
HAL Id: tel-01963108
https://theses.hal.science/tel-01963108v2

Submitted on 7 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Static analysis on numeric and structural properties of
array contents

Jiangchao Liu

To cite this version:
Jiangchao Liu. Static analysis on numeric and structural properties of array contents. Data Structures
and Algorithms [cs.DS]. Université Paris sciences et lettres, 2018. English. �NNT : 2018PSLEE046�.
�tel-01963108v2�

https://theses.hal.science/tel-01963108v2
https://hal.archives-ouvertes.fr

Logo établissement

Soutenue par Jiangchao LIU
le 20 Février 2018
h

THÈSE DE DOCTORAT

de l’Université de recherche Paris Sciences et Lettres 
PSL Research University

Préparée à L’École normale supérieure

Dirigée par Xavier RIVAL

h

Static Analysis on Numeric and Structural
Properties of Array Contents

Analyse Statique des Propriétés Numériques
et Structurelles du Tableaux

COMPOSITION DU JURY :

M. GIACOBAZZI Roberto
Università di Verona, Rapporteur 

M. PICHARDIE David
ENS Rennes, Rapporteur 

M. BOURKE Timothy
CNRS/ENS/INRIA/PSL*, Membre du jury

M. CHEN Liqian
NUDT, Membre du jury

M. MULLER Gilles
LIP6/INRIA, Membre du jury

Mme. PUTOT Sylvie
Ecole Polytechnique, Présidente du jury

M. RIVAL Xavier
CNRS/ENS/INRIA/PSL*, Membre du jury

Ecole doctorale n°386

École Doctorale de Sciences Mathématiques de Paris Centre

Spécialité Informatique

c© Jiangchao LIU, 2013–2017.

i

Résumé

Dans cette thèse, nous étudions l’analyse statique par interprétation abstraites de pro-
grammes manipulant des tableaux, afin d’inférer des propriétés sur les valeurs numériques
et les structures de données qui y sont stockées.

Les tableaux sont omniprésents dans de nombreux programmes, et les erreurs liées à
leur manipulation sont difficile à éviter en pratique. De nombreux travaux de recherche
ont été consacrés à la vérification de tels programmes. Les travaux existants s’intéressent
plus particulièrement aux propriétés concernant les valeurs numériques stockées dans les
tableaux. Toutefois, les programmes bas-niveau (comme les systèmes embarqués ou les
systèmes d’exploitation temps-réel) utilisent souvent des tableaux afin d’y stocker des
structures de données telles que des listes, de manière à éviter d’avoir recours à l’allocation
de mémoire dynamique. Dans cette thèse, nous présentons des techniques permettant
de vérifer par interprétation abstraite des propriétés concernant à la fois les données
numériques ainsi que les structures composites stockées dans des tableaux.

Notre première contribution est une abstraction qui permet de décrire des stores à
valeurs numériques et avec valeurs optionnelles (i.e., lorsqu’une variable peut soit avoir une
valeur numérique, soit ne pas avoir de valeur du tout), ou bien avec valeurs ensemblistes
(i.e., lorsqu’une variable est associée à un ensemble de valeurs qui peut être vide ou non).
Cette abstraction peut être utilisée pour décrire des stores où certaines variables ont
un type option, ou bien un type ensembliste. Elle peut aussi servir à la construction de
domaines abstraits pour décrire des propriétés complexes à l’aide de variables symboliques,
par exemple, pour résumer le contenu de zones dans des tableaux.

Notre seconde contribution est un domaine abstrait pour la description de tableaux,
qui utilise des propriétés sémantiques des valeurs contenues afin de partitioner les cellules
de tableaux en groupes homogènes. Ainsi, des cellules contenant des valeurs similaires
sont décrites par les mêmes prédicats abstraits. De plus, au contraire des analyses de
tableaux conventionnelles, les groupes ainsi formés ne sont pas nécessairement contigüs,
ce qui contribue à la généralité de l’analyse. Notre analyse peut regrouper des cellules
non-congitües, lorsque celles-ci ont des propriétés similaires. Ce domaine abstrait permet
de construire des analyses complètement automatiques et capables d’inférer des invariants
complexes sur les tableaux.

Notre troisième contribution repose sur une combinaison de cette abstraction des
tableaux avec différents domaines abstraits issus de l’analyse de forme des structures de
données et reposant sur la logique de séparation. Cette combinaison appelée coalescence
opère localement, et relie des résumés pour des structures dynamiques à des groupes de
cellules du tableau. La coalescence permet de définir de manière locale des algorithmes
d’analyse statique dans le domaine combiné. Nous l’utilisons pour relier notre domaine
abstrait pour tableaux et une analyse de forme générique, dont la tâche est de décrire des
structures châınées. L’analyse ainsi obtenue peut vérifier à la fois des propriétés de sûreté
et des propriétés de correction fonctionnelle.

De nombreux programmes bas-niveau stockent des structures dynamiques châınées

Static Analysis on Array Contents Jiangchao Liu

ii

dans des tableaux afin de n’utiliser que des zones mémoire allouées statiquement. La
vérification de tels programmes est difficile, puisqu’elle nécessite à la fois de raisonner sur
les tableaux et sur les structures châınées. Nous construisons une analyse statique reposant
sur ces trois contributions, et permettant d’analyser avec succés de tels programmes. Nous
présentons des résultats d’analyse permettant la vérification de composants de systèmes
d’exploitation et pilotes de périphériques.

Jiangchao Liu Static Analysis on Array Contents

iii

Abstract

We study the static analysis on both numeric and structural properties of array con-
tents in the framework of abstract interpretation.

Since arrays are ubiquitous in most software systems, and software defects related to
mis-uses of arrays are hard to avoid in practice, a lot of efforts have been devoted to
ensuring the correctness of programs manipulating arrays. Current verification of these
programs by static analysis focuses on numeric content properties. However, in some
low-level programs (like embedded systems or real-time operating systems), arrays often
contain structural data (e.g., lists) without using dynamic allocation. In this manuscript,
we present a series of techniques to verify both numeric and structural properties of array
contents.

Our first technique is used to describe properties of numerical stores with optional
values (i.e., where some variables may have no value) or sets of values (i.e., where some
variables may store a possibly empty set of values). Our approach lifts numerical abstract
domains based on common linear inequality into abstract domains describing stores with
optional values and sets of values. This abstraction can be used in order to analyze
languages with some form of option scalar type. It can also be applied to the construc-
tion of abstract domains to describe complex memory properties that introduce symbolic
variables, e.g., in order to summarize unbounded memory blocks like in arrays.

Our second technique is an abstract domain which utilizes semantic properties to split
array cells into groups. Cells with similar properties will be packed into groups and
abstracted together. Additionally, groups are not necessarily contiguous. Compared to
conventional array partitioning analyses that split arrays into contiguous partitions to
infer properties of sets of array cells. Our analysis can group together non-contiguous
cells when they have similar properties. Our abstract domain can infer complex array
invariants in a fully automatic way.

The third technique is used to combine different shape domains. This combination
locally ties summaries in both abstract domains and is called a coalesced abstraction.
Coalescing allows to define efficient and precise static analysis algorithms in the combined
domain. We utilise it to combine our array abstraction (i.e., our second technique) and
a shape abstraction which captures linked structures with separation logic-based induc-
tive predicates. The product domain can verify both safety and functional properties of
programs manipulating arrays storing dynamically linked structures, such as lists.

Storing dynamic structures in arrays is a programming pattern commonly used in
low-level systems, so as to avoid relying on dynamic allocation. The verification of such
programs is very challenging as it requires reasoning both about the array structure with
numeric indexes and about the linked structures stored in the array. Combining the
three techniques that we have proposed, we can build an automatic static analysis for the
verification of programs manipulating arrays storing linked structures. We report on the
successful verification of several operating system kernel components and drivers.

Static Analysis on Array Contents Jiangchao Liu

iv

Jiangchao Liu Static Analysis on Array Contents

i

Résumé pour le Grand Public

Les erreurs logicielles peuvent avoir de graves conséquences humaines ou matérielles,
en particulier dans le cas de systèmes critiques. De nombreux telles erreurs sont liées
aux manipulations de tableaux. Un tableau peut être utilisé soit pour décrire des don-
nées numériques de base (par exemple la taille de chaque personne dans un groupe), ou
bien pour stocker des structures dynamiques (comme une liste châınée). De telles struc-
tures imbriquées sont fréquentes dans les systèmes d’exploitation, afin d’éviter un recours
à l’allocation dynamique de mémoire. La correction de tels programmes est difficile à
vérifier, en raison du grand nombre de cas possibles. Dans cette thèse, nous proposons
plusieurs techniques permettant de vérifier la sûreté et la correction fonctionnelle de pro-
gramme manipulant tous ces types de tableaux.

Notre première contribution permet de décrire des propriétés numériques d’ensembles
vides ou non vides de valeurs, pouvant être de taille non bornée. Notre seconde contribu-
tion fournit un mécanisme de partition des tableaux en groupes contigüs ou non de cellules
ayant des propriétés similaires. Enfin, notre troisième contribution permet de combiner
une analyse de tableaux et une analyse de forme des structures de données, afin de décrire
les structures imbriquées stockées dans les tableaux.

Nous avons mené une évaluation expérimentale sur des composants de systèmes d’exploitation,
incluant le gestionnaire de tâches de TinyOS, et le gestionnaire de mémoire de Minix, ainsi
que des pilotes de périphériques. Les résultats de cette évaluation démontrent que notre
analyse est capable de traiter ce type de programmes avec succés.

Static Analysis on Array Contents Jiangchao Liu

ii

Jiangchao Liu Static Analysis on Array Contents

iii

Popular Science Summary

Software defects can cause huge economic losses, and even human deaths, particularly
in safety-critical systems. Many of these defects are caused by the misuse of arrays.
Array is one of the earliest aggregate data type. It can be used to collect plain data (e.g.,
the heights of all students in a class), or store dynamic linked structures (e.g., a linked
list). The second case is often encountered in embedded systems, where dynamic memory
allocation is not always allowed. The correctness of programs manipulating arrays can
be hardly guaranteed, since the cases of array contents are enormous. In this thesis, we
propose several techniques that can work together to verify some safety and functional
properties of programs manipulating either kind of arrays.

Our first work can over-approximate the numeric properties of an unbounded set of
array cells. Compared with existing work, it allows the set to be empty. Our second work
provides a mechanism to partition an array into different groups. Compared with existing
partition, ours can be more precise on arrays where cells with similar properties are not
contiguous (e.g., dynamic structures in arrays often occupy non-contiguous regions). Our
third work is a new way of combining different analyses. For instance, if we combine our
analysis on arrays and an analysis on dynamic structures in this way, we can get an analysis
on dynamic structures in arrays. Compared with existing work, this way is more precise on
describing inter-wined data structures. We have conducted some experiments on operating
system components, including the task scheduler in TinyOS, the memory management in
Minix, etc. These experiments demonstrate the effectiveness of our analysis.

Static Analysis on Array Contents Jiangchao Liu

iv

Jiangchao Liu Static Analysis on Array Contents

CONTENTS v

Contents

Résumé ii

Abstract iii

Résumé pour le Grand Public i

Popular Science Summary iii

Table of Contents v

1 Correctness of Programs Using Arrays 1
1.1 Arrays and Their Usage . 1
1.2 Correctness of Programs Using Arrays . 2
1.3 Quality Control on Software Systems Using Arrays 6
1.4 Goal of the Thesis . 9

2 Contributions of the Thesis 11
2.1 Towards Verifying Safety and Functional Properties of Arrays of Structured

Data . 11
2.1.1 An Example: the Task Scheduler in TinyOS 11
2.1.2 Safety and Functional Properties 11
2.1.3 Structural Invariant . 13
2.1.4 Challenges for Verifying the Invariant and Solutions from the Thesis 14

2.2 Non-contiguous Partitioning . 15
2.2.1 Limitations of Array Expansion and Array Partitioning 15
2.2.2 Non-contiguous Partitioning Based on Semantics 16

2.3 Coalescing Array and Shape Abstractions 17
2.3.1 Existing Combination Techniques 18
2.3.2 The Coalescing Domain and a Comparison with Existing Techniques 18

2.4 Maya+ Functor . 20
2.4.1 Numeric Domains and Their Expressiveness 20
2.4.2 Maya+ Functor . 21

2.5 Outline of the Thesis . 23

Static Analysis on Array Contents Jiangchao Liu

vi CONTENTS

3 Static Analysis by Abstract Interpretation 25
3.1 A Simple Imperative Language . 25

3.1.1 Syntax and Notations . 25
3.1.2 Denotational Semantics . 26

3.2 Abstract Interpretation . 28
3.2.1 Abstract Elements . 28
3.2.2 Abstract Operators . 29
3.2.3 Abstract Semantics . 31

4 Maya and Maya+ Functors 33
4.1 Extension of Our Language . 33
4.2 Maya Functor . 36

4.2.1 Numeric Domains for Euclidean Space 36
4.2.2 Abstraction in Presence of Optional Numerical Values 36
4.2.3 The Bi-avatar Principle . 39

4.3 Maya+ Functor . 47
4.3.1 Summarizing Numeric Domains . 48
4.3.2 Composition of Maya Functor and Summarizing Numeric Domains 49
4.3.3 Case Study: Application of The Maya+ Functor to A Simple Array

Analysis . 50
4.4 Related Work and Conclusion . 53

5 Non-contiguous Partitioning 55
5.1 Context of Non-contiguous Partitioning . 55

5.1.1 Extension of the Language . 55
5.1.2 An Example from Minix. 56

5.2 Abstraction . 59
5.2.1 Memory Predicates . 60
5.2.2 Numeric Predicates . 60

5.3 Basic Operators on Partitions . 64
5.4 Transfer Functions . 69

5.4.1 Analysis of Conditions . 69
5.4.2 Assignment . 71

5.5 Join, Widening and Inclusion Check . 75
5.5.1 Join and the Group Matching Problem 76
5.5.2 Widening . 79
5.5.3 Inclusion Checking . 81

5.6 Static Analysis on Programs Involving Arrays 83
5.6.1 Abstract Semantics . 83
5.6.2 Example “cleanup” Revisited . 83

5.7 Experimental Evaluation . 85
5.7.1 Verification of Memory Management Part in Minix. 86

Jiangchao Liu Static Analysis on Array Contents

CONTENTS vii

5.7.2 Application to Academic Test Cases 86
5.8 Related Work and Conclusion . 87

6 Coalescing Array and Shape Abstraction 91
6.1 Context of The Analysis . 91
6.2 Abstraction . 93

6.2.1 A Signature of Memory Abstract Domains 95
6.2.2 Introduction to A Shape Domain 96
6.2.3 Principles of Coalescing Memory Abstract Domains 97
6.2.4 The Array/Shape Coalescing Domain 99

6.3 Algorithms for Unfolding and Folding . 101
6.3.1 The Unfolding Algorithm in the Coalescing Domain 102
6.3.2 The Folding Algorithm in the Coalescing Domain 103

6.4 Transfer Functions . 105
6.4.1 Condition Tests . 105
6.4.2 Assignments . 107

6.5 Lattice Operators . 109
6.5.1 Lattice Operators over Compatible Abstract States 110
6.5.2 Processing on Non Compatible Abstract States 110

6.6 Analysis . 114
6.6.1 Abstract Semantics and Implementation 114
6.6.2 Example create Revisited . 115

6.7 Related Work . 116
6.8 Conclusion . 117

7 Experiments on OS Components 121
7.1 Experiments Setup . 122

7.1.1 Target Programs . 122
7.1.2 Verification Framework . 124

7.2 Verified Properties . 125
7.2.1 Minix . 126
7.2.2 TinyOS . 126
7.2.3 Eicon . 127
7.2.4 Nordic . 128

7.3 Efficiency . 128
7.4 Effort Needed for Verification . 128
7.5 Related Work and Conclusion . 129

8 Conclusion and Discussion for The Future Work 131

Lists 141
List of Figures . 141

Static Analysis on Array Contents Jiangchao Liu

viii CONTENTS

List of Definitions . 143
List of Theorems . 145
List of Examples . 147

Jiangchao Liu Static Analysis on Array Contents

Chapter 1

Correctness of Programs Using
Arrays

As software is becoming ever-increasingly important in our society, software defects are
also becoming a growing concern, particularly in safety-critical systems. Some accidents
due to defects in software have caused huge economic losses, and even human deaths.
In 1994 in Scotland, a Chinook helicopter crashed, killing all 29 of its passengers. Ev-
idence [s:i02] showed that a software error had caused the crash. In 1996, a European
Ariane 5 rocket veered off its path and exploded 37 seconds after launch, due to a defect
in its software system. A 2002 study [Tas02] commissioned by the National Institute of
Standards and Technology in the USA found that every year software defects cost the US
economy 59.5 billion dollars.

Many of these defects are caused by the misuse of arrays. This chapter identifies
defects that may be caused by the misuse of arrays and discusses to what extent existing
techniques can help to avoid them.

1.1 Arrays and Their Usage

An array is an aggregate of data elements of the same type, where an individual element
is identified by its position relative to the first element [Seb12]. The time complexity
for accessing a random element in an array is only O(1). Another advantage of arrays
regarding performance is low memory occupation, since basic array implementations do
not need to store links to chain the structure, unlike linked lists or trees.

Arrays are one of the earliest and most important data structures in computer science.
Their first appearance in high-level programming languages (like FORTRAN) dates back
to the 1950s [All81]. Nowadays, arrays are still widely used in most software systems.

There are various types of arrays in programs. In this thesis, we classify them into
three categories: arrays of scalar data, composite data and structured data.

Static Analysis on Array Contents Jiangchao Liu

2 CHAPTER 1. CORRECTNESS OF PROGRAMS USING ARRAYS

Arrays of scalar data. This category collects arrays of primitive data types (e.g.,
integers), storing plain data. For example, a one-dimensional array storing the heights of
all students in a class would fall into this category. The following C code declares such
an array.

1 int height [10]={177 ,176 ,176 ,172 ,168 ,178 ,171 ,199 ,190 ,163 ,171};

Arrays of composite data. The second category comprises arrays that store plain
data of composite data types. In the programming language C, a composite data type is
declared with the keyword struct and is composed of a fixed set of labeled fields. The
following code collects both the height and weight information of five students.

1 struct student {

2 int height;

3 int weight;

4 };

5 struct student five_students [] = {{177, 66},{176, 88}, {176,

75}, {172, 77}, {168, 67} };

Arrays of structured data. The elements of arrays in this category could be of primi-
tive data types or composite data types. The difference with the last two categories is that
the stored data contains links (indexes or pointers) to other array elements or memory
locations outside the array. These links may form dynamically chained structures (such
as linked lists). For instance, in Hash tables, an imperfect hash function could generate
the same index for different keys, which is called a hash collision. To resolve such colli-
sions, programmers may use linked lists inside or outside the array recording data with
the same hash indexes. In this thesis, we focus on the case where links are within arrays.
Structured data is also often encountered in programs that avoid making use of dynamic
memory allocation primitives like malloc in C. For instance, these include basic operat-
ing system services that maintain statically allocated structures and low-level embedded
systems where the use of dynamic allocation is restricted for the sake of certification and
more predictable execution time and memory usage.

Example 1.1 (A list in one array). Figure 1.1 shows a list (array cells in red) allocated
in an integer array a. Array cells used as list nodes store the indexes of the next links of
the list (e.g., a[1] = 3), and the tail node of the list stores -1 (a[4] = −1).

1.2 Correctness of Programs Using Arrays

In this section, we summarize the correctness properties that should be satisfied by pro-
grams, so as to avoid defects from misuse of arrays.

Safety properties express the absence of runtime-errors or undefined behaviors. In
programs using arrays, the most important safety property is that ”all array accesses must

Jiangchao Liu Static Analysis on Array Contents

1.2. CORRECTNESS OF PROGRAMS USING ARRAYS 3

[0] [1] [2] [3] [4] [5] [6]

3 4 −1a

Figure 1.1 – A list in one array

be within the index range”. Once the size of an array is fixed, the range of its indexes (i.e.,
subscripts) is also fixed. Array accesses beyond the index range may crash the program,
or cause unexpected behaviors. Programming languages like Java or Pascal, perform
dynamic bound checks on every array access. An out-of-bounds array access would raise
an exception and abort the program. For example, the following code in Java would raise
”ArrayIndexOutOfBoundsException”.

1 int [] anArray = new int [26];
2 anArray [26] = 0;

Out-of-bounds array accesses in programs using arrays of structured data are harder
to avoid. This is because, in addition to scalar variables, array contents can also be used
as indexes. Figure 1.1 shows a list inside an array, where -1 marks the tail of the list. All
values stored in the list nodes could be used as valid indexes except the tail node. The
following code pops one element from the head of the list, and before reading, it checks
whether the index is -1.

1 i f (head != -1)

2 {

3 element = head;

4 head = a[head];

5 }

Besides out-of-bounds array accesses, defects that may occur on arrays of structured
data include index leak and dangling nodes.

An index leak is a kind of resource leak. In some implementations, all the cells in
an array are supposed to be linked by the structures inside the array. Index leak defect
arises when some cells are leaked out of the linked structures, and could not be used
again. Figure 1.2 shows two lists inside one array: one list stores user data, and the other
manages free slots. If the program manipulating this array can not keep all array elements
in the two lists, then the number of available array elements shrinks, which is also a form
of memory leak. In Figure 1.2(b), a[6] is not reachable by the two lists and is thus leaked.

A dangling node defect arises when the chained structure in an array is broken in the
middle. For instance, in the array in Figure 1.1, a[3] stores the index of the next list
element (i.e., 4). If it stores any random value but not 4, then the list is broken and list
node a[3] is dangling.

Static Analysis on Array Contents Jiangchao Liu

4 CHAPTER 1. CORRECTNESS OF PROGRAMS USING ARRAYS

[0] [1] [2] [3] [4] [5] [6] [7]

a

(a) A state without an index leak

[0] [1] [2] [3] [4] [5] [6] [7]

a

(b) A state with an index leak

Figure 1.2 – A static memory pool

Security properties assert that non-authorized users are not able to corrupt any
critical process or fetch confidential information. A well-known security exploit is buffer
overflow. This means when a program writes data to a buffer, it exceeds the bounds of the
buffer and overwrites the adjacent memory locations. This security exploit is often found
on arrays of scalar and composite data. The following C code causes a buffer overflow,
since the string to be copied exceeds the size of the buffer.

1 char buffer [10] = {0};

2 strcpy(buffer , "This string will overflow the buffer");

In many systems, the data area and executable code are arranged together as a whole.
Thus a buffer overflow on the data area could possibly rewrite the executable code. At-
tackers could utilize this to send data designed to cause a buffer overflow and embed
malicious code into the running software. If an operating system is attacked in this way,
attackers could perform privilege escalation and gain full control of the computer. Morris,
which was one of the first computer worms distributed via the Internet, is an instance of
buffer overflow exploit.

Functional properties state that given a certain input, a program should produce
an expected output. On programs using arrays of scalar and composite data, functional
properties often boil down to universally quantified predicates on array contents. For
instance, the functional property for an initialization program could be that all values
stored in the output array should be 0. Violation of functional properties could cause
incorrect results. As an example, let us consider the case where an array records the height
information of all the students in a class, and stores -1 if the data for the corresponding
student is absent. A program calculating the average height should take the possible
incompleteness of data into account, otherwise the results would be invalid. The following
code does not satisfy the following correctness property: variable average should store
the average positive values in the array height.

1 int height [10]={177 ,176 ,176 ,172 ,168 ,178 ,171 , -1 ,190 ,163 ,171};

Jiangchao Liu Static Analysis on Array Contents

1.2. CORRECTNESS OF PROGRAMS USING ARRAYS 5

2 int i, sum = 0, average;

3 for (i = 0; i < 10; i ++) sum += height[i];

4 average = sum / 10;

Some languages, like Python, provide libraries to deal with corner cases when processing
data. The following code replaces any missing value with the average of the values in the
column.

1 import pandas as pd

2 from sklearn.preprocessing import Imputer

3 from io import StringIO

4 csv_data = ’’’A,B,C,D

5 ...1.0 ,2.0 ,3.0 ,4.0

6 ...5.0 ,6.0 , ,8.0

7 ...0.0 ,11.0 ,12.9 , ’’’

8 df = pd.read_scv(StringIO(scv_data))

9 imr = Imputer(missing_values = ’NaN’, strategy = ’mean’, axis =

0)

10 imr = imr.fit(df)

11 imputed_data = imr.transfrom(df.values)

Functional properties of programs that manipulate arrays of structured data are more
complex, and may require inductively defined predicates to express them. For instance,
the following code defines a task table, where the field flag indicates whether an array
cell corresponds to a running task or a free slot, and the field parent stores the index
of the parent task. One functional property of programs manipulating this array is that
the init task is the direct or indirect ancestor of all the other tasks. This property is
illustrated in Figure 1.3. Violation of this property could cause unexpected behavior. For
instance, in some operating systems, a task could exit only when its parent task calls wait.
If the parent of one task incorrectly points to itself, then it would never exit.

1 struct task{

2 int flag;

3 int parent;

4 }

5 struct task task_table [100];

The violation of this functional property could also cause safety issues. For instance,
when the parent field of one task node stores −1, then the operating system would crash
when a program tried to visit its parent task. This implies that checking basic safety
properties may require checking more complex functional invariants.

Static Analysis on Array Contents Jiangchao Liu

6 CHAPTER 1. CORRECTNESS OF PROGRAMS USING ARRAYS

init

usr1usr0

usr2 free free

Figure 1.3 – Topology of the parent relations in a task table

1.3 Quality Control on Software Systems Using Ar-

rays

Because of the severity of software defects, the quality of a software system greatly de-
pends on whether it satisfies correctness properties (i.e., safety, security and functional
properties). In this section, we go through the main methods that help improve the quality
of software systems, particularly those using arrays.

Development guidelines. One way to improve software quality is to follow strict devel-
opment guidelines. These guidelines avoid programming styles that are prone to defects.
One popular set of guidelines is MISRA-C, which was developed by MISRA (Motor In-
dustry Software Reliability Association) for the C programming language, and has been
widely accepted in the industry.

MISRA-C includes several rules restricting the use of arrays, e.g., Rule 8.12 requires
that when an array is declared with external linkage, its size shall be stated explicitly or
defined implicitly by initialization. The following code shows both compliant and non-
complicant cases.

1 extern int array1 [10]; /* Compliant */

2 extern int array2 []; /* Not compliant */

3 int array3 [] = {0, 1, 2, 3}; /* Compliant */

In safety-critical software systems, stricter guidelines are often adopted, like the pro-
hibition of dynamic memory allocations (thus dynamically chained structures are imple-
mented inside arrays in their software). Guidelines could be checked manually or auto-
matically by tools like PC-lint. However, even if these rules are fully respected, it does
not guarantee that a software system satisfies any correctness property.

Testing. Software testing is a classic and important way to find defects in software.
It checks whether the correctness properties are satisfied by running the program with
a certain set of inputs. Testing is, however, time consuming since it needs to run the
program for each individual input.

Testing can verify any safety, security or functional properties of programs using arrays,
on the tested inputs. However, because possible inputs are usually enormous, testing does

Jiangchao Liu Static Analysis on Array Contents

1.3. QUALITY CONTROL ON SOFTWARE SYSTEMS USING ARRAYS7

not guarantee that a software system satisfies correctness properties for all inputs. For
instance, to fully verify the sortedness property on the following C program by testing,
we need to run the program 232×100 times (supposing the size of an integer is 4 bytes).

1 int main(){

2 int array [100];

3 int n = 100;

4 int i, j, swap;

5 for (i = 0; i < n; i++) scanf("%d", &array[i]);

6 for (i = 0; i < n -1; i++)

7 for (j = 0; j < n - 1 - i; j++)

8 i f (array[j] > array[j+1]){

9 swap = array[j];

10 array[j] = array[j + 1];

11 array[j + 1] = swap;

12 }

13 }

Formal verification. The previous two methods could effectively reduce the rate of po-
tential defects in a software system, but provide no guarantee. Formal verification could
prove that a program satisfies given correctness properties, and is free of certain types of
defects. Formal verification was proposed in the late 1960s [BL68, Flo67, Hoa69] and var-
ious techniques have been developed for different applications. In industry, Microsoft has
been utilizing SLAM [BCLR04] to verify its drivers for Windows; Airbus has successfully
verified its avionics software on the A380. Moreover, many companies like AbsInt have
been founded to provide formal verification services.

Most formal verification methods include two steps: formalizing the property of inter-
est and carrying out the proof.

Properties are often expressed by languages of logical formulas. Some famous lan-
guages include Hoare Logic [Hoa69] which uses a triple to describe how the execution of a
piece of code changes the state of the computation; Computation Tree Logic (CTL) [CE82]
which is a branching-time temporal logic describing safety and liveness properties; Com-
municating Sequential Processes (CSP) [BHR84] which is based on process algebras, de-
scribing patterns of interaction in concurrent systems.

On programs using arrays of scalar data and composite data, the safety property “all
array accesses must be within the index range” is often expressed by simple inequality
relations on program variables. Functional properties on such arrays are more complex,
since they require quantification over values stored in the array. Separation logic is an
extension of Hoare logic, which is based on the separating conjunction “∗” (P ∗Q means
P and Q hold for separate portions of the memory) and provides a modular description of
memory states. In [BDES12], the authors combine separation logic and first-order logic
to describe functional properties on arrays of scalar and composite data.

Proving by hand is time consuming since proofs are typically huge. Thus, interactive

Static Analysis on Array Contents Jiangchao Liu

8 CHAPTER 1. CORRECTNESS OF PROGRAMS USING ARRAYS

proof assistants like Coq and Isabelle have been developed to ease the proving process.
However, even with these tools, the time spent on the proof of a program is usually much
longer than that spent on its actual development.

Automatic formal verification. One idea to make formal verification more practical
is to automate the proving process. However, most mainstream programing languages
are Turing complete. Depending on the underlying logic, the validity of the property of
interest on a Turing complete language could be undecidable or NP complete. Thus it is
impossible to design a fully automatic verification algorithm for all classes of properties
on these languages. However, it is possible to design an automatic algorithm that achieves
sub-goals of formal verification. For instance, some algorithms only have the soundness
property (if the verification terminates and returns ”true”, then the program satisfies the
property), or the completeness property (if the program satisfies the property, then the
verification terminates and returns ”true”).

Automated theorem proving attempts to produce a formal proof automatically, with a
description of the system, a set of logical axioms and a set of inference rules. This method
is sound and complete with respect to the specification. However, it can only be applied
a small class of programs.

Tools presented in [AGS13, AGS14, BMS06] identify a class of programs manipulating
arrays where the transitive closures are definable, and can verify safety and functional
properties that could be expressed in first-order logic.

Model checking verifies a given set of state machines with respect to a set of temporal
formula with SAT-solving methods. Difficulties in this approach include synthesizing the
model from the program and avoiding the ”state explosion” problem.

The work by [MG16, MA15] can transform any array program into an array free
program or a system of Hoare clauses. But the transformation only keeps universally
quantified properties and scalability is limited by the back-end SMT solvers. Fluid updates
in [DDA10, DDA11] seek for a unified way to reason about pointers, scalars and arrays.
They represent a group of array cells by both under- and over-approximation. However,
they cannot represent the contents of array elements as an interval or other numeric
relations by abstraction, which could possibly lead to state explosion. The properties
that can be verified by these methods are also limited to safety and functional properties
of programs using arrays of scalar and composite data.

Static analysis by abstract interpretation represents a possibly infinite set of concrete
states at a program point by a finite set of abstract states, and over-approximates concrete
semantics of the given program soundly by abstract semantics. This kind of static anal-
ysis computes properties that describe all reachable states of the program automatically
without performing all executions. A class of abstract states with corresponding abstract
semantics is called an abstract domain.

Numeric abstract domains [CH78b, CLM+14] can discover complex numeric relations
on program variables, compute precise invariants on array subscripts, and verify the ab-
sence of out-of-bounds accesses on arrays of scalar and composite data. Array partitioning

Jiangchao Liu Static Analysis on Array Contents

1.4. GOAL OF THE THESIS 9

approaches [BCC+03b, GRS05, HP08, CCL11] assume that array cells with similar prop-
erties are contiguous and partition arrays into segments according to numeric properties.
Non-structured functional properties like value ranges, sortedness inside each segment can
be verified automatically.

1.4 Goal of the Thesis

Existing work can verify correctness properties on a class of programs that use arrays of
scalar and composite data automatically. However, several difficulties prevent them from
addressing arrays of structured data.

• Dynamically chained structures (or for short, dynamic structures) usually occupy
non-contiguous regions of arrays, making it impossible to extract dynamic structures
out from arrays using a partition based on contiguous segments;

• The numerical properties of array contents is non-trival to describe, especially when
dynamically chained structures are embedded in arrays;

• Since the dynamic structures and arrays are intertwined, verification algorithms
need to reason about the accesses into dynamic structures via both their next links
and array indexes at the same time.

This thesis presents a series of techniques in the framework of static analysis by ab-
stract interpretation, to addree these three challenges. Combining these techniques can
verify safety and functional properties on programs using arrays of structured data auto-
matically.

In Chapter 2, we give an overview of these techniques and an outline of this thesis.

Static Analysis on Array Contents Jiangchao Liu

10 CHAPTER 1. CORRECTNESS OF PROGRAMS USING ARRAYS

Jiangchao Liu Static Analysis on Array Contents

Chapter 2

Contributions of the Thesis

This chapter overviews the contributions of the thesis. To give an intuitive idea of our
techniques, we first consider an industrial example that manipulates an array of structured
data. Then, we show the challenges that must be overcomed to verify its safety and
functional properties and how our static analysis addresses them.

2.1 Towards Verifying Safety and Functional Prop-

erties of Arrays of Structured Data

2.1.1 An Example: the Task Scheduler in TinyOS

TinyOS [LMP+04] is an embedded, application-specific operating system designed for
sensor networks. In TinyOS 2.x, the task scheduler is configurable, and the default con-
figuration follows the FIFO strategy. In this scheduler, the queue of tasks is maintained
by a list stored in an array, as shown in Figure 2.1. The main data structure is an array
m next of 256 cells of type unit8 t. An array cell either is unused (in which case it stores
value 255), or it stores the index of the next link in the list. Value 255 is also used as a
special value to indicate the end of the list. The indexes of the head and the tail of the
list are stored in variables m head and m tail respectively. When the list is empty, both
variables store 255.

Figure 2.1(b) shows a segment of a concrete state, in which cells 1, 3 and 253 correspond
to running tasks, and all the other cells are free slots. Functions that manipulate this
structure mainly include push Task (push a task to the tail of the list), pop Task (pop a
task from the head of the list) and tinit (initialize the array).

2.1.2 Safety and Functional Properties

In this subsection, we investigate the safety and functional properties of the pop Task

function. Such properties of the other two functions are similar. Figure 2.2 shows a code

Static Analysis on Array Contents Jiangchao Liu

12 CHAPTER 2. CONTRIBUTIONS OF THE THESIS

unit8 t m head;
unit8 t m tail;
unit8 t m next[255];

(a) Definition of the data structure

[0] [1] [2] [3] [253] [254] [255]

255 3 255 253 255 255 255m next . . . m head = 1
m tail = 253

(b) A concrete state

Figure 2.1 – A list in one array

1 inline uint8_t popTask (){

2 i f (m_head != 255){

3 unit_t id = m_head;

4 m_head = m_next[m_head];

5 // The rest of this function is ignored

Figure 2.2 – A code segment from pop Task

segment extracted from the pop Task function. It checks whether the task list is empty
and if not, it stores the head index in variable id and the next link of the head node in
m head.

The safety property that should be satisfied by this function is that “there is no out-
of-bounds array access”. If this property is violated, the program may crash. Moreover,
we are interested in the following functional properties: all running tasks must be chained
by the list led by m head. This property prevents unexpected scheduler behaviors, such
as tasks becoming dangling.

The verification of both properties is non-trivial. For instance, before the array access
m next[m head] at line 4, the bounds of the m head variable are not checked explicitly. To
prove the safety property on this statement, we need a global description of the value of
m head. This is not simple because the value of the m head variable could be updated by
array contents (e.g., at line 4). Thus a description of the global invariant (i.e., invariant
between system calls) on the contents of the m next array is necessary in order to verify
the safety property. As for functional properties, the global invariant is also needed and
should be precise enough to describe dynamically chained structures.

Jiangchao Liu Static Analysis on Array Contents

2.1. TOWARDS VERIFYING SAFETY AND FUNCTIONAL
PROPERTIES OF ARRAYS OF STRUCTURED DATA 13

255

m head m tail

free slots

a singly linked list. . .

. . .255 255 255 255

0 2 254 255

Figure 2.3 – Topology of the structural properties

2.1.3 Structural Invariant

From the previous subsection, we see that global invariant plays an essential role in proving
safety and functional properties of the three system calls. In the TinyOS 2.x scheduler,
the global invariant is informally described as follows.
• Variables m head and m tail should store indexes of the head and the tail of a well-

formed acyclic list in the m next array, where the value in each list node is the index
of the next element, and the end-of-list is encoded by index 255. The list could be
empty when both m head and m tail are equal to 255;
• Each cell that denotes a free slot stores the value 255.
We denote this invariant as Rtinyos. Its topology is shown in Figure 2.3. The property

that Rtinyos always holds between system calls, actually entails both safety and functional
properties. Thus, we would like our static analysis to verify the preservation of Rtinyos by
each system call. That involves verifying that:

• The tinit function establishes invariant Rtinyos, which means that the assertion
shown below should hold.

tinit(); assert(Rtinyos);

• The push Task and pop Task functions preserve Rtinyos. This means that, if the
pre-condition satisfies Rtinyos, then the post-condition should also satisfy it. If we
take push Task, for example, the assertion shown below should hold.

assume(Rtinyos); push Task(id); assert(Rtinyos);

Remark 2.1. In our static analysis, the global invariants should be provided by the users.
This is a compromise to the fact that it is hard to infer global invariants from programs,
especially when the global invariants are as complex as Rtinyos, and it is even harder to
guarantee that the inferred global invariants match the users’ intention. However, the

Static Analysis on Array Contents Jiangchao Liu

14 CHAPTER 2. CONTRIBUTIONS OF THE THESIS

global invariants provided by users are only used as assumptions on preconditions and
assertions on post-conditions of system calls. All invariants in the programs (including
loop invariants) are inferred automatically by our analysis.

2.1.4 Challenges for Verifying the Invariant and Solutions from
the Thesis

To verify Rtinyos with static analysis by abstract interpretation, we need to construct a
lattice of abstract states, each of which is an abstraction of the set of concrete states satis-
fying a certain property, e.g., Rtinyos. Our target structural invariantRtinyos includes both
shape conditions (e.g., the acyclic list is embedded in the array) and numeric conditions
(e.g., all free slots store 255). Abstracting both conditions is non-trivial.

Abstraction of the shape conditions. In the m next array, the cells used as list
nodes and free slots interleave with each other, thus before abstracting the dynamically
chained list, the abstraction has to first partition list nodes and free slots into disjoint
groups.

• Abstraction by non-contiguous partitioning. As shown in Figure 2.1(b), the list oc-
cupies a non-contiguous region of the m next array. Existing partitioning techniques
only split arrays into contiguous segments, thus they could not group together non-
contiguous cells, even when they have similar properties (e.g., they are all list nodes
or free slots). Our non-contiguous partitioning utilizes semantic information to split
the array into groups of cells that are not necessarily contiguous, thus list nodes
and free slots can be packed into different groups. Additionally, these groups could
possibly be empty, which is consistent with the fact that invariant Rtinyos allows the
list to be empty.

• Coalescing with a shape abstraction. Our non-contiguous partitioning can split all
list nodes in the array out to form a group. The dynamically chained structure
(i.e., list) is still not expressed. Since the list and the array are intertwined, we
propose to combine our non-contiguous partitioning with a shape abstraction which
can capture linked structures. As existing combination techniques are not precise
enough to express the shape conditions of Rtinyos, we propose a combination method
called coalescing. This combination locally ties predicates from both abstractions,
and is precise enough to express all shape conditions in Rtinyos.

