
HAL Id: tel-01962957
https://theses.hal.science/tel-01962957

Submitted on 21 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Functional description of sequence constraints and
synthesis of combinatorial objects

Ekaterina Arafailova

To cite this version:
Ekaterina Arafailova. Functional description of sequence constraints and synthesis of combinatorial
objects. Discrete Mathematics [cs.DM]. Ecole nationale supérieure Mines-Télécom Atlantique, 2018.
English. �NNT : 2018IMTA0089�. �tel-01962957�

https://theses.hal.science/tel-01962957
https://hal.archives-ouvertes.fr

THÈSE DE DOCTORAT DE

L’École Nationale Supérieure Mines-Télécom Atlantique
Bretagne Pays de la Loire – IMT Atlantique
COMUE UNIVERSITE BRETAGNE LOIRE

Ecole Doctorale N°601
Mathèmatique et Sciences et Technologies
de l’Information et de la Communication
Spécialité : Informatique et applications

Par

« Ekaterina ARAFAILOVA »
« Functional Description of Sequence Constraints and

Synthesis of Combinatorial Objects »

Thèse présentée et soutenue à IMT ATLANTIQUE, NANTES, le 25 septembre 2018
Unité de recherche : Laboratoire des Sciences du Numérique de Nantes (LS2N)
Thèse N°: 2018IMTA0089

Rapporteurs avant soutenance :

Mme Michela Milano, Professeure, Università di Bologna

M. Stanislav Živný, Associate Professor, University of Oxford

Composition du jury :

Président : M. Claude Jard, Professeur, Université de Nantes
Examinateurs : M. John Hooker, Professeur, Carnegie Mellon University

Mme Michela Milano, Professeure, Università di Bologna

M. Stanislav Živný, Associate Professor, University of Oxford

Dir. de thèse : M. Nicolas Beldiceanu, Professeur, IMT Atlantique

Co-dir. de thèse : M. Rémi Douence, Maître assistant, HDR, IMT Atlantique

2

Abstract
Contrary to the standard approach consisting in introducing ad hoc constraints and designing dedicated

algorithms for handling their combinatorial aspect, this thesis takes another point of view. On the one
hand, it focusses on describing a family of sequence constraints in a compositional way by multiple layers
of functions. On the other hand, it addresses the combinatorial aspect of both a single constraint and
a conjunction of such constraints by synthesising compositional combinatorial objects, namely bounds,
linear inequalities, non-linear constraints and finite automata. These objects are obtained in a systematic
way and are not instance-specific: they are parameterised by one or several constraints, by the number
of variables in a considered sequence of variables, and by the initial domains of the variables. When
synthesising such objects we draw full benefit both from the declarative view of such constraints, based on
regular expressions, and from the operational view, based on finite transducers and register automata. There
are many advantages of synthesising combinatorial objects rather than designing dedicated algorithms: 1)
parameterised formulae can be applied in the context of several resolution techniques such as constraint
programming or linear programming, whereas algorithms are typically tailored to a specific technique; 2)
combinatorial objects can be combined together to provide better performance in practice; 3) finally, the
quantities computed by some formulae can not just be used in an optimisation setting, but also in the context
of data mining.

Key Words: constraint programming, automata, transducers, regular expressions, time series, parame-
terised combinatorial objects, linear and non-linear invariants

3

Résumé
À l’opposé de l’approche consistant à concevoir au cas par cas des contraintes et des algorithmes leur

étant dédiés, l’objet de cette thèse concerne d’une part la description de familles de contraintes en termes
de composition de fonctions, et d’autre part la synthèse d’objets combinatoires pour de telles contraintes.
Les objets concernés sont des bornes précises, des coupes linéaires, des invariants non-linéaires et des au-
tomates finis; leur but principal est de prendre en compte l’aspect combinatoire d’une seule contrainte ou
d’une conjonction de contraintes. Ces objets sont obtenus d’une façon systématique et sont paramétrés par
une ou plusieurs contraintes, par le nombre de variables dans une séquence, et par les domaines initiaux
de ces variables. Cela nous permet d’obtenir des objets indépendants d’une instance considérée. Afin de
synthétiser des objets combinatoires nous tirons partie de la vue declarative de telles contraintes, basée sur
les expressions régulières, ansi que la vue opérationnelle, basée sur les automates à registres et les trans-
ducteurs finis. Il y a plusieurs avantages à synthétiser des objets combinatoires par rapport à la conception
d’algorithmes dédiés: 1) on peut utiliser ces formules paramétrées dans plusieurs contextes, y compris la
programmation par contraintes et la programmation linéaire, ce qui est beaucoup plus difficile avec des al-
gorithmes; 2) la synergie entre des objets combinatoires nous donne une meilleure performance en pratique;
3) les quantités calculées par certaines des formules peuvent être utilisées non seulement dans le contexte
de l’optimisation mais aussi pour la fouille de données.

Mots clés : programmation par contraintes, automates, transducteurs, expressions régulières, séries tem-
porelles, objets combinatoires paramétrés, invariants linéaires et non-linéaires

4

Acknowledgements
First of all, I would like to thank my thesis director Nicolas Beldiceanu. Thank you for your support

during these three years, the knowledge and the experience that you have handed over to me, for your
precious advice about many things. It was a great honour and a pleasure to work with you for three years.

I would like to thank my co-director Rémi Douence. Thank you for your feedback on my writing and
presentations, for sharing your opinion about our work, and for bringing a different point of view in what
we were doing.

I would like to thank my jury members: Michela Milano, Stanislav Živný, John Hooker and Claude
Jard. Thank you very much for reviewing and examining my work and for your valuable feedback.

I would like to thank the EU H2020 programme under grant 640954 for the GRACeFUL project for
funding my thesis and everyone with whom I had an opportunity to work with during the project.

I would like to thank Helmut Simonis with whom I had an opportunity to co-author all my papers. Thank
you for sharing your knowledge about the practical side of our work, for showing Cork, for interesting
discussions on various topics, and for the delicious biscuits.

I would like to thank my other co-authors, Mats Carlsson, Pierre Flener, María Andreína Francisco
Rodríguez, and Justin Pearson. Thank you for all pleasure and fun I had when working with you, for the
picnics and the barbecues, and for your warm welcome in Uppsala.

I would like to thank the members of the TASC research group: Amine Balafrej, Anicet Bart, Philippe
David, Arthur Godet, Giovanni Lo Bianco, Xavier Lorca, Gilles Madi Wamba, Thierry Petit, Charles
Prud’homme, Gilles Simonin, and Charlotte Truchet. Thank you for all the laughter and interesting discus-
sions that we had during coffee breaks.

I would like to thank Catherine Fourny, Florence Rogues and Anne-Claire Binetruy. Thank you for
solving administrative questions in a fast and efficient way, and for organising numerous travels that I had
during my thesis.

I would like to thank Evgeny Gurevsky and Pavel Borisovsky for giving me the information about the
ORO Master program, and for helping me to move to France.

I would like to thank my dear friends Abood Mourad, Viktoriia Ihnatova, Polina Kalchevskaya, and
Natalia and Alexey Tichshenko. That would have been extremely complicated to get through the PhD story
without you!

I would like to thank my mother Natalia and our cat Barsenka. Without your support and your trust in
me I would not be where I am now doing what I am doing.

Last but not the last, I would like to thank my dear Matthieu. Your support and your love made me carry
on and struggle at the moment of desperation. Without you I would not be able to finish my thesis. I cannot
express how much I am grateful to you for everything.

Contents

1 Introduction 13

1.1 Tradeoff Between the Expressiveness of a Modelling Language and the Efficiency of Solv-
ing for Combinatorial Problems . 13

1.2 Mathematical Programming and Constraint Programming for Modelling and Solving Com-
binatorial Problems . 13

1.3 Context of Our Work: Time-Series Constraints . 14
1.4 The Two Topics of this Thesis . 15
1.5 Differences with Existing Approaches . 17
1.6 A Guided Tour Through the Main Contributions of this Thesis 17
1.7 The Reading Grid of this Thesis . 22

I Background 25

2 Background on Regular Expressions 29

3 Background on Automata, Register Automata and Transducers 31

3.1 Defining Automata, Register Automata and Transducers 31
3.2 Operations on Automata and Register Automata . 34

3.2.1 Intersection . 34
3.2.2 Union . 35
3.2.3 Complement . 35

4 Background on Constraint Programming 37

4.1 Constraints and Constraint Satisfaction Problems . 37
4.2 Solving a Constraint Satisfaction Problem . 38
4.3 Representation of a Constraint Satisfaction Problem . 39
4.4 Automata and Register Automata in Constraint Programming 39

4.4.1 REGULAR Global Constraint . 40
4.4.2 COST-REGULAR and MULTI-COST-REGULAR Global Constraints 40
4.4.3 AUTOMATON Global Constraint . 41

5 Background on Time-Series Constraints 43

5.1 Defining Time-Series Constraints . 43
5.2 Operational View of Time-Series Constraints . 46

5.2.1 Seed Transducer for a Regular Expression . 47
5.2.2 Synthesising and Simplifying Register Automata 49
5.2.3 Glue Constraints . 50

5.3 Related Approach: Quantitative Regular Expressions . 52

5

6 CONTENTS

II Theoretical Contributions 55

6 Overview of our Theoretical Contributions 59

6.1 Contributions for Time-Series Constraints in Isolation . 59
6.1.1 First Key Idea: Regular-Expression Characteristics 60

6.2 Contributions for a Conjunction of Time-Series Constraints 61
6.2.1 Second Key Idea: Operational View of Time-Series Constraints 62

6.3 Integrating Combinatorial Objects into the Global Constraint Catalogue 63
6.4 Overview of the Extended Transducer-Based Model . 63

7 Synthesising Parameterised Bounds 65

7.1 Regular-Expression Characteristics . 66
7.1.1 A Notation System for Regular-Expression Characteristics 66
7.1.2 Size . 67
7.1.3 Height . 67
7.1.4 Range . 68
7.1.5 Set of Inducing Words . 68
7.1.6 Overlap . 69
7.1.7 Smallest Variation of Maxima . 71
7.1.8 Summary Example Illustrating All Regular-Expression Characteristics 73
7.1.9 Necessary and Sufficient Condition for the Existence of an Occurrence of a Regular

Expression . 74
7.2 Time-Series Constraints with Feature ONE . 76

7.2.1 A Sharp Lower Bound on the Number of Pattern Occurrences 76
7.2.2 A First Not Necessarily Sharp Upper Bound . 77
7.2.3 Extending the Upper Bound to Get a Sharp Bound Under Some Hypothesis 79

7.3 Time-Series Constraints with Feature WIDTH . 86
7.3.1 Properties of Regular Expressions . 86
7.3.2 Upper Bound for MAX_WIDTH_σ . 87
7.3.3 Upper Bound for SUM_WIDTH_σ . 88
7.3.4 Lower Bound for MIN_WIDTH_σ . 91

7.4 Synthesis . 92
7.5 Conclusion . 95

8 Synthesising Parameterised AMONG Implied Constraints 97

8.1 Complexity of the SUM_SURF_PEAK Time-Series Constraint 98
8.2 Deriving an AMONG Implied Constraint . 98

8.2.1 Regular-Expression Characteristics . 99
8.2.2 Deriving an AMONG Implied Constraint for the MAX_SURF_σ, MIN_SURF_σ

and the SUM_SURF_σ Families . 101
8.3 Conclusion . 107

9 Synthesising Parameterised Linear Invariants 109

9.1 Generating Linear Invariants . 109
9.1.1 Constructing the Invariant Digraph for a Conjunction of AUTOMATON Constraints

wrt a Linear Function . 111
9.1.2 Finding the Relative Coefficients of the Linear Invariant 114
9.1.3 Finding the Constant Term of the Linear Invariant 115

9.2 Improving the Generated Linear Invariants . 116
9.2.1 Preprocessing Technique of the Intersection of Register Automata 116

9.3 Generating Additional Invariants . 120

CONTENTS 7

9.3.1 Generating Conditional Linear Invariants with the Non-Default Value Condition . 121
9.3.2 Generating Linear Guard Invariants . 121

9.4 Infeasible Combinations of the Result Values not Eliminated by the Generated Linear In-
variants . 122

9.5 Conclusion . 123

10 Synthesising Parameterised Non-Linear Invariants 125

10.1 Motivation and Running Example . 126
10.2 Discovering and Proving Invariants . 126

10.2.1 Mining Phase . 128
10.2.2 Proof Phase . 129

10.3 Infeasible Combinations not Eliminated by our Non-Linear Invariants 132
10.4 Conclusion . 134

11 Synthesising Constant-Size Conditional Automata 135

11.1 Generation of Constant-Size Automata for Constant Atomic Relations 135
11.2 Generation of Constant-Size Automata for Modulo Atomic Relations 138
11.3 Generation of Constant-Size Automata for Gap Atomic Relations 139

11.3.1 Deriving a δ-gap Automaton for a Time-Series Constraint 140
11.3.2 Deriving the δ-gap Automaton for the NB_σ Family 145
11.3.3 Deriving the δ-gap Automaton for the SUM_WIDTH_σ Family 150
11.3.4 Conclusion . 153

11.4 Generation of Constant-Size Automata for ≥ and  Atomic Relations 153
11.5 Conclusion . 154

12 Extended Transducer-Based Model 155

12.1 Defining Functions over Integer Sequences . 155
12.2 Operational View of Functions Over Integer Sequences 159

12.2.1 Handling the Recognition Aspect: Seed Transducer 160
12.2.2 Handling the Computational Aspect: Reduced Instruction Set 162

12.3 Conclusion, Related Work, and Future Work . 166

III Practical Evaluation of our Contributions 167

13 Evaluation of the Impact of Bounds 171

14 Evaluation of the Impact of AMONG Implied Constraints 175

15 Evaluation of the Impact of Linear Invariants 177

16 Evaluation of the Impact of Non-Linear Invariants 181

Conclusion 183
17.1 Summary of this Thesis . 183
17.2 Future Work . 184

17.2.1 Improving the Solving Aspect . 184
17.2.2 Complexity Analysis . 185
17.2.3 Formalisation and Generalisation Issues . 185
17.2.4 Applications . 185

8 CONTENTS

French Summary 187

Appendices 193

A An Entry of the Global Constraint Catalogue 195

A.1 Metadata . 195
A.2 PDF Pages . 203

B An Entry of the Database of Invariants of the Global Constraint Catalogue 209

B.1 Metadata . 209
B.2 PDF Pages . 209

C Tables with Regular-Expression Characteristics 211

Notation for Regular-Expression Characteristics 223

Index 225

Bibliography 229

List of Figures

1.1 Synthesised combinatorial objects and the facets from which they were synthesised 16
1.2 The time series h3, 2, 4, 2, 4, 1, 3, 2, 3, 0i with the maximum (five) number of decreasing

sequences among all time series of length 10. 18
1.3 Feasible and infeasible combinations of the results values of two constraints imposed on the

same sequence whose length is in {9, 10, 11, 12}. 20
1.4 (A) Automaton accepting the signatures of all, and only all, integer sequences with the

maximum number of decreasing sequences. (B) All signatures of lengths 3 and 4 accepted
by the automaton in (A). 21

3.1 (A) Automaton recognising the signatures of integer sequences whose elements are all in
{−1, 0, 5}. (B) Register automaton recognising any signature and returning the number
of elements in {−1, 0, 5} in an integer sequence. (C) Register automaton recognising any
signature and returning the sum of elements in {−1, 0, 5} in an integer sequence. (D) Trans-
ducer with the input alphabet {2, /2} and the output alphabet {found, out, in, outa} . . . 33

3.2 (A) Automaton recognising sequences of 0 and 1, where 0 are only located at odd positions;
(B) automaton recognising sequences of 0 and 1, where 1 are only located at even positions;
(C) intersection of (A) and (B); (D) complement of (A). 34

3.3 (A) and (B) register automata over alphabet {<,=, >}; (C) intersection of (A) and (B) . . 35

5.1 Time series h0, 1, 2, 2, 0, 0, 4, 1i with its two peaks of respective widths 3 and 1 46
5.2 Seed transducer for the PEAK regular expression. This figure is adapted from [10]. 48
5.3 Register automata for NB_PEAK and SUM_WIDTH_PEAK. These figures are adapted from

[10]. 49
5.4 Simplified register automata for NB_PEAK (left) and SUM_WIDTH_PEAK (right). These

figures are adapted from [10]. 50
5.5 (A) Features: the function used for computing the value of a feature. (B) Decoration table

used for synthesising the register automaton for a time-series constraint 51
5.6 (A) The prefix h0, 1, 2i of the time series h0, 1, 2, 2, 0, 0, 4, 1i without any peaks. (B) The

suffix h2, 2, 0, 0, 4, 1i of the time series h0, 1, 2, 2, 0, 0, 4, 1i with one peak 52

6.1 Regular-expression characteristics introduced in Chapters 7 and 8. 61
6.2 Seed transducer for σ = DECREASING_TERRACE when bσ is 1 (A) and 2 (B) 64

7.1 Illustration of the introduced regular-expression characteristics 74
7.2 Lemma 7.2.2 Case (1.1): Illustration of the word z1w1w2w1w2 belonging to the language

of ‘v | z1(w1w2)
⇤(w1 | ")’ . 82

8.1 Time series illustrating the introduced regular-expression characteristics 99
8.2 Time series illustrating the intuition of the AMONG implied constraints 103

9.1 (A) Register automaton for NB_PEAK. (B) Register automaton for NB_VALLEY. (C) Inter-
section of (A) and (B). 111

9

10 LIST OF FIGURES

9.2 Invariant digraph for NB_PEAK and NB_VALLEY wrt e + e0 · n+ e1 · P + e2 · V 112
9.3 (A) The invariant digraph of the register automata for two time-series constraints. (B) The

set of feasible values of the result variables of two constraints 115
9.4 Intersection of the register automata for two time-series constraints, for which our method

does not generate sharp linear invariants . 117
9.5 Delayed intersection obtained from the intersection in Figure 9.4 118
9.6 Invariant digraph obtained from the delayed intersection in Figure 9.5 120
9.7 (A) General linear invariants, (B) linear invariants with non-default value conditions for a

pair of time-series constraints. (C) Automaton with guard invariants 121
9.8 Illustration of infeasible combinations of the result values of time-series constraints not

eliminated by the generated linear invariants . 123

10.1 Feasible and infeasible combinations of the result values of two time-series constraints im-
posed on the same sequence whose length is in {9, 10, 11, 12} 127

10.2 Seven groups of infeasible combinations of the result values of two time-series constraints 131
10.3 (A) Automaton for a gap atomic relation. (B) Automaton for a modulo atomic relation . . 133
10.4 Illustration of infeasible combinations of the result values not eliminated byt the generated

non-linear invariants . 133

11.1 (A) Register automaton for SUM_WIDTH_DECREASING_SEQUENCE(X,R). (B) Automa-
ton for the R = 3 constant atomic relation. (C) All signatures of length 3 accepted by the
automaton in Part (B) . 136

11.2 (A) Register automaton for NB_DECREASING_SEQUENCE(X,R). (B) Automaton for the
R mod 2 = 1 atomic relation. (C) All signatures of length 2 accepted by the automaton in
Part (B) . 138

11.3 (A) Automaton achieving the maximum number of peaks in a time series of length n. (B)
All corresponding accepted words for n − 1 2 {4, 5}. (C) The signatures of time series
with gap 1 and 2, respectively, and with loss 3 and 5, respectively 140

11.4 Illustration of gap and loss for six time series . 143
11.5 Seed transducer (A) and separated seed transducer (B) for the PEAK regular expression. . . 149
11.6 Loss automaton for NB_PEAK. The initial value of the registers C, D, and R is zero. . . . 151

12.1 Well-formed output language . 161
12.2 New seed transducers for 5 regular expressions . 163
12.3 Trace for the MAX_WIDTH_GROUP constraint . 165

13.1 Comparing backtrack count and runtime for Automaton and its variants 172
13.2 Scalability results comparing time for Automaton and Combined on problems of increasing

length. 173
13.3 Comparing parts of the search tree for MAX_SURF_INCREASING_TERRACE, finding the

first solution or proving infeasibility . 174

14.1 Comparing backtrack count and runtime of the g_f_σ time-series constraint for previous
best results and new method for finding the first solution or proving infeasibility 176

15.1 Comparing constraint variants, undecided instances percentage for size 18 as a function of
time . 178

15.2 Percentage of problems solved for 3 overlapping segments of lengths 22, 24, and 25. . . . 179

17.1 Synthesised combinatorial objects, grouped by the case they are synthesised for, i.e. char-
acterising a single constraint or a conjunction of constraints 184

17.2 Les objets combinatoires synthétisés et les facettes à partir desquelles ils étaient synthétisés 189

List of Tables

5.1 Features and aggregators . 44
5.2 Regular-expression names σ, corresponding regular expressions, and values of the parame-

ters aσ and bσ. This table is adapted from [14]. 45
5.3 Glue matrix for the NB_PEAK constraint . 52
5.4 Comparison of time-series constraints and QREs . 53

7.1 Regular-expression names and corresponding size, height, range, set of inducing words,
overlap and smallest variation of maxima . 75

7.2 A synthesis of all the bounds presented in Sections 7.2, 7.3, and in [8]. 93
7.3 Classification of regular expressions: regular expression names σ, their properties and con-

ditions on domain [`, u] when they hold. 94

8.1 Regular expressions and corresponding maximum value occurrence number and big width. 102
8.2 Regular expressions and corresponding interval of interest and the lower bound on the pa-

rameter of the AMONG implied constraints for the MAX_SURF_σ family 105
8.3 Regular expressions and corresponding interval of interest and the lower bound on the pa-

rameter of the AMONG implied constraints for the SUM_SURF_σ family 106

11.1 Decoration table for the loss automaton for NB_σ time-series constraints 150

12.1 Features and aggregators of the extended transducer-based model 157
12.2 Illustration of s-occurrences of a concrete pattern in a signature, and of their corresponding

found indices, e-occurrences and i-occurrences . 158
12.3 Operational views of features and aggregators in the extended transducer-based model . . 159
12.4 Examples of functions over integer sequences . 159

16.1 Comparing the state-of-the-art baseline and the baseline with the generated invariants . . . 181

C.1 Table for the size regular-expression characteristic . 211
C.2 Table for the height regular-expression characteristic . 212
C.3 Table for the range regular-expression characteristic . 213
C.4 Table for the set of inducing words regular-expression characteristic 214
C.5 Table for the overlap regular-expression characteristic . 215
C.6 Table for the smallest variation of maxima regular-expression characteristic 216
C.7 Table for the interval of interest regular-expression characteristic 218
C.8 Table for the maximum value occurrence number regular-expression characteristic 220
C.9 Table for the big width regular-expression characteristic 222

11

Chapter 1

Introduction

1.1 Tradeoff Between the Expressiveness of a Modelling Language

and the Efficiency of Solving for Combinatorial Problems

Many real-life problems, e.g. staff scheduling in a call centre or production planning of a power plant,
can be described as mathematical models. In such a context, we have two main aspects: 1) the modelling
language aspect, i.e. our language should be rich enough to concisely express a large variety of problems;
2) the solving aspect, i.e. we should be able to find a solution to our model efficiently. Currently, we face
one of the two following situations:

1. We have a powerful language allowing us to model easily and that can be further extended. However,
the solving aspect is highly inefficient.

2. Our language is restricted and extending the language may require adding ad hoc elements specific
to a considered problem, but not useful for any other problem.

Within the context of problems using integer sequences, the goal of this thesis is to obtain a tradeoff
between the expressiveness of the modelling language and the efficiency of the solving aspect for com-
binatorial problems. We work towards a language that is powerful enough to describe a large variety of
problems, and efficient enough from the solving point of view. Our approach is based on the following
observation: any model for a combinatorial problem has two main components, namely 1) variables that
represent quantities, e.g. produced amount of electricity for a given power plant, and take their values in
given sets, called domains, and 2) constraints, which impose relations between these variables and repre-
sents business processes, technical restrictions, etc. Such models often use discrete objects such as

— permutations [117];
— trees [42], i.e. acyclic connected graphs;
— time series [47], i.e. integer sequences representing measurements taken over time.
Such discrete objects can be described by their characteristics, e.g. the number of cycles in a permutation

[82], the diameter of a tree [104], and the number of peaks in a time series [22]. Characteristics are often
used to represent the constraints of the problem. In the solving context, we typically need to find a discrete
object simultaneously satisfying restrictions on its several characteristics, e.g. a time series with 3 peaks and
2 valleys. Restricting several characteristics may be more challenging than restricting a single characteristic
since during the solving phase constraints have to communicate efficiently, which is not always the case.

1.2 Mathematical Programming and Constraint Programming

for Modelling and Solving Combinatorial Problems

Mathematical Programming (MP) [126] and Constraint Programming (CP) [118] are two complemen-
tary approaches for modelling and solving combinatorial problems using discrete objects with a number of

13

14 CHAPTER 1. INTRODUCTION

successful applications in the domains of scheduling, packing, and routing [134, 135, 48, 51, 110, 95, 65].
The main difference between CP and MP are the types of constraints used for modelling. In the context

of MP, constraints are usually linear or convex [16, 33, 115], and, for example, for problems with only linear
constraints, solvers typically use the simplex method [58]. CP models use global constraints. The Global
Constraint Catalogue [21] defines a global constraint as “an expressive and concise condition involving a
non-fixed number of variables”. For example, the ALLDIFFERENT(hX1, X2, . . . , Xni) [130] global con-
straint restricts a sequence of integer variables hX1, X2, . . . , Xni to take distinct values. Therefore, the
sequence h1, 8, 7,−1, 3i satisfies an ALLDIFFERENT constraint, but h1, 8, 1,−1, 3i does not since X1 is the
same as X3. In CP, a global constraint usually comes with a filtering technique, which is an algorithm or
any kind of inference that allows one to reduce the domains of the variables by removing values that cannot
be part of any solution to this constraint.

Despite different constraint types, and thus different solving techniques, CP and MP have some common
drawbacks that motivate the work of this thesis:

◦ In both MP and CP, modelling can be challenging both from the point of view of problem description
and from an inference point of view. In MP, this is due to the fact that constraints must be linear
or convex. In CP, this is due to the fact that a required global constraint may not exist and needs
to be introduced. Hence there is a common need to define constraints in a compositional way that
can be then systematically reformulated as linear programs or for which one can obtain a filtering
technique in a systematic way.

◦ When domains of variables are discrete, both MP and CP models may become hard to solve [106,
131]. Hence in order to solve a problem efficiently one tries to draw full benefit from the structure of
the considered problem. In MP, this is done in the preprocessing step, where a solver verifies whether
a considered problem has a well-known structure, e.g. network flow [63], and then applies a specific
preprocessing technique for this subproblem and/or generates cuts [75, 96]. In CP, this is done
by designing dedicated filtering techniques for global constraints of the problem. Hence there is a
need to synthesise combinatorial objects characterising the structure of a considered combinatorial
problem, e.g. bounds, linear cuts, implied constraints, which are redundant constraints that do not
change the set of solutions of the problem, but their purpose is to remove infeasible values from the
domains of the variables.

◦ The need to exploit the problem structure leads to a large number of ad hoc methods, e.g. specific
bounds, algorithms, decompositions, filtering techniques, heuristics. These are methods that are
efficient for solving the problem they were designed for, but either cannot be reused at all for any
other problem or require a significant effort for adjusting them. Hence there is a need to develop
systematic methods for synthesising combinatorial objects for constraints occurring in a considered
problem.

1.3 Context of Our Work: Time-Series Constraints

This thesis studies a family of global constraints, called time-series constraints, defined in a compo-
sitional way by means of functions [22, 10]. A time-series constraint γ(X,R) restricts R, called the

result value of γ, to be the result of some computations over the sequence of integer variables X =
hX1, X2, . . . , Xni, called a time series, which represents measurements taken over time [22]. For ex-
ample, R could be the number of consecutive pairs of variables hXi, Xi+1i of X such that Xi < Xi+1

with i in [1, n − 1]. The three main ingredients describing a time-series constraint are a pattern, a fea-

ture, and an aggregator. A pattern is some regular form of subsequences, which is from a formal point
of view characterised by a regular expression over the alphabet of three letters {‘<’, ‘=’, ‘>’}. For ex-
ample, the DECREASING_SEQUENCE pattern, which corresponds to any maximal monotonously decreas-
ing subsequence hXi, Xi+1, . . . , Xji of a sequence of integers hX1, X2, . . . , Xni is characterised by the

1.4. THE TWO TOPICS OF THIS THESIS 15

‘(> (> | =)⇤)⇤ >’ regular expression, which relates the variables of the subsequence hXi, Xi+1, . . . , Xji as
follows:
◦ Xi > Xi+1, i.e. this subsequence starts with a strict decrease;
◦ Xj−1 > Xj , i.e. this subsequence also ends with a strict decrease;
◦ for any k in [i + 1, j − 2], we have that Xk ≥ Xk+1, i.e. in the middle this subsequence can either

decrease or stay at the same level.
For example, in the h1, 2, 0, 0,−1, 3, 4, 2, 2i time series there are two decreasing sequences, namely h2, 0, 0,
−1i and h4, 2i. Note that although h2, 0i satisfies the conditions on the relations between its values, it is
included in h2, 0, 0,−1i, and thus is not maximal.

A feature and an aggregator are functions over integer sequences, e.g. the maximum of a sequence of
integers, or the sum of elements in an integer sequence.

Time series are very common in many real-life applications. We now give a few examples of possible
usage of time-series constraints:
◦ Analysis of the output of electric power stations over multiple days in the context of solving the unit

commitment problem [28]. From known production curves of power plants one can extract a model
using time-series constraints, and then generate similar production curves satisfying additional re-
strictions for a considered power plant.
◦ Modelling a problem of staff scheduling in a call centre [11]. The overall problem is to cover the

given manpower demand over time, while minimising overall resource cost, and at the same time
satisfying restrictions related to business processes, employment rules, and union contracts, which
can be expressed as time-series constraints.
◦ Data mining in the context of power management for large-scale distributed systems [26].
◦ Trace analysis for Internet Service Provider to test the bandwidth of the user’s Internet connex-

ion [66].
◦ Anomaly detection and error correction in the temperature in a building [113].
◦ Real-time decision-making, for example, where one needs to analyse data streams in order to adjust

the toll rate depending on the traffic [5].

1.4 The Two Topics of this Thesis

The first topic of this thesis is developing systematic methods for synthesising compositional combi-

natorial objects such as bounds, linear invariants, automata for time-series constraints. The main idea is to
exploit the compositional nature of time-series constraints at the combinatorial level, i.e. the level related
to the solution space associated with a constraint or a conjunction of constraints. Compositionality here
means that we can combine such objects during the solving phase and also we can use them with different
technologies and/or in different contexts, e.g. CP, MP, data mining.

A formula typically captures some combinatorial relation between different quantities. The idea put
forward in this thesis is based on the bet that, provided that it is possible to synthesise them, the set of
formulae and redundant constraints potentially has more impact than a set of dedicated algorithms. Indeed,
from a compositional point of view, formulae can be used conjointly and applied in the context of several
resolution techniques such as CP or MP, which is much more difficult in the context of algorithms. As we
will see in the benchmarks of Part III, yet another advantage of combinatorial objects is synergy between
them, i.e. we can compose them. Different combinatorial objects combined together provide us with better
performance than when used separately. A vibrant example of such synergy is the interaction of bounds
on the result value of a time-series constraint γ and glue constraints [8, 23]. For a sequence of variables
X = hX1, X2, . . . , Xni, a prefix P = hX1, X2, . . . , Xii and a reversed suffix S = hXn, Xn−1, . . . , Xii of
X , a glue constraint links the result values of three time-series constraints γ imposed on X , on P , and on S.

Synthesised combinatorial objects can be used for different purposes including, but not limited to:
◦ When solving a problem in the context of CP, the goal is, usually, to prune as many infeasible

16 CHAPTER 1. INTRODUCTION

Time-Series Constraint

(declarative view)

Regular Expression

Time-Series Constraint

(operational view)

Transducer

#

Register Automaton

◦ Bounds on the result value

◦ AMONG implied constraints

◦ Linear invariants

◦ Non-linear invariants

◦ Conditional automata

Figure 1.1 – Synthesised combinatorial objects and the facets from which they were synthesised, i.e.
declarative with regular expressions or operational with transducers and/or register automata. An arrow
from source to destination indicates that destination can be synthesised from source.

values of variables as possible since the smaller are the domains, the easier it is to find a solution.
Synthesised combinatorial objects can be used for making the pruning of time-series constraints
stronger.
◦ While time-series constraints can be reformulated as linear models [11] and integrated into existing

linear models, the obtained linear reformulation is not tight, i.e. a linear programming solver such as
CPLEX or Gurobi typically spends a lot of time to solve it. Our combinatorial objects can be used
to fasten the solving aspect in the context of linear programming.
◦ Time-series constraints can be used in the context of data mining. For example, bounds on the result

value of a time-series constraints are used for clustering time series representing the workload of a
data centre [94]; bounds allow us to compare the maximum ranges of variation of the result values
of different time-series constraints.

From the operational point of view, every time-series constraint γ has a representation by a register

automaton, which is synthesised from the seed transducer for a regular expression associated with γ [22].
It was shown in [68] how to automatically generate a seed transducer from a regular expression. All com-
binatorial objects we obtain in this thesis will be either synthesised from the declarative view of time-series
constraints, i.e. using regular expressions, or from their operational representation, i.e. using register au-
tomata and seed transducers. Figure 1.1 gives the classification of the combinatorial objects depending on
the representation of time-series constraints, from which they were synthesised, i.e. declarative or opera-
tional. The combinatorial objects presented in Figure 1.1 will be further detailed in Section 1.6.

While using transducers and automata has a long-standing tradition in the context of synthesising reli-
able software components [133, 128], it is rarely used to synthesise combinatorial objects such as bounds,
cuts or glue constraints. However one can point out the following correspondence between computer-aided
verification [55] and constraint programming: first, both use sometimes high-level declarative specifica-
tions from which transducers and or automata are synthesised. Second, there is a correspondence between
invariants that are typically extracted from these transducers and automata for proving some property of a
program or a system, and the necessary conditions one would like to synthesise in the context of CP or MP
to get stronger inferences: both are formulae that must always be true.

The second topic of this thesis is the extension of the approach used for describing time-series con-

straints to capture a larger number of sequence constraints such as [25, 105, 108]. The initial work [22]
uses finite transducers to synthesise filtering techniques for time-series constraints. However, the same

1.5. DIFFERENCES WITH EXISTING APPROACHES 17

transducer-based model can be extended for synthesising filtering techniques for other global constraints
such as AMONG [25], SIMILARITY [105], and STRETCH [108].

1.5 Differences with Existing Approaches

Before giving an overview of our contributions, we state four reasons that distinguish our work from
other approaches:
◦ First, in the literature there are approaches that either focus on the combinatorial aspect of specific

constraints such as ALLDIFFERENT, REGULAR, NVALUE [116, 19, 39, 41] or propose generic ap-
proaches for describing constraints and synthesising filtering techniques [129, 100, 73]. Some of
the approaches do not automatically handle the combinatorial aspect of a constraint: they rely on
the user to describe a filtering technique by a set of formulae [129, 100]. In the others, the set of
solutions to the constraint is represented by a multi-valued decision diagram (MDD) [35, 107] that
can be exponential in size. Some works are devoted to synthesis of an approximation of MDDs of
a smaller size [76]. However, MDDs do not focus on the relations between different characteristics
of discrete objects. In our work, we go a step further and explore the topic of automatically synthe-

sising propagators in the form of combinatorial objects for the large class of time-series constraints
[22] involving more than 200 constraints.
◦ Second, the obtained combinatorial objects can be used, not only as propagators in the context of

constraint programming, but also in the context of linear programming, data mining, local search.
This implies that such objects represent essential information about the combinatorial aspect of a
time-series constraint, and thus are independent of the context in which time-series constraints are
used.
◦ Third, the obtained objects are parameterised by the description of a considered time-series con-

straint, the length of a time series, and the domains of the time-series variables, and are synthesised
once and for all. This allows us to create a database of combinatorial objects for time-series con-
straints [10] and consult it in completely different contexts every time when required. There is no
need to rerun our methods for synthesising these combinatorial objects for each problem instance.
Note that, in order to obtain such combinatorial objects, we have to automatically prove that they
are valid for any sequence length.
◦ Fourth, working towards uniform ways of representing families of global constraints and of han-

dling their combinatorial aspect is not common within the CP community, but is still important
since otherwise we would end up with a set of dedicated constraints for each problem that do not
communicate.

1.6 A Guided Tour Through the Main Contributions of this Thesis

The main contributions presented in this thesis are the following:

◦ [Parameterised upper and lower bounds on the result value of every time-series constraint]
A bound formula for a considered time-series constraint is parameterised by the time-series length n,
and the domains of the time-series variables. Each bound formula is obtained from some generic
formula, which is parameterised by a considered time-series constraint. Hence we only need to prove
very few generic formulae, i.e. less than 10, rather than one formula per time-series constraint,
i.e. more than 200. While the bound is always valid, its sharpness is only guaranteed when the
domains of all time-series variables correspond to the same integer interval. For almost all time-
series constraints, both upper and lower bounds are evaluated in constant time, except 12 time-series
constraints, for which it takes O(n) to evaluate the bound [8].

18 CHAPTER 1. INTRODUCTION

0

2

4

10
 À Ã Õ Œ

Figure 1.2 – The time series h3, 2, 4, 2, 4, 1, 3, 2, 3, 0i with the maximum (five) number of decreasing se-
quences among any time series of length 10. The horizontal axis is for time-series elements, and the vertical
axis is for the values. The dashed lines separate different decreasing sequences.

This work was published in the Constraints journal [14] and in the proceedings of the CP’16 con-
ference [8], and the bounds for all time-series constraints were integrated into the Volume II of the
Global Constraint Catalogue [10].

Example 1.6.1 (sharp bounds). Consider a sequence of integers X = hX1, X2, . . . , Xni. A de-

creasing sequence in X is a maximal inclusion-wise monotonously decreasing subsequence of X .
For example, the sequence h1, 2, 1, 0, 0,−1,−2, 2, 4, 2, 2i has two decreasing sequences, namely
h2, 1, 0, 0,−1,−2i and h4, 2i. Since each decreasing sequence contains at least two elements and
any two decreasing sequences never overlap, the maximum number of decreasing sequences in X
is
⌅
n
2

⇧
. Hence for the NB_DECREASING_SEQUENCE(hX1, X2, . . . , Xni , R) time-series constraint,

whereR is constrained to be the number of decreasing sequences in hX1, X2, . . . , Xni, a sharp upper
bound on R is

⌅
n
2

⇧
. For example, Figure 1.2 gives a time series of length n = 10 with 5 decreasing

sequences, which is the maximum possible number of decreasing sequences in any time series of
length 10. The formula

⌅
n
2

⇧
is a special case of a generic formula of Theorem 7.2.2, on 84, that gives

the number of maximal inclusion-wise occurrences of a pattern in a sequence of integer numbers.
In this example, the pattern is DECREASING_SEQUENCE. 4

◦ [Parameterised AMONG implied constraints for three families of time-series constraints]
An AMONG global constraint [25] restricts the number of variables of a sequence of variables to
take their values in a particular finite set of integer values. Here, the word implied means that
these constraints are redundant, i.e. they do not change the set of solutions of the problem, but
their purpose is to remove infeasible values from the domains of the variables. Similar to bounds,
there is one per family generic AMONG implied constraint that is parameterised by the pattern of a
considered time-series constraint. Hence we only need to prove three AMONG implied constraints
in order to further use them for 66 time-series constraints.
This work was published in the proceedings of the CP’17 conference [12], and the AMONG implied
constraints for 66 time-series constraints were integrated in the Volume II of the Global Constraint
Catalogue [10].

Example 1.6.2 (AMONG implied constraints, example adapted from [12]). Consider the MAX_SURF_
DECREASING_SEQUENCE(X,R) time-series constraint, where X is a sequence of integer variables
of length n, and R is constrained to be the maximum of the sums of the elements of the decreasing
sequences of X . For example, the sequence h1, 2, 1, 0, 0,−1,−2, 2, 4, 2, 2i has two decreasing se-
quences, namely h2, 1, 0, 0,−1,−2i and h4, 2i, with a sum of elements 0 and 6, respectively. The
maximum of these two values is 6, and thus R is fixed to 6.
Now assume that the value of R is known and is equal to, for example 18, but X is unknown, and
our goal is to find a sequence X of 7 integers, which are all in [1, 4], such that X yields 18 as the
value of R. By enumerating all integer sequences satisfying these restrictions, we observe that any
such integer sequence contains a single decreasing sequence with at least 4 its elements being 3 or 4.
This allows us to the state the AMONG(N, hX1, X2, . . . , X7i , h3, 4i) constraint with N ≥ 4, which

1.6. A GUIDED TOUR THROUGH THE MAIN CONTRIBUTIONS OF THIS THESIS 19

means that the number N of occurrences of the values 3 and 4 in the sequence hX1, X2, . . . , X7i is
at least 4.
The parameters of the AMONG implied constraint, i.e. h3, 4i in this example, and a lower bound on
N are obtained from a generic formula, parameterised by the pattern associated with a time-series
constraint. 4

◦ [Parameterised linear implied inequalities linking the result values of a conjunction of time-series
constraints imposed on the same time series of length n]
We explore the relations between the result values of several time-series constraints imposed on the
same time series. We call these inequalities linear invariants.
This work was published in the proceedings of the CP’17 conference [13], and the obtained linear
inequalities were integrated in the database of invariants of the Volume II of the Global Constraint
Catalogue [10].

Example 1.6.3 (Linear invariants). Consider the conjunction of NB_DECREASING_SEQUENCE(X ,
R1) and NB_INCREASING_SEQUENCE(X,R2) imposed on the same sequence of variables X of
length n, where R1 (respectively R2) is constrained to be the number of decreasing (respectively in-
creasing) sequences in X . An increasing sequence in X is a maximal inclusion-wise monotonously
increasing subsequence of X . Since between any two consecutive increasing sequences there is ex-
actly one decreasing sequence and vice versa, the linear inequalities R1  R2 + 1 and R2  R1 + 1
hold for any sequence X of integers. In addition, the total number of decreasing and increasing se-
quences in an integer sequence of length n cannot exceed n. Hence the linear inequalityR1+R2  n
holds for any sequence X of any length n.
We extract such linear invariants using register automata associated with the corresponding time-
series constraints. 4

◦ [Parameterised non-linear invariants linking the result values of a conjunction of time-series con-
straints imposed on the same time series of length n]
Such invariants characterise sets of infeasible combinations of the result values of the time-series
constraints in a conjunction that cannot be described as a linear combination of the result values
of the conjunction of time-series constraints and n. In other words, these are sets of infeasible
combinations that are located within the convex hull of feasible combinations.
The obtained non-linear invariants were integrated in the database of invariants of the Volume II of
the Global Constraint Catalogue [10].

Example 1.6.4 (Non-linear invariants). Consider the conjunction of SUM_WIDTH_DECREASING_
_SEQUENCE(X,R1) and SUM_WIDTH_INCREASING_SEQUENCE(X,R2) imposed on the same se-
quence of variables X of length n, where R1 (respectively R2) is constrained to be the sum of the
number of elements of all decreasing (respectively increasing) sequences in X . For example, the in-
teger sequence h1, 2, 1, 0, 0,−1,−2, 2, 4, 2, 2i has two decreasing sequences, namely h2, 1, 0, 0,−1,
−2i and h4, 2i, with 6 and 2 elements, respectively, i.e. of width 6 and 2; and two increasing se-
quences, namely h1, 2i and h−2, 2, 4i, with 2 and 3 elements, respectively, i.e. of width 2 and 3.
Hence R1 (respectively R2) is constrained to be the sum of 6 and 2 (respectively 2 and 3), which is
8 (respectively 5).
By generating all feasible combinations of R1 and R2 for sequences of length 9, 10, 11 and 12, we
observe that there are quite a few infeasible pairs ofR1 andR2 that are located within the convex hull
of feasible pairs. The generated combinations are reported in Figure 1.3. Our goal is to synthesise
and prove such generic non-linear invariants linking R1, R2 and parameterised by a function of n
stating that the points depicted by red circles in Figure 1.3 are infeasible. For example, the five
invariants that we obtain for the considered pair of constraints are
• R1 6= 1,

20 CHAPTER 1. INTRODUCTION

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_w
id

th
_i

nc
re

as
in

g_
se

qu
en

ce

Sequence length: 9

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_w
id

th
_i

nc
re

as
in

g_
se

qu
en

ce

Sequence length: 10

0 2 4 6 8 10 12

0

2

4

6

8

10

12

sum_width_decreasing_sequence

su
m

_w
id

th
_i

nc
re

as
in

g_
se

qu
en

ce

Sequence length: 11

0 2 4 6 8 10 12

0

5

10

sum_width_decreasing_sequence

su
m

_w
id

th
_i

nc
re

as
in

g_
se

qu
en

ce

Sequence length: 12

9
0

2

<><><><>
¨ ≠ Æ Ø

4 decreasing sequences of width 2
z }| {

<><><><>
¨ ≠ Æ Ø| {z }

4 increasing sequences of width 2

example of sequence corresponding

to the feasible pair (8,8):

h0,2,0,2,0,2,0,2,0i

Figure 1.3 – Feasible (blue squares) and infeasible (red circles) combinations of the results val-
ues R1 and R2 of the constraints SUM_WIDTH_DECREASING_SEQUENCE(X,R1) and SUM_WIDTH

_INCREASING_SEQUENCE(X,R2) imposed on the same sequence X whose length is in {9, 10, 11, 12}.
We represent only infeasible combinations that are located within the convex hull of all feasible combina-
tions.

1.6. A GUIDED TOUR THROUGH THE MAIN CONTRIBUTIONS OF THIS THESIS 21

• R2 6= 1,
• R1 6= n _ R2 mod 2 = 0,
• R2 6= n _ R1 mod 2 = 0,
• n mod 2 = 1 _ R1 6= n− 1 _ R2 6= n− 1.

Note that some of these invariants are parameterised by functions of n, namely n− 1 and n mod 2.
Note also that these invariants hold for any integer sequence X of any length n. 4

◦ [Constant-size automata representing the set of all integer sequences satisfying some condition,
e.g. all integer sequences with the maximum possible number of decreasing sequences for a given
sequence length]
On the one hand, finite automata are used since the beginning of computer science to model many
aspects of computation [81]. On the other hand, bounds are ubiquitous in a number of optimisation
problems [88, 18], where they allow one to speed up the search process. While bounds are typically
expressed as parameterised formulae [30, 14], the question of a compact and explicit representation
of the set of all solutions reaching a particular bound went unnoticed. Such automata are a crucial
part of our method for synthesising and proving non-linear implied constraints, mentioned in the
previous item.
The obtained automata were integrated in the Volume II of the Global Constraint Catalogue [10].

Example 1.6.5 (Constant-size automata). Consider the NB_DECREASING_SEQUENCE(X,R) time-
series constraint introduced in Example 1.6.1, whereX is a sequence of variables of length n. Recall
that the maximum number of decreasing sequences in a sequence of length n is

⌅
n
2

⇧
. With any inte-

ger sequence X we can associate a sequence of binary relations in {<,=, >} between every pair of
its consecutive variables. We name such sequence the signature of X . For example, the signature
of the sequence h1, 2, 0, 2, 3,−1i is h<,>,<,<,>i. The constant-size automatonM in Part (A) of
Figure 1.4 accepts the signatures of all and only all integer sequences with the maximum number of
decreasing sequences, i.e. sequences for which the constraint NB_DECREASING_SEQUENCE(X,

⌅
n
2

⇧
)

holds. The state s is the initial state ofM, and the states s, t, and t0 are accepting states. A transition
labelled with a binary operator ◦ in {<,=, >} is triggered iff for the current consecutive pairs of
values Xi and Xi+1, the corresponding binary relation ◦ holds. Part (B) gives all the signatures of
lengths 3 and 4 accepted by this automaton. 4

◦ [An extended transducer-based computational model describing functions over integer sequences
arising in the context of constraint programming]
The extended model covers time-series constraints, but also most sequence constraints in the Volume
I of the Global Constraint Catalogue [21].

t s

t0 s0

>

<

>

<

= < =>

(A)

> < >
= > < >
< > < >
> = < >
> > < >

(B)

> < = >
> < > >
> < > =

> < > <
> < < >

Figure 1.4 – (A) Automaton accepting the signatures of all, and only all, integer sequences with the max-
imum number of decreasing sequences. (B) All signatures of lengths 3 and 4 accepted by the automaton
in (A).

22 CHAPTER 1. INTRODUCTION

Summary of our Contributions:

◦ Systematic methods for synthesising objects, namely automata and formulae, e.g. bounds,
linear and non-linear invariants, AMONG implied constraints that

1. capture the combinatorial flavour of a considered time-series constraint or a conjunction
of time-series constraints,

2. are parameterised by a considered instance, i.e. the domains of the variables and the
sequence length, and a considered time-series constraint,

3. can be used in different contexts.

◦ Extension of a transducer-based model used for describing time-series constraints, which
provides us with a uniform way of representing sequence constraints.

1.7 The Reading Grid of this Thesis

We present the plan of this thesis as well as a reading grid, which consists of three main parts:

1. Background, containing all necessary information for understanding this thesis. This includes topics
such as regular expressions in Chapter 2, register automata and transducers in Chapter 3, constraint
programming in Chapter 4, and time-series constraints in Chapter 5. When presenting time-series
constraints we will consider both their declarative view, given in Section 5.1, and their operational
view, given in Section 5.2.

2. Theoretical Contributions, which gives first a detailed overview of our contributions for synthesis-
ing combinatorial objects for time-series constraints and extending a transducer-based computational
model, and then presents the following contributions:
◦ Parameterised bounds, presented in Chapter 7.

Considered context: constraint in isolation.
Required background: Chapter 2 (regular expressions),

Chapter 4 (constraint programming),
Section 5.1 (declarative view of time-series constraints).

◦ Parameterised AMONG implied constraints, presented in Chapter 8.
Considered context: constraint in isolation.
Required background: Chapter 2 (regular expressions),

Chapter 4 (constraint programming),
Section 5.1 (declarative view of time-series constraints).

◦ Parameterised linear invariants, presented in Chapter 9.
Considered context: conjunction of constraints.
Required background: Chapter 3 (automata and register automata),

Chapter 4 (constraint programming),
Section 5.2 (operational view of time-series constraints).

◦ Parameterised non-linear invariants, presented in Chapter 10.
Considered context: conjunction of constraints.
Required background: Chapter 3 (automata and register automata),

Chapter 4 (constraint programming),
Section 5.2 (operational view of time-series constraints).

◦ Conditional constant-size automata, presented in Chapter 11.
Considered context: conjunction of constraints.
Required background: Chapter 3 (automata and register automata),

Chapter 4 (constraint programming),
Section 5.2 (operational view of time-series constraints).

1.7. THE READING GRID OF THIS THESIS 23

◦ Extended transducer-based model, presented in Chapter 12.

3. Practical Evaluation, contains the practical evaluation of the impact of the synthesised combinatorial
objects.

Part I

Background

25

27

In this part, we give the necessary background for understanding this thesis. We now introduce the
chapters of this part and explain their importance in the context of this work:

◦ As mentioned in Chapter 1, a pattern is one of the three main components of a time-series constraint.
From a formal point of view, a pattern is a regular expression [57], which describes a regular lan-

guage.
Chapter 2 gives background on regular expressions and regular languages.
◦ From an operational point of view, regular languages can be represented by finite automata [80].

A finite automaton consists of a finite number of states and transitions between states, labelled
with input symbols. It consumes an input sequence and either accepts this sequence or fails. With
every automaton we can associate a regular expression whose regular language is accepted by this
automaton and vice versa. Finite transducers [119] are automata that not only consume an input
sequence but also produce an output sequence. Register automata [20] are automata augmented
with a constant number of registers that are used to perform computations over an input sequence,
e.g. count the number of decreasing sequences in an integer sequence.
Chapter 3 gives background on automata, transducers, and register automata.
◦ An important notion of CP is a constraint satisfaction problem (CSP) [118], which consists of

variables with finite domains and constraints. Typically in the CP context we are searching for a
solution to a CSP using filtering techniques for constraints of the problem. Automata and register
automata can be used to filter some global constraints. For a sequence of variables of a fixed length,
an automaton or a register automaton can be decomposed as a conjunction of logical constraints [29].
The number of variables and constraints in such a conjunction depends linearly on the length of an
input sequence.
Chapter 4 gives a formal definition of constraint satisfaction problem, mentions the most common
techniques for solving a CSP, and also gives examples of global constraints, for which automata and
register automata are used for both describing these constraints and also for filtering them.
◦ Time-series constraints [22] are a central part of the work of this thesis. Due to their compositional

nature, a single definition is used for obtaining more than 200 constraints for 22 patterns. Register
automata can be used to filter time-series constraints. Because of the large number of time-series
constraints we have to synthesise register automata in a systematic way as follows:

1. Generate a finite transducer whose output sequence identifies all maximal occurrences of the
pattern [68].

2. Replace in the transducer every output symbol with a set of register updates corresponding to
the feature and the aggregator [22].

Chapter 5 gives a formalisation of time-series constraints.

Chapter 2

Background on Regular Expressions

In this chapter, which is adapted from [14], we give the background on regular expressions, which are
one of the key ingredients of time-series constraints.

An alphabet A is a finite set of symbols, and a symbol of A is called a letter. A word on A is a finite
sequence of symbols belonging to A. The empty word is denoted by ". The length of a word w is the
number of letters in w and is denoted by |w|. For i 2 [1, |w|], w[i] denotes the ith letter of a word w. The
concatenation of two words is denoted by putting them side by side, with an implicit infix operator between
them. A word w is a factor of a word x if there exist two words v and z such that x = vwz; when v = ", w
is a prefix of x, when z = ", w is a suffix of x. If both w is not empty and different from x, then it is a proper

factor of x. Given a word w and a positive integer k > 0, wk denotes the concatenation of k occurrences of
w. Given an integer k and a language L, Lk is defined by L0 = {"}, L1 = L and Lk = L · Lk−1 where ‘·’
is the concatenation operator. Then the Kleene closure of L is defined by [n≥0Ln and denoted by L⇤.

Definition 2.0.1 (Regular expression [57]). A regular expression r on an alphabetA and the language Lr it
describes, the regular language, are recursively defined as follows:

(1) 0 and 1 are regular expressions that respectively describe ; (the empty set) and {"}.

(2) For every letter ` of A, ` is a regular expression that describes the singleton {`}.

(3) If r1 and r2 are regular expressions, respectively describing the regular languages Lr1 and Lr2 , then
r1+ r2, r1 · r2 and r⇤1 are regular expressions that respectively describe the regular languages Lr1 [Lr2 ,
Lr1 · Lr2 , and L⇤r1 .

Example 2.0.1 (Regular expressions over the alphabet associated with time-series constraints). Consider
the alphabet Σ = {‘<’, ‘=’, ‘>’}.
• DECREASING = ‘>’ is a regular expression on Σ. The word v = ‘>’ is a word of length 1 on Σ that

belongs to LDECREASING, and it does not have any proper factors. The word ‘>>’ is a word of length 2
on Σ, which does not belong to LDECREASING.
• INFLEXION = ‘< (< | =)⇤ > | > (> | =)⇤ <’ is a regular expression on Σ. The word v = ‘>=<’

is a word of length 3 on Σ that belongs to LINFLEXION. The word v has multiple proper factors,
e.g. ‘>’, ‘<’. The word ‘>=<<’ does not belong to LINFLEXION since it finishes with the suffix
‘<<’. 4

Definition 2.0.2 (Non-fixed length regular expression). A regular expression r is a non-fixed length regular

expression if not all words of Lr have the same length.

Example 2.0.2 (Fixed and non-fixed length regular expressions). We give two examples of regular expres-
sions, a first one with a fixed length and a second one with a non-fixed length.
• The DECREASING = ‘>’ regular expression has a fixed length since LDECREASING contains a single

word.
• The INFLEXION = ‘< (< | =)⇤ > | > (> | =)⇤ <’ regular expression does not have a fixed length

since LINFLEXION contains words of different lengths. 4

29

30 CHAPTER 2. BACKGROUND ON REGULAR EXPRESSIONS

Definition 2.0.3 (Disjunction-capsuled regular expression). A regular expression over an alphabet A is
disjunction-capsuled if it is in the form of ‘r1r2 . . . rp’, where every ri (with i 2 [1, p]) is, either a letter of
the alphabet A, or a regular expression whose regular language contains the empty word.

Note that Definition 2.0.3 is a slight extension of a similar notion introduced in [83]. If a regular
expression σ over an alphabet Σ is disjuntion-capsuled, then there is a single shortest word a1a2 . . . ak
in the language of σ with every ai being a letter in Σ, and every word v in Lσ can be decomposed as
v = v1a1v2a2v3 . . . vkakvk+1 with all vi being words in Σ⇤. This is an important property that we will use
when deriving a lower bound on the result values of time-series constraints in Chapter 7.

Example 2.0.3 (Disjunction-capsuled regular expression). Table 5.2 on page 45 recalls the 22 regular ex-
pressions used for describing time-series constraints in [10, 22]. Every regular expression σ in column 2
of Table 5.2 is in the form of σ = σ1|σ2| . . . |σt with t ≥ 1, and every σi (with i 2 [1, t]) is a disjunction-
capsuled regular expression. Then Lσ is the union of the Lσi (with i 2 [1, t]).

The ‘(> | > (> | =)⇤ >)(< | < (< | =)⇤ <)’ regular expression has the same regular language as GORGE,
but is not disjunction-capsuled. 4

Chapter 3

Background on Automata, Register Automata

and Transducers

In this section, we give the background on automata, register automata and transducers:
◦ In Section 3.1, we recall the notions of deterministic finite automaton (DFA), register automaton,

and finite transducer.
◦ In Section 3.2, we recall operations on automata and register automata such as intersection, comple-

ment, and union.

3.1 Defining Automata, Register Automata and Transducers

In this section, we recall in Definition 3.1.1 the notion of deterministic finite automaton (DFA) or simply
automaton, in Definition 3.1.2 the notion of register automaton, and in Definition 3.1.3 the notion of finite

transducer.

Definition 3.1.1 (DFA [80]). A deterministic finite automaton (DFA) or just automaton M is a tuple
hQ,Σ, δ, q0, Ai, where
◦ Q is a finite set of states.
◦ Σ is a finite input alphabet.
◦ δ : Q ⇥ Σ ! Q is the transition function defining the set of transitions of M. Note that δ is not

necessarily a total function. There is a transition inM from a state q1 2 Q to a state q2 2 Q labelled
with s 2 Σ iff δ(q1, s) = q2.
◦ q0 2 Q is the initial state.
◦ A ✓ Q is the set of accepting states.

An input word w = w1w2 . . . wk 2 Σ⇤ is accepted or recognised by M iff, upon the right-to-left
consumption of the letters of w,M triggers the following sequence of transitions:

q0
δ(q0,w1)
−−−−! q1

δ(q1,w2)
−−−−! q2 . . . qk−1

δ(qk−1,wk)
−−−−−−! qk, qk 2 A

If upon consuming the letters of w, the automaton M either visits a state qi such that δ(qi, wi+1) is
undefined, or the last visited state qk is not an accepting state, then we say thatM fails on w.

Definition 3.1.2 (register automaton [20]). A register automatonM with p > 0 registers hR1, R2, . . . , Rpi

is a tuple
D

Q,Σ, q0, R
0, δ̂, A, ↵

E

, where

◦ Q is the finite set of states.
◦ Σ is the finite input alphabet.
◦ q0 2 Q is the initial state.
◦ R0 =

⌦
R0

1, R
0
2, . . . , R

0
p

↵
is the vector of the initial values of the registers hR1, R2, . . . , Rpi.

31

32 CHAPTER 3. BACKGROUND ON AUTOMATA, REGISTER AUTOMATA AND TRANSDUCERS

◦ δ̂ : (Q ⇥ Z
p) ⇥ Σ ! Q ⇥ Z

p is the transition function, which defines the transitions of M, and
also the register updates upon these transitions. There is a transition in M from a state q1 2 Q
to a state q2 2 Q labelled with s 2 Σ and

⌦
R01, R

0
2, . . . , R

0
p

↵
are the new values of the registers iff

δ̂(q1, hR1, R2, . . . , Rpi , s) = (q2,
⌦
R01, R

0
2, . . . , R

0
p

↵
).

◦ A ✓ Q is the set of accepting states.
◦ ↵ : Q ⇥ Z

p ! Z
h is a function, called acceptance function, which maps the final state and the last

values of the registers hR1, R2, . . . , Rpi into an integer vector of length h. If h is 1 then we will treat
this vector as an integer.

An input word w = w1w2 . . . wk 2 Σ⇤ is accepted or recognised by M and it returns the resulting
vector H iff, upon the right-to-left consumption of the letters of w,M triggers the following sequence of
transitions:

q0
δ̂(q0,hR0

1,R
0
2,...,R

0
pi,w1)

−−−−−−−−−−−−−! q1
δ̂(q1,hR1

1,R
1
2,...,R

1
pi,w2)

−−−−−−−−−−−−−! q2 . . . qk−1
δ̂(qk−1,hRk−1

1 ,Rk−1
2 ,...,Rk−1

p i,wk)
−−−−−−−−−−−−−−−−−−−! qk,

where every (qi,
⌦
Ri

1, R
i
2, . . . , R

i
p

↵
) (with i in [1, k]) is the result of δ̂(qi−1,

⌦
Ri−1

1 , Ri−1
2 , . . . , Ri−1

p

↵
, wi), qk

is an accepting state ofM, and ↵(qk,
⌦
Rk

1 , R
k
2 , . . . , R

k
p

↵
) is equal to H .

If upon consuming the letters of w,M either visits a state qi such that δ̂(qi, hR1, R2, . . . , Rpi , wi+1) is
undefined, or the last visited state qk is not an accepting state, then we say thatM fails on w.

Definition 3.1.3 (finite transducer [119]). A finite transducer S is a tuple hQ,Σ,Ω, δ0, Ai, where
◦ Q is the finite set of states.
◦ Σ is the finite input alphabet.
◦ Ω is the finite output alphabet.
◦ δ0 : Q⇥Σ! Q⇥Ω is the transition function, which defines the transition of S . There is a transition

in S from a state q1 2 Q to a state q2 2 Q labelled with an input symbol s 2 Σ and a finite sequence
of output symbols t 2 Ω⇤ iff δ0(q1, s) = (q2, t).
◦ q0 2 Q is the initial state.
◦ A ✓ Q is the set of accepting states.

An input word w = w1w2 . . . wk 2 Σ⇤ is accepted or recognised by S and S produces the output
sequence ht1, t2, . . . , tki on w iff upon the right-to-left consumption of the letters of w, S triggers the
following sequence of transitions:

q0
δ0(q0,w1)
−−−−−!

t1
q1

δ0(q1,w2)
−−−−−!

t2
q2 . . . qk−1

δ0(qk−1,wk)
−−−−−−!

tk
qk,

where every (qi, ti) (with i in [1, k]) is the result of δ0(qi−1, wi), and qk is an accepting state of S .
If upon consuming the letters of w, S either visits a state qi such that δ0(qi, wi+1) is undefined, or the

last visited state qk is not an accepting state, then we say that S fails on w.

Picturing automata, register automata and transducers. In all figures of this thesis, states of automata,
register automata and transducers are pictured as circles, and accepting states are denoted by double circles.
The initial state is denoted by an arrow coming from nowhere. A transition is denoted by a line or curved
arrow. For register automata, the acceptance function is depicted by a box connected by dotted lines to each
accepting state. If a register is left unchanged while triggering a given transition, then we do not mention this
register update on the corresponding transition. For transducers, every transition is labelled with a symbol
of the input alphabet followed by a colon and a word whose letters belong to the output alphabet. When
the input alphabet is {‘<’, ‘=’, ‘>’}, a transition labelled with the ‘≥’ (respectively ‘’) input symbol is a
shorthand for two parallel transitions labelled with ‘>’ (respectively ‘<’) and ‘=’, respectively.

Automata and register automata are often used for checking properties of integer sequences or com-
puting quantities from integer sequences, e.g. an automaton accepting only monotonously decreasing

3.1. DEFINING AUTOMATA, REGISTER AUTOMATA AND TRANSDUCERS 33

s

2
(A)

s

R 0

t

R

2 : R R+ 1

/2

2 : R R+ 1

/2

(B)

s

R 0

t

R

2 : R R+Xi

/2

2 : R R+Xi

/2

(C)

s

t

2 : found

/2 : out

2 : in

/2 : outa

(D)

Figure 3.1 – In the three figures, the signature of an integer sequence hX1, X2, . . . , Xni is defined by
Si = ‘/2’, Xi /2 {−1, 0, 5} ^ Si = ‘2’, Xi 2 {−1, 0, 5}. (A) Automaton recognising the signatures of
integer sequences whose elements are in {−1, 0, 5}. (B) Register automaton recognising any signature and
returning the number of elements in {−1, 0, 5} in an integer sequence. (C) Register automaton recognising
any signature and returning the sum of elements in {−1, 0, 5} in an integer sequence. (D) Transducer with
the input alphabet {2, /2} and the output alphabet {found, out, in, outa}.

sequences of integers, a register automaton computing the number of monotonously decreasing subse-
quences in an integer sequence. Usually in this case every element of a considered integer sequence
hX1, X2, . . . , Xni is mapped into a letter of the input alphabet Σ of the considered automaton or regis-
ter automaton. In order to generalise the implicit condition Xi = s, with s being in Σ, we use the notion of
the signature of an integer sequence.

Definition 3.1.4 (signature, arity). Consider a sequence of integer numbers X = hX1, X2, . . . , Xni, and
a function S : Zp ! Σ, where Σ is a finite set denoting an alphabet. Then, the signature of X is a se-
quence hS1, S2, . . . , Sn−p+1i, where every Si equals S(Xi, Xi+1, . . . , Xi+p−1). The constant p is called the
arity of the signature. A signature of arity 1 (respectively 2) is called unary (respectively binary).

The next definition introduces the notion of accepting sequence wrt an automaton or a register automa-
ton.

Definition 3.1.5 (accepting sequence wrt an automaton/a register automaton). Consider an automaton or a
register automatonM over an input alphabet Σ and an integer sequence X , whose signature is in Σ⇤. The
sequence X is called accepting wrtM iffM could consume the entire signature of X , and ifM finishes
in an accepting state.

Note that if a register automatonM is used for computing a quantity from an integer sequence X then
the register updates defined by the transition function ofM may depend on the values of X . The following
example illustrates this point.

Example 3.1.1 (signature, arity, automaton, register automaton, finite transducer, accepting sequence).
Consider a unary signature S over the alphabet {2, /2} such that for any integer sequence hX1, X2, . . . , Xni,
Si = ‘/2’ , Xi /2 {−1, 0, 5} ^ Si = ‘2’ , Xi 2 {−1, 0, 5}. For example, for the sequence t =
h1, 2,−1, 3, 5, 0i, its signature is h/2, /2,2, /2,2,2i.

The automaton in Part (A) of Figure 3.1 recognises signatures consisting only of ‘2’. This automaton
has a single state, which is its initial and accepting state, and a single transition. The integer sequence
h−1,−1, 0,−1i is accepting wrt this automaton, but t is not.

The register automaton in Part (B) of Figure 3.1 recognises any signature, and it returns the number of
occurrences of ‘2’ in this signature. After having consumed the signature of t, it returns 3. The register
updates of this register automaton do not depend on the values in an integer sequence, and hence for any

34 CHAPTER 3. BACKGROUND ON AUTOMATA, REGISTER AUTOMATA AND TRANSDUCERS

a

b

0 1 1

(A)

a

b

0 01

(B)

a

b

0 1

(C)

a

b c

0 1 1

0

0

1(D)

Figure 3.2 – (A) Automaton recognising sequences of 0 and 1, where 0 are only located at odd positions;
(B) automaton recognising sequences of 0 and 1, where 1 are only located at even positions; (C) intersection
of (A) and (B); (D) complement of (A).

integer sequence with the same signature, this register automaton will return the same value. Any integer
sequence is accepting wrt this register automaton.

The register automaton in Part (C) of Figure 3.1 recognises any signature over the alphabet {2, /2},
and it returns the sum of elements in {−1, 0, 5} of an input integer sequence. For example, after having
consumed the signature of t, it returns 4. The register updates of this register automaton depend on the
values in an input integer sequence, and for two integer sequences with the same signature, the register
automaton does not necessarily return the same result.

Part (D) of Figure 3.1 gives a finite transducer, which recognises any signature over the alphabet {2
, /2} and returns a sequence of elements of {found, out, in, outa}. For example, after having consumed
the signature of t, it returns hout, out, found, outa, found, ini. Note that found indicates the start of a
subsequence whose elements are in {−1, 0, 5}, and in indicates a continuation of such a subsequence. 4

3.2 Operations on Automata and Register Automata

We shortly recall in Sections 3.2.1, 3.2.2, 3.2.3, three operations on automata, namely intersection,
union, and complement, respectively. We will use the intersection of register automata when deriving
linear invariants in Chapter 9, and all the three operations on automata when deriving non-linear invariants
in Chapter 10. The notion of language of an automaton or language of a register automaton, given in
Definition 3.2.1, will be used all through these definitions.

Definition 3.2.1 (automaton language). The language of an automaton (respectively register automaton) is
a set of signatures recognised by this automaton (respectively register automaton).

3.2.1 Intersection

Definition 3.2.2 (intersection of automata). The intersection of k automata M1,M2, . . . ,Mk is an au-
tomaton, denoted by I =M1 \M2 \ · · · \ Mk, whose language is the intersection of the languages of
allMi.

Example 3.2.1 (intersection of automata). Let us consider two automataM1 andM2 whose input alphabet
is {0, 1}:
◦ A1, given in Part (A) of Figure 3.2, recognises signatures in which ‘0’ appears only in odd positions,

e.g. h0, 1, 0, 1, 1i. The language of A1 is the regular language of ‘((0|1)1)⇤(0|1|")’.
◦ A2, given in Part (B) of Figure 3.2, recognises signatures in which ‘1’ appears only in even positions,

e.g. h0, 1, 0, 1, 0i. The language of A2 is the regular language of ‘(0(0|1))⇤(0|")’.
The intersection I of M1 and M2 is an automaton recognising sequences of alternating ‘0’ and ‘1’

starting with ‘0’, and is given in Part (C) of Figure 3.2. The language of I is the regular language of the
‘(01)⇤(0|")’ regular expression. 4

3.2. OPERATIONS ON AUTOMATA AND REGISTER AUTOMATA 35

Definition 3.2.3 (intersection of register automata [98]). The intersection of k register automataM1,M2,
. . . ,Mk is a register automaton, denoted by I =M1 \M2 \ · · · \Mk, such that the following conditions
all hold:

1. The language of I is the intersection of the languages of allMi.

2. The number of registers of I is equal to
kP

i=1

pi, where every pi is the number of registers ofMi.

3. When consuming any input signature S, for every register Ai,j of I, at every transition its value is
equal to the value of the register j ofMi when consuming S.

4. For every input signature S, the register automaton I returns a tuple hR1, R2, . . . , Rki, where Ri is
the value returned byMi after consuming S.

Example 3.2.2 (intersection of register automata). Part (C) of Figure 3.3 contains the intersection I of the
register automataM1 andM2 in Parts (A) and (B), respectively. BothM1 andM2 have one register, and
thus I has two registers and returns a pair of values. 4

3.2.2 Union

Definition 3.2.4 (union of automata). The union of k automataM1,M2, . . . ,Mk is an automaton, denoted
by U =M1 [M2 [· · · [Mk, whose language is the union of the languages of allMi.

Example 3.2.3 (union of automata). The union of the automata in Parts (A) and (B) of Figure 3.2 is an
automaton recognising any sequence of ‘0’ and ‘1’. 4

3.2.3 Complement

Definition 3.2.5 (complement of an automaton). The complement of an automatonM over an alphabet Σ
is an automaton, denoted byM0, whose language is the complement of the language ofM wrt Σ⇤.

Example 3.2.4 (complement of an automaton). The automaton in Part (D) of Figure 3.2 is the complement
of the automaton in Part (A). 4

s

{
P 0

treturn PXi = Xi+1

Xi > Xi+1

Xi < Xi+1

Xi = Xi+1

Xi < Xi+1

Xi > Xi+1

{P P + 1}

(A)

s

{
V 0

rreturn VXi = Xi+1

Xi < Xi+1

Xi > Xi+1

Xi = Xi+1

Xi > Xi+1

Xi < Xi+1

{V V + 1}
(B)

s

⇢
P 0
V 0

}

t r

return P, V

Xi = Xi+1

X
i
>
X
i+

1X
i
<
X
i+

1

Xi = Xi+1 Xi > Xi+1Xi < Xi+1 Xi = Xi+1

Xi < Xi+1

{V V + 1}

Xi > Xi+1

{P P + 1}

(C)

Figure 3.3 – This figure is adapted from [13]. (A) and (B) register automata over alphabet {<,=, >},
returning the number of maximal occurrences of PEAK and VALLEY (see Table 5.2 on page 45), respectively,
in the signature hS1, S2, . . . , Sn−1i of an integer sequence hX1, X2, . . . , Xni, where every Si is defined by
the following constraints: Si = ‘<’ , Xi < Xi=1 ^ Si = ‘=’ , Xi = Xi=1 ^ Si = ‘>’ , Xi > Xi=1.
(C) Intersection of (A) and (B), both returning the number of maximal occurrences of PEAK and VALLEY,
respectively, in the signature of hX1, X2, . . . , Xni.

Chapter 4

Background on Constraint Programming

In this section, we give the background on constraint programming. We first define a constraint satis-

faction problem (CSP) in Section 4.1. Then, we present the main components used for solving a CSP in
Section 4.2, and a standard representation of a CSP in Section 4.3. Finally, in Section 4.4, we discuss the
role of automata, and register automata in CP.

4.1 Constraints and Constraint Satisfaction Problems

In this section, we recall the key definitions of CP, namely constraint in Definition 4.1.1 and constraint

satisfaction problem in Definition 4.1.2.

Definition 4.1.1 (constraint, parameters of a constraint, solution to a constraint [118]). Consider a set of
integer variables X1, X2, . . . , Xm, where variable Xi can take its values in a finite subset Di of integer
numbers, called the domain of Xi.
◦ A constraint γ is a restriction imposed on the variables X1, X2, . . . , Xm, called the scope of γ.
◦ A constraint may depend on some integer numbers, called parameters.
◦ An assignment ci 2 Di of all the Xi satisfies the constraint γ iff the restriction imposed by γ is

satisfied. Such an assignment of variables is also called a solution to γ.

In [21], a constraint is called global if it can be imposed on a non-fixed number of variables. The
Volume I of the Global Constraint Catalogue [21] contains 443 global constraints. The Volume II of the
Global Constraint Catalogue [10] contains 626 global constraints and is devoted to time-series constraints,
which are the central part of this work and will be given in Chapter 5.

The following example illustrates the notions given in Definition 4.1.1 for the AMONG global constraint
[25], which we will actively use in Chapter 8.

Example 4.1.1 (AMONG constraint). Let us consider an AMONG(N, hX1, X2, . . . , Xni , hp1, p2, . . . , pki)
global constraint [25], whereN is an integer variable, hX1, X2, . . . , Xni is a sequence of n integer variables,
and hp1, p2, . . . , pki is a list of k parameters, i.e. integer numbers. The AMONG constraint restricts N to be
the number of variables in hX1, X2, . . . , Xni whose values are in the list hp1, p2, . . . , pki. The scope of this
constraint is the variables N,X1, X2, . . . , Xn.

Consider the following instance AMONG(N, hX1, X2, X3, X4, X5i , h0,−1, 5i) withN 2 {0, 2, 3},X1 2
{0, 1, 2}, X2 2 {6, 7, 8}, X3 2 {−1}, X4 2 {−3, 4, 8, 9}, and X5 2 {3, 4, 5, 6}. No assignment of the
variables with N being 0 is a solution to the constraint since the only possible value of X3 is−1, and in any
solution to the considered AMONG constraint, the value of N is at least 1. The assignment of N to 2, and of
the X = hX1, X2, X3, X4, X5i to h0, 7,−1, 4, 6i is a solution to the constraint, since exactly two variables
of X have their values in h0,−1, 5i, namely X1 with the value 0, and X3 with the value −1. 4

Definition 4.1.2 (CSP, feasible/infeasible CSP [118]). A constraint satisfaction problem (CSP) consists of
a set of variables V , their domains, and a set of constraints whose scopes are subsets of V .

37

38 CHAPTER 4. BACKGROUND ON CONSTRAINT PROGRAMMING

◦ A solution to a CSP is an assignment of all the variables in V that simultaneously satisfies all the
constraints.
◦ A CSP is feasible if it has at least one solution, and is infeasible otherwise.

Example 4.1.2 (CSP). Consider a CSP defined by the variables with their domains N 2 {0, 2, 3}, X1 2
{0, 1, 2}, X2 2 {6, 7, 8}, X3 2 {−1}, X4 2 {−3, 4, 8, 9}, X5 2 {3, 4, 5, 6}, M 2 {3, 4}, and the conjunc-
tion of two constraints imposed on subsets of these variables AMONG(N, hX1, X2, X3, X4, X5i , h0,−1, 5i)
and MAXIMUM(hX1, X3i ,M), which restricts M to be the maximum of X1 and X3. Let us find a so-
lution to this CSP. In Example 4.1.1, we showed that the assignment of N to 2 and the assignment of
hX1, X2, X3, X4, X5i to h0, 7,−1, 4, 6i was a solution to the AMONG constraint. However, it is not a solu-
tion to the considered CSP, which has the two constraints AMONG and MAXIMUM, since the maximum of
the values X1 and X3 is 0, and this value does not belong to the domain of M . It can be proved by using a
constraint solver such as Choco [114], for example, that the considered CSP is infeasible. 4

4.2 Solving a Constraint Satisfaction Problem

When we say “to solve a CSP” we mean to find a solution to this CSP or to prove its infeasibility. In
general, saying whether a CSP has a solution or is infeasible is an NP-complete problem [131]. Hence, there
does not exist a general fast algorithm which could be used for finding a solution to any CSP. Enumerating
all possible assignments of the variables of a CSP would lead to a combinatorial explosion, and thus we
need a better approach for finding a solution or proving the infeasibility of a CSP.

There are three common techniques for solving a CSP, namely constraint propagation, search, and
filtering algorithms, which we further present.

Constraint Propagation. Consider a CSP over finite domain variables X1, X2, . . . , Xm. Constraint Prop-

agation can be defined as a mechanism of reduction of the domains of the variables X1, X2, . . . , Xm by
removing values that cannot be a part of any solution. Note that constraint propagation does not perform
any search.

As an example, consider a CSP with one constraint X1 ≥ X2 over two variables X1 2 {1, 2} and
X2 2 {2, 3}. The constraint propagation will remove the value 1 from the domain of X1 and 3 from the
domain of X2 since these values are not part of any solution.

The more values constraint propagation removes, the easier it is to further find a solution to a CSP
since the domains are smaller and the solver needs to enumerate fewer combinations of variable-value
assignments. There are various theoretical measures, called consistencies, of the quality of the domain
reduction achieved by constraint propagation. One of the most used consistencies is the generalised arc

consistency [118] or domain consistency, described in Definition 4.2.2.

Definition 4.2.1 (arc-consistent CSP [118]). Consider a CSP C over variables X1, X2, . . . , Xm whose do-
mains are, respectively, D1, D2, . . . , Dm. The CSP C is arc-consistent iff for every variable Xi (with i in
[1,m]), for every d in Di, there is an assignment d1, d2, . . . , di−1, di+1, . . . , dm of the variables X1, X2, . . . ,
Xi−1, Xi+1, . . . , Xm such that d1, d2, . . . , di−1, d, di+1, . . . , dm is a solution to C.

