N

N

Functional description of sequence constraints and
synthesis of combinatorial objects

Ekaterina Arafailova

» To cite this version:

Ekaterina Arafailova. Functional description of sequence constraints and synthesis of combinatorial
objects. Discrete Mathematics [cs.DM]. Ecole nationale supérieure Mines-Télécom Atlantique, 2018.
English. NNT: 2018IMTA0089 . tel-01962957

HAL Id: tel-01962957
https://theses.hal.science/tel-01962957
Submitted on 21 Dec 2018

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.


https://theses.hal.science/tel-01962957
https://hal.archives-ouvertes.fr

UNIVERSITE

THESE DE DOCTORAT DE

4 nd

IMT Atlantique
Bretagne-Pays de la Loire
Ecole Mines-Télécom

Theése présentée et soutenue a IMT ATLANTIQUE, NANTES, le 25 septembre 2018
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)
Thése N°: 2018IMTA0089

Rapporteurs avant soutenance :

Mme Michela Milano, Professeure, Universita di Bologna

M. Stanislav Zivny, Associate Professor, University of Oxford
Composition du jury :

Président : M. Claude Jard, Professeur, Université de Nantes
Examinateurs : M. John Hooker, Professeur, Carnegie Mellon University
Mme Michela Milano, Professeure, Universita di Bologna

M. Stanislav Zivny, Associate Professor, University of Oxford

Dir. de these : M. Nicolas Beldiceanu, Professeur, IMT Atlantique
Co-dir. de these : M. Rémi Douence, Maitre assistant, HDR, IMT Atlantique



Abstract

Contrary to the standard approach consisting in introducing ad hoc constraints and designing dedicated
algorithms for handling their combinatorial aspect, this thesis takes another point of view. On the one
hand, it focusses on describing a family of sequence constraints in a compositional way by multiple layers
of functions. On the other hand, it addresses the combinatorial aspect of both a single constraint and
a conjunction of such constraints by synthesising compositional combinatorial objects, namely bounds,
linear inequalities, non-linear constraints and finite automata. These objects are obtained in a systematic
way and are not instance-specific: they are parameterised by one or several constraints, by the number
of variables in a considered sequence of variables, and by the initial domains of the variables. When
synthesising such objects we draw full benefit both from the declarative view of such constraints, based on
regular expressions, and from the operational view, based on finite transducers and register automata. There
are many advantages of synthesising combinatorial objects rather than designing dedicated algorithms: 1)
parameterised formulae can be applied in the context of several resolution techniques such as constraint
programming or linear programming, whereas algorithms are typically tailored to a specific technique; 2)
combinatorial objects can be combined together to provide better performance in practice; 3) finally, the
quantities computed by some formulae can not just be used in an optimisation setting, but also in the context
of data mining.

Key Words: constraint programming, automata, transducers, regular expressions, time series, parame-
terised combinatorial objects, linear and non-linear invariants



Résumé

A I’opposé de 1’approche consistant 2 concevoir au cas par cas des contraintes et des algorithmes leur
étant dédiés, 1’objet de cette theése concerne d’une part la description de familles de contraintes en termes
de composition de fonctions, et d’autre part la syntheése d’objets combinatoires pour de telles contraintes.
Les objets concernés sont des bornes précises, des coupes linéaires, des invariants non-linéaires et des au-
tomates finis; leur but principal est de prendre en compte 1’aspect combinatoire d’une seule contrainte ou
d’une conjonction de contraintes. Ces objets sont obtenus d’une fagcon systématique et sont paramétrés par
une ou plusieurs contraintes, par le nombre de variables dans une séquence, et par les domaines initiaux
de ces variables. Cela nous permet d’obtenir des objets indépendants d’une instance considérée. Afin de
synthétiser des objets combinatoires nous tirons partie de la vue declarative de telles contraintes, basée sur
les expressions régulieres, ansi que la vue opérationnelle, basée sur les automates a registres et les trans-
ducteurs finis. Il y a plusieurs avantages a synthétiser des objets combinatoires par rapport a la conception
d’algorithmes dédiés: 1) on peut utiliser ces formules paramétrées dans plusieurs contextes, y compris la
programmation par contraintes et la programmation linéaire, ce qui est beaucoup plus difficile avec des al-
gorithmes; 2) la synergie entre des objets combinatoires nous donne une meilleure performance en pratique;
3) les quantités calculées par certaines des formules peuvent étre utilisées non seulement dans le contexte
de I’optimisation mais aussi pour la fouille de données.

