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Modelling and Simulations of Contacts in Particle-Laden Flows

Abstract:

Particle-laden flows can be found in many industrial applications such as slurry trans-
port or the chemical industry in general. In mixtures made of solid particles emerged in
a viscous fluid, particle interactions play an essential role in the overall mixture viscosity.
The suspension phenomenon is caused by short-range hydrodynamic interactions, known
as lubrication. Lubrication forces are usually underestimated due to their singularities
and the spatial discretization of the numerical schemes. In this thesis, we propose a lu-
brication model for a coupled volume penalization method and discrete element method
solver that estimates the unresolved hydrodynamic forces and torques in incompressible
Navier-Stokes flows. Corrections are made locally on the surfaces of the interacting parti-
cles without any assumption on the global particle shapes. The final version of the local
lubrication model can be used for suspension of convex particles without any tabulations.
The numerical method has been validated against experimental data with spherical and
ellipsoidal particles. With spherical particles, the lubrication model performs as well as
existing numerical models that are limited to this specific particle shape. The model
compatibility with convex particles has been validated by comparing simulations using
ellipsoids to experimental measurements we made.

Keywords:

Local Lubrication Models, Fluid-Structure Interactions, Coupled VP-DEM, Ellipsoidal
Particles.
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Modélisation et simulations numériques des contacts dans des écoulements

chargés en particules

Résumé :

Les écoulements chargés en particules sont présents dans de nombreuses applications
industrielles telles que le transport de boues ou l’industrie chimique en général. Dans
des mélanges constitués de particules solides immergées dans un fluide visqueux, les in-
teractions entre particules jouent un rôle essentiel dans la viscosité globale du mélange.
Le phénomène de suspension est causé par des interactions hydrodynamiques à courte
distance, connues sous le nom de lubrification. Les forces de lubrification sont générale-
ment sous-estimées en raison de leur nature et de la discrétisation spatiale du problème.
Dans cette thèse, nous proposons un modèle de lubrification qui estime les forces et cou-
ples hydrodynamiques non résolues par un solveur couplant la résolution des équations
de Navier-Stokes incompressible par une méthode de volumes penalisés, à la résolution
de la dynamique des particules par une méthode aux éléments discrets. Les corrections
des contraintes hydrodynamiques sont faites localement sur la surface des particules en
interaction sans aucune hypothèse sur la forme générale des particules. La version finale
du modèle de lubrification proposée peut être utilisée pour des suspensions de particules
convexes sans aucune tabulation. La méthode numérique a été validée avec des particules
sphériques et des ellipsoïdes, en comparant des simulations à des données expérimentales.
Dans le cas de particules sphériques, le modèle de lubrification est aussi précis que les
modèles de lubrification existants qui sont limités à ce type de géométrie. La compati-
bilité du modèle avec des particules convexes a été validée en comparant des simulations,
utilisant des ellipsoïdes, à des mesures expérimentales que nous avons réalisées.

Mots clés :

Modèle local de lubrification, Interactions fluide-structure, Couplage VP-DEM, Ellip-
soïdes.
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Résumé

L’étude d’écoulements de particules a de nombreux intérêts pour des applications
industrielles et de recherche, telles que la fabrication de béton, le transport de boues
ou de sédiments, le traitement des eaux usées, ou la fabrication de certains plastiques.
La simulation numérique d’écoulement de particules solides immergées dans un fluide
visqueux apporte des informations importantes pour la compréhension des phénomènes
physiques en jeu, ou peut servir de support pour l’optimisation de procédés industriels.

Depuis le début des années soixante, de nombreuses méthodes numériques ont été
développées afin de simuler précisément ce type d’écoulement. Les méthodes les plus
avancées simulent le mouvement des particules ainsi que l’écoulement du solvant. L’approche
la plus courante pour résoudre l’écoulement est de coupler un solveur fluide, résolvant les
équations de Navier-Stokes, avec un solveur des équations de Newton-Euler résolvant
les mouvements des particules. Bien que ces méthodes permettent de résoudre finement
l’écoulement, elles ne sont pas capables de résoudre intégralement les interactions hydro-
dynamiques entre des particules pratiquement en contact, et cela indépendamment de la
nature du maillage choisi (maillage adapté ou non aux interfaces fluides-particules).

Quand une particule de rayon a est sur le point d’entrer en collision avec un obstacle,
la présence de l’obstacle est perçue par la particule par l’intermédiaire du solvant par la
modification des forces hydrodynamiques. L’apparition d’interactions hydrodynamiques
de courtes distances, communément appelées forces de lubrification, est la conséquence
du drainage du fluide dans la zone interstitielle entre la particule et l’obstacle. La com-
posante normale et tangentielle des forces de lubrification évoluent comme ε−1 et log(ε)

respectivement, avec aε la distance de séparation entre la particule et l’obstacle. La ré-
solution numérique de ces singularités n’est possible que pour certains écoulements de
Stokes, et a un coût de calcul important. Dans le cas général, les forces de lubrification
sont résolues partiellement. C’est pour cela que des modèles de lubrification, utilisant
des solutions analytiques provenant de la théorie de la lubrification, sont ajoutés aux
méthodes numériques.

Dans cette thèse, nous avons développé un modèle de lubrification pour des écoule-
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RÉSUMÉ

ments de particules rigides immergées dans un fluide newtonien visqueux. Alors que la
majorité des modèles de lubrification existants sont limités à des particules sphériques ou
à des écoulements en régime de Stokes, notre modèle peut s’adapter à des écoulements
de particules convexes en régime inertiel incompressible. Afin de valider le modèle, ce
dernier a été intégré à un solveur partitionné couplanet la résolution des équations de
Navier-Stokes incompressible par une méthode de pénalisation (VP), à la résolution du
mouvement des particules par la méthode aux éléments discrets (DEM) (voir Chap. 2).

La méthode numérique.

L’écoulement est modélisé par les équations de Navier Stokes incompressible pour un
fluide newtonien de viscosité µ et de densité ρ :


∂ui
∂t

+
∂ (uiuj)

∂xj
= −1

ρ

∂p

∂xi
+
µ

ρ

∂

∂xj

(
∂ui
∂xj

)
+χλ (uτ,i − ui) ,

∂ui
∂xi

= 0,

(1)

avec (i; j) = {1, 2, 3}2, ui étant les composantes de la vitesse, et p la pression. Ce système
d’équations est résolu sur un maillage cartésien uniforme couvrant la totalité du domaine
d’intérêt. Les cellules solides de maillage (à l’intérieur des particules) sont repérées à
l’aide d’une indicatrice χ qui renvoie le signe de la level-set globale. La level-set est une
fonction signée qui donne en chaque élément du maillage la distance entre cet élément
et la surface de la particule la plus proche, et cette distance est comptée négativement
quand l’élément est à l’intérieur de la particule.

A l’interface fluide-particule, on considère une condition de non-glissement qui est
implicitement imposée par le therme de pénalisation χλ (uτ,i − ui), avec le coefficient de
pénalisation λ choisi arbitrairement grand[1]. Les vitesses pénalisées aux cellules solides à
l’interface fluide-particule sont corrigées par la méthode IPC (Image Point Correction)[2]

afin d’obtenir une pénalisation globale consistante et de second ordre en espace. La
méthode IPC consiste à corriger les vitesses pénalisées de manière à ce que les vitesses
ainsi que leurs dérivées satisfassent la condition de non-glissement à l’interface.

Les équations de Navier-Stokes sont discrétisées en espace en utilisant un arrangement
colocalisé au centre des mailles des variables primitives (p, ui). L’intégration en temps se
fait à partir du schéma de projection classique de Chorin[3] et Temam[4] (voir Sec. 2.2).

La dynamique des particules est calculée à partir des équations de Newton-Euler (voir

12



RÉSUMÉ

Sec. 2.3) appliquées au centre de masse des particules :
mi
dUi

dt
= Fi,

dJiΩi

dt
= Ti,

(2)

avec mi la masse, Ji la matrice d’inertie, Ui et Ωi les vitesses de translation et de rotation
de la particule Pi. La force Fi et le couple Ti sont la force et le couple résultant des
collisions, des effets hydrodynamiques et de la gravité appliqués à la particule Pi. Les
forces et couples générés par la collision de la particule avec un obstacle (mur ou autre
particule) sont modélisés par le modèle de sphères molles[5] (voir Sec. 2.3.2). Les forces
et couples hydrodynamiques sont décomposés en deux contributions :

Fhyd
i = Fsolv

i + Fdeg
i ,

Thyd
i = Tsolv

i + Tdeg
i .

(3)

avec Fsolv
i et Tsolv

i les contributions entièrement résolues par le solveur, et Fdeg
i et Tdeg

i les
contributions complémentaires, non capturées par le solveur. Les contributions résolues
sont données par l’intégration de la contrainte du fluide sur la surface de la particule.
La seconde contribution est la conséquence des erreurs commises par la discrétisation du
problème en espace et en temps ainsi que par la méthode numérique. Elle est donc par
nature inaccessible et inévitable. L’objectif d’un modèle de lubrification est d’estimer
Fdeg
i et Tdeg

i afin de minimiser l’influence des approximations numériques sur les forces et
couples hydrodynamiques totaux (voir Sec. 2.3.1).

Le modèle de correction local des forces de lubrification.

Le modèle de correction des forces et couples de lubrification que nous avons développé
est fondé sur les mêmes hypothèses de base que la théorie de lubrification pour des partic-
ules sphériques. On considère deux particules isolées dans un espace infini. Le fluide est
considéré au repos ainsi qu’une des particules, alors que la seconde particule est animée
d’un mouvement constant de translation en direction de la particule au repos. Ce mou-
vement entraine la compression du fluide entre les deux particules ce qui est à l’origine de
la composante principale de la force de lubrification. On considère aussi, dans un second
temps, la translation d’une particule à proximité d’une seconde particule initialement au
repos. Ce mouvement entraine le cisaillement du fluide interstitiel ce qui génère une force
et un couple hydrodynamiques sur les deux particules.

13



RÉSUMÉ

Si on suppose que la distance entre les deux particules est très petite, le mouvement
du fluide dans la zone interstitielle peut être approché par les équations de Stokes. Ainsi
il est possible, avec un peu de calcul, d’exprimer la force et le couple hydrodynamiques
agissant sur un voisinage du point de contact à la particule initialement en mouvement.
Comme les particules sont isolées, toutes les forces hydrodynamiques du système sont des
forces de lubrification (voir Sec. 3.1, pour la théorie de lubrification décrite en détails). On
obtient donc ainsi les expressions des forces et couples de lubrification pour un écoulement
en régime de Stokes.

Le modèle utilise l’ordre dominant des forces et couples théoriques, comme correction
des forces et couples hydrodynamiques, de la manière suivante :

Fhyd
i = Fsolv

i +
∑

j∈J1,NK\{i}

Flub
i,j + Flub

i,wall,

Thyd
i = Tsolv

i +
∑

j∈J1,NK\{i}

Tlub
i,j + Tlub

i,wall,
(4)

avec Flub
i,j et Tlub

i,j l’ordre dominant des force et couple de lubrification entre les particules
Pi et Pj définis par la théorie de lubrification (voir Sec. 3.3 pour les expressions exactes).
Ces corrections peuvent être appliquées directement pour des particules sphériques. Dans
le cas de particules convexes, les corrections sont calculées à partir de sphères virtuelles.
Pour chaque couple de particules en interaction, deux sphères sont construites de manière
à ce que leurs surfaces approchent au mieux les surfaces des particules au voisinage du
point de contact.

Validations du modèle de lubrification.

Le modèle de lubrification a été validé, dans un premier temps, avec des particules
sphériques (voir Chap. 4) pour lesquelles il existe une large bibliographie de mesures
expérimentales. Dans le cas le plus simple d’une unique particule impactant un mur, le
modèle local de lubrification est aussi précis que les modèles de lubrification existants.
Cependant, notre modèle est en moyenne 10% plus couteux que les modèles de référence
spécifiquement conçus pour des suspensions de sphères. En revanche, le modèle local n’est
pas limité à des particules sphériques et ne nécessite pas la tabulation de paramètres.

La validation pour des particules convexes est intrinsèquement plus difficile que pour
des sphères (voir Chap. 5). Dans beaucoup de cas, les rotations et couples peuvent
être négligés pour des particules sphériques ce qui n’est pas possible pour des ellipsoïdes.
L’étude expérimentale des interactions entre un ellipsoïde avec un obstacle est à ce jour
très peu documentée. Avec le soutien de TU-Delft, nous avons pu effectuer nos propres

14



RÉSUMÉ

mesures d’un ellipsoïde impactant un mur. La comparaison de trajectoires simulées à
ces premières mesures expérimentales a permis de donner une première estimation de la
qualité des corrections des forces de lubrification pour des particules non sphériques.
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Introduction

Mixtures of solid particles in a liquid, i.e. suspensions, are a type of two-phase flow that
appear in various industrial applications as well as in natural flows. For instance, sedimen-
tation in rivers or near-coast influences the flow. By understanding the dynamics of the
bed-load transport, the evolution of the river-stream can be forecast to prevent abnormal
erosion or obstruction of waterways[6, 7]. Macroscopic suspensions are also relevant in sev-
eral industrial applications, such as nuclear waste processing, water treatment[8, 9], slurry
transportation[10], reinforced plastics manufacturing, or the animation industry[11, 12]. For
dense mixtures such as uncured solid rocket fuel or concretes[13], a high concentration of
solid particles is desired without compromising the rheological properties and the flow-
ing behavior of the mixture. Accurate numerical methods are then valuable supports to
optimize manufacturing processes.

Over the years, several numerical methods have been developed to simulate particle-
laden flows at different scales. Particle-laden flows can be simulated at a macroscale
with methods seeing the mixture as a non-Newtonian fluid. If the characterization of
the mixture rheology is possible, these methods provide a general picture of the mixture
flows at a reduced cost. However, the particle-fluid interactions need to be fully resolved
to clearly describe the flow. Therefore, microscale methods are preferred as they fully
resolve the dynamics of the particles as well as the flow around each of them.

Microscale methods have historically started with adaptations of molecular models,
such as Stokesian Dynamics (SD)[14, 15] or Force-Coupling Method (FCM)[16, 17]. Both
methods depend on a truncated multipole expansion of the Stokes equations. Thereby,
they are usually suited only for specific particle shapes and are inherently restricted to
Stokes flows. Thanks to modern improvements of computer performances, Direct numer-
ical simulation (DNS) has emerged as an appealing alternative. By solving the govern-
ing equations (Navier-Stokes equations) directly without any further assumptions, DNS
enables microscale simulations of arbitrary particle shape at the numerical method accu-
racy level. The DNS methods can be divided into two classes. The first one considers
boundary-fitted approach[18, 19], where the fluid fills the meshed domain. If the mesh ele-
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INTRODUCTION

ments are small enough, this approach enables an accurate computation of the boundary
layers and interactions between particles. However, as the particles move, the domain
needs to be constantly adapted leading to possibly complex and expansive remeshing is-
sues. The computational cost of the re-meshing limits three-dimensional simulations to
about a hundred particles[19]. In contrast, the second class of DNS methods considers
non-boundary-fitted meshes which are more suited to numerical simulations using many
particles. In this approach, the whole domain is discretized on a Eulerian fixed grid where
the particles are embedded. Several techniques are available to simulate the particulate
flow using fictitious domain methods[20, 21, 22, 23, 24, 25, 26], encompassing lattice Boltzmann
methods[27], immersed boundary methods (IBM)[28, 29] and volume penalization method
(VP)[1].

Although microscale methods can capture flow details, they are challenged by short-
range hydrodynamics. When two particles are moving toward each other they start to
interact throughout the fluid as the separation distance aε (where a denotes the particle
radius and ε ≥ 0) becomes small. This well-known lubrication effect is due to the draining
of interstitial fluid in the gap between the two interacting particles. The normal and
tangential components of the lubrication force diverge as the particles collide (ε tends to
0) as ε−1 and log(ε), respectively. From a physical point of view, the lubrication forces
do not reach infinitely large values as the interstitial flow collapses when the gap becomes
smaller than roughly the fluid molecule size. The void generated in the gap enables the
mechanical collision of the particles. This critical state can be reached when the particle
inertia is non-negligible compared to the fluid viscous friction.

At vanishing Reynolds number, DNS methods are able to resolve these lubrication
forces if the grid spacing is small enough. Typically, the grid spacing should be at least
smaller than 10−3a to capture lubrication effects[30]. For weakly inertial flows, collisions
between particles might occur making impossible to run DNS simulation without intro-
ducing a collision model and approximate the lubrication effects. The computational
costs make long-term simulations of concentrated suspensions prohibitive. Most simu-
lations are performed on meshes with a grid spacing of about 10−1a, meaning that the
accuracy of the description of the lubrication effects drops as the particles come in near
contact. Therefore, a numerical lubrication model is usually introduced to balance the
unresolved lubrication forces.

In the simplest lubrication model, the theoretical lubrication force known for two
spherical particles (normal[31] and tangent[32] components) is added to the computed hy-
drodynamic force[5]. This approach considers that lubrication cannot be captured by the
flow solver. However, by adding the theoretical lubrication force, the lubrication par-
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INTRODUCTION

tially captured by the solver is counted twice. A more accurate approach is suggested in
Stokesian Dynamics, where hydrodynamic forces are split into a long- and a short-range
actions. The short-range actions are also known as lubrication. Hence long-range actions
are provided by the solver and short-range actions are modeled via the lubrication theory,
avoiding an overestimation of the total hydrodynamic forces. However, this decomposi-
tion is not easy to adapt to DNS since the long-range hydrodynamics is not explicitly
known. A common technique[30, 33] is to perform off-line simulations of two isolated par-
ticles using a refined mesh without any lubrication model, for different configurations
and normalized separation distance ε, to estimate the unresolved part of the lubrication
forces. From these off-line simulations and the lubrication theory, a tabulation of lubrica-
tion corrections is created. Hence the lubrication model for on-line simulations estimates
the correction to perform from the tabulation. The accuracy of this method depends on
the quality of the tabulation and the diversity of the off-line samples used to create it.
Thus, these methods are usually used for mono-disperse suspensions of spherical particles
since only the tabulation of a single parameter is required. Theoretically, the tabulation
of more general suspension models is also possible[34]. However, the computational cost
involved to generate an accurate multi-parameter tabulation makes general suspensions
unachievable in reasonable CPU time.

This thesis is focused on lubrication methods applied to non-Brownian suspensions.
This manuscript is organized as follows:

In the first chapter, several methods handling problems caused by unresolved lubri-
cation are reviewed. The proposed brief review of the state of the Art aims to highlight
the challenges and limitations facing the lubrication correction methods. This chapter
also draws the context of this thesis research and places the local lubrication correction
model, that we created, among the existing methods.

In the second chapter, the Lagrange-Euler method used in this manuscript to solve
particle-laden flow is described in depth. Incompressible Navier-Stokes equations for a
Newtonian viscous fluid have been solved using a volume penalization (VP) method cou-
pled with a discrete element method (DEM)[35], which resolves the rigid particle dynamics.

In the third chapter, the local lubrication correction model is introduced. The com-
pleted theoretical background of the model is first detailed before describing the model
implementation into the numerical framework introduced in the previous chapter.

In the last two chapters, the local lubrication correction model is tested with several
cases. The model is first validated with spherical particles, where extensive benchmarks
are available in the literature. The validation is then extended to ellipsoidal particles
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where we carried out our own measurements to complete scarce references.
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Chapter 1

State of the Art

Lubrication correction techniques are closely linked to the numerical methods used to
solve the particle-laden flows. Nevertheless, they are all based on the lubrication theory
established in the first half of the XXth century. Stimson et al.[36] first exhibited analytical
solutions of the lubrication forces generated by two particles moving toward each other in
a viscous fluid at vanishing Reynolds number. The squeezing motion of a particle toward
an obstacle (wall or another particle) gives the dominant and singular component of the
lubrication forces. Therefore, this motion has been the focus of theoretical and early
numerical studies[37, 31, 38, 39, 40, 41].

The second singularity of the lubrication forces is induced by the shearing motion of the
interstitial fluid between a particle and a nearby obstacle. This motion is generated either
by the translation[32, 42] or the rotation[43, 44] of the particle. In addition to the second
component of the lubrication force, the shearing motion creates a lubrication torque.