Definition 4.2.2 (achieving GAC). Consider a CSP C over variables X1, X2, . . . , Xm whose domains are,
respectively, D1, D2, . . . , Dm. Achieve generalised arc consistency (GAC) for C, or maintain domain con-

sistency for C, means to obtain a CSP C 0 such that the following three conditions hold:

1. The set of constraints and variables of C and C 0 coincides.

2. The set of solutions to C and C 0 coincides.

3. C 0 is arc-consistent.

4.3. REPRESENTATION OF A CONSTRAINT SATISFACTION PROBLEM 39

In other words, when a CSP is arc-consistent it means that there are no values in the domains of the
variables that are not part of at least one solution of this CSP. If a CSP is arc-consistent then such a CSP is
feasible. Hence, in the context of solving a CSP, we aim to achieve GAC for each sub-problem correspond-
ing to one of the constraints of the CSP.

For CSPs with a single global constraint, e.g. ALLDIFFERENT, achieving GAC is polynomial [116],
whereas for CSPs with CUMULATIVE [2, 21] constraints, it is NP-hard.

Filtering algorithm. A filtering algorithm for a constraint is an algorithm that removes infeasible values
from the domains of variables of a considered constraint. The goal of a filtering algorithm is to bring the
considered constraint to GAC. In this case, the filtering is called complete. Designing dedicated filtering
algorithms for a global constraint or a conjunction of global constraints is one of the most common way to
solve a CSP. For example, the sweep technique is a generic approach for filtering a conjunction of constraints
sharing some variables [19, 92].

Search. Although, constraint propagation can be used for removing the infeasible values from the domains
of variables, and, in the best case, for stating whether a considered CSP is feasible or not, very often for
finding a solution it is still required to perform search, i.e. to try out different assignments of variables until
a solution to the CSP is found or infeasibility is proven.

Backtrack search is one of the most used forms of search in the context of CP. When performing back-
track search, a constraint solver gradually assigns values from the domains to the variables of a CSP. If a
partial assignment at some point does not for sure satisfy at least one of the constraints of the CSP, then it
is not part of any solution, and the solver does a backtrack, i.e. it goes to the closest previous partial as-
signment and assigns a different value to the last assigned variable, and then the process repeats. If at some
point, all variables are assigned values from their domains, then the solver found a solution to the CSP.

The number of backtracks along with the elapsed time is the most used empirical criteria for assessing
the quality of constraint propagation when solving a CSP. Usually, constraint propagation is triggered every
time when a value is removed from the domain of a variable. Hence, the smaller is the number of backtracks,
the more robust is the constraint propagation.

To accelerate the search different strategies can be used, for example, variables can be assigned values in
different orders, or metaheuristics, e.g. limited discrepancy search [78], last-conflict-based reasoning [89].

4.3 Representation of a Constraint Satisfaction Problem

In order to develop methods for solving a given CSP one usually represents this CSP as a hypergraph.
In the hypergraph of a CSP, every vertex corresponds to a variable of this CSP, and every hyperedge cor-
responds to a constraint. Using the hypergraph of a CSP one can develop dedicated methods for filtering
this CSP that draws full benefit of the structure of the hypergraph. There were several works exploiting
the structure of a hypergraph, for which the corresponding CSP can be solved in a polynomial time. For
example, a CSP whose hypergraph has a bounded treewidth can be solved in a polynomial time [70, 59].
Another condition comes from database theory and states that if the hypergraph is Berge-acyclic, then the
corresponding CSP can be solved in a polynomial time [34].

The hypergraph representation focusses more on a flat description of a network of constraints, while this
thesis studies a class of constraints defined in a compositional way by a cascade of functions. Exploring the
structure of reformulation of this class of constraints may be one of the directions for a future work.

4.4 Automata and Register Automata in Constraint Programming

In the context of constraint programming, often a checker for a constraint can be represented as an
automaton or as a register automaton. This is the case when for a constraint we can construct an automaton

40 CHAPTER 4. BACKGROUND ON CONSTRAINT PROGRAMMING

such that every word accepted by such automaton corresponds to a set of solutions to the constraint, and
every solution to the constraint corresponds to a word accepted by the automaton.

Example 4.4.1 (register automaton as a checker). Consider the AMONG(N, hX1, X2, . . . , Xni , h0,−1, 5i)
global constraint, introduced in Example 4.1.1. A register automatonM for this constraint is given in Part
(B) of Figure 3.1. For an integer sequence X = hX1, X2, . . . , Xni, and an integer value R the constraint
holds iff after consuming the signature of X , the last value of the register R ofM is equal to N . 4

Automata with or without registers of constant size, i.e. the number of states and the input alphabet do
not depend on the length of an input sequence, allow a compact and homogenous representation for many
constraints, e.g. AMONG [25], PATTERN [43], and all time-series constraints [22]. Such a representation of
constraints can be used for propagating them. For some global constraints automata and register automata
are also used for defining them.

We now present the REGULAR global constraint, which is defined by an automaton, and its three gener-
alisations, namely COST-REGULAR and MULTI-COST-REGULAR, which are defined by an automaton and a
cost matrix, and AUTOMATON, which is defined by a register automaton. Generalisation of constraints us-
ing automata was motivated first by representing different grammar types of the Chomsky hierarchy [54] in
the context of constraint programming, and second by practical needs, e.g. cost matrices are often required
in the context of optimisation, register automata have a greater expressive power compared to automata.

4.4.1 REGULAR Global Constraint

We first consider the REGULAR global constraint, which was introduced in [109], and, for example, is
common in nurse rostering problems [127]. This constraint is available in many constraint solvers, e.g.
Choco, SICStus, Gecode, OR-tools. It is also implemented in the MiniZinc constraint modelling lan-
guage [102].

Definition 4.4.1 (REGULAR [109]). LetM = (Q,Σ, δ, q0, A) denote an automaton, and hX1, X2, . . . , Xni
be a sequence of integer variables with every Xi ranging over a finite integer domain Di ✓ Σ. The
REGULAR(hX1, X2, . . . , Xni ,M) constraint holds iff hX1, X2, . . . , Xni is accepted byM.

Pesant presented in [109] a filtering algorithm for the REGULAR(hX1, X2, . . . , Xni ,M) constraint,
which achieves GAC. The algorithm creates a layered directed graphG, where each node (i, j) corresponds
to a domain value j of a variable Xi. By doing two passes through the list of arcs of G, the authors removes
some arcs and nodes from G in a way so that for the obtained graph G0, an assignment hj1, j2, . . . , jni
of a considered sequence of variables hX1, X2, . . . , Xni is feasible iff there is a path in G0 formed by
nodes (1, j1), (2, j2), . . . , (n, jn). Hence the graph G0 represents the set of all and only all solutions to the
constraints.

4.4.2 COST-REGULAR and MULTI-COST-REGULAR Global Constraints

The COST-REGULAR and MULTI-COST-REGULAR global constraints are extensions of REGULAR, in-
troduced in [60] and [99], respectively.

Definition 4.4.2 (COST-REGULAR [60]). LetM = (Q,Σ, δ, q0, A) denote an automaton, let hX1, X2, . . . , Xni
be a sequence of integer variables with everyXi ranging over a finite integer domainDi ✓ Σ, and let C be a
cost matrix associating an integer with every transition ofM. The COST-REGULAR(hX1, X2, . . . , Xni ,M,
z, C) global constraint holds iff hX1, X2, . . . , Xni is accepted byM, z is equal to the sum of costs of every
transition triggered byM upon consuming X .

The filtering algorithm for COST-REGULAR [60] is also based on the idea of a layered directed graph as
in [109], but this time every arc of this graph is augmented with an integer weight. Note that giving a cost

4.4. AUTOMATA AND REGISTER AUTOMATA IN CONSTRAINT PROGRAMMING 41

matrix is equivalent as extending the automaton with one register that, on every transition, is incremented
by a constant depending on this transition.

The MULTI-COST-REGULAR global constraint [99] is an extension of COST-REGULAR, where each
transition of an automaton is associated with several integers.

4.4.3 AUTOMATON Global Constraint

The AUTOMATON global constraint is defined by a register automaton [29].

Definition 4.4.3 (AUTOMATON [29]). LetM = (Q,Σ, qo, I, δ̂, A, ↵) denote a register automaton, S : Zp !
Σ be a signature function, X = hX1, X2, . . . , Xni be a sequence of integer variables with every Xi ranging
over a finite integer domain Di ✓ Z, and R be an integer variable. The AUTOMATON(X,M,S, R) global
constraint holds iff after having consumed the signature of X the register automatonM returns R.

In order to propagate an AUTOMATON constraint, in [29], the authors encode the corresponding register
automaton as a conjunction of logical constraints. The NP-completeness of an AUTOMATON constraint
was proved in [27] by reduction to the Subset Sum problem [72]. Hence, there is no, in the general case,
known efficient algorithm for achieving GAC for the AUTOMATON constraint. However, when there are
no registers and the signature is unary, the reformulation of [29] is Berge-acyclic and can be solved in a
polynomial time [34].

The AUTOMATON constraint is not as common as, for example, the REGULAR constraint. It is available
in SICStus Prolog and SWI Prolog.

Chapter 5

Background on Time-Series Constraints

We are now ready to give a notion used throughout this work, namely a time-series constraint, which
is a functional constraint imposed on a time series, and on an integer variable, called the result variable.
In the context of our work, a time series is a sequence of integers corresponding to measurements taken
over time, as it was defined in [22]. Time series appear in many real-life applications, e.g. trace analysis
for Internet Service Provider, anomaly detection and error correction in building data, analysis of output of
electric power stations over multiple days [28], power management for large-scale distributed systems [26],
staff scheduling at a call centre [11].

A notion related to a time series is its signature, which is a special case of signature introduced in
Definition 3.1.4.

Definition 5.0.4 (signature of a time series [22]). Consider a time series X = hX1, X2, . . . , Xni, the signa-
ture of X is the sequence S = hS1, S2, . . . , Sn−1i, where every Si is defined by the following constraint:

(Xi < Xi+1 , Si = ‘<’) ^ (Xi = Xi+1 , Si = ‘=’) ^ (Xi > Xi+1 , Si = ‘>’)

Example 5.0.2. The signature of the time series h0, 1, 2, 2, 0, 0, 4, 1i is h<,<,=, >,=, <,>i. 4

This section is organised as follows:
◦ First, in Section 5.1, we present the definition of time-series constraints.
◦ Second, in Section 5.2, we present the operational view of time-series constraints: the transducers

used to synthesise an implementation of time-series constraints in the form of register automata. In
this section, we also recall the notion of glue constraint, which is indispensable for filtering time-
series constraints.
◦ Finally, in Section 5.3, we discuss the notion of quantitative regular expression, which is a com-

putational model that is similar to time-series constraints, but is originally motivated by a different
context, namely the analysis of data streams.

5.1 Defining Time-Series Constraints

A time-series constraint is imposed on a time series X = hX1, X2, . . . , Xni, and an integer variable R,
and restrictsR to be the result of some computations overX . These computations are characterised by three
main parameters, namely two functions, called the feature and the aggregator, and a regular expression over
the alphabet {‘<’, ‘=’, ‘>’}.

We first recall in Definitions 5.1.1 and 5.1.2 the notions of occurrence of a regular expression in the
signature of a time series, and in a time series itself, respectively. Then, in Definition 5.1.3, we give the
notion of time-series constraint.

With every considered regular expression σ we associate two integer non-negative constants bσ and aσ
used for trimming the left and the right borders of occurrences of σ. The ‘b’ of bσ stands for ‘before’, while

43

44 CHAPTER 5. BACKGROUND ON TIME-SERIES CONSTRAINTS

f value idf minf maxf

one 1 0 n/a n/a
width j − i+ 1 0 0 n+ 1

surf
jP

k=i
Xk 0 −1 +1

max max
k2[i,j]

Xk −1 −1 +1

min min
k2[i,j]

Xk +1 −1 +1

range

0

B
B
@

max
k2[i,j]

Xk

−
min
k2[i,j]

Xk

1

C
C
A

0 0 +1

(A)

g value idg,f

sum
mP

k=1

fk 0

max max
k2[1,m]

fk minf

min min
k2[1,m]

fk maxf

(B)

Table 5.1 – Consider a sequence X = hX1, X2, . . . , Xni. (A) features f , their values computed from a
subsequence hXi, Xi+1, . . . , Xji, their identity, minimum and maximum values, where n/a stands for not
available; (B) aggregators g, their values computed from a sequence of feature values hf1, f2, . . . , fmi, and
their identity values. These tables are adapted from [22].

the ‘a’ of aσ stands for ‘after’. Table 5.2 gives examples of regular expressions of time-series constraints
together with their parameters bσ and aσ.

Definition 5.1.1 (s-occurrence, i-occurrence, e-occurrence [22]). Consider a regular expression σ over the
alphabet {‘<’, ‘=’, ‘>’}, the signature S = hS1, S2, . . . , Sn−1i of some time series, and a subsignature
hSi, Si+1, . . . , Sji with 1  i  j  n− 1, forming an inclusion-wise maximal word in S matching σ. The
s-occurrence (i, j) of σ is the index sequence i, i + 1, . . . , j; the i-occurrence [i + bσ, j] of σ is the index
sequence i + bσ, i + bσ + 1, . . . , j; and the e-occurrence [i + bσ, j + 1 − aσ] of σ is the index sequence
i+ bσ, i+ bσ + 1, . . . , j + 1− aσ.

For a regular expression σ, an s-occurrence indicates the beginning and the end of a maximal occurrence
of σ in the signature of a time series. An e-occurrence trims the borders of such maximal occurrence
accordingly to the values of the parameters bσ and aσ. An i-occurrence is used for defining the footprint

of σ in a time series, which shows where occurrences of σ are located in this time series. It is important
that any i-occurrence is never empty, and two different i-occurrences never overlap otherwise the footprints
of two occurrences of σ would overlap and we could not distinguish these occurrences. To guarantee the
disjointness of i-occurrences we choose an appropriate value of bσ.

The notion of e-occurrence (respectively s-occurrence) is used in Definition 5.1.2 for defining the notion
of σ-pattern (respectively extended σ-pattern).

Definition 5.1.2 (σ-pattern, extended σ-pattern [8, 14]). Consider a regular expression σ over the alpha-
bet {‘<’, ‘=’, ‘>’}, and a time series X = hX1, X2, . . . , Xni. A σ-pattern in X is any subsequence
hXi+bσ , Xi+bσ+1, . . . , Xj+1−aσi of X such that the index sequence i+ bσ, i+ bσ +1, . . . , j +1− aσ is an e-
occurrence of σ in the signature ofX . An extended σ-pattern inX is any subsequence hXi, Xi+1, . . . , Xj+1i
of X such that the index sequence i, i+ 1, . . . , j is an s-occurrence of σ in the signature of X .

Definition 5.1.3 (time-series constraint [22]). Consider a sequence of integer variablesX = hX1, X2, . . . , Xni,
and an integer variable R. A time-series constraint g_f_σ(X,R) is parameterised by hσ, f, gi, where
◦ σ is one of the 22 regular expressions from Table 5.2.
◦ f is one of the functions from Part (A) of Table 5.1, called the feature.
◦ g is one of the functions from Part (B) of Table 5.1, called the aggregator.

The value of R is constrained to be the result of applying the aggregator g to the list of the values of the
feature f from every σ-pattern of X . If there are no σ-patterns in X , then R is constrained to be the identity
value of g, defined as idg,f in Part (B) of Table 5.1.

5.1. DEFINING TIME-SERIES CONSTRAINTS 45

name σ regular expression aσ bσ

BUMP_ON_DECREASING_SEQUENCE ‘>><>>’ 1 2
DECREASING ‘>’ 0 0
DECREASING_SEQUENCE ‘(> (> | =)⇤)⇤ >’ 0 0
DECREASING_TERRACE ‘>=+>’ 1 1
DIP_ON_INCREASING_SEQUENCE ‘<<><<’ 1 2
GORGE ‘(> (> | =)⇤)⇤ >< ((< | =)⇤ <)⇤’ 1 1
INCREASING ‘<’ 0 0
INCREASING_SEQUENCE ‘(< (< | =)⇤)⇤ <’ 0 0
INCREASING_TERRACE ‘<=+<’ 1 1
INFLEXION ‘< (< | =)⇤ > | > (> | =)⇤ <’ 1 1
PEAK ‘< (< | =)⇤(> | =)⇤ >’ 1 1
PLAIN ‘>=⇤<’ 1 1
PLATEAU ‘<=⇤>’ 1 1
PROPER_PLAIN ‘>=+<’ 1 1
PROPER_PLATEAU ‘<=+>’ 1 1
STEADY ‘=’ 0 0
STEADY_SEQUENCE ‘=+’ 0 0
STRICTLY_DECREASING_SEQUENCE ‘>+’ 0 0
STRICTLY_INCREASING_SEQUENCE ‘<+’ 0 0
SUMMIT ‘(< (< | =)⇤)⇤ <> ((> | =)⇤ >)⇤’ 1 1
VALLEY ‘> (> | =)⇤(< | =)⇤ <’ 1 1
ZIGZAG ‘(<>)+ < (> |") | (><)+ > (< |")’ 1 1

Table 5.2 – Regular-expression names σ, corresponding regular expressions, and values of the parame-
ters aσ and bσ. This table is adapted from [14].

If the feature is one, and the aggregator is sum, then we name the corresponding time-series constraint
as NB_σ instead of SUM_ONE_σ.

Note that Definition 5.1.3 follows [22], where time-series constraints were defined only for the 22 reg-
ular expressions in Table 5.2. However, in this thesis we will not limit ourselves to the regular expressions
in Table 5.2 but will characterise a class of regular expressions, for which our methods apply.

In the literature, there is a number of works on extracting patterns from time series [123, 121, 136, 1].
However, most of the works focus on detecting peaks or valleys in time series, since these patterns indicate
significant changes in the behaviour of a time series. Our approach can handle a large variety of patterns
including all patterns of Table 5.2.

As we mentioned in [14], most of the regular expressions in Table 5.2 capture topological patterns that
one wants to control when generating time series, while some of them, such as ZIGZAG or BUMP_ON_
DECREASING_SEQUENCE, correspond to anomalies one wants to detect in existing time series. The two
integer constants bσ and aσ are used for trimming the left and right borders of an extended σ-pattern in
order to obtain a σ-pattern from which the feature value is computed. This is useful in the case when we
need to perform the computations from only a part of occurrence of a regular expression. For example, for
INCREASING_TERRACE = ‘<=+<’, since bINCREASING_TERRACE = aINCREASING_TERRACE = 1, when computing
the feature value only the variables involved into an equality contribute to the feature value, i.e. the variables
of the flat part of the terrace.

Example 5.1.1 (time-series constraint). Consider the PEAK = ‘< (< | =)⇤(> | =)⇤ >’ regular expression
with the values bPEAK and aPEAK both being 1. As we showed in Example 5.0.2, the signature of the time
series X = h0, 1, 2, 2, 0, 0, 4, 1i, shown in Figure 5.1, is S = h<,<,=, >,=, <,>i. There are two max-
imal occurrences of the PEAK regular expression in S, namely ‘<<=>’ and ‘<>’, corresponding to the

46 CHAPTER 5. BACKGROUND ON TIME-SERIES CONSTRAINTS

0
1

2 2

0 0

4

1
3 1

Figure 5.1 – Time series h0, 1, 2, 2, 0, 0, 4, 1i with its two peaks of respective widths 3 and 1

h1, 2, 2i and h4i PEAK-patterns, called peaks. Hence, the constraint NB_PEAK(X, 2) holds. The width of
both peaks is the number of their elements, which is, respectively, 3 and 1. Then, all three constraints
MIN_WIDTH_PEAK(X, 1), MAX_WIDTH_PEAK(X, 3), and SUM_WIDTH_PEAK(X, 4) hold. 4

If in a time series all variables have fixed values, i.e. all variables are assigned an integer value, then
such a time series is called ground. We now introduce the notion of maximal time series, which we will
use when deriving sharp upper bounds on the result value of a time-series constraint in Chapter 7, and also
when deriving the AMONG implied constraint in Chapter 8.

Definition 5.1.4 (maximal time series). Consider a time-series constraint g_f_σ(hX1, X2, . . . , Xni , R)
with every Xi ranging over the same integer interval domain [`, u]. A ground time series is maximal for
g_f_σ(hX1, X2, . . . , Xni , R) if it contains at least one σ-pattern and yields the maximum value ofR among
al time series of length n ranging over [`, u].

Example 5.1.2 (maximal time series). Consider the NB_DECREASING_SEQUENCE time-series constraint
imposed on a time series of length 10 with every time-series variable ranging over the integer inter-
val domain [0, 4]. The time series h3, 2, 4, 2, 4, 1, 3, 2, 3, 0i, visually presented in Figure 1.2 on page 18,
is maximal for NB_DECREASING_SEQUENCE since any other time series of length 10 over [0, 4] has
at most 5 decreasing sequences. Note that this time series is not the unique maximal time series for
NB_DECREASING_SEQUENCE when n is 10. 4

5.2 Operational View of Time-Series Constraints

In order to synthesise a representation of a time-series constraint in the form of a register automaton, the
notion of seed transducer was introduced in [22]. It was shown in [68] how to generate a seed transducer
from a regular expression that belongs to the class of recognisable patterns. We recall in Definition 5.2.4
the notion of recognisable pattern [68]. Before that, we recall in Definitions 5.2.1 and 5.2.3 the notions of
regular-expression overlap and mismatch overlap, originally introduced in [68].

Definition 5.2.1 (regular-expression overlap [68]). Given a regular expression σ and three words w, x, y
such that xw 2 Lσ, wy 2 Lσ, and xwy /2 Lσ, the length of w is called the word overlap of xw and wy.
The maximum word overlap between all pairs of words xw and wy in Lσ such that xwy /2 Lσ is called the
σ-overlap and denoted by oσ. If for any pair of words xw 2 Lσ and wy 2 Lσ, the word xwy belongs to
Lσ, then the regular-expression overlap of σ is 0.

Example 5.2.1 (regular-expression overlap). For the σ1 = ‘>>⇤’ regular expression, the value of oσ1 is 0
since the maximum word overlap is never defined for any pair of words in Lσ1 . But for the σ2 = ‘>=+>’
regular expression, the value of oσ2 is 1. 4

Definition 5.2.2 (prefix language [68]). Given a regular expression σ over an alphabet Σ, the prefix language

of σ is the set of all prefixes of all words in Lσ and is denoted by −!σ .

5.2. OPERATIONAL VIEW OF TIME-SERIES CONSTRAINTS 47

Definition 5.2.3 (mismatch overlap [68]). Given a regular expression σ over an alphabet Σ, a word w 2
−!σ \Lσ, and a symbol z 2 Σ, if wz /2 −!σ , then the length of the longest suffix in−!σ of the word wz is called
the mismatch overlap of w and z. The maximum mismatch overlap of all words in −!σ \ Lσ and all symbols
in Σ is called the mismatch overlap of σ and denoted by µσ.

The mismatch overlap of a regular expression σ over Σ reached for a word w in −!σ and a letter z 2 Σ is
equal to one plus the length of the longest suffix v of w such that wz is not a prefix of any word in Lσ, but
vz is.

Example 5.2.2 (mismatch overlap). For the σ1 = ‘>=+>’ regular expression, the value of µσ1 is 1 and is
reached, for instance, when the word w is ‘>’ and the symbol z is ‘>’. For the σ2 = ‘<+=<+>’ regular
expression, the value of µσ2 is infinite since for any word w in the language of ‘<+=<+’, which is a subset
of −!σ2, and for the symbol z = ‘=’, the mismatch overlap is one plus the number of ‘<’ in the longest suffix
of w that is in L<+ , a subset of the prefix language of σ2. This value is not bounded. 4

Definition 5.2.4 (recognisable pattern [68]). Given a regular expression σ over an alphabet Σ and the
associated value of the parameter bσ, the pair hσ, bσi is called a recognisable pattern if bσ is at least
min(µσ, oσ).

Note that Definition 5.2.4 does not depend on the parameter aσ. The intuition behind the notion of
recognisable pattern is that bσ should be large enough so that 1) i-occurrences of σ do not overlap; and
2) computations are not performed on the mismatched part. All regular expressions of Table 5.2 with the
associated values of the parameter bσ are recognisable patterns. We further assume that every considered
regular expression with the associated value of bσ form a recognisable pattern.

We recall the notion of seed transducer in Section 5.2.1, and further in Section 5.2.2 we show how to
compile a register automaton for a time-series constraint using the seed transducer for its regular expression.

5.2.1 Seed Transducer for a Regular Expression

Consider a regular expression σ and an integer constant bσ such that hσ, bσi is a recognisable pattern. A
seed transducer [22] for a regular expression σ is a deterministic finite transducer where each transition is
labelled with two letters: a letter in the input alphabet Σ = {‘<’, ‘=’, ‘>’}, called the input symbol, and a
letter in the output alphabet Ω = {maybeb, out, outr, outa, found, founde, in, maybea}, called the output

symbol. Hence, a seed transducer consumes the signature S of a time series X and produces an output
sequence T where each element is in Ω. Every element of Ω is called a phase letter and corresponds to
phases of recognition of σ and detection of σ-patterns in X . Consider different possibilities of the produced
output symbol Ti when consuming an input symbol Si of S:

◦ Ti is out. A transition labelled by this output symbol implies that the variable Xi does not belong
to any σ-pattern. However, Xi may belong to an extended σ-pattern, i.e. Xi plays an important role
for the recognition of σ in S, but never contributes to the feature computation.

◦ Ti is outr. A transition labelled by this output symbol implies that the variable Xi does not belong
to any σ-pattern, but there is a suffix of hX1, X2, . . . , Xi−1i that could have belonged to a σ-pattern
if, instead of Si, a different symbol had been read. As in the case of out, Xi may belong to an
extended σ-pattern. The ‘r’ of outr is a shorthand for ‘reset’.

◦ Ti is outa. A transition labelled by this output symbol indicates the end of the current σ-pattern. The
variable Xi belongs to the current σ-pattern iff aσ is 0, and it may also belong to the next extended
σ-pattern. The ‘a’ of outa is a shorthand for ‘after’.

48 CHAPTER 5. BACKGROUND ON TIME-SERIES CONSTRAINTS

s

r t

> : out

= : out

< : out

> : found
< : maybeb

= : maybeb

> : in

= : maybea

< : outa

Figure 5.2 – Seed transducer for the PEAK regular expression. This figure is adapted from [10].

◦ Ti is maybeb. A transition labelled by this output symbol indicates a potential σ-pattern. We are not
yet able to determine whether Xi belongs to a σ-pattern or not since it depends on the unseen part
of the signature hSi+1, Si+2, . . . , Sn−1i. The variable Xi belongs to a σ-pattern iff there exist indices
i1 2 [1, i] and i2 2 [i + 1, n − 1] such that the word hSi1 , Si1+1, . . . , Si2i belongs to the language
of σ. Hence the beloning of Xi to a σ-pattern depends on an unseen part of the signature. The ‘b’
of maybeb is a shorthand for ‘before’.

◦ Ti is found. A transition labelled by this output symbol corresponds to the discovery of a new
σ-pattern in X that may potentially be extended. The variable Xi belongs to the current σ-pattern.

◦ Ti is founde. A transition labelled by this output symbol corresponds to the discovery of a new
σ-pattern in X that cannot be extended further. The variable Xi belongs to the current σ-pattern.
The ‘e’ of founde is a shorthand for ‘end’.

◦ Ti is in. A transition labelled by this output symbol corresponds to an extension of the current
σ-pattern. The variable Xi belongs to the current σ-pattern.

◦ Ti is maybea. A transition labelled by this output symbol corresponds to a potential extension of the
current σ-pattern. As in the case of maybeb, the fact that Xi belongs or not to a σ-pattern depends
on the unseen part of the signature hSi+1, Si+2, . . . , Sn−1i. The variable Xi belongs to a σ-pattern
iff there exist indices i1 2 [1, i − 1] and i2 2 [i + 1, n − 1] such that the word hSi1 , Si1+1, . . . , Si2i
belongs to the language of σ. The ‘a’ of maybea is a shorthand for ‘after’.

The following definition formalises the notion of occurrence of a regular expression in the output se-
quence of a seed transducer.

Definition 5.2.5 (t-occurrence [22]). Given a seed transducer S and the signature S of some time series, the
t-occurrence of S for S consists of the indices of the phase letters of a maximal word within the transduction
of S that matches one of the regular expressions ‘maybeb⇤founde’ or ‘maybeb⇤found(maybea⇤in+)⇤’.

Example 5.2.3 (seed transducer for a regular expression). Consider the PEAK regular expression introduced
in Example 5.1.1. The seed transducer T for PEAK is given in Figure 5.2. While consuming the signa-
ture S = h<,<,=, >,=, <,>i, T produces T = hout, maybeb, maybeb, found, maybea, outa, foundi.
As shown in Example 5.1.1, S contains two maximal occurrences of PEAK, complying with the two
t-occurrences of PEAK in T . 4

5.2. OPERATIONAL VIEW OF TIME-SERIES CONSTRAINTS 49

s

8

<

:

C 0
D 1
R 0

9

=

;

r t

R+ C

>

=

<

>
⇢

C 1
D 0

}

<
{D 1}

=
{D 1}

>
⇢

C 1
D 0

}

=
{D 1}

<8

<

:

C 0
D 1
R R+ C

9

=

;

s

8

<

:

C 0
D 1
R 0

9

=

;

r t

R+ C

>

=

<

>
⇢

C D + 1
D 0

}

<
{D D + 1}

=
{D D + 1}

>
⇢

C C +D + 1
D 0

}

=
{D D + 1}

<8

<

:

C 0
D 0
R R+ C

9

=

;

Figure 5.3 – Register automata for NB_PEAK and SUM_WIDTH_PEAK. These figures are adapted from
[10].

5.2.2 Synthesising and Simplifying Register Automata

Synthesis of register automata. Consider a time-series constraint g_f_σ. It was shown in [22] that three
registers, named C, D and R, are enough to represent any g_f_σ by a register automaton. The meaning of
these three registers is the following:

◦ The register C contains the feature value of the current σ-pattern read so far. Hence, this register
contains information about the present.

◦ The register D contains the feature value of the part that may belong to the current σ-pattern; it will
be validated or invalidated later on. Hence, this register contains information about the future.

◦ The register R contains the aggregated value of the features of σ-patterns completely finished so far.
Hence, this register contains information about the past.

In order to obtain a register automaton with registers C, D, and R for g_f_σ, [22] uses two objects
1) the seed transducer for σ, recalled in Section 5.2.1; and 2) the decoration table, which associates with
every phase letter of the seed transducer a set of register updates. Hence, a register automaton for g_f_σ
is obtained from the seed transducer for σ by replacing every phase letter with register updates wrt the
decoration table, which also defines the initial values of the registers and the acceptance function. Table in
Part (B) of Figure 5.5 is the decoration table used for any constraint g_f_σ such that aσ is 1.

Example 5.2.4 (synthesised register automata). Consider the PEAK regular expression, introduced in Ex-
ample 5.1.1. The seed transducer for PEAK is given in Figure 5.2. The register automata obtained from
this seed transducer for the NB_PEAK and SUM_WIDTH_PEAK, using the decoration table in Part (B) of
Figure 5.5, are given in Figure 5.3. 4

Simplifications of register automata. One can notice that sometimes having three registers in a register
automaton is redundant. For example, a register automaton counting the number of peaks in a time series
needs a single register, which is incremented every time when the transition labelled with found is triggered.
For some other regular expressions, their seed transducers do not have transitions labelled with maybeb and
maybea, and thus the register D is never updated and can be removed.

In order to simplify register automata we specialised decoration tables in [11], i.e. instead of one general
decoration given in Part (B) of Figure 5.5, we created 12 decoration tables. Each of the obtained tables
applies for a subset of time-series constraints. We do not give details about how to design specialised
decoration tables here, but only list a few properties of the triples hσ, f, gi that allow us to obtain more
specific decoration tables:

50 CHAPTER 5. BACKGROUND ON TIME-SERIES CONSTRAINTS

s
{
R 0

r t

R

>

=

<

>
{
R R+ 1

<

=

>

=
<

s
{
R 0

r t

R

>

=

<

>
⇢

R R+D + 1
D 0

}

<
{D D + 1}

=
{D D + 1}

>
⇢

R R+D + 1
D 0

}

=
{D D + 1}

<
{
D 0

Figure 5.4 – Simplified register automata for NB_PEAK (left) and SUM_WIDTH_PEAK (right). These
figures are adapted from [10].

1. Consider a time seriesX = hX1, X2, . . . , Xni such that the seed transducer for σ produced the output
sequence hT1, T2, . . . , Tn−1i after having consumed the signature ofX . The property is the following:
for any σ-pattern Xi,j = hXi, Xi+1, . . . , Xji of X , the value of f(Xi,j) is equal to δkf , where δkf is
defined by the table in Part (A) of Figure 5.5, and k 2 [i, j] is the index such that the produced output
symbol Tk is either found or founde. This property allows us to use a single register R, which is
updated as g(R, δkf) every time a transition labelled with found or founde is triggered.
Examples of time-series constraints having this property are all NB_σ constraints, all g_MAX_PEAK

constraints, and all g_MIN_VALLEY constraints.

2. The seed transducer for σ does not have any transition labelled with maybeb or maybea. This property
allows us to remove the register D since it is never updated.
Examples of time-series constraints having this property are all g_f_STEADY_SEQUENCE constraints,
and all g_f_DECREASING constraints.

3. The seed transducer for σ does not have any transition labelled with found, in or maybea. This
property allows us to remove the register C since it is never updated.
Examples of time-series constraints having this property are all g_f_DECREASING_TERRACE con-
straints, and all g_f_INFLEXION constraints.

4. For any time series X = hX1, X2, . . . , Xni, and for any σ-pattern Xi,j = hXi, Xi+1, . . . , Xji of
this time series, and for an arbitrary sequence of integers k1, k2, . . . , kp such that i  k1 < k2 <
· · · < kp  j, we have g (f (Xi,j)) = g (f (hXi, Xi+1, . . . , Xk1i) , f (hXk1+1, Xk1+2, . . . , Xk2i) , . . . ,
f
(⌦
Xkp−1+1, Xkp−1+2, . . . , Xj

↵))
. This property does not allow us to remove registers, but it allows

to perform the aggregation without waiting for the end of the σ-pattern, i.e. waiting for the outa
symbol. This is important in the context of CP since it allows to propagate earlier.
Examples of time-series constraints having this property are all SUM_WIDTH_σ constraints and all
SUM_SURF_σ constraints.

Example 5.2.5 (Simplified register automata). The NB_PEAK (respectively SUM_WIDTH_PEAK) time-
series constraint satisfies Property 1 (respectively Property 4) and thus the corresponding register automa-
ton can be simplified. The simplified register automata for the NB_PEAK and the SUM_WIDTH_PEAK

time-series constraints are given in Figure 5.4. 4

5.2.3 Glue Constraints

In this section, we recall glue constraints [23, 8], which are an important element of the propagation
of time-series constraints. We will use glue constraints when evaluating the impact of our contributions in
Part III.

5.2. OPERATIONAL VIEW OF TIME-SERIES CONSTRAINTS 51

Feature f φf δi
f

one 1 1
width λx, y.x+ y 1
surf λx, y.x+ y Xi
max λx, y.max(x, y) Xi
min λx, y.min(x, y) Xi

(A)

initial values R idg,f C idg,f D idf
acceptance function g(R,C)

phase

letters update of R update of C update of D

out

outr D idf
outa R g(R,C) C idg,f D idf

maybeb D φf

⇣

D, δi
f

⌘

maybea D φf

⇣

D, δi
f

⌘

found C φf

⇣

D, δi
f

⌘

D idf

founde R g
⇣

R, φf

⇣

D, δi
f

⌘⌘

D idf

in C φf

⇣

C, φf

⇣

D, δi
f

⌘⌘

D idf

register updates

(B)

Figure 5.5 – (A) Features: the function used for computing the feature value of the feature f . (B) Deco-
ration table used for synthesising the register automaton for a g_f_σ time-series constraint from the seed
transducer for σ, a feature f , and an aggregator g when the value of the parameter aσ is 1. This table is
adapted from [22].

For a given time-series constraint imposed on a time series X , and an index i of a time-series variable in
X , a glue constraint links the result value from X with the result values from the prefix of X ending at the
variableXi, and the suffix ofX starting at the variableXi. Before recalling the concept of glue constraint in
Definition 5.2.8, we recall the notion of reverse of a signature in Definition 5.2.6, and the notion of reverse

of a register automaton in Definition 5.2.7.

Definition 5.2.6 (reverse of a signature [8]). Consider the signature S = hS1, S2, . . . , Sn−1i of some time
series. The reverse of S is the sequence

⌦
S 01, S

0
2, . . . , S

0
n−1

↵
, where every S 0i (with i in [1, n−1]) is defined as

S 0i =

8

><

>:

‘<’ if Sn−i = ‘>’,

‘=’ if Sn−i = ‘=’,

‘>’ if Sn−i = ‘<’.

Example 5.2.6 (reverse of a signature). The signature h=, >,=, <,<,=, >,<,=i is the reverse of the
h=, >,<,=, >,>,=, <,=i signature and vice versa. 4

Definition 5.2.7 (reverse of a register automaton [8]). Consider a register automaton M whose input al-
phabet is h<,=, >i. The reverse of M is a register automaton M0 such that, for any input signature S
recognised byM, upon consuming S,M returns the same value asM0 upon consuming the reverse of S.

Example 5.2.7 (reverse of a register automaton). Both automata in Figure 5.4 are their own reverse. 4

For any time-series constraint g_f_σ such that σ is one of the regular expression in Table 5.2 except
BUMP_ON_DECREASING_SEQUENCE, DIP_ON_INCREASING_SEQUENCE, and INFLEXION, the reverse
of its register automaton is the register automaton for a time-series constraint g_f_σ0, where σ0 is a regular
expression in Table 5.2.

Definition 5.2.8 (glue constraint [8]). Consider a time-series constraint g_f_σ(hX1, X2, . . . , Xni , R), its
register automaton M, the reverse M0 of M, and an index i in [1, n]. Let

−!
R i (respectively

 −
R i) be

constrained by g_f_σ(hX1, X2, . . . , Xii ,
−!
R i) (respectively g_f_σ(hXn, Xn−1, . . . , Xii ,

 −
R i)), and

−!
Q i (re-

spectively
 −
Q i) be the final state ofM (respectively ofM0) after having consumed the signature of hX1, X2,

. . . , Xii (respectively of hXn, Xn−1, . . . , Xii). Then, the constraint R = g(
 −
R i,
−!
R i,∆(

−!
Q i,
 −
Q i)) is called a

glue constraint, where the function ∆(
−!
Q i,
 −
Q i) is called the glue expression, and depends onM andM0.

52 CHAPTER 5. BACKGROUND ON TIME-SERIES CONSTRAINTS

s r t

s 0 0 0

r 0 1 1

t 0 1 0

Table 5.3 – Glue matrix for the NB_PEAK constraint

0
1

2

(A)

2 2

0 0

4

1

(B)

Figure 5.6 – (A) The prefix h0, 1, 2i of the time series h0, 1, 2, 2, 0, 0, 4, 1iwithout any peaks. (B) The suffix
h2, 2, 0, 0, 4, 1i of the time series h0, 1, 2, 2, 0, 0, 4, 1i with one peak, highlighted in grey.

It was shown in [8] that for a given g_f_σ time-series constraint, the glue expression can be composi-
tionally obtained from the seed transducer for σ and the decoration table. We give the glue expression in a
form of matrix, called a glue matrix, where every row (respectively column) corresponds to some state q1
(respectively q2) ofM (respectivelyM0), and the cell on the intersection of the row for q1 and the column
for q2 gives the glue expression ∆(q1, q2) for q1 and q2.

Example 5.2.8 (glue matrix). Consider the NB_PEAK time-series constraint and its simplified register au-
tomaton from Figure 5.4, which is its own reverse. The corresponding glue matrix is given in Table 5.3. Fig-
ure 5.6 gives the prefix P of length 3 and the suffix S of length 6 of the time series T = h0, 1, 2, 2, 0, 0, 4, 1i.
After consuming the signature of P (respectively reverse of S) by the automaton in Figure 5.4, it returns 0
(respectively 1) since P does not have any peaks (respectively S has one peak), and it finishes in the state r.
Then, by the glue constraint the number of peaks in T is the sum of three quantities, namely the number of
peaks in P , the number of peaks in the reverse of S, and the glue expression from the (r,r) cell of Table 5.3.
Hence, T has two peaks, which complies with Example 5.1.1. 4

5.3 Related Approach: Quantitative Regular Expressions

In this section, we discuss quantitative regular expressions (QREs), which have the same logic as time-
series constraints, i.e. multi-level computations from occurrences of some pattern in an integer sequence,
but which are used in a completely different context.

Quantitative regular expressions (QREs) were introduced in [5] and are mainly used for data stream
analysis [5, 6, 15, 93]. Often, in the context of data stream analysis one needs to map parts of streams into
numerical values that are further used for real-time decision-making. QREs provide a declarative language
for describing queries over data streams [5].

A QRE is parameterised by a regular expression σ over an alphabet given by a considered application,
and a set of functions f1, f2, . . . , ft. The result of a QRE is a numerical value computed by applying
functions f1, f2, . . . , ft in a cascading way to occurrences of σ in an input stream of data. The baseline
implementation of QREs is a streaming algorithm [5]. While time-series constraints use only three level
for computing a given result, this provides a framework of restricted family of constraints for which the
combinatorial aspect can be studied in a systematic way, as we will show in the next part of this thesis.
Getting similar results for QREs would be much more challenging.

5.3. RELATED APPROACH: QUANTITATIVE REGULAR EXPRESSIONS 53

criterion time-series constraints QREs

signature binary unary
implementation automata with at most 3 registers streaming algorithms
number of levels 3 (regular expression, feature, aggregator) unlimited
typical applications extracting time-series constraints, analysis of data streams

generating time series satisfying
a conjunction of time-series constraints

need to handle combinatorics yes no

Table 5.4 – Comparison of time-series constraints and QREs

Table 5.4 shows a few differences between time-series constraints and QREs. The main difference is in
applications: time-series constraints can be used for modelling and then solving a problem, hence there is
a need to handle the combinatorial aspect of time-series constraints, and not the one of QREs, which focus
on stream analysis.

Part II

Theoretical Contributions

55

57

In this part, we present our theoretical contributions related to synthesis of combinatorial objects for
time-series constraints and to the extension of the transducer-based model for describing sequence con-
straints.

First, Chapter 6 gives a detailed overview of our contributions and also states the key ideas of our
methods for synthesising combinatorial objects for time-series constraints.

Second, Chapters 7, 8, 9, 10 and 11 present our methods for synthesising combinatorial objects for
time-series constraints, which are defined in a compositional way by multiple layers of cascading functions:
regular expression occurrences, feature and aggregator, and have a baseline implementation by register au-
tomata. Despite a rich and powerful modelling language provided by time-series constraints, it is unknown,
in general, how to efficiently maintain domain consistency for a conjunction of time-series constraints,
which makes it unpredictable how these constraints potentially interact, and the baseline propagation pro-
vided by the decomposition of a register automaton [20] is weak. Hence there is a need for adding implied
constraints that do not change the solution space but allow us to find a solution faster. We consider two
cases of using time-series constraints:

1. For a time-series constraint in isolation, we synthesise sharp bounds on its result value, presented
in Chapter 7, and also AMONG implied constraints, presented in Chapter 8. Both methods use the
regular-expression representation of time-series constraints. We now give two examples:

1. A time series of length 10 cannot have 8 peaks, but the solver does not realise that this value is
infeasible, and typically spends a large amount of time trying to prove the infeasibility. By imposing a
sharp upper bound on the result value of a time-series constraint we reduce the effort to find a solution
or to prove infeasibility.

2. When the surface of a peak is close to its maximum possible value among all peaks of the same
width and over the same domain, then the values in this peak should also be large. By imposing a
lower bound on the number of variables in a peak that should take large values, we reduce the effort
to find a solution or to prove infeasibility.

2. For a conjunction of time-series constraints imposed on the same sequence, we synthesise linear,
Chapter 9, and non-linear invariants, Chapters 10 and 11, linking the result values of the constraints
in the conjunction and parameterised by the sequence length. Both methods use register automata
and/or seed transducers. We now give two examples:

1. No time series can simultaneously have 5 peaks and 1 valley since peaks and valleys alternate and
between any two peaks there is always exactly one valley. Very often the solver cannot capture such
implicit relations between constraints, which leads to a weak filtering. Imposing a linear invariant
stating that the number of peaks in a time series is less than or equal to the number valleys plus one
would eliminate the infeasible combination of 5 peaks and 1 valley and reduce effort for finding a
solution or proving infeasibility.

2. When infeasible combinations of the result values are located within the convex hull of feasi-
ble values linear invariants cannot eliminate them. Hence, there is a need for non-linear invariants
eliminating such combinations.

Third, Chapter 12 presents an extended transducer-based model that does not have a mix of qualitative
and quantitative aspects as it was the case in [22] and allows us to describe a larger class of sequence
constraints.

Chapter 6

Overview of our Theoretical Contributions

Before presenting our theoretical contributions, we give a synthetic overview of these contributions.

1. In Section 6.1, we give an overview of our contributions for synthesising combinatorial objects for
a single time-series constraint, and discuss the main idea of these contributions, namely using the
declarative view of time-series constraints, i.e. regular expressions and regular-expression character-

istics.

2. In Section 6.2, we give an overview of our contributions for synthesising combinatorial objects for
conjunctions of time-series constraints, and discuss the main idea of these contributions, namely using
the operational view of time-series constraints, i.e. register automata and transducers.

3. In Section 6.3, we demonstrate that the synthesised combinatorial objects were integrated into the
Volume II of the Global Constraint Catalogue [10].

4. In Section 6.4, we discuss the extended transducer-based model, which allows to capture more se-
quence constraints using transducers, and highlight the main differences with the initial model of [22].

6.1 Overview of our Contribution for Time-Series Constraints

in Isolation

Consider a time-series constraint g_f_σ(hX1, X2, . . . , Xni , R). To characterise this constraint we de-
veloped methods for synthesising the following combinatorial objects:

◦ Generic formulae for sharp bounds on the result variable R, provided every time-series variable Xi

is ranging over the same integer interval domain, and the regular expression σ satisfies certain prop-
erties. When the domains of Xi are not uniform and/or are not intervals, the bounds are still valid,
but their sharpness is no longer guaranteed. For a given pair hf, gi of feature and aggregator, we
have a small number of formulae, usually a single one, that is parameterised by a regular expres-
sion σ. This allows us to prove a very few formulae that apply for all time-series constraints whose
feature is f and aggregator is g, which supports the idea of the compositionality of the obtained
combinatorial object.
In Chapter 7, we systematically derive and prove formulae for the cases when the feature f is either
one or width.

◦ Generic AMONG implied constraint for time-series constraints whose feature is surf. We impose
the conjunction AMONG(N, hX1, X2, . . . , Xni , L) ^ N ≥ B, where L is a list of integer val-
ues depending on the regular expression σ and the aggregator g, and B is the result of evaluation
of a function also depending on σ, g, and R. For each aggregator, we have one formula for B,
which is parameterised by the regular expression σ. The main idea of these implied constraints is
that, when the value of R is close to its maximum value, there should be large enough values in

59

60 CHAPTER 6. OVERVIEW OF OUR THEORETICAL CONTRIBUTIONS

hX1, X2, . . . , Xni. The crucial element of this part is the bound on the result value R of Chapter 7,
and the structure of time series reaching this bound.
In Chapter 8, we derive and prove three generic formulae, one for each aggregator in {max, min, sum}.

6.1.1 First Key Idea: Regular-Expression Characteristics

When we say that a formula is parameterised by a regular expression σ, it means that it is parameterised
by some quantities computed from σ, called regular-expression characteristics. For example, the length of
a shortest word in the language of σ is one characteristic of a regular expression, and we will actively use it
when deriving the bounds on the result value of time-series constraints.

Regular-expression characteristics are similar to graph characteristics, e.g.
◦ diameter, the largest of the smallest distances between any two vertices of a graph;
◦ clique number, the number of vertices in a subgraph of a graph, where every two different vertices

are adjacent;
◦ number of connected components, the number of subgraphs of a graph where there is a path between

any pair of vertices.
Graph characteristics have been already used in constraint programming for obtaining parameterised

formula [31]. However, for regular expressions, to the best of our knowledge no such work has been done
before, and our work for deriving formulae for sharp bounds and AMONG implied constraints opens new
perspectives that will be described in Chapters 7 and 8.

Consider a g_f_σ(hX1, X2, . . . , Xni , R) time-series constraint with every Xi ranging over the same
integer interval domain [`, u]. Currently, there are three use cases of regular-expression characteristics:

1. Necessary and sufficient condition for having at least one σ-pattern in hX1, X2, . . . , Xni, given in
Section 7.1.9. We call it, for short, necessary and sufficient condition. This condition restricts the
domain [`, u], i.e. the domain should be large enough, and the sequence length n, i.e. the sequence
should be long enough.

2. Sharp bounds on R, given in Sections 7.2 and 7.3.

3. AMONG implied constraint for g_f_σ, given in Section 8.2.

We now give a list of regular-expression characteristics introduced in Chapters 7 and 8 together with
their intuitions and uses cases:

◦ The size of σ, denoted by !σ. It is the length of a shortest word in the language of σ. It is used both
for synthesising bounds and in the necessary and sufficient condition.

◦ The height of σ, denoted by ⌘σ. It is the minimum difference between the maximum and the min-
imum values in an extended σ-pattern. It is used for synthesising bounds, in the necessary and
sufficient condition, and also in the AMONG implied constraints for defining the list of parameters
of AMONG.

◦ The set of inducing words of σ, denoted by Θσ. It is a subset of Lσ such that for every word v in
Lσ, there exists a word w = w1w2 . . . wk in Θσ such that every wi 6= " and every v 2 Lσ can be
represented as v1w1v2w2 . . . vkwkvk+1 with every vi being a word in {‘<’, ‘=’, ‘>’}⇤. It is used for
synthesising lower bounds.

◦ The range of σ wrt hni, denoted by φσ(n). It is the minimum difference between the maximum and
the minimum values in an extended σ-pattern of width n. It is used for synthesising bounds.

◦ The overlap of σ wrt h`, ui, denoted by oh`,uiσ . It is the maximum number of common time-series
variables of two consecutive extended σ-patterns. It is used for synthesising upper bounds, and
also in AMONG implied constraints for deriving a lower bound on the value of the parameter N of
AMONG.

6.2. CONTRIBUTIONS FOR A CONJUNCTION OF TIME-SERIES CONSTRAINTS 61

σ σ, n σ, `, u σ, n, `, u σ, n, `, u, v σ, f, g, `, u

condition

bounds

AMONG

!σ ⌘σ

!σ ⌘σ

⌘σ

Θσ φ
hni
σ o

h`,ui
σ

o
h`,ui
σ

δ
h`,ui
σ

β
hn,`,ui
σ µ

hn,`,ui
σ (v) Ih`,uihg,f,σi

Figure 6.1 – Regular-expression characteristics introduced in Chapters 7 and 8. The horizontal (respec-
tively vertical) axis is for arguments (respectively use cases) of the characteristics. Here, σ is a regular
expression, f is a feature, g is an aggregator, ` and u are, respectively, the domain minimum and maximum
values, v is an integer number, n is a time-series length, AMONG stands for an AMONG implied constraint,
“bounds” stands for sharp bounds on the result value of a time-series constraint, and “condition” stands for
the necessary and sufficient condition. The colour intensity designates the argument-wise complexity of a
characteristic: the darker is the colour the more complex the characteristic.

◦ The smallest variation of maxima of σ wrt h`, ui, denoted by δh`,uiσ . It is the smallest difference
between the maximum values of two consecutive extended σ-patterns that have at least one common
time-series variable. It is used for synthesising upper bounds.

◦ The big width of σ wrt hn, `, ui, denoted by βh`,uiσ . It is the largest width of a σ-pattern in a time
series hX1, X2, . . . , Xni. It is used in AMONG implied constraints for deriving a lower bound on the
value of the parameter N of AMONG.

◦ The maximum value number of an integer value v in a σ-pattern wrt hn, `, ui, denoted by µhn,`,uiσ (v).
It is the largest number of occurrences of v in a σ-pattern of hX1, X2, . . . , Xni. It is used in the
AMONG implied constraints for deriving a lower bound on the value of the parameter N of AMONG.

◦ The interval of interest of hg, f, σiwrt h`, ui, denoted by Ih`,uihg,f,σi. It is the interval of values that often
appears in σ-patterns of the maximal time series for g_f_σ. The values of this interval correspond
to the list of value parameters passed to AMONG.

Figure 6.1 summarises the presented information about regular-expression characteristics in a synthetic
way.

6.2 Overview of our Contribution for a Conjunction

of Time-Series Constraints

Consider a γ1(X,R1) ^ γ2(X,R2) ^ · · · ^ γk(X,Rk) conjunction of time-series constraints with every
γi being either NB_σi or SUM_WIDTH_σi. We focus on these families of time-series constraints since every
result value Ri depends only on the signature of X . For example, for every γi, both time series h1, 2, 3i and
h−1, 6, 8i yield the same value of Ri since they have the same signature h<,<i. We give an overview of
our two contributions for characterising the relations between the result variables of time-series constraints
in a conjunction:

◦ Linear inequalities of the form e + e0 · n +
kP

i=1

ei · Ri ≥ 0, where e, e0, . . . , ek are integer numbers

that we extract from the intersection of register automata for γ1, γ2, . . . , γk. Such invariants cap-
ture implicit relations between the result values of different time-series constraints in a considered

62 CHAPTER 6. OVERVIEW OF OUR THEORETICAL CONTRIBUTIONS

conjunction, and are valid for any instance, i.e. independently of n and from the domains of the
time-series variables. In addition, for conjunctions of two different time-series constraints and for a
given sequence length, we observe that in many cases the extracted linear inequalities are facets of
the convex hull of feasible combinations (R1, R2, . . . , Rk), i.e. they are sharp.
Chapter 9 describes our method for extracting linear invariants from the intersection of register
automata for time-series constraints in a considered conjunction. Although, we initially did this
work for time-series constraints, the method applies for any sequence constraint whose register
automaton have the incremental-automaton property, described in Property 9.1.1.

◦ Non-linear invariants parameterised by a function of n, and that characterise infeasible combina-

tions of (R1, R2, . . . , Rk) within the convex hull of feasible combinations. Even having all facet-
defining inequalities may not be enough to achieve a good propagation for a conjunction of time-
series constraints. One of the reasons is the presence of infeasible points within the convex hull of
feasible values of (R1, R2, . . . , Rk). The values corresponding to these points cannot be removed
from the domains of R1, R2, . . . , Rk by just using linear inequalities.
In order to synthesise invariants characterising infeasible points within the convex hull we use the
following three-phase method:

1. generate a dataset from which we will extract non-linear invariants in the next phase;

2. use a data mining technique to extract hypotheses describing sets of infeasible points;

3. automatically prove or invalidate the extracted hypotheses. Proofs are independent of the se-
quence length and from the domains of the time-series variables.

The crucial component of the proof phase is the automatic generation of automata without registers,
called conditional automata, representing a set of signatures satisfying some condition, e.g. all sig-
natures with the maximum number of occurrences of the PEAK regular expression. Although, we
use conditional automata only for proving non-linear invariants, this piece of work may be interest-
ing on its own, since to the best of our knowledge, there were no works on representing the set of
solutions achieving some bound by a constant-size automaton.
Chapter 10 describes our method for extracting non-linear invariants for time-series constraints in
a considered conjunction. Chapter 11 explains how to automatically generate conditional automata
that are required for the proof phase from the transducer for the corresponding regular expression or
from the associated register automaton.

6.2.1 Second Key Idea: Operational View of Time-Series Constraints

For a conjunction of two time-series constraints g1_f1_σ1(X,R1) and g2_f2_σ2(X,R2) such that σ1 and
σ2 are different, the relations between occurrences of σ1 and σ2 in the signature of X can be complicated,
for example,
◦ an occurrence of σ1 is always included in an occurrence of σ2,
◦ the overlap between an occurrence of σ1 and an occurrence of σ2 is not bounded by any constant,
◦ there is always one occurrence of σ1 between any two occurrences of σ2.

Hence the approach for synthesising invariants linking R1, R2 and n using regular-expression charac-
teristics would force us to analyse the relations between 242 pairs of regular expressions. Moreover, the
more constraints in a considered conjunction, the harder it becomes.

Rather than manually analysing the interaction of each possible pair of regular expressions we use the
following facts:

1. it is possible to automatically generate a seed transducer for a regular expression [68],

2. it is possible to synthesise a register automaton for a time-series constraint g_f_σ from the seed
transducer for σ [22],

6.3. INTEGRATING COMBINATORIAL OBJECTS INTO THE GLOBAL CONSTRAINT CATALOGUE 63

3. it allows to use the compositional aspect of register automata, i.e. to intersect them and extract from
this intersection some invariants capturing the interaction of a conjunction of constraints.

6.3 Integrating Combinatorial Objects into

the Global Constraint Catalogue

As mentioned in the introduction, our synthesised combinatorial objects were integrated into the Volume
II of the Global Constraint Catalogue. In the catalogue, each time-series constraint has an entry, consisting
of the following slots:
◦ origin of the constraint and the related regular expression;
◦ the signature of the constraint;
◦ the arguments of the constraint;
◦ restrictions, which include sharp bounds on the result value of the constraint, presented in Chapter 7,

and the AMONG implied constraints, presented in Chapter 8;
◦ the purpose of the constraint;
◦ an example with a figure when the constraint holds;
◦ typical restrictions on the number of variables in a time series, and the domains of time-series vari-

ables;
◦ symmetries, if any;
◦ argument properties, e.g. the result value of the constraint is functionally determined by a time

series;
◦ the register automata (original and simplified) for the constraint;
◦ the glue matrices for the constraint;
◦ and conditional automata generated by the methods of Chapter 11.

For each catalogue entry, we have metadata in the form of Prolog file; from this metadata we generate
the LATEX code, from which the PDF file for the catalogue is compiled. Appendix A.1 gives the metadata
for the NB_PEAK time-series constraint, and Appendix A.2 gives the pages of the PDF file generated from
these metadata.

Invariants for a conjunction of time-series constraints presented in Chapters 9 and 10 were integrated
into the database of invariants of the catalogue, which contains 917 entries: 176 entries corresponding to
a single constraint and 741 entries corresponding to pairs of constraints. The total number of invariants is
2422: 763 linear invariants, 974 conditional linear invariants, 662 non-linear invariants, and 23 manually
derived invariants. The total number of conditional automata generated for proving invariants is 2430.
Appendix B.1 gives a piece of metadata for some invariants, and Appendix B.2 gives the pages of the PDF
file generated from these metadata.

6.4 Overview of the Extended Transducer-Based Model

The initial model of [22] used transducers for regular expressions to synthesise register automata for
time-series constraints that can be used as propagators. The two main drawbacks of this model are

◦ A mix of qualitative and quantitative aspects. Seed transducers representing the qualitative aspect of
constraints are dependent on the values of the purely quantitative parameter bσ, used for trimming the
left extremity of occurrences of a regular expression (see Definition 5.1.1). Hence changing the value
of bσ would lead to a new transducer. For example, for the σ = DECREASING_TERRACE regular
expression, Figure 6.2 gives two seed transducers for the cases when bσ is 1 and 2, respectively.
They differ by the output symbol of the transition from r to t.
The extended transducer-based model presented in Chapter 12 does no longer have this problem. A
single seed transducer can be used for an interval of values of bσ.

64 CHAPTER 6. OVERVIEW OF OUR THEORETICAL CONTRIBUTIONS

 s

> r= t

>
:
o
u
t

 : out

> : out

= : maybeb

< : out

> : founde
= : maybeb

< : ou
tr

(A)

 s

> r= t

>
:
o
u
t

 : out

> : out

= : out

< : out

> : founde
= : maybeb

< : ou
tr

(B)

Figure 6.2 – Seed transducer for σ = DECREASING_TERRACE when bσ is 1 (A) and 2 (B)

◦ The model of [22] is dedicated to time-series constraints. However, a number of existing global
constraints such as AMONG [25], and STRETCH [108] could be represented using the same approach.
The extended transducer-based model allows any signature of any arity, and is no longer limited to
three letters.

◦ Due to the new phase letter mayber the extended transducer-based model can also handle cases
where we need to resynchronise the computation of a feature. For example, after triggering a se-
quence of transitions corresponding to maybeb we need to ‘forget’ a computed part corresponding
to a few first transitions.

In addition, in the extended transducer-based model we introduce new features, and new aggregators,
which enlarges the class of global constraints that can be described using our approach.

Chapter 7

Synthesising Parameterised Bounds

This chapter is an extended version of an article published in the Constraints journal [14]. The final
authenticated version of this article is available online at: http://dx.doi.org/10.1007/s10601-
017-9276-z.

It is currently unknown in general, how to maintain efficiently domain consistency for time-series con-
straints. Computing bounds on the result variable R of a g_f_σ(hX1, X2, . . . , Xni , R) time-series con-
straint is a way to potentially handle the combinatorial aspect and thus improve propagation. Since we have
too many time-series constraints deriving such bounds needs to be done in a systematic way. Motivated
by this, we sketched in [8] a methodology to obtain such bounds and illustrated it only for time-series
constraints when g = max and f = min.

The contribution of this chapter, which makes explicit the approach sketched in [8], is to introduce
the notion of regular-expression characteristic that provides a unified way to concisely express bounds
on the result variable R of a time-series constraint. Six regular-expression characteristics are introduced,
which allows coming up in a compositional way with bounds when hg, fi 2 {hsum, onei , hmax, widthi ,
hmin, widthi , hsum, widthi}: five main theorems (see Theorems 7.2.1, 7.2.2, 7.3.1, 7.3.2, and 7.3.3) allow
obtaining 95 bounds implemented in Volume II of the Global Constraint Catalogue [10]. When the time-
series variables hX1, X2, . . . , Xni have the same interval integer domain, these bounds are sharp for all the
22 regular expressions of Table 5.2. We now put in perspective with existing work the contribution of this
chapter.

Going back to the work of Schützenberger [124], regular cost functions are quantitative extensions of
regular languages that correspond to a function mapping a word to an integer value or infinity (QRE for
short). Recently there was a rise of interest in this area, both from a theoretical perspective with max-plus
automata [56], and from a practical point of view with the synthesis of cost register automata [4] for data
streams [5]. Within constraint programming constraints using automata and register automata were intro-
duced in [109] and in [20, 60], respectively, the latter also computing an integer value from a word. More
recently, the work on synthesising register automata from transducers [22] in the context of time-series
constraints is part of the QRE line of research. While most previous mentioned works give quantitative
extensions of regular languages as their general motivation, to the best of our knowledge none of them in-
troduced the concept of regular-expression characteristic, which is the key abstraction proposed here. The
chapter is structured in the following way:
⇧ In Section 7.1, we first introduce a notation system for denoting regular-expression characteristics.

Then we present six regular-expression characteristics, which characterise different quantitative as-
pects of regular expressions useful for capturing some of their combinatorial flavour. Finally, based
on two of these characteristics, we provide a necessary condition for the occurrence of a word of the
language of a regular expression in the signature of a time series.
⇧ In Section 7.2, we show how to obtain generic bounds for time-series constraints whose result vari-

ables are constrained to be the number of occurrences of a regular expression in the signature a time
series, i.e. time-series constraints where g = sum and f = one.

65

http://dx.doi.org/10.1007/s10601-017-9276-z
http://dx.doi.org/10.1007/s10601-017-9276-z

66 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

⇧ In Section 7.3, we show how to obtain generic bounds for the result variables of time-series con-
straints for which the feature f is width, and the aggregator g is in {max, min, sum}.
⇧ In Section 7.4, we synthesise all the results on bounds we have so far from the CP paper [8], and from

Sections 7.2 and 7.3 of this thesis: for each bound we recall (1) the regular-expression characteristics
it uses, (2) the generic theorem it comes from, and (3) the properties on regular expressions under
which the bound is sharp.

7.1 Regular-Expression Characteristics

To obtain parameterised bounds, this section introduces regular-expression characteristics used for de-
riving sharp lower and upper bounds on the result value of a time-series constraint when the feature is
either one or width. For all regular-expression characteristics, we use the notation system described in Sec-
tion 7.1.1. We introduce the following characteristics:
◦ The size of a regular expression in Section 7.1.2.
◦ The height of a regular expression in Section 7.1.3.
◦ The range of a regular expression wrt a time-series length in Section 7.1.4.
◦ The set of inducing words of a regular expression in Section 7.1.5.
◦ The overlap of a regular expression wrt an integer interval domain in Section 7.1.6.
◦ The smallest variation of maxima of a regular expression wrt an integer interval domain in Sec-

tion 7.1.7.
For instance, given a regular expression σ, the size characteristic is the length of a shortest word in

Lσ, while the overlap corresponds to the maximal overlap of two words in Lσ provided it is bounded by
a constant. These two regular-expression characteristics are, for example, used to express the maximum
number of occurrences of σ one can pack within the signature of a time series of length n.

Section 7.1.8 presents a summary example combining all the introduced regular-expression characteris-
tics for the DECREASING_TERRACE regular expression. Section 7.1.9 introduces a necessary and sufficient
condition for the existence of at least one occurrence of a regular expression within the signature of a time
series under some hypothesis on the domain of the time-series variables. Table 7.1 provides for each of
the 22 regular expressions in Table 5.2 the corresponding value of each regular-expression characteristic.
Within Appendix C we give a table for each characteristic and also provide an illustrative example for each
regular expression in Table 5.2.

7.1.1 A Notation System for Regular-Expression Characteristics

We introduce a notation system for naming the regular-expression characteristics. A regular-expression
characteristic C is a function, denoted by CP

E (V), whose arguments are E, P , and V explained below:
◦ E is either a regular expression over Σ = {<,=, >} or a triple hg, f, σi, where g is an aggregator,
f is a feature and σ is a regular expression over Σ = {<,=, >}. In the latter case, σ is considered
in the context of the g_f_σ time-series constraint.
◦ P is a subset, possible empty, drawn from {`, u, n}, where [`, u] is the domain of the variables of a

time series, and n is the length of a given time series.
◦ V is a vector of additional arguments, which are different from E, `, u, and n. If V is empty, then

we simply write CP
E . Quite often these additional arguments correspond to words in LE since a

characteristic CP
E will be defined in terms of another characteristic CP

E (V): for instance the height
of a regular expression E will be defined in terms of the heights of words in LE .

The domain of the function CP
E (V) is the Cartesian product of the following elements in the given order:

◦ The domain of E, which is the set of all regular expressions over Σ, denoted by RΣ, if E is a
regular expression, and is the set of all time-series constraints, denoted by T , if E is a triple of an
aggregator, a feature, and a regular expression.
◦ The Cartesian product of the domains of the elements of P , if P is not empty.

7.1. REGULAR-EXPRESSION CHARACTERISTICS 67

◦ The Cartesian product of the domains of the arguments of V , if V is not empty.
The alphabet (Latin or Greek) from which comes the symbol ‘C’ depends on the type of values returned

by CP
E (V):
◦ If the codomain of CP

E (V) is Z, then ‘C’ is a lower-case Greek letter, e.g., δ.

◦ If the codomain of CP
E (V) is the power set of some set, then ‘C’ is an upper-case Greek letter,

e.g., ∆.

◦ If CP
E (V) returns an interval, then ‘C’ is an upper-case Latin letter in calligraphy, e.g., D.

Some regular-expression characteristics are associated with, either the lower or the upper bound on the
value of the result variable of a time-series constraint.

In this case, the ones associated with the upper (respectively lower) bound are denoted by C
P

E(V)
(respectively CP

E(V)).

7.1.2 Size

This section introduces the size regular-expression characteristic; it will be used in Theorem 7.2.2 for
computing the sharp upper bound on the number of occurrences of a regular expression within the signature
of a time series. The size of a regular expression σ is the minimum number of letters in a word among
all words in Lσ. Intuitively, to maximise the number of occurrences of σ within the signature of a time
series, every word in this signature should be as short as possible, i.e. its length should be the size of σ.
This characteristic is also used for defining a necessary and sufficient condition, see Property 7.1.1, for the
existence of at least one occurrence of a regular expression within the signature of a time series over an
integer interval domain.

Definition 7.1.1 (Size). Consider a regular expression σ. The size of σ, denoted by !σ, is a function that
maps an element ofRΣ to N. It is defined by !σ = min

v2Lσ
|v|.

Example 7.1.1 (Size of a regular expression). We illustrate the size characteristic for two regular expres-
sions.
• Consider the σ = ZIGZAG regular expression. There are two shortest words in Lσ, namely ‘<><’

and ‘><>’. Both have length 3, thus the size of σ is 3. Hence, any extended σ-pattern has at
least 3 + 1 time-series variables.
• Consider the σ = DECREASING_TERRACE regular expression. There is a single shortest word

in Lσ, namely ‘>=>’. Thus the size of σ is 3. Hence, any extended σ-pattern has at least 3 + 1
time-series variables. 4

7.1.3 Height

We introduce the notion of height of a regular expression, which is used for defining a necessary and
sufficient condition, see Property 7.1.1, for the existence of at least one occurrence of a regular expression
within the signature of a time series. This regular-expression characteristic is also used in Theorem 7.2.2
of Section 7.2 for computing a sharp upper bound on the number of occurrences of a regular expression
within the signature of a time series. Definitions 7.1.2 and 7.1.3 are used for introducing Definition 7.1.4.

Definition 7.1.2 (Set of supporting time series). Consider a regular expression σ and an integer interval
domain [`, u]. The set of supporting time series of a word v in Lσ wrt h`, ui, denoted by Ω

h`,ui
σ (v), is a

function that maps an element of RΣ ⇥ Z ⇥ Z ⇥ Σ⇤ to P(Z⇤), where P(Z⇤) is the power set of Z⇤. Each
element of Ωh`,uiσ (v) is a time series over [`, u] whose signature is v, and is called a supporting time series

of v wrt h`, ui.

68 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

Definition 7.1.3 (Height of a word). Consider a regular expression σ. The height of a word v in Lσ, denoted
by ⌘σ(v), is a function that maps an element of RΣ ⇥ Σ⇤ to N. It is defined by ⌘σ(v) = min

Ω
h`,ui
σ (v) 6=;

(u − `),

where [`, u] is an integer interval domain.

Definition 7.1.4 (Height). Consider a regular expression σ. The height of σ, denoted by ⌘σ, is a function
that maps an element ofRΣ to N. It is defined by ⌘σ = min

v2Lσ
⌘σ(v).

Example 7.1.2 (Height). We illustrate the notion of height for two regular expressions.
• Consider the σ = DECREASING regular expression and an integer interval domain [`, u]. When u−
` = 0, there does not exist a time series over [`, u] whose signature is a word of Lσ; but when u−` =
1, there exists a time series hu, u− 1i over [`, u] whose signature is the single word ‘>’ of Lσ.
Hence, the height of σ equals 1.
• Consider the σ = DECREASING_TERRACE regular expression and an integer interval domain [`, u].

When u − `  1, there does not exist a time series over [`, u] whose signature is a word in Lσ; but
when u− ` = 2, there exists a time series over [`, u] whose signature is a word, for example ‘>=>’,
in Lσ. Hence, the height of σ equals 2. 4

7.1.4 Range

This section introduces a regular-expression characteristic needed by Theorems 7.3.1, 7.3.2, and 7.3.3
for characterising sharp bounds on the result value of a time-series constraint when the feature is width.
This characteristic, described in Definition 7.1.5, is called the range of a regular expression σ, and shows
the variation of the minimum height of words of Lσ for words of increasing length.

Definition 7.1.5 (Range). Consider a regular expression σ and a time series length n. The range of σ
wrt hni, denoted by φhniσ , is a function that maps an element of RΣ ⇥ N to N. It is defined by φhniσ =

min
v2Lσ , |v|=n−1

⌘σ(v), where ⌘σ(v) is the height of the word v. If Lσ does not contain any word of length n−1,

then the value of φhniσ is undefined.

Example 7.1.3 (Range). Consider the σ = STEADY_SEQUENCE regular expression. For every integer n >
!σ, the language Lσ contains a word with n− 1 equalities. Any word of this type has a height of 0. Hence,
the range of σ is a constant function of n, which equals 0.

7.1.5 Set of Inducing Words

Given a disjunction-capsuled regular expression σ, we first introduce the notion of inducing word of Lσ,
which is a maximum sequence of letters that appears in every word of Lσ in a fixed order. Then we
generalise this notion to any disjunction of disjunction-capsuled regular expressions. This notion will be
further used in Property 7.2.1 and Theorem 7.2.1 for proving the lower bound on the number of σ-patterns
in a time series, which very often is 0.

Definition 7.1.6 (Inducing word). Consider a disjunction-capsuled regular expression σ. The (unique) non-
empty shortest word of Lσ is the inducing word of Lσ.

Definition 7.1.7 (Set of inducing words). Consider a regular expression σ that is in the form of σ =
σ1 | σ2 | . . . | σt with t ≥ 1, where every σi (with i 2 [1, t]) is a disjunction-capsuled regular expression.
The set of inducing words of σ, denoted by Θσ, is a function that maps an element of RΣ to P(Σ⇤),
where P(Σ⇤) is the power set of Σ⇤. The value of Θσ is the union of inducing words of every σi.

Example 7.1.4 (Set of inducing words). We now illustrate the notion of inducing words for two regular
expressions.

7.1. REGULAR-EXPRESSION CHARACTERISTICS 69

• Consider the DECREASING = ‘>’ regular expression, which is disjunction-capsuled. The word v =
‘>’ is the unique inducing word of LDECREASING. Hence, ΘDECREASING = {‘>’}.
• Consider the INFLEXION = ‘< (< | =)⇤ > | > (> | =)⇤ <’ regular expression. It can be repre-

sented as INFLEXION1|INFLEXION2, where INFLEXION1 is the ‘< (< | =)⇤ >’ regular expression,
INFLEXION2 is the ‘> (> | =)⇤ <’ regular expression, and both INFLEXION1 and INFLEXION2 are
disjunction-capsuled. The word z = ‘<>’ is the inducing word of LINFLEXION1 , the word v = ‘><’
is the inducing word of LINFLEXION2 , and both z and v are inducing words of LINFLEXION. Hence, the
set of inducing words of INFLEXION is {‘<>’, ‘><’}. 4

7.1.6 Overlap

This section introduces the overlap regular-expression characteristic; it will be used in Theorem 7.2.2
for computing the sharp upper bound on the number of occurrences of a regular expression within the
signature of a time series. The overlap of a regular expression σ wrt an integer interval domain [`, u] is the
maximum number of common variables between two extended σ-patterns among all time series over [`, u].
Note that, as it will be illustrated in Example 7.1.6, a small value for u− ` can potentially induce a smaller
overlap. Intuitively, to maximise the number of occurrences of σ within the signature of a time series, every
two consecutive extended σ-patterns should have the maximum number of common time-series variables,
i.e. this value is the overlap of σ wrt [`, u]. To define the overlap of a regular expression σ wrt to an integer
interval domain [`, u], Definition 7.1.8 first introduces the notion of set of superpositions of two words v
and w in Lσ wrt h`, ui. Intuitively, the superposition of v and w wrt h`, ui is the signature z of some ground
time series over [`, u] that contains at least two σ-patterns, i.e. z has a prefix v and a suffix w and its length
does not exceed the length of vw.

Definition 7.1.8 (Set of superpositions). Consider a regular expression σ and an integer interval domain [`, u].
The set of superpositions of two words, v and w in Lσ, wrt h`, ui, denoted by Γ

h`,ui
σ (v, w), is a function that

maps an element ofRΣ⇥Z⇥Z⇥Σ⇤⇥Σ⇤ to P(Σ⇤), where P(Σ⇤) is the power set of Σ⇤. Each element z
in Γ

h`,ui
σ (v, w) is a word over Σ, called a superposition of v and w wrt h`, ui and satisfying all the following

conditions:
(1) z /2 Lσ, (2) Ωh`,uiσ (z) 6= ;, (3) v is a prefix of z, (4) w is a suffix of z, (5) |z|  |vw|.

Example 7.1.5 (Set of superpositions). We now illustrate the concept of superposition on two examples.
• Consider σ = ZIGZAG, and an integer interval domain [`, u] allowing to have at least one zigzag,

i.e. u − ` ≥ 1. We compute a superposition of the pair hv, vi, where v = ‘<><’ 2 Lσ. Let z
denote the word ‘<><<><’.
⇤ First, assume that u− ` = 1.
◦ The word ‘<><><’ is not a superposition of v and v wrt h`, ui, because Condition (1)

of Definition 7.1.8 is violated, although all other conditions of Definition 7.1.8 are satisfied.
◦ Even if Conditions (1), (3), (4), and (5) of Definition 7.1.8 are satisfied for the word z, it is

not a superposition of v and v wrt h`, ui, since the number of consecutive increases in the
word z is 2, which is strictly greater than u−` = 1, and thus Condition (2) of Definition 7.1.8
is violated. Hence, Ωh`,uiσ (z) = ;.

Indeed, when u − ` = 1, there is no superposition of v and v, because any word different
from z satisfying the first four conditions of Definition 7.1.8 will violate Condition (5) of Defi-
nition 7.1.8, i.e. will be strictly longer than 2 · |v|, thus Γh`,uiσ (v, v) = ;.
⇤ Now assume that u− ` > 1. Then, Ωh`,uiσ (z) 6= ;, and the word z is the only superposition of v

and v wrt h`, ui, thus Γh`,uiσ (v, v) = {‘<><<><’}.
• Consider σ = DECREASING_TERRACE, and an integer interval domain [`, u] allowing to have at

least one occurrence of σ in the signature of a time series over [`, u], i.e. u − ` ≥ 2. We compute a
superposition of the pair hv, vi, where v = ‘>=>’ 2 Lσ. Let z denote ‘>=>=>’.

70 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

⇤ First, assume that u − ` = 2. The word z is not a superposition of v and v, since the number
of consecutive decreases in the word z is 3, which is strictly greater than u − ` = 2, and
thus Ω

h`,ui
σ (z) = ;. Indeed, when u − ` = 2, there is no superposition of v and v, because

any word different from z satisfying the first four conditions of Definition 7.1.8 will violate
Condition (5) of Definition 7.1.8, i.e. will be strictly longer than 2 · |v|, thus Γh`,uiσ (v, v) = ;.
⇤ Now assume that u− ` = 3. Then, Ωh`,uiσ (z) 6= ;, and the word z is the only superposition of v

and v, thus Γh`,uiσ (v, v) = {‘>=>=>’}.
⇤ Finally, assume that u − ` ≥ 4. The sets of supporting time series of both words ‘>=>=>’

and ‘>=>>=>’ wrt h`, ui are not empty, and these two words are the only superpositions of v
and v wrt h`, ui, thus Γh`,uiσ (v, v) = {‘>=>=>’, ‘>=>>=>’}. 4

For a regular expression σ and an integer interval domain [`, u], we now introduce the overlap character-
istic of σ wrt h`, ui, which is a crucial component in the sharp upper bound formula stated in Theorem 7.2.2.
It corresponds to the maximum number of time-series variables that can be shared by two consecutive ex-
tended σ-patterns: when maximising the number of σ-patterns in a time series, we need to enforce as many
consecutive extended σ-patterns as possible to have as many common time-series variables as possible.

Definition 7.1.9 (Overlap of two words). Consider a regular expression σ and an integer interval do-
main [`, u]. The overlap of two words, v and w in Lσ, wrt h`, ui, denoted by oh`,uiσ (v, w), is a function
that maps an element ofRΣ ⇥ Z⇥ Z⇥ Σ⇤ ⇥ Σ⇤ to N. It is defined by

oh`,uiσ (v, w) =

8

><

>:

|vw| − min
z2Γ

h`,ui
σ (v,w)

|z|

!

+ 1 if Γ
h`,ui
σ (v, w) 6= ;, (7.1)

0, otherwise. (7.2)

Case (7.1) of Definition 7.1.9 corresponding to condition Γ
h`,ui
σ (v, w) 6= ; states that the overlap is

strictly greater than 0 iff there exists at least one ground time series over [`, u] that is not strictly longer
than |vw| and that has at least two σ-patterns corresponding to the occurrences of v and w in its signature.
The term |vw| − min

z2Γ
h`,ui
σ (v,w)

|z| denotes the maximum possible overlap that is actually achieved by the

shortest superposition. The increment +1 denotes the fact that we count the number of time-series variables
rather than the number of signature variables.