Mots clés : programmation par contraintes, automates, transducteurs, expressions régulieres, séries tem-
porelles, objets combinatoires paramétrés, invariants linéaires et non-linéaires
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Chapter 1

Introduction

1.1 Tradeoff Between the Expressiveness of a Modelling Language
and the Efficiency of Solving for Combinatorial Problems

Many real-life problems, e.g. staff scheduling in a call centre or production planning of a power plant,
can be described as mathematical models. In such a context, we have two main aspects: 1) the modelling
language aspect, i.e. our language should be rich enough to concisely express a large variety of problems;
2) the solving aspect, i.e. we should be able to find a solution to our model efficiently. Currently, we face
one of the two following situations:

1. We have a powerful language allowing us to model easily and that can be further extended. However,
the solving aspect is highly inefficient.

2. Our language is restricted and extending the language may require adding ad hoc elements specific
to a considered problem, but not useful for any other problem.

Within the context of problems using integer sequences, the goal of this thesis is to obtain a tradeoff
between the expressiveness of the modelling language and the efficiency of the solving aspect for com-
binatorial problems. We work towards a language that is powerful enough to describe a large variety of
problems, and efficient enough from the solving point of view. Our approach is based on the following
observation: any model for a combinatorial problem has two main components, namely 1) variables that
represent quantities, e.g. produced amount of electricity for a given power plant, and take their values in
given sets, called domains, and 2) constraints, which impose relations between these variables and repre-
sents business processes, technical restrictions, etc. Such models often use discrete objects such as

— permutations [117];

— trees [42], i.e. acyclic connected graphs;

— time series [47], i.e. integer sequences representing measurements taken over time.

Such discrete objects can be described by their characteristics, e.g. the number of cycles in a permutation
[82], the diameter of a tree [104], and the number of peaks in a time series [22]. Characteristics are often
used to represent the constraints of the problem. In the solving context, we typically need to find a discrete
object simultaneously satisfying restrictions on its several characteristics, e.g. a time series with 3 peaks and
2 valleys. Restricting several characteristics may be more challenging than restricting a single characteristic
since during the solving phase constraints have to communicate efficiently, which is not always the case.

1.2 Mathematical Programming and Constraint Programming
for Modelling and Solving Combinatorial Problems

Mathematical Programming (MP) [126] and Constraint Programming (CP) [118] are two complemen-
tary approaches for modelling and solving combinatorial problems using discrete objects with a number of

13
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successful applications in the domains of scheduling, packing, and routing [134, 135, 48, 51, 110, 95, 65].

The main difference between CP and MP are the types of constraints used for modelling. In the context
of MP, constraints are usually linear or convex [16, 33, 115], and, for example, for problems with only linear
constraints, solvers typically use the simplex method [58]. CP models use global constraints. The Global
Constraint Catalogue [21] defines a global constraint as “an expressive and concise condition involving a
non-fixed number of variables”. For example, the ALLDIFFERENT((X7, Xo,..., X)) [130] global con-
straint restricts a sequence of integer variables (X, Xo,..., X)) to take distinct values. Therefore, the
sequence (1, 8,7, —1, 3) satisfies an ALLDIFFERENT constraint, but (1,8, 1, —1, 3) does not since X is the
same as X3. In CP, a global constraint usually comes with a filtering technique, which is an algorithm or
any kind of inference that allows one to reduce the domains of the variables by removing values that cannot
be part of any solution to this constraint.

Despite different constraint types, and thus different solving techniques, CP and MP have some common
drawbacks that motivate the work of this thesis:

o In both MP and CP, modelling can be challenging both from the point of view of problem description
and from an inference point of view. In MP, this is due to the fact that constraints must be linear
or convex. In CP, this is due to the fact that a required global constraint may not exist and needs
to be introduced. Hence there is a common need to define constraints in a compositional way that
can be then systematically reformulated as linear programs or for which one can obtain a filtering
technique in a systematic way.

o When domains of variables are discrete, both MP and CP models may become hard to solve [106,
131]. Hence in order to solve a problem efficiently one tries to draw full benefit from the structure of
the considered problem. In MP, this is done in the preprocessing step, where a solver verifies whether
a considered problem has a well-known structure, e.g. network flow [63], and then applies a specific
preprocessing technique for this subproblem and/or generates cuts [75, 96]. In CP, this is done
by designing dedicated filtering techniques for global constraints of the problem. Hence there is a
need to synthesise combinatorial objects characterising the structure of a considered combinatorial
problem, e.g. bounds, linear cuts, implied constraints, which are redundant constraints that do not
change the set of solutions of the problem, but their purpose is to remove infeasible values from the
domains of the variables.

o The need to exploit the problem structure leads to a large number of ad hoc methods, e.g. specific
bounds, algorithms, decompositions, filtering techniques, heuristics. These are methods that are
efficient for solving the problem they were designed for, but either cannot be reused at all for any
other problem or require a significant effort for adjusting them. Hence there is a need to develop
systematic methods for synthesising combinatorial objects for constraints occurring in a considered
problem.

