces pour le traitement des requêtes sur les jeux de données à

grande échelle, en particulier pour réduire les E / S réseau dans un environnement

de traitement de requêtes distribué.

Systèmes et Exigences de Gestion des Données DICOM

8

9

Chapitre 3 Bases de Données et Techniques

Associées
Ce chapitre fournit tout d’abord une analyse des types de charge de travail, des bases

de données courantes, des structures d’informatique en cluster et des dispositions de

données. Ensuite, nous nous concentrons sur les techniques de partitionnement vertical

appliquées pour réduire l'espace de stockage (en particulier pour les jeux de données

fragmentés) et pour améliorer les performances des requêtes. Après cela, nous

introduisons des techniques de filtre de Bloom (BF) et de filtre de Bloom d’Intersection

(IBF) qui peuvent être appliquées pour améliorer les performances des requêtes dans

les environnements de traitement de requêtes distribuées. Enfin, nous résumons et

concluons le chapitre en sélectionnant des solutions pour les composants clés d’un

nouveau système de gestion de données DICOM.

3.8 Classements

3.4.4 Charges de travail OLTP et OLAP

Les charges de travail OLTP contiennent des requêtes exigeantes en écriture qui

doivent insérer, supprimer, mettre à jour ou extraire toutes les colonnes (ou la plupart

des colonnes) d'une table. Les bases de données orientées lignes sont optimisées en

écriture pour les applications OLTP.

En revanche, les charges de travail OLAP sont principalement constituées de

requêtes nécessitant une lecture intensive qui doivent accéder ou être agrégées sur

plusieurs lignes, mais uniquement sur quelques colonnes. Les bases de données

orientées colonnes sont optimisées en lecture, elles sont donc généralement utilisées

pour les applications OLAP.

3.4.5 Bases de données

Bases de données relationnelles : Les bases de données relationnelles organisent les

données en fonction du modèle de données relationnel qui utilise des tables ou des

schémas pour organiser et récupérer des données. Elles sont conçues pour stocker des

données structurées.

Bases de données NoSQL : Les bases de données NoSQL sont basées sur des modèles

de données flexibles sans avoir besoin de schémas prédéfinis. Elles peuvent donc gérer

des données non structurées ou semi-structurées stockées dans des systèmes de

stockage de clé-valeur, familles de colonnes, documents ou dans des systèmes de

gestion de bases de données.

Bases de données NewSQL : Les bases de données NewSQL (telles que VoltDB,

Clustrix, NuoDB et Google Spanner) sont considérées comme des SGBDR modernes.

Ils sont basés sur le modèle de données relationnelles, mais peuvent fournir une

évolutivité horizontale et des performances élevées en tant que bases de données

NoSQL tout en garantissant les garanties ACID traditionnelles et en fournissant du

SQL.

Bases de Données et Techniques Associées

10

3.9 Cadres de calcul en grappe

Notre étude est axée sur la technique de requête et d'analyse interactive et ad hoc qui

est généralement comparée à la technique de traitement par lots. Ainsi, dans cette

section, nous nous concentrons uniquement sur deux modèles de calcul parallèles :

MapReduce et Spark. La première technique utilisée est un modèle de programmation

par lots performant, tandis que la dernière est une infrastructure informatique en

grappe capable de fournir des performances élevées pour des charges de travail

interactives.

3.2.1 MapReduce

MapReduce est un modèle de programmation par lots. Cette technique traite un grand

volume de données en divisant un travail en plusieurs tâches qui sont effectuées en

parallèle sur plusieurs nœuds (machines). Cependant, ce modèle entraîne des

entrées/sorties disque et une latence réseau élevés car ses tâches doivent répliquer les

données pour le calcul local au niveau des nœuds.

3.2.2 Spark

Le modèle de traitement par lots de MapReduce n'est pas adapté aux requêtes et

analyses interactives ad-hoc en raison de sa latence élevée. En revanche, Spark est une

infrastructure de calcul en mémoire pouvant s’exécuter sur Hadoop pour offrir des

performances élevées aux charges de travail interactives. Pour réduire la latence, il

essaie de conserver les données intermédiaires en mémoire autant que possible afin de

réduire le besoin d'écrire les données sur des disques. De plus, les DataFrames dans

Spark permettent aux utilisateurs de représenter des données sous forme de tables.

Spark permet d'interroger les données à l'aide d'un langage de type SQL.

3.10 Dispositions de données

3.3.1 Modèle de stockage orienté ligne

Le modèle de stockage orienté ligne qui est utilisé dans les SGBDR orientés ligne (tels

qu’Oracle, DB2, SQL Server, etc.) stocke les données ligne par ligne. Ce modèle est

optimisé en écriture pour les charges de travail OLTP où tous les attributs d’un n-uplet

sont écrits une fois par requête. Cependant, il gaspille les entrées/sorties disque pour

les charges de travail OLAP car toute la table doit encore être lue en mémoire à partir

du disque, même si seulement quelques attributs sont requis.

3.3.2 Modèle de stockage orienté colonne

Le modèle de stockage orienté colonne qui est utilisé dans les SGBDR à colonnes (tels

que MonetDB et C-Store) stocke les données sur le disque colonne par colonne. Ce

modèle est optimisé en lecture car il permet de lire uniquement les colonnes requises.

Ceci est bien adapté aux charges de travail OLAP où seul un petit nombre d’attributs

d’une table peut être utilisé.

Bases de Données et Techniques Associées

11

3.3.3 Modèle de stockage hybride

Les modèles de stockage de données présentés dans les sections précédentes sont

optimisés pour une charge de travail OLTP ou OLAP, mais pas pour les deux. Pour

surmonter cette limite, des modèles hybrides de stockage de données ont été introduits,

tels que des modèles de stockage de groupes de colonnes (PAX, Data Morphing,

HYRISE), Mirror et Fractured Mirrors, HyPer, Colonnes de Trojan et SAP HANA.

Cependant, ces modèles n’ont pas été conçus pour exploiter les données DICOM. Par

exemple, il y a un manque de solutions pour réduire la demande d’espace de stockage

et le temps d’exécution des requêtes.

3.4 Partitionnement vertical et filtres de Bloom

Les techniques de partitionnement vertical permettent de réduire le temps d'exécution

de la charge de travail et la taille de l'espace de stockage pour les jeux de données

fragmentés. En outre, les techniques de filtre de Bloom permettent de réduire les coûts

d'E / S réseau et disque dans les environnements de traitement de requêtes distribuées.

3.5.3 Partitionnement vertical

Dans notre étude, nous classons les algorithmes de partitionnement vertical actuels en

deux approches : l'approche basée sur la charge de travail et l'approche basée sur les

données. La première catégorie utilise des informations sur l’utilisation des attributs

des requêtes pour générer des partitions verticales de manière à améliorer les

performances des requêtes. En revanche, la seconde approche utilise des informations

spécifiques aux données (par exemple, l’écart des données) pour regrouper les attributs

en grappes (c’est-à-dire, des partitions verticales). Cette approche vise principalement

à réduire le nombre de valeurs nulles dans les ensembles de données épars.

Cependant, il y a un manque d’études qui prennent en considération l’impact

combiné des informations spécifiques à la charge de travail et aux données sur le

résultat du partitionnement vertical et l’utilisation d’une disposition de stockage de

données différente pour les stocker.

3.5.4 Filtre de Bloom et l’intersection de filtres de Bloom

Le filtre de Bloom (BF: Bloom filter) est une structure de données probabiliste

compacte qui est utilisée pour les tests d’appartenance avec peu d’erreurs permises.