We now generalise in Definition 7.1.10 the notion of overlap wrt h`, ui upon a regular expression.

Definition 7.1.10 (Overlap). Consider a regular expression σ and an integer interval domain [`, u]. The over-

lap of σ wrt h`, ui, denoted by oh`,uiσ , is a function that maps an element ofRΣ⇥Z⇥Z to N. If there exists
a constant c in N such that for any pair of words v, w in Lσ, the value of oh`,uiσ (v, w) is bounded by c, then
the overlap of σ wrt h`, ui is defined by oh`,uiσ = max

v,w2Lσ
o
h`,ui
σ (v, w). Otherwise, oh`,uiσ is undefined.

By Definition 7.1.10, we need to compute the overlap of σ wrt every pair of values h`, ui, i.e. every
domain [`, u]. Note that it is enough to compute the overlap of σ wrt h`, ui once for every value of the
difference u − ` permitting an occurrence of σ in the signature of a time series, i.e. for a difference that is
greater than or equal to the height of the regular expression σ. While in the general case, we do need to
consider every value of u − `, this is not required for all the 22 regular expressions in Table 5.2, where we
only need to consider at most two different values of u− `.

Note that the overlap of a regular expression wrt an integer interval domain is similar to the regular-
expression overlap introduced in [68] (see Definition 5.2.1), however Definition 7.1.10 operates with time-
series variables while Definition 5.2.1 operates only with the regular language.

Example 7.1.6 (Overlap). We successively consider values of the overlap of three regular expressions.

7.1. REGULAR-EXPRESSION CHARACTERISTICS 71

• Consider the σ = ZIGZAG regular expression, whose height ⌘σ is 1.
⇤ If u − `  ⌘σ = 1, then oh`,uiσ = 0, because as shown in Example 7.1.5, for any pair of words

in Lσ, the set of their superpositions wrt h`, ui is empty.
⇤ If u − ` ≥ ⌘σ + 1 = 2, then o

h`,ui
σ = 1 and is obtained, for example, for the pair ‘<><’

and ‘<><’, which share one time-series variable in the superposition ‘<><<><’.
⇤ For any other value of u− ` ≥ 2, the value of the overlap of σ wrt h`, ui equals 2 as well.

• Consider the σ = DECREASING_TERRACE regular expression, whose height ⌘σ is 2.
⇤ If u − `  ⌘σ = 2, then oh`,uiσ = 0, because as shown in Example 7.1.5, for any pair of words

in Lσ, the set of their superpositions wrt h`, ui is empty.
⇤ If u − ` ≥ ⌘σ + 1 = 3, then o

h`,ui
σ = 2 and is obtained, for example, for the pair ‘>=>’

and ‘>=>’, and their superposition ‘>=>=>’.
⇤ For any other value of u− ` ≥ 4, the value of the overlap of σ wrt h`, ui equals 2 as well.

• Consider the σ = ‘<=⇤ | =⇤>’ regular expression and an integer interval domain [`, u] such that u >
`. The overlap of σ wrt h`, ui is undefined, because for any constant c in N, there always exists a
pair of words of length c+ 1 whose overlap wrt h`, ui equals c+ 1. 4

7.1.7 Smallest Variation of Maxima

This section introduces the smallest variation of maxima regular-expression characteristic, which is
used in Theorem 7.2.2 for computing the sharp upper bound on the number of occurrences of the regu-
lar expression within the signature of a time series. To maximise the number of occurrences of a regular
expression σ in the signature of a time series over an integer interval domain [`, u], we select extended
σ-patterns of minimum length !σ + 1 such that two consecutive extended σ-patterns maximise the number
of shared time-series variables, i.e. share oh`,uiσ variables. Unfortunately, for a few regular expressions like
DECREASING_TERRACE, it is not always possible that all extended σ-patterns share oh`,uiσ time-series vari-
ables: since we decrease by at least one unit between two consecutive overlapping extended σ-patterns we
will be blocked at some point by the lower limit `, even if we start from the upper limit u. To maximise the
number of σ-patterns in a time series, we must decrease as little as possible on two consecutive overlap-
ping extended σ-patterns. Definition 7.1.13 formalises the notion of smallest variation of the maxima of a
regular expression wrt h`, ui. First, Definition 7.1.11 defines the notion of shift of a proper factor in a word
in the language of a regular expression wrt some integer interval domain. Then, using this notion, Defini-
tion 7.1.12 (respectively Definition 7.1.13) introduces the smallest variation of the maxima of two words
(respectively a language Lσ) wrt h`, ui.

Definition 7.1.11 (Shift). Consider a regular expression σ and an integer interval domain [`, u]. The shift

of a proper factor w in a word v in Lσ wrt h`, ui, denoted by δ
h`,ui

σ (v, w, i), is a function that maps an
element ofRΣ ⇥ Z⇥ Z⇥ Σ⇤ ⇥ Σ⇤ ⇥ N to N. It is defined by

δ
h`,ui

σ (v, w, i) = min
t2Ω

h`,ui
σ (v)

min
x2twi

(max(t)− x),

where max(t) is the maximum value of a time series t, a supporting time series of v wrt h`, ui, and twi is a
subseries of t corresponding to the ith extended σ-pattern whose signature contains w. If w is not a proper

factor of v, or i is strictly greater than the number of occurrences of w in v, then δ
h`,ui

σ (v, w, i) is undefined.

Consider a regular expression σ and an integer interval domain [`, u]. For any v in Lσ, if u− ` ≥ ⌘σ(v),

then the value of δ
h`,ui

σ (v, w, i) does not depend on the domain [`, u], because there always exists a time
series in Ω

h`,ui
σ (v) where each variable has its largest value compared to the other time series of Ωh`,uiσ (v).

Then, δ
h`,ui

σ (v, w, i) does not depend on the values in the domain, but only on the structure of the word v.

Hence, w.l.o.g. the notation for δ
h`,ui

σ (v, w, i) can be simplified to δσ(v, w, i).

72 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

Example 7.1.7 (Shift). Consider σ = DECREASING_TERRACE when u− ` ≥ ⌘σ = 3, and two words v =
‘>=>=>’ and w = ‘>=>’. The word v contains two occurrences of w, thus the value of δσ(v, w, i) is
defined when i 2 {1, 2}:
⇤ When i is 1, the value of δσ(v, w, 1) equals 0, since the first extended σ-pattern whose signature is w

necessarily contains the maximum of any time series in Ω
h`,ui
σ (v).

⇤ When i is 2, the value of δσ(v, w, 2) equals 1, since the maximum of the second extended σ-pattern
whose signature isw has a difference of at least one with the maximum of any time series in Ω

h`,ui
σ (v).

4

Definition 7.1.12 (Smallest variation of maxima of two words). Consider a regular expression σ and an
integer interval domain [`, u]. The smallest variation of maxima of superpositions of two words w and v
in Lσ wrt h`, ui, denoted by δh`,uiσ (v, w), is a function that maps an element ofRΣ⇥Z⇥Z⇥Σ⇤⇥Σ⇤ to N.
It is defined by

δh`,uiσ (v, w) =

(

δσ(z⇤, v, 1)− δσ(z⇤, w, p) if Γh`,uiσ (v, w) 6= ;,

0 otherwise,

where the word z⇤ belongs to Γ
h`,ui
σ (v, w), the value min

z2Γ
h`,ui
σ (v,w)

|δσ(z, v, 1)− δσ(z, w, p)| is reached when z

is z⇤, and p is the number of occurrences of the word w in z⇤.

In Definition 7.1.12, either δσ(z⇤, v, 1) or δσ(z⇤, w, p) equals zero, since for any time series t whose
signature is z⇤, at least one of the two extended σ-patterns contains the maximum of t.

The next lemma introduces a property of words whose smallest variation of maxima wrt some integer
interval domain is not zero.

Lemma 7.1.1. Consider a regular expression σ and an integer interval domain [`, u]. If δh`,uiσ (v, w), the
smallest variation of maxima of two words v and w in Lσ wrt h`, ui, is positive (respectively negative),
then v (respectively w) does not contain any ‘>’ (respectively ‘<’).

Proof. For brevity, we consider only the case of δh`,uiσ (v, w) being positive, the case of a negative value
of δh`,uiσ (v, w) being symmetric, and w.l.o.g. we assume that v 6= w.

Since δh`,uiσ (v, w) > 0, there exists at least one superposition z of v andw wrt h`, ui such that δσ(z, v, 1) =
δ
h`,ui
σ (v, w), and δσ(z, w, p) = 0, where p is the number of occurrences of the word w in z. Assume that v

contains at least one ‘>’. Let i denote the position of the first ‘>’ in z, which is necessarily within its proper
factor v. Since there exists a time series in Ω

h`,ui
σ (z) such that the time-series variable at position i equals u,

δσ(z, v, 1) equals 0. This contradicts the fact that δσ(z, v, 1) = δ
h`,ui
σ (v, w) > 0, thus the word v does not

contain any ‘>’.

The following lemma describes the structures of words whose smallest variation of maxima wrt some
integer interval domain is zero. A corollary to this lemma will be further used in Lemma 7.2.2, which
describes the structure of a maximal time series under certain conditions.

Lemma 7.1.2. Consider a regular expression σ and an integer interval domain [`, u]. If for two non-empty
words w and v in Lσ, the value of δh`,uiσ (v, w) is zero, then the four following conditions must be satisfied:

1. If there exists a suffix of v that is in the language of ‘>=⇤’, then the word w does not belong to the
language of ‘(> | =)+’.

2. If the word v is in the language of ‘(< | =)⇤ < (< | =)⇤’, then there is no prefix of w belonging to
the language of ‘=⇤<’.

3. If there exists a suffix of v that is in the language of ‘<=⇤’ and ‘>’ is a proper factor of v, then w is
any word.

7.1. REGULAR-EXPRESSION CHARACTERISTICS 73

4. If the word v is in the language of ‘=+’, then there is no prefix of w belonging to the language of
‘(< | =)⇤ < (< | =)⇤’.

In addition, the premise of exactly one of the four conditions must be true.

Proof. Each of the four conditions is of the form ‘ifAi thenBi’ with i in {1, 2, 3, 4}. It is easy to see that the
premises A1, A2, A3 and A4 are mutually exclusive and A1 _A2 _A3 _A4 is true. By cases analysis on the
satisfied condition Ai, we can show by contradiction that if δh`,uiσ (v, w) is zero, then Bi is also satisfied.

Corollary 7.1.1. Consider a regular expression σ and an integer interval domain [`, u], and two non-empty
words v and w in the language of σ. If both δh`,uiσ (v, w) and δh`,uiσ (w, v) equal zero, then one of the following
conditions must be satisfied:

1. Both words are in the language of ‘=+’.

2. One of the words is in the language of ‘=+’, and the other is in the language of ‘=⇤> (> | = | <)⇤ <=⇤’.

3. Both words are in the language of ‘=⇤> (> | = | <)⇤ <=⇤ | =⇤< (> | = | <)⇤ >=⇤’.

Proof. Directly follows from Lemma 7.1.2.

Definition 7.1.13 (Smallest variation of maxima). Consider a regular expression σ and an integer interval
domain [`, u]. The smallest variation of maxima of σ wrt h`, ui, denoted by δh`,uiσ , is a function that maps
an element ofRΣ ⇥ Z⇥ Z to N. It is defined by

δh`,uiσ =

8

><

>:

undefined if 9 v1, v2, w1, w2 2 Lσ s.t. δh`,uiσ (v1, w1) > 0 and δh`,uiσ (v2, w2) < 0,

0 if oh`,uiσ = 0,

δ
h`,ui
σ (v⇤, w⇤), otherwise ,

where the words v⇤ and w⇤ both belong to Lσ and the value min
v,w2Lσ

o
h`,ui
σ (v,w) 6=0

|δh`,uiσ (v, w)| is reached when v is v⇤

and w is w⇤.

Example 7.1.8 (Smallest variation of maxima). Consider the σ = DECREASING_TERRACE regular expres-
sion, an integer interval domain [`, u] such that u − ` ≥ 3, and the superposition z = ‘>=>=>’ of the
words v = ‘>=>’ and v = ‘>=>’ in Lσ. The value of δσ(z, v, 1) − δσ(z, v, 2) is equal to 0 − 1 = −1.
For any other pair of words of Lσ whose set of superpositions wrt h`, ui is not empty, we obtain the same
or a smaller negative value. Hence, if two extended σ-patterns share some time-series variables, then the
maximum of a second extended σ-pattern is at least one unit below, i.e. δh`,uiσ = −1, from the maximum of
the first extended σ-pattern. 4

If δh`,uiσ is positive (respectively negative), then for any two extended σ-patterns that have at least one
common time-series variable, the maximum of the first extended σ-pattern is strictly less (respectively
greater) than the maximum of the second extended σ-pattern, e.g., for DECREASING_TERRACE, δh`,uiσ

equals −1, but for INCREASING_TERRACE, δh`,uiσ equals +1.

7.1.8 Summary Example Illustrating All Regular-Expression Characteristics

This section illustrates the various regular-expression characteristics introduced in the previous sections.

Example 7.1.9 (Various regular-expression characteristics). Consider the σ = DECREASING_TERRACE

regular expression and a time series X of length 6 over an integer interval domain [0, 3]. Let us recall the
characteristics mentioned in Examples 7.1.1, 7.1.2, 7.1.6, and 7.1.8, which are illustrated in Figure 7.1.
◦ The size of σ, denoted by !σ, equals 3.

74 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

◦ The height of σ, denoted by ⌘σ, equals 2. This is the difference between the y-coordinates of the
points L1 and S in Figure 7.1, which are respectively the maximum and the minimum points of the
first extended σ-pattern of X .
◦ The range of σ wrt hni, denoted by φhniσ , equals 2, with n 2 N being greater than or equal to !σ = 3.
◦ The overlap of σ wrt h0, 3i, denoted by oh0,3iσ , equals 2. It is the number of common points of the

first and the second extended σ-patterns in Figure 7.1, i.e. the number of points coloured in violet.
◦ The smallest variation of maxima of σ wrt h0, 3i, denoted by δh0,3iσ , equals 1. It is the difference

between the y-coordinates of the L1 and the L2 points in Figure 7.1, which are the maximum points
of the first, respectively the second, extended σ-pattern of X . 4

X1 X2 X3 X4 X5 X6

0

1

2

3

!σ = 3

!σ = 3

o
h0,3i
σ = 2

δ
h0,3i
σ = 1 ⌘σ = φ

hni
σ

= 2

L1

L2

S

Figure 7.1 – A time series of length n = 6 over the integer interval domain [0, 3] containing two ex-
tended σ-patterns, where σ is DECREASING_TERRACE. The x-axis is for time-series variables, the y-
axis is for domain values. The first (respectively second) extended σ-pattern is shown in red (respec-
tively blue). The common time-series variables of the two extended σ-patterns are coloured in violet. L1

(respectively L2) is the point whose y-coordinate is maximum among all points of the first (respectively
second) extended σ-pattern. S is the point whose y-coordinate is minimum among all points of the first
extended σ-pattern.

7.1.9 Necessary and Sufficient Condition for the Existence of an Occurrence of a

Regular Expression

Consider a regular expression σ and a time series X = hX1, X2, . . . , Xni with every Xi ranging over
the same integer interval domain. There exists a necessary and sufficient condition, based on the domains
and the number of time-series variables, for σ to occur at least once within the signature of X . In order to
define this condition we use the size of a regular expression, introduced in Definition 7.1.1, and the height

of a regular expression, introduced in Definition 7.1.4.

Property 7.1.1 (necessary-sufficient condition). Consider a regular expression σ and a time series hX1, X2,
. . . , Xni with every Xi ranging over the same integer interval domain [`, u]. The necessary-sufficient con-

dition is satisfied if the two following conditions hold:

(i) The value of n is strictly greater than !σ, the size of σ.

(ii) The difference between u and ` is greater than or equal to ⌘σ, the height of σ.

Example 7.1.10 (necessary-sufficient condition). Consider the σ = DECREASING_TERRACE regular ex-
pression and a time series of length n over an integer interval domain [`, u]. We recall the values computed
in Examples 7.1.2 and 7.1.1, namely the height of σ is 2, and the size of σ is 3. Hence, the necessary-
sufficient condition is satisfied if n > 3 and u− ` ≥ 2. 4

All formulae presented in all the next sections of this chapter assume that Property 7.1.1 holds. Table 7.1
provides for each of the regular expressions in Table 5.2 the corresponding value of each regular-expression
characteristic.

7.1. REGULAR-EXPRESSION CHARACTERISTICS 75

na
m

e
σ

!
σ

⌘ σ
he
σ
,c
σ
i

φ
hn
i

σ
Θ
σ

oh
`,
u
i

σ
δh
`,
u
i

σ

B
U

M
P

5
2

un
de

fi
ne

d

(

2
if
n
=

6

un
de

fi
ne

d
ot

he
rw

is
e

{
‘
>
>
<
>
>

’}
3

0

D
E

C
1

1
un

de
fi

ne
d

(

1
if
n
=

2

un
de

fi
ne

d
ot

he
rw

is
e

{
‘
>

’}

(

0
if
u
−
`


1

1
ot

he
rw

is
e

(

0
if
u
−
`


1

−
1

ot
he

rw
is

e

D
E

C
S

E
Q

1
1

h0
,1
i

(

1
if
n
=

2

2
if
n
>

2
{

‘
>

’}
0

0

D
E

C
T

E
R

3
2

h0
,0
i

2
{

‘
>
=
>

’}

(

0
if
u
−
`


2

2
ot

he
rw

is
e

(

0
if
u
−
`


2

−
1

ot
he

rw
is

e

D
IP

5
2

un
de

fi
ne

d

(

2
if
n
=

6

un
de

fi
ne

d
ot

he
rw

is
e

{
‘
<
<
>
<
<

’}
3

0

G
O

R
G

E
2

1
h0
,1
i

(

1
if
n
=

3

2
if
n
>

3
{

‘
>
<

’}
1

0

IN
C

1
1

un
de

fi
ne

d

(

1
if
n
=

2

un
de

fi
ne

d
ot

he
rw

is
e

{
‘
<

’}

(

0
if
u
−
`


1

1
ot

he
rw

is
e

(

0
if
u
−
`


1

1
ot

he
rw

is
e

IN
C

S
E

Q
1

1
h0
,1
i

(

1
if
n
=

2

2
if
n
>

2
{

‘
<

’}
0

0

IN
C

T
E

R
3

2
h0
,0
i

2
{

‘
<
=
<

’}

(

0
if
u
−
`


2

2
ot

he
rw

is
e

(

0
if
u
−
`


2

1
ot

he
rw

is
e

IN
F

L
E

X
IO

N
2

1
h0
,0
i

1
{

‘
<
>

’,
‘
>
<

’}
2

0
P

E
A

K
2

1
h0
,0
i

1
{

‘
<
>

’}
1

0
P

L
A

IN
2

1
h0
,0
i

1
{

‘
>
<

’}
1

0
P

L
A

T
E

A
U

2
1

h0
,0
i

1
{

‘
<
>

’}
1

0
P

R
O

P
P

L
A

IN
3

1
h0
,0
i

1
{

‘
>
=
<

’}
1

0
P

R
O

P
P

L
A

T
E

A
U

3
1

h0
,0
i

1
{

‘
<
=
>

’}
1

0

S
T

E
A

D
Y

1
0

un
de

fi
ne

d

(

0
if
n
=

2

un
de

fi
ne

d
ot

he
rw

is
e

{
‘
=

’}
1

0

S
T

E
A

D
Y

S
E

Q
1

0
h0
,0
i

0
{

‘
=

’}
0

0
S

D
E

C
S

E
Q

1
1

h1
,0
i

n
−
1

{
‘
>

’}
0

0
S

IN
C

S
E

Q
1

1
h1
,0
i

n
−
1

{
‘
<

’}
0

0

S
U

M
M

IT
2

1
h0
,1
i

(

1
if
n
=

3

2
if
n
>

3
{

‘
<
>

’}
1

0

V
A

L
L

E
Y

2
1

h0
,0
i

1
{

‘
>
<

’}
1

0

Z
IG

Z
A

G
3

1
h0
,0
i

1
{

‘
<
>
<

’,
‘
>
<
>

’}

(

0
if
u
−
`


1

1
ot

he
rw

is
e

0

Table 7.1 – Regular-expression names σ and corresponding size !σ, height ⌘σ, range φ
hni
σ (for

a non-fixed-length regular expression σ and for any n > !σ + 1, φ
hni
σ = eσ · (n − 1 −

⌘σ) + cσ + ⌘σ), set of inducing words Θσ, overlap o
h`,ui
σ , and smallest variation of maxima δ

h`,ui
σ ,

where BUMP, DEC, DECSEQ, DECTER, DIP, INC, INCSEQ, INCTER, PROPPLAIN, PROPPLATEAU,
STEADYSEQ, SDECSEQ, SINCSEQ are respectively shortcuts for BUMP_ON_DECREASING_SEQUENCE,
DECREASING, DECREASING_SEQUENCE, DECREASING_TERRACE, DIP_ON_INCREASING_SEQUENCE,
INCREASING, INCREASING_SEQUENCE, INCREASING_TERRACE, PROPER_PLAIN, PROPER_PLATEAU,
STEADY_SEQUENCE, STRICTLY_DECREASING_SEQUENCE, STRICTLY_INCREASING_SEQUENCE.

76 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

7.2 Time-Series Constraints with Feature ONE

The first family of time-series constraints we consider is the NB_σ(hX1, X2, . . . , Xni , R) family. Given
a sequenceX = hX1, X2, . . . , Xni, where allXi are integer variables, it enforces the number of occurrences
of regular expression σ in X to be equal to R. Within this constraint family the aggregator is sum, and
the feature is one. The main results of Section 7.2 are described by Theorems 7.2.1 and 7.2.2, which
respectively provide a sharp lower bound and a sharp upper bound on the number of occurrences of a
regular expression σ in the signature of a time series provided all Xi (with i 2 [1, n]) have the same integer
interval domain [`, u]. Section 7.2 is structured in the following way:
⇧ First, Section 7.2.1 introduces Property 7.2.1, and gives a sharp lower bound on R provided Prop-

erty 7.2.1 holds.
⇧ Second, Section 7.2.2 provides an upper bound, not necessarily sharp, on R. This bound is valid

for any regular expression σ for which the overlap characteristics is defined and does not exceed the
size of σ.
⇧ Third, Section 7.2.3 extends the upper bound on R of Section 7.2.2, and shows that the extended

formula is sharp under some hypothesis on the regular-expression characteristics:
⇤ Section 7.2.3.1 defines Properties 7.2.2 and 7.2.3 of regular expressions that allow to obtain a

sharp upper bound.
⇤ Section 7.2.3.2 describes the structure of a maximal time series for NB_σ(hX1, X2, . . . , Xni , R)

provided either Property 7.2.2 or Property 7.2.3 holds.
⇤ Based on the structure of a maximal time series for NB_σ(hX1, X2, . . . , Xni , R), Section 7.2.3.3

provides a sharp upper bound on R, provided either Property 7.2.2 or Property 7.2.3 holds.
⇧ Finally, Section 7.2.3.4 gives a sharp upper bound onR in a special case of σ being STEADY_SEQUENCE,

where neither Property 7.2.2 nor Property 7.2.3 is satisfied.

7.2.1 A Sharp Lower Bound on the Number of Pattern Occurrences

Consider a NB_σ(X,R) time-series constraint with X = hX1, X2, . . . , Xni, where every Xi (with
i 2 [1, n]) is over the same integer interval domain [`, u]. This section focusses on providing a sharp lower
bound on R. For almost every regular expression of Table 5.2, we can assign the variables of X to values
in [`, u] in a way that the signature of X does not contain any occurrence of the regular expression σ. The
only two exceptions are the STEADY = ‘=’ and the STEADY_SEQUENCE = ‘=+’ regular expressions
when ` = u. The next theorem, namely Theorem 7.2.1, provides a sharp lower bound on R assuming the
property that we now introduce holds.

Property 7.2.1 (NB-simple property). A regular expression σ has the NB-simple property for an integer
interval domain [`, u] if σ is a disjunction of disjunction-capsuled regular expressions and if at least one of
the following conditions holds:

(i) Every inducing word of σ includes at least one letter that is different from ‘=’.

(ii) Every inducing word of σ includes at least one ‘=’, and u > `.

Theorem 7.2.1 (sharp lower bound for NB_σ). Consider a NB_σ(X,R) time-series constraint with X =
hX1, X2, . . . , Xni, where every Xi (with i 2 [1, n]) is over the same integer interval domain [`, u], and,
where σ is a disjunction of disjunction-capsuled regular expressions. If σ has the NB-simple property
for [`, u], then a sharp lower bound on R is 0.

Proof. If Condition (i) of Property 7.2.1 is satisfied, then by definition of an inducing word, every word
of Lσ contains at least one letter that is not ‘=’. Hence, the time series X , where all variables are assigned
to the same value, has no occurrences of σ in its signature, and thus a sharp lower bound on R is 0.

If Condition (ii) of Property 7.2.1 is satisfied, then every word in Lσ contains at least one ‘=’. The
ground time series of length n with alternating ` and ` + 1 has no equalities in its signature, and thus no
occurrences of σ. Hence, a sharp lower bound on R equals 0.

7.2. TIME-SERIES CONSTRAINTS WITH FEATURE ONE 77

Every regular expression in Table 5.2 has the NB-simple property for any integer interval domain [`, u],
except STEADY and STEADY_SEQUENCE for the domain [`, u] such that ` = u. We now consider the
cases of STEADY and STEADY_SEQUENCE where neither condition of Property 7.2.1 holds, which means
that Theorem 7.2.1 cannot be applied for computing a sharp lower bound on R.

Proposition 7.2.1 (sharp lower bound for NB_STEADY). Consider a NB_σ(hX1, X2, . . . , Xni , R) time-series
constraint with σ being the STEADY regular expression, and with every Xi ranging over the same integer
interval domain [`, u] such that ` = u. A sharp lower bound on R equals n− 1.

Proof. Since ` = u, there exists a single ground time series t of length n over [`, u]. All the time-series
variables of t have the same value, namely `, and thus its signature consists of n− 1 equalities. The number
of occurrences of σ in the signature of t equals n− 1, which is thus a sharp lower bound on R.

Proposition 7.2.2 (sharp lower bound for NB_STEADY_SEQUENCE). Consider a NB_σ(hX1, X2,
. . . , Xni, R) time-series constraint with σ being the STEADY_SEQUENCE regular expression, and with ev-
ery Xi ranging over the same integer interval domain [`, u] such that ` = u. A sharp lower bound on R
equals 1.

Proof. Since ` = u, there exists a single ground time series t of length n over [`, u]. All the time-series
variables of t have the same value, namely `, and thus its signature consists of n− 1 equalities. The number
of occurrences of σ in the signature of t equals 1, which is thus a sharp lower bound on R.

7.2.2 A First Not Necessarily Sharp Upper Bound

Consider a NB_σ(hX1, X2, . . . , Xni , R) time-series constraint with every Xi ranging over the same
integer interval domain [`, u]. Lemma 7.2.1 of this section provides an upper bound, not necessarily sharp,
on R. Intuitively, to get a maximum number of σ-patterns, every extended σ-pattern should be as short
as possible and every two consecutive extended σ-patterns should have a maximum number of time-series
variables in common. Although, it is not sharp in general, it is sharp for all regular expressions in Table 5.2,
except DECREASING, INCREASING, DECREASING_TERRACE, and INCREASING_TERRACE.

We first define the notion of interval without restart, in order to identify a subseries such that every two
consecutive extended σ-patterns within this subseries have oh`,uiσ common time-series variables. This notion
will be reused in Section 7.2.3 for deriving a sharp upper bound on R.

Definition 7.2.1 (interval without restart). Consider a regular expression σ and a ground time series X =
hX1, X2, . . . , Xni over [`, u]. An interval without restart of X is any interval [↵, β] (with 1  ↵  β  n),
such that all the following conditions hold:

(1) EveryXk (with k 2 [↵, β]) belongs to at least one extended σ-pattern for which all time-series variables
have indices in [↵, β].

(2) The width of every extended σ-pattern whose time-series variable indices are in [↵, β] is equal to !σ+1.

(3) Every pair of consecutive extended σ-patterns, whose time-series variable indices are in [↵, β], share oh`,uiσ

time-series variables.

(4) When o
h`,ui
σ > 0 every extended σ-pattern, whose time-series variable indices are in [↵, β], has no

common time-series variables with any extended σ-pattern that has an index outside [↵, β].

Note that, by Condition (4) of Definition 7.2.1, the intervals without restart of a ground time series are
always disjoint. Consequently two consecutive extended σ-patterns belonging to distinct intervals without
restart do not share any time-series variable.

Example 7.2.1 (interval without restart). We consider an example of intervals without restart for the σ =
DECREASING_TERRACE regular expression. For the time series X = h4, 3, 3, 2, 2, 1, 4, 2, 2, 1i, the in-
tervals [1, 6] and [7, 10] are intervals without restart corresponding to the subseries t1 = h4, 3, 3, 2, 2, 1i
and t2 = h4, 2, 2, 1i, because:

78 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

⇤ Each Xi (with i 2 [1, 6] or i 2 [7, 10]) belongs to at least one extended σ-pattern (Condition (1)
of Definition 7.2.1).
⇤ The subseries t1 (respectively t2) contains 2 (respectively 1) extended σ-patterns of shortest length 4

(Condition (2) of Definition 7.2.1).
⇤ The two consecutive extended σ-patterns of t1 have oh1,4iσ = 2 time-series variables in common

(Condition (3) of Definition 7.2.1).
⇤ There is no extended σ-pattern straddling between [1, 6] and [7, 10] (Condition (4) of Defini-

tion 7.2.1). 4

Lemma 7.2.1 (not necessarily sharp upper bound for NB_σ). Consider a regular expression σ, and a time
series X = hX1, X2, . . . , Xni, with every Xi ranging over the same integer interval domain [`, u] such
that oh`,uiσ  !σ.

(i) The number of σ-patterns in X is bounded by
j
max(0,n−o

h`,ui
σ)

!σ+1−o
h`,ui
σ

k

.

(ii) In addition, if n  !σ or there exists at least one ground time series of length n over [`, u] that contains
a single interval without restart longer than n − !σ − 1 + o

h`,ui
σ , then the mentioned upper bound is

sharp.

Proof. Since oh`,uiσ  !σ the denominator !σ +1− oh`,uiσ of the considered bound is always positive. When

n  !σ the formula
j
max(0,n−o

h`,ui
σ)

!σ+1−o
h`,ui
σ

k

gives 0 as the result, which is the upper bound on R. Now consider

the case when n > !σ.
[Proof of (i)] We construct a time series t that we prove to have the maximum number of σ-patterns among
all ground time series of length n without considering any domain restrictions.
⇧ We assume that the constructed time series t has a single interval without restart, which is longer

than n− !σ − 1 + o
h`,ui
σ . Note that such a time series may not be feasible over [`, u].

⇧ By definition of an interval without restart, every pair of consecutive extended σ-patterns of t
has oh`,uiσ common time-series variables. In addition, every extended σ-pattern has exactly !σ + 1
time-series variables and every time-series variable whose indice is in the interval without restart
belongs to at least one extended σ-pattern.
⇧ We now prove that, for any ground time series of length n, its number of σ-patterns cannot exceed

the number of σ-patterns of the constructed time series t.
⇤ Assume that this is not true, then there exists a ground time series whose extended σ-patterns

are either strictly shorter than !σ + 1 or have a number of common time-series variables strictly
greater than oh`,uiσ .
⇤ Neither of these statements can be possible by construction of t and the definitions of !σ

and oh`,uiσ .
⇤ Since the smallest length of an extended σ-pattern equals !σ + 1, and since the number of

time-series variables outside the interval without restart of t is strictly smaller than !σ+1−oh`,uiσ ,
the time series t does not have any σ-pattern outside of its single interval without restart.
⇤ Hence, t has the maximum number of σ-patterns compared to all ground time series of length n.

Let us now estimate the maximum number P of potential σ-patterns in the time series t. From the construc-
tion of t we have

!σ + 1− oh`,uiσ + !σ + 1− oh`,uiσ + · · ·+ !σ + 1− oh`,uiσ
| {z }

P − 1 times

+!σ + 1
| {z }
1 time

+nr = n, (7.3)

where nr is the number of time-series variables outside the interval without restart of t. From Equal-
ity 7.3 and from nr < !σ + 1− oh`,uiσ we obtain

P · (!σ + 1)− (P − 1) · oh`,uiσ + nr = n) P =

$

n− oh`,uiσ

!σ + 1− oh`,uiσ

%

. (7.4)

7.2. TIME-SERIES CONSTRAINTS WITH FEATURE ONE 79

From the right-hand side of Implication (7.4) we have that the maximum number of σ-patterns among

all time series of length n over [`, u] is less than or equal to
j

n−o
h`,ui
σ

!σ+1−o
h`,ui
σ

k

.

[Proof of (ii)] If the time series t constructed in the first part of this proof is feasible wrt [`, u], then the
obtained bound is sharp.

7.2.3 Extending the Upper Bound to Get a Sharp Bound Under Some Hypothesis

Consider a NB_σ(X,R) time-series constraint with X = hX1, X2, . . . , Xni, where every Xi (with
i 2 [1, n]) is over the same integer interval domain [`, u]. This section focusses on computing a sharp upper
bound on R under some hypothesis on the regular-expression characteristics of σ.

7.2.3.1 Required Properties of Regular Expressions

Building in a greedy way a time series that maximises the number of σ-patterns requires finding a pair
of words in Lσ such that the superposition of these two words wrt an integer interval domain simulta-

neously optimises several regular-expression characteristics. Depending on the value of the overlap of σ
wrt h`, ui, we have either the NB-overlapping property when oh`,uiσ > 0, introduced in Property 7.2.2, or
the NB-non-overlapping property when oh`,uiσ = 0, introduced in Property 7.2.3.
◦ The NB-overlapping property holds for [`, u] when there exists a pair of words in Lσ, whose lengths

and heights are minimum, and both the overlap and the smallest variation of maxima are reached for
a superposition of these words, which is not a factor of any word in Lσ.
◦ The NB-non-overlapping property holds when there exists a word in Lσ, whose length and height

are minimum, and this word can be a maximal occurrence of σ in the signature of a time series
over [`, u].

Property 7.2.2 (NB-overlapping property). A regular expression σ has the NB-overlapping property for an
integer interval domain [`, u], if there exists a pair of not necessarily distinct words v and w in Lσ, and there
exists a superposition z1 (respectively z2) of v and w (respectively w and v) wrt h`, ui, i.e. oh`,uiσ > 0, such
that the following conditions are all satisfied:

(i) ⌘σ(v) = ⌘σ(w) = ⌘σ, i.e. v and w have their heights being equal to the height of σ.

(ii) |v| = |w| = !σ, i.e. v and w are shortest words in Lσ.

(iii) |v|+|w|−|z1|+1 = |w|+|v|−|z2|+1 = o
h`,ui
σ  !σ, i.e. the overlap between v andw (respectivelyw

and v) wrt h`, ui is maximum, and its value is bounded by the size of σ.

(iv) Both superpositions z1 and z2 are not factors of any word in Lσ.

(v)

δh`,uiσ =

(

δσ(z1, v, 1)− δσ(z1, w, 1) = δσ(z2, w, 1)− δσ(z2, v, 1) if v 6= w,

δσ(z1, v, 1)− δσ(z1, w, 2) if v = w,

i.e. the smallest variation of maxima of superpositions of v and w (respectively w and v) wrt h`, ui is
reached for their superposition z1 (respectively z2), and is equal to the smallest variation of maxima
of σ wrt h`, ui.

(vi) ⌘σ(z1) = ⌘σ(z2) = c, where c is a constant such that

⇤ c = ⌘σ + |δ
h`,ui
σ | if |δh`,uiσ | > 0, and

⇤ c  u− ` if |δh`,uiσ | = 0,

i.e. the height of each of these two superpositions z1 and z2 is the height of σ plus the absolute value
of the smallest variation of maxima of σ wrt h`, ui if δh`,uiσ 6= 0, and it is not greater than the difference
between the domain maximum and minimum, otherwise.

80 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

(vii) If δh`,uiσ < 0 (respectively δ
h`,ui
σ > 0), then neither ‘v <’ (respectively ‘v >’) nor ‘w <’ (respec-

tively ‘w >’) is a factor of any word in Lσ.

Every regular expression σ in Table 5.2 has the NB-overlapping property for any integer interval do-
main [`, u] such that oh`,uiσ > 0.

Example 7.2.2 (NB-overlapping property). We now illustrate the NB-overlapping property on three regular
expressions.
• The σ = ZIGZAG regular expression has the NB-overlapping property for the integer interval domain
[`, u] such that u− ` ≥ 2, because there exists a pair of words v = w = ‘<><’ of Lσ such that the
superposition of v and w wrt h`, ui, z = ‘<><<><’, satisfies all the following conditions:
⇤ ⌘σ(v) = ⌘σ(w) = ⌘σ = 1. (Cond. (i) of Prop. 7.2.2)
⇤ |v| = |w| = !σ = 3. (Cond. (ii) of Prop. 7.2.2)
⇤ |v|+ |w| − |z|+ 1 = o

h`,ui
σ = 1  !σ = 3. (Cond. (iii) of Prop. 7.2.2)

⇤ Since no word of Lσ contains two consecutive ‘<’, z is not a factor for any word in Lσ.
(Cond. (iv) of Prop. 7.2.2)

⇤ δh`,uiσ = 0. (Cond. (v, vii) of Prop. 7.2.2)
⇤ The height of z is 2, which is less than or equal to u− `. (Cond. (vi) of Prop. 7.2.2)

• The σ = DECREASING_TERRACE regular expression has the NB-overlapping property for the inte-
ger interval domain [`, u] such that u− ` ≥ 3, because there exists a pair of words v = w = ‘>=>’
in Lσ and their superposition z = ‘>=>=>’ wrt h`, ui, such that all the following conditions are
satisfied:
⇤ ⌘σ(v) = ⌘σ(w) = ⌘σ = 2. (Cond. (i) of Prop. 7.2.2)
⇤ |v| = |w| = !σ = 3. (Cond. (ii) of Prop. 7.2.2)
⇤ |v|+ |w| − |z|+ 1 = o

h`,ui
σ = 2  !σ = 3. (Cond. (iii) of Prop. 7.2.2)

⇤ Since any word in Lσ contains only consecutive equalities, the word z is not a factor of any
word in Lσ. (Cond. (iv) of Prop. 7.2.2)

⇤ δh`,uiσ = δ
h`,ui

σ (z, v, 1)− δ
h`,ui

σ (z, w, 2) = −1. (Cond. (v) of Prop. 7.2.2)
⇤ The height of z is 3, which equals ⌘σ + |δ

h`,ui
σ |. (Cond. (vi) of Prop. 7.2.2)

⇤ No word in Lσ has ‘<’, thus ‘v <’ is not a factor of any word in Lσ. (Cond. (vii) of Prop. 7.2.2)
• The σ = STEADY_SEQUENCE regular expression does not have the NB-overlapping property for

any integer interval domain [`, u], because for any pair of words v, w in Lσ, the set of superpositions
of v and w wrt h`, ui is empty, and thus oh`,uiσ = 0. 4

Property 7.2.3 (NB-non-overlapping property). A regular expression σ has the NB-non-overlapping prop-
erty for an integer interval domain [`, u], if oh`,uiσ = 0 and if there exists a word v in Lσ such that all the
following conditions are satisfied:

(i) |v| = !σ, i.e. v is a shortest word in Lσ.

(ii) ⌘σ(v) = ⌘σ, i.e. v has a minimum height among all words in Lσ.

(iii) Either both words ‘v >’ and ‘v <’ are not factors of any word in Lσ, or at least one of the three
words {‘v > v’, ‘v < v’, ‘v = v’} is not a factor of any word in Lσ, and its height is equal to ⌘σ.

(iv) For any integer n > !σ, there exists at least one ground time series of length n over [`, u], whose
signature contains v as a maximal occurrence of σ.

Any regular expression σ in Table 5.2 has the NB-non-overlapping property for any integer interval
domain [`, u] such that oh`,uiσ = 0, except the STEADY_SEQUENCE regular expression for [`, u] such that ` =
u. The case of STEADY_SEQUENCE when ` = u is discussed in Example 7.2.3.

Example 7.2.3 (NB-non-overlapping property). We illustrate the NB-non-overlapping property on three
regular expressions.

7.2. TIME-SERIES CONSTRAINTS WITH FEATURE ONE 81

• The σ = ZIGZAG regular expression has the NB-non-overlapping property for any integer interval
domain [`, u] such that u− ` = 1 because (1) as shown in Example 7.1.5, for any two words of Lσ,
the set of their superpositions wrt h`, ui is empty, and (2) there exists a word v = ‘><>’ in Lσ that
satisfies all the following conditions:
⇤ |v| = !σ = 3. (Cond. (i) of Prop. 7.2.3)
⇤ ⌘σ(v) = ⌘σ = 1. (Cond. (ii) of Prop. 7.2.3)
⇤ No word of Lσ contains ‘=’, hence ‘v = v’ is not a factor of any word in Lσ. Furthermore

the height of v is equal to ⌘σ. (Cond. (iii) of Prop. 7.2.3)
⇤ For any integer n > !σ, there exists a ground time series of length n over [`, u] whose signature

contains v as a maximal occurrence of σ. (Cond. (iv) of Prop. 7.2.3)
• The σ = DECREASING_TERRACE regular expression has the NB-non-overlapping property for any

integer interval domain [`, u] such that u − ` = 2 because (1) as shown in Example 7.1.5, for
any two words of Lσ, the set of their superpositions wrt h`, ui is empty, and (2) there exists a
word v = ‘>=>’ in Lσ that satisfies all the following conditions:
⇤ |v| = !σ = 3. (Cond. (i) of Prop. 7.2.3)
⇤ ⌘σ(v) = ⌘σ = 2. (Cond. (ii) of Prop. 7.2.3)
⇤ ‘v < v’ is not a factor of any word in Lσ, and its height is 2. (Cond. (iii) of Prop. 7.2.3)
⇤ For any integer n > !σ, there exists a ground time series of length n over [`, u] whose signature

contains v as a maximal occurrence of σ. (Cond. (iv) of Prop. 7.2.3)
• Consider the σ = STEADY_SEQUENCE regular expression.
⇤ First, σ does not have the NB-non-overlapping property for an integer interval domain [`, u] such

that u − ` = 0, since Condition (iv) of Property 7.2.3 is violated: the shortest word of Lσ,
namely v = ‘=’ cannot be a maximal occurrence of σ in the signature of any ground time series
longer than 2 over [`, u]; indeed, for any time-series length, there exists a single ground time
series with all equal values, thus its signature contains only equalities, which prevents v to be a
maximal occurrence of σ.
⇤ Second, σ has the NB-non-overlapping property for an integer interval domain [`, u] such that
u− ` > 0 because there exists a word v = ‘=’ in Lσ that satisfies all the following conditions:
◦ |v| = !σ = 1. (Cond. (i) of Prop. 7.2.3)
◦ ⌘σ(v) = ⌘σ = 0. (Cond. (ii) of Prop. 7.2.3)
◦ No word of Lσ contains ‘>’ or ‘<’, hence neither ‘v >’, nor ‘v <’ are factors of any word

in Lσ. (Cond. (iii) of Prop. 7.2.3)
◦ For any integer n > !σ, there exists a ground time series of length n over [`, u] whose

signature contains v as a maximal occurrence of σ. (Cond. (iv) of Prop. 7.2.3)
4

7.2.3.2 Structure of a Maximal Time Series

Consider a NB_σ(hX1, X2, . . . , Xni , R) time-series constraint with everyXi having the same integer in-
terval domain [`, u]. Lemma 7.2.2 describes the structure of a maximal time series for NB_σ(hX1, . . . , Xni , R)
under the hypothesis that σ has either the NB-overlapping or the NB-non-overlapping property for [`, u].

Lemma 7.2.2 (structure of a maximal time series). Consider a regular expression σ that has either
the NB-overlapping or the NB-non-overlapping property for an integer interval domain [`, u]. Then for
any integer number n > !σ, there exists a word q such that any ground time series t of length n over [`, u]
whose signature contains q has the maximum number of σ-patterns among all ground time series of length n
over [`, u].

Proof We first construct a word q and we show that there is at least one time series of length n over [`, u]
whose signature contains q. Then, we prove that any time series t of length n over [`, u] whose signature
contains q is maximal for the NB_σ(hX1, X2, . . . , Xni , R) time-series constraint with every Xi ranging
over [`, u].

82 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

Case (1): σ has the NB-overlapping property for [`, u].
Then there exist two words v and w of Lσ and a superposition z1 (respectively z2) of v and w (respectively
w and v) wrt h`, ui such that all the six conditions of Property 7.2.2 are satisfied. Let w1 and w2 be the
words such that z1 = vw2 and z2 = ww1. Figure 7.2 shows the relations between the words z1, z2, v, w,
w1, and w2.
◦ Step 1: Construction of the word q.

When constructing the word q we consider two cases.
⇤ Case (1.1): The smallest variation of maxima δ

h`,ui
σ equals zero.

In this case, the time series t has a single interval without restart that contains all σ-patterns
of t. We construct the signature q of this interval without restart by imposing the following
conditions:

(a) The word q is in the language of the ‘v | z1(w1w2)
⇤(w1 | ")’ regular expression.

(b) The length of q is less than n.

(c) The length of q is maximum among all words satisfying Conditions (a), and (b).

By condition (i) of Property 7.2.2, the heights of both v and w equal ⌘σ, the height of σ.
Since δh`,uiσ = 0, by Condition (vi) of Property 7.2.2, the height of both words z1 and z2 is
not greater than u− `. Furthermore, by Condition (v) of Property 7.2.2 and by Corollary 7.1.1,
describing the structure of words v and w, it can be shown that the height of q is also not
greater than u− `, thus q indeed appears in the signature of some ground time series of length n
over [`, u], and t is feasible.

⇤ Case (1.2): The smallest variation of maxima δ
h`,ui
σ does not equal zero.

For brevity, we consider only the case when δh`,uiσ > 0, the case of a negative δh`,uiσ being sym-
metric. The time series t may have p ≥ 1 intervals without restart, hence in order to construct q
we first construct the signature b of every, except possibly the last one, interval without restart
of t by imposing the following conditions:

(d) The word b is in the language of the ‘v | z1(w1w2)
⇤(w1 | ")’ regular expression.

(e) The set of supporting time series of b wrt h`, ui is not empty.

(f) The length of b is less than n.

(g) The length of b is maximum among all words satisfying Conditions (d), (e) and (f).

Note that b always exists, since there is at least one word, namely v, satisfying Conditions (d), (e)
and (f). Then, the word q must satisfy the following conditions:

(h) The word q belongs to the language of the ‘(b >)⇤q̃rest ’ regular expression, where q̃rest is a
word in the language of the ‘v | z1(w1w2)

⇤(w1 | ")’ regular expression such that |q̃rest |  |b|.

(i) The length of q is less than n.

(j) The length of q is maximum among all words satisfying Conditions (h) and (i).

v w v w v w

z1

z2

w2

w1

w2

w1

w2

Figure 7.2 – Lemma 7.2.2 Case (1.1): Illustration of the word z1w1w2w1w2 belonging to the language
of ‘v | z1(w1w2)

⇤(w1 | ")’

7.2. TIME-SERIES CONSTRAINTS WITH FEATURE ONE 83

Since δh`,uiσ > 0, by Lemma 7.1.1, and by construction of b, the word b does not contain any ‘>’.
Then, the concatenation of b and ‘>’ has the same height as b. Hence, the height of q equals the
height of b, whose set of supporting time series wrt h`, ui is not empty, thus q indeed appears in
the signature of some ground time series of length n over [`, u], and t is feasible.

◦ Step 2: Maximality of any time series t whose signature contains q.
We now prove that t is a maximal time series for NB_σ(hX1, X2, . . . , Xni , R).
⇤ First, we show that the number p of σ-patterns of t equals the number of occurrences of the

words v and w in its signature. By Conditions (iv) and (vii) of Property 7.2.2, the words v
and w appearing in q cannot be factors of any other occurrence of σ in q, hence p is not less
than the number of occurrences of the words v and w in q. By Conditions (iii) of Property 7.2.2,
no extended σ-pattern can straddle between two other extended σ-patterns. In addition, by the
maximality of the length of q there is no occurrence of σ in the part of the signature of t that is
the complement of q. Hence, neither is p greater than the number of occurrences of the words v
and w in q, and thus these values are equal.
⇤ Second, we prove that t is maximal for NB_σ(hX1, X2, . . . , Xni , R). Suppose that t is not max-

imal for NB_σ(hX1, X2, . . . , Xni , R) and there exists a time series t0 of length n over [`, u] that
has a number of σ-patterns strictly greater than t. Then at least one of the following conditions
must be satisfied:

(k) There is a smaller number of intervals without restart of the same total length.

(l) Some extended σ-patterns of such a time series are of length shorter than !σ + 1.

(m) Some pairs of consecutive extended σ-patterns have more than oh`,uiσ time-series variables in
common.

(n) There is an extended σ-pattern that straddles between two other extended σ-patterns.

Assumption (k) contradicts Condition (v) of Property 7.2.2 and the construction of the signature
of intervals without restart. Assumptions (l) and (m) contradict Conditions (ii) and (iii) of Prop-
erty 7.2.2. Finally, Assumption (n) is not possible because of the bound imposed on the value of
the overlap in Condition (iii) of Property 7.2.2. Hence, t has the maximum number of σ-patterns
among all ground time series of the same length over [`, u].

Case (2): σ has the NB-non-overlapping property for [`, u].
There exists a word v such that all the conditions of Property 7.2.3 are satisfied. The construction of q is
similar to Case (1), but the word q will always be the signature of a single interval without restart. The
word q is built using the following rules:

(o) If both words ‘v >’ and ‘v <’ are not proper factors of any word in Lσ, then q is a word in the language
of the ‘(v > v <)⇤v’ regular expression.

(p) If at least one word w in {‘v >’, ‘v =’, ‘v <’} is not a proper factor of any word in Lσ, and its height
equals ⌘σ, then q is in the language of the ‘w⇤v’ regular expression.

(q) The length of q is less than n.

(r) The length of q is maximum among all words satisfying Conditions (o), (p), and (q).

Since all the conditions of Property 7.2.3 are satisfied, it can be shown that the height of q is not greater
than u − `, and thus at least one time series of length n over [`, u] contains q in its signature. Then, in a
similar fashion as in Case (1), one can prove that any time series whose signature contains q is maximal
for NB_σ(hX1, X2, . . . , Xni , R).

7.2.3.3 A Sharp Upper Bound on the Number of Occurrences of Regular Expression

Consider a NB_σ(hX1, X2, . . . , Xni , R) time-series constraint with every Xi ranging over the same
integer interval domain [`, u]. First, Lemma 7.2.3 gives an upper bound on the maximum length of an

84 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

interval without restart in a time series over [`, u]. Second, based on this upper bound and the structure of
a maximal time series for NB_σ(hX1, X2, . . . , Xni , R) showed in Lemma 7.2.2, Theorem 7.2.2 provides a
sharp upper bound on R under some hypothesis on the regular-expression characteristics of σ.

Lemma 7.2.3 (maximum length of an interval without restart). Consider a regular expression σ and an
integer interval domain [`, u] such that one of the following conditions is satisfied:

(i) The value of δh`,uiσ equals zero.

(ii) The value of δh`,uiσ does not equal zero and σ has the NB-overlapping property.

Then, the maximum length of an interval without restart of any ground time series over [`, u] is bounded
by

mh`,uiσ =

8

<

:

j
u−`−⌘σ+|δ

h`,ui
σ |

|δ
h`,ui
σ |

k

·
⇣

!σ + 1− oh`,uiσ

⌘

+ o
h`,ui
σ if δh`,uiσ 6= 0,

+1, otherwise .

Proof. Case (1): Condition (i) is satisfied.

Since δh`,uiσ = 0, the condition that the maximum length of an interval without restart is bounded by +1

is trivially satisfied. This upper bound reflects the fact that when δh`,uiσ = 0, the maximum length of an
interval without restart does not depend on the domain [`, u].

Case (2): Condition (ii) is satisfied.

Now consider the case when δh`,uiσ 6= 0 and σ has the NB-overlapping property. Let b be a word such
that (1) b is the signature of an interval without restart of maximum length constructed in Lemma 7.2.2 for
a time series of some length n over [`, u]; (2) for any time series of length n0 > n over [`, u], b is also the
signature of an interval without restart of maximum length. Note that such b necessarily exists as the set
of supporting time series of b wrt h`, ui must not be empty. Then, there exists a ground time series t of
length n over [`, u] whose signature is b. By construction of b, the maximum of every extended σ-pattern
of t, except the first one, is |δh`,uiσ | units smaller or greater, depending on the sign of δh`,uiσ , compared to
the maximum of the preceding extended σ-pattern. Thus, the maxima of these extended σ-patterns form a
monotonously decreasing (respectively increasing) sequence of integer numbers. By Conditions (i), (iii),

(iv) and (v) of Property 7.2.2, the number of elements of such a sequence is bounded by
j
u−`−⌘σ+|δ

h`,ui
σ |

|δ
h`,ui
σ |

k

.

Since every extended σ-pattern is of length !σ + 1, has a height ⌘σ, and the number of common time-series

variable between two extended σ-patterns equals oh`,uiσ , the value
j
u−`−⌘σ+|δ

h`,ui
σ |

|δ
h`,ui
σ |

k

· (!σ +1− oh`,uiσ) + o
h`,ui
σ

is the maximum length of an interval without restart of a ground time series among all ground time series
over [`, u].

Theorem 7.2.2 (sharp upper bound for NB_σ). Consider a NB_σ(hX1, X2, . . . , Xni , R) time-series con-
straint with everyXi ranging over the same integer interval domain [`, u]. If σ has either the NB-overlapping or
the NB-non-overlapping properties for [`, u], then a sharp upper bound on R is

$

max(0,m− o
h`,ui
σ)

!σ + 1− o
h`,ui
σ

%

| {z }

A

·
j n

m

k

| {z }

B

+

$

max(0, (n mod m)− o
h`,ui
σ)

!σ + 1− o
h`,ui
σ

%

| {z }

C

, (7.5)

where:
◦ m = min(n,max(1,m

h`,ui
σ)), where mh`,uiσ is the upper bound on the maximum length of an interval

without restart in a time series over [`, u], introduced by Lemma 7.2.3.
◦ A is the maximum number of σ-patterns in an interval without restart of maximum length.
◦ B is the number of intervals without restart of maximum length in a maximal time series for the

NB_σ(hX1, X2, . . . , Xni , R) time-series constraint.

7.2. TIME-SERIES CONSTRAINTS WITH FEATURE ONE 85

◦ C is the maximum number of σ-patterns in an interval without restart of non-maximum length in a
maximal time series for NB_σ(hX1, X2, . . . , Xni , R).

Proof. Lemma 7.2.2 showed the existence of a word q such that any time series t of length n over [`, u]
whose signature contains q is maximal for NB_σ(hX1, X2, . . . , Xni , R). Hence, a sharp upper bound on R
can be obtained by counting the number of occurrences of σ in q.

Case (1): mh`,uiσ ≥ n − !σ + o
h`,ui
σ . Then, t contains a single interval without restart longer than n −

!σ + o
h`,ui
σ . Further, the value of min(n,max(1,m

h`,ui
σ)) equals n, and the components B and C become

respectively equal to 1 and 0, thus Formula (7.5) simplifies to A. By Lemma 7.2.1, the obtained value is a
sharp upper bound on R.

Case (2): mh`,uiσ < n− !σ + o
h`,ui
σ . Then t may contain multiple intervals without restart. Furthermore,

the length of all intervals without restart of t, except maybe the last one, equals m[`,u]
σ . By Lemma 7.2.1, the

maximum number of σ-patterns within every interval without restart of maximum length is
j
max(0,m−o

h`,ui
σ)

!σ+1−o
h`,ui
σ

k

,

i.e. the term A. The number of intervals without restart of maximum length is
⌅
n
m

⇧
, i.e. the term B. The

last interval without restart of t may be shorter than mh`,uiσ , then its length is computed as n mod m, and

the number of σ-patterns in the last interval without restart is computed as
j
max(0,(n mod m)−o

h`,ui
σ)

!σ+1−o
h`,ui
σ

k

, which

is C.

Example 7.2.4 (sharp upper bound for NB_σ). Consider a NB_σ(hX1, X2, . . . , Xni , R) time-series con-
straint with every Xi ranging over the same integer interval domain [`, u].
• Let σ be the ZIGZAG regular expression.
⇤ First, assume that u − ` = 1, and recall some of the computed regular-expression character-

istics, namely oh`,uiσ = 0, !σ = 3 and δh`,uiσ = 0. It was shown in Example 7.2.3 that σ has
the NB-non-overlapping property for [`, u], thus Theorem 7.2.2 can be applied for computing a
sharp upper bound on R. Since δh`,uiσ is 0, by Lemma 7.2.3, mh`,uiσ = +1, and thus a sharp

upper bound on R is
j
max(0,min(n,max(1,m

h`,ui
σ))−o

h`,ui
σ)

!σ+1−o
h`,ui
σ

k

=
j
max(0,min(n,+1)−0)

3+1−0

k

=
⌅
n
4

⇧
.

⇤ Second, assume u − ` ≥ 2, then oh`,uiσ is now equal to 1, and δh`,uiσ is equal to 0. It was shown
in Example 7.2.2 that σ has the NB-overlapping property for [`, u], thus Theorem 7.2.2 can
be applied for computing a sharp upper bound on R, and a sharp upper bound on R is equal

to
j
max(0,min(n,+1)−1)

3+1−1

k

=
⌅
n−1
3

⇧
.

• Let σ be the DECREASING_TERRACE regular expression.
⇤ First, assume that u − ` = 2, and recall some of the computed regular-expression character-

istics, namely oh`,uiσ = 0, !σ = 3 and δh`,uiσ = 0. It was shown in Example 7.2.3 that σ has
the NB-non-overlapping property for [`, u], thus Theorem 7.2.2 can be applied for computing a
sharp upper bound on R. By Lemma 7.2.3, we have that mh`,uiσ = +1, and thus a sharp upper

bound on R is
j
max(0,min(n,max(1,m

h`,ui
σ))−o

h`,ui
σ)

!σ+1−o
h`,ui
σ

k

=
j
max(0,min(n,max(1,+1))−0)

3+1−0

k

=
⌅
n
4

⇧
.

⇤ Second, assume u − ` ≥ 3, then o
h`,ui
σ is now equal to 2, and δ

h`,ui
σ is equal to −1. It was

shown in Example 7.2.2 that σ has the NB-overlapping property for [`, u], thus Theorem 7.2.2
can be applied for computing a sharp upper bound on R, and a sharp upper bound on R is equal

to
j
max(0,m−2)

2

k

·
⌅
n
m

⇧
+
j
max(0,(n mod m)−2)

2

k

wherem = min(n,max(1,m
h`,ui
σ)) = min(n,max(1,

(u− `− 1)) · 2 + 2), computed by using Lemma 7.2.3. 4

All the 22 regular expression in Table 5.2 have either the NB-overlapping or
the NB-non-overlapping property for any integer interval domain [`, u], except the STEADY_SEQUENCE

regular expression when ` = u. A sharp upper bound on the result variable of a time-series constraint in
this case is given in Proposition 7.2.3.

86 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

7.2.3.4 A Sharp Upper Bound: Special Case for STEADY_SEQUENCE

Proposition 7.2.3 provides a sharp upper bound on the number of occurrences of the STEADY_SEQUENCE

regular expression in the signature of a time series over an integer interval domain [`, u] such that ` = u.

Proposition 7.2.3 (sharp upper bound for NB_STEADY_SEQUENCE). Consider a NB_σ(hX1, X2,
. . . , Xni, R) time-series constraint with σ being the STEADY_SEQUENCE regular expression and with ev-
ery Xi ranging over the same integer interval domain [`, u] such that ` = u. A sharp upper bound on R
equals 1.

Proof. Since ` = u, there exists a single time series of length n over [`, u], and all its time-series variables
have the same value, namely `. The entire signature of this time series is a word in Lσ, thus a sharp upper
bound on R equals 1.

7.3 Time-Series Constraints with Feature WIDTH

We now consider the g_WIDTH_σ(hX1, X2, . . . , Xni , R) family of time-series constraints with everyXi

ranging over the same integer interval domain [`, u], i.e. the case when the feature is width, g is in the
set {max, min, sum} and σ is a non-fixed length regular expression. Section 7.3.1 defines Properties 7.3.1
and 7.3.2 of regular expressions that we use to obtain sharp upper bounds on R. All the regular expressions
in Table 5.2 have both Properties 7.3.1 and 7.3.2. Based on these properties, Section 7.3.2 (respectively Sec-
tion 7.3.3) provides a sharp upper bound on R when g is max (respectively sum). Finally, Section 7.3.4
gives a sharp lower bound on R when g is sum. Note that we do not consider a lower (respectively upper)
bound for the case when the aggregator is max (respectively min), since when σ has the NB-simple prop-
erty (see Property 7.2.1) for [`, u], there exists a time series of length n over [`, u] that has no σ-patterns,
and thus yields the identity value of the aggregator, namely 0 (respectively n + 1). Among the 22 regular
expressions in Table 5.2 only the STEADY and the STEADY_SEQUENCE regular expressions do not have
the NB-simple property for a domain with a single element, i.e. ` = u.

7.3.1 Properties of Regular Expressions

Property 7.3.1 is used for deriving a sharp upper bound onR for a MAX_WIDTH_σ(hX1, X2, . . . , Xni , R)
time-series constraint. Property 7.3.1 requires the range of a regular expression be a monotonically increas-
ing linear function of n.

Property 7.3.1 (WIDTH-monotonous property). A regular expression σ has the WIDTH-monotonous prop-
erty if the following conditions are all satisfied:

(i) There exists a shortest word in Lσ whose height equals ⌘σ, the height of σ.

(ii) For every time-series length n > !σ + 1, the range of σ wrt hni, φhniσ , is defined and equals eσ · (n−
1− ⌘σ) + cσ + ⌘σ with heσ, cσi 2 {h0, 0i , h0, 1i , h1, 0i}.

Property 7.3.2 is used for deriving a sharp upper bound on R for a SUM_WIDTH_σ(hX1, X2, . . . , Xni ,
R) time-series constraint.

Property 7.3.2 (WIDTH-sum property). A regular expression σ has the WIDTH-sum property for an integer
interval domain [`, u] if the following conditions are all satisfied:

(i) oh`,uiσ  aσ + bσ.

(ii) If for every time-series length n > !σ + 1, the range of σ wrt hni, φhniσ , equals n − 1, then aσ, bσ
and oh`,uiσ are all equal to 0, and !σ, the size of σ, is equal to 1.

7.3. TIME-SERIES CONSTRAINTS WITH FEATURE WIDTH 87

Condition (i) of Property 7.3.2 withdraws from consideration a regular expression σ whose σ-patterns
overlap, i.e. some time-series variables belong simultaneously to two σ-patterns, which will be formalised
in Lemma 7.3.1. Condition (ii) of Property 7.3.2 restricts further a class of regular expressions whose range
depends linearly on n.

7.3.2 Upper Bound for MAX_WIDTH_σ

We first consider the case when the aggregator is max, i.e. the MAX_WIDTH_σ(hX1, X2, . . . , Xni , R)
family of time-series constraints with σ being a non-fixed length regular expression and every Xi ranging
over the same integer interval domain [`, u]. To compute a sharp upper bound on R, we maximise the width
of a σ-pattern in X = hX1, X2, . . . , Xni. We do so by detecting a longest word in Lσ that may appear in
the signature of X . The transition from the length of a σ-pattern to the length of the corresponding word
in Lσ is sound because the width of the σ-pattern is the length of the corresponding word plus 1 and minus
the sum of aσ and bσ, which are constant parameters of σ, introduced in Table 5.2.

A trivial but, possibly not sharp upper bound on R is n − aσ − bσ, where bσ and aσ are parameters of
regular expression used for trimming the left and right borders of the regular expression as introduced in
Section 5.1. Further, for regular expressions that have the WIDTH-monotonous property, we show that the
sharpness of the mentioned upper bound depends only on the difference between u and `.

The idea for computing a sharp upper bound on R when σ has the WIDTH-monotonous property is to
identify the minimum value d of u− ` such that the bound n− aσ − bσ is still sharp. When u− ` is smaller
than d we need to find the maximum value of k < n, such that k− aσ − bσ is a sharp upper bound on R for
a MAX_WIDTH_σ(hX1, X2, . . . , Xki , R) time-series constraint with every Xi ranging over [`, u].

The next theorem provides a sharp upper bound on R when the regular expression σ has the WIDTH-
monotonous property.

Theorem 7.3.1 (sharp upper bound for MAX_WIDTH_σ). Consider a MAX_WIDTH_σ(hX1, X2, . . . , Xni , R)
time-series constraint with σ being a non-fixed length regular expression, and all Xi ranging over the same
integer interval domain [`, u]. If σ has the WIDTH-monotonous property, then a sharp upper bound on R is

(

n− aσ − bσ if u− ` ≥ φ
hni
σ , (7.1)

eσ · (u− `+ 1− aσ − bσ) + cσ · (!σ + 1− aσ − bσ) if u− ` < φ
hni
σ , (7.2)

where eσ and cσ are parameters of the regular expression σ, introduced in Property 7.3.1.

Proof. When the regular expression σ has the WIDTH-monotonous property, the range φhniσ of σ wrt hni
is a monotonically increasing function of n. It implies that, if the upper bound n − aσ − bσ is sharp for
some interval integer domain [`1, u1], then it is also sharp for any interval integer domain [`2, u2] such that
u2 − `2 > u1 − `1. Hence, the sharpness of the upper bound n− aσ − bσ depends only on u− `.
[Case (7.1): u− ` ≥ φ

hni
σ]. By definition of φhniσ , we have that if u− ` ≥ φ

hni
σ , then there exists a word in Lσ

of length n− 1 whose height is not greater than u− `. Hence, n− aσ − bσ is a sharp upper bound on R.
[Case (7.2): u− ` < φ

hni
σ]. This case requires a more detailed analysis than Case (7.1). Let us consider the

three distinct pairs of heσ, cσi from Condition (ii) of Property 7.3.1:

(a) The case of heσ, cσi being h0, 0i. Since u− ` < 0 · (n− 1− ⌘σ)+ 0+ ⌘σ = ⌘σ, the necessary-sufficient
condition, i.e. Property 7.1.1, is not satisfied, thus R is equal to the identity value of the aggregator,
namely 0.

(b) The case of heσ, cσi being h0, 1i. Since u − ` < 0 · (n − 1 − ⌘σ) + 1 + ⌘σ = ⌘σ + 1, the only words
in Lσ that can appear in the signature of a ground time series over [`, u] are the ones with the minimum
height, namely ⌘σ. For every time-series length n > !σ +1, we have that φhniσ = ⌘σ +1, which implies
that for every word in Lσ of length strictly greater than !σ, the height is at least ⌘σ + 1. Hence, only a
word of length !σ and of height ⌘σ can be an occurrence of σ in the signature of a ground time series

88 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

over [`, u]. By Condition (i) of Property 7.3.1, such a word exists in Lσ and thus, a sharp upper bound
on R is !σ + 1− aσ − bσ.

(c) The case of heσ, cσi being h1, 0i. Since u−` < 1·(n−1−⌘σ)+0+⌘σ = n−1, we have that u−` < n−1.
Hence, we aim at finding the longest time-series length k < n such that u − ` = k − 1, and a sharp
upper bound on R will be k− aσ − bσ. The largest value of such k equals u− `+1, thus a sharp upper
bound on R is u− `+ 1− aσ − bσ.

Example 7.3.1 (sharp upper bound for MAX_WIDTH_σ). Consider a MAX_WIDTH_σ(hX1, X2, . . . , Xni , R)
time-series constraint with every Xi having the same integer interval domain [`, u]. The three items of this
example cover each value of heσ, cσi in the set {h0, 0i , h0, 1i , h1, 0i}.
• Consider the σ = INFLEXION regular expression. Recall that both aσ and bσ are equal to 1, the size
!σ of σ is equal to 2, the height ⌘σ of σ is equal to 1, and for any time-series length n > !σ + 1,
the range φhniσ of σ wrt hni is equal to eσ · (n − 1 − ⌘σ) + cσ + ⌘σ = ⌘σ = 1. Since there exists a
word, namely v = ‘<>’, in Lσ whose length equals 2 and whose height is equal to 1, and heσ, cσi
is h0, 0i, σ has the WIDTH-monotonous property. Hence, we apply Theorem 7.3.1 for computing a
sharp upper bound on R.
⇤ If u− ` ≥ φ

hni
σ = 1, then a sharp upper bound on R is equal to n− aσ − bσ = n− 2.

⇤ If u− ` < φ
hni
σ = 1, then a sharp upper bound on R is equal to 0.

• Consider the σ = GORGE regular expression. Recall that both aσ and bσ are equal to 1, the size !σ
of σ is equal to 2, the height ⌘σ of σ is equal to 1, and for any time-series length n > !σ + 1, the
range φhniσ of σ wrt hni is equal to eσ · (n − 1 − ⌘σ) + cσ + ⌘σ = ⌘σ + 1 = 2. Since there exists a
word, namely v = ‘><’, in Lσ whose length equals 2 and whose height is equal to 1, and heσ, cσi
is h0, 1i, σ has the WIDTH-monotonous property. Hence, we apply Theorem 7.3.1 for computing a
sharp upper bound on R.
⇤ If u− ` ≥ 2, then a sharp upper bound on R is equal to n− aσ − bσ = n− 2.
⇤ If u− ` < 2, then a sharp upper bound on R is equal to !σ + 1− aσ − bσ = 1.

• Consider the σ = STRICTLY_DECREASING_SEQUENCE regular expression. Recall that both aσ
and bσ are equal to 0, the size !σ of σ is equal to 1, the height ⌘σ of σ is equal to 1, and for any
time-series length n > !σ + 1, the range φhniσ of σ wrt hni is equal to eσ · (n− 1− ⌘σ) + cσ + ⌘σ =
n − 1 − ⌘σ + ⌘σ = n − 1. Since there exists a word, namely v = ‘>’, in Lσ whose length is equal
to 1 and whose height is equal to 1, and heσ, cσi is h1, 0i, σ has the WIDTH-monotonous property.
Hence, we apply Theorem 7.3.1 for computing a sharp upper bound on R.
⇤ If u− ` ≥ φ

hni
σ = n− 1, then a sharp upper bound on R is equal to n− aσ − bσ = n.

⇤ If u− ` < φ
hni
σ = n− 1, then a sharp upper bound on R is equal to u− `+ 1. 4

7.3.3 Upper Bound for SUM_WIDTH_σ

We now consider the SUM_WIDTH_σ(hX1, X2, . . . , Xni , R) family of time-series constraints with σ
being a non-fixed length regular expression and with every Xi ranging over the same integer interval do-
main [`, u]. Under some hypothesis on the overlap of σ wrt h`, ui, Lemma 7.3.1 provides an upper bound
on R and a condition when this bound is sharp. Then, Theorem 7.3.2 extends the bound of Lemma 7.3.1
and gives a more general condition under which the extended bound on R is sharp.

Lemma 7.3.1 (not necessarily sharp upper bound for SUM_WIDTH_σ). Consider a SUM_WIDTH_σ(hX1, X2,
. . . , Xni, R) time-series constraint with every Xi ranging over the same integer interval domain [`, u], and
with σ being a non-fixed length regular expression.

(i) If oh`,uiσ  aσ + bσ then n− aσ − bσ is an upper bound on R.

(ii) If, in addition, u− ` ≥ φ
hni
σ , then this bound is sharp.

7.3. TIME-SERIES CONSTRAINTS WITH FEATURE WIDTH 89

Proof. [Proof of (i)] Let us consider a time series t of length n over [`, u] that has p > 1 σ-patterns.
Let !i be the length of the σ-pattern i (with i in [1, p]); let nr be the number of time-series variables that
are not in any extended σ-pattern of t; and let oi be the number of common time-series variables of the
extended σ-patterns i and i+ 1. Then, the following equality holds

n = !1 + aσ + bσ +

p−1
X

i=1

(!i+1 + aσ + bσ − oi) + nr. (7.1)

The time series t yields
pP

i=1

!i as the value of R, thus we express this quantity from Equality 7.1 and

obtain

R = n− nr − p · (aσ + bσ) +

p−1
X

i=1

oi. (7.2)

In order to prove that n− aσ− bσ is a valid upper bound on R, we show that the difference between n−
aσ − bσ and the right-hand side of Equality 7.2 is always non-negative if oh`,uiσ  aσ + bσ.

n− (aσ + bσ)− n+ nr + p · (aσ + bσ)−

p−1
X

i=1

oi = nr + (p− 1) · (aσ + bσ)−

p−1
X

i=1

oi. (7.3)

The value of nr is non-negative, and by the definition of oh`,uiσ , every oi is not greater than oh`,uiσ . In
addition, we have the following inequality oh`,uiσ  aσ + bσ. Hence, a lower estimate of the right-hand side
of Equality 7.3 is given by the following inequality

nr + (p− 1) · (aσ + bσ)−

p−1
X

i=1

oi ≥ 0 + (p− 1) · (aσ + bσ)− (p− 1) · (aσ + bσ) = 0. (7.4)

By Inequality 7.4 we obtain that, when oh`,uiσ  aσ + bσ, the difference between n − aσ − bσ and the
value of R is always non-negative. Hence, n− aσ − bσ is an upper bound on R.

[Proof of (ii)] We now show that n − aσ − bσ is a sharp upper bound on R, when u − ` ≥ φ
hni
σ . By

definition of φhniσ , the range of σ wrt hni, there exists a word v of length n − 1 in Lσ whose height is at
most u− `. Hence, there exists at least one ground time series of length n over [`, u] whose signature is v,
all its time-series variables belong to a single extended σ-pattern. For such a time series, the value of p
equals 1, and nr equals 0. By the right-hand side of Equality 7.2, we have that R equals n− aσ − bσ − 0−
(1− 1)(aσ + bσ) = n− aσ − bσ, which was proved to be an upper bound. Hence, in this case n− aσ − bσ
is a sharp upper bound on R.

Theorem 7.3.2 (sharp upper bound for SUM_WIDTH_σ). Consider a SUM_WIDTH_σ(hX1, X2, . . . , Xni , R)
time-series constraint with σ being a non-fixed-length regular expression and every Xi ranging over the
same integer interval domain [`, u]. If σ has both the WIDTH-monotonous property and the WIDTH-sum prop-
erty for [`, u], then a sharp upper bound on R is

(

n− aσ − bσ if u− ` ≥ φ
hni
σ , (7.1)

eσ · (n− ⇢
h`,u,ni
σ) + cσ · (!σ + 1− aσ − bσ) · ⌧

h`,u,ni
σ if u− ` < φ

hni
σ , (7.2)

where:
◦ eσ and cσ are parameters of the regular expression σ, introduced in Property 7.3.1.
◦ ⇢

h`,u,ni
σ equals min(1,max(0, ⌘σ + 1− (u− `))) · (n mod 2).

◦ ⌧
h`,u,ni
σ is the maximum number of σ-patterns of shortest length in a time series among all ground

time series of length n over [`, u].

90 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

Proof. When a regular expression σ has the WIDTH-sum property for [`, u], Condition (i) of Lemma 7.3.1
is satisfied and thus, n− aσ − bσ is an upper bound on R.
[Case (7.1): u− ` ≥ φ

hni
σ]. Since Condition (ii) of Lemma 7.3.1 is also satisfied, by Lemma 7.3.1, u− ` ≥

φ
hni
σ is a sharp upper bound on R.

[Case (7.2): u − ` < φ
hni
σ]. Let us consider the three potential values of heσ, cσi from Condition (ii)

of Property 7.3.1:

(a) The case of heσ, cσi being h0, 0i. Since u−` < ⌘σ, the necessary-sufficient condition, i.e. Property 7.1.1,
is not satisfied, and thus no word of Lσ can occur in the signature of hX1, X2, . . . , Xni. Hence, R is
equal to the identity value of the aggregator, namely 0.

(b) The case of heσ, cσi being h0, 1i. Since u − `  ⌘σ, only a shortest word with a height being ⌘σ
may occur in a signature of hX1, X2, . . . , Xni, as it was shown in the proof of Theorem 7.3.1. By
Condition (i) of Property 7.3.1, such a word exists, and thus a sharp upper bound on R is equal to !σ +
1 − aσ − bσ. Hence, any σ-pattern of any ground time series of length n over [`, u] is of length !σ +
1 − aσ − bσ. Since it is not possible to increase the length of any σ-patterns, in order to maximise R,
it is necessary to maximise the number of σ-patterns of shortest length in a time series of length n
over [`, u]. Since ⌧

h`,u,ni
σ is the maximum number of σ-patterns of minimum length, a sharp upper

bound on R equals (!σ + 1− aσ − bσ) · ⌧
h`,u,ni
σ .

(c) The case of heσ, cσi being h1, 0i. When σ has the WIDTH-sum-property for [`, u], it belongs to the
following class of regular expressions: aσ, bσ, oh`,uiσ are all equal to 0, and !σ is equal to 1. Consider a
time series t of length n over [`, u] with p ≥ 1 σ-patterns, where !i is the length of the σ-pattern i, oi
is the overlap of the extended σ-patterns i and i + 1, and ⇢

h`,u,ni
σ is the number of time-series variables

of t that do not belong to any extended σ-pattern of t. Then, the following equality holds

R = n− ⇢h`,u,niσ − p · (aσ + bσ) +

p−1
X

i=1

oi.

In this equality we replace aσ, and bσ with their actual values, namely 0, which gives a simplified
equality R = n − ⇢

h`,u,ni
σ . Since the smaller ⇢h`,u,niσ , the larger is R, the aim is to find a time series

for which ⇢
h`,u,ni
σ is minimum. Assume that in such a time series p equals the maximum number of σ-

patterns in a time series among all ground time series of length n over [`, u]. Then, ⇢h`,u,niσ is strictly
less than !σ + 1 = 2, otherwise there would be a contradiction with the maximality of p. Hence, t has
at most one time-series variable that is outside of any extended σ-pattern of t. By definition of φhniσ , the
number of time-series variables in any extended σ-pattern is at most u− `+1, thus if t contains at least
one σ-pattern shorter than u − ` + 1 the value of ⇢h`,u,niσ can be decreased by extending this σ-pattern
with one time-series variable. Furthermore, if u− ` ≥ ⌘σ + 1, then ⇢

h`,u,ni
σ = 0, otherwise ⇢

h`,u,ni
σ = n

mod 2. Hence, the minimum value of ⇢h`,u,niσ equals min(1,max(0, ⌘σ + 1− (u− `))) · (n mod 2).

Note that for the 22 regular expressions in Table 5.2, the maximum number of σ-patterns of shortest
length in a time series coincides with the maximum number of σ-patterns in the same time series. Although,
in the general case it may not be true.

Example 7.3.2 (sharp upper bound for SUM_WIDTH_σ). Consider a SUM_WIDTH_σ(hX1, X2, . . . , Xni , R)
time-series constraint with every Xi ranging over the same integer interval domain [`, u], and each value
of heσ, cσi in {h0, 0i , h0, 1i , h1, 0i}.
• Consider the σ = INFLEXION regular expression. In Example 7.3.1, we showed that the regular

expression σ has the WIDTH-monotonous property. Recall that oh`,uiσ is equal to 2 and both aσ and bσ
are equal to 1. Hence, Condition (i) of Property 7.3.2 is also satisfied. Since for any time-series

7.3. TIME-SERIES CONSTRAINTS WITH FEATURE WIDTH 91

length greater than !σ + 1, the value of φhniσ equals ⌘σ, Condition (ii) of Property 7.3.2 is trivially
satisfied. Hence, σ has also the WIDTH-sum property, and Theorem 7.3.2 can be used for computing
a sharp upper bound on R:
⇤ If u− ` ≥ ⌘σ = 1, then a sharp upper bound on R is equal to n− aσ − bσ = n− 2.
⇤ If u− ` < ⌘σ = 1, then a sharp upper bound on R is equal to 0.

