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Titre Décompositions de graphes voisins-distinguantes

Résumé Pour un entier positif k, une k-arête-pondération ω d’un graphe G est une ap-
plication deE(G) vers l’ensemble {1, . . . , k}. L’application ω est voisins-somme-distinguante
(vsd en abrégé) si la coloration σω des sommets de G induite par ω et définie par
σω(v) =

∑
e∈E(G),e3v

ω(e), est une coloration propre. Le plus petit entier k, noté χe
Σ(G),

tel que G admet un k-arête-pondération vsd est l’indice voisins-somme-distinguant de
G. Comme les extrémités d’une arête isolée ne peuvent pas être distinguées par leurs
sommes, les pondérations vsd sont considérées uniquement pour les graphes sans arêtes
isolées, appelés bons graphes. Avec cette notation, la célèbre 1-2-3 Conjecture peut être
formulée comme suit:

1-2-3 Conjecture ([KLT04]). Pour tout bon graphe G, χe
Σ(G) ≤ 3.

Notons que si cette conjecture est vraie alors le résultat est optimal car il existe des
graphes qui n’admettent pas de 2-arête-pondération voisins-somme-distinguante comme
les graphes complets et les cycles de taille non divisible par 4. En 2010 Kalkowski, Ka-
roński et Pfender [KKP10] ont montré que tout bon graphe admet une 5-arête-pondération
vsd. Mais avant ce résultat, le meilleur connu à ce jour, plusieurs autres auteurs ont trav-
aillé sur la 1-2-3 Conjecture (voir [ABDM+07], [ABDR08] et [WY08]). En 2011, Dudek
et Wajc [DW11] ont prouvé que le problème de décider si un graphe admet une 2-arête-
pondération vsd est NP-Complet. Cependant, Thomassen, Wu et Zhang [TWZ16] ont
montré que le problème est polynomial si on se restreint aux graphes bipartis.

Notons que si un graphe est localement irrégulier, c’est-à-dire qu’il ne contient pas de
sommets adjacents de même degré, alors le graphe admet une 1-arête-pondération vsd.
De plus, une pondération des arêtes d’un graphe avec des entiers strictement positifs
est équivalente, du point de vue des degrés pondérés, à la duplication des arêtes de
ce graphe. On peut donc voir une arête-pondération voisins-somme-distinguante d’un
graphe G comme la duplication de certaines de ses arêtes pour le transformer en un
mutli-graphe localement irrégulier. Notant cela, Baudon, Bensmail, Przybyło et Woźniak
introduisent dans [BBPW15] les décompositions localement irrégulières des graphes, à
savoir, des partitions des arêtes d’un graphe telles que chaque partie induisent un sous-
graphe localement irrégulier. Cependant, comme pour les arête-pondérations vsd, tous les
graphes n’admettent pas une décomposition localement irrégulière, il existe des exceptions
caractérisées dans le même article. Les graphes qui ne sont pas des exceptions sont
décomposables. Les auteurs ont ainsi proposé la conjecture suivante :

Conjecture 1 ([BBPW15]). Tout graphe décomposable admet une décomposition locale-
ment irrégulière en au plus trois parties.

Toujours dans l’objectif de résoudre la 1-2-3 Conjecture, Przybyło et Woźniak [PW10]
ont introduit les pondérations totales vsd des graphes, qui en plus d’attribuer des poids
aux arêtes d’un graphe attribuent aussi des poids aux sommets, la couleur induite d’un
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sommet étant la somme de son propre poids et de celui des arêtes qui lui sont incidentes.
Przybyło et Woźniak ont conjecturé que tout graphe admet une 2-pondération totale vsd.
Le meilleur résultat connu à ce jour sur ce problème est dû à Kalkowski [Kal10], qui a
prouvé que tout graphe admet une pondération totale vsd avec les poids 1 et 2 sur les
sommets et les poids 1, 2 et 3 sur les arêtes.

Dans cette thèse nous explorons plusieurs variantes des pondérations vsd ainsi que leur
lien avec les décompositions localement irrégulières. La thèse est organisée en six chapitres,
chaque chapitre présente les résultats obtenus sur une variante différente, résultats qui
ont fait l’objet, pour chaque chapitre, d’une publication en journal ou en conférence
internationale. De plus chaque chapitre possédant une conclusion propre, il n’y a pas de
chapitre de conclusion pour cette thèse.

Pondérations vsd équitables Pour un entier positif k, une k-arête-pondération ou une
k-pondération totale d’un graphe G est équitable si tous les poids de l’ensemble {1, . . . , k}
sont utilisés le même nombre de fois (à l’unité près). Le plus petit entier k, tel que G
admet une k-arête-pondération (resp. k-pondération totale) vsd équitable est noté χe

Σ(G)

(resp. χt
Σ(G)). Nous explorons, dans le chapitre 2, la valeur de χe

Σ pour les graphes
complets, les graphes bipartis complets, les forêts et plusieurs autres familles de graphes
peu denses comme les cycles ou les Θ-graphes. L’objectif est de trouver des familles de
graphes pour lesquelles χe

Σ > χe
Σ. Néanmoins, à part quelques graphes de petite taille, à

savoir K3,3, K4 et trois graphes bipartis cubiques sur 10 et 14 sommets, nous n’avons pas
d’exemple de familles infinies de tels graphes. De plus, parmi ces graphes, seul K4 requiert
au moins quatre couleurs pour une arête-pondération vsd équitable. Malgré ces résultats,
nous nous abstenons de conjecturer que χe

Σ(G) ≤ 3 pour tout bon graphe connexe différent
de K4. Nous pensons qu’il faudrait explorer plus de familles de graphes avant de pouvoir
énoncer une telle conjecture. De plus, la meilleure borne supérieure générale que nous
avons pour χe

Σ est de l’ordre de 2 · |E(G)| pour tout bon graphe G, nous n’avons donc
pas réussi à exhiber une borne constante. Les résultats montrant cette borne supérieure
sont introduits lors de l’étude d’un cas particulier des pondérations équitables dans le
chapitre 3.

La seconde partie de notre travail sur les pondérations équitables consiste en l’étude
de χt

Σ pour différentes familles de graphes, à savoir les graphes complets et les graphes
bipartis.

Arête-pondérations injectives Les arête-pondérations équitables les plus simples
sont les arête-pondérations injectives, à savoir des arête-pondérations où les arêtes se
voient attribuées des poids distincts. Nous nous sommes donc intéressé à ces pondéra-
tions afin de mieux comprendre les pondérations équitables. De plus, dans le cas optimal,
à savoir quand on utilise exactement les poids dans {1, . . . , |E(G)|} pour pondérer les
arêtes d’un graphe, les arête-pondérations injectives sont une version locale des étiquetages
anti-magiques [HR90]. Nous présentons dans le chapitre 3 les résultats obtenus sur les
pondérations injectives, notamment des bornes supérieures générales sur le poids max-
imum nécessaire dans une telle pondération, de la forme |E(G)| + 2∆(G) et 2 · |E(G)|,
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ainsi que des bornes supérieures de la forme |E(G)| + c ou c est une petite constante,
pour les graphes 2-dégénérés et les graphes de degré moyen maximum au plus 3. Nous
proposons aussi une variante locale de la conjecture de l’étiquetage anti-magique [HR90]:

Conjecture 2. Tout bon graphe G admet une arête-pondération injective avec les poids
{1, . . . , |E(G)|}.

Cette conjecture a été prouvée plus tard par Haslegrave dans [Has17].

Décompositions localement irrégulières Un graphe G est localement irrégulier si
tous les sommets voisins de G ont des degrés différents. Il est facile de voir qu’un
graphe localement irrégulier admet une 1-arête-pondération vsd. Toujours dans l’objectif
d’étudier la 1-2-3 Conjecture, nous nous intéressons à la décomposition localement ir-
régulière des graphes, i.e., une partition des arêtes d’un graphe telle que chaque partie in-
duise un sous-graphe localement irrégulier. Pour un graphe décomposableG, on s’intéresse
au plus petit nombre de parties dans une décomposition localement irrégulière de G. Dans
le chapitre 6, nous étudions ce paramètre, ainsi que deux autres variantes, pour les graphes
subcubiques.

Autres variantes Deux autres variantes des pondérations vsd sont considérées dans
les chapitres 4 et 5. La première requiert que les sommets voisins d’un graphe soient
non seulement distingués par la somme des poids de leurs arêtes incidentes, mais que ces
sommes diffèrent d’au moins 2. Une arête pondération permettant une telle distinction
est voisins-somme-2-distinguante (vs2d en abrégé). Le plus petit entier k tel qu’un bon
graphe G admette une k-arête pondération vs2d est noté χe

Σ>1(G). Nous pouvons dès
à présent remarquer que multiplier par 2 les poids utilisés dans une arête-pondération
vsd d’un graphe donne une arête-pondération vs2d de ce graphe, ce qui montre que
χe

Σ>1(G) ≤ 2 · χe
Σ(G), pour tout bon graphe G. Nous montrons que le problème de

déterminer la valeur de χe
Σ>1 est NP-complet en général, même en se restreignant aux

graphes bipartis, ce qui contraste avec le fait que le problème de déterminer la valeur
de χe

Σ est polynomial pour les graphes bipartis. Cependant nous montrons que notre
problème est polynomial sur les arbres. De plus en analysant les résultats obtenus sur
quelques familles de graphes et les liens entre les pondérations vsd et vs2d, nous proposons
la conjecture suivante :

Conjecture 3. Tout bon graphe admet une arête-pondération vs2d avec les poids 1, 3
et 5.

La deuxième variante étudiée est une version jeu des pondérations vsd, à savoir, un jeu
à deux joueurs, Alice et Bob, qui jouent alternativement sur un graphe G, en pondérant
une arête non-pondérée de G à chaque tour. Le jeu se termine quand toutes les arêtes
sont pondérées. Alice gagne si à la fin du jeu la pondération obtenue est vsd, sinon Bob
gagne. Nous déterminons dans le chapitre 5 quelques conditions suffisantes sur le graphe
G, pour que Alice ou Bob gagnent le jeu, ainsi que l’issue du jeu sur quelques familles de
graphes.
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Une décomposition générale Au chapitre 7, nous introduisons une nouvelle décom-
position généralisant les pondérations vsd et les décompositions localement irrégulières,
l’idée étant d’attribuer à chaque arête d’un graphe G, une couleur et un poids. Ainsi
pour chaque sommet, nous pouvons calculer plusieurs sommes « colorées ». Selon les
critères de distinction que nous choisissons, ainsi que le nombre de couleurs et de poids
que l’on permet, nous pouvons couvrir soit les arête-pondérations vsd ou les décompos-
itions localement irrégulières. Par exemple, nous définissons une coloration forte par
multi-somme comme la variante pour laquelle deux sommets voisins doivent avoir des
sommes colorées différentes pour chacune des couleurs présentes sur les arêtes qui leur
sont incidentes, et coloration standard par multi-somme comme celle où il suffit que les
sommets voisins différent par la somme de la couleur attribuée à l’arête qui les relie. Si
un graphe admet une telle coloration avec ` couleurs et k poids sur les arêtes, alors il est
fortement (`, k)-colorable ou (`, k)-standard-colorable. La 1-2-3 Conjecture est ainsi équi-
valente à l’existence d’une (1, 3)-coloration forte par multi-somme pour tout bon graphe.
Par contre, si nous permettons l’utilisation de deux couleurs à la place d’une, nous obten-
ons une version plus faible de la 1-2-3 Conjecture. De la même manière la Conjecture 1
est équivalente à l’existence d’une (3, 1)-coloration standard par multi-somme pour tout
graphe décomposable. Encore une fois, si on permet l’utilisation de deux poids à la
place d’un, nous obtenons une version plus faible. Ceci nous a encouragé à formuler la
conjecture suivante en tant que fil directeur de notre travail :

Conjecture 4. Tout bon graphe sans triangle isolé est fortement (2, 2)-colorable.

Dans le chapitre 7 nous présentons les résultats obtenus sur cette conjecture et ses
variantes pour différentes familles de graphes.

Mots-clés 1-2-3 Conjecture, décompositions de graphes, arête-pondérations voisins-
somme-distinguantes, pondérations totales voisins-somme-distinguantes, décompositions
localement irrégulières, étiquetage anti-magique, pondérations équitables.

Laboratoire d’accueil Laboratoire Bordelais de Recherche en Informatique, UMR5800,
F-33400 Talence, France
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Title Neighbour-distinguishing decompositions of graphs

Abstract In this thesis we explore graph decompositions under different constraints.
The title of the present thesis is due to the fact that most of these decompositions are
neighbour-distinguishing. That is, we can extract from each such decomposition a proper
vertex colouring. Moreover, most of the considered decompositions are edge partitions,
and therefore can be seen as edge-colourings.

The main question presented in this thesis was introduced by Karoński, Łuczak and
Thomason in [KLT04]: Can we weight the edges of a graph G, with weights 1, 2, and 3,
such that any two of adjacent vertices of G are distinguished by the sum of their incident
weights ? This question later becomes the famous 1-2-3 Conjecture.

In this thesis we explore several variants of the 1-2-3 Conjecture, and their links with
locally irregular decompositions. We are interested in both optimisation results and al-
gorithmic problems. We first introduce an equitable version of the neighbour-sum-distin-
guishing edge-weightings, that is a variant where we require every edge weight to be used
the same number of times up to a difference of 1. Then we explore an injective vari-
ant where each edge is assigned a different weight, which yields necessarily an equitable
weighting. This gives us first general upper bounds on the equitable version. Moreover,
the injective variant is also a local version of the well-known antimagic labelling. After
that we explore how neighbour-sum-distinguishing weightings behave if we require sums
of neighbouring vertices to differ by at least 2. Namely, we present results on the smal-
lest maximal weight needed to construct such weightings for some classes of graphs, and
study some algorithmic aspects of this problem. Due to the links between neighbour-
sum-distinguishing edge weightings and locally irregular decompositions, we also explore
the locally irregular index of subcubic graphs, along with other variants of the locally
irregular decomposition problem. Finally, we present a more general work toward a gen-
eral theory unifying neighbour-sum-distinguishing edge-weightings and locally irregular
decompositions. We also present a 2-player game version of neighbour-sum-distinguishing
edge-weightings and exhibit sufficient conditions for each player to win the game.

Keywords 1-2-3 Conjecture, neighbour-sum-distinguishing edge weighting, neighbour-
sum-distinguishing edge weighting total weighting, locally irregular decomposition, equit-
able weightings, antimagic labelling.

Host research institution Laboratoire Bordelais de Recherche en Informatique, UMR5800,
F-33400 Talence, France
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Introduction

In this thesis I present the work accomplished and the results obtained during my PhD
years between 2015 and 2018 at the University of Bordeaux, under the supervision of
Associate Professor Olivier BAUDON and Professor Éric SOPENA. It is dedicated to the
study of graph decompositions that are neighbour distinguishing. The main motivation
is the famous 1-2-3 Conjecture and its variants. In this introduction we present the
notions we worked on during the last three years. More detailed definitions are gathered
in Chapter 1.

For a positive integer k, a k-edge-weighting ω of a graph G is a mapping from E(G) to
the set {1, . . . , k}. If the induced vertex sum colouring σω, defined, for every vertex v of G,
by σω(v) =

∑
e∈E(G),e3v

ω(e), is a proper colouring, then ω is a neighbour-sum-distinguishing

(or nsd for short) edge-weighting of G. The smallest integer k, such that G admits an
nsd k-edge-weighting is the neighbour-sum-distinguishing index of G denoted by χe

Σ(G).
Note that the ends of an isolated edge cannot be sum-distinguished. Therefore nsd edge
weightings are considered only for graphs with no isolated edges. Such graphs are called
nice graphs. With this notation the 1-2-3 Conjecture can be formulated as follows:

1-2-3 Conjecture ([KLT04]). For every nice graph G, χe
Σ(G) ≤ 3.

Note that a graph G with χe
Σ(G) = 1 cannot have adjacent vertices with the same

degree, such graphs are locally irregular. As assigning positive weights to the edges of a
graph is equivalent to duplicating these edges from the perspective of weighted degree,
another way to see nsd edge-weightings is to ask, for a graph G, how many copies of each
edge of G must be added to G in order to turn it into a locally irregular multigraph. This
motivated Baudon, Bensmail, Przybyło and Woźniak to introduce, in [BBPW15], the
locally irregular decompositions, that is, partitions of the edges of a graph into sets, each
inducing a locally irregular graph. As for nsd edge-weighting, not every graph admits such
a decomposition: there exist exceptions, fully characterised in the same paper. Graphs
that are not exceptions are decomposable. Moreover, the authors stated the following
conjecture:

Conjecture 5 ([BBPW15]). Every decomposable graph G can be decomposed into at most
three locally irregular subgraphs.

In this thesis, we explore several variants of the 1-2-3 Conjecture, and their links with
locally irregular decompositions. Each chapter presents work published in international
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journals or conferences. Moreover, since each chapter has its own conclusion, no general
conclusion was added at the end of this thesis.

Equitable neighbour-sum-distinguishing weightings

For a positive integer k, a k-edge-weighting or total k-weighting of a graph G is equitable
if every weight in {1, . . . , k} is used on the same number of elements (up to a difference
of 1). The smallest integer k, such that G admits an nsd k-edge-weighting (resp. total
k-weighting) is denoted by χe

Σ(G) (resp. χt
Σ(G)). We explore the value of χe

Σ for complete
graphs, complete bipartite graphs, forests and several families of sparse graphs (e.g. cycles
and Θ-graphs). The main goal is to find families of graphs for wich χe

Σ > χe
Σ. However,

except for some small graphs, namely K3,3, K4 and three cubic bipartite graphs on 10
and 14 vertices, we did not manage to come up with examples of such graphs. Moreover,
among the graphs we study, onlyK4 requires weights strictly greater than 3 in an equitable
nsd edge-weighting. While this could motivate us to conjecture that χe

Σ(G) ≤ 3 for every
connected nice graph different from K4, we prefer to wait for further results to propose
such a conjecture. Moreover, in the general case, except for an obvious exponential upper
bound of 2|E(G)|−1 obtained by assigning a distinct power of 2 to each edge, we did not
succeed to exhibit a small upper bound on χe

Σ in general, and we still do not know if it is
bounded. On the other hand, we also determine the value of χt

Σ for complete graphs and
bipartite graphs.

Injective neighbour-sum-distinguishing edge-weightings

An injective edge-weighting of a graph is an edge-weighting where all the edges get dis-
tinct weights. We get interested in injective nsd weightings for two main reasons. First,
every injective edge-weighting is an equitable one, hence, every upper bound obtained
on injective edge-weightings is also an upper bound on χe

Σ. Second, in the optimal case,
that is when we use weights in {1, . . . , |E(G)|} on the edges of a graph G, injective nsd
edge-weighting is a local variant of the antimagic labelling of graphs [HR90]. We denote
by χe,1

Σ (G), the smallest positive integer k such that G admits an injective nsd k-edge-
weighting. We prove that χe,1

Σ (G) = |E(G)| if G is a forest and exhibit two upper bounds
on χe,1

Σ , namely |E(G)|+ 2∆(G) and 2 · |E(G)| in general case. Moreover we prove upper
bounds of the form |E(G)|+ c for a small constant c in the cases of 2-degenerate graphs
and graphs with maximum average degree at most three. We also propose a local version
of the antimagic labelling conjecture [HR90]:

Conjecture 6. For every nice graph G, χe,1
Σ (G) = |E(G)|.

This conjecture was later proved by Haslegrave in [Has17].

Locally irregular decompositions of subcubic graphs

For a decomposable graph G, we denote by χ’irr(G), the smallest number of classes in a
locally irregular decomposition of G. Toward Conjecture 5, we study the value of χ’irr(G)
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Introduction

for subcubic graphs and prove the following theorem:

Theorem 7. For every decomposable subcubic graph G, χ’irr(G) ≤ 5. Moreover if
mad(G) < 12

5
, then χ’irr(G) ≤ 3.

We also study two relaxations of Conjecture 5. In the first one, we allow decomposi-
tion classes to induce a disjoint union of a locally irregular subgraph and a matching (a
set of independent edges). And in the second one, we generalize that by allowing each
decomposition class to induce a disjoint union of a locally irregular graph and a regular
graph. In both cases we completely determine the minimum number of classes in such
decompositions for subcubic graphs.

Other variants

We consider other variants of nsd edge-weightings. The first variant requires that the
induced sums on adjacent vertices differ by at least 2. Such a weighting is a neigh-
bour-sum-2-distinguishing (ns2d for short) edge-weighting, and the smallest integer k
such that a graph G admits an ns2d k-edge-weighting is denoted by χe

Σ>1(G). We prove
that the problem of determining the value of χe

Σ>1 is NP-complete in general, even when
restricted to planar bipartite 3-degenerate graphs. This contrasts with the fact that the
problem of determining χe

Σ(G) is polynomial if G is bipartite. However, the problem
becomes polynomial on trees. Moreover, following some observations on links with the
1-2-3 Conjecture, especially for bipartite graphs, we propose the following conjecture:

Conjecture 8. Every nice graph G admit an ns2d edge-weighting with the weights 1, 3
and 5, and thus, χe

Σ>1(G) ≤ 5.

We also study a game variant of nsd edge-weightings, that is a game with two players,
Alice and Bob, weighting alternately one edge of their choice at each turn, using positive
integers. Alice wins if the final weighting is nsd, otherwise Bob wins. We completely
determine the game issue on complete graphs and complete bipartite graphs, and define
several sufficient conditions for Alice or Bob to win the game.

A general decomposition theory

Finally we introduce a general theory of graph decomposition, generalising both nsd
edge-weighting and locally irregular decompositions. The idea is to assign a colour to
each edge together with a weight. This allows us to calculate for each vertex a tuple of
induced coloured sums. Formally, if `, k ≥ 1 are two integers, and G is a graph, then to
each edge e of G, we assign, via an edge-colouring ω, a pair (α, β), where α ∈ {1, . . . , `}
and β ∈ {1, . . . , k}, which can be regarded as a coloured weight (with value β and colour
α). Now, for every vertex v of G, and every colour α ∈ {1, . . . , `}, one can compute the
weighted α-degree σα(v) of v, being the sum of weights with colour α incident to v. So,
with every vertex v is associated a palette (σ1(v), . . . , σ`(v)) of ` coloured sums.

3



When dealing with these new notions, there are many possible ways for asking for
distinction, as several coloured sums are available. For example, a strong distinction
between two adjacent vertices u and v requires that for every colour α,

σα(u) = σα(v) =⇒ σα(u) = σα(v) = 0,

while a standard distinction requires that σα(u) 6= σα(v). If pairs of adjacent vertices of
a graph are strongly (resp. standardly) distinguished, then the pair ω is a strong (resp.
standard) (`, k)-edge-colouring and G is strongly (resp. standardly) (`, k)-edge-coloured.

Rephrased with this new terminology, the 1-2-3 Conjecture asks whether every nice
graph is strongly (1, 3)-edge-colourable. Similarly, Conjecture 5 asks whether every de-
composable graph is standardly (3, 1)-edge-colourable. As a leading objective, we consider
the following conjecture, which has flavour of both problems:

Conjecture 9. Every graph with no isolated edge or triangle is strongly (2, 2)-edge-
colourable.

We explore conjecture 9 and its variants on several graph families, Chapter 7.
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Chapter 1

Definitions and notation

In this chapter we present several mathematical tools used in this thesis. In Section 1.2,
we use terminology inspired by [BM08] and [Die17].

1.1 General mathematics

1.1.1 Multisets

A multiset is a set in which each element can appear multiple times. Formally a multiset
M is a pair (E, f), where E is a set, and f is a function f : E → N giving the multiplicity
in M , of each element of E. For every x ∈ E, we say that x ∈ M if f(x) > 0, otherwise
we say that x 6∈M . We also say, for any object x, that x 6∈M if x 6∈ E. The subset F of
E defined by F = {x ∈ E|f(x) > 0} is the ground set of M . If the ground of set of M is
finite, then M is finite and the size of M , denoted by |M |, is defined by:

|M | =
∑
x∈M

f(x).

If M = (E, f) and M ′ = (E ′, f ′) are two multisets, we say that M is included in M ′

and write M ⊆ M ′, if for every x ∈ M , we have x ∈ M ′ and f(x) ≤ f ′(x), and we say
that M = M ′ if M ⊆ M ′ and M ′ ⊆ M . In the context of multisets, the operations of
union and intersection must also be defined differently from the case of sets. Namely, If
M = (E, f) and M ′ = (E ′, f ′) are two multisets we define the intersection, denoted by
M ∩M ′, as:

M ∩M ′ = (E ∩ E ′,min(f, f ′)).

And we define the union of M and M ′, denoted by M ∪M ′, as:

M ∪M ′ = (E ∪ E ′, f + f ′).

5



1.2. Graphs

1.1.2 Semigroups and groups

For a set S, a binary operation on S is a function +1: S×S → S. For x, y ∈ S, we usually
note x+ y instead of +(x, y). The binary operation + is associative if

∀x, y, z ∈ S, (x+ y) + z = x+ (y + z).

We then simply write x+ y+ z for (x+ y) + z. The function + is commutative if for each
x, y ∈ S, x+ y = y + x.

A semigroup is an ordered pair (S,+) where S is a set and + an associative binary
operation on S. When no confusion is possible we denote by S the semigroup (S,+). The
semigroup (S,+) is commutative if + is commutative. If S is a finite set, then the group
(S,+) is finite, and the order of the group (S,+) is the cardinality of the set S.

If S ′ = {x1, . . . , xn} is a finite subset of S, and (S,+) is commutative, then we denote
by

∑
x∈S′

x the sum x1 + . . . + xn. By convention, we have 1 · x = x, for each x ∈ S, and

if n ≥ 2 is an integer, then n · x = (n − 1) · x + x. Moreover, if ω is a function from a
finite multiset M = (E, f) to a semigroup (S,+), then we write

∑
x∈M

ω(x) to designate∑
x∈M

f(x) · ω(x).

A group is a semigroup (S,+) such that:

• S contains a neutral element i.e. ∃e ∈ S,∀x ∈ S, x+ e = e+ x = x.

• Each element of S has an inverse element in S, i.e. ∀x ∈ S,∃y ∈ S, x+y = y+x = e.

It is easy to prove the uniqueness of the neutral element in a group, and the uniqueness
of the inverse element of each element of the group. By convention, if (S,+) is a group,
with the neutral element e, we have 0 · x = e, for each x ∈ S.

1.2 Graphs

1.2.1 General definition

Let V be a nonempty set. An undirected graph G on V is an ordered pair (V,E), where E
is a multiset of unordered pairs {u, v} where u, v ∈ V . The elements of V are the vertices
of G, and the elements of E are the edges of G. For the sake of conciseness, and if there
is no possible confusion, an edge {u, v} ∈ E will be denoted by uv or vu.

A directed graph G on V is an ordered pair (V,E), where E is a multiset of ordered
pairs (u, v) where u, v ∈ V . The elements of V are the vertices of G, and the elements
of E are the arcs of G. An arc (u, v) of G is directed from u to v. For convenience,
we abbreviate directed graph to digraph, and if there is no possible confusion, an arc
(u, v) ∈ E is denoted by uv, but not vu = (v, u) 6= (u, v) = uv.

1Usually the symbol “·” is used to designate the operation in a semigroup. But since we use only
associative commutative semigroups we use the symbol “+” instead.
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1. Definitions and notation

(a) Undirected graph. (b) Digraph.

(c) Simple undirected graph.

Figure 1.1: Examples of graphs.

A graph is either an undirected graph or a digraph.
If G is a graph, we denote by V (G) the set of its vertices and by E(G) the set (or

multiset) of its edges (or arcs). For an edge or arc e = uv ∈ E(G), u and v are the ends of
e, and e is incident with u and v. Moreover, u and v are adjacent, and e is joining u and v.
If u = v, then e is a loop. If neither uv nor vu are in E(G), then u and v are independent,
sometimes we say that uv is a non-edge. Two edges of G are adjacent if they share at
least one end, otherwise they are independent. Two adjacent edges of G are parallel if
they share all their ends. If G is a digraph, the ends u and v of an arc e = uv ∈ E(G)
are respectively the tail and head of e. An undirected graph (resp. digraph) G is simple
if E(G) is a set, i.e. G does not have parallel edges (resp. arcs), and for every edge (resp.
arcs) uv ∈ E(G), u 6= v, i.e. G has no loop. Otherwise the graph G is a multigraph.

A graph G is finite if both V (G) and E(G) are finite. For a finite graph G, the order
of G is the integer |V (G)|, and the size of G is the integer |E(G)|. If the order of G is 1,
then G is the trivial graph.

On Figure 1.1, we can see graphical representations of an undirected graph, a digraph
and a simple undirected graph.

All along this thesis, and unless opposite mention, by graph we mean a undirected
simple finite graph.

1.2.2 Graph homomorphisms and subgraphs

Let G and H be two graphs.
A homomorphism from G to H is a mapping φ : V (G)→ V (H), which preserves the

adjacency of vertices:

∀u, v ∈ V (G), uv ∈ E(G) =⇒ φ(u)φ(v) ∈ E(H).

7
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(a)

(b) (c)

Figure 1.2: Examples of subgraphs.

An isomorphism from G to H is a bijective homomorphism from G to H (and thus
preserves the adjacency and the nonadjacency), i.e.:

∀u, v ∈ V (G), uv ∈ E(G)⇐⇒ φ(u)φ(v) ∈ E(H).

The graphs G and H are then isomorphic, we also say that G is isomorphic to H and
vice versa, and write G ∼= H. Note that if φ is an isomorphism from G to H, then φ−1 is
an isomorphism from H to G.

The graph G is a subgraph of H if the identity is a homomorphism from G to H.
We then write G ⊆ H. We also say that there is a G in H. If G is not H itself, then
G is a proper subgraph of H. Note that if G ⊆ H, we then have V (G) ⊆ V (H) and
E(G) ⊆ E(H). If V (G) = V (H) we say that G is a spanning subgraph of H. For the
sake of shortness, and if there is no possible confusion, we will say that the subgraph G
is spanning. If G has no vertices with no adjacent vertices, then we say that G is the
subgraph of H induced by E(G), and we write G = H[E(G)]. If G contains all the edges
in H between its vertices, i.e.

∀u, v ∈ V (G), uv ∈ E(H) =⇒ uv ∈ E(G),

then G is an induced subgraph of H, G is induced by V (G), and we write G = H[V (G)].

An independent set in H is an induced subgraph of H with no edges. The order of a
largest independent set in H is the independence number of H, denoted by α(H).

The graph H is G-free if H does not have any induced subgraph isomorphic to G.
Figure 1.2 depicts a subgraph (1.2b) and an induced subgraph(1.2c) of the graph

represented in Figure 1.2a.
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1. Definitions and notation

1.2.3 Graph operations

After we defined graphs, a natural question that can be raised is what useful modifications
can we define on graphs? All along this thesis, we will use several operations. This
subsection defines and illustrates these operations.

Let G and H be two graphs with V (G)∩V (H) = ∅ (and consequently E(G)∩E(H) =
∅).

The complementary graph of G is the graph, denoted by G, obtained from G by
replacing all its edges by non-edges and all its non-edges by edges. Formally,

V (G) = V (G) and E(G) = {uv|u, v ∈ V, u 6= v, uv 6∈ E(G)}.

The disjoint union of G and H, denoted by G + H, is the graph (V (G) ∪ V (H),
E(G) ∪ E(H)). Note that G + H = H + G, and that the order (resp. size) of G + H is
the sum of the orders (resp. sizes) of G and H.

If V ′ is a set of vertices, we can add the vertices of V ′ to G. This gives a new graph
denoted by G+V ′ = (V (G)∪V ′, E(G)). If E ′ is a set of edges with ends in V (G), then we
can also add the edges of E ′ to G. Again, this gives a graph G+E ′ = (V (G), E(G)∪E ′).
Symmetrically, we can define the deletion of edges or vertices. If S is a subset of V (G),
then we can delete S from G. This give a graph G− S whose vertices are all the vertices
in V (G) \ S, and whose edges are all the edges of G which are not incident with a vertex
from S. Formally:

G− S = (V (G) \ S,E(G) \ {uv ∈ E|u ∈ S or v ∈ S}).

We can also see G − S as the subgraph of G induced by V (G) \ S. If F is a subset of
E(G), the deletion of F from G gives a subgraph of G, denoted by G−F , whose vertices
are all the vertices of G (i.e. G− F is spanning), and whose edges are all the edges of G
which does not belong to F . Formally:

G− F = (V (G), E(G) \ F ).

In the graph G, the identification of two of its vertices u and v, is the deletion of the
vertex v from G and the addition of edges joining u to all vertices adjacent to v in G.
Identifying u and v yields a new graph, denoted by Gu=v

G− {v}+ {uw|w 6= u,wv ∈ E(G)}.

If e = uv ∈ E(G), the contraction of the edge e, denoted by G/e, is the identification of u
and v. The obtained graph is then denoted by G · e. Subdividing an edge e = uv ∈ E(G)
is the addition of a new vertex w, the deletion of the edge e, and the addition of the edges
uw and wv. This yields the new graph:

G+ {w}+ {uw,wv} − {uv}.

Different notions of binary operations can be defined on graphs, we mainly use Carte-
sian product of graphs. The Cartesian product of G and H, denoted by G�H, is the
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1.2. Graphs

graph with vertex set V (G) × V (H), and for two vertices x = (u, v) and y = (u′, v′) in
V (G�H), xy is an edge of G�H if u = u′ (resp. v = v′) and vv′ (resp. uu′) is an edge in
H (resp. in G). Formally:

V (G�H) = V (G)× V (H);
E(G�H) = {((u, v), (u′, v′))|(u = u′ ∧ vv′ ∈ E(H)) ∨ (v = v′ ∧ uu′ ∈ E(G))}.

1.2.4 Neighbouring and degree

Digraphs

Let G be a digraph, and u and v two vertices of G.
If uv ∈ E(G), then u is an in-neighbour of v and u is an out-neighbour of v. The

in-neighbourhood of u in G, denoted by N
-
G(u), as the set of in-neighbours of u in G.

Formally,
N−G (u) = {v ∈ V (G)|vu ∈ E(G)}.

The out-neighbourhood of u in G, denoted by N+
G (u), as the set of out-neighbours of u in

G. Formally,
N+
G (u) = {v ∈ V (G)|uv ∈ E(G)}.

The integer |N−G (u)| is the in-degree of u in G and is denoted by d−G(u). The integer
|N+

G (u)| is the out-degree of u in G and is denoted by d+
G(u). If there is no possible

confusion, we write N−(u) (resp. N+(u)) instead of N−G (u) (resp. N+
G (u)), and d−(u)

(resp. d+(u)) instead d−G(u) (resp. d+
G(u)).

Undirected graphs

Let G be a graph, and u and v two vertices of G.
If u and v are adjacent, then u is a neighbour of v and vice versa. We define the

neighbourhood of u inG, denoted byNG(u), as the set of vertices ofG which are neighbours
of u. Formally,

NG(u) = {v ∈ V (G)|uv ∈ E(G)}.
The integer |NG(u)| is the degree of u in G and is denoted by dG(u). If there is no
possible confusion, we write N(u) instead of NG(u), and d(u) instead dG(u). The graph
G is regular if all its vertices have the same degree. If this degree is k, then G is k-regular.

The maximum (resp. minimum) degree of a graph G, denoted by ∆(G) (resp. δ(G)),
is the maximum (resp. minimum) degree taken over all vertices of G. Formally:

∆(G) = max
u∈V (G)

dG(u) and δ(G) = min
u∈V (G)

dG(u).

Note that if H is a subgraph of G, then for every vertex u of H, dH(u) ≤ dG(u), and
consequently ∆(H) ≤ ∆(G).

For a nonnegative integer k, if dG(u) = k, then u is a k-vertex of G. A 0-vertex is
an isolated vertex, a 1-vertex is a pending vertex and a (|V (G)| − 1)-vertex is a universal

10
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v1

v2

v3

v4

v5

Figure 1.3: Example for vertices degree.

vertex of G. A k−-vertex (resp. k+-vertex ) of G is a vertex with degree at most (resp. at
least) k. An edge whose both ends are pendent vertices of G is an isolated edge of G.

If we sum the degrees of all vertices of G, we can convince ourselves that we count
twice each edge of G. Hence we have the following equality for every graph G:∑

u∈V (G)

dG(u) = 2 · |E(G)|.

The average degree of the graph G, denoted by ad(G), is the ratio of the sum of the
degrees of the vertices of G to the order of G. By the previous equality, we then have:

ad(G) =
2 · |E(G)|
|V (G)|

.

The maximum average degree of the graph G, denoted by mad(G), is the maximum
average degree taken over all the subgraphs of G. Formally:

mad(G) := max

{
2 · |E(H)|
|V (H)|

|H ⊆ G,H nonempty

}
.

For a nonnegative integer k, G is k-degenerate if every subgraph of G has a k−-vertex,
i.e.

∀H ⊆ G, δ(H) ≤ k.

In particular, G itself has a k−-vertex.

In the graph depicted in Figure 1.3 the neighbourhood of the vertex v1 is {v3, v4}, and
its degree is 2. The vertex v3 is a universal vertex and v2 and v5 are pendent vertices.
The maximum degree of the graph is 4 and its minimum degree is 1. The average degree
is 2, and the maximum average degree is 2.

1.2.5 Paths, cycles and cliques

Let n be a positive integer.

11
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(a) The complete graph K5. (b) The path P5.

(c) The cycle C5.

Figure 1.4: Examples of paths, cycles and cliques.

The path of length n, denoted by Pn, is the graph on the set of n + 1 vertices
{v0, . . . , vn}, with the edge set E = {vivi+1|0 ≤ i ≤ n − 1}. For simplicity, such a
path will be denoted by v0 . . . vn. The integer n is the length of the path. Note that
the order of Pn is n + 1 and the size of Pn is n. Moreover all the vertices of a path
Pn = v0v1 . . . vn are of degree 2 except v0 and vn, which are 1-vertices. The vertices v0

and vn are the ends of the path Pn, and Pn is a path between v0 and vn or a {v0, vn}-path,
the other vertices are inner vertices. The end edges of Pn are v0v1 and vn−1vn, the other
edges are inner edges. If Pn is an induced subgraph of a graph G, such that dG(v0) ≥ 2,
dG(vn) = 1, and dG(vi) = 2, for every i ∈ {1, . . . , n− 1}, then Pn is a pendent path of G.

If n ≥ 3, then a cycle on n vertices, denoted by Cn, is a graph such that V (Cn) =
{v0, . . . , vn−1}, and E(Cn) = {viv(i+1) mod n|0 ≤ i ≤ n − 1}. For simplicity, such a cycle
will be denoted by v0v1 . . . vn−1v0. The length, order and size of the cycle Cn is n. Note
that all the vertices of a cycle are of degree 2. The cycle C3 is called a triangle. For a
graph G, the girth of G, denoted by g(G), is the length of a shortest induced cycle in G.
If G has no cycles, then g(G) =∞. A forest or acyclic graph is a graph with no induced
cycles.

The complete graph on n vertices, denoted by Kn, is the graph of order n such that
E(Kn) is the set of all the edges between two distinct vertices of Kn. All the vertices of a
complete graph Kn are of degree n− 1, and its size is n(n−1)

2
. For a graph G, a clique in

G is a subgraph of G which is complete. The order of a largest clique in G is the clique
number of G, denoted by ω(G).

12
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Figure 1.4 depicts the path P5, the cycle C5 and the complete graph K5.

1.2.6 Connectedness and distance

Let G be a graph, and u and v two vertices of G.

A walk W in G between u and v is a sequence of vertices of G, W = u0 . . . un, with
n being a positive integer, such that u0 = u, un = v and ui+1 is adjacent to ui, for every
i ∈ {0, . . . , n− 1}. The vertices u and v are the ends of W , and W is a {u, v}-walk in G.
The walk W visits ui, for every i ∈ {0, . . . , n − 1}. We write ui ∈ W for every node ui
visited by W .

The vertex v is reachable from u in G if there exists a {u, v}-walk in G. By convention,
a vertex is always reachable from itself. Note that v is reachable from u if and only if u is
reachable from v. If u and v are distinct, and u is reachable from v, then we can find a walk
between the two vertices which is a path. The distance in G between u and v, denoted
distG(u, v), is the length of a shortest path in G between u and v. By convention if u is not
reachable from v, distG(u, v) = ∞. Moreover we clearly have distG(x, y) = distG(y, x),
for every vertices x and y of G. If uv and u′v′ are two edges of G, then we define the
distance in G between uv and u′v′, denoted by distG(uv, u′v′), as :

distG(uv, u′v′) = min{distG(u, u′), distG(v, v′), distG(u, v′), distG(u′, v)};

which is the minimal distance between an end of uv and an end of u′v′.
The graph G is connected if for every two vertices x, y ∈ V (G), x is reachable from

y. By convention a trivial graph (i.e. of order 1) is connected. In a connected graph all
the distances between its vertices are finite. The maximum distance between two vertices
of G is called the diameter of G, denoted by diam (G). If H is a subgraph of G, then
for every vertices x and y of H, distH(u, v) ≥ distG(u, v), and if H is spanning then
diam (H) ≥ diam (G).

A component of G is an induced subgraph H of G which is connected, and whose
vertices are not reachable from vertices in V (G) \ V (H). Note that G is connected if and
only if G has exactly one component, and u is reachable from v if and only if u and v
belong to the same component of G.

If G is connected, nontrivial and non-complete, the connectivity of G, denoted by
κ(G), is the minimum size of a subset S of V (G), such that G−S is not connected. This
means that we cannot “disconnect” the graph G by deleting less than κ(G) of its vertices.
By convention, κ(Kn) = n − 1 for n ≥ 2 and κ(K1) = 1. For a positive integer k, we
say that G is k-connected if k ≤ κ(G). Note that a graph is connected if and only if
it is 1-connected. Another way to see the connectivity is through the characterization
given by Menger’s theorem [Men27]. It states that in order to “disconnect” two distinct
nonadjacent vertices x and y of a graph G, one must delete at least k vertices of G, where
k is the number of pairwise vertex-disjoint {x, y}-paths in G. The consequence of this
result is that in a k-connected graph, there exist at least k pairwise vertex-disjoint paths
between every distinct non adjacent vertices of the graph.
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r

u
v

(a) A tree on 10 nodes.

r

u

v

(b) The same tree rooted on the node r.

Figure 1.5: Example of a tree.

1.2.7 Trees

A tree is a connected graph with no cycle. Sometimes the vertices of a tree are called
nodes. A 1-node in a tree is a leaf while a 2+-node is an internal node. If a tree T
is nontrivial, then it has at least two leaves. Particularly, this means that trees are 1-
degenerate. The following theorem gives five characterizations of trees, it is not difficult
to prove that they are equivalent.

Theorem 1.2.1 ([BM08]). If T is a graph then the following assertions are equivalent:

1. T is a tree.

2. For any two vertices u and v of T , there exists a unique {u, v}-path.

3. T is minimally connected, i.e. T − e is not connected for every e ∈ E(T ).

4. T is connected and |E(T )| = |V (T )| − 1.

5. T is maximally acyclic, i.e. T + {xy} is not acyclic for every non adjacent nodes x
and y of T .

6. T is acyclic and |E(T )| = |V (T )| − 1.

If G is a connected graph, Theorem 1.2.1 implies that G has a spanning subgraph T
which is a tree. Indeed, if G is a tree then we take T = G, otherwise since G is connected,
then by Theorem 1.2.1 there exists an edge e ∈ E(G), such that G − {e} is connected.
By iterating this argument on G−{e}, we end up with a spanning subgraph of G, which
is a tree. Such a tree is called a spanning tree of G. This notion reveals itself very useful
in several proofs in graph theory.

If we distinguish one node r of a tree T as the root of T , we say that T is rooted at r.
This naturally defines a binary relation descendant of, on the nodes of T . The node v is

14
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a descendant of u, if the unique {v, r}-path in T visits u. If v is a descendant of u and
uv ∈ E(T ), we say that u is the father or parent of v and that v is a child of u. Note
that every node of T has exactly one parent except for r which does not have a parent.
Moreover, if T is not a trivial graph, the leaves different from r are the only nodes of T
that have no children.

If T is a tree rooted at a node r, the depth of a node u ∈ V (T ) is the distance between
u and r. Note that if u is the parent of v, then distT (v, r) = distT (u, r) + 1. The height
of a tree is the maximum depth of its nodes. A node with maximum depth is necessarily
a leaf.

On Figure 1.5b we can see a rooted tree on the node r, the nodes u and v are des-
cendants of r. Moreover, u is the parent of v which is a leaf.

1.2.8 Matchings

A matching in G is a set of pairwise independent edges of G. If U is the set of the end
vertices of the edges of a matching M , we say that M is a matching of U . If uv ∈ M , u
and v are matched under M . The graph (U,M) is a 1-regular subgraph of G, with only
isolated edges. We usually identify a matching M with the subgraph (U,M). A matching
M in G is perfect if for every vertex v of G, there is an edge e inM , such that e is incident
with v, i.e. M is a matching of V (G). A maximum matching of G is a matching with
maximum size over all the matchings in G. Note that a perfect matching is a maximum
matching. The opposite implication is generally not true, a counter-example is any graph
with an odd order.

1.3 Graph colouring

Map colouring, task scheduling, wedding table planning or timetables optimization are
problems that can easily be modelled with graphs. Indeed, the set of edges of a graph
can be seen as a binary relation on the vertices. Hence any instance of a problem with
an underlying binary relation R (dependency, incompatibility . . .) on a set S can be
represented by a graph G = (S,R). As in the cited examples, the binary relation is used
to define some constraints on the attribution of some resources to the elements of S. The
map colouring problem, for example, asks to attribute colours to the regions of a map
such that no two adjacent regions get the same colour. One can ask what is the least
number of colours needed to fulfil this condition?

1.3.1 Proper colourings and chromatic parameters

A vertex-colouring of a graph G is a mapping f : V (G)→ S, where S is a nonempty set.
If |S| = k ≥ 1, f is then a vertex k-colouring of G. The colouring f is proper if it assigns
different colours to adjacent vertices, i.e. for every uv ∈ E(G) we have f(u) 6= f(v). If a
graph G admits a proper vertex k-colouring, then G is k-colourable. The smallest integer
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(a) Proper vertex 3-colouring of the
Petersen graph.

(b) Proper edge 4-colouring of the
Petersen graph.

Figure 1.6: Examples of proper colourings.

k such that a graph G is k-colourable is the chromatic number of G, and is denoted by
χ(G). If χ(G) = k, then G is k-chromatic.

Note that by attributing a different colour to each vertex of a graph G we produce
a proper vertex-colouring, hence |V (G)| is an obvious upper bound of χ(G). If G is a
complete graph of order n, then χ(G) = n = ∆(G) + 1 since we can not assign the same
colour to any distinct vertices of G. It is not difficult to prove that if G is an odd cycle,
then we also have χ(G) = 3 = ∆(G) + 1. Moreover, ∆(G) + 1 colours is enough to colour
any graph G. Indeed greedy first-fit algorithm can produce a proper vertex (∆(G) + 1)-
colouring of G. At each step we have at most ∆(G) forbidden colours and since we use
∆(G) + 1 colours there is always at least one available colour. Hence χ(G) ≤ ∆(G) + 1,
for every graph G. This bound is sharp for complete graphs and odd cycles, but it is not
sharp for the other graphs. The main general upper bound on the chromatic number is
given by the celebrated Brooks’ theorem.

Theorem 1.3.1 ([Bro41]). Let G be a graph with ∆(G) ≥ 2. If none of the components
of G is a clique nor a cycle with odd order, then χ(G) ≤ ∆(G).

A proper vertex-colouring of a graph G can be seen as a partition of V (G) into in-
dependent sets, since every colour class (i.e. monochromatic subset of V (G)) is an inde-
pendent set. This gives a lower bound for the chromatic number of a graph χ(G) ≥ |V (G)|

α(G)
.

Moreover it is easy to see that if G has a clique of order k as subgraph, then the chromatic
number of G is at least k, since we need k different colours in order to colour the clique.
This gives another lower bound for the chromatic number χ(G) ≥ ω(G).

Similarly, an edge colouring of a graph G is a mapping γ : E(G) → S, where S is a
nonempty set. If |S| = k ≥ 1, γ is then an edge k-colouring of G. The colouring γ is
proper if it assigns different colours to adjacent edges, i.e. for every vertex u ∈ V (G) and
v, v′ ∈ NG(u) with v 6= v′ we have γ(uv) 6= γ(uv′). If a graph G admits a proper edge
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k-colouring, then G is k-edge colourable. The smallest integer k such that a graph G is
k-edge colourable is the chromatic index of G, and is denoted by χ′(G). If χ′(G) = k,
then G is k-edge chromatic.

As in the vertex-colouring case, we can find a loose upper bound for χ′ by noting that
assigning a different colour to each edge of a graph G yields a proper edge colouring of
G. Hence χ′(G) ≤ |E(G)|. This bound is reached for star graph (i.e. graphs with one
universal vertex and then only pending vertices). Another upper bound can be found using
a greedy algorithm to properly colour the edges of G, at each step we have at most 2·∆(G)
forbidden colours, hence if we use 2 ·∆(G) + 1 colours we can guarantee that we always
have at least one available colour. This algorithm hence proves that χ′(G) ≤ 2 ·∆(G) + 1.
The main upper bound on χ′(G) is given by the also celebrated Vizing’s theorem.

Theorem 1.3.2 ([Viz64]). For every graph G, χ′(G) ≤ ∆(G) + 1.

By definition, in a proper edge colouring of a graph G, for every vertex v of G, all the
incident edges with v are of distinct colours, hence the incident edges with v use dG(v)
different colours. This gives us a lower bound χ′(G) ≥ ∆(G). Moreover each colour class
(i.e. monochromatic set of edges) is a matching. Hence if k is the size of a maximum
matching in G, then χ′(G) ≥ |E(G)|

k
.

