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CHAPTER 1. CORRECTNESS OF PROGRAMS USING ARRAYS

Arrays of scalar data. This category collects arrays of primitive data types (e.g., integers), storing plain data. For example, a one-dimensional array storing the heights of all students in a class would fall into this category. The following C code declares such an array. ,176 ,176 ,172 ,168 ,178 ,171 ,199 ,190 ,163 ,171}; Arrays of composite data. The second category comprises arrays that store plain data of composite data types. In the programming language C, a composite data type is declared with the keyword struct and is composed of a fixed set of labeled fields. The following code collects both the height and weight information of five students.

i Résumé Dans cette thèse, nous étudions l'analyse statique par interprétation abstraites de programmes manipulant des tableaux, afin d'inférer des propriétés sur les valeurs numériques et les structures de données qui y sont stockées.

Les tableaux sont omniprésents dans de nombreux programmes, et les erreurs liées à leur manipulation sont difficile à éviter en pratique. De nombreux travaux de recherche ont été consacrés à la vérification de tels programmes. Les travaux existants s'intéressent plus particulièrement aux propriétés concernant les valeurs numériques stockées dans les tableaux. Toutefois, les programmes bas-niveau (comme les systèmes embarqués ou les systèmes d'exploitation temps-réel) utilisent souvent des tableaux afin d'y stocker des structures de données telles que des listes, de manière à éviter d'avoir recours à l'allocation de mémoire dynamique. Dans cette thèse, nous présentons des techniques permettant de vérifer par interprétation abstraite des propriétés concernant à la fois les données numériques ainsi que les structures composites stockées dans des tableaux.

Notre première contribution est une abstraction qui permet de décrire des stores à valeurs numériques et avec valeurs optionnelles (i.e., lorsqu'une variable peut soit avoir une valeur numérique, soit ne pas avoir de valeur du tout), ou bien avec valeurs ensemblistes (i.e., lorsqu'une variable est associée à un ensemble de valeurs qui peut être vide ou non). Cette abstraction peut être utilisée pour décrire des stores où certaines variables ont un type option, ou bien un type ensembliste. Elle peut aussi servir à la construction de domaines abstraits pour décrire des propriétés complexes à l'aide de variables symboliques, par exemple, pour résumer le contenu de zones dans des tableaux.

Notre seconde contribution est un domaine abstrait pour la description de tableaux, qui utilise des propriétés sémantiques des valeurs contenues afin de partitioner les cellules de tableaux en groupes homogènes. Ainsi, des cellules contenant des valeurs similaires sont décrites par les mêmes prédicats abstraits. De plus, au contraire des analyses de tableaux conventionnelles, les groupes ainsi formés ne sont pas nécessairement contigüs, ce qui contribue à la généralité de l'analyse. Notre analyse peut regrouper des cellules non-congitües, lorsque celles-ci ont des propriétés similaires. Ce domaine abstrait permet de construire des analyses complètement automatiques et capables d'inférer des invariants complexes sur les tableaux.

Notre troisième contribution repose sur une combinaison de cette abstraction des tableaux avec différents domaines abstraits issus de l'analyse de forme des structures de données et reposant sur la logique de séparation. Cette combinaison appelée coalescence opère localement, et relie des résumés pour des structures dynamiques à des groupes de cellules du tableau. La coalescence permet de définir de manière locale des algorithmes d'analyse statique dans le domaine combiné. Nous l'utilisons pour relier notre domaine abstrait pour tableaux et une analyse de forme générique, dont la tâche est de décrire des structures chaînées. L'analyse ainsi obtenue peut vérifier à la fois des propriétés de sûreté et des propriétés de correction fonctionnelle.

De nombreux programmes bas-niveau stockent des structures dynamiques chaînées ii dans des tableaux afin de n'utiliser que des zones mémoire allouées statiquement. La vérification de tels programmes est difficile, puisqu'elle nécessite à la fois de raisonner sur les tableaux et sur les structures chaînées. Nous construisons une analyse statique reposant sur ces trois contributions, et permettant d'analyser avec succés de tels programmes. Nous présentons des résultats d'analyse permettant la vérification de composants de systèmes d'exploitation et pilotes de périphériques.

iii

Abstract

We study the static analysis on both numeric and structural properties of array contents in the framework of abstract interpretation.

Since arrays are ubiquitous in most software systems, and software defects related to mis-uses of arrays are hard to avoid in practice, a lot of efforts have been devoted to ensuring the correctness of programs manipulating arrays. Current verification of these programs by static analysis focuses on numeric content properties. However, in some low-level programs (like embedded systems or real-time operating systems), arrays often contain structural data (e.g., lists) without using dynamic allocation. In this manuscript, we present a series of techniques to verify both numeric and structural properties of array contents.

Our first technique is used to describe properties of numerical stores with optional values (i.e., where some variables may have no value) or sets of values (i.e., where some variables may store a possibly empty set of values). Our approach lifts numerical abstract domains based on common linear inequality into abstract domains describing stores with optional values and sets of values. This abstraction can be used in order to analyze languages with some form of option scalar type. It can also be applied to the construction of abstract domains to describe complex memory properties that introduce symbolic variables, e.g., in order to summarize unbounded memory blocks like in arrays.

Our second technique is an abstract domain which utilizes semantic properties to split array cells into groups. Cells with similar properties will be packed into groups and abstracted together. Additionally, groups are not necessarily contiguous. Compared to conventional array partitioning analyses that split arrays into contiguous partitions to infer properties of sets of array cells. Our analysis can group together non-contiguous cells when they have similar properties. Our abstract domain can infer complex array invariants in a fully automatic way.

The third technique is used to combine different shape domains. This combination locally ties summaries in both abstract domains and is called a coalesced abstraction. Coalescing allows to define efficient and precise static analysis algorithms in the combined domain. We utilise it to combine our array abstraction (i.e., our second technique) and a shape abstraction which captures linked structures with separation logic-based inductive predicates. The product domain can verify both safety and functional properties of programs manipulating arrays storing dynamically linked structures, such as lists.

Storing dynamic structures in arrays is a programming pattern commonly used in low-level systems, so as to avoid relying on dynamic allocation. The verification of such programs is very challenging as it requires reasoning both about the array structure with numeric indexes and about the linked structures stored in the array. Combining the three techniques that we have proposed, we can build an automatic static analysis for the verification of programs manipulating arrays storing linked structures. We report on the successful verification of several operating system kernel components and drivers.
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Résumé pour le Grand Public

Les erreurs logicielles peuvent avoir de graves conséquences humaines ou matérielles, en particulier dans le cas de systèmes critiques. De nombreux telles erreurs sont liées aux manipulations de tableaux. Un tableau peut être utilisé soit pour décrire des données numériques de base (par exemple la taille de chaque personne dans un groupe), ou bien pour stocker des structures dynamiques (comme une liste chaînée). De telles structures imbriquées sont fréquentes dans les systèmes d'exploitation, afin d'éviter un recours à l'allocation dynamique de mémoire. La correction de tels programmes est difficile à vérifier, en raison du grand nombre de cas possibles. Dans cette thèse, nous proposons plusieurs techniques permettant de vérifier la sûreté et la correction fonctionnelle de programme manipulant tous ces types de tableaux.

Notre première contribution permet de décrire des propriétés numériques d'ensembles vides ou non vides de valeurs, pouvant être de taille non bornée. Notre seconde contribution fournit un mécanisme de partition des tableaux en groupes contigüs ou non de cellules ayant des propriétés similaires. Enfin, notre troisième contribution permet de combiner une analyse de tableaux et une analyse de forme des structures de données, afin de décrire les structures imbriquées stockées dans les tableaux.

Nous avons mené une évaluation expérimentale sur des composants de systèmes d'exploitation, incluant le gestionnaire de tâches de TinyOS, et le gestionnaire de mémoire de Minix, ainsi que des pilotes de périphériques. Les résultats de cette évaluation démontrent que notre analyse est capable de traiter ce type de programmes avec succés.

iii Popular Science Summary Software defects can cause huge economic losses, and even human deaths, particularly in safety-critical systems. Many of these defects are caused by the misuse of arrays. Array is one of the earliest aggregate data type. It can be used to collect plain data (e.g., the heights of all students in a class), or store dynamic linked structures (e.g., a linked list). The second case is often encountered in embedded systems, where dynamic memory allocation is not always allowed. The correctness of programs manipulating arrays can be hardly guaranteed, since the cases of array contents are enormous. In this thesis, we propose several techniques that can work together to verify some safety and functional properties of programs manipulating either kind of arrays.

Our first work can over-approximate the numeric properties of an unbounded set of array cells. Compared with existing work, it allows the set to be empty. Our second work provides a mechanism to partition an array into different groups. Compared with existing partition, ours can be more precise on arrays where cells with similar properties are not contiguous ( e.g., dynamic structures in arrays often occupy non-contiguous regions). Our third work is a new way of combining different analyses. For instance, if we combine our analysis on arrays and an analysis on dynamic structures in this way, we can get an analysis on dynamic structures in arrays. Compared with existing work, this way is more precise on describing inter-wined data structures. We have conducted some experiments on operating system components, including the task scheduler in TinyOS, the memory management in Minix, etc. These experiments demonstrate the effectiveness of our analysis. 

Chapter 1

Correctness of Programs Using Arrays

As software is becoming ever-increasingly important in our society, software defects are also becoming a growing concern, particularly in safety-critical systems. Some accidents due to defects in software have caused huge economic losses, and even human deaths. In 1994 in Scotland, a Chinook helicopter crashed, killing all 29 of its passengers. Evidence [s:i02] showed that a software error had caused the crash. In 1996, a European Ariane 5 rocket veered off its path and exploded 37 seconds after launch, due to a defect in its software system. A 2002 study [START_REF] Tassey | The economic impacts of inadequate infrastructure for software testing[END_REF] commissioned by the National Institute of Standards and Technology in the USA found that every year software defects cost the US economy 59.5 billion dollars.

Many of these defects are caused by the misuse of arrays. This chapter identifies defects that may be caused by the misuse of arrays and discusses to what extent existing techniques can help to avoid them.

Arrays and Their Usage

An array is an aggregate of data elements of the same type, where an individual element is identified by its position relative to the first element [START_REF] Sebesta | [END_REF]. The time complexity for accessing a random element in an array is only O (1). Another advantage of arrays regarding performance is low memory occupation, since basic array implementations do not need to store links to chain the structure, unlike linked lists or trees.

Arrays are one of the earliest and most important data structures in computer science. Their first appearance in high-level programming languages (like FORTRAN) dates back to the 1950s [START_REF] Allen | The history of language processor technology in IBM[END_REF]. Nowadays, arrays are still widely used in most software systems.

There are various types of arrays in programs. In this thesis, we classify them into three categories: arrays of scalar data, composite data and structured data. 4 -1 a Figure 1.1 -A list in one array be within the index range". Once the size of an array is fixed, the range of its indexes (i.e., subscripts) is also fixed. Array accesses beyond the index range may crash the program, or cause unexpected behaviors. Programming languages like Java or Pascal, perform dynamic bound checks on every array access. An out-of-bounds array access would raise an exception and abort the program. For example, the following code in Java would raise "ArrayIndexOutOfBoundsException". Out-of-bounds array accesses in programs using arrays of structured data are harder to avoid. This is because, in addition to scalar variables, array contents can also be used as indexes. Figure 1.1 shows a list inside an array, where -1 marks the tail of the list. All values stored in the list nodes could be used as valid indexes except the tail node. The following code pops one element from the head of the list, and before reading, it checks whether the index is -1.

1 i f ( head != -1 ) 2 { 3 element = head ; 4 head = a [ head ]; 5 }
Besides out-of-bounds array accesses, defects that may occur on arrays of structured data include index leak and dangling nodes.

An index leak is a kind of resource leak. In some implementations, all the cells in an array are supposed to be linked by the structures inside the array. Index leak defect arises when some cells are leaked out of the linked structures, and could not be used again. Figure 1.2 shows two lists inside one array: one list stores user data, and the other manages free slots. If the program manipulating this array can not keep all array elements in the two lists, then the number of available array elements shrinks, which is also a form of memory leak. In Figure 1.2(b), a [6] is not reachable by the two lists and is thus leaked.

A dangling node defect arises when the chained structure in an array is broken in the middle. For instance, in the array in Figure 1.1, a [3] stores the index of the next list element (i.e., 4). If it stores any random value but not 4, then the list is broken and list node a [3] is dangling.
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[0] [1] [2] [3] [4] [5] [6] [7]
a (a) A state without an index leak

[0] [1] [2] [3] [4] [5] [6] [7]
a (b) A state with an index leak

Figure 1.2 -A static memory pool

Security properties assert that non-authorized users are not able to corrupt any critical process or fetch confidential information. A well-known security exploit is buffer overflow. This means when a program writes data to a buffer, it exceeds the bounds of the buffer and overwrites the adjacent memory locations. This security exploit is often found on arrays of scalar and composite data. The following C code causes a buffer overflow, since the string to be copied exceeds the size of the buffer.