Abstraction of the numeric conditions. Conventional numeric abstractions describe
sets of points in a multi-dimensional Euclidean space. In one concrete state (i.e., a point in
the space), each dimension is assigned one value. These numeric abstractions are able to
express numeric properties of scalar program variables, with one dimension corresponding
to one scalar program variable. However, the property Rtinyos requires that all array cells

Jiangchao Liu Static Analysis on Array Contents

2.2. NON-CONTIGUOUS PARTITIONING 15

that are used as free slots store the value 255. If we use one dimension to represent all
values stored in a group, then this dimension maps to a possibly empty set of values.
This is beyond the expressiveness of existing numeric abstractions. We propose a functor
called Maya+ that can lift conventional numeric abstractions to those that are able to
describe all numeric conditions in Rtinyos.

Analysis. After we have designed the abstraction of both shape and numeric conditions,
we have to implement the abstract predicates with computer representation and design
algorithms to enable automatic reasoning about the abstract predicates. In the following
chapters, we will give the formal definition of the algorithms to compute sound invariants
at each program point, which are precise enough to prove the preservation of Rtinyos.

The following sections present the basic description of our main contributions: non-
contiguous partitioning, coalescing, Maya+ functor and a dynamic packing method.

2.2 Non-contiguous Partitioning

The first step in our abstraction is to distinguish list nodes and free slots in the array.
Array expansion and array partitioning are the main existing methods that can split
arrays.

2.2.1 Limitations of Array Expansion and Array Partitioning

Array expansion and its limitations. Given an array of scalar type, array expansion
represents each array cell with an individual scalar variable. Consider the following array
of size 8:

1 int a[8];

Program analysis using array expansion would create 8 integer variables to represent
all the cells in the array a. It has the same effect as rewriting the program as follows.

1 int a0, a1, a2, a3, a4, a5, a6 , a7;

Array expansion suffers from severe performance loss since it introduces many vari-
ables and each variable should correspond to a unique dimension in the numeric abstract
domains. Another disadvantage of this method is that, when dealing with structural in-
variants like Rtinyos, the disjunctions that these introduced scalar variables form a chained
structure are enormous, thus a huge amount of disjuncts have to be created, just to express
Rtinyos.

Contiguous partitioning and its limitations. Contiguous array partitioning was
first proposed by Gopan, Reps and Sagiv [GRS05] in 2005. It splits an array into con-
tiguous and disjoint groups, and summarizes array contents in each group separately. The
boundaries between groups are scalar variables that are used as indexes and are selected

Static Analysis on Array Contents Jiangchao Liu

16 CHAPTER 2. CONTRIBUTIONS OF THE THESIS

0 0 0 0

G<i Gi

i

G>iPartition

Concrete state

Figure 2.4 – Contiguous array partitioning

by a syntactic pre-analysis. Figure 2.4 illustrates a concrete state with an integer array
a and a possible partition. Since i is the only variable used as an index of that array,
array a is partitioned into groups G<i, Gi and G>i. Group G<i (resp. G>i) collects all
the array cells, whose indexes are less (resp. greater) than i; group Gi contains only one
array cell a[i].

Dynamic contiguous partitioning [CCL11] relies on semantic information to decide the
bounds of each group and does not need a syntactic pre-analysis. A bound is described by
a simple expression of program variables and constants. Another difference with [GRS05]
is that dynamic contiguous partitioning allows empty groups, which reduces the number of
disjuncts, when the upper/lower bounds of a group are possibly equal. The concrete state
in Figure 2.4 could by partitioned by [CCL11] to {0}0{i, 4}>{8}. This means i = 4, and
the values stored in array cells of indexes [0, i) and [i, 8) are 0 and unknown respectively.

Contiguous partitioning techniques [CCL11, GRS05, HP08] perform well on arrays
where cells with similar properties are contiguous. However, when cells that have similar
properties are not contiguous, these approaches cannot infer adequate array partitions.
They would fail to abstract invariant Rtinyos where both groups of list nodes and free
slots are non-contiguous. The reason is obvious: there is no bound on groups of either
list nodes or free slots, since they interleave with each other.

2.2.2 Non-contiguous Partitioning Based on Semantics

In the thesis, we propose a dynamic and semantic non-contiguous partitioning domain. It
does not fully rely on index bounds to perform partitioning, but also makes use of numeric
and structural properties on array contents. To give a brief idea about this technique, let
us take the concrete state in Figure 2.1 as an example. In the non-contiguous partitioning
domain, an abstract state could partition this array into three groups, which are called
G0, G1, G2. Group G0 collects all list nodes except the tail node; group G1 contains only
the tail node; and G2 accounts for all free slots. This partitioning is described by two
parts: memory predicates and numeric predicates, as shown in Figure 2.5.

An atomic memory predicate G0@0 7→ IG0
describes the indexes and contents in group

G0. All the indexes in this group are abstracted by a set variable (i.e., symbolic variables
representing sets of values), denoted as G0 (the same as its name). We use set variables
because these groups are possibly non-contiguous, and the indexes in each group could not

Jiangchao Liu Static Analysis on Array Contents

2.3. COALESCING ARRAY AND SHAPE ABSTRACTIONS 17

Memory
Predicates:

G0@0 7→ IG0
∗G1@0 7→ IG1

∗G2@0 7→ IG2

Numeric

Predicates:

. . . ∧ G1 = m tail ∧ IG1
= 255 ∧ | IG1

|≤ 1

Figure 2.5 – Non-contiguous partitioning on the m next array

be precisely represented by lower/upper bounds. The contents in this group are described
by 0 7→ IG0

, where 0 indicates the offset and set variable IG0
abstracts the values in this

group at offset 0.

Numeric predicates on set variables are used to characterize each group. For instance,
numeric predicate IG2

= 255 means that all values in set variable IG2
are equal to 255 or

IG2
is an empty set (in the thesis, usual value equality“=”is used to denote this meaning in

numeric predicates). This characterizes the fact that free slots in the array store the value
255. Set variables may also support predicates such as cardinality (e.g., |G| = 1 means
that the size of set G is 1). The predicates on G1 (G1 = m tail ∧ IG1

= 255 ∧ |IG1
| ≤ 1)

imply that group G1 is either empty or contains one cell, the index and value of which are
equal to m tail and 255 respectively. For simplicity, we ignore some numeric predicates
in Figure 2.5. Some numeric predicates in our non-contiguous partitioning domain (e.g.,
IG2

= 255) could not described by conventional numeric domains and rely on the technique
introduced in Section 2.4.

The formal definition of this domain including abstract semantics will be introduced
in Chapter 5.

2.3 Coalescing Array and Shape Abstractions

There are various abstract domains, targeting different classes of properties. For in-
stance, numeric domains could describe valuation of numeric variables in a system, and
shape domains could express structural invariants on the memory in a system. Ab-
stract interpretation allows different abstract domains to be combined in order to ex-
tend their expressiveness. The ASTRÉE analyzer [BCC+03a] combines different numeric
domains to gain additional precision in numeric analysis. Shape domains can also be
combined [LYP11, TCR13], for instance, to abstract overlaid data structures. Since the
array structure and list structure are intertwined in the property Rtinyos, we consider com-
bining our non-contiguous partitioning domain with a shape domain that could describe
dynamically chained structures like lists. Several kinds of combination techniques have
been introduced in previous studies [CCF13, LYP11, TCR13]. In this section, we first
review them and then present our coalescing domain.

Static Analysis on Array Contents Jiangchao Liu

18 CHAPTER 2. CONTRIBUTIONS OF THE THESIS

2.3.1 Existing Combination Techniques

Combination of numeric domains. One way of combining numeric domains is the
reduced product [CC77]. This combination expresses the logical conjunction of abstract
elements from distinct domains, and refines logical statements on both sides of the con-
junction. It has been successfully used the ASTRÉE analyzer [BCC+03a].

The Donut domain [GIB+12] is used to express non-convex numeric properties. It
takes two elements from convex numeric domains as inputs: the first one defines an over-
approximation of all the possible concrete valuations; the second one under-approximates
the set of impossible valuations. The geometrical concretization of the combination is
defined by a convex set minus another convex set, that is, the difference between the two
convex sets.

Reduced cardinal power [CC79] expresses a conjunction of implications. It allows the
analysis to track disjunctive information, like ”when x is 3, y is 4 and when x is 2, y is 1”.

Combination of shape domains. The combination of shape domains is more chal-
lenging than that of numeric domains, since there exists a much greater diversity in the
way of abstracting memory predicates relating to concrete memory states. The works
in [LYP11, TCR13, RTC14] combine shape domains with the Cartesian product, i.e.,
abstract elements from two distinct shape domains are connected with the logical con-
junction. Their techniques can be used to abstract overlaid data structures.

Another kind of combination of shape domains is hierarchical domain [SR12]. In this
combination, the shape domain that is used in order to abstract the whole memory is with
contiguous “nodes” (or sub-memory) of arbitrary size, and predicates from other shape
domains could be attached to these ”nodes”. This combination can describe structures
nested into abstractions of memory blocks.

2.3.2 The Coalescing Domain and a Comparison with Existing
Techniques

In this thesis, we propose a coalescing domain, which provides an efficient and precise
method to combine different shape domains. Our coalescing domain requires the input
domains to be based on separating conjunction. Separating conjunction (denoted as ∗) is
introduced in Separation Logic [Rey02]. It asserts that the memory locations described
by the conjuncts are disjoint. The non-contiguous partitioning domain is in this category,
since the partitioned groups are disjoint. The coalescing domain describes separating
conjunctions of local conjunctions of atomic predicates from two distinct domains. Ap-
plying coalescing on our non-contiguous partitioning domain and a shape domain that
can abstract dynamically linked structures, the combination domain can express struc-
tural invariants on array contents like Rtinyos.

To compare the main idea in our coalescing domain with other combinators, we show
the structures of formulas expressed in reduced product, hierarchical domain and our

Jiangchao Liu Static Analysis on Array Contents

2.3. COALESCING ARRAY AND SHAPE ABSTRACTIONS 19

coalescing domain in Figure 2.6. We assume that the memory predicates from the two
input domains are of the form (M0 ∗ . . . ∗ Mm) and (N0 ∗ . . . ∗ Nn), where Mi and Ni

are atomic memory predicates and ∗ denotes the separating conjunction.

• In a Cartesian product, the memory predicates are of the form (M0 ∗ . . . ∗Mm) ∧
(N0 ∗ . . . ∗ Nn). A non-separating conjunction (i.e., ∧) is applied on separating
conjunctions of atomic predicates. Here the non-separating conjunction ∧means the
conjuncts constrain the same memory locations. Note that the memory predicates
(M0 ∗ . . . ∗ Mm) and (N0 ∗ . . . ∗ Nn) from two input domains do not necessarily
partition the memory identically, thus it is hard to find relations between atomic
memory predicates from two abstractions. This limits the expressiveness of the
Cartesian product.

• In a hierarchical domain, the memory predicates in an abstract element are of the
form (M0 ∗ . . . ∗ Mm) ∗ N0 ∗ . . . ∗ Nn, where (M0 ∗ . . . ∗ Mm) must describe a
contiguous memory region. This limitation makes it only able to describe structures
stored in a non empty and contiguous sub-memory. This is not the case discussed
in Section 2.1, where a list could occupy a non-contiguous region in an array.

• In a coalescing domain, a non-separating conjunction is first applied on atomic
memory predicates and a global separating conjunction is applied on conjunctions
of atomic predicates. The memory predicates are of the form (M0 ∧ N0 ∗ . . . ∗
Mn∧Nn). It enforces the identical memory partition by two abstractions and builds
a correspondence between atomic memory predicates from two domains. Since the
non-separating conjunction is applied on the atomic level, information can be easily
exchanged between atomic memory predicates, thus the coalescing domain is more
expressive than the Cartesian product.

Let us suppose we coalesce the non-contiguous partitioning with a separation logic
based shape domain which supports a structural predicate lseg(α, β). This predicate
denotes that a set of memory locations forms a list segment where the addresses of the
head node and the next link stored in the tail node are abstracted by symbolic scalar
variables α and β respectively. We let the predicate true denote all possible concrete
stores. The memory predicates for structural invariant Rtinyos are shown below.

G0@0 7→ IG0
∧ lseg(α, β) ∗ G1@0 7→ IG1

∧ true ∗ G2@0 7→ IG2
∧ true

This memory predicate indicates that the memory locations abstracted by G0 and
lseg(α, β) are identical. This could not be expressed by a Cartesian product.

The coalescing domain is fully introduced in Chapter 6.

Static Analysis on Array Contents Jiangchao Liu

20 CHAPTER 2. CONTRIBUTIONS OF THE THESIS

*

M0 Mn

*

N0 Nn

∧

(a) Cartesian product

M0 ∗

N0 . . . Nn

Mm

∗

.

(b) Hierarchical domain

∧

M0 N0

∧

Mn Nn

∗

.

(c) Coalescing

Figure 2.6 – Comparison of Cartesian product with coalescing

2.4 Maya+ Functor

In static analysis by abstract interpretation, numeric properties are usually described by
numeric abstract domains. In this section, we first review the existing numeric abstract
domains and their expressiveness. Then we give the main idea of our Maya+ functor.
A domain functor is a function that produces new abstract domains based on input
domains, in order to extend their expressiveness, or to define a new abstract domain to
express entirely different properties.

2.4.1 Numeric Domains and Their Expressiveness

Conventional numeric abstract domains [Kar76, CC77, Min06, CH78a, CLM+14] approx-
imate and reason about sets of points in a multi-dimensional Euclidean space. A point is
defined by a value for each dimension. Formally, the valuation over a set of dimensions
is of the form E → V, where E denotes the set of dimensions and V denotes the set of
values. If we usually use one dimension to represent one scalar program variable, these
numeric domains could be used to express numeric properties on concrete stores of the
form X → V, where X denotes the set of scalar program variables. However, when de-
signing analysis for complex data-structures or languages like OCaml , the concrete stores
may not be of the form X→ V. In the following, we show where these cases arise and to
what extent the existing approachs can address them.

Abstraction of possibly empty memory locations. Many programming languages
feature possibly empty memory locations. For instance, OCaml and Scala have an option

type. This type can be defined by type ’a option = None | Some of ’a, which means
a value of type int option may either be an integer, or undefined, represented by None.
Similarly, spreadsheet environments feature empty cells as well as an empty type.

Another case where optional variables may arise is in programs with dynamic alloca-
tion. For instance, in the following code, the memory location at ∗x may be undefined or
store the integer value 3.

1 i f (random ()){

2 x = malloc (4);

3 *x = 3;

Jiangchao Liu Static Analysis on Array Contents

2.4. MAYA+ FUNCTOR 21

4 } e l se {

5 x = NULL;

6 }

When each program variable contains either one value or no value, the concrete stores
are of the form X → {
}]V where
 stands for “no value”. The conventional abstract
domains mentioned above fail to describe such stores. Therefore, they need to be extended
with dimensions which may be undefined in order to deal with optional variables.

The solution proposed in [SMS13] adds a flag fd for each dimension d, such that fd = 1
if d is defined and fd = 0 otherwise. It does not support relational predicates between
undefined dimensions and defined dimensions, which limits its application. For instance,
this domain could not infer that d represents no value from a set of constraints that show
no value can be found for d. This situation is commonly needed in our array analysis
since our analysis sometimes needs to infer that a group is empty: for instance, when the
constraints over its bounds are not satisfiable, the group is necessarily empty.

Abstraction of non-empty sets of memory locations. When designing analysis
for complex data-structures, a common technique is to summarize sets of memory lo-
cations together. For instance, in array partitioning, the values of the cells in a group
are described by a single set variable (i.e., variables storing sets of values). Many forms
of array partitioning do not allow empty groups [GDD+04, HP08]. The concrete stores
they describe are of the form X→ (P(V)/∅). Numeric domains with summarized dimen-
sions [GDD+04] could lift conventional numeric domains to those constraining dimensions,
whose valuation is of the form E→ (P(V)/∅).

Abstraction of possibly empty sets of memory locations. Our non-contiguous
partitioning domain allows empty groups (Section 2.2.2). Thus a set variable that ab-
stracts array indexes in a group maps to a possibly empty set of values. Thus the concrete
stores are of the form X → P(V). To the best of our knowledge, no work addresses this
kind of stores.

Overall, by surveying the existing work, we conclude that (1) the numeric domains that
could abstract possibly empty memory locations are not precise enough for our analysis
(e.g., [SMS13] could not infer that a dimension represents no value due to unsatisfiable
constraints); (2) there does not exist a numeric domain that abstracts possibly empty sets
of memory locations, which is needed in our analysis.

2.4.2 Maya+ Functor

In this thesis, we propose a general functor: Maya+ lifts conventional numeric abstract
domains to those manipulating predicates on dimensions, each of which may map to a
possibly empty set of values. Maya+ is actually a combination of two functors: the Maya

Static Analysis on Array Contents Jiangchao Liu

22 CHAPTER 2. CONTRIBUTIONS OF THE THESIS

Store Each Numeric Object General Solutions

X→ V one value Numeric Abstract Domains
X→ V ∪ {
} one value or no value Maya
X→ (P(V)/∅) more than one value Gopan et al [GDD+04]]
X→ P(V) any number of values Maya+

Figure 2.7 – Abstraction of numeric relations on different dimensions

X E V

. . .

x
. . .

. . .

x0

x1

. . .

. . .

4
3
. . .

(a) The case x maps to no value

X E V

. . .

x
. . .

. . .

x0

x1

. . .

. . .

4
4
. . .

4

(b) The case x maps to one value

Figure 2.8 – Main idea in Maya domain

functor and the functor of summarized dimensions [GDD+04]. The first one enables
the parameter numeric domain to describe numeric objects (e.g., program variables or
set variables) representing one value or no value; the second one enables the parameter
numeric domain to describe numeric objects representing a non-empty set of values.

The applications of Maya/Maya+ functors and existing numeric domains are shown
in Figure 2.7. Now we introduce the main idea of Maya. The combination of the two
functors is introduced in Chapter 4.

Main idea in Maya functor. In a Maya functor, a variable x representing one or zero
value is represented by a set of dimensions x0, . . . , xk in the parameter numeric domain.
We call these dimensions x0, . . . , xk avatars. The functor assumes that x can be defined
if and only if all its avatars may map to a common value. For instance, if the constraints
on the avatars of x are x0 ≥ 4 ∧ x1 ≤ 3. Then x necessarily maps to no value, because
no value assignment can map x0 and x1 to the same value. This case arises when our
array analysis infers that the indexes of a group is less than 3 and greater than 4, which
implies that this group is empty. The principle in our Maya functor can be applied to any
numeric abstract domain where abstract values are finite conjunctions of constraints (the
vast majority of numeric abstract domains are of that form). The graphical illustration of
this idea is shown in Figure 2.8, where E represents the set of dimensions in the parameter
numeric domain.

Jiangchao Liu Static Analysis on Array Contents

2.5. OUTLINE OF THE THESIS 23

2.5 Outline of the Thesis

In Chapter 3, we define a simple language, and introduce the main idea of abstract
interpretation based on this language. The following three chapters present details of the
techniques discussed in the last three sections, but in a different order. Maya+ functor
(Chapter 4) is first presented since it provides a numeric basis for the non-contiguous
partitioning domain (Chapter 5). The coalescing domain is formalized in Chapter 6.
chapter 7 evaluates our work by attempting the verification of some components of several
operating systems.

Static Analysis on Array Contents Jiangchao Liu

24 CHAPTER 2. CONTRIBUTIONS OF THE THESIS

Jiangchao Liu Static Analysis on Array Contents

Chapter 3

Static Analysis by Abstract
Interpretation

In this chapter, we introduce the main ideas of static analysis by abstract interpretation.
To formalize this technique, we first define a simple imperative language, then present
the formalization based on this language. This chapter cannot cover all aspects of this
technique. More details can be found on [CC77] and [CC79].

3.1 A Simple Imperative Language

3.1.1 Syntax and Notations

Figure 3.1 shows the syntax of a simple imperative language. It could be seen as a subset
of the C programming language. This language is only used to formalize the main idea
of static analysis by abstract interpretation, and does not enjoy all features of our target
programs. Later chapters will extend it as needed.

This language supports only one primitive type: machine integers int. Type int
corresponds to the set of all integers in the interval [−231, 231 − 1] (i.e., 32 bits), which
is denoted as V. We do not have any Boolean type. Instead, in conditionals, non-zero
integers and zero play the roles of “true” and “false” respectively, as in the C programming
language. We let X denote the set of variables in a program.

At this stage, an left-value l (expression that evaluates into a memory location) can
only be an integer type variable. However, it will be expanded with other forms (e.g.,
array accesses) in the following chapters. An r-value r (expression that evaluates into a
value or a set of values) could be a constant, an l-value or unary/binary operators applied
on r-values. A program is made of statements. A statement p could be an assignment, a
skip instruction, a sequence of statements, an assertion statement, a conditional branching
or an loop. All these statements are classical and defined in a standard way. Note that,
we do not support dynamic memory allocation in our language, because it is not the focus
of this thesis.

Static Analysis on Array Contents Jiangchao Liu

26CHAPTER 3. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

Types
int ::= [−231, 231 − 1] primitive type: integer

Operators
⊕ ::= + | - | * | / | - | . . . arithmetic operator
./ ::= ! | || | && | == | != | . . . logical operator

Left value expressions
l ::= x (x ∈ X) primitive type variables

Right value expressions
r ::=
| v (v ∈ V) value
| l l-value read
| ⊕(r, . . . , r) arithmetic operations on right values
| ./ (r, . . . , r) logical operations on right values

Statements
p ::=
| l = r assignment
| skip skip
| assert(r) assert
| p ; p sequence
| if(r){p }else{p } conditional branching
| while(r){p } loop

Figure 3.1 – Grammar of a simple imperative language.

3.1.2 Denotational Semantics

One common semantics for describing the behavior of transition systems is the denota-
tional semantics [Sco70]. It formalizes the meaning of program statements as functions
mapping initial states into final states. To define this semantics for our language, we need
first to define concrete states.

Concrete state. A concrete state is a memory state σ ∈ S, that maps variables to
values. Thus, S is defined by S = X→ V, or S = Vm when the set of variables X is fixed,
where m =| X | is a non-negative integer.

Concrete semantics. The denotational semantics of this language is defined in Fig-
ure 3.2. This semantics does not explicitly characterize the non-terminating executions
and run-time errors, however it could trivially be extended into a semantics that collects
the set of all reachable states and has a special “error” state. We make the choice to

Jiangchao Liu Static Analysis on Array Contents

3.1. A SIMPLE IMPERATIVE LANGUAGE 27

Evaluation of L-values: S→ X
evalLJxK(σ) = x

Evaluation of R-values: S→ V
evalRJxK(σ) = σ(x) evalRJ⊕(r, . . . , r)K(σ) = ⊕(JrK(σ), JrK(σ))
evalRJvK(σ) = v evalRJ./ (r, . . . , r)K(σ) = ./ (JrK(σ), JrK(σ))

Condition tests: P(S)→ P(S)

guardJrK(S) = {σ ∈ S | evalRJrK(σ) 6= 0}

Transformers: P(S)→ P(S)

statJskipK(S) = S
statJassert(r)K(S) = guardJrK(S)

statJl = rK(S) = {σ[JlK(σ) 7→ evalRJrK(σ)] | σ ∈ S}
statJp0; p1K(S) = statJp1K ◦ statJp0K(S)

statJif(r){p0}else{p1}K(S) = statJp0K ◦ guardJrK(S) ∪ statJp1K ◦ guardJ!rK(S)
statJwhile(r){p}K(S) = guardJ!rK ◦ (lfp⊆F)

where F(S ′) = S ∪ statJpK ◦ guardJrK(S ′)

Figure 3.2 – Denotational semantics of a simple imperative language.

use an “angelic” denotational semantics so as to make the formalization simpler. The
evaluation of l-values evalLJlK : S→ X maps an l-value expression to a memory location
represented by a primitive type variable. The evaluation of r-values evalRJrK : S → V
maps an r-value expression to a value. A condition test guardJrK : P(S) → P(S) filters
out the concrete states that do not satisfy the condition expressed by r. A transformer
statJpK : P(S) → P(S) maps a set of initial states before the execution of p to the set
of final states after the execution. The transformers on our language are defined in a
standard way by induction over the syntax of the statements. One tricky part is the
transformer for loop statements.

Intuitively, the denotational semantics of an loop statement statJwhile(r){p}K(S) col-
lects all concrete states that could be obtained from finite iterations of statJpK◦guardJrK
on S and satisfy the condition guardJ!rK. The set of reachable concrete states after at
most ith iterations can be computed by Fi(∅), where

F(S ′) ::= S ∪ statJpK ◦ guardJrK(S ′)

It is easy to know F is monotonic (i.e., F0() ⊆ F1() ⊆ F2() ⊆ . . .) and Scott-
continusous (i.e., it preserves the supremum of a chain), thus according to Kleene’s theo-

Static Analysis on Array Contents Jiangchao Liu

28CHAPTER 3. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

rem [KdBdGZ52], function F has a least fix-point as

lfp⊆F =
⋃
i∈N

Fi(∅)

Overall, the denotational semantics of the loop statement is guardJ!rK ◦ (lfp⊆F) as
shown in Figure 3.2. In most cases, the concrete semantics is not adequate for automatic
reasoning, since it is infinite and not decidable. In the following section, we will intro-
duce a sound and decidable semantics in the framework of static analysis by abstract
interpretation, to compute properties of programs.

3.2 Abstract Interpretation

Abstract interpretation [CC77] is a mathematical theory to compare program semantics.
Static analysis is one of its applications.

We call a lattice of concrete elements as a concrete domain. In the framework of
abstract interpretation, the behavior of a concrete domain can be over-approximated by
an abstract domain. If the concrete domain is the power-set of concrete states (P(S),⊆
)), then a corresponding abstract domain specifies a sound static analysis. An abstract
domain is a class of abstract elements with abstract operators defined on them.

3.2.1 Abstract Elements

An abstract domain includes a partially ordered set of abstract elements (S,v). The
relationship between abstract elements and concrete elements is defined by a concretiza-
tion function. To simplify the formalization, we assume that the concrete domain is the
power-set of concrete states in this chapter, which is not always the case.

Definition 3.1 (Concretization function). Given a partially ordered set (S,v) of abstract
elements, and a complete lattice (P(S),⊆) of concrete elements, a concretization function
γ : S → P(S) should satisfy the following condition.

∀c0, c1 ∈ S, c0 v c1 ⇒ γ(c0) ⊆ γ(c1)

Two special abstract elements are ⊥ ∈ S and > ∈ S. They correspond to the empty
set of concrete elements (γ(⊥) = ∅) and the set of all concrete elements (γ(>) = S)
respectively.

Example 3.1 (The polyhedra abstract domain). One popular abstract domain focusing on
numeric properties of programs is the convex polyhedra abstract domain (or the polyhedra
domain for short). An abstract element in the polyhedra domain is a conjunction of linear
inequalities. There are several representations for the polyhedra domain [CH78a, SK05].
For simplicity, we use the representation in [SK05] which is based only on constraint

Jiangchao Liu Static Analysis on Array Contents

3.2. ABSTRACT INTERPRETATION 29

σ0

σ1

P0 P1

Figure 3.3 – The join of two convex polyhedra

representations. An abstract element in this domain is of the form P = {~M~x ≤ ~b} where
~M ∈ Im×n,~b ∈ Im and ~x ∈ Xm. The concretization is defined below.

γPoly(P) = {σ ∈ S | ~Mσ ≤ ~b}

3.2.2 Abstract Operators

An abstract operator over-approximates a basic computation in the concrete level. Ab-
stract operators usually include lattice operators and abstract transformers.

Abstract lattice operations. Abstract lattice operations include abstract join and
inclusion checking. Abstract join t : S × S ⇒ S is an over-approximation of concrete
union ∪, and computes an over-approximation of the least upper bound of two abstract
elements. Its soundness is defined as follows.

Definition 3.2 (Soundness of abstract join).

∀c0, c1 ∈ S, γ(c0) ∪ γ(c1) ⊆ γ(c0 t c1)

Example 3.2 (Abstract join in the polyhedra domain). In the domain of convex polyhe-
dra, each element P represents a convex in a Euclidean space. The least upper bound of two
elements P0 and P1 is their convex hull. To compute the convex hull, the basic idea is to
construct the convex combination of all points in P0 and P1. That is, if σ0 ∈ γPoly(P0) and
σ1 ∈ γPoly(P1), then λ0σ0+λ0σ1 ∈ γPoly(P0tP1), where λ0, λ1 ≥ 0 ∧ λ0+λ1 = 1. This idea

is illustrated in Figure 3.3. Following this idea, let P0 = {~M0~x ≤ ~b0} and P1 = {~M1~x ≤ ~b1},
the join operator [SK05] is defined as follows.

Static Analysis on Array Contents Jiangchao Liu

30CHAPTER 3. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

P0 t P1 =

∃λ0, λ1 ∈ V, ~y0, ~y1 ∈ Vm

~x = ~y0 + ~y1 ∧ λ0 + λ1 = 1 ∧ λ0 ≥ 0
~M0~y0 ≤ λ0

~b0 ∧ ~M1~y1 ≤ λ1
~b1 ∧ λ1 ≥ 0

However, this operator introduces redundant variables λ0, λ1, ~y0 and ~y1. They can be
projected out by Fourier-Motzkin elimination [Sch98], which is a mathematical algorithm
for eliminating variables from a sysstem of linear inequalities.

The inclusion checking operator v: S × S ⇒ {true, false} over-approximates ⊆, and
checks the ordering of two abstract elements. Its soundness is defined as follows.

Definition 3.3 (Soundness of abstract inclusion checking).

∀c0, c1 ∈ S, c0 v c1 ⇒ γ(c0) ⊆ γ(c1)

Example 3.3 (Abstract inclusion checking in the polyhedra domain). In the polyhedra
domain, the inclusion checking P0 vPoly P1 is implemented by checking whether all inequal-
ities in P1 are implied by P0: ∀ϕ ∈ P1, P0 |= ϕ. The implication checking is performed by
Linear Programming. Given an inequality

∑
i cixi ≤ b, Linear Programming can compute

the maximal value µ of
∑

i cixi subject to P0. If µ ≤ b, then the implication relation holds.

Abstract transfer functions. Abstract transfer functions over-approximates basic
transitions in the concrete domain. These operators include guard and assignment.

Transfer function guard[r] : S ⇒ S over-approximates guardJrK in the concrete
domain, which filters out all concrete states that do not satisfy condition r. Its soundness
is defined as follows.

Definition 3.4 (Soundness of abstract guard).

∀c ∈ S, guardJrK(γ(c)) ⊆ γ(guard[r](c))

Example 3.4 (Abstract guard in the polyhedra domain). In the polyhedra domain, if the
condition to be tested r is of the form

∑
i cixi ≤ b, then guard function guard[r]Poly(P)

just adds r into P. Note that the added inequality r may be redundant, thus an inclusion
checking P v {r} is first performed to justify whether {r} is implied by P. If P v {r} holds,
then guard[r]Poly(P) = P. When the condition r is not a linear inequality, the method
in [Min04a] could transfer it into the linear inequality form, and ensures that soundness
still holds.

Abstract transfer function assign[l = r] : S ⇒ S over-approximates the assignment
statJl = rK in the concrete domain. Its soundness is defined as follows.

Definition 3.5 (Soundness of abstract assignment).

∀c ∈ S, statJl = rK(γ(c)) ⊆ γ(assign[l = r](c))

Jiangchao Liu Static Analysis on Array Contents

3.2. ABSTRACT INTERPRETATION 31

Example 3.5 (Abstract assignment in the polyhedra domain). In the polyhedra domain,
we only consider assignments of the form v0 =

∑
i∈[1,n] cixi + c0, since assignments of

other forms could be transferred into this form with the method in [Min04a] by over-
approximation. The transfer function for assignment in the polyhedra domain assign[x0 =∑

i∈[1,n] cixi+c0]Poly just creates a fresh variable x, and performs guard function guard[x =∑
i∈[1,n] cixi + c0]Poly, then project x0 by Fourier-Motzkin elimination and rename x to x0.

Abstract least fix-point. Static analysis should not only be sound but also terminat-
ing. Especially for loop statements, which involve the computation of the abstract least
fix-points.

We can get the abstract least fix-point operator in abstract domain by induction on it
definition lfp⊆F =

⋃
i∈N Fi(S) in the concrete domain, as follows.{

c0 = c,where c is the initial state
ci+1 = ci t F(ci),where F is an over-approximation of F

The computation for abstract least fix-points terminates when ci+1 v ci.
However, this computation does not guarantee termination or may be too slow to ter-

minate. In static analysis by abstract interpretation, the abstract join is usually replaced
by widening O : S × S → S for the computation of abstract least fix-points. It bears the
soundness of abstract join and guarantees fast termination.

Example 3.6 (Widening in the polyhedra domain). In the polyhedra domain, one defi-
nition of the widening operator OPoly is as follows.

P0O
PolyP1 = {ϕ ∈ P0 | P1 |= ϕ}

This definition aggressively removes all inequalities that are not implied (i.e., |=, as
defined in Example 3.4) by P1. Its termination is guaranteed by the fact that the number
of inequalities in the initial state is finite.

3.2.3 Abstract Semantics

Abstract semantics is an over-approximation of concrete semantics in the sense of reach-
able states. It assigns denotations to the program in an abstract domain. In static
analysis by abstract interpretation, abstract semantics is defined with abstract opera-
tors in abstract domains. For our target language in Figure 3.1, its abstract semantics
stat[.] : S → S could be defined as Figure 3.4.

Example 3.7 (Abstract semantics in the polyhedra domain). If we instantiate the ab-
stract semantics in Figure 3.4 with the polyhedra domain, then we get a static analysis
that can automatically find linear inequality relations in our target program. Now we show
how static analysis works on the following example.

Static Analysis on Array Contents Jiangchao Liu

32CHAPTER 3. STATIC ANALYSIS BY ABSTRACT INTERPRETATION

stat[skip](c) = c

stat[assert(r)](c) = guard[r](c)

stat[l = r](c) = assign[l = r](c)
stat[p0; p1](c) = stat[p1] ◦ stat[p0](c)

stat[if(r){p0}else{p1}](c) = stat[p0] ◦ guard[r](c) ∪ stat[p1] ◦ guard[!r](c)

stat[while(r){p}](c) = guard[!r]lfp⊆F(c)

whereF = stat[p] ◦ guard[r]}

Figure 3.4 – An abstract semantics of the target language

1 int x = 0;

2 int y = 0;

3 while(x < 10){

4 x = x + 1;

5 y = y + 2;

6 }

The initial abstract state is c1 = > (the subscript indicates that it is the state before
the statement at line 1), which represents all possible concrete states. After the following
two assignments, the abstract state is c0

3 = {y = x ∧ x = 0} (we write x = y for short
of y ≤ x ∧ x ≤ y, which is the real representation in the polyhedra domain). Here the
subscript (i.e., 3) and superscript (i.e., 0) of c0

3 indicate that this state is before the
statement at line 3 after 0 iteration. The two statements in the loop body produce abstract
state c0

6 = {y = 2x∧x = 1}. A widening operation is needed to compute the pre-condition
for next iteration as c1

3 = c0
3Oc

0
6. The implementation of widening introduced in this

Chapter will produce c1
3 = {y = 2x}.

Jiangchao Liu Static Analysis on Array Contents

Chapter 4

Maya and Maya+ Functors

In this thesis, we call numeric domains for Euclidean space as conventional numeric do-
mains. We have shown in Chapter 2 the limitations of conventional numeric domains
to describe optional variables and summarized memory locations. In this chapter, we
formalize Maya and Maya+ functors. Maya functor lifts conventional numeric domains
to those abstracting numeric objects storing optional values, and Maya+ functor lifts
conventional numeric domains to those abstracting possibly empty sets of values. In the
following sections, we first illustrate Maya functor and then combine it with summarized
dimensions functor [GDD+04] to produce Maya+ functor.

4.1 Extension of Our Language

To give a context for our Maya and Maya+ functors, we extend the syntax and semantics
of the language defined in Chapter 3. The features of the this language are not found in
common programming languages. Instead, they are meant to support the demonstraction
of Maya and Maya+. The syntax and semantics are mostly similar to those in Chapter 3.
The key difference is shown in Figure 4.1.

Types and notations. Machine integer type is replaced by the four following types
(these types are also collected in Figure 4.2).

• A variable of standard integer type int• stores a machine integer (same as machine
integer type defined in Chapter 3), here we add a • on the superscript, just to make
it consistent with other types. Variables of this type are denoted as y• ∈ Y•.

• A variable of optional integer type int? represents one integer or no value, and is
denoted as y? ∈ Y?.

• A variable of non-empty summary integer type int+ represents a non-empty set of
integers, and is denoted as y+ ∈ Y+.

Static Analysis on Array Contents Jiangchao Liu

34 CHAPTER 4. MAYA AND MAYA+ FUNCTORS

Syntax
eint ::= int•|int?|int+|int∗ Extended integer types

l ::= y• (y• ∈ Y•) Standard variable
| y? (y? ∈ Y?) Optional variable
| y+ (y+ ∈ Y+) Non-empty summary variable
| y∗ (y∗ ∈ Y∗) Possible-empty summary variable

r ::= v (v ∈ V) Constant
| l l-value read
| ⊕(r, . . . , r) Arithmetic Expression
| ./ (r, . . . , r) Logical expression
| is empty(y?∗) (y?∗ ∈ Y? ∪ Y∗) Empty test

Semantics

evalRJyK(σ) = σ(y)

evalRJis empty(y)K(σ) =

{
1 evalRJyK(σ) = ∅
0 evalRJyK(σ) 6= ∅

evalRJ⊕(r0, . . . , rk)K(σ) =

{
⊕(JrK(σ), JrK(σ)) ∀i ∈ [0, k], JriK(σ) ∈ V
∅ ∃i ∈ [0, k], JriK(σ) = ∅

evalRJ./ (r0, . . . , rk)K(σ) =

{1} ∃ci ∈ JriK(σ), i ∈ [0, k], ./ (c0, . . . , ck) = 1

∅ ∃i ∈ [0, k], JriK(σ) = ∅
{0} otherwise

guardJrK(S) = {σ ∈ S | evalRJrK(σ) 6= {0} ∨ evalRJrK = ∅}
statJy•? = rK(S) = {σ[y•? 7→ JrK(σ)] | σ ∈ S}
statJy+∗ = rK(S) = {σ[y+∗ 7→ JrK(σ) ∪ σ(y+∗)] | σ ∈ S}

Figure 4.1 – Extension of the language

• A variable of possibly-empty summary integer type int∗ represents a possibly empty
set of integers, and is denoted as y∗ ∈ Y∗.

We denote the set of all types of variables as Y = Y• ∪ Y? ∪ Y+ ∪ Y∗. We assume
that the set of variables Y is fixed throughout this chapter and Y• ∩Y? ∩Y+ ∩Y∗ = ∅.
We denote y•? as a variable of either standard integer type or optional integer type, i.e.,
y•? ∈ Y• ∪ Y?. A variable of any type y•?+∗ is denoted as y for short.

Because of the extension on types, we have to redefine the concrete states. Since a
non/possibly-empty summary variable stores a set of integers, to make the concrete stores
consistent, we evaluate a standard variable (resp. an optional variable) to a set of exactly
one integer (resp. a set of one integer or an empty set).

Jiangchao Liu Static Analysis on Array Contents

4.1. EXTENSION OF OUR LANGUAGE 35

Type Variables Stores

int• y• ∈ Y• 1 value
int? y? ∈ Y? 0 or 1 value
int+ y+ ∈ Y+ more than 1 value
int∗ y∗ ∈ Y∗ any number of values

Figure 4.2 – Four types of variables in the language

Definition 4.1 (Concrete States). We define V• = {{v} | v ∈ V}, then the set of concrete
stores is redefined as:

σ ∈ S
def.
::= (Y• → V•)](Y? → (V• ∪ ∅))](Y+ → P(V)\∅)](Y∗ → P(V))

Expressions and statements. An l-value can be a variable of any integer type. An
r-value expression can be a constant, a left-value, unary/binary operators applied on r-
values and emptiness test. The evaluation evalRJrK : S→ P(V) of expression r produces
a possibly empty set of values. For an arithmetic expression, the values in the output set
is obtained by applying the arithmetic operator on the Cartesian product of the operand
sets. A strong logical expression evaluates to {1} when the logical relation is satisfied by all
tuples in the Cartesian product of the operand sets. For instance, {3, 4} ≥ {2} evaluates
to {1}, but {3, 1} ≥ {2} evaluates to {0}. One tricky part is that evalRJrK produces ∅
whenever it reads an empty variable in r: all operators are ∅-strict, i.e., they return ∅
whenever one of their arguments is equal to ∅, thus ∅ always propagates. Emptiness test
is empty takes a variable and outputs {1} (resp. {0}) if the variable stores an empty
(resp. non-empty) set of values.