On Figure 1.6 we can see examples of proper vertex and edge colourings of the Petersen
graph.

1.4 Graph weighting and labelling
Let G be a graph, and (S,+) a commutative semigroup. An S-edge-weighting (resp. S-
total-weighting) ω of G is a mapping from E(G) (resp. E(G)∪V (G)) to the commutative
semigroup (S,+). When no confusion is possible we will simply talk about edge-weighting
(resp. total-weighting). For each element x ∈ S, we denote by Eω(x) the set of edges
e ∈ E(G) such that ω(e) = x, and if ω is a total-weighting we also denote by Vω(x), the
set of vertices v ∈ V (G) such that ω(v) = x. Moreover, for each vertex v of G, and for
each i ∈ S, we denote by Dω,i(v) the set of edges e incident with v such that ω(e) = i,
and we denote by dω,i(v) the cardinality of Dω,i(v). The palette of v, denoted by Pω(v),
is the multiset formed by the weights of the edges incident with v. The vertex v has
a monochromatic palette of i’s, for i ∈ S, if dω,i(v) = |Pω(v)| = dG(v), and, if ω is a
total-weighting, ω(v) = i. If S = N∗, then the edge-weighting (resp. total-weighting) ω
is a k-edge-weighting (resp. k-total-weighting) where k is the largest integer in ω(E(G))
(resp. ω(V (G) ∪ E(G))).

1.4.1 Graph labelling

Given an edge- (total-) weighting ω of a graph G, we can induce a vertex-colouring cω
from ω in several ways. The link between graph weightings and vertex-colourings is a
part of the more general graph labelling theory, where labels on the vertices or edges of a
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graph are used to induce colourings on its vertices or its edges. For example, in a graceful
labelling of a graph G, we ask to assign a unique label ω(v) ∈ {0, . . . , |E(G)|} to each
vertex v of G, such that if we assign to each edge xy of G the value |ω(x) − ω(y)|, we
obtain a one-to-one mapping between E(G) and {1, . . . , |E(G)|}. A major conjecture on
graceful labellings is the graceful tree conjecture stated by Ringel and Kotzig, in which
they claim that every tree admits a graceful labelling. Other examples are the magic
and antimagic labellings, where we use distinct weights on the edges and induce vertex-
colourings by summing for each vertex the labels of the edges it is incident with, and ask
for all vertices to have the same colour in the case of supermagic labelling, and for vertices
colours to be pairwise distinct in the case of antimagic labelling. Another labelling that
is closely related to the weightings we will consider in this thesis is the irregular labelling.
An edge-weighting ω of a graph G is an irregular labelling of G if for each pair of distinct
vertices u, v ∈ V (G), we have : ∑

e∈E(G),e3u

ω(e) 6=
∑

e∈E(G),e3v

ω(e).

The smallest integer k such that G admits a k-irregular labelling is the irregularity strength
of G, denoted by s(G). For a more detailed description of graph labellings please refer to
the comprehensive survey by Gallian [Gal17].

1.4.2 Neighbour-sum-distinguishing edge-weightings

Note that in the context of graph weighting, we mainly use the operation defined on
the semigroup S to induce vertex-colourings. In 2004, Karoński, Łuczak and Thomason
introduced in [KLT04] a weaker version of irregular labelling. Namely, from an S-edge-
weighting ω of a graph G, where (S,+) is a commutative semigroup, we induce a vertex-
colouring σω defined by :

σω(u) =
∑

e∈E(G),e3u

ω(e).

The weighting ω is a neighbour-sum-distinguishing (nsd for short) edge-weighting of G,
if σω is a proper vertex-colouring of G. In this context, two vertices of G are sum-
distinguished if σω(u) 6= σω(v), otherwise if uv ∈ E(G) and σω(u) = σω(v) we say that u
and v are in conflict and that the edge uv is a conflict. Note that if G contains an isolated
edge, then we cannot sum-distinguish the ends of such an edge. Hence whenever dealing
with neighbour-sum-distinguishing edge-weightings, we will only consider graphs with no
isolated edge. Such graphs are said to be nice. In their paper, Karoński, Łuczak and
Thomason define neighbour-sum-distinguishing edge-weightings in special cases where
S = N∗ or R or where S is a finite group. They asked a question which later became the
famous 1-2-3 Conjecture :

Question (1-2-3 Conjecture). Is it possible to weight the edges of any nice graph with the
integers {1, 2, 3} in such a way that the induced vertex-colouring is a proper colouring?
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Figure 1.7: An illustartion of the two first steps of the complete graph weighting in
Proposition 1.4.2.

They answered by the affirmative to their question for 3-colourable nice graphs by
proving the following stronger result :

Theorem 1.4.1 ([KLT04]). Let Γ be a finite commutative group of odd order and let
G be a nice |Γ|-colourable graph. Then G admits a neighbour-sum-distinguishing Γ-edge-
weighting.

They also proved that if we allow real weights on the edges, that is S = R, then there
is a finite set of weights which can be used to weight the edges of any nice graph in a
neighbour-sum-distinguishing way.

For a graph G, if ω is an edge-weighting of G with values in N∗, then ω is a k-edge-
weighting of G, if k ≥ max

e∈E(G)
{ω(e)}, i.e. ω : E(G) → {1, . . . , k}. The smallest integer k

such that a graph G admits a neighbour-sum-distinguishing k-edge-weighting is the nei-
ghbour-sum-distinguishing index of G, denoted by χe

Σ(G). Moreover, the smallest integer
k for which there exists a commutative group Γ with |Γ| = k, such that G admits a nei-
ghbour-sum-distinguishing Γ-edge-weighting is denoted by χeg(G). Rephrased with these
new notations, the 1-2-3 Conjecture asks whether χe

Σ(G) ≤ 3 holds for every nice graph G,
and Theorem 1.4.1 states that χeg(G) ≤ k, if k is odd, for every nice k-colourable graph.

The 1-2-3 Conjecture can be easily checked for simple families of graphs such as nice
trees and nice complete graphs.

Proposition 1.4.2. Let n ≥ 3 be a positive integer,
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1. For every nice tree T , χe
Σ(T ) ≤ 2;

2. χe
Σ(Kn) = 3.

Proof. 1. Let T be a nice tree, and r be an internal node of T . We root T at r, then
arbitrarily weight all edges of T incident with r using weights 1 and 2. Note that for
every neighbour v of r, either v is a leaf, which implies that σω(v) = ω(rv) < σω(r)
(because dT (r) ≥ 2), or v is an internal vertex, which means that v has at least
one child w, in which case we can use a weight (1 or 2) on the edge vw to ensure
that σω(r) and σω(v) have different parity. In both cases we have σω(r) 6= σω(v).
By inductively applying the same procedure for each child of r we can ensure that
every node in T is sum-distinguished from its father, hence we obtain an nsd 2-edge-
weighting of T .

2. Let Kn be the complete graph on vertices v1, . . . , vn. Assume that ω is an nsd 2-
edge-weighting of Kn and let σω be the vertex-colouring induced by ω. We then
have n − 1 ≤ σ(v) ≤ 2(n − 1) for every vertex v of Kn, hence, since we need n
distinct values for n vertices, there exist two vertices u and v with σ(u) = n−1 and
σ(v) = 2(n−1), in contradiction with the colour of the edge uv. Hence χe

Σ(Kn) ≥ 3.

Now in order to prove that χe
Σ(Kn) ≤ 3, we construct an nsd 3-edge-weighting of

Kn. We start by weighting the edges v1v2, v2v3 and v1v3 using weights 1, 2 and 3,
respectively. If n = 3 then we are done. If n ≥ 4, in order to weight the remaining
“un-weighted” edges we process the vertices from v4 to vn as follows (see Figure 1.7).
For i ∈ {4, n}:

• If i = 4 or ω(vi−1vj) = 3 for every j < i − 1, then we choose ω(vivj) = 1 for
every j < i;

• otherwise we choose ω(vivj) = 3 for every j < i;

At each step, vi is the only vertex whose incident edges are all weighted 3 or all
weighted 1. Hence σω(vi) is either smaller than all σω(vj) for j < i or greater than all
σω(vj) for j < i. Which means that we create no conflict. Therefore the procedure
yields an nsd 3-edge-weighting, and we have χe

Σ(Kn) ≤ 3.

Note that in an edge-weighting ω of a graph G, if uv ∈ E(G), then the sum-distinction
between u and v does not depend on the value of ω(uv), because this value appears in
both sums of u and v. Hence, if u and v are sum-distinguished by ω, they will stay
sum-distinguished if we modify the value of ω(uv).

First efforts to tackle the 1-2-3 Conjecture focused on finding an upper bound for χe
Σ

in term of the chromatic number χ:

• if G is k-colourable for k odd, then χe
Σ(G) ≤ k [KLT04];

• if G is k-colourable for k ≡ 0 mod 4, then χe
Σ(G) ≤ k [DLY12];
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• if G is k-colourable and δ(G) ≤ k − 2, then χe
Σ(G) ≤ k [DLY12];

• if G is k-colourable and |V (G)| is odd, then χe
Σ(G) ≤ k [DLY12];

• if G is 2-connected, k-colourable, and has δ(G) ≥ k + 1 for k ≡ 2 mod 4, then
χe

Σ(G) ≤ k [LYY09].

Meanwhile, other authors concentrated on finding general upper bounds on χe
Σ. Addario-

Berry et al. established the first constant general upper bound in [ABDM+07], by prov-
ing that every nice graph admits a neighbour-sum-distinguishing 30-edge-weighting, then
Addario-Berry, Dalal and Reed decreased this bound to 16 in [ABDR08]. In the same
year Wang and Yu proved that χeΣ(G) ≤ 13 for every nice graph G. In 2009 Kalkowski,
Karoński and Pfender [KKP09] came with an algorithm inspired by Kalkowski’s work
on neighbour-sum-distinguishing total-weightings in [Kal10]. This algorithm provides,
for every nice graph G, a neighbour-sum-distinguishing 6-edge-weighting of G. In 2010,
Kalkowski, Karoński and Pfender [KKP10] modified their algorithm to provide neighbour-
sum-distinguishing 5-edge-weightings, giving, at the same time, the best known upper
bound on χe

Σ.

Theorem 1.4.3 (Kalkowski, Karoński and Pfender [KKP10]). If G is a nice graph, then
χe

Σ(G) ≤ 5.

Since χe
Σ(G) = 1, if and only if G has no adjacent vertices with the same degree, which

is easy to characterise, another direction toward the 1-2-3 Conjecture is characterising
the graphs that satisfy χe

Σ(G) ≤ 2. Chang, Lu, Wu, and Yu [CLWY11] showed that
χe

Σ(G) ≤ 2 if G is bipartite and d-regular for d ≥ 3. Lu, Yu, and Zhang [LYZ11] proved
that if G is a nice graph which is either 3-connected and bipartite or has minimum
degree δ(G) ≥ 8χ(G), then χe

Σ(G) ≤ 2. Davoodi and Omooni [DO15] explored the nei-
ghbour-sum-distinguishing edge-weighting for Cartesian products of graphs proving that
χe

Σ(G�H) ≤ 2, for every two bipartite graphs G and H with G�H 6∼= K2, and more
generally, that χe

Σ(G�H) ≤ max{χe
Σ(G), χe

Σ(H)} for every two nice graphs G and H
with G�H 6∼= K2. Khatirinejad, Naserasr, Newman, Seamone, and Stevens [KNN+12]
proved that χe

Σ(G) ≤ 2 if all cycles of G have length divisible by 4, and that nsd 2-edge
weighting is equivalent to nsd {a, b}-edge weighting, for every two integers a and b with
gcd(a, b) = 1, where gcd(a, b) is the greatest common divisor of a and b. Finally, Dudek
and Wajc proved in [DW11] that given a nice graph G, it is NP-complete to decide whether
χe

Σ(G) ≤ 2. However, since most of the graphs that are known to admit neighbour-sum-
distinguishing 2-edge-weightings are bipartite, one can ask if we can characterise all such
bipartite graphs. Thomassen, Wu and Zhang [TWZ16] gave a full characterisation of such
bipartite graphs, and by the same occasion, proved that the problem of deciding whether
χe

Σ(G) ≤ 2 can be solved in polynomial time if G is bipartite.

1.4.3 Neighbour-sum-distinguishing total-weighting

In 2010, Przybyło and Woźniak introduced graph total-weightings, where we assign pos-
itive integer weights to the edges and the vertices of a graph, and ask to sum-distinguish
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(b) Nsd 2-total-weighting of K4.

Figure 1.8: Examples of neighbour-sum-distinguishing weightings.

each pair of adjacent vertices. Namely, a neighbour-sum-distinguishing total-weighting ω
of a graph G is a total-weighting of G with values in N∗ such that the induced vertex-
colouring σtω of G, defined for each vertex v of G by :

σtω(v) = ω(v) +
∑

e∈E(G),e3v

ω(e),

is a proper vertex-colouring of G. The smallest integer k such that G admits a neighbour-
sum-distinguishing k-total-weighting is the neighbour-sum-distinguishing total index of G,
denoted by χt

Σ(G). Note that in the context of total-weightings, we can sum-distinguish
the ends of any isolated edge, hence χt

Σ(G) is defined even if G is not nice. Motivated by
the 1-2-3 Conjecture and by a result from [ABDR08] stating that for each real p ∈]0, 1[,
the random graph Gn,p (asymptotically) almost surely admits an neighbour-sum-distin-
guishing 2-edge-weighting, Przybyło and Woźniak stated the following conjecture :

Conjecture 1.4.4 ([PW10]). For every graph G, χt
Σ(G) ≤ 2.

They proved the conjecture for bipartite graphs, complete graphs, 3-colourable graphs
and 4-regular graphs. They also proved that weights in {1, . . . , 11} are sufficient to get an
nsd total-weighting for any graph. The best known bound toward Conjecture 1.4.4, given
in the following theorem, was proved by Kalkowski in his PhD Thesis [Kal10], using an
early version of the algorithm used later by himself, Karoński and Pfender to prove that
χe

Σ(G) ≤ 5 for every nice graph G.

Theorem 1.4.5 ([Kal10]). For every graph G, we can find a neighbour-sum-distinguishing
total-weighting of G using weights {1, 2, 3} on the edges and {1, 2} on the vertices.

As a consequence of Theorem 1.4.5 we get χt
Σ(G) ≤ 3 for every graph G.

1.4.4 Neighbour-multiset-distinguishing edge-weighting

Other variants of neighbour-distinguishing edge-weightings were considered in the last
decade. For example, when the edge weights are positive integers, we can define the
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1. Definitions and notation

induced colour of each vertex as the multiset formed by the weights of the edges it is
incident with. Namely, if ω is an edge-weighting of G, then we define the induced colour
mω(v) on a vertex v by :

mω(v) =
⋃

e∈E(G),e3v

{ω(e)},

where the union is to be considered as a multiset union. An edge-weighting ω is a nei-
ghbour-multiset-distinguishing (nmd for short) edge-weighting, if mω is a proper vertex-
colouring of G. In this context, two vertices u and v of G are multiset-distinguished
if mω(u) 6= mω(v). For a graph G, the smallest integer k such that G admits a nei-
ghbour-multiset-distinguishing k-edge-weighting is denoted by χe

m(G). In [ABADR05],
Addario-Berry, Aldred, Dalal and Reed proved that χe

m(G) ≤ 4 for every nice graph G,
and that χe

m(G) ≤ 3 if δ(G) ≥ 1000.
Neighbour-multiset-distinguishing edge-weighting is a weaker version of neighbour-

sum-distinguishing edge-weighting, i.e. every nsd edge-weighting is an nmd edge-wei-
ghting. Indeed, if the sums of elements of two multisets are distinct, then the two multisets
are clearly distinct. The following proposition establishes another link between nmd and
nsd edges-weightings, and will be very useful in some of our proofs.

Proposition 1.4.6. For every nice regular graph G, and every 2-edge-weighting ω of G,
ω is nmd if and only if ω is nsd.

Proof. Let d be a positive integer and G a nice d-regular graph. Since every nsd edge-
weighting of G is also an nmd edge-weighting, we only have to prove that every nmd
edge-weighting of G is an nsd edge-weighting of G.

Let ω be an nmd 2-edge-weighting of G, and uv an edge of G. Suppose that mω(u) =
({1, 2}, fu) and mω(v) = ({1, 2}, fv). Since ω is nmd we have mω(u) 6= mω(v). Hence we
have (fu(1), fu(2)) 6= (fv(1), fv(2)). Moreover, since G is d-regular we have fu(1)+fu(2) =
fv(1) + fv(2) = d. Hence, we have fu(1) 6= fv(1) and fu(2) 6= fv(2), otherwise we would
have (fu(1), fu(2)) = (fv(1), fv(2)) which is a contradiction because ω is nmd. Therefore,

σω(u)− σω(v) = fu(1) + 2fu(2)− (fv(1) + 2fv(2))
= fu(2)− fv(2)
6= 0.

This means that σω(u) 6= σω(v), and that u and v are sum-distinguished. Hence ω sum-
distinguishes the ends of any edge of G, which means that ω is an nsd 2-edge-weighting
of G.

Note that in an nmd edge-weighting, the order of the weights does not influence the
distinction between vertices. Hence if ω is an nsd 2-edge-weighting of a regular graph
G, by Proposition 1.4.6, we can replace all the weights 1 by 2, and all the weights 2 by
1 and have another nsd 2-edge-weighting of G. This result can be easily generalised to
sum-distinguishing any vertices of the same degree in a graph G, with the same arguments
as in the proof of Proposition 1.4.6, leading to the following observation:
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1.4. Graph weighting and labelling

Observation 1.4.7. If u and v are two vertices of G with the same degree, and if u and
v are sum-distinguished by a 2-edge-weighting ω of G, then u and v are sum-distinguished
by any edge-weighting ω′ such that for every edge e ∈ E(G) incident with u or with v,
ω′(e) = 3− ω(e), which replaces the weights 1 by 2, and all the weights 2 by 1.

1.4.5 Locally irregular decompositions

Another way to formulate the problem of neighbour-sum-distinguishing k-edge-weighting
in a graph G, is to ask whether we can transform G by adding at most k − 1 copies
of each of its edges in such a way that no two adjacent vertices of G have the same
degree. Graphs in which every two adjacent vertices have different degree are locally
irregular graphs. Note that G is a locally irregular graph if and only if G admits an nsd
1-edge-weighting. Moreover, using arguments similar to the ones used in the proof of
Proposition 1.4.6, we can easily prove that in any neighbour-sum-distinguishing 2-edge-
weighting ω of a regular graph G, dω,1(u) 6= dω,1(v) and dω,2(u) 6= dω,2(v) for every edge
uv ∈ E(G). Hence the subgraphs of G induced, respectively, by Eω(1) and by Eω(2), are
locally irregular graphs. Therefore, we can see an nsd 2-edge-weighting of a regular graph
G as a partition of its edge set into two parts, each inducing a locally irregular graph.
Generally, a locally irregular decomposition of a graph G is a partition E1, . . . , Ek of E(G)
such that each G[Ei] is locally irregular. We also say that G decomposes into k locally
irregular subgraphs. However, there exist graphs that do not admit locally irregular
decompositions. If G is such a graph, then it is exceptional, otherwise G is decomposable.
For a decomposable graph G, the smallest integer k such that G decomposes into k locally
irregular subgraphs is the locally irregular chromatic index of G and is denoted by χ’irr(G).

One first important result in the study of locally irregular decompositions is the
full characterization of exceptional graphs, due to Baudon, Bensmail, Przybyło and
Woźniak [BBPW15]. In order to state this characterization, we first need to formally
define the following family T of graphs. The definition is recursive:

• The triangle K3 belongs to T.

• Every other graph in T can be constructed by:

1. taking an auxiliary graph H being either an even-length path or a triangle
glued on one end of an odd-length path (Figure 1.9);

2. choosing a graph G ∈ T containing a triangle with at least one vertex, say v,
of degree 2 in G;

3. identifying v with a vertex of degree 1 of H.

The full characterization of exceptional graphs is then the following:

Theorem 1.4.8 ([BBPW15]). A connected graph G is exceptional if and only if G is
either

• an odd-length path;
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1. Definitions and notation

Figure 1.9: An example of an auxiliary graph used in the construction of exceptional
graphs.

• an odd-length cycle;

• a member of T.

The link between locally irregular decomposition and nsd edge-weighting motivated
several authors, in the last years, to explore the properties of locally irregular decompos-
ition. It was conjectured by Baudon, Bensmail, Przybyło and Woźniak [BBPW15] that
every decomposable graph decomposes into at most 3 locally irregular graphs. Towards
that conjecture, it was recently proved by Bensmail, Merker and Thomassen [BMT17]
that every decomposable graph decomposes into at most 328 locally irregular graphs.
This bound was improved to 220 by Lužar, Przybyło and Soták in [LPS16].
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Chapter 2

Equitable neighbour-sum-distinguishing
weightings

As seen in Chapter 1, if k is a positive integer, and G a graph, we can associate with
any k-edge-weighting ω of G a vertex-colouring σω given by σω(v) =

∑
e3v ω(e), for

each v ∈ V (G). A neighbour-sum-distinguishing k-edge-weighting is an edge k-weighting
whose associated vertex-colouring is proper. The neighbour-sum-distinguishing index of
a graph G is then the smallest k for which G admits a neighbour-sum-distinguishing edge
k-weighting. These notions naturally extend to total weightings of graphs that assign
colours to both vertices and edges. In this chapter we will present the obtained results
on equitable neighbour-sum-distinguishing edge-weightings and equitable neighbour-sum-
distinguishing total-weightings, that is weightings ω for which the number of elements
in any two weight classes of ω differ by at most one. In this chapter, we determine
or provide optimal upper bounds for the equitable neighbour-sum-distinguishing index
or the equitable neighbour-sum-distinguishing total index of complete graphs, complete
bipartite graphs, forests, theta-graphs and, in case of total-weightings, for bipartite graphs
in general.

The results presented in sections 2.2 and 2.3 were published in [BPP+17].
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2.1. Definitions and preliminary results

2.1 Definitions and preliminary results

Let G be a graph, k a positive integer and ω a k-weighting of G. The weighting ω is
equitable if for every i, j ∈ {1, . . . , k} we have ||ω−1(i)| − |ω−1(j)|| ≤ 1. The smallest
integer k such that the graph G admits an equitable neighbour-sum-distinguishing k-
edge-weighting is the equitable neighbour-sum-distinguishing index of G, and is denoted
by χe

Σ(G). The smallest integer k such that G admits an equitable neighbour-sum-distin-
guishing k-total-weighting is the equitable neighbour-sum-distinguishing total index of G,
and is denoted by χt

Σ(G). If ω is an equitable neighbour-sum-distinguishing k-weighting
of a nice graph G, with the definition above, we can skip using some weights in {1, . . . , k},
but this implies to use every weight at most once, and that k ≥ |E(G)|. To avoid this
constraint, we can define the equitability differently by ignoring the unused weights, and
requiring to use the other weights the same number of times up to a difference of 1. This
would be a weaker version of equitable nsd weightings. Particularly, in this version, every
equitable nsd k-weighting of G is also an equitable nsd `-weighting of G for every ` ≥ k.
This seems to us to artificially bias the notion of equitability and to alter the importance
of the maximum weight used in an equitable nsd weighting. Therefore, in this thesis we
only use the first version defined in the previous paragraph.

A legitimate question that can be raised about equitable nsd edge-weightings is to
ask if every nice graph admits an equitable nsd edge-weighting, and if we can exhibit a
general bound on χe

Σ(G), for every nice graph G. It is easy to answer in the affirmative
to this question noticing that every two vertices in a nice graph have different sets of
incident edges. Then by indexing the edges with integer in {1, . . . , |E(G)|}, and weighting
each edge e with 2i(e), where i(e) is the index of the edge e, we ensure that the binary
representation of the sum at each vertex v represents the indicator function of the set
of edges incident with v. Hence, the obtained weighting is neighbour-sum-distinguishing.
Moreover, it uses each weight in {1, . . . , 2|E(G)|} at most once. Therefore, we obtain an
equitable nsd 2|E(G)|-edge-weighting of G. This gives the first general bound on χe

Σ(G) for
every nice graph G.

Note that if ω is a neighbour-sum-distinguishing k-edge-weighting of a graph G, then
the mapping ωt defined by ωt(v) = 1 for every v ∈ V (G) and ωt(e) = ω(e) for every
e ∈ E(G) is clearly a neighbour-sum-distinguishing k-total-weighting of G since σωt(v) =
σω(v) + 1 for every vertex v ∈ V (G). Hence, χt

Σ(G) ≤ χe
Σ(G) for every graph G. The

same relation holds for equitable weightings:

Proposition 2.1.1. For every graph G without isolated edges, χt
Σ(G) ≤ χe

Σ(G).

Proof. Let ω be an equitable neighbour-sum-distinguishing k-edge-weighting of G. We
will extend ω to an equitable neighbour-sum-distinguishing k-total-weighting ωt of G with
ωt(e) = ω(e) for every edge e ∈ E(G). We thus need to extend ω to vertices in such a
way that no two adjacent vertices are in conflict and the weighting remains equitable. We
first order the vertices of G as v1, v2, . . . , vn, n = |V (G)|, in such a way that

σω(v1) ≤ σω(v2) ≤ · · · ≤ σω(vn). (2.1)
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2. Equitable neighbour-sum-distinguishing weightings

1 2 1

2 1 2

1 2 2 1 1 2

Figure 2.1: A neighbour-sum-distinguishing 2-edge-weighting of the path P6.

Let ti = |ω−1(i)| be the number of edges with weight i. Moreover, let t and r be non-
negative integers such that r < k and |V (G)| + |E(G)| = tk + r. For ωt to be equitable,
we then must have r weight classes of order t+ 1 and k− r weight classes of order t. Let
Ct be any subset of k − r weights from {1, . . . , k} such that ti ≤ t for every i ∈ Ct, and
Ct+1 = {1, . . . , k} \ Ct. We will then weight t′i = t − ti vertices with weight i for each
i ∈ Ct and t′j = t + 1 − tj vertices with weight j for each j ∈ Ct+1. In order to produce
a neighbour-sum-distinguishing total-weighting, we will weight the vertices according to
the above defined order, and assign the weight 1 to the first t′1 vertices, then weight 2 to
the next t′2 vertices and so one. More formally, we let

ωt(vi) = min∑j
p=1 t

′
p≥i
{j} . (2.2)

For every edge vivj, i < j, we then have

σωt(vi) = σω(vi) + ωt(vi) < σω(vj) + ωt(vj) = σωt(vj)

since σω(vi) < σω(vi) (by (2.1), as ω is neighbour-sum-distinguishing) and ωt(vi) ≤ ωt(vj)
(by (2.2)). The total-weighting ωt is therefore an equitable neighbour-sum-distinguishing
total-weighting, and thus χt

Σ(G) ≤ χe
Σ(G).

2.2 Equitable neighbour-sum-distinguishing edge-wei-
ghting

2.2.1 Simple families of graphs

One can naturally wonder what is the value of the new parameter χe
Σ on simple families of

graphs. For paths, by Proposition 1.4.2, we know that they admit nsd 2-edge-weightings.
However, because of the small degree of vertices, we have limited number of ways to
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2.2. Equitable neighbour-sum-distinguishing edge-weighting

construct nsd 2-edge-weightings. Indeed if n ≥ 3 and Pn = v0 . . . vn, then for every nsd
2-edge-weighting ω of Pn and every i ∈ {0, . . . , n− 3}, we have

ω(vivi+1) 6= ω(vi+2vi+3), (2.3)

since otherwise, we would have a conflict between vi+1 and vi+2. Hence, once we choose the
weight of an edge e of Pn, the weights of all edges at odd distance from e are determined.
Moreover, no conflict can involve a pendent vertex. Therefore, any nsd 2-edge-weighting
of Pn can be obtained with the following procedure (see Figure 2.1):

1. Take a maximum matching M1 in Pn.

2. Weight the edges of M1, following the increasing order of their ends indices, with
weights 1 and 2, alternately.

3. The remaining edges also induce a matching M2, we use the same procedure to
weight M2 with weights 1 and 2, alternately.

Since for each matching we have at most two choices for the 2-edge-weighting, we have
at most four possible nsd 2-edge-weighting of Pn. The two matchings M1 and M2 are of
sizes

⌈
n
2

⌉
and

⌊
n
2

⌋
, respectively. The so obtained nsd 2-edge-weighting is equitable unless

M1 and M2 are of odd size, i.e. n ≡ 2 mod 4, in which case we can modify it to be
equitable by starting the weightings of M1 and M2 with different weights. Hence we get
χe

Σ(Pn) = 2, for every n ≥ 3. Moreover, using Inequality 2.3 and the fact that we are
using only two weights, we can also state that every nsd 2-edge-weighting of the path Pn
is 4-periodic if n ≥ 5. We summarize all this in the following observation.

Observation 2.2.1. Let n be a positive integer with n ≥ 3, and Pn = v0v1 . . . vn. If
n 6≡ 2 mod 4, then every nsd 2-edge-weighting of Pn is equitable, otherwise, every nsd
2-edge-weighting ω of Pn with ω(v0v1) 6= ω(v1v2) is equitable. Moreover, if n ≥ 5, then
every nsd 2-edge-weighting ω of Pn is 4-periodic, that is, ω(vi−1vi) = ω(vi+3vi+4) for every
i ∈ {1, . . . , n− 4}.

The following observation extends some of the observations above to the case of k-
edge-weightings, with k ≥ 3.

Observation 2.2.2. Let n be a integer with n ≥ 3, Pn = v0v1 . . . vn and k ≥ 3. The
k-periodic k-edge-weighting ω of Pn, defined, for i ∈ {0, . . . , n− 1}, by:

ω(vivi+1) = (i mod k) + 1,

is an equitable nsd k-edge-weighting of Pn. Moreover we have Eω(k) ≤ . . . ≤ Eω(2) ≤
Eω(1).

In the following lemma we give an inequality on the values of σω for adjacent vertices.
This inequality is very useful when treating graphs having vertices of high degree adjacent
to vertices of low degree.
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2. Equitable neighbour-sum-distinguishing weightings

Figure 2.2: The generalised Theta-graph Θ(1, 2, 3, 4, 4).

Lemma 2.2.3. If ω is a k-edge-weighting of a graph G, for a positive integer k, and uv
an edge of G, then

σω(u) ≥ σω(v)− k(dG(v)− 1) + max
e∈E(G)\{uv},e3u

{ω(e)}+ d(u)− 2.

Proof. A lower bound for σω(u) is its eventual value if we set the weights of all the edges
incident with u to 1, except uv and the edge with maximum weight. Formally:

σω(u) ≥ ω(uv) + max
e∈E(G)\{uv},e3u

{ω(e)} − 1 + dG(u)− 1.

While an upper bound for σω(v) is its eventual value if we set to k the weights of all the
edges incident with v, except uv. Formally:

σω(v) ≤ ω(uv) + k(dG(v)− 1).

Combining those two bounds yields the desired result.

The following proposition gives the exact value of χe
Σ for cycles and generalised theta-

graphs. For n ≥ 3 and d1, d2, . . . , dn ∈ N∗, the generalised Theta-graph Θd1,d2,...,dn , d1 ≤
d2 ≤ . . . ≤ dn, is the graph obtained by joining two vertices u and v by n internal-vertex-
disjoint paths of respective lengths d1, d2, . . . , dn. In a generalised theta-graph Θd1,d2,...,dn

all vertices are of degree 2, except u and v which are of degree n.

Proposition 2.2.4.

1. For every n ≥ 3, χe
Σ(Cn) = 2 if n ≡ 0 mod 4 and χe

Σ(Cn) = 3 otherwise;

2. for every n ≥ 3, χe
Σ(Θd1,d2,...,dn) = 3 if d1 = 1 and di ≡ 1 mod 4 for every i,

2 ≤ i ≤ n, and χe
Σ(Θd1,d2,...,dn) = 2 otherwise.

Proof. We prove the two items separately.
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2.2. Equitable neighbour-sum-distinguishing edge-weighting

1. We can easily check that χe
Σ(C3) = 3 and χe

Σ(C4) = 2. Suppose that n ≥ 5 and
let Cn = v1 . . . vnv1. The cycle Cn can be obtained by identifying the end vertices
of Pn = v0v1 . . . vn. If n ≡ 0 mod 4, then construct a 2-edge-weighting ω of Pn
as described in the procedure depicted in Figure 2.1, such that ω(v0v1) = 1 and
ω(v1v2) = 2. By Observation 2.2.1 we have ω(vn−2vn−1) = 2 and ω(vn−1vn) = 1,
hence σω(vn−1) = 3 and σω(v1) = 3. Now we identify v0 and vn by creating a new
vertex that we call vn. We then have ω(vnv1) = 1, so that σω(vn) = 2 6= 3, which
means that vn is sum-distinguished from v1 and vn−1, and since we did not modify
the neighbourhood of any vertex vi with i ∈ {2, n−1}, the obtained weighting is an
nsd 2-edge-weighting of Cn. Moreover, by Observation 2.2.1 ω is equitable, hence ω
is an nsd 2-edge-weighting of Cn and χe

Σ(Cn) ≤ 2. Since χe
Σ(Cn) ≥ χe

Σ(Cn) ≥ 2, we
get χe

Σ(Cn) = 2. Suppose now that n 6≡ 0 mod 4. We know from [KNN+12] that
χe

Σ(Cn) ≥ χe
Σ(Cn) ≥ 3, hence we can use the technique as in the previous case to

build an equitable nsd 3-edge-weighting ω of Cn. We will discuss the two following
cases:

• if n ≡ 0 or 1 mod 3, then weight the path Pn by repeating the pattern 1−2−3
starting from v0v1;
• if n ≡ 2 mod 3, then use the same pattern from v0v1 to vn−3vn−2, then set
ω(vn−2vn−1) = 3 and ω(vn−1vn) = 1.

The weighting ω is an nsd 3-edge-weighting of Pn since ω(vivi+1) 6= ω(vi+2vi+3) for
every i ∈ {0, . . . , n − 3}. Moreover ω is equitable since it is just the repetition of
the pattern 1− 2− 3. When we identify v0 and vn we can easily check that in each
case we do not create any conflict between vn and its neighbours. Hence ω is an
equitable nsd 3-edge-weighting. Therefore χe

Σ(Cn) = 3.

2. Khatirinejad, Naserasr, Newman, Seamone, and Stevens [KNN+12] and Lu, Yang,
and Zhang [LYZ11] showed that for every integer n ≥ 3, χe

Σ(Θd1,...,dn) = 3 if d1 = 1
and di ≡ 1 mod 4 for every i ∈ {2, . . . , n}, and χe

Σ(Θd1,...,dn) = 2 otherwise. Let
G = Θd1,...,dn for some set of positive integers {d1, . . . , dn}, and let u and v be the
two vertices of degree n in G. Moreover, let Q1, . . . , Qn be the paths joining u and
v in G of length d1, . . . , dn, respectively, u1, . . . , un be the neighbours of u on the
paths Q1, . . . , Qn, respectively, and v1, . . . , vn be the neighbours of v on the paths
Q1, . . . , Qn, respectively. Note that we have u1 = v and v1 = u if d1 = 1. We
consider three cases, depending on the values of d1, . . . , dn.

• Case 1: Suppose that d1 = 1 and di ≡ 1 mod 4 for every i, 2 ≤ i ≤ n. We
construct an equitable nsd 3-edge-weighting of G. First we set ω(uv) = 3.
Note that by doing this we ensure that u is sum-distinguished from u2, . . . , un
and that v is sum distinguished from v2, . . . , vn. This is true because dG(u) =
dG(v) ≥ 3, and for every i, 2 ≤ i ≤ n, dG(ui) = dG(vi) = 2 and di ≥ 2. Hence

σω(u) = 3 +
n∑
i=2

ω(uui) > ω(uuj) + 3 ≥ σω(uj) for every j, 2 ≤ j ≤ n,
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and

σω(v) = 3 +
n∑
i=2

ω(vvi) > ω(vvj) + 3 ≥ σω(vj) for every j, 2 ≤ j ≤ n.

Moreover we have u1 = v and v1 = u. For k ∈ {0, 1, 2}, let Ik := {Qi|2 ≤ i ≤
n, di ≡ k mod 3}. If |I1 ∪ I2| < |I0|, then we weight the edges of each path
in I0 with the pattern 1 − 2 − 3, starting from uui. This will guarantee that
σω(u) < σω(v), independently from how we weight the edges of the paths in
I1 ∪ I2. Indeed, every edge incident to u (resp. v) in a path in I0 is weighted
1 (resp. 3). Hence,

σω(u) ≤ 3 + |I0|+ 3|I1 ∪ I2| < 3 + 3|I0|+ |I1 ∪ I2| ≤ σω(v).

Moreover, every two adjacent internal vertices of each path Qi ∈ I0 are sum-
distinguished because no two edges at distance 2 in Qi have the same weight,
Note that if |I1 ∪ I2| = 0, then we are done. Now suppose that |I1 ∪ I2| > 0.
We consider the walk W starting from u and ending at u or v and going
once through every path in I1 ∪ I2. Then we use the pattern 1 − 2 − 3 to
weight periodically the edges of W . By Observation 2.2.2 we create no conflict
between the 2-vertices of W . This means that the obtained 3-edge-weighting
ω is neighbour-sum-distinguishing. Moreover, by Observation 2.2.2, the re-
striction of ω to W , ω|W , is equitable and |Eω|W (3)| ≤ |Eω|W (2)| ≤ |Eω|W (1)|,
while for the restriction ω|E(I0)∪{uv} of ω to the edges in E(I0) ∪ {uv} we have
|Eω|E(I0)∪{uv}

(1)| = |Eω|E(I0)∪{uv}
(2)| = |Eω|E(I0)∪{uv}

(3)|−1. Hence ω is equitable.

• Case 2: Suppose that d1 = 1 and there exists i ∈ {2, . . . , n} such that di 6≡
1 mod 4. Note that if ω is a 2-edge-weighting of Θd1,d2,...,dn , then for every
j ∈ {1, . . . , n}, σω(u) ≥ σω(uj) + n − 3 and σω(v) ≥ σω(vj) + n − 3. We
prove by induction on n that G admits an equitable nsd 2-edge-weighting ω of
Θd1,d2,...,dn .

– If n = 3, then we set ω(uv) = 2. By Lemma 2.2.3, this guarantees that
u and v are distinguished from their respective neighbours on the paths
Q2 and Q3. If d2 or d3 is even, let i ∈ {2, 3} such that di is even, and
j = 5 − i. Particularly, this means that di 6≡ 1 mod 4. Now we set
ω(uui) = 2, and weight the edges of Qi in order to have ω(vvi) = 1 and
ω|E(Qi) is equitable. This is always possible using the weighting depicted
in Figure 2.1 since di 6≡ 1 mod 4. Moreover, since di is even ω|uv∪E(Qi)

is equitable. Then we weight Qj with weights 1 and 2 in such a way
that ω(uuj) ≥ ω(vvj) and ω is equitable. This is always possible because
we can exchange the 1’s and 2’s on Qj in order to guarantee that ω is
equitable, and we can take the symmetric weighting of Qj in order to get
ω(uuj) ≥ ω(vvj). Finally, σω(u) > σω(v). Hence, ω is an equitable nsd 2-
edge-weighting of Θd1,d2,...,dn . Now suppose that d2 and d3 are odd, then we
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set ω(uui) = 2, and weight the edges of Qi in order to have ω(vvi) = 1 and
ω|E(Qi) is equitable. If ω|uv∪E(Qi) is not equitable, then we exchange the 1’s
and 2’s in the weighting of Qi. Since di is odd, this will make ω|uv∪E(Qi)

equitable. Now we use the same procedure as above to weight Qj, but this
time ensuring that ω(uuj) ≥ ω(vvj) if and only if ω(uui) ≥ ω(vvi). Hence,
by the same argument as above ω is an equitable nsd 2-edge-weighting of
Θd1,d2,...,dn .

– Let n ≥ 3 be an integer. Suppose that for any positive integers d1 ≤
d2 ≤ . . . ≤ dn, with d1 = 1 and d2 ≥ 2 and di 6≡ 1 mod 4 for some
i ∈ {2, . . . , n}, there exists an equitable nsd 2-edge-weighting ω of Θd1,...,dn

with ω(uv) = 2. Now let d1 ≤ d2 ≤ . . . ≤ dn+1 be n + 1 positive integers
with d1 = 1 and d2 ≥ 2 and di 6≡ 1 mod 4 for some i ∈ {2, . . . , n + 1},
and let G = Θd1,...,dn+1 . Now let j ∈ {2, . . . , n} \ {i}, and G′ = G − Qj.
By induction hypothesis G′ admits an equitable nsd 2-edge-weighting ω′
with ω′(uv) = 2. By Lemma 2.2.3, u and v are sum-distinguished from
their respective neighbours in Pdn+1 , no matter how we extend ω′ to Pdn+1 .
Moreover, ω′ is an nsd edge-weighting, hence, σ′ω(u) 6= σ′ω(v). Now we
weight Qj with weights 1 and 2 in such a way that ω(uuj) ≥ ω(vvj)
if σ′ω(u) > σ′ω(v), and ω(uuj) ≤ ω(vvj) if σ′ω(u) < σ′ω(v), and thus ω the
extension of ω′ to G, is equitable. This is possible because we can exchange
the 1’s and 2’s on Qj in order to guarantee that ω is equitable, and we
can take the symmetric weighting of Qj in order to get ω(uuj) ≥ ω(vvj).
Hence, ω is an equitable nsd 2-edge-weighting of G.

• Case 3 : Now suppose that d1 > 1. We construct an equitable nsd 2-edge-
weighting ω of Θd1,...,dn . Since u and v are not adjacent, we do not need to
sum-distinguish u and v. We separate two sub-cases.

– If there exists i ∈ {1, . . . , n} such that di is even, then we first weight the
edges of Qi repeating the pattern 2− 1− 1− 2 starting from the edge uui.
Then we weight the edges of Qj, for some j 6= i, repeating the pattern
2 − 1 − 1 − 2 starting from the edge vvj. This guarantees that u and v
are sum-distinguished from their respective neighbours, no matter how we
complete the weighting ω. Indeed, for every k ∈ {1, . . . , n}, k 6= i, we have
σω(u) > σω(uk) by Lemma 2.2.3 and

σω(u) ≥ ω(uui) + n− 1 > ω(uui) + 1 = σω(ui),

and similarly for v. Moreover,

|Eω|E(Qi)
(1)| = |Eω|E(Qi)

(2)|

and ω|E(Qj) is equitable. Hence ω|E(Qi)∪E(Qj) is equitable. Now consider a
walkW starting from u and ending at u or v and going once through every
edge of Θd1,...,dn −(E(Qi)∪E(Qj)). Then we use the pattern 1− 2− 2− 1
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to weight periodically the edges of W . The so obtained weighting ω is
clearly an nsd 2-edge-weighting of Θd1,...,dn . Moreover, ω|W is equitable
by Observation 2.2.1. Hence ω is equitable, unless ω|W and ω|E(Qj)∪E(Qj)

use the same weight, say 1, once more than the weight 2, in this case
we can modify the weighting of W , exchanging the 1’s and 2’s. The so
obtained 2-edge-weighting is still neighbour-sum-distinguishing, and this
time is equitable.

– If di is odd for every i,1 ≤ i ≤ n, then there exist i and j in {1, . . . , n},
with i 6= j and di ≡ dj mod 4. Now we use the pattern 2 − 1 − 1 − 2
to weight periodically the edges of Qi starting from uui, and we use the
same pattern to weight the edges of Qj starting from vvj. Using the
same argument as above we can say that u and v are sum-distinguished
from their respective neighbours no matter how we complete the 2-edge-
weighting. Now we weight the edges of each path Qk, with k 6∈ {i, j}, using
the pattern 1− 2− 2− 1 periodically. The so obtained 2-edge-weighting is
clearly nsd. However, it is not necessarily equitable. In order to have an
equitable nsd 2-edge-weighting, we can modify the weighting of the edges of
a path Qk, with k 6∈ {i, j}, exchanging the 1’s and 2’s. This modification
keeps the weighting nsd and, since dk is odd, it necessarily decrease or
increase by 1 the value of ||Eω(1)|− |Eω(2)||. Since ||Eω(1)|− |Eω(2)|| ≤ 2
after the weighting of Qi and Qj, and n ≥ 3, we can ensure at the end
that ||Eω(1)| − |Eω(2)|| ≤ 1.

Davoodi and Omooni proved in [DO15] that χe
Σ(G�H) ≤ max{χe

Σ(G), χe
Σ(H)} for

every nice graphs G and H. The next proposition is a weaker version of this result for
the equitable edge-weightings. Moreover, their proof also works for our result.

Proposition 2.2.5. If G and H admit equitable nsd k-edge-weightings and |E(G)| ≡
|E(H)| ≡ 0 mod k, then G�H also admits an nsd k-edge-weighting.

Proof. [DO15]. Let ωG and ωH be two equitable nsd k-edge-weightings of G and H,
respectively. For (u, v)(u′, v′) ∈ E(G�H), we define ω((u, v)(u′, v′)) = ωG(uu′) if v = v′

and ω((u, v)(u′, v′)) = ωH(vv′) if u = u′. The edge-weighting ω is equitable because ωG
and ωH are equitable and |E(G)| ≡ |E(H)| ≡ 0 mod k. Moreover, if (u, v) ∈ V (G�H),
then σω((u, v)) = σωG

(u) + σωH
(v). Hence, for any neighbour (u, v′) or (u′, v) of (u, v) we

have :
σω((u′, v)) = σωG

(u′) + σωH
(v) 6= σωG

(u) + σωH
(v) = σω((u, v))

or
σω((u, v′)) = σωG

(u) + σωH
(v′) 6= σωG

(u) + σωH
(v) = σω((u, v)).

Therefore ω is an equitable nsd k-edge-weighting of G�H.
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It is known that for every graph G with no isolated edge, the neighbour-sum-distin-
guishing index of G is 3 if G is a complete graph, see e.g. [CLWY11], 2 if G is a complete
bipartite graph [LYZ11] and at most 2 if G is a forest [KNN+12]. In the next three
subsections we explore the equitable neighbour-sum-distinguishing index of these graphs.

2.2.2 Complete graphs

The most popular proof of the fact that χe
Σ(Kn) = 3 for n ≥ 3 is the construction of a

neighbour-sum-distinguishing 3-edge-weighting of Kn in the following way:

1. Choose any triangle of Kn and weight its edges with weights 1, 2 and 3.

2. Then process the other vertices in an arbitrary order, and at each step use the
same weight (alternately 1 or 3) on all the edges joining the current vertex and the
previously processed ones.

The resulting edge weighting is neighbour-sum-distinguishing because the initial tri-
angle is neighbour-sum-distinguished, and at each step we add the same weight to all
processed vertex, creating no conflict between them, and the new processed vertex get
a sum which is either strictly greater or strictly smaller than all previously processed
vertices. Hence it is not in conflict with previously processed vertices. By induction we
can conclude the proof.

The main observation on this construction is that it uses the weight 2 only once, hence
the resulting weighting is somehow very “non-equitable”. In the following theorem we
explore the equitable neighbour-sum-distinguishing edge-weightings of complete graphs.

Theorem 2.2.6. For every complete graph Kn with n ≥ 3, χe
Σ(Kn) = 3 except for the

case of n = 4, for which we have χe
Σ(K4) = 4.

In order to prove Theorem 2.2.6, we first introduce some definitions and preliminary
results.

Let ω be an edge-weighting of a graph G, and let σ = σω be the vertex-colouring of G
induced by ω, and σ be the mean value of σ on V (G), that is

σ =
1

|V (G)|
∑

v∈V (G)

σ(v).

The σ-deviation (or deviation if there is no possible confusion) of a vertex v is the value
µσ(v) = σ(v)− σ. If G is regular graphs, and ω is a 3-edge-weighting of G, the deviation
can be computed using the following two lemmas:

Lemma 2.2.7. Let G be a d-regular graph, ω be a 3-edge-weighting of G and σ be the
vertex-colouring of G induced by ω. We then have σ(v) = dω,3(v)− dω,1(v) + 2d for every
vertex v in G.
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Proof. We have

σ(v) = dω,1(v) + 2 dω,2(v) + 3 dω,3(v)
= dω,3(v)− dω,1(v) + 2(dω,1(v) + dω,2(v) + dω,3(v))
= dω,3(v)− dω,1(v) + 2d.

and the result follows.

Lemma 2.2.8. Let G be a d-regular graph, ω be a 3-edge-weighting of G such that
|Eω(1)| = |Eω(3)|, and σ be the vertex-colouring of G induced by ω.

We then have σ = 2d and µσ(v) = dω,3(v)− dω,1(v) for every vertex v in G.

Proof. Using Lemma 2.2.7, we get∑
v∈V (G) σ(v) =

∑
v∈V (G) (dω,3(v)− dω,1(v) + 2 dG(v))

= 2|Eω(3)| − 2|Eω(1)|+ 2d|V (G)|
= 2d|V (G)|.

This gives σ = 2d. Moreover, since σ(v) = dω,3(v)−dω,1(v)+2d, we get µσ(v) = σ(v)−σ =
dω,3(v)− dω,1(v).

We say that a 3-edge-weighting ω of G is good if the following conditions hold:

1. |Eω(1)| = |Eω(3)|,

2. for every vertex v in G,

−
⌊
|V (G)|

2

⌋
≤ µσ(v) ≤

⌊
|V (G)|

2

⌋
,

3. there exist two vertices wωmin and wωmax in G such that

µσ(wωmin) = −
⌊
|V (G)|

2

⌋
and

µσ(wωmax) =

⌊
|V (G)|

2

⌋
.

where σ denotes the vertex-colouring of G induced by ω.

Lemma 2.2.9. For every integer n ≥ 3, if ω is an equitable 3-edge-weighting of the
complete graph Kn such that |Eω(1)| = |Eω(3)|, then either

|Eω(2)| = |Eω(1)| = |Eω(3)|

or
|Eω(2)| = |Eω(1)|+ 1 = |Eω(3)|+ 1.