1 char buffer [10] = {0}; 2 strcpy ( buffer , " This string will overflow the buffer " ) ;

In many systems, the data area and executable code are arranged together as a whole. Thus a buffer overflow on the data area could possibly rewrite the executable code. Attackers could utilize this to send data designed to cause a buffer overflow and embed malicious code into the running software. If an operating system is attacked in this way, attackers could perform privilege escalation and gain full control of the computer. Morris, which was one of the first computer worms distributed via the Internet, is an instance of buffer overflow exploit.

Functional properties state that given a certain input, a program should produce an expected output. On programs using arrays of scalar and composite data, functional properties often boil down to universally quantified predicates on array contents. For instance, the functional property for an initialization program could be that all values stored in the output array should be 0. Violation of functional properties could cause incorrect results. As an example, let us consider the case where an array records the height information of all the students in a class, and stores -1 if the data for the corresponding student is absent. A program calculating the average height should take the possible incompleteness of data into account, otherwise the results would be invalid. The following code does not satisfy the following correctness property: variable average should store the average positive values in the array height.

Functional properties of programs that manipulate arrays of structured data are more complex, and may require inductively defined predicates to express them. For instance, the following code defines a task table, where the field flag indicates whether an array cell corresponds to a running task or a free slot, and the field parent stores the index of the parent task. One functional property of programs manipulating this array is that the init task is the direct or indirect ancestor of all the other tasks. This property is illustrated in Figure 1.3. Violation of this property could cause unexpected behavior. For instance, in some operating systems, a task could exit only when its parent task calls wait.

If the parent of one task incorrectly points to itself, then it would never exit. The violation of this functional property could also cause safety issues. For instance, when the parent field of one task node stores -1, then the operating system would crash when a program tried to visit its parent task. This implies that checking basic safety properties may require checking more complex functional invariants. 

Quality Control on Software Systems Using Arrays

Because of the severity of software defects, the quality of a software system greatly depends on whether it satisfies correctness properties (i.e., safety, security and functional properties). In this section, we go through the main methods that help improve the quality of software systems, particularly those using arrays.

Development guidelines. One way to improve software quality is to follow strict development guidelines. These guidelines avoid programming styles that are prone to defects. One popular set of guidelines is MISRA-C, which was developed by MISRA (Motor Industry Software Reliability Association) for the C programming language, and has been widely accepted in the industry. MISRA-C includes several rules restricting the use of arrays, e.g., Rule 8.12 requires that when an array is declared with external linkage, its size shall be stated explicitly or defined implicitly by initialization. The following code shows both compliant and noncomplicant cases.

1 extern i n t array1 [10]; /* Compliant */ 2 extern i n t array2 []; /* Not compliant */ 3 i n t array3 [] = {0 , 1 , 2 , 3}; /* Compliant */

In safety-critical software systems, stricter guidelines are often adopted, like the prohibition of dynamic memory allocations (thus dynamically chained structures are implemented inside arrays in their software). Guidelines could be checked manually or automatically by tools like PC-lint. However, even if these rules are fully respected, it does not guarantee that a software system satisfies any correctness property.

Testing. Software testing is a classic and important way to find defects in software. It checks whether the correctness properties are satisfied by running the program with a certain set of inputs. Testing is, however, time consuming since it needs to run the program for each individual input.

Testing can verify any safety, security or functional properties of programs using arrays, on the tested inputs. However, because possible inputs are usually enormous, testing does 1.3. QUALITY CONTROL ON SOFTWARE SYSTEMS USING ARRAYS 7 not guarantee that a software system satisfies correctness properties for all inputs. For instance, to fully verify the sortedness property on the following C program by testing, we need to run the program 2 32×100 times (supposing the size of an integer is 4 bytes). Formal verification. The previous two methods could effectively reduce the rate of potential defects in a software system, but provide no guarantee. Formal verification could prove that a program satisfies given correctness properties, and is free of certain types of defects. Formal verification was proposed in the late 1960s [START_REF] Rodney | Programs and their proofs: an algebraic approach[END_REF][START_REF] Floyd | Assigning meanings to programs[END_REF][START_REF] Antony | An axiomatic basis for computer programming[END_REF] and various techniques have been developed for different applications. In industry, Microsoft has been utilizing SLAM [START_REF] Ball | SLAM and static driver verifier: Technology transfer of formal methods inside microsoft[END_REF] to verify its drivers for Windows; Airbus has successfully verified its avionics software on the A380. Moreover, many companies like AbsInt have been founded to provide formal verification services.

Most formal verification methods include two steps: formalizing the property of interest and carrying out the proof.

Properties are often expressed by languages of logical formulas. Some famous languages include Hoare Logic [START_REF] Antony | An axiomatic basis for computer programming[END_REF] which uses a triple to describe how the execution of a piece of code changes the state of the computation; Computation Tree Logic (CTL) [START_REF] Clarke | Design and synthesis of synchronization skeletons using branching time temporal logic[END_REF] which is a branching-time temporal logic describing safety and liveness properties; Communicating Sequential Processes (CSP) [START_REF] Stephen D Brookes | A theory of communicating sequential processes[END_REF] which is based on process algebras, describing patterns of interaction in concurrent systems.

On programs using arrays of scalar data and composite data, the safety property "all array accesses must be within the index range" is often expressed by simple inequality relations on program variables. Functional properties on such arrays are more complex, since they require quantification over values stored in the array. Separation logic is an extension of Hoare logic, which is based on the separating conjunction " * " (P * Q means P and Q hold for separate portions of the memory) and provides a modular description of memory states. In [START_REF] Bouajjani | Accurate invariant checking for programs manipulating lists and arrays with infinite data[END_REF], the authors combine separation logic and first-order logic to describe functional properties on arrays of scalar and composite data.

Proving by hand is time consuming since proofs are typically huge. Thus, interactive proof assistants like Coq and Isabelle have been developed to ease the proving process. However, even with these tools, the time spent on the proof of a program is usually much longer than that spent on its actual development.

Automatic formal verification. One idea to make formal verification more practical is to automate the proving process. However, most mainstream programing languages are Turing complete. Depending on the underlying logic, the validity of the property of interest on a Turing complete language could be undecidable or NP complete. Thus it is impossible to design a fully automatic verification algorithm for all classes of properties on these languages. However, it is possible to design an automatic algorithm that achieves sub-goals of formal verification. For instance, some algorithms only have the soundness property (if the verification terminates and returns "true", then the program satisfies the property), or the completeness property (if the program satisfies the property, then the verification terminates and returns "true"). Automated theorem proving attempts to produce a formal proof automatically, with a description of the system, a set of logical axioms and a set of inference rules. This method is sound and complete with respect to the specification. However, it can only be applied a small class of programs.

Tools presented in [AGS13, AGS14, BMS06] identify a class of programs manipulating arrays where the transitive closures are definable, and can verify safety and functional properties that could be expressed in first-order logic.

Model checking verifies a given set of state machines with respect to a set of temporal formula with SAT-solving methods. Difficulties in this approach include synthesizing the model from the program and avoiding the "state explosion" problem.

The work by [START_REF] Monniaux | Cell morphing: From array programs to array-free horn clauses[END_REF][START_REF] Monniaux | A simple abstraction of arrays and maps by program translation[END_REF] can transform any array program into an array free program or a system of Hoare clauses. But the transformation only keeps universally quantified properties and scalability is limited by the back-end SMT solvers. Fluid updates in [START_REF] Dillig | Fluid updates: Beyond strong vs. weak updates[END_REF][START_REF] Dillig | Precise reasoning for programs using containers[END_REF] seek for a unified way to reason about pointers, scalars and arrays. They represent a group of array cells by both under-and over-approximation. However, they cannot represent the contents of array elements as an interval or other numeric relations by abstraction, which could possibly lead to state explosion. The properties that can be verified by these methods are also limited to safety and functional properties of programs using arrays of scalar and composite data.

Static analysis by abstract interpretation represents a possibly infinite set of concrete states at a program point by a finite set of abstract states, and over-approximates concrete semantics of the given program soundly by abstract semantics. This kind of static analysis computes properties that describe all reachable states of the program automatically without performing all executions. A class of abstract states with corresponding abstract semantics is called an abstract domain.

Numeric abstract domains [CH78b, CLM + 14] can discover complex numeric relations on program variables, compute precise invariants on array subscripts, and verify the absence of out-of-bounds accesses on arrays of scalar and composite data. Array partitioning 1.4. GOAL OF THE THESIS approaches [BCC + 03b, GRS05, HP08, CCL11] assume that array cells with similar properties are contiguous and partition arrays into segments according to numeric properties. Non-structured functional properties like value ranges, sortedness inside each segment can be verified automatically.

Goal of the Thesis

Existing work can verify correctness properties on a class of programs that use arrays of scalar and composite data automatically. However, several difficulties prevent them from addressing arrays of structured data.

• Dynamically chained structures (or for short, dynamic structures) usually occupy non-contiguous regions of arrays, making it impossible to extract dynamic structures out from arrays using a partition based on contiguous segments;

• The numerical properties of array contents is non-trival to describe, especially when dynamically chained structures are embedded in arrays;

• Since the dynamic structures and arrays are intertwined, verification algorithms need to reason about the accesses into dynamic structures via both their next links and array indexes at the same time.

This thesis presents a series of techniques in the framework of static analysis by abstract interpretation, to addree these three challenges. Combining these techniques can verify safety and functional properties on programs using arrays of structured data automatically.

In Chapter 2, we give an overview of these techniques and an outline of this thesis.

Chapter 2

Contributions of the Thesis

This chapter overviews the contributions of the thesis. To give an intuitive idea of our techniques, we first consider an industrial example that manipulates an array of structured data. Then, we show the challenges that must be overcomed to verify its safety and functional properties and how our static analysis addresses them.

Towards Verifying Safety and Functional Properties of Arrays of Structured Data

An Example: the Task Scheduler in TinyOS

TinyOS [LMP + 04] is an embedded, application-specific operating system designed for sensor networks. In TinyOS 2.x, the task scheduler is configurable, and the default configuration follows the FIFO strategy. In this scheduler, the queue of tasks is maintained by a list stored in an array, as shown in Figure 2.1. The main data structure is an array m next of 256 cells of type unit8 t. An array cell either is unused (in which case it stores value 255), or it stores the index of the next link in the list. Value 255 is also used as a special value to indicate the end of the list. The indexes of the head and the tail of the list are stored in variables m head and m tail respectively. When the list is empty, both variables store 255. Figure 2.1(b) shows a segment of a concrete state, in which cells 1, 3 and 253 correspond to running tasks, and all the other cells are free slots. Functions that manipulate this structure mainly include push Task (push a task to the tail of the list), pop Task (pop a task from the head of the list) and tinit (initialize the array).

Safety and Functional Properties

In this subsection, we investigate the safety and functional properties of the pop Task function. Such properties of the other two functions are similar. The safety property that should be satisfied by this function is that "there is no outof-bounds array access". If this property is violated, the program may crash. Moreover, we are interested in the following functional properties: all running tasks must be chained by the list led by m head. This property prevents unexpected scheduler behaviors, such as tasks becoming dangling.

The verification of both properties is non-trivial. For instance, before the array access m next[m head] at line 4, the bounds of the m head variable are not checked explicitly. To prove the safety property on this statement, we need a global description of the value of m head. This is not simple because the value of the m head variable could be updated by array contents (e.g., at line 4). Thus a description of the global invariant (i.e., invariant between system calls) on the contents of the m next array is necessary in order to verify the safety property. As for functional properties, the global invariant is also needed and should be precise enough to describe dynamically chained structures. 

Structural Invariant

From the previous subsection, we see that global invariant plays an essential role in proving safety and functional properties of the three system calls. In the TinyOS 2.x scheduler, the global invariant is informally described as follows.

• Variables m head and m tail should store indexes of the head and the tail of a wellformed acyclic list in the m next array, where the value in each list node is the index of the next element, and the end-of-list is encoded by index 255. The list could be empty when both m head and m tail are equal to 255; • Each cell that denotes a free slot stores the value 255. We denote this invariant as R tinyos . Its topology is shown in Figure 2.3. The property that R tinyos always holds between system calls, actually entails both safety and functional properties. Thus, we would like our static analysis to verify the preservation of R tinyos by each system call. That involves verifying that:

• The tinit function establishes invariant R tinyos , which means that the assertion shown below should hold.

tinit(); assert(R tinyos );

• The push Task and pop Task functions preserve R tinyos . This means that, if the pre-condition satisfies R tinyos , then the post-condition should also satisfy it. If we take push Task, for example, the assertion shown below should hold.

assume(R tinyos ); push Task(id); assert(R tinyos );

Remark 2.1. In our static analysis, the global invariants should be provided by the users. This is a compromise to the fact that it is hard to infer global invariants from programs, especially when the global invariants are as complex as R tinyos , and it is even harder to guarantee that the inferred global invariants match the users' intention. However, the global invariants provided by users are only used as assumptions on preconditions and assertions on post-conditions of system calls. All invariants in the programs (including loop invariants) are inferred automatically by our analysis.