1.3 Context of Our Work: Time-Series Constraints

This thesis studies a family of global constraints, called time-series constraints, defined in a compo-
sitional way by means of functions [22, 10]. A time-series constraint (X, R) restricts R, called the
result value of v, to be the result of some computations over the sequence of integer variables X =
(X1, X2,...,X,), called a time series, which represents measurements taken over time [22]. For ex-
ample, R could be the number of consecutive pairs of variables (X;, X;,1) of X such that X; < X;;
with 4 in [1,n — 1]. The three main ingredients describing a time-series constraint are a pattern, a fea-
ture, and an aggregator. A pattern is some regular form of subsequences, which is from a formal point
of view characterised by a regular expression over the alphabet of three letters {‘<’, ‘=", *>"}. For ex-
ample, the DECREASING_SEQUENCE pattern, which corresponds to any maximal monotonously decreas-
ing subsequence (X;, X;i1,...,X;) of a sequence of integers (X7, X5, ..., X,,) is characterised by the
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‘(> (> | =)*)* > regular expression, which relates the variables of the subsequence (X;, X;11,...,X;) as
follows:

o X; > X1, 1.e. this subsequence starts with a strict decrease;

o X;_1 > X}, i.e. this subsequence also ends with a strict decrease;

o forany kin [i + 1,5 — 2|, we have that X; > X1, i.e. in the middle this subsequence can either
decrease or stay at the same level.

For example, in the (1,2,0,0, —1, 3, 4, 2, 2) time series there are two decreasing sequences, namely (2, 0, 0,
—1) and (4,2). Note that although (2, 0) satisfies the conditions on the relations between its values, it is
included in (2,0, 0, —1), and thus is not maximal.

A feature and an aggregator are functions over integer sequences, e.g. the maximum of a sequence of
integers, or the sum of elements in an integer sequence.

Time series are very common in many real-life applications. We now give a few examples of possible
usage of time-series constraints:

o Analysis of the output of electric power stations over multiple days in the context of solving the unit
commitment problem [28]. From known production curves of power plants one can extract a model
using time-series constraints, and then generate similar production curves satisfying additional re-
strictions for a considered power plant.

o Modelling a problem of staff scheduling in a call centre [11]. The overall problem is to cover the
given manpower demand over time, while minimising overall resource cost, and at the same time
satisfying restrictions related to business processes, employment rules, and union contracts, which
can be expressed as time-series constraints.

o Data mining in the context of power management for large-scale distributed systems [26].

o Trace analysis for Internet Service Provider to test the bandwidth of the user’s Internet connex-
ion [66].

o Anomaly detection and error correction in the temperature in a building [113].

o Real-time decision-making, for example, where one needs to analyse data streams in order to adjust
the toll rate depending on the traffic [5].

1.4 The Two Topics of this Thesis

The first topic of this thesis is developing systematic methods for synthesising compositional combi-
natorial objects such as bounds, linear invariants, automata for time-series constraints. The main idea is to
exploit the compositional nature of time-series constraints at the combinatorial level, i.e. the level related
to the solution space associated with a constraint or a conjunction of constraints. Compositionality here
means that we can combine such objects during the solving phase and also we can use them with different
technologies and/or in different contexts, e.g. CP, MP, data mining.

A formula typically captures some combinatorial relation between different quantities. The idea put
forward in this thesis is based on the bet that, provided that it is possible to synthesise them, the set of
formulae and redundant constraints potentially has more impact than a set of dedicated algorithms. Indeed,
from a compositional point of view, formulae can be used conjointly and applied in the context of several
resolution techniques such as CP or MP, which is much more difficult in the context of algorithms. As we
will see in the benchmarks of Part III, yet another advantage of combinatorial objects is synergy between
them, i.e. we can compose them. Different combinatorial objects combined together provide us with better
performance than when used separately. A vibrant example of such synergy is the interaction of bounds
on the result value of a time-series constraint v and glue constraints [8, 23]. For a sequence of variables
X = (X1,Xs,...,X,), aprefix P = (X1, Xo,...,X;) and a reversed suffix S = (X,,, X;,_1,...,X;) of
X, a glue constraint links the result values of three time-series constraints v imposed on X, on P, and on S.