Analytic solutions of the lubrication effects have widely been established for a system
of two rigid spherical particles in a creeping flow. However, extensions of the lubrication
theory can be found for spherical particle with rough surfaces[45], deformable drops[46, 47],
or non-spherical particles[34]. Cox et al.[48] extend the lubrication theory to unsteady
Navier-Stokes flows of axisymmetric particles, widening significantly the Reynolds number
range where the theoretical lubrication solutions are applicable.

This chapter is focusing on the main lubrication models developed during the last five
decades and their integration in their historical numerical frameworks. First, numerical
methods limited to the particle dynamics are described. Subsequently, some lubrication
correction strategies for coupled fluid-particle methods are discussed.
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1.1 Particle-based methods.

Accurate simulations of large particle-laden flows have been the ultimate objective for
most of the numerical methods developed over the years to simulate suspensions. The
applications range from improving our understanding of the physics involved in dense
particle flows, to provide reliable solutions for industrial purposes. Due to limitations of
computational resources (mainly fast memory access), a class of numerical methods has
been developed to simulate particle flows without explicitly solving the fluid phase flow.

1.1.1 Granular media simulations.

The most common approach for granular media simulations is the Discrete Element
Method (DEM), and was first introduced by Cundall[49] as an efficient approach to sim-
ulate rock mechanics. The particle locations and rotations are obtained by solving the
Newton-Euler equations of conservation. Only the forces and torques created by collisions
and gravity are considered. Hydrodynamic effects are neglected as the particles are as-
sumed to be large and dense enough to not be influenced by the fluid flow (usually gas).
This simplification enables to limit the simulation to the particle dynamics. Hence, the
problem has 6N degrees of freedom, with N the number of particles, and can be efficiently
solved with a good scalability.

From the initial work of Cundall, an extensive family of numerical methods has been
developed to simulate granular media[35, 50, 51, 52]. Among them, the soft-sphere collision
model (see Sect. 2.3.2) efficiently mimics the particle deformations under stress. Recent
works of Haustein et al.[53] include the resolution of the particle deformations into the
DEM framework.

When particle chemical properties and interaction laws are added to a DEM, the
numerical method is then often referred to as Molecular Dynamics (MD)[54]. MD was
historically introduced to understand the properties of assemblies of molecules in terms
of their structure and the microscopic interactions between them. MD simulations act as
a bridge between microscopic length and time scales and the macroscopic world of the
laboratory that chemists usually observe. Because of the particle length-scale (. 1nm)[55]

usually considered, lubrication forces are negligible compared to molecular interaction
forces such as potential forces[56] or Van der Waals bonds.

1.1.2 Stokesian Dynamics.

Suspensions are an obvious limitation of DEM, as the hydrodynamic effects play a
role essential in the mixture (fluid-particles) dynamics. In the late eighties, Brady et
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al.[57]) introduced a new molecular-dynamics-like approach to solve suspensions without
explicitly simulating the fluid flow around the particles. The Stokesian Dynamics (SD)
has been designed to solve suspensions in the Stokes regime without neglecting lubrication
effects or many-body interactions (influences of interacting particles on particles further
away). This method is known for capturing accurately both the near- and far-fields
physics.

For N particles suspended in an incompressible Newtonian fluid, the particle dynamics
are obtained by the coupled N -body equations of motion

m · dUp

dt
= Fh + Fp, (1.1)

where m is the generalized mass/moment-of-inertia matrix of dimension 6N × 6N , Up

is the particle linear/rotational velocity vector of dimension 6N , and Fh and Fp are the
hydrodynamic and external force-torque vectors of dimension 6N . As the fluid flows in
the Stokes regime, the fluid equations of motion are linear and the hydrodynamic forces
and torques acting on the particles are given by

Fh = −RFU · (Up − u∞) + RFE : E. (1.2)

The velocity of the bulk linear flow u∞ acting on the particle is evaluated at the particle
center. The externally imposed rate of strain tensor is denoted E, and RFU(x) and RFE(x)

are the resistance matrices which depend on the configuration x - position and orientation
- of the particles. In other words, RFU · (Up − u∞) and RFE : E are the hydrodynamic
forces/torques on the particles owing to their motions relative to the fluid and owing to
the imposed shear flow, respectively. The resistance matrices RSU(x) and RSE(x) are
also introduced similarly to RFU(x) and RFE(x), and relate the particle stresslet Sh (the
symmetric first moment of the force density on a particle) to the velocity and the rate of
strain. The combination of the resistance matrices, called the grand resistance matrix, is
denoted

R =

[
RFU RFE

RSU RSE

]
, (1.3)

and its inverse M = R−1 is called mobility matrix.

Conventional SD exploits the fact that hydrodynamic interactions among particles
can be decomposed into long-range mobility interactions and short-range lubrication
interactions[15]. The long-range interactions are computed by expanding the force density
on the surface of each particle in a series of moments. To minimize the computational
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cost only the two first moments are considered. This level of truncation has been shown
to give very accurate results for many hydrodynamic problems[15, 58, 14, 59].

The combination of this truncated multipole expansion and the Faxen’s laws[60, 61] is
used to form the far-field grand mobility matrix M∞. By construction the far-field grand
resistance matrix R∞ = (M∞)−1 includes an approximation of the dominant many-body
interactions but lacks lubrication. Therefore, near-field interactions are introduced into
the resistance tensor R∞ in a pairwise additive fashion. The exact two-body resistance
interactions R2B, are known from the lubrication theory[40]. However, the far-field two-
particle resistance interactions included in R2B have already been integrated into the
grand resistance matrix R∞, Therefore, the two-body interactions already included in
R∞, denoted R∞2B, are subtracted[62] as well, and the approximation of the grand resistance
matrix becomes

R = R∞ + R2B − R∞2B. (1.4)

The resulting grand resistance matrix depends only from the position and orientation of
the particles. Once R known, the particle velocities can be obtained from the force via
Eq. (1.1) and (1.2) or vice versa.

Direct resolution of Eq. (1.1) involves a costly O (N3) calculation cost, due to the
inversion of the grand mobility matrix M∞, and requires large memory space to store the
resistance matrix. However, recent techniques from Sierou et. al.[15] significantly reduce
the cost of the SD to O (N log(N)). The largest drawback of Stokesian dynamics is that
the expressions used for the hydrodynamic interactions imply an unbounded medium.
SD can be extended to non-spherical particles by approximating the particles by a com-
bination of several spheres or by computing the resistance matrix of the specific particle
geometries[63].

1.2 Multiphase simulations.

In the early days of the XXIst century, improvements in the computational science
enable the development of numerical methods solving the particle dynamics as well as the
fluid dynamics. This extends the simulation reach to weakly-inertial flows of particles and
moves the problem from accurately modeling the fluid flow to modeling the fluid-particle
coupling. Numerical methods for modeling two-way solid-fluid coupling can be loosely
classified into two categories: partitioned[5] and monolithic[64]. Partitioned methods typ-
ically evolve the fluid and the solids separately, using the results of one as boundary
conditions for the other in an alternating one-way coupled fashion. These methods are
the most popular as they reuse existing codes targeted to either solids-only or fluids-only
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problems. However, the partitioned methods face stability issues due to, for instance,
the different time scales involved in the flow or the added-mass instability. Monolithic
methods aim to more fully two-way couple the fluid and solids alleviating a number of the
aforementioned issues[64]. Most of the lubrication correction techniques described below
have been developed for partitioned coupling.

1.2.1 Direct Numerical Simulation.

Direct numerical simulation (DNS) is by construction the most accurate approach to
solve particle-laden flows. The equations of motion of the mixture are directly solved
numerically without any other approximations. Since no models (lubrication or collision
models) are introduced, only errors from numerical methods are included in the solutions.

The accuracy comes with a high computational cost. In practice, direct numerical
simulations are limited to some diluted suspensions in a Stokes regime where the additional
cost of the numerical resolution of particle collisions can be avoided. Because of this
constraint, direct numerical simulations are never strictly performed but are considered
with a collision model[11, 12]. For the sake of clarity, DNS using a collision model will be
referred to as quasi-direct numerical simulation (Q-DNS).

Since no lubrication corrections are introduced, the fluid domain needs to be mapped
with grid elements small enough to capture interstitial flows. In most cases, unresolved
lubrication effects are arbitrarily neglected[11, 12]. However, lubrication forces cannot be
neglected at low particle Stokes number (Std = ρpUd/9µ . 103, where d is the particle
diameter, U is the particle velocity, ρp is the particle density, and µ is the fluid dynamic
viscosity.) because of the strong influence of the viscous effects on the particle dynam-
ics. Therefore, several techniques have been suggested to address the resolution of the
lubrication effect without introducing a lubrication model.

1.2.1.1 Mesh refinement.

Face to the massive cost of simulations using uniform size elements small enough to
accurately resolve lubrication effect, mesh refinement techniques appear as an obvious
approach for cost-efficient Q-DNS. Hence, the mesh is only locally refined in interstitial
regions while larger grid elements are considered away from interacting particles. Ideally,
space and time meshes need to be both refined to take into account the smaller time scale
of the lubrication forces compared to the far-field hydrodynamics[65].

Mesh refinement is often used with boundary-fitted meshes[18, 19, 66]. This approach
enables a more accurate computation of the boundary layers compared to most ficti-
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Figure 1.1: Example of body-fitted mesh with mesh refinement. Illustration from Johnson
et al.[19]

tious domain approaches[64]. However, as the particles move, the domain needs to be
constantly adapted leading to possibly complex and expansive remeshing issues. The
computational cost of the re-meshing limits three-dimensional simulations to about a
hundred particles[19].

Nevertheless, Q-DNS with mesh refinement is, as far as we know, the best approach to
simulate mixture made of arbitrary particle shapes without neglecting lubrication forces.

1.2.1.2 Fluid flow decomposition.

Recent works from Lefebvre et al.[26] enable DNS of Stokes suspensions. The method
lies on the idea that Stokes solutions can be decomposed into different contributions,
like the SD. Instead of decomposing the total hydrodynamic forces acting on interacting
particles into a near- and a far-field (see SD), the linearity of the Stokes equations is used
to decompose the velocity field u into a singular flow using, which contains lubrication
phenomena, and a remainder ureg, which is regular. The regular remaining part of the
flow is approximated using a fluid solver. The singular part is decomposed further without
approximation over the set of pairs of close particles so that the resolution of the singular
field is reduced to the resolution of the Stokes flow around two isolated particles.

Hence, the velocity field of a suspension of N spherical particles is decomposed as

u = ureg +
∑
i,j

using
i,j

where using
i,j is the velocity field around two isolated particles in the same configuration

that the two particles Pi and Pj of the considered suspension. The velocity field using
i,j
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is only configuration-dependent (positions, orientations, and relative dimensions of the
particles). Therefore, it can be tabulated "off-line" using a fluid solver and refined meshes.
The accuracy of the computation of the lubrication forces depends then directly on the
quality of the tabulation: the accuracy of the DNS used for the tabulation and the range
of configurations covered by the tabulation. Even if the tabulation needs to be only done
once, its computation cost limits, in practice, the method to mono-disperse suspensions
of spheres.

Compared to SD, the velocity field decomposition preserves all many-body interactions
and not only the dominant effects[26]. The linearity of the Stokes equations is essential
in this method. Therefore, the approach cannot be generalized to Navier-Stokes flows.
Contrarily to methods described in the next section (Sec. 1.2.2), this field decomposition
is not considered as a lubrication model because it does not make any simplifications of
the lubrication forces acting on the particles. Only lubrication effects resolved by the
DNS used for the tabulation are considered, and so errors on the lubrication forces are
numerical scheme errors and not intrinsic to a model.

1.2.2 Lubrication Models.

Suspensions involved in industrial applications are rarely limited to less than a few
hundred particles. To scale up simulations at a reasonable cost, lubrication effects still
need to be modeled. In the past two decades, many lubrication models have been devel-
oped to fit the requirement of specific applications or solver properties.

In cases of Stokes flows, the lubrication theory states that collisions between particles
occur in an infinite time. Therefore, Verdon et al. have taken advantage of this property
by correcting the particle velocities to avoid overlapping (i.e. particle collisions)[67, 68] at
each time step. The resulting lubrication model is easily scalable and does not require an
explicit characterization of the lubrication forces.

When particle inertia is not neglectable, particle collisions might occur. Hence, the
expression of the lubrication forces and torques are approximated from the lubrication
theory. The most basic approach consists in adding the dominant orders of the lubrication
forces to the particle dynamic equations. The lubrication corrections are then activated
on interacting particles, in a pairwise fashion, when they are closer to each other than a
critical distance ∆Llub. The critical distance is often set arbitrarily[5, 69, 70] such that 0 <

∆Llub < d, with d the particle diameter. As far as we know, there is no characterization of
the minimal gap length between two interacting particles below which lubrication effects
appear. By setting arbitrarily ∆Llub, lubrication forces are likely to be added to the
fully resolved hydrodynamics. To avoid overestimating the lubrication, ∆Llub can be
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tabulated such that the total hydrodynamic forces tend to the theoretical lubrication
forces as the gap vanishes[71, 72, 33, 73]. Such a lubrication model is described in depth in
Sec. 3.2 for mono-disperse suspension of spheres. The number of parameters needed
for the tabulation of ∆Llub depends on the particle shapes and orientations. For mono-
disperse flows of spherical particles, the grid resolution is the only tabulated parameter of
∆Llub. For poly-disperse flows, the relative aspect ratio between the pair of particles must
be considered as well, and the particle relative orientations become additional parameters
for non-spherical particles.

To limit approximation errors from the lubrication model in the solution, a mesh
refinement approach can be combined with a lubrication model[74]. By refining the mesh
in interstitial regions, the use of the lubrication model is reduced to smaller ∆Llub than
on a uniform mesh. Furthermore, this hybrid approach decreases the need for heavy
refinement making many-particle simulations more cost-effective than a Q-DNS with mesh
refinement.

By correcting the hydrodynamic forces, a pair of interacting particles at the time,
many-body interactions are not corrected. For dense suspensions, the dominant many-
body interactions can be corrected using an approach inspired by the SD. Gallier et al.
have proposed a model using tabulated resistance matrices to compensate the unresolved
lubrication forces[75, 30]. By construction, this model should be strictly limited to non-
inertial flows. However, Gallier et al. have shown the solutions remain fairly accurate for
weakly-inertial flows.

Most of the lubrication correction methods mentioned above have been developed and
tested for suspensions of spheres. With the improvements in computational sciences in
the last decade, interest for suspensions of non-spherical particles is growing, and a few
techniques for spherical particles have been extended to spheroidal particles[76, 77].

1.3 Summary.

The resolution of the short-range hydrodynamics is critical to accurately simulate
suspensions. The direct resolution of the flow equations first appears as the best method
to fully capture the flow details. Unfortunately, this method requires large computational
resources, even with advanced remeshing techniques.

The alternative approach is to introduce a lubrication correction model based on the
lubrication theory solutions. Approximations and assumptions inherent to the lubrication
models limit the global numerical methods to specific flows. The main limitations lie in
the flow regime (Stokes regime) and/or particle shapes (spherical particles).
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Extensive researches have been made on the suspension of spherical particles and
have provided accurate and robust methods to model lubrication effects. Supporting by
recent improvements in computational sciences, the research community is now looking
to extend lubrication models to more complex particle flows (turbulent flows, complex
particle shapes, ...). This thesis study aims at developing a lubrication model compatible
with incompressible Navier-Stokes flows of convex particles.

29



1.3. SUMMARY. CHAPTER 1. STATE OF THE ART

30



Chapter 2

Numerical Resolution of Particle-Laden

Flows

The motion of particle-laden flows is governed by the coupling of the equations of
motion for the continuous and dispersed phase. The solid phase (particles) is described
by the Newton-Euler equations, while the fluid phase is described by the Navier-Stokes
equations. In this chapter, the partitioned numerical method used to solve particle-laden
flows is described in depth.

After introducing the notations and the physical problem, the resolution of the in-
compressible Navier-Stokes equations by a volume penalization method is detailed. The
dynamics of the rigid particles are solved with a discrete element method coupled with
the fluid dynamics.

2.1 General description of the problem.

2.1.1 The governing equations.

Figure 2.1: Sketch of the decomposition for the domain D into a fluid domain Df and the
solid particles Ds.
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The governing equations considered are the incompressible Navier-Stokes equations
for a viscous fluid:

∂ui
∂t

+
∂ (uiuj)

∂xj
= −1

ρ

∂p

∂xi
+
µ

ρ

∂

∂xj

(
∂ui
∂xj

)
+ χλ (uτ,i − ui) ,

∂ui
∂xi

= 0,

(2.1)

where (i; j) = {1, 2, 3}2, ui are the velocity components, p is the pressure. The density
and dynamic viscosity of the Newtonian fluid are denoted ρ and µ. The system of Eq.
(2.1) is solved on a uniform Cartesian mesh of the three dimensional domain D = Df∪Ds,
where N spherical particles Pi forming the solid domain Ds =

⋃N
i=1 Pi with Pi ∩ Pj = ∅

for i 6= j and Df = D \Ds is the fluid domain. The interface between the solid and fluid
phases is denoted Γs =

⋃N
i=1 Γi. Each particle Pi is assumed to be homogeneous with a

density ρp,i.

A no-slip boundary condition is implicitly imposed at the interface Γs, by the penalty
term χλ (uτ,i − ui). Indeed, as reminded by Angot et al.[1], solving the penalized Eqs.
(2.1) is equivalent to solve the incompressible Navier-Stokes equations in the fluid domain
and to enforce a no-slip boundary condition at the boundary Γs when λ → +∞. The
computation of the penalty term is detailed later (see Sec. 2.2.4).

2.1.2 Representation of the particles.

The dynamics of each rigid particle is described by the Newton-Euler equations:

mi
dUi

dt
= Fi, (2.2)

dJiΩi

dt
= Ti, (2.3)

for a given particle Pi of mass mi, inertia matrix Ji, linear velocity Ui of the mass center
and rotational velocity Ωi. The computation of the total force Fi and torque Ti acting
on the particle Pi are detailed in Sec. 2.3. The location of the mass center and the
orientation of the particle are given by Xi and Θi.

The surface of each particle is meshed with Np elements (Fig. 2.2). These meshes are
used to compute the level-set function and the hydrodynamic forces acting on the particle
(Sec. 2.3.1).
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Figure 2.2: Representation of the particle surface mesh and the particle dimensions in the
particle coordinate system

(
e′x, e

′
y, e

′
z

)
.

2.1.2.1 Particle classification.

Particle surface is defined by all (x, y, z) ∈ R3 such that:

x2

a2
+
y2

b2
+
z2

c2
= 1, (2.4)

where a, b, and c are the three dimensions of the ellipsoid (Fig. 2.2). The particle is
called a spheroid when b = c. For spheroidal particle, the particle aspect ratio is defined
as AR = a/b. The spheroid is an oblate if AR < 1, a prolate if AR > 1 and a sphere
otherwise. The equivalent sphere, of diameter Deq = 2 3

√
abc, is the sphere with the same

volume as the particle.

2.1.2.2 Computation of the global level-set.

The global level-set function LS is defined on all cells of the background grid (where
the penalized Navier-Stokes equations are solved) as the minimal signed distance of the
given cell center to the particle surfaces. The level-set is positive on fluid cells and negative
on solid cells. For spherical particles, the level-set at the cell center X is given by

LS(X) = min
i∈J1,NK

(‖X−Xi‖ − ai) . (2.5)

The ellipsoid surfaces are not easily characterized in the global coordinate system.
Therefore, the level-set is computed via the particle surface mesh or via the resolution of
a minimization problem.
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• Orthogonal projection method:

Via the particle surface mesh, the level-set at a given cell center x is computed as
follows:

1. The closest particle surface element is found among all the particles of the system.

2. The position x is orthogonally projected on the closest particle surface element.
This projection is denoted XΓ.

3. The level-set LS(x) is then given by ‖x − XΓ‖ and the sign of LS(x) is positive
if XΓ is closer to the particle mass center than x. Otherwise, the sign of LS(x) is
negative.