37



2.2. Equitable neighbour-sum-distinguishing edge-weighting

6

7

8

9 10

1

1

1 3

2

2 2

3 2

3


− 1 1 1 3
1 − 2 2 2
1 2 − 3 2
1 2 3 − 3
3 2 2 3 −


6
7
8
9
10

Figure 2.3: An equitable neighbour-sum-distinguishing 3-edge-weighting of K5 and its
matrix representation.


− 1 1 1 1 3
1 − 1 2 2 2
1 1 − 2 3 2
1 2 2 − 3 3
1 2 3 3 − 3
3 2 2 3 3 −


7
8
9

11
12
13

Figure 2.4: Matrix representation of an equitable neighbour-sum-distinguishing 3-edge-
weighting of K6.

Proof. Since |E(Kn)| = n(n−1)
2

, if n ≡ 0 or 1 mod 3, then |E(Kn)| ≡ 0 mod 3, which
implies |Eω(2)| = |Eω(1)| = |Eω(3)|. On the other hand, if n ≡ 2 mod 3, then |E(Kn)| ≡
1 mod 3, which implies |Eω(2)| = |Eω(1)|+ 1 = |Eω(3)|+ 1.

We are now able to prove Theorem 2.2.6. We first prove that χe
Σ(Kn) ≥ 3 for every

n ≥ 3, then we prove a series of claims concerning equitable neighbour-sum-distinguishing
edge-weightings of Kn for small values of n.

Claim 2.2.10. For every integer n ≥ 3, χe
Σ(Kn) ≥ χe

Σ(Kn) ≥ 3.

Proof. Let n ≥ 3 be an integer. Obviously, we have χe
Σ(Kn) ≥ χe

Σ(Kn). Now assume to the
contrary that their exist an equitable neighbour-sum-distinguishing 2-edge-weighting ω of
Kn and let σ be the vertex-colouring induced by ω. We then have n−1 ≤ σ(v) ≤ 2(n−1)
for every vertex v of Kn, hence, since we need n distinct values for n vertices, there exist
two vertices u and v with σ(u) = n − 1 and σ(v) = 2(n − 1), in contradiction with the
weight of the edge uv.
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6

7 8

5

1 3

2

2

4

1


− 3 1 2
3 − 4 1
1 4 − 2
2 1 2 −


6
8
7
5

Figure 2.5: An equitable neighbour-sum-distinguishing 4-edge-weighting of K4 and its
matrix representation.

Claim 2.2.11. For every integer n ∈ {3, 5, 6}, there exists a good equitable neighbour-
sum-distinguishing 3-edge-weighting of Kn.

Proof. A good equitable neighbour-sum-distinguishing 3-edge-weighting of K3 is obtained
by weighting the edges of K3 with weights 1, 2 and 3, respectively.

A good equitable neighbour-sum-distinguishing 3-edge-weighting of K5 is depicted in
Figure 2.3, together with its matrix representation. The value in row i and column j is
the weight of the edge ij. The sum at vertex i is given at the end of row i.

The matrix representation of a good equitable neighbour-sum-distinguishing 3-edge-
weighting of K6 is given in Figure 2.4.

Claim 2.2.12. χeΣ(K4) = 4.

Proof. Assume first that ω is an equitable neighbour-sum-distinguishing 3-edge-weighting
of K4 and let σ be the vertex-colouring induced by ω. Since |E(K4)| = 6, we necessarily
have |Eω(1)| = |Eω(2)| = |Eω(3)| = 2 which implies dω,i(v) ≤ 2 for every v ∈ V (K4) and
every i, 1 ≤ i ≤ 3. Hence, 4 ≤ σ(v) ≤ 8 for every v ∈ V (K4). On the other hand, we
have

∑
v∈V (K4) σ(v) = 2

∑
e∈E(K4) ω(e) = 24.

Let V (K4) = {v1, v2, v3, v4}. The only way to partition 24 into 4 distinct integers
belonging to [3, 9] is 24 = 4 + 5 + 7 + 8. Hence, we can suppose, without loss of generality,
that σ(v1) = 4, σ(v2) = 5, σ(v3) = 7 and σ(v4) = 8. The edges incident with v1 are
thus weighted 1, 1 and 2, while the edges incident with v4 are weighted 3, 3 and 2. This
implies ω(v1v4) = 2 and thus ω(v1v2) = 1, ω(v1v3) = 1, ω(v2v4) = 3 and ω(v3v4) = 3,
hence ω(v2v3) = 2. Thus, we finally get σ(v2) = σ(v3) = 6, a contradiction.

Hence, χeΣ(K4) > 3. An equitable neighbour-sum-distinguishing 4-edge-weighting of
K4 is given in Figure 2.5, together with its matrix representation.

We will now prove that χeΣ(Kn) ≤ 3 for every n ≥ 7, by induction on n. More precisely,
we will show that for every n ≥ 5 any good equitable neighbour-sum-distinguishing 3-
edge-weighting of Kn can be extended to a good equitable neighbour-sum-distinguishing
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u v

S

S

...

...

1
2
3

Figure 2.6: The 3-edge-weighting ω0 of Kn+2.

3-edge-weighting of Kn+2. Together with Claims 2.2.10 to 2.2.12, this will complete the
proof.

Let ω be a good equitable neighbour-sum-distinguishing 3-edge-weighting of Kn, with
n ≥ 5. Suppose that Kn+2 is obtained from Kn by adding two new vertices u and v. Let
S ⊆ V (Kn) be any fixed set of bn

2
c+ 1 = bn+2

2
c vertices and S = V (Kn)\S (we thus have

V (Kn+2) = S ∪ S ∪ {u, v}). We first define a 3-edge-weighting ω0 of Kn+2 as follows:

1. ω0(xy) = ω(xy) for every edge xy with x, y ∈ S ∪ S,

2. ω0(uv) = 2,

3. for every vertex x ∈ S, ω0(ux) = 1 and ω0(vx) = 3,

4. for every vertex y ∈ S, ω0(uy) = ω0(vy) = 2.

The 3-edge-weighting ω0 is depicted on Figure 2.6 (dashed, thin and thick edges rep-
resent edges with weights 1, 2 and 3, respectively). This weighting is not equitable but is
indeed good and neighbour-sum-distinguishing:
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•

• •

•
µσ0(v) = bn2 c+ 1µσ0(w

ω
max) = bn2 c

µσ0(u) = −bn2 c − 1 µσ0(w
ω
min) = −bn2 c

−→

•

• •

•
µσ1(v) = bn2 cµσ1(w

ω1
max) = bn2 c+ 1

µσ1(u) = −bn2 c µσ1(w
ω1
min) = −b

n
2 c − 1

Figure 2.7: Re-weighting of type 1.

Claim 2.2.13. The 3-edge-weighting ω0 is a good neighbour-sum-distinguishing 3-edge-
weighting of Kn+2.

Proof. Recall that ω is a good equitable neighbour-sum-distinguishing 3-edge-weighting
of Kn. We denote by σ and σ0 the vertex-colourings induced by ω and ω0, respectively.

For each vertex x ∈ S ∪ S, the two edges ux and vx are either assigned weights 1 and
3 or both assigned weight 2 by ω0. Therefore, for every vertex x ∈ S ∪S, µσ0(x) = µσ(x),
which implies −bn

2
c ≤ µσ0(x) ≤ bn

2
c. On the other hand, µσ0(u) = −(bn

2
c+ 1) = −bn+2

2
c

and µσ0(v) = bn
2
c+ 1 = bn+2

2
c. Hence, all vertices of Kn+2 are assigned distinct values by

µσ0 which means by Lemmas 2.2.7 and 2.2.8 that ω0 is a neighbour-sum-distinguishing
3-edge-weighting.

It remains to show that the edge-weighting ω0 is good. Since |Eω0(1)| = |Eω(1)|+bn+2
2
c

and |Eω0(3)| = |Eω(3)|+ bn+2
2
c, we get |Eω0(1)| = |Eω0(3)|. Finally, we already observed

that µσ0(u) = −bn+2
2
c and µσ0(v) = bn+2

2
c, and that −bn

2
c ≤ µσ0(x) ≤ bn

2
c for every

vertex x ∈ S ∪ S. This completes the proof.

While constructing ω0 from ω, we added bn+2
2
c edges with weight 1, bn+2

2
c edges with

weight 3 and 2n+ 1− 2bn+2
2
c edges with weight 2. The edge weighting ω0 is thus (almost

always) not equitable. We will then modify the edge weighting ω0 in order to obtain an
equitable edge weighting ω1. In order to do that, we need to re-weight with weights 1 or
3 some edges which are weighted with the weight 2, say p = 2q such edges, leading to an
edge weighting ω1 (with induced vertex-colouring σ1) such that |Eω1(1)| = |Eω0(1)| + q,
|Eω1(3)| = |Eω0(3)| + q and |Eω1(2)| = |Eω0(2)| − 2q with either |Eω1(2)| = |Eω1(1)| or
|Eω1(2)| = |Eω1(1)|+ 1 by Lemma 2.2.9.

The edge-weighting ω1 will be produced using two types of re-weightings, both in-
volving edges incident with u or v, described as follows:

• Re-weighting of type 1: Let wωmin and wωmax denote the (unique) two vertices such
that µσ0(wωmin) = −bn

2
c (= µσ(wωmin)) and µσ0(w

ω
max) = bn

2
c (= µσ(wωmax)). If

uwωminvw
ω
max is a 2-monochromatic 4-cycle, then re-weight with 1 the edge vwωmin

and re-weight with 3 the edge uwωmax (see Figure 2.7). Note that the deviations
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•

• •

•
yi

u xi

v

−→

•

• •

•
yi

u xi

v

Figure 2.8: Re-weighting of type 2.

of u and wωmin, and of v and wωmax have been switched, so that wω1
min = wωmin and

wω1
max = wωmax.

• Re-weighting of type 2: If the set of pairs of vertices {(xi, yi)}1≤i≤k, k ≥ 1, is such
that uxivyi is a 2-monochromatic 4-cycle for every i, 1 ≤ i ≤ k, then re-weight with
1 all edges uxi and vyi and re-weight with 3 all edges uyi and vxi (see Figure 2.8).
Note that the deviation of any of these 2k + 2 vertices remains unchanged.

Recall that we need to re-weight p = 2q edges which are weighted with 2, q of them
with weight 1 and the q others with weight 3. If q = 1, since n ≥ 5, we can ensure that
the chosen set S contains none of the vertices wωmin and wωmax. By doing so and then
applying the re-weighting of type 1, we obtain edge-weighting ω1 such that:

1. |Eω1(1)| = |Eω1(3)| and either |Eω1(2)| = |Eω1(1)| or |Eω1(2)| = |Eω1(1)|+ 1,

2. for every vertex x ∈ V (Kn+2), −bn+2
2
c ≤ σ1(x) ≤ bn+2

2
c,

3. wω1
min = wωmin and wω1

max = wωmax.

Hence, ω1 is an equitable good neighbour-sum-distinguishing 3-edge-weighting of Kn+2

and we are done.
Assume from now on that q ≥ 2. Since ω is an equitable good neighbour-sum-distin-

guishing 3-edge-weighting of Kn, we know by Lemma 2.2.9 that

|Eω(1)| = |Eω(3)| = r, and r ≤ |Eω(2)| ≤ r + 1,

with r = bn(n−1)
6
c. As observed before, considering the way the edge-weighting ω0 has

been constructed (see Figure 2.6), we also have

|Eω0(1)| = |Eω0(3)| = r +

⌊
n+ 2

2

⌋
,

and
r + 2n+ 1− 2

⌊
n+ 2

2

⌋
≤ |Eω0(2)| ≤ r + 2n+ 1− 2

⌊
n+ 2

2

⌋
+ 1.
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Again by Lemma 2.2.9, in order to be an equitable good neighbour-sum-distinguishing
3-edge-weighting of Kn+2, the edge-weighting ω1 must be such that

|Eω1(1)| = |Eω1(3)| = r +

⌊
n+ 2

2

⌋
+ q,

and
r +

⌊
n+ 2

2

⌋
+ q ≤ |Eω1(2)| ≤ r +

⌊
n+ 2

2

⌋
+ q + 1. (2.4)

On the other hand, since ω1 has been obtained by re-weighting 2q edges which were
weighted with weight 2 by ω0, we also have

r + 2n+ 1− 2

⌊
n+ 2

2

⌋
− 2q ≤ |Eω1(2)| ≤ r + 2n+ 1− 2

⌊
n+ 2

2

⌋
− 2q + 1. (2.5)

Combining (2.4) and (2.5), we get

r +

⌊
n+ 2

2

⌋
+ q ≤ r + 2n+ 1− 2

⌊
n+ 2

2

⌋
− 2q + 1,

which gives

3q ≤ 2n+ 1− 3

⌊
n+ 2

2

⌋
+ 1.

Since q ≥ 2, we thus necessarily have n = 11 or n ≥ 13. Moreover, we also get

|S| = n−
⌊
n+ 2

2

⌋
≥ 3q − n+ 2

⌊
n+ 2

2

⌋
− 2 ≥ 3q − 1 ≥ q + 3 ≥ 5. (2.6)

The edge-weighting ω1 is then obtained as follows, depending on the parity of q.

1. q = 2t, t ≥ 1.
We choose any set of t pairs of vertices X = {(xi, yi)}1≤i≤t in S. Since uxivyi is a 2-
monochromatic 4-cycle for every i, 1 ≤ i ≤ t, we can apply the re-weighting of type 2
to the set X, so that |Eω1(1)| = |Eω1(3)| = |Eω0(1)|+q and |Eω1(2)| = |Eω0(2)|−2q.
The so-obtained edge-weighting ω1 is thus an equitable good neighbour-sum-distin-
guishing 3-edge-weighting of Kn+2.

2. q = 2t+ 1, t ≥ 1.
We first choose any set of t pairs of vertices X = {(xi, yi)}1≤i≤t−1 in S\{wωmin, wωmax}
(this is possible since, by (2.6), |S| ≥ q + 3). Since uxivyi is a 2-monochromatic
4-cycle for every i, 1 ≤ i ≤ t, we can apply the re-weighting of type 2 to the set X, so
that we have |Eω0(1)|+q−1 vertices weighted with 1 (resp. with 3). We then apply
the re-weighting of type 1, since uwωminvwωmax is still a 2-monochromatic 4-cycle, so
that |Eω1(1)| = |Eω1(3)| = |Eω0(1)|+ q and |Eω1(2)| = |Eω0(2)| − 2q. Therefore, the
so-obtained edge-weighting ω1 is an equitable good neighbour-sum-distinguishing
3-edge-weighting of Kn+2.

This concludes the proof of Theorem 2.2.6.
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Figure 2.9: An equitable neighbour-sum-distinguishing 3-edge-weighting of K3,3.

2.2.3 Complete bipartite graphs

Let Km,n, with n,m ≥ 2, be a complete bipartite graph with parts A and B of order m
and n, respectively. If m 6= n then Km,n is locally irregular and we have χe

Σ(Km,n) =
χe

Σ(Km,n) = 1. Otherwise, we can easily obtain an nsd 2-edge-weighting of G by choosing
one vertex v in A, and weighting all the edges incident with v with the weight 2. Then
weighting all the other edge with the weight 1. The so obtained 2-edge-weighting ω is
neighbour-sum-distinguishing because σω(v) = 2n and for every u ∈ A \ {v}, σω(u) = n,
while for every w ∈ B, σω(w) = n + 1. However, ω is far from being equitable. In the
next theorem we explore equitable nsd 2-edge-weighting for complete bipartite graphs.

Theorem 2.2.14. χe
Σ(Km,n) = 2 whenever m = n = 2 or m = n ≥ 4, χe

Σ(K3,3) = 3 and
χe

Σ(Km,n) = 1 if 1 ≤ m < n.

Proof. If 1 ≤ m < n then adjacent vertices have distinct degrees, and hence weighting all
edges with weight 1 gives an equitable nsd 1-edge-weighting of Km,n.

If m = n then Km,n is regular, and therefore, χe
Σ(Km,n) ≥ 2. Suppose first that

m = n = 3 and let V ∪ V ′ denotes the bipartition of V (K3,3), with V = {v1, v2, v3} and
V ′ = {v′1, v′2, v′3}. We first claim that χeΣ(K3,3) > 2. Assume to the contrary that ω is
an equitable neighbour-sum-distinguishing 2-edge-weighting of K3,3 and let σ denote the
vertex-colouring induced by ω. Since |E(K3,3)| = 9, we necessarily have

{|Eω(1)|, |Eω(2)|} = {4, 5}. (2.7)

Moreover, since 3 ≤ σ(v) ≤ 6 for every vertex v ∈ V ∪ V ′, we get without loss of
generality either σ(v1) = σ(v2) = σ(v3), or σ(v1) = σ(v2) 6= σ(v′1) = σ(v′2). In the first
case, we get |Eω(1)| + 2|Eω(2)| = 3σ(v1) ≡ 0 mod 3, in contradiction with (2.7). In the
latter case, we necessarily have {σ(v1), σ(v′1)} = {4, 5}, since otherwise we would have six
edges with the same weight. Assume without loss of generality that the edges incident
with v1 and v2 are weighted 1, 1 and 2. Since ω is an equitable edge-weighting, the edges
incident with v3 are necessarily weighted 2, 2, and 2, but then σ(v′3) = 4 = σ(v1), or 2, 2
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and 1, again a contradiction since this would in turn imply σ(v3) = σ(v′1) = 5. Taking into
account the equitable neighbour-sum-distinguishing 3-edge-weighting of K3,3 depicted in
Figure 2.9, we get χeΣ(K3,3) = 3.

Finally, suppose that m = n = 2 or m = n ≥ 4 and let V ∪V ′ denote the bipartition of
V (Kn,n), with V = {v1, . . . , vn} and V ′ = {v′1, . . . , v′n}. We consider two cases, depending
on the parity of n.

1. n = 2t, t ≥ 1.
Let ω be the 2-edge-weighting of Kn,n defined as follows. For every edge viv′j ∈
E(Kn,n), let σ(viv

′
j) = 1 if i is odd and σ(viv

′
j) = 2 otherwise. Since n is even,

ω is an equitable 2-edge-weighting. To see that ω is neighbour-sum-distinguishing,
observe that for every i, 1 ≤ i ≤ n, σ(vi) = 2t if i is odd, σ(vi) = 4t if i is even,
while σ(v′j) = 3t for every j, 1 ≤ j ≤ n.

2. n = 2t+ 1, t ≥ 2.
Let ω be the 2-edge-weighting of Kn,n defined as follows. For the subgraph of Kn,n

induced by {v1, . . . , vn−1} ∪ {v′1, . . . , v′n−1}, ω is defined as in the previous case. We
then set ω(vnv

′
j) = 1 for every j, 1 ≤ j ≤ n−1, ω(viv

′
n) = 2 for every i, 1 ≤ i ≤ n−1,

and σ(vnv
′
n) = 1. The edge-weighting ω thus obtained is clearly an equitable 2-edge-

weighting. To see that ω is neighbour-sum-distinguishing, observe that for every i,
1 ≤ i ≤ n−1, σ(vi) = 2t+2 if i is odd, σ(vi) = 4t+2 if i is even, while σ(v′j) = 3t+1
for every j, 1 ≤ j ≤ n− 1, σ(vn) = 2t+ 1 and σ(v′n) = 4t+ 1.

This concludes the proof of Theorem 2.2.14.

2.2.4 Forests

By Proposition 1.4.2 we can easily prove that for every nice forest F , χe
Σ(F ) ≤ 2. In

this subsection we prove that we do not need more weights to get an equitable nsd edge-
weighting for nice forests.

Theorem 2.2.15. For every forest F with no isolated edge, χe
Σ(F ) ≤ 2.

Proof. Suppose a forest F is a minimal counterexample, i.e. a counterexample with
minimal number of edges, to Theorem 2.2.15.

Claim 2.2.16. No component of F is a path.

Proof. Suppose P is a component of F which is a path. Then we weight the forest F ′
obtained of F by removing all vertices of P by the minimality of F , what will mean here
and in all further claims that we fix some equitable neighbour-sum-distinguishing 2-edge-
weighting of F ′, which exists due to the fact that F is a minimal counterexample to
Theorem 2.2.15 (in cases where we will be left with components K2 in F ′, what does not
take place in this claim, we will mean that we weight the forest formed by the remaining
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Figure 2.10: Illustrations to Claims 2.2.17, 2.2.18 and 2.2.20.

components of F ′ by the minimality of F and then we put 1’s or 2’s on the isolated edges
of F ′ so that the edge-weighting is equitable).

Now it is sufficient to weight the path P equitably so that its neighbours are sum-
distinguished and the edge-weighting of entire F is equitable in order to obtain an equit-
able neighbour-sum-distinguishing edge-weighting of F , a contradiction with the fact that
F is a counterexample to Theorem 2.2.15. In case when P is of even length it suffices to
use the same number of 1’s and 2’s, while for odd path P we might be forced to use one
more 1 or 2 (and we do not control which one). As leaves are always sum-distinguished
from their neighbours, this can however be always easily achieved, as we only need to
weight every second edge of the path differently, i.e. it is always sufficient to weight
appropriately the first two edges of the path – the rest of the weights on the path are
the consequence of these two (note also here a fact useful in further reasoning that if in
a graph G we have a pendent path of length 4, then its edges must be weighted with two
1’s and two 2’s in any neighbour-sum-distinguishing 2-edge-weighting of G).

Since we want to prove that no counterexample to Theorem 2.2.15 exists, i.e., that in
fact χe

Σ(F ) ≤ 2, we may make use of the following reduction.

Claim 2.2.17. We may assume that F contains no vertex u of degree 3 adjacent to a leaf
w and a vertex x of degree 2 whose other neighbour y is a leaf.

Proof. Suppose there is such a vertex u, and let v be its remaining neighbour in F (v /∈
{w, x}), see Figure 2.10(a).

Then χe
Σ(F ) ≤ 2 only if χe

Σ(F ′) ≤ 2 where F ′ is the forest obtained from F by deleting
the vertices u,w, x, y (together with their four incident edges) and appending a pendent
path of length 4 at v, i.e. identifying one end of this path with v (so that the numbers of
edges in F and F ′ are equal). Suppose that there is an equitable nsd 2-edge-weighting of
F ′ (obviously, χeΣ(F ′) 6= 1). Then use the same weighting on all edges of F that appear
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also in F ′, so that four edges of F remain un-weighted. Note that in order to be certain
that the edge-weighting of F is equitable we must use weights 1, 1, 2, 2 on these four
remaining edges, as exactly these four weights must have been used on the pendent path
of length 4 in F ′ (cf. the argument for paths above). First we copy on uv the weight of
the edge incident with v in F ′ from the mentioned path of length 4 (in order to avoid sum
conflicts between v and its neighbours other than u). Then we put a weight on uw so that
uv and uw have distinct weights, hence we are left with 1 and 2 to use. We choose one of
these weights for ux so that there is no conflict between u and v, and we use the remaining
weight on xy. Note that by our construction the sum at x will always be smaller than
the sum at u.

Hence, as F is a minimal (i.e., with minimum number of edges) counterexample to
Theorem 2.2.15, then so does F ′. We may thus perform the operation described above
repeatedly until there are no configurations from the thesis in our forest left.

Let us root every tree (component) of F at any leaf. A vertex v of degree at least 3
with all descendants of degree at most 2 will be called a last multifather (this is just a
vertex which induces with its descendants only pendent paths incident with this vertex).
First we present a few observations implying that all descendants of any last multifather
must in fact be leaves (in other words, all pendent paths incident with such a vertex and
containing its descendants are in fact pendent edges), see Claim 2.2.22 below. Some of
these observations will be also useful in the further part of the argument, e.g. the following
seemingly very specific claim.

Claim 2.2.18. There is no vertex v of degree at most a + b + 1 incident with a ≥ 0
pendent edges and b ≥ 1 pendent paths of length 4 in F .

Proof. Suppose to the contrary that u1, . . . , ua are a ≥ 0 leaves adjacent with v, while
w1, . . . , wb are b ≥ 1 neighbours of v such that vwi is the first of four edges of a pendent
path of length 4 incident with v, i = 1, . . . , b, see Figure 2.10(b). Denote by v′ the
remaining neighbour of v (if there is any).

Let F ′ be the forest obtained of F by deleting u1, . . . , ua and all 4b vertices (except v)
from the b pendent paths of length 4 incident with v (including w1, . . . , wb, resp.). By the
minimality of F , F ′ admits an equitable 2-edge-weighting. It suffices then to complete
the weighting using an appropriate equitable number of 1’s and 2’s.

If a = 0, we may use the same number of 1’s and 2’s. Otherwise, we first greedily
choose weights for vu1, . . . , vua so that we obtain a partial equitable edge-weighting of F
(i.e., the number of 1’ and 2’s used so far on F is as equal as possible). We will then use
2b 1’s and 2b 2’s on the remaining edges. For this goal we first choose any weights for
vw1, . . . , vwb so that there is no conflict between v and v′. Finally, for each of the pendent
paths of length 4 incident with v, we complete its weighting (similarly as in the case of a
path itself above) first using a weight on yet non-weighted edge incident with wi to avoid
conflict between wi and v, and so on, in order to obtain a nsd 2-edge-weighting of F . Note
that on each such path we will use two 1’s and two 2’s, thus the edge-weighting will also
be equitable, a contradiction with the minimality of F .
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As a consequence of the claim above, for a = 0 and b = 1, we obtain the following:

Claim 2.2.19. There are no pendent paths of length (at least) 5 in F .

We supplement this observation with the two following ones.

Claim 2.2.20. There is no vertex v with d(v) ≥ 4 incident with a pendent path of length
2 or 3 in F .

Proof. Suppose there is such a vertex v in F , and let v, u, w or v, u, w, x be the consecutive
vertices of the corresponding path, see Figure 2.10(c). By the minimality of F , we may
weight F − {uw} or F − {uw,wx}, respectively. In the first case, we conclude by using
on uw any of the available at most 2 weights – note that as d(v) ≥ 4 and d(u) = 2, the
sum at v will always be greater than the one at u. In the second case, we use 1 or 2
on wx so that there is no conflict between u and w, and put a different weight on uw, a
contradiction.

Claim 2.2.21. A vertex v of degree 3 cannot be incident with two pendent paths of length
at least 1 one of which has length at least 2 in F .

Proof. Suppose there is such a vertex v in F . Note that by Claim 2.2.19, both paths have
to be of length at most 4, and one of them has to have length at most 3 by Claim 2.2.18
(with a = 0 and b = 2). Additionally, if one of the paths is just a pendent edge, then the
other cannot have length 2, by Claim 2.2.17, nor 4, by Claim 2.2.18.

We thus are left with 6 cases. In each of these cases, we first weight by the minimality
of F the forest F ′ obtained from F by removing all edges of the two pendent paths. If there
is an even number of such edges we then use an even number of 1’s and 2’s to complete
the weighting. Otherwise we might be forced to use one more 1 or 2 so that the weighting
of F is equitable at the end. Thus, for each such case, we analyse the two corresponding
sub-cases. For each of these cases (and sub-cases) we start by choosing the weights for the
first edges of the two paths (those incident with v) appropriately so that v is not in conflict
with its neighbour v′ from F ′. In Figure 2.11 we show that in all (sub)cases there are
always two possible choices (with different sums, one of which must be appropriate) for
these two edges, which then can be extended without conflicts, regardless of the weight of
vv′ (marked thus by “?”), on the remaining yet un-weighted edges (one choice is presented
above the edges, while the alternative is presented below). We thus obtain a contradiction
with the minimality of F as a counterexample to Theorem 2.2.15.

Claim 2.2.22. Every vertex v of degree at least 3 with all descendants of degree at most
2 in F has only descendants of degree 1.

Proof. For vertices of degree at least 4 this follows by Claims 2.2.19, 2.2.20 and 2.2.18,
while for vertices of degree 3 this is a consequence of Claim 2.2.21.

Claim 2.2.23. Every vertex v of degree at least 3 in F with all descendants of degree 1
has a father of degree at least 3.
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Figure 2.11: Subcases of Claim 2.2.21.

Proof. Suppose there is a vertex v in F of degree at least 3 with descendants being leaves
and a father v′ of degree at most 2. Then we delete all edges joining v with its descendants
in F and weight the obtained forest by the minimality of F . To conclude it is sufficient
to weight the pendent edges incident with v using at least one 2 (this will be possible,
and even almost always necessary) so that the weighting of F is equitable. This way v
has certainly a greater sum than v′, a contradiction.

Note that by Claims 2.2.16, 2.2.22 and 2.2.23, every component of F must in par-
ticular have at least two vertices of degree greater than 3. Thus each such component
T (previously rooted at some leaf) must contain at least one vertex which we will call a
last multigrandfather, that is a vertex v of degree at least 3 in T which has at least one
descendant of degree at least 3 but none of the descendants of degree at least 3 of v has
further descendants of degree at least 3 (i.e., all descendants of degree at least 3 of v are
last multifathers). Note that such a v is adjacent with its father, due to Claims 2.2.22,
2.2.23 and 2.2.19, while every child of v either has degree at least 3 and all children being
leaves, or has degree 2 and at most 3 descendants – all of degree at most 2. Moreover, by
Claim 2.2.20, if d(v) ≥ 4, every pendent path incident with v must have length exactly 1
or 4.

Below, see Claim 2.2.24, we obtain a contradiction with the statement above that
every component of F contains a last multigrandfather. Consequently, we will prove that
no counterexample to Theorem 2.2.15 may exist, thus concluding its proof.

Claim 2.2.24. No component T of F contains a last multigrandfather.

Proof. Assume to the contrary that v is a last multigrandfather in a component T of F .
Suppose first that v has two children u and w of degree at least 3. Then we may delete

two pendent edges incident with u, say eu, e′u and two pendent edges incident with w, say
ew, e

′
w (recall that all descendants of u and w must be leaves), and weight the remaining

forest by the minimality of F . It is then sufficient to weight the remaining four edges with
two 1’s and two 2’s so that there is no conflict between v and its children u,w in order to
get a contradiction with the minimality of F . We however have three essentially different
ways of extending our weighting, i.e. assigning 1, 1 to eu, e′u (and hence 2, 2 to ew, e′w) or
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Figure 2.12: Illustrations to cases in Claim 2.2.24.

assigning 1, 2 or 2, 2 to them. Hence, one of these options must fulfil our requirements (as
the sum at v “forbids” only one potential sum at each of u and w).

Hence we may assume that v has exactly one child who is a last multifather, say u
(if it had no such child it could not be a last multigrandfather by definition). Denote by
u′, u′′ any two leaves adjacent with u.

Let us consider first the case when all the remaining children of v are leaves. If
d(v) ≥ 4, then delete two pendent edges incident with u, say eu, e

′
u and two pendent

edges incident with v, say ev, e′v, and weight the remaining forest by the minimality of F .
Then, analogously as above, it is sufficient to weight the remaining four edges with two 1’s
and two 2’s so that there is no conflict between u and v and between v and its father. As
we have three essentially different ways of extending the weighting, at most two of which
can be “forbidden” by our requirements on lack of conflicts, we certainly may extend the
weighting to F . If however d(v) = 3, let w be the child of v which is a leaf. Delete
from F all edges induced by v and its descendants and weight the remaining forest by the
minimality of F . As we have removed at least four edges, we certainly may use at least
two 1’s and at least two 2’s while equitably extending the weighting to F . Assign 1 to vw
and 2 to uu′. Then choose ω(uv) ∈ {1, 2}, where ω(uv) denotes the weight of the edge
uv, so that there is no conflict between v and its father v′, set ω(uu′′) = 3 − ω(uv), and
assign weights to the remaining un-weighted edges (if there are any) so that the obtained
weighting of F is equitable. If there is no conflict between u and v, we are done. On the
other hand, the only situation in which we may have such a conflict is when u′, u′′ are the
only children of u, ω(vv′) = 2, and ω(uu′′) = 1 (in all other cases the sum at u would be
larger than the one at v), and hence ω(uv) = 2, see Figure 2.12(a).

But then we may switch the weights of uv and vw, decreasing the sum at u but not
changing the sum at v. In all cases we thus obtain a desired equitable neighbour-sum-
distinguishing weighting of F , a contradiction.

Suppose now that v has a son, say w, adjacent with only one leaf w′ (i.e., v, w, w′ form
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a pendent path of length 2 incident with v). By Claim 2.2.20, d(v) = 3, see Figure 2.12(b).
Then delete all descendants of v and weight the forest obtained by the minimality of F .
As we have removed at least five edges from F , we still may use at least two 1’s and two
2’s. Set ω(ww′) = 1 = ω(wv), ω(uu′) = 2 = ω(uu′′) and if we still have any choice (which
will not prevent us from completing the weighting of F equitably) choose a weight for
uv so that there is no conflict between v and its father. Finally, weight the remaining
un-weighted edges equitably (i.e. so that the weighting of F is equitable). This way, no
conflict is possible, except a potential conflict between v and its father. In such a case,
we must however have had no choice while weighting uv, and hence d(u) = 3. Then we
weight all previously removed edges once more differently, setting ω(vw) = 2 = ω(vu)
(and hence increasing the sum at v), ω(uu′) = 1 = ω(uu′′), and completing the weighting
equitably, see Figure 2.12(b). As no conflict is then possible, we obtain a contradiction.

Suppose finally that there is a pendent path of length 3 or 4 incident with v and induced
by v and its descendants. Delete the edges of this path and all edges incident with u and
weight the obtained forest by the minimality of F . Let w1, w2, . . . , wj, j ∈ {3, 4} be the
consecutive vertices of this path with w1 being a child of v. Set ω(vw1) = 1 = ω(w1w2),
ω(w2w3) = 2 and ω(w3w4) = 2 (if there is such an edge), ω(vu) = 1, ω(uu′) = 2, see
Figure 2.12(c), and weight the remaining edges so that we obtain an equitable weighting
of F . Note that as ω(w1w2) = 1 (what will not be changed), no conflict is possible
between w1 and v. We may however have potential conflicts between v and its remaining
neighbours. If there is a conflict between v and u or v′, where v′ is the father of v, we
exchange the weights of vu and uu′, increasing the sum at v (and not changing the sum
at u nor at v′). After such a switch, since hitherto there was a conflict, v must have a
greater sum than u or v′. If v is still in conflict with the remaining one of these two, we
raise the sum at v once more (not changing the sums at u and v′) by switching the weights
of vw1 and w2w3. Then if there was still some conflict in F , it would have to be between
v and its neighbour, say x, other than v′, u and w1, but then d(v) ≥ 4 and d(x) ≤ 2 (as
we have assumed that v has only one child of degree at least 3), hence v and x could not
be in conflict.

Thus, in all cases we have been able to obtain a desired equitable neighbour-sum-
distinguishing 2-edge-weighting of F , a contradiction.

As a consequence of Claims 2.2.24, 2.2.22 and 2.2.16, F is a union of stars, i.e. each
component of F has exactly one vertex of degree at least 3, and all its other vertices are
of degree 1. Then it is easy to check that F admits an equitable nsd 2-edge-weighting. A
contradiction. This proves Theorem 2.2.15.

2.3 Equitable neighbour-sum-distinguishing total-wei-
ghting

In this section we explore the equitable version of neighbour-sum-distinguishing total-
weightings of graphs. By Proposition 2.1.1, we have χt

Σ(G) ≤ χe
Σ(G) for every nice graph
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G. Moreover, note that for every nice graph G, χt
Σ(G) = 1 if and only if χe

Σ(G) = 1,
because we can simply ignore the weights of vertices, which are all equal to 1. These
observations mean that if χe

Σ(G) = 2, then χt
Σ(G) = 2. Thus in this section we will study

graphs for which we do not know if χe
Σ(G) ≤ 2. Namely, we study complete graphs, for

which we know that χe
Σ ≥ 3, and bipartite graphs, for which we only know that χe

Σ ≤ 2
in the case of forests and complete bipartite graphs.

2.3.1 Bipartite graphs

We prove in this subsection that χt
Σ(G) ≤ 2 for every bipartite graph G.

Theorem 2.3.1. For every bipartite graph G, χt
Σ(G) ≤ 2.

Proof. In order to prove the result in the non-connected case, we will in fact prove a
stronger thesis but in the case of connected bipartite graphs. We will not only prove
that such graphs admit neighbour-sum-distinguishing equitable total-weightings using 1
and 2, but also that, if the sum of the numbers of vertices and edges is odd, then there
are two such weightings – one with a majority of 1’s and the second with a majority of
2’s. This immediately implies the statement of Theorem 2.3.1 (as we may first weight the
components of a non-connected bipartite graph with even sums of numbers of vertices and
edges, and then the remaining ones, using alternately a majority of 1’s and a majority of
2’s).

Note that this strengthened thesis for connected bipartite graphs is straightforward
in the case of a star (even with no edges) – e.g., if a star has at least two edges, it is
sufficient to put 1’s on all its edges and 2’s on the vertices or the other way round. For
the remaining connected bipartite graphs it follows by first using Observation 2.3.2, and
then sequentially repeating application of Lemma 2.3.3 below until we achieve one or two
desired total-weightings.

Observation 2.3.2. Every connected bipartite graph G = (X, Y ;E) with at least one
edge admits a 2-total-weighting so that the vertices in one set of the bipartition have even
sums and the vertices in the second set of the bipartition have odd sums and so that the
number of 1’s used exceeds the non-zero number of 2’s.

Proof. First weight all the edges of G with 1. Then weight one vertex in X with 2. Next
subsequently weight all the remaining vertices in G, each with 1 or 2, so that the parities
of sums at all the vertices in X are the same and different from those in Y . If the number
of 1’s used on G does not exceed the number of 2’s, it means that all vertices are weighted
with 2 (note that the number of vertices may exceed the number of edges by at most
one in a connected graph). Then choose any edge uv ∈ E and change the weights of its
end-vertices from 2 to 1 and the weight of the edge from 1 to 2. Note that this will not
influence the sums at any vertex in G, but the number of 1’s used will exceed the number
of 2’s afterwards (while at least one 2 will remain on G).
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Note that neighbours are certainly sum-distinguished under the weighting from Ob-
servation 2.3.2 above. Now we will show that given such a weighting we can repeatedly
increase the number of 2’s used (at each step only by one) not spoiling at the same time
the neighbour distinction in G until we achieve our goal (or goals).

Lemma 2.3.3. Given any 2-total-weighting ω of a connected bipartite graph G = (V,E)
which is not a star and with |Eω(1)| ≥ |Eω(2)| > 0, such that the vertices in one set of
the bipartition of G have even sums and the vertices in the second set of the bipartition
have odd sums, we may construct a new 2-total-weighting ω′ of G complying with the
second feature of the given one (concerning the parities of the sums at vertices) with
|Eω′(2)| = |Eω(2)|+ 1.

Proof. Suppose we are given a graph and an initial 2-total-weighting as claimed. The
proof will be based on the fact that the parities of the sums in G do not change if we
make a negative of any edge uv, i.e. after changing every 1 to 2 and every 2 to 1 used on
u, v and uv.

We will show that starting from our initial weighting we may always subsequently
make negatives of a few edges to obtain a total-weighting consistent with the thesis. We
will write that an edge uv is of type abc, where a, b, c ∈ {1, 2} if u, uv, v (or v, uv, u) are
weighted a, b, c, respectively, in the initial total-weighting. Note first that we may assume
that there are no edges of types 121 and 112 (nor 211) in G, as we could make a negative
of any such edge and immediately achieve our goal.

• Suppose there is no edge of type 111 in G either, hence there are only edges of types
222, 212 and 221 (or equivalently 122).

Then the graph H induced in G by the edges of type 212 cannot be a forest, as
otherwise there would be more 2’s than 1’s on G. Indeed, if H is a forest, i.e. has
more vertices than edges, then more 2’s appear on vertices than 1’s on edges in G.
On the other hand, there are at least as many edges weighted 2 as there are vertices
weighted 1 in G, as every such vertex must be an end of an edge of type 221 (or
122), and since the other end of such an edge is weighted 2, we may easily define an
injective mapping from the set of vertices weighted 1 to the set of edges weighted
2 (by assigning to such a vertex any of its incident edges). Hence, as H is not a
forest and must be bipartite, it contains a cycle of length at least 4, and hence also
a path of length 3. It is then sufficient to subsequently make negatives of all these
three edges (after which the consecutive edges of this path of types 212, 212, 212
will become edges of types 122, 222, 221 respectively – note in particular that the
vertices of the middle edge will switch weights twice, hence in fact will return to
their initial values) to obtain a required total-weighting of G.

• Suppose then to the contrary that there is an edge of type 111 in G. As the parities
of the sums at the ends of such an edge e must differ (by the definition of our initial
weighting), e must be adjacent with at least one edge weighted 1, say f , thus f is
also an edge of type 111 (as there are no edges of type 112 nor 211 in G). Note
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that we may then assume that there is no edge of type 222, as otherwise it could
not be adjacent with any edge of type 111 and thus we could make negatives of
such an edge of type 222 and two adjacent edges of type 111, and obtain a required
weighting of G. Thus in G there are only edges of type 111, which we will call edges
of type A, and edges of types 212 and 122 (or 221), which we will all call edges of
type B. Analogously as above, one may verify that if there is a path of length 3 in
G with two consecutive edges of type A and one of type B or two consecutive edges
of type B and one of type A, then by making consecutively negatives of all edges of
one such path, we will always obtain a desired total-weighting of G. We will show
that such a path must exist in G. Let H ′ be any component of the graph induced
in G by the edges of type A. (Recall that each such component must have diameter
at least 2.)

Suppose that H ′ is not a star. As G is connected and at least one 2 is used as a
weight on it, at least one vertex, say v, (weighted 1) in H ′ must be incident with an
edge, say e′ of type B. Note that the other (different from v) end of e′, say u, must
be weighted 2, hence does not belong to H ′. On the other hand, in H ′ there must
be a vertex, say w, at distance 2 from v, as otherwise H ′ would be a star. Hence
there is a path of length 3 (starting at u and ending at w) in G with two consecutive
edges of type A and one of type B, as claimed.

We thus may finally assume that H ′ is a star (with at least two edges). If at least
one of its leaves is incident with an edge of type B, then we obtain a path as above.
Otherwise, as G is connected, G is not a star and at least one 2 was used on it,
the center of the star making up H ′ must be incident with one end of a path P of
length two, whose first edge (incident with the center of the star), say e′, is of type
B. However, as the other end of e′ must be weighted with 2, the second edge of this
path must also be of type B, thus we obtain a path of length 3 with two consecutive
edges of type B (from P ) and one edge of type A (incident with the center of H ′),
as claimed.

As mentioned before, by Observation 2.3.2 and by repeating the construction of
Lemma 2.3.3 we can construct an equitable nsd 2-total-weighting of any bipartite graph
G. This completes the proof of Theorem 2.3.1.

2.3.2 Complete graphs

Finally, we prove in this subsection that χt
Σ(K2) = 2 and χt

Σ(Kn) = 3 for every n ≥ 3.

Theorem 2.3.4. For every complete graph Kn with n ≥ 3, χt
Σ(Kn) = 3, while χt

Σ(K2) =
2.

Proof. The total-weightings of small cases (for n ≤ 4) are depicted in Figure 2.13. By
Theorem 2.2.6 and Proposition 2.1.1, it is enough to show that χt

Σ(Kn) > 2 for n ≥ 3.
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Figure 2.13: Equitable nsd total-weightings of K2, K3 and K4.

First we observe that for any positive integer n, there exist (essentially) exactly two
possible nsd 2-total-weightings of Kn; in one of them there is a vertex with a monochro-
matic palette of 1’s, and in the other one there is a vertex with a monochromatic palette
of 2’s, since we add n numbers (weights) at every vertex and we obtain sums from the
interval {n, . . . , 2n} but not n and 2n in the same total-weighting. Moreover, it is easy
to observe that for any such total-weighting of Kn, n ≥ 2, with a monochromatic palette
of a’s, a ∈ {1, 2}, say at a vertex v, after deleting v we obtain an nsd 2-total-weighting
of Kn−1 with a vertex with a monochromatic palette of (3 − a)’s. Let ω be such an nsd
2-total-weighting of Kn, n ≥ 2, with a vertex having a monochromatic palette of 1’s -
for a monochromatic palette of 2’s the reasoning and calculations are the same. Now for
every positive integer k we prove by induction that:

• If n = 2k, then there exist k(k + 1) elements (vertices and edges) weighted with 1
and k2 elements weighted with 2.

• If n = 2k + 1, then there exist (k + 1)2 elements weighted with 1 and k(k + 1)
elements weighted with 2.

For n = 2 we have both vertices with distinct weights and an edge is weighted with
1, since there exists a monochromatic palette of 1’s. For n = 2k, k > 1, let v be a vertex
with a monochromatic palette of 1’s. Then there exists a vertex u in Kn − v ∼= Kn−1

having a monochromatic palette of 2’s. Consider the graph K2k−2 obtained from K2k by
removing vertices u and v. Then, by induction, there exist k(k − 1) elements weighted
with 1 and (k − 1)2 elements weighted with 2 in K2k−2. So, there exist k(k − 1) + 2k
elements weighted with 1 (since v adds n elements weighted with 1) and (k− 1)2 + 2k− 1
elements weighted with 2 (since u adds n− 1 elements weighted with 2) in K2k.

Similarly, for n = 3 we have four elements weighted with 1 and two elements weighted
with 2, since there exists a monochromatic palette of 1’s and there exist exactly one such
nsd 2-total-weighting ofK3. For n = 2k+1, k > 1, let v be a vertex with a monochromatic
palette of 1’s. Then there exists a vertex u in Kn − v ∼= Kn−1 having a monochromatic
palette of 2’s. Consider the graph K2k−1 obtained from K2k+1 by removing vertices u and
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v. Then, by induction, there exist k2 elements weighted with 1 and k(k − 1) elements
weighted with 2 in K2k−1. Hence, there exist k2 + 2k+ 1 elements weighted with 1 (since
v adds n elements weighted with 1) and k(k − 1) + 2k elements weighted with 2 (since
u adds n − 1 elements weighted with 2) in K2k+1. Now observe that if n = 2k, then the
difference between numbers of 1’s and 2’s, in the weighting ω, is k, and if n = 2k+1, then
the difference is k+ 1. Hence, ω is equitable only for n = 2. This completes the proof, as
the same reasoning applies in the case of a monochromatic palette of 2’s in ω (with 1’s
and 2’s switched).

2.4 Discussions and open problems
In this chapter, we studied, for some families of nice graphs, the existence of equitable
neighbour-sum-distinguishing edge-weightings i.e. in which any two distinct edge weights
are used about the same number of times (up to a difference of 1). In particular, we
introduced, for any given graph G, the equitable nsd index denoted by χe

Σ(G) being the
smallest maximal weight in an equitable neighbour-sum-distinguishing edge-weighting of
G. One side of our work was the research of graphs with χe

Σ > χe
Σ and more generally

the research of bounds on χe
Σ. This is the reason why we started our investigation with

complete graphs. However, we only found two graphs with χe
Σ > χe

Σ, K4 and K3,3, and
only K4 has an equitable nsd index of 4, which is greater than the bound of the 1-2-3
Conjecture. The problem, presented in the following question, is hence wide open.

Question. Is there an infinite family of graphs G with χe
Σ(G) > χe

Σ(G)?

In fact we found three more examples of such graphs while exploring the equitable
nsd index of bipartite cubic graphs. Using the work of Meringer on regular graphs gener-
ation [Mer99], we checked bipartite cubic graphs of orders in {6, . . . , 20}. The two cubic
bipartite graphs on 10 vertices and one of the 13 cubic bipartite graphs on 14 vertices
do not admit an equitable nsd 2-edge-weightings, while admitting (non-equitable) nsd
2-edge-weightings. However, χe

Σ = 3 for the three exceptions. Hence we still have only
one example, K4, with χe

Σ > 3.
If a graph G is a Hamiltonian cubic bipartite graph on 4k vertices for k ≥ 2, then we

can construct an equitable nsd 2-edge-weighting as follows :

1. Construct an equitable nsd 2-edge-weighting ω0 of the Hamiltionain cycle of length
4k as in an equitable nsd 2-edge-weighting of C4k (see Proposition 2.2.4). The
remaining edges induces a perfect matching of even size of G, and since the graph
is bipartite, those edges never join a vertex u with σω0(u) = 2 to a vertex v with
σω0(v) = 4. Hence each edge in the matching has one end w with σω0(w) = 3;

2. Now for each edge e in the matching with an end u with σω0(u) = 2, set ω(e) := 1
otherwise, set ω(e) := 2.

The obtained edge-weighting ω is clearly neighbour-sum-distinguishing, since every edge
of G joins a vertex with σω = 3 or 6 to a vertex with σω = 4 or 5. Moreover, ω is equitable
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because ω0 is equitable and one half of edges in the matching is weighted with 1 and the
other half are weighted with 2.

The condition of the Hamiltonicity can be weakened to the existence of disjoint cycle
cover of G, with cycles of lengths multiples of 4. Moreover, this construction can be
generalized to Hamiltonian regular bipartite graphs of any degree greater than 2.
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Chapter 3

The 1-2-3 Conjecture and the
Antimagic Labelling Conjecture

This chapter is dedicated to the following question: is it always possible to injectively
assign the weights 1, . . . , |E(G)| to the edges of any given graph G with no compon-
ent isomorphic to K2, so that every two adjacent vertices of G are sum-distinguished?
One may see this question as a combination of the well-known 1-2-3 Conjecture and the
Antimagic Labelling Conjecture.

Throughout this chapter, we exhibit evidence that the answer to that question is
affirmative. We prove upper bounds on the number of disctinct positive weights that
are necessary to get an injective nsd edge-weighting, first by using results on the 1-2-3
Conjecture from [KKP10], then by making an observation on the extension of partial
edge-weightings. Then, benefiting from the investigations on the Antimagic Labelling
Conjecture, we point out that several classes of graphs, such as regular graphs, indeed
admit such assignments. We then show that trees also do, answering a recent conjecture
of Arumugam, Premalatha, Bača and Semaničová-Feňovčíková [APBSF17]. Towards a
general answer to the question above, we then prove that claimed weightings can be
constructed for some classes of sparse graphs, namely 2-degenerate graphs and graphs
with maximum average degree 3, provided we are allowed to use a small constant number
of additional edge weights.