The syntax and semantics of statements is quite similar to those in Chapter 3, but we
redefine the semantics for condition tests and assignements. The new semantics guardJrK
of condition r filters out the stores in which r evaluates to {0}, thus, it will also include
stores where the evaluation encounters ∅. Note that the semantics of an assignment
statJy•+ = rK will produce no output store when r evaluates to ∅. Intuitively, we consider
only executions where the empty value is never assigned to a standard and non-empty
summary integer variable. Assignments to summary variables are weak updates.

Example 4.1 (Concrete semantics of condition tests). Suppose Y• = {y•},Y∗ = {y∗},
and given two concrete states σ0 = {y• 7→ {3}, y∗ 7→ {2, 4}} and σ1 = {y• 7→ {3}, y∗ 7→ ∅},

• the concrete semantics for condition test y• ≤ y∗ is guardJy• ≤ y∗K{σ0, σ1} = σ1,
which filters out σ0, because in σ0 not all values in y∗ is greater than or equal to the
value stored in y•;

• the concrete semantics for assignment y∗ = y• is statJy∗ = y•K{σ0} = {y• 7→
{3}, y∗ 7→ {2, 3, 4}}, which weakly updates y∗ with the value stored in y•.

Static Analysis on Array Contents Jiangchao Liu

36 CHAPTER 4. MAYA AND MAYA+ FUNCTORS

4.2 Maya Functor

In this section, we only consider programs with variables of standard integer type and
optional type. Example 4.2 shows one such program. Programming languages like Ocaml
or Scala are with such variable types.

Example 4.2 (A program with optional variables). We consider the program below, where
Y? = {y?

0, y
?
1} and Y• = {y•2}:

if(y•2 ≤ y?
0){

if(y?
0 ≤ 6){
¬ y?

1 = y?
0 + 2;

 . . . ;

Assuming that the variables may store any value (including ∅ for optional variables) at
the beginning of the execution:
• at point ¬, we can observe exactly the stores such that σ(y•2) ≤ σ(y?

0) ≤ 6 where y?
0)

contains a value, and the stores defined by σ(y?
0) = ∅;

• at point , we can observe exactly the stores such that σ(y•2) ≤ σ(y?
0) ≤ 6 ∧ σ(y?

1) =
σ(y?

0) + 2 where neither y?
0 nor y?

1 is empty and the stores where σ(y?
0) = ∅ or

σ(y?
1) = ∅.

4.2.1 Numeric Domains for Euclidean Space

In this section, we assume a numerical domainN is fixed, where abstract values correspond
to conjunctions of constraints. For instance, linear equalities [Kar76], intervals [CC77],
octagons [Min06] and polyhedra [CH78a] fit into this category. An abstract element
n ∈ N describes a possibly infinite set of points in a multi-dimensional Euclidean space.
Dimensions range over a countable set E, and we write Dim(n) for the dimensions of
abstract value n (Dim(n) ⊆ E). Each point could be seen as an assignment of a value
to each dimension ν ∈ E → V. We let γn : N → P(E → V) denote the concretization
function of domain N .

For a program containing only standard variables, the concrete states are of the form
Y• → V•. In conventional numeric analyses, each scalar program variable is bound to a
dimension. Thus an abstract element n ∈ N corresponds to a set of such concrete states.

4.2.2 Abstraction in Presence of Optional Numerical Values

A Maya abstract domain is the result domain after applying Maya functor on a conven-
tional numeric domain. The main idea of Maya functor is to represent an optional variable
y? by a set of dimensions in the parameter numeric domain. It assumes that y? can be
defined if and only if all these dimensions may map to a common value.

An abstract state of the Maya functor over N is defined by an abstract value n ∈ N
describing constraints over a set of dimensions defined as follows:

Jiangchao Liu Static Analysis on Array Contents

4.2. MAYA FUNCTOR 37

• each standard integer variable y• corresponds to exactly one dimension, noted as d;
• each optional variable y? corresponds to a finite set of dimensions (for clarity, we

call these dimensions avatars and always mark them with superscripts such as:
d0, d1, . . .).

Therefore, we attach a function A : Y? → P(E) ∪ Y• → E which describes the mapping
of program variables into dimensions in numerical abstract value n.

Definition 4.2 (Abstract states in the Maya domain). An abstract state of the Maya
abstract functor over N is a pair o = (n,A) such that:

Dim(n) =
(⊎
{A(y•?) | y•? ∈ Y• ∪ Y?}

)
We let O denote the set of such states.

Note that the above definition implicitly asserts that distinct variables are represented
by disjoint sets of dimensions. We also make the convention that a program variable and
the dimensions representing it have the same subscript.

Example 4.3 (An abstract state in the Maya domain). In this example, we assume N is
the Polyhedra domain, and that Y• = {y•0}, Y? = {y?

1}. Furthermore, we let each optional
variable be described by two avatars. Thus, E = {d0, d

↑
1, d
↓
1}. Moreover, an example

abstract state is o = (n,A), with:

n =
{

0 ≤ d0 ∧ d0 ≤ 10 ∧ 5 ≤ d
↓
1 ∧ d

↑
1 ≤ d0

}
A : y•0 7−→ d0 ∧ y?

1 7−→ {d
↓
1, d
↑
1}

Concretization. An abstract element n describes a set of valuations ν that maps all
dimensions to a value. The concretization of an abstract state o = (n,A) is a set of
concrete stores, that can be obtained by collapsing all avatars of each optional variable
to a unique value. This is described by a pair of consistency predicates, which state when
a store σ is compatible with ν.

Definition 4.3 (Concretization function in the Maya domain). Given abstract state o =
(n,A), we define the following consistency predicates:

PY•(σ, o, ν)
def.⇐⇒ ∀y• ∈ Y•, σ(y•) = ν(A(y•))

PY?(σ, o, ν)
def.⇐⇒ ∀y? ∈ Y?,

(
∀d ∈ A(y?), ν(d) = σ(y?)

)
∨ σ(y?) = ∅

Then, the concretization of o = (n,A) is defined by:

γO(o)
def.
::=

{
σ ∈ S | ∃ν ∈ γn(n), PY•(σ, o, ν) ∧ PY?(σ, o, ν)

}
Intuitively, consistency predicate PY• asserts that the valuation and the concrete store

agree on the mapping of the standard variables, whereas consistency predicate PY? asserts
that the valuation assigns all avatars of each optional variable to the value of that variable
in the store.

Static Analysis on Array Contents Jiangchao Liu

38 CHAPTER 4. MAYA AND MAYA+ FUNCTORS

Example 4.4 (The concretization of an abstract state in the Maya domain). We consider
the abstract state shown in Example 4.3. Its concretization consists of:
• the stores defined by 5 ≤ σ(y•0) ≤ 10∧ 5 ≤ σ(y?

1) ≤ σ(y•0) (the valuation is then fully
defined by the store since no variable stores ∅);
• the stores defined by 0 ≤ σ(y•0) ≤ 10 ∧ σ(y?

1) = ∅ (a possible valuation is defined by
ν(d0) = σ(y•0), ν(d↓1) = 15, ν(d↑1) = ν(d0)).

This example shows how our domain can distribute the constraints on an optional
variable y?

1 over several dimensions, so as to express the fact that y?
1 must store ∅.

Remark 4.1. In this example, we also observe that, given σ ∈ γO(o), and if σ′ is such
that, for any standard variable y•, σ′(y•) = σ(y•), and for all optional variable y?, either

σ′(y?) = σ(y?) or σ′(y?) = ∅, then σ′ ∈ γO(o). In other words, our functor cannot
express that an optional variable must not store ∅. However, our abstraction allows to
derive emptiness of a group via constraints over multiple avatars of variables denoting its
contents or indexes.

Choice of avatar dimensions. The definition of abstract elements assumes nothing
about the number of avatar dimensions, and about the way the constraints over an optional
variable are distributed over its avatars. However, in practice, the way avatar dimensions
are managed has a great impact on the efficiency and precision of the analysis. In practice,
we have to set some principles to help the transfer functions and abstract lattice operations
implement an efficient principle to manage these dimensions. In particular at certain
stages, new avatars have to be introduced so as to avoid a loss of precision.

Example 4.5 (Choice of avatar dimensions). We discuss possible abstract invariants for
the program shown in Example 4.2, starting with the set of all stores as a pre-condition,
described by abstract state >. After test y•2 ≤ y?

0, the analysis should compute an abstrac-
tion of the stores where, either y?

0 is mapped only to ∅ or where the numerical constraint
is satisfied. Using the octagon abstract domain, and a single avatar d0 for y?

0, this boils
down to abstract state

(d2 − d0 ≤ 0, y?
0 7→ {d0} ∧ y•2 7→ {d2})

After the second test, we get the set of stores observed at point ¬, that is such that, either
σ(y•2) ≤ σ(y?

0) ≤ 6 or σ(y?
0) = ∅. Note that this set of stores cannot be described exactly

with octagons using a single avatar. Indeed, this set contains stores such that σ(y•2) > 6
(when σ(y?

0) = ∅). Thus, using a single avatar to describe constraints over y?
0 would

force the analysis to drop either constraint y?
0 ≤ 6 or constraint y•2 ≤ y?

0. Thus, adding
a second avatar for y?

0 at this point is necessary in order to maintain maximal precision.
In particular, the abstract state below describes exactly the stores that can be observed at
point ¬:

(d2 ≤ d0
0 ∧ d1

0 ≤ 6, y•2 7→ d2 ∧ y?
0 7→ {d0

0, d
1
0})

Jiangchao Liu Static Analysis on Array Contents

4.2. MAYA FUNCTOR 39

The above example demonstrates the need to introduce enough avatars so that all
constraints on optional variables can be maintained, without “over-constraining” standard
variables (which would result in an unsound analysis). Intuitively, each avatar should not
carry too much information: the base numerical domain cannot express emptiness of a
specific avatar; instead, only the conjunction of all avatars of an optional variable y?

may express that y? is empty. We formalize this as a sufficient condition, that we call
the independence property, and that should be maintained by all abstract operators in
the Maya domain. This property states that dropping the constraints over an avatar
dimension d associated to variable y? should have no impact on the variables other than
y?. To maintain this property, transfer functions and abstract operators may either pay
the cost of adding new avatar dimensions or will have to drop constraints that cannot
be represented without adding more avatars. To formalize the independence property,
and given abstract value n ∈ N and dimension d, we note drop(n, d) for the abstract
value obtained by removing from n all the constraints that involve d (this operation is
well defined since we assumed elements of abstract domain N correspond to the finite
conjunctions of all the constraints of a certain form). Moreover, if ν is a valuation, we
write ν|E\d for the restriction of ν to E \ {d}.
Definition 4.4 (Independence property). Let o = (n,A) be an abstract state. We say o

satisfies the independence property if and only if

∀y? ∈ Y?, ∀d ∈ A(y?), {ν|E\d | ν ∈ γn(n)} = {ν|E\d | ν ∈ γn(drop(n, d))}

Example 4.6 (Independence property). The abstract state given at the end of Exam-
ple 4.5 satisfies the independence property, using two avatars, that respectively carry the
lower and upper bound constraints over y?. Section 4.2.3 generalizes this approach to lift
any domain based on linear inequalities.

Example 4.7 (Multiple avatar dimensions for one variable). Intuitively, the indepen-
dence property is likely to break when an avatar dimension carries several constraints, the
conjunction of which may be unsatisfiable. Therefore, an alternate technique to achieve
it consists in using one avatar per constraint over each optional variable. As an ex-
ample, we consider the set of concrete states defined by Y• = {y•0} and Y? = {y?

1, y
?
2}

and where the optional variables are either undefined or satisfy the following conditions:
y•0 ≤ y?

1 ∧ y?
1 ≤ 2y•0 ∧ y?

1 = y?
2 + 2. Then, assuming N is the polyhedra abstract domain,

this multi-avatar principle will construct the following abstract state:

n = {d0 ≤ d0
1 ∧ d1

1 ≤ 2d0 ∧ d2
1 ≤ d0

2 + 2 ∧ d1
2 + 2 ≤ d3

1}
A : y•0 7→ d0, y

?
1 7→ {d0

1, d
1
1, d

2
1, d

3
1}, y?

2 7→ {d0
2, d

1
2},

This principle is general (it can be applied to, e.g., linear equalities [Kar76]) but costly.

4.2.3 The Bi-avatar Principle

We now propose a principle to manage avatar dimensions and design abstract operations
under the hypothesis that the predicates expressed in the base abstract domain N are

Static Analysis on Array Contents Jiangchao Liu

40 CHAPTER 4. MAYA AND MAYA+ FUNCTORS

conjunctions of linear inequality (which includes intervals, octagons, polyhedra, and their
variants).

4.2.3.1 Abstraction

Numeric constraints in the base domain are all of the form a0d0 + . . . + andn ≤ c (where
a0, . . . , an, c are constants), thus a constraint involving di (i.e., where ai 6= 0) is either
an upper bound constraint for di (if ai > 0) or a lower bound constraint (if ai < 0).
The bi-avatar principle treats those two sets of constraints separately, using two avatar
dimensions per optional variable.

Definition 4.5 (The bi-avatar principle). Abstract state o = (n,A) follows the bi-avatar
principle if and only if A maps each optional variable y? to a pair of dimensions {d↑, d↓},
called upper avatar and lower avatar respectively. Each upper avatar d↑ (resp., lower
avatar d↓) carries only “upper bound constraints” (resp., “lower bound constraints”) on y?.

In other words, the bi-avatar principle fully determines A. In order to implement this
principle, we need to ensure that all abstract operators preserve A, and the property of
lower and upper avatars. We define such abstract operations in the next subsections. In-
terestingly, whenever an abstract state follows this principle, and if we drop all constraints
over an (upper or lower) avatar of y, the concretization restricted to the dimensions other
than that avatar do not change. This entails:

Theorem 4.1 (The bi-avatar principle satisfying the independence property). All ab-
stract values that follow the bi-avatar principle satisfy the independence property (Defini-
tion 4.4).

To express the emptiness of an optional variable, we simply need to let its avatars
carry a pair of constraints that would be unsatisfiable, if carried by a unique dimension,
such as 1 ≤ d↓ ∧ d↑ ≤ 0.

Example 4.8 (The bi-avatar pirnciple). Let Y• = {y•0},Y? = {y?
1}, and let A specify the

avatars defined by the bi-avatar principle. Then, the following numerical abstract values
specify the sets of concrete states below:

abstract numerical state n concretization γO(n,A)

1 ≤ d0 ∧ d0 ≤ 1 ∧ d0 ≤ d
↓
1 ∧ d

↑
1 ≤ d0 {y•0 7→ {1}, y?

1 7→ {1}}, {y•0 7→ {1}, y?
1 7→ ∅}

1 ≤ d0 ∧ d0 ≤ 1 ∧ d0 ≤ d
↓
1 ∧ d

↑
1 ≤ d0 − 1 {y•0 7→ {1}, y?

1 7→ ∅}

Preservation. The abstract operators described in the remainder of this section ei-
ther discard constraints violating the bi-avatar principle (such as assignment, in Sec-
tion 4.2.3.4), or never apply operations of N that would cause them to bound a d↑ (resp.,
d↓) avatar below (resp., above). This implies straightforwardly that, in the resulting do-
main, all abstract elements with a non empty concretization follow the bi-avatar principle

Jiangchao Liu Static Analysis on Array Contents

4.2. MAYA FUNCTOR 41

(all d↓ dimensions are not bounded by above and all d↑ dimensions are not bounded by
below).

Expressiveness. Under the bi-avatar principle, we can compare the expressiveness of
Maya domain O with that of its base domain N : if a set of stores S with no optional
variable containing ∅ can be described exactly by n ∈ N , we can still describe S in O, up-
to the change of any set of optional variable to ∅. Indeed, if we let Sdef = (Y•]Y?)→ V•,
we have:

Theorem 4.2 (The expressivenss of abstract states that follow the bi-avatar principle).
If A follows the bi-avatar principle, then:

∀n0 ∈ N , Dim(n0) = Y•]Y? =⇒ ∃n1 ∈ O, γn(n0) = γO(n1,A) ∩ Sdef

Proof. We assume Dim(n0) = Y•]Y∗. To construct n1 from n0, we simply need to
replace any occurrence of y? ∈ Y∗ by d↓ or d↑ depending on the constraint (we replace it
by d↓ if it is a lower constraint, and by d↑ if it is an upper constraint) and y• ∈ Y• by d.
Then, we prove the equality by double inclusion:
• We first prove γn(n0) ⊆ γO(n1,A) ∩ Sdef . Let σ ∈ γn(n0). Then, we can construct

valuation ν1 over Dim(n1) by ∀y• ∈ Y•, ν1(d) = σ(d) and ∀y? ∈ Y∗, ν1(d↓) =
ν1(d↑) = σ(y?). Then, clearly we have both PY•(σ, (n1,A), ν1) and PY?(σ, (n1,A), ν1)

thus, σ ∈ γO(n1). Moreover, σ ∈ Sdef (by definition of γn).

• Second, we prove γO(n1,A) ∩ Sdef ⊆ γn(n0). Let σ ∈ γO(n1,A) ∩ Sdef . Then, there
exists a valuation ν1 such that properties PY•(σ, (n1,A), ν1) and PY?(σ, (n1,A), ν1)
hold. By the definition of n1, this entails that σ ∈ γn(n0).

Example 4.9 (The expressivenss of the bi-avatar principle). Let Y• = {y•0} and Y? =
{y?

1}, given an abstract element in the octagons domain as n = 1 ≤ y•0 ≤ 1 ∧ 1 ≤ y?
1 ≤ 1,

it is easy to know that its concretization contains only one concrete state σ = {y•0 7→
{1}, y?

1 7→ {1}}. The corresponding abstract element in the Maya domain is

o = (1 ≤ d0 ≤ 1 ∧ 1 ≤ d
↓
1 ∧ d

↑
1 ≤ 1,A), where A : y•0 7→ {d0}, y?

1 7→ {d
↓
1, d
↑
1}

The concretization of o is σ ∧ {y•0 7→ 1 ∧ y•1 7→ ∅}. Since Sdef asserts that no optional

varaible constains ∅, γO(o) ∩ Sdef = {σ} = γn(n0).

4.2.3.2 Condition Test

The concrete semantics of a condition test r filters out stores for which r evaluates to 0. We

assume N provides a sound abstract function guard
N

[r] : N → N (where r contains only

variables of standard integer type), and build an abstract operator guard
O

[r] : O → O.

Static Analysis on Array Contents Jiangchao Liu

42 CHAPTER 4. MAYA AND MAYA+ FUNCTORS

Optional variable emptiness test. To evaluate condition guard
O

[is empty(y?)],
and filter out stores that do not map y? into ∅, we can simply add two constraints on d↓

and d↑ that would be unsatisfiable, if added for a same dimension, such as 1 ≤ d↓ and
d↑ ≤ 0.

Numerical tests. We consider only conditions that are linear inequalities, as non-linear
conditions are often handled by linearization techniques [Min04b], and a linear equality
is equivalent to a pair of inequalities.

Intuitively, guard
O

[.] should simply add a linear constraint to some abstract state o

(with some approximation, as this constraint is in general not representable exactly in
N). Given condition test a0y

•
0 + . . . + any

•
n + an+1y

?
n+1 + . . . + an+my

?
n+m ≤ c (where

y•i ∈ Y• and y?
i ∈ Y?), we can produce another constraint that involves only standard

variables and avatar dimensions by replacing yi either by d
↓
i or by d

↑
i depending on the

sign of ai. This constraint is compatible with the bi-avatar principle (Section 4.2.3),
hence it can be represented precisely in the numerical domain, even if it indirectly entails
emptiness of some optional variables (in other words, not using the bi-avatar property
would cause a severe precision loss here). Thus, numerical condition test can be applied
to this constraint. In turn, the absence of constraints violating the bi-avatar principle

needs to be verified on the output of guard
N

[.]. Moreover, this constraint is equivalent

to the initial constraint up-to the γO concretization function. Thus, this principle defines
a sound abstract transfer function for condition tests.

Definition 4.6 (Analysis of condition tests in the Maya domain). The full algorithm of

the condition test transfer function guard
O

[.] is shown in Figure 4.3. This function uses
replace to perform variable substitutions in conditions and the sound test function of the

underlying domain guard
N

[.].

Theorem 4.3 (Soundness of the transfer function for condition tests). The abstract trans-

fer function guard
O

[.] is sound in the sense that, for all linear inequality constraint r and
for all abstract state o satisfying the bi-avatar principle:

guardJrK(γO(o)) ⊆ γO(guard
O

[r](o))

Theorem 4.4 (Perservation of bi-avatar principle by condition test). The image by ab-

stract transfer function guard
O

[.] still satisfies the bi-avatar principle.

Example 4.10 (Transfer functions for condition tests). In this example, we assume that
N is the Polyhedra domain, and that Y• = {y•0}, and Y? = {y?

1} (thus, A : y•0 7→
{d0}, y? 7→ {d↓1, d

↑
1}). We consider an abstract pre-condition

o = (n0,A), where n0 = (5 ≤ d0 ∧ d0 ≤ 5)

Jiangchao Liu Static Analysis on Array Contents

4.2. MAYA FUNCTOR 43

guard
O

[r](n,A)
if r = is empty(y?)

result := (guard
O

[1 ≤ d↓](guard
N

[d↑ ≤ 0](n),A)

if r =
∑n

i=0 aiy
•
i +

∑n+m
i=n+1 aiy

?
i ≤ c

foreach i ∈ [0, n])

r := replace(r, y•i , di)
foreach i ∈ [n+ 1, n+m])

if ai < 0 then r := replace(r, y?
i , d
↓
i)

if ai > 0 then r := replace(r, y?
i , d
↑
i)

result := (guard
N

[r](n),A)

Figure 4.3 – Condition test abstract transfer function

and a condition test y?
1 − y•0 ≤ 3. Abstract test guard

O
[y?

1 − y•0 ≤ 3](o) first substitutes
d
↑
1 for y?

1 and d0 for y•0 in (y?
1 − y•0 ≤ 3), which generates condition d

↑
1 − d0 ≤ 3. Then, it

computes guard
N

[d↑1 − d0 ≤ 3](n0). Thus, we obtain the abstract post-condition

(n1,A), where n1 = (5 ≤ d0 ∧ d0 ≤ 5 ∧ d
↑
1 − d0 ≤ 3)

4.2.3.3 Verifying the Satisfaction of A Constraint

To verify assertions, we need an operator sat
O

[r] : O → {{1}, {0}} such that, if σ ∈ γO(o)

and sat
O

[r](o) = {1}, then guardJrK(σ) = σ. The case of numerical assertions is very
similar to the case of numeric tests.

To test whether y? can store only ∅ in any store described by (n,A), we simply need to

check whether constraint d↓ = d↑ is unsatisfiable. This suggests sat
O

[is empty(y?)](n,A) =

is bot
N

(guard
N

[d↓ = d↑](n)), where is bot
N

: N → {{1}, {0}} is a sound emptiness

test (if is bot
N

(n) = {1}, then γn(n) = ∅). The full algorithm of satisfaction is shown in
Figure 4.4.

4.2.3.4 Assignment

We now describe a transfer function assign
O

[.] that over-approximates the effect of an
assignment. We consider assignments with a linear right hand side expression (non linear
assignment can be implemented using linearization [Min04b]).
Emptiness test. If the left-hand side y• is a standard type variable and an optional vari-
able y? appears in the right hand side, according to the concrete semantics, no state satis-
fies the condtition that y? takes an empty set. Therefore, given an abstract pre-condition

Static Analysis on Array Contents Jiangchao Liu

44 CHAPTER 4. MAYA AND MAYA+ FUNCTORS

sat
O

[r](n,A)
if r = is empty(y?)

result := is bot
N

(guard
N

[d↓ = d↑](n))

if r =
∑n

i=0 aiy
•
i +

∑n+m
i=n+1 aiy

?
i ≤ c

foreach i ∈ [0, n])

r := replace(r, y•i , di)
foreach i ∈ [n+ 1, n+m])

if ai < 0 then r := replace(r, y?
i , d
↓
i)

if ai > 0 then r := replace(r, y?
i , d
↑
i)

result := sat
N

[r](n)

Figure 4.4 – Full algorithm for the verification of a constraint

o and an optional variable y? that appears in the right hand side, if sat
O

[is empty(y?)]o

(Section 4.2.3.3), assign
O

[.] can safely return ⊥. The computation of the abstract assign-
ment starts with this check for all optional variables in the right hand side.

Numerical assignment. We first consider a simple assignment y?
0 = y?

0 + y?
1, where

Y? = {y?
0, y

?
1}, in order to give some intuition. If o = (n,A) is an abstract pre-condition

and σ ∈ γO(o) is such that σ(y?
0) 6= ∅ and σ(y?

1) 6= ∅, there exists a valuation ν ∈ γn(n)
such that ν(d↓0) = ν(d↑0) = σ(y?

0) and the same for y?
1. After the assignment evaluates,

we obtain a store σ′ such that σ′(y?
0) = σ(y?

0) + σ(y?
1) (and is unchanged for all other

variables). Therefore, we need to make sure that the abstract post-condition describe a
valuation ν ′ such that ν ′(d↓0) = ν(d↑0) = σ(y?

0) +σ(y?
1). We can achieve that by performing

a pair of assignments to d
↓
0, d
↑
1 using any combination of avatars to represent y?

0, y
?
1 in the

right hand side. For instance, the following choices are sound:{
d
↓
0 = d

↓
0 + d

↓
1;

d
↑
0 = d

↓
0 + d

↓
1;

{
d
↓
0 = d

↓
0 + d

↑
1;

d
↑
0 = d

↑
0 + d

↓
1;

. . .

Yet, not all choices are of optimal precision. To show this, we assume that the pre-
condition bounds both y?

0 and y?
1 from the above, for example with Polyhedra n = {d↑0 ≤

0 ∧ d
↑
1 ≤ 0}. Then, only the left choice will produce a precise upper bound on d

↑
0.

However, this approach may also produce constraints that violate the bi-avatar principle,
such as d

↑
0 − d

↑
1 ≤ 0, where d

↑
1 gets assigned a lower bound. Such a lower bound can

be removed by adding a temporary dimension dt, assuming that it is positive (using

guard
O

[dt ≥ 0]), and performing assignment d
↑
1 = d

↑
1 − dt. To conclude, the analysis of

assignment y?
0 =

∑n
i=0 aiy

•
i +

∑m
i=0 an+iy

?
n+i + c proceeds as follows:

1. assign
O

[.] performs in parallel [JM09] the two assignments d↓ = r↓ || d↑ = r↑, where

Jiangchao Liu Static Analysis on Array Contents

4.2. MAYA FUNCTOR 45

make exprs(
∑n

i=0 aiy
•
i +

∑n+m
i=n aiy

?
i + c, e)

r :=
∑n

i=0 aiy
•
i +

∑n+m
i=n+1 aiy

?
i + c;

foreach i ∈ [0, n]

r := replace(r, y•i , di)
r′ := r
foreach i ∈ [n+ 1, n+m]

if e • ai > 0 then

r := replace(r, y?
i , d
↑
i)

r′ := replace(r′, y?
i , d
↓
i)

else

r := replace(r, y?
i , d
↓
i)

r′ := replace(r′, y?
i , d
↑
i)

assign
O

[y•? =
∑n

i=0 aiy
•
i +

∑n+m
i=n+1 aiy

?
i + c](n,A) :

n := add dims(n, {d′i, dt})
if y•? ∈ Y• then

foreach i ∈ [n+ 1, n+m]

if sat
O

[is empty(y?
i)](o)

return (⊥,A);

make exprs(
∑n

i=0 aiy
•
i +

∑n+m
i=n+1 aiy

?
i + c, 1);

n := assign
N

[di = r || d′ = r′](n)

n := guard
N

[di == d′i](n)
else

make exprs(
∑n

i=0 aiy
•
i +

∑n+m
i=n+1 aiy

?
i + c,

if ∃j ∈ [n+ 1, n+m], y?
j = y•? then aj else 1);

n := assign
N

[d↑i = r || d↓i = r′](n)
foreach i ∈ [n+ 1, n+m]

n := assign
N

[d↑i = d
↑
i − dt](n)

n := assign
N

[d↓i = d
↓
i + dt](n)

result := (rem dims(n, {d′i, dt}),A)

Figure 4.5 – Assignment transfer function

Static Analysis on Array Contents Jiangchao Liu

46 CHAPTER 4. MAYA AND MAYA+ FUNCTORS

r↓, r↑ are obtained from the assignment right hand by substituting y?
i with d

↓
i or d

↑
i

depending on the sign of the ais (see below);
2. then it forces the removal of constraints violating the bi-avatar property, using the

aforementioned method.
Expression r↑ is defined as

∑n
i=0 aidi+

∑m
i=1 an+id

εn+i

n+i +c where avatar signs are determined
as follows (r↓ uses the opposite avatar dimensions as r↑):
• if the assignment is not invertible (y? does not appear in the right hand side), then
εi is the sign of ai;
• if the assignment is invertible and y? is y?

n+1, then εi is the sign of the product
an+1ai.

Finally, an assignment with a standard variable y• as a left hand side can be handled
in a similar manner (after the emptiness test described earlier): it boils down to the
introduction of a temporary dimension d′, the analysis of two assignments d′ = r↑ and

d′ = r↓ with the above notations, the application of guard
O

[d = d′], and finally the
removal of d′. By contrast, doing a single assignment would possibly cause relations
between d′ and avatars be discarded.

Definition 4.7 (Transfer functions for assignments). The algorithm for the analysis of

assignments assign
O

[.] is shown in Figure 4.5.

Theorem 4.5 (Soundness of transfer functions for assignments). If y•? ∈ Y•]Y? and r
is a linear expression, then:

∀o ∈ O, Jy•? = rK(γO(o)) ⊆ γO(assign
O

[y•? = r]o)

Example 4.11 (Transfer functions for assignments). We assume Y• = {y•0}, Y? =
{y?

1, y
?
2} and consider the abstract pre-condition defined by octagon n = {0 ≤ d

↓
1 ∧ d

↑
1 ≤

10 ∧ 0 ≤ d
↓
2 ∧ d

↑
2 ≤ 1 + d0}.

• non invertible assignment y?
1 = 1 − y?

2 boils down to parallel assignments d
↑
1 =

1 − d
↓
2 || d

↓
1 = 1 − d

↑
2 in Octagons [Min06] and produces numerical post-condition

{−d0 ≤ d
↓
1 ∧ d

↑
1 ≤ 1 ∧ 0 ≤ d

↓
2 ∧ d

↑
2 ≤ 1 + d0};

• invertible assignment y?
1 = y?

1 + y?
2 boils down to parallel assignments d

↑
1 = d

↑
1 +

d
↑
2 || d

↓
1 = d

↓
1+d

↓
2, and produces numerical post-condition {0 ≤ d

↓
1 ∧ d

↑
1 ≤ 11+d0 ∧ 0 ≤

d
↓
2 ∧ d

↑
2 ≤ 1 + d0}.

4.2.3.5 Inclusion Checking, Join and Widening

To analyze condition tests and loops, we also need abstract operations for join, widening
and inclusion test. Using the bi-avatar principle, these operations can be implemented in
a straightforward manner, using the operations of the underlying domain, since avatars
are the same for all abstract values. We write A for the set of avatars defined by the bi-

avatar principle in Y•]Y?. We let isle
N

, join
N

, widen
N

denote the abstract inclusion

Jiangchao Liu Static Analysis on Array Contents

4.3. MAYA+ FUNCTOR 47

check, abstract join and abstract widening of abstract domain N , satisfying the following
soundness conditions:

∀n0, n1 ∈ N , isle
N

(n0, n1) = 1 =⇒ γn(n0) ⊆ γn(n1)

∀n0, n1 ∈ N , γn(n0)∪ γn(n1) ⊆ γn(join
N

(n0, n1))

∀n0, n1 ∈ N , γn(n0)∪ γn(n1) ⊆ γn(widen
N

(n0, n1))

Furthermore, we assume that widen
N

ensures convergence of any sequence of abstract
iterates [CC77].

Definition 4.8 (Algorithms of inclusion checking, join and widening). We let the opera-
tors over O be defined by:

isle
O

((n0,A), (n1,A)) = isle
N

(n0, n1)

join
O

((n0,A), (n1,A)) = (join
N

(n0, n1),A)

widen
O

((n0,A), (n1,A)) = (widen
N

(n0, n1),A)

These operators trivially inherit the properties of the operators of N :

Theorem 4.6 (Soundness of lattice operators). Operations isle
O
., join

O
. and widen

O
.

satisfy soundness condition of the same form as their underlying counterpart. In partic-
ular:

∀n0, n1 ∈ N , γn(n0)∪ γn(n1) ⊆ γn(join
N

(n0, n1))

Moreover, widen
O
. also ensures termination.

4.3 Maya+ Functor

In this section, we first introduce summarizing abstract numeric domains [GDD+04]. It is
a functor that lifts conventional numeric domains to those describing concrete stores with
standard variable (i.e., Y•) and non-empty summary variable (i.e., Y+). Then we show
how to compose the Maya functor and the functor of summarizing numeric domains, to
produce Maya+ functor. The Maya+ functor extends conventional numeric domains with
the ability to constrain possibly-empty summary variables (i.e., Y∗).

To simplify the formalization, we make the following conventions.

• The right-value r in a condition test contains only one kind of logical operators. A
right-value that contains weak (resp. strong) logical operators are denoted as rw
(resp. rs).

• The right-value in an assignment l = r does not contain logical operators.

Static Analysis on Array Contents Jiangchao Liu

48 CHAPTER 4. MAYA AND MAYA+ FUNCTORS

guardJ./ (r0, . . . , rk)Kw(σ) =

{1} ∃ci ∈ JriK(σ), i ∈ [0, k], ./ (c0, . . . , ck) = 1

∅ ∃i ∈ [0, k], JriK(S) = ∅
{0} otherwise

Figure 4.6 – Weak concrete semantics of condition tests

4.3.1 Summarizing Numeric Domains

The functor of summarizing numeric domains [GDD+04] extends conventional numeric
domains with summarized dimensions. One summarized dimension d ∈ E represents a
non-empty set of values, and could be seen the summary of several dimensions (d ∈ E).

An abstract element ns in a summarizing numeric domain is a conventional numeric
element n where Dim(n) ⊆ E ∪ E. A standard variable is represented by a standard
dimension d, and a non-empty summary variable is represented by a summary dimension
d. We ignore the mapping function from variables to dimensions, and just use the same
subscript to indicate a variable and the dimension represents it.

The concretization of n is a set of νs ∈ (E → V) ∪ (E → P(V)\∅), which evaluates a
standard dimension to a value and a summary dimension to a set of values.

Definition 4.9 (Concretization in summarizing numeric domains). The concretization of
ns is defined by:

γN
s

(ns)
def.
::=

{
νs

∀ν ∈ Dim(n)→ V, if (∀d ∈ E, νs(d) = ν(d))

∧(∀d ∈ E, νs(d) ∈ νs(d)), ν ∈ γn(ns)

}
Lattice operators in the underlying numeric domains can be safely re-used in the sum-

marizing numeric domain. But the transfer functions for condition tests and assignments

need to be redefined. In [GDD+04], the abstract guard operator guard
N s

[.] does not
correspond to the concrete semantcis of condition test defined in Figure 4.1. In contrast,

guard
N s

[.] over-approximats the concrete semantics in Figure 4.6.
We call this version of concrete semantics for condition tests weak tests (the version

in Figure 4.1 is strong tests). A weak test evaluates to {1} when the logical relation is
satisfied by at least one tuple in the Cartesian product of the operand sets. For instance,
guardJ{3, 1} ≤ {2}Kw evaluates to {1}, but guardJ{3, 1} ≥ {2}K evaluates to {0}.

Theorem 4.7 (Soundness of the transfer function for condition tests). If condition r
only contains standard and non-empty summary variables, the abstract transfer function

guard
N s

[.] is sound in the sense that:

guardJrKw(γN
s

(ns)) ⊆ γN
s

(guard
N s

[r](ns))

In [GDD+04], the transfer function for assignments assign
N s

[.] performs weak updates
on the left-value when it is a non-empty summary variable.

Jiangchao Liu Static Analysis on Array Contents

4.3. MAYA+ FUNCTOR 49

Theorem 4.8 (Soundness of the transfer function for assignments). The transfer function

for assignments assign
N s

[.] is sound in the sense that:

∀ns ∈ N s
, Jy•+ = rK(γN

s

(ns)) ⊆ γN
s

(assign
N s

[y•+ = r]ns)

4.3.2 Composition of Maya Functor and Summarizing Numeric
Domains

Our Maya+ functor is obtained by composing the Maya functor and the functor of summa-
rizing numeric domains. The resulting Maya+ domains can abstract stores with standard
variables Y• and possibly-empty summary variables Y∗. An element in the Maya+ domain
is a tuple (ns,A), where ns ∈ N s

and A ∈ (Y• → E) ∪ (Y∗ → P(E)) maps a standard
variable into a standard dimension and a possibly-empty summary variable into a set of
summary dimensions.

Definition 4.10 (Concretization in the Maya+ domain). Given an abstract state u =
(ns,A), we define the following consistency predicates:

PY•(σ, u, ν
s)

def.⇐⇒ ∀y• ∈ Y•, σ(y•) = νs(y•)

PY∗(σ, u, ν
s)

def.⇐⇒ ∀y∗ ∈ Y∗, σ(y∗) ⊆
⋂

d∈A(y∗) ν
s(d)

Then, the concretization of u = (ns,A) is defined by:

γU(u)
def.
::=

{
σ ∈ S | ∃νs ∈ γN

s

(ns), PY•(σ, u, ν
s) ∧ PY∗(σ, u, ν

s)
}

Example 4.12 (Concretization in the Maya+ domain). We assume Y• = {y•0}, Y∗ =

{y?∗
1 }, and consider the abstract element (3 ≤ d0 ∧ d0 ≤ 4 ∧ 0 ≤ d

↓
1 ∧ d

↑
1 ≤ x − 3,A)

where A follows the bi-avatar principle. These constraints define valid elements of both
Maya and Maya+ domains. However, the concretizations of this abstract element in both
domains are different as shown below:

Maya : ¬ y•0 7→ {3} y?∗
1 7→ {0} Maya+ : ¬ y•0 7→ {3} y?∗

1 7→ {0}
 y•0 7→ {3} y?∗

1 7→ ∅ y•0 7→ {3} y?∗
1 7→ ∅

® y•0 7→ {4} y?∗
1 7→ {1} ® y•0 7→ {4} y?∗

1 7→ {1}
¯ y•0 7→ {4} y?∗

1 7→ {0} ¯ y•0 7→ {4} y?∗
1 7→ {0}

° y•0 7→ {4} y?∗
1 7→ ∅ ° y•0 7→ {4} y?∗

1 7→ ∅
± y•0 7→ {4} y?∗

1 7→ {0, 1}

The lattice operators in the Maya+ domain are from those in N s
. But the transfer

functions need to be redefined.

Static Analysis on Array Contents Jiangchao Liu

50 CHAPTER 4. MAYA AND MAYA+ FUNCTORS

Transfer functions. The transfer functions in the Maya+ domain can be obtained by
calling those in the Maya functor and the functor of summarizing numeric domains.

Definition 4.11 (The transfer function for assignments). The transfer function for as-

signments assign
U

[.] is constructed by replacing all the occurrences of assign
N

[.] and

guard
N

[.] by assign
N s

[.] and guard
N s

[.] in assign
O

[.].

The soundness of the transfer function for assignments assign
U

[.] follows the soundness
of the operators from the two functors.

Theorem 4.9 (Soundness of the transfer function for assignments). The transfer function

for assignments assign
U

[.] is sound in the sense that:

∀u ∈ U , Jy•∗ = rK(γU(u)) ⊆ γN
s

(assign
U

[y•∗ = r]u)

Definition 4.12 (The transfer function for condition tests). We define two transfer func-
tions for condition tests in Maya+ domain: one accounts for weak (Figure 4.6) semantics
and the other for strong (Figure 4.1) semantics. Indeed, the transfer function for weak

condition test in Maya+ domain guard
U

[.]w is obtained by replacing all the occurrences of

guard
N

[.] by guard
N s

[.] in guard
O

[.]. The transfer function guard
U

[.] for strong tests

is the same as guard
O

[.].

