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Titre : Dynamique des microvaisseaux cérébraux pendant la 
consolidation de la mémoire chez le rat en condition physiologique 
et en situation d’hypertension artérielle ou d’hypergravité 

 

Résumé :  

 

Les réseaux vasculaires cérébraux adaptent leur activité à la demande métabolique des neurones 
environnants, mais leur contribution fonctionnelle à la consolidation de la mémoire, processus par 
lequel les traces mnésiques se stabilisent dans le temps, reste inconnue. A l’aide d’un test de mémoire 
olfactif associatif couplé à des approches biochimiques et d’imagerie cérébrale chez le rat, nous avons 
étudié la dynamique des changements vasculaires au cours de la consolidation mnésique qui nécessite 
une interaction transitoire entre l'hippocampe et les régions corticales constituant les sites dépositaires 
des souvenirs. Nous montrons que la formation d’une mémoire durable est associée, dès l’encodage, à 
un signal hypoxique qui déclenche une angiogenèse transitoire dans des régions corticales spécifiques 
impliquées plus tard dans le stockage des souvenirs. Manipuler cette angiogenèse corticale précoce 
(ACP) par blocage ou stimulation spécifique de la voie de signalisation de l'angiopoïétine-2 perturbe, 
ou améliore, le rappel des informations anciennement acquises. Stimuler l’ACP chez un modèle de 
rats hypertendus présentant des déficits d’activation de la voie de l’angiopoïetine-2 et de formation de 
la mémoire pallie le déficit mnésique observé, confirmant l'importance fonctionnelle de l’ACP comme 
un prérequis à la formation des souvenirs. L'hypergravité, connue pour altérer les fonctions 
vasculaires, n’a pas modifié l'organisation de la mémoire. Nos résultats identifient l’ACP comme un 
processus neurobiologique crucial sous-tendant la formation et la stabilisation des souvenirs. Ils 
révèlent l'importance de la plasticité vasculaire dans la modulation des fonctions cognitives et 
suggèrent que les changements structurels précoces du réseau vasculaire cérébral constituent un 
mécanisme permissif pour la régulation de la plasticité neuronale au sein des réseaux corticaux 
impliqués dans la formation progressive et le stockage des souvenirs. 

 

Mots-clés : Angiogenèse - Consolidation mnésique - Hypergravité - Hypertension artérielle – 
Plasticité cérébrale - Rat - Rappel - Réseau vasculaire cérébral   
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Title: Dynamics of the cerebral microvasculature during the 
course of memory consolidation in the rat: physiological and 
altered conditions induced by hypertension and hypergravity 

 

Abstract:  

 

While the cerebral microvasculature is known to adapt its activity according to the metabolic demand 
of surrounding neurons, the functional contribution of vascular networks to memory consolidation, the 
process by which memory traces acquire stability over time, remains elusive. By using an associative 
olfactory memory task in rats coupled to biochemical and imaging techniques, we investigated the 
dynamics of vascular changes during memory consolidation which requires a transitory interaction 
between the hippocampus and distributed cortical regions that ultimately support storage of enduring 
memories. We found that remote memory formation was associated, upon encoding, with a hypoxic 
signal that triggered transitory angiogenesis in specific cortical regions which support memory storage 
and retrieval only weeks later. Manipulating early cortical angiogenesis (ECA) by selectively blocking 
or stimulating the angiopoietin-2 signalling pathway impaired or improved remote memory retrieval, 
respectively. Enhancing ECA in spontaneously hypertensive rats, which exhibit reduced angiopoietin-
2 expression when cognitively challenged and are unable to properly stabilize and/or retrieve remotely 
acquired information, was efficient in rescuing the observed memory deficit, thus confirming the 
functional importance of ECA as a prerequisite for the formation of remote memories. Hypergravity, 
known to impair vascular functions, failed to alter the organization of recent and remote memory. 
Altogether, our findings identify ECA as a crucial neurobiological process underlying the formation 
and stabilization of remote memory. They highlight the importance of vascular plasticity in 
modulating cognitive functions and suggest that the early structural changes within vascular networks 
constitute a permissive mechanism for the regulation of neuronal plasticity within cortical networks 
which support the formation and storage of enduring memories. 

 

Keywords: Angiogenesis – Arterial hypertension - Cerebral plasticity – Cerebral vascular network - 
Hypergravity - Memory consolidation - Rat - Retrieval 
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“Le véritable voyage de découverte  

ne consiste pas à chercher de nouveaux paysages,  

  mais à avoir de nouveaux yeux. ” 

 

À la recherche du temps perdu, Marcel Proust 
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Chapter 1: Memory and vascular contribution: the aim of the thesis 

 

What is the aim of our memory? To remember, of course!  

Nevertheless, more deeply the memory helps us to think and to shape our knowledge.  

Why is our culture so enriched by systems that help us to remember, to take trace of the events? 
Humanity grew up creating systems for transmitting the information acquired during their life, starting 
from paintings, books to the most modern databases. These are forms of “external memories”, but 
what about “our internal memory”? Why is it so irritating not remember? It is so annoying when you 
do not remember the code of your credit card! And it is even worse when you don’t remember what 
you did for a certain period of time because you fill your personality compromised. Memory, as a 
matter of facts, is fundamental for building up your individual identity and in the construction of social 
entity. We are our memories; without our memories we modify our identity, at least from a 
psychological point of view (Maurizio Ferraris). But memory is not always infallible. How many 
times has it happened to discuss with a childhood friend and you realize that the events that he reminds 
are different from yours? But even so, he was with you when that episode was happening. 

The study of human memory is dating back at Ancient Greece philosophers e.g. when Aristoteles 
defined it as “the scribe of the soul”. From Plato’s point of view, all humans were born free of any 
knowledge and the human mind/soul was a blank slate on which memory makes impressions in wax, 
Aristoteles refines this idea adding the concept of “associations”: two ideas are associated when the 
retrieval of one of them let us remember the second one and this process is possible thanks to an 
organized network of associations; this theory of memory held sway for many centuries (Plato, 
Teeteto; Aristoteles, De memoria et reminiscentia). 

Nowadays we consider memory the intellectual attitude that let us store and retrieve information 
belonging to the past. In other words, memory is the physiological process by which environmental 
stimuli are encoded, stored and reused in our daily living activities. Thus, our brain is capable of create 
and store long-lasting memories that we can recall and relive, so memory is not just related to the past 
but also to the present and the future. 

The memory process (Fig. 1) can be summarized in different fundamental steps (Josselyn et al., 2015): 
Encoding: the acquisition and the registration of new information, during a period of learning; 
Retention and storage: the period during which the information, previously acquired, is assimilate and 
organized in order to be stocked and conserved; 
Retrieval: the return of the memory/recall of this information. 
 

 

Figure 1: Memory process. 

Memories are formed from spatial-temporal patterns of synchronized firing in specific and dynamic 
neuronal assembly; firings constitute a transient activate network that underlie to cellular 
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modifications, in order to store these representations. These activity-driven cellular modifications 
produce a synaptic remodelling and an increase of strength of synapses such that the specific 
distribution of activity can later form a readout pattern during recall (Veyrac et al., 2014). 

In new memories formation process, information recently acquired is gradually transformed from an 
initial labile state, in which they are vulnerable to interferences, into enduring and stable state resistant 
to disruption. These post-experience processes of memory stabilization are called memory 
consolidation (Müller and Pilzecker, 1900). But how, when and where these processes concerning 
memory create an engrams or a memory trace remain a fundamental question. 

Therefore, the purpose of my thesis is to shed light on a particular phase of memory process that is the 
memory consolidation. However, when we speak about memory and memory consolidation we are 
often focusing on neuronal changes and networks, which of course are the principal players in this 
process but they cannot carry out this process alone. Like an orchestra, different instruments (neurons) 
form a complex musical symphony but they need musical notations (energy and oxygen) to produce 
music. 

As a matter of facts, the brain is one of the most highly perfused organs of the body, having a very low 
ability to store energy. For that reason, it is highly dependent on cerebral blood flow. The 
cerebrovascular network adapts its activity in order to provide energy and nutrients according to the 
metabolic need of neuronal networks (Cipolla, 2009). Consequently, there is a close interaction 
between the cerebral vasculature and neuronal networks during cognitive functions. However, the 
functional contribution of vascular networks during memory consolidation remains unknown. Thus, 
the first aim of my thesis is to investigate the dynamics of vascular changes during the course of 
memory consolidation.  

Moreover, in recent years, several studies described the existence of a potential link between the 
disruption of the vascular system and the onset or the acceleration of cognitive pathologies (Carnevale 
et al., 2012; Faraco and Iadecola, 2013).  For instance, hypertension has been suggested as one of the 
most relevant risk factors able to induce and/or increase cognitive impairments associated with 
vascular dementia or Alzheimer’s disease, although the underlying mechanism remains to be explored. 
Therefore, the second aim of my thesis is to investigate to what extent dysfunctions of vascular 
networks impair memory performance using an animal model of hypertension.  

Finally, why the CNES founded this research? The exploration projects as “mission to Mars” required 
a long exposure to space (closed to 2 years) with a long delay to communicate with the Earth (20min), 
then the possible impairment of cognitive functions as memory should have crucial consequences for 
the crew and the mission success. Since cardiovascular deconditioning is known to be one the first 
effect measured due to the modification of gravity during spaceflights, we address the question if it is 
possible that the gravity alteration, through the modification of cerebrovascular physiology, can affect 
the memory and especially the memory consolidation. 

In the first part of the introduction (Chapter 1) we introduce the memory process, in particular the 
process concerning a memory called “ancient memory”. We start from what we know from patients 
that lost their memory and from literature concerning the modification of memory function and their 
neuro-anatomical correlates. Then we explore the concept of memory consolidation, thus the system 
leading the storage of our memories, considering the modifications at synaptic and systemic levels and 
the different models explaining the link between neuro-anatomical structures. 

 In the second part (Chapter 2), we point out the contribution of vascular network in supporting 
memory process. We investigate the link between vascular network and neurons, how they 
communicate and how they interact. In particular, we focus on how neuron can induce vascular 



19 
 

changes to support memory process through the mechanism of hypoxia that in turn stimulates the 
modification of vascular architecture via angiogenic mechanism.  

Then, in the last part (Chapter 3 and 4), we reveal how pathologic or non-physiologic conditions could 
affect memory process. In particular, we take advantage of two particular models; the first model is a 
hypertensive model: we selected the Spontaneously Hypertensive Rats (SHRs) that develop a 
spontaneous hypertension since 2 months, focusing on the vascular components that can affect 
memory during a long period of time. The second model, the rats exposed to hypergravity, is used as a 
tool to control the insurgence of vascular alteration and the duration of this perturbation.   

Since the transdisciplinary topic of the thesis, it will be difficult to explore in details all the 
mechanisms implicated in the processes considered in this manuscript. In any case, we tried to 
summarized them and add some references of the reviews treating these topics. 
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Chapter 2: The memory process 
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Chapter 2: The memory process 

 
2.1. Historical overview: milestones in memory study 

While learning is the process whereby we acquire new information (an adaptive change in behaviour 
caused by experience), memory includes any changes in activity and connectivity of neuronal system, 
triggered by exterior stimuli or brain state that persist over the time (Chaudhuri and Fiete, 2016). 
Memory is an adaptive process by which experience-based information is encoded, stored and finally 
retrieved (Lesburgueres et al., 2011). Memory is like glue, without it our life is made by disconnected 
fragments without meaning.  

But where the memory is stored and how it is conserved in our brains? In the study of neuroscience, 
we have always looked for a link between cognitive functions and structures tasked with that function. 

However, if today it seems logical that the brain functions reside in the brain, in the past the concept of 
the dualism, that is the separation between cognitions and logical knowledge, was a common thought, 
with the former housed either in heart or in the soul, and the latter, residing in the brain. William 
Shakespeare in The Merchant of Venice (Act 3, Scene 2) writes “Tell me where is fancy bred. Or in 
the heart or in the head?”. In the XVIII century, a physician named Franz Joseph Gall attempted to 
abolish mind-brain dualism providing insights that are important for modern neuroscience; based on 
anatomical studies, he argued for the first time that brain is the organ of the mind and all mental 
functions arise from the brain; moreover he noticed that the cerebral cortex is not homogeneous and 
different mental functions are localized in different regions of the cortex; Gall thought to localized 
mental faculties by examining the surface of the skulls of humans and, not surprisingly, he 
misidentified the functions of most parts of the cortex; nevertheless he produced these major 
conceptual contributions that has opened the door to the study of cognitive process localized in the 
brain. After more than one century, this insight was reviewed thanks to the study of the correlation 
between cognitive impairment and cerebral lesions. Studying the language and the aphasia process 
Broca and Wernicke understood that a complex mental function in not localized to a single brain 
region but involves interconnections between several regions. This intuition drives in the XXth century 
a plethora of studies concerning the localization of cognitive functions, and among these also memory 
was investigated (Milner et al., 1998).  

Nowadays we know that memory is not stored in one single structure, but it spreads in different brain 
areas, in other words, it is a multi-system process. However, the fundamental question about how and 
where the memories are formed and stored in our brains has not yet been answered. A new interesting 
insight that started to scratch the surface of this intriguingly field was given by Richard Semon at the 
beginning of XXth century that was the first to propose the “engram theory” in memory process. His 
idea was that the information, which is encoded and transformed in memory, could be retrieved even if 
we find just an element resembling to a component of the original stimulus thanks to a memory trace 
called “engram”. He defined the engram as “…the enduring though primarily latent modifications in 
the irritable substance produced by a stimulus…”, to be distinguished from the ”ecphory”  the process 
which “…awakens the mnemic trace or engram out of its latent state into one of manifested 
activity…” (Semon and Simon, 1921); currently, these two concepts are called respectively memory 
trace and retrieval. Nowadays we know that the formation and the storage of a memory lay on physical 
and biochemical modifications in brain structures induced by learning. These modifications that last 
over the time are summarized with the name of engram or memory trace (Josselyn et al., 2015). In 
other words, engram refers to enduring physical and chemical changes produced by learning, which 
are concretized in the formation of newly formed memory associations.  
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Moreover, Semon amazingly pointed out the re-integrative aspect of the retrieval: only a part of the 
total stimulation needs to the present in order to recall the retrieval of the memory (Tonegawa et al., 
2015a). 

The theory of engram was supported by Karl Lashley (Tonegawa et al., 2015a) that empirically tried 
to localize the spatial memory trace in rodent brain structures through cortex lesions of different size. 
The rats were let to perform a maze with food rewards. He showed that little cortical lesions did not 
affect memory spatial performance; but when the lesions were more extended memory was affected; 
he concluded that the severity of memory impairment was directly proportional to the size of the 
lesion and that memory was not localized in any specific region of the brain. He formulated the “law 
of mass action”(Lashley, 1929; Milner et al., 1998), according to which the extent of memory deficit 
was correlated with the size of the cortical area removed, not with its specific location. Two 
weaknesses biased this study: first the lesions were addressed just to the cortex and second rats are 
able to develop others strategy to perform the maze. Despite Lashley’s conclusions were partially 
incorrect, encouraged by these findings, several studies were produce in order to localize and 
characterize the engram both on animals and in humans. Among these Donald Hebb in 1949 tried to 
explain Lashley’s results suggesting that learning induces the reinforcement of synaptic connection 
and facilitates the formation of neuronal assemblies, a population of neurons that shows coordinated 
firing activity; these assembles can be distributed over large areas of cortex (Josselyn et al., 2015). 
This concept is the base of modern theory of memory engram formation.  

Today, we often use the terminology of engram pathways to indicate that the memory trace of an event 
is not necessarily located to a single anatomical region but it is distributed in several areas directly or 
indirectly connected in a scheme specific to that given information (Tonegawa et al., 2015a). 

Another important step in the localization of memory structures in the brain was achieved by 
neurosurgeons Wilder Penfield and Theodore Rasmussen that showed, for the first time, that episodic 
memory is localized in specific areas of the brain. 

For a pre-surgery procedure, they stimulate a part of the medial temporal cortex of a patient, inducing 
a vivid recall of episodic memory: “Yes, Doctor, yes, Doctor! Now I hear people laughing - my 
friends in South Africa. Yes, they are my two cousins, Bessie and Ann Wheliaw.’’(Penfield, 1950). 
This study revealed the involvement of this structure in retrieval of episodic memory.  

A particular acceleration in the memory study was given by patient HM and other patients that make 
possible the correlation of different kind of amnesia with brain lesions; we will discuss the interesting 
case of this patient in the chapter “The landmark study of Henry Gustav Molaison (Feb. 26, 1926 – 
Dec. 2, 2008)” in order to understand the important insights that allowed us to define the different 
kinds of memory and the temporal process underlying memory formation. 

Nowadays thanks to imaging technology, behavioural paradigms coupled with invasive or non-
invasive techniques, immediate early genes (IEGs, that underlie synaptic plasticity and modification of 
neurons required for memories) or optogenetics studies we can identify and manipulate the neurons 
implicated in memory process. Moreover, we know that the engram associated to a souvenir is not 
necessarily located in one single region, but it can be scattered in a broad neuronal network, and it was 
probably for this reason that Lashley faced so many issues to find out the engram localization. 

All these studies reveal that each memory recruits a specific subpopulation of neurons activated during 
the encoding and re-activated during retrieval (Veyrac et al., 2014). The supporting evidences 
regarding this concept can be summarized in three types of study: the observational studies, which 
demonstrate a correlation between neuronal assemblies and correlated to the behavioural expression of 
that specific memory; the loss-of function studies, which demonstrate that inhibiting the neuronal 
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assemblies results in the impairment of the memory expression; the gain-of function studies that show 
how the behavioural expression of the memory can be triggered through the activation of neuronal 
population (Tonegawa et al., 2015a). 

Regarding observational studies, examining IEGs like c-fos or zif268, several teams demonstrated that 
the engram associated to a memory is not necessarily located in one single region, but it can be 
localized in a wide neuronal network (Frankland et al., 2004; Lesburgueres et al., 2011; Maviel et al., 
2004). Moreover, they confirmed that a selected population of neurons, active during acquisition of a 
memory, are preferentially reactivated during the retrieval of the same memory. It is the case of fear 
memory: Reijmers and colleagues showed using transgenic mice (TetTag mouse model) that neurons 
activated during pavlovian fear conditioning encoding are re-activated during the memory retrieval in 
the amygdala (Reijmers et al., 2007). Similar studies demonstrated the same phenomenon during 
contextual fear conditioning test in hippocampus (Deng et al., 2013; Tayler et al., 2013) and cortex 
(Tayler et al., 2013; Zelikowsky et al., 2014).  

In humans, other studies showed that the activity of single neurons in hippocampus and entorhinal 
cortex when the subjects view for the first time a cinematic episode are the same that are reactivated 
during verbal reports of memories of these specific episodes at the time of free recall (Gelbard-Sagiv 
et al., 2008). 

In accordance, loss-of function studies proved that the reversible or irreversible inhibition of neuronal 
population either in amygdala (Han et al., 2009) or in hippocampus, in particular in hippocampal areas 
such as gyrus dentatus (GD), CA3 (Denny et al., 2014) and CA1 (Tanaka et al., 2014), can affect the 
retrieval of memory during fear conditioning task. Similar results were obtained regarding the 
essential role of retrosplenial cortex neurons in spatial navigation memory during Morris Water Maze 
task (Czajkowski et al., 2014). Since disrupting this neuronal population the memory is impaired, 
these studies revealed that these areas contain an indispensable part of engram complex. 

Finally, the gain-of-function studies provide the most direct evidence for the existence of memory 
engram cells, since they demonstrate that selected neuronal assemblies activated by learning can elicit 
memory recall once they are reactivated. In others words, some studies showed that the reactivation of 
the same neurons in hippocampus (Liu et al., 2012) or in amygdala (Kim et al., 2014) that aroused 
during encoding of fear conditioning task is sufficient to trigger the behavioural expression of the 
memory, in this case freezing behaviour, normally induced by the original stimulus. Interestingly, the 
artificial activation of neurons can make the memory fleet and able to incorporate new information to 
form a new memory. 

The capacity of the memory to be modified during reactivation can be responsible of the formation of 
false memories. As a matter of fact, during fear conditioning test, Ramirez and colleagues showed that 
the reactivation in another context of the same neurons initially activated in a first context induces 
freezing behaviour in absence of foot-shock, being able to demonstrate that the recall of this false 
memory was context-specific (Ramirez et al., 2013). 

In view of above, the engram notion of Semon can be actualized; in fact when a person has a new 
experience a plethora of specific stimuli constituting the experience activates a specific subpopulation 
of neurons, in order to strengthen the connections between the neurons which in turn create a neuronal 
assembly that takes in charge the storage of the memory. 

Successively, when the person is re-exposed to at least one part of the original experience, the 
neuronal network depositary of the memory trace is reactivated in order to synchronize the coherent 
retrieval of the original experience. Thus, during consolidation, the engram can exist in a “dormant 
state” between two active states, the encoding and the retrieval (Josselyn et al., 2015). The engram is 
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not yet a memory: the memory trace is different from the memory per se, since the first one is the 
neuronal substrate eliciting the expression of the second one. 

Therefore, the formation of a memory trace is a complex phenomenon involving the reinforcement of 
the connections between different populations of neurons activated during learning. This activation of 
synchronized firing neurons leads to experience-induced epigenetic changes, increase of synapsis 
strength and neuronal excitability. In other words, the engram is constituted by long-lasting physical 
and biochemical modifications induced by encoding at cerebral level, but even if it starts to be formed 
during the learning, it is not static. The consolidation process can alter the physical or chemical 
organization of the engram, undergoing to strength or quality alterations (Josselyn et al., 2015). 

As a matter of facts, the memory trace can change its nature and its location, from molecular cellular 
level (synaptic remodelling, epigenetic modifications and variation of neuronal excitability) to 
systemic level (different structures implicated in memory consolidation process). In others words, 
memory trace is formed by both synaptic dynamics, that alter the efficacy of synaptic transmission 
(functional plasticity) and changes in the structure and number of synaptic connections (structural 
plasticity (Korte and Schmitz, 2016). Moreover, the storage of the information is highly dependent 
from the neuronal networks. 

In the next part of introduction we will consider the synaptic and systemic modification of memory 
trace, starting from a general overview of what concerns declarative memory consolidation and 
exploring the brain areas related to memory consolidation, since the objective of my thesis is to 
investigate part of this complex phenomenon. 

 

2.2. The landmark study of Henry Gustav Molaison (Feb. 26, 1926 – Dec. 2, 2008) 

Regardless of the stimulant work of Penfield, the scientific community was not convinced that the 
temporal lobe was the critical area in memory process until the study of the patient Henry Gustav 
Molaison (known for many years as patient H.M. till his death in 2008); he was the first and most 
famous case, studied by Brenda Milner and William Scoville, revealing the presence of memory 
deficits induced by a bilateral ablation of a portion of medial temporal lobe (MTL) (Scoville and 
Milner, 1957) (Fig. 2).  

H.M. suffered of a progressive and pharmacologically uncontrolled form of epilepsy caused by a bike 
crash happened when he was 9 or 10 years old, (Corkin et al., 1984). When became adult, H.M was 
not able to have neither a normal job nor a normal life and for this reason, at the age of 27, in 1953, he 
underwent to a surgical ablation of MTL in order to control the epileptic attacks (Squire, 2009). 
During the surgery hippocampal formation (parahippocampal-entorhinal cortex and anterior 
hippocampus), amygdala and parts of associative multimodal areas of temporal lobe were removed 
(Corkin et al., 1997). 
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Figure 2: On the left, schemes show the estimation of surgical ablation of medial temporal lobe (MTL) in H.M. (Scoville and 
Milner, 1957), with the right hemisphere intact in order to show the structures removed. On the right, the rectified version of 
the original diagram indicating the extent of the ablation based on the MRI studies (Corkin et al., 1997).  

 

After the surgery, the epileptic attacks were effectively controlled, but unfortunately for him and 
hopefully for us, a strong memory deficit was detected. 

This memory deficit (amnesia) was peculiar, since the short-term memory, from seconds to minutes, 
was normal. Moreover, he possessed a long-term memory of the events happened years before the 
surgery. He remembered his name, his previous job and events of his childhood, even if he had a 
certain degree of retrograde amnesia of the events happened during few years (10 years) preceding the 
surgery (partial retrograde amnesia). 

H.M. possessed a normal mastery of language, comprehending a reach vocabulary, and his IQ was 
unchanged (normal-high); he was able to carry on normal conversations (i.e. had some capacity for 
working memory) but he would forget what the conversation was about immediately (anterograde 
amnesia); practically, he was incapable to transfer new memory traces from short-term memory to 
long-term memory (See also the paragraph “human amnesia”). 

If he was asked to remember a number like 8414317, he was able to repeat it during few minutes, 
showing a good short-term memory, but once briefly distracted, he forgot it. He was unable to 
remember information regarding people, places or objects more than few minutes, being unable to 
store new memories for longer. For example, he was not able to remember Milner even if he met her 
at least once for month and for several years. Moreover, he presented some issues in spatial 
orientation. He required more than one year to acquire an orientation in the thereabouts of the new 
home where he went to live. But while at the beginning Milner thought that all memories of H.M. 
were compromised, she was astonished regarding his ability to acquire new skills of motor activity 
that was comparable with normal subject. For example, he was able to learn how to draw a star 
looking the reflex of his hand in a mirror, but he did not remember to have drawn it before (Fig. 3). 



26 
 

 

Figure 3: Star-tracing experiment performed by H.M. to assess his ability to learn new skills involving the formation of 
motor memories Photo credit: © WGBH Educational Foundation. 

 

Moreover, he was able to retain repetitive or familiar information (he remembered to have memory 
problems) or emotionally relevant for him (J.F. Kennedy’s murder, 1963), since the repetition or the 
emotions are linked to other brain’s areas (i.e. amygdala) without requiring of MTL. 

It was clear that memory deficit was not total and it was dependent from the kind of memory 
considered; H.M possessed an unconscious memory. 

Practically, the memory capacity of H.M., but also in others patients presenting a lesion in MTL, 
regards: first, habits, perceptive or motor skills comporting the execution of reflexes but not 
reflection/meditation; secondly these skills do not require awareness or complex cognitive processes 
like comparison or evaluation. These patients answer to stimuli or suggestions but when doctors ask 
why the execution of a work is so improved after training they do not remember to have done it 
before. 

The study of Molaison’s amnesia and the work of Brenda Milner provide important insights into 
memory knowledge:  

i. The lesions of MTL do not affect neither the intellectual aspects of daily life nor the 
perceptions and cognitions of global aspects. 

ii. There is dissociation from anatomical and systemic point of view between the short-term 
memory (STM) and the long-term memory (LTM), since the STM of H.M was intact; it 
means that the hippocampal formation plays a critical role in converting the experience from 
STM to LTM in order to store them in a permanent way. 

iii. In any case, since he was able to remember events happening long time before his surgery, the 
MTL is not the site of the permanent storage of information, but he plays an important role in 
how these memories are organized and stored in other different regions of the brain. 

iv. H.M. did not suffer from a total amnesia; this means that there are different kinds of long-term 
memory subtended by distinct brain areas. The MTL lesion’s is related to memories 
concerning events, called declarative memory. 

 

2.3.  Systems of memory 

The landmark case of H.M. underlined the necessity to create taxonomy systems and definitions of the 
different kinds of long-term memory but nowadays it is still under debate. Despite this there is a 
common consensus on the principal systems of memory and the cerebral regions underling these 
processes. 
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As mentioned before memory is an adaptive and dynamic process: thank to memory we can learn from 
experience, rapidly generalize the information acquired and retrieve the information required 
(Chaudhuri and Fiete, 2016) to better predict and prepare a reaction that can be used to improve the 
future choices that we have to make (Schultz et al., 1997). 

But how the brain is organized in order to recall this information? And which are the brains areas 
involved in the storage and recall of memory trace, even after a long period of time? 

It is not easy for our brain to process continuously the huge amount of inputs from different sensory 
organs and at the same time store the memories that can least for days, years or even for all our life. 

But while the learning is the process by which we acquire the knowledge of the world around us, the 
memory is the process by which our knowledge are codified, conserved and used; it is a complex 
phenomenon but traditionally it is possible to distinguish three kinds of memory, depending on the 
duration of the storage, in other words the persistence of the memory during the time (Fig. 4): Short 
Term Memory (STM), that last for minutes or hour; Long Term Memory (LTM), that last for hour or 
days; Remote Memory (RM) also named long-lasting memory, that last for days, months, years and all 
our life (McGaugh, 2000). 

The STM is related to transitory modifications in neuronal communication while the LTM/RM leads 
to stable modifications of neuronal structure. 

 

Figure 4: Time-dependent memory consolidation process showing the STM, LTM and RM time courses (McGaugh, 2000). 

 

STM and LTM/RM differ considering the time-dependent memory decay but in reality the system is 
more complex since they differ also from the capacity, meaning that there is a limit in the number of 
the items stored (Cowan, 2008). Another distinction between these forms of memory is the changes in 
molecular or cellular structures: while STM regards sustained changes in activity, LTM refers to 
changes in the presence of connections and the strengths of the corresponding synapses between 
neurons (Chaudhuri and Fiete, 2016). 

Even if the definitions are under debate it is well known that while the STM is a fleeting form of 
memory, the LTM and RM are stable and long-lasting and the process rendering the acquisition stable 
over time is called memory consolidation. 

The most famous classification of long term and remote memory systems is proposed by Larry Squire 
in 2004 (Levy et al., 2004; Squire, 2004) (Fig. 5); the main distinguishing criterion is based on the 
level of consciousness with which we use our memories: the ability to retrieve the facts and events 
consciously (explicitly) or unconsciously (implicitly) defines the difference between declarative and 
non-declarative memory. In the next part of the paragraph we are going to explore in particular the 
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explicit memory since it is necessary to better understand the methods that will be used in this thesis, 
but for more information concerning the implicit memory you can read (Kandel, 2012; Squire, 2004). 

 

Figure 5: Long-term memory mammalian taxonomy and mostly related structure involved. Modified from (Squire, 2004). 

 

The explicit or declarative memory is the concept of memory that everybody uses, speaking in 
everyday language. It concerns the facts and events (Tulving, 1972 ), details regarding people or 
things and their meaning; the memory is recalled with deliberate and conscious efforts.  

Declarative memory supports the encoding of the relationship between multiple events and items; in 
other words, it concerns the capacity to associate different aspects all together; it is a ductile memory 
in which the information stored is flexible and can guide the performance of a task even in different 
contexts and situations. It is able to detect and encode multiples information of a single event 
happened in a particular time and place (different from implicit memory).  

Impairment of this memory is detected in patients with MTL and midline diencephalon lesions.  

Declarative memory can be divided in semantic memory and episodic memory. The semantic memory 
(memory of facts) concerns the real knowledge of facts and evidences regarding the world, 
independent from personal experiences (i.e. Shakespeare wrote “Romeo and Juliet”) and it includes 
the general knowledge that we possess. 

The episodic memory (also called autobiographic memory or memory of events) regards the retrieval 
of personal experience (i.e. playing drama club's performance of “Romeo and Juliet” at the high-
school) and is described as the capacity of re-experience an event in the context in which it is 
originally occurred (Tulving, 1985). As affirmed by the name episodic, this memory is able to encode 
both the factual aspect and the spatial and temporal contexts. It is the same memory that let us to 
perceive the own identity and integrate the past events with future perspectives. 

In summary, the declarative memory gives us a representation, a model of the surrounding world but it 
could be either a true or a false model. 

In contrast, the implicit or non-declarative memory is neither true nor false and it relates to the 
modalities of execution of an action and it is recalled unconsciously; it is more connected with the 
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performance of the execution of motor skills or perceptive reflexes rather than a recollection. It is 
connected to the original conditions in which the information was acquired (i.e. learn how to ride a 
bike), but it helps us to extract the common elements from a series of separate event (i.e. we are able 
to ride a bike everywhere). Moreover, the formation of this memory correlates with changes in 
specialized performance systems.  

From a biological point of view, each memory system is defined by a network of structures working 
together on the same type of information and participate to the storage of the same (Sporns et al., 
2000). Traditionally, the experimental studies pretend to investigate the memory traces as a 
compatimentalyzed physiological substrate; even if this simplified approach is necessary to unravel 
the complexity of the memory pathway, we have to deal with the evidence that all these traces and  
structures interact each other in active manner, and that all the events occurred create  a dynamic 
relationship of synergism, competition or independence (Kim and Baxter, 2001). 

What is known is that MTL, as mentioned before, is a crucial actor in the formation of declarative 
memory. 

Coming back to H.M. now we can better understand why he suffered from a persistent anterograde 
amnesia specifically restricted to declarative memory; in fact he could not transfer new semantic and 
episodic memories because the lesion of LTM,left the procedural memory intact, suggesting that the 
declarative memory is different from non-declarative memory since is not reliant on the hippocampus. 
Moreover, these lesions only impaired recent memories, indicating that hippocampus is the anatomical 
locus where newly acquired memories reside, whereas older memories are stored permanently 
elsewhere (Santini et al., 2014). 

 

2.3.1.  The role of Medial Temporal Lobe (MLT) and memory pathway 

MTL is composed by several cerebral areas, in particular it includes the hippocampal formation 
consisting in the hippocampus (HPC) and parahippocampal cortex that includes entorhinal (Ent), 
perirhinal and postrhinal cortices, as well as presubiculum and parasubiculum (Amaral and Witter, 
1989). The perirhinal and parahippocampal cortices receive different unimodal and polimodal 
afferents from associative areas of frontal temporal and parietal lobes. These cortices are reciprocally 
connected with Ent which represents the principal entry of cortical afferents directed to HPC (Fig. 6). 
The neuroanatomic organization of HPC is similar among the species ant this phylogenic stability 
suggests the crucial role of central nervous system. 
In the following part we are going to explore briefly the cytoarchitecture of hippocampal formation. 
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Figure 6: Medial temporal lobe (MLT) system and hippocampal circuity in the human brain (Bizon and Gallagher, 2005). 

 

2.3.2.  Hippocampal formation: cytoarchitecture and neuronal pathways  

Hippocampus, as mentioned before, is one of the phylogenetically oldest parts of the brain. 
Its name is derived from Greek words hippos (horse) and kampos (sea), due to its similarity with the 
seahorse. In the Homer poem, the god of the sea Poseidon was used to ride the hippocampus (Fig. 7), 
an animal with the head of a horse and the body of a dolphin (Okten, 2016).  

 
Figure 7: “Thetis Riding Hippokampos”, J Paul Getty Museum in Malibu, California, USA. (Okten, 2016).  

 
As the mythology suggests, the hippocampus is a long and curved structure included in the grey matter 
of the MTL.  
The hippocampus can be morphologically divided in three parts (named in relation with the position 
with respect to corpus callosum): precommissural, supracommissural and retrocommissural 
hippocampus; the first two are little vestigial structures, in contrary, the retrocommissural 
hippocampus is more developed and in this thesis when we speak about HPC, we refer to this last part.  
It is located along a dorsal to ventral axis in rodents, corresponding to a posterior to anterior axis in 
human (Strange et al., 2014) (Fig. 8). 
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Figure 8: Comparison between hippocampal anatomy of rats, monkeys and humans; a) orientation of HPC long axis among 
these species; b) Localization of HPC (red) and entorhinal cortex (EC; blue) in brains of rats, monkeys and humans; 
interestingly, 90-degree rotation is required for the rat hippocampus to have the same orientation as that of primates; c) 
Drawings of Nissl cross-sections of mouse, rhesus and human hippocampi. A, anterior; C, caudal; D, dorsal; DG, dentate 
gyrus; L, lateral; M, medial; P, posterior; R, rostral; V, ventral.  From (Strange et al., 2014).  

 
HPC is composed by three longitudinally organized structures: Girus Dentatus (GD), Cornu Ammonis 
(CA) and Subiculum (Sub). HPC resembles two C, composed by distinct cellular layer, and 
symmetrically included one into the other, respectively represented by GD and Sub together with CA. 

The GD is composed by three different layers: molecular, granular and polymorphic layers (from 
external to internal part); the granular layer is composed by neuronal granular bodies whose dendritic 
spines penetrate in the molecular layer branching out and taking contacts with afferents pathways (e.g. 
Ent, commissural afferents and ascending axons from polymorph layer); the axons of the granular 
cells penetrate into the CA constituting the Mossy fibres. 

In turn CA, called in this way since the resemblance of the outer surface to a ram's horn, can be 
divided in 4 different zones: CA1, CA2, CA3 and CA4. At dorsal level of HPC (dHPC), the CA1 
constitute the distal region while the CA2, CA3, CA4 form the proximal part of the dHPC. Other 
authors consider the CA2, since its reduced size, a distal part of CA. 

Hippocampal formation can be compared to cortical areas regarding its pyramidal shaped projections 
and small interneurons but it possesses two important characteristics: in primis, its capacity to transmit 
unidirectional information. As a matter of facts, Ramòn y Cajal in 1893 noticed a peculiar 
characteristic of hippocampal formation. While cortices are linked by bidirectional connections, HPC 
does not, owning a unidirectional projection. Secondly, it owns a tridimensional organization of 
distributed associative connections. These characteristics allow the HPC to quickly receive and 
integrate highly processed multimodal sensory information from different cortical areas, mix, and 
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compared together. In other words, the role of HPC in coordinates cortical input is due to its 
cytoarchitectonic organization forming a unidirectional tri-synaptic circuit with a precise topography 
(Fig. 9; Ent-GD, 1st  synapsis; GD-CA3 2nd synapsis; CA3-CA1 3th synapsis), communicating 
prevalently with glutamatergic signalling (Amaral and Witter, 1989).  

 

Figure 9: Schema of trisynaptic circuit of HPC and its connections with Ent. The principal input of hippocampal formation is 
the perforant path conveying the polimodal sensory information from layer II of Ent to GD. The axons of perforant path 
make excitatory synaptic  with dendrites of granular cells, which, in turn, send projections (via mossy fibres) to proximal 
apical dendrites of CA3 pyramidal cells ; CA3 pyramidal cells project to ipsilateral CA1 pyramidal cells and to contralateral 
CA3 (Schaffer collaterals)  and  CA1 pyramidal cells  (commissural connections). In addition to the trysynaptic circuit, there 
is a wide CA3 interconnection associative network between ipsilateral CA3. CA3 and CA1 pyramidal cells receive direct 
input respectively from layer II and III of Ent. (Neves et al., 2008). 

Cortical inputs reach HPC through the neurons of superficial layer of Ent, whose axons project to GD. 
This is the principal income pathway of cortical inputs and it is called performant path. The GD does 
not project backwards, forming a non-reciprocate network. In fact, the principal cells of GD, granular 
cells, give rise to axons (Mossy fibres) ending on CA3 pyramidal cells. Likewise, these cells do not 
project reciprocally back but they create the input source directed to CA1 (Schaffer collaterals). CA1 
projects unidirectionally to Sub, which represent its most important excitatory input. Once arrived to 
the level of CA1 the pathway starts to be more compex since CA1 projects to Ent and the Sub sends its 
output mainly to Ent but also to the presubiculum and parasubiculum areas. These connections close 
the loop circuit: the superficial layer of Ent provides the most prominent input to HPC while the deep 
layers of Ent receives the broadest output of HPC. 

The hippocampal formation may appear as simple in organization and for a long time it was described 
as a structure with a unique laminar organization. Nowadays, we know that the pathway is more 
complex due to the interconnections within the HPC; e.g.CA3 cells send numerous axon collateral 
projections to other CA3 pyramidal cells. The existence of this recurring circuit (recurrent collateral 
system) makes a CA3 strongly interconnected HPC area, suitable for the rapid acquisition of 
information (Rolls and Kesner, 2006), in contrast to CA1 where pyramidal cells are only loosely 
interconnected. In addition, there are direct Ent projections (layer III) to CA3 and CA1. CA1 moreover 
projected backwards to the entorhinal cortex via subiculum, as previously mentioned. To this complex 
internal architectural organization, we have also to take into consideration different relationships 
between HPC and other surrounding structures, in particular the cortical ones such as prefrontal cortex 
and anterior cingulate cortex (Godsil et al., 2013).  
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The majority of hippocampal afferences come from Ent (performant path), which receives several 
inputs from different neocortical areas. In particular, the projections arriving to the II or III layers 
(superficial layers) are coming from olfactive bulb and perirhinal cortex. The deeper layers of Ent 
receive afferences from insular cortex, medial prefrontal cortex, anterior cingulate cortex and 
retrospenial cortex (Amaral and Witter, 1989; Godsil et al., 2013). More recently, it was highlighted 
the existence of monosynaptic connections between anterior cingulate cortex and CA3 and CA1 
(Rajasethupathy et al., 2015).  

Regarding HPC efferences, CA1 pyramidal cells project to Sub (Amaral et al., 1991), that constitute 
the principal exit pathway of HPC which innerve the majority of extrahippocampal structures (e.g 
retrosplenal, orbitofrontal cortex, medial prefontal areas and Ent). CA1 project directly to perirhinal, 
retrosplenial and prelimbic cortex (Burette et al., 1997). Moreover, the connections are even more 
complex since the dorsal part of HPC (dHPC) and the ventral part (vHPC) take on different roles.  

In the next part, I am going to refer to rodent hippocampus considering that dorso-ventral organization 
in rodent brain corresponds to poster-anterior axis in human, as previously mentioned. Of course there 
are differences between rodent and human hippocampus in term of size (monkey HPC is tenfold 
bigger than rat one and in turn human HPC is 100 fold bigger than non-human primate, reflecting the 
evolution and the complexity of information elaborated) and in term of architecture (CA1 of rats 
appears a compact layer, the human one is thicker and heterogeneous the commissural 
interconnections of GD are more prominent in rat then in human; the subdivisions of human Ent are 
than rats ones, reflecting a higher development and in turn a stronger interconnections between 
associational area of neocortex), but the connectivity pattern is similar (for  more details see 
(Andersen, 2007)). The distinction between dHPC and vHPC was based on anatomical studies which 
underlined segregated connections along the dorsoventral hippocampal axis (Moser et al., 1993; Moser 
and Moser, 1998), and deficit-lesions studies which shown that dHPC (but not vHPC) lesions affect 
cognitive functions and in particular the spatial memory (Moser et al., 1993) and vHPC (but not 
dHPC) lesions alter stress and emotional behaviour (Henke, 1990). This view was criticized since the 
distinction between what is dHPC and vHPC was not clear but fortunatelly nowadays we are able to 
study the link between molecular and functional domains of HPC (Thompson et al., 2008).   

Regarding the intra-hippocampal connectivity, there is a dorsolateral-to-ventromedial gradient of Ent 
projections to dorso-ventral hippocampus (Strange et al., 2014) (Fig. 10).  

 

Figure 10: Extrinsic connectivity gradients: topographical arrangement of Ent–HPC reciprocal connections in rodents. The 
dorsolateral part of Ent (EC; magenta) is preferentially connected to the dorsal HPC. Ventral and medial part of the EC 
(purple to blue) are connected to increasingly more ventral levels of the hippocampus (Strange et al., 2014).  

 

Ent can be rostrocaudally divided in caudolateral, intermediate rostromedial zones. Caudolateral area 
receives visuospatial information, via perirhinal and postrhinal cortex transferring them to dHPC; the 
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intermediate zone collects a widespread input projecting to the intermediate part of HPC; rostromedial 
part receives primary olfactory, gustative, and visceral inputs, in turn sent to vHPC.  

Regarding the neuronal connectivity of dHPC, dorsal CA1and dorsal Sub send the most prominent 
projections to retrosplenial and anterior cingulate cortex, areas involved in cognitive processing of 
visuospatial and memory information (Frankland et al., 2004) and spatial navigation, while dorsal Sub 
is connected with mammillary body and anterior thalamic nuclei, implicated in the 
navigation/direction system enabling rodents to properly orient and execute behaviours in a learned 
environment (Jeffery, 2007; Muller et al., 1996; Taube, 2007; Taube et al., 1990).  

Regarding the neuronal connectivity of vHPC in particular, there are two strong connections: the first 
involves ventral CA1, ventral Sub and posterior amygdala pathways controlling neuroendocrine 
activity and the second implicates ventral CA1 and central amygdala mediating the contribution of 
vHPC in fear learning (Clark and Bernstein, 2009) as in the case of taste aversion learning (Fanselow 
and Dong, 2010). 

In conclusion evidences suggest that the gradient along hippocampal longitudinal axis (from dorsal to 
ventral areas of rat HPC which find its homologous in human HPC from posterior to anterior zones) 
reflects genetic expression and anatomical connectivity as well as physiological and behavioural 
functions (Sigurdsson and Duvarci, 2015) 

 

2.3.3.  Hippocampal-Anterior Cingulate Cortex pathway 

Although HPC has a preponderant role in memory, we have to remember that it interacts with other 
cortical players that are activated depending on the type of memory formed and the time-course of 
memory process. 

In this part of the chapter we are going to focus our attention on a particular cortical area, the anterior 
cingulate cortex (ACC), which is activated during olfactory associative memory, a type of memory 
that we explore during this thesis. 

The rat cingulate cortex is a part of the limbic system situated in the medial part of cerebral cortex and 
in a simplified view it can be divided anterior-posteriorly in 3 main zones: the medial prefrontal 
cortex, caudal anterior cingulate cortex and retrosplenial cortex. Medial prefrontal cortex includes the 
infralimbic (IL) and prelimbic (PL) cortices and one third of the dorsal ACC, while caudal anterior 
cingulate region is composed by the two thirds of dorsal ACC and ventral ACC and finally the 
retrosplenial (RS) cortex is divided in retrosplenial granular and dysgranular regions (Fig. 11).  
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Figure 11:  Sub regions of the cingulate cortices. ACC (in red) is composed by dorsal and ventral parts which seem 
implicated in different memories. Abbreviations: dACC, dorsal anterior cingulate cortex; vACC, ventral anterior cingulate 
cortex; cc, corpus callosum; fx, fornix; HPC, hippocampus; IL, infralimbic cortex; PL, prelimbic cortex; dRS, dorsal (or 
dysgranular) retrosplenial cortex; V-aRS retrosplenial ventral (or granular) cortex A; V-bRS retrosplenial ventral (granular) 
cortex B; Modified from (Insel and Takehara-Nishiuchi, 2013; Jones and Witter, 2007). 

 

The connections between cingulate cortex and hippocampal formation, but in general all the areas of 
cingulate cortex give rise to a wide connections to the parahippocampal region. 

In particular IL and PL project extensively to perirhinal and EC, while the remaining areas of 
cingulate cortex send their projections to postrhinal cortex, EC, presubiculum and parasubiculum (for 
more details: (Jones and Witter, 2007)).  

But what it is more interesting for our purpose is the existence of a bidirectional monosynaptic 
projection from HPC (CA1 and CA3) and ACC in mice (Rajasethupathy et al., 2015), founded using 
retrograde and anterograde tracers. Moreover, to assess the functional importance of this connection, 
they manipulate it with optogenetic techniques, evoking contextual memory retrieval. Furthermore, 
recording hippocampal cellular-resolution neuronal activity during stimulation of the ACC projections 
in mice performing virtual navigation, they show that learning drives the rise of a spare population of 
CA2 and CA3 neurons, which induce wide-population synchronous activity events with same neurons 
preferentially recruited by the ACC-HPC projection during memory retrieval. This implemented 
mechanism in HPC, via ACC bidirectional pathway, could act on memory stabilization. In the 
following part, we are going also to explore the implication of the ACC-CA connection and the 
emerging role of ACC in memory consolidation.  
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2.4. Lessons from amnesias: the role of Medial Temporal Lobe (MLT) 
 

Amnesia is the inability to memorize or recall information stored in memory without the presence of 
others significant cognitive impairments (Markowitsch and Staniloiu, 2012). Amnesia can appear 
following narrow brain damage of the areas through which the information pass before being 
consolidated in a stable manner or following widespread cortical damage. 

The retrograde (backword) amnesia (Fig. 12) is the inability to consciously reactivate information 
previously stored inducing memory loss of the events that occurred before the brain damage; generally 
the subjects permanently forgot the event occurred immediately before the accident due to an 
interruption to the consolidation process, caused by lesions of temporary lobe. 

Anterograde amnesia (forward) is the inability to acquire, store or retrieve new information 
consciously after the memory accident, inducing memory loss of events that occurred after brain 
damage; in other words, new declarative memories cannot be consolidated and it is usually induced by 
hippocampal damage, since people affected can not transfer informations from STM to LTM. 

The two movies “the Bourne identity” and “memento” can show the effect of respectively retrograde 
and anterograde amnesia. The case of H.M. shows clearly how the lesion of the bilateral ablation of 
hippocampal formation and amygdala was able to induce a loss of conscious new long-lasting memory 
formation, preserving semantic and procedural memory. The oldest episodic memory 
(autobiographical events) were still present but the episodic memory of few years preceding the 
surgery was impaired since he was not able to transfer information from STM to LTM/RM. However 
he was able to acquire new information if the processing of them was at procedural, priming or 
conditioning level. 
 

 
Figure 12: Schema representing of retrograde and anterograde amnesia. 

 

2.4.1. Anterograde amnesia and the inability to transfer memories 

In case of MTL damage, as in the case of H.M., the patients suffer for anterograde amnesia, being 
unable to form and stabilize new declarative memories during the time. This inability to consolidate 
memories is independent by the sensory input the information is presented (Levy et al., 2003; Squire et 
al., 2001) since the MTL is a fundamental site of converging sensory cortical inputs (Lavenex and 
Amaral, 2000). 
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Memory loss

Memory loss

Onset
of amnesia

Time



37 
 

The severity of anterograde amnesia is depending to the size of MLT lesions (Zola-Morgan et al., 
1986) as confirmed by the study of patient E.P. 

E.P. presents a more extensive MTL lesion compared to H.M. (Corkin et al., 1997; Stefanacci et al., 
2000). Regarding the case history, E.P. become amnesic when he was 70 years old after an episode of 
herpes simplex encephalitis in November 1992. His initial reduced loss of memory became severe and 
persistent after the clinical recovery period. Magnetic resonance studies revealed that E.P. had an 
extensive bilateral damage of MTL, including amygdala, HPC, Ent, pherirhinal cortex and rostral 
parahippocampal cortex; moreover, the volume of lateral temporal lobe and left parietal lobe was 
reduced. 

Following cognitive tests revealed his interactive and cooperative attitude but he showed repeated 
amazement about the invention of portable computer. During daily routine he was independent and 
autonomous, choosing his clothes and bathing or shaving, even if sometime his wife had to remind it 
to do.  He woke up having the breakfast but, if he felt asleep after that, he wasn’t able to remember 
that he has woke up, having his breakfast again. He remembered about his childhood, his teenager life 
and his travel during the 2nd World War, but during a session of 1 hour he repeated the same history as 
many as 10 times. He was attentive alert but disoriented by places and time periods. 

As H.M., E.P. showed normal intellectual functions, and the immediate and the non-declarative 
memories were intact. In contrast, he showed a profound anterograde amnesia supported by 
impairment in several verbal and non-verbal tests of recall and recognition. He also had a severe 
retrograde amnesia affecting the events and the facts, autobiographical memory and personal semantic 
memory, even thought he was able to recall memories acquired in his early life. If we compare the 
studies conducted by Corkin (Corkin et al., 1997) and by Stefanacci, it is clear that the extension of 
MTL lesion was bigger in E.P. (in particular concerning the perirhinal cortex, the parahippocampal 
cortex and HPC) supporting a more severe anterograde amnesia (verbal and non-verbal retrieval 
tasks). 

Vice versa, in the case of the patient R.B., where the ischemic-induced lesion was circumscribed to 
bilateral CA1 field of HPC, the anterograde amnesia was moderated but sustained at least during the 5 
years until his death (he also show a slight retrograde amnesia). In any case, this case report was 
sufficient to prove that hippocampal dysfunction affects memory consolidation and retrieval (Zola-
Morgan et al., 1986). 
 
 

2.4.2.  Retrograde amnesia and the stabilization of the memories 

The MTL lesions are equally accompanied by retrograde amnesia, as mentioned before, the inability to 
recall memories encoded before the brain damage. 

As anterograde amnesia, the severity of the retrograde amnesia is proportional to the extension of the 
lesion (Squire and Zola, 1996). Nevertheless, in the majority of cases, included the ones previously 
mentioned in the paragraph of anterograde amnesia, retrograde amnesia is temporally graduated: as a 
matter of facts, the more recent information are less accessible compared to the ones acquired 
formerly, which remain mostly preserved. In fact, the retrograde amnesia of  H.M. and E.P. covered a 
period of 11 and 15 years, respectively, time beyond which the memories were intact (Corkin, 2002; 
Squire, 2009). The temporal window is even more significant concerning the patients with more 
spread lesions, including Ent, perirhinal and parahippocampal cortex, affecting the memories during 
decades.  In contrast, patients with less extended lesions, e.g. R.B., retrograde memories are just only 
marginally impaired (Zola-Morgan et al., 1986), nevertheless, this capacity to retrieve is diminished if 
lesions affect neocortical areas (Squire et al., 2015), meaning that others areas exterior to MTL can 
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contribute to retrograde amnesia. Anyway, in some studies presenting a flat gradient of retrograde 
amnesia (Rosenbaum et al., 2005), the patients presented the expected hippocampal lesion assumed to 
be responsible to the memory deficit, but they showed also a concomitant lesion to the posterior 
temporal cortex. Thus, the retrograde amnesia without temporal gradient appears when, in addiction to 
hippocampal damage, others neocortical areas are lesioned (Kirwan et al., 2008),since the cortex is 
recognized to be responsible of the storage of long term memories (Frankland and Bontempi, 2005). 

Moreover, other theories suggest that the severity degree of amnesia is not only linked with the kind of 
lesion (size and place), but it depends to the kind of declarative memory that should be retrieved. 
Thus, independently from the age of the memory, the episodic memory will rely on MTL, in particular 
HPC, while the semantic memory is dependent to HPC just during a limited period after acquisition 
becoming independent during the time (Nadel and Moscovitch, 1997) . 

If this hypothesis is true, hippocampal lesions are able to impair the number of retrieved contextual 
details (time and place), resulting in the retrieval of essential semantic information. It is the case for 
the patients K.C. (Rosenbaum et al., 2005), G.T. (Bayley et al., 2005) and A.D. (Gilboa et al., 2006)  
which present, following hippocampal lesion, a deficit in autobiographic memory resulting in an 
impersonal knowledge of the past; however, it is possible that non graduated episodic amnesia is 
associated to significant modifications (volume or structural alterations) of frontal lobes, areas 
implicated in the autobiographic events (Bayley et al., 2005; Bayley et al., 2003). 
 
 

2.4.3.  Animal models of amnesia 

It is out of question the fact that animals are always been useful in the study of physiological and 
pathological conditions and the memory field is not an exception. The rodents and even more the non-
human primates help us to better understand the implication of MTL and cortex in declarative 
memory. The goal is to understand whether and how memory are formed and conserved over the time. 

Even if the absence of language made more difficult the parallelism in characterizing the declarative 
memory, different studies were conducted to reproduce the effect of human amnesia in animal models 
in order to dissect the effects of specific lesions in different regions of HPC or more extensively of 
MTL (McDonald et al., 2004) and this is also possible thanks to the preservation of MTL among the 
species; the advantage of animal models is not just the possibility to localize the lesion but also to 
control the size of the lesion. 

Studying non-human primates’ models it was possible to investigate what was observed in human 
regarding the correlation between the degree of lesion of MTL and the severity of the memory deficit 
(Zola-Morgan et al., 1994). As for human, the lesion of HPC was sufficient to produce a memory 
deficit. In addition, it was possible to show in these animals that additional lesions in Ent or 
parahippocampal cortex induce higher memory impairment; moreover it was possible, in turn, to 
increase the impairment with the extension of the lesion in perirhinal cortex. 

Furthermore, the difficulty of retrospective studies in sufficient homogeneous groups of patients 
suffering of retrograde amnesia is the limit that boosts the use of animal models. Furthermore, they let 
us not only to target and reproduce the zone and the extension of the lesion but they give us the 
possibility to correlate the memory performance to the age of the memories acquired and the kind of 
information acquired. Therefore, a plethora of animal studies, confirmed the temporally-graduated 
retrograde amnesia following hippocampal lesion or inactivation, in different cognitive tasks (Squire 
et al., 2015). This was demonstrated, for example, in a study conducted by Zola-Morgan and Squire 
(Zola-Morgan and Squire, 1990) where monkeys firstly performed novel object discrimination task at 
five different time point during 16 weeks preceding the hippocampal lesion. After hippocampal 
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damage, the monkeys were able to remember better the task acquired 12 weeks before the lesion 
compares to the one acquired just before the lesion. These results show that the HPC is required for 
the memory storage, but only for a limited time window after the information.acquisition. During the 
time its role decreases leading the cortex taking in charge of the phenomenon. Winocur (Winocur, 
1990) demonstrated the same concept using rats performing the Social Transmission of Food 
Preference task (STFP): rats acquired the food preference before hippocampal lesion performed at 
different time points after encoding (Day 0, 2, 5, 10) displaying a temporally-graded retrograde 
amnesia (normal memory performance at day 10), even if shorter, compared to monkey in Zola-
Morgan’s study. The same effect was reproduced using other behavioural paradigms like in context 
fear conditioning with rats undergoing to hippocampal lesion at different interval after the 
conditioning (Anagnostaras et al., 1999; Kim and Fanselow, 1992). 

These studies prompted that the observed temporal gradients of retrograde amnesia are produced by 
inactivation of the same cerebral regions in humans, suggesting the reliability of animal models. 

Despite this, as observed also in human studies, the time-limited contribution of HPC is not always 
detectable. As a matter of facts some studies failed to show a temporal gradient in fear conditioning 
task (Lehmann et al., 2007; Sparks et al., 2011; Sutherland et al., 2008) and in Morris Water Maze 
paradigm (Bolhuis et al., 1994; Broadbent et al., 2006; Clark et al., 2005; Martin et al., 2005; 
Sutherland et al., 2001; Teixeira et al., 2006) Similarly, Squire and collaborators were not able to show 
hippocampal disengagement in the same task, although modulating different parameters like the 
conditioning protocol, the time windows between conditioning and hippocampal lesion, the lesion size 
and the lesion protocol (Broadbent and Clark, 2013). Thus in some case it seems that memory trace 
remain dependent to HPC for more long-lasting delay, or in a permanent manner. Other theories 
suggest that HPC will be always required for the aspects related to the realization of the task, without 
any link with the memory consolidation. In this case, during the time, the memory trace will be 
available in others regions beyond the HPC, but independently from the delay, HPC is necessary in the 
realization of the task (Squire and Bayley, 2007; Sutherland et al., 2001). Moreover, to make the 
analysis more puzzling, a recent study highlights an interesting standpoint showing in the same rat the 
existence of a temporal gradient of retrograde amnesia is associated to contextual memory formed 
during context fear conditioning but not to a spatial memory formed during Morris Water Maze 
(Winocur et al., 2013): rats underwent to contextual fear conditioning and were trained on Morris 
Water Maze 1 or 28 days before hippocampal lesion. When tested after surgery, lesioned rats showed 
retrograde amnesia for spatial memory both at day 1 and at day 28 (Morris Water Maze) 
independently from the delay, while they displayed temporally graded retrograde amnesia for the 
contextual fear response. This phenomenon was detected in some patient with hippocampal lesions 
strengthening the idea,that retrograde amnesia depends to the nature of the tasks and the type of 
memory encoded. But why the temporal gradient of retrograde amnesia is generated in one task and 
not in the other is still under debate.  

Even if in these different studies it is possible to detect significant difference between the presented 
stimuli or the type of memory associated (e.g. spatial vs non spatial), each paradigm show some 
parallelism regarding human declarative memory. As a matter of fact, the behavioural tasks force the 
animal to express in behavioural manner the memory of the association between different stimuli 
(contextual, spatial, temporal aspects of the encoded information), and reuse them flexibly 
(Eichenbaum, 2000, 2004). Even if the role of MTL in the declarative memory is evident and it can 
explain both retrograde and anterograde amnesia, it is still under debate the correlation between the 
type of declarative memory (episodic and semantic) and the presence or absence of temporal gradient 
of retrograde amnesia. 

The formation of declarative memory requires the MTL integrity, even if the MTL lesions do not 
affect the immediate memory. This suggests that the information is initially supported by the 
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neocortex. Despite this, if the delay of retention is longer, the information is not more available, 
suggesting that the cortex it is not sufficient to transform the memory trace in a permanent memory. 

Indeed, the remote memory, in order to become stabilized, requires a gradual maturation during the 
time following the encoding; this process of maturation and consequently stabilization of the memory 
trace is called consolidation (Dudai, 2004). According with the studies concerning the temporal graded 
retrograde amnesia, the retrieval of declarative memory is less sensitive to MTL lesion over the time 
suggesting that the neocortex can sustain the process without MTL. This induced the postulation of the 
existence of interaction between MTL and neocortex promoting the stabilization of memory trace at 
cortical level. Despite this, the cortical mechanisms concerning this process are not well established.  

 
2.4.4.  Cortical lesions and amnesia: The role of cingulate cortex in memory consolidation 

The first study suggesting an implication of cingulate cortex in remote memory was performed in 
1999 by Bontempi and colleagues who investigate the reorganization of the brain circuitry underlying 
remote memory (Bontempi et al., 1999). 

It was clear that HPC has a limited role in memory storage, since retrograde amnesia was temporally 
graduated in case of hippocampal lesion, without affecting the oldest memories; moreover the cortex 
plays a role in memory consolidation underlying the storage of remote memories. 

But invasive studies, as lesions, cannot describe the effective contribution of HPC at the moment of 
memory retrieval. They therefore performed a non-invasive functional brain imaging with (14C )2-
deoxyglucose during the retrieval of recent and remote memories of mice performing spatial 
discrimination task. Mice were trained and tested in Radial Arm Maze after 5 or 25 days later and the 
uptake level of (14C )2-deoxyglucose was correlated with the regional metabolic activity during the 
retrieval. A relative increase in metabolic activity was found in frontal (ACC included) and temporal 
cortices in mice tested for the remote retrieval. 

Upon the time after learning, there is a shift of the roles played by the different brains area: in 
particular the memory performance is strongly related to metabolic activity in HPC just after learning. 
As memory consolidation proceed over the time, the functional hippocampal contribution decreases 
and simultaneously the cortices involved in this task, in particular frontal, ACC and temporal cortices, 
mediate the retrieval of information previously acquired. 

The consolidation process is accompanied by a hippocampal-cortical dialogue that allows the 
stabilization of cortical representations.  

Summarizing the concept, the HPC is a required to encode the new information and to maintain the 
memory until the cortical mastery; cortices participate to the organized triggering, to the accessibility 
and to the usage of spatial information acquired. 

Other experiments confirm the involvement of ACC, together with other cortical regions, when 
animals are exposed to associations learned in the past. The paradigms, showing this differential 
activation of ACC are different: mazes using a reward (Gusev and Gubin, 2010), aversive tasks like 
fear conditioning (Frankland et al., 2004; Restivo et al., 2009) or social transmissions food preference 
tasks (Lesburgueres et al., 2011; Ross and Eichenbaum, 2006; Smith et al., 2007). These correlative 
studies clearly shown the ACC involvement during consolidation and retrieval of remote memories, 
but the invasive studies demonstrated the necessity of ACC for remote memory expression. As a 
matter of facts, affecting the functionality of cingulate cortex can cause an impairment of remote 
memory expression using a battery of different task. 
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In particular, we would like to mention some of them starting from the studies performed by 
(Frankland et al., 2004). 

Firstly, Frankland and colleagues showed a time-structure-dependent variation of the expression of the 
IEGs in mice performing the contextual fear conditioning, a task that associate an aversive event that 
take place in a certain context. Secondly, they use CaMK-II+/- mutant mice, which have specific 
deficits in remote memory (Frankland et al., 2001), as a tool to show the decrease of early gene 
activation, and the consequent decrease of neuronal activity in ACC. They therefore demonstrated the 
involvement of ACC in processing remote contextual fear and the integrative role of ACC in the 
storage of memory and in the dialogue with others regions. 

In the same year, another invasive study confirmed these results: in fact Bontempi’s group (Maviel et 
al., 2004) demonstrated a progressive activation in zif and c-fos expression and in synaptogenesis 
during the time of consolidation in ACC ad PC, in mice undergoing to Radial Arm Maze and tested at 
day 1 or 30. They suggested that remote memory storage in neocortical regions is accompanied by the 
increase of cortical-cortical connections and laminar reorganization, simultaneously complemented by 
a disengagement of HPC and posterior cingulate cortex. Moreover the pharmacological inactivation 
with lidocaine of HPC or ACC was able to affect respectively recent or remote memory, confirming 
the progressive establishment of cortical memory during consolidation. 

It is not possible to conclude this paragraph without citing the elegant study of Rajasethupathy in 2015 
(Rajasethupathy et al., 2015) who proved for the first time the presence of CA1/3-ACC direct 
pathway; moreover, using optogenetics approach, he showed that the manipulation of this projection 
was able to suppress contextual memory retrieval in mice performing context fear conditioning.  

Other studies show this pattern of activity between HPC and cortical areas. (for a review see (Insel and 
Takehara-Nishiuchi, 2013)  

 

2.5.  Memorizing Memories: The role of consolidation  

The explicit memory is composed by distinct but correlated processes (previously mentioned in the 
paragraph ”Memory and vascular contribution: the aim of the thesis”): the encoding, the consolidation, 
the storage and the retrieval. 

The encoding is the process by which we focus our attention on new information and we analyse them 
as soon as we get in touch. The nature and the degree of the codified information determine the quality 
of the retrieval, since, in order to obtain a persistent memory trace and a correct retrieval, it is 
necessary that the new information is accurately codified. To perform this process we need to focus 
our attention to the information and associate it in a logical and systematic way in accordance with the 
already present memories, in order to have a coherent and matched integration. Moreover, the strength 
of memory storage of this information depends on the motivation of acquisition. 

The storage involves the mechanisms and the sites by which memories are maintained during the time 
and the amazing characteristic of the remote memory storage is that it seems unlimited, in contrary to 
STM/Recent memory that is limited. The “condicio sine qua non” for the storage to happen is the 
consolidation, which refers to the processes that transform the information just acquired, but still 
fleeting, in stable and long-lasting memories. It requires gene expression and the synthesis of new 
proteins in order to give rise to structural modifications enabling the stable memory trace conservation 
during the time. 
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Finally, the retrieval includes the processes that recall and reuse the information contained in memory 
trace. This recall involves different kinds of information acquired in several moments and stored in 
different cortical areas. The retrieval is similar to the perception and as this last is susceptible to 
distortions, as perception is prone to illusions. The retrieval of information is more efficient if the 
context is similar to the acquisition one and in particular for explicit memory, is dependent from the 
recent memory (Kandel, 2012).  

In this thesis, we focus the attention to the consolidation process and the progressive post-acquisition 
stabilization mechanisms. Consolidation is usually referred to declarative memory (Dudai et al., 2015), 
even if it was proposed to exist in non-declarative memory. For this reason, hereinafter, consolidation 
will be refered to the declarative memory.. 

The first concept of consolidation was given during I century B.C. by Marcus F. Quintilianus who 
underlined the fact that the night increases the memory strength and remarked the possibility that the 
power of restitution can be supported by a process of maturation (Institutio Oratoria 11.2.43): ‘‘… 
curious fact … that the interval of a single night will greatly increase the strength of the memory … 
the power of recollection ... undergoes a process of ripening and maturing during the time which 
intervenes’’ (Dudai et al., 2015). 

Another milestone in the concept of consolidation was described in 1881 by the French psychologist 
Théodule Armand Ribot, who assumed that memory is gradually transformed and reorganized during 
the time. As a matter of facts, he correlated the degree of memory loss induced by brain damage to the 
age of memory; in other words, he described the existence of a temporal gradient affecting retrograde 
amnesia: in particular, there was a greater loss of recent memories compared to older memories. This 
effect, known as Ribot’s Law, implies the existence of a process of dynamic and progressive 
reorganization of memory circuitry subtending memory process in order to stabilize the memory trace. 
Today we call this process memory consolidation. 

The term “consolidation” is attributed to Müller & Pilzecker (1900), who firstly studied the acquisition 
and the retrieval of syllable pairs in human subjects (Dudai, 2004; McGaugh, 2000)  These studies 
showed that the achievement of a correct retrieval of syllable pairs required a period of time, and the 
presentation of  “distractors” like new materials during the initial period after encoding, thus before 
the consolidations of syllable pairs, impair its correct recall (Santini et al., 2014). Accordingly, the 
information recently encoded has to be stabilized and transformed in a stable long-lasting mental 
representation in order to not be quickly forget elicited by distractors (Lechner et al., 1999). In other 
words, there is a time windows during which is possible to interfere with newly learned information 
and its consolidation; consequently, memory trace cannot be reorganized and stabilized, inducing the 
incorrect recall or a fast forgetting. The consolidation is the post-experience processes of memory 
stabilization (Frankland and Bontempi, 2005), that allows the formation of a stable long term memory, 
in other words its passage from a fleeting form to a stable one. 

This progressive reorganization of neuronal circuits involved in long term memory formation could 
takes days and years but attention is drawn to the fact that starts immediately after learning.  

The memory consolidation is a complex phenomenon that includes all the plethora of mechanisms that 
starts after encoding during the wake state and during the sleep, and regards the molecular, synaptic 
and cellular aspects that are able, in turn, to influence functional and behavioural characteristics; the 
temporal window of this process may ranging from seconds to days or to years. This can give the idea 
of the dynamic mechanism that consolidation is.  
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The traditional view distinguishes two types of consolidation, based on the time windows and the 
localisation of modifications induced by memory encoding: the cellular and synaptic level and the 
brain system level namely the synaptic and systems consolidation (Fig. 13). 

 

Figure 13: Schema illustrating the time course of synaptic and systems memory consolidation; modified from Benjamin 
Bessieres PhD thesis. 

 

The synaptic consolidation is a fast process, occurring within the first minutes or hours after encoding, 
inducing the stabilization of synaptic changes induced by learning. These changes can include the 
formation of new synaptic connections or the strengthening of existent synapsis (Dudai, 2012; Squire 
et al., 2015). All the elements disturbing the synaptic consolidation induce the perturbation of memory 
process. Vice versa, the same distractors applied after this period do not affect memory formation. The 
time course of synaptic memory depends from the signalling pathways considered, from the structures 
implicated in memory process and, of course, by the nature of the memory task, but in the common 
vision the end of this process match with the beginning of systems consolidation. 

On the other hand, systems consolidation is a slow phenomenon lasting weeks in rodents and years in 
human subjects, even if, also in this case, the kinetics depends on the kind of memory used 
(declarative or non-declarative) and the nature of the memory task. Systems consolidation is 
characterized by a reorganization of brain circuitry and systems supporting the formation of long term 
memories during the time (Frankland and Bontempi, 2005; Squire and Alvarez, 1995), but in the 
modern theory (Dudai, 2012; Dudai et al., 2015) it involves recurrent waves of synaptic consolidation 
in order to reprocess or integrate new experiences in coherent way. In other words, synaptic and 
systems consolidations do not act as consecutive events but they synergistically cooperate in parallel 
(Dudai, 2012; Dudai et al., 2015; Takeuchi et al., 2014).  

In fact, as previously described in the section regarding the “Human amnesia”, the engram can be 
encoded by different regions including HPC and neocortex. During the time, the memory trace 
becomes less dependent from HPC and better supported by the cortex (McClelland et al., 1995). This 
systemic reorganization, able to stabilize the engram at cortical level, is induced and sustained by 
parallel waves of synaptic modifications. Therefore, the synaptic consolidation as traditionally thought 
can be assimilated to the concept of “initial consolidation” (Takeuchi et al., 2014), according to which 
the cellular and synaptic changes are necessary to the initial stabilization of memory in HPC. In this 
sense, we can affirm that synaptic consolidation is a fast process that last for minutes or hours after 
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encoding and it has the goal to stabilize the synaptic changes started during encoding. Thus, it induces 
the formation of new synaptic connections or the restauration of existent synapses; synaptic 
consolidation triggers systems consolidation which is a slow process lasting weeks in rodents and 
years in humans but it drives to the reorganization of cerebral circuits. In fact, the memory trace can be 
codified in more than one region (HPC, cortices).  

Moreover, we have to keep in mind that even if memory consolidation seems to start and end once, the 
appearance of a “reminder cue” makes an apparently consolidated memory information labile again, 
when an “amnesic agents” is presented (Misanin et al., 1968). The reorganization of the consolidation-
like process induced by the reactivation of the memory trace is called reconsolidation.  

 

2.5.1. Systems consolidation  

Systems consolidation refers to the post-encoding time-dependent processes assuring the 
transformation of encoded information in long-term memory representations spread over brain circuit. 
As a matter of facts, it is clear that if we speak about different anatomical regions in which memory is 
located over the the time we are focusing not on cellular or molecular mechanisms between the 
neurons and their synapsis (synaptic consolidation), but rather on connection pathways between 
different regions with different dynamics. 

Systems consolidation commonly refers to declarative memory, but it may exist in non-declarative 
memory as well (Dudai, 2012). The systems consolidation of the declarative memory is the process by 
which the HPC orchestrates and coordinates in coherent manner the progressive reorganization of 
memory trace at cortical level, in order to enable the storage and the recall of long-term memory even 
without the involvement of HPC itself (Alvarez and Squire, 1994). In other words the memory trace 
initially reliant on HPC becomes progressively independent to it, leading the cortex to take in charge 
of the process. The progressive reorganization of memory trace does not refers to a simple transfer of 
the engram between different areas, since the trace is indeed codified both at hippocampal and cortical 
level during the encoding phase but it is then actively consolidated via repetitive, organized, temporal-
limited interactions between cortex and HPC, producing a reinforcement (via creation of new 
connection or potentiation of pre-existing ones) of synaptic connection; this coordinate and 
progressive process of cortical synaptic remodelling is responsible for the formation and the storage of 
long-lasting and stable cortical memory. It is important to notice the dynamic nature of this process 
that can be modulated from the complexity of the souvenirs and the similarity of previous memories. It 
seems, indeed, that consolidation kinetic depends from the dissonance between the novel information 
brought to encoding and the knowledge already present in our memory (Dudai et al., 2015).  

It is important to point out that consolidation is not just a status, but it is a dynamic representation, 
able to integrate the information in a functional way.  

But when does it start or end? How the engram is transformed? 

To answer the first question we have to consider the different actors involved in this process while 
regarding the second question we can analyse the theories of systems consolidation  

Regarding the timeline of consolidation, despite more than one century of studies, it is difficult to 
define specific changes in brain that can represent a signature of consolidation: we can just call 
consolidation the time window in which memory trace is susceptible to amnesic agents.  

As discussed in the previous paragraph, the traditional point of view on memory consolidation 
considers that the fixation of a memory has a beginning and an end but since the process regarding the 
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memorization of information can be relatively easily targeted, it does not reflect the dynamic nature of 
behaviour. Thus, the concept of fixation of memory trace was reviewed, since the presentation of a 
remainder cue (normally the conditioned stimulus) is able to re-open and reactivate the memory; 
interestingly, the perturbation of this time window with amnesic agents can impair the retrieval of the 
memory (Misanin et al., 1968). This process of reactivation and the following reopening of a 
consolidation-like time windows that can challenge the memory maturation is called reconsolidation. 

In this thesis we are not going to study the reconsolidation aspect, even if it will be relevant to explore 
in order to extend our results to a more complex system of stimuli and memories (Dudai, 2012), but in 
the following part we can dissect the kinetic of system memory consolidation. 

 

2.5.1.1. Neocortex: slow-learner? 

Marr (Marr, 1970, 1971) was the first that hypothesizes the existence of a dialogue between HPC and 
cortex after the encoding and that HPC was responsible to rapidly store the memory trace and organize 
the transfer and the progressive reorganization in the cortex, which in turn store it permanently. Thus, 
two important questions rise from this model: 

Why, then, do we need the HPC if the memory depends on induced changes in cortical connectivity?   

Moreover, why the cortex takes such a long time to integrate the encoded information? And 
consequently, why HPC is able to quickly take in charge the organization of the initial memory trace? 

According to the computational model of systems consolidation proposed by McClelland and 
colleagues or O’Reilly and Norman (McClelland et al., 1995; O'Reilly and Norman, 2002), HPC is 
particularly suitable to rapidly encode the information. Moreover, as previously mentioned, HPC and 
in particular CA3 neurons are already strictly connected. In any case, there is no reason why the 
cortical plasticity can be slower than hippocampal ones,  

This different kinetic of the cortex reflects the complexity of the cortical network. 

To firstly answer to this question we have to consider that, at the moment of acquisition, the different 
characteristics of the event are individually and independently treated within a wide cortical network. 
Moreover, cortex possesses several partially overlapped processing pathways and these pathways can 
be treated in different cortical areas (Miller, 1999). McClelland and colleagues assumed that each 
information gives rise to small adaptive adjustments to the level of neuronal connections, which are 
small in magnitude and consequently having subtle effects. Over the time, these continuous repetitions 
accumulate changes, creating a relationship between inputs and outputs, providing the basis of an 
acquired memory.  

In our life, the presence of the stimulus is limited in time and the derived representations least just for 
few seconds at conscious level. The HPC, which receives sets of data from different neocortical 
associative regions and sends back projections to these areas, seems to orchestrate the progressive 
remodelling of connections between different neocortical regions activated by the encoding and 
containing the different components of original experience. 

During the hippocampal-cortical dialogue, the cortical modifications can benefit from persistence of 
representations provided by HPC, in order to assure progressively the formation of complex 
associations between the elements of the event either treated by different neocortical areas or encoded 
in different times by the same cortical area (Manns and Eichenbaum, 2006). 
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According to McClelland, this meticulous organization provides different advantages: firstly, it allows 
a finest structuration of the characteristics of the new information acquired; secondly, it avoids the 
redundant assimilation of the same characteristic and it energetic cost; thirdly, enable an efficacious 
integration of the new event with the linked memories already present, without forgetting or 
alterations of these, and eventually with other stored memories. Of course this fine regulation requires 
time and can explain why this process is slow and why the hippocampus is necessary for cortex 
(McClelland et al., 1995). Moreover, the model proposed is even more complicated as suggested by 
others studies (McClelland, 2013; Tse et al., 2007; van Kesteren et al., 2012) supporting the concept 
that the processing kinetics of the new memories depends on the nature of the memories already 
integrated at cortical level. If the nature of new memories is similar to the older ones already 
consolidated, creating an associated cortical network, the integration of the new memory at cortical 
level results to be faster, without creating interferences to other memories. 

To summarize, this organization of memories allow us to answer the question previously mentioned 
(Why then do we need the HPC? Why the cortex takes such a long time to integrate the encoded 
information?). The hippocampus is the medium that allows the initial storage of memories, enabling a 
coherent integration without interference with the memories already present at cortical level. The 
incorporation of the new memory mediated by the cortex requires time to be stuck and incorporated 
into existing cortical memories, avoiding the loss of old memories that can be affected by fast changes 
destabilizing the structured knowledge built up from the previous experiences. 

As the index of the book guides us to find the good chapter, in the same way hippocampus drives the 
cortex in memory processing. But the hippocampal role is not just to link distributed cortical network 
but is also to reactivate cortical assemblies, activated during encoding (Wiltgen et al., 2004).  

 

2.5.1.2. Index and chapters: hippocampal index and cortical tagging 

The process of memory consolidation requires a sustained time-limited communication between 
hippocampus and cortex; hippocampus has a role in organizing the consolidation for a limited period 
of time, to sustain the establishment of a stable long term memory at cortical level; after that, 
neocortical regions independently mediate retrieval of remote memories (Alvarez and Squire, 1994; 
Lesburgueres et al., 2011; Marr, 1971; Maviel et al., 2004; Squire and Alvarez, 1995; Wiltgen et al., 
2004). This hippocampal-cortical dialogue allows the recurrent reactivations between these structures, 
leaving to a reinforcement of neocortical synapses previously recruited during encoding in order to 
enable the storage of long-lasting memories. But how the HPC is able to induce synaptic changes at 
cortical neuronal level, during the early phase of consolidation process? How HPC is able to address 
the cortical neurons involved in a specific memory trace? 

Since the cortical synaptic changes seem to appear slower than the hippocampal ones, it was assumed 
that a mechanism of temporal tagging of cortical neurons during encoding is required to identify the 
cortical assembly involved in the specific memory and allow the consequent reactivation mediated by 
hippocampus. In other words, the acquisition induces simultaneously early synaptic modifications 
both at hippocampal and cortical level. These modifications create the substrate for the following 
coordinate reactivations of the structures implicated in the consolidation of the memory, in order to 
assure a coherent retrieval of the initial information encoded. 
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Hippocampal index: 

An event is composed by an ensemble of different characteristics (i.e. temporal, spatial,..) perceived 
by different sensory systems. Thus, the encoding of an event has an associative nature, and the circuit 
mediating this encoding requires the ability of fast integration of association of these characteristics. 
The different wide and scattered cortices activated by the encoding are not an efficient system to 
support both a fast and complex storage of the different characteristics composing the event and 
maintain the associations between the different cortical structures implicated in the event (Morris, 
2006). Differently, HPC is a particularly suitable region to associate the different areas since possesses 
several reciprocal connections with different cortical areas (Amaral and Witter, 1989). This 
characteristic lead to important implications in the process of the consolidation of memories since it is 
the anatomical converging site that provides to the information received an elevated level of 
integration and abstraction (Lavenex and Amaral, 2000). Thus, these characteristics make the HPC an 
ideal structure not only for encoding the different informations forming the event but also to associate 
the different elements of the information. 

Due to these anatomic and functional characteristics of HPC, Teyler et DiScenna (Teyler and 
DiScenna, 1986) proposed that during the encoding, the acquisition of the different sensorial elements 
constituting an event activates specific cortical areas, and this pattern of activity is also encoded by 
HPC, like a topographic snapshot of the firing activity which contain the cortical addresses of the 
event that is being processed. The hippocampal index does not contain just the topographic 
characteristic of the pattern of activity but also the temporal co-occurrence of the patterns induced by 
acquisition (Teyler and Rudy, 2007). This theory is known as the theory of hippocampal index. 

Thus, the time limited role of HPC in memory consolidation does not reduce its importance: the 
associative ability of HPC and the storage of hippocampal index allow the restitution of a unified and 
coherent representation of the event during the retrieval, using the cortical addresses activated at the 
moment of the encoding. In other words, during the cortical consolidation the information coming 
from different cortical areas is rapidly and temporally linked through the hippocampus via several 
plasticity mechanisms.  

Moreover, the neocortical areas recruited at the moment of encoding are subsequently activated by 
HPC during the periods of inactivity and sleep. Thus, the HPC participate to the reinforcement of 
cortex-cortical connection, inducing the stabilization of the long-term memory, by reactivating the 
cortical patterns concerning the memory trace. But how the HPC is disengaged at a certain moment? 
The mechanism of hippocampal deactivation is probably mediated by cortical direct (Rajasethupathy 
et al., 2015) or indirect efferences, even if the phenomenon is still not totally understood.  

 

2.5.1.3. Reciprocity of hippocampal index: cortical tagging 

As previously discussed, the retrieval of a declarative memory induces the reactivation of hippocampal 
and/or cortical assembly activated during encoding (Tonegawa et al., 2015a; Tonegawa et al., 2015b). 
This hypothesis was confirmed by the creation and the use of transgenic models, enabling to 
temporally but clearly target a specific neuronal population of neurons activated during the encoding 
of behavioural task and subsequently check their reactivation at the moment of retrieval (Reijmers et 
al., 2007). With fluorescence in situ hybridization was possible to target neurons activated by 
encoding after a short time window, since mRNAs for Arc or others IEGs rapidly decay. While it was 
difficult to follow the activity of individual neurons weeks after learning, Tayler and colleagues 
(Tayler et al., 2013) addressed this issue using a long-lasting, stable but inducible form of GFP protein 
(H2B-GFP, green fluorescent protein); in this model the GFP expression is regulated by c-fos 
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promotor and tTA/tetO system and allow them to labels neurons activated by encoding in a permanent 
way during the fear conditioning. In this way they were able to demonstrate that the retrieval of a 
recently (2 days) formed context memory is able to reactivate hippocampal, amygdala and cortical 
neurons tagged during encoding. Differently, after 2 weeks from learning, the same degree of 
activation is maintained in cortex but a decrease of neuronal activation was reported in hippocampus 
and amygdala. These results shown that the same cortical neurons activated by the encoding were also 
reactivated during retrieval of recent and long-term memory; in addition, they confirmed the 
hypothesis of hippocampal disengagement during long-term memory consolidation process of a fear 
context memory. 

In support to these results, a previous PhD student of the team, Edith Lesburgères in 2011 
(Lesburgueres et al., 2011) showed that during the acquisition of social transmission of food 
preference (STFP) task, the recruitment of the neurons of orbitofrontal cortex (OFC) is fundamental 
for the stabilization of a long-term memory. In fact, the pharmacological inactivation of this region 
during encoding was able to prevent the progressive organization of OFC neurons (decrease in 
dendritic spines density), blocking the retrieval of an associative olfactory memory after 30 days from 
encoding. The “tagging” of the OFC during the encoding is the prerequisite for the beginning of 
hippocampal-cortical dialogue and consequently the consolidation of this memory. 

Moreover, it has been proved that the pharmacological blockade of synaptic transmission of OFC 
neurons during encoding does not affect the expression of  recent memory (7 days after encoding) but 
rather impaired the consolidation and thus the retrieval of the remote memory (30 days later). Thereby, 
the OFC was not enough “mature” to sustain alone the consolidation of a remote memory at the 
moment of encoding. Thus, the dialogue between HPC and OFC is fundamental in this phase. During 
the time this dialogue decrease and cortical connections are strong enough to support alone the 
engram, independently to hippocampus. 

Confirming Tayer’s findings, Lesburgères and colleagues underlined the necessity of the early OFC 
tagging in order to allow their subsequent reactivation triggered by HPC, to assure the strengthening of 
cortical connections and thus to enable the stabilization of a remote memory.  

Other studies confirmed these results, allowing the generalization of the concept with others kind of 
memory (i.e. fear conditioning memory (Sierra-Mercado et al., 2015)).  

Despite this, the complexity of the memory process and the study of the amnesic patients or animal 
models produce a plethora of heterogeneous results regarding the role of HPC during memory 
consolidation, enhancing the rise of different hypothetical model of memory consolidation. 

 

2.5.1.4. Memory reactivation during sleep 

As previously described, the reactivation of cortical and hippocampal neuronal networks previously 
activated during encoding is one of the most important feature of the consolidation process. 

Even if it does not represent an aspect investigated in this thesis, we discuss briefly the importance of 
the sleep process in memory consolidation.  

The coordinate reactivations of hippocampal and cortical neuronal population activated during 
encoding, called “reply “, occurs during an “off-line phase” which corresponds to rest or sleep periods 
during which there is not the neuronal activation induced by external stimuli. This mechanism allows 
the integration of memories without the intrusion of new information (Sejnowski, 1995). 



49 
 

This phenomenon was highlighted by electrophysiological records, which showed a selective 
reactivation during sleeping of the same coordinate patterns, firing during encoding in hippocampal 
neurons. This replay process was in particular recorded during “slow wave sleep” (SWS) and less 
frequently during the paradoxal sleep (rapid eye movement sleep; REM) (Walker and Stickgold, 
2004). This “recapitulation” mechanism was recorded also at cortical level (Hoffman and 
McNaughton, 2002).   

Moreover, it was demonstrated the presence of coordinate reactivations of hippocampal and cortical 
activities: during the SWS the oscillatory high frequency activity of HPC (Sharpe waves ripples) 
(Hasselmo, 1999) increased the activity of the cortical regions engaging plasticity mechanisms 
(Chrobak and Buzsaki, 1996; Siapas and Wilson, 1998), in turn correlated to cortical slow waves 
spindles (Molle et al., 2006; Siapas and Wilson, 1998; Sirota et al., 2003). 

Furthermore, Gais and collaborators, using MRI technique, showed that post-learning sleep enhances 
hippocampal responses during the recall recent memories (48 h after learning), accompanied by an 
increase of connectivity between HPC and medial prefrontal cortex (mPFC). Six months after 
learning, memories activated the mPFC more strongly when they were encoded before sleep. These 
data show us that sleep participates to the progressive increase of neocortical contribution for memory 
retrieval; moreover, the sleeping phase contributes to progressive reorganization of neuronal network 
involved in the consolidation and retrieval of declarative memory (Gais et al., 2007). This replay can 
reflect the hippocampal-cortical dialogue and promote the stabilization of the new information 
acquired. 

In addition, even if exists a double sense communication between HPC and cortex during sleep 
(Axmacher et al., 2010; Ji and Wilson, 2007; Sirota et al., 2003), it seems that hippocampal activity 
can initially act on neuronal activity (Wagner et al., 2010; Wierzynski et al., 2009).  

The SWS phase, although accompanied by important neuronal activation (Sutherland et al., 2001), is 
characterized by a decrease in IEGs’ expression involved in plasticity mechanism and a reduced 
induction of LTP (Ribeiro and Nicolelis, 2004), differently to REM phase implicated in synaptic 
plasticity changes and regulation of transcriptional activity (Ribeiro et al., 1999).  

Thus, it was proposed that memory reactivation during SWS allows the redistribution and 
reorganization of systems consolidation, while the REM phase is responsible to the remodelling and 
reinforcement of reactivated synapsis, participating to synaptic consolidation (Siegel, 2001). We have 
to mention that there is a sequence of SWS and REM periods, thus this sequence contribute to the 
complementary reorganization of synaptic connections. 

The memory reactivation, however, are not only restricted to the period of sleep but they can also exist 
during post-acquisition periods in the awake animal (Karlsson and Frank, 2009) and humans 
(Peigneux et al., 2006). The meaning of these reactivations seems to be related to modifications and 
the update of memory traces face to new elements that we can find in the environment (Dudai, 2006). 

 

2.5.1.5. Models of memory consolidation 

The complexity of memory consolidation process leads, during the time, to the formulation of 
different theories that try to analyse the involvement of different brain areas taking into consideration 
their contribution during the time and the different types of memory involved; in the following part we 
underline the similar and different aspects between them (summarized in Fig. 14).  
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Figure 14: Different theories of systems consolidation: in blue, theories showing a temporally graduated retrograde amnesia, 
indicating a transitory participation of HPC in memory consolidation. In  green, theories showing a flat gradient of retrograde 
amnesia induced by a permanent functional implication of HPC in memory retrieval, independently from the age of the 
memory. Happy emoticons show the common features, sad emoticons indicates different point of view. 
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i. Standard Model of Memory Consolidation (SM) 

The standard model of memory consolidation (SM) is based on the existence of the temporal gradient 
of retrograde amnesia following hippocampal damage. 

In this model, the HPC is considered an “anatomical index” capable to integrate the information 
coming from different cortices that in turn supports the different aspects of the experience. During 
encoding the HPC fuse all the elements provided, creating a coherent memory trace. During 
consolidation, repeated and coordinates reactivations of HPC-cortices paths induce a regional/systemic 
reorganization that leads to a progressive increase of the strength and stability of cortical-cortical 
connections, the holders of original experience. This reorganization leads to the transformation of the 
memory trace in stable long-lasting and coherent memory. Throughout the consolidation, as time went 
on, after days and weeks, the HPC gradually decrease its role leaving the cortex able to sustain 
independently the permanent memories and their retrieval (Frankland and Bontempi, 2005; Squire and 
Alvarez, 1995).  

Thus the HPC is the site of temporary storage of memory trace, while the cortex is the site of 
permanent storage. Moreover, since the hippocampal temporal involvement, the retrieval of memory is 
dependent from HPC as long as the cortex is able to sustain alone the storage of the remote memory. 

But what does it happen exactly during encoding and consolidation? (Fig. 15) 

During encoding: 

The information is treated and codified at cortical level; the temporal and topographical patterns of 
neuronal assembly tagged at this moment are addressed to HPC (see previous paragraph “Index and 
chapters: hippocampal index and cortical tagging”), which, as result of its associative ability and 
rapidity, encode cortical firings addresses in the form of hippocampal index in order to enable a 
coherent and unified representation of the event treated. 

During hippocampal-cortical dialogue: 

During the first days, the hippocampal index mediate the repeated activation of spread cortical neurons 
mediated by HPC (during active phase or during sleep); this synchronized reactivation of this wide 
population of cortical neurons lead to the creation and/or the reinforcement of cortical-cortical 
connections in order to allow the formation of a coherent memory trace. Once the memory trace is 
consolidated (i.e. gradually transformed from an initial labile state into enduring stable memories, and 
consequently retrieves by the cortex), the role of HPC as a consolidation-organizing device ends and 
the neocortical regions independently mediate retrieval of remote memories (Dudai, 2004; Maviel et 
al., 2004; McGaugh, 2000; Squire et al., 2015). 
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Figure 15: Standard model of systems memory consolidation: A) the initial information is initially encoded at primary and 
associative neocortical level (CTX, black neurons with red contour line) through the tagging process. Hippocampus (HPC), 
creating the “hippocampal index” (red HPC neurons), trigger a rapid integration of the different aspects of the information 
coming from the different neocortical areas, in order to create a coherent memory trace. B) Successive cortical-hippocampal 
reactivations induce both the progressive reinforcement of pre-existing connection (red connection lines) and the creation of 
new connections (orange connection lines), stabilizing the cortical information. C) The modifications of these connections 
induced by hippocampal-cortical system are fast and transitory, but during the time the cortical modifications become stable 
and long-lasting (thick red connection lines). Adapted from (Frankland and Bontempi, 2005; Lesburgueres et al., 2011). 

 

Several invasive approaches conducted on animal models confirm this hypothesis (previously reported 
in the former paragraphs, in particular in the section Animal models of amnesia; for a review 
(Winocur et al., 2010)); moreover neuroimaging studies performed on patients showed that the 
retrieval of declarative memory is correlated, during the time, to a progressive reductions of 
hippocampal activity associated to an increase of cortical activity (Smith et al., 2010; Smith and 
Squire, 2009; Takashima et al., 2006; Takashima et al., 2009). Confirming these results, studies 
performed by Bontempi’s team on animal models identified the neuroanatomical cartography of the 
metabolic (using (14C )2-deoxyglucose) (Bontempi et al., 1999) or neuronal activity (using IEGs, i.e. 
c-fos and zif) (Frankland et al., 2004; Lesburgueres et al., 2011; Maviel et al., 2004) during memory 
consolidation, as explained more in details in the section “Cortical lesions and amnesia: The role of 
cingulate cortex in memory consolidation”. Others teams confirmed this cerebral dynamic using 
different behavioural paradigms and different techniques ((Ross and Eichenbaum, 2006; Takehara-
Nishiuchi and McNaughton, 2008; Takehara et al., 2003; Thomas et al., 2002; Wheeler et al., 2013), 
showing that after encoding there is a shift on the roles played by different areas: just after encoding, 
the memory performance, thus the relative neuronal activation, is strongly linked to HPC; but as time 
went on and the consolidation gradually proceed, the functional contribution of HPC decreases and 
cortical areas are able to mediate the retrieval alone. In others words, HPC is more active during the 
retrieval of a recent memory compared to remote one and the cortex (especially medial prefrontal and 
anterior cingulate cortices) are more active during the retrieval of a remote memory. 

Moreover, the stabilization of the remote memory trace is accompanied by an increase of dendritic 
spines density at level of ACC during the consolidation of context memory induced by fear 
conditioning (Restivo et al., 2009) or at OFC level during the consolidation of olfactory associative 
memory during STFP, together with an increase of synaptophysin, a marker of synaptogenesis 
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(Lesburgueres et al., 2011). In the same way, an increase of the expression of the presynaptic protein 
GAP-43 (growth-associated protein, used as a marker of synaptogenesis) in ACC is measured 30 days 
after the encoding of spatial memory task, compared to Day1 (Maviel et al., 2004). 

This presynaptic and postsynaptic structural remodelling at cortical level reflects the gradual increase 
of synaptic activity and of cortical-cortical connections of the neuronal network implicated in the 
memory consolidation and the retrieval of remote memory, becoming a morphologic correlate of the 
memory stabilization during the time. 

These correlative approaches are valued and confirmed by invasive strategies, which confirm the 
importance of neocortical regions at the moment of remote memory retrieval.  

For instance, the pharmacological inhibition of ACC, achieved by lidocaine injection before testing 
the memory in Radial Arm Maze, specifically perturbes the expression of remote spatial memory, 
without affecting the recent one (Maviel et al., 2004). Moreover, the HPC inhibition induces an 
impairment of the retrieval of the recent spatial memory, without effect on the retrieval of remote 
memory. In the same year, Frankland (Frankland et al., 2004) showed the same effect of lidocaine eon 
memory retrieval using the contextual fear conditioning paradigm, confirming the progressive 
establishment of cortical memory during consolidation. 

Moreover, in another study using a Morris Water Maze task it has been shown that c-fos expression 
was elevated after expression of a remote but not recent memory (increasing of ACC role as a function 
of time), that the lidocaine-induced inactivation of ACC impairs remote memory retrieval, sparing the 
recent memory (Teixeira et al., 2006). 

In the same way, Kim and collaborators in 1995 tested the memory response (quantified as blink of 
nictitating membrane) in eye-blink conditioning paradigm in rabbits, hippocampectomized 1 day or 30 
days after learning. Rabbits receiving surgery 1 day after learning showed impairment in conditioned 
responses, while no effects were found on rabbits operated 1 month after encoding (Kim et al., 1995), 
confirming the time-limited participation of HPC in memory processing, being necessary for the 
retrieval of recent memories but not remote ones. Using the same protocol Takehara and colleagues 
(Takehara et al., 2003) extended the study showing that the lesion of medial prefrontal cortex strongly 
impacts remote memory, while the recent memory was just marginally affected. In any case this area 
seems to mediate recently acquired memory.  

All together, these data show the progressive importance of cortical regions for the expression of the 
remote memory, as suggested by studies performed on human suffering from semantic dementia or 
cortical damages, characterized by specific loss of remote memory (Levy et al., 2004; Moscovitch and 
Nadel, 1998). 

 

ii. The schema theory  

Everybody can notice that it is easier learn a task and remember it if the task is related with something 
that we already know. This idea was developed by an English psychologist, Frederic Bartlett (Bartlett, 
1932 ) which proposed the concept of mental “schema” referring to a mental model as a framework of 
knowledge (Tse et al., 2007; Tse et al., 2011), and in this network of knowledge the new information 
can be easily integrated. This schema is made by cognitive structures that facilitate encoding and 
consolidation mechanisms (Ghosh and Gilboa, 2014). In the beginning this concept was not 
considered by the neuroscientists, but hopefully was recently reconsidered by Tse and collaborators.  
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Before exploring this study we have to open a little parenthesis on laboratory animal models. As 
mentioned before, the progressive corticalization of a declarative memory takes several weeks in 
rodents and years in humans, in order to avoid the wrong integration of memory trace in memory 
“library” (see paragraph “Neocortex: slow-learner?”). Despite this, the limit of laboratory animal 
models is the impoverished environment in which they live all their life, compared to rodents in 
natural environment. This depleted condition makes them relatively naïve to the encoding. In nature 
the animals have to integrate the new encoded information in a wide network of memories. By the way 
these models allow us to understand a relatively simplification of pathways studied. Tse and 
colleagues tried to study a memory network more developed, even if still simplified. In any case, they 
demonstrated that the temporal gradient of retrograde amnesia induced by hippocampal lesion is not a 
rigid time window but it can change dependently to the knowledge acquired. 

They showed that in rats new information can be rapidly incorporated at cortical level if it is similar to 
cortical representation (schema) of a complex spatial environment already established. In this task was 
used an arena (event arena) in which rats were trained to learn an association between a flavour and a 
place in the arena (i.e. banana flavour is in location A, bacon flavour is in location B), forming a 
complex spatial environment. The rats exposed to a flavour before entering in the arena have to reach 
the right place associated to this flavour in order to obtain the food; the time spent by the animal to 
reach the place is recorded as index of memory performance. This paired associated learning task 
requires a transitory initial involvement of HPC and a corticalization of long-term memory. It was 
shown that rats take 6 weeks to learn six flavour-place associations (a flavour is presented once during 
a session; 3 session/week). After this learning phase, rats were able to learn 2 new flavour-place 
association in one train session (being able to retrieval them for at least two weeks) showing that 
cortical schema induced by the first six association can facilitate the incorporation of new association. 

Furthermore, even more interesting, they showed that a bilateral lesion of HPC executed 48 hours after 
encoding does not affect the memory retrieval showing a faster corticalization of the memory. By the 
way; the same lesion performed 3 hours after encoding, affects the memory retrieval of these 2 new 
flavors, showing a hippocampal-dependent mechanism (Tse et al., 2007).  

In another set of experiments (Tse et al., 2011), the same groups complementarily proved that the 
presentation of the two new flavour-place associations in a familiar environment induce a fast learning 
associated to the expression of IEGs (Zif268, Arc) in different cortical areas such as the medial 
prefrontal cortex. Differently, if these 2 associations are presented in a different environment does not 
neither induce a rapid learning nor the expression of IEGs. These results showed that the exposition to 
new associations, that are similar to a previously formed schema, induces important cortical changes, 
which are not evoked in case of either re-exposition to the information already known or to the 
presentation of new pairs in absence of the schema of knowledge. 

These studies revealed that the cortex is not necessary a “slow learner” in presence of a mental 
schema, since it is able to quickly integrate new information. The acceleration of consolidation 
memory process can be ascribed to a cortical schema previously established, allowing the fast 
integration of similar and compatible information, without creating interferences with the memories 
(McClelland, 2013; Wang and Morris, 2010). 

Moreover, unexpectedly, the results obtained by Tse showed that the retrieval of the spatial memory 
generated by the “event arena” is possible without the involvement of HPC. Rats trained in the event 
arena and exposed to the new association, were lesioned after 24 h, without showing any memory 
deficit for the original association and the new ones. This means that the spatial memory trace is 
already stored outside the HPC. This finding is in contrast with multiple trace model and the theory of 
the transformation (described below) which considered the HPC the site of storage of spatial memories 
(spatial maps). According to the schema theory, the high level of the familiar environment in which 
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the memory was formed can allow the formation of the memory trace, (enriched in spatial and 
contextual characteristic), to become independent from HPC. Winocur (Winocur et al., 2010) showed 
that rat habituated to a high rich environment (“the village”), with different accesses to water and food 
in different compartments of the arena, do not show spatial memory deficit after hippocampal lesion, 
confirming that the familiarity for the spatial environment allows to maintain some aspects of spatial 
memory without hippocampal involvement but with a cortical cognitive map of spatial environment 
(Moscovitch et al., 2005; Rosenbaum et al., 2000; Rosenbaum et al., 2001). The standard model, and 
the associated schema model, is supported by different studies with invasive (lesion/inactivation) or 
non-invasive (imaging) approaches in rodents’ and primates’ models in spatial and non-spatial tests 
(Dudai, 2004; Squire et al., 2015; Wang and Morris, 2010). Despite this, these theories present some 
limits and they do not take into account the phenomenon of flat gradient retrograde amnesia observed 
in other studies (previously mentioned in the paragraph “Retrograde amnesia and the stabilization of 
the memories” and examined in the following part). As a matter of fact, the corticalization of all the 
forms of declarative memory is under debate, and new theory of memory consolidation have been 
proposed, as exposed in the following part. 