Alternativement, une intersection de filtres de Bloom (abrégé en IBF) qui est calculée

en effectuant des opérateurs AND au niveau des bits sur les BF peut être utilisée pour

représenter une intersection approximative d’ensembles. Le BF et l’IBF peuvent tous

deux être appliqués pour améliorer les performances des requêtes en filtrant les

données non pertinentes parmi les entrées des opérations de jointure. La probabilité de

faux positifs de l’IBF a été prouvée inférieure à celle de ses composantes BF.

Dans le contexte de la gestion de données DICOM, les requêtes de jonction de

tables multiples des utilisateurs peuvent impliquer une grande quantité ou des données

d'entrée redondantes en raison de la grande sélectivité des prédicats. Par conséquent,

Bases de Données et Techniques Associées

12

une stratégie de traitement de requête avec l'intégration de l'IBF est une solution

potentielle pour améliorer la performance des requêtes. Cependant, il existe un manque

d'études qui appliquent l'IBF qui est calculé à partir de fichiers BF non pré-calculés

dans un environnement de traitement de requête distribué, par exemple, Spark. De

plus, nous devons déterminer comment intégrer un IBF dans un plan d’exécution

particulier et effectuer une analyse coûts-avantages pour cette application.

3.5 Résumé et conclusion

Les composants clés du nouveau système (modèle de données, modèle de stockage de

données, schéma de données et traitement des requêtes) doivent être conçus de manière

à satisfaire aux exigences attendues en matière de stockage et d'interrogation des

données DICOM : (R1) données souples ; (R2) interrogation flexible ; et (R3)

Efficacité du stockage et de la CPU :

Modèle de données : Le modèle de données relationnel doit être appliqué pour

représenter facilement les entités et les relations du modèle d’information DICOM,

pour fournir du code SQL et pour pouvoir créer des données normalisées. Cependant,

par rapport aux bases de données NoSQL, les bases de données relationnelles ont des

limites pour fournir des performances de requête élevées, un stockage de données

énorme et une évolutivité horizontale. Il est clair qu'une base de données relationnelle

pure et une base de données NoSQL pure ne fournissent pas toutes les fonctionnalités

requises. Nous nous orientons donc vers une base de données NoSQL, mais nous

devons prendre en charge l’utilisation efficace du SQL et la représentation des données

sous forme de tables.

Modèle de stockage de données : En raison de la variété de la charge de travail

(charge de travail mixte OLTP et OLAP), un modèle de stockage hybride en lignes et

en colonnes est utilisé. En outre, les modèles de stockage hybride existants ont encore

des limites pour gérer une grande quantité de données. Par conséquent, pour faire face

au volume élevé et croissant de données DICOM, le nouveau modèle de stockage

hybride doit être conçu et mis en œuvre.

Schéma de données : Les algorithmes de partitionnement verticaux existants ont

montré leur utilité dans la conception de schémas pour réduire le temps d'exécution de

la charge de travail ou la taille de l'espace de stockage, mais il manque une solution

pour prendre en compte utilisation de systèmes lignes et colonnes. Par conséquent,

pour soutenir la prise de décision dans la conception de bases de données pour les

données DICOM, il est nécessaire d'adopter une nouvelle approche de partitionnement

vertical pour surmonter ces limites.

Traitement des requêtes : Le traitement de la requête doit produire des réponses

correctes et fournir des performances élevées pour les charges de travail interactives.

Spark devrait être choisi pour traiter les requêtes ad hoc interactives en raison de sa

capacité à offrir une faible latence, de hautes performances, de l'évolutivité et de

l'élasticité. Les jointures interne et externe doivent être appliquées pour créer les

réponses correctes pour les opérations de jointure entre des tables partitionnées

verticalement. Les IBF ont montré leur capacité à réduire le coût des E / S réseau, et

devraient donc être appliquées à la stratégie de traitement des requêtes.

13

Chapitre 4 HYTORMO et HADF

Dans ce chapitre, nous introduisons d'abord l'architecture d'HYTORMO. Ensuite, nous

introduisons deux approches de conception de base de données différentes, à savoir la

conception par expert et la conception automatisée, pour créer des configurations de

stockage de données pour les données DICOM.

4.6 HYTORMO et stratégies

4.2.4 Architecture d'HYTORMO

Figure 4.1: Architecture d’HYTORMO

La figure 4.1 décrit l’architecture de HYTORMO. Il existe deux composants clés :

le système centralisé et les nœuds distribués. Les tâches de traitement des requêtes sont

réparties entre plusieurs nœuds. Les données DICOM (métadonnées et données de

pixel) sont stockées sur les nœuds distribués à l’aide d’un système de fichiers distribué,

par exemple HDFS pouvant prendre en charge le stockage de données DICOM dans

des dispositions de stockage en lignes et en colonnes.

4.2.5 Stratégie de stockage de données

Les objectifs de la stratégie de stockage des données sont d'optimiser les performances

et l'espace de stockage des requêtes sur une charge de travail OLTP et OLAP mixte.

Pour atteindre ces objectifs, les métadonnées et les données d’image des fichiers

DICOM sont extraits, organisés et stockés de manière à réduire l’espace de stockage,

le coût de construction des n-uplets et les coûts d’entrée / sortie.

La stratégie de stockage de données proposée est exécutée comme suit : tout

d'abord, les tables d'entités doivent être décomposées en plusieurs sous-tables (c'est-

à-dire, des tables partitionnées verticalement). Ensuite, ces sous-tables seront stockées

dans des systèmes lignes et colonnes du système hybride de HYTORMO (dans un

système de fichiers distribué).

HYTORMO et HADF

14

Afin de réaliser une configuration de stockage de données conformément à la

stratégie de stockage de données ci-dessus, l'une des deux approches de conception

d'analyse est appliquée : basée sur des experts et automatisée. Dans cette section, nous

présentons l’approche par experts.

Tout d'abord, nous étendons l'approche basée sur l'expertise proposée par B.

Mohamad, L. d'Orazio et Gruenwald en fournissant des définitions claires de trois

catégories d'attributs, y compris Obligatoire, Fréquemment accédés ensemble et

Optionnel/privé/rarement-accédé (parfois appelé « Optionnel ») :

4. Les attributs obligatoires ne peuvent pas avoir pour valeur nulle et sont

fréquemment accédés ensemble.

5. Les attributs fréquemment accédés ensemble peuvent avoir pour valeur nulle et

sont fréquemment accédés ensemble.

6. Les attributs optionnels peuvent avoir la valeur nulle et ne sont pas fréquemment

accédés ensemble.

Figure 4.2: Tables en lignes et en colonnes de l’entité Patient

HYTORMO et HADF

15

Ensuite, nous regroupons et stockons les attributs comme suit :

1) Les attributs des deux premières catégories sont regroupés et stockés dans des

tables en lignes afin de réduire le coût de la reconstruction des n-uplets, car ils sont

fréquemment interrogés ensemble.

2) Les attributs appartenant à la dernière catégorie (c’est-à-dire, optionnel) sont

stockés dans des tables en colonnes afin d’économiser des coûts d’entrée/sortie si

seulement quelques attributs sont accédés par requête à la fois.

La figure 4.2 montre que les attributs de l’entité Patient sont stockés comme suit :

RowPatient et RowPregnancy sont des tables en lignes stockant respectivement des

attributs obligatoires et des attributs fréquemment accédés. D’un autre côté,

ColumnPatient est une table en colonnes qui stocke des attributs optionnels.