Theorem 4.10 (Soundness of the transfer function for condition tests). The abstract

transfer function guard
U

[.] is sound in the sense that:

guardJrKw(γU(u)) ⊆ γU(guard
U

[r]w(u))

guardJrK(γU(u)) ⊆ γU(guard
U

[r](u))

4.3.3 Case Study: Application of The Maya+ Functor to A Sim-
ple Array Analysis

We have implemented abstract domain functors Maya and Maya+ with the bi-avatar
principle (so that they can be applied to numerical abstract domains representing linear
inequalities), as well as the analysis of the language of Figure 4.1. To assess its precision,
we encode an array analysis on an array initialization example to a program of the language
defined in Figure 4.1. Figure 4.7(a) shows a C code program that initializes an array.
We consider an array analysis inspired by array partitioning, which proceeds by forward
abstract interpretation [CC77]. An observation is that during the iteration of the loop, the
array can be divided into two sets of cells, namely initialized cells and uninitialized cells.
We consider an abstraction of the array, that partitions it into two groups of cells called:
G0 and G1 (where all cells in group G0 are initialized to zero and cells in group G1 may

Jiangchao Liu Static Analysis on Array Contents

4.3. MAYA+ FUNCTOR 51

int i = 0; int a[8];
while(i < 8){

a[i] = 0;
i = i + 1;

}
(a) An array initialization
example

0 0 0 0

0 ≤ G0 ≤ 3 4 ≤ G1 ≤ 7Maya+ element

Concrete state

(b) A concrete state and the corresponding abstract states

int• i = 0;

int∗ G0, G1;

assert(is empty(G0) = {1});
assert(0 ≤ G1 ≤ 7);

0 0 ≤ i ∧ i ≤ 0 ∧ 1 ≤ G↓0 ∧ G↑0 ≤ 0 ∧ 0 ≤ G↓1 ∧ G↑1 ≤ 7

while(i < 8){
1 0 ≤ i ∧ i ≤ 7 ∧ 0 ≤ G↓0 ∧ G↑0 ≤ i− 1 ∧ i ≤ G↓1 ∧ G↑1 ≤ 7

G0 = i;

2 0 ≤ i ∧ i ≤ 7 ∧ 0 ≤ G↓0 ∧ G↑0 ≤ i ∧ i ≤ G↓1 ∧ G↑1 ≤ 7

assert(G1! = i);

3 0 ≤ i ∧ i ≤ 7 ∧ 0 ≤ G↓0 ∧ G↑0 ≤ i ∧ i + 1 ≤ G↓1 ∧ G↑1 ≤ 7

i = i + 1;

4 0 ≤ i ∧ i ≤ 7 ∧ 0 ≤ G↓0 ∧ G↑0 ≤ i− 1 ∧ i ≤ G↓1 ∧ G↑1 ≤ 7

}
5 8 ≤ i ∧ 0 ≤ G↓0 ∧ G↑0 ≤ i− 1 ∧ i ≤ G↓1 ∧ G↑1 ≤ 7

(c) Analysis of the array initialization example: invariants over group indexes

Figure 4.7 – Applicaiton of Maya+ functor on A Simple Array Analysis

Static Analysis on Array Contents Jiangchao Liu

52 CHAPTER 4. MAYA AND MAYA+ FUNCTORS

Program LOCs #Standard #Summary Time (ms) #Assertions #Verified

array-init 9 1 2 4.7 1 1

array-random-access 30 3 6 36.5 3 3

array-traverse 6 1 1 6.6 1 1

array-compare 10 3 2 14.1 1 1

Figure 4.8 – Analysis results

hold any value), and we also use the group names G0, G1 to denote two possibly-empty
summary variables that over-approximate the sets of indexes corresponding to the cells of
the two groups. Figure 4.7(b) shows a concrete state on the array and the corresponding
abstract state in Maya+ domain. The array analysis on the array initialization example
could be encoded into the numeric analysis on the program in Figure 4.7(c).

In Figure 4.7(c), Y∗ = {G0, G1} and Y• = {i}. In the analysis, the polyhedra do-
main is used as parameter domain and A is defined according to the bi-avatar principle
(A(Gj) = {G↓j , G

↑
j} —note these are all summary dimensions, since a group of cells may

span several indexes).

At point 0 , group G1 contains all the elements of the array (uninitialized elements) and
G0 is empty (initialized elements). The weak update G0 = i and statement assert(G1 6=
i) stem from the assignment a[i] = 0 in the array program (Figure 4.7(a)). Note that
weak update G0 = i just adds the value represented by i to set G0. They are analyzed

by assign
U

[.] and guard
U

[.], and effectively extend group G0 and shrink group G1 by one
cell. The loop exit invariant shown at point 5 defines stores where G1 is mapped to no
value, which indeed means that the group of uninitialized cells is empty. This actually
means that the analysis proves the whole array is initialized to 0. The resulting invariants
are shown in Figure 4.7(c).

The analysis was run on a few similar programs encoding the steps that [LR15] needs
to achieve to verify array programs, and the results are shown in Figure 4.8. The columns
show numbers of lines of codes, standard variables, possibly-empty summary variables,
run-time, total numbers of assertions and numbers of verified assertions. Test case ”array-
init” is shown in Fig 4.7(c). Test cases ”array-random-access”, ”array-traverse” and ”array-
compare” simulate the array analysis on programs of corresponding algorithm. The anal-
yses are performed with Polyhedra as underlying domain and succeed in computing all
invariants (the value range of array contents) required for the verification of these pro-
gram. Last, the invariants produced express relations between groups, even when those
could be empty.

Jiangchao Liu Static Analysis on Array Contents

4.4. RELATED WORK AND CONCLUSION 53

4.4 Related Work and Conclusion

Abstractions based on summary dimensions [GDD+04, SS12] extend basic numerical do-
mains to abstract vectors of non empty sets, so that one dimension may describe an
unbounded family of variables. Summaries are also used in shape analysis [SRW99a],
with a similar semantics. Empty summaries can be dealt with using disjunctions.

Siegel and Simon [SMS13] abstract dynamic stores, where the set of memory cells is
dynamic, and also utilize summary dimensions. In this work, a summary variable may also
denote an empty set of values. To abstract precisely which dimension may be empty, a flag
is associated to each summary variable, and it is true if and only if the variable is defined
to at least one value. This approach allows to express relations between the emptiness
of distinct variables. However, it does not allow to infer that a variable is undefined
from conflicting constraints over its value (as needed in, e.g., [LR15]). This approach
is thus orthogonal to ours, and both techniques could actually be combined. Another
technique [CCS15, LR15] uses a conjunction of numerical abstract elements n0, . . . , np
such that a group of variables that should either all be empty or all be defined to a non
empty value are constrained together in a same ni. While this approach tracks emptiness
precisely and without disjunctions, it is fairly ad hoc and expresses no relational constraints
across groups.

Last, we note that other works on numerical abstract domains use several dimensions in
the abstract domain so as to constrain a single variable. For instance, the implementation
of octagons on top of DBMs lets a variable x be described in a DBM by dimensions x+ = x

and x− = −x (so that x = 1
2
(x+ − x−)) [Min06].

We have proposed the Maya functor to lift numerical abstract domains into abstrac-
tions for sets of stores where some variables may be undefined, and a functor Maya+ that
performs the same task in presence of possibly empty summary dimensions. We have fully
described the design of abstract operations using a “bi-avatar” principle, that allows to
cope with abstract domains based on linear inequalities. These two functors help achieve
the goal set in Section 4.1.

Our construction can be applied either to analyze languages that allow optional values,
or as a back-end for static analyses that rely on groups of locations to describe complex
memories (such as array and shape analyses). In the next Chapter, we will use Maya+
functor in an array analysis in a way that pretty much like that in Section 4.3.3.

Future work should focus on additional strategies, for instance, based on the multi-
avatar principle (Example 4.7), to accommodate other kinds of numerical abstract do-
mains.

Static Analysis on Array Contents Jiangchao Liu

54 CHAPTER 4. MAYA AND MAYA+ FUNCTORS

Jiangchao Liu Static Analysis on Array Contents

Chapter 5

Non-contiguous Partitioning

Conventional array partitioning analyses split arrays into contiguous segments to infer
properties of sets of array cells. Such analyses cannot group together non contiguous cells,
even when they have similar properties. In this chapter, we propose an abstract domain
which utilizes semantic properties to split array cells into groups. Cells with similar
properties will be packed into a same group and abstracted together. Additionally, a group
denotes a set of cells that are not necessarily contiguous. This abstract domain allows to
infer complex array invariants in a fully automatic way. Experiments on examples from
the Minix 1.1 memory management and academic test cases demonstrate the effectiveness
of the analysis.

5.1 Context of Non-contiguous Partitioning

In this section, we set the context for our non-contiguous partitioning domain. We first
extend the language defined in Figure 3.1 to support array types, and then recall the
motivation of our non-contiguous partitioning.

5.1.1 Extension of the Language

The syntax and semantics of the extension is shown in Figure 5.1.

Syntax. We let I denote the set of non-negative integers and F denote the set of fields.
We extend the language in Figure 3.1 with a composite type struct{int f; . . . ; int f}[k]
which describes arrays of structures. Variables of this type are denoted by A 3 a. This
language also allows variables of structure type (they are considered arrays of length 1),
and arrays of primitive type values (they are arrays of structures made of a single field).

We restrict the form of array cell accesses (to read or write a value) to expressions
of the form a[x], where x is an integer variable, which simplifies both the semantics
and the definition of the analysis (more complex array accesses can be decomposed into
expressions of this form using auxiliary variables). However, we do not consider array

Static Analysis on Array Contents Jiangchao Liu

56 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

F : fields(f ∈ F) A : structural type variables(a ∈ A)
I : Non-negative integers(k ∈ I)

T ::= int primitive type
| struct{int f; . . . ; int f}[k] structural type

l ::= a[x].f | x left value expressions

(a) Syntax

Evaluation of L-values: S→ (A× I× F ∪ X)

Ja[x].fK(σ) = (a, σ(x), f)

Evaluation of R-values: S→ V
Ja[x].fK(σ) = σ(a, JxK(σ), f)

(b) Semantics

Figure 5.1 – Extension of the language with composite type

accesses through pointer dereference (analyzing such expressions would merely require
extending our analysis by taking a product with a pointer domain). These restrictions
allow to streamline the language under consideration around the purpose of our analysis,
namely, to deal with arrays of complex data structures.

Concrete states and semantics. Because of the extension in the syntax, we need to
redefine the concrete states and semantics.

Definition 5.1 (Concrete states). In this chapter, a concrete state σ is a partial function
mapping basic cells (base variables and fields of array cells) into values (which are denoted
by V). The set S of concrete states is defined by

σ ∈ S = (A× I× F ∪ X)→ V

Specifically, the set of all fields of cells of array a is denoted by Fa, and the set of valid
indexes in a is denoted by Ia. The semantics of l-values and r-values are also extended to
account for array accesses.

5.1.2 An Example from Minix.

To recall the motivation for our non-contiguous partitioning domain, we show an example
from Minix 1.1, which will be used throughout this paper.

Jiangchao Liu Static Analysis on Array Contents

5.1. CONTEXT OF NON-CONTIGUOUS PARTITIONING 57

1 struct mproc {
2 unsigned mp flag;
3 int mp parent;
4. } mproc[24];

(a) Definition of array mproc

process descriptor

free slot

0 mm

1 fs

2 init

3 usr14 usr0

6 usr2 5 free 7 free

(b) Topology of processes

... ...

[0] :mm [1] :fs [2] :init [3] :usr1 [4] :usr0 [6] :usr2

mp flag

mp parent

[5] :free slot [7] :free slot

1

0

1

0

1

0

1

2

1

2

1

4

0 0

(c) A segment of mproc

Figure 5.2 – Minix 1.1 Memory Management Process Table (MMPT) structure

Memory management in Minix. In Minix 1.1, the component of memory manage-
ment maintains a process table that describes the processes currently running. Figure 5.2
illustrates the Memory Management Process Table (MMPT) main structure. The array of
structures mproc defined in Figure 5.2(a) stores the process descriptors. Each descriptor
comprises a field mp parent that stores the index of the parent process in mproc, and a
field mp flag that stores the process status. An element of mproc is a process descriptor
when its field mp flag is strictly positive and a free slot if it is null. As in all Unix op-
erating systems, processes form a reversed tree, where each process has a reference to its
parent (namely, the process that created it) and is referred to by its children (the process
that it has created). Figure 5.2(c) depicts the concrete values stored in mproc to describe
the process topology shown in Figure 6.1(b) (the whole mproc table consists of 24 slots,
here we show only 8, for the sake of space). Minix 1.1 uses the three initial elements of
mproc to store the descriptors of the memory management service, the file system service
and the init process. Descriptors of other processes appear in a random order. In the con-
crete state of Figure 5.2(c), init has two children whose descriptors are in mproc[3] and
mproc[4]; similarly, the process corresponding to mproc[4] has a single child the descriptor
of which is in mproc[6]. Moreover, Minix assumes a parent-child relation between mm and
fs, as mm has index 0 and the parent field of fs stores 0.

To abstract the process table state, valid process descriptors and free slots should be
partitioned into different groups. Traditional contiguous partitioning [GRS05, CCL11]
cannot achieve this for two reasons: (1) the order of process descriptors in mproc cannot
be predicted, hence is random in practice, and (2) there is no simple description of the
boundaries between these regions in the program state. The symbolic abstract domain
by Dillig, Dillig and Aiken [DDA10] also fails here as it cannot attach arbitrary abstract

Static Analysis on Array Contents Jiangchao Liu

58 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

1 void cleanup (int child){

2 int parent = mproc[child]. mp_parent;

3 i f (parent == 2){

4 mproc[child]. mpflag = 0;

5 i = 0;

6 while(i < 24){

7 i f (mproc[i]. mpflag > 0)

8 i f (mproc[i]. mp_parent == child)

9 mproc[i]. mp_parent = 2;

10 i = i + 1;

11 }

12 } e l se {

13 \\ cleanup child and its descendants

14 }

15 }

Figure 5.3 – A simplified excerpt of cleanup

2 init

0 mm

1 fs

3 usr14 usr0

6 usr2 5 free 7 free

Figure 5.4 – Effect of cleanup

properties to summarized cells.

Invariants. Our non-contiguous partitioning domain can abstract the process table
state by partitioning valid process descriptors and free slots into different groups. To
be more specific, it can abstract the following global invariants.

• Each valid process descriptor (resp. free slot) has an mp flag which stores a strictly
positive value (resp. null).

• Each valid process descriptor has an mp parent field, that should store a value in
[0, 23] (since the length of array mproc is 24), It represents a valid index in mproc.
This entails the absence of out-of-bound accesses in process table management func-
tions.

Jiangchao Liu Static Analysis on Array Contents

5.2. ABSTRACTION 59

• The mp parent field of any valid process descriptor should be the index of a valid
process descriptor: as a process can only complete its exit phase when its parent
calls wait, failure to maintain a parent for each process could cause a terminating
process to become dangling and never be eliminated.

We denote the conjunction of these properties as Rminix. It is necessary for the verifi-
cation of the memory safety of the operations on the Minix memory management process
table (and of other similar process tables).

System calls. New processes can be created by the system call fork from a parent
process. A process exits after it calls exit and its parent calls wait. These two system
calls form a synchronization barrier such that the process and its parent are set to be
”hanging” and ”waiting” respectively when they reach the barrier first. In Figure 6.1(b),
the process described by mproc[4] would be ”hanging” after it calls exit if mproc[2] is not
”waiting”, and after mproc[2] calls wait, mproc[4] will exit. Function mm init is called
when the operating system is initialized and constructs slots in mproc for the first three
system level processes.

Our non-contiguous partitioning domain needs to verify that (1) initialization function
mm init establishesRminix and that (2) system calls fork, wait and exit preserveRminix.
To achieve this, we design a fully automatic, abstract interpretation-based static analysis.

As an example, in the remainder of this chapter, we focus on an auxiliary function
cleanup, which is called by wait and exit, and that turns elements of mproc that describe
hanging processes into free slots. This function provides a representative view of the
challenges that arise when analyzing the other functions manipulating this process table.
It consists of a case split, depending of the nature of the process to cleanup. Figure 5.3
displays an excerpt of a de-recursified version of cleanup, which handles the case where
the process being cleaned-up is a child of init.

This situation arises if we consider calling cleanup(4) in the state shown in Fig-
ure 5.2(c): indeed, this will cause the removal of user process usr0 the parent of which
is init; this means that process usr2 should become a child of init, while the record
formerly associated to usr0 turns into a free slot, the result is shown in Figure 5.4.

The correctness of the whole process table management relies on the fact that system
calls wait and exit will always call cleanup in a state where the process table is correct.
This means that function cleanup should always be called in a state that satisfies the pre-
condition defined by the correctness condition Rminix. To verify this automatically, our
analysis shall abstract Rminix and perform a forward abstract interpretation of cleanup,
computing sound post-conditions and loop invariants [CC77].

5.2 Abstraction

In this section, we formalize the abstract elements in our domain and their concretiza-
tion. An abstract element consists of a combination of memory predicates and numeric

Static Analysis on Array Contents Jiangchao Liu

60 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

predicates.

5.2.1 Memory Predicates

To highlight the main idea of our domain, we assume that there is only one array a in
the concrete states. In an abstract element, the memory predicate P partitions the array
a into groups of cells, which may be non-contiguous, unlike array partitioning based on
segments such as [GRS05, CCL11].

Definition 5.2 (Memory predicates). We use f to denote fields in F, a memory predicate

P may be an atomic memory predicate Gi@~f 7→ ~IfGi
or separating conjunctions of atomic

memory predicates, as defined below.

P := Gi@~f 7→ ~IfGi
Predicates on a possibly empty group of cells

| P ∗ P Separating conjunction

An atomic memory predicate Gi@~f 7→ ~IfGi
describes a possibly empty group of array

cells. In this predicate, the group name is denoted by Gi (where i is a sequential number),
which is also a set variable (representing a set of values) that abstracts the indexes in the

group. A vector of set variables ~IfGi
abstracts the values stored in each field in the group.

Since all atomic memory predicates in our domain follow the same style, we usually use

Gi to abbreviate Gi@~f 7→ ~IfGi
. We write G for the set of group names. The memory

predicates heavily utilize set variables to denote group indexes as well as contents. That
is because array cells in a given group are not necessarily contiguous, thus upper / lower
bounds could not precisely describe the set of indexes in a group.

The separating conjunction of two memory predicates P0 ∗ P1 means that P0 and P1

describe disjoint memory locations, and that P0 ∗ P1 describes the union of the sets of
locations described by either of them. Therefore, a conjunction of memory predicates that
constrain the whole array a represents a possibly non-contiguous partition of it.

Example 5.1 (Memory predicates). The array in the concrete state in Figure 5.2(c) can
be partitioned into two groups: valid process descriptors (group G0) and free slots (group
G1). The memory predicate in that example can be described as follows.

G0@{mp flag 7→ Imp flag
G0

, mp parent 7→ Imp parent
G0

}
∗ G1@{mp parent 7→ Imp parent

G1
, mp parent 7→ Imp parent

G1
}

If we use abbreviation, this memory predicate can be denoted as G0 ∗ G1.

5.2.2 Numeric Predicates

To characterize each group, our domain utilizes numeric predicates to describe numeric
properties of each group.

Jiangchao Liu Static Analysis on Array Contents

5.2. ABSTRACTION 61

Definition 5.3 (Numeric predicates). In this chapter, we let c ∈ V denote values. Atan-
dard variables from programs and set variables from memory predicates P are denoted by
x ∈ X and y ∈ Y respectively.

Numeric predicates are composed of two parts: set constraints and pure-numeric pred-
icates, where set constraints are defined as

g ::= x ∈ Gi0] . . .]Gin | Gi0 ⊆ Gi1] . . .]Gin | g ∧ g

and pure-numeric predicates are defined as

u ::= c0x0 + . . .+ cm−1xm−1 + c′0y0 + . . .+ c′n−1yn−1 ≤ c′′ | x 6= c | x0 6= x1 | u ∧ u

Thus numeric predicates Q can be defined as g ∧ u

A set constraint g can be a basic var-set constraint x ∈ Gi0] . . .]Gin , which states
that the value of variable x lies in one of the groups Gi0 , . . . , Gin , or a basic set-set
constraint Gi0 ⊆ Gi1] . . .]Gin , which states that the cells in group Gi0 is in the disjoint
union of groups Gi1 , . . . , Gin , or a conjunction of basic set constraints.

A pure-numeric constraint u can be a disequality relation, an inequality relation or
a conjunction of such relations. Pure-numeric constraints can be applied on both set
variables y (i.e., set variables introduced by memory predicates) and standard variables x
(i.e., variables that represent one value, like program variables in X). Set variables y like
Gi in a memory predicate, denote sets of values. An inequality on set variables means
that, any value in the sets represented by these variables should satisfy the constraint.
For example, 0 ≤ G0 ≤ 99 means that G0 only contains indexes between 0 and 99 (i.e.,
the semantics of arithmetic/logical operators is the same with that in Chapter 4).

The representation of such constraints requires a numeric domain that can abstract
both standard variables and set variables. The Maya+ domain functor of Chapter 4 can
describe such numerical constraints. However it cannot express several properties that are
required in our domain, such as the fact that a set variable describes a non empty set, or
a disequality between a set variable and a non-set variable. Therefore, our domain uses
an extension of Maya+ in Chapter 4 that can express such constraints: first, the domain
attaches a cardinality variable |Gi| to group Gi so as to represent its number of elements;
second, it relies on a reduced product [CC77] with a domain expressing only disequality
constraints. We still use the original notations (e.g., a pure-numeric constraint is denoted
with a Maya+ abstract element u) of Maya+ domain functor in this chapter to denote
this extension of Maya+.

Example 5.2 (Numeric predicates). Let us assume set variable G corresponds exactly to
{0, 1}. This can be represented exactly using pure-numeric constraints 0 ≤ G ≤ 1 and
|G| = 2.

Definition 5.4 (Abstract states in the array domain). An abstract state a ∈ H is a tuple
(P, Q) where Q constrains set variables from P and program variables.

Static Analysis on Array Contents Jiangchao Liu

62 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

G0 = {0, 1, 2, 3, 4, 6, . . .}

G1 = {5, 7, . . .}

2 init0 mm

1 fs 3 usr14 usr0

6 usr2 5 free 7 free

(a) The topology of the partition on
mproc

Memory: G0 G1

Numeric: 0 ≤ |G0| ≤ 24 ∧ |G0|+ |G1| = 24 ∧ 0 ≤ G0 ≤ 23

∧ 1 ≤ Imp flag
G0

≤ 63 ∧ Imp flag
G1

= 0
∧ 0 ≤ Imp parent

G0
≤ 23 ∧ Imp parent

G0
⊆ G0

(b) Abstract state Rminix with partitioning

Figure 5.5 – A partitioning of mproc based on non contiguous groups

Abstraction of Invariant Rminix in MMPT. To capture the properties expressed
by Rminix, our domain should utilize an abstraction that splits the set of cells in the
array mproc into two groups of cells: the first group consists of valid process descriptors
whereas the second group collects the free slots. The topology of this partition is shown
in Figure 5.5(a).

Once the cells of the array are partitioned into these two groups, the values of the
individual fields of the slots can be abstracted in a rather precise manner as shown in Fig-
ure 5.5(b). According to Rminix, the elements of group 0 satisfy the following correctness
conditions.

• Their indexes are in [0, 23], which we note 0 ≤ G0 ≤ 23.

• The size of group 0 is between 0 and 24, which we note 0 ≤ |G0| ≤ 24.

• Their flag fields are in [1, 63], which we note 1 ≤ Imp flag
G0

≤ 63 (Field mp flag uses
6 bits to indicate the state of that cell, and valid process descriptors have a strictly
positive flag).

• Their parents are valid indexes, which we note 0 ≤ Imp parent
G0

≤ 23.

• Their parent fields are indexes of valid process descriptors, hence are also in group
0, which we note Imp parent

G0
⊆ G0.

Jiangchao Liu Static Analysis on Array Contents

5.2. ABSTRACTION 63

This abstraction does not assume each group consists of a contiguous set of cells. The
non-contiguousness of groups is represented by a winding separation line in Figure 5.5(b).
To characterize groups, our abstraction relies not only on constraints on indexes, but also
on semantic properties of the cell contents: while groups 0 and 1 correspond to a similar
range, the mp flag values of their elements are different (any value in [1, 63] in group
0 and 0 in group 1). Therefore our abstraction can abstract both contiguous and non
contiguous partitions. In this example, we believe the abstract state of Figure 5.5(b) is
close to the programmer’s intent, where the array is a collection of unsorted elements.

Concretization. To define the concretization of abstract states, we first define the
concretization of numeric predicates, which maps Q to a set of valuations. A valuation
is a function ν ∈ X → V ∪ Y → P(V), that maps standard variables to values and set
variables to sets of values. The concretization of Q is a set of valuations that satisfy all
constraints in Q.

Definition 5.5 (Concretization of numeric predicates). This concretization γQ of numeric
predicates is expressed using a relation |= as follows.

γQ(Q) = {ν | ν |= Q ∧ (∀Gi ∈ G, |ν(Gi)| = ν(|Gi|))}
ν |= x ∈ Gi0] . . .]Gin iff ∃k ∈ {0, . . . , n}, ν(x) ∈ ν(Gik)
ν |= Gi0 ⊆ Gi1] . . .]Gin iff ν(G0) ⊆

⊎
1≤k≤n ν(Gik)

ν |= c0x0 + . . .+ cm−1xm−1 + c′0y0 + . . .+ c′n−1yn−1 ≤ c′′

iff ∀v0 ∈ ν(y0), . . . , vn−1 ∈ ν(yn−1),
c0ν(x0) + . . .+ cm−1ν(xm−1) + c′0v0 + . . .+ c′n−1vn−1 ≤ c′′

ν |= x0 6= x1 iff ν(x0) 6= ν(x1)
ν |= x 6= c iff ν(x) 6= c
ν |= u0 ∧ u1 iff ν |= u0 and ν |= u1

ν |= g0 ∧ g1 iff ν |= g0 and ν |= g1

ν |= g ∧ u iff ν |= g and ν |= u

Definition 5.6 (Concretization of abstract states in the array domain). This concretiza-
tion γa of abstract states maps an abstract state in the domain to a set of concrete states
and valuations that satisfy both the memory and numeric predicates, as shown below.

γa(P, Q) = {σ ∈ S | ∃ν ∈ γQ(Q), σ |= (P, ν) ∧ ∀x ∈ X, ν(x) = σ(x)}

σ |= (Gi@~f 7→ ~IfGi
, ν) iff ∀f ∈ F,∀j ∈ ν(Gi), σ(a[j] · f) ∈ ν(Ifi)

σ0 ∗ σ1 |= (P0 ∗ P1, ν) iff σ0 |= (P0, ν) ∧ σ1 |= (P1, ν)

Example 5.3 (Concretization of abstract states in the array domain). Given a con-
crete state of array a in Figure 5.6(a), an abstract element in our domain that over-
approximates the concrete state is shown in Figure 5.6(b). Group G0 (resp., G1) com-
prises all the cells that store positive (resp., negative) values, the numeric predicates reveal
that all three positive values are stored in the first five cells of the array.

Static Analysis on Array Contents Jiangchao Liu

64 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

a[0] value = 2
a[1] value = −110
a[2] value = 2
a[3] value = −120
a[4] value = 8
a[5] value = −100
a[6] value = −100

i = 4

(a) Concrete array a

Memory: G0 G1

Numeric: 2 ≤ IvalueG0
≤ 8 ∧ |G0| = 3

∧ − 120 ≤ IvalueG1
≤ −100 ∧ |G1| = i = 4

∧ 0 ≤ G0 ≤ 4 ∧ 1 ≤ G1 ≤ 6

(b) Abstract state a

Figure 5.6 – An concrete state and a corresponding abstact state

If we concretize the abstract element in Fig 5.6(b), then one tuple in the concretization
result is shown as below.

ν : G0 7→ {0, 2, 4}
G1 7→ {1, 3, 5, 6}
|G0| 7→ 3
|G1| 7→ 4
IvalueG0

7→ {2, 8}
IvalueG1

7→ {−100,−110,−120}

σ : (a, 0, value) 7→ 2
(a, 1, value) 7→ −110
(a, 2, value) 7→ 2
(a, 3, value) 7→ −120
(a, 4, value) 7→ 8
(a, 5, value) 7→ −100
(a, 6, value) 7→ −100

5.3 Basic Operators on Partitions

In this section, we define a set of basic operations on partitions, that abstract transfer
functions and lattice operators will use in order to modify the structure of partitions.

Splitting. Unless it is provided with a pre-condition that specifies otherwise, our anal-
ysis initially partitions each array into a single group, with unconstrained contents. Ad-
ditional groups can get introduced during the analysis, by a basic operator split.

Operator split applies to an abstract state a, an array a and a group Gi corresponding
to array a and replaces it with two groups Gi, Gj (where Gj is a fresh group name). The
two new groups inherit the properties of the group they replace (membership in the
old group turns into membership in the union of the two new groups). Assuming that
a = (P, Q), and with the above notations, split performs the following actions:

• It extends P with memory predicate Gj on the fresh group Gj.

• The pure-numeric predicates on indexes and fields of group Gj are inherited from
those of Gi, and every occurrence of |Gi| is replaced by |Gi|+ |Gj|.

• The set relation predicates on Gj are inherited from those on Gi.

Jiangchao Liu Static Analysis on Array Contents

5.3. BASIC OPERATORS ON PARTITIONS 65

P : G0

Q : IvalueG0
= 0

∧ |G0| = 100
∧ i ∈ G0

(a) a

P :

Q :

G0 G1

0 ≤ G0 ≤ 99 ∧ IvalueG0
= 0

∧ IvalueG1
= 0 ∧ G1 = i

∧ |G0| = 99 ∧ |G1| = 1

(b) split(a, i)

Figure 5.7 – Partition splitting in array a from abstract state a

In practice, the analysis often needs to use split in order to precisely handle an update
into an array, or the reading of a value in an array. Therefore, we overload split so that
it can also be applied to an abstract state a, an array a and a variable x known to store
a valid index in a, and splits a so as to materialize the cell pointed to by x. This can
only be done when the value of x can be tracked as an element of a specific group of a;
operator split then splits this group into a group of one element, of index x and another
group. This scheme will allow strong updates into the array.

Example 5.4 (The splitting operator). Figure 5.7(a) defines an abstract state (P, Q) with
a single array, fully initialized to 0, and represented by a single group. Applying operator
split to that abstract state and to index i produces the abstract state of Figure 5.7(b),
where G1 is a group with exactly one element, with the same constraints on field value

as in the previous state.

Theorem 5.1 (Soundness of the splitting operator). Suppose a is an abstract state, Gi

a group and a an array, the operator split is sound in the sense that

γa(a) ⊆ γa(split(a, a, Gi))

Proof. Let a = (P, Q) be an abstract state, and Gi be a group of a in a. We assume
that splitting Gi in a produces groups Gi′ , Gk (Gi′ is actually Gi in the output, we add
a superscript to distinguish it from the Gi in the input) in a′ = split(a, a, Gi). Let
σ ∈ γa(a). We write ν for the witnesses of σ ∈ γa(a) in the definition of Figure ??.

Then, we define ν ′ from ν by:
• fixing ν ′(Gi′) and ν ′(Gk) so that ν ′(Gi′) ∪ ν ′(Gk) = ν(Gi);
• adding set variables (fields, size, index) for groups Gi′ , Gk, that inherit from the

values of the variables corresponding to Gi:
– ν ′ maps |Gi′ | and |Gk| to the respective sizes of ν ′(Gi′) and ν ′(Gk);
– other variables take the same value as in ν.

Then, since the relation predicates on Gi′ and Gk inherit those on Gi, to prove that ν ′

are witnesses of σ ∈ γa(a′), we simply need to check the implication relations in the
concretization function.

This proves the soundness of split.

Static Analysis on Array Contents Jiangchao Liu

66 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

P : G0

Q : IvalueG0
= 0

∧ |G0| = 100
∧ i ∈ G0

(a) a

P :

Q :

G0 G1

0 ≤ G0 ≤ 99 ∧ IvalueG0
= 0

∧ 0 ≤ G1 ≤ 99 ∧ IvalueG1
= 0

∧ |G0| = 100 ∧ |G1| = 0

(b) create(a)

Figure 5.8 – Partition creation in array a from abstract state a

This operator may lose a little precision on the sizes of the generated groups when the
underlying numeric domain is not complete on linear assignments.

Creation of an empty group. Operator create extends the partition of an existing
array with a new, empty group. It is used by join and widening, so as to generalize
abstract states. By nature, an empty group satisfies any field property, thus the analysis
may assign any numeric property to the fields of the new group, depending on the context.

When applied to abstract state a = (P, Q) and to array variable a, operator create
performs the following operations:

• It introduces a fresh group Gj to the memory predicate P on array a.

• The size constraint |Gj| = 0 is added to Q.

• Additional constraints on the index and the fields of group Gj are added to Q.

• For each group Gi in P and each f ∈ Fa, the set relations IfGj
⊆ Gi are added to Q.

Example 5.5 (The creation operator). Figure 5.8(a) defines an abstract state (P, Q) with
a single array, fully initialized to 0, and represented by a single group. Similarly, Fig-
ure 5.8(b) shows a possible result for create.

Theorem 5.2 (Soundness of the creation operator). Operator create is sound in the
sense that, for all abstract state a, for all array variable a,

γa(create(a, a)) = γa(a)

Proof. In the new group Gj created by operator create, the predicate |Gj| = 0 indicates
that the addition of the new group does not affect the concretization.

Jiangchao Liu Static Analysis on Array Contents

5.3. BASIC OPERATORS ON PARTITIONS 67

P :

Q :

G0 G1

0 ≤ G0 ≤ 99 ∧ 3 ≤ IvalueG0
≤ 5

∧ 0 ≤ G1 ≤ 99 ∧ IvalueG1
= 1

∧ |G0| = 50 ∧ |G1| = 50 ∧ i ∈ G0 ∪G1

(a) a

P : G0

Q :
0 ≤ G0 ≤ 99
∧ 1 ≤ IvalueG0

≤ 5
∧ |G0| = 100
∧ i ∈ G0

(b) merge(a, {0, 1})

Figure 5.9 – Merging in abstract state a

Merging groups. Fine-grained abstract states, with many groups can express precisely
complex properties, yet may incur increased analysis cost. In fact, the basic operators
shown so far only add new groups, and removing groups may be required, at least for the
sake of termination. Therefore, the analysis needs to merge distinct groups. This merge
operator occurs as part of join, widening or when other transfer functions detect distinct
groups of a same array enjoy similar properties. Operator merge takes an abstract state
a = (P, Q), an array a and a set of groups of array a as arguments and replaces all the
groups of that set by a single group. For the sake of simplicity, we describe the operations
performed when input set of groups has two elements Gj, Gk (the case of a set of more
than two elements is similar):

• It creates a fresh group name Gi and adds corresponding memory predicate to P;

• The numeric constraints on indexes and fields of Gi over-approximate those on Gk

and Gj; group size |Gi| is assigned with |Gk|+ |Gj| in Q;

• The set relation predicates on Gi over-approximate those on Gk and Gj in Q (namely
any field that is known to be an element of Gj or Gk is then known to be an element
of Gi);

• It removes memory predicates Gj and Gk from P.

Example 5.6 (The merging operator). Figure 5.9(a) defines an abstract state a which
describes an array with two groups. Applying merge to a and set {0, 1} produces the state
shown in Figure 5.9(b), with a single group and coarser predicates, obtained by joining
the constraints over the contents of the initial groups.

Theorem 5.3 (Soundness of the merging operator). Operator merge is sound in the
following sense: For all abstract state a, array variable a, and two groups Gk and Gj in
array a,

γa(a) ⊆ γa(merge(a, a, {Gk, Gj}))

Static Analysis on Array Contents Jiangchao Liu

68 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

Proof. Let a = (P, Q) be an abstract state, and two groups Gk and Gj in P. We assume
that applying merge on Gk and Gj in a produces group Gi (in the algorithm of merge, Gi

will be renamed to Gj or Gk finally, but the renaming does not affect the concretization)
in abstract state a′ = (P

′
, Q
′
).

Let σ ∈ γa(a). We write ν for the witnesses of σ ∈ γa(a) in the definition of Figure ??.
We now show that σ is also in the concretization of a′, by constructing a witnesses ν ′:

1. fixing ν ′(Gi) so that ν ′(Gi) = ν(Gj) ∪ ν(Gk);
2. adding new variables (fields, size, index) for group Gi, that inherit from the values

of the set variables corresponding to Gj, Gk:
(a) ν(|Gi|) = ν(|Gj|) + |ν(Gk|);
(b) similarly to G., fields are set variables and defined by ν(IfGi

) = ν(IfGj
)∪ ν(IfGk

);
3. removing all set variables corresponding to Gj, Gk.

Then, since the set relation predicates on Gi over-approximate those on Gk and Gj in
Q, to prove that ν ′ are witnesses of σ ∈ γa(a′), we simply need to check the implication
relations in the concretization function.

This proves the soundness of merge.

The precision loss in merging depends on the similarity of the groups being merged.
Our analysis loses no precision when the merged groups are exactly the same.

Reduction. Our numeric predicates can be viewed as a product of set relations and
pure-numeric predicates and can benefit from reduction [CC79]. That is, if we consider
numeric predicate Q = g∧u, components g and u may allow to refine each other. Such steps
are performed by a partial reduction operator reduce, which strengthens the set relations
and pure-numeric predicates, without changing the global concretization [CC79]. The
operations of reduce are based on the numeric implications of set relation predicates. It
consists of two directions:

• from g to u: set relations always imply pure-numeric constraints over the size and
indexes of array groups, e.g., if x ∈ Gi, then group Gi has at least one element
(|Gi| ≥ 1), and if Gi < 5, then x < 5;

• from u to g: more precise set relations can be inferred from the pure-numeric rela-
tions between variables and group indexes, e.g., if x < Gi, then reduce removes Gi

from x ∈ Gi ∪Gj in g.

Note that reduction could be overly costly to compute in general. To avoid that, reduction
is done lazily: for instance, the analysis will attempt to generate relations between x and
Gi only when x is used as an index to access the array Gi corresponds to.

Theorem 5.4 (Soundness of the reduction operator). Suppose a is an abstract state,
operator reduce does not change concretization.

γa(reduce(a)) = γa(a)

Jiangchao Liu Static Analysis on Array Contents

5.4. TRANSFER FUNCTIONS 69

Proof. To establish the soundness of reduce, we simply need to consider each of the
reduction cases mentioned above. We discuss only the first case, as the proof of the other
cases is similar. We let (P, g ∧ u) be an abstract state, such that x ∈ Gi appears in g.
Then for any (σ, ν) ∈ γa(P, g∧ u), we have σ(x) ∈ ν(Gi), which implies |ν(Gi)| ≥ 1. Thus
it is sound to add constraint |Gi| ≥ 1 to u.

Principles of Partitioning. The basic operators on partitions are utilized by transfer
functions and lattice operators to manipulate groups. The group modifications follow the
principles listed below:

• No disjunctions are introduced: our analysis does not produce disjunctions even if
it has to lose some precision.

• Groups with similar properties get merged: our analysis computes the similari-
ties between groups and decides which groups to be merged, especially in join and
widening.

• Assignments are based on strong updates: our analysis generates a group which
contains only the cell being assigned to allow strong update.

• The analysis strives to limit the number of groups: the analysis cost increases dra-
matically with the the number of groups. Therefore our analysis merges groups
whenever merging is an option (e.g., in an assignment and when the group an ar-
ray cell belongs to is not known, our analysis merges all possible groups instead of
generating a disjunction; this helps keeping the number of groups reasonable).

5.4 Transfer Functions

Our array static analysis performs a forward abstract interpretation [CC77]. In this sec-
tion, we study the abstract transfer functions for tests (Section 5.4.1) and assignments
(Section 5.4.2). Each transfer function should over-approximate the concrete effect of the
corresponding program construction in the abstract domain.

5.4.1 Analysis of Conditions

The concrete semantics of a condition r is a function that inputs a set of states S and
returns the subset of S in which r evaluates to 1. Therefore, the abstract interpretation
of a test from abstract state a = (P, Q) should narrow the set of concrete states described
by a by filtering out states in which r does not evaluate to 1. Intuitively, it proceeds by
strengthening constraints in the pure-numeric component u, and propagating them into
g thanks to reduce.