 

iii. The cognitive maps theory  

In 1971, electrophysiological recording of HPC in rat exploring a new spatial environment showed 
that some neurons in CA1 are able to record spatial information regarding the position of the animal in 
the environment (O'Keefe and Dostrovsky, 1971). These neurons called “place cells” selectively fire 
when the animal is located in a certain place of spatial environment. O’Keefe and Nadel (O'Keefe, 
1978) suggested that the HPC is able to create a “cognitive map” (spatial cartography) of external 
environment that the animal can use in a flexible way in order to localize its position in the space, 
confirmed also by data showing the involvement of the hippocampus in learning and spatial memory 
in man (Ekstrom and Bookheimer, 2007; Maguire et al., 1997). 

The ensemble of neuronal place cells recruited is specific of the environment that the animal is 
exploring and this specificity takes time to be created, suggesting the triggering of modifications of 
neuronal network recruited by the spatial exploration and the consolidation of a spatial memory. 
Contrarily to the topographic organization that characterized primary sensory cortex or motor cortex, 
the HPC present an aleatory organization of the place cells (i.e. neighbouring place cells do not 
necessarily represent adjacent regions of the spatial environment). Thus, the same spatial environment 
can recruit different neuronal population in different animals/humans and the same animal/human can 
represent different environment with different place cells (Dombeck et al., 2010). These studies shed 
light on the contribution of HPC in the treatment of declarative information, showing its essential role 
in the treatment of spatial navigation and spatial memory. Even if the creation of cognitive maps is a 
priority for hippocampal network, studies performed on patients and lesioned animal models suggests 
that HPC can integrate associative information of spatial and non-spatial nature (Squire, 2004). 

 

iv. The multiple trace theory  

This theory was proposed in 1997 by Nadel and Moscovitch (Nadel and Moscovitch, 1997) and it is 
derived from the observations that MTL lesions affect more episodic memory than semantic one in 
human subjects. Moreover, MTL lesions induce a flat gradient of retrograde amnesia leading to the 
preservation of episodic memories acquired more the ten years before the lesion. Despite the flat 
gradient of retrograde amnesia was associated with extensive damage to extra-hippocampal regions, 
which can consequently affect other sites of permanent storage, Nadel and Moscovitch observed that 



56 
 

the dimension of the gradient depends not only on lesion size but also on the type of memory probed 
(Frankland and Bontempi, 2005). In particular, they noticed that if the whole hippocampal formation 
was damaged the retrograde amnesia for episodic memories was extensive.  

Consequently, it was proposed this new theory, the multiple trace theory (MTT), which confirmed that 
the initial phase of declarative memory formation requires the mandatory implication of HPC, that the 
memory trace is encoded in a spread hippocampal-cortical networks and that the characteristics of the 
information encoded are distributed in different cortical networks. Furthermore and interestingly, this 
theory affirmed that these characteristics are linked to the spatial and temporal context by HPC and it 
possesses the different indexes of cortical neuronal populations allowing the creation and retrieval of 
coherent and unified representation of initial event encoded. Thus, the retrieval of the contextually rich 
episodic memories, characterized by a precise spatial and temporal context, always depends on 
hippocampus, independently by the age of the memory (Eldridge et al., 2000; Moscovitch et al., 
2005). 

Thus, according to this theory, each time that the episodic memory is retrieved it is re-encoded; while 
the HPC encodes all the information consciously perceived, the reactivation of memory trace creates a 
new memory trace that will share common characteristics with the initial trace. In other words, the 
memory reactivation of the episodic information generates different multiple traces in the HPC which 
are linked to cortical networks. The ensemble of these multiple traces are widely distributed, making 
the retrieval of older (remote) episodic memory less sensitive to hippocampal damage, compared to 
recent memories. In this way is possible to explain why partial MTL lesions affect the recent episodic 
memory, explicating the presence of a gradual gradient amnesia in some patients, whereas the whole 
MTL damage induces a flat and global retrograde amnesia.  

Regarding the semantic memory, the MTT is in accordance with the SM: the hippocampal lesion 
induces a perturbation of the recent memory without affecting the remote one. 

This is due to the fact that the multiple traces created by the memory reactivation, interlinked together, 
allow the “extraction” of factual characteristics of the episode and their integration with previous 
semantic memory. According to this theory, the factual components of the information acquired 
during an episodic event are segregated to the episodic component and are independently stored (as 
mentioned before the HPC is the site of spatial and temporal context but the cortical traces are context-
free, in other words transformed in semantic ones).  Thus, in accordance to SM, the semantic memory 
will temporarily depend on HPC that will be successively supported by the cortex alone (Fig. 16). 

Thus, the common feature of the two models is that the reactivation of memories initiates a process of 
reorganization but the difference is where this organization takes place: in fact while for SM the 
reorganization process occurs in cortical networks, MTT predicts that reactivation should also lead to 
the generation of new traces within the hippocampus. 

If the literature mainly agrees with the progressive hippocampal disengagement during the 
consolidation of semantic memories, some studies showed a flat gradient even for semantic memory 
(Moscovitch et al., 2005). This can be explained with an episodic aspect in the characterization of 
semantic memory. As a matter of fact, there is a dynamic interplay between these two types of 
memory and they can interact and influence each other (Winocur et al., 2010). 
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Figure 16: Comparison between SM (a)  and MTT (b) on memory performance related to hippocampal status (Frankland and 
Bontempi, 2005). 

 

v. The transformation hypothesis 

A recent evolution of the MTT assumes that it is possible that the memory traces change their format 
during memory consolidation. According to this, it was shown that most of autobiographical memories 
lose their spatial and temporal details during the aging (Biedenkapp and Rudy, 2007; Furman et al., 
2012; Levine et al., 2002; Wiltgen et al., 2010). The episodic memory, initially dependent from 
hippocampal-cortical network, is transformed in a semantic representation during its consolidation at 
cortical level. The corticalization of memory traces is correlated to a process of “decontextualization”, 
called also “semantization”, during the time, and the retrieval of detailed episodic memories is always 
dependent to HPC (Winocur and Moscovitch, 2011; Winocur et al., 2010). 

Thus, the hippocampal disengagement during memory consolidation initially with episodic nature can 
be possible, but this disengagement reflects a semantization of the representation. Therefore, this 
transformation of memory trace explains the preservation of autobiographical memories in amnesic 
patients induced by hippocampal lesion: in these patients the memories will be deprived of detailed 
contextual characteristics, becoming qualitatively different compared to healthy subjects (Moscovitch 
et al., 2006). 

This hypothesis is confirmed by several studies performed on rat models. Winocur (Winocur et al., 
2007) tested the transformation hypothesis in two hippocampal-dependent tasks: social transmission of 
food preference (STFP) and contextual fear conditioning. In both task the memory performance of rats 
was tested at recent or remote time point in the same context of acquisition or in a different context. In 
tune with transformation theory, the change in context perturbs the retrieval of recent memory and not 
the remote memory, explainable through the decontextualization of the representation retrieved at 
remote time point. 

Moreover, others studies performed in the same year showed that the remote memory can be 
generalized to different contexts, while the recent memory is more discriminative (since it richness in 
details), revealing that the contextual memory lose precision during the time (Biedenkapp and Rudy, 
2007; Wiltgen and Silva, 2007). 

In a recent study, Wiltigen (Wiltgen et al., 2010) demonstrated that animals able to discriminate two 
contexts showed a memory deficit after pharmacological inactivation of HPC after 14 days from 
encoding, conversely to others that are able to discriminate. These data showed that the HPC is 
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required for contextual memory retrieval. Contrariwise, if just the semantic component of initial 
memory is available, it can be retrieved by the cortical contribution. 

 

2.5.1.1. The debate on memory consolidation and last discoveries 

Thanks to new technology, in particular the optogenetic, it is possible to study with high precision and 
resolution the dynamic of systems consolidation of the memory trace, increasing the debate on 
systems consolidation theories and in particular the role played HPC during consolidation and 
retrieval. 

One first advantage of this technique is that the inhibition of the target structure possesses a high 
precise temporal resolution avoiding the possibility of carrying out compensatory mechanism induced 
by long-lasting pharmacological inactivation or lesion that could bias the dynamics of the pathway. 

As a matter of facts, Goshen and collaborators investigated the effect of the optogenetic inhibition of 
dHPC in the interaction with ACC during context fear conditioning task with the advantage of the 
temporal resolution of this technique (Goshen et al., 2011). A short optogenetic inactivation (5 
minutes) of dHPC during the re-exposition to the fear context is able to impair the retrieval of the 
memory tested at 28 days, as well as 9 and 12 weeks after learning. A longer optogenetic inhibition, 
mimicking the pharmacological effect (duration of 30 min and starting 25 min before the beginning of 
the test) does not affect the retrieval of remote memory but it disturbs just the retrieval of the recent 
one, confirming the previous finding. Moreover, the short inhibition of CA1 impairs the c-fos 
expression in CA1 and ACC, while its longer inhibition impairs the c-fos expression in CA1 and 
increases the c-fos level in ACC. Therefore, this can support the hypothesis that prolonged inhibition 
of HPC induces a compensatory mechanism at cortical level, assuring the retrieval of the remote 
memory.  

According to MTT and transformation theories, this study suggests that HPC is necessary to the 
retrieval of remote contextual information. However, the study performed by Goshen was able to show 
that HPC is implicated in the retrieval of remote memory. Thus, two possible pathways can mediate 
the retrieval of remote memory (Suzuki and Naya, 2011).  

The first pathway, active by default, is represented by functional interactions between HPC and ACC, 
becoming both necessary for the retrieval of remote contextual memory. The second one is a 
compensatory pathway activated when HPC is blocked, leading to an increase of cortical activation 
(increase of c-fos expression) in order to assure the retrieval of remote contextual memory 
independently from HPC. 

Another study demonstrated that the optogenetic inhibition of CA1 during context re-exposition 
impairs fear response (Tanaka et al., 2014), as well as the inhibition of DG or CA3, during the 
retrieval (Denny et al., 2014). 

Thus, the blockade of reactivation of hippocampal index, during the period in which the fear response 
triggered by the context is represented at hippocampal-cortical level, is sufficient to block the 
reactivation of the whole hippocampal-cortical network. 

Consequently, the short inhibition of CA1 during retrieval is sufficient to reduce the reactivation of 
cortical neurons (Ent, retrosplenial and perirhinal corteces). In other words, the hippocampal inhibition 
blocks the retrieval by preventing the cortical reactivation of the memory trace (Tanaka et al., 2014). 

Conversely, the concept of cortical neuronal tagging (Lesburgueres et al., 2011; Tse et al., 2007) 
suggests that the memory trace is rapidly formed in the cortex at the moment of encoding. This trace is 
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still “immature” and needs to hippocampal-cortical reactivation to become mature thus allowing the 
behavioural expression of the task.  

The hippocampal implication in the retrieval of a recent memory was artificially mimicked by 
optogenetic: in fact, the function generator of cortical activity mediated by HPC, during systems 
memory consolidation, can be mimicked by optogenetic firings enabling the selective activation of 
cortical neurons engaged by encoding. To mimic hippocampal-induced reactivation of cortical 
neurons, mice performing the context fear conditioning (Cowansage et al., 2014) were genetically 
modified to induce the expression of rhodopsin channel (ChEF), under c-fos promoter, in retrosplenial 
cortex, area specifically recruited during the encoding of this task, in order to manipulate 
optogenetically this cortical population at the moment of retrieval. After the fear conditioning to a first 
context and the relative recruitment of cortical and hippocampal neuronal population, the optogenetic 
reactivation of retrosplenial neurons in a neutral context (not associated to fear response) induced the 
retrieval of the fear memory. Moreover, interestingly, the same fear response in neutral context was 
obtained by artificial activation of retrosplenial neurons and simultaneous pharmacological inhibition 
of HPC. 

Thus, this study showed that even if the HPC plays a fundamental role in memory stabilization at 
cortical level, an exogenous and artificial technique could bypass its implication by enabling the 
reactivation of cortical neurons implicated by encoding. In this case, it seems that the cortical memory 
trace is sufficient to retrieve the contextual fear memory.  

In conclusion, even with the advent of new technologies, the contribution of HPC during cortical 
dialogue and after its role in memory retrieval is still under debate.  

According to SM, HPC is the temporary custodian of the index that allows the coherent reorganization 
of the memory trace stored at cortical level (Frankland and Bontempi, 2005). Consequently, it is 
possible to suppose that the quality of memory retrieval induced by hippocampal reactivation does not 
change if the retrieval is induced by either physiological process or artificial technique. 

Vice versa, MTT and transformation models propose that HPC permanently stores the spatial and 
contextual details of information, which are not present at cortical levels (Winocur and Moscovitch, 
2011). Thus, the memory retrieved via HPC will be enriched by spatial and contextual details different 
from the recall of memory induced by direct (i.e. artificial) reactivation of cortical neurons, which will 
be semantic and generalized in nature (Wiltgen et al., 2010).  

Actually, these systems consolidation theories differ in the role of hippocampal restitution of remote 
information and the nature of retrieved memory. In any case, the general consensus foresees the 
transitory hippocampal role in retrieval of semantic memories (Dudai, 2012; Squire and Alvarez, 
1995; Squire et al., 2015; Winocur et al., 2010). 

 

2.5.2. Synaptic consolidation  

Even if the synaptic consolidation will not be thesubject of this thesis, we briefly introduce this 
concept (for reviews see (Kandel, 2001; Wang et al., 2006)). 

While systems consolidation includes the complex and enduring process that lead to a gradual 
reorganization of cerebral region subtending memory, implicating a time dependent shift in the circuits 
supporting memory recall, the synaptic reorganization is complete within hours and include the 
stabilization of changes in synaptic connection in localized circuits. This process involves assist to the 
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growth of new synaptic connection or a restructuration of existing ones (Frankland and Bontempi, 
2005). 

The synaptic consolidation is a rapid phenomenon that starts from the first min/hours following the 
encoding; as the name suggests it is the stabilization at synaptic level of the changes induced by 
encoding. Such changes include the formation of new synaptic connection and the restructuration of 
existing synapses (Dudai and Eisenberg, 2004). This process starts by recruiting the receptors 
localized at synaptic levels, and among these BDNF receptors, monoamines receptors and ionotropic 
glutamate receptors (iGluR) both AMPA and NMDA (Dudai and Eisenberg, 2004; McGaugh, 2000). 
Briefly, AMPA receptors are known to sustain the basal synaptic transmission while NMDA receptors 
are regulators of synaptic efficiency. As a matter of facts, NMDA receptors increase their activity 
when a simultaneous activity between presynaptic and postsynaptic neurons occurs (Hebbs’ theory), 
inducing a massive entrance of Na+ and Ca2+ (through ionotropic receptor and ions channels) and an 
extracellular diffusion of K+, inducing in turn depolarization with the consequent entrance of Ca2+ 
(Fig.17). The Ca2+ entrance triggers the activations of transduction cascade leading to a reinforcement 
of the synapsis. Among these, Ca2+ activates the calmodulin-dependent protein kinase II (CaMKII) 
which plays an important role in memory formation (Mayford et al., 1996).  

The postsynaptic activation of CaMKII leads to synaptic potentiation allowing the externalization of 
AMPA receptors on postsynaptic membrane and or the increase of its channel’s conductance (Nicoll 
and Malenka, 1999a, b). 

 

Figure 17: Key molecular actors implicated in synaptic consolidation (Wang et al., 2006). 
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This synaptic potentiation, called long term potentiation (LTP) is maintained by gene expression via 
complex mechanisms of transcription, protein synthesis which allows structural changes and 
strengthening of synapses (Kandel, 2001) (For a review (Lynch, 2004)).This process involves in 
particular the protein kinase A (PKA) and the mitogen-activated protein (MAP) kinase MAPK/ERK 
pathways (Abel and Nguyen, 2008; Frey and Morris, 1997; Sweatt, 2001) (Fig.18).  

 

Figure 18: Schema of LTP pathway: ERK seems a point of convergence for several signalling cascades; modified from 
(Lynch, 2004). Abbreviations: BDNF, brain-derived neurotrophic factor; Trk, tyrosine kinases receptors; NMDA, AMPA and 
mGluR, glutamate receptors; PI3K, phosphatidylinositol-4,5-bisphosphate 3-kinase; PKA, protein kinase A ; PKC, protein 
kinase C; CamKII, calmodulin-dependent protein kinase II; ERK, extracellular signal–regulated kinases; MAPK, mitogen-
activated protein kinases;PLA2, phospholipase A; MAP-2, mitogen-activated protein-2; Arc, activity-regulated cytoskeleton-
associated protein; CREB: cAMP response element-binding protein; c-fos, c-jun and c-myc, are immediate early genes. 

 

Synaptic strengthening can be induced by a “synaptic tag”, a specific marker that permits the transport 
of newly-synthetized RNAs and proteins towards a correct site (Frey and Morris, 1997, 1998). 
Unfortunately, even if this mechanism has been showed to be fundamental in the consolidation of 
memory (Lesburgueres et al., 2011), its nature remains still unknown (Wang et al., 2006). 

The perturbation of this step of consolidation is able to block the memory process. On the other hand, 
the same perturbations applied after this step will not affect memory formation. 
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2.6. The choice of the Social Transmission of Food Preference paradigm in the study 
of memory consolidation 

In order to pinpoint accurately the time-course of the hippocampal-cortical dialogue during the 
systems-level memory consolidation, we selected a behavioural paradigm particularly suitable for 
studying memory consolidation, that is the social transmission of food preference (STFP) , in which 
rats learn about the safety of potential food sources by sampling those sources on the breath of 
conspecifics: 

1/ This task enables olfactory information to be encoded rapidly during one single interaction session 
identifying a precise acquisition phase without repeating learning sessions, leading to a rigorous 
control of induction of post-learning mechanisms implicated in the systems consolidation of the 
memory trace. 

2/ It induces a robust and long-lasting memory.  (at least 30 days).  

3/ Its associative nature requires the HPC and specific cortical regions such as the orbitofrontal (OFC) 
and anterior cingulate (ACC) cortices, which are both, involved in processing olfactory associative 
information (Frankland and Bontempi, 2005; Lesburgueres et al., 2011). 

In particular the memory trace is initially dependent by HPC, and during the time by ACC and OFC, 
showing that the consolidation of the associative olfactory memory is accompanied by a progressive 
contribution of neocortical areas during the post-acquisition period, according to the fact that the 
stabilization of memory trace is translated into a strengthening of cortical-cortical connections and 
requires an architectural remodelling of neuronal network that identify the memory trace (Chklovskii 
et al., 2004; McClelland et al., 1995). 

4/Having no spatial nature (Strupp and Levitsky, 1984), STFP restricts the functional implication of 
HPC in the consolidation process and non in the spatial navigation. As a matter of facts, the 
information of social interaction has a capital nature, in order to know if the food is safety or not; the 
information in fact is extrapolated independently from where the animal is placed. Thus the spatial 
learning is negligible comparing the importance of social context. 

 

2.6.1.  Ethological Principles of STFP 

The STFP task is based on an innate behaviour of the rodent that creates and expresses an associative 
natural memory, conversely to the majority of behavioural paradigms testing memory in which the 
animals are obliged to realize tasks typically designed for the experimental practice. 

The STFP is based on ethological principles, such as the natural neophobia for the rodents towards the 
unknown food. In the natural context, the rodent is used to identify a new food source and then 
transmits his personal experience to others rats, becoming “pre-exposed” to that food. This pre-
exposition is able to decrease the natural neophobia in the other rats. Thus, a rat that is been “pre-
exposed to the pre-condition” will have a tendency to choose preferentially the familiar food compared 
to another unknown food (Posadas-Andrews, 1983).  

Despite that, the simple odour exposition is not sufficient to increase such food consumption, inducing 
a fast forgetting of the information concerning this food. Conversely, if the information about the 



63 
 

safety food is acquired through an interaction with a conspecific, it will be considered “precious” for 
the rats, which will remember it. For this reason, the conspecifics are important “sources” of 
information in the colony, in particular transmitting the characteristics and the localization of the 
safety food avoiding the toxic one.  

This social interaction and exchanges between rats have been studied from the 80th by Galef, who 
revealed the importance of the social interaction in the transmission of food preference in the colony. 
He was able to show that the social interaction induces the apparition of a food preference in Norvey 
Rats, not dependent by a behavioural imitation since the “interaction” component was crucial for the 
behavioural expression. 

 

2.6.2.  Description of the STFP task 

Since it is deeply described in the paragraph of Material and Methods, we briefly describe the 
principles of this task. The task starts with the exposition of a rat, called “demonstrator”, to a 
flavoured food. After this exposition, the demonstrator interacts with another rat, called “observer”. 
The interaction induce in the observer the formation of an association between the carbon disulfide 
(CS2) and the flavour of the food, both present in the breath of the demonstrator. During this phase the 
associative olfactory information is encoded. After the interaction, the observer rat performs the test 
session during which the rat is submitted to a choice between the familiar food (smell in the 
demonstrator breath) and another unfamiliar food, showing the preference for the familiar food if the 
consolidation and the retrieval of the associative olfactory memory take place. 

In 20 years, Galef and collaborators showed the importance of some criteria of this task, here 
summarized: 

 The social interaction is fundamental: comparing the food eaten by the rat interacting with the 
conspecific to the one of the rat simply exposed to the flavour, Galef and collaborators showed 
that the 30 min interaction with a demonstrator was sufficient to create a persistent food 
preference, while the simple exposition does not induce a food preference tested 15 min or 
24h after the exposition. Thus, the presence of the conspecific is essential for the development 
of food preference. Moreover, the social interaction with another rat is important in the 
transmission of food information, making the food more attractive  by the demonstrator rat 
(Galef, 2003; Galef, 1983). 

 To further characterize the quality of the interaction, it has been tested whether the presence of 
a conspecific is sufficient or just the olfactory cues presented by the demonstrator are 
fundamental for food preference transmission. To reach this aim, Galef and colleagues try to 
compare the observers’ performance interacting with normal demonstrate to the one obtained 
by interacting with anesthetized demonstrators or rats dummies perfumed with the flavour of 
the food. Dummies demonstrators do not induce the food preference, while anesthetized and 
normal demonstrators produce the food preference (Galef and Stein, 1985). Moreover, they 
showed that the components of rat nose breath, such as carbon disulfide and carbonil sulfide 
(CS2 and COS), are semiochemical compounds and can influence rats behaviours. As a matter 
of fact, rats puppets soaked with the flavour and the CS2 induce the food preference in rats 
(Galef et al., 1988). 

 The duration of social interaction and the numbers of interactions are important parameters for 
the food preference longevity: the 2 min interaction is sufficient to transmit the food 
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preference if tested immediately after it. Despite this, to produce a long lasting food 
preference an interaction of 15-30 min is required (Galef and Stein, 1985). 

 The aged-matched (Galef and Whiskin, 1998) and non-familiar demonstrator (Galef and 
Whiskin, 2008) increases the strength of food performance. As a matter of fact, they showed 
that if the demonstrator is unknown the observer interacts more with it in order to identify it. 

Of course this task has also some limits; the most important is that the food preference presented by 
the demonstrator is maintained if the observer is naïve to it. Moreover, if the food presented possess 
nutritive disadvantages the food preference disappears (Galef Jr and Whiskin, 2000). 
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Chapter 3: The cerebrovascular network 
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Chapter 3: The cerebrovascular network 

 

Probably, the first image of the brain that comes up in mind is a neuronal assembly, implicated in 
transferring the information through different pathways. Of course it is one of its most studied 
functions. But brain is not composed just by neurons. The neurons are maintained functional by others 
systems such as the vascular network, which regularly supports all their actions and necessity (Fig. 
19). 

 

Figure 19: The common necessity of a functional circuit for the nervous and vascular system is the cause of their shared 
development features, specific guidance cues and cellular and molecular signalling events. The need of nervous and vascular 
system to respectively coordinate nutrient and information transfer is reflected by the interface of the neurovascular unit 
(Tam and Watts, 2010). 

 

The cerebral vascularization and the blood flow are ones of the most important extraneuronal 
mechanisms implicated in brain functionality. As a matter of facts, if the cerebral blood flow (CBF) is 
interrupted, the cerebral functions fall down and in few seconds leading to irreversible cellular and 
functional damage (Hossmann, 1994). 

The brain receives 15-20% of total cardiac output although it represents only about 2% of body 
weight, being the most highly perfused organ of the body (Attwell et al., 2010; Cipolla, 2009). It 
requires high basal metabolic rate and specific homeostasis but it possesses limited capacity to store 
the energy. This means that, in order to maintain its processes and regulate all its functions, it demands 
a constant and controlled exchange with blood flow, by which it is closely dependent (Dunn and 
Nelson, 2014). Therefore, the spatial and time coordination between the blood perfusion and the 
neurons metabolic request is a crucial step for brain functions.  

The cerebrovascular network adapts its activity in order to provide energy and nutrients according to 
metabolic request of neuronal network; this mechanism is called functional hyperaemia and it depends 
on neurovascular coupling (for more details, see (Cipolla, 2009)), characterized by the interaction 
between endothelial cells of the capillaries, pericytes, astrocytes and neurons. 
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Moreover, to assure a constant and local blood distribution, the cerebrovascular network compensates 
the normal fluctuation of arterial pressure (PA) maintaining it in a range of 50-150 mm Hg, increasing 
the vasoconstrictor tone when the PA rise up, inducing vasodilatation when the PA decrease; this 
phenomena is known as autoregulation (Pires et al., 2013). 

Consequently, there is a coherent interaction between cerebral vasculature and neuronal network 
during cognitive functions and memory process. Indeed learning, consolidation and the recollection of 
memory traces are followed by synaptic molecular changes, leading to morphological changes in 
dendritic arborisation in brain areas involved (Lesburgueres et al., 2011). But are the dynamics of 
vascular systems modified by this process? The aim of the thesis is to investigate whether there is a 
reorganization of vascular network during memory consolidation process. In particular, we focus on 
architectural modifications induced during the post-encoding period. Before explore the vascular 
modifications, a brief notion about cerebral circulation is required. 

The brain seems to lack the survival advantages of the others organs, which are more tolerant 
regarding the decrease of CBF, but this limited autonomy is compensated by others mechanisms: 
firstly the ability to control cerebral perfusion with the humoral and neuronal influence on 
cardiovascular system (developed more in details in hypertension paragraph), secondly the 
autoregulation of arterial pressure in order to contrast the systemic fluctuation of pressure during the 
normal activities, and thirdly the regulation of the blood flow according to the metabolic request of 
neuron (Attwell et al., 2010; Tiret et al., 2009). To understand these mechanisms is fundamental to 
analyse, respectively: 

 The anatomy of cerebral circulation and the role played by the different actors in cerebral 
homeostasis 

 How cerebral blood flow is assured (autoregulation) 

 Cerebral adaptation to neuronal activity: neurovascular coupling inducing functional 
hyperaemia and hypoxia 
 
 

3.1. Anatomy of Cerebral Circulation 
 

3.1.1. Cerebrovascular architecture 

The vasculature developmental process in the brain presents some inter-species and intra-species 
differences, but despite all, the arterial vascular territories remains constant throughout the 
evolutionary process (Casals et al., 2011) (Fig. 20 and Fig. 21). 

 

Figure 20: SEM images of vascular network obtained using polyurethane-based casting resin PU4iiy. A) Overview of the 
whole brain. B) Detail of the lateral cortex with the middle cerebral artery. Adapted from (Krucker et al., 2006). 
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Figure 21: Cerebral regions supplied by the major encephalic arteries and their branches. Adapted from (Casals et al., 2011). 

 

The arterial blood is supplied by two pairs of large arteries, which come from common carotid arteries, 
the internal carotids (left and right) and vertebral carotid arteries (left and right); the internal carotids 
perfuse the brain, while the vertebral carotids join it distally form the basilar artery. These two pairs of 
arteries join proximally other arteries constituting a complete anastomotic ring: the circle or polygon 
of Willis. It is composed of main arteries: anterior cerebral artery (left and right), anterior 
communicating artery, internal carotid artery (left and right), posterior cerebral artery (left and right) 
and posterior communicating artery (left and right); the basilar artery and middle cerebral arteries, 
supplying the brain, are not considered part of the circle. The circle of Willis represents a system of 
connections between principal vessels of brain, providing protection against possible occlusive events 
of a single vessel. In human as in rodents, this anastomotic loop allows low-resistance connections, 
providing the redistribution of the blood flow, as shown in Fig. 22. 

 

Figure 22: Circle of Willis on mouse brain surface. Abbreviations: A, antero; P, posterior; ACA, anterior cerebral artery; 
MCA, middle cerebral artery; IC, internal carotid; PCA, posterior cerebral artery; SCA, superior cerebellar artery; AICA, 
anterior inferior cerebellar artery; BA, basilar artery; VA, vertebral arteries; PcomA, posterior communicating artery. (Dorr 
et al., 2007). 

 

The cerebral arteries controlling the areas analysed in this thesis are the anterior cerebral artery (ACA) 
irrigating the ACC and the posterior cerebral artery (PCA) irrigating the HPC (Fig. 23), cerebral areas 
implicated in the STFP memory task. Since we study structural modifications in microvasculature, we 
do not deeply develop the arteries architecture description; in any case you can refer to the work 
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published by Dorr and colleagues (Dorr et al., 2007) who explore the three-dimensional cerebral 
vasculature of a mouse brain using MRI and  micro-CT techniques. 

 

Figure 23: Slice planes showing cerebral arteries and their branches in anatomical location. A) Sagittal slice plane, midline, 
showing the ACC (pink) and HPC (yellow) irrigated by respectively ACA and PCA. B) Coronal slice plane showing the 
ACC irrigated by ACA branch: azACA C) Coronal slice plane showing the HPC irrigated by PCA. Abbreviations: A, antero; 
P, posterior; ACA, anterior cerebral artery; IC, internal carotid; PcomA, posterior communicating artery; BA, basilar artery; 
VA, vertebral arteries; SCA, superior cerebellar artery; PCA, posterior cerebral artery; azACA, azygos of the anterior 
cerebral artery. Modified from (Dorr et al., 2007). 

 

The cerebral arteries branch into smaller arteries and arterioles which run superficially and then 
penetrate into the brain tissue (Iadecola, 2004; Jones, 1970; Joutel and Faraci, 2014) (Fig. 24). 

The pial vessels are intracranial vessels localized between the pial and archnoid maters that run on the 
brain surface; they are formed by an endothelial cell layer, a smooth muscle cell (SMC) layer and a 
leptomeningeal external layer (adventitia). They are delimited by astrocytes and sourranded by 
cerebrospinal fluid (CSF). They posses a robust basal tone and receive perivascular innervations 
(estrinsic innervation) by the peripheral nervous system. The pial arteries form a network rich in 
collaterals vessels, being insensitive to single vascular occlusion (no appreciably decrease cerebral 
blood flow), creating the second system of collaterals, together with the circle of Willis, responsible 
for the redistribution of blood flow. 

They branch in pials arterioles and then, at Virchow-Robin space level, in penetrating arterioles and in 
parenchimal arterioles; these parenchimal arterioles (also called intracerebral arterioles) penetrate in 
brain parenchima and their basement membrain is completely sorrounded by astrocytes’ ends-feet. 
They receive intrinsic innervation (perivascular innervation) and they are composed by one single 
oriented layer of SMC. Conversely to pial vessels, intracerebral vessels are not largely branched, 
consequently an occlusion at this level results in a significant decrease in CBF (Nishimura et al., 
2007). The penetrant arteries are supported by one or two neighbour venuls, allowing another 
compensatory possibility of blood distribution (Guibert et al., 2012). 
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Figure 24:  Architecture of cerebrovascular vessels and the differences in structural composition and connections; from 
(Iadecola, 2004). 

 

The arterioles branch in turn in intracerebral capillaries which create a dense intercommunicating 
network of specialized endothelial cells without muscular cells. It is the principal site of exchanges of 
oxygen and nutrients, being always perfused by blood. Their tone and blood flow is regulated by 
precapillaries arterioles and postcapillaries veins. 

The endothelial cells (ECs) create a thin monolayer that cover the inner surface of the vascular tree; 
their functions is to integrate physical and neurohumoral signals from the blood and surrounding 
tissues to regulate different processes, such as vascular tone, cellular adhesion, inflammation, and 
proliferation (Boulanger, 2016).  

The total construction of brain microvasculature is constant across the mammalians, occupying the 3% 
of the brain volume (Kolinko et al., 2015). The capillary size is 7-10 µm in average diameter, with an 
average intercapillary distance of 40 µm (Duvernoy et al., 1983; Jucker et al., 1990). The capillaries 
are more dense in the grey matter than in the white matter correlating to a higher level of neural 
activity (Kolinko et al., 2015; Zhu et al., 2012) (Benderro and LaManna, 2014). 

The capillaries density varies from region to region depending on the location and the energy 
consumption (Klein et al., 1986), which can be modified by physiological or pathological conditions. 
For example, chronic hypoxia increase vascular density through angiogenesis (Xu and Lamanna, 
2006), being able to double its density after 3 weeks of chronic hypoxia. Moreover, hypertension can 
also cause vascular rarefaction and impair microvessels formation (Sokolova et al., 1985). 

Cerebral capillaries are unique compared to other organs since their connections. They are composed 
by endothelial cells in contact with pericyte; both of them are surrounded by a basal lamina (formed 
by collagen type IV, heparin sulfate proteoglycans, laminin, fibronectin, and other extracellular matrix 
(ECM) proteins) which is continuous with astrocytes. Together with neurons, this assembly constitute 
the neurovascular unit (see paragraph « Functional hyperaemia” Fig. 25). 
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Figure 25: The cerebral endothelial cells create specialized structures in order to cooperate with neuronal network. On the 
right it is represented the Blood-Brain Barrier (BBB) localized in cerebral microvessels, composed by a continuous 
monolayer formed by non-fenestrated ECs, surrounded by the basement membrane, pericytes and astrocytes end-feet. This 
structure assure both the homeostasis and the signalling creating the neurovascular unit, on the left, allowing in turn the thigh 
coupling between vascular and neuronal signalling. From (Chow and Gu, 2015). 

 

Interestingly, the specialized endothelium acts as a barrier allowing selective exchanges between 
blood and parenchyma: the Blood brain Barrier (BBB) (see next paragraph). In this next section we 
explore briefly the BBB and the components of neurovascular unit.  

 

3.1.2.  Blood Brain Barrier (BBB)  
 

The existence of the barriers between brain and the blood was demonstrated by Ehrlich in1885 by 
injecting Evan’s Blue dye in tail vain of rats and finding that all organs except brain were stained. 

He thought that it was due to a difference in cerebral tissue characteristics that avoid the adhesion of 
the dye. It was his graduate student Goldmann (Goldmann, 1913), who injected the dye in the CSF 
discovering that just the brain was coloured, assuming the existence of a barrier between brain and the 
blood, but there was no CSF–brain barrier. Nowadays, we know that also this was partially incorrect. 

As a matter of facts, there are three interfaces which protect the neurons from circulating substances 
(i.e. pathogens, blood cells, albumin) and help to maintain the homeostasis (i.e. avoiding the 
fluctuation of electrolytes)  for the neuronal functions: the blood–CSF interface, the blood–brain 
interface (BBB), and the CSF–blood interface (Zlokovic, 2008). The largest barrier is composed by 
the specialized cerebral endothelium, the BBB, and it is the barrier that we are going to focus on; the 
others barriers, just for mentioning them, are the blood-CSF barrier, composed by epithelial cells of 
choroid plexus, and the CSF-blood barrier formed by the avascular arachnoid epithelium which 
envelope the brain (Saunders et al., 2008). 

The BBB is formed by cerebral ECs (not only at capillary level, but also in pial artery, arterioles and 
veins) possessing specialized structural and functional characteristics in order to protect the brain and 
the spinal cord. The unicity of this endothelium is due to 1/ the high concentration of tight junctions 
and adherens junctions (that are more typical of epithelium), which allows the selective passage of 
solutes, and 2/ the active transporters which control the passage of substances necessary to the brain. 
3/ Moreover, ECs do not present fenestrations, possess a low rate of pinocytosis and present a high 
number of mitochondria associated with its high metabolic activity (Zlokovic, 2008). This system 
rigorously controls and restricts the brain-blood exchanges. 

Since BBB is a wide topic of research, we are not going to details the system but we will try to give a 
general view of its functions. 
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The tight and adherens junctions connect ECs paracellularly, creating a continuous actin cytoskeleton 
forming a membrane with high electrical resistance retaining the ions in the vessel lumen (Zlokovic, 
2008). The small molecules <400 Da with less than 9 hydrogen bonds can freely cross it through lipid-
mediate diffusion (Pardridge, 2007). The tight junctions are composed by different proteins which 
role is to create a continuous electrical membrane that restricts the transport of molecules by blood to 
brain interstitial fluid and vice versa. The principal integral proteins are claudins, occludin, and 
junction adhesion molecules (JAM) but they include also accessory proteins like zona occludens 
proteins (ZO-1, ZO-2, ZO-3) and cingulin (Kniesel and Wolburg, 2000). The adherens junctions, as 
the name says, create and adhesive connections between ECs involving the binding of cadherin that 
joins the actin cytoskeleton via catenins. They interact also with ZO-1, influencing tight junction 
assembly. Cadherin is also important in maintaining endothelial integrity in quiescent vessels and for 
the correct organization in new vessels (Lampugnani and Dejana, 2007), regulating VEGFR-2 
signalling (see paragraph “Angiogenesis”).  

Oxygen, carbon dioxide and small lipophilic molecules are able to cross freely the BBB, but this 
membrane is impermeable to hydrophilic molecules like glucose, amino acids and other molecules 
essentials for life. Thus, ECs express apical transporters implicated in the capitation of nutrients from 
blood to neurons and basolateral channels which purpose is to inactivate and remove the toxic 
substances, allowing their efflux from the brain to the blood, together with inactivation and reuptake 
of neurotransmitters. 

The transcellular and bidirectional transport across BBB is mediated by main categories of transports 
namely carrier-mediated transport, ion transport, active efflux transport, receptor-mediated transport 
and caveolae-mediated transport; for a review see (Zlokovic, 2008).  

 

3.1.3. Pericytes 

The pericytes, as the name suggests (peri, around; cyte, cell), are perivascular cells, adjacent to ECs, 
with which they share the basal membrane, discovered by the French scientist Charles Rouget 
(Rouget, 1874). They are composed by a cell body with a prominent nucleus and small cytoplasmic 
content but they possess several long process that wrap around ECs.  

At the beginning, it was thought that pericytes possessed just a scaffolding role but then it was 
understood that they contribute to the stability of the vessel and release growth factors and matrix 
important for microvascular permeability, remodelling, and angiogenesis (for review (Bergers and 
Song, 2005). 

As a matter of facts, they can communicate with ECs by direct contact (gap junctions) and via 
paracrine regulation; moreover, one single pericyte is able to touch several ECs thanks to cytoplasmic 
processes enabling the integration of the signals coming from both in the distal part of the vessel and 
other capillaries (Rucker et al., 2000) (Fig. 26).  

Furthermore, they possess some characteristics in common to SMCs, included the expression of the 
contractile proteins such as α-smooth muscle actin (currently proposed as a marker of pericytes in the 
brain), tropomyosin and myosin actin (Hirschi and D'Amore, 1996) which can provoke 
vasoconstriction and vasodilation in order to regulate vascular diameter and blood flow at capillary 
level (Rucker et al., 2000). The contractile function of pericytes can be moulded by different actors 
binding cholinergic and adrenergic pericytes receptors; in particular the β-adrenergic response leads to 
relaxation, whereas the α2 stimulation produces contraction (Rucker et al., 2000). Moreover, pericytes 
functionality can be modified by the vasoactive molecules Angiotensin II and endothelin-1 and 
oxygen levels. 
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Pericytes density is different depending on the functionality of the vessel and the organs in which they 
are located, since their presence is determined by their functions. The ratio pericyte/EC in the brain is 
higher compared to all other organs (i.e. brain: 1:3 vs skeletal muscle 1:100) (Allt and Lawrenson, 
2001). The reason for this higher density is that ECs interact with them and with astrocytes in the 
maintenance of BBB functionality and integrity.  

As a matter of fact, in vessel degradation induced by cerebral haemorrhage, pericytes can protect by 
hypoxia-induced BBB disruption (Hayashi et al., 2004). 

Without entering in details, another cerebral pericytes function is macrophage-like phagocytic activity 
(immunological defence; for a review about this function see (Thomas, 1999)).  

Furthermore, pericytes seems to have a role in vessel formation and angiogenesis, detailed in the 
paragraph “Pericytes role in angiogenesis”, being able to guide, similarly to tip cells, the ECs 
sprouting by releasing VEGF (Ozerdem et al., 2001; Ozerdem and Stallcup, 2003). 

Moreover, once the newly formed sprout is proliferated and the ECs adhere to each other creating the 
new vessel, ECs secrete growth factors in order to both attract pericytes that envelope the vessel and to 
promote vessel stabilization. 

For a recent review describing pericytes functions see (Sweeney et al., 2016). 

 

 

Figure 26: The pericytes are involved in several physiological functions summarized in the upper part of this drawing: The 
pericytes: 1. regulate BBB integrity controlling the junctions and the transcytosis across the BBB; 2. participate in 
angiogenesis process allowing a window of vascular plasticity (see paragraph “Pericytes role in angiogenesis”); 3. can 
perform phagocytosis and clearance of toxic metabolites;  4. contribute on CBF regulation acting on capillary diameter; 5. are 
involved in neuroinflammatory response allowing the leukocytes trafficking into the brain; 6. have multipotent stem cell 
activity. Their impairment affect all these process leading to the dysfunctions listed in the lowed part of the drawing. From 
(Sweeney et al., 2016). 

 

 

3.1.4. Astrocytes 

The astrocytes, from the Greek astron meaning stars and kytos meaning cell, were visualized for the 
first time in the late XIXth century and until quite recently the recognized astrocytes were considered 
as supporting glial cells in neuronal parenchyma and reactive cells responding to central nervous 
system’s insults, a process known as astrogliosis (Kimelberg and Nedergaard, 2010). 
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In the last 25 years, several functions were recognized to astrocytes in addition to inflammatory 
contribution, including a primary role in synaptic transmission in the neurovascular unit, in 
development, in regulation of CBF, in maintaining cerebral homeostasis, in metabolism and in BBB 
functionality (Sofroniew and Vinters, 2010) (Fig. 27). 

All these functions are assured thanks to the structure of astrocytes; as a matter of facts, the make 
extensive connections both with vessels and with neurons, together with others astrocytes creating a 
communication network. 

 

Figure 27: Schematic representation of astrocytes functions in physiological condition in central nervous system and its 
connections with the neurovascular components. From (Sofroniew and Vinters, 2010). 

 

Regarding the astrocytes’ role in BBB function, the settlement about them is still open since some 
BBB functions appear before the maturation of astrocytes during development; in any case, even if 
they do not participate to the structure of the barrier (role played by ECs (Reese and Karnovsky, 
1967)), in vitro studies showed that astrocytes induce the BBB phenotype in ECs, including the up-
regulation of tight junction proteins (Abbott et al., 2006; Bauer and Bauer, 2000). As in neurons, there 
is a cross-talk between astrocytes and ECs. In other studies, the astrocytes end-feet seem to regulate 
BBB properties through bone morphogenetic protein signalling, since the disruption of this 
mechanism lead to BBB leakage (Araya et al., 2008). 

What is sure is that the extensive astrocytic-vascular contacts assure a bidirectional interaction, 
allowing the regulation of CBF. The astrocytes are able to produce and release several molecular 
mediators, like prostaglandins, nitric oxide (NO), and arachidonic acid (AA), that can increase or 
decrease cerebral blood vessel diameter and blood flow in a coordinated manner. 

Moreover, they represent the interface between vessel and neurons, contributing in the adaptation of 
blood flow in relation to the levels of synaptic activity, as demonstrated by fMRI studies which 
detected changes in blood flow in response to visual stimuli; these changes were dependent on 
astrocyte function since the blockade of their glutamate transporters was sufficient to influenced the 
magnitude and duration of neuronal responses (Schummers et al., 2008). 

Furthermore astrocytes can influence directly the neuronal activity at synaptic level regulating the 
release of glutamate (Glu), purines, γ-Aminobutyric acid (GABA) and serine. These substances are 
released through an intracellular increase of Ca2+ in astrocytes, altering the neuronal excitability. 
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This concept gives rise to the “tripartite synapsis” (Araque et al., 1999) composed by presynaptic and 
postsynaptic terminals and the astrocyte. Neurotransmitters released by neurons induce intracellular 
increase in Ca2+ concentration (neuron-to-astrocyte signalling); this neuronal-induced increase in Ca2+  
concentration is spread between neighbour astrocytes (astrocyte-to-astrocyte signalling), inducing the 
astrocytic release of Glu, which, in turn, increase the Ca2+ levels in adjacent neurons, influencing the 
neuronal electrical activity and modulating the synaptic transmission (astrocyte-to-neuron  signalling) 
(Fig. 28). 

 

Figure 28: Bi-directional communication between astrocytes and neurons. The neuron-to- astrocyte signalling is represented 
by black arrow, the astrocyte-to-astrocyte signalling by broken lines and the astrocyte-to-neuron signalling by grey arrows. 
From (Araque et al., 1999). 

 

In addition to this direct effect, astrocytes can influence synaptic function through the release of 
growth factor, exercising a long-lasting effect on synaptic efficiency, exerting powerful influences on 
synaptic remodelling and pruning in the healthy adult brain. 

Even if not totally understood, the role of astrocytes as a neurovascular interface, together with 
pericytes, is developed in the following session “Functional hyperaemia”.  

 

3.2. Regulation of blood flow 

The blood circulation is strictly dependent on heart contraction and is defined by a quantitative 
parameter that is the frequency (number of beats/minute) and a qualitative characteristic that is the 
rhythm (defined as regularity of heartbeats). But from a hemodynamic point of view, the blood flow 
can be compared to the passage of fluid in a tube, assuming that the flow is steady, laminar and 
uniform through thinned-walled in a non-distensible tube. This does not regard the big arteries since 
the thick wall and the microcirculation where flow is non-Newtonian.  

In any case, the cerebral blood flow is directly proportional to the difference of inflow and outflow 
pressure (ΔP, corresponding to the cerebral perfusion pressure, which is the difference between intra-
arterial pressure and the pressure in veins) and inversely proportional to the resistance (R) of the 
vessels and is governed by Poiseuielle’s and Ohm’s laws, where R is dependent to blood viscosity (η), 
length (L) and radius (r) of the vessel. 
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The radius of the vessel is very important since can strongly impact the blood flow; in fact, small 
changes in lumen diameter have significant effects on cerebral blood flow, allowing a fast change of 
regional and global cerebral blood flow (Ku, 1993). According to these laws, in a pressure passive 
system (Fig. 29 A), the blood flow is going to be linearly related to the mean arterial pressure. But this 
is not suitable for brain functioning, since it cannot be left at the mercy of oscillations in oxygen and 
energy. Thus it is fundamental to maintain a constant cerebral perfusion and this is possible thanks to 
the arteriole vasodilation and constriction of the pre-capillary arteriole (Fig. 29 B).  

 

3.2.1.  Myogenic response and arterial autoregulation 

In fact in a normal physiological state, the blood flow is principally maintained constant by the large 
arteries and parenchymal arterioles (Cipolla et al., 2009; Faraci and Heistad, 1990).  

 

Figure 29: CBF in relation to artery lumen diameter. A) Pressure passive system not compatible with brain functions (pink 
dotted line). B) Autoregulation of CBF induced by myogenic response of cerebral arteries and arterioles (CBF is represented 
by the purple line). Dotted lines black lines represent the lower and upper limits of cerebral blood flow autoregulation. Pink 
circles symbolize the cerebral arteries. Pink band represent the constant CBF. Modified by (Pires et al., 2013). 

 

The ability of the cerebral vessel to maintain a constant cerebral blood flow despite of changes in 
perfusion pressure is called autoregulation (Pires et al., 2013). The autoregulation maintain the 
cerebral perfusion pressure in a range of 60-160 mm Hg, limits beyond which the autoregulation is 
lost and the cerebral blood flow becomes dependent in a linear manner to arterial pressure. 

The autoregulation is assured by the myogenic response of the SMCs of arteries and arterioles, which 
is the ability to change their myogenic tone in order to respond to fluctuation of intraluminal pressure, 
to maintain a constant blood flow. 

The physiologist William Maddock Bayliss discovered over then 100 years ago (Bayliss, 1902) that 
SMCs of arteries and arterioles were able to increase their constriction in case of increase of pressure 
and to dilate in case of pressure decrease; this phenomenon is known as “Bayliss effect” (Fig. 30) 
(Voets and Nilius, 2009). This effect is counterintuitive if we think that in an elastic container, i.e. a 
balloon, the increase of pressure, in our case if we blow air in the balloon, leads to an expansion of the 
container, such as an inflated balloon; but cerebral vessel behave in the opposite way in order to firstly 
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maintain a constant CBF and secondly, but not less importantly, to protect downstream vessels and 
capillaries with low resistance from pressure insults. The myogenic response of the vessels is an 
intrinsic property of SMCs and strongly controls the autoregulation, even if the myogenic tone can 
also be influenced by vasoactive factors released from both ECs and perivascular innervation, 
affecting vascular resistance.  

 

Figure 30: The Bayliss effect. (A) Increasing arterial pressure causes vasoconstriction at arteriolar level, a phenomenon 
known as the Bayliss effect.  The resulting pressure at capillary level is less important, protecting it from pressure insult (B) 
Proposed mechanism for stretch-induced activation of TRPs in vascular smooth muscle membranes. Modified from (Voets 
and Nilius, 2009). 

 

Autoregulation is maintained between the limits of 60-160±10 mm Hg. Close to 60 mm Hg or to 160 
mm Hg, arteries respectively decrease (vasodilation) or increase (vasoconstriction) their resistance to 
maintain a constant CBF. When the perfusion pressure decreases under the lower limit, as in the case 
of cerebral ischemia, the arteries loose the autoregulation capacity, leading to an impaired dilatation 
and artery collapse. Vice versa, when the pressure exceeds the higher limit, as in the case of vasogenic 
edema, a force-mediate dilation is induced (involving KCa channels or reactivity oxygen spices), 
leading to an increase of blood flow (Cipolla and Osol, 1998). 

The myogenic response is linked to the basal myogenic tone, which is characterized by a basal partial 
constriction at constant pressure, and the myogenic reactivity, in other words the alteration of 
muscular tone induced by a change of pressure (Osol et al., 2002). 

Briefly, when there is a change in pressure a system of transduction, involving stretch activated cation 
channels (including transient receptor potential channels, TRP), chloride channels and integrines 
(involved in mecanotransduction), induces depolarization in SMCs leading to an increase of 
intracellular Ca2+ via opening the voltage-operated channel (Cav), which induces, in turn, the 
phosphorylation of myosin light-chain (MLC), leading to vasoconstriction (Knot and Nelson, 1998). 
Vice versa, the removal of intracellular Ca2+ abolishes the myogenic response. 

The vasoconstriction response induced by the development of myogenic tone is different by the one 
that we can attend in a vessel where the myogenic tone is already present, in other words it is unlikely 
that the stretch stimulus change enough the vascular diameter in a vessel under pressure. But in this 
phase Ca2+ sensitivity is enhanced during myogenic reactivity. 

In any case, the mechanisms implicated in the Ca2+ signalling are very complex (for a recent review 
which describes the ionic signalling implicated in the control of cerebral blood flow see (Longden et 
al., 2016), in the following part we summarize the principal mechanisms implicated in the vascular 
reactivity in arterial SMCs.  
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The variation of intracellular Ca2+ concentration in SMCs of cerebral vessels can be triggered by 
different stimuli (stretch, neurotransmitters and astrocytes influences), and it is a key factor in the 
activation of contractile proteins and in turn in the regulation of the vascular tone. 

In SMCs, intracellular Ca2+ is stocked in the sarcoplasmic reticulum (SR) and is maintained in this 
compartment by the Sarco-Endoplasmic Reticulum Ca-ATPase (SERCA) which actively transport 
Ca2+ from cytoplasmic compartment into the SR, where the Ca2+ binding proteins calreticulin and 
calsequestrin are able to trap Ca2+, allowing a significant calcic storage (Wray and Burdyga, 2010) 
(Fig . 31). 

 

Figure 31: Calcium signalling in VSMC. At membrane level sodium-calcium exchanger (NCX), P2X receptors, Voltage-
gated Calcium Channels (CaV) and TRP channels are responsible to Ca2+ entry in cytoplasmic compartments. PMCA and 
SERCA mediate the intracellular calcium decrease. Red and blue arrows indicate respectively calcium and potassium 
directions. Modified from (Berridge, 2008). 

  

The Ca2+ release from SR to cytosolic compartment can be mediated by different channels localized 
on SR membrane, including inositol 1,4,5-trisphosphate receptor (IP3R) and ryanodine receptor (RyR) 
(Dabertrand et al., 2013; Morel, 2007). 

Different vasoactive signals, like endothelin-1, acetylcholine (ACh), noradrenaline (NA) or serotonin 
(5-HT), induce the activation of Gαq/11 protein–coupled receptor, with the consequent stimulation of 
phospholipase C (PLC) and activation of inositol 1,4,5-trisphosphate (IP3) and of its receptor inducing 
Ca2+ extrusion. The level of liberation of this cation is dependent by the concentration of cytosolic 
Ca2+ and by the type of IP3R involved (Berridge, 2008, 2009; Dabertrand et al., 2013). 

The RyR exists in 3 different isoforms induced by different splicing: RyR 1, 2 and 3, all of them 
expressed both in pial arteries (Vaithianathan et al., 2010) and in cerebral microcirculation 
(Dabertrand et al., 2013). They can be activated SR Ca2+ load or, more importantly, by binding of Ca2+ 
on the cytosolic face of the channel. Moreover they can be activated by Ca2+ coming from either other 
plasmatic membrane channels or from RyR- or IP3R-induced SR release; this mechanism is known as 
Calcium-Induced Calcium-Release (CICR). This activation can induce two phenomena: a transitory 
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local increases of Ca2+ (called sparks) or cytoplasmic calcium waves. The two mechanisms are really 
different inducing opposite response. 

Sparks induce the activation of large conductance Ca2+-activated potassium channel (BK) that allows 
the extrusion of K+ inducing hyperpolarization and consequently relaxation of the SMC. When the 
resting open state probability (Po) of adjacent RyRs is low, it will result in a local and transitory effect. 
Vice versa, if the RyR Po is high, the Ca2+ local increase will induce, through CICR mechanism, the 
neighboured RyR activation (and probably the IP3R) with the consequent trigger of Ca2+ waves in the 
cytoplasmic compartment and activation of contractile proteins (Dabertrand et al., 2013) (Fig. 32). 

 

Figure 32: The Ca2+ signalling via RyR in SMCs of arteries and arterioles. Relation between pH and open probability (Po). 
From (Dabertrand et al., 2013). 

 

The cytoplasmic Ca2+ is complexed by calmodulin (CaM) protein, which activates the myosin light 
chain kinase (MLCK) that, in turn, induces the phosphorylation of the myosin. Phosphorylate myosin 
is thus able to interact with actin protein, inducing the sliding of light chain and heavy chain, resulting 
in the contraction of SMCs (Cole and Welsh, 2011) . 

Successively, SERCA, plasma membrane Ca2+ ATPase (PMCA) and Na+/K+ channels start to re-
establish the initial cytosolic Ca2+ concentration. 
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3.2.2.  Endothelial regulation of vascular tone 

SMCs autoregulation, as said before, assure the CBF distribution and protect the down-stream vessels 
but have the ECs a role in tone regulation? The answer is of course yes, they have. ECs are able to 
influence the vascular tone and the cerebral blood flow though the release of several vasoactive 
mediators, including NO, prostacyclin and endothelium-derived hyperpolarizing factor (EDHF). 

Nitric oxide (NO) is one of the most important vasodilator actors, having a big impact on cerebral 
circulation, since the inhibition of its synthesis with such as l-nitro-arginine (l-NNA) causes significant 
endothelium-dependent vasoconstriction of cerebral arteries and arterioles (Faraci and Brian, 1994). 

NO is produced by the oxygen-dependent transformation of the amino acid L-Arginine mediated by 
the enzyme NO-synthase (NOS) (Siragusa and Fleming, 2016). Cerebral NOS exists in three different 
isoforms: an inducible form (iNOS) and two constitutive isoforms localized in neurons (nNOS) and in 
ECs (eNOS). In ECs, NO, produced by eNOS, is able to diffuse through plasmatic membranes in 
SMCs, where activates the soluble guanylate cyclase (GC), causing production of guanosine 3′,5′-
cyclic monophosphate (cGMP) with the consequent phosphorylation of proteins, which in turn reduce 
the intracellular Ca2+ resulting in relaxation (Fig. 33). 

 

Figure 33: Synthesis and molecular mechanism of NO in ECs and SMCs mediating relaxation. From (Furchgott and 
Jothianandan, 1991). 

In cerebral ECs, the production of prostaglandin I2 (PGI2), also called prostacyclin, can be activated 
by the hydrolysis of cellular lipid membranes, by of the calcium-dependent enzyme phospholipase A2, 
in arachidonic acid (AA). The AA is the substrate for cyclooxygenase (COX), lipoxygenases, and 
cytochrome P450 monooxygenases; in particular COX products can mediate vasodilation (PGI2, 
prostaglandin E2 (PGE2), prostaglandin D2 (PGD2)) or vasoconstriction (prostaglandin F2α (PGF2α) 
and thromboxane A2 (TXA2)). The PGI2 is synthesized from PGH2 by PGI2 synthase, which can 
activate adenylate cyclase and increase cyclic AMP and protein kinase A in smooth muscle, causing 
vasodilation (Bogatcheva et al., 2005). 

Finally, the mechanism by which EDHF induces vasodilation is not completely clear; some studies 
suggest that EDHF can be activated by basal activity or in response to an increase of Ca2+ induced by 
the involvement of small conductance Ca2+ activated K channels (SKCa) or intermediate conductance 
Ca2+ activated K channels (IKCa). The consequent hyperpolarization, transmitted to adjacent cells, 
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induces the closure of voltage-dependent calcium channels (VDCC), leading to vessel relaxation 
(Sandow et al., 2009). 

 

3.3. Cerebral adaptation to neuronal activity: functional hyperaemia and hypoxia 

The CBF is able to adapt its activity according to the metabolic request of the neurons, acting via two 
main mechanisms: firstly, to induce a fast adaptation to increase of energy request, the brain can 
increase the cerebral blood flow though modification of vascular reactivity (functional hyperaemia) 
that we are going to summarize in the following part; secondly, vascular network can adjust its 
functionality thought structural adaptations, in other words changing its architecture via increasing the 
vascular density. The aim of this thesis it is to analyse the functional implication of vascular network 
in memory consolidation, focusing on this second mechanism, analysed in the second part of this 
chapter. 

 

3.3.1.  Functional hyperaemia 

The autoregulation counteracts the effect blood pressure that occurs during the normal activities but 
the CBF is regulated according to the metabolic request of neurons. This phenomenon, as mentioned 
before, is called functional hyperaemia, and is nicely described in the review (Iadecola, 2004). The 
process by which functional hyperaemia happens in the brain involves a rapid communication between 
not only vessels and neurons, but also between different cell types integrating and sustaining this 
communication. Among the processes allowing the functional hyperaemia, the most important is the 
neurovascular coupling (Dunn and Nelson, 2014). 

Nowadays the functional hyperaemia is well known but in the 1800s, the Italian physiologist Angelo 
Mosso discovered for the first time that an increase of neuronal activity was able to induce changes in 
brain volume and temperatu. As matter of facts, he was able to analyse these changes in a man that has 
literally a hole in his head: a 45 years old construction worker Luigi Cane was hit by a brick, which 
had fallen down from a height of 20 m provoking a skull opening. Mosso was able to record in this 
way changes in blood volume following a question asked to the patient regarding what impression his 
wife had made on him the first time he saw her (Zago et al., 2009). Now, the gossip is that in some 
other publications is reported that the change of blood flow was induced by Mosso: “expressing the 
impression that his wife had made upon me when I first saw her. Cane did not speak. The blood to the 
brain increased immediately and the volume of the feet markedly diminished” (Iadecola, 2004). 
Independently by the interest of Mosso in Cane’s wife, in any case the effect was recorded and in the 
following years were developed others method measuring the CBF by Seymour Kety with nitrous 
oxide or by Neils Lassen  and David Ingar, till the more recent techniques of PET and MRI. 

How the neurons increase the CBF? 

The neurovascular regulation of CBF is mainly at pial arteries and arterioles levels (Dunn and Nelson, 
2014). The CBF is regulated by the release of vasoactive compounds, as you can see in Fig. 34, 
coming from different cellular types.  

The production and/or release of vasoactive compound by neurons and others cell types are triggered 
by different stimuli. As mentioned before, it is known since many years that the increase of energy 
request, induced by the change in neuronal activity, results in decrease of oxygen and glucose, 
triggering the increase of CBF (Siesjo, 1978); in fact, hypoxia and hypoglycaemia are potent signal 
inducing vasodilators factors. However, changes in the hemodynamic appear 1-3 s after changes in 
neuronal activity  while metabolic modifications are slower (Lou et al., 1987); consequently, there are 
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some other mechanisms participating in CBF regulation and the nature of this dynamic is more 
complex. Furthermore, some studies reported that the reduction of oxygen was so small, local and 
transitory to not be totally responsible of a general increase of CBF (for a review comparing the 
studies studying the “initial dip”, scilicet the deoxygenation inducing increase of CBF, see (Ances, 
2004)). Finally, it was reported that functional hyperaemia can be modulated by different 
neurotransmitters (Lauritzen, 2005), as mentioned in the following part. 

Although the imperfect coupling between cerebral oxygen consumption, the acceleration of blood 
flow and the glucose utilization lead to the idea that the initial increase of CBF is mediated by synaptic 
signalling more than energy deficit; anyway, some data show that the metabolic component is 
important: in fact, changes in the lactate/pyruvate ratio, reflecting NADH/NAD+ ratio and in turns the 
energy and redox state of the cells (NADH + H+ + pyruvateintracellular ⇄ NAD+ + lactateintracellular), induce 
a modification of CBF (Ido et al., 2001). In this study rats, undergoing to whisker stimulation and thus 
to an activation of somatosensory cortex, showed an increase of plasma lactate/pyruvate ratio 
concomitant to an increase of blood flow in activated somatosensory cortex; moreover, this increase 
was prevented injection of pyruvate (to lower lactate/pyruvate ratio), suggesting that NADH can act as 
a sensor for the CBF regulation, through the involvement of NO and protein kinase C. 

Independently by the factors triggering the functional hyperaemia, the release and the diffusion of 
neuronal vasoactive substances is not sufficient to explain the rapid and region-specific increase of 
CBF. As a matter of facts, others cell types take part to the neurovascular coupling, namely 
interneurons, astrocytes and pericytes allowing the increase the rapidity and the efficiency of the 
communication (Fig. 34). 

 

Figure 34:  Vasoactive mediators released from neurons and glia during the neural activity. As described in the text these 
molecules can include ions that modify extracellular currents, Adenosin (Ado) derived from ATP catabolism, Glutamate 
influencing Ca2+ and NO release, COX-2 and prostaglandins (PGs) and epoxyeicosatrienoic acids (EETs). From (Iadecola, 
2004).   

 

3.3.1.1. Astrocytes in neurovascular coupling 

Astrocytes possess several strategic advantages that result in an efficient structure for the regulation of 
the CBF: firstly, their end-feet contemporaneously wrap the parenchymal arteries and project to 
neuronal synapses (tripartite synapses); secondly, vasoactive interneuron’s have more contact with 
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astrocytes then with vessels; thirdly, neurotransmitter receptor uptake sites are expressed on 
astrocytes, influencing the signalling (Venkat et al., 2016).  

Since the increase of CBF is rapid (less than 1s in neocortex (Norup Nielsen and Lauritzen, 2001)) and 
localized (less than 100μm in olfactory bulb, (Chaigneau et al., 2003)), it was assumed that the 
intervention of astrocytes and interneurons are required. So the neurons are responsible of the 
triggering of the neurovascular coupling, communicating the needs to vessels through astrocytes and 
interneurons (Banerjee and Bhat, 2007). 

Since astrocytes are not electrically excitable, the traditional studies were performed with the 
induction of Ca2+ dyes in brain slices. Only recently it was possible to study in vivo the astrocytes 
influence of CBF, using multiphoton microscopy and Ca2+ markers (for a review of these studies see 
(Petzold and Murthy, 2011). These in vivo and in vitro studies showed different pathway by which 
astrocytes influence the CBF, here in a following part we briefly summarized some of them but more 
mechanisms are explained in the reviews: (Dunn and Nelson, 2014; Iadecola, 2004; Petzold and 
Murthy, 2011; Venkat et al., 2016), and displayed in Fig. 35. Some studies showed that the stimulation 
of cortical astrocytes, achived using direct or indirect techniques, induces Ca2+ waves, leading to either 
vasodilation or vasoconstriction of neighbour arterioles.  

In particular, astrocytes can be stimulated by nearby neurons, activated by interaction of Glu with 
iGluR, inducing the increase of intracellular Ca2+, stimulating nNOS and COX-2 activity with the 
consequent production of NO and PGE2, which induce vasodilation thought astrocytes (even if this 
mechanism iGluR mediated is not really understood). Alternatively, the Glu released by neuron can 
activate directly the astrocytes either entering through Glu/Na+-cotransport (but the pathways that 
eventually lead to vasodilation remain unknown), or binding the metabotropic glutamate receptor, 
mGluR (Attwell et al., 2010) (more probably mGluR5, coupled to Gq protein) of astrocytes which 
induces, via hydrolysis of membrane phosphoinositides, the production of IP3. The interaction of IP3 
with its receptor provokes the release of calcium from the SR, giving rise to Ca2+ waves which 
propagates either to others astrocytes till the perivascular compartment or directly inducing the 
production or release of vasoactive compounds. In particular, the increase of Ca2+ can activate 
phospholipase A2 (PLA2) which in turn mediated synthesis of arachidonic acid (AA) and its 
transformation in PGE2 trough COX-1 activity or epoxyeicosatrienoic acids (EETs) through 
cytochrome P450 2C11 epoxygenase (CYP2C11). This mechanism is responsible to the vasodilation 
(Filosa et al., 2004; Filosa et al., 2006; Zonta et al., 2003). 

Moreover another vasodilator mechanism can be triggered by the Ca2+ induced release of K+ through 
the BK, which provokes hyperpolarization of SMCs via inward-rectifier potassium channels (Kir). 

Astrocytes can mediate also vasoconstriction by the conversion of astrocytic AA in 20-
hydroxyeicosatetraenoic acid (20-HETE) (Mulligan and MacVicar, 2004) in SMCs by cytochrome 
p450 even if the mechanism is still unknown. 

The system is more complicated by studies showing that vasoconstriction and vasodilation mediated 
by astrocytes are dependent from the level of NO (Metea and Newman, 2006), or Ca2+(Girouard et al., 
2010). Moreover, it has been shown that in vivo astrocytes are able to modulate vessels diameter 
depending from the oxygen extracellular concentration (Mulligan and MacVicar, 2004). In case of low 
oxygenation the astrocytes induce vasodilation of vascular network and, vice versa, in case of high 
concentration of oxygen the astrocytes mediate vasoconstriction response (Attwell et al., 2010). 
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Figure 35: Molecular pathways of neurovascular coupling and the astrocyte contribution, from in vivo and in vitro studies 
mentioned above (the pathways confirmed just in vitro studies are highlighted to the right). From (Petzold and Murthy, 2011) 

 

3.3.1.2. Interneurons and neurons in neurovascular coupling 

Both neurons and interneurons can influence directly or indirectly (via astrocytes) the vascular tone. 

GABAergic interneurons can be recruited by signalling coming from forebrain, inducing the release of 
vasoactive compounds able to induce vasodilation or vasoconstriction by acting directly or via 
stimulation of neighbouring neurons or astrocytes. 

Ascending afferent neurons, which come from subcortical areas, can project directly to intracerebral 
vessels, including parenchymal arterioles and capillaries, inducing cortical release of neurotransmitters 
that can be vasoactive per se. It is the case for ACh and 5-HT, which are respectively able to directly 
dilate or constrict the arterioles. The hyperemic response to ACh is not fully understood but it has been 
shown to induce vasodilation through activation of non-neuronal NO, probably eNOS (Fig. 36 A). 
Despite this, it seems that the major effect on CBF is induced by cortical pyramidal neurons. As 
previously said cortical pyramidal neurons can release Glu (Fig. 36 B), which can activate astrocytes 
via iGluR or mGluR. Moreover, Glu can bind NMDA receptors on NOS-expressing interneurons. 
Furthermore, Glu is able, through Ca2+ mediated activation of enzymes both in neurons and in glial 
cells, to stimulate the production of NO (as mentioned in the previous paragraph) and metabolites of 
COX-2 (producing prostanoids and AA) P450 epoxygenase (producing EETs). Another 
neurotransmitter released by excitatory neurons is ATP, which can stimulate, through involvement of 
metabotropic P2Y purinergic receptors, PLC and IP3, Ca2+ waves and vasodilation or 
vasoconstriction, depending from where and which kind of stimulus is applied. Moreover, neuronal 
metabolism can induce release of adenosine, a potent dilators of arterioles. Finally, some cations, such 
as H+ and K+ can modify synaptic transmission changing the extracellular ionic currents.  

The system to control the CBF is very complex and we could not explore it carefully during this 
thesis, in any case some pathways are more detailed in (Attwell and Iadecola, 2002; Dunn and Nelson, 
2014; Iadecola, 2004). The inhibition of any one of these molecules does not completely block the 
CBF, showing that the CBF regulation is organized at multiple levels by the cooperation of different 
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pathways. Furthermore the efficiency of inhibition is dependent by the cerebral region involved, e.g. 
the nNOS inhibition attenuates functional hyperaemia more in the cerebellum then in the other cortical 
areas (Yang et al., 2003a). 

 

Figure 36: Cortical neurovascular coupling signaling mechanisms resulting in vasodilation and increase cerebral blood flow 
in response to activation of cholinergic basalocortical afferents via basal forebrain stimulation (A) or activation of 
glutamatergic thalamocortical afferents via somatosensory stimulation (B). Parenchymal arterioles are depicted at the right of 
each image. Blue, endothelial cell (EC); pink, smooth muscle cell (SMC); green, astrocyte (A); purple, pyramidal neuron; 
red, GABA inhibitory interneuron; yellow, vasoactive intestinal peptide (VIP)/choline acyltransferase interneuron; orange, 
nitric oxide (NO) synthase/neuropeptide Y (NPY) interneuron; turquoise, somatostatin (SOM) interneuron. Neurotransmitters 
released from ascending afferent neurons are shown in blue for A and orange for B. Mediators derived from pyramidal 
neurons are shown in purple, interneurons in red, astrocytes in green, and vascular ECs in dark blue. R, receptor; mAChR, 
muscarinic ACh receptor; nAChR, nicotinic ACh receptor; mGluR, metabotropic glutamate (Glu) receptor; NMDA, N-
methyl-D-aspartate; AMPA,-amino-hydroxy-5-methyl-4-isoxazolepropionic acid; BK, large-conductance Ca2-actived K 
channel; Kir, inward rectifier K channel; P2YR, P2Y receptor; EET, epoxyeicosatrienoic acid; EP, PGE2 receptor; COX, 
cyclooxygenase. From (Dunn and Nelson, 2014) 

 

3.3.1.3. Pericytes in neurovascular coupling 

As mentioned before, pericytes, localized in tight contact with ECs, are able to contract, regulating the 
capillary diameter via vasocontraction or relaxation. In vitro studies showed that pericytes are able to 
induce vasocontraction following the administration of noradrenaline and serotonin, or vasodilation 
with GABA, NO and adenosine.  The ability to contract was misused also in vivo studies, but the lack 
of effect in CBF indicates that, even if the contractile regulation of pericytes in capillaries diameter 
exists, it have not a significant effect on CBF. 
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In synthesis, many pathways influence CBF regulation at many levels. Moreover, since pial arteries 
and surface arteries offer the major resistance site to the flow, are involved in CBF regulation. Thus, 
the vasodilation of downstream vessels does not change significantly the blood flow, unless the pial 
arteries are vasodilated. In other words, vasodilation of pial arteries is required to increase CBF 
(Iadecola, 2004).  

The activation of whiskers stimulation produces an increase of CBF in pial arteries far from the site of 
stimulation (Cox et al., 1993). So the vasodilatory message is transmitted to upstream vessels by two 
main assumed mechanisms. The first one considers that the vasodilation signal, started in the region of 
neuronal activation, is transmitted by neurotransmitters but this process seems unlikely or less 
effective since pial arteries and arterioles receive innervation from autonomic and sensory ganglia 
localized outside the brain, without a direct link between neuronal pathways mediateing the effect. It 
seems more probable that the information is transmitted by signalling within the vessels wall 
(intramural vascular signalling) through homocellular gap junctions and can propagate vasodilation in 
a retrograde way (Dietrich et al., 1996). 

 

Figure 37: Propagation of vascular response induced by cortical activation showing a myogenic response of vessels 
irrigating non-activated neural territories, as well as possible interneurons involvement inducing an increase of blood flow. 
From (Iadecola, 2004). 

 

In conclusion, it is clear that the hemodynamic control sites of CBF cannot be restricted to a cell type 
or a vessel type and its modulation to a single signalling pathway (Fig. 37). In fact, the signalling 
coming from neuronal activity induces the production of vasoactive compounds at neuronal or non-
neuronal site (i.e. astrocytes). This release provokes vasodilation or constriction at local site involving 
arterioles or capillaries. Some local interneurons can corroborate the signal trough the release of 
vasoactive molecules. The signal is thus transmitted to upstream vessels by intramural signalling. 

The CBF is, in any case, maintained constant considering the whole cerebral structure by the 
resistance arterioles in order that there is no recall of blood from a “non-activated zone” to an 
“activated one” and all the areas are always functionally perfused.  

Even if most of the time the variation of CBF is induced by neuronal activation, a study showed that 
the haemodynamic signal in the primary visual cortex in awaken monkeys is composed by two distinct 
components: the first one reliable to neuronal regulation induced by the stimulus, and the second one 
corresponding to a preparatory mechanism inducing a supplementary increase of flow independently 
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of visual input, anticipating the task repeated at regular intervals, like a kind of conditioned response 
of CBF (Sirotin and Das, 2009). 

Of course, others actors plays a role in CBF regulation even in a long term interval, and the aim of this 
thesis is not to explore all of them. 

In any case when the oxygen consumption increase the vascular network can increase its architecture 
in order to support neuronal activity. Thus, in the following part we are going to focus on hypoxic 
mechanism inducing an increase of vascular network via angiogenesis. 

To complete the list, also carbon dioxide (CO2) has a deep impact on CBF; as a matter of fact 
hypercapnia causes marked dilation of cerebral arteries and arterioles and increased blood flow, via a 
probable direct effect of extracellular H+, whereas hypocapnia causes constriction and decreased blood 
flow (Iadecola, 1992). 

 

3.3.2.  Hypoxia inducing angiogenesis 
 
Oxygen (O2) is necessary for the oxidative phosphorylation in order to maintain an efficient ATP 
production.  

The oxygen diffusion distance in an oxygen-consuming tissue is very short (in the range of 20-100 
µm), thus the adequate supply of oxygen within the tissue is closely dependent by vascular 
architecture (Zakrzewicz et al., 2002).  

In our body, the request of oxygen depends from the balance between supply/consumption and 
retrieval/loss; moreover, different regions of our body have different needs of oxygen delivery. The 
oxygen levels are heterogeneously distributed within the body (21% O2 in the atmosphere 
corresponding to ~149 mmHg, 14% O2 in the alveolar air, 12% O2 in the arterial blood and 5.3% O2 in 
venous blood, corresponding to ~100-85 mmHg (Fong, 2008)), but in our brain the interstitial tissue 
oxygen levels are lower and non-uniform, ranging from ~1 to 5%, corresponding to ~30-50 mmHg 
(Sharp and Bernaudin, 2004). Thus, in a physiological condition, the cells are able to wors under 
relatives low oxygen levels, referred as physiological hypoxia. However, the term hypoxia means a 
state of deficiency of available oxygen in the blood and in the tissue. Usually hypoxia can have three 
degree: mild, moderate and severe, but this classification is still under debate. In any case, the most 
part of studies consider a hypoxic condition when the arterial oxygen tension is lower than ~50 
mmHg. This degree of hypoxia is considered mild and normally it is equivalent to a pressure of 10% 
normobaric oxygen, or an altitude of ~5000 m. Moderate hypoxia is considered when the arterial 
oxygen tension is between ~35 and ~50 mmHg (Xu and Lamanna, 2006). 

The brain is particularly sensitive to the effects of hypoxia and the decrease of oxygen viability is 
related to several cognitive pathologies and neurodegenerative diseases, including Alzheimer disease 
(de la Torre and Stefano, 2000; Kolinko et al., 2015), showing the interconnection between the vessels 
(structures through which the oxygen arrives to neurons) and functional neuronal activity. 

The modulation of CBF is mainly dependent to the oxygen level in the neuronal environment: thus the 
decrease of oxygen, hypoxia, induces an increase of extracellular lactate and of adenosine, resulting in 
vasodilation (Lee et al., 2011). 

When the partial oxygen pressure (PO2) falls below ~50 mmHg, the CBF increases (Masamoto and 
Tanishita, 2009). The hypoxic condition on animals can lead to different effects (see a summary of 
hypoxic effects Fig. 38) depending on the level and the duration of hypoxia.  
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Figure 38: In vivo effects of hypoxia 

 

In normoxic condition, the mammalian nervous system is maintained in a low-oxygen medium and the 
oxygen supply is governed by the “just sufficient” principle (LaManna et al., 2004). When the 
metabolic demand of neurons does not match with the O2 delivery, the acute hypoxia (normally 
considered lasting few minutes up to hours (Xu and Lamanna, 2006)) induces an increase in CBF via 
direct effects on vascular cells of cerebral arteries and arterioles. As a matter of fact, the drop of ATP 
induced by hypoxia opens ATP-sensitive potassium channel (KATP) on smooth muscle, causing 
hyperpolarization and vasodilation (Taguchi et al., 1994). Additionally, hypoxia rapidly increases 
locally NO and adenosine production, also promoting vasodilation (Golanov, 1997).  

This mechanism is able to maintain the organ-specific and local adaptations altering the vascular 
reactivity and acting on metabolic activity of the tissue (LaManna et al., 2004). 

Differently, a plethora of studies suggested that chronic systemic hypoxia (usually lasting weeks and 
months (Xu and Lamanna, 2006)) increases cerebral blood flow through different mechanisms (for 
others mechanisms of cerebral adaptation to mild chronic hypoxia see (Xu and Lamanna, 2006)); 
actually the increase of CBF is poorly understood and seems related to neurogenic component 
originating from the brain stem and NO regulation, but in any case the hyperventilation induced by 
hypoxia reduces the arterial CO2 pressure, by opposing the cerebral vasodilation. This limits the 
increase of blood flow.  

Moreover, another limit is represented by the transport of oxygen from brain parenchyma to 
mitochondria, since is driven by the diffusion force (from capillary to tissue) which it is reduced 
because the arterial O2 pressure is still low in hypoxic condition it represents a limit (Xu and Lamanna, 
2006).  

But then, how is the brain able to assure neuronal functionality? 
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Hopefully our brain comes up with others mechanisms to support neuronal metabolic request: in fact 
among these mechanisms it has been shown an increase of capillary density, using different 
percentages of O2 and duration of hypoxic condition (Boero et al., 1999; Dunn et al., 2004; Xu and 
Lamanna, 2006). The increase of vascular density results in a decrease of both intercapillaries distance 
and diffusion distance (LaManna et al., 2004).  

Among these studies, LaManna and collaborators showed that after three weeks of hypobaric hypoxia, 
in rat brains, the capillary density almost doubles and the average intercapillary distance decreases 
from 50 to 40 µm (LaManna et al., 1992; Lauro and LaManna, 1997), as a result of angiogenesis.  

A recent study analysing the spatiotemporal dynamic of vascular network during chronic hypoxia, 
using in vivo two-photon microscopy on mice, reported that after 1-2 weeks of continuous hypoxia (8-
9% O2) new sprouting vessels were detectable in the mouse cortex, especially in the cortical depth of 
100-200 µm, indicating a spatial uniformity in this process among cortical layers (Masamoto et al., 
2013). 

Moreover, different kinds of cerebral vessels can be involved in hypoxia-induced angiogenesis: 
Boroujerdi and collaborators showed that mice exposed to mild hypoxia (8% of oxygen) for periods of 
4, 7, and 14 days dysplayed the biggest increase in the number of medium to large size vessels, with 
some slight reduction in the number of small vessels, consistent with the notion that hypoxia triggers 
active remodelling of small vessels into larger ones (Boroujerdi et al., 2012). 

Additionally, cultured brain-derived microvascular endothelial cells under hypoxic conditions (1% 
O2), isolated from rat brain microvessels, express angiogenic factors; in particular, hypoxia induced a 
rapid (less than 0.5 h) expression of hypoxia-inducible factor 1α (HIF-1α), without effect on cell 
viability. Furthermore, within 0.5 to 2 h of hypoxia induction the levels of vascular endothelial growth 
factor (VEGF) and endothelin-1 mRNAs and proteins were increased. In contrast, in the same study, 
hypoxic exposure of brain cultured ECs resulted in a significant decrease in tube length compared to 
control cultures. Thus, the pro-angiogenic switch seems not linear and more complex, suggesting that 
the expression of angiogenic factors is not sufficient for the development of new vessels, in these 
conditions (Luo et al., 2012). 

Others angiogenic factors can be overexpressed during hypoxia, such as Angiopoietin 2 (Ang-2). 
Pichiule and collaborators showed, in the rat cerebral cortex, that the capillary density increased by 
60% after 3 weeks of hypoxia; moreover, the capillary network progressively decreased to prehypoxic 
values after 3 week of normoxic recovery (deadaptation).  Furthermore, Ang-2 expression in ECs was 
induced after 6 h till 14 days of hypoxia, falling down to control levels after 21 days of hypoxia. 
The expression of Angiopoietin 1 (molecule inducing vessels stabilization) and Tie-2 receptor 
(receptor of Angiopoietin 1 and 2) was not affected (Pichiule and LaManna, 2002). 

These mechanisms matching the capillary density to O2 tissue levels are not just induced by systemic 
hypoxia achieved by hypoxic chamber, but they are elicited during neuronal activity-induced hypoxia. 
In fact, they maintain the balance between oxygen availability and neuronal metabolic request when 
neuronal activity increases, such as cognitive functions and physical exercise. 

For example, Black and colleagues showed that rats living in an enrich environment or with different 
conspecifics displayed an increase in capillary density compared to control rats; this increase was 
ascribed to an angiogenic mechanism triggered to compensate the metabolic request of the neurons 
(Black et al., 1987). It was moreover showed that increase of cortical dendritic density was detected in 
the same conditions, indicating that angiogenesis in an adult brain can occur in association with 
experience-induced increases in neuropil volume.  
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The increase of vascular density in association to a higher neuronal demand was shown after 1 month 
of motor training in adult rats (Isaacs et al., 1992). Another study performed on rats showed that 
during anaerobic physical activity, oxygen reduction leading to hypoxia affects brain cell metabolisms 
and induces the expression of HIF-1α as well as VEGF, especially after 1 week of exercise, compared 
to 3 weeks (Flora, 2016). 

Hypoxic induced angiogenesis is moreover involved in tumour development and its dysregulation in 
cognitive pathologies, topic that we are not going to develop; for review (Krock et al., 2011).  

In any case, among all the molecular mechanisms of hypoxic adaptation the most important is the one 
mediated by the induction of Hif-1α and the interaction with angiogenic molecules in particular VEGF 
and angiopoietins (in particular the balance between Ang-1 and Ang-2). 

In the following part we are going to briefly describe this pathway. 

 

3.3.2.1. Hypoxia and angiogenesis triggering 

Angiogenesis is the formation of new vessels from pre-existing vascular network. Angiogenesis, 
which will be successively described in this chapter, occurs mainly though the Hif-1α activation and 
the related pathway; moreover, angiogenesis can be triggered by COX-2/Ang-2 dependent mechanism 
(Fig. 39), more detailed in the part regarding Hypoxia and angiopoietins: COX-2/Ang-2. 

 

Figure 39: Mechanisms implicated in hypoxia-induced angiogenesis. In the normoxic situation, angiopoietin-1 (Ang-1) 
acting through the Tie-2 receptor on cerebral endothelial cells maintains structural integrity. During hypoxia, 
cyclooxygenase-2 (COX-2) is activated and arachidonic acid (AA) is converted to prostaglandin E2 (PGE2). PGE2 induces 
release of angiopoietin-2 (Ang-2) from endothelial cells, which occupies the Tie-2 receptor resulting in structural instability 
and falling away of the pericyte. This allows access of hypoxia-inducible factor-1 (HIF-1) upregulated VEGF to its receptors, 
stimulating the hypertrophy and hyperplasia of capillary angiogenesis (Xu and Lamanna, 2006). 

 

The time course of the CBF response and of the increase of vascular network induced by hypoxia is 
summarized in the Fig. 40; these data come from different studies of LaManna’s group. 
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Rats placed in hypobaric chambers from 1 to 21 days at a constant pressure 0.5 atm (equivalent to 
10%  normobaric oxygen) showed a rapid increase of CBF during the first days, falling down after 5 
days (Xu et al., 2004). Moreover, after 3 weeks, the Ang-2 expression is upregulated in cortical ECs 
during the first two weeks, coming back to the basal level during the third week (Pichiule and 
LaManna, 2002). The increase of vascular network, the outcome of angiogenic process, is detectable 
already during the first week and is maintained during all the hypoxic condition. During deadaptation 
the vascular network decreases. 

Moreover, rats undergoing to the same protocols showed a fast up-regulation of cortical Hif-1α which 
halves after 4 days, coming to basal condition after 3 weeks. 

 

 

Figure 40: Time courses of cerebral blood flow, Hif-1α, capillary density, packed red cell volume (Hct), and angiopoietin-2 (Ang-2) in 
response to chronic mild hypoxic exposure. From (Xu and Lamanna, 2006). 

 

These results show the time course of CBF and angiogenic process in systemic mild chronic hypoxia 
but during the neuronal activity induced by a memory task this kinetics may change. 

 
3.3.2.2. Hif-1α 

 
Regulation of Hif-α concentration and activity 

Hif-1α is one of the major regulators of oxygen homeostasis. This protein belongs to a family of 
proteins with basic helix loop helix-Per/ARNT/Sim structure (bHLH-PAS). It is formed by three O2-
regulated α subunits, responsible to 3 different isoforms, namely Hif-1α, Hif-2α and Hif-3α, and a 
constitutively expressed β-subunit of Aryl hydrocarbon nuclear translocator family, including Arnt, 
Arnt2 and Arnt3. The α-subunits are structurally homologous, and they are constituted by an N-
terminal bHLH domain, which is responsible of DNA binding and specificity. The HLH and PAS 
domains are engaged in heterodimerization with the transcriptional partner Arnt (Krock et al., 2011).  

Despite Hif-1α and Hif-2α are highly structurally similar, sharing many transcriptional targets binding 
the same DNA sequences, they have divergent functions thanks to unique patterns of expression and 
transcriptional activity. In fact while Hif-1α is ubiquitously expressed, Hif-2α expression is restricted 
to endothelial cells, type II pneumocytes of the lung, cardiomyocytes, macrophages, astrocytes, and 
the organ of Zukerlandl.  
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Hif-1α or Hif -2α-knockouts are lethal for the embryos, showing that each gene has unique functions. 
It seems that Hif-2α promotes vessel maturation likely due to Hif-2α-mediated expression of genes 
involved in adhesion (integrins α9 and β2) and basement membrane formation (fibronectin) (Krock et 
al., 2011). In contrast, Hif-3α might act as an antagonist of the Hif system. 

The β-subunit does not change based on O2 level, but it is important in the hypoxia-induced 
transcriptional changes mediated by Hif heterodimer. Also Arnts family members are all structurally 
homologous, but just Arnt is the primary HIF-β involved in the hypoxic response (Fong, 2008; Jain et 
al., 1998). 

In normoxic environment, Hif-1α is continuously produced but rapidly degraded. The activity of this 
protein is regulated by different enzymes (Sharp and Bernaudin, 2004). 

One of the most important is the prolyl hydroxylase enzymes (PHD1-3), included in the Fe(II) and 2-
oxoglutarate-dependent dioxygenase family. In normoxia conditions, both at nuclear and cytoplasmic 
level (Metzen et al., 2003), PHD enzymes, together with substrate O2 and cofactor 2-oxoglutarate, 
hydroxylate Hif-α in on two conserved proline residues located within the Hif-α O2-dependent 
degradation domain (ODDD). The proline hydroxylation changes Hif-α conformation allowing the 
binding to the Von Hippel–Lindau protein (VHL) and others molecules (including elongin B and C, 
Cullin 2 and RBX1), acting as E3 ubiquitin ligase complex that ubiquitinates Hif-α, targeting it for 
proteasomal degradation (Fig. 41A).  

Under hypoxic condition, the O2 and 2-oxoglutarate are limited, diminishing the Hif-α hydroxylation 
and resulting in Hif-α accumulation and translocation into the nucleus. Once in the nucleus, Arnt 
subunit create a transcriptional complex with coactivator proteins (CBP and p300), hypoxia response 
elements (HREs), promoters and enhancers of target genes required in hypoxic response (Fig. 41B) 

Interestingly, PHD enzymes are induced by hypoxia, suggesting a feedback mechanism avoiding the 
excessive Hif-α accumulation (Metzen et al., 2003). 

 

 

Figure 41: Regulation of hypoxia-inducible factor (HIF) activity. Under normoxic (A) and hypoxic (B) conditions, detailed 
in the text. Abbreviations: OH: hydroxylation; Ub: ubiquitin; PHDs: prolyl hydroxylases; ODDD: oxygen-dependent 
degradation domain; HREs: hypoxia response elements; FIH-1: factor inhibiting Hif-1.(Krock et al., 2011). 
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The ferrous ions, necessary for the link with PHD enzymes and for Hif-α degradation, can be 
sequestered by heavy metal ions such as cobalt (Jaakkola et al., 2001), inhibiting the degradation of 
Hif-α. Moreover, cobalt is able to stabilise Hif-α binding directly ODDD inhibiting both hydroxylation 
and the interaction between hydroxylate Hif-α and VHL (Yuan et al., 2003). 

Hif-α activity can be mainly controlled by several post-translational modifications, such as ARD1 
protein which promotes proteasome degradation of Hif-α by increasing the interaction with VHL 
though acetylation of lysine 532; moreover, factor-inhibiting Hif-1α (FIH-1) can hydroxylate a 
conserved asparaginyl residue of HIF-α inhibiting the binding with the coactivator proteins (for a 
review(Sharp and Bernaudin, 2004)). 

Hif-α is also modified by acetylation, phosphorylation, sumoylation, and s-nitrosylation. The aim of 
this paragraph is not to explore the post-transcriptional regulation of Hif-1α in any case interesting 
review can fill this interesting part (Fandrey et al., 2006; Kietzmann et al., 2016; Krock et al., 2011; 
Lee et al., 2004c; Sharp and Bernaudin, 2004). 

Even if Hif-α can be controlled by post-transcrpitional mechanisms, Hif-α mRNA are influenced by 
oxygen (Sharp and Bernaudin, 2004); moreover Hif-α expression depends on others mechanisms 
oxygen independent, that we are not going to explore, despite are reviewed in (Fong, 2008). 

In any case, even if O2 is the most important regulator of Hif-α activity, others factors can influence 
Hif-α stability and functionality (Fig. 42). 

 

 

Figure 42: The principal regulatory mechanisms of Hif-1α expression and activity. The wider end of the triangles represents 
high concentration or activity, whereas the sharp end stands for the opposite. From (Fong, 2008). 
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 Among these, the Ang-2 is able to increase Hif-α activity via the production of reactive oxygen 
species (ROS), which, decreasing the Fe2+ availability and thus the PHD and FIH functionality, induce 
Hif accumulation (Cash et al., 2007). 

As previously mentioned, Hif-1α is produced continuously and accumulates in cells under hypoxia, 
while in normoxic condition is rapidly degraded (Sharp and Bernaudin, 2004) but the kinetics of Hif-
1α turnover depends from different conditions; an in vitro study (Chamboredon et al., 2011) reported 
that SV-40-immortalized human microvascular endothelial cells, exposed to hypoxia (1.5% O2) for 3–
24 h, showed a rapid and transient increase of Hif-1α protein levels, peaking at 3 h, compared to 
normoxic cells (19 % O2) where Hif-1α was almost undetectable. During the hypoxic condition, a 
progressive decrease of Hif-1α levels was reported even if it remained higher than basal levels at 24 h. 
Furthermore, hypoxia did not change Hif-1α mRNA levels during the first 3 h, suggesting that 
hypoxia-induced increases in Hif-1α protein are likely due to translational or posttranslational 
changes. By contrast, prolonged hypoxia progressively decreased Hif-1α mRNA, diminishing till 
almost the 50% of the initial value at 24 h. 

Another study (Stroka et al., 2001) performed of female mice underwent to hypoxic chamber (1-12 
hours at 6% O2) showed that the basal normoxic expression (besides detectable) of Hif-1α in brain, 
kidney, liver, heart, and skeletal muscle was further increased in response to systemic hypoxia but the 
kinetics of Hif-1α expression varieed among different organs. In the brain, however, Hif-1α expression 
was proportional to the level of hypoxia; moreover, at 6% O2 Hif-1α reached the peak of expression at 
5 h, coming back to basal levels after 12 h. Hif-1α staining appeared in the neurons of the cerebral 
cortex and granular layer of the dentate gyrus and the hippocampus but contrarily to what reported in 
other studies (Chamboredon et al., 2011; Chavez et al., 2000), throughout the brain, ECs were 
negative. This result seemed due to undetectable levels of the protein, as a consequence of cell size 
regulation (Schmidt and Schibler, 1995). However, different studies reported that Hif-1α is induced in 
hypoxic neurons, astrocytes, ependymal cells and ECs (Chamboredon et al., 2011; Chavez et al., 
2000).  

 

Hif-α regulated angiogenic molecules and responses of vascular cells to hypoxia 

Hif-1α regulates a broad array of gene in response of O2 decrease (Fig. 43) which promotes both short 
term and long term adaptation. Despite this plethora of modification, Hif-1α pathway has the common 
characteristic to facilitate the acclimation to low oxygen condition though vasomotor control, 
angiogenesis, erythropoiesis, iron metabolism, cell proliferation and cell cycle control, cell death and 
energy metabolism. 

Among the short term adaptation Hif-1α induce the upregulation of iNOS, allowing the production of 
NO and the consequent relaxation of vascular network, at least in cardiomyocytes (Jung et al., 2000).  
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Figure 43: Principal Hif-1α target genes modifying several biological systems, among these the angiogenic pathway. From 
(Sharp and Bernaudin, 2004). 

 

The long term adaptation induced by Hif-1α is achieved via angiogenesis stimulation, though the 
regulation of proangiogenic genes, responsible to making Hif1-α the “master regulator of 
angiogenesis” (Krock et al., 2011), increasing vascular permeability, ECs proliferation, sprouting 
migration, adhesion and tube formation. 

Hif-1α induces the transcription of target genes binding the HREs, which presence has been reported 
concomitant to angiogenic molecules such as VEGF-A (Forsythe et al., 1996), VEGFR-1 (Marti and 
Risau, 1998), eNOS (Yu et al., 2005). In contrast, others angiogenic molecules, even if are not known 
to have HEREs, are up-regulated by hypoxia or Hif-1α overexpression, including genes encoding 
fibroblast growth factor (FGF) 2, platelet-derived growth factor (PDGF)-B, placental growth factor 
(PLGF), Ang-1 and -2, and angiopoietin receptor Tie-2 (Fong, 2008; Kelly et al., 2003). 

Moreover, several studies demonstrated that the simple ectopic stimulation of Hif-1α was enough to 
induce angiogenesis without others factors, for a review (Fong, 2008). 

Briefly, but more developed in the next paragraph, ECs can create new vessels by sprouting 
angiogenesis but, since the ECs are physiologically quiescent, they require a signal to commence the 
angiogenesis; this signal is mainly represented by VEGF, a stimulating cytokine, allowing the 
detachment of ECs from the parent vessel and migrates into the neighbouring stroma. VEGF 
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expression is mainly regulated by hypoxia and moreover it is a direct transcriptional target of both Hif-
1α and Hif-2α. 

Moreover Hif-1α participates to upregulation of matrix metalloproteinases, in particular MPP-2 (direct 
transcriptional target of Hif-1α), inducing degradation of the ECM. 

Furthermore it regulates vessel branching through modulation of Notch signalling, an actor 
modulating the role of ECs on vascular remodelling (see next paragraph): Notch signalling pathway is 
complex but it seems to control ECs functions, allowing the selection of the EC which will guide the 
development of the new vessel and limiting the neighbouring ECs angiogenic response, in part by 
reducing the level of vascular endothelial growth factor receptors in endothelial cells (Fouillade et al., 
2012; Phng and Gerhardt, 2009; Siekmann and Lawson, 2007).  

It is notable, just to mention, hypoxia regulates the balance between ECs proliferation and 
degradation. In fact, hypoxia may also reduce ECs proliferation and cause apoptosis (through NFkB 
and Bcl-2 interaction, even if the mechanism is not fully understood (Matsushita et al., 2000)). Thus, 
the hypoxia outcome in ECs regulation can depend on the severity of hypoxia (Fong, 2008). In any 
case, as previously discussed, hypoxia through Hif-1α effectively regulates several steps of angiogenic 
process (Fig. 44). 
 

 

Figure 44: Pro- and Anti-Angiogenic factors produced by the hypoxia-induced Hif-1α expression Induced by 
Hypoxia/Hypoxia-Inducible Factors: ADM: adrenomedullin; Ang-1/2 : angiopoietin-1/2; COX-2 : cyclo-oxygenase 2; DLL : 
delta-like ligand; FGF : fibroblast growth factor; Flt-1 : fms-related tyrosine kinase 1; Kdr : kinase insert domain containing 
receptor; MMP : matrix metalloproteinases; NOS : nitric oxide synthases; PAI-1 : plasminogen activator inhibitor–1; PLGF : 
placenta growth factor; PDGF-B : platelet derived growth factor beta; SCF : stem cell factor; SDF-1 : stromal-derived growth 
factor; Tie-2 : TEK tyrosine kinase endothelial; TIMP : tissue inhibitor of metalloproteinases; VEGF : vascular endothelial 
growth factor; VEGF-R : VEGF receptor. (Krock et al., 2011). 

 

Finally, hypoxia also activates pathways that do not depend on Hif-1, modulating the levels of 
neuroglobin and Ang-2. Ang-2 is upregulated by hypoxia in a non-Hif-1-dependent manner through 
upregulation of cyclooxygenase 2 (COX-2) (Pichiule et al., 2004), participating in the brain capillary 
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remodelling that occurs in the chronic hypoxic adaptation model (Pichiule and LaManna, 2002), more 
detailed in the part “Hypoxia and angiopoietins: COX-2/Ang-2”. 

The aim of this paragraph is not to explore all the mechanisms through which hypoxia can induce 
angiogenesis but to introduce another fundamental molecule, induced by hypoxia playing an important 
role in angiogenesis: Ang-2; this protein represents our selective target to explore the  dynamics of 
vascular plasticity during the consolidation of the olfactory associative memory. 

In the following paragraph we are going to describe the mechanism thought which Ang-2 is induced, 
introducing the concept of angiogenic process and the role played by the angiopoietines. 

 

3.4. Angiogenesis 

The vascular system assures a correct and balanced distribution of blood throughout the body: 
insufficient blood supply can cause tissue ischemia in cardiovascular and other diseases, whereas in 
cancer the formation of new blood vessels offers to the expanding tumours an adequate access to 
nutrients and oxygen. Hence, the possibility to control the growth of blood vessels provides significant 
therapeutic opportunities (Fagiani and Christofori, 2013). 

We can identify several type of vessels formation during physiological and pathological conditions; 
the three main cellular processes involved in vasculature formation are vasculogenesis, angiogenesis 
and arteriogenesis (Carmeliet and Jain, 2011). 

During embryogenesis, the angioblasts differentiate into ECs, which create de novo vascular network; 
this process is known as vasculogenesis. Then, different signals regulate arterial and venous 
differentiation. The subsequent sprouting, starting from pre-existing network, ensures the expansion of 
vascular network, and this process is known as angiogenesis. The vessels increase their diameter, 
acquiring stability and control of perfusion, being covered by pericytes or vascular SMCs, through the 
process of arteriogenesis (Carmeliet and Jain, 2011). 

In this thesis we focalize on angiogenesis, (from the Greek word Angêion, meaning vessel) the 
formation of blood vessels from existing vasculature (Adair and Montani, 2010). 

The Scottish anatomist John Hunter was the first who provides the first insight into angiogenesis field 
which wrote “In short, whenever Nature has considerable operations going on, and those are rapid, 
then we find the vascular system in a proportional degree enlarged”, underlining the link between 
vascular and metabolic dynamics (Adair and Montani, 2010; Hunter, 1840). An important trigger for 
the modern knowledge of angiogenesis began with Judah Folkman, considered by many to be the 
father of the modern view of angiogenesis, who discovered that tumour growth is angiogenesis-
dependent (Folkman, 1971). 

Nowadays, we know that hypoxic-induced growth factors and the chemokines induce the ECs to 
change from their stable position in the vessel wall to a new network formation, until they are able to 
supply to the neuronal demand; after that they can come back to a quiescence state (Phng and 
Gerhardt, 2009). 

It was extensively documented that the capillary growth (capillary length density) is proportional to 
the metabolic activity (mitochondrial volume density, which is considered the structural measure of 
the oxidative capacity of a tissue) in several tissues such as the heart, skeletal muscle and brain (Adair 
et al., 1990; Adair and Montani, 2010; Hoppeler et al., 1981; Krogh, 1919). Moreover it was shown, in 
different studies of endurance exercise training, that the increased of metabolic activity can promote 
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angiogenesis whereas its  decrease, like in case of disuse atrophy and tenotomy in skeletal muscle, 
causes capillary rarefaction (also called capillary dropout, for a review see (Adair and Montani, 2010). 

In adults, the vascular network rarely forms new branches but the ECs retain a high plasticity to sense 
and to respond to angiogenic signals. Changes in metabolic activity lead to proportional changes in 
angiogenesis and, hence, proportional changes in capillarity. In fact it is reported the existence of 
cerebral neurogenic niches which coexist with angiogenic areas, since they share common molecular 
pathways (Madri, 2009; Palmer et al., 2000; Yamashima et al., 2004). 

Abnormal angiogenesis is also involved in pathologies such as tumour growth, metastasis, diabetic 
retinopathy and arthritis (Munoz-Chapuli et al., 2004), becoming a process of high interest; despites 
these pathways are deeply described, in this thesis we analyse the physiological process of 
angiogenesis, which has been extensively studied due to their therapeutic potential and their clinical 
implications. 

As previously mentioned, oxygen plays a pivotal role in this regulation and tissue hypoxia is one of 
the main signals triggering an angiogenic response. Hemodynamic factors are critical for survival of 
vascular networks and for structural adaptations of vessel walls. 