The results presented in this chapter are the result of a collaboration with J. Bens-
mail and K. Szabo Lyngsie from DTU (Copenhagen, Denmark) and were published in
[BSSL17].

3.1 Definitions and remarks
Throughout this chapter, we deal with edge-weightings that are not only neighbour-sum-
distinguishing but also do not assign any edge weight more than once. We say that such
edge-weightings are injective. Still under the assumption that G is a nice graph, we denote
by χe,1

Σ (G) the smallest k such that G admits an injective neighbour-sum-distinguishing
k-edge-weighting.
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The main guideline for our work is the following conjecture.

Conjecture 3.1.1 ([BSSL17]). For every nice graph G, we have χe,1
Σ (G) = |E(G)|.

By the injectivity property, we note that |E(G)| is a lower bound on χe,1
Σ (G) for every

nice graph G. Conjecture 3.1.1, in brief words, hence asks whether, for every nice graph G,
we can bijectively assign weights 1, . . . , |E(G)| to the edges of G so that no two adjacent
vertices of G get the same sum.

Despite our results in Chapter 2, it does not seem obvious how big χe
Σ(G) can be,

neither whether this parameter can be arbitrarily large compared to χe
Σ(G). This is one

of our motivations for studying injective neighbour-sum-distinguishing edge-weightings,
as an injective edge-weighting is always equitable. Thus, χeΣ(G) ≤ χe,1

Σ (G) holds for every
nice graph G. Hence, attacking Conjecture 3.1.1 can be seen as a way to make progress
towards those two questions.

Our second motivation for considering Conjecture 3.1.1 is that injective neighbour-
sum-distinguishing edge-weightings can be regarded as a weaker notion of well-known
antimagic labellings. Formally, using our own terminology, an antimagic labelling ω of
a graph G is an injective |E(G)|-edge-weighting of G for which σω is injective, i.e. all
vertices of G get a distinct sum of incident weights by ω. We say that G is antimagic if it
admits an antimagic labelling. Many lines of research concerning antimagic labellings can
be found in the literature, most of which are related to the following conjecture addressed
by Hartsfield and Ringel [HR90].

Antimagic Labelling Conjecture. Every nice connected graph is antimagic.

Despite lots of efforts (refer to the dynamic survey by Gallien [Gal17] for an in-depth
summary of the vast and rich literature on this topic), the Antimagic Labelling Con-
jecture is still open in general, even for common classes of graphs such as nice trees.
Conjecture 3.1.1, which is clearly much weaker than the Antimagic Labelling Conjecture,
as the distinction condition here only concerns the adjacent vertices, hence sounds as a
much easier challenge to us, in particular concerning classes of nice graphs that are not
known to be antimagic. Hence, every antimagic graph G agrees with Conjecture 3.1.1,
implying, as described earlier, that

χe
Σ(G) ≤ χe,1

Σ (G) = |E(G)|

holds, thus providing an upper bound on χe
Σ(G). This is of interest as several classes

of graphs, such as nice regular graphs and nice complete partite graphs, are known to
be antimagic, as reported by Gallien [Gal17]. Let us here further mention the works of
Bérczi, Bernáth and Vizer [BBV15], and of Cranston, Liang and Zhu [CLZ15], who led
to the verification of the Antimagic Labelling Conjecture for nice regular graphs, and
contain some proof techniques that partly inspired our own proofs. Conversely, proving
that a graph G verifies χe,1

Σ (G) = |E(G)| and agrees with Conjecture 3.1.1 is similar to
proving that, in some sense, G is “locally” antimagic.
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Conjecture 3.1.1 can essentially be considered as a combination of the 1-2-3 Conjecture
and the Antimagic Labelling Conjecture, as the notions behind it have flavours of both
conjectures. As described earlier, proving Conjecture 3.1.1 for some classes of graphs
has, to some extent, consequences on the 1-2-3 Conjecture and the Antimagic Labelling
Conjecture, or at least on variants of these conjectures.

Our work is focused both on proving Conjecture 3.1.1 for particular classes of nice
graphs, and providing upper bounds on χe,1

Σ for some classes of nice graphs. This chapter is
organized as follows. In Section 3.3, we start off by providing support to Conjecture 3.1.1,
essentially by showing that the conjecture holds for nice trees. Then we exhibit general
upper vounds on χe,1

Σ in Section 3.4. Finally, we provide, in Section 3.5, refined upper
bounds on χe,1

Σ for nice graphs with maximum average degree at most 3 and nice 2-
degenerate graphs.

Remark. In 2017, nine months after the submission of our work, a paper published
by Haslegrave [Has17] on arXiv proved Conjecture 3.1.1. The proof of Haslegrave is
based on probabilistic methos, yielding a non-constructive proof of Conjecture 3.1.1, our
work is, however, providing exclusively constructive proofs. Another paper written by,
Arumugam, Premalatha, Bača and Semaničová-Feňovčíková [APBSF17], independently
introduced the same notion of injective nsd edge-weightings, but the authors were in-
terested in minimizing the number of distinct sums induced on the vertices rather than
lowering the maximum used weight. However, our Theorem 3.3.3 on trees answers pos-
itively to Conjecture 2.3 raised in [APBSF17]. In 2018, a new paper written by Yu, Hu,
Yang, Wu and Wang in [YHY+18], improved some of the bounds that we have on χe,1

Σ

for general graphs and subcubic graphs, but again using a non-constructive method, the
Combinatorial Nullstellensatz.

3.2 Preliminary results

In this section, we introduce several observations that will be of some use in the next
sections.

In the following observation, we start off by pointing out a few situations in which, for
a given injective edge-weighting ω of a graph G and a given edge uv of G, we necessarily
have σω(u) 6= σω(v). We note that the third item is more general, as it implies the other
two. Hence we only prove this item.

Observation 3.2.1. Let G be a graph, and ω be an injective edge-weighting of G. Then,
for every edge uv of G, we have σω(u) 6= σω(v) in any of the following situations:

1. d(u) = 1 and d(v) ≥ 2;

2. d(u) = d(v) = 2;

3. d(u) ≥ d(v) and min(Pω(u) \ {ω(uv)}) > max(Pω(v) \ {ω(uv)}).
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Proof of item 3. Let mu := min(Pω(u) \ {ω(uv)}) and Mv := max(Pω(v) \ {ω(uv)}), and
suppose that d(u) ≥ d(v) and mu > Mv. Hence we have,

σω(u) ≥ mu(d(u)− 1) + ω(uv) > Mv(d(v)− 1) + ω(uv) ≥ σω(v).

We now observe that to be able to successfully extend a partial nsd edge-weighting to
an edge, we need to have sufficiently distinct weights in hand for that purpose.

Observation 3.2.2. Let G be a graph, uv be an edge of G, and ω be an nsd edge-weighting
of G − {uv} such that σω(u) 6= σω(v). Then ω can be successfully extended to uv, using
a weight from a set W of at least d(u) + d(v) − 1 arbitrary distinct positive weights that
can be assigned to uv.

Proof. We note that ω currently must satisfy σω(u) 6= σω(v), as, otherwise, no matter
what weight we assign to uv, we would have σω(u) = σω(v). Under that assumption, the
neighbours of u and v forbid at most d(u) + d(v)− 2 values of ω(uv), as each value gives
a different sum at u and at v. Hence if we have d(u) + d(v)− 1 available distinct weights
we can extend ω to uv as required.

Throughout this chapter, several proofs consist of deleting two adjacent edges vu1 and
vu2 from a nice graph G, edge-weighting the remaining graph, and correctly extending
the weighting to vu1 and vu2. In this regard, we will often refer to the following result,
which is about the number of weights that are sufficient to weight vu1 and vu2.

Observation 3.2.3. Let G be a graph having two adjacent edges vu1 and vu2 such that
G′ := G − {vu1, vu2} admits an nsd edge-weighting ωG′. Assume further that dG(u1) ≥
dG(u2), and set

µ := (dG(u1) + 1) + max {0, dG(v) + dG(u2)− dG(u1)− 1} .

Then, assuming we have a set W of at least µ distinct positive weights, we can extend ωG′
to an nsd edge-weighting of G by assigning two distinct weights of W to vu1 and vu2.

Proof. We extend ωG′ to an nsd edge-weighting ωG of G by first assigning a weight of
W to vu1, and then assigning a distinct weight to vu2. We determine, in this proof, the
smallest number µ of weights that W should contain so that this strategy has sufficiently
many weights to be successfully applied.

We note that extending ωG′ to vu1 completely determines the value of σωG
(u1), while

the value of σωG
(v) is not determined until vu2 is also weighted. Hence, when first weight-

ing vu1, we mainly have to make sure that σωG
(u1) does not get equal to the sum of

weights incident to a neighbour of u1 different from v. Also, we should make sure that
σωG′

(v) + ωG(vu1) does not get equal to σωG′
(u2), as otherwise we would necessarily get

σωG
(v) = σωG

(u2) no matter how we weight vu2. There are hence at most dG(u1) conflicts
to take into account when weighting vu1. ProvidedW includes at least dG(u1)+1 distinct
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weights, we can hence weight vu1 correctly, i.e. so that we avoid all conflicts mentioned
above, with one weight from W , since assigning different weights to vu1 alters σωG

(u1) in
distinct ways.

Now assume vu1 has been weighted with the additional property that σωG′
(v) +

ωG(vu1) 6= σωG′
(u2). Since that property holds, Observation 3.2.2 tells us that we can

correctly extend ωG′ to vu2 provided W −{ωG(vu1)} includes at least dG(v) + dG(u2)− 1
distinct weights. We hence need W − {ωG(vu1)} to include that many distinct weights.

As explained above, W necessarily includes at least dG(u1) weights that were not
assigned to vu1. Hence, to make sure, after weighting vu1, that W still includes at least
dG(v) + dG(u2)− 1 distinct weights, we need W to include at least

(dG(v) + dG(u2)− 1)− dG(u1)

other weights. This quantity can be negative, as, notably, the degree of u1 can be arbit-
rarily large. Hence if

µ = (dG(u1) + 1) + max {0, dG(v) + dG(u2)− dG(u1)− 1} ,

as claimed, and W has size µ, then we can achieve the extension of ωG′ to G as described
earlier.

3.3 Classes of locally antimagic graphs
As mentioned in Section 3.1, since antimagic graphs verify Conjecture 3.1.1, we directly
benefit, in the context of Conjecture 3.1.1, from the investigations on antimagic labellings.
Following the survey by J.A. Gallian [Gal17], the following classes of nice graphs hence
agree with Conjecture 3.1.1.

Theorem 3.3.1. The classes of known antimagic graphs notably include:

• nice paths (Hartsfield, Ringel [HR90]),

• wheels (Hartsfield, Ringel [HR90]),

• nice regular graphs (Bérci, Bernáth, Vizer [BBV15]),

• nice complete partite graphs (Alon, Kaplan, Lev, Roditty, Yuster [AKL+04]).

Consequently, every such graph G verifies χe,1Σ (G) = |E(G)|.

Moreover, for nice graphs with maximum degree 2, we can easily see, as we are as-
signing positive weights only, that any injective edge-weighting is neighbour-sum-distin-
guishing. Disjoint unions of nice paths and cycles hence agree with Conjecture 3.1.1.

Observation 3.3.2. Let G be a nice graph with ∆(G) = 2. Then any injective edge-
weighting of G is neighbour-sum-distinguishing.
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3.3.1 Forests

One of the main lines of research concerning antimagic labellings is to determine whether
nice trees are all antimagic. In the following result, we prove that this question can be
answered positively when relaxed to injective nsd edge-weightings. We actually prove a
stronger statement that will be useful in the next sections.

Theorem 3.3.3. Let F be a nice forest. Then, for every set W of |E(F )| distinct positive
weights, there exists an injective neighbour-sum-distinguishing W -edge-weighting of F . In
particular, we have χe,1Σ (F ) = |E(F )|.

Proof. If ∆(F ) = 2, then the result follows from Observation 3.3.2. So the claim holds
whenever F has size 2. Assume now that the claim is false, and let F be a counterexample
that is minimal in terms of nF + mF , where nF := |V (F )| and mF := |E(F )|. By the
remark above, we have mF ≥ 3. Let W := {α1, . . . , αmF

} be a set of distinct positive
integers such that F does not admit an injective nsd W -edge-weighting. Free to relabel
the weights in W , we may suppose that α1 < . . . < αmF

. Due to the minimality of
F , we may assume that F is a tree (as otherwise we could invoke the induction hypo-
thesis). Furthermore, we may assume that F has maximum degree at least 3 (otherwise
Observation 3.3.2 would apply).

We now successively show that F , because it is a counterexample to the claim, cannot
contain certain structures, until we reach the point where F is shown to not exist at
all, a contradiction. In particular, we focus on the length of the pendent paths of F ,
where a pendent path of F is a maximal path vk . . . v1, where k ≥ 2, such that d(vk) ≥ 3,
d(vk−1) = . . . = d(v2) = 2, and d(v1) = 1. In the case where k = 2, we note that the
pendent path is a pendent edge, in which case vk = v2 and we have d(v2) ≥ 3. Since
∆(F ) ≥ 3, there are at least three pendent paths in F .

We start off by showing that the pendent paths of F all have length at most 2.

Claim 3.3.4. Every pendent path of F has length at most 2.

Proof. Assume F has a pendent path P := vk . . . v1 with k ≥ 4, where d(vk) ≥ 3. In this
case, let F ′ := F−{vk−1vk−2, . . . , v2v1} be the tree obtained by removing, from F , all edges
of P but the one incident to vk. Clearly, F ′ is nice and, due to the minimality of F , there
exists an injective neighbour-sum-distinguishing {α1, . . . , αmF ′

}-edge-weighting ωF ′ of F ′,
wheremF ′ := |E(F ′)|. To prove that the claim holds, we have to prove that we can extend
ωF ′ to the edges vk−1vk−2, . . . , v2v1, hence to F , using weights αmF ′+1, . . . , αmF

, so that we
get an injective neighbour-sum-distinguishing W -edge-weighting of F , a contradiction.

Due to the length of P , we have |{αmF ′+1, . . . , αmF
}| ≥ 2. When weighting the edges

vk−1vk−2, . . . , v2v1, we note that we cannot create any sum conflict involving any two
consecutive vertices in {v1, . . . , vk−1}. That is, the incident sums of any two of these
vertices can never get equal. This is according to Observation 3.2.1 since we are assigning
weights injectively. Hence, when extending ωF ′ , we just have to make sure that σ(vk−1)
gets different from σ(vk), which is possible as we have at least two distinct edge weights
to work with. So we can assign a weight to vk−1vk−2 which avoids that conflict, and then
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Figure 3.1: Illustrations to Claim 3.3.6.

arbitrarily extend the weighting to the edges vk−2vk−3, . . . , v2v1. This yields an injective
neighbour-sum-distinguishing W -edge-weighting of F .

Now designate a vertex r with degree at least 3 of F as being the root of F . For
every vertex v 6= r in F , we the denote by f(v), the father of v in F . As mentioned in
Subsection 2.2.4, a multifather v of F is a vertex with degree at least 3, i.e. having at least
two children. If all descendants of v have degree at most 2, then v is a last multifather of
F . Since ∆(F ) ≥ 3, there are last multifathers in F .

To further study the structure of F , we now prove properties of its last multifathers,
still under the assumption that F is rooted at a vertex r with degree at least 3.

Claim 3.3.5. Vertex r is not a last multifather.

Proof. Assume that r is a last multifather. Then r is the only vertex with degree at
least 3 of F . In other words, F is a subdivided star. Then by assigning the weights
αmF

, αmF−1, . . . , α1, following this order, to the edges of F as they are encountered during
a breadth-first search algorithm performed from r, we obtain an injective neighbour-sum-
distinguishing edge-weighting of F . To be convinced of this statement, one can refer to
Observation 3.2.1.

Due to Claim 3.3.5, we may assume that the root r of F is not a last multifather.
Then all last multifathers of F (there are some) are different from r, and hence have a
father. We now refine Claim 3.3.4 to the following.

Claim 3.3.6. Every pendent path attached to a last multifather of F has length 1.

Proof. Let v 6= r be a last multifather of F , and assume v is incident to pendent paths
with length 2 (see Figure 3.1). We recall that all pendent paths attached to v have
length at most 2 (Claim 3.3.4), and, since v is a last multifather, it is incident to at least
two pendent paths. Let F ′ be the tree obtained from F by removing all pendent paths
attached to v. Because mF ′ := |E(F ′)| is smaller than mF , there exists an injective neigh-
bour-sum-distinguishing {α1, . . . , αmF ′

}-edge-weighting ωF ′ of F ′. For contradiction, we
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prove below that ωF ′ can be extended correctly to the pendent paths attached to v using
the weights among {αmF ′+1, . . . , αmF

} injectively.
Let b ≥ 1 be the number of pendent paths of length 2 attached to v in F , and let

vx1y1, . . . , vxbyb denote those paths (so that the xi’s have degree 2 in F , while the yi’s
are leaves). Vertex v is also adjacent to c ≥ 0 leaves xb+1, . . . , xb+c, which form, with v, c
pendent paths of length 1. Since v is a multifather, we recall that b+ c = dF (v)− 1 ≥ 2.

We extend ωF ′ to the edges of the pendent paths attached to v in the following way.
First, we injectively arbitrarily assign the dF (v) − 2 weights in {αmF−dF (v)+3, . . . , αmF

}
to the edges vx2, . . . , vxb+c. After that, we assign to the edge vx1 one of the weights
αmF−dF (v)+1 or αmF−dF (v)+2 chosen so that σωF

(v) is different from σωF ′
(f(v)). We then

assign to x1y1 the one weight of αmF−dF (v)+1 or αmF−dF (v)+2 not assigned to vx1. We note
that no matter how we complete the extension of ωF ′ , σωF

(v) will be strictly larger than
σωF

(x1) since σωF
(v) ≥ αmF

+ αmF−dF (v)+1, while σωF
(x2) = αmF−dF (v)+1 + αmF−dF (v)+2,

and αmF
> αmF−dF (v)+2 because dF (v) ≥ 3.

We finish the extension of ωF ′ to F by arbitrarily injectively assigning the remaining
non-used smaller weights to the edges x2y2, . . . , xbyb. Because all the xi’s have degree 2 and
the yi’s have degree 1, no conflict may arise between those vertices (Observation 3.2.1).
Furthermore, since the degree of v is larger than the degree of the xi’s, and the weights
assigned to the vxi’s are bigger than the weights assigned to the xiyi’s for i ≥ 2, by Ob-
servation 3.2.1, no conflict may arise between v and the xi’s for i ≥ 2. Hence we obtained
an injective neighbour-sum-distinguishing W -edge-weighting of F , a contradiction.

We finally study last multifathers of F being at the maximum distance from r, we
call these vertices the deepest last multifathers of F . From now on, we focus on a fixed
deepest last multifather v∗ of F , which we choose arbitrarily. In the upcoming proof, for
any vertex v of F , we denote by Fv the subtree of F rooted at v and induced by v and its
descendants in F . Recall that all children of a last multifather are leaves (Claim 3.3.6).

Claim 3.3.7. Every last multifather v of Ff(v∗) is a child of f(v∗). In particular, v is a
deepest last multifather of F .

Proof. The claim follows from the fact that if there exists a descendant v 6= v∗ of f(v∗)
being at distance at least 2 from f(v∗), then v would, in F , be at greater distance from r
than v∗ is. This would contradict the fact that v∗ is a deepest last multifather.

Recall that f(v∗) cannot be incident, in F , to a pendent path with length at least 3
(Claim 3.3.4). Hence, every child of f(v∗) is either a leaf (type-1), a degree-2 vertex
adjacent to a leaf (type-2, i.e. the inner vertex of a pendent path with length 2), or a
deepest last multifather (type-3). See Figure 3.2 for an illustration. Furthermore, we
know that f(v∗) is adjacent to at least one type-3 vertex, which is v∗. In the following
proof, we show that v∗ is actually the only child of f(v∗) in F .

Claim 3.3.8. Vertex v∗ is the only child of f(v∗) in F .
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Figure 3.2: Illustration of the three children types mentioned in the proof of The-
orem 3.3.3.

Proof. Suppose the claim is false, and let v 6= v∗ be another child of f(v∗). Let x1 and
x2 be two leaves adjacent to v∗, which exist since v∗ is a last multifather, and all pendent
paths attached to v∗ have length 1 (Claim 3.3.6).

Assume first that v is type-2 or type-3, or, in other words, that dF (v) ≥ 2. In that
case, v is adjacent to at least one leaf, say y. We here consider F ′ := F −{vy, v∗x1, v

∗x2}.
Note that F ′ remains nice and has fewer edges than F . Due to the minimality of F ,
there exists an injective neighbour-sum-distinguishing {α1, . . . , αmF ′

}-edge-weighting ωF ′
of F ′, where mF ′ := |E(F ′)|. We show below that ωF ′ can be extended to the three
removed edges with injectively using the three edge weights αmF−2, αmF−1, αmF

, yielding
an injective neighbour-sum-distinguishing W -edge-weighting ωF of F , a contradiction.

We first assign a weight to v∗x1 based on the conflicts that may happen when weighting
vy. When assigning any of the three weights to vy, the only problem which may occur,
recall Observation 3.2.1, is that σωF

(v) gets equal to σωF ′
(f(v∗)). If assigning one of

the three weights αmF−2, αmF−1, αmF
to vy indeed results in that conflict, we assign that

weight to v∗x1. Otherwise, we assign any of the three weights to v∗x1. In any case, no
conflict may arise as σωF

(v∗) is still not determined.
We are now left with two weights, which we must assign to v∗x2 and vy. Due to the

choice of the weight assigned to v∗x1, we note that no problem may occur when weighting
vy. Hence, we just have to weight v∗x2 correctly and assign the remaining weight to vy.
When weighting v∗x2, the only problem which may occur, according to Observation 3.2.1,
is that σωF

(v∗) gets equal to σωF ′
(f(v∗)). But, since we have two distinct weights to work

with, one of them can be assigned to v∗x2 so that this conflict is avoided. Thus we can
weight v∗x2 correctly and eventually weight vy with the remaining weight, resulting in
the claimed edge-weighting ω.

We may now assume that all children, including v, of f(v∗) different from v∗ are
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type-1, i.e. leaves. The contradiction can then be obtained quite similarly as in the
previous case but with setting F ′ := F − {f(v∗)v, v∗x1, v

∗x2}. When weighting f(v∗)v,
we have to make sure, if f(v∗) 6= r, that σωF

(f(v∗)) does not get equal to σωF ′
(f(f(v∗))).

Note that if f(v∗) = r, then the situation is actually easier as there is one less conflict
to consider. If one of the three available weights αmF−2, αmF−1, αmF

, when assigned to
f(v∗)v, yields a conflict involving f(v∗) and f(f(v∗)), then we assign that weight to v∗x1.
Otherwise, we assign any weight to v∗x1. This ensures that, when assigning any of the
two remaining weights to f(v∗)v, no conflict may involve f(v∗) and f(f(v∗)). We finally
arbitrarily assign the two remaining weights to v∗x2 and f(v∗)v. If this results in a neigh-
bour-sum-distinguishing edge-weighting ωF of F , then we are done. Otherwise, it means
that σωF

(v∗) = σωF
(f(v∗)). In that case, note that, because all assigned edge weights

are distinct, when swapping the values assigned to v∗x2 and f(v∗)v by ωF that conflict
cannot remain. Furthermore, according to the remarks above, we still do not create any
sum conflict involving f(v∗) and f(f(v∗)). After the swapping operation ωF hence gets
neighbour-sum-distinguishing, a contradiction.

We are now ready to finish the proof by showing that, under all information we have
obtained, F actually admits an injective neighbour-sum-distinguishingW -edge-weighting,
a contradiction.

From Claim 3.3.8, we get that dF (f(v∗)) = 2, as v∗ is not the root of F , so f(f(v∗))
exists. Let x1, . . . , xk be the k ≥ 2 leaves attached to v∗ in F , which exist since v∗ is
a type-3 vertex. Now consider the tree F ′ := F − {v∗x1, . . . , v

∗xk} with size mF ′ :=
|E(F ′)|. Due to the minimality of F , there exists an injective neighbour-sum-distin-
guishing {α1, . . . , αmF ′

}-edge-weighting ωF ′ of F ′. We extend ωF ′ to the k removed edges
so that an injective neighbour-sum-distinguishingW -edge-weighting ωF of F is obtained, a
contradiction. To that aim, we arbitrarily injectively assign the weights αmF−k+1, . . . , αmF

to the pendent edges v∗v1, . . . , v
∗vk attached to v∗. Recall that we cannot get sum conflicts

involving v∗ and the vi’s according to Observation 3.2.1. Furthermore, we have dF (v∗) ≥
3 while dF (f(v∗)) = 2 (Claim 3.3.8), and we have used the k biggest weights of W
to weight the edges v∗xi. From this and Observation 3.2.1, we get that, necessarily,
σωF

(v∗) > σωF ′
(f(v∗)). Hence, ωF is neighbour-sum-distinguishing, a contradiction.

3.4 General upper bounds
Towards Conjecture 3.1.1, we exhibit, in this section, for any nice graph G, an upper
bound on χe,1Σ (G) of the form k · |E(G)|, where k is a fixed constant.

It turns out, first, that some results towards the 1-2-3 Conjecture can be extended
to the injective context, hence yielding bounds to our context. This is in particular the
case of the weighting algorithm by [KKP10], which was designed to prove that χeΣ(G) ≤ 5
holds for every nice graph G. In very brief words, this algorithm initially assigns the list of
weights {1, 2, 3, 4, 5} to every edge of G, which contains the possible weights that any edge
can be assigned at any moment of the algorithm. The algorithm then linearly processes
the vertices of G with possibly adjusting some incident edges weights (but staying in the
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Figure 3.3: Illustration of the three types of components in the proof of Theorem 3.4.1,
each edge or component on the figure is weighted using the weights of the same colour.

list {1, 2, 3, 4, 5}) so that sum conflicts are avoided around any vertex considered during
the course.

It is easy to check that this algorithm also works under the assumption that every edge
of G is assigned a (possibly unique) list of five allowed consecutive weights {α − 2, α −
1, α, α+ 1, α+ 2}. In particular, when applied with non-intersecting such lists assigned to
the edges, the algorithm yields an injective nsd edge-weighting, as every edge weight can
be assigned to at most one edge. So, applying the algorithm on a nice graph G with edges
e0, . . . , em−1 where each edge ei is assigned the list {5i+1, 5i+2, 5i+3, 5i+4, 5i+5} results
in an injective nsd (5 · |E(G)|)-edge-weighting of G. From this, we get that χe,1Σ (G) ≤
5 · |E(G)| holds for every nice graph G.

The 5 · |E(G)| bound on χe,1Σ (G) above can actually be improved down to 2 · |E(G)|
by means of a careful inductive proof scheme, which we describe in the following proof.
We actually prove (here and further) a stronger statement to get rid of the non-connected
cases.

Theorem 3.4.1. Let G be a nice graph. Then, for every set W of 2 · |E(G)| distinct
positive weights, there exists an injective neighbour-sum-distinguishing W -edge-weighting
of G. As a consequence, we have χe,1Σ (G) ≤ 2 · |E(G)|.

Proof. The proof is by induction on nG + mG, where nG := |V (G)| and mG := |E(G)|.
As it can easily be checked that the claim is true for small values of nG +mG, we proceed
to the induction step. Consider hence a value of nG +mG such that the claim is true for
all smaller values of this sum.

We may assume that G is connected, as otherwise induction could be invoked on the
different components of G. Set ∆ := ∆(G). Since we may assume that mG ≥ 4 and
G is nice, we clearly have ∆ ≥ 2. We may even assume that ∆ ≥ 3, as otherwise G
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would admit an injective neighbour-sum-distinguishing W -edge-weighting according to
Observation 3.3.2. Consider any vertex v∗ of G verifying dG(v∗) = ∆ and denote by
u1, . . . , u∆ the neighbours of v∗ in G.

Set G′ := G− v∗. Note that G′ may include components isomorphic to K2, and thus
be not nice. In this context, we say that a component of G′ is ugly if it has no edge, bad
if it is isomorphic to K2, and good otherwise. Basically, a bad component of G′ is an edge
to which v∗ is joined in G: either v∗ is adjacent to the two ends of that edge, or v∗ is
adjacent to only one of the two ends.

If G′ does not have good components, then G is a connected graph whose only vertex
with degree at least 3 is v∗ such that G′ consists of isolated vertices and isolated edges
only. In particular, all vertices of G but v∗ have degree at most 2, and every degree-2
vertex ui adjacent to v∗ is either adjacent to another degree-2 vertex uj adjacent to v∗, or
adjacent to a degree-1 vertex. In such a situation, assuming W := {α1, . . . , α2mG

} where
α1 < . . . < α2mG

, it can easily be seen that assigning decreasing weights α2mG
, . . . , α1,

following this order, to the edges of G as they are encountered while performing a breadth-
first search algorithm from v∗, results in an injective nsd edge-weighting ofG. This notably
follows as a consequence of Observation 3.2.1.

Hence we may assume that G′ has good components C1, C2, . . . Ck. Let H denote the
union of the Ci’s, and set mH := |E(H)|. Since the Ci’s are nice by definition, so is H.
Furthermore, we have that mH < mG. According to the induction hypothesis, there hence
exists an injective neighbour-sum-distinguishing {α1, . . . , α2mH

}-edge-weighting wH of H.
In order to get an injective neighbour-sum-distinguishing W -edge-weighting wG of G, we
eventually need to extend wH to the remaining edges of G, i.e. to the v∗ui’s and the edges
of the bad components of G′.

To that aim, we use only weights among {α2mH+1, . . . , α2mG
} injectively, i.e. we do not

use non-used weights among {α1, . . . , α2mH
} (see Figure 3.3). Let u1, . . . , uk denote the

neighbours of v∗ belonging to good components of G. We start by injectively assigning
weights to the edges v∗u1, . . . , v

∗uk using ∆+k of the weights in {α2mG−(∆+k)+1, . . . , α2mG
},

without raising any sum conflict. This is possible for every considered edge v∗ui, since
each ui has degree at most ∆ − 1 in H and we have at least ∆ + k − (i − 1) ≥ ∆ + 1
different available weights.

We are now left with weighting the edges of G belonging to the bad components, or
being incident with v∗ and a bad component. Assume there are m′ of them. Then we
have mG = mH + k +m′, and, since k +m′ ≥ ∆, we have

2mG − (∆ + k)− 2mH = k + 2m′ −∆ ≥ m′.

The set {α2mH+1, . . . , α2mG−(∆+k)} hence contains sufficiently many weights for weighting
all of the m′ remaining edges. To that aim, we assign the weights α2mG−(∆+k), . . . , α2mH+1,
following this order (i.e. in decreasing order of magnitude), to these m′ remaining edges
as they are encountered during a breadth-first search algorithm performed from v∗.

It can easily be checked that, by the weighting scheme described above, for every
neighbour v of v∗, the weights in Pω(v∗) − ω(vv∗) are greater than all the weights in
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Pω(v) − ω(vv∗). Hence, by Observation 3.2.1, vertex v∗ is distinguished from all its
neighbours. By the same observation, it can be checked that no sum conflict can involve
vertices of G−H, thus that the resulting injective edge-weighting is neighbour-sum-distin-
guishing.

We now provide a second upper bound on χe,1Σ (G) of the form |E(G)| + k for every
nice graph G. Here, our k is a small linear function of ∆(G), making the bound mostly
interesting in the context of nice graphs with bounded maximum degree, and generally
better than the bound in Theorem 3.4.1 (except in some cases to be discussed later). The
proof scheme we employ here is different from the one used to prove Theorem 3.4.1.

Theorem 3.4.2. Let G be a nice graph. Then, for every set W of |E(G)|+2∆(G) distinct
positive weights, there exists an injective neighbour-sum-distinguishing W -edge-weighting
of G. As a consequence, we have χe,1Σ (G) ≤ |E(G)|+ 2∆(G).

Proof. We may assume that G is connected. Set ∆ := ∆(G), and let n := |V (G)| and
m := |E(G)| denote the order and size, respectively, of G. Also, setW := {α1, . . . , αm+2∆}
with 0 < α1 < . . . < αm+2∆. First choose a vertex v∗ with degree ∆ in G, and let T be
a spanning tree of G including all edges incident to v∗. From T , we deduce a partition
V0 ∪ . . . ∪ Vk of V (G), where each part Vd includes the vertices of G being at distance d
from v∗ in T . In particular, V0 = {v∗}, and, for every vertex u in a part Vi with i 6= 0,
there is exactly one edge from u to Vi−1 in T . We call this edge the private edge of u.

We now describe how to obtain an injective neighbour-sum-distinguishing W -edge-
weighting of G. We start by assigning the edge weights α1, . . . , αm−(n−1) to the edges of
E(G)\E(T ) in an arbitrary way. This leaves us with all edges of T to be weighted, which
includes at least one incident (private) edge for every vertex different from v∗, and all
edges incident to v∗. To weight these edges without creating any conflict, we will first
consider all vertices of Vk and weight their private edges carefully, then do the same for
all vertices of Vk−1, and so on layer by layer until all edges of T are weighted. Fixing any
ordering over the vertices of each Vi for i ∈ {1, . . . , k}, this weighting scheme yields an
ordering u1, . . . , un−1 in which the vertices are considered (i.e. the |Vk| first ui’s belong
to Vk, the |Vk−1| next ui’s belong to Vk−1, and so on; the |V1| last ui’s belong to V1). We
note that the private edges of the |V1| last ui’s go to v∗.

To extend the injective neighbour-sum-distinguishing edge-weighting to the edges of
T correctly, we consider the ui’s in order, and for each of these vertices, we weight its
private edge in such a way that no sum conflict arises. Assume we are currently dealing
with vertex ui, meaning that all previous ui’s have been correctly treated. If ui 6∈ V1,
then we assign to the private edge of ui a non-used weight among {αm−(n−1)+1, . . . , αm}
in such a way that σ(ui) is different from the sums each of the at most ∆ − 1 already
processed neighbours of ui. Note that, even for the last ui not in V1 to be considered, the
number of remaining non-used weights in {αm−(n−1)+1, . . . , αm} is at least ∆ + 1, so this
weighting extension can be applied to every vertex.

Now, if ui ∈ V1, then we apply the same strategy but with the weights among
{αm+1, . . . , αm+2∆}. Again, even for un−1, note that this set includes at least ∆ + 1
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3.5. Refined upper bounds for particular classes of sparse graphs

non-used weights, so we can correctly choose a weight for un−1v
∗ so that σ(un−1) gets

different from the sums of the previously-treated vertices. To finish off the proof, we
note that, by that strategy, all edges incident to v∗ have been weighted with weights
among {αm+1, . . . , αm+2∆}. Since d(v∗) = ∆, by Observation 3.2.1 we get that v∗ is
sum-distinguished from all its neighbours.

Note that the 2·|E(G)| bound from Theorem 3.4.1, can, in several situations, be better
than the |E(G)|+ 2∆(G) bound from Theorem 3.4.2. To be convinced of that statement,
consider the class of graphs obtained by starting from any star with ∆ leaves u1, . . . , u∆

and adding no more than ∆− 1 edges joining pairs of vertices among {u1, . . . , u∆}.

3.5 Refined upper bounds for particular classes of spa-
rse graphs

We now improve the bounds in Section 3.4 to bounds of the form |E(G)| + k, where k
is a small constant, for several classes of nice graphs G. Our weighting strategy here
relies on removing some edges from G, then deducing a correct edge-weighting of the
remaining graph, and extending that weighting to G. So that this weighting strategy
applies, we focus on rather sparse graph classes with particular properties inherited by
their subgraphs. In that respect, we give a special focus to nice 2-degenerate graphs, and
nice graphs with maximum average degree at most 3. It is worth recalling that these
graphs may have arbitrarily large maximum degree, so Theorem 3.4.2 does not provide
the kind of bound we are here interested in.

Throughout this section, when speaking of a k-vertex, we mean a degree-k vertex. By
a k−-vertex (resp. k+-vertex ), we refer to a vertex with degree at most (resp. at least) k.

3.5.1 2-degenerate graphs

In this subsection, we focus on nice 2-degenerate graphs, and exhibit an upper bound on
their value of χe,1Σ .

Theorem 3.5.1. Let G be a nice 2-degenerate graph. Then, for every set W of |E(G)|+4
distinct positive weights, there exists an injective neighbour-sum-distinguishing W -edge-
weighting of G. As a consequence, we have χe,1Σ (G) ≤ |E(G)|+ 4.

Proof. Assume the claim is false, and let G be a counterexample that is minimal in terms
of nG+mG, where nG := |V (G)| and mG := |E(G)|. SetW := {α1, . . . , αmG+4}. We show
below that G cannot be a counterexample, and thereby get a contradiction. This is done
by showing that we can always remove some edges from G while keeping the graph nice,
then deduce an injective neighbour-sum-distinguishing {α1, . . . , αmG′+4}-edge-weighting
ωG′ of the remaining graph G′, where mG′ := |E(G′)|, and finally extend ωG′ to get an
injective neighbour-sum-distinguishing W -edge-weighting ωG of G.
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We start by pointing out properties of G we may assume. Clearly, we may suppose
that G is connected. According to Observation 3.3.2, we may also assume that ∆(G) ≥ 3,
and, therefore, that mG ≥ 4, as otherwise G would be a tree, in which case a weighting
exists according to Theorem 3.3.3. We note as well that the 1-vertices of G must be
adjacent to vertices with sufficiently large degree.

Claim 3.5.2. Every 1-vertex of G is adjacent to a 6+-vertex.

Proof. Assume for contradiction that G has a 1-vertex u adjacent to a 5−-vertex v. Let
G′ := G − {uv}. Then G′ is 2-degenerate, and nice as otherwise G would be a path of
length 2 (in which case Theorem 3.3.3 applies). Thus G′ admits an injective neighbour-
sum-distinguishing {α1, . . . , αmG′+4}-edge-weighting ωG′ , wheremG′ := mG−1. According
to Observation 3.2.2, we can correctly extend ωG′ to uv, hence to G, since we have at
least five distinct weights available for that. A contradiction.

From Claim 3.5.2, we also deduce the following:

Claim 3.5.3. G − u is nice for every vertex u, and therefore G − uv is nice for every
edge uv.

Proof. Let u be a vertex of G, and G′ := G − u. Now assume that G′ is not nice. Since
G is nice, one neighbour of u has degree 2 in G and is adjacent to a vertex v′ of degree 1
in G, with v′ 6= u, a contradiction with Claim 3.5.2. Hence G− u is nice for every vertex
u. Moreover, it is clear that this implies that G− uv is also nice for every edge uv.

As a consequence of Claim 3.5.3 and Observation 3.2.2, we immediately get the fol-
lowing:

Claim 3.5.4. G has no edge uv with dG(u) + dG(v) ≤ 6.

We are now ready to finish the proof of Theorem 3.5.1. Let S1 denote the set of 2−-
vertices of G, and set G1 := G−S1. Since ∆(G) ≥ 3, graph G1 has vertices. In particular,
since G1 is 2-degenerate, it has a 2−-vertex v. Let us denote as d2−(v) the number of
neighbours, in G, of v belonging to S1. Then dG(v) = d2−(v) + dG1(v). Moreover, since
v 6∈ S1, dG(v) ≥ 3. Hence, d2−(v) ≥ 1. Therefore, by Claim 3.5.4, dG(v) ≥ 5, and since
dG1(v) ≤ 2, d2−(v) ≥ 3.

Now, let v1, v2, v3 be three neighbours of v belonging to S1. We here consider G′ := G−
{vv1, vv2, vv3}. Note that G′ has to be nice, as otherwise G would have an edge violating
Claim 3.5.4. Due to the minimality of G, and because G′ is a nice 2-degenerate graph,
there exists an injective neighbour-sum-distinguishing {α1, . . . , αmG′+4}-edge-weighting
ωG′ of G′. We will extend ωG′ to vv1, vv2, vv3, thus to G, assigning weights among a set
of seven weights including those among {αmG+2, αmG+3, αmG+4} in the following way.

We first assign a weight β1 from {αmG+3, αmG+4} to the edge vv1 so that we do not
create a sum conflict involving v1 and its neighbour different from v (if any), which is
clearly possible with two distinct weights. Similarly, we then assign a weight β2 from
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{αmG+2, αmG+3, αmG+4} \ {β1} to vv2 so that we do not create a sum conflict involving
v2 and its neighbour different from v (if any). Note that due to the choice of β1 and β2,
which are strictly bigger than the weights among {α1, . . . , αmG′+4}, no matter how we
extend the weighting to vv3 it cannot occur that σωG

(v) gets equal to the sum of weights
incident to a neighbour of v in G belonging to S1. Hence, when extending ωG′ to vv3, we
just have to make sure that σωG

(v3) does not get equal to the sum of weights incident to
the neighbour of v3 different from v (if any), and that σωG

(v) does not get equal to the
sums of weights incident to its at most two neighbours in G1. So there are at most three
conflicts to take into account while we have five weights in hand to weight vv3. Clearly,
this is sufficient to extend the weighting.

3.5.2 Graphs with maximum average degree at most 3

In this subsection, we prove an upper bound on χe,1Σ for every nice graph with maximum
average degree at most 3.

Theorem 3.5.5. Let G be a nice graph with mad(G) ≤ 3. Then, for every set W of
|E(G)|+6 distinct positive weights, there exists an injective neighbour-sum-distinguishing
W -edge-weighting of G. In particular, we have χe,1Σ (G) ≤ |E(G)|+ 6.

Proof. Assume there exists a counterexample to the claim, that is, there exists a nice
graph G for which we have mad(G) ≤ 3 but, for a particular set W including |E(G)|+ 6
weights, there is no injective neighbour-sum-distinguishing W -edge-weighting of G. We
consider G minimal in terms of nG + mG, where nG := |V (G)| and mG := |E(G)|. Set
W := {α1, . . . , αmG+6}, where α1 < . . . < αmG+6. Our ultimate goal in this proof is to
show that G cannot exist. The strategy we employ to this end is essentially to show that
G has a nice subgraph H, with order nH and size mH , such that H has an injective nei-
ghbour-sum-distinguishing {α1, . . . , αmH+6}-edge-weighting ωH that can be extended to
an injective neighbour-sum-distinguishing W -edge-weighting ωG of G, contradicting the
fact that G is a counterexample. The main tool we want to use, in order to show that H
has such an edge-weighting, is Theorem 3.4.2. Since G is a counterexample to the claim,
note that Theorem 3.4.2 already implies that ∆(G) ≥ 4. Furthermore, we may assume
that G is connected, and is not a tree as otherwise Theorem 3.3.3 would apply.

The subgraph H we consider is obtained by removing all 1-vertices from G. Of course,
we have mad(H) ≤ 3 and it may happen that G = H. We may as well assume that H
remains nice, as, if it is not the case, then G would be a tree (a bistar, i.e. a tree having
exactly two 2+-nodes, being adjacent), which is not possible as pointed out above.

In the following result, we observe that, by showing that H verifies ∆(H) ≤ 3, then
we will get our conclusion.

Proposition 3.5.6. If ∆(H) ≤ 3, then G is not a counterexample.

Proof. If G = H, then G admits an injective neighbour-sum-distinguishing W -edge-
weighting according to Theorem 3.4.2 since we would have ∆(G) ≤ 3. So assume that G
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has 1-vertices. Since we assume that ∆(H) ≤ 3, there exists an injective neighbour-sum-
distinguishing {α1, . . . , αmH+6}-edge-weighting ωH of H, still according to Theorem 3.4.2.

We now extend ωH to the pendent edges of G. We successively consider every vertex
v of H incident to a pendent edge. We start by assigning an arbitrary non-used weight
to every pendent edge incident to v, but one, say vu.

We claim that we can find a correct weight for vu. First, we note, according to
Observation 3.2.1, that only the neighbours of v in H can cause sum conflicts. Hence,
when extending ωH to vu, we just have to make sure, since vu is the last non-weighted
pendent edge incident to v, that σ(v) does not meet any of the determined sums of the
vertices adjacent to v in H. By our assumption on ∆(H), there are at most three such
vertices, while we have at least seven ways to weight vu (among {α1, . . . , αmG+6}), each
determining a distinct value for σ(v). We can hence find a correct non-used weight for
vu.

Since the process above can be applied for all vertices of H incident to a pendent
edge in G, weighting ωH can hence be extended to all pendent edges of G. Thus ωH
can be extended to an injective neighbour-sum-distinguishing W -edge-weighting of G, as
claimed.

It remains to show that ∆(H) ≤ 3. This is proved by getting successive information
concerning the structure of H so that classical discharging arguments can eventually be
employed.

Claim 3.5.7. If v ∈ V (H) is adjacent to 1-vertices in G, then dH(v) ≥ 7.

Proof. This follows from Observation 3.2.2, as, when removing a pendent edge from G,
applying induction, and putting the edge back, we have seven distinct weights to achieve
the extension to G.

Claim 3.5.8. We have δ(H) ≥ 2.

Proof. If δ(H) = 0, then G is a star, contradicting one of our initial assumptions. Now,
if δ(H) = 1, then G includes a vertex v such that dH(v) = 1 and v is incident to pendent
edges in G. But this is impossible as such a v would not meet the condition in Claim 3.5.7.
So δ(H) ≥ 2.

Claim 3.5.9. Graph H has no two adjacent 2-vertices.

Proof. Suppose that H has an edge uv such that dH(u) = dH(v) = 2. Recall that,
according to Claim 3.5.7, we have dG(u) = dG(v) = 2. In this case, we consider the graph
G′ := G−{uv} with size mG′ := |E(G′)|. Clearly G′ remains nice (otherwise Claim 3.5.7
would be violated), has mad(G′) ≤ 3, and, due to the minimality of G, graph G′ admits
an injective neighbour-sum-distinguishing {α1, . . . , αmG′+6}-edge-weighing ωG′ .

In G′, we have dG′(u) = dG′(v) = 1. Let u′ and v′ be the neighbours of u and v,
respectively, in G′. Since ωG′ is injective, we have ωG′(uu′) 6= ωG′(vv

′). We now note that,
under all those assumptions, weighting ωG′ can easily be extended to an injective neigh-
bour-sum-distinguishing W -edge-weighing ωG of G, i.e. to the edge uv, a contradiction.
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We note that, because ωG′(uu′) 6= ωG′(vv
′) and dG(u) = dG(v) = 2, we cannot get

σωG
(u) = σωG

(v) when assigning any weight to uv, recall Observation 3.2.1. So the only
constraints we have are that σωG

(u) has to be different from σωG
(u′) (which is exactly

σωG′
(u′)) and σωG

(v) must be different from σωG
(v′) (which is exactly σωG′

(v′)). These
constraints forbid us from assigning, to uv, at most two of the seven weights that have
not been used yet. So we can extend ωG′ to ωG.

Claim 3.5.10. Graph H has no 2-vertex adjacent to two 3-vertices.

Proof. Assume H has such a vertex v with dH(v) = 2, and v has two neighbours u1

and u2 verifying dH(u1) = dH(u2) = 3. According to Claim 3.5.7, we have dG(v) = 2,
dG(u1) = 3 and dG(u2) = 3. Let G′ := G − {vu1, vu2} and mG′ := |E(G′)|. Clearly,
G′ remains nice with mad(G′) ≤ 3, and, by the minimality of G, there exists an in-
jective neighbour-sum-distinguishing {α1, . . . , αmG′+6}-edge-weighing ωG′ . According to
Observation 3.2.3, weighting ωG′ can be extended to an injective neighbour-sum-distin-
guishing W -edge-weighing of G provided we have at least five distinct edge weights in
hand. Since we here have eight non-used edge weights dedicated to weighting vu1 and
vu2, the extension of ωG′ to G hence exists.

Claim 3.5.11. Graph H has no 3-vertex adjacent to two 3−-vertices.

Proof. The proof is similar to that of the previous claim. Assume H has such a 3-vertex v
being adjacent to at least two 3−-vertices u1 and u2. Again, we set G′ := G−{vu1, vu2},
and let ωG′ be an injective neighbour-sum-distinguishing {α1, . . . , αmG′+6}-edge-weighing
of G′, where mG′ := |E(G′)|. Still according to Observation 3.2.3, we know that an
extension exists provided we have at least six weights available. So ωG′ can correctly be
extended to vu1 and vu2, as eight edge weights can be used in the present context.

Before getting our conclusion, we prove two last claims which are a bit more general
than what we actually need.

Claim 3.5.12. Graph H has no 6-vertex adjacent to two 2-vertices.

Proof. Assume H has such a 6-vertex v, and let u1 and u2 denote any two of its 2-
neighbours. Recall that dH(v) = dG(v), dH(u1) = dG(u1) and dH(u2) = dG(u2) according
to Claim 3.5.7. Let G′ := G − {vu1, vu2} and set nG′ := |V (G′)| and mG′ := |E(G′)|.
Clearly G′ is nice (Claims 3.5.7 and 3.5.9) with mad(G′) ≤ 3, and, since nG′ + mG′ <
nG + mG, there exists an injective neighbour-sum-distinguishing {α1, . . . , αmG′+6}-edge-
weighing ωG′ of G′. Again according to Observation 3.2.3, under these conditions, we
know that ωG′ can be extended to vu1 and vu2 provided we have at least eight weights
available. Since this is precisely the case, we are done.

Claim 3.5.13. Graph H has no 4- or 5-vertex adjacent to at least two 3−-vertices.

Proof. The proof is very similar to that of Claim 3.5.12, and can be mimicked by letting
u1 and u2 be two 3−-vertices adjacent to v. We then get the same conclusion from
Observation 3.2.3.
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We are now ready to prove that H has maximum degree 3.