• Consider the σ = GORGE regular expression. In Example 7.3.1, we showed that the regular expres-
sion σ has the WIDTH-sum property. Recall that oh`,uiσ is equal to 1 and both aσ and bσ are equal
to 1. Hence, Condition (i) of Property 7.3.2 is also satisfied. Since for any time-series length greater
than !σ + 1, the value of φhniσ equals ⌘σ + 1, Condition (ii) of Property 7.3.2 is trivially satisfied.
Hence, σ has also the WIDTH-sum property, and Theorem 7.3.2 can be used for computing a sharp
upper bound on R:
⇤ If u− ` ≥ 2, then a sharp upper bound on R equals n− aσ − bσ = n− 2.
⇤ If u − ` < 2, then a sharp upper bound on R is equal to ⌧

h`,u,ni
σ · (!σ + 1 − aσ − bσ) =

⌧
h`,u,ni
σ · (2 + 1− 1− 1) = ⌧

h`,u,ni
σ .

For this particular regular expression, ⌧ h`,u,niσ equals the maximum number of σ-patterns in a time
series among all ground time series of length n over [`, u], namely

⌅
n−1
2

⇧
, which is the upper bound

obtained in Section 7.2.
• Consider the σ = STRICTLY_DECREASING_SEQUENCE regular expression. It was shown in Ex-

ample 7.3.1 that σ has the WIDTH-monotonous-property. Recall that oh`,uiσ is equal to 0, and both aσ
and bσ are equal to 0, thus Condition (i) of Property 7.3.2 is also satisfied. Since oh`,uiσ , aσ and bσ are
all equal to 0, and !σ is equal to 1, Condition (ii) of Property 7.3.2 is also satisfied. Hence, σ has
the WIDTH-sum property, and Theorem 7.3.2 can be used for computing a sharp upper bound on R:
⇤ If u− ` ≥ n− 1, then a sharp upper bound on R is equal to n.
⇤ If u−` < n−1, then a sharp upper bound onR is equal to n−⇢

h`,u,ni
σ = n−min(1,max(0, (2−

(u− `)) · (n mod 2))). 4

7.3.4 Lower Bound for MIN_WIDTH_σ

Finally, consider the MIN_WIDTH_σ(hX1, X2, . . . , Xni , R) family of time-series constraints with σ

being a non-fixed-length regular expression and with every Xi ranging over the same integer interval do-
main [`, u]. The next theorem, Theorem 7.3.3, provides a sharp lower bound on R assuming the property
that we now introduce holds.

Property 7.3.3 (WIDTH-occurrence property). A non-fixed-length regular expression σ has the WIDTH-
occurrence property for an integer interval domain [`, u], if there exists a shortest word v inLσ, i.e. |v| = !σ,
and a word w in {v <, v =, v >} such that the following conditions are all satisfied:

(i) The height of v equals ⌘σ, the height of σ.

(ii) The height of w is less than or equal to u− `.

(iii) The word w is not a factor of any word in Lσ.

Theorem 7.3.3 (sharp lower bound for MIN_WIDTH_σ). Consider a MIN_WIDTH_σ(hX1, X2, . . . , Xni , R)
time-series constraint with σ being a non-fixed-length regular expression, and with every Xi having the
same integer interval domain [`, u]. If σ has the WIDTH-occurrence property for [`, u], then a sharp lower
bound on R equals !σ + 1− aσ − bσ.

Proof. Since !σ is the length of a shortest word in Lσ, the length of any σ-pattern is at least !σ+1−aσ−bσ,
and thus it is a lower bound onR. When σ has the WIDTH-occurrence property, there exists a shortest word v
in Lσ and a word w in {v <, v =, v >} such that the three conditions of Property 7.3.3 are all satisfied. We
now show that in this case, the bound is sharp.

92 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

Case (a): n = !σ+1. When Condition (i) of Property 7.3.3 is satisfied, there exists a ground time series
of length n = !σ+1 over [`, u] whose signature is v. Hence, !σ+1−aσ− bσ is a sharp lower bound on R.

Case (b): n > !σ + 1. When Condition (ii) of Property 7.3.3 is satisfied, there exists a ground time
series t of length n over [`, u] whose signature is a word in the language of the ‘w =⇤’ regular expression.
If Condition (iii) of Property 7.3.3 is also satisfied, then the v in the signature of t is a maximal occurrence
of σ, because w is not a factor of any word in Lσ. The length of the corresponding σ-pattern is !σ + 1 −
aσ − bσ, thus this value is a sharp lower bound on R.

Example 7.3.3 (sharp lower bound for MIN_WIDTH_σ). Consider a MIN_WIDTH_σ(hX1, X2, . . . , Xni , R)
time-series constraint with σ being the INFLEXION regular expression and with every Xi ranging over the
same integer interval domain [`, u] such that u − ` ≥ ⌘σ = 1. It was shown in Example 2.0.2 that σ is a
non-fixed-length regular expression. Furthermore, there exists a word v = ‘<>’ and a word w = ‘<>=’
in {‘v <’, ‘v =’, ‘v >’} such that the following conditions are all satisfied:
⇤ The height of v equals ⌘σ = 1. (Cond. (i) of Prop. 7.3.3)
⇤ The height of w equals 1, and thus is less than or equal to u− `. (Cond. (ii) of Prop. 7.3.3)
⇤ The word w is not a factor of any word in Lσ. (Cond. (iii) of Prop. 7.3.3)

Hence, σ has the WIDTH-occurrence property for [`, u], and by Theorem 7.3.3, a sharp lower bound
on R equals !σ + 1− aσ − bσ = 2 + 1− 1− 1 = 1. 4

All the 22 regular expressions in Table 5.2 have the WIDTH-occurrence-property for any integer inter-
val domain [`, u], except the STEADY_SEQUENCE regular expression when ` = u. This special case is
considered in Proposition 7.3.1.

Proposition 7.3.1 (sharp lower bound for MIN_WIDTH_STEADY_SEQUENCE). Consider a MIN_WIDTH_σ(
hX1, X2, . . . , Xni , R) time-series constraint with σ being the STEADY_SEQUENCE regular expression and
with every Xi being over an integer interval domain [`, u] such that ` = u. A sharp lower bound on R
equals n.

Proof. When ` equals u, there exists a single ground time series t of length n over [`, u] with all time-series
variables having the same value, namely `. The signature of t is a sequence of n − 1 equalities, which is a
word in Lσ. Hence, every time-series variable of t belongs to a single extended σ-pattern of t, and thus a
sharp lower bound on R equals n− aσ − bσ = n.

7.4 Synthesis

Consider a g_f_σ(hX1, X2, . . . , Xni , R) time-series constraint with every Xi being over the same in-
teger interval domain [`, u]. Table 7.2 provides a synthesis of the bounds on R obtained in Sections 7.2, 7.3
and in [8], when hg, fi is in {hmax, mini , hmax, widthi , hmin, widthi , hsum, onei , hsum, widthi}. The
theorems and the propositions mentioned in Table 7.2 were applied for computing sharp bounds on R
for 93 time-series constraints of Volume II of the Global Constraint Catalogue [10]. An entry of Table 7.2
corresponds to an upper (respectively lower) bound on R for a g_f_σ(hX1, X2, . . . , Xni , R) time-series
constraint with every Xi ranging over the same integer interval domain [`, u], if the corresponding “Type”
column contains R (respectively R). The “Theorem” column contains the theorem or the proposition pro-
viding the corresponding sharp bound under the hypothesis that σ has the properties mentioned in the
corresponding “Properties” column. The “Theorem” (respectively “Property”) column also recalls the set
of characteristics used in the bound of the corresponding theorem or proposition (respectively property).

Note that when the aggregator is max (respectively min) we do not consider a lower (respectively upper)
bound on R. When σ has the NB-simple property for [`, u], there exists a time series of length n over [`, u]
that contains no σ-patterns, and thus such a time series yields the identity value of max (respectively min),
which is −1 (respectively n+ 1).

7.4. SYNTHESIS 93

hg, fi Type Theorem Properties

hsum, onei R Theorem 7.2.1 NB-simple (Θσ)

R Proposition 7.2.1 σ = STEADY, u = `

R Proposition 7.2.2 σ = STEADY_SEQUENCE, u = `

R Theorem 7.2.2 (!σ , ⌘σ , o
h`,ui
σ , δ

h`,ui
σ) NB-overlapping or NB-non-overlapping (!σ , ⌘σ , o

h`,ui
σ , δ

h`,ui
σ)

R Proposition 7.2.3 σ = STEADY_SEQUENCE, u = `

hmax, widthi R Theorem 7.3.1 (!σ , ⌘σ , φ
h`,ui
σ) WIDTH-monotonous (!σ , ⌘σ , φ

h`,ui
σ)

hsum, widthi R Theorem 7.3.2 (!σ , ⌘σ , φ
h`,ui
σ) WIDTH-monotonous and WIDTH-sum (!σ , ⌘σ , φ

h`,ui
σ , o

h`,ui
σ)

hmin, widthi R Theorem 7.3.3 (!σ) WIDTH-occurrence (!σ , ⌘σ)

R Proposition 7.3.1 σ = STEADY_SEQUENCE, u = `

hmax, mini R Theorem 1 in [8] The Condition of Theorem 1 in [8]

Table 7.2 – A synthesis of all the bounds presented in Sections 7.2, 7.3, and in [8].

The 22 regular expressions in Table 5.2 have the NB-simple property for any domain, except the STEADY

and the STEADY_SEQUENCE regular expressions when ` = u. Table 7.3 classifies the 22 regular expressions
according to the set of properties they share. There are three main groups, and two special ones, namely
for the STEADY and for the STEADY_SEQUENCE regular expressions. The partitioning into three main
groups is related to the fact that the entry of Table 7.2 with Theorem 7.2.2, contains a disjunction between
the NB-overlapping and the NB-non-overlapping properties. Furthermore, a regular expression σ cannot
have both properties for the same integer interval domain [`, u]. This allows to partition the 22 regular
expressions into three classes, namely:

1. The regular expressions that have the NB-overlapping property for any [`, u], i.e. the first group
in Table 7.3.

2. The regular expressions that have the NB-non-overlapping property for any [`, u], i.e. the second
group in Table 7.3.

3. The regular expressions that have the NB-non-overlapping property for any [`, u] such that u−` = ⌘σ,
and have the NB-overlapping property for any [`, u] such that u − ` > ⌘σ, i.e. the third group
in Table 7.3.

The STEADY_SEQUENCE represents a special case, because when u − ` = ⌘σ, σ has neither property
for [`, u], and when u− ` > ⌘σ, σ has the NB-non-overlapping property for [`, u].

94 CHAPTER 7. SYNTHESISING PARAMETERISED BOUNDS

Regular Expressions Set of Properties
O

ve
rl

ap
pi

ng
C

la
ss

8

>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

BUMP_ON_DECREASING_SEQUENCE

DIP_ON_INCREASING_SEQUENCE

GORGE

INFLEXION

PEAK

PLAIN

PLATEAU

PROPER_PLAIN

PROPER_PLATEAU

SUMMIT

VALLEY

NB-simple
NB-overlapping
WIDTH-monotonous
WIDTH-sum
WIDTH-occurrence
Condition of Theorem 1 in [8]

N
on

-O
ve

rl
ap

pi
ng

C
la

ss

8

>>>>>>>><

>>>>>>>>:

DECREASING_SEQUENCE

INCREASING_SEQUENCE

STRICTLY_DECREASING_SEQUENCE

STRICTLY_INCREASING_SEQUENCE

NB-simple
NB-non-overlapping
WIDTH-monotonous
WIDTH-sum
WIDTH-occurrence
Condition of Theorem 1 in [8]

O
ve

rl
ap

pi
ng

N
on

-O
ve

rl
ap

pi
ng

C
la

ss

8

>>>>>>>><

>>>>>>>>:

DECREASING

INCREASING

DECREASING_TERRACE

INCREASING_TERRACE

ZIGZAG

NB-simple
NB-non-overlapping when u− ` = ⌘σ
NB-overlapping when u− ` ≥ ⌘σ + 1
WIDTH-monotonous
WIDTH-sum
WIDTH-occurrence
Condition of Theorem 1 in [8]

S
pe

ci
al

C
as

e

8

>>>>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>>>>:

STEADY

STEADY_SEQUENCE

NB-simple when u− ` > ⌘σ
NB-non-overlapping when u− ` = ⌘σ
NB-overlapping
WIDTH-monotonous
WIDTH-sum
WIDTH-occurrence
Condition of Theorem 1 in [8]

NB-simple when u− ` > ⌘σ
NB-non-overlapping when u− ` = ⌘σ
NB-overlapping
WIDTH-monotonous
WIDTH-sum
WIDTH-occurrence when u− ` > ⌘σ
Condition of Theorem 1 in [8]

Table 7.3 – Classification of regular expressions: regular expression names σ, their properties and conditions
on domain [`, u] when they hold.

7.5. CONCLUSION 95

7.5 Conclusion

We introduce the concept of regular-expression characteristic as a way to unify combinatorial aspects of
quantitative extensions of regular languages. We illustrate that approach for time-series constraints where,
introducing six regular-expression characteristics, allows coming up with generic bounds for families of
time-series constraints

Summary of this Chapter:

The main contribution of this chapter is a systematic method for synthesising bounds for time-series
constraints using the introduced concept of regular-expression characteristic. For the NB_σ and the
SUM_WIDTH_σ families, we defined classes of regular expressions, for which our method applies.

Chapter 8

Synthesising Parameterised

AMONG Implied Constraints

This chapter is an extended version of an article published in the proceedings of the CP’17 conference
[12]. The final authenticated version of this article is available online at: http://dx.doi.org/10.
1007/978-3-319-66158-2_3.

This chapter focusses on the g_SURF_σ(X,R) families of time-series constraints with g being either max
or sum, and with σ being one of the 22 regular expressions of Table 5.2, as they were reported to be the
most difficult in the preceding work of [8]. Each constraint of one of the two families restricts R to be
the result of applying the aggregator g to the sum of the elements corresponding to the occurrences of a
regular expression σ [5] in a time series X . These constraints play an important role in modelling power
systems [28]. If the measured values correspond to the power input/output, then the surface feature surf

describes the energy used/generated during the period of pattern occurrence. The sum aggregator imposes
a bound on the total energy during all pattern occurrences in the time series, the max aggregator is used
to limit the maximal energy during a single pattern occurrence. Generating time series verifying a set
of specific time-series constraints is also useful in different contexts like trace generation, i.e. generating
typical energy consumption profiles of a data centre [62, 84], or staff scheduling problems, e.g. generating
manpower profiles over time subject to work regulations and to a demand [3, 11].

Many constraints of these families are intractable, thus in order to improve the efficiency of the solving
we need to address the combinatorial aspect of time-series constraints. We improve the reasoning for
such time-series constraints by identifying AMONG implied constraints. Learning parameters of global
constraints like AMONG [25] is a well-known method for strengthening constraint models [37, 36, 111] with
the drawback that it is instance specific, so this alternative was not explored here. Taking exact domains
into account would lead to filtering algorithms rather than to implied constraints which assume the same
minimum/maximum.

While coming up with implied constraints is usually problem specific, the theoretical contribution of
this chapter is a unique per family AMONG implied constraint, that is valid for all regular expressions of
Table 5.2 and that covers all the 22 time-series constraints of the corresponding family. Hence, it covers 66
time-series constraints in total. The main focus of this work is on reusable necessary conditions that can be
associated with a class of time-series constraints.

First, we show in Section 8.1 that saying whether the SUM_SURF_PEAK time-series constraint has a
solution or not is an NP-complete problem. Then, after introducing several regular-expression characteris-
tics, Section 8.2 presents the main contribution, Theorems 8.2.1, 8.2.2 and 8.2.3, while Tables 8.2 and 8.3
provide the corresponding derived concrete implied constraints for some subset of the MAX_SURF_σ and
the SUM_SURF_σ time-series constraints, respectively.

97

http://dx.doi.org/10.1007/978-3-319-66158-2_3
http://dx.doi.org/10.1007/978-3-319-66158-2_3

98 CHAPTER 8. SYNTHESISING PARAMETERISED AMONG IMPLIED CONSTRAINTS

8.1 Complexity of the SUM_SURF_PEAK Time-Series Constraint

In this section, we prove that saying whether the SUM_SURF_PEAK time-series constraint has a solution
or not is an NP-complete problem.

Theorem 8.1.1 (NP-completness of SUM_SURF_PEAK). Consider a sequence of integer variables X =
hX1, X2, . . . , Xniwith finite domains. The problem of identifying whether there exists an assignment of the
variables of X satisfying the constraint SUM_SURF_PEAK(X,R) with a fixed value of R is NP-complete.

Proof. For a given ground time series of length n and an integer value R, we can use the register automaton
for SUM_SURF_PEAK to check whether the constraint holds or not. Such a check requires O(n) time
complexity and O(1) space complexity. Hence our problem is in class NP .

We now show that the considered problem is NP -complete by a polynomial reduction of the consistency
check of B in the domain of R for an instance of SUBSET SUM [72] to SUM_SURF_PEAK(X,R). The
SUBSET SUM problem is described as follows: given a multiset of strictly positive integersA = {A1, A2, . . . ,
Am}, and a strictly positive integer B, does there exist a subset A0 of A such that

P

Ai2A0
Ai = B?

Let X be a sequence h0, Y1, 0, Y2, 0, . . . , 0, Ym, 0i, where the domain of every Yi is {0, Ai} with Ai > 0;
let B be a strictly positive integer; and let E be a multiset containing the upper limits of the domains of all
elements of X . Note that X and E have the same number of elements. We now show that a solution to
SUM_SURF_PEAK(X,B) is a solution to SUBSET SUM on (E,B) and vice versa.

) A solution to SUM_SURF_PEAK(X,B) is a solution to the equality
mP

i=1

Xi = B, i.e. a solution to

SUBSET SUM on (E,B).
(Let A0 be a solution to SUBSET SUM on (E,B). For each Ai 2 A0, assign Ai to a variable Xi 2 X
such that the upper limit of the domain of Xi is Ai. Assign 0 to all remaining variables. The resulting
complete assignment of X is by construction a solution to SUM_SURF_PEAK(X,B). Indeed, for each Xi

such that Xi is Ai there is an extended PEAK-pattern h0, Ai, 0i, otherwise Xi = 0 and does not belong to
any PEAK-pattern. The sum of the surfaces of the PEAK-patterns of X is

P

Ai2A0
Ai = B, as A0 is a solution

to SUBSET SUM on (E,B).

8.2 Deriving an AMONG Implied Constraint

Consider a g_f_σ(hX1, X2, . . . , Xni , R) time-series constraint with g being in {sum, max, min}, with f
being the surf feature, and with everyXi ranging over the same integer interval domain [`, u] such that u >
0. For brevity, we do not consider here the case when u  0, since it can be handled in a symmetric way. We

derive an AMONG(N , hX1, X2, . . . , Xni ,
D

Ih`,uihg,f,σi, I
h`,ui
hg,f,σi + 1, . . . , I

h`,ui

hg,f,σi

E

) implied constraint, where:

◦ For any value of R, N is an integer variable whose lower bound only depends on R, σ, f , `, u,
and n.
◦ The interval Ih`,uihg,f,σi = [Ih`,uihg,f,σi, I

h`,ui

hg,f,σi] is a subinterval of [`, u], which is called the interval of

interest of hg, f, σi wrt h`, ui and defined in Section 8.2.1.
Such an AMONG [25, 40] constraint is satisfied if exactly N variables of hX1, X2, . . . , Xni are assigned a
value in Ih`,uihg,f,σi. Before formally describing how to derive this implied constraint, we provide an illustrating
example.

Example 8.2.1 (illustrating example). Consider a MAX_SURF_σ(hX1, X2, . . . X7i , R) time-series con-
straint with everyXi ranging over the same integer interval domain [1, 4], and with σ being the DECREASING

_SEQUENCE regular expression (see Table 5.2). Let us observe what happens when R is fixed, for example,
to 18. The following table below gives the two distinct σ-patterns such that at least one of them appear in
every ground time series X = hX1, X2, . . . , X7i that yields 18 as the value of R:

8.2. DERIVING AN AMONG IMPLIED CONSTRAINT 99

u− 1

u

t1 t2 t3 t4

= > <

t

(A)
u− 2

u− 1

u

t1 t2 t3 t4

> = >

t

(B)
u− 2

u− 1

u

t1 t2 t3 t4 t5 t6 t7

> < > < > >

t

(C)

u− 1

u

t1 t2 t3 t4

= > =

t

(D)
u− 2

u− 1

u

t1 t2 t3 t4 t5

> = = >

t

(E)

Figure 8.1 – For all the figures, σ is the DECREASING_SEQUENCE regular expression. A time series t
(A) with one σ-pattern, which contains a single occurrence of value u − 1; (B) with one σ-pattern, which
contains 2 occurrences of value u − 1; (C) with the maximum number, 3, of σ-patterns, which all contain
one occurrence of value u− 1, and only one contains an occurrence of value u− 2; (D) with one σ-pattern,
which contains one occurrence of both u and u − 1; (E) with one σ-pattern, whose width is maximum
among all other σ-patterns in ground time series of length 5 over the same domain [u− 2, u].

σ-pattern 1 σ-pattern 2

h4, 3, 3, 3, 3, 2i h4, 3, 3, 3, 2, 2, 1i

By inspection, we observe that for any ground time series X for which R equals 18, its single σ-
pattern contains at least 4 time-series variables whose values are in [3, 4]. Hence, we can impose an
AMONG(N , hX1, X2, . . . , X7i , h3, 4i) implied constraint with N ≥ 4. 4

We now formalise the ideas presented in Example 8.2.1 and systematise the way we obtain such an
implied constraint even when R is not initially fixed.
◦ Section 8.2.1 introduces three new regular-expression characteristics σ, which were not presented

in Chapter 7 and will be used to obtain a parameterised implied constraint:
⇤ the interval of interest of hg, f, σi wrt h`, ui (see Definition 8.2.1),
⇤ the maximum value occurrence of σ wrt h`, u, ni (see Definition 8.2.2), and
⇤ the big width of σ wrt h`, u, ni (see Definition 8.2.3).

◦ Based on these three characteristics, the height of σ and the overlap of σ wrt h`, ui, introduced
in Definition 7.1.4 and Definition 7.1.10, respectively, Section 8.2.2 presents a systematic way of
deriving AMONG implied constraints for the MAX_SURF_σ, MIN_SURF_σ and the SUM_SURF_σ
families of time-series constraints.

8.2.1 Regular-Expression Characteristics

To get a unique per family AMONG implied constraint that is valid for any g_SURF_σ(X,R) time-series
constraint with g being in {max, min, sum}, we introduce three new regular-expression characteristics that
will be used for parametrising our implied constraint. First, Definition 8.2.1 defines the specific range of
values on which the AMONG implied constraint focusses on.

Definition 8.2.1 (interval of interest). Consider a g_f_σ(X,R) time-series constraint with X being a
time series over an integer interval domain [`, u]. The interval of interest of hg, f, σi wrt h`, ui, denoted
by Ih`,uihg,f,σi, is a function that maps an element of T ⇥ Z ⇥ Z to Z ⇥ Z, where T denotes the set of all
time-series constraints, and the result pair of integers is considered as an interval.

◦ The upper limit of Ih`,uihg,f,σi, denoted by I
h`,ui

hg,f,σi, is the largest value in [`, u] that can occur in a σ-pattern
of a time series over [`, u].
◦ The lower limit of Ih`,uihg,f,σi, denoted by Ih`,uihg,f,σi, is the smallest value v in [max(`, u− ⌘σ− 1), u] such

that for any n in N, the number of occurrences of v in the union of the σ-patterns of any maximal
time series for g_f_σ of length n over [`, u], is a non-constant function of n. If such v does not

exist, then Ih`,uihg,f,σi equals I
h`,ui

hg,f,σi − ⌘σ.

100 CHAPTER 8. SYNTHESISING PARAMETERISED AMONG IMPLIED CONSTRAINTS

We focus on such intervals of interests because they consist of the largest values appearing in maximal
time series for g_f_σ.

Example 8.2.2 (interval of interest). Consider a g_SURF_σ(X,R) time-series constraint with X being a
time series over an integer interval domain [`, u] such that u > 0. We consider different combinations

of triples hg, f, σi and their corresponding intervals of interest wrt h`, ui. Note that the value of I
h`,ui

hg,f,σi

depends only on σ, `, and u and not on g and f .
⇤ Let σ be the DECREASING_SEQUENCE = ‘(> (> | =)⇤)⇤ >’ regular expression. The largest value

appearing in the σ-patterns of X is u, and thus I
h`,ui

hg,f,σi = u. We compute the value of Ih`,uihg,f,σi wrt
two time-series constraints:
◦ Let g be the max aggregator.

— If u − ` = 1, then any σ-pattern of X has a signature ‘>’, i.e. contains only two elements.
Then, the maximum value of R is reached for a time series t that contains the hu, u− 1i
σ-pattern. The rest of the variables of t are assigned any value, e.g. all other variables have a
value of u. Such a time series t for the length 4 is shown in Part (A) of Figure 8.1. Further, for
any v in [`, u], the number of occurrences of v in the union of the σ-patterns of t is at most 1,

which is a constant, and does not depend on n. By definition Ih`,uihg,f,σi = I
h`,ui

hg,f,σi−⌘σ = u−1.
— If u − ` > 1, then for any n ≥ 2, any maximal time series t for g_f_σ contains a single σ-

pattern whose signature is in the language of ‘>=⇤>’. If, for example, n = 4, then t has
n − 2 = 2 time-series variables with the values u − 1, which is depicted in Part (B) of
Figure 8.1. In addition, the σ-pattern of t has a single occurrence of the value u− 2. Hence
Ih`,uihg,f,σi = u− 1.

◦ Let g be the sum aggregator.
For any integer n ≥ 2, any maximal time series t for g_f_σ contains

⌅
n
2

⇧
σ-patterns, which

contains u and u − 1, and at most one of them has the value u − 2. Such a time series t for the
length n = 7 is depicted in Part (C) of Figure 8.1. Hence Ih`,uihg,f,σi = u− 1.

⇤ Let σ be the PEAK = ‘< (< | =)⇤(> | =)⇤ >’ regular expression whose aσ = bσ = 1. The value

of I
h`,ui

hg,f,σi is equal to u, since it is the largest value appearing in σ-patterns of a time series over [`, u].

We consider the values of Ih`,uihg,f,σi wrt two time-series constraints:
◦ Let g be the max aggregator. For any n ≥ 2, any maximal time series for g_f_σ of length n

contains a single σ-pattern, whose time-series variables equal u. Hence Ih`,uihg,f,σi = u.
◦ Let g be the sum aggregator. The set of maximal time series for g_f_σ is the same as for the

MAX_SURF_σ constraint. Hence Ih`,uihg,f,σi = u. 4

The next regular-expression characteristic, we introduce, is a function of `, u and n related to the maxi-
mum number of value occurrences in a σ-pattern.

Definition 8.2.2 (maximum value occurrence number). Consider a regular expression σ, and a time seriesX
of length n over an integer interval domain [`, u]. The maximum value occurrence number of v in Z

wrt h`, u, ni, denoted by µh`,u,niσ (v), is a function that maps an element of RΣ ⇥ Z ⇥ Z ⇥ N
+ ⇥ Z to N. It

equals the maximum number of occurrences of the value v in one σ-pattern of X .

Example 8.2.3 (maximum value occurrence number). Consider a regular expression σ and a time series X
of length n over an integer interval domain [`, u] such that u > `. We compute the maximum value
occurrence number of various v in Z wrt h`, u, ni.

If v is not in [`, u], then µh`,u,niσ (v) = 0. Hence we focus on the case when v 2 [`, u].
⇤ Let σ be the DECREASING_SEQUENCE regular expression.
◦ If u − ` = 1, then any σ-pattern of X has a signature ‘>’, and thus it may have at most one

occurrence of any value v in [`, u]. Hence for any v in [`, u], µh`,u,niσ (v) = 1.
◦ If u− ` > 1, then we consider two subsets of [`, u]:

8.2. DERIVING AN AMONG IMPLIED CONSTRAINT 101

— For either v in the set {`, u}, the value of µh`,u,niσ (v) is 1, since in any σ-pattern the lower and
upper limits of the domain, namely ` and u, can appear at most once, as it illustrated in Part
(D) of Figure 8.1. for the length n = 4.

— For any v in [` + 1, u− 1], the value of µh`,u,niσ (v) is n− 2, since v can occur at most n− 2
times in a σ-pattern of X . The time series in Part (B) of Figure 8.1. has a single σ-pattern,
namely ht1, t2, t3, t4i, which has n− 2 = 4− 2 = 2 occurrences of the value u− 1.

⇤ Let σ be the PEAK = ‘< (< | =)⇤(> | =)⇤ >’ regular expression.
◦ Any value v in [` + 1, u] can occur at most n − aσ − bσ = n − 2 times in any σ-pattern of X .

Hence for any v in [`+ 1, u], µh`,u,niσ (v) = n− 2.
◦ Since aσ and bσ equal 1, the value ` cannot appear in any σ-pattern ofX . Hence, µh`,u,niσ (`) = 0.

4

The last regular-expression characteristic, we introduce, is the largest width of a σ-pattern in a time
series.

Definition 8.2.3 (big width). Consider a regular expression σ, and a time series X of length n over an
integer interval domain [`, u]. The big width of σ wrt h`, u, ni, denoted by βh`,u,niσ , is a function that maps
an element ofRΣ ⇥Z⇥Z⇥N

+ to N. It equals the maximum width of a σ-pattern in X . If X cannot have
any σ-patterns, then βh`,u,niσ is 0.

Example 8.2.4 (big width). Consider a regular expression σ and a time series X of length n over an integer
interval domain [`, u]. We compute the big width of different σ wrt h`, ui.
⇤ Let σ be the DECREASING_SEQUENCE regular expression.
◦ If n  1, then X cannot have any σ-patterns, since a minimum width σ-pattern contains at least

two elements. Hence βh`,u,niσ = 0.
If u−` = 0, then no word of Lσ can appear in the signature of any ground time series over [`, u],
and thus X cannot have any σ-patterns. Hence βh`,u,niσ = 0.
◦ If u − ` = 1 and n ≥ 2, then any σ-pattern of X has a signature ‘>’. The width of such

a σ-pattern is 2. Hence βh`,u,niσ = 2.
◦ If u − ` > 1 and n ≥ 2, then there exists a word in Lσ that is also in the language of ‘>=⇤>’

and whose length is n − 1. This word is the signature of some ground time series t of length n
over [`, u], which contains a single σ-pattern of width n. Such a time series t for the length n =
5 is illustrated in Part (E) of Figure 8.1. The width of a σ-pattern cannot be greater than n,
thus βh`,u,niσ = n.

⇤ Let σ be the PEAK regular expression.
◦ If u = ` or n  2, then no word in the language of σ can appear in the signature of a ground

time series over [`, u]. Hence βh`,u,niσ = 0.
◦ If u − ` ≥ 1 and n ≥ 3, then the maximum length of the words in the language of σ that can

appear in the signature of a ground time series over [`, u] is n− 1. Hence βh`,u,niσ = n+1− bσ−
aσ = n− 2. 4

Table 8.1 gives the values of the two regular-expression characteristics for some regular expressions
of Table 5.2, while Tables 8.2 and 8.3 provide the intervals of interest for 12 time-series constraints.

8.2.2 Deriving an AMONG Implied Constraint for the MAX_SURF_σ, MIN_SURF_σ
and the SUM_SURF_σ Families

Consider a g_SURF_σ(hX1, X2, . . . , Xni , R) time-series constraint with every Xi ranging over the
same integer interval domain [`, u], and with g being in {max, min, sum}. Our goal is to estimate a lower
bound on N , which is the number of time-series variables in the σ-patterns of hX1, X2, . . . , Xni that

102 CHAPTER 8. SYNTHESISING PARAMETERISED AMONG IMPLIED CONSTRAINTS

σ µ
h`,u,ni
σ (v) β

h`,u,ni
σ

BUMP_ON_DECREASING_SEQUENCE

(

1, if v 2 {u, `}

2, if v 2 [`+ 1, u− 1]
3

DECREASING 1, 8v 2 [`, u] 2

DECREASING_SEQUENCE

(

1, if v 2 {u, `}

n− 2, if v 2 [`+ 1, u− 1]

(

2, if u− ` = 1

n, otherwise

GORGE

8

><

>:

0, if v = u

1, if v = `

n− 2, if v 2 [`+ 1, u− 1]

(

1, if u− ` = 1

n− 2, otherwise

PEAK

(

0, if v = `

n− 2, if v 2 [`+ 1, u]
n− 2

ZIGZAG
⌅
n−1
2

⇧
, 8v 2 [`, u] n− 2

Table 8.1 – For every regular expression σ, [`, u] is an integer interval domain, and n is a time series length,
such that there is at least one ground time series of length n over [`, u] whose signature contains at least one
occurrence of σ. Then, µh`,u,niσ (v) is the maximum value occurrence number of v 2 [`, u] wrt h`, u, ni, and
β
h`,u,ni
σ is the the big width of σ wrt h`, u, ni.

must be assigned a value in the interval of interest Ih`,uihg,f,σi of hg, f, σi wrt h`, ui, in order to satisfy the
g_SURF_σ(hX1, X2, . . . , Xni , R) constraint. Theorems 8.2.1, 8.2.2 and 8.2.3 present such inequality for
the cases when g is max, min, and sum, respectively, using the three regular-expression characteristics in-
troduced in Section 8.2.1 and also the height of σ, and the overlap of σ wrt h`, ui, introduced in Definitions
7.1.4 an 7.1.10, respectively. Example 8.2.5 first conveys the intuition behind Theorem 8.2.1.

Example 8.2.5 (intuition behind Theorem 8.2.1). Consider a g_f_σ(X,R) time-series constraint with g
being max, with f being surf, with σ being the DECREASING_SEQUENCE regular expression, and with
X being a time series of length n = 9 over the integer interval domain [`, u] = [0, 4]. Let us assign R to
the value 24, and let us compute a lower bound on N , the number of variables of X that must be assigned
a value from Ih`,uihg,f,σi, which is [3, 4] as it was shown in Example 8.2.2. Our aim is to show that for a σ-
pattern in X , its number of time-series variables in [3, 4] can be estimated as the difference between the
value of the surface of this σ-pattern and some other value that is a function of σ, `, u and n. In order to
obtain this value, we construct a time series t of length βh`,u,niσ = 9 satisfying all the following conditions:

1. The number of time-series variables of t that are assigned to the value I
h`,ui

hg,f,σi equals µh`,u,niσ (I
h`,ui

hg,f,σi) =

µ
h0,4,9i
σ (4) = 1.

2. The number of time-series variables of t that are assigned to the value Ih`,uihg,f,σi, which is I
h`,ui

hg,f,σi − 1,

equals µh`,u,niσ (Ih`,uihg,f,σi) = µ
h0,4,9i
σ (3) = n− 2 = 7.

3. The rest of the time-series variables of t, namely n − µh`,u,niσ (I
h`,ui

hg,f,σi) − µ
h`,u,ni
σ (Ih`,uihg,f,σi) = 1 time-

series variable, is assigned to the value Ih`,uihg,f,σi − 1 = 2.

Part (A) of Figure 8.2 illustrates a ground time series t of length 9 over [0, 4] satisfying all the three condi-
tions. By construction, the sum of elements of t is greater than or equal to the surface of any σ-pattern ofX .
Furthermore, for any σ-pattern of X , its number of time-series variables whose values are in [3, 4] is not
greater than the number of such time-series variables of t.

Part (A) of Figure 8.2 contains three type of points: circled, squared and diamond-shaped points; thus
our goal is to evaluate the number of circled points. The value of Xi is one plus the number of squared
and diamond-shaped points under the point corresponding to Xi. Hence, the sum of all elements of t can
be viewed as the total number of circled, squared and diamond-shaped points. Furthermore, the number

8.2. DERIVING AN AMONG IMPLIED CONSTRAINT 103

(A)
0

1

2

3

4

X1X2X3X4X5X6X7X8X9

t

I
h
0
,4
i

h
g
,f
,σ
i

(B)
0

1

1

1

4

X1X2X3X4X5X6X7X8X9

t0

I
h
0
,4
i

h
g
,f
,σ
i

Figure 8.2 – Here, Ih0,4ihg,f,σi is the interval of interest of hg, f, σiwrt h0, 4i for σ = DECREASING_SEQUENCE;
(A) a ground time series t, satisfying the three conditions in Example 8.2.5; (B) a ground time series t0 with
a single σ-pattern of surface 24.

of circled points is the difference between the total number of points and the number of squared points,
namely 27 minus 19, which is 8.

For any σ-pattern of X , its corresponding number of squared and diamond-shaped points is at most 19.
Then, its number of time-series variables whose values are in [3, 4] can be estimated as the surface of
the σ-pattern minus 19. Hence, when the surface of the σ-pattern is 24, a lower bound onN is 5. Part (B) of
Figure 8.2 gives an example of a ground time series t0 of length 9 over [0, 4] that contains a σ-pattern with a
surface of 24. This σ-pattern has 6 ≥ 5 values in [3, 4], which agrees with our computed lower bound. 4

Theorem 8.2.1 (AMONG implied constraint for MAX_SURF_σ). Consider a g_f_σ(X,R) time-series con-
straint with g = max, f = surf and X being a time series of length n over an integer interval domain [`, u];
then AMONG(N , hX1+bσ , X2+bσ , . . . , Xn−aσi , I) is an implied constraint, where N is restricted by

N ≥ R− max (0, I − 1) · β −
X

v2[I+1,I]

µh`,u,niσ (v) · (v − I) , (8.1)

where β (respectively I) is shorthand for βh`,u,niσ (respectively Ih`,uihg,f,σi), and I (respectively I) denotes
the lower (respectively upper) limit of interval I.

Proof We show that the right-hand side of the stated inequality is a lower bound on the number of time-
series variables of a σ-pattern whose values are in I, and the surface of the σ-pattern is R. Note that the
first bσ and the last aσ time-series variables never belong to any σ-pattern, and thus we do not include them
in our AMONG implied constraint.

In order to prove the lower bound on N , we first compute a lower bound on the number N I of time-
series variables of the σ-pattern whose value is I, which is the smallest value of interval I. To do so, we
overestimate the value ofR, namely for every v > I in I, we assume that the number of occurrences of v in
the σ-pattern equals µh`,u,βiσ (v). Note that the number of time-series variables in any σ-pattern is not greater
than β = β

h`,u,ni
σ . We state the following inequality:

R  N I ·max(0, I)

| {z }

A

+
X

v2[I+1,I]

µh`,u,βiσ (v) ·max(0, v)

| {z }

B

(8.2)

+max(0, I − 1) ·max(0, β −N I −
X

v2[I+1,I]

µh`,u,βiσ (v))

| {z }

C

,

104 CHAPTER 8. SYNTHESISING PARAMETERISED AMONG IMPLIED CONSTRAINTS

where A, B, and C correspond to the sums of elements of the σ-pattern that equal I, are in I and are
greater than I, and are outside Ih`,uihg,f,σi respectively. From Inequality 8.2 we obtain the following lower
bound on N I :

N I ≥ R−
X

v2S

µh`,u,βiσ (v) ·max(0, v) (8.3)

−max(0, I − 1) ·max(0, β −
X

v2S

µh`,u,βiσ (v)).

In order to obtain a lower bound on N from the known lower bound on N I , we add the
P

v2S

µ
h`,u,βi
σ (v)

term to the right-hand side of Inequality 8.3, regroup some terms, and obtain the inequality of the theorem.

Example 8.2.6 (AMONG implied constraint for MAX_SURF_σ). Consider the g_f_σ(hX1, X2, . . . , Xni , R)
time-series constraint, with g being max, with f being surf, and with every Xi (with i 2 [1, n]) ranging
over the same domain [`, u] with u > 0 and u − ` > 1. We illustrate the derivation of AMONG implied
constraints for two regular expressions.
⇤ Consider the σ = DECREASING_SEQUENCE regular expression. In Example 8.2.2, we computed

the interval of interest of MAX_SURF_σ wrt h`, ui, which is [u−1, u]. In Example 8.2.3, we showed
that µh`,u,niσ (`) = µ

h`,u,ni
σ (u) = 1, and for every value v in [` + 1, u − 1], we have that µh`,u,niσ (v)

equals n−2. Finally, in Example 8.2.4 we demonstrated that when u−` > 1 and n ≥ 2, βh`,u,niσ = n.
By Theorem 8.2.1, we can impose the AMONG(N , X, hu− 1, ui) implied constraint with N ≥
R − µ

h`,u,ni
σ (u) − max(0, (Ih`,uihg,f,σi − 1) · βh`,u,niσ) = R − 1 − max(0, (u − 2) · n). Turning back

to Example 8.2.5 we observe that, in the obtained implied constraint, the term ‘1’ corresponds to
the number of squared points, and the term ‘max(0, (u− 2) · n)’ to the number of diamond-shaped
points. The derived lower bound on N also appears in the third row of Table 8.2.
⇤ Consider the σ = PEAK = ‘< (< | =)⇤(> | =)⇤ >’ regular expression whose values of aσ and bσ

both equal 1. The maximum value in [`, u] that appears in a σ-pattern is u. In addition, any maximal
time series for hg, f, σi contains a single σ-pattern whose values are all the same and equal u.
Hence, the interval of interest of hg, f, σi wrt h`, ui is [u, u]. Since both aσ and bσ equal 1, the
smallest value in [`, u] may not be in any σ-pattern and µh`,u,niσ (`) = 0. For any value v 2 [`− 1, u],
we have µh`,u,niσ (`) = n − 2. By Theorem 8.2.3, we impose an AMONG(N , hX2, X3, . . . , Xn−1i,
hui) implied constraint with N ≥ R −max(0, (u − 1) · (n − 2)). The derived lower bound on N
also appears in the fifth row of Table 8.2. 4

Table 8.2 illustrates for 6 regular expressions of Table 5.2 the corresponding intervals of interest of
MAX_SURF_σ constraints wrt some integer interval domain [`, u] such that u > 1 ^ u− ` > 1, as well as
the lower bound LB on the parameter N of the derived AMONG constraint.

Theorem 8.2.2 (AMONG implied constraint for MIN_SURF_σ). Consider a MIN_SURF_σ(hX1, . . . , Xni , R)
time-series constraint with every Xi being over an integer interval domain [`, u]. If R < +1, then the
AMONG(N , hX1+bσ , X2+bσ , . . . , Xn−aσi , I

h`,ui
hg,f,σi) constraint is an implied constraint, andN is restricted by

the same inequality as in Theorem 8.2.1.

Proof. The implied constraint for a MIN_SURF_σ(X,R) time-series constraint is the same as for the cor-
responding MAX_SURF_σ(X,R) constraint, but can be imposed only when R does not equal the identity
value of the aggregator, namely +1.

Theorem 8.2.3 (AMONG implied constraint for SUM_SURF_σ). Consider a g_f_σ(hX1, X2, . . . , Xni , R)
time-series constraint with g = sum, f = surf and every Xi being over an integer interval domain [`, u];

8.2. DERIVING AN AMONG IMPLIED CONSTRAINT 105

σ Ih`,uihMAX,SURF,σi LB

BUMP_ON_DECREASING_SEQUENCE [u− 2, u] R−max(0, (u− 3) · 3− 3)
DECREASING [u− 1, u] R−max(0, (u− 2) · 2− 1)
DECREASING_SEQUENCE [u− 1, u] R−max(0, (u− 2) · n− 1)
GORGE [u− 1, u− 1] R−max(0, (u− 2) · (n− 2))
PEAK [u, u] R−max(0, (u− 1) · (n− 2))
ZIGZAG [u− 1, u] R−max(0, (u− 2) · (n− 2)−

⌅
n−1
2

⇧
)

Table 8.2 – Regular expression σ, the corresponding interval of interest of MAX_SURF_σ(X,R) wrt an
integer interval domain [`, u] such that u > 1 and u − ` > 1, and the lower bound LB on the parameter
of the derived AMONG implied constraint. The value LB is obtained from a generic formula, which is
parameterised by characteristics of regular expressions.

then AMONG(N , hX1+bσ , X2+bσ , . . . , Xn−aσi , I) is an implied constraint, where N is restricted by

N ≥ R−max (0, I − 1) ·
(
n− aσ − bσ + (po − 1) · oh`,uiσ

)

−
X

v2[I+1,I]

µh`,u,niσ (v) · po · (v − I) (8.4)

− (po − 1) · oh`,uiσ ,

where I is shorthand for Ih`,uihg,f,σi, I (respectively I) denotes the lower (respectively upper) limit of I, and
po is 1 if every maximal time series has a single σ-pattern, and is the maximum number of σ-patterns in a
time series of length n over [`, u], otherwise.

Proof. To prove Theorem 8.2.3 we consider a time series with p ≥ 0 σ-patterns, where σ-pattern i (with

i 2 [1, p]) has a width of !i and a surface of Ri, and where R =
pP

i=1

Ri. The proof consists of two steps:

1. First, for each σ-pattern i (with i 2 [1, p]), we compute the minimum number Ni of time-series
variables that must be assigned to a value within the interval of interest I, in order to reach a surface
of Ri.

2. Second, we take the sum ofNi, and minimise the obtained value, which, in the end, will be a minimum
value for N .

First Step. We use Inequality (8.1) of Theorem 8.2.1 for a subseries X 0 of X of length !0i = !i + aσ + bσ,
knowing that X 0 has a single σ-pattern and βh`,u,niσ is !i. Then, by Theorem 8.2.1, we obtain the following
estimation of Ni:

Ni ≥ Ri − !i ·max(0, I − 1)−
X

v2[I+1,I]

(v − I) · µ
h`,u,!0ii
σ (v). (8.5)

Second Step. We obtain the minimum value ofN , by taking the sum of the derived minimum values forNi
over all the values of i:

N =

p
X

i=1

Ni ≥

p
X

i=1

(Ri − Ai − Bi)− C = R−

p
X

i=1

Ai −

p
X

i=1

Bi − C, (8.6)

where Ai = !i ·max(0, I − 1), 8i 2 [1, p],

Bi =
P

v2[I+1,I]

µ
h`,u,!0ii
σ (v) · (v − I), 8i 2 [1, p],

C = (p− 1) · oh`,uiσ .

106 CHAPTER 8. SYNTHESISING PARAMETERISED AMONG IMPLIED CONSTRAINTS

σ Ih`,uihSUM,SURF,σi LB

BUMP_ON_DECREASING_SEQUENCE [u− 2, u] R−max(0, (u− 2) · 3 ·
⌅
n−3
3

⇧
)

DECREASING [u− 1, u] R−max(0, (u− 2) · 2− 1)
DECREASING_SEQUENCE [u− 1, u] R−max(0, (u− 2) · n−

⌅
n
2

⇧
)

GORGE [u− 1, u− 1] R−max(0, (u− 2) · (n− 2))
PEAK [u, u] R−max(0, (u− 1) · (n− 2))
ZIGZAG [u− 1, u] R−max(0, (u− 2) · (n− 2)−

⌅
n−1
2

⇧
)

Table 8.3 – Regular expression σ, the corresponding interval of interest of SUM_SURF_σ(X,R) wrt an
integer interval domain [`, u] such that u > 1 and u − ` > 1, and the lower bound LB on the parameter
of the derived AMONG implied constraint. The value LB is obtained from a generic formula, which is
parameterised by characteristics of regular expressions.

The terms Ai and Bi come from Inequality 8.5 and the term C is used because some variables may
belong to two σ-patterns: in order to not count them twice we subtract a correction term. LetA (respectively

B) denote
pP

i=1

Ai (respectively
pP

i=1

Bi). In order to satisfy Condition 8.6, we need to find the upper bounds

on the sum A + B + C by choosing the value of p, and the sum of σ-patterns lengths. We consider two
cases, but any additional information may be used for a more accurate estimation of these parameters:
◦ [EVERY MAXIMAL TIME SERIES HAS A SINGLE σ-PATTERN] Then, the maximum value of A +

B + C is reached for p being 1, and
pP

i=1

!i being n− bσ − aσ. It implies that for any v 2 [Ih`,uihg,f,σi +

1, I
h`,ui

hg,f,σi], the value of
P

i2[1,p]

µ
h`,u,!0ii
σ (v) equals µ

h`,u,!0ii
σ (v).

◦ [THERE IS AT LEAST ONE MAXIMAL TIME SERIES WITH MORE THAN ONE σ-PATTERN]
We give an overestimation: we assign the value of p to its maximum value, which depends on σ,

the value of
pP

i=1

!i is overestimated by n− aσ − bσ + po · o
h`,ui
σ , and the value of

P

i2[1,p]

µ
h`,u,!0ii
σ (v) is

overestimated by µh`,u,niσ (v) · p.
Hence, we obtain a lower bound for N , which is the right-hand side of the inequality stated by Theo-
rem 8.2.3.

Example 8.2.7 (AMONG implied constraint for SUM_SURF_σ). Consider a g_f_σ(hX1, X2, . . . , Xni , R)
time-series constraint, with g being sum, with f being surf and with every Xi (with i 2 [1, n]) ranging
over the same domain [`, u] with u > 0 and u − ` > 0. We illustrate the derivation of AMONG implied
constraints for two regular expressions.
⇤ Consider the σ = DECREASING_SEQUENCE regular expression. In Example 8.2.2, we found

that the interval of interest of hg, f, σi wrt h`, ui is [u − 1, u], and in Example 8.2.3, we showed
that µh`,u,niσ (`) = µ

h`,u,ni
σ (u) = 1, and for every value v in [` + 1, u − 1], we have that µh`,u,niσ (v)

equals n − 2. Every maximal time series for SUM_SURF_σ contains the maximum number of σ-
patterns. Hence the value of po is the maximum number of decreasing sequences in a time se-
ries of length n, which is

⌅
n
2

⇧
. By Theorem 8.2.3, we impose an AMONG(N , hX1, X2, . . . , Xni ,

hu− 1, ui) implied constraint with N ≥ R−
⌅
n
2

⇧
−max(0, (u− 2) · n). The derived lower bound

on N also appears in the third row of Table 8.3.
⇤ Consider the σ = PEAK = ‘< (< | =)⇤(> | =)⇤ >’ regular expression introduced in Example 8.2.6.

The maximum value in [`, u] that occurs in a σ-pattern is u. In addition, any maximal time se-
ries for hg, f, σi contains a single σ-pattern whose values are all the same and equal u. Hence,
the interval of interest of hg, f, σi wrt h`, ui is [u, u], and the value of po equals 1. We showed
in Example 8.2.6 that µh`,u,niσ (`) = 0 and for any v 2 [`, u], we have µh`,u,niσ (v) = n − 2. Fur-
thermore, any two σ-patterns never have common time-series variables, thus the value of oh`,uiσ

8.3. CONCLUSION 107

equals 0. By Theorem 8.2.3, we impose an AMONG(N , hX2, X3, . . . , Xn−1i, hui) implied con-
straint withN ≥ R−max(0, (u− 1) · (n− 2)). The derived lower bound onN also appears in the
fifth row of Table 8.3. 4

Table 8.3 illustrates for 6 regular expressions of Table 5.2 the corresponding intervals of interest of
SUM_SURF_σ constraints wrt some integer interval domain [`, u] such that u > 1 ^ u− ` > 1, as well as
the lower bound LB on the parameter N of the derived AMONG implied constraint.

8.3 Conclusion

Using five regular-expression characteristics, we have defined a single per family generic AMONG im-
plied constraint for all constraints of the MAX_SURF_σ, MIN_SURF_σ, and SUM_SURF_σ families. Two
of the used characteristics, namely the height and the overlap, were also required for deriving sharp bounds
on the result values of time-series constraints, presented in Chapter 7.

Summary of this Chapter:

The main contribution of this chapter is an AMONG implied constraint parameterised by regular-
expression characteristics, one per each of three families of time-series constraints with the surf

feature.

Chapter 9

Synthesising Parameterised Linear Invariants

This chapter is an extended version of an article published in the proceedings of the CP’17 conference
[13]. The final authenticated version of this article is available online at: http://dx.doi.org/10.
1007/978-3-319-66158-2_2.

We present a systematic method for deriving linear invariants for a conjunction of global constraints that
are each represented by a register automaton [29]. Since they do not encode explicitly all potential values
of registers as states, register automata allow a constant-size representation of many counting constraints
imposed on a sequence of integer variables. Moreover their compositional nature permits representing
a conjunction of global constraints as the intersection of the corresponding register automata [98, 97], see
Definition 3.2.3, i.e. the intersection of the languages accepted by all register automata, without representing
explicitly the Cartesian product of all register values. As a consequence, the size of such an intersection
register automaton is often quite compact, even if maintaining domain consistency for such constraints is
in general NP-hard [27]; for instance, the intersection of the 22 register automata for all NB_σ time-series
constraints has only 16 states. The contributions of this chapter are twofold:

◦ First, Sections 9.1, 9.2 and 9.3 provide the basis of a simple, systematic method to precompute
necessary conditions for a conjunction of AUTOMATON constraints on the same sequence. Each
necessary condition is a linear inequality involving the result variables of the different register au-
tomata, representing the fact that the result variables cannot vary independently. These inequalities
are parametrised by the sequence length and are independent of the domains of the sequence vari-
ables.

◦ Second, within the context of the time-series constraints, Chapter 15 of Part III shows that the
method allows to precompute in less than five minutes a database of 7755 invariants that significantly
speed up the search for time series satisfying multiple time-series constraints.

Adding implied constraints to a constraint model has been recognised from the very beginning of Con-
straint Programming as a major source of improvement [61]. Attempts to generate such implied con-
straints in a systematic way were limited (1) by the difficulty to manually prove a large number of conjec-
tures [77, 24], (2) by the limitations of automatic proof systems [71, 52], or (3) to special cases for very few
constraints like ALLDIFFERENT, CARDINALITY, ELEMENT [90, 7, 79]. Within the context of register au-
tomata, linear invariants relating consecutive register values of a same constraint were obtained [67] using
Farkas’ lemma [45] in a resource-intensive procedure.

9.1 Generating Linear Invariants

Consider k register automata M1,M2, . . . ,Mk over the same alphabet Σ. Let ri denote the number
of registers ofMi, and let Ri designate its returned value. In this section we show how to systematically
generate linear invariants of the form

109

http://dx.doi.org/10.1007/978-3-319-66158-2_2
http://dx.doi.org/10.1007/978-3-319-66158-2_2

110 CHAPTER 9. SYNTHESISING PARAMETERISED LINEAR INVARIANTS

e + e0 · n+
kX

i=1

ei ·Ri ≥ 0 with e, e0, e1, . . . , ek 2 Z, (9.1)

which hold after the signature of the same input sequence hX1, X2, . . . , Xni is completely consumed by
the k register automataM1,M2, . . . ,Mk. We call such linear invariant general since it holds regardless of
any conditions on the result variablesR1, R2, . . . , Rk. Stronger, but less general, invariants may be obtained
when the initial values of the registers cannot be assigned to the result values.

Our method for generating invariants is applicable to a restricted class of register automata that we now
introduce.

Property 9.1.1 (incremental-automaton property). A register automatonM with r registers has the incre-

mental-automaton property if the following conditions are all satisfied:

1. For every register Aj ofM, its initial value ↵0
j is a natural number.

2. For every registerAj ofM and for every transition t ofM, the update ofAj upon triggering transition

t is of the form Aj ↵tj,0 +
rP

i=1

↵tj,i · Ai, with ↵tj,0 2 N and ↵tj,1, ↵
t
j,2, . . . , ↵

t
j,r 2 {0, 1}.

3. The register Ar is called the main register and verifies all the following three conditions:

(a) the value returned byM is the last value of its main register Ar,

(b) for every transition t ofM, ↵tr,r = 1,

(c) for a non-empty subset T of transitions ofM,
r−1P

i=1

↵tr,i > 0, 8t 2 T .

4. For all other registers Aj with j < r, on every transition t of M, we have
rP

i=1,i 6=j

↵tj,i = 0 and if

↵tr,j > 0, then ↵tj,j is 0.

The intuition behind the incremental-automaton property is that there is one register that we name the
main register, whose last value is the final value, returned by the register automaton, (see 3a). At some
transitions, the update of the main register is a linear combination of the other registers, while on the other
transitions its value either does not change or incremented by a non-negative constant, (see 3b and 3c). All
other registers may only be incremented by a non-negative constant or assigned to some non-negative inte-
ger value, and they may contribute to the final value, (see 4). These registers are called potential registers.
Both register automata in Parts (A) and (B) of Figure 9.1 have the incremental-automaton property, and their
single registers are the main registers. Volumes I and II of the global constraint catalogue contain more than
50 such register automata. In particular, the register automata for all the constraints of the NB_σ and the
SUM_WIDTH_σ families have the incremental-automaton property. In the rest of this paper we assume that
all register automataM1,M2, . . . ,Mk have the incremental-automaton property.

Our approach for systematically generating linear invariants of type e+ e0 ·n+
kP

i=1

ei ·Ri ≥ 0 considers

each combination of signs of the coefficients ei (with i 2 [0, k]). It consists of three main steps:

1. Construct a non-negative function v = e + e0 · n +
kP

i=1

ei · Ri, which represents the left-hand side of

the sought linear invariant (see Section 9.1.1).

2. Select the coefficients e0, e1, . . . , ek, called the relative coefficients of the linear invariant, so that there

exists a constant C such that e0 · n+
kP

i=1

ei ·Ri ≥ C (see Section 9.1.2).

3. Compute C and set the coefficient e, called the constant term of the linear invariant, to −C (see Sec-
tion 9.1.3).

9.1. GENERATING LINEAR INVARIANTS 111

s

{
P 0

treturn PXi = Xi+1

Xi > Xi+1

Xi < Xi+1

Xi = Xi+1

Xi < Xi+1

Xi > Xi+1

{P P + 1}

(A)

s

{
V 0

rreturn VXi = Xi+1

Xi < Xi+1

Xi > Xi+1

Xi = Xi+1

Xi > Xi+1

Xi < Xi+1

{V V + 1}
(B)

s

⇢
P 0
V 0

}

t r

return P, V

Xi = Xi+1

X
i
>
X
i+

1X
i
<
X
i+

1

Xi = Xi+1 Xi > Xi+1Xi < Xi+1 Xi = Xi+1

Xi < Xi+1

{V V + 1}

Xi > Xi+1

{P P + 1}

(C)

Figure 9.1 – (A) Register automaton for NB_PEAK. (B) Register automaton for NB_VALLEY. (C) Inter-
section of (A) and (B).

The three previous steps are performed as follows:

1. First, we assume a sign for each coefficient ei (with i 2 [0, k]), which tells whether we have to
consider or not the contribution of the potential registers; note that each combination of signs of the
coefficients ei (with i 2 [0, k]) will lead to a different linear invariant. Then, from the intersection
I ofM1,M2, . . . ,Mk, we construct a digraph called the invariant digraph, where each transition
t of I is replaced by an arc whose weight represents the lower bound of the variation of the term

e0 · n+
kP

i=1

ei ·Ri while triggering t.

2. Second, we find the coefficients ei (with i 2 [0, k]) so that the invariant digraph does not contain any

negative cycles. When the invariant digraph has no negative cycles, the value of e0 · n+
kP

i=1

ei · Ri is

bounded from below for any integer sequence.

3. Third, to obtain C we compute the shortest path in the invariant digraph from the node of the invariant
digraph corresponding to the initial state of I to all nodes corresponding to accepting states of I.

9.1.1 Constructing the Invariant Digraph for a Conjunction of

AUTOMATON Constraints wrt a Linear Function

First, Definition 9.1.1 introduces the notion of invariant digraph Gv
I of the register automaton I =

M1 \ M2 \ · · · \ Mk wrt a linear function v involving the values returned by these register automata.
Second, Definition 9.1.2 introduces the notion of weight of an accepting sequence X wrt I in Gv

I , which
makes the link between a path in Gv

I and the vector of values returned by I after consuming the signature
of X . Finally, Theorem 9.1.1 shows that the weight of X in Gv

I is a lower bound on the linear function v.

Definition 9.1.1 (invariant digraph). Consider an accepting sequence X = hX1, X2, . . . , Xni wrt the reg-

ister automaton I = M1 \ M2 \ · · · \ Mk, and a linear function v = e + e0 · n +
kP

i=1

ei · Ri, where

(R1, R2, . . . , Rk) is the vector of values returned by I after consuming the signature of X . The invariant

digraph of I wrt v, denoted by Gv
I is a weighted digraph defined in the following way:

◦ The set of nodes of Gv
I is the set of states of I.

◦ The set of arcs of Gv
I is the set of transitions of I, where for every transition t, the corresponding

symbol of the alphabet is replaced by an integer weight, which is e0 +
kP

i=1

ei · β
t
i , where βti is defined

112 CHAPTER 9. SYNTHESISING PARAMETERISED LINEAR INVARIANTS

s

t r

e0

e0e0

e0e0
e0 + e2

e0 + e1

Figure 9.2 – Invariant digraph for NB_PEAK and NB_VALLEY wrt e + e0 · n+ e1 · P + e2 · V

as follows:

βti =

8

><

>:

↵ti,ri,0 if ei ≥ 0, (9.2)
riX

j=1

↵ti,j,0 if ei < 0, (9.3)

where ri denotes the number of registers ofMi, and ↵ti,p,0 (with p in [1, ri]) is the constant in the
update of the register of I corresponding to the register p ofMi.

Definition 9.1.2 (walk and weight of an accepting sequence). Consider an accepting sequence X of length

n wrt the register automaton I =M1 \M2 \ · · · \Mk, and a linear function v = e + e0 · n+
kP

i=1

ei ·Ri,

where (R1, R2, . . . , Rk) is the vector of values returned by I after consuming the signature of X .

◦ The walk of X in Gv
I is a path in Gv

I whose sequence of arcs is the sequence of the corresponding
transitions of I triggered upon consuming the signature of X .

◦ The weight of X in Gv
I is the weight of its path in Gv

I plus a constant value, which is a lower bound
on v corresponding to the initial values of the registers and is called the initialisation weight in Gv

I .
It equals e+ e0 · (p− 1)+

Pk
i=1 ei ·β

0
i , where p is the arity of the signature, and where β0

i is defined
as follows:

β0
i =

8

><

>:

↵0
i,ri

if ei ≥ 0, (9.4)
riX

j=1

↵0
i,j if ei < 0, (9.5)

where ri denotes the number of registers ofMi, and ↵0
i,p (with p in [1, ri]) is the initial value of the

register of I corresponding to the register p ofMi.

Example 9.1.1 (invariant digraph, weight of an accepting sequence). Consider the NB_PEAK(X,P) and
NB_VALLEY(X, V) time-series constraints with X being a time series of length n. Figure 9.1 gives the
register automata for NB_PEAK, NB_VALLEY, and their intersection I. We aim to find inequalities of the
form e+ e0 · n+ e1 ·P + e2 · V ≥ 0 that hold for every integer sequence X . After consuming the signature
of X = hX1, X2, . . . , Xni, I returns a pair of values (P, V), which are the number of peaks (respectively
valleys) in X . The invariant digraph of I wrt v = e + e0 · n+ e1 · P + e2 · V is given in Figure 9.2. Since
neither register automaton has any potential register, the weights of the arcs of Gv

I do not depend on the
signs of e1 and e2. Hence for every integer sequenceX , its weight inGv

I equals e+e0 ·n+e1 ·P+e2 ·V . 4

9.1. GENERATING LINEAR INVARIANTS 113

Theorem 9.1.1 (lower bound on the weight of an accepting sequence). Consider an accepting sequenceX =
hX1, X2, . . . , Xni wrt the register automaton I = M1 \ M2 \ · · · \ Mk, and a linear function v =

e + e0 · n +
kP

i=1

ei · Ri, where (R1, R2, . . . , Rk) is the vector of values return by I. Then, the weight of X

in Gv
I is less than or equal to e + e0 · n+

kP

i=1

ei ·Ri.

Proof. Since, when doing the intersection of register automata we do not merge registers, the registers of I
that come from different register automataMi andMj do not interact, i.e. their updates are independent,
hence the returned values ofMi andMj are independent. By definition of the invariant digraph, the weight

of any of its arc is e0 +
kP

i=1

ei · β
t
i , where βti depends on the sign of ei, and where t is the corresponding

transition in I. Then, the weight of X in Gv
I is the constant e+e0 · (p−1)+

kP

i=1

ei ·β
0
i (see Definition 9.1.2)

plus the weight of the walk ofX , which is in total e+e0·(p−1)+
kP

i=1

ei·β
0
i +e0·(n−p+1)+

n−p+1P

j=1

kP

i=1

ei·β
tj
i =

e + e0 · n+
kP

i=1

ei ·

β0
i +

n−p+1P

j=1

β
tj
i

!

, where p is the arity of the considered signature, and t1, t2, . . . tn−p+1

is the sequence of transitions of I triggered upon consuming the signature of X . We now show that the

value ei ·

β0
i +

n−p+1P

j=1

β
tj
i

!

is not greater than ei · Ri. This will imply that the weight of the walk of X in

Gv
I is less than or equal to v = e + e0 · n+

kP

i=1

ei ·Ri.

Consider the vi = ei · Ri linear function. We show that the weight of X in Gvi
I , which equals ei ·

β0
i +

n−p+1P

j=1

β
tj
i

!

, is less than or equal to ei ·Ri. Depending on the sign of ei we consider two cases.

Case 1: ei ≥ 0. In this case, the weight of every arc of Gvi
I is ei multiplied by ↵tri,0, where t is the

corresponding transition in I, and ri is the main register ofMi (see Case 9.2 of Definition 9.1.1). If, on
transition t, some potential registers ofMi are incremented by a positive constant, the real contribution of
the register updates on this transition to Ri is at least ↵tri,0 since ei ≥ 0. The same reasoning applies to the
contribution of the initial values of the potential registers to the final value Ri. Since this contribution is

non-negative, it is ignored, and β0
i = ↵0

j (see Case 9.2 of Definition 9.1.2). Hence ei · (β0
i +

n−p+1P

j=1

β
tj
i) =

ei · (↵
0
ri
+

n−p+1P

j=1

↵tri,0)  ei ·Ri.

Case 2: ei < 0. In this case, the weight of every arc of Gvi
I is ei multiplied by the sum of the non-

negative constants, which come from the updates of every register ofMi (see Case 9.5 of Definition 9.1.1).
The contribution of the potential registers is always taken into account, and since ei < 0, it is always
negative. The same reasoning applies to the contribution of the initial values of the potential registers to the
returned value Ri. Since the initial values of the potential registers are non-negative, and ei < 0, in order to
obtain a lower bound on v we assume that the initial values of the potential registers always contribute to

Ri (see Case 9.3 of Definition 9.1.2). Hence ei · (β0
i +

n−p+1P

j=1

β
tj
i)  ei ·Ri.

Note that if all the considered register automataM1,M2, . . . ,Mk do not have potential registers, then
for every accepting sequence X = hX1, X2, . . . , Xni wrt I = M1 \M2 \ · · · \ Mk and for any linear

function v = e+e0·n+
kP

i=1

ei·Ri, the weight ofX inGv
I is equal to v. If there is at least one potential register

114 CHAPTER 9. SYNTHESISING PARAMETERISED LINEAR INVARIANTS

for at least one register automatonMi, then there may exist an accepting sequence X = hX1, X2, . . . , Xni
wrt I =M1 \M2 \ · · · \Mk whose weight in Gv

I is strictly less than v.

9.1.2 Finding the Relative Coefficients of the Linear Invariant

We now focus on finding the relative coefficients e0, e1, . . . , ek of the linear invariant v = e + e0 ·

n +
kP

i=1

ei · Ri ≥ 0 such that, after consuming the signature of any accepting sequence by the register

automaton I =M1 \M2 \ · · · \Mk, the value of v is non-negative.
For any accepting sequence X wrt I, by Theorem 9.1.1, we have that the weight w of X in Gv

I is less
than or equal to v. Recall that w consists of a constant part, and of a part that depends on X , which involves
the coefficients e0, e1, . . . , ek; thus, these coefficients must be chosen in a way that there exists a constant C
such that w ≥ C, and C does not depend on X . This is only possible when Gv

I does not contain any

negative cycles. Let C denote the set of all simple circuits of Gv
I , and let we denote the weight of an arc e of

Gv
I . In order to prevent negative cycles in Gv

I , we solve the following minimisation problem, parameterised
by (s0, s1, . . . sk), the signs of e0, e1, . . . , ek:

minimise
X

c2C

Wc +
kX

i=1

|ei| (9.6)

subject to Wc =
X

e2c

we 8c 2 C (9.7)

Wc ≥ 0 8c 2 C (9.8)

si = ‘−’) ei  0, si = ‘+’) ei ≥ 0 8i 2 [0, k] (9.9)

ei 6= 0 8i 2 [1, k] (9.10)

In order to obtain the coefficients e0, e1, . . . , ek so that Gv
I does not contain any negative cycles, it is

enough to find a solution to the satisfaction problem (9.7)-(9.10). Minimisation is required to obtaining lin-
ear invariants that eliminate as many infeasible values of (R1, R2, . . . , Rk) as possible. Within the objective

function (9.6), the term
P

c2C

Wc is for minimising the weight of every simple circuit, while the term
kP

i=1

|ei| is

for obtaining the coefficients with the smallest absolute value. By changing the sign vector (s0, s1, . . . sk)
we obtain different linear invariants.

Example 9.1.2 (finding the relative coefficients). Consider NB_PEAK(X,P) and NB_VALLEY(X, V) with
X being a time series of length n. The invariant digraph of the intersection of the register automata for
the NB_PEAK and NB_VALLEY constraints wrt v = e+ e0 · n+ e1 ·P + e2 · V was given in Example 9.1.1.
This digraph has four simple circuits, namely s − s, t − t, r − r, and r − t − r, which are labelled by 1,
2, 3 and 4, respectively. Then, the minimisation problem for finding the relative coefficients of the linear
invariant v ≥ 0, parameterised by (s0, s1, s2), the signs of e0, e1 and e2, is the following:

minimise
4X

j=1

Wj +
2X

i=0

|ei|

subject to Wj = e0, 8j 2 [1, 3]

W4 = e0 + e1 + e2

Wj ≥ 0 8j 2 [1, 4] (9.11)

si = ‘−’) ei  0, si = ‘+’) ei ≥ 0 8i 2 [0, 2]

ei 6= 0 8i 2 [1, 2]

9.1. GENERATING LINEAR INVARIANTS 115

s

t r

0

00

00

1

−1

(A)
0 1 2 3 5 6

0

1

2

4

5

6

4

3

P

V

Length: 11

P

V
+
1

V

P
+
1

V
+
P

9

V
+
P
≥
0

(B)

11
0

2

< > < > < > < > = =

¨ ≠ Æ Ø

4 peaks
z }| {

< > < > < > < > = =

¨ ≠ Æ
| {z }

3 valleys

example of sequence correspon-

ding to the feasible value (4,3):

0,2,0,2,0,2,0,2,0,0,0

Figure 9.3 – (A) The invariant digraph of the register automata for the NB_PEAK and the NB_VALLEY

time-series constraints. (B) The set of feasible values of the result variables P and V of the NB_PEAK and
the NB_VALLEY time-series constraints, respectively, for sequences of length 11.

Note that the value of e0 must be non-negative otherwise (9.11) cannot be satisfied for j 2 {1, 2, 3}.
Hence we consider only the combinations of signs of the form (‘+’, s1, s2) with s1 ans s2 being either
‘−’ or ‘+’. The following table gives the optimal solution of the minimisation problem for the considered
combinations of signs:

(s0, s1, s2) (+,−,−) (+,−,+) (+,+,−) (+,+,+)
(e0, e1, e2) (1,−1,−1) (0,−1, 1) (0, 1,−1) (0, 1, 1)

4

9.1.3 Finding the Constant Term of the Linear Invariant

Finally, we focus on finding the constant term e of the linear invariant v = e + e0 · n +
kP

i=1

ei · Ri ≥ 0,

when the coefficients e0, e1, . . . , ek are known, and when the digraph of the register automaton I =M1 \
M2 \ · · · \Mk wrt v does not contain any negative cycles. By Theorem 9.1.1, the weight of any accepting
sequence X wrt I in Gv

I is less than or equal to v, then if the weight of X is non-negative, it implies that v
is also non-negative. Since the invariant digraph Gv

I does not contain any negative cycles, then the weight
of X cannot be smaller than some constant C. Hence it suffices to find this constant and set the constant

term e to −C. The value of C is computed as the constant e0 · (p − 1) −
kP

i=1

β0
i (see Definition 9.1.2) plus

the shortest path length from the node of Gv
I corresponding to the initial state of I to all the nodes of Gv

I

corresponding to the accepting states of I.

Example 9.1.3 (obtaining invariants). Consider NB_PEAK(X,P) and NB_VALLEY(X, V) with X being a
time series of length n such that n ≥ 2. In Example 9.1.2, we found four vectors for the relative coefficients
e0, e1, e2 of the linear invariant e+ e0 ·n+ e1 ·P + e2 ·V ≥ 0. For every found vector for the relative coeffi-
cients (e0, e1, e2), we obtain a weighted digraph, whose weights now are integer numbers. For example, for
the vector (e0, e1, e2) = (0,−1, 1), the obtained digraph is given in Part (A) of Figure 9.3. We compute the
length of a shortest path from the node s, which corresponds to the initial state of the register automaton in
Part (C) of Figure 9.1 to every node corresponding to the accepting state of the register automaton in Part
(C) of Figure 9.1. The length of the shortest path from s to s is 0, from s to t is 0, and from s to r is−1. The
minimum of these values is −1, hence the constant term e equals −(0 + (−1)) = 1. The obtained linear
invariant is P  V + 1.

In a similar way, we find the constant terms for the other found vectors of the relative coefficients
(e0, e1, e2), and obtain the following linear invariants: V  P + 1, V + P  n− 2, V + P ≥ 0.

Part (B) of Figure 9.3 gives the polytope of feasible points (P, V) when n is 11. Observe that three of
the four found linear invariants are facets of the convex hull of this polytope, which implies that these linear
invariants are sharp. 4

Example 9.1.4 (generating invariants for non-time-series constraints). We illustrate how the method pre-
sented in this section can also be used for generating linear invariants for non time-series constraints.

116 CHAPTER 9. SYNTHESISING PARAMETERISED LINEAR INVARIANTS

Consider a sequence of integer variables X = hX1, X2, . . . , Xni with every Xi ranging over [0, 3], four
AMONG [25] constraints that restrict the variables R0, R1, R2, R3 to be the number of occurrences of
values 0, 1, 2, 3, respectively, in X , as well as the four corresponding STRETCH [108] constraints restrict-
ing the stretch length in X to be respectively in [1, 4], [2, 5], [3, 5], and [1, 2]. In addition assume that
value 2 (respectively 1) cannot immediately follow a 3 (respectively 2). The intersection of the corre-
sponding register automata has 17 states and allows to generate 16 linear invariants, one of them being
2 + n + R0 + R1 − R2 − 2 · R3 ≥ 0. Since the sum of all Ri is n, this linear invariant can be simplified
to 2 + 2 · n − 2 · R2 − 3 · R3 ≥ 0, which is equivalent to 2 · (R2 + R3 − n)  2 − R3. This inequality
means that if X consists only of the values 2 and 3, i.e. R2 + R3 − n = 0, then R3  2, which represents
the conjunction of the conditions that the stretch length of R3 2 [1, 2] and (Xi = 3)) (Xi+1 6= 2). 4

9.2 Improving the Generated Linear Invariants

When at least one of the register automata M1,M2, . . . ,Mk has at least one potential register, then
there may exist an accepting sequence X = hX1, X2, . . . , Xni wrt I =M1 \M2 \ · · · \Mk such that

the weight of X in the invariant digraph Gv
I is strictly less than v = e + e0 · n +

kP

i=1

ei · Ri. This may lead

to weaker invariants and Example 9.2.1 illustrates such a situation.

Example 9.2.1 (weak generated invariants). Consider the NB_DECREASING_TERRACE(X,R1) and the
SUM_WIDTH DECREASING_TERRACE(X,R2) constraints imposed on the same time series X of length n,
and a linear function v = e + e0 · n+ e1 · R1 + e2 · R2. The intersection of the register automata for these
two constraints is given in Figure 9.4. By inspection we can derive the invariant R2 ≥ 2 ·R1, which cannot
be generated with our method, described in Section 9.1, because of the following reason: when e0 = 0,
e1 = −2, and e2 = 1, the weight of the arc from b to c is e0, and the weight of the arcs from c to b is
e0 + e1 + e2, and thus the weight of the cycle b− c− b is 2 · e0 + e1 + e2 = −1.

Just before triggering the transition from c to b the value of the register D2 is at least 1 since the
register automaton had triggered the transition from b to c before, which incremented D2. Let us modify
the intersection I so that the register D2 is not updated on the transition from b to c, and the register R2

updated as R2 + D2 + 2 on the transition from c to b. The modified register automaton I⇤ recognises the
same set of signatures as I, and after consuming any accepting sequence wrt I, the register automaton I⇤

returns the same tuple of final values as I. In addition, the weight of the cycle b − c − b in I⇤ is equal to
2 · e0 + e1 + 2 · e2, which is 0 when e0 = 0, e1 = −2, and e2 = 1. Hence, the invariant R2 ≥ 2 · R1 can be
generated after some modifications of the intersection I. 4

To handle the issue presented in Example 9.2.1 we introduce in Section 9.2.1 a preprocessing technique

of the intersection of register automata. It relies on the notion of delay of a potential register A at a state
q of the intersection I, which is a lower bound on the value of A when the register automaton arrives to
state q. Intuitively, we can change the updates of some registers in a way that for any accepting sequence
wrt I, the returned tuple of values does not change, but the arcs of the invariant digraph obtained from the
modified intersection will have larger weights.

9.2.1 Preprocessing Technique of the Intersection of Register Automata

In this section, we describe a preprocessing technique that we will allow us to obtain better linear
invariants in the situation described in Example 9.2.1.

Consider register automataM1,M2, . . . ,Mk whose final values are R1, R2, . . . , Rk, respectively. In
this section, we show how to modify the register automaton I =M1\M2\ · · · \Mk so that the obtained
register automaton I⇤ satisfies the three following conditions:

1. The set of accepting sequences wrt I coincides with the set of accepting sequences wrt I⇤.

9.2. IMPROVING THE GENERATED LINEAR INVARIANTS 117

a
⇢

R1 0
D2 0, R2 0

}

cb

return R1, R2



>
=

D2 D2 + 1

>

<

D2 D2 + 1
=

>

R1 R1 + 1
D2 0

R2 R2 +D2 + 1

<

D2 0

Figure 9.4 – Intersection of register automata for NB_DECREASING_TERRACE and
SUM_WIDTH_DECREASING_TERRACE, for which our method does not generate sharp linear invari-
ants.

2. For every accepting sequenceX wrt I, the register automata I and I⇤ return the same tuple of values.

3. For any accepting sequence X , the weight of X in Gv
I⇤ is greater than or equal to the weight of X in

Gv
I , where v is e + e0 · n+

kP

i=1

ei ·Ri.

By Condition 3, since for every X , the weight of X in Gv
I⇤ is greater than or equal to the weight of X

in Gv
I , the weight of every simple circuit in X may also increase, which will lead to stronger invariants.

To obtain such register automaton I⇤, we first introduce in Definition 9.2.1 the notion of list of delays of a
state q of the intersection I, denoted by dq. An element i of dq is a one dimensional matrix whose values
correspond to the potential registers ofMi. The value j of this matrix represents a lower bound on the value
of the register of I corresponding the potential register j ofMi when the register automaton I arrives to the
state q. Further, based on this notion, in Definition 9.2.2, we introduce the notion of delayed intersection.
Finally, in Theorem 9.2.1 we show that the delayed intersection satisfies Conditions 1, 2, and 3.

Definition 9.2.1 (list of delays of a state). Consider a register automaton I = M1 \ M2 \ · · · \ Mk.
The list of delays dq of a state q is a list of one dimensional matrices, where the length of the matrix at the
position i in dq is the number of potential registers in the register automatonMi. Let Tq denote the set of
transitions entering q, and T 0q denote a subset of transitions of Tq starting from a state different from q, then
the value dq[i][j] of this matrix is defined as

dq[i][j] =

8

>>><

>>>:

0 9t 2 Tq, ↵
t
i,j,j = 0,

min(↵0
i,j, min

t2T 0q
↵ti,j,0) q is the initial state of I, and 8t 2 T 0q, ↵ti,j,j > 0,

min
t2T 0q

↵ti,j,0 otherwise,

where ↵ti,j,j (resp. ↵ti,j,0) denotes the coefficient of the register Aj (resp. the free term) in the update of
Aj in the automatonMi.