4.7 Approche de conception automatisée pour les données

DICOM

En pratique, il peut être difficile pour les experts d’évaluer manuellement la relation

de similarité parmi un grand nombre d’attributs en fonction à la fois des informations

spécifiques à la charge de travail et aux données, ainsi que de déterminer le format de

données approprié pour chaque groupe de colonnes. Pour cette raison, dans cette

section, nous fournissons une représentation formelle du problème de conception

automatisée et des modèles de coûts.

Informations spécifiques à la charge de travail

Nous décrivons une charge de travail W = (A, Q, AUM, F) comme suit :

 A = {UID, a1, a2, … , an} est un ensemble de tous les attributs d’une table

horizontale T.

 Q = {q1, q2, … , qm} est un ensemble de requêtes exécutées sur T.

 AUM est une matrice d’utilisation des attributs (attribute usage matrix) de taille m

x n.

 F = {f1, f2, … , fm} est un ensemble de fréquences de requête (query frequency).

Figure 4.3: Exemple de matrice d’utilisation des attributs et fréquences de requête

Par exemple, la figure 4.3 présente deux composantes AUM et F de la charge de

travail de la table horizontale T. Dans notre étude, par défaut, l’attribut UID est inclus

dans toutes les tables de partition verticales, il n’est donc pas représenté dans l’AUM.

HYTORMO et HADF

16

Informations spécifiques aux données

Les caractéristiques des données sont dérivées de la table horizontale T. La figure 4.4

montre un exemple de T avec 7 attributs, A = {UID, a1, a2, a3, a4, a5, a6}.

Figure 4.4: Exemple de la table horizontale T

Configuration Représentation d’une configuration de stockage de données

Soit S = {"row-store", "column-store"} qui désigne un ensemble de dispositions de

stockage de données disponibles. On note un ensemble de configurations de stockage

de données candidates pour la table horizontale T comme G = {G1, G2, … , GK}. Chaque

Gi = (Ci, Li) est constitué de deux composantes : un ensemble Ci = {Ci,1, Ci,2, . . .,

Ci,z} des groupes de colonnes (c’est-à-dire, partitions verticales) et un ensemble Li =

{Ld1
(Ci,1), Ld2

(Ci,2), … , Ldz
(Ci,z)} des dispositions de stockage de données suggérées.

Ldx
(Ci,x) indique que le groupe de colonnes Ci,x est stocké dans la structure de

stockage de données dx ∊ S.

Fonction objectif

Le problème de la conception automatisée peut être formulé comme suit : À partir

d'une table horizontale T et d'une charge de travail W, recherchez une configuration

de stockage de données Gi pour T afin de minimiser la valeur des deux fonctions de

coût: STORAGE_COST(W, Gi) et EXECUTION_COST(W, Gi). Cette fonction objectif

est décrite comme suit :

{
STORAGE_COST(W, Gi) → min

EXECUTION_COST(W, Gi) → min
 (4.2.1)

où le coût STORAGE_COST(W, Gi) est le nombre total de cellules de données utilisées

pour stocker tous les groupes de colonnes de Gi alors que le coût

EXECUTION_COST(W, Gi) est le coût d'exécution de la charge de travail W.

La configuration Gi = (Ci, Li) est produite à la suite de l’application de la stratégie

de stockage de données proposée pour générer un ensemble Ci et un ensemble Li.

Le coût de stockage d'une configuration de stockage de données Gi est assimilé au

nombre total de cellules de données de tous les groupes de colonnes Ci,x de Gi (après

suppression de toutes les lignes nulles):

STORAGE_COST(Gi) = ∑ COLUMNGROUP_SIZE(Ci,x)

 Ci∈Gi,
 Ci,x∈Ci

(4.2.2)

HYTORMO et HADF

17

Le coût d’exécution d’une requête q lors de l’utilisation de la configuration Gi peut

être noté par la fonction coût EXECUTION_COST(q, Gi) comme suit :

EXECUTION_COST(q, Gi)

= READ_COST(q, Gi) + RECONSTRUCTION_COST(q, Gi)
(4.2.3)

Le coût d’exécution de la charge de travail W peut être estimé comme suit:

COST(W, Gi) = ∑ COST(q, Gi)

q∈W

 (4.2.4)

Motivation

L’espace de recherche de solution pour une configuration optimale qui peut minimiser

la fonction d’objectif (montré dans la formule (4.2.1)) est très important. Pour pallier

cette limite, nous proposons un cadre de conception automatisée hybride qui permet

d’obtenir rapidement une bonne configuration.

4.8 Cadre de conception automatisé hybride

4.4.5 Aperçu du cadre

Figure 4.5: Vue d’ensemble de HADF

HYTORMO et HADF

18

Dans cette section, nous présentons un cadre de conception automatisé hybride,

appelé HADF. HADF est une approche heuristique basée à la fois sur des informations

spécifiques à la charge de travail et aux données pour produire automatiquement des

configurations de stockage de données pour les données DICOM. Pour cette raison,

nous disons que HADF dépend d'une approche de conception automatisée basée sur la

charge de travail et les données.

La figure 4.5 montre un HADF global qui utilise des entrées données pour effectuer

deux phases, phase de regroupement (clustering phase) et phase de fusion-sélection

(merging-selecting phase), pour générer automatiquement une configuration candidate

Gi = (Ci, Li), où Ci = {Ci,1, Ci,2, . . ., Ci,z} est un ensemble de groupes de colonnes et

 Li = {Ld1
(Ci,1), Ld2

(Ci,2), … , Ldz
(Ci,z)} est un ensemble de dispositions de stockage

de données suggérées.

Pour réaliser une configuration candidate Gi, trois groupes d’entrées sont requis

pour l’exécution de HADF : (1) Entrées spécifiques à la charge de travail : AUM et F.

(2) Entrée spécifique aux données : T. (3) Paramètres : poids α pour gérer la priorité

sur la similarité ; seuil β pour les attributs de regroupement ; seuil θ pour fusionner

une paire de groupes ; et le seuil λ pour sélectionner une disposition de stockage de

données appropriée. Ces paramètres vont de 0 à 1.

Deux phases de HADF sont données ci-dessous :

 Phase de regroupement : Cette phase vise à réduire l’espace de stockage et à

améliorer les performances des requêtes en réduisant les accès aux attributs non

pertinents. Il prend en compte l’impact combiné des informations spécifiques à la

charge de travail (workload-specific information) et spécifiques aux données

(data-specific information) sur la qualité du résultat du partitionnement vertical en

termes d’espace de stockage et de performance des requêtes. Il calcule d’abord

deux matrices de similarité : la matrice de similarité d’accès d’attribut AASM

(Attribute Access Similarity Matrix) en utilisant AUM et F et la matrice de

similarité de densité d’attribut ADSM (Attribute Density Similarity Matrix) en

utilisant T. Ensuite, la matrice de similarité hybride HSM (Hybrid Similarity

Matrix) est calculée en combinant AASM et ADSM avec un poids α. Enfin, la phase

de regroupement rapprochera les attributs en sous-espaces (c’est-à-dire des

groupes de colonnes) de sorte que la similarité hybride (donnée dans HSM) entre

deux attributs dans les mêmes sous-espaces soit supérieure ou égale à β. La sortie

de cette phase est un ensemble Ci = {Ci,1, Ci,2, . . ., Ci,z} des groupes de colonnes.