• Minimization approach:

The other approach is based on the minimization of the distance between a given grid
cell and the analytic surface of the ellipsoid. The grid cell location needs to be in the
particle coordinate system

(
e′x, e

′
y, e

′
z

)
. Its position is denoted Xp = (xp, yp, zp). The

closest point X = (x, y, z) on the particle surface to Xp can be find by minimizing the
objective function

F (X) = ‖X−Xp‖2 + λ

(
x2

a2
+
y2

b2
+
z2

c2
− 1

)2

, (2.6)

where λ > 0 is the Lagrangian multiplier chosen arbitrary large. When the contact
point X is known, the value of level-set is given by ‖X −Xp‖ and its sign is the sign of
(Xp −X)·X. The global level-set LS(x) is then defined as the minimal level-set computed
among the closest particles to the given grid point.

Hence, the particles are located on the grid by the characteristic function χ defined
on each cell center location x such that χ(x) = 1 if LS(x) ≤ 0, and χ(x) = 0 otherwise.

2.1.2.3 Computation of the minimal distance to an obstacle.

When all the particles are spherical, the computation of the minimal distance between
a particle and a wall or another particle is elementary. However, the problem becomes
more complex if ellipsoidal particles are considered. The localization of the contact points
for a pair of particles can be computed by solving a minimization problem or by geomet-
rical constructions.

• Minimization problem:
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The distance between two particles is obtained by locating the contact points at the
surface of both particles. The contact point locations Xc,i = (xc,i, yc,i, zc,i) and Xc,j =

(xc,j, yc,j, zc,j) in the particle coordinate systems are computed by minimizing the following
objective function:

F (Xc,i,Xc,j) = ‖RiXc,i + Xi − (RjXc,j + Xj) ‖2

+ λi

(
x2

c,i

a2
i

+
y2

c,i

b2
i

+
z2
c,i

c2
i

− 1

)2

+ λj

(
x2

c,j

a2
j

+
y2

c,j

b2
j

+
z2
c,j

c2
j

− 1

)2

,
(2.7)

where Ri and Rj are the rotation matrices from the particle Pi and Pj coordinate systems
to the global coordinate system. The Lagrange parameters λi and λj are positive and are
arbitrarily chosen large.

The objective function Eq. (2.7) can be minimized using a gradient method. Pre-
liminary tests using the gradient descent method and Newton’s method have shown a
high sensitivity of the solution to the initial guess and a slow convergence speed. The
convergence speed can be improved with adaptive methods. Nevertheless, the geometri-
cal construction method described below has proven to be the more robust and efficient
method to compute the minimal distance.

• Geometrical constructions:

The efficient alternative method proposed by Lin et al.[78] is based on the iterative
construction of virtual spheres. The method can be summarized as follows (see Fig. 2.3):

1. The search algorithm starts from two arbitrary points (Xc,i,Xc,j)
k on the surface of

the two particles. These two points are assumed as the nearest points to the other
particle surface.

2. Two spheres are constructed completely inside the ellipsoids such that the sphere
and ellipsoid surfaces are tangent at the current nearest points (Xc,i,Xc,j)

k.

3. A new guess of the contact points (Xc,i,Xc,j)
k+1 is then found by the intersection

of the line generated by the centers of the two spheres and the ellipsoid surfaces.

4. If not converged, go back to step 2. Convergence is obtained when the line generated
by the centers of the two spheres is co-linear with the ellipsoid surface gradients at
the contact points (Xc,i,Xc,j)

k+1.

The procedure converges faster as the radius of the virtual spheres increases, and the
initial guesses of (Xc,i,Xc,j)

k are close to the contact points.
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Figure 2.3: Two-dimensional sketch of the iterative method of Lin et al.[78] used to com-
pute the distance between two ellipsoids.

The computation of the minimal distance for a pair particle-wall is more straight
forward than for a pair of particles. Indeed, the outgoing normal unit vector of Γi at the
contact point Xc,i is co-linear and has an opposite sign to the wall outgoing unit surface
vector. Hence, the contact point Xc,i = (xc,i, yc,i, zc,i) is given by

xc,i = −xw
a2
i

2
,

yc,i = −yw
b2
i

2
,

zc,i = −zw
c2
i

2
,

(2.8)

with ew = (xw, yw, zw) the wall outgoing unit surface vector in the particle coordinate
system.

2.1.2.4 Virtual spheres.

For non-spherical particles, the collision model (Sec. 2.3.2) and lubrication correction
models (Sec. 3.2 and 3.3) are evaluated indirectly via virtual spheres. These virtual
spheres are defined such that the sphere surfaces fit as much as possible the ellipsoid
surfaces at the contact points. Hence, the radius of the virtual sphere Rvs,i is given
by the Gaussian radius of curvature[76] of the ellipsoid Pi at the contact point Xc,i =

(xc,i, yc,i, zc,i):

R2
vs,i =

(
a4
i b

4
i + b4

i (c2
i − a2

i )x
2
c,i + a4

i (c2
i − b2

i ) y
2
c,i

)2

a6
i b

6
i c

2
i

. (2.9)
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Subsequently, the center of the virtual sphere Xvs,i, in the particle coordinate system, is
defined as

Xvs,i = Xc,i −Rvs,iNc,i, (2.10)

where Nc,i is the outgoing normal unit vector of Γi, in the particle coordinate system, at
the contact point Xc,i. The coordinates of the virtual sphere center are then projected in
the global coordinate system using the particle rotation matrix.

2.2 Discretization of the governing equations.

The Navier-Stokes equations (2.1) are discretized on a uniform Cartesian mesh using
a cell-centered collocated arrangement of the primitive variables (p, ui). Face-centered
velocities vi are also introduced in addition to the cell-centered velocities ui, to eliminate
odd-even decoupling which can lead to large pressure variations in space[79].

The equations are integrated in time using a classical projection scheme introduced
by Chorin[3] and Temam[4]. The system (2.1) is then solved in the following four steps.

2.2.1 Prediction.

In this first step, the momentum equation is solved to obtain an intermediate virtual
velocity u∗i , starting from a guess for the pressure field q. We choose an incremental
scheme therefore q = pn. The convective and viscous terms are discretized in time by
a second-order Adams-Bashforth scheme and an implicit Crank-Nicolson scheme, respec-
tively. Hence, the following momentum Eq. (2.11) is solved at the cell-nodes:

u∗i − uni
∆tn

+
1

2

(
∆tn + 2∆tn−1

∆tn
Cni − Cn−1

i

)
= −1

ρ

∂q

∂xi

+
µ

2ρ
(D∗i +Dn

i ) ,
(2.11)

where Ci =
∂vjui
∂xj

and Di =
∂

∂xj

(
∂ui
∂xj

)
are the convective and diffusive terms, re-

spectively. The current time step and the time step at the previous iteration are de-
noted ∆tn(= ∆t) and ∆tn−1, respectively. Spatial derivatives ∂

∂x
are approximated by a

second-order central finite difference scheme. The gradients computed at cell-centers and
face-centers are denoted

(
∂
∂xi

)
cc

and
(

∂
∂xi

)
fc
.

The virtual face-centered velocities v∗i are calculated as follows[79]:
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

ûi = u∗i +
∆t

ρ

(
∂q

∂xi

)
cc
,

v̂1 = γwûP,1 + (1− γw) ûW,1,

v̂2 = γsûP,2 + (1− γs) ûS,2,

v̂3 = γbûP,3 + (1− γb) ûB,3,

v̂∗i = v̂i −
∆t

ρ

(
∂q

∂xi

)
fc
,

(2.12)

where ûP, ûW, ûS, and ûB are the velocities computed at the nodes P, W, S, and B,
respectively (see Fig. 2.4). The weights γw, γs, and γb are corresponding to linear inter-
polation for the west, south and back face velocity components, respectively. The same
approach is considered for the opposite faces.

Figure 2.4: Sketch of a grid cell with the notations used for the spatial discretization of
the governing equations.

2.2.2 Projection.

At the end of the prediction step, the velocities u∗i are a priori not divergence free. The
projection step aims at finding the pressure field pn+1 such that ∇ · ũ ∼ 0. In particular,
the equation

ũi − u∗i
∆t

=
1

ρ

∂p′

∂xi
(2.13)

is solved with the constraint that ∇ · ũ = 0. Hence, the Poisson equation for the pressure
correction p′ is

1

ρ

∂

∂xi

(
∂p′

∂xi

)
=

1

∆t

∂v∗i
∂xi

, (2.14)

38



CHAPTER 2. NUMERICAL RESOLUTION 2.2. GOVERNING EQUATIONS

with Neumann boundary conditions on the pressure on all external boundaries (of D).
Spatial derivatives ∂

∂x
are approximated by a second-order central finite-difference scheme.

The Poisson problem Eq. (2.14) is solved using the Generalized Minimal Residual
method (GMRES) from Saad et al.[80]. Preconditioners1 are used to reduce the number
of iterations needed to ensure a divergence free velocity field, especially for low Reynolds
flows.

2.2.3 Correction.

From the solution p′ of the Poisson Eq. (2.14), the pressure and velocity fields (pn+1, ũ)

are updated as

pn+1 = q + p′,

ũi = u∗i −∆t
1

ρ

(
∂p′

∂xi

)
cc
,

ṽi = v∗i −∆t
1

ρ

(
∂p′

∂xi

)
fc
,

(2.15)

so that ũ is divergence free. Gradients are discretized by second-order central finite
difference scheme. Cell-centered and face-centered velocities are updated separately to
improve the accuracy and stability of the prediction step.

The initial pressure is set arbitrarily to p0 = 0.

2.2.4 Penalization.

This last step is performed after the resolution of the particle dynamics described in
Sec. 2.3 (see Fig. 2.8). The velocity field ũ is penalized using the particle velocities to
compute un+1:

un+1
i =

ũi + χλ∆tuτ,i
1 + χλ∆t

, (2.16)

where λ is the penalty factor (arbitrary chosen here such that λ = 108). The characteristic
function χ is defined for each cell center location x such that χ(x) = 1, if x ∈ Ds and
χ(x) = 0 anywhere else.

On each solid element (χ(x) = 1), the velocity is penalized using the solid velocity
uτ = Ui + (Xi − x)×Ωi, with x ∈ Pi. This method is first-order accurate in space.

To improve the consistency of the solution, corrections are made on solid elements at
the interface Γs. The interface characteristic function χΓ is defined for each cell center
location x such that χΓ(x) = 1, if x ∈ Ds and the given cell has at least one neighbor in

1ILU and additive Schwarz method have been used from the PETSc library (see Sec. 2.4 for references).

39



2.2. GOVERNING EQUATIONS CHAPTER 2. NUMERICAL RESOLUTION

Df. Everywhere else, χΓ(x) = 0. The velocity corrections are made using the second-order
ghost-cell approach known as Image Point Correction method (IPC)[2]. The main idea of
the method is to find the right correction uτ,i for all solid cells at the fluid-solid interface
(χΓ = 1) to impose the desired velocity at the interface Γs.

Figure 2.5: Two-dimensional sketch of the IPC method. Velocity at the solid ghost point
G is corrected using its symmetric F. The velocity at F is obtained by inter-
polation of the velocity of its four neighboring fluid points (eight neighbors
in three-dimensional cases). The orthogonal projection of G at the particle
surface is denoted B.

The IPC method, illustrated in Fig. 2.5, corrects the velocity at the solid ghost point
G by

uτ = uB + φ

(
∂u

∂n

) ∣∣∣∣
φ=0

, (2.17)

where uB is the solid velocity at the surface point B, n is the outward normal unit vector
of the interface. The level-set function φ is the signed distance from the boundary of the
bodies with negative sign within the particles and positive one elsewhere. In particular,
φ = 0 at the interface Γs, and |φ| is the minimal distance to Γs. Where there is no particle
overlapping, φ is equivalent to the global level-set function LS (see Sec. 2.1.2).

The velocity uB can be easily calculated from the velocity U and rotational velocity
Ω of the particle mass center. The gradient (∂u/∂n)|φ=0 is determined from uB and the
velocity uF at F the symmetric point of G. The distance between B and F, as well as the
outward normal vector n can be easily computed with the level-set function φ.

The velocity at the point F is computed by interpolating the velocities of the eight
closest fluid neighbors of F. If one of the eight neighbors is G, the surface point B is con-
sidered instead of G. Interpolations are made using a second-order Lagrange interpolation
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scheme.

2.2.5 Numerical stability: time step adaptation.

To ensure the stability of the whole numerical method, the time step ∆t is adapted
such that the Courant - Friedrichs - Lewy condition is satisfied: ∆t = βτ∆x/Vmax where
βτ ≤ 1 is chosen arbitrarily, ∆x is the characteristic length of the grid cells and Vmax is
the maximum of the velocity absolute value computed on the grid cells.

When particles are near contact, the time step ∆t has to satisfy the stability condition
of the collision model (see Sec. 2.3.2). Therefore, when lubrication corrections are active
(i.e. collision might occur) ∆t is chosen such that τc = Nt∆t (with τc the contact time)
and ∆t ≤ βτ

∆x
Vmax

, where Nt > 0 an integer (Nt = 8, if not explicitly stated otherwise).

2.3 Dynamics of the particles.

The particle dynamics is solved by a discrete element method (DEM) which is primarily
devoted to multi-contact interactions for a large suspension[5]. The dynamics of each rigid
particle is obtained by the Newton-Euler equations of conservation:

mi
dUi

dt
= Fhyd

i + Fcoll
i + Fext

i , (2.18)

dJiΩi

dt
= Thyd

i + Tcoll
i , (2.19)

for a given particle Pi of mass mi, inertia matrix Ji, linear velocity Ui of the mass
center and rotational velocity Ωi. The hydrodynamic forces and torques are respectively
denoted Fhyd

i and Thyd
i . Non-hydrodynamic forces like gravity (which is the only external

force considered here) are denoted Fext
i . The force Fcoll

i and torque Tcoll
i represent the

effects of solid contacts of Pi with obstacles (see Sec. 2.3.2).

2.3.1 Particle hydrodynamics.

To numerically compute the hydrodynamic force and torque acting on the particle
Pi, the surface Γi is meshed using Np,i elements. The k-th element of the mesh of Γi is
denoted P k

i and sk is its surface. The set LLL(P k
i ) is defined as all the particles Pj, j 6= i

such that the distance between the surface of Pj and the center of P k
i is lower than aεlub.

The distance aεlub is defined as the narrowest gap width between the center of the P k
i and

a potential nearby obstacle for the solver to fully resolve hydrodynamic interactions (see
Fig. 2.6).
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Figure 2.6: Representation of the two parameters εlub and εcol of the lubrication correction
model. Typically, aεlub ∼ 2− 3 grid cells.

The total hydrodynamic force and torque on the particle Pi are given by
Fhyd
i = Fsolv

i + Fdeg
i ,

Thyd
i = Tsolv

i + Tdeg
i .

(2.20)

The force Fdeg
i and torque Tdeg

i are defined as:

Fdeg
i =

∫
p∈Γi,
LLL(p)6=∅

(σ · n) dS,

Tdeg
i =

∫
p∈Γi,
LLL(p)6=∅

ain× (σ · n) dS.
(2.21)

These two components of the hydrodynamics are underestimated by the numerical
simulation due to the insufficient number of grid elements in the gap between the particle
Pi and its surrounding obstacles to properly capture the fluid flow. Therefore, a local
lubrication correction model is introduced to balance the degraded hydrodynamics (see
Sec. 3.3). Lubrication correction on the force and torque are denoted Flub

i and Tlub
i .

The remaining of the hydrodynamics, Fsolv
i and Tsolv

i are obtained via the flow solver,
as follows: 

Fsolv
i =

∫
p∈Γi,
LLL(p)=∅

(σ · n) dS,

Tsolv
i =

∫
p∈Γi,
LLL(p)=∅

ain× (σ · n) dS.
(2.22)

The resolved hydrodynamics are computed by numerical integration of the fluid stress
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σ acting on all elements P k
i far enough to nearby obstacles:

Fsolv
i ≈

∑
k∈J1,Np,iK,
LLL(Pk

i )=∅

(σ · n) sk,

Tsolv
i ≈

∑
k∈J1,Np,iK,
LLL(Pk

i )=∅

ain× (σ · n) sk,
(2.23)

The fluid stress σ is interpolated of the pressure and velocities (p,ui), using a second-
order Lagrange scheme at the center of P k

i .

2.3.2 The soft-sphere collision model.

In a Stokes flow, the contact between obstacles is theoretically impossible due to the
lubrication singularity. However, a collision model needs to be considered for physical and
numerical purposes.

From a physical perspective, the lubrication effect alone cannot explain some phenom-
ena such as the rebound of particle onto a wall, which occurs at the Stokes number above
roughly[5] Std = ρpdUc

9µ
≈ 10, with ρp, d, and Uc the particle density, diameter, and impact

velocity, respectively. The collision model is seen here as a "low cost" model to mimic the
effect of the particle deformation on its trajectory. Furthermore, real surfaces are never
perfectly smooth, meaning that contact can occur at the particle roughness scale or at
the lubrication film breakdown scale (when the separation distance is close to the fluid
particle characteristic size).

From a numerical point of view, a cutoff distance for the lubrication forces is usually
introduced to ensure the model stability. This cutoff distance prevents the lubrication
force Eq. (3.38) to diverge as the particle collides with an obstacle. A control on the
time step to avoid contact due to time discretization errors is not an option. Indeed, an
adaptive time step would certainly improve the capture of the lubricating effects, but in
case of colliding particles at the Stokes number regime Std > 10, the time step would keep
decreasing asymptotically to zero. Therefore, a lubrication cutoff distance and a collision
model need to be introduced for stable and finite time simulations.

The collision model chosen here is based on the soft-sphere approach used by Costa
et al.[71]. The deformation of particles during contact is modeled by the overlap between
a particle and an obstacle (particle or wall). From the overlap measurement, normal
and tangential contact forces are computed using a mass-spring-dashpot system and a
Coulomb-type threshold for the tangential component. For a given particle Pi, collision
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Figure 2.7: Contact of two particles with notations associated to the soft sphere model.

forces Fcoll
i and torque Tcoll

i are decomposed as
Fcoll
i =

∑
j 6=i

Fi,j + Fi,wall,

Tcoll
i =

∑
j 6=i

Ti,j + Ti,wall,
(2.24)

where Fi,j is the collision force of the interacting particles Pi and Pj, Fi,wall is the collision
force of Pi with a wall. Ti,j and Ti,wall are the corresponding collision torques. The force
and the torque on Pi resulting from the particle-particle interactions between Pi and Pj
are defined using a local system of coordinates (en, et) (Fig. 2.7):{

Fi,j = Fn + Ft,

Ti,j = aen × (Ft) ,
(2.25)

with {
Fn = −δnδnδnkn − γn (Ui,j · en) en,

Ft = min (‖ − δtδtδtkt − γt (Ui,j · et) et‖, ‖µcFn‖) et,
(2.26)

where a is the radius of Pi, δnδnδn (respectively, δtδtδt) is the normal (respectively, tangential)
overlap, kn (respectively, kt) is the normal (respectively, tangential) stiffness, µc is the
coefficient of sliding friction, and γn (respectively, γt) is the normal (respectively, tangen-
tial) damping coefficient of the spring-dashpot model. The relative velocity of the two
particles Ui,j at the contact point is given by Ui,j = Ui + aωi × en − (Uj − aβωj × en).

The normal overlap distance δnδnδn is given by

δnδnδn = max (0, a (1 + β) + εcol (a+ βa)− ‖Xi −Xj‖) en, (2.27)

where en =
Xi−Xj

‖Xi−Xj‖ as shown Fig. 2.7. The tangential overlap distance δtδtδt is obtained by
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integrating the relative tangential velocity at the point of contact while the Coulomb’s
law is verified. Therefore, the tangential overlap distance δtδtδtn+1 at the time step n + 1 is
obtained by

δtδtδt
n+1 =

1

kt
(−µc‖Fn‖et − γt (Ui,j · et) et) , (2.28)

when the particle is sliding (i.e. ‖Ft‖ > µc‖Fn‖), and by

δtδtδt
n+1 = Rδt · δtδtδtn +

∫ tn+1

tn
(Ui,j · et) etdt, (2.29)

when the particle is sticking to the obstacle (i.e. ‖Ft‖ ≤ µc‖Fn‖). The rotation tensor
Rδt moves δtδtδtn to the new local coordinate system at the state n+ 1, and

et =
−δtδtδtkt − γt (Ui,j − (Ui,j · en) en)

‖ − δtδtδtkt − γt (Ui,j − (Ui,j · en) en) ‖
.