Example 9.2.2 (list of delays of a state). Consider two register automata M1 and M2 such that their
intersection I is given in Figure 9.4. The register automaton M1 has one register R1, and M2 has two
registers D2 and R2. Let us compute the list of delays of every state of I. Since onlyM1 does not have any
potential registers then for any state q of I, the matrix dq[1] is empty. The following table gives the list of
delays of every potential register of I.

state a b c

dq [[], [0]] [[], [0]] [[], [1]]

118 CHAPTER 9. SYNTHESISING PARAMETERISED LINEAR INVARIANTS

a
⇢

R1 0
D2 0, R2 0

}

cb

return R1, R2



>
=

D2 D2 + 1

>

<

=

>

R1 R1 + 1
D2 0

R2 R2 +D2 + 2

<

D2 0

Figure 9.5 – Delayed intersection obtained from the intersection in Figure 9.4

It implies that, when the register automaton I is either in state a or state b, we only know that its potential
register D2 is non-negative. However, when I is in the state c, the value of its potential register is at
least 1. 4

Definition 9.2.2 (delayed intersection). Consider the register automaton I =M1 \M2 \ · · · \Mk. The
delayed intersection I⇤ ofM1,M2, . . . ,Mk is obtained from I using the following rules:
◦ The set of states and accepting states of I⇤ coincide with those of I.
◦ The set of transitions of I⇤ coincide with the one of I.
◦ The number of registers of I⇤ is the same as for I⇤, and is denoted by r.
◦ The initial values of main registers of I⇤ are the same as for I⇤. For every potential register A⇤i,j of
I⇤, its initial value equals ↵0

i,j − dq[i][j], where q is the initial state of I⇤ and ↵0
i,j is the initial value

of Ai,j of I.
◦ For every transition t from a state q1 to a state q2 and for any registerMi,j of I, the update of Ai,j

on t is equal to ↵ti,j,0 +
rP

k=1

↵ti,j,k · Ai,k, while the update of the corresponding registerM⇤
i,j on the

corresponding transition of I⇤ is equal to γti,j,0 +
rP

k=1

↵ti,j,k · A
⇤
i,k where γti,j,0 is defined as follows:

⇤ If Ai,j is a main register of I, then γti,j,0 = ↵ti,j,0 +
ri−1P

k=1

↵ti,j,k · dq1 [i][k], where ri is the number of

registers of the register automatonMi.
⇤ If Ai,j is a potential register of I, then γti,j,0 = ↵ti,j,0 + dq1 [i][j]− dq2 [i][j].

◦ The acceptance function of I⇤ is the same as for I.

Example 9.2.3 (delayed intersection). Consider two register automata M1 and M2 from Example 9.2.2
and their intersection I, which is given in Figure 9.4. The delayed intersection I⇤ constructed according to
Definition 9.2.2 was given in Figure 9.5. The main difference between I⇤ and I is that the register D2 is no
longer updated on the transition from b to c, but its contribution is integrated directly to R2 on the transition
from state c to state b. 4

Theorem 9.2.1 (properties of delayed intersection). Consider the register automaton I =M1\M2\· · ·\
Mk. The three following conditions are satisfied:

1. The set of accepting sequence wrt I coincides with the set of accepting sequence wrt I⇤.

2. For every accepting sequenceX wrt I, the register automata I and I⇤ return the same tuple of values.

3. For any accepting sequence X , the weight of X in Gv
I⇤ is greater than or equal to the weight of X in

Gv
I , where v is e + e0 · n+

kP

i=1

ei ·Ri.

9.2. IMPROVING THE GENERATED LINEAR INVARIANTS 119

Proof. We prove each of the three statements separately.
[Proof of (1)]. Since I have the sames sets of states, transitions and accepting states, and everyMi has the
incremental-automaton property, then the sets of accepting sequences of I and I⇤ are the same.
[Proof of (2)].

Since the acceptance function of both I and I⇤ returns a tuple of main registers, we will show that after
consuming the signature S of any accepting sequence, the main registers of I and I⇤ contain the same
values. Let us prove this statement by induction on the length of S.

Base case.

Let us consider a sequence S = hS1i consumed by I⇤. The register automaton I⇤ triggered one transi-
tion t from its initial state q to some other state q0. Then, let us consider a main register A⇤i,ri . By definition,

its value equals ↵ti,j,0 + A⇤i,ri,ri +
ri−1P

k=1

↵ti,j,k · (A
⇤
i,k + dq[i][k]). Since any potential register A⇤i,k has not been

updated, its contains the initial value, which equals ↵0
i,j − dq[i][k]. Furthermore, the value of A⇤i,ri after one

transition is equal to ↵ti,j,0 + ↵0
i,ri

+
ri−1P

k=1

↵ti,j,k · (↵
0
i,j − dq[i][k] + dq[i][k]) = ↵ti,j,0 + ↵0

i,ri
+

ri−1P

k=1

↵ti,j,k · ↵
0
i,j ,

which coincides with the value of the corresponding register Ai,j of I.
Induction step.

Assume that after having consumed a sequence S = hS1, S2, . . . , Sm−1i, the main registers of I⇤ contain
the same values as the main register of I after having consumed the same sequence. Let us show that after
consuming one another symbol Sm, which triggers a transition t, the main registers of I⇤ and I will have

the same value. The update ofA⇤i,ri on t is equal to ↵ti,j,0+A
⇤
i,ri

+
ri−1P

k=1

↵ti,j,k ·(A
⇤
i,k+dq[i][k]). By assumption

of induction the value of A⇤i,ri in I and Ai,ri in I⇤ are the same after consuming S. Hence, we only need to
show after having consumed S, that the value of the potential register Ai,k of I equals A⇤i,k + dq[i][k]. This
can be also shown by induction, starting from a state that is a destination of a triggered transition t0 such
that ↵t

0

i,k,k = 0.
[Proof of (3)]. We now prove the last statement. Let us consider the invariant digraphs Gv

I⇤ and Gv
I , where

v = e + e0 · n +
kP

i=1

ei · Ri. We now show that for every accepting sequence X = hX1, X2, . . . , Xni wrt

I, its weight in Gv
I⇤ is greater than or equal to its weight in Gv

I . The weight of X in Gv
I is the constant

e + e0 · (p − 1) +
kP

i=1

ei · β
0
i (see Definition 9.1.2) plus the weight of the walk of X , which is in total

e+e0 · (p−1)+
kP

i=1

ei ·β
0
i +e0 · (n−p+1)+

n−p+1P

j=1

kP

i=1

ei ·β
tj
i = e+e0 ·n+

kP

i=1

ei ·

β0
i +

n−p+1P

j=1

β
tj
i

!

, where

p is the arity of the considered signature, and t1, t2, . . . tn−p+1 is the sequence of transitions of I triggered

upon consuming the signature of X . Similarly, the weight of X in Gv
I⇤ is equal to e + e0 · n +

kP

i=1

ei ·

δ0i +
n−p+1P

j=1

δ
tj
i

!

, where δ0i is the initialisation weight in I⇤, and every δtji is the weight of an arc tj in Gv
I⇤ .

We now show that the value ei ·

β0
i +

n−p+1P

j=1

β
tj
i

!

is not greater than ei ·

δ0i +
n−p+1P

j=1

δ
tj
i

!

. This will

imply that the weight of the walk of X in Gv
I is less than or equal to the weight of the walk of X in Gv

I⇤ .
By Definition 9.1.1, the weight of every arc of Gv

I (respectively Gv
I⇤), corresponding to a transition t of

I, (respectively I⇤) is equal to
kP

i=1

ei · β
t
i (respectively

kP

i=1

ei · δ
t
i).

As in Theorem 9.1.1, we consider the function vi = ei · Ri. Depending on the sign of ei we consider
two cases.

Case (1): ei ≥ 0. Then, the weight of X in Gvi
I (respectively Gvi

I⇤) is equal to ei · ↵ (respectively

120 CHAPTER 9. SYNTHESISING PARAMETERISED LINEAR INVARIANTS

a

cb

e0

e0 e0

e0

e0

e0

e0 + e1 + 2 · e2

e0

Figure 9.6 – Invariant digraph obtained from the delayed intersection in Figure 9.5

ei · γ), where ↵ denotes β0
i +

n−p+1P

j=1

β
tj
i =

riP

k=1

↵0
i,k +

n−p+1P

`=1

↵t`i,ri,0 (respectively γ denotes δ0i +
n−p+1P

j=1

δ
tj
i =

riP

k=1

γ0i,k +
n−p+1P

`=1

γt`i,ri,0). Since every γt`i,ri,0 = ↵t`i,ri,0 +
ri−1P

k=1

dq[i][k], it implies that γt`i,ri,0 ≥ ↵t`i,ri,0. Then,

↵  γ, and when ei > 0, we have ei · γ ≥ ei · ↵.
Case (2): ei < 0. Then, the weight of X in Gvi

I (respectively Gvi
I⇤) is equal to ei · ↵ (respectively

ei · γ), where ↵ denotes β0
i +

n−p+1P

j=1

β
tj
i =

riP

k=1

↵0
i,k+

n−p+1P

`=1

riP

k=1

↵t`i,k,0 (respectively γ denotes δ0i +
n−p+1P

j=1

δ
tj
i =

riP

k=1

γ0i,k +
n−p+1P

`=1

riP

k=1

γt`i,k,0). Further, by construction of I⇤, every γt`i,k,0 (with i in [1, ri]) is equal to ↵t`i,k,0 +

dq1 [i][k] − dq2 [i][k], where q1 and q2 are the source and the destination of the transition t`, respectively.
In addition, γt`i,ri,0 = ↵t`i,ri,0. By replacing every γt`i,k,0 with its expression, and simplifying the sum, we

obtain
riP

k=1

↵0
i,k +

n−p+1P

`=1

riP

k=1

(↵t`i,k,0 − dq0 [i][k]), where q0 is the last state visited by I upon consuming X .

Since every dq0 [i][k] is non-negative ↵t`i,k,0 − dq0 [i][k]  ↵t`i,k,0. This implies that γ  ↵, and when ei < 0,
ei · γ ≥ ei · ↵.

Note that in the register automaton I⇤, all the constants γti,j,0 are non-negative by definition of the delay
(see Definition 9.2.1). It means that the reasoning used in the proof of Theorem 9.1.1 requiring the non-
negativity of these constants remains valid for the invariant digraph Gv

I⇤ .

Example 9.2.4 (generating stronger invariants). Consider two register automataM1 andM2 from Exam-
ple 9.2.2. Their intersection I is given in Figure 9.4, and their delayed intersection I⇤ is given in Figure 9.5.
The invariant digraph Gv

I⇤ is given in Figure 9.6 when e0 > 0, e1 > 0, and e2 < 0. By stating the minimi-
sation problem from Section 9.1.2, we obtain the following coefficients: e0 = 0, e1 = −2, and e2 = 1. The
constant e is found to be 0, and we obtain the invariant 2 · R1 ≥ R2, which could not be found with the
invariant digraph Gv

I . 4

9.3 Generating Additional Invariants

In Section 9.1, we presented a systematic method for generating linear invariants linking the values
returned by a register automaton I = M1 \M2 \ · · · \ Mk after consuming the signature of the same
accepting sequence X = hX1, X2, . . . , Xni wrt I. In this section, we present several cases where the same
method can be used for generating additional non-linear invariants.

Quite often a register automatonMi (with i in [1, k]) returns its initial value only when the signature of
X does not contain any occurrence of some regular expression σi. This may lead to a convex hull of points
of coordinates (R1, R2, . . . , Rk) returned by I containing infeasible points, e.g. see Part (A) of Figure 9.7.
Some of these infeasible points can be eliminated by stronger invariants subject to the condition, called the

9.3. GENERATING ADDITIONAL INVARIANTS 121

0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

9

10

nb_decreasing_terracesu
m

_w
id

th
_i

nc
re

as
in

g_
te

rr
ac

e Length: 12

feasible
infeasible

2 ·R
1 +

R
2 

12−
2

(A)
0 1 2 3 4 5

0

1

2

3

4

5

6

7

8

9

10

nb_decreasing_terracesu
m

_w
id

th
_i

nc
re

as
in

g_
te

rr
ac

e Length: 12

feasible2 ·R
1 +

R
2 

12−
3

R2 ≥ 2

(B)

s

(

P 0

V 0

)

t r

return P,V

Xi=Xi+1

Xi>Xi+1V
≥
P

Xi<Xi+1

P
≥
V

Xi=Xi+1

Xi>Xi+1Xi<Xi+1

Xi=Xi+1
Xi<Xi+1

{V V+1}

Xi>Xi+1

{P P+1}

(C)

Figure 9.7 – Invariants on the result values R1 and R2 of NB_DECREASING_TERRACE and
SUM_WIDTH_INCREASING_TERRACE for a sequence length of 12 (A) with the general linear invariants,
and (B) with the Non-Default Value condition. (C) Intersection for NB_PEAK and NB_VALLEY with the
guards P ≥ V and V ≥ P on transitions s! t and s! r (as for the return statement, the P and V register
in the guards refer to the final values of the corresponding registers).

non-default value condition, that no variable of the returned vector is assigned to the initial value of the
corresponding register. Section 9.3.1 shows how to generate such invariants. Section 9.3.2 introduces the

notion of guard of a transition t of I, a linear inequality of the form e + e0 · n+
kP

i=1

ei · Ri ≥ 0, which is a

necessary condition on the vector of values returned by I after consuming X for triggering the transition t
upon consuming X . We call such a necessary condition a linear guard invariant.

9.3.1 Generating Conditional Linear Invariants with

the Non-Default Value Condition

We first illustrate the motivation for such conditional linear invariants.

Example 9.3.1 (motivation for conditional invariants). Consider the NB_DECREASING_TERRACE(X,R1)
and the SUM_WIDTH_ INCREASING_TERRACE(X,R2) constraints, where X is a time series of length n,
R1 is restricted to be the number of maximal occurrences of DECREASING_TERRACE = ‘>=+>’ in the
signature of X , and R2 is restricted to be the sum of the number of elements in subseries of X whose
signatures correspond to words of the language of INCREASING_TERRACE = ‘<=+<’. In Figure 9.7, for
n = 12, the squared points represent feasible pairs (R1, R2), while the circled points stand for infeasible
pairs (R1, R2) inside the convex hull. The linear invariant 2 · R1 + R2  n − 2 is a facet of the polytope,
which does not eliminate the points (1, 8), (2, 6), (3, 4), (4, 2). However, if we assume that bothR1 > 0 and
R2 > 0, then we can add a linear invariant eliminating these four infeasible points, namely 2 · R1 + R2 
n − 3, shown in Part (B) of Figure 9.7. In addition, the infeasible points on the straight line R2 = 1 will
also be eliminated by the restriction R2 = 0 _R2 ≥ 2 given in [10, p. 2598]. 4

Consider that each register automatonMi (with i in [1, k]) returns its initial value after consuming the
signature of an accepting sequence X wrt Mi iff the signature of X does not contain any occurrence of
some regular expression σi over the alphabet Σ. LetM0

i denote the register automaton which accepts the
words of the language Σ⇤σiΣ

⇤, where Σ⇤ denotes any word over Σ. Then, using the method of Section 9.1
we generate the linear invariants forM0

1\M
0
2\· · ·\M

0
k. These linear invariants hold when the non-default

value condition is satisfied.

9.3.2 Generating Linear Guard Invariants

Consider k register automataM1,M2, . . . ,Mk and let Ri (with i 2 [1, k]) designate the value returned
byMi. We focus on generating necessary conditions, called guard invariants or, simply, guards, introduced

122 CHAPTER 9. SYNTHESISING PARAMETERISED LINEAR INVARIANTS

in Definition 9.3.1, for enabling transitions of the register automaton I =M1 \M2 \ · · · \Mk. Further,
we give a three-step procedure for generating guards for transitions of I.

Definition 9.3.1 (guard). Consider a transition t of the register automaton I = M1 \M2 \ · · · \ Mk.

A guard of t is a linear inequality of the form e + e0 · n +
kP

i=1

ei · Ri ≥ 0 such that there does not exist

any accepting sequence X = hX1, X2, . . . , Xni wrt I such that (1) after consuming the signature of X ,

the vector (R1, R2, . . . , Rk) returned by I satisfies the inequality e + e0 · n +
kP

i=1

ei · Ri < 0, (2) and the

transition t was triggered upon consuming the signature of X .

The following example illustrates Definition 9.3.1.

Example 9.3.2 (guard invariants). Consider the NB_PEAK(X,P) and NB_VALLEY(X, V) time-series con-
straints with X being hX1, X2, . . . , Xni. The intersection I of the register automata for NB_PEAK and
NB_VALLEY was given in Part (C) of Figure 9.1. Observe that, if at the initial state s the register automaton
consumes ‘<’ (respectively ‘>’), then the number of peaks (respectively valleys) in X is greater than or
equal to the number of valleys (respectively peaks). Hence, we can impose the guard P ≥ V (respectively
V ≥ P) on the transition from s to t (respectively to r). Part (C) of Figure 9.7 gives the register automaton
I with the obtained guards. 4

Guards for the transitions of a register automaton I =M1 \M2 \ · · · \Mk can be generated in three
steps:

1. First, we identify the subset T of transitions of I such that, for any transition t in T , upon consuming
any sequence, t can be triggered at most once.

2. Second, for every transition t in T , we obtain a new register automaton It by removing from I all
transitions of T different from t that start at the same state as t.

3. Third, using the technique of Section 9.1 on the invariant digraph Gv
It , we obtain linear invariants that

are guards of transition t.

9.4 Infeasible Combinations of the Result Values not Eliminated

by the Generated Linear Invariants

In this section, we give an example of a pair of time-series constraints γ1(X,R1) and γ2(X,R2) imposed
on the same sequence X such that the generated linear invariants do not remove all infeasible combinations
of R1 and R2 located outside the convex hull of feasible combinations of R1 and R2.

Example 9.4.1 (infeasible combinations not eliminated by the generated linear invariants). Consider the
NB_DECREASING_SEQUENCE(X,R1) and the SUM_WIDTH_ ZIGZAG(X,R2) time-series constraints im-
posed on the same time seriesX of length n. With our method we generate linear and conditional invariants
for this pair of constraints, from which the most interesting are ¨: R1 > 0 ^ R2 > 0) 3 · R1  R2 + n
and ≠: R2  2 · R1. For the value of n being either 11 or 12, Figure 9.8 gives all feasible combinations
(blue squares) of R1 and R2, all infeasible combinations (violet diamonds) of R1 and R2 inside the convex
hull of feasible combinations of R1 and R2, and all infeasible combinations (red circles) outside the convex
hull. All points eliminated by ¨ (respectively by ≠) are located in the pink (respectively blue) half-space.
We can see that there are some points, pictured by red circles, that are outside the convex hull of feasible
points and are neither in the pink nor in the blue half-space. Such points are not eliminated by the generated
invariants, and some work would still be required in that direction. 4

9.5. CONCLUSION 123

0 2 4

0

2

4

6

8

nb_decreasing_sequence

su
m

_w
id

th
_z

ig
za

g

n = 11

¨

≠

0 2 4 6

0

2

4

6

8

10

nb_decreasing_sequence

su
m

_w
id

th
_z

ig
za

g

n = 12

¨

≠

Figure 9.8 – Feasible (blue squares) and infeasible (red circles and violet diamonds) combinations of
the results values R1 and R2 of the conjunction of constraints NB_DECREASING_SEQUENCE(X,R1) and
SUM_WIDTH_ZIGZAG(X,R2) imposed on the same sequenceX whose length n is either 11 or 12. The grey
line labelled with ¨ (respectively ≠) represents the condition 3·R1 ≥ R2+n (respectivelyR2 ≥ 2·R1). The
pink (respectively blue) half-space located to the right (respectively left) of the grey line ¨ (respectively ≠)
is the set of points eliminated by the R1 > 0 ^ R2 > 0) 3 · R1  R2 + n (respectively R2 ≥ 2 · R1)
invariant. Red circles are infeasible pairs of R1 and R2 that are outside the convex hull of feasible pairs and
are eliminated by neither invariant.

9.5 Conclusion

In this chapter, we presented a systematic method for generating linear invariants linking the result
variables of several AUTOMATON global constraints. Future work may look how to extend the current
approach to handle register automata that also allow the min and max aggregators for register updates. It
should also investigate the use of such invariants within the context of MIP. While MIP has been using linear
cuts for a long time [75, 96], no off-the-shelf database of parameterised cuts in some computer readable
format is currently available. Linear cuts are typically defined in papers and are then directly embedded
within MIP solvers.

Going beyond our empirical evaluation, future work can also look at the quality analysis of generated
cuts, i.e. verifying whether generated cuts are sharp or not. It could exploit the following idea: for a
conjunction of constraints γ1(hX1, X2, . . . , Xni , R1) and γ2(hX1, X2, . . . , Xni , R2), a generated cut e +
e0 · n + e1 · R1 + e2 · R2 ≥ 0 is sharp for any sequence length n iff for any n, there exists two different
sequences X1 and X2 both of length n such that
◦ e + e0 · n + e1 · R

i
1 + e2 · R

i
2 = 0, where Ri

1 and Ri
2 are restricted by γ1(X i, Ri

1) and γ2(X i, Ri
2),

respectively, with i being either 1 or 2. In other words, both points (R1
1, R

1
2) and (R2

1, R
2
2) are located

on the straight line e + e0 · n+ e1 ·R1 + e2 ·R2.
◦ either R1

1 6= R2
1 or R1

2 6= R2
2. In other words, the points (R1

1, R
1
2) and (R2

1, R
2
2) are distinct.

If such sequences X1 and X2 exist for any length n, then at least two feasible points are located on the
generated cut, and thus this cut is sharp.

Summary of this Chapter:

The main contribution of this chapter is a systematic method for generating linear invariants linking
the result variables of several sequence constraints that have a representation by a register automaton
satisfying the incremental-automaton property. In the context of time-series constraints, our method
applies for all constraints of the NB_σ and the SUM_WIDTH_σ families.

Chapter 10

Synthesising Parameterised

Non-Linear Invariants

This chapter is the result of a collaboration with (in alphabetic order) Nicolas Bedliceanu and Helmut
Simonis. The author of this thesis was one of the main researchers and writers of this work.

While artificial intelligence has considered from its very beginning the possibility to automate the pro-
cess of scientific discovery [86], relatively little work has been carried out in this area [91]. One of the
main reasons for this situation is that scientific discovery not only needs to establish conjectures, but also
requires to prove or to invalidate (and fix) them. While the human process to deal with proofs and refutation
has been analysed in the context of mathematics [85], most computer science work has focused on the first
part, namely generating conjectures both for specific domains like graph theory [77], or for more general
domains [64, 87]. The main reason is that the proof part is a key bottleneck, as it is much more challenging
to automate as already observed in [52], even if programs that could prove theorems in propositional or first
order logic already exist since the fifties [103].

The contribution of this chapter is a methodology for two families of time-series constraints, namely the
NB_σ and the SUM_WIDTH_σ families, which both proposes conjectures and proves them automatically
by using constant-size automata, i.e. automata whose number of states and the size of the input alphabet
are independent both of an input time-series length and from the values in an input time series. For a
conjunction of two time-series constraints γ1(X,R1) and γ2(X,R2) imposed on the same time series X =
hX1, X2, . . . , Xni, our method describes sets of infeasible result-value pairs for (R1, R2). We assume that
every time-series constraint mentioned in this chapter belongs either to the NB_σ or to the SUM_WIDTH_σ
family. Each set of infeasible pairs is described by a formula fi(R1, R2, n) expressed as a conjunction
C1
i ^ C2

i ^ . . . ^ Cki
i of elementary conditions Cj

i between R1, R2 and n. The learned Boolean
function f1 _ f2 _ · · · _ fm represents the union of sets of infeasible pairs (R1, R2), while its negation
¬f1 ^ ¬f2 ^ · · · ^ ¬fm corresponds to an implied constraint, which is a universally true Boolean formula,
namely

8X, γ1(X,R1) ^ γ2(X,R2))
m̂

i=1

¬fi(R1, R2, n) (10.1)

In order to prove that (10.1) is universally true we need to show that for every fi(R1, R2, n), there
does not exist a time series of length n yielding R1 (respectively R2) as the result value of γ1 (respectively
γ2) and satisfying fi(R1, R2, n). The key idea of our proof scheme is to represent the infinite set of time
series satisfying each elementary condition Cj

i of fi(R1, R2, n) as a constant-size automatonMi,j . Then
checking that the intersection of all automataMi,1,Mi,2, . . . ,Mi,ki is empty implies that fi(R1, R2, n) is
indeed infeasible. Note that such proof scheme is independent of the time-series length n and does not
explore any search space.

This invariant generation process is offline: it is done once and for all in order to build a database of
generic invariants. This chapter is organised in the following way:

125

126 CHAPTER 10. SYNTHESISING PARAMETERISED NON-LINEAR INVARIANTS

◦ Section 10.1 motivates this work with a running example, which illustrates the need for deriving
non-linear invariants.
◦ Section 10.2 presents our method for deriving invariants for a conjunction of time-series constraints.

It starts with an overview of the three phases of our method, and then details each phase:

1. A generating data phase is detailed in the introduction of Section 10.2. Its goal is to generate a
dataset, from which we will extract invariants.

2. A mining phase is detailed in Section 10.2.1. It extracts a hypothesis H of Boolean functions of
the form f1 _ f2 _ · · · _ fm from the generated data.

3. A proof phase is detailed in Section 10.2.2. For every Boolean function fi (with i 2 [1,m]) in
the extracted hypothesisH , the proof phase either proves its validity for every time-series length,
or refute it by generating a counter example. The counter example is used to modify the current
hypothesis and the process is repeated.

Note that our generated data is noise-free, and that the goal of our work is not to discover statistical
properties of time-series constraints, but rather to extract mathematical theorems, which are always
true.

The impact of this theoretical contribution is estimated in Chapter 16 of Part III, which first evaluates
the capability of our method to capture most infeasible points by using the data mining phase only on small
time-series lengths from 7 to 12, and by checking on the unseen data set of time-series lengths from 13 to
24, whether there are uncovered infeasible combinations of R1 and R2. Second, it evaluates the effect of
adding the obtained non-linear invariants to the state of the art, which contains linear invariants, synthesised
by the method of Chapter 9.

10.1 Motivation and Running Example

Consider a conjunction of time-series constraints γ1(X,R1) ^ γ2(X,R2) imposed on the same time
series X . In Chapter 9, using the representation of γ1 and γ2 as register automata, we presented a method
for deriving parameterised linear invariants linking the values of R1, R2. Although, in most cases the
derived inequalities were facet-defining, the experiments revealed that in some cases, even when using
these invariants, the solver could still take a lot of time to find a feasible solution or to prove infeasibility.
This happens because of some infeasible combinations of values of the result variables that were located
inside the convex hull of all feasible combinations. The following example illustrates such a situation.

Example 10.1.1 (running example). Consider the conjunction of SUM_WIDTH_DECREASING_SEQUENCE(
X,R1) and SUM_WIDTH_ZIGZAG(X,R2) time-series constraints imposed on the same time serie X of
length n. For the values of n in the interval [9, 12], Figure 10.1 represents feasible pairs of (R1, R2) as blue
squares, and infeasible pairs lying inside the convex hull of feasible (blue) points as red circles. The convex
hull contains a significant number of infeasible (red) points, which we want to characterise automatically.

4

This work develops a systematic approach for generating invariants characterising infeasible combina-
tions of R1 and R2 located within the convex hull of feasible combinations. Section 10.2 describes our
method.

10.2 Discovering and Proving Invariants

Consider a conjunction of time-series constraints γ1(X,R1) and γ2(X,R2) imposed on the same time
series X . This work focuses on automatically extracting and proving invariants that characterise some
subsets of infeasible combinations of R1 and R2 that are all located inside the convex hull of feasible
combinations of R1 and R2. Our approach uses three sequential phases.

10.2. DISCOVERING AND PROVING INVARIANTS 127

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_w
id

th
_z

ig
za

g

Length: 9

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_w
id

th
_z

ig
za

g

Length: 10

0 2 4 6 8 10 12

0

2

4

6

8

10

12

sum_width_decreasing_sequence

su
m

_w
id

th
_z

ig
za

g

Length: 11

0 2 4 6 8 10 12

0

5

10

sum_width_decreasing_sequence

su
m

_w
id

th
_z

ig
za

g

Length: 12

Figure 10.1 – Feasible points, shown as blue squares, for the result variables R1, R2 of the conjunction
of SUM_WIDTH_DECREASING_SEQUENCE(X,R1) and SUM_WIDTH_ZIGZAG(X,R2) on the same time
series X = hX1, X2, . . . , Xni for the values of n in {9, 10, 11, 12}; red circles represent infeasible points
inside the convex hull of feasible points, while red straight lines depict the facets of the convex hull of
feasible points.

128 CHAPTER 10. SYNTHESISING PARAMETERISED NON-LINEAR INVARIANTS

[GENERATING DATA PHASE] The first phase of our method is a preparatory work, namely generating

data. For each time-series length n in [7, 12], we generate all feasible combinations of the values of R1

and R2. For each of the 6 lengths, (i) we compute the convex hull of feasible points of R1 and R2 using
Graham’s scan, and (ii) we detect the set I of infeasible combinations of R1 and R2 in this convex hull.

[MINING PHASE] The second phase, called the mining phase, consists of extracting a hypothesis H
describing the set I of infeasible combinations of R1 and R2 from the generated data. We represent this
hypothesis as a disjunction of Boolean functions fi(R1, R2, n). The mining phase is described in Sec-
tion 10.2.1.

[PROOF PHASE] The third phase, called the proof phase, consists in refining the discovered hypothesis
H by validating some Boolean functions fi and by refuting and eliminating others using constant-size

automata. A refined hypothesis, which is proved to be correct in the general case, i.e. for any time-series
length, is called a description of the set I. The proof phase is described in Section 10.2.2.

10.2.1 Mining Phase

Consider a conjunction of two time-series constraints γ1(X,R1) and γ2(X,R2), imposed on the same
time series X . This section shows how to extract a hypothesis in the form of a disjunction of Boolean

functions, describing the infeasible combinations of values of R1 and R2 that are located within the convex
hull of feasible combinations.

There is a number of works on learning a disjunction of predicates [49], and some special case, where
disjunction corresponds to a geometric concept [50, 53]. Usually, the learner interacts with an oracle
through various types of queries or with the user by receiving positive and negative examples; the learner
tries to minimise the number of such interactions to speed up convergence.

In our case, the input data consists of the set of positive, called infeasible, and negative, called feasible,
examples, which is finite and which is completely produced by our generating phase. This allows exploring
all possible inputs without any interaction.

We now present the components of our mining phase:
◦ First, we describe in Section 10.2.1.1 our dataset, which consists of feasible and infeasible pairs of

the result values R1, R2.
◦ Second, we define in Section 10.2.1.2 the space of concepts, hypotheses, we can potentially extract

from our dataset.
◦ Third, we outline in Section 10.2.1.3 the target hypothesis for time-series constraints, i.e. what we

are searching for.
◦ Finally, we briefly describe in Section 10.2.1.4 the algorithm used for finding the target hypothesis.

10.2.1.1 Input Dataset

We represent our generated data as the union of two sets of triples D+ (respectively D−) called the set
of feasible (respectively infeasible) examples, such that:
◦ For every (k, p1, p2) (with k 2 [7, 12]) in D+, there exists at least one time series of length k that

yields p1 and p2 as the values of R1 and R2, respectively.
◦ For every (k, p1, p2) (with k 2 [7, 12]) in D−,

1. there does not exist any time series of length k that would yield p1 and p2 as the values of R1

and R2, respectively.

2. (p1, p2) is located within the convex hull of feasible combinations of R1 and R2.

10.2.1.2 Space of Hypotheses

Every element of our hypothesis space is a disjunction of Boolean functions from a finite predefined set
H. Each element ofH is a conjunction C1^C2^ · · ·^Cp with every Ci being a predicate, called an atomic

10.2. DISCOVERING AND PROVING INVARIANTS 129

relation, where the main atomic relations are:

(i) n ≥ c,

(ii) n mod c = d,

(iii) Rj mod c = d,

(iv) Rj ≥ d,

(v) Rj  d,

(vi) Rj = c,

(vii) Rj = up(Rj, n)− c,

(viii) Rj = c ·Rk + d,

with c and d being natural numbers, and up(Rk, n) being the maximum possible value of Rk given the
constraint γk(hX1, X2, . . . , Xni , Rk). The intuition of these atomic relations is now explained:

◦ (i) stands from the fact that many invariants are only valid for long enough time series.
◦ (ii) is motivated by the fact that the parity of the length of a time series is sometimes relevant.
◦ (iii) is justified by the fact that the parity of R1 or R2 can come into play.
◦ (iv) and (v) are related to the fact that infeasible combinations of R1 and R2 can be located on a ray

or an interval.
◦ (vi) and (vii) are respectively linked to the fact that quite often infeasible combinations of R1 and
R2 within the convex hull are very close to the minimum or the maximum values [14] of Rk (with
k 2 [1,2]), i.e. c is a very small constant, typically 0 or 1.
◦ (viii) denotes the fact that some invariants correspond to a linear combination of R1 and R2.

10.2.1.3 Target Hypothesis

Definition 10.2.1 (Boolean function consistent wrt a dataset). A Boolean function of H is consistent wrt a
dataset D iff it is true for at least one infeasible example of D, and false for every feasible example of D.

For example, R1 = R2 ^ R1 mod 2 = 1 is consistent with the dataset of Figure 10.1, but the two
Boolean functions R1 = 13 and R1 = R2 are not.

Definition 10.2.2 (universally true Boolean function). A Boolean function of H is universally true if it is
true for any time series of any length.

Definition 10.2.3 (target hypothesis). The target hypothesis H is the disjunction of all Boolean functions
ofH consistent with D.

Note that in the target hypothesis some Boolean functions can be subsumed by other Boolean functions.
We cannot do the subsumption analysis at this point since we do not yet know which Boolean functions are
true.

10.2.1.4 Mining Algorithm

Our mining algorithm filters out all the Boolean functions not consistent with our dataset and returns the
disjunction of the remaining Boolean functions. Note that the mining algorithm ignores Boolean functions
involving the atomic relation (i) n > c, which is handled in the proof phase. Remember that we run the
algorithm only on the limited dataset D[7,12], i.e. the data set generated from time series of length in [7, 12].

10.2.2 Proof Phase

After extracting from D[7,12] the target hypothesis H = f1 _ f2 _ · · · _ fm characterising subsets of
infeasible combinations of R1 and R2 that are all located within the convex hull of feasible combinations of
R1 and R2, we refine this hypothesis, by keeping only universally true Boolean functions fi.

Before presenting our proof technique, we look at the structure of the hypothesis H . Every Boolean
function f in H is of the form f = C1 ^ C2 ^ · · · ^ Cp and can be classified into one of the two following
categories:

130 CHAPTER 10. SYNTHESISING PARAMETERISED NON-LINEAR INVARIANTS

◦ INDEPENDENT BOOLEAN FUNCTION means that everyCi is an independent atomic relation, i.e. de-
pends either on R1 or R2, but not on both. For instance, R1 = up(R1, n) ^ R2 mod 2 = 1 is an
independent Boolean function.

◦ DEPENDENT BOOLEAN FUNCTION means that there exists at least one Ci that is a dependent

atomic relation, i.e. mentions both R1 and R2. For instance, R1 mod 2 = 1 ^ R1 = R2 + 1 is a
dependent Boolean function.

The proof of an invariant depends on its category. In Section 10.2.2.1 (respectively Section 10.2.2.2),
we show how to prove that an independent (respectively dependent) Boolean function is universally true.

10.2.2.1 Proof of Independent Boolean Functions

Since most atomic relations are independent, i.e. cases (i) to (vii), we first focus on a necessary and
sufficient condition for proving that an independent Boolean function is universally true. Such necessary
and sufficient condition is given in the main result of this section, namely Theorem 10.2.1, provided that
there exists constant-size automata associated with the atomic relations in f .

Definition 10.2.4 (set of supporting signatures for an atomic relation). For an atomic relation C, the set of

supporting signatures TC is the set of words in Σ⇤ such that, for every word in TC there exists a time series
satisfying C, whose signature is this word.

Definition 10.2.5 (set of supporting signatures for a Boolean function). For an independent Boolean func-

tion f = C1 ^ C2 ^ · · · ^ Cp, we define the set of supporting signatures Tf as
pT

i=1

TCi .

A Boolean function f is universally true iff it describes infeasible combinations of R1 and R2 for any
time-series length, and thus the set Tf is empty.

For any atomic relation C from (i) to (vii), i.e. an independent atomic relation, the corresponding set
of supporting signatures is represented as the language of a constant-size automaton MC . Constant size
means that the number of states of this automaton does not depend on the length of the input time series. For
a Boolean function f = C1 ^C2 ^ · · · ^Cp, Tf is simply the set of signatures recognised by the automaton
obtained after intersecting allMCi with i in [1, p]. This provides a necessary and sufficient condition for
proving that a Boolean function f is universally true.

Theorem 10.2.1 (necessary and sufficient condition for an independent Boolean function to be universally
true). Consider two time-series constraints γ1(X,R1) and γ2(X,R2) on the same time series X , and a
Boolean function f(R1, R2, n) = C1 ^ C2 ^ · · · ^ Cp such that for every Ci there exists a constant-size
automaton MCi . The function f is universally true iff the intersection of all automata for MCi (with
i 2 [1, p]) is empty.

The proof of Theorem 10.2.1 follows from Definitions 10.2.4 and 10.2.5.

For some Boolean function f = C1 ^ C2 ^ · · · ^ Cp, the set Tf =
pT

i=1

TCi may not be empty, but finite.

In this case, we compute the length c of the longest signature in Tf , and obtain a new Boolean function
f 0 = f ^ n ≥ c+ 1. By construction, the set Tf 0 is empty, thus f 0 is universally true.

Chapter 11 will further show how to generate automata for independent atomic relations. Every such
automaton is called a conditional automaton.

10.2. DISCOVERING AND PROVING INVARIANTS 131

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_w
id

th
_z

ig
za

g

Length: 9

¨ R1 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Length: 9

≠ R2 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Length: 9

Æ
R1 = 3 ^
R2 ≥ 2

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Length: 9

Ø
R1 = 5 ^
R2 ≥ 4

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_w
id

th
_z

ig
za

g

Length: 9

∞
R1 = up(R2, n) ^
R2 mod 2 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Length: 9

±
R1 = R2 ^
R2 mod 2 = 1

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_decreasing_sequence

Length: 10

≤

n mod 2 = 0 ^
R1 = up(R1, n)− 1 ^
R2 = up(R2, n)

0 2 4 6 8 10 12

0

5

10

sum_width_decreasing_sequence

Length: 12

≤

n mod 2 = 0 ^
R1 = up(R1, n)− 1 ^
R2 = up(R2, n)

Figure 10.2 – Seven groups of infeasible combinations of R1 and R2, where R1 and R2 are, respectively,
constrained by SUM_WIDTH_DECREASING_SEQUENCE(X,R1) and SUM_WIDTH_ZIGZAG(X,R2) on the
same sequence X of length 9 (all plots on top and the two plots on bottom left) and of lengths 10 and 12
(the two plots on bottom right).

10.2.2.2 Proof of Dependent Boolean Functions

Some dependent Boolean functions, i.e. case (viii), can be handled by adapting the technique for gener-
ating linear invariants described in Chapter 9.

Consider two time-series constraints γ1(X,R1) and γ2(X,R2) on the same time series X . We present
here a method for verifying that the dependent Boolean function R1 − d · R2 = 1, with d being either 1 or
2, is universally true. Note that such Boolean function was extracted during the mining phase for 17 pairs
of time-series constraints.

We prove by contradiction that the corresponding Boolean function is universally true. Our proof con-
sists of three following steps:

1. Assumption. Assume that there exists a time series X such that R1 − d ·R2 = 1.

2. Implication for the parity of R1 and d · R2. When R1 − d · R2 = 1, then R1 and d · R2 have a
different parity.

3. Obtaining a contradiction. Since R1 and d · R2 must have different parity, there exists a value of b
that is either 0 or 1 such that the conjunctionR1−d ·R2 = 1 ^ R1 mod 2 = b ^ d ·R2 mod 2 = 1−b
holds. In order to prove that R1 − d ·R2 = 1 is infeasible, for either value of parameter b, we need to
show that either the obtained conjunction is infeasible, e.g. when d = 2 and b is 0, or the method of
Chapter 9 produces a linear invariant R1 − d ·R2 ≥ c with c being strictly greater than 1.

If at this third step of our proof method the considered conjunction is feasible, and the desired invariant
R1−d·R2 ≥ cwas not obtained, then we cannot draw any conclusion about the infeasibility ofR1−d·R2 =
1.

In practice, for the 17 pairs of time-series constraints, for which we extracted the Boolean function
R1 − d · R2 = 1, the method of [13] did indeed generate the desired linear invariant, which proved that the
considered Boolean function is universally true.

Example 10.2.1 (mining, proving and filtering non-linear invariants). Consider the conjunction of the
SUM_WIDTH_DECREASING_SEQUENCE(X,R1) and the SUM_WIDTH_ZIGZAG(X,R2) time-series con-

132 CHAPTER 10. SYNTHESISING PARAMETERISED NON-LINEAR INVARIANTS

straints on the same time series X , introduced in Example 10.1.1. For this conjunction, we now describe
the result of the mining and the proving phases of our method as well as the dominance filtering, i.e. dis-
carding Boolean functions subsumed by some other Boolean function.
◦ During the mining phase we extracted a disjunction of 156 Boolean functions. Most Boolean func-

tions, even if they are true, are redundant. For example, the Boolean function R1 = 1 ^ R2 = 1 is
subsumed byR1 = 1, and thus can be discarded. However, at this point we cannot do the dominance
filtering since we do not yet know which Boolean functions are universally true.
◦ During the proof phase we proved that 95 out of the extracted 156 Boolean functions are universally

true.
◦ Finally, after the dominance filtering of the 95 proved Boolean functions we obtain the disjunction

of the following seven Boolean functions:
¨ R1 = 1 ≠ R2 = 1
Æ R1 = 5 ^ R2 ≥ 4 Ø R1 = 3 ^ R2 ≥ 1
∞ R1 = up(R1, n) ^ R2 mod 2 = 1 ± R1 mod 2 = 1 ^ R1 = R2

≤ n mod 2 = 0 ^ R1 = up(R1, n)− 1 ^ R2 = up(R2, n)
All four upper plots and the two lower plots on the left of Figure 10.2 contain the groups of infeasible

combinations of R1 and R2 corresponding to the Boolean functions from ¨ to ± for n being 9. The two
lower plots on the right of Figure 10.2 contain the infeasible combinations of R1 and R2 corresponding to
the ≤ Boolean function for n being 10 and 12, respectively.

The Boolean functions from ¨ to ∞ and ≤ were proved by intersecting the automata for the atomic
relations in these Boolean functions. For example, the automata for both atomic relations of the ≤ are given
in Figure 10.3. One can take their intersection to check it is empty.

In order to prove the dependent Boolean function ±, we consider the conjunction of three constraints,
namely R1 mod 2 = 1, SUM_WIDTH_DECREASING_SEQUENCE, and SUM_WIDTH_ZIGZAG. Each of the
three constraints can be presented by an automaton or a register automaton satisfying the required properties
of the method of Chapter 9, which generates for this conjunction the invariant R1 ≥ R2 + 2. This proves
that ± is a universally true Boolean function.

We now give an interpretation of five of those Boolean functions:
◦ ¨ and ≠ means that, in the languages of DECREASING_SEQUENCE and ZIGZAG, respectively, there

is no word consisting of one letter.
◦ ∞ means that, when a time series yields up(R1, n) as the value of R1, every occurrence of ZIGZAG

in its signature must start and end with ‘>’, and the length of every word in the language of ZIGZAG

starting and ending with the same letter is even.
◦ ± is related to the fact that every word in the language of ZIGZAG contains at least one word of the

language of DECREASING_SEQUENCE as a factor, and every such factor is of even length.
◦ ≤ means that, when a time series yields up(R2, n) as the value of R2, then its signature is a word in

the language of ZIGZAG, and every occurrence of DECREASING_SEQUENCE is of even length, and
thus R1 must be even. At the same time, up(R1, n)− 1 = n− 1 is odd, when n is even. 4

10.3 Infeasible Combinations not Eliminated

by our Non-Linear Invariants

In this section, we give an example of a pair of time-series constraints γ1(X,R1) and γ2(X,R2) im-
posed on the same sequence X such that the generated non-linear invariants do not remove all infeasible
combinations of R1 and R2 located within the convex hull of feasible combinations of R1 and R2.

Example 10.3.1 (infeasible combinations not eliminated by the generated non-linear invariants). Consider
SUM_WIDTH_PLAIN(hX1, X2, . . . , Xni , R1) and SUM_WIDTH_ ZIGZAG(hX1, X2, . . . , Xni, R2) imposed

10.3. INFEASIBLE COMBINATIONS NOT ELIMINATED BY OUR NON-LINEAR INVARIANTS133

>
>

< >

= >

=

(A)

s r=

>

<

>

<

<

>

<

>

>

<

<
>

>
<

<

>

>

<

=

>

<

>

<

<

>

<

>

>

<

s

=

s

=

s

=

s

=

r

=

r

=

r

=

r

=

s

=

s

=

r

=

r

=

(B)

Figure 10.3 – (A) Automaton for the R1 = up(R1, n) atomic relation, where R1 is constrained by
SUM_WIDTH_DECREASING_SEQUENCE(X,R1). (B) Automaton for the R2 mod 2 = 1 atomic relation,
where R2 is constrained by SUM_WIDTH_ZIGZAG(X,R2).

0 2 4 6 8

0

2

4

6

8

sum_width_plain

su
m

_w
id

th
_z

ig
za

g

n = 11

≠
¨

Æ

0 2 4 6 8 10

0

2

4

6

8

10

sum_width_plain

su
m

_w
id

th
_z

ig
za

g

n = 12

≠
¨

Æ

Figure 10.4 – Feasible (blue squares) and infeasible (red and violet circles and brown diamonds) combi-
nations of the results values R1 and R2 of the conjunction of constraints SUM_WIDTH_PLAIN(X,R1) and
SUM_WIDTH_ZIGZAG(X,R2) imposed on the same sequenceX whose length n is either 11 or 12. The grey
straight line labelled with ¨ (respectively ≠) is represented by the condition R2 = 2 · R1 + 1 (respectively
2 ·R1+R2 = 2 ·n−3). The violet straight line, labelled with Æ, is represented by the equationR2 = 1. The
blue (respectively pink) half-space located to the left (respectively right) of the grey line ¨ (respectively ≠)
is the set of points eliminated by theR2  2·R1+1 (respectivelyR1 > 0^R2 > 0) 2·R1+R2  2·n−3)
invariant. The red circle (respectively brown diamonds) is an infeasible pair of R1 and R2 that is outside
(respectively within) the convex hull of feasible pairs and is not eliminated by the generated invariants. The
points denoted by violet circles are infeasible and eliminated by the R2 6= 1 invariant.

on the same time series. Using the methods of Chapter 9 and of this chapter we generate linear and non-
linear invariants for this pair of constraints, from which the most interesting are ¨: R2 ≥ 2 · R1 + 1, ≠:
R1 > 0 ^ R2 > 0) 2 · R1 + R2 ≥ 2 · n − 3, and Æ: R2 6= 1. For the value of n being either 11 or 12,
Figure 10.4 gives all feasible combinations (blue squares) ofR1 andR2, all infeasible combinations (red and
violet circles) of R1 and R2 inside the convex hull of feasible combinations of R1 and R2, and all infeasible
combinations (brown diamonds) outside the convex hull. All points eliminated by ¨ (respectively by ≠) are
located in the pink (respectively blue) half-space. The points denoted by violet circles are eliminated by Æ.
The point denoted by a red circle is not eliminated by our non-linear invariants since its x-coordinate is

⌅
n
2

⇧
,

and it cannot be represented as some constant d1, or up(R1, n)−d2, where d2 is an integer constant. Hence,
in order to express the coordinates of this point in terms of atomic relations we need to extend our set of
atomic relations, which may also require a different proof scheme that uses parameterised automata. 4

134 CHAPTER 10. SYNTHESISING PARAMETERISED NON-LINEAR INVARIANTS

10.4 Conclusion

This chapter proposes a systematic approach to extract and prove non-linear invariants denoting infea-
sible combinations of the result values of two different time-series constraints imposed on the same time
series. To avoid being instance specific these invariants are parameterised by the time-series length. The
approach relies on the fact that infeasible pairs are quite often located at a small distance from the convex
hull of all feasible pairs, and can therefore be described by intersecting constant-size automata.

Summary of this Chapter:

The main contribution of this chapter is a systematic method for extracting and proving non-linear
invariants for conjunctions of time-series constraints of the NB_σ and SUM_WIDTH_σ families. Such
invariants characterise infeasible combinations of the result variables of time-series constraints in the
conjunction that are located inside the convex hull of feasible combinations. The main idea of the
proof part is to represent an infinite set of sequences as the intersection of constant-size automata.

Chapter 11

Synthesising Constant-Size

Conditional Automata

For two families of time-series constraints, considered in Chapter 10, we need to generate constant-size
finite automata satisfying certain restrictions, e.g. an automaton recognising the signatures of all and only
all time series with an odd number of peaks. Such automata are required for proving generic non-linear
invariants parameterised by the time-series length, described in Chapter 10. This chapter shows how to
synthesise a constant-size automaton, i.e. an automaton whose number of states is independent, both from
the input time-series length and from the values in an input time series, accepting the signatures of all, and
only all, time series satisfying atomic relations of Section 10.2.1.2. In particular, one of the most interesting
atomic relations we consider is R = up(R, n) − d, where R is constrained by some time-series constraint
γ(hX1, X2, . . . , Xni , R) with γ being either NB_σ or SUM_WIDTH_σ, and where up(R, n) is the maximum
possible value of R yielded by a time series of length n. All the conditional automata are obtained by either
using the register automaton for γ or the seed transducer for the regular expression associated with γ.

This chapter is organised as follows:

◦ First, in Section 11.1, we explain how to generate a constant-size automaton for the R = d atomic
relation, called a constant atomic relation.

◦ Second, in Section 11.2, we explain how to generate a constant-size automaton for theR mod d = b
atomic relation with d being a positive integer number and b being in the interval [0, d− 1], called a
modulo atomic relation.

◦ Third, in Section 11.3, we explain how to generate a constant-size automaton for theR = up(R, n)−
d atomic relation with d being a natural number, called a gap atomic relation.

◦ Finally, in Section 11.4, we explain how to generate a constant-size automata for the atomic relations
of the type R ≥ d (respectively R  up(R, n)−d), with d being a natural constant, called a not-less

(respectively a not-greater) atomic relation.

11.1 Generation of Constant-Size Automata for

Constant Atomic Relations

Consider a time-series constraint γ(X,R) with its register automatonM and a constant atomic relation
C of the form R = d. In this section, we focus on the generation of a constant-size automaton for C
usingM.

We introduce in Definition 11.1.1 the non-negativity conditions onM, which are a set of 3 conditions
restricting the initial values of the register, the register updates, and the acceptance function ofM. Further,

135

136 CHAPTER 11. SYNTHESISING CONSTANT-SIZE CONDITIONAL AUTOMATA

s

⇢
D 0
R 0

}

t

re
tu

rn
R >

⇢
D 0
R R+ 2

}

<,=

>
⇢

D 0
R R+D + 1

}=
{D D + 1}

<
{D 0}

(A) a

b c

<,=

>

>
<,=

(B) (C) < > >
= > >
> > =

> > <

Figure 11.1 – (A) Register automaton for SUM_WIDTH_DECREASING_SEQUENCE(X,R). (B) Automaton
for the R = 3 constant atomic relation. (C) All signatures of length 3 accepted by the automaton in Part
(B); all occurrences of DECREASING_SEQUENCE are highlighted in yellow, and the red bars designate the
borders of maximal occurrences.

Theorem 11.1.1 constructively proves that when the non-negativity conditions are satisfied for M, the
automaton for C exists and can be obtained fromM. We consider first an illustrating example.

Example 11.1.1 (automaton for a constant atomic relation). Consider the SUM_WIDTH_DECREASING

_SEQUENCE(X,R) constraint, whose register automaton is given in Part (A) of Figure 11.1, and the atomic
relation C defined by R = 3. The minimal automaton representing the atomic relation C is given in
Part (B) of Figure 11.1. Part (C) of Figure 11.1 gives all signatures of length 3 recognised by the automaton
in Part (B). 4

Definition 11.1.1 (non-negativity conditions). Consider a register automatonM over an input alphabet Σ
recognising any input signature over Σ. The non-negativity conditions onM are defined as follows:

1. Every register update ofM has one of the following forms:

(a) The register is incremented by a natural number, or by the value of another register.

(b) The value of the register is reset to a natural number.

2. The initial values of the registers ofM are natural numbers.

3. The acceptance function ofM is a weighted sum with natural number coefficients of the last values
of the registers ofM after having consumed an input signature.

If a regular expression σ and an integer constant bσ form a recognisable pattern, i.e. a seed transducer
for σ exists [68], then the register automata [11] for the SUM_WIDTH_σ and NB_σ time-series constraints
satisfy the non-negativity conditions.

Theorem 11.1.1 (existence of the automaton for a constant atomic relation). Consider a γ(X,R) time-
series constraint whose register automatonM satisfies the non-negativity conditions, and a natural number
d. Then there exists an automaton representing the R = d constant atomic relation, denoted by C.

Proof. We prove the theorem by explicitly constructing a constant-size automaton MC representing C
usingM.

[Construction of MC] Let hA1, A2, . . . , Api be the registers ofM, whose initial values are hv1, v2, . . . , vpi,
let ↵(A1, A2, . . . , Ap) denote the acceptance function ofM. Then, the states, the initial state, the accepting
states, and the transitions ofMC are defined as follows:
◦ States. For every state q of M, there are (d + 2)p states in MC , each of which is labelled with
qi1,i2,...,ip with every ij (with 1  j  p) being in [0, d+ 1].

11.1. GENERATION OF CONSTANT-SIZE AUTOMATA FOR CONSTANT ATOMIC RELATIONS137

◦ Initial state. If q0 is the initial state ofM, then q0v1,v2,...,vp is the initial state ofMC .
◦ Accepting states. A state qi1,i2,...,ip ofMC is accepting iff ↵(i1, i2, . . . , ip) is equal to d.
◦ Transitions. There is a transition from state qi1,i2,...,ip (with i1, i2, . . . , ip 2 [0, d + 1]) to state
q⇤k1,k2,...,kp labelled with s in {‘<’, ‘=’, ‘>’}, if the value of the transition function δ̂(q, hi1, i2, . . . , ipi , s)
is equal to (q⇤,

⌦
i⇤1, i

⇤
2, . . . , i

⇤
p

↵
), where every kj is equal to min(d+ 1, i⇤j), with j in [1, p].

[Interpretation of the states of MC] If after consuming the signature of some ground time series, the
automatonMC arrives in a state qi1,i2,...,ip , then after consuming the same signature, the register automaton
M arrives in state q; for every j 2 [1, p], when ij  d (respectively ij = d + 1), the register Aj has value
ij (respectively is strictly greater than d). Hence, the states ofMC encode the register values ofM when
consuming the same input signature.

[Size ofMC] By construction, the automatonMC has a constant size, i.e. its number of states ism·(d+2)p,
where m, p and d are parameters that are independent of the time-series length, respectively defined as:
◦ the number of states ofM,
◦ the number of registers ofM,
◦ the parameter of the considered constant atomic relation.

We explain why MC needs only m · (d + 2)p states to represent the set of supporting signatures of
the R = d constant atomic relation. We show that if, when consuming the signature of some ground time
series, the value of some register ofM becomes greater than d, then we no longer need to know its exact
value.

Recall that the acceptance function ↵ ofM is a weighted sum with natural coefficients of the last values
of the registers ofM. If for a register Aj , the corresponding coefficient in ↵ is zero, then it does not affect
the value of ↵, and the exact value of Aj is irrelevant. Otherwise, once the value of Aj exceeds d, the value
of ↵ also exceeds d. By the non-negativity conditions, if the value of Aj exceeds d it can either increase
even more, or it can be reset to a natural number. In either case, the exact value of Aj is irrelevant, and it is
enough to know a lower bound, d+ 1, on its value.

[Correctness of MC] We now prove that the constructed automaton MC is sound, i.e. it recognises the
signatures of only ground time series yielding d as the value of R, and complete, i.e. it recognises the
signatures of all ground time series yielding d as the value of R.
◦ Soundness ofMC . We prove the soundness ofMC by contradiction. Assume there exists a ground

time series X recognised by MC and that yields d0 6= d as the value of R. Let qi1,i2,...,ip be the
final state of AM after consuming the signature S of X . Due to the non-negativity conditions, by
construction of d this means that, after consuming S, the register automatonM finishes in the state
q of M, and for every j 2 [1, p], if ij  d (respectively ij = d + 1), then the register Aj has
value ij (respectively is strictly greater than d). Since qi1,i2,...,ip is an accepting state ofMC , then
↵(i1, i2, . . . , ip) is equal to d, and we obtain the contradiction.
◦ Completeness ofMC . We prove the completeness ofMC by assuming that there exists a ground

time series X that yields d as the value of R, but its signature S is not recognised byMC . Then,

1. either the final state qi1,i2,...,ip ofMC after consuming S is not accepting,

2. or the automatonMC cannot consume the full signature S.

We show that both situations are impossible.
⇤ Impossibility of Situation 1. Due to the non-negativity conditions, and by construction ofMC ,

after having consumed the signature of X , the automatonM finishes in state q ofM, and the
value of the acceptance function is equal to ↵(i1, i2, . . . , ip). Since X yields d as the value of R
the state qi1,i2,...,ip ofMC must be accepting by construction, thus Situation 1 is impossible.
⇤ Impossibility of Situation 2. Assume that (1) at a state qi1,i2,...,ip ofMC , there does not exist

a transition labelled with some input symbol s, and that (2)MC needs to trigger this transition
when consuming the signature of X . Then, at state q ofM, there does not exist the transition

138 CHAPTER 11. SYNTHESISING CONSTANT-SIZE CONDITIONAL AUTOMATA

labelled with s. This contradicts the nature of the register automatonM since it must compute
the value of R for any time series. Hence, Situation 2 is also impossible.

Therefore, both situations are impossible, which implies that such a time series X does not exist,
and thus the automatonMC is complete.

Since MC is sound and complete, then MC is indeed an automaton representing the constant atomic
relation C.

11.2 Generation of Constant-Size Automata for

Modulo Atomic Relations

Consider a time-series constraint γ(X,R) with its register automatonM and a modulo atomic relation
C of the form R mod d = b with d being a positive natural number, and b being in the interval [0, d− 1]. In
this section, we focus on the generation of constant-size automaton for C usingM.

We introduce in Definition 11.2.1 the modulo conditions onM, which are a relaxed version of the non-
negativity conditions, introduced in Definition 11.1.1. The main difference is that in the modulo conditions
there are no restrictions on the sign of the integer constants in the register updates. Further, Theorem 11.2.1
constructively proves that when the modulo conditions are satisfied forM, the automaton for C exists and
can be obtained fromM. We start with an illustrating example.

Example 11.2.1 (automaton for a modulo atomic relation). Consider the NB_DECREASING_SEQUENCE(X,
R) time-series constraint, and the R mod 2 = 1 atomic relation, denoted by C. The automaton for C is
given in Part (B) of Figure 11.2. It is obtained from the register automaton for NB_DECREASING_SEQUENCE,
given in Part (A). Part (C) of Figure 11.2 gives all signatures of length 2 recognised by the automaton in
Part (B). 4

Definition 11.2.1 (modulo conditions). Consider a register automatonM over an input alphabet Σ recog-
nising any input signature over Σ. The modulo conditions onM are defined as following.

1. Every register update ofM has one of the following forms:

(a) The register is changed by an integer constant, or by an integer constant plus the value of another
register.

(b) The value of the register is reset to an integer constant.

2. The initial values of the registers ofM are integer constants.

sR 0

t

R

>
{R R+ 1}



>=

<

(A)

s0 t1

s1t0



≥

≥
>

<

>

<

(B) (C)
< >
= >
> =

> <
> >

Figure 11.2 – (A) Register automaton for NB_DECREASING_SEQUENCE(X,R). (B) Automaton for the
R mod 2 = 1 atomic relation, i.e. accepting the signatures of all and only time series yielding an odd
value of R. (C) All signatures of length 2 accepted by the automaton in Part (B); all occurrences of
DECREASING_SEQUENCE are highlighted in yellow, and the red bars designate the borders of maximal
occurrences.

11.3. GENERATION OF CONSTANT-SIZE AUTOMATA FOR GAP ATOMIC RELATIONS 139

3. The accepting function of M is a weighted sum with integer coefficients of the last values of the
registers ofM after having consumed an input signature.

If a regular expression σ and an integer constant bσ form a recognisable pattern, i.e. a seed transducer
for σ exists [68], then the register automata [11] for the SUM_WIDTH_σ and NB_σ time-series constraints
satisfy the modulo conditions.

Theorem 11.2.1 (existence of the automaton for a modulo atomic relation). Consider a γ(X,R) time-series
constraint whose register automaton M satisfies the modulo conditions of Definition 11.2.1, a positive
natural number d, and a number b in the interval [0, d− 1]. Then there exists an automaton representing the
R mod d = b modulo atomic relation, denoted by C.

Proof. We prove the theorem by explicitly constructing a constant-size automaton MC representing the
modulo atomic relation C using the register automatonM.

Let hA1, A2, . . . , Api be the registers ofM, whose initial values are hv1, v2, . . . , vpi, and let ↵(A1, A2,
. . . , Ap) denote the acceptance function ofM. Then, the states, the initial state, the accepting states, and
the transitions ofMC are defined as follows:
◦ States. For every state q ofM, there are dp states inMC , each of which is labelled with qi1,i2,...,ip

with every ij (with 1  j  p) being in [0, d− 1].
◦ Initial state. If q0 is the initial state ofM, then q0v01,v02,...,v0p is the initial state ofMC with every v0i

being vi mod d.
◦ Accepting states. A state qi1,i2,...,ip ofMC is accepting iff ↵(i1, i2, . . . , ip) mod d is equal to b.
◦ Transitions. There is a transition from state qi1,i2,...,ip (with i1, i2, . . . , ip 2 [0, d − 1]) to state
q⇤k1,k2,...,kp labelled with s in {<,=, >}, if the value of the transition function δ̂(q, hi1, i2, . . . , ipi , s)
is equal to (q⇤,

⌦
i⇤1, i

⇤
2, . . . , i

⇤
p

↵
), where every kj is equal to i⇤j mod d, with j in [1, p].

A similar scheme to the proof of Theorem 11.1.1 can be used to prove that the constructed automaton
indeed represents the set of supporting signatures of C.

11.3 Generation of Constant-Size Automata for

Gap Atomic Relations

Consider a time-series constraint γ(hX1, X2, . . . , Xni , R) and a gap atomic relation C of the form
R = up(R, n) − d with d being a natural number. In this section, we focus on the generation of constant-
size automaton for C. We consider first an illustrative example.

Example 11.3.1 (automaton for a gap atomic relation). Consider the NB_PEAK(hX1, X2, . . . , Xni , R)
time-series constraint and a gap atomic relation C defined by R = up(R, n). In Chapter 7, we showed
that the maximum value of R for a given time-series length n is max

(
0,
⌅
n−1
2

⇧)
. Hence, the automaton for

C must recognise the signatures of all and only time series yielding max
(
0,
⌅
n−1
2

⇧)
as the value of R.

Part (A) of Figure 11.3 gives the minimal automaton accepting the set of signatures reaching this upper
bound, while Part (B) lists all words of length 4 and 5 over the alphabet {‘<’, ‘=’, ‘>’} having the maximum
number of peaks, 2 in this case, that can be obtained from the corresponding automaton. 4

This section is organised as follows:
◦ Section 11.3.1 first introduces the notion of gap of a time series X , which indicates how far apart

the result value of a time-series constraint yielded by X is from the given upper bound; it then
presents the main contribution of this section, namely, the notion of δ-gap automaton for a time-
series constraint, i.e. a constant-size automaton that only accepts integer sequences whose gap is
δ. Second it gives a sufficient condition on the time-series constraint for the existence of such
automaton. Third, it describes how to synthesise such δ-gap automaton.

140 CHAPTER 11. SYNTHESISING CONSTANT-SIZE CONDITIONAL AUTOMATA

1. Section 11.3.1.1 introduces an intermediate notion, the loss of a time series wrt a time-series
constraint, which is the maximum difference between the length of this time series and the
length of a shortest time series yielding the same result value of a time-series constraint. For
example, all words of length 4 (respectively 5) in Part (B) of Figure 11.3 are the signatures of
time series whose gap is 0 and whose loss is 0 (respectively 1). Part (C) of Figure 11.3 gives two
signatures of time series with gap (respectively loss) 1 and 2 (respectively 3 and 5).
It shows how to compute the loss with a register automaton, called loss automaton, and exploits
the connection between the gap and the loss of the same time series as the basis for deriving the
sought δ-gap automaton from the loss automaton.

2. Section 11.3.1.2 introduces a sufficient condition in the form of a conjunction of sufficient con-
ditions on a time-series constraint, called principal conditions, that, when satisfied, guarantee
the existence of the δ-gap automaton.
⇤ When the three first principal conditions hold, describing the set of time series whose gap is
δ is equivalent to describing the set of time series whose loss belongs to a certain interval,
depending on δ.
⇤ When the fourth principal condition holds, there exists a loss automaton whose registers can

either be monotonously increased or reset to a natural number.

3. For a given time-series constraint satisfying the four principal conditions and for any non-
negative integer δ, Section 11.3.1.3 constructively proves the existence of the δ-gap automaton.

◦ Section 11.3.2 introduces a sufficient condition on a regular expression σ such that, when σ satisfies
this condition, the NB_σ family satisfies the principal conditions of Section 11.3.1.2. It also shows
how to obtain a loss automaton for a NB_σ time-series constraint from the seed transducer for σ.
The main idea is to compute the regret of every transition of the seed transducer as a special case of
minimax regret [69, 120] from the decision theory, which gives the minimum additional cost to pay
when one action is chosen instead of another. In CP, the minimax regret has been used for assessing
an extra cost when a variable is assigned to a given value [44].
◦ Section 11.3.3 introduces a sufficient condition on a regular expression σ such that, when σ satis-

fies this condition, the SUM_WIDTH_σ family satisfies the first three principal conditions of Sec-
tion 11.3.1.2.

11.3.1 Deriving a δ-gap Automaton for a Time-Series Constraint

We present the main contribution of this chapter namely a systematic method for deriving a δ-gap
automaton for a time-series constraint, see Definition 11.3.2, satisfying certain conditions that will be given
in Definition 11.3.6. We first introduce the gap of a ground time series in Definition 11.3.1, and the δ-gap

automaton for a time-series constraint in Definition 11.3.2. Let S denote the set of time-series constraints
of the NB_σ and SUM_WIDTH_σ families.

t s

t0 s0

<

>

<

>

= > =<

(A) < > < >
< < > < >
< = > < >
< > < < >
< > < = >
< > < > <

(B) < > < > =

< > < > >
< > = < >
< > > < >
= < > < >
> < > < >

< > < < =

< < = = <
(C)

Figure 11.3 – (A) Automaton achieving the maximum number of peaks in a time series of length n,
i.e. max(0, bn−1

2
c), and (B) all corresponding accepted words for n − 1 2 {4, 5}, where each peak is

surrounded by two vertical bars, and is highlighted in yellow. (C) The signatures of time series with gap 1
and 2, respectively, and with loss 3 and 5, respectively.

11.3. GENERATION OF CONSTANT-SIZE AUTOMATA FOR GAP ATOMIC RELATIONS 141

Definition 11.3.1 (gap of a ground time series). Consider a time-series constraint γ and a ground time series
X of length n. The gap of X wrt γ, denoted by gapγ(X), is a function that maps an element of S ⇥ Z

⇤

to N. It is the difference between the maximum value of R that could be yielded by a time series of length
n, and the value of R yielded by X .

Example 11.3.3 will illustrate the notion of gap for different time series.

Definition 11.3.2 (δ-gap automaton). Consider a time-series constraint γ and a natural number δ. The δ-gap

automaton for γ is a minimal automaton that accepts the signatures of all, and only all, ground time series
whose gap wrt γ is δ.

Definition 11.3.6 will further give a sufficient condition on a time-series constraint γ for the existence
of a δ-gap automaton for γ.

Example 11.3.2 (0-gap automaton). The 0-gap automaton for NB_PEAK was given in Part (A) of Fig-
ure 11.3. It only recognises the signatures of ground time series containing the maximum number of
peaks. 4

To construct the δ-gap automaton for a time-series constraint γ we introduce the notion of loss of a time

series. For a time series of length n, its loss is the difference between n and the length of a shortest time
series yielding the same result value of γ. The main idea of our method for generating δ-gap automata
is that by knowing the loss of a time series, and whether it contains at least one σ-pattern or not, we can
determine its gap.

We now describe how to derive the δ-gap automaton for a time-series constraint γ.
◦ First, Section 11.3.1.1 defines the loss of a ground time series wrt γ, as well as a loss automaton for
γ as a register automaton computing the loss.
◦ Second, Section 11.3.1.2 gives a sufficient condition in the form of conjunction of four conditions

on the gap, the loss and the loss automaton such that, when this conjunction is satisfied, the δ-gap
automaton for γ exists.
◦ Third, Section 11.3.1.3 constructively proves that the δ-gap automaton for γ exists when the con-

junction of conditions of Section 11.3.1.2 is satisfied.

11.3.1.1 Loss and Loss Automaton

Consider a time-series constraint γ and a natural number δ. Definition 11.3.3 introduces the loss of a

time series wrt γ, and Definition 11.3.4 presents the notion of loss automaton for γ.

Definition 11.3.3 (loss of a time series). Consider a time-series constraint γ and a ground time series X of
length n. The loss of X wrt γ, denoted by lossγ(X), is a function that maps an element of S⇥Z

⇤ to N. It is
the difference between n and the length of a shortest time series that yields the same result value of γ as X .

Example 11.3.3 (gap and loss of a time series). We illustrate now the computation of the gap and the loss
on two examples.
◦ Consider the NB_PEAK time-series constraint. From [14], the maximum number of peaks in a time

series of length n is max
(
0,
⌅
n−1
2

⇧)
.

The time series X1 = h1, 2, 1, 2, 1, 2, 1i has a gap of 0 since it contains three peaks, which is
maximum, and a loss of 0 since any shorter time series has a smaller number of peaks. The time
series X2 = h1, 2, 1, 2, 1, 1, 1, 1i has a gap of 1 since it has only two peaks, when three is the
maximum, and a loss of 3 since a shortest time series with 2 peaks is of length 5. The time series
X3 = h1, 1, 1, 0, 0, 1, 1, 1, 1i has a gap of 4 since it has no peaks, when the maximum is 4, and a loss
of 8 since a shortest time series without any peaks is of length 1.

142 CHAPTER 11. SYNTHESISING CONSTANT-SIZE CONDITIONAL AUTOMATA

◦ Consider the SUM_WIDTH_PEAK(X,R) time-series constraint. From [14], the maximum value of
R for a time series of length n is max(0, n− 2).
The time seriesX4 = h1, 2, 2, 3, 2, 1, 0i has a of gap 0 since it yields 5 as the value ofR, and a loss of
0 since any shorter time series yields a smaller value of R. The time series X5 = h1, 2, 3, 2, 1, 2, 1i
has a gap of 1 since it yields 3+1 = 4 as the value ofR, when 5 is the maximum, and a loss of 1 since
a shortest time series yielding 4 as the value of R is of length 6. The time series X6 = h1, 1, 1, 0, 3i
has a gap of 3 since it yields 0 as the value of R, when 3 is the maximum, and a loss of 4 since a
shortest time series yielding 0 as the value of R is of length 1. 4

Definition 11.3.4 (loss automaton for a time-series constraint). Consider a time-series constraint γ. A loss

automaton for γ is a register automaton over the alphabet {<,=, >} with a constant number of registers
such that, for any ground time series X , it returns lossγ(X) after having consumed the signature of X .

For the NB_σ and SUM_WIDTH_σ families of time-series constraints, a loss automaton can be synthe-
sised from the seed transducer for the regular expression σ. For the NB_σ family, this will be explained in
Section 11.3.2.3.

11.3.1.2 Principal Conditions for Deriving a δ-Gap Automaton

Consider a g_f_σ time-series constraint, denoted by γ, and a natural number δ. Definition 11.3.6
formulates a sufficient condition, consisting of a conjunction of four conditions, named principal conditions,
for the existence of the δ-gap automaton for γ. The first three principal conditions express the idea that,
knowing the loss of a time series and, whether it has at least one σ-pattern or not, fully determines the gap
of this time series. The fourth condition requires the existence of a loss automatonM for γ, whose registers
may either monotonously increase, or be reset to a natural number, and each accepting state ofM either
accepts only signatures with at least one occurrence of σ, or accepts only signatures without any occurrence
of σ.

Before formulating the principal conditions, Definition 11.3.5 introduces the notions of before-found
and after-found state of a loss automaton.

Definition 11.3.5 (before-found and after-found states). Consider a loss automatonM for a g_f_σ time-
series constraint. An accepting state q ofM is a before-found (respectively after-found) state, if there exists
a time series X without any σ-patterns (respectively with at least one σ-pattern) such that after having
consumed the signature of X , q is the final state ofM.

Note that an accepting state of a loss automaton can have both statuses.

Definition 11.3.6 (principal conditions). Consider a γ(X,R) time-series constraint. The four principal

conditions on γ are defined as follows:

1. Gap-to-loss condition. There exists a function hγ : S⇥ N⇥ {0, 1} ⇥ N! N, called the gap-to-loss

function, such that for any ground time series X = hX1, X2, . . . , Xni, we have lossγ(X) being equal
to hγ(gapγ(X), sgn(R), n), where sgn is the signum function. Hence, in order to compute the loss of
a ground time series it is enough to know its gap, whether it has at least one σ-pattern or not, and the
length of this time series.

2. Boundedness condition. For given values of gapγ(X) and sgn(R), and for any n in N, the value
of the gap-to-loss function hγ(gapγ(X), sgn(R), n) belongs to a bounded integer interval, called the
loss interval wrt

⌦
gapγ(X), sgn(R)

↵
.

3. Disjointness condition. For a given value of sgn(R), and two different values of gap, δ1 and δ2, the
loss intervals wrt hδ1, sgn(R)i and wrt hδ2, sgn(R)i are disjoint.

4. Loss-automaton condition. There exists a loss automaton M for γ satisfying all the following
conditions:

11.3. GENERATION OF CONSTANT-SIZE AUTOMATA FOR GAP ATOMIC RELATIONS 143

R = max(0, bn−1
2 c)

X1

X2

X3

lossγ(X
3)

ga
p
γ
(X

3
)

n

R

1 2 3 4 5 6 7 8 9
0

1

2

3

4
R = max(0, n− 2)

X4

X5

X6

lossγ(X
6)

ga
p
γ
(X

6
)

n

R

1 2 3 4 5 6 7
0

1

2

3

4

(B)(A)

Figure 11.4 – In both figures the horizontal (respectively vertical) axis represents the time-series length n
(respectively the result value R of (A) NB_PEAK and (B) SUM_WIDTH_PEAK). The red curves show the
maximum value of R for a given n; any point X i with coordinates (ni, Ri) denotes all time series of length
ni yielding Ri as the value of R. The length of the blue (respectively violet) dotted line-segments starting
from X i equals the loss (respectively gap) of X i.

(a) Every register update ofM has one of the following forms:

i. The register is incremented by a natural number, or by the value of another register.

ii. The value of the register is reset to a natural number.

(b) The initial values of the registers ofM are natural numbers.

(c) The acceptance function ofM is a weighted sum with natural number coefficients of the last
values of the registers ofM after having consumed an input signature.

Conditions (4a), (4b), and (4c) are the non-negativity conditions, introduced in Definition 11.1.1.

(d) The sets of before-found states and after-found states of M are disjoint. It means that, by
knowing the final state of M after having consumed the signature of any ground time series
X , we also know the value of sgn(R) yielded by X . This condition is called the separation

condition onM.

Conditions (1), (2) and (3) are called the gap-loss-relation conditions.

Example 11.3.4 (principal conditions). Consider a γ(X,R) time-series constraint. For the time series
X1, X2, X3, X4, X5 and X6 of Example 11.3.3, Part (A) (respectively Part (B)) of Figure 11.4 shows
the relation between the gap, the loss, the time-series lengths, and R when γ is NB_PEAK (respectively
SUM_WIDTH_PEAK). For any time series X i (with i in [1, 6]) of length ni yielding Ri as the value of
R, its gap (respectively loss) is equal to the length of the violet (respectively blue) dotted line-segment
starting from the point X i with coordinates (ni, Ri). Note that the boundedness condition is satisfied for
both NB_PEAK and SUM_WIDTH_PEAK. It is easy to see that the disjointness condition is also satisfied for
both NB_PEAK and SUM_WIDTH_PEAK. 4

11.3.1.3 Deriving the δ-Gap Automaton

Consider a γ time-series constraint satisfying all four principal conditions of Section 11.3.1.2, and a
natural number δ. We prove that the δ-gap automaton for γ exists. First, Lemma 11.3.1 states a necessary
and sufficient condition in terms of loss for a ground time series to have its gap being a given constant when
the gap-loss-relation condition is satisfied. This lemma allows to describe in terms of loss the set of ground
time series whose gap is δ. Then using the result of Lemma 11.3.1, Theorem 11.3.1 constructively proves
that the δ-gap automaton for γ exists.

Lemma 11.3.1 (gap-loss relation). Consider a γ(X,R) time-series constraint such that the gap-loss-relation
conditions, see Definition 11.3.6, are all satisfied, and a natural number δ. Then, for a time series X ,
gapγ(X) is δ iff lossγ(X) belongs to the loss interval wrt hδ, sgn(R)i.

144 CHAPTER 11. SYNTHESISING CONSTANT-SIZE CONDITIONAL AUTOMATA

Proof. The necessity follows from the boundedness condition, see Condition 2, and the sufficiency follows
from the disjointness condition, see Condition 3.

Theorem 11.3.1 (existence of the δ-gap automaton). Consider a g_f_σ(X,R) time-series constraint, de-
noted by γ, such that all four principal conditions, described in Definition 11.3.6, are satisfied. Then the
δ-gap automaton for γ exists.

Proof. Let us denote by M the loss automaton for γ, satisfying the non-negativity and the separation
conditions. Note that such automaton necessarily exists since the loss-automaton condition, see Condition 4
of Definition 11.3.6, is satisfied. We prove the theorem by explicitly constructing a constant-size automaton
AM usingM; after minimising AM we obtain the sought δ-gap automaton.

[Construction of AM] By Lemma 11.3.1, there exist a loss interval Lδ,0 wrt hδ, 0i and a loss interval Lδ,1
wrt hδ, 1i such that any ground time series X , whose gap is δ, belongs to one of the following types:
◦ Type 1. The time series X has no σ-patterns and the value of lossγ(X) is in Lδ,0.
◦ Type 2. The time series X has at least one σ-pattern and the value of lossγ(X) is in Lδ,1.

Hence, our goal is to construct a constant-size automatonAM that recognises the signatures of all, and only
all, ground time series that belongs either to Type 1 or to Type 2.