The angiogenesis can occur via different ways (Fig. 45), such as sprouting, bridging or 
intussusception, as reported in a study investigating the angiogenic process in adult mice and rats 
induced by VEGF injection in different tissues (such as skeletal muscle, myocardium, skin and 
peritoneal cavity) (Pettersson et al., 2000). These angiogenic forms are presented in tumour 
angiogenesis as well (Carmeliet and Jain, 2011).  

In physiological angiogenesis, the bridging (projection of EC cytoplasmic processes into and across 
mother vessel lumens, creating a bridges within the lumen) and the intussusception (invaginations of 
connective tissue causing the slitting of the original structure into smaller branched structures, also 
called splitting angiogenesis) induce the vessel proliferation with low cellular proliferation, acting via 
ECM remodelling. These phenomena are thought to be faster and efficient compared with sprouting 
angiogenesis (Adair and Montani, 2010) since, initially, it only requires reorganization of existing ECs 
without necessity of  immediate ECs proliferation and migration. This process is poorly understood 
due to the “recent” discover compared to the sprouting angiogenesis (Caduff et al., 1986) and to the 
difficulty of imaging method and scanning.  

Conversely, sprouting angiogenesis is considered the main angiogenic process, creating new 
capillaries that are vulnerable if compared to the ones deriving from the others angiogenic process. 
These capillaries become, inter alia, the target for tumour angiogenesis.  

In this thesis, thus we consider the sprouting angiogenesis, which involves an increase of ECs 
proliferation. 
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Figure 45: Different types of angiogenesis proposed in in vivo models. Modified from (Pettersson et al., 2000). 

 

Before discussing the molecular players involved in this process we briefly describe the sequential 
steps of vessels branching and lumen formation. 

In healthy adults, ECs possess long half-life and are protected against insults by autocrine signals 
(VEGF, Notch, Ang-1, FGFs). The function of vascular network is to distribute oxygen to the tissues, 
thus the ECs possess oxygen sensor such as hypoxia inducible factors that assure the re-adjustment of 
vessels shape in order to optimize blood flow. 

Without stimuli, ECs are quiescent (phalanx cells, so called since their “cobblestone” aspect resembles 
the phalanx formation of ancient Greek soldiers (Mazzone et al., 2009)), forming an aliened 
monolayer interconnected by junction molecules like VE-cadherin and claudins. They are stabilized 
by pericytes, which inhibit ECs proliferation and release cell-survival signals such VEGF and Ang-1. 
As a matter of fact, only a 0.01% of all the endothelial cells of a normal adult are dividing at any given 
moment (Hobson and Denekamp, 1984). Moreover, labelling studies suggest that the ECs turnover 
takes from months up to 5 years and more (Foreman and Tang, 2003; Hobson and Denekamp, 1984; 
Woywodt et al., 2002); this ECs turnover rate increases during vascular trauma, angiogenesis, 
reaching the turnover rate of the bone marrow cells (Folkman, 1993).  

When a quiescent vessel detects an angiogenic signal (such as VEGF, Ang-2, FGFs or chemokines, 
released by a hypoxic, inflammatory or tumour cell), triggering the angiogenic switch (Ribatti et al., 
2007), the activation of the angiogenic cascade leads to a plethora of successive steps here 
summarized and reviewed in (Carmeliet and Jain, 2011; Geudens and Gerhardt, 2011) (Fig. 46).  
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Figure 46: Angiogenesis steps. Briefly, as described in the text hypoxia induces the production of NO and the expression of 
VEGF and Ang-1 and Ang-2, which interact with ECM proteases increasing the permeability of the capillary vessel wall. 
Destabilization then allows ECs to migrate and proliferate to form tubules, mediated by VEGF, Ang, guidance molecules, 
growth factors, cytokines, and degradation of the ECM. Maturation of the newly formed vessel is accompanied by increased 
expression of antiangiogenic factors, many released as a result of proteolysis. From (Clapp et al., 2009). 

 

DESTABILIZATION and BRANCHING 

VEGF-A starts the process of vascular destabilization increasing the ECs permeability via 
phosphorylation of focal adhesion tyrosine kinase (FAK), leading to vascular endothelial Cadherin 
(VE-Cadherin) and β-catenin dissociation from junctions and an EC junctional breakdown (Chen et al. 
2012).  

The aim of this phase is to create a destabilizing medium to remodel the vascular wall; to obtain this 
environment, firstly the pericytes start to detach from the vessel wall (Ang-2 mediated), separating 
from the basement membrane by proteolytic degradation mediated by MMPs, basally slightly 
expressed but upregulated during angiogenic process; at cerebral level, the most abundant MPPs are 
the MMP-2, MPP-3 and MMP-9 (Ethell and Ethell, 2007). MPP-2 and -9 are upregulated during the 
tumour angiogenic switch but just MPP-9 seems to play a functional role. This molecule, in fact, 
degrading the ECM, allows the liberation of other angiogenic molecules from ECM. MPP-9 is also 
involved in angiogenic response following ischemia (Morancho et al., 2013).  

The loss of ECs’ junctions allows the formation of the nascent vessel; contemporaneously, the induced 
production of VEGF increases the permeability of ECs and promoting the plasmatic extravasation of 
proteins. 

The plasmatic extravasation and deposition create a temporary ECM scaffold onto which ECs start to 
migrate in response to integrin signalling. Moreover, at the same time, the proteases induce the release 
from ECM of angiogenic molecules such as VEGF and FGF, creating and reinforcing the angiogenic 
environment.  
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In order to create a functional vessel and to prevent ECs from moving randomly towards the 
angiogenic signal, only one type of endothelial cell, known as the tip cell, is selected to lead the tip in 
the presence of factors such as VEGF receptors, neuropilins (NRPs) and the Notch ligands Dll4 and 
JAGGED1, described below (Fig. 47). 

Tip cell is followed by proliferating and differentiating cells, loosely covered by pericytes and smooth 
muscle cell. Conversely, the neighbours of the tip cell (stalk cells) assume subsidiary and subordinate 
positions (Carmeliet and Jain, 2011). It was shown recently that also tip cells can proliferate in some 
vascular beds in zebrafish (Nicoli et al., 2012). 

Tip cell selection 

Tip cell and stalk cell are selected by a precise feedback loop between VEGF and Notch (specified in 
the paragraph “Notch mediated tip cell selection”):  tip cells induce notch-mediated lateral inhibition 
by of stalk cell which leading capacity is prevented. This differentiation limits the number of 
outgrowing sprouts (Geudens and Gerhardt, 2011). 

Briefly, it seems that the future tip cell produces more Dll4 and is less sensitive to Notch activity, 
being able to “dominate” the neighbour ECs. Thus, the Notch activation in stalk cells induces a 
VEGFR-2 inhibition, indirectly through Dll4 inhibition, reinforcing the role of the tip cell and 
reducing the number of others possible tip cells (Fig. 47) (Geudens and Gerhardt, 2011). 

 

Figure 47: Tip selection process (Geudens and Gerhardt, 2011). 

 

Tip cell branching 

The tip cells’ branching is mediated by directional protrusion of filopodia and to the remodelling of 
cytoskeleton. The dynamic activity of the cytoskeleton depends from the myosin II contractility, 
which in turn, is determined by the physical and molecular property of ECM. It has been shown that 
the local downregulation of this protein induces the formation of lamellopodia which start the 
branching (Fischer et al., 2009). The direction of filopodia extension is in principle determined by the 
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polarization of the tip cell, dependent by Cdc42, a small GTPase of the Rho family (Etienne-
Manneville, 2004), while, successively, is  dependent by VEGF distribution (Ruhrberg et al., 2002). 

 

MIGRATION and ELONGATION 

Tip cell guidance and stalk cell proliferation induce lumen formation 

This sprout elongation is still dependent by the tip cell guidance, probably with a dynamic shuffling 
VEGFR/Notch/Dll4-mediated between ECs (Geudens and Gerhardt, 2011; Jakobsson et al., 2010) (see 
paragraph Notch mediated tip cell selection and guidance). This angiogenic environment is still 
corroborated, as said before, by the hypoxia-inducible program, driven by Hif-1α, inducing gene 
transcription to increase both the ECs responsiveness to angiogenic signals and the angiogenic 
molecules production.  

Stalk cells induce the formation of the body of the sprout and successively proliferate in order to 
create the building material necessary for the elongation of the vascular tube, responding to the 
surrounding different stimuli such as VEGF, Notch, NRARP, WNTs, PlGF and FGFs (Carmeliet and 
Jain, 2011), while tip cell are rarely proliferative (Gerhardt et al., 2003). 

Interestingly, it has been demontrated that stalk cells do not push the tip cell, but it is the tip cell that 
pull itself, interacting with the surrounding environment, towards the VEGF gradient (Geudens and 
Gerhardt, 2011). 

The orientation of the stalk cell division is often perpendicular to the long axis of the vessel by which 
the sprout is growing and strongly influenced by VEGF gradient (Zeng et al., 2007) in absence of 
blood flow; in bigger perfused vessel the orientation of the growing vessel is determined by the shear 
stress sensed by PECAM1, VE-Chadrenin and VEGFR-2 (Tzima et al., 2005). 

For big highly perfused capillaries has been proposed that the new growing vessel can be created by 
different mechanism: the first suggests is that the new lumen is formed by the coalescence of vacuoles 
of neighbour ECs (Fig. 48 A), while the second hypothesis suggests the exocytosis of vacuoles, in 
neighbours ECs, (Blum et al., 2008; Kamei et al., 2006) (Fig. 48 B). Another model of lumen 
formation was proposed based on mice and zebrafish in which the intracellular lumen seems to be 
created by the apical membrane repulsion (Fig. 48 C): VE-Chadrenin, which is required for the initial 
apical formation of the new vessel induces a shift of sialomucins, charged negatively, creating an 
electrostatic repulsion inducing the separation of the cells and the formation of the lumen. 
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Figure 48: Proposed models of lumen formation, specified in the text. From (Geudens and Gerhardt, 2011). 

 

The new vascular network is, thus, formed by anastomosis and fusion of sprouts that must be 
stabilized to become functional.  

Anastomosis formation and connectivity 

The contact between sprouting vessels takes place between two sprout through a tip-tip contact (head-
to-head anastomosis) (Blum et al., 2008) or between sprouts and functional vessel, involving only one 
tip cell (‘head-to-side’ anastomosis) (Betz et al., 2016) but the subsequent anastomosis between them 
is a process that is not completely understood; it seems that the anastomosis is often, but not always, 
accompanied by macrophages which might act as “bridge cell”, helping the contact between the 
nascent sprouts (Checchin et al., 2006). 

This process is driven by different molecules such as FGF, and in particular by interactions of Notch 
and Tie-2 and chemokine CXCR4 receptor, localised on macrophages, with their respective ligands 
Dll4, Ang-2 and SDF1, expressed in tip cells (Fantin et al., 2010; Geudens and Gerhardt, 2011; 
Strasser et al., 2010). 

 STABILIZATION 

Maturation and remodelling 

To create a perfused vessel a stabilization process is required, in order to stop the extravasation and 
seal the vascular structure. Firstly, myeloid bridge cells aid fusion with another vessel branch, 
allowing the blood to flow trough (Fig. 46). After vascular connection, the vessels undergo to 
remodelling and either they are stabilized or they regress.  

This mechanism, once again, is far to be fully understood, but it seems that pericytes play an important 
role. As a matter of fact some studies suggest that the pericytes mark the end of the plasticity window 
(Benjamin et al., 1998) and that their coverage of the vessel protect it from the regression, as reported 
in kittens retina development study (Chan-Ling et al., 2004). The pericytes recruitment seems to 
depend by different factors; among these we mention Ang-1/Tie-2 and Dll4/Notch pathway together 
with PDGF-B.  
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Ang-1, produced by ECs, induces the expression of chemokine MCP-1, which recruits the pericytes, 
which in turn produce factors like the tissue inhibitor of protease TIMP and Ang-1. The presence of 
Ang-1, moreover, stabilizes vascular endothelium (see paragraph “Angiopoietins”). 

Furthermore, Notch signalling stabilises vessels inducing the expression of Notch regulated ankyrin 
repeat protein (NRARP) and the production of ECM component. NRARP creates a negative feed-back 
on Notch action, promoting in the same time the WNT/CTNNB1 signalling in stalk cells. This 
pathway supports vascular stability and prevents EC retraction (via proliferation induction and  
intercellular junctions improvement) (Phng and Gerhardt, 2009). 

Notch can also stabilize the newly formed vessel by pericytes interaction, since Ang-1/Tie-2 signalling 
between pericytes and ECs is mediated via induction of Dll4 expression in ECs, even if the situation is 
not clear since in vivo Dll4 deficient mice did not show an impairment in pericytes recruitment 
(Geudens and Gerhardt, 2011). 

The resultant of these process it that, under the guide of signals promoting the release of cell-survival 
signals and molecules inhibiting the angiogenic cascade, ECs resume their quiescent phalanx state and 
they are covered again by pericytes and SMCs. Protease inhibitors, in particular tissue inhibitors of 
metalloproteinases (TIMPs) and plasminogen activator inhibitor-1 (PAI-1), induce the deposition of a 
basement membrane and re-established the junctions to ensure the optimal flow distribution. If not 
perfused the vessels regress. 

Pruning vessels 

The optimal vascular density is an important parameter since if it is reduced it cannot satisfy the 
metabolic request of neurons; vice versa some studies indicate that even an excessive vascular density 
can reduce the effectiveness of perfusion of the tissue (Cristofaro et al., 2013; Tirziu et al., 2012). 
Thus, when the vascular network is established, it can be remodelled to optimize the flow or to adapt it 
to changing demands in blood flow. The physiological regression of a subset of microvessels within a 
growing vasculature is called “vessel pruning” (Korn and Augustin, 2015). 

It is still under debate if the vessel regression is due to either an active signalling pathway or the result 
of withdrawal of survival stimuli or the combination of the two mechanisms (Korn and Augustin, 
2015).  

There are parallel features between angiogenesis and reabsorption/pruning since this last can involve 
“reverse intussusception”, EC migration-dependent regression (the “opposite” of sprouting process) or 
apoptosis. While apoptosis has been implicated in the regression of larger blood vessels (Betz et al., 
2016) and seems to be related to withdrawal of surviving factors such as VEGF, the destiny of little 
vessels is to prune and be reabsorbed by ECs.  

Interestingly, not all the vessels are going to be reabsorbed but this event seems to be mainly 
dependent from both blood flow and Notch pathway, but also from O2, VEGF and Ang/Tie signalling 
(Fig. 49). For review see (Korn and Augustin, 2015; Ricard and Simons, 2015). For Ang/Tie 
signalling in pruning vessel see the part concerning the angiopoietins pathways. 
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Figure 49: Signalling Pathways involved in vascular regression. From (Korn and Augustin, 2015). 

 

Shear stress in perfused vessels induces AKT signalling, resulting in Krüppel-like factor 2 (KLF2) 
activation and subsequent upregulation of nitric NOS and superoxide dismutase, promoting EC 
survival and NO mediated vessel dilation (Korn and Augustin, 2015). Using time-lapse imaging in the 
eye of zebrafish embryos, it has been shown that after an initial formation of a Y- shaped blood vessel 
branch, a rearrangement of ECs within the pruning blood vessel tranforms a multicellular to a partially 
unicellular tube, a phenomenon known to be regulated by the blood flow (Kochhan et al., 2013). 
Moreover other studies analysing blood vessel pruning in zebrafish brains, mice retinae and airways 
showed that loss of blood vessel perfusion precedes blood vessel regression (Chen et al., 2012a; 
Lobov et al., 2011).  

Another important regulator of the pruning destiny of ECs is Notch. The inhibition of Notch perturbs 
the normal pruning of capillaries in the developing retinal vasculature, as well as blood vessel 
regression after exposure to hyperoxia. Moreover the consequent loss of Notch-regulated ankyrin 
repeated protein (Nrarp) induces an increase in vascular regression due to a decrease in Wnt signaling-
induced stalk cell proliferation. Furthermore, similarly, genetic alteration of Notch/Dll4 pathways 
reduces vascular pruning in developmental retinal vascular regression, confirming the involvement of 
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the Notch pathway in the control of vascular regression. This effect is associated to induction of genes 
encoding vasodilatory peptides (Lobov et al., 2011). 

When the pruning process started, the lumen collapse and the remaining single EC migrates and 
incorporates into one of the main vessels (Ricard and Simons, 2015). 
 
The complexity of angiogenic process requires a strict regulation, thus several angiogenic molecular 
pathways are involved, and reviewed in (Carmeliet and Jain, 2011; Krock et al., 2011) (Tab).  

It is clear now that angiogenesis is orchestrated by a variety of activators and inhibitors. Some 
activators of endothelial-cell proliferation and migration are ligands of the tyrosine kinase receptor, 
such as VEGF, FGFs, PDGF and EGF. Among inhibitors we can list thrombospondin-1, which 
modulates endothelial-cell proliferation and motility and some statins. 
Some of these actors are summarized in Fig. 50, and the most important are mentioned in Fig.51 with 
their relative functions. 
 

 
Figure 50: Angiogenic molecules responsible of angiogenesis pathways. Modified by (Bergers and Benjamin, 2003) and 
completed according to (Fong, 2008; Krock et al., 2011; Logsdon et al., 2014; Zetter, 2008) 

 

The amount of “work” done by the ECs is considerable since they have to proliferate, produce 
molecules able to degrade the extracellular matrix, change their adhesive properties, migrate, avoid 
apoptosis and, finally, differentiate in new vascular tubes, and all this process is coordinated with 
mastery by different signalling pathway (Munoz-Chapuli et al., 2004). 
Here we are going to define the most important mediators of this process such as VEGF and Notch 
signalling and Angiopoietins. Other molecules implicated in angiogenic pathways are reviewed in 
(Carmeliet and Jain, 2011; Clapp et al., 2009) and summarized in Fig. 51. 
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Figure 51: Main Angiogenic Molecules, Their Receptors, and Functions. Abbreviations: CXCR4 : CXC chemokine receptor 
4; DLL1-4 : delta-like ligands 1-4; FGF : fibroblast growth factor; FGFR : fibroblast growth factor receptor; Flt-1 : fms-
related tyrosine kinase 1; Kdr : kinase insert domain containing receptor; PLGF : placenta growth factor; PDGF-B : platelet-
derived growth factor beta; PDGF-R : platelet-derived growth factor receptor; SCF : stem cell factor; SDF-1 : stromal-
derived growth factor; Tie-2 : TEK tyrosine kinase endothelial; VEGF : vascularendothelial growth factor; VEGF-R : VEGF 
receptor. (Krock et al., 2011) 
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3.4.1. VEGF and VEGFRs pathway 

VEGF 

Vascular endothelial growth factor VEGF and its receptors (VEGFR) are the predominant actors, 
which regulates the angiogenesis. The VEGF family consists of only a few non-redundant members. It 
was discovered in 1983, by Senger who describes it as a protein able to induce vascular leakage in the 
skin (Ferrara, 2009). VEGF (known as VEGF-A) is the major component, and it acts stimulating the 
angiogenic process, both in healthy conditions and during pathologies through the binding with VEGF 
receptor-2 (VEGFR-2). VEGF-A is not only the most expressed form of VEGF, but it is ubiquitously 
distributed in human (Nagy et al., 2007). 

VEGF-A is a glycoprotein of 34-36 kDa that is presented as disulfide homodimer. The human gene is 
organized in 8 exons and 8 isoforms are obtained from RNA splicing: VEGF121, VEGF145, VEGF162, 
VEGF165, VEGF165B, VEGF183, VEGF189 and VEGF206. The different isoforms have different affinity 
in binding heparine and this determine the ability of the protein to accumulate in ECM or to diffuse. 
Soluble VEGF isoforms promote vessel enlargement, whereas matrix-bound isoforms stimulate 
branching. The most abundant protein in human is VEGF165 that is highly affine to sulphate heparin 
and are mainly associated to ECs or ECM.  

VEGF-A binds both VEGFR-1 and VEGFR-2 and its expression is stimulated mainly by hypoxia 
induced by Hif-1α, which binds HREs in the internal part of VEGF promotor. The production of 
VEGF is also incremented by growth factors (EFG, IGF-1, FGF, PDGF), chemokines (IL 1, TGFβ, 
PGE2) or COX-2 activators. 

VEGF-A, besides exerting a role in angiogenic process in ECs, is able to induce vascular permeability 
and to promote the survival of ECs inducing the expression of anti-apoptotic proteins; moreover recent 
studies have emphasized the potential role of VEGF as a neuronal protective factor implicated in 
neurogenesis, neuronal migration, neuronal survival and axon guidance, reviewed in (Mackenzie and 
Ruhrberg, 2012; Shen et al., 2016). 

On the contrary the loss of VEGF, as well as VEGFR-2 deficiency, aborts vascular development. 

Other VEGF proteins are VEGF-B, -C, -D and placenta growth factor (PLGF). 

VEGF-B that is able to form heterodimer with VEGF-A, is expresses in several tissue (i.e. skeletal 
muscle, myocardium); it binds VEGFR-1 and it is involved in degradation of ECM and migration of 
ECs; anyhow its function is not deeply defined: it seems required for adult cardiac functionality but 
not for cardiovascular development or angiogenesis.  

VEGF-C is produced by a precursor activated in extracellular space from proteases, which generate a 
homodimer with high affinity for VEGFR-2 and VEGFR-3; it is principally involved in the formation 
of vascular network during embryogenesis and later in linfoangiogenesis.  

VEGF-D binds VEGFR 2 and VEGFR 3; it is express in several adult tissues, included vascular 
endothelium, heart and skeletal muscle; it possesses angiogenic characteristic in vitro and in vivo. 

VEGFR 

The VEGFR are a transmembrane tyrosine kinases receptors (RKT), composed by 750-amino-acid-
residue extracellular domain, which is organized into seven immunoglobulin(Ig)-like folds (important 
for the binding and the specificity, for a review see (Olsson et al., 2006)) , a single transmembrane 
domain and  an intracellular enzymatic (tyrosine kinase) domain activated by the growth-factor 
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binding, resulting in the transfer of phosphate groups onto tyrosine residues, for a review (Ferrara, 
2004). 

VEGFR exist in different isoforms, such as VEGFR-1 (Flt-1), VEGFR-2 (KDR/Flk-1), and VEGFR-3 
(FLT-4); VEGFR-1 and -2 are widely expressed by normal vascular ECs both in vivo and also in vitro, 
implying their preponderant function in the vascular system, but some studies reports their localization 
in other cells types like monocytes, macrophages, hematopoietic stem cells and neurons (Ferrara, 
2009; Mackenzie and Ruhrberg, 2012; Olsson et al., 2006).  

Despite VEGF binds to VEGFR-1 with higher affinity compared to VEGFR-2, it is mainly 
VEGFR2 that mediates VEGF signalling in endothelial cells, which is more expressed compared to 
VEGFR-1. VEGFR-1signaling is still poorly known, and contradictory results have been obtained in 
different systems (Zachary and Gliki, 2001), but it was shown that VEGFR-1 is able to modulate 
positively and negatively VEGFR-2: the negative regulation is partially due to its nature of being the 
alternative splicing variant binding the VEGF and preventing the binding with VEGFR-2 (Olsson et 
al., 2006). VEGFR-3 is implicated in lymphatic and endothelial cell development and function. 

Some studies suggest that VEGFR-2 biological action can depend from its subcellular localization: the 
arterial morphogenesis can be achieved if VEGFR-2 is located into intracellular compartment 
(Lanahan et al., 2010). 

VEGF biological activities 

In the following part we are going to point out our attention on angiogenic functions but of course 
VEGF participate in different pathways, for review (Hoeben et al., 2004; Olsson et al., 2006).  

The activity of VEGFR is determined by the presence of ligand, in particular VEGF-A is upregulated 
in hypoxic condition by Hif-1α. Moreover, both VEGFR-1 and -2 are upregulated during angiogenesis 
through a mechanism Hif-1α induced-VEGF-A expression (Nagy et al., 2007), as well as during 
tumours.  

The binding between VEGF and VEGFR-2 is the major extracellular signal that start angiogenic 
process: through dimerization and autophosphorylation the receptor is activated inducing the 
phosphorylation of different proteins, including PLC which directly activates IP3 with consequent 
increase of Ca2+ (pathway described in the session regarding the vascular reactivity), activating in turn 
PKC. PKC stimulates the activation of extracellular signal-regulated kinases-mitogen activated protein 
kinases (ERK-MAPK) cascade (Munoz-Chapuli et al., 2004). 

Furthermore, the activation of serine/threonine kinase AKT/PKB mediates the  ECs survival and the 
increase of  NO production through eNOS activation. Others studies suggest an implication of Ras/Raf 
mediated pathways, even if all the cascade is not fully understood (Olsson et al., 2006).  

Once activated, ERK-MAP kinases, which translocate to the nucleus, activate the transcription factors 
involved in cell proliferation, such as Elk-1, c-Myc, c-Fos, Ets-1, SRF (For more details (Kanno et al., 
2000; Wu et al., 2000)).  

As previously described VEGF participates to several steps of angiogenesis process, in particular in 
the morphogenesis of the new vessel: VEGF-A is rapidly released to induce destabilization of vessel 
via FAK activation VE-cadherin and β-catenin dissociation inducing ECs junctions breakdown (Chen 
et al., 2012b). Successively, VEGF-A orchestrates tip selection and guidance promoting the migration 
of filopodia-studded endothelial tip cells and the proliferation of lumen-forming stalk cells (Geudens 
and Gerhardt, 2011) during the branching process, regulating the morphology and connectivity of 
capillary networks in the brain (Ruhrberg et al., 2002). Moreover VEGF promotes the expression of 
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several factors as Von Willebrand factor, integrin, interstitial collagenase, plasminogen activator (PA) 
and plasminogen activator receptor (PA-R) and increases the vascular permeability and fenestration, 
preparing a suitable angiogenic environment (Ucuzian et al., 2010). 

The oxygenation of the tissue is an important factor exercising a negative feedback on paracrine 
VEGF production, helping the establishment of a quiescent state for the new vessels. 

What is really interesting is the ability of ECs in inducing a controlled proliferation towards the tip 
cell. 

This is possible through a fine interaction between VEGF and Notch which assures the selection of a 
tip cell that guide the sprouting toward the VEGF gradient and the inhibition of neighbour cells in 
order to become stalk cells, which follow the guiding tip cell and proliferating to support sprout 
elongation.  

Briefly, VEGF pathway promotes filopodia formation, allowing the acquisition of the sprouting 
phenotype to the tip cell. Moreover, VEGF signalling induces expression of Dll4, which activates 
Notch signalling in the neighbour stalk cells, which down-regulates VEGFR expression, giving a non-
sprouting quiescent phenotype to the stalk cell (Sewduth and Santoro, 2016). 

In particular, Gerthardt’s study on mice retinas shown that, in the tip cells, VEGF-A, released by 
astrocytes in response to hypoxia, induces the formation of dynamic long filopodia though interaction 
with VEGFR-2 in tip cell, to sense the environment for directional cues. The stalk cells produce less 
filopodia but start to proliferate when stimulated with VEGF-A. In other words, while VEGF-A 
presence guides the migration the tip cells, it induces a proliferative response in the sprout stalks. 
Moreover, while tip cell migration depends on a gradient of VEGF-A, proliferation is regulated by its 
concentration (Gerhardt et al., 2003). It is noteworthy, moreover, that tip cell can migrate without stalk 
proliferation and vice versa, but just the coordination of these two processes can establish a functional 
shaped sprout (Gerhardt et al., 2003; Geudens and Gerhardt, 2011). 

But how is it possible to select the tip cell?  

 

3.4.2. Notch mediated tip cell selection and guidance 

The tip cells and stalk cells show a different gene expression, leading to think that their specification is 
genetically determined. Some studies suggest that tip cell show higher levels of different genes 
inducing proteins expression, such as VEGFR-2, PDGFB, Dll4 UNC5B and MPP4 (Gerhardt et al., 
2003; Geudens and Gerhardt, 2011), even if there is not a single gene or protein that can be used as an 
identifying marker (Fouillade et al., 2012; Geudens and Gerhardt, 2011).   

The genetic predisposition of differentiation can be important in the first phase of tip selection but it is 
not the only actor playing in the tip cell guidance process; as a matter of facts other studies suggest a 
possible shuffling between stalk and tip cells: in vitro and in vivo studies propose that if the stalk cell 
is “better equipped”, it will take over the guidance process, becoming the new tip cell (Jakobsson et 
al., 2010; Siekmann et al., 2013). 

In any case, the specification of tip and stalk cell and the sprout guidance are strictly dependent by the 
Notch signalling, which is highly conserved at the  evolutionary point of view (Fouillade et al., 2012; 
Phng and Gerhardt, 2009); Notch pathway is involved in several biological functions, such as cell fate 
specification, tissue patterning, and morphogenesis through effects on differentiation, proliferation, 
survival, and apoptosis, for general review see (Cai et al., 2016) and (Phng and Gerhardt, 2009).  
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Different Notch receptors were discovered in mammalians, namely Notch1, Notch2, Notch3 and 
Notch4 and they are differently localized: as a matter of facts, Notch1 and Notch4 are mainly present 
in ECs while Notch3 is principally localized in SMC and brain pericytes (Fouillade et al., 2012; Joutel 
et al., 2000; Villa et al., 2001). 

Notch receptor binds different ligands, among these Delta/Serrate/Lag-2 (DSL) ligands: Delta-like1 
(Dll1), Delta-like3 (Dll3), Delta-like4 (Dll4), Jagged1 (Jag1), and Jagged2 (Jag2) (Fouillade et al., 
2012). The Dll1, Dll4, and Jag2 were detected in ECs whereas Jag1 is expressed by both ECs and 
SMC, principally at arterial level (Fouillade et al., 2012; Villa et al., 2001).  DSL and Notch receptors 
are transmembrane proteins with a large extracellular domain (ECDs) containing epidermal growth 
factor-like repeats (EGFR).  

Notch is synthetized as precursor protein, cleaved in two different regions, a large ectodomain 
(NotchECD) and a membrane-tethered intracellular domain (NotchTMIC), taken together by non-
covalent juxtamembrane heterodimerization. Subsequently to DSL binding, Notch is cleaved by 
ADAM metalloprotease and then by γ-secretase, inducing the release of the Notch intracellular 
domain (NICD) from the membrane. Once cleaved, the NICD translocated to cellular nucleus forming 
an active complex with transcription factor RBP-Jk and co-activators including transcriptional 
activation of Notch targets such as the basic helix–loop–helix (bHLH) proteins Hairy/Enhancer of 
Split (Hes) and Hes-related proteins (Hey/HRT/ HERP) (Fouillade et al., 2012). 

For a clear and exhaustive review describing the Notch pathway in particular in SMC see (Fouillade et 
al., 2012) and for the coordinative role of Notch during angiogenesis in ECs see (Phng and Gerhardt, 
2009). From these review is clear that Notch controls several steps during angiogenic process (not just 
tip cell selection), but despites it was ought to be mentioned, during this thesis we did not have the 
time to explore this molecule. . 

Notch transcriptional activity and Dll4 action can be stimulated by Hif-1α. Moreover, the activation of 
VEGFR2 by VEGF induces the expression of the notch ligand Dll4 in the tip cells. 

The subsequent activation of notch by Dll4 in neighbour stalk cells downregulate their expression of 
VEGFR2 and Dll4 and upregulate VEGFR-1. Soluble VEGFR-1 produced by the cells immediately 
next to the outgrowing vessel branch sequesters VEGF molecules; this create a kind of corridor of 
higher VEGF levels perpendicular to the parent vessel, optimizing both the spreading of the vascular 
network and avoiding the contact with nearby emerging sprouts (Geudens and Gerhardt, 2011). 
Moreover subsequently to the VEGFR-2 downregulation, stalk cells become less sensitive to VEGF-
mediated activation, limiting their ability to activate notch signalling in neighbouring cells, and 
making them more sensitive to other molecules such as PIGF (Carmeliet and Jain, 2011).  

Furthermore, Jag1, selectively expressed in stalk cells, binding Notch, competes with Dll4 preventing 
its binding and promoting the nearby tip cell selection.  

Another level of complexity is given by the fact that Notch is able to upregulate its own inhibitor 
NRARP in stalk cells (Carmeliet and Jain, 2011). NRARP is able to corroborate the Notch and WNT 
signalling. Notch activates WNT pathway in stalk proliferating cell; this binding is responsible to the 
stalk cell proliferation and subsequently vessel stabilization (Phng et al., 2009).  

 

3.4.3. Tie receptors and angiopoietins signalling  

The angiopoietins and their receptors are important actors of the angiogenic process. We decided to 
focus our attention on Angiopoietin 2 signalling since its action is fundamental from the beginning of 
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the angiogenesis process; furthermore its ECs specificity, compared to VEGF, give us the opportunity 
of target the angiogenic process without interfering with neuronal functionality.   

The activity of this pathway is strictly controlled both via ligand availability and via receptor 
phosphorylation activity that we are going to summarized below (Fagiani and Christofori, 2013).  

 

3.4.3.1.  Tie receptors 

In the 1990, during a study on tyrosine kinases involved in cardiogenesis and hematopoiesis (Partanen 
et al., 1992), two new tyrosine kinases receptors were identified on ECs and were called Tie-1 and 
Tie-2, where Tie stands for tyrosine kinase with immunoglobulin and EGF homology domains. Tie-1 
and Tie-2 are considered endothelial cell-specific receptors with similar molecular weight of 
approximately 135 and 150 kDa respectively (Thomas and Augustin, 2009). 

Both Tie-1 and Tie-2 are transmembrane receptors co-expressed in vascular and lymphatic ECs 
(Augustin et al., 2009); they are constituted principally of the N-terminal extracellular domain 
composed by two Ig-like domains (the ligands bind Tie-2 in the Ig2 domain), flanked by three 
Epidermal grow factor (EGF)-like motifs, then another Ig domain before three fibronectin-like repeats; 
this sequence is linked by an intramembrane domain and a smaller C-terminal intracellular part which 
is responsible of the catalytic action of the receptor. This last part is composed by a  tyrosine kinase 
domain triggering intracellular transduction (Fig. 52 A).   

Few years later, the endogenous ligands of Tie-2 were identified: angiopoietin-1 (Ang-1, ANGPT1), 
angiopoietin-2 (Ang-2, ANGPT2), angiopoietin-3 and angiopoietin- 4 (Fagiani and Christofori, 2013). 
In particular Ang-1 and Ang-2 bind Tie-2 with similar affinities and at the same site, becoming the 
central regulation core of the pathway (Fiedler et al., 2003) 

Tie-2 is mainly expressed in vascular and lymphatic ECs (Tammela et al., 2005), but it is also 
expressed in non-ECs, such as the circulating haematopoietic cells (Puri and Bernstein, 2003) 
including a sub-population of monocytes (De Palma et al., 2005) and macrophages (Fantin et al., 
2010), in human neural stem cells (Parati et al., 2002), in non-autonomic peripheral nervous tissue 
(Poncet et al., 2003) and in the nonvascular compartment of several tumour types (Lee et al., 2006). 
See the final part of “Role of Ang-1 and Ang-2 in blood vessels homeostasis and morphogenesis” for 
more detailes. 

Tie-2 is constitutively expressed and phosphorylated in at least several organs such as brain, heart, 
lung, liver, and kidney in rats (Wong et al., 1997). A study showed that its distribution in normal 
microvascular endothelium differs between arteries, veins, and capillaries in mouse mesentery 
(Anghelina et al., 2005), with higher concentration in arteries and arterioles then in veins, even if the 
study of Wong did not detected this difference. Its expression can be increased by hypoxia and pro-
inflammatory molecules (Willam et al., 2000).  

Moreover its activity can be modulated by proteolytic molecules (Kim et al., 2011), such as MMP-14 
and Epithin/PRSS14  either in constitutive manner or induced by VEGF via PI3K/Akt pathway; this 
proteolysis induces the cleavage of the 75 kDa soluble ectodomain (sTie-2) containing the 
extracellular binding site, process known as ectodomain shedding (Findley et al., 2007). In absence of 
angiopoietins, this mechanism may serve as an autoinhibitory pathway preventing Tie-2 
autophosphorylation. Conversely, in presence of angiopoietins, Tie-2 intracellular part can undergo 
ligand-independent dimerization and phosphorylation (Kim et al., 2011) or can binds angiopoietins 
preventing the full Tie-2 activation (Findley et al., 2007). 
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Figure 52: Structures of Tie receptors and Angiopoietins, detailed in the text. From (Fagiani and Christofori, 2013) 

 

After ligand binding, Tie-2 dimerizes or multimerizes, becoming trans-autophosphorylated at certain 
tyrosine residues in its C-terminal kinase domain (Fig. 52 B). 

Tie-2 activation leads to recruitment of different molecules such as growth factor binding partner, the 
p85 subunit of PI3K, and Dok-R activating Akt, extracellular signal regulated kinase (ERK) (Thurston 
and Daly, 2012), and FAK (Kim et al., 2000). Moreover, Tie-2 activity can be counteracted directly 
via dephosphorisation by phosphatase such as vascular endothelial protein tyrosine phosphatase (VE-
PTP), for more details see (Thurston and Daly, 2012). 

Dependently from the context and the ligand, Tie-2 can mediate cell survival, migration and 
maintenance of barrier function leading to vascular quiescence or angiogenic response.  

Mice lacking Tie-2 gene are able to develop the primary vascular plexus but die between E10.5 and 
E12.5 due to an insufficient expansion and maintenance of primary vessels (Sato et al., 1995). 

While Tie-2 is constitutively expressed by ECs, Tie-1 expression is strongly regulated (Augustin et al., 
2009). Tie-1 still remains an orphan receptor since no ligands were detected to activate it. Thus, Tie-1 
was proposed as regulator of Tie-2. As a matter of fact, it has been shown to heterodimerize with Tie-2 
and to regulate its activity, even if the tendency of this regulation is not clear; it may act as negative 
regulator of Ang-1/Tie-2 interaction because Tie-2 phosphorylation increases when the Tie-1 
ectodomain is cleaved (Hansen et al., 2010), but any effect was detected on Ang-2/Tie-2 interaction. 

This receptor, although it is not required for angioblast differentiation in early angiogenic vessel 
growth, supports angiogenesis and EC proliferation at later stages (Partanen et al., 1996). Nevertheless 
Tie-1 deficiency causes embryonic lethality in mice (Sato et al., 1995). Thus, the lacking of Tie-1 or 
especially Tie-2 in mice is incompatible with life due respectively to loss of structural integrity and to 
vessels remodelling deficit (Sato et al., 1995). 

 
3.4.3.2.  Angiopoietins 

Angiopoietins have been identified as a family of secreted  ~70 kDa glycoproteins (at monomeric 
state) primarily implicated in the development, morphogenesis and the stability of blood vessels 
(Thomas and Augustin, 2009). They are mainly formed by N-terminal signalling sequence ensuring 
protein secretion, followed by a small super clustering domain (SCD) that is responsible, together with 
the following central coiled-coil domain (CCD), for homo-oligomerization of the ligands (necessary 
for the activation of the receptor); this sequence is then connected, though a short linker domain, with 
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the C-terminal fibrinogen-related domain (FReD) required for binding to the second Ig-like motif of 
Tie-2 receptor (Davis et al., 2003; Fiedler et al., 2003). Once released they accumulate in the 
surrounding medium (Bogdanovic et al., 2006) (Fig. 52). The roles of these ligands with their 
receptors modify the vascular morphogenesis, including sprouting angiogenesis, vascular remodelling, 
vascular activation and vascular quiescence; others angiopoietins actions, such as the role in 
inflammation, or their involvement in tumour process are not treated in this thesis but for review see 
(Bupathi et al., 2014; Eklund and Saharinen, 2013; Fiedler and Augustin, 2006; Scholz et al., 2015; 
Thomas and Augustin, 2009). 

As mentioned before in humans, three angiopoietins have been identified: angiopoietins 1, 2, and 4 
(angiopoietin-3 is the mouse orthologue of Ang-4), and despites a similar structure, they differ in 
terms of expression pattern, efficiency for Tie-2 activation, and signalling outcome. The most studied 
are Ang-1 and Ang-2. 

Ang-3 is expressed in several tissues in mice while Ang-4 is specifically present at high levels only in 
human lungs. Ang-4 activates Tie-2 receptor but the role of Ang-3 is not fully understood; it seems 
that are both agonists of Tie-2 receptor signalling, being able to induce angiogenesis in vivo (Fagiani 
and Christofori, 2013; Lee et al., 2004a). 

Both Ang-1 and Ang-2 form multidimeric structures (dimers, trimers and tetramers), and Ang-1 can 
create further assembles into higher order multimers. Only the tetrameric or higher multimeric forms 
of Ang-1 activate Tie-2, while oligomeric Ang-2 is a weak context dependent agonist of Tie-2, and 
can antagonize Ang-1-mediated Tie-2 activation.  

Ang-1 is mostly expressed in perivascular cells such as pericytes, vascular smooth muscle cells, 
fibroblasts and tumour cells (Augustin et al., 2009; Wakui et al., 2006). In healthy adults, Ang-1 is 
constitutively produced at considerable levels but its expression can increase after hypoxia or in 
presence of VEGF-A and PDGF-B in pericytes and vascular smooth muscle cells, acting in paracrine 
manner. 

As mentioned before, upon multimers Ang-1 binding, Tie-2 is phosphorylled and activated 
participating to tubule formation, EC migration, survival and most importantly helps the maturing 
endothelium to reach and maintain its barrier functions (Fagiani and Christofori, 2013). It is important 
to notice that Ang-1 is known to mediate both vessel stabilization and EC migration via Tie-2 
activation. Furthermore, since Ang-1 presence after ischemic event, it has been proposed as 
neuroprotective factor; in fact in primary cultured neurons was showed that Ang-1 prevent neuronal 
apoptosis via PI3K activation (Valable et al., 2003); however, concerning in vivo studies, the Tie-2 
expression in mature cortical neurons has nott been detected and Ang-1 function was proposed to be 
mediated by integrin (Ward et al., 2005). This last action is dependent by the Tie-2 mediated decrease 
in adhesion proteins as VE-cadherin and Platelet endothelial cell adhesion molecule-1 (PECAM-1) 
and suppressing the dissociation of VE-cadherin from β-catenin (Gamble et al., 2000). 

Implicated downstream pathways include the activation of PI3K/Akt which mediates antiptotic and 
cell survival effects and induces NO production via eNOS stimulation (pathway implicated in Ang1-
supporting angiogenesis action (Babaei et al., 2003). The Ang-1 mediated activation of Akt pathway 
assists ECs migration inhibiting forkhead transcription factor (FKHR), also known as FOXO1(Daly et 
al., 2004) (Fig. 53).  
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Figure 53: Principal signalling pathways activated by the binding Ang-1/Tie-2. Abbreviations: PAK, p21-activating kinase; 
FAK, focal adhesion kinase; PI3K, phosphatidylinositol 3-kinase; ERK, extracellular ligand-regulated kinase; FKHR, 
forkhead transcription factor; NOS, nitric oxide synthase; ABIN-2, A20 binding inhibitor of NFkB; NFkB, nuclear factor 
kappa B; ICAM, intercellular adhesion molecule; VCAM, vascular cell adhesion molecule; smac, second mitochondrial 
activator of caspases; MMP, matrix metalloproteinase; TIMP, tissue inhibitor of metalloproteinases. (Moss, 2013) 

 

These pathways are more detailed in the following part about the role of Ang-1 and Ang-2 in blood 
vessels homeostasis.  

Differently to Ang-2, the Ang-1 binding with Tie-2 induces a rapid internalization of the receptor, 
which is degraded; this degradation may act as a turn off transduction signal. As a matter of fact in 
unstimulated HUVECs the half-life of Tie-2 was ~9 hours, while in presence of Ang-1 it was closed to 
3 hours; differently, in presence of Ang-2 the half-life was ~7 hours. The difference between Ang-1 
and Ang-2-mediated internalization mechanism seems due to the level of Tie-2 activation induced by 
these ligands (Bogdanovic et al., 2006). 

Ang-1 deficient mice are similar to Tie-2 lacking mice, which a less severe gravity which bring to a 
retard in heart growth and severe vascular deficit leading the 90% of mortality (Suri et al., 1996). 

Ang-2 expression is strictly controlled; in adults physiological condition it is selectively expressed in 
ECs (Augustin et al., 2009; Fiedler and Augustin, 2006; Fiedler et al., 2004) and pericytes (Wakui et 
al., 2006) where active remodelling occurs; it almost absent in quiescent vasculature but it 
dramatically produced by ECs and up regulated in response to tissue hypoxia (Pichiule and LaManna, 
2002), shear stress (biomechanical force acting on the vessels wall as a consequence of the tangential 
force exerted by the flowing blood.  

It can be up regulated at transcriptional level by FOXO1, linking Ang-1 as a negative regulator of 
Ang-2 expression since Ang-1 acts as a FOXO1 inhibitor via Akt, as previously said (Daly et al., 
2004). 

Once produced, Ang-2 is stored in specialized endothelial storage granules, called Weibel-Palade 
bodies, which can release Ang-2 rapidly. In literature this stocking system seems more implicated in 
fast response of ECs to inflammation and coagulation (Saharinen et al., 2011) rather than angiogenic 
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answer that require longer transcriptionally driven programs. In fact, Ang-2 secretion has been shown 
to involve exosomes, small membrane vesicles transporting proteins, mRNAs and microRNAs with 
involvement of PK3I/Akt pathway (Ju et al., 2014). Vice versa, in quiescent endothelium, Ang-2 can 
be down regulated by Kruppel-like factor-2 (KLF2) (Augustin et al., 2009). 

Once released, Ang-2 acts in autocrine manner on Tie-2 (a paracrine action is more linked to 
inflammation (Scholz et al., 2015)) but its agonist activity is much lower compared to Ang-1, thus is 
considered as partial agonist. Interestingly, in non-ECs where Tie-2 is introduced ectopically, Ang-2 
induces similar Tie-2 activation compared to Ang-1, leading to think that there are other factors in EC 
that influence its agonist nature. In vivo Ang-2 affects EC stabilization, leading to weakened EC 
integrity. Thus, in presence of Ang-1 its action is competitive antagonist-like, displacing the more 
active ligand Ang-1.  

It is clear that the angiogenic effect is finely regulated by the balance Ang-1/Ang-2. The effect of Ang-
2 depends also from the presence of VEGF. As a matter of fact, the injection of Ang-2, without the 
presence of VEGF, induces endothelial cell death and vessel regression using the in vivo mice 
pupillary membrane model (Lobov et al., 2002). Thus Ang-2 promotes angiogenesis when VEGF is 
present, producing vessels destabilization, counteracted by Ang-1, while it promotes the vascular 
regression when VEGF is absent. Consequently, it is the ratio Ang-1/Ang-2 that is critical in balancing 
Tie-2 effects. 

Ang-2 overexpressing mice show a severe vascular integrity deficit, closed to Ang-1 or Tie-2 lacking 
mice which support the hypothesis of the agonist Ang-1 and antagonist Ang-2 actions on Tie-2 (Reiss 
et al., 2007). 

Differently, whole mouse Ang-2 deletion showed different results depending from the mouse 
background: mice with a mixed C57BL/6 and 129/J background were shown to die within two weeks 
after birth; while C57BL/6 survives until adulthood. Moreover, Ang-2 null mice showed show defects 
and abnormalities in lymphatic system (Gale et al., 2002b). 

 

3.4.3.3.  Role of Ang-1 and Ang-2 in blood vessels homeostasis and morphogenesis 

The regulation of Ang/Tie homeostasis is complex. Some studies demonstrate that angiopoietins 
determine the subcellular localization of Tie-2 in sparse (angiogenic) vs. confluent (quiescent) ECs, 
affecting the signalling outcome in angiogenic vs. quiescent endothelium (Saharinen et al., 2011). 

The switch between quiescent and activated endothelium and Ang-2 action is a key aspect in 
angiogenesis triggering. 

The angiogenic phase seems to be initiated by an increase in Ang-2 and VEGF, while the vessel 
maturation phase might be initiated by a relative increase in Ang-1 and a decrease in VEGF (Wakui et 
al., 2006). 

In quiescent ECs upon Ang-1 binding, the Tie-2 receptors cluster their kinase domains to inter-
endothelial cell junction, into close proximity, establishing complex with other Tie-2 molecules of 
adjacent cells (homotypic Tie-2-Tie-2 trans associated complex); in this complex, the multimeric 
Ang-1 ligand can bridge Tie-2 receptors from neighbouring cells, in order to allow their 
phosphorylation and the activation of downstream mechanisms, preferentially activating Akt (also 
known like Protein kinase B) (Fig.54A, Fig. 56A).  
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Figure 54: Schematic representation of a proposed model for how Ang1–Tie-2 signalling is involved in both vascular 
quiescence and angiogenesis depending from the confluent conditions (A), resulting in formation of trans-association of Tie-
2, or in the absence of cell–cell contacts, where Tie-2 forms a complex with ECM-bound Ang1 at cell–substratum contacts. 
From (Fukuhara et al., 2008) 

 

In particular, Tie-2 stimulation activate the subunit p85 PI3K which activate Akt, in turn activating 
survival promoting pathways, such as eNOS, and suppressing apoptotic pathways like caspase9 and 
BAD (Bcl-2-associated death promoter). In addiction Akt inactivates FOXO-1 which targets Ang-2 
(negative feed-back loop of ECs on Ang-2 production) (Augustin et al., 2009).  

All these actions are aimed to promote cell-cell adhesion, to increase ECs survival and to maintain a 
quiescent vessel situation.  
 

 

During angiogenic process, VEGF-A and the hypoxia induce the expression of Ang-2 (Oh et al., 
1999), that in presence of VEGF-A, is released making decrease the ratio Ang-1/Ang-2 at the level of 
tip cell (Fig. 55). Its competitive antagonist action in this condition leads the suppression of Ang-1 
action, decreasing Ang-1-induced Tie-2 phosphorylation and disrupting PI3K/Akt survival signalling, 
allowing the endothelial response to destabilization and regression (Gale et al., 2002a) under the 
guidance of other angiogenic stimuli. Ang-2 has a fundamental role since it is able to binds Tie-2 
without inducing signal transduction, acting as a destabilizing factor specifically restricted to ECs in 
areas of vascular remodelling (Maisonpierre et al., 1997). 
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Exerting its antagonist role, Ang-2 leads to vessels destabilization and pericytes dropout. As a matter 
of fact, together with VEGF synergic action increasing its production, Ang-2 is able to bind Tie-2 
resulting in a dissociation of pericytes from vessels (Zhang et al., 2003a), a reduction of pericyte 
coverage and vessels destabilization (Ribatti et al., 2011), increasing permeability and vascular 
leakage. Consequently the unstable ECs lacking of pericytes can die (if VEGF is absent) or proliferate 
and migrate (in presence of VEGF as previously described).  

Moreover, in vitro studies recently described that Ang-2 induces Tie-2 translocation to the specific 
cell–matrix contact sites localized at the distal end of focal adhesions, leading to impaired cell motility 
and weak cell–matrix adhesion, suggesting that the different in subcellular Tie-2 localization induced 
by Ang-1 or Ang-2 generates ligand-specific responses in the angiopoietin–Tie signalling pathway 
(Pietila et al., 2012; Saharinen et al., 2011). It seems that this Tie-2 distribution is also dependent by a 
lower oligomerization of Ang-2 (Pietila et al., 2012) 

It is important to remember that Ang-1 is expressed in perivascular cells, such as pericytes, while Ang-
2 is expressed in endothelial tip cells. Thus, the Ang-1 binds Tie-2 in stalk cells, associated with few 
pericytes, limiting the angiogenesis by inducing homomeric Tie-2 complexes across the cell-cell 
junctions, and thus mediating cell-cell adhesion, antipermeability, and cell survival (see paragraphs 
above). 

Vice versa, Ang-2 regulates cell-matrix interactions in the growing vessels to facilitate sprouting. 

  

 

Figure 55: Angiopoietin (here indicated as Angpt) and Tie-2 coordination:  The Angpt-Tie system in stable vessels and 
sprouting angiogenesis. In angiogenic blood vessel, in response to VEGF secreted by nearby hypoxic cells, Ang-2 is 
expressed predominantly in the tip cells of angiogenic sprouts, where it may regulate cell-matrix interactions by binding to 
integrins and connective tissue matrix. The Tie-2 receptor is expressed in the stalk cells, which become coated with pericytes 
and the basement membrane matrix that accumulates in between the cells in the stabilization phase of angiogenesis. Angpt1, 
from the perivascular cells, interacts with the Tie-2 receptor. In this context, Ang-1 is necessary for the stabilization of the 
newly formed vessels, for attenuation of angiogenesis, and for limiting the production of excess of connective tissue. From 
(Saharinen and Alitalo, 2011). 

 

In activated non-contacting ECs, Ang-1 binds Tie-2 triggering ECs migration (Fig.54 B).  The 
different signalling pathways of Ang-1/Tie-2 in quiescent and angiogenic process are due, as 
mentioned before, to the subcellular localization of the receptor, which is different in confluent versus 
sparse ECs. In the absence of cell–cell contacts, Tie-2 forms a complex with ECM, the ECM-bound 
Ang-1 (Saharinen et al., 2008), at cell–substratum contacts, and the formation of this complex with 
this localization preferentially activates the Erk pathway by inducing FAK-positive focal complex 
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assembly contributing to ECs migration and proliferation, thereby promoting angiogenesis (Fukuhara 
et al., 2008; Fukuhara et al., 2010). Thus, in other words, the different role of Ang-1 in the regulation 
of the balance between vascular quiescence and angiogenesis is correlated to the contacts of the ECs: 
in the presence of cell–cell contacts Ang-1 bridges Tie-2 at cell–cell contacts, resulting in trans-
association of Tie-2. In contrast, in isolated cells, ECM-bound Ang-1 shifts Tie-2 localization at cell–
substratum contacts. Furthermore, Tie-2, activated at cell–cell or cell–substratum contacts, leads to 
preferential activation of Akt and Erk, respectively. 

Moreover, Tie-2 clustering at the cell rear was accompanied by polarized caveolin-1 location and 
microtubule organizing centre distribution in a manner typical of migratory cells, together with Dok-R 
activation (Beardsley et al., 2005). 

 

 

Figure 56: Angiopotein–Tie signalling during endothelial cell activation, detailed in the text (Augustin et al., 2009) 

 

Furthermore, in activated ECs, Ang-1/Tie-2 complex can also limit the vascular permeability 
sequestering the non-receptor tyrosine kinase Src, which mediate the VEGF-induced ECs 
permeability. VEGF in fact activates Src which is responsible of the internalization of VE-cadherin. 
Ang-2, acting as antagonist, is able to counteract this mechanism (Fig. 56B).  

The stabilizing role of the pathway during vascular maturation is not well characterized but it seems 
to involve Tie-2 signalling in peri-endothelial cells. In particular, possible modulatory molecules are 
endothelial heparin-binding epidermal-like growth factor (hB-EGF), that is implicated in SMC 
migration in a paracrine manner, hepatocyte growth factor (hGF), which induces SMC recruitment to 
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ECs, and serotonin has been recognized as Ang-1 downstream mediator of SMC recruitment to ECs 
(Fig. 56C). 

Ang-2/Tie-2 is also implicated in vascular pruning in VEGF-deprived condition (Gale et al., 2002b; 
Korn and Augustin, 2015). As a matter of fact, in ovary model, Ang-2 showed a cyclic expression 
pattern correlated with waves of vessel regression (Goede et al., 1998). Moreover, Ang-2 and 
phosphorylated Tie-2 mRNA were overexpressed in tracheal regression during chronic airway 
inflammation (Tabruyn et al., 2010). Furthermore during pruning process, Tie-2 overexpression is 
induced by non-canonical WNT activation (Cornett et al., 2013; Korn et al., 2014).  

In reality, this pathway is even more complex as described above and this complexity is well 
summarized in (Thomas and Augustin, 2009). 

During this thesis we modulate Ang-2/Tie-2 pathway since is one of the step triggering angiogenesis 
sprouting. Moreover, we considered this molecule an interesting target since the specific localization 
of Tie-2 and Ang-2, compared to VEGF which action can affect neuronal activity (it is implicated in 
neuroprotection, neurogenesis and neuronal plasticity (Cao et al., 2004; Licht et al., 2011; Sun et al., 
2003). 

As a matter of fact Tie-2 is considered an ECs specific receptor; recent publications showed 
effectively that Tie-2 has been identified in non-ECs such as in human neural stem cells (Parati et al., 
2002), in neurons during the embryogenesis (Valable et al., 2003), in neuronal precursor in GD and 
subventricular zone (Androutsellis-Theotokis et al., 2010; Androutsellis-Theotokis et al., 2009) but not 
in mature neurons (Ward et al., 2005), or in non-autonomic peripheral nervous tissue (Poncet et al., 
2003). Moreover, Tie-2 expression has also been reported in the nonvascular compartment of several 
tumour types, including leukaemia as well as breast, gastric, and thyroid cancers (Lee et al., 2006), in 
circulating haematopoietic cells including a sub-population of monocytes (De Palma et al. 2005) and 
macrophages (Fantin et al., 2010), and finally in cultured retinal pericytes isolated from bovine eyes 
(Cai et al., 2008) despite of the large majority of in vivo and in vitro publications did not find Tie-2 in 
pericytes. 

 

3.4.3.4.  Hypoxia and angiopoietins: COX-2/Ang-2 

Moderate and prolonged hypoxia is able to induce an increase of capillary density at cortical levels 
both in mice and in rats (Benderro and Lamanna, 2011; Boero et al., 1999; Ndubuizu et al., 2010; 
Pichiule and LaManna, 2003). This increase is accompanied by an increase of angiogenic molecules, 
such as Hif-1α, VEGF and Ang-2, EPO, suggesting the triggering of angiogenesis process. Moreover, 
synergistic expression of VEGF and Ang-2 during hypoxia is known to enhance the hypoxia induced 
angiogenic process (Dore-Duffy and LaManna, 2007; Pichiule and LaManna, 2002). 

 Different studies show that hypoxia and Hif-1α are able to increase the levels of Ang-2 in ECs (Kelly 
et al., 2003; Nilsson et al., 2004; Yamakawa et al., 2003b). In particular, Kelly and collaborators 
demonstrated that angiopoietins expression, together with PLGF and PDGFB expression, is induced 
by either exposure of primary cultures of cardiac and vascular cells to hypoxia or an adenovirus 
injection, which is able to constitutively encode an active form of Hif-1α (AdCA5). Depending on the 
cell type, expression of angiopoietins was either activated or repressed in response to hypoxia or 
AdCA5. In particular, the expression of Ang-2 mRNA was increased in hypoxic ECs while decreased 
in hypoxic SMCs of pulmonary arteries. In all cases, there was complete concordance between the 
effects of hypoxia and AdCA5 indicating that Hif-1α plays a major role in angiogenesis regulating the 
expression of genes encoding multiple critical angiogenic growth factors such as VEGF, PLGF, Ang-
1, Ang-2, and PDGFB, but this expression depends on the cell-type considered (Kelly et al., 2003). 
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Moreover, a study performed to characterise the effects of in vivo hypoxia on Tie-2/Ang expression 
showed a clear correlation with the expression of Hif-1α in different rats’ organs, after 24 or 48 h of 
hypoxia (9-10% oxygen level). Hypoxia induces a rapid decline of Ang-1 and Tie-2 mRNA and 
proteins and an increase of Ang-2 mRNA (Abdulmalek et al., 2001). 

Moreover as previously described, LaManna group showed an increase of CBF together with an 
increase of expression of  Hif-1α, Ang-2, Tie-2 and capillary density increased after hypoxia (Pichiule 
and LaManna, 2002; Willam et al., 2000; Xu and Lamanna, 2006; Xu et al., 2004). Moreover, several 
studies suggest a direct relation between COX-2 and Ang-2 since their induction and turnover profile 
is similar (Benderro and LaManna, 2014; LaManna et al., 2006; Pichiule et al., 2004). As a matter of 
fact a simultaneous increase of COX-2 is induced in the same hypoxic conditions following Ang-2 
profile (Benderro and LaManna, 2014). Moreover, the increase of Hif and COX-2 suggests a synergic 
function of these proteins during the hypoxic-induced cerebral physiological responses, such as 
angiogenesis. Conversely, during the re-oxygenation period, while Hif-1α VEGF and EPO come back 
to the basal levels, COX-2 and Ang-2 expressions are both maintained during hypoxic conditions. This 
suggests firstly that COX-2 and Ang-2 can have dual functions both in angiogenesis and in regression 
process of vascular plasticity. This profile is due to the fact that COX-2 is the molecule implicated in 
the direct regulation of Ang-2 (LaManna et al., 2006; Pichiule et al., 2004).  

Cyclooxygenase is an enzyme converting the arachidonic acid in prostanoids molecules, including 
PGs, prostacyclin, and thromboxane. The latter are involved in different functions in the 
cardiovascular, gastrointestinal, urogenital, and nervous systems, in particular playing an important 
role in immunity, inflammation and resolution of inflammation responses. There are two more studied 
isoforms: COX-1 and COX-2, together a less studied third isoform, COX-3 (Gasparini et al., 2003). 
While COX-1 is a constitutive housekeeping enzyme that is ubiquitously expressed, COX-2 is an 
inducible enzyme, expressed following inflammation, infection and cancer. Moreover, COX-2 was 
also found to be expressed constitutively in areas not associated with inflammation, including the 
brain, thymus, gut, and kidney (Sasaki et al., 2004; Yamagata et al., 1993).  

But how Ang-2 is upregulated?  

For a long time this question was unsolved: it was clear that adaptive response to hypoxia was 
mediated by VEGF and Ang-2 but while Hif-1α was well known to upregulate VEGF inducing the 
activation of HREs of different genes, the upregulation of Ang-2 was not well understood since it was 
discovered that it was mediated by prostaglandin E2 which comes from increased endothelial 
cyclooxygenase-2 (COX-2) activity (Pichiule et al., 2004). 

In particular it has been shown that the Hif-1α inducers (such as CoCl2) did not affect Ang-2 levels 
indicating the possibility of existence of another hypoxia-driven mechanism in Ang-2 activation 
pathway. Furthermore blocking VEGFR, it has been shown that hypoxia-induced VEGF can help the 
Ang-2 action but it cannot account completely for Ang-2 expression. Finally, COX-2 inhibition 
decreases the levels of Ang-2 PGE2 and PGI2 and vice versa the administration of PGE2 and PGI2 
were able to stimulate Ang-2. Moreover, in addition to this direct mechanism, as mentioned before, 
the Ang-2 expression can be indirectly modified by VEGF, FGF, TNF, Angiotensin II, and thrombin 
induce in cultured endothelial cells (Pichiule et al., 2004). Vice versa, Ang-2 can increase Hif-1α 
activity via ROS sequestration of Fe2+ availability limiting PHD and FIH functionality (Cash et al., 
2007).  
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3.4.4. Pericytes role in angiogenesis 

A little parenthesis on pericytes’ role in angiogenesis is necessary since the angiopoietins are 
expressed also in these cells (Ucuzian et al., 2010; Wakui et al., 2006). 

The pericytes functions in vascular plasticity are related both to their incorporation in basal membrane, 
thus helping the stabilization of the neovessel, and to their role in regulating uncontrolled 
angiogenesis. 

Pericytes are mainly recruited by ECs-produced PDGF during angiogenesis (even if Ang-1 can also 
participate to pericytes recruitment (Bergers and Song, 2005)), in particular via interaction of the 
isoform PDFG-B with PDGRβ receptor, while their differentiation seems manly mediated by TGF-β.  

The pericytes participate to vascular stabilization; in fact, the ECs mitosis is decreased when they are 
associated with pericytes (Kutcher et al., 2007), via Rho GTPase activity. Moreover, it has been shown 
both in vitro and in vivo that pericytes express some survival factors, such as Ang-1 being associated 
with basement membrane formation, EC quiescence and endothelial leak resistance (Kutcher et al., 
2007). 

Moreover, pericytes participate to vessel stabilization limiting the branching and the migration of ECs, 
as showed in vitro via upregulation of PAI-1 in ECs (McIlroy et al., 2006). Furthermore, they produce 
TIMP-3 and induce the production of TIMP-2 in ECs, targeting MPP and ADAM proteinases 
decreasing the angiogenic potential in the surrounding environment. Finally, they participate to ECM 
deposition (Ucuzian et al., 2010). 

The potential link between angiopoietins/Tie-2 and pericytes is underlined also by the fact that local 
overexpression of Ang-2 leads to pericyte loss as mentioned before, but some studies on Tie-2 null 
mice showed that pericytes were in any case recruited leading to think that Ang-1 and Tie-2 do not 
seem to be directly involved in pericyte recruitment, even if  pericyte-derived Ang-1 has important 
roles in blood vessel formation and/or stability (Armulik et al., 2011). Moreover, Ang-2 has been 
found in pericytes surrounding angiogenic sprouting induced after subcutaneous implantation of a 
polymer disc in rats (Wakui et al., 2006). 

Even if the pericytes role in angiogenesis process is not fully understood, a window of pericytes’ 
absence marks the period vascular plasticity. 

Some studies on corpus luteum suggest that pericytes participate to sprouting guidance by migrating 
ahead of ECs and expressing VEGF (Ozerdem and Stallcup, 2003). Moreover, since their vessel-
embracing position, pericytes have been proposed in having a role in transferring angiogenic signals 
along the vessel length (Bergers and Song, 2005; Ribatti et al., 2011). 

 

3.4.5. Angiotensin 
 

The angiogenic process can be also regulated by hormonal peptides that can be cleaved and thus 
converted in proangiogenic or antiangiogenic molecules (Clapp et al., 2009); among these the Renin-
Angiotensin-Aldosterone system (RAAS) plays an interesting role in the angiogenic function, and 
since we used an antagonist of angiotensin receptor, namely losartan, to treat the SHRs, a little 
paragraph explaining its role is necessary. 

The RAAS is mainly known in relation to its role in maintaining systemically and locally the control 
of the blood pressure and the homeostasis of body fluids. It has been a target for several drugs 
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developed in order to treat cardiovascular diseases, such as hypertension, renal diseases, cardiac 
hypertrophy and heart failure. 

The proteins belonging to RAAS are the result of following enzymatic cleavage starting from the 
cleavage of angiotensinogen (AGT), produced by the liver, in an inactive decapeptide Angiotensin I 
(ANG I, different from Ang-1 which refers to Angipoietin-1, unfortunately the abbreviations 
sometimes are not that clear) by the Renin (aspartyl protease) which is released by the juxtaglomerular 
cells of the kidney. 

The circulating Angiotensin I is successively cleaved by angiotensin-converting enzyme (ACE) in the 
octapeptide Angiotensin II (ANG II, once again different from Angiopoietin-2, Ang-2), produced 
primarily in the pulmonary circulation. 

ANG I and ANG II can be cleaved by other endopeptidase, such as neprilysin, prolylcarboxypeptidase 
(PrCP), and angiotensin converting enzyme-related carboxypeptidase (ACE2), producing the 
heptapeptide ANG-(1–7) or the nonapeptide ANG-(1–9).  

ANG II binds two G protein-coupled receptor subtypes, namely AT1 and AT2, that both are 
abundantly expressed in the vasculature (Ribatti et al., 2007). 

AT1 receptors are ubiquitously expressed and they are responsible for most known actions of ANG II, 
including vasoconstriction, aldosterone and vasopressin release, renal sodium and water reabsorption, 
sympathetic activation, augmented cardiac contractility, smooth muscle cell proliferation, vascular and 
cardiac hypertrophy, inflammation, and oxidative stress(Clapp et al., 2009).  

In contrast, AT2 receptors are limited to brain, kidney, adrenals, uterus, ovary, and the cardiovascular 
system, and their activation leads to vasodilation, lower blood pressure, reduced cardiac and vascular 
hypertrophy, anti-inflammation, and suppressed growth, tissue repair, and apoptosis. 

 

 

Figure 57: RAAS pathway and their implication in angiogenic pathway. From (Sane et al., 2004). 

 

The RAAS opposite actions in blood flow homeostasis is reflected also in their angiogenic actions. 

Concerning the role of ANG II in angiogenic response, there is a large debate since several 
publications showed opposite results.  
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As a matter of fact, the proangiogenic or antiangiogenic action of ANG II depends on the activation of 
different receptor subtypes and their opposite outcomes, the specific tissue, the animal model obtained, 
the physiological or pathological conditions, the kind of diseases studied and the proteolytic 
conversion of RAAS components (also ANG-(1–7) and des[ANG I]AGT influence angiogenic 
process) and reviews summarizing these results are (Clapp et al., 2009; Ribatti et al., 2007). 

ANG II seems to have proangiogenic actions inducing vascular proliferation in several models used 
(chick embryo chorioallantoic membrane, the rabbit cornea, and the Matrigel model in mice) mainly 
via interaction with AT1, reviewed in (Clapp et al., 2009). 

In fact, the block of AT1 reduces ANG II angiogenic effects (mouse Matrigel model, the rat ischemic 
hindlimb, and the electrically stimulated rat skeletal muscle); this can be due to the inhibition of ANG 
II-induced upregulation of  VEGF, VEGFR2, Ang-2, and Tie-2 in endothelial cells and others 
angiogenic molecules (NO, bFGF, PDGF, IGF-I, EGF, HGF and TGF), reviewed in (Clapp et al., 
2009) and (Ribatti et al., 2007). Vice versa, ANG II seems to have antiangiogenic action via AT2 
receptor. In cultured ECs this action seems to be due to the inhibition of VEGF-induced endothelial 
cell migration and tube formation (Benndorf et al., 2003). 

Interestingly for our work, it was shown that the inhibition of endogenous ANG II production or 
action, obtained via both ACE inhibitors and AT1 and AT2 blockers, including Losartan, stimulates 
angiogenesis in vivo (Walther et al., 2003). In fact, in this study, it was shown that, beside the 
inhibitory AT1 receptor function, these molecules promote an additional stimulatory AT2 receptor 
function, leading to angiogenic stimulation. 

However, the contribution of each receptor subtype to the antiangiogenic effect of ANG II appears to 
depend on the chosen angiogenesis model. 

 

3.4.6.  Conclusion 

In conclusion, this chapter describes just a little part of the plethora of mechanism involved in 
angiogenesis process. In fact, the structural response of vascular network is determined not only by all 
the molecules involved and their combinations in angiogenic modulation, but also by changes in PO2 
and wall shear stress.  

Anyway the most accepted version is that the angiogenic process is mainly influenced by the 
combined effect of VEGF and Ang-2/Tie-2 systems, which presence or absence drives different 
reaction patterns including stabilization, angiogenesis and regression, in combination of oxygen level 
and flow stress (Hanahan, 1997). 

In a model proposed by (Hanahan, 1997) and reconsidered by (Zakrzewicz et al., 2002) it has been 
proposed that during normal conditions the VEGF and Ang-2 expressions are suppressed by 
respectively normoxia and CBF; the resultant action of Ang-1 on Tie-2 induces stabilization of the 
vascular network ruling the normal quiescence period in ECs (Fig. 58A). 

When hypoxia and decrease of blood flow are detected, a huge signalling is triggered in order to re-
establish the neuronal functional condition, leading to a modification of vascular reactivity together 
with the stimulation of angiogenic machinery; the result is the induction of VEGF and Ang-2 
expressions and thus the promoting effect on angiogenesis: Ang-2 blocks the stabilizing effect of Ang-
1 leading to pericytes dissociation and allowing the VEGF driving action in cellular proliferation and 
differentiation (Fig. 58B).  When the normoxic condition is re-established, thanks to vascular 
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reactivity modifications and the newly formed vascular network, VEGF is suppressed. In the non-
perfused vessels, Ang-2 can exercise its role in vascular regression (Fig. 58C).  

 

Figure 58: Schematic representation of the key actors of angiogenesis to wall shear stress and partial pressure of oxygen. 
From (Zakrzewicz et al., 2002).  

 

This schema underlines the fundamental role of Ang-2 in driving the angiogenic process: Ang-2 is 
converging point of angiogenesis pathway and its presence allows us to identify the angiogenic 
process since the initial phase. 

These characteristics prompted us to choose it as preferential marker of angiogenic process and as 
target to modulate specifically the angiogenic pathway, also thanks to its specific role in ECs, 
compared to VEGF which action was shown to influence neuronal activity.  

 

3.5. Vascular network and memory 

To complete our excursus on the physiological angiogenic pathway we would like to mention some 
bibliographical notions underling the role of vascular network in memory process. 

Several studies have been published concerning neurovascular impairment and cognitive dysfunctions 
both in case of neuronal damage, such as cerebral lesions (Armstead and Raghupathi, 2011), dementia 
and Alzheimer disease (Sagare et al., 2012), and in case of vascular dysfunction, like cerebrovascular 
injuries (Bastide et al., 2007), and vascular dementia (Carmeliet, 2003). Thus, even if the mechanisms 
are not always completely clear, it is an accepted opinion that the vascular damage impairs cognitive 
functions.  

For example, memory deficit after stroke is a common phenomenon: close to 30% of stroke patients 
develop dementia within 1 year from stroke onset and this affects cognitive functions like attention, 
memory, language, and orientation. The most important post-stroke dementia is the vascular dementia, 
reflecting the link with cardiovascular disease (Al-Qazzaz et al., 2014). Another interesting review 
exploring the link between dementia and vascular dysfunction is (Iadecola, 2013)). 

Moreover, concerning the blood pressure dysfunctions, it has been shown in human patients that age-
related high BP reduces executive function and the processing of information (Bucur and Madden, 
2010). Moreover long-lasting hypertension can induce Alzheimer’s disease symptoms (Carnevale et 
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al., 2012; Carnevale et al., 2016; Glodzik et al., 2014; Kilander et al., 2000). This subject will be 
successively treated in the part concerning hypertension in the next chapter. 

Also the age can impact memory functions via decrease of vascular density and plasticity as showed in 
the rat hippocampus (Ingraham et al., 2008). This study showed that, compared to young rats 4-month-
old, 30-month-old rats had no difference in term of hippocampal vascular density at basal level, but 
they showed a significant impairment in hypoxia-induced capillary angiogenesis, lacking in vascular 
remodelling that can functionally sustain neuronal processing. 

Others publications showed that Alzheimer's disease (AD), the most common type of dementia 
(nowadays AD is increasingly grouped together with vascular dementia (Iadecola, 2013)), is 
characterized by a decrease of CBF and vascular density  in AD patients, often anticipating cognitive 
dysfunctions (Farid et al., 2011).  

Moreover, a mice model of chronic cerebral hypoperfusion, induced by narrowing bilateral common 
carotid arteries, showed spatial memory deficit 1 month after surgery, accompanied by morphological 
changes at the neuronal, vascular and synaptic levels. In particular, this model reproduces a BBB 
disruption, neuronal apoptosis, axonal abnormalities, glial activation, BBB damage, amyloid 
deposition, and cognitive dysfunction, as in human AD (Wang et al., 2016b).  

Furthermore, it has been shown that, together with the cerebral hypoperfusion, a deposition of amyloid 
β-peptide in cerebral vessel walls enhances the cognitive deficits associated with AD, probably via 
hypoxic dysfunctions (Dotti and De Strooper, 2009). Finally, statins administration restores memory 
deficit in mice model od Alzheimer tested in Morris Water Maze, via restauration of vascular 
reactivity (Tong et al., 2012). 

More correlated to the purpose of this thesis, some studies interestingly showed that the restoration of 
vascular functions via angiogenesis-promoting treatments can re-establish, at least partially, the 
memory deficit: in particular Wang and collaborators showed that the intraperitoneal injection of 
VEGF for three consecutive days was able to ameliorate memory performance, tested in the Morris 
Water Maze paradigm, in a genetic model of Alzheimer disease mice. According to this study, the 
restoration of memory performance was due to the increase vascular network via angiogenesis since 
vascular proliferation and increase of vascular density was detected, counterbalancing the deficit of 
CBF detected in Alzheimer’s patients (Wang et al., 2011). In any case, the neuronal effect of VEGF 
can bias memory results, since Zheng et al. also showed a neuroprotective VEGF effect after 
intraperitoneal injection in a mice model of amyotrophic lateral sclerosis (Zheng et al., 2007). VEGF 
is considered a neuroprotective factor and its action at neuronal level cannot be excluded in this study 
and in the other works described below (Mackenzie and Ruhrberg, 2012; Pati et al., 2009; Shen et al., 
2016). 

Another study demonstrated that the genetic upregulation of neuronal VEGF in a mice model of 
Alzheimer’s disease was able to re-establish the memory decrease detected in T-maze task, possibly 
promoting the survival of cerebral ECs from the apoptosis often occurred in this pathology (Religa et 
al., 2013).  

In the same way, the stimulated expression of VEGF and VEGFR induced by systemic 
pharmacological treatment with DL-3-n-Butylphthalide (Zhang et al., 2012) or EPO (Xiong et al., 
2011) increases memory performance in ischemic spontaneously hypertensive rats tested in Morris 
Water Maze  (Zhang et al., 2012) or rats underwent to traumatic cerebral lesion performing (Xiong et 
al., 2011). Once again, in Xiong study it has benn proved that EPO treatment promoted memory 
recovery together with increased cell proliferation, angiogenesis and neurogenesis, thus it is difficult 
to understand whether the EPO/VEGF effect on memory was induced by neurogenesis, angiogenesis 
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or both. The same can be said for Zhang: the stimulation of VEGF together with the DL-3-n-
Butylphthalide, which moreover protects cells from apoptosis, can represent a bias in the interpretation 
of memory rescue induced by angiogenesis. 

If the literature about pathological conditions is abundant, the physiological and functional role of 
cerebrovascular network during cognitive and memory functions are less explored, in particular if 
related to angiogenesis. 

In total, if you look for “angiogenesis and memory”, at least in the moment of the thesis writing, 271 
results has been found and the almost the totality of them are related to pathologies, while just 2 
results has been identified about “angiopoietins and memory” and both of them regard pathological 
situations. 

The first study is about an alteration of angiogenic markers, in particular a decrease of Ang2, in 
Parkinson Disease patient with or without dementia, associated with BBB dysfunction, white matter 
lesions, and cerebral microbleeds (Janelidze et al., 2015).  

The second study demonstrated that mice receiving an intracerebroventricular infusion of cord blood-
derived endothelial colony-forming cells (Endothelial progenitor cells) after traumatic brain injury 
could repair the blood-brain barrier (BBB) and promote angiogenesis together with improvements in 
motor ability, spatial acquisition and reference memory tested by Morris Water Maze (Huang et al., 
2013).  

The literature exploring the physiological angiogenesis and vascular functionality in memory is 
limited. Anyway there are some studies demonstrated that rats exposed to enriched environments show 
an increase in cortical vascular  network, via angiogenic mechanism, in order to compensate the 
increase of metabolic demand of neurons (Black et al., 1987; Black et al., 1991; Isaacs et al., 1992; 
Palmer et al., 2000; Wallace et al., 2011). 

Greenough’s group underlined that rats exposed to enrich environment, where the conspecifics and the 
toys were regularly changed, presented a higher vascular density in occipital visual cortex compared to 
the littermates living in classic home cage (Black et al., 1987).  

According to this paper, the expanding cortical neuropil volume (not detectable after 10 days but 
clearly increase after 30 days) and the consequent increase of distance between the vessels and 
mitochondria can dilute the metabolic support for neurons. This situation triggers an increase of 
vascular network via angiogenic process (indirect evidence considering the CBF, the vessels diameter 
and the distance between capillaries) in order to decrease the vascular distance. This angiogenesis is 
accompanied by an increase of neuronal activity (increase of new synaptic connections and dendritic 
spines are induced by enrich environment) and metabolic needs (increase of mitochondria volume) 
(Black et al., 1991).  The neuropil network increases after enrich environment, complex experiences or 
memory process is demonstrated in other paper such as (Beaulieu and Colonnier, 1989; Jones et al., 
1997; Lesburgueres et al., 2011)). 

Even if in the first 10 days of enrich environment the diameter of vessels were decreased, reflecting 
the formation of smaller new vascular network, after 30 days the vascular diameter was higher 
compared to home cage (Black et al., 1991). 

Another group of rats which lived in enrich environment for 30 days and successively placed in home 
cages for other 30 days showed a decreased in cortical thickness indicating that not all the neuropil 
expansion is maintained; in this case the vascular distance decrease, but we cannot know if the vessels 
produced were preserved because the vascular density was not recorded, as we said before was an 
indirect measure of distance between capillaries and vascular diameter (Black et al., 1991). 
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In any case Greenough’s group demonstrated that, while the angiogenic process in vigorous in 1/3-
month old rats, the angiogenic response markedly decreased in 10 month old rats, even if an increase 
of cortical thickness was detected. In these rats no changes in vascular density was detected, but they 
showed a decrease of vessel diameter. This has been proposed to be due to the fact that the middle-
aged animals were still installing immature vessels after 50 days, while the young adult (60 days old) 
animals finished the task in just 30 days. In contrast, 2 years old rats did not show either neuronal or 
vascular changes after enrich environment, suggesting an age related effect on cortical plasticity 
(Black et al., 1991). 

Furthermore, in another study performed by the same group few years later, the neurovascular status 
was compared in female rats after 1 month of either physical repetitive exercise or complex motor 
learning, compared to rats maintained in inactive condition (Isaacs et al., 1992). 

This study showed that in both cases the vascular network was increased. While the physical exercise 
group did not show a change in neuropil size, the motor learning group showed an increase of the 
volume of the molecular layer of the paramedian lobule. 

The angiogenic creation of new vessels in these group was indirectly measured: in exercise rats the 
angiogenic answer was measured as decrease of vascular diffusion distance compared to both inactive 
and motor learning groups; since in learning rats there was expansion of molecular layer but an 
equivalent diffusion distance compared to inactive rats, the authors considered that these rats “must 
have added new blood vessels”.  

Thus, the angiogenic answer in physical training rats was associated with the increased metabolic 
demands, while the angiogenesis during complex learning was also induced by an increase of neuronal 
neuropil, showing that angiogenesis can occur in response to activation in the absence of changes in 
synapses in adult rat cerebellar cortex. 

More than 20 years later, with more developed techniques, Wallace showed that the increase of 
vascular network, induced by enrich environment via angiogenic process, was preceded by an increase 
in neuronal and astrocytes growth (Wallace et al., 2011). 

In particular, the density of astrocytic process and the thickness of visual cortex were increased after 4 
days of enrich environment, while angiogenic process seemed to be detectable only successively, after 
10 days. Thus, even the angiogenic process was not detectable as fast as the neuronal/astrocytes 
increase, it was not possible to exclude that a potential slight and localized angiogenesis could 
previously occur. Anyway, thanks to neurovascular coupling and the tripartite synapsis, it is possible 
that astrocytes can mediate the onset of angiogenesis in response to neural demand. Anyway, 
interestingly for us, this paper suggests that vascular functions can even limit the neuronal plasticity 
phenomena. 

Another similar study showed an overlap of time course between neuronal and vascular plasticity 
localized in angiogenic niches at hippocampal level (Palmer et al., 2000). Female rats were injected 
with BrdU and allowed to survive up to 1 month before sacrifice. The examination of hippocampal 
structure, area of active proliferation known to generate new neurons throughout adult life, showed 
neuronal dividing cells associated with ECs, creating a cluster. In other words the neurogenesis was 
physically and temporally associated to angiogenesis in these zones. 

Thus, these publications point out that memory process, associated to neuronal plasticity, can be 
accompanied by a vascular plasticity. 

To segregate the functional contribution of angiogenesis and neurogenesis in memory process after 
physical exercise, Kerr and collaborators tried to block pharmacologically either neurogenesis or 
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angiogenesis in rats physically trained for 7 days, and test their visual spatial memory in Morris Water 
Maze  (Kerr et al., 2010). Neurogenesis inhibition with AZT did not affect the increase of memory 
performance induced by exercise, whereas the treatment with SU5416, VEGFR-2 antagonist, induced 
a deficit in acquisition and retrieval of both recent and remote memory. But the use of a VEGFR-2 
antagonist to block angiogenesis could be criticized since the absence of modification of the vascular 
network. Moreover, the inhibition of VEGFR-2 could also affect the neuronal plasticity. Anyway, this 
publication suggested that angiogenesis could be essential to sustain memory but the target used to 
modulate angiogenesis should be very vessel specific without effect on neurons. Thus we proposed in 
our study to use Ang-2 as this angiogenesis target. 

In any case this study underlined the idea that the acquisition of a new memory, its retention and its 
retrieval can induce vascular modifications: these modifications regard not only the dynamics of 
vascular flow but also structural changes of vascular network. 

Ambrose proposed that the neuroangiogenesis was an essential phenomenon during all the adult life, 
in order to adapt the microvessels to cortical functionality (Ambrose, 2012). As a matter of fact, 
during the time, the cognitive and memory impairments observed in elderly people have a common 
denominator: the decrease of angiogenesis. But are we sure that adult angiogenesis is possible?  

The Ambrose’s point of view was corroborated by Harb’s study which interestingly followed the 
vascular changes in adult brains, using in vivo biphoton microscopy. Using this technique it was 
possible to follow the structural changes of vascular network from an early postnatal period to the 
advanced study of ageing (Harb et al., 2013).  

Without surprise, postnatal mice showed a wide increase of sprouting, ECs proliferation and 
elongation, followed by an abundant increase in vessels pruning and sprouts elimination in order to 
refine the vascular network. Despite a clear microvascular remodelling decreasing over the mice life, it 
has been shown interestingly that in adult brain vascular plasticity was still present, including vascular 
regression and formation, representing the response to metabolic changes allowing the optimal 
neuronal functionality. Moreover, in young adult mice (3 month old) the vascular changes were 
increased by hypoxia (10% during 1 month), while this response was reduced in older mice starting 
from 4 months.  

The Ambrose’s and Harb’s contributions underlined a possible functional role of vascular plasticity in 
cognitive process, accompanying neuronal adaptations. 

Moreover, angiogenesis and neurogenesis coexist showing common molecular pathways (Madri, 
2009; Palmer et al., 2000; Yamashima et al., 2004), showing a potential implication in memory 
process. 

In fact, the contribution of vascular modifications and remodelling during memory consolidation is 
surprisingly not investigated. 

The studies presented in this paragraph let us to hypotheses that memory consolidation can be 
accompanied by both a vascular architectural remodelling and a functional role of cerebrovascular 
network. Of course both these aspects are interesting, but for the moment we decided to focus our 
attention on the architectural changes induced in particular by angiogenesis. 

In our study, we tried to unravel the still unknown contribution of vascular network during memory 
consolidation, considering physiological conditions (adult rats). Moreover we decided to corroborate 
our finding considering two models of vascular dysfunctions, such as hypertension and gravity 
changes. These deleterious conditions are known to alter vascular functions. The goal of our study, 
anyway, is not to study what are the perturbations of vascular network inducing the putative memory 
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deficit (despite the topic is very interesting and too wide for a thesis of 3 years), but we want to use 
these models as tools to underline the permissive role of vascular network in memory consolidation 
process. 

Thus, to conclude this introduction we are going to briefly present hypertension and gravity changes to 
check their effects on vascular physiology. In particular, we are going to present the models that we 
choose, respectively the Spontaneously Hypertensive Rats (SHRs) and the hypergravity model, and 
the rational for their application in our study. 
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Chapter 4: The Arterial Hypertension (AHT) 

  



132 
 

Chapter 4: The Arterial Hypertension (AHT) 

 

Among vascular diseases, arterial hypertension (AHT) is a current relevant medical care problem for 
different reasons. First of all, AHT is one of the most widespread human diseases in developed 
country; according to WHO (World Health Organization, 2013), close to 1 billion people suffer from 
hypertension and at least two-thirds are in developing countries. Since the increase of population’s 
growth and ageing, the number of people with uncontrolled hypertension rose from 600 million in 
1980 to nearly 1 billion in 2008, and the problem is growing: in 2025 it has been estimated that 
hypertensive adults will rise up to 1.56 billion. In France, more than 30% of the population is 
considered hypertensive (InVS studies, 2008). Hypertension is one of the most worldwide important 
causes of premature death and the worldwide leading cause of cardiovascular disease. Globally, 
cardiovascular diseases account for approximately 17 million deaths a year, nearly one third of the 
total and hypertension is responsible for at least 45% of deaths due to heart disease, and 51% of deaths 
due to stroke. AHT is one of the most important risk factors both in coronaropathy and in 
cerebrovascular accidents; it can induce directly congestive cardiac failure, aortic dissection and 
chronic renal failure (Danaei et al., 2009). 

Secondly, this pathology is frequently discovered occasionally since the onset is mostly asymptomatic, 
inducing the WHO to call it the “silent killer", and many people do not realize they are suffering from 
AHT; for this reason, it is important to get blood pressure checked regularly, even in youngest patients 
who are not aware of own pre- or hypertensive status (only 23% of 15-44 year-old of tested people are 
aware of their hypertension status compared to 55% of 54-60 year-old people).  

Moreover, the choice of medication and the patients’ adhesion to the treatment is a critical step for the 
antihypertensive therapy. The several treatments of hypertension should be chosen according to the 
blood pressure profile, and often is required a combination of drugs. Moreover, one of the most 
important causes of therapy fail is the inconstancy in treatment following, since once the hypertension 
is diagnosed the therapy continues for the whole life.  

While the causes of secondary AHT are well defined (nephropathy, renal vascular pathology, aortic 
coarctation, endocrine imbalance and iatrogenic), the causes of essential AHT (90-95%) are unknown 
(idiopathic and primitive), but it has been related to causal factors as the increase of sympathetic tone, 
the decrease renal capacity to sodium elimination, genetic factors, diet and life style (stress, 
sedentary). The AHT risk factors include age (> 55 for men and > 65 for women), smoke, 
dyslipidemia, familiarity for cardiovascular event in early age, obesity.  

In most cases, AHT is contained between moderate levels for several years, being compatible with 
long survival rate, unless clinical complications mentioned before. Just in the 5% of cases, the blood 
pressure rapidly increases and induces death after 1-2 years the onset (malignant hypertension). 

 

4.1. Blood pressure and regulation 

The blood pressure is a complex parameter, determined by the interaction of genetic, ambient and 
demographic factors that bring to an alteration of physiological regulation of blood pressure. 

The blood circulation is strictly dependent to heart contraction and is defined by a quantitative 
parameter that is the heart frequency (number of beats/minute) and a qualitative characteristic that is 
the rhythm (defined as regularity of heartbeats). The blood pressure is produce by the blood flux, 
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pumped by the heart, through the vessels, and it is the difference between the pressures exceed by the 
blood on vessels wall and atmospheric pressure. 

The arterial blood pressure (PA), often simply called blood pressure (BP), is defined in a range 
including a maximal pressure corresponding to systolic pressure and the lowest value representing the 
diastolic pressure. Systolic pressure is the blood pressure applied on arterial wall resulting from heart 
systolic contraction, when all blood contained in ventricles is pulsed within the vascular system. The 
diastolic pressure is the residual pressure in the arteries during heart diastolic relaxation.  

Even if there is not a predefined value of arterial pressure, diastolic and systolic pressures correspond 
to respectively 80 mm Hg and 120 mm Hg, even if they can fluctuate according to the circadian 
rhythm and social factors; AHT is defined when diastolic pressure is constantly higher than 90 mm Hg 
or the systolic pressure is constantly superior to 140 mm Hg (Chobanian et al., 2003).  

The blood pressure depends from two fundamental hemodynamic variables: cardiac output and 
peripheral resistance. The cardiac output is influenced by hematic volume, which in turn it depends 
form sodium homeostasis. The peripheral resistance depends mainly from arteriolar resistances, 
related to the vascular lumen dimensions; this parameter hangs on the thickness of arteriolar wall and 
nervous and hormonal inputs that can exert vasoconstriction or vasorelaxation. 

Briefly, the blood pressure can be regulated in short and long term. 

The short term regulation includes baroreceptors activity and leads to fast modifications of BP: the 
increase of pressure stimulates baroreceptors with attenuation of the sympathetic outflow and resulting 
prevalence of parasympathetic system (negative chronotropic and dromotropic effects) modulating the 
peripheral vessels and the heart functions while, vice versa, a decrease in PA unloads the baroreceptors 
and leads to increased sympathetic outflow, vasoconstriction (mediated by α1 receptors on SMC), and 
increased cardiac output (mediated by β1-receptors of heart resulting in positive chronotropic and 
dromotropic effects); for a review concerning the physiological baroreceptor reflex and its impairment 
in AHT see (Kougias et al., 2010)). 

Regarding the long term regulation of blood pressure, the fundamental actor is the RAAS system, even 
if the system is much more complicated that described here. Briefly, the decrease of BP and 
consequently the kidney’s blood flow induces an increase in renal production of renin which, in turn, 
increases the transformation of angiotensinogen in Angiotensin II (see previous chapter). Angiotensin 
II induces the increase of vascular resistance and the consequent increase of vascular pressure; 
moreover, it induces the secretion of aldosterone hormone, which increase Na+ and water retention 
with the consequent increase of blood volume and then blood pressure; furthermore it possesses a 
dipsogen effect (Fig. 59). 
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Figure 59:RAAS control of blood pressure (Schrier RW, 1997.) 

 

Since the regulation of blood pressure is not the core topic of the thesis, we decided to not develop this 
part, anyway for interesting review see (Atlas, 2007; Manrique et al., 2009; Mitchell and Navar, 1989; 
Montani JP, 2004). 

In the following part we just mention the treatments commonly used to treat this phathology and 
describe what are the consequences of AHT on cerebral network affecting vascular architecture, BBB 
functions and vascular reactivity; after that, we analyse the relationship of AHT with cognitive 
dysfunctions and in particular with memory process; finally, we expose the most used animal rodent 
models reproducing this pathology, motivating our choice in choosing the SHRs model.  

 

4.2. Treatments 

Nowadays, the most used antihypertensive drugs to treat AHT are the diuretics, β-blockers, central 
sympatholytic agents, calcium channel blockers, direct vasodilators, ACE-inhibitors and AT-1 
blockers (Fig. 60). 

The choice of the treatment is very important and, in the majority of the cases, more than a single drug 
is used efficiently to control the BP decreasing the dosage of drugs and thus the side effects related to 
them. The multiple therapies are also adopted in order to differently target the actions on 
cardiovascular systems: some drugs act on cardiac system, modifying the cardiac frequency or the 
cardiac output, and some others influence the vascular system, decreasing the peripheral resistance, the 
plasmatic volume and the RAAS pathway. 

The diuretics increase the urine flow and Na+ excretion and are often used to restore quickly the 
volume or the composition of body fluids. The β –blockers (propranolol is the progenitor) can be 
divided in different classes depending the receptor selectivity (the most used are β1 blockers) but they 
mainly act reducing the cardiac frequency, the atrioventricular conduction and reducing and renin 
release. The central sympatholytic agents such as clonidine and α-metildopa reduce the efferent input 
from vasomotor centre. The calcium channel blockers are used to block the Ca2+ influx in VSMC. 
Some of them induce vasodilation of resistance arteries (nifedipine, amlodipine), and some others 
show ionotropic, chronotropic and dromotropic negative actions (verapamil). The direct vasodilators 
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such as minoxidil, sodium nitroprusside and hydralazine are not frequently used since their side effects 
and the difficulty of dosage. 

Finally, the ACE inhibitors (the progenitor is captopril) and AT-1 blockers (losartan is one of the most 
used AT-1 antagonists) modify respectively ANG II production and action. ANG II modifies the 
peripheral resistance inducing direct vasoconstriction, increase on Na+ reuptake, increase sympathetic 
system and release of catecholamine inducing a fast response in BP regulation. Moreover, ANG II can 
exercise a slow regulation of BP modifying renal functionality via Na+ reuptake, aldosterone release 
and sympathetic system. Furthermore, it seems that ANG II is involved in cardiac remodelling 
inducing cardiac hypertrophy.  

 

Figure 60: Sites of action of the major classes of antihypertensive drugs. From (Katzung, 2012). 

 

4.3. Effect of AHT on cerebral circulation 

AHT is associated to different changes of cerebral circulation. 

The hallmark of AHT is the increase of peripheral vascular resistances and this is the results of the 
alteration of the local structure of the vessel (narrowing of vascular lumen as results of vascular wall 
hyperthropy or lumen diameter decrease) and the modification of vascular network architecture 
(vessels rarefaction) and functionality (alteration of vascular reactivity, BBB dysfunctions and 
neurovascular coupling impairment).  

 

Changes in vascular architecture: 

 Vascular rarefaction: 

Microcirculation has an important role in the pathophysiology of hypertension. Peripheral resistance is 
determined primarily by small arteries (150–300 µm diameter) and arterioles (10–150 µm diameter). 
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The disappearance of capillaries and pre-capillary arterioles, a phenomenon known as microvascular 
(capillary) rarefaction, is a hallmark of hypertension (Humar et al., 2009). Moreover, hypertension 
induction in rat models provokes endothelial damage, followed by rarefaction within 3 days. 
The phenomenon of microvascular rarefaction induced by AHT was linked either to 
arterioles/capillary occlusions, or to an effect of autoregulation due to the increase of pressure and the 
consequent prolonged vasoconstriction (Sokolova et al., 1985). Since the majority of the total vascular 
resistance is regulated by vessels that are less than 150 µm in diameter, the vascular rarefaction could 
contribute to increased vascular resistance (Sane et al., 2004). A global vascular rarefaction is a 
phenomenon common to several models of AHT, such as SHRs, DOCA-salt rats and renal AHT, with 
some differences concerning which kind of vessel (capillary vs pial artery) is affected in the different 
models.  

The loss of capillary network and the consequent hypoperfusion can be the link between AHT and 
cognitive disease or vascular dementia in humans (Fig. 61) (de la Torre, 2012), even if artery 
rarefaction has not been reported; some studies demonstrate that chronic cerebral hypoperfusion in 
mice (Miki et al., 2009) and rats (Otori et al., 2003), via common carotid artery ligation or stenosis, 
induces white matter lesions that can be proportional to the severity of hypoperfusion (Shibata et al., 
2004) and the cognitive deficit (Miki et al., 2009). Furthermore, in a mice model of small vessel 
disease (cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy 
(CADASIL)), it was shown that the rarefaction of capillaries in white matter is correlated to 
hypoperfusion and white matter lesion (Joutel et al., 2010).  

 

 

Figure 61: Hypothetical model explaining how disturbed hemodynamic flow patterns inducing cerebral hypoperfusion and 
cognitive impairment. Modified from (de la Torre, 2012). 

 

 Vascular wall remodelling:  

The BP increase associated to AHT impacts the structure of vascular network and artery morphology 
(Mulvany, 2012; Pires et al., 2013) and the reduction of vascular diameter is associated to the increase 
of vascular resistance. The remodelling process can be eutrophic (increase of media-to-lumen or wall-
to-lumen ratio without affecting in wall-cross section area), hypertrophic (increase wall area) and 
hypotrophic (decrease of wall area and wall-to-lumen ratio). The remodelling can interests the SMCs 
which increase their volume and it is accompanied by accumulation of ECM proteins, such as collagen 
and fibronectin, in the vessel wall (Faraco and Iadecola, 2013).  
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In AHT, this artery remodelling is a mechanism adapted by our organism in trying to reduce the stress 
created by the increase of blood pressure and in protecting the downstream vessels; thus, arteries 
increase their thickness and this process is often associated to decrease of lumen diameter and increase 
of wall-to lumen ratio.  

The vascular remodelling in AHT can be linked to physic stress (hemodynamic effect) but also to the 
activation of RAAS system and dysregulation of Cl- channels. 

The increase of wall thickness induced by physic stress, which tries to protect vessels by BP increase, 
affects the hemodynamic regulation: despite some studies showed that the resting blood flow in AHT 
patients is  not really altered, others researches demonstrated that old patients or not-well treated 
patients showed a reduction in CBF, especially in cerebral regions as occipitotemporal and prefrontal 
cortex and HPC (Pires et al., 2013). 

The RAAS system is implicated in the long term regulation of BP (see above). Interestingly, the BP 
decrease obtained using β-blockers is not sufficient to ameliorate arteries’ wall, despites they reduce 
the plasma levels of renin and thus decrease the production of ANG II (Blumenfeld et al., 1999), while 
the administration of ACE-inhibitors or AT1-blockers, drugs respectively blocking Angiotensin II 
production and action  (see paragraph “Angiotensin”), in SHRs is able to reverse the effects of 
hypertension on vascular structures, even if the mechanism subtending this result is not really clear. 

The mechanism exercised by RAAS inhibitors mediating the restoration of vascular wall is linked both 
to the fact that ANG II and aldosterone are implicated in vascular remodelling via reactive oxygen 
species (ROS) production (Touyz et al., 2003), and to RAAS activation of MMPs (Galis and Khatri, 
2002), responsible to movement and reorganization of SMCs (Pires et al., 2013). 

 

 Atherosclerosis and Small Vessels Disease 

The AHT is the leading factor for the atherosclerosis. It was reported that the rise of 10 mm Hg 
increases by 43% the chance to develop aortic atherosclerosis (Faraco and Iadecola, 2013). 

The BP increase-induced perturbation of vascular architecture provokes the formation of 
arteriosclerotic lesions, in particular at the level of arterial bifurcations and sites of turbulence flow 
that can cause stroke via embolism and haemorrhage.  

This mechanism is related to shear stress-induced expression of innate immunity receptors, 
macrophages, monocytes and inflammation (Sakamoto et al., 2001). Moreover, AHT is correlated to 
arteriosclerosis inducing SMCs loss, deposition of fibro-hyaline materials, lumen narrowing and 
vessel thickening (Faraco and Iadecola, 2013). 

 

 BBB breakdown:  

The BBB is a selective, physic, semipermeable and biochemical barrier that maintains the cerebral 
homeostasis. 

It was shown that during AHT there is an increase of BBB permeability and a consequent decrease of 
homeostasis regulation, which can be attenuated with ACE inhibition (Nag and Kilty, 1997) in a rat 
model of chronic renal hypertension. BBB disruption was associated to vascular remodelling and 
inflammatory phenomena triggered; in fact, during remodelling the arteries are more dynamics, 
showing lumen reduction and increase of permeability due to an alteration of gap junctions. 
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Paradoxically, in this initial situation, hypertensive animals are more resistant to acute increase of BP, 
but not to chronic one (Mueller and Heistad, 1980). In fact, even if is not fully understood, chronic 
AHT seems to induce BBB breakdown through ROS and inflammation mechanisms (Sugamura and 
Keaney, 2011). The BBB disruption is decrease after treatment with ROS scavenger Tempol 
(Lochhead et al., 2012) or anti-inflammatory minocycline treatment (Yenari et al., 2006). 

Anyway, since the most important BBB damage was found in rats (chronic renal hypertension) with 
really high levels of AHT (220 mm Hg), it is possible that the disruption can be due to the physic 
insult as well (Nag, 1996). 

 

Changes in vascular functions: 

 Cerebral artery Autoregulation and myogenic reactivity during AHT: 

As described in the paragraph “Myogenic response and arterial autoregulation”, the autoregulation of 
CBF decrease the effects of fluctuation of PA that can happen during the normal activity and living 
condition, allowing the maintenance of PA between 60 and 160 mm Hg. Within this range, the increase 
or decrease of BP results respectively in constriction and dilatation of cerebral resistance vessels, 
assuring a relatively constant CBF (Faraco and Iadecola, 2013).  