 Phase de fusion-sélection : Cette phase vise à améliorer encore les performances

de la requête en réduisant à la fois le coût de reconstruction des n-uplets (le nombre

de jointures supplémentaires) et les accès aux attributs non pertinents. Les groupes

de colonnes résultants de la phase de regroupement sont utilisés comme entrée

initiale pour cette phase. La phase de fusion-sélection commence par le calcul de

la similarité entre les groupes (Inter-Cluster Similarity) qui mesure le rapport

d’accès qui se chevauchent entre les paires de groupes de colonnes. Une paire de

groupes de colonnes est fusionnée pour créer un nouveau groupe de colonnes si

leur similarité entre les groupes est supérieure ou égale à θ. En outre, un groupe de

colonnes est stocké dans un stockage en lignes si sa similarité intra-cluster (Intra-

Cluster Similarity) qui mesure le rapport d’accès d’attribut à ce groupe de colonnes

HYTORMO et HADF

19

est supérieure ou égale à λ; sinon, un stockage de colonnes est utilisé. Comme

l’illustre la figure 4.5, deux groupes de colonnes Ci,2 et Ci,3 sont fusionnés dans

Ci,2.3 qui est stocké dans un stockage en colonnes. Cette procédure est répétée de

manière similaire jusqu’à ce que toutes les paires de groupes de colonnes soient

prises en compte. Cette phase renvoie une configuration candidate Gi = (Ci, Li).

4.4.6 Exemple

Figure 4.6: Informations spécifiques à la charge de travail et aux données de T

Étant donné les informations spécifiques à la charge de travail et aux données de

la table horizontale T, comme le montre la figure 4.6, nous appliquons ici HADF pour

générer deux configurations candidates différentes correspondant aux différents

paramètres des paramètres α, β, θ et λ.

Configuration 1 : Cette configuration peut également être obtenue en exécutant

HADF avec β = 0, λ = 0 et en utilisant des valeurs arbitraires pour α et θ, par

exemple, α = 0 et θ = 0.

La phase de regroupement produit les deux groupes suivants :

 C1,1 = {UID, a1, a2}

 C1,2 = {UID, a3, a4, a5, a6}.

Ensuite, la phase de fusion-sélection va fusionner les deux groupes ci-dessus en

un seul et suggérer d’utiliser un stockage en lignes pour cela :

 C1,1.2 = {UID, a1, a2, a3, a4, a5, a6} => stockage en lignes (row store).

Figure 4.7: Table créée pour la configuration 1

HYTORMO et HADF

20

La figure 4.7 illustre le groupe ci-dessus stocké dans une table unique orientée

ligne T1. Aucune jointure n’est nécessaire durant l’exécution de la charge de travail,

cependant des attributs non pertinents sont manipulés.

Configuration 2 : La phase de regroupement est effectuée avec les paramètres

suivants : α = 0.5 et β = 0.4. Ainsi, cette phase prendra en compte l’impact combiné

des informations spécifiques à la charge de travail et aux données pour aboutir à deux

groupes :

 C2,1 = {UID, a1, a2, a3}

 C2,2 = {UID, a4, a5, a6}.

Ensuite, la phase de fusion-sélection est effectuée en utilisant les réglages suivants :

θ = 0.5 et λ = 0.6. Il suggère la configuration de stockage de données suivante :

 C2,1 = {UID, a1, a2, a3} => stockage en colonnes (column store);

 C2,2 = {UID, a4, a5, a6} => stockage en lignes (row store) .

La figure 4.8 présente deux tables T1 et T2 qui sont utilisées pour stocker les deux

groupes ci-dessus dans différentes dispositions de stockage de données. La

configuration 2 permet de réduire le nombre de valeurs nulles et le nombre

d’opérations de jointure supplémentaires en même temps.

Figure 4.8: Deux tables créées pour la configuration 2

En conclusion, HADF peut fournir un bon support pour la conception de données

DICOM qui peuvent prendre en compte l’impact combiné des informations

spécifiques aux charges de travail et aux données sur la qualité des configurations de

stockage de données suggérées.

21

Chapitre 5 Traitement de Requête pour HYTORMO

Dans ce chapitre, nous présentons une stratégie de traitement de requêtes adaptée et

efficace pour HYTORMO. Nous introduisons d’abord un plan d’exécution de requête

qui peut prendre en compte une utilisation mixte des tables en lignes et en colonnes

(row table and column table). Des heuristiques sont introduites pour sélectionner un

type de jointure approprié (c’est-à-dire, jointure interne ou jointure externe gauche)

pour une jointure particulière et pour réduire le nombre de jointures externes gauches

dans une séquence de jointures. Ensuite, nous présentons comment intégrer un IBF

dans le traitement des requêtes afin de réduire les entrées/sorties réseau. Ensuite, une

analyse coût-bénéfice de cette intégration est fournie. Enfin, nous décrivons une

approche IBF alternative, appelée IBF incrémentale.

5.5 Stratégie de traitement des requêtes

5.2.5 Plan d’exécution de requête

La stratégie de traitement des requêtes peut être décrite comme suit : Une requête

utilisateur sera décomposée en sous-requêtes pour pouvoir accéder aux tables en lignes

et en colonnes nécessaires. HYTORMO utilise un plan d’arbre séquentiel gauche

profond (left-deep sequential tree plan) pour joindre ensemble des tables pertinentes.

Il est nécessaire d’évaluer certaines opérations de jointure entre ces sous-requêtes en

tant que jointures externe gauche pour éviter la perte de données causée par les n-uplets

rejetés par les jointures internes. HYTORMO déterminera automatiquement une

jointure en tant que jointure interne ou externe gauche.

Figure 5.1: Transformation du plan d’exécution pour la requête Q

Dans la requête utilisateur, les types de jointures entre ces tables d’entités sont

explicitement identifiés par les utilisateurs. Par exemple, dans la figure 5.1 (a), la

requête utilisateur Q = QI ⋈UID QJ ⋈UID QK montre que les jointures internes sont

utilisées pour joindre les tables d’entités TI, TJ et TK ensemble. Cependant, dans la

figure 5.1 (b), certaines opérations de jointure entre les sous-tables de ces tables

d’entités doivent être évaluées en tant que jointures externe gauche.

Traitement de Requête pour HYTORMO

22

5.2.6 Détermination des jonctions gauches-extérieures

Nous proposons des heuristiques pour déterminer quand une jointure externe

gauche est utilisée :

Règle 1 : Dans une jointure entre deux sous-tables de la même table d’entités, si

la table de gauche est une table en lignes d’attributs obligatoires alors que la table de

droite est soit une table en colonnes d’attributs optionnels, soit une table en lignes

attributs fréquemment accédés ensemble, cette jointure doit être évaluée en tant que

jointure externe gauche.

Par exemple, dans la figure 5.1 (b), les deux sous-requêtes QI,1⟕UID QI,2 et

QJ,1⟕UID QJ,2 sont évaluées comme jointures externes gauches. C’est parce que QI,1

et QJ,1, respectivement, accèdent à deux tables en lignes d’attributs obligatoires, T1 et

T3, tandis que QI,2 et QJ,2 accèdent à une table en colonnes d’attributs optionnels T2 et

à une table en lignes d’attributs fréquemment accédés ensemble T4, respectivement.

Règle 2 : Dans une opération de jointure entre deux tables d’entités, si la table de

droite a été remplacée par une sous-table qui est soit une table en lignes d’accès

d’attributs fréquemment accédés ensemble ou une table en colonnes d’attributs

optionnels (parce que la requête utilisateur utilise uniquement les attributs de cette

sous-table) et cette sous-table n’est pas le seul enfant de sa table parente, cette

opération de jointure doit être évaluée en tant que jointure externe gauche.

Par exemple, dans la requête Q = QI ⋈UID QJ ⋈UID QK, présentée dans la figure

5.1 (a), nous nous intéressons à l’opération de jointure liée à QK, c’est-à-dire,

(…) ⋈UID QK. La requête QK a été réécrite en QK,1 qui accède à la table en colonnes

des attributs optionnels TN. Supposons que TN n’est pas le seul enfant de sa table

parente, TK. Ainsi, la jointure ci-dessus est réécrite en une jointure externe gauche,

comme présenté dans la figure 5.1 (b).