Let hA1, A2, . . . , Api be the registers ofM, whose initial values are hv1, v2, . . . , vpi, let ↵(A1, A2, . . . , Ap)
denote the acceptance function ofM, and let φ be the maximum element in Lδ,0 [Lδ,1. Then, the states,
the initial state, the accepting states, and the transitions of AM are defined as follows:
◦ States. For every state q of M, there are (φ + 2)p states in AM, each of which is labelled with
qi1,i2,...,ip with every ij (with 1  j  p) being in [0, φ+ 1].
◦ Initial state. If q0 is the initial state ofM, then q0v1,v2,...,vp is the initial state of AM.
◦ Accepting states. A state qi1,i2,...,ip of AM is accepting iff either

1. q is a before-found state ofM and the value of ↵(i1, i2, . . . , ip) is within Lδ,0, or

2. q is an after-found state ofM and the value of ↵(i1, i2, . . . , ip) is within Lδ,1.

◦ Transitions. There is a transition from state qi1,i2,...,ip (with i1, i2, . . . , ip 2 [0, φ + 1]) to state
q⇤k1,k2,...,kp labelled with s in {‘<’, ‘=’, ‘>’}, if the value of the transition function δ̂(q, hi1, i2, . . . , ipi ,
s) is equal to (q⇤,

⌦
i⇤1, i

⇤
2, . . . , i

⇤
p

↵
), where every kj is equal to min(φ+ 1, i⇤j), with j in [1, p].

[Interpretation of the states of AM] If after consuming the signature of some ground time series, the
automaton AM arrives in a state qi1,i2,...,ip , then after consuming the same signature, the loss automatonM
arrives in state q; for every j 2 [1, p], when ij  φ (respectively ij = φ + 1), the register Aj has value
ij (respectively is strictly greater than φ). Hence, the states of AM encode the register values ofM when
consuming the same input signature.
[Size of AM] By construction, the automatonAM has a constant size, i.e. its number of states ism·(φ+2)p,
where m, p and φ are parameters, i.e. independent of the time-series length, respectively defined as:
◦ the number of states ofM,
◦ the number of registers ofM,
◦ the maximum value of Lδ,0 [Lδ,1, where Lδ,0 and Lδ,1 are bounded intervals depending only on the

constraint γ and the gap δ.
We explain whyAM needs onlym·(φ+2)p states to recognise the signatures of all, and only all, ground

time series of either Type 1 or Type 2. By the boundedness condition (Condition 2 of Definition 11.3.6)
and by definition of φ, for any ground time series whose gap is δ, its loss cannot exceed φ. We show that
if, when consuming the signature of some ground time series, the value of some register of M becomes
greater than φ, then we no longer need to know its exact value.

Recall that the acceptance function ↵ ofM is a weighted sum with natural coefficients of the last values
of the registers ofM. If for a register Aj , the corresponding coefficient in ↵ is zero, then it does not affect
the value of ↵, and the exact value of Aj is irrelevant. Otherwise, once the value of Aj exceeds φ, the value

11.3. GENERATION OF CONSTANT-SIZE AUTOMATA FOR GAP ATOMIC RELATIONS 145

of ↵ also exceeds φ, and the loss of such a time series is greater than φ. By the non-negativity conditions, if
the value of Aj exceeds φ it can either increase even more, or it can be reset to a natural constant. In either
case, the exact value of Aj is irrelevant, and it is enough to know a lower bound, φ+ 1, on its value.

[Correctness of AM] We now prove that the constructed automaton AM is sound, i.e. it recognises the
signatures of only ground time series of either Type 1 or Type 2, and complete i.e. it recognises the signatures
of all ground time series of either Type 1 or Type 2.
◦ Soundness of AM. We prove the soundness ofAM by contradiction. Assume there exists a ground

time series X recognised byAM and whose gap is not δ. Let qi1,i2,...,ip be the final state ofAM after
consuming the signature S of X . Due to the non-negativity conditions, by construction of AM this
means that, after consuming S, the register automatonM finishes in the state q ofM, and for every
j 2 [1, p], if ij  φ (respectively ij = φ+1), then the registerAj has value ij (respectively is strictly
greater than φ). By the separation condition onM, the state q ofM is either a before-found or an
after-found state. Since qi1,i2,...,ip is an accepting state of AM, then either q is a before-found state
and ↵(i1, i2, . . . , ip) 2 Lδ,0 or q is an after-found state and ↵(i1, i2, . . . , ip) 2 Lδ,1. In the former
(respectively latter) case, X belongs to Type 1 (respectively Type 2), and by Lemma 11.3.1, the gap
of X is δ, a contradiction.
◦ Completeness of AM. We prove the completeness of AM also by contradiction. Assume there

exists a ground time series X whose gap is δ, i.e. it belongs either to Type 1 or to Type 2, but its
signature S is not recognised by AM. Then,

1. either the final state qi1,i2,...,ip of AM after consuming S is not accepting,

2. or the automaton AM cannot consume the full signature S.

We show that both situations are impossible.
⇤ Impossibility of Situation 1. Due to the non-negativity conditions, and by construction of
AM, after having consumed the signature of X , the automaton M finishes in state q of M,
and the value of the acceptance function is equal to ↵(i1, i2, . . . , ip). Since the gap of X is δ,
by Lemma 11.3.1 and by the separation condition, either q is a before-found state of M and
↵(i1, i2, . . . , ip) belongs to Lδ,0 or q is an after-found state ofM and ↵(i1, i2, . . . , ip) belongs to
Lδ,1. In either case, the state qi1,i2,...,ip ofAM must be accepting by construction, thus Situation 1
is impossible.
⇤ Impossibility of Situation 2. Assume that (1) at a state qi1,i2,...,ip of AM, there does not exist

a transition labelled with some input symbol s, and that (2) AM needs to trigger this transition
when consuming the signature of X . Then, at state q ofM, there does not exist the transition
labelled with s. This contradicts the nature of the loss automaton M since it must compute
the loss for any ground time series, and thus accept any time series. Hence, Situation 2 is also
impossible.

Therefore, both situations are impossible, which implies that the time series X does not exist, and
thus the automaton AM is complete.

Since AM is sound and complete the minimisation of AM gives the sought δ-gap automaton.

11.3.2 Deriving the δ-gap Automaton for the NB_σ Family

First, for the NB_σ family, we show that, when σ has a property, named the HOMOGENEITY property,

the first three principal conditions of Definition 11.3.6 are satisfied. Second, based on the HOMOGENEITY

property we show how to satisfy the fourth principal condition by constructing from the seed transducer
for σ a loss automaton satisfying the loss-automaton condition. Consequently, the constructive proof of
Theorem 11.3.1 can be used to derive the δ-gap automaton.

1. Section 11.3.2.1 introduces the HOMOGENEITY property. Sections 11.3.2.2 and 11.3.2.3 both assume
the HOMOGENEITY property.

146 CHAPTER 11. SYNTHESISING CONSTANT-SIZE CONDITIONAL AUTOMATA

2. Section 11.3.2.2 proves three theorems stating that, the gap-to-loss, the boundedness, and the dis-
jointness conditions are satisfied for NB_σ.

3. Section 11.3.2.3 gives a systematic method for constructing a loss automatonM satisfying the non-
negativity and the separation conditions.

11.3.2.1 The HOMOGENEITY Property

Before giving the HOMOGENEITY property in Property 11.3.1, we introduce the notions of found-
transition and found-path in Definition 11.3.5, which will use in one of the conditions of Property 11.3.1,
and further in Section 11.3.2.3.

Definition 11.3.7 (found-transition, found-path). Consider a seed transducer T. A found-transition of T
is any transition whose output symbol is either found or founde. A found-path in T is any sequence of
consecutive transition containing at least one found-transition.

Example 11.3.5 (found-transition, found-path). Consider the seed transducer T in Part (A) of Figure 11.5.
The transition from r to t is a single found-transition of T. The sequence of transitions from s to r, from r
to t and from t to r is a found-path in T. The sequence of transitions from r to t, and from t to t is also a
found-path in T. 4

Property 11.3.1 (HOMOGENEITY property). A regular expression σ has the HOMOGENEITY property if the
following conditions are all satisfied:

1. The pair hσ, bσi is a recognisable pattern [68], see Definition 5.2.4. This implies that the seed trans-
ducer for σ exists and can be constructed by the method of [68].

2. The regular expression σ has either the NB-overlapping property or the NB-non-overlapping property,
see Properties 7.2.2 and 7.2.3, when there are no restrictions on the domains of time-series variables.
By Theorem 7.2.2, this implies that for the NB_σ(hX1, X2, . . . , Xni , R) time-series constraint, the

maximum value of R is max
⇣

0,
j
n−cσ
dσ

k⌘

, where cσ and dσ are constants depending on σ.

3. For every state q that is the destination of a found-transition, the length of the shortest found-path
starting in q is dσ.

11.3.2.2 Verifying the Gap-Loss-Relation Conditions

This section shows that the gap-loss-relation conditions, see Definition 11.3.6, for a NB_σ time-series
constraint are satisfied, assuming σ has the HOMOGENEITY property. Theorem 11.3.2 proves the gap-to-
loss condition and derives the formula for the gap-to-loss function; Theorem 11.3.3 proves the boundedness
condition and derives the formula of loss interval for a given gap and sign of the result value, and, finally,
Theorem 11.3.4 proves the disjointness condition.

Theorem 11.3.2 (gap-to-loss condition). Consider a NB_σ(X,R) time-series constraint, denoted by γ(X,R),
such that σ has the HOMOGENEITY property. First, the gap-to-loss condition is satisfied for γ. Second, for
any ground time series X of length n, the gap-to-loss function is defined by:

lossγ(X) = gapγ(X) · dσ + (1− sgn(R)) · (min(n, cσ)− 1) + max(0, n− cσ) mod dσ, (11.1)

where sgn is the signum function, and cσ and dσ are the constants from the maximum value of R given in
Property 11.3.1.

Proof. We successively consider two disjoint cases wrt sgn(R).

11.3. GENERATION OF CONSTANT-SIZE AUTOMATA FOR GAP ATOMIC RELATIONS 147

[sgn(R) is zero] We need to prove that lossγ(X) is equal to gapγ(X) · dσ +min(n, cσ)− 1 +max(0, n−
cσ) mod dσ. When R is zero, the loss of X is n − 1 since a shortest time series without any σ-patterns is
of length 1. Thus, we need to show that gapγ(X) · dσ +min(n, cσ)− 1 + max(0, n− cσ) mod dσ is equal
to n − 1. From the maximum value of R, given by the HOMOGENEITY property, we have the following
equality:

gapγ(X) = max

✓

0,

⌊
n− cσ
dσ

⌫◆

−R = max

✓

0,

⌊
n− cσ
dσ

⌫◆

. (11.2)

Let us consider two cases wrt the value of gapγ(X), namely:
◦ gapγ(X) is zero. By (11.2), n < cσ + dσ, and the value of the right-hand side of (11.1) is equal to
min(n, cσ)− 1 + max(0, n− cσ), which is n− 1.
◦ gapγ(X) is positive. Then, by (11.2), n ≥ cσ + dσ, and we have the following equality:

gapγ(X) =

⌊
n− cσ
dσ

⌫

=
n− cσ − (n− cσ) mod dσ

dσ
(11.3)

From (11.3) we obtain the expression for n− 1, which is gapγ(X) · dσ + cσ − 1+ (n− cσ) mod dσ.

[sgn(R) is one] We need to prove that lossγ(X) is equal to gapγ(X) · dσ +max(0, n− cσ) mod dσ. Since
R is positive, n is strictly greater than cσ, and thus max(0, n− cσ) is equal to n− cσ. Further, by definitions
of gap and loss, we have:

gapγ(X) =

⌊
n− cσ
dσ

⌫

−R =
n− cσ − (n− cσ) mod dσ

dσ
−

(n− lossγ(X))− cσ
dσ

(11.4)

Since in the right-hand side of (11.4), both divisions are integer divisions we obtain:

gapγ(X) =
lossγ(X)− (n− cσ) mod dσ

dσ
. (11.5)

By isolating lossγ(X) from (11.5) we obtain the formula of the theorem.

Example 11.3.6 (gap-to-loss condition). Consider a NB_σ(hX1, X2, . . . , Xni , R) time-series constraint
with σ being the PEAK regular expression, which has the HOMOGENEITY property. Hence, we can ap-
ply Theorem 11.3.2 for computing the gap-to-loss function for NB_σ. By Theorem 7.2.2, the maximum
value of R is max

(
0,
⌅
n−1
2

⇧)
, and thus cσ and dσ, are 1 and 2, respectively. Then the gap-to-loss function

for NB_σ is
lossγ(X) = 2 · gapγ(X) + max(0, n− 1) mod 2. 4

Theorem 11.3.3 (boundedness condition). Consider a NB_σ(X,R) time-series constraint, denoted by γ(X,
R), such that σ has the HOMOGENEITY property. First, the boundedness condition is satisfied for γ; second,
for any given gap δ and any value of sgn(R), the loss interval [`min , `max] wrt hδ, sgn(R)i is defined by:
◦ `min = δ · dσ + (1− sgn(R)) · sgn(δ) · (cσ − 1),
◦ `max = dσ · (δ + 1)− 1 + (1− sgn(R)) · (cσ − 1).

Proof. Let X be a ground time series of length n whose gap is δ. From Theorem 11.3.2, we have that
lossγ(X) is δ · dσ + (1 − sgn(R)) · (min(n, cσ) − 1) + max(0, n − cσ) mod dσ. By case analysis wrt the
value of sgn(R), i.e. either 0 or 1, we now show that `min  lossγ(X)  `max .

[sgn(R) is zero] In this case, lossγ(X) simplifies to δ ·dσ+min(n, cσ)−1+max(0, n−cσ) mod dσ. Since
δ · dσ − 1 is a constant, in order to prove that `min (respectively `max) is a lower (respectively upper) bound
on lossγ(X) we need to find the minimum (respectively maximum) of the function z(n) = min(n, cσ) +
max(0, n− cσ) mod dσ.
◦ `min  lossγ(X). We prove that lossγ(X) = δ · dσ + z(n) ≥ `min by case analysis on δ:

148 CHAPTER 11. SYNTHESISING CONSTANT-SIZE CONDITIONAL AUTOMATA

1. [sgn(δ) is zero] As shown in the proof of Theorem 11.3.2, n < cσ+dσ and the minimum value
of the function z(n) is 1, and is reached for n being 1.

2. [sgn(δ) is one] We have n ≥ cσ + dσ, and thus min(n, cσ) is equal to cσ, and the minimum
value of the function z(n) is cσ.

Hence, δ · dσ + sgn(δ) · (cσ − 1) is indeed a lower bound on lossγ(X) when sgn(R) is zero.
◦ `max ≥ lossγ(X). We prove that lossγ(X)  `max . The maximum value of z(n) is cσ + dσ − 1.

Hence, dσ · (δ + 1)− 1 + cσ − 1 is indeed an upper bound on lossγ(X).

[sgn(R) is one] In this case, lossγ(X) simplifies to δ · dσ +max(0, n− cσ) mod dσ. A lower (respectively
upper) bound on (n − cσ) mod dσ is zero (respectively dσ − 1). Hence, `min and `max are, respectively, a
lower and an upper bound on lossγ(X).

Example 11.3.7 (boundedness condition). Consider a NB_σ(X,R) time-series constraint with σ being the
PEAK regular expression. Since σ has the HOMOGENEITY property we can apply Theorem 11.3.3 for
computing the loss interval for NB_σ. Recall that the values of cσ and dσ, are respectively, 1 and 2. Then,
for any value δ of gap and any value of sgn(R), the loss interval wrt hδ, sgn(R)i is [2 · δ, 2 · δ + 1]. 4

Theorem 11.3.4 (disjointness condition). Consider a NB_σ(hX1, X2, . . . , Xni , R) time-series constraint
such that σ has the HOMOGENEITY property. Then the disjointness condition is satisfied for NB_σ.

Proof. The disjointness condition can be proved using the formula of the loss interval of Theorem 11.3.3.
For each value of sgn(R), i.e. either 0 or 1, we take two different values of gap, w.l.o.g. δ and δ + t with a
non-negative integer t, and show that the upper limit of the loss interval wrt hδ, sgn(R)i is strictly less than
the lower limit of the loss interval wrt hδ + t, sgn(R)i. This implies the disjointness condition.

11.3.2.3 Verifying the Loss-Automaton Condition

We focus on the loss-automaton condition for the NB_σ time-series constraints, i.e. we construct a
loss automatonM for NB_σ satisfying the non-negativity and the separation conditions. This is done by
derivingM from a seed transducer for σ, which exists assuming σ has the HOMOGENEITY property [68].
In order to satisfy the separation condition for the loss automaton for NB_σ, we require the seed transducer
for σ be of a specific form that we introduce in Definition 11.3.8.

Definition 11.3.8 (separated seed transducer). Given a regular expression σ, a seed transducer Tσ for σ is
separated iff for any state q of Tσ, one of the two following conditions holds:

1. Any path from the initial state of Tσ to q is a found-path.

2. There are no found-paths from the initial state of Tσ to q.

Example 11.3.8 (separated seed transducer). Part (B) of Figure 11.5 gives the separated seed transducer for
PEAK obtained from the seed transducer in Part (A). 4

Note that, even if the seed transducer for σ constructed by the method of [68] is not separated, it can
be easily made so by duplicating some of its states. Subsequently we assume that the seed transducer for
σ is separated, and we derive the loss automatonM in the same way as we generate register automata for
time-series constraints [22], namely:

1. Section 11.3.2.3.1 identifies the required registers ofM and their role.

2. With each phase letter of the output alphabet of the seed transducer for σ, Section 11.3.2.3.2 associates
a set of instructions, i.e. register updates. The loss automatonM is obtained by replacing every phase
letter of the seed transducer for σ by the corresponding set of instructions.

11.3. GENERATION OF CONSTANT-SIZE AUTOMATA FOR GAP ATOMIC RELATIONS 149

11.3.2.3.1 Identifying the Required Registers of the Loss Automaton Consider a NB_σ time-series
constraint. Intuitively, when consuming the signature of a ground time series, every transition triggered by
the seed transducer Tσ for σ has a certain impact on the loss of this time series. To quantify this impact for
the case of NB_σ time-series constraints, Definition 11.3.9 introduces the notion of regret of a transition

of a seed transducer for σ. The regret of a transition t gives how many additional transitions Tσ has to
trigger, before it can trigger the next found-transition, if it triggers t rather than the transition on a shortest
found-path.

Definition 11.3.9 (regret of a transition). Consider a regular expression σ and its seed transducer Tσ. For
any transition t of Tσ from state q1 to state q2, the regret of t equals one plus the difference between the
lengths of the shortest found-paths from q2, respectively q1.

Example 11.3.9 (regret of a transition). Consider the PEAK regular expression, whose seed transducer is
given in Part (B) of Figure 11.5. We denote by q1

a
−! q2 a transition of the seed transducer from state q1 to

state q2 whose input symbol is a. All transitions in {s
<
−! r, r

>
−! t, t

>
−! r0, r0

<
−! t} have a regret of 0, while

all transitions in {s
>
−! s, s

=
−! s, r

<
−! r, r

=
−! r, t

>
−! t, t

=
−! t, r0

<
−! r0, r0

=
−! r0} have a regret of 1. 4

Lemma 11.3.2 shows the connection between the loss of a ground time series X and the regret of the
transitions triggered by the seed transducer for σ when consuming the signature of X .

Lemma 11.3.2 (regret-loss relation). Consider a γ(X,R) time-series constraint with γ being NB_σ such
that σ has the HOMOGENEITY property. Let t = ht1, t2, . . . , tn−1i denote the sequence of transitions trig-
gered by the seed transducer Tσ for σ upon consuming the signature of X = hX1, X2, . . . , Xni, and let
t⇤ denote the index of the last found-transition in t, if no such transition exists, t⇤ is zero. The following
equality holds:

lossγ(X) = n− 1− t⇤ +
t⇤P

i=1

⇢(ti), where ⇢(ti) denotes the regret of transition ti.

Proof. Since htt⇤+1, tt⇤+2, . . . , tn−1i does not contain any found-transition, it implies that the loss of X is

at least n− 1− t⇤. Then, the sum
t⇤P

i=1

⇢(ti) shows how many additional transitions were triggered to achieve

the same number of found-transitions in the output sequence. Hence, the loss of X is the sum of
t⇤P

i=1

⇢(ti)

and n− 1− t⇤.

Example 11.3.10 (regret-loss transition). Consider the PEAK regular expression, whose separated seed
transducer TPEAK is given in Part (B) of Figure 11.5. Upon consuming the signature of the time series
X = h1, 1, 2, 1, 2, 1, 1, 2, 1, 2i, the seed transducer TPEAK triggers the following sequence of transitions hs

=
−!

s, s
<
−! r, r

>
−! t, t

<
−! r0, r0

>
−! t, t

=
−! t, t

<
−! r0, r0

>
−! t, t

<
−! r0i. The index of the last triggered found-

transition is 8. From Lemma 11.3.2, we obtain lossγ(X) = 10−1−8+(1+0+0+0+0+1+0+0+0) = 3. 4

s

r t

> : out

= : out

< : out

> : found
< : maybeb

= : maybeb

> : in

= : maybea

< : outa

(A)

s r

r0 t

> : out

= : out

< : out

< : maybeb

= : maybeb

> : found

> : in

= : maybea

< : outa

= : maybeb

< : maybeb

> : found

(B)

Figure 11.5 – Seed transducer (A) and separated seed transducer (B) for the PEAK regular expression.

150 CHAPTER 11. SYNTHESISING CONSTANT-SIZE CONDITIONAL AUTOMATA

initial values C 0 D 0 R 0
acceptance function R+ C

phase letters update of C update of D update of R

outr C C + 1 D D + ⇢(t)
outa C C + 1 D D + ⇢(t)
maybeb C C + 1 D D + ⇢(t)
maybea C C + 1 D D + ⇢(t)
found C 0 D 0 R R+D
founde C 0 D 0 R R+D
in C C + 1 D D + ⇢(t)
out C C + 1 D D + ⇢(t)

Table 11.1 – Decoration table for the loss automaton for NB_σ time-series constraints, where ⇢(t) denotes
the regret of a transition t of the seed transducer for σ.

From Lemma 11.3.2, three registers are needed for the loss automaton. Given a prefix of a signature
consumed by the seed transducer, let t⇤ denote the last triggered found-transition:
◦ Register R gives the sum of the regrets of the transitions triggered before t⇤. Note that the regret of
t⇤ is zero.
◦ Register D gives the sum of the regrets of the transitions triggered after t⇤.
◦ Register C gives the number of transitions triggered after t⇤.

The initial value of these three registers is zero. The decoration table, given in the next section, follows
from Lemma 11.3.2.

11.3.2.3.2 Decoration Table of a Loss Automaton As stated in Section 11.3.2.3.1, a loss automaton
for NB_σ has three registers C, D andR. Given a prefix of some signature consumed by the seed transducer
Tσ, let t⇤ denote the last triggered found-transition. When Tσ triggers the transition t we have one of the
two following cases:

1. [t is not a found-transition] Then t⇤ is still the last triggered found-transition. There is one more
transition triggered after t⇤, and the register C must be increased by 1. Further, the value of D should
be increased by the regret of t. Finally, register R remains unchanged.

2. [t is a found-transition] Then t becomes the last triggered found-transition. Since there is no transi-
tion triggered after t, registers C and D must both be reset to 0. Register R must be increased by the
sum of the regrets of all the transitions triggered after t⇤ and before t, i.e. the value of D.

By Lemma 11.3.2, the loss of a time series is the sum between the sum of the regrets of all the triggered
transitions before the last found-transition and the number of transitions triggered after the last found-
transition. This is the sum of the last values of C and R. Table 11.1 summarises how registers are updated.

In order to obtain a loss automaton for a NB_σ time-series constraint, we replace every output letter in
the separated seed transducer for σ with the corresponding set of register updates according to the decoration
table in Table 11.1. The initial value of all the three registers is zero, and the acceptance function is C +R.

Example 11.3.11 (loss automaton). A loss automaton for NB_PEAK, obtained from the seed transducer in
Part (B) of Figure 11.5 and the decoration table in Table 11.1, is given in Figure 11.6. 4

11.3.3 Deriving the δ-gap Automaton for the SUM_WIDTH_σ Family

In the context of the SUM_WIDTH_σ family, we show that, when the regular expression σ has a property,
named the CONTINUITY property, the first three principal conditions of Definition 11.3.6 are satisfied.

11.3. GENERATION OF CONSTANT-SIZE AUTOMATA FOR GAP ATOMIC RELATIONS 151

s r

r0 t

return R+ C

<,=
⇢

C C + 1
D D + 1

}
>,=

⇢
C C + 1
D D + 1

}

<
{
C C + 1

>8

<

:

C 0
D 0
R R+D

9

=

;

>,=
⇢

C C + 1
D D + 1

}
<,=

⇢
C C + 1
D D + 1

}

<
{
C C + 1

>8

<

:

C 0
D 0
R R+D

9

=

;

Figure 11.6 – Loss automaton for NB_PEAK. The initial value of the registers C, D, and R is zero.

In order to derive a loss automaton satisfying the non-negativity and the separation conditions a similar
approach as for the NB_σ family can be applied. We do not detail it here, but it allowed to obtain a loss
automata satisfying the non-negativity and the separation conditions for the 17 SUM_WIDTH_σ time-series
constraints of [10]. The main problem for generating loss automata for the SUM_WIDTH_σ family is that
we cannot use the seed transducers of [22] because of the mix of the quantitative and the qualitative aspects
in those seed transducers, i.e. the parameter bσ is encoded into the seed transducers of [22]. One of the
consequences of such mix is that when a seed transducer consumes the signature of a time series it cannot
detect whether a current signature symbol belongs to an occurrence of a regular expression or not. For
example, in the seed transducer given in Part (A) of Figure 11.5, the transition from s to r is labelled with
out whereas the consumed signature symbol ‘<’ may belong to an occurrence of the regular expression,
and this out is different from the one on the transitions from s to s. The new seed transducers, which will
be presented in Chapter 12 does not have this problem, and can be used for generating the loss automata for
the constraints of the SUM_WIDTH_σ family.

1. Section 11.3.3.1 introduces the CONTINUITY property.

2. Assuming the CONTINUITY property, Section 11.3.3.2 proves three theorems stating that, the gap-to-
loss, the boundedness, and the disjointness conditions are satisfied for SUM_WIDTH_σ.

11.3.3.1 The CONTINUITY Property

Property 11.3.2 introduces the CONTINUITY property of a regular expression.

Property 11.3.2 (CONTINUITY property). A regular expression σ has the CONTINUITY property iff σ has
the WIDTH-sum property, see Property 7.3.2, when there are no restrictions on the domains of time-series
variables. It implies that, for the SUM_WIDTH_σ(hX1, X2, . . . , Xni , R) time-series constraint, the maxi-
mum value of R is equal to n− bσ − aσ if n > !σ, and is 0, otherwise.

11.3.3.2 Verifying the Gap-Loss-Relation Conditions

This section shows that the gap-loss-relation conditions, see Definition 11.3.6, for a SUM_WIDTH_σ
time-series constraint are satisfied, assuming σ has the CONTINUITY property. Lemma 11.3.3 first proves
that, when the result of SUM_WIDTH_σ is zero, some gaps are infeasible. Then Theorem 11.3.5 proves
the gap-to-loss condition and derives the formula for the gap-to-loss function. Theorem 11.3.6 proves the
boundedness condition and derives the formula of the loss interval for a given gap and sign of the result
value, and finally, Theorem 11.3.7 proves the disjointness condition.

Lemma 11.3.3 (infeasible gap values). Consider a γ(X,R) time-series constraint such that γ belongs to
the SUM_WIDTH_σ family and σ has the CONTINUITY property. Then there does not exist a ground time
series X such that

152 CHAPTER 11. SYNTHESISING CONSTANT-SIZE CONDITIONAL AUTOMATA

◦ it yields zero as the value of R, and
◦ gapγ(X) belongs to the interval [1, !σ − bσ − aσ], where !σ is the size of σ.

Proof. We prove the lemma by contradiction. Assume that there exists a ground time series X of length n
yielding zero as the value ofRwhose gap belongs to the interval [1, !σ−bσ−aσ]. Then, by Definition 11.3.1,
gapγ(X) is the maximum value of R for a time series of length n. However, this is not possible since the
smallest width of a σ-pattern is !σ − bσ − aσ + 1, which is strictly greater than gapγ(X).

Theorem 11.3.5 (gap-to-loss condition). Consider a SUM_WIDTH_σ(X,R) time-series constraint, denoted
by γ(X,R), such that σ has the CONTINUITY property. First, the gap-to-loss condition is satisfied for γ.
Second, for any ground time series X of length n, the gap-to-loss function is defined by:

lossγ(X) =

8

><

>:

n− 1 if sgn(R) = 0 and gapγ(X) = 0, (11.6)

gapγ(X) + aσ + bσ − 1 if sgn(R) = 0 and gapγ(X) > !σ − bσ − aσ, (11.7)

gapγ(X) if sgn(R) = 1. (11.8)

Proof. By Lemma 11.3.3, when sgn(R) is zero there does not exist a ground time series whose gap would
be in [1, !σ − bσ − aσ]. Hence, we do not need to define our gap-to-loss function for these values. We
successively consider two disjoint cases wrt sgn(R).

[sgn(R) is zero] Since a shortest ground time series yielding zero as the value of R is of length 1, the loss
of X is n− 1. This gives the formula in (11.6).

When gapγ(X) is positive, n is strictly greater than !σ, and from the CONTINUITY property, the maxi-
mum value of R is equal to n− bσ − aσ. By Definition 11.3.1, gapγ(X) is equal to the difference between
the maximum value of R for a ground time series of length n, and the value of R on X . Hence, gapγ(X) is
equal to n− bσ − aσ, and is equal to lossγ(X) + 1− bσ − aσ. From this equality, we can isolate lossγ(X),
which is gapγ(X) + aσ + bσ − 1, namely formula in (11.7).

[sgn(R) is one] By definition of gap and from the CONTINUITY property, the value of gapγ(X) is equal to
n− bσ− aσ−R. Let k denote the length of a shortest time series such that there exists a ground time series
of length k yielding the same value of R as X . Then the loss of X is equal to n − k. Further, the value of
R is equal to k − bσ − aσ, and thus gapγ(X) is equal to n − k. Hence, gapγ(X) is equal to lossγ(X), i.e.
formula in (11.8).

Theorem 11.3.6 (boundedness condition). Consider a SUM_WIDTH_σ(X,R)) time-series constraint, de-
noted by γ(X,R), such that σ has the CONTINUITY property. First, the boundedness condition is satisfied
for γ; second, for any given gap δ and any value of sgn(R), the loss interval [`min , `max] wrt hδ, sgn(R)i is
defined by:

`min =

8

><

>:

0 if sgn(R) = 0 and δ = 0,

δ + aσ + bσ − 1 if sgn(R) = 0 and δ > !σ − bσ − aσ,

δ if sgn(R) = 1,

`max =

8

><

>:

!σ − 1 if sgn(R) = 0 and δ = 0,

δ + aσ + bσ − 1 if sgn(R) = 0 and δ > !σ − bσ − aσ,

δ if sgn(R) = 1.

Proof. [sgn(R) = 0 and δ = 0] Consider a ground time series X of length n yielding zero as the value
of sgn(R) and whose gap is 0. In this case, n is less than or equal to !σ, the size of σ. By Theorem 11.3.5,
the loss of X is equal to its length minus 1. Hence, it gives us the loss interval [0, !σ − 1].

11.4. GENERATION OF CONSTANT-SIZE AUTOMATA FOR ≥ AND  ATOMIC RELATIONS 153

[sgn(R) = 1 or δ > !σ − bσ − aσ] When sgn(R) = 1 or sgn(R) = 0 and δ > !σ − bσ − aσ, by
Theorem 11.3.5, there is a bijection between the values of lossγ(X) and gapγ(X). Hence, the loss interval
contains a single value, which is the value of the gap-to-loss function for given values of sgn(R) and
gapγ(X).

Theorem 11.3.7 (disjointness condition). Consider a SUM_WIDTH_σ time-series constraint such that σ has
the CONTINUITY property. The disjointness condition holds for SUM_WIDTH_σ.

Proof. It follows from the formulae of the loss interval of Theorem 11.3.6.

11.3.4 Conclusion

We presented a systematic approach for generating δ-gap automata for time-series constraints, and
demonstrated its applicability for the NB_σ and the SUM_WIDTH_σ families. We used the obtained au-
tomata for creating a database of invariants on conjunctions of time-series constraints.

Although, we did this work in the context of time-series constraints, the same method can be used
for generating δ-gap automata for any constraint satisfying the four principal conditions. As an example,
consider the NB_GROUP(hX1, X2, . . . , Xni , R, P) constraint, where hX1, X2, . . . , Xni is a sequence of
integer variables, R is an integer variable, and P is a finite subset of integer numbers. This constraint
restricts R to be the number of maximal subsequences of X whose elements are in P . For example, the
NB_GROUP(h1, 3, 4, 1, 0, 9, 0i , 3, h0, 1i) constraint holds. If P is not empty, then a sharp upper bound on
R is

⌅
n
2

⇧
, and it can be shown that all the four principal conditions are satisfied for NB_GROUP. Hence by

Theorem 11.3.1 for any natural δ, the δ-gap automaton for NB_GROUP exists and can be constructed by the
method given in the proof of Theorem 11.3.1.

11.4 Generation of Constant-Size Automata for

Not-Less ant Not-Greater Atomic Relations

Consider a time-series constraint γ(X,R) and two atomic relations C1 and C2 of the form R ≥ d1 and
R  up(R, n) − d2, respectively, with d1 and d2 being non-negative integer constants. In this section, we
focus on the generation of constant-size automataMC1 andMC2 forC1 andC2, respectively. The main idea
of our method for generation ofMC2 (respectivelyMC2) is to use automata for constant (respectively gap)
atomic relations, and automaton operations such as union, intersection, and complement, see Section 3.2.

Our algorithms for obtaining the automataMC1 andMC2 are very similar and both have 3 steps. Hence
we now give both algorithms in parallel by making explicit in the brackets before a step for which automaton
this step applies.

1. [ConstructingMC1] Construct the automatonMi for every R = i constant atomic relation (with i in
[0, d1 − 1]) using the method of Section 11.1.

[ConstructingMC2] Construct the automatonMup−i for every R = up(R, n)− i gap atomic relation
(with i in [0, d2 − 1]) using the method of Section 11.3.

2. [ConstructingMC1] Take the unionM<d1 of allMi, which is an automaton for the R  d1 atomic
relation. If the interval [0, d1 − 1] is empty, i.e. d1 is 0, then the automatonM<d1 is empty.

[Constructing MC2] Take the union M>up−d2 of all Mup−i, which is an automaton for the R >
up(R, n)− d2 relation. If the interval [0, d2− 1] is empty, i.e. d2 is 0, then the automatonM>up−d2 is
empty.

154 CHAPTER 11. SYNTHESISING CONSTANT-SIZE CONDITIONAL AUTOMATA

3. [ConstructingMC1] Take the complementM≥d1 ofM<d1 , which is the desired automaton for the
R ≥ d1 not-less atomic relation.

[ConstructingMC2] Take the complementMup−d2 ofM>up−d2 , which is the desired automaton for
the R  up− d2 not-greater atomic relation.

11.5 Conclusion

In this chapter, we presented systematic methods for generating conditional automata for five different
types of atomic relations, namely constant atomic relations, modulo atomic relations, gap atomic relations,
and not-less and not-greater atomic relations. Since all these automata have a number of states and an input
alphabet that do not depend on the length of an input sequence these automata will allow us to prove the
validity of synthesised non-linear invariants, described in Chapter 10, that are valid for any sequence length.

Summary of this Chapter:

The main contribution of this chapter is a systematic method for generating constant-size automata
for different atomic relations of Chapter 10. Most of the construction schemes are straightforward,
the only exception is automata for gap atomic relations, which required the introduction of the notions
of loss of an time series and loss automata for a time-series constraints as well as principal condi-
tions. The principal conditions define a class of constraints, for which our method for generating gap
automata is applicable.

Chapter 12

Extended Transducer-Based Model

This chapter is the result of a collaboration with (in alphabetic order) Nicolas Bedliceanu, Mats Carls-
son, Rémi Douence, Pierre Flener, María Andreína Francisco Rodríguez, Justin Pearson, and Helmut Si-
monis. The author of this thesis was one of the main researchers and writers of this work.

Motivated by representing a large number of sequence constraints, such as [25, 108], we extend an
initial work [22, 10] that uses a manually designed transducer [119] on the way to automatically inducing a
decomposition of a time-series constraint. Our aim is a concise normalised representation that is expressive
enough to capture declaratively many sequence constraints, namely those constraining an aggregation of
integer features of all maximal occurrences of a regular expression within an integer sequence, such as the
minimal width of all its plateaus.

Our contribution is a regular-expression-based representation for such constraints. From such a rep-
resentation, a seed transducer can be generated automatically. We not only extend the set of time-series
constraints of [22, 10], but also cover most sequence constraints of the Global Constraint Catalogue [21],
such as [25, 108].

From a transducer, a register automaton describing the computation of the function can be synthe-
sised [22]. From a register automaton, a decomposition of the represented constraint in terms of basic
constraints can be induced [20].

The chapter is organised as follows:
◦ Section 12.1 defines our regular-expression-based representation of the considered sequence con-

straints.
◦ Section 12.2 gives an operational view of such constraints, using for the regular expression a trans-

ducer whose output alphabet is a set of instructions denoting the computations for each phase of
recognising all maximal occurrences of the regular expression within a sequence. The instructions
use registers for recording information about past maximal occurrences of the regular expression,
the current possibly unfinished maximal occurrence, and the hypothetical next maximal occurrence.
◦ Finally, Section 12.3 summarises our contributions and concludes.

12.1 Defining Functions over Integer Sequences

To define a function over integer sequences, we introduce the notion of an abstract pattern, which is a
regular expression defined over an abstract alphabet. Further, we present the notion of a concrete pattern
that can be associated with an abstract pattern. Then, we describe the parameters of a function over integer
sequences, one of them being a concrete pattern. Afterwards, we restrict the values of the parameters
describing a function wrt the considered pattern, in order to locate unambiguously each pattern occurrence
and to avoid overlapping pattern occurrences. Finally, we define the evaluation of a function over integer
sequences.

155

156 CHAPTER 12. EXTENDED TRANSDUCER-BASED MODEL

Definition 12.1.1 (abstract/concrete alphabets and pattern). The abstract alphabet A of k letters is the set
{0, 1, . . . , k−1}. A concretisation of A is a bijection fromA to a set {a0, a1, . . . , ak−1}, called the concrete

alphabet. An abstract pattern over a finite abstract alphabet A is a regular expression over A. A concrete

pattern is obtained from an abstract pattern over an abstract alphabet A by applying a concretisation of A.

Example 12.1.1 (abstract/concrete alphabets and pattern). Consider the abstract alphabet A = {0, 1} and
its concretisation C mapping 0 to ‘/2’ and 1 to ‘2’. The concrete pattern ‘22⇤’ is obtained by applying C
to the abstract pattern ‘11⇤’.

Definition 12.1.2 (parameterised function over integer sequences). A function over integer sequences F is
parameterised by h ,Si, hf, g, hi, hb, ai, hbalancei, and hskip0, skip1i, where:
◦ is a concrete pattern over a concrete alphabet Σ, and S is a total surjective function of arity p 2 N,

called the signature function, mapping Z
p to Σ;

◦ f , g, and h are respectively one of the features one, width, surf, max, min, range, one of the
primary aggregators sum, max, min, SumIf, CountIf, and one of the secondary aggregators Id, max,
min defined in Table 12.1;
◦ b and a are non-negative integers, whose role is to trim the left and right borders of maximal occur-

rences of the pattern in an integer sequence;
◦ balance 2 {0, 1} indicates whether, for computing the feature value, we use only f (value 0) or both
f and −f (value 1);
◦ skip1 (respectively skip0) with skip0 [skip1 ⇢ Σ and skip0 \ skip1 = ; is a subset of skipped

(respectively possibly skipped) symbols when computing the value of f depending on the phase of
recognising when computing function F on an integer sequence.

Example 12.1.2 (parameterised function over integer sequences). Consider a function over integer se-
quences with the following parameters:
◦ The concrete pattern is ‘22⇤’ over the alphabet Σ = {2, /2}. For any integer sequence X =
hX1, X2, . . . , Xni, the signature function S of arity 1 is defined as follows:

S(Xi) =

(

‘2’ if Xi 2 {1},

‘/2’ if Xi /2 {1}.

◦ The feature f is width, the aggregator g is max, and the secondary aggregator is Id.
◦ The value of b and a is zero.
◦ The value of balance is 0.
◦ The sets skip0 and skip1 are empty. 4

Before defining the result value of a function over integer sequences, we extend the notions of e-

occurrence, see Definition 5.1.1, which now depends on the new parameters skip0 and skip1, which allow
us to skip some positions inside a pattern occurrence.

Definition 12.1.3 (s-occurrence). Consider a concrete pattern over a concrete alphabet Σ, a sequence
S = hS1, S2, . . . , Smi over Σ, and a subsequence hSi, Si+1, . . . , Sji, with 1  i  j  m, forming a
maximal word in S that matches . The s-occurrence of S is the index sequence hi, i+ 1, . . . , ji, denoted
by (i..j).

Example 12.1.3 (s-occurrence). We give examples of s-occurrences of two different concrete patterns 1

and 2.
◦ Consider the 1 = ‘22⇤’ concrete pattern over the {2, /2} concrete alphabet. Then the sequence
h2, /2, /2,2,2, /2, /2, /2i contains two s-occurrences of 1, namely (1..1) and (4..5).
◦ Consider the 2 = ‘< (< | =)⇤(= | >)⇤ >’ concrete pattern over the {<,=, >} concrete alphabet.

Then the sequence h=,=, <,=, >,>,=, <,>,<,=, <,>,=i contains three s-occurrences of 2,
namely (3..6), (8..9), and (10..13). 4

12.1. DEFINING FUNCTIONS OVER INTEGER SEQUENCES 157

Definition 12.1.4 (found index, e-occurrence, i-occurrence). Consider a function F over integer sequences
whose signature function S is of arity p, a concrete pattern over an alphabet Σ, two integer constants ‘b’
and ‘a’, a subset skip0 of Σ, and an integer sequence X = hX1, X2, . . . , Xni whose signature sequence is
S = hS1, S2, . . . , Sn−p+1i wrt S . For any s-occurrence (i..j) of in S:
◦ the found index is the smallest index k in the interval [i, j] such that the word SiSi+1 . . . Sk belongs

to L ;
◦ the e-occurrence is a set of indices in {i+ b, . . . , j+ p− 1− a} such that an index m belongs to the

e-occurrence iff both conditions hold:

1. The signature symbol Sm is not in skip1.

2. If m < k and Sm is in skip0, then there exists a signature symbol St /2 skip0 with m < t < k.

◦ the i-occurrence is the index sequence hi+b, i+b+1, . . . , j+p−1i, denoted by [(i+ b)..(j + p− 1)].

Example 12.1.4 (found index, e-occurrence, i-occurrence). Consider the function over integer sequences
F whose signature function has its arity p being 2, concrete pattern is 2 from Example 12.1.3, the integer
constants b and a both are zero, the set skip0 is {=}, and the set skip1 is empty. As we have shown in Exam-
ple 12.1.3, the h=,=, <,=, >,>,=, <,>,<,=, <,>,=i signature sequence contains three s-occurrences
of , namely (3..6), (8..9), and (10..13). Table 12.2 gives the found index, the e-occurrence and the i-
occurrence corresponding to each of the three s-occurrences. 4

Definition 12.1.5 (well-formed function). A functionF parameterised by h ,Si, hf, g, hi, hb, ai, hbalancei,
and hskip0, skip1i is well-formed iff:

f = range) 8X 2 Z
⇤, 8 e-occurrence {i1, i2, . . . , i`} of X (12.1)

(Xi1  Xi2  · · ·  Xi` _ Xi1 ≥ Xi2 ≥ · · · ≥ Xi`)

balance = 1) (f = width _ f = surf) ^ a = 0 (12.2)

b < min
w2L

|w| ^ b+ a < min
w2L

|w|+ p− 1 (12.3)

b ≥ o (12.4)

a  p ^ skip1 6= ;) a ≥ p− 1 (12.5)

8p 2
−!
 , 8w 2 L , 9v1, v2 2 Σ⇤ (p = v1wv2) v1w 2 L) (12.6)

9c 2 Z (µ  c) (12.7)

f value idf minf maxf

one 1 0 n/a n/a
width j − i+ 1 0 0 n+ 1

surf
jP

k=i
Xk 0 −1 +1

max max
k2[i,j]

Xk −1 −1 +1

min min
k2[i,j]

Xk +1 −1 +1

range

0

B
B
@

max
k2[i,j]

Xk

−
min
k2[i,j]

Xk

1

C
C
A

0 0 +1

g value idg,f

sum
mP

k=1

fk 0

max max
k2[1,m]

fk minf

min min
k2[1,m]

fk maxf

SumIf
mP

k=1
(fk ◦ q) · fk 0

CountIf
mP

k=1

(fk ◦ q) 0

h value idhf,g

Id idg,f idg,f
maxmax(max

k2[1,m]
gk, idg,f)idg,f

minmin(min
k2[1,m]

gk, idg,f) idg,f

Table 12.1 – Consider a sequence X = hX1, X2, . . . , Xni. Left: features, their values computed from
a subsequence hXi, Xi+1, . . . , Xji, their neutral, minimum and maximum values. Centre (respectively
right): primary aggregators (respectively secondary aggregators), their values computed from a sequence
hf1, f2, . . . , fmi (respectively hg1, g2, . . . , gmi), and their identity values. Here, q is an integer parameter,
and ◦ is a comparison operator.

158 CHAPTER 12. EXTENDED TRANSDUCER-BASED MODEL

s-occurrence (3..6) (8..9) (10..13)
found index 5 9 13
e-occurrence {3, 6, 7} {8, 9, 10} {10, 11, 12, 13, 14}
i-occurrence [3..7] [8..10] [10..14]

Table 12.2 – The three s-occurrences of the ‘< (< | =)⇤(= | >)⇤ >’ concrete pattern in the
h=,=, <,=, >,>,=, <,>,<,=, <,>,=i signature, and their corresponding found indices, e-occurrences
and i-occurrences.

8s 2 Σ (s 2 skip0 [skip1))

8w 2 L (s /2 −!w) ^ (12.8)

8w 2 L (s /2 −w) ^ (12.9)

8w1, w2 2 L , 8z 2 Σ⇤ (z 2 −!w1 ^ z 2
 −w2) s /2 !z) ^ (12.10)

8w 2
−!
 , 8e 2 Σ, 8z 2 Σ⇤((we /2

−!
 ^ z 2 −we ^ z 2

−!
)) s /2 !z) (12.11)

" 2 L) 8e 2 Σ (e 2 L) ^ a = p− 1 (12.12)

To compute incrementally the value of the range feature Condition 12.1 enforces monotonous patterns.
Condition 12.3 enforces every i-occurrence of to be non-empty. Condition 12.4 imposes disjointness of
any two i-occurrences of . As we will see in Section 12.2.2.3, Condition 12.5 is required to compute
the value of F from an integer sequence X by reading the signature sequence of X from left to right and
by accessing one signature symbol at a time. By Condition 12.6, there is discontinuity in recognition of
 , and it allows us to avoid any regular expression whose language contains words v and w such that
v is a proper factor of w, and after having read a prefix of w whose suffix is v we cannot decide whether
v or w is a maximal occurrence of . While extracting an occurrence of the pattern for any possible
mismatch, we need to know in advance the suffix length to keep, which is ensured by Condition 12.7.
Condition 12.8 (respectively Condition 12.9) states that the first (respectively last) letter of any word in the
language of cannot be skipped. By Condition 12.10 symbols simultaneously belonging to two maximal
occurrences of cannot be skipped, and by Condition 12.11 symbols in a mismatch cannot be skipped
either. Condition 12.12 is motivated by the fact that, when " belongs to L , then any sequence contains
at least one occurrence of a pattern, even if its length is smaller than p. Definition 12.1.6 shows how this
condition is used.

We now define the result value of a function F over integer sequences.

Definition 12.1.6 (function evaluation). Consider a function F parameterised by h ,Si, hf, g, hi, hb, ai,
hbalancei, hskip0, skip1i. For any integer sequence X , the result of F from X is (R1, R2) if h 6= Id, R1

otherwise, where R1 (respectively R2) is obtained by applying the aggregator g (respectively h) to the list
hf1, f2, . . . , fti (respectively hg1, g2, . . . , gti), where every gi is equal to g(f1, f2, . . . , fi), and every fi is
computed from to the e-occurrence i {i1, . . . , i`} as follows:
◦ If balance is 0, then fi is equal to f(Xi1 , Xi2 , . . . , Xi`).
◦ If balance is 1, then fi is equal to |f(Xi1 , Xi2 , . . . , Xik−1

,−Xik+p−1
, . . . ,−Xi`)|, where ik is the

found index of the s-occurrence i of .
If the signature ofX does not contain any s-occurrences of , thenR1 (respectivelyR2) is equal to idg,f

(respectively idhf,g) according to Table 12.1. Note that when " 2 L , we add a sequence of p − 1 arbitrary
integers at the end of the input sequence.

Example 12.1.5 (function evaluation). Table 12.4 provides seven examples of well-formed functions. In
examples ¨ and ≠, the same abstract alphabet is associated with several concrete alphabets, and even with

12.2. OPERATIONAL VIEW OF FUNCTIONS OVER INTEGER SEQUENCES 159

f φf δi
f

one 1 1
width λy, x.x+ y 1
surf λy, x.x+ y Xi
max λy, x.max(x, y) Xi
min λy, x.min(x, y) Xi
range λy, x.x+ y |Xi −Xi+1|

g φg

max λy, x.max(x, y)
min λy, x.min(x, y)
sum λy, x.x+ y
SumIf λy, x.(x ◦ q?y + x : y)
CountIf λy, x.(x ◦ q?y + 1 : y)

h φh

max λy, x.max(x, y)
min λy, x.min(x, y)
Id λy, x. y

Table 12.3 – (Left) Features and their operators φf and δif . (Center) (respectively Right) Aggregators (re-
spectively secondary aggregators) and their operators φg (respectively φh), where ◦ stands for a comparison
operator and q for an integer.

Abstract
alphabet

Abstract
pattern

Arity Concrete
alphabet

Concrete
pattern

Concrete
function

...

h0, 1i 11⇤ 2 h, >i >>⇤ hone, sum, Id, 0, 0, 0, ;, ;i ¨

1 h/2,2i 22⇤ hwidth, max, Id, 0, 0, 0, ;, ;i ≠

h0, 1, 2i 0(1|0)⇤(2|1)⇤2 2 h<,=, >i < (= | <)⇤(> | =)⇤ > hsurf, max, Id, 0, 0, 1, {=}, ;i Æ

2 h>,=, <i > (= | >)⇤(< | =)⇤ < hwidth, sum, Id, 1, 1, 0, ;, ;i Ø

h0, 1i 1⇤0|1⇤ 2 h=, 6=i =⇤ 6= | =⇤ hone, sum, Id, 0, 1, 0, ;, ;i ∞

h0i 0 1 h>i > hsurf, sum, min, 0, 0, 0, ;, ;i ±

h0, 1i 1 k h/2,2i 2 hone, sum, Id, 0, 0, 0, ;, ;i ≤

Table 12.4 – Examples of functions, where F¨,F≠, . . . ,F≤ stand for NB_STRICTLY_DE- CREASING_SEQUENCE,
MAX_WIDTH_GROUP, MAX_SURF_BALANCE_PEAK, SUM_WIDTH_VALLEY, NB_STRETCH, MIN_SUM_SURF_TRUE and
NB_IN.

signatures of different arities: in ¨, sig2(Xi, Xi+1) = ‘’, Xi  Xi+1 ^ sig2(Xi, Xi+1) = ‘>’, Xi >
Xi+1, while in ≠, sig1(Xi) = ‘/2’ , Xi /2 V ^ sig1(Xi) = ‘2’ , Xi 2 V where V is a set of integers.

F¨

⇣D

1, 1,0 , 0, 1,0 , 0, 1
E⌘

= 2 since we have two maximal occurrences of ‘>>⇤’ (highlighted in grey),

and F≠

⇣D

0, 1 , 0, 1,1
E⌘

with V = {1} is equal to 2 since the maximum number of consecutive ones is

2 (also highlighted). The patterns associated with Æ and Ø correspond to the PEAK and VALLEY regular

expressions. FÆ

⇣D

0,1,1,1 , 2, 1,0 , 0,1 , 2, 2, 1,1,0
E⌘

= 2, i.e. the maximum difference max(| 3 −

1 |, | 1 − 2 |) of the surface located before/after each peak with 5 (respectively 11) being the found index

of the first (respectively second) s-occurrence. FØ

⇣D

0, 1, 0 , 1, 1, 1, 0,0,0 , 1
E⌘

= 4, the sum of the widths

1 + 3 of the 2 valleys.

F∞

⇣D

0 , 1,1,1 , 0 , 1 , 0 , 1
E⌘

= 6 since we have 6 maximal groups of consecutive identical values.

Note that F∞(h0i) = 1 since, from Condition 12.12 of Definition 12.1.6, when " 2 L=⇤ 6=|=⇤ and the arity of
the signature is 2, we add one integer value at the end of the input sequence.

In ±, sig1(Xi) = ‘>’ means that every index i of the signature sequence of any input sequence X is
an e-occurrence. F±(X) = h0, 0i, where Xi = 1 (respectively Xi = −1) represents an opening (respec-
tively closing) parenthesis models well-formed expressions with parentheses.

In ≤, given low , up in Z, sigk(Xi, Xi+1, . . . , Xi+k−1) = ‘2’ ,
Pi+k−1

↵=i X↵ 2 [low , up]. F≤(X)
returns the number of sliding sequences of k consecutive values of X , whose sum is located in the interval
[low , up]. 4

12.2 Operational View of Functions Over Integer Sequences

To evaluate a function F wrt an integer sequence X , i.e. see Definition 12.1.6, we need to 1) find all
s-occurrences of the pattern of F in the signature sequence of X , and 2) obtain the corresponding e-
occurrences to compute the feature values and aggregate them. The qualitative (respectively quantitative)

160 CHAPTER 12. EXTENDED TRANSDUCER-BASED MODEL

part 1) (respectively part 2)) is called the recognition (respectively computational) aspect of F . Note that
the recognition aspect of F is only related to its pattern and its alphabet Σ.

We describe in Section 12.2.1 an extended seed transducer, for dealing with the recognition aspect of
F . Then we show in Section 12.2.2 how the computational aspect of F is handled by a reduced instruction

set based on the output alphabet of the seed transducer. This set of instructions is parameterised by all the
parameters of F , except the pattern . It allows one to synthesise a register automaton with a constant
number of registers, which returns the value of F from an integer sequence X after having consumed the
signature sequence of X . Hence it takes linear time in the length fo X to compute the value of F from X .

12.2.1 Handling the Recognition Aspect: Seed Transducer

To find all s-occurrences of a pattern in an integer sequence, in the corresponding signature sequence,
we extend the notion of seed transducer that was recalled in Section 5.2.1.

First, we describe a seed transducer for an abstract pattern, and show how to obtain the seed transducer
for any concrete pattern from the seed transducer for the corresponding abstract pattern. Second, we give
the conditions of well-formedness of a seed transducer wrt any given pattern, as well as wrt a given abstract
pattern.

12.2.1.1 Describing the Seed Transducer of an Abstract Pattern

Consider an abstract pattern σ, i.e. a regular expression over an abstract alphabet A. We recall that
a seed transducer for σ is a deterministic finite transducer where each transition is labelled with (1) a
symbol in the input alphabet A, called the input symbol, and (2) a word made from symbols in the output
alphabet Ω, called the output word. Hence, a seed transducer consumes an input sequence of symbols in
A and produces an output sequence where each element in Ω is called a phase letter. Consider different
possibilities of the produced output symbols when consuming a symbol Si of some input signature sequence
hS1, S2, . . . , Sn−p+1i.
• [out]: corresponds to no occurrence of σ.
• [maybekr with k being an integer constant]: indicates the potential new occurrence of σ that has at

least k transitions.
• [maybeb]: indicates the continuation of a potential new occurrence of σ.
• [outr]: reflects the fact that the previous potential occurrence of σ is not a true occurrence of σ.
• [found]: denotes the discovery of a new occurrence of σ.
• [maybea]: indicates the potential extension of the latest discovered occurrence of σ.
• [in]: corresponds to the extension of the latest discovered occurrence of σ.
• [outa]: corresponds to the end of the latest discovered occurrence of σ.

Besides the phase letters in and maybea whose meaning was left unchanged compared to the seed
transducers described in Section 5.2.1, we have the following modifications:
• Some transitions that were labelled with out are now labelled with maybeb. For example, in [22],

given the pattern ‘>><>>’ this was the case for the two transitions recognising the first two occur-
rences of ‘>’; but to make the seed transducer independent of b they are now labelled with maybeb.
• The letter maybekr was not in the output alphabet of [22]. It has been added in order to capture

patterns that require to restart from a small fixed suffix after a mismatch. It also replaces the first
occurrence of maybeb.
• Furthermore, since in [22], any seed transducer could only produce a single phase letter per transi-

tion, the authors had to introduce the letter founde, which was a combination of found and outa.
In our new model, this phase letter has disappeared since it is no longer needed. In fact, the same
transition may now be labelled with more than one phase letter. For example, given the pattern
σ = ‘>><>>’, the transition associated with the recognition of σ is labelled by the input sym-
bol ‘>’, i.e. the last symbol of σ, and the output word ‘found outamaybe2r ’: found indicates

12.2. OPERATIONAL VIEW OF FUNCTIONS OVER INTEGER SEQUENCES 161

?/2

2

o

out

maybe1r

found

maybeb maybekr

outr

f
o
u
n
d

in maybea

ou
t a

fo
un
d

maybekr

out

state semantics

/2: outside a pattern

? : potentially inside

2: inside a pattern

o: pattern end

Figure 12.1 – Well-formed output language

that a new occurrence of σ was found, outa denotes that this new occurrence ended, and maybe2r
indicates that potentially there is a next occurrence of σ whose prefix corresponds to the last two
encountered input symbols, i.e. ‘>>’.

New seed transducers are free of the quantitative aspects of F , i.e. the parameters b and a, and they are
capable of handling a larger class of regular expressions.

From the seed transducer for an abstract pattern we obtain the seed transducer for a concrete pattern by
the concretisation of the alphabet A.

12.2.1.2 Well-Formed Seed Transducer

We describe the structural properties a seed transducer must have. Condition 1 of Definition 12.2.1
implies that it is always possible in the future to have an occurrence of pattern σ, Condition 2 defines a
partial order between the different phase letters of the same pattern occurrence, Condition 3 forbids the
sequence maybekr maybek+1

r , which can be replaced by maybekr maybeb.

Definition 12.2.1 (necessary conditions for a well-formed seed transducer). A seed transducer S is well-

formed if all the following conditions hold:

1. There is a path from each transition to each transition labelled by a found.

2. The output language is accepted by the automaton in Figure 12.1.

3. For any state q we cannot have simultaneously a transition labelled by maybekr entering q, and a
transition labelled by maybek+1

r exiting q.

12.2.1.3 Well-Formed Seed Transducer wrt an Abstract Pattern

We introduce the notion of a well-formed seed transducer wrt an abstract pattern σ, which guarantees
that a seed transducer recognises all maximal occurrences of an abstract pattern. We first present the notion
of t-occurrence as an interval of indices of specific words in the output sequence of the seed transducer.
Further, we state that, for any path v leading to a state q, the length of the longest suffix in −!σ of the
sequence of input symbols of the transitions of v is either 1) a constant and is smaller than bσ + 1, or 2) is
greater than or equal to bσ + 1, where bσ is the largest value of b of a well-formed function whose concrete
pattern is obtained from the abstract pattern σ. Note that, by Definition 12.1.5, such bσ always exists and
depends only on σ.

162 CHAPTER 12. EXTENDED TRANSDUCER-BASED MODEL

Definition 12.2.2 (t-occurrence). Given a seed transducer S for some abstract pattern over an abstract
alphabet A and an input sequence of symbols of A, the t-occurrence of S for s consists of the indices
of the phase letters of a maximal word within the transduction of s that matches the regular expression
‘ ("|maybekr maybeb

⇤)found(maybea
⇤in)⇤ ’.

Definition 12.2.3 (maybeb-degree of a path). Consider an abstract pattern σ, and a path v, a sequence of
consecutive transitions, wrt its seed transducer Tσ.
• The maybeb-suffix of v is the maximal suffix of the sequence of output symbols of the transitions of
v that matches ‘(maybekr |")maybeb

⇤’.
• The maybeb-degree of v is min(bσ+1, `), where ` is the length of the maybeb-suffix of v plus k− 1,

the degree of maybekr , if the suffix starts with maybekr .

Definition 12.2.4 (maybeb-degree of a state). Consider an abstract pattern σ and its seed transducer Tσ. For
every state q of Tσ, if every path from the initial state of Tσ to the state q has the same maybeb-degree d,
then the maybeb-degree of q is equal to d; otherwise, the maybeb-degree of q is undefined.

Definition 12.2.5 (necessary conditions for a well-formed seed transducer wrt a pattern). A seed transducer
S is well-formed wrt an abstract pattern σ over an alphabet A if all the following conditions hold:

1. It is well-formed in the sense of Definition 12.2.1.

2. For any state of S , its maybeb-degree is defined.

3. For any input sequence S of symbols of A, for any t-occurrence [[i..j]] of S , there exists an s-
occurrence (i− k + 1..j) of σ in S, where k is the degree of maybekr , if the t-occurrence [[i..j]]
has one, and is 1, otherwise.

Example 12.2.1 (seed transducers well-formed wrt a pattern). Parts (A) – (E) of Figure 12.2 respectively
give the seed transducer for ‘ >=+> ’, ‘ >><>> ’, ‘ =⇤ 6= | =⇤ ’ (the STRETCH pattern in ∞), ‘ 2+ ’ (the
GROUP pattern in ≠) and ‘ <+ | >+ ’ patterns. The minimum and maximum values of b and a are set up
according to Conditions 12.3 and 12.4 of Definition 12.1.5. In Part (A) of Figure 12.2, the maybeb-degree
of states s, r, t and t0 is respectively equal to 0, 1, 2 and 3. Note that states t and t0 cannot be merged since,
according to Definition 12.2.4, the maybeb-degree of the merged state would be undefined. In Part (B) of
Figure 12.2, the maybeb-degree of states s, r, t, u and v is respectively equal to 0, 1, 2, 3 and 4. In Parts
(C) – (E) of Figure 12.2 the maybeb-degree of all states is 0, since the corresponding seed transducers do no
mention neither maybeb, nor maybekr . 4

12.2.2 Handling the Computational Aspect: Reduced Instruction Set

For a well-formed function F whose concrete pattern is , and for an integer sequence X , knowing
where are located the s-occurrences of σ in X , we can compute the value of F . Our aim is to perform a
single pass to both 1) detect all s-occurrences of inX , and 2) computeF on the fly from the subsequences
of X corresponding to e-occurrences. To do so, we describe a reduced instruction set for computing F that
is associated with the phase letters. The reduced instruction set manipulates registers, whose values can be
updated by performing micro instructions. When the seed transducer for consumes the next symbol of an
input signature sequence, a sequence of micro instructions is executed, which is called a macro instruction.
• In our model, we consider 5 registers described in Section 12.2.2.1.
• The reduced instruction set has 4 micro instructions described in Section 12.2.2.2.
• The macro instructions corresponding to the phase letters of the seed transducer for are described

in Section 12.2.2.3.

12.2. OPERATIONAL VIEW OF FUNCTIONS OVER INTEGER SEQUENCES 163

s r t

v

u

<,= : out

> : maybe1r

<,= : outr

> : maybeb

> : maybe2r

= : outr

<
: m
ay
be
b

<
,=

:
out

r

>
:
m
a
y
b
e
b

<,= : out
r

> : f
ou
nd

ou
ta

m
ay

be
2
r

(B)

s

rt

= : out

<
: found>

: f
ou
nd

=
: out

a=
: o
ut

a

< : in> : in

> : outa found

< : outa found

(E)

s r

= : found

6= : found outa = : in

6= : in outa

(C)

s r
2 : found

/2 : out 2 : in

/2 : outa

(D)

s

t

r

t0>
:
m

a
y
b
e
1r

<,= : out

> : maybe1r

=
: m
ay
be

b

<
:
o
u
t
r

>
: f
ou
nd
ou
t a

m
ay
b
e
1 r

<
: out

r

< : outr

= : may
beb

= : maybeb

> : f
ou
nd

ou
ta

m
ay

be
1
r

(A)

Figure 12.2 – Seed transducers for (A) ‘ >=+> ’ with b 2 [1, 2], a 2 [0, 2] and the alphabet {<,=, >},
(B) ‘ >><>> ’ with b 2 [0, 4], a 2 [0, 2] and the alphabet {<,=, >}, (C) ‘ =⇤ 6= | =⇤ ’ with b = 0, a = 1
and the alphabet {=, 6=}, (D) ‘ 2+ ’ with b = 0 = a = 0 and the alphabet {2, /2}, (E) ‘ <+ | >+ ’ with
b = 0, a 2 [0, 1] and the alphabet {<,=, >}.

164 CHAPTER 12. EXTENDED TRANSDUCER-BASED MODEL

12.2.2.1 Registers of the Reduced Instruction Set

The evaluation of a well-formed function can be decomposed into at most five levels of computations
organised in the following three layers:
• [PAST] Level 4 (respectively 3) records the aggregation wrt the aggregator h (respectively g) of

the pattern occurrences already completed.
• [PRESENT] Level 2 records the feature value of the current not already completed pattern occur-

rence.
• [FUTURE] Levels 1 and 0 record the feature value of an hypothetical occurrence of pattern that

must be confirmed or invalidated later on, depending of what will be read next. Level 0 is called the
bottom level.

With each level ` (with ` 2 [0, 4]) we associate a register V` and a function φ` defined according to Table 12.3
as follows:
• φ4 is φh (with h 2 {max, min, Id}) and the initial value of V4 is idhf,g.
• φ3 is φg (with g 2 {max, min, sum}) and the initial value of V3 is idg,f .
• φ0, φ1 and φ2 correspond all to φf (with f 2 {max, min, one, surf, width}), and the initial value of
V0, V1 is idf , while the initial value of V2 is idg,f .

12.2.2.2 Micro Instructions of the Reduced Instruction Set

The next table describes the available micro instructions for modifying register values:
• compute the (potential or not) feature value of a pattern occurrence,
• reset all registers from the bottom to a given level to their identity values,
• transmit the register content of a level to the register of the next level,
• set the feature value of the next potential occurrence of pattern after a mismatch.

micro instruction register updates

compute(`, b, v) : if b = 0 then V` φ`(V`, v) else V` φ`(V`,−v)
reset(`) : for k 2 [0, `] do Vk idk
transmit(c, b, `) : if c = 1 then V`+1 V`

else if b = 1 then V`+1 φ`+1(V`+1, |V`|)
else V`+1 φ`+1(V`+1, V`)

set(`, k) : if b+ 1− k > 0 then V` id`
else if b+ 1− k = 0 then V` δif
else V` φ`(δ

i−k+1+b
f , . . . , δif)

Note that all quantities φ`(δ
i−k+1+b
f , . . . , δif), where k is an integer value occurring in the maybekr phase

letter of a seed transducer and i 2 [k − b, n − p + 1] is the index of the current signature symbol we are
processing, used in the ‘set’ micro instruction, are computed in advance in an initialisation phase in linear
time wrt the sequence length so that they are directly available. Note also that, similarly to [22], each
micro instruction can be turned into a constraint in order to induce a reformulation of the original sequence
constraint.

12.2.2.3 Macro Instructions of the Reduced Instruction Set

Consider a well-formed function F and its concrete pattern . We describe the macro instructions
associated with each phase letter of the seed transducer for . A macro instruction may sometimes depend
on the maybeb-degree, denoted d in the next table, of the destination state of a transition labelled by the
corresponding phase letter. The next table defines the macro instructions where the functions  and ⇠ are
defined just after. Some of the macro instructions have a precondition which must hold in order to execute
its corresponding code.

12.2. OPERATIONAL VIEW OF FUNCTIONS OVER INTEGER SEQUENCES 165

letter precondition macro instruction code

out :

maybeb :

0

@

s /2 skip0 ^
s /2 skip1 ^
d > b

1

A compute

⇣

1, 0, δif

⌘

, transmit(0, 0, 0), reset(0)

✓
s 2 skip0 ^
d > b

◆

compute

⇣

0, 0, δif

⌘

maybekr : s /2 skip1 reset(1), set(1, k)
outr : reset(1)
found : compute(1, balance, ), transmit(1, 0, 1), reset(1)
maybea : s /2 skip1 compute (1, balance, ⇠)
in : compute (1, balance, ⇠), transmit(0, 0, 1), reset(1)
outa : transmit(0, balance, 2), transmit(0, 0, 3), reset(2)

The functions ⇠ and  of the macro instructions are defined as follows, where i is the index of the current
input symbol we are processing:

precondition 

f = range ^ p− 1− a < 1 idf
f = range ^ p− 1− a = 1 δif
f = range ^ p− 1− a > 1 φf (δ

i
f , . . . , δ

i+p−1−a
f)

f 6= range ^ p− 1− a < 0 ^ balance = 0 idf
f 6= range ^ p− 1− a = 0 ^ balance = 0 δif
f 6= range ^ p− 1− a > 0 ^ balance = 0 φf (δ

i
f , . . . , δ

i+p−1−a
f)

f 6= range ^ balance = 1 δ
i+p−1
f

precondition ⇠

f = range δi−af

f 6= range δ
i+p−1−a
f

12.2.2.4 Value Returned by the Function

After having consumed an input signature the function performs the macro instruction of the outa phase
letter. If h is not Id, then the function returns a pair of values consisting of the last values of the registers
V3 and V4. If h is Id, then the function only returns the last value of the register V3.

Figure 12.3 illustrates the evaluation of the function described by Example ≠ of Table 12.4. It provides
the phase letters produced by transducer (D) of Figure 12.2, as well as the corresponding sequence of
micro-instructions updating the three registers V1, V2 and V3.

x
s

q
⌧

V1

V2

V3

variables
signature variables
states
phase letters

future

present

past
micro-instructions

(φ1 = width)

(φ2 = width)

(φ3 = max)

/2 2 /2 2 2
s s r s r r

out found outa found in

0

0

0

0

0

0

1

0

0

1

1

0

0

1

0

C T R

0

1

1

0

1

1

0

0

1

T T R

1

0

1

1

1

1

0

1

1

C T R

1

1

1

1

2

1

0

2

1

C T R

0

2

2

0

2

2

0

0

2

T T R

0 1 0 1 1

r
e
g
i
s
t
e
r
s

z
}
|

{

Compute

Reset

Transmit

:
:
:

Figure 12.3 – Trace for the MAX_WIDTH_GROUP constraint, i.e. Example ≠ of Table 12.4 on the sequence
h0, 1, 0, 1, 1i: evolution of the register values V1, V2, V3 while executing the micro-instructions Compute,
Reset and Transmit leading to the result 2 shown in bold on the right upper corner (since they are not
relevant for this example, registers V0 and V4 are not shown)

166 CHAPTER 12. EXTENDED TRANSDUCER-BASED MODEL

12.3 Conclusion, Related Work, and Future Work

Our contributions over related work can be summarised as follows:

1. First, we have extended the qualitative aspect of the transducer-based computational model of [22].
The input alphabet of transducers is not fixed to {<,=, >}, that is the binary topological compar-
ison operators that are useful for time-series constraints, but can be any set of operators, including
unary ones (such as {2, /2} with fixed sets, used in [5]) and k-ary ones (as frequently used in the
Global Constraint Catalogue [21]). The output alphabet of transducers is augmented by mayber and
simplified, since transducers can output more than one letter for each input symbol.

2. Second, we have parameterised the quantitative aspect of the computation:
• The model of [22] had parameters for trimming the borders of a maximal occurrence of a regular

expression, with the major drawback that transducers were dependent on these parameters devoted
to the quantitative aspect of the computation. In the new model, transducers are independent of
such trimming parameters.
• Within a maximal occurrence of a regular expression, depending on the current recognition phase,

a function f or its opposite −f may now be used for computing the contribution of an input letter
to the feature value.

While regular expressions and transducers are already used in the context of frequent sequence mining
[17], they are focussed on the qualitative aspect, i.e. they do not compute a value for each pattern
occurrence.

3. Third, the small number of phase letters and the very small set of micro instructions allow a compact
implementation of checkers and reformulation.

While learning from a large collection of examples can be done with neural networks without assuming
any bias, learning from very few examples still require having a proper bias. Consequently, future work
may exploit the canonical form introduced in this paper to acquire constraint models involving functional
constraints on integer sequences both from very few samples [32] and with a limited number of queries [38].

Summary of this Chapter:

The main contribution of this chapter is an extended transducer-based model describing sequence
constraints. In this model we introduce new features, and new aggregators and allow an arbitrary
signature function, which enlarges the class of global constraints that can be described using our
approach. In addition, the extended model does not suffer from the mix of the qualitative (recognition
of a regular expression) and the quantitative (feature and aggregator computation) aspects.

Part III

Practical Evaluation of our Contributions

167

169

In this part, we evaluate the impact of the obtained combinatorial objects on the propagation of time-
series constraints.

We do it by comparing the previous state of the art to the state of the art with our new synthesised
combinatorial objects. In every presented benchmark, we use glue constraints [8], recalled in Section 5.2.3.
For every contribution, we do a systematic benchmark where for every time-series constraint (respectively
a pair of time-series constraints), we try all assignments of its result variable (respectively their result
variables) from some finite set and either find a feasible solution or prove infeasibility. For linear invariants,
we also do a benchmark related to generation of time series for an electricity provider.

Although most of our implied constraints can be used straight away in the context of linear program-
ming, we could not evaluate them in the LP context because we do not have linear glue constraints.

We now give the comparison made in every chapter of this part together with citations of the papers in
which this comparison was made, and the contribution of the author of this thesis:

1. Chapter 13 compares register automata alone and register automata with bounds and glue constraints [8,
14]. We do a systematic benchmark for every time-series constraint. The author of this thesis pro-
vided bound formulae and their symbolic representation in Prolog.

2. Chapter 14 compares on the one hand register automata with bounds and glue constraints and on the
other hand register automata with bounds, glue constraints, and AMONG implied constraints [12]. We
do a systematic benchmark for every time-series constraint belonging either to the MAX_SURF_σ or
to the SUM_SURF_σ family. The author of this thesis provided AMONG implied constraints, their
implementation in Prolog, and also run the code to obtain the comparison.

3. Chapter 15 compares on the one hand register automata with bounds and glue constraints and on
the other hand register automata with bounds, glue constraints, and linear invariants [13]. We do a
systematic benchmark for every pair time-series constraint belonging either to the SUM_WIDTH_σ
or to the NB_σ family, and also one practical benchmark. The author of this thesis developed and
implemented in Prolog a method for synthesising linear invariants.

4. Chapter 16 compares on the one hand register automata with bounds, glue constraints and linear
invariants and on the other hand register automata with bounds, glue constraints, linear invariants,
and non-linear invariants. We do a systematic benchmark for every pair of time-series constraints
belonging either to the SUM_WIDTH_σ or to the NB_σ family. The author of this thesis developed
and implemented in Prolog a method for synthesising conditional automata, and also the method for
proving non-linear invariants.

Chapter 13

Evaluation of the Impact of Bounds

This chapter is adapted from an article published in the Constraints journal [14]. The final authenticated
version of this article is available online at: http://dx.doi.org/10.1007/s10601-017-9276-
z.

We evaluate the impact of bounds on the result values of time-series constraints, described in Chapter 7,
on both execution time and the number of backtracks (failures) for all the 200 time-series constraints for
which the glue constraint, see Section 5.2.3, exists.

In our first experiment, we consider a single γ(hX1, X2, . . . , Xni , R) time-series constraint for which
we first enumerate R and then either find a solution by assigning the Xi or prove infeasibility of the cho-
sen R. For each constraint, we compare five variants: 1) the Automaton version just states the constraint,
using the register automaton of [11]; 2) the Glue version adds to Automaton the glue constraints [8, 23] for
all prefixes and corresponding reversed suffixes by just posting a single additional constraint γ0 such that the
equivalence γ(hX1, X2, . . . , Xni , R) , γ0(hXn, Xn−1, . . . , X1i , R) is always true; 3) the Bounds version
adds to Automaton the bound restrictions; 4) the Bounds+Glue version uses both the glue constraints and
the bounds; and the Combined version adds to Bounds+Glue the bounds for each prefix and corresponding
reversed suffix.

In Figure 13.1, we show results for two problems that are small enough to perform all computations
for Automaton and all variants within a reasonable time. In the first problem (first row of plots), we use
time series of length 10 over the domain [1, 5], and find, for each value of R, the first solution or prove
infeasibility. This would be typical for satisfaction or optimisation problems, where one has to detect
infeasibility quickly. Our static search routine enumerates the time-series variables Xi from left to right,
starting with the smallest value in the domain. In the case of the initial domains being of the same size,
this heuristic typically works best. In the second problem (second row of plots), we consider time series
of length 8 over the domain [1, 5], and find all solutions for each value of R. This allows us to verify that
no solutions are incorrectly eliminated by any of the variants, and provides a worst-case scenario exploring
the complete search tree. Results for the backtrack count are on the left, results for the execution time on
the right. We use log scales on both axes, replacing a zero value by one in order to allow plotting. All
experiments were run with SICStus Prolog 4.2.3 on a 2011 MacBook Pro 2.2 GHz quadcore Intel Core
i7-950 machine with 6 MB cache and 16 GB memory using a single core.

We see that Bounds and Glue on their own bring good reductions of the search space, but their combina-
tions Bounds+Glue and Combined in many cases reduce the number of backtracks by more than three orders
of magnitude. Indeed, for many constraints, finding the first solution requires no backtracks. On the other
hand, there are a few constraints for which the number of backtracks is not reduced significantly. These are
constraints for which values of R in the middle of the domain are infeasible, but this is not detected by any
of our variants.

The time for finding the first solution or proving infeasibility is also significantly reduced by the com-
binations Bounds+Glue and Combined, even though the glue constraints require posting two time-series
constraints. When finding all solutions, this overhead shows in the total time taken for the three variants

171

http://dx.doi.org/10.1007/s10601-017-9276-z
http://dx.doi.org/10.1007/s10601-017-9276-z

172 CHAPTER 13. EVALUATION OF THE IMPACT OF BOUNDS

 1

 10

 102

 103

 104

 105

 106

 107

 1 10 102 103 104 105 106 107

1x /10 /100
/1000

Va
ri
a

n
ts

 [
B

a
c
k
tr

a
c
k
s]

Automaton [Backtracks]

Backtracks: 10 variables, domain [1,5], first solution or infeasibility

Bounds
Glue

Bounds+Glue
Combined

 1

 10

 102

 103

 104

 105

 1 10 102 104 105

1x /2 /5 /10 /100
/1000

2x

5x

V
a

ri
a

n
ts

 [
m

s
]

 103

Automaton [ms]

Time: 10 variables, domain [1,5], first solution or infeasibility

Bounds
 Glue

 Bounds+Glue
Combined

 1

 10

 102

 103

 104

 105

 106

 1 10 102 104 105 106

1x /10 /100 /1000

Va
ria

nt
s [

Ba
ck

tra
ck

s]

 103

Automaton [Backtracks]

Backtracks: 8 variables, domain [1,5], all solutions
Bounds

Glue
Bounds+Glue

Combined

 103

 104

 103 104

1x

2x

5x

/2 /5

Va
ri
a

n
ts

 [
m

s
]

Automaton [ms]

Time: 8 variables, domain [1,5], all solutions

Bounds
 Glue

 Bounds+Glue
Combined

Figure 13.1 – Comparing backtrack count and runtime for Automaton and its variants for (left plots) the first
solution or infeasibility for time series of length 10 and (right plots) all solutions for time series of length 8.

using the glue constraints. The bounds on their own reduce the time for many constraints, but rarely by
more than a factor of ten.

In our second experiment, shown in Figure 13.2, we want to see whether the Combined variant is
scalable. For this, we increase the length of the time series from 10 to 120 over the domain [1, 5]. We
enumerate all possible values of R and find a first solution or prove infeasibility. For each time-series
constraint and value of R, we impose a timeout of 20 seconds, and we do not consider the constraint if there
is a timeout on some value of R. We plot the percentage of all constraints for which the average runtime
is less than or equal to the value on the horizontal axis. For small time values, there are some quantisation
effects due to the SICStus time resolution of 10 milliseconds.