Challenges for Verifying the Invariant and Solutions from the Thesis

To verify R tinyos with static analysis by abstract interpretation, we need to construct a lattice of abstract states, each of which is an abstraction of the set of concrete states satisfying a certain property, e.g., R tinyos . Our target structural invariant R tinyos includes both shape conditions (e.g., the acyclic list is embedded in the array) and numeric conditions (e.g., all free slots store 255). Abstracting both conditions is non-trivial.

Abstraction of the shape conditions. In the m next array, the cells used as list nodes and free slots interleave with each other, thus before abstracting the dynamically chained list, the abstraction has to first partition list nodes and free slots into disjoint groups.

• Abstraction by non-contiguous partitioning. As shown in Figure 2.1(b), the list occupies a non-contiguous region of the m next array. Existing partitioning techniques only split arrays into contiguous segments, thus they could not group together noncontiguous cells, even when they have similar properties (e.g., they are all list nodes or free slots). Our non-contiguous partitioning utilizes semantic information to split the array into groups of cells that are not necessarily contiguous, thus list nodes and free slots can be packed into different groups. Additionally, these groups could possibly be empty, which is consistent with the fact that invariant R tinyos allows the list to be empty.

• Coalescing with a shape abstraction. Our non-contiguous partitioning can split all list nodes in the array out to form a group. The dynamically chained structure (i.e., list) is still not expressed. Since the list and the array are intertwined, we propose to combine our non-contiguous partitioning with a shape abstraction which can capture linked structures. As existing combination techniques are not precise enough to express the shape conditions of R tinyos , we propose a combination method called coalescing. This combination locally ties predicates from both abstractions, and is precise enough to express all shape conditions in R tinyos .

Abstraction of the numeric conditions. Conventional numeric abstractions describe sets of points in a multi-dimensional Euclidean space. In one concrete state (i.e., a point in the space), each dimension is assigned one value. These numeric abstractions are able to express numeric properties of scalar program variables, with one dimension corresponding to one scalar program variable. However, the property R tinyos requires that all array cells that are used as free slots store the value 255. If we use one dimension to represent all values stored in a group, then this dimension maps to a possibly empty set of values. This is beyond the expressiveness of existing numeric abstractions. We propose a functor called Maya+ that can lift conventional numeric abstractions to those that are able to describe all numeric conditions in R tinyos .

Analysis. After we have designed the abstraction of both shape and numeric conditions, we have to implement the abstract predicates with computer representation and design algorithms to enable automatic reasoning about the abstract predicates. In the following chapters, we will give the formal definition of the algorithms to compute sound invariants at each program point, which are precise enough to prove the preservation of R tinyos .

The following sections present the basic description of our main contributions: noncontiguous partitioning, coalescing, Maya+ functor and a dynamic packing method.

Non-contiguous Partitioning

The first step in our abstraction is to distinguish list nodes and free slots in the array. Array expansion and array partitioning are the main existing methods that can split arrays.

Limitations of Array Expansion and Array Partitioning

Array expansion and its limitations. Given an array of scalar type, array expansion represents each array cell with an individual scalar variable. Consider the following array of size 8:

1 i n t a [8];
Program analysis using array expansion would create 8 integer variables to represent all the cells in the array a. It has the same effect as rewriting the program as follows.

1 i n t a0 , a1 , a2 , a3 , a4 , a5 , a6 , a7 ;

Array expansion suffers from severe performance loss since it introduces many variables and each variable should correspond to a unique dimension in the numeric abstract domains. Another disadvantage of this method is that, when dealing with structural invariants like R tinyos , the disjunctions that these introduced scalar variables form a chained structure are enormous, thus a huge amount of disjuncts have to be created, just to express R tinyos .

Contiguous partitioning and its limitations. Contiguous array partitioning was first proposed by Gopan, Reps and Sagiv [START_REF] Gopan | A framework for numeric analysis of array operations[END_REF] in 2005. It splits an array into contiguous and disjoint groups, and summarizes array contents in each group separately. The boundaries between groups are scalar variables that are used as indexes and are selected CHAPTER 2. CONTRIBUTIONS OF THE THESIS by a syntactic pre-analysis. Figure 2.4 illustrates a concrete state with an integer array a and a possible partition. Since i is the only variable used as an index of that array, array a is partitioned into groups G <i , G i and G >i . Group G <i (resp. G >i ) collects all the array cells, whose indexes are less (resp. greater) than i; group G i contains only one array cell a[i].

0 0 0 0 G <i G i i G >i Partition Concrete state
Dynamic contiguous partitioning [START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF] relies on semantic information to decide the bounds of each group and does not need a syntactic pre-analysis. A bound is described by a simple expression of program variables and constants. Another difference with [START_REF] Gopan | A framework for numeric analysis of array operations[END_REF] is that dynamic contiguous partitioning allows empty groups, which reduces the number of disjuncts, when the upper/lower bounds of a group are possibly equal. The concrete state in Figure 2.4 could by partitioned by [START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF] to {0}0{i, 4} {8}. This means i = 4, and the values stored in array cells of indexes [0, i) and [i, 8) are 0 and unknown respectively.

Contiguous partitioning techniques [CCL11, GRS05, HP08] perform well on arrays where cells with similar properties are contiguous. However, when cells that have similar properties are not contiguous, these approaches cannot infer adequate array partitions. They would fail to abstract invariant R tinyos where both groups of list nodes and free slots are non-contiguous. The reason is obvious: there is no bound on groups of either list nodes or free slots, since they interleave with each other.

Non-contiguous Partitioning Based on Semantics

In the thesis, we propose a dynamic and semantic non-contiguous partitioning domain. It does not fully rely on index bounds to perform partitioning, but also makes use of numeric and structural properties on array contents. To give a brief idea about this technique, let us take the concrete state in Figure 2.1 as an example. In the non-contiguous partitioning domain, an abstract state could partition this array into three groups, which are called G 0 , G 1 , G 2 . Group G 0 collects all list nodes except the tail node; group G 1 contains only the tail node; and G 2 accounts for all free slots. This partitioning is described by two parts: memory predicates and numeric predicates, as shown in Figure 2.5.

An atomic memory predicate G 0 @0 → I G 0 describes the indexes and contents in group G 0 . All the indexes in this group are abstracted by a set variable (i.e., symbolic variables representing sets of values), denoted as G 0 (the same as its name). We use set variables because these groups are possibly non-contiguous, and the indexes in each group could not Memory Predicates: Numeric predicates on set variables are used to characterize each group. For instance, numeric predicate I G 2 = 255 means that all values in set variable I G 2 are equal to 255 or I G 2 is an empty set (in the thesis, usual value equality "=" is used to denote this meaning in numeric predicates). This characterizes the fact that free slots in the array store the value 255. Set variables may also support predicates such as cardinality (e.g., |G| = 1 means that the size of set G is 1). The predicates on

G 0 @0 → I G 0 * G 1 @0 → I G 1 * G 2 @0 → I G 2 Numeric Predicates: . . . ∧ G 1 = m tail ∧ I G 1 = 255 ∧ | I G 1 |≤ 1
G 1 (G 1 = m tail ∧ I G 1 = 255 ∧ |I G 1 | ≤ 1)
imply that group G 1 is either empty or contains one cell, the index and value of which are equal to m tail and 255 respectively. For simplicity, we ignore some numeric predicates in Figure 2.5. Some numeric predicates in our non-contiguous partitioning domain (e.g., I G 2 = 255) could not described by conventional numeric domains and rely on the technique introduced in Section 2.4.

The formal definition of this domain including abstract semantics will be introduced in Chapter 5.

Coalescing Array and Shape Abstractions

There are various abstract domains, targeting different classes of properties. For instance, numeric domains could describe valuation of numeric variables in a system, and shape domains could express structural invariants on the memory in a system. Abstract interpretation allows different abstract domains to be combined in order to extend their expressiveness. The ASTR ÉE analyzer [BCC + 03a] combines different numeric domains to gain additional precision in numeric analysis. Shape domains can also be combined [START_REF] Lee | Program analysis for overlaid data structures[END_REF][START_REF] Toubhans | Reduced product combination of abstract domains for shapes[END_REF], for instance, to abstract overlaid data structures. Since the array structure and list structure are intertwined in the property R tinyos , we consider combining our non-contiguous partitioning domain with a shape domain that could describe dynamically chained structures like lists. Several kinds of combination techniques have been introduced in previous studies [START_REF] Cortesi | A survey on product operators in abstract interpretation[END_REF][START_REF] Lee | Program analysis for overlaid data structures[END_REF][START_REF] Toubhans | Reduced product combination of abstract domains for shapes[END_REF]. In this section, we first review them and then present our coalescing domain.

Existing Combination Techniques

Combination of numeric domains. One way of combining numeric domains is the reduced product [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF]. This combination expresses the logical conjunction of abstract elements from distinct domains, and refines logical statements on both sides of the conjunction. It has been successfully used the ASTR ÉE analyzer [BCC + 03a].

The Donut domain [GIB + 12] is used to express non-convex numeric properties. It takes two elements from convex numeric domains as inputs: the first one defines an overapproximation of all the possible concrete valuations; the second one under-approximates the set of impossible valuations. The geometrical concretization of the combination is defined by a convex set minus another convex set, that is, the difference between the two convex sets.

Reduced cardinal power [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF] expresses a conjunction of implications. It allows the analysis to track disjunctive information, like "when x is 3, y is 4 and when x is 2, y is 1".

Combination of shape domains. The combination of shape domains is more challenging than that of numeric domains, since there exists a much greater diversity in the way of abstracting memory predicates relating to concrete memory states. The works in [LYP11, TCR13, RTC14] combine shape domains with the Cartesian product, i.e., abstract elements from two distinct shape domains are connected with the logical conjunction. Their techniques can be used to abstract overlaid data structures.

Another kind of combination of shape domains is hierarchical domain [START_REF] Sotin | Hierarchical shape abstraction of dynamic structures in static blocks[END_REF]. In this combination, the shape domain that is used in order to abstract the whole memory is with contiguous "nodes" (or sub-memory) of arbitrary size, and predicates from other shape domains could be attached to these "nodes". This combination can describe structures nested into abstractions of memory blocks.

The Coalescing Domain and a Comparison with Existing Techniques

In this thesis, we propose a coalescing domain, which provides an efficient and precise method to combine different shape domains. Our coalescing domain requires the input domains to be based on separating conjunction. Separating conjunction (denoted as * ) is introduced in Separation Logic [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF]. It asserts that the memory locations described by the conjuncts are disjoint. The non-contiguous partitioning domain is in this category, since the partitioned groups are disjoint. The coalescing domain describes separating conjunctions of local conjunctions of atomic predicates from two distinct domains. Applying coalescing on our non-contiguous partitioning domain and a shape domain that can abstract dynamically linked structures, the combination domain can express structural invariants on array contents like R tinyos .

To compare the main idea in our coalescing domain with other combinators, we show the structures of formulas expressed in reduced product, hierarchical domain and our coalescing domain in Figure 2.6. We assume that the memory predicates from the two input domains are of the form (M 0 * . . . * M m ) and (N 0 * . . . * N n ), where M i and N i are atomic memory predicates and * denotes the separating conjunction.

• In a Cartesian product, the memory predicates are of the form (M 0 * . . . * M m ) ∧ (N 0 * . . . * N n ). A non-separating conjunction (i.e., ∧) is applied on separating conjunctions of atomic predicates. Here the non-separating conjunction ∧ means the conjuncts constrain the same memory locations. Note that the memory predicates (M 0 * . . . * M m ) and (N 0 * . . . * N n ) from two input domains do not necessarily partition the memory identically, thus it is hard to find relations between atomic memory predicates from two abstractions. This limits the expressiveness of the Cartesian product.

• In a hierarchical domain, the memory predicates in an abstract element are of the form (M 0 * . . . * M m ) * N 0 * . . . * N n , where (M 0 * . . . * M m ) must describe a contiguous memory region. This limitation makes it only able to describe structures stored in a non empty and contiguous sub-memory. This is not the case discussed in Section 2.1, where a list could occupy a non-contiguous region in an array.

• In a coalescing domain, a non-separating conjunction is first applied on atomic memory predicates and a global separating conjunction is applied on conjunctions of atomic predicates. The memory predicates are of the form (M 0 ∧ N 0 * . . . * M n ∧ N n ). It enforces the identical memory partition by two abstractions and builds a correspondence between atomic memory predicates from two domains. Since the non-separating conjunction is applied on the atomic level, information can be easily exchanged between atomic memory predicates, thus the coalescing domain is more expressive than the Cartesian product.