Dans notre étude, seuls les cas de jointures gauches-externes sont concernés.

5.2.7 Réduire le nombre de jointures externes gauche

Afin d’améliorer les performances de la requête, le nombre de jointures externes

gauches doit être réduit le plus possible. Nous présentons la règle 3 ci-dessous.

Règle 3 : Étant donné une jointure externe gauche T1⟕UIDT2, si la table de droite

T2 contient une contrainte non nulle sur ses attributs, cette jointure externe gauche

doit être réécrite dans une jointure interne afin d’améliorer la requête performance.

Par exemple, comme le montre la figure 5.2, nous appliquons la règle 3 pour

transformer l’arbre du plan d’exécution de la figure 5.2 (b) en celui de la figure

5.2 (c) : Premièrement, nous vérifions s’il existe des contraintes non nulles sur la table

de droite des jointures externes gauches. Ici, nous supposons que C2
 et CN

 sont des

contraintes non nulles sur les attributs des tables T2 et TN, respectivement. Ainsi, deux

jointures externes gauches QI,1⟕UIDQI,2 et (QI ⋈UID QJ)⟕UIDQK,1 sont réécrites

comme deux jointures internes QI,1 ⋈UID QI,2 et (QI ⋈UID QJ) ⋈UID QK,1,

respectivement.

Traitement de Requête pour HYTORMO

23

Figure 5.2: Transformation du plan d’exécution après application de la règle 3

5.6 Intégration de filtres de Bloom et rapport coût-bénéfice

Dans cette section, nous présentons comment intégrer un IBF dans le traitement des

requêtes et son rapport coût-bénéfice.

5.3.4 Intersection des filtres de Bloom

Figure 5.3: Plan d’exécution de requête avec l’IBF

Afin d’éviter la perte de généralité, nous considérons l’intégration d’un IBF dans

le traitement de la requête pour la forme générale d’une requête Q supportée par

HYTORMO. Nous supposons que la requête Q peut être décomposée en sous-requêtes

QI, QJ et QK, chacune pouvant être décomposée en sous-requêtes plus petites pour

accéder respectivement aux tables en lignes et en colonnes T1, T2, …, TN. Après les

heuristiques (les règles 1 à 3) sont appliquées pour sélectionner les types de jointures

appropriés et pour réduire le nombre de jointures externes dans la séquence de jointure,

nous pouvons construire (build) et consulter (probe) un IBF commun sur l’attribut UID

des tables d’entrée, comme l'illustre la figure 5.3.

Traitement de Requête pour HYTORMO

24

5.3.5 Analyse coût-bénéfice

Comme il existe de nombreux cas dans lesquels l’IBF peut être appliqué, notre étude

se concentre sur les cas où l’IBF est utilisé pour une séquence de jointures séquentielles

de N tables jointes. Nous supposons que l’IBF est créé en croisant les BF sur toutes les

tables d’entrée D1, D2,…, DN. En outre, nous supposons que toutes les opérations de

jointure externe gauche dans la séquence de jointures ont été transformées avec succès

en opérations de jointure internes correspondantes. De plus, nous supposons également

que |Di| ≤ |Di+1|, où i ∊ [1, N-1], de sorte que la séquence de jointure peut être

exprimée comme : Q = (((D1 ⋈UID D2) ⋈UID …) ⋈UID DN-1) ⋈UID DN.

Figure 5.4: Phases de l’IBF

La figure 5.4 illustre les phases de construction et de consultation de l’IBF. Dans

la phase de construction, l’IBF est construit en appliquant un AND à tous les

composant BFi créés à partir des attributs de jointure, par exemple, UID, des tables

d’entrée D1, D2, …, DN. Après cela, dans la phase de consultation, l’IBF est appliqué

pour filtrer les n-uplets non pertinents hors de ces tables d’entrée. En particulier, les

étapes suivantes sont effectuées : vérification de l’appartenance d’une valeur v d’UID

dans chaque table d’entrée Di; si pour la valeur v = idi de UID toutes les fonctions de

hachage h1(v), h2(v), …, hk(v) retourne vrai (= 1), le n-uplet correspondant est

accepté ; sinon, il est ignoré de Di. Par exemple, le tuple avec la valeur v = id1 de

l’UID est accepté (conservé), tandis que le n-uplet avec la valeur v = id2 de l’UID est

rejeté.

Nous supposons que IBF est calculé à partir des entrées BFi créés à partir de N

tables d’entrée Di, où i ∊ [1, N], puis il est appliqué pour filtrer chaque table d’entrée

Di pour produire une table d’entrée filtrée Di(filtered). Le nombre de n-uplets de chaque

table d’entrée filtrée Di(filtered) peut être calculé par la formule (5.2.1):

|Di(filtered)| = |Di| × ρIBF,Di , (5.2.1)

où :

 |Di| nombre de n-uplets dans la i-ième table d′entrée Di;

 ρIBF: sélectivité de l’IBF.

Traitement de Requête pour HYTORMO

25

Par ailleurs, nous pouvons réécrire la formule (5.2.1) comme suit :

|Di(filtered)| = |Di| × ∏ [ρDj,Di
+ (1- ρDj,Di

) × PBFj
] ,

N

j=1

 (5.2.2)

où :

 |Di|: nombre de n-uplets dans la i-ième table d’entrée Di ;

 ρDj,Di
: sélectivité de la table Dj sur la table Di dans la jointure Di ⋈UID Dj;

 PBFj
: probabilité d’erreur du filtre de Bloom BFj qui est construit sur la table Dj;

 (1- ρDj,Di
) × PBFj

: fraction de n-uplets de la table de consultation Di qui ne sont pas rejetés

par le BFj et ne se correspondent à aucun n-uplet de la table Dj dans la construction.

Pour réduire le coût d’entrée/sortie du réseau et le coût d’entrée/sortie disque, nous

devons appliquer l’IBF si cela est avantageux. La formule (5.2.2) montre que pour

obtenir|Di(filtered)| ≪ |Di|, la valeur de ∏ [ρ
Dj,Di

+ (1- ρ
Dj,Di

) × PBFj
]N

j=1 doit être faible.

Cela signifie que la séquence de jointure doit contenir une ou plusieurs jointures entre

deux tables d’entrée Di ⋈UID Dj dans lesquelles la sélectivité ρDj,Di
 de la table Dj sur

Di et la probabilité d’erreur PBFj
 de BFj sont faibles ; sinon, l’IBF peut ne pas être

bénéfique au traitement de la requête.

5.3.6 Intersection incrémentale de Filtres de Bloom

Figure 5.5: Plan d’exécution avec l’IBF incrémental

Pour réduire le coût d’entrée/sortie disque nécessaire pour construire et consulter l’IBF

(causé par un grand nombre d’opérations de lecture et d’écriture sur les tables de

résultats intermédiaires et sur les tables de résultats intermédiaires filtrés), nous

pouvons construire et consulter l’IBF progressivement durant l’exécution des

opérations de jointure dans le plan d’exécution. Nous appelons le nouvel IBF proposé

IBF incrémental. La figure 5.5 (a) illustre l’intégration des phases de construction et

de consultation de l’IBF incrémental dans le plan d’exécution de la requête

Traitement de Requête pour HYTORMO

26

Q = QI ⋈UID QJ ⋈UID QK alors que la figure 5.5 (b) présente l’intégration des

résultats intermédiaires des sous-requêtes.