For length 10, we find solutions for all values of R within the timeout, and our plots for Automa-

ton (dashed) and Combined (solid) reach 100%, but the average time of Combined is much smaller. For
Automaton, the percentage of constraints that are solved within the timeout drops to less than 20% for
length 20, and less than 10% for length 40. For Combined, we solve over 75% of all constraints within the
time limit, even for lengths 100 and 120.

The constraints that are not solved by Combined use the feature surf or the aggregator sum. The worst
performance is observed for constraints combining both surf and sum. This is not surprising, as we know
that achieving domain consistency for many of those constraints is NP-hard (encoding of subset-sum).

As a final experiment, we look at the search trees generated by four solution variants for a single con-
straint MAX_SURF_INCREASING_TERRACE. We only display some of the values for the parameter R, to
make the trees more legible. Figure 13.3 shows the search tree produced with the help of CP-Viz [125].
Each tree shows the branches explored to find a first solution or proving infeasibility for each parameter
value, with the initial choice of the value R at the top, and then the assignment of ten variables with a stan-
dard left-to-right labeling. Failed subtrees are abstracted as red triangles containing two numbers, the one
above is the number of internal nodes in the tree, the one below the number of failed leaf nodes. Success
nodes are colored in green, while failure nodes are colored red. Internal nodes are labeled by the variable

173

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100 1000 10000

P
e

rc
e

n
ta

g
e

 o
f
co

n
s
tr

a
in

ts
 so

lv
e

d

Time [ms]

Scalability

Automaton, length 10
length 20
length 40

 Combined, length 10
length 20
length 40
length 60
length 80
length 100
length 120

Figure 13.2 – Scalability results comparing time for Automaton and Combined on problems of increasing
length.

name currently being assigned, and a superscript indicating the number of values in the domain of that
variable. Edges indicate choices that are explored, the number indicates the value that is assigned to the
selected variable, while a yellow edge color indicates that the value had been fixed by propagation.

In all trees, a first solution for parameter value 4, the smallest feasible value, is found without back-
tracking. The solution chooses value 1 for X1 to X7, then value 2 for X8 and X9, and finally value 3 for
variable X10. On the other hand, in the initial register automaton, a very large failed subtree is shown for
the left-most parameter value 3, and a much smaller failed tree for the right-most value 33. Both of those
values are infeasible, and are removed by the bounds for this constraint. The Bounds version therefore
avoids these failed sub-trees, but there are no changes for the other, feasible values. When we consider the
Bounds+Glue version, the search for feasible solutions is reduced, with a further reduction for the Com-

bined variant. But we still need search to find the initial solution for some of the parameter values. This
occurs since the bounds and the glue constraint reasoning only consider lower and upper bounds, and we
do not detect holes in the domain of variable R. To get the best use of the generated bounds, we have to use
the incremental combination of Bounds with the Glue constraint, as the bounds are then applied for each
suffix of unassigned variables to maximise the information extracted.

174 CHAPTER 13. EVALUATION OF THE IMPACT OF BOUNDS

3

3

2

2

1

1

1

1

1

1

1

4

1

1

1

1

1

1

3

2

2

2

2

2

2

2

1

1

14

1 2

1 2

1 2

1 2

1 2

4

3

3

3

3

3

3

3

1

1

21

1 2 3

1 2 3

1 2 3

1 2 3

5

4

4

4

4

4

4

4

4

1

32 33

76237

304949

N
6

X10
3

X9
1

X8
1

X7
5

X6
5

X5
5

X4
5

X3
5

X2
5

X1
5

N
6

117

469

X3
5

25

101

X4
5

4

17

X5
5

X6
5

X7
5

X8
5

X10
3

X9
1

X8
5

X7
5

X6
5

X5
5

X4
5

X3
5

X2
5

X1
5

N
6

12

49

X3
5

13

53

X3
5

X4
5

X4
5

X5
5

X5
5

X6
5

X6
5

X7
5

X7
5

X10
2

X9
1

X8
1

X7
5

X6
5

X5
5

X4
5

X3
5

X2
5

X1
5

N
6

X2
5

1

5

X2
5

1

5

X2
5

X3
5

X3
5

X3
5

X4
5

X4
5

X4
5

X5
5

X5
5

X5
5

X10

X9

X8

X7

X6

X5
5

X4
5

X3
5

X2
5

X1
5

N
6

37

149

N
6

(A) Automaton

3

2

2

1

1

1

1

1

1

1

4

1

1

1

1

1

1

3

2

2

2

2

2

2

2

1

1

14

1 2

1 2

1 2

1 2

1 2

4

3

3

3

3

3

3

3

1

1

21

1 2 3

1 2 3

1 2 3

1 2 3

5

4

4

4

4

4

4

4

4

1

32

X10
3

X9
1

X8
1

X7
5

X6
5

X5
5

X4
5

X3
5

X2
5

X1
5

N
4

117

469

X3
5

25

101

X4
5

4

17

X5
5

X6
5

X7
5

X8
5

X10
3

X9
1

X8
5

X7
5

X6
5

X5
5

X4
5

X3
5

X2
5

X1
5

N
4

12

49

X3
5

13

53

X3
5

X4
5

X4
5

X5
5

X5
5

X6
5

X6
5

X7
5

X7
5

X10
2

X9
1

X8
1

X7
5

X6
5

X5
5

X4
5

X3
5

X2
5

X1
5

N
4

X2
5

1

5

X2
5

1

5

X2
5

X3
5

X3
5

X3
5

X4
5

X4
5

X4
5

X5
5

X5
5

X5
5

X10

X9

X8

X7

X6

X5
5

X4
5

X3
5

X2
5

X1
5

N
4

(B) Bounds

3

2

2

1

1

1

1

1

1

1

4

1

1

1

1

3

2

2

2

2

2

2

2

1

1

14

1 2

1 2

4

3

3

3

3

3

3

3

1

1

21

1 2 3

5

4

4

4

4

4

4

4

4

1

32

X10
3

X9
1

X8
1

X7
4

X6
5

X5
5

X4
5

X3
5

X2
5

X1
5

N
4

54

155

X3
5

12

34

X4
5

2

6

X5
5

X6
5

X10
3

X9
1

X8
1

X7
4

X6
5

X5
5

X4
5

X3
5

X2
5

X1
5

N
4

4

11

X3
5

4

11

X3
5

X4
5

X4
5

X10
2

X9
1

X8
1

X7
1

X6
1

X5
3

X4
5

X3
5

X2
5

X1
5

N
4

X2
5

1

4

X2
5

1

3

X2
5

X10
1

X9
1

X8
1

X7
1

X6
1

X5
1

X4
1

X3
2

X2
5

X1
5

N
4

(C) Bounds+Glue

3

2

2

1

1

1

1

1

1

1

4

1

1

1

3

2

2

2

2

2

2

2

1

1

14

1 2

4

3

3

3

3

3

3

3

1

1

21

5

4

4

4

4

4

4

4

4

1

32

X10
3

X9
1

X8
1

X7
4

X6
5

X5
5

X4
5

X3
5

X2
5

X1
5

N
4

31

77

X3
5

8

20

X4
5

1

4

X5
5

X10
3

X9
1

X8
1

X7
4

X6
4

X5
5

X4
5

X3
5

X2
5

X1
5

N
4

1

4

X3
5

2

7

X3
5

X10
2

X9
1

X8
1

X7
1

X6
1

X5
3

X4
3

X3
5

X2
5

X1
5

N
4

X10
1

X9
1

X8
1

X7
1

X6
1

X5
1

X4
1

X3
1

X2
1

X1
3

N
4

(D) Combined

Figure 13.3 – Comparing parts of the search tree for MAX_SURF_INCREASING_TERRACE, finding the first
solution or proving infeasibility for the manually selected values 3, 4, 14, 21, 32, and 33 of variable R and
10 variables X1, X2, . . . , X10, each with domain [1, 5]. Automaton is the register automaton alone; Bounds

adds to Automaton the bound restrictions; Bounds+Glue uses both the glue constraints and the bounds; and
Combined adds to Bounds+Glue the bounds for each prefix and corresponding reversed suffix.

Chapter 14

Evaluation of the Impact of

AMONG Implied Constraints

This chapter is adapted from an article published in the proceedings of the CP’17 conference [12]. The
final authenticated version of this article is available online at: http://dx.doi.org/10.1007/978-
3-319-66158-2_3.

In this chapter, we evaluate the impact of AMONG implied constraints, presented in Chapter 8, on
both execution time and the number of backtracks for time-series constraints of the MAX_SURF_σ and the
SUM_SURF_σ families. The intended use case for such constraints is a problem where we learn parameters
for a conjunction of time-series constraints from data, and use this conjunction to create new time series that
are “similar” to the existing ones. An example would be electricity production data for a day [28], in half
hour periods (48 values), or manpower levels per week over a year (52 values). To solve the conjunction,
we need strong propagation for each individual constraint. We therefore evaluate the impact of the AMONG

implied constraint on both execution time and the number of backtracks for the time-series constraints of
the MAX_SURF_σ and the SUM_SURF_σ families for which a glue constraint [8] exists, which are 38 out
of 44 time-series constraints of the two families. These families of constraints were the most difficult to
solve in the experiments reported in [8] and in the previous chapter.

In the experiments for both families, we consider a single g_SURF_σ(X , R) time-series constraint with
g being either sum or max, for which we first systematically try out all potential values of the parameter R,
and then either find a solution by assigning the Xi or prove infeasibility. We compare the best (Combined)
approach from the previous chapter to the new method, adding the AMONG implied constraint on every
suffix of X = hX1, X2, . . . , Xni, and also a preprocessing procedure. The preprocessing procedure is a
useful, if minor, contribution of the paper for 8 out of 38 of the constraints in the families studied. The
purpose of this procedure is to find all feasible values of R, when σ is such that any σ-pattern has all values
being the same. Such values of R must satisfy the following constraint:

R = idg,f _
(
9V 2 [`0, u0] βh`,u,niσ · V ≥ R ^ R mod V = 0

)
,

where `0 and u0 are the smallest and the largest value, respectively, that can occur in a σ-pattern over [`, u].
Since the implied constraints are precomputed offline, posting one AMONG implied constraint takes a

constant time, and the time and space complexity of the preprocessing procedure does not exceed the size
of the domain of R, which is O(n · (u− `)).

Figure 14.1 presents the results for the SUM_SURF_σ (upper plots) and the MAX_SURF_σ (lower plots)
time-series constraints, whereX is a time series of length 50 over the domain [0, 5], when the goal is to find,
for each value of R, the first solution or prove infeasibility. This corresponds to our main use case, where
we want to construct time series with fixed R values. Our static search routine enumerates the time-series
variables Xi from left to right, starting with the smallest value in the domain. Results for the backtrack
count are on the left, results for the execution time on the right. We use log scales on both axes, replacing a
zero value by one in order to allow plotting. A timeout of 60 seconds was imposed. We see that the AMONG

175

http://dx.doi.org/10.1007/978-3-319-66158-2_3
http://dx.doi.org/10.1007/978-3-319-66158-2_3

176 CHAPTER 14. EVALUATION OF THE IMPACT OF AMONG IMPLIED CONSTRAINTS

�

��

���

����

�����

������

�����
�����

� �� ��� ���� ����� ������ ����� �����

��
�

���

��������� ����������� ����� �������� ���� ������ ������

����
�

���
����
�����
������
�������
�������

��

���

����

�����

������

�� ��� ���� ����� ������

��
�
��
��

��� ����

���� ����������� ����� �������� ���� ������ ������

�

��

���

����

�����

������

�����
�����

� �� ��� ���� ����� ������ ����� �����

��
�

���

��������� ����������� ����� �������� ���� ������ ������

��

���

����

�����

������

�� ��� ���� ����� ������

��
�
��
��

��� ����

���� ����������� ����� �������� ���� ������ ������

Figure 14.1 – Comparing backtrack count and runtime of the g_f_σ time-series constraint for previous best
results (old) and new method for finding the first solution or proving infeasibility for time series of length 50
and domain [0, 5]. Colours of markers indicate the regular expression, the cross (respectively circle) marker
type indicates success (respectively failure/timeout).

implied constraints reduce number of backtracks by up to a factor exceeding 10,000 and runtime by up to a
factor of 1,000, and they divide the total execution time of terminated instances by a factor of 5 and 45 times
when g is max and sum, respectively. All experiments were run on a 2014 iMac 4 GHz i7 using SICStus
Prolog.

The results for the case g = sum are better than for the case g = max because the aggregator sum
allows summing the surfaces of several σ-patterns, whereas for the max aggregator, R is the surface of a
single σ-pattern, the surfaces of other σ-patterns, if any, are absorbed.

Chapter 15

Evaluation of the Impact of Linear Invariants

This chapter is adapted from an article published in the proceedings of the CP’17 conference [13]. The
final authenticated version of this article is available online at: http://dx.doi.org/10.1007/978-
3-319-66158-2_2.

In this chapter, we evaluate the impact of linear invariants, generated by the method of Chapter 9.
To test the effectiveness of the generated invariants, we first try systematic tests on the conjunction

of pairs of the 35 time-series constraints [22] of the NB_σ and SUM_WIDTH_σ families for which the
glue constraints exist [8]. Recall that NB_σ constraints the number of σ-patterns in a time series, while
SUM_WIDTH_σ constrains the sum of the widths of σ-patterns. Our intended use case is similar to [28],
where constraints and parameter ranges of the problem are learned from real-world data, and are used to
produce solutions that are similar to the previously observed data. It is important both to remove infeasible
parameter combinations quickly, as well as helping to find solutions for feasible problems. Real world
datasets often will only show a tiny subset of all possible parameter combinations, but as we do not know
the data a priori, a systematic evaluation seems the most conservative approach.

For the experiments we use a database of generated invariants in a format compatible with the Global
Constraint Catalogue [10]. Invariants are generated as Prolog facts, from which executable code, and other
formats are then produced automatically. The time required to produce the invariants (5 min) is insignificant
compared to the overall runtime of the experiments. For the 595 combinations of the 35 constraints we
produce over 4100 linear invariants, over 3500 conditional linear invariants, and 86 guard invariants. In the
test, we try each pair of constraints and try to find solutions for all possible pairs of parameter values.

We compare four different versions of our methods: The pure baseline version is the best approach
(Combined) of Chapter 13. This version represents the state of the art for the considered families of time-
series constraints before the current work. In the invariant version we add the generated invariants for the
parameters of the complete time series. In the incremental version, we not only state the invariants for the
complete time series, but also apply them for each suffix. The required variables are already available as
part of the glue constraint setup, we only need to add the linear inequalities for each suffix length. In the all

version, we add the intersection register automaton of the conjunction of the two constraints, if it contains
guard invariants, and also state some additional, manually derived invariants.

The test program uses a labeling routine that first assigns the signature variables, and only afterwards
assigns values for the Xi time-series variables. The variables in each case are assigned from left to right,
i.e. the lexicographic order. For each pair of parameters values, defined by the product of the bounds
from Chapter 7, we try to find a first solution with a timeout of 60s.

We have tested the results for different time-series length, Figure 15.1 shows the result for length 18 and
domain size 0..18, the largest problem size where we find solutions for each case within the timeout. All
experiments were run on a laptop with Intel i7 CPU (2.9GHz), 64Gb main memory and Windows 10 64bit
OS using SICStus Prolog 4.3.5 utilising a single core. For our four problem variants, we plot the percentage
of undecided problem instances as a function of computation time. The plot uses log-log scales to more
clearly show the values for short runtimes and for low number of undecided problems. The baseline pure

177

http://dx.doi.org/10.1007/978-3-319-66158-2_2
http://dx.doi.org/10.1007/978-3-319-66158-2_2

178 CHAPTER 15. EVALUATION OF THE IMPACT OF LINEAR INVARIANTS

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000 100000

P
e
rc

e
n
ta

g
e
 o

f
In

st
a
n
ce

s
U

n
d
e
ci

d
e
d

Time [ms]

Time Needed, Size 18, Total Instances 109682

pure

inv

incr

all

Figure 15.1 – Comparing constraint variants, undecided instances percentage for size 18 as a function of
time, timeout is 60s.

variant solves around 55% of the instances immediately, and leaves just under one percent unsolved within
the timeout. The invariants version improves on this by pruning more infeasible problems immediately. On
the other hand, stating the invariants on the full time series has no effect on feasible instances. When using
the incremental version of the constraints, this has very little additional impact on infeasible problems, but
improves the solution time for the feasible instances significantly. Adding (variant all) additional constraints
further reduces the number of backtracks required, but these savings are largely balanced with the additional
processing time, and therefore have no major impact on the overall results. After one second, around 9.5%
of all instances are unsolved in the baseline, but only 0.5% in the incremental or all variant.

To test the method in a more realistic setting, we consider the conjunction of all 35 considered time-
series constraints on electricity demand data provided by an industrial partner. The time series describes
daily demand levels in half-hour intervals, giving 48 data points. To capture the shape of the time series
more accurately, we split the series into overlapping segments from 00-12, 06-18, and 12-24 hours, each
segment containing 24 data points, overlapping in 12 data points with the previous segment. We then setup
the conjunction of the 35 time-series constraints for each segment, using the pure and incremental variants
described above. This leads to 3⇥ 35⇥ 2 = 210 AUTOMATON constraints with shared signature and time-
series variables. The invariants are created for every pair of constraints, and every suffix, leading to a large
number of inequalities. The search routine assigns all signature variables from left to right, and then assigns
the decision variables, with a timeout of 120s.

In order to understand the scaleability of the method, we also consider time series of 44 respectively
50 data points (three segments of length 22 and 25), extracted from the daily data stream covering a four
year period (1448 samples). In Figure 15.2 we show the time and backtrack profiles for finding a first
solution. The top row shows the percentage of instances solved within a given time budget, the bottom row
shows the percentage of problems solved within a backtrack budget. For easy problems, the pure variant
finds solutions more quickly, but the incremental version pays off for more complex problems, as it reduces
the number of backtracks required sufficiently to account for the large overhead of stating and pruning all

179

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20000 40000 60000 80000 100000 120000 140000

P
e
rc

e
n
ta

g
e
 o

f
In

st
a
n
ce

s
S
o
lv

e
d

Time [ms]

3 Segments, Width 22

pure

incremental

(A) Time, Size 22

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 20000 40000 60000 80000 100000 120000 140000

P
e
rc

e
n
ta

g
e
 o

f
In

st
a
n
ce

s
S
o
lv

e
d

Time [ms]

3 Segments, Width 24

pure

incremental

(B) Time, Size 24

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 20000 40000 60000 80000 100000 120000 140000

P
e
rc

e
n
ta

g
e
 o

f
In

st
a
n
ce

s
S
o
lv

e
d

Time [ms]

3 Segments, Width 25

pure

incremental

(C) Time, Size 25

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5000 10000 15000 20000 25000

P
e
rc

e
n
ta

g
e
 o

f
In

st
a
n
ce

s
S
o
lv

e
d

Backtracks

3 Segments, Width 22

pure

incremental

(D) Backtracks, Size 22

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
e
rc

e
n
ta

g
e
 o

f
In

st
a
n
ce

s
S
o
lv

e
d

Backtracks

3 Segments, Width 24

pure

incremental

(E) Backtracks, Size 24

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 5000 10000 15000 20000 25000 30000

P
e
rc

e
n
ta

g
e
 o

f
In

st
a
n
ce

s
S
o
lv

e
d

Backtracks

3 Segments, Width 25

pure

incremental

(F) Backtracks, Size 25

Figure 15.2 – Percentage of problems solved for 3 overlapping segments of lengths 22, 24, and 25. Execu-
tion time in top row, backtracks required in bottom row.

180 CHAPTER 15. EVALUATION OF THE IMPACT OF LINEAR INVARIANTS

invariants. The problems for segment length 20 (not shown) can be solved without timeout for both variants,
as the segment length increases, the number of time outs increases much more rapidly for the pure variant.
Adding the invariants drastically reduces the search space in all cases, future work should consider if we
can identify those invariants that actively contribute to the search by cutting off infeasible branches early
on. Restricting the invariants to such an active subset should lead to a further improvement in execution
time.

Chapter 16

Evaluation of the Impact of

Non-Linear Invariants

In this chapter, we evaluate the impact of non-linear invariants, obtained by the method of Chapter 10.
Consider a conjunction of two time-series constraints γ1(X,R1) and γ2(X,R2), imposed on the same

time series X = hX1, X2, . . . , Xni with both γ1 and γ2 being in the union of the NB_σ and SUM_WIDTH_σ
families of time-series constraints. After performing mining and proof phases we obtain a disjunction de-
scribing a subset of infeasible combinations ofR1 andR2. Recall that this disjunction is called a description

of infeasible set. The exploitation phase includes the two following procedures:
First, we filter the Boolean functions in the obtained description of infeasible set in order to obtain a

non-dominated description, i.e. a disjunction of Boolean functions that are mutually non subsumable.
Second, we evaluate the obtained description of infeasible points from two perspectives:
• While the description of infeasible set is correct for any sequence length, it is unclear whether

learning from small sequence length allows to also identify all infeasible combinations of R1 and
R2 for larger sequence lengths. We investigate this question empirically by comparing the set of
infeasible combinations of R1 and R2 learned by only using small sequences lengths (from 7 to 12)
to the set of infeasible combinations of R1 and R2 generated by a systematic procedure for larger
sequence lengths (from 13 to 24).
• We evaluate the impact of our learned description of infeasible set in terms of time and number of

backtracks for finding a solution or proving infeasibility for a conjunction of time-series constraints.
We consider all pairs of constraints for which infeasible points exist in the convex hull of feasible points,

and for which we have the full baseline implementation of Chapter 15. For the 303 pairs considered, there
are 68, 145 feasible points and 12, 103 infeasible points in the training set. From these points we generate
16, 310 hypotheses, of which 11, 827 are proven. Removing dominated invariants, we are left with 517
non-dominated, proven invariants which are then used in the evaluation. It takes 10 minutes 29 seconds to
create once and for all our data base of invariants, i.e. to generate the hypotheses, to prove them, and to find
the non-dominated set.

We use the generated invariants in our test data (lengths 13 to 24), by adding them to a baseline con-

Measure Case Success Failure
Backtrack Baseline 289, 321, 218 465, 049, 474
Backtrack New 190, 452, 242 1, 954
Backtrack %New/Base 65.83 0.00042
Time Baseline 107, 630 89, 800
Time New 78, 521 0.7
Time %New/Base 72.95 0.00078

Table 16.1 – Comparing the state-of-the-art baseline and the baseline with the generated invariants

181

182 CHAPTER 16. EVALUATION OF THE IMPACT OF NON-LINEAR INVARIANTS

sisting of the previous state-of-the-art implementation, i.e. Chapter 15, which uses the linear invariants
of Chapter 9 and bounds of Chapter 7. Table 16.1 compares the baseline to our improved method. We
checked independently that for the test data set there are 559, 224 feasible points, and 50, 823 infeasible
points. For each test case, we either find the first feasible solution, or show that no solution exists. The
results show that only 130 infeasible points (0.26 % of all infeasible points) in the test set are not covered
by one of the generated hypotheses.

As we can see, the generated invariants cover the infeasible points nearly perfectly, reducing the time
spent from 89, 800 seconds to less than one second. Perhaps more surprisingly, the generated invariants also
help with feasible cases, by removing infeasible subtrees from the search of feasible solutions. The number
of backtracks for the feasible cases is reduced by one third, and the time for finding the solutions is reduced
by 27%.

Conclusion

17.1 Summary of this Thesis

Time-series constraints are constraints defined by means of functions in a compositional way. They
provide a powerful modelling language, and have a number of potential real-life applications. The contri-
butions of this thesis can be divided into two groups: 1) synthesising compositional combinatorial objects
for time-series constraints and 2) extending transducer-based approach for representing constraints over
integer sequences.

The purpose of the synthesised combinatorial objects, described in Chapters 7, 8, 9, 10, and 11 is to
capture some aspect of a constraint or of a conjunction of constraints and to provide functional scaleability

of the framework of time-series constraints. Namely our combinatorial objects allow us to reduce efforts
required for adding a new constraint in the framework and for handling the combinatorial aspect of this new
constraint. In addition, synthesised combinatorial objects can be used for different purposes including, but
not limited to:

• as propagators in the context of CP;
• for obtaining a tight linear model in the context of MP;
• in the context of local search;
• in the context of data mining.

In this thesis we presented systematic methods for synthesising: 1) parameterised bounds on the result
value of a time-series constraint, 2) parameterised AMONG implied constraints, 3) linear and 4) non-linear
invariants linking the result values of several time-series constraints and parameterised by a function of
the time-series length, and 5) conditional automata representing a condition on the result value of a time-
series constraint. When synthesising combinatorial objects for a single time-series constraint, i.e. bounds,
AMONG implied constraints, we used the declarative definition of time-series constraints, i.e. regular expres-
sion characteristics; and when synthesising objects for a conjunction of time-series constraints, i.e. linear
and non-linear invariants, we used the operational view of time-series constraints, i.e. the seed transducers
for each regular expression and register automata. Figure 17.1 summarises our contributions for synthe-
sising compositional combinatorial objects for time-series constraints. In our benchmarks, we saw that the
synthesised combinatorial objects have a significant impact on the propagation of time-series constraints.

We believe that ideas of our methods can be used not only for time-series constraints, but also for some
other sequence constraints of the Global Constraint Catalogue [21].

The extended transducer-based model, introduced in Chapter 12, allows us to describe a number
of existing sequence constraints using the same transducer-based model as for time-series constraints. In
addition, the extended transducer-based model does not depend on the quantitative parameter bσ, used for
trimming the left extremity of occurrences of a regular expression, and can handle a larger class of regular
expressions due to the new phase letter maybekr compared to the class of regular expressions of [68].

183

184 CONCLUSION

Compositional
Combinatorial

Objects

Regular-Expression Characteristics

◦ Compositional bounds on the result value of a time-series constraint

◦ Compositional AMONG implied constraints

Transducers, Register Automata

◦ Linear invariants linking the result values of several

time-series constraints and parameterised by a function of time-series length

◦ Non-linear invariants linking the result values of several

time-series constraints and parameterised by a function of time-series length

◦ Conditional automata representing a condition on the result value

of a time-series constraint

Fo
r a

sin
gle

constra
int

F
or

a
conjunction

of constraints

Figure 17.1 – Synthesised combinatorial objects, grouped by the case they are synthesised for, i.e. charac-
terising a single constraint or a conjunction of constraints. The text on the top of each box provides to the
key idea used for synthesising the corresponding combinatorial objects.

17.2 Future Work

Future work on time-series constraints can be done along several axes, presented in the following four
sections. Each of the four sections gives directions for future work in one of the following four categories:
improving the solving aspect, complexity analysis, formalisation and generalisation issues, and applica-
tions.

17.2.1 Improving the Solving Aspect

In this section, we discuss two directions for future work on improving the solving aspect of time-series
constraints in both CP and MP contexts.

17.2.1.1 Non-Linear Guard Invariants for Time-Series Constraints

For some pairs of time-series constraints of the NB_σ(X,R1) and SUM_WIDTH_σ(X,R2) families, even
after removing all infeasible combinations of R1 and R2, for some feasible combinations of R1 and R2, the
solver still spends a lot of time searching for a feasible time series X . We have already done the work
on synthesising linear guard invariants, but it is not enough and for some pairs of time-series constraints,
there is a need for non-linear guard invariants, which could improve the propagation and fasten the search.
Future work could look at synthesising non-linear guard invariants for time-series constraints where finding
a feasible solution still takes a large amount of time.

17.2.1.2 Improving Linear Reformulation of Time-Series Constraints

Obtaining a tight linear representation of time-series constraints by making linear glue constraints is
one of the axes of the future work. Linearising glue constraints [8] may improve solving for time-series
constraints in the context of MP since we see that the synergy of bounds and glue constraints in the context
of CP provides us with good improvement in propagation [8].

17.2. FUTURE WORK 185

17.2.2 Complexity Analysis

In this section, we discuss two directions for future work related to the complexity analysis of time-series
constraints and of computation of regular-expression characteristics.

17.2.2.1 Systematic Complexity Analysis of Time-Series Constraints

Although, we know that some time-series constraints of the SUM_SURF family are NP-complete, the
complexity analysis was not done for other time-series constraints. Future work could look at a systematic

complexity analysis of time-series constraints by finding out the reason for NP-completeness of some time-
series constraints. Again the point would not be to analyse the complexity of each time-series constraint
independently, but to come up with a compositional method parameterised by regular expressions, features,
and aggregators to classify the complexity of the full set of a family of constraints.

17.2.2.2 Systematic Methods for Computing Characteristics of Regular Expressions

Regular-expression characteristics used in our bound formulae and AMONG implied constraints were
computed manually. Most of the regular-expression characteristics minimise or maximise some quantity
over the language of a regular expression, where we typically have to deal with an infinite set of words. One
of the directions of future work could be developing systematic methods for computing regular-expression
characteristics. Also, future work could analyse the complexity of the computation of regular-expression
characteristics depending on the considered regular expression, and determine classes of regular expres-
sions, for which characteristics can be computed in polynomial time, i.e. like graph classes for which
computing some characteristics become polynomial [46].

17.2.3 Formalisation and Generalisation Issues

In this section, we discuss two directions of future work related to the formalisation of phase letters of
the extended transducer-based model and to the generalisation of the reduced instruction set.

17.2.3.1 Formal-Logic Definition of Phase Letters in the Extended Transducer-Based Model

In the extended-transducer based model, described in Chapter 12, we only gave intuitions of phase
letters. Future work could look at formal-logic definition of these letters. This would allow us to prove the
well-formedness of seed transducers.

17.2.3.2 Generalising the Reduced Set of Instructions

In the extended-transducer based model, we presented a reduced instruction set, used for computing
a function over integer sequences. However, this reduced instruction set does not suffice to compute the
value of an arbitrary function over integer sequences. Future work could look at generalising the reduced
instruction set so that it could handle a larger class of functions than now.

17.2.4 Applications

In this section, we discuss future work related to applications of time-series constraints.

17.2.4.1 Modelling and Solving an Industrial Problem with Time-Series Constraints

In [8], we have already modelled and solved a prototype of a staff scheduling at a call centre. Modelling
and solving a real-life industrial problem using time-series constraints and synthesised combinatorial ob-

186 CONCLUSION

jects could 1) be the first industrial usage of time-series constraints and thus valorise them, and 2) highlight
weak sides in the propagation of time-series constraints and thus inspire future work.

17.2.4.2 Feature Extraction and Time-Series Generation with Time-Series Constraints

Time series are common in many applications in different areas such as, for example, economics [101],
astronomy [122], pattern recognition [74, 132], signal processing [112]. Time-series constraints could be
used in these contexts for extracting symbolic features in time series, e.g. the number of peaks in a time
series, and then generating time series with the same values of considered features, but optimising a certain
quantity. Some work in this direction has been done in [94].

French Summary

Beaucoup de problèmes de la vie réelle où l’on doit planifier le personnel d’un centre d’appels ou
planifier la production d’une centrale électrique peuvent être décrits et résolus comme des modèles mathé-
matiques. Les deux composantes principales de tels modèles sont 1) des variables représentant les quantités
que nous recherchons, par exemple la quantité d’électricité produite pour une centrale électrique donnée à
un instant donné, pouvant prendre leurs valeurs dans des ensembles finis, et 2) des contraintes, imposant des
relations entre ces variables et représentant des règles métiers, des restrictions techniques, etc. La program-

mation mathématique (PM) [126] et la programmation par contraintes (PPC) [118] sont deux approches
complémentaires pour aborder de tels problèmes avec un certain nombre d’applications réussies dans les
domaines de la planification, de l’emballage et du routage [134, 135, 48, 51, 110, 95].

La différence principale entre PPC et PM concerne le type de contraintes utilisées pour la modéli-
sation. Dans le contexte de PM, les contraintes sont généralement linéaires ou convexes [16, 33, 115],
alors que les modèles PPC utilisent souvent des contraintes globales. Le Global Constraint Catalogue
[21] définit une contrainte globale comme une «condition expressive et concise impliquant un nombre
non déterminé de variables». Par exemple, la contrainte ALLDIFFERENT(hX1, X2, . . . , Xni) [130] restreint
une séquence de variables entières hX1, X2, . . . , Xni à prendre des valeurs distinctes. Par conséquent,
la séquence h1, 8, 7,−1, 3i satisfait la contrainte ALLDIFFERENT, mais h1, 8, 1,−1, 3i ne la satisfait pas
puisque X1 a la même valeur que X3. En PPC, une contrainte globale vient généralement avec un propaga-

teur, c’est-à-dire un algorithme permettant de réduire les domaines des variables en supprimant les valeurs
qui ne peuvent faire partie à aucune solution d’une contrainte.

Malgré différents types de contraintes, et donc différentes techniques de résolution, la PPC et la PM ont
quelques inconvénients en commun motivant le travail de cette thèse :

◦ Aussi bien en PM qu’en PPC, la modélisation peut être difficile, à la fois d’un point de vue de
la description du problème, et d’un point de vue d’inférence. En PM, cela est dû au fait que les
contraintes doivent être linéaires ou convexes. En PPC, cela est dû au fait qu’une contrainte globale
requise peut ne pas exister et doit donc être introduite. Ainsi, il y a un besoin commun de définir

les contraintes de manière compositionnelle, ces contraintes pouvant ensuite être méthodiquement
reformulées en programmes linéaires ou systématiquement encodées en termes de propagateurs.

◦ Lorsque les domaines des variables sont discrets, les modèles de PM et de PPC peuvent devenir dif-
ficiles à résoudre [106, 131]. Par conséquent, afin de résoudre un problème efficacement, on essaie
de tirer parti de la structure du problème considéré. En PM, ceci est fait dans l’étape de prétraite-
ment, où un solveur vérifie si un problème considéré a une structure bien connue, par exemple un
problème du flot de coût minimum [63], puis soit applique une technique spécifique de prétraitement
pour ce sous-problème ou soit génère des coupes. En PPC, ceci est fait en concevant des propaga-
teurs spécialisés pour les contraintes globales du problème. D’où la nécessité de synthétiser des
objets combinatoires capturant des facettes de la structure d’un problème considéré, par exemple,
des bornes précises, des coupes linéaires ou des contraintes redondantes.

◦ La nécessité d’exploiter la structure du problème conduit à un grand nombre de méthodes dites ad

hoc, par exemple des bornes, des algorithmes, des décompositions, des propagateurs, et des heuris-
tiques toutes spécifiques. Ce sont des méthodes efficaces pour la résolution du problème pour lequel

187

188 FRENCH SUMMARY

elles ont été conçues, mais ne peuvent pas du tout être réutilisées pour tout autre problème, ou bien
exigent un effort important d’adaptation. D’où la nécessité de développer des méthodes systéma-

tiques afin de synthétiser des objets combinatoires pour les contraintes d’un problème considéré.

Cette thèse étudie une famille de contraintes, nommées contraintes sur les séries temporelles. Ces
contraintes sont définies d’une façon compositionnelle [22, 10]. Une contrainte sur les séries temporelles
γ(X,R) restreint la variable R, dite valeur de résultat de γ, à être le résultat des calculs faits à partir
de la séquence des variables entières X = hX1, X2, . . . , Xni, dite série temporelle, qui représente des
mesures prises au fil du temps. Par exemple, R pourrait être le nombre de paires de variables consécutives
hXi, Xi+1i de X tel que Xi < Xi+1 avec i dans [1, n − 1]. Les trois ingrédients principaux décrivant une
contrainte sur les séries temporelles sont un motif, une caractéristique, et un agrégateur. Un motif est une
forme régulière de sous-séquences, qui, est d’un point de vue formel, est caractérisée par une expression
régulière sur l’alphabet de trois lettres {‘<’, ‘=’, ‘>’}. Par exemple, le motif DECREASING_SEQUENCE,
qui correspond à toute sous-séquence monotone maximale décroissante hXi, Xi+1, . . . , Xji d’une séquence
des entiers hX1, X2, . . . , Xni est caractérisé par l’expression régulière ‘(> (> | =)⇤)⇤ >’, ce qui signifie
que Xi > Xi+1 . . . Xj−1 > Xj , et quelque soit k dans [i + 1, j − 2], Xk ≥ Xk+1. Une caractéristique
et un agrégateur sont des fonctions sur des séquences entières, par exemple le maximum d’une séquence
d’entiers, ou la somme des éléments d’une séquence des entiers.

Les séries temporelles sont très répandues en pratique. Nous donnons quelques exemples d’utilisations
possibles des contraintes sur les séries temporelles :
◦ L’analyse de la production de centrales électriques sur plusieurs jours dans le contexte de la résolu-

tion du «Unit Commitment Problem»[28]. À partir des courbes de production connues des centrales
électriques, on peut extraire un modèle en utilisant les contraintes sur les séries temporelles, puis
générer une ou plusieurs courbes de production similaires satisfaisantes des restrictions supplémen-
taires pour la centrale considérée.
◦ Ordonnancement du personnel dans un centre d’appel [11]. Le problème consiste à couvrir la de-

mande de la main-d’oeuvre donnée variant au fil du temps, tout en minimisant le coût global des
ressources, et en satisfaisant les contraintes sur les séries temporelles données qui correspondent à
des processus d’affaires, des règles d’emploi et des contrats syndicaux.
◦ La fouille de données dans le contexte de la gestion de l’alimentation pour systèmes distribués à

grande échelle [26].
◦ L’analyse de trace pour le fournisseur d’Internet afin de tester la bande passante de la connexion de

l’utilisateur [66].
◦ La prise de décision en temps réel, par exemple lorsqu’il faut analyser des flux de données afin

d’ajuster certains paramètres, par exemple le taux de péage en fonction du trafic [5].
Pour de telles contraintes définies de manière compositionnelle, nous nous concentrons d’abord sur la

construction de méthodes systématiques pour synthétiser des objets combinatoires compositionnels tels que
des bornes précises, des invariants linéaires, des automates, etc., en exploitant leur nature compositionnelle
au niveau combinatoire. Le mot «compositionnels»signifie ici que l’on peut non seulement combiner de
tels objets pendant la phase de résolution, mais aussi les utiliser dans le cadre de techniques différentes, par
exemple la PPC, la PM, ou la fouille de données.

Une formule capture certaines relations combinatoires entre des quantités différentes. L’idée mise en
avance dans cette thèse est basée sur le pari qu’un ensemble de formules a potentiellement plus d’impact
qu’un ensemble d’algorithmes sous réserve qu’il soit possible de les synthétiser. En effet, d’un point de vue
compositionnel, les formules peuvent être utilisées conjointement et avec plusieurs techniques de résolution
telles que la PPC ou la PM, ce qui s’avère beaucoup plus difficile dans le contexte des algorithmes. Un autre
avantage des objets combinatoires est la synergie entre eux, c’est-à-dire que nous pouvons les composer.
Des objets combinatoires différents combinés ensemble ont une meilleure performance que lorsqu’ils sont
utilisés séparément. Un bon exemple d’une telle synergie est l’interaction entre des bornes précises sur
la valeur de résultat d’une contrainte sur les séries temporelles γ et des contraintes de colle [8, 23]. Pour
une séquence de variables X = hX1, X2, . . . , Xni, un préfixe P = hX1, X2, . . . , Xii et un suffixe inversé

FRENCH SUMMARY 189

S = hXn, Xn−1, . . . , Xii de X , une contrainte de colle relie les valeurs de résultat des trois contraintes sur
les séries temporelles γ imposées sur X , sur P , et sur S.

Les objets combinatoires synthétisés peuvent être utilisés à différentes fins, y compris, mais pas limité à:
◦ Lors de la résolution d’un problème dans le contexte de la PPC, l’objectif est généralement d’élaguer

le plus de valeurs irréalisables pour les variables, étant donné que plus petits sont les domaines, plus
il est en principe facile de trouver une solution. Des objets combinatoires synthétisés peuvent être
utilisés pour rendre le filtrage de contraintes sur les séries temporelles plus fort.
◦ Bien que les contraintes sur les séries temporelles puissent être reformulées en modèles linéaires [11]

et intégrées dans des modèles linéaires existants, la reformulation linéaire obtenue n’est pas précise,
c’est-à-dire qu’un solveur de programmation linéaire tel que CPLEX ou Gurobi passe généralement
beaucoup de temps pour trouver une solution. Nos objets combinatoires peuvent être utilisés pour
améliorer l’aspect résolution dans le contexte de la programmation linéaire.
◦ Les contraintes sur les séries temporelles peuvent être utilisées dans le contexte de l’extraction de

données. Par exemple, des bornes précises sur la valeur de résultat d’une contrainte sur les séries
temporelles sont utilisées pour regrouper des séries temporelles représentant la charge de travail
d’un centre de données [94]; des bornes précises permettent de comparer les plages maximales de
variation des valeur résultat de plusieurs contraintes sur les séries temporelles.

D’un point de vue opérationnel, toute contrainte sur les séries temporelles γ a une représentation en
termes d’automate à registres synthétisé à partir du transducteur correspondant à l’expression régulière
associée à γ [22]. Il a été montré dans [68] comment automatiquement générer un tel transducteur à partir
d’une expression régulière. Tous les objets combinatoires que nous obtenons dans cette thèse seront soit
synthétisés à partir de la vue déclarative des contraintes sur les séries temporelles, c’est-à-dire en utilisant
des expressions régulières, soit à partir de leur représentation opérationnelle, c’est-à-dire en utilisant des
automates à registres et des transducteurs. La Figure 17.2 donne la classification des objets combinatoires
vus dans cette thèse en fonction de la représentation des contraintes sur les séries temporelles, à partir de
laquelle ils ont été synthétisés, c’est-à-dire déclarative ou opérationnelle. Les objets combinatoires présentés
dans la Figure 17.2 seront détaillés à la fin de ce résumé.

Bien que l’utilisation des transducteurs et des automates ait une longue tradition dans le contexte de la
synthèse de composants logiciels fiables [133, 128], ils n’ont presque jamais été utilisés pour synthétiser

Une contrainte sur les séries temporelles

(la vue declarative)

Expression Régulière

Une contrainte sur les séries temporelles

(la vue opérationnelle)

Transducteur

#

Automate à registre

◦ Bornes sur la valeur du résultat

◦ Contraintes redondantes AMONG

◦ Invariants linéaires

◦ Invariants non-linéaires

◦ Automates conditionnels

Figure 17.2 – Les objets combinatoires synthétisés et les facettes à partir desquelles ils étaient synthétisés,
c’est-à-dire déclarative avec des expressions régulières ou opérationnelle avec des transducteurs et/ou des
automates à registres. Une flèche de la source à la destination indique que la destination peut être synthétisée
à partir de la source.

190 FRENCH SUMMARY

des objets combinatoires tels que des bornes précises, des coupes linéaires ou des contraintes de colle. Re-
marquons la correspondance suivante entre vérification assistée par ordinateur [55] et programmation par
contraintes : premièrement, les deux utilisent parfois des spécifications déclaratives de haut niveau à partir
desquelles des transducteurs et des automates sont synthétisés ; deuxièmement, il y a une correspondance
entre les invariants qui sont généralement extraits de ces transducteurs et automates pour prouver une pro-
priété d’un programme ou d’un système, et les conditions nécessaires que l’on souhaiterait synthétiser dans
le contexte de la PPC ou la PM pour obtenir des inférences plus fortes: les deux sont des formules qui
doivent toujours être vraies.

Le deuxième objectif de cette thèse est l’extension de l’approche utilisée pour décrire les contraintes

sur les séries temporelles afin de capturer un grand nombre de contraintes sur les séquences telles que
[25, 105, 108]. Le travail initial [22] utilise des transducteurs finis pour synthétiser des propagateurs pour les
contraintes sur les séries temporelles. Cependant, le même modèle à base de transducteur peut être étendu
pour synthétiser des propagateurs pour d’autres contraintes globales telles que AMONG [25], SIMILARITY

[105], et STRETCH [108].

Avant de donner un aperçu de nos contributions, nous indiquons quatre raisons distinguant notre travail
:

1. Premièrement, dans la littérature, il existe des approches se concentrant sur l’aspect combinatoire de
contraintes spécifiques [116, 19, 39, 41] ou proposant des méthodes génériques pour décrire des con-
traintes [129] et synthétiser des propagateurs [100]. Les approches existantes ne gèrent pas l’aspect
combinatoire d’une contrainte: ils reposent sur l’utilisateur pour décrire un propagateur par un en-
semble de formules. Dans notre travail, nous allons un peu plus loin et explorons le sujet de la

synthèse automatique de propagateurs sous la forme d’objets combinatoires pour une grande classe
de contraintes sur les temporelles contraintes [22] contenant plus de 200 contraintes.

2. Deuxièmement, les objets combinatoires obtenus peuvent être utilisés, non seulement comme des
propagateurs dans le contexte de la programmation par contraintes, mais aussi dans les contextes de
la programmation linéaire, de l’exploration de données, ou de la recherche locale. Cela implique que
ces objets représentent des informations essentielles sur l’aspect combinatoire d’une contrainte sur
les séries temporelles, et sont donc indépendants du contexte dans lequel des contraintes sur les séries
temporelles sont utilisées.

3. Troisièmement, les objets obtenus sont paramétrés par la description d’une contrainte sur les séries
temporelles considérées, la longueur d’une série temporelle et les domaines des variables de la série
temporelle, et sont synthétisés une bonne fois pour toutes. Cela nous permet de créer une base de

données d’objets combinatoires pour les contraintes sur les séries temporelles [10] consultable dans
des contextes complètement différents. Il n’est pas nécessaire de relancer nos méthodes de synthèse
de ces objets combinatoires pour chaque instance de problème. Notons que, pour obtenir de tels
objets combinatoires, nous devons prouver automatiquement qu’ils sont valables pour toute longueur
de séquence.

4. Quatrièmement, rechercher des moyens uniformes pour représenter des familles de contraintes glob-
ales et gérer leur aspect combinatoire n’est pas habituel au sein de la communauté PPC, mais c’est
malgré tout important, car nous finirions sinon avec un ensemble de contraintes dédiées à chaque
problème ne communiquant pas entre elles.

Une visite guidée à travers les contributions principales de cette thèse.

Les contributions principales présentées dans cette thèse sont les suivantes :

◦ [Les bornes supérieures et inférieures compositionnelles sur la valeur du résultat de chaque con-
trainte sur les séries temporelles]
Une formule de borne pour une contrainte sur les séries temporelles est paramétrée par la longueur
n de la série temporelle et par les domaines des variables de la série temporelle. Chaque formule

FRENCH SUMMARY 191

de borne est obtenue à partir d’une formule générique, qui est paramétrée par une contrainte sur les
séries temporelles considérées. Par conséquent, nous avons seulement besoin de prouver quelques
formules génériques plutôt qu’une formule pour chaque contrainte sur les séries temporelles. Bien
que la borne soit toujours valide, sa finesse n’est garantie que lorsque les domaines de toutes les
variables de la série temporelle correspondent au même intervalle entier. Pour presque toutes les
contraintes sur les séries temporelles les bornes supérieures et inférieures sont évaluées en temps
constant, à l’exception de 12 contraintes pour lesquelles l’évaluation se fait en O(n).
Ce travail a été publié dans le journal Constraints [14] et dans les actes de la conférence CP’16 [8]
; les bornes pour toutes les contraintes sur les séries temporelles ont été intégrées dans le Volume II
du Global Constraint Catalogue [10].

◦ [Contraintes implicites AMONG pour trois familles des contraintes sur les séries temporelles]
Une contrainte AMONG [25] limite le nombre de variables d’une séquence de variables, pouvant
prendre leurs valeurs dans un ensemble fini particulier de valeurs entières. Ici, le mot implicite

signifie que ces contraintes sont redondantes, c’est-à-dire qu’elles ne changent pas l’ensemble des
solutions du problème. Leur but est d’enlever des valeurs irréalisables des domaines des variables.
Comme pour les bornes, il y a une seule contrainte AMONG générique par famille qui est paramétrée
par le motif d’une contrainte sur les séries temporelles considérée. Par conséquent, nous avons
seulement besoin de prouver trois contraintes AMONG implicites pour les utiliser avec 66 contraintes
sur les séries temporelles.
Ce travail a été publié dans les actes de la conférence CP’17 [12], et les contraintes implicites
AMONG pour 66 contraintes sur les séries temporelles ont été intégrées dans le Volume II du Global
Constraint Catalogue [10].

◦ [Inégalités implicites linéaires reliant les valeurs de résultat d’une conjonction des contraintes sur
les séries temporelles imposées sur la même séquence de longueur n, et paramétrés par n]
Nous explorons les relations entre les valeurs du résultat de plusieurs contraintes sur les séries tem-
porelles imposées sur une même séquence. On nomme ces inégalités invariants linéaires.
Ce travail a été publié dans les actes de la conférence CP’17 [13], et les invariants linéaires obtenus
ont été intégrés dans le Volume II du Global Constraint Catalogue [10].

◦ [Invariants non linéaires reliant les valeurs de résultat d’une conjonction des contraintes sur les
séries temporelles imposées sur une même séquence de longueur n, et paramétrés par une fonction
de n]
De tels invariants caractérisent des ensembles de combinaisons irréalisables des valeurs du résultat
des contraintes sur les séries temporelles dans une conjonction telles que l’on ne peut pas les ex-
primer comme une combinaison linéaire de R1, R2 et n. En d’autres termes, ce sont des ensembles
de combinaisons irréalisables qui sont situés dans l’enveloppe convexe de combinaisons réalisables.
Ces invariants non linéaires ont été intégrés dans le Volume II du Global Constraint Catalogue [10].

◦ [Automates de taille constante représentant l’ensemble de toutes les séquences entières satis-
faisantes une condition, par exemple toutes les séquences entières avec le nombre maximum de
séquences décroissantes pour une longueur de séquence donnée]
D’une part, les automates finis sont utilisés depuis le début de l’informatique pour modéliser de
nombreux aspects du calcul [81]. D’autre part, les bornes sont omniprésentes dans un certain nombre
de problèmes d’optimisation [88, 18] où elles permettent d’accélérer le processus de recherche.
Alors que les bornes sont généralement exprimées par des formules paramétrées [30, 14], la question
d’une représentation compacte et explicite de l’ensemble de toutes les solutions atteignant une borne
particulière est passée inaperçue. Ces automates sont une partie cruciale de notre méthode pour
synthétiser et prouver des contraintes implicites non linéaires, mentionnées dans le point précédent.
Les automates obtenus ont été intégrés dans le Volume II du Global Constraint Catalogue [10].

Appendices

193

Appendix A

An Entry of the Global Constraint Catalogue

A.1 Metadata

The following synthesised code corresponds to the metadata of the Global Constraint Catalogue for the
NB_PEAK time-series constraint. The bounds for time-series constraints, presented in Chapter 7, were in-
tegrated into the ctr_restrictions predicate, and the conditional automata, presented in Chapter 11,
were integrated into the ctr_specialisation predicates.

:− m u l t i f i l e
c t r _ p r e d e f i n e d / 1 ,
c t r _ d a t e / 2 ,
c t r _ p e r s o n s / 2 ,
c t r _ o r i g i n / 3 ,
c t r _ u s u a l _ n a m e / 2 ,
c t r_ synonyms / 2 ,
c t r _ t y p e s / 2 ,
c t r _ a r g u m e n t s / 2 ,
c t r _ e x c h a n g e a b l e / 2 ,
c t r _ r e s t r i c t i o n s / 2 ,
c t r _ t y p i c a l / 2 ,
c t r _ t y p i c a l _ m o d e l / 2 ,
c t r _ p u r e _ f u n c t i o n a l _ d e p e n d e n c y / 2 ,
c t r _ f u n c t i o n a l _ d e p e n d e n c y / 3 ,
c t r _ c o n t r a c t i b l e / 4 ,
c t r _ e x t e n s i b l e / 4 ,
c t r _ a g g r e g a t e / 3 ,
c t r _ e x a m p l e / 2 ,
c t r _ d r a w _ e x a m p l e / 9 ,
c t r _ c o n d _ i m p l y / 5 ,
c t r _ s e e _ a l s o / 2 ,
c t r _ k e y _ w o r d s / 2 ,
c t r _ d e r i v e d _ c o l l e c t i o n s / 2 ,
c t r _ g r a p h / 7 ,
c t r _ g r a p h / 9 ,
c t r _ e v a l / 2 ,
c t r _ a u t o m a t o n _ s i g n a t u r e / 3 ,
c t r _ g l u e _ m a t r i x / 2 ,
c t r _ s p e c i a l i s a t i o n / 3 ,
c t r _ s o l / 6 ,

195

196 APPENDIX A. AN ENTRY OF THE GLOBAL CONSTRAINT CATALOGUE

c t r _ l o g i c / 3 ,
c t r _ a p p l i c a t i o n / 2 .

c t r _ d a t e (nb_peak , [’ 2 0 1 4 1 2 0 3 ’]) .

c t r _ o r i g i n (nb_peak ,
’ Based on t h e \ \ h y p e r l i n k { Ppeak } { \ \ p a t t e r n { peak }} p a t t e r n . ’ ,
[]) .

c t r _ a r g u m e n t s (nb_peak ,
[’VALUE’−dvar ,

’VARIABLES’− c o l l e c t i o n (var−dva r)]) .

c t r _ e x c h a n g e a b l e (nb_peak ,
[i t e m s (’VARIABLES’ , r e v e r s e) ,

t r a n s l a t e ([’ VARIABLES’ ^ v a r])]) .

c t r _ r e s t r i c t i o n s (nb_peak , l e t ([sv= s i z e (’VARIABLES ’) ,
rv = r a n g e (’VARIABLES’ ^ v a r)] ,

[sv = <2#\ / rv =<1#=>’VALUE’ = 0 ,
’VALUE’ >=0 ,
’VALUE’= < markup (max (0 , (sv−1) / 2) , 1) ,
r e q u i r e d (’VARIABLES’ , v a r)])) .

c t r _ p u r e _ f u n c t i o n a l _ d e p e n d e n c y (nb_peak , []) .

c t r _ f u n c t i o n a l _ d e p e n d e n c y (nb_peak , 1 , [2]) .

c t r _ t y p i c a l (nb_peak , [s i z e (’VARIABLES ’) >2 , r a n g e (’VARIABLES’ ^ v a r) >1]) .

c t r _ e x a m p l e (nb_peak ,
nb_peak (3 ,

[[var −7] ,
[var −5] ,
[var −5] ,
[var −1] ,
[var −4] ,
[var −5] ,
[var −2] ,
[var −2] ,
[var −3] ,
[var −5] ,
[var −6] ,
[var −2] ,
[var −3] ,
[var −3] ,
[var −3] ,
[var −1]])) .

c t r _ k e y _ w o r d s (nb_peak , []) .

A.1. METADATA 197

c t r _ e v a l (nb_peak , [c h e c k e r (nb_peak_c1) ,
c h e c k e r (nb_peak_c) ,
au tomaton (nb_peak_a1) ,
au tomaton (nb_peak_a) ,
a u t o m a t o n _ w i t h _ s i g n a t u r e (nb_peak_a1_s) ,
a u t o m a t o n _ w i t h _ s i g n a t u r e (nb_peak_a_s)]) .

% t h e s e a r e c u r r e n t l y n o t used i n t ime−s e r i e s
c t r _ c o n d _ i m p l y (− ,− ,− ,− ,−):− f a i l .
c t r _ c o n t r a c t i b l e (− ,− ,− ,−):− f a i l .
c t r _ e x t e n s i b l e (− ,− ,− ,−):− f a i l .
c t r _ a g g r e g a t e (− ,− ,−):− f a i l .
c t r _ s o l (− ,− ,− ,− ,− ,−):− f a i l .

nb_peak_c (Value , VARIABLES) :−
c o l l e c t i o n (VARIABLES , [i n t]) ,
g e t _ a t t r 1 (VARIABLES , VARS) ,
VARS=[F i r s t | _] ,
l e n g t h (VARS, N) ,
N1 i s N+1 ,
D e f a u l t =0 ,
nb_peak_c (VARS, D e f a u l t , s , D e f a u l t , 0 , D e f a u l t , Value) .

nb_peak_c ([_] , D e f a u l t , _ , CLast , DLast , RLast , Value) :− ! ,
Value i s RLast+CLast .

nb_peak_c ([Xi , Xj | Xs] , D e f a u l t , s , C , D, R , R e s u l t) :−
Xi>=Xj , ! ,
nb_peak_c ([Xj | Xs] , D e f a u l t , s , C , D, R , R e s u l t) .

nb_peak_c ([Xi , Xj | Xs] , D e f a u l t , s , C , D, R , R e s u l t) :−
Xi<Xj , ! ,
nb_peak_c ([Xj | Xs] , D e f a u l t , r , C , D, R , R e s u l t) .

nb_peak_c ([Xi , Xj | Xs] , D e f a u l t , r , C , D, R , R e s u l t) :−
Xi>Xj , ! ,
A1000 i s max (D, 1) ,
nb_peak_c ([Xj | Xs] , D e f a u l t , t , A1000 , 0 , R , R e s u l t) .

nb_peak_c ([Xi , Xj | Xs] , D e f a u l t , r , C , D, R , R e s u l t) :−
Xi=<Xj , ! ,
A1000 i s max (D, 1) ,
nb_peak_c ([Xj | Xs] , D e f a u l t , r , C , A1000 , R , R e s u l t) .

nb_peak_c ([Xi , Xj | Xs] , D e f a u l t , t , C , D, R , R e s u l t) :−
Xi>Xj , ! ,
A1000 i s max (C , max (D, 1)) ,
nb_peak_c ([Xj | Xs] , D e f a u l t , t , A1000 , 0 , R , R e s u l t) .

nb_peak_c ([Xi , Xj | Xs] , D e f a u l t , t , C , D, R , R e s u l t) :−
Xi =:= Xj , ! ,
A1000 i s max (D, 1) ,
nb_peak_c ([Xj | Xs] , D e f a u l t , t , C , A1000 , R , R e s u l t) .

nb_peak_c ([Xi , Xj | Xs] , D e f a u l t , t , C , D, R , R e s u l t) :−
Xi<Xj , ! ,
A1000 i s R+C ,
nb_peak_c ([Xj | Xs] , D e f a u l t , r , D e f a u l t , 0 , A1000 , R e s u l t) .

nb_peak_c1 (Value , VARIABLES) :−

198 APPENDIX A. AN ENTRY OF THE GLOBAL CONSTRAINT CATALOGUE

c o l l e c t i o n (VARIABLES , [i n t]) ,
g e t _ a t t r 1 (VARIABLES , VARS) ,
VARS=[F i r s t | _] ,
l e n g t h (VARS, N) ,
N1 i s N+1 ,
D e f a u l t =0 ,
nb_peak_c1 (VARS, D e f a u l t , s , D e f a u l t , Value) .

nb_peak_c1 ([_] , D e f a u l t , _ , RLast , Value) :− ! ,
Value i s RLast .

nb_peak_c1 ([Xi , Xj | Xs] , D e f a u l t , s , R , R e s u l t) :−
Xi>=Xj , ! ,
nb_peak_c1 ([Xj | Xs] , D e f a u l t , s , R , R e s u l t) .

nb_peak_c1 ([Xi , Xj | Xs] , D e f a u l t , s , R , R e s u l t) :−
Xi<Xj , ! ,
nb_peak_c1 ([Xj | Xs] , D e f a u l t , r , R , R e s u l t) .

nb_peak_c1 ([Xi , Xj | Xs] , D e f a u l t , r , R , R e s u l t) :−
Xi>Xj , ! ,
A1000 i s R+1 ,
nb_peak_c1 ([Xj | Xs] , D e f a u l t , t , A1000 , R e s u l t) .

nb_peak_c1 ([Xi , Xj | Xs] , D e f a u l t , r , R , R e s u l t) :−
Xi=<Xj , ! ,
nb_peak_c1 ([Xj | Xs] , D e f a u l t , r , R , R e s u l t) .

nb_peak_c1 ([Xi , Xj | Xs] , D e f a u l t , t , R , R e s u l t) :−
Xi>Xj , ! ,
nb_peak_c1 ([Xj | Xs] , D e f a u l t , t , R , R e s u l t) .

nb_peak_c1 ([Xi , Xj | Xs] , D e f a u l t , t , R , R e s u l t) :−
Xi =:= Xj , ! ,
nb_peak_c1 ([Xj | Xs] , D e f a u l t , t , R , R e s u l t) .

nb_peak_c1 ([Xi , Xj | Xs] , D e f a u l t , t , R , R e s u l t) :−
Xi<Xj , ! ,
nb_peak_c1 ([Xj | Xs] , D e f a u l t , r , R , R e s u l t) .

c t r _ a u t o m a t o n _ s i g n a t u r e (nb_peak , nb_peak_a , p a i r _ s i g n a t u r e (2 , s i g n a t u r e)) .

c t r _ a u t o m a t o n _ s i g n a t u r e (nb_peak , nb_peak_a1 , p a i r _ s i g n a t u r e (2 , s i g n a t u r e)) .

nb_peak_a (Flag , Value , VARIABLES) :−
D e f a u l t = 0 ,
nb_peak_a (Flag , Value , VARIABLES , D e f a u l t) .

nb_peak_a (Flag , Value , VARIABLES , D e f a u l t) :−
p a i r _ s i g n a t u r e (VARIABLES , S i g n a t u r e) ,
nb_peak_a_s (Flag , Value , VARIABLES , D e f a u l t , S i g n a t u r e) .

nb_peak_a_s (Flag , Value , VARIABLES , D e f a u l t , S i g n a t u r e) :−
c o l l e c t i o n (VARIABLES , [dv a r]) ,
g e t _ a t t r 1 (VARIABLES , Xs) ,
l e n g t h (Xs , N) ,
g e n _ p a i r s (Xs , X Pa i r s) ,
Xs = [F i r s t | _] ,
LT = 0 , EQ = 1 , GT = 2 ,
au tomaton (XPai rs , Xi−Xj , S i g n a t u r e ,

A.1. METADATA 199

[s o u r c e (s) ,
s i n k (s) ,
s i n k (r) ,
s i n k (t)] ,
[a r c (s , GT, s , ([C , D, R])) ,
a r c (s , EQ, s , ([C , D, R])) ,
a r c (s , LT , r , ([C , D, R])) ,
a r c (r , GT, t , ([max (D, 1) , 0 , R])) ,
a r c (r , LT , r , ([C , max (D, 1) , R])) ,
a r c (r , EQ, r , ([C , max (D, 1) , R])) ,
a r c (t , GT, t , ([max (C , max (D, 1)) , 0 , R])) ,
a r c (t , EQ, t , ([C , max (D, 1) , R])) ,
a r c (t , LT , r , ([D e f a u l t , 0 , R + C]))] ,
[C , D, R] , [D e f a u l t , 0 , D e f a u l t] , [CLast , DLast , RLast]) ,
Value #= RLast + CLast #<=> Fla g .

nb_peak_a1 (Flag , Value , VARIABLES) :−
D e f a u l t = 0 ,
nb_peak_a1 (Flag , Value , VARIABLES , D e f a u l t) .

nb_peak_a1 (Flag , Value , VARIABLES , D e f a u l t) :−
p a i r _ s i g n a t u r e (VARIABLES , S i g n a t u r e) ,
nb_peak_a1_s (Flag , Value , VARIABLES , D e f a u l t , S i g n a t u r e) .

nb_peak_a1_s (Flag , Value , VARIABLES , D e f a u l t , S i g n a t u r e) :−
c o l l e c t i o n (VARIABLES , [dv a r]) ,
g e t _ a t t r 1 (VARIABLES , Xs) ,
l e n g t h (Xs , N) ,
g e n _ p a i r s (Xs , X Pa i r s) ,
Xs = [F i r s t | _] ,
LT = 0 , EQ = 1 , GT = 2 ,
au tomaton (XPai rs , Xi−Xj , S i g n a t u r e ,
[s o u r c e (s) ,
s i n k (s) ,
s i n k (r) ,
s i n k (t)] ,
[a r c (s , GT, s , ([R])) ,
a r c (s , EQ, s , ([R])) ,
a r c (s , LT , r , ([R])) ,
a r c (r , GT, t , ([R + 1])) ,
a r c (r , LT , r , ([R])) ,
a r c (r , EQ, r , ([R])) ,
a r c (t , GT, t , ([R])) ,
a r c (t , EQ, t , ([R])) ,
a r c (t , LT , r , ([R]))] ,
[R] , [D e f a u l t] , [RLast]) ,
Value #= RLast #<=> F la g .

nb_peak_r (VALUE, Xs , SV) :−
nb_peak_r (VALUE, Xs , SV , SV) .

nb_peak_r (VALUE, Xs , SV , ST) :−
r a n g e _ i n t (Xs ,RV) ,

200 APPENDIX A. AN ENTRY OF THE GLOBAL CONSTRAINT CATALOGUE

SV#=<2#=>VALUE#=0 ,
RV#=<1#=>VALUE#=0 ,
VALUE# >=0 ,
VALUE#=<max (0 , (SV−1) / 2) .

c t r _ g l u e _ m a t r i x (nb_peak ,
[c e l l (s , s , c f +cb) ,

c e l l (s , r , c f +cb) ,
c e l l (s , t , c f +cb) ,
c e l l (r , s , c f +cb) ,
c e l l (r , r , 1) ,
c e l l (r , t , 1) ,
c e l l (t , s , c f +cb) ,
c e l l (t , r , 1) ,
c e l l (t , t , c f +cb)]) .

c t r _ s p e c i a l i s a t i o n (nb_peak ,
nb_peak_eq_0 ,
k e r n e l ([s o u r c e (s) , s i n k (s) , s i n k (r)] ,

[a r c (s , 0 , r , (t r u e − >[])) ,
a r c (s , 1 , s , (t r u e − >[])) ,
a r c (s , 2 , s , (t r u e − >[])) ,
a r c (r , 0 , r , (t r u e − >[])) ,
a r c (r , 1 , r , (t r u e − >[]))] ,

[] , [] , [])) .

c t r _ s p e c i a l i s a t i o n (nb_peak ,
nb_peak_eq_1 ,
k e r n e l ([s o u r c e (s (1)) , s i n k (s (3)) , s i n k (s (4))] ,

[a r c (s (1) , 0 , s (2) , (t r u e − >[])) ,
a r c (s (1) , 1 , s (1) , (t r u e − >[])) ,
a r c (s (1) , 2 , s (1) , (t r u e − >[])) ,
a r c (s (2) , 0 , s (2) , (t r u e − >[])) ,
a r c (s (2) , 1 , s (2) , (t r u e − >[])) ,
a r c (s (2) , 2 , s (4) , (t r u e − >[])) ,
a r c (s (3) , 0 , s (3) , (t r u e − >[])) ,
a r c (s (3) , 1 , s (3) , (t r u e − >[])) ,
a r c (s (4) , 0 , s (3) , (t r u e − >[])) ,
a r c (s (4) , 1 , s (4) , (t r u e − >[])) ,
a r c (s (4) , 2 , s (4) , (t r u e − >[]))] ,

[] , [] , [])) .

c t r _ s p e c i a l i s a t i o n (nb_peak ,
nb_peak_eq_2 ,
k e r n e l ([s o u r c e (s (1)) , s i n k (s (5)) , s i n k (s (6))] ,

[a r c (s (1) , 0 , s (2) , (t r u e − >[])) ,
a r c (s (1) , 1 , s (1) , (t r u e − >[])) ,
a r c (s (1) , 2 , s (1) , (t r u e − >[])) ,
a r c (s (2) , 0 , s (2) , (t r u e − >[])) ,
a r c (s (2) , 1 , s (2) , (t r u e − >[])) ,
a r c (s (2) , 2 , s (3) , (t r u e − >[])) ,
a r c (s (3) , 0 , s (4) , (t r u e − >[])) ,

A.1. METADATA 201

a r c (s (3) , 1 , s (3) , (t r u e − >[])) ,
a r c (s (3) , 2 , s (3) , (t r u e − >[])) ,
a r c (s (4) , 0 , s (4) , (t r u e − >[])) ,
a r c (s (4) , 1 , s (4) , (t r u e − >[])) ,
a r c (s (4) , 2 , s (6) , (t r u e − >[])) ,
a r c (s (5) , 0 , s (5) , (t r u e − >[])) ,
a r c (s (5) , 1 , s (5) , (t r u e − >[])) ,
a r c (s (6) , 0 , s (5) , (t r u e − >[])) ,
a r c (s (6) , 1 , s (6) , (t r u e − >[])) ,
a r c (s (6) , 2 , s (6) , (t r u e − >[]))] ,

[] , [] , [])) .

c t r _ s p e c i a l i s a t i o n (nb_peak ,
nb_peak_eq_3 ,
k e r n e l ([s o u r c e (s (1)) , s i n k (s (7)) , s i n k (s (8))] ,

[a r c (s (1) , 0 , s (2) , (t r u e − >[])) ,
a r c (s (1) , 1 , s (1) , (t r u e − >[])) ,
a r c (s (1) , 2 , s (1) , (t r u e − >[])) ,
a r c (s (2) , 0 , s (2) , (t r u e − >[])) ,
a r c (s (2) , 1 , s (2) , (t r u e − >[])) ,
a r c (s (2) , 2 , s (3) , (t r u e − >[])) ,
a r c (s (3) , 0 , s (4) , (t r u e − >[])) ,
a r c (s (3) , 1 , s (3) , (t r u e − >[])) ,
a r c (s (3) , 2 , s (3) , (t r u e − >[])) ,
a r c (s (4) , 0 , s (4) , (t r u e − >[])) ,
a r c (s (4) , 1 , s (4) , (t r u e − >[])) ,
a r c (s (4) , 2 , s (5) , (t r u e − >[])) ,
a r c (s (5) , 0 , s (6) , (t r u e − >[])) ,
a r c (s (5) , 1 , s (5) , (t r u e − >[])) ,
a r c (s (5) , 2 , s (5) , (t r u e − >[])) ,
a r c (s (6) , 0 , s (6) , (t r u e − >[])) ,
a r c (s (6) , 1 , s (6) , (t r u e − >[])) ,
a r c (s (6) , 2 , s (8) , (t r u e − >[])) ,
a r c (s (7) , 0 , s (7) , (t r u e − >[])) ,
a r c (s (7) , 1 , s (7) , (t r u e − >[])) ,
a r c (s (8) , 0 , s (7) , (t r u e − >[])) ,
a r c (s (8) , 1 , s (8) , (t r u e − >[])) ,
a r c (s (8) , 2 , s (8) , (t r u e − >[]))] ,

[] , [] , [])) .

c t r _ s p e c i a l i s a t i o n (nb_peak ,
nb_peak_eq_4 ,
k e r n e l ([s o u r c e (s (1)) , s i n k (s (9)) , s i n k (s (1 0))] ,

[a r c (s (1) , 0 , s (2) , (t r u e − >[])) ,
a r c (s (1) , 1 , s (1) , (t r u e − >[])) ,
a r c (s (1) , 2 , s (1) , (t r u e − >[])) ,
a r c (s (2) , 0 , s (2) , (t r u e − >[])) ,
a r c (s (2) , 1 , s (2) , (t r u e − >[])) ,
a r c (s (2) , 2 , s (3) , (t r u e − >[])) ,
a r c (s (3) , 0 , s (4) , (t r u e − >[])) ,
a r c (s (3) , 1 , s (3) , (t r u e − >[])) ,
a r c (s (3) , 2 , s (3) , (t r u e − >[])) ,

202 APPENDIX A. AN ENTRY OF THE GLOBAL CONSTRAINT CATALOGUE

a r c (s (4) , 0 , s (4) , (t r u e − >[])) ,
a r c (s (4) , 1 , s (4) , (t r u e − >[])) ,
a r c (s (4) , 2 , s (5) , (t r u e − >[])) ,
a r c (s (5) , 0 , s (6) , (t r u e − >[])) ,
a r c (s (5) , 1 , s (5) , (t r u e − >[])) ,
a r c (s (5) , 2 , s (5) , (t r u e − >[])) ,
a r c (s (6) , 0 , s (6) , (t r u e − >[])) ,
a r c (s (6) , 1 , s (6) , (t r u e − >[])) ,
a r c (s (6) , 2 , s (7) , (t r u e − >[])) ,
a r c (s (7) , 0 , s (8) , (t r u e − >[])) ,
a r c (s (7) , 1 , s (7) , (t r u e − >[])) ,
a r c (s (7) , 2 , s (7) , (t r u e − >[])) ,
a r c (s (8) , 0 , s (8) , (t r u e − >[])) ,
a r c (s (8) , 1 , s (8) , (t r u e − >[])) ,
a r c (s (8) , 2 , s (1 0) , (t r u e − >[])) ,
a r c (s (9) , 0 , s (9) , (t r u e − >[])) ,
a r c (s (9) , 1 , s (9) , (t r u e − >[])) ,
a r c (s (1 0) , 0 , s (9) , (t r u e − >[])) ,
a r c (s (1 0) , 1 , s (1 0) , (t r u e − >[])) ,
a r c (s (1 0) , 2 , s (1 0) , (t r u e − >[]))] ,

[] , [] , [])) .

c t r _ s p e c i a l i s a t i o n (nb_peak , nb_peak_eq_5 , k e r n e l ([s o u r c e (s (1)) , s i n k (s (1 1)) ,
s i n k (s (1 2))] , [a r c (s (1) , 0 , s (2) , (t r u e − >[])) , a r c (s (1) , 1 , s (1) , (t r u e − >[])) , a r c (
s (1) , 2 , s (1) , (t r u e − >[])) , a r c (s (2) , 0 , s (2) , (t r u e − >[])) , a r c (s (2) , 1 , s (2) , (t r u e
− >[])) , a r c (s (2) , 2 , s (3) , (t r u e − >[])) , a r c (s (3) , 0 , s (4) , (t r u e − >[])) , a r c (s (3) , 1 ,
s (3) , (t r u e − >[])) , a r c (s (3) , 2 , s (3) , (t r u e − >[])) , a r c (s (4) , 0 , s (4) , (t r u e − >[])) ,
a r c (s (4) , 1 , s (4) , (t r u e − >[])) , a r c (s (4) , 2 , s (5) , (t r u e − >[])) , a r c (s (5) , 0 , s (6) , (
t r u e − >[])) , a r c (s (5) , 1 , s (5) , (t r u e − >[])) , a r c (s (5) , 2 , s (5) , (t r u e − >[])) , a r c (s
(6) , 0 , s (6) , (t r u e − >[])) , a r c (s (6) , 1 , s (6) , (t r u e − >[])) , a r c (s (6) , 2 , s (7) , (t r u e
− >[])) , a r c (s (7) , 0 , s (8) , (t r u e − >[])) , a r c (s (7) , 1 , s (7) , (t r u e − >[])) , a r c (s (7) , 2 ,
s (7) , (t r u e − >[])) , a r c (s (8) , 0 , s (8) , (t r u e − >[])) , a r c (s (8) , 1 , s (8) , (t r u e − >[])) ,
a r c (s (8) , 2 , s (9) , (t r u e − >[])) , a r c (s (9) , 0 , s (1 0) , (t r u e − >[])) , a r c (s (9) , 1 , s (9) , (
t r u e − >[])) , a r c (s (9) , 2 , s (9) , (t r u e − >[])) , a r c (s (1 0) , 0 , s (1 0) , (t r u e − >[])) , a r c (s
(1 0) , 1 , s (1 0) , (t r u e − >[])) , a r c (s (1 0) , 2 , s (1 2) , (t r u e − >[])) , a r c (s (1 1) , 0 , s (1 1) , (
t r u e − >[])) , a r c (s (1 1) , 1 , s (1 1) , (t r u e − >[])) , a r c (s (1 2) , 0 , s (1 1) , (t r u e − >[])) , a r c
(s (1 2) , 1 , s (1 2) , (t r u e − >[])) , a r c (s (1 2) , 2 , s (1 2) , (t r u e − >[]))] , [] , [] , [])) .

c t r _ s p e c i a l i s a t i o n (nb_peak , nb_peak_eq_up , k e r n e l ([s o u r c e (t) , s i n k (t) , s i n k (r) ,
s i n k (t 1)] , [a r c (t , 0 , r , (t r u e − >[])) , a r c (t , 1 , t1 , (t r u e − >[])) , a r c (t , 2 , t1 , (t r u e
− >[])) , a r c (r , 0 , r1 , (t r u e − >[])) , a r c (r , 1 , r1 , (t r u e − >[])) , a r c (r , 2 , t , (t r u e − >[]))
, a r c (t1 , 0 , r1 , (t r u e − >[])) , a r c (r1 , 2 , t1 , (t r u e − >[]))] , [] , [] , [])) .

c t r _ s p e c i a l i s a t i o n (nb_peak , nb_peak_ i s_even , k e r n e l ([s o u r c e (sE) , s i n k (sE) , s i n k
(rE)] , [a r c (sE , 0 , rE , (t r u e − >[])) , a r c (sE , 1 , sE , (t r u e − >[])) , a r c (sE , 2 , sE , (t r u e
− >[])) , a r c (rE , 0 , rE , (t r u e − >[])) , a r c (rE , 1 , rE , (t r u e − >[])) , a r c (rE , 2 , sO , (t r u e
− >[])) , a r c (sO , 0 , rO , (t r u e − >[])) , a r c (sO , 1 , sO , (t r u e − >[])) , a r c (sO , 2 , sO , (t r u e
− >[])) , a r c (rO , 0 , rO , (t r u e − >[])) , a r c (rO , 1 , rO , (t r u e − >[])) , a r c (rO , 2 , sE , (t r u e
− >[]))] , [] , [] , [])) .

c t r _ s p e c i a l i s a t i o n (nb_peak , nb_peak_is_odd , k e r n e l ([s o u r c e (sE) , s i n k (sO) , s i n k (
rO)] , [a r c (sE , 0 , rE , (t r u e − >[])) , a r c (sE , 1 , sE , (t r u e − >[])) , a r c (sE , 2 , sE , (t r u e
− >[])) , a r c (rE , 0 , rE , (t r u e − >[])) , a r c (rE , 1 , rE , (t r u e − >[])) , a r c (rE , 2 , sO , (t r u e

A.2. PDF PAGES 203

− >[])) , a r c (sO , 0 , rO , (t r u e − >[])) , a r c (sO , 1 , sO , (t r u e − >[])) , a r c (sO , 2 , sO , (t r u e
− >[])) , a r c (rO , 0 , rO , (t r u e − >[])) , a r c (rO , 1 , rO , (t r u e − >[])) , a r c (rO , 2 , sE , (t r u e
− >[]))] , [] , [] , [])) .

A.2 PDF Pages

The following synthesised PDF pages provides the corresponding synthesised LATEX catalogue entry for
the NB_PEAK time-series constraint. The bounds for time-series constraints, presented in Chapter 7, were
integrated into the Restrictions slot, and the conditional automata, presented in Chapter 11, were integrated
into the Specialisation slot.

1788 NB PEAK

3.396 NB PEAK

! " # $ DESCRIPTION AUTOMATON

Origin Based on the PEAK pattern.

Constraint NB PEAK(VALUE, VARIABLES)

Arguments VALUE : dvar

VARIABLES : collection(var−dvar)

< (= | <)∗ (> | =)∗ >

PL

Restrictions sv ≤ 2 ∨ rv ≤ 1 ⇒ VALUE = 0
VALUE ≥ 0
VALUE ≤ max(0, &(sv− 1)/2')¨

required(VARIABLES, var)
where
sv = |VARIABLES|
rv =range(VARIABLES.var)

0

2

¨

(see also fig. 3.967)

14

VALUE ≤ 6

 À Ã Õ Œ '

Purpose

VALUE is the number of occurrences of the PEAK pattern in the time-series given by the
VARIABLES collection. If the pattern does not occur, VALUE takes the default value 0.
An occurrence of the pattern PEAK is the maximal subsequence which matches the reg-
ular expression ‘< (= | <)∗ (> | =)∗ >’.

Example (3, 〈7, 5, 5, 1, 4, 5, 2, 2, 3, 5, 6, 2, 3, 3, 3, 1〉)

Figure 3.963 provides an example where the NB PEAK

(3, [7, 5, 5, 1, 4, 5, 2, 2, 3, 5, 6, 2, 3, 3, 3, 1]) constraint holds.