The parameters of the spring-dashpot model γn, γt, kn, and kt are calculated from the
coefficient of normal (respectively, tangent) restitution ξmax,n (respectively, ξmax,t) of dry
collision and the contact time τc, as follows:

kn =
m∗
(
π2 + ln2 (ξmax,n)

)
τ 2
c

,

γn = −2m∗ ln (ξmax,n)

τc
,

kt =
m∗t
(
π2 + ln2 (ξmax,t)

)
τ 2
c

,

γt = −2m∗t ln (ξmax,t)

τc
,

(2.30)

with the effective mass
m∗ =

mimj

mi +mj

,

and
m∗t = m∗

K2

K2 + 1
,

with K2 = 2/5 the normalized radius of gyration for spherical particles.

The characteristics of the elastic properties of the particles are ξmax,n, ξmax,t, and
τc. As noticed by Izard et al.[5], the relation between τc and kn is unusual, but several
studies show that the normal stiffness can be underestimated without modification of the
dynamics of a dry system. Such assumption allows to reduce the simulation time since
the collision characteristic time will be larger than the particle characteristic deformation
time.

45



2.3. PARTICLE DYNAMICS CHAPTER 2. NUMERICAL RESOLUTION

To ensure the stability of the model and the conservation of the momentum, Costa et
al.[71] advised that the time step of the overall numerical algorithm ∆t has to be chosen as
a multiple of the contact time τc (at least during the collision). This condition guarantees
a zero overlap at the end of the collision and allows the fluid to adapt itself to sudden
changes in velocity of the colliding particles.

The force Fi,wall and the torque Ti,wall are assumed to be equivalent to the asymptotic
case β → +∞ and mPj

→ +∞.
For non-spherical particles, the ellipsoids are approximated as spherical particles with

the same mass as the whole particles and with a radius corresponding to the local Gaus-
sian curvature at the contact point[76]. During collisions, the radii of the approximating
spheres remain constant simplifying the problem to the collision between two unequal
spheres. The centers of the approximating colliding spheres are stored at the time step
before the gap width becomes negative and updated during the collision using the par-
ticle velocity and the rotation matrix introduced above. These constraints prevent non-
converged computations of the virtual spheres (Sec. 2.1.2) to destabilize the collision
model.

2.3.3 Numerical resolution of the particle dynamics.

Among the forces acting on the particle, the short-range hydrodynamics (lubrication)
and collision forces have time scales smaller than the time scale associated with fluid
flow. The particle dynamics is therefore computed at a smaller time step δt = ∆t

nt
, with

nt arbitrary chosen large, to accurately integrate (in time) short-range interaction forces.
Numerical simulations have shown that changing nt between 102 and 103 does not affect
significantly the results.

Since the motion of the particles occurs at a time step smaller than ∆t, it is not
necessary to re-compute the resolved hydrodynamic forces Fsolv

i at each sub-time step
δt. Hence, particle dynamics is solved at each sub-time step δt with updated short-range
interactions and "frozen" resolved hydrodynamics.
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Figure 2.8: Sketch description of the numerical algorithm used to compute the state n+1
of the whole system from its state n. The algorithm starts at the estimation
of the time step ∆t which is the time elapse between the system state n and
n+1. The particle dynamics is solved in nt sub-time steps δt = ∆t

nt
. m denotes

the current sub-state of the system between the state n and n + 1 while the
particle dynamics is computed (NB: after the correction step, the state m is
equivalent to the state n). Dashed boxes contain the reference to the main
equations computed at the given step.

2.3.3.1 Semi-Implicit Euler scheme.

The discretized expressions of Eqs. (2.18) and (2.19) are then written as:

Um+1
i = Um

i +
δt

mi

[
Fsolv
i

]n+1

+
δt

mi

[
Fcoll
i + Fext

i + Flub
i

]m
.

(2.31)
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Ωm+1
i =

(
Jm+1
i

)−1
(Jmi Ωm

i

+δt
([

Tsolv
i

]n+1
+
[
Tcoll
i + Tlub

i

]m))
,

(2.32)

where m denotes the "sub-state" of the system at the time t = tn +mδt with tn the time
at the state n of the system. Since the particle dynamics are solved after the correction
step but before the penalization (see Fig. 2.8), the force

[
Fsolv
i

]n+1 and torques
[
Tsolv
i

]n+1

are computed from the fields (pn+1, ũ), and not (pn+1,un+1).

Position and orientation are then integrated implicitly as follows:{
Xm+1
i = Xm

i + δtUm+1
i ,

Θm+1
i = Θm

i + δtΩm+1
i .

(2.33)

2.3.3.2 Verlet integration method.

Verlet integration is a numerical method used to integrate Newton’s equations of
motion (Eqs. (2.18) and (2.19)). The Verlet integrator is a second order accuracy scheme
with a cost comparable to the semi-implicit Euler method (which is first order accuracy).

The particle positions and velocities are computed at tm+1 from the state of the system
at tm via the following steps:

1. Velocities are computed at half time step δt/2 as follows:

U
m+1/2
i = Um

i +
δt

2mi

[
Fsolv
i

]n+1

+
δt

2mi

[
Fcoll
i + Fext

i + Flub
i

]m
,

Ω
m+1/2
i =

(
Jm+1
i

)−1
(Jmi Ωm

i

+
δt

2

([
Tsolv
i

]n+1
+
[
Tcoll
i + Tlub

i

]m))
.

(2.34)

2. Particle location and orientation are updated using the half step velocities U
m+1/2
i

and Ω
m+1/2
i : {

Xm+1
i = Xm

i + δtU
m+1/2
i ,

Θm+1
i = Θm

i + δtΩ
m+1/2
i .

(2.35)

3. The forces (Fcoll
i + Fext

i + Flub
i ) and torques (Tcoll

i + Tlub
i ) are updated assum-

ing the particles are located in
(
Xm+1
i ,Θm+1

i

)
and are moving at the velocities(

U
m+1/2
i ,Ω

m+1/2
i

)
.
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4. The particle velocities are updated as follows:

Um+1
i = U

m+1/2
i +

δt

2mi

[
Fsolv
i

]n+1

+
δt

2mi

[
Fcoll
i + Fext

i + Flub
i

]m+1/2
,

Ωm+1
i =

(
Jm+1
i

)−1
(
Jmi Ω

m+1/2
i

+
δt

2

([
Tsolv
i

]n+1
+
[
Tcoll
i + Tlub

i

]m+1/2
))

.

(2.36)

2.4 Numerical implementations.

The significant advantage of partitioned methods is the reused of existing codes. In this
thesis, incompressible Navier-Stokes are solved using the existing in-house solver NaSCar
to solve the fluid flow as described in Sec. 2.2. NaSCar2 is devoted to solve 3D-flows
in around moving and deformable bodies. This code is written in C language and use
PETSc library3 for the resolution of large linear systems in parallel.

The solver of the particle dynamics (Sec. 2.3) has been developed from existing features
of NaSCar. The dynamics of solids coded in NaSCar has been completed by adding
lubrication and collision models and has been optimized to simulate suspensions of rigid
particles.

2NaSCar has been developed within the team Memphis at INRIA-BSO.
3Portable, Extensible Toolkit for Scientific Computation (PETSc) is an open-source library of data

structures and routines developed by Argonne National Laboratory for the scalable (parallel) solution of
scientific applications modeled by partial differential equations.
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Chapter 3

Lubrication Correction Models

The accuracy of the computed hydrodynamic forces acting on a particle directly de-
pends on the accuracy of the computation of the fluid flow surrounding the given particle.
In dense suspensions, interstitial flows are often poorly resolved by the direct numerical
resolution of the Navier-Stokes equations as the gap between interaction particles can be
smaller than the grid resolution. To balance the unresolved hydrodynamics, lubrication
correction models are introduced. This chapter starts with the detailed calculation of the
theoretical lubrication forces acting two isolated interacting particles. Two lubrication
correction models, based on the lubrication theory, are then described.

3.1 Theoretical lubrication forces and torques.

Two smooth particles of radii a and βa (with β > 0) immersed in an infinite fluid
domain are considered. One of the particle (Pi) is moving at the constant velocity Ui

near the second stationary particle (Pj) (Fig. 3.1). The surfaces of Pi and Pj are denoted
respectively Γi and Γj. The gap between the two particles is denoted aε with 0 < ε� 1.

Figure 3.1: Sketch of two particles in interaction.
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In any plane containing the axis (Oz), the particle surfaces Γi and Γj can be charac-
terized, near the contact point, as follows:

zi(r) = a (1 + ε)−
√
a2 − r2 ∼ aε+

r2

2a
+

r4

8a3
+O

(
r6
)
,

zj(r) = −βa+
√
β2a2 − r2 ∼ − r2

2βa
− r4

8a3β3
+O

(
r6
)
.

(3.1)

To simplify expressions, the stretched coordinates are introduced:
R =

r

a
√
ε
,

Z =
z

aε
,

H = Zi − Zj = 1 +
1 + β

2β
R2 +

1 + β3

8β3
εR4 +O

(
ε2
)
,

(3.2)

where Zi and Zj are respectively zi(r) and zj(r) from Eq. (3.1) in the stretched coordi-
nates.

If the Reynolds number in the gap on the neighborhood of the contact point A is small
(Re = ρUiaε/µ� 1), then the flow can be modeled by the Stokes equations

µ∆u = ∇p,
∇ · u = 0,

u �Γi
= U �Γi

,

u �Γj
= U �Γj

,

lim
r→+∞

p = 0,

(3.3)

where u is the velocity field, p is the pressure field, ρ is the fluid density, µ the fluid
dynamic viscosity. The next two sections address the particular cases of the squeezing
motion (Ui = −U sq

i ez) and the shearing motion (Ui = U sh
i ex) of Pi near the stationary

particle Pj (U �Γj
= 0).

3.1.1 Squeezing motion of rigid spheres.

In this section the particle surface velocities are U �Γi
= −U sq

i ez and U �Γj
= 0. To

simplify the resolution of the Stokes problem, the first line of the system (3.3) is projected
in the cylindrical coordinate system (r, θ, z): ∂rp =

µ

r
∂zΦ

2 (ψ) ,

∂zp = −µ
r
∂rΦ

2 (ψ) ,
(3.4)

52



CHAPTER 3. LUBRICATION CORRECTION MODELS 3.1. THEORY

with Φ2 (·) = r∂r
(

1
r
∂r (·)

)
+ ∂2

z (·) and the Stokes stream-function ψ is defined[81, 38, 36]

such that (ur, uθ, uz) =
(

1
r
∂zψ, 0,−1

r
∂rψ
)
. By noticing that ∂r (∂zp) − ∂z (∂rp) = 0, the

system (3.3) becomes 
Φ4 (ψ) = 0,

ψ �Γi
=

1

2
U sq
i r

2,

ψ �Γj
= 0,

(3.5)

3.1.1.1 Resolution of the Stokes stream-function.

To simplify the notations, the system (3.5) is solved using the stretched coordinates
(3.2). The governing equations (3.5) then become

[∂2
Z + εΥ]

2
ψ = 0,

ψ �Γi
=

1

2
U sq
i R

2a2ε,

ψ �Γj
= 0,

(3.6)

where Υ(·) = ∂2
R(·)− 1

R
∂R(·).

As suggested by Jeffrey et al.[38], the solution of Eq. (3.6) can be expressed as follows:

ψ(R,Z) = a2ε
(
ψ0 (R,Z) + εψ1 (R,Z) + ε2ψ2 (R,Z) +O

(
ε3
))
, (3.7)

where ψ0, ψ1, and ψ2 are the three first harmonics of ψ. By substituting the expression
of ψ in Eq. (3.7) into the first line of Eq. (3.6), [∂2

Z + εΥ]
2
ψ can be seen as a polynomial

function in ε equals to zero. The identification of the polynomial’s coefficients gives the
following hierarchy of equations:

∂4
Zψ0 = 0,

∂4
Zψ1 + 2Υ (∂2

Zψ0) = 0,

∂4
Zψ2 + 2Υ (∂2

Zψ1) + Υ2 (ψ0) = 0.

(3.8)

To close the system (3.8), the boundary conditions on the harmonics of ψ need to be
retrieved from the boundary conditions on ψ Eq. (3.6). As suggested by Jeffrey et al.[38],
the boundary conditions on the harmonics of ψ can be obtained via the Taylor expansion
of ψ at the contact points on Γi and Γj.
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On the surface Γi, the Taylor expansion of ψ at Z = Hi is given by

ψ (R,Z) = ψ (R,Hi) + ∂Zψ (R,Hi) (Z −Hi) + ∂2
Zψ (R,Hi)

(Z −Hi)
2

2
+O

(
Z3
)
,

= εa2 (ψ0 + εψ1 + ε2ψ2 +O (ε3))

+ εa2 (∂Zψ0 + ε∂Zψ1 + ε2∂Zψ2 +O (ε3))

(
1

8
εR4 +

1

16
ε2R6 +O

(
ε3
))

+
εa2

2

(
∂2
Zψ0 +O (ε)

)(1

8
εR4 +O

(
ε2
))2

+O
(
ε5
)
,

(3.9)

with Hi = 1 +
1

2
R2 the dominant order of Zi. From the boundary conditions (3.6),

ψ (R,Zi) ∼
1

2
U sq
i R

2a2ε. Hence, by identifying the coefficients of the Taylor expansion of
ψ at Z = Hi (seen as a polynomial function in ε) evaluated at Z = Zi, the following
hierarchy of equations is found:

ψ0 (R,Zi) =
1

2
R2U sq

i ,

ψ1 (R,Zi) = −1

8
R4∂Zψ0 (R,Zi) ,

ψ2 (R,Zi) = −1

8
R4∂Zψ1 (R,Zi)−

1

16
R6∂Zψ0 (R,Zi)−

1

128
R8∂2

Zψ0 (R,Zi) .

(3.10)

The boundary conditions on the first derivative of the harmonics of ψ can be found
using the same approach. On the surface Γi, the Taylor expansion of ∂Zψ at Z = Hi is
given by

∂Zψ (R,Z) = ∂Zψ (R,Hi) + ∂2
Zψ (R,Hi) (Z −Hi) + ∂3

Zψ (R,Hi)
(Z −Hi)

2

2
+O

(
Z3
)
,

= εa2 (∂Zψ0 + ε∂Zψ1 + ε2∂Zψ2 +O (ε3))

+ εa2 (∂2
Zψ0 + ε∂2

Zψ1 + ε2∂2
Zψ2 +O (ε3))

(
1

8
εR4 +

1

16
ε2R6 +O

(
ε3
))

+
εa2

2

(
∂3
Zψ0 +O (ε)

)(1

8
εR4 +O

(
ε2
))2

+O
(
ε5
)
.

(3.11)

Since ∂Zψ (R,Zi) = 0, the identification of the coefficients gives the following hierarchy
of equations:

∂Zψ0 (R,Zi) = 0,

∂Zψ1 (R,Zi) = −1

8
R4∂2

Zψ0 (R,Zi) ,

∂Zψ2 (R,Zi) = −1

8
R4∂2

Zψ1 (R,Zi)−
1

16
R6∂2

Zψ0 (R,Zi)−
1

128
R8∂3

Zψ0 (R,Zi) .

(3.12)

In the same way, the boundary conditions on the harmonics of ψ (and on their derivatives)
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can be found at the surface Γj as follows:
ψ0 (R,Zj) = 0,

ψ1 (R,Zj) =
1

8β3
R4∂Zψ0 (R,Zj) ,

ψ2 (R,Zj) = − 1

128β6
R8∂2

Zψ0 (R,Zj) ,

(3.13)

and,
∂Zψ0 (R,Zj) = 0,

∂Zψ1 (R,Zj) =
1

8β3
R4∂2

Zψ0 (R,Zj) ,

∂Zψ2 (R,Zj) = − 1

8β3
R4∂2

Zψ1 (R,Zj)−
1

16β5
R6∂2

Zψ0 (R,Zj)−
1

128β6
R8∂3

Zψ0 (R,Zj) .

(3.14)

Hence, each harmonic of ψ can be solved via Eq. (3.8) and the boundary conditions
Eq. (3.10), Eq. (3.13), Eq. (3.12), and Eq. (3.14). In particular, the dominant order ψ0

of ψ is solution of the following system:

∂4
Zψ0 = 0,

ψ0 (R,Zi) =
1

2
R2U sq

i ,

∂Zψ0 (R,Zi) = 0,

ψ0 (R,Zj) = 0,

∂Zψ0 (R,Zj) = 0.

(3.15)

As suggested by Cooley et al.[31], ψ0 can be written as follows:

ψ0 = A0Z
3 +B0Z

2 + C0Z +D0, (3.16)

where A0, B0, C0, and D0 coefficients obtained via the boundary conditions on ψ0. There-
fore, ψ0 is obtained by solving the following linear system:

H3
i H2

i Hi 1

3H2
i 2Hi 1 0

H3
j H2

j Hj 1

3H2
j 2Hj 1 0




A0

B0

C0

D0

 =


1
2
R2U sq

i

0

0

0

 , (3.17)
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leading to: 

A0 = −R
2

H3
U sq
i

B0 =
3

2
R2U sq

i

Hi +Hj

H3

C0 = −3R2U sq
i

HiHj

H3

D0 = 1
2
R2U sq

i

(3Hi −Hj)Hj
2

H3

(3.18)

where H = Hi − Hj with Hi = 1 +
1

2
R2 and Hj = − 1

2β
R2 the dominant order of

respectively Zi and Zj.

The other harmonics ψ1 and ψ2 can be solved in the same way as ψ0, by assuming
their following expressions:

ψ1 = − 1

10
Z5Υ(A0)− 1

6
Z4Υ(B0) + A1Z

3 +B1Z
2 + C1Z +D1, (3.19)

ψ2 =
1

280
Z7Υ2(A0) +

1

120
Z6Υ2(B0)− 1

10
Z5

(
Υ(A1) +

1

12
Υ2(C0)

)
− 1

6
Z4

(
Υ(B1) +

1

4
Υ2(D0)

)
+ A2Z

3 +B2Z
2 + C2Z +D2,

(3.20)

where A1, B1, C1, D1, A2, B2, C2 andD2 coefficients obtained via the boundary conditions
on ψ1 and ψ2.

According to Jeffrey et al.[38], only the coefficient A2 is useful for computing the force
on the spheres. Therefore, only the first three harmonics of ψ are exhibited. Furthermore,
only ψ0 is needed to compute the dominant order of the lubrication force, as shown in the
next section below.

3.1.1.2 Expression of the lubrication force acting on the inner region.

The lubrication force is due to the hydrodynamic effect of the interaction of the given
particle with a nearby obstacle. Thereby, the force is given by the action of the fluid
stress on a particle surface when this particle and the interacting obstacle are isolated in
an unbounded domain (flow field at rest far from the particles). The lubrication force is
directly obtained by integrating the fluid stress σ acting on the particle surface:

σ = −pI + µ
(
∇u + (∇u)′

)
, (3.21)

with I the identity matrix.
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Due to the symmetry of the flow, only the stress creating a force acting parallel to the
axis of revolution (Oz) is relevant. Thus, the lubrication force on Pi is

Flub
i =

(∫
Γi

(σ · n) · ez dS

)
ez, (3.22)

with n the outgoing unit vector of the surface element dS of the particle Pi as shown in
Fig. 3.1. The following steps aim to express the lubrication force as a function of the

Figure 3.2: Representation of the intrinsic coordinate system (en, et, eφ) and the orienta-
tion of the angle χ.