27

Chapitre 6 Évaluation des Performances

Ce chapitre présente les résultats de l’évaluation et les leçons tirées de l’application de

HYTORMO et des méthodes proposées.

6.6 Environnement expérimental

Centre de traitement de données de Spark

Nous avons utilisé Hadoop 2.7.1, Hive 1.2.1 et Spark 1.6.0 pour installer un centre de

traitement de données. Ce centre est constitué de 9 nœuds différents : 1 × Nœud maître

et 8 × Nœuds esclaves. Nous utilisons la configuration standard avec une modification :

nous changeons le facteur de réplication de HDFS de 3 à 2 afin d’économiser de

l’espace de stockage. Nous implémentons le plan d’exécution pour les requêtes

utilisant un programme Spark.

Jeux de données

Nous avons utilisé les jeux de données DICOM réels : CTColonography, Dclunie,

Idoimaging, LungCancer, MIDAS et CIAD. Leurs statistiques sont décrites dans le

tableau 6.1. À partir de ces ensembles de données, nous créons deux ensembles de

données mixtes : (1) MDB1; et (2) MDB2.

Table 6.1: Les jeux de données DICOM mixtes utilisés dans les expériences

No Jeux de données

Le nombre

de fichiers

DICOM

Le nombre

d’attributs

extraits

Taille des

métadonné

es extraites

Taille totale

des fichiers

Jeux de données

mixtes

1 CTColonography 98,737 86 7.76 GB 48.6 GB

MDB1
MDB2

2 Dclunie 541 86 86.0 MB 45.7 GB

3 Idoimaging 1,111 86 53.9 MB 369 MB

4 LungCancer 174,316 86 1.17 GB 76.0 GB

5 MIDAS 2,454 86 63.4 MB 620 MB

6 CIAD 3,763,894 86 61.5 GB 1.61 TB

Les métadonnées et les données de pixels ont été extraites des fichiers DICOM en

utilisant la bibliothèque dcm4che-2.0.29. Les expériences de ce chapitre concernent

uniquement quatre tables d’entités Patient, Study, GeneralInfoTable et

SequenceAttribute comme indiqué ci-dessous :

 Patient(UID, PatientName, PatientID, PatientBirthDate, PatientSex, EthnicGroup,

IssuerOfPatientID, PatientBirthTime, PatientInsurancePlanCodeSequence,

PatientPrimaryLanguageCodeSequence, PatientPrimaryLanguageModifierCodeSequence,

OtherPatientIDs, OtherPatientNames, PatientBirthName, PatientTelephoneNumbers,

SmokingStatus, PregnancyStatus, LastMenstrualDate, PatientReligiousPreference,

PatientComments, PatientAddress, PatientMotherBirthName, InsurancePlanIdentification)

 Study(UID, StudyInstanceUID, StudyDate, StudyTime, ReferringPhysicianName, StudyID,

AccessionNumber, StudyDescription, PatientAge, PatientWeight, PatientSize, Occupation,

AdditionalPatientHistory, MedicalRecordLocator, MedicalAlerts)

 GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames, GeneralValues)

 SequenceAttributes(UID, SequenceTags, SequenceVRs, SequenceNames, SequenceValues)

Evaluation des Performances

28

Les charges de travail

Nous utilisons quatre charges de travail différentes : La charge de travail W1 contient

principalement des requêtes OLAP en utilisant la table d’entités GeneralInfoTable. La

charge de travail W2 correspond principalement à des requêtes OLTP utilisant la table

d’entités SequenceAttributes. La charge de travail W3 inclut à la fois les requêtes

OLAP et OLTP à l’aide de la table d’entités Patient. La charge de travail W4 n’est pas

seulement une charge de travail mixte (comme W3) mais elle inclut également des

requêtes de jointure de tables multiples sur des tables d’entités.

6.7 Exécution des expériences

Expérience 1 : Évaluation de l'efficacité de HYTORMO et de l'utilité de HADF

Cette expérience vise à évaluer les avantages du modèle de stockage hybride et HADF.

Le jeu de données MDB1 et les charges de travail W1 à W4 sont utilisés.

Nous exécutons HADF sur les charges de travail W1 - W4 l’une après l’autre pour

choisir une bonne configuration de stockage de données en termes de demande

d’espace de stockage et de temps d’exécution de charge de travail pour chaque table

d’entités. Enfin, nous créons une configuration G* qui combine la bonne configuration

de chaque table d’entités. Le tableau 6.2 présente la configuration G*.

Table 6.2: Configuration G*

No Table des entités Configuration de stockage de données

1 Patient

PatientP1P2P3P4(UID, PatientName, PatientID, PatientBirthDate,

PatientSex) => stockage en lignes

PatientP13P14P15P19P21(UID, PatientBirthName,

PatienttelePhoneNumbers, SmokingStatus, PatientComments,

PatientMotherBirthName) => stockage en lignes

PatientP5(UID, EthnicGroup) => stockage en lignes

PatientallP7P8P16P17P18(UID, PatientBirthTime,

PatientInsurancePlanCodeSequence, PregnancyStatus,

LastMenstrualDate, PatientReligiousPreference) => stockage en lignes

PatientP6P12P22(UID, IssuerOfPatientID, OtherPatientNames,

InsurancePlanIdentification) => stockage en lignes

PatientP10P11P20(SOPInstanceUID, PatientPrimaryLanguageModifier-

CodeSequence, OtherPatientIDs, PatientAddress) => stockage en lignes

PatientP9(UID, PatientPrimaryLanguageCodeSequence)

=> stockage en lignes

2 Study

Study(UID, StudyInstanceUID, StudyDate, StudyTime,

ReferringPhysicianName, StudyID, AccessionNumber,

StudyDescription, PatientAge, PatientWeight, PatientSize, Occupation,

AdditionalPatientHistory, MedicalRecordLocator, MedicalAlerts) =>

stockage en colonnes

3 GeneralInfoTable
GeneralInfoTable(UID, GeneralTags, GeneralVRs, GeneralNames,

GeneralValues) => stockage en colonnes

4 SequenceAttributes
SequenceAttributes(UID, SequenceTags, SequenceVRs,

SequenceNames, SequenceValues) => stockage en lignes

Evaluation des Performances

29

Expérience 2 : Évaluation de HYTORMO et de HADF à l'aide de davantage de

jointures de données et de tables multiples

Comme l’expérience 1, cette expérience vise à évaluer les avantages d'HYTORMO et

de HADF. Cependant, il utilise plus de données et des requêtes de jointure à plusieurs

tables. À ces fins, cette expérience compare l'efficacité de trois configurations : (1) G

* qui est une bonne configuration obtenue à partir de l’expérience 1; (2) G1 qui stocke

toutes les tables d’entités dans un stockage en lignes; et (3) G2 qui stocke toutes les

tables d’entités dans un stockage en colonnes. La charge de travail W4 et deux jeux de

données MDB1 et MDB2 sont utilisés.

Les tableaux 6.3 et 6.4, représentent respectivement le temps d’exécution moyen

(5 exécutions) de la charge de travail W4 en utilisant les trois configurations ci-dessus

par rapport à deux cas différents: (1) utiliser MDB1 et (2) MDB2. Dans les deux cas,

la configuration G* nécessite la plus petite demande d’espace de stockage car de

nombreuses valeurs nulles sont supprimées de la table d’entités Patient. G* offre

également le temps d’exécution de la charge de travail le plus rapide.

Table 6.3: Temps d’exécution de la charge de travail W4 en utilisant MDB1

Conf. Configuration de stockage de données Temps d’exéc (s)

G* Bonne configuration de stockage de données générée par HADF, créée

en combinant toutes les bonnes configurations des tables d'entités.