Synthesised combinatorial objects can be used for different purposes including, but not limited to:

o When solving a problem in the context of CP, the goal is, usually, to prune as many infeasible
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Figure 1.1 — Synthesised combinatorial objects and the facets from which they were synthesised, i.e.
declarative with regular expressions or operational with transducers and/or register automata. An arrow
from source to destination indicates that destination can be synthesised from source.

values of variables as possible since the smaller are the domains, the easier it is to find a solution.
Synthesised combinatorial objects can be used for making the pruning of time-series constraints
stronger.

o While time-series constraints can be reformulated as linear models [11] and integrated into existing
linear models, the obtained linear reformulation is not tzight, i.e. a linear programming solver such as
CPLEX or Gurobi typically spends a lot of time to solve it. Our combinatorial objects can be used
to fasten the solving aspect in the context of linear programming.

o Time-series constraints can be used in the context of data mining. For example, bounds on the result
value of a time-series constraints are used for clustering time series representing the workload of a
data centre [94]; bounds allow us to compare the maximum ranges of variation of the result values
of different time-series constraints.

From the operational point of view, every time-series constraint y has a representation by a register
automaton, which is synthesised from the seed transducer for a regular expression associated with v [22].
It was shown in [68] how to automatically generate a seed transducer from a regular expression. All com-
binatorial objects we obtain in this thesis will be either synthesised from the declarative view of time-series
constraints, i.e. using regular expressions, or from their operational representation, i.e. using register au-
tomata and seed transducers. Figure 1.1 gives the classification of the combinatorial objects depending on
the representation of time-series constraints, from which they were synthesised, i.e. declarative or opera-
tional. The combinatorial objects presented in Figure 1.1 will be further detailed in Section 1.6.

While using transducers and automata has a long-standing tradition in the context of synthesising reli-
able software components [133, 128], it is rarely used to synthesise combinatorial objects such as bounds,
cuts or glue constraints. However one can point out the following correspondence between computer-aided
verification [55] and constraint programming: first, both use sometimes high-level declarative specifica-
tions from which transducers and or automata are synthesised. Second, there is a correspondence between
invariants that are typically extracted from these transducers and automata for proving some property of a
program or a system, and the necessary conditions one would like to synthesise in the context of CP or MP
to get stronger inferences: both are formulae that must always be true.

The second topic of this thesis is the extension of the approach used for describing time-series con-
straints to capture a larger number of sequence constraints such as [25, 105, 108]. The initial work [22]
uses finite transducers to synthesise filtering techniques for time-series constraints. However, the same
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transducer-based model can be extended for synthesising filtering techniques for other global constraints
such as AMONG [25], SIMILARITY [105], and STRETCH [108].

1.5 Differences with Existing Approaches

Before giving an overview of our contributions, we state four reasons that distinguish our work from
other approaches:

o First, in the literature there are approaches that either focus on the combinatorial aspect of specific
constraints such as ALLDIFFERENT, REGULAR, NVALUE [116, 19, 39, 41] or propose generic ap-
proaches for describing constraints and synthesising filtering techniques [129, 100, 73]. Some of
the approaches do not automatically handle the combinatorial aspect of a constraint: they rely on
the user to describe a filtering technique by a set of formulae [129, 100]. In the others, the set of
solutions to the constraint is represented by a multi-valued decision diagram (MDD) [35, 107] that
can be exponential in size. Some works are devoted to synthesis of an approximation of MDDs of
a smaller size [76]. However, MDDs do not focus on the relations between different characteristics
of discrete objects. In our work, we go a step further and explore the topic of automatically synthe-
sising propagators in the form of combinatorial objects for the large class of time-series constraints
[22] involving more than 200 constraints.

o Second, the obtained combinatorial objects can be used, not only as propagators in the context of
constraint programming, but also in the context of linear programming, data mining, local search.
This implies that such objects represent essential information about the combinatorial aspect of a
time-series constraint, and thus are independent of the context in which time-series constraints are
used.

o Third, the obtained objects are parameterised by the description of a considered time-series con-
straint, the length of a time series, and the domains of the time-series variables, and are synthesised
once and for all. This allows us to create a database of combinatorial objects for time-series con-
straints [10] and consult it in completely different contexts every time when required. There is no
need to rerun our methods for synthesising these combinatorial objects for each problem instance.
Note that, in order to obtain such combinatorial objects, we have to automatically prove that they
are valid for any sequence length.

o Fourth, working towards uniform ways of representing families of global constraints and of han-
dling their combinatorial aspect is not common within the CP community, but is still important
since otherwise we would end up with a set of dedicated constraints for each problem that do not
communicate.