Stokes stream-function ψ solution of the Stokes problem Eq. (3.6) as detailed by Happel
et al.[82]. First, the fluid stress is projected in the intrinsic coordinate system (n, t,n× t)

(Fig. 3.2), the normal fluid stress (σ · n) becomes

σ · n = (−p+ 2µ∂nun) n + µ (∂tun + ∂nut) t,

= −pn + 2µ [∂nunn + ∂tunt] + µ (∂nut − ∂tun) t,
(3.23)

with u = unn + utt = −1

r
∂tψ n +

1

r
∂nψ t is the fluid velocity. Via straightforward

calculations, Eq. (3.23) becomes:

σ · n = −pn + 2µ∇
(

1

r
∂tψ

)
+
µ

r
Φ2 (ψ) t, (3.24)

where Φ2 (·) = r∂r
(

1
r
∂r (·)

)
+∂2

z (·) = ∇2− 2

r
∂r. Thus, the lubrication force can be written
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as follows:

Flub
i · ez =

∫
Γi

(
−p (n · ez) + 2µ∇

(
1

r
∂tψ

)
· ez +

µ

r
Φ2 (ψ) (t · ez)

)
dS,

=

∫
Γi

(
−p (∂tr) + 2µ∂z

(
1

r
∂tψ

)
− µ

r
Φ2 (ψ) (∂nr)

)
dS,

=

∫
Γi

(
− 1

2r

(
∂t
(
r2p
)
− r2∂t (p)

)
+ 2µ∂z

(
1

r
∂tψ

)
− µ

r
Φ2 (ψ) (∂nr)

)
dS,

= −π
∫
C

∂t
(
r2p
)

ds+ π

∫
C

r2 (∂tp) ds

−4µπ

∫
C

∂z (∂tψ) ds− 2µπ

∫
C

(∂nr) Φ2 (ψ) ds,

(3.25)

where dS = rdθds, Γi = [0; 2π] × C with C = [0, R0] a neighbourhood of the contact
point A (see Fig. 3.1). To compute the lubrication force, the pressure term needs to be
removed from Eq. (3.25). First, on the edges of C, r = 0 leading to

∫
C

∂t
(
r2p
)

ds = 0,∫
C

∂z (∂tψ) ds =

∫
C

∂t (rur) ds = 0.
(3.26)

Furthermore, ∂tp can be written as a function of ψ, by projection of the Stokes equation
in the intrinsic coordinate system

∂tp = ∇p · t,
= µ∇2u · t,
= −µ (∇× ζ) · t,

= −µ∇×
(

Φ2 (ψ)

r
(n× t)

)
· t,

= −µ∂n (Φ2 (ψ)) ,

(3.27)

where ζ = ∇×u = (∂nut − ∂tun) (n× t) is the fluid vorticity, and ∇2u = −∇×ζ because
the fluid velocity field is divergence free.

Hence, by substituting Eqs. (3.26) and (3.27) in Eq. (3.25), the lubrication force on
the particle Pi is expressed as a function of ψ, solution of Eq. (3.6), as follows:

Flub
i = πµ

∫
C

r3∂n

(
Φ2 (ψ)

r2

)
ds ez. (3.28)

The inner region, where the solution ψ of Eq. (3.6) is known, is defined by the neighbor-
hood C = [0, R0] of the contact point A (see Fig. 3.1). Before substituting the solution ψ
in Eq. (3.28), ∂n and ds need to be characterized in the inner region using the stretched
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coordinates.

The element of arc ds is obtained on the surface Γi, by differentiation and a change of
variable as follows:

ds �Γi
= d

(
arcsin

(r
a

))
,

= d (arcsin (R
√
ε)) ,

=

√
εdR√

1−R2ε
.

(3.29)

Since only the first orders of ψ are known, the element of arc can be approximated by the
first orders of the regular expansion of ds at R ∼ 0 (i.e. at the contact point A). Thus,
the element of arc ds on the surface Γi is

ds �Γi
=
√
ε

(
1 +

1

2
εR2 +

3

8
ε2R4 +O

(
ε3
))

dR. (3.30)

The normal derivative ∂n on the surface Γi is obtained by differentiation of the outgoing
normal unit vector n. Via elementary geometrical relations (Fig. 3.2), the outgoing
normal vector on Γi is given by

n �Γi
= R
√
ε er −

√
1−R2ε ez. (3.31)

Thus, the normal derivative ∂n is given by

∂n �Γi
= R∂R −

1

ε

√
1−R2ε ∂Z . (3.32)

As noticed by Jeffrey et al.[38], only the first orders of ∂n are relevant. Thereby, the regular
expansion of ∂n at R ∼ 0 gives the following approximation of the normal derivative

∂n �Γi
= R∂R −

1

ε

(
1− 1

2
R2ε− 1

8
R4ε2 +O

(
ε3
))

∂Z . (3.33)

Via straightforward calculations and simplifications, using Eqs. (3.30) and (3.33), the
first orders of the lubrication force in the inner region is

Flub,in
i · ez

πµaU sq
i

=
1

aU sq
i

∫
C

r3∂n

(
Φ2 (ψ)

r2

)
ds,

=
1

a2U sq
i

∫
C

R3∂n

(
1

R2

[
∂2
R −

1

R
∂R +

1

ε
∂2
Z

]
(ψ)

)
ds,

=
1

ε
f−1 + f0 + εf1 +O

(
ε2
)
,

(3.34)
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with

f−1 = − 1

U sq
i

∫
C

[
R∂3

Zψ0

]
Z=Zi

dR,

f0 = − 1

U sq
i

∫
C

[
R∂3

Zψ1 − ∂R∂Zψ0 + 2R∂2
Zψ0 +R∂Z∂

2
Rψ0 −R2∂R∂

2
Zψ0

]
Z=Zi

dR,

f1 = − 1

U sq
i

∫
C

[
R∂3

Zψ2 − ∂R∂Zψ1 + 2R∂2
Zψ1 +R∂Z∂

2
Rψ1 −R2∂R∂

2
Zψ1

−3∂Rψ0 + 3R∂3
Rψ0 −R2∂3

Rψ0 −
R4

2
∂R∂

2
Zψ0

]
Z=Zi

dR.

(3.35)

Therefore, the dominant order (in ε) of the lubrication force in the inner region is
given by

Flub,in
i

πµaU sq
i

= − 6R4
0

4H2
0

1

ε
ez +O (1) , (3.36)

with H0 = 1 +
1 + β

2β
R2

0.

When two particles are close to each other (ε� 1), the lubrication force becomes the
dominant force. Furthermore, the magnitude of the lubrication stress σlub,in

i is more and
more concentrated at the contact point[46] as the gap ε becomes narrower (see Fig. 3.3
and Eq. 3.37). Thereby, lubrication corrections are critical and complex to perform in
numerical simulations.

σlub,in
i ∼ 3U sq

i µ
β

a(1 + β)

1

H2
0

1

ε2
(3.37)

Figure 3.3: Distribution of the lubrication constraint around the contact point A (with
a = 5 mm, U sq

i = 1 m · s−1, and µ = 1).
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3.1.1.3 Computation of the total lubrication force.

To obtain the lubrication force on the whole surface, the lubrication force on the outer
region needs to be added to the contribution from the inner region Eq. (3.36). This can
be done by solving Eq. (3.28) with ψ solution of a Stokes problem in the outer region
and matching this solution to the solution in the inner region[38, 31]. Another approach is
to match the inner solution Eq. (3.36) with a solution on the outer region obtained via a
numerical simulation[81]. At the end, both methods give the dominant order of the total
lubrication force as follows:

Flub
i

6πµaU sq
i

= − β2

(1 + β)2

1

ε
ez +O (1) . (3.38)

3.1.2 Shearing motion of rigid spheres.

As for the squeezing motion, two smooth particles of radii a and βa, with β > 0,
are immersed in an infinite domain of fluid. The particle Pi is now moving near the
stationary particle Pj at the velocity Ui = U sh

i ex (see Fig. 3.1). The surfaces of Pi and
Pj are denoted respectively Γi and Γj. The gap between the two particles is denoted by
aε (0 < ε� 1) such that the gap Reynolds number is small (Re = ρU sh

i aε/µ� 1).

According to Kim et al.[81], symmetries in the flow field in the gap suggest that (u, p)

can be written in the cylindrical coordinate system (er, eθ, ez) as follows:

ur = U sh
i U(r, z) cos (θ) ,

uθ = U sh
i V (r, z) sin (θ) ,

uz = U sh
i W (r, z) cos (θ) ,

p =
µU sh

i

a
P (r, z) cos (θ) ,

(3.39)

where the angle θ is defined such that er = cos(θ)ex + sin(θ)ey, and U , V , W , and P are
unknown functions such that the velocity and pressure fields are solutions of the Stokes
problem Eq. (3.3). With a velocity and pressure fields defined as Eq. (3.39), the Stokes
problem Eq. (3.3) becomes:

0 = ∂rU (r, z) +
U (r, z) + V (r, z)

r
+ ∂zW (r, z) ,

1

a
∂rP (r, z) = L2

0 (U (r, z))− 2

r2
(U (r, z) + V (r, z)) ,

−1

a

P (r, z)

r
= L2

0 (V (r, z))− 2

r2
(U (r, z) + V (r, z)) ,

1

a
∂zP (r, z) = L2

1 (W (r, z)) ,

(3.40)
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with L2
m = ∂r

2 + 1
r
∂r − m2

r2
+ ∂z

2.

The non-slip boundary conditions U �Γi
= U sh

i ex and U �Γj
= 0 are also projected in

the cylindrical coordinate system and become

ur �Γi
= 1,

uθ �Γi
= −1,

uz �Γi
= 0,

ur �Γj
= 0,

uθ �Γj
= 0,

uz �Γj
= 0.

(3.41)

3.1.2.1 Resolution of the fluid velocity and pressure fields.

The resolution of the pressure and velocity fields is similar to the resolution of the
Stokes stream-function for the squeezing motion. The unknowns P , U , V , and W are
assumed[81] to be regular expansions in ε as follows:

P (R,Z) = ε−3/2P0 (R,Z) + ε−1/2P1 (R,Z) +O
(
ε1/2
)
,

U (R,Z) = U0 (R,Z) + εU1 (R,Z) +O (ε2) ,

V (R,Z) = V0 (R,Z) + εV1 (R,Z) +O (ε2) ,

W (R,Z) = ε1/2W0 (R,Z) + ε3/2W1 (R,Z) +O
(
ε5/2
)
.

(3.42)

These assumptions on the velocities and pressure are motivated by the consistency of
boundary conditions. According to Kim et al.[81] , boundary conditions Eq. (3.41) imply
that U and V are O (ε0), so from the equation of continuity in Eq. (3.40), W is scaled
by O

(
ε1/2
)
. Then, the scaling for the pressure follows directly the governing equations as

P = O
(
ε−3/2

)
.

Substitution of the asymptotic expansion Eq. (3.42) into the governing equations
Eq. (3.40), yields a hierarchy of equations in order of ε. To make the identification of
coefficients for each order of ε easier, Eq. (3.40) is re-written using stretched coordinates:

0 =
1√
ε
∂RU +

U + V

R
√
ε

+
1

ε
∂ZW,

1√
ε
∂RP =

1√
ε
∂R

2U +
1

Rε
∂RU +

1

ε2
∂Z

2U − 2

εR2
(U + V ) ,

− P

R
√
ε

=
1√
ε
∂R

2V +
1

Rε
∂RV +

1

ε2
∂Z

2V − 2

εR2
(U + V ) ,

1

ε
∂ZP =

1√
ε
∂R

2W +
1

Rε
∂RW −

1

R2ε
W +

1

ε2
∂Z

2W.

(3.43)
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Hence, the lowest order in ε for each line of Eq. (3.43) is

0 = ∂RU0 +
U0 + V0

R
+ ∂ZW0,

∂RP0 = ∂Z
2U0,

−P0

R
= ∂Z

2V0,

∂ZP0 = 0,

(3.44)

and, the next order for each line is

0 = ∂RU1 +
U1 + V1

R
+ ∂ZW1,

∂RP1 = ∂R
2U0 +

1

R
∂RU0 + ∂Z

2U1 −
2

R2
(U0 + V0) ,

−P1

R
= ∂R

2V0 +
1

R
∂RV0 + ∂Z

2V1 −
2

R2
(U0 + V0) ,

∂ZP1 = ∂Z
2W0.

(3.45)

To close the systems of equations (3.44) and (3.45), the boundary conditions on the
harmonics of P , U , V , andW need to be calculated. In the same way, as for the squeezing
motion, the Taylor expansions of P , U , V , and W at the particle surfaces are taken and
used with the boundary conditions Eq. (3.41) to obtain the boundary conditions on the
harmonics.

For instance, on the surface Γi, the Taylor expansion of U , Eq. (3.42) at Z = Hi is
given by

U (R,Z) = U (R,Hi) + ∂ZU (R,Hi) (Z −Hi) +O
(
Z2
)
,

= U0 + εU1 +O
(
ε2
)

+
(
∂ZU0 + ε∂ZU1 +O

(
ε2
))(1

8
εR4 +

1

16
ε2R6 +O

(
ε3
))

+O
(
ε3
)
,

= U0 +

(
U1 +

1

8
∂ZU0

)
ε+O

(
ε2
)
.

From the boundary conditions Eq. (3.41) on U , U (R,ZA) ∼ 1. Therefore, by identifying
coefficients of the Taylor expansion of U at Z = Hi evaluated at Z = Zi, the following
hierarchy of equations is obtained{

U0 (R,ZA) = 1,

U1 (R,ZA) = −1
8
R4∂ZU0.

(3.46)

In the same way, the following boundary conditions are obtained for U , V , W , and P on
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the surfaces Zi and Zj: 

U0 (R,Zi) = 1,

V0 (R,Zi) = −1,

W0 (R,Zi) = 0,

U0 (R,Zj) = 0,

V0 (R,Zj) = 0,

W0 (R,Zj) = 0,

(3.47)

and 

U1 (R,Zi) = −1

8
R4∂ZU0 (R,Zi) ,

V1 (R,Zi) = −1

8
R4∂ZV0 (R,Zi) ,

W1 (R,Zi) = −1

8
R4∂ZW0 (R,Zi) ,

U1 (R,Zj) =
1

8β3
R4∂ZU0 (R,Zj) ,

V1 (R,Zj) =
1

8β3
R4∂ZV0 (R,Zj) ,

W1 (R,Zj) =
1

8β3
R4∂ZW0 (R,Zj) .

(3.48)

Hence, the first two harmonics of each quantity can now be solved using Eqs. (3.44) and
(3.45) with the boundary conditions (3.47) and (3.48).

The fourth line of Eq. (3.44) implies that P0 is only a function of R. Therefore,
the second and the third lines of Eq. (3.44) can be integrated in the gap, by separating
variables leading to the following parabolic profile for U0 and V0

U0 (R,Z) = −1

2
P ′0 (Z − Zj) (Zi − Z) +

Z − Zj
H

,

V0 (R,Z) =
1

2

P0

R
(Z − Zj) (Zi − Z)− Z − Zj

H
,

(3.49)

with H (R) = Zi − Zj. Then, the integration between Zi and Zj of the first line of Eq.
(3.44) gives

W0 (R,Zi)−W0 (R,Zj) = −
∫ H

0

(
∂RU0 +

U0 + V0

R

)
dζ,

= −
∫ H

0

(
1

R
∂R (RU0) +

V0

R

)
dζ,

= − 1

R

[
∂R

(∫ H

0

(RU0) dζ

)
−R∂RZi

]
− 1

R

∫ H

0

V0dζ,

(3.50)
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with ζ = Z + Zj. The change of the order of integration and differentiation in the
last line is obtained by applying the Leibniz rule, since Zi depends on R. Furthermore,
W0 (R,Zi) − W0 (R,Zj) = 0 as uz = 0 at the particle surfaces. By substituting the
expression of U0 and V0 from Eq. (3.49) in Eq. (3.50), and via the approximations
∂RZi ≈ R and ∂RH ≈

(
1 + 1

β

)
R, the Reynolds equation is obtained as

R2P ′′0 +

(
R + 3

(
1 +

1

β

)
R3

H

)
P ′0 − P0 = −6

(
1− 1

β

)
R3

H3
. (3.51)

The unique solution[81, 32] of Eq. (3.51) with lim
R→+∞

P0 = 0 is

P0 =
6R

5H2

(
1− 1

β

)
. (3.52)

Hence, U0 and V0 in Eq. (3.49) are known anywhere within the gap:

U0 (R,Z) = −1

2

dP0

dR
(Z − Zj) (Zi − Z) +

Z − Zj
H

,

P0 (R) =
6R

5H2

(
1− 1

β

)
,

V0 (R,Z) = −1

2

P0

R
(Z − Zj) (Zi − Z)− Z − Zj

H
.

(3.53)

According to O’Niell et al.[32], P1, U1, V1, and W1 can be found by means of Eq. (3.45)
after substitution of U0, V0, W0, and P0 in Eqs. (3.45) and (3.48). However, only U0, V0,
and P0 are needed to get an expression of the dominant order of the lubrication force and
torque.

3.1.2.2 Expression of the lubrication force and torque acting on the inner

region.

As for the squeezing motion, the lubrication force and torque are directly obtained by
integration of the fluid stress σ (see Eq. (3.21)) over the particle surface Γi. Due to the
symmetry of the flow, only the component of the force according to the (Ox) is non-zero.
Hence, the lubrication shear force and torque acting on an element of surface dS of Γi,
are given by 

Flub
i =

(∫
Γi

(σ · n) · ex dS

)
ex,

Tlub
i =

∫
Γi

(σ · n)× ey dS.
(3.54)
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By substitution of (u, p), expressed as Eq. (3.39), and straightforward simplifications,
the lubrication force and torque become

Flub
i =

∫
Γi

U sh
i µ

[
cos(χ)

(
−∂zU cos2(θ)− ∂rW cos2(θ) + ∂zV sin2(θ)

)
+ sin(χ)

(
−P
a

cos2(θ) + 2∂rU cos2(θ)− ∂rV sin2(θ)

)]
dS ex,

Tlub
i =

∫
Γi

U sh
i µa

[
cos2(χ)

(
∂zU cos2(θ) + ∂rW cos2(θ)− ∂zV sin2(θ)

)
− sin2(χ) (∂zU cos2(θ) + ∂rW cos2(θ))

− cos(χ) sin(χ)
(
4∂rU cos2(θ)− ∂rV sin2(θ)

)]
dS ey,

(3.55)

in the cylindrical coordinate system (er, eθ, ez). The angle χ is defined such that n · er =

sin(χ) and n · ez = − cos(χ) (see Fig. 3.2). Before expending further Eq. (3.55) with
the pressure and velocity expressions of Eq. (3.42), the force and torque are integrated
according to θ and expressed using the stretched coordinates Eq. (3.2). Hence, the force
and torque become

Flub
i

U sh
i µaπ

=

∫ χ0

0

[
cos(χ)

(
− 1√

ε
∂RW +

1

ε
(∂ZV − ∂ZU)

)
+ sin(χ)

(
−P +

1√
ε

(2∂RU − ∂RV )

)]
sin(χ)dχ ex,

Tlub
i

U sh
i µa

2π
=

∫ χ0

0

[
cos2(χ)

(
1

ε
(∂ZU − ∂ZV ) +

1√
ε
∂RW

)
− sin2(χ)

(
1

ε
∂ZU +

1√
ε
∂RW

)
− cos(χ) sin(χ)

1√
ε

(4∂RU − ∂RV )

]
sin(χ)dχ ey.

(3.56)

The parameter χ0 ∈ [0; π] defines the inner region, where (u, p) are solutions of Eq. (3.3).
To use the same definition of the inner region as for the squeezing motion, the variable χ
is changed as follows:

χ = arcsin(R
√
ε),

dχ =

√
εdR√

1− εR2
=

(
1 +

1

2
εR2 +O

(
ε2
))

dR.
(3.57)
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Hence, the inner region is defined by C = [0;R0] and the Eq. (3.56) become

Flub
i

U sh
i µaπ

= −
∫ R0

0

[√
ε∂RW + ∂ZU − ∂ZV

]
RdR ex

+

∫ R0

0

[
−P
√
ε+ 2∂RU − ∂RV

]
εR2 dR√

1− εR2
ex,

Tlub
i

U sh
i µa

2π
=

∫ R0

0

[
(∂ZU − ∂ZV ) +

√
ε∂RW

]
R
√

1− εR2dR ey

−
∫ R0

0

[
∂ZU +

√
ε∂RW

]
εR3 dR√

1− εR2
ey

−
∫ R0

0

[4∂RU − ∂RV ] εR2dR ey.

(3.58)

Since the gap is small (ε � 1) and we want only the first orders of the lubrication force
and torque, the squared roots in Eq. (3.58) are approximated as follows:

Flub
i

U sh
i µaπ

= −
∫ R0

0

[√
ε∂RW + ∂ZU − ∂ZV

]
RdR ex

+

∫ R0

0

[
−P
√
ε+ 2∂RU − ∂RV

]
εR2

(
1 +

1

2
εR2 +O

(
ε2
))

dR ex,

Tlub
i

U sh
i µa

2π
=

∫ R0

0

[
(∂ZU − ∂ZV ) +

√
ε∂RW

]
R

(
1− 1

2
εR2 +O

(
ε2
))

dR ey

−
∫ R0

0

[
∂ZU +

√
ε∂RW

]
εR3

(
1 +

1

2
εR2 +O

(
ε2
))

dR ey

−
∫ R0

0

[4∂RU − ∂RV ] εR2dR ey.