During the AHT this balance is lost (Fig. 62): if the BP goes above the autoregulatory limit, the 
normal myogenic constriction of SMCs is overcome by the excessive intravascular pressure, inducing 
a forced dilatation of cerebral vessels; this impairment in vasoconstriction decrease the vascular 
resistance inducing an increase of CBF (300–400%), known as autoregulatory breakthrough (Cipolla, 
2009). Additionally, without the physiological restrictions, hydrostatic pressure of ECs increases, 
causing edema. 

Likewise, the increase of vascular resistance and the failure of myogenic reactivity during AHT induce 
a shift to the right of the CBF autoregulation curve: thus, higher pressure is required to maintain the 
same blood perfusion, and this shift is often associated to a downward displacement of the curve. 
These alterations result in a decrease of cerebral perfusion. 

Moreover, since the left limit of the CBF curve depends from the passive diameter of the vessel, and 
as explained before this is reduced in hypertensive patients, there is a high susceptibility to 
hypoperfusion that can bring to till the collapse of the vessel. 

Furthermore, the physiological increase in CBF induced by neuronal activation is reduced in patients 
with chronic AHT and the cerebrovascular dysfunction correlates with cognitive deficits.  

Anyway, there is still a debate concerning the resting CBF: as a matter of fact some authors report a 
reduction of resting CBF during AHT in human patients declining over the time (Efimova et al., 2008; 
Kitagawa, 2010), while others describe no changes in resting CBF of SHRs and WKYs (Clozel et al., 
1989; Dunn and Nelson, 2014; Harper, 1987; Sadoshima et al., 1986). 

 

 Compromise of ECs role in vascular tone: 

ECs can regulate vascular tone via different mechanisms, dependent or not from NO production. 

As mentioned before NOS is able to produce NO from L-Arginine in ECs; NO diffuse in SMCs 
activating GC with creation of cGMP and PKG phosphorylation inducing in turn phosphorylation of 
contractile proteins and decrease of Ca2+ influx; moreover PKG activation provoke the 
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phosphorylation of IP3 receptors on sarcoplasmic reticulum and then inhibiting IP3 activation and thus 
avoiding Ca2+ release and inhibiting contraction (Pires et al., 2013). In AHT often the NOS/NO 
activity is reduced. This is can be due to a downregulation of NOS or a decrease of NO availability, 
resulting in vasodilation impairment. 

 

 Neurovascular coupling dysfunctions: 

The ability of CBF increase in response to neuronal activity depends on neurovascular coupling. The 
neurovascular coupling is disturbed during AHT but is not clear if it is the direct consequence of AHT 
itself or it depends on AHT-induced RAAS dysfunctions. Some evidences showed that it is probably 
due to both phenomena (Dunn and Nelson, 2014). As a matter of fact the chronic infusion of ANG II 
disrupt neurovascular coupling before the development of AHT.  

The putative mechanism thought which ANG II perturbs neurovascular coupling is linked to its 
interaction with AT1, which triggers ROS production via NADPH oxidase; O2

•- is combined with NO, 
especially coming from interneurons, decreasing its availability and decreasing neurovascular 
coupling activity, especially in ECs and adventitia of parenchymal arteries (Guan et al., 2006). 
Moreover, even in with a more strong effect, ROS production creates vascular oxidative stress leading 
to inflammation  and disruption of the normal cellular functionality and structure (Dunn and Nelson, 
2014). 

Furthermore, during the progression of AHT, some studies showed pericytes degeneration, correlated 
to the increase of BBB permeability and astrocytes hypertrophy and fibrosis that can compromise the 
neurovascular communication (Arribas et al., 1999; Mulvany, 2012). 

 

Finally, it is clear that AHT modify vascular functions, as summarized in Fig. 62.  

 

Figure 62: Effect of hypertension AHT on cerebral blood vessels: it induces functional and morphological alterations 
described in the text, compromising the blood supply necessary for brain functions. Adapted from (Faraco and Iadecola, 
2013). 
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Despite we used an hypertensive model to prove the permissive plasticity of vascular network during 
consolidation, we are not going to further describe the AHT mechanisms of vascular architectural and 
functional remodelling; anyway, more detailed AHT-induced vascular deficits are mentioned in the 
review (Dunn and Nelson, 2014; Faraco and Iadecola, 2013; Pires et al., 2013) 

But among these most cited effects of AHT angiogenesis is less mentioned, but since AHT affects 
several aspect of vascular functionality, what is about angiogenic mechanism during AHT? 

 

4.4. AHT and angiogenesis 

In AHT, vessel rarefaction was observed.  But, since angiogenesis can occurs when the increase of 
neuronal activity is not coupled with the increase of metabolic delivery, it is possible to think that 
during AHT angiogenic pathway can be perturbed. 

One hypothesis sustains that angiogenic factors may be released in response to an increase of 
mechanical stretch or hypoxic condition in SMC. During the time, ECs acquire resistance to 
angiogenic factor activity, leading to lack of adequate angiogenesis, thereby promoting rarefaction, 
which could be a factor contributing to the development or severity of AHT and memory impairment 
(Sane et al., 2004) (Fig. 63). 

 

Figure 63: Possible origins and actions of angiogenic growth factors (AGF) in hypertension. From (Sane et al., 2004). 

 

Another putative mechanism of angiogenesis impairment was related to AHT-induced alteration of 
autoregulation mechanism: at the beginning, the increase of cerebral BP leads to acute 
vasoconstriction but since it cannot fully compensate the excess of perfusion the brain is still 
overperfused and thus overoxygenated. The prolonged hyperoxygenation leads to the downregulation 
of VEGF and other proangiogenic factors. The persistence of this situation induced a structural loss of 
microvessels and thus vessel rarefaction (Adair and Montani, 2010). 

A recent study performed on hypertensive patients was aimed to analyse serum levels of angiogenic 
molecules, showing that AHT was associated with both the decrease of physiological levels of pro-
angiogenic mediators (such as FGF, angiogenin, VEGF and IL-8) and increase of endostatin serum 
concentration which is an anti-angiogenic factor, showing a direct imbalance of pro-angiogenic and 
anti-angiogenic factors (Marek-Trzonkowska et al., 2015). 
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In some patients, the inhibition of VEGF induces or exacerbates hypertension (Sane et al., 2004; Yang 
et al., 2003b), while other studies displayed higher serum levels of VEGF and Tie-2 receptor 
(Felmeden et al., 2003; Filiz et al., 2015), showing the complexity of relationship between AHT and 
angiogenic factors. This last result has been proposed being dependent to secondary induced by 
endothelial cell injury since the hight level of VEGF was concomitant to von Willebrand’s factor 
(Felmeden et al., 2003; Sane et al., 2004). Finally, cross-sectional observational study showed that 
antihypertensive drug treatments increase capillary density in hypertensive subjects (Debbabi et al., 
2006). Moreover, anti-angiogenic therapies can cause hypertension (Humar et al., 2009). 

Some others studies on animal models, especially on SHRs, suggesting a perturbation of angiogenic 
response during AHT are treated below. 

 
4.5. AHT and cognitive impairment 

AHT has been proposed as one of the most important risk factors able for inducing and/or increasing 
cognitive impairments, especially Alzheimer’s Disease (AD) and Vascular Dementia (VD), although 
the underlying mechanism remains to be explored.  

Both hypertension and cognitive impairments develop over a long period of time but hypertension 
typically precedes the onset of cognitive impairments (Wiesmann et al., 2013). 

AD and VD are the most important causes of dementia and are characterized by cognitive and memory 
decline.  

The most evident link between AHT and VD was thought to be represented by the stroke, in particular 
it has been proposed that multiple and discrete lesions, often present in hypertensive patients, can 
induce multiple stoke responsible to cognitive decline (multi infarct dementia). Anyway, with the use 
of brain imaging showed that the patients developing VD showed diffuse white matter lesions that can 
be link to the genetic pathology CADASIL, previously mentioned. As a matter of fact, the most 
important cause of VD is not stroke but the lacunar infarcts or white matter disease (Faraco and 
Iadecola, 2013; Wiesmann et al., 2013). The VD pathology was recently reviewed in (Iadecola, 2013) 
and (Du et al., 2016) and summarized in Fig 64. 

 

Figure 64: Biochemical changes induced by chronic cerebral hypoperfusion explaining cognitive dysfunctions. From (Du et 
al., 2016). 
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Regarding AD, it has been demonstrated a relationship between AHT and accumulation of amyloid 
plaques, neurofibrillary tangles and brain atrophy (Skoog and Gustafson, 2006; Wiesmann et al., 
2013). Actually the BP profile is not linear: at the beginning the AHT-induced increase of BP precedes 
the AD, but then the inability to maintain BP homeostasis, induced by the cerebral damage, leads to a 
decrease of BP, making difficult to treat the BP changes in the different phases of AD (Glodzik et al., 
2014; Skoog and Gustafson, 2006). More details and some others epidemiological and experimental 
evidences showing the link between AHT and AD were recently reviewed in (Carnevale et al., 2016; 
Perrotta et al., 2016). 

However, the sequence of events occurring between the induction of hypertension and the cognitive 
deficits are unknown; this is also due to the fact that AHT takes years to develop and AD requires 
decades to be discovered since the clinical signs appear in the late phase of disease.   

It is difficult to find the mechanism responsible to AHT-induced AD, anyway it has been proposed 
that AHT inhibits vascular transport of brain Aβ into the plasma and participate with Apoε4 in 
promoting amyloid deposition (Faraco and Iadecola, 2013). 

Moreover, a recent interesting study showed that the surgical induction of AHT provokes Alzheimer's 
disease (AD) symptoms as amyloid deposition around vessels and memory impairment in mice 
performing Morris water maze (Carnevale et al., 2012). Moreover, they showed another AHT-
dependent mechanism inducing β-Amyloid deposition: AHT upregulates the Receptor for Advanced 
Glycation End products (RAGE), responsible to the BBB transport of Aβ into the brain, in 
hippocampal and cortical cerebrovascular network.  

Despite the difficulties relied to the long-lasting pathology and multiple levels modifications, some 
candidate pathways, explaining the link between AHT and memory deficits, have been proposed. 

Hypertension is characterized by modifications in vascular density and artery remodelling leading to 
vascular hypoperfusion, linked with a specific decrease of blood vessel network reactivity, affecting 
myogenic tone, autoregulation and intracellular signalling; all these factors can affect neurovascular 
coupling and thus neuronal activity, affecting memory process (Faraco and Iadecola, 2013; Jennings 
and Zanstra, 2009; Pires et al., 2013). 

Moreover, hypertension can modify the blood brain barrier (BBB) creating extravasation of blood 
components and inflammatory processes. Therefore, a disruption mechanism of the BBB represents 
another probable link between hypertension and cognitive impairment. This hypothesis was also 
corroborated by the observation of extravasation of plasmatic molecules into the brain parenchyma in 
aged people as well as animal models and it is been suggested that this phenomenon is exaggerated in 
Alzheimer patients and models. 

Human studies associating AHT with memory impairment are reviewed in (Birns and Kalra, 2009), 
showing that the majority of longitudinal studies demonstrated that BP increase is associated with 
memory decline, analysing the data of MEDLINE, EMBASE and Cochrane Library databases. 

The majority of studies reported memory, learning, attention and time processing deficits during AHT 
(Birns and Kalra, 2009; Bucur and Madden, 2010; Fujishima et al., 1995); the memory impairment 
was detectable in both old and young patients and was related to the BP increase; the memory deficit 
was higher in old patients, displaying that age can exacerbate memory deficit (Fujishima et al., 1995; 
Kohler et al., 2014). Anyway some data showed that the link between memory impairment and blood 
pressure is not that clear since for example antihypertensive drugs reduce the risk of Alzheimer 
disease independent of blood pressure reduction (Kalra, 2014) or some studies fail to find a correlation 
between AHT and memory impairment reviewed in (Birns and Kalra, 2009). 
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It is clear that this topic needs to be further investigate; however the majority of these studies suggest 
that vascular impairment is at the origin of memory deficit, leading to the suggestion that 
antihypertensive treatment can be used as strategy to delay the apparition of neurodegenerative disease 
(Wiesmann et al., 2013). In the next paragraphs we describe SHRs model and the memory deficit 
associated to AHT. 
 
 

4.6. Rodents’ model of AHT: our choice in SHRs use 

The use of hypertensive model in our study is aimed to understand how vascular impairment could 
influence memory consolidation process, through the modification of vascular and neuronal network, 
during different time-point of hypertensive process.  

The importance of the vascular network in cognitive functioning is based in part on observations 
showing that disruption of the vascular system causes or accelerates cognitive pathologies (Carnevale 
et al., 2012; Faraco and Iadecola, 2013). This is the reason why we decided to investigate how 
cerebrovascular changes induced by hypertension are able to affect memory processes. 

AHT affects different phases of memory process but the mechanism underlying it is not clear. To shed 
light on this relationship, we decided to explore the impact of vascular architectural changes induced 
by AHT during both recent and remote memory, in particular in areas implicated in memory 
consolidation. Over the time, several models of AHT have been created. 

The first animal model used to study AHT was developed by Harry Goldblatt clipping the renal artery 
of a dog and inducing a secondary hypertension (Goldblatt et al., 1934). Several decades were passed 
from this study and the trend of publication using different models suggests an evolution toward 
rodents’ models (Leong et al., 2015; Pinto et al., 1998) (Fig 65A).  

 

Figure 65: Choice of hypertensive models in preclinic research. A: number of papers published on hypertension in different 
species, rat, mouse, dog and cat from 1990-1997. B: Number of publications on a particular rat model of hypertension, as 
divided by the total number of papers on hypertension. From (Pinto et al., 1998). 

 

Since AHT is a multifactorial disease involving different biological pathways, and it is influenced by 
genetic and environmental factors, different animal models have been developed in order to mimic the 
hypertensive responses observed in humans, to screen potential antihypertensive drugs, and to 
understand the aetiology, the development and the progression of hypertension (Leong et al., 2015). 

In the past dogs were often used to study AHT but nowadays the most used model is the rat. This 
choice was influenced also by the finding of Okamoto and Aoki about a new rat model of AHT which 
did not require pharmacological or surgical intervention: the Spontaneously Hypertensive Rat (SHR) 
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model (Okamoto and Aoki, 1963). From that moment SHRs were used to test antihypertensive 
treatment, becoming the cornerstone of medical research in experimental hypertension (Leong et al., 
2015) (Fig. 65B). Others strains have been developed in the following years but SHR remains the most 
studied and used model. This is also due to the fact that SHRs allow to study the development of 
essential hypertension, contributing to 95% of incidences and being associated with genetic influences, 
even though it represents only a particular type of genetic hypertension. 

Without going deep in the details, we summarized the main AHT rats models in Fig. 66 and the 
different characteristics of these models in Fig. 67 (Dornas and Silva, 2011; Leong et al., 2015; Pinto 
et al., 1998). 

 

 

Figure 66: Different rats’ models of AHT. 
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Figure 67: Summary of the characteristics of rat models of AHT (Dornas and Silva, 2011; Leong et al., 2015; Pinto et al., 
1998). 
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Among these, our choice of using a spontaneous model derived from the fact that inducible models 
usually need long period to be obtained (daily drug or specific diet administration, surgery, BP 
measurements), a bigger number of animal and the elimination of subjects non-responding to the 
treatment or surgery. Moreover, differently from SHRs, some other inducible or spontaneous models 
can develop more than one pathology (such as nephropathy, cardiac hypertrophy, heart failure, 
obesity, metabolic syndrome,  diabetes …) and the acute induction of AHT is less representative of 
human essential AHT.  

Thus, in our study we decided to explore the effect of vascular dysfunctions on memory process using 
the SHR model. In this model, all rats develop a spontaneous and constant AHT (Tayebati et al., 
2012). Contrarily to inducible models, SHRs do not require long periods of treatment or surgery for 
developing a stable AHT, thus the number of animals required is significantly decrease. The stable 
AHT requires less frequent BP measurement. Moreover, the long-lasting and stable AHT is an 
important parameter allowing the study of the evolution of memory consolidation in parallel to 
vascular dysfunctions. Furthermore, the use of anti-AHT drugs on this model is well described in 
literature. Finally, compared to both inducible and spontaneous model, there is not comorbidity; 
moreover, the progression (onset and development) of the disease is more comparable to human AHT, 
avoiding fulminant crisis. The main difference from human phatology, that we have to take in 
consideration, is that SHR were selected, thus, the deliberate inbreeding induced a uniform 
combination of predisposing elements, differently to the human reality (Okamoto and Aoki, 1963). 

Of course, as all models, represent only a kind of AHT and some disadvantages (behavioural 
alteration, the non-strictly inbred strain leading to individual variations in the genetic background of 
both SHR and particularly of their control strain (Dornas and Silva, 2011)) but a particular attention 
concerning these confounding effects was taken in order to minimize these factors and their putative 
bias on experimental results during this thesis. 

Spontaneously hypertensive rats represent a well-established model for the study of the attention 
deficit hyperactivity disorder (ADHD) and the gold standard used to investigate the AHT and vascular 
blood disease (VBD), well-known risk factors for the development of memory impairments (Tayebati 
et al., 2012).  

They were obtained in 1963 by Okamaoto and Aoki who started to bred a  male with a spontaneous 
hypertension and a female with high blood pressure coming from a stock of outbred WISTAR rats 
from Kyoto University (Okamoto and Aoki, 1963). They selected furtherly the descendants based on 
the expression of AHT creating the segregation of this strain that uniformly resulted in 100% of the 
progeny having naturally occurring hypertension. In parallel, they segregated Wistar animals from 
Kyoto University with “normal” blood pressure, that were selected to be used as the same-genetic-
background normotensive control of the Spontaneously Hypertensive rats: the Wistar Kyoto Rats 
(WKYs). 

Due to a uniform genetic predisposition (Folkow, 1982), SHRs are normotensive at birth and develop 
with aging a sustained hypertension (time-dependent increase of blood pressure) and brain damage 
(brain atrophy, particularly in hippocampus, modification and loss of neurons and glial cell, changes in 
blood brain barrier permeability) at six months (Tayebati et al., 2012). For these reasons, SHRs result 
to be the most extensively strain exploited for the study of vascular disorders, in order to link the 
anatomical and neurochemical changes with the behavioural features. 

SHRs have a pre-hypertensive period in which the BP rises till 5-6 weeks of age, an early hypertensive 
stage lasting 2 months, and then steadily rise till 180-200 mm Hg reaching a stable AHT at 3-4 
months, depending from bibliography source (12 weeks (Trippodo and Frohlich, 1981); 100 days 
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(Okamoto and Aoki, 1963), 15 weeks data provided by Janvier Lab, factory which delivered rats used 
in this study). They can develop over the time organ damage such as cardiac hypertrophy and renal 
dysfunction, but conversely to SHRSPs, SHRs have no tendency to develop strokes macroscopic 
atherosclerosis or vascular thrombosis (Okamoto and Aoki, 1963; Pinto et al., 1998). 

SHRs showed behavioural alterations when compared to the WKYs. Such of alterations include 
hyperactivity, low level of anxiety, impulsivity, poor sustained attention (Sagvolden, 2000), 
impairment in learning and altered spatial and working memories (Gattu et al., 1997a; Gattu et al., 
1997b; Meneses et al., 1996; Meneses et al., 2011a; Meneses et al., 2011b). SHRs are used also as a 
model of hyperactive rats and a model to study ADHD (Langen and Dost, 2011; Meneses et al., 
2011a), as mentioned before. These behavioural features are commonly observed in animals modelling 
several neurodegenerative and neurological disorders as AD, Parkinson Disease, ADHD and 
schizophrenia (Meneses et al., 2011a). 

Furthermore, neurochemical changes were described in this strain, such as decrease in ACh 
transmission, increase of NA activity, reduction of DA functions (Tayebati et al., 2012).  

 
The precise phenotype of SHRs includes several differentially expressed genes, many of which are 
unknown. Some authors reports that SHR’s AHT is polygenic in origin with at least 3-6 genes (Kurtz 
et al., 1990) and one of them one can be associated  with  the  over-reactivity  of RAAS (Yamori  and  
Horie,  1977). Moreover, the BP profile in SHRs is also related to Y chromosome modifications (Ely 
and Turner, 1990; Johnson et al., 1995; Turner et al., 1991).  

 

4.5.1. Cerebrovascular morphology adaptation in SHRs 

During the time SHRs develop an increase of BP, followed by brain atrophy, loss of nerve cell, glia 
rarefaction and brain damage, characteristics sheared with human AHT, as well as vascular alterations 
(Tayebati et al., 2012). 

 

 Vascular rarefaction and remodelling 

In SHR strain a reduction of cerebral capillary numbers was observed in the reticular nuclei of the 
medulla oblongata and the pons, beginning from 3 months (Sokolova et al., 1985) and it was 
dependent from the level of hypertension (younger rats did not show any reduction); regarding pial 
arteries, some publication did not show a reduction of their number in 4 months old SHRs (Pires et al., 
2013). The capillary rarefaction can be observed in SHRs starting from 5-6 weeks in cremaster muscle 
(Struyker-Boudier et al., 1988). Anyway, no rarefaction of cerebral arterioles in SHRs were detected 
by (Werber et al., 1990), leading the debate opened. 

The decrease of wall-to-lumen ratio was observed in SHRs mesenteric and carotid arteries (Mulvany 
et al., 1978; Traub et al., 1995) and it may be associated also to the increase of the vascular response to 
constrictors agents; however, unexpectedly, in another derived strain, the Spontaneously Hypertensive 
Rats stroke prone (SHRSPs), it has been demonstrated that the large cerebral arteries possess lower 
contractile response, even if the thickness of the these vessels is increased, probably due to a 
subsequent mechanisms that try to reduce the vascular remodelling by decrease their responsiveness to 
vasoconstrictors agents (Vacher et al., 1996).  
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Anyway, in both models mentioned it has been shown that the pial (Baumbach and Heistad, 1989) and 
MCA (Dorrance et al., 2007; Rigsby et al., 2007) arteries have bigger thickness and smaller lumen 
section; this phenomenon has been found in others model of AHT (for a review see (Pires et al., 2013).  

The SHRSP arteries remodelling were detected in 12 month old rats, despite the AHT is established at 
3-4 month, suggesting that is an adaptive long term modification. Moreover they showed a different 
SMC orientation. 

Architectural alterations of cerebral cortical network in SHRs was more evident in 6 month-old rats, in 
particular in frontal cortex were they displayed hypertrophy and lumen narrowing, while in HPC 
luminal narrowing was not associated to variation of vascular wall (Amenta et al., 1996; Sabbatini et 
al., 2001). Even if in the striatum the increase of vascular wall was not accompanied by lumen 
decrease over time, these authors showed a prominent lumen diameter reduction compared with 
normotensive WKYs. 

In 12 month-olds SHRs the 3 months treatment with Captopril (ACE-inhibitor) reversed the 
hypertrophic remodelling in pial arteries (Dupuis et al., 2005). The same result was reported using the 
combination of Ramipril and Telmisartan at low doses (ACE-inhibitor and AT1-blocker, respectively) 
(Dupuis et al., 2010). The reversion of vascular wall damage induced by AHT was obtained with 
aldosterone antagonist Spironolactone in SHRSP (Rigsby et al., 2011). 

 

 BBB and barriers alterations 

The BBB dysfunction in SHR model is under debate, since some authors proposed that AHT affects 
CSF barrier compared to BBB. In 36 month-old SHRs, the composition of CSF was different 
compered to WKYs, confirming a CSF barrier deficit, assumed to be responsible for choroid plexus 
deficit (Gonzalez-Marrero et al., 2013). 

Adult SHRs cerebral vessels are less susceptible to disruption of BBB induced by acute rise of BP, as 
mentioned before, compared to WKYs (Mueller and Heistad, 1980). Anyway, the increased presence 
of Aquaporine-4 expression at BBB level (regulating the cerebral water content and sensitive to brain 
injury) in frontal cortex of 6 month-old SHRs suggested an impaired water regulation that can be 
responsible, even if in part, to cytotoxic edema and brain lesions (Vizuete et al., 1999). 

 

 Changes in vascular autoregulation and myogenic reactivity  

The eNOS expression is decreased in SHRs compared to WKYs, provoking a decrease of ECs-
dependent dilation (Yamakawa et al., 2003a). This deficit exacerbates ischemic attack, where a 
maximal dilatation of the neighbour vessels is required to circumvent the occlusion and minimize the 
necrotic area. The treatment of SHRs with Ciclostazol, which increases eNOS phosphorylation and 
then activity, was linked to an increase of CBF after ischemic attack and reduction of infarct size 
(Oyama et al., 2011).  

Other ECs-mediated mechanisms in vascular tone regulation, impaired during AHT, are the EDHF 
that is responsible to vasodilation, and TRP channels. In SHRSP mesenteric arteries it has been shown 
an increase in IKCa even if the EDHF dilation is decrease, thus their role in AHT is not really clear 
(Giachini et al., 2009). 
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Regarding TRP channels, the regulation is complex: in SHRs cerebral arteries TRPC3 expression is 
increased whereas TRPC1 is decreased and this is linked to the increase of vasoconstriction (Noorani 
et al., 2011). 

 

 Neurovascular coupling dysfunctions: 

Even if the neurovascular coupling has not been deeply studied in genetic models of AHT, it has been 
shown that the increase of CBF induced by administration of bicuculline (seizure inducer) in SHRs 
was reduced compared to WKYs, and this reduction was normalized using ACE-inhibitors (Cipolla et 
al., 2010).  

Accordingly, another study showed that the somatosensory cortical increase of CBF induced by 
whiskers’ stimulation in 5-8 month old SHRs was decreased compared to WKY. Moreover, the 
neurovascular coupling dysfunctions in 8 month-old SHRs were not reversed by 10-week treatment 
with verapamil or losartan, suggesting that probably others mechanisms, other than ANG II, may be 
involved at this stage of AHT (Blumenfeld et al., 1999; Bohlen, 1989).  

Futhermore, during the progression of AHT, SHRs and SHRSPs showed pericytes degeneration, 
correlated to the increase of BBB permeability and astrocytes hypertrophy and fibrosis (Arribas et al., 
1999; Mulvany, 2012). SHRs displayed neuronal loss closed to fibrotic astrocytes (Mulvany, 2012; 
Paiardi et al., 2009). 

For more detailed information about the progression of cardiovascular autonomic dysfunctions in 
SHRs see (Lehnen et al., 2013). 

 

4.5.2. Cerebral microanatomy and neurotransmitter alteration in SHRs 

2 month-old SHRs showed a ventricular enlargement, a decrease of brain tissue and brain weight 
(Nelson and Boulant, 1981; Ritter and Dinh, 1986; Tajima et al., 1993) and 6/7 month-old SHRs 
displayed hypothalamic alteration and a decrease of neuronal density (Tajima et al., 1993). 

The hippocampal volume is reduced in 6 month-old SHRs and the neuronal density at CA1 level is 
decreased (Bendel and Eilam, 1992; Johansson, 1986; Ritter and Dinh, 1986; Sabbatini et al., 2002; 
Sabbatini et al., 2001; Tajima et al., 1993). Moreover, data on cerebral glucose utilization showed a 
decreased consumption of glucose in grey matter indicating a decrease of neuronal activity in 6 
months old SHRs (Johansson, 1986; Wei et al., 1992); this has been correlated to an higher disposition 
of SHR for cerebral ischemia (Grabowski et al., 1988). 

A decrease of white matter volume was detected in 2 month-old SHRs (Ritter and Dinh, 1986; Tajima 
et al., 1993). The AHT-induced withe matter deterioration, detected in SHRs, is a risk factor for stroke 
and is associated to cognitive impairment and gait disorders. Moreover, microglial reactivity in white 
matter was increased in 6 month-old SHRs, although it is not clear if the microglial hyperactivity 
induced the release of proinflammatory cytokines responsible to neuronal degeneration or if the 
increase of neurodegenerative process induced microglial activation. 

Finally, astrocytes increase, associated to lesion-induced astrogliosis, was detected in 6 month-old 
SHR but not in younger SHR (2-4 months) and WKYs (Tomassoni et al., 2004).  

To complete the panorama of cerebral dysfunctions in this strain, we briefly mention the 
neurotransmitter pathway. For more details, cholinergic, dopaminergic, noradrenergic and 
serotoninergic alterations are reviewed by (Tayebati et al., 2012).  
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Dopaminergic and noradrenergic systems are responsible of behavioural alteration in SHRs strain, in 
particular concerning hyperactivity, lower attention, inhibition deficit, and hyperreactivity to stress 
resembling, behavioural abnormalities of human attention-deficit with hyperactivity disorder (ADHD).  

Dopaminergic reduction in PFC of SHR was correlated to ADHD, and increase of noradrenergic 
signalling in locus coeruleus, PFC, substantia nigra were correlated with the increase of BP (Tayebati 
et al., 2012). 

The ACh is implicated higher brain functions (such as in attention, arousal, motivation and 
conscience) and a decrease of cholinergic functionality was associated to aging, VD and AD; this 
observation can represent another link between these pathologies and ATH, since a deficits in central 
nicotinic cholinergic receptors in SHR was detected, together with the observation of microanatomical 
changes.  

ACh is also implicated in BP regulation and cholinergic neurons are localized in cerebral areas such as  
rostral ventrolateral medulla (RVL), the posterior hypothalamus, and the lateral septal area 
(Buccafusco, 1996; Kubo, 1998). The cholinergic activity in SHR is higher in RVL than controls and 
this can participate to the development or maintenance of AHT. Expression of vesicular ACh 
transporters (VAChT) in the frontal cortex, hippocampus and striatum of SHR is increased. The same 
increase of VACht was found in human Alzheimer patients at early stages and in the hippocampus of 
individuals suffering of mild cognitive impairment. Moreover, some authors proposed that the 
cholinergic alteration in cerebral cortex and hippocampus may be responsible to impaired learning and 
memory functions (Kimura et al., 2000; Togashi et al., 1996).  
 
 

4.5.3. SHRs and angiogenic pathways 

As mentioned before there is not a large number of studies concerning the angiogenesis and the 
hypertension, even less regarding SHRs and cerebral angiogenesis. 

Concerning the mechanism triggering the angiogenesis, no important differences were detected 
regarding the tolerance to hypoxia in adult SHRs compared to WKYs (Brooks et al., 1987), at least in 
myocardium. 

In human Marek-Trzonkowska’s results described above, a decrease of serum angiogenic molecules 
were detected in the hypertensive patients, tighter with vascular rarefaction, leading to think that the 
angiogenic process may be altered during hypertension. 

Conversely to these results, at least at first sight, SHRs showed a higher vascularization (both 
capillaries and microvessels with SMCs) of fibrin gel chambers implanted subcutaneously at dorsal 
level (Hudlett et al., 2005) compared to age-matched WKYs, together with a higher expression of FGF 
but not VEGF, letting the authors to conclude that the induced-angiogenic was higher in SHRs and 
that the vascular rarefaction observed in the other studies was due to the hypertension effect on 
remodelling. Anyway, some observations were quickly presented by another author (Bobik, 2005) 
giving a different explanation to the Hudlett’s study; according to Bobik and collaborators, the 
increased vascularization found in fibrin gel may reflect more the ability to respond of tissue injury 
more that the higher angiogenic response. Secondly, the SHRs were just 1-2 months old (early stage of 
AHT; stable AHT is achieved at 4 months), thus it was difficult to conclude that observed higher 
angiogenesis was associated to AHT or to vascular rarefaction (Struyker-Boudier et al., 1988).  

Anyway, other observations on mesenteric tissue of SHRs showed that the alterations of angiogenesis 
and microvascular network associated with hypertension are more complex than just a loss of vessels. 
In small (classified as spanning an area less than 1 10× field of view) microvascular network SHRs 
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showed a decrease in branching architecture closed to arteriolar anastomosis, compared to WKYs; but 
unexpectedly and less frequently the larger (classified as spanning an area greater than 1 10× field of 
view) vascular network of SHRs showed regions of dramatically increased vascular density (Murfee 
and Schmid-Schonbein, 2008). 

Another study, sustaining angiogenic retard or impairment in SHR strain, assessed that after 14 days 
from subcutaneous sponge implantation, the level of angiogenic ingrowth in SHRs was approximately 
half of those in age-matched normotensive WKYs or Sprague Dawley (SDs) rats: SHRs angiogenic 
proteins MT1-MPP and kinase-insert domain-containing receptor (KDR) were downregulated 
compared to WKYs; furthermore, interestingly, the gene transfer of human VEGF121 re-established 
both KDR and MT1-MMP expression and up-regulated ECs proliferation in SHRs (Wang et al., 
2004). 

Furthermore, after diet-induced cerebral infraction (intragastric administration of high-sodium water 
for 7 consecutive weeks), SHRSPs showed upregulation of MPP9 together with an increase of number 
of blood vessels with discontinuous collagen IV expression. Moreover, the number of continuous 
collagen IV-positive blood vessels was lower in the infarct border zones compared to WKY and 
SHRSP drinking normal water, suggesting that MPP9 can be differently regulated during AHT (Hou 
et al., 2014). 

A recent study showed that 5 month-old SHRs have a hypertension-related inhibition of ischemia-
induced angiogenesis. Briefly SHR and WKY were subjected to excision of the left femoral artery, 
inducing an ischemic response in the skeletal muscles. SHRs showed a decrease of capillary density 
compared to age-matched WKYs after ischemic event; this could be due to both angiogenesis 
impairment and oxidative stress induced by AHT, which can accelerate cellular toxicity and 
exacerbate endothelial dysfunction leading to apoptosis. Moreover, the presence of angiogenic factors 
such as VEGF, eNOS and HIF-1α was decreased in SHRs rats after ischemic event. Furthermore, the 
same aothors showed that therapeutic ultrasound treatment reverse angiogenic deficit. The mechanism 
by which this effect was achieved is still unknown but it seems to be related to increases Ca2+ 
availability or upregulation of eNOS (Lu et al., 2016). 

The angiogenic pathway in SHRs can also depend on the area considered, for example SHRs were 
able to create new vessels via angiogenesis following both short-term and long-term physical exercise 
in locomotor skeletal muscles but not in other kind of muscles; VEGF expression was detected just 
after acute exercise (Amaral et al., 2008). Anyway, another study showed a restoration of BP and 
angiogenesis functionality in SHRs following physical exercise while non-trained SHR showed a basal 
vascular density and VEGF decrease compared to and WKYs and trained animals. This study may 
suggest that, despite the basal level is different, the angiogenic response can be triggered (Fernandes et 
al., 2012). 

Another group tried to unravel the link between hypertension and angiogenesis, analysing the effect of 
chronic hypoxia on SHRs animals (10% O2). In young (5 weeks old) normoxic SHRs the BP was 
higher compared to normoxic WKYs, but interestingly 7 weeks of hypoxia decreased the BP in both 
SHRs and WKY. The decrease of BP was not accompanied by changes in cardiac output but to a 
decrease of peripheral vascular resistances. In adult rats (12 weeks old) with established hypertension, 
hypoxia-induced decrease of BP was detectable after 1 week. The return to normoxia for 2 hours did 
not reverse the reduction in BP excluding the short-term effect of hypoxia-induced vasoactive 
substances (especially of VEGF, potent vasodilator peptide) and suggesting an effect of the structure 
of the vascular network on blood pressure. Furthermore, despite, arteriolar density was not changed by 
hypoxia, capillary network in skeletal muscle and heart was increased, together with an increase of 
VEGF and VEGFR mRNA and proteins, suggesting that chronic hypoxia activated VEGF-A–induced 
angiogenesis and thereafter prevented both the BP rise in young and adult SHRs (Vilar et al., 2008). 
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Concerning angiopoietins pathway, a study performed by Wang (Wang et al., 2002) tried to compare 
the angiogenic gene expression of Ang-1, Ang-2, Tie-1, Tie-2, or VEGF in SHRSPs, SHRs and 
WKYs, in basal condition and following the middle cerebral artery occlusion (MCAO) at cortical 
level. At basal conditions no differences were detected in any strain regarding any gene expression. 
The MCAO induced a decrease of Ang-1 expression in only SHRSPs and an increase of Ang-2 in 
SHRSPs and SHRs (even if a higher increase was detected in SHRSPs) compared to sham rats. 
Regarding the receptors, Tie-1 did not change following MCAO regardless of strain, while Tie-2 
expression was reduced just in SHRSPs. VEGF was not modified by any condition. Clearly, some 
alterations of angiogenesis pathway were detected even if with a specific pattern regarding the 
different strains. Unfortunately, the age of these rats was not reported (adult rats). Another study 
anyway reported the same baseline condition in the level of Ang-1 and Ang-2 in 2 month-old rats 
(Rusai et al., 2011). 

Vascular rarefaction can be due to either vessel destruction or insufficient angiogenesis; these studies 
give us the idea that angiogenic response (reparative angiogenesis ischemia-induced, exercise-induced 
or implantation-induced angiogenesis) can be altered. 

Literature is not sufficient to have an exhaustive scenario about angiogenesis pathway in SHRs. 
Discrepancy in reported data show both that SHRs are capable to create new vessels if angiogenic 
process is triggered with different stimuli (Hudlett et al., 2005) (Fernandes et al., 2012) and that they 
present an impairment or a retard of this mechanism (Hou et al., 2014; Lu et al., 2016; Wang et al., 
2004). Furthermore the angiogenic process can be trigger just in localized areas of interest or can 
concern different vessel types (Murfee and Schmid-Schonbein, 2008). 

Anyway, all these works do not show a physiological response of angiogenesis induced by neuronal 
activity, despites they give us the idea that a link between AHT and angiogenesis impairment. Thus, 
this lack of information prompted us to investigate whether the angiogenesis pathway is impaired in 
the cortical areas subtending memory consolidation and if it can impact memory retrieval. 

 

4.5.4.  SHRs and memory performances 

As mentioned, several clinical studies suggest impairment in memory process and cognitive functions 
in hypertensive patients and even much more studies have been performed to examine the relationship 
between blood pressure and cognitive performance in SHRs. 

According to the majority of the studies (summarized in the review (Meneses et al., 2011a; Tayebati et 
al., 2012)), SHRs exhibit poorer performance in several memory paradigms such as conditional 
avoidance task at different ages (from 8 weeks to 50 weeks (Sutterer et al., 1980)), in a radial-arm 
maze task (12-, 48- and 65-week-old rats (Mori et al., 1995; Wyss et al., 1992)), in novel object 
discrimination. Associative learning and memory impairments are more remarkable during the 
progression of hypertension and aging, suggesting that they provoked similar and additive cognitive 
alterations. 

Others studies, using  different behavioural task such as water maze, autoshaping (Meneses et al., 
1997) and open field tests (Heal et al., 2008; Wells et al., 2010), in 3, 6, 9, 12, 18, or 24 months 
(Meneses et al., 1997) or 3 month-old male SHRs (Heal et al., 2008; Wells et al., 2010), have shown 
an age-related impairment on learning, memory in this stain compared to the normotensive WKY rats. 
Moreover, SHRs and WKY rats dysplayed memory deficits compared to SD rats in the water maze 
task: in particular, SHRs exhibited deficits in dorsal striatum-related habit learning, whereas WKYs 
exhibited deficits in hippocampus-related spatial learning (Wells et al., 2010).  



153 
 

Anyway, 18/24-month-old rats showed the higher decrease of spatial learning and memory when 
challenged for radial arm maze task, compared to 3 month-old rats (van der Staay and de Jonge, 1993; 
Wyss et al., 2000). Moreover, the attention and learning deficits observed in SHRs (Sagvolden et al., 
1992; Soderpalm, 1989; Svensson et al., 1991; Turkkan, 1988; Wultz et al., 1990) were exacerbated 
by aging. 

An interesting publication, concerning the time-dipendent memory deficit in SHRs, showed that 3 
month-old SHRs acquired the task more rapidly SD and WKYs rats; moreover, aged-matched WKY 
were significantly slower in learning the spatial task than the two other strains. Conversely, the 
memory performance in 12 month-old SHRs was significantly impaired compared to age-matched 
SDs, but remain significantly better than age-matched WKYs. In this study the memory performance 
was related to the number of errors, being susceptible to the potential bias of SHRs impulsivity 
(Clements and Wainwright, 2007). Anyway, in accordance to (De Bruin et al., 2003),  this paper 
showed that both the SHRs and WKY rats displayed deficits in spatial learning when compared with 
the SD rats. 

In SHRs, the reversion of AHT is associated to an amelioration of memory functions. In fact, 
antihypertensive chronic treatments, such as captopril, were able to rescue the memory deficit 
observed in non-treated rats, together with an admelioration of BP profile (Wyss et al., 1992). 
Moreover, as documented in human hypertensive patients, non-treated SHRs showed a local cerebral 
blood flow decrease in the cortex and thalamus, compared with normotensive rats together with a 
spatial memory and learning deficits in maze tests (Fujishima et al., 1995). This impairment was also 
associated to a decreased in cerebral glucose utilization in the medial septal nucleus, hippocampus, 
and other regions of the brain in 6-7 month-old rats (Johansson, 1986; Wei et al., 1992). Reduced 
cerebral blood flow, increased media thickness of the cerebral arteries and impaired cognitive function 
in SHR were improved by long-term antihypertensive treatment (Fujishima et al., 1995). The memory 
deficit was also linked to an aging- and hypertension-induced enhancement of  brain damage and 
oxidative stress injury in the HPC of SHRs, indicated by an increased presence of apoptotic cells and 
astrocytes (Li et al., 2016). 

Moreover, 6 month-old SHRs showed BP-related white matter damage, cognitive decline and 
neuroinflammation suggesting this strain as animal model of early-stage cerebral small vessel disease 
(Kaiser et al., 2014).  

In the majority of the cases the memory impairment was higher in SHRs compared to others strains, 
suggesting that the detrimental effects of hypertension are sufficient to induce the memory deficit, 
although age may exacerbate it (Goldstein et al., 1990; Hong et al., 1992). 

The majority of the studies are in accordance to the fact that the memory deficit can be related to 
hypoperfusion due to vascular rarefaction (in turn due to vascular degeneration or angiogenic deficit, 
discussed below).  In addition, some studies underlined an involvement of cholinergic alteration in 
memory impairment detected in SHRs, since ACh is involved in learning and memory. As mentioned 
before the density of nicotinic receptors is reduced in several brain regions such as cerebral cortex, 
striatum, thalamus, and spinal cord of SHR compared to their normotensive cohorts (Khan et al., 1994; 
Kubo, 1998; Yamada et al., 1987). Finally, another study suggested a genetic influence (chromosome 
4) on learning and memory deficit (Anselmi et al., 2016). 

Although the memory deficits are partially or completely reversed by antihypertensive drugs (calcium 
channel blocker nimodipine in autoshaping task (Meneses et al., 1997)), the treatment for attention 
deficit with uridine and choline supplementation was able to improve water maze acquisition in both 
WKY and SHRs (De Bruin et al., 2003). The most relevant studies sustaining this hypothesis are 
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reviewed in (Meneses et al., 2011a). Thus, the decrease of attention observed in this strain can impair 
the learning and decrease the strength of memory trace, affecting the memory performance score.  

Anyway, the discrepancy in memory results showed in literature can be ascribed to the singular 
behavioural profile of SHRs stain: as a matter of fact more recent papers introduced the idea of an 
over-interpretation of memory deficit (Sontag et al., 2013), induced by the hyperactivity and 
impulsivity phenotype of SHRs. 

For example, some authors showed that the locomotor activity appears to be a confounding factor in 
spatial memory tasks and should therefore be controlled. Using a holeboard, Sotang and colleagues 
(Sontag et al., 2013) studied the influence of the locomotor activity on the cognitive performance of 
SHRs. They were able to demonstrate that SHRs did not show spatial working memory and reference 
memory impairments; moreover, when the locomotor activity was taken into account the SHRs’ 
working memory and reference memory were significantly better than in WKY rats, suggesting that 
SHRs were not a good model to study ADHD, since the memory deficit showed in the others 
publications were related to the activity profile and not to memory. Other examples explaining the 
potential bias of locomotor activity in the interpretation of memory tasks are reviewed in (Meneses et 
al., 2011a). Effectively, the majority of the memory tasks mentioned in the first part of the paragraph 
are related to locomotor activity. Thus in the choice of memory task, the locomotor and the 
impulsivity components should be reduced to not introduce a bias in the interpretation of memory 
result. This consideration strengthen our idea to use STFP to assess memory performance in SHRs; in 
fact, we decided to characterize the memory profile of SHRs using a task not strongly dependent from 
the locomotor activity, such all the maze or the recognition tasks.  

Conversely, despite the majority of bibliography showed a memory impairment, few works reported 
that SHR exhibit better performance in several avoidance tasks (Campbell and Di Cara, 1977; 
Knardahl and Sagvolden, 1982; Randich and Maixner, 1981), and Morris Water Maze task (12 week- 
old (Widy-Tyszkiewicz et al., 1993)). The reason of this discrepancy is not clear but it may be related 
to the genetic derivation that regards SHRs and their genetic control WKYs, mentioned below. 

Anyway, these publication are contrasted by others papers showing an impairment in habit recent and 
remote memory in SHRs, compared to WHY and SD, when they have to integrate information derived 
from sign and goal tracking like in autoshaping task (Meneses et al., 2011b); this deficit was ascribed 
to a PFC dysfunctions (Johnson et al., 1995). In contrast, when the working memory was assessed in 
the water maze with different strategic demands, the performance of SHRs did not differ from that of 
either of SD or WKY rats (Robertson et al., 2008). 

In conclusion, the bibliography regarding SHRs suggests that the memory deficit detectable in SHRs 
depends on the type of memory considered and to the age of the rats. Nevertheless, to clarify the 
discrepant findings further studies are necessary, taking into account the choice of the control strain 
and the behavioural task, favouring the paradigms where locomotion and impulsivity are reduced. 
Surprisingly, any publication was found testing SHRs in STFP. 

 

4.5.5.  Good control of SHR 

Deriving from the same ancestral outbred Wistar rat, WKYs are the closest and most used control 
strain for SHRs. 

Despite this, the complicated breeding history of both SHRs and WKYs is responsible to the lack of a 
comprehensive understanding of the genetic background of different commercial substrains, 
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introducing a genetic heterogeneity and a large genetic divergence that is going to increase over the 
time, creating a difficulty in inter-strain and intra-strain comparison. 

In fact, a recent study showed substantial behavioural and genetic differences among the WKY 
substrains, usually depending from the different vendors and breeders, being responsible of 
inconsistent and even contradictory findings (Zhang-James et al., 2013).  

Moreover, rats differ in their emotional reactivity to behavioural stress (Meneses et al., 2011a). WKY 
rats show decreased locomotion and increased anxiety behaviour as compared to SHR in various 
behavioural models including the open field, in addiction to differences in neurotransmission in 
different brain regions (Kaehler et al., 2004). More interestingly, as mentioned above WKYs showed 
deficits in spatial learning when compared with the SD rats (Clements and Wainwright, 2007; De 
Bruin et al., 2003).  

Furthermore, WKYs are considered a model of depression (Lopez-Rubalcava and Lucki, 2000; 
Rittenhouse et al., 2002).  

Thus, since our goal was to study an olfactory associative memory induced by social interaction (see 
paragraph “The choice of the Social Transmission of Food Preference paradigm in the study of 
memory consolidation”) we decided to use the Sprague Dawley strain (SDs) as control strain, 
commonly used in our laboratory. 

Our conviction in this choice was corroborated by the work of Ferguson and collaborators which 
perform a behavioural comparison with elevated plus maze, in young (10 weeks) and adult (1 year) 
SHRs, WKYs and SDs, showing that the anxiety profile of SHR is closer to SD than WKY (Ferguson 
and Gray, 2005). 

Furthermore, Wyss and colleagues described different rates of spatial memory decline in these three 
strains; despite we can imagine that the aging process is different in these strains (clearly represented 
by mean life span: SHR:18 months, WKY: 24 months, SD: 23 months (Ferguson and Gray, 2005)) 
both of those strains outperform the same-aged WKY; thus, we thought that the use of WKY strain as 
control can be a potential bias in behavioural interpretation (Wyss et al., 2000).  

Finally it has been shown that WKY could present hypertension and display both hippocampal 
functioning deficits and signs of bilateral hippocampal cell loss and a deficit in HPC-related spatial 
memory (Wells et al., 2010).  

 

 

In conclusion, despite we selected the SHRs to control the putative permissive mechanism of vascular 
network in the systems consolidation, others models can offer the possibility to induce a variation of 
vascular functions, allowing us to control the onset and the level of vascular perturbation, as described 
in the next chapter. The plethora of AHT-related models give us a wide choice, despite this, we 
decided to venture onto an atypical model, which has been shown to perturb the vascular function: the 
hypergravity.  

The hypergravity induced by centrifugation allow us to precisely control the onset and the gravity of 
vascular modification depending on the duration of centrifugation and the level of hypergravity 
achieved; thus, this stimulating topic prompted us to study whether vascular modifications can impair 
memory consolidation. 
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Chapter 5: A ticket to space 
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Chapter 5: A ticket to space 

As mentioned before the aim of this part is to use gravity alterations, known to affect vascular 
functions, as a tool to study vascular dysfunctions and their effects on memory.  

The gravity is the force of attraction that exist between two any mass, particles or bodies. Plato and 
Aristotle believed that Planets and Stars were disposed on a concentric crystalline sphere centred on 
the Earth and they move “naturally” following a circular orb; they were not subjected to physical 
influence because they were considered as a ‘fifth element’ or ‘quintessence’. Controversially, the 
physical elements moved vertically, depending on their ‘heaviness’ or ‘gravity’; in particular, the 
heavy bodies move downward toward the centre of the universe because of their heavy nature. 
Conversely, light elements, such as fire, move upward toward the Moon. Thus in Aristotle's system 
heavy bodies are not attracted to the earth by an external force of gravity, but tend toward the centre of 
the universe because of an inner gravitas or heaviness. Hopefully, Isaac Newton in Philosophiae 
Naturalis Principia Mathematica, 1687, understood that the same force causing the fall of an apple to 
the ground keeps the planets in their orbs around the sun and the moon around the earth and is the 
same force that allows us to live on the surface of the earth without being thrown away. Newton's law 
of universal gravitation states that any two bodies in the Universe attract each other with a force that is 
directly proportional to the product of their masses and inversely proportional to the square of the 
distance between them: F = G m1 m2 / r2, where F is the force between the masses; G is the 
gravitational constant; m1 is the first mass; m2 is the second mass and r is the distance between the 
centres of the masses. 

Gravity force is exerted permanently on all human being and it conditions their molecular, cellular and 
physiological organization; this happens not only on the Earth but also during spaceflights. 

The life on Earth is influence by gravity force as shown in plant that are sensitive to gravity change s 
in a 10-3 to 10-4 G range (Driss-Ecole et al., 2008). All living species, exposed to spaceflight or 
changes in gravity force, as observed on other moons or planets (Fig. 68), show a physiological 
adaptation. If the Humanity wants to colonized Moon or Mars, a deeper knowledge concerning the 
effects of long lasting spaceflights and modified gravity on physiology is required. Furthermore, some 
studies developing altered gravity were aimed to understand the adaptation to internal fluid shifts and 
vestibular modifications.  

 

Figure 68: Gravity level expressed in g on solar system planets and Moon. One of the Jupiter’s moons, Europe, is also 
indicated because water has been recently found on this satellite and the possibility of life cannot be excluded.  
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During space-flights astronauts undergo to constant environmental modifications:  a diminution of 
gravity (microgravity) caused by the increase of distance from the Earth, the different gravity 
accelerations that exerts the largest effect on physiology, the isolation and confinement that impacts 
the well-being of astronauts and the radiations (in particular secondary radiations produced by the 
impact of high energy protons, from the sun, with the materials of the rockets or the space station 
(Williams et al., 2009). 

Even if the man has been able to adapt his life in space, the absence of gravity alters physiological 
systems in the short or long term. The acclimation (physiological and psychological responses to the 
space-flight environment) can be referred as short-term (hours to days) or longer-term exposures (days 
to months). A simplified summary of these changes is shown in the Fig. 69. 

 

Figure 69: Timeline of physiologic acclimation and acclimatization experienced by astronauts from launch to after return to 
earth. From (Williams et al., 2009). 

 

The first rapid phenomena (in the first two hours) that affect the astronaut is due to the change in 
spatial orientation and is called Space Adaptation Syndrome (SAS) or space sickness and provoke 
nausea, headache, lethargy, vomiting. This sickness is reversed within few hours but the most 
significant and serious effects regard the alteration of bone calcification inducing osteoporosis and 
muscle atrophy (Porte and Morel, 2012).  

Together with a constant physical training that precedes the flight, the primary counteractions against 
microgravity-induced muscular changes are the exercise during space flight and rehabilitation after 
landing even if such arrangements are not sufficient for the long term spaceflight. Moreover physical 
exercise during space flight consumes valuable resources on the International Space Station including 
oxygen, water, food and crew-time. For these reasons, alternative countermeasures should be 
developed. Recently, dietary supplements were also proposed to compensate the metabolic disorders 
as the ectopic fat storage also observed in space (Bergouignan et al., 2011). 



159 
 

However, besides the deficits mentioned above, modification of gravity affects also the vascular 
physiology and the brain functions and this is the reason why, at the beginning of the thesis, our 
ambition has been to study a model able to recapitulate this symptoms.  

Because cardiovascular functions and cognition must be preserved in humans undergoing to 
spaceflights, spatial agencies strongly support the research in these two fields. Since on the Earth, the 
gravity force influences body blood volume distribution (blood distribution is mainly concentrated in 
the lower part of the body), the absence of gravity induces a fluid redistribution shift towards the upper 
part of the body; consequently the blood pressure gradient assured on the Earth is affected, inducing a 
cardiovascular adaptation (Dabertrand et al., 2012). But what is the impact of these adaptations on 
cognitive functions? 

Being the number of studies on astronauts limited, our preliminary contribution was aimed to 
understand if memory process could be affected by hypergravity alteration. However, a plethora of 
questions remain unanswered. Could the memory be affected by gravity modifications? If so, which 
form of memory? What are the bases of the alterations? 

Some studies tried to shed light on these questions, and in the following part we are going to firstly 
introduce how it is possible to achieve a model of altered gravity \on Earth, and secondly we will 
revised the literature concerning gravity alterations and its effect on memory, in particular via vascular 
adaptations. 

  

5.1. Rodent models of gravity alteration. 

There are different experimental designs to modify gravity. The best one but the most expensive is the 
spaceflight. From the first flight of Laika (1957) and Iouri Gagarin (1961), each year many space 
experiments have been done but, of course, not enough to produce statistically relevant results; for that 
reason laboratories on Earth are trying to achieve this goal. 

In laboratories, several devices have been realized as hindlimb suspended or unloaded model, which 
model the unloading in the posterior part of the body and the fluid shift observed in space, mimicking 
the microgravity condition. This model is often used since it is able to reproduce the bone loss and 
muscular atrophy in the hindlimbs together with the fluid shift in the cephalic part of the body. 
However, the physical constriction can be considered an important bias in behaviour experiments 
affecting the performance, such as, for example, in a maze (Fig. 70). 

 

Figure 70: Models of tail suspension for mice (left) and rat (right).  

 

In human the head-down bed rest or dry immersion are used to reproduce the lack of activity and the 
fluid shift with consequences on bones, muscles and for the cardiovascular system. 

Another model used to study gravity changes is the hypergravity achieved by centrifugation. 
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This model has been developed based on the theory postulating that hypergravity (close to 2-3G) 
could produce the opposite effects to microgravity (Plaut et al., 2003; VanLoon, 2016). To study 
hypergravity modifications, during our study we used the device built by CNES and available in 
PLEXAN (University of St Etienne) because it offers the possibility to centrifuge large cohorts of 
animals. Moreover, the housing conditions during centrifugation are closer to the ones used in the 
STFP experiments (fig. 71).  

 

Figure 71: Centrifugation devices used in previously mentioned publications (left, black and white) or by us in PLEXAN, St 
Etienne with inside view of gondola (right, in colour). 

 

Despite some advantages, the interpretation of centrifugation results should take into account some 
considerations; the gravity can induce physiological effects on cerebral functioning depending on the 
level and the duration of hypergravity. Thus, in the choice of a short centrifugation period, that can 
mimic the acute effect of space-shuttles launch/landing, might be insufficient to induce observable 
effects. Vice versa, if we want to compare chronic protocols to the longer astronauts’ spaceflights we 
could assume some potential bias induced by the non-equivalent life duration and by different 
biological development across species (Porte and Morel, 2012).  

Moreover, the results are obtained in normogravity conditions, i.e. when the centrifuge is stopped. 
Thus, it is difficult to understand whether the effects relay on the hypergravity period or the change of 
gravity related to the stop of the centrifuge. 

Furthermore, the level of centrifugation achieved is also important since it can affect the anxiety level 
of the animals (see the MS reported in the annex). 

Finally, another difference between the human conditions during the spaceflight and the ground 
experimental model consists in the absence of  spaceflights radiations, confinement, stress, lack of 
resources, sleep loss, fatigue, circadian desynchronization, work overload and others physiological 
adaptations as cardiovascular deconditioning that can cooperate synergistically altering the cognitive 
functions. In laboratory, it is difficult to reproduce all these parameters together. Nevertheless, the 
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centrifuge reproduces the confinement and the modification of gravity and a potential stress due to the 
acceleration of the centrifuge.  

Despite the different factors participating to cognitive alteration during spaceflights, in our study we 
focused on gravity effects on memory and vascular systems; however, after the revision of the 
bibliography concerning memory and vascular modification, in the last part of the chapter, we present 
the possible effects of stress on memory since spaceflights, microgravity and hypergravity events 
present also stressful situations.  

Concerning our project, the centrifugation represents both a protocol of gravity change and a 
modification of environmental conditions, known to modify vascular reactivity and brain functions. As 
seen for the hypertension model, we can imagine that the physiopathological adaptations of the 
vascular systems to hypergravity can be deleterious for the memory process.  

 

5.2. Gravity changes, learning and memory 

In the total amount of 500 astronauts exposed to microgravity during spaceflights, no amnesia 
during and after these spaceflights has been observed, despite the memory processes could be finely or 
sneakily affected. In a study following the gravity induced modifications on the vestibular system it 
was reported that vestibular system also seems to play an important role in building and maintaining a 
mental representation of the world” (Mast et al., 2014). Then, gravity changes disturbing vestibular 
function can act on behavioural aspects such as emotions and memory. In fact, as reviewed recently 
(Bojados and Jamon, 2014; Mast et al., 2014; Porte and Morel, 2012), the vestibular system is 
implicated in spatial memory because the representation of space is required to identify the position 
between the subject and environment.  

In Humans, studies about memory performances have been performed on astronauts but the 
results should be carefully interpreted because the experimental conditions are really different form 
each other (duration of spaceflight, memory tests,..), depending on the goal of the space mission. 
However, they revealed that motor behaviours is impaired and it can interfere with simultaneous 
cognitive task performance (Fowler and Manzey, 2000; Manzey et al., 1993, 1995; Manzey et al., 
2000). Moreover, the perceptions of orientation (Dyde et al., 2009; Leone et al., 1995) and 
longitudinal body axis (Clement et al., 2007) are clearly altered during microgravity periods in 
parabolic flights. However, the mental rotation of three dimensional objects seems not affected (Leone 
et al., 1995); in contrast, recently, an altered  3D-images perception task has been reported by EEG h 
at the beginning of the task (Cheron et al., 2014). Finally, modifications of grey matter are measured 
in volunteers exposed to bed rest during 30 days (Li et al., 2015).  

In summary, experiments on humans showed that gravity changes are not able to abolish brain 
functions but they can modify some parameters of these functions as kinetics, duration, encoding. 
These parameters observed on highly trained humans as astronauts have been modeled in rats and 
mice to understand the fine mechanisms and the basis of gravity effects on memory.  

In animal models, the effects of microgravity on memory appear controversial at first sight. 
For example, in rats centrifuged at 10-15G during 3-5 min, hypergravity induces spatial learning and 
memory impairment in Y and Morris Water Mazes together with neuronal apoptosis (Cao et al., 2007; 
Sun et al., 2009), Despite the intense exposure to high G, it is more reasonable to attribute these effects 
to intense acute physical and psychological stress, rather then hypergravity.. In another study, spatial 
learning and memory deficits have been revealed using Morris Water Maze in hindlimb suspended rats 
(Qiong et al., 2016), whereas this is not the case in rats after their early development in microgravity 
during spaceflight (STS90) (Temple et al., 2002). In this last study, a weak impairment is revealed on 
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the beginning of the learning phase (Temple et al., 2002). Finally, hypergravity-induced memory 
effects results to strictly depend on sex, duration of hypergravity exposure and animal species used (rat 
versus mouse) as reviewed in (Bojados and Jamon, 2014; Francia et al., 2004). 

Hypergravity has been used to study two different effects: 1) to mimic a chronic perturbation of 
gravity, the opposite of microgravity induced by spaceflight, where hypergravity is applied chronically 
during days, and 2) as a countermeasure to limit the effects of microgravity, especially bone loss and 
muscle atrophy, in this last case, hypergravity is applied during a repetitive short period (1-2h/days).  

The chronic hypergravity is principally used to disturb the early phase of brain development, 
so there are only few experiments on adult animals. After chronic centrifugation (14 days, 2G), only 
the initial phase of radial arm maze acquisition is affected and this delay in acquisition is rapidly 
compensated by hypergravity-induced hyperactivity (Mitani et al., 2004). Similar results were found 
in mice exposed 21 days to hypergravity and tested in Morris Water Maze (Bojados and Jamon, 2014). 
This last study, moreover, compared the effects of 2G to 4G hypergravity and confirms that the level 
of G is particularly important; at 3G-4G, the level of plasma corticosterone is significantly increased 
and behavioural exploration confirmed that mice were more stressed. So, it is not possible to exclude 
stress side effects. If one hour of centrifugation has no effects on the discrimination of new spatial 
arrangements novel object recognition, exposures to 2 hours or repetition of 1 hour during 5 days, 2G 
centrifugation alters this discrimination (Mandillo et al., 2003). But in this study, the device could 
influence per se the stress parameter and visual perception as shown in Fig. 71: in fact the use of 
transparent cages together with and the rotation of the centrifuge could influence the vision. This bias 
could explain the behavioural difference observed between both situation and “home cage” animals.  

Sometime, the centrifugation can have even a beneficial effect on cognition, especially on flexibility, 
as assessed by water maze reversal test in young or adult CD1 mice treated 1h/day during infancy 
(Francia et al., 2004; Francia et al., 2006).  

Finally, the social interactions were not significantly affecting in animals born in hypergravity (1.8G), 
just the self-grooming and latency before the appearance of cross-under events were decreased during 
social interactions (Thullier et al., 2002).  

 

5.3. Gravity changes and neuronal function 

The behavioural analysis of cognition is concomitant and/or associated with structural and molecular 
analysis of brain.  

The c-Fos labelling reveals that gravity modifications induced the activation of the hypothalamic-
hypophysis-adrenal axis suggesting effects on brain and on the stress pathways (Gustave Dit Duflo et 
al., 2000). High levels of hypergravity increase the neuronal apoptosis (Cao et al., 2007; Sun et al., 
2009) and the incomplete filling of glutamate vesicles associated with a reduced exocytosis 
(Krisanova et al., 2009). In microgravity conditions, after 7 days (Spacelab3), the measure of 
radioligand binding indicated that the expression of 5HT1 receptor is increased in hippocampus 

whereas 5HT2, muscarinic, adenosine A1, GABA, β-, α1- and 2 adrenergic receptors were not 
affected (Miller et al., 1989). The cDNA arrays indicated that microgravity or simulated hypergravity 
affects the gene expression in brains structures involved in memory. In fact, after 2 weeks of simulated 
microgravity the gene encoding for the NMDAR1 -subunit of NMDA receptor which activation is at 
the origin of the induction of LTP- is upregulated (Frigeri et al., 2008). Hypergravity (1h/days during 
5 days) increased also the hippocampal expression of the gene encoding SNAP-25 related protein 
involved in synaptic transmission. Interestingly, some genes encoding proteins closely related to stress 
response and control of pain are also affected (Del Signore et al., 2004).  
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Microgravity affects hippocampal neurons after 14 days of hindlimb suspension with a decrease of 
area, perimeter, synaptic cleft and length in CA1 neurons. However, the number of nodes, spines, and 
spine density were increased (Ranjan et al., 2014). But unfortunately these experiments have not 
explored the hippocampal-cortical connections and functionalities required for the memory tasks. 
Moreover, in CD1 mice exposed to hypergravity, the decrease of memory performances could be 
linked to the decrease of BDNF in hippocampus and to a decrease of NGF in frontal cortex (Francia et 
al., 2006) . 

Recently, some studies have explored the role of oxidative stress in microgravity and hypergravity on 
brain functions. The spatial memory impairment measured in mouse exposed to hypergravity is 
reversed by antioxidant molecules but also by electroacupuncture (Feng et al., 2010). In fact, the 
simulated microgravity (21days) increased the oxidative stress and affects the expression of 
metabolome to regulate brain activity against oxidative stress (Wang et al., 2016c) and modified the 
expression of antioxidant genes (Sod1, Sod2) and their specific miRNA (miR-134 and miR-125b-3p) 
in the hippocampus but not in the cerebral cortex (Chen et al., 2016). This effect of hndlimb 
suspension is reversed with injection of mechano-growth factors known to protect neurons against 
death (Chen et al., 2016).  

The long term potentiation is preserved in rat hippocampus exposed to hypergravity (Guinan et al., 
1998), but 4G acceleration (during 48 h) induces the phosphorylation of AMPA receptors and 
increases the excitatory postsynaptic potential (EPSP) slope 1 h after tetanus stimulation, leading the 
authors intituling the paper  “exposure to high gravitation forces induces long-term potentiation” (Ishii 
et al., 2004). They also suggested that this effect could be due to the action of stress hormones.  

The situation during spaceflight can be even more complex depending on other factors including 
physics and psychological factors. For instance, radiations can affect memory; in particular in animal 
models, the cosmic radiations can accelerate the formation and deposit of β-amyloid (Cherry et al., 
2012; Direk et al., 2013). The different phase of launch and landing and the modification of 
environment can be stressful, and then the stress effects on memory are evoked in the followed 
paragraph. 

 

5.4. Gravity and mood 

Stress, as well as anxiety and depression, dramatically modulate the encoding and retrieval of memory 
(Hur et al., 2016; Marchewka et al., 2016; Narme et al., 2016). The link between stress, gravity 
modifications and possible memory troubles have been recently reviewed (Porte and Morel, 2012). 
Briefly, increasing arousal promotes encoding and relevant retention of memory until a limit after 
which it becomes deleterious. The effects of anxiety and stress vary in function of the type of memory 
considered; very high levels of stress tend to alter relational memories (spatial, contextual) to the 
benefit of procedural ones (cued fear learning) (Packard, 2009), sometimes even leading to 
pathological profiles such as post-traumatic stress disorder (Fig. 72A) (Kaouane et al., 2012). 
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Figure 72: A) Effects of acute stress, as assessed by plasma and hippocampal corticosterone (CORT) levels, on contextual vs 
elemental fear memory. Globally, stress is associated with beneficial effects on both procedural cued and relational 
memories. However, in a given environment in which a negative event occurs, and under high emotional conditions, subjects 
can develop hypermnesia for a salient cue of the environment associated to amnesia for the general context of the event. This 
paradoxical pattern, well described from the psychological point of view, has been named “Post-traumatic stress disorder” 
(PTSD). As depicted here, recently, Kaouane and colleagues modelled a PTSD-like syndrome in mice by increasing systemic 
and hippocampal CORT levels after contextual Pavlovian conditioning, demonstrating the importance of stress hormone 
concentration in the trauma. B) Effects of gravity level on plasma CORT in mice. Plasma CORT levels increase beyond the 
physiological maximal levels when mice are bred under more than 3G conditions by centrifugation (adapted and schematized 
from Guéguinou et al., 2011). C) Persistent effects of gravity level on anxiety and hippocampal learning in mice. Increasing 
levels of gravity (from 1G to 4G) dramatically increase persistent (>10 days) anxiety troubles associated to spatial learning 
impairments in the Morris Water Maze. We then hypothesize a possible depressive-like syndrome in mice bred under high 
gravity level conditions. D) Expected psycho-physiological pattern of mice bred under high gravity level conditions. High 
gravity level breeding conditions induce an increase in plasma and hippocampal CORT levels beyond the maximal 
physiological levels. As shown in this combined scheme, we hypothesized that these CORT levels could impair contextual 
conditioning during centrifugation. This could lead to a paradoxical pattern in which mice initially trained to associate a 
global environment with an electrical shock would display fear memory for a salient cue and amnesia for the context in its 
whole. In summary, 4G centrifugation associated with a negative event could induce PTSD-like syndrome in mice. From 
(Porte and Morel, 2012) 

 

Mood disorders affect astronauts and can influence the crew’s mental stability (Carter et al., 2005; 
Kanas, 1998). Gravity, as well as confinement, loss of light-dark cycle, alteration of perceptions, the 
perception of the Earth and lack of physical activity, are probably implicated in the development of 
mental disorders. To study the segregation between gravity and other stressors, a crew should be 
totally isolated like in Mars500 (Fig. 73, a crew has been isolated during 500 days as in the module 
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reproducing a space module designed for missions to Mars) or Antarctic winter-over. The 
psychological effects of confinement have been recently reviewed and the increase of stress makers is 
confirmed in these set of experiments (Pagel and Chouker, 2016). The 6° head-down tilting bed-rest 
can also reproduce the lack of physical activity and the redistribution of corporal fluids (Fig. 74) 
(Hargens and Vico, 2016) but the effects on mood are not evaluated in the same manner because the 
subjects are solicited every day by the medical teams. Anyway, the subjects feel a decrease of their 
attention and periods of discouragement partially due to the repetitions of medical solicitation (for 
biopsies, travels to physical training devices,…) and the lack of activity.  

 

Figure 73: Plan of Mars500 isolator (http://mars500.imbp.ru/). 

 

 

Figure 74: A and B explanations of the fluid shift observed in real microgravity and in bed rest situation (from Hargens and 
Vico, 2016). At the bottom, two pictures of human in bed rest position, (from MEDES, the European space clinic where bed-
rest experiments are conducted for ESA).  
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In young Sprague-Dawley male rats, the hindlimb suspension induces, after 2 weeks, a loss of sucrose 
preference coupled with the dysfunction of cardio-vascular tone due to sympatho-vagal imbalance 
(Moffitt et al., 2008). This anhedonia is sensitive to classical anti-depressors as Fluoxetine, an 
inhibitor of serotonin reuptake. The serotonin pathway is affected in microgravity and simulated 
weightlessness especially in hippocampus (Blanc et al., 1998). 

Different studies showed that microgravity and hypergravity were associated with anxiety or stress. As 
previously mentioned, peri-adolescent CD1 mice and C57BL6j exposed to hypergravity (2G during 2h 
and 3-4G during 21 days, respectively) display anxiogenic profile tested elevated plus maze or light 
dark box testes (Francia et al., 2004; Gueguinou et al., 2012). The activation of hippothalamo-
hypophyso-adrenal axis as well as the activation of amygdala after modification of gravity also 
suggests an increase of stress (Gustave Dit Duflo et al., 2000).  

As also summarized in (Porte and Morel, 2012) “when a subject is submitted to non-terrestrial gravity 
conditions, he undergoes physiological adaptations that can evoke deregulations in mood, affect and 
arousal systems, resulting in the development of despair, anxiety– and/or depressive-like behaviours. 
From this line of evidence, and knowing that mood and arousal are direct modulators of memory 
acquisition and retention, one can consider the importance of studying these functions under modified 
gravity conditions”. 

 

5.5. Effects of gravity modification on vascular physiology 

In the previous chapter we have described how vascular dysfunctions can affect memory process, 
being considered a risk factor to the development of neurodegenerative disorders; since gravity 
modifications could affect spatial memory it is possible to assume that vascular function can be also 
involved in this phenomenon. In human, during spaceflights the microgravity induced a corporal 
fluid shift or redistribution responsible for a cardiovascular deconditioning (De Santo et al., 
2001, Convertino et al., 1989, Norsk, 1992), reproducible in bed-rest experiments. The resulting effect 
of weightlessness is a vascular adaptation to the increase in cardiac output by reducing the systemic 
vascular resistance, which limits the increase of blood pressure blood pressure. This has an opposite 
effect in cerebral arteries (reviewed in Norsk and Christensen, 2009). During the first spaceflights, the 
blood concentration of norepinephrine have been measured indicating that the sympathetic response 
was exaggerated just after launch, returning to nominal values during the spaceflight, suggesting an 
adaptation more than alteration. In the landing phase the orthostatic pressure drop seems more 
deleterious and the cardiovascular mismatch seems more complex (Norsk et al., 2015). Moreover, 
long-term effects cannot be excluded; a recent retrospective study on astronauts indicates that the 
death due to cardiovascular disorder is significantly increased in the part of this population exposed to 
the deep space radiation, in physically and mentally trained men and women (Delp et al., 2016). 

The most important cardiovascular problem for astronauts is the orthostatic intolerance. 
Retrospective study on astronauts exposed to microgravity during 7-18 days indicated that the 
orthostatic intolerance was observed if the arterial compliance was increased; contrary, if the 
compliance was decreased there was not orthostatic intolerance (Tuday et al., 2007). In simulation of 
orthostatic intolerance experiments, the autoregulation of cerebral blood flow was not affected 
(Rickards et al., 2007). A modification of cerebral arteries adaptation was measured during spaceflight 
(Gazenko et al., 1981). During the microgravity phase in parabolic flight, the blood pressure decreased 
as expected but the blood flow velocity in middle cerebral artery was not affected (Ogoh et al., 2015) 
whereas in bed-rest experiment it was reduced (Goswami et al., 2015). These results suggest that the 
cerebrovascular adaptation to fluid redistribution takes more time than in “systemic vessels”, 
confirming the measurement performed on astronauts of MIR. The vascular resistance alteration has 
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been decreased during the first 14 days and after day-24 it returned to normal values (Arbeille et al., 
1996; Arbeille et al., 2001).  

The vascular adaptation to microgravity is due to modification in both endothelial and smooth 
muscle cells. The animal models, even if the redistribution of fluid is not so important than in human 
(size, quadruped), are needed to understand the structural and molecular adaptations. In vascular field 
many or arteries and veins were studied after spaceflights and hindlimb suspension. Here, we focused 
on the effects of gravity alteration on cerebral arteries.  

 

5.5.1. Structural Modifications  

The effects of gravity modifications on vessel walls are controversial. It seems depending on the 
model (human, rat or mice) (human, rat or mice) paradigm (spaceflight versus bed-rest or hindlimb 
suspension) and probably aging. This last point is poorly studied for the moment but both for memory 
and vascular alterations aging is an important factor (for example in the last century astronauts are 
more closed to 45-50 year-old for the first flight; now it is more closed to 35 year-old). For example, 
in human, during bed-rest (5 weeks) the lumen of femoral artery decreases without change of wall 
thickness and carotids are not affected (Palombo et al., 2015) whereas during spaceflight (6 months) 
carotids results more rigid (Hughson et al., 2016). Studies describing the effect of gravity on artery 
wall shows similar the results to those observed in atherosclerosis. After 7 days of hindlimb 
suspension, collagen increases in aortic wall (Tuday et al., 2007; Tuday et al., 2009) and the 
phenomenon worsen with the duration of suspension (Gao et al., 2009). Carotid lumen is decreased via 
an increase of glycocalyx (Kang et al., 2015). In middle cerebral artery, a decrease in elastin and 
increase of collagen are associated with a vascular hypertrophy (Lin et al., 2009) (Cheng et al., 2014; 
Looft-Wilson and Gisolfi, 2000). These results are presented as consequences of changes in reactivity, 
and the increase of pro-inflammatory factors implicated in vascular remodelling as Vcam and MPC1 
(Liu et al., 2014).  

 

5.5.2. Regulation of the endothelial cell proliferation, a link with angiogenesis? 

The adaptation of endothelial cells to microgravity and hypergravity was studied in culture placed in 
special devices for clinorotation, spaceflight or centrifuges. In vivo, the function of endothelium is 
tested through the contractile properties of the vessels. 

As observed in vivo and in memory studies, the alteration of endothelial cell functions depends on the 
duration and force of gravity changes but also the origin of the cell appears determinant as reviewed 
recently (Maier et al., 2015). Indeed; the effects of gravity changes are different on endothelial cells 
from small or large vessels. The time course of the proliferation/differentiation balance is highly 
complex in simulated microgravity. The first hour of clinorotation can increase the proliferation of 
endothelial cells (Carlsson et al., 2002). In details, after 24h in clinorotation, iNOS is overexpressed, 
NO is increased, in 3D culture endothelial cells create tubes or necrotic aggregates (Siamwala et al., 
2010), with AP1 transactivation (Wang et al., 2009) and modification of purinergic receptor pattern 
(Zhang et al., 2014b). After 48h, autophagosomes are formed via increase of expression of LC3 
becline-1 (Wang et al., 2013b), first alterations of the cytoskeleton are measured  and cells are more 
rounded (Janmaleki et al., 2016). During the first minutes to 10 days the synthesis of osteopontin and 
VEGF are modulated in opposite way to explain the different phases of proliferation and necrosis of 
the cells (Grimm et al., 2010; Infanger et al., 2004). Alterations of cytoskeleton are associated with 
increase of expression of pro-apoptotic factors (caspase-3, Bax1, p65,…) (Infanger et al., 2007) and 
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mitochondria dissembling (Morbidelli et al., 2005) and finally apoptosis is clearly measured after 72h 
(Kang et al., 2011).  

Angiogenesis should be affected since the increase of NO production, Timp2 Icam1 and Vcam 
expression and the decrease of proteasome activity observed in cultured cells can interfere with 
angiogenesis (Maier et al., 2015; Mariotti and Maier, 2008) (Muid et al., 2013).  

 

5.5.3. Vascular reactivity adaptations 

The intravascular fluid loading and redistribution of fluid shift due to gravity changes influence the 
vascular reactivity in all vascular beds. Overall, the intravascular discharge causes an adaptation 
reducing vasoconstriction and sometimes the myogenic tone whereas fluid overload increases 
vasoconstriction. It is that why, many studies showed arteries differentially affected by spaceflight or 
hindlimb suspension, and also why the effects are globally in opposite ways. . The mechanisms 
involved affects the vasorelaxation induced by NO pathway in ECs and the vasoconstriction though 
the excitability and calcium signalling in SMC. The regulation of myogenic tone is still the subject of 
debate with conflicting results for the effect of spaceflight and suspension but also because its 
molecular bases are embedded in those balance vasoconstriction / vasorelaxation (Colleran et al., 
2008; Looft-Wilson and Gisolfi, 2000). In cerebral arteries the results have been principally obtained 
in suspended animals and they are in perfect accordance with the theory claiming that the overload of 
fluid increases the vasoreactivity. Indeed, increase of vasoconstriction induced by depolarization, 
norepinephrine, angiotensin-II and serotonin measured in carotids, basilar, middle and posterior 
cerebral arteries correlates with the increases of AT1a and AT1b angiotensin-II receptors (Bao et al., 
2007) CaV1.2 expression and L-type calcium currents (Xue et al., 2011), RYR (Morel et al., 2013).  

The vasorelaxation drown more attention thanks to its potential link with orthostatic pressure drop and 
intracranial hypertension related to perturbation of visual acuity. The decrease of efficiency of the NO 
pathway is measured in hindlimb suspended rat, increasing myogenic tone (Geary et al., 1998), via the 
decrease of eNOS expression (Prisby et al., 2006; Wilkerson et al., 2005). The repolarizing pathways 
are also affected by the increase of potassium conductance and channel (Fu et al., 2004; Xie et al., 
2005; Xue et al., 2011; Xue et al., 2007). Surprisingly, the results of the experiment obtained during 
different spaceflights differ from each other. The recent BION-M1 experiment performed on 
C57BL6/N mice showed a decrease of depolarization- and thromboxane A2-induced contractions 
without modification of ACh-induced dilatation (Sofronova et al., 2015) confirming only partially the 
first results obtained with STS135 spaceflight (Taylor et al., 2013). The differences between the two 
spaceflights experiments could be due to experimental design (flight duration, radiations, return phase, 
sex and aging of mice) but also to the CO2 partial pressure. Indeed, the difference in pCO2 between 
ISS and Soyouz is closed to 100 fold. The duration of exposure to gravity change is also important for 
cerebral arteries, in human. Finally, an increase of apoptosis of smooth muscle cells is detected in 
cerebral arteries from hindlimb suspended rats, probably due to the increase of expression of calcium 
activated large conductance potassium channels (Xie et al., 2010). 

 

5.5.4. Adaptation of cultured vascular smooth muscle cells  

In culture, microgravity (cells were placed in clinorotation or in specific device for spaceflights) 
modifies the expression pattern of purinergic receptors increasing P2X4 and decreasing P2X2 (Zhang 
et al., 2014b); moreover, it decreases the expression of RyR1 (Dabertrand et al., 2012), modifies the 
phosphorylation of myosin heavy chain (smMHC) and caveolin-1 (Spisni et al., 2006) and increases 
the destructuration of cytoskeleton to increase apoptosis (Kang et al., 2013). So, the modifications 
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of P2X and RyR suggest an alteration of the calcium signalling linked to the decreased of reactivity 
observed in arteries undergoing increase of blood pressure.  

 

5.5.5. Specific role for oxidative stress 

Oxidative stress induced by reactive oxygen species (ROS) is one of the most important pathways 
altering cell physiology. It can be trigger by stress, radiations and aging, all parameters linked with 
gravity changes and environmental correlates.  

Angiotensin-II induced hypertension, mitochondrial dysfunctions and stimulates NADPH oxidases 
(Doughan et al., 2008). Hindlimb suspension as well as hypertension is characterized by a decrease in 
anti-oxidative function in mitochondria (Chrissobolis et al., 2008) (Dikalova et al., 2010). The increase 
of ROS is concomitant with the increase of expressions of Nox2 et Nox4 and the decrease of 
MnSOD/GPX-1. Drugs as apocynin (NADPH-oxydase inhibitor) or mito-tempo (anti-oxidative) 
decreased the effects due to hindlimb suspension (Peng et al., 2015; Zhang et al., 2014a). Finally, as 
well known, radiations increase the ROS production, then in space, the high level of radiations could 
also participate to the vasculature alteration via the increase of NO’s trapping by ROS (Delp et al., 
2016) (Ghosh et al., 2016). 

 

5.5.6. Adaptation of venous system 

It is not easy to study the physiology of veins, but the adaptation of vein to altered gravity should be 
important especially to explain the loss of peripheral vision observed in astronauts potentially induced 
by intracranial hypertension due to excessive pressure in cerebral veins. This theory has been 
established by comparison with the headache due to the altitude (Wilson, 2016) and the fact indicating 
that the venous volume is increased (except in calf vein) from the fifteen day of flight, in astronauts 
(Arbeille et al., 2015). Unfortunately, the effects of gravity alterations have not been studied in details 
and only in vena cava and mesenteric veins. Spaceflight induced a shift in the binding (Sayet et al., 
1995) and decreased the norepinephrine-induced vasoconstriction (Behnke et al., 2013).  

 

5.5.7. Recovery 

After few hours of perturbation including tachycardia and increase of blood pressure (Fagette et al., 
1995; Tarasova et al., 2001), the altered vascular parameters - by hindlimb suspension and spaceflights 
- return to normal values after 3 to 7 days after the recovery to a normal position (Morel et al., 1997; 
Xue et al., 2011) (Behnke et al., 2013) (Arbeille et al., 2015). 

 

5.5.8. Centrifugation as a countermeasure of microgravity-induced dysfunctions 

Daily applications of centrifugation are sufficient to restore a part of cardiovascular parameters (4% of 
the suspension duration, i.e. 1h/day during 28 days of hindlimb suspension). But if it is enough for 
cardiovascular system, bones and muscles alterations are still presents (Sun et al., 2004; Zhang et al., 
2003b). The effects of this countermeasure is partial, especially in cerebral arteries in which the 
modification of L-type currents is not reversed (Xue et al., 2007) whereas the wall thickness returns to 
control values (Lin et al., 2009). It is noticeable that anti-hypertensive treatment with losartan reversed 
the effects of hindlimb suspension on cerebral arteries (Zhang et al., 2009).  
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GENERAL MATERIAL AND METHODS 
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1. Ethical Consideration 

All experimental procedures adopted for in vivo studies were performed in agreement with the official 
European Guidelines for the care and use of laboratory animals (directive 2010/63/UE) and were 
approved by the Ethical Committee of the University of Bordeaux (protocol 50120140-A) and by the 
Ethical Committee of the University of St Etienne (CU15N02). All the experiments were conducted in 
order to minimize the sufferance and the discomfort stress of the animals, and designed to reduce the 
number of rats used per group. 

 

2. Animals 

The experiments were realized on adult Sprague Dawley rats (8 weeks of age, 225-250 gr) and 
Spontaneously Hypertensive Rats and Wystar Kyoto Rats bought at different ages (between 2 and 7 
months regarding the experiments). All rats were provided by JANVIER Labs. Upon arrival in the 
animal facility, rats were habituated to their new housing conditions for a minimum of 3 days (2 rats 
per cage). Because some of our learning and memory procedures required specific testing and food 
deprivation procedures, all rats were then housed individually (1 rat per cage, 1 week before the 
beginning of the experiments) for the entire duration of the behavioural experiments. All rats were 
housed under standard conditions (22°C, 55% humidity, 12h light–dark cycle, lights on 7.00 am) with 
standard food and water ab libitum. Before the experimental protocol, each rat underwent a handling 
procedure in order to be habituated to the experimenter and to minimize as much as possible stress 
responses that would interfere with subsequent memory testing. This procedure consisted in removing 
the rat from its cage and holding it in the experimenter’s hands until the rat felt comfortable.  

 

3. Behavioural tests 
 
3.1. Food deprivation procedure 

The memory test procedure used in this thesis, named the social transmission of food preference task 
(see below the detailed description) is appetitive in nature and required the rats to undergo a partial 
and gradual food deprivation protocol in order to increase their motivation for food during the entire 
duration of the experiment. Rats were submitted to a partial food deprivation protocol to increase their 
motivation 3 days (Day-3) prior to the beginning of the memory task (interaction D0). The amount of 
food available in their home cage was gradually reduced to bring them to 85-90% of their baseline (ad 
libitum) weight and never more than 15%, as regularly performed in our lab. An adequate total food 
amount (about 15 g) was then distributed daily to maintain a level of food deprivation constant in all 
animals. 

 

3.2. Social Transmission of Food Preference Task (STFP) 

The social transmission of food preference (STFP) task involves an ethologically-based form of 
associative olfactory memory (Frankland and Bontempi, 2005) and the paradigm was performed 
according to what is described by Lesburguères et al. (Lesburgueres et al., 2011). This task, appetitive 
in nature, required a partial and gradual food deprivation which allows to increase rats’ motivation for 
food during the duration of the experiment (see previous paragraph). 
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In the STFP task, within only one single interaction session of 30 min, rats encoded rapidly about the 
safety of potential food sources by sampling the odour of those sources on the breath of their 
littermates. Food deprived rats underwent a three-step procedure as illustrated in the figure below (Fig. 
75).  

To rule out the possibility of a taste bias in the SHR strain and to have the possibility to test the recent 
and remote memory on the same animals, two pairs of flavour were used: the cumin-thyme association 
and cocoa-cinnamon association. To simplify the explanation of the task we are going to describe the 
cumin-thyme association, but the same protocol is used for the second pair of odours. Just the 
percentages of spices change: instead using 0.5 % of cumin, it is possible to use 2% of cocoa, and 
instead of 0.75% thyme it is 1% of cinnamon. 

The flavours associations used in our study are in accordance to the protocol described in 
(Lesburgueres et al., 2011). 

 

Figure 75: The 3-step social transmission of food preference task. Above the STFP task when the demonstrator eat plain 
food (without flavour); below the STFP when the demonstrator eat flavoured food allowing the formation of the associative 
olfactory memory here detailed:  (1) Exposure (30 min): a food-deprived demonstrator rat (D) eats cumin flavoured food 
(0.5%). (2) Social interaction (30 min): an observer rat (O) forms an association between the cumin odour and some 
constituents of the breath of the demonstrator rat. (3) Retention test (20 min): When submitted to a choice between cumin and 
a novel food (thyme, 0.75%), the observer rat expresses a memory of the association by preferentially eating cumin because it 
was present in demonstrator's breath, considered without danger and therefore safe to eat. Here in this example the 
association considered is cumin-thyme, but cocoa-cinnamon can be used respectively. Adapted from (Lesburgueres et al., 
2011). 

 

The task took place in the home cage of the animals. Rats called "demonstrators" were first presented 
with one cup (height: 4 cm; diameter: 7 cm carefully cleaned between each experiment to prevent 
olfactory cues) in their home cage and habituated to eating plain or flavoured powdered chow (0.5% 
cumin or 2% cocoa) for three days (30 min session). Observer rats were also shaped for three days to 
consume plain powdered chow from two cups placed in their home cage for 20 min. Cups were then 
weighed and additional food was given to reach a daily amount of food of about 15 g. These shaping 
and eating procedures minimized novelty-induced stress that would interfere with memory 
performance during the experimental procedure described below. 

The detailed experimental procedure is described and illustrated (Fig. 76) below: 

1) Exposure phase: Demonstrator rats were food-deprived and then habituated to eat plain or cumin 
(0.5 %, i.e. 0.5 g of cumin mixed in 99.5 g of plain chow; or 2 %, i.e. 2 g of cumin mixed in 98 g 
of plain chow) powdered chow for three days (30 min session). During these 30 min period, 40 g 
of powdered chow were available in a cup placed in the demonstrator’s home cage. Water was 
removed from the cage. After the feeding session, the food was weighed, and the amount eaten 
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was recorded. Observer rats were also shaped for three days to consume plain powdered chow 
from two cups placed in their home cage. 
 

2) Interaction phase: the demonstrator rat was moved to the observer’s cage fitted with a stainless 
steel wire mesh divider (greed). Food-deprived observer rats and demonstrator rats were separated 
in opposite side of the cage for a 20 min interaction period, and then they were allowed to interact 
freely for another 10 min when the divider was removed. The demonstrator rat was removed from 
the observer’s cage at the end of this 30 min interaction period. Observer and demonstrator rats 
were always unfamiliar with each other 

 
3) Retention test: 1 or 30 days after the social interaction, respectively depending on the recent and 

remote memory test, food-deprived observer rats had to choose in their home cage between two 
cups containing a novel food (0.75% thyme or 1% cinnamon) or the familiar food that the 
demonstrator rat had consumed before interacting with the observer rat (0.5% cumin or 2% 
cocoa). After 20 min, cups were removed, weighed and olfactory associative memory performance 
was expressed as percentage of familiar food eaten (% cumin or % cocoa) using the following 
formula: (amount of familiar food eaten / amount of total food) x 100. In addition, the total 
amount of food eaten was examined to control that all the groups had the same motivation for 
eating food. 

 

Figure 76: Details of the STFP paradigm. During the entire procedure, observer (O) and demonstrator (D) rats were food 
deprived and received a daily amount of food of 15g. Demonstrator rats were shaped 3days in a row prior to interaction day 
to eat plain or cumin powdered chow in cups. Observer rats were shaped 3 days prior to interaction phase with 2 cups of plain 
powdered chow placed in their home cage. 1 or 30 days following the interaction phase, observer rats were submitted to the 
retention test, upon completion they were euthanized 90 minutes after the end of the test. Brain were collected and processed 
for Fos immunostaining and Collagen IV labelling Alternatively, as specified for each experiment in the text, brains were 
dissected and the regions of interests were processed for biomolecular analysis according to the protocols given by the 
suppliers.  

Flavour concentrations were chosen in pilot experiments to induce an innate preference for thyme or 
cinnamon (Lesburgueres et al., 2011). Because rats naturally prefer thyme over cumin (or cinnamon 
over cocoa) at the concentrations applied for the cumin/thyme flavour pair (or cinnamon/cocoa), the 
use of these two biased flavoured pairs permit to decrease the chance level at test and thus to optimize 
the possibility of detecting changes in memory performance across our various treatments. Indeed, 
interaction with a demonstrator that has eaten cumin powdered chow could reverse this innate 
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preference so that observers chose cumin over thyme (up to 80% of the total food eaten, chance level 
of ~20%). The same applies to cocoa and cinnamon. 

In the experiment concerning Ang-2 multiple injection in SDs, we wanted to see an increase of 
memory performance but the classical STFP interaction (composed by 20 min with the mesh divider 
that segregate observers from demonstrators, guiding the tidy interaction through the holes of the 
greed, and 10 min without greed allowing the free explorations between animals) is sufficient to 
induce high level of memory performance making difficult the detection of memory amelioration. But, 
since the STFP task is based on the association between the odour detection and the social interaction, 
the decrease of social interaction could affect the quality of the retrieval. Thus, if the grid is not 
removed, the social interaction is not complete and it is possible to observe a decrease of memory 
performance during the retrieval (Fig. 77, Lesburgueres et al., 2011, Giacinti, Bessières Theses), as 
revealed by a lower quantity of cumin eaten by the observer rats interacted with the demonstrator feed 
with cumin. This strategy allows us to avoid that the memory performance reaches the maximal 
expression and to see an amelioration of the memory performance. 

 

Figure 77: memory performance when the grid is not removed (30 min greed) compared to the normal protocol of 
interaction (30 min greed+ 10 min free contact). From Anais Giacinti thesis, 2015. 

 

3.3. Open field (OF) and locomotor activity assay (LA) 

Experiments were performed as described in (Ruzza et al., 2012), adapting the dimension of arena for 
rats size, on a subset of SHRs and WKYs during the light cycle (between 09.00 and 13.00) and 1 week 
after STFPT in order to decrease the stress and to not influence memory performance of rats. 
Behavioural performance was recorded using the Noldus video tracking system (EthoVision XT5, 
Noldus Information Technology). Rats were positioned at the middle of the system which is composed 
by a PVC arena (100 cm x 100 cm) and opaque polycarbonate walls (Imetronic). The central zone of 
the arena was defined as the central square (50 cm x 50 cm). Rats’ horizontal activity was monitored 
by a camera. Animals’ locomotion was recorded for 30 min. The parameters analysed are the 
cumulative distance (cm) that the animal covered and immobility time (s, the animal is considered 
immobile when 90% of it remains in the same place for a minimum of 2.5 s). 

 For anxiety analysis, the first 10 minutes of recording session were taken in consideration (after 10 
min rats get used to the arena) and the parameters measured were the time (s) spent by the rat 
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exploring the central zone, the number of entries in the central zone and the latency (s) to first entry in 
the central zone.  

 

3.4. Odour threshold discrimination (OT) 

The odour threshold discrimination task was performed according to (Arbuckle et al., 2015), 
increasing the total time of recording up to 5 min.  

Briefly, the rats were habituated in the experimental room for 1h and tested during the light cycle 
(between 09.00 and 13.00). 4 home cages, without bedding, were divided by opaque white paper in 
order to minimize the environmental cues. The cages were accurately cleaned between each 
experiment to prevent olfactory cues. The rat was allowed to explore the first cage for 15 min, before 
moving to the second one. This phase was repeated 4 times in the 4 cages. After this habituation, a 
filter paper contain the flavour at a specific concentration was introduced in the 4th home cage and the 
time spend by the rat exploring/sniffing the filter paper (s) was observed for 5 min. Behavioural 
performance were recorded using the Noldus video tracking system and analysed with the dedicated 
software. The concentrations used are cocoa 0%, 0.4%, 2% and 10%. The cocoa concentration of 2% 
was selected according to the one used in STFP. The others concentrations were calculated in order to 
have a 5 fold difference between all concentrations used.  

 

3.5. Centrifugation protocol 

Before starting the experiment, rats were housed by 2 in standard cages with classical bedding, in a 
quiet room with constant temperature (22°C), 50% relative humidity, and a 12/12 h light-dark cycle. 
Food and water were provided ad libitum (Safe Diets A04). After a day of habituation in the specific 
cages designed for the centrifuge's gondolas, the centrifuge (COMAT Aérospace) was turned on to 
maintain a permanent level of hypergravity (2g) for 21 or 60 days. The centrifuge used had a radius of 
1.4 m and four gondolas hanging on the periphery. Each gondola can accommodate up to three cages 
(1 rat/cage). All gondolas were equipped with a video surveillance system to control animals' 
condition and food/water stocks. Animals were provided with enough food and water for the whole 
duration of the experiments, thus the centrifuge was stopped once for the 21 days experiment and 6 
times for the 60 days experiment for 30 min each time to weight the rats and change the bedding. 
Control rats were also placed into similar cage used in the gondolas and in the same room, to mimic 
experimental conditions, but were not exposed to centrifugation. The quantity of food eaten is 
evaluated as the difference between the available food before the centrifugation and the total food 
remained at the end of the centrifugation. 

 

4. Euthanasia, tissue preparation and sampling 

For immunohistochemistry labelling: after 90 min the end of behavioural experiment (time for 
maximal expression of c-fos (Bisler et al., 2002; Zangenehpour and Chaudhuri, 2002), previously 
tested in our lab according to (Lesburgueres et al., 2011) ), rats were terminally anesthetized with of 
Sodium Pentobarbital (Ceva Santé Animale, 300 mg/kg), slowly (14 ml/ min) itracardiacally perfused 
with 200 ml of a solution composed by NaCl 0.9 % and heparin 2.8 ml/l (room temperature), 100 ml 
of NaCl 0.9 % (room temperature) and 350 ml of fixative buffer solution composed by 
Paraformaldehyde (PFA) 4 % in PB 0.1 M, pH=7.4 (4°C).  
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Rats were finally decapitated and their brains were removed. Serial coronal sections were obtained of 
all the brains (see detailed procedure for each experiment in the Fig. 78 below) and were collected in 4 
wells and stored in a protective solution composed by sodium azide 0.02% in PB 0.1M, pH=7.4 or in 
cryoprotection solution if not quickly processed; all the sections contained 1 well were processed for 
immunohistochemistry.  

For Evans’ Blue experiment, rats were terminally anesthetized with of Sodium Pentobarbital, the 
brains removed and post-fixed with PFA 4%, before being cut. 

 

Figure 78: detailed post-perfusion procedure to obtain the tissue preparation for each experiment. 

 

Alternatively, for ELISA and Proteome profiler experiments, rats were terminally anesthetized with of 
Sodium Pentobarbital (Ceva Santé Animale, 300 mg/kg), the fresh brains were removed and the 
regions of interest were dissected and placed in tubes containing sample diluent solution (R&D 
system, DYC002) containing protease inhibitors cocktail 1% (Sigma, P8340) and 12 silica beads 
(diameter 3mm); samples were vigorously agitated with the minilys (Bertin technologies) during 30 s. 
Protein concentration was measured with µLite (Biodrop) spectrophotometer and the associated 
BioDrop Resolution software, and stored in -80°C. Proteins were used and prepared as described in 
the protocol given by the supplier. 

Concerning plasma corticosterone, IgG, nitrite and nitrate arrays, blood were collected just after the 
cervical dislocation. After 10min, samples were centrifuged during 15 min at 1000 g and supernatants 
were collected and stored at -80°C before assays that were performed following the supplier protocols. 

 

5. Surgery 

All surgical procedures were conducted minimum 1 month before the beginning of behavioural 
protocols in order to avoid the discomfort of the rats and to reduce the induced inflammatory response 
that may affect the data analysis, as previously performed in our lab. 

All the surgeries were made under isoflurane gas anaesthesia (i.e. guide cannula’ implantation) 
according to the Ethical guidelines for long-lasting surgery. In absence of pain reflex, rats were placed 
on stereotaxic apparatus (Kopf Instruments) on wormed platform (~26°C, to reduce hypothermic 
response) and the incision of the skin was preceded by dermic application of xylocaine (xylocaine 5%, 
AstraZeneca) and antiseptic solution of betadine 10%. Ocrygel eye drops were applied during all 
surgery in order to avoid deterioration of corneas, frequent in albinos rats. Before guide cannulas 
placement, 2/3 screws were placed into cranial bones in order to assure a major adherence of cement 
helmet. Guide cannulas (l: 8 mm, ext Ø: 0.460 mm, int Ø: 0.255 mm)  were implanted, as described 
after, in accordance to stereotaxic coordinates described in Paxinos and Watson atlas, 1998. A cement 
helmet incorporating the screws and guide cannulas was realized using methyl acrylate dental cement. 
Rats were monitored during a post-surgery care period. 

Experiment Post-fixation Cutting Apparatus Thickness slices µm
Pimonidazole injected rats PB 0.1M over night Vibratome 40
Edu/Coll IV/EB injected rats PFA 4% 3 days; sucrose 3 days Microtome 100

ONAS injected rats PFA 4% over night; sucrose 3 days Microtome 50
Ang-2 injected rats PB 0.1M over night Vibratome 40

Angiogenesis time course rats PB 0.1M over night Vibratome 40
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In particular the region of interest targeted during this study is the Anterior cingulate cortex (Fig. 79):  

Coordinates from bregma used AP (Anterior-Posterior) +0.2 mm, ML (Medial-Lateral) +/-0.5mm DV 
(Dorsal-Ventral) -1.3 mm (guide cannula) or -2.8 mm (injection site). 

 

Figure 79: Coordinates used for ACC cannulas implantations and injections. 

 

6. Drugs and Injections 

Hypoxyprobe-1 or Pimonidazole (Ref. HP6-200Kit, Hypoxyprobe Inc.) is a marker of hypoxia; it is 
composed by Pimonidazole hydrochloride revealed by mouse FITC-MAb antibody that binds to 
Pimonidazole adducts (composed by Pimonidazole linked to the thiol groups in proteins peptides and 
amino acids) in hypoxic tissues. The formation of adducts depends on the presence of redox enzymes 
in hypoxic cells. The Pimonidazole can detect hypoxia if pO2 < 10 mmHg. This is considered a very 
low amount of oxygen and is referred to as hypoxic tissue (more details on 
http://www.hypoxyprobe.com/history-of-hypoxyprobe.html). 

aCSF (artificial CerebroSpinal Fluid) was used as vehicle for intracerebral injections and was injected 
in controls group of rats in order to mimic the procedure of injections. It is composed by 5mM of 
glucose, 125 mM of NaCl, 27 mM NaHCO3, 2.5 mM of KCl, 0.5 mM of NaH2PO4,2H2O, 1.2 mM of 
Na2HPO4, 0.5 mM of Na2SO4, 1mM of MgCl2,6H2O and 1mM of CaCl2,2H2O. 

EdU (5-Ethynyl-2'-deoxyuridine, Santacruz ref sc-284628A) is a thymidine analogue selectively 
incorporated into cellular DNA during S-phase, allowing the detection of cellular proliferation. EdU 
was injected intraperitoneally (61.6 mg/kg), in a volume of 2 ml/kg in order to facilitate the diffusion. 
The repeated injections were performed each ~12 h (see protocol of injection in chapter 1). EdU was 
dissolved it in a solution of PB 0.1M and Na2HPO4,H2O (27.6 g/l), adjusting the pH to 8.4 with a 
solution of PB 0.1 M and NaH2PO4,2H2O (35.6 g/l).  