Typical |VARIABLES| > 2
range(VARIABLES.var) > 1

Symmetries • Items of VARIABLES can be reversed.

• One and the same constant can be added to the var attribute of all items of
VARIABLES.

Arg. properties Functional dependency: VALUE determined by VARIABLES.

204 APPENDIX A. AN ENTRY OF THE GLOBAL CONSTRAINT CATALOGUE

NB PEAK 1789

> = > < < > = < < < > < = = >

1

peak 1

1

peak 2

3 (SUM)

1
feature values
(ONE)

peak 3

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13 V14 V15 V16

1

2

3

4

5

6

7

VARIABLES

va
lu

es

7

5 5

1

4

5

2 2

3

5

6

2

3 3 3

1

Figure 3.963: Illustrating the NB PEAK constraint of the Example slot

A.2. PDF PAGES 205

1790 NB PEAK

Automaton Figures 3.964 and 3.965 respectively depict the automaton associated with the constraint
NB PEAK and its simplified form.

≥ s







C ← default

D ← 0
R ← default







≤ r ≥ t

R + C

≥

<

>
⇢

C ← max(D, 1)
D ← 0

}

≤
{D ← max(D, 1)}

>
⇢

C ← max(C,max(D, 1))
D ← 0

}

=
{D ← max(D, 1)}

<






C ← default

D ← 0
R ← R + C







Figure 3.964: Automaton for the NB PEAK constraint obtained by applying decoration
Table 2.36 to the seed transducer of the PEAK pattern where default is 0

≥ s{R ← default}

≤ r ≥ t

R

≥

<

>

{R ← R + 1}
≤ >

=<

Figure 3.965: Simplified automaton for the NB PEAK constraint obtained by applying
decoration Table 2.38 to the seed transducer of the PEAK pattern where default is 0;
Ri −Ri−1 ≥ 0 and −Ri +Ri−2 + 1 ≥ 0 are linear invariants.

206 APPENDIX A. AN ENTRY OF THE GLOBAL CONSTRAINT CATALOGUE

NB PEAK 1791

s r t

s
−→
C +

←−
C

−→
C +

←−
C

−→
C +

←−
C

r
−→
C +

←−
C 1

C
1

R

t
−→
C +

←−
C 1

L −→
C +

←−
C

Table 3.241: Concrete glue matrix, derived from the parametrised glue matrix 2.11,
for the NB PEAK constraint defined as the composition of the PEAK pattern , the

feature ONE , and the aggregator sum ; cells of the glue matrix are coloured with
the colour of the constituent to which they are related.

s r t

s 0 0 0

r 0 1
C

0
R

t 0 0
L

0

Table 3.242: Concrete glue matrix, derived from the parametrised glue matrix 2.11, for
the simplified automaton of the NB PEAK constraint defined as the composition of the
PEAK pattern , the feature ONE , and the aggregator sum ; cells of the glue matrix

are coloured with the colour of the constituent to which they are related.

A.2. PDF PAGES 207

1792 NB PEAK

Specialisation

≥ s ≤ r

≥

<

≤

Figure 3.966: Automaton without registers for the NB PEAK EQ 0 constraint; it de-
scribes all sequences containing no occurrence of the PEAK pattern on a sequence of
variables; it is derived from the automaton that counts the number of occurrences of the
PEAK pattern by removing the register R, the found transition from state r to t that in-
crements R, and the state t that becomes unreachable after removing transition r ! t.

> t < r

≥ t′ ≤ r′

<

>

<

>

= > ≤

< > < >

< < > < >

< = > < >

< > < < >

< > < = >

< > < > <

< > < > =

< > < > >

< > = < >

< > > < >

= < > < >

> < > < >

Figure 3.967: (left) Automaton without registers for the NB PEAK EQ UP constraint;
it describes all sequences containing the maximum number of occurrences of the PEAK

pattern on a sequence of sv variables, i.e. max(0, b sv−1
2 c) of the Restrictions slot

(see ¨); transitions in blue correspond to a new occurrence of pattern, dashed transi-
tions to slack, and accepting states have a light brown background; state t is accept-

ing when sv mod 2 = 1, while states r and t′ are accepting when sv mod 2 = 0.
(right) All corresponding solutions for sv− 1 2 {4, 5}.

≥ sE ≤ rO

≥ sO≤ rE

≥

≥≤

≤

<

>

<

>

(A)

≥ sE ≤ rO

≥ sO≤ rE

≥

≥≤

≤

<

>

<

>

(B)

Figure 3.968: Automata without registers for the (A) NB PEAK IS EVEN and the
(B) NB PEAK IS ODD constraints; they respectively achieve an even/odd number of
occurrences of the PEAK pattern on a sequence of n variables; transitions in blue cor-
respond to a new occurrence of pattern.

208 APPENDIX A. AN ENTRY OF THE GLOBAL CONSTRAINT CATALOGUE

Appendix B

An Entry of the Database of Invariants of the

Global Constraint Catalogue

B.1 Metadata

The following synthesised code illustrates the metadata of an entry of the database of invariants of the
Global Constraint Catalogue. This entry contains linear and non-linear invariants obtained by the methods
presented in Chapters 9 and 10, respectively.

i n v a r i a n t _ f o r m a t ([s u m _ w i d t h _ d e c r e a s i n g _ s e q u e n c e , sum_wid th_z igzag] , [x , y] ,
[y>0#=>x >=2 ,

y=<x ,
y = \ = (sv −2)*min (1 , max (0 , sv −3)) # \ / x < 3 # \ / x>sv *min (1 , max (0 , sv −1)) −1#\/1=

sv mod 2 # \ / 0 = x mod 2 ,
x = \ = 5 # \ / y <4 ,
x = \=1 ,
x = \ = 3 # \ / y <1 ,
y =\= x # \ / 0 = x mod 2 ,
x =\= sv *min (1 , max (0 , sv −1)) # \ / y < 1 # \ / y >(sv −2)*min (1 , max (0 , sv −3)) −1#\/0=

y mod 2 ,
y = \ = 1]) .

B.2 PDF Pages

The following page provides the corresponding synthesised LATEX entry of the database of invariants of
the Global Constraint Catalogue.

209

3146 4. A DATABASE OF INVARIANTS

SUM_WIDTH_DECREASING_SEQUENCE(x, VARIABLES)∧
SUM_WIDTH_ZIGZAG(y, VARIABLES)

¨ y > 0) x ≥ 2
≠ y  x

Æ
∨

0









@

y 6= (|VARIABLES|− 2) ⇤ min(1, max(0, |VARIABLES|− 3)),
x < 3,
x > |VARIABLES| ⇤ min(1, max(0, |VARIABLES|− 1))− 1,
1 = |VARIABLES| mod 2,
0 = x mod 2

1









A

Ø x 6= 5 _ y < 4
∞ x 6= 1
± x 6= 3 _ y < 1
≤ y 6= x _ 0 = x mod 2

(
∨

0





@

x 6= |VARIABLES| ⇤ min(1, max(0, |VARIABLES|− 1)),
y < 1,
y > (|VARIABLES|− 2) ⇤ min(1, max(0, |VARIABLES|− 3))− 1,
0 = y mod 2

1





A

) y 6= 1

0 2 4 6 8 10 12

0

2

4

6

8

10

sum_width_decreasing_sequence

su
m

_w
id

th
_z

ig
za

g

|VARIABLES| = 12

¨ ≠

Æ

Ø∞ ±

≤ (

)

0 2 4 6 8 10

0

2

4

6

8

sum_width_decreasing_sequence

su
m

_w
id

th
_z

ig
za

g

|VARIABLES| = 11

¨ ≠Ø∞ ±

≤ (

)

210APPENDIX B. AN ENTRY OF THE DATABASE OF INVARIANTS OF THE GLOBAL CONSTRAINT CATALOGUE

Appendix C

Tables with Regular-Expression Characteristics

In this appendix, we give tables with the values of regular-expression characteristics presented in Chap-
ters 7 and 8 for 22 regular expressions of [10].

name σ regular expression !σ

Bump ‘ >><>> ’ 5
Dec ‘ > ’ 1
DecSeq ‘(> (> | =)∗)∗ > ’ 1
DecTer ‘ >= =∗ > ’ 3
Dip ‘ <<><< ’ 5
Gorge ‘(> | > (> | =)∗ >)(< | < (< | =)∗ <)’ 2
Inc ‘ < ’ 1
IncSeq ‘(< (< | =)∗)∗ < ’ 1
IncTer ‘ <= =∗ < ’ 3
Inflexion ‘ < (< | =)∗ > | > (> | =)∗ < ’ 2
Peak ‘ < (< | =)∗(> | =)∗ > ’ 2
Plain ‘ > =∗ < ’ 2
Plateau ‘ < =∗ > ’ 2
PropPlain ‘ >= =∗ < ’ 3
PropPlateau ‘ <= =∗ > ’ 3
Steady ‘ = ’ 1
SteadySeq ‘ = =∗ ’ 1
SDecSeq ‘ > >∗ ’ 1
SIncSeq ‘ < <∗ ’ 1
Summit ‘(< | < (< | =)∗ <)(> | > (> | =)∗ >)’ 2
Valley ‘ > (> | =)∗(< | =)∗ < ’ 2
Zigzag ‘(<>)∗ <>< (> |") | (><)∗ ><> (< |")’ 3

Table C.1 – Regular-expression short names σ (see Table 7.1) and corresponding size (see Definition 7.1.1);
within each regular expression subparts corresponding to a smallest length word are highlighted in yellow.

211

212 APPENDIX C. TABLES WITH REGULAR-EXPRESSION CHARACTERISTICS

name σ illustration ⌘σ

Bump 2

Dec 1

DecSeq 1

DecTer 2

Dip 2

Gorge 1

Inc 1

IncSeq 1

IncTer 2

Inflexion 1

Peak 1
Plain 1

Plateau 1

PropPlain 1

PropPlateau 1
Steady 0

SteadySeq 0

SDecSeq 1

SIncSeq 1

Summit 1
Valley 1

Zigzag 1

Table C.2 – Regular-expression short names σ (see Table 7.1) and corresponding height shown as thick
orange vertical line segments (see Definition 7.1.4)

213

name σ heσ, cσi illustration φ
hni
σ

Bump undefined
6

(

2 if n = !σ + 1

undefined otherwise

Dec undefined
2

(

1 if n = !σ + 1

undefined otherwise

DecSeq h0, 1i
2 n > 2

(

1 if n = !σ + 1

2 if n > !σ + 1

DecTer h0, 0i
n

2

Dip undefined
6

(

2 if n = !σ + 1

undefined otherwise

Gorge h0, 1i
3 n > 3

(

1 if n = !σ + 1

2 if n > !σ + 1

Inc undefined
2

(

1 if n = !σ + 1

undefined otherwise

IncSeq h0, 1i
2 n > 2

(

1 if n = !σ + 1

2 if n > !σ + 1

IncTer h0, 0i
n

2

Inflexion h0, 0i
n

1

Peak h0, 0i
n

1

Plain h0, 0i
n

1

Plateau h0, 0i
n

1

PropPlain h0, 0i
n

1

PropPlateau h0, 0i
n

1

Steady undefined
2

(

0 if n = !σ + 1

undefined otherwise
SteadySeq h0, 0i

n
0

SDecSeq h1, 0i
n

n− 1

SIncSeq h1, 0i
n

n− 1

Summit h0, 1i
3 n > 3

(

1 if n = !σ + 1

2 if n > !σ + 1

Valley h0, 0i
n

1

Zigzag h0, 0i
n

1

Table C.3 – Regular-expression short names σ (see Table 7.1) and corresponding range shown as thick
orange vertical line segments (see Definition 7.1.5); for a non-fixed-length regular expression σ and for
any n > !σ + 1, φhniσ = eσ · (n − 1 − ⌘σ) + cσ + ⌘σ, where !σ and ⌘σ respectively correspond to the size

(see Definition 7.1.1) and the height (see Definition 7.1.4) of the corresponding σ.

214 APPENDIX C. TABLES WITH REGULAR-EXPRESSION CHARACTERISTICS

name σ regular expression Θσ

Bump ‘ >><>> ’ {‘ >><>> ’}
Dec ‘ > ’ {‘ > ’}
DecSeq ‘(> (> | =)⇤)⇤ > ’ {‘ > ’}
DecTer ‘ >= =⇤ > ’ {‘ >=> ’}
Dip ‘ <<><< ’ {‘ <<><< ’}
Gorge ‘(> (> | =)⇤)⇤ >< ((< | =)⇤ <)⇤’ {‘ >< ’}
Inc ‘ < ’ {‘ < ’}
IncSeq ‘(< (< | =)⇤)⇤ < ’ {‘ < ’}
IncTer ‘ <= =⇤ < ’ {‘ <=< ’}
Inflexion ‘ < (< | =)⇤ > | > (> | =)⇤ < ’ {‘ <> ’, ‘ >< ’}
Peak ‘ < (< | =)⇤(> | =)⇤ > ’ {‘ <> ’}
Plain ‘ > =⇤ < ’ {‘ >< ’}
Plateau ‘ < =⇤ > ’ {‘ <> ’}
PropPlain ‘ >= =⇤ < ’ {‘ >=< ’}
PropPlateau ‘ <= =⇤ > ’ {‘ <=> ’}
Steady ‘ = ’ {‘ = ’}
SteadySeq ‘ = =⇤ ’ {‘ = ’}
SDecSeq ‘ > >⇤ ’ {‘ > ’}
SIncSeq ‘ < <⇤ ’ {‘ < ’}
Summit ‘(< (< | =)⇤)⇤ <> ((> | =)⇤ >)⇤’ {‘ <> ’}
Valley ‘ > (> | =)⇤(< | =)⇤ < ’ {‘ >< ’}
Zigzag ‘(<>)⇤ <>< (> |") | (><)⇤ ><> (< |")’ {‘ <>< ’, ‘ ><> ’}

Table C.4 – Regular-expression short names σ (see Table 7.1) and corresponding inducing words (see Def-
inition 7.1.7)

215

name σ illustration o
h`,ui
σ

Bump
`

u

 À

3

Dec
`

u

À

(

0 if u− `  ⌘σ

1 otherwise

DecSeq `

u

 À 0

DecTer

`

u

 À

(

0 if u− `  ⌘σ

2 otherwise

Dip
`

u
 À 3

Gorge
`

u
 À 1

Inc
`

u

À

(

0 if u− `  ⌘σ

1 otherwise
IncSeq

`

u

 À
0

IncTer

`

u

 À

(

0 if u− `  ⌘σ

2 otherwise

Inflexion `

u

À

2

Peak `

u
 À 1

Plain `

u
 À

1

Plateau `

u
 À 1

PropPlain `

u
 À

1

PropPlateau `

u
 À 1

Steady `

u
 À 1

SteadySeq `

u

À 0

SDecSeq `

u
 À 0

SIncSeq `

u
 À 0

Summit `

u
 À 1

Valley `

u
 À

1

Zigzag
`

u

 À

(

0 if u− `  ⌘σ

1 otherwise

Table C.5 – Regular-expression short names σ (see Table 7.1) and corresponding overlap between two
consecutive pattern occurrences and À illustrated in red, i.e., • or ◦ (see Definition 7.1.10), where ⌘σ
stands for the height characteristics of the corresponding σ (see Definition 7.1.4)

216 APPENDIX C. TABLES WITH REGULAR-EXPRESSION CHARACTERISTICS

name σ illustration δ
h`,ui
σ

Bump
`

u

 À

0

Dec
`

u

À

(

0 if u− `  ⌘σ

−1 otherwise

DecSeq `

u

 À 0

DecTer

`

u

 À

(

0 if u− `  ⌘σ

−1 otherwise

Dip
`

u
 À 0

Gorge
`

u
 À 0

Inc
`

u

À

(

0 if u− `  ⌘σ

1 otherwise
IncSeq

`

u

 À
0

IncTer

`

u

 À

(

0 if u− `  ⌘σ

1 otherwise

Inflexion `

u
 À

 À 0

Peak `

u
 À 0

Plain `

u
 À

0

Plateau `

u
 À 0

PropPlain `

u
 À

0

PropPlateau `

u
 À 0

Steady `

u
 À 0

SteadySeq `

u

À
À

0

SDecSeq `

u
 À 0

SIncSeq `

u
 À 0

Summit `

u
 À 0

Valley `

u
 À

0

Zigzag
`

u

 À

0

Table C.6 – Regular-expression short names σ (see Table 7.1) and corresponding smallest variation of max-

ima (see Definition 7.1.13), where ⌘σ stands for the height characteristics of the corresponding σ (see Defi-
nition 7.1.4); maxima of two consecutive pattern occurrences and À are shown in red, i.e., • or ◦.

217

name σ illustration I
h`,ui

hg,f,σi

Bump

`

u

u− 2

 À

(

[u− 2, u], if u− ` ≥ ⌘σ

undefined, otherwise

Dec

(

[u− 1, u], if u− ` ≥ ⌘σ

undefined, otherwise

DecSeq
`

u
u− 1

 À

(

[u− 1, u], if u− ` ≥ ⌘σ

undefined, otherwise

DecTer

`

u

u− 1

(

[u− 1, u− 1], if u− ` ≥ ⌘σ

undefined, otherwise

Dip

`

u

u− 2

 À

(

[u− 2, u], if u− ` ≥ ⌘σ

undefined, otherwise

Gorge

`

u

u− 1

(

[u− 1, u− 1], if u− ` ≥ ⌘σ

undefined, otherwise

Inc

(

[u− 1, u], if u− ` ≥ ⌘σ

undefined, otherwise

IncSeq
`

u
u− 1

 À

(

[u− 1, u], if u− ` ≥ ⌘σ

undefined, otherwise

IncTer

`

u

u− 1

(

[u− 1, u− 1], if u− ` ≥ ⌘σ

undefined, otherwise

Inflexion
`

u

(

[u, u], if u− ` ≥ ⌘σ

undefined, otherwise

Peak
`

u

(

[u, u], if u− ` ≥ ⌘σ

undefined, otherwise

Plain
`

u

u− 1

(

[u− 1, u− 1], if u− ` ≥ ⌘σ

undefined, otherwise

Plateau
`

u

(

[u, u], if u− ` ≥ ⌘σ

undefined, otherwise

PropPlain
`

u

u− 1

(

[u− 1, u− 1], if u− ` ≥ ⌘σ

undefined, otherwise

PropPlateau
`

u

(

[u, u], if u− ` ≥ ⌘σ

undefined, otherwise

Steady
`

u

(

[u, u], if u− ` ≥ ⌘σ

undefined, otherwise

SteadySeq
`

u

8

><

>:

[u− 1, u], if u− ` ≥ ⌘σ ^ g = sum

[u, u], if u− ` ≥ ⌘σ ^ (g = max _ g = min)

undefined, otherwise

SDecSeq
`

u
u− 1

 À

(

[u− 1, u], if u− ` ≥ ⌘σ

undefined, otherwise

218 APPENDIX C. TABLES WITH REGULAR-EXPRESSION CHARACTERISTICS

SIncSeq
`

u
u− 1

 À

(

[u− 1, u], if u− ` ≥ ⌘σ

undefined, otherwise

Summit
`

u

 À

`

u
u− 1

(

[u− 1, u], if u− ` ≥ ⌘σ

undefined, otherwise

Valley
`

u

u− 1

(

[u− 1, u− 1], if u− ` ≥ ⌘σ

undefined, otherwise

Zigzag
`

u
u− 1

(

[u− 1, u], if u− ` ≥ ⌘σ

undefined, otherwise

Table C.7 – Regular-expression short names σ (see Table 7.1) and corresponding interval of interest

(see Definition 8.2.1) of hg, f, σi wrt h`, ui, where ⌘σ stands for the height characteristics of the corre-
sponding σ (see Definition 7.1.4); ` and u respectively stands for the minimum and maximum value of the
variables of the time series.

219

name σ illustration µ
h`,u,ni
σ (v)

Bump
`

u 1

`

u

2

1

8

><

>:

1, if u− ` = ⌘σ

1, if u− ` > ⌘σ ∧ v ∈ {`, u− 1, u}

2, if u− ` > ⌘σ ∧ v ∈ [`+ 1, u− 2]

Dec
`

u 1 1, ∀v ∈ [`, u]

DecSeq
`

u

n− 2

1

(

1, if v ∈ {`, u}

n− 2, if v ∈ [`+ 1, u− 1]

DecTer
`

u

n− 2

(

0, if v ∈ {`, u}

n− 2, if v ∈ [`+ 1, u− 1]

Dip
`

u

1

`

u

1

2

8

><

>:

1, if u− ` = ⌘σ

1, if u− ` > ⌘σ ∧ v ∈ {`, `+ 1, u}

2, if u− ` > ⌘σ ∧ v ∈ [`+ 2, u− 1]

Gorge
`

u

1

n− 3

8

><

>:

0, if v = u

n− 3, if v ∈ [`+ 1, u− 1]

1, if v = `

Inc
`

u

1
1, ∀v ∈ [`, u]

IncSeq
`

u

1

n− 2

(

1, if v ∈ {`, u}

n− 2, if v ∈ [`+ 1, u− 1]

IncTer
`

u

n− 2

(

0, if v ∈ {`, u}

n− 2, if v ∈ [`+ 1, u− 1]

Inflexion `

u n− 2

`

u

n− 2

n− 2, ∀v ∈ [`, u]

Peak
`

u n− 2

(

0, if v = `

n− 2, if v ∈ [`+ 1, u]

Plain
`

u

n− 2

(

0, if v = u

n− 2, if v ∈ [`, u− 1]

Plateau
`

u n− 2

(

0, if v = `

n− 2, if v ∈ [`+ 1, u]

PropPlain
`

u

n− 2

(

0, if v = u

n− 2, if v ∈ [`, u− 1]

PropPlateau
`

u n− 2

(

0, if v = `

n− 2, ∀v ∈ [`+ 1, u]

Steady
`

u 2 2, ∀v ∈ [`, u]

SteadySeq
`

u n n, ∀v ∈ [`, u]

SDecSeq
`

u 1
1, ∀v ∈ [`, u]

SIncSeq
`

u

1

1, ∀v ∈ [`, u]

220 APPENDIX C. TABLES WITH REGULAR-EXPRESSION CHARACTERISTICS

Summit
`

u 1

n− 3

8

><

>:

1, if v = u

n− 3, if v ∈ [`+ 1, u− 1]

0, if v = `

Valley
`

u

n− 2

(

0, if v = u

n− 2, if v ∈ [`, u− 1]

Zigzag `

u
j

n−1

2

k

`

u
j

n−1

2

k

⌅
n−1
2

⇧
, ∀v ∈ [`, u]

Table C.8 – Regular-expression short names σ (see Table 7.1) and corresponding maximum value occur-

rence number of a value v (see Definition 8.2.2); for each pattern σ it assumes that the range of possible
values is big enough to have at least one occurrence of pattern, i.e. u− ` ≥ ⌘σ where u and ` are the largest
and smallest value that can be used.

221

name σ illustration β
h`,ui
σ

Bump

3 (

3, if u− ` ≥ ⌘σ

0, otherwise

Dec
2

(

2, if u− ` ≥ ⌘σ

0, otherwise

DecSeq
2

n

8

><

>:

2, if u− ` = ⌘σ

n, if u− ` > ⌘σ

0, otherwise

DecTer
n− 2

(

n− 2, if u− ` ≥ ⌘σ

0, otherwise

Dip
3

(

3, if u− ` ≥ ⌘σ

0, otherwise

Gorge 1
n− 2

8

><

>:

1, if u− ` = ⌘σ

n− 2, if u− ` > ⌘σ

0, otherwise

Inc
2

(

2, if u− ` ≥ ⌘σ

0, otherwise

IncSeq
2

n

8

><

>:

2, if u− ` = ⌘σ

n, if u− ` > ⌘σ

0, otherwise

IncTer
n− 2

(

n− 2, if u− ` ≥ ⌘σ

0, otherwise

Inflexion
n− 2

(

n− 2, if u− ` ≥ ⌘σ

0, otherwise

Peak
n− 2

(

n− 2, if u− ` ≥ ⌘σ

0, otherwise

Plain
n− 2

(

n− 2, if u− ` ≥ ⌘σ

0, otherwise

Plateau
n− 2

(

n− 2, if u− ` ≥ ⌘σ

0, otherwise

PropPlain
n− 2

(

n− 2, if u− ` ≥ ⌘σ

0, otherwise

PropPlateau
n− 2

(

n− 2, if u− ` ≥ ⌘σ

0, otherwise

Steady
2

2

SteadySeq
n

n

222 APPENDIX C. TABLES WITH REGULAR-EXPRESSION CHARACTERISTICS

SDecSeq
u− `+ 1

(

u− `+ 1, if u− ` ≥ ⌘σ

0, otherwise

SIncSeq
u− `+ 1

(

u− `+ 1, if u− ` ≥ ⌘σ

0, otherwise

Summit
1 n− 2

8

><

>:

1, if u− ` = ⌘σ

n− 2, if u− ` > ⌘σ

0, otherwise

Valley
n− 2

(

n− 2, if u− ` ≥ ⌘σ

0, otherwise

Zigzag
n− 2

(

n− 2, if u− ` ≥ ⌘σ

0, otherwise

Table C.9 – Regular-expression short names σ (see Table 7.1) and corresponding big-width (see Defini-
tion 8.2.3) shown as thick orange horizontal line segments, where ⌘σ stands for the height characteristics of
the corresponding σ (see Definition 7.1.4)

Notation for Regular-Expression

Characteristics

!σ the size of a regular expression σ (see Definition 7.1.1)

Ω
h`,ui
σ (v) the set of support time series of two words v and w in Lσ wrt h`, ui (see Definition 7.1.2)

⌘σ(v) the height of a word v in Lσ (see Definition 7.1.3)

⌘σ the height of a regular expression σ (see Definition 7.1.4)

φ
hni
σ the range of a regular expression σ wrt hni (see Definition 7.1.5)

Θσ the set of inducing words of a regular expression σ (see Definition 7.1.7, Table 5.2)

Γ
h`,ui
σ (v, w) the set of superpositions of two words v and w in Lσ wrt h`, ui (see Definition 7.1.8)

o
h`,ui
σ (v, w) the overlap of two words v and w in Lσ wrt h`, ui (see Definition 7.1.9)

o
h`,ui
σ the overlap of a regular expression σ wrt h`, ui (see Definition 7.1.10)

δ
h`,ui

σ
(v, w, i) the shift of a subword w within a word v in Lσ wrt h`, ui (see Definition 7.1.11)

δ
h`,ui
σ (v, w) the smallest variation of maxima of two words w and v in Lσ wrt h`, ui (see Definition 7.1.12)

δ
h`,ui
σ the smallest variation of maxima of a regular expression σ wrt h`, ui (see Definition 7.1.13)

I
h`,ui
hg,f,σi the interval of interest of a constraint hg, f, σi wrt h`, ui (see Definition 8.2.1)

µ
h`,u,ni
σ (v) the maximum value occurrence number of an integer v wrt h`, u, ni (see Definition 8.2.2)

β
h`,u,ni
σ the big width of a regular expression σ wrt h`, u, ni (see Definition 8.2.3)

223

Index

Page numbers in bold face (as in 134) point to a definition of a constraint name, or a concept. Page
numbers in serif face (as in 134) indicate an occurrence of a constraint name or a concept.

0-gap automaton, 141
δ-gap automaton, 139, 140, 141, 141–145, 153
found-transition, 149, 150
maybeb-degree, 162, 162
maybeb-suffix, 162

σ-pattern, 44, 44, 47–50, 60, 61, 68–70, 77–79,
81–87, 89–92, 99–106, 141, 142, 144,
176, 177

ALLDIFFERENT, 109
AMONG, 17, 18, 37, 37, 38, 40, 60, 61, 97, 98,

183
AMONG implied constraint, 18, 19, 22, 46, 59–61,

97–99, 101, 103, 104, 106, 107, 169, 175,
176

AUTOMATON, 40, 41, 41, 109, 178
COST-REGULAR, 40, 40, 41
MULTI-COST-REGULAR, 40, 41
PATTERN, 40
REGULAR, 40, 40, 41
STRETCH, 17

abstract alphabet, 155, 156, 156, 158–160, 162
abstract pattern, 155, 156, 156, 159–162
acceptance function, 32, 32, 49, 50, 118, 119,

135–137, 143–145, 150
accepting sequence, 33, 33, 111–122
accepting state, 31, 31–33, 111, 115, 118, 119,

136, 137, 139, 142, 144, 145
aggregator, 14, 15, 27, 43, 44, 44, 45, 50, 53, 57,

59, 64, 66, 76, 86, 87, 92, 97, 100, 123,
158, 159, 164, 166, 176, 185

alphabet, 14, 29, 29, 30, 33, 43, 44, 46, 47, 52,
109, 111, 139, 142, 157, 160–162

arity, 33, 64, 112, 113, 156, 159
atomic relation, 129, 130, 132, 135, 136, 138, 153,

154
automatically extracting and proving invariants,

126

automaton, 15, 16, 21, 22, 27, 31, 31–35, 37, 39–
41, 62, 65, 125, 130, 132, 135–139, 144,
145, 153, 154

backtrack, 39, 39, 171, 172, 178
backtrack search, 39

big width, 61, 99, 101, 101
Boolean function, 125, 126, 129–132, 181
bound, 14–18, 21, 22, 59, 60, 65, 66, 169, 171–

174, 177, 182–184
bound formula, 17, 185

checker, 39, 40
combinatorial object, 14–17, 22, 23, 59, 169, 183
complement, 34, 35, 35, 153, 154
concrete alphabet, 156, 156, 158, 159
concrete pattern, 155, 156, 156–162, 164
conditional automaton, 62, 130, 135, 154, 183
conditional linear invariant, 121, 177
conjunction of global constraints, 109
conjunction of time-series constraints, 19, 22, 59,

61, 62, 125, 126, 128, 153, 175, 177, 178,
181, 183

constant atomic relation, 135, 135–138, 153, 154
constant term, 110, 115
constant-size automaton, 21, 62, 125, 128, 130,

134–136, 138, 139, 144, 153
constraint programming, 16, 17, 21, 22, 37, 39, 40
constraint satisfaction problem, 37, 38
convex hull, 19, 62, 120, 121, 126, 128, 129, 134
cut, 16

data mining, 15–17, 183
decomposition, 14, 155
decoration table, 49, 50, 51, 52, 150
dependent atomic relation, 130
dependent Boolean function, 130, 131, 132
disjunction of Boolean functions, 128, 129, 132
disjunction-capsuled regular expression, 30, 30,

68, 69, 76

225

226 INDEX

domain consistency, 38, 38, 65, 109

e-occurrence, 44, 44, 156–159, 162
extended σ-pattern, 44, 44, 47, 60, 67, 69–74, 77,

78, 83, 84, 89, 90, 92
extended transducer-based model, 59, 63, 64, 155,

166, 183, 185

factor, 29, 79–81, 91, 92
feature, 14, 15, 27, 43, 44, 44, 45, 47, 49, 50, 53,

57, 59, 64, 66, 68, 76, 86, 97, 98, 155,
156, 164, 166, 185, 186

filtering, 39, 43
filtering algorithm, 38–40
footprint, 44
function over integer sequences, 15, 21, 155, 156,

156–159, 185

gap, 139, 140, 141, 141–148, 151, 152
gap atomic relation, 135, 139, 153, 154
generalised arc consistency, 38, 38
generic formula, 17, 18, 60
global constraint, 14, 17, 18, 37, 37, 39–41, 64,

97, 166, 183
glue constraint, 15, 16, 43, 50, 51, 52, 169, 171–

174, 177, 184
glue expression, 51, 52
glue matrix, 52

guard, 121, 122
guard invariant, 121, 177, 184

height, 60, 66, 67, 68, 68, 70, 71, 74, 75, 79–84,
86–92, 99, 102, 107, 223

heuristics, 14
hypothesis, 66, 81, 88, 92, 126, 128, 129, 181
hypothesis on the regular-expression characteris-

tics, 76, 79, 84

i-occurrence, 44, 44, 157, 158
implied constraint, 59, 99, 104, 105, 109
independent atomic relation, 130
independent Boolean function, 130, 130
inducing word, 76
initial state, 31, 31–33, 111, 115, 136, 137, 139,

144, 148, 162
input alphabet, 31, 31–34, 40, 47, 51, 125, 160,

166
intersection, 31, 34, 34, 35, 63, 109, 111–114,

116, 117, 117, 118, 120–122, 125, 130,
132, 153, 177

interval of interest, 61, 98, 99, 99–102, 104, 106,
107

interval without restart, 77, 77, 78, 82–85
invariant, 21, 61–63, 116, 117, 120, 121, 123, 177,

180–182
invariant digraph, 111, 111–116, 119, 120, 122

language, 29, 30, 34, 35, 47, 48, 52, 60, 68, 71–
73, 82, 83, 92, 100, 101, 109, 121, 132,
158, 183, 185

linear cut, 14, 123
linear implied inequality, 19
linear invariant, 15, 19, 34, 62, 109–111, 114–

116, 117, 120–123, 126, 131, 169, 177,
182

linear model, 16, 183
linear programming, 16, 17
linear reformulation, 16
local search, 17, 183
loss, 140, 141, 141–145, 147, 149, 150, 152
loss automaton, 140, 141, 142, 142, 144–146,

148–151
loss interval, 142, 144, 148, 151–153
lower bound, 60, 61, 66–68, 86, 91, 92, 98, 101–

104, 106, 107, 111–113, 145, 173

main register, 110, 110, 113, 118, 119
maximal time series, 46, 46, 76, 81, 83–85, 99,

100, 104–106
maximum value occurrence, 99
maximum value occurrence number, 100, 100
methodology, 65, 125
minimal automaton, 136, 139, 141
mismatch overlap, 46, 47, 47
modulo atomic relation, 135, 138, 139, 154
modulo conditions, 138, 138, 139

negative cycle, 111, 114, 115
non-linear implied constraint, 21
non-linear invariant, 19, 34, 62, 125, 126, 134,

135, 169, 181, 183
non-negativity conditions, 135, 136, 136–138,

143–145, 151
not-greater atomic relation, 135, 154
not-less atomic relation, 135, 154
NP-complete, 38, 97
NP-completeness, 41, 185
NP-hard, 39, 109, 172
number of backtracks, 171, 175, 176, 178

output alphabet, 32, 32, 47, 148, 160, 166
overlap, 60, 66, 69, 70, 70, 71, 74–76, 79, 87, 88,

90, 99, 102, 107, 223

INDEX 227

parameterised bound, 66
parameterised formula, 21, 60
pattern, 14, 18, 97, 155, 156, 159, 160, 162, 164
phase letter, 47, 49, 148, 150, 160–162, 164–166,

183, 185
potential register, 110, 111–113, 116–119
prefix, 15, 29, 46, 47, 52, 150, 158, 161, 171, 174
prefix language, 46

primary aggregator, 156, 157
principal conditions, 140, 142, 142–145, 150, 153
propagation, 38, 39, 50, 62, 65, 169, 183, 184, 186
propagator, 17, 63, 183
proper factor, 29, 29, 71, 72, 83, 158

quantitative regular expression, 43, 52

range, 60, 66, 68, 68, 74, 75, 86–89, 223
recognisable pattern, 46, 47, 47, 136, 139, 146
reduced instruction set, 160, 162, 164, 185
reformulation, 16
register automaton, 16, 19, 22, 27, 31, 31–35, 37,

39–41, 43, 46, 47, 49–52, 59, 61–63, 65,
109–116, 117, 117–123, 126, 132, 135–
142, 145, 155, 160, 169, 171, 177, 183

regret, 140, 149, 149, 150
regular expression, 14, 16, 22, 27, 29, 29, 30, 34,

43–49, 51–53, 57, 59, 60, 62, 63, 65–69,
71, 73, 74, 76–93, 97, 98, 100–102, 104,
106, 107, 120, 121, 136, 139, 140, 142,
146, 148, 149, 151, 155, 156, 158, 160–
162, 183, 185, 223

regular language, 27, 29, 30, 34, 65, 95
regular-expression characteristic, 59–62, 65–69,

71, 73, 74, 79, 85, 95, 97, 99–102, 107,
183, 185

regular-expression characteristics, 60
regular-expression overlap, 46, 46
relative coefficient, 110, 114, 115

s-occurrence, 44, 44, 156–160, 162
secondary aggregator, 156, 157, 159
seed transducer, 16, 46, 47, 47–52, 62, 63, 136,

139, 140, 142, 145, 146, 148–150, 155,
160–162, 164, 183, 185

separated seed transducer, 148
sequence constraint, 16, 22, 59, 155, 183
set of inducing words, 60, 66, 68, 75, 223
set of superpositions, 69, 69, 71
set of supporting signatures, 130, 130
set of supporting time series, 67, 70, 82–84
sharp bound, 18, 59, 60, 68, 92, 107

sharp lower bound, 76, 77, 86, 91, 92
sharp upper bound, 18, 46, 67, 69–71, 76–79, 83–

91
shortest path, 111, 115
signature, 21, 33, 33–35, 41, 43–45, 47, 48, 50–

52, 61, 62, 64–72, 76, 77, 79–87, 89, 90,
92, 100, 101, 110–114, 120–122, 130,
132, 135–145, 149, 150, 158, 159, 165,
178

signature function, 156
signature sequence, 159, 160, 162
size, 66, 67, 67, 73–76, 223
smallest variation of maxima, 61, 66, 71, 72, 73,

74, 75, 79, 82, 223
suffix, 15, 29, 29, 47, 51, 52, 158, 161, 162, 171,

173–175, 177
superposition, 69, 69, 71–73, 79–82
supporting signature, 137, 139
supporting time series, 67, 71
sweep, 39
systematic method, 14, 22, 109, 120, 140, 146,

154, 183

t-occurrence, 161, 162
target hypothesis, 128, 129, 129
time series, 14–17, 19, 43, 43–45, 47–52, 60, 61,

65–74, 76–87, 89–92, 97–103, 105, 106,
125, 126, 128–132, 134, 135, 137, 140–
147, 149–152, 171, 172, 175, 177, 178,
184, 186, 223

time-series constraint, 14–19, 21, 22, 27, 29, 30,
37, 40, 43, 44, 44–47, 49–53, 57, 59–68,
76, 77, 79, 81, 83–92, 95, 97–104, 106,
107, 109, 112, 115, 125, 126, 128, 130,
131, 134, 135, 138–144, 146–153, 155,
169, 171, 172, 175, 177, 183–186

transducer, 16, 22, 27, 31, 32, 32–34, 43, 47, 59,
65, 155, 160

transducer-based model, 17, 22, 183
transition, 21, 31, 31–33, 35, 40, 41, 47–50, 63,

110–113, 116–122, 136, 137, 139, 140,
144, 145, 149, 150, 160, 161, 164

transition function, 31, 32, 33, 137, 139, 144

union, 30, 31, 34, 35, 35, 68, 99, 100, 153
unit commitment problem, 15
universally true Boolean function, 125, 129, 131,

132
upper bound, 60, 61, 66, 67, 76–79, 83, 84, 86–92,

139, 173

walk, 112, 113

228 INDEX

weighted digraph, 111, 115
well-formed function, 157, 158, 161, 162, 164

well-formed seed transducer, 161

Bibliography

[1] Sedigheh Abbasghorbani and Reza Tavoli. Survey on sequential pattern mining algorithms. In
2015 2nd International Conference on Knowledge-Based Engineering and Innovation (KBEI), pages
1153–1164, Nov 2015. 45

[2] Abderrahmane Aggoun and Nicolas Beldiceanu. Extending chip in order to solve complex schedul-
ing and placement problems. Math. Comput. Model., 17(7):57–73, April 1993. 39

[3] O. Zeynep Akşin, Mor Armony, and Vijay Mehrotra. The modern call center: A multi-
disciplinary perspective on operations management research. Production and Operations Manage-

ment, 16(6):665–688, 2007. 97

[4] Rajeev Alur, Loris D’Antoni, Jyotirmoy V. Deshmukh, Mukund Raghothaman, and Yifei Yuan. Reg-
ular functions and cost register automata. In 28th Annual ACM/IEEE Symposium on Logic in Com-

puter Science, LICS 2013, New Orleans, LA, USA, June 25-28, 2013, pages 13–22. IEEE Computer
Society, 2013. 65

[5] Rajeev Alur, Dana Fisman, and Mukund Raghothaman. Regular programming for quantitative prop-
erties of data streams. In Peter Thiemann, editor, Programming Languages and Systems - 25th Eu-

ropean Symposium on Programming, ESOP 2016, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016,

Proceedings, volume 9632 of Lecture Notes in Computer Science, pages 15–40. Springer, 2016. 15,
52, 65, 97, 166, 188

[6] Rajeev Alur, Konstantinos Mamouras, and Caleb Stanford. Automata-based stream processing. In
Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl, editors, 44th International

Colloquium on Automata, Languages, and Programming, ICALP 2017, July 10-14, 2017, Warsaw,

Poland, volume 80 of LIPIcs, pages 112:1–112:15. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2017. 52

[7] Gautam Appa, Dimitris Magos, and Ioannis Mourtos. LP relaxations of multiple ALL_DIFFERENT

predicates. In Jean-Charles Régin and Michel Rueher, editors, Integration of AI and OR Techniques in

Constraint Programming for Combinatorial Optimization Problems, First International Conference,

CPAIOR 2004, volume 3011 of LNCS, pages 364–369. Springer, 2004. 109

[8] Ekaterina Arafailova, Nicolas Beldiceanu, Mats Carlsson, Pierre Flener, María Andreína Francisco
Rodríguez, Justin Pearson, and Helmut Simonis. Systematic derivation of bounds and glue con-
straints for time-series constraints. In Michel Rueher, editor, CP 2016, volume 9892 of LNCS, pages
13–29. Springer, 2016. 11, 15, 17, 18, 44, 50, 51, 52, 65, 66, 92, 93, 94, 97, 169, 171, 175, 177, 184,
185, 188, 191

[9] Ekaterina Arafailova, Nicolas Beldiceanu, Rémi Douence, Mats Carlsson, Pierre Flener, María An-
dreína Francisco Rodríguez, Justin Pearson, and Helmut Simonis. Global constraint catalog, volume
ii, time-series constraints. CoRR, abs/1609.08925, 2016.

[10] Ekaterina Arafailova, Nicolas Beldiceanu, Rémi Douence, Mats Carlsson, Pierre Flener, María An-
dreína Francisco Rodríguez, Justin Pearson, and Helmut Simonis. Global Constraint Catalogue,
Volume II, time-series constraints. CoRR, forthcoming, 2018. 9, 14, 17, 18, 19, 21, 30, 37, 48, 49,
50, 59, 65, 92, 121, 151, 155, 177, 188, 190, 191, 211

229

230 BIBLIOGRAPHY

[11] Ekaterina Arafailova, Nicolas Beldiceanu, Rémi Douence, Pierre Flener, María Andreína Fran-
cisco Rodríguez, Justin Pearson, and Helmut Simonis. Time-series constraints: Improvements and
application in CP and MIP contexts. In Claude-Guy Quimper, editor, CP-AI-OR 2016, volume 9676
of LNCS, pages 18–34. Springer, 2016. 15, 16, 43, 49, 97, 136, 139, 171, 188, 189

[12] Ekaterina Arafailova, Nicolas Beldiceanu, and Helmut Simonis. among implied constraints for two
families of time-series constraints. In Principles and Practice of Constraint Programming - 23rd

International Conference, CP 2017, Melbourne, VIC, Australia, August 28 - September 1, 2017,

Proceedings, pages 38–54. Springer, Cham, 2017. 18, 97, 169, 175, 191

[13] Ekaterina Arafailova, Nicolas Beldiceanu, and Helmut Simonis. Generating linear invariants for a
conjunction of automata constraints. In Chris Beck, editor, Principles and Practice of Constraint

Programming - CP 2017, 23rd International Conference, CP 2017, volume 10416 of LNCS, pages
21–37. Springer, Cham, 2017. 19, 35, 109, 131, 169, 177, 191

[14] Ekaterina Arafailova, Nicolas Beldiceanu, and Helmut Simonis. Deriving generic bounds for time-
series constraints based on regular expressions characteristics. Constraints, 23(1):44–86, 2018. 11,
18, 21, 29, 44, 45, 65, 129, 141, 142, 169, 171, 191

[15] Shivnath Babu and Jennifer Widom. Continuous queries over data streams. SIGMOD Rec.,
30(3):109–120, September 2001. 52

[16] J. Wesley Barnes and Robert M. Crisp Jr. Linear programming: A survey of general purpose algo-
rithms. A I I E Transactions, 8(1):212–221, 1975. 14, 187

[17] Kaustubh Beedkar and Rainer Gemulla. Desq: Frequent sequence mining with subsequence con-
straints. In 2016 IEEE 16th International Conference on Data Mining (ICDM), pages 793–798, Dec
2016. 166

[18] Luc de Raedt Behrouz Babaki, Tias Guns. Stochastic constraint programming with and-or branch-
and-bound. In Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelli-

gence, IJCAI-17, pages 539–545, 2017. 21, 191

[19] Nicolas Beldiceanu and Mats Carlsson. Sweep as a generic pruning technique applied to the non-
overlapping rectangles constraints. In Toby Walsh, editor, CP 2001, volume 2239 of LNCS, pages
377–391. Springer, 2001. 17, 39, 190

[20] Nicolas Beldiceanu, Mats Carlsson, Romuald Debruyne, and Thierry Petit. Reformulation of global
constraints based on constraints checkers. Constraints, 10(4):339–362, 2005. 27, 31, 57, 65, 155

[21] Nicolas Beldiceanu, Mats Carlsson, Sophie Demassey, and Thierry Petit. Global constraint cata-
logue: Past, present and future. Constraints, 12(1):21–62, Mar 2007. 14, 21, 37, 39, 155, 166, 183,
187

[22] Nicolas Beldiceanu, Mats Carlsson, Rémi Douence, and Helmut Simonis. Using finite transducers
for describing and synthesising structural time-series constraints. Constraints, 21(1):22–40, January
2016. Journal fast track of CP 2015: summary on p. 723 of LNCS 9255, Springer, 2015. 13, 14, 16,
17, 27, 30, 40, 43, 44, 45, 46, 47, 48, 49, 51, 57, 59, 62, 63, 64, 65, 148, 151, 155, 160, 164, 166,
177, 188, 189, 190

[23] Nicolas Beldiceanu, Mats Carlsson, Pierre Flener, María Andreína Francisco Rodríguez, and Justin
Pearson. Linking prefixes and suffixes for constraints encoded using automata with accumulators. In
Barry O’Sullivan, editor, CP 2014, volume 8656 of LNCS, pages 142–157. Springer, 2014. 15, 50,
171, 188

[24] Nicolas Beldiceanu, Mats Carlsson, Jean-Xavier Rampon, and Charlotte Truchet. Graph invariants
as necessary conditions for global constraints. In Peter van Beek, editor, Principles and Practice

of Constraint Programming - CP 2005, 11th International Conference, CP 2005, volume 3709 of
LNCS, pages 92–106. Springer, 2005. 109

BIBLIOGRAPHY 231

[25] Nicolas Beldiceanu and Evelyne Contejean. Introducing global constraints in CHIP. Mathl. Comput.

Modelling, 20(12):97–123, 1994. 16, 17, 18, 37, 40, 64, 97, 98, 116, 155, 190, 191

[26] Nicolas Beldiceanu, Bárbara Dumas Feris, Philippe Gravey, Sabbir Hasan, Claude Jard, Thomas
Ledoux, Yunbo Li, Didier Lime, Gilles Madi-Wamba, Jean-Marc Menaud, Pascal Morel, Michel
Morvan, Marie-Laure Moulinard, Anne-Cécile Orgerie, Jean-Louis Pazat, Olivier Roux, and Ammar
Sharaiha. Towards energy-proportional clouds partially powered by renewable energy. Computing,
99(1):3–22, Jan 2017. 15, 43, 188

[27] Nicolas Beldiceanu, Pierre Flener, Justin Pearson, and Pascal Van Hentenryck. Propagating regular
counting constraints. In Carla E. Brodley and Peter Stone, editors, AAAI 2014, pages 2616–2622.
AAAI Press, 2014. 41, 109

[28] Nicolas Beldiceanu, Georgiana Ifrim, Arnaud Lenoir, and Helmut Simonis. Describing and generat-
ing solutions for the EDF unit commitment problem with the ModelSeeker. In Christian Schulte, ed-
itor, Principles and Practice of Constraint Programming, pages 733–748, Berlin, Heidelberg, 2013.
Springer Berlin Heidelberg. 15, 43, 97, 175, 177, 188

[29] Nicolas Beldiceanu, Carlsson Mats, and Thierry Petit. Deriving filtering algorithms from constraint
checkers. In Mark Wallace, editor, Principles and Practice of Constraint Programming - CP 2004,

10th International Conference, CP 2004, volume 3258 of LNCS, pages 107–122. Springer, 2004. 27,
41, 109

[30] Nicolas Beldiceanu, Thierry Petit, and Guillaume Rochart. Bounds of graph characteristics. In Peter
van Beek, editor, Principles and Practice of Constraint Programming - CP 2005, pages 742–746,
Berlin, Heidelberg, 2005. Springer Berlin Heidelberg. 21, 191

[31] Nicolas Beldiceanu, Thierry Petit, and Guillaume Rochart. Bounds of graph parameters for global
constraints. RAIRO - Operations Research, 40(4):327–353, 2006. 60

[32] Nicolas Beldiceanu and Helmut Simonis. Modelseeker: Extracting global constraint models from
positive examples. In Data Mining and Constraint Programming - Foundations of a Cross-

Disciplinary Approach, pages 77–95. 2016. 166

[33] Cédric Bentz, Denis Cornaz, and Bernard Ries. Packing and covering with linear programming: A
survey. European Journal of Operational Research, 227(3):409 – 422, 2013. 14, 187

[34] Claude Berge. Graphs and Hypergraphs. Elsevier Science Ltd., Oxford, UK, UK, 1985. 39, 41

[35] David Bergman, Andre A. Cire, Willem-Jan van Hoeve, and John Hooker. Decision Diagrams for

Optimization. 01 2016. 17

[36] Christian Bessière, Remi Coletta, Emmanuel Hébrard, George Katsirelos, Nadjib Lazaar, Nina Nar-
odytska, Claude-Guy Quimper, and Toby Walsh. Constraint Acquisition via Partial Queries. In
IJCAI 2013, page 7, Beijing, China, June 2013. 97

[37] Christian Bessière, Remi Coletta, and Thierry Petit. Learning Implied Global Constraints. In IJCAI

2007, pages 50–55, Hyderabad, India, 2007. 97

[38] Christian Bessière, Abderrazak Daoudi, Emmanuel Hebrard, George Katsirelos, Nadjib Lazaar,
Younes Mechqrane, Nina Narodytska, Claude-Guy Quimper, and Toby Walsh. New approaches
to constraint acquisition. In Data Mining and Constraint Programming - Foundations of a Cross-

Disciplinary Approach, pages 51–76. 2016. 166

[39] Christian Bessière, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, Claude-Guy Quimper, and
Toby Walsh. Reformulating global constraints: The slide and regular constraints. In SARA 2007,
volume 4612 of LNAI, pages 80–92. Springer, 2007. 17, 190

[40] Christian Bessière, Emmanuel Hebrard, Brahim Hnich, Zeynep Kiziltan, and Toby Walsh. Among,
common and disjoint constraints. In Recent Advances in Constraints, Joint ERCIM/CoLogNET Inter-

national Workshop on Constraint Solving and Constraint Logic Programming, CSCLP 2005, pages
29–43, 2005. 98

232 BIBLIOGRAPHY

[41] Christian Bessière, George Katsirelos, Nina Narodytska, Claude-Guy Quimper, and Toby Walsh.
Decomposition of the NValue constraint. In David Cohen, editor, CP 2010, volume 6308 of LNCS,
pages 114–128. Springer, 2010. 17, 190

[42] John Adrian Bondy. Graph Theory With Applications. Elsevier Science Ltd., Oxford, UK, UK, 1976.
13

[43] Stéphane Bourdais, Philippe Galinier, and Gilles Pesant. Hibiscus: A constraint programming ap-
plication to staff scheduling in health care. In Proceedings of the 9th International Conference on

Principles and Practice of Constraint Programming, CP’03, pages 153–167, Berlin, Heidelberg,
2003. Springer-Verlag. 40

[44] Craig Boutilier, Relu Patrascu, Pascal Poupart, and Dale Schuurmans. Constraint-based optimization
with the minimax decision criterion. In Francesca Rossi, editor, Principles and Practice of Constraint

Programming – CP 2003, pages 168–182, Berlin, Heidelberg, 2003. Springer Berlin Heidelberg. 140

[45] Stephen P. Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press,
2004. 109

[46] Andreas Brandstädt, Van Bang Le, and Jeremy P. Spinrad. Graph Classes: A Survey. Society for
Industrial and Applied Mathematics, Philadelphia, PA, USA, 1999. 185

[47] David R. Brillinger. Time Series: Data Analysis and Theory. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 2001. 13

[48] Maurizio Bruglieri, Simona Mancini, Ferdinando Pezzella, and Ornella Pisacane. A new mathe-
matical programming model for the green vehicle routing problem. Electronic Notes in Discrete

Mathematics, 55:89 – 92, 2016. 14th Cologne-Twente Workshop on Graphs and Combinatorial
Optimization (CTW16). 14, 187

[49] Nader H. Bshouty, Dana Drachsler-Cohen, Martin Vechev, and Eran Yahav. Learning disjunctions of
predicates. In Satyen Kale and Ohad Shamir, editors, Proceedings of the 2017 Conference on Learn-

ing Theory, volume 65 of Proceedings of Machine Learning Research, pages 346–369, Amsterdam,
Netherlands, 07–10 Jul 2017. PMLR. 128

[50] Nader H. Bshouty, Paul W. Goldberg, Sally A. Goldman, and H. David Mathias. Exact learning of
discretized geometric concepts. SIAM J. Comput., 28(2):674–699, February 1999. 128

[51] Marco Casazza and Alberto Ceselli. Mathematical programming algorithms for bin packing prob-
lems with item fragmentation. Computers & Operations Research, 46:1 – 11, 2014. 14, 187

[52] John Charnley, Simon Colton, and Ian Miguel. Automatic generation of implied constraints. In ECAI

2006, volume 141 of Frontiers in AI and Applications, pages 73–77. IOS Press, 2006. 109, 125

[53] Zhixiang Chen and Foued Ameur. The learnability of unions of two rectangles in the two-dimensional
discretized space. Journal of Computer and System Sciences, 59(1):70 – 83, 1999. 128

[54] Noam Chomsky. On certain formal properties of grammars. Information and Control, 2(2):137 –
167, 1959. 40

[55] Edmund M. Clarke and Robert P. Kurshan. Computer-aided verification. IEEE Spectr., 33(6):61–67,
June 1996. 16, 190

[56] Thomas Colcombet and Laure Daviaud. Approximate comparison of functions computed by distance
automata. Theory Comput. Syst., 58(4):579–613, 2016. 65

[57] Maxime Crochemore, Christophe Hancart, and Thierry Lecroq. Algorithms on Strings. Cambridge
University Press, 2007. 27, 29

[58] George B. Dantzig, Alex Orden, and Philip Wolfe. The generalized simplex method for minimizing
a linear form under linear inequality restraints. Pacific J. Math., 5(2):183–195, 1955. 14

[59] Rina Dechter and Judea Pearl. Tree clustering for constraint networks. Artificial Intelligence,
38(3):353 – 366, 1989. 39

BIBLIOGRAPHY 233

[60] Sophie Demassey, Gilles Pesant, and Louis-Martin Rousseau. A Cost-Regular based hybrid
column generation approach. Constraints, 11(4):315–333, 2006. 40, 65

[61] Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck. Solving the car-sequencing problem
in constraint logic programming. In ECAI, pages 290–295, 1988. 109

[62] Lieven Eeckhout, Koen De Bosschere, and Henk Neefs. Performance analysis through synthetic
trace generation. In 2000 ACM/IEEE Intl. Symp. Performance Analysis Syst. Software, pages 1–6,
2000. 97

[63] Horst A. Eiselt and Carl-Louis Sandblom. Applications of Network Flow Models, pages 377–397.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2000. 14, 187

[64] Siemion Fajtlowicz. On Conjectures of Graffiti. Annals of Discrete Mathematics, 38:113–118, 1988.
125

[65] Filippo Focacci, Michela Milano, and Andrea Lodi. Solving tsp with time windows with constraints.
In Proceedings of the 1999 International Conference on Logic Programming, pages 515–529, Cam-
bridge, MA, USA, 1999. Massachusetts Institute of Technology. 14

[66] CeADAR Centre for Applied Data Analytics. https://www.ceadar.ie. 15, 188

[67] María Andreína Francisco Rodríguez, Pierre Flener, and Justin Pearson. Implied constraints for
Automaton constraints. In Georg Gottlob, Geoff Sutcliffe, and Andrei Voronkov, editors, GCAI 2015,
volume 36 of EasyChair Proceedings in Computing, pages 113–126, 2015. 109

[68] María Andreína Francisco Rodríguez, Pierre Flener, and Justin Pearson. Automatic generation of
descriptions of time-series constraints. In Alexander Brodsky, editor, ICTAI 2017. IEEE Computer
Society, 2017. 16, 27, 46, 47, 62, 70, 136, 139, 146, 148, 183, 189

[69] Simon French, editor. Decision Theory: An Introduction to the Mathematics of Rationality. Halsted
Press, New York, NY, USA, 1986. 140

[70] Eugene C. Freuder. A sufficient condition for backtrack-free search. J. ACM, 29(1):24–32, January
1982. 39

[71] Alan Frisch, Ian Miguel, and Toby Walsh. Extensions to proof planning for generating implied
constraints. In 9th Symp. on the Integration of Symbolic Computation and Mechanized Reasoning,
2001. 109

[72] Michael R. Garey and David S. Johnson. Computers and Intractability. W. H. Freeman and Com-
pany, 1979. 41, 98

[73] Ian P. Gent, Chris Jefferson, Ian Miguel, and Peter Nightingale. Generating special-purpose stateless
propagators for arbitrary constraints. In David Cohen, editor, Principles and Practice of Constraint

Programming – CP 2010, pages 206–220, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg. 17

[74] Francisco Gómez-Vela, Francisco Martínez-Álvarez, Carlos D. Barranco, Norberto Díaz-Díaz,
Domingo Savio Rodríguez-Baena, and Jesús S. Aguilar-Ruiz. Pattern recognition in biological time
series. In Jose A. Lozano, José A. Gámez, and José A. Moreno, editors, Advances in Artificial

Intelligence, pages 164–172, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg. 186

[75] Ralph Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the

American Mathematical Society, 64:275–278, 1958. 14, 123

[76] Tarik Hadzic, John N. Hooker, Barry O’Sullivan, and Peter Tiedemann. Approximate compilation of
constraints into multivalued decision diagrams. In Peter J. Stuckey, editor, Principles and Practice

of Constraint Programming, pages 448–462, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg.
17

[77] Pierre Hansen and Gilles Caporossi. Autographix: An automated system for finding conjectures in
graph theory. Electronic Notes in Discrete Mathematics, 5:158–161, 2000. 109, 125

https://www.ceadar.ie

234 BIBLIOGRAPHY

[78] William D. Harvey and Matthew L. Ginsberg. Limited discrepancy search. In Proceedings of the

14th International Joint Conference on Artificial Intelligence - Volume 1, IJCAI’95, pages 607–613,
San Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc. 39

[79] John N. Hooker. Integrated Methods for Optimization. Springer Publishing Company, Incorporated,
2nd edition, 2011. 109

[80] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation (3rd Edition). Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2006. 27, 31

[81] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-

guages, and Computation. Addison-Wesley, 3rd edition, 2007. 21, 191

[82] Sophie Huczynska, Paul McKay, Ian Miguel, and Peter Nightingale. Modelling equidistant frequency
permutation arrays: An application of constraints to mathematics. In Ian P. Gent, editor, Principles

and Practice of Constraint Programming - CP 2009, pages 50–64, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. 13

[83] Yasunori Ishihara, Takuji Moroto, Shougo Shimizu, Kenji Hashimoto, and Toru Fujiwara. A tractable
subclass of dtds for xpath satisfabilty with sibling axes. In Gardner Philippa and Geerts Floris,
editors, Database Programming Languages: 12th International Symposium, DBPL 2009s, volume
5708 of LNCS, pages 68–83. Springer, 2009. 30

[84] Lars Kegel, Martin Hahmann, and Wolfgang Lehner. Template-based time series generation with
loom. In EDBT/ICDT Workshops 2016, Bordeaux, France, 2016. 97

[85] Imre Lakatos. Proofs and Refutations. Cambridge University Press, 1976. 125

[86] Pat W. Langley, Herbert A. Simon, Gary L. Bradshaw, and Jan M. Zytkow. Scientific Discovery –

Computational Explorations of the Creative Process. MIT Press, 1987. 125

[87] Craig Eric Larson and Nicolas Van Cleemput. Automated conjecturing I: Fajtlowicz’s Dalmatian
heuristic revisited. Artif. Intell., 231:17–38, 2016. 125

[88] Eugene L. Lawler and David E. Wood. Branch-and-bound methods: A survey. Operations Research,
14(4):699–719, 1966. 21, 191

[89] Christophe Lecoutre, Lakhdar Sais, Sébastien Tabary, and Vincent Vidal. Last conflict based reason-
ing. In Proceedings of the 2006 Conference on ECAI 2006: 17th European Conference on Artificial

Intelligence August 29 – September 1, 2006, Riva Del Garda, Italy, pages 133–137, Amsterdam, The
Netherlands, The Netherlands, 2006. IOS Press. 39

[90] Jon Lee. All-different polytopes. J. Comb. Optim., 6(3):335–352, 2002. 109

[91] Douglas B. Lenat. On automated scientific theory formation: a case study using the AM program.
Machine intelligence, 9:251–286, 1979. 125

[92] Arnaud Letort, Mats Carlsson, and Nicolas Beldiceanu. Synchronized sweep algorithms for scalable
scheduling constraints. Constraints, 20(2):183–234, Apr 2015. 39

[93] Jin Li, David Maier, Kristin Tufte, Vassilis Papadimos, and Peter A. Tucker. Semantics and evalua-
tion techniques for window aggregates in data streams. In Proceedings of the 2005 ACM SIGMOD

International Conference on Management of Data, SIGMOD ’05, pages 311–322, New York, NY,
USA, 2005. ACM. 52

[94] Gilles Madi Wamba, Yunbo Li, Anne-Cécile Orgerie, Nicolas Beldiceanu, and Jean-Marc Menaud.
Cloud workload prediction and generation models. In SBAC-PAD: International Symposium on

Computer Architecture and High Performance Computing, Campinas, Brazil, October 2017. 16,
186, 189

[95] Arnaud Malapert, Christelle Guéret, and Louis-Martin Rousseau. A constraint programming ap-
proach for a batch processing problem with non-identical job sizes. European Journal of Operational

Research, 221(3):533 – 545, 2012. 14, 187

BIBLIOGRAPHY 235

[96] Hugues Marchand, Alexander Martin, Robert Weismantel, and Laurence A. Wolsey. Cutting planes
in integer and mixed integer programming. Discrete Applied Mathematics, 123(1-3):397–446, 2002.
14, 123

[97] Julien Menana. Automata and Constraint Programming for Personnel Scheduling Problems. Theses,
Université de Nantes, October 2011. 109

[98] Julien Menana and Sophie Demassey. Sequencing and counting with the MULTICOST-REGULAR

constraint. In Integration of AI and OR Techniques in Constraint Programming for Combinatorial

Optimization Problems, 6th International Conference, CPAIOR 2009, Pittsburgh, PA, USA, May 27-

31, 2009, Proceedings, pages 178–192, 2009. 35, 109

[99] Julien Menana and Sophie Demassey. Sequencing and counting with the multicost-regular constraint.
In Willem-Jan van Hoeve and John N. Hooker, editors, CP-AI-OR 2009, volume 5547 of LNCS, pages
178–192. Springer, 2009. 40, 41

[100] Jean-Noël Monette, Pierre Flener, and Justin Pearson. Towards solver-independent propagators. In
Michela Milano, editor, CP 2012, volume 7514 of LNCS, pages 544–560. Springer, 2012. 17, 190

[101] Marc Nerlove, David M. Grether, and José L. Carvalho. Analysis of economic time series. Eco-
nomic theory, econometrics, and mathematical economics. Academic Press, San Diego [u.a.], rev. ed
edition, 1995. 186

[102] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian Brand, Gregory J. Duck, and Guido
Tack. Minizinc: Towards a standard cp modelling language. In Proceedings of the 13th International

Conference on Principles and Practice of Constraint Programming, CP’07, pages 529–543, Berlin,
Heidelberg, 2007. Springer-Verlag. 40

[103] Allen Newell and Herbert A. Simon. The logic theory machine – A complex information processing
system. IRE Transactions on Information Theory, 2(3):61–79, 1956. 125

[104] Thiago F. Noronha, Andréa C. Santos, and Celso C. Ribeiro. Constraint programming for the diam-
eter constrained minimum spanning tree problem. Electronic Notes in Discrete Mathematics, 30:93
– 98, 2008. The IV Latin-American Algorithms, Graphs, and Optimization Symposium. 13

[105] François Pachet and Pierre Roy. Automatic generation of music programs. In Joxan Jaffar, editor,
Principles and Practice of Constraint Programming – CP’99, pages 331–345, Berlin, Heidelberg,
1999. Springer Berlin Heidelberg. 16, 17, 190

[106] Christos H. Papadimitriou. On the complexity of integer programming. J. ACM, 28(4):765–768,
October 1981. 14, 187

[107] Guillaume Perez and Jean-Charles Régin. MDDs are efficient modeling tools: An application to
some statistical constraints. In Domenico Salvagnin and Michele Lombardi, editors, Integration of

AI and OR Techniques in Constraint Programming, pages 30–40, Cham, 2017. Springer International
Publishing. 17

[108] Gilles Pesant. A filtering algorithm for the STRETCH constraint. In Toby Walsh, editor, CP 2001,
volume 2239 of LNCS, pages 183–195. Springer, 2001. 16, 17, 64, 116, 155, 190

[109] Gilles Pesant. A regular language membership constraint for finite sequences of variables. In Mark
Wallace, editor, CP 2004, volume 3258 of LNCS, pages 482–495. Springer, 2004. 40, 65

[110] Gilles Pesant, Michel Gendreau, Jean-Yves Potvin, and Jean-Marc Rousseau. An exact constraint
logic programming algorithm for the traveling salesman problem with time windows. Transportation

Science, 32:12–29, 1998. 14, 187

[111] Émilie Picard-Cantin, Mathieu Bouchard, Claude-Guy Quimper, and Jason Sweeney. Learning pa-
rameters for the sequence constraint from solutions. In Michel Rueher, editor, CP 2016, volume
9892 of LNCS, pages 405–420. Springer, 2016. 97

[112] D. Stephen G. Pollock. A handbook of time-series analysis, signal processing and dynamics. pages
1–733, 1999. 186

236 BIBLIOGRAPHY

[113] CAMPUS 21 EU project. 15

[114] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca. Choco Documentation. TASC -
LS2N CNRS UMR 6241, COSLING S.A.S., 2017. 38

[115] Zhi quan Luo and Wei Yu. An introduction to convex optimization for communications and signal
processing. IEEE J. SEL. AREAS COMMUN, pages 1426–1438, 2006. 14, 187

[116] Jean-Charles Régin. A filtering algorithm for constraints of difference in CSPs. In Barbara Hayes-
Roth and Richard E. Korf, editors, AAAI 1994, pages 362–367. AAAI Press, 1994. 17, 39, 190

[117] John Riordan. An Introduction to Combinatorial Analysis. Princeton University Press, 1978. 13

[118] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook of Constraint Programming (Founda-

tions of Artificial Intelligence). Elsevier Science Inc., New York, NY, USA, 2006. 13, 27, 37, 38,
187

[119] Jacques Sakarovitch. Elements of Language Theory. Cambridge University Press, 2009. 27, 32, 155

[120] Leonard Jimmie Savage. The theory of statistical decision. Journal of the American Statistical

Association, 46(253):55–67, 1951. 140

[121] Andrea Sboner, Alessandro Romanel, Andrea Malossini, Federica Ciocchetta, Francesca Demiche-
lis, Ivano Azzini, Enrico Blanzieri, and Rossana Dell’Anna. Simple Methods for Peak and Valley

Detection in Time Series Microarray Data, pages 27–44. Springer US, Boston, MA, 2007. 45

[122] Jeffrey D. Scargle. Astronomical time series analysis. In Dan Maoz, Amiel Sternberg, and Elia M.
Leibowitz, editors, Astronomical Time Series, pages 1–12, Dordrecht, 1997. Springer Netherlands.
186

[123] Felix Scholkmann, Jens Boss, and Martin Wolf. An efficient algorithm for automatic peak detection
in noisy periodic and quasi-periodic signals. Algorithms, 5(4):588–603, 2012. 45

[124] Marcel Paul Schützenberger. On the definition of a family of automata. Information and Control,
4:245–270, 1961. 65

[125] Helmut Simonis, Paul Davern, Jacob Feldman, Deepak Mehta, Luis Quesada, and Mats Carlsson. A
generic visualization platform for CP. In Principles and Practice of Constraint Programming - CP

2010 - 16th International Conference, CP 2010, St. Andrews, Scotland, UK, September 6-10, 2010.

Proceedings, pages 460–474, 2010. 172

[126] S.M. Sinha. Mathematical Programming. Elsevier Science, Burlington, 2006. 13, 187

[127] Ricardo Soto, Broderick Crawford, Eric Monfroy, Wenceslao Palma, and Fernando Paredes. Nurse
and paramedic rostering with constraint programming: A case study. Romanian Journal of Informa-

tion Science and Technology, 16:52–64, 01 2013. 40

[128] P. David Stotts and William Pugh. Parallel finite automata for modeling concurrent software systems.
Journal of Systems and Software, 27(1):27 – 43, 1994. 16, 189

[129] Pascal Van Hentenryck, Vijay Saraswat, and Yves Deville. Design, implementation, and evaluation
of the constraint language cc(FD). Technical Report CS-93-02, Brown University, Providence, USA,
January 1993. Revised version in Journal of Logic Programming 37(1–3):293–316, 1998. Based on
the unpublished manuscript Constraint Processing in cc(FD), 1991. 17, 190

[130] Willem-Jan van Hoeve. The alldifferent Constraint: A Survey. eprint arXiv:cs/0105015, May 2001.
14, 187

[131] Moshe Y. Vardi. The computational structure of monotone monadic snp and constraint satisfaction:
A study through datalog and group theory. SIAM J. Comput, 28:57–104, 1998. 14, 38, 187

[132] Eva Volna, Michal Janosek, and Martin Kotyrba. Pattern recognition and classification in time

series data. Advances in Computational Intelligence and Robotics. Information Science Reference,
07 2016. 186

BIBLIOGRAPHY 237

[133] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, and Peter Wolstenholme. Modeling Software

with Finite State Machines. Auerbach Publications, Boston, MA, USA, 2006. 16, 189

[134] D. Michael Warner and Juan Prawda. A mathematical programming model for scheduling nursing
personnel in a hospital. Management Science, 19(4):411–422, 1972. 14, 187

[135] Ebru Yilmaz. A mathematical programming model for scheduling of nurses’ labor shifts. Journal of

Medical Systems, 36(2):491–496, Apr 2012. 14, 187

[136] Chong Zhu, Xiangli Zhang, Jingguo Sun, and Bin Huang. Algorithm for mining sequential pattern in
time series data. In 2009 WRI International Conference on Communications and Mobile Computing,
volume 3, pages 258–262, Jan 2009. 45

Titre : Description fonctionnelle de contraintes

sur des séquences et synthèse d’objets combinatoires

Mot clés : programmation par contraintes, automates, transducteurs, expressions régulières, séries temporelles, objets combi-

natoires paramétrés, invariants linéaires et non-linéaires

Resumé : à l’opposé de l’approche consistant à concevoir au

cas par cas des contraintes et des algorithmes leur étant dé-

diés, l’objet de cette thèse concerne d’une part la description

de familles de contraintes en termes de composition de fonc-

tions, et d’autre part la synthèse d’objets combinatoires pour de

telles contraintes. Les objets concernés sont des bornes pré-

cises, des coupes linéaires, des invariants non-linéaires et des

automates finis ; leur but principal est de prendre en compte

l’aspect combinatoire d’une seule contrainte ou d’une conjonc-

tion de contraintes. Ces objets sont obtenus d’une façon sys-

tématique et sont paramétrés par une ou plusieurs contraintes,

par le nombre de variables dans une séquence, et par les do-

maines initiaux de ces variables. Cela nous permet d’obtenir

des objets indépendants d’une instance considérée. Afin de

synthétiser des objets combinatoires nous tirons partie de la

vue declarative de telles contraintes, basée sur les expressions

régulières, ansi que la vue opérationnelle, basée sur les au-

tomates à registres et les transducteurs finis. Il y a plusieurs

avantages à synthétiser des objets combinatoires par rapport à

la conception d’algorithmes dédiés : 1) on peut utiliser ces for-

mules paramétrées dans plusieurs contextes, y compris la pro-

grammation par contraintes et la programmation linéaire, ce qui

est beaucoup plus difficile avec des algorithmes ; 2) la syner-

gie entre des objets combinatoires nous donne une meilleure

performance en pratique ; 3) les quantités calculées par cer-

taines des formules peuvent être utilisées non seulement dans

le contexte de l’optimisation mais aussi pour la fouille de don-

nées.

Title : Functional Description of Sequence Constraints

and Synthesis of Combinatorial Objects

Keywords : constraint programming, automata, transducers, regular expressions, time series, parameterised combinatorial ob-

jects, linear and non-linear invariants

Abstract: Contrary to the standard approach consisting in intro-

ducing ad hoc constraints and designing dedicated algorithms

for handling their combinatorial aspect, this thesis takes ano-

ther point of view. On the one hand, it focusses on describing a

family of sequence constraints in a compositional way by mul-

tiple layers of functions. On the other hand, it addresses the

combinatorial aspect of both a single constraint and a conjunc-

tion of such constraints by synthesising compositional combi-

natorial objects, namely bounds, linear inequalities, non-linear

constraints and finite automata. These objects are obtained in

a systematic way and are not instance-specific: they are pa-

rameterised by one or several constraints, by the number of

variables in a considered sequence of variables, and by the

initial domains of the variables. When synthesising such ob-

jects we draw full benefit both from the declarative view of such

constraints, based on regular expressions, and from the opera-

tional view, based on finite transducers and register automata.

There are many advantages of synthesising combinatorial ob-

jects rather than designing dedicated algorithms: 1) paramete-

rised formulae can be applied in the context of several reso-

lution techniques such as constraint programming or linear pro-

gramming, whereas algorithms are typically tailored to a specific

technique; 2) combinatorial objects can be combined together

to provide better performance in practice; 3) finally, the quan-

tities computed by some formulae cannot just be used in an

optimisation setting, but also in the context of data mining.

	Introduction
	Tradeoff Between the Expressiveness of a Modelling Language and the Efficiency of Solving for Combinatorial Problems
	Mathematical Programming and Constraint Programming for Modelling and Solving Combinatorial Problems
	Context of Our Work: Time-Series Constraints
	The Two Topics of this Thesis
	Differences with Existing Approaches
	A Guided Tour Through the Main Contributions of this Thesis
	The Reading Grid of this Thesis

	I Background
	Background on Regular Expressions
	Background on Automata, Register Automata and Transducers
	Defining Automata, Register Automata and Transducers
	Operations on Automata and Register Automata
	Intersection
	Union
	Complement

	Background on Constraint Programming
	Constraints and Constraint Satisfaction Problems
	Solving a Constraint Satisfaction Problem
	Representation of a Constraint Satisfaction Problem
	Automata and Register Automata in Constraint Programming
	regular Global Constraint
	cost-regular and multi-cost-regular Global Constraints
	automaton Global Constraint

	Background on Time-Series Constraints
	Defining Time-Series Constraints
	Operational View of Time-Series Constraints
	Seed Transducer for a Regular Expression
	Synthesising and Simplifying Register Automata
	Glue Constraints

	Related Approach: Quantitative Regular Expressions

	II Theoretical Contributions
	Overview of our Theoretical Contributions
	Contributions for Time-Series Constraints in Isolation
	First Key Idea: Regular-Expression Characteristics

	Contributions for a Conjunction of Time-Series Constraints
	Second Key Idea: Operational View of Time-Series Constraints

	Integrating Combinatorial Objects into the Global Constraint Catalogue
	Overview of the Extended Transducer-Based Model

	Synthesising Parameterised Bounds
	Regular-Expression Characteristics
	A Notation System for Regular-Expression Characteristics
	Size
	Height
	Range
	Set of Inducing Words
	Overlap
	Smallest Variation of Maxima
	Summary Example Illustrating All Regular-Expression Characteristics
	Necessary and Sufficient Condition for the Existence of an Occurrence of a Regular Expression

	Time-Series Constraints with Feature one
	A Sharp Lower Bound on the Number of Pattern Occurrences
	A black First Not Necessarily Sharp Upper Bound
	black Extending the Upper Bound to Get a Sharp Bound Under Some Hypothesis

	Time-Series Constraints with Feature width
	Properties of Regular Expressions
	Upper Bound for max_width_
	Upper Bound for sum_width_
	Lower Bound for min_width_

	Synthesis
	Conclusion

	Synthesising Parameterised among Implied Constraints
	Complexity of the sum_surf_peak Time-Series Constraint
	Deriving an among Implied Constraint
	Regular-Expression Characteristics
	Deriving an among Implied Constraint for the max_surf_, min_surf_ and the sum_surf_ Families

	Conclusion

	Synthesising Parameterised Linear Invariants
	Generating Linear Invariants
	Constructing the Invariant Digraph for a Conjunction of automaton Constraints wrt a Linear Function
	Finding the Relative Coefficients of the Linear Invariant
	Finding the Constant Term of the Linear Invariant

	Improving the Generated Linear Invariants
	Preprocessing Technique of the Intersection of Register Automata

	Generating Additional Invariants
	Generating Conditional Linear Invariants with the Non-Default Value Condition
	Generating Linear Guard Invariants

	Infeasible Combinations of the Result Values not Eliminated by the Generated Linear Invariants
	Conclusion

	Synthesising Parameterised Non-Linear Invariants
	Motivation and Running Example
	Discovering and Proving Invariants
	Mining Phase
	Proof Phase

	Infeasible Combinations not Eliminated by our Non-Linear Invariants
	Conclusion

	Synthesising Constant-Size Conditional Automata
	Generation of Constant-Size Automata for Constant Atomic Relations
	Generation of Constant-Size Automata for Modulo Atomic Relations
	Generation of Constant-Size Automata for Gap Atomic Relations
	Deriving a bold0mu mumu CPAIOR16-gap Automaton for a Time-Series Constraint
	Deriving the bold0mu mumu CPAIOR16-gap Automaton for the nb_bold0mu mumu CPAIOR16 Family
	Deriving the bold0mu mumu Beldiceanu:synthesis-gap Automaton for the sum_width_bold0mu mumu Beldiceanu:synthesis Family
	Conclusion

	Generation of Constant-Size Automata for and Atomic Relations
	Conclusion

	 Extended Transducer-Based Model
	Defining Functions over Integer Sequences
	Operational View of Functions Over Integer Sequences
	Handling the Recognition Aspect: Seed Transducer
	Handling the Computational Aspect: Reduced Instruction Set

	Conclusion, Related Work, and Future Work

	III Practical Evaluation of our Contributions
	Evaluation of the Impact of Bounds
	Evaluation of the Impact of among Implied Constraints
	Evaluation of the Impact of Linear Invariants
	Evaluation of the Impact of Non-Linear Invariants

	Conclusion
	Summary of this Thesis
	Future Work
	Improving the Solving Aspect
	Complexity Analysis
	Formalisation and Generalisation Issues
	Applications

	French Summary
	Appendices
	An Entry of the Global Constraint Catalogue
	Metadata
	PDF Pages

	An Entry of the Database of Invariants of the Global Constraint Catalogue
	Metadata
	PDF Pages

	Tables with Regular-Expression Characteristics

	Notation for Regular-Expression Characteristics
	Index
	Bibliography