(3.59)

Finally, the expression Eq. (3.42) of U , V , W and P are substituted in Eq. (3.59) to
identify the coefficients of Flub

i and Tlub
i seen as polynomial functions in ε:

Flub
i

U sh
i µaπ

=

∫ R0

0

[−P0R + ∂ZV0 − ∂ZU0] RdR ex

+ ε

∫ R0

0

[
−P0

2
R3 − P1R + 2∂RU0 − ∂RV0 − ∂RW0 + ∂ZV1 − ∂ZU1

]
RdR ex

+ O (ε2) ,

Tlub
i

U sh
i µa

2π
=

∫ R0

0

[∂ZU0 − ∂ZV0]RdR ey

+ ε

∫ R0

0

[
−3

2
R2∂ZU0 +

1

2
R2∂ZV0 −R (4∂RU0 − ∂RV0)

+ ∂ZU1 − ∂ZV1 (1−R2) ∂RW0]RdR ey +O (ε2) .

(3.60)

In particular, the dominant orders (in ε) of the lubrication force and torque in the inner
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region are found:

Flub,in
i

aµπU sh
i

=

∫ R0

0

[−P0R + ∂ZV0 − ∂ZU0]RdR ex +O (ε) , (3.61)

Tlub,in
i

a2µπU sh
i

=

∫ R0

0

[∂ZU0 − ∂ZV0]RdR ey +O (ε) , (3.62)

with U0, V0, and P0 given by Eq. (3.53).

As for the squeezing motion, the total lubrication force and torque can be found by
matching[42, 39] the inner and outer solution of the Stokes problem (3.3):

Flub
i

aµπU sh
i

= −24β (2 + β + 2β2)

15 (1 + β)3 ln (ε) ex +O (ε) , (3.63)

Tlub
i

a2µπU sh
i

= − 8β (4 + β)

10 (1 + β)2 ln (ε) ey +O (ε) , (3.64)

For a given velocity Ui = U sq
i = U sh

i , the lubrication force created by the squeezing motion
is dominant:

Flub,sh
i

Flub,sq
i

∼
ε�1

ln(ε)

ε
.

Therefore, lubrication effects created by the shearing motion are often neglected in lubri-
cation correction models (see Sec. 3.2).

3.2 Costa Lubrication Correction Model (CLM).

The CLM[71] is a two-parameter model which corrects the normal component of the
lubrication force on a spherical particle. The correction is made by adding ∆Flub

i =

∆F lub
i en to the computed hydrodynamic force:

∆F lub
i

6πµaU sq
i

=


λ(ε∆x)− λ(ε), εcol ≤ ε < ε∆x,

λ(ε∆x)− λ(εcol), 0 ≤ ε < εcol,

0, otherwise,

(3.65)

where en is defined as represented in Fig. 3.6. The Stokes amplification factor[38] λ

is defined for the lubrication interaction between a sphere and a wall as λpw, and for
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interaction between two spheres as λpp:
λpw (ε) =

1

ε
− 1

5
ln(ε)− 1

21
ε ln(ε) +O (1) ,

λpp (ε) =
1

2ε
− 9

20
ln(ε)− 3

56
ε ln(ε) +O (1) .

(3.66)

Hence, the total hydrodynamic force is given by

Fhyd
i =

∫
Γi

(σ · n) dS + ∆Flub
i . (3.67)

The value of the parameter ε∆x is determined by simulating the slow approach of a
sphere toward a wall or a second particle, for a given grid cell resolution h. Figures 3.4
and 3.5 represent the total hydrodynamic force acting on a particle approaching a wall
or a particle, respectively. Simulations without lubrication correction are compared to
the analytical solutions given by Brenner[37] and Cooley et al.[31]. The parameter ε∆x is
defined as the largest value of ε such that for ε ≤ ε∆x the hydrodynamic force from the
simulation without lubrication correction no longer matches the analytical solution.

The CLM parameter for Fig. 3.4 is ε∆x = 0.06. These configurations have been used
in Secs. 4.1 and 5.2.2 to compare the CLM to the local lubrication correction model
(LLCM) described Sec. 3.3.

Figure 3.4: Total hydrodynamic force as a function of ε in the case of a single particle
approaching a solid wall. Simulations results are compared against the an-
alytical solution of Brenner[37] (dashed line). All simulations are run with
h = 1/40. The LLCM is activated on all ε smaller than εlub = 2∆y

a
.
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Figure 3.5: Total hydrodynamic force as a function of ε in the case of a single particle
approaching another particle. Simulations results are compared against the
analytical solution of Cooley[31] (dashed line). All simulations are run with
h = 1/40. The LLCM is activated on all ε smaller than εlub = 2∆y

a
.

3.3 The Local Lubrication Correction Model (LLCM).

The lubrication force Flub
i and torque Tlub

i acting on Pi are given by

Flub
i =

∑
j∈J1,NK\{i}

Flub
i,j + Flub

i,wall,

Tlub
i =

∑
j∈J1,NK\{i}

Tlub
i,j + Tlub

i,wall,
(3.68)

where Flub
i,j and Tlub

i,j are the lubrication force and torque acting on Pi, created by the
interaction of Pi and Pj. The lubrication force and torque created by the interaction
of the particle Pi with a wall are denoted Flub

i,wall and Tlub
i,wall, and are equivalent to the

asymptotic case β → +∞.
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From the lubrication theory detailed in Sec. 3.1, Flub
i,j and Tlub

i,j are given by

Flub
i,j =

(
Flub,sq
i,j + Flub,sh

i,j

)
1[εcol,εlub](ε),

Tlub
i,j = Tlub,sh

i,j 1[εcol,εlub](ε),

Flub,sq
i,j

πµaU sq
i,j

= −
6R4

0

4H2
0

1

ε
en,

Flub,sh
i,j

πµaU sh
i,j

=

∫ R0

0

[−P0R + ∂ZV0 − ∂ZU0]RdR et,

Tlub,sh
i,j

πµa2U sh
i,j

=

∫ R0

0

[∂ZU0 − ∂ZV0]RdR en × et,

U sq
i,j = U sq

i − U
sq
j ,

U sh
i,j = U sh

i − U sh
j + (ωi − ωjβ) a,

(3.69)

with


H0 = 1 +

1

2
aαR2

0,

α =
β + 1

aβ
,

R0 =
1√
ε

√
1− (1 + ε− εlub)2.

(3.70)

The projected relative velocity of the two particles on the directions en and et are U sq
i,j

and U sh
i,j (see Fig. 3.6).

The indicator function 1[εlub,εcol](ε) is non-zero and equals to 1 only if εcol ≤ ε ≤ εlub.
Hence the lubrication model is switched off when the hydrodynamics is fully resolved
(ε ≥ εlub), and when the gap disappears (ε ≤ εcol).

Figure 3.6: Sketch of the two interacting particles with the notations used to evaluate
Flub
i,j and Tlub

i,j .
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The analytic expressions of Flub,sh
i,j and Tlub,sh

i,j are not as simple as the expression
of Flub,sq

i,j . Therefore, we choose to compute the shearing components by a numerical
integration. Furthermore, numerical integration will be necessary if we want to add lower
orders of the lubrication forces and torques. The force Flub,sh

i,j and the torque Tlub,sh
i,j are

integrated on nlub sub-sets of the lubrication region [0, R0]:

Flub,sq
i,j

πµaU sq
i,j

=

nlub∑
k=1

∫
RRRk

[−P0R + ∂ZV0 − ∂ZU0]RdR et,

Tlub,sh
i,j

πµa2U sh
i,j

=

nlub∑
k=1

∫
RRRk

[∂ZU0 − ∂ZV0]RdR en × et,

(3.71)

where RRRk =

[
k − 1

nlub
R0,

k

nlub
R0

]
.

The local lubrication correction model (LLCM) is then built such that the total hy-
drodynamic force and torque acting on Pi are approximated by

Fhyd
i ≈ Fsolv

i + Flub
i ,

Thyd
i ≈ Tsolv

i + Tlub
i .

(3.72)

As the lubrication corrections Flub
i,j and Tlub

i,j are the dominant orders of the hydro-
dynamics acting on the inner region of Pi, when the flow in the gap is in the Stokes
regime (see Sec. 3.1), Flub

i and Tlub
i are not identical to the degraded hydrodynamics Fdeg

i

and Tdeg
i . Nevertheless, simulations presented in Sec. 4.1 show that the approximation

Fdeg
i ≈ Flub

i can be made as long as the gap Reynolds numbers

Regap
i,j =

ρaiε‖Ui −Uj‖
µ

remains small for all Pj in interaction with Pi (ai is the radius of Pi), during the sim-
ulations. In particular, the Reynolds number Relub needs to be moderate (typically
Relub < 103):

Relub =
ρεlubQ

max

µ
, (3.73)

with Qmax = max
t

(
max

(i,j)∈J1,NK2
(ai‖Ui(t)−Uj(t)‖)

)
.

This constraint also underlines the limitation of the LLCM to moderate Reynolds
number flows. Indeed, inertia effects of the fluid in the gap are not corrected by the LLCM.
Another limitation of the LLCM concerns the many-body interactions, which refers to the
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hydrodynamics action on a particle generated by nearby particles in interactions. As the
lubrication corrections are made in an additive pairwise-fashion (see Eq. (3.68)), the
only many-body interactions, present in the simulated flow, are the ones resolved by the
numerical method (included in Fsolv

i ).
For ellipsoidal particles, the lubrication corrections are evaluated on the virtual spheres

introduced in Sec. 2.1.2.4. The approximation of the particle surfaces by the spheres is an
additional source of uncertainty from the LLCM. Therefore, the size of the grid elements
might need to be reduced for ellipsoidal particles with extreme aspect ratios to limit the
lubrication area to contact point neighborhoods where the virtual spheres fit the most the
particle surfaces.
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Chapter 4

Numerical simulations of spherical

particles

Interactions between a spherical particle and an obstacle (wall or another particle) have
been extensively investigated both numerically and experimentally. The central symmetry
makes spherical particles the easiest particle shape to study experimentally. Among the
numerous benchmarks available in the literature, three cases have been chosen to validate
the LLCM.

First, the lubrication correction for a particle interacting with a wall is simulated
when the particle is moving normally toward the wall at several impact Stokes number.
By this simple case, the dominant component of the lubrication force is validated with or
without rebound of the particle. Subsequently, the wall is inclined to validate the shearing
component of the lubrication forces. Finally, particle-particle interactions are simulated
for two particles in a sheared flow.

4.1 Falling particle onto a wall.

A single particle is immersed in a domain [4d]3, with d = 2a the particle diameter,
uniformly meshed with cubic elements of size ∆x = ∆y = ∆z = hd. Periodic boundary
conditions are considered on the lateral faces of the domain. A no-slip boundary condition
is imposed at the top and bottom walls (y constant). Simulations have been performed
on a [8d]3 domain (with h = 1/40) and have given identical solutions than on the smaller
domain. The fluid is initially at rest and the particle is dropped without initial velocity
such that the gap size from the bottom wall is given by aεinit as shown Fig. 4.1. The
gravity field g acts on the y-direction.

To have an experimental reference for comparison, we chose the same configuration as
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Figure 4.1: Sketch of two cross sections of the domain with its configurations and initial
location of the particle.

one of the two cases from Harada et al.[83]. Particle and fluid properties are presented in
Tab. 4.1.

Fluid density ρ 985 kg ·m−3

Fluid dynamic viscosity µ 0.142 Pa · s
Particle density ρp 1127 kg ·m−3

Particle diameter d 2.54 cm
Normal restitution ξmax,n 0.97
Contact time τc 7.98 · 10−5 s
Particle roughness aεcol 2 · 10−4d m
Gravity field g 9.781 N · kg−1

Particle terminal velocity UT 0.146 m · s−1

Initial position εinit 0.4181

Table 4.1: Simulation configurations.

Under these configurations (Tab. 4.1), the fluid characteristic Reynolds and Stokes
numbers are as follows: 

Red =
ρUTd

µ
≈ 25.7,

Std =
ρpUTd

9µ
≈ 3.27.

(4.1)

A posteriori computations show that the maximum gap Reynolds number is

Regap
i,wall =

ρaiεmax (‖Ui‖)
µ

≈ 0.92,

for ε ≈ 0.31. Therefore, the lubrication forces form the LLCM should reasonably approx-
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imate the degenerated forces: Fdeg
i ≈ Flub

i .

Numerical experiments have shown that the number of particle surface mesh elements
(starting from about a thousand elements) has a limited impact on the solutions. There-
fore, all the following simulations have been performed using Np = 3200 elements for the
particle surface mesh.

4.1.1 Comparison with existing lubrication models.

Figure 4.2 compares the particle velocity U simulated using the local lubrication cor-
rection model (LLCM) and the tabulated lubrication model CLM (described Sec. 3.2) to
experimental measurements made by Harada et al.[83]. Numerical simulations were per-
formed on a uniform Cartesian mesh with a grid spacing h = 1/40 and using Np = 3200

elements for the particle surface mesh. Local lubrication corrections are performed on
particle mesh elements closer than 2∆y to the wall.

Figure 4.2: Evolution of the vertical velocity of the particle versus the non-dimensional
gap size. Simulations using local (LLCM) and tabulated (CLM) lubrication
corrections are compared to Harada[83] experimental measurements and the
model H. The LLCM and CLM are activated for ε smaller than the blue square
and red star, respectively.

The relative errors L2 and L∞ of the particle velocity U obtained by a simulation
compared to the experimental particle velocity Uexp provided by Harada et al.[83] are
denoted respectively E2(U) = ‖Uexp − U‖2 and E∞(U) = ‖Uexp − U‖∞.
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The simulation using CLM (Fig. 4.2) has been run with ε∆x = 0.06 and h = 1/40.
Aside the computation of the hydrodynamics Eq. (3.67) for the CLM, the resolution of
the fluid and particle dynamics is identical to the approach used with the LLCM. For the
Harada case, CLM results are in good agreement with experimental measurement. As
shown in Fig. 4.2, the Pearson’s correlation coefficient is equal to 0.9661, E2(UCLM) =

2.287 · 10−3 m · s−1, E∞(UCLM) = 1.229 · 10−2 m · s−1.

The accuracy of the LLCM is comparable to the CLM. The simulated velocities remain
close to experimental data (Pearson’s correlation coefficient equals to 0.9633, E2(ULLCM) =

2.385 · 10−3 m · s−1, and E∞(ULLCM) = 1.232 · 10−2 m · s−1). The computational time is
about 10% larger with LLCM than CLM, without considering the computational cost of
the tabulation. However, the computational time of the tabulation needed for the CLM
can be significant. Furthermore, the LLCM can be extended to non-spherical particles
while the CLM will require the tabulation of several parameters at a considerable CPU
cost. The computational cost of the tabulation is also a CLM’s limitation for polydisperse
flows of spherical particles. Therefore, the LLCM is a reliable and efficient alternative to
tabulated methods for complex particle flows.

Most of this additional cost comes from the identification of the setLLL(P ) (see definition
in Sec.2.3.1) for each surface element of the particle. A very basic approach has been used
here which consists in computing the distance of each surface element to the wall. More
cost-effective methods (optimized storage of the surface elements, for instance) can be
found and would probably reduce the cost difference between the LLCM and the CLM.

Due to the lack of experimental measurements of the total hydrodynamic forces for
a falling particle, total hydrodynamic forces obtained by numerical simulations are com-
pared to an analytic model (model H) introduced by Harada et al.[83]. The model H is
based on the Stokesian dynamic, where hydrodynamic force FMH

i = Fhyd
i + Flub

i on the
particle is modeled by the dominant order of the lubrication force fl, the added-mass force
fa, and the Basset history force fBa.

The dominant order of the lubrication force is obtained by integration of the interstitial
pressure between the particle and the wall[84]:

fl = 6πµa
Usq
i

ε
. (4.2)

Since the motion of the particle is unsteady, the added mass force changes near the wall
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as follows[85][86]: 
fa = m′

dUi

dt
+

1

2

dm′

dt
Ui,

m′ =
2

3
πρa3

(
1 +

∞∑
i=0

3a(i+1)

f0f1...fi

)
,

(4.3)

where fi is recursively defined such that f0 = 2a(ε+ 1) and fi = f0− a2/fi−1. The Basset
history force for a spherical particle is given by

fBa = 6a2√πρµ
t∫

−∞

dUi

dt′
dt′√
t− t′

. (4.4)

Hence, the total hydrodynamic force of the model H is FMH
i = fBa + fa + fl.

Numerical simulations have shown that velocities computed with the LLCM tends
to experimental measurements as h decreases. Table 4.2 shows that the order of the
numerical method used is close to a second order in L2 and L∞ on velocity when no
lubrication corrections are applied. The particle dynamics for h = 1/20 is only fully
resolved for large ε, where the lubrication forces are not dominant. Therefore, errors
on the particle position and velocity are unexpectedly small for h = 1/20 compared to
smaller h. Comparisons with Harada’s measurements also show that the LLCM gives
better results than model H for h ≤ 1/40, even before any lubrication corrections (for the
model H: Pearson’s correlation coefficient equals to 0.9418, E2(UMH) = 3.2 · 10−3 m · s−1,
E∞(UMH) = 1.3 · 10−2 m · s−1).

4.1.2 Grid sensitivity analysis.

Using the same configurations as in Table 4.1, simulations have been performed with
four different background grid resolutions h = 1/20, h = 1/40, h = 1/80, and h = 1/100.
The total hydrodynamic forces obtained are compared to the model H (Fig. 4.3).

Far from the wall (ε > 0.1), higher grid resolutions (h ≤ 1/80) improve the resolution
of the total hydrodynamic forces. Indeed, as shown in the Fig. 4.3, the hydrodynamic
forces tend to the hydrodynamic forces of the model H which fits experimental velocities
(Fig. 4.2). As the particle goes closer to the wall (ε < 0.1), simulated hydrodynamic
forces are lower than the solution of the model H, even before any lubrication correction
is applied (see h = 1/80 and h = 1/100). Starting from the same initial conditions, the
lower hydrodynamic forces induce higher particle velocities (than model H velocities) close
to the wall. Therefore, the response of the LLCM is stronger close to the wall with steeper
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Velocity
h ‖U1/100 − Uh‖2 ‖U1/100 − Uh‖∞ order L2 order L∞

1/20 2.13 · 10−4 4.74 · 10−4

1/40 3.83 · 10−4 6.35 · 10−4 − −
1/60 3.27 · 10−4 5.48 · 10−4 2.04 1.95

1/80 2.50 · 10−4 3.75 · 10−4 1.73 1.58

Position
h ‖Y1/100 − Yh‖2 ‖Y1/100 − Yh‖∞ order L2 order L∞

1/20 2.07 · 10−3 2.08 · 10−3

1/40 7.95 · 10−4 8.24 · 10−4 1.81 1.81

1/60 3.64 · 10−4 3.90 · 10−4 1.62 1.62

1/80 1.44 · 10−4 1.64 · 10−4 1.54 1.53

Table 4.2: Table of convergence for the particle vertical position and velocity, when the
particle dynamics is fully resolved (ε ≥ 0.2). The particle position Yh and
velocity Uh obtained with a grid mesh resolution h are compared to the particle
position Y1/100 and velocity U1/100 obtained with a grid mesh resolution h =
1/100. The units of the position and velocity errors are m and m · s−1.

Figure 4.3: Total hydrodynamic force, according to the y-direction as a function of 1/ε
during the approach phase. For each grid mesh resolution h, lubrication cor-
rection is activated for ε ≤ εh.

hydrodynamic forces than with the model H. However, the relevance of the model H as
reference for ε < 0.1 can be discussed since velocities of the model H do not perfectly fit
experimental measurements in this range of ε (Fig. 4.2). As shown in Fig. 4.3, the LLCM
has a lower hydrodynamic force compared to the model H. However, the particle velocity
of the model H for ε < 0.1 (Fig. 4.2) is lower than experimental data which implies that
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the model H overestimates the hydrodynamics when ε < 0.1.