35,940

G1 Toutes les tables d’entités sont stockées dans le stockage en lignes. 37,860

G2 Toutes les tables d’entités sont stockées dans le stockage en colonnes. 36,960

Table 6.4: Temps d’exécution de la charge de travail W4 en utilisant MDB2

Conf. Configuration de stockage de données Temps d’exéc (s)

G* Bonne configuration de stockage de données générée par HADF, créée en

combinant toutes les bonnes configurations des tables d'entités.

118,940

G1 All entity tables are stored in row stores. 161,040

G2 All entity tables are stored in column stores. 120,120

Expérience 3 : Comparaison entre HADF et HoVer

Cette expérience vise à évaluer plus avant le bénéfice de l'utilisation combinée

d'informations spécifiques à la charge de travail et aux données dans HADF. Nous

comparons HADF avec l'approche HoVer proposée par Bin Cui et al. L'approche

HoVer est un algorithme de clustering identique à la phase de clustering de HADF.

Cependant, l'approche HoVer est basée uniquement sur de similarité de densité

d'attributs (au lieu de similarité d'accès d'attribut et de similarité de densité d'attribut);

de plus, l'approche HoVer utilise uniquement le stockage en lignes (au lieu de stockage

en lignes et en colonnes). L'approche HoVer génère une configuration de stockage de

données correspondant à une valeur donnée du seuil de regroupement β.

Dans cette expérience, nous effectuons deux charges de travail W1 et W2,

séparément, sur l'ensemble de données MDB2. Le résultat de l'expérience montre que :

(1) Dans le cas d'une charge de travail OLAP (par exemple, W1), HADF peut fournir

une meilleure configuration de stockage de données que l'approche HoVer. En effet, il

est possible de suggérer de stocker la donnée utilisée pour une charge de travail OLAP

dans un système colonnes. (2) Dans le cas d'une charge de travail OLTP (par exemple,

Evaluation des Performances

30

W2), HADF est capable de fournir une configuration aussi bonne que celles générées

par l'approche HoVer. Un système lignes est utilisé pour stocker les données utilisées

pour la charge de travail OTLP.

Expérience 4 : Evaluer l'efficacité de l'IBF

Cette expérience vise à évaluer l’efficacité de la stratégie de traitement des requêtes

avec l’intégration d’un IBF. Nous utilisons l’ensemble de données MDB2 et la

configuration G* pour stocker les tables d’entités. La requête suivante de jointure de

plusieurs tables avec et sans utiliser un IBF est exécutée :

SELECT Patient.UID, Patient.PatientID, Patient.PatientName, Patient.PatientBirthDate,

Patient.PatientSex, Patient.EthnicGroup, Patient.SmokingStatus, Study.PatientAge,

Study.PatientWeight, Study.PatientSize, GeneralInfoTable.GeneralNames,

GeneralInfoTable.GeneralValues, SequenceAttributes.UID,

SequenceAttributes.SequenceTags, SequenceAttributes.SequenceVRs,

SequenceAttributes.SequenceNames, SequenceAttributes.SequenceValues

FROM Patient, Study, GeneralInfoTable, SequenceAttributes

WHERE Patient.UID = Study.UID AND Patient.UID = GeneralInfoTable.UID

AND Patient.UID = SequenceAttributes.UID AND Patient.PatientSex = ‘M’

AND Patient.SmokingStatus = ‘NO’ AND Study.PatientAge >= 60

AND SequenceAttributes.SequenceNames LIKE ‘%X-Ray%’

Cependant, pour observer l’impact de l’IBF sur une gamme de situations, nous

allons modifier la sélectivité (Sél.) des prédicats de la requête ci-dessus. Dans le

tableau 6.5, nous fournissons six ensembles différents de prédicats (Ens. Pré.).

Table 6.5: Ensembles de prédicats sur les attributs des tables d’entrée

Ens.

Pré.

PatientP1P2P3P4 PatientP13P14P15P19P21 Study SequenceAttributes

Sél. Prédicat Sél. Prédicat Sél. Prédicat Sél. Prédicat

1 1 Aucun prédicat 1 Aucun prédicat 1 Aucun prédicat 1 Aucun prédicat

2 1 Aucun prédicat 1 Aucun prédicat 0.6327 PatientAge >= 10 1 Aucun prédicat

3 0.4764 Patientsex = ‘M’ 1 Aucun prédicat 0.6327 PatientAge >= 10 1 Aucun prédicat

4 0.4764 Patientsex = ‘M’ 1 Aucun prédicat 0.2462 PatientAge >= 60 1 Aucun prédicat

5 0.4764 Patientsex = ‘M’ 0.0017 smokingstatus =‘NO’ 0.2462 PatientAge >= 60 1 Aucun prédicat

6 0.4764 Patientsex = ‘M’

0.0017

smokingstatus =‘NO’ 0.0061 PatientAge >= 90 0.0019 SequenceNames

LIKE ‘%X-Ray%’;

Dans le tableau 6.6, nous présentons une comparaison du temps d’exécution de la

requête avec et sans IBF. Ce résultat montre que les performances de la requête sont

significativement améliorées pour tous les ensembles de prédicats. Le temps

d’exécution de la requête avec est réduit de 10 à 38% par rapport au temps sans IBF.

Table 6.6: Comparaison du temps d’exécution avec l’utilisation de l’IBF

Ens.

Pré.

Temps d’exécution lorsque vous

n’utilisez pas l’IBF

Temps d’exécution lors de

l’utilisation de l’IBF
Rapport de temps

réduit (%)
Moyenne (s) Std. dev. Moyenne (s) Std. dev.

1 1264.80 389.20 1007.20 176.89 20%

2 1209.20 234.63 748.00 92.29 38%

3 1068.40 438.10 962.80 197.97 10%

4 1122.80 330.83 908.80 202.48 19%

5 1215.80 407.01 964.80 189.23 21%

6 1452.40 421.58 930.40 127.05 36%

Evaluation des Performances

31

Le tableau 6.7 représente une comparaison du temps d'exécution de la requête entre

l'utilisation de l'IBF et de l'IBF incrémental. Il montre que, dans tous les cas

d'ensembles de prédicats, le temps d'exécution de la requête est réduit lors de

l'utilisation d'un IBF incrémental.

Table 6.7: Comparaison entre l'IBF et l'IBF incrémental

Ens.

Pré.

Temps d’exécution lors de

l’utilisation de l’IBF

Temps d'exécution lors de l'utilisation d'un

IBF incrémentiel
Rapport de

temps réduit

(%) Moyenne (s) Std. dev. Moyenne (s) Std. dev.

1 1007.20 176.89 862.60 242.25 14%

2 748.00 92.29 925.40 198.97 -23%

3 962.80 197.97 995.40 167.60 -3%

4 908.80 202.48 901.80 216.55 1%

5 964.80 189.23 779.00 98.02 19%

6 930.40 127.05 729.80 202.91 22%

En tant que tel, pour cette requête, l’IBF incrémental donne de meilleures

performances d’interrogation que l’IBF pour la majorité des ensembles de prédicats.

Plus particulièrement, pour les premiers et derniers des trois ensembles de prédicats,

les rapports temporels réduits sont respectivement de 14%, 1%, 19% et 22% lorsque

l'IBF incrémental est appliqué. Cependant, pour les deuxièmes et troisième ensembles

de prédicats, l'IBF surpasse l'IBF incrémental. Cela est probablement dû au fait que le

coût élevé de la construction et de l’examen de l’IBF a été compensé de manière

significative par la quantité de données filtrées.

6.8 Analyse et interprétation

Cette section évalue les résultats des expériences et les hypothèses.