However, the application of test r to pure-numeric constraints u is not immediate,
since the array cells that occur in r do not necessarily correspond directly to variables

Static Analysis on Array Contents Jiangchao Liu

70 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

in u. As an example, let us consider condition test a[i].f == 0 in an abstract state
where a is partitioned into two groups G0, G1 and where the only constraint available
is i ∈ G0 ∪ G1: then, the group array cell a[i] belongs to cannot be identified without
ambiguity. Moreover, each group may contain several elements, and its f field may be
described by a set variable. Therefore, our analysis cannot refine a[i].f.

To derive a precise post-condition, our analysis relies on a local disjunction such that
each case covers a group the index may belong to, and allows for a more precise test.
In the above example, the analysis will analyze test a[i].f == 0 in a disjunction of two
abstract states where the set relation is replaced by i ∈ G0 (resp., i ∈ G1). This process
is called enumerate. The analysis then applies the numerical domain condition test
operator to each disjunct. In this case, it will apply IfG0

== 0 to disjunct 0 and IfG1
== 0

to disjunct 1. Note that u may have set variables (whenever a group describes more than
a single array cell, its fields are set variable), and that the actual condition test may not
strengthen the constraints: for instance, if the size of group G0 is not known to be exactly
one, condition test IfG0

== 0 will not strengthen the constraints in u. This suits the weak

version of guard function guard
U

[.]w in the Maya+ functor. After the numerical condition
test operator has been applied to all disjuncts, the analysis applies operator reduce, and
merges all resulting disjuncts.

Note that the abstract test operator does not change the memory predicates, thus, all
the disjuncts generated by the above process can be merged by a trivial join operator,
which simply over-approximates the properties for each group (a more general join oper-
ator, able to deal with abstract states with incompatible partitions will be presented in
Section 5.5):

Definition 5.7 (Local disjunction join). Utilizing the join operator join
U

of Maya+ do-
main, we define the local disjunction join operator join

a

≡ as

join
a

≡((P, Q0), (P, Q1)) = (P, join
U

(u0, u1) ∧ (g0 ∩ g1))

Theorem 5.5 (Soundness of local disjunction join). The local disjunction join operator
join

a

≡ is sound.

∀i ∈ {0, 1}, γa(P, Q0) ⊆ γa(join
a

≡((P, Q0), (P, Q1)))

Definition 5.8 (The transfer function for condition tests). The algorithm of the abstract
transfer function guard

a
[.] for condition tests is fully described in Figure 5.10. Operator

enumerate : H → P(H) generates the set of every possible state in which each array cell
in r belongs to exactly one group. Namely, γa(a) = ∪{γa(ai) | ai ∈ enumerate(a)}, and
in any ai, and for any array cell a[x] in r, the group that a[x] belongs to is deterministic.

Then, condition test guard
U

[.]w of the Maya+ domain and the reduction operator are
applied in each disjunctive state. All states are eventually joined together by the local
disjunction join operator join

a

≡.

Jiangchao Liu Static Analysis on Array Contents

5.4. TRANSFER FUNCTIONS 71

guard
a
[r](P, g ∧ u)){

r0∼k, g0∼k = enumerate(r, g);
foreach(i ∈ {0, 1, . . . , k}){

ui = guard
U

[ri]w(u);

P, ui, gi = reduce(P, ui, gi);
}
(P, u′, g′) = join

a

≡((P, u0, g0), (P, u1, g1), . . . , (P, uk, gk));
return (P, u′ ∧ g′);

}

Figure 5.10 – The algorithm of the condition test transfer function

Theorem 5.6 (Soundness of the transfer function for condition tests). The abstract trans-
fer function guard

a
[.] is sound in the sense that:

guardJrKγa(a) ⊆ γa(guard
a
[r](a)))

Proof. The soundness of the condition test operator guard
a
[.] follows from the fact that

operators enumerate and reduce do not change the concretization, and from the sound-

ness of the condition test operator guard
U

[.]w of the numeric domain, and of the local
disjunction join operator join

a

≡.

The precision loss in condition test mainly comes from that in the condition test of
Maya+ domain.

Example 5.7 (The transfer function for condition tests). Now, let us look at the function
cleanup in Figure 5.3. At the beginning of the first fixpoint iteration over the loop at line
6, the abstract state is shwon in Figure 5.11. From numeric constraints over i and group
indexes, mproc[i] may be in G0 or G1. Then, the analysis of test mproc[i].mp flag > 0
at line 7 will locally create two disjuncts corresponding to each of these groups. However,
in the case of G1, Imp flag

G1
= 0, thus the numeric test Imp flag

G1
> 0 will produce abstract

value ⊥ denoting the empty set of states. Therefore, only the second disjunct (the case
corresponding to G0) contributes to the abstract post-condition. Thus, the analysis derives
i ∈ G0.

5.4.2 Assignment

Given an l-value l and an expression r, the concrete semantics of the assignment l = r
writes the value of r into the cell that l evaluates to. On the abstract level, given abstract
pre-condition a = (P, Q), an abstract post-condition for l = r can be computed in two
steps:

1. materialization of the memory cell that gets updated,

Static Analysis on Array Contents Jiangchao Liu

72 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

G0 G1 G2P :

Q : 0 ≤ G0 ≤ 23 ∧ 0 ≤ G1 ≤ 23 ∧ G2 = child

∧ Imp flag
G1

= 0 ∧ 0 ≤ Imp parent
G0

≤ 23 ∧ 0 ≤ Imp parent
G2

≤ 23
i ∈ G0 ∪G1

Figure 5.11 – The abstract state before the condition test at line 7

2. update of the numeric constraints on the materialized cell fields in U using assign
U

[.],
and update of the set relations, and application of the reduction operator to the re-
sulting abstract state.

In the following, and unless specified otherwise, we mainly focus on assignments that write
on array cells.

• Step 1: Materialization. When the l-value l denotes an array cell, the analysis
first materializes it into a group consisting of a single cell, so that strong updates
can be carried out on Q. To achieve this, the analysis computes which group(s) l may
evaluate into in abstract state a. If there is a single such group Gi, that contains
a single cell (i.e., |Gi| = 1), then materialization is already achieved. If there is
a single such group Gi, and |Gi| is greater than 1, then the analysis calls split in
order to divide Gi into a group of size 1 and a group containing the other elements.
Last, when there are several such groups (e.g., when l is a[i] and i ∈ G0 ∪G1), the
analysis first calls merge to merge all such groups and then falls back to the case
where l can only evaluate into a single group. This process is formalized as operator
materialize : {l} ×H → H.

Note that in the last case, the merge of several groups may incur a loss in precision
since the properties of several groups get merged before the abstract assignment
takes place. We believe this loss in precision is acceptable here. Another option
would be to produce a disjunction of abstract states, yet it would increase the
analysis cost and the gain in precision would be unclear, as programmers typically
view those disjunctions of groups of cells as having similar roles. Our experiments
(Section 5.7) confirm this intuition.

• Step 2: Constraints update. New relation predicates can be inferred by operator
propagate : {l = r} × {g} → {g}. It propagates relation predicates in two ways:
(1) if both sides of the assignment are standard variables, e.g., v = u, and we have
u ∈ Gi, then after assignment, we get v ∈ Gi; (2) if the right hand side is an array
cell as in parent = mproc[child].mp parent in the example of Figure 5.3, if child
stores an index in group G0 (child ∈ G0), the operator first looks for relations
between fields and indexes such as Imp parent

G0
⊆ G0, and propagates them to the

l-value as parent ∈ G0.

Jiangchao Liu Static Analysis on Array Contents

5.4. TRANSFER FUNCTIONS 73

P : G0 G1 G2

Q :
0 ≤ G0 ≤ 4 ∧ 5 ≤ G1 ≤ 9 ∧ 10 ≤ G2 ≤ 14
∧ IvalueG0

= 0 ∧ IvalueG1
= 1 ∧ IvalueG2

= 0
∧ i ∈ G0 ∪G2

(a) Pre-condition

P : G0 G1 G3

Q :
0 ≤ G0 ≤ 14 ∧ 5 ≤ G1 ≤ 9 ∧ G3 = i

∧ IvalueG0
= 0 ∧ IvalueG1

= 1 ∧ IvalueG3
= 2

∧ i ∈ G3

(b) Post-condition

Figure 5.12 – The pre-and post-condition of assignment a[i] = 2

In this phase, the numeric assignment relies on local disjuncts that are merged
right after the abstract assignment, as we have shown in the case of condition tests
(Section 5.4.1). The reduction operator is applied after both numeric constraints
and set relations are updated.

Definition 5.9 (The transfer function for assignments). The algorithm for the analysis
of assignment assign

a
[.] is formalized in Figure 5.13. Operator materialize is used to

materialize the array cell to be updated . Operator enumerate generates every possible
state in which each array cell in l belongs to exactly one group as in Section 5.4.1. Then,

the assignment assign
U

[.] of the Maya+ domain, operator propagate and the reduction
operator are applied on each disjunctive state. Finally, all states are eventually joined
together by the local disjunction join operator join

a

≡.

Example 5.8 (The transfer function for assignments). We consider a[i] = 2 and abstract
pre-condition shown in Figure 5.12(a). The l-value evaluates into an index in G0 or G2,
The result of materialization is shown in Figure 5.12(b), we can see that groups G0 and
G2 are merged into group G0 and a[i] is split as the sole element of group G3. Then, the
assignment boils down to a strong update on set variable IvalueG3

.

Theorem 5.7 (Soundness of the transfer function for assignments). Abstract transfer
function assign

a
[.] is sound in the sense that:

statJl = rK(γa(a)) ⊆ γa(assign
a
[l = r](a))

Static Analysis on Array Contents Jiangchao Liu

74 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

assign
a
[l = r](P, u ∧ g){

(P, u ∧ g) = materialize(l, (P, u ∧ g));
r0∼k, g0∼k = enumerate(r, g);
foreach(i ∈ {0, 1, . . . , k}){

ui = assign
U

[l = ri](u);
gi = propagate(l = ri, gi);
P, ui, gi = reduce(P, ui ∧ gi);

}
(P, u ∧ g) = join

a

≡((P, u0 ∧ g0), (P, u1 ∧ g1), . . . , (P, uk ∧ gk));
return (P, u ∧ g);

}

Figure 5.13 – The algorithm of the assignment transfer function

Proof. The soundness of the assignment operator assign
a
[.] follows from the fact that

operators enumerate and reduce do not change the concretization, from the soundness

of the assignment operator assign
U

[.] of the numeric domain, from the soundness of
propagate and materialize (since operators split and merge are sound), and of the
local disjunction join operator join

a

≡.

Remark 5.1. Our analysis performs strong updates in assignments, which capture the
precise information on the concrete memory cells being modified. However, the merging
phase that occurs before strong update might lead to a precision loss. Without such a
merge, the analysis would have to enumerate all the groups an index may belong to, and
to carry out a case analysis over this set of groups (each case would require a splitting
of a group), which could turn out overly costly. This motivates the decision to perform
the merge before the update. Additionally, and without a merging phase, the number of
groups would be increased by one for each assignment, which could significantly impact
the analysis performance.

Our analysis does not materialize the array elements that participate in condition
tests. The reason is that compared to assignments, the precision our analysis gains from
materialization in condition test does not seem worth the increased cost it would entail.
Indeed, if there is no read / write operation in a[i] after it has been materialized in
condition test, there would be no precision gain.

Example 5.9 (The transfer function for assignments). As remarked in Section 5.1.2,
function cleanup should be called only in states that satisfy Rminix, and where predicate
child ∈ G0 ∧ child > 2 holds (which means mproc[child] may be any element of group
0 the index of which is greater than 2). This is shown in Figure 5.14(a). After the
assignment in line 2, the transfer function infers that parent is also an index in group
G0, since Rminix entails that Imp parent

G0
⊆ G0 (the parent of any valid process is also a valid

Jiangchao Liu Static Analysis on Array Contents

5.5. JOIN, WIDENING AND INCLUSION CHECK 75

Memory: G0 G1

Numeric: 0 ≤ |G0| ≤ 24 ∧ |G0|+ |G1| = 24 ∧ 0 ≤ G0 ≤ 23

∧ 1 ≤ Imp flag
G0

≤ 63 ∧ Imp flag
G1

= 0
∧ child ∈ G0 ∧ child > 2 ∧ Imp parent

G0
⊆ G0

(a) The pre-condition of the assignment at line 2

P : G0 G1 G2

Q : 0 ≤ G0 ≤ 23 ∧ G2 = child

∧ 0 ≤ |G0| ≤ 23 ∧ |G2| = 1 ∧ 1 ≤ Imp flag
G0

≤ 63

∧ Imp flag
G2

= 0 ∧ 0 ≤ Imp parent
G0

≤ 23 ∧ 0 ≤ Imp parent
G2

≤ 23
∧ child ∈ G2 ∧ Imp parent

G0
⊆ G0 ∪G2 ∧ Imp parent

G2
⊆ G0 ∪G2

(b) The post-condition of the assignment at line 4

Figure 5.14 – Analysis on two assignments

process). The resulting abstract state is with set relation parent ∈ G0. At line 4, array
cell mproc[child] is modified, and while this cell is known to belong to group G0, this group
may have several elements (it has at least one element since child ∈ G0, thus |G0| ≥ 1).
Therefore, and in order to perform a strong update, our analysis first materializes the
array element that is being modified, by splitting group G0 into two groups, labeled G0

and G2, where group G2 has exactly one element, corresponding to mproc[child] (which
is also expressed by child ∈ G2). Both groups inherit predicates from former group G0.
Since group G2 has a single element (|G2| = 1) which corresponds exactly to the modified
cell, the analysis can perform a strong update at this stage, and it generates the abstract
state at Figure 5.14(b).

5.5 Join, Widening and Inclusion Check

Our analysis proceeds by standard abstract interpretation, and uses widening and inclu-
sion check to compute abstract post-fixpoints for loops and abstract join for control flow
union (e.g., after an if statement or unrolled iterations in loops). All these operators
face the same difficulties: they may be applied to a pair of abstract states that do not
have compatible memory predicates (either the numbers of partitions are different, or the
groups that appear in both arguments have radically different meanings), thus, they may
need to “re-partition” their arguments before they can compute any precise information.
We discuss this issue in detail in the case of join.

Static Analysis on Array Contents Jiangchao Liu

76 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

P :

Q :

G0 G1

0 ≤ G0 ≤ 4 ∧ 2 ≤ IvalueG0
≤ 8

∧ 1 ≤ G1 ≤ 6 ∧ −120 ≤ IvalueG1
≤ −100

∧ i ∈ G0 ∧ |G0| = 3 ∧ |G1| = 4

(a) Abstract state a0

P :

Q :

G0 G1

1 ≤ G0 ≤ 6 ∧ −120 ≤ IvalueG0
≤ −100

∧ 0 ≤ G1 ≤ 4 ∧ 2 ≤ IvalueG1
≤ 8

∧ i ∈ G1 ∧ |G0| = 4 ∧ |G1| = 3

(b) Abstract state a1

P :

Q :

G0 G1

0 ≤ G0 ≤ 6 ∧ −120 ≤ IvalueG0
≤ 8

∧ 0 ≤ G1 ≤ 6 ∧ −120 ≤ IvalueG1
≤ 8

∧ 3 ≤ |G0| ≤ 4 ∧ 3 ≤ |G1| ≤ 4

(c) Imprecise join result

P :

Q :

G0 G1

1 ≤ G0 ≤ 6 ∧ −120 ≤ IvalueG0
≤ −100

∧ 0 ≤ G1 ≤ 4 ∧ 2 ≤ IvalueG1
≤ 8

∧ i ∈ G1 ∧ |G0| = 4 ∧ |G1| = 3

(d) Precise join result

Figure 5.15 – Impact of the group matching on the abstract join

5.5.1 Join and the Group Matching Problem

Abstract join should compute an abstract state whose concretization over-approximates
that of both of its arguments.

The partition compatibility problem. The local join operator join
a

≡ shown in Defi-
nition 5.7 simply over-approximates the properties for each group in abstract states with
the same memory predicates. It cannot be applied to pairs of abstract states that do not
have the same number of groups. In fact, in the context of control flow joins (and not
basic abstract post-conditions as in Section 5.4.1), this operator would not be adequate
even when both inputs have the same number of groups.

Example 5.10 (The partition compatibility problem). Let us assume two abstract states
a0, a1 with the same number of groups for each array, that we assume to have the same
names. Then, the operator join

a

≡ can be applied to these states, and computes an over-
approximation for a0, a1, by joining predicates for each group name, the pure-numeric
predicates and the set relations. However, this simple operator may produce very imprecise
results if applied directly. As an example, we show two abstract states a0 and a1 in
Figure 5.15(a) and Figure 5.15(b), that are similar up to a group name permutation. The
direct join is shown in Figure 5.15(c). We note that the exact size of groups and the
tight constraints over value were lost. Conversely, if the same operation is done after
a permutation of group names, an optimal result is found, as shown in Figure 5.15(d).
This example shows that we need to match groups with similar properties from both inputs
before we can apply join

a

≡.

Obviously, this group matching problem is actually even more complicated in general
as a0, a1 usually do not have the same number of groups. To address this, we need to

Jiangchao Liu Static Analysis on Array Contents

5.5. JOIN, WIDENING AND INCLUSION CHECK 77

define a join operator that modifies partitions and match groups with similar properties
in both inputs to avoid precision loss. In this thesis, we use constraints over partition
group fields into account to decide what partition modification is most adequate. The
algorithm we choose is based on heuristics, yet a non optimal algorithm will impact only
precision, but not soundness.

Ranking function. The group field properties are achieved with the help of a ranking
function rank : G×G→ N, which computes a distance between groups of cells of the same
array in different abstract states by comparing their numerical and relation predicates. A
high value of rank(Gi, Gj) indicates Gi of a0 and Gj of a1 are likely to describe sets of
cells with similar properties.

The value of rank(Gi, Gj) is positively correlated with three factors:

• the number of common constraints on the set variables associated to fields and
indexes in u (including their ranges and, when a relational abstract domain is used,
relations with program variables);

• the number of variables that have var-index relations with both groups;

• the “group origin”, determined by group names in the representation of the abstract
values (the name of a group keeps unchanged if it is not split or merged, thus two
groups with the same name may be from a single group in a predecessor abstract
state).

Re-partitioning. Using the set of rank(Gi, Gj) values, the analysis computes a pairing
↔∈ P(G×G), that is a set of relations between groups of a0 and groups of a1.

The pairing is defined by the rules below:

1. the analysis sorts all pairs of groups decreasingly according to their ranking values,
and then select the first k pairs (k is parametric, usually the analysis lets k be the
maximal number of groups in a0 and a1). That is, if the value of rank(Gi, Gj) is
among the highest k ranking values of all group pairs, a relation Gi ↔ Gj is added
to the pairing;

2. if three relations of the form Gi ↔ Gk, Gi ↔ Gj and Gt ↔ Gj have been added to
the pairing, then the “middle” relation Gi ↔ Gj is removed (since all relations are
added sequentially, this also prevents these relations to forming a circle).

After the two steps above, our analysis transforms both arguments into “compatible”
abstract states using the following (symmetric) principles:

• if there is no Gj such that Gi ↔ Gj, then an empty such group in the right argument
is created with create;

Static Analysis on Array Contents Jiangchao Liu

78 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

join
a
(a0, a1){
foreach(Gi in a0)

foreach(Gj in a1)

Wij = rank(Gi, Gj);

a0, a1 = repartition(W, a0, a1);

return join
a

≡(a0, a1);
}

Figure 5.16 – The algorithm of the join operator

• if Gi ↔ Gj and Gi ↔ Gk, then Gj and Gk are merged by operator merge and the
resulting group is paired with Gi (when more than two groups are to be merged,
merge is assoicative);

• if Gi is mapped only to Gj, Gj is mapped only to Gi, and i 6= j, then one of them
is renamed accordingly (so that they carry the same name).

The process of pairing and partition transforming is formalized as operator repartition.
It takes two abstract states, together with a set of ranking values, and outputs two
“compatible” abstract states. After this process has completed, a pair of abstract states is
produced that have the same number of groups, and such that groups of the same name
carry similar abstract predicates, and join

a

≡ can be applied. This defines the abstract join
operator join

a
.

Definition 5.10 (Join algorithm). The algorithm of join
a

is shown in Figure 5.16. It
first computes the ranking values of all groups from two abstract states by operator rank,
and then repartitions the two states by repartition (with create and merge) according
to the ranking values. Finally, it applies join

a

≡ on two compatible states.

Theorem 5.8 (Soundness of the join algorithm). Join operator join
a

is sound in the
sense that:

∀a0, a1, γ
a(a0) ⊆ γa(join

a
(a0, a1)) ∧ γa(a1) ⊆ γa(join

a
(a0, a1))

Proof. The soundness of the join operator join
a

follows from the fact that the operator
repartition is sound (since create and merge are sound), and from the soundness of
join

a

≡.

Example 5.11 (Join algorithm). We assume a is an integer array of length 100 and i is
an integer variable storing a value in [0, 99], and consider the program of Figure 5.17(a).
At the exit of the if statement, the analysis needs to join the pre-condition (also the state
in false branch) shown in Figure 5.17(c) (that has a single group) and the state in true

Jiangchao Liu Static Analysis on Array Contents

5.5. JOIN, WIDENING AND INCLUSION CHECK 79

0 : if(random()){
1 : a[i] = 1;
2 : }
3 : . . .

(a) Simple join

P :

Q :

G0 G1

0 ≤ G0 ≤ 99 ∧ IvalueG0
= 0

∧ IvalueG1
= 1 ∧ G1 = i

∧ |G0| = 100 ∧ |G1| = 1

(b) True branch

P : G0

Q : IvalueG0
= 0 ∧ |G0| = 100

∧ 0 ≤ G0 ≤ 99 ∧ i ∈ G0

(c) False branch

P :

Q :

G0 G1

0 ≤ G0 ≤ 99 ∧ IvalueG0
= 0

∧ IvalueG1
= 1 ∧ G1 = i ∧ i ∈ G0 ∪G1

∧ 99 ≤ |G0| ≤ 100 ∧ 0 ≤ |G1| ≤ 1

(d) Join result

Figure 5.17 – Join of a one group state with a two groups state

branch shown in Figure 5.12(b) (that has two groups). We note that G0 in Figure 5.17(c)
has similar properties as G0 in Figure 5.17(b), thus they get paired. Moreover, G1 in
Figure 5.17(b) is paired to no group, so a new group is created, and paired to it. At
that stage join

a

≡ applies, and returns the abstract state shown in Figure 5.17(d). In this
abstract state, group G1 with known content is possibly empty abstracts the fact that the
assignment at line 1 is possibly executed.

5.5.2 Widening

The widening algorithm is similar to that of join, but with a different re-partitioning
strategy that ensures termination.

Case of compatible partitions. We first define a restriction of widening to abstract
states with compatible partitions (that is, partitions that have the same numbers of groups,
with the same names):

Definition 5.11 (Widening for abstract states with compatible partitions). The widening
for abstract states with compatible partitions is defined by

widen
a

≡((P, u0 ∧ g0), (P, u1 ∧ g1)) = (P,widen
U

(u0, u1) ∧ g0 ∩ g1)

This operator clearly defines a widening operator. Indeed the widening operator

widen
U

of the Maya+ domain ensures convergence, when the number of variables in
u0, u1 is bounded, and in the case of widen

a

≡, it is constant (the set of groups is fixed
here). Similarly, the resulting set of set relation predicates is included in the set of g0, g1

Static Analysis on Array Contents Jiangchao Liu

80 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

widen
a
(a0, a1){

foreach(Gi in a0)
foreach(Gj in a1)

Wij = rank(Gi, Gj);

a0, a1 = repartitionO(W, a0, a1);

return widen
a

≡(a0, a1);
}

Figure 5.18 – The algorithm of the widening operator

of the arguments, which are finite sets, thus this component is well-founded and will also
eventually converge. However, the termination property of widen

a

≡ relies on the assump-
tion that memory predicates never change. As this assumption is obviously not satisfied
in general, we define a widening operator that can be applied to any sequence of abstract
states, with no assumption on the memory predicates.

Re-partitioning for widening. To achieve termination, widen
a

needs to ensure that
for any sequence of abstract iterates, the memory predicates eventually converges: when
memory predicates have converged, the set of groups is stable and widen

a

≡ can be applied,
and will ensure both soundness and termination. This convergence property is not guar-
anteed by the group matching algorithm of Section 5.5.1. Therefore the widening operator
widen

a
relies on a slightly different group re-partitioning operator repartitionO.

1. operator repartitionO pairs each group with the group with which it has the highest
ranking value, thus each group is with at least one pair relation (this is different
with the re-partitioning in join);

2. if three relations of the form Gi ↔ Gk, Gi ↔ Gj and Gt ↔ Gj have been added to
the pairing, the “middle” relation Gi ↔ Gj gets removed.

The new pairing scheme pairs every group with at least one other group, which has
the effect that no create is needed in the partition transforming phase. Actually, only
operator merge is used. Therefore this group matching operation ensures termination.

Definition 5.12 (Widening algorithm). The algorithm of widen
a

is shown in Figure 5.18.
It just replaces repartition and join

a

≡ in the algorithm of join with repartitionO and
widen

a

≡ respectively.

The resulting widen
a

operator is a sound and terminating widening operator [CC77].
For better precision, the analysis always uses join

a
for the first abstract iteration for a

loop, and uses widening afterwards.

Jiangchao Liu Static Analysis on Array Contents

5.5. JOIN, WIDENING AND INCLUSION CHECK 81

P : G0

Q : 0 ≤ G0 ≤ 99
∧ 0 ≤ IvalueG0

≤ 1
∧ |G0| = 100
∧ i ∈ G0

Figure 5.19 – Widening result of two abstracts with different partitions

Theorem 5.9 (Soundness and termination of the widening algorithm). The operator
widen

a
is a widening operator: it over-approximates its arguments and ensures the ter-

mination of abstract iterates.

Proof. As in the case of join
a
, the fact that widen

a
returns an over-approximation of

its inputs follows from the soundness of the basic operators on groups. Thus, we only
have to establish the convergence of any sequence of abstract iterates of the form an+1 =
widen

a
(an, an

′).
Since widen

a
never calls create and split, and changes the number of groups only by

calling merge, the number of groups in its result decreases in any sequence of widened
iterates, and eventually stabilizes after finitely many steps. From that point, groups are
stable. Also, the height of the set of relation constraints over these groups is finite, thus
the component will also stabilize after finitely many iterates. Therefore, since widen

a

applies widen
U

on the pure-numeric predicates component, it ensures the termination of
any sequence of abstract iterates.

Therefore, widen
a

is a widening operator.

Example 5.12 (Widening algorithm). We consider the abstract states depicted in Fig-
ure 5.17(b) and in Figure 5.17(c) and show how widen

a
applies to these abstract states.

The group matching algorithm will merge the two groups in Figure 5.17(b) and pair the re-
sulting group to the only group in Figure 5.17(c). The output state after applying widen

a

≡
is shown in Figure 5.19.

5.5.3 Inclusion Checking

To check the termination of sequences of abstract iterates over loops, and the entailment
of post-conditions, the analysis uses a sound inclusion checking operator isle

a
: when

isle
a
(a0, a1) returns true, then γa(a0) ⊆ γa(a1).

As in the case of join, a restricted inclusion checking operator isle
a

≡ can be defined in
a straightforward manner, that checks inclusion on “compatible” abstract states, that is

abstract states with matching partitions: if isle
U

(u0, u1) = true and g1 is included in g0

(as a set of constraints), then γa(P, u0 ∧ g0) ⊆ γa(P, u1 ∧ g1), hence we let isle
a

≡ return
true in that case.

Static Analysis on Array Contents Jiangchao Liu

82 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

isle
a
(a0, a1){
foreach(Gi in a0)

foreach(Gj in a1)

Wij = rank<(Gi, Gj);
if(∃Gi in a0,∀Gj in a1,Wij ≤ 0)

return false;

a0 = repartition<(W, a0);

return isle
a

≡(a0, a1);
}

Figure 5.20 – The algorithm of the inclusion check operator

The inclusion checking algorithm is quite similar to that of join, but uses a modified
ranking operator rank< and a modified re-partition operator repartition<. Operator
rank< is the same as rank except that it evaluates rank<(G0, G

′
0) into a negative integer

when the ranges of indexes, field contents and size of group G0 (from the left argument)
are not included into those of G′0. The difference of repartition< with repartition lies
in two aspects: firstly, in the pairing phase repartition< guarantees that each group
from the left argument is paired with at least one group in the right argument; secondly,
the partition transforming phase only modifies the groups in the left argument so as to
construct an abstract state with the same groups as the right argument. This means that,
when two groups Gj and Gk from the right argument are paired with a single group Gi

in the left argument, the inclusion checking algorithm will apply split to Gi and pair the
two resulting groups with Gj and Gk respectively.

Definition 5.13 (Includsion checking). The inclusion checking algorithm is shown in
Figure 5.20. It first computes the ranking values of all groups from two abstract states
using operator rank<. If there is a group from the left argument that ranks negatively
with all groups from the right argument, isle

a
conservatively returns false. Otherwise, it

re-partitions the two states by repartition< (with create, split and merge) according
to the ranking values. Finally, it applies isle

a

≡ to the two resulting compatible states.

Theorem 5.10 (Soundness of inclusion checking). The inclusion check operator isle
a

is
sound in the sense that

isle
a
(a0, a1) = true =⇒ γa(a0) ⊆ γa(a1)

Proof. First, we note that repartition< does not modify the right hand side argument,
and performs an over-approximation of the left hand side argument (through create, split
and merge). Second, isle

a

≡ is sound. Therefore, when isle
a

returns true, all elements
in the concretization of the left argument also belong to the concretization of the right
argument. Hence, it is sound.

Jiangchao Liu Static Analysis on Array Contents

5.6. STATIC ANALYSIS ON PROGRAMS INVOLVING ARRAYS 83

Our inclusion check operator is not complete because of the heuristics of the pairing
algorithm and the precision loss in operators on partitions.

5.6 Static Analysis on Programs Involving Arrays

In this section, we formalize an abstract interpreter for the language of Figure 5.1, and
we discuss in detail the full analysis of the cleanup example.

5.6.1 Abstract Semantics

Based on the abstract operators introduced in the previous sections, we can build the ab-
stract semantics of a program stat[s] : H → H, which is a function that maps an abstract
pre-condition into an abstract post-condition. The build process has been formalized in
Chapter 3.

Theorem 5.11 (Soundness of abstract semantics). Given a program p and an abstract
pre-condition a, the post-condition derived by the analysis is sound:

JpK(γa(a)) ⊆ γa(stat[p](a))

5.6.2 Example “cleanup” Revisited

We have shown some parts of the analysis on the function cleanup in Figure 5.3. In this
section we provide more details about this analysis in Figure 5.21.

The function cleanup should always be called in a state where the Minix Memory
Management Process Table satisfies global correctness property Rminix described in Fig-
ure 5.5(b), and where argument child is the identifier of a valid user process descriptor.
Therefore, the analysis starts with pre-condition Rminix ∧ child ∈ G0 ∧ child > 2.
It then proves that, under this pre-condition, and after executing the body of cleanup,
Rminix always holds, which is checked with isle

a
.

At start-up, we get pre-condition Rminix ∧ child ∈ G0 ∧ child > 2 (before line 1 in
the figure). Because of the property of field mp parent in group G0 according to Rminix,
we obtain parent ∈ G0 at line 2. At line 4, since child could be any cell whose index is
larger than or equal to 2 in group G0. The analysis performs a materialization during the
analysis of that update, which splits group G0 into groups G0, G2, as shown after line 4.

Then, the analysis enters the while loop that starts at line 6. Our analysis for loops
always unroll the loop once before applying the widening operator. For the sake of clarity,
we show only the abstract states computed after the convergence of the sequence of 2
widening iterates. The loop head invariant is shown right after line 6. For the sake of
space and readability, we elide the properties of the fields of some groups:

• group G1 always describes the slots that were free before the call to cleanup (note
that excludes the process descriptor of index child that is being freed).

Static Analysis on Array Contents Jiangchao Liu

84 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

Rminix ∧ child ∈ G0 ∧ child > 2

1 void cleanup(int child){
2 int parent = mproc[child].mp_parent;

Rminix ∧ child ∈ G0 ∧ parent ∈ G0 ∧ child > 2

3 if(parent == 2){
4 mproc[child].mp_flag = 0;

G0 G1 G2P :

Q : 0 ≤ G0 ≤ 23 ∧ G2 = child ∧ 0 ≤ |G0| ≤ 23

∧ |G2| = 1 ∧ child > 2 ∧ Imp flag
G2

= 0
child ∈ G2 ∧ Imp parent

G0
∈ G0 ∪G2 ∧ Imp parent

G2
∈ G0 ∪G2

5 i = 0;
6 while(i < 24){

Iloop :

G0 G1 G2 G3P :

Q : i ≤ G0 ≤ 23 ∧ 0 ≤ |G0| ≤ 23 ∧ 0 ≤ |G3| ≤ 23 ∧ child > 2

∧ 1 ≤ Imp flag
G3

≤ 63 ∧ 0 ≤ Imp parent
G3

≤ 23 ∧ 0 ≤ i

∧ child ∈ G2 ∧ Imp parent
G0

⊆ G0 ∪G2 ∪G3 ∧ Imp parent
G3

⊆ G0 ∪G3

7 if(mproc[i].mp_flag > 0)
Iloop ∧ i ∈ G0

8 if(mproc[i].mp_parent == child)

G0 G1 G2 G3 G4P :

Q :
i < G0 ≤ 23 ∧ 0 ≤ G0 ≤ 22 ∧ |G4| = 1 ∧ child > 2
∧ 0 ≤ G3 < i ∧ child ∈ G2 ∧ Imp parent

G4
⊆ G2

∧ |G4| = i ∧ 1 ≤ Imp flag
G4

≤ 63 ∧ 0 ≤ Imp parent
G4

≤ 23 ∧ 0 ≤ i

9 mproc[i].mp_parent = 2;
10 i = i + 1;
11 }

G1 G2 G3P :

Q : 3 ≤ G1 ≤ 23 ∧ |G2| = 1 ∧ 0 ≤ |G3| ≤ 23 ∧ G2 = child > 2

∧ 0 ≤ G3 ≤ 23 ∧ Imp flag
G2

= 0 ∧ 1 ≤ Imp flag
G3

≤ 63 ∧ child ∈ G2

∧ 0 ≤ Imp parent
G2

≤ 23 ∧ 0 ≤ Imp parent
G3

≤ 23 ∧ Imp parent
G2

⊆ G3

12 } else { \\cleanup child and its descendants }
13 }

G1 G2 G3P :

Q : 3 ≤ G1 ≤ 23 ∧ 0 ≤ |G1| ≤ 23 ∧ 1 ≤ |G2| ≤ 2 ∧ 0 ≤ |G3| ≤ 23

∧ 3 ≤ |G2| ≤ 23 ∧ Imp flag
G1

= 0 ∧ Imp flag
G2

= 0 ∧ 1 ≤ Imp flag
G3

≤ 63
Imp parent
G3

⊆ G3 ∧ child ∈ G2

Figure 5.21 – Analysis of the cleanup excerpt

Jiangchao Liu Static Analysis on Array Contents

5.7. EXPERIMENTAL EVALUATION 85

In addition to these, and at loop head, we have the following groups:

• group G0 describes the valid process descriptors that have not yet been visited by
the loop (i.e., with an index greater or equal than i);

• group G2 describes a group that consists of exactly one cell, corresponding to the
process descriptor that is being cleaned up (cell mproc[child]);

• group G3 describes the valid process descriptors that were already examined during
the loop (i.e., with an index strictly lower than i).

The test at line 7 entails that i cannot be in groups G1 and G2 (all those processes
have a null flag), thus, i ∈ G0. The test at line 8 keeps only the states where i is the
index of a child of the process being cleaned up. This test leads to the splitting of that
group, which enables a strong update at line 9.

We now briefly discuss the abstract iterates that lead to this invariant. During the first
iteration, a new group is created so that, during the loop, the analysis always distinguishes
the valid process descriptors with an index strictly lower than i from those with an index
that is greater or equal than i. Not applying widen

a
at the end of the first iteration,

and delaying it to the second iteration allows to preserve this group. At the end of the
subsequent widening iterations, the groups corresponding to index i and to indexes lower
than or equal to i are merged together.

Last, when exiting the loop, the analysis obtains i ≥ 24. Since the loop head invariant
contains constraints i ≤ G0 and G0 ≤ 23, this group is necessarily empty, and can be
removed. After removal of that group, the analysis produces the abstract post-condition
shown at line 11.

The post-condition of function cleanup is presented right after line 13. Actually the
only difference with the state after line 11 is that group 2 may contain more elements
(more slots might be cleaned up in the else branch). With comparison operator isle

a
,

our analysis proves that it implies Rminix automatically.

5.7 Experimental Evaluation

We have implemented our analysis and evaluated how it copes with two classes of pro-
grams:

• process tables as found in the Minix memory management component;

• academic examples introduced in related works, and where we demonstrate that
partitions in contiguous groups are not strictly necessary for the verification.

Our abstract domain has been integrated into the MemCAD static analyzer [SR12, TCR13,
CR13]. It uses the Apron library of numerical abstract domains [JM09]. In practice, our
analysis uses octagons [Min06] for all test cases except one that is analyzed using convex
polyhedra [CMC08].

Static Analysis on Array Contents Jiangchao Liu

86 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

5.7.1 Verification of Memory Management Part in Minix.

The main data-structure of the Memory Management operating system service of Minix
1.1 is the MMPT mproc, which contains memory management information for each pro-
cess. At start up, it is initialized by function mm init, which creates process descriptors
for mm, fs and init. After that, mproc should satisfy property Rminix. Then, it gets
updated by system calls fork, wait and exit, which respectively create a process, wait
for terminated children process descriptors to be removed, and terminate a process. Each
of these functions should be called only in a state that satisfies Rminix, and should return
a state that also satisfies Rminix (we recall Rminix was defined in Figure 5.5(b), and splits
the indexes in the process table into two groups: group G0 contains all the indexes of
the valid processes whereas group G1 contains all the indexes of the “free cells” in the
table). If property Rminix was violated, several critical issues could occur. First, sys-
tem calls could crash due to out-of-bound accesses, e.g., when accessing mproc through
field mp parent. Moreover, higher level, hard to debug issues could occur, such as the
persistence of dangling processes, that would never be eliminated.

Therefore, we verified, using our analysis, that (1) mm init properly initializes the
structure, so that Rminix holds afterwards (under no pre-condition), and that (2) fork,
wait and exit preserve Rminix (i.e., the analysis of each of these functions from pre-
condition Rminix returns a post-condition that also satisfies Rminix). This verification
boils down to the following computations:

isle
a
(stat[mm init](>),Rminix) = true

isle
a
(stat[exit(who)](Rminix ∧ who ∈ G0 ∧ who > 2),Rminix) = true

isle
a
(stat[fork(who)](Rminix ∧ who ∈ G0),Rminix) = true

isle
a
(stat[wait(who)](Rminix ∧ who ∈ G0),Rminix) = true

Note that function cleanup was inlined in wait and fork in a recursion free form (our
analyzer currently does not supported recursion). Our tool achieves the verification of all
these four functions. The results are shown in the first four lines of the table in Figure 5.22,
including analysis time and peak number of groups for array mproc.

The analysis of mm init and fork is very fast. The analysis of exit and wait also
succeeds, although it is more complex due to the intricate structure of cleanup (which
consists of five loops and a large number of tests) which requires 151 joins. Despite this,
the maximum number of groups remains reasonable (six in the worst case).