Let us suppose we coalesce the non-contiguous partitioning with a separation logic based shape domain which supports a structural predicate lseg(α, β). This predicate denotes that a set of memory locations forms a list segment where the addresses of the head node and the next link stored in the tail node are abstracted by symbolic scalar variables α and β respectively. We let the predicate true denote all possible concrete stores. The memory predicates for structural invariant R tinyos are shown below.

G 0 @0 → I G 0 ∧ lseg(α, β) * G 1 @0 → I G 1 ∧ true * G 2 @0 → I G 2 ∧ true
This memory predicate indicates that the memory locations abstracted by G 0 and lseg(α, β) are identical. This could not be expressed by a Cartesian product.

The coalescing domain is fully introduced in Chapter 6. 

Maya+ Functor

In static analysis by abstract interpretation, numeric properties are usually described by numeric abstract domains. In this section, we first review the existing numeric abstract domains and their expressiveness. Then we give the main idea of our Maya+ functor. A domain functor is a function that produces new abstract domains based on input domains, in order to extend their expressiveness, or to define a new abstract domain to express entirely different properties.

Numeric Domains and Their Expressiveness

Conventional numeric abstract domains [Kar76, CC77, Min06, CH78a, CLM + 14] approximate and reason about sets of points in a multi-dimensional Euclidean space. A point is defined by a value for each dimension. Formally, the valuation over a set of dimensions is of the form E → V, where E denotes the set of dimensions and V denotes the set of values. If we usually use one dimension to represent one scalar program variable, these numeric domains could be used to express numeric properties on concrete stores of the form X → V, where X denotes the set of scalar program variables. However, when designing analysis for complex data-structures or languages like OCaml , the concrete stores may not be of the form X → V. In the following, we show where these cases arise and to what extent the existing approachs can address them.

Abstraction of possibly empty memory locations. Many programming languages feature possibly empty memory locations. For instance, OCaml and Scala have an option type. This type can be defined by type 'a option = None | Some of 'a, which means a value of type int option may either be an integer, or undefined, represented by None.

Similarly, spreadsheet environments feature empty cells as well as an empty type.

Another case where optional variables may arise is in programs with dynamic allocation. For instance, in the following code, the memory location at * x may be undefined or store the integer value 3.
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x = NULL ; 6 } When each program variable contains either one value or no value, the concrete stores are of the form X → { } V where stands for "no value". The conventional abstract domains mentioned above fail to describe such stores. Therefore, they need to be extended with dimensions which may be undefined in order to deal with optional variables.

The solution proposed in [START_REF] Siegel | The undefined domain: precise relational information for entities that do not exist[END_REF] adds a flag f d for each dimension d, such that f d = 1 if d is defined and f d = 0 otherwise. It does not support relational predicates between undefined dimensions and defined dimensions, which limits its application. For instance, this domain could not infer that d represents no value from a set of constraints that show no value can be found for d. This situation is commonly needed in our array analysis since our analysis sometimes needs to infer that a group is empty: for instance, when the constraints over its bounds are not satisfiable, the group is necessarily empty.

Abstraction of non-empty sets of memory locations. When designing analysis for complex data-structures, a common technique is to summarize sets of memory locations together. For instance, in array partitioning, the values of the cells in a group are described by a single set variable (i.e., variables storing sets of values). Many forms of array partitioning do not allow empty groups [GDD + 04, HP08]. The concrete stores they describe are of the form X → (P(V)/∅). Numeric domains with summarized dimensions [GDD + 04] could lift conventional numeric domains to those constraining dimensions, whose valuation is of the form E → (P(V)/∅).

Abstraction of possibly empty sets of memory locations. Our non-contiguous partitioning domain allows empty groups (Section 2.2.2). Thus a set variable that abstracts array indexes in a group maps to a possibly empty set of values. Thus the concrete stores are of the form X → P(V). To the best of our knowledge, no work addresses this kind of stores.

Overall, by surveying the existing work, we conclude that (1) the numeric domains that could abstract possibly empty memory locations are not precise enough for our analysis (e.g., [START_REF] Siegel | The undefined domain: precise relational information for entities that do not exist[END_REF] could not infer that a dimension represents no value due to unsatisfiable constraints); (2) there does not exist a numeric domain that abstracts possibly empty sets of memory locations, which is needed in our analysis.

Maya+ Functor

In this thesis, we propose a general functor: Maya+ lifts conventional numeric abstract domains to those manipulating predicates on dimensions, each of which may map to a possibly empty set of values. Maya+ is actually a combination of two functors: the Maya
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Store

Each Numeric Object General Solutions The applications of Maya/Maya+ functors and existing numeric domains are shown in Figure 2.7. Now we introduce the main idea of Maya. The combination of the two functors is introduced in Chapter 4.

X → V one value Numeric Abstract Domains X → V ∪ { }
Main idea in Maya functor. In a Maya functor, a variable x representing one or zero value is represented by a set of dimensions x 0 , . . . , x k in the parameter numeric domain. We call these dimensions x 0 , . . . , x k avatars. The functor assumes that x can be defined if and only if all its avatars may map to a common value. For instance, if the constraints on the avatars of x are x 0 ≥ 4 ∧ x 1 ≤ 3. Then x necessarily maps to no value, because no value assignment can map x 0 and x 1 to the same value. This case arises when our array analysis infers that the indexes of a group is less than 3 and greater than 4, which implies that this group is empty. The principle in our Maya functor can be applied to any numeric abstract domain where abstract values are finite conjunctions of constraints (the vast majority of numeric abstract domains are of that form). The graphical illustration of this idea is shown in Figure 2.8, where E represents the set of dimensions in the parameter numeric domain.
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In Chapter 3, we define a simple language, and introduce the main idea of abstract interpretation based on this language. The following three chapters present details of the techniques discussed in the last three sections, but in a different order. Maya+ functor (Chapter 4) is first presented since it provides a numeric basis for the non-contiguous partitioning domain (Chapter 5). The coalescing domain is formalized in Chapter 6. chapter 7 evaluates our work by attempting the verification of some components of several operating systems.

Chapter 3 Static Analysis by Abstract Interpretation

In this chapter, we introduce the main ideas of static analysis by abstract interpretation. To formalize this technique, we first define a simple imperative language, then present the formalization based on this language. This chapter cannot cover all aspects of this technique. More details can be found on [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] and [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF]. It could be seen as a subset of the C programming language. This language is only used to formalize the main idea of static analysis by abstract interpretation, and does not enjoy all features of our target programs. Later chapters will extend it as needed.

A Simple Imperative Language

This language supports only one primitive type: machine integers int. Type int corresponds to the set of all integers in the interval [-2 31 , 2 31 -1] (i.e., 32 bits), which is denoted as V. We do not have any Boolean type. Instead, in conditionals, non-zero integers and zero play the roles of "true" and "false" respectively, as in the C programming language. We let X denote the set of variables in a program.

At this stage, an left-value l (expression that evaluates into a memory location) can only be an integer type variable. However, it will be expanded with other forms (e.g., array accesses) in the following chapters. An r-value r (expression that evaluates into a value or a set of values) could be a constant, an l-value or unary/binary operators applied on r-values. A program is made of statements. A statement p could be an assignment, a skip instruction, a sequence of statements, an assertion statement, a conditional branching or an loop. All these statements are classical and defined in a standard way. Note that, we do not support dynamic memory allocation in our language, because it is not the focus of this thesis. 

Denotational Semantics

One common semantics for describing the behavior of transition systems is the denotational semantics [START_REF] Scott | Outline of a mathematical theory of computation[END_REF]. It formalizes the meaning of program statements as functions mapping initial states into final states. To define this semantics for our language, we need first to define concrete states.

Concrete state.

A concrete state is a memory state σ ∈ S, that maps variables to values. Thus, S is defined by S = X → V, or S = V m when the set of variables X is fixed, where m =| X | is a non-negative integer.

Concrete semantics. The denotational semantics of this language is defined in Figure 3.2. This semantics does not explicitly characterize the non-terminating executions and run-time errors, however it could trivially be extended into a semantics that collects the set of all reachable states and has a special "error" state. We make the choice to

3.1. A SIMPLE IMPERATIVE LANGUAGE 27 Evaluation of L-values: S → X evalL x (σ) = x Evaluation of R-values: S → V evalR x (σ) = σ(x) evalR ⊕(r, . . . , r) (σ) = ⊕( r (σ), r (σ)) evalR v (σ) = v evalR (r, . . . , r) (σ) = ( r (σ), r (σ))
Condition tests: P(S) → P(S) guard r (S) = {σ ∈ S | evalR r (σ) = 0}

Transformers: P(S) → P(S) use an "angelic" denotational semantics so as to make the formalization simpler. The evaluation of l-values evalL l : S → X maps an l-value expression to a memory location represented by a primitive type variable. The evaluation of r-values evalR r : S → V maps an r-value expression to a value. A condition test guard r : P(S) → P(S) filters out the concrete states that do not satisfy the condition expressed by r. A transformer stat p : P(S) → P(S) maps a set of initial states before the execution of p to the set of final states after the execution. The transformers on our language are defined in a standard way by induction over the syntax of the statements. One tricky part is the transformer for loop statements. Intuitively, the denotational semantics of an loop statement stat while(r){p} (S) collects all concrete states that could be obtained from finite iterations of stat p • guard r on S and satisfy the condition guard !r . The set of reachable concrete states after at most ith iterations can be computed by F i (∅), where

stat skip (S) = S stat assert(r) (S) = guard r (S) stat l = r (S) = {σ[ l (σ) → evalR r (σ)] | σ ∈ S} stat p 0 ; p 1 (S) = stat p 1 • stat p 0 (S) stat if(r){p 0 }else{p 1 } (S) = stat p 0 • guard r (S) ∪ stat p 1 • guard !r (S) stat while(r){p} (S) = guard !r • (lfp ⊆ F) where F(S ) = S ∪ stat p • guard r (S )
F(S ) ::= S ∪ stat p • guard r (S )
It is easy to know F is monotonic (i.e., F 0 () ⊆ F 1 () ⊆ F 2 () ⊆ . . .) and Scottcontinusous (i.e., it preserves the supremum of a chain), thus according to Kleene's theo-rem [START_REF] Cole Kleene | Introduction to metamathematics[END_REF], function F has a least fix-point as

lfp ⊆ F = i∈N F i (∅)
Overall, the denotational semantics of the loop statement is guard !r • (lfp ⊆ F) as shown in Figure 3.2. In most cases, the concrete semantics is not adequate for automatic reasoning, since it is infinite and not decidable. In the following section, we will introduce a sound and decidable semantics in the framework of static analysis by abstract interpretation, to compute properties of programs.

Abstract Interpretation

Abstract interpretation [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] is a mathematical theory to compare program semantics. Static analysis is one of its applications.

We call a lattice of concrete elements as a concrete domain. In the framework of abstract interpretation, the behavior of a concrete domain can be over-approximated by an abstract domain. If the concrete domain is the power-set of concrete states (P(S), ⊆ )), then a corresponding abstract domain specifies a sound static analysis. An abstract domain is a class of abstract elements with abstract operators defined on them.

Abstract Elements

An abstract domain includes a partially ordered set of abstract elements (S, ). The relationship between abstract elements and concrete elements is defined by a concretization function. To simplify the formalization, we assume that the concrete domain is the power-set of concrete states in this chapter, which is not always the case. Definition 3.1 (Concretization function). Given a partially ordered set (S, ) of abstract elements, and a complete lattice (P(S), ⊆) of concrete elements, a concretization function γ : S → P(S) should satisfy the following condition.

∀c 0 , c 1 ∈ S, c 0 c 1 ⇒ γ(c 0 ) ⊆ γ(c 1 )
Two special abstract elements are ⊥ ∈ S and ∈ S. They correspond to the empty set of concrete elements (γ(⊥) = ∅) and the set of all concrete elements (γ( ) = S) respectively.

Example 3.1 (The polyhedra abstract domain). One popular abstract domain focusing on numeric properties of programs is the convex polyhedra abstract domain (or the polyhedra domain for short). An abstract element in the polyhedra domain is a conjunction of linear inequalities. There are several representations for the polyhedra domain [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF][START_REF] Simon | Exploiting sparsity in polyhedral analysis[END_REF]. For simplicity, we use the representation in [START_REF] Simon | Exploiting sparsity in polyhedral analysis[END_REF] which is based only on constraint 

Abstract Operators

An abstract operator over-approximates a basic computation in the concrete level. Abstract operators usually include lattice operators and abstract transformers.