Evans’ Blue (ref: E2129, Sigma) was dissolved in 0.9% NaCl (solution 2g/100mL) and injected 
6µL/g of weight and i.v. injected 5 min before the decapitation. This solution was used to label the 
perfused vessels according to (Walchli et al., 2015) since it binds almost completely the serum 
albumin labelling the intravascular surface. 
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Angiopoietin 2, Ang-2 (Recombinant Human Angiopoietin-2 Protein, ref: 623-AN/CF, R&D 
Systems), as explained in introduction, was used to induce local angiogenesis in presence of others 
trophic components. Exogenous Ang-2 was injected bilaterally intracerebrally at the final 
concentration of 100 ng/μl (dilution in aCSF), in a volume of 1 μl for injection. The multiple injections 
of Ang-2 and the respective control aCSF were performed on two group of rats (food preference and 
experimental) during the early phase of associative olfactory memory consolidation induced by the 
interaction (Protocol specified in chapter 2). 
 
Antisense oligonucleotides and scramble: Antisense oligonucleotides (ASON) directed against Ang-
2 and their respective scrambles (SCR, same oligonucleotides used for ASON but in a different order, 
creating a sequence that does not codify for any known RNA in rat) were injected bilaterally in ACC 
according to the protocol specified in chapter 2. 
The multiple injections of ASON and the respective SCR were performed on two group of rats (food 
preference and experimental) during the early phase of associative olfactory memory consolidation 
induced by the interaction, in order to analyse the impact of the angiogenesis manipulation on remote 
memory performances. In particular, ASON against Ang-2 (asAng-2) were used in order to selectively 
block the angiogenesis inhibiting the formation of Ang-2 protein. ASONs bind to the complementary 
mRNA by base pairing and induce the cleavage of targeted mRNA by ribonuclease H, an enzyme that 
degrades RNA in RNA–DNA duplexes (Kole et al., 2012). The sequence used was 5’-
GCGTTAGACATGTAGGG-3’ for ASAng-2 DNA and 5’-GACGCGAGTTGAGGTTA-3’ for the 
scrambles, injected in the control group. These sequences were developed using BLAST technique 
and the sequences were synthetized by Eurogentec. ONAS and SCR have been provided of 
phosphorothioate backbone replacing the phosphodiester bond in DNA sequence in order to increase 
their stability. Moreover 6-FAM fluorophore (excitation 499nm, emission 519nm) has been added at 
of 5’ level in order to detect their diffusion and distribution after injections. The concentration and the 
protocol used during this study was developed during the Ph.D. thesis of Anais Giacinti and based on 
(Boye et al., 2002; Dabertrand et al., 2012; Lee et al., 2004b; Neumann, 2000) studies. According to 
those, the dose of 1 µg/µl of asAng-2 and the injection protocol used has been shown to not have toxic 
effect but a good penetration in the vascular network (Fig. 80). 
 

 

Figure 80: Deleterious effects due to the too high concentration of ASON against Ang-2. Figure from Anais Giacinti thesis 
suggesting the concentration is 1µg/µL to circumscribe the diffusion of the molecule in the targeted brain area without 
damage in cerebral tissues. 
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Justification of ASON choice: 
Other possibilities to inhibit Ang-2 synthesis via mRNA degradation, as ASON strategy, is the use of 
Small interfering RNA (siRNA) or  a short hairpin RNA (shRNA) as used in the studies of (Bhandari 
et al., 2006; Marteau et al., 2011; Wang et al., 2013a) on mice. 
Compared to siRNA, the advantage of ASON is that it is based on a protected DNA (see material and 
methods) being more stable compared to RNA. Moreover, the in vivo ASON used was already set up 
in the team (Dabertrand et al., 2012). 
Compared to shRNA, the advantage of ASON and siRNA is that they produce the gene extinction just 
during a short period, allowing us to selectively target the consolidation phase without affecting the 
encoding during the STFP task. Moreover, shRNA needs to a viral vector to be integrated into the 
cells, while the others can directly injected in the area of interest. The disadvantage of ONAS is the 
necessity of multiple injections more traumatic for the animals. Despite this, the multiple injections 
protocol has been used several times showing that, if animals are sufficiently handled, the behavioural 
performance is not affected. Another disadvantage is the intrinsic but dose-dependent toxicity of these 
compounds produced by the chemical modifications induced in the base sequence in order to facilitate 
cellular transfection. Although this constraint, the dose of 1 µg/µl of ASON Ang-2 and the injection 
protocol used By Anais Giacinti during her thesis do not show toxic effect but assure the penetration 
in the vascular structure, based on (Boye et al., 2002; Lee et al., 2004b; Neumann, 2000). 

 

7. Assays 

Elisa to quantify Ang-2 (MANG20, R&D system) and Ang-1, (Ang-1 EK1295, Boster Immunoleader) 
were performed with proteins extracted from rat ACC following the instruction of suppliers. Protein 
were centrifuge 5000g 5min; protein dosage was performed using BioDrop µLITE System on the 
supernatant part just before the array and the samples were diluted to have similar protein 
concentration in each sample. The values obtained from Elisa assays were reported as concentration in 
1µg of protein to be compared. All sample and standard were assayed in duplicate.  

Corticosterone: The quantification of endogenic corticosterone in blood samples was performed 
using EIA kit DetectX Corticosterone (Arbor Assays) following the instructions of the supplier: 
samples and standards solutions were diluted (1:100) in the appropriate buffer and placed in the plate 
in duplicates.  

IgG ELISA assay: The quantification of the IgG concentration of blood samples was performed with 
the (ab189578, Abcam) following the instructions of the supplier. The dilution of the samples is 
1:1,000,000 with the assay buffer. All sample and standard were assayed in duplicate.  

Total nitric oxide and nitrate/nitrite parameter assay kit was performed following the instruction of 
the supplier (Biotechne, ref KGE001) on blood samples. All sample and standard were assayed in 
duplicate.  

For all assays, the chemoluminescence was measured with the Optima apparatus (BMG Labtech). 

Proteome profiler (ARY015, R&D systems) was performed just after the interaction in SDs and three 
days after interaction in SDs and SHRs; after ACC dissection in each sample was added 100 µl of PBS 
1x and Protease inhibitors cocktail (10 μg/mL bacitracin , 100 μg/mL Leupeptin, and 10 μg/mL 
Pepstatin) and the tissue were homogenized at max speed for 30 seconds; protein dosage was 
performed using BioDrop µLITE System: precisely the samples were diluted at final concentration of 
15000 µg/ml using PBS 1x and Protease inhibitors cocktail. Proteome profiler was performed 



180 
 

following the instruction Proteome profiler array the detection was made with LiCOR method 
(Ref.926-32230). The membrane were read with the odyssey IR-scanner (resolution 84 µm; quality 
medium; focus offset 0,0 mm intensities 1,5-3). 

 

8. Losartan treatment: 

Losartan (Mylan 50mg) is an antagonist of angiotensin II receptor type 1 efficacious in rescue the 

blood pressure increase induced by hypertension in SHRs (Demirci et al., 2005; He et al., 2014).  The 
treatment was performed administrating this drug in SHRs from the age of 2 months to the sacrifice of 
the rats (6/7 months old), in order to avoid the development of hypertension. 13-18 mg/kg/day of 
Losartan were dissolved in tap water, according to stability data provided by the supplier; the posology 
was intentionally increased during the treatment in order to assure the efficaciousness of the molecule 
in relation to the stage of hypertension (Demirci et al., 2005; He et al., 2014). The molecule 
administration and its efficaciousness on blood pressure were checked once for week. 

 

9. Blood pressure measurement: 

The CODA system (Fig. 81) automatically performs multiple rapid, simultaneous measurements of 
different physiological parameters, such as systolic blood pressure, diastolic blood pressure, and mean 
pressure. The system is based on an occlusion tail cuff which is firstly inflated to impede the blood 
flow to the tail and then deflated slowly while a second tail cuff, incorporating the volume pressure 
recording (VPR) sensor, measures the physiological characteristics of the returning blood flow. As the 
blood returns to the tail, the VPR sensor cuff measures the tail swelling that results from arterial 
pulsations from the blood flow. Systolic blood pressure is automatically measured at the first 
appearance of tail swelling. Diastolic blood pressure is automatically measured when the increasing 
rate of swelling ceases in the tail. The measurements were done weekly, between 16h and 20 h, and 
the rats were placed in adapted cylinder, covered with dark blanket, on a term regulated plaque in 
order to minimize blood pressure variation anxiety induced and the discomfort of the rats. The blood 
pressure measurement and Losartan treatment was done with the help of veterinary student 
Annnabelle Costet to check daily the health of the animals and adjust the treatment. 

 

Figure 81: Coda system blood pressure measurement 
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10. Labelling 

The wash of slices was performed in phosphate buffer PB 0,1M for all the labelling. The blockade 
buffer was always composed by PB 0.1: 0.1g of BSA, 200μL of triton X100, 2mL of serum depending 
from the secondary antibody.  
The vascular network was labelled with anti-Collagen IV (ref: ab6581, Rabbit polyclonal to Collagen 
IV Biot, dilution 1/250) recognizing the ECM synthetized by ECs (Bahramsoltani et al., 2014)) and 
thus identifying mature and neo-forming vessels. The secondary antibody used was Alexa, dilution 
1/500, time incubation 1h30). The slices were boiled in trisodium-citrate buffer and permeablized 1 h 
in the blockade buffer, before the incubation with the first antibody and then with the secondary 
antibody. After that the slices were mounted on gelatin coating cover-slips with Fluoromount medium. 
To assess vascular proliferation and perfusion we performed a triple staining using Collagen IV, EdU  
and Evans’ Blue. EdU labelling was performed using the information given by the supplier. EdU 
labelling was revealed using Click-iT® EdU Alexa Fluor® 488 Imaging Kit (ref: C10337): EdU is a 
thymidine in which the methyl group in the 5 position is replaced by a terminal alkyne group. This 
group is detected through a reaction with fluorescent azide in a Cu(I)-catalyzed [3+2] cycloaddition 
(‘‘click’’chemistry). This reaction is sensitive and fast. Moreover, the reagents used are 1/500th the 
size of antibody molecules, allowing a faster diffusion and high penetration in even thick slices, 
required for EB labelling. In addition, the reaction between ethynyl groups on DNA and fluorescent 
azides does not require denaturation of the samples required by BrdU labelling (citrate + high 
temperature), preserving the vascular network (Salic and Mitchison, 2008). Evans’ Blue detection was 
made directly since its autofluorescence. 

Finally Pimonidazole was revealed by mouse FITC-MAb antibody (dilution 1/100) according to the 
supplier information.  

The labelling was performed with the help of Nathalie Biendon and the master students Laura Chaillot 
and Solene Dies.  
 
Analysis images: The images concerning EdU, Collagen IV and Evans Blue labelling were acquired 
using confocal Leica SP5 microscope (488nm). All ACC and PC slices in 1 well were labelled and 
mounted; 2 images/animal/ACC were acquired with a zoom of 20x.  
The quantification of vascular network labelled with Collagen IV was performed using NDPI Tools 
plugin (developed during the thesis of Anais Giacinti) and ImageJ software (Fig. 82).  
 

 
Figure 82: Analysis of vascular network with ImageJ and Angiotool software: from left to right: original labelling acquired 
with the microscope, macro used in ImageJ software to skeletonize the vascular network, detection with Angiotool of 
vascular density and number of branching. 
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The Pimonidazole labelling was acquired with Hamamatsu Nanozoomer 2.0 (Bordeaux Imaging 
Center) on the entire ACC, PC and HPC (all slices in 1 well were labelled and mounted; the entire 
zone was acquired and quantified by Nathalie Macrez. 

 

11. Statistic 

The analysis of data was made using GraphPad Prism 6 software. For each group, data are expressed 
as mean ± standard error of the mean (SEM) of n experiments. The Normal distribution of data was 
verified using Shapiro-Wilk test, in order to choose the correct statistic test. In all the comparison 
conduced, the 95 % confidence limits (p values < 0.05) should be achieved in order to consider 
significant the differences observed. Data have been statistically analysed with Student’s t test for 
unpaired data, one way ANOVA followed by the Tuckey’s test, or two-way ANOVA (group/delay or 
strain/delay) followed by Tuckey’s (in order to compare two groups by two, in case of normal 
distribution) post hoc test, as specified in table and figure legend. 
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OBJECTIVES 

  



184 
 

Objectives of the thesis 

 

As highlighted in the introduction, neuronal and vascular systems closely communicate to 
coordinate their actions. Since the cerebral microvasculature is capable of adapting its activity in order 
to provide the adequate amount of energy and nutrients imposed by the metabolic demand of neuronal 
networks, it is reasonable to expect a dedicated vascular reorganization to couple energy supply to 
specific neuronal networks recruited during the various memory processes triggered by cognitive 
functions. We explored such a possibility and tested its validity by focusing our attention on memory 
consolidation, the process by which a memory trace acquires stability and persistence over time. While 
the formation and stabilization of enduring memories have been shown to require a temporary 
dialogue between the hippocampus and cortical regions that act as the permanent repository of remote, 
consolidated, memories, the functional contribution of the cerebral microvasculature to this dynamic 
process has remained unexplored.  

In order to pinpoint accurately the time-course of the hippocampal-cortical dialogue during the 
course of systems-level memory consolidation, we selected a behavioural paradigm particularly 
suitable for studying memory consolidation, that is, the social transmission of food preference (STFP) 
task  in which rats learn about the safety of potential food sources by sampling those sources on the 
breath of conspecifics. This task enables olfactory information to be encoded rapidly during one single 
interaction session and induces a memory which is robust and long-lasting. Its associative nature 
requires the hippocampus and specific cortical regions such as the orbitofrontal and anterior cingulate 
cortices which are involved in the processing of associative olfactory information. In a previous set of 
studies conducted in the team of Bruno Bontempi by Anaïs Giacinti during her Ph.D. (Giacinti, 2014), 
it was found that both the reactivity and architecture of cerebral vessels can be modified during 
memory consolidation. Changes in vessel reactivity revealed by ex vivo calcium imaging supported 
the successful expression of either recently or remotely acquired memories (increased reactivity of the 
posterior cerebral artery irrigating the hippocampus upon retrieval of recent memory; increased 
reactivity of the anterior cerebral artery irrigating the cortex upon retrieval of remote memory). 
Interestingly, the formation of associative olfactory memory after social interaction was also 
accompanied by a transitory increase in vessel density and number of vessel branching points in 
anterior cingulate cortex (ACC), suggesting the triggering of an angiogenic process. 

Building upon these promising results, we designed a series of specific follow-up experiments 
aimed at unravelling the time course of angiogenic processes potentially triggered upon encoding of 
olfactory information in the STFP task. To this end, in the first chapter, we explored the putative 
mechanisms responsible for eliciting angiogenesis locally in the ACC, one likely candidate being the 
level of hypoxia generated by neuronal activation. Hypoxia levels were thus assessed using dedicated 
hypoxia markers. Moreover, we have measured the activation of angiogenic pathways in days 
following interaction primarily in the ACC which acts as a critical node within the broader cortical 
network supporting the formation of enduring associative olfactory memories in the STFP task. Many 
angiogenic factors have neurotrophic effects in adult cortex except for the angiopoietin pathway. The 
time course of angiopoietin 2 (Ang-2) expression required for angiogenic processes was followed by 
ELISA in the ACC. After identifying the peak of post-learning angiogenesis, we further established 
the presence of newly-born endothelial cells and determined whether new cortical vessels in the ACC 
acquired functionality.  

Since the approaches mentioned above were only correlative in essence, we next designed 
specific causal experiments aimed at modulating angiogenesis specifically. In the second chapter, we 
thus hypothesized that blocking or enhancing cortical angiogenesis during the early phase of memory 
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consolidation should either impair or improve the subsequent formation of remote associative memory 
by impacting on the reorganisation of the neuronal networks supporting remote memory storage at the 
cortical level. To this end, we targeted Ang-2. Angiogenesis was inhibited by means of intracortical 
infusions of antisense oligonucleotides directed against Ang-2. These time-limited post-encoding 
infusions into the ACC during the early phase of memory consolidation impaired retrieval of remote 
memory in rats tested 30 days after social interaction in the STFP paradigm, indicating an inability to 
adequately form and/or retrieve remotely acquired information. Angiogenesis stimulation in the ACC 
was achieved by injection of the Ang-2 peptide during the early phase of memory consolidation, 
which resulted in an amelioration of remote memory in rats probed for memory retrieval 30 days 
following social interaction. Thus, we were able to identify early cortical angiogenesis as a crucial 
permissive mechanism underlying the subsequent formation of remote memories and their progressive 
embedding into cortical neuronal networks. 

In a third chapter, we sought to determine the functional significance of the cortical 
angiogenic mechanism identified in physiological conditions by examining the potential deleterious 
effects of hypertension on the organization of recent and remote memories using the spontaneous 
hypertensive rat model (SHR) in which hypertension develops spontaneously over time. We first 
established a time-dependent impairment in these rats, with remote memory being selectively 
impaired, thus suggesting successful encoding but an inability to adequately stabilize and/or retrieve 
remotely acquired information. We took advantage of this memory profile to explore the status of 
vascular networks and found that the anterograde amnesia of SHR rats was associated with an 
impaired cortical angiogenesis. Importantly, we were successful in rescuing the memory deficit of 
SHR rats by either targeting hypertension in the form of a chronic treatment with the antagonist of 
angiotensin II receptor type 1 Losartan or by performing region-specific intracerebral infusions of 
Ang-2 during the early phase of memory consolidation, as previously applied to normotensive Sprague 
Dawley rats. Thus, these experiments established the functional importance of early cortical 
angiogenesis as a prerequisite to the formation of remote memories.  

Finally, in a fourth and last chapter, we extended our analysis to the effects of gravity 
modification on the cerebral microvasculature. Since changes in gravity modify vascular reactivity, we 
tested the hypothesis that hypergravity could interfere with the memory consolidation process. 
Sprague Dawley rats underwent chronic exposure to hypergravity at 2G and impact of this 
environmental treatment on encoding, consolidation and retrieval processes was evaluated using the 
STFP paradigm. Hypergravity-induced changes in various physiological parameters (food intake, 
weight, stress) and inflammatory processes (circulating IgG) were also examined.  

Overall, our integrative approach has enabled us to provide novel insights into the dynamics 
of the cerebral microvasculature during the course of memory consolidation. Our findings identify 
early cortical angiogenesis as a crucial neurobiological process underlying the formation and 
stabilization of remote memory. This vascular mechanism is further discussed in light of the existing 
knowledge on cerebral angiogenesis and a putative model incorporating the functional involvement of 
the cerebral vascular sphere to the dynamics of hippocampal-cortical neuronal interactions during the 
course of the memory consolidation process is proposed.  
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Chapter 1: Angiogenesis implication in the memory consolidation, correlative 
approach 

 
1.1. Introduction 

Systems consolidation refers to the post-encoding time-dependent processes assuring the 
transformation of encoded information from a fleeting form to a long tem memory representations 
over distributed brain circuits (Frankland and Bontempi, 2005; Squire and Alvarez, 1995), in order to 
not be quickly forgotten (Lechner et al., 1999). 

This progressive reorganization of neuronal circuits involved in long term memory formation could 
takes days and years but neuronal modification starts immediately upon encoding. As described in the 
introduction, synaptic and systems consolidations synergistically cooperate in parallel (Dudai, 2012; 
Dudai et al., 2015; Frankland and Bontempi, 2005; Squire and Alvarez, 1995).  The synaptic 
consolidation is a fast process, occurring within the first minutes or hours after encoding, thereby 
inducing the formation of new synaptic connections or the strengthening of existent synapses (Dudai, 
2012; Squire et al., 2015). On the other hand, systems consolidation is a slow phenomenon lasting 
weeks in rodents and years in human subjects depending on the kind of memory and the nature of the 
memory task.  

During this thesis we focused on systems consolidation, analysing the vascular architectural changes 
that accompany the brain circuitry and systems reorganization that supports the formation of long term 
memories during time (Dudai, 2012; Dudai et al., 2015; Frankland and Bontempi, 2005; Squire and 
Alvarez, 1995; Takeuchi et al., 2014). 

According to the standard model, systems consolidation requires a transitory hippocampal-cortical 
interaction allowing the progressive remodelling of cortical neuronal networks to support the 
formation of remote memory traces (Bontempi et al., 1999; Frankland and Bontempi, 2005; Frankland 
et al., 2004; Lesburgueres et al., 2011; Maviel et al., 2004; Restivo et al., 2009).  

In order to precisely identify the neurovascular post-encoding changes we selected the social 
transmission of food preference (STFP) (Galef and Stein, 1985; Galef, 1983), in which rats learn about 
the safety of potential food sources by sampling those sources on the breath of conspecifics. This task, 
developed by Galef, is based on the ethological observation that a rat exhibits enhanced food 
preference after a social interaction with a conspecific that had previously eaten the same food. This is 
because the food is considered to be without danger and safe to eat. In fact, after a single interaction 
with the demonstrator rat previously fed with cumin or cocoa, the rat observer encodes that this 
familiar food (cumin or cocoa) is without danger, forming the association between the odour and the 
safety of the food. After a delay during which this associative olfactory information is consolidating, 
the rat reverse its natural preference (thyme or cinnamon) to choosing the familiar food. In our 
experiments, these rats are called in the thesis experimental rats (EXP). Another group consists of 
animals interacting with a demonstrator rat fed with natural food without flavour, which thus will not 
form the associative olfactory memory showing their natural preference; these rats are referred to as 
food preference group, FP.  

This association is rapidly encoded during one single interaction, identifying a precise acquisition 
phase leading to a rigorous control of induction of post-learning mechanisms implicated in the systems 
consolidation of the memory trace. Moreover, it induces a memory which is robust and long-lasting (at 
least 30 days; Fig.83), as reported by (Lesburgueres et al., 2011) and Benjamin Bessieres during his 



189 
 

Ph.D. As a matter of fact, by delaying the test it is possible to discriminate between a recent memory, 
tested 1 day after the interaction, and a remote memory, in our case tested 30 day after the encoding.  

 

Figure 83: STFP results obtained during Bessieres Ph.D. thesis,2016; performances of experimental rats (EXP) and food 
preference rats (FP) tested 1 day, 30 days and 60 days after encoding of the associative olfactory memory acquired during an 
interaction with a demonstrator rat precedently fed with cumin.A.Memory performance expressed by the percentage of cumin 
eaten (familiar food; B. Total food eaten by the rats during the test (g;)##p<0,01;###p<0,001 versus FP; *p<0,05 vs the same 
groups. 

 

The associative nature of this task involves the HPC and the orbitofrontal (OFC) and anterior cingulate 
(ACC) cortices, both involved in processing olfactory associative information (Frankland and 
Bontempi, 2005; Lesburgueres et al., 2011). The consolidation of the associative olfactory memory is 
accompanied by a progressive contribution of neocortical areas during the post-acquisition period, 
accompanied by an increase of cortical spine density, confirming the findings that showed that the 
stabilization of memory trace induces a strengthening of cortical-cortical connections, requiring 
neuronal architectural remodelling (Chklovskii et al., 2004; McClelland et al., 1995). 

Since the strong interaction between neurons and vessel during cognitive and memory process has 
been exposed, the interest of our laboratory was to investigate the neurovascular adaptation subtending 
the memory process. In fact, Anais Giacinti during her Ph.D. thesis has shown that both the reactivity 
(modification in cerebral artery reactivity irrigating the brain areas implicated in the hippocampo-
cortical dialogue) and architecture of cerebral vessels can be modified during memory consolidation. 
In particular, the formation of associative olfactory memory was accompanied by a transitory increase 
in the vascular network in the anterior cingulate cortex (ACC), suggesting the triggering of an 
angiogenic process. 

Thus, the aim of this thesis was to investigate the functionality of this vascular increase during the 
early phase of memory consolidation. First, we decided to strengthen the Giacinti’s preliminary 
findings describing the nature of the correlation between the memory consolidation process and 
vascular increase in ACC. 

To do that we explored the hypoxia mechanism, responsible for triggering angiogenesis (Boero et al., 
1999; Dunn et al., 2004; LaManna et al., 2004; Masamoto et al., 2013; Pichiule et al., 2004; Xu and 
Lamanna, 2006) just after the interaction and the following day. Moreover, we investigated whether 
the angiogenic mechanism was triggered primarily in the ACC, which acts as a critical node within the 
broader cortical network supporting the formation of enduring associative olfactory memories in the 
STFP task, evaluating, furthermore, a general post-encoding angiogenic signalling through the use of 
a proteome profiler. To characterize the angiogenic involvement and the time window of this process, 
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we selected to study the expression of Ang-2 protein, via Elisa quantification, the key regulator 
factor in the angiogenic pathway (Augustin et al., 2009; Fagiani and Christofori, 2013; Pichiule and 
LaManna, 2002; Wakui et al., 2006). Finally, we tried to analyse the final outcome of angiogenic 
mechanisms, such as the ECs proliferation (quantifying the co-localization between EdU, marker of 
cellular proliferation, and ECs labelling with Collagen IV) and the vascular network increase 
(Collagen IV). We also tried to qualify the functionality of vascular network assessing the perfusion of 
newly-born vessels. 

 

1.2. Experimental design and Results 
 

1.2.1.  Hypoxia induced in ACC by associative olfactory memory 

The vascular network adapts its activity according to the metabolic request of neurons, in a process 
called functional hyperemia (Cipolla, 2009). If the neuronal activity is sustained, as in the case of 
memory trace formation, the metabolic demand of neurons does not match with the O2 delivery, 
leading to local hypoxia (LaManna et al., 2004; Xu and Lamanna, 2006). This hypoxic condition can 
trigger several physiological responses, including angiogenesis. To detect the hypoxic post-encoding 
signal we have used i.p. injection of Pimonidazole, also named Hypoxyprobe, which reveals the 
hypoxic cells by specific immunostaining (see Material and methods) (Turlejski et al., 2016; Varghese 
et al., 1976). Before performing the experiment, we validated the protocol for immunostaining in the 
brain tissues of rats exposed to a hypoxic chamber, in collaboration with Jean-François Quignard 
(INSERM U1045, Université de Bordeaux).  

Once validated, rats were divided in 3 groups (Fig. 84): the food preference (FP) and the experimental 
(EXP) groups (interacted with demonstrator rat fed with plain food and food containing cumin, 
respectively, as described in the material and methods chapter) and the home cage group. This control 
group was added to exclude a potential hypoxic effect induced by the injection and to determine if the 
manipulation of the rats and social interaction per se induced hypoxia in the regions of interest for the 
consolidation of associative olfactory memory. Pimonidazole was injected 1 hour before the 
euthanasia of the rats, allowing its incorporation in hypoxic cells. 

The home cage group (HC) and a part of the experimental and food preference rats were injected on 
the same day as the interaction (more precisely 1 h after the end of interaction, Day 0, D0) and 
sacrificed 1 h after the injection. A second sub-group, composed by the second part of experimental 
and food preference animals, was injected 25 h after the interaction (Day 1, D1) and sacrificed 1 h 
after the injection. The second sub-group was added to investigate whether the hypoxic signal was 
sustained, suggesting the potential angiogenic triggering. 

 

Figure 84: protocol for Pimonidazole injection and regions of interest of hypoxia quantification.  
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The immunostaining was acquired using Nanozoomer (Fig. 81A) in ACC, PC and HPC and the 
labelled cells were counted (Fig. 85B-D). The comparison between the food preference D0 group and 
the home cage group indicated that the number of cells labelled is increased in ACC and HPC 1h after 
interaction and is not affected in the parietal cortex (Fig. 85B). This result showed that the 
interaction per se induced hypoxia both in ACC and HPC, probably due to nonspecific 
components of the social interaction (novelty of the grid and first encounter with the demonstrator). 

Twenty-four hours after interaction, the same comparison showed that the numbers of labelled cells 
were similar in both food preference D1 and home cage groups, in all studied structures (Fig. 85B), 
showing that the activation detected at Day 0 came back to the basal level after 1 day. The statistical 
analysis between the food preference and experimental groups indicated that the numbers of cells 
labelled with Pimonidazole was increased specifically in ACC at Day 1 (Fig. 85C). Moreover, we 
investigated the difference between the structures at Day 1 in order to see if the hypoxia signal was 
region specific (Fig. 85D).  Due to the big difference in the number of hypoxic cells/mm2 between the 
areas analysed, we compared the ratio of the number of labelled cells in experimental rats on the 
number of labelled cells in food preference rats to exacerbate the effect of the associative olfactory 
memory on hypoxia. This result showed that, the day after the interaction, the increase of the 
number of hypoxic cells was only detectable in ACC of experimental rats (Fig. 85D), suggesting a 
memory specific effect. 

Figure 85: Hypoxia measured with pimonidazole coupled to immunohistofluorescence. A- typical immunostaining of 

cells in brain slices from rats injected with pimonidazole. B- number of labeled cells in 20mm
2
, in home cage condition (HC 

and in food preference (FP) condition just after interaction (D0) and 1 day after interaction (D1), in ACC (one-way ANOVA, 
interaction F(2,15) = 5.198, p = 0.019; post-hoc Tukey, D0 vs D1: p = 0.044; D0 vs HC: p = 0,030; D1 vs HC: p = 0.78); in PC 

(one-way ANOVA, F(2,14) = 0.596, p = 0.56) and in HPC (one-way ANOVA, F(2,15) = 6.273, p = 0.010; post-hoc Tukey, D0 

vs D1: p = 0.016; D0 vs HC: p = 0,032; D1 vs HC: p = 0.88). C- number of labeled cells in 20mm
2
, in food preference (FP) 

and experimental (EXP) animals just after interaction (D0) and 1 day after interaction (D1), in ACC (two-way ANOVA, 
interaction: F(1,28) = 3.96, p = 0.056; time: F(1,28) = 0.69, p = 0.41; STFP group: F(1,28) = 4.02, p = 0.055; post-hoc Tukey, D1-

FP vs D1-EXP: F(1,28) = 34.04, p = 0.031, ), in PC (two-way ANOVA, interaction: F(1,28) = 1.449, p = 0.24; time: F(1,28) = 

0.08, p = 0.78; STFP: F(1,28) = 0,022; p = 0.88), and in HPC (two-way ANOVA, interaction: F(1,27) = 0.455; p = 0.50; time: 

F(1,27) = 18.13; p = 0.0002; STFP: F(1,27) = 1.196; p = 0.28; post-hoc Tukey, D0-FP vs D1-FP: p = 0.010, ). D- ratio of 

number of labeled cells in 20mm
2
 in EXP rats on the mean of number of labeled cells in 20mm

2
 in FP rats (two-way 

ANOVA, interaction F(2,46) = 3.903; p = 0.027; structure: F(2,46) = 3.962; p = 0.026; STFP group: F(1,46) = 5.009; p = 0.030; 

ACC-D1-EXP vs ACC-D1-FP, p = 0,004 ). Columns expressed means ± sem. 
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1.2.2.  Angiogenesis induced in ACC by the memory consolidation 

The sustained hypoxia measured in the ACC in observer rats interacting with a demonstrator fed with 
cumin, induced by encoding of the associative olfactory memory, is probably the trigger signal to 
induce angiogenesis. To investigate this point rapidly, we used proteome profiler array the same day 
of interaction (D0) and 3 days after (D3) to check if this process is still present a few days after 
memory encoding (protocol described in Fig. 86).  

 

Figure 86: Protocol used in proteome profiler analysis and region of interest 

 

The Proteome Profiler Array Kit is a membrane-based sandwich immunoassay, dotted with different 
antibodies directed against several proteins known to induce, control and inhibit the angiogenesis 
process. This array is principally used in cultured cells and cancer angiogenesis but we validated the 
use also in physiological angiogenesis. Proteins were extracted from ACC of the observer rats from 
both food preference and experimental groups and pooled to be hybridized on proteome profiler 
membranes spotted in duplicate with antibodies to specific angiogenic target proteins, then revealed 
using chemiluminescent detection reagents. The signal produced was proportional to the amounts of 
analyte bound. The fluorescence emitted by dots on both membranes was quantified using a dedicated 
macro of Image J software and the mean of duplicate values was calculated. As shown in Fig. 87, in 
the experimental group, the angiogenic factors dotted on the membrane were more expressed than in 
the food preference group at D0 (90 min after interaction) as well as D3, despite a time-dependent 
global decrease in the number of angiogenic proteins expressed.  
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Figure 87: Mean of integrated intensity observed on the angiogenesis proteome profiler array performed at Day 0 
(above) and Day 3 (below). 

 

The results suggested a time-dependent regulation of angiogenic factors i.e. the angiogenesis factors 
were not regulated in the same manner at D0 and as at D3 (for example if NOV/GFBP9 is increased at 
both time points, IGFBP2 and PDGF-AA are increased at D0 and decreased at D3, Angiogenin, 
DPPIV/CD26 and SDF1/cxcl12 are upregulated at D0 but not as D3 in experimental rat). Anyway, 
this result suggested that the angiogenesis in ACC is activated in the same time window of the 
hypoxia and the process is probably persistent for a few days after the interaction. However, this 
general analysis of angiogenic factors appears not sufficiently specific in revealing its vascular impact: 
if it can reveal several regulations of angiogenic factors, it is not totally vessel specific and we are not 
able to individualize the results (one array per rat is not possible since there is not enough 
protein/sample).  

Therefore, we focused on the angiopoietin pathway, as in an in mature adult brains Ang-2 appeared as 
a highly vessel specific, pro-angiogenic factor that could probably be detectable by ELISA and 
western blot. We have chosen solid phase ELISA in order to precisely quantify rat Angiopoietin-2 in 
tissue lysate. The rats were sacrificed at different time points during the post-encoding phase (Day 0; 
Day 3; Day 6; Fig. 88). The concentration of Ang-2 proteins in ACC and PC lysates, from individual 
rats of both food preference and experimental groups, were tested in duplicate following the supplier 
instruction. The Ang-2 protein expression was quantified using Optima plate reader and analysed with 
the associated software.  
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Figure 88: Protocol used in ELISA quantification analysis and regions of interest 

 

Our data revealed that the Ang-2 expression in ACC, the same day of interaction, is not different 
between food preference and experimental rats; interestingly, Ang-2 concentration is increased in the 
ACC of experimental rats compared to food preference at D3, whereas it comes back to the control 
level at D6 (Fig. 89A). The Ang-2 concentration is not affected in PC by the task (Fig. 89B). 
Moreover, at D3, the Ang-1 concentration also revealed by ELISA in the same animals was not 
affected (Fig. 89C).  

 

Figure 89: time course of Ang-2 synthesis in brain measured by ELISA.. Mean of Ang-2 concentration A-in ACC 
(D0: t-test, t8 = 0.550, p = 0.60; D3: t-test, t24= 2.606 p = 0.0155; ; D6: t-test, t10= 0.530 p = 0.61) , B- in PC (t-test, t10= 

0.599 p = 0.56), Mean of Ang-1 concentration in ACC revealed by ELISA (t-test, t7= 0.389 p = 0.71). Columns expressed 

means ± sem. 
 

These results indicated that Ang-2 concentration is specifically increased at D3 in ACC of rats 
which interacted with the demonstrators fed with cumin, suggesting that the memory 
consolidation of the associative olfactory information is coupled with angiogenic proteins 
expression. 

 

1.2.3.  Outcome of angiogenic process in ACC during memory consolidation 

To verify that the increase of Ang-2 concentration and activation of angiogenic pathways are efficient, 
we investigated the outcome of the angiogenic process such as the vascular proliferation in ACC brain 
slices from both food preference and experimental groups. Moreover, we decided to investigate the 
functionality of the newly formed vessels, analysing their perfusion. To reach this aimed, we designed 
a triple labelling, analysing the localization of different makers: EdU (marker of cellular proliferation), 
Collagen IV (labelling vascular network) and Evans’ Blue (index of perfusion). At this stage of 
investigation, the angiogenesis process seems to be long lasting during the three first days after 
interaction.  
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To reveal new formed cells, we performed multiple injections of EdU on the same day and during 2 
days after interaction, euthanizing the animals at Day 3 (Fig. 90). EdU is incorporated during DNA 
synthesis over the cell proliferation process, thus, revealing proliferative cells in the brain slices. Our 
choice in using EdU, instead of the classical BrdU staining in revealing cellular proliferation, is based 
on the more efficient revelation protocol using a chemical linkage with a fluorophore instead of 
immunostaining. To detect the perfused vessels, Evans Blue dye was injected just before animal 
sacrifice. The co-localization of EdU labelling with the Collagen IV immunostaining reveals the newly 
formed vessels.  

ACC slices of experimental and food preference groups were labelled; in particular, the vascular 
network was revealed by anti-collagen-IV antibody, the endothelial cell proliferation was revealed 
using Click-iT reaction (developed in materials and methods) and the functional vascular network was 
revealed by the auto-fluorescence of Evan’s Blue. 

 

Figure 90:  protocol for EdU and Evan’s Blue (EB) dye injections to reveal the cell proliferation with co-localization of 
blood vessels by collagen-IV immunostaining.  

 

As illustrated in Fig. 91, EdU positive cells associated to anti-collagen-IV antibody were localized 
within and in contact with the vessel (Fig. 91A-B), but also outside the vessels (Fig. 91C).  The 
proliferative cells outside the vessels were excluded from the counting. The EdU positive cells were 
counted and the mean of EdU positive cells in the ACC per image per rat was calculated and reported 
in Fig. 91D. Thus, the number of EdU positive cells associated with the vessel wall was significantly 
increased in the experimental group in comparison with the food preference group, whereas the 
number of EdU positive cells not associated with the vessels was similar in both groups. 
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Figure 91: proliferative cells in ACC labelled with EdU, collagen-IV and Evan’s Blue. A-C- typical images of labelling 
in which nuclei labelled with EdU (red) are associated with vessels labelled with collagen-IV (green). When the vessels are 
perfused they contained Evan’s Blue (blue). D- Number of EdU positive nuclei pairs observed in situations illustrated in A 
and B per image (perivascular) (t-test, t8 = 4.998, p = 0.001, ) and in C per image (outside the vessel periphery) (t-test, t8 = 

1.354, p = 0.21). Columns expressed means ± sem. 
 

Successively, we detected the auto-fluorescence of Evan’s Blue spread within the vascular network: 
we qualitatively observed that the proliferative vascular cells were localized in perfused vessels, 
suggesting their functionality.  

Finally, we wanted verify whether the angiogenesis process increased the vessel density and the 
branching (as described in introduction (Xu and Lamanna, 2006)). The Collagen IV immunolabelling 
specifically highlights the extracellular matrix of brain vessels. The immunostaining images analysis 
with Angiotool, dedicated software to quantify the vascular density and the density of junction, was 
performed on 2D images obtained with SP5 confocal microscope [objective: x10, image: 512x512 
pixels, scanning: 32 lines average, iris: 1µm, zoom: 1.7, z step: 2µm, 24 stacks, (Fig. 92)]. 

 

Figure 92: vascular density and branching in ACC from rat injected with EdU. The immunohistofluorescence labelling 
of Collagen-IV analysed with Angiotool was performed on rat killed 3 days after interaction. A- typical image obtained after 
compilation of confocal images, treated with Angiotool to determine vascular and junction densities B- vascular density 
expressed as the area of the collagen-IV on the total area of the image, in ACC (t-test, t9 = 0.980, p = 0.35). C- Vascular 
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branching expressed as the number of junctions per mm2 in ACC (t-test, t9 = 1.819, p = 0.10). Columns expressed means ±, 
sem. 

 
The statistical analysis did not reveal any difference between food preference and experimental 
groups, suggesting that the vascular density is not increased by angiogenesis, despite the fact that a 
slight increase in branching points can be noticed. This experiment was reproduced more than 3 times, 
and in each experiment differences close to 10% and 15% were found in terms of vascular density and 
junction density, respectively. Moreover, this result confirms those obtained by Anaïs Giacinti 
obtained by a similar quantification of vascular network using images of the staining of endothelial 
cells with RCA-lectin. Considering the low number of proliferative cells we could not expect a great 
increase of vascular density, induced by a physiological phenomenon. 

To further explore this mechanism, we decided to determine the cortical angiogenesis time-course 
induced by the consolidation of the associative olfactory memory. We scarified several groups of 
experimental and food preference rats at different time point following interaction, in order to quantify 
the density of vascular network and number of branching. Unfortunately, the quantification is still 
ongoing but preliminary results showed an increase of vascular density and branching between D1 and 
D3. 

 

1.3. Discussion 

The formation of enduring memories requires a transitory hippocampal-cortical interaction to enable 
the progressive remodelling of cortical neuronal networks involved in the long-term stabilization of 
remote memory traces (Bontempi et al., 1999; Frankland and Bontempi, 2005; Frankland et al., 2004; 
Maviel et al., 2004). According to the standard model of systems-level memory consolidation, using 
cellular imaging coupled to invasive approaches consisting in region-specific inactivation, 
Lesburguères and colleagues (2011) showed that the OFC and ACC are required for the retrieval of an 
associative olfactory remote memory (tested 30 days after encoding in the STFP paradigm). These 
cortical regions exhibit higher neuronal activity upon remote memory retrieval together with an 
increase in the complexity of the neuronal networks, as shown by a higher number of dendritic spines 
compared to rats undergoing recent memory testing. Parietal cortex is neither involved in the retrieval 
of remote nor recent associative olfactory memories (Lesburgueres et al., 2011). For this reason, we 
decided to consider it as a control region in our analyses. Moreover, a previous set of studies, 
conducted in the team, showed that the reactivity and architecture of cerebral vessels were modified 
during memory consolidation (Anaïs Giacinti, Ph.D. thesis, 2014). In particular, the formation of 
associative olfactory memory after social interaction was accompanied by a transitory increase in 
vessel density and branching in cortical regions supporting the memory trace, suggesting the triggering 
of an angiogenic process. 

 

Hypoxic signal triggering angiogenesis 

To further explore this result, we analysed one crucial mechanism triggering local angiogenesis, 
namely the hypoxic signal induced by neuronal activation (Boero et al., 1999; Boroujerdi et al., 2012; 
Dunn et al., 2004; LaManna et al., 2004; Masamoto et al., 2013; Pichiule et al., 2004; Pichiule and 
LaManna, 2002; Xu and Lamanna, 2006). 

Using the Pimonidazole hypoxic marker (Turlejski et al., 2016; Varghese et al., 1976), which 
covalently binds the thiol group of protein depending on the presence of redox enzymes in hypoxic 
cells, we showed that the level of hypoxia was elevated preferentially in the areas implicated in the 
processing of associative olfactory memory shortly (1 hour) after the social interaction, suggesting a 
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memory-specific effect. This effect was however not statistically significant when compared to food 
preference controls, possibly because of the nonspecific components of the social interaction (novelty 
of the grid and first encounter with the demonstrator) which may have masked the hypoxia related to 
the memory-specific component of the task. To rule out the incidence of these potential confounding 
factors at Day 0, we propose to pre-expose the observer animals with a demonstrator fed with plain 
powdered chow in order to habituate them to the general layout of the interaction procedure (presence 
of the demonstrator and the grid). We can expect, after the second interaction, that the cells labelled by 
Pimonidazole in the ACC or hippocampus should primarily be those specifically activated by the 
processing of the associative olfactory memory. The most significant result concerns the persistence of 
hypoxia 24h after the social interaction specifically in ACC, suggesting that hypoxia-dependent 
mechanisms, once triggered, can persist in this cortical structure. Moreover, to strengthen this result, 
we propose to show that Pimonidazole-labelled cells also express c-fos to underline that hypoxic cells 
are predominantly activated neurons (Gualtieri et al., 2013). 

Several studies showed co-localization between Pimonidazole and Hif-1 (Gualtieri et al., 2013; 

Sluimer et al., 2008). Moreover, as reported in the general introduction, Hif-1 is implicated in the 
downstream regulation of angiogenic processes. These results point to early hypoxic events taking 
place within the ACC that elicit an angiogenic mechanism supporting the progressive reorganization 
of neuronal networks induced during the course of the memory consolidation process, therefore 
strengthening the concept that this cortical region acts as a critical node within the broader cortical 
network supporting the formation of enduring associative olfactory memories in the STFP task. 

 

Angiogenic pathway and vascular modification induced by memory consolidation 

 We found that an angiogenic process is engaged after memory encoding, between D0 and D3 
post-social interaction (data from proteome profiler). Encouraged by these results, we investigated the 
presence of Ang-2, one of the key regulator factors of angiogenesis produced from the onset of the 
angiogenic process (Augustin et al., 2009; Fagiani and Christofori, 2013). Ang-2 expression in ECs 
has been shown to be prompted 6 hours after hypoxia induction (Pichiule and LaManna, 2002), and 
the angiogenic phase is correlated with an increase in Ang-2 and VEGF (Wakui et al., 2006), while the 
blood vessel maturation phase is associated with a relative increase in Ang-1 and a decrease in VEGF 
(Wakui et al., 2006). Moreover, another important advantage of this molecule is represented by its 
vascular specificity compared to other growth factors, such as VEGF that acts and is expressed within 
endothelial cells but also in neurons and astrocytes, (Mackenzie and Ruhrberg, 2012; Shen et al., 
2016) in adult brain. In our study, the memory testing-induced Ang-2 overexpression measured in the 
ACC was absent in the parietal cortex indicating that the Ang-2 increase was region-specific and was 
related to the consolidation of associative olfactory memory. The increase in memory-induced Ang-2 
production was absent just after the social interaction but significantly overexpressed at Day 3, 
contemporaneously to a lack of Ang-1 increase. This suggests that Ang-2 can promote angiogenesis 
by producing vessel destabilization and by antagonizing the action of Ang-1 (Maisonpierre et al., 
1997). Moreover, the long-lasting presence of Ang-2 suggests a transcriptional regulation, excluding 
that the Ang-2 protein detected come only from the release of Weibel-Palade bodies (Ju et al., 2014; 
Saharinen et al., 2011). The increase in the Ang-2 protein level returns to the basal level at Day 6, 
revealing a transitory process and suggesting that angiogenesis is related to the early phase of memory 
consolidation to potentially support the dialogue between HPC and ACC, as suggested previously for 
the neuronal component (Lesburgueres et al., 2011).  

We further established that the formation of the memory trace induces a significant increase in the 
level of expression of proliferative cells within and around the vessels. This result could be confirmed 
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by an additional co-staining with anti-RECA antibody (recognizing the rat endothelial cell antigen 
localized on the cellular membrane of mature ECs) and anti-collagen-IV antibody (recognizing the 
ECM synthetized by ECs (Bahramsoltani et al., 2014)), in order to label respectively the luminal and 
the matrix sides of the endothelium (Duijvestijn et al., 1992). Moreover, our results showed that the 
detected new cortical vessels could also be perfused with Evans Blue suggesting that these vessels are 
functional (Walchli et al., 2015). 

Finally, together with an enhanced cellular proliferation, a small trend towards an increase of vascular 
density was specifically observed in the ACC of the same rats during the early stage of the memory 
consolidation process. The increase in the ACC vascular network did not reach a significant difference 
3 days after interaction; nevertheless, the increase of 10 % of vascular network and 15 % of branching 
points between experimental and food preference rats has always been detected in the 3 different 
subsets of our experiments, confirming the preliminary data obtained by Anais Giacinti. Thus, our 
opinion is that the vascular network is potentially increased, but our system of detection is not 
perfectly adapted to detect tiny effects. In fact, we have used software dedicated to tumour 
angiogenesis known to be very different to physiological induced-angiogenesis. This difficulty in 
quantification can be solved moving from a 2D  to a 3D quantification, as suggested recently (Kolinko 
et al., 2015). Another explanation, concerning the difficulty in detecting a memory-induced vascular 
increase is that the newly formed vascular network can replace the old, less functional, vessels. These 
old vessels may be less perfused, degenerating and disappearing via a pruning process (Korn and 
Augustin, 2015). We propose to increase the memory trace strength via multiple interactions in the 
same day (Benjamin Bessieres, Ph.D. thesis, 2015), presuming that the wider neuronal activity and 
then the more extensive vascular angiogenesis process triggered can facilitate the detection of this 
effect. 

The ACC takes in charge the remote memory several weeks after social interaction. Thus, we can 
suggest that early angiogenesis can assist the initial maturation of the neuronal cortical network that is 
going to subsequently support progressive maturation and stabilization of the memory trace. To 
validate this concept, we have performed invasive approaches, to either inhibit or potentiate 
angiogenesis, to establish the functional value of angiogenesis during the early phase of memory 
consolidation. 
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CHAPTER 2: Implication of angiogenesis in the memory consolidation, 
invasive approach 
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Chapter 2: implication of angiogenesis in the memory consolidation, invasive 
approach 

 

2.1. Introduction 

In the previous chapter we showed that the consolidation of the associative olfactory memory may 
trigger a transitory angiogenic process resulting in time-dependent changes in the microvascular 
architecture in the ACC, together with the presence of newly-born endothelial cells. Furthermore the 
analysis of the hypoxia generated by neuronal activation, one of the mechanisms triggering 
angiogenesis, revealed a sustained region-specific increase of hypoxic environment in ACC. These 
results convinced us that angiogenesis is required in the early phase of consolidation of the associative 
olfactory memory. 

Since the previous findings are only correlative in nature, we decided to move towards a more decisive 
invasive approach aimed at modulating angiogenesis specifically, thereby analysing the impact on 
memory consolidation. To reach these aims, we targeted Angiopoietin 2 (Ang-2) because of its 
vascular specificity compared to VEGF in the adult cerebral cortex, as demonstrated by the various 
studies defining the cellular distribution of Ang-2/Tie-2 molecules (Mackenzie and Ruhrberg, 2012; 
Shen et al., 2016). Its specificity allows us to target the vascular network without affecting neuronal 
activity, and thus getting rid of a confounding factor in the interpretation of memory performance. The 
goal of this set of experiments was to prove that the modulation of angiogenesis achieved by either a 
stimulation or an inhibition of Ang-2 was able to affect memory consolidation, and in particular to 
respectively enhance or decrease the remote memory retrieval. 

The role of Ang-2 in the angiogenic process is to destabilize the vascular network enabling the 
sprouting of the new vessel (Fagiani and Christofori, 2013); its prompt action in angiogenic process 
represents an important advantage since it allow us to modulate from the early stages of angiogenesis. 

Ang-2 is known to be one of the actors participating in the formation of the new vascular network;  
despite this, several studies showed that it is key point in the angiogenic pathways; as a matter of facts, 
in vivo, the exogenous administration of Ang-2 has been shown to boost the angiogenic process in 
presence of VEGF (Lobov et al., 2002); moreover, in vivo exogenous administration of Ang-2 induces 
vascular remodelling allowing the vascular proliferation and sprouting angiogenesis in presence of 
VEGF. The angiogenic action depends also on the Ang-2 concentration injected. Nag and 
collaborators showed that high dose of Ang-2 induce BBB breakdown and ECs apoptosis (Nag et al., 
2005).  
Thus, based on these studies and preliminary data obtained injecting Ang-2 in OFC during Anais 
Giacinti’s Ph.D. thesis, we decided to modulate angiogenic pathways using a strategy of multiple 
injections in the ACC. 
 
On the contrary, the pharmacological blockade of the action of Ang-2 hampers the development of 
tumour angiogenesis. In particular, L1-7(N) (by Amgen; (Brown et al., 2010; Mazzieri et al., 2011; 
Tabruyn et al., 2010)), the antibody 3.19.3 (by MedImmune, (Coxon et al., 2010; Herbst et al., 2009; 
Oliner et al., 2004)), both inhibiting specifically Ang-2/Tie-2 interaction, and AMG 386 (by Amgen; 
(Coxon et al., 2010; Herbst et al., 2009; Oliner et al., 2004)), blocking simultaneously Ang-2/Tie-2 
and Ang-1/Tie-2 interactions, confirm their anti-angiogenic action on ECs, prompting the use of these 
drugs in the clinical phase as an antitumor strategy. Concerning the choice of Ang-2 blockade different 
strategies can be used. Since the molecules above cited are not available, another strategy was 
adopted: we decided to block the production of Ang-2 protein using antisense oligonucleotides 
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(ASON) directed against our target, the Ang-2, as used by Giacinti during her thesis (see material and 
methods “Justification of ASON choice”). 
 

2.2. Experimental design and Results  
 

2.2.1.  Inhibition of memory consolidation by injection of ASON targeted Ang-2 in ACC 

To inhibit the angiogenic pathways, Ang-2 has been chosen as the central key factor. Previously, an 
ASON against Ang-2 (asAng-2) was designed and the best usable concentration was determined as 
reported in Anais Giacinti’s thesis and in the material and the methods section. 

The rats were bilaterally injected as described in the timeline protocol (Fig. 93) with 1 µg/µl of ASON 
against Ang-2 (asAng-2) or the scramble version of the asAng-2 (SCR). The repeated injections 
protocol was set according to  the previous experience of the team (Dabertrand et al., 2010; 
Dabertrand et al., 2012) and was performed to ensure the presence of ASON during the early phase of 
the memory consolidation phase, corresponding to the angiogenesis period as defined by the 
correlative approach (Ang-2 concentration measured by ELISA). The injections were performed once 
every 2 days to avoid a toxic effect of ASON whilst assuring its expression in vascular network. The 
choice of beginning the injection protocol before the encoding was done based on the fact that the 
half-life of Ang-2 mRNA is of 3 hours in normoxic conditions and 5 hours in hypoxic conditions, but 
the protein can be detected till 24 hours after hypoxic stimulation (Pichiule et al., 2004). Moreover, if 
it is stocked in Weibel-Palade bodies the half-life of the protein is 18 hours. Thus, in order to reduce 
the presence of Ang-2 at the moment of the encoding we preferred to start the injection the day before 
interaction. 

 

Figure 93: protocol for ASON and SCR injections. 

 

The memory performance was tested 30 days after encoding, as reported in Fig. 94. Injections of 
asAng-2 were able to impair the remote memory retrieval in observer rats interacting with 
demonstrators fed with cumin, yet without modification of the total food eaten, thus the differences in 
memory performance between the groups were not a consequence of food intake motivation.  
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Figure 94: effects of intracerebral injections of ASON directed against Ang-2 (asAng-2) and SCR on associative 
olfactory memory. A- % cumin eaten (two-way ANOVA, interaction F(1,19) = 21.18; p = 0.0002; treatment: F(1,19) = 10.81; p 

= 0.004; STFP: F(1,19) = 57.9; p < 0.0001.; post-hoc Tukey SCR-FP vs SCR-EXP p = < 0.0001,  ; aCSF-EXP vs ang2-EXP 

p = < 0.0001,). B- total food eaten (two-way ANOVA, interaction F(1,19) = 2.014; p = 0.17; treatment: F(1,19) = 0.282; p = 

0.60; STFP: F(1,19) = 0.277; p = 0.60). Columns expressed means ± sem. 

 

 

This result showed that the infusion of asAng-2 during the early phase of memory consolidation 
impairs remote memory in experimental rats (D30). 

 

2.2.2.  Stimulation of memory consolidation by injection of exogenous Ang-2 in ACC 

To complete this first result and validate the hypothesis about the angiogenesis role in memory 
consolidation, we performed bilateral multiple injections of 100 ng/µl of Ang-2 or aCSF (control 
group) in ACC of rats after encoding. The repeated injection protocol is described in Fig. 95. The 
exogenous Ang-2 administration begun just after social interaction, in order to increase the angiogenic 
process from the beginning of the post-encoding phase. The choice of injections each 2 days was done 
to minimize the physical stress of the injection and according to previous experiments performed in 
the lab. 

 

Figure 95: protocol for Ang-2 and aCSF injections. The rats were tested 30 days after encoding 

 

The interaction protocol used for this experiment was different from the others, since the greed 
dividing the observers from the demonstrators was left during all the time of interaction (30 min). This 
strategy allows us to avoid that the memory performance reaches the maximal expression in aCSF rats 
and to see the supposed amelioration of the memory performance in treated rats. In fact, after the 
classical STFP interaction (20 min with greed that divide observers and demonstrators, guiding the 
tidy interaction through the holes of the greed, and 10 min without greed allowing the free 
explorations between animals), the memory performance is so good that it is difficult to see any 
possible amelioration. Thus, as described in Material and methods, if the grid is not removed, the 
memory trace strength is diminished and the memory performance during the retrieval is decreased, as 
revealed by a lower quantity of cumin eaten by the observer rats interacting with the demonstrators fed 
with cumin.  

Thirty days after the social interaction, the retention test indicated a correct memory retrieval in Ang-2 
injected experimental rats compared to Ang-2 injected food preference rats; interestingly the memory 
performance of Ang-2 injected experimental rats  is significantly increased in comparison to the one 
measured in experimental rats injected with aCSF (Fig. 96A). Moreover, the total food consumed by 
all groups during test is similar, indicating no confounding effect of motivation and that the food 
intake is not modified by cerebral injections (Fig. 96B). 
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Figure 96:  Effects of intracerebral injections of Ang-2 and aCSF on associative olfactory memory. A- % cumin eaten 
(two-way ANOVA, interaction F(1,16) = 11.13; p = 0.0042; treatment: F(1,16) = 6.585; p = 0.021; STFP group: F(1,16) = 32.87; p 

< 0.0001.; post-hoc Tukey ang2-FP vs ang2-EXP p = 0.0007,  ; aCSF-EXP vs ang2-EXP p < 0.0001,). B- total food 
eaten (two-way ANOVA, interaction F(1,16) = 0.819; p = 0.37; treatment : F(1,16) = 0.044; p = 0.84; STFP group: F(1,16) = 

1.438; p = 0.24). Columns expressed means ± sem. 
 

Angiogenesis stimulation achieved by injections of Ang-2 during the early phase of memory 
consolidation ameliorates remote memory in experimental rats (D30). 

Finally, the analysis of the vascular network was performed using Collagen IV immunostaining and 
vascular density and branching were quantified in each group of animals using Angiotool software. 
After a retrieval test at D30, both the vascular density and the junction density were not significantly 
increased in experimental groups as well as by the injection of Ang-2. Despite a very tenuous effect in 
experimental group compared to food preference group was detected; the memory-induced vascular 
increase was multiplied by two in the Ang-2-injected rats in comparison with aCSF-injected rats (Fig. 
97). 

  

Figure 97: effects of Ang-2 and aCSF injections on vascular density and branching. The both parameters were measured 
on immunohistofluorescence of collagen-IV at D30, after the retrieval test, and analysed with Angiotool. A- Vascular density 
expressed as the area of the collagen-IV on the total area of the image. labelling in ACC (two-way ANOVA, interaction F(1,17) 

= 0.304; p = 0.58; treatment: F(1,17) = 0.385; p = 0.54; STFP group: F(1,17) = 1.628; p = 0.22) and in PC (two-way ANOVA, 

interaction F(1,18) = 2.378; p = 0.14; treatment: F(1,18) = 0.864; p = 0.36; STFP group: F(1,185) = 0.0003; p= 0.98). B- Vascular 

branching expressed as the number of junction per mm
2
 in ACC (two-way ANOVA, interaction F(1,16) = 0.302; p = 0.59; 

aCSF vs Ang-2: F(1,16) = 1.879; p = 0.19; STFP group: F(1,16) = 2.919; p = 0.10) and in PC (two-way ANOVA, interaction 

F(1,18) = 3.016; p = 0.09; treatment: F(1,18) = 0.444; p = 0.51; STFP group: F(1,18) = 0.157; p = 0.69). Columns expressed means 

±, sem. 
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In this chapter, our results confirm, by an invasive approach, that the angiogenesis is a permissive 
mechanism to help the formation of the consolidation of the associative olfactory memory trace 
and validate that Ang-2 participated in this mechanism. 

 

2.3. Discussion  

In the previous chapter, we found that consolidation of an associative olfactory memory is 
concomitant with the triggering of an early and time-dependent angiogenic process, which induces 
changes in the microvascular architecture of the ACC. Accordingly, we detected the presence of 
newly-born vascular cells in this cortical region involved in the formation and retrieval of remotely 
acquired information, as well as spatial or non-spatial memories (Bontempi et al., 1999; Frankland et 
al., 2004; Lesburgueres et al., 2011; Maviel et al., 2004; Takehara et al., 2003; Teixeira et al., 2006). 
Furthermore, the analysis of hypoxia generated by memory-induced neuronal activation, one of the 
mechanisms triggering angiogenesis (Boero et al., 1999; Dunn et al., 2004; LaManna et al., 2004; 
Masamoto et al., 2013; Pichiule et al., 2004; Xu and Lamanna, 2006), revealed a sustained region-
specific increase of the hypoxic environment in the ACC. To examine whether this transitory 
angiogenic process is necessary for the formation and subsequent storage of remote memories at the 
cortical level during the course of the memory consolidation process, we have chosen to adopt a causal 
strategy aimed at modulating specifically cortical angiogenesis this in order to highlight its functional 
importance as a permissive mechanism responsible for the progressive embedding of the memory 
trace within cortical networks..  

Antisense oligonucleotide strategies were classically used to inhibit the translational 
machinery leading to a selective target (Kole et al., 2012), as to reduce the angiogenesis pathways 
(Park et al., 2016). Here for the first time, we have used ASON against Ang-2 to inhibit the memory-
induced angiogenesis. The Ang-2 target was selected based on its crucial role in promoting the 
angiogenesis when VEGF is present, producing pericytes dissociation from vessels (Zhang et al., 
2003a) and vessels destabilization (Ribatti et al., 2011), increasing permeability and vascular leakage. 
Ang-2 expression is strictly controlled. In adults physiological condition it is selectively expressed in 
ECs (Augustin et al., 2009; Fiedler and Augustin, 2006; Fiedler et al., 2004) and pericytes (Wakui et 
al., 2006) where active remodelling occurs. It’s almost absent in quiescent vasculature but it 
dramatically produced by ECs and up regulated in response to tissue hypoxia (Pichiule and LaManna, 
2002) and shear stress (biomechanical force acting on the vessels wall as a consequence of the 
tangential force exerted by the flowing blood). Ang-2 activates molecular cascades underlying 
vascular destabilization required for angiogenesis (Hakanpaa et al., 2015), the final outcome being a 
more powerful and coordinated vascular signalling, resulting in a more efficient, dense and stable 
vascular network (Fagiani and Christofori, 2013). Our findings show that repeated intracerebral 
injections of antisense oligodeoxynucleotides directed against Ang-2 (asAng-2), infused into the ACC 
during the early phase of memory consolidation, are efficacious in impairing retrieval of associative 
olfactory remote memory probed 30 days after social interaction in the STFP paradigm. Thus, while 
Ang-2 is not the only actor involved in the modulation of angiogenesis (Carmeliet and Jain, 2011), its 
selective inhibition of expression was sufficient to impact remote memory performance. Conversely, 
we explored whether angiogenesis stimulation could improve remote memory in experimental rats. To 
achieve this, we performed repeated infusions of exogenous Ang-2 peptides into the ACC during the 
early phase of memory consolidation. This treatment was successful in improving remote memory. 
The absence of between-group differences in the total amount of food consumed during the retrieval 
test indicated that both asAng-2 and Ang-2 treatments did not affect the motivation of rats to eat 
powdered food, thus pointing to memory-specific effects of these two treatments. Furthermore the lack 
of significant differences between aCSF-injected animals and non-treated animals used in other 
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experiments indicates that the constraints associated with the intracerebral injection procedure 
(contention, placement of intracerebral cannulas, infusion of the vehicle), did not interfere with the 
ability of the rats to perform in the STFP task. 

Taken together, our behavioural results suggest that early angiogenesis in cortical networks 
acts as a permissive mechanism which could regulate the subsequent development of molecular and 
structural modifications in neurons underlying the formation and maintenance of enduring memories. 
Indeed, converging evidence have shown that the formation of remote memory is associated with an 
increase in spine density; according to Lesburgueres and colleagues, the consolidation of the 
associative olfactory memory is accompanied by a cortical increase of spine density, detectable since 
Day 1, in regions such as OFC (Lesburgueres et al., 2011); the progressive increase of dendritic spine 
growth in ACC was also detected during the consolidation of a contextual fear memory or spatial 
memory (Frankland et al., 2004; Maviel et al., 2004; Restivo et al., 2009; Vetere et al., 2011). 
Moreover, the stabilization of the associative olfactory memory is accompanied by a progressive 
surface redistribution of cortical NMDA receptors (Benjamin Bessieres, Ph.D. 2016), known to be 
involved in the induction and regulation of synaptic plasticity (Lau and Zukin, 2007; Mayford et al., 
2012). 

In order to strengthen this possibility in our own behavioural model, experiments are 
underway to examine the status of the architecture of neuronal networks (synaptophysin labelling as a 
presynaptic marker of synaptogenesis) and neuronal activation (c-fos labelling) upon remote memory 
retrieval in these rats in order to correlate the observed memory impairment and enhancement to a 
decrease or increase of neuronal activity and network complexity in the ACC and other connected 
cortical regions, respectively. 

As suggested in the previous chapter, the increase of vascular network density induced by the 
consolidation of associative olfactory information generated by the STFP paradigm quickly returns to 
a basal level a few days after memory encoding, suggesting a transitory role of this angiogenic 
mechanism initiated during the course of the memory consolidation process. However, the possibility 
remains that the observed slightly increased density in the vascular network within the ACC could 
persist longer due to the action of Ang-2. In order to investigate whether the vascular proliferation 
initially boosted by Ang-2 was potentially maintained, a quantification of the architecture of the 
vascular network of the ACC was performed in Ang-2 injected rats 30 days after the social interaction. 
The quantification of vascular density and number of vessel branching points did not reveal significant 
differences between groups, even if a tendency towards an increase, particularly in the number of 
vascular branching points was apparent in Ang-2-injected rats. Importantly, Ang-2 repeated injections 
in food preference groups injected with aCSF or Ang-2 did not affect vascular density per se.  

To further characterize the efficacy of Ang-2 injections (does Ang-2 increase vascular network in term 
of vascular density?) and the duration of this vascular network increase (does Ang-2 slow down the 
vascular regression?), additional experiments will be needed to examine the vascular network just after 
the end of Ang-2 injections and at different time points thereafter.  

Antisense oligonucleotides, including asAng-2, are typically designed to inhibit the production of 
proteins, in our case the Ang-2 protein (Kole et al., 2012). In our experiment, asAng-2 injections 
inhibit remote memory retrieval probed several weeks after the last injections of asAng-2. However, 
we still have to demonstrate the efficacy of this treatment by showing a lack of increase of density of 
the vascular network in the experimental group injected with asAng-2 just after the end of asAng-2 
injections, a time window for which we know that increased density in the vascular network occurs. 

Finally, we have to establish the specificity of asAng-2 or Ang-2 injections, their direct effects on ECs 
proliferation and on the Ang-2 expression.  In light of our results, it is possible to predict that the Ang-
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2 or asAng-2 injections will increase or decrease the ECs proliferation and Ang-2 expression in the 
ACC of experimental rats, respectively. 

In conclusion, our results suggests that the basal state of the vascular network in ACC is not optimal, 
since Ang-2 injection in the early phase of memory consolidation is able to slightly increase its density 
at Day 30, supporting and enhancing the expression of remote memory. The data obtained suggest that 
the function of Ang-2 and its associated vascular increase can be useful to support the dialogue 
between hippocampus and cortex that is required to enable the embedding of remote memories within 
cortical networks and this despite the apparent transient nature of the angiogenic process. In the topic 
about memory consolidation, memory forgetting is also an important parameter (Hardt et al., 2013). 
Thus, it will be very interesting to test if transitory early angiogenesis induced by Ang-2 injections can 
somehow slow down memory decay by not only facilitating memory expression at the time of 
retrieval but perhaps also by strengthening its informative content during memory formation. 

The effects of Ang-2 on angiogenesis are thought to be modulated by VEGF. When injected in the 
absence of VEGF and of an angiogenic environment, Ang-2 induces endothelial cell death and vessel 
regression (Lobov et al., 2002). Conversely, Ang-2 promotes angiogenesis when VEGF is present by 
producing vessels destabilization prior to inducing vessel sprouting. Thus, we show that blocking the 
expression of Ang-2 in experimental rats is sufficient to interfere with the formation and/or the 
expression of remote memory, presumably blocking angiogenic mechanism, pointing to the 
importance of Ang-2 as a key molecular factor underlying vascular changes induced  

 Furthermore, given the specificity of Ang-2 on vascular network (Augustin et al., 2009; Fiedler and 
Augustin, 2006; Fiedler et al., 2004; Wakui et al., 2006), we can exclude a direct effect on neuronal 
activity in our conditions. In fact, in vivo neuronal Ang-2 action has been reported just during 
development (Marteau et al., 2011) in neuronal progenitors (Liu et al., 2009) or fibroblast 
differentiation (Lee et al., 2007) but not in adult cortical neuronal network. According to the described 
dynamic of vascular changes during the course of memory consolidation, it is possible predict that 
delaying the injection of Ang-2 after the angiogenic peak should not affect remote memory 
expression. To clearly show this time course, we would like to inject Ang-2 and asAng-2 after the 
angiogenic peak to show the absence of remote memory enhancement or memory perturbation, 
respectively. These experiments are still underway. 
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CHAPTER 3: Spontaneous hypertensive rat is a model of consolidation 
impairment 
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Chapter 3: Spontaneous hypertensive rat is a model of consolidation 
impairment 

 

3.1. Introduction 

Systemic hypertension is described as one of the most important risk factors for neurodegenerative 
disorders leading to memory impairments, such as Alzheimer’s disease (Carnevale et al., 2012; Hazar 
et al., 2016; Valenti et al., 2014). Several hypotheses are proposed to link hypertension to neuronal 
dysfunctions (for review, (Iadecola, 2013)). Hypertension induces endothelial and smooth muscle 
dysfunctions potentially responsible for vascular remodelling, atherosclerosis, impairment of vascular 
reactivity and blood brain barrier, alterations of cell interactions between capillaries and glial cells, all 
these effects triggering decreases of brain perfusion and exchanges to affect neuronal and glial 
functions (Faraco and Iadecola, 2013). Moreover, some studies proposed that hypertension was also 
characterized by a capillary rarefaction (Humar et al., 2009; Sane et al., 2004; Sokolova et al., 1985). 
Finally, the deleterious effects of hypertension are linked to the chronicity of the pathology.  

Despite that, there are no direct studies aimed to unravel the potential effects of hypertension on 
memory consolidation via a potential deficit in cerebral angiogenesis. Thus, we decided to select a 
hypertensive model in order to study the impact of vascular impairment, an in particular a putative 
angiogenesis deficit, on memory consolidation. 

To reach this goal we decided to select the Spontaneously Hypertensive Rats (SHRs) which, due to an 
uniform genetic predisposition, develop hypertension over time (Okamoto and Aoki, 1963; Tayebati et 
al., 2012). This model was used as a complementary approach to explore the functional contribution of 
neurovascular networks to cognitive processes. This model has been widely used in hypertension 
studies since its discovery (Okamoto and Aoki, 1963; Pinto et al., 1998); we decided to use this model 
because, contrarily to inducible models, SHRs do not require treatment or surgery to develop a 
stableAHT, reducing the number of animals used. Moreover, the long-lasting and stable AHT allows 
the study of the evolution of memory consolidation in parallel to vascular dysfunctions. Finally, 
compared to both inducible and spontaneous models, there are no other comorbidities and the 
progression (onset and development) of the disease is more comparable to humanAHT, avoiding 
fulminant crisis detectable in other models of rodents’ hypertension (Dornas and Silva, 2011; Leong et 
al., 2015; Pinto et al., 1998).  

The angiogenic status in this strain is still under debate since some studies find angiogenic impairment 
(Lu et al., 2016; Murfee and Schmid-Schonbein, 2008; Wang et al., 2004)  and others lack to find 
differences in angiogenic pathways compared to other stains (Amaral et al., 2008; Hudlett et al., 2005; 
Murfee and Schmid-Schonbein, 2008; Wang et al., 2002). 

Moreover, despite the contradictory bibliography found on this strain about memory (reviewed in 
(Meneses et al., 2011a)), it seems that these rats exhibit lower memory performances compared to 
control strains (Meneses et al., 2011a; Mori et al., 1995; Sutterer et al., 1980; Tayebati et al., 2012; 
Wyss et al., 1992). These memory performances were exacerbated during the time (Heal et al., 2008; 
Meneses et al., 1997; Wells et al., 2010) (van der Staay and de Jonge, 1993; Wyss et al., 2000), but it 
is difficult to segregate whether this effect is due to the progression of the pathology or to aging, 
considering that they provoke similar and additive cognitive alterations. In any case, the major 
decrease of memory performance was observed in spatial learning and memory in 18/24-month-old 
rats (van der Staay and de Jonge, 1993; Wyss et al., 2000). 
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Since the potential bias introduced by the behavioural phenotype of this strain, including hyperactivity 
(Meneses et al., 2011a; Sontag et al., 2013), in the interpretation of results concerning memory test in 
this strain, we used for the first time the STFP paradigm in SHRs strain, minimizing the locomotor 
activity component.  

Because hypertension develops progressively, independent groups of SHR rats were tested at 4 months 
(beginning of stable hypertension) and 6 months (established level of hypertension) on the recent 
(tested at Day 1) and remote (tested at Day 30) memory performance. During this phase, both cocoa-
cinnamon and cumin-thyme associations were used, in order to exclude odour significance of a 
particular pair or in the taste preference of SHRs. We thereafter selected the cocoa-cinnamon 
association to perform the following experiments since we noticed a smaller data dispersion using 
these flavours. The memory performances of SHRs were compared to the ones of Wystar Kyoto Rats 
(WKYs), the classical control strain (Okamoto and Aoki, 1963; Tayebati et al., 2012), and Sprague 
Dawley Rats (SDs) used in the previous part of the thesis. 

Moreover we characterized the behavioural phenotype of SHRs to unravel potential confounding 
factors such as olfactory sensitivity (odour detection threshold) and initial memory strength over the 
interpretation of impaired memory profile in SHRs, as well as the locomotor activity and anxiety 
profiles.  

To further characterize the putative permissive function of vascular networks and angiogenesis during 
memory consolidation processes, we adopted the same approaches used before in the first two 
chapters on SD. Firstly, using a correlative approach, we investigated the angiogenic profile in ACC, 3 
days after STFP interaction. Moreover, to solve the riddle of vascular dysfunction and memory 
consolidation impairment we adopted two invasive approaches: the pharmacological reversion of AHT 
through chronic treatment with Losartan, an antagonist of angiotensin II receptor type 1, and the 
restoration of angiogenic pathway through region-specific intracerebral infusions of Ang-2 during the 
early phase of memory consolidation.  

 

3.2. Experimental Design and Results 

The STFP task was used to characterize the putative impairment of memory consolidation in the SHR 
strain; anxiety and locomotion, taste preference, thresholds of odour detection and social interactions 
have been carefully analysed to circumscribe potential bias. As mentioned in the introduction, 
hypertension is established in the early adult life of the SHR and then it becomes stable. We have used 
animals at two different ages to determine if the chronicity of the pathology plays a role in the memory 
consolidation process. 

 

3.2.1.  Behavioural analysis of the SHR strain, comparison with WKY and SD strains 

Before testing the memory performance of SHRs with the STFP task, we have characterize the SHR 
behaviour in comparison with WKY and SD rats to determine if SD could be used as SHRs’ control. 
SHRs have been previously proposed as a hyperactive and hypo-anxious strain in comparison with 
WKY, the classical control strain from which SHRs are derived; this was especially important for us 
as these parameters can modulate social interaction and food intake. To compare the anxiety and 
locomotor activity in the 3 strains, we used an open field task and analysed the exploration behaviour 
of the rats (Fig. 98). The anxiety of the rats was measured during the first 10 minutes of the presence 
of the rat in the arena by the analysis of the time spent by the rat to explore, the latency of the first 
entry and the number of entries in this zone. Our results indicated that the 6 month-old SHRs spent 
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more time in the central zone than WKY and SD rats (Fig. 98B) and WKY rat entered less often in the 
central zone than SD rats (Fig. 98D). The locomotor activity was evaluated using both the cumulative 
distance that the animals covered during 30 min and the immobility time. The SD and SHRs have 
similar locomotor activity at 4 and 6 months (Fig. 98E); but SHRs presented an increase of the total 
immobility time due to aging (Fig. 98F). Finally, the WKY rats spend more time immobile and move 
less than both SDs and SHRs (Fig. 98E-F).  

 

Figure 98: Behavioural comparison between Sprague Dawley (SD) Wistar Kyoto (WKY) and SHR in open field 
(A,B,C,D) and locomotor activity (E,F). A- Typical path travelled by the rat in 10 min. B- Time spent in the central 
zone during 10min (two-way ANOVA, interaction F(2,75) = 2.822, p = 0.065; age: F(1,75) = 0.169, p = 0.68; strain: F(2,75) = 
8.166, p = 0.0006; post-hoc Tukey SHR-6M vs WKY-6M p = < 0.019, #; SHR-6M vs SD-6M p = 0.006,). C- Latency to 
the first entry in the central zone during 10min (two-way ANOVA, interaction F(2,75) = 0.163, p = 0.85; age: F(1,75) = 
0.027, p = 0.87, strain: F(2,75) = 1.712, p = 0.19). D- Number of entries in the central zone during 10min (two-way 
ANOVA, interaction F(2,75) = 2.096, p = 0.13; age: F(1,75) = 2.952, p = 0.09, strain: F(2,75) = 8.062, p = 0.0007.; post-hoc Tukey 
SD-4M vs WKY-4M p = 0.0056, ). E- Cumulative distance travelled during 30 min (two-way ANOVA, interaction 
F(2,75) = 3.867, p = 0.025; age: F(1,75) = 6.818, p = 0.011, strain: F(2,75) = 12.81, p < 0.0001.; post-hoc Tukey SHR-6M vs 
WKY-6M p = 0.003, # ; WKY-6M vs WKY-4M p = 0.0029, , SD-6M vs WKY-6M p = < 0.0001 , ). F- Total time 
immobile during 30 min (two-way ANOVA, interaction F(2,75) = 8.517, p = 0.0005; age: F(1,75) = 14.90, p = 0.0002, strain: 
F(2,75) = 18.78, p < 0.0001.; post-hoc Tukey SHR-6M vs WKY-6M p = < 0.0001, # ; WKY-6M vs WKY-4M p = 0.0006, ; 
SHR-6M vs SHR-4M p = 0.0021, ; SD-6M vs WKY-6M p = < 0.0001 , ). Columns expressed means ± sem. 

 

Taken together, these results suggest that (1) the SHRs and SDs are not different in terms of 
locomotor activity; (2) the increase of time in the central zone during the first 10 minutes confirm 
that SHRs could be less anxious than the others strains. This last weak effect is not confirmed by 
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the analysis of others parameters, suggesting that it is probably not sufficient to alter the quality of 
social interactions.  

 

3.2.2.  Performances of SHRs in STFP task 

The 4 month-old SHRs were first tested in the STFP task using two different pairs of odours: 
cumin/thyme and cocoa/cinnamon. As illustrated in Fig. 99, the observer rats of the experimental 
group ate significantly more food containing cumin (Fig. 99A) or cocoa (Fig. 99C) than those of the 
food preference group 1 day and 30 days after the social interaction.  

  

 

Figure 99: recent and remote memory evaluated with STFP task on SHR 4 months old. A- % cocoa eaten (two-way 
ANOVA, interaction F(1,24) = 0.062, p = 0.80; recent vs remote: F(1,24) = 2.479, p = 0.13; STFP groups: F(1,24) = 39.26, p < 
0.0001.; post-hoc Tukey recent FP vs EXP: p = 0.0006,  ; remote FP vs EXP: p = 0.0015, ). B- Total food eaten (two-
way ANOVA, interaction F(1,24) = 0.585, p = 0.45; recent vs remote : F(1,24) = 11.37, p = 0.0025; FP vs EXP: F(1,24) = 0.639, p 
= 0.43, post-hoc Tukey FP recent vs remote: p = 0,035, ). C- % cumin eaten (two-way ANOVA, interaction F(1,17) = 0.058, 
p = 0.81; recent vs remote: F(1,17) = 0.0029, p = 0.96; STFP groups: F(1,17) = 46.83, p < 0.0001.; post-hoc Tukey recent FP vs 
EXP: p = 0,0009,  ; remote FP vs EXP: p = 0.0007, ). D- Total food eaten (two-way ANOVA, interaction F(1,17) = 
0.3226, p = 0.58; recent vs remote: F(1,17) = 0.014, p = 0.91; STFP groups: F(1,17) = 1.115, p = 0.30). Columns expressed 
means ± sem. 

 

This result showed that the recent as well as the remote memories were not affected in 4 month-
old SHRs. 

We then performed the experiment with 6 month-old SHRs, in order to be sure that the hypertensive 
symptomatology was well established. We chose not to select older rats to limit the confounding effect 
of aging that can per se be responsible for memory deficit as used in the previous studies (Diana et al., 
1994; Wyss et al., 1992). The observer rats of the experimental group ate significantly more food 
containing cumin or cocoa than those of the food preference group during the retrieval of the recent 
memory at Day 1 after interaction (Fig. 100A and C, recent). Moreover ,the quantity of cumin and 
cocoa eaten by experimental rats was not different, showing an absence of taste preference. 
Nevertheless, there is no difference in the % of cocoa as well as in % of cumin eaten by the food 
preference and experimental groups when the retrieval test is made 30 days after the social interaction 
(Fig. 100A and C, remote). Furthermore, the total food eaten by the rats was similar in all the groups 
compared, indicating no confounding effect of motivation. These results indicated that the recent 
memory is intact but the remote memory is affected.  
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Figure 100: recent and remote memory evaluated with STFP task on SHR 6 months old A- % cocoa eaten (two-way 
ANOVA, interaction F(1,52) = 2.018, p = 0.16; recent vs remote: F(1,52) = 13.13, p = 0.0007; STFP groups: F(1,52) = 24.88, p < 
0.0001.; post-hoc Tukey recent FP vs EXP: p = 0,0002, ; recent EXP vs remote EXP : p = 0,0035, #). B- Total food eaten 
(two-way ANOVA, interaction F(1,52) = 4.122, p = 0.047; recent vs remote : F(1,52) = 1.518, p = 0.22; STFP groups: F(1,52) = 
0.0035, p = 0.95). C- % cumin eaten (two-way ANOVA, interaction F(1,46) = 3.057, p = 0.087; recent vs remote: F(1,46) = 
2.869, p = 0.097; STFP groups: F(1,46) = 19.60, p < 0.0001; post-hoc Tukey recent FP vs EXP: p = 0.0003, ). D- Total food 
eaten (two-way ANOVA, interaction F(1,46) = 7.644, p = 0.0081; recent vs remote: F(1,46) = 3.308, p = 0.075; STFP groups: 
F(1,46) = 0.6477,  p = 0.42; post-hoc Tukey recent FP vs remote FP: p = 0,0091, #). Columns expressed means ±, sem 

 

These results suggest that, in 6 month-old SHRs, the consolidation of remote associative 
olfactory memory is impaired without affecting the encoding since the recent memory is not 
impaired.  

The remote memory retrieval was performed 30 days after encoding, when the SHRs are 7 month old. 
Thus, it can be speculated that the observed remote memory deficit is related to aging, a factor 
weakening the strength of the encoded memory trace, which can thus potentially cause a faster decay 
of the memory trace. Thus, to prove that the deficit in remote memory retrieval performance observed 
in SHRs (encoding 6 months and retrieval at 7 months) was related to a problem of consolidation and 
not to a problem of encoding, we tested in the same rats the recent memory at 7 months using the other 
pair of flavours (Fig. 101). 

 

Figure 101: recent memory tested in the STFP task in SHR 7 months old A- % cocoa eaten (t-test, t17 = 2.376, p = 
0.029, ). B- Total food eaten (t-test, t17 = 0.3862, p = 0.704). C- % cumin eaten (t-test, t16 = 2.535, p = 0.022, ). D- 
Total food eaten (t-test, t16 = 0.1826, p = 0.857). Columns expressed means ± sem. 
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The recent memory performance of these rats was intact at 7 months, independently by the flavour 
pair used. The total food eaten by the rats was similar in all groups showing a similar motivation in 
food intake. 

These data suggest that the recent memory in 7 months old rats was preserved, excluding that 
an age-related deficit of encoding can alter the remote memory performance, weakening the 
strength of the encoded memory trace and potentially causing a faster decay. 

 

3.2.3.  Validation of the memory consolidation impairment in 6 month-old SHRs  

To be sure that the remote memory consolidation deficit detected in 6 month-old SHRs was not due to 
age, despite unlikely, or to the genetic background, the performances in STFP task of SHRs were 
compared with those obtained with the genetically closer strain WKY (Fig. 102). The memory 
performance was analysed 30 days after the social interaction. The experimental WKY rats, but not 
SHRs, ate significantly more cocoa-flavoured food than those of the food preference group (Fig. 
102A), showing an intact remote memory. The same tendency (p = 0.09) is showed in the cumin 
experiment (Fig. 102C). The quantity of food eaten in experimental WKY was slightly lower than in 
SHRs, suggesting a potential decrease in motivation in food intake. 

 

Figure 102: Remote memory evaluated with STFP task on WKY and SHR 6 months old A- % cocoa eaten (two-way 
ANOVA, interaction F(1,34) = 1.47, p = 0.23; strain: F(1,34) = 3.757, p = 0.061; STFP groups: F(1,34) = 14.43, p = 0.0006; post-
hoc Tukey WKY FP vs EXP: p = 0,031, ). B- Total food eaten (two-way ANOVA, interaction F(1,34) = 2.477, p = 0.12; 
strain: F(1,34) = 4.661, p = 0.038; STFP groups: F(1,34) = 0.00042, p = 0.98; post-hoc Tukey WKY EXP vs SHR EXP: p = 
0,032, #). C- % cumin eaten (two-way ANOVA, interaction F(1,33) = 0.0069, p = 0.93; strain: F(1,34) = 0.6348, p = 0.43; STFP 
groups: F(1,33) = 5.973, p = 0.02; post-hoc Tukey WKY FP vs EXP: p = 0.09). D- Total food eaten (two-way ANOVA, 
interaction F(1,33) = 1.995, p = 0.17; strain: F(1,34) = 4.738, p = 0.036; STFP groups: F(1,33) = 0.0611, p = 0.81). Columns 
expressed means ± sem. 

 

This last result suggested that the remote memory of WKYs could be dependent either on the odour 
relevance of a particular pair of flavours, or on the taste preference, differently from SHRs. Since the 
behavioural phenotype of WKYs (in terms of activity, anxiety and taste) remains mainly unclear, we 
thought to use SDs as a control strain of SHRs, according to the literature (Meneses et al., 2011a). 
Thus, we compared the remote memory performance of 6 month-old SDs to the age-matched SHRs. 
Since the association cumin/thyme has been already shown efficient in SDs, we extended this result 
using the pair cocoa/cinnamon. As expected, the SDs experimental group ate more cocoa than the food 
preference group in a retrieval test performed 30 days after the social interaction, showing that the 
remote memory was not affected in 6 month-old SD, whereas it was impaired in SHRs (Fig. 103). 
Moreover, the amount of food eaten in the different groups was similar, showing that motivation does 
not affect the memory performance results and suggesting that the difference of food eaten in the 
SHR/WKY comparison was probably due to a difference in WKY behaviour. 
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Figure 103: remote memory in SHR and SD both 6 months old. A- % cocoa eaten (two-way ANOVA, interaction F(1,32) = 
1.432, p = 0.240; strain: F(1,32) = 0.238, p = 0.62; STFP groups: F(1,32) = 10.55, p = 0.0027.; post-hoc Tukey SD-FP vs SD-
EXP p = 0,078,  ; SHR-FP vs SHR-EXP p = 0.137). B- Total food eaten (two-way ANOVA, interaction F(1,32) = 2.803, p = 
0.10; strain: F(1,32) = 0.296, p = 0.63; STFP groups: F(1,32) = 0.239, p = 0.63). Columns expressed means ± sem. 

Furthermore, we recorded these interactions to quantify the nose-to-nose contacts between observers 
and demonstrators in order to assure that the memory encoding strength is the same in the two strains. 
The analysis of this parameter is still undergoing. 

The odour threshold discrimination for cocoa of SD and SHRs was tested via the ability of the rat to 
detect a filter paper containing the cocoa flavour in a known environment. After a habituation phase to 
the experimental arena, the filter was introduced and the exploration/sniffing time (recorded during 5 
min) was quantified as index of odour threshold discrimination. Both SD and SHRs have similar odour 
threshold to discriminate the cocoa flavour (Fig. 104).   

 

Figure 104: comparison of odor threshold of detection for cocoa in Sprague Dawley (SD) and SHR strains. (two-way 
ANOVA, interaction F(3,29) = 0.455, p = 0.71; % of cocoa: F(3,29) = 2.866, p = 0.053, SD vs SHR: F(1,29) = 0.547, p = 0.46). 
Columns expressed means ± sem. 

 

These results suggest that the odour discrimination threshold, the genetic background and the 
age of SHRs are not responsible for the associative olfactory remote memory deficit.  
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3.2.4.  Relation between AHT and memory impairment 

The rationale for the use of Losartan was to assess if the general reversion of the BP increase was able 
to counteract the deleterious effects of hypertension on memory consolidation, strengthening the idea 
that sustained AHT is involved in the observed cognitive deficits of SHRs and likely interferes with 
systems-level memory consolidation. The treatment consisted of administrating this drug with a 
posology of 13-18 mg/kg/day (in tap water) in SHRs from the age of 2 months to the sacrifice of the 
rats (6/7 months old), in order to avoid the development of hypertension (Demirci et al., 2005; He et 
al., 2014). The blood pressure was controlled to adjust the concentration of the drug to assure an 
efficient treatment and to stabilize the blood pressure (Fig. 105A). Finally, the remote memory 
retrieval was tested in 6 months SHRs treated with Losartan. The experimental group ate more cocoa 
than the food preference group (Fig. 105B), without any modification of the total food eaten (Fig. 
105C). This result suggests that the Losartan treatment rescues the blood pressure increase and 
restores the remote memory in 6 month-old SHRs. 

 

Figure 105: Effects of Losartan treatment (13-18 mg/Kg/day, from 2 to 6 months of aging) on blood pressure and 
remote memory. A- Systolic blood pressure (SBP), measured by the tail cuff method in SHR, without treatment (CTL) and 
in SHR treated with losartan. B- Percentage of cocoa eaten during retention test by the rats exposed to losartan (t-test, t6 = 
2.737, p = 0.034, ). C- Total food eaten during the test (t-test, t6 = 0.686, p = 0.518). Columns expressed means ± sem. 

 

Altogether, these results suggested that the hypertensive phenotype is responsible for the remote 
memory impairment.  

 

3.2.5.  Correlation between angiogenic impairment and remote memory deficit 

As performed on SD rats (Fig. 86), we investigated the angiogenesis profile and outcome during the 
early phase of memory consolidation. We evaluated the angiogenesis pathway 3 days after the 
encoding with the proteome profiler dedicated to angiogenesis and we compared the result obtained in 
SHRs to SDs ones. We decided to express the results showing the increase of proteins induced by the 
formation of associative olfactory memory formation, thus making the ratio of the fluorescence found 
in experimental rats on the food preference one. As illustrated in Fig. 106, the angiogenesis pathways 
are globally activated in both SHRs and SD rats but with several differences. 
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Figure 106: analysis of angiogenic pathways with proteome profiler. On the top typical images of proteome profiler 
membrane (both membranes were simultaneously imaged with Odyssey-imager and contrasted for the illustration) on the 
bottom, fluorescence analysis of each dot is reported as the ratio of the fluorescence of experimental group on the food 
preference group. All membranes were treated together. F: fluorescence. 

 

Moreover, the memory induced vascular cell proliferation (protocol described in Fig. 90), revealed by 
the co-localization of EdU labelling and anti-collagen-IV antibody (Fig. 107A), as well as the Ang-2 
increase measured by ELISA (Fig. 107B), detected in SDs, were absent in this strain (protocol 
described in Fig. 88), Accordingly, the vascular and junction densities were similar in both 
experimental and food preference groups (Fig. 107C). 

 

Figure 107: angiogenesis in SHR at D3 A- proliferative cells in ACC labelled with EdU: number of EdU positive nuclei 
pairs as measured in SD rats in the perivascular area (t-test, t9 = 0.093, p = 0.93) and outside the vessel periphery (t-test, t9 = 
0,093, p = 0.93). B- Ang-2 concentration measured by ELISA (t-test, t15 = 1.878, p = 0.08). C- The immunohistofluorescence 
labelling of Collagen-IV analysed with Angiotool was performed on rat sacrificed3 days after interaction, vascular density 
expressed as the area of the collagen-IV on the total area of the image, in ACC (t-test, t9 = 0.684, p = 0.64) and vascular 
branching expressed as the number of junctions per mm2 in ACC (t-test, t9 = 1.033, p = 0.33). Columns expressed means ± 
sem. 

 

These results suggested that the angiogenesis process induced by the encoding of the associative 
olfactory memory was impaired in SHRs. 
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3.2.6.  Injection of Ang-2 restores the memory consolidation impairment in 6 month-old 
SHRs  

The key point of this work was the use of an invasive approach to test if the memory consolidation 
impairment measured in SHRs could be restored by acting on the angiogenesis pathway. Thus, SHR 
rats were injected with Ang-2 in ACC during the early phase of memory consolidation, following the 
protocol used for SDs (Fig. 95) and the remote memory performance was tested 30 days after the 
social interaction. aCSF-injected animals showed the same behavioural performance as non-injected 
SHRs, revealing a remote memory impairment. The Ang-2-injected experimental rats ate more cocoa 
than Ang-2-injected food preference rats and aCSF experimental rats (Fig. 108A), displaying a 
rescued remote memory performance. The total food eaten was not affected, showing that motivation 
does not affect the memory performance (Fig. 108B).  

 

Figure 108: remote memory evaluated with STFP task on SHR 6 months old treated with Ang2 or aCSF A- % cocoa 
eaten (two-way ANOVA, interaction F(1,26) = 6.961, p = 0.013; treatment: F(1, 26) = 4.556, p = 0.042; STFP groups: F(1, 26) = 
17.35, p = 0.0003; post-hoc Tukey Ang-2 FP vs EXP: p = 0.0002, ; EXP aCSF vs Ang-2: p = 0.001 ,# ). B- Total food 
eaten (two-way ANOVA, interaction F(1,26) = 0.0059, p = 0.93; treatment: F(1,26) = 4.661, p = 0.022; STFP groups: F(1,26) = 
0.0452, p = 0.83). Columns expressed means ± sem. 

 

This result demonstrated that the memory impairment in 6 month-old SHR is restored by 
injection of Ang-2 in ACC during the early phase of memory consolidation, suggesting that the 
permissive mechanism of angiogenesis in memory consolidation could be affected in this model.  

Finally we investigated the effect of Ang-2 injections on the vascular density 30 days after the 
encoding: brain slices were labelled with the anti-collagen-IV antibody and analysed with Angiotools 
software. The vascular density and the number of branching were calculated in ACC and PC. No 
differences concerning vascular density and number of branching were found between the groups in 
PC. Surprisingly, in ACC, Ang-2 injections increased the vascular density and branching in the food 
preference group (Fig. 109).  
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Figure 109: vascular density and branching in ACC and PC from rat injected with Ang-2 or aCSF. The 
immunohistofluorescence labelling of Collagen-IV analysed with Angiotool was performed on rat killed 30 days after 
interaction and just after the retrieval. A- vascular density expressed as the area of the collagen-IV on the total area of the 
image, in ACC (two-way ANOVA, interaction F(1,25) = 1.242, p = 0.27; treatment: F(1, 25) = 10.51, p = 0.0034; STFP groups: 
F(1, 26) = 0.3738, p = 0.55; post-hoc Tukey FP Ang-2 vs aCSF: p = 0.0406, ); in PC (two-way ANOVA, interaction F(1,25) = 
2.046, p = 0.16; treatment: F(1, 25) = 0.1927, p = 0.66; STFP groups: F(1, 26) = 0.8203, p = 0.37). B- Vascular branching 
expressed as the number of junction per mm2 in ACC (two-way ANOVA, interaction F(1,25) = 1.155, p = 0.29; treatment: F(1, 

25) = 10.58, p = 0.0033; STFP groups: F(1, 26) = 0.2820, p = 0.60; post-hoc Tukey FP Ang-2 vs aCSF: p = 0.0423, ). ); in PC 
(two-way ANOVA, interaction F(1,25) = 1.981, p = 0.17; treatment: F(1, 25) = 1.16, p = 0.29; STFP groups: F(1, 26) = 0.1307, p = 
0.72). Columns expressed means ± sem  

 

This result showed that the Ang-2 injections increased basal vascular network in SHRs, and that 
this vascular enhancement lasted for at least 30 days after the encoding. This suggests that the 
ability of SHRs to create new vessels is maintained. Despite non-significant, a trend towards an 
increase was detected for vascular density and number of branching points in Ang-2 injected 
experimental SHRs, suggesting a potential beneficial effect on vascular network 

 

3.3. Discussion  

We used the SHR model as a complementary approach to further explore the functional 
contribution of cortical vascular networks to the formation of remote memory. Our goal was to 
determine whether the early cortical angiogenic mechanism triggered upon memory encoding in 
physiological conditions (adult Sprague Dawley rats) could be altered in a pathological condition, 
namely hypertension. In recent years, several studies have pointed to the existence of a potential link 
between the disruption of the vascular system and the onset or the acceleration of cognitive 
pathologies (Carnevale et al., 2012; Carnevale et al., 2016; Faraco and Iadecola, 2013; Iadecola, 2004, 
2013). For instance, hypertension has been proposed as one of the most important risk factors able to 
induce and/or increase memory impairments associated with vascular dementia or Alzheimer’s disease 
(Carnevale et al., 2016), although the underlying mechanism remains to be explored. We took 
advantage of our behavioural findings in SHRs revealing the deleterious effects of sustained high 
blood pressure on the organization of recent and remote memory, with a selective impact on the 
formation of remote memories indicative of a hypertension-induced disruption of the memory 
consolidation process. 

Moreover, since SHRs, develops spontaneous AHT over time (Meneses et al., 2011a; Tayebati 
et al., 2012), this pathological animal model appeared as particularly suitable for a longitudinal study 
aimed at examining the impact of vascular impairment on retrieval of recent and remote memory. 
Different behavioural paradigms have shown that SHR exhibit a potential impairment in learning and 
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memory (reviewed in (Meneses et al., 2011a; Sagvolden, 2000), but an important bias in the 
interpretation of these results is introduced by the behavioural phenotype of these animals, in 
particular their hyperactivity that can influence the majority of memory tasks based on exploratory 
behaviours such as for instance maze exploration (Sontag et al., 2013). To circumvent this issue, we 
chose to use the STFP paradigm that takes place in the animal’s home cage and in which the 
expression of memory performance does not rely on exploration of the animal’s environment.  

 

Memory profile and AHT 

Because hypertension develops progressively, SHRs were tested at the age of 4 (beginning of 
stable hypertension) and 6 months (established level of hypertension). The recent and remote memory 
performances in 4 months-old SHRs were not impaired. Similar results were obtained with two 
olfactory flavour pairs (cumin/thyme and cocoa/cinnamon) that permit to minimize a potential bias in 
the odour salience of a given pair or in the taste preference of SHRs. In 6 and 7 months old SHRs, 
recent memory was not affected whereas remote memory was selectively impaired. Only a few studies 
have examined memory performance in SHRs during the course of the pathology. It was shown that 3-
month-old SHRs learned faster than Sprague Dawley rats in an 8-arm radial maze task (Wyss et al., 
1992) while both 6-month-old rats of these two strains have similar spatial memory performance in the 
Morris Water Maze task (Diana et al., 1994). Memory impairments are only apparent in 12-month-old 
SHR rats in both spatial tasks (Diana et al., 1994; Wyss et al., 1992). However, these studies could not 
segregate the effects of aging from the chronicity of hypertension. In our study, 6 month-old SHR rats 
are not considered as aged rats. Moreover, remote memory retrieval is not affected in SHRs before 7 
months of age as it is also the case in spatial memory (Diana et al., 1994; Wyss et al., 1992), therefore 
excluding aging as a contributing factor weakening the strength of the encoded memory trace and 
potentially causing a faster decay. In other words, the selective impairment in remote memory 
formation and retrieval without alteration of recent memory in the same animals suggests successful 
encoding but an inability to adequately stabilize and/or retrieve remotely acquired information. Taken 
together, our findings identify SHRs as a valuable animal model of memory consolidation deficit. 

As to the hypertensive profile of our SHRs, our results are in agreement with previous 
findings (Tayebati et al., 2012) indicating that BP levels are constant between 4 to 6 months in these 
rats. This suggests that the observed vascular damage are predominantly related to the chronicity of 
the pathology rather than the level of BP. Concurring with this assumption, the hypertension-induced 
memory impairments were always detectable a few months after the start of hypertension in mice 
(Carnevale et al., 2012). Surprisingly, recent memory impairment, measured with the STFP task can 
be revealed in Dalh-salt hypertensive rats, although the hypertension status of these rats was not 
examined (Ruiz-Opazo et al., 2004). This suggests that the model of hypertension (genetic bases and 
duration of hypertension) can impact the pattern of observed memory impairments.  

Ongoing experiments aim at quantifying the spine density (synaptophysin labelling) and 
neuronal activation (c-fos labelling) in SHRs in order to correlate, according to our hypothesis, the 
lack of memory consolidation to the absence of neuronal/synaptic changes as described previously in 
hypertensive mice (Dai et al., 2016).  

 

Control strain and exclusion of potential bias in the memory performance interpretation 

Our results confirm the higher locomotor activity of SHRs compared to WKYs (Berton et al., 
1997; Langen and Dost, 2011; Pardey et al., 2009) but also underline a similar emotional reactivity 
and locomotion between SDs and SHRs. The results on anxiety obtained in the open field task are in 
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accordance with those acquired with the elevated plus maze, showing that SHRs are less anxious 
(Berton et al., 1997). Moreover, the locomotor and mood behaviours are slightly modified by aging as 
also described (Meneses et al., 2011a; Zhang-James et al., 2013). In conclusion, SDs could be a better 
control to study what happen in SHRs in terms of memory, considering that the memory is based on a 
single social interaction. Anyway, since SHR strain was used as a model of ADHD (Meneses et al., 
2011a; Sagvolden, 2000), it is important to control that the strength of the memory trace encoded by 
the animals is similar, excluding that this aspect is responsible for the faster decay. 

In fact, the memory retrieval can be linked to the strength of encoded memory trace as well as 
its consolidation (Lechner et al., 1999). In the STFP task, memory performance is dependent on the 
interaction between the demonstrator and the observer rats (Galef and Whiskin, 1998) and the ability 
to discriminate, upon retrieval, the odours presented. There are no established relationships between 
olfactory impairment and hypertension in humans (Landis et al., 2004) and the question has not been 
fully investigated in animal model of hypertension, except in terms of innate preference to different 
odours as measured in the STFP task (Ruiz-Opazo et al., 2004). Our findings show a similar olfactory 
sensitivity (odour detection threshold) in both SHR and SD strains. Finally, the analysis of the number 
and duration of nose contacts during the social interaction phase of the STFP task used as an index of 
social interaction is still ongoing, nevertheless, previous studies indicated that despite SHRs explore 
more, they are not more aggressive in presence of intruder, as this is the case during interaction 
(Berton et al., 1997). Altogether, the results suggested that SDs and SHRs have comparable 
behaviours. Then, the differences detected between SHRs and SDs in STFP task should be interpreted 
as a memory consolidation specific effect.  

To explain the memory deficits observed in 6month-old SHRs, several studies suggested a 
reduction of neuronal density in HPC (Bendel and Eilam, 1992; Johansson, 1986; Ritter and Dinh, 
1986; Sabbatini et al., 2002; Sabbatini et al., 2001; Tajima et al., 1993) and glucose consumption 
(Johansson, 1986; Wei et al., 1992). In our study, the learning and the recent memory are not impaired 
despite of the engagement of HPC. Anyway, in light of these results, we can assume that this neuron 
density reduction and decrease glucose consumption can affect remote memory retrieval by decreasing 
the HPC-ACC dialogue and thus the robustness of memory trace. Despite that, the Ang-2 injection 
probably compensates the neuronal loss via the increase of vascular network efficiency responsible for 
the metabolic intakes. 