Claim 3.5.14. We have ∆(H) ≤ 3.

Proof. Assume the contrary, namely that ∆(H) ≥ 4. We prove the claim by means of the
so-called discharging method, through a discharging procedure, based on the following
rules.

To every vertex v of H, we assign an initial charge ρ(v) being dH(v) − 3. Since
mad(H) ≤ 3, we have ∑

v∈V (H)

dH(v) ≤ 3 · nH ,

which implies that ∑
v∈V (H)

ρ(v) ≤ 0.

Without creating or deleting any amount of charge assigned to the vertices, we now
transfer a part of the assigned charges from neighbours to neighbours, through three
discharging rules applied in two successive steps.

In the sequel, by a weak 3-vertex of H we refer to a 3-vertex adjacent to a 2-vertex
(recall that a 3-vertex of H is adjacent to at most one 2-vertex according to Claim 3.5.11).
The first discharging step consists in applying the following rule:

(R1) Every 4+-vertex transfers 1
4
to every adjacent weak 3-vertex.

Once the first discharging step has been performed, we then apply the second step, which
consists in applying the following two discharging rules:

(R2) Every weak 3-vertex transfers 1
2
to its adjacent 2-vertex.

(R3) Every 4+-vertex transfers 1
2
to every adjacent 2-vertex.

We now compute the final charge ρ∗(v) that every vertex v of H gets once the two
steps above have been performed. Recall that δ(H) ≥ 2 according to Claim 3.5.8.

1. If v is a 2-vertex, then v is adjacent to a 4+-vertex, and either a weak 3-vertex or a
4+-vertex according to Claims 3.5.9 and 3.5.10. Through Rules (R2) and (R3), the
two neighbours of v both transfer 1

2
to v. Hence, ρ∗(v) = ρ(v) + 2× 1

2
= 0.

2. If v is a 3-vertex, then v is either weak, or not. If v is not weak, it is not concerned
by any of Rules (R1), (R2) and (R3), so ρ∗(v) = ρ(v) = 0. Now assume v is a
weak 3-vertex. According to Claim 3.5.11, vertex v is adjacent to a 2-vertex u,
and two 4+-vertices z1 and z2. Through Rule (R1), vertex v receives 1

4
from each

of z1 and z2, while, through Rule (R2), vertex v then transfers 1
2
to u. Therefore,

ρ∗(v) = ρ(v) + 2× 1
4
− 1

2
= 0.
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3. If v is a 4- or 5-vertex, then v is adjacent to at most one vertex being either a
2-vertex or weak 3-vertex u according to Claim 3.5.13. The case where ρ∗(v) is
minimum is when v is a 4-vertex and u is a 2-vertex, in which case v transfers 1

2
to

u. In that case, through Rule (R3), we get ρ∗(v) = ρ(v)− 1
2

= 1
2
. So, whenever v is

a 4- or 5-vertex, we get ρ∗(v) > 0.

4. If v is a 6-vertex, then v is adjacent to at most one 2-vertex according to Claim 3.5.12.
The case where ρ∗(v) gets minimum is essentially when v has one 2-neighbour and
five weak 3-neighbours. In that case, following Rules (R1) and (R3), we get ρ∗(v) =
ρ(v)− 5× 1

4
− 1

2
= 5

4
. Hence, we always get ρ∗(v) > 0 in that case.

5. If v is a 7+-vertex, then v transfers most charge when v is adjacent to dH(v) 2-
vertices. In that case, following Rule (R3) we deduce that ρ∗(v) = ρ(v)−dH(v)× 1

2
.

Under the assumption that dH(v) ≥ 7, observe that ρ(v) > dH(v) × 1
2
. So, again,

we always have ρ∗(v) > 0 in this case.

From the analysis above, we get, because ∆(H) ≥ 4, that∑
v∈V (H)

ρ(v) ≤ 0 <
∑

v∈V (H)

ρ∗(v),

which is impossible as we did not create any new amount of charge when applying the
discharging procedure. Hence, we have ∆(H) ≤ 3.

The result is a consequence of Proposition 3.5.6 and Claim 3.5.14

Theorem 3.5.5 applies to all nice graphs with maximum average degree at most 3.
Among the classes of such graphs, we would like to highlight the class of nice planar
graphs with girth at least 6, where the girth g(G) of a graph G is the length of a shortest
cycle. We refer the reader to e.g. the article by [BKN+99], wherein the authors noticed
that, for every planar graph G, we have

mad(G) <
2g(G)

g(G)− 2
.

This gives that every planar graph G with g(G) ≥ 6 has mad(G) ≤ 3.

Corollary 3.5.15. Let G be a nice planar graph G with g(G) ≥ 6. Then, for every set
W of |E(G)| + 6 distinct weights, there exists an injective neighbour-sum-distinguishing
W -edge-weighting of G. In particular, we have χe,1Σ (G) ≤ |E(G)|+ 6.

3.6 Discussion
In this chapter, we have introduced and studied Conjecture 3.1.1 which stands, in some
sense, as a combination of the 1-2-3 Conjecture and the Antimagic Labelling Conjecture.
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In particular, as a support to Conjecture 3.1.1, we have pointed out that some families of
nice graphs agree with it, or sometimes almost agree with it, i.e. up to an additive constant
term. Although these results can be regarded as a first step towards Conjecture 3.1.1, it
is worth emphasizing that our work does not bring anything new towards attacking the
1-2-3 Conjecture and the Antimagic Labelling Conjecture but rather concerns some side
aspects of these two conjectures.

As mentioned in Section 3.1, Haslegrave proved Conjecture 3.1.1 using the probabilistic
method in [Has17]. However, the proof is not constructive. Moreover, the bounds on χe,1

Σ

obtained in Section 3.4 can also be obtained using Combinatorial Nullstellensatz on the
polynomial ∏

uv∈E(G)

(
∑

u′∈N(u)

Xuu′ −
∑

v′∈N(v)

Xvv′)×
∏

e,e′∈E(G),e 6=e′
(Xe −Xe′),

but it would be a non-constructive proof also.
As further work towards constructive proof of Conjecture 3.1.1, it would be interesting

to exhibit, for all nice graphs G, bounds on χe,1Σ (G) of the form |E(G)| + k for a fixed
constant k. One could as well try to get a bound of the form k·|E(G)| for some k between 1
and 2. Obtaining one of these two bounds would already improve the ones we have
exhibited in Section 3.4. It is worth mentioning that our bounds in that section can slightly
be improved by making some choices in a more clever way. But these improvements would
allow us to save a small constant number of weights only, which is far from the desired
improvement we have mentioned earlier.

As another direction, we would also be interested in constructive proofs of Conjec-
ture 3.1.1 for other classes of nice graphs being not known to be antimagic yet. Among
such classes, let us mention the case of nice bipartite graphs G, for which we did not
manage to come up with an |E(G)| + k bound on χe,1Σ (G), for any constant k. An-
other such class that would be interesting to investigate is the class of nice subcubic
graphs. Since we already have a constructive proof that every nice subcubic graph verify
χe,1Σ (G) ≤ |E(G)|+ 6, recall Theorems 3.4.2 and 3.5.5.

Nice planar graphs would also be interesting candidates to investigate, as we have
been mostly successful with sparse classes of nice graphs. Our result in Corollary 3.5.15
may be regarded as a first step towards that direction.

Our results in this chapter may also be subject to further investigations. In particular,
there is still a gap for nice 2-degenerate graphs and graphs with maximum average degree
at most 3 between our bounds in Section 3.5 and the bound in Conjecture 3.1.1. One
could as well wonder how to generalize our results to nice k-degenerate graphs and graphs
with maximum average degree at most k for larger values of k. In particular, it could be
interesting to exhibit, for such a graph G, a constructive proof of a general upper bound
on χe,1Σ (G) of the form |E(G)|+O(k) involving a small function of k.

79



3.6. Discussion

80



Chapter 4

Doubling the 1-2-3 Conjecture

As mentioned in Chapter 1, the 1-2-3 Conjecture asks whether every graph with no
component isomorphic to K2 can be 3-edge-weighted so that every two adjacent vertices
u and v can be distinguished via the sum of their incident weights, that is the incident
sums of u and v differ by at least 1.

In this chapter we investigate the consequences of requiring a stronger distinction
condition on neighbour-sum-distinguishing edge-weightings. Namely, we consider two
adjacent vertices distinguished when their incident sums differ by at least 2. As a guiding
line, we conjecture that every graph with no component isomorphic to K2 admits a 5-
edge-weighting permitting to distinguish the adjacent vertices in this stronger way.

We prove this conjecture for several classes of graphs, including bipartite graphs and
cubic graphs. We then consider algorithmic aspects, and show that it is NP-complete to
determine the smallest k such that a given bipartite graph admits such a k-edge-weighting.
In contrast, we show that the same problem can be solved in polynomial time for a given
tree.

The results presented in this chapter were published in [BBSS18].

4.1 Introduction
When designing neighbour-sum-distinguishing edge-weightings, the goal is to make adja-
cent vertices distinguishable via their incident sums. In ordinary neighbour-sum-distin-
guishing edge-weightings, adjacent vertices are considered distinguished as soon as their
incident sums are distinct. We here investigate edge-weightings that permit to distinguish
the adjacent vertices in a stronger way. Namely, we require adjacent vertices to have in-
cident sums differing by at least 2. An edge-weighting with this stronger requirement is
said to be neighbour-sum-2-distinguishing (ns2d for short) throughout. As observed in
upcoming Observation 4.2.1, a neighbour-sum-distinguishing k-edge-weighting can easily
be turned into a neighbour-sum-2-distinguishing 2k-edge-weighting. Moreover, since K2

does clearly not admit any neighbour-sum-2-distinguishing edge-weighting, the notion of
nice graphs for neighbour-sum-distinguishing edge-weightings and for neighbour-sum-2-
distinguishing edge-weightings coincide. Again, we can thus wonder about the smallest k
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such that a given nice graph G admits a neighbour-sum-2-distinguishing k-edge-weighting,
which we denote by χΣ>1(G).

Our main goal in this chapter is to study how χΣ>1 behaves in general, especially for
graphs for which the parameter χΣ is well understood. As noted in upcoming Observa-
tion 4.2.1, the 1-2-3 Conjecture, if true, would imply that χΣ>1(G) ≤ 6 holds for every
nice graph G. One could thus naturally wonder about a 1-2-3-4-5-6 Conjecture for neigh-
bour-sum-2-distinguishing edge-weightings. It actually turns out that we did not manage
to exhibit nice graphs G with χΣ>1(G) = 6. On the other hand, we prove, throughout
this chapter, that for several common classes of nice graphs G we have χΣ>1(G) ≤ 5. We
are thus tempted to propose the following.

Conjecture 4.1.1. For every nice graph G, we have χΣ>1(G) ≤ 5.

We here give first evidence towards this conjecture. We start in Section 4.2 by raising
connections between neighbour-sum-distinguishing edge-weightings and neighbour-sum-
2-distinguishing edge-weightings, from which we deduce first bounds on χΣ>1. In Sec-
tion 4.3, we then prove the conjecture for nice bipartite graphs, and investigate further
some particular classes of bipartite graphs, from which we exhibit interesting aspects of
the problem. The algorithmic aspects are considered in Section 4.4, where we first prove
that it is NP-complete to determine the exact value of χΣ>1. This statement is showed to
remain true even for bipartite graphs, which contrasts with the complexity of determining
the exact value of χΣ for these graphs. We then show that determining the exact value of
χΣ>1 can be done in polynomial time for trees. Perspectives for future work are gathered
in Section 4.5.

4.2 Preliminaries
In this section, we point out general properties that actually apply to neighbour-sum-d-
distinguishing edge-weightings (for any d ≥ 1), i.e. edge-weightings where the adjacent
sums differ by at least d. For a given graph G, we denote by χΣ>d−1(G) the least integer k
such that G admits a neighbour-sum-d-distinguishing k-edge-weighting. Note that the
parameter χΣ>0 actually corresponds to χΣ.

Obviously, by multiplying all weights assigned by a neighbour-sum-distinguishing k-
edge-weighting by d, we obtain a neighbour-sum-d-distinguishing dk-edge-weighting.

Observation 4.2.1. For every nice graph G and integer d ≥ 1, we have χΣ>d−1(G) ≤
dχΣ(G). In particular, χΣ>1(G) ≤ 2χΣ(G).

Observation 4.2.1 already has several implications towards Conjecture 4.1.1. First,
the 1-2-3 Conjecture, if true, would imply that χΣ>1(G) ≤ 6 holds for every nice graph G.
Although we still do not know whether the 1-2-3 Conjecture is true, every partial result
towards that conjecture can be adapted to Conjecture 4.1.1. In that line, perhaps the most
interesting result to consider is the one due to Kalkowski, Karoński and Pfender [KKP10],
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who proved that χΣ(G) ≤ 5 holds for every nice graph G. In our context, this and
Observation 4.2.1 yield the following, which shows that, when requiring adjacent sums to
differ by at least d, the number of needed weights grows linearly with d.

Corollary 4.2.2. For every nice graph G and integer d ≥ 1, χΣ>d−1(G) ≤ 5d. In
particular, χΣ>1(G) ≤ 10.

The bound in Corollary 4.2.2 is immediately improved for every graph G for which we
know that χΣ(G) < 5 holds. In particular, we have χΣ>1(G) ≤ 6 for every nice graph G
verifying the 1-2-3 Conjecture, which is very close to Conjecture 4.1.1. Let us recall, in
particular, that the 1-2-3 Conjecture was verified for nice bipartite graphs, 3-chromatic
graphs, nice complete graphs, and regular graphs with sufficiently large degree. We here
refer the reader to the survey [Sea12] by Seamone, wherein all such results are gathered.

As stated in Observation 4.2.1, by multiplying all weights assigned by a neighbour-
sum-distinguishing k-edge-weighting by a same integer d, we get a neighbour-sum-d-
distinguishing dk-edge-weighting since each σ(v) is multiplied by d. This of course does
not have to be true if one decreases (or increases) all weights by a same d, since, here,
the effect on each σ(v) depends on d(v). There are situations, however, where this can
be done safely.

Observation 4.2.3. Let ω be a neighbour-sum-distinguishing d-edge-weighting, d ≥ 1, of
a graph G such that, for every edge uv (where d(u) ≥ d(v)), we have σ(u) < σ(v) (resp.
σ(u) > σ(v)). Then, by decreasing (resp. increasing) all edge weights by a same integer
x, we get another neighbour-sum-distinguishing d-edge-weighting of G.

Due to the fact that, in the context of Conjecture 4.1.1, we focus on edge-weightings
assigning strictly positive weights, when decreasing edge weights we should also make
sure that none become zero or negative. Observation 4.2.3 can nevertheless be used when
the smallest edge weight value assigned by ω is known. As an illustration, we improve
Observation 4.2.1 for nice regular graphs.

Corollary 4.2.4. For every nice regular graph G and integer d ≥ 1, we have χΣ>d−1(G) ≤
dχΣ(G)− (d− 1). In particular, χΣ>1(G) ≤ 2χΣ(G)− 1.

Corollary 4.2.4 notably implies that Conjecture 4.1.1 holds for nice complete graphs
and 3-colourable regular graphs, as the 1-2-3 Conjecture was proved for such graphs.
Other bounds also follow for regular graphs with larger degree, see [Sea12].

4.3 Conjecture 4.1.1 for bipartite graphs
Since the 1-2-3 Conjecture holds for nice bipartite graphs (see [KLT04]), from Observa-
tion 4.2.1 we directly get that χΣ>1(G) ≤ 6 holds for every nice bipartite graph G. It was
actually proved by Thomassen, Wu and Zhang [TWZ16] that a bipartite graph G satisfies
χΣ(G) = 3 if and only if G is an odd multicactus. Odd multicacti can be defined as fol-
lows. Start from a collection C1, . . . , Cm of m ≥ 1 cycles whose lengths are at least 6 and
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congruent to 2 modulo 4, and colour the edges of the Ci’s in a proper way using colours
red and green. An odd multicactus is then any connected graph obtained by repeatedly
applying the following operation: pick two components G1 and G2, and identify a green
edge of G1 with a green edge of G2. Note that, in particular, every cycle whose length is
congruent to 2 modulo 4 is an odd multicactus.

From this all, we directly get the following.

Corollary 4.3.1. For every nice bipartite graph G, we have

χΣ>1(G) ≤
{

4 if G is not an odd multicactus,
6 otherwise.

In the next result, we improve Corollary 4.3.1 by completely proving Conjecture 4.1.1
for all nice bipartite graphs.

Theorem 4.3.2. For every nice bipartite graph G, we have χΣ>1(G) ≤ 5.

Proof. Let A and B denote the two partite sets of G. We prove a stronger statement,
namely that G admits a 5-edge-weighting such that the vertices from one of the partite
sets have incident sum congruent to 2 or 3 modulo 5, while the vertices from the other
partite set have incident sum congruent to 0 modulo 5. Such an edge-weighting is clearly
neighbour-sum-2-distinguishing. In this setting, note that we can equivalently look for a
neighbour-sum-2-distinguishing {0, 1, 2, 3, 4}-edge-weighting.

Assume the edges of G are weighted in some way. In what follows, we repeatedly apply
the following modification procedure for some given α ∈ {1, 2, 3, 4}. Let u and v be two
distinct vertices from a same partite set, and let P be a path (obviously of even length)
from u to v in G. The procedure consists in modifying the weights of the edges of P from
one end to the other by alternately subtracting and adding α (modulo 5), i.e., apply −α,
+α, −α, . . ., −α, +α to the weights along P . Note that this only alters the incident sums
modulo 5 of u and v, the two ends of P , which change by −α and +α, respectively. Also,
note that the “orientation” of P is important, as the sum of its first vertex is altered by
−α while the sum of its last vertex is altered by +α. Hence, in what follows, though G
is not oriented, we consider paths from a vertex to another one, so that the first and last
vertices are clearly identified.

We proceed as follows to obtain the claimed edge-weighting of G. Assume first that at
least one of the two partite sets, say, A, has even size. Start from all edges being weighted
0. Then repeatedly consider two new vertices u and v of A, and apply the modification
procedure above with α = 2 onto a path from u to v in G. As stated, only the incident
sums of u and v modulo 5 are altered, from 0 to 3 and 2, respectively. Once the process has
been applied for all pairs of vertices, we get the desired neighbour-sum-2-distinguishing
{0, 1, 2, 3, 4}-edge-weighting of G.

Assume now that A and B both have odd size. Repeating the exact same arguments
as in the previous case on pairs of vertices of, say, A, we can deduce a {0, 1, 2, 3, 4}-edge-
weighting of G where all vertices of A but one vertex u have incident sum congruent to
2 or 3 modulo 5, while all vertices of B have incident sum congruent to 0 modulo 5. In
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particular, also u has incident sum congruent to 0 modulo 5. If A has two vertices v1, v2

with incident sum congruent to 2 (resp. 3) modulo 5, then we consider one path P1 from
u to v1 and one path P2 from u to v2, and apply the modification procedure for α = 1
(resp. α = 4 = −1 modulo 5) onto P1 and P2. This affects the incident sums of v1 and v2

which are now congruent to 3 (resp. 2) modulo 5, while u now has incident sum congruent
to 2 (resp. 3) modulo 5. The edge-weighting is thus as desired.

The only situation where the previous case does not apply is when |A| ≤ 3 and
|B| ≤ 3. In that case though, it can easily be checked by hand that G always admits a
neighbour-sum-2-distinguishing {0, 1, 2, 3, 4}-edge-weighting.

Although Theorem 4.3.2 completely proves Conjecture 4.1.1 for nice bipartite graphs,
in the rest of this section we study bipartite graphs further. Namely, we deduce the
exact value of χΣ>1 for nice paths and cycles, and prove a refinement of Conjecture 4.1.1
for odd multicacti. These results support some observations to be raised in concluding
Section 4.5.

In all upcoming proofs, we will deal with adjacent degree-2 vertices; for such a config-
uration, the following observation obviously applies.

Observation 4.3.3. Let ω be a neighbour-sum-2-distinguishing edge-weighting of a graph
G, and uv be an edge such that d(u) = d(v) = 2. Assuming u′ (resp. v′) denotes the
neighbour of u (resp. v) different from v (resp. u), the weights ω(u′u) and ω(v′v) differ
by at least 2.

4.3.1 Paths

We denote by P` the path of length `. Therefore, the path P1 = K2 is not nice. In the
next result, we determine the value of χΣ>1(P`) for every ` ≥ 2.

Theorem 4.3.4. For every path P`, ` ≥ 2, we have

χΣ>1(P`) =


2 if ` = 2,
3 if ` > 2 and ` ≡ 0, 2, 3 mod 4,
4 otherwise.

Proof. Recall that χΣ>1(P`) ≤ 4 holds for every ` ≥ 2, by Corollary 4.3.1. Moreover,
since χΣ>1(G) = 1 if and only if G is a graph such that the degrees of every two adjacent
vertices differ by at least 2, we get χΣ>1(P`) ≥ 2 for every ` ≥ 2.

Let v0, . . . , v` denote the vertices of the path P`, with vivi+1 being an edge for every i,
0 ≤ i ≤ ` − 1. We clearly have χΣ>1(P2) = 2 since the weighting ω given by ω(v0v1) =
ω(v1v2) = 2 is neighbour-sum-2-distinguishing. Suppose now that ` ≥ 3. Then P` has
two adjacent vertices vi and vi+1 with degree 2, and Observation 4.3.3 applies. For any
2-edge-weighting ω of P`, we have σ(vi) = ω(vi−1vi) +ω(vivi+1) and σ(vi+1) = ω(vivi+1) +
ω(vi+1vi+2). Since ω(vi−1vi), ω(vi+1vi+2) ∈ {1, 2}, necessarily σ(vi) and σ(vi+1) differ by
at most 1, so that ω cannot be neighbour-sum-2-distinguishing.
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If ` = 3, then assigning successive edge weights 1, 3, 3 to the edges of P3 yields a
neighbour-sum-2-distinguishing as it yields successive incident sums 1, 4, 6, 3. So we may
suppose from now on that ` ≥ 4. Under that assumption, note that a neighbour-sum-
2-distinguishing 3-edge-weighting ω of P` cannot assign weight 2 since Observation 4.3.3
applies. We thus restrict our attention to {1, 3}-edge-weightings of P`. Note that the edge
v1v2 (and similarly v`−1v`) must be assigned weight 3 so that σ(v0) and σ(v1) differ by at
least 2. From this, observe that all neighbour-sum-2-distinguishing {1, 3}-edge-weightings
of P` are (up to directional symmetry) 1, 3, 3, 1, 1, 3, 3, . . . , 3, 3, 1, and 1, 3, 3, 1, 1, . . . , 3, 3,
and 3, 3, 1, 1, 3, 3, 1, 1, . . . , 3, 3. The claim then follows from the fact that these edge-
weightings only apply for particular values of ` modulo 4.

4.3.2 Cycles

For every ` ≥ 3, we denote by C` the cycle of length `. In the next result, we determine
the value of χΣ>1(C`) for every cycle C`.

Theorem 4.3.5. For every cycle C`, ` ≥ 3, we have

χΣ>1(C`) =

{
3 if ` ≡ 0 mod 4,
5 otherwise.

Proof. Observe first that since cycles satisfy the 1-2-3 Conjecture and are regular, Corol-
lary 4.2.4 implies that χΣ>1(C`) ≤ 5 holds for every cycle C`.

Let v0, . . . , v`−1 denote the vertices of the cycle C`, with vivi+1 being an edge for
every i, 0 ≤ i ≤ ` − 1 (here and in the following, all operations over the subscripts
are understood modulo `). Note first that Observation 4.3.3 implies that no cycle C`
verifies χΣ>1(C`) ≤ 2. Therefore, χΣ>1(C`) ≥ 3 for every cycle C`. Still according to
Observation 4.3.3, note that no neighbour-sum-2-distinguishing 3-edge-weighting ω of C`
can use weight 2, Therefore, a neighbour-sum-2-distinguishing 3-edge-weighting of C` can
only use weights 1 and 3. In such a weighting, the edge weights must follow the pattern
1, 1, 3, 3, 1, 1, 3, 3, . . . along the cycle, which is possible if and only if ` ≡ 0 mod 4.

We now prove that χΣ>1(C`) = 5 whenever ` 6≡ 0 mod 4. Assume there is a nei-
ghbour-sum-2-distinguishing 4-edge-weighting ω of some cycle C`. Note that, by Obser-
vation 4.3.3, any two edges uv and vw being at distance 2 must be assigned a small (1
or 2) and a big (3 or 4) weight by ω. This contradicts the existence of ω, and, thus,
χΣ>1(C`) = 5 whenever ` 6≡ 0 mod 4.

4.3.3 Odd multicacti

Recall that χΣ>1(G) ≤ 5 holds for every odd multicactus G, according to Theorem 4.3.2.
In the next result, we prove that, for odd multicacti, we can even design neighbour-
sum-2-distinguishing 5-edge-weightings that do not use weights 2 and 4. This supports
Conjecture 4.5.1 we raise in the concluding section.

Observe first that connected multicacti can be defined inductively, as follows. Cycles
of length at least 6 and congruent to 2 modulo 4, with edges coloured green and red
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alternately, are multicacti. Consider now a multicactus G whose edges are coloured green
and red, and let uv be a green edge of G. Then the graph obtained from G by identifying
u and v with the end-vertices of a path of length at least 5 and congruent to 1 modulo 4,
whose edges are alternately coloured red, green, . . ., red (from one end to the other), is a
multicactus. This operation will be referred to as a path attachment. Note that, in any
edge-coloured multicactus, the two ends of a green edge have the same degree.

Theorem 4.3.6. Every odd multicactus admits an ns2d {1, 3, 5}-edge-weighting.

Proof. Let G be an odd multicactus. The proof is by induction on the number of path
attachments performed to construct G. If no such path attachment was made, then G
is a cycle C4k+2, for some k ≥ 1, and the {1, 3, 5}-edge-weighting obtained by applying
the pattern 1, 1, 3, 3, 5, 5, 1, 1, 3, 3, 5, 5, . . . cyclically is clearly a neighbour-sum-2-distin-
guishing {1, 3, 5}-edge-weighting of G.

Assume now that G is not a cycle. Then G must contain a green edge uv such that u
and v are joined by exactly x paths P1, . . . , Px, x ≥ 1, with length at least 5 and congruent
to 1 modulo 4, and whose internal vertices have degree 2 in G. In other words, no green
edge of the Pi’s was used to make a path attachment. In the extremal case where the Pi’s
cover all vertices of G (i.e., all path attachments were performed on only one green edge),
we omit one of these paths. Then, when removing all internal vertices of the Pi’s from G,
we get another connected odd multicactus G′ in which both u and v have degree 2. In
particular, G′ cannot be reduced to a single edge.

By the induction hypothesis, G′ admits a neighbour-sum-2-distinguishing {1, 3, 5}-
edge-weighting ω, which we would like to extend to the edges of the Pi’s, in order to
obtain a neighbour-sum-2-distinguishing {1, 3, 5}-edge-weighting of G. Let us denote by
u′ and v′ the neighbours of u and v, respectively, different from v and u, respectively, in
G′. When extending ω to the Pi’s, we have to make sure that:

1. σ(u) and σ(u′) still differ by at least 2;

2. σ(v) and σ(v′) still differ by at least 2;

3. both σ(u) and σ(v) differ by at least 2 from the incident sums of their x neighbours
in the Pi’s;

4. σ(u) and σ(v) still differ by at least 2.

In order to respect the fourth condition above, we will edge-weight the Pi’s in such a way
that σ(u) and σ(v) are altered the same way, i.e., by a same integer α. To that aim,
we will {1, 3, 5}-edge-weight every Pi in such a way that its two end-edges are assigned
the same weight α. In what follows, the main weighting scheme we use to extend ω to
the consecutive edges of some Pi is α, β, β, γ, γ, β, β, . . . , β, β, γ, α (or reversely), where
α, β, γ ∈ {1, 3, 5} and α 6= β and β 6= γ. Note that, by that edge-weighting, for any
such α, β, γ no two adjacent inner vertices have their sums differing by strictly less than 2
(recall Observation 4.3.3).
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We consider the worst-case scenario where the number x of Pi’s is exactly 1. This is
indeed the worst case as, as x gets larger, we get more and more ways to weight the Pi’s,
and thus more and more ways to extend ω correctly to G.

If ω(uv) = 1, then we set ω(uv) = 3. If no conflict arises, then we proceed with
the next step. Otherwise, we proceed as follows. If there exists α ∈ {1, 3, 5} such that
σ(u) + α and σ(u′) differ by at least 2, and similarly for σ(v) + α and σ(v′), then we
extend ω as follows. Note first that, because ω(uv) = 3, by the induction hypothesis, we
have, σ(u) ≥ 4 and σ(v) ≥ 6, assuming without loss of generality that σ(u) < σ(v). We
then extend ω to P1 in the following way; in any case, it can be checked that the resulting
edge-weighting of G is correct:

• If α = 1, then we assign weights 1, 3, 3, 1, 1, 3, 3, . . . , 3, 3, 1, 1 (i.e., α = 1, β = 3,
γ = 1) to the edges of P1 as going from v to u.

• If α = 3, then we assign weights 3, 1, 1, 3, 3, 1, 1, . . . , 1, 1, 3, 3 (i.e., α = 3, β = 1,
γ = 3) as going from u to v.

• If α = 5, then we change ω(uv) from 3 to 5 and α from 5 to 3, so that the previous
case now applies.

Now, if no such α exists, then we set ω(uv) = 5. In the present situation, α = 5 now has
the desired properties. Similar extension arguments then apply.

So now assume that ω(uv) ∈ {3, 5} and there is currently no sum conflict. Again,
if there exists α ∈ {1, 3, 5} with the desired properties, then we are done. Otherwise,
note that no conflict may arise when setting ω(uv) = 1 (as otherwise there would exist
an α when ω(uv) ∈ {3, 5}), and α = 1 is as required. Since ω(uv) = 1, we have, say,
2 ≤ σ(u) ≤ 4 and 4 ≤ σ(v) ≤ 6 (σ(u) < σ(v)). We then extend ω to the edges of P1 as
follows:

• If σ(u) = 2 and σ(v) ∈ {4, 6}, then we assign weights 1, 5, 5, 1, 1, 5, 5, . . . ,
5, 5, 1, 1 (i.e., α = 1, β = 5, γ = 1) to the edges of P1 as going from u to v.

• If σ(u) = 4 and σ(v) = 6, then we assign weights 1, 3, 3, 1, 1, 3, 3, . . . , 3, 3,
1, 1 (i.e., α = 1, β = 3, γ = 1) as going from v to u.

In all cases, it can be checked that no sum conflict arises in G, and thus we get a neigh-
bour-sum-2-distinguishing {1, 3, 5}-edge-weighting. This completes the proof.

4.4 Algorithmic aspects

In this section, we consider the hardness of determining the value of χΣ>1(G) for a given
graph G. We first prove, in Subsection 4.4.1, that deciding whether χΣ>1(G) ≤ 2 holds
for a given graph G is NP-complete, even when restricted to 3-degenerate planar bipartite
graphs. In Subsection 4.4.2, we prove that, although χΣ>1(T ) can take any value in
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{1, 2, 3, 4} for a given tree T (recall Corollary 4.3.1), deciding the exact value of χΣ>1(T )
can be done in polynomial time.

It is worth recalling that determining the value of χΣ(G) for a given graph G is NP-
complete in general (Dudek and Wajc [DW11]), but can be done in polynomial time when
restricted to bipartite graphs (Thomassen, Wu and Yang [TWZ16]). Hence our result in
Subsection 4.4.1 shows another difference between the parameters χΣ and χΣ>1.

4.4.1 General case

Before proceeding with the proof of the main result of this subsection, we first introduce
gadgets that we will use to force some weights to be used by any neighbour-sum-2-distin-
guishing 2-edge-weighting. Each of these gadgets will have a root vertex of degree 1
being incident to a root edge. We here relax the notion of neighbour-sum-2-distinguishing
2-edge-weighting around the root; that is, we allow a neighbour-sum-2-distinguishing 2-
edge-weighting to have adjacent incident sums differing by less than 2, but the incident
sum of the root has to be involved in such a conflict. This is because our gadgets will
be attached to other graphs via the root, so, in the properties we point out below, the
incident sum of the root should not be regarded as fixed.

The gadgets we will construct are called (α, S)-gadgets, for some given α ∈ {1, 2} and
S ⊂ N∗ (S 6= ∅). Every such gadget G will satisfy the two following properties:

1. the root edge of G is necessarily weighted α by any neighbour-sum-2-distinguishing
2-edge-weighting of G, and

2. S is the set of all numbers s such that there exists a neighbour-sum-2-distinguishing
2-edge-weighting of G where the (unique) neighbour of the root has incident sum s.

These gadgets will be used as follows. Let H be a graph and v be a vertex of H. Add
to H an (α, S)-gadget G (for some α and S), and identify v with the root of G. Then,
in any neighbour-sum-2-distinguishing 2-edge-weighting of H, v will necessarily receive
weight α from the root edge of G, and v will be adjacent to a vertex whose incident sum
belongs to S. This mechanism can be used both to force particular edge weights to appear
around v, and to ensure that σ(v) does not belong to a particular set (in particular when
|S| = 1).

We now introduce the gadgets we will use (see Figure 4.1 for an illustration). Consider
first a path G := u1u2u3 of length 2. We claim that G is a (2, {3, 4})-gadget with root
u1. Indeed, in any neighbour-sum-2-distinguishing 2-edge-weighting ω of G (with the
relaxation mentioned above), we have ω(u1u2) = 2, while ω(u2u3) can have value either 1
or 2, in which cases we get σ(u2) = 3 and σ(u2) = 4, respectively.

Now consider a claw G with vertices v, u1, u2, u3, where the ui’s are the leaves. Add
two (2, {3, 4})-gadgets G1 and G2 to G, and identify u3 and the roots of G1 and G2. We
claim that G is a (1, {3, 4})-gadget with root u1. In any neighbour-sum-2-distinguishing
2-edge-weighting ω of G, the vertex u3 is incident to at least two edges with weight 2
(because of the gadgets G1 and G2), so that σ(u3) = 5 (if ω(u3v) = 1) or σ(u3) = 6
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Figure 4.1: The (1, {3, 4})-gadget with root u1 (left), the (2, {5})-gadget with root u1

(middle), and the (2, {2k + 1})-gadget with root u1 (right).

(otherwise). In both cases, we necessarily have ω(vu2) = ω(vu1) = 1, so that σ(v) and
σ(u3) differ by at least 2. We thus get σ(v) = 3 in the first case, and σ(v) = 4 in the
second case.

We now describe how to obtain (2, S)-gadgets with S := {2k + 1} for any k ≥ 2. We
first build a (2, {5})-gadget as follows. Start from G := u1u2 being the path of length 1,
then add three (1, {3, 4})-gadgets G1, G2, G3 to G, and identify u2 and the roots of G1,
G2 and G3. We claim that G is a (2, {5})-gadget with root u1. In any neighbour-sum-2-
distinguishing 2-edge-weighting ω of G, the vertex u2 is incident to at least three edges
weighted 1, namely the root edges of the Gi’s. Now, if ω(u1u2) = 1, then σ(u2) = 4, which
creates sum conflicts with vertices from the Gi’s. So we necessarily have ω(u1u2) = 2, in
which case σ(u2) = 5, which is fine since the Gi’s are (1, {3, 4})-gadgets.

We now turn to the general case. Let 2k+1 ≥ 7, and assume that we have constructed
(2, S ′)-gadgets with S ′ := {2k′ + 1} for every k′, 2 ≤ k′ < k. Start from G := u1u2 being
the path of length 1. Add k − 1 (2, {2k − 1})-gadgets G1, . . . , Gk−1 to G, as well as one
(1, {3, 4})-gadget G0, and identify u2 and the roots of G1, . . . , Gk−1 and G0. We claim that
G is a (2, {2k + 1})-gadget with root u1. In any neighbour-sum-2-distinguishing 2-edge-
weighting ω of G, the Gi’s force σ(u2) to have value at least 2k−1. Depending on whether
ω(u1u2) = 1 or ω(u1u2) = 2, we thus have σ(u2) = 2k or σ(u2) = 2k + 1, respectively.
In the first case, we get sum conflicts between u2 and its neighbours in G1, . . . , Gk−1

since their incident sums differ by 1. Therefore, we necessarily have ω(u1u2) = 2, so that
σ(u2) = 2k + 1, which produces no sum conflict in G.

Analogous (1, S)-gadgets with S := {2k + 1}, k ≥ 2, will also be needed. A (1, {5})-
gadget can be obtained as follows. Start from G := u1u2 being the path of length 1, add
two (2, {7})-gadgets G1 and G2 to G, and identify u2 and the roots of G1 and G2. In any
neighbour-sum-2-distinguishing 2-edge-weighting ω of G, the Gi’s force u2 to be incident
to at least two edges with weight 2. So we have σ(u2) = 5 or σ(u2) = 6 depending on
whether ω(u1u2) = 1 or ω(u1u2) = 2, respectively. In the second case, however, we get
sum conflicts between u2 and its neighbours in G1 and G2. We thus necessarily have
ω(u1u2) = 1 and σ(u2) = 5, which produces no sum conflict in G.
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Now let 2k + 1 ≥ 7, and assume that we have constructed (1, S ′)-gadgets with S ′ :=
{2k′ + 1} for every k′, 2 ≤ k′ < k. Start from G := u1u2 being the path of length 1,
add k (2, {2k+ 3})-gadgets G1, . . . , Gk to G, and identify u2 and the roots of G1, . . . , Gk.
We claim that G is a (1, {2k + 1})-gadget. In any neighbour-sum-2-distinguishing 2-
edge-weighting ω of G, the Gi’s force σ(u2) to be at least 2k. Depending on whether
ω(u1u2) = 1 or ω(u1u2) = 2, we thus have σ(u2) = 2k+ 1 or σ(u2) = 2k+ 2, respectively.
In the second case, we get sum conflicts between u2 and its neighbours in G1, . . . , Gk,
since their incident sums differ by 1. Therefore, we necessarily have ω(u1u2) = 1 and
σ(u2) = 2k + 1, which produces no sum conflict in G.

Note that all the above-constructed gadgets are trees. With all these gadgets in hand,
we now prove the main result of this section.

Theorem 4.4.1. For a given 3-degenerate planar bipartite graph G, deciding whether
χΣ>1(G) ≤ 2 holds is NP-complete.

Proof. Since the problem is obviously in NP, we proceed with the proof of its NP-hardness.
The proof is by reduction from 1-in-3 SAT which is NP-Complete. The 1-in-3 SAT
problem is a decision problem asking if a given 3CNF formula is a satisfiable 1-in-3 way
, i.e. if there exists an assigning of truth values to its variables such that each clause
contains exactly one literal assigned to the value true. The Monotone version of 1-in-3
SAT adds the restriction that no clause contains a negated variable. This version remains
NP-complete (see e.g. [MR08]). From a 3CNF formula F with no negated variables, we
construct a graph G such that F is satisfiable in a 1-in-3 way if and only if G admits a
neighbour-sum-2-distinguishing 2-edge-weighting. We may assume that all clauses of F
have three distinct variables, as otherwise F could be simplified. That is:

• if F has a clause (xi1 ∨ xi1 ∨ xi1), then F is not satisfiable in a 1-in-3 way;

• if F has a clause (xi1 ∨ xi1 ∨ xi2), then xi2 and xi1 are forced to true and false,
respectively, by any truth assignment making F satisfied in a 1-in-3 way.

We denote by x1, . . . , xn the variables of F , and by C1, . . . , Cm its clauses. The con-
struction of G, which is clearly achieved in polynomial time, is as follows. We start by
adding variable gadgets in the following way. For each variable xi of F , we add to G a
star Vi with root vi and 2ki leaves ui,1, . . . , ui,2ki , where 2ki ≥ max{10, ni} is any even
integer, and ni is the number of clauses of F that contain xi. Next we add (1, {4ki + 1})-,
(2, {4ki + 3})-, (2, {4ki + 5})-, . . . , (2, {6ki − 3})- and (2, {6ki − 3})-gadgets G1, . . . , Gki

to G, and identify vi and the roots of G1, . . . , Gki . To avoid any ambiguity, let us em-
phasize that, for instance, when ki = 5, the five added gadgets are one (1, {21})-gadget,
one (2, {23})-gadget, one (2, {25})-gadget and two (2, {27})-gadgets.

Because of the Gi’s, in any neighbour-sum-2-distinguishing 2-edge-weighting ω of Vi,
the value of σ(vi) lies between 4ki− 1 (when all viui,j’s are assigned weight 1) and 6ki− 1
(when all viui,j’s are assigned weight 2). Furthermore, 4ki − 1 and 6ki − 1 are both odd.
Moreover, we cannot have σ(vi) ∈ {4ki, . . . , 6ki − 2} as otherwise there would be a sum
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conflict involving vi and one of its neighbours in the Gi’s. Therefore, either all ω(viui,j)’s
are equal to 1, or all ω(viui,j)’s are equal to 2. In what follows, we call the vertices
ui,1, . . . , ui,2ki the output vertices of Vi, and the edges viui,1, . . . , viui,2ki the output edges
of Vi,

We now modify G by considering the clauses of F . For each clause Cj = (xi1∨xi2∨xi3)
of F , we add a clause vertex cj to G. For each Vi1 , Vi2 , Vi3 , we then select one output
vertex still having degree 1, and identify cj and the three selected output vertices. Finally,
we add a (2, {7})-gadget G1 to G, as well as a (2, {11})-gadget G2, and identify cj and the
roots of G1 and G2. In any neighbour-sum-2-distinguishing 2-edge-weighting ω of G, σ(cj)
has thus value at least 4 (because of G1 and G2), and ranges in {7, . . . , 10}. However,
σ(cj) cannot take any value among {7, 8, 10} because of G1 and G2. So we necessarily
have σ(cj) = 9, which occurs only if exactly one of the three output edges originating
from Vi1 , Vi2 , Vi3 is assigned weight 1.

It can be checked that no unexpected sum conflicts (that is, different from those listed
above) can arise, in particular thanks to our choice of the 2ki’s. We now claim that we
have the desired equivalence. This directly follows from the following arguments:

• Assigning weight 1 (resp. 2) to an output edge vicj simulates the fact that variable
xi brings truth value true (resp. false) to Cj.

• Following that equivalence, the fact that, for any Vi, all output edges of Vi must be
weighted 1 (resp. 2) simulates the fact that setting xi to true (resp. false) by some
truth assignment brings the same truth value to every clause containing xi.

• The fact that, for every clause vertex cj, exactly one incident output edge must be
assigned weight 1 simulates the fact that a clause of F is considered satisfied if and
only if it includes exactly one true variable.

To complete the proof of the theorem, it suffices to observe the following:

• The Planar version of Monotone 1-in-3 SAT remains NP-complete ([MR08]),
so we may assume that F is a planar formula. Since every gadget is a tree, the
construction above then yields a planar G.

• Since every gadget is a tree, the graph G is 3-degenerate.

• The only cycles in G are those of the subgraph induced by the vi’s and the cj’s.
Since this subgraph is bipartite, so is G.

This concludes the proof.
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4.4.2 Tree case

In this section, we prove that the counterpart of Theorem 4.4.1 for trees is not true. That
is, we prove that determining the value of χΣ>1(T ) for a given tree T can be done in
polynomial time. Recall that for a tree T , we always have χΣ>1(T ) ≤ 4 (according to
Corollary 4.3.1), while χΣ>1(T ) = 1 if and only if, for every two adjacent vertices u and
v of T , the values of d(u) and d(v) differ by at least 2.

Theorem 4.4.2. For a given tree T , determining χΣ>1(T ) can be done in polynomial
time.

Proof. For any fixed k ∈ {1, 2, 3, 4}, we introduce below an algorithm that checks in
polynomial time whether T admits a neighbour-sum-2-distinguishing k-edge-weighting.
So, to determine χΣ>1(T ), we can essentially run this algorithm successively with k =
1, 2, 3, 4. The first value of k for which the algorithm answers positively is the value of
χΣ>1(T ).

Designate a node r of T as being its root. This defines a root-to-leaf orientation of
T in the usual way, where every non-root node v has a parent, and every non-leaf node
v has children. By the descendants of v, we refer to the nodes of T for which we find v
when iterating the parent relationship.

The subtree Tv of T rooted at v is the subtree whose nodes are v and all its descendants.
This subtree Tv can itself be decomposed into several subtrees, in the following way.
Assume that v has d ≥ 1 descendants u1, . . . , ud, ordered following an arbitrary order
(supposed to be fixed throughout the proof). Then Tv can be edge-decomposed into
d subtrees Tv,1, . . . , Tv,d being Tu1 + vu1, . . . , Tud + vud, respectively, whose root, v, has
degree precisely 1. Trees with this property are called shrubs throughout. Conversely, Tv
is obtained by identifying the roots of the shrubs Tv,1, . . . , Tv,d. For every shrub, we call
the edge incident to the root the root edge. The non-root end of the root edge is called
the subroot.

We are now ready to describe our algorithm for deciding whether T admits a nei-
ghbour-sum-2-distinguishing k-edge-weighting. The rough ideas are the following. The
tree T can be seen as a union of d := d(r) shrubs S1, . . . , Sd whose roots were identified,
resulting in r. A neighbour-sum-2-distinguishing k-edge-weighting of T is thus essentially
the union of (relaxed, see below) neighbour-sum-2-distinguishing k-edge-weightings of the
d shrubs attached to r, with the additional property that the resulting σ(r) does not create
any sum conflict. Therefore, in order to construct a neighbour-sum-2-distinguishing k-
edge-weighting of T , it suffices to find convenient neighbour-sum-2-distinguishing k-edge-
weightings of S1, . . . , Sd that can be “glued”. So we need to know, for each shrub Si and
for every α ∈ {1, . . . , k}, whether Si admits a neighbour-sum-2-distinguishing k-edge-
weighting where the root edge is assigned colour α, and, for such an edge-weighting of Si,
which possible incident sums can be obtained for the subroot.

More formally, for a shrub S with root v′ and subroot v, we want to compute, for
every weight α ∈ {1, . . . , k}, the set Xα(v) of possible values of σ(v) by a neighbour-
sum-2-distinguishing k-edge-weighting of S assigning weight α to v′v. Note that a shrub
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might be a single edge, and may thus admit no neighbour-sum-2-distinguishing k-edge-
weighting. In that special case, we relax the notion of neighbour-sum-2-distinguishing
k-edge-weighting, and allow the root and the subroot to have the same incident sums.

Assume v has d children u1, . . . , ud, d ≥ 0, and let S1, . . . , Sd denote the d shrubs
attached to v in S. We claim that each Xα(v) can be computed in polynomial time from
the sets

X1(u1), . . . , Xk(u1), X1(u2), . . . , Xk(u2), . . . , X1(ud), . . . , Xk(ud),

computed by induction for the shrubs S1, . . . , Sd. So, in a way, the sets X1(v), . . . , Xk(v)
can be computed from smaller shrubs, and deduced successively towards the subroot of
S. We prove this below.

The base case is when S is a single edge, that is, v has no child. If the edge v′v is
assigned any weight α ∈ {1, . . . , k} by a neighbour-sum-2-distinguishing k-edge-weighting,
then σ(v) = α. So, for such a shrub S, we have Xα(v) = {α} for every α ∈ {1, . . . , k}.

Suppose now that v has d ≥ 1 children u1, . . . , ud, and, for each shrub Si, 1 ≤ i ≤ d,
attached to v, and every α ∈ {1, . . . , k}, the set Xα(ui) has been computed by induction.
We now want to compute the sets X1(v), . . . , Xk(v). Since d(v) = d + 1, by any k-edge-
weighting of S, the sum σ(v) can take up to kd + k − d values, namely those among
{d+ 1, . . . , kd+ k}. We repeatedly fix one of those sums x, and we determine whether x
can be added to some of the sets X1(v), . . . , Xk(v).

Assume we want to determine whether x has to be added to Xα(v), where α is any
value in {1, . . . , k}. Successively consider all partitions x1 + 2x2 + · · · + kxk of x into
x1 + · · · + xk = d + 1 values among {1, . . . , k} only. Recall that we are focusing on
computing Xα(v), so if xα = 0, then we can consider the next partition of x. Since x is
linear in |V (T )| and k ≤ 4 is fixed, the number of such partitions to consider is polynomial
in |V (T )|. Essentially, we have x1, . . . , xk ≤ |V (T )|, meaning that the number of such
partitions is roughly |V (T )|k−1. We now want to know if there is a neighbour-sum-2-
distinguishing k-edge-weighting of S where xi edges incident to v are assigned weight i,
for every i ∈ {1, . . . , k}. If such an edge-weighting exists, then for any Si to which the
weight β is assigned to the root edge, Xβ(ui) contains some value not in {α− 1, α, α+ 1}.

Since we are focusing on Xα(v), one of the xα weights α around v will be assigned
to v′v. This leaves us with d other weights to assign bijectively to the vui’s, with the
constraint that if we assign a weight β to vui, then Xβ(ui) should contain a value not
among {α − 1, α, α + 1}. If β can indeed by assigned to vui safely, then we call this a
valid assignment. To find a correct assignation (if any exists), we build a compatibility
bipartite graph C of the valid assignments, as follows. In one side of the bipartition of C,
we put d vertices corresponding to the d weights we want to assign. In the other side, we
put d vertices corresponding to the edges vu1, . . . , vud of S. We then add an edge joining
two vertices of C if assigning the corresponding weight to the corresponding edge of S is
valid. Now, finding a satisfying assignment of the d weights to the root edges of the Si’s is
equivalent to finding a perfect matching in C, which is known to be doable in polynomial
time. If there indeed exists such a perfect matching of C, then we add x to Xα(v).