Abstract lattice operations. Abstract lattice operations include abstract join and inclusion checking. Abstract join : S × S ⇒ S is an over-approximation of concrete union ∪, and computes an over-approximation of the least upper bound of two abstract elements. Its soundness is defined as follows.

Definition 3.2 (Soundness of abstract join).

∀c 0 , c 1 ∈ S, γ(c 0 ) ∪ γ(c 1 ) ⊆ γ(c 0 c 1 )
Example 3.2 (Abstract join in the polyhedra domain). In the domain of convex polyhedra, each element P represents a convex in a Euclidean space. The least upper bound of two elements P 0 and P 1 is their convex hull. To compute the convex hull, the basic idea is to construct the convex combination of all points in P 0 and P 1 . That is, if σ 0 ∈ γ P oly (P 0 ) and σ 1 ∈ γ P oly (P 1 ), then λ 0 σ 0 +λ 0 σ 1 ∈ γ P oly (P 0 P 1 ), where λ 0 , λ 1 ≥ 0 ∧ λ 0 +λ 1 = 1. This idea is illustrated in Figure 3.3. Following this idea, let P 0 = { M0 x ≤ b 0 } and P 1 = { M1 x ≤ b 1 }, the join operator [START_REF] Simon | Exploiting sparsity in polyhedral analysis[END_REF] is defined as follows.

P 0 P 1 =    ∃λ 0 , λ 1 ∈ V, y 0 , y 1 ∈ V m x = y 0 + y 1 ∧ λ 0 + λ 1 = 1 ∧ λ 0 ≥ 0 M0 y 0 ≤ λ 0 b 0 ∧ M1 y 1 ≤ λ 1 b 1 ∧ λ 1 ≥ 0
However, this operator introduces redundant variables λ 0 , λ 1 , y 0 and y 1 . They can be projected out by Fourier-Motzkin elimination [START_REF] Schrijver | Theory of linear and integer programming[END_REF], which is a mathematical algorithm for eliminating variables from a sysstem of linear inequalities.

The inclusion checking operator : S × S ⇒ {true, false} over-approximates ⊆, and checks the ordering of two abstract elements. Its soundness is defined as follows.

Definition 3.3 (Soundness of abstract inclusion checking).

∀c 0 , c 1 ∈ S, c 0 c 1 ⇒ γ(c 0 ) ⊆ γ(c 1 )
Example 3.3 (Abstract inclusion checking in the polyhedra domain). In the polyhedra domain, the inclusion checking P 0 P oly P 1 is implemented by checking whether all inequalities in P 1 are implied by P 0 : ∀ϕ ∈ P 1 , P 0 |= ϕ. The implication checking is performed by Linear Programming. Given an inequality i c i x i ≤ b, Linear Programming can compute the maximal value µ of i c i x i subject to P 0 . If µ ≤ b, then the implication relation holds.

Abstract transfer functions. Abstract transfer functions over-approximates basic transitions in the concrete domain. These operators include guard and assignment.

Transfer function guard[r] : S ⇒ S over-approximates guard r in the concrete domain, which filters out all concrete states that do not satisfy condition r. Its soundness is defined as follows. Example 3.4 (Abstract guard in the polyhedra domain). In the polyhedra domain, if the condition to be tested r is of the form i c i x i ≤ b, then guard function guard[r] P oly (P) just adds r into P. Note that the added inequality r may be redundant, thus an inclusion checking P {r} is first performed to justify whether {r} is implied by P. If P {r} holds, then guard[r] P oly (P) = P. When the condition r is not a linear inequality, the method in [START_REF] Miné | Weakly relational abstract domains[END_REF] could transfer it into the linear inequality form, and ensures that soundness still holds.

Abstract transfer function assign[l = r] : S ⇒ S over-approximates the assignment stat l = r in the concrete domain. Its soundness is defined as follows.

Definition 3.5 (Soundness of abstract assignment).

∀c ∈ S, stat l = r (γ(c)) ⊆ γ(assign[l = r](c)) stat[skip](c) = c stat[assert(r)](c) = guard[r](c) stat[l = r](c) = assign[l = r](c) stat[p 0 ; p 1 ](c) = stat[p 1 ] • stat[p 0 ](c) stat[if (r){p 0 }else{p 1 }](c) = stat[p 0 ] • guard[r](c) ∪ stat[p 1 ] • guard[!r](c) stat[while(r){p}](c) = guard[!r]lfp ⊆ F(c) whereF = stat[p] • guard[r]} Figure 3.
4 -An abstract semantics of the target language

1 i n t x = 0; 2 i n t y = 0; 3 while ( x < 10) { 4 x = x + 1; 5 y = y + 2; 6 }
The initial abstract state is c 1 = (the subscript indicates that it is the state before the statement at line 1), which represents all possible concrete states. After the following two assignments, the abstract state is c 0 3 = {y = x ∧ x = 0} (we write x = y for short of y ≤ x ∧ x ≤ y, which is the real representation in the polyhedra domain). Here the subscript (i.e., 3) and superscript (i.e., 0) of c 0 3 indicate that this state is before the statement at line 3 after 0 iteration. The two statements in the loop body produce abstract state c 0 6 = {y = 2x ∧ x = 1}. A widening operation is needed to compute the pre-condition for next iteration as c 1 3 = c 0 3 c 0 6 . The implementation of widening introduced in this Chapter will produce c 1 3 = {y = 2x}.

Chapter 4

Maya and Maya+ Functors

In this thesis, we call numeric domains for Euclidean space as conventional numeric domains. We have shown in Chapter 2 the limitations of conventional numeric domains to describe optional variables and summarized memory locations. In this chapter, we formalize Maya and Maya+ functors. Maya functor lifts conventional numeric domains to those abstracting numeric objects storing optional values, and Maya+ functor lifts conventional numeric domains to those abstracting possibly empty sets of values. In the following sections, we first illustrate Maya functor and then combine it with summarized dimensions functor [GDD + 04] to produce Maya+ functor.

Extension of Our Language

To give a context for our Maya and Maya+ functors, we extend the syntax and semantics of the language defined in Chapter 3. The features of the this language are not found in common programming languages. Instead, they are meant to support the demonstraction of Maya and Maya+. The syntax and semantics are mostly similar to those in Chapter 3.

The key difference is shown in Figure 4.1.

Types and notations. Machine integer type is replaced by the four following types (these types are also collected in Figure 4.2).

• A variable of standard integer type int • stores a machine integer (same as machine integer type defined in Chapter 3), here we add a • on the superscript, just to make it consistent with other types. Variables of this type are denoted as y • ∈ Y • .

• A variable of optional integer type int ? represents one integer or no value, and is denoted as y ? ∈ Y ? .

• A variable of non-empty summary integer type int + represents a non-empty set of integers, and is denoted as

y + ∈ Y + . Syntax eint ::= int • |int ? |int + |int * Extended integer types l ::= y • (y • ∈ Y • ) Standard variable | y ? (y ? ∈ Y ? ) Optional variable | y + (y + ∈ Y + ) Non-empty summary variable | y * (y * ∈ Y * ) Possible-empty summary variable r ::= v (v ∈ V) Constant | l l-value read | ⊕(r, . . . , r) Arithmetic Expression | (r, . . . , r) Logical expression | is empty(y ? * ) (y ? * ∈ Y ? ∪ Y * ) Empty test Semantics evalR y (σ) = σ(y) evalR is empty(y) (σ) = 1 evalR y (σ) = ∅ 0 evalR y (σ) = ∅ evalR ⊕(r 0 , . . . , r k ) (σ) = ⊕( r (σ), r (σ)) ∀i ∈ [0, k], r i (σ) ∈ V ∅ ∃i ∈ [0, k], r i (σ) = ∅ evalR (r 0 , . . . , r k ) (σ) =      {1} ∃c i ∈ r i (σ), i ∈ [0, k], (c 0 , . . . , c k ) = 1 ∅ ∃i ∈ [0, k], r i (σ) = ∅ {0} otherwise guard r (S) = {σ ∈ S | evalR r (σ) = {0} ∨ evalR r = ∅} stat y •? = r (S) = {σ[y •? → r (σ)] | σ ∈ S} stat y + * = r (S) = {σ[y + * → r (σ) ∪ σ(y + * )] | σ ∈ S} Figure 4.

-Extension of the language

• A variable of possibly-empty summary integer type int * represents a possibly empty set of integers, and is denoted as

y * ∈ Y * .
We denote the set of all types of variables as

Y = Y • ∪ Y ? ∪ Y + ∪ Y * . We assume that the set of variables Y is fixed throughout this chapter and Y • ∩ Y ? ∩ Y + ∩ Y * = ∅.
We denote y •? as a variable of either standard integer type or optional integer type, i.e., y •? ∈ Y • ∪ Y ? . A variable of any type y •?+ * is denoted as y for short.

Because of the extension on types, we have to redefine the concrete states. Since a non/possibly-empty summary variable stores a set of integers, to make the concrete stores consistent, we evaluate a standard variable (resp. an optional variable) to a set of exactly one integer (resp. a set of one integer or an empty set). ::

EXTENSION OF OUR LANGUAGE 35

Type Variables Stores int • y • ∈ Y • 1 value int ? y ? ∈ Y ? 0 or 1 value int + y + ∈ Y + more than 1 value int * y * ∈ Y * any number of values
= (Y • → V • ) (Y ? → (V • ∪ ∅)) (Y + → P(V)\∅) (Y * → P(V))
Expressions and statements. An l-value can be a variable of any integer type. An r-value expression can be a constant, a left-value, unary/binary operators applied on rvalues and emptiness test. The evaluation evalR r : S → P(V) of expression r produces a possibly empty set of values. For an arithmetic expression, the values in the output set is obtained by applying the arithmetic operator on the Cartesian product of the operand sets. A strong logical expression evaluates to {1} when the logical relation is satisfied by all tuples in the Cartesian product of the operand sets. For instance, {3, 4} ≥ {2} evaluates to {1}, but {3, 1} ≥ {2} evaluates to {0}. One tricky part is that evalR r produces ∅ whenever it reads an empty variable in r: all operators are ∅-strict, i.e., they return ∅ whenever one of their arguments is equal to ∅, thus ∅ always propagates. Emptiness test is empty takes a variable and outputs {1} (resp. {0}) if the variable stores an empty (resp. non-empty) set of values.

The syntax and semantics of statements is quite similar to those in Chapter 3, but we redefine the semantics for condition tests and assignements. The new semantics guard r of condition r filters out the stores in which r evaluates to {0}, thus, it will also include stores where the evaluation encounters ∅. Note that the semantics of an assignment stat y •+ = r will produce no output store when r evaluates to ∅. Intuitively, we consider only executions where the empty value is never assigned to a standard and non-empty summary integer variable. Assignments to summary variables are weak updates. 

= {y • → {3}, y * → {2, 4}} and σ 1 = {y • → {3}, y * → ∅}, • the concrete semantics for condition test y • ≤ y * is guard y • ≤ y * {σ 0 , σ 1 } = σ 1 ,
which filters out σ 0 , because in σ 0 not all values in y * is greater than or equal to the value stored in y • ;

• the concrete semantics for assignment

y * = y • is stat y * = y • {σ 0 } = {y • → {3}, y * → {2, 3, 4}}
, which weakly updates y * with the value stored in y • .

Maya Functor

In 

Y ? = {y ? 0 , y ? 1 } and Y • = {y • 2 }: if(y • 2 ≤ y ? 0 ){ if(y ? 0 ≤ 6){ x y ? 1 = y ? 0 + 2; y . . . ;
Assuming that the variables may store any value (including ∅ for optional variables) at the beginning of the execution:

• at point x, we can observe exactly the stores such that σ(y • 2 ) ≤ σ(y ? 0 ) ≤ 6 where y ? 0 ) contains a value, and the stores defined by σ(y ? 0 ) = ∅; • at point y, we can observe exactly the stores such that σ(y •

2 ) ≤ σ(y ? 0 ) ≤ 6 ∧ σ(y ? 1 ) = σ(y ? 0 ) + 2 where neither y ? 0 nor y ? 1 is empty and the stores where σ(y ? 0 ) = ∅ or σ(y ? 1 ) = ∅.

Numeric Domains for Euclidean Space

In this section, we assume a numerical domain N is fixed, where abstract values correspond to conjunctions of constraints. For instance, linear equalities [START_REF] Karr | Affine relationships among the variables of a program[END_REF], intervals [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF], octagons [START_REF] Miné | The octagon abstract domain[END_REF] and polyhedra [START_REF] Cousot | Automatic discovery of linear restraints among variables of a program[END_REF] fit into this category. An abstract element n ∈ N describes a possibly infinite set of points in a multi-dimensional Euclidean space. Dimensions range over a countable set E, and we write Dim(n) for the dimensions of abstract value n (Dim(n) ⊆ E). Each point could be seen as an assignment of a value to each dimension ν ∈ E → V. We let γ n : N → P(E → V) denote the concretization function of domain N . For a program containing only standard variables, the concrete states are of the form Y • → V • . In conventional numeric analyses, each scalar program variable is bound to a dimension. Thus an abstract element n ∈ N corresponds to a set of such concrete states.