 

Memory restoration with antihypertensive drug (Losartan) 

The chronic treatment with Losartan (20 weeks; 13-18 mg/kg/day in drinking water), designed 
to decrease the hypertensive phenotype in SHRs, reduced their BP and rescued their remote memory 
deficit. The effects of antihypertensive drugs on memory performance have been previously reported 
(Meneses et al., 1997; Wyss et al., 1992). Moreover, the Losartan treatment did not affect food intake, 
neither during the habituation phase nor during the retrieval test. Thus, the STFP task was not affected 
by known side effects of Losartan such as the decrease of food intake via a decrease of appetite and 
chemosensory perception (Doty et al., 2003) or the impairment of taste without modification in odour 
detection (Schlienger et al., 1996; Srinivasan et al., 2003).  

The choice of this particular antihypertensive molecule was implemented to limit, as much as possible, 
the typical side effects of antihypertensive treatments on brain functions. Even if AT1 angiotensin-II 
receptors have been described in the brain, their direct implication in memory processes has not been 
confirmed (Wright et al., 2013). Moreover the crossing of the blood-brain barrier by our Losartan 
preparation is minimal (as underlined in the information note of the medicinal preparation that we 
have used), thus minimizing any central effects in in our study. Other antihypertensive drugs could 
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directly bind on neurons and modify their excitability such as calcium blockers that can decrease 
memory impairment in mouse models of Alzheimer’s disease (Jansone et al., 2015; Jansone et al., 
2016) but also affect odour preference memory via the decrease of calcium entry into pyriform cortical 
neurons (Mukherjee and Yuan, 2016). In Alzheimer mice, Losartan ameliorates the acquisition and 
recall of spatial memory independently of the level of BP and can rescue the neurovascular and 
neurometabolic coupling and the cerebrovascular dilatory capacity (Ongali et al., 2014), suggesting 
that several signalling pathways including those which regulate angiotensin-II could be implicated in 
the improvement of memory processes. Interestingly, angiotensin-II can modulate angiogenesis 
depending on the model analysed, the structure explored and the array of receptors targeted (Benndorf 
et al., 2003; Clapp et al., 2009; Ribatti et al., 2007; Walther et al., 2003). Recently, Cabesartan, a 
pharmacological compound from the Losartan’s family was described to induce a prolonged pro-
angiogenic effect on brain vessels after ischemia (Soliman et al., 2014). Moreover, preservation of 
cognitive functions induced by neurovascular protective drugs such as cilostazol whose effects are 
related to the restoration of angiogenesis and pericyte proliferation in hypertension-induced stroke 
models has been reported (Omote et al., 2014). Based on these studies, and in light of our current 
results obtained in physiological conditions with Sprague Dawley rats (remote memory improvement 
or impairment induced by modulation of Ang-2 expression) and in SHRs (Ang-2 induced rescue of 
remote memory deficit), we anticipate that the Losartan-induced beneficial effects on remote memory 
may be mediated, at least in part, via an angiogenic mechanism. To explore this angiogenesis 
hypothesis, we propose to analyse the modifications of the vascular architecture in Losartan-treated 
SHRs.  

 

Angiogenic impairment in SHRs: correlative approach 

As mentioned in the introduction, opposite results concerning the angiogenic status of SHRs 
have been found: 1/ While new vessels can be produced in fibrin implants (Hudlett et al., 2005), 
angiogenesis was decreased in SHRs implanted with subcutaneous sponges containing pro-angiogenic 
molecules (Wang et al., 2004) 2/ the mesenteric microvasculature network in SHRs is basally impaired 
(Murfee and Schmid-Schonbein, 2008), 3/ Angiogenic processes induced following ischemia are 
impaired in SHRs muscles (Lu et al., 2016), and are differently activated by exercise depending on 
muscle types (Fernandes et al., 2012). However, all these findings do not provide insights into the 
possibility of a physiological angiogenesis induced by neuronal activity, despites they give us the idea 
about the link between AHT and angiogenesis impairment.  

The global angiogenic proteome profiler assay we have used suggests that memory 
consolidation triggers angiogenesis in both SHRs and Sprague Dawley rats, albeit with a different 
temporal profile. Moreover, we found that Ang-2 expression was not increased in experimental SHRs 
at day 3 post social interaction. Furthermore, we assessed the lack of memory-associated vascular 
increase and vascular proliferation, 3 days after the encoding of associative olfactory memory. These 
results suggest that 1/ the detected memory deficit can be linked to an impairment of vascular 
plasticity during the early phase of memory consolidation, similarly to what happen in SDs; 2/ 
angiogenic processes in SHRs are modified or delayed in response to a physiological stimulation such 
as an increase of neuronal energy demand (Lu et al., 2016; Wang et al., 2004) and 3/ the induction of 
Ang-2 production is impaired in SHRs, as shown when shear stress or reactive oxygen species are 
increased (Korff et al., 2012).  

Thus, a perspective experiment can be performed to understand how the recruitment of the Ang-2 
pathway is either impaired or temporally delayed in SHRs. Whatever the case, the SHR angiogenic 
impairment we have observed appears to be sufficient to block the formation and expression of remote 
memory.   
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The angiogenic impairment is responsible for the memory deficit of SHRs 

The invasive approach, consisting in injecting Ang-2 in the ACC during the early phase of 
memory consolidation restored the remote memory performance of SHRs, thus pointing to the crucial 
role of cortical angiogenesis in the rescue of the remote memory deficit. The prediction of the ongoing 
quantification of neuronal activity and spine density is that the remote memory rescue should be 
accompanied by the increase of neuronal plasticity. 

The quantification of vascular density and number of branching 30 days after the interaction 
reveals an unexpected result. Ang-2 multiple injections were able to significantly increase the 
complexity of the vascular network in ACC of food preference rats, whereas only a non-significant 
trend towards an increase was detected for vascular density and number of branching points in Ang-2 
injected experimental SHRs. This result suggests that the Ang-2 pathway is basally affected in SHRs 
but the comparison between the aCSF-injected SHRs and Sprague Dawley rats was not able to reveal a 
vascular rarefaction, contrasting with what was observed in the brainstem of 3 month-old SHRs 
(Sokolova et al., 1985). However, our result is in accordance with the study by Werber and colleagues 
(1990) (Werber et al., 1990) in which no cerebral arteriolar decrease was observed in SHRs. Two 
hypotheses could explain this result. Firstly, SHRs can overexpress Tie-2 receptors (Wang et al., 
2002). In this case, the vascular increase mediated by the injection of Ang-2 would be amplified. 
Nevertheless, this would not explain the lack of increase of Ang-2 in experimental rats. Secondly, the 
Ang-2 partial agonist nature on Tie-2 could act on the stabilization of the vascular network. This 
hypothesis is more difficult to test because the context dependent agonist nature of Ang-2 is not fully 
understood (Fagiani and Christofori, 2013), and we cannot exclude that others angiogenic molecules 
are implicated, as revealed by our results obtained with the proteome profiler array.  

Taken together these results show that early cortical angiogenesis is a crucial mechanism 
which drives the formation and stabilization of remote memories. These exciting results prompted us 
to extend our analysis to the effects of gravity modification on the cerebral microvasculature.  
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CHAPTER 4: Effects of hypergravity on memory consolidation. 
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Chapter 4: Effects of hypergravity on memory consolidation. 

 
4.1. Introduction 

In the previous chapter, we showed that hypertension can impair the consolidation of the associative 
olfactory memory. Among the modifications of gravity observed during spaceflights or hypergravity 
obtained by centrifugation, several studies indicated impairment of spatial memory (Bojados and 
Jamon, 2014; Gueguinou et al., 2012; Mandillo et al., 2003; Mitani et al., 2004; Qiong et al., 2016) but 
these works did not segregate the effects on learning and on consolidation. Moreover, there are no data 
on other forms of memory. Finally, in rats exposed to simulated microgravity (hindlimb suspended or 
unloaded rats) hypertension-like effects have been observed concerning vascular reactivity of cerebral 
arteries (Dabertrand et al., 2012; Xie et al., 2005). Thus, we proposed to study the effect of 
hypergravity on the associative olfactory memory, trying to segregate the putative effect induced by 
hypergravity on consolidation or encoding  

The protocol was based on a group of 12 rats (Sprague Dawley) exposed to centrifugation during 21 or 
60 days (2g group), whereas another group of 12 rats (1g group) were placed in normogravity 
condition in the centrifuge room, to mimic environment parameters. This centrifugation protocol 
induced a continuous hypergravity (2g). All rats were weighed before their installation in the 
centrifuge and control devices (Fig.71, right) to follow the weight as an index of good health and as 
the principal metabolic parameter. 

 

4.2. Protocols and Results 
 

4.2.1.  Effect of 21 days of hypergravity on memory consolidation and remote memory 
retrieval 

The first protocol was designed as illustrated in Fig. 110 and was aimed to detect the impact of gravity 
alterations on remote memory consolidation. Briefly, the observer rats interacted with demonstrators 
fed with cumin or with control food in the centrifuge and after 20 hours the centrifuge was launched 
and rats were centrifuged during 21 days. The retrieval test was performed 30 days after interaction. 
This behavioural experiment was performed 3 times (2015-2016), whereas the assays measuring 
plasma concentrations of corticosterone, circulating IgG and nitrite/nitrate balance were performed 
only with the two last experiments.  

    

 Figure 110: protocol for centrifugation between interaction and retrieval test. The observer rats were placed in the 
centrifuge for habituation, interacted with demonstrator in the centrifuge and 20 h after interaction the centrifuge is launched. 
After 21 days of centrifugation the rats were food restricted during 3 days and their remote memory was tested.  

  

The weights measured after the end of the centrifuge were significantly increased in both conditions. 
Despite this, the weight growth was different between 1g and 2g: the increase of body weight was 
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significantly decreased by the exposure to hypergravity as well as the food intake. Finally, the ratio of 
the increase of body weight on food intake was also sharply decreased (Fig. 111). 

 

Figure 111: effects of hypergravity on the weight of rats exposed to 2G during 21 days. From the left to the right, the 
body weights were measured before centrifugation (D0) (t-test, t46 = 1.321, p = 0.19) and 2h after the stop of the centrifuge 
(D21) (t-test, t46 = 5.874, p < 0.0001) in rats exposed to 2G (2g) and maintained in normogravity (1g), the increase of body 
weight were calculate individually (t-test, t46 = 9.332, p < 0.0001) as food intake (t-test, t46 = 9.711, p < 0.0001) and the ratio 
of the increase of body weight on food intake (IBW/FI) (t-test, t46 = 5.198, p < 0.0001). Columns expressed means ± sem. 

 

This result indicated that the rats in the centrifuge were not able to increase their body weight as 
rats placed in normogravity suggesting an altered metabolism/catabolism and a deficit in the 
food intake. 

The remote memory performance was evaluated in each condition (1g vs 2g) and in both observer 
groups as the percentage of cumin eaten (Fig. 112A). The two-way ANOVA analysis indicated that 
experimental group ate more cumin than the food preference group; this effect was similar in both 
gravity conditions. Likewise, there was no difference in the total food eaten during the retrieval test 
(Fig. 112B), and the values were not different from the total food eaten measured during the 
habituation phase (Fig. 112C). 

  

Figure 112: Hypergravity (21 days, 2g) effects on remote memory tested with social transmission of food preference. 
A- Percentage of cocoa eaten during retention test by the rats exposed to normogravity (1g, n = 17) and hypergravity (2g, n = 
19) (two-way ANOVA, interaction F(1,65) = 1.917; p = 0.17; gravity: F(1,65) = 0.272; p = 0.603; STFP groups: F(1,65) = 25.67; p 
< 0.0001; post-hoc Tukey 1g-FP vs 1g-EXP p = 0.052; 2g-FP vs 2g-EXP p = 0.0001,). B- Total food eaten during the test 
(two-way ANOVA, interaction F(1,65) = 0.935; p = 0.34; 1g vs 2g: F(1,65) = 1.606; p = 0.20; FP vs EXP: F(1,65) = 0.096; p = 
0,76). C- Total food eaten during the habituation period, before hypergravity exposure (t-test, t32 = 0.479, p = 0.634). 
Columns expressed means ± sem. 
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These data suggest that there was no remote retrieval impairment of the information encoded 
before hypergravity exposure, suggesting that hypergravity was not able to impair the 
consolidation of associative olfactory memory. 

Finally, the plasma concentrations of corticosterone, IgG and nitrite/nitrate balance were evaluated 
with different assays. None of these parameters was affected by the hypergravity exposure (Fig. 113). 

 

Figure 113: Effects of hypergravity (2G, 21 days) on plasma concentration of corticosterone (A), IgG (B) and Nitrite 
and nitrate (C). Measured individually by ELISA and colorimetric assays after the retrieval test in rats exposed to 
hypergravity (2g) or maintained in normogravity (1g). A- Plasma corticosterone (t-test, t39 = 1,528, p=0.211). B- Plasma IgG 
(t-test, t30 = 1.528, p = 0.137). C- Plasma nitrite (t-test, t30 = 9.711, p < 0.137) and endogenous nitrate (t-test, t30 = 0.886, p = 
0.382). Columns expressed means ± sem. 

 

This result suggested that the rats, after 21 days in the centrifuge and  3 days after the stop of 
centrifuge are not stressed, moreover the blood NO level is not affected. 

 

4.2.2.  Effect of 60 days of hypergravity on recent and remote memory 

A second set of experiments was performed to evaluate if, as hypertension, a longer exposure to 
hypergravity during 2 months could affect associative olfactory memory (Fig. 114). Since 
centrifugation was performed before the encoding, a possible gravity effect can be ascribed both to 
encoding and to consolidation deficit. 

  

Figure 114: protocol for centrifugation before STFP task. The observer rats were centrifuged for 60 Days before STFP 
paradigm; the rats were food restricted during 3 days and their recent and remote memories were tested. 

   

In this experiment performed 3 days after the stop of the centrifuge, the 1g and 2g observer rats, 
interacting with demonstrators fed with cocoa or normal food, were tested 1 day after to evaluate the 
recent memory (Fig. 115). Both groups showed an intact recent memory (fig. 115A), independently of 
the gravity level; moreover, the quantity of food eaten was similar in all groups, showing no difference 
in motivation of food intake (Fig. 115B). 
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Figure 115: Hypergravity (60 days, 2g) effects on recent memory tested with social transmission of food preference. A- 
Percentage of cocoa eaten during retention test by the rats exposed to normogravity (1g,) and hypergravity (2g,) (two-way 
ANOVA, interaction F(1,19) = 0.023, p = 0.88; 1g vs 2g: F(1,19) = 0.041, p = 0.841; FP vs EXP: F(1,19) = 18.29, p = 0,0004; 
post-hoc Tukey 1g/FP vs 1g/EXP p = 0.034, ; 2g/FP vs 2g/EXP p = 0.030,). B- Total food eaten during the test (two-way 
ANOVA, interaction F(1,19) = 0.828; p = 0.37; 1g vs 2g: F(1,19) = 0.159; p = 0.69; FP vs EXP: F(1,19) = 0.004; p = 0,94). 
Columns expressed means ± sem. 

After this test, the observer rats interacted with a different demonstrator fed with cumin to test remote 
memory 30 days after interaction (Fig. 116). Both 1 g and 2g groups showed an intact remote memory 
(fig. 116A), independently by the gravity level; food consumption during the retrieval test was similar 
across groups (Fig. 116B). 

 

Figure 116: Hypergravity (60 days, 2g) effects on remote memory tested with social transmission of food preference 
A- Percentage of cumin eaten during retention test by the rats exposed to normogravity (1g) and hypergravity (2g) (two-way 
ANOVA, interaction F(1,13) = 0.0067, p = 0.935 gravity: F(1,13) = 0.050, p = 0.826; STFP groups: F(1,13) = 25.42, p = 0,0002; 

post-hoc Tukey 1g-FP vs 1gEXP p = 0.021, ; 2g-FP vs 2g-EXP p = 0.012,). B- Total food eaten during the test (two-way 
ANOVA, interaction F(1,13) = 0.055, p = 0.81; gravity: F(1,13) = 1.450; p = 0.250; STFP groups: F(1,13) = 0.090, p = 0,768). 

Columns expressed means ± sem. 
 

These results showed that neither the recent nor the remote memories were significantly affected 
by the exposure to hypergravity (2G during 60 days). 

In this experiment, the weight of the rats was constantly measured (during the change of the litter). 
After 1 week the weight of the centrifuged rats (2g) was different from the control rats (1g) as 
illustrated in Fig. 117A. This difference slightly decreased over time, but it persisted during the 
centrifugation period and during the month between the stop of the centrifuge and the retrieval test of 
remote memory (Fig. 117B).  
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Figure 117: body weight and food intake measured in rats exposed to 60 days to 2g. A- Mean of body weight. B- Ratio 
of the mean body weight of rats exposed to hypergravity (2g) on rats exposed to normogravity (1g)  (n = 12 for both groups). 
Dots expressed means ± sem. 

 

According to the results obtained after 21 days of centrifugation, these results suggest that 
centrifugation affect the body weight of the rats. 

 

4.3. Discussion 

Our results show that exposure to hypergravity (2g) during 21-60 days could not affect the 
associative olfactory memory. In these experiments, animals were exposed to continuous 
centrifugation to study the hypergravity as a new living condition.  

These sets of experiments indicate that hypergravity affects neither the remote retrieval of the 
associative olfactory memory when the learning phase (interaction) has been performed just before the 
exposure to hypergravity, nor the recent and remote retrievals when the interaction and retrieval 
followed the hypergravity exposure. There results contrast with those obtained on the remote spatial 
memory. In fact, spatial memory retrieval could be impaired or reduced by continuous exposure to 
hypergravity (Bojados and Jamon, 2014; Mandillo et al., 2003; Mitani et al., 2004) as well as to 
simulated microgravity (Cassady et al., 2016; Qiong et al., 2016), suggesting that the change of the 
gravity level is sufficient to alter spatial memory. These effects were always concomitant with 
vestibular dysfunctions and alteration of emotional status (Bojados and Jamon, 2014; Gueguinou et al., 
2012). In the STFP, the locomotor and vestibular components have probably limited effect because 
they are poorly engaged in social interaction and odour detection, whereas the emotional status could 
affect social interaction more (Cordero and Sandi, 2007; van der Kooij and Sandi, 2012). It has been 
shown that the increase of corticosterone level associated to stress-related responses is related to the 
level of hypergravity (Bojados and Jamon, 2014; Petrak et al., 2008), Nevertheless, in our previous 
study on mice exposed to hypergravity, we have shown that hypergravity level can affect the 
expression of many genes and several of them are implicated in neurogenesis and angiogenesis in 
hippocampus (Pulga, Porte, Morel, submitted manuscript in annexes). But, in the present study 3 days 
after chronic exposure to 2G, the plasma concentration of corticosterone was not increased, suggesting 
that the centrifuged animals were not more stressed than controls.  

Taken together, both studies allow to hypothesize that the modulation of gene expression in 
hippocampus is not sufficient to impair the encoding and the consolidation of the olfactory associative 
memory. It could be interesting to assess the ACC vascular plasticity, as in SHRs, since this region 
seems to be more sensitive to vessels alterations. As a matter of fact, we found a region-specific 
persistence of hypoxia in this region after encoding, accompanied by a memory-induced vascular 
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sprouting and Ang-2 overexpression. This region was shown to be sensitive to vascular alterations as 
observed in SHRs and it can be potentially affected by adaptation induced by hypergravity, compared 
to other regions such as HPC.  

Hypergravity has been proposed as a countermeasure against microgravity since its beneficial 
effects in reducing skeletal muscle and bones loss induced by microgravity (Bojados and Jamon, 2014; 
Gnyubkin et al., 2015), suggesting that hypergravity (2G but not more) could be considered as a 
continuous exercise which is reported to enhance the memory performance or to decrease the memory 
impairment induced by aging or Alzheimer’s disease, as reviewed recently (Duzel et al., 2016; Herring 
et al., 2016; Paillard, 2015). Exercise is also known to increase angiogenesis (Fernandes et al., 2012; 
Roque et al., 2013) and reduce hypertension deleterious effects (Lin et al., 2015; Park et al., 2012; Shi 
et al., 2016). Thus, these studies allow us to assume that hypergravity can have beneficial effects on 
memory. Moreover, in our study, we noticed a decrease of weight suggesting a modification in the 
metabolism. The observed effect can be compared to those observed in caloric restriction diet and 
antioxidant treatment. As reviewed, these treatments are proposed to reverse or decrease memory 
impairment observed in Alzheimer’s disease models (Perluigi et al., 2014). Moreover, hypergravity 
can reverse the effects of a sedentary lifestyle, known to have similar effects of microgravity both 
characterized by ectopic fat storage (Bergouignan et al., 2011). 

All of these data allow us to issue the following hypothesis: hypergravity, similarly to physical 
exercise or enriched environment, could restore the memory impairment induced by hypertension.  
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GENERAL DISCUSSION AND PERSPECTIVES 

  



232 
 

General discussion 

 

According to the standard model of systems-level memory consolidation, the formation of 
memory traces requires a transitory hippocampal-cortical interaction allowing the progressive 
remodelling of cortical neuronal networks involved in remote memory storage (Squire and Alvarez, 
1995). According to this model, the HPC acts as an anatomical index allowing the integration of the 
different features of the memory trace encoded by distributed cortical network in order to create a 
coherent memory trace.  Moreover, cortical neurons must undergo an early “tagging process”, upon 
encoding, to ensure the progressive hippocampal-driven rewiring of cortical networks that support 
remote memory storage (Lesburgueres et al., 2011). To pinpoint accurately the time-course of the 
hippocampal-cortical dialogue during the course of systems-level memory consolidation, we selected 
the social transmission of food preference (STFP). Its associative nature requires the HPC and specific 
cortical regions such as the orbitofrontal (OFC) and anterior cingulate (ACC) cortices, which are both 
involved in processing olfactory associative information (Frankland and Bontempi, 2005; 
Lesburgueres et al., 2011). In this task, the progressive increase of cortical neuronal activity is 
accompanied by an increase of dendritic spines detectable as early as one day following social 
interaction (Lesburgueres et al., 2011) which may reflect the neuronal allocation of specific cortical 
neurons to a given memory trace that will subsequently undergo consolidation (Rogerson et al., 2014; 
Silva et al., 2009).  
 

Thus, neuronal allocation and cortical tagging processes involve neuronal activity and require 
energy. Of course, this neuronal request is translated into the activation of neurovascular coupling, but 
the induced metabolic request is sustained and needs more than localized and transitory vasodilation 
and increased of cerebral blood flow in response to action potentials. Our hypothesis is that rapid 
changes in the architecture of vascular networks, namely vascular rewiring in the form of an 
angiogenic process, is needed to support the quick activation of neuronal networks in cortical areas 
required for the consolidation of the memory trace. This angiogenic processwould allow the 
responding to a higher metabolic request of the neurons implicated in the creation of new synapses and 
in the reinforcement of the pre-existing ones (weight and wiring plasticity). In other words, 
angiogenesis would provide to the neurons the proper nutritional environment required to support their 
recruitment during memory processes.. 

 
Thus, during the course of this PhD, we have investigated the following questions:  

 Is an angiogenic process initiated during memory consolidation?  

 What is the temporal signature of this angiogenic process? It is time-limited or 
sustained during the entire course of the memory consolidation process? 

 What are the functional properties of this angiogenic process? Is it specifically 
required for memory consolidation or just a consequence of neuronal activity?  

 
A physiological angiogenic process is activated during systems consolidation 

Preliminary investigations performed in the team (Anaïs Giacinti, Ph.D. 2014) suggested a 
modification of both the reactivity and architecture of cerebral vessels during the formation of 
associative olfactory memory after social interaction. In particular, it was shown that encoding of an 
associative olfactory memory was accompanied by a transitory increase in vessel density and number 
of vessel branching points in the anterior cingulate cortex (ACC), suggesting the triggering of an 
angiogenic process. Our results extend these findings by revealing early transitory changes of vascular 
networks in the ACC, supporting the early phase of memory consolidation, including a time-
dependent and region-specific increase of hypoxia, followed by a region-specific increase in 
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Angiopoietin-2 levels (key and early regulator of angiogenesis) which selectively act on vascular 
network and the creation of newly-born endothelial cells. Overall, we provide evidence for the 
existence of time-dependent changes in the microvascular architecture at the cortical level.. These 
angiogenesis-related processes are concomitant to the establishment of the hippocampal-cortical 
dialogue required for the memory consolidation process.  

However, it is important to point out that this cortical angiogenic mechanism differs from the 
neurovascular coupling by its duration and probably its activation. In fact, the neurovascular coupling 
is immediately activated by the action potentials generated by the neurons. Moreover, the 
neurovascular coupling principally regulates the vasodilation of the capillary network around the 
activated neurons (Attwell et al., 2010; Cauli and Hamel, 2010; Filosa et al., 2016).  

Overall, our results suggest that the temporal signature of  the cortical angiogenic 
process is cocomittant to that of the neuronal allocation process, making it relevant to provide 
the optimal environment for specific neurons to be tagged and to support the progressive 
stabilization and embedding of distinct memory traces within cortical neuronal networks.  

 

A physiological permissive role of vascular networks during systems consolidation 

Is the cortical angiogenic process a permissive mechanism allowing the creation of dendritic 
spines and neuronal architecture modifications that are essential for remote memory formation?  

Our data showed that the manipulation of the transitory cortical angiogenesis achieved by 
selectively blocking or stimulating the Ang-2 signalling pathway impaired or improved remote 
memory retrieval, respectively. Moreover, exogenous Ang-2 administrations in SHRs, which exhibit a 
lack of Ang-2 production when cognitively challenged and are unable to adequately stabilize and/or 
retrieve remotely acquired information, was efficient in rescuing the observed memory deficit. Thus, 
these results underline that this early angiogenesis can assist the initial maturation of neuronal 
cortical networks, anticipating the stabilization of the memory trace, and conditioning the 
following corticalization of the memory trace and its retrieval. 

Several studies have revealed that cognitive impairments were associated to vascular 
dysfunctions in both humans and rodent models (Carnevale et al., 2012; Carnevale et al., 2016; Faraco 
and Iadecola, 2013; Iadecola, 2004, 2013; Meneses et al., 2011a; Tayebati et al., 2012). The originality 
of our study lies in showing that hypertension affects selectively remote memory while sparing recent 
memory. Moreover, this memory profile is associated to the progression of the pathology and probably 
related to an angiogenesis deficit. Interestingly, angiogenic pathways are altered during hypertension. 
The first hypothesis is that at the beginning of hypertension, the increase of cerebral blood pressure 
results in an excess of brain perfusion and thus leads to over-oxygenation. This prolonged hyperoxia 
induced the downregulation of VEGF and other proangiogenic factors (Adair and Montani, 2010). 
Conversely, others studies showed an increased expression of angiogenic growth factors in 
hypertensive patients (Filiz et al., 2015; Sane et al., 2004) in response to 1/ endothelial damage 
(Felmeden et al., 2003), 2/ excessive cyclical mechanical stretch caused by hypertension (Chang et al., 
2003; Serne et al., 2001; Zheng et al., 2001), 3/ smooth muscle cells hypoxia during arterial 
remodelling as a compensatory mechanism (Kuwahara et al., 2002), and 4/ other factors such as ET-1 
and Angiotensin II known to induce VEGF production (Chua et al., 1998; Williams et al., 1995). But 
if these factors are released, why are they not promoting angiogenesis?  

The proposed mechanism is an endothelial resistance to angiogenic factors in hypertensive 
patient (Sane et al., 2004) as well as in SHRs (Yang et al., 2002). Our result showed a similar basal 



234 
 

level of Ang-2 concentration in SD and SHRs as well as a similar basal vascular density. Moreover, 
our results provide additional insights into the hypertension modulation of angiogenesis: the 
angiogenesis activation by a physiological challenge, as it is the case for memory-induced neuronal 
activity, is impaired. A similar finding supports the dissociation between basal and activated states 
which impact memory: the loss of cholinergic activation and associated memory deficit in aged mice 
has been shown to be related to a dissociation between a comparable functional basal neuronal activity 
and an incapacity to adequately respond to cognitive stimulis (Lebrun et al., 1990). 

Importantly, interfering with the transitory angiogenesis process was sufficient to affect remote 
memory consolidation, suggesting that angiogenesis can be one of the condiciones sine quibus 
non of the expression of remote memory, together with neuronal plasticity.  

 

Despite the crucial importance of the cortical angiogenesis process in the stabilization and 
retrieval of remote memories, we can be surprised by its transitory profile. In fact, notwithstanding the 
possible contribution of angiogenesis in neuronal allocation, we do not know whether these newly 
born vessels are maintained or have regressed. 

 

Much Ado about Nothing? Meaning of transitory angiogenesis 

Preliminary data describing the vascular plasticity time window together with the absence of vascular 
network enhancement 30 days after encoding (Anais Giacinti Ph.D thesis) suggest that the increase in 
vascular density, induced by the formation of the associative olfactory memory is transitory and that 
the vascular network regresses rapidly. But the detected vascular density decrease does not reveal 
whether the potential regression concerns the newly-born vessels or the existing (older) ones. 

Two destinies can be predicted for the newly-formed vascular network: 1/ the new vessels achieve the 
maximal utility in the early phase of memory consolidation, expressing their functionality as a support 
of neuronal and synaptic allocation. After this period, their presence is no longer functionally 
advantageous, and this leads to vascular regression. 2/ the functional advantage of the new vessels, 
such as a closer position to tagged neuronal network during encoding or more efficient response to 
neuronal request, ensures their survival, while the existing older vascular network becomes less 
important, potentially less perfused, thus useless to maintain, and for this reason is intendedto regress.  

The kinetics of vascular remodelling can be rapid as observed in models of altered gravity (Wang et 
al., 2013b) but the creation and regression of a new vessel can take days as shown in model of 
hypoxia-induced cerebral angiogenesis (Harb et al., 2013; Pichiule and LaManna, 2002). We have 
acquired preliminary data describing the vascular plasticity time window, suggesting that the vascular 
increase, induced by the formation of the associative olfactory memory, is transitory and the vascular 
network regresses rapidly, after 3 days following encoding. This detected decrease in vascular density 
does not reveal whether the potential regression concerns the new vessels or the existing  (older) ones.  
Thus, our results suggest that the angiogenic process can participate to the allocation of 
neuronal networks, potentially increasing the nutritional exchanges and thus the neuron 
efficiency, as it is the case for astrocytes which participate to the maintenance of the synaptic 
transmission.  
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Lessons from hypergravity-induced vascular adaptation 

Neuronal and vascular plasticity share common molecular pathways (Madri, 2009; Palmer et al., 2000; 
Yamashima et al., 2004). Thus, several studies assumed that a global non-region specific vascular 
plasticity precedes and/or follows an increase of neuronal activity as shown by an increase in 
angiogenesis following exposure to environmental enrichment and physical activity (Black et al., 
1987; Black et al., 1991; Isaacs et al., 1992; Palmer et al., 2000; Wallace et al., 2011). In the memory 
field, all previous studies have tested memory performance after the event supposed to increase the 
angiogenesis. Our study show for the first time the functionality of angiogenesis during post-encoding 
phases. But is it possible to detect this physiological memory-induced angiogenesis in a model in 
which the vascular network is globally increased before the task due to environmental enrichment and 
physical activity? 

Part of the answer to this question can be derived from the effects of hypergavity. 

Since changes in gravity modify vascular reactivity (Colleran et al., 2008; Dabertrand et al., 2012; 
Looft-Wilson and Gisolfi, 2000) in order to induce a vascular redistribution of body fluids (De Santo 
et al., 2001; Grigoriev and Egorov, 1996; Norsk, 1992, 1997) and can alter the level of angiogenesis 
measured in vitro (Dimmeler et al., 1999; Hood et al., 1998; Ku et al., 1993; Laham et al., 2003), we 
raised the hypothesis that hypergravity could interfere with the memory consolidation process, as 
observed in SHRs. Our findings reveal that this is not the case.Rats that submitted to hypergravity did 
not show any memory deficit, even in experimental conditions in which the centrifugation period was 
increased. This may be due to the insufficient level of hypergravity we have used, since it can induce 
increases of bone and muscle mass but is without deleterious effects on metabolism, immunity and 
mood. Thus, it could be considered as a form of sustained physical exercise. Physical activity has been 
reported to induce angiogenesis (Fernandes et al., 2012; Roque et al., 2013), to reduce the deleterious 
effects of hypertension (Lin et al., 2015; Park et al., 2012; Shi et al., 2016) and to improve memory 
performance (Duzel et al., 2016; Herring et al., 2016; Kerr et al., 2010; Paillard, 2015). Thus, we can 
assume that the beneficial effects of hypergravity, due to the increase of physical activity, 
counterbalance its potential deleterious effects related to vascular dysfunctions. So, to complete our 
study, we have planned to test whether exposure to hypergravity can rescue the memory deficit 
detected during hypertension in SHRs. Moreover, this experiment could increase the knowledge about 
the impaired mechanism affecting angiogenesis in SHRs.  
 

 

Conclusions and perspectives 
 

 During this thesis, we provided correlative evidence suggesting that remote memory formation 
induced a rapid and sustained hypoxic signal in the ACC, which in turn, triggered a time-limited 
angiogenic mechanism (increased vascular density, cellular proliferation and Ang-2 expression) 
during the early phase of the memory consolidation process. This led us to propose that this transitory 
mechanism may as a functional and preparatory process allowing the progressive stabilization of 
the memory trace.  

 Importantly, we provided causal evidence to support the functional validity of this angiogenic 
mechanism. We showed that impairment of this mechanism both during hypertension (lack of increase 
of vascular density, cellular proliferation and memory-induced Ang-2 production) or achieved by 
pharmacological Ang-2 inhibition during the early phase of the memory consolidation process (ASON 
against Ang-2) was sufficient to interfere with the formation and/or retrieval of remote memory. 
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Conversely, intracerebral delivery of exogenous Ang-2 during the early phase of the memory 
consolidation process enhanced performance upon remote memory retrieval in both physiological or 
pathological (hypertension) conditions. These findings highlight not only the functionality of 
angiogenesis during the early phase of consolidation of an associative olfactory memory, but also its 
permissive role allowing the progressive establishment of the memory trace at the cortical level. Based 
on our main findings, we propose a schematic model of vascular and neuronal interactions during the 
course of the memory consolidation process (Figure 100). 

 

Figure 9300:  A putative model of neuronal and vascular interactions during the course of memory 
consolidation. 1. System level. A) Information is initially encoded within primary and associative neocortical 
sites (CTX, black neurons with red contour line). The hippocampus integrates information arising from these 
distributed cortical sites that represents the various sensory-motor features of a whole experience and then fuses 
these features into a coherent memory trace by means of an topographical index which contains the cortical 
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addresses of the memory trace. At this stage, hippocampal-cortical neurons are tagged to enable an adequate 
hippocampal-cortical dialogue. B) Successive cortical-hippocampal reactivations induce the progressive 
reinforcement of pre-existing connections (red connection lines) together with the creation of new connections 
(orange connection lines), the final outcome being the stabilization of the cortical memory trace within tagged 
neurons. C) Over days to weeks, as the cortical memory mature (thick red connection lines), the role of the 
hippocampus gradually diminishes, presumably leaving cortical areas to become capable of ensuring permanent 
memory storage and retrieval independently. Adapted from (Frankland and Bontempi, 2005; Lesburgueres et al., 
2011). 2. Vascular level. Memory-induced neuronal activation induces a rapid and sustained hypoxic signal in 
the cortex, which in turn triggers an Ang-2-dependent angiogenic mechanism during the early phase of the 
memory consolidation process, the final outcome being a transient increase of vascular density in the cortex. 3. 
Neuronal level: Memory storage in the cortex is accompanied by a progressive increase of dendritic spine 
density (Frankland et al., 2004; Lesburgueres et al., 2011; Maviel et al., 2004; Restivo et al., 2009; Vetere et al., 
2011). Although transitory, the angiogenic mechanism is necessary and permissive, in that it enables structural 
plasticity to occur within neuronal networks, a prerequisite for the formation of enduring memories.  . 4. 
Dysfunctional vessels. SHRs are unable to form and/or retrieve remote memory, a profile associated with an 
impaired angiogenic. Ang-2 intracortical injections (data not depicted) were successful in improving remote 
memory retrieval in SD rats (physiological conditions) or rescuing the memory deficits of SHRs.  

 

These exciting results open new questions regarding the understanding of the early cortical angiogenic 
mechanism: 

 Why is the permissive action of angiogenesis rapid and transitory? 

The unexpected very transitory nature of the cortical angiogenic process induced by encoding of 
associative olfactory memory points to its functional relevance predominantly during the early phase 
of the memory consolidation process. Thus the increased density of the vascular network may reflect 
the quick neuronal activation and plasticity required, as early as encoding, for the cortical allocation of 
the neuronal networks to the memory trace which subsequently undergoes stabilization, This 
possibility is further reinforced by the observation of the temporal overlapping of the angiogenic 
process with the progressive surface redistribution of cortical NMDA receptors (Benjamin Bessieres, 
Ph.D. 2016) involved in the induction and regulation of synaptic plasticity (Lau and Zukin, 2007; 
Mayford et al., 2012) and by the fact that early angiogenic stimulation can improve remote memory 
performance. Future studies will be required to provide mechanistic insights into how the Ang-2-
induced remote memory amelioration is achieved. In light of our current findings, we can propose two 
hypotheses: 1/ Ang-2 administration can maximize the non-specific energy delivery to the neuronal 
networks supporting the processing of the memory trace via an increased density of the cortical 
vascular network, thereby generating an advantageous environmental substrate for neuronal activity. 
2/ Ang-2 administration may prolonged the time window of action of the cortical angiogenic process, 
therefore further supporting weight and wiring plasticity within neuronal networks actively involved in 
the stabilization of the memory trace. If this hypothesis is correct, injections of Ang-2 should induce a 
longer time window of vascular remodelling and secondly that the progressive surface redistribution 
of cortical NMDA receptors is temporally increased. 

 Is the angiogenic response to memory consolidation an information-specific mechanism 
or does it takes place only once in order to ensure the optimization of the vascular network 
to respond adequately to the metabolic request of neurons? Is the angiogenic process 
triggered each time that new information is encoded?  

Despite some common characteristics between neuronal and vascular networks (shared developmental 
features, specific guidance cues and cellular and molecular signalling events, neurovascular coupling 
(Tam and Watts, 2010)), the dynamics of these two components are likely to be different. For instance, 
while the early cortical tagging process revealed by Lesburguères and colleagues (Lesburgueres et al., 
2011) is information specific, it is difficult to conceive a similar property for the cortical angiogenic 
process, which can be expected not to be information-specific. Accordingly, the use of a dedicated 
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protocol in which animals encode successively two associative olfactory information and the 
angiogenic process triggered by the second information is selectively blocked should not impair 
remote memory retrieval of both information, the sparing of the second information being attributable 
to the cortical angiogenic process initiated by the first information and still beneficial for the second 
information. 

Finally, the interactions between microgravity and memory functions should be examined further 
together with its potential effects on vascular/angiogenic processes. The possibility of human life 
exploring Mars does no longer belong to science fiction movies but may well become a reality in the 
near future. NASA, ESA and all spatial agencies are focusing their efforts on studying the effects of 
long-term periods of space exposure on the human physiology. Converging evidence indicate that 
spatial perception and memory functions of astronauts can be altered by extended period of time in 
space. Maintenance of their optimal cognitive performance is therefore essential for decision making 
in the event of problem solving during a mission. A better understanding of memory and vascular 
disturbances related to microgravity changes and the development of pertinent countermeasures will 
be key to limit their deleterious consequences on crews during spaceflights. Moreover, the use of 
hypergravity - as a countermeasure to microgravity to reduce bone and muscular loss in astronauts - 
can also open the perspective to use it in the rescue of memory impairment due to hypertension. 

 

 

  



239 
 

REFERENCES 
 

  



240 
 

Abbott, N.J., Ronnback, L., and Hansson, E. (2006). Astrocyte-endothelial interactions at the blood-
brain barrier. Nat Rev Neurosci 7, 41-53. 
Abdulmalek, K., Ashur, F., Ezer, N., Ye, F., Magder, S., and Hussain, S.N. (2001). Differential expression 
of Tie-2 receptors and angiopoietins in response to in vivo hypoxia in rats. Am J Physiol Lung Cell Mol 
Physiol 281, L582-590. 
Abel, T., and Nguyen, P.V. (2008). Regulation of hippocampus-dependent memory by cyclic AMP-
dependent protein kinase. Prog Brain Res 169, 97-115. 
Adair, T.H., Gay, W.J., and Montani, J.P. (1990). Growth regulation of the vascular system: evidence 
for a metabolic hypothesis. Am J Physiol 259, R393-404. 
Adair, T.H., and Montani, J.P. (2010). In Angiogenesis (San Rafael (CA)). 
Al-Qazzaz, N.K., Ali, S.H., Ahmad, S.A., Islam, S., and Mohamad, K. (2014). Cognitive impairment and 
memory dysfunction after a stroke diagnosis: a post-stroke memory assessment. Neuropsychiatr Dis 
Treat 10, 1677-1691. 
Allt, G., and Lawrenson, J.G. (2001). Pericytes: cell biology and pathology. Cells Tissues Organs 169, 1-
11. 
Alvarez, P., and Squire, L.R. (1994). Memory consolidation and the medial temporal lobe: a simple 
network model. Proc Natl Acad Sci U S A 91, 7041-7045. 
Amaral, D.G., Dolorfo, C., and Alvarez-Royo, P. (1991). Organization of CA1 projections to the 
subiculum: a PHA-L analysis in the rat. Hippocampus 1, 415-435. 
Amaral, D.G., and Witter, M.P. (1989). The three-dimensional organization of the hippocampal 
formation: a review of anatomical data. Neuroscience 31, 571-591. 
Amaral, S.L., Sanchez, L.S., Chang, A.J., Rossoni, L.V., and Michelini, L.C. (2008). Time course of 
training-induced microcirculatory changes and of vegf expression in skeletal muscles of 
spontaneously hypertensive female rats. Braz J Med Biol Res 41, 424-431. 
Ambrose, C.T. (2012). Neuroangiogenesis: a vascular basis for Alzheimer's disease and cognitive 
decline during aging. J Alzheimers Dis 32, 773-788. 
Amenta, F., Strocchi, P., and Sabbatini, M. (1996). Vascular and neuronal hypertensive brain damage: 
protective effect of treatment with nicardipine. J Hypertens Suppl 14, S29-35. 
Anagnostaras, S.G., Maren, S., and Fanselow, M.S. (1999). Temporally graded retrograde amnesia of 
contextual fear after hippocampal damage in rats: within-subjects examination. J Neurosci 19, 1106-
1114. 
Ances, B.M. (2004). Coupling of changes in cerebral blood flow with neural activity: what must 
initially dip must come back up. J Cereb Blood Flow Metab 24, 1-6. 
Andersen, P.M., R.; Amaral D.; Bliss, T.; O'Keefe, J. (2007). The Hippocampus Book. Oxford Academic 
Press. 
Androutsellis-Theotokis, A., Rueger, M.A., Park, D.M., Mkhikian, H., Korb, E., Poser, S.W., Walbridge, 
S., Munasinghe, J., Koretsky, A.P., Lonser, R.R., et al. (2009). Targeting neural precursors in the adult 
brain rescues injured dopamine neurons. Proc Natl Acad Sci U S A 106, 13570-13575. 
Anghelina, M., Moldovan, L., and Moldovan, N.I. (2005). Preferential activity of Tie2 promoter in 
arteriolar endothelium. J Cell Mol Med 9, 113-121. 
Anselmi, M., Correa, F.J., Santos, J.R., Silva, A.F., Cunha, J.A., Leao, A.H., Campelo, C.L., Ribeiro, A.M., 
Silva, R.H., and Izidio, G.S. (2016). Genetic evidence for chromosome 4 loci influencing learning and 
memory. Neurobiol Learn Mem 131, 182-191. 
Araque, A., Parpura, V., Sanzgiri, R.P., and Haydon, P.G. (1999). Tripartite synapses: glia, the 
unacknowledged partner. Trends Neurosci 22, 208-215. 
Araya, R., Kudo, M., Kawano, M., Ishii, K., Hashikawa, T., Iwasato, T., Itohara, S., Terasaki, T., Oohira, 
A., Mishina, Y., et al. (2008). BMP signaling through BMPRIA in astrocytes is essential for proper 
cerebral angiogenesis and formation of the blood-brain-barrier. Mol Cell Neurosci 38, 417-430. 
Arbeille, P., Achaibou, F., Fomina, G., Pottier, J.M., and Porcher, M. (1996). Regional blood flow in 
microgravity: adaptation and deconditioning. Medicine and science in sports and exercise 28, S70-79. 
Arbeille, P., Fomina, G., Roumy, J., Alferova, I., Tobal, N., and Herault, S. (2001). Adaptation of the left 
heart, cerebral and femoral arteries, and jugular and femoral veins during short- and long-term head-
down tilt and spaceflights. European journal of applied physiology 86, 157-168. 



241 
 

Arbeille, P., Provost, R., Zuj, K., and Vincent, N. (2015). Measurements of jugular, portal, femoral, and 
calf vein cross-sectional area for the assessment of venous blood redistribution with long duration 
spaceflight (Vessel Imaging Experiment). European journal of applied physiology 115, 2099-2106. 
Arbuckle, E.P., Smith, G.D., Gomez, M.C., and Lugo, J.N. (2015). Testing for odor discrimination and 
habituation in mice. J Vis Exp, e52615. 
Armstead, W.M., and Raghupathi, R. (2011). Endothelin and the neurovascular unit in pediatric 
traumatic brain injury. Neurol Res 33, 127-132. 
Armulik, A., Genove, G., and Betsholtz, C. (2011). Pericytes: developmental, physiological, and 
pathological perspectives, problems, and promises. Dev Cell 21, 193-215. 
Arribas, S.M., Costa, R., Salomone, S., Morel, N., Godfraind, T., and McGrath, J.C. (1999). Functional 
reduction and associated cellular rearrangement in SHRSP rat basilar arteries are affected by salt load 
and calcium antagonist treatment. J Cereb Blood Flow Metab 19, 517-527. 
Atlas, S.A. (2007). The renin-angiotensin aldosterone system: pathophysiological role and 
pharmacologic inhibition. J Manag Care Pharm 13, 9-20. 
Attwell, D., Buchan, A.M., Charpak, S., Lauritzen, M., Macvicar, B.A., and Newman, E.A. (2010). Glial 
and neuronal control of brain blood flow. Nature 468, 232-243. 
Attwell, D., and Iadecola, C. (2002). The neural basis of functional brain imaging signals. Trends 
Neurosci 25, 621-625. 
Augustin, H.G., Koh, G.Y., Thurston, G., and Alitalo, K. (2009). Control of vascular morphogenesis and 
homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10, 165-177. 
Axmacher, N., Lenz, S., Haupt, S., Elger, C.E., and Fell, J. (2010). Electrophysiological signature of 
working and long-term memory interaction in the human hippocampus. Eur J Neurosci 31, 177-188. 
Babaei, S., Teichert-Kuliszewska, K., Zhang, Q., Jones, N., Dumont, D.J., and Stewart, D.J. (2003). 
Angiogenic actions of angiopoietin-1 require endothelium-derived nitric oxide. Am J Pathol 162, 
1927-1936. 
Bahramsoltani, M., Slosarek, I., De Spiegelaere, W., and Plendl, J. (2014). Angiogenesis and collagen 
type IV expression in different endothelial cell culture systems. Anat Histol Embryol 43, 103-115. 
Banerjee, S., and Bhat, M.A. (2007). Neuron-glial interactions in blood-brain barrier formation. Annu 
Rev Neurosci 30, 235-258. 
Bao, J.X., Zhang, L.F., and Ma, J. (2007). Angiotensinogen and AT1R expression in cerebral and 
femoral arteries during hindlimb unloading in rats. Aviation, space, and environmental medicine 78, 
852-858. 
Bartlett, F.C. ( 1932 ). Remembering: A Study in Experimental and Social Psychology. Cambridge 
University Press. 
Bastide, M., Ouk, T., Plaisier, F., Petrault, O., Stolc, S., and Bordet, R. (2007). Neurogliovascular unit 
after cerebral ischemia: is the vascular wall a pharmacological target. Psychoneuroendocrinology 32 
Suppl 1, S36-39. 
Bauer, H.C., and Bauer, H. (2000). Neural induction of the blood-brain barrier: still an enigma. Cell 
Mol Neurobiol 20, 13-28. 
Baumbach, G.L., and Heistad, D.D. (1989). Remodeling of cerebral arterioles in chronic hypertension. 
Hypertension 13, 968-972. 
Bayley, P.J., Gold, J.J., Hopkins, R.O., and Squire, L.R. (2005). The neuroanatomy of remote memory. 
Neuron 46, 799-810. 
Bayley, P.J., Hopkins, R.O., and Squire, L.R. (2003). Successful recollection of remote autobiographical 
memories by amnesic patients with medial temporal lobe lesions. Neuron 38, 135-144. 
Bayliss, W.M. (1902). On the local reactions of the arterial wall to changes of internal pressure. J 
Physiol 28, 220-231. 
Beardsley, A., Fang, K., Mertz, H., Castranova, V., Friend, S., and Liu, J. (2005). Loss of caveolin-1 
polarity impedes endothelial cell polarization and directional movement. J Biol Chem 280, 3541-
3547. 
Beaulieu, C., and Colonnier, M. (1989). Number and size of neurons and synapses in the motor cortex 
of cats raised in different environmental complexities. J Comp Neurol 289, 178-181. 
Behnke, B.J., Stabley, J.N., McCullough, D.J., Davis, R.T., 3rd, Dominguez, J.M., 2nd, Muller-Delp, J.M., 
and Delp, M.D. (2013). Effects of spaceflight and ground recovery on mesenteric artery and vein 



242 
 

constrictor properties in mice. FASEB journal : official publication of the Federation of American 
Societies for Experimental Biology 27, 399-409. 
Bendel, P., and Eilam, R. (1992). Quantitation of ventricular size in normal and spontaneously 
hypertensive rats by magnetic resonance imaging. Brain Res 574, 224-228. 
Benderro, G.F., and Lamanna, J.C. (2011). Hypoxia-induced angiogenesis is delayed in aging mouse 
brain. Brain Res 1389, 50-60. 
Benderro, G.F., and LaManna, J.C. (2014). HIF-1alpha/COX-2 expression and mouse brain capillary 
remodeling during prolonged moderate hypoxia and subsequent re-oxygenation. Brain Res 1569, 41-
47. 
Benjamin, L.E., Hemo, I., and Keshet, E. (1998). A plasticity window for blood vessel remodelling is 
defined by pericyte coverage of the preformed endothelial network and is regulated by PDGF-B and 
VEGF. Development 125, 1591-1598. 
Benndorf, R., Boger, R.H., Ergun, S., Steenpass, A., and Wieland, T. (2003). Angiotensin II type 2 
receptor inhibits vascular endothelial growth factor-induced migration and in vitro tube formation of 
human endothelial cells. Circ Res 93, 438-447. 
Bergers, G., and Benjamin, L.E. (2003). Tumorigenesis and the angiogenic switch. Nat Rev Cancer 3, 
401-410. 
Bergers, G., and Song, S. (2005). The role of pericytes in blood-vessel formation and maintenance. 
Neuro Oncol 7, 452-464. 
Bergouignan, A., Rudwill, F., Simon, C., and Blanc, S. (2011). Physical inactivity as the culprit of 
metabolic inflexibility: evidence from bed-rest studies. J Appl Physiol (1985) 111, 1201-1210. 
Berridge, M.J. (2008). Smooth muscle cell calcium activation mechanisms. J Physiol 586, 5047-5061. 
Berridge, M.J. (2009). Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys 
Acta 1793, 933-940. 
Berton, O., Ramos, A., Chaouloff, F., and Mormde, P. (1997). Behavioral reactivity to social and 
nonsocial stimulations: a multivariate analysis of six inbred rat strains. Behavior genetics 27, 155-166. 
Betz, C., Lenard, A., Belting, H.G., and Affolter, M. (2016). Cell behaviors and dynamics during 
angiogenesis. Development 143, 2249-2260. 
Bhandari, V., Choo-Wing, R., Lee, C.G., Zhu, Z., Nedrelow, J.H., Chupp, G.L., Zhang, X., Matthay, M.A., 
Ware, L.B., Homer, R.J., et al. (2006). Hyperoxia causes angiopoietin 2-mediated acute lung injury and 
necrotic cell death. Nat Med 12, 1286-1293. 
Biedenkapp, J.C., and Rudy, J.W. (2007). Context preexposure prevents forgetting of a contextual fear 
memory: implication for regional changes in brain activation patterns associated with recent and 
remote memory tests. Learn Mem 14, 200-203. 
Birns, J., and Kalra, L. (2009). Cognitive function and hypertension. J Hum Hypertens 23, 86-96. 
Bisler, S., Schleicher, A., Gass, P., Stehle, J.H., Zilles, K., and Staiger, J.F. (2002). Expression of c-Fos, 
ICER, Krox-24 and JunB in the whisker-to-barrel pathway of rats: time course of induction upon 
whisker stimulation by tactile exploration of an enriched environment. J Chem Neuroanat 23, 187-
198. 
Bizon, J.L., and Gallagher, M. (2005). More is less: neurogenesis and age-related cognitive decline in 
Long-Evans rats. Sci Aging Knowledge Environ 2005, re2. 
Black, J.E., Sirevaag, A.M., and Greenough, W.T. (1987). Complex experience promotes capillary 
formation in young rat visual cortex. Neuroscience letters 83, 351-355. 
Black, J.E., Zelazny, A.M., and Greenough, W.T. (1991). Capillary and mitochondrial support of neural 
plasticity in adult rat visual cortex. Exp Neurol 111, 204-209. 
Blanc, S., Somody, L., Gharib, A., Gauquelin, G., Gharib, C., and Sarda, N. (1998). Counteraction of 
spaceflight-induced changes in the rat central serotonergic system by adrenalectomy and 
corticosteroid replacement. Neurochemistry international 33, 375-382. 
Blum, Y., Belting, H.G., Ellertsdottir, E., Herwig, L., Luders, F., and Affolter, M. (2008). Complex cell 
rearrangements during intersegmental vessel sprouting and vessel fusion in the zebrafish embryo. 
Dev Biol 316, 312-322. 
Blumenfeld, J.D., Sealey, J.E., Mann, S.J., Bragat, A., Marion, R., Pecker, M.S., Sotelo, J., August, P., 
Pickering, T.G., and Laragh, J.H. (1999). Beta-adrenergic receptor blockade as a therapeutic approach 



243 
 

for suppressing the renin-angiotensin-aldosterone system in normotensive and hypertensive 
subjects. Am J Hypertens 12, 451-459. 
Bobik, A. (2005). The structural basis of hypertension: vascular remodelling, rarefaction and 
angiogenesis/arteriogenesis. J Hypertens 23, 1473-1475. 
Boero, J.A., Ascher, J., Arregui, A., Rovainen, C., and Woolsey, T.A. (1999). Increased brain capillaries 
in chronic hypoxia. J Appl Physiol (1985) 86, 1211-1219. 
Bogatcheva, N.V., Sergeeva, M.G., Dudek, S.M., and Verin, A.D. (2005). Arachidonic acid cascade in 
endothelial pathobiology. Microvasc Res 69, 107-127. 
Bogdanovic, E., Nguyen, V.P., and Dumont, D.J. (2006). Activation of Tie2 by angiopoietin-1 and 
angiopoietin-2 results in their release and receptor internalization. J Cell Sci 119, 3551-3560. 
Bohlen, H.G. (1989). The microcirculation in hypertension. J Hypertens Suppl 7, S117-124. 
Bojados, M., and Jamon, M. (2014). The long-term consequences of the exposure to increasing 
gravity levels on the muscular, vestibular and cognitive functions in adult mice. Behav Brain Res 264, 
64-73. 
Bolhuis, J.J., Stewart, C.A., and Forrest, E.M. (1994). Retrograde amnesia and memory reactivation in 
rats with ibotenate lesions to the hippocampus or subiculum. Q J Exp Psychol B 47, 129-150. 
Bontempi, B., Laurent-Demir, C., Destrade, C., and Jaffard, R. (1999). Time-dependent reorganization 
of brain circuitry underlying long-term memory storage. Nature 400, 671-675. 
Boroujerdi, A., Welser-Alves, J.V., Tigges, U., and Milner, R. (2012). Chronic cerebral hypoxia 
promotes arteriogenic remodeling events that can be identified by reduced endoglin (CD105) 
expression and a switch in beta1 integrins. J Cereb Blood Flow Metab 32, 1820-1830. 
Boulanger, C.M. (2016). Endothelium. Arterioscler Thromb Vasc Biol 36, e26-31. 
Boye, S.M., Pradhan, A.A., Grant, R.J., and Clarke, P.B. (2002). Evidence for sequence-dependent and 
reversible nonspecific effects of PS-capped antisense treatment after intracerebral administration. 
Antisense Nucleic Acid Drug Dev 12, 95-102. 
Broadbent, N.J., and Clark, R.E. (2013). Remote context fear conditioning remains hippocampus-
dependent irrespective of training protocol, training-surgery interval, lesion size, and lesion method. 
Neurobiol Learn Mem 106, 300-308. 
Broadbent, N.J., Squire, L.R., and Clark, R.E. (2006). Reversible hippocampal lesions disrupt water 
maze performance during both recent and remote memory tests. Learn Mem 13, 187-191. 
Brooks, W.W., Ingwall, J.S., Conrad, C.H., Holubarsch, C., and Bing, O.H. (1987). Tolerance to hypoxia 
of myocardium from adult and aged spontaneously hypertensive rats. Am J Physiol 252, H1096-1104. 
Brown, J.L., Cao, Z.A., Pinzon-Ortiz, M., Kendrew, J., Reimer, C., Wen, S., Zhou, J.Q., Tabrizi, M., 
Emery, S., McDermott, B., et al. (2010). A human monoclonal anti-ANG2 antibody leads to broad 
antitumor activity in combination with VEGF inhibitors and chemotherapy agents in preclinical 
models. Mol Cancer Ther 9, 145-156. 
Buccafusco, J.J. (1996). The role of central cholinergic neurons in the regulation of blood pressure 
and in experimental hypertension. Pharmacol Rev 48, 179-211. 
Bucur, B., and Madden, D.J. (2010). Effects of adult age and blood pressure on executive function and 
speed of processing. Exp Aging Res 36, 153-168. 
Bupathi, M., Kaseb, A., and Janku, F. (2014). Angiopoietin 2 as a therapeutic target in hepatocellular 
carcinoma treatment: current perspectives. Onco Targets Ther 7, 1927-1932. 
Burette, F., Jay, T.M., and Laroche, S. (1997). Reversal of LTP in the hippocampal afferent fiber 
system to the prefrontal cortex in vivo with low-frequency patterns of stimulation that do not 
produce LTD. J Neurophysiol 78, 1155-1160. 
Caduff, J.H., Fischer, L.C., and Burri, P.H. (1986). Scanning electron microscope study of the 
developing microvasculature in the postnatal rat lung. Anat Rec 216, 154-164. 
Cai, J., Kehoe, O., Smith, G.M., Hykin, P., and Boulton, M.E. (2008). The angiopoietin/Tie-2 system 
regulates pericyte survival and recruitment in diabetic retinopathy. Invest Ophthalmol Vis Sci 49, 
2163-2171. 
Cai, Z., Zhao, B., Deng, Y., Shangguan, S., Zhou, F., Zhou, W., Li, X., Li, Y., and Chen, G. (2016). Notch 
signaling in cerebrovascular diseases (Review). Mol Med Rep. 
Campbell, R.J., and Di Cara, L.V. (1977). Running-wheel avoidance behavior in the Wistar/Kyoto 
spontaneously hypertensive rat. Physiol Behav 19, 473-480. 



244 
 

Cao, L., Jiao, X., Zuzga, D.S., Liu, Y., Fong, D.M., Young, D., and During, M.J. (2004). VEGF links 
hippocampal activity with neurogenesis, learning and memory. Nat Genet 36, 827-835. 
Cao, X.S., Sun, X.Q., Zhang, S., Wang, B., Wu, Y.H., Liu, T.S., and Wu, X.Y. (2007). Acceleration after-
effects on learning and memory in rats: +10 Gz or +6 Gz for 3 min. Neuroscience letters 413, 245-248. 
Carlsson, S.I., Bertilaccio, M.T., Ascari, I., Bradamante, S., and Maier, J.A. (2002). Modulation of 
human endothelial cell behaviour in simulated microgravity. Journal of gravitational physiology : a 
journal of the International Society for Gravitational Physiology 9, P273-274. 
Carmeliet, P. (2003). Blood vessels and nerves: common signals, pathways and diseases. Nat Rev 
Genet 4, 710-720. 
Carmeliet, P., and Jain, R.K. (2011). Molecular mechanisms and clinical applications of angiogenesis. 
Nature 473, 298-307. 
Carnevale, D., Mascio, G., D'Andrea, I., Fardella, V., Bell, R.D., Branchi, I., Pallante, F., Zlokovic, B., 
Yan, S.S., and Lembo, G. (2012). Hypertension Induces Brain beta-Amyloid Accumulation, Cognitive 
Impairment, and Memory Deterioration Through Activation of Receptor for Advanced Glycation End 
Products in Brain Vasculature. Hypertension 60, 188-197. 
Carnevale, D., Perrotta, M., Lembo, G., and Trimarco, B. (2016). Pathophysiological Links Among 
Hypertension and Alzheimer's Disease. High Blood Press Cardiovasc Prev 23, 3-7. 
Carter, J.A., Buckey, J.C., Greenhalgh, L., Holland, A.W., and Hegel, M.T. (2005). An interactive media 
program for managing psychosocial problems on long-duration spaceflights. Aviation, space, and 
environmental medicine 76, B213-223. 
Casals, J.B., Pieri, N.C., Feitosa, M.L., Ercolin, A.C., Roballo, K.C., Barreto, R.S., Bressan, F.F., Martins, 
D.S., Miglino, M.A., and Ambrosio, C.E. (2011). The use of animal models for stroke research: a 
review. Comp Med 61, 305-313. 
Cash, T.P., Pan, Y., and Simon, M.C. (2007). Reactive oxygen species and cellular oxygen sensing. Free 
Radic Biol Med 43, 1219-1225. 
Cassady, K., Koppelmans, V., Reuter-Lorenz, P., De Dios, Y., Gadd, N., Wood, S., Castenada, R.R., 
Kofman, I., Bloomberg, J., Mulavara, A., et al. (2016). Effects of a spaceflight analog environment on 
brain connectivity and behavior. NeuroImage 141, 18-30. 
Cauli, B., and Hamel, E. (2010). Revisiting the role of neurons in neurovascular coupling. Frontiers in 
neuroenergetics 2, 9. 
Chaigneau, E., Oheim, M., Audinat, E., and Charpak, S. (2003). Two-photon imaging of capillary blood 
flow in olfactory bulb glomeruli. Proc Natl Acad Sci U S A 100, 13081-13086. 
Chamboredon, S., Ciais, D., Desroches-Castan, A., Savi, P., Bono, F., Feige, J.J., and Cherradi, N. 
(2011). Hypoxia-inducible factor-1alpha mRNA: a new target for destabilization by tristetraprolin in 
endothelial cells. Mol Biol Cell 22, 3366-3378. 
Chan-Ling, T., Page, M.P., Gardiner, T., Baxter, L., Rosinova, E., and Hughes, S. (2004). Desmin 
ensheathment ratio as an indicator of vessel stability: evidence in normal development and in 
retinopathy of prematurity. Am J Pathol 165, 1301-1313. 
Chang, H., Shyu, K.G., Wang, B.W., and Kuan, P. (2003). Regulation of hypoxia-inducible factor-1alpha 
by cyclical mechanical stretch in rat vascular smooth muscle cells. Clin Sci (Lond) 105, 447-456. 
Chaudhuri, R., and Fiete, I. (2016). Computational principles of memory. Nat Neurosci 19, 394-403. 
Chavez, J.C., Agani, F., Pichiule, P., and LaManna, J.C. (2000). Expression of hypoxia-inducible factor-
1alpha in the brain of rats during chronic hypoxia. J Appl Physiol (1985) 89, 1937-1942. 
Checchin, D., Sennlaub, F., Levavasseur, E., Leduc, M., and Chemtob, S. (2006). Potential role of 
microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci 47, 3595-3602. 
Chen, H., Lv, K., Dai, Z., Ji, G., Wang, T., Wang, Y., Zhang, Y., Kan, G., Li, Y., and Qu, L. (2016). 
Intramuscular injection of mechano growth factor E domain peptide regulated expression of 
memory-related sod, miR-134 and miR-125b-3p in rat hippocampus under simulated weightlessness. 
Biotechnology letters. 
Chen, Q., Jiang, L., Li, C., Hu, D., Bu, J.W., Cai, D., and Du, J.L. (2012a). Haemodynamics-driven 
developmental pruning of brain vasculature in zebrafish. PLoS Biol 10, e1001374. 
Chen, X.L., Nam, J.O., Jean, C., Lawson, C., Walsh, C.T., Goka, E., Lim, S.T., Tomar, A., Tancioni, I., 
Uryu, S., et al. (2012b). VEGF-induced vascular permeability is mediated by FAK. Dev Cell 22, 146-157. 



245 
 

Cheng, J.H., Zhang, L.F., Gao, F., Bai, Y.G., Boscolo, M., Huang, X.F., and Zhang, X. (2014). Mechanics 
and composition of middle cerebral arteries from simulated microgravity rats with and without 1-h/d 
-Gx gravitation. PloS one 9, e97737. 
Cheron, G., Leroy, A., Palmero-Soler, E., De Saedeleer, C., Bengoetxea, A., Cebolla, A.M., Vidal, M., 
Dan, B., Berthoz, A., and McIntyre, J. (2014). Gravity influences top-down signals in visual processing. 
PloS one 9, e82371. 
Cherry, J.D., Liu, B., Frost, J.L., Lemere, C.A., Williams, J.P., Olschowka, J.A., and O'Banion, M.K. 
(2012). Galactic cosmic radiation leads to cognitive impairment and increased abeta plaque 
accumulation in a mouse model of Alzheimer's disease. PloS one 7, e53275. 
Chklovskii, D.B., Mel, B.W., and Svoboda, K. (2004). Cortical rewiring and information storage. Nature 
431, 782-788. 
Chobanian, A.V., Bakris, G.L., Black, H.R., Cushman, W.C., Green, L.A., Izzo, J.L., Jr., Jones, D.W., 
Materson, B.J., Oparil, S., Wright, J.T., Jr., et al. (2003). The Seventh Report of the Joint National 
Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 
report. JAMA 289, 2560-2572. 
Chow, B.W., and Gu, C. (2015). The molecular constituents of the blood-brain barrier. Trends 
Neurosci 38, 598-608. 
Chrissobolis, S., Didion, S.P., Kinzenbaw, D.A., Schrader, L.I., Dayal, S., Lentz, S.R., and Faraci, F.M. 
(2008). Glutathione peroxidase-1 plays a major role in protecting against angiotensin II-induced 
vascular dysfunction. Hypertension 51, 872-877. 
Chrobak, J.J., and Buzsaki, G. (1996). High-frequency oscillations in the output networks of the 
hippocampal-entorhinal axis of the freely behaving rat. J Neurosci 16, 3056-3066. 
Chua, C.C., Hamdy, R.C., and Chua, B.H. (1998). Upregulation of vascular endothelial growth factor by 
angiotensin II in rat heart endothelial cells. Biochim Biophys Acta 1401, 187-194. 
Cipolla, M.J. (2009). In The Cerebral Circulation (San Rafael (CA)). 
Cipolla, M.J., Bishop, N., Vinke, R.S., and Godfrey, J.A. (2010). PPAR{gamma} activation prevents 
hypertensive remodeling of cerebral arteries and improves vascular function in female rats. Stroke 
41, 1266-1270. 
Cipolla, M.J., and Osol, G. (1998). Vascular smooth muscle actin cytoskeleton in cerebral artery 
forced dilatation. Stroke 29, 1223-1228. 
Cipolla, M.J., Smith, J., Kohlmeyer, M.M., and Godfrey, J.A. (2009). SKCa and IKCa Channels, myogenic 
tone, and vasodilator responses in middle cerebral arteries and parenchymal arterioles: effect of 
ischemia and reperfusion. Stroke 40, 1451-1457. 
Clapp, C., Thebault, S., Jeziorski, M.C., and Martinez De La Escalera, G. (2009). Peptide hormone 
regulation of angiogenesis. Physiol Rev 89, 1177-1215. 
Clark, E.W., and Bernstein, I.L. (2009). Establishing aversive, but not safe, taste memories requires 
lateralized pontine-cortical connections. Behav Brain Res 197, 356-363. 
Clark, R.E., Broadbent, N.J., and Squire, L.R. (2005). Impaired remote spatial memory after 
hippocampal lesions despite extensive training beginning early in life. Hippocampus 15, 340-346. 
Clement, G., Arnesen, T.N., Olsen, M.H., and Sylvestre, B. (2007). Perception of longitudinal body axis 
in microgravity during parabolic flight. Neuroscience letters 413, 150-153. 
Clements, K.M., and Wainwright, P.E. (2007). Spontaneously hypertensive, Wistar Kyoto and 
Sprague-Dawley rats differ in performance on a win-stay task and a conditioned cue preference task 
in the water radial arm maze. Behav Brain Res 183, 169-177. 
Clozel, J.P., Kuhn, H., and Hefti, F. (1989). Effects of cilazapril on the cerebral circulation in 
spontaneously hypertensive rats. Hypertension 14, 645-651. 
Cole, W.C., and Welsh, D.G. (2011). Role of myosin light chain kinase and myosin light chain 
phosphatase in the resistance arterial myogenic response to intravascular pressure. Arch Biochem 
Biophys 510, 160-173. 
Colleran, P.N., Behnke, B.J., Wilkerson, M.K., Donato, A.J., and Delp, M.D. (2008). Simulated 
microgravity alters rat mesenteric artery vasoconstrictor dynamics through an intracellular Ca(2+) 
release mechanism. American journal of physiology Regulatory, integrative and comparative 
physiology 294, R1577-1585. 



246 
 

Cordero, M.I., and Sandi, C. (2007). Stress amplifies memory for social hierarchy. Frontiers in 
neuroscience 1, 175-184. 
Corkin, S. (2002). What's new with the amnesic patient H.M.? Nat Rev Neurosci 3, 153-160. 
Corkin, S., Amaral, D.G., Gonzalez, R.G., Johnson, K.A., and Hyman, B.T. (1997). H. M.'s medial 
temporal lobe lesion: findings from magnetic resonance imaging. J Neurosci 17, 3964-3979. 
Corkin, S., Sullivan, E.V., and Carr, F.A. (1984). Prognostic factors for life expectancy after penetrating 
head injury. Arch Neurol 41, 975-977. 
Cornett, B., Snowball, J., Varisco, B.M., Lang, R., Whitsett, J., and Sinner, D. (2013). Wntless is 
required for peripheral lung differentiation and pulmonary vascular development. Dev Biol 379, 38-
52. 
Cowan, N. (2008). What are the differences between long-term, short-term, and working memory? 
Prog Brain Res 169, 323-338. 
Cowansage, K.K., Shuman, T., Dillingham, B.C., Chang, A., Golshani, P., and Mayford, M. (2014). Direct 
reactivation of a coherent neocortical memory of context. Neuron 84, 432-441. 
Cox, S.B., Woolsey, T.A., and Rovainen, C.M. (1993). Localized dynamic changes in cortical blood flow 
with whisker stimulation corresponds to matched vascular and neuronal architecture of rat barrels. J 
Cereb Blood Flow Metab 13, 899-913. 
Coxon, A., Bready, J., Min, H., Kaufman, S., Leal, J., Yu, D., Lee, T.A., Sun, J.R., Estrada, J., Bolon, B., et 
al. (2010). Context-dependent role of angiopoietin-1 inhibition in the suppression of angiogenesis 
and tumor growth: implications for AMG 386, an angiopoietin-1/2-neutralizing peptibody. Mol 
Cancer Ther 9, 2641-2651. 
Cristofaro, B., Shi, Y., Faria, M., Suchting, S., Leroyer, A.S., Trindade, A., Duarte, A., Zovein, A.C., 
Iruela-Arispe, M.L., Nih, L.R., et al. (2013). Dll4-Notch signaling determines the formation of native 
arterial collateral networks and arterial function in mouse ischemia models. Development 140, 1720-
1729. 
Czajkowski, R., Jayaprakash, B., Wiltgen, B., Rogerson, T., Guzman-Karlsson, M.C., Barth, A.L., 
Trachtenberg, J.T., and Silva, A.J. (2014). Encoding and storage of spatial information in the 
retrosplenial cortex. Proc Natl Acad Sci U S A 111, 8661-8666. 
Dabertrand, F., Mironneau, J., Henaff, M., Macrez, N., and Morel, J.L. (2010). Comparison between 
gentamycin and exon skipping treatments to restore ryanodine receptor subtype 2 functions in mdx 
mouse duodenum myocytes. European journal of pharmacology 628, 36-41. 
Dabertrand, F., Nelson, M.T., and Brayden, J.E. (2013). Ryanodine receptors, calcium signaling, and 
regulation of vascular tone in the cerebral parenchymal microcirculation. Microcirculation 20, 307-
316. 
Dabertrand, F., Porte, Y., Macrez, N., and Morel, J.L. (2012). Spaceflight regulates ryanodine receptor 
subtype 1 in portal vein myocytes in the opposite way of hypertension. J Appl Physiol (1985) 112, 
471-480. 
Dai, H.L., Hu, W.Y., Jiang, L.H., Li, L., Gaung, X.F., and Xiao, Z.C. (2016). p38 MAPK Inhibition Improves 
Synaptic Plasticity and Memory in Angiotensin II-dependent Hypertensive Mice. Scientific reports 6, 
27600. 
Daly, C., Wong, V., Burova, E., Wei, Y., Zabski, S., Griffiths, J., Lai, K.M., Lin, H.C., Ioffe, E., 
Yancopoulos, G.D., et al. (2004). Angiopoietin-1 modulates endothelial cell function and gene 
expression via the transcription factor FKHR (FOXO1). Genes Dev 18, 1060-1071. 
Danaei, G., Ding, E.L., Mozaffarian, D., Taylor, B., Rehm, J., Murray, C.J., and Ezzati, M. (2009). The 
preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, 
and metabolic risk factors. PLoS Med 6, e1000058. 
Davis, S., Papadopoulos, N., Aldrich, T.H., Maisonpierre, P.C., Huang, T., Kovac, L., Xu, A., Leidich, R., 
Radziejewska, E., Rafique, A., et al. (2003). Angiopoietins have distinct modular domains essential for 
receptor binding, dimerization and superclustering. Nat Struct Biol 10, 38-44. 
De Bruin, N.M., Kiliaan, A.J., De Wilde, M.C., and Broersen, L.M. (2003). Combined uridine and 
choline administration improves cognitive deficits in spontaneously hypertensive rats. Neurobiol 
Learn Mem 80, 63-79. 
de la Torre, J.C. (2012). Cardiovascular risk factors promote brain hypoperfusion leading to cognitive 
decline and dementia. Cardiovasc Psychiatry Neurol 2012, 367516. 



247 
 

de la Torre, J.C., and Stefano, G.B. (2000). Evidence that Alzheimer's disease is a microvascular 
disorder: the role of constitutive nitric oxide. Brain Res Brain Res Rev 34, 119-136. 
De Palma, M., Venneri, M.A., Galli, R., Sergi Sergi, L., Politi, L.S., Sampaolesi, M., and Naldini, L. 
(2005). Tie2 identifies a hematopoietic lineage of proangiogenic monocytes required for tumor vessel 
formation and a mesenchymal population of pericyte progenitors. Cancer Cell 8, 211-226. 
De Santo, N.G., Christensen, N.J., Drummer, C., Kramer, H.J., Regnard, J., Heer, M., Cirillo, M., and 
Norsk, P. (2001). Fluid balance and kidney function in space: introduction. Am J Kidney Dis 38, 664-
667. 
Debbabi, H., Uzan, L., Mourad, J.J., Safar, M., Levy, B.I., and Tibirica, E. (2006). Increased skin capillary 
density in treated essential hypertensive patients. Am J Hypertens 19, 477-483. 
Del Signore, A., Mandillo, S., Rizzo, A., Di Mauro, E., Mele, A., Negri, R., Oliverio, A., and Paggi, P. 
(2004). Hippocampal gene expression is modulated by hypergravity. The European journal of 
neuroscience 19, 667-677. 
Delp, M.D., Charvat, J.M., Limoli, C.L., Globus, R.K., and Ghosh, P. (2016). Apollo Lunar Astronauts 
Show Higher Cardiovascular Disease Mortality: Possible Deep Space Radiation Effects on the Vascular 
Endothelium. Scientific reports 6, 29901. 
Demirci, B., McKeown, P.P., and Bayraktutan, U. (2005). Blockade of angiotensin II provides 
additional benefits in hypertension-and ageing-related cardiac and vascular dysfunctions beyond its 
blood pressure-lowering effects. Journal of hypertension 23, 2219-2227. 
Deng, W., Mayford, M., and Gage, F.H. (2013). Selection of distinct populations of dentate granule 
cells in response to inputs as a mechanism for pattern separation in mice. Elife 2, e00312. 
Denny, C.A., Kheirbek, M.A., Alba, E.L., Tanaka, K.F., Brachman, R.A., Laughman, K.B., Tomm, N.K., 
Turi, G.F., Losonczy, A., and Hen, R. (2014). Hippocampal memory traces are differentially modulated 
by experience, time, and adult neurogenesis. Neuron 83, 189-201. 
Diana, G., Domenici, M.R., Loizzo, A., Scotti de Carolis, A., and Sagratella, S. (1994). Age and strain 
differences in rat place learning and hippocampal dentate gyrus frequency-potentiation. 
Neuroscience letters 171, 113-116. 
Dietrich, H.H., Kajita, Y., and Dacey, R.G., Jr. (1996). Local and conducted vasomotor responses in 
isolated rat cerebral arterioles. Am J Physiol 271, H1109-1116. 
Dikalova, A.E., Bikineyeva, A.T., Budzyn, K., Nazarewicz, R.R., McCann, L., Lewis, W., Harrison, D.G., 
and Dikalov, S.I. (2010). Therapeutic targeting of mitochondrial superoxide in hypertension. 
Circulation research 107, 106-116. 
Dimmeler, S., Fleming, I., Fisslthaler, B., Hermann, C., Busse, R., and Zeiher, A.M. (1999). Activation of 
nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605. 
Direk, N., Schrijvers, E.M., de Bruijn, R.F., Mirza, S., Hofman, A., Ikram, M.A., and Tiemeier, H. (2013). 
Plasma amyloid beta, depression, and dementia in community-dwelling elderly. Journal of psychiatric 
research 47, 479-485. 
Dombeck, D.A., Harvey, C.D., Tian, L., Looger, L.L., and Tank, D.W. (2010). Functional imaging of 
hippocampal place cells at cellular resolution during virtual navigation. Nat Neurosci 13, 1433-1440. 
Dore-Duffy, P., and LaManna, J.C. (2007). Physiologic angiodynamics in the brain. Antioxid Redox 
Signal 9, 1363-1371. 
Dornas, W.C., and Silva, M.E. (2011). Animal models for the study of arterial hypertension. J Biosci 36, 
731-737. 
Dorr, A., Sled, J.G., and Kabani, N. (2007). Three-dimensional cerebral vasculature of the CBA mouse 
brain: a magnetic resonance imaging and micro computed tomography study. Neuroimage 35, 1409-
1423. 
Dorrance, A.M., Pollock, D.M., Romanko, O.P., and Stepp, D.W. (2007). A high-potassium diet reduces 
infarct size and improves vascular structure in hypertensive rats. Am J Physiol Regul Integr Comp 
Physiol 292, R415-422. 
Dotti, C.G., and De Strooper, B. (2009). Alzheimer's dementia by circulation disorders: when trees 
hide the forest. Nat Cell Biol 11, 114-116. 
Doty, R.L., Philip, S., Reddy, K., and Kerr, K.L. (2003). Influences of antihypertensive and 
antihyperlipidemic drugs on the senses of taste and smell: a review. Journal of hypertension 21, 
1805-1813. 



248 
 

Doughan, A.K., Harrison, D.G., and Dikalov, S.I. (2008). Molecular mechanisms of angiotensin II-
mediated mitochondrial dysfunction: linking mitochondrial oxidative damage and vascular 
endothelial dysfunction. Circulation research 102, 488-496. 
Driss-Ecole, D., Legue, V., Carnero-Diaz, E., and Perbal, G. (2008). Gravisensitivity and 
automorphogenesis of lentil seedling roots grown on board the International Space Station. Physiol 
Plant 134, 191-201. 
Du, S.Q., Wang, X.R., Xiao, L.Y., Tu, J.F., Zhu, W., He, T., and Liu, C.Z. (2016). Molecular Mechanisms of 
Vascular Dementia: What Can Be Learned from Animal Models of Chronic Cerebral Hypoperfusion? 
Mol Neurobiol. 
Dudai, Y. (2004). The neurobiology of consolidations, or, how stable is the engram? Annu Rev Psychol 
55, 51-86. 
Dudai, Y. (2006). Reconsolidation: the advantage of being refocused. Curr Opin Neurobiol 16, 174-
178. 
Dudai, Y. (2012). The restless engram: consolidations never end. Annu Rev Neurosci 35, 227-247. 
Dudai, Y., and Eisenberg, M. (2004). Rites of passage of the engram: reconsolidation and the lingering 
consolidation hypothesis. Neuron 44, 93-100. 
Dudai, Y., Karni, A., and Born, J. (2015). The Consolidation and Transformation of Memory. Neuron 
88, 20-32. 
Duijvestijn, A.M., van Goor, H., Klatter, F., Majoor, G.D., van Bussel, E., and van Breda Vriesman, P.J. 
(1992). Antibodies defining rat endothelial cells: RECA-1, a pan-endothelial cell-specific monoclonal 
antibody. Lab Invest 66, 459-466. 
Dunn, J.F., Roche, M.A., Springett, R., Abajian, M., Merlis, J., Daghlian, C.P., Lu, S.Y., and Makki, M. 
(2004). Monitoring angiogenesis in brain using steady-state quantification of DeltaR2 with MION 
infusion. Magn Reson Med 51, 55-61. 
Dunn, K.M., and Nelson, M.T. (2014). Neurovascular signaling in the brain and the pathological 
consequences of hypertension. Am J Physiol Heart Circ Physiol 306, H1-14. 
Dupuis, F., Atkinson, J., Liminana, P., and Chillon, J.M. (2005). Captopril improves cerebrovascular 
structure and function in old hypertensive rats. Br J Pharmacol 144, 349-356. 
Dupuis, F., Vincent, J.M., Liminana, P., Chillon, J.M., Capdeville-Atkinson, C., and Atkinson, J. (2010). 
Effects of suboptimal doses of the AT1 receptor blocker, telmisartan, with the angiotensin-converting 
enzyme inhibitor, ramipril, on cerebral arterioles in spontaneously hypertensive rat. J Hypertens 28, 
1566-1573. 
Duvernoy, H., Delon, S., and Vannson, J.L. (1983). The vascularization of the human cerebellar cortex. 
Brain Res Bull 11, 419-480. 
Duzel, E., van Praag, H., and Sendtner, M. (2016). Can physical exercise in old age improve memory 
and hippocampal function? Brain : a journal of neurology 139, 662-673. 
Dyde, R.T., Jenkin, M.R., Jenkin, H.L., Zacher, J.E., and Harris, L.R. (2009). The effect of altered gravity 
states on the perception of orientation. Experimental brain research 194, 647-660. 
Efimova, I.Y., Efimova, N.Y., Triss, S.V., and Lishmanov, Y.B. (2008). Brain perfusion and cognitive 
function changes in hypertensive patients. Hypertens Res 31, 673-678. 
Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nat Rev Neurosci 1, 
41-50. 
Eichenbaum, H. (2004). Hippocampus: cognitive processes and neural representations that underlie 
declarative memory. Neuron 44, 109-120. 
Eklund, L., and Saharinen, P. (2013). Angiopoietin signaling in the vasculature. Exp Cell Res 319, 1271-
1280. 
Ekstrom, A.D., and Bookheimer, S.Y. (2007). Spatial and temporal episodic memory retrieval recruit 
dissociable functional networks in the human brain. Learn Mem 14, 645-654. 
Eldridge, L.L., Knowlton, B.J., Furmanski, C.S., Bookheimer, S.Y., and Engel, S.A. (2000). Remembering 
episodes: a selective role for the hippocampus during retrieval. Nat Neurosci 3, 1149-1152. 
Ely, D.L., and Turner, M.E. (1990). Hypertension in the spontaneously hypertensive rat is linked to the 
Y chromosome. Hypertension 16, 277-281. 
Ethell, I.M., and Ethell, D.W. (2007). Matrix metalloproteinases in brain development and 
remodeling: synaptic functions and targets. J Neurosci Res 85, 2813-2823. 



249 
 

Etienne-Manneville, S. (2004). Cdc42--the centre of polarity. J Cell Sci 117, 1291-1300. 
Fagette, S., Lo, M., Gharib, C., and Gauquelin, G. (1995). Cardiovascular variability and baroreceptor 
reflex sensitivity over a 14-day tail suspension in rats. J Appl Physiol (1985) 78, 717-724. 
Fagiani, E., and Christofori, G. (2013). Angiopoietins in angiogenesis. Cancer Lett 328, 18-26. 
Fandrey, J., Gorr, T.A., and Gassmann, M. (2006). Regulating cellular oxygen sensing by 
hydroxylation. Cardiovasc Res 71, 642-651. 
Fanselow, M.S., and Dong, H.W. (2010). Are the dorsal and ventral hippocampus functionally distinct 
structures? Neuron 65, 7-19. 
Fantin, A., Vieira, J.M., Gestri, G., Denti, L., Schwarz, Q., Prykhozhij, S., Peri, F., Wilson, S.W., and 
Ruhrberg, C. (2010). Tissue macrophages act as cellular chaperones for vascular anastomosis 
downstream of VEGF-mediated endothelial tip cell induction. Blood 116, 829-840. 
Faraci, F.M., and Brian, J.E., Jr. (1994). Nitric oxide and the cerebral circulation. Stroke 25, 692-703. 
Faraci, F.M., and Heistad, D.D. (1990). Regulation of large cerebral arteries and cerebral 
microvascular pressure. Circ Res 66, 8-17. 
Faraco, G., and Iadecola, C. (2013). Hypertension: a harbinger of stroke and dementia. Hypertension 
62, 810-817. 
Farid, K., Caillat-Vigneron, N., and Sibon, I. (2011). Is brain SPECT useful in degenerative dementia 
diagnosis? J Comput Assist Tomogr 35, 1-3. 
Felmeden, D.C., Spencer, C.G., Belgore, F.M., Blann, A.D., Beevers, D.G., and Lip, G.Y. (2003). 
Endothelial damage and angiogenesis in hypertensive patients: relationship to cardiovascular risk 
factors and risk factor management. Am J Hypertens 16, 11-20. 
Feng, S., Wang, Q., Wang, H., Peng, Y., Wang, L., Lu, Y., Shi, T., and Xiong, L. (2010). 
Electroacupuncture pretreatment ameliorates hypergravity-induced impairment of learning and 
memory and apoptosis of hippocampal neurons in rats. Neuroscience letters 478, 150-155. 
Ferguson, S.A., and Gray, E.P. (2005). Aging effects on elevated plus maze behavior in spontaneously 
hypertensive, Wistar-Kyoto and Sprague-Dawley male and female rats. Physiol Behav 85, 621-628. 
Fernandes, T., Nakamuta, J.S., Magalhaes, F.C., Roque, F.R., Lavini-Ramos, C., Schettert, I.T., Coelho, 
V., Krieger, J.E., and Oliveira, E.M. (2012). Exercise training restores the endothelial progenitor cells 
number and function in hypertension: implications for angiogenesis. J Hypertens 30, 2133-2143. 
Ferrara, N. (2004). Vascular endothelial growth factor: basic science and clinical progress. Endocr Rev 
25, 581-611. 
Ferrara, N. (2009). VEGF-A: a critical regulator of blood vessel growth. Eur Cytokine Netw 20, 158-
163. 
Fiedler, U., and Augustin, H.G. (2006). Angiopoietins: a link between angiogenesis and inflammation. 
Trends Immunol 27, 552-558. 
Fiedler, U., Krissl, T., Koidl, S., Weiss, C., Koblizek, T., Deutsch, U., Martiny-Baron, G., Marme, D., and 
Augustin, H.G. (2003). Angiopoietin-1 and angiopoietin-2 share the same binding domains in the Tie-
2 receptor involving the first Ig-like loop and the epidermal growth factor-like repeats. J Biol Chem 
278, 1721-1727. 
Fiedler, U., Scharpfenecker, M., Koidl, S., Hegen, A., Grunow, V., Schmidt, J.M., Kriz, W., Thurston, G., 
and Augustin, H.G. (2004). The Tie-2 ligand angiopoietin-2 is stored in and rapidly released upon 
stimulation from endothelial cell Weibel-Palade bodies. Blood 103, 4150-4156. 
Filiz, A.K., Ozdemir, E., Gunes, H., Gunes, H., and Yilmaz, M.B. (2015). Expression of Serum Vascular 
Endothelial Growth Factor and Angiopoietin Receptor Tie-2 in Essential Hypertension. West Indian 
Med J. 
Filosa, J.A., Bonev, A.D., and Nelson, M.T. (2004). Calcium dynamics in cortical astrocytes and 
arterioles during neurovascular coupling. Circ Res 95, e73-81. 
Filosa, J.A., Bonev, A.D., Straub, S.V., Meredith, A.L., Wilkerson, M.K., Aldrich, R.W., and Nelson, M.T. 
(2006). Local potassium signaling couples neuronal activity to vasodilation in the brain. Nat Neurosci 
9, 1397-1403. 
Filosa, J.A., Morrison, H.W., Iddings, J.A., Du, W., and Kim, K.J. (2016). Beyond neurovascular 
coupling, role of astrocytes in the regulation of vascular tone. Neuroscience 323, 96-109. 



250 
 

Findley, C.M., Cudmore, M.J., Ahmed, A., and Kontos, C.D. (2007). VEGF induces Tie2 shedding via a 
phosphoinositide 3-kinase/Akt dependent pathway to modulate Tie2 signaling. Arterioscler Thromb 
Vasc Biol 27, 2619-2626. 
Fischer, R.S., Gardel, M., Ma, X., Adelstein, R.S., and Waterman, C.M. (2009). Local cortical tension by 
myosin II guides 3D endothelial cell branching. Curr Biol 19, 260-265. 
Flora, R., Zulkarnain, M., Sorena, E., Deva, I., Widowati, W., (2016). Correlation Between Hypoxia 
Inducible Factor-1α and Vesicular Endothelial Growth Factor in Male Wistar Rat Brain Tissue After 
Anaerobic Exercise. Trends in Medical Research 11, 35-41. 
Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182-1186. 
Folkman, J. (1993). Antiangiogenesis Agents in Cancer Principles and Practice of Oncology. . 6th ed 
DeVita Jr VT, Hellman S, Rosenburg SA, eds Philadelphia, PA: Lippincott Williams and Wilkins, 509-
519. 
Folkow, B. (1982). Physiological aspects of primary hypertension. Physiol Rev 62, 347-504. 
Fong, G.H. (2008). Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis 11, 121-140. 
Foreman, K.E., and Tang, J. (2003). Molecular mechanisms of replicative senescence in endothelial 
cells. Exp Gerontol 38, 1251-1257. 
Forsythe, J.A., Jiang, B.H., Iyer, N.V., Agani, F., Leung, S.W., Koos, R.D., and Semenza, G.L. (1996). 
Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol 
Cell Biol 16, 4604-4613. 
Fouillade, C., Monet-Lepretre, M., Baron-Menguy, C., and Joutel, A. (2012). Notch signalling in 
smooth muscle cells during development and disease. Cardiovasc Res 95, 138-146. 
Fowler, B., and Manzey, D. (2000). Summary of research issues in monitoring of mental and 
perceptual-motor performance and stress in space. Aviat Space Environ Med 71, A76-77. 
Francia, N., Santucci, D., Chiarotti, F., and Alleva, E. (2004). Cognitive and emotional alterations in 
periadolescent mice exposed to 2 g hypergravity field. Physiology & behavior 83, 383-394. 
Francia, N., Simeoni, M., Petruzzi, S., Santucci, D., Aloe, L., and Alleva, E. (2006). Repeated acute 
exposures to hypergravity during early development subtly affect CD-1 mouse neurobehavioural 
profile. Brain research bulletin 69, 560-572. 
Frankland, P.W., and Bontempi, B. (2005). The organization of recent and remote memories. Nat Rev 
Neurosci 6, 119-130. 
Frankland, P.W., Bontempi, B., Talton, L.E., Kaczmarek, L., and Silva, A.J. (2004). The involvement of 
the anterior cingulate cortex in remote contextual fear memory. Science 304, 881-883. 
Frankland, P.W., O'Brien, C., Ohno, M., Kirkwood, A., and Silva, A.J. (2001). Alpha-CaMKII-dependent 
plasticity in the cortex is required for permanent memory. Nature 411, 309-313. 
Frey, U., and Morris, R.G. (1997). Synaptic tagging and long-term potentiation. Nature 385, 533-536. 
Frey, U., and Morris, R.G. (1998). Synaptic tagging: implications for late maintenance of hippocampal 
long-term potentiation. Trends Neurosci 21, 181-188. 
Frigeri, A., Iacobas, D.A., Iacobas, S., Nicchia, G.P., Desaphy, J.F., Camerino, D.C., Svelto, M., and 
Spray, D.C. (2008). Effect of microgravity on gene expression in mouse brain. Experimental brain 
research 191, 289-300. 
Fu, Z.J., Xie, M.J., Zhang, L.F., Cheng, H.W., and Ma, J. (2004). Differential activation of potassium 
channels in cerebral and hindquarter arteries of rats during simulated microgravity. American journal 
of physiology Heart and circulatory physiology 287, H1505-1515. 
Fujishima, M., Ibayashi, S., Fujii, K., and Mori, S. (1995). Cerebral blood flow and brain function in 
hypertension. Hypertens Res 18, 111-117. 
Fukuhara, S., Sako, K., Minami, T., Noda, K., Kim, H.Z., Kodama, T., Shibuya, M., Takakura, N., Koh, 
G.Y., and Mochizuki, N. (2008). Differential function of Tie2 at cell-cell contacts and cell-substratum 
contacts regulated by angiopoietin-1. Nat Cell Biol 10, 513-526. 
Fukuhara, S., Sako, K., Noda, K., Zhang, J., Minami, M., and Mochizuki, N. (2010). Angiopoietin-1/Tie2 
receptor signaling in vascular quiescence and angiogenesis. Histol Histopathol 25, 387-396. 
Furchgott, R.F., and Jothianandan, D. (1991). Endothelium-dependent and -independent vasodilation 
involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 28, 
52-61. 



251 
 

Furman, O., Mendelsohn, A., and Dudai, Y. (2012). The episodic engram transformed: Time reduces 
retrieval-related brain activity but correlates it with memory accuracy. Learn Mem 19, 575-587. 
Gais, S., Albouy, G., Boly, M., Dang-Vu, T.T., Darsaud, A., Desseilles, M., Rauchs, G., Schabus, M., 
Sterpenich, V., Vandewalle, G., et al. (2007). Sleep transforms the cerebral trace of declarative 
memories. Proc Natl Acad Sci U S A 104, 18778-18783. 
Gale, N.W., Thurston, G., Davis, S., Wiegand, S.J., Holash, J., Rudge, J.S., and Yancopoulos, G.D. 
(2002a). Complementary and coordinated roles of the VEGFs and angiopoietins during normal and 
pathologic vascular formation. Cold Spring Harb Symp Quant Biol 67, 267-273. 
Gale, N.W., Thurston, G., Hackett, S.F., Renard, R., Wang, Q., McClain, J., Martin, C., Witte, C., Witte, 
M.H., Jackson, D., et al. (2002b). Angiopoietin-2 is required for postnatal angiogenesis and lymphatic 
patterning, and only the latter role is rescued by Angiopoietin-1. Dev Cell 3, 411-423. 
Galef, B.G. (2003). Social learning of food preferences in rodents: rapid appetitive learning. Current 
protocols in neuroscience, 8.5 D. 1-8.5 D. 8. 
Galef, B.G., Jr., Mason, J.R., Preti, G., and Bean, N.J. (1988). Carbon disulfide: a semiochemical 
mediating socially-induced diet choice in rats. Physiol Behav 42, 119-124. 
Galef, B.G., Jr., and Whiskin, E.E. (1998). Limits on social influence on food choices of Norway rats. 
Anim Behav 56, 1015-1020. 
Galef, B.G., and Stein, M. (1985). Demonstrator influence on observer diet preference: Analyses of 
critical social interactions and olfactory signals. Animal Learning & Behavior 13, 31-38. 
Galef, B.G., and Whiskin, E.E. (2008). Effectiveness of familiar kin and unfamiliar nonkin 
demonstrator rats in altering food choices of their observers. Animal Behaviour 76, 1381-1388. 
Galef, G.B., Wigmore, J.S.W. (1983). Transfer of information concerning distant foods: A laboratory 
investigation of the ‘information-centre’ hypothesis. Animal Behaviour 31, 748–758. 
Galef Jr, B., and Whiskin, E. (2000). Social influences on the amount of food eaten by Norway rats. 
Appetite 34, 327-332. 
Galis, Z.S., and Khatri, J.J. (2002). Matrix metalloproteinases in vascular remodeling and 
atherogenesis the good, the bad, and the ugly. Circulation research 90, 251-262. 
Gamble, J.R., Drew, J., Trezise, L., Underwood, A., Parsons, M., Kasminkas, L., Rudge, J., Yancopoulos, 
G., and Vadas, M.A. (2000). Angiopoietin-1 is an antipermeability and anti-inflammatory agent in 
vitro and targets cell junctions. Circ Res 87, 603-607. 
Gao, F., Bao, J.X., Xue, J.H., Huang, J., Huang, W.Q., Wu, S.X., and Zhang, L.F. (2009). Regional 
specificity of adaptation change in large elastic arteries of simulated microgravity rats. Acta 
physiologica Hungarica 96, 167-187. 
Gasparini, G., Longo, R., Sarmiento, R., and Morabito, A. (2003). Inhibitors of cyclo-oxygenase 2: a 
new class of anticancer agents? Lancet Oncol 4, 605-615. 
Gattu, M., Pauly, J.R., Boss, K.L., Summers, J.B., and Buccafusco, J.J. (1997a). Cognitive impairment in 
spontaneously hypertensive rats: role of central nicotinic receptors. I. Brain Res 771, 89-103. 
Gattu, M., Terry, A.V., Jr., Pauly, J.R., and Buccafusco, J.J. (1997b). Cognitive impairment in 
spontaneously hypertensive rats: role of central nicotinic receptors. Part II. Brain Res 771, 104-114. 
Gazenko, O.G., Genin, A.M., and Egorov, A.D. (1981). Summary of medical investigations in the 
U.S.S.R. manned space missions. Acta astronautica 8, 907-917. 
Geary, G.G., Krause, D.N., Purdy, R.E., and Duckles, S.P. (1998). Simulated microgravity increases 
myogenic tone in rat cerebral arteries. J Appl Physiol (1985) 85, 1615-1621. 
Gelbard-Sagiv, H., Mukamel, R., Harel, M., Malach, R., and Fried, I. (2008). Internally generated 
reactivation of single neurons in human hippocampus during free recall. Science 322, 96-101. 
Gerhardt, H., Golding, M., Fruttiger, M., Ruhrberg, C., Lundkvist, A., Abramsson, A., Jeltsch, M., 
Mitchell, C., Alitalo, K., Shima, D., et al. (2003). VEGF guides angiogenic sprouting utilizing endothelial 
tip cell filopodia. J Cell Biol 161, 1163-1177. 
Geudens, I., and Gerhardt, H. (2011). Coordinating cell behaviour during blood vessel formation. 
Development 138, 4569-4583. 
Ghosh, P., Behnke, B.J., Stabley, J.N., Kilar, C.R., Park, Y., Narayanan, A., Alwood, J.S., Shirazi-Fard, Y., 
Schreurs, A.S., Globus, R.K., et al. (2016). Effects of High-LET Radiation Exposure and Hindlimb 
Unloading on Skeletal Muscle Resistance Artery Vasomotor Properties and Cancellous Bone 
Microarchitecture in Mice. Radiation research 185, 257-266. 