1.6 A Guided Tour Through the Main Contributions of this Thesis

The main contributions presented in this thesis are the following:

o [Parameterised upper and lower bounds on the result value of every time-series constraint]

A bound formula for a considered time-series constraint is parameterised by the time-series length n,
and the domains of the time-series variables. Each bound formula is obtained from some generic
formula, which is parameterised by a considered time-series constraint. Hence we only need to prove
very few generic formulae, i.e. less than 10, rather than one formula per time-series constraint,
i.e. more than 200. While the bound is always valid, its sharpness is only guaranteed when the
domains of all time-series variables correspond to the same integer interval. For almost all time-
series constraints, both upper and lower bounds are evaluated in constant time, except 12 time-series
constraints, for which it takes O(n) to evaluate the bound [8].
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Figure 1.2 — The time series (3,2,4,2,4,1,3,2,3,0) with the maximum (five) number of decreasing se-
quences among any time series of length 10. The horizontal axis is for time-series elements, and the vertical
axis is for the values. The dashed lines separate different decreasing sequences.

This work was published in the Constraints journal [14] and in the proceedings of the CP’16 con-
ference [8], and the bounds for all time-series constraints were integrated into the Volume II of the
Global Constraint Catalogue [10].

Example 1.6.1 (sharp bounds). Consider a sequence of integers X = (X, Xo,..., X,,). A de-
creasing sequence in X is a maximal inclusion-wise monotonously decreasing subsequence of X.
For example, the sequence (1,2,1,0,0,—1,—2,2,4,2 2) has two decreasing sequences, namely
(2,1,0,0,—1,—2) and (4, 2). Since each decreasing sequence contains at least two elements and
any two decreasing sequences never overlap, the maximum number of decreasing sequences in X
is | 2]. Hence for the NB_DECREASING_SEQUENCE((X1, X», ..., X,,), R) time-series constraint,
where R is constrained to be the number of decreasing sequences in (X3, Xs, ..., X,,), a sharp upper
bound on R is L%J For example, Figure 1.2 gives a time series of length n = 10 with 5 decreasing
sequences, which is the maximum possible number of decreasing sequences in any time series of
length 10. The formula L%J is a special case of a generic formula of Theorem 7.2.2, on 84, that gives
the number of maximal inclusion-wise occurrences of a pattern in a sequence of integer numbers.

In this example, the pattern is DECREASING_SEQUENCE. A

o [Parameterised AMONG implied constraints for three families of time-series constraints]

An AMONG global constraint [25] restricts the number of variables of a sequence of variables to
take their values in a particular finite set of integer values. Here, the word implied means that
these constraints are redundant, i.e. they do not change the set of solutions of the problem, but
their purpose is to remove infeasible values from the domains of the variables. Similar to bounds,
there is one per family generic AMONG implied constraint that is parameterised by the pattern of a
considered time-series constraint. Hence we only need to prove three AMONG implied constraints
in order to further use them for 66 time-series constraints.

This work was published in the proceedings of the CP’17 conference [12], and the AMONG implied
constraints for 66 time-series constraints were integrated in the Volume II of the Global Constraint
Catalogue [10].

Example 1.6.2 (AMONG implied constraints, example adapted from [12]). Consider the MAX_SURF_
DECREASING_SEQUENCE(X, R) time-series constraint, where X is a sequence of integer variables
of length n, and R is constrained to be the maximum of the sums of the elements of the decreasing
sequences of X. For example, the sequence (1,2,1,0,0,—1,—2,2,4,2,2) has two decreasing se-
quences, namely (2,1,0,0, —1,—2) and (4, 2), with a sum of elements 0 and 6, respectively. The
maximum of these two values is 6, and thus R is fixed to 6.

Now assume that the value of R is known and is equal to, for example 18, but X is unknown, and
our goal is to find a sequence X of 7 integers, which are all in [1, 4], such that X yields 18 as the
value of R. By enumerating all integer sequences satisfying these restrictions, we observe that any
such integer sequence contains a single decreasin