Abstraction in Presence of Optional Numerical Values

A Maya abstract domain is the result domain after applying Maya functor on a conventional numeric domain. The main idea of Maya functor is to represent an optional variable y ? by a set of dimensions in the parameter numeric domain. It assumes that y ? can be defined if and only if all these dimensions may map to a common value.

An abstract state of the Maya functor over N is defined by an abstract value n ∈ N describing constraints over a set of dimensions defined as follows:

• each standard integer variable y • corresponds to exactly one dimension, noted as d;

• each optional variable y ? corresponds to a finite set of dimensions (for clarity, we call these dimensions avatars and always mark them with superscripts such as: d 0 , d 1 , . . .). Therefore, we attach a function A : Y ? → P(E) ∪ Y • → E which describes the mapping of program variables into dimensions in numerical abstract value n. Definition 4.2 (Abstract states in the Maya domain). An abstract state of the Maya abstract functor over N is a pair o = (n, A) such that:

Dim(n) = {A(y •? ) | y •? ∈ Y • ∪ Y ? }
We let O denote the set of such states.

Note that the above definition implicitly asserts that distinct variables are represented by disjoint sets of dimensions. We also make the convention that a program variable and the dimensions representing it have the same subscript.

Example 4.3 (An abstract state in the Maya domain). In this example, we assume N is the Polyhedra domain, and that Y • = {y • 0 }, Y ? = {y ? 1 }. Furthermore, we let each optional variable be described by two avatars. Thus,

E = {d 0 , d ↑ 1 , d ↓ 1 }. Moreover, an example abstract state is o = (n, A), with: n = 0 ≤ d 0 ∧ d 0 ≤ 10 ∧ 5 ≤ d ↓ 1 ∧ d ↑ 1 ≤ d 0 A : y • 0 -→ d 0 ∧ y ? 1 -→ {d ↓ 1 , d ↑ 1 }
Concretization. An abstract element n describes a set of valuations ν that maps all dimensions to a value. The concretization of an abstract state o = (n, A) is a set of concrete stores, that can be obtained by collapsing all avatars of each optional variable to a unique value. This is described by a pair of consistency predicates, which state when a store σ is compatible with ν.

Definition 4.3 (Concretization function in the Maya domain).

Given abstract state o = (n, A), we define the following consistency predicates:

P Y • (σ, o, ν) def. ⇐⇒ ∀y • ∈ Y • , σ(y • ) = ν(A(y • )) P Y ? (σ, o, ν) def.

⇐⇒ ∀y

? ∈ Y ? , ∀d ∈ A(y ? ), ν(d) = σ(y ? ) ∨ σ(y ? ) = ∅
Then, the concretization of o = (n, A) is defined by:

γ O (o) def. ::= σ ∈ S | ∃ν ∈ γ n (n), P Y • (σ, o, ν) ∧ P Y ? (σ, o, ν)
Intuitively, consistency predicate P Y • asserts that the valuation and the concrete store agree on the mapping of the standard variables, whereas consistency predicate P Y ? asserts that the valuation assigns all avatars of each optional variable to the value of that variable in the store. • the stores defined by 5 ≤ σ(y • 0 ) ≤ 10 ∧ 5 ≤ σ(y ? 1 ) ≤ σ(y • 0 ) (the valuation is then fully defined by the store since no variable stores ∅); • the stores defined by 0 ≤ σ(y • 0 ) ≤ 10 ∧ σ(y ? 1 ) = ∅ (a possible valuation is defined by

ν(d 0 ) = σ(y • 0 ), ν(d ↓ 1 ) = 15, ν(d ↑ 1 ) = ν(d 0 )).
This example shows how our domain can distribute the constraints on an optional variable y ?

1 over several dimensions, so as to express the fact that y ? 1 must store ∅.

Remark 4.1. In this example, we also observe that, given σ ∈ γ O (o), and if σ is such that, for any standard variable y • , σ (y • ) = σ(y • ), and for all optional variable y ? , either σ (y ? ) = σ(y ? ) or σ (y ? ) = ∅, then σ ∈ γ O (o). In other words, our functor cannot express that an optional variable must not store ∅. However, our abstraction allows to derive emptiness of a group via constraints over multiple avatars of variables denoting its contents or indexes.

Choice of avatar dimensions. The definition of abstract elements assumes nothing about the number of avatar dimensions, and about the way the constraints over an optional variable are distributed over its avatars. However, in practice, the way avatar dimensions are managed has a great impact on the efficiency and precision of the analysis. In practice, we have to set some principles to help the transfer functions and abstract lattice operations implement an efficient principle to manage these dimensions. In particular at certain stages, new avatars have to be introduced so as to avoid a loss of precision.

Example 4.5 (Choice of avatar dimensions). We discuss possible abstract invariants for the program shown in Example 4.2, starting with the set of all stores as a pre-condition, described by abstract state . After test y • 2 ≤ y ? 0 , the analysis should compute an abstraction of the stores where, either y ? 0 is mapped only to ∅ or where the numerical constraint is satisfied. Using the octagon abstract domain, and a single avatar d 0 for y ? 0 , this boils down to abstract state

(d 2 -d 0 ≤ 0, y ? 0 → {d 0 } ∧ y • 2 → {d 2 })
After the second test, we get the set of stores observed at point x, that is such that, either

σ(y • 2 ) ≤ σ(y ? 0 ) ≤ 6 or σ(y ? 0 ) = ∅.
Note that this set of stores cannot be described exactly with octagons using a single avatar. Indeed, this set contains stores such that σ(y •

2 ) > 6 (when σ(y ? 0 ) = ∅). Thus, using a single avatar to describe constraints over y ? 0 would force the analysis to drop either constraint y ? 0 ≤ 6 or constraint y • 2 ≤ y ? 0 . Thus, adding a second avatar for y ? 0 at this point is necessary in order to maintain maximal precision. In particular, the abstract state below describes exactly the stores that can be observed at point x:

(d 2 ≤ d 0 0 ∧ d 1 0 ≤ 6, y • 2 → d 2 ∧ y ? 0 → {d 0 0 , d 1 0 })
The above example demonstrates the need to introduce enough avatars so that all constraints on optional variables can be maintained, without "over-constraining" standard variables (which would result in an unsound analysis). Intuitively, each avatar should not carry too much information: the base numerical domain cannot express emptiness of a specific avatar; instead, only the conjunction of all avatars of an optional variable y ? may express that y ? is empty. We formalize this as a sufficient condition, that we call the independence property, and that should be maintained by all abstract operators in the Maya domain. This property states that dropping the constraints over an avatar dimension d associated to variable y ? should have no impact on the variables other than y ? . To maintain this property, transfer functions and abstract operators may either pay the cost of adding new avatar dimensions or will have to drop constraints that cannot be represented without adding more avatars. To formalize the independence property, and given abstract value n ∈ N and dimension d, we note drop(n, d) for the abstract value obtained by removing from n all the constraints that involve d (this operation is well defined since we assumed elements of abstract domain N correspond to the finite conjunctions of all the constraints of a certain form). Moreover, if ν is a valuation, we write ν |E\d for the restriction of ν to E \ {d}. 

∀y ? ∈ Y ? , ∀d ∈ A(y ? ), {ν |E\d | ν ∈ γ n (n)} = {ν |E\d | ν ∈ γ n (drop(n, d))}
Example 4.6 (Independence property). The abstract state given at the end of Example 4.5 satisfies the independence property, using two avatars, that respectively carry the lower and upper bound constraints over y ? . Section 4.2.3 generalizes this approach to lift any domain based on linear inequalities.

Example 4.7 (Multiple avatar dimensions for one variable). Intuitively, the independence property is likely to break when an avatar dimension carries several constraints, the conjunction of which may be unsatisfiable. Therefore, an alternate technique to achieve it consists in using one avatar per constraint over each optional variable. As an example, we consider the set of concrete states defined by Y • = {y • 0 } and Y ? = {y ? 1 , y ? 2 } and where the optional variables are either undefined or satisfy the following conditions:

y • 0 ≤ y ? 1 ∧ y ? 1 ≤ 2y • 0 ∧ y ? 1 = y ? 2 + 2.
Then, assuming N is the polyhedra abstract domain, this multi-avatar principle will construct the following abstract state:

n = {d 0 ≤ d 0 1 ∧ d 1 1 ≤ 2d 0 ∧ d 2 1 ≤ d 0 2 + 2 ∧ d 1 2 + 2 ≤ d 3 1 } A : y • 0 → d 0 , y ? 1 → {d 0 1 , d 1 1 , d 2 1 , d 3 1 }, y ? 2 → {d 0 2 , d 1 2
}, This principle is general (it can be applied to, e.g., linear equalities [START_REF] Karr | Affine relationships among the variables of a program[END_REF]) but costly.

The Bi-avatar Principle

We now propose a principle to manage avatar dimensions and design abstract operations under the hypothesis that the predicates expressed in the base abstract domain N are conjunctions of linear inequality (which includes intervals, octagons, polyhedra, and their variants).

Abstraction

Numeric constraints in the base domain are all of the form a 0 d 0 + . . . + a n d n ≤ c (where a 0 , . . . , a n , c are constants), thus a constraint involving d i (i.e., where a i = 0) is either an upper bound constraint for d i (if a i > 0) or a lower bound constraint (if a i < 0). The bi-avatar principle treats those two sets of constraints separately, using two avatar dimensions per optional variable.

Definition 4.5 (The bi-avatar principle). Abstract state o = (n, A) follows the bi-avatar principle if and only if A maps each optional variable y ? to a pair of dimensions {d ↑ , d ↓ }, called upper avatar and lower avatar respectively. Each upper avatar d ↑ (resp., lower avatar d ↓ ) carries only "upper bound constraints" (resp., "lower bound constraints") on y ? .

In other words, the bi-avatar principle fully determines A. In order to implement this principle, we need to ensure that all abstract operators preserve A, and the property of lower and upper avatars. We define such abstract operations in the next subsections. Interestingly, whenever an abstract state follows this principle, and if we drop all constraints over an (upper or lower) avatar of y, the concretization restricted to the dimensions other than that avatar do not change. This entails: Theorem 4.1 (The bi-avatar principle satisfying the independence property). All abstract values that follow the bi-avatar principle satisfy the independence property (Definition 4.4).

To express the emptiness of an optional variable, we simply need to let its avatars carry a pair of constraints that would be unsatisfiable, if carried by a unique dimension, such as 1

≤ d ↓ ∧ d ↑ ≤ 0. Example 4.8 (The bi-avatar pirnciple). Let Y • = {y • 0 }, Y ? = {y ?
1 }, and let A specify the avatars defined by the bi-avatar principle. Then, the following numerical abstract values specify the sets of concrete states below:

abstract numerical state n concretization γ O (n, A) 1 ≤ d 0 ∧ d 0 ≤ 1 ∧ d 0 ≤ d ↓ 1 ∧ d ↑ 1 ≤ d 0 {y • 0 → {1}, y ? 1 → {1}}, {y • 0 → {1}, y ? 1 → ∅} 1 ≤ d 0 ∧ d 0 ≤ 1 ∧ d 0 ≤ d ↓ 1 ∧ d ↑ 1 ≤ d 0 -1 {y • 0 → {1}, y ? 1 → ∅}
Preservation. The abstract operators described in the remainder of this section either discard constraints violating the bi-avatar principle (such as assignment, in Section 4.2.3.4), or never apply operations of N that would cause them to bound a d ↑ (resp., d ↓ ) avatar below (resp., above). This implies straightforwardly that, in the resulting domain, all abstract elements with a non empty concretization follow the bi-avatar principle (all d ↓ dimensions are not bounded by above and all d ↑ dimensions are not bounded by below).

Expressiveness. Under the bi-avatar principle, we can compare the expressiveness of Maya domain O with that of its base domain N : if a set of stores S with no optional variable containing ∅ can be described exactly by n ∈ N , we can still describe S in O, upto the change of any set of optional variable to ∅. Indeed, if we let

S def = (Y • Y ? ) → V • ,
we have:

Theorem 4.2 (The expressivenss of abstract states that follow the bi-avatar principle).