6.4.4 Résultats de l’hypothèse H1

Hypothèse H1 : Le modèle de données hybride, c’est-à-dire HYTORMO, associé à la

stratégie de stockage de données proposée, donne un temps d’exécution de charge de

travail plus rapide que l’utilisation d’un stockage en lignes ou d’un stockage en

colonnes.

Les résultats de l’expérience 1 montrent que les stockages en lignes et en colonnes

doivent être utilisés pour les données DICOM car chacun d’entre eux a ses propres

avantages :

- Un stockage en colonnes permet un traitement des requêtes plus rapide et plus

efficace pour les charges de travail OLAP qu’un stockage en lignes. Par exemple,

GeneralInfoTable est utilisé pour une charge de travail OLAP (W1) et donc suggéré

d’être stocké dans un stockage en colonnes.

- Un stockage en lignes offre des performances supérieures aux charges de travail

OLTP qu’un stockage en colonnes. Par exemple, SequenceAttribute est utilisé pour

une charge de travail OLTP (W2) et suggère d’être stocké dans un stockage en

lignes.

Evaluation des Performances

32

Les résultats de l'expérience 2 montrent que, dans une charge de travail mixte

OLAP et OLTP, une utilisation mixte des stockages en lignes et en colonnes donnera

un temps d’exécution de charge de travail plus rapide qu’une seule utilisation d’un

stockage en lignes ou en colonnes. Par exemple, la configuration G * qui utilise à la

fois les tables en lignes et en colonnes est plus rapide que la configuration G1 (en

utilisant des tables en lignes) et G2 (en utilisant des tables en colonnes).

Les résultats ci-dessus indiquent qu’il est avantageux d’utiliser le modèle de

stockage de données hybride pour stocker des données DICOM. Par conséquent,

l’hypothèse H1 est validée.

6.4.5 Résultats de l’hypothèse H2

Hypothèse H2a : La prise en compte de l’impact combiné des informations spécifiques

à la charge de travail et aux données peut aider HADF à produire de meilleures

configurations de stockage de données que d’utiliser uniquement des informations

spécifiques aux données ou uniquement des informations spécifiques à la charge de

travail.

Les expériences 1, 2 et 3 montrent ce qui suit : Pour les tables d’entités denses,

telles que GeneralInfoTable et SequenceAttribute, l’utilisation d’informations

spécifiques aux données n’a pas aidé à réduire l’espace de stockage. En revanche,

l’utilisation d’informations spécifiques à la charge de travail est utile pour améliorer

les performances de la charge de travail car elle a une incidence sur le résultat du

partitionnement vertical et sur la sélection de dispositions de stockage de données

appropriées. Pour les tables larges, telles que Patient et Study, l’utilisation

d’informations spécifiques aux données un effet important sur le résultat du

partitionnement vertical qui contribue à réduire la demande d’espace de stockage.

Par conséquent, l’utilisation combinée d’informations spécifiques à la charge de

travail et aux données est utile. A partir de ce résultat, l’hypothèse H2a est validée.

Hypothèse H2b : HADF est capable de générer une configuration de stockage de

données qui peut réduire la demande d’espace de stockage et le temps d’exécution de

la charge de travail en même temps.

Les résultats des expériences 1, 2 et 3 montrent que cet objectif a été atteint. Pour

les tables larges très éparses, par exemple Patient, HADF les décompose en tables

partitionnées verticalement à partir desquelles les lignes nulles sont supprimées (c’est-

à-dire que l’espace de stockage est réduit). En outre, les entrées/sorties réduites

accéléraient l’exécution de la charge de travail. L’hypothèse H2b est validée.

6.4.6 Résultats de l’hypothèse H3

Hypothèse H3 : La stratégie de traitement de requête avec l’intégration d’un IBF

conduit à de meilleures performances que de ne pas utiliser un IBF.

Les résultats de l’expérience 4 montrent que l’IBF et l’IBF incrémental ont accéléré

significativement le traitement des requêtes. Par conséquent, l’hypothèse H3 est

validée.

33

Chapitre 7 Conclusion et Travaux Futurs

Ce chapitre résume et conclut la thèse. Il présente également des recherches futures.

7.3 Résumé et conclusion

Six contributions principales ont émergé de notre travail : Premièrement, nous avons

effectué une évaluation des systèmes de gestion de données DICOM existants en

mettant l’accent sur les caractéristiques pour traiter les caractéristiques et les charges

de travail des données DICOM. Deuxièmement, nous avons fourni une comparaison

de des systèmes de gestion de données actuels. Troisièmement, nous avons proposé un

modèle de stockage hybride, appelé HYTORMO, associé à une stratégie de stockage

de données. Quatrièmement, nous avons proposé un cadre de conception automatisée

hybride, appelé HADF. Cinquièmement, nous introduisons une stratégie de traitement

des requêtes adaptée et efficace, basée sur HYTORMO. Enfin, nous validons les

méthodes proposées.

Les résultats expérimentaux montrent que le modèle de stockage de données

hybride offre de meilleures performances de charge de travail que l’utilisation d’un

stockage en lignes pur ou d’un stockage en colonnes pur. L’utilisation combinée

d’informations spécifiques à la charge de travail et aux données est nécessaire pour

générer des configurations de stockage de données pouvant réduire à la fois

l’utilisation de l’espace de stockage et le temps d’exécution de la charge de travail. De

plus, l’utilisation d’IBF améliore considérablement les performances de la requête.

7.4 Travaux futurs

Il existe des axes de recherche ouverts que nous pouvons étudier et étendre à l’avenir.

Modèle de stockage hybride : Au lieu de simplement utiliser des stockages en lignes

et en colonnes, nous prévoyons d’étendre HYTORMO pour prendre en charge

plusieurs stockages, y compris les stockages en lignes, les stockages en colonnes, les

stockages en valeurs-clés, etc., afin qu’il puisse être utilisés pour de nombreuses

applications Big Data.

Cadre heuristique pour la conception automatisée : Nous nous sommes, dans un

premier temps, basés sur les expériences et les avis d’experts pour sélectionner des

valeurs appropriées pour les paramètres d’entrée de HADF (c’est à dire, β, θ et λ), donc

il faudrait développer une méthode pour déterminer ces valeurs. Nous étudierons

l’application de techniques d’optimisation qui pourraient donner de meilleurs résultats

que notre approche. Deuxièmement, HADF sera étendu pour sélectionner des

configurations de stockage de données pour les tables horizontales dont les colonnes

ont des largeurs différentes. Troisièmement, l’effet de la compression est également

envisagé. Enfin, nous prévoyons de rechercher comment de nouveaux attributs

DICOM sont ajoutés au stockage de données existant.

Stratégie de traitement de requête : Nous allons explorer un plan d’exécution de

requête avec l’utilisation de jointures internes et de jointures externes, au lieu de

Conclusion et Travaux Futurs

34

seulement des jointures internes et des jointures externes gauches. En effet, si les

jointures externes complètes sont utilisées, les n-uplets résultants d’une requête

peuvent être reconstruits en joignant plusieurs tables partitionnées verticalement dans

n’importe quel ordre de jointure. En outre, nous envisagerons d’appliquer bushy plans

avec jointures n-aires pour augmenter le parallélisme dans le traitement des requêtes.

BF non précalculés et précalculés : Nous pensons qu’il serait utile d’avoir deux types

de BF: (1) Les BF non précalculés sont calculés à partir des tables d’entrée lors du

traitement de la requête tels qu’utilisé dans notre thèse. (2) Les BF précalculés sont

précalculés afin d’éviter des étapes de calcul supplémentaires requises lors du

traitement de la requête.