To assess the global rate of convergence of the LLCM, numerical simulations have
been performed with different background grid resolutions h and with εlub = 0.1 fixed.
The total hydrodynamic forces obtained are compared to the model H (Fig. 4.4).

Figure 4.4: Total hydrodynamic force, according to the y-direction as a function of 1/ε
during the approach phase. For all curves, the lubrication correction is acti-
vated for ε ≤ εlub.

Figure 4.5 shows that the global order of the numerical method used is first-order in
L2 and L∞ on position and velocity. However, one of the main features of the LLCM
is to rely as much as possible on the solved fluid stress to compute the hydrodynamics,
and is ignored here for the simulations using finer grid mesh resolution than h = 1/40.
Therefore, the global order of convergence on velocity and position of the LLCM could be
closer to a second-order, since the computation of the hydrodynamics rely more and more
(as h decrease) on a numerical method without lubrication correction, which is a second
order of convergence on position and velocity (see Table 4.2). In addition, the LLCM is
more accurate if εlub is adapted to the grid resolution h than if εlub is fixed. For instance,
with h = 1/100, the relative errors E2(ULLCM) and E∞(ULLCM) are increased by 19% and
12% by using εlub = 0.1 instead of εlub = 2∆y

a
(= 0.04).
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Figure 4.5: Representation of the global rate of convergence on velocity (a) and position
(b) of the particle center of gravity according to the norms L2 and L∞. The
particle position Yh and velocity Uh obtained with a grid mesh resolution h are
compared to the particle position Y1/100 obtained with a grid mesh resolution
h = 1/100.

4.1.3 Sensitivity analysis from the lubrication parameter εlub.

The LLCM is a model with a single parameter εlub which sets the minimum gap length
where lubrication corrections are needed. Several simulations have been made for different
εlub. Figure 4.6 represents the total hydrodynamic force normalized by the particle velocity
with respect to 1/ε.

Numerical simulations using aεlub ≈ 2∆y are expected to give more realistic solutions
since hydrodynamic forces better fit the solution of model H. For smaller εlub, hydrody-
namic forces are underestimated leading to unrealistic mechanical contact and rebound
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Figure 4.6: Total hydrodynamic force, according to the y-direction as a function of 1/ε
during the approach phase for the critical lubrication distance aεlub equals to
0.1∆y, 1∆y, 2∆y, 20∆y, 3∆y, or 5∆y (by increasing F/U at the highest 1/ε).
Grid mesh resolution is h = 1/40 for all curves.

of the particle (particle rebounds are not allowed by viscous effects for St < 10). Simula-
tions with high εlub under-estimate the total hydrodynamic force far from the wall, which
decreases the solution accuracy.

The value of εlub depends on the spatial discretization of the Navier-Stokes equations
and needs to be adapted to the numerical method. This configuration can be easily done
by running a sensitivity analysis from εlub, as shown in this section.

4.1.4 Analysis of the LLCM reliability during a collision.

To complete our model reliability assessment, several simulations had been performed
at higher Stokes numbers and compared to experimental data from Joseph et al.[87].

The conservation of the energy by the LLCM and the collision model have been checked
by simulating the normal collision of a steel particle with a wall (see Fig. 4.7). When
the particle is elastic (ξmax,n = 1) the energy is conserved during the collision. Otherwise,
plastic deformations of the particle are mimicked by the collision model creating the
observed energy dissipation.

Figure 4.8 represents the distribution of the normalized effective coefficient of normal
restitution of a particle versus the impact Stokes number. To be comparable to the
measurements, we use the same technique and definition of the coefficient of normal
restitution ξn, detailed by Joseph et al.[87]. By definition, ξn = −UR/UT where UR is
the particle rebound velocity and UT is the terminal velocity of the particle before the
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Figure 4.7: Evolution of the total energy (energy potential and kinetic) of the system
during an elastic (ξmax,n = 1) or plastic (ξmax,n = 0.5) collision of a steel
particle with a wall. In both cases the impact Stokes number is Std ≈ 6900.

collision.

Figure 4.8: Distribution of normalized effective coefficient of normal restitution ξn/ξmax,n

of a single particle impacting a wall in respect of the particle Stokes number at
the impact. Filled markers represent results obtained using the LLCM using
the same experimental setup than Joseph et al.[87] (data represented by hallow
markers). The black curve represents a correlation made on experimental data
proposed by Legendre et al.[88]

When the fluid does not influence the dynamics of the particle while colliding with an
obstacle (non-viscous fluids for instance), the effective coefficient ξn is maximum and is
called dry coefficient of normal restitution ξmax,n. Experimental measurements reported
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in Fig. 4.8 show that dry collision occurs at Stokes numbers, Std > 1000 where lubrication
forces become negligible compared to the particle inertia. At low Stokes numbers Std .
200, lubrication forces are dominant. For Std ∼ 10 lubrication effects prevent solid collision
with the wall and maintain the particle suspended above the wall.

Results with the local lubrication model (Fig. 4.8) are comparable to measurements
and have a strong correlation with the experiment at a low Stokes number.

4.1.5 Multiple rebounds.

In this section, the bouncing motion of a single particle colliding onto a wall is simu-
lated. This experiment is a common benchmark for confirming that lubrication and col-
lision model return realistic bouncing dynamics by comparing simulation results against
Gondret et al.[89] measurements. Furthermore, small differences in rebound velocity are
amplified after its temporal integration, and therefore more noticeable in the particle
trajectory[71].

The particle of diameter d is immersed in a domain [8d, 30d, 8d] and falls under its own
weight (g = 9.81m · s−1) onto a planar surface (Fig. 4.1). The domain is mapped using a
uniform Cartesian mesh with grid size ∆x = ∆y = ∆z = hd. Dry and wet collisions have
been simulated using the particle and fluid properties contained in Tab. 4.3 and 4.4. The
particle is dropped with an initial velocity close to the particle sedimentation velocity to
ease the convergence of the velocity to its terminal value before the particle impact the
wall.

Teflon Steel
Particle density ρp 2150 7800 kg ·m−3

Particle diameter d 6 3 mm
Normal restitution ξmax,n 0.80 0.97
Contact time τc 1 · 10−7 1 · 10−7 s
Particle roughness aεcol 2 2 µm
Initial position aεinit 28d 28d

Table 4.3: Particle properties.

Air RV10
Density ρ 1.2 935 kg ·m−3

Dynamic viscosity µ 1.85 · 10−5 10−2 Pa · s

Table 4.4: Fluid properties.

Figure 4.9 and 4.10 compare the evolution of the simulated particle vertical velocity
and position to Gondret et al.[89] measurements for dry and wet collisions, respectively.
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Simulations have been performed using a h = 1/30 grid resolution and with the LLCM.

Figure 4.9: Particle vertical velocity and position impacting a wall while emerged in the
air. Experimental measurements are provide by Gondret et al.[89]

Figure 4.10: Particle vertical velocity and position impacting a wall while emerged in
silicone oil (RV10). Experimental measurements are provide by Gondret et
al.[89]

Simulations results are comparable to experimental measurements. In both cases,
the simulated velocities and positions before the first impact do not perfectly fit the
measurements. These small differences are amplified at each rebound. However, the
errors remained limited for the first rebounds. The overall accuracy of the simulation
could be improved by using finer grids.
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4.2 Oblique impact of a particle on a wall.

To validate the tangential component of the lubrication force, the oblique impact of a
particle on a wall is the last case to validate our model. The same experimental set-up as
Joseph and Hunt[90], for oblique particle-wall collisions in the air and aqueous solutions,
has been used.

A single particle is immersed in a domain [19d, 5d, 3d] using a similar set-up as de-
scribed in Sec. 4.1. The fluid is initially at rest and the particle is dropped without initial
velocity as shown in Fig. 4.11. To reproduce the experiment of Joseph and Hunt[90] the
particle is linked to O by a virtual string of length L = 10 cm. The tension of the string
is a virtual force FT

i collinear to

e0 =
XO −Xi

‖XO −Xi‖

is added to the particle dynamic Eq. (2.18). The signed value of
(
FT
i · e0

)
is found such

that:
Ui · e0 = 0, ∀ ‖XO −Xi‖ ≥ L+ a. (4.5)

Figure 4.11: Sketch of the simulation domain and initial location of the particle. Inside
the dashed box, particle characteristic velocities and angles are displayed
before and after collision with the wall.

The pendulum is released from an angle ψ0 = 18◦ of its resting position ψcol in
contact with the wall (see Fig. 4.11). The gravity field g is oriented such that g =

−g (cos (ψcol) ex + sin (ψcol) ey) and g = 9.81 N · kg−1. Physical properties of the parti-
cle are presented in Tab. 4.5 and have been chosen according to Joseph and Hunt[90]
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experiments.

Glass Steel
Particle density ρp 2540 7780 kg ·m−3

Particle diameter d 0.0127 0.0127 m
Normal restitution ξmax,n 0.97 0.97
Tangent restitution ξmax,t 0.39 0.34
Contact time τc 1 · 10−7 1 · 10−7 s
Friction coefficient µc 0.10 0.11
Friction coefficient (wet) µc,wet 0.15 0.02
Particle roughness aεcol 2 · 10−3d 5 · 10−4d m

Table 4.5: Particle properties.

Numerical simulations using LLCM have shown that the parameter nlub, introduced
in the Sec. 3.3, has a limited impact on the results when nlub > 10.

Figure 4.12 shows a comparison between the normalized incidence Ψin = tan (ψin)

and rebound Ψout = tan (ψout) angles obtained from oblique collisions between steel and
glass spheres in the air or water. In practice, Ψin and Ψout have been assessed using the
following equations:

Ψin = −
VC,in · ex

VC,in · ey

,

Ψout =
VC,out · ex

VC,out · ey

,

(4.6)

with VC,in and VC,out the particle velocities at the contact point, VC = Ui − aΩi × ey,
just before and just after collision, respectively.

As highlighted by Joseph and Hunt[90], piezoviscous effects in wet collision modify
the coefficient of friction. Therefore, the modified (wet) friction coefficient (see Tab.
4.5) is considered when the particle is immersed in water. Numerical simulations have
been performed with h = 1/40 using Np = 3200 particle mesh elements. Lubrication
parameters have been chosen as εlub = 2 and nlub = 100.

Collisions of the particle immersed in the air are called dry collisions since the inter-
actions between the solid particle and the surrounding fluid are negligible. Simulations of
dry collisions have been performed (Fig. 4.12, top) to validate the collision model and to
assess the collision model accuracy with neglectable lubrication effects.

For wet collisions (Fig. 4.12 bottom), hydrodynamic effects are no longer negligible.
Therefore, the accuracy of the lubrication correction can be assessed. The overall numer-
ical simulations are in good agreement with the experimental data for the entire range of
incidence angles.

88



CHAPTER 4. NUM. SIM. SPHERES 4.2. OBL. IMP. OF A PART. ON A WALL

Figure 4.12: Comparison between the normalized incidence Ψin and rebound Ψout angles
of steel and glass particles in aqueous solution (a) and in the air (b). Results
of simulations are represented by filled dots and are compared to Joseph and
Hunt[90] experimental measurements (by circles).
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4.3 Two particles in a sheared flow.

The behavior of two particles suspended in a confined linear shear flow at finite
Reynolds number has been widely studied in the past two decades experimentally[91, 92]

and numerically[93, 58]. In this section, the accuracy of the particle-particle interaction is
investigated.

Figure 4.13: Sketch of the simulation domain and initial location of the particles.

Two identical particles are immersed in a domain [20d, 4d, 4d], with d = 2a the particle
diameter, uniformly meshed with cubic elements of size ∆x = ∆y = ∆z = hd (Fig. 4.13).
The channel width is denoted L = 4d. Periodic boundary conditions are considered on
the lateral faces of the domain. A no-slip boundary condition is imposed at the top and
bottom walls (y constant). The top and bottom wall are moving at the absolute velocity
Uwall in the opposite direction. The particle Reynolds number is given by

Red =
γ̇d2

ν

with γ̇ is the fluid shear rate and ν is the fluid kinematic viscosity. The particles are
neutrally buoyant. The particles and the fluid are initially at rest. In both sections
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below, the wall velocity Uwall is set such that the particle Reynolds number is Red = 0.75.

As exhibited by Yan et al.[93], the initial relative positions of both particles have an
influence on the particle trajectories. In this section, Yan’s test cases are simulated in
three-dimensions using spherical particles.

Both particles are placed initially at the same separation distance δx = 0.75L, but
symmetrically off-axis at different values of δy. Simulated trajectories of both particles
using the LLCM and h = 1/30 grid spacing are plotted on Fig. 4.14.

Figure 4.14: Particle trajectories in the (Oxy) plane with initial separations δy ∈
J0.015L, 0.035L, 0.05L, 0.105LK.

Figure 4.14 shows two kind of symmetrical trajectories. When δy . 2d, the particles
are initially carried by the fluid flow before being repelled from each other by lubrication
forces. At larger values of δy, the particles pass each other to find new equilibria on
the centerline in their respective upstream directions. The critical value δy = 2d which
distinguishes repelling and bypass trajectories is found to be independent of the Reynolds
number[93]. This δy is lower than the critical value (δy = 2.9d) found by Yan et al.. This
difference can be explained by the grid resolution used for this simulation (h = 1/30), and
due to resource limitations we were enabled to run finer resolutions. The optimal option
would be to measure experimentally this critical value and use it as reference.

The a priori under estimation of the critical value aside, the particle motions are
accurately simulated. No collisions occur on the bypass and repelling trajectories as
expected since Std = Red/9 < 10 (see Sec. 4.1.4).
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4.4 Shear thickening suspensions.

Particles in a Newtonian fluid raise the apparent dynamic viscosity ηr of the mixture
and also usually give rise to a shear-rate dependant rheology. At high particle volume
fractions φ, discontinuous shear-thickening (DST) can be observed (see Fig. 4.15) in
inertial non-Brownian suspensions as well as at finishing Reynolds number. The shear-
thickening is created by the formation of clusters of particles jamming the flow. At non-
negligible Reynolds number, shear-thickening can be explained by inertial effects[94, 95]

within the flow. However, standard models fail to simulate DST in the Stokes regime,
suggesting another physical effect (different from inertia) must be involved in the DST.

Figure 4.15: Shear rate γ̇ dependence of the relative viscosity ηr, for a volume fractions
0.45 ≤ φ ≤ 0.56 and N = 1000 particles in an unbounded sheared flow.
Illustration from Mari et al.[14].

Among the recent researches on the sources of DST, Mari et al.[14] have identified
the minimal set of physical ingredients needed to simulate DST. In particular, they have
shown the essential role of the mechanical friction in the DST phenomena and introduced
a time scale critical for a shear-rate dependent rheology.

Contrary to Brownian suspension, there is no others force scales, aside from the hy-
drodynamic forces, in non-Brownian suspensions in the Stokes regime. Therefore, an
additional force scale must be introduced to define the second time scale of the flow in-
dependently from the inverse shear rate. The minimal model proposed by Mari et al.[14],
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modifies the Coulomb’s law as follows:

‖Ft‖ ≤

{
µc (‖Fn‖ − FCL) for‖Fn‖ ≥ FCL,

0 otherwise,
(4.7)

with the same notations as in Sec. 2.3.2. The shear rate dependence is given by the ratio
γ̇/γ̇0, with γ̇0 ≡ FCL/6πµa

2, a is the radius of the particle, and FCL is the critical load
force (the additional force scale of the flow). Simulations using a Stokesian-Dynamics
like approach have shown the critical-load model above mimics the DST phenomena (Fig.
4.15). Similar results can also be obtained by introducing an electrostatic repulsion model
instead of the critical-load model. This approach is better on a physical point of view as
the DST is not modelled by the collision model which should in theory never be active in
the Stokes regime.

Due to limited computation resources, we were not able to simulate, with our frame-
work, a full range of γ̇/γ̇0 to capture the DST for a given volume fraction as Mari et
al. (Fig. 4.15). However, we have noticed a dependency of the apparent viscosity to the
channel width with a bounded flow.

Figure 4.16: Sketch of the simulation domain.

Simulations have been made with neutrally buoyant particles of diameter d emerged
in a [13/3d,H, 13/3d] domain, with H = 4d, 8d, or 16d is the channel width (see Fig.
4.16). Periodic boundary conditions are considered on the lateral faces of the domain. A
no-slip boundary condition is imposed at the top and bottom walls (y constant). The top
and bottom wall are moving at the absolute velocity Uwall in the opposite direction. The
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wall velocity Uwall is set such that the particle Reynolds number is

Red =
γ̇d2

ν
= 0.1.

The number of particles is chosen such that the particle volume fraction is φ ≈ 50% and
randomly placed in the domain. The particles and the fluid (water) are initially at rest.

The domain is uniformly meshed using ∆x = ∆y = ∆z = d/30 elements and each
particle is meshed using 800 elements. Simulations have been run with the LLCM and
the critical-load model describe above. The ratio γ̇/γ̇0 is set arbitrarily to 0.4, meaning
that γ̇0 = 2.5 · 10−3 as Red = 0.1. The apparent dynamic viscosity is given by

ηr =
σwall

µγ̇
,

with σwall is the average fluid stress acting on the top and bottom walls of the domain.
According to Mari et al., the apparent dynamic viscosity of the mixture at γ/γ0 = 0.4

is ηr ≈ 62 for an unbounded flow (Fig. 4.15). Apparent viscosity obtained for bounded
flows are contained in Tab. 4.6. The bounded viscosity tends to the unbounded viscosity
as the channel gets wider.

H N ηr

4d 72 9.5
8d 143 16.6
16d 287 29
∞ 1000 62

Table 4.6: Apparent dynamic viscosity ηr for φ = 50%..

With φ ≈ 50% andH = 4d, no DST is observed, and the flow behaves like a Newtonian
flow for γ/γ0 ranging from 10−2 to 1. This result can be a numerical artifact due to
the small length of the domain and few particles (N = 72). Further testing is required.
However, if the numerical simulations are accurate, the lack of DST could be explained by
the particle cluster structure in a confined channel such that frictions between particles are
minimized. Therefore, the critical-load is never reached, and the flow remains Newtonian.
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Chapter 5

Numerical simulations of ellipsoidal

particles

Contrarily to spherical particles, studies of the interactions between a single ellipsoid
and an obstacle are scarce. In this chapter, we propose a benchmark to validate lubrication
correction models for non-spherical particles.

After checking that the numerical method can accurately simulate the motion of an
isolated ellipsoid, lubrication corrections are tested with an experimental benchmark. The
impact of a prolate particle onto a wall aims to validate the combined use of the LLCM
and collision model.

5.1 Isolated particle in a sheared flow.

Before looking at lubrication correction, the numerical method described in Chap. 2
has been tested with an isolated spheroidal particle in a simple shear flow (Fig. 5.1).

The analytical solution for the angular velocity Ωz is given[96] in the inertialess regime
(Reeq = 0) by

Ωz = − γ̇

a2 + b2

(
b2 cos2(Θz) + a2 sin2(Θz)

)
, (5.1)

where γ̇ is the imposed shear rate, the semi axes a and b are the polar and the equatorial
radius of the spheroid (Fig. 2.2).

Simulations are performed with two spheroids with aspect ratios of AR = 2 and
AR = 1/3 in a plane Couette flow at Reynolds number

Reeq =
ργ̇D2

eq

µ
= 0.1,
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Figure 5.1: Sketch of the simulation domain and particle initial location.

where Deq is the particle equivalent diameter. The computational domain of size [10Deq]3

is mapped with an uniform Cartesian mesh. No-slip boundary conditions are assumed on
the particle and wall surfaces. Figure 5.2 shows that simulation results, obtained with
a grid spacing of ∆x = ∆y = ∆z = Deq/30, are in good agreement with the analytical
solutions Eq. (5.1). The particle tumbling period around the spanwise axis is given by

T =
2π

γ̇

(
AR +

1

AR

)
.

Figure 5.2: Evolution of the normalized rotation velocity Ωz of a prolate (red) and oblate
(blue) in a shear flow. Simulation results (dashed lines), using h = 1/30 grid
resolution, are compared to Jeffery et al. solutions[96].
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5.2 Falling particle onto a wall.