If A follows the bi-avatar principle, then: Then, we prove the equality by double inclusion:

∀n 0 ∈ N , Dim(n 0 ) = Y • Y ? =⇒ ∃n 1 ∈ O, γ n (n 0 ) = γ O (n 1 , A) ∩ S def Proof. We assume Dim(n 0 ) = Y • Y * . To construct n 1 from n 0 ,
• We first prove γ n (n 0 ) ⊆ γ O (n 1 , A) ∩ S def . Let σ ∈ γ n (n 0 ). Then, we can construct valuation ν 1 over Dim(n 1 ) by ∀y • ∈ Y • , ν 1 (d) = σ(d) and ∀y ? ∈ Y * , ν 1 (d ↓ ) = ν 1 (d ↑ ) = σ(y ?
). Then, clearly we have both

P Y • (σ, (n 1 , A), ν 1 ) and P Y ? (σ, (n 1 , A), ν 1 ) thus, σ ∈ γ O (n 1 ). Moreover, σ ∈ S def (by definition of γ n ). • Second, we prove γ O (n 1 , A) ∩ S def ⊆ γ n (n 0 ). Let σ ∈ γ O (n 1 , A) ∩ S def .
Then, there exists a valuation ν 1 such that properties P Y • (σ, (n 1 , A), ν 1 ) and P Y ? (σ, (n 1 , A), ν 1 ) hold. By the definition of n 1 , this entails that σ ∈ γ n (n 0 ).

Example 4.9 (The expressivenss of the bi-avatar principle). Let Y • = {y • 0 } and Y ? = {y ? 1 }, given an abstract element in the octagons domain as

n = 1 ≤ y • 0 ≤ 1 ∧ 1 ≤ y ?
1 ≤ 1, it is easy to know that its concretization contains only one concrete state σ = {y • 0 → {1}, y ? 1 → {1}}. The corresponding abstract element in the Maya domain is

o = (1 ≤ d 0 ≤ 1 ∧ 1 ≤ d ↓ 1 ∧ d ↑ 1 ≤ 1, A), where A : y • 0 → {d 0 }, y ? 1 → {d ↓ 1 , d ↑ 1 } The concretization of o is σ ∧ {y • 0 → 1 ∧ y • 1 → ∅}. Since S def asserts that no optional varaible constains ∅, γ O (o) ∩ S def = {σ} = γ n (n 0 ).

Condition Test

The concrete semantics of a condition test r filters out stores for which r evaluates to 0. We assume N provides a sound abstract function guard 

y • i ∈ Y • and y ? i ∈ Y ?
), we can produce another constraint that involves only standard variables and avatar dimensions by replacing y i either by d ↓ i or by d ↑ i depending on the sign of a i . This constraint is compatible with the bi-avatar principle (Section 4.2.3), hence it can be represented precisely in the numerical domain, even if it indirectly entails emptiness of some optional variables (in other words, not using the bi-avatar property would cause a severe precision loss here). Thus, numerical condition test can be applied to this constraint. In turn, the absence of constraints violating the bi-avatar principle needs to be verified on the output of guard 

Y ? = {y ? 1 } (thus, A : y • 0 → {d 0 }, y ? → {d ↓ 1 , d ↑ 1 }).
We consider an abstract pre-condition o = (n 0 , A), where n 0 = (5 

≤ d 0 ∧ d 0 ≤ 5) guard O [r](n, A) if r = is empty(y ? ) result := (guard O [1 ≤ d ↓ ](guard N [d ↑ ≤ 0](n), A) if r = n i=0 a i y • i + n+m i=n+1 a i y ? i ≤ c foreach i ∈ [0, n]) r := replace(r, y • i , d i ) foreach i ∈ [n + 1, n + m]) if a i < 0 then r := replace(r, y ? i , d ↓ i ) if a i > 0 then r := replace(r, y ? i , d ↑ i ) result := (guard N [r](n), A)
? 1 -y • 0 ≤ 3. Abstract test guard O [y ? 1 -y • 0 ≤ 3](o) first substitutes d ↑ 1 for y ? 1 and d 0 for y • 0 in (y ? 1 -y • 0 ≤ 3), which generates condition d ↑ 1 -d 0 ≤ 3. Then, it computes guard N [d ↑ 1 -d 0 ≤ 3](n 0 )
. Thus, we obtain the abstract post-condition

(n 1 , A), where n 1 = (5 ≤ d 0 ∧ d 0 ≤ 5 ∧ d ↑ 1 -d 0 ≤ 3)

Verifying the Satisfaction of A Constraint

To verify assertions, we need an operator sat

O [r] : O → {{1}, {0}} such that, if σ ∈ γ O (o)
and sat O [r](o) = {1}, then guard r (σ) = σ. The case of numerical assertions is very similar to the case of numeric tests.

To test whether y ? can store only ∅ in any store described by (n, A), we simply need to

check whether constraint d ↓ = d ↑ is unsatisfiable. This suggests sat O [is empty(y ? )](n, A) = is bot N (guard N [d ↓ = d ↑ ](n))
, where is bot

N : N → {{1}, {0}} is a sound emptiness test (if is bot N (n) = {1}, then γ n (n) = ∅).
The full algorithm of satisfaction is shown in 

Assignment

We now describe a transfer function assign O [.] that over-approximates the effect of an assignment. We consider assignments with a linear right hand side expression (non linear assignment can be implemented using linearization [START_REF] Miné | Relational domains for the detection of floating point run-time errors[END_REF]). Emptiness test. If the left-hand side y • is a standard type variable and an optional variable y ? appears in the right hand side, according to the concrete semantics, no state satisfies the condtition that y ? takes an empty set. Therefore, given an abstract pre-condition Numerical assignment. We first consider a simple assignment y ? 0 = y ? 0 + y ? 1 , where Y ? = {y ? 0 , y ? 1 }, in order to give some intuition. If o = (n, A) is an abstract pre-condition and σ ∈ γ O (o) is such that σ(y ? 0 ) = ∅ and σ(y ? 1 ) = ∅, there exists a valuation ν ∈ γ n (n) such that ν(d ↓ 0 ) = ν(d ↑ 0 ) = σ(y ? 0 ) and the same for y ? 1 . After the assignment evaluates, we obtain a store σ such that σ (y ? 0 ) = σ(y ? 0 ) + σ(y ? 1 ) (and is unchanged for all other variables). Therefore, we need to make sure that the abstract post-condition describe a valuation ν such that ν (d ↓ 0 ) = ν(d ↑ 0 ) = σ(y ? 0 ) + σ(y ? 1 ). We can achieve that by performing a pair of assignments to d ↓ 0 , d ↑ 1 using any combination of avatars to represent y ? 0 , y ? 1 in the right hand side. For instance, the following choices are sound:

sat O [r](n, A) if r = is empty(y ? ) result := is bot N (guard N [d ↓ = d ↑ ](n)) if r = n i=0 a i y • i + n+m i=n+1 a i y ? i ≤ c foreach i ∈ [0, n]) r := replace(r, y • i , d i ) foreach i ∈ [n + 1, n + m]) if a i < 0 then r := replace(r, y ? i , d ↓ i ) if a i > 0 then r := replace(r, y ? i , d ↑ i ) result := sat N [r](n)
d ↓ 0 = d ↓ 0 + d ↓ 1 ; d ↑ 0 = d ↓ 0 + d ↓ 1 ; d ↓ 0 = d ↓ 0 + d ↑ 1 ; d ↑ 0 = d ↑ 0 + d ↓ 1 ;
. . .

Yet

, not all choices are of optimal precision. To show this, we assume that the precondition bounds both y ? 0 and y ? 1 from the above, for example with Polyhedra

n = {d ↑ 0 ≤ 0 ∧ d ↑ 1 ≤ 0}.
Then, only the left choice will produce a precise upper bound on d ↑ 0 . However, this approach may also produce constraints that violate the bi-avatar principle, such as d ↑ 0d ↑ 1 ≤ 0, where d ↑ 1 gets assigned a lower bound. Such a lower bound can be removed by adding a temporary dimension d t , assuming that it is positive (using

guard O [d t ≥ 0]), and performing assignment d ↑ 1 = d ↑ 1 -d t .
To conclude, the analysis of assignment y ? 0 = n i=0 a i y • i + m i=0 a n+i y ? n+i + c proceeds as follows: depending on the sign of the a i s (see below); 2. then it forces the removal of constraints violating the bi-avatar property, using the aforementioned method. Expression r ↑ is defined as n i=0 a i d i + m i=1 a n+i d n+i n+i +c where avatar signs are determined as follows (r ↓ uses the opposite avatar dimensions as r ↑ ):

1. assign O [.] performs in parallel [JM09] the two assignments d ↓ = r ↓ || d ↑ = r ↑ , where make exprs( n i=0 a i y • i + n+m i=n a i y ? i + c, e) r := n i=0 a i y • i + n+m i=n+1 a i y ? i + c; foreach i ∈ [0, n] r := replace(r, y • i , d i ) r := r foreach i ∈ [n + 1, n + m] if e • a i > 0 then r := replace(r, y ? i , d ↑ i ) r := replace(r , y ? i , d ↓ i ) else r := replace(r, y ? i , d ↓ i ) r := replace(r , y ? i , d ↑ i ) assign O [y •? = n i=0 a i y • i + n+m i=n+1 a i y ? i + c](n, A) : n := add dims(n, {d i , d t }) if y •? ∈ Y • then foreach i ∈ [n + 1, n + m] if sat O [is empty(y ? i )](o) return (⊥, A); make exprs( n i=0 a i y • i + n+m i=n+1 a i y ? i + c, 1); n := assign N [d i = r || d = r ](n) n := guard N [d i == d i ](n) else make exprs( n i=0 a i y • i + n+m i=n+1 a i y ? i + c, if ∃j ∈ [n + 1, n + m], y ? j = y •? then a j else 1); n := assign N [d ↑ i = r || d ↓ i = r ](n) foreach i ∈ [n + 1, n + m] n := assign N [d ↑ i = d ↑ i -d t ](n) n := assign N [d ↓ i = d ↓ i + d t ](n) result := (rem dims(n, {d i , d t }), A)
• if the assignment is not invertible (y ? does not appear in the right hand side), then i is the sign of a i ; • if the assignment is invertible and y ? is y ? n+1 , then i is the sign of the product a n+1 a i . Finally, an assignment with a standard variable y • as a left hand side can be handled in a similar manner (after the emptiness test described earlier): it boils down to the introduction of a temporary dimension d , the analysis of two assignments d = r 

= {0 ≤ d ↓ 1 ∧ d ↑ 1 ≤ 10 ∧ 0 ≤ d ↓ 2 ∧ d ↑ 2 ≤ 1 + d 0 }. • non invertible assignment y ? 1 = 1 -y ? 2 boils down to parallel assignments d ↑ 1 = 1 -d ↓ 2 || d ↓ 1 = 1 -d ↑ 2 in Octagons [Min06] and produces numerical post-condition {-d 0 ≤ d ↓ 1 ∧ d ↑ 1 ≤ 1 ∧ 0 ≤ d ↓ 2 ∧ d ↑ 2 ≤ 1 + d 0 }; • invertible assignment y ? 1 = y ? 1 + y ? 2 boils down to parallel assignments d ↑ 1 = d ↑ 1 + d ↑ 2 || d ↓ 1 = d ↓ 1 +d ↓ 2 , and produces numerical post-condition {0 ≤ d ↓ 1 ∧ d ↑ 1 ≤ 11+d 0 ∧ 0 ≤ d ↓ 2 ∧ d ↑ 2 ≤ 1 + d 0 }.

Inclusion Checking, Join and Widening

To analyze condition tests and loops, we also need abstract operations for join, widening and inclusion test. Using the bi-avatar principle, these operations can be implemented in a straightforward manner, using the operations of the underlying domain, since avatars are the same for all abstract values. We write A for the set of avatars defined by the biavatar principle in Y • Y ? . We let isle N , join N , widen N denote the abstract inclusion check, abstract join and abstract widening of abstract domain N , satisfying the following soundness conditions:

∀n 0 , n 1 ∈ N , isle N (n 0 , n 1 ) = 1 =⇒ γ n (n 0 ) ⊆ γ n (n 1 ) ∀n 0 , n 1 ∈ N , γ n (n 0 ) ∪ γ n (n 1 ) ⊆ γ n (join N (n 0 , n 1 )) ∀n 0 , n 1 ∈ N , γ n (n 0 ) ∪ γ n (n 1 ) ⊆ γ n (widen N (n 0 , n 1 ))
Furthermore, we assume that widen N ensures convergence of any sequence of abstract iterates [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF].

Definition 4.8 (Algorithms of inclusion checking, join and widening). We let the operators over O be defined by:

isle O ((n 0 , A), (n 1 , A)) = isle N (n 0 , n 1 ) join O ((n 0 , A), (n 1 , A)) = (join N (n 0 , n 1 ), A) widen O ((n 0 , A), (n 1 , A)) = (widen N (n 0 , n 1 ), A)
These operators trivially inherit the properties of the operators of N : satisfy soundness condition of the same form as their underlying counterpart. In particular:

∀n 0 , n 1 ∈ N , γ n (n 0 ) ∪ γ n (n 1 ) ⊆ γ n (join N (n 0 , n 1 ))
Moreover, widen O . also ensures termination.