We now go back to T , with the root r having d children u1, . . . , ud. For each Si of the
d shrubs S1, . . . , Sd rooted at v, we can compute the sets X1(ui), . . . , Xk(ui) as explained
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above. These sets memorize, in a compact way, all possible ways, in terms of incident
sums and weights assigned to the root edges, to k-edge-weight the Si’s in a neighbour-
sum-2-distinguishing way. Now, again, we can consider every potential incident sum x as
σ(r), every potential way to partition x into d integers among {1, . . . , k}, and, building the
compatibility bipartite graph as above, find, if it exists, a valid way to bijectively assign
the d weights to the d root edges vu1, . . . , vud. If a valid assignment for a partition of some
x exists, then T admits a neighbour-sum-2-distinguishing k-edge-weighting. Otherwise,
it does not.

Concerning the complexity aspect, determining Xα(v) for a shrub of T with subroot
v can be done in polynomial time. Recall that k ≤ 4 is constant. The number of
possible sums x as σ(v) to consider is at most k|V (T )|. For each of these values of x,
we consider up to |V (T )|k−1 partitions into 1’s, 2’s, . . . , and k’s. Deciding whether there
is a valid assignment for one of those partitions can be done in polynomial time, using
for instance Edmonds’ Blossom Algorithm for computing maximum matchings [Edm65].
The procedure above is almost the same when r is considered. By all these arguments,
the whole procedure can be achieved in polynomial time.

4.5 Conclusion

In this chapter, we have investigated the consequences on the 1-2-3 Conjecture of requiring
adjacent vertices to be distinguishable in a stronger way, namely by asking their incident
sums to differ by at least 2. We have addressed Conjecture 4.1.1, to which we did not
manage to come up with any counterexample, as an equivalent of the 1-2-3 Conjecture
in this context. As a main evidence that our conjecture might be true, we have pointed
out some connections between the 1-2-3 Conjecture and Conjecture 4.1.1, and proved the
later one for nice bipartite graphs.

Several aspects related to Conjecture 4.1.1 remain unclear to us, and could thus be
subject to further work. First, we do not fully understand how the weights 2 and 4 are
necessary for our conjecture. In particular, most graphs for which we have proved Conjec-
ture 4.1.1 actually admit neighbour-sum-2-distinguishing {1, 3, 5}-edge-weightings (recall,
in particular, Theorem 4.3.6). This supports the following refinement of Conjecture 4.1.1.

Conjecture 4.5.1. Every nice graph admits a neighbour-sum-2-distinguishing {1, 3, 5}-
edge-weighting.

In the context of neighbour-sum-2-distinguishing edge-weightings, Conjecture 4.5.1
might actually be an equivalent to the 1-2-3 Conjecture and more natural than Conjec-
ture 4.1.1. Indeed, in the 1-2-3 Conjecture we aim at getting incident sums differing by at
least 1 by using three successive weights α−1, α, α+1 differing by 1. In Conjecture 4.5.1,
we aim at getting incident sums differing by at least 2 by using three “successive” weights
α− 2, α, α+ 2 differing by 2. Following this reasoning, perhaps, in general, the following
conjecture might be the right direction to consider.

95



4.5. Conclusion

Conjecture 4.5.2. Let d ≥ 1 be an integer. Every nice graph admits a neighbour-sum-
d-distinguishing {1, d+ 1, 2d+ 1}-edge-weighting.

There are intriguing examples, though, such as nice paths P` of length congruent to 1
modulo 4 (for which χΣ>1(P`) = 4, recall Theorem 4.3.4), showing that, for neighbour-
sum-2-distinguishing edge-weightings, the weights 2 and 4 are sometimes worth using to
get an optimal edge-weighting. More generally, our NP-hardness reduction in the proof
of Theorem 4.4.1 shows that there exist complex examples for which an optimal edge-
weighting uses weights 1 and 2 only. We believe this could be an interesting aspect to
study further.

Although we have proved Conjecture 4.1.1 for nice bipartite graphs (Theorem 4.3.2),
we have not proved refined Conjecture 4.5.1 for all such graphs. Another interesting line
of research could thus be to generalize Theorem 4.3.6 to all nice bipartite graphs, which
would be a first step towards Conjecture 4.5.1.

More directions for future work on neighbour-sum-2-distinguishing edge-weightings
are also worth mentioning. Notably, we did not manage to improve the bounds given in
Section 4.2 for many classes of graphs. Generally speaking, it does not seem obvious to
us how to improve the bound in Corollary 4.2.2, and this would surely require new ded-
icated tools. Concerning particular classes of graphs, let us mention the case of subcubic
graphs. Although we know that cubic graphs comply with Conjecture 4.1.1, and even
Conjecture 4.5.1 (recall Corollary 4.2.4), we did not manage to prove that nice subcubic
graphs, in general, also do. We believe this would be an appealing first case to consider
towards proving Conjecture 4.1.1 for 3-chromatic graphs, for which the 1-2-3 Conjecture
holds.

More generally, it would be interesting to consider Conjecture 4.5.2 above. Many of
the arguments and techniques used in this work actually generalize to neighbour-sum-
distinguishing d-edge-weightings. For values of d larger than 2, it is likely that more
intriguing phenomenon arise.
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Chapter 5

The neighbour-sum-distinguishing
edge-weighting game

The neighbour-sum-distinguishing edge-weighting game on a graph G is the 2-player game
where one player, Alice, is trying to find an nsd edge-weighting if G, while the other
player, Bob, is trying to prevent this.

In this chapter we study the nsd edge-weighting game on various classes of graphs.
We present some general results on sufficient conditions for each player to win the game.
Then, we discuss the game on some specific classes of graphs. In particular, we prove that
Bob wins the game on the complete graph Kn, n ≥ 3, whoever starts the game, except
when n = 4. In that case, Bob wins the game on K4 if and only if he starts the game.

The results presented in this chapter were published in [BPS+17].

5.1 Introduction

In this chapter we consider a game version of nsd edge-weighting. The neighbour-sum-
distinguishing edge-weighting game on a graph G is a 2-player game where the two players,
called Alice and Bob, alternately weight an unweighted edge of G. Alice wins the game if,
when all edges are weighted, the so-obtained edge-weighting is an nsd edge-weighting of
G, otherwise Bob wins. Therefore, Bob’s objective is to produce an edge-weighting such
that two neighbouring vertices get the same sum, while Alice’s goal is to prevent him
from doing so. The neighbour-sum-distinguishing edge-weighting game on G with Alice
having the first move will be referred to as the A-game on G. The nsd edge-weighting
game on G with Bob having the first move will be referred to as the B-game on G.

The chapter is organized as follows. In Section 5.2, we provide sufficient conditions on
a graph G ensuring that Alice or Bob wins the A-game or the B-game on G. We then con-
sider the nsd edge-weighting game on paths, cycles, stars and double-stars in Section 5.3,
on complete graphs in Section 5.4 and on complete bipartite graphs in Section 5.5.
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5.2 General results
In this section we exhibit sufficient conditions on a graph G for Alice or Bob to have a
winning strategy for the neighbour-sum-distinguishing edge-weighting game on G. The
first two lemmas give sufficient conditions for Bob to win the A-game or the B-game. We
start with a lemma that give properties of graphs that allow Bob to win the game.

A balanced edge in a graph G is an edge uv ∈ E(G) with dG(u) = dG(v).

Lemma 5.2.1. Let G be a graph containing a balanced edge.

1. If |E(G)| is even then Bob wins the A-game on G.

2. If |E(G)| is odd then Bob wins the B-game on G.

Proof. Let uv be a balanced edge in G with d(u) = d(v) = d and Eu,v be the set of edges
having exactly one endpoint in {u, v}. We define Bob’s strategy as follows:

• If Bob starts the game, he weights any edge from E(G) \ Eu,v with any weight.

• If Alice plays in E(G) \ Eu,v, then Bob answers in E(G) \ Eu,v.

• If Alice assigns the weight c to an unweighted edge uu′, u′ 6= v (resp. vv′, v′ 6= u),
then Bob assigns the weight c to some unweighted edge vv′, v′ 6= u (resp. uu′,
u′ 6= v).

Since |Eu,v| is even, |E(G)| and |E(G) \ Eu,v| have the same parity. Therefore, Bob can
always apply this strategy in both games, so that we eventually get σ(u) = σ(v).

A nice edge in a graph G is an edge uv with dG(v) = 2 and dG(w) ≥ 2, where w is
the neighbour of v distinct from u. We denote by |E(G)|nice the number of nice edges in
a graph G.

Lemma 5.2.2. Let G be a connected graph.

1. If |E(G)| is odd and |E(G)|nice > 1
2
|E(G)| then Bob wins the B-game on G.

2. If |E(G)| is even, |E(G)|nice > 1
2
|E(G)|, and G contains no C4 as a subgraph, then

Bob wins the B-game on G.

Proof. Bob’s strategy consists in weighting a non-nice edge whenever possible. Doing so,
for the B-game on G, Bob will be able to weight a nice edge on his last move whenever
|E(G)|nice > 1

2
|E(G)|, regardless of the parity of |E(G)|.

Suppose first that |E(G)| is odd, which implies that Bob’s last move is the last move
of the game. Let uv be the unweighted nice edge to be weighted by Bob on his last move
and let w be the neighbour of v distinct from u. Since d(w) ≥ 2, the sum at w, say M ,
is strictly greater than the weight c of the edge vw. Therefore, Bob wins the game by
weighting the edge uv with weight M − c.
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Suppose now that |E(G)| is even, which implies that Alice’s last move will follow Bob’s
last move. Observe that the above described strategy is still winning for Bob, unless the
vertex w is incident with another unweighted nice edge, say wv′. Bob could then apply
the above strategy to the edge wv′ unless the neighbour w′ of v′ distinct from w is incident
with a nice edge, that is w′ = u. But in that case G contains a C4 linking vertices u, v,
w and v′, a contradiction.

The last lemma of this section will give sufficient conditions for Alice to win the A-game
or the B-game. We first recall and introduce some definitions and notation.

A pendent vertex in a graph G is a vertex with dG(v) = 1. For every vertex v ∈ V (G),
we denote by dpG(v) the number of pendent neighbours of v. An internal vertex in a graph
G is a vertex with dG(v) > 1. A pendent edge in a graph G is an edge uv such that u or v
is a pendent vertex. An internal edge in a graph G is an edge uv such that both vertices
u and v are internal.

A partial edge-weighting of a graph G is a mapping γ : Eγ −→ N∗ where Eγ ⊆ E(G)
is the set of weighted edges of G. The graph G is said to be partially weighted by γ and
the corresponding partially edge-weighted graph is denoted by (G, γ). A partial edge-
weighting γ is neighbour-sum-distinguishing if for every edge uv in G, σγ(u) 6= σγ(v). A
partial edge-weighting γ with Eγ = E(G) is an edge-weighting of G.

Let (G, γ) be a partially edge-weighted graph. A vertex v ∈ V (G) is fully weighted if
all the edges incident with v are weighted. An edge uv ∈ E(G) is complete if both vertices
u and v are fully weighted, and safe if σγ(u) 6= σγ(v). Observe that any complete pendent
edge is necessarily safe.

Lemma 5.2.3. Let G be a graph such that dpG(v) ≥ 1
2

dG(v) + 1 for every internal vertex
v ∈ V (G).

(1) If |E(G)| is odd then Alice wins the A-game on G.

(2) If |E(G)| is even then Alice wins the B-game on G.

Proof. We first consider the A-game on G and let |E(G)| = 2k + 1. Let us denote by
γAi (resp. γBi ) the partial weighting of G obtained after Alice’s i-th move, 1 ≤ i ≤ k + 1
(resp. after Bob’s i-th move, 1 ≤ i ≤ k).

Consider the strategy for Alice given by the following rules:

(R1) On her first move, Alice weights any internal edge with any weight.

(R2) If Bob has weighted an internal edge, then Alice weights any internal edge with any
weight, if possible.

(R3) If Bob has weighted the last unweighted internal edge, then Alice chooses a vertex w
incident with at least three unweighted pendent edges and weights any of these
unweighted pendent edges with any weight.
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(R4) If Bob has weighted a pendent edge uv with dG(u) = 1, then Alice weights any
internal edge incident with v with any weight, if possible.

(R5) If Bob has weighted a pendent edge uv with dG(u) = 1, all internal edges incident
with v are already weighted, and v is incident with at least two unweighted pendent
edges, then Alice weights any internal edge with any weight, if possible.

(R6) If Bob has weighted a pendent edge uv with dG(u) = 1, all internal edges are
already weighted, and v is incident with at least two unweighted pendent edges,
then Alice chooses a vertex w incident with at least three unweighted pendent edges
and weights any of these unweighted pendent edges with any weight.

(R7) If Bob has weighted a pendent edge uv with dG(u) = 1, all internal edges are already
weighted, and v is incident with only one unweighted pendent edge u′v, then Alice
weights the pendent edge u′v with some weight c in such a way that every complete
edge vv′, if any, is safe.

We will prove that Alice can always apply this strategy (namely, that Rules (R3) and
(R6) can be applied whenever needed), and that this strategy is a winning strategy for
Alice. We first claim that after each of Alice’s moves, the partially weighted graph (G, γAi )
satisfies the following properties:

(P1) Every complete edge is safe.

(P2) For every non fully weighted vertex v incident with at least one unweighted internal
edge, the number of weighted pendent edges incident with v is less than or equal to
the number of weighted internal edges incident with v.

(P3) Every non fully weighted vertex v is incident with at least two unweighted pendent
edges.

We prove this claim by induction on i. The three properties clearly hold after Alice’s
first move. Suppose now that the partially weighted graphs (G, γA1 ), . . . , (G, γAp ), 1 ≤ p ≤
k, all satisfy the three properties and that Bob weights the edge xy on his p-th move.

Suppose first that xy is an internal edge. Since (G, γAp ) satisfies property (P2), xy
is not a complete edge in (G, γBp ), and thus (G, γBp ) satisfies properties (P1) and (P2).
Moreover, since (G, γAp ) satisfies property (P3), and since dpG(u) ≥ 1

2
dG(u)+1 and dpG(v) ≥

1
2

dG(v) + 1, both vertices x and y are incident with at least three unweighted pendent
edges, and thus (G, γBp ) also satisfies property (P3). According to her strategy, Alice
will then apply either Rule (R2) or Rule (R3). If she applies Rule (R2), she weights an
unweighted internal edge and, similarly as for Bob’s move, we get that (G, γAp+1) satisfies
the three properties. If all internal edges are weighted, as observed above, both vertices x
and y are incident with at least three unweighted pendent edges and thus Alice can apply
Rule (R3). Again, (G, γAp+1) clearly satisfies the three properties.

Suppose now that xy is a pendent edge, with dG(x) > 1 and dG(y) = 1. Alice will
then apply one of the rules (R4), (R5), (R6) or (R7).
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If Alice applies Rule (R4) then, since (G, γAp ) satisfies property (P3) and x was incident
with an unweighted internal edge in (G, γAp ), x was incident to at least three unweighted
pendent edges in (G, γAp ) and thus at least two in (G, γBp ). Hence (G, γAp+1) satisfies
property (P3). Since x is thus not fully weighted, (G, γAp+1) also satisfies property (P1).
Moreover, the numbers of pendent and internal weighted edges incident with x are both
increased by one and thus, since (G, γAp ) satisfies property (P2), (G, γAp+1) also satisfies
(P2).

If Alice applies Rule (R5) then, since (G, γAp ) satisfies the three properties, both (G, γBp )
and (G, γAp+1) also satisfy the three properties.

If all internal edges are weighted then, since both (G, γAp ) and (G, γBp ) satisfy property
(P3) and the number of unweighted edges is odd (this follows from the fact that |E(G)| is
odd and the number of weighted edges before Alice’s move is even), there exists a vertex
w incident with at least three unweighted pendent edges, so that Alice can apply Rule
(R6). Again, (G, γAp+1) clearly satisfies the three properties.

Finally, if Alice applies Rule (R7), the choice of the weight c ensures that (G, γAp+1)
satisfies the three properties.

We thus get that the final edge-weighting γp+1 is neighbour-sum-distinguishing since
the partially weighted graph (G, γp+1) satisfies property (P1).

We now consider the B-game on G. We claim that applying the same strategy as
before (except Rule (R1) that is no longer valid), Alice wins the B-game on G. The
proof is similar, up to the applicability of rules (R3) and (R6) which now follows from the
fact that |E(G)| is even and the number of weighted edges before any of Alice’s moves is
odd.

In particular, Lemma 5.2.3 allows us to prove that Alice wins the A-game or the B-
game on some special trees. A caterpillar is a tree T whose set of internal vertices induces
a path, called the central path of T . We then have:

Corollary 5.2.4 (Special caterpillars). Let T be a caterpillar, with central path v1v2 . . . vk,
such that dT (v1) ≥ 4, dT (vk) ≥ 4 and dT (vi) ≥ 6 for every i, 2 ≤ i ≤ k − 1. We then
have:

1. If |E(G)| is odd then Alice wins the A-game on G.

2. If |E(G)| is even then Alice wins the B-game on G.

Proof. Note that since dT (v1) ≥ 4, we have dpG(v1) = dG(v1)−1 ≥ 1
2

dG(v1)+1. Similarly,
we have dpG(vk) = dG(vk)− 1 ≥ 1

2
dG(vk) + 1 and, since dT (vi) ≥ 6, dpG(vi) = dG(vi)− 2 ≥

1
2

dG(vi)+1 for every i, 2 ≤ i ≤ k−1. Therefore, T satisfies the conditions of Lemma 5.2.3
and the result follows.
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5.3 Simple graph classes
In this section we study the neighbour-sum-distinguishing edge-weighting game on simple
classes of graphs, namely paths, cycles, stars and double-stars.

Theorem 5.3.1 (Paths and cycles). Let Pn−1 and Cn respectively denote the path and
the cycle on n vertices, n ≥ 3. We then have:

1. Bob wins the A-game on Pn if and only if n ≥ 5.

2. Bob wins the B-game on Pn if and only if n /∈ {3, 5}.

3. Bob wins the A-game on Cn for every n.

4. Bob wins the B-game on Cn if and only if n 6= 4.

Proof. Since every edge-weighting of P3 is a neighbour-sum-distinguishing edge-weighting,
Alice wins both the A-game and the B-game on P3.

Alice’s strategy for the A-game on P4 is to first weight the central edge of P4 and then
to weight the last edge with a weight distinct from the weight used by Bob.

Alice’s strategy for the B-game on P5 is to weight on her first move an edge at distance
one from the edge previously weighted by Bob with a weight distinct from the weight used
by Bob.

Similarly, Alice’s strategy for the B-game on C4 is to weight on her first move the edge
at distance one from the edge previously weighted by Bob with a weight distinct from the
weight used by Bob.

We now prove that Bob wins the game in all the remaining cases. Note that whenever
two edges at distance one get the same weight, Bob wins the game. For the A-game on
Pn, n ≥ 5, Bob weights on his first move an edge at distance one from the edge previously
weighted by Alice, with the same weight. For the B-game on P4, Bob weights first the
central edge and then the last edge with the same weight as the one used by Alice. For
the B-game on Pn, n ≥ 6, Bob weights first the third edge of Pn with some weight c.
Alice then cannot prevent Bob from weighting on his second move either the first or the
fifth edge with the same weight c. For the A-game on C3, Bob weights an edge using the
same weight as Alice on her first move. For the A-game on Cn, n ≥ 4, Bob weights on
his first move an edge at distance one from the edge weighted by Alice, using the same
weight. Finally, for the B-game on Cn, n ≥ 5, Bob weights an edge with some weight c
and Alice cannot prevent him from weighting with the same weight c an edge at distance
one from the edge weighted first.

Since every edge-weighting of the star graph K1,n, n ≥ 2, is a neighbour-sum-distin-
guishing edge-weighting, we directly get the following:

Observation 5.3.2. For every integer n ≥ 2, Alice wins both the A-game and the B-game
on K1,n.
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The double-star DSm,n, m ≥ n ≥ 1, is obtained from the two stars K1,m and K1,n by
adding an edge joining their two centers. We prove the following:

Theorem 5.3.3 (Double-stars).

1. For every integer n ≥ 1, Bob wins the B-game on DSn,n.

2. For every integer n ≥ 1, Alice wins the A-game on DSn,n.

3. For any integers m > n ≥ 1, Alice wins the A-game on DSm,n.

4. For any integers m > n ≥ 1, Alice wins the B-game on DSm,n.

Proof. Let uv denote the central edge of the double-star DSm,n, with d(u) = m + 1 and
d(v) = n+ 1. Observe that only the sums at vertices u and v may be equal at the end of
the game.

Since for every n ≥ 1 the central edge of DSn,n is balanced, Theorem 5.3.3.1 directly
follows from Lemma 5.2.1.

We now describe Alice’s winning strategy for the A-game on DSn,n. On her first
move, she weights the central edge with any weight. Then, whenever Bob weights an edge
incident with u (resp. v), she weights an edge incident with v (resp. u). On her last
move, she weights the last edge with any weight ensuring that the sums at u and v are
distinct.

Consider now the A-game on DSm,n, m > n ≥ 1. Alice’s winning strategy is as follows.
On her first move, she weights the central edge with any weight. Then, whenever Bob
weights with weight c an edge incident with u (resp. v), she weights with the same weight
an edge incident with v (resp. u), if possible, otherwise she weights any remaining edge
with any weight. Since the degrees of vertices u and v are distinct, the sums at u and v
will necessarily be distinct at the end of the game.

Let us finally consider the B-game on DSm,n, m > n ≥ 1. Alice’s winning strategy
is as follows. If Bob weights the central edge, then Alice weights any edge incident with
u with any weight. If Bob weights with weight c an edge incident with u (resp. v), she
weights with the same weight an edge incident with v (resp. u), if possible, otherwise she
weights any remaining edge with any weight. Again, since the degrees of vertices u and v
are distinct, the sums at u and v will necessarily be distinct at the end of the game.

This concludes the proof.

5.4 Complete graphs
In this section we study the neighbour-sum-distinguishing edge-weighting game on com-
plete graphs. We prove the following:

Theorem 5.4.1 (Complete graphs).

1. For every integer n ≥ 3, Bob wins the A-game on Kn.
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2. For every integer n ≥ 3, Bob wins the B-game on Kn if and only if n 6= 4.

Proof. Since every edge in Kn is balanced and the number of edges of Kn is n(n−1)
2

, we
directly get by Lemma 5.2.1 that Bob wins the A-game on Kn whenever n ≡ 0, 1 mod 4
and that Bob wins the B-game on Kn whenever n ≡ 2, 3 mod 4.

We now consider the remaining cases. The proof of Theorem 5.4.1 will follow from a
series of lemmas.

Lemma 5.4.2. Bob wins the A-game on K3.

Proof. Bob simply weights the second edge with the weight used by Alice on her first
move.

Lemma 5.4.3. Bob wins the A-game on K4.

Proof. We define Bob’s strategy as follows: whenever Alice weights an unweighted edge e
with weight c, Bob weight the edge e′ parallel with uv (that is, e ∩ e′ = ∅) with the same
weight c. At the end of the game, all vertices clearly get the same sum.

Lemma 5.4.4. Alice wins the B-game on K4.

Proof. We define Alice’s strategy as follows. On his first move, Bob weights some un-
weighted edge e1 with weight c1. Alice then weight with the same weight c1 the edge
parallel with e1. On his second move, Bob weights some unweighted edge e2 with weight
c2. Alice then weight with a weight c3 6= c2 the edge parallel with e2. Hence, the two
remaining unweighted edges both join vertices with respective distinct sums c1 + c2 and
c1 + c3, so that Alice wins the game.

For larger values of n, we consider the structure of the graph induced by the unweighted
edges before some last rounds. It will be useful to introduce the following notation. We
denote by Rk the graph induced by the k last remaining (unweighted) edges. The next
lemmas concern the graph R4. This graph has four edges.

Remark 5.4.5. Let us observe that in the cases we consider, the last even number of
moves of the game are played first by Bob and then by Alice, alternately.

In the following, we will say that we get equality on an edge uv whenever we get
σ(u) = σ(v).

Lemma 5.4.6. If R4 is a forest then Bob wins.

Proof. Let us consider first the case where R4 is a path of length four. Denote its vertices
by x1, x2, x3, x4, x5 and let σ(xi) be the sums at vertices xi at this moment. On his first
move, Bob weights the edge x1x2 with a huge (much greater than other values of the sums
at vertices of R4) weight H. Alice must weight the edge x4x5, since otherwise Bob in his
next move would weight this edge in such a way that he would get the equality on x1x5.
But then Bob weights the edge x3x4 by H ′ such that σ(x2) + H = σ(x3) + H ′ and wins
the game.
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Figure 5.1: Some R4 graphs: (a) K3 ∪K2 and (b) T+. The first edge played by Bob is
dotted.

Now, let R4 be a forest different from the path of length four. Then, R4 has at least
three leaves, u1, u2, u3 say, belonging to three distinct edges e1, e2, e3 say, respectively. Bob
starts by weighting e1 with a huge weight H, and after Alice’s move, one of the above
mentioned edges, say e3, is still not weighted. Bob weights it with a weight H ′ in such
a way that the equality σ(u1) + H = σ(u3) + H ′ holds, where σ(u1), σ(u3) denote the
respective sums just before the four last moves.

Lemma 5.4.7. If R4 is the graph K3 ∪K2 then Bob wins.

Proof. Denote the vertices of R4 as in Figure 5.1(a). On his first move, Bob weights the
edge xy with a huge weight H.

- If Alice weights the edge yz (or xz), completing the weighting of edges incident to y
(or x), then Bob weights u1u2 in such a way that he gets the equality on u1y (or u1x).

- If Alice weights the edge u1u2 then Bob weights xz in such a way that he gets the
equality on yz.

Lemma 5.4.8. If R4 = T+ (see Figure 5.1(b)) and σ(t) > σ(z), then Bob wins.

Proof. W.l.o.g. we may assume that σ(x) ≤ σ(y). Let σ(x) = a, σ(y) = a + a′, σ(z) =
b, σ(t) = b+ b′, where b′ > 0. Bob weights the edge xy with a huge weight H. Alice must
weight the edge zt, since otherwise Bob in his next move weights zt in such a way that
either σ(x) = σ(t) and all edges incident with x or t are already weighted or σ(y) = σ(t)
and all edges incident with y or t are already weighted, hence Bob would win. Thus,
assume that Alice weights zt with M . After such moves we have

• σ(x) = a+H,
• σ(y) = a+ a′ +H,
• σ(z) = b+M ,
• σ(t) = b+ b′ +M .
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Figure 5.2: Some R6 graphs. The first edge played by Bob is dotted.

If a+H < b+ b′ +M , then Bob weights xz with b+ b′ +M − (a+H). After his moves
σ(x) = σ(t) and all edges incident with x or t have been weighted and hence Bob wins.
Thus, suppose that a+H ≥ b+ b′ +M . Since b′ > 0, the inequality a+H ≥ b+ b′ +M
implies that a+a′+H > b+M . In such a case Bob weights xz with a+a′+H− (b+M).
After such a move, σ(y) = σ(z) and yz is the only unweighted edge incident with y or
with z. Thus, no matter how Alice weights the last edge yz, after her move we still have
σ(y) = σ(z).

Observation 5.4.9. It is easy to see that if R4 = C4 then Bob has no good strategy.
This is why he has to avoid R6 = K2,3 and R6 = K4. How to avoid the second situ-
ation is described in Lemma 5.4.11 where we consider the graphs R8. In order to avoid
R6 = K2,3 we have to avoid R8 = K2,4, R10 = K2,5 and so on up to R2n = K2,n (see
Lemma 5.4.12). The way to avoid R2n = K2,n is described below (at the beginning of the
proof of Theorem 5.4.1).

Next lemma concerns the graphs R6 containing the graph T+, defined in Figure 5.1(b),
as a subgraph. These graphs have six edges.

Lemma 5.4.10. If R6 contains the graph T+ as a subgraph and R6 6= K4 then Bob wins.

Proof. If R6 contains only one cycle then Bob in his first move destroys this cycle and,
regardless of Alice’s move, the graph R4 is a forest. Thus, we can apply Lemma 5.4.6.

If R6 contains more than one cycle, then it is isomorphic to one of the five graphs
drawn in Figure 5.2. We consider five cases.

• Case 1. R6 = G1. Then Bob plays a huge H on zu. If Alice weights tu, in order to
get R4 = T+, Bob weights zt in such a way that he gets the equality on tu. If Alice

106



5. The neighbour-sum-distinguishing edge-weighting game

weights an edge different from tu, the graph R4 is either the forest or the graph
K3 ∪K2 and we can apply either Lemma 5.4.6 or Lemma 5.4.7.

• Case 2. R6 = G2. Then Bob weights the chord of the cycle C5. So, after Alice’s
move, we get the path of length four and we apply again Lemma 5.4.6.

• Case 3. R6 = G3. Then Bob plays a huge H on ty. If Alice weights u1u2, she gets
R4 = T+, but with σ(t) much greater than σ(z) and we can apply Lemma 5.4.8.
If Alice weights an edge different from u1u2, the graph R4 is either a forest or the
graph K3 ∪K2 and we can apply either Lemma 5.4.6 or Lemma 5.4.7.

• Case 4. R6 = G4. Then Bob plays a huge H on ty. In order to get R4 = T+, Alice
has to weight tu. Then, she gets R4 = T+, but with σ(t) much greater than σ(z)
and we can apply Lemma 5.4.8. If Alice weights an edge different from tu, the graph
R4 is either the forest or the graph K3 ∪K2 and we can apply either Lemma 5.4.6
or Lemma 5.4.7.

• Case 5. R6 = G5. Let σ(v) denote the sum at a vertex v at this moment. Then
Bob plays a huge H on ty. In order to get R4 = T+, Alice can weight either yu or
zt.

– If Alice weights zt, say by M , Bob plays on yu in such a way that the equality
on tu holds. It is possible since the present value at t, equal to σ(t) +H +M ,
is much bigger than σ(u).

– If Alice weights yu, say by M , she gets R4 = T+, but with σ(t) + H at the
vertex t much bigger than σ(z) and we can apply Lemma 5.4.8.

The next lemma concerns the graphs R8 containing the graph K4 as a subgraph.

Lemma 5.4.11. If R8 contains the graph K4 as a subgraph then Bob wins.

Proof. Denote by {u1, u2, u3, u4} the vertices of the graph K4. Consider first the case
when R8 contains one more vertex, say u5 joined with u2 and u3. Bob starts by weighting
the edge u1u3.

If Alice plays on one of the following edges: u1u2, u1u4, u5u2, u5u3, then R6 is either
G4 or G5 from Lemma 5.4.10 and Bob wins.

If Alice plays on one of the two edges u2u3 or u2u4, then Bob plays on the remaining
one and R5 is the cycle C5. In the next move Alice has to create the path P5.

If Alice plays on u3u4 then we get G1, from Lemma 5.4.10 and Bob wins.
Consider now the case when none of the two edges of R8 which are not edges of K4 is

on a cycle. Denote these edges by e1, e2. Bob weights one of the edges of K4.
If Alice weights another edge of K4 then Bob is able to destroy all cycles in R5 in his

next move. So, Alice has to weight either e1 or e2, but then we get one of the graphs from
Lemma 5.4.10 and Bob wins.
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The proof of the following lemma is obvious.

Lemma 5.4.12. If R2k+2 6= K2,k+1 then Bob is able to get R2k 6= K2,k.

We are now able to complete the proof of Theorem 5.4.1.
First, we shall show that Bob is able to avoid the graph R2(n−2) = K2,n−2. Consider

the A-game on Kn with n ≡ 2, 3 mod 4. Then n(n−1)
2

is odd. The number of moves
before the critical situation (where only 2(n− 2) unweighted edges remain) is equal to

n(n− 1)

2
− 2(n− 2) =

(n− 2)(n− 3)

2
+ 1

which is also odd. If R2(n−2) = K2,n−2 then the weighted edges should form the graph
Kn−2 ∪K2. The longest path in this graph is of order n − 2. Therefore, the aim of Bob
is to weight a path of order at least n− 1 before the critical situation is attained.

Since Alice starts, Bob has (n−2)(n−3)
4

moves. Observe that the first edge weighted by
Alice can be used by Bob to build the path. Therefore, he needs only n− 3 moves.

We have
(n− 2)(n− 3)

4
≥ n− 3

for n ≥ 6.
In the case of the B-game, with n ≡ 0, 1 mod 4, the number n(n−1)

2
is even. The

number of moves until the critical situation has been reached is equal to n(n−1)
2
−2(n−2) =

(n−2)(n−3)
2

+ 1, which is also even. Since Bob starts, he has n2−5n+8
4

moves. Observe that
also in this case the first edge weighted by Alice can be used by Bob to build the path.
Therefore, he needs only n− 3 moves.

We have
n2 − 5n+ 8

4
≥ n− 3

for n ≥ 5.
We define Bob’s strategy as follows:

• Until a situation where only 2(n−2) unweighted edges remain is reached, Bob builds
a path as long as possible. As we showed above, this strategy allows to avoid the
graph R2(n−2) = K2,n−2.

• Next, Bob continues avoiding R2k = K2,k (cf. Lemma 5.4.12) until the moment
when only eight moves remain.

• If R8 contains K4, then Bob plays as in Lemma 5.4.11. If not, he continues his
strategy and avoids K2,3 in the next round.

• Since R6 is neither K2,3 nor K4, Bob continues the game using strategy described
in Lemma 5.4.10.

So, Bob wins in every case.

108



5. The neighbour-sum-distinguishing edge-weighting game

5.5 Complete bipartite graphs
In this section we study the neighbour-sum-distinguishing edge-weighting game on com-
plete bipartite graphs of the form K2,n, n ≥ 2. We prove the following:

Theorem 5.5.1 (Complete bipartite graphs).

1. For every integer n ≥ 2, Bob wins the A-game on K2,n.

2. For every integer n ≥ 2, Alice wins the B-game on K2,n.

Proof. Let us denote by {u, v}∪{x1, . . . , xn} the bipartition of V (K2,n). By Theorem 5.3.1,
we know that Bob wins the A-game on K2,2 = C4 and that Alice wins the B-game on
K2,2. We can thus assume that n ≥ 3.

We first describe Bob’s strategy for the A-game on K2,n. Except on his two last
moves, whenever Alice weights and edge uxi (resp. vxi) with weight ci, Bob weights the
corresponding “twin” edge vxi (resp. uxi) with the same weight ci. After the (2n− 4)-th
round, the sums at both vertices u and v are thus equal to the same value, say σ, and the
unweighted edges are ux1, vx1, ux2 and vx2, without loss of generality. Assume, again
without loss of generality, that Alice weights the edge ux1 with weight c. Bob answers by
weighting the edge vx2 with weight σ + c, so that the sums at vertices u and x2 are both
equal to σ + c, which implies that Alice looses the game.

We now turn to the B-game and describe Alice’s strategy. Assume that on his i-th
move Bob weights with weight ci the edge wxi, w ∈ {u, v}, 1 ≤ i ≤ n. Alice then responds
by weighting with the same weight ci an edge w′xi′ such that i′ 6= i and {w,w′} = {u, v}
(note that this is always possible since Bob plays first). At the end of the game, the sum
at both vertices u and v is thus

∑n
i=1 ci and the sum at any vertex xi is ci+ ci′ with i′ 6= i.

Therefore, since n ≥ 3, the sum at vertices u and v is strictly greater than the sum at
vertex xi for every i, 1 ≤ i ≤ n, and thus Alice wins the game.

We leave as an open problem the question of determining who wins the A-game or the
B-game on general complete bipartite graphs Km,n, 3 ≤ m ≤ n.
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Chapter 6

Locally irregular decompositions of
subcubic graphs

A graph G is locally irregular if every two adjacent vertices of G have different degrees. A
locally irregular decomposition of G is a partition E1, . . . , Ek of E(G) such that each G[Ei]
is locally irregular. Not all graphs admit locally irregular decompositions, but for those
that are decomposable, in that sense, it was conjectured by Baudon, Bensmail, Przybyło
and Woźniak [BBPW15] that they decompose into at most three locally irregular graphs.

We here focus on locally irregular decompositions of subcubic graphs, which form an
important family of graphs in this context, as all non-decomposable graphs are subcubic.
As a main result, we prove that decomposable subcubic graphs decompose into at most
five locally irregular graphs, and only at most four when the maximum average degree
is less than 12

5
. We then consider weaker decompositions, where subgraphs can also in-

clude regular components, and prove two relaxations of the conjecture above for subcubic
graphs.

The results presented in this chapter were published in [BBH+18].

6.1 Introduction
Throughout this chapter, we deal with locally irregular decompositions, as defined in
Section 1.4.5.

The concept of locally irregular graphs arose in the context of neighbour-sum-distin-
guishing edge-weightings. The 1-2-3 Conjecture, raised by Karoński, Łuczak and
Thomason [KLT04], and its variants (see the survey [Sea12] by Seamone), are perhaps the
most representative examples where locally irregular graphs arise naturally, as the “best
graphs” for these problems are precisely the locally irregular ones.

Still in the context of those weighting problems related to locally irregular graphs,
there are situations where, though a given graph G is not locally irregular, knowing that
G decomposes into a certain number of locally irregular graphs may have some con-
sequences. Recall that, by a decomposition of G, we mean an edge-partition E1, . . . , Ek of
E(G). Note that a decomposition of G can be equivalently regarded as an edge-colouring
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of G. A decomposition of G is locally irregular when each colour class induces a locally
irregular graph. Locally irregular decompositions were formally introduced in [BBPW15]
by Baudon, Bensmail, Przybyło and Woźniak, who noted that, in particular contexts, a
graph admitting a particular locally irregular decomposition agrees with the 1-2-3 Con-
jecture, or some of its variants. As a more general perspective, we are interested in
determining, given a graph G, the smallest number of locally irregular subgraphs that G
decomposes into.

Recalling the definition of exceptional graphs in Section 1.4.5, note that all exceptional
graphs are subcubic (i.e., have maximum degree at most 3), and are of odd size (num-
ber of edges). For these main reasons, we believe that understanding locally irregular
decompositions of subcubic graphs is of prime importance.

Concerning decomposable graphs, the main conjecture is that they should admit de-
compositions into at most three locally irregular graphs.

Conjecture 6.1.1 ([BBPW15]). For every decomposable graph G, we have χ’irr(G) ≤ 3.

Conjecture 6.1.1 was verified for several classes of graphs, including decomposable trees,
decomposable complete graphs, and some classes of decomposable bipartite graphs and
Cartesian products [BBPW15]. Using probabilistic methods, Conjecture 6.1.1 has also
been verified for regular graphs with degree at least 107 [BBPW15], and for graphs with
minimum degree at least 1010 [Prz16]. Let us further point out that the bound in Conjec-
ture 6.1.1, if true, would be best possible, since decomposable complete graphs or cycles
with length congruent to 2 modulo 4, cannot be decomposed into two locally irregular
graphs only. In general, Baudon, Bensmail and Sopena [BBS15] showed that determining
the irregular chromatic index of a given graph is an NP-complete problem.

At that moment, though, it was not known whether χ’irr is, in general, bounded
above by a constant. This was also not known in the particular case of decomposable
bipartite graphs, for which we still do not know whether Conjecture 6.1.1 holds. These
two questions were later considered by Bensmail, Merker and Thomassen [BMT17], who
proved the following:

Theorem 6.1.2 ([BMT17]). For every decomposable graph G, we have χ’irr(G) ≤ 328.
Furthermore, if G is bipartite, then we have χ’irr(G) ≤ 10.

Later, Lužar, Przybyło and Soták improved these bounds in [LPS16] proving the
following:

Theorem 6.1.3 ([LPS16]). For every decomposable graph G, we have χ’irr(G) ≤ 220.
Furthermore, if G is bipartite, then we have χ’irr(G) ≤ 7.

In this chapter, we consider Conjecture 6.1.1 in the context of bounded-degree graphs,
giving a special focus on subcubic graphs. One first point for that is that it is still not
known whether decomposable subcubic graphs verify Conjecture 6.1.1. Another import-
ant motivation is that subcubic graphs are intimately related to exceptional graphs, as
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6. Locally irregular decompositions of subcubic graphs

all exceptional graphs are subcubic. For these two reasons, it is interesting to understand
how locally irregular decompositions behave in subcubic graphs.

This chapter is organized as follows. In Section 6.2, we start by recalling some argu-
ments and results from [BMT17] that are used in our proofs, and which we also use to de-
duce a first upper bound on the irregular chromatic index of decomposable bounded-degree
graphs. In the case of decomposable subcubic graphs G, this yields that χ’irr(G) ≤ 7 al-
ways holds. Through a more involved proof, we decrease, in Section 6.3, this bound down
to 5. In Section 6.4, we further decrease this bound down to 4 for decomposable subcubic
graphs with maximum average degree less than 12

5
. We then consider, in Sections 6.5

and 6.6, two relaxed versions of Conjecture 6.1.1 that were considered by Bensmail and
Stevens [BS16], where one allows locally irregular decompositions to also induce subgraphs
with regular components. We show that, in this context, the two relaxations of Conjec-
ture 6.1.1 are true for subcubic graphs. We end up this chapter in Section 6.7, where we
gather some possible directions for future work.

Remark: Right before the submission of the current work, we have been notified of the
appearance, on arXiv, of the paper of Lužar, Przybyło and Soták [LPS16], reducing the
bounds in Theorem 6.1.2 to 220 and 7, respectively. It was also proved that χ’irr(G) ≤ 4
holds for every decomposable subcubic graph G, which improves our main results in
Section 6.3, and partially those in Section 6.4. However, the results in the current chapter
and [LPS16] were obtained independently, and the proof arguments we use are different
from those from [LPS16], and may thus be of interest for future work on locally irregular
decompositions. Furthermore, to the best of our knowledge, the questions we consider in
Sections 6.5 and 6.6 have not been considered by other authors.

6.2 Locally irregular decompositions of bounded-deg-
ree graphs

One first ingredient in the proof of Theorem 6.1.2 is a general reduction of Conjecture 6.1.1
to graphs with even size. We generalize it in the following way, where, by a hereditary
family of graphs, we mean a family of graphs that is closed under taking subgraphs.

Theorem 6.2.1 ([BMT17]). Let G be a hereditary family of graphs. Then, we have:

max {χ’irr(G) : G ∈ G is decomposable} ≤
max {χ’irr(G) : G ∈ G is connected and has even size}+ 1.

Hence, in order to exhibit constant upper bounds on the irregular chromatic index of
decomposable graphs among a class G, one may focus on the connected even-size graphs
of G only. One convenient point for focusing on connected even-size graphs is that they
are all decomposable. In particular, when considering an even-size subgraph of a graph,
we do not have to wonder about whether it is exceptional or not.

The proof of Theorem 6.2.1 relies on the following two lemmas, which we use in the
next section.
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6.3. Locally irregular decompositions of subcubic graphs

Lemma 6.2.2 ([BMT17]). Let G be a connected graph with even size. Then, for every
vertex v of G, there is a path P of length 2 in G, such that P contains v, and all com-
ponents of G− E(P ) have even size.

Recall that, when referring to a claw, we mean the star K1,3 on 4 vertices.

Lemma 6.2.3 ([BMT17]). Let G be a decomposable connected graph with odd size. Then,
there is, in G, a claw H with 0 or 2 of its edges subdivided, such that all components of
G− E(H) have even size.

Clearly, the graph property “being of maximum degree at most k” is a hereditary prop-
erty. Thus, using Theorem 6.2.1 and Lemma 6.2.2, we can already state a general upper
bound on the irregular chromatic index of a decomposable graph with given maximum
degree.

Observation 6.2.4. For every decomposable connected graph G with even size, we have
χ’irr(G) ≤ 3∆(G)− 3.

Proof. We prove the claim by induction on |V (G)| + |E(G)|. As it can easily be verified
whenever G is small, we proceed with the inductive step. Let v be a ∆(G)-vertex of G.
According to Lemma 6.2.2, we can find, in G, a path P of length 2 such that P contains
v, and all components of G′ := G − E(P ) have even size. Since G′ is smaller than G,
all its components have even size, and ∆(G′) ≤ ∆(G), there exists a locally irregular
(3∆(G) − 3)-edge-colouring of G′. By that edge-colouring, there is necessarily, in G, at
least one of the 3∆(G)−3 colours, say α, which is not assigned to any edge incident to the
vertices of P . Hence, by assigning colour α to the edges of P , we get a locally irregular
(3∆(G)− 3)-edge-colouring of G, since a path of length 2 is locally irregular.

Corollary 6.2.5. For every decomposable graph G, we have χ’irr(G) ≤ 3∆(G)− 2.

6.3 Locally irregular decompositions of subcubic gra-
phs

Concerning lower bounds on the maximum irregular chromatic index of a decomposable
subcubic graph, let us first mention that there are infinitely many subcubic graphs G
verifying χ’irr(G) = 3. This is, in particular, the case for cycles with length congruent
to 2 modulo 4 (see [BBPW15]). It is actually NP-complete to decide whether a given cubic
graph G verifies χ’irr(G) ≤ 2, implying that much more subcubic graphs, with possibly
a more complex structure, can have irregular chromatic index 3. This follows from a
result of Dehghan, Sadeghi and Ahadi [DSA13], who proved, in the context of the 1-2-3
Conjecture, that deciding whether a cubic graph has a neighbour-sum-distinguishing 2-
edge-weighting is an NP-complete problem. This result implies exactly the claim above,
as neighbour-sum-distinguishing 2-edge-weightings and locally irregular 2-edge-colourings
are equivalent notions in regular graphs (see [BBPW15]).
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6. Locally irregular decompositions of subcubic graphs

We now turn our attention towards upper bounds on the irregular chromatic index of
decomposable subcubic graphs. According to Observation 6.2.4, we know that connected
subcubic graphs with even size have irregular chromatic index at most 6. From that,
we get, according to Corollary 6.2.5, that decomposable subcubic graphs have irregular
chromatic index at most 7. In this section, we decrease these two bounds to 4 and 5,
respectively. We actually focus on decomposable connected subcubic graphs with even
size that are strictly subcubic, meaning that they are not cubic. By proving that they
have irregular chromatic index at most 4, we are then able to prove the upper bound 5
on the irregular chromatic index of both cubic graphs with even size, and decomposable
(not necessarily strictly) subcubic graphs with odd size.

Theorem 6.3.1. For every decomposable connected strictly subcubic graph G with even
size, we have χ’irr(G) ≤ 4.

Proof. LetG be a counterexample to the claim that is minimal in terms of |V (G)|+|E(G)|.
In other words, we have χ’irr(G) > 4, and every smaller connected strictly subcubic graph
with even size has irregular chromatic index at most 4. Our proof consists in showing
that G cannot contain certain configurations, until we get to the point where G is shown
to be cubic, a contradiction.

Recall that a bridge of a graph refers to an edge whose deletion disconnects the graph.
We start off by showing that G cannot contain non-pendent bridges, where, by a pendent
bridge, we mean a bridge which is a pendent edge. In other words, a pendent bridge
is a pendent edge, and a non-pendent bridge is a bridge whose deletion results into two
components having edges.

Claim 6.3.2. The graph G has no non-pendent bridge.

Proof. Assume, for a contradiction, that G has a non-pendent bridge, i.e., an edge uv
such that G − uv has two components Gu and Gv with |E(Gu)|, |E(Gv)| > 0. Further
assume that u belongs to Gu while v belongs to Gv. Since G has even size, we have that
|E(Gu)|+ |E(Gv)| is odd. We may hence assume that Gu has even size, while Gv has odd
size. Since Gu and Gv + uv are smaller than G, are strictly subcubic and of even size,
we have χ’irr(Gu), χ’irr(Gv + uv) ≤ 4 due to the minimality of G. Hence, there exist a
locally irregular 4-edge-colouring φu of Gu, and a locally irregular 4-edge-colouring φv of
Gv + uv. Since dGu(u) ≤ 2, and we can freely permute any two colours assigned by φu to
the edges of Gu, we can make sure that φu assigns colours among {1, 2} to the edges of
Gu incident to u. Similarly, since dGv+uv(u) = 1, and we can freely permute the colours
assigned by φv to the edges of Gv + uv, we can make sure that φv(uv) = 3. Clearly, φu
and φv give rise to a locally irregular 4-edge-colouring of G, a contradiction.

We now show that G cannot contain pendent bridges as well. In the upcoming proof,
and throughout this chapter, whenever considering a subgraph obtained by removing
edges, we also remove its isolated vertices, if any.

Claim 6.3.3. The graph G has no 1-vertex.
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Proof. Assume the contrary, and let uv be an edge of G such that d(u) = 1. We must
have d(v) = 3, as otherwise d(v) = 2 and the other edge incident to v would be a non-
pendent bridge. Let w1 and w2 denote the two neighbours of v different from u. Consider
the graph G′ := G − uv − vw1. Note that G′ is connected as otherwise vw1 would be
a non-pendent bridge of G whose existence would contradict Claim 6.3.2. Hence G′ is a
strictly subcubic graph with even size, and smaller than G. There hence exists a locally
irregular 4-edge-colouring of G′. By this edge-colouring, the vertices u, v and w1, because
dG′(u) = 0, dG′(v) = 1 and dG′(w1) ≤ 2, are incident to at most three different colours.
A non-used colour can hence be assigned to uv and vw1, resulting in a locally irregular
4-edge-colouring of G, again a contradiction.

We gather previous Claims 6.3.2 and 6.3.3 in the following way:

Claim 6.3.4. The graph G has no bridge.

Our goal now is to show that G has no 2-vertex. To that aim, we first show that G
cannot have small cycles, namely triangles (C3’s) and squares (C4’s).

Claim 6.3.5. The graph G has no triangle.

Proof. Assume the contrary, and let C := uvwu be a triangle of G. If one vertex, say u,
of C is a 2-vertex, then consider G′ := G − uv − uw. That graph is a strictly subcubic
graph, with even size and fewer vertices and edges than G, which hence admits a locally
irregular 4-edge-colouring. Since dG′(v), dG′(w) ≤ 2, at most two different colours are
assigned to the edges incident to v and w in G′. This is because a locally irregular graph
cannot include a component isomorphic to K2. We can thus assign a non-used colour to
uv and uw, resulting in a locally irregular 4-edge-colouring of G, a contradiction.