Faced with the lack of simple experiments of an ellipsoid in interaction with an obstacle
in the literature, we have made our own measurements with the support of Dr. Wim-Paul
Breugem, Dr. Christian Poelma and Wout Cornel from TU-Delft. In this first test case, a
single particle (prolate) is impacting a planar surface. First, the experimental procedure
used to track the dynamics of a single spheroidal particle is described. Records have then
used as references to assess the LLCM accuracy.

5.2.1 Experimental Measurements.

Experimental measurements have been made in two phases. First, the motion of the
particle has been recorded in a vertical plane using a single camera. From the observations
made during the first measurements, the set-up has been improved to record the particle
motion in three dimensions using mirrors.

5.2.1.1 Set-up and calibrations.

Experiments were performed in a 25×25×50 cm glass tank (see Fig. 5.3). The glass is
5 mm thick. Particles are 3D-printed using stereolithography (SLA) printing technology.
Particles are made of an opaque homogeneous resin of density 1220 ± 10 kg · m−3, and
printed1 with about 25 µm accuracy. The particle roughness hcol is assumed to be in the
same order of magnitude than the accuracy of the printer (hcol ∼ 25 µm).

A LaVision APX-RX 1Mpx high-speed camera, mounted with a Nikon 35 mm lens,
was used to record the motion of the falling particles. The particle motion was recorded
at 500 frames per second with a camera exposure of 1/500 and aperture equals to F/11.
Camera calibration has been made using a checkerboard pattern.

The particle is dropped using two fine nylon wires as shown in Fig. 5.4. The wires are
initially in tension and the particle is rested on top of them. The tension on the wires is
slowly decreased to release the particle with a limited influence (of the release mechanism)
on the fluid.

Preliminary measurements have shown that the prolate motion is mainly in the record-
ing plane. However, the particle trajectory is sensitive to the initial conditions and in some
cases, the particle slowly rotates along the vertical axis while settling (see Sec. 5.2.1.4).
Therefore, the experimental step-up has been improved to also record the particle motion
in a vertical plane orthogonal to the camera recording plane (see Fig. 5.5). The two
mirrors are placed at 45◦ toward the sides of the tank. The first mirror reflects the light

1Particle have been printed using Form 2 printer from Formlabs© using RS-F2-GPBK-04 black resin.

97



5.2. FALL. PART. ONTO A WALL CHAPTER 5. NUM. SIM. ELLIPSOIDS

Figure 5.3: The initial experimental set-up.

Figure 5.4: The release mechanism used during the experiments. The particle is resting
on the two wires before being released (in the picture to the right).

from the source into the side of the tank. The second mirror reflects the light passing
through the side of the tank back toward the camera. Hence, two orthogonal views can
be recorded using the single-camera available.

To better take into account the spatial distortions on the recorded frames the calibra-
tion has been made using a checkerboard pattern placed on each face of the tank and in
the middle of the tank as shown Fig. 5.6. From the recording of these six positions of the
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Figure 5.5: View on the top of the camera of the improved experimental set-up. Examples
of direct and indirect light paths to the camera are represented by the dashed
lines. For all measurements, the distance of the camera to the tank was
dCT = 59cm.

checkerboard pattern, a linear map of the tank can be generated and used to translate
pixel values to metric distances at the particle location. Hence, the optical distortion is
better taken into account that if the calibration is only based on two checkerboard pat-
terns placed in the middle of the tank. This calibration process has been made for each
fluid, as their optical properties might be different.
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Figure 5.6: Example of a recorded checkerboard pattern place in the middle of the tank.
The three dashed lines are orthogonal to each other.

5.2.1.2 Post-treatment.

Particle locations and velocities are obtained from recorded measurements in two steps.
First, each recorded frame is processed to locate the particle. Secondly, raw data from the
image processing step are processed to reduce noise and to compute the particle velocities.

The position of the ellipsoid mass center placed thereon is found, on every recorded
frame, throughout the following procedure (see Fig. 5.7):

1. Convert RGB image to gray-scale and mask the surrounding.

2. Thresholding: mask pixels which have a value above the threshold value.

3. Find particle outline, defined by its center position and two radii (polar and equa-
torial radius), using Elliptical Hough Transform[97].
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Figure 5.7: Procedure to find the outline of a spheroidal particle on a raw image (a).

The particle location and radii found based on the particle outline are given with
sub-pixel accuracy, and the radii were found to be in agreement with the measured size
of the particle. The procedure described above is applied to every recorded frame of each
measurement.

After the image processing of every recorded frame, the particle mass center and
the particle orientation are measured in a two-dimension plane of motion (Oxy). The
noise of the raw data has been reduced using the moving average method (Fig. 5.8 -a).
Transnational and rotation velocities in the plane (Oxy) are computed from the smoothed
trajectory using the central difference scheme. To reduce the noise, the moving average
method was also applied to the velocities (Fig. 5.8 -b).

Figure 5.8: Evolution of the vertical position (a) and velocity (b) of a prolate particle
colliding with a wall. Raw data from the image processing are smoothed
using moving average method.
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5.2.1.3 Measurements of the particle properties.

Collision properties of the particle are directly linked to the particle and wall materials.
For the sack of simplicity collision parameters have been measured using a spherical
particle. Experiments have been carried on both in air (dry collision) and water (wet-
collision). During each recording, the temperature of the fluid has been monitored. The
air temperature was 23◦C for all dry collisions, and the water temperature was 16◦C for
wet collisions.

The normal coefficient of restitution ξmax,n of the resin particle has been measured
with a 3D-printed sphere of 1cm diameter. The particle has been dropped such that the
particle incoming velocity was smaller than 1m ·s−1 to avoid velocity dependency of ξmax,n

due to plastic deformation[89] (see Fig. 5.9). The average coefficient of restitution for five
collisions is ξmax,n = 0.899± 0.013.

Figure 5.9: Evolution of the vertical velocity of a 1cm particle colliding with a wall (in
air).

The tangential coefficient of restitution ξmax,t can be assessed the same way than for the
normal coefficient of restitution. In this case, the particle is impacting on an oblique wall.
The measurements need to be done at several wall inclinations to identify the inclination
belonging to the stick regime (where the coefficient can be properly evaluated). These
measurements have not been made due to limited time and access to the TU-Delft lab.
Therefore, only the normal component of the collision force will be considered in all
simulations using ellipsoid particles and tangential deformations are assumed elastic (i.e.
ξmax,t = 1).
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5.2.1.4 Observations.

Mesurements have been made with a same prolate emerged in 30cm filtered water
(every particle larger than 25µm are removed from the water) or glycerin. Two mass
factions of glycerol has been considered: 25% and 50% (target values). Fluid properties
are contained in Tab. 5.1. Particle Galileo number

Ga =

√
ρp − ρ
ρ

gD3
eq

ν2
,

which scales the gravity force to the viscous forces acting on the particle, decreases when
the glycerol concentration increases. Therefore, the most stable particle trajectory are
obtained at the highest concentrated glycerin.

Temperature (◦C) ρ (kg ·m−3) µ (mPa · s) Ga
Water 21.7± 0.1 998 0.9601 2172
Glycerin (25%) 24.3± 0.1 1060± 2 1.980± 0.059 801
Glycerin (50%) 23.1± 0.1 1112± 2 5.096± 0.065 413

Table 5.1: Density and dynamic viscosity of the fluids used for the experiments. The last
column contains the prolate Galileo number based on the particle equivalent
diameter.

As the mixing of glycerol and water could not be done perfectly, glycerin density and
dynamic viscosity have been measured in the lab. An Ostwald viscometer (also known as
U-tube viscometer) has been used to measure the kinematic viscosity of the glycerin. The
dynamic viscosity is then directly calculated from the measured fluid density. Viscosity
values contained in Tab. 5.1 are the average viscosities measured on three samples of
both glycerin mixtures at the same temperature (which also was the glycerin temperature
during the recording of the particle trajectories). Based on Tab. 5.1 and tabulated
measurements[98], true glycerol mass concentrations are estimated a posteriori at ∼ 26%

and ∼ 47% instead of the targeted concentrations 25% and 50%.

For each fluid, the particle trajectory has been recorded for five drops. A higher
instability of the particle trajectory has been observed at large Galileo number (water and
25% glycerin). For instance, in water, two trajectories out of five are mainly contained in
the camera recording plane. In the three other cases, the particle slightly rotates along the
vertical axis (Ωy 6= 0) as shown in Fig. 5.10. In addition, a translation of the particle along
the Oz direction can be observed in some cases. This could be due to the Magnus effect
generated by a rotation of the particle along its main axis (Ω′x 6= 0) initiated by the release
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mechanism. However, these rotations cannot be measured without markers on the particle
surface. Placing markers requires to accurately measure the particle roughness to assess
the paint influence on the surface, which we could not carry out. Similar behaviors are
observed with 25% glycerin. However, all five recording using 50% glycerin show a stable
trajectory of the particle as shown in Fig. 5.11. Therefore, these latter measurements
would be mainly used to validate the LLCM as the experience has been successfully
replicated several times.

Replicable experiments at high Galileo number (Ga & 500) might be possible with
more sophisticated release mechanisms. However, instabilities are expected above a criti-
cal Galileo number as for it is the case with spherical particle[76].

Figure 5.10: Trajectory of the prolate drops in water. Frames are superposed at a constant
0.2s time interval.
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Figure 5.11: Trajectory of the prolate drops in glycerin (50%). Frames are superposed at
a constant 0.2s time interval.

5.2.2 Comparison with numerical simulations.

Numerical simulations have been performed on a [10Deq, 23Deq, 10Deq] domain (Fig.
5.12), with Deq the equivalent diameter of the particle. Non-slip boundary conditions
are assumed on the top and bottom of the domain while periodic conditions are assumed
on the other faces. The domain is uniformly mesh with ∆x = ∆y = ∆z = Deq/20

grid elements. The particle surface is mapped using 12800 elements. The simulation
configurations are reminded in Tab. 5.2.

Particle aspect ratio AR 2
Particle dimension a× b× c 1× 0.5× 0.5 cm
Particle equivalent diameter Deq 1.26 cm
Normal restitution ξmax,n 0.699
Contact time τc 1.0 · 10−5 s
Particle roughness hcol 25 µm
Gravity field g 9.81 N · kg−1

Initial position dinit 25.61 cm

Table 5.2: Simulation configurations.

The particle type (prolate) and initial position-orientation have been chosen such that
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Figure 5.12: Sketch of the domain used for the numerical simulations.

the particle trajectory remains in the vertical plane, orthogonal to ez (i.e. the camera
recording plane). The particle is dropped close to the wall and Θz ≈ 0. To initialize
the simulations, the particle linear and rotational velocities in the plane orthogonal to
z-direction (Ux, Uy, and Ωz) are linearly interpolated in time from the recorded velocities.
The other velocities are not constrained but computed by the simulations.

Figure 5.13 shows the reproduction of the prolate trajectory in 50% glycerin using the
LLCM or the CLM and compared to the experimental recording. The first 2.6s of the
experimental recording are used for the initialization. Impact Stokes number is estimated
from the recorded trajectory at

StDeq =
ρpUTDeq

9µ
∼ 30,

with UT the impact velocity of the particle. The camera resolution is not high enough to
properly recorded the collision and potential rebound. However, the mechanical collision
is more clearly visible on the evolution of the particle vertical velocity (Fig. 5.14).
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Figure 5.13: Evolution of the prolate vertical position around the first impact with the
wall. The particle is immersed in 50% glycerin mixture. Lubrication correc-
tions are applied only on position below the horizontal green dashed line.

Simulated velocities artificially increase after the initialization phase (t . 2.94s) and
before the impact. Simulations on a smaller domain and higher grid resolution (h = 1/50

instead of h = 1/20) seem indicate this acceleration of the particle is due to unresolved
fluid interactions with the particle. A posteriori estimation of the particle Reynolds
number ReDeq ≈ 250 indicates the grid resolution should at least be h > 1/70 to properly
resolved the flow, which could not be done due to computational limitations.

Furthermore, the particle remains stuck to the wall after the first contact and the
contact is never broken. Hence no rebounce is observed which indicates a poor modelling
of the collision dynamics by the collision model or numerical problems linked to the
collision.

As in Sec. 4.1, The relative errors L2 and L∞ of the particle position Xi obtained by a
simulation compared to the experimental particle position Xexp are denoted respectively
E2(Xi) = ‖Xexp−Xi‖2 and E∞(Xi) = ‖Xexp−Xi‖∞. Due to unsatisfactory performance
of the collision model, only the dates before t ≈ 3.05s (when the particle impact the
wall with LLCM) are considered to compute the following errors. With the LLCM,
the errors on the positions are E2(Xi) = 2.7mm and E∞(Xi) = 4.4mm, compared to
E2(Xi) = 3.6mm and E∞(Xi) = 5.7mm with the CLM. Hence, the LLCM reproduces
more accurately the particle trajectory than the CLM. Furthermore, CLM overestimates
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Figure 5.14: Evolution of the prolate vertical velocity around the first impact with the
wall. The particle is immersed in 50% glycerin mixture. The simulated
velocities in the gray area (t . 2.94s corresponding to the initialization
phase) are still directly interpolated from the recorded velocities.

the lubrication force as no collisions are observed.
Figure 5.15 shows the reproduction of the prolate trajectory in 25% glycerin using the

LLCM or the CLM and compared to the experimental recording. Particle velocities are
interpolated from recorded data until the particle enters the lubrication area (i.e. the gap
between the particle and the wall is smaller than 2∆y). Impact Stokes number StDeq ∼
125 is larger than with 50% glycerin and the particle rebounds are clearly visible on
recorded trajectories. As discuss in Sec. 5.2.1.4, the experiment has not been successfully
reproduced experimentally. Therefore, we will not quantitatively compare the simulated
and recorded trajectories. However, no collisions are observed in the simulated trajectory
using CLM contrary to simulation using LLCM. This observation emphasizes that CLM
overestimates lubrication force (as with 50% glycerin). While incoming particle velocities
and orientations are identical in both simulations, the recorded orientation before impact
is different to the simulated orientation (the recorded angle Θexp

z ∼ 2.7◦ is wider than
the simulated angle Θsimu

z ∼ −0.8◦, for instance). This can explain the smaller rebound
obtained with LLCM compared to the recorded ones.
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Figure 5.15: Evolution of the prolate vertical position around the first impact with the
wall. The particle is immersed in 25% glycerin mixture.
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Conclusion

This thesis study was focused on modeling short-range hydrodynamic interactions,
also called lubrication, between rigid particles suspended in a viscous Newtonian fluid.
As the main result of this work, a local lubrication model based on the lubrication theory
has been developed to correct convex particle hydrodynamics.

When a particle gets close to an obstacle, the flows around the particle is modified by
the presence of this obstacle. The compression and shearing of the fluid in the gap between
the particle and the obstacle raise the hydrodynamic forces acting on both solid surfaces.
This augmentation is caused by lubrication forces acting in the opposite direction than
the relative motion of bodies. The dominant component of the lubrication forces diverges
when the gap width ε vanishes as ε−1 along the fluid compression direction. Lubrication
effects are essential in the suspension phenomena and challenging to solve numerically due
to their singular behavior, and the time and spatial discretization intrinsic to numerical
methods. Extensive researches have been made in the past five decades to understand
and correct lubrication in particle-laden flows (Chap. 1). The most robust and cost-
effective approach introduces a model which corrects the lubrication forces in the flow
using force expressions from the lubrication theory. However, classical lubrication models
are rigorously limited to weakly-inertial suspension of spherical particles.

Suspension of perfectly spherical particles is, at best, rare in nature. Therefore, lubri-
cation models need to improve in order to cover a broader diversity of particle shapes. To
that end, we went back to the lubrication theory and developed a lubrication model com-
patible with any convex particle (Chap. 3). Instead of correcting the lubrication forces
on the whole particle surfaces, poorly resolved hydrodynamics acting on a neighborhood
of the contact points (lubrication areas) are substituted by analytical solutions from the
lubrication theory. Hence, local corrections enable the simulation of non-spherical parti-
cles and reduce the total hydrodynamics dependency from the lubrication model. Indeed,
only the hydrodynamic forces in the lubrication areas are constrained to match analytical
solutions found in the Stokes regime, while they are computed from a moderate Reynolds
flow everywhere else. For classical lubrication models, the total hydrodynamic forces are
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modified such that they match the analytical solutions found in the Stokes regime when
particles are close to each other even at non-vanishing Reynolds number.

In order to validate the local lubrication correction model (LLCM), a partitioned
fluid-particle solver has been developed (Chap. 2). The fluid flow, modeled by the incom-
pressible Navier-Stokes equations, is solved using the volume penalization method (VP),
while the particle dynamics is solved by a discrete element method (DEM). The two-way
coupling between the DEM and VP is made in two steps during an iteration. First, the
hydrodynamic forces are computed via the interpolation of the fluid stress on the particle
surfaces. Subsequently, the particle dynamics is fed back to the fluid solver by the pe-
nalization of the particle solid velocities on domain grid used to solve the Navier-Stokes
equations. The LLCM is computed during the evaluation of the particle hydrodynamics.
On particles in close interaction, unresolved hydrodynamic forces are approximated by
solutions found in the lubrication theory. Corrections are made in a pair-wise fashion.
Therefore, many-body interactions are not corrected but partially resolved by the solver
on particle surface elements outside lubrication areas.

The LLCM has been first validated using spherical particles (Chap. 4). From the
experimental measurements of Harada et al.[83], the suspension of a single particle above
a wall has been successfully simulated. Comparison with an existing lubrication model[71]

has shown the LLCM is as accurate as lubrication models specifically designed for spherical
particles. A large range of incoming particle Stokes number has also been simulated to
validate the combined corrections of the LLCM and the soft-sphere collision model[71]

made on the particle dynamics. Particle rebounds are accurately reproduced when the
particle impact wall with a normal[87] or inclined[90] angles. However, the LLCM comes
with an average 10% additional cost, reducing the model relevance for mono-disperse
suspension of spherical particles compared to existing models.

Even if the LLCM is slow with spherical particles, it was initially designed for sus-
pensions of more complex particles. Experimental study of interacting particles is more
challenging for non-spherical particles than spherical ones. Consequently, experimen-
tal studies of these suspensions are at this day still scarce. To assess the accuracy of the
LLCM, we carried out preliminary experimental measurements. The trajectory of a single
ellipsoid impacting a wall has been measured in water and glycerin mixtures. Preliminary
results have highlighted the numerical and experimental challenges to accurately record
or simulate the particle path. Comparisons between simulated and recorded trajectories
have shown the LLCM more accurately reproduces the particle dynamics, while CLM
overestimates the lubrication forces.

The benchmark proposed for this thesis are a preliminary work to validate the LLCM.
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A proper validation would require to precisely track the particle positions-orientations in
the three dimensions. Measurements on this upgraded experimental set-up must also cover
a large range of particle aspect ratio, impact Stokes numbers, and particle orientation at
the impact. The main challenge of the suspension of non-spherical particles remains in
establishing a minimal set of accurate experimental benchmarks which would be used
to validate the numerical methods already available. Until that day, lubrication models
can also be validated on some specific suspension where proper DNS simulations can be
performed and used as references. The LLCM will be validate numerically another study
following this thesis.

This work opens several perspectives.
The first obvious benefit of a lubrication model adapted to non-spherical particles is

to simulate natural particle-laden flows, such as sediment transport, with a more realistic
representation of the particle shapes. For instance, studies of ellipsoids in a sheared
flow as shown that particles tend to orientate themselves along preferential directions[99].
Therefore, ellipsoidal suspensions could give rise to different viscosity or flow behaviors
than what can be observed with spherical particles.

As long as the particle surface stays convex around the contact points, lubrication
corrections from the LLCM remained accurate. Therefore, the LLCM can be a reliable
model for deformable spherical particles such as droplet or bubbles, despite its higher
computational cost compared to existing models.

Many similar lubrication models have been developed in the past two decades improv-
ing constantly the simulation accuracy. In hindsight, the question of how far should the
compromise between accuracy and cost go becomes relevant. Highly accurate simulations
could make sense in research applications where simulations are used to understand the
underlying physics. However, their high costs make these simulations unrealistic for in-
dustrial applications, even with modern improvements in computational sciences. It is
also not clear how costly, relatively to each other, the different methods (Chap. 1) are
to simulate a given benchmark at a given accuracy. After decades of researches on nu-
merical methods for suspensions, a critical review of the models which have already been
developed would be as relevant as investing in yet another lubrication model.
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