252 
 

Ghosh, V.E., and Gilboa, A. (2014). What is a memory schema? A historical perspective on current 
neuroscience literature. Neuropsychologia 53, 104-114. 
Giachini, F.R., Carneiro, F.S., Lima, V.V., Carneiro, Z.N., Dorrance, A., Webb, R.C., and Tostes, R.C. 
(2009). Upregulation of intermediate calcium-activated potassium channels counterbalance the 
impaired endothelium-dependent vasodilation in stroke-prone spontaneously hypertensive rats. 
Transl Res 154, 183-193. 
Gilboa, A., Winocur, G., Rosenbaum, R.S., Poreh, A., Gao, F., Black, S.E., Westmacott, R., and 
Moscovitch, M. (2006). Hippocampal contributions to recollection in retrograde and anterograde 
amnesia. Hippocampus 16, 966-980. 
Girouard, H., Bonev, A.D., Hannah, R.M., Meredith, A., Aldrich, R.W., and Nelson, M.T. (2010). 
Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation and constriction. Proc 
Natl Acad Sci U S A 107, 3811-3816. 
Glodzik, L., Rusinek, H., Pirraglia, E., McHugh, P., Tsui, W., Williams, S., Cummings, M., Li, Y., Rich, K., 
Randall, C., et al. (2014). Blood pressure decrease correlates with tau pathology and memory decline 
in hypertensive elderly. Neurobiol Aging 35, 64-71. 
Gnyubkin, V., Guignandon, A., Laroche, N., Vanden-Bossche, A., Normand, M., Lafage-Proust, M.H., 
and Vico, L. (2015). Effects of chronic hypergravity: from adaptive to deleterious responses in 
growing mouse skeleton. J Appl Physiol (1985) 119, 908-917. 
Godsil, B.P., Kiss, J.P., Spedding, M., and Jay, T.M. (2013). The hippocampal-prefrontal pathway: the 
weak link in psychiatric disorders? Eur Neuropsychopharmacol 23, 1165-1181. 
Goede, V., Schmidt, T., Kimmina, S., Kozian, D., and Augustin, H.G. (1998). Analysis of blood vessel 
maturation processes during cyclic ovarian angiogenesis. Lab Invest 78, 1385-1394. 
Golanov, E.V.R., D.J. (1997). Oxygen and cerebral blood flow. Primer on Cerebrovascular Diseases, 
Welch KMA, Caplan LR, Reis DJ, Siesjo BK, Weir B (Eds) San Diego, CA: Academic Press,. 
Goldblatt, H., Lynch, J., Hanzal, R.F., and Summerville, W.W. (1934). Studies on Experimental 
Hypertension : I. The Production of Persistent Elevation of Systolic Blood Pressure by Means of Renal 
Ischemia. J Exp Med 59, 347-379. 
Goldmann, E. (1913). Vitalfärbung am Zentralnervensystem. Beitrag zur Physio-Pathologie des Plexus 
chorioideus und der Hirnhäute. . Berlin: Abh Königl Preuss Akad Wiss, 1, pp. 1–61. 
Goldstein, G., Materson, B.J., Cushman, W.C., Reda, D.J., Freis, E.D., Ramirez, E.A., Talmers, F.N., 
White, T.J., Nunn, S., Chapman, R.H., et al. (1990). Treatment of hypertension in the elderly: II. 
Cognitive and behavioral function. Results of a Department of Veterans Affairs Cooperative Study. 
Hypertension 15, 361-369. 
Gonzalez-Marrero, I., Castaneyra-Ruiz, L., Gonzalez-Toledo, J.M., Castaneyra-Ruiz, A., de Paz-
Carmona, H., Castro, R., Hernandez-Fernaud, J.R., Castaneyra-Perdomo, A., and Carmona-Calero, 
E.M. (2013). High blood pressure effects on the blood to cerebrospinal fluid barrier and cerebrospinal 
fluid protein composition: a two-dimensional electrophoresis study in spontaneously hypertensive 
rats. Int J Hypertens 2013, 164653. 
Goshen, I., Brodsky, M., Prakash, R., Wallace, J., Gradinaru, V., Ramakrishnan, C., and Deisseroth, K. 
(2011). Dynamics of retrieval strategies for remote memories. Cell 147, 678-689. 
Goswami, N., Bruner, M., Xu, D., Bareille, M.P., Beck, A., Hinghofer-Szalkay, H., and Blaber, A.P. 
(2015). Short-arm human centrifugation with 0.4g at eye and 0.75g at heart level provides similar 
cerebrovascular and cardiovascular responses to standing. European journal of applied physiology 
115, 1569-1575. 
Grabowski, M., Nordborg, C., Brundin, P., and Johansson, B.B. (1988). Middle cerebral artery 
occlusion in the hypertensive and normotensive rat: a study of histopathology and behaviour. J 
Hypertens 6, 405-411. 
Grigoriev, A.I., and Egorov, A.D. (1996). The mechanisms involved in cardiovascular system changes 
during long space flights. Environ Med 40, 1-11. 
Grimm, D., Bauer, J., Ulbrich, C., Westphal, K., Wehland, M., Infanger, M., Aleshcheva, G., Pietsch, J., 
Ghardi, M., Beck, M., et al. (2010). Different responsiveness of endothelial cells to vascular 
endothelial growth factor and basic fibroblast growth factor added to culture media under gravity 
and simulated microgravity. Tissue engineering Part A 16, 1559-1573. 



253 
 

Gualtieri, F., Marinelli, C., Longo, D., Pugnaghi, M., Nichelli, P.F., Meletti, S., and Biagini, G. (2013). 
Hypoxia markers are expressed in interneurons exposed to recurrent seizures. Neuromolecular 
medicine 15, 133-146. 
Guan, Y.Y., Wang, G.L., and Zhou, J.G. (2006). The ClC-3 Cl- channel in cell volume regulation, 
proliferation and apoptosis in vascular smooth muscle cells. Trends Pharmacol Sci 27, 290-296. 
Gueguinou, N., Bojados, M., Jamon, M., Derradji, H., Baatout, S., Tschirhart, E., Frippiat, J.P., and 
Legrand-Frossi, C. (2012). Stress response and humoral immune system alterations related to chronic 
hypergravity in mice. Psychoneuroendocrinology 37, 137-147. 
Guibert, R., Fonta, C., Risser, L., and Plouraboue, F. (2012). Coupling and robustness of intra-cortical 
vascular territories. Neuroimage 62, 408-417. 
Guinan, M.J., Horowitz, J.M., and Fuller, C.A. (1998). Effects of hyperdynamic fields on input-output 
relationships and long-term potentiation in the rat hippocampus. Journal of gravitational physiology : 
a journal of the International Society for Gravitational Physiology 5, 31-40. 
Gusev, P.A., and Gubin, A.N. (2010). Arc/Arg3.1 mRNA global expression patterns elicited by memory 
recall in cerebral cortex differ for remote versus recent spatial memories. Front Integr Neurosci 4, 15. 
Gustave Dit Duflo, S., Gestreau, C., and Lacour, M. (2000). Fos expression in the rat brain after 
exposure to gravito-inertial force changes. Brain research 861, 333-344. 
Hakanpaa, L., Sipila, T., Leppanen, V.M., Gautam, P., Nurmi, H., Jacquemet, G., Eklund, L., Ivaska, J., 
Alitalo, K., and Saharinen, P. (2015). Endothelial destabilization by angiopoietin-2 via integrin beta1 
activation. Nature communications 6, 5962. 
Han, J.H., Kushner, S.A., Yiu, A.P., Hsiang, H.L., Buch, T., Waisman, A., Bontempi, B., Neve, R.L., 
Frankland, P.W., and Josselyn, S.A. (2009). Selective erasure of a fear memory. Science 323, 1492-
1496. 
Hanahan, D. (1997). Signaling vascular morphogenesis and maintenance. Science 277, 48-50. 
Hansen, T.M., Singh, H., Tahir, T.A., and Brindle, N.P. (2010). Effects of angiopoietins-1 and -2 on the 
receptor tyrosine kinase Tie2 are differentially regulated at the endothelial cell surface. Cell Signal 22, 
527-532. 
Harb, R., Whiteus, C., Freitas, C., and Grutzendler, J. (2013). In vivo imaging of cerebral microvascular 
plasticity from birth to death. J Cereb Blood Flow Metab 33, 146-156. 
Hardt, O., Nader, K., and Nadel, L. (2013). Decay happens: the role of active forgetting in memory. 
Trends Cogn Sci 17, 111-120. 
Hargens, A.R., and Vico, L. (2016). Long-duration bed rest as an analog to microgravity. J Appl Physiol 
(1985) 120, 891-903. 
Harper, S.L. (1987). Effects of antihypertensive treatment on the cerebral microvasculature of 
spontaneously hypertensive rats. Stroke 18, 450-456. 
Hasselmo, M.E. (1999). Neuromodulation and the hippocampus: memory function and dysfunction in 
a network simulation. Prog Brain Res 121, 3-18. 
Hayashi, K., Nakao, S., Nakaoke, R., Nakagawa, S., Kitagawa, N., and Niwa, M. (2004). Effects of 
hypoxia on endothelial/pericytic co-culture model of the blood-brain barrier. Regul Pept 123, 77-83. 
Hazar, N., Seddigh, L., Rampisheh, Z., and Nojomi, M. (2016). Population attributable fraction of 
modifiable risk factors for Alzheimer disease: A systematic review of systematic reviews. Iran J Neurol 
15, 164-172. 
He, D.-H., Zhang, L.-M., Lin, L.-M., Ning, R.-B., Wang, H.-J., Xu, C.-S., and Lin, J.-X. (2014). Long-term 
prehypertension treatment with losartan effectively prevents brain damage and stroke in stroke-
prone spontaneously hypertensive rats. International journal of molecular medicine 33, 301-309. 
Heal, D.J., Smith, S.L., Kulkarni, R.S., and Rowley, H.L. (2008). New perspectives from microdialysis 
studies in freely-moving, spontaneously hypertensive rats on the pharmacology of drugs for the 
treatment of ADHD. Pharmacol Biochem Behav 90, 184-197. 
Henke, P.G. (1990). Hippocampal pathway to the amygdala and stress ulcer development. Brain Res 
Bull 25, 691-695. 
Herbst, R.S., Hong, D., Chap, L., Kurzrock, R., Jackson, E., Silverman, J.M., Rasmussen, E., Sun, Y.N., 
Zhong, D., Hwang, Y.C., et al. (2009). Safety, pharmacokinetics, and antitumor activity of AMG 386, a 
selective angiopoietin inhibitor, in adult patients with advanced solid tumors. J Clin Oncol 27, 3557-
3565. 



254 
 

Herring, A., Munster, Y., Metzdorf, J., Bolczek, B., Krussel, S., Krieter, D., Yavuz, I., Karim, F., 
Roggendorf, C., Stang, A., et al. (2016). Late running is not too late against Alzheimer's pathology. 
Neurobiology of disease 94, 44-54. 
Hirschi, K.K., and D'Amore, P.A. (1996). Pericytes in the microvasculature. Cardiovasc Res 32, 687-
698. 
Hobson, B., and Denekamp, J. (1984). Endothelial proliferation in tumours and normal tissues: 
continuous labelling studies. Br J Cancer 49, 405-413. 
Hoeben, A., Landuyt, B., Highley, M.S., Wildiers, H., Van Oosterom, A.T., and De Bruijn, E.A. (2004). 
Vascular endothelial growth factor and angiogenesis. Pharmacol Rev 56, 549-580. 
Hoffman, K.L., and McNaughton, B.L. (2002). Coordinated reactivation of distributed memory traces 
in primate neocortex. Science 297, 2070-2073. 
Hong, E., Ibarra, M., Meneses, A., Ransanz, V., and Castillo, C. (1992). Effects of hypertension and 
ageing on vascular reactivity and associative learning. Proc West Pharmacol Soc 35, 183-185. 
Hood, J.D., Meininger, C.J., Ziche, M., and Granger, H.J. (1998). VEGF upregulates ecNOS message, 
protein, and NO production in human endothelial cells. Am J Physiol 274, H1054-1058. 
Hoppeler, H., Mathieu, O., Weibel, E.R., Krauer, R., Lindstedt, S.L., and Taylor, C.R. (1981). Design of 
the mammalian respiratory system. VIII Capillaries in skeletal muscles. Respir Physiol 44, 129-150. 
Hossmann, K.A. (1994). Viability thresholds and the penumbra of focal ischemia. Ann Neurol 36, 557-
565. 
Hou, H., Zhang, G., Wang, H., Gong, H., Wang, C., and Zhang, X. (2014). High matrix 
metalloproteinase-9 expression induces angiogenesis and basement membrane degradation in 
stroke-prone spontaneously hypertensive rats after cerebral infarction. Neural Regen Res 9, 1154-
1162. 
Huang, X.T., Zhang, Y.Q., Li, S.J., Li, S.H., Tang, Q., Wang, Z.T., Dong, J.F., and Zhang, J.N. (2013). 
Intracerebroventricular transplantation of ex vivo expanded endothelial colony-forming cells restores 
blood-brain barrier integrity and promotes angiogenesis of mice with traumatic brain injury. J 
Neurotrauma 30, 2080-2088. 
Hudlett, P., Neuville, A., Miternique, A., Griffon, C., Weltin, D., and Stephan, D. (2005). Angiogenesis 
and arteriogenesis are increased in fibrin gel chambers implanted in prehypertensive spontaneously 
hypertensive rats. J Hypertens 23, 1559-1564. 
Hughson, R.L., Robertson, A.D., Arbeille, P., Shoemaker, J.K., Rush, J.W., Fraser, K.S., and Greaves, 
D.K. (2016). Increased postflight carotid artery stiffness and inflight insulin resistance resulting from 
6-mo spaceflight in male and female astronauts. American journal of physiology Heart and 
circulatory physiology 310, H628-638. 
Humar, R., Zimmerli, L., and Battegay, E. (2009). Angiogenesis and hypertension: an update. J Hum 
Hypertens 23, 773-782. 
Hunter, J.A. (1840). Treatise on the blood, inflammation and gunshot wounds. Palmer JF (Ed) 
Philadelphia: Raswell, Barrington, and Haswell,, p. 195, 1794. 
Hur, J., Iordan, A.D., Dolcos, F., and Berenbaum, H. (2016). Emotional influences on perception and 
working memory. Cogn Emot, 1-9. 
Iadecola, C. (2004). Neurovascular regulation in the normal brain and in Alzheimer's disease. Nat Rev 
Neurosci 5, 347-360. 
Iadecola, C. (2013). The pathobiology of vascular dementia. Neuron 80, 844-866. 
Ido, Y., Chang, K., Woolsey, T.A., and Williamson, J.R. (2001). NADH: sensor of blood flow need in 
brain, muscle, and other tissues. FASEB J 15, 1419-1421. 
Infanger, M., Kossmehl, P., Shakibaei, M., Cogoli, A., Witzing, A., Faramarzi, S., Wittfoht, W., Paul, M., 
and Grimm, D. (2004). Vascular endothelial growth factor inhibits programmed cell death of 
endothelial cells induced by clinorotation. Journal of gravitational physiology : a journal of the 
International Society for Gravitational Physiology 11, P199-200. 
Infanger, M., Ulbrich, C., Baatout, S., Wehland, M., Kreutz, R., Bauer, J., Grosse, J., Vadrucci, S., 
Cogoli, A., Derradji, H., et al. (2007). Modeled gravitational unloading induced downregulation of 
endothelin-1 in human endothelial cells. Journal of cellular biochemistry 101, 1439-1455. 
Ingraham, J.P., Forbes, M.E., Riddle, D.R., and Sonntag, W.E. (2008). Aging reduces hypoxia-induced 
microvascular growth in the rodent hippocampus. J Gerontol A Biol Sci Med Sci 63, 12-20. 



255 
 

Insel, N., and Takehara-Nishiuchi, K. (2013). The cortical structure of consolidated memory: a 
hypothesis on the role of the cingulate-entorhinal cortical connection. Neurobiol Learn Mem 106, 
343-350. 
Isaacs, K.R., Anderson, B.J., Alcantara, A.A., Black, J.E., and Greenough, W.T. (1992). Exercise and the 
brain: angiogenesis in the adult rat cerebellum after vigorous physical activity and motor skill 
learning. J Cereb Blood Flow Metab 12, 110-119. 
Ishii, M., Tomizawa, K., Matsushita, M., and Matsui, H. (2004). Exposure of mouse to high gravitation 
forces induces long-term potentiation in the hippocampus. Acta medica Okayama 58, 143-149. 
Jaakkola, P., Mole, D.R., Tian, Y.M., Wilson, M.I., Gielbert, J., Gaskell, S.J., von Kriegsheim, A., 
Hebestreit, H.F., Mukherji, M., Schofield, C.J., et al. (2001). Targeting of HIF-alpha to the von Hippel-
Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 292, 468-472. 
Jain, S., Maltepe, E., Lu, M.M., Simon, C., and Bradfield, C.A. (1998). Expression of ARNT, ARNT2, HIF1 
alpha, HIF2 alpha and Ah receptor mRNAs in the developing mouse. Mech Dev 73, 117-123. 
Jakobsson, L., Franco, C.A., Bentley, K., Collins, R.T., Ponsioen, B., Aspalter, I.M., Rosewell, I., Busse, 
M., Thurston, G., Medvinsky, A., et al. (2010). Endothelial cells dynamically compete for the tip cell 
position during angiogenic sprouting. Nat Cell Biol 12, 943-953. 
Janelidze, S., Lindqvist, D., Francardo, V., Hall, S., Zetterberg, H., Blennow, K., Adler, C.H., Beach, T.G., 
Serrano, G.E., van Westen, D., et al. (2015). Increased CSF biomarkers of angiogenesis in Parkinson 
disease. Neurology 85, 1834-1842. 
Janmaleki, M., Pachenari, M., Seyedpour, S.M., Shahghadami, R., and Sanati-Nezhad, A. (2016). 
Impact of Simulated Microgravity on Cytoskeleton and Viscoelastic Properties of Endothelial Cell. 
Scientific reports 6, 32418. 
Jansone, B., Kadish, I., van Groen, T., Beitnere, U., Moore, D.R., Plotniece, A., Pajuste, K., and Klusa, V. 
(2015). A Novel 1,4-Dihydropyridine Derivative Improves Spatial Learning and Memory and Modifies 
Brain Protein Expression in Wild Type and Transgenic APPSweDI Mice. PloS one 10, e0127686. 
Jansone, B., Kadish, I., van Groen, T., Beitnere, U., Plotniece, A., Pajuste, K., and Klusa, V. (2016). 
Memory-enhancing and brain protein expression-stimulating effects of novel calcium antagonist in 
Alzheimer's disease transgenic female mice. Pharmacological research. 
Jeffery, K.J. (2007). Integration of the sensory inputs to place cells: what, where, why, and how? 
Hippocampus 17, 775-785. 
Jennings, J.R., and Zanstra, Y. (2009). Is the brain the essential in hypertension? Neuroimage 47, 914-
921. 
Ji, D., and Wilson, M.A. (2007). Coordinated memory replay in the visual cortex and hippocampus 
during sleep. Nat Neurosci 10, 100-107. 
Johansson, B.B. (1986). Pentoxifylline: cerebral blood flow and glucose utilization in conscious 
spontaneously hypertensive rats. Stroke 17, 744-747. 
Johnson, M.L., Ely, D.L., and Turner, M.E. (1995). Steroid sulfatase and the Y chromosome 
hypertensive locus of the spontaneously hypertensive rat. Steroids 60, 681-685. 
Jones, B.F., and Witter, M.P. (2007). Cingulate cortex projections to the parahippocampal region and 
hippocampal formation in the rat. Hippocampus 17, 957-976. 
Jones, E.G. (1970). On the mode of entry of blood vessels into the cerebral cortex. J Anat 106, 507-
520. 
Jones, T.A., Klintsova, A.Y., Kilman, V.L., Sirevaag, A.M., and Greenough, W.T. (1997). Induction of 
multiple synapses by experience in the visual cortex of adult rats. Neurobiol Learn Mem 68, 13-20. 
Josselyn, S.A., Kohler, S., and Frankland, P.W. (2015). Finding the engram. Nat Rev Neurosci 16, 521-
534. 
Joutel, A., Andreux, F., Gaulis, S., Domenga, V., Cecillon, M., Battail, N., Piga, N., Chapon, F., Godfrain, 
C., and Tournier-Lasserve, E. (2000). The ectodomain of the Notch3 receptor accumulates within the 
cerebrovasculature of CADASIL patients. J Clin Invest 105, 597-605. 
Joutel, A., and Faraci, F.M. (2014). Cerebral small vessel disease: insights and opportunities from 
mouse models of collagen IV-related small vessel disease and cerebral autosomal dominant 
arteriopathy with subcortical infarcts and leukoencephalopathy. Stroke 45, 1215-1221. 
Joutel, A., Monet-Lepretre, M., Gosele, C., Baron-Menguy, C., Hammes, A., Schmidt, S., Lemaire-
Carrette, B., Domenga, V., Schedl, A., Lacombe, P., et al. (2010). Cerebrovascular dysfunction and 



256 
 

microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral 
ischemic small vessel disease. J Clin Invest 120, 433-445. 
Ju, R., Zhuang, Z.W., Zhang, J., Lanahan, A.A., Kyriakides, T., Sessa, W.C., and Simons, M. (2014). 
Angiopoietin-2 secretion by endothelial cell exosomes: regulation by the phosphatidylinositol 3-
kinase (PI3K)/Akt/endothelial nitric oxide synthase (eNOS) and syndecan-4/syntenin pathways. J Biol 
Chem 289, 510-519. 
Jucker, M., Battig, K., and Meier-Ruge, W. (1990). Effects of aging and vincamine derivatives on 
pericapillary microenvironment: stereological characterization of the cerebral capillary network. 
Neurobiol Aging 11, 39-46. 
Jung, F., Palmer, L.A., Zhou, N., and Johns, R.A. (2000). Hypoxic regulation of inducible nitric oxide 
synthase via hypoxia inducible factor-1 in cardiac myocytes. Circ Res 86, 319-325. 
Kaehler, S.T., Salchner, P., Singewald, N., and Philippu, A. (2004). Differential amino acid transmission 
in the locus coeruleus of Wistar Kyoto and spontaneously hypertensive rats. Naunyn Schmiedebergs 
Arch Pharmacol 370, 381-387. 
Kaiser, D., Weise, G., Moller, K., Scheibe, J., Posel, C., Baasch, S., Gawlitza, M., Lobsien, D., Diederich, 
K., Minnerup, J., et al. (2014). Spontaneous white matter damage, cognitive decline and 
neuroinflammation in middle-aged hypertensive rats: an animal model of early-stage cerebral small 
vessel disease. Acta Neuropathol Commun 2, 169. 
Kalra, L. (2014). Antihypertensive drugs decrease risk of Alzheimer disease: Ginkgo Evaluation of 
Memory Study. Neurology 82, 1192. 
Kamei, M., Saunders, W.B., Bayless, K.J., Dye, L., Davis, G.E., and Weinstein, B.M. (2006). Endothelial 
tubes assemble from intracellular vacuoles in vivo. Nature 442, 453-456. 
Kanas, N. (1998). Psychiatric issues affecting long duration space missions. Aviation, space, and 
environmental medicine 69, 1211-1216. 
Kandel, E.R. (2001). The molecular biology of memory storage: a dialogue between genes and 
synapses. Science 294, 1030-1038. 
Kandel, E.R., Schwartz, J.H., Jessell, T.M. (2012). Principles of Neural Science. Principles of Neural 
Science, Fifth Edition. 
Kang, C.Y., Zou, L., Yuan, M., Wang, Y., Li, T.Z., Zhang, Y., Wang, J.F., Li, Y., Deng, X.W., and Liu, C.T. 
(2011). Impact of simulated microgravity on microvascular endothelial cell apoptosis. European 
journal of applied physiology 111, 2131-2138. 
Kang, H., Fan, Y., Sun, A., Jia, X., and Deng, X. (2013). Simulated microgravity exposure modulates the 
phenotype of cultured vascular smooth muscle cells. Cell biochemistry and biophysics 66, 121-130. 
Kang, H., Sun, L., Huang, Y., Wang, Z., Zhao, P., Fan, Y., and Deng, X. (2015). Regional specific 
adaptation of the endothelial glycocalyx dimension in tail-suspended rats. Pflugers Archiv : European 
journal of physiology 467, 1291-1301. 
Kanno, S., Oda, N., Abe, M., Terai, Y., Ito, M., Shitara, K., Tabayashi, K., Shibuya, M., and Sato, Y. 
(2000). Roles of two VEGF receptors, Flt-1 and KDR, in the signal transduction of VEGF effects in 
human vascular endothelial cells. Oncogene 19, 2138-2146. 
Kaouane, N., Porte, Y., Vallee, M., Brayda-Bruno, L., Mons, N., Calandreau, L., Marighetto, A., Piazza, 
P.V., and Desmedt, A. (2012). Glucocorticoids can induce PTSD-like memory impairments in mice. 
Science 335, 1510-1513. 
Karlsson, M.P., and Frank, L.M. (2009). Awake replay of remote experiences in the hippocampus. Nat 
Neurosci 12, 913-918. 
Katzung, G.B., Masters, S.B., Trevor  A.J. (2012). Basic and Clinical Pharmacology 12th Edition. 
Kelly, B.D., Hackett, S.F., Hirota, K., Oshima, Y., Cai, Z., Berg-Dixon, S., Rowan, A., Yan, Z., 
Campochiaro, P.A., and Semenza, G.L. (2003). Cell type-specific regulation of angiogenic growth 
factor gene expression and induction of angiogenesis in nonischemic tissue by a constitutively active 
form of hypoxia-inducible factor 1. Circ Res 93, 1074-1081. 
Kerr, A.L., Steuer, E.L., Pochtarev, V., and Swain, R.A. (2010). Angiogenesis but not neurogenesis is 
critical for normal learning and memory acquisition. Neuroscience 171, 214-226. 
Khan, I.M., Printz, M.P., Yaksh, T.L., and Taylor, P. (1994). Augmented responses to intrathecal 
nicotinic agonists in spontaneous hypertension. Hypertension 24, 611-619. 



257 
 

Kietzmann, T., Mennerich, D., and Dimova, E.Y. (2016). Hypoxia-Inducible Factors (HIFs) and 
Phosphorylation: Impact on Stability, Localization, and Transactivity. Front Cell Dev Biol 4, 11. 
Kilander, L., Nyman, H., Boberg, M., and Lithell, H. (2000). The association between low diastolic 
blood pressure in middle age and cognitive function in old age. A population-based study. Age Ageing 
29, 243-248. 
Kim, C., Lee, H.S., Lee, D., Lee, S.D., Cho, E.G., Yang, S.J., Kim, S.B., Park, D., and Kim, M.G. (2011). 
Epithin/PRSS14 proteolytically regulates angiopoietin receptor Tie2 during transendothelial 
migration. Blood 117, 1415-1424. 
Kim, I., Kim, H.G., Moon, S.O., Chae, S.W., So, J.N., Koh, K.N., Ahn, B.C., and Koh, G.Y. (2000). 
Angiopoietin-1 induces endothelial cell sprouting through the activation of focal adhesion kinase and 
plasmin secretion. Circ Res 86, 952-959. 
Kim, J., Kwon, J.T., Kim, H.S., Josselyn, S.A., and Han, J.H. (2014). Memory recall and modifications by 
activating neurons with elevated CREB. Nat Neurosci 17, 65-72. 
Kim, J.J., and Baxter, M.G. (2001). Multiple brain-memory systems: the whole does not equal the sum 
of its parts. Trends Neurosci 24, 324-330. 
Kim, J.J., Clark, R.E., and Thompson, R.F. (1995). Hippocampectomy impairs the memory of recently, 
but not remotely, acquired trace eyeblink conditioned responses. Behav Neurosci 109, 195-203. 
Kim, J.J., and Fanselow, M.S. (1992). Modality-specific retrograde amnesia of fear. Science 256, 675-
677. 
Kimelberg, H.K., and Nedergaard, M. (2010). Functions of astrocytes and their potential as 
therapeutic targets. Neurotherapeutics 7, 338-353. 
Kimura, S., Saito, H., Minami, M., Togashi, H., Nakamura, N., Nemoto, M., and Parvez, H.S. (2000). 
Pathogenesis of vascular dementia in stroke-prone spontaneously hypertensive rats. Toxicology 153, 
167-178. 
Kirwan, C.B., Bayley, P.J., Galvan, V.V., and Squire, L.R. (2008). Detailed recollection of remote 
autobiographical memory after damage to the medial temporal lobe. Proc Natl Acad Sci U S A 105, 
2676-2680. 
Kitagawa, K. (2010). Cerebral blood flow measurement by PET in hypertensive subjects as a marker of 
cognitive decline. J Alzheimers Dis 20, 855-859. 
Klein, B., Kuschinsky, W., Schrock, H., and Vetterlein, F. (1986). Interdependency of local capillary 
density, blood flow, and metabolism in rat brains. Am J Physiol 251, H1333-1340. 
Knardahl, S., and Sagvolden, T. (1982). Two-way active avoidance behavior of spontaneously 
hypertensive rats: effect of intensity of discontinuous shock. Behav Neural Biol 35, 105-120. 
Kniesel, U., and Wolburg, H. (2000). Tight junctions of the blood-brain barrier. Cell Mol Neurobiol 20, 
57-76. 
Knot, H.J., and Nelson, M.T. (1998). Regulation of arterial diameter and wall [Ca2+] in cerebral 
arteries of rat by membrane potential and intravascular pressure. J Physiol 508 ( Pt 1), 199-209. 
Kochhan, E., Lenard, A., Ellertsdottir, E., Herwig, L., Affolter, M., Belting, H.G., and Siekmann, A.F. 
(2013). Blood flow changes coincide with cellular rearrangements during blood vessel pruning in 
zebrafish embryos. PLoS One 8, e75060. 
Kohler, S., Baars, M.A., Spauwen, P., Schievink, S., Verhey, F.R., and van Boxtel, M.J. (2014). Temporal 
evolution of cognitive changes in incident hypertension: prospective cohort study across the adult 
age span. Hypertension 63, 245-251. 
Kole, R., Krainer, A.R., and Altman, S. (2012). RNA therapeutics: beyond RNA interference and 
antisense oligonucleotides. Nat Rev Drug Discov 11, 125-140. 
Kolinko, Y., Krakorova, K., Cendelin, J., Tonar, Z., and Kralickova, M. (2015). Microcirculation of the 
brain: morphological assessment in degenerative diseases and restoration processes. Rev Neurosci 
26, 75-93. 
Korff, T., Ernst, E., Nobiling, R., Feldner, A., Reiss, Y., Plate, K.H., Fiedler, U., Augustin, H.G., and 
Hecker, M. (2012). Angiopoietin-1 mediates inhibition of hypertension-induced release of 
angiopoietin-2 from endothelial cells. Cardiovascular research 94, 510-518. 
Korn, C., and Augustin, H.G. (2015). Mechanisms of Vessel Pruning and Regression. Dev Cell 34, 5-17. 



258 
 

Korn, C., Scholz, B., Hu, J., Srivastava, K., Wojtarowicz, J., Arnsperger, T., Adams, R.H., Boutros, M., 
Augustin, H.G., and Augustin, I. (2014). Endothelial cell-derived non-canonical Wnt ligands control 
vascular pruning in angiogenesis. Development 141, 1757-1766. 
Korte, M., and Schmitz, D. (2016). Cellular and System Biology of Memory: Timing, Molecules, and 
Beyond. Physiol Rev 96, 647-693. 
Kougias, P., Weakley, S.M., Yao, Q., Lin, P.H., and Chen, C. (2010). Arterial baroreceptors in the 
management of systemic hypertension. Med Sci Monit 16, RA1-8. 
Krisanova, N.V., Trikash, I.O., and Borisova, T.A. (2009). Synaptopathy under conditions of altered 
gravity: changes in synaptic vesicle fusion and glutamate release. Neurochemistry international 55, 
724-731. 
Krock, B.L., Skuli, N., and Simon, M.C. (2011). Hypoxia-induced angiogenesis: good and evil. Genes 
Cancer 2, 1117-1133. 
Krogh, A. (1919). The number and distribution of capillaries in muscles with calculations of the 
oxygen pressure head necessary for supplying the tissue. J Physiol 52, 409-415. 
Krucker, T., Lang, A., and Meyer, E.P. (2006). New polyurethane-based material for vascular corrosion 
casting with improved physical and imaging characteristics. Microsc Res Tech 69, 138-147. 
Ku, D., Zhu C. (1993). Hemodynamic Forces and Vascular Cell Biology. Sumpio BE (Ed) Austin, TX: CRC 
Press, RG Landes Co, 3. 
Ku, D.D., Zaleski, J.K., Liu, S., and Brock, T.A. (1993). Vascular endothelial growth factor induces EDRF-
dependent relaxation in coronary arteries. Am J Physiol 265, H586-592. 
Kubo, T. (1998). Cholinergic mechanism and blood pressure regulation in the central nervous system. 
Brain Res Bull 46, 475-481. 
Kurtz, T.W., Casto, R., Simonet, L., and Printz, M.P. (1990). Biometric genetic analysis of blood 
pressure in the spontaneously hypertensive rat. Hypertension 16, 718-724. 
Kutcher, M.E., Kolyada, A.Y., Surks, H.K., and Herman, I.M. (2007). Pericyte Rho GTPase mediates 
both pericyte contractile phenotype and capillary endothelial growth state. Am J Pathol 171, 693-
701. 
Kuwahara, F., Kai, H., Tokuda, K., Shibata, R., Kusaba, K., Tahara, N., Niiyama, H., Nagata, T., and 
Imaizumi, T. (2002). Hypoxia-inducible factor-1alpha/vascular endothelial growth factor pathway for 
adventitial vasa vasorum formation in hypertensive rat aorta. Hypertension 39, 46-50. 
Laham, R.J., Li, J., Tofukuji, M., Post, M., Simons, M., and Sellke, F.W. (2003). Spatial heterogeneity in 
VEGF-induced vasodilation: VEGF dilates microvessels but not epicardial and systemic arteries and 
veins. Ann Vasc Surg 17, 245-252. 
LaManna, J.C., Chavez, J.C., and Pichiule, P. (2004). Structural and functional adaptation to hypoxia in 
the rat brain. J Exp Biol 207, 3163-3169. 
LaManna, J.C., Sun, X., Ivy, A.D., and Ward, N.L. (2006). Is cycloxygenase-2 (COX-2) a major 
component of the mechanism responsible for microvascular remodeling in the brain? Adv Exp Med 
Biol 578, 297-303. 
LaManna, J.C., Vendel, L.M., and Farrell, R.M. (1992). Brain adaptation to chronic hypobaric hypoxia 
in rats. J Appl Physiol (1985) 72, 2238-2243. 
Lampugnani, M.G., and Dejana, E. (2007). Adherens junctions in endothelial cells regulate vessel 
maintenance and angiogenesis. Thromb Res 120 Suppl 2, S1-6. 
Lanahan, A.A., Hermans, K., Claes, F., Kerley-Hamilton, J.S., Zhuang, Z.W., Giordano, F.J., Carmeliet, 
P., and Simons, M. (2010). VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis. 
Dev Cell 18, 713-724. 
Landis, B.N., Konnerth, C.G., and Hummel, T. (2004). A study on the frequency of olfactory 
dysfunction. The Laryngoscope 114, 1764-1769. 
Langen, B., and Dost, R. (2011). Comparison of SHR, WKY and Wistar rats in different behavioural 
animal models: effect of dopamine D1 and alpha2 agonists. Atten Defic Hyperact Disord 3, 1-12. 
Lashley, K.S. ( 1929). Brain Mechanisms and Intelligence: a Quantitative Study of Injuries to the Brain. 
Chicago University Press. 
Lau, C.G., and Zukin, R.S. (2007). NMDA receptor trafficking in synaptic plasticity and 
neuropsychiatric disorders. Nat Rev Neurosci 8, 413-426. 



259 
 

Lauritzen, M. (2005). Reading vascular changes in brain imaging: is dendritic calcium the key? Nat Rev 
Neurosci 6, 77-85. 
Lauro, K.L., and LaManna, J.C. (1997). Adequacy of cerebral vascular remodeling following three 
weeks of hypobaric hypoxia. Examined by an integrated composite analytical model. Adv Exp Med 
Biol 411, 369-376. 
Lavenex, P., and Amaral, D.G. (2000). Hippocampal-neocortical interaction: a hierarchy of 
associativity. Hippocampus 10, 420-430. 
Lebrun, C., Durkin, T.P., Marighetto, A., and Jaffard, R. (1990). A comparison of the working memory 
performances of young and aged mice combined with parallel measures of testing and drug-induced 
activations of septo-hippocampal and nbm-cortical cholinergic neurones. Neurobiol Aging 11, 515-
521. 
Lechner, H.A., Squire, L.R., and Byrne, J.H. (1999). 100 years of consolidation--remembering Muller 
and Pilzecker. Learn Mem 6, 77-87. 
Ledingham, J.M., and Laverty, R. (2005). Effect of simvastatin given alone and in combination with 
valsartan or enalapril on blood pressure and the structure of mesenteric resistance arteries and the 
basilar artery in the genetically hypertensive rat model. Clin Exp Pharmacol Physiol 32, 76-85. 
Lee, H.J., Cho, C.H., Hwang, S.J., Choi, H.H., Kim, K.T., Ahn, S.Y., Kim, J.H., Oh, J.L., Lee, G.M., and Koh, 
G.Y. (2004a). Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J 18, 1200-1208. 
Lee, J.L., Everitt, B.J., and Thomas, K.L. (2004b). Independent cellular processes for hippocampal 
memory consolidation and reconsolidation. Science 304, 839-843. 
Lee, J.W., Bae, S.H., Jeong, J.W., Kim, S.H., and Kim, K.W. (2004c). Hypoxia-inducible factor (HIF-
1)alpha: its protein stability and biological functions. Exp Mol Med 36, 1-12. 
Lee, O.H., Xu, J., Fueyo, J., Fuller, G.N., Aldape, K.D., Alonso, M.M., Piao, Y., Liu, T.J., Lang, F.F., Bekele, 
B.N., et al. (2006). Expression of the receptor tyrosine kinase Tie2 in neoplastic glial cells is associated 
with integrin beta1-dependent adhesion to the extracellular matrix. Mol Cancer Res 4, 915-926. 
Lee, S.W., Moskowitz, M.A., and Sims, J.R. (2007). Sonic hedgehog inversely regulates the expression 
of angiopoietin-1 and angiopoietin-2 in fibroblasts. Int J Mol Med 19, 445-451. 
Lee, T.J., Chang, H.H., Lee, H.C., Chen, P.Y., Lee, Y.C., Kuo, J.S., and Chen, M.F. (2011). Axo-axonal 
interaction in autonomic regulation of the cerebral circulation. Acta Physiol (Oxf) 203, 25-35. 
Lehmann, H., Lacanilao, S., and Sutherland, R.J. (2007). Complete or partial hippocampal damage 
produces equivalent retrograde amnesia for remote contextual fear memories. Eur J Neurosci 25, 
1278-1286. 
Lehnen, A.M., Leguisamo, N.M., Casali, K.R., and Schaan, B.D. (2013). Progressive cardiovascular 
autonomic dysfunction in rats with evolving metabolic syndrome. Auton Neurosci 176, 64-69. 
Leone, G., Lipshits, M., Gurfinkel, V., and Berthoz, A. (1995). Influence of graviceptives cues at 
different level of visual information processing: the effect of prolonged weightlessness. Acta 
astronautica 36, 743-751. 
Leong, X.F., Ng, C.Y., and Jaarin, K. (2015). Animal Models in Cardiovascular Research: Hypertension 
and Atherosclerosis. Biomed Res Int 2015, 528757. 
Lesburgueres, E., Gobbo, O.L., Alaux-Cantin, S., Hambucken, A., Trifilieff, P., and Bontempi, B. (2011). 
Early tagging of cortical networks is required for the formation of enduring associative memory. 
Science 331, 924-928. 
Levine, B., Svoboda, E., Hay, J.F., Winocur, G., and Moscovitch, M. (2002). Aging and autobiographical 
memory: dissociating episodic from semantic retrieval. Psychol Aging 17, 677-689. 
Levy, D.A., Hopkins, R.O., and Squire, L.R. (2004). Impaired odor recognition memory in patients with 
hippocampal lesions. Learn Mem 11, 794-796. 
Levy, D.A., Manns, J.R., Hopkins, R.O., Gold, J.J., Broadbent, N.J., and Squire, L.R. (2003). Impaired 
visual and odor recognition memory span in patients with hippocampal lesions. Learn Mem 10, 531-
536. 
Lewington, S., Clarke, R., Qizilbash, N., Peto, R., Collins, R., and Prospective Studies, C. (2002). Age-
specific relevance of usual blood pressure to vascular mortality: a meta-analysis of individual data for 
one million adults in 61 prospective studies. Lancet 360, 1903-1913. 



260 
 

Li, K., Guo, X., Jin, Z., Ouyang, X., Zeng, Y., Feng, J., Wang, Y., Yao, L., and Ma, L. (2015). Effect of 
Simulated Microgravity on Human Brain Gray Matter and White Matter--Evidence from MRI. PloS 
one 10, e0135835. 
Li, Y., Liu, J., Gao, D., Wei, J., Yuan, H., Niu, X., and Zhang, Q. (2016). Age-related changes in 
hypertensive brain damage in the hippocampi of spontaneously hypertensive rats. Mol Med Rep 13, 
2552-2560. 
Licht, T., Goshen, I., Avital, A., Kreisel, T., Zubedat, S., Eavri, R., Segal, M., Yirmiya, R., and Keshet, E. 
(2011). Reversible modulations of neuronal plasticity by VEGF. Proc Natl Acad Sci U S A 108, 5081-
5086. 
Lin, L.J., Gao, F., Bai, Y.G., Bao, J.X., Huang, X.F., Ma, J., and Zhang, L.F. (2009). Contrasting effects of 
simulated microgravity with and without daily -Gx gravitation on structure and function of cerebral 
and mesenteric small arteries in rats. J Appl Physiol (1985) 107, 1710-1721. 
Lin, Y.Y., Lee, S.D., Su, C.T., Cheng, T.L., and Yang, A.L. (2015). Long-term treadmill training 
ameliorates endothelium-dependent vasorelaxation mediated by insulin and insulin-like growth 
factor-1 in hypertension. J Appl Physiol (1985) 119, 663-669. 
Liu, H., Wang, Z.C., Yue, Y., Yu, J.W., Cai, Y., Bai, Y.G., Zhang, H.J., Bao, J.X., Ren, X.L., Xie, M.J., et al. 
(2014). Simulated microgravity induces an inflammatory response in the common carotid artery of 
rats. Canadian journal of physiology and pharmacology 92, 661-668. 
Liu, X., Ramirez, S., Pang, P.T., Puryear, C.B., Govindarajan, A., Deisseroth, K., and Tonegawa, S. 
(2012). Optogenetic stimulation of a hippocampal engram activates fear memory recall. Nature 484, 
381-385. 
Liu, X.S., Chopp, M., Zhang, R.L., Hozeska-Solgot, A., Gregg, S.C., Buller, B., Lu, M., and Zhang, Z.G. 
(2009). Angiopoietin 2 mediates the differentiation and migration of neural progenitor cells in the 
subventricular zone after stroke. J Biol Chem 284, 22680-22689. 
Lobov, I.B., Brooks, P.C., and Lang, R.A. (2002). Angiopoietin-2 displays VEGF-dependent modulation 
of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci U S A 99, 11205-11210. 
Lobov, I.B., Cheung, E., Wudali, R., Cao, J., Halasz, G., Wei, Y., Economides, A., Lin, H.C., 
Papadopoulos, N., Yancopoulos, G.D., et al. (2011). The Dll4/Notch pathway controls postangiogenic 
blood vessel remodeling and regression by modulating vasoconstriction and blood flow. Blood 117, 
6728-6737. 
Lochhead, J.J., McCaffrey, G., Sanchez-Covarrubias, L., Finch, J.D., Demarco, K.M., Quigley, C.E., Davis, 
T.P., and Ronaldson, P.T. (2012). Tempol modulates changes in xenobiotic permeability and occludin 
oligomeric assemblies at the blood-brain barrier during inflammatory pain. Am J Physiol Heart Circ 
Physiol 302, H582-593. 
Logsdon, E.A., Finley, S.D., Popel, A.S., and Mac Gabhann, F. (2014). A systems biology view of blood 
vessel growth and remodelling. J Cell Mol Med 18, 1491-1508. 
Longden, T.A., Hill-Eubanks, D.C., and Nelson, M.T. (2016). Ion channel networks in the control of 
cerebral blood flow. J Cereb Blood Flow Metab 36, 492-512. 
Looft-Wilson, R.C., and Gisolfi, C.V. (2000). Rat small mesenteric artery function after hindlimb 
suspension. J Appl Physiol (1985) 88, 1199-1206. 
Lopez-Rubalcava, C., and Lucki, I. (2000). Strain differences in the behavioral effects of 
antidepressant drugs in the rat forced swimming test. Neuropsychopharmacology 22, 191-199. 
Lou, H.C., Edvinsson, L., and MacKenzie, E.T. (1987). The concept of coupling blood flow to brain 
function: revision required? Ann Neurol 22, 289-297. 
Lu, Z.Y., Li, R.L., Zhou, H.S., Huang, J.J., Qi, J., Su, Z.X., Zhang, L., Li, Y., Shi, Y.Q., Hao, C.N., et al. 
(2016). Rescue of hypertension-related impairment of angiogenesis by therapeutic ultrasound. Am J 
Transl Res 8, 3087-3096. 
Luo, J., Martinez, J., Yin, X., Sanchez, A., Tripathy, D., and Grammas, P. (2012). Hypoxia induces 
angiogenic factors in brain microvascular endothelial cells. Microvasc Res 83, 138-145. 
Lynch, M.A. (2004). Long-term potentiation and memory. Physiol Rev 84, 87-136. 
Mackenzie, F., and Ruhrberg, C. (2012). Diverse roles for VEGF-A in the nervous system. Development 
139, 1371-1380. 
Madri, J.A. (2009). Modeling the neurovascular niche: implications for recovery from CNS injury. J 
Physiol Pharmacol 60 Suppl 4, 95-104. 



261 
 

Maguire, E.A., Frackowiak, R.S., and Frith, C.D. (1997). Recalling routes around london: activation of 
the right hippocampus in taxi drivers. J Neurosci 17, 7103-7110. 
Maier, J.A., Cialdai, F., Monici, M., and Morbidelli, L. (2015). The impact of microgravity and 
hypergravity on endothelial cells. BioMed research international 2015, 434803. 
Maisonpierre, P.C., Suri, C., Jones, P.F., Bartunkova, S., Wiegand, S.J., Radziejewski, C., Compton, D., 
McClain, J., Aldrich, T.H., Papadopoulos, N., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 
that disrupts in vivo angiogenesis. Science 277, 55-60. 
Mandillo, S., Del Signore, A., Paggi, P., Francia, N., Santucci, D., Mele, A., and Oliverio, A. (2003). 
Effects of acute and repeated daily exposure to hypergravity on spatial learning in mice. 
Neuroscience letters 336, 147-150. 
Manns, J.R., and Eichenbaum, H. (2006). Evolution of declarative memory. Hippocampus 16, 795-808. 
Manrique, C., Lastra, G., Gardner, M., and Sowers, J.R. (2009). The renin angiotensin aldosterone 
system in hypertension: roles of insulin resistance and oxidative stress. Med Clin North Am 93, 569-
582. 
Manzey, D., Lorenz, B., Schiewe, A., Finell, G., and Thiele, G. (1993). Behavioral aspects of human 
adaptation to space: analyses of cognitive and psychomotor performance in space during an 8-day 
space mission. Clin Investig 71, 725-731. 
Manzey, D., Lorenz, B., Schiewe, A., Finell, G., and Thiele, G. (1995). Dual-task performance in space: 
results from a single-case study during a short-term space mission. Hum Factors 37, 667-681. 
Manzey, D., Lorenz, T.B., Heuers, H., and Sangals, J. (2000). Impairments of manual tracking 
performance during spaceflight: more converging evidence from a 20-day space mission. Ergonomics 
43, 589-609. 
Marchewka, A., Wypych, M., Michalowski, J.M., Sinczuk, M., Wordecha, M., Jednorog, K., and 
Nowicka, A. (2016). What Is the Effect of Basic Emotions on Directed Forgetting? Investigating the 
Role of Basic Emotions in Memory. Front Hum Neurosci 10, 378. 
Marek-Trzonkowska, N., Kwieczynska, A., Reiwer-Gostomska, M., Kolinski, T., Molisz, A., and Siebert, 
J. (2015). Arterial Hypertension Is Characterized by Imbalance of Pro-Angiogenic versus Anti-
Angiogenic Factors. PLoS One 10, e0126190. 
Mariotti, M., and Maier, J.A. (2008). Gravitational unloading induces an anti-angiogenic phenotype in 
human microvascular endothelial cells. Journal of cellular biochemistry 104, 129-135. 
Markowitsch, H.J., and Staniloiu, A. (2012). Amnesic disorders. Lancet 380, 1429-1440. 
Marr, D. (1970). A theory for cerebral neocortex. Proc R Soc Lond B Biol Sci 176, 161-234. 
Marr, D. (1971). Simple memory: a theory for archicortex. Philos Trans R Soc Lond B Biol Sci 262, 23-
81. 
Marteau, L., Pacary, E., Valable, S., Bernaudin, M., Guillemot, F., and Petit, E. (2011). Angiopoietin-2 
regulates cortical neurogenesis in the developing telencephalon. Cereb Cortex 21, 1695-1702. 
Marti, H.H., and Risau, W. (1998). Systemic hypoxia changes the organ-specific distribution of 
vascular endothelial growth factor and its receptors. Proc Natl Acad Sci U S A 95, 15809-15814. 
Martin, S.J., de Hoz, L., and Morris, R.G. (2005). Retrograde amnesia: neither partial nor complete 
hippocampal lesions in rats result in preferential sparing of remote spatial memory, even after 
reminding. Neuropsychologia 43, 609-624. 
Masamoto, K., Takuwa, H., Tomita, Y., Toriumi, H., Unekawa, M., Taniguchi, J., Kawaguchi, H., Itoh, Y., 
Suzuki, N., Ito, H., et al. (2013). Hypoxia-induced cerebral angiogenesis in mouse cortex with two-
photon microscopy. Adv Exp Med Biol 789, 15-20. 
Masamoto, K., and Tanishita, K. (2009). Oxygen transport in brain tissue. J Biomech Eng 131, 074002. 
Mast, F.W., Preuss, N., Hartmann, M., and Grabherr, L. (2014). Spatial cognition, body representation 
and affective processes: the role of vestibular information beyond ocular reflexes and control of 
posture. Front Integr Neurosci 8, 44. 
Matsushita, H., Morishita, R., Nata, T., Aoki, M., Nakagami, H., Taniyama, Y., Yamamoto, K., Higaki, J., 
Yasufumi, K., and Ogihara, T. (2000). Hypoxia-induced endothelial apoptosis through nuclear factor-
kappaB (NF-kappaB)-mediated bcl-2 suppression: in vivo evidence of the importance of NF-kappaB in 
endothelial cell regulation. Circ Res 86, 974-981. 
Maviel, T., Durkin, T.P., Menzaghi, F., and Bontempi, B. (2004). Sites of neocortical reorganization 
critical for remote spatial memory. Science 305, 96-99. 



262 
 

Mayford, M., Bach, M.E., and Kandel, E. (1996). CaMKII function in the nervous system explored from 
a genetic perspective. Cold Spring Harb Symp Quant Biol 61, 219-224. 
Mayford, M., Siegelbaum, S.A., and Kandel, E.R. (2012). Synapses and memory storage. Cold Spring 
Harb Perspect Biol 4. 
Mazzieri, R., Pucci, F., Moi, D., Zonari, E., Ranghetti, A., Berti, A., Politi, L.S., Gentner, B., Brown, J.L., 
Naldini, L., et al. (2011). Targeting the ANG2/TIE2 axis inhibits tumor growth and metastasis by 
impairing angiogenesis and disabling rebounds of proangiogenic myeloid cells. Cancer Cell 19, 512-
526. 
Mazzone, M., Dettori, D., Leite de Oliveira, R., Loges, S., Schmidt, T., Jonckx, B., Tian, Y.M., Lanahan, 
A.A., Pollard, P., Ruiz de Almodovar, C., et al. (2009). Heterozygous deficiency of PHD2 restores 
tumor oxygenation and inhibits metastasis via endothelial normalization. Cell 136, 839-851. 
McClelland, J.L. (2013). Incorporating rapid neocortical learning of new schema-consistent 
information into complementary learning systems theory. J Exp Psychol Gen 142, 1190-1210. 
McClelland, J.L., McNaughton, B.L., and O'Reilly, R.C. (1995). Why there are complementary learning 
systems in the hippocampus and neocortex: insights from the successes and failures of connectionist 
models of learning and memory. Psychol Rev 102, 419-457. 
McDonald, R.J., Hong, N.S., and Devan, B.D. (2004). The challenges of understanding mammalian 
cognition and memory-based behaviours: an interactive learning and memory systems approach. 
Neurosci Biobehav Rev 28, 719-745. 
McGaugh, J.L. (2000). Memory--a century of consolidation. Science 287, 248-251. 
McIlroy, M., O'Rourke, M., McKeown, S.R., Hirst, D.G., and Robson, T. (2006). Pericytes influence 
endothelial cell growth characteristics: role of plasminogen activator inhibitor type 1 (PAI-1). 
Cardiovasc Res 69, 207-217. 
Meneses, A., Castillo, C., Ibarra, M., and Hong, E. (1996). Effects of aging and hypertension on 
learning, memory, and activity in rats. Physiol Behav 60, 341-345. 
Meneses, A., Perez-Garcia, G., Ponce-Lopez, T., Tellez, R., Gallegos-Cari, A., and Castillo, C. (2011a). 
Spontaneously hypertensive rat (SHR) as an animal model for ADHD: a short overview. Rev Neurosci 
22, 365-371. 
Meneses, A., Ponce-Lopez, T., Tellez, R., Gonzalez, R., Castillo, C., and Gasbarri, A. (2011b). Effects of 
d-amphetamine on short- and long-term memory in spontaneously hypertensive, Wistar-Kyoto and 
Sprague-Dawley rats. Behav Brain Res 216, 472-476. 
Meneses, A., Terron, J.A., Ibarra, M., and Hong, E. (1997). Effects of nimodipine on learning in 
normotensive and spontaneously hypertensive rats. Behav Brain Res 85, 121-125. 
Metea, M.R., and Newman, E.A. (2006). Glial cells dilate and constrict blood vessels: a mechanism of 
neurovascular coupling. J Neurosci 26, 2862-2870. 
Metzen, E., Berchner-Pfannschmidt, U., Stengel, P., Marxsen, J.H., Stolze, I., Klinger, M., Huang, W.Q., 
Wotzlaw, C., Hellwig-Burgel, T., Jelkmann, W., et al. (2003). Intracellular localisation of human HIF-1 
alpha hydroxylases: implications for oxygen sensing. J Cell Sci 116, 1319-1326. 
Miki, K., Ishibashi, S., Sun, L., Xu, H., Ohashi, W., Kuroiwa, T., and Mizusawa, H. (2009). Intensity of 
chronic cerebral hypoperfusion determines white/gray matter injury and cognitive/motor 
dysfunction in mice. J Neurosci Res 87, 1270-1281. 
Miller, E.K. (1999). The prefrontal cortex: complex neural properties for complex behavior. Neuron 
22, 15-17. 
Miller, J.D., McMillen, B.A., McConnaughey, M.M., Williams, H.L., and Fuller, C.A. (1989). Effects of 
microgravity on brain neurotransmitter receptors. European journal of pharmacology 161, 165-171. 
Milner, B., Squire, L.R., and Kandel, E.R. (1998). Cognitive neuroscience and the study of memory. 
Neuron 20, 445-468. 
Misanin, J.R., Miller, R.R., and Lewis, D.J. (1968). Retrograde amnesia produced by electroconvulsive 
shock after reactivation of a consolidated memory trace. Science 160, 554-555. 
Mitani, K., Horii, A., and Kubo, T. (2004). Impaired spatial learning after hypergravity exposure in rats. 
Brain research Cognitive brain research 22, 94-100. 
Mitchell, K.D., and Navar, L.G. (1989). The renin-angiotensin-aldosterone system in volume control. 
Baillieres Clin Endocrinol Metab 3, 393-430. 



263 
 

Moffitt, J.A., Grippo, A.J., Beltz, T.G., and Johnson, A.K. (2008). Hindlimb unloading elicits anhedonia 
and sympathovagal imbalance. J Appl Physiol (1985) 105, 1049-1059. 
Molle, M., Yeshenko, O., Marshall, L., Sara, S.J., and Born, J. (2006). Hippocampal sharp wave-ripples 
linked to slow oscillations in rat slow-wave sleep. J Neurophysiol 96, 62-70. 
Montani JP, V.V.B. (2004). General physiology and pathophysiology of the renin-angiotensin system. . 
Handb Exp Pharmacol Vol. I., 3-29. 
Morancho, A., Hernandez-Guillamon, M., Boada, C., Barcelo, V., Giralt, D., Ortega, L., Montaner, J., 
and Rosell, A. (2013). Cerebral ischaemia and matrix metalloproteinase-9 modulate the angiogenic 
function of early and late outgrowth endothelial progenitor cells. J Cell Mol Med 17, 1543-1553. 
Morbidelli, L., Monici, M., Marziliano, N., Cogoli, A., Fusi, F., Waltenberger, J., and Ziche, M. (2005). 
Simulated hypogravity impairs the angiogenic response of endothelium by up-regulating apoptotic 
signals. Biochem Biophys Res Commun 334, 491-499. 
Morel, J., Fritz, N., Dabertrand, F., Macrez, N. (2007). Ca2+ releasing channels of the smooth muscle 
sarcoplasmic reticulum. New Frontiers in Smooth Muscle Biology and Physiology 131-150. 
Morel, J.L., Boittin, F.X., Halet, G., Arnaudeau, S., Mironneau, C., and Mironneau, J. (1997). Effect of a 
14-day hindlimb suspension on cytosolic Ca2+ concentration in rat portal vein myocytes. The 
American journal of physiology 273, H2867-2875. 
Morel, J.L., Dabertrand, F., Porte, Y., Prevot, A., and Macrez, N. (2013). Up-regulation of ryanodine 
receptor expression increases the calcium-induced calcium release and spontaneous calcium signals 
in cerebral arteries from hindlimb unloaded rats. Pflugers Archiv : European journal of physiology. 
Mori, S., Kato, M., and Fujishima, M. (1995). Impaired maze learning and cerebral glucose utilization 
in aged hypertensive rats. Hypertension 25, 545-553. 
Morris, R.H.G.G.K.B., T. (2006). Learning and memory. In: Cognitive Systems: Information Processing 
Meets Brain Science  San Diego (CA): Elsevier Academic Press 193–235 

 
Moscovitch, M., and Nadel, L. (1998). Consolidation and the hippocampal complex revisited: in 
defense of the multiple-trace model. Curr Opin Neurobiol 8, 297-300. 
Moscovitch, M., Nadel, L., Winocur, G., Gilboa, A., and Rosenbaum, R.S. (2006). The cognitive 
neuroscience of remote episodic, semantic and spatial memory. Curr Opin Neurobiol 16, 179-190. 
Moscovitch, M., Rosenbaum, R.S., Gilboa, A., Addis, D.R., Westmacott, R., Grady, C., McAndrews, 
M.P., Levine, B., Black, S., Winocur, G., et al. (2005). Functional neuroanatomy of remote episodic, 
semantic and spatial memory: a unified account based on multiple trace theory. J Anat 207, 35-66. 
Moser, E., Moser, M.B., and Andersen, P. (1993). Spatial learning impairment parallels the magnitude 
of dorsal hippocampal lesions, but is hardly present following ventral lesions. J Neurosci 13, 3916-
3925. 
Moser, M.B., and Moser, E.I. (1998). Functional differentiation in the hippocampus. Hippocampus 8, 
608-619. 
Moss, A. (2013). The angiopoietin:Tie 2 interaction: a potential target for future therapies in human 
vascular disease. Cytokine Growth Factor Rev 24, 579-592. 
Mueller, S.M., and Heistad, D.D. (1980). Effect of chronic hypertension on the blood-brain barrier. 
Hypertension 2, 809-812. 
Muid, S., Froemming, G.R., Ali, A.M., and Nawawi, H. (2013). Interleukin-6 and intercellular cell 
adhesion molecule-1 expression remains elevated in revived live endothelial cells following 
spaceflight. The Malaysian journal of pathology 35, 165-176. 
Mukherjee, B., and Yuan, Q. (2016). NMDA receptors in mouse anterior piriform cortex initialize early 
odor preference learning and L-type calcium channels engage for long-term memory. Scientific 
reports 6, 35256. 
Muller, R.U., Stead, M., and Pach, J. (1996). The hippocampus as a cognitive graph. J Gen Physiol 107, 
663-694. 
Mulligan, S.J., and MacVicar, B.A. (2004). Calcium transients in astrocyte endfeet cause 
cerebrovascular constrictions. Nature 431, 195-199. 
Mulvany, M.J. (2012). Small artery remodelling in hypertension. Basic Clin Pharmacol Toxicol 110, 49-
55. 



264 
 

Mulvany, M.J., Hansen, O.K., and Aalkjaer, C. (1978). Direct evidence that the greater contractility of 
resistance vessels in spontaneously hypertensive rats is associated with a narrowed lumen, a 
thickened media, and an increased number of smooth muscle cell layers. Circ Res 43, 854-864. 
Munoz-Chapuli, R., Quesada, A.R., and Angel Medina, M. (2004). Angiogenesis and signal 
transduction in endothelial cells. Cell Mol Life Sci 61, 2224-2243. 
Murfee, W.L., and Schmid-Schonbein, G.W. (2008). Chapter 12. Structure of microvascular networks 
in genetic hypertension. Methods Enzymol 444, 271-284. 
Nadel, L., and Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the 
hippocampal complex. Curr Opin Neurobiol 7, 217-227. 
Nag, S. (1996). Immunohistochemical localization of extracellular matrix proteins in cerebral vessels 
in chronic hypertension. J Neuropathol Exp Neurol 55, 381-388. 
Nag, S., and Kilty, D.W. (1997). Cerebrovascular changes in chronic hypertension. Protective effects 
of enalapril in rats. Stroke 28, 1028-1034. 
Nag, S., Papneja, T., Venugopalan, R., and Stewart, D.J. (2005). Increased angiopoietin2 expression is 
associated with endothelial apoptosis and blood-brain barrier breakdown. Lab Invest 85, 1189-1198. 
Nagy, J.A., Dvorak, A.M., and Dvorak, H.F. (2007). VEGF-A and the induction of pathological 
angiogenesis. Annu Rev Pathol 2, 251-275. 
Narme, P., Peretz, I., Strub, M.L., and Ergis, A.M. (2016). Emotion Effects on Implicit and Explicit 
Musical Memory in Normal Aging. Psychol Aging. 
Ndubuizu, O.I., Tsipis, C.P., Li, A., and LaManna, J.C. (2010). Hypoxia-inducible factor-1 (HIF-1)-
independent microvascular angiogenesis in the aged rat brain. Brain Res 1366, 101-109. 
Nelson, D.O., and Boulant, J.A. (1981). Altered CNS neuroanatomical organization of spontaneously 
hypertensive (SHR) rats. Brain Res 226, 119-130. 
Neumann, I.D. (2000). Antisense oligodeoxynucleotide effects on the hypothalamic-
neurohypophysial system and the hypothalamic-pituitary-adrenal axis. Methods 22, 227-237. 
Neves, G., Cooke, S.F., and Bliss, T.V. (2008). Synaptic plasticity, memory and the hippocampus: a 
neural network approach to causality. Nat Rev Neurosci 9, 65-75. 
Nicoli, S., Knyphausen, C.P., Zhu, L.J., Lakshmanan, A., and Lawson, N.D. (2012). miR-221 is required 
for endothelial tip cell behaviors during vascular development. Dev Cell 22, 418-429. 
Nicoll, R.A., and Malenka, R.C. (1999a). Expression mechanisms underlying NMDA receptor-
dependent long-term potentiation. Ann N Y Acad Sci 868, 515-525. 
Nicoll, R.A., and Malenka, R.C. (1999b). Leaky synapses. Neuron 23, 197-198. 
Nilsson, I., Shibuya, M., and Wennstrom, S. (2004). Differential activation of vascular genes by 
hypoxia in primary endothelial cells. Exp Cell Res 299, 476-485. 
Nishimura, N., Schaffer, C.B., Friedman, B., Lyden, P.D., and Kleinfeld, D. (2007). Penetrating 
arterioles are a bottleneck in the perfusion of neocortex. Proc Natl Acad Sci U S A 104, 365-370. 
Noorani, M.M., Noel, R.C., and Marrelli, S.P. (2011). Upregulated TRPC3 and Downregulated TRPC1 
Channel Expression during Hypertension is Associated with Increased Vascular Contractility in Rat. 
Front Physiol 2, 42. 
Norsk, P. (1992). Gravitational stress and volume regulation. Clin Physiol 12, 505-526. 
Norsk, P. (1997). Gravitational stress and fluid volume regulation: a suggestion for revision of current 
hypotheses. J Gravit Physiol 4, P85-88. 
Norsk, P., Asmar, A., Damgaard, M., and Christensen, N.J. (2015). Fluid shifts, vasodilatation and 
ambulatory blood pressure reduction during long duration spaceflight. The Journal of physiology 593, 
573-584. 
Norup Nielsen, A., and Lauritzen, M. (2001). Coupling and uncoupling of activity-dependent increases 
of neuronal activity and blood flow in rat somatosensory cortex. J Physiol 533, 773-785. 
O'Keefe, J., and Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from 
unit activity in the freely-moving rat. Brain Res 34, 171-175. 
O'Keefe, J.N.L. (1978). The Hippocampus as a Cognitive Map. Oxford University Press. 
O'Reilly, R.C., and Norman, K.A. (2002). Hippocampal and neocortical contributions to memory: 
advances in the complementary learning systems framework. Trends Cogn Sci 6, 505-510. 



265 
 

Ogoh, S., Hirasawa, A., Raven, P.B., Rebuffat, T., Denise, P., Lericollais, R., Sugawara, J., and Normand, 
H. (2015). Effect of an acute increase in central blood volume on cerebral hemodynamics. American 
journal of physiology Regulatory, integrative and comparative physiology 309, R902-911. 
Oh, H., Takagi, H., Suzuma, K., Otani, A., Matsumura, M., and Honda, Y. (1999). Hypoxia and vascular 
endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial 
cells. J Biol Chem 274, 15732-15739. 
Okamoto, K., and Aoki, K. (1963). Development of a strain of spontaneously hypertensive rats. Jpn 
Circ J 27, 282-293. 
Okten, A.I. (2016). Mythology and Neurosurgery. World Neurosurg. 
Oliner, J., Min, H., Leal, J., Yu, D., Rao, S., You, E., Tang, X., Kim, H., Meyer, S., Han, S.J., et al. (2004). 
Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 
6, 507-516. 
Olsson, A.K., Dimberg, A., Kreuger, J., and Claesson-Welsh, L. (2006). VEGF receptor signalling - in 
control of vascular function. Nat Rev Mol Cell Biol 7, 359-371. 
Omote, Y., Deguchi, K., Kono, S., Liu, N., Liu, W., Kurata, T., Yamashita, T., Ikeda, Y., and Abe, K. 
(2014). Neurovascular protection of cilostazol in stroke-prone spontaneous hypertensive rats 
associated with angiogenesis and pericyte proliferation. Journal of neuroscience research 92, 369-
374. 
Ongali, B., Nicolakakis, N., Tong, X.K., Aboulkassim, T., Papadopoulos, P., Rosa-Neto, P., Lecrux, C., 
Imboden, H., and Hamel, E. (2014). Angiotensin II type 1 receptor blocker losartan prevents and 
rescues cerebrovascular, neuropathological and cognitive deficits in an Alzheimer's disease model. 
Neurobiol Dis 68, 126-136. 
Osol, G., Brekke, J.F., McElroy-Yaggy, K., and Gokina, N.I. (2002). Myogenic tone, reactivity, and 
forced dilatation: a three-phase model of in vitro arterial myogenic behavior. Am J Physiol Heart Circ 
Physiol 283, H2260-2267. 
Otori, T., Katsumata, T., Muramatsu, H., Kashiwagi, F., Katayama, Y., and Terashi, A. (2003). Long-
term measurement of cerebral blood flow and metabolism in a rat chronic hypoperfusion model. Clin 
Exp Pharmacol Physiol 30, 266-272. 
Oyama, N., Yagita, Y., Kawamura, M., Sugiyama, Y., Terasaki, Y., Omura-Matsuoka, E., Sasaki, T., and 
Kitagawa, K. (2011). Cilostazol, not aspirin, reduces ischemic brain injury via endothelial protection in 
spontaneously hypertensive rats. Stroke 42, 2571-2577. 
Ozerdem, U., Grako, K.A., Dahlin-Huppe, K., Monosov, E., and Stallcup, W.B. (2001). NG2 
proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222, 
218-227. 
Ozerdem, U., and Stallcup, W.B. (2003). Early contribution of pericytes to angiogenic sprouting and 
tube formation. Angiogenesis 6, 241-249. 
Packard, M.G. (2009). Anxiety, cognition, and habit: a multiple memory systems perspective. Brain 
research 1293, 121-128. 
Pagel, J.I., and Chouker, A. (2016). Effects of isolation and confinement on humans-implications for 
manned space explorations. J Appl Physiol (1985) 120, 1449-1457. 
Paiardi, S., Rodella, L.F., De Ciuceis, C., Porteri, E., Boari, G.E., Rezzani, R., Rizzardi, N., Platto, C., 
Tiberio, G.A., Giulini, S.M., et al. (2009). Immunohistochemical evaluation of microvascular 
rarefaction in hypertensive humans and in spontaneously hypertensive rats. Clin Hemorheol 
Microcirc 42, 259-268. 
Paillard, T. (2015). Preventive effects of regular physical exercise against cognitive decline and the 
risk of dementia with age advancement. Sports medicine - open 1, 4. 
Palmer, T.D., Willhoite, A.R., and Gage, F.H. (2000). Vascular niche for adult hippocampal 
neurogenesis. J Comp Neurol 425, 479-494. 
Palombo, C., Morizzo, C., Baluci, M., Lucini, D., Ricci, S., Biolo, G., Tortoli, P., and Kozakova, M. (2015). 
Large artery remodeling and dynamics following simulated microgravity by prolonged head-down tilt 
bed rest in humans. BioMed research international 2015, 342565. 
Parati, E.A., Bez, A., Ponti, D., de Grazia, U., Corsini, E., Cova, L., Sala, S., Colombo, A., Alessandri, G., 
and Pagano, S.F. (2002). Human neural stem cells express extra-neural markers. Brain Res 925, 213-
221. 



266 
 

Pardey, M.C., Homewood, J., Taylor, A., and Cornish, J.L. (2009). Re-evaluation of an animal model for 
ADHD using a free-operant choice task. J Neurosci Methods 176, 166-171. 
Pardridge, W.M. (2007). Blood-brain barrier delivery. Drug Discov Today 12, 54-61. 
Park, S., Shin, J., Hong, Y., Kim, S., Lee, S., Park, K., Lkhagvasuren, T., Lee, S.R., and Chang, K.T. (2012). 
Forced exercise enhances functional recovery after focal cerebral ischemia in spontaneously 
hypertensive rats. Brain sciences 2, 483-503. 
Park, Y.S., Kim, G., Jin, Y.M., Lee, J.Y., Shin, J.W., and Jo, I. (2016). Expression of angiopoietin-1 in 
hypoxic pericytes: Regulation by hypoxia-inducible factor-2alpha and participation in endothelial cell 
migration and tube formation. Biochemical and biophysical research communications 469, 263-269. 
Partanen, J., Armstrong, E., Makela, T.P., Korhonen, J., Sandberg, M., Renkonen, R., Knuutila, S., 
Huebner, K., and Alitalo, K. (1992). A novel endothelial cell surface receptor tyrosine kinase with 
extracellular epidermal growth factor homology domains. Mol Cell Biol 12, 1698-1707. 
Partanen, J., Puri, M.C., Schwartz, L., Fischer, K.D., Bernstein, A., and Rossant, J. (1996). Cell 
autonomous functions of the receptor tyrosine kinase TIE in a late phase of angiogenic capillary 
growth and endothelial cell survival during murine development. Development 122, 3013-3021. 
Pati, S., Orsi, S.A., Moore, A.N., and Dash, P.K. (2009). Intra-hippocampal administration of the VEGF 
receptor blocker PTK787/ZK222584 impairs long-term memory. Brain Res 1256, 85-91. 
Peigneux, P., Orban, P., Balteau, E., Degueldre, C., Luxen, A., Laureys, S., and Maquet, P. (2006). 
Offline persistence of memory-related cerebral activity during active wakefulness. PLoS Biol 4, e100. 
Penfield, W., and Rasmussen, T. ( 1950). The cerebral cortex of man: a clinical study of localization of 
function New York: Macmillan. 
Peng, L., Ran, H.H., Zhang, Y., Zhao, Y., Fan, Y.Y., Zhang, R., and Cao, F. (2015). NADPH Oxidase 
Accounts for Changes in Cerebrovascular Redox Status in Hindlimb Unweighting Rats. Biomedical and 
environmental sciences : BES 28, 799-807. 
Perluigi, M., Swomley, A.M., and Butterfield, D.A. (2014). Redox proteomics and the dynamic 
molecular landscape of the aging brain. Ageing research reviews 13, 75-89. 
Perrotta, M., Lembo, G., and Carnevale, D. (2016). Hypertension and Dementia: Epidemiological and 
Experimental Evidence Revealing a Detrimental Relationship. Int J Mol Sci 17, 347. 
Petrak, J., Mravec, B., Jurani, M., Baranovska, M., Tillinger, A., Hapala, I., Frollo, I., and Kvetnansky, R. 
(2008). Hypergravity-induced increase in plasma catecholamine and corticosterone levels in 
telemetrically collected blood of rats during centrifugation. Annals of the New York Academy of 
Sciences 1148, 201-208. 
Pettersson, A., Nagy, J.A., Brown, L.F., Sundberg, C., Morgan, E., Jungles, S., Carter, R., Krieger, J.E., 
Manseau, E.J., Harvey, V.S., et al. (2000). Heterogeneity of the angiogenic response induced in 
different normal adult tissues by vascular permeability factor/vascular endothelial growth factor. Lab 
Invest 80, 99-115. 
Petzold, G.C., and Murthy, V.N. (2011). Role of astrocytes in neurovascular coupling. Neuron 71, 782-
797. 
Phng, L.K., and Gerhardt, H. (2009). Angiogenesis: a team effort coordinated by notch. Dev Cell 16, 
196-208. 
Phng, L.K., Potente, M., Leslie, J.D., Babbage, J., Nyqvist, D., Lobov, I., Ondr, J.K., Rao, S., Lang, R.A., 
Thurston, G., et al. (2009). Nrarp coordinates endothelial Notch and Wnt signaling to control vessel 
density in angiogenesis. Dev Cell 16, 70-82. 
Pichiule, P., Chavez, J.C., and LaManna, J.C. (2004). Hypoxic regulation of angiopoietin-2 expression in 
endothelial cells. J Biol Chem 279, 12171-12180. 
Pichiule, P., and LaManna, J.C. (2002). Angiopoietin-2 and rat brain capillary remodeling during 
adaptation and deadaptation to prolonged mild hypoxia. J Appl Physiol (1985) 93, 1131-1139. 
Pichiule, P., and LaManna, J.C. (2003). Expression of angiopoietin-1 and -2 in the rat brain during 
chronic hypoxia and de-adaptation. Adv Exp Med Biol 510, 331-335. 
Pietila, R., Natynki, M., Tammela, T., Kangas, J., Pulkki, K.H., Limaye, N., Vikkula, M., Koh, G.Y., 
Saharinen, P., Alitalo, K., et al. (2012). Ligand oligomerization state controls Tie2 receptor trafficking 
and angiopoietin-2-specific responses. J Cell Sci 125, 2212-2223. 
Pinto, Y.M., Paul, M., and Ganten, D. (1998). Lessons from rat models of hypertension: from 
Goldblatt to genetic engineering. Cardiovasc Res 39, 77-88. 



267 
 

Pires, P.W., Dams Ramos, C.M., Matin, N., and Dorrance, A.M. (2013). The effects of hypertension on 
the cerebral circulation. Am J Physiol Heart Circ Physiol 304, H1598-1614. 
Plaut, K., Maple, R.L., Wade, C.E., Baer, L.A., and Ronca, A.E. (2003). Effects of hypergravity on 
mammary metabolic function: gravity acts as a continuum. J Appl Physiol (1985) 95, 2350-2354. 
Poncet, S., Gasc, J.M., Janzer, R.C., Meyer, S., and Juillerat-Jeanneret, L. (2003). Expression of Tie-2 in 
human peripheral and autonomic nervous system. Neuropathol Appl Neurobiol 29, 361-369. 
Porte, Y., and Morel, J.L. (2012). Learning on Jupiter, learning on the Moon: the dark side of the G-
force. Effects of gravity changes on neurovascular unit and modulation of learning and memory. 
Front Behav Neurosci 6, 64. 
Posadas-Andrews, A., Roper, TJ. (1983). Social transmission of food preferences in adult rats. . Animal 
Behaviour 31:265-271. 
Prisby, R.D., Wilkerson, M.K., Sokoya, E.M., Bryan, R.M., Jr., Wilson, E., and Delp, M.D. (2006). 
Endothelium-dependent vasodilation of cerebral arteries is altered with simulated microgravity 
through nitric oxide synthase and EDHF mechanisms. J Appl Physiol 101, 348-353. 
Puri, M.C., and Bernstein, A. (2003). Requirement for the TIE family of receptor tyrosine kinases in 
adult but not fetal hematopoiesis. Proc Natl Acad Sci U S A 100, 12753-12758. 
Qiong, W., Yong-Liang, Z., Ying-Hui, L., Shan-Guang, C., Jiang-Hui, G., Yi-Xi, C., Ning, J., and Xin-Min, L. 
(2016). The memory enhancement effect of Kai Xin San on cognitive deficit induced by simulated 
weightlessness in rats. Journal of ethnopharmacology 187, 9-16. 
Rajasethupathy, P., Sankaran, S., Marshel, J.H., Kim, C.K., Ferenczi, E., Lee, S.Y., Berndt, A., 
Ramakrishnan, C., Jaffe, A., Lo, M., et al. (2015). Projections from neocortex mediate top-down 
control of memory retrieval. Nature 526, 653-659. 
Ramirez, S., Liu, X., Lin, P.A., Suh, J., Pignatelli, M., Redondo, R.L., Ryan, T.J., and Tonegawa, S. (2013). 
Creating a false memory in the hippocampus. Science 341, 387-391. 
Randich, A., and Maixner, W. (1981). Acquisition of conditioned suppression and responsivity to 
thermal stimulation in spontaneously hypertensive, renal hypertensive and normotensive rats. 
Physiol Behav 27, 585-590. 
Ranjan, A., Behari, J., and Mallick, B.N. (2014). Cytomorphometric Changes in Hippocampal CA1 
Neurons Exposed to Simulated Microgravity Using Rats as Model. Frontiers in neurology 5, 77. 
Reese, T.S., and Karnovsky, M.J. (1967). Fine structural localization of a blood-brain barrier to 
exogenous peroxidase. J Cell Biol 34, 207-217. 
Reijmers, L.G., Perkins, B.L., Matsuo, N., and Mayford, M. (2007). Localization of a stable neural 
correlate of associative memory. Science 317, 1230-1233. 
Reiss, Y., Droste, J., Heil, M., Tribulova, S., Schmidt, M.H., Schaper, W., Dumont, D.J., and Plate, K.H. 
(2007). Angiopoietin-2 impairs revascularization after limb ischemia. Circ Res 101, 88-96. 
Religa, P., Cao, R., Religa, D., Xue, Y., Bogdanovic, N., Westaway, D., Marti, H.H., Winblad, B., and Cao, 
Y. (2013). VEGF significantly restores impaired memory behavior in Alzheimer's mice by improvement 
of vascular survival. Sci Rep 3, 2053. 
Restivo, L., Vetere, G., Bontempi, B., and Ammassari-Teule, M. (2009). The formation of recent and 
remote memory is associated with time-dependent formation of dendritic spines in the hippocampus 
and anterior cingulate cortex. The Journal of neuroscience : the official journal of the Society for 
Neuroscience 29, 8206-8214. 
Ribatti, D., Conconi, M.T., and Nussdorfer, G.G. (2007). Nonclassic endogenous novel [corrected] 
regulators of angiogenesis. Pharmacol Rev 59, 185-205. 
Ribatti, D., Nico, B., and Crivellato, E. (2011). The role of pericytes in angiogenesis. Int J Dev Biol 55, 
261-268. 
Ribeiro, S., Goyal, V., Mello, C.V., and Pavlides, C. (1999). Brain gene expression during REM sleep 
depends on prior waking experience. Learn Mem 6, 500-508. 
Ribeiro, S., and Nicolelis, M.A. (2004). Reverberation, storage, and postsynaptic propagation of 
memories during sleep. Learn Mem 11, 686-696. 
Ricard, N., and Simons, M. (2015). When it is better to regress: dynamics of vascular pruning. PLoS 
Biol 13, e1002148. 



268 
 

Rickards, C.A., Cohen, K.D., Bergeron, L.L., Burton, B.L., Khatri, P.J., Lee, C.T., Ryan, K.L., Cooke, W.H., 
Doerr, D.F., and Convertino, V.A. (2007). Cerebral blood flow response and its association with 
symptoms during orthostatic hypotension. Aviation, space, and environmental medicine 78, 653-658. 
Rigsby, C.S., Ergul, A., Portik Dobos, V., Pollock, D.M., and Dorrance, A.M. (2011). Effects of 
spironolactone on cerebral vessel structure in rats with sustained hypertension. Am J Hypertens 24, 
708-715. 
Rigsby, C.S., Pollock, D.M., and Dorrance, A.M. (2007). Spironolactone improves structure and 
increases tone in the cerebral vasculature of male spontaneously hypertensive stroke-prone rats. 
Microvasc Res 73, 198-205. 
Rittenhouse, P.A., Lopez-Rubalcava, C., Stanwood, G.D., and Lucki, I. (2002). Amplified behavioral and 
endocrine responses to forced swim stress in the Wistar-Kyoto rat. Psychoneuroendocrinology 27, 
303-318. 
Ritter, S., and Dinh, T.T. (1986). Progressive postnatal dilation of brain ventricles in spontaneously 
hypertensive rats. Brain Res 370, 327-332. 
Robertson, B.A., Clements, K.M., and Wainwright, P.E. (2008). The working memory capabilities of 
the spontaneously hypertensive rat. Physiol Behav 94, 481-486. 
Rogerson, T., Cai, D.J., Frank, A., Sano, Y., Shobe, J., Lopez-Aranda, M.F., and Silva, A.J. (2014). 
Synaptic tagging during memory allocation. Nat Rev Neurosci 15, 157-169. 
Rolls, E.T., and Kesner, R.P. (2006). A computational theory of hippocampal function, and empirical 
tests of the theory. Prog Neurobiol 79, 1-48. 
Roque, F.R., Briones, A.M., Garcia-Redondo, A.B., Galan, M., Martinez-Revelles, S., Avendano, M.S., 
Cachofeiro, V., Fernandes, T., Vassallo, D.V., Oliveira, E.M., et al. (2013). Aerobic exercise reduces 
oxidative stress and improves vascular changes of small mesenteric and coronary arteries in 
hypertension. British journal of pharmacology 168, 686-703. 
Rosenbaum, R.S., Kohler, S., Schacter, D.L., Moscovitch, M., Westmacott, R., Black, S.E., Gao, F., and 
Tulving, E. (2005). The case of K.C.: contributions of a memory-impaired person to memory theory. 
Neuropsychologia 43, 989-1021. 
Rosenbaum, R.S., Priselac, S., Kohler, S., Black, S.E., Gao, F., Nadel, L., and Moscovitch, M. (2000). 
Remote spatial memory in an amnesic person with extensive bilateral hippocampal lesions. Nat 
Neurosci 3, 1044-1048. 
Rosenbaum, R.S., Winocur, G., and Moscovitch, M. (2001). New views on old memories: re-
evaluating the role of the hippocampal complex. Behav Brain Res 127, 183-197. 
Ross, R.S., and Eichenbaum, H. (2006). Dynamics of hippocampal and cortical activation during 
consolidation of a nonspatial memory. J Neurosci 26, 4852-4859. 
Rouget, C. (1874). Note sur le developpement de la tunique contractile des vaisseaux. . Compt Rend 
Acad Sci 1874 59, 559–562. 
Rucker, H.K., Wynder, H.J., and Thomas, W.E. (2000). Cellular mechanisms of CNS pericytes. Brain Res 
Bull 51, 363-369. 
Ruhrberg, C., Gerhardt, H., Golding, M., Watson, R., Ioannidou, S., Fujisawa, H., Betsholtz, C., and 
Shima, D.T. (2002). Spatially restricted patterning cues provided by heparin-binding VEGF-A control 
blood vessel branching morphogenesis. Genes Dev 16, 2684-2698. 
Ruiz-Opazo, N., Lopez, L.V., and Tonkiss, J. (2004). Modulation of learning and memory in Dahl rats by 
dietary salt restriction. Hypertension 43, 797-802. 
Rusai, K., Jianxing, C., Schneider, R., Struijker-Boudier, H., Lutz, J., Heemann, U., and Baumann, M. 
(2011). Renin inhibition mitigates anti-angiogenesis in spontaneously hypertensive rats. J Hypertens 
29, 266-272. 
Ruzza, C., Pulga, A., Rizzi, A., Marzola, G., Guerrini, R., and Calo, G. (2012). Behavioural phenotypic 
characterization of CD-1 mice lacking the neuropeptide S receptor. Neuropharmacology 62, 1999-
2009. 
Sabbatini, M., Catalani, A., Consoli, C., Marletta, N., Tomassoni, D., and Avola, R. (2002). The 
hippocampus in spontaneously hypertensive rats: an animal model of vascular dementia? Mech 
Ageing Dev 123, 547-559. 



269 
 

Sabbatini, M., Strocchi, P., Vitaioli, L., and Amenta, F. (2001). Microanatomical changes of 
intracerebral arteries in spontaneously hypertensive rats: a model of cerebrovascular disease of the 
elderly. Mech Ageing Dev 122, 1257-1268. 
Sadoshima, S., Fujii, K., Yao, H., Kusuda, K., Ibayashi, S., and Fujishima, M. (1986). Regional cerebral 
blood flow autoregulation in normotensive and spontaneously hypertensive rats--effects of 
sympathetic denervation. Stroke 17, 981-984. 
Sagare, A.P., Bell, R.D., and Zlokovic, B.V. (2012). Neurovascular dysfunction and faulty amyloid beta-
peptide clearance in Alzheimer disease. Cold Spring Harb Perspect Med 2. 
Sagvolden, T. (2000). Behavioral validation of the spontaneously hypertensive rat (SHR) as an animal 
model of attention-deficit/hyperactivity disorder (AD/HD). Neurosci Biobehav Rev 24, 31-39. 
Sagvolden, T., Hendley, E.D., and Knardahl, S. (1992). Behavior of hypertensive and hyperactive rat 
strains: hyperactivity is not unitarily determined. Physiol Behav 52, 49-57. 
Saharinen, P., and Alitalo, K. (2011). The yin, the yang, and the angiopoietin-1. J Clin Invest 121, 2157-
2159. 
Saharinen, P., Eklund, L., Miettinen, J., Wirkkala, R., Anisimov, A., Winderlich, M., Nottebaum, A., 
Vestweber, D., Deutsch, U., Koh, G.Y., et al. (2008). Angiopoietins assemble distinct Tie2 signalling 
complexes in endothelial cell-cell and cell-matrix contacts. Nat Cell Biol 10, 527-537. 
Saharinen, P., Eklund, L., Pulkki, K., Bono, P., and Alitalo, K. (2011). VEGF and angiopoietin signaling in 
tumor angiogenesis and metastasis. Trends Mol Med 17, 347-362. 
Sakamoto, H., Aikawa, M., Hill, C.C., Weiss, D., Taylor, W.R., Libby, P., and Lee, R.T. (2001). 
Biomechanical strain induces class a scavenger receptor expression in human 
monocyte/macrophages and THP-1 cells: a potential mechanism of increased atherosclerosis in 
hypertension. Circulation 104, 109-114. 
Salic, A., and Mitchison, T.J. (2008). A chemical method for fast and sensitive detection of DNA 
synthesis in vivo. Proc Natl Acad Sci U S A 105, 2415-2420. 
Sandow, S.L., Haddock, R.E., Hill, C.E., Chadha, P.S., Kerr, P.M., Welsh, D.G., and Plane, F. (2009). 
What's where and why at a vascular myoendothelial microdomain signalling complex. Clin Exp 
Pharmacol Physiol 36, 67-76. 
Sane, D.C., Anton, L., and Brosnihan, K.B. (2004). Angiogenic growth factors and hypertension. 
Angiogenesis 7, 193-201. 
Santini, E., Huynh, T.N., and Klann, E. (2014). Mechanisms of translation control underlying long-
lasting synaptic plasticity and the consolidation of long-term memory. Prog Mol Biol Transl Sci 122, 
131-167. 
Sasaki, T., Kitagawa, K., Yamagata, K., Takemiya, T., Tanaka, S., Omura-Matsuoka, E., Sugiura, S., 
Matsumoto, M., and Hori, M. (2004). Amelioration of hippocampal neuronal damage after transient 
forebrain ischemia in cyclooxygenase-2-deficient mice. J Cereb Blood Flow Metab 24, 107-113. 
Sato, T.N., Tozawa, Y., Deutsch, U., Wolburg-Buchholz, K., Fujiwara, Y., Gendron-Maguire, M., 
Gridley, T., Wolburg, H., Risau, W., and Qin, Y. (1995). Distinct roles of the receptor tyrosine kinases 
Tie-1 and Tie-2 in blood vessel formation. Nature 376, 70-74. 
Saunders, N.R., Ek, C.J., Habgood, M.D., and Dziegielewska, K.M. (2008). Barriers in the brain: a 
renaissance? Trends Neurosci 31, 279-286. 
Sayet, I., Neuilly, G., Mironneau, J., and Mironneau, C. (1995). Influence of spaceflight, hindlimb 
suspension, and venous occlusion on alpha 1-adrenoceptors in rat vena cava. J Appl Physiol (1985) 
78, 1882-1888. 
Schlienger, R.G., Saxer, M., and Haefeli, W.E. (1996). Reversible ageusia associated with losartan. 
Lancet 347, 471-472. 
Schmidt, E.E., and Schibler, U. (1995). Cell size regulation, a mechanism that controls cellular RNA 
accumulation: consequences on regulation of the ubiquitous transcription factors Oct1 and NF-Y and 
the liver-enriched transcription factor DBP. J Cell Biol 128, 467-483. 
Scholz, A., Plate, K.H., and Reiss, Y. (2015). Angiopoietin-2: a multifaceted cytokine that functions in 
both angiogenesis and inflammation. Ann N Y Acad Sci 1347, 45-51. 
Schrier RW ( 1997.). Renal and Electrolyte Disorders. .  5th ed. 
Schultz, W., Dayan, P., and Montague, P.R. (1997). A neural substrate of prediction and reward. 
Science 275, 1593-1599. 



270 
 

Schummers, J., Yu, H., and Sur, M. (2008). Tuned responses of astrocytes and their influence on 
hemodynamic signals in the visual cortex. Science 320, 1638-1643. 
Scoville, W.B., and Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. J 
Neurol Neurosurg Psychiatry 20, 11-21. 
Sejnowski, T.J. (1995). Neural networks. Sleep and memory. Curr Biol 5, 832-834. 
Semon, R.W., and Simon, L. (1921). The mneme (London, 

New York,: G. Allen & Unwin ltd.; 

The Macmillan company). 
Serne, E.H., Gans, R.O., ter Maaten, J.C., Tangelder, G.J., Donker, A.J., and Stehouwer, C.D. (2001). 
Impaired skin capillary recruitment in essential hypertension is caused by both functional and 
structural capillary rarefaction. Hypertension 38, 238-242. 
Sewduth, R., and Santoro, M.M. (2016). "Decoding" Angiogenesis: New Facets Controlling Endothelial 
Cell Behavior. Front Physiol 7, 306. 
Sharp, F.R., and Bernaudin, M. (2004). HIF1 and oxygen sensing in the brain. Nat Rev Neurosci 5, 437-
448. 
Shen, S.W., Duan, C.L., Chen, X.H., Wang, Y.Q., Sun, X., Zhang, Q.W., Cui, H.R., and Sun, F.Y. (2016). 
Neurogenic effect of VEGF is related to increase of astrocytes transdifferentiation into new mature 
neurons in rat brains after stroke. Neuropharmacology 108, 451-461. 
Shi, L., Zhang, Y., Liu, Y., Gu, B., Cao, R., Chen, Y., and Zhao, T. (2016). Exercise Prevents Upregulation 
of RyRs-BKCa Coupling in Cerebral Arterial Smooth Muscle Cells From Spontaneously Hypertensive 
Rats. Arteriosclerosis, thrombosis, and vascular biology 36, 1607-1617. 
Shibata, M., Ohtani, R., Ihara, M., and Tomimoto, H. (2004). White matter lesions and glial activation 
in a novel mouse model of chronic cerebral hypoperfusion. Stroke 35, 2598-2603. 
Siamwala, J.H., Majumder, S., Tamilarasan, K.P., Muley, A., Reddy, S.H., Kolluru, G.K., Sinha, S., and 
Chatterjee, S. (2010). Simulated microgravity promotes nitric oxide-supported angiogenesis via the 
iNOS-cGMP-PKG pathway in macrovascular endothelial cells. FEBS letters 584, 3415-3423. 
Siapas, A.G., and Wilson, M.A. (1998). Coordinated interactions between hippocampal ripples and 
cortical spindles during slow-wave sleep. Neuron 21, 1123-1128. 
Siegel, J.M. (2001). The REM sleep-memory consolidation hypothesis. Science 294, 1058-1063. 
Siekmann, A.F., Affolter, M., and Belting, H.G. (2013). The tip cell concept 10 years after: new players 
tune in for a common theme. Exp Cell Res 319, 1255-1263. 
Siekmann, A.F., and Lawson, N.D. (2007). Notch signalling and the regulation of angiogenesis. Cell 
Adh Migr 1, 104-106. 
Sierra-Mercado, D., McAllister, L.M., Lee, C.C., Milad, M.R., Eskandar, E.N., and Whalen, M.J. (2015). 
Controlled cortical impact before or after fear conditioning does not affect fear extinction in mice. 
Brain Res 1606, 133-141. 
Siesjo, B.K. (1978). Brain Energy Metabolism. John Wiley & Sons, New York  
Sigurdsson, T., and Duvarci, S. (2015). Hippocampal-Prefrontal Interactions in Cognition, Behavior 
and Psychiatric Disease. Front Syst Neurosci 9, 190. 
Silva, A.J., Zhou, Y., Rogerson, T., Shobe, J., and Balaji, J. (2009). Molecular and cellular approaches to 
memory allocation in neural circuits. Science 326, 391-395. 
Siragusa, M., and Fleming, I. (2016). The eNOS signalosome and its link to endothelial dysfunction. 
Pflugers Arch 468, 1125-1137. 
Sirota, A., Csicsvari, J., Buhl, D., and Buzsaki, G. (2003). Communication between neocortex and 
hippocampus during sleep in rodents. Proc Natl Acad Sci U S A 100, 2065-2069. 
Sirotin, Y.B., and Das, A. (2009). Anticipatory haemodynamic signals in sensory cortex not predicted 
by local neuronal activity. Nature 457, 475-479. 
Skoog, I., and Gustafson, D. (2006). Update on hypertension and Alzheimer's disease. Neurol Res 28, 
605-611. 
Sluimer, J.C., Gasc, J.M., van Wanroij, J.L., Kisters, N., Groeneweg, M., Sollewijn Gelpke, M.D., 
Cleutjens, J.P., van den Akker, L.H., Corvol, P., Wouters, B.G., et al. (2008). Hypoxia, hypoxia-inducible 
transcription factor, and macrophages in human atherosclerotic plaques are correlated with 
intraplaque angiogenesis. Journal of the American College of Cardiology 51, 1258-1265. 



271 
 

Smith, C.A., Countryman, R.A., Sahuque, L.L., and Colombo, P.J. (2007). Time-courses of Fos 
expression in rat hippocampus and neocortex following acquisition and recall of a socially 
transmitted food preference. Neurobiol Learn Mem 88, 65-74. 
Smith, C.N., Frascino, J.C., Kripke, D.L., McHugh, P.R., Treisman, G.J., and Squire, L.R. (2010). Losing 
memories overnight: a unique form of human amnesia. Neuropsychologia 48, 2833-2840. 
Smith, C.N., and Squire, L.R. (2009). Medial temporal lobe activity during retrieval of semantic 
memory is related to the age of the memory. J Neurosci 29, 930-938. 
Soderpalm, B. (1989). The SHR exhibits less "anxiety" but increased sensitivity to the anticonflict 
effect of clonidine compared to normotensive controls. Pharmacol Toxicol 65, 381-386. 
Sofroniew, M.V., and Vinters, H.V. (2010). Astrocytes: biology and pathology. Acta Neuropathol 119, 
7-35. 
Sofronova, S.I., Tarasova, O.S., Gaynullina, D., Borzykh, A.A., Behnke, B.J., Stabley, J.N., McCullough, 
D.J., Maraj, J.J., Hanna, M., Muller-Delp, J.M., et al. (2015). Spaceflight on the Bion-M1 biosatellite 
alters cerebral artery vasomotor and mechanical properties in mice. J Appl Physiol (1985) 118, 830-
838. 
Sokolova, I.A., Manukhina, E.B., Blinkov, S.M., Koshelev, V.B., Pinelis, V.G., and Rodionov, I.M. (1985). 
Rarefication of the arterioles and capillary network in the brain of rats with different forms of 
hypertension. Microvasc Res 30, 1-9. 
Soliman, S., Ishrat, T., Pillai, A., Somanath, P.R., Ergul, A., El-Remessy, A.B., and Fagan, S.C. (2014). 
Candesartan induces a prolonged proangiogenic effect and augments endothelium-mediated 
neuroprotection after oxygen and glucose deprivation: role of vascular endothelial growth factors A 
and B. The Journal of pharmacology and experimental therapeutics 349, 444-457. 
Sontag, T.A., Fuermaier, A.B., Hauser, J., Kaunzinger, I., Tucha, O., and Lange, K.W. (2013). Spatial 
memory in spontaneously hypertensive rats (SHR). PLoS One 8, e74660. 
Sparks, F.T., Lehmann, H., Hernandez, K., and Sutherland, R.J. (2011). Suppression of neurotoxic 
lesion-induced seizure activity: evidence for a permanent role for the hippocampus in contextual 
memory. PLoS One 6, e27426. 
Spisni, E., Toni, M., Strillacci, A., Galleri, G., Santi, S., Griffoni, C., and Tomasi, V. (2006). Caveolae and 
caveolae constituents in mechanosensing: effect of modeled microgravity on cultured human 
endothelial cells. Cell biochemistry and biophysics 46, 155-164. 
Sporns, O., Tononi, G., and Edelman, G.M. (2000). Connectivity and complexity: the relationship 
between neuroanatomy and brain dynamics. Neural Netw 13, 909-922. 
Squire, L.R. (2004). Memory systems of the brain: a brief history and current perspective. Neurobiol 
Learn Mem 82, 171-177. 
Squire, L.R. (2009). The legacy of patient H.M. for neuroscience. Neuron 61, 6-9. 
Squire, L.R., and Alvarez, P. (1995). Retrograde amnesia and memory consolidation: a neurobiological 
perspective. Curr Opin Neurobiol 5, 169-177. 
Squire, L.R., and Bayley, P.J. (2007). The neuroscience of remote memory. Curr Opin Neurobiol 17, 
185-196. 
Squire, L.R., Genzel, L., Wixted, J.T., and Morris, R.G. (2015). Memory consolidation. Cold Spring Harb 
Perspect Biol 7, a021766. 
Squire, L.R., Schmolck, H., and Stark, S.M. (2001). Impaired auditory recognition memory in amnesic 
patients with medial temporal lobe lesions. Learn Mem 8, 252-256. 
Squire, L.R., and Zola, S.M. (1996). Structure and function of declarative and nondeclarative memory 
systems. Proc Natl Acad Sci U S A 93, 13515-13522. 
Srinivasan, J., Suresh, B., and Ramanathan, M. (2003). Differential anxiolytic effect of enalapril and 
losartan in normotensive and renal hypertensive rats. Physiology & behavior 78, 585-591. 
Stefanacci, L., Buffalo, E.A., Schmolck, H., and Squire, L.R. (2000). Profound amnesia after damage to 
the medial temporal lobe: A neuroanatomical and neuropsychological profile of patient E. P. J 
Neurosci 20, 7024-7036. 
Strange, B.A., Witter, M.P., Lein, E.S., and Moser, E.I. (2014). Functional organization of the 
hippocampal longitudinal axis. Nat Rev Neurosci 15, 655-669. 



272 
 

Strasser, G.A., Kaminker, J.S., and Tessier-Lavigne, M. (2010). Microarray analysis of retinal 
endothelial tip cells identifies CXCR4 as a mediator of tip cell morphology and branching. Blood 115, 
5102-5110. 
Stroka, D.M., Burkhardt, T., Desbaillets, I., Wenger, R.H., Neil, D.A., Bauer, C., Gassmann, M., and 
Candinas, D. (2001). HIF-1 is expressed in normoxic tissue and displays an organ-specific regulation 
under systemic hypoxia. FASEB J 15, 2445-2453. 
Strupp, B.J., and Levitsky, D.A. (1984). Social transmission of food preferences in adult hooded rats 
(Rattus norvegicus). Journal of comparative psychology 98, 257. 
Struyker-Boudier, H.A., le Noble, J.L., Slaaf, D.W., Smits, J.F., and Tangelder, G.J. (1988). 
Microcirculatory changes in cremaster muscle during early spontaneous hypertension in the rat. J 
Hypertens Suppl 6, S185-187. 
Sugamura, K., and Keaney, J.F., Jr. (2011). Reactive oxygen species in cardiovascular disease. Free 
Radic Biol Med 51, 978-992. 
Sun, B., Zhang, L.F., Gao, F., Ma, X.W., Zhang, M.L., Liu, J., Zhang, L.N., and Ma, J. (2004). Daily short-
period gravitation can prevent functional and structural changes in arteries of simulated microgravity 
rats. J Appl Physiol (1985) 97, 1022-1031. 
Sun, X.Q., Xu, Z.P., Zhang, S., Cao, X.S., and Liu, T.S. (2009). Simulated weightlessness aggravates 
hypergravity-induced impairment of learning and memory and neuronal apoptosis in rats. 
Behavioural brain research 199, 197-202. 
Sun, Y., Jin, K., Xie, L., Childs, J., Mao, X.O., Logvinova, A., and Greenberg, D.A. (2003). VEGF-induced 
neuroprotection, neurogenesis, and angiogenesis after focal cerebral ischemia. J Clin Invest 111, 
1843-1851. 
Suri, C., Jones, P.F., Patan, S., Bartunkova, S., Maisonpierre, P.C., Davis, S., Sato, T.N., and 
Yancopoulos, G.D. (1996). Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during 
embryonic angiogenesis. Cell 87, 1171-1180. 
Sutherland, R.J., O'Brien, J., and Lehmann, H. (2008). Absence of systems consolidation of fear 
memories after dorsal, ventral, or complete hippocampal damage. Hippocampus 18, 710-718. 
Sutherland, R.J., Weisend, M.P., Mumby, D., Astur, R.S., Hanlon, F.M., Koerner, A., Thomas, M.J., Wu, 
Y., Moses, S.N., Cole, C., et al. (2001). Retrograde amnesia after hippocampal damage: recent vs. 
remote memories in two tasks. Hippocampus 11, 27-42. 
Sutterer, J.R., Perry, J., and DeVito, W. (1980). Two-way shuttle box and lever-press avoidance in the 
spontaneously hypertensive and normotensive rat. J Comp Physiol Psychol 94, 155-163. 
Suzuki, W., and Naya, Y. (2011). Two routes for remembering the past. Cell 147, 493-495. 
Svensson, L., Harthon, C., and Linder, B. (1991). Evidence for a dissociation between cardiovascular 
and behavioral reactivity in the spontaneously hypertensive rat. Physiol Behav 49, 661-665. 
Sweatt, J.D. (2001). The neuronal MAP kinase cascade: a biochemical signal integration system 
subserving synaptic plasticity and memory. J Neurochem 76, 1-10. 
Sweeney, M.D., Ayyadurai, S., and Zlokovic, B.V. (2016). Pericytes of the neurovascular unit: key 
functions and signaling pathways. Nat Neurosci 19, 771-783. 
Tabruyn, S.P., Colton, K., Morisada, T., Fuxe, J., Wiegand, S.J., Thurston, G., Coyle, A.J., Connor, J., and 
McDonald, D.M. (2010). Angiopoietin-2-driven vascular remodeling in airway inflammation. Am J 
Pathol 177, 3233-3243. 
Taguchi, H., Heistad, D.D., Kitazono, T., and Faraci, F.M. (1994). ATP-sensitive K+ channels mediate 
dilatation of cerebral arterioles during hypoxia. Circ Res 74, 1005-1008. 
Tajima, A., Hans, F.J., Livingstone, D., Wei, L., Finnegan, W., DeMaro, J., and Fenstermacher, J. (1993). 
Smaller local brain volumes and cerebral atrophy in spontaneously hypertensive rats. Hypertension 
21, 105-111. 
Takashima, A., Jensen, O., Oostenveld, R., Maris, E., van de Coevering, M., and Fernandez, G. (2006). 
Successful declarative memory formation is associated with ongoing activity during encoding in a 
distributed neocortical network related to working memory: a magnetoencephalography study. 
Neuroscience 139, 291-297. 
Takashima, A., Nieuwenhuis, I.L., Jensen, O., Talamini, L.M., Rijpkema, M., and Fernandez, G. (2009). 
Shift from hippocampal to neocortical centered retrieval network with consolidation. J Neurosci 29, 
10087-10093. 