Assume now that d(u) = d(v) = d(w) = 3. We note that if removing any of the
2-paths vuw, uwv or uwv from G results in a connected graph, then we can deduce a
locally irregular 4-edge-colouring of the remaining graph, having the additional property
that at most three colours are assigned to the at most four remaining edges incident to
u, v and w. This is again because a locally irregular graph cannot have a component
isomorphic to K2. Such a colouring can hence be extended to the removed 2-path using
one of the non-used colours, hence to G, a contradiction. Thus, removing any two edges
among {vu, uw,wv} disconnects G. But this contradicts Claim 6.3.4, as this implies that
every edge not in C and incident to C (there at three of them) is a bridge (either pendent
or non-pendent). So C cannot exist.

Claim 6.3.6. The graph G has no square.

Proof. Assume the contrary, and let C := uvwxu be a square of G. First assume that
C has at least one 2-vertex; without loss of generality, we may assume that d(u) = 2.
Consider the graph G′ := G − ux − uv; this graph is connected, has even size, and is
smaller than G. Therefore, it admits a locally irregular 4-edge-colouring. If one of the
four colours is not assigned to one of the at most four edges incident to x and v in G′,
then we can obtain a locally irregular 4-edge-colouring of G by assigning the non-used
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colour to ux and uv. So we may assume that dG(v) = dG(x) = 3, and that all four edges
incident to v and x in G′ are assigned different colours. But then, in the 4-edge-colouring,
necessarily one of wx and wv is isolated in the subgraph induced by its assigned colour,
implying that this subgraph is not locally irregular, thus that the 4-edge-colouring is not
locally irregular, a contradiction. So, necessarily, one of the four colours does not appear
around x and v in G′, and the previous case applies.

Assume now that d(u) = d(v) = d(w) = d(x) = 3. We denote by u′, v′, w′, x′,
respectively, the neighbour of u, v, w, x, respectively, which does not belong to C. Note
that G′ := G − ux − uv remains connected as otherwise uu′ would be a bridge in G
(contradicting Claim 6.3.4). Since G′ is of even size and is smaller than G, it admits a
locally irregular 4-edge-colouring φ. We show that φ can always be extended to a locally
irregular 4-edge-colouring of G, a contradiction.

Similarly as in a previous case, we may assume that φ assigns each of the four colours
to at least one edge incident to u, v and x in G′. Note that there are exactly five such
edges, as G is simple and does not have triangles by Claim 6.3.5 (in particular, v′ 6= x).
Assume, without loss of generality, that φ(uu′) = 1. Note first that we cannot have
φ(vw) = 1 or φ(wx) = 1. Indeed, in such a situation (say φ(wx) = 1), so that all four
colours appear in the neighbourhood of u, v, x, one would need, without loss of generality,
φ(xx′) = 2, φ(vw) = 3 and φ(vv′) = 4. But then either wx is an isolated edge in the
1-subgraph1, or vw is an isolated edge in the 3-subgraph, contradicting the fact that φ is
locally irregular.

So we may assume that 1 6∈ {φ(vw), φ(wx)}. We consider two cases depending on
whether φ(vw) and φ(wx) are equal or not.

• Case 1: φ(vw) 6= φ(wx).

Without loss of generality, assume that φ(vw) = 3 while φ(wx) = 2, and also that
φ(xx′) = 4 (since colour 4 appears in the neighbourhood of u, v, x). Because the 2-
subgraph is locally irregular, we necessarily have φ(ww′) = 2, which implies, because
the 3-subgraph is locally irregular, φ(vv′) = 3. Therefore, if u′ is a 2-vertex in the 1-
subgraph, then we can extend φ to G by setting φ(ux) = φ(uv) = 1. So assume u′ is
a 3-vertex in the 1-subgraph. Analogously, if v′ is not a 3-vertex in the 3-subgraph,
then we can extend φ to G by setting φ(uv) = 3 and φ(ux) = 1. So assume v′ is a
3-vertex in the 3-subgraph. Now, if w′ is not a 3-vertex in the 2-subgraph, then we
can extend φ to G by setting φ(wv) = φ(wx) = 2, and φ(ux) = 1 and φ(uv) = 3.
So assume that w′ is a 3-vertex in the 2-subgraph. Again, φ can be extended to G
by setting φ(wv) = φ(wx) = 1, and φ(ux) = φ(uv) = 2.

• Case 2: φ(vw) = φ(wx).

We may assume that φ(vw) = φ(wx) = 2, and that φ(vv′) = 4 and φ(xx′) = 3
(because all four colours appear around u, v, x). As in the previous case, we may

1Given any colour α assigned by an edge-colouring, when mentioning the α-subgraph, we refer to the
subgraph whose edges are the ones assigned colour α.
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assume that u′ is a 3-vertex in the 1-subgraph. If w is a 3-vertex in the 2-subgraph,
then φ can be extended to G by setting φ(ux) = 1 and φ(uv) = 2. So assume that
w is a 2-vertex in the 2-subgraph. Similarly, if x′ is a 3-vertex in the 3-subgraph,
then we can extend the colouring by setting φ(xu) = 3 and φ(uv) = 1. So assume
that x′ is a 2-vertex in the 3-subgraph. A similar argument shows that we may
as well assume that v′ is a 2-vertex in the 4-subgraph. Now consider the value of
φ(ww′). On the one hand, if φ(ww′) = 1, then φ can be extended to G by setting
φ(xw) = φ(xu) = 3, and φ(vw) = φ(vu) = 4. On the other hand, if φ(ww′) 6= 1,
then φ can be extended to G by setting φ(ux) = φ(uv) = 2 and φ(wx) = φ(wv) = 1.

In each case, φ can be extended to a locally irregular 4-edge-colouring of G, a contra-
diction. So G cannot contain a square.

We now focus on the 2-vertices of G, which exist, since G is strictly subcubic and has
no 1-vertex (Claim 6.3.3).

Claim 6.3.7. The graph G has no neighbouring 2-vertices.

Proof. Assume G has two adjacent 2-vertices u and v, and let u′uvv′ be the induced path
of length 3 of G containing u and v. Here, we consider the graph G′ := G−u′u−uv. This
graph is connected, as otherwise u′u would be a bridge of G, contradicting Claim 6.3.4.
Furthermore, G′ has even size and is smaller than G. Hence, there exists a locally irregular
4-edge-colouring of G′. Since, in G′, the vertices u′ and v are a 2−-vertex and a 1-vertex,
respectively, that edge-colouring assigns at most three different colours to edges incident
to u′ and v in G′. So we can assign a non-used colour to u′u and uv, which results in a
locally irregular 4-edge-colouring of G, a contradiction.

Claim 6.3.8. The graph G has no 3-vertex adjacent to two 2-vertices.

Proof. Assume, for contradiction, that G has a 3-vertex v adjacent to two 2-vertices u1, u2

and another 2+-vertex w. Consider the graph G′ := G−vu1−vu2. If G′ is not connected,
then necessarily w belongs to the same component as one of u1 and u2 (as, otherwise,
vw would be a bridge in G, contradicting Claim 6.3.4). Actually, w belongs to the same
component as only one of u1 and u2, as otherwise G′ would be connected. Assume without
loss of generality that w and u2 belong to the same component of G′, while u1 belongs to
another component. But then vu1 is a bridge in G, which contradicts Claim 6.3.4.

So G′ is necessarily connected. Furthermore, it has even size and is smaller than G.
Hence, there exists a locally irregular 4-edge-colouring of G′. Since dG(u1) = dG(u2) = 2,
by that edge-colouring, at most three different colours are assigned to the edges incident
to v, u1 and u2 in G′. There is thus a non-used colour that can be assigned to vu1 and
vu2, resulting in a locally irregular 4-edge-colouring of G. This is a contradiction.

We are now ready to conclude the proof, by raising a final contradiction. Since G is
strictly subcubic and δ(G) > 1, there is a 2-vertex v in G. Let u1 and u2 be the two
neighbours of v in G. Because G has no triangle by Claim 6.3.5, the vertices u1 and u2

are not joined by an edge. Furthermore, since G has no 1-vertex by Claim 6.3.3, nor
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neighbouring 2-vertices by Claim 6.3.7, we have d(u1) = d(u2) = 3. So let w1, w2 denote
the two neighbours of u1 different from v, and w3, w4 denote the two neighbours of u2

different from v. Since G has no square by Claim 6.3.6, we have N(u1) ∩N(u2) = {v}.
By symmetry, and because G has no bridge, we may assume that, in G− {v, u1, u2},

vertices w1 and w3 are in a same component, and w2 and w4 are in a same (possibly
different) component. Also, the two paths P1 := w1u1vu2w3 and P2 := w1u1vu2w4 are
symmetric, and it is easy to verify that, for some i = 1, 2, each component of G− E(Pi)
has an even number of edges.

Assume, without loss of generality, that P1 has that property, and let G′ := G−E(P1).
Remember that G′ can have up to two components, each of which has even size. Since
G′ is strictly subcubic, smaller than G, and is of even size, there exists a locally irregular
4-edge-colouring φ of G′. We extend φ to G, so that a contradiction is obtained.

Since dG′(w1) ≤ 2 and dG′(u1) = 1, the vertices w1 and u1 are incident to at most
three edge colours by φ, namely the colours assigned to u1w2 and to the at most two
edges incident to w1 in G′. So there is a colour α1 ∈ {1, 2, 3, 4} such that, when assigning
colour α1 to w1u1 and u1v, those two edges induce a path of length 2 in the α1-subgraph.
Analogously, there is a colour α2 ∈ {1, 2, 3, 4} such that, when assigning colour α2 to w4u2

and u2v, those two edges induce a path of length 2 in the α2-subgraph. If α1 6= α2, then
we get a locally irregular 4-edge-colouring of G by assigning colour α1 to w1u1 and u1v,
and colour α2 to w4u2 and u2v.

Assume thus that α1 = α2. Let β1 := φ(u1w2). Recall that β1 6= α1. We may assume
that β1 is not assigned to any edge incident to w1 in G′, as otherwise there would be
another colour, different from α2, that can be assigned to w1u1 and u1v, and the previous
extension strategy could be applied. We note that if w2 is a 2-vertex in the β1-subgraph
of G′ induced by φ, then a correct extension of φ is obtained by assigning colour β1 to
w1u1 and u1v, and colour α2 to w4u2 and u2v. Analogously, we can deduce a correct
extension when w3 is a 2-vertex in the β2-subgraph induced by φ, where β2 := φ(u2w3)
(unless β2 appears on an edge incident to w4, in which case there would be another colour,
different from α1, available to colour w4u2 and u2v). Therefore, we may assume that w2

is a 3-vertex in the β1-subgraph induced by φ, and w3 is a 3-vertex in the β2-subgraph
induced by φ. But, then, a locally irregular 4-edge-colouring of G is obtained by assigning
colour β1 to u1w1, colour β2 to u2w4, and colour α1 to vu1 and vu2.

We now use Theorem 6.3.1 to derive corollaries for decomposable subcubic graphs
with odd size, and cubic graphs with even size.

Corollary 6.3.9. For every connected decomposable strictly subcubic graph G with odd
size, we have χ’irr(G) ≤ 5.

Proof. According to Lemma 6.2.3, one can find, in G, a claw H with 0 or 2 of its edges
subdivided such that G′ := G−E(H) has components with even size only. All components
of G′ are strictly subcubic. So, every component of G′ is a strictly subcubic graph with
even size. Hence, there exists a locally irregular 4-edge-colouring of G′ according to
Theorem 6.3.1. We can extend it to a locally irregular 5-edge-colouring of G by assigning
colour 5 to all edges of H, which is locally irregular.
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Corollary 6.3.10. For every decomposable connected cubic graph G, we have χ’irr(G) ≤
5.

Proof. If G has odd size, then the proof can be conducted similarly as the proof of
Corollary 6.3.9. So assume G has even size. Then, according to Lemma 6.2.2, one can
find, in G, a path P with length 2 such that all components of G′ := G−E(P ) have even
size (just apply the lemma with any vertex). Again, all components of G′ are strictly
subcubic and of even size. So, similarly as in the proof of Corollary 6.3.9, we can deduce
a locally irregular 4-edge-colouring of G′ (from Theorem 6.3.1), which we can extend to
the edges of P using colour 5, hence to G.

We summarize Theorem 6.3.1 and Corollaries 6.3.9 and 6.3.10 in the following result,
which improves Corollary 6.2.5 for subcubic graphs.

Theorem 6.3.11. For every decomposable subcubic graph G, we have χ’irr(G) ≤ 5.

6.4 Locally irregular decompositions of subcubic gra-
phs with maximum average degree less than 12

5

In this section, we focus on decomposable graphs with maximum average degree less than
12
5
, where the maximum average degree of a given graph G is

mad(G) := max

{
2|E(H)|
|V (H)|

, H is a subgraph of G

}
.

More precisely, we again focus on connected subcubic graphs with even size, and prove
the following, which is our main result in this section.

Theorem 6.4.1. For every connected subcubic graph G with even size (and thus decom-
posable) and mad(G) < 12

5
, we have χ’irr(G) ≤ 3.

The upcoming folklore lemma gives a relationship between the maximum average de-
gree and the girth of a planar graph. We provide a short proof for the readers’ convenience.
Recall that the girth of a graph G is the length of a shortest cycle in G.

Lemma 6.4.2. For every planar graph G with girth at least g, we have mad(G) < 2g
g−2

.

Proof. Let G be a connected planar graph with girth g. Assume g is finite, as, otherwise,
G would be a tree and the result holds. Let H be a subgraph of G. Note that H is planar
and has girth at least g. Hence, g|F (H)| ≤ 2|E(H)|, where F (H) is the set of faces of H.
From Euler’s Formula, we obtain:

2g − g|V (H)|+ g|E(H)| = g|F (H)| ≤ 2|E(H)|.

Hence,
2g + (g − 2)|E(H)| ≤ g|V (H)|,
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which yields
2|E(H)|(2g + (g − 2)|E(H)|) ≤ 2|E(H)|g|V (H)|,

and eventually that
2|E(H)|
|V (H)|

≤ 2g|E(H)|
2g + (g − 2)|E(H)|

<
2g

g − 2

holds. Since this is true for every subgraph H of G, the claim is proved.

Hence, from Theorem 6.4.1 and Lemma 6.4.2, we deduce the following corollary.

Corollary 6.4.3. For every connected planar subcubic graph G with even size and girth
g(G) ≥ 12, we have χ’irr(G) ≤ 3.

Since edge removals cannot increase the maximum average degree of a graph, The-
orem 6.4.1 can be combined with Theorem 6.2.1, which yields the following (improving
Theorem 6.3.11 for some classes of decomposable subcubic graphs):

Theorem 6.4.4. For every decomposable subcubic graph G with mad(G) < 12
5
, we have

χ’irr(G) ≤ 4.

Before proceeding with the proof of Theorem 6.4.1, let us introduce a few definitions
and notations that we use throughout. A 3k-vertex is a 3-vertex adjacent to exactly k
2-vertices. A bad 2-vertex is a 2-vertex adjacent to another 2-vertex, while a good 2-vertex
is a 2-vertex adjacent to two 3-vertices. A light 3-vertex is a 3-vertex adjacent to a 1-
vertex, while a heavy 3-vertex is a 3-vertex adjacent to no 2−-vertex. A bad 3-vertex is
a 3-vertex adjacent to two bad 2-vertices. A vertex is called deficient if it is a 2-vertex
(bad or good) or a light 3-vertex.

Proof of Theorem 6.4.1. The proof is done by induction. Assuming there exists a min-
imum counterexample H to the claim, we prove that H cannot exist. To that aim, we
go through two steps. The first step consists in proving the non-existence of some set S
of subgraphs in H. Based on the resulting structural properties of H, we then, through
a second step, use the discharging technique in order to obtain a contradiction to the
fact that H has small maximum average degree. More precisely, during this second step,
we first define a weight function ω : V (H) → R with ω(v) := d(v) − 12

5
. An important

observation is that, by our hypothesis on the maximum average degree of H, the total
sum of weights must be strictly negative, since∑

v∈V (H)

ω(v) =
∑

v∈V (H)

d(v)− 12

5
· |V (H)|

and ∑
v∈V (H)

d(v) ≤ |V (H)| ·mad(H) <
12

5
· |V (H)|.

Next, we define discharging rules to redistribute weights among vertices, resulting, once
the discharging process is finished, in a new weight function ω∗. During the discharging
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process, the total sum of weights is kept fixed. Nevertheless, by the non-existence of S, it
will follow that ω∗(v) ≥ 0 for all v ∈ V (H). This will lead to the following contradiction

0 ≤
∑

v ∈V (H)

ω∗(v) =
∑

v ∈V (H)

ω(v) < 0,

contradicting the existence of H.

Structural properties

Let H be a counterexample to Theorem 6.4.1 minimizing |E(H)| + |V (H)|. So, in other
words, the graphH has even size, verifies mad(H) < 12

5
and χ’irr(H) > 3, and every proper

subgraph H ′ of H with even size verifies χ’irr(H
′) ≤ 3. In particular, if we consider a

subgraph H ′ := H − E for some subset E ⊆ E(H) such that all components of H ′ have
even size, we get χ’irr(H

′) ≤ 3.
We start off by showing that H, because it is a minimal counterexample to The-

orem 6.4.1, cannot contain certain structures.

Claim 6.4.5. The graph H satisfies the following:

1. H does not contain a non-pendent bridge.

2. H does not contain a 1-vertex adjacent to a 2-vertex.

3. H does not contain a 3-vertex adjacent to a 1-vertex and a 2−-vertex.

4. H does not contain a path uvw where u, v, w are 2-vertices.

5. H does not contain two adjacent light 3-vertices.

6. H does not contain a 3-vertex adjacent to three 2-vertices.

7. H does not contain a 3-vertex adjacent to a bad 2-vertex and to two deficient vertices.

8. H does not contain two adjacent 3-vertices, such that one of them is adjacent to two
bad 2-vertices, while the other one is adjacent to one deficient vertex.

Proof. We consider each of these structural properties separately.

1. It can easily be checked that the proof of Claim 6.3.2 can be mimicked in the current
context, and still applies, despite we here use three colours only.

2. This just follows from the fact that H has no non-pendent bridge (Claim 6.4.5.1).

3. Assume H has a 3-vertex v adjacent to a 1-vertex u1 and a 2−-vertex u2. Consider
H ′ := H − vu1 − vu2. We note that H ′ remains connected as otherwise vu2 would
be a non-pendent bridge in H, contradicting Claim 6.4.5.1. So H ′ has even size,
verifies mad(H ′) < 12

5
, and is smaller than H. It hence admits a locally irregular
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3-edge-colouring. Now, because dH′(v) = 1 and dH′(u2) ≤ 1, there are, by that
edge-colouring, at most two different colours assigned to the edges incident to v and
u2 in H ′. So we can freely extend this locally irregular 3-edge-colouring to H by
assigning to vu1 and vu2 one colour non-assigned to any edge incident to v or u2 in
H ′. This is a contradiction.

4. We consider H ′ := H − uv − vw. Note that H ′ remains connected as otherwise
all four edges incident to u, v, w would be bridges of H, contradicting Claim 6.4.5.1
or 6.4.5.2. Now, a locally irregular 3-edge-colouring of H ′ can be extended to H by
assigning a same colour to uv and vw that does not appear around u or w in H ′.
This is a contradiction.

5. Assume H has two adjacent light 3-vertices v1 and v2. Let u1 and u2, respectively,
denote the 1-vertex adjacent to v1 and to v2, respectively. Let further w denote
the third neighbour of v1 different from u1 and v2. By Claim 6.4.5.3, we know that
d(w) = 3. Consider H ′ := H−v1v2−v2u2. Again, H ′ is connected as otherwise v1v2

would be a non-pendent bridge in H, contradicting Claim 6.4.5.1. Thus, there exists
a locally irregular 3-edge-colouring of H ′. To see that it can be extended to v1v2 and
v2u2, hence to H, we just note that, by that edge-colouring, necessarily u1v1 and
v1w are assigned the same colour. This is because dH′(u1) = 1 and dH′(v1) = 2, and
a locally irregular graph cannot include a component isomorphic to K2. So, by the
edge-colouring of H ′, there are at most two different colours assigned to the edges
incident to v1 and v2. Therefore, a non-used colour can freely be assigned to v1v2

and v2u2, resulting in a locally irregular 3-edge-colouring of H, a contradiction.

6. Assume H has a 3-vertex v whose three neighbours u1, u2, u3 are 2-vertices. Let
further w1, w2, w3, respectively, denote the neighbour of u1, u2, u3, respectively, dif-
ferent from v. Consider H ′ := H − vu2 − vu3. First, we claim that H ′ remains
connected. Assume the contrary. Note that the component C containing v must
also contain one of u2 and u3 as otherwise vu1 would be a non-pendent bridge in H,
contradicting Claim 6.4.5.1. So C contains v and, say, u2, while it does not contain
u3. But then vu3 has to be a non-pendent bridge in H, contradicting Claim 6.4.5.1.
So H ′ is indeed connected.

Because H ′ has even size, verifies mad(H ′) < 12
5
, and is smaller than H, there is a

locally irregular 3-edge-colouring φ of H ′. We extend φ to H, in the following way.
First, if one of the three colours does not appear in the neighbourhood of u2, u3

and v, then we can freely assign that colour to both vu2 and vu3. So, without loss
of generality, we may assume φ(u1v) = 1, φ(u2w2) = 2 and φ(u3w3) = 3. Because
φ is locally irregular, necessarily we have φ(u1w1) = φ(u1v) = 1. In particular, u1

is a 2-vertex in the 1-subgraph induced by φ. So we can extend φ to H by just
assigning colour 1 to vu2 and vu3. This is correct as v then becomes a 3-vertex in
the 1-subgraph while its neighbours are 2−-vertices. Hence, we get a contradiction.

7. The proof of this claim is a bit tedious as it cannot be treated using a common
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argument for all cases. So, we basically have to consider all possible combinations
of deficient vertices. For the sake of legibility, we describe, for each of these cases,
the edges which should be removed from H (resulting in H ′), and how to extend a
locally irregular 3-edge-colouring φ of H ′ to H. In particular, checking whether H ′
remains connected can be done similarly as in the previous claim.

Let v be a 3-vertex of H, and u1 be a bad 2-vertex adjacent to v. We denote by u2

and u3 the two deficient neighbours of v different from u1. Recall that u2 and u3

cannot both be 2-vertices as otherwise v would contradict Claim 6.4.5.6. So, there
are, essentially, two cases to consider:

(a) Both u2 and u3 are light 3-vertices. Consider H ′ := H − vu2− vu3. If a colour
of φ is not assigned to any of the edges incident to u1, u2, u3 in H ′, then we
assign that colour to vu2 and vu3. Note further that, for each of u1, u2, u3, its
two incident edges in H ′ are assigned a same colour by φ (as otherwise it would
not be locally irregular). So we may assume that the two edges incident to u1

are assigned colour 1, the two edges incident to u2 are assigned colour 2, and
the two edges incident to u3 are assigned colour 3. Then φ can be extended to
H by assigning colour 1 to vu2 and vu3.

(b) The vertex u2 is a light 3-vertex while u3 is a 2-vertex. Consider H ′ := H −
vu1 − vu2. Again, if a colour by φ does not appear around v, u1 and u2, then
we assign that colour to the two removed edges. Otherwise, we again get the
property that, for each of u2, u3 and the neighbour u′1 of u1 different from v,
the two incident edges in H ′ are assigned the same colour. So, without loss of
generality, we may assume that the two edges incident to u′1 in H ′ are assigned
colour 1, the two edges incident to u2 are assigned colour 2, and the two edges
incident to u3 are assigned colour 3. Then φ can be extended to H ′ by assigning
colour 3 to vu1 and vu2.

8. In the previous case, we have highlighted the fact that, if uv is an edge of H such
that d(u) > 1 and v is deficient, then, in a locally irregular edge-colouring of a
subgraph H ′ of H not containing uv, the at most two edges incident to v in H ′ are
assigned the same colour.

Assume H has two adjacent 3-vertices v1 and v2 such that v1 has a deficient neigh-
bour u1, while v2 is adjacent to two bad 2-vertices u2 and u3. We further denote
by w the neighbour of v1 different from u1 and v2. Due to the fact that u2 and u3

are bad 2-vertices, the only possible triangle in H[u1v1, v1v2, v2u2, v2u3] is formed
by v2, u2, u3. If this triangle exists, then we consider H ′ := H − u3u2 − u2v2,
and deduce a locally irregular 3-edge-colouring of H ′, which can easily be exten-
ded to H. So assume that H[u1v1, v1v2, v2u2, v2u3] has not triangle, and consider
H ′ := H−u1v1−v1v2−v2u2−v2u3. First assume that H ′ remains connected. Then
H ′ has even size, satisfies mad(H) < 12

5
, and is smaller than H. It hence admits a

locally irregular 3-edge-colouring, which we extend to H as follows. The idea is to
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colour, if possible, u1v1 and v1v2 with a same colour, and v2u2 and v2u3 with a same
colour. Note that dH′(u1) ≤ 2 and dH′(v1) = 1; there is thus a non-used colour
α that can freely be assigned to u1v1 and v1v2. Similarly, there is also a non-used
colour α′ that can be assigned to v2u2 and v2u3. We now note that, even if α = α′,
we get a locally irregular 3-edge-colouring of H by assigning colour α to v1u1 and
v1v2, and colour α′ to v2u2 and v2u3.

Lastly, assume that H ′ is not connected. The rest of the proof now goes quite
similarly as the proof of Theorem 6.3.1. Using similar arguments, it can be checked
that H ′ has exactly two components C1 and C2. In particular, each of the Ci’s
contains two of v1, u1, u2, u3 (note that if dH(w) = 1, then the configuration can
easily be treated by removing the edges v2u2 and v2u3 of H). If C1 and C2 both
have even size, then induction can be invoked, locally irregular 3-edge-colourings of
C1 and C2 yield a locally irregular 3-edge-colouring of H ′, which can be extended to
H as previously. So assume that C1 and C2 both have odd size. It can be checked
that, under all those structural properties, H can be decomposed into two graphs H1

and H2, such that V (H1)∩V (H2) = {v1, v2}, and v1 and v2 are 2-vertices in, say, H1,
and 1-vertices in H2. Since v1v2 cannot be a non-pendent bridge by Claim 6.4.5.1,
the two cases to consider, in order to construct H1 and H2, are the following:

• C1 includes u1 and u2 (while C2 includes v1 and u3): we add u1v1, v1v2 and
v2u2 to C1 to obtain H1, and add v2u3 to C2 to obtain H2.

• C1 includes u1 and u3 (while C2 includes v1 and u2): we add u1v1, v1v2 and
v2u3 to C1 to obtain H1, and add v2u2 to C2 to obtain H2.

Then H1 and H2, which have even size, verify mad(H1),mad(H2) < 12
5
, and are

smaller than H, admit locally irregular 3-edge-colourings φ1 and φ2 (where φi is
that of Hi), respectively. Note that, in H1, if we have φ1(v1v2) = α1, then α1 is
also assigned to one of the two edges adjacent to v1v2 in H1. In other words, by φ1,
there are only two distinct colours α1, α2 assigned to the edges incident to v1 or v2.
Furthermore, we have, without loss of generality, that v1 is only incident to edges
assigned colour α1, while v2 is incident to one edge assigned colour α1, and one edge
assigned colour α2.

We would now like to permute some of the colours assigned by φ2, so that φ1 and φ2

yield a locally irregular 3-edge-colouring of H. Recall that V (H1)∩V (H2) = {v1, v2}
and that dH2(v1) = dH2(v2) = 1. We start by possibly permuting two colours
assigned by φ2, so that the edge incident to v2 in H2 is assigned a colour β different
from α1 and α2. We then finish the permutation process, by, if needed, permuting
the two colours by φ2 different from β, so that the edge incident to v1 in H2 is
assigned a colour different from α1. Clearly, three colours are sufficient in order to
obtain a correct permutation verifying all these constraints. So we end up with a
locally irregular 3-edge-colouring of H, a contradiction. here
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To lighten the upcoming discharging process, we will not work directly on H but
rather on a subgraph H− of H. More precisely, H− is the graph obtained from H by
removing all 1-vertices of H, i.e., H− := H − {v ∈ V (H), dH(v) = 1}. Clearly, H− is
connected and mad(H−) < 12

5
. Furthermore, from the structural properties ofH exhibited

in Claim 6.4.5, one can easily derive the following properties of H−.

Claim 6.4.6. According to Claim 6.4.5, the graph H− satisfies the following:

1. δ(H−) ≥ 2 (Claims 6.4.5.2 and 6.4.5.3).

2. H− does not contain a path uvw where u, v, w are 2-vertices (Claims 6.4.5.3, 6.4.5.4
and 6.4.5.5).

3. H− does not contain a 33-vertex adjacent to at least one bad 2-vertex (Claims 6.4.5.3,
6.4.5.5, 6.4.5.6 and 6.4.5.7).

4. A bad 2-vertex of H− is also a bad 2-vertex of H (Claims 6.4.5.3 and 6.4.5.5).

Discharging procedure

To each vertex v of H−, we assign an initial charge ω(v) := dH−(v)− 12
5
. We then carry

out the discharging procedure in two steps:

Step 1. We here just apply, in H−, the following rule:

(R0) Every heavy 3-vertex gives 1
5
to each adjacent bad 3-vertex.

Once Step 1 is finished, a new weight function ω′ results. We proceed then with Step
2:

Step 2. We here apply, in H−, the following two rules:

(R1) Every 3-vertex gives 2
5
to each adjacent bad 2-vertex.

(R2) Every 3-vertex gives 1
5
to each adjacent good 2-vertex.

Recall that we denote by ω∗ the resulting weight function. Let v ∈ V (H−) be a
k-vertex. By Claim 6.4.6.1, we have k ≥ 2. Now, consider the following cases:

• k = 2. Observe that ω(v) = −2
5
. Suppose v is a bad 2-vertex. By Claim 6.4.6.2, the

vertex v is adjacent to a 3-vertex. Hence, by (R1), we have ω∗(v) = −2
5

+ 2
5

= 0. If
v is a good 2-vertex, then ω∗(v) = −2

5
+ 2× 1

5
= 0 by (R2).

• k = 3. Observe that ω(v) = 3
5
. To simplify the analysis, we distinguish two cases:
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– Suppose first that v is adjacent to a bad 2-vertex u1. By Claim 6.4.6.3, all
neighbours of v cannot be 2-vertices, so v is adjacent to at most two 2-vertices
(including u1). If u1 is the only 2-vertex neighbouring v, then, by (R1), we have
ω∗(v) ≥ 3

5
−1× 2

5
= 1

5
> 0. Now assume v is adjacent to a second 2-vertex u2. If

u2 is a good 2-vertex, then, by (R1) and (R2), we have ω∗(v) ≥ 3
5
−1× 2

5
−1× 1

5
=

0. Now, if u2 is a bad 2-vertex, then the third neighbour (different from u1

and u2) of v is a heavy 3-vertex, as otherwise H would contain, according to
Claim 6.4.6.4, the configuration described in Claim 6.4.5.8. So, by (R0), we
have ω′(v) = 4

5
. Hence, by (R1), we get ω∗(v) = 4

5
− 2× 2

5
= 0.

– Finally, if v is not adjacent to a bad 2-vertex, then ω∗(v) ≥ 3
5
− 3 × 1

5
= 0 by

(R0) and (R2).

Therefore, H− cannot exist and consequently H does not exist either. This completes
the proof.

6.5 K2-irregular decompositions of subcubic graphs
In this section, and in Section 6.6 as well, we focus on two relaxations of Conjecture 6.1.1
considered by Bensmail and Stevens [BS16]. In particular, we completely verify these two
relaxations for subcubic graphs.

The idea is to study how easier it is, for proving Conjecture 6.1.1, to allow any locally
irregular decomposition to also include additional regular components. In this section,
we focus on K2-irregular decompositions (or, analogously, K2-irregular edge-colourings),
which are decompositions in which every part induces components that are either loc-
ally irregular or isomorphic to K2. In this definition, it should be understood that, in
every subgraph induced by a part of the decomposition, there may be locally irregular
components, and some components isomorphic to K2 as well. For a given graph G, we
denote by χ’K2-irr(G) the smallest number of colours in a K2-irregular edge-colouring of
G. Note that χ’K2-irr(G) is defined for every graph G as every proper edge-colouring is
K2-irregular.

Clearly, we have χ’K2-irr(G) ≤ χ’irr(G) for every decomposable graph G. Hence, Con-
jecture 6.1.1, if true, would imply that χ’K2-irr(G) ≤ 3 holds for every graph G, unless G
is exceptional. One may thus wonder whether even χ’K2-irr(G) ≤ 2 is true for every graph
G. This is actually not the case, as, for example, χ’K2-irr(K4) = 3. So, in the context of
K2-irregular edge-colourings, the conjecture that is analogous to Conjecture 6.1.1 should
be the next one, which stands as a relaxation of Conjecture 6.1.1.

Conjecture 6.5.1. For every graph G, we have χ’K2-irr(G) ≤ 3.

In the following result, we show that Conjecture 6.5.1 admits an easy proof in the
context of subcubic graphs. Recall that this result remains best possible even in this
context because of the complete graph K4.

Theorem 6.5.2. For every subcubic graph G, we have χ’K2-irr(G) ≤ 3.
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Proof. We prove the claim by induction on |V (G)| + |E(G)|. As the claim can easily be
verified whenever G is small, we proceed with the general case. Consider any vertex v of
G and denote by u1, . . . , uk its neighbours, where k ≤ 3. Set G′ := G − {vu1, . . . , vuk}.
Since G′ is smaller than G, there exists a K2-irregular 3-edge-colouring of G′. Since
dG′(u1), . . . , dG′(uk) ≤ 2, there are, by the edge-colouring, at most two different colours
assigned to the edges incident to each ui in G′. For each vui, let αi denote a colour not
assigned to an edge incident to ui in G′.

Extending the 3-edge-colouring of G′ to a K2-irregular 3-edge-colouring of G can then
be done by assigning, for every i ∈ {1, . . . , k}, colour αi to vui, for the following reasons.
First of all, because, for each ui, edge vui has been assigned a colour not incident to ui
in G′, no conflict involving two vertices of G′ may arise. This is because the degrees of
the ui’s in the 1-, 2-, and 3-subgraphs of G′ that contain them are not altered by the
extension. Then, since each ui is a 1-vertex in the αi-subgraph induced by the resulting
edge-colouring of G, it cannot be that v and ui are involved in a conflict: the only situation
where v and ui have the same degree in the αi-subgraph is when this degree is exactly 1,
in which case v and ui belong to a component isomorphic to K2 in the αi-subgraph. Thus,
we necessarily end up with a K2-irregular 3-edge-colouring of G.

6.6 Regular-irregular decompositions of subcubic gra-
phs

In this section, we focus on regular-irregular decompositions (or, analogously, regular-
irregular edge-colourings), which are more general than K2-irregular decompositions con-
sidered in Section 6.5. Here, we allow every subgraph induced by a part of a decom-
position to have components being either locally irregular or regular. So, K2-irregular
decompositions are nothing but regular-irregular decompositions where one requires all
induced regular subgraphs to be 1-regular. For a given graph G, we denote by χ’reg-irr(G)
the smallest number of colours in a regular-irregular edge-colouring of G. Since we have
χ’reg-irr(G) ≤ χ’K2-irr(G) for every graph G, again every graph is decomposable in that
manner. Note further that if G is regular, then χ’reg-irr(G) = 1.

Regular-irregular decompositions were considered by Bensmail and Stevens [BS16],
who conjectured the following.

Conjecture 6.6.1 (Bensmail, Stevens [BS16]). For every graph G, we have χ’reg-irr(G) ≤
2.

Conjecture 6.6.1 is known to hold for a few classes of graphs, including trees and some
other classes of bipartite graphs [BS16]. We here give further evidence to the conjecture
by showing it to hold for subcubic graphs as well.

Theorem 6.6.2. For every subcubic graph G, we have χ’reg-irr(G) ≤ 2.

Proof. The proof consists in edge-colouring with colours red and green two edge-disjoint
subgraphs C and F of G, in the following way:
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6. Locally irregular decompositions of subcubic graphs

1. We consider, as C, a collection of vertex-disjoint cycles of G, and assign colour, say,
red, to all edges of C.

2. Set F := G−E(C). Then, we edge-colour F in a regular-irregular way with colours
red and green, in such a way that all edges in F being adjacent, in G, to edges of C
are assigned colour green.

If F can be edge-coloured as described, then we note that the components of the red
subgraph induced by the edge-colouring of C are disjoint, in G, from the components of
the red subgraph induced by the edge-colouring of F . So the 2-edge-colourings of C and
F yield a regular-irregular 2-edge-colouring of G.

Start from C being empty, and, until this procedure cannot be repeated, pick any cycle
C of G−E(C) and move the edges of C to C. Once this process stops, the following holds,
basically because G is subcubic.

Claim 6.6.3. The subgraph F := G−E(C) is a forest. Furthermore, for every vertex v of
G having incident edges in C and incident edges in F , we have dC(v) = 2 and dF (v) = 1.

Assign colour red to all edges in C. When referring to a leaf edge of F , we mean an
edge that is incident to a leaf of F . We note that there are, in F , some leaves that are
special in the sense that they have both incident edges in C (two edges) and in F (one
leaf edge). We refer to these leaves as frontier leaves, and derive this concept to frontier
leaf edges, which are leaf edges of F whose at least one end is a frontier leaf. Note that a
component of F can be isomorphic to K2, in which case this component is a frontier leaf
edge which potentially joins two frontier leaves.

Following the explanations above, we assign colour green to all frontier leaf edges of
F . Note that F might have non-frontier leaf edges. We assign colour green to these edges
as well. It now remains to show that the non-coloured (i.e., non-leaf) edges of F can be
assigned colours red and green, without modifying the pre-colouring we have described,
in a regular-irregular way. In other words, we now want to prove the following:

Claim 6.6.4. Every subcubic tree T admits a regular-irregular 2-edge-colouring, such that
all leaf edges are assigned colour 1.

Proof. All along this proof, we see T as a tree whose leaf edges have been pre-assigned
colour 1, and we extend this pre-colouring until a regular-irregular 2-edge-colouring is
attained.

The proof is by induction on the size of T . As base cases, we note that the claim is
true whenever |E(T )| ≤ 3. Indeed, if T has diameter at most 2, then T is a star on at
most three edges being all assigned colour 1. The 1-subgraph is then exactly T , which is
either regular (one edge) or locally irregular (two or three edges). On the other hand, if T
has diameter 3, then T is the path of length 3 whose two end-edges are assigned colour 1.
We here get a regular-irregular 2-edge-colouring (with the desired additional property) of
T by assigning colour 2 to the middle-edge.
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Assume thus that the claim holds whenever |E(T )| is smaller than some value, and
consider the next value of |E(T )|. To begin with, if ∆(T ) ≤ 2, then T is a path whose
two end-edges are assigned colour 1. If the length of T is odd, then we obtain the desired
regular-irregular 2-edge-colouring of T by assigning colours 1 and 2 alternately, from one
end-edge to the other. When the length of T is even, the claimed edge-colouring can
be obtained by applying this colouring scheme starting from the second edge of T . In
particular, the first two edges of T get assigned colour 1 and thus induce a path of length 2,
which is locally irregular, in the 1-subgraph.

We may thus assume that ∆(T ) = 3 since T is subcubic. By a pendent path of T ,
we refer to a maximal path u1u2 . . . uk of T such that u1 is a leaf, all internal vertices
u2, . . . , uk−1 are 2-vertices, and uk is a 3-vertex. Since T has 3-vertices, there are at
least three pendent paths in T . If T has a pendent path P with length at least 3, then
the desired regular-irregular 2-edge-colouring of T can be obtained in the following way.
Let P := u1 . . . uk where d(u1) = 1 and d(uk) = 3. Due to the length of P , we have
k ≥ 4. We consider T ′ := T − u1u2 − u2u3 and assign colour 1 to u3u4 in T ′. Since T ′
is subcubic, smaller than T , and has all its leaf edges assigned colour 1, there is, by the
induction hypothesis, a regular-irregular 2-edge-colouring of T ′ which is as claimed. This
edge-colouring can be extended to the claimed regular-irregular 2-edge-colouring of T by
assigning colour 2 to u2u3 and colour 1 to u1u2.

We may thus assume that all pendent paths of T have length 1 or 2. If T has only one
vertex v with d(v) = 3, then T is a subdivided claw all of whose leaf edges are assigned
colour 1. We here extend the pre-colouring by just assigning colour 2 to all non-coloured
edges of T . Note that these edges are edges that are incident to v and belong to pendent
paths with length 2. The resulting edge-colouring is clearly regular-irregular since the 1-
and 2-subgraphs include stars only.

Now assume that T has at least two 3-vertices, and let r denote any of them. We
designate r as the root of T , which defines, in the usual way, a (virtual) orientation of T
from its root to its leaves. Following that orientation, we say that a vertex v 6= r of T is a
multifather if v has exactly two children (and is hence a 3-vertex as v also has a father).
A multifather of T is said last if all of its descendants are 2−-vertices. In other words,
a last multifather is a 3-vertex with two pendent paths attached (which are of length 1
or 2). Furthermore, a last multifather is said deepest if it is at maximum distance from r
in T .

We first claim that if T has a deepest last multifather v such that at least one of
its two attached pendent paths P1 and P2 has length 2, then we can deduce the desired
regular-irregular 2-edge-colouring of T . This follows from the following arguments. First
assume that P1 := u1u2v and P2 := u′1u

′
2v have length 2. In that case, we consider

T ′ := T −u1u2−u2v−u′1u′2−u′2v. Assuming f(v) denotes the father of v in T , we assign
colour 1 to vf(v) in T ′. Since T ′ is subcubic, smaller than T , and has all of its leaf edges
assigned colour 1, we can deduce a regular-irregular 2-edge-colouring of T ′ which is as
required. This edge-colouring can be extended to T by assigning colour 2 to vu2 and vu′2
(and still assigning colour 1 to u1u2 and u′1u′2). Now assume that P2 := u′1v has length 1
(while P1 is as previously). We here consider T ′ := T − u1u2 − u2v − u′1v in which vf(v)
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6. Locally irregular decompositions of subcubic graphs

is assigned colour 1, and a regular-irregular 2-edge-colouring of T ′ (with the additional
property). We now extend that edge-colouring to T . If, by assigning colour 2 to u2v (and
still assigning colour 1 to u1u2 and u′1v), we do not get a regular-irregular edge-colouring
of T , that is only because, in the resulting 1-subgraph, f(v) and v are 2-vertices. In
that situation, the desired regular-irregular 2-edge-colouring of T is obtained by assigning
colour 1 to u2v.

Hence, we may assume that P1 := u1v and P2 := u′1v have length 1. Note that if
f(v) = r, then, by definition of a deepest last multifather, every vertex of T is at distance
at most 2 from r. In that situation, again, by assigning colour 2 to all non-leaf edges
of T , we directly get a regular-irregular 2-edge-colouring which is as desired. So assume
f(v) 6= r, meaning that f(v) has a father f(f(v)) in T . In case f(v) is a 2-vertex, i.e., is
not a multifather, we consider T ′ := T−vu1−vu′1−vf(v), in which the edge f(v)f(f(v)) is
assigned colour 1. Here, a regular-irregular 2-edge-colouring of T is obtained by assigning
colour 2 to vf(v) and colour 1 to vu1 and vu′1.

When d(f(v)) = 3, there are, according to all assumptions we have made so far, three
possibilities concerning the child v′ of f(v) different from v: either 1) v′ is a leaf, 2) v′ has
one child w1 being a leaf, or 3) v′ is a deepest last multifather with two children w1 and
w′1 that are leaves.

In case 1), we consider T ′ := T − vu1 − vu′1 − vf(v). According to the induction
hypothesis, T ′ admits a regular-irregular 2-edge-colouring which is as desired. Recall that
v′f(v) is assigned colour 1 by that colouring. On the one hand, if f(v)f(f(v)) is assigned
colour 1, then we can extend the colouring to T by assigning colour 2 to vf(v) and colour 1
to vu1 and vu′1. On the second hand, if f(v)f(f(v)) is assigned colour 2, then we get a
correct extension by assigning colour 1 to all of vf(v), vu1 and vu′1.

In case 2), we consider T ′ := T − vu1 − vu′1 and assign colour 1 to the leaf edge
vf(v) of T ′. Again, according to the induction hypothesis, we can find a regular-irregular
2-edge-colouring of T ′ which is as desired. Note that if f(v) is not a 3-vertex in the 1-
subgraph induced by that edge-colouring, then we can extend the edge-colouring to T by
assigning colour 1 to both vu1 and vu′1. So we may assume that all three edges incident
to f(v) in T ′ are assigned colour 1. In that case, by assigning colour 1 to vu1 and vu′1,
and modifying the colour of vf(v) and v′f(v) to 2, we get a 2-edge-colouring of T which
is regular-irregular and as desired. In particular, the component of the 1-subgraph that
contains f(v) remains locally irregular, or becomes a K2.

Finally, in case 3), we again consider T ′ := T − vu1 − vu′1 in which the leaf edge
vf(v) is assigned colour 1. Note that f(v) cannot be a 3-vertex in the 1-subgraph induced
by any given regular-irregular 2-edge-colouring of T ′ since otherwise f(v) and v′ would
be adjacent 3-vertices in the 1-subgraph. So, necessarily, f(v) is a 2−-vertex in the 1-
subgraph, and the edge-colouring can be extended to T by assigning colour 1 to vu1 and
vu′1.

Thus, a regular-irregular 2-edge-colouring of T with the desired additional property
always exists. This concludes the proof.

Following Claim 6.6.4, there is thus a regular-irregular edge-colouring of F with colours
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red and green, such that all frontier leaf edges are green. Together with the edges of C
being assigned colour red, this yields the claimed regular-irregular 2-edge-colouring of G,
hence our conclusion.

6.7 Conclusion
In this work, we have studied locally irregular decompositions in subcubic graphs. Al-
though we did not manage to prove Conjecture 6.1.1 for decomposable subcubic graphs,
we have showed that they decompose into at most 5 locally irregular subgraphs, which
improves by 2 the upper bound given by Corollary 6.2.5.

One first direction for future work could be to try pushing this bound further down.
As pointed out in the introduction, our bound has been recently improved down to 4 by
Lužar, Przybyło and Soták [LPS16]. The next step would thus be to completely prove
Conjecture 6.1.1 for decomposable subcubic graphs, or at least subclasses of decomposable
subcubic graphs. We actually made a first step towards this direction when we considered
subcubic graphs with bounded maximum average degree, and proved the conjecture for
some of them. As examples, let us mention that the cases of subcubic bipartite graphs
and subcubic planar graphs sound quite appealing to us. It might be interesting studying
how locally irregular decompositions behave in these graphs.

Another direction for future work could be to consider locally irregular decompositions
of graphs with larger, but fixed, maximum degree. Recall that we have provided an upper
bound on their irregular chromatic index in Corollary 6.2.5. As a first step, it could be
interesting to investigate how lower this bound can be pushed down for decomposable
graphs with maximum degree 4. More generally, it could also be interesting to improve
the method in the proof of Observation 6.2.4, in order to obtain better bounds on the
irregular chromatic index of bounded-degree graphs.
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Chapter 7

A general decomposition theory for
1-2-3 Conjecture and locally irregular
decompositions

In this chapter, we propose an approach that generalizes the 1-2-3 Conjecture and locally
irregular decompositions, involving coloured weights and sums. As a consequence, we get
another interpretation of several existing results related to the 1-2-3 Conjecture. We also
come up with new related conjectures, to which we give some support.

7.1 Introduction

In previous chapters, we explored several variants of nsd edge-weightings and locally
irregular decompositions, and presented the links between these two notions. In this
chapter, we aim at introducing a general decompositional theory enclosing neighbour-sum-
distinguishing edge-weightings and locally irregular decompositions. This theory is based
on the following observations. A locally irregular `-edge-colouring of a graph G is, put
differently, a decomposition of G into graphs G1, . . . , G` verifying χe

Σ(G1), . . . , χe
Σ(G`) = 1.

The other way around, a neighbour-sum-distinguishing k-edge-weighting of G can be seen
as a 1-edge-colouring where the only colour class induces a graph, that is precisely G,
whose value of χe

Σ is k.
These observations led us to combine the notions of neighbour-sum-distinguishing

edge-weightings and locally irregular edge-colourings, in the following way. Let `, k be
two positive integers, and G be a graph. To each edge e of G, we assign, via a colouring
ω a pair (α, β), where α ∈ {1, . . . , `} and β ∈ {1, . . . , k}, which can be regarded as a
coloured weight (with value β and colour α). Now, for every vertex v of G, and every
colour α ∈ {1, . . . , `}, one can compute the weighted α-degree σα(v), being the sum of
weights with colour α incident to v. So, with every vertex v is associated a palette
(σ1(v), . . . , σ`(v)) of ` coloured weighted degrees.

When working on variants of the 1-2-3 Conjecture, the intent is to design edge-
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Figure 7.1: Three (2, 2)-colourings of K4.

weightings ω that allow to distinguish adjacent vertices, according to some distinction
condition. When dealing with the notions introduced in the previous paragraph, there
are many ways for asking for distinction, as several coloured sums are available; in this
chapter, we will focus on the following three distinction variants, which sound the most
natural to us:

• Weak distinction: two adjacent vertices u and v of G are considered distinguished
if there is an α ∈ {1, . . . , `} such that σα(u) 6= σα(v).

• Standard distinction: two adjacent vertices u and v ofG are considered distinguished
if, assuming ω(uv) = (α, β), we have σα(u) 6= σα(v).

• Strong distinction: two adjacent vertices u and v of G are considered distinguished
if, for every α ∈ {1, . . . , `}, we have σα(u) = σα(v) = 0, or σα(u) 6= σα(v).