5.7.2 Application to Academic Test Cases

We now consider a couple of examples from the literature, where arrays are used as
containers, i.e., where the relative order of groups does not matter for the program’s
correctness. The purpose of this study is to exemplify other examples of cases our abstract
domain is adequate for. Program int init consists of a simple initialization loop. Our
analysis succeeds here, and can handle other cases relying on basic segments, although

Jiangchao Liu Static Analysis on Array Contents

5.8. RELATED WORK AND CONCLUSION 87

Program LOCs Verified property Time(s) Max. groups Num. domain Description

mm init 26 establishes Rminix 0.12 3 Octagons Minix MMPT: mproc init

fork 22 preserves Rminix 0.07 3 Octagons Minix MMPT sys. call

exit 68 preserves Rminix 3.75 6 Octagons Minix MMPT sys. call

wait 70 preserves Rminix 3.88 6 Octagons Minix MMPT sys. call

complex 21 ∀i ∈ [0, 54], a[i] ≥ −1 0.296 4 Octagons Example from [CCL11]
int init 8 ∀i ∈ [0, N], a[i] = 0 0.025 3 Octagons Array initialization

Figure 5.22 – Analysis results (timings measured on Ubuntu 12.04.4, with 16 Gb of RAM,
on an Intel Xeon E3 desktop, running at 3.2 GHz)

our algorithms are not specific to segments (and are geared towards the abstraction of
non contiguous partitions).

Moreover, Figure 5.23 shows complex, an excerpt of an example from [CCL11]. The
second example is challenging for most existing techniques, as observed in [CCL11] since
resolving a[index] at line 10 is tricky. As shown in Figure 5.22, our analysis handles these
two loops well, with respectively 4 and 3 groups.

The invariant of the first initialization loop in Figure 5.23 is abstract state 1 (at line
4): group G1 accounts for initialized cells, whereas cells of G0 remain to be initialized.
The analysis of a[i] = 0; from 1 materializes a single uninitialized cell, so that a strong
update produces abstract state 2 . At the next iteration, and after the incremention
operation i++, the widening merges G2 with G1, which produces abstract state 1 again.
At loop exit, the analysis infers that G0 is empty as it establishes that 56 ≤ G0 ≤ 55.
At this stage, this group is eliminated. The analysis of the second loop converges after
two widening iterations, and produces abstract state 3 . We note that group G3 is kept
separate, while groups G1 and G2 get merged when the assignment at line 10 is analyzed
(Section 5.4.2). This allows to prove the assertion at line 11.

5.8 Related Work and Conclusion

In this chapter, we have presented a novel abstract domain that is tailored for arrays, and
that relies on partitioning, without imposing the constraint that the cells of a given group
be contiguous.

Most array analyses require each group be a contiguous array segment. Abstract inter-
pretation based static analysis tools [BCC+03b, GRS05, HP08] and [CCL11] contiguously
partition arrays over indexes statically and dynamically respectively. Tools based on deci-
sion procedures [AGS13, AGS14, BMS06], and theorem provers [JM07, SPW09, McM08,
KV09] can describe properties of array cells over a certain range of indexes. We be-
lieve that both approaches are adequate for different sets of problems: segment based
approaches are adequate to verify algorithms that use arrays to order elements, such as
sorting algorithms, while our segment-less approach works better to verify programs that
use arrays as dictionaries.

Static Analysis on Array Contents Jiangchao Liu

88 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

Other works target dictionary structures and summarize non contiguous sets of cells,
that are not necessarily part of arrays. In particular, [DDA10, DDA11] seeks for a unified
way to reason about pointers, scalars and arrays. These works are orthogonal to our
approach, as we strive to use properties specific to arrays in order to reason about the
structure of groups. Therefore, [DDA10, DDA11] cannot express the invariants Rminix

for two reasons: (1) the access paths cannot describe the contents of array elements as
an interval or with other numeric constraints; (2) they cannot express set-set predicates.
Similarly, HOO [CCR14] is an effective abstract domain for containers and JavaScript
open objects. As it uses a set abstract domain [CCS13], it has a very general scope but
does not exploit the structure of arrays, hence would sacrifice efficiency in such cases.

Last, template-base methods [BHMR07, GMT08] are very powerful invariant genera-
tion techniques, yet require user supplied templates and can be quite costly.

Our approach has several key distinguishing factors. First, it not only relies on in-
dex relations, but also exploits semantic properties of array elements, to select groups.
Second, set relation predicates track lightweight properties, that would not be captured
in a numerical domain. Last, it allows empty groups, which eliminated the need for any
global disjunction in our examples (a few assignments and tests benefit from cheap, local
disjunctions). Finally, experiments show it is effective at inferring non trivial array invari-
ants with non contiguous groups, and is able to verify the manipulation of two complex
data-structures in two distinct operating systems.

Our analysis currently does not handle dynamically allocated arrays. However, that
support could be added rather simply, by leaving the size of arrays abstract, to be rep-
resented by a standard variable in Q. Our domain can verify memory safety invariants
involving complex data structure in operating systems, which could not be achieved by
previous static analyses [PTS+11, YLB+08] which also target system code.

Jiangchao Liu Static Analysis on Array Contents

5.8. RELATED WORK AND CONCLUSION 89

2 int a[56];
3 for(int i = 0; i < 56; i++){

1

4 a[i] = 0;
2

}
5 a[55] = random();
6 for(int i = 0; i < 55; i++){

3

7 int index = 21 ∗ i%55;
8 int num = random();
9 if(num < 0){num = −1; }
10 a[index] = num;
}

11 assert(∀i ∈ [0, 54], a[i] ≥ −1);

(a) Test case complex

state 1 G0 G1P :

Q : i ≤ G0 ≤ 55 ∧ |G0| = 56− i ∧ |G1| = i

∧ 0 ≤ G1 ≤ i− 1 ∧ i ∈ G0 ∧ IvalueG1
= 0

state 2 G0 G1 G2P :

Q :
i + 1 ≤ G0 ≤ 55 ∧ |G0| = 55− i ∧ |G1| = i

0 ≤ G1 ≤ i− 1 ∧ IvalueG1
= 0 ∧ IvalueG2

= 0
G2 = i ∧ i ∈ G2 ∧ |G2| = 1

state 3 G1 G2 G3P :

Q :
0 ≤ G1 ≤ 54 ∧ |G1| = 54 ∧ G2 = 1 ∧ G3 = 1
∧ 0 ≤ G2 ≤ 54 ∧ −1 ≤ IvalueG1

∧ −1 ≤ IvalueG2

∧G3 = 55 ∧ i ∈ G1 ∪G2

(b) Invariants

Figure 5.23 – Array random accesses

Static Analysis on Array Contents Jiangchao Liu

90 CHAPTER 5. NON-CONTIGUOUS PARTITIONING

Jiangchao Liu Static Analysis on Array Contents

Chapter 6

Coalescing Array and Shape
Abstraction

In this chapter, we propose a technique to combine different shape abstractions. This
combination locally ties summaries in both abstract domains and is called a coalescing
abstraction. Coalescing allows to define efficient and precise static analysis algorithms on
the combined abstraction, which can express new properties on the structure of memory.
As an instance, we show the combination of the array abstraction in Chapter 5 and a
shape abstraction which captures linked structures with separation logic-based inductive
predicates. This leads to an automatic static analysis for the verification of programs
manipulating arrays storing linked structures, such as lists in an array. This programming
pattern is commonly used in low-level systems, which avoids relying on dynamic allocation.
The verification of such programs is non-trivial as it requires reasoning both about the
array structure with numeric indexes and about the linked structures stored in the array.

6.1 Context of The Analysis

In this section, we set the context of the analysis and recall the motivation for the coa-
lescing domain. We use the same language as in Chapter 5.

An example taken from a real-world OS. Figure 6.1(a) shows a structure taken
from an industrial real-time embedded operating system (called AOS), that stores three
task priority lists a single array. Each cell is either unused, or it stores the information
associated to a task. Moreover, the cells representing tasks are arranged into three (gen-
erally non contiguous) lists: the list of tasks that are ready (with head a[ready]), the
list of sleeping tasks (with head a[sleep]), and the list of suspended tasks (with head
a[suspend]). The next links of list elements are stored in the field next of array cells.
Additionally, each cell has a field used, which indicates whether it corresponds to an
actual process or a free slot (if used contains 0), and field prio indicates the priority

Static Analysis on Array Contents Jiangchao Liu

92 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

struct {
int used;
int next;
int prio;

} a[100];
int ready;
int sleep;
int suspend;

(a) Structure definition

ready
[0] [96] [98]

1 2 3

sleep
[1]

suspend
[2]

(b) Topology of the lists

. . .

[0] :

[1] :

[2] :

[96] :

[97] :

[98] :

[99] :

ready = 0
sleep = 1
suspend = 2

next = −1

next = 98

next = 30

next = 50

next = 96
used = 1

used = 1

used = 1

used = 1

used = 0

used = 1

used = 0
prio = 3

prio = 2

prio = 1

(c) A concrete state

Figure 6.1 – Three linked lists in one array

level of the corresponding task. The list of ready processes is sorted in increasing priority
order. Figure 6.1(c) and Figure 6.1(b) respectively show an excerpt of a concrete state
and its topology. In Figure 6.1(b), the number in each list node corresponds to the value
of field prio. In this configuration, cells 0, 96, 98 describe processes that are ready, cell
1 describes a sleeping process, and cell 2 stores a suspended process; last, cells 97 and 99
are unused. System calls that manipulate this data structure include init (initialize the
array and the three list variables), create (locate a free slot in the array and insert it
into the ready list), stop (release a list node to be free), and schedule (move array nodes
between lists).

Invariants. The following invariants should hold before and after each system call:

• variables ready, sleep and suspend should point to the heads of three well-formed
acyclic disjoint lists, where the next field of each cell holds the index of the next
element, and the end-of-list is encoded by index −1;
• free slots and used nodes in the array are distinguished by the values stored in their
used field (0 for free slots and 1 for used slots); furthermore, any used slot belongs
to one of the three lists;
• the list with head ready is sorted with respect to the values in field prio.

Jiangchao Liu Static Analysis on Array Contents

6.2. ABSTRACTION 93

We call these invariants global correctness condition in AOS, denoted by Raos. These
invariants are essential to the correctness of the operating system, since their violation
may cause issues such as out-of-bound array accesses or tasks becoming dangling. Thus,
it is necessary to verify that system calls preserve Raos.

To verify a system call, we can let a static analyzer assume pre-condition Raos, analyze
the body, and attempt to verify that the post-condition also satisfies Raos. To achieve
this, it is necessary to reason at the same time about (1) the accesses into dynamic
structures via both their next link (they are chained dynamically even though the array
is statically allocated) and array indexes, (2) the shapes of the linked structures, (3) the
non-contiguousness of regions occupied by each dynamic structure, (4) the sortedness of
list structures. Each of these points is non trivial.

Shape analysis for dynamic structures like [SRW99b, DOY06, CR08] do not cope with
array-specific statements, like accesses with random indexes. The non-contiguous array
partition of Chapter 5 can express (3) using numeric predicates of non-contiguous sets of
cells that should be abstracted together, but cannot describe nested structures that are
dynamically linked, thus would fail to meet (2) and (4).

In this chapter, we propose a coalescing domain, which provides an efficient and precise
method of combining different shape domains to deal with intertwined data structures.
As an instance, the coalescing of the array abstraction from Chapter 5 and a heap ab-
straction can express properties (1), (2), (3) and (4). Our analysis proceeds by abstract
interpretation, and is parameterized by the structural invariant Raos.

A system call. As an example, in the remainder of this chapter, we focus on the
function create (shown in Figure 6.2), which preserves the invariant Raos. Function
create locates a free slot (line 3 to 10), initializes it with the given priority and then
inserts it (line 13 to 28) into the sorted list with head ready. It takes the priority of the
new task as parameter priority. For concision, we omit some cases and lines that are not
immediately relevant. To verify the correctness of create, we let our analysis compute
an abstract post-condition under the pre-condition that property Raos holds and check
that Raos still holds at the exit of the function. This boils down to the verification of:

assume(Raos); create(priority); assert(Raos);

6.2 Abstraction

This section formalizes the coalescing of two abstract domains both of which deal with
summaries of memory blocks (we call them memory abstract domains). A signature of
memory abstract domains is presented in Section 6.2.1 which defines a family of memory
abstract domains that can be coalesced. A shape domain that we take as an instance of
memory abstract domain is presented in Section 6.2.2. The principles for the coalescing
of such domains are described in Section 6.2.3. The resulting coalescing domain of the

Static Analysis on Array Contents Jiangchao Liu

94 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

1 void create(int priority){ 18 int pre, cur;
2 int i = 0; 19 pre = ready;
3 while(i < 100){ 20 cur = a[ready].next;
4 if(a[i].used == 0){ 21 while(cur ! = −1){
5 a[i].used = 1; 22 if(a[cur].prio > priority)
6 a[i].prio = priority; 23 break;
7 break; 24 pre = cur;
8 } 25 cur = a[cur].next;
9 i + +; 26 }
10 } 27 a[pre].next = i;
11 // corner cases 28 a[i].next = cur;
12 . . . 29 // other fields initialization
13 // insert a[i] to ready list 30 . . .
14 // for case ready = -1 31 return i;
15 . . . 32 }
16 // for case a[i].prio ≤ a[ready].prio
17 . . .

Figure 6.2 – Code of function create

array domain in Chapter 5 and the shape domain introduced in Section 6.2.2 is shown in
Section 6.2.4.

Concrete states. In this chapter, we use the same definition of concrete states as that
in Chapter 5. Here, we just recall the notations.

• A: the set of program variables of array type;

• X: the set of program scalar variables;

• I: the set of non-negative integers;

• F: the set of fields;

• V: the set of values.

Definition 6.1 (Concrete states). A concrete state is a partial function mapping basic
cells (base variables and fields of array cells) into values, denoted as σ. The set S of
concrete states is defined by

σ ∈ S = (A× I× F ∪ X)→ V

More specifically, the set of the field names of the elements of array a is denoted by
Fa, and the set of valid indexes in a is denoted by Ia.

Jiangchao Liu Static Analysis on Array Contents

6.2. ABSTRACTION 95

6.2.1 A Signature of Memory Abstract Domains

To define the general principles of coalescing, we first need to define the signature of
underlying memory abstract domains.

Abstract domains are characterized by abstract elements and transfer functions. A
family of abstract domains can be defined by an abstract domain signature. A signature
D of abstract domains consists of a definition of the set of concrete elements, a description
for the set of abstract elements, and a list of descriptions for the transfer functions and
operations.

Our coalescing can only be applied to a class of memory abstract domains, which can
be specified with a signature Dm.

Definition 6.2 (A signature of memory abstract domains: Dm). The signature of memory
abstract domains: Dm is defined below.

S = (A× I× F ∪ X)→ V the set of concrete elements
M ::= A ∗ . . . ∗ A separating conjunction
A ::= b non-inductive memory predicates

| i inductive memory predicates
N numeric predicates
D = DM ×DN the set of abstract elements
γ ∈ D → P(S) concretization
> ∈ D top element
⊥ ∈ D bottom element

unfold ∈ D → D unfolding operator

fold ∈ D → D folding operator

guard[.] ∈ D → D transfer function for condition tests

assign[.] ∈ D → D transfer function for assignments

isle ∈ D ×D → D inclusion check operator

join ∈ D ×D → D join operator

widen ∈ D ×D → D widening operator

This signature is quite standard except that it defines some specific requirements
on the form of abstract elements. It requires that all abstract elements contain two
components: memory predicates M (predicates on symbolic abstraction of memory states)
and numeric predicates N (predicates on the numeric properties of symbolic variables
from memory predicates and programs). The set of all memory predicates and numeric
predicates are denoted as DM and DN respectively. One requirement on the memory
predicates is that different atomic memory predicates (i.e., A) should be compounded by
separating conjunction (denoted as ∗), i.e., they constrain disjoint memory blocks. This
is formalized as A ∗ . . . ∗ A. The other requirement on memory predicates is that atomic
memory predicates should include both inductive predicates (i.e., i) and non-inductive
predicates (i.e., b). Inductive predicates describe possible configurations of summarized

Static Analysis on Array Contents Jiangchao Liu

96 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

memory contents using a recursive property. They are instances of generic definitions
supplied to the analyzer as abstract domain parameters before it is launched.

Definition 6.3 (Inductive predicates). The form of inductive predicates is defined below.

i := 〈A0,0 ∗ . . . ∗ A0,n0 , N0〉 ∨ . . . ∨ 〈Ak,0 ∗ . . . ∗ Ak,nk
, Nk〉

In the definition above, each element of the disjunction (called inductive case) con-
sists of a separating conjunction [Rey02] of atomic memory predicates together with a
conjunction of numeric constraints. This definition is more general than some others in
the literature, where the form of Ai,j is often restricted. For instance, in the inductive
definition of list in [CR08], the non-inductive atomic memory predicates in any case must
describe the head or the tail.

6.2.2 Introduction to A Shape Domain

Now we introduce a separation logic based domain D
s

[CR08], which is used to track
linked structures. This shape domain fits into the signature defined in Section 6.2.1.
Coalescing this domain with our non-contiguous partitioning array domain, the analysis
is able to describe the invariant Raos. As in the signature, an abstract element in this
shape domain is composed of two parts: memory predicates and numeric predicates.

Definition 6.4 (Memory predicates of a shape domain). The syntax of memory predicates
M
s

in D
s

is defined as follows.

M
s

:= A
s ∗ . . . ∗ As Separating conjunction

A
s

:= α@~f 7→ ~β Predicates on a single memory cell
| emp Predicates on an empty region
| is(~α) Predicates on a possibly empty set of memory cells
| true True predicates

An atomic memory predicate A
s

either describes a single cell with the index and con-
tents (denoted as α@~f 7→ ~β, where symbolic variables α represents the index and ~β
represent the values stored in each field), or an empty region (denoted as emp), or a com-
plex structure summarized by an inductive predicate (noted as is(~α)), or no constraint
(noted as true, which is our extension to [CR08]). The symbolic variables described by
Greek letters denote values (array indexes, numeric or pointer values...). Unless speci-
fied otherwise, we use α, β to denote actual parameters, and π, τ to denote the formal
parameters of inductive predicates.

The numeric predicates in D
s

are a subset of the numeric predicates in the array
domain in Chapter 5 and can be described by the extended Maya+ domain. Thus we still
use Q to denote them.

Jiangchao Liu Static Analysis on Array Contents

6.2. ABSTRACTION 97

The shape domain [CR08] assumes a restriction on the inductive definition is(~π) in
D
s
: each inductive case should correspond to a memory region reachable from π (i.e.,

the first parameter) and do not contain true. This is for the ease of unfolding/folding
algorithm [CR08].

Our extension true is a special memory predicate. It is a non-inductive predicate.
But in some algorithms, it is often taken as an inductive predicate, where its inductive
definition is the disjunction of all tuples of memory predicates and numeric predicates in
D
s
.

Example 6.1 (Inductive predicates in a shape domain). The following inductive predicate
lseg is the formal definition of list segment in D

s
. Symbolic variable π stores the index

of the first element of the list segment, and τ stores the value in the next field of the last
element.

lseg(π, τ) := 〈emp, π = τ〉
∨ 〈π@(next 7→ π′) ∗ lseg(π′, τ), π 6= τ〉

Definition 6.5 (Concretization function in the shape domain). The concretization func-
tion γs for D

s
maps an abstract element (M

s
, Q) to a set of concrete states σ ∈ S. The

concretization is defined as follows.

γs(M
s
, Q) = {σ ∈ S | ∃ν ∈ γQ(Q), (σ, ν) |= M

s ∧ ∀x ∈ X, ν(x) = σ(x)}

where

(σ, ν) |= α@~f 7→ ~β iff ∀f ∈ F, σ(a[ν(α)] · f) ∈ ν(βf)

(σ, ν) |= is(~α) iff there exists a disjunctive case 〈As0 ∗ . . . ∗ Asn, Q〉 of is(~π)
such that, (σ, ν) |= 〈As0 ∗ . . . ∗ Asn, Q〉

(σ, .) |= emp iff σ = [.] is an empty store

(σ, .) |= true iff σ ∈ S
(σ0 ∗ σ1, ν) |= M

s
0 ∗ Ms1 iff (σ0, ν) |= M

s
0 ∧ (σ1, ν) |= M

s
1

6.2.3 Principles of Coalescing Memory Abstract Domains

Given two memory abstract domains that fit the signature in Definition 6.2, we can define
the coalescing domain as follows.

Definition 6.6 (Coalescing domain). Suppose that domains D
•

and D
�

fit the signature
Dm, then an element c in their coalescing domain C is a tuple (M,N), where M and N
follows the syntax defined below.

Static Analysis on Array Contents Jiangchao Liu

98 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

M ::= A ∗ . . . ∗ A
A ::= i• & i�

| b
•

& b
�

N :: N
• ∧ N�

Memory predicates M in the coalescing domain are separating conjunction of atomic
memory predicates A. The set of memory predicates M is denoted as DM.

An atomic memory predicate A in the coalescing domain can be a non-separating con-
junction of non-inductive predicates b

•
& b

�
or a non-separating conjunction of inductive

predicates i• & i�. Note that we restrict the use of & in the following way: it can only be
applied to two atomic inductive memory predicates or two atomic non-inductive memory
predicates. This restriction indeed is the essential idea behind coalescence, which brings
additional precision and makes unfolding/folding in the coalescing domain significantly
simpler.

A non-separating conjunction of non-inductive predicates b
•

& b
�

denotes that the ad-
dresses and contents of a possibly empty set of memory cells satisfy memory predicates b

•

and b
�

simultaneously. A non-separating conjunction of inductive predicates i• & i� is also
inductive, and is called a coalescing inductive predicate. Coalescing inductive predicates
parameterize the coalescing domain, just like is in the shape domain of Section 6.2.2.

Definition 6.7 (Coalescing Inductive Predicates). The definition of a coalescing inductive
predicate i• & i� is of the form

i• & i� := 〈A0,0 ∗ . . . ∗ A0,n0 ,N0〉
∨ . . . ∨
〈Ak,0 ∗ . . . ∗ Ak,nk

,Nk〉

where if Ai,j is denoted as A
•
i,j & A

�
i,j, then

i• ::= 〈A•0,0 ∗ . . . ∗ A•0,n0
,N0〉 ∨ . . . ∨ 〈A•k,0 ∗ . . . ∗ A•k,nk

,Nk〉

and
i� ::= 〈A�0,0 ∗ . . . ∗ A�0,n0

,N0〉 ∨ . . . ∨ 〈A�k,0 ∗ . . . ∗ A�k,nk
,Nk〉

are both valid inductive definitions in the domains D
•

and D
�

respectively.

This definition ensures that a coalescing inductive definition can be decomposed into
two inductive definitions from the two underlying domains respectively. This allows our
coalescing domain to utilize the algorithms manipulating inductive predicates in the un-
derlying domains.

Definition 6.8 (Concretization function in the coalescing domain). Let γ• (resp. γ�)
be the concretization function in the memory abstract domain D

•
(resp. D

�
). It maps

an abstract element (M
•
, N
•
) (resp. (M

�
, N
�
)) to a set of concrete states S ⊆ S. The

Jiangchao Liu Static Analysis on Array Contents

6.2. ABSTRACTION 99

concretization function γc for coalescing domain C maps (M,N) to a set of concrete
states, defined with the relation |= as follows.

γc(M,N) = {σ ∈ S | σ |= (M,N)}
σ |= (i• & i�,N) iff there exists a disjunctive case 〈A0 ∗ . . . ∗ An,N

′〉 of i• & i�

such that, σ |= (A0 ∗ . . . ∗ An,N ∧N′)
σ |= (b

•
& b

�
,N) iff σ ∈ γ•(b•,N) ∩ γ�(b

�
,N)

σ0 ∗ σ1 |= (M0 ∗M1,N) iff σ0 |= (M0,N) ∧ σ1 |= (M1,N)

This definition of the concretization function is quite straightforward. But it is worth
noting that the concretization of a coalescing inductive predicates is not the intersection of
the concretizations of the decomposed inductive predicates in the two underlying domains.

6.2.4 The Array/Shape Coalescing Domain

Following the principles introduced in Section 6.2.3, we would like to define the coalesc-
ing domain of the array domain in Chapter 5 and the shape domain introduced in Sec-
tion 6.2.2. However, the array domain does not fit the signature in Section 6.2.1 strictly,
since it does not contain inductive predicates. Actually, the atomic memory predicates in

the array domain are of the form Gi@~f 7→ ~IfGi
, which can be seen as both non-inductive

and inductive. The following definition gives an inductive view of the atomic memory
predicates in the array domain.

G@~f 7→ ~IfG ::= 〈emp, |G| = 0〉
| 〈G0@~f 7→ ~IfG0

∗ . . . ∗ Gn@~f 7→ ~IfGn
,

G =]0≤i≤nGi ∧ ∀f ∈ F, IfG =]0≤i≤n0I
f
G0,i
∧ | G0 |= 1〉

In this inductive definition, we can see that a group could be either empty or split into
several sub-groups, where the first group contains only one array cell. The unfold and
fold operations in the signature correspond to the split and merge/create respectively.
With this view, the array domain fits the signature Dm, and we can coalesce it with the
shape domain [CR08]. The resulting domain is called the array/shape coalescing domain.

Definition 6.9 (The array/shape coalescing domain). An element (Ma/s,Na/s) in the
array/shape coalescing domain is defined as follows.

Ma/s := Aa/s ∗ . . . ∗ Aa/s

Aa/s := Gi & α@~f 7→ ~β | Gi & emp | Gi & is(~α) | Gi & true
Na/s := Q

Note that we still use Gi for short of Gi@~f 7→ ~IfGi
, which means Gi & is(~α) is a shortcut

for Gi@~f 7→ ~IfGi
& is(~α). A memory predicate in the coalescing domain can describe

Static Analysis on Array Contents Jiangchao Liu

100 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

• a single cell in the array: Gi & α@~f 7→ ~β;

• an empty group: Gi & emp;

• a possibly empty group of cells with structural predicates: Gi & is(~α) (by “struc-
tural”, we mean that the data in the corresponding memory region forms a definable
structure);

• a possibly empty group of cells without structural predicates: Gi & true.

The concretization of the coalescing domain follows the principles described in Sec-
tion 6.2.3.

Now we use the array/shape coalescing domain to abstract the global correctness
condition Raos. We first define the inductive predicates in it.

Example 6.2 (Coalescing inductive definition). The coalescing inductive definition G & lseg(π, τ)
formalizes a possibly empty linked list. The definition of it is shown below (recall that G
is short for G@next 7→ InextG).

G & lseg(π, τ) ::= 〈G & emp, π = τ ∧ |G| = 0〉
∨ 〈G ′ & π@(next 7→ π′) ∗ G ′′ & lseg(π′, τ), π 6= τ ∧ |G′| = 1〉

In this definition, group G either is an empty group, or it can be split into two groups,
where the first one contains the list head, and the other consists of the rest of the list. In
the following, if some numeric constraints (e.g., |G| = 0) in the coalescing definition are
implied by the memory predicates (e.g., G & emp), we will not write them.

If we break down this definition into two inductive definitions in the underlying do-
mains, they are still valid in their domains, as shown below.

G ::= 〈G, π = τ ∧ |G| = 0〉
∨ 〈G ′ ∗ G ′′, π 6= τ ∧ |G′| = 1〉

lseg(π, τ) ::= 〈emp, π = τ ∧ |G| = 0〉
∨ 〈π@(next 7→ π′) ∗ lseg(π′, τ), π 6= τ ∧ |G| = 1〉

Example 6.3 (A coalescing inductive predicate on sorted lists in arrays). Inductive pred-
icate G & slseg(π, τ) describes a sorted list in an array. Its formal definition is shown as
follows.

G & slseg(π, τ) ::= 〈G & emp, π = τ〉
∨ 〈G ′ & π@(next 7→ π′, prio 7→ π′′) ∗ G ′′ & slseg(π′, τ),

π 6= τ ∧ π′′ ≤ IprioG′′ 〉

In the second case of this definition, the linked list described by G & slseg(π, τ) can
be split into two new groups: G ′ contains only one array cell which is also the list head
and G ′′ consists of the rest of the list. The sortedness in this definition is expressed by the
relation on π′′ and IprioG′′ .

Jiangchao Liu Static Analysis on Array Contents

6.3. ALGORITHMS FOR UNFOLDING AND FOLDING 101

Ma/s : G0 & true ∗ G1 & lseg(α1,−1) ∗ G2 & lseg(α2,−1) ∗ G3 & slseg(α3,−1)
Na/s : suspend = α1 ∧ sleep = α2 ∧ ready = α3

∧ Iused0 = 0 ∧ Iused1 = Iused2 = Iused3 = 1
(a) The formal description of Raos

Array: G0 G1 G2 G3

Shape: true lseg(α1,−1) lseg(α2,−1) slseg(α3,−1)

Numeric: suspend = α1 sleep = α2 ready = α3

Iused0 = 0 Iused1 = 1 Iused2 = 1 Iused3 = 1∧ ∧ ∧
∧ ∧ ∧

(b) The graphical description of Raos

Figure 6.3 – Abstract state corresponding to Raos

Figure 6.3(a) shows the abstract state (Ma/s,Na/s) corresponding to Raos. We also
propose a graphical representation of the abstract state to make it easy to read in Fig-
ure 6.3(b). In this graphical representation, separating conjunction is expressed with
winding lines and non-separating conjunction is expressed by putting the conjuncts in the
same column. In the following, we will only show graphical representations by default.

The abstract state partitions the array a into four disjoint groups of cells, such that
each group corresponds to cells with similar properties. Group G0 collects all free slots,
whereas groups G1, G2, and G3 respectively account for the lists of suspended, sleeping
and ready tasks. Following Raos, free slots are characterized with a used field storing
0 as Iused0 = 0, which means that all values in set variable Iused0 are equal to 0 (though
this set may also be empty). Predicates G3 & lseg(α3,−1) means that the cells in group
G3 correspond exactly to a list starting at index α3. Relation ready = α3 expresses that
variable ready points to the head of the list.

As a comparison, the memory predicates in a reduced product of the array/shape
abstractions would in the form of (G0 ∗ G1 ∗ G2 ∗ G3) ∧ (true ∗ lseg(α1,−1) ∗
lseg(α2,−1) ∗ slseg(α3,−1)), where the correspondance of G1 and lseg(α1,−1) is un-
clear.

6.3 Algorithms for Unfolding and Folding

Unfolding and folding are two basic operations in shape analysis [SRW99b, DOY06, CR08].
When the analysis needs to reason about an operation affecting a cell that is summarized
as part of an inductive predicate, that predicate should first be unfolded according to
its definition, which amounts to locally refining the inductive predicate. Since inductive
predicates are based on disjunctions of inductive cases, the unfolding operation also returns
disjunctions of abstract states. While unfolding decomposes inductive predicates, the
analysis also needs a mechanism to re-construct such predicates. The goal of folding

Static Analysis on Array Contents Jiangchao Liu

102 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

unfold
c
((M ∗ i• & i�,N), i• & i�)

C = ∅
foreach〈A•j,0 & A

�
j,0 ∗ . . . ∗ A•j,nj

& A
�
j,nj

,Nj〉
in the definition of i• & i�))

(.,N•) = unfold
•
(i•,N, i• := 〈A•j,0 ∗ . . . ∗ A•j,nj

,Nj〉)
(.,N�) = unfold

�
(i�,N, i� := 〈A�j,0 ∗ . . . ∗ A�j,nj

,Nj〉)
Mt = M ∗ A•j,0 & A

�
j,0 ∗ . . . ∗ A•j,nj

& A
�
j,nj

Nt = N•j ∧ N�j
C = C ∪ {(Mt,Nt)}

return C

Figure 6.4 – Unfolding algorithm in coalescing domain

is to synthesize new inductive predicates according to the definition of such inductive
predicates.

6.3.1 The Unfolding Algorithm in the Coalescing Domain

Unfolding refines the abstract state by rewriting an inductive predicate to the disjunctive
cases of memory predicates in its definition. In our coalescing domain, it distributes the
rewriting to the underlying domains.

Definition 6.10 (Unfolding algorithm). The algorithm of unfolding unfold
c

in coalescing
domain is shown in Figure 6.4. It inputs an abstract state c = (M ∗ i• & i�,N) together
with an inductive predicate i• & i� in that state, and returns a finite set of abstract states,
obtained by unfolding this inductive predicate.

Function unfold
c

produces one disjunct per inductive case in the inductive definition of
i• & i�. Given an inductive case 〈A•j,0 & A

�
j,0 ∗ . . . ∗ A•j,nj

& A
�
j,nj

,Nj〉, it calls the unfolding

operator in the underlying domain (unfold
•

and unfold
�
). Note that, in unfold

•
or

unfold
�
, only one inductive case is considered (e.g., i• := 〈A•j,0 ∗ . . . ∗ A

•
j,nj

,Nj〉), and
(.,N•) means that only the numeric predicate component of the unfolding result in the
underlying domain contributes to the final result. Note that, some numeric constraints
in Nj may not be supported (like |G| = 1 in the shape domain [CR08]) in the underlying
domains. These unsupported numeric constraints are simply ignored, when they are
encountered in the algorithms in the underlying domains.

Example 6.4 (Unfolding algorithm). Take G3 & slseg(α3,−1) in Figure 6.3 for example.
Suppose we have ready ≥ 0 in the numeric predicate, then Figure 6.5 shows the two
disjuncts in the unfolding results. The first one (Figure 6.5(a)) comes from the empty
disjunctive case 〈G & emp, π = τ〉. This state is actually unreachable since the original

Jiangchao Liu Static Analysis on Array Contents

6.3. ALGORITHMS FOR UNFOLDING AND FOLDING 103

Array: G0 G1 G2 G3

Shape: true lseg(α1,−1) lseg(α2,−1) emp

Numeric: suspend = α1 sleep = α2 α3 = ready α3 = −1ready ≥ 0
Iused0 = 0 Iused1 = 1 Iused2 = 1 Iused3 = 1

∧
∧ ∧ ∧
∧ ∧ ∧

(a) The empty disjunctive case

Array: G0 G1 G2 G4 G5

Shape: true lseg(α1,−1) lseg(α2,−1) α4@(next 7→ α5,
prio 7→ β4) slseg(α5,−1)

Numeric: suspend = α1 sleep = α2 ready = α4 β4 ≤ IprioG5
Iused0 = 0

Iused1 = 1 Iused2 = 1 Iused4 = 1 Iused5 = 1∧ ∧ ∧ ∧
∧ ∧ ∧ ∧

(b) The non-empty disjunctive case

Figure 6.5 – The unfolding results

numeric predicates ready ≥ 0 ∧ ready = α3 conflict with the new numeric predicate α3 =
−1 from the empty disjunctive case in unfolding. Therefore, the other one (Figure 6.5(b))
which splits the list into two parts (i.e., the head node and the rest of the list) is the only
reachable state after unfolding.

Theorem 6.1 (Soundness of unfolding algorithm). The application of the unfolding op-

erator unfold
c

returns an over-approximation of its argument:

∀(M,N) ∈ C,∀A•i & A
�
i in M,

γc(M,N) ⊆
⋃
{γc(Mt,Nt) | (Mt,Nt) ∈ unfold

c
((M,N), A

•
i & A

�
i)}

6.3.2 The Folding Algorithm in the Coalescing Domain

Folding is the reverse operation of unfolding. It synthesizes an inductive predicate accord-
ing to its definition from a set of memory predicates in an abstract state. In our coalescing
domain, the folding operator distributes synthesization to the underlying domains.

Definition 6.11 (Folding algorithm). Figure 6.6 shows the algorithm of folding fold
c

in our coalescing domain. It inputs an abstract state c = (M ∗ A
•
j,0 & A

�
j,0 ∗ . . . ∗

A
•
j,nj

& A
�
j,nj

,N) together with an inductive definition i• & i�, a separating conjunction of

memory predicates A
•
j,0 & A

�
j,0 ∗ . . . ∗ A

•
j,nj

& A
�
j,nj

in that state, and returns an abstract
state, obtained by folding these memory predicates.

Operator fold
c

first looks for an inductive case of the parameter inductive definition
that is satisfied by the parameter memory predicates and numeric conditions. If there
exists one such case, it calls the folding operator in the underlying domain (fold

•
and

fold
�
). Similar as in unfold

c
, the input state of fold

•
is limited to A

•
j,0 ∗ . . . ∗ A•j,nj

and

only one case is considered in the inductive definition (i.e., i• := 〈A•j,0 ∗ . . . ∗ A•j,nj
,Nj〉).

Static Analysis on Array Contents Jiangchao Liu

104 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

fold
c
((M ∗ A•j,0 & A

�
j,0 ∗ . . . ∗ A•j,nj

& A
�
j,nj

,N), i• & i�, A
•
j,0 & A

�
j,0 ∗ . . . ∗ A•j,nj

& A
�
j,nj

)

if((∃〈A•j,0 & A
�
j,0 ∗ . . . ∗ A•j,nj

& A
�
j,nj

,Nj〉 in the definition of (i• & i�) and isleN(N,Nj))

(.,N•) = fold
•
(A
•
j,0 ∗ . . . ∗ A•j,nj

,N, i• := 〈A•j,0 ∗ . . . ∗ A•j,nj
,Nj〉)

(.,N�) = fold
�
(A
�
j,0 ∗ . . . ∗ A�j,nj

,N, i� := 〈A�j,0 ∗ . . . ∗ A�j,nj
,Nj〉)

M = M ∗ i• & i�

N = N• ∧ N�

return (M,N)
else return (M ∗ A•j,0 & A

�
j,0 ∗ . . . ∗ A•j,nj

& A
�
j,nj

,N)

Figure 6.6 – Folding algorithm in coalescing domain

Example 6.5 (Folding algorithm). Consider the abstract state shown below.

Array: G0 G1 G2

Shape: true α1@next 7→ β1 lseg(α2,−1)

Numeric: α1 ≥ 0 α2 = β1∧
∧ 0 ≤ G2 ≤ 10

Since the memory predicates G1 & α1@next 7→ β1 ∗ G2 & lseg(α2,−1) correspond to

the non-empty case in the definition of G & lseg, Let fold
a/s

be the folding operator as

defined in Definition 6.11. If we apply fold
a/s

((Ma/s,Na/s),G & lseg,G1 & (α1@next 7→
β1) ∗ G2 & lseg(α2,−1)), we would get the result as follows.

Array: G0 G1

Shape: true α1@next 7→ β1

Numeric: α1 ≥ 0

One special memory predicate in our array/shape coalescing domain is G & true. Ba-
sically, any separating conjunction of memory predicates can be seen as its inductive case.

For instance, if we apply fold
a/s

((Ma/s,Na/s),G & true,G0 & true ∗ G3 & lseg(α1,−1))
on the abstract state above, we get the abstract state as follows.

Array: G4

Shape: true

Numeric: G4 ≥ 0

Jiangchao Liu Static Analysis on Array Contents

6.4. TRANSFER FUNCTIONS 105

The folding algorithm is sound in the sense that they return an over-approximation of
the abstract states that it applies on.

Theorem 6.2 (Soundness of folding algorithm). Let (M ∗ A•j,0 & A
�
j,0 ∗ . . . ∗ A•j,nj

& A
�
j,nj

,N)

and i• & i� be the input abstract state and the inductive definition respectively, fold
c

is
sound in the following sense.

γc((M ∗ A•j,0 & A
�
j,0 ∗ . . . ∗ A•j,nj

& A
�
j,nj

,N)) ⊆
fold

c
((M ∗ A•j,0 & A

�
j,0 ∗ . . . ∗ A•j,nj

& A
�
j,nj

,N), i• & i�, A
�
j,0 ∗ . . . ∗ A•j,nj

& A
�
j,nj

)

6.4 Transfer Functions

In this section, we study the abstract transfer functions for tests and assignments.

6.4.1 Condition Tests

Recall that the concrete semantics of a condition test guardJrK : P(S) → P(S) filters
out the concrete states that do not evaluate r to true. In the abstract level, the transfer
function for condition tests adds constraints on numeric predicates N. However, when
some memory locations that are accessed in the statements are summarized in the mem-
ory predicates M, these memory locations should be resolved first. After that, we can
apply transfer functions in the underlying domains to add numeric constraints. Since the
numeric predicates in the coalescing domain is a conjunction of those in the underlying
domains (N = N

• ∧ N�), a reduction is performed on N
• ∧ N� at last.

Resolving. In this step, our analysis looks for summarized memory locations in the

input statement r and resolves them by calling unfold
c
. If there is no such location (e.g.,

in condition tests on program scalar variables), it does nothing. This step is described
by operator resolve[r] : C → P(C) (note that it produces a finite disjunction of abstract

states since it calls unfold
c
).