273 
 

Takehara-Nishiuchi, K., and McNaughton, B.L. (2008). Spontaneous changes of neocortical code for 
associative memory during consolidation. Science 322, 960-963. 
Takehara, K., Kawahara, S., and Kirino, Y. (2003). Time-dependent reorganization of the brain 
components underlying memory retention in trace eyeblink conditioning. J Neurosci 23, 9897-9905. 
Takeuchi, T., Duszkiewicz, A.J., and Morris, R.G. (2014). The synaptic plasticity and memory 
hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond B Biol Sci 369, 20130288. 
Tam, S.J., and Watts, R.J. (2010). Connecting vascular and nervous system development: angiogenesis 
and the blood-brain barrier. Annu Rev Neurosci 33, 379-408. 
Tammela, T., Petrova, T.V., and Alitalo, K. (2005). Molecular lymphangiogenesis: new players. Trends 
Cell Biol 15, 434-441. 
Tanaka, K.Z., Pevzner, A., Hamidi, A.B., Nakazawa, Y., Graham, J., and Wiltgen, B.J. (2014). Cortical 
representations are reinstated by the hippocampus during memory retrieval. Neuron 84, 347-354. 
Tarasova, O., Figourina, I., Zotov, A., Borovik, A., and Vinogradova, O. (2001). Effect of tail suspension 
on haemodynamics in intact and sympathectomized rats. European journal of applied physiology 85, 
397-404. 
Taube, J.S. (2007). The head direction signal: origins and sensory-motor integration. Annu Rev 
Neurosci 30, 181-207. 
Taube, J.S., Muller, R.U., and Ranck, J.B., Jr. (1990). Head-direction cells recorded from the 
postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10, 420-435. 
Tayebati, S.K., Tomassoni, D., and Amenta, F. (2012). Spontaneously hypertensive rat as a model of 
vascular brain disorder: microanatomy, neurochemistry and behavior. J Neurol Sci 322, 241-249. 
Tayler, K.K., Tanaka, K.Z., Reijmers, L.G., and Wiltgen, B.J. (2013). Reactivation of neural ensembles 
during the retrieval of recent and remote memory. Curr Biol 23, 99-106. 
Taylor, C.R., Hanna, M., Behnke, B.J., Stabley, J.N., McCullough, D.J., Davis, R.T., 3rd, Ghosh, P., 
Papadopoulos, A., Muller-Delp, J.M., and Delp, M.D. (2013). Spaceflight-induced alterations in 
cerebral artery vasoconstrictor, mechanical, and structural properties: implications for elevated 
cerebral perfusion and intracranial pressure. FASEB journal : official publication of the Federation of 
American Societies for Experimental Biology 27, 2282-2292. 
Teixeira, C.M., Pomedli, S.R., Maei, H.R., Kee, N., and Frankland, P.W. (2006). Involvement of the 
anterior cingulate cortex in the expression of remote spatial memory. J Neurosci 26, 7555-7564. 
Temple, M.D., Kosik, K.S., and Steward, O. (2002). Spatial learning and memory is preserved in rats 
after early development in a microgravity environment. Neurobiology of learning and memory 78, 
199-216. 
Teyler, T.J., and DiScenna, P. (1986). The hippocampal memory indexing theory. Behav Neurosci 100, 
147-154. 
Teyler, T.J., and Rudy, J.W. (2007). The hippocampal indexing theory and episodic memory: updating 
the index. Hippocampus 17, 1158-1169. 
Thomas, K.L., Hall, J., and Everitt, B.J. (2002). Cellular imaging with zif268 expression in the rat 
nucleus accumbens and frontal cortex further dissociates the neural pathways activated following 
the retrieval of contextual and cued fear memory. Eur J Neurosci 16, 1789-1796. 
Thomas, M., and Augustin, H.G. (2009). The role of the Angiopoietins in vascular morphogenesis. 
Angiogenesis 12, 125-137. 
Thomas, W.E. (1999). Brain macrophages: on the role of pericytes and perivascular cells. Brain Res 
Brain Res Rev 31, 42-57. 
Thompson, C.L., Pathak, S.D., Jeromin, A., Ng, L.L., MacPherson, C.R., Mortrud, M.T., Cusick, A., Riley, 
Z.L., Sunkin, S.M., Bernard, A., et al. (2008). Genomic anatomy of the hippocampus. Neuron 60, 1010-
1021. 
Thullier, F., Hayzoun, K., Dubois, M., Lestienne, F., and Lalonde, R. (2002). Exploration and motor 
activity in juvenile and adult rats exposed to hypergravity at 1.8 G during development: a preliminary 
report. Physiology & behavior 76, 617-622. 
Thurston, G., and Daly, C. (2012). The complex role of angiopoietin-2 in the angiopoietin-tie signaling 
pathway. Cold Spring Harb Perspect Med 2, a006550. 
Tiret, P., Chaigneau, E., Lecoq, J., and Charpak, S. (2009). Two-photon imaging of capillary blood flow 
in olfactory bulb glomeruli. Methods Mol Biol 489, 81-91. 



274 
 

Tirziu, D., Jaba, I.M., Yu, P., Larrivee, B., Coon, B.G., Cristofaro, B., Zhuang, Z.W., Lanahan, A.A., 
Schwartz, M.A., Eichmann, A., et al. (2012). Endothelial nuclear factor-kappaB-dependent regulation 
of arteriogenesis and branching. Circulation 126, 2589-2600. 
Togashi, H., Kimura, S., Matsumoto, M., Yoshioka, M., Minami, M., and Saito, H. (1996). Cholinergic 
changes in the hippocampus of stroke-prone spontaneously hypertensive rats. Stroke 27, 520-525; 
discussion 525-526. 
Tomassoni, D., Avola, R., Di Tullio, M.A., Sabbatini, M., Vitaioli, L., and Amenta, F. (2004). Increased 
expression of glial fibrillary acidic protein in the brain of spontaneously hypertensive rats. Clin Exp 
Hypertens 26, 335-350. 
Tonegawa, S., Liu, X., Ramirez, S., and Redondo, R. (2015a). Memory Engram Cells Have Come of Age. 
Neuron 87, 918-931. 
Tonegawa, S., Pignatelli, M., Roy, D.S., and Ryan, T.J. (2015b). Memory engram storage and retrieval. 
Curr Opin Neurobiol 35, 101-109. 
Tong, X.K., Lecrux, C., Rosa-Neto, P., and Hamel, E. (2012). Age-dependent rescue by simvastatin of 
Alzheimer's disease cerebrovascular and memory deficits. J Neurosci 32, 4705-4715. 
Touyz, R.M., Tabet, F., and Schiffrin, E.L. (2003). Redox-dependent signalling by angiotensin II and 
vascular remodelling in hypertension. Clinical and Experimental Pharmacology and Physiology 30, 
860-866. 
Traub, O., Lloyd, M.C., and Webb, R.C. (1995). Long-term effects of brief antihypertensive treatment 
on systolic blood pressure and vascular reactivity in young genetically hypertensive rats. Cardiovasc 
Drugs Ther 9, 421-429. 
Trippodo, N.C., and Frohlich, E.D. (1981). Similarities of genetic (spontaneous) hypertension. Man 
and rat. Circ Res 48, 309-319. 
Tse, D., Langston, R.F., Kakeyama, M., Bethus, I., Spooner, P.A., Wood, E.R., Witter, M.P., and Morris, 
R.G. (2007). Schemas and memory consolidation. Science 316, 76-82. 
Tse, D., Takeuchi, T., Kakeyama, M., Kajii, Y., Okuno, H., Tohyama, C., Bito, H., and Morris, R.G. 
(2011). Schema-dependent gene activation and memory encoding in neocortex. Science 333, 891-
895. 
Tuday, E.C., Meck, J.V., Nyhan, D., Shoukas, A.A., and Berkowitz, D.E. (2007). Microgravity-induced 
changes in aortic stiffness and their role in orthostatic intolerance. J Appl Physiol (1985) 102, 853-
858. 
Tuday, E.C., Nyhan, D., Shoukas, A.A., and Berkowitz, D.E. (2009). Simulated microgravity-induced 
aortic remodeling. J Appl Physiol (1985) 106, 2002-2008. 
Tulving, E. (1972 ). Episodic and Semantic memory. In organization of memory. Academic press, NY 
381-403. 
Tulving, E. (1985). Memory and consciousness. Canadian Psychology 26, 1-12. 
Turkkan, J.S. (1988). Behavioral performance effects of antihypertensive drugs: human and animal 
studies. Neurosci Biobehav Rev 12, 111-122. 
Turlejski, T., Humoud, I., Desai, R., Smith, K.J., and Marina, N. (2016). Immunohistochemical evidence 
of tissue hypoxia and astrogliosis in the rostral ventrolateral medulla of spontaneously hypertensive 
rats. Brain Res 1650, 178-183. 
Turner, M.E., Johnson, M.L., and Ely, D.L. (1991). Separate sex-influenced and genetic components in 
spontaneously hypertensive rat hypertension. Hypertension 17, 1097-1103. 
Tzima, E., Irani-Tehrani, M., Kiosses, W.B., Dejana, E., Schultz, D.A., Engelhardt, B., Cao, G., DeLisser, 
H., and Schwartz, M.A. (2005). A mechanosensory complex that mediates the endothelial cell 
response to fluid shear stress. Nature 437, 426-431. 
Ucuzian, A.A., Gassman, A.A., East, A.T., and Greisler, H.P. (2010). Molecular mediators of 
angiogenesis. J Burn Care Res 31, 158-175. 
Vacher, E., Richer, C., and Giudicelli, J.F. (1996). Effects of losartan on cerebral arteries in stroke-
prone spontaneously hypertensive rats. J Hypertens 14, 1341-1348. 
Vaithianathan, T., Narayanan, D., Asuncion-Chin, M.T., Jeyakumar, L.H., Liu, J., Fleischer, S., Jaggar, 
J.H., and Dopico, A.M. (2010). Subtype identification and functional characterization of ryanodine 
receptors in rat cerebral artery myocytes. Am J Physiol Cell Physiol 299, C264-278. 



275 
 

Valable, S., Bellail, A., Lesne, S., Liot, G., Mackenzie, E.T., Vivien, D., Bernaudin, M., and Petit, E. 
(2003). Angiopoietin-1-induced PI3-kinase activation prevents neuronal apoptosis. FASEB J 17, 443-
445. 
Valenti, R., Pantoni, L., and Markus, H.S. (2014). Treatment of vascular risk factors in patients with a 
diagnosis of Alzheimer's disease: a systematic review. BMC Med 12, 160. 
van der Kooij, M.A., and Sandi, C. (2012). Social memories in rodents: methods, mechanisms and 
modulation by stress. Neuroscience and biobehavioral reviews 36, 1763-1772. 
van der Staay, F.J., and de Jonge, M. (1993). Effects of age on water escape behavior and on repeated 
acquisition in rats. Behav Neural Biol 60, 33-41. 
van Kesteren, M.T., Ruiter, D.J., Fernandez, G., and Henson, R.N. (2012). How schema and novelty 
augment memory formation. Trends Neurosci 35, 211-219. 
VanLoon (2016). Centrifuges for Microgravity Simulation. The Reduced Gravity Paradigm. frontiers in 
astronomy and space sciences 3. 
Varghese, A.J., Gulyas, S., and Mohindra, J.K. (1976). Hypoxia-dependent reduction of 1-(2-nitro-1-
imidazolyl)-3-methoxy-2-propanol by Chinese hamster ovary cells and KHT tumor cells in vitro and in 
vivo. Cancer Res 36, 3761-3765. 
Venkat, P., Chopp, M., and Chen, J. (2016). New insights into coupling and uncoupling of cerebral 
blood flow and metabolism in the brain. Croat Med J 57, 223-228. 
Vetere, G., Restivo, L., Cole, C.J., Ross, P.J., Ammassari-Teule, M., Josselyn, S.A., and Frankland, P.W. 
(2011). Spine growth in the anterior cingulate cortex is necessary for the consolidation of contextual 
fear memory. Proc Natl Acad Sci U S A 108, 8456-8460. 
Veyrac, A., Besnard, A., Caboche, J., Davis, S., and Laroche, S. (2014). The transcription factor 
Zif268/Egr1, brain plasticity, and memory. Prog Mol Biol Transl Sci 122, 89-129. 
Vilar, J., Waeckel, L., Bonnin, P., Cochain, C., Loinard, C., Duriez, M., Silvestre, J.S., and Levy, B.I. 
(2008). Chronic hypoxia-induced angiogenesis normalizes blood pressure in spontaneously 
hypertensive rats. Circ Res 103, 761-769. 
Villa, N., Walker, L., Lindsell, C.E., Gasson, J., Iruela-Arispe, M.L., and Weinmaster, G. (2001). Vascular 
expression of Notch pathway receptors and ligands is restricted to arterial vessels. Mech Dev 108, 
161-164. 
Vizuete, M.L., Venero, J.L., Vargas, C., Ilundain, A.A., Echevarria, M., Machado, A., and Cano, J. (1999). 
Differential upregulation of aquaporin-4 mRNA expression in reactive astrocytes after brain injury: 
potential role in brain edema. Neurobiol Dis 6, 245-258. 
Voets, T., and Nilius, B. (2009). TRPCs, GPCRs and the Bayliss effect. EMBO J 28, 4-5. 
Wagner, T., Axmacher, N., Lehnertz, K., Elger, C.E., and Fell, J. (2010). Sleep-dependent directional 
coupling between human neocortex and hippocampus. Cortex 46, 256-263. 
Wakui, S., Yokoo, K., Muto, T., Suzuki, Y., Takahashi, H., Furusato, M., Hano, H., Endou, H., and Kanai, 
Y. (2006). Localization of Ang-1, -2, Tie-2, and VEGF expression at endothelial-pericyte interdigitation 
in rat angiogenesis. Lab Invest 86, 1172-1184. 
Walchli, T., Mateos, J.M., Weinman, O., Babic, D., Regli, L., Hoerstrup, S.P., Gerhardt, H., Schwab, 
M.E., and Vogel, J. (2015). Quantitative assessment of angiogenesis, perfused blood vessels and 
endothelial tip cells in the postnatal mouse brain. Nat Protoc 10, 53-74. 
Walker, M.P., and Stickgold, R. (2004). Sleep-dependent learning and memory consolidation. Neuron 
44, 121-133. 
Wallace, C.S., Withers, G.S., Farnand, A., Lobingier, B.T., and McCleery, E.J. (2011). Evidence that 
angiogenesis lags behind neuron and astrocyte growth in experience-dependent plasticity. Dev 
Psychobiol 53, 435-442. 
Walther, T., Menrad, A., Orzechowski, H.D., Siemeister, G., Paul, M., and Schirner, M. (2003). 
Differential regulation of in vivo angiogenesis by angiotensin II receptors. FASEB J 17, 2061-2067. 
Wang, B., Liu, Z., Zhang, M., San, X., Zhang, Y., Zhang, W., and Wang, M. (2013a). Interfering growth 
of malignant melanoma with Ang2-siRNA. Mol Biol Rep 40, 1463-1471. 
Wang, H., Hu, Y., and Tsien, J.Z. (2006). Molecular and systems mechanisms of memory consolidation 
and storage. Prog Neurobiol 79, 123-135. 



276 
 

Wang, H., Olszewski, B., Rosebury, W., Wang, D., Robertson, A., and Keiser, J.A. (2004). Impaired 
angiogenesis in SHR is associated with decreased KDR and MT1-MMP expression. Biochem Biophys 
Res Commun 315, 363-368. 
Wang, L., Du, Y., Wang, K., Xu, G., Luo, S., and He, G. (2016a). Chronic cerebral hypoperfusion induces 
memory deficits and facilitates Abeta generation in C57BL/6J mice. Exp Neurol 283, 353-364. 
Wang, M.M., Klaus, J.A., Joh, H.D., Traystman, R.J., and Hurn, P.D. (2002). Postischemic angiogenic 
factor expression in stroke-prone rats. Exp Neurol 173, 283-288. 
Wang, P., Xie, Z.H., Guo, Y.J., Zhao, C.P., Jiang, H., Song, Y., Zhu, Z.Y., Lai, C., Xu, S.L., and Bi, J.Z. 
(2011). VEGF-induced angiogenesis ameliorates the memory impairment in APP transgenic mouse 
model of Alzheimer's disease. Biochem Biophys Res Commun 411, 620-626. 
Wang, S.H., and Morris, R.G. (2010). Hippocampal-neocortical interactions in memory formation, 
consolidation, and reconsolidation. Annu Rev Psychol 61, 49-79, C41-44. 
Wang, Y., Javed, I., Liu, Y., Lu, S., Peng, G., Zhang, Y., Qing, H., and Deng, Y. (2016b). Effect of 
Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe 
Space Travel. Journal of proteome research 15, 29-37. 
Wang, Y.C., Lu, D.Y., Shi, F., Zhang, S., Yang, C.B., Wang, B., Cao, X.S., Du, T.Y., Gao, Y., Zhao, J.D., et 
al. (2013b). Clinorotation enhances autophagy in vascular endothelial cells. Biochem Cell Biol 91, 
309-314. 
Wang, Y.C., Zhang, S., Du, T.Y., Wang, B., and Sun, X.Q. (2009). Clinorotation upregulates inducible 
nitric oxide synthase by inhibiting AP-1 activation in human umbilical vein endothelial cells. Journal of 
cellular biochemistry 107, 357-363. 
Ward, N.L., Putoczki, T., Mearow, K., Ivanco, T.L., and Dumont, D.J. (2005). Vascular-specific growth 
factor angiopoietin 1 is involved in the organization of neuronal processes. J Comp Neurol 482, 244-
256. 
Wei, L., Lin, S.Z., Tajima, A., Nakata, H., Acuff, V., Patlak, C., Pettigrew, K., and Fenstermacher, J. 
(1992). Cerebral glucose utilization and blood flow in adult spontaneously hypertensive rats. 
Hypertension 20, 501-510. 
Wells, A.M., Janes, A.C., Liu, X., Deschepper, C.F., Kaufman, M.J., and Kantak, K.M. (2010). Medial 
temporal lobe functioning and structure in the spontaneously hypertensive rat: comparison with 
Wistar-Kyoto normotensive and Wistar-Kyoto hypertensive strains. Hippocampus 20, 787-797. 
Werber, A.H., Fitch-Burke, M.C., Harrington, D.G., and Shah, J. (1990). No rarefaction of cerebral 
arterioles in hypertensive rats. Can J Physiol Pharmacol 68, 476-479. 
Wheeler, A.L., Teixeira, C.M., Wang, A.H., Xiong, X., Kovacevic, N., Lerch, J.P., McIntosh, A.R., 
Parkinson, J., and Frankland, P.W. (2013). Identification of a functional connectome for long-term 
fear memory in mice. PLoS Comput Biol 9, e1002853. 
Widy-Tyszkiewicz, E., Scheel-Kruger, J., and Christensen, A.V. (1993). Spatial navigation learning in 
spontaneously hypertensive, renal hypertensive and normotensive Wistar rats. Behav Brain Res 54, 
179-185. 
Wierzynski, C.M., Lubenov, E.V., Gu, M., and Siapas, A.G. (2009). State-dependent spike-timing 
relationships between hippocampal and prefrontal circuits during sleep. Neuron 61, 587-596. 
Wiesmann, M., Kiliaan, A.J., and Claassen, J.A. (2013). Vascular aspects of cognitive impairment and 
dementia. J Cereb Blood Flow Metab 33, 1696-1706. 
Wilkerson, M.K., Lesniewski, L.A., Golding, E.M., Bryan, R.M., Jr., Amin, A., Wilson, E., and Delp, M.D. 
(2005). Simulated microgravity enhances cerebral artery vasoconstriction and vascular resistance 
through endothelial nitric oxide mechanism. American journal of physiology Heart and circulatory 
physiology 288, H1652-1661. 
Willam, C., Koehne, P., Jurgensen, J.S., Grafe, M., Wagner, K.D., Bachmann, S., Frei, U., and Eckardt, 
K.U. (2000). Tie2 receptor expression is stimulated by hypoxia and proinflammatory cytokines in 
human endothelial cells. Circ Res 87, 370-377. 
Williams, B., Baker, A.Q., Gallacher, B., and Lodwick, D. (1995). Angiotensin II increases vascular 
permeability factor gene expression by human vascular smooth muscle cells. Hypertension 25, 913-
917. 
Williams, D., Kuipers, A., Mukai, C., and Thirsk, R. (2009). Acclimation during space flight: effects on 
human physiology. CMAJ 180, 1317-1323. 



277 
 

Wilson, M.H. (2016). Monro-Kellie 2.0: The dynamic vascular and venous pathophysiological 
components of intracranial pressure. Journal of cerebral blood flow and metabolism : official journal 
of the International Society of Cerebral Blood Flow and Metabolism 36, 1338-1350. 
Wiltgen, B.J., Brown, R.A., Talton, L.E., and Silva, A.J. (2004). New circuits for old memories: the role 
of the neocortex in consolidation. Neuron 44, 101-108. 
Wiltgen, B.J., and Silva, A.J. (2007). Memory for context becomes less specific with time. Learn Mem 
14, 313-317. 
Wiltgen, B.J., Zhou, M., Cai, Y., Balaji, J., Karlsson, M.G., Parivash, S.N., Li, W., and Silva, A.J. (2010). 
The hippocampus plays a selective role in the retrieval of detailed contextual memories. Curr Biol 20, 
1336-1344. 
Winocur, G. (1990). Anterograde and retrograde amnesia in rats with dorsal hippocampal or 
dorsomedial thalamic lesions. Behav Brain Res 38, 145-154. 
Winocur, G., and Moscovitch, M. (2011). Memory transformation and systems consolidation. J Int 
Neuropsychol Soc 17, 766-780. 
Winocur, G., Moscovitch, M., and Bontempi, B. (2010). Memory formation and long-term retention 
in humans and animals: convergence towards a transformation account of hippocampal-neocortical 
interactions. Neuropsychologia 48, 2339-2356. 
Winocur, G., Moscovitch, M., and Sekeres, M. (2007). Memory consolidation or transformation: 
context manipulation and hippocampal representations of memory. Nat Neurosci 10, 555-557. 
Winocur, G., Sekeres, M.J., Binns, M.A., and Moscovitch, M. (2013). Hippocampal lesions produce 
both nongraded and temporally graded retrograde amnesia in the same rat. Hippocampus 23, 330-
341. 
Wong, A.L., Haroon, Z.A., Werner, S., Dewhirst, M.W., Greenberg, C.S., and Peters, K.G. (1997). Tie2 
expression and phosphorylation in angiogenic and quiescent adult tissues. Circ Res 81, 567-574. 
Woywodt, A., Bahlmann, F.H., De Groot, K., Haller, H., and Haubitz, M. (2002). Circulating endothelial 
cells: life, death, detachment and repair of the endothelial cell layer. Nephrol Dial Transplant 17, 
1728-1730. 
Wray, S., and Burdyga, T. (2010). Sarcoplasmic reticulum function in smooth muscle. Physiol Rev 90, 
113-178. 
Wright, J.W., Kawas, L.H., and Harding, J.W. (2013). A Role for the Brain RAS in Alzheimer's and 
Parkinson's Diseases. Frontiers in endocrinology 4, 158. 
Wu, L.W., Mayo, L.D., Dunbar, J.D., Kessler, K.M., Baerwald, M.R., Jaffe, E.A., Wang, D., Warren, R.S., 
and Donner, D.B. (2000). Utilization of distinct signaling pathways by receptors for vascular 
endothelial cell growth factor and other mitogens in the induction of endothelial cell proliferation. J 
Biol Chem 275, 5096-5103. 
Wultz, B., Sagvolden, T., Moser, E.I., and Moser, M.B. (1990). The spontaneously hypertensive rat as 
an animal model of attention-deficit hyperactivity disorder: effects of methylphenidate on 
exploratory behavior. Behav Neural Biol 53, 88-102. 
Wyss, J.M., Chambless, B.D., Kadish, I., and van Groen, T. (2000). Age-related decline in water maze 
learning and memory in rats: strain differences. Neurobiol Aging 21, 671-681. 
Wyss, J.M., Fisk, G., and van Groen, T. (1992). Impaired learning and memory in mature 
spontaneously hypertensive rats. Brain Res 592, 135-140. 
Xie, M.J., Ma, Y.G., Gao, F., Bai, Y.G., Cheng, J.H., Chang, Y.M., Yu, Z.B., and Ma, J. (2010). Activation 
of BKCa channel is associated with increased apoptosis of cerebrovascular smooth muscle cells in 
simulated microgravity rats. American journal of physiology Cell physiology 298, C1489-1500. 
Xie, M.J., Zhang, L.F., Ma, J., and Cheng, H.W. (2005). Functional alterations in cerebrovascular K(+) 
and Ca(2+) channels are comparable between simulated microgravity rat and SHR. American journal 
of physiology Heart and circulatory physiology 289, H1265-1276. 
Xiong, Y., Zhang, Y., Mahmood, A., Meng, Y., Qu, C., and Chopp, M. (2011). Erythropoietin mediates 
neurobehavioral recovery and neurovascular remodeling following traumatic brain injury in rats by 
increasing expression of vascular endothelial growth factor. Transl Stroke Res 2, 619-632. 
Xu, K., and Lamanna, J.C. (2006). Chronic hypoxia and the cerebral circulation. J Appl Physiol (1985) 
100, 725-730. 



278 
 

Xu, K., Puchowicz, M.A., and LaManna, J.C. (2004). Renormalization of regional brain blood flow 
during prolonged mild hypoxic exposure in rats. Brain Res 1027, 188-191. 
Xue, J.H., Chen, L.H., Zhao, H.Z., Pu, Y.D., Feng, H.Z., Ma, Y.G., Ma, J., Chang, Y.M., Zhang, Z.M., and 
Xie, M.J. (2011). Differential regulation and recovery of intracellular Ca2+ in cerebral and small 
mesenteric arterial smooth muscle cells of simulated microgravity rat. PloS one 6, e19775. 
Xue, J.H., Zhang, L.F., Ma, J., and Xie, M.J. (2007). Differential regulation of L-type Ca2+ channels in 
cerebral and mesenteric arteries after simulated microgravity in rats and its intervention by standing. 
American journal of physiology Heart and circulatory physiology 293, H691-701. 
Yamada, S., Kagawa, Y., Ushijima, H., Takayanagi, N., Tomita, T., and Hayashi, E. (1987). Brain nicotine 
cholinoceptor binding in spontaneous hypertension. Brain Res 410, 212-218. 
Yamagata, K., Andreasson, K.I., Kaufmann, W.E., Barnes, C.A., and Worley, P.F. (1993). Expression of a 
mitogen-inducible cyclooxygenase in brain neurons: regulation by synaptic activity and 
glucocorticoids. Neuron 11, 371-386. 
Yamakawa, H., Jezova, M., Ando, H., and Saavedra, J.M. (2003a). Normalization of endothelial and 
inducible nitric oxide synthase expression in brain microvessels of spontaneously hypertensive rats 
by angiotensin II AT1 receptor inhibition. J Cereb Blood Flow Metab 23, 371-380. 
Yamakawa, M., Liu, L.X., Date, T., Belanger, A.J., Vincent, K.A., Akita, G.Y., Kuriyama, T., Cheng, S.H., 
Gregory, R.J., and Jiang, C. (2003b). Hypoxia-inducible factor-1 mediates activation of cultured 
vascular endothelial cells by inducing multiple angiogenic factors. Circ Res 93, 664-673. 
Yamashima, T., Tonchev, A.B., Vachkov, I.H., Popivanova, B.K., Seki, T., Sawamoto, K., and Okano, H. 
(2004). Vascular adventitia generates neuronal progenitors in the monkey hippocampus after 
ischemia. Hippocampus 14, 861-875. 
Yang, G., Zhang, Y., Ross, M.E., and Iadecola, C. (2003a). Attenuation of activity-induced increases in 
cerebellar blood flow in mice lacking neuronal nitric oxide synthase. Am J Physiol Heart Circ Physiol 
285, H298-304. 
Yang, J.C., Haworth, L., Sherry, R.M., Hwu, P., Schwartzentruber, D.J., Topalian, S.L., Steinberg, S.M., 
Chen, H.X., and Rosenberg, S.A. (2003b). A randomized trial of bevacizumab, an anti-vascular 
endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349, 427-434. 
Yang, R., Ogasawara, A.K., Zioncheck, T.F., Ren, Z., He, G.W., DeGuzman, G.G., Pelletier, N., Shen, 
B.Q., Bunting, S., and Jin, H. (2002). Exaggerated hypotensive effect of vascular endothelial growth 
factor in spontaneously hypertensive rats. Hypertension 39, 815-820. 
Yenari, M.A., Xu, L., Tang, X.N., Qiao, Y., and Giffard, R.G. (2006). Microglia potentiate damage to 
blood-brain barrier constituents: improvement by minocycline in vivo and in vitro. Stroke 37, 1087-
1093. 
Yu, J., deMuinck, E.D., Zhuang, Z., Drinane, M., Kauser, K., Rubanyi, G.M., Qian, H.S., Murata, T., 
Escalante, B., and Sessa, W.C. (2005). Endothelial nitric oxide synthase is critical for ischemic 
remodeling, mural cell recruitment, and blood flow reserve. Proc Natl Acad Sci U S A 102, 10999-
11004. 
Yuan, Y., Hilliard, G., Ferguson, T., and Millhorn, D.E. (2003). Cobalt inhibits the interaction between 
hypoxia-inducible factor-alpha and von Hippel-Lindau protein by direct binding to hypoxia-inducible 
factor-alpha. J Biol Chem 278, 15911-15916. 
Zachary, I., and Gliki, G. (2001). Signaling transduction mechanisms mediating biological actions of 
the vascular endothelial growth factor family. Cardiovasc Res 49, 568-581. 
Zago, S., Ferrucci, R., Marceglia, S., and Priori, A. (2009). The Mosso method for recording brain 
pulsation: the forerunner of functional neuroimaging. Neuroimage 48, 652-656. 
Zakrzewicz, A., Secomb, T.W., and Pries, A.R. (2002). Angioadaptation: keeping the vascular system in 
shape. News Physiol Sci 17, 197-201. 
Zangenehpour, S., and Chaudhuri, A. (2002). Differential induction and decay curves of c-fos and 
zif268 revealed through dual activity maps. Brain Res Mol Brain Res 109, 221-225. 
Zelikowsky, M., Hersman, S., Chawla, M.K., Barnes, C.A., and Fanselow, M.S. (2014). Neuronal 
ensembles in amygdala, hippocampus, and prefrontal cortex track differential components of 
contextual fear. J Neurosci 34, 8462-8466. 



279 
 

Zeng, G., Taylor, S.M., McColm, J.R., Kappas, N.C., Kearney, J.B., Williams, L.H., Hartnett, M.E., and 
Bautch, V.L. (2007). Orientation of endothelial cell division is regulated by VEGF signaling during 
blood vessel formation. Blood 109, 1345-1352. 
Zetter, B.R. (2008). The scientific contributions of M. Judah Folkman to cancer research. Nat Rev 
Cancer 8, 647-654. 
Zhang-James, Y., Middleton, F.A., and Faraone, S.V. (2013). Genetic architecture of Wistar-Kyoto rat 
and spontaneously hypertensive rat substrains from different sources. Physiol Genomics 45, 528-538. 
Zhang, L., Lu, L., Chan, W.M., Huang, Y., Wai, M.S., and Yew, D.T. (2012). Effects of DL-3-n-
butylphthalide on vascular dementia and angiogenesis. Neurochem Res 37, 911-919. 
Zhang, L., Yang, N., Park, J.W., Katsaros, D., Fracchioli, S., Cao, G., O'Brien-Jenkins, A., Randall, T.C., 
Rubin, S.C., and Coukos, G. (2003a). Tumor-derived vascular endothelial growth factor up-regulates 
angiopoietin-2 in host endothelium and destabilizes host vasculature, supporting angiogenesis in 
ovarian cancer. Cancer Res 63, 3403-3412. 
Zhang, L.F., Sun, B., Cao, X.S., Liu, C., Yu, Z.B., Zhang, L.N., Cheng, J.H., Wu, Y.H., and Wu, X.Y. (2003b). 
Effectiveness of intermittent -Gx gravitation in preventing deconditioning due to simulated 
microgravity. J Appl Physiol (1985) 95, 207-218. 
Zhang, R., Bai, Y.G., Lin, L.J., Bao, J.X., Zhang, Y.Y., Tang, H., Cheng, J.H., Jia, G.L., Ren, X.L., and Ma, J. 
(2009). Blockade of AT1 receptor partially restores vasoreactivity, NOS expression, and superoxide 
levels in cerebral and carotid arteries of hindlimb unweighting rats. J Appl Physiol (1985) 106, 251-
258. 
Zhang, R., Ran, H.H., Cai, L.L., Zhu, L., Sun, J.F., Peng, L., Liu, X.J., Zhang, L.N., Fang, Z., Fan, Y.Y., et al. 
(2014a). Simulated microgravity-induced mitochondrial dysfunction in rat cerebral arteries. FASEB 
journal : official publication of the Federation of American Societies for Experimental Biology 28, 
2715-2724. 
Zhang, Y., Lau, P., Pansky, A., Kassack, M., Hemmersbach, R., and Tobiasch, E. (2014b). The influence 
of simulated microgravity on purinergic signaling is different between individual culture and 
endothelial and smooth muscle cell coculture. BioMed research international 2014, 413708. 
Zheng, C., Skold, M.K., Li, J., Nennesmo, I., Fadeel, B., and Henter, J.I. (2007). VEGF reduces 
astrogliosis and preserves neuromuscular junctions in ALS transgenic mice. Biochem Biophys Res 
Commun 363, 989-993. 
Zheng, W., Seftor, E.A., Meininger, C.J., Hendrix, M.J., and Tomanek, R.J. (2001). Mechanisms of 
coronary angiogenesis in response to stretch: role of VEGF and TGF-beta. Am J Physiol Heart Circ 
Physiol 280, H909-917. 
Zhu, X.H., Qiao, H., Du, F., Xiong, Q., Liu, X., Zhang, X., Ugurbil, K., and Chen, W. (2012). Quantitative 
imaging of energy expenditure in human brain. Neuroimage 60, 2107-2117. 
Zlokovic, B.V. (2008). The blood-brain barrier in health and chronic neurodegenerative disorders. 
Neuron 57, 178-201. 
Zola-Morgan, S., Squire, L.R., and Amaral, D.G. (1986). Human amnesia and the medial temporal 
region: enduring memory impairment following a bilateral lesion limited to field CA1 of the 
hippocampus. J Neurosci 6, 2950-2967. 
Zola-Morgan, S., Squire, L.R., and Ramus, S.J. (1994). Severity of memory impairment in monkeys as a 
function of locus and extent of damage within the medial temporal lobe memory system. 
Hippocampus 4, 483-495. 
Zola-Morgan, S.M., and Squire, L.R. (1990). The primate hippocampal formation: evidence for a time-
limited role in memory storage. Science 250, 288-290. 
Zonta, M., Angulo, M.C., Gobbo, S., Rosengarten, B., Hossmann, K.A., Pozzan, T., and Carmignoto, G. 
(2003). Neuron-to-astrocyte signaling is central to the dynamic control of brain microcirculation. Nat 
Neurosci 6, 43-50. 

 
  



280 
 

 

ANNEXES 

  



281 
 

 

 

Publications and communications: 

Communications: 

 Dynamics of vascular changes in spontaneously hypertensive rats during memory 
consolidation. Pulga A., Bontempi B., Morel JL. 14th Scientific Day of the Graduate School 
of Life Sciences and Health of Bordeaux, Arcachon, France. April 9, 2014 
 

 Comparison of effects due to corticosterone injection and hypergravity on mouse 
hippocampal transcriptome. Alice Pulga, Yves Porte, Jean-Luc Morel 9th FENS Forum of 
Neuroscience Milan, Italy. July 5-9, 2014 
 

 Dynamics of vascular changes in spontaneously hypertensive rats during memory 
consolidation. Pulga A., Costet A., Giacinti A., Hambucken A., Biendon N., Macrez N., 
Bontempi B., Morel JL. 15th Scientific Day of the Graduate School of Life Sciences and 
Health of Bordeaux, Arcachon, France. April 16, 2015 
 

 Dynamics of vascular changes during memory consolidation in hypertensive rats. Equipe 
Bontempi.  HCERES IMN Bordeaux, France. February 11-12, 2015 
 

 Modelization of hypertension-induced memory deficit in rat. Annabelle Costet*, Alice 
Pulga*, Jean-Luc Morel. EAVPT 2015, Nantes, France. July 19-22, 2015 
 

 Memory consolidation and cerebral angiogenesis are impaired in a rat model of 
hypertension. Pulga A., Hambucken A., Biendon N., Costet A., Giacinti A., Macrez N., 
Bontempi B., Morel JL.  16th Scientific Day of the Graduate School of Life Sciences and 
Health of Bordeaux, Arcachon, France. April 6, 2016 
 

 Cerebrovascular modifications induced by hypergravity: effects on blood brain barrier. 
Pulga A., Vanden Bossche A., Vico L., Morel JL. Federation of European Physiological 
Societies and the French Physiological Society, Paris, France. 29th June-1st July 2016  
 

 Deleterious effects of hypertension on the organization of recent and remote memories in the 

spontaneously hypertensive rat. Pulga A., Hambucken A., Costet A., Morel J.L.*, Bontempi B.* 
Society for Neuroscience 2016 Annual Meeting, San Diego, California. Nov 12–16, 2016 

Publications: 

 Changes in C57BL6 mouse hippocampal transcriptome induced by hypergravity mimic 
acute corticosterone-induced stress. Alice Pulga, Yves Porte, Jean-Luc MOREL. Submitted 
to Journal: Frontiers in Molecular Neuroscience 

  



282 
 

Changes in C57BL6 mouse hippocampal transcriptome induced 

by hypergravity mimic acute corticosterone-induced stress. 

Alice Pulga1,2#, Yves Porte1,2#, Jean-Luc Morel1,2*. 

1 Université de Bordeaux, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France.  

2 CNRS, Institut des Maladies Neurodégénératives, UMR 5293, F-33000 Bordeaux, France. 

# equally participated to this work. 

*Correspondence: Jean-Luc MOREL 

e-mail: jean-luc.morel@u-bordeaux.fr 

Running title: Hypergravity effects on hippocampal transcriptome 

Key words: Aging, chronic stress, acute stress, gravity, hippocampus, transcriptome, Illumina 

 

 

Abstract 

Centrifugation is a widely used procedure to study the impact of altered gravity on Earth, as observed 
during spaceflights, allowing us to understand how a long-term physical constraint can condition the 
mammalian physiology. It is known that mice, placed in classical cages and bred during 21 days in a 
centrifuge at 3G gravity level, undergo physiological adaptations due to hypergravity and/or stress. 
Indeed, an increase of corticosterone levels has been previously measured in the plasma of 3G-
exposed mice. Corticosterone is known to modify neuronal activity during memory processes. 
Although measurements of learning and memory cannot be performed in the centrifuge, literature 
largely described a large panel of proteins (channels, second messengers, transcription factors, 
structural proteins) which expressions are modified during memory processing. Thus, we used the 
Illumina technology to compare the whole hippocampal transcriptome of three groups of C57Bl6/J 
mice, in order to gain insights into the effects of hypergravity on cerebral functions. Namely, a group 
of 21 days 3G-centrifuged mice was compared to (1) a group subjected to an acute corticosterone 
injection, (2) a group receiving a transdermal chronic administration of corticosterone during 21 days 
and (3) aged mice because aging could be characterized by a decrease of hippocampus functions. Our 
results suggest that hypergravity stress induced by corticosterone administration and aging modulate 
the expression of genes in the hippocampus. However, the modulations of the transcriptome observed 
in these conditions are not identical. Hypergravity affects per se the hippocampus transcriptome and 
probably modifies its activity. Hypergravity induced changes in hippocampal transcriptome were more 
similar to acute injection than chronic diffusion of corticosterone or aging.  
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Introduction 
Stress is known to modulate memory by acting on the hippocampus. As reviewed recently (Kim et al., 
2015; Pearson-Leary et al., 2015), norepinephrine and glucocorticoids act on memory via modulations 
of neuronal functions, neurogenesis and glial cells. The effects of glucocorticoids depend on their 
concentration, synthesis and turn-over. Moreover, as suggested by the high density of glucocorticoids 
receptors, the hippocampus, together with the amygdala, represents one of the main targets of 
glucocorticoids (Reul and de Kloet, 1985). Indeed, infusions of corticosterone (or its analogues) in the 
hippocampus affect memory performance in different paradigms (Micheau et al., 1984; Roozendaal 
and McGaugh, 1997). They appear to be necessary for memory consolidation, yet while acute post-
training injection of low doses enhance performance in aversive and spatial tasks, higher doses or 
chronic treatment with low doses impair memory and hippocampal functions (Marks et al., 2015; 
McGaugh and Roozendaal, 2002). However, a very high dose of corticosterone is able to mimic the 
memory impairment observed in the post-traumatic stress disorder (PTSD) (Kaouane et al., 2012), 
which is characterized by hypermnesia for the core traumatic event associated with a memory deficit 
for peritraumatic contextual cues. 
Besides the typical events leading to stress, an increase of corticosterone levels in plasma samples has 
been observed in rats (Petrak et al., 2008) and mice (Gueguinou et al., 2012) exposed to conditions of 
altered gravity. 
Life is conditioned by the gravity vector, from conception to adult stages. Adult mammals, during 
their whole life, need to integrate this force to coordinate the communication between organs and 
maintain their physiology in a balanced steady-state. The alteration of gravity is a model used to shed 
light on fundamental processes implicated in environmental adaptation influencing the genomic 
expression, and it may be helpful to understand how organisms can evolve and adapt to their life on 
Earth. However, during space flights, astronauts undergo gravity modifications. The most remarkable 
effects induced by microgravity observed after spaceflights in both humans and rodents are bone 
decalcification, decrease of musculature and cardiovascular deconditioning, but they also show spatial 
disorientation, depressive-like and cognitive disorders (Porte and Morel, 2012). In space, astronauts as 
animal models are exposed to several risk factors, such as secondary radiations (due to high energy 
protons from solar radiation), modification of light-dark cycle, confinement and modification of 
gravity level. In order to isolate the impact of gravity and confinement from the radiation exposures, 
we have used a model consisting of the confinement of mice in a centrifuge, which creates a 
modification in gravity level. 
Using the same protocol, a behaviour analysis using a Morris water maze 15 days after exposure to 
hypergravity (21 days, 3G) suggested that the memory processes could be affected (Bojados and 
Jamon, 2014). In the same conditions, corticosterone blood levels also revealed that the stress level in 
these mice was increased in the hours following centrifugation (Gueguinou et al., 2012). The increase 
of corticosterone levels observed in this study could be due to (1) a long lasting stress induced by the 
hypergravity and/or (2) an acute stress due to the centrifuge brake.  
Since gravity changes induce modifications of genome expression in several tissues (Morel et al., 
2013), we hypothesized that hypergravity as well as stress (induced by acute or chronic administration 
of corticosterone) could affect the genome expression in the hippocampus, with putative effects on 
memory. To assess this paradigm, we have performed a transcriptomic analysis of the hippocampus of 
mice which underwent either centrifugation or chronic and acute corticosterone administration.  
Finally, since deleterious effects induced by gravity modifications have been presented as an 
acceleration of aging (Vernikos and Schneider, 2010), we compared the hypergravity situation with 
aging effects on the hippocampus transcriptome (Vernikos and Schneider, 2010); moreover, aging is 
also associated with an increase of plasma corticosterone levels and modifications in hippocampus-
dependent processes (Garrido et al., 2012a; Garrido et al., 2012b; Lo et al., 2000). 
 
Material and Methods 
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Animals, centrifugation and corticosterone treatments 

Eight week-old C57BL/6J male mice were purchased from Charles River (Les Oncins, 69210 Saint 
Germain sur l’Arbesle, France) and housed in standard cages (4 mice per cages, 36 × 20 × 14 cm) 
under standard conditions (22°C, 55% humidity, 12/12h light–dark cycle) with free access to standard 
food and water. Mice were habituated to animal room for two weeks prior to beginning testing. 

Mice were divided into different groups described as follows: 24 mice (6 cages) were placed in the 
centrifuge at 3G for 21 days (3G group = hypergravity); 24 mice were placed in normogravity (1G 
group = confinement) in the centrifuge room and confined in the same gondola as used in the 
centrifuge. The cages were supplied with enough food and water to allow an uninterrupted 21 days 
centrifugation/confinement period. This part of the experiment was performed in the animal facility 
containing the centrifuge (Hôpital de la Timone; Marseille, France; Marc Jamon was responsible for 
centrifugation). 
A group of 10 mice were implanted subcutaneously with Matrix-Driven Delivery (MDD) pellets 
(Innovative Research of America, Sarasota, FL, USA) containing 10 mg of corticosterone, allowing 
the constant and continuous delivery of corticosterone during 21 days (CC group). Likewise, a control 
group of 10 mice were implanted with the placebo pellets during 21days (PL group), in order to rule 
out a putative confounding effect of implantation and surgery in the CC group. One mouse treated 
with placebo died before the end of the protocol. Furthermore, 10 mice (13 weeks old, aged-matched 
with CC and PL groups on the day of euthanasia) received a single intraperitoneal injection of 
corticosterone (in 2-hydroxypropyl-β-cyclodextrin complex; 1.5 mg/Kg; in a volume of 0.1 ml/10 g 
bodyweight; group AC), one hour before euthanasia as described previously (Kaouane et al., 2012). 
Finally, a group of 15 mice of 22 month (AGE group) was also included in the study to compare the 
effect of aging to hypergravity and corticosterone-induced stress.  
CC, PL, AC and AGE mice were housed in the animal facility of our laboratory, in Bordeaux, France. 
All animal groups are summarized in Table 1. 
The project was validated by the French Ministry of Research in accordance with the European 
Community and French guiding principles. The principal investigator is authorized by French 
authorities to perform animal experiments (n° C33-01-029).  
Mice were euthanized in the same time window (9-11 AM) by a lethal dose of pentobarbital, brains 
were extracted from the skull and blood was collected. Hippocampi were dissected and placed in 2 mL 
tubes containing 1 mL of tri-reagent (TR-118, MRC, Cincinatti, OH) and 10-12 ceramic bead 
(SiLibeads, ZS, 2-2.2 mm diameter, Labomat Essor, Saint-Denis France) and frozen in dry ice. 
Samples of group 1G and 3G were transported to Bordeaux in dry ice. All samples were prepared for 
transcriptomic analysis as described below. 
 
Preparation of RNA samples for transcriptomic assays 
After disruption and homogenization of all samples with minilys (Precellys, distributed by Ozyme 
France, Montigny le Bretonneux) in tri-reagent (Molecular Research Center, Inc., Cincinnati, USA), 
isolation of the total RNA from each hippocampus was performed following the supplier procedures. 
RNA integrity and purity were verified by using RNA HighSens Analysis Kit (Experion, BioRad, 
Marne-la-Coquette, France) and the concentration of RNA was measured with spectrophotometry 
(NanoDrop Technologies, Wilmington, DE) for each hippocampus. We have determined that the total 
RNA in one hippocampus was not sufficient to be sequenced by Illumina. Thus, the RNAs from 3-8 
mice were pooled in order to generate 3 samples for each experimental condition (supplementary 
figure 1). Samples were sent to GATC, the company which verified the quality of the samples and 
performed the transcriptomic analysis using Genome Sequencer Illumina HiSeq2000* (sequence mode 
single read 1 x 50bp), and sequences were mapped. The quantities of sequences obtained in each 
sample were sufficient to perform a statistical analysis (supplemental figure 2). 
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Corticosterone assays 
Blood was drawn just after the cervical dislocation. After 10 min, samples were centrifuged during 15 
min at 1000 g and supernatants were collected and stored at -20°C before assays. The quantification of 
endogenic mouse corticosterone in blood samples was performed using EIA kit DetectX 
Corticosterone (Arbor Assays, Michigan distributed by Euromedex) following the instructions of the 
supplier: samples and standards solutions were diluted (1:100) in the buffer and placed in the plate in 
duplicates. The reaction buffer containing anti-corticosterone antibody was added and after 2 h of 
incubation the chemoluminescent subtract was added. The chemoluminescence was measured with the 
Optima apparatus (BMG Labtech, Champigny sur Marne, France). 
Statistical analysis 
The first steps of transcriptomic data analysis were performed by GATC. To validate the statistical 
analysis, p-values were corrected using the Benjamini and Hochberg procedure controlling false 
discovery rate (FDR). Supplementary statistical analyses were performed with Graphpad prism 
software (Graphpad software Inc, La Jolla, CA). Data are expressed as means ± S.E.M.; n represents 
the number of tested animals. The samples were compared pair by pair with t-test and with one-way 
ANOVA. The P values < 0.05 were considered as significant and indicated by  in figures.  
The list of proteins was analyzed using Database for Annotation, Visualization, and Integrated 
Discovery (DAVID; http://www.david.niaid.nih.gov), in order to identify the associated pathways and 
function of the different genes modified in the experimental conditions. The query was made as 
proposed: sp-pir-keywords for functional categories and biocarta, KEGG pathway and panther 
pathway for signaling pathways. 
 
Results 
Corticosterone levels 
As described previously in mice centrifuged in the same device (Gueguinou et al., 2012), we measured 
an increase of the plasma level of corticosterone during the two hours following a period of 21 days in 
the centrifuge at 3G (59.4 ± 8 ng/mL versus 113 ± 11.6 ng/mL for 1G and 3G groups, respectively; n 
= 24 for each group; p = 0.0004). We also noticed that in the 3G group the  variability of individual 
measurements was increased (Figure 1A). We therefore decided to complete the statistical analysis by 
the Thompson-test to determine the outliers’ points. The result was not modified (52.5 ± 7 ng/mL, n= 
22 versus 107 ± 10 ng/mL, n = 23 for 1G and 3G groups, respectively; p = 0.0001).  
To compare the effects of hypergravity on the transcriptome to those observed in stress conditions, we 
treated mice chronically with corticosterone pellets. The levels of corticosterone in blood of animals 
treated with chronic corticosterone and placebo were evaluated (33.6 ± 7 ng/mL, n = 9 versus 51.3 ± 
8.2 ng/mL, n = 10 for PL and CC groups, respectively; p = 0.118), and the p value was ameliorated by 
the use of the Thompson-test (28.4 ± 5.3 ng/mL, n = 8 versus 51.3 ± 8.2 ng/mL, n = 10 for PL and CC 
groups, respectively; p = 0.042), as reported in Figure 1B.  
The acute intraperitoneal injection of corticosterone induced an increase of blood corticosterone 
concentration close to 10-fold more than in the 3G group (1201.8 ± 232.7 ng/mL, n = 10; one-way 
ANOVA, p = 0.001 in comparison with all other groups).  
Finally, in aged mice corticosterone levels were not significantly affected in comparison with the 
placebo group used as control younger mice (33.6 ± 7 ng/mL, n = 9 versus 52.7 ± 17.1 ng/mL, n = 15; 
p = 0.193. After the Thompson test, values were 28.4 ± 5.3 ng/mL, n = 8 versus 38.0 ± 9.3 ng/mL, n = 
14; p = 0.383; for PL and AGE groups, respectively). 
 
Transcriptomic analysis 
The Illumina analyses revealed the presence of 33842 different sequences in the transcriptome of the 
hippocampus. The statistical comparison showed that the expressions of 82 transcripts were affected 
by hypergravity compared to normogravity, corresponding to 77 identified genes, while 5 sequences 
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were not associated to known genes. In the other conditions, some genes were associated with several 
sequences; we have mentioned them in Table 2 as repeated sequences. After excluding sequences not 
associated with gene names and repeated sequences, the expressions of 110 transcripts were modified 
by acute injection of corticosterone compared to placebo, 102 by chronic administration of 
corticosterone compared to placebo, and finally 3308 by aging compared to young mice placed in 
normogravity (Table 2). 
The global modifications of transcriptome produced by the different experimental conditions were 
compared and summarized in a Venn diagram in Figure 2. The profile of the effect of hypergravity 
was qualitatively and quantitatively more similar to the effect of the acute injection of corticosterone 
than to the long lasting delivery of corticosterone.  
To map the putative effects of hypergravity, we have used the DAVID database. Seventy six genes 
were analyzed and dispatched in 37 groups. Figure 3 summarized how the genes could be grouped 
according to their known functions and cellular localization. The detailed DAVID queries are 
described in supplementary file (DAVID-queries-PPM.xls). 
The statistical comparisons between control and experimental groups were grouped in supplementary 
file (EXPRESSION-PPM.xls). In details, the increases of expression levels of 8 transcripts and the 
decreases of the expression of 2 transcripts were specifically affected by hypergravity only (Table 3). 
The Table 4 summarized the comparison between the modification of transcriptome induced by 
hypergravity and the other conditions (AC, CC and AGE). Hypergravity and acute injection of 
corticosterone similarly affected the expression of 49 transcripts (but for 26 of them, a marked 
difference is noticeable between PL and 1G groups), and 3 transcripts were altered in opposite ways 
when compared respectively to normogravity and PL controls (Table 5).  
The chronic administration of corticosterone and hypergravity affected the expression of 4 transcripts 
similarly (but for 2 of them, a marked difference is noticeable between PL and 1G groups) and showed 
opposite effects on the expression of 2 transcripts compared respectively to normogravity and PL 
controls (details in supplementary file EXPRESSION-PPM.xls).  
Hypergravity and aging together affected the expression of 45 transcripts, of which 13 were similarly 
modified and 32 were affected contrariwise compared to adult mice in normogravity (details in 
supplementary file EXPRESSION-PPM.xls). Hypergravity and the acute injection of corticosterone 
resulted to be the closest experimental conditions in modulating the hippocampal transcriptome. Table 
6 lists the 47 transcripts affected by acute injection of corticosterone but not by hypergravity (but for 
15 of them, a marked difference is noticeable between PL and 1G groups). 
To compare the putative effects of 3G and other experimental conditions, we have crossed the results 
of DAVID queries to generate Venn diagrams. The effects are not stackable in any functional category 
proposed by DAVID. As illustrated in Figure 4, some categories are affected in all conditions (in A-C) 
or only 3 (D-E) or 2 (F) of them. As expected, the aging group is the most affected by the number of 
gene and the number of function (supplementary file: DAVID-queries-PPM) 
 
Discussion 

We have confirmed that 1) C57BL6 mice exposed for 21 days to hypergravity showed an 
increase of their corticosterone plasma levels, 2) the previously reported variability of the individual 
adaptation to gravity modifications was indeed present (Beraneck et al., 2012; Gnyubkin et al., 2015).  

It is also interesting to compare our results with those obtained in other species, devices and 
protocols. In rats, the level of corticosterone could increase during hypergravity exposure and after the 
stop of centrifugation (Petrak et al., 2008), but also increased or decreased depending on the 
hypergravity protocol and age of the animals, as shown respectively in (Abe et al., 2013; Casey et al., 
2012). Thus, the design of the hypergravity protocol is crucial. For example, a regular “stop and go” 
during the centrifugation can lead to a habituation that can reduce the stress effects.  

Taken together, all these studies indicate that the design of the centrifugation protocol and the 
animal model could influence the stress produced by hypergravity. It would be very interesting to test 
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how centrifugation protocols could influence physiological parameters as plasma concentration of 
several hormones on different species (mouse and rat) to determine general rules in biological 
adaptation to gravity levels. Finally, these experiments could also reinforce the theory of the gravity 
continuum proposed and discussed in the biology and gravity fields (Plaut et al., 2003; VanLoon, 
2016). Probably, as suggested by these studies, the effect of hypergravity close to 2G is the opposite of 
microgravity, while the effects induced by 3G acceleration could be different, without following a 
linear trend. The continuum of gravity should be established independently for each physiological 
function or tissues. 

The absence of handling during the 21 days of centrifugation obliged us to limit the manipulation of 
mice in the other groups as well; thus the wide range in and relatively high corticosterone levels in 1G 
controls may reflect a release of corticosterone in response to the stress of handling (Pitman et al., 
1988). In this work, we decided to consider the PL group as a control group for AC, despite the fact 
that more adequate controls would have been acutely injected with saline; however, the animal 
sacrifice was performed one hour after the acute injection, time by which its effects on corticosterone 
levels were unneglectable (Freund et al., 1988). Noteworthy that all sacrifices were performed in the 
same time window, not only to limit the bias due to the circadian rhythm of corticosterone synthesis, 
but also to decrease misinterpretation linked to circadian rhythm of protein synthesis and gene 
regulation implicated in memory processes (Eckel-Mahan, 2012).  

The chronic treatment with corticosterone increased the level of plasma corticosterone (p = 
0.042, after the Thompson-test revealing one outlier for 19 mice in both groups), yet in a lesser extent 
than expected. As reported recently, in order to reach a 1.8-2 fold increase of the blood corticosterone 
concentration in mice after 21 days, a dose of 40mg/Kg/day would be required (Kolinko et al., 2015; 
Weng et al., 2016). In our experiment, the designed pellet delivery was close to 20 mg/Kg/day and the 
increase of the measured plasma corticosterone concentration was 1.5 fold compared to PL group. 
Since drug delivery problems can be excluded, this level of blood corticosterone can be due to 
different turn-over mechanisms. 

Interestingly, by comparison with placebo-treated animals, we also observed a slight increase 
of the corticosterone concentration in group 1G (p = 0.052, t-test’s comparison) close to the ones 
observed in aging and chronically-treated mice. This result suggests that containment alone is 
sufficient to induce a rise in corticosterone levels. Future experiments should clarify if this increase 
can impact the memory performance by itself (Salehi et al., 2010).  

Before our study, several studies have reported that aging as chronic stress affect similarly 
hippocampus function as learning and memory (Bonhomme et al., 2014; Tronche et al., 2010; Wang et 
al., 2016a), then we have hypothesized that the modifications of hippocampus transcriptome induced 
by hypergravity should be similar to those observed in aged mice and/or mice treated with 
corticosterone.  

The hippocampus transcriptome is modified in each experimental condition. Our results show 
that there is no overlap between experimental conditions but 61 %, 38 % and 5 % of transcripts 
modified by hypergravity were respectively modified by AC, aging and CC in the same way; whereas 
14%, 4%, and less than 3% of transcripts modified by hypergravity were respectively modified by 
aging, AC and CC in the opposite way.  

A global analysis of the transcriptome can give a snapshot of the hippocampus status, thereby 
revealing possible modifications of its functions induced by hypergravity, corticosterone (acute i.p. 
and long lasting s.c. delivery) and aging. It appears from our result that a very large part of the 
hypergravity effects (summarized in Figure 2) is reproducible by an acute injection of corticosterone 
used to replicate the symptomatology of PTSD (Kaouane et al., 2012). The most probable event 
comparable to acute stress in our protocol is the stop of the centrifuge. Consequently, we suggest that 
the stop of the centrifuge is perceived by animals as an acute stress that could induce cognitive 
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disorders close to PTSD. Further experiments should be performed to analyze the memory 
performance once normogravity is reestablished, using behavioral experiments, like fear conditioning 
for example. Moreover, in order to decrease the effect of rapid gravity modifications as well as to 
better compare the effects of the gravity in rodents to those seen in humans, animals could be trained 
to several acceleration training phases or modulation of velocity in both “lift-off” and “landing” 
phases, etc… Indeed, studies on humans differ largely from the ones using rodents: first, astronauts 
undergo sustained training before being submitted to space flight; second and most importantly, since 
humans beings are conscious, they can prepare themselves to the changes of gravity during the 
mission (i.e. since they know when and why the gravity changes, thus the situation is less stressful). 

Surprisingly, the long lasting subcutaneous diffusion of corticosterone used to mimic a chronic 
stress is the most different situation in comparison with hypergravity, and in another hand there only 
14 gene affected by both acute and chronic corticosterone treatments. These treatments were used to 
mimic stress effects and several studies reported the effects of the acute and chronic stresses modified 
differently the hippocampus transcriptome (Li et al., 2013; Stankiewicz et al., 2015). Furthermore, the 
nature of the stressor is also crucial (Li et al., 2013; Porter et al., 2012; Stankiewicz et al., 2015; Suri et 
al., 2014). Similarly to stress, modifications of living conditions, as well as long-term mild or intense 
exercise, can modulate the hippocampus transcriptome (Inoue et al., 2015). In our case, the effect of 
the stop of the centrifuge creating a higher increase of plasma corticosterone than those observed in 
chronic corticosterone treatments and reveals a similar modification of the hippocampus transcriptome 
as observed after an acute injection of corticosterone.  

Aging is characterized by a substantial modification of the hippocampus transcriptome (close 
to 10% of the sequences are affected). This result is probably due to an important dispersion of 
individual physiological status/history but also to the absence of selection of the mice based on 
learning and memory performances, for example. The number of gene affected by aging depends also 
on the age of the mice (Stilling et al., 2014). Similarly, the lists of genes affected by both aging and 
corticosterone treatments contain only 55-57 genes, largely different from the hypergravity. These 
observations underscore that aging as other experimental conditions integrate multiple signals and 
their complex marks; a transduction pathway can be affected in one or more different steps. 
Ultimately, it is possible to implicate several identical pathways affected in all conditions as revealed 
by the results of DAVID queries.  

Before, the measured effect should be analyzed remembering that the hippocampus contains 
several cell types as neurons, glial cells but also endothelial cells and pericytes constituting blood 
vessels. Likewise, the comparison between our results and those described recently (Stankiewicz et al., 
2015) suggests that the choroid plexus could be affected by hypergravity. In fact, Ttr,Igf2, Igfbp2, 
Prlr, Enpp2, Sostdc1, 1500015O10RIK(Ecrg4), Kl, Clic6, Kcne2, F5, Slc4a5, and Aqp1 have been 
described as more highly expressed in the choroid plexus as in the brain parenchyma (Stankiewicz et 
al., 2015). Our results show that the transcription levels of these genes were affected by hypergravity. 
We cannot totally exclude a bias due to the dissection step. Nevertheless, the effect of gravity 
modifications on the choroid plexus should be more investigated, as blood and cerebrospinal fluid 
pressures are both sensitive to hypergravity (Iwasaki et al., 2012).  

Globally, the query of DAVID database indicated that genes affected by hypergravity encode 
for proteins implicated in several functions. Probably, the most important common effects of 
hypergravity and acute injection of corticosterone concerned signaling pathways affecting nucleus 
functions. Moreover, hypergravity significantly affects cellular interactions as modulation of tight 
junctions. However, the cellular metabolism does not seem to be disturbed, as observed in other 
studies concerning different organs in a pregnant rat model (Casey et al., 2015; Casey et al., 2012). 
The effects of hypergravity on hippocampal transcripts are not solely overlapped to acute stress and 10 
transcripts were per se modified by hypergravity only. The transcriptomic approach could be used to 
determine targets potentially affected by environmental modifications (Huttenrauch et al., 2016).  
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Hypergravity modulate the expression of genes implicated in neuronal differentiation and 
migration via Plagl1 expression (Adnani et al., 2015) and neurite outgrowth and vascular remodeling 
via Smad5 (Hegarty et al., 2013; Mathieu et al., 2008). The hypergravity can alter learning and 
memory via the modulation of ppp1r1b, Dnajb1, Rbp1 and Hspa5 genes encoding proteins involved in 
the regulation of molecular pathways of memory and linked to neurodegenerative disorders (Heyser et 
al., 2013; Ignacak et al., 2009; Leil et al., 2003; Seo et al., 2014; Udan-Johns et al., 2014; Witt, 2013). 
The role of CTRP5 encoded by C1qtnf5-Mfrp gene is not described in the brain but it is associated 
with macular degeneration (Hayward et al., 2003) and lipid oxidation (Yang and Lee, 2014). If the 
functions of Igfn1 and Krt18 are unknown in neurons, their function in smooth muscle cells (Baker et 
al., 2010) and implication in intracerebral arteriovenous malformations (Sasahara et al., 2007) indicate 
that  hypergravity could act on pericytes to modify the cerebrovascular function and hippocampus 
perfusion. Similarly, Sdf2l1, an endoplasmic reticulum stress-inducible gene (Fukuda et al., 2001) is 
implicated in the folding of proteins (Tiwari et al., 2013) but the function of the encoded proteins in 
brain cells (neurons, glia and vessels) remains largely unknown. 

In conclusion, even if it is not completely possible to segregate the effects of stress and 
hypergravity in this model, the transcriptomic analysis indicated that the expression of genes encoding 
proteins implicated in excitability, cellular interactions, migration, protein synthesis and cell death, 
was modified after 3G exposure. An effect on memory thus cannot be excluded since memory requires 
a coordinated regulation of many known and unknown proteins (Jarome and Helmstetter, 2014). It is 
also known that stress affects deeply the cerebrovascular network (Longden et al., 2014; Scheuer et 
al., 2007). Therefore, a modulation of the vascular network, due to hypergravity, should not be totally 
excluded and could act on brain functions especially in animal models without training as in astronauts 
(cognitively, emotionally and physically). Considering that 10 genes were modified specifically after 
3G exposure, it appears that hypergravity alone modulates the hippocampal activity. We can thus 
suggest that both the neurogenesis and angiogenesis would be impaired (decrease of both plagl1 and 
smad5), whereas neuroprotection against hypoxia effects would be ameliorated (increase of rbp1 and 
dnajb1). Moreover, the increases of expression of factors regulating protein folding (sdf2l1, hspa5) 
and NMDA-dependent signals (ppp1r1b) most probably affect the neuronal architecture. Finally, our 
results could also be compared to other studies using the same approach to understand how the 
hippocampus transcriptome was adapted to environmental conditions (Huttenrauch, 2016). 
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Legends of figures: 
Figure 1: Blood corticosterone concentrations. (A) in 1G- (circle) and 3G- (square) exposed 
animals; each dot represents the mean of the duplicate measured for each animal. (B) Mean of 
corticosterone concentration measured in placebo and chronic corticosterone treatment. The results 
were statistically compared with t-test; , p < 0.05.(C) Mean of corticosterone concentration 
measured in placebo, 1G and aged mice groups.  
Figure 2: Venn diagram comparing the effects of all experimental conditions on hippocampus 
transcriptome. The diagram was produced by the software available on 
http://bioinformatics.psb.ugent.be using the lists of genes statistically affected in each experimental 
condition. The number of genes affected by the experimental conditions is indicated in each colored 
subset. 
Figure 3: Putative functions and localizations of proteins encoded by genes affected by 3G. The  
list of genes modified by hypergravity was analyzed using DAVID database and genes listed in 
DAVID were further grouped according to the localization (purple subsets) and the functions (blue 
subsets) of their encoding proteins. In green, genes not identified by DAVID were groups in “not 
determined” subsets; genes identified in other lists were indicated in “other function subsets” with the 
function indicated in parenthesis. Genes’ names in red indicate those only affected by 3G. 
Figure 4: Venn diagrams comparing the queries of DAVID database. The lists of genes modified 
by all experimental conditions were analyzed using DAVID database and Venn diagrams were created 
considering 6 categories of genes encoding: (A) signal peptide, (B) secreted proteins, (C) proteins of 
the extracellular matrix, (D) proteins implicated in calcium-dependent mechanisms, (E) proteins 
implicated in Wnt pathway and (F) proteins implicated in ion transport. 
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Table 1: Design of experimental groups 

Group 3G 1G AC CC PL AGE 

n 24 24 10 10 10 15 

Age 10 weeks at the beginning of the protocol 80 weeks 

Gravity 
level 

3 x G Normogravity (1G) 

Treatment Centrifuge None Corticosterone Corticosterone Placebo None 

  Intraperitoneal Subcutaneous 21days 

 

 

Table 2: Number of transcripts affected by experimental conditions  

Group comparison 3G vs 1G AC vs PL CC vs PL 1G vs AGE 
Sequences 33842 33842 33842 33842 
Fail 1061 994 943 892 
Lowdata 93 93 93 93 
No test 4049 1122 1891 1959 
Seq analyzed 28639 31633 30915 30898 
P < 0.05 82 131 108 4095 
Not associated with genes 5 20 6 592 
Repeated sequences 0 1 0 195 
Identified sequences 77 110 102 3308 
 

 

Table 3: Transcript expression levels affected only by 3G compared to normogravity (1G) (decreased in italic; 
all others increased). The values are expressed as Fragments Per Kilobasepair per Million (FPKM) of the gene in 
sample with respective p-value and q-value, which is the FDR-adjusted p-value. 

Gene Locus Group 1G Group 3G log2(fold_change) p_value q_value 

Plagl1 10:12810656-12851500 6.098 4.172 -0.547476 1.274E-04 0.046170 

       

Igfn1 1:137878484-137880871 0.241 0.961 1.997340 1.137E-04 0.043405 

Hspa5 2:34627514-34655580 45.661 61.084 0.419833 3.614E-07 0.000259 

Dnajb1 8:86132079-86135915 19.787 26.955 0.446044 1.794E-06 0.001048 

C1qtnf5,Mfrp 9:43909713-43917327 5.721 11.043 0.948863 1.253E-06 0.000816 

Rbp1 9:98325199-98347038 12.090 18.123 0.584057 4.914E-05 0.021004 

Ppp1r1b 11:98209550-98219164 15.030 19.941 0.407903 5.064E-05 0.021328 

Krt18 15:101861304-101862451 0.507 3.744 2.884170 6.800E-05 0.027046 

Sdf2l1 16:17130229-17132410 10.438 17.327 0.731153 1.432E-07 0.000108 
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Table 4: Effect of hypergravity on gene expression. In red box increase of expression, in green box decrease of 
expression and the grey box indicated that the gene expression is not modified. The values log2(fold-change) 
between 3G and 1G (Group 3G); AC and 1G (Group AC); CC and 1G (Group CC) AGE and 1G (Group AGE). 

Gene 
Group 3G- 
log2(fold_change) 

Group AC- 
log2(fold_change) 

Group CC- 
log2(fold_change) 

Group AGE- 
log2(fold_change) 

Sulf1 1.30335 2.54783   -0.826247 

F5 1.93139 3.95502   2.32089 

1500015O10Rik 1.75095 2.99507   0.834877 

Igfbp2 0.880923 1.56046   0.600096 

Kcnj13 1.97071 4.47569   3.10135 

Ankrd57 0.594451 0.867332     

Egr2 1.21264     3.06703 

Dcn -0.573591     2.21481 

Ace 1.41923 2.55624 0.632951   

Sostdc1 1.40975 2.78276   0.981031 

Gm11274 -0.974941     2.23011 

Tgfbi 0.866265 1.06921     

Otx2 1.49754 3.16522   -1.31388 

Cab39l 0.466337 0.803683     

Nr4a1 0.475274     1.73113 

Enpp2 1.4905 2.51697     

Arc 0.634743     2.49228 

Cldn1 1.38973 1.75401     

Col8a1 1.5564 3.57162     

Vgll3 -1.19884 2.09066 1.56852 1.75075 

Kcne2 2.07954 4.69944   2.9754 

Clic6 1.68149 3.52024     

Cdkn1a 0.733637 0.939498     

Sik1 0.557851 1.03223   -0.519891 

Hspa1b 0.849894   0.567793 1.65455 

Capn11 -1.65456     3.03854 

Ezr 0.388112     0.974911 

Ttr 2.18462 4.38164 0.964938 2.88912 

Egr1 0.566316     1.7932 

Lbp 1.37942 1.97479     

Wfdc2 2.03256 3.83212     

Col9a3 1.23352 1.64091     

Lcn2 1.72437 -2.70037 1.6198 2.3442 

Abca4 1.51953 2.96413     

Col8a2 1.24666 2.33567     

Pla2g5 1.75196 2.39452     

Trpv4 1.7617 2.94136     

Kl 1.23118 2.05559   3.02789 

Msx1 0.940395     1.4076 

Steap1 1.83045 3.40711     

Rbm47 1.65002 2.80976     

Tmem72 1.8963 5.47826     

A2m 0.701867 1.41704   -1.87054 

Slco1c1 0.355327     0.628088 
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Slc13a4 0.764586 1.97186   1.66465 

Pdia4 0.462279     0.574577 

Pon3 0.938093 1.95674     

Aqp1 2.3098 4.09336   2.03643 

Slc4a5 2.30275 4.71954   1.95522 

Egr4 0.538811     2.43387 

Folr1 1.99678 3.64892   1.95393 

Cdr2 0.604981 1.10548   -1.43491 

Igf2 0.706057 1.52015   1.61939 

Fosb 0.818794     1.39926 

Spint2 0.626409 1.05814     

Abhd2 0.319449 0.599141   0.509787 

Fzd4 0.542651 0.784285     

Cdh3 2.78157 4.28946     

Vat1l 0.649073 1.36456   -2.60184 

Junb 0.471423     2.56019 

Cpne2 -0.38987 0.661188 0.378233 0.472237 

Ccdc135 1.10931 2.51124     

Slc37a2 0.917782 1.25844     

Cgnl1 0.752135 1.08226     

Cldn2 2.13111 4.68814   2.30732 

Gpr101 -0.598134     -0.677419 
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Table 5: Transcript expression levels affected by both 3G and AC compared to 1G and placebo, respectively. In 
bold: when groups 1G and PL presented values different of more than 2 fold, i.e. confinement effect; in italic: 
when the effects between 1G and 3G and between PL and AC were in opposite ways; for all other sequences, 
there was no difference between 1G and PL, and both comparisons showed similar increases. The values are 
expressed as Fragments Per Kilobasepair per Million (FPKM) of the gene in sample. 

Gene Locus Group 1G Group 3G Group PL Group AC 

Sulf1 1:12682400-12851259 1.98 4.888 1.024 5.989 

Igfbp2 1:72871044-72899041 15.406 28.372 9.198 27.13 

Col9a3 2:180332941-180356965 5.792 13.619 3.828 11.937 

Lbp 2:158132322-158158118 2.452 6.38 1.687 6.633 

Pla2g5 4:138355177-138375157 0.345 1.163 0.202 1.064 

Kl 5:151755320-151796908 5.741 13.477 3.428 14.25 

A2m 6:121586106-121629223 0.896 1.457 0.697 1.862 

Pon3 6:5167314-5206224 0.808 1.549 0.49 1.901 

Cdr2 7:128100553-128125695 3.29 5.005 2.772 5.964 

Igf2 7:149836670-149846925 18.885 30.807 10.796 30.966 

Spint2 7:30041283-30067035 7.703 11.891 5.302 11.039 

Abhd2 7:86418109-86510391 13.81 17.232 12.624 19.122 

Fzd4 7:96552850-96561625 1.873 2.729 1.836 3.162 

Vat1l 8:116729446-116897994 6.811 10.681 5.001 12.877 

Slc37a2 9:37035195-37063010 0.624 1.178 0.495 1.183 

Cgnl1 9:71474312-71619366 2.871 4.835 2.367 5.012 

Ankrd57 10:58684611-58689177 2.013 3.04 1.622 2.959 

Tgfbi 13:56710929-56740717 1.199 2.185 1.124 2.359 

Cab39l 14:60059798-60167840 7.41 10.238 6.317 11.027 

Enpp2 15:54670216-54785330 93.005 261.333 51.59 295.292 

Cldn1 16:26356751-26371926 0.692 1.814 0.714 2.409 

Cdkn1a 17:29230693-29237671 3.861 6.42 4.491 8.613 

Sik1 17:31981268-31992685 2.661 3.917 2.023 4.138 

F5 1:166081948-166150560 1.042 3.977 0.3036 4.709 

Kcnj13 1:89223550-89347501 0.765 2.999 0.1747 3.887 
1500015O10Rik 1:43787414-43799794 4.944 16.642 1.926 15.353 

Wfdc2 2:164387945-164393983 0.706 2.887 0.196 2.797 

Abca4 3:121746980-121882965 1.112 3.188 0.442 3.451 

Col8a2 4:125973864-125991692 0.988 2.345 0.488 2.464 

Trpv4 5:115072163-115108406 1.419 4.812 0.533 4.097 

Steap1 5:5736328-5749282 0.791 2.814 0.266 2.823 

Rbm47 5:66407880-66437455 0.263 0.826 0.128 0.9 

- 6:116629116-116635214 0.527 2.175 0.037 2.371 
Tmem72 6:116641552-116666943 0.338 1.257 0.074 3.298 

Slc13a4 6:35217813-35258151 2.567 4.361 1.262 4.949 

Aqp1 6:55286159-55298535 0.941 4.664 0.274 4.67 

Slc4a5 6:83187361-83254934 0.649 3.2 0.123 3.233 

Folr1 7:108988596-109017870 4.438 17.713 1.327 16.641 

Cdh3 8:109079141-109079838 0.131 0.903 0.043 0.844 

Ccdc135 8:97579011-97602287 2.471 5.331 1.082 6.166 

Ace 11:105829288-105851266 3.804 10.173 1.706 10.035 

Sostdc1 12:37040651-37045032 2.486 6.606 0.946 6.513 

Otx2 14:49277354-49287141 1.418 4.005 0.483 4.332 

- 14:76651174-76652137 5.640 14.079 1.432 10.791 
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Col8a1 16:57624392-57678659 0.553 1.626 0.181 2.149 

Kcne2 16:92292609-92298528 1.715 7.248 0.234 6.082 

Clic6 16:92498344-92541580 2.629 8.434 0.831 9.539 

Ttr 18:20818884-20832827 375.259 1705.95 69.393 1446.51 

Cldn2 X:136335278-136345917 0.831 3.641 0.155 4.004 

Lcn2 2:32240155-32243278 0.958 3.167 2.081 0.32 

Cpne2 8:97057028-97094435 18.178 13.873 9.387 14.844 

Vgll3 16:65828218-65866609 1.016 0.442 0.193 0.821 
 

 

Table 6: Transcript expression levels affected by AC but not by 3G and compared to 1G and placebo, 
respectively (in bold: when groups 1G and PL presented values different of more than 2 fold). The values are 
expressed as Fragments Per Kilobasepair per Million (FPKM) of the gene in sample. 

 

Gene Locus Group PL Group AC Group 1G Group 3G 

Prelp 1:135806851-135817995 6.119 10.092 8.991 11.076 

Rgs16 1:155587388-155592662 2.468 8.272 2.594 3.453 

Plcb4 2:135485156-135840371 4.181 8.883 4.704 4.926 

Bmp7 2:172693519-172765977 1.034 2.264 1.743 2.322 

Sox18 2:181404542-181406350 2.634 1.088 3.305 3.348 

Sgms2 3:131033242-131153082 0.501 1.128 0.690 1.091 

Txnip 3:96361859-96365785 6.449 15.570 6.819 9.094 

Rims3 4:120527441-120569406 8.236 13.792 8.760 9.828 

Id3 4:135699645-135701474 18.669 10.784 18.856 21.987 

Alpl 4:137297663-137352249 1.573 3.168 2.559 3.427 

Errfi1 4:150229180-150243052 11.745 18.439 12.633 13.599 

Hes5 4:154335009-154336494 3.570 1.047 4.734 3.688 

Cit 5:116357249-116459005 6.297 11.750 7.865 9.303 

AC113316.1 5:147043206-147114511 18.642 291.688 32.813 34.458 

Apold1 6:134933638-134936893 0.947 2.796 1.037 1.597 

Mdfic 6:15671340-15752163 0.705 2.036 1.041 1.737 

Hbb-b1 7:110975050-110982005 355.809 546.092 462.061 501.292 

Syt9 7:114514498-114692169 1.253 2.976 1.742 1.506 

Zfp36 7:29161807-29164279 1.273 3.202 1.869 2.431 

Plekhf1 7:39005604-39012997 1.458 3.225 1.718 1.885 

Tnnt1 7:4456181-4466249 0.337 3.947 0.345 0.443 

Slc17a6 7:58877006-58926498 3.873 8.414 3.278 3.980 

Lars2 9:123276062-123371876 13.944 115.222 14.733 14.913 

Amotl1 9:14346410-14447921 2.982 6.149 3.287 3.750 

Slc37a2 9:37035195-37063010 0.495 1.183 0.624 1.178 

Zic1 9:91252845-91260745 1.643 5.271 2.526 3.483 

D10Bwg1379e 10:18299938-18463830 1.924 0.000 2.127 2.047 

Perp 10:18564896-18576876 1.122 2.622 1.666 2.276 

Sgk1 10:21601862-21719710 17.961 44.267 18.984 25.136 

Ddit4 10:59412417-59414734 22.596 35.464 24.492 27.538 

Arl4d 11:101526844-101529145 5.293 10.395 6.036 7.725 

Adra1b 11:43588132-43649883 0.695 1.875 0.781 0.952 

Ramp3 11:6558299-6577482 1.685 6.132 1.948 2.485 
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Rpl23a 11:77990411-77997079 9.030 2.244 8.150 8.976 

Coch 12:52694347-52706789 1.798 4.422 2.338 3.326 

Nfkbia 12:56590395-56593615 8.681 21.278 9.183 11.524 

Abhd12b 12:71255075-71285422 0.092 1.096 0.132 0.110 

Gadd45g 13:51942029-51943872 11.307 19.046 11.666 14.819 

Slitrk6 14:111147307-111154449 0.114 0.589 0.116 0.157 

Slc39a4 15:76446259-76447453 0.238 1.038 0.439 0.884 

Apol7e 15:77532443-77532675 14.815 0.000 13.428 21.768 

Zc3h7a 16:11136694-11176449 18.019 66.577 16.310 16.097 

Dusp1 17:26642533-26645639 6.156 10.271 7.292 9.745 

AY036118 17:39981973-39985775 78.210 212.687 72.855 73.357 

Six3 17:86001750-86025499 0.154 1.102 0.274 0.628 

Tcf7l2 19:55816309-56008146 1.157 8.807 1.468 2.675 

Htr2c X:143396975-143631821 6.342 12.437 8.440 9.408 

Fmod 1:135933969-135944800 1.600 3.299 3.373 3.279 

Ptgds 2:25318620-25321886 0.219 0.935 0.503 0.281 

S100a8 3:90473003-90473954 7.764 2.042 1.499 1.563 

S100a9 3:90496559-90499221 8.422 2.628 2.099 1.431 

Wdr86 5:24216845-24236452 0.240 3.018 0.985 2.856 

BC030500 8:61379343-61393163 0.909 0.000 1.982 0.228 

Calml4 9:62705887-62723783 1.586 7.113 3.630 8.037 

Narg2 9:69245774-69280992 0.091 0.490 0.304 0.482 

Pmch 10:87553815-87555214 0.373 2.791 0.155 0.105 

Wfikkn2 11:94097301-94104025 0.181 0.651 0.436 0.869 

Dio3 12:111517039-111519293 0.689 1.699 2.572 1.545 

4930427A07Rik 12:114394889-114403682 1.909 0.244 0.292 0.310 

Gm9307 14:103409438-103409867 23.347 5.840 9.150 10.242 

Apol7e 15:77532728-77532933 66.098 8.501 5.214 7.550 

Glp1r 17:31038889-31077715 0.457 1.020 1.148 1.457 
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Echantillon Groupe Volume (µL) Concentration (ng/µL) Masse (µg) 260/280 260/230
A 1G B 1G 200 275 55 1,87 1,13
A 1G R 1G 200 250 50 1,82 1,01
A 1G V 1G 200 275 55 1,89 1,11
B 3G B 3G 200 225 45 1,86 0,8
B 3G R 3G 200 225 45 1,8 0,47
B 3G V 3G 200 275 55 1,84 0,84
C CA B Cort Aigu 150 250 37,5 1,85 0,95
C CA R Cort Aigu 150 225 33,75 1,87 0,7
C CA V Cort Aigu 150 225 33,75 1,94 0,63
D CC B Cort Chronique 100 250 25 1,81 0,36
D CC R Cort Chronique 100 200 20 1,82 1,1
D CC V Cort Chronique 100 300 30 1,91 0,35
E PL B Placebo 100 250 25 1,85 1,19
E PL R Placebo 100 175 17,5 1,85 0,4
E PL V Placebo 100 225 22,5 1,83 1,42
F VA B Agé 100 200 20 1,6 0,26
F VA R Agé 100 325 32,5 1,75 0,5
F VA V Agé 100 325 32,5 1,71 0,63

Souris sample
Concentration ng/µL 

nanodrop 260/280 260/230 Experion score

1G40 Hippocampe Gauche 390 1,77 2,33 9,4

1G41 Hippocampe Gauche 180 1,82 1,62 9,3

1G42 Hippocampe Gauche 280 1,77 2 9,2

1G43 Hippocampe Gauche 190 1,84 1,22 9,3

1G44 Hippocampe Gauche 290 1,76 2,27 9,2

1G45 Hippocampe Gauche 360 1,77 2,29 9,2

1G46 Hippocampe Gauche 380 1,77 2,28 9,1

1G47 Hippocampe Gauche 300 1,77 2,06 9,2

1G48 Hippocampe Gauche 330 1,84 1,15 9,2

1G49 Hippocampe Gauche 350 1,84 1,09 9,5

1G50 Hippocampe Gauche 250 1,79 0,78 9,4

1G51 Hippocampe Gauche 210 1,79 1,97 9,3

1G52 Hippocampe Gauche 330 1,77 2,26 9,3

1G53 Hippocampe Gauche 200 1,81 1,06 9,4

1G54 Hippocampe Gauche 20 1,64 0,57 8,9

1G55 Hippocampe Gauche 250 1,76 2,02 9,3

1G56 Hippocampe Gauche 170 1,78 1,77 9,3

1G57 Hippocampe Gauche 130 1,87 0,29 9,4

1G58 Hippocampe Gauche 240 1,84 1,25 9,3

1G59 Hippocampe Gauche 220 1,92 2,1 9,2

1G60 Hippocampe Gauche 310 1,78 2,09 9,3

1G61 Hippocampe Gauche 250 1,86 0,61 9,3

1G62 Hippocampe Gauche 280 1,8 1,17 9,2

1G63 Hippocampe Gauche 310 1,78 2,04 9,2

Souris Echantillon Concentration ng/µL 260/280 260/230 Qualification expérion

3G40 Hippocampe Gauche 330 1,8 1,96 9,2

3G41 Hippocampe Gauche 340 1,79 2,2 9,1

3G42 Hippocampe Gauche 150 1,79 1,51 9,1

3G43 Hippocampe Gauche 250 1,77 2,16 9,1

3G44 Hippocampe Gauche 230 1,78 0,9 9,1

3G45 Hippocampe Gauche 280 1,79 1,05 9,1

3G46 Hippocampe Gauche 220 1,81 1,37 8,3

3G47 Hippocampe Gauche 340 1,92 0,46 8,3

3G48 Hippocampe Gauche 220 1,81 1,21 9,2

3G49 Hippocampe Gauche 310 1,82 0,88 9,3

3G50 Hippocampe Gauche 290 1,81 1,45 9,2

3G51 Hippocampe Gauche 230 1,8 0,75 9,3

3G52 Hippocampe Gauche 180 1,82 0,74 9,2

3G53 Hippocampe Gauche 340 1,73 0,54 9,3

3G54 Hippocampe Gauche 180 1,79 0,63 9,2

3G55 Hippocampe Gauche 300 1,8 0,88 9,1

3G56 Hippocampe Gauche 250 1,81 1,43 9,1

3G57 Hippocampe Gauche 260 1,82 0,71 9,1

3G58 Hippocampe Gauche 260 1,77 9,7

3G59 Hippocampe Gauche 230 1,77 2,2 9,7

3G60 Hippocampe Gauche 240 1,77 1,34 9,4

3G61 Hippocampe Gauche 280 1,79 1,34 9,3

3G62 Hippocampe Gauche 370 1,79 2,03 9,1

3G63 Hippocampe Gauche 250 1,75 2,31 9,3

mouse sample Concentration ng/µL 260/280 260/230 Experion

CA1Hippocampe Gauche 275 1,86 0,54 8,7

CA2Hippocampe Gauche 175 1,88 0,65 8,6

CA3Hippocampe Gauche 300 1,75 2,18 9,6

CA4Hippocampe Gauche 300 1,75 2,07 9,6

CA5Hippocampe Gauche 300 1,79 1,84 9,4

CA6Hippocampe Gauche 100 1,85 0,74 9,1

CA7/8aHippocampe Gauche 100 1,81 0,71 9,2

CA7/8bHippocampe Gauche 50 1,69 0,33 8,5

CA10Hippocampe Gauche 300 1,8 1,24 9,6

CA9Hippocampe Gauche 275 1,7 1,15 9,4

mouse sample Concentration ng/µL 260/280 260/230 experion

P1 Hippocampe Gauche 325 1,81 1,5 8,8

P2 Hippocampe Gauche 175 1,92 0,71 8,8

P3 Hippocampe Gauche 250 1,86 1,89 8,8

P4 Hippocampe Gauche 275 1,81 1,13 8,8

P5 Hippocampe Gauche 350 1,6 1,51 8,7

P6 Hippocampe Gauche 275 1,79 1,31 8,7

P7 Hippocampe Gauche 250 1,91 0,81 8,7

P8 Hippocampe Gauche 150 1,91 0,29 8,9

P9 Hippocampe Gauche 200 1,77 1,06 8,5

CC1 Hippocampe Gauche 200 1,74 0,78 9,1

CC2 Hippocampe Gauche 275 1,87 0,38 9,1

CC3 Hippocampe Gauche 375 1,72 0,73 9

CC4 Hippocampe Gauche 250 1,72 1,92 8,9

CC5 Hippocampe Gauche 375 1,83 0,57 8,9

CC6 Hippocampe Gauche 350 1,72 1,96 8,9

CC7 Hippocampe Gauche 225 1,78 0,75 9

CC8 Hippocampe Gauche 700 1,21 0,92 8,9

CC9 Hippocampe Gauche 225 1,82 0,82 9

CC10 Hippocampe Gauche 250 1,81 0,32 8,9

mouse sample Concentration ng/µL 260/280 260/230 experion

V1GHippocampe Gauche 150 1,7 0,36 9
V2GHippocampe Gauche 300 1,69 0,58 9,4
V3GHippocampe Gauche 700 1,76 0,81 8,6
V4GHippocampe Gauche 450 1,66 0,64 9,3
V5GHippocampe Gauche 450 1,72 0,68 8,5
V6GHippocampe Gauche 525 1,8 0,94 8,4
V7GHippocampe Gauche 475 1,68 0,58 ?
V1DHippocampe Droit 325 1,73 0,93 9,5
V2DHippocampe Droit 25 1,47 0,14 7,6
V3DHippocampe Droit 275 1,51 0,31 9,2
V4DHippocampe Droit 425 1,74 0,83 8,6
V5DHippocampe Droit 250 1,65 0,7 9,3
V6DHippocampe Droit 325 1,69 0,52 9,2
V7DHippocampe Droit 150 1,75 0,26 9

Supplementary Figure 1: copy of xls file containing (A) the concentration of RNA from each sample; the 
color code (B: blue, R red, V green)indicated how the different samples were associated to generate amples 
for Illumina sequencing and (B) the concentration and RNA mass in each sample sended to GATC for 
Illumina sequencing.
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Le cerveau est l'un des organes les plus perfusé du corps, mais a une capacité limitée à stocker 
l'énergie. Pour cette raison, il dépend fortement du flux sanguin cérébral. Les systèmes neuronaux et 
vasculaires communiquent étroitement pour coordonner leurs actions. Comme la microcirculation 
cérébrale est capable d'adapter son activité pour fournir les quantités nécessaires d'énergie et de 
nutriments imposées par la demande métabolique des réseaux neuronaux, il est raisonnable de penser 
qu’une réorganisation vasculaire se produit pour permettre l'approvisionnement en énergie adéquat de 
réseaux neuronaux spécifiques recrutés lors de processus mnésiques.  

Ce processus dynamique de plasticité vasculaire est particulièrement mal connu lors des 
processus cognitifs. C’est pourquoi nous l’avons exploré lors du processus de la consolidation 
mnésique, qui peut se définir comme le processus par lequel une trace mnésique acquiert stabilité et 
persistance dans le temps. Dans notre modèle, la consolidation mnésique exige un dialogue temporaire 
entre l'hippocampe et les régions corticales qui servent de dépôt permanent des souvenirs. 

Nous avons choisi un paradigme comportemental particulièrement adapté à l'étude de la consolidation 
de la mémoire : la tâche de transmission sociale de préférence alimentaire (TSPA). Cette tâche est 
basée sur des études éthologiques démontrant que les interactions sociales entre des rats vont conduire 
à l’apparition d’une préférence alimentaire durable pour la nourriture qui a été consommée par les 
autres congénères, formant une mémoire associative olfactive. Le TSPA permet d'encoder rapidement 
des informations olfactives lors d'une seule session d'interaction, permettant une phase d’acquisition 
ponctuelle sans répétition des essais d’apprentissage afin d’offrir un contrôle rigoureux de la cinétique 
d’induction des mécanismes post-apprentissages impliqués dans la consolidation systémique, et 
d'induire une mémoire robuste et durable. En plus, sa nature associative nécessite l'hippocampe et des 
régions corticales spécifiques telles que les cortex orbitofrontal et cingulaire antérieur qui sont 
impliqués dans le traitement de l'information olfactive associative. Enfin, sa nature non spatiale 
restreindre l’implication fonctionnelle de l’hippocampe au processus de consolidation. 

Dans un précédent ensemble d'études réalisé dans l'équipe de Bruno Bontempi par Anaïs Giacinti 
pendant son doctorat (Giacinti, 2014), il a été constaté que la réactivité et l'architecture des vaisseaux 
cérébraux peuvent être modifiées pendant la consolidation de la mémoire (augmentation de la 
réactivité de l'artère cérébrale postérieure, irrigant l’hippocampe, pendant l’expression de la mémoire 
récente; augmentation de la réactivité de l'artère cérébrale antérieure, irrigant le cortex, lors de 
l’expression de la mémoire ancienne). De plus des données préliminaires rapportées dans cette thèse 
suggèrent une augmentation transitoire de la densité vasculaire dans le cortex cingulaire antérieur 
(CCA), proposée comme le signe du déclenchement d'un processus angiogénique. 

Sur la base de ces résultats prometteurs, nous avons conçu une série d'expériences de suivi spécifiques 
visant à décrypter ces processus angiogéniques potentiellement déclenchés lors de l’encodage des 
informations olfactives dans la tâche du TSPA chez les rats Sprague Dawley (SDs). À cette fin, nous 
avons exploré dans le premier temps les mécanismes putatifs responsables de l'angiogenèse locale 
dans le CCA. 24h après l’interaction, des cellules de l’ACC, et seulement dans l’ACC, présentent un 
niveau d’hypoxie détectable par le marqueur hypoxique Pimonidazole. Cette hypoxie persistante de 
plusieurs cellules, 24 heures après l’encodage pourraient alors déclencher un processus angiogenique 
afin de réorganiser le réseau vasculaire et le rendre plus performant à proximité des réseaux neuronaux 
impliqués dans le mécanisme de consolidation.  

L’expression des protéines connues pour induire, contrôler et inhiber le processus d'angiogenèse est 
régulée dans le temps au sein de l’ACC. La littératuresur l’angiogenèse nous apprend que dans les 
cellules endothéliales l'expression de l'angiopoietine-2 (Ang-2) est induite par l’hypoxie, et d’autre 
part la phase angiogénique est corrélée avec une augmentation de l’expression d’Ang-2 et Vascular 
Endothelial Growth Factor (VEGF), tandis que la phase de maturation des vaisseaux sanguins est 
associée à une augmentation relative de l’Angiopoiétine-1 (Ang-1) et à une diminution du VEGF. 
Enfin, à ce jour l’Ang-2 est spécifique de la sphère vasculaire par rapport à d'autres facteurs de 
croissance, tels que le VEGF, qui agissent et sont exprimés également dans les neurones et les 
astrocytes dans le cerveau adulte. 



Nous avons déterminé que l’Ang-2 est surexprimée précocement au cours de la tâche de TSPA et 
spécifiquement dans l’ACC, suggérant sa participation à la consolidation de la mémoire associative 
olfactive. Cette augmentation d’expression de l’Ang-2 induite par la mémoire était absente 
immédiatement après l'interaction sociale, mais reste significative 3 jours après l’interaction sociale ; 
dans le même temps l’expression d’Ang-1. Cela suggère que l'Ang-2 peut favoriser une angiogenèse 
en provoquant la déstabilisation des vaisseaux en inhibant l'action de l'Ang-1. Ce mécanisme est 
transitoire puisque le taux d’expression d’Ang-2 revient au niveau basal au sixième jour après 
l’interaction, suggérant que l'angiogenèse est liée à la phase précoce de la consolidation de la 
mémoire. L’approche corrélative a été poursuivie par la mise en évidence de la présence de cellules en 
prolifération associées aux capillaires intracérébraux, et que le réseau vasculaire perfusé, révélé par le 
bleu Evan, était significativement plus important chez les animaux engagés dans le processus de 
consolidation mnésique. Mais pour affirmer que ce mécanisme pouvait soutenir le dialogue neuronal 
entre HPC et CCA, nous avons entrepris une approche invasive visant à moduler l'angiogenèse, via 
une action sur l’Ang-2, au cours de la phase précoce de la consolidation de la mémoire. Nous avons 
alors émis l'hypothèse que le blocage ou l'amélioration de l'angiogenèse corticale au cours de la phase 
précoce de consolidation mnésique devrait soit diminuer ou améliorer la formation ultérieure de la 
mémoire associative olfactive ancienne en influant sur la réorganisation des réseaux neuronaux 
corticaux soutenant la mémoire à long terme. L'angiogenèse a été inhibée au moyen d'infusions intra-
corticales d'oligonucléotides antisens dirigés contre Ang-2. Ces infusions post-encodage limitées dans 
le temps, au sein de le CCA au cours de la phase précoce de consolidation de la mémoire, ont détérioré 
la récupération de la mémoire ancienne chez les rats testés 30 jours après l'interaction sociale dans le 
paradigme TSPA, indiquant une incapacité à former correctement et/ou récupérer des informations 
anciennes acquises dans le temps. Ainsi, même si l’Ang-2 n'est pas le seul acteur impliqué dans la 
modulation de l'angiogenèse, son inhibition sélective de l'expression était suffisante pour avoir un 
impact sur la performance mnésique, indiquant la nécessité de ce facteur dans le processus de 
consolidation mnésique. Vice-versa, l’infusion intracérébrale du peptide Ang-2, au cours de la phase 
précoce de consolidation de la mémoire, induit une amélioration de la mémoire chez des rats testé 30 
jours après interaction sociale. Ces résultats ont surlignée le rôle de l’Ang-2 comment facteur impliqué 
dans l’expression de la mémoire à long terme. Ainsi, nous avons pu proposer que l'angiogenèse 
corticale précoce soit un mécanisme permissif crucial qui soutient l’intégration progressive dans les 
réseaux neuronaux corticaux.  

En parallèle, nous avons étudié la signification fonctionnelle du mécanisme angiogénique corticale 
identifié dans des conditions physiologiques en examinant les effets délétères potentiels de 
l'hypertension sur l'organisation de souvenirs récents et anciennes en utilisant le modèle de modèle des 
rats hypertendus (SHRs). Apres avoir exclu des bais expérimentaux comportementaux qui pouvaient 
affecter la mesure des performances mnésiques dans le test de TSPA, nous avons pu établir une 
détérioration sélective de la mémoire à long terme sans atteinte de la mémoire récente, atteinte qui est 
dépendante de la durée d’hypertension. Ces résultats suggèrent un encodage réussi, mais une 
incapacité à stabiliser et / ou à récupérer adéquatement des informations acquises à distance. Cet effet 
semble d’ailleurs bien lié à l’hypertension puisque l’utilisation du Losartan (un antagoniste des 
récepteurs de l’angiotensine-II, puissant anti-hypertenseur), restore la consolidation mnésique, tout en 
régulant la pression artérielle. Ces résultats suggèrent que le phénotype hypertendu serait responsable 
de l’incapacité des animaux à conserver le souvenir des informations acquises. Dans ce modèle 
animal, nous avons également mis en évidence l’absence de l’augmentation de l'expression d'Ang-2 au 
troisième jour suivant l’interaction sociale et l’absence de prolifération cellulaire pericapillaire. Enfin, 
l’injection d’Ang-2 dans l’ACC chez le SHR restore la performance de mémoire ancienne confirmant 
le rôle crucial de nouveau mécanisme dans la consolidation de la mémoire ancienne.  

L’ensemble de nos résultats suggèrent également un mécanisme permissif de l'angiogenèse corticale 
stimulée immédiatement après l’encodage dans la consolidation de la mémoire. 

Enfin, nous avons étendu notre analyse aux effets de la modification de la gravité sur la 
microvasculature cérébrale. En effet, les modifications de la gravité modifient d’une part la réactivité 
vasculaire et d’autre part des travaux suggèrent des atteintes de la mémoire spatiale, nous avons voulu 



tester l'hypothèse selon laquelle l'hypergravité pourrait interférer avec le processus de consolidation de 
la mémoire via la perturbation du système vasculaire dans un test non-spatial comme le test de TSPA. 
Des rats SDs ont donc subi une exposition chronique à l'hypergravité à 2G et l'impact de ce traitement 
environnemental sur les processus de codage, de consolidation et de récupération a été évalué en 
utilisant le paradigme du TSPA. L'hypergravité à 2G appliquée entre l’encodage et la restitution 
(pendant 21 jours) ou avant l’encodage (pendant 60 jours) n’est pas en mesure de modifier 
l'organisation de la mémoire. Ces résultats suggèrent que les modifications gravitaires ne sont pas en 
mesure d’altérer ni la consolidation de la mémoire non-spatiale ni les mécanismes du dialogue 
hippocampo-cortical. 

Dans l'ensemble, notre approche intégrative et transversale nous a permis de fournir de nouvelles 
connaissances sur la dynamique de la sphère capillaire cérébrale au cours de la consolidation de la 
mémoire. Nos résultats identifient l'angiogenèse corticale précoce comme un processus 
neurobiologique crucial pour aider à la formation et la stabilisation de la mémoire ancienne. Ils 
révèlent l'importance de la plasticité vasculaire dans la modulation des fonctions cognitives et 
suggèrent que les changements structurels précoces du réseau vasculaire cérébral constituent un 
mécanisme permissif pour la régulation de la plasticité neuronale au sein des réseaux corticaux 
impliqués dans la formation progressive et le stockage des souvenirs. Ce mécanisme vasculaire est 
davantage discuté à la lumière des connaissances existantes sur l'angiogenèse cérébrale et un modèle 
putatif incorporant l'implication fonctionnelle de la sphère vasculaire cérébrale à la dynamique des 
interactions neuronales hippocampique-corticales au cours du processus de consolidation de mémoire 
est proposé. 