Assuming ω verifies one of the weak, standard or strong distinction condition for every
pair of adjacent vertices, we say that ω is a weak, standard or strong (`, k)-edge-colouring,
and that G is weakly, standardly or strongly (`, k)-coloured. We also say that G is weakly,
standardly or strongly (`, k)-colourable, if there are `′, k′ ≥ 1 with `′ ≤ ` and k′ ≤ k such
that G can be weakly, standardly or strongly (`′, k′)-coloured, respectively.

We provide, in Figure 7.1, an illustration of these concepts on K4, the complete graph
on four vertices, where the two colours are represented by solid and dashed edges. By the
“incident solid sum” of a vertex, we here mean the sum of weights assigned to its incident
solid edges. It can be checked that, in Figure 7.1.(a), the depicted (2, 2)-colouring is a
weak colouring. It is however not a standard (2, 2)-colouring as vertices c and d are joined
by a solid edge but their incident solid sum equals 3. The colouring in Figure 7.1.(b) is
a standard (2, 2)-colouring which is not a strong colouring, in particular because vertices
a and c both have incident solid sum 2. The colouring in Figure 7.1.(c) is a strong
(2, 2)-colouring.

This chapter is organized as follows. As already mentioned, the notions of weak,
standard and strong (`, k)-colourings can be employed to generalize neighbour-sum-distin-
guishing edge-weightings and locally irregular edge-colourings. In Section 7.2, we explore
these connections. In particular, we recall known results and translate them in our new
setting.
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Playing with the parameters ` and k and the distinction conditions, we also come
up with new problems, some of which we believe are of independent interest. In partic-
ular, we wonder whether almost all graphs can be weakly, standardly, or even strongly
(2, 2)-coloured. If true, this would imply side decomposition results related to the 1-
2-3 Conjecture. The strong, standard and weak versions of that question are formally
introduced in Section 7.3. They are then studied in Sections 7.4, 7.5 and 7.6, respectively.

7.2 Previous results and connections to (`, k)-colourings
We start, in Section 7.2.1, by making first observations and remarks on weak, standard and
strong colourings. We then survey, in Section 7.2.2, some of the results from literature that
are directly connected to these notions. More precisely, we explain which notions in the
literature are encompassed by weak, standard and strong colourings, and, by rephrasing
known results under that new terminology, we exhibit first results.

7.2.1 Early observations

First of all, we note that, according to the definitions, every result holding for some version
of (`, k)-colourings also holds for the weaker versions. This is why, throughout Sections 7.4
to 7.6, we start by considering strong colourings, then standard colourings, and, finally,
weak colourings.

Observation 7.2.1. A strong (`, k)-colouring is also a standard (`, k)-colouring. Ana-
logously, a standard (`, k)-colouring is also a weak (`, k)-colouring.

In general, though, it can be observed that the converse direction is not true, i.e.,
that a given (`, k)-colouring does not necessarily fulfil stronger distinction conditions.
A good illustration for that is the fact that K3 can be weakly (2, 2)-coloured but not
standardly (2, 2)-coloured. There are situations, though, where all distinction conditions
behave similarly. We state a few of them below.

First of all, we recall that, for some values of ` and k, some versions of (`, k)-colourings
are equivalent to other kinds of distinguishing colourings and weightings. Most of these
observations are straightforward, and thus do not need a formal proof. In particular, it
can easily be checked that some of these results do not hold for stronger or weaker versions
of our colouring variants.

Observation 7.2.2. Weak, standard and strong (1, k)-colourings and neighbour-sum-
distinguishing k-edge-weightings are equivalent notions.

Observation 7.2.3. Standard (k, 1)-colourings and locally irregular k-edge-colourings are
equivalent notions.

Let G be a graph, and ω be an edge-weighting of G. For each vertex v of G, one can
compute its multiset µ(v) of incident weights induced by ω. We say that ω is neighbour-
multiset-distinguishing if no two adjacent vertices of G get the same multiset of incident
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weights. Note that having σ(u) 6= σ(v) for an edge uv of G implies that µ(u) 6= µ(v) (but
the converse is not necessarily true). For this reason, neighbour-multiset-distinguishing
edge-weightings have been studied as a weaker form of neighbour-sum-distinguishing edge-
weightings.

The point for mentioning neighbour-multiset-distinguishing edge-weightings is that
they relate to our notion of weak colourings.

Observation 7.2.4. Weak (k, 1)-colourings and neighbour-multiset-distinguishing k-edge-
weightings are equivalent notions.

In Observation 7.2.2, we noticed that, for (1, k)-colourings, all three distinction con-
ditions are equivalent. In the following result, we point out another context where the
three colouring variants coincide.

Observation 7.2.5. In regular graphs, weak, standard and strong (2, 1)-colourings are
equivalent notions.

7.2.2 Previous results

In this section, we restate, in our terminology, several results from the literature on
distinguishing weightings and colourings to derive the existence of particular (1, k)- or
(`, 1)-colourings. In other words, we here point out how our colouring concepts encapsulate
existing distinguishing weightings and colourings.

This section is not intended to be a full survey on variants of the 1-2-3 Conjecture.
Hence, we intentionally focus on those existing results that are closely related to our
investigations; for more details, please refer to the survey [Sea12] by Seamone.

Neighbour-sum-distinguishing edge-weightings

Recall that, according to Observation 7.2.2, being strongly (1, k)-colourable is equivalent
to being neighbour-sum-distinguishing k-edge-weightable. Thus, all general constant up-
per bounds on χe

Σ yield results on strong colourability (hence on the weaker variants as
well, recall Observation 7.2.1).

In the context of neighbour-sum-distinguishing edge-weightings, the leading conjec-
ture is the 1-2-3 Conjecture. If true, that conjecture would imply that every nice graph
is strongly (1, 3)-colourable. Recall that nice graphs are exactly those graphs with no
isolated edges.

Conjecture 7.2.6. Every nice graph is strongly (1, 3)-colourable.

To date, the best result towards the 1-2-3 Conjecture was given by Kalkowski, Karoński
and Pfender [KKP10], who proved that χe

Σ(G) ≤ 5 holds for every nice graph G. As said
above, this result can be stated as follows, using our terminology.

Theorem 7.2.7. Every nice graph is strongly (1, 5)-colourable.
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The 1-2-3 Conjecture was shown to hold for several common classes of nice graphs, such
as complete graphs and 3-colourable graphs. There exist graphs G verifying χe

Σ(G) = 3,
such as complete graphs of order at least 3. One natural question is thus whether such
graphs are easy to characterize. Dudek and Wajc settled the question in the negat-
ive [DW11], by showing that determining the exact value of χe

Σ(G) is an NP-complete
problem. Later on, Ahadi, Dehghan and Sadeghi [DSA13] proved that this remains true
when restricted to regular (cubic) graphs. This result is of prime interest, as all distin-
guishing weighting and colouring notions considered in this chapter tend to be equivalent
when 1) only two weights or colours are considered, and 2) the graph is regular (recall
Observation 7.2.5). This result, by itself, directly establishes the general hardness of weak,
standard and strong colourings.

It took some time to settle this complexity question for bipartite graphs. The full
characterization of connected bipartite graphsG with χe

Σ(G) = 3 was given by Thomassen,
Wu and Zhang [TWZ16], who proved that they are exactly the odd multicacti. These
graphs can be constructed as follows. Start from m ≥ 1 cycles C1, . . . , Cm whose lengths
are at least 6 and congruent to 2 modulo 4, and colour the edges of the Ci’s using colours
red and green alternately. Then, an odd multicactus is any connected graph obtained
from the Ci’s via repeated applications of the following operation: pick two components
G1 and G2, and identify a green edge of G1 with a green edge of G2. Said differently, an
odd multicactus is obtained by identifying edges of particular cycles in a tree-like fashion.
In particular, every cycle with length congruent to 2 modulo 4 is an odd multicactus.

Theorem 7.2.8 (Thomassen, Wu, Zhang [TWZ16]). A connected bipartite graph G veri-
fies χe

Σ(G) = 3 if and only if G is an odd multicactus.

Locally irregular edge-colourings

By Observation 7.2.3, we get that locally irregular k-edge-colourings are precisely standard
(k, 1)-colourings. We thus survey some of the research on locally irregular edge-colourings,
as they transfer to standard (k, 1)-colourings.

Baudon, Bensmail, Przybyło and Woźniak conjectured that every decomposable graph
G should decompose into at most three locally irregular graphs, i.e., χ’irr(G) ≤ 3. Due
to Observation 7.2.3, this conjecture can be restated as follows:

Conjecture 7.2.9. Every decomposable graph is standardly (3, 1)-colourable.

The best known bound on χ’irr is 220 due to Lužar, Przybyło and Soták [LPS16]. We
can thus state the following:

Theorem 7.2.10. Every decomposable graph is standardly (220, 1)-colourable.

Baudon, Bensmail, Przybyło and Woźniak verified Conjecture 7.2.9 for several de-
composable graph classes [BBPW15], including complete graphs, some bipartite graphs,
some Cartesian products, and regular graphs with degree at least 107. Later on, Przybyło [Prz15]
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verified the conjecture for graphs with minimum degree at least 1010. The complexity as-
pects were considered by Baudon, Bensmail and Sopena [BBS15], who proved that, for a
given graph G, deciding whether χ′irr(G) = 2 is NP-complete in general, while determining
χ′irr(G) can be done in polynomial time when G is a tree.

Neighbour-multiset-distinguishing edge-weightings

As mentioned in the Chapter 1, all neighbour-sum-distinguishing edge-weightings are
neighbour-multiset-distinguishing, but the converse is not always true. The connection
between these two notions was first considered by Karoński, Łuczak and Thomason in
the paper introducing the 1-2-3 Conjecture [KLT04]. The first formal study of neigh-
bour-multiset-distinguishing edge-weightings may be attributed to Addario-Berry, Aldred,
Dalal and Reed, who, later on, gave improved results towards a “multiset version” of the
1-2-3 Conjecture [ABADR05]. In our terminology, this conjecture reads as follows:

Conjecture 7.2.11. Every nice graph is weakly (3, 1)-colourable.

So far, the best result towards Conjecture 7.2.11 is hence due to Addario-Berry, Aldred,
Dalal and Reed, who proved that all nice graphs admit neighbour-multiset-distinguishing
4-edge-weightings [ABADR05].

Theorem 7.2.12. Every nice graph is weakly (4, 1)-colourable.

All graph classes verifying the 1-2-3 Conjecture also verify Conjecture 7.2.11. Ad-
ditionally, the latter conjecture was also verified for graphs with minimum degree at
least 1000, see [ABADR05].

7.3 New problems
As seen in Section 7.2, some of the (1, k)-colouring and (`, 1)-colouring variants correspond
to distinguishing weighting and colouring notions already considered in the literature. In
particular, for such values of ` and k, there is still some gap between the corresponding
conjectures and the best results we know to date. One way to get some sort of side pro-
gress, could be to prove the existence of (`, k)-colourings (for some distinction condition)
where `+ k or max{`, k} is as small as possible.

In particular, the main problem we consider in the rest of this paper, which corresponds
to minimizing max{`, k}, and to which we could not find any obvious counterexample,
reads as follows. By a nicer graph, we mean a graph with no isolated edges and triangles.

Conjecture 7.3.1. Every nicer graph is strongly (2, 2)-colourable.

The main reason for suspecting that K2 and K3 might be the only connected graphs
admitting no strong (2, 2)-colourings is that they are the only connected exceptional
graphs (recall the exact characterization in Subsection 7.2.2) admitting no neighbour-
sum-distinguishing 2-edge-weightings.
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(a) An exception. (b) Its decomposition into extended
triangles (gray) and maximal paths
(black).

Figure 7.2: Decomposing an exception as described in the proof of Observation 7.3.2.

Observation 7.3.2. Every connected exception different from K2 and K3 satisfies Con-
jecture 7.3.1.

Proof. Let G be a connected exception different from K2 and K3. We consider several
cases corresponding to the three families of connected exceptions given by the definition:

• If G is an odd-length path, then G is a connected bipartite graph different from an
odd multicactus, thus verifies χe

Σ(G) ≤ 2 according to Theorem 7.2.8, and hence
admits strong (1, 2)-colourings.

• If G is an odd-length cycle with length at least 5, then G can be decomposed into
two paths Pr, Pb with length at least 2. In particular, the end-vertices of Pr (and
similarly Pb) are not adjacent in G, and we have χe

Σ(Pr), χ
e
Σ(Pb) ≤ 2. By considering

a strong (1, 2)-colouring of Pr (with red weights) and a strong (1, 2)-colouring of Pb
(with blue weights), we eventually get a strong (2, 2)-colouring of G.

• Finally assume that G ∈ T \ {K3}. By contracting the triangles (there is at least
one such) of G to vertices, we obtain a tree R(G) with maximum degree 3, whose
some nodes (triangle nodes) correspond to triangles of G, while some nodes (normal
nodes) correspond to real vertices. Furthermore, by definition, any path of R(G)
joining two triangle nodes has odd length, and any path joining a triangle node
and a pendant normal node has even length. We can consider G as a collection of
triangles with at most three pendant edges attached (extended triangles), and paths
with one or two ends attached to a triangle (maximal paths) (see Figure 7.2 for an
example). The pendant edges attached to the extended triangles, as well as the
end-edges incident to triangles of the maximal paths, are called attachment edges.
According to these definitions, G can be constructed from extended triangles and
maximal paths by glueing their attachment edges. In particular, every attachment
edge belongs to one extended triangle and one maximal path.

Necessarily R(G) has a degree-1 node r, being either a triangle node (pendant
triangle in G) or a normal node (pendant vertex in G). Consider the (virtual)
orientation of the edges of R(G) from r towards the leaves. We construct a strong
(2, 2)-colouring (assigning weights coloured red and blue) iteratively, by extending a
colouring along extended triangles and maximal paths following the ordering given
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by the orientation of the attachment edges. Since R(G) is a tree, note that once
an attachment edge is coloured, this provides a pre-colouring of the next extended
triangle or maximal path to be coloured.

We start constructing the colouring from r. In G, node r corresponds either to an
end-vertex of a maximal path P (normal node), or to a triangle T (triangle node).
In the first case, let P := v1 . . . v2k; then we just assign red weights 1, 2, 2, 1, 1, . . .
along P . In the second case, let T := v1v2v3v1, and let v′1 denote, without loss of
generality, the neighbour of v1 outside T ; we here assign red weight 1 to v3v2 and
red weight 2 to v2v1, and blue weight 1 to v3v1 and blue weight 2 to v1v

′
1. In any

case, it can be checked that the colouring is correct so far.

We now proceed to the general case, i.e., we consider a maximal path P or extended
triangle T whose one attachment edge is coloured, and we extend the colouring to
all its other attachment edges in G. Consider first a maximal path P := v1 . . . vk
whose attachment edge v1v2 was assigned, say, a red weight. We here extend the
colouring to all edges of P by assigning red weights (with value 1 or 2) to its edges
v2v3, . . . , vk−1vk successively. Note that this can be done correctly, as, when a red
weight is being assigned to an edge vivi+1, we just have to make sure that the red
sum of vi avoids the red sum of vi−1, which is possible since we have two red weights
to play with.

We are left with the case where the colouring must be extended to an extended
triangle T := v1v2v3v1 whose one attachment edge, say v1v

′
1, was previously assigned,

say, a red weight. We here consider cases depending on the number of additional
attachment edges:

– If v1v
′
1 is the only attachment edge of T , then we assign a red weight to v1v2 so

that the red sum of v1 does not get equal to the red sum of v′1. We then assign
blue weights 1, 2 or 2, 1 to v1v3 and v3v2 in such a way that the blue sum of v1

does not get equal to the blue sum of v′1.

– Assume v2v
′
2 is the only other attachment edge of T . We here assign a red

weight to v1v3 in such a way that the red sum of v1 does not get equal to the
red sum of v′1. We then assign blue weights 1, 2, 1 or 2, 1, 1 to v2v1, v2v3 and
v2v
′
2 in such a way that the blue sum of v1 does not get equal to the blue sum

of v′1.

– Lastly, assume v2v
′
2 and v3v

′
3 are attachment edges. First, we assign blue weight

1 to v1v2 and blue weight 2 to v1v3. We now assign red weight 1 to v′2v2, red
weight α to v2v3 and red weight 2 to v3v

′
3, where α is the red weight of v′1v1.

In any of these cases, it can be checked that the colouring extension is correct. So
this covers all cases of the proof.

The rest of this chapter is dedicated to providing evidences towards Conjecture 7.3.1.
We do it gradually, by first considering, in Section 7.4, Conjecture 7.3.1 in its literal form.
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We then consider its standard version (in Section 7.5), before finally considering its weak
version (in Section 7.6).

7.4 Strong (`, k)-colouring
In this section, we consider Conjecture 7.3.1 in its literal form, namely:

Strong Conjecture. Every nicer graph is strongly (2, 2)-colourable.

We verify the Strong Conjecture for nice complete graphs and bipartite graphs. Recall
that every result on strong (2, 2)-colourings directly transfers to standard and weak (2, 2)-
colourings.

We start off with complete graphs.

Theorem 7.4.1. For every n ≥ 4, the graph Kn is strongly (2, 2)-colourable.

Proof. We prove the claim by induction on n. To ease the proof, we prove a stronger
statement, namely that every complete graph Kn admits a strong (2, 2)-colouring with
red and blue weights such that either there is no vertex incident to red edges only, or
there is no vertex incident to blue edges only.

As a base step, consider K = K4. Note that K can be decomposed into two paths Pr
and Pb of length 3. To get a strong (2, 2)-colouring, we proceed as follows. Consider first
the edges of Pr from one end to the other, and assign them red weights 1, 2, 2, respectively.
Similarly, then consider the edges of Pb from one end to the other, and assign them blue
weights 1, 2, 2, respectively. Since Pr and Pb span all vertices of K, each vertex gets a
non-zero red sum and a non-zero blue sum. This, by itself, guarantees that the additional
requirement is fulfilled (i.e., there is no monochromatic vertex). Now, due to how the
red weights were assigned, it can easily be seen that the obtained red sums are 1, 2, 3, 4;
hence no two vertices get the same red sums. As this is also the case for the blue sums,
we have thus constructed a strong (2, 2)-colouring of K.

We now prove the general case. Let K = Kn (where n ≥ 5), and remove one vertex v
from K. We end up with a graph isomorphic to Kn−1, which, by the induction hypothesis,
admits a strong (2, 2)-colouring with colours red and blue. Furthermore, we may, without
loss of generality, assume that, by this colouring, there is no vertex incident to red edges
only. We extend this colouring to K, i.e., to the edges incident to v, by assigning red
weight 2 to all those edges. As a result, all red sums of the vertices of V (K) \ {v} rise
by 2, and since every two of them were different, they still are after the extension. Now,
note that the red sum of v is precisely 2(n−1), which is strictly greater than all the other
red sums since all vertices of V (K)\{v} are incident to blue edges. Furthermore, the blue
sums of the vertices of V (K) \ {v} have not been altered, while v has blue sum 0 – so no
two non-zero blue sums are the same. We thus get a strong (2, 2)-colouring of K, and it
can be noted that no vertex is incident to blue edges only, as additionally required.

We now prove the Strong Conjecture for bipartite graphs. Recall that a connected
bipartite graphG verifies χe

Σ(G) = 3 if and only if it is an odd multicactus (Theorem 7.2.8).
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Theorem 7.4.2. Every nice bipartite graph G is strongly (2, 2)-colourable.

Proof. We can assume that G is connected. If G is not an odd multicactus, then χe
Σ(G) ≤

2, and, equivalently, G is strongly (1, 2)-colourable. So let us now assume that G is
an odd multicactus. By construction, note that G necessarily has a degree-2 vertex v.
Furthermore, G is 2-connected, so the graph G′ := G− {v} is connected. Also, G′ is not
an odd multicactus (to be convinced of this, note that it has degree-1 vertices and that
one of its partite sets if of even cardinality). So G′ is strongly (1, 2)-colourable.

Consider thus a strong (1, 2)-colouring of G′ assigning red weights. We extend this
colouring to a strong (2, 2)-colouring of G, i.e., to the edges u1v and vu2 incident to v,
by just assigning blue weights 1 and 2 to u1v and vu2, respectively. As no new edge was
assigned a red weight, the adjacent red sums are still different in G. Furthermore, the
only three non-zero blue sums are all different, as they are equal to 1, 2 and 3.

In the rest of this section, we confirm that odd multicacti are a peculiar class of nice
bipartite graphs for the distinguishing colouring notions we consider, in the following
sense.

Theorem 7.4.3. The connected nice bipartite graphs that cannot be strongly (1, 1)-, (1, 2)-
or (2, 1)-coloured are exactly the odd multicacti.

The proof of Theorem 7.4.3 relies on the following result on locally irregular decom-
positions of odd multicacti, which we believe is of independent interest, as there is still
no known characterization of bipartite graphs G verifying χ′irr(G) ≤ 2.

Lemma 7.4.4. For every odd multicactus G, we have χ′irr(G) = 3.

Proof. Let G be an odd multicactus. As such (recall the description in Subsection 7.2.2),
G has edges coloured red and green “alternatively”. To avoid any confusion with the
colours, in the rest of the proof we refer to the green edges of G as its attachment edges,
while we refer to the red edges as its support edges.

Since G is an odd multicactus, by construction there has to be an attachment edge uv
such that u and v are joined by several disjoint non-trivial paths P1, . . . , Pk of length con-
gruent to 1 modulo 4, whose removal does not disconnect the graph. In some sense, the
Pi’s are leaves in the tree representation of the construction of G. It is easy to see that, in
a locally irregular 2-edge-colouring of G, necessarily every two subsequent support edges
of the Pi’s must have different colours. Since the Pi’s have length congruent to 1 modulo 4,
this means that, from the point of view of uv, colouring the Pi’s is similar to colouring k
parallel edges joining uv. Said differently, if the multigraph G′, obtained by replacing the
Pi’s by k parallel (attachment) edges joining u and v, admits no locally irregular 2-edge-
colouring, so neither does G. This operation, consisting in contracting non-trivial paths
joining a “leaf” attachment edge, is called a contraction below.

By repeatedly applying contractions (note that the argument above works even if
the non-trivial paths have parallel attachment edges), we get a series of multigraphs
G = G0, G1, . . . , Gm = G′ such that 1) if Gi+1 admits no locally irregular 2-edge-
colourings, then so does not Gi, and 2) G′ consists of two vertices joined by several
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parallel (attachment) edges. Now, it should be clear that G′ admits no locally irregular
2-edge-colourings, which gives our conclusion for G.

We can now prove Theorem 7.4.3:

Proof of Theorem 7.4.3. Let G be a connected nice bipartite graph. If G is not an odd
multicactus, then χe

Σ(G) ≤ 2 (Theorem 7.2.8), and hence G is strongly (1, 2)-colourable.
So we may assume that G is an odd multicactus, and thus that G is not strongly (1, 2)-
colourable. In that case, according to Lemma 7.4.4, G admits no locally irregular 2-edge-
colourings, hence no strong (2, 1)-colourings.

7.5 Standard (`, k)-colouring
We here consider the standard weakening of Conjecture 7.3.1:

Standard Conjecture. Every nicer graph is standardly (2, 2)-colourable.

Note that a standard (`, k)-colouring is nothing but a decomposition into ` graphs ad-
mitting neighbour-sum-distinguishing k-edge-weightings. From that perspective, it could
be interesting to wonder whether graphs, in general, decompose into a constant number of
graphs verifying the 1-2-3 Conjecture. We believe this is an interesting aspect to consider,
as not many graphs are known to verify the 1-2-3 Conjecture.

Towards the Standard Conjecture, we thus also raise the following related conjecture,
which is, in a sense, a weakening of the 1-2-3 Conjecture:

Conjecture 7.5.1. Every nice graph decomposes into two graphs verifying the 1-2-3 Con-
jecture.

In this section, towards the Standard Conjecture, we first improve Theorem 7.2.10
by showing that all nice graphs admit standard (40, 3)-colourings. We then prove the
Standard Conjecture 7.5.1 for nicer 2-degenerate graphs and subcubic graphs, before
proving Conjecture 7.5.1 for nice 9-colourable graphs.

7.5.1 Standard (40, 3)-colourability

The proof of the following result follows the lines of one in [BMT17], where Bensmail,
Merker and Thomassen proved that decomposable graphs can be decomposed into at
most 328 locally irregular graphs.

Theorem 7.5.2. Every decomposable graph G is standardly (40, 3)-colourable.

Proof. In G, we can find a locally irregular subgraph H1 such that G − E(Ha) has all
of its components being of even size ([BMT17], Lemma 2.1). If G already had even
size, then Ha is empty. Still calling G the remaining graph, we can decompose G into
a graph Hb with minimum degree at least 1010 and a (2 · 1010 + 2)-degenerate graph
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Hc whose all components are of even size ([BMT17], Lemma 4.5). On the one hand,
according to a result of Przybyło [Prz15], we can decompose Hb into three (possibly
empty) locally irregular graphs Hb,1, Hb,2, Hb,3. On the other hand, Hc can be decomposed
into 36 bipartite graphs Hc,1, . . . , Hc,36 whose all components are of even size ([BMT17],
Theorem 4.3).

Recall that every locally irregular graph H verifies χe
Σ(H) = 1. Furthermore, all nice

bipartite graphs verify the 1-2-3 Conjecture. From these arguments, using a set of 40
coloured weights 1, 2, 3 to independently weight the edges of each of the Hi’s and the
Hi,j’s, i ∈ {a, b, c}, j ∈ {1, . . . , 36}, we eventually get a standard (40, 3)-colouring of
G.

Since all connected nice exceptional graphs are 3-colourable, they verify the 1-2-3
Conjecture (see [Sea12]), and are thus standardly (1, 3)-colourable. Together with The-
orem 7.5.2, this yields the following:

Theorem 7.5.3. Every nice graph G is standardly (40, 3)-colourable.

7.5.2 The Standard Conjecture for 2-degenerate graphs and sub-
cubic graphs

Recall that a graph is 2-degenerate if every of its subgraphs has a vertex with degree at
most 2. A subcubic graph is a graph G with maximum degree at most 3. If all vertices of
G have degree precisely 3, then we call G cubic. Furthermore, if G is connected and not
cubic, i.e., G has vertices with degree 1 or 2, then we say that G is strictly subcubic.

We first prove the Standard Conjecture for 2-degenerate graphs (with a few excep-
tions). More precisely, we prove:

Theorem 7.5.4. Every nicer 2-degenerate graph G is standardly (2, 2)-colourable.

Our proof of Theorem 7.5.4 relies on the following lemma, which is proved later in this
section.

Lemma 7.5.5. Every nicer 2-degenerate graph G decomposes into two nice forests.

Proof of Theorem 7.5.4. According to Lemma 7.5.5, we can decompose G into two forests
Fr and Fb none of which has an isolated edge. Since every nice tree T verifies χe

Σ(T ) ≤
2 (i.e., admits standard (1, 2)-colourings), each of Fr and Fb, independently, admits a
standard (1, 2)-colouring; let ωr and ωb be any such standard (1, 2)-colourings of Fr and
Fb, respectively. To get a standard (2, 2)-colouring of G, we consider all weights assigned
by ωr and ωb, and colour red those weights originating from ωr, while we colour blue those
weights originating from ωb.

We are left with proving Lemma 7.5.5.
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Proof of Lemma 7.5.5. Throughout the proof, which is by induction on |V (G)|+ |E(G)|,
we assume that G is connected. As a base case, it can be checked that the claim is true
whenever |V (G)| ≤ 4. In particular, under all conditions, G is either 1) a nice tree (in
which case the claim holds trivially), 2) a triangle with a pendant vertex attached (which
decomposes into two paths of length 2), 3) two triangles glued along an edge (which
decomposes into a path of length 2 and a star with three leaves), or 4) a cycle of length 4
(which decomposes into two paths of length 2).

Let us thus proceed to the proof of the general case (in particular, |V (G)| ≥ 5). First
assume that G has a degree-1 vertex v. Denote by u the neighbour of v in G, and let
G′ := G−{v}. Since |V (G)| ≥ 5, note that G′ cannot be K2 or K3. So, by the induction
hypothesis, G′ decomposes into a red nice forest and a blue nice forest. Assuming u
belongs to the red forest, we extend that decomposition to G by adding vu to the red
forest.

Thus, we may assume that G has a degree-2 vertex v, with neighbours u1, u2. We
distinguish two cases:

• First case: v is a cut-vertex. Let H1 and H2 be the two components of G − {v},
where ui belongs to Hi for i = 1, 2, and set G1 := H1 +{u1v} and G2 := H2 +{u2v}.
Since G has no degree-1 vertex, note that none of G1 and G2 is isomorphic to K2.
Also, v has degree 1 in both G1 and G2, so none of G1 and G2 is isomorphic to K3.
By the induction hypothesis, G1 and G2 decompose into two nice forests. Note that
these two decompositions, when combined in G, altogether form a decomposition of
G into two nice forests.

• Second case: v is not a cut-vertex. Thus none of vu1 and vu2 is a cut-edge. Thus,
G′ := G − {vu1} is not isomorphic to K2 or K3, and, by the induction hypothesis,
G′ decomposes into two nice forests, say red and blue. Assume vu2 belongs to the
red forest. If u1 belongs to the blue forest, then we obtain a decomposition of G by
adding vu1 to the blue forest. So assume u1 belongs to the red forest only. If u1

and u2 belong to different trees of the red forest, then we can directly add vu1 to
the red forest.

Thus, lastly suppose that u1 and u2 belong to the same tree of the red forest. Note
that when moving vu2 from the red to the blue forest, and adding vu1 to the blue
forest, then the obtained blue subgraph remains a forest, and cannot have any tree
isomorphic to K2. The only problem, here, is that the red forest might now include
a tree isomorphic to K2. Since u1 and u2 belonged to the same tree of the red forest,
this means that vu2u1, a path of length 2, was exactly a tree of the red forest. In
that situation, u2 is a cut-vertex of G, and u1 also has degree 2 - its neighbours are
v and u2. Said differently, vu1u2v is a pendant triangle of G attached at u2.

Now, since G is not K3, then u2 belongs to the blue forest in the decomposition of
G′. To obtain the desired decomposition of G, we can here just add vu2 to the blue
forest (which indeed remains a forest), and add vu1 and u1u2 to the red forest (to
which we add a path of length 2).
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This concludes the proof.

We now extend the previous results to nicer subcubic graphs.

Lemma 7.5.6. Every nicer subcubic graph G decomposes into two nice forests.

Proof. Throughout the proof, which is by induction on |V (G)|+|E(G)|, it is assumed that
G is connected. As the claim is true whenever |V (G)| ≤ 4 (G is either strictly subcubic
and the result follows from Lemma 7.5.5, or isomorphic to K4, which decomposes into
two paths of length 3), we proceed to the proof of the general case.

We now consider the general case |V (G)| ≥ 5. If G is strictly subcubic, then G is
2-degenerate, in which case the result follows from Lemma 7.5.5. So let us assume that
G is cubic. Let v be a (degree-3) vertex of G, with neighbours u1, u2, u3. Note that if
all edges among the ui’s exist, then G is K4 while |V (G)| ≥ 5, a contradiction. Hence,
assume without loss of generality that u1u2 is not an edge of G. Consider the graph
G′ := G− {v}+ {u1u2}. Note that, although G′ might consist of up to two components,
none of them is isomorphic to K2 or K3 as G is cubic. So all components are subcubic,
and they decompose into two nice forests, say red and blue.

Consider the decomposition of G′. Suppose that u1u2 belongs to the red forest. We
consider the same decomposition in G, except that, since G does not contain the edge
u1u2, we replace it, in the red forest, by the two edges u1v and vu2. Note that, in G, the
red subgraph remains a nice forest. It thus remains to add vu3 to either the red or blue
forest. If u3 belongs to the blue forest, then we are done when adding vu3 to the blue
forest. So assume that the two edges, different from vu3, incident to u3 belong to the red
forest. If v and u3 belong to different trees of the red forest, then we can freely add vu3

to the red forest. So lastly suppose that we are not in that case.
All of u1, u2, u3 belong to the same tree, say T , of the red forest. In T , let us assume

that u3 is closer to u2 than it is closer to u1. In other words, in T , the only path from u3

to u1 passes through u2. Let us remove vu2 from T . In the red forest, T is disconnected
into two trees T ′ and T ′′, where T ′ contains u2 and u3, while T ′′ contains v and u1. Note
that T ′ is not isomorphic to K2, since u3 remains of degree 2 in that tree. If T ′′ also has
this property, then we get a desired decomposition of G when adding vu2 and vu3 to the
blue forest (recall that u3 originally did not belong to the blue forest). So we may assume
that T ′′ is actually isomorphic to K2, which means that u1 had degree 1 in T . In this
situation, we obtain the desired decomposition of G by adding vu1 and vu3 to the blue
forest.

A similar proof as that used to prove Theorem 7.5.4, but using Lemma 7.5.6 instead
of Lemma 7.5.5, now yields the following.

Theorem 7.5.7. Every nicer subcubic graph is standardly (2, 2)-colourable.

7.5.3 Conjecture 7.5.1 for 9-colourable graphs

To prove Conjecture 7.5.1 for all nicer 9-colourable graphs, we essentially prove that 9-
colourable graphs, in general, decompose into two nice 3-colourable graphs. With such
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a result in hand, we can then use the fact that nice 3-colourable graphs verify the 1-2-3
Conjecture.

Lemma 7.5.8. Assume that a nicer graph G can be 2-edge-coloured with red and blue so
that the induced red subgraph GR and blue subgraph GB satisfy χ(GR) = r and χ(GB) = b
with r, b ≥ 2. Then G can be 2-edge-coloured in such a way that χ(GR) ≤ r, χ(GB) ≤ b,
and GR and GB are nice.

Proof. The edges of G will be coloured or recoloured during the proof. Changing the
colour of an edge actually means that that edge is added to one of GR and GB, and,
conversely, removed from the second subgraph.

Let us start by raising a few comments on how edge additions and removals affect the
parameters and structure of the subgraph we are interested in:

• Adding an edge to a graph can, in general, increase its chromatic number; however,
the addition of a pendant edge, or, more generally, of pendant paths does not
increase the chromatic number (unless when the graph is edgeless). The addition
of an edge such that at least one of its ends was not isolated in the graph does not
increase the number of isolated edges.

• Removing edges from a graph can, in general, reduce the chromatic number. It can
also produce new isolated edges; but this can only happen when the removed edge
lies on a path and is incident with a pendant edge of this path.

The proof is by induction on |V (G)|. As it can easily be seen that the statement is
true when |V (G)| ≤ 4, we may consider the general case |V (G)| ≥ 5. We can assume that
G is connected. To show that G can be 2-edge-coloured as claimed, we consider three
cases:

Case 1. G has a pendant edge, i.e., δ(G) = 1.
Let uv be a pendant edge of G with d(u) = 1. Any 2-edge-colouring of G with

χ(GR) = r ≥ 2 and χ(GB) = b ≥ 2 induces a 2-edge-colouring of the graph G′ := G− u
with χ(G′R) = r ≥ 2 and χ(G′B) = b ≥ 2, or G′ becomes monochromatic. In the first case,
since G′ has at least four vertices, we may assume that the graphs G′R and G′B have no
isolated edges. At least one colour, say red, is present at vertex v. Then we colour the
edge uv red. In the second case, i.e., when G′ is monochromatic, say red, we colour the
edge uv red. In both cases we do not increase the chromatic number of G′R.

Case 2. δ(G) = 2.
Let u be a vertex with d(u) = 2. Denote by v, w its neighbours and let G′ := G− u.

As above, any 2-edge-colouring of G with χ(GR) = r ≥ 2 and χ(GB) = b ≥ 2 induces a
2-edge-colouring of the graph G′ with χ(G′R) = r ≥ 2 and χ(G′B) = b ≥ 2, or G′ becomes
monochromatic. Suppose first that G′ is connected. Then the lemma holds for G′ and we
may suppose that the graphs G′R and G′B have no isolated edges, or G′ is monochromatic,
say red, with χ(G′R) = r′ ≥ 2. If we are able to find in G′ two edges of different colours
incident with v (say red) and w (say blue), respectively, then we colour the edge uv red
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v u w

Figure 7.3: A decomposition into two nice bipartite graphs mentioned in the proof of
Lemma 7.5.8. Solid edges stand for red edges. Dashed edges stand for blue edges.

and the edge uw blue. Note that this adds pendant edges to G′R and G′B, so we do not
increase the chromatic number of these graphs and we do not create isolated edges. If the
vertices v, w are incident with edges of one colour only, say red, or G′ is monochromatic,
say red, then we colour both edges uv, uw blue. Again, we do not increase the chromatic
number of the graphs G′R and G′B and we do not create isolated edges.

Consider now the case where G−u has two components G1 and G2. If neither G1 nor
G2 is isomorphic to K3, then we apply induction hypothesis to G1 and G2 and proceed
as above, that is:

• if we are able to find in G1 and G2 two edges of different colours incident with v
(say red) and w (say blue), respectively, then we colour the edge uv red and the
edge uw blue; and

• if the vertices v, w are incident with edges of one colour only, say red, then we colour
both edges uv, uw blue.

Suppose now that only one of these components, say G1, is isomorphic to K3 and
denote its vertices by v, v1, v2. Now, we apply the induction hypothesis to G2 and if we
are able to find an edge coloured, say, blue, incident with w, then we colour the edge uw
blue. Next, we colour red the edges uv and vv1 and we colour blue the edges uv2 and
v2v1.

If both componentsG1 andG2 are isomorphic toK3, then one possible 2-edge-colouring
without isolated edges is given in Figure 7.3.

Case 3. δ(G) ≥ 3.
We start from a 2-edge-colouring of G with χ(GR) = r ≥ 2 and χ(GB) = b ≥ 2 which

minimizes the number of isolated edges in GR and GB. We will show that if the number of
these is still positive, then we can get rid of any given such isolated edge, without creating
a new one, and thus get a contradiction.

Let us suppose that uv is an isolated edge of GB. Since d(u) ≥ 3 and d(v) ≥ 3,
neither u nor v is isolated in GR. If the vertices u, v belong to two different components of
GR, then we recolour the edge uv red. Such an operation cannot increase the chromatic
number of GR.

Hence, the vertices u, v belong to one component of GR. Then there is a red path P
(containing only red edges) joining u and v in GR. Denote this path by uw1 . . . wlv, where
l ≥ 1. Since the vertices u and v are of degree at least 3 in G and of degree 1 in the blue
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graph, they are of degree at least 2 in the red graph. Denote by u1, . . . , up the neighbours
of u in GR and by v1, . . . , vq the neighbours of v in GR, different from w1, wl, respectively.
We have p, q ≥ 1.

If p ≥ 2, then we recolour uw1, the first edge of the red path P , blue. From the point
of view of the blue graph, we add to a component of GB a pendant path w1uv of length 2.
Since b ≥ 2, this operation does not increase the chromatic number of GB. From the point
of view of the red graph, we delete an edge w1u but we do not create a new isolated edge.
Indeed, none of the red edges incident with u becomes isolated, because there remain
p ≥ 2 of them. On the other hand, none of the edges incident with w1 becomes isolated
because they are incident with the edge w1w2 which lies on the path joining w1 with v
and is not isolated even in the case w2 = v because of the edge vv1.

If p = 1, and by symmetry q = 1, then we can proceed as above except when the red
degree of u1 is 1 i.e., uu1 is a pendant edge in the red graph. Then we recolour this edge
blue. Since b ≥ 2 this operation does not increase the chromatic number of GB. Again,
from the point of view of the blue graph, we add to a component of GB a pendant path
u1uv of length 2, and from the point of view of the red graph, we delete a pendant edge.
Both operations preserve the chromatic numbers of the red and blue graphs.

We now prove the second key lemma of this section.

Lemma 7.5.9. Every 9-colourable graph G decomposes into an r-colourable graph GR

and a b-colourable graph GB with r, b ≤ 3.

Proof. Let G be a graph with χ(G) ≤ 9. It is easy to see that it is sufficient to consider
the case where G is a complete graph of order n ≤ 9. So let G = Kn and let x1, . . . , xn
denote the vertices of G. We 2-edge-colour G with colours red and blue, yielding two
subgraphs GR and GB, respectively, as follows. An edge xixj is coloured red if and only
if i = j mod 3. Otherwise, i.e., when i 6= j mod 3, the edge xixj is coloured blue.

Clearly, χ(GR) = 3 for n ≥ 3. Furthermore, since n ≤ 9, there are at most three
numbers congruent to 0 (or to 1, or to 2) modulo 3. Thus, GB contains either isolated
edges or triangles, so χ(GB) ≤ 3.

We are now ready to prove that nice 9-colourable graphs verify Conjecture 7.5.1.

Theorem 7.5.10. Every nice 9-colourable graph G is standardly (2, 3)-colourable.

Proof. If G is 3-colourable, then we have χe
Σ(G) ≤ 3 (see [KLT04]), or, in other words, G is

standardly (1, 3)-colourable. Now assume that G is at least 4-chromatic. By Lemma 7.5.9,
it can be decomposed into two 3-colourable graphs: an r-colourable graph GR and a b-
colourable graph GB with r, b ≤ 3. Since G is at least 4-chromatic we have also r, b ≥ 2.

We distinguish two cases:

• If G has no isolated triangles, then, by Lemma 7.5.8, it can be decomposed into two
nice graphs GR and GB with χ(GR) ≤ r and χ(GB) ≤ b with r, b ≥ 3. So, both
of them verify the 1-2-3 Conjecture, and thus admit standardly (1, 3)-colourings.
Combining standardly (1, 3)-colourings of GR and GB, we get a standard (2, 3)-
colouring of G.
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• If G has isolated triangles, then we remove those from G, apply the previous point
to get a (2, 3)-colouring of what is left, and then give the same color to all the edges
of the isolated triangles. Finally, by weighting the edges of each isolated triangle
with weights 1, 2, 3 (in any colour), we can extend the (2, 3)-colouring to G.

We note that the approach above can be generalized to show that, in general, any
nice graph G decomposes into a certain number, function of χ(G), of graphs fulfilling the
1-2-3 Conjecture.

7.6 Weak (`, k)-colouring
We finally consider the weaker form of Conjecture 7.3.1 (which would follow from the
1-2-3 Conjecture, if it turned out to be proved):

Weak Conjecture. Every nice graph is weakly (2, 2)-colourable.

Towards the Weak Conjecture, we here first prove that all nice graphs are weakly (3, 2)-
and (2, 4)-colourable. Both proofs are based on the fact that every nice graph admits
a neighbour-sum-distinguishing 5-edge-weighing, as proved by Kalkowski, Karoński and
Pfender [KKP10]. We then prove that graphs with minimum degree at least 59 are weakly
(2, 3)-colourable.

7.6.1 Weak (3, 2)- and (2, 4)-colourability

We first prove that every nice graph is weakly (3, 2)-colourable.

Theorem 7.6.1. Every nice graph G is weakly (3, 2)-colourable.

Proof. Slight modifications of the proof of Kalkowski, Karoński and Pfender [KKP10]
allow to show that every nice graph even admits a neighbour-sum-distinguishing {s −
2, s− 1, s, s+ 1, s+ 2}-edge-weighting, for any integer s. Let thus ω be a neighbour-sum-
distinguishing {−2,−1, 0, 1, 2}-edge-weighting of G. We deduce a weak (3, 2)-colouring of
G by modifying and colouring the weights of ω, as follows:

• we colour red every edge with value in {1, 2};

• we colour blue every edge with value in {−2,−1}, and multiply its value by −1;

• we colour green every edge with value 0, and change its value to 1.

The key point is that, through ω, every two adjacent vertices u and v are only distinguished
via their incident edges with weight in {−2,−1, 1, 2}. Said differently the edges with
weight 0 are useless for distinguishing u and v. This implies that, in the obtained (3, 2)-
colouring, it is not possible that both the red and blue sums of u and v are equal. From this
reasoning, we get that the resulting (3, 2)-colouring is indeed a weak (3, 2)-colouring.
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We now prove that every nice graph can be weakly (2, 4)-coloured.

Theorem 7.6.2. Every nice graph G is weakly (2, 4)-colourable.

Proof. Since G is nice, it admits a neighbour-sum-distinguishing 5-edge-weighting ω ac-
cording to the result of Kalkowski, Karoński and Pfender [KKP10]. We deduce a weak
(2, 4)-colouring of G by 2-colouring and (possibly) altering the weights assigned by ω, as
follows:

• we colour red every edge with value in {1, 2, 3, 4};

• we colour blue every edge with value 5, and change its value to 1.

Consider an edge uv of G. Note that if the red sums of u and v are equal, then their
blue sums cannot be equal too: in such a situation, we would get σω(u) = σω(v), a
contradiction. So we get a weak (2, 4)-colouring.

7.6.2 Graphs with δ ≥ 59 are weakly (2, 3)-colourable

Before proceeding to the proof of the main result of this section, we first need to introduce
two observations.

Observation 7.6.3. Every graph G decomposes into two subgraphs G1 and G2 such that:

• for every vertex v of G, we have dG1(v) ∈
{⌊

dG(v)
2

⌋
,
⌊
dG(v)

2

⌋
+ 1
}
, and

• for every even-degree vertex v of G except possibly one, we have dG1(v) = dG(v)
2

.

Proof. If the subset U ⊆ V of the vertices of odd degree in G is non-empty, add a new
vertex u and join it by a single edge with every vertex in U ; denote the obtained graph
by G′ (if U = ∅, set G′ = G). As the degrees of all vertices in G′ are even, there exists
an Eulerian tour in it. We then traverse all edges of G′ once along this Eulerian tour,
starting at u if it exists, and colour them alternately red and blue. Then the red edges in
G induce its subgraph G1 consistent with our requirements.

Observation 7.6.4. Every graph G has an orientation D such that, for every vertex v,
we have d+

D(v) ≥
⌊
dG(v)

2

⌋
.

Proof. Analogously as in the proof of Observation 7.6.3, if the subset U ⊆ V of the
vertices of odd degree in G is non-empty, then add a new vertex u and join it by a single
edge with every vertex in U ; denote the obtained graph by G′ (if U = ∅, set G′ = G). As
the degrees of all vertices in G′ are even, there exists an Eulerian tour in it. By traversing
it once we obtain an orientation of G′ with equal in- and out-degrees for all vertices. This
yields the desired orientation D of G.

We now prove the main result:
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Theorem 7.6.5. Every graph G with δ(G) ≥ 59 is weakly (2, 3)-colourable.

Proof. We may suppose that G is connected. Let G1 = (V,E1) and G2 = (V,E2) be the
subgraphs of G obtained by applying Observation 7.6.3, where x is a vertex of even degree
in G for which dG1(x) 6= dG(x)

2
if it exists (let x be any fixed vertex of G otherwise). We

produce a weak (2, 3)-colouring of G by colouring and weighting G1 and G2 separately.
We colour red all edges of G1, and blue all edges of G2. Initially we weight all the

edges with 2. Denote by ω1, ω2 the temporary weightings of G1, G2. In what follows, ω1

and ω2 will be subject to changes, but, for the sake of the proof, we still call them ω1 and
ω2. At every step of our construction, the colour of any vertex v, denoted c(v), will be
understood as the pair (σω1(v), σω2(v)), where σωi

(v) :=
∑

u∈NGi
(v) ωi(uv) for i = 1, 2.

Let D1 and D2 be auxiliary orientations of G1 and G2, respectively, consistent with
Observation 7.6.4. It is straightforward to verify that for every v ∈ V r{x} we then must
have:

(d+
D1

(v) + 1)(d+
D2

(v) + 1) > 4dG(v). (7.1)

Let further Oi(v) := {uv ∈ Ei : u ∈ N+
Di

(v)} denote the set of edges incident with a given
vertex v which correspond to arcs out-going from v in Di. Hence |Oi(v)| = d+

Di
(v) for

i = 1, 2.
Let us define the following family of pairwise disjoint four-element sets of pairs of

integers

B = {{(2p, 2q), (2p, 2q + 1), (2p+ 1, 2q), (2p+ 1, 2q + 1)} : p, q ∈ Z}.

Fix an arbitrary ordering v1, . . . , vn over the vertices in V with v1 = x. We will analyse
the vi’s one after another consistently with this ordering. At each Step j we will choose
some set Bj ∈ B, different from all such sets already fixed for the neighbours of vj in G,
and we will modify weights of the edges in O1(vj) ∪ O2(vj) so that c(vk) ∈ Bk for every
k ≤ j. Note that if we are able to achieve this using only weights 1, 2, 3 on the edges,
after Step n we will then obtain a desired weighting of G1 and G2.

Step 1 is trivial, so assume we analyse Step j for some j ∈ {2, . . . , n}, and thus far
all our requirements have been fulfilled. Note that we cannot choose at most dG(vj) sets
from B for vj (these already assigned to neighbours of vj in G). We however may always
modify the weight of every vkvj ∈ Oi(vj) by 1 so that c(vk) ∈ Bk (if vk has already Bk

assigned), i = 1, 2. This way we may obtain at least |O1(vj)| + 1 distinct values of the
first coordinate of c(vj) and at least |O2(vj)|+ 1 distinct values for the second one. This
altogether yields a list of available pairs of cardinality at least

(|O1(vj)|+ 1)(|O1(vj)|+ 1) ≥ (d+
D1

(v) + 1)(d+
D2

(v) + 1) > 4dG(v)

for c(vj) due to Inequality (7.1) above. At least one of these pairs must thus not belong
to any Bk for vk ∈ NG(vj). We choose any such pair and fix as Bj the set in B which
includes this pair, performing at the same time modifications of weights (to 1 or 3) of
(some of) the edges in O1(vj) ∪ O2(vj) so that c(vj) ∈ Bj afterwards. Note that by our
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choice of the sets Oi(v), the weight of each edge might be modified only once, and hence
belongs to {1, 2, 3}.

After Step n, we thus obtain desired weightings of G1 and G2.
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