Theorem 6.3 (Soundness of the resolving operator). For any right-value expression r,
operator resolve is sound in the sense that,

γc(c) ⊆
⋃

γc(resolve[r](c)))

Transfer function for condition tests in the underlying domains. The parame-
ters of the transfer functions in the underlying domains for condition tests (i.e., guard

•
[.] :

D
• → D

•
and guard

�
[.] : D

� → D
�
) are abstract states in the underlying domains (i.e.,

(M
•
, N
•
) and (M

�
, N
�
)). To apply the underlying transfer functions, our analysis needs to

decompose (M,N) into underlying abstract states, so as to fit the parameters of guard
•
[.]

Static Analysis on Array Contents Jiangchao Liu

106 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

Array: G0

Shape: lss(α0,−1)

Numeric: α0 = ready

∧ Iprio0 ≥ 0

Figure 6.7 – The abstract state before guard

and guard
�
[.]. The numeric predicates in the coalescing domain N = N

• ∧ N
�

are trivial to
decompose (i.e., split N into two parts: N

•
and N

�
). For the memory predicates, the decom-

position is accomplished by two operators decom
•

: DM → D
•
M and decom

�
: DM → D

�
M.

Definition 6.12 (The algorithm of the decomposition operators). The algorithm of
decom

•
(decom

�
follows the same principles) can be defined recursively:

decom
•
(A
•

& A
�
) = A

•

decom
•
(M ∗ A• & A

�
) = decom

•
(M) ∗ A•

Note that, since guard function does not modify memory predicates, the resulting
memory predicates M

•
and M

�
of decom

•
and decom

�
are only used as the parameters of

underlying guard functions and do not constitute the final result.

Reduction. Reduction is performed after the guard function of underlying domains. It
refines N = N

• ∧ N
�

by propagating constraints between the two components. Note that,
its algorithm depends on the form of constraints in N

•
and N

�
. Thus for different instances

of our coalescing domain, we have to design specific reduction operation. This step is
formalized as operator reduce : N → N. In the array/shape coalescing domain, both
N
•

and N
�

are instances from Maya+ domain. Thus reduce is provided by the Maya+
domain.

Theorem 6.4 (Soundness of the reduction operator). Operator reduce is sound in the
sense that,

γc(M,N) = γc(M, (reduce(N)))

Definition 6.13 (The transfer function for condition tests). The transfer function for

condition test guard
c
[.] is formalized in Figure 6.10(a).

Example 6.6 (The transfer function for condition tests). Given an abstract state in the
array/shape coalescing domain in Figure 6.7 as the pre-condition of the condition test
a[ready].prio ≥ 1.

This pre-condition describes an array with all cells linked by a sorted list with respect
to the value in field prio in an increasing order. In the condition test, the accessed array

Jiangchao Liu Static Analysis on Array Contents

6.4. TRANSFER FUNCTIONS 107

Array: G0 G1

Shape: α0@(next 7→ α1,
prio 7→ β0)

lss(α1,−1)

Numeric: Iprio0 ≤ Iprio1

0 ≤ β0

α0 = ready ∧

Figure 6.8 – The abstract state after resolving

Array: G0 G1

Shape: α0@(next 7→ α1,
prio 7→ β0)

lss(α1,−1)

Numeric: 1 ≤ Iprio0 ≤ Iprio1

1 ≤ β0

α0 = ready ∧

Figure 6.9 – The abstract state after guard

cell a[ready].prio is summarized in the memory predicate G0 & lss(α,−1). Thus resolve

calls unfold
c

to materialize this array cell, and produces the abstract state in Figure 6.8.
Then two transfer functions in the underlying domains guard

a
[Iprio0 ≥ 1] and guard

s
[β1 ≥

1] are applied, which results in abstract state in Figure 6.9.

Theorem 6.5 (Soundness of the transfer function for condition tests). The transfer func-

tion for condition tests guard
c
[.] is sound in the following sense.

guardJrKγc(c) ⊆
⋃
γc(guard

c
[r](c)))

Proof. The soundness of guard
c
[.] follows the soundness of the resolving operation resolve,

underlying transfer functions, and the reduction operation.

6.4.2 Assignments

In the concrete semantics, an assignment statJl = rK : P(S) → P(S) updates the value
stored in left-value expression l with evaluation of the right-value expression r. In the
abstract level, the transfer function for assignments updates the numeric predicates and
memory predicates (when the left-value expression l is not a program scalar variable).
Same with the transfer function for condition tests, the abstract transfer function for
assignments first resolves all the memory locations in the statement (i.e., both l and
r), and applies transfer functions for assignments in the underlying domains. Finally it
performs reduction on the resulting numeric predicates.

Static Analysis on Array Contents Jiangchao Liu

108 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

guard
c
[r, (M,N)]

C = ∅
foreach((M,N) ∈ resolve[r](M,N))

M
•

= decom(M)

M
�

= decom(M)

(., N
•
) = guard

•
[r, (M

•
, N
•
)]

(., N
�
) = guard

�
[r, (M

�
, N
�
)]

Nt = reduce(N
• ∧ N

�
)

C = C ∪ {(M,Nt)}
return C

(a) The algorithm of guard

assign
c
[l = r, (M,N)]

C = ∅
foreach((M,N) ∈ resolve[l = r](M,N))

M
•

= decom(M)

M
�

= decom(M)

(M
•
, N
•
) = assign

•
[l = r, (M

•
, N
•
)]

(M
�
, N
�
) = assign

�
[l = r, (M

�
, N
�
)]

Mt = recons(M
•
, M
�
)

Nt = reduce(N)
C = C ∪ {(Mt,Nt)}

return C
(b) The algorithm of assignment

Figure 6.10 – Transfer functions in the coalesced domain

The first and third steps of the transfer function for assignments are the same with that
for condition tests. However, in the second step, memory predicates are possibly modified
in the underlying transfer functions for assignments. Thus, after applying assign

•
[.] and

assign
�
[.], our analysis needs to collect the resulting memory predicates in the underlying

domains and re-construct the memory predicates in the coalescing domain. This process
is formalized as operator recons : D•M ×D

�
M → DM. It is the reverse operation of decom

and coalesces the atomic memory predicates from in D•M and D�M with non-separating
conjunction.

Definition 6.14 (The transfer function for assignments). The algorithm assign
c
[.] in our

coalescing domain is formalized in Figure 6.10(b).

Example 6.7 (The transfer function for assignments). Given an abstract state in the
array/shape coalescing domain in Figure 6.11 as the pre-condition of the assignment
a[ready] = 0. Our transfer function first resolves a[ready] and decomposes the resulting

Jiangchao Liu Static Analysis on Array Contents

6.5. LATTICE OPERATORS 109

Array: G0

Shape: lseg(α0,−1)

Numeric: α0 = ready

Figure 6.11 – The abstract state before the assignment

Array: G0 G1

Numeric: >

(a) The decomposed state in array domain

Shape: α0@next 7→ α1 lseg(α1,−1)

Numeric: α0 = ready

(b) The decomposed state in shape domain

Figure 6.12 – The abstract state after resolving and decomposition

abstract state. The two abstract states in underlying domains are shown in Figure 6.12.
Then the two states are updated by the transfer functions in the underlying domains.
Note that in assign

s
[a[ready] = 0], memory predicate α0@next 7→ α1 is updated to

α0@next 7→ β0 and β0 = 0. The updated abstract states in the underlying domains are
re-constructed, as shown in Figure 6.13. Note that the correspondence of the memory
predicates between abstract states in the underlying domains are recorded in the process of
decomposition.

Theorem 6.6 (Soundness of the transfer function for assignments). The transfer function
for assignments is sound in the following sense.

statJl = rKγc(c) ⊆
⋃
γc(assign

c
[l = r](c))

Proof. The soundness of assign
c
[.] follows the soundness of the resolving operation resolve,

underlying transfer functions, and the reduction operation.

6.5 Lattice Operators

In the framework of abstract interpretation, the union of sets of concrete states is over-
approximated by abstract join or widening [CC77] (which guarantees the termination
of abstract iterations), and the order of sets of concrete states is over-approximated by
abstract inclusion checking. In our coalescing domain, we first define these operators on
compatible abstract states (i.e., they share the same memory predicates). Afterwards, we
show how to repartition general abstract states to generate compatible abstract states.

Static Analysis on Array Contents Jiangchao Liu

110 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

Array: G0 G1

Shape: α0@next 7→ β0 lseg(α1,−1)

Numeric: α0 = ready
∧ β0 = 0

Figure 6.13 – The abstract state after the assignment

6.5.1 Lattice Operators over Compatible Abstract States

Definition 6.15 (Compatible abstract states). Given two abstract states (M0,N0) and
(M1,N1), they are compatible, if and only if M0 = M1.

Since the memory predicates are the same in compatible abstract states, the lattice
operators take effect on numeric constraints.

Definition 6.16 (Lattice operators over compatible abstract states). We assume widen
N
, join

N

and incl
N

are the widening, join and inclusion checking operators over the numeric pred-
icates respectively, then we can define the lattice operators over compatible abstract states
below.

widen
c

≡((M,N0), (M,N1)) = (M,widen
N

(N0,N1))

join
c

≡((M,N0), (M,N1)) = (M, join
N

(N0,N1))

incl
c

≡((M,N0), (M,N1)) = (M, incl
N

(N0,N1))

Theorem 6.7 (Soundness of lattice operators). Operators widen
c

≡, join
c

≡ and incl
c

≡ are
sound in the following sense.

γc(c0)∪ γc(c1) ⊆ γc(widen
c

≡(c0, c1))

γc(c0)∪ γc(c1) ⊆ γc(join
c

≡(c0, c1))

incl
c

≡(a0, a1) = true =⇒ γc(a0) ⊆ γc(a1)

Proof. The soundness of operators widen
c

≡, join
c

≡ and incl
c

≡ follow the soundness of

widen
N
, join

N
and incl

N
respectively.

6.5.2 Processing on Non Compatible Abstract States

In most cases, the two input abstract states are not compatible, which means, they have
different numbers of atomic memory predicates, or the correspondence between their
atomic memory predicates is not obvious. Thus to make them compatible, we need to
accomplish two tasks: (1) pairing the atomic memory predicate from two abstract states
by their similarity; (2) folding the memory predicates in two abstract states when the

Jiangchao Liu Static Analysis on Array Contents

6.5. LATTICE OPERATORS 111

numbers of atomic memory predicates are different. The two tasks are performed by
operator repartition.

Ranking. Pairing is achieved with the help of a ranking function rank
c

: DM×DM → N,
which computes a logical distance between atomic memory predicates in different abstract

states. A high value of rank
c
(Ai, Aj) indicates Ai of c0 and Aj of c1 are likely to describe

sets of cells with similar properties.

The value of rank
c
(Ai, Aj) is determined by two factors:

• whether the two atomic memory predicates are of the same type of inductive predi-
cates, and whether the parameters in the memory predicates correspond to the same
program variables;

• if two atomic memory predicates are not inductive predicates, whether the value
ranges of the addresses and contents are similar.

Re-partitioning. The lattice operators do not use exactly the same re-partitioning al-
gorithm. Thus our analysis provides three versions of re-partitioning (i.e., repartition

widen
c ,

repartition
join

c and repartition
incl

c) for widen
c

(i.e., widening) , join
c

(i.e., join) and

incl
c

(i.e., inclusion cheking) respectively. In this chapter, we only give the details of
repartition

widen
c , since other versions follow very similar principles.

Operator repartition
widen

c(c0, c1) first computes a pairing↔ ∈ P(DM×DM), which
is a set of relations between memory predicates of c0 and c1. The pairing is defined by
the rules below:

1. operator repartition pairs each atomic memory predicate with the atomic memory
predicate with which it has the highest ranking value;

2. if three relations of the form Ai ↔ Ak, Ai ↔ Aj and At ↔ Aj have been added to the
pairing, then the “middle” relation Ai ↔ Aj is removed.

The algorithm we choose to filter pairs is based on heuristics, yet a non optimal
pairing will impact only precision, but not soundness. After the two steps above, operator
repartition

widen
c applies a partition transforming which transforms both arguments into

“compatible” abstract states using the following (symmetric) principles:

• if Ai ↔ Aj and Ai ↔ Ak, then Aj and Ak are merged by operator fold
c

and the
resulting memory predicate is paired with Ai;

• if Ai is mapped only to Aj, Aj is paired only to Ai, then their parameters are renamed
to the same;

Static Analysis on Array Contents Jiangchao Liu

112 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

widen
c
(c0, c1){

foreach(Ai in c0)
foreach(Aj in c1)

Wij = rank
c
(Ai, Aj);

c0, c1 = repartition
widen

c(W, c0, c1);

return widen
c

≡(c0, c1);
}

Figure 6.14 – The algorithm of the widening operator

Widening. With operators rank
c

and repartition
widen

c , we can define the widening
operator in the coalescing domain as follows.

Definition 6.17 (The algorithm of widening). The algorithm of widening is formalized
in Figure 6.14.

Theorem 6.8 (Soundness and termination of the widening operator). Operator widen
c

is sound (for all abstract states c0, c1, the inclusion γc(c0)∪ γc(c1) ⊆ γc(widen
c
(c0, c1))

holds) and ensures termination of abstract iterates.

Proof. The soundness of widen
c

follows from the soundness of fold
c

and widen
N

. Since

widen
c

changes the memory predicates only by applying foldings on non-empty dis-
junctive case, thus the memory predicate should stabilize after finitely many iterations.

Therefore, since widen
c

applies widen
N

on the numeric predicates component, it ensures
the termination of any sequence of abstract iterates.

Join and inclusion checking. A join operator join
c

(to over-approximate concrete

unions) and an inclusion check operator isle
c

(to conservatively decide inclusion) can be
defined in a very similar manner. The only difference lies in the re-partitioning operators:

repartition
join

c may apply fold
c

on the empty case when one atomic memory predicate

in an abstract state is paired with no atomic memory predicate in the other state and

repartition
incl

c only applies fold
c

on the left-hand operand.

Definition 6.18 (The algorithms of join and inclusion checking). The algorithms of join
and inclusion checking are formalized in Figure 6.15.

Theorem 6.9 (Soundness of join and inclusion checking). Operators join
c

and incl
c

are
sound in the following sense.

γc(c0)∪ γc(c1) ⊆ γc(join
c
(c0, c1))

incl
c
(a0, a1) = true =⇒ γc(a0) ⊆ γc(a1)

Jiangchao Liu Static Analysis on Array Contents

6.5. LATTICE OPERATORS 113

join
c
(c0, c1){
foreach(Ai in c0)

foreach(Aj in c1)

Wij = rank
c
(Ai, Aj);

c0, c1 = repartition
join

c(W, c0, c1);

return join
c

≡(c0, c1);
}

(a) The algorithm of the join operator

incl
c
(c0, c1){
foreach(Ai in c0)

foreach(Aj in c1)

Wij = rank
c
(Ai, Aj);

c0, c1 = repartition
incl

c(W, c0, c1);

return incl
c

≡(c0, c1);
}

(b) The algorithm of the inclusion checking opera-
tor

Figure 6.15 – The algorithms of the join and inclusion checking

Array: G1

Shape: lseg(α1,−1)

Numeric: α1 = ready
cur = ready∧

(a) One input state c0

Array: G2 G3

Shape: lseg(α2, α3) lseg(α3,−1)

Numeric: α2 = ready
| G2 |= 2

α3 = cur∧
∧

(b) The other input state c1

Figure 6.16 – The input states for lattice operators

Example 6.8 (Join and widening). Suppose the abstract states in Figure 6.16(a) and
Figure 6.16(b) are two input states:

• If we apply join
c

on them, our analysis would pair G1 & lseg(α1,−1) in c0 with
G3 & lseg(α3,−1) in c1, and no atomic memory predicate in c0 is paired with
G2 & lseg(α2, α3) in c1. Thus a new atomic memory predicate G0 & lseg(α1, α1)
is added to c0 and paired with G2 & lseg(α2, α3) in c1. The parameters of the
paired memory predicates are renamed to the same. The final result is shown in
Figure 6.17(a).

• If we apply widen
c

on them, our analysis would pair both G2 & lseg(α2, α3) and
G3 & lseg(α3,−1) in c1 with G1 & lseg(α1,−1) in c0. Then G2 & lseg(α2, α3) ∗
G3 & lseg(α3,−1) is folded into G2 & lseg(α2,−1) and paired to G1 & lseg(α1,−1)
in c0. The parameters of the paired memory predicates are renamed to the same.
The final result is shown in Figure 6.17(b).

Static Analysis on Array Contents Jiangchao Liu

114 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

Array: G4 G5

Shape: lseg(α4, α5) lseg(α5,−1)

Numeric: α4 = ready

0 ≤ |G4| ≤ 2

α5 = cur∧
∧

(a) The join result

Array: G1

Shape: lseg(α4,−1)

Numeric: α4 = ready

(b) The widening result

Figure 6.17 – The result of lattice operators

6.6 Analysis

In this section, we formalize an abstract interpreter based on the coalescing domain for the
language of Figure 5.1, and we discuss in detail the full analysis of the create example.

6.6.1 Abstract Semantics and Implementation

Abstract semantics. The definition of abstract semantics follows the principles defined
in Chapter 3. Given a statement s, the analysis function [s] : C → C inputs an abstract
pre-condition and returns an abstract post-condition. Our analysis uses lfp# defined in
Chapter 3 to compute least fix points, and uses fusion : P(C) → C to compute the

over-approximation of any number of abstract states (by applying join
c

repeatedly).

Definition 6.19 (Abstract semantics in the coalescing domain). The abstract semantics
[s] of a program s is defined by:

[l = e](c) = fusion ◦ assign
c
[l = e](c)

[s0; s1](c) = [s1] ◦ [s0](c)

[if(e0 < e1){s0}else{s1}](c) = join
c
([s0] ◦ fusion ◦ guard

c
[e0 < e1](c),

[s1] ◦ fusion ◦ guard
c
[e0 = e1](c))

[while(e0 < e1){s}](c) = fusion ◦ guard
c
[e0 = e1]lfp#

c F#)

where F#(c) = [s](fusion ◦ guard
c
[e0 < e1](c))

and lfp#
c computes post-fixpoint with widen

c
, join

c
and isle

c

Theorem 6.10 (Soundness of the abstract semantics in the coalescing domain). For all
program s and abstract pre-condition c,

JsK(γc(c)) ⊆ γc([s](c))

Implementation. We have implemented the array/shape coalescing domain inside the
MemCAD analyzer [SR12] using the Apron numeric abstract domain library [JM09].

Jiangchao Liu Static Analysis on Array Contents

6.6. ANALYSIS 115

In this section, we describe the details of the analysis on the motivating example in
Section 6.1. In the next chapter, we will carry out experiments on multiple operating
system components, which shows that our analysis can be parameterized and applied to
other structures.

6.6.2 Example create Revisited

Now we look at the analysis on the function create, the code and the analysis of which
are shown in Figure 6.18 and Figure 6.19.

The analysis starts with the global correctness condition Raos as pre-condition, which
is recalled at ¬ in Figure 6.18. The assignment at line 2 updates the value of the variable
i to 0. In the first iteration of the while loop at line 3, the group that the cell a[i] belongs
to is unknown. However, our analysis infers that a[i] stores 0 in field used thanks to the
condition test if(a[i].used == 0). Thus our analysis infers that a[i] is a cell belonging to
group G0, since numeric predicates on array contents entail that Iused1 = Iused2 = Iused3 = 1
(i.e., cells in groups G1, G2, G3 only store 1 in field used).

The assignments at line 5 and 6 update the contents of cell a[i]. The fields of this
cell are summarized in atomic memory predicate G0 & true. To perform strong updates
on assignments, the transfer function unfolds G0 & true. The empty disjunctive case is
unreachable since |G0| ≥ 0 (this is inferred by i ∈ G0). In the non-empty disjunctive case,
our analysis singles out the modified cell: the new atomic memory predicate G4 & true
contains exactly this cell (i.e., i ∈ G4 and |G4| = 1), and lets G0 represent the other cells.
After unfolding, it performs a strong update on Iused4 . The abstract state after line 6 is
shown at .

We now discuss the analysis of the assignments at lines 19 and 20. The abstract state
before line 19 is actually quite similar to that at , except that the numeric predicates
include 0 ≤ i ≤ 99 ∧ ready 6= −1 instead of i = 0. The analysis of the assignment at line
19 is trivial and only requires the update of numeric predicates by adding pre = ready.
Line 20 causes the reading of the array cell a[ready] which is also the head of the list of
ready processes (because of ready = α3 and G3 & slseg(α3,−1)). This cell is part of an
inductive predicate, thus the analysis carries out the unfolding. Since the abstract state
contains predicates ready 6= −1 and ready = α3, only the non empty disjunctive case is
possible. The unfolding result generates an atomic memory predicate G5 & α5@(next 7→
α6, prio 7→ β5) that describes the array cell to be updated. The assignment result after
line 20 is shown at ®.

Now we look at the analysis on the loop at line 21 in Figure 6.18. To compute precise
loop invariants, the analysis unrolls loops once, and then computes an abstract iteration
sequence with widening. When widening is applied for the first time in the sequence for
the loop at line 21, the arguments have different number of atomic memory predicates
because the unfolding at line 22 increases the number by one at each iteration.

The abstract states after the first and the second iteration in this loop are shown at
¯ and °, where atomic memory predicates G0 & . . . ∗ G1 & . . . ∗ G2 & . . . ∗ G4 & . . .

Static Analysis on Array Contents Jiangchao Liu

116 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

are omitted since they are the same as ®. Our widening algorithm performs the following
operations to make the two input states compatible.

• folding G5 & α5@(next 7→ α7, prio 7→ β5) and G7 & α7@(next 7→ α8, prio 7→ β7),
which results in the atomic memory predicate G10 & slseg(α10, α8).
• associating G5 & . . ., G6 & . . . and G7 & . . . at ¯with G10 & . . ., G8 & . . . and
G9 & . . . at ° respectively.

The widening result is shown at ±.

6.7 Related Work

Another way of combining abstract domains (D0, . . . , Dn) is reduced product [CC79],
which expresses the logical conjunction of abstract elements in the form of c0 ∧ . . . ∧ cn,
where ∀i ∈ [0, n], ci ∈ Di. The ASTRÉE analyzer [BCC+03a] utilizes reduced product
to combine numeric domains into more expressive ones. In [CR08], memory predicates
and shape predicates are combined to track both shape and data properties. The forms
of reduced products that are introduced in [LYP11] and [TCR13] combine shape domains
to abstract overlaid data structures. However, in reduced product, the correspondence
between atomic memory predicates in two input domains are unclear, thus it is less precise
than our coalescing domain.

One application of our coalescing domain is to combine an array domain and a shape
domain to tackle dynamic structures nested into arrays. Few analyses have been developed
to tackle such nested structures. In one hand, a large family of works have targeted nu-
meric arrays, and often use segment abstractions [GRS05, HP08, CCL11], which prevents
the inference of properties of non-contiguous sets of cells. Similar abstractions have been
used in invariant generation, model checking and theorem proving [AGS14, JM07, KV09].
While such analyses can verify sortedness, they cannot cope with nested structural invari-
ants such as the property Raos defined in Section 6.1. Fluid updates [DDA10, DDA11]
allow a precise tracking of container properties, and analyze precisely operations such as
a vector copy, but cannot capture nested structure properties. The analysis of Chapter 5
handles non-contiguous regions, and can compute abstractions of numeric constraints (for
instance that all cells in a group G0 store an index in G1), but cannot infer a precise in-
variant such as Raos, as it lacks a proper memory abstraction. Shape analysis for dynamic
structures like [SRW99b, DOY06, CR08] do not cope with array-specific statements, like
accesses with random indexes. One could suggest interpreting the array indexes as if they
were pointers. However, index arithmetics, even being interpreted by pointer arithmetics,
is beyond the scope of shape analyses targeted at dynamic structures. Thus, we would
be back to the same problem: dealing with both array and linked structures in the same
analysis. An additional difficulty for this idea is localization by contents. Condition test
on the values stored in the data field of an array cell is often used to find out whether that
cell is a list node. This kind of statements are rare in dynamic structures manipulating
codes but are common in our target programs. To the best of our knowledge, there exists

Jiangchao Liu Static Analysis on Array Contents

6.8. CONCLUSION 117

no shape analysis could infer whether a memory cell is a list node (not necessarily the
head node) by its contents on data field. Thus classical shape analyses would just fail to
localize an array cell, which could cause huge precision loss.

In the other hand, significant progresses have been achieved in the analysis of programs
with dynamic structures. Such works either use three-valued logic [SRW99b] or separation
logic [Rey02], and allow the verification of programs that manipulate dynamically linked
data-structures such as variants of lists [SRW99b, DOY06, BCC+07] and trees [CR08]. In
the other hand, these shape analyses cannot express that a structure lies inside an array, or
a fixed contiguous space. Our work also extends the notion of abstraction parameterized
by user supplied structure definitions of [CR08] to also deal with structures stored in
arrays.

A notable exception is [SR12], which extends a shape analysis with structures nested
into abstractions of memory blocks. This abstraction is limited to the case where a
structure is stored in a non empty and contiguous region, and cannot cope with the
examples discussed in Section 6.1. To achieve this more powerful association of array and
structure reasoning, our analysis restricts the form of inductive predicates to one atomic
inductive summary per region, which simplifies analysis algorithms, yet allows to deal
with more complex structures.

6.8 Conclusion

To summarize, our work contributes a novel method of combining memory abstractions,
which is called coalescing. In the logical point of view, the coalescing abstraction consists
of local conjunctions of predicates taken in two different memory abstract domains. By
keeping conjunctions of memory predicates local, it provides a greater precision than a con-
ventional reduced product would. Coalescing an array abstraction and a dynamic struc-
ture abstraction constructs an analysis on structures nested into non-contiguous blocks in
arrays.

Static Analysis on Array Contents Jiangchao Liu

118 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

¬

Array: G0 G1 G2 G3

Shape: true lseg(α1,−1) lseg(α2,−1) slseg(α3,−1)

Numeric: suspend = α1 sleep = α2 ready = α3

Iused0 = 0 Iused1 = 1 Iused2 = 1 Iused3 = 1∧ ∧ ∧
∧ ∧ ∧

1 void create(int priority){
2 int i = 0;
3 while(i < 100){
4 if(a[i].used == 0){
5 a[i].used = 1;
6 a[i].prio = priority;

Array: G4 G0 G1 G2 G3

Shape: true true lseg(α1,−1) lseg(α2,−1) slseg(α3,−1)

Numeric: . . . ∧ Iused4 = 1 ∧ |G4| = 1 ∧ Iprio4 = priority ∧ i = 0

i ∈ G4

7 break;
8 }
9 i + +;
10 }
11 // corner cases
12 . . .
13 // insert a[i] to ready list
14 // for case ready = -1
15 . . .
16 // for case a[i].prio ≤ a[ready].prio
17 . . .
18 int pre, cur;
19 pre = ready;
20 cur = a[ready].next;
®

Array:
Shape:

G4 G0 G1 G2 G5 = {α5} G6

Numeric:

true true lseg(α1,−1) lseg(α2,−1) α5@(next 7→ α6,
prio 7→ β5)

slseg(α6,−1)

. . . ∧ β5 ≤ Iprio6 ∧ ready = pre = α5 ∧ cur = α6

Figure 6.18 – The analysis on function create: part 1

Jiangchao Liu Static Analysis on Array Contents

6.8. CONCLUSION 119

¯

Array:
Shape:

. . . G5 G6 G7

. . . α5@next 7→ α6

prio 7→ β5

α6@next 7→ α7
prio 7→ β6

slseg(α7,−1)

Numeric: cur = α7pre = α6

β6 ≤ Iprio7

β5 ≤ β6
ready = α5 ∧

∧∧

°

Array:

Shape:

. . . G5 G7 G8 G9

. . . α5@next 7→ α7

prio 7→ β5

α7@next 7→ α8

prio 7→ β7

α8@next 7→ α9
prio 7→ β8

slseg(α9,−1)

Numeric: ready = α5

β5 ≤ β7

β7 ≤ β8 pre = α8

β8 ≤ Iprio9

cur = α9∧ ∧∧
∧

±

Array:
Shape:

. . . G10 G8 G9

. . . slseg(α10, α8) α8@next 7→ α9
prio 7→ β8

slseg(α9,−1)

Numeric: cur = α9

β8 ≤ Iprio9

pre = α8

Iprio10 ≤ β8

ready = α10

∧
∧∧
∧

21 while(cur ! = −1){
22 if(a[cur].prio > priority)
23 break;
24 pre = cur;
25 cur = a[cur].next;
26 }
27 a[pre].next = i;
28 a[i].next = cur;
29 // other fields initialization
30 . . .
31 return i;
32 }

Figure 6.19 – The analysis on function create: part 2

Static Analysis on Array Contents Jiangchao Liu

120 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION

Jiangchao Liu Static Analysis on Array Contents

Chapter 7

Experiments on OS Components

In this chapter, we evaluate the effectiveness of the techniques presented in this manuscript
via experiments on components of operating systems with the implementation of our
array/shape coalescing domain. It is an overall evaluation of all the techniques that
we have introduced, since the array/shape coalescing domain is built on top of a shape
domain [CR08] and the non-contiguous domain presented in Chapter 5, which utilizes
the Maya+ domain formalized in Chapter 4 to describe numeric predicates. From the
evaluation, we expect to show three aspects of our static analysis, which we detail below.

Expressiveness. Expressiveness is one important criteria to evaluate a static analysis
since it determines the properties that can be verified. Our coalescing domain can describe
structural invariants on overlaid data structures, thus it can be used to verify properties
like“the preservation of sorted lists in an array”. This kind of properties are often necessary
in some low-level programs like OS components, where dynamic memory allocation is not
always allowed.

Efficiency. The efficiency of an analysis determines its scalability. In our case, since the
target programs are system calls in real-time operating systems, the benchmarks are not
large (usually around 100 LOC). We believe that the analysis for one system call taking
several seconds is acceptable in practice (not too long to distract users’ attention).

User friendliness. One barrier that prevents some static analyses being used in indus-
try is the efforts needed to use them. These efforts consist of necessary training on users,
specifications writing and sometimes modification on the code. We believe that the efforts
(mainly including the specification for pre- and post-conditions of system calls) to employ
our static analysis is reasonable.

Static Analysis on Array Contents Jiangchao Liu

122 CHAPTER 7. EXPERIMENTS ON OS COMPONENTS

7.1 Experiments Setup

7.1.1 Target Programs

We choose a set of OS components as the benchmarks to evaluate our analysis. This
choice is based on the following facts.

• Verification of OS compoments is important. Since any fault in the imple-
mentation of an operating system could affect the user processes running on it or
even halt the whole system unexpectedly, the reliability of a computer system can
only be as good as that of the operating system in it. Thus the verification on
operating system components is important by all means.

• Verification of OS compoments is challenging. There has been many at-
tempts [KEH+09, YH10, PF10, OMLB16] to ensure the correctness of components
of OS by formal verification. Most of them are based on theorem proving and spe-
cific to one version of a certain OS. Verification by static analysis is much harder
since the data structures in OS are usually complex and it is non-trivial to design
automatic reasoning algorithms of proper precision to prove meaningful properties.

• Verification of OS compoments shows the strength of our anlysis. Our co-
alescing domain can describe overlaid data structures, especially dynamic structures
in arrays, which happen to be common in real time operating systems. Thus exper-
iments on these operating systems could demonstrate the strength of our analysis.

The benchmarks are summarized in Table 7.1.

• AOS is an industrial embedded real-time operating system. It is not open source
and we are not authorized to give the background of it. The task scheduler in AOS
maintains three lists in an array to record all the running tasks in the states of
“suspend”, “sleep” and “ready” respectively. The list of “ready” tasks are sorted with
respect to the priority level. We take the task scheduler into our benchmark since it
is representative and challenging (multiple lists including a sorted one in an array).

• TinyOS [LMP+05] is an embedded, application-specific operating system designed
for sensor networks. Each node in such networks integrates a low-power CPU with
limited memory and radio or optical communication, so that they can interact with
the environment and each other through sensors, actuators and communication. The
limited resources on each node is for sake of cost, which is pivotal to the application
of sensor networks, since typical applications of sensor networks like environmental
monitoring and seismic analysis of structures, could easily require thousands of
nodes. Moore’s law will be applied to reduce size and cost rather than increase
capability, to make Internet of things practical which needs huge amount of nodes.

Jiangchao Liu Static Analysis on Array Contents

7.1. EXPERIMENTS SETUP 123

Thus operating systems which run with limited resources and low power such as
TinyOS are expected.

TinyOS is implemented in the nesC language [GLvB+03], which is an extension to
the C programming language. nesC is a component-based, event-driven program-
ming language, developed for networked embedded system. One feature of nesC is
that it does not allow dynamic memory allocation. However, in the task scheduler
in TinyOS, dynamicly linked lists are needed and implemented in arrays. Thus we
choose the task scheduler in TinyOs as one of our benchmarks.

• Minix is a Unix-like multitasking computer operating system [TWTT87]. It is a very
small OS (with fewer than 10 000 lines of kernel), yet it greatly influenced the design
of other kernels, including Linux. It is based on a micro-kernel architecture, with
separate, lightweight services respectively in charge of task scheduling (in kernel),
memory management and file system.

In the memory management service, a list recording all allocated memory blocks is
stored in an array, and all free slots in that array is also linked as a list. Thus the
two lists occupy the whole array. We take the system calls manipulating this array
as parts of our benchmarks.

• Eicon [eic] is a company providing telephony boards for PC servers. Their prod-
ucts include Diva server, which is a range of telocoms products for voice, speech,
conferencing and fax. It supports various protocols such as T1/E1 and ISDN.

In the linux driver for Diva server [div], the adapter request queue is maintained by
a list in an array. One thing special about this list is that a variable recording the
length of the list makes some operations faster (e.g., judging whether there are free
slots in the array). We also include this driver in our benchmarks.

• Nordic nRF51 series [nor] is a family of system-on-chip (SoC) devices for ultra-
low power wireless applications. They support a range of protocol stacks including
Bluetooth low energy and ANT.

To satisfy the requirement on low energy consumption, the applications running on
it often avoids using dynamic memory allocation. In its timer application [tim], a
sorted list is maintained in an array. We also put that application into our bench-
marks.

All these programs manipulate one common type of overlaid data structure“lists inside
arrays”. However, we choose them as our benchmarks since they are representive in their
fields and the structural properties that each of these modules relies on have different
characteristics, that are also summarized in Table 7.1: (1) The numbers of lists stored
in a single array in each module are various, as indicated in the row “Lists”. (2) In the
benchmark from Minix, all array cells are linked in two lists, thus one property of that
array is that no array cell should be out of the control of the lists. This characteristic

Static Analysis on Array Contents Jiangchao Liu

124 CHAPTER 7. EXPERIMENTS ON OS COMPONENTS

System AOS TinyOS Minix Linux Nordic
Module task task memory Eicon

network
application

scheduler scheduler management driver timer
Functions tinit push task tinit insert insert

tcreat pop task alloc mem delete delete

tstop free mem traversal

tsched max hole

tstart

Lists 3 1 2 1 1
Free slots Yes Yes No Yes Yes
Tail
pointer

No Yes No Yes No

Length No No No Yes No
information
Sortedness Yes No No No Yes

Table 7.1 – Analyzed programs and invariants

is indicated in the row “Free slots”, which specifies whether there are array cells storing
“free” elements. (3) Some modules use a special variable to hold the index of the last
element of each list. This is indicated in the row “Tail pointer”. (4) The row “Length
information” specifies whether a special variable holds the length of each list. (5) The
row “Sortedness” says whether the structural invariant also relies on the sortedness of the
lists.

7.1.2 Verification Framework

Environment. We implemented the analysis inside the MemCAD analyzer [SR12],
which is a forward abstract interpreter that performs intra-procedural static analysis or
fully context-sensitive inter-procedural inter-procedure analysis (does not support recur-
sion) based on the ASTs generated by front-end Clang [App]. All our experiments are
carried out on on Ubuntu 12.04.4, with 16 Gb of RAM, on an Intel Xeon E3 desktop,
running at 3.2 GHz.

Verification methodology. Each of the considered cases relies on a structure that
can be easily described using a structural inductive definition (e.g., Example 6.1). These
definitions serve as specifications that drive the abstraction, and are used as basis of pre-
and post-conditions, which may also include additional numeric relations. With these
specifications, the verification process can be formalized as follows.

assume(R); systemcall(); assert(R);

Jiangchao Liu Static Analysis on Array Contents

7.2. VERIFIED PROPERTIES 125

That is, given a structural invariant R as pre-condition, we let our analysis compute
an abstract post-condition and check that R still holds at the exit of the function.

Analysis options. We choose to use the “New Polka” polyhedra domain in Apron
library [JM09] as the underlying abstract numeric domain. Our strategy for loop iteration
is applying join for the first iterate and then widening for the rest. The maximal time for
the analysis on one function is set to be 1 minute.

7.2 Verified Properties

In this section, we show the properties that have been verified by our static analysis on
the four OS components.

AOS. In Chapter 6, we have presented the analysis on examples from the task scheduler
in AOS. Now we recall the invariants Raos as follows.

Array: G0 G1 G2 G3

Shape: true lseg(α1,−1) lseg(α2,−1) slseg(α3,−1)

Numeric: suspend = α1 sleep = α2 ready = α3

Iused0 = 0 Iused1 = 1 Iused2 = 1 Iused3 = 1∧ ∧ ∧
∧ ∧ ∧

where

G & lseg(π, τ) ::= 〈G & emp, π = τ〉
∨ 〈G ′ & π@(next 7→ π′) ∗ G ′′ & lseg(π′, τ), π 6= τ〉

and

G & slseg(π, τ) ::= 〈G & emp, π = τ〉
∨ 〈G ′ & π@(next 7→ π′, prio 7→ π′′) ∗ G ′′ & slseg(π′, τ),

π 6= τ ∧ π′′ ≤ IprioG′ 〉

This property indicates that variables ready, sleep and suspend should point to the
heads of three well-formed acyclic disjoint lists, where the list with head ready is sorted
with respect to the values in field prio, and all free slots and used nodes in the array are
distinguished by the values stored in their used field (0 for free slots and 1 for used slots).

System calls that manipulate this data structure include tinit (initialize the array
and the three list variables), tcreat (locate a free slot in the array and insert it into the
ready list), tstop (release a list node to be free), and tsched (move array nodes between
lists), and tstart (move one node from the sleeping list to the ready list). The verification
is carried out by proving the following assertions.

Static Analysis on Array Contents Jiangchao Liu

126 CHAPTER 7. EXPERIMENTS ON OS COMPONENTS

assume(>) tinit() assert(Raos);
assume(Raos) tcreat() assert(Raos);
assume(Raos) tstop() assert(Raos);
assume(Raos) tsched() assert(Raos);
assume(Raos) tstart() assert(Raos);

7.2.1 Minix

The Minix memory management module maintains two lists inside an array: one of them
stores the allocated blocks whereas the other stores the available nodes. Any cell in the
array belongs to either of these two lists. An interesting property of these two lists is that
they occupy the whole array, and no array cell is leaked during operations on the lists.
This fact is expressed in our abstraction by partitioning all the array cells into only two
groups, each containing one list. The invariant Rm is shown as follows.

Array: G0 G1

Shape: lseg(α0, 0) lseg(α1, 0)

Numeric: hole head = α0 free head = α1∧

The functions manipulating this array include tinit (initialization), alloc mem (move
one node from the list of available nodes list to the list of allocated blocks), free mem (the
reverse operation of alloc mem), max hole (perform a traversal following a list structure).
The verification is carried out by proving the following assertions.

assume(>) tinit() assert(Rm);
assume(Rm) alloc mem() assert(Rm);
assume(Rm) free mem() assert(Rm);
assume(Rm) max hole() assert(Rm);

7.2.2 TinyOS

The task scheduler of TinyOS maintains one singly linked list (see row ”Lists” in Table 7.1)
in an array, the head and tail nodes of which are indexed by two integer variables head

and tail respectively (see row ”Tail pointer”). The array also contains free slots besides
list nodes (see row ”Free slots”). The invariant Rt is shown as follows.

Array: G0 G1 G2

Shape: lseg(α0, α1) last(α1, α0) true

Numeric: tail = α1 Inext2 = 255∧∧head = α0

Jiangchao Liu Static Analysis on Array Contents

7.2. VERIFIED PROPERTIES 127

where

G & lseg(π, τ) ::= 〈G & emp, π = τ〉
∨ 〈G ′ & π@(next 7→ π′) ∗ G ′′ & lseg(π′, τ), π 6= τ〉

and

G & last(π, τ) ::= 〈G & emp, π = 255 ∧ τ = 255〉
∨ 〈G & π@(next 7→ π′), π 6= 255 ∧ τ 6= 255 ∧ π′ = 255〉

Note that, even if there are only two lists, our abstraction partitions the array into
three groups, since the additional group G2 is needed to store free elements (that are in
neither of these lists). The next field of these cells stores value 255 (Inext2 = 255).

The functions manipulating this array include the system call pop task which pops a
task from the list head, and the system call push task which pushes one task to the list
tail. The verification is carried out by proving the following assertions.

assume(Rt) pop task() assert(Rt);
assume(Rt ∧ 0 ≤ id ≤ 255) push task(int id) assert(Rt);

7.2.3 Eicon

The Eicon network driver for Linux maintains a list in an array to deal with adapter
request queue. They also maintain two variables head and tail which point to the head
and tail of the list (just like TinyOS). A specific feature of the Eicon network driver is
that it also has a variable count to record the length of the list (as shown in row ”Length
information”). By comparing count with the length of the array, the driver can quickly
know whether there are free slots in the array. The invariant Re is shown as below.

Array: G0 G1 G2

Shape: lseg(α0, α1) last(α1, α0) true

Numeric: tail = α1 Inext2 = −1∧∧head = α0

|G0|+ |G1| = count∧

Programs manipulating this array include insert (insert one request to the tail of the
list), delete (delete one request at the head of the list), traversal (traverse the list).
The verification is carried out by proving the following assertions.

assume(Re) insert() assert(Re);
assume(Re) delete assert(Re);
assume(Re) traversal() assert(Re);

Static Analysis on Array Contents Jiangchao Liu

128 CHAPTER 7. EXPERIMENTS ON OS COMPONENTS

7.2.4 Nordic

The timer application taken from the Nordic nRF51 SoC maintains a sorted list inside an
array. Each node records an application with running time information. The list is sorted
according to the ticks left for each application. The invariant Rn is shown as below.

Array: G0 G1

Shape: slseg(α0,−1) true

Numeric: hole head = α0 Inext1 = −1∧

Programs manipulating this array include insert (insert one timer according to its
id) and delete (delete one timer according to its id). The verification is carried out by
proving the following assertions.

assume(Rn ∧ 0 ≤ timer id < max timers) insert(int timer id) assert(Rn);
assume(Rn ∧ 0 ≤ timer id < max timers) delete(int timer id) assert(Rn);

7.3 Efficiency

Table 7.2 shows the results of the analysis on the functions mentioned in Table 7.1. The
table indicates the number of lines of codes and analysis times. Note that we distinguish
the definition of complex data structures (noted as LOCs(d)) and other codes (noted as
LOCs(f)), since in some benchmarks like Eicon, the definition of data structures could
account for the most of LOC.

The analysis successfully verifies all these programs, using the aforementioned struc-
ture specifications. In each case, it verifies both memory safety and the preservation of the
structural invariants attached to each case. In most cases, analysis run-times are under
one second. While the programs are not very large, they are fairly subtle and with typical
operating system primitives manipulating the pattern under study.

7.4 Effort Needed for Verification

In this section, we summarize the efforts that we have made to carry out all the experi-
ments in this Chapter. This reflects how easy our static analysis is to use.

The effort to use our analysis lies in two aspects: writing specification and pre-
processing the code: (1) Our analysis is parameterized by the specification describing
the properties to be to verify (e.g., the invariants we show in Section 7.2). The specifica-
tion should be provided by the users. (2) Since the targeting properties are at function
level, thus we need to pre-process the benchmarks by extracting the system calls out to
verify them as libraries. Another reason for pre-processing code is that our analyzer does
not support recursion. Therefore we need to eliminate recursion where it emerges.

Jiangchao Liu Static Analysis on Array Contents

7.5. RELATED WORK AND CONCLUSION 129

System Program LOCs(d) LOCs(f) Time

AOS

tinit 6 36 0.12
tcreat 6 54 0.81
tstop 6 83 1.68
tsched 6 71 1.36
tstart 6 110 2.29

TinyOS
push task 1 30 0.11
pop task 1 24 0.11

Minix

tinit 4 13 0.19
alloc mem 4 46 0.38
free mem 4 59 0.58
max hole 4 15 0.31

Eicon
insert 157 43 0.24
delete 157 18 0.12

traversal 157 19 0.28

Nordic
insert 14 56 1.03
delete 14 47 0.59

Table 7.2 – Average times in seconds

The specification on each system call is fast to write (just a few lines). However, to
figure out the invariants may take several minuets or more than one hour, depending on
the complexity of the function. In the case of pre-processing the code, the time we have
spent on each system call varies: (1) it could be ignorable, when the system call is self-
contained (such as the two functions in TinyOS); (2) it could take more than one hour
when the dependency of data structures is deep (e.g., Nordic) or recursion arises in some
functions (e.g., Minix).

We believe that real users may spend less time than us for two reasons: (1) the syntax
of the specification in our analysis is easy to learn (they are based on simple separation
logic), and inductive definitions (e.g., lseg) can be shared by all tasks; (2) users can
do pre-processing and invariants extraction much faster than us since they know their
systems much better than us.

7.5 Related Work and Conclusion

The importance of the verification of operating systems has been widely realized, and
quite a few works on this issue have been presented.

Most of these works [KEH+09, YH10, PF10] rely on theorem proving. The mathe-
matical logics (e.g., first-order logic) used in theorem proving are usually very expressive,
thus theorem proving has the potential to fully prove the functional correctness of a given
operating system. However, rich expressiveness comes with the sacrifice of automation.
Even with the help of interactive provers, the verification is quite time-consuming. Take

Static Analysis on Array Contents Jiangchao Liu

130 CHAPTER 7. EXPERIMENTS ON OS COMPONENTS

project seL4 [KEH+09] as an example, which implements seL4 (a third-generation micro-
kernel of L4 provenance) comprising 8700 lines of C code and 600 lines of assembler, and
verifies the correctness of it except the virtual memory manger, the initialization code
and the assembler. The implementation of the operating system took 2.2 py, and the
proof cost 20 py. The proof is also sensitive to changes in the operating system. In the
experience of seL4, adding a complex new data structure to the kernel supporting new
API calls could cost 1.5-2 py to re-verify.

Verifications of operating systems by static analysis [OMLB16, WCM+16] utilize less
expressive logic but are usually fully automatic. Compared to static analysis on user
programs, static analysis on operating systems has to deal with difficulties like hardware
abstraction, interrupts and complex data structures. In [OMLB16], the semantics of low-
level hardware interactions are modeled as a register automaton. In [WCM+16], interrupts
are considered into account and handled by sequentialization. Static analysis is specific
to certain properties and can hardly prove the correctness of a system in all aspects.
However, the advantage of static analysis is that it is not specific to a certain version of
a given operating system, and could be applied to other versions or even other operating
systems easily.

Our static analysis focuses on the automatic reasoning on properties of complex data
structures, which is orthogonal to those in [OMLB16, WCM+16]. However, our work
and those in [OMLB16, WCM+16] all contribute to the precision improvement of static
analysis on operating systems. In particular, our experiments demonstrate that static
analysis can verify non-trivial safety and functional properties on various OS components
which may manipulate complex data structures.

Jiangchao Liu Static Analysis on Array Contents

Chapter 8

Conclusion and Discussion for The
Future Work

In this thesis, we have contributed a series of techniques that can work together to address
the difficulties of the verification of complex structural properties on array contents, that
we have mentioned in the beginning of the thesis.

• The Maya(+) domain addresses the difficulty of describing numerical properties of
array contents, the size of which could be unbounded;

• The non-contiguous partition array domain addresses the difficulty of extracting
dynamic structures out of arrays, which usually occupy non-contiguous regions of
arrays;

• The coalescing domain addresses the difficulty of reasoning about accesses into in-
tertwined data structures (like dynamic structures in arrays) at the same time.

The Maya domain extends conventional numeric domains with the ability of abstract-
ing optional variables (i.e., variables that may have no value). This domain can be used
for numeric analysis on languages with optional data types. It can also be used to de-
scribe programs with dynamic allocations, where memory locations allocated in condi-
tional branches are actually“optional”. The Maya+ domain extends conventional numeric
domains with the ability of abstracting possibly empty set variables (i.e., variables that
may have a possibly empty set of values). In this thesis, it is used to summarize array
indexes and contents.

Our array domain can describe numeric properties of non-contiguous cells. Compared
with conventional static analysis on array contents, it enjoys several advantages: (1) it
supportes non-contiguous partition, thus it can describe arrays where cells with similar
properties are not contiguous more precisely; (2) it allows empty groups, thus the number
of disjunction is fewer than those do not allow; (3) it is semantic, thus the partitioning is
carried out during the analysis which avoids a syntactic pre-analysis and is more precise
since semantic information can help the partitioning.

Static Analysis on Array Contents Jiangchao Liu

132
CHAPTER 8. CONCLUSION AND DISCUSSION FOR THE FUTURE

WORK

Our coalesced domain can describe and automatically reason about inter-wined data
structures. We have shown its ability in verifying the safety and functional properties of
programs manipulating “lists nested in arrays”. These properties are not widely realized
in the literature, but we believe that they are important, especially in low-level software
where arrays with structural contents are often used.

Our experiments demonstrate the effectiveness of our techniques. The benchmarks
are all operating system components, including task schedulers, memory management
and drivers. The safety of these programs are essential and the verification of them is
non-trivial, considering the complex data structures that they utilize.

As for the future work, we believe that the following directions are promising.

• The Maya(+) domain can be extended with the ability of describing more set rela-
tions (like set inclusion). In this way, it turns into a set domain supporting numeric
constraints on set variables. This kind of domain has potential use in many fields,
like abstraction for general containers.

• The performance of the non-contiguous partition domain can be improved by con-
trolling the number of groups with a heuristic algorithm. From our experiments, the
time consumption of our analysis is mainly determined by the number of partitioned
groups. In this thesis, we do not set a threshold for the number of groups, which
limits the use of this domain on large code bases. In the future work, we can develop
some heuristic strategies to control the number of groups.

• The future work for our coalescing domain is using it to combine more shape do-
mains. This can be used to abstract more intertwined data structures like “trees on
a list”.

Jiangchao Liu Static Analysis on Array Contents

Bibliography

[AGS13] Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Definability of
accelerated relations in a theory of arrays and its applications. In Symposium
on Frontiers of Combining Systems (FCS), 2013.

[AGS14] Francesco Alberti, Silvio Ghilardi, and Natasha Sharygina. Decision proce-
dures for flat array properties. In TACAS, 2014.

[All81] Frances E. Allen. The history of language processor technology in IBM.
IBM Journal of Research and Development, 25(5):535–548, 1981.

[App] Apple, Inc. clang: a C language family frontend for LLVM. http://clang.
llvm.org/ ; accessed 01-Oct-2017.

[BCC+03a] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. A static analyzer for large safety-critical soft-
ware. In PLDI, 2003.

[BCC+03b] Bruno Blanchet, Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent
Mauborgne, Antoine Miné, David Monniaux, and Xavier Rival. A static
analyzer for large safety-critical software. In PLDI, 2003.

[BCC+07] Josh Berdine, Cristiano Calcagno, Byron Cook, Dino Distefano, Peter W
O’Hearn, Thomas Wies, and Hongseok Yang. Shape analysis for composite
data structures. In CAV, 2007.

[BCLR04] Thomas Ball, Byron Cook, Vladimir Levin, and Sriram K. Rajamani. SLAM
and static driver verifier: Technology transfer of formal methods inside mi-
crosoft. In Integrated Formal Methods, 4th International Conference, IFM
2004, Canterbury, UK, April 4-7, 2004, Proceedings, pages 1–20, 2004.

[BDES12] Ahmed Bouajjani, Cezara Dragoi, Constantin Enea, and Mihaela Sighire-
anu. Accurate invariant checking for programs manipulating lists and arrays
with infinite data. In Automated Technology for Verification and Analysis
- 10th International Symposium, ATVA 2012, Thiruvananthapuram, India,
October 3-6, 2012. Proceedings, pages 167–182, 2012.

Static Analysis on Array Contents Jiangchao Liu

134 BIBLIOGRAPHY

[BHMR07] Dirk Beyer, Thomas A. Henzinger, Rupak Majumdar, and Andrey Ry-
balchenko. Invariant synthesis for combined theories. In VMCAI, 2007.

[BHR84] Stephen D Brookes, Charles AR Hoare, and Andrew W Roscoe. A the-
ory of communicating sequential processes. Journal of the ACM (JACM),
31(3):560–599, 1984.

[BL68] Rodney M Burstall and Peter J Landin. Programs and their proofs: an
algebraic approach. Technical report, DTIC Document, 1968.

[BMS06] Aaron R. Bradley, Zohar Manna, and Henny B. Sipma. What’s decidable
about arrays? In VMCAI, 2006.

[CC77] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In POPL, 1977.

[CC79] Patrick Cousot and Radhia Cousot. Systematic design of program analysis
frameworks. In POPL, 1979.

[CCF13] Agostino Cortesi, Giulia Costantini, and Pietro Ferrara. A survey on prod-
uct operators in abstract interpretation. arXiv preprint arXiv:1309.5146,
2013.

[CCL11] Patrick Cousot, Radhia Cousot, and Francesco Logozzo. A parametric seg-
mentation functor for fully automatic and scalable array content analysis.
In POPL, 2011.

[CCR14] Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival. Automatic analysis of
open objects in dynamic language programs. In SAS, 2014.

[CCS13] Arlen Cox, Bor-Yuh Evan Chang, and Sriram Sankaranarayanan. QUIC
graphs: Relational invariant generation for containers. In ECOOP, 2013.

[CCS15] A. Cox, B.-Y. E. Chang, and S. Sankaranarayanan. QUIC graphs: relational
invariant generation for containers. In VMCAI, 2015.

[CE82] Edmund Clarke and E Emerson. Design and synthesis of synchronization
skeletons using branching time temporal logic. Logics of programs, pages
52–71, 1982.

[CH78a] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among
variables of a program. In POPL, 1978.

Jiangchao Liu Static Analysis on Array Contents

BIBLIOGRAPHY 135

[CH78b] Patrick Cousot and Nicolas Halbwachs. Automatic discovery of linear re-
straints among variables of a program. In 5th ACM SIGACT-SIGPLAN
Symposium on Principles of Programming Languages (POPL’78), pages 84–
96, Tucson, Arizona, 1978. ACM.

[CLM+14] Liqian Chen, Jiangchao Liu, Antoine Miné, Deepak Kapur, and Ji Wang. An
abstract domain to infer octagonal constraints with absolute value. In Static
Analysis - 21st International Symposium, SAS 2014, Munich, Germany,
September 11-13, 2014. Proceedings, pages 101–117, 2014.

[CMC08] Liqian Chen, Antoine Miné, and Patrick Cousot. A sound floating-point
polyhedra abstract domain. In APLAS, 2008.

[CR08] Bor-Yuh Evan Chang and Xavier Rival. Relational inductive shape analysis.
In POPL, 2008.

[CR13] Bor-Yuh Evan Chang and Xavier Rival. Modular construction of shape-
numeric analyzers. In Semantics, Abstract Interpretation, and Reasoning
about Programs (SAIRP), 2013.

[DDA10] Isil Dillig, Thomas Dillig, and Alex Aiken. Fluid updates: Beyond strong
vs. weak updates. In ESOP, 2010.

[DDA11] Isil Dillig, Thomas Dillig, and Alex Aiken. Precise reasoning for programs
using containers. In POPL, 2011.

[div] Linux driver for eicon diva server. https://github.com/torvalds/linux/
blob/master/drivers/isdn/hardware/eicon/io.c. Accessed: 2017-10-
18.

[DOY06] Dino Distefano, Peter W O’Hearn, and Hongseok Yang. A local shape
analysis based on separation logic. In TACAS. 2006.

[eic] Eiconworks.com: Dialogic products and solutions. http://www.

eiconworks.com/. Accessed: 2017-10-18.

[Flo67] Robert W. Floyd. Assigning meanings to programs. Proceedings of Sympo-
sium on Applied Mathematics, 19:19–32, 1967.

[GDD+04] Denis Gopan, Frank DiMaio, Nurit Dor, Thomas W. Reps, and Shmuel
Sagiv. Numeric domains with summarized dimensions. In TACAS, 2004.

[GIB+12] Khalil Ghorbal, Franjo Ivančić, Gogul Balakrishnan, Naoto Maeda, and
Aarti Gupta. Donut Domains: Efficient Non-convex Domains for Abstract
Interpretation, pages 235–250. 2012.

Static Analysis on Array Contents Jiangchao Liu

136 BIBLIOGRAPHY

[GLvB+03] David Gay, Philip Levis, J. Robert von Behren, Matt Welsh, Eric A. Brewer,
and David E. Culler. The nesc language: A holistic approach to networked
embedded systems. In Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation 2003, San Diego,
California, USA, June 9-11, 2003, pages 1–11, 2003.

[GMT08] Sumit Gulwani, Bill McCloskey, and Ashish Tiwari. Lifting abstract inter-
preters to quantified logical domains. In POPL, 2008.

[GRS05] Denis Gopan, Thomas W. Reps, and Shmuel Sagiv. A framework for nu-
meric analysis of array operations. In POPL, 2005.

[Hoa69] Charles Antony Richard Hoare. An axiomatic basis for computer program-
ming. Communications of the ACM, 12(10):576–580, 1969.

[HP08] Nicolas Halbwachs and Mathias Péron. Discovering properties about arrays
in simple programs. In PLDI, 2008.

[JM07] Ranjit Jhala and Kenneth L. McMillan. Array abstraction from proofs. In
CAV, 2007.

[JM09] Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract
domains for static analysis. In CAV, 2009.

[Kar76] M. Karr. Affine relationships among the variables of a program. Acta
Informatica, 1976.

[KdBdGZ52] Stephen Cole Kleene, NG de Bruijn, J de Groot, and Adriaan Cornelis
Zaanen. Introduction to metamathematics, volume 483. van Nostrand New
York, 1952.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David
Cock, Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski,
Michael Norrish, et al. sel4: Formal verification of an os kernel. In Proceed-
ings of the ACM SIGOPS 22nd symposium on Operating systems principles,
pages 207–220. ACM, 2009.

[KV09] Laura Kovács and Andrei Voronkov. Finding loop invariants for programs
over array using a theorem prover. In FASE, 2009.

[LMP+04] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Alec Woo,
David Gay, Jason Hill, Matt Welsh, Eric Brewer, and David Culler. Tinyos:
An operating system for sensor networks. In in Ambient Intelligence.
Springer Verlag, 2004.

Jiangchao Liu Static Analysis on Array Contents

BIBLIOGRAPHY 137

[LMP+05] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin
Whitehouse, Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer,
et al. Tinyos: An operating system for sensor networks. In Ambient intel-
ligence. 2005.

[LR15] Jiangchao Liu and Xavier Rival. Abstraction of arrays based on non con-
tiguous partitions. In VMCAI, 2015.

[LYP11] Oukseh Lee, Hongseok Yang, and Rasmus Peteren. Program analysis for
overlaid data structures. In CAV, 2011.

[MA15] David Monniaux and Francesco Alberti. A simple abstraction of arrays and
maps by program translation. In SAS, pages 217–234, 2015.

[McM08] Kenneth L. McMillan. Quantified invariant generation using an interpola-
tion saturation prover. In TACAS, 2008.

[MG16] David Monniaux and Laure Gonnord. Cell morphing: From array programs
to array-free horn clauses. In SAS, 2016.

[Min04a] Antoine Miné. Weakly relational abstract domains. Phd.D. thesis, 2004.

[Min04b] A. Miné. Relational domains for the detection of floating point run-time
errors. In ESOP, 2004.

[Min06] Antoine Miné. The octagon abstract domain. HOSC, 2006.

[nor] Nordic semiconductor. http://www.nordicsemi.com/. Accessed: 2017-10-
18.

[OMLB16] Abdelraouf Ouadjaout, Antoine Miné, Noureddine Lasla, and Nadjib
Badache. Static analysis by abstract interpretation of functional properties
of device drivers in tinyos. Journal of Systems and Software, 120:114–132,
2016.

[PF10] Zhong Shao PI and Bryan Ford. Advanced development of certified os
kernels. 2010.

[PTS+11] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia L.
Lawall, and Gilles Muller. Faults in linux: ten years later. In Architectural
Support for Programming Languages and Operating Systems (ASPLOS),
2011.

[Rey02] John Reynolds. Separation logic: A logic for shared mutable data structures.
In LICS, 2002.

Static Analysis on Array Contents Jiangchao Liu

138 BIBLIOGRAPHY

[RTC14] Xavier Rival, Antoine Toubhans, and Bor-Yuh Evan Chang. Construc-
tion of abstract domains for heterogeneous properties (position paper). In
International Symposium On Leveraging Applications of Formal Methods,
Verification and Validation, pages 489–492. Springer, 2014.

[Sch98] Alexander Schrijver. Theory of linear and integer programming. John Wiley
& Sons, 1998.

[Sco70] Dana Scott. Outline of a mathematical theory of computation. 1970.

[Seb12] Robert W. Sebesta. Pearson, 10th edition, 2012.

[s:i02] The chinook helicopter disaster. IMIS journal, 12(2), 2002.

[SK05] Axel Simon and Andy King. Exploiting sparsity in polyhedral analysis. In
SAS, volume 3672, pages 336–351. Springer, 2005.

[SMS13] H. Siegel, B. Mihaila, and A. Simon. The undefined domain: precise rela-
tional information for entities that do not exist. In APLAS, 2013.

[SPW09] Mohamed Nassim Seghir, Andreas Podelski, and Thomas Wies. Abstraction
refinement for quantified array assertions. In SAS, 2009.

[SR12] Pascal Sotin and Xavier Rival. Hierarchical shape abstraction of dynamic
structures in static blocks. In APLAS, 2012.

[SRW99a] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. In POPL, 1999.

[SRW99b] Shmuel Sagiv, Thomas W. Reps, and Reinhard Wilhelm. Parametric shape
analysis via 3-valued logic. In POPL, 1999.

[SS12] H. Siegel and A. Simon. Summarized dimensions revisited. NSAD, 2012.

[Tas02] Gregory Tassey. The economic impacts of inadequate infrastructure for soft-
ware testing. National Institute of Standards and Technology, RTI Project,
7007(011), 2002.

[TCR13] Antoine Toubhans, Bor-Yuh Evan Chang, and Xavier Rival. Reduced prod-
uct combination of abstract domains for shapes. In VMCAI, 2013.

[tim] Timer application. https://github.com/finnurtorfa/nrf51/blob/

master/lib/nrf51sdk/Nordic/nrf51822/Board/nrf6310/ble/ble_app_

gzll/ble_gzll_app_timer.c. Accessed: 2016-10-18.

[TWTT87] Andrew S Tanenbaum, Albert S Woodhull, Andrew S Tanenbaum, and
Andrew S Tanenbaum. Operating systems: design and implementation,
volume 2. 1987.

Jiangchao Liu Static Analysis on Array Contents

BIBLIOGRAPHY 139

[WCM+16] Xueguang Wu, Liqian Chen, Antoine Miné, Wei Dong, and Ji Wang. Static
analysis of runtime errors in interrupt-driven programs via sequentialization.
ACM Trans. Embedded Comput. Syst., 15(4):70:1–70:26, 2016.

[YH10] Jean Yang and Chris Hawblitzel. Safe to the last instruction: automated
verification of a type-safe operating system. In ACM Sigplan Notices, vol-
ume 45, pages 99–110. ACM, 2010.

[YLB+08] Hongseok Yang, Oukseh Lee, Josh Berdine, Cristiano Calcagno, Byron
Cook, Dino Distefano, and Peter W. O’Hearn. Scalable shape analysis for
systems code. In CAV, 2008.

Static Analysis on Array Contents Jiangchao Liu

140 BIBLIOGRAPHY

Jiangchao Liu Static Analysis on Array Contents

List of Figures

1.1 A list in one array . 3
1.2 A static memory pool . 4
1.3 Topology of the parent relations in a task table 6

2.1 A list in one array . 12
2.2 A code segment from pop Task . 12
2.3 Topology of the structural properties . 13
2.4 Contiguous array partitioning . 16
2.5 Non-contiguous partitioning on the m next array 17
2.6 Comparison of Cartesian product with coalescing 20
2.7 Abstraction of numeric relations on different dimensions 22
2.8 Main idea in Maya domain . 22

3.1 Grammar of a simple imperative language. 26
3.2 Denotational semantics of a simple imperative language. 27
3.3 The join of two convex polyhedra . 29
3.4 An abstract semantics of the target language 32

4.1 Extension of the language . 34
4.2 Four types of variables in the language . 35
4.3 Condition test abstract transfer function 43
4.4 Full algorithm for the verification of a constraint 44
4.5 Assignment transfer function . 45
4.6 Weak concrete semantics of condition tests 48
4.7 Applicaiton of Maya+ functor on A Simple Array Analysis 51
4.8 Analysis results . 52

5.1 Extension of the language with composite type 56
5.2 Minix 1.1 Memory Management Process Table (MMPT) structure 57
5.3 A simplified excerpt of cleanup . 58
5.4 Effect of cleanup . 58
5.5 A partitioning of mproc based on non contiguous groups 62
5.6 An concrete state and a corresponding abstact state 64
5.7 Partition splitting in array a from abstract state a 65
5.8 Partition creation in array a from abstract state a 66

Static Analysis on Array Contents Jiangchao Liu

142 LIST OF FIGURES

5.9 Merging in abstract state a . 67
5.10 The algorithm of the condition test transfer function 71
5.11 The abstract state before the condition test at line 7 72
5.12 The pre-and post-condition of assignment a[i] = 2 73
5.13 The algorithm of the assignment transfer function 74
5.14 Analysis on two assignments . 75
5.15 Impact of the group matching on the abstract join 76
5.16 The algorithm of the join operator . 78
5.17 Join of a one group state with a two groups state 79
5.18 The algorithm of the widening operator . 80
5.19 Widening result of two abstracts with different partitions 81
5.20 The algorithm of the inclusion check operator 82
5.21 Analysis of the cleanup excerpt . 84
5.22 Analysis results (timings measured on Ubuntu 12.04.4, with 16 Gb of RAM,

on an Intel Xeon E3 desktop, running at 3.2 GHz) 87
5.23 Array random accesses . 89

6.1 Three linked lists in one array . 92
6.2 Code of function create . 94
6.3 Abstract state corresponding to Raos . 101
6.4 Unfolding algorithm in coalescing domain 102
6.5 The unfolding results . 103
6.6 Folding algorithm in coalescing domain . 104
6.7 The abstract state before guard . 106
6.8 The abstract state after resolving . 107
6.9 The abstract state after guard . 107
6.10 Transfer functions in the coalesced domain 108
6.11 The abstract state before the assignment 109
6.12 The abstract state after resolving and decomposition 109
6.13 The abstract state after the assignment . 110
6.14 The algorithm of the widening operator . 112
6.15 The algorithms of the join and inclusion checking 113
6.16 The input states for lattice operators . 113
6.17 The result of lattice operators . 114
6.18 The analysis on function create: part 1 118
6.19 The analysis on function create: part 2 119

Jiangchao Liu Static Analysis on Array Contents

List of Definitions

3.1 Definition (Concretization function) . 28
3.2 Definition (Soundness of abstract join) . 29
3.3 Definition (Soundness of abstract inclusion checking) 30
3.4 Definition (Soundness of abstract guard) 30
3.5 Definition (Soundness of abstract assignment) 30

4.1 Definition (Concrete States) . 34
4.2 Definition (Abstract states in the Maya domain) 37
4.3 Definition (Concretization function in the Maya domain) 37
4.4 Definition (Independence property) . 39
4.5 Definition (The bi-avatar principle) . 40
4.6 Definition (Analysis of condition tests in the Maya domain) 42
4.7 Definition (Transfer functions for assignments) 46
4.8 Definition (Algorithms of inclusion checking, join and widening) 47
4.9 Definition (Concretization in summarizing numeric domains) 48
4.10 Definition (Concretization in the Maya+ domain) 49
4.11 Definition (The transfer function for assignments) 50
4.12 Definition (The transfer function for condition tests) 50

5.1 Definition (Concrete states) . 56
5.2 Definition (Memory predicates) . 60
5.3 Definition (Numeric predicates) . 61
5.4 Definition (Abstract states in the array domain) 61
5.5 Definition (Concretization of numeric predicates) 63
5.6 Definition (Concretization of abstract states in the array domain) 63
5.7 Definition (Local disjunction join) . 70
5.8 Definition (The transfer function for condition tests) 70
5.9 Definition (The transfer function for assignments) 73
5.10 Definition (Join algorithm) . 78
5.11 Definition (Widening for abstract states with compatible partitions) 79
5.12 Definition (Widening algorithm) . 80
5.13 Definition (Includsion checking) . 82

6.1 Definition (Concrete states) . 94

Static Analysis on Array Contents Jiangchao Liu

144 LIST OF DEFINITIONS

6.2 Definition (A signature of memory abstract domains: Dm) 95
6.3 Definition (Inductive predicates) . 96
6.4 Definition (Memory predicates of a shape domain) 96
6.5 Definition (Concretization function in the shape domain) 97
6.6 Definition (Coalescing domain) . 97
6.7 Definition (Coalescing Inductive Predicates) 98
6.8 Definition (Concretization function in the coalescing domain) 98
6.9 Definition (The array/shape coalescing domain) 99
6.10 Definition (Unfolding algorithm) . 102
6.11 Definition (Folding algorithm) . 103
6.12 Definition (The algorithm of the decomposition operators) 106
6.13 Definition (The transfer function for condition tests) 106
6.14 Definition (The transfer function for assignments) 108
6.15 Definition (Compatible abstract states) . 110
6.16 Definition (Lattice operators over compatible abstract states) 110
6.17 Definition (The algorithm of widening) . 112
6.18 Definition (The algorithms of join and inclusion checking) 112
6.19 Definition (Abstract semantics in the coalescing domain) 114

Jiangchao Liu Static Analysis on Array Contents

List of Theorems

4.1 Theorem (The bi-avatar principle satisfying the independence property) . . 40
4.2 Theorem (The expressivenss of abstract states that follow the bi-avatar

principle) . 41
4.3 Theorem (Soundness of the transfer function for condition tests) 42
4.4 Theorem (Perservation of bi-avatar principle by condition test) 42
4.5 Theorem (Soundness of transfer functions for assignments) 46
4.6 Theorem (Soundness of lattice operators) 47
4.7 Theorem (Soundness of the transfer function for condition tests) 48
4.8 Theorem (Soundness of the transfer function for assignments) 49
4.9 Theorem (Soundness of the transfer function for assignments) 50
4.10 Theorem (Soundness of the transfer function for condition tests) 50

5.1 Theorem (Soundness of the splitting operator) 65
5.2 Theorem (Soundness of the creation operator) 66
5.3 Theorem (Soundness of the merging operator) 67
5.4 Theorem (Soundness of the reduction operator) 68
5.5 Theorem (Soundness of local disjunction join) 70
5.6 Theorem (Soundness of the transfer function for condition tests) 71
5.7 Theorem (Soundness of the transfer function for assignments) 73
5.8 Theorem (Soundness of the join algorithm) 78
5.9 Theorem (Soundness and termination of the widening algorithm) 81
5.10 Theorem (Soundness of inclusion checking) 82
5.11 Theorem (Soundness of abstract semantics) 83

6.1 Theorem (Soundness of unfolding algorithm) 103
6.2 Theorem (Soundness of folding algorithm) 105
6.3 Theorem (Soundness of the resolving operator) 105
6.4 Theorem (Soundness of the reduction operator) 106
6.5 Theorem (Soundness of the transfer function for condition tests) 107
6.6 Theorem (Soundness of the transfer function for assignments) 109
6.7 Theorem (Soundness of lattice operators) 110
6.8 Theorem (Soundness and termination of the widening operator) 112
6.9 Theorem (Soundness of join and inclusion checking) 112
6.10 Theorem (Soundness of the abstract semantics in the coalescing domain) . 114

Static Analysis on Array Contents Jiangchao Liu

146 LIST OF THEOREMS

Jiangchao Liu Static Analysis on Array Contents

List of Examples

1.1 Example (A list in one array) . 2

3.1 Example (The polyhedra abstract domain) 28
3.2 Example (Abstract join in the polyhedra domain) 29
3.3 Example (Abstract inclusion checking in the polyhedra domain) 30
3.4 Example (Abstract guard in the polyhedra domain) 30
3.5 Example (Abstract assignment in the polyhedra domain) 31
3.6 Example (Widening in the polyhedra domain) 31
3.7 Example (Abstract semantics in the polyhedra domain) 31

4.1 Example (Concrete semantics of condition tests) 35
4.2 Example (A program with optional variables) 36
4.3 Example (An abstract state in the Maya domain) 37
4.4 Example (The concretization of an abstract state in the Maya domain) . . 38
4.5 Example (Choice of avatar dimensions) . 38
4.6 Example (Independence property) . 39
4.7 Example (Multiple avatar dimensions for one variable) 39
4.8 Example (The bi-avatar pirnciple) . 40
4.9 Example (The expressivenss of the bi-avatar principle) 41
4.10 Example (Transfer functions for condition tests) 42
4.11 Example (Transfer functions for assignments) 46
4.12 Example (Concretization in the Maya+ domain) 49

5.1 Example (Memory predicates) . 60
5.2 Example (Numeric predicates) . 61
5.3 Example (Concretization of abstract states in the array domain) 63
5.4 Example (The splitting operator) . 65
5.5 Example (The creation operator) . 66
5.6 Example (The merging operator) . 67
5.7 Example (The transfer function for condition tests) 71
5.8 Example (The transfer function for assignments) 73
5.9 Example (The transfer function for assignments) 74
5.10 Example (The partition compatibility problem) 76
5.11 Example (Join algorithm) . 78

Static Analysis on Array Contents Jiangchao Liu

148 LIST OF EXAMPLES

5.12 Example (Widening algorithm) . 81

6.1 Example (Inductive predicates in a shape domain) 97
6.2 Example (Coalescing inductive definition) 100
6.3 Example (A coalescing inductive predicate on sorted lists in arrays) 100
6.4 Example (Unfolding algorithm) . 102
6.5 Example (Folding algorithm) . 104
6.6 Example (The transfer function for condition tests) 106
6.7 Example (The transfer function for assignments) 108
6.8 Example (Join and widening) . 113

Jiangchao Liu Static Analysis on Array Contents

Résumé
Dans cette thèse, nous étudions l'analyse statique par interprétation

abstraites de programmes manipulant des tableaux, afin d'inférer des
propriétés sur les valeurs numériques et les structures de données qui y
sont stockées.
Les tableaux sont omniprésents dans de nombreux programmes, et les

erreurs liées à leur manipulation sont difficile à éviter en pratique. De
nombreux travaux de recherche ont été consacrés à la vérification de
tels programmes. Les travaux existants s'intéressent plus
particulièrement aux propriétés concernant les valeurs numériques
stockées dans les tableaux. Toutefois, les programmes bas-niveau
(comme les systèmes embarqués ou les systèmes d'exploitation temps-
réel) utilisent souvent des tableaux afin d'y stocker des structures de
données telles que des listes, de manière à éviter d'avoir recours à
l'allocation de mémoire dynamique. Dans cette thèse, nous présentons
des techniques permettant de vérifer par interprétation abstraite des
propriétés concernant à la fois les données numériques ainsi que les
structures composites stockées dans des tableaux.
Notre première contribution est une abstraction qui permet de décrire

des stores à valeurs numériques et avec valeurs optionnelles (i.e.,
lorsqu'une variable peut soit avoir une valeur numérique, soit ne pas
avoir de valeur du tout), ou bien avec valeurs ensemblistes (i.e.,
lorsqu'une variable est associée à un ensemble de valeurs qui peut être
vide ou non). Cette abstraction peut être utilisée pour décrire des stores
où certaines variables ont un type option, ou bien un type ensembliste.
Elle peut aussi servir à la construction de domaines abstraits pour
décrire des propriétés complexes à l'aide de variables symboliques, par
exemple, pour résumer le contenu de zones dans des tableaux.
Notre seconde contribution est un domaine abstrait pour la description

de tableaux, qui utilise des propriétés sémantiques des valeurs
contenues afin de partitioner les cellules de tableaux en groupes
homogènes. Ainsi, des cellules contenant des valeurs similaires sont
décrites par les mêmes prédicats abstraits. De plus, au contraire des
analyses de tableaux conventionnelles, les groupes ainsi formés ne sont
pas nécessairement contigüs, ce qui contribue à la généralité de
l'analyse. Notre analyse peut regrouper des cellules non-congitües,
lorsque celles-ci ont des propriétés similaires. Ce domaine abstrait
permet de construire des analyses complètement automatiques et
capables d'inférer des invariants complexes sur les tableaux.
Notre troisième contribution repose sur une combinaison de cette

abstraction des tableaux avec différents domaines abstraits issus de
l'analyse de forme des structures de données et reposant sur la logique
de séparation. Cette combinaison appelée coalescence opère
localement, et relie des résumés pour des structures dynamiques à des
groupes de cellules du tableau. La coalescence permet de définir de
manière locale des algorithmes d'analyse statique dans le domaine
combiné. Nous l'utilisons pour relier notre domaine abstrait pour tableaux
et une analyse de forme générique, dont la tâche est de décrire des
structures chaînées. L'analyse ainsi obtenue peut vérifier à la fois des
propriétés de sûreté et des propriétés de correction fonctionnelle.
De nombreux programmes bas-niveau stockent des structures

ynamiques chaînées dans des tableaux afin de n'utiliser que des zones
mémoire allouées statiquement. La vérification de tels programmes est
difficile, puisqu'elle nécessite à la fois de raisonner sur les tableaux et
sur les structures chaînées. Nous construisons une analyse statique
reposant sur ces trois contributions, et permettant d'analyser avec
succés de tels programmes. Nous présentons des résultats d'analyse
permettant la vérification de composants de systèmes d'exploitation et
pilotes de périphériques.

Mots Clés
Analyse statique, interprétation abstraite,
structures de données complexes, abstraction de tableaux

Abstract
We study the static analysis on both numeric and structural properties

of array contents in the framework of abstract interpretation.
Since arrays are ubiquitous in most software systems, and software

defects related to mis-uses of arrays are hard to avoid in practice, a lot
of efforts have been devoted to ensuring the correctness of programs
manipulating arrays. Current verification of these programs by static
analysis focuses on numeric content properties. However, in some low-
level programs (like embedded systems or real-time operating systems),
arrays often contain structural data (e.g., lists) without using dynamic
allocation. In this manuscript, we present a series of techniques to verify
both numeric and structural properties of array contents.
Our first technique is used to describe properties of numerical stores

with optional values (i.e., where some variables may have no value) or
sets of values (i.e., where some variables may store a possibly empty set
of values). Our approach lifts numerical abstract domains based on
common linear inequality into abstract domains describing stores with
optional values and sets of values. This abstraction can be used in order
to analyze languages with some form of option scalar type. It can also be
applied to the construction of abstract domains to describe complex
memory properties that introduce symbolic variables, e.g., in order to
summarize unbounded memory blocks like in arrays.
Our second technique is an abstract domain which utilizes semantic
properties to split array cells into groups. Cells with similar properties will
be packed into groups and abstracted together. Additionally, groups are
not necessarily contiguous. Compared to conventional array partitioning
analyses that split arrays into contiguous partitions to infer properties of
sets of array cells. Our analysis can group together non-contiguous cells
when they have similar properties. Our abstract domain can infer
complex array invariants in a fully automatic way.
The third technique is used to combine different shape domains. This

combination locally ties summaries in both abstract domains and is
called a coalesced abstraction. Coalescing allows to define efficient and
precise static analysis algorithms in the combined domain. We utilize it
to combine our array abstraction (i.e., our second technique) and a
shape abstraction which captures linked structures with separation logic-
based inductive predicates. The product domain can verify both safety
and functional properties of programs manipulating arrays storing
dynamically linked structures, such as lists.
Storing dynamic structures in arrays is a programming pattern

commonly used in low-level systems, so as to avoid relying on dynamic
allocation. The verification of such programs is very challenging as it
requires reasoning both about the array structure with numeric indexes
and about the linked structures stored in the array. Combining the three
techniques that we have proposed, we can build an automatic static
analysis for the verification of programs manipulating arrays storing
linked structures. We report on the successful verification of several
operating system kernel components and drivers.

Keywords
Static analysis, abstract interpretation,
complex data structures, array abstraction