Maya+ Functor

In this section, we first introduce summarizing abstract numeric domains [GDD + 04]. It is a functor that lifts conventional numeric domains to those describing concrete stores with standard variable (i.e., Y • ) and non-empty summary variable (i.e., Y + ). Then we show how to compose the Maya functor and the functor of summarizing numeric domains, to produce Maya+ functor. The Maya+ functor extends conventional numeric domains with the ability to constrain possibly-empty summary variables (i.e., Y * ).

To simplify the formalization, we make the following conventions.

• The right-value r in a condition test contains only one kind of logical operators. A right-value that contains weak (resp. strong) logical operators are denoted as r w (resp. r s ).

• The right-value in an assignment l = r does not contain logical operators. 

Static Analysis on Array Contents

Jiangchao Liu guard (r 0 , . . . , r k ) w (σ) =      {1} ∃c i ∈ r i (σ), i ∈ [0, k], (c 0 , . . . , c k ) = 1 ∅ ∃i ∈ [0, k], r i (S) = ∅ {0} otherwise

Summarizing Numeric Domains

The functor of summarizing numeric domains [GDD + 04] extends conventional numeric domains with summarized dimensions. One summarized dimension d ∈ E represents a non-empty set of values, and could be seen the summary of several dimensions (d ∈ E).

An abstract element n s in a summarizing numeric domain is a conventional numeric element n where Dim(n) ⊆ E ∪ E. A standard variable is represented by a standard dimension d, and a non-empty summary variable is represented by a summary dimension d. We ignore the mapping function from variables to dimensions, and just use the same subscript to indicate a variable and the dimension represents it.

The concretization of n is a set of ν s ∈ (E → V) ∪ (E → P(V)\∅), which evaluates a standard dimension to a value and a summary dimension to a set of values. Definition 4.9 (Concretization in summarizing numeric domains). The concretization of n s is defined by:

γ N s (n s )
def.

:

:= ν s ∀ν ∈ Dim(n) → V, if (∀d ∈ E, ν s (d) = ν(d)) ∧(∀d ∈ E, ν s (d) ∈ ν s (d)), ν ∈ γ n (n s )
Lattice operators in the underlying numeric domains can be safely re-used in the summarizing numeric domain. But the transfer functions for condition tests and assignments need to be redefined. In [GDD + 04], the abstract guard operator guard 

guard r w (γ N s (n s )) ⊆ γ N s (guard N s [r](n s ))
In [GDD + 04], the transfer function for assignments assign 

∀n s ∈ N s , y •+ = r (γ N s (n s )) ⊆ γ N s (assign N s [y •+ = r]n s ) 4.
P Y • (σ, u, ν s ) def. ⇐⇒ ∀y • ∈ Y • , σ(y • ) = ν s (y • ) P Y * (σ, u, ν s ) def. ⇐⇒ ∀y * ∈ Y * , σ(y * ) ⊆ d∈A(y * ) ν s (d)
Then, the concretization of u = (n s , A) is defined by:

γ U (u)
def.

:

:= σ ∈ S | ∃ν s ∈ γ N s (n s ), P Y • (σ, u, ν s ) ∧ P Y * (σ, u, ν s )
Example 4.12 (Concretization in the Maya+ domain). We assume

Y • = {y • 0 }, Y * = {y ? *
1 }, and consider the abstract element

(3 ≤ d 0 ∧ d 0 ≤ 4 ∧ 0 ≤ d ↓ 1 ∧ d ↑ 1 ≤ x -3, A)
where A follows the bi-avatar principle. These constraints define valid elements of both Maya and Maya+ domains. However, the concretizations of this abstract element in both domains are different as shown below:

Maya : x y • 0 → {3} y ? * 1 → {0} Maya+ : x y • 0 → {3} y ? * 1 → {0} y y • 0 → {3} y ? * 1 → ∅ y y • 0 → {3} y ? * 1 → ∅ z y • 0 → {4} y ? * 1 → {1} z y • 0 → {4} y ? * 1 → {1} { y • 0 → {4} y ? * 1 → {0} { y • 0 → {4} y ? * 1 → {0} | y • 0 → {4} y ? * 1 → ∅ | y • 0 → {4} y ? * 1 → ∅ } y • 0 → {4} y ? * 1 → {0, 1}
The lattice operators in the Maya+ domain are from those in N s . But the transfer functions need to be redefined. Theorem 4.9 (Soundness of the transfer function for assignments). The transfer function for assignments assign U [.] is sound in the sense that: 

∀u ∈ U, y • * = r (γ U (u)) ⊆ γ N s (assign U [y • * = r]u)
guard r w (γ U (u)) ⊆ γ U (guard U [r] w (u)) guard r (γ U (u)) ⊆ γ U (guard U [r](u))

Case Study: Application of The Maya+ Functor to A Simple Array Analysis

We have implemented abstract domain functors Maya and Maya+ with the bi-avatar principle (so that they can be applied to numerical abstract domains representing linear inequalities), as well as the analysis of the language of Figure 4.1. To assess its precision, we encode an array analysis on an array initialization example to a program of the language defined in Figure 4.1. Figure 4.7(a) shows a C code program that initializes an array.

We consider an array analysis inspired by array partitioning, which proceeds by forward abstract interpretation [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF]. An observation is that during the iteration of the loop, the array can be divided into two sets of cells, namely initialized cells and uninitialized cells.

We consider an abstraction of the array, that partitions it into two groups of cells called: G 0 and G 1 (where all cells in group G 0 are initialized to zero and cells in group G 1 may

int i = 0; int a[8]; while(i < 8){ a[i] = 0; i = i + 1; } (a) An array initialization example 0 0 0 0 0 ≤ G 0 ≤ 3 4 ≤ G 1 ≤ 7 Maya+ element

Concrete state

(b) A concrete state and the corresponding abstract states In Figure 4.7(c), Y * = {G 0 , G 1 } and Y • = {i}. In the analysis, the polyhedra domain is used as parameter domain and A is defined according to the bi-avatar principle (A(G j ) = {G ↓ j , G ↑ j } -note these are all summary dimensions, since a group of cells may span several indexes).

int • i = 0; int * G 0 , G 1 ; assert(is empty(G 0 ) = {1}); assert(0 ≤ G 1 ≤ 7); 0 0 ≤ i ∧ i ≤ 0 ∧ 1 ≤ G ↓ 0 ∧ G ↑ 0 ≤ 0 ∧ 0 ≤ G ↓ 1 ∧ G ↑ 1 ≤ 7 while(i < 8){ 1 0 ≤ i ∧ i ≤ 7 ∧ 0 ≤ G ↓ 0 ∧ G ↑ 0 ≤ i -1 ∧ i ≤ G ↓ 1 ∧ G ↑ 1 ≤ 7 G 0 = i; 2 0 ≤ i ∧ i ≤ 7 ∧ 0 ≤ G ↓ 0 ∧ G ↑ 0 ≤ i ∧ i ≤ G ↓ 1 ∧ G ↑ 1 ≤ 7 assert(G 1 ! = i); 3 0 ≤ i ∧ i ≤ 7 ∧ 0 ≤ G ↓ 0 ∧ G ↑ 0 ≤ i ∧ i + 1 ≤ G ↓ 1 ∧ G ↑ 1 ≤ 7 i = i + 1; 4 0 ≤ i ∧ i ≤ 7 ∧ 0 ≤ G ↓ 0 ∧ G ↑ 0 ≤ i -1 ∧ i ≤ G ↓ 1 ∧ G ↑ 1 ≤ 7 } 5 8 ≤ i ∧ 0 ≤ G ↓ 0 ∧ G ↑ 0 ≤ i -1 ∧ i ≤ G ↓ 1 ∧ G ↑ 1 ≤ 7 (c)
At point 0 , group G 1 contains all the elements of the array (uninitialized elements) and G 0 is empty (initialized elements). The weak update G 0 = i and statement assert(G 1 = i) stem from the assignment a[i] = 0 in the array program ( The analysis was run on a few similar programs encoding the steps that [LR15] needs to achieve to verify array programs, and the results are shown in Figure 4.8. The columns show numbers of lines of codes, standard variables, possibly-empty summary variables, run-time, total numbers of assertions and numbers of verified assertions. Test case "arrayinit" is shown in Fig 4 .7(c). Test cases "array-random-access", "array-traverse" and "arraycompare" simulate the array analysis on programs of corresponding algorithm. The analyses are performed with Polyhedra as underlying domain and succeed in computing all invariants (the value range of array contents) required for the verification of these program. Last, the invariants produced express relations between groups, even when those could be empty.

Related Work and Conclusion

Abstractions based on summary dimensions [GDD + 04, SS12] extend basic numerical domains to abstract vectors of non empty sets, so that one dimension may describe an unbounded family of variables. Summaries are also used in shape analysis [START_REF] Sagiv | Parametric shape analysis via 3-valued logic[END_REF], with a similar semantics. Empty summaries can be dealt with using disjunctions.

Siegel and Simon [START_REF] Siegel | The undefined domain: precise relational information for entities that do not exist[END_REF] abstract dynamic stores, where the set of memory cells is dynamic, and also utilize summary dimensions. In this work, a summary variable may also denote an empty set of values. To abstract precisely which dimension may be empty, a flag is associated to each summary variable, and it is true if and only if the variable is defined to at least one value. This approach allows to express relations between the emptiness of distinct variables. However, it does not allow to infer that a variable is undefined from conflicting constraints over its value (as needed in, e.g., [START_REF] Liu | Abstraction of arrays based on non contiguous partitions[END_REF]). This approach is thus orthogonal to ours, and both techniques could actually be combined. Another technique [CCS15, LR15] uses a conjunction of numerical abstract elements n 0 , . . . , n p such that a group of variables that should either all be empty or all be defined to a non empty value are constrained together in a same n i . While this approach tracks emptiness precisely and without disjunctions, it is fairly ad hoc and expresses no relational constraints across groups.

Last, we note that other works on numerical abstract domains use several dimensions in the abstract domain so as to constrain a single variable. For instance, the implementation of octagons on top of DBMs lets a variable x be described in a DBM by dimensions x + = x and x -= -x (so that x = 1 2 (x +x -)) [START_REF] Miné | The octagon abstract domain[END_REF]. We have proposed the Maya functor to lift numerical abstract domains into abstractions for sets of stores where some variables may be undefined, and a functor Maya+ that performs the same task in presence of possibly empty summary dimensions. We have fully described the design of abstract operations using a "bi-avatar" principle, that allows to cope with abstract domains based on linear inequalities. These two functors help achieve the goal set in Section 4.1.

Our construction can be applied either to analyze languages that allow optional values, or as a back-end for static analyses that rely on groups of locations to describe complex memories (such as array and shape analyses). In the next Chapter, we will use Maya+ functor in an array analysis in a way that pretty much like that in Section 4.3.3.

Future work should focus on additional strategies, for instance, based on the multiavatar principle (Example 4.7), to accommodate other kinds of numerical abstract domains.

Chapter 5 Non-contiguous Partitioning

Conventional array partitioning analyses split arrays into contiguous segments to infer properties of sets of array cells. Such analyses cannot group together non contiguous cells, even when they have similar properties. In this chapter, we propose an abstract domain which utilizes semantic properties to split array cells into groups. Cells with similar properties will be packed into a same group and abstracted together. Additionally, a group denotes a set of cells that are not necessarily contiguous. This abstract domain allows to infer complex array invariants in a fully automatic way. Experiments on examples from the Minix 1.1 memory management and academic test cases demonstrate the effectiveness of the analysis.

Context of Non-contiguous Partitioning

In this section, we set the context for our non-contiguous partitioning domain. We first extend the language defined in Figure 3.1 to support array types, and then recall the motivation of our non-contiguous partitioning.

Extension of the Language

The syntax and semantics of the extension is shown in Figure 5.1.

Syntax. We let I denote the set of non-negative integers and F denote the set of fields. We extend the language in Figure 3.1 with a composite type struct{int f; . . . ; int f}[k] which describes arrays of structures. Variables of this type are denoted by A a. This language also allows variables of structure type (they are considered arrays of length 1), and arrays of primitive type values (they are arrays of structures made of a single field).

We restrict the form of array cell accesses (to read or write a value) to expressions of the form a[x], where x is an integer variable, which simplifies both the semantics and the definition of the analysis (more complex array accesses can be decomposed into expressions of this form using auxiliary variables). However, we do not consider array F : fields(f ∈ F) A : structural type variables(a ∈ A) I : Non-negative integers(k ∈ I)

T ::= int primitive type | struct{int f; . . . ; int f}[k] structural type l ::= a[x].f | x left value expressions (a) Syntax Evaluation of L-values: S → (A × I × F ∪ X) a[x].f (σ) = (a, σ(x), f) Evaluation of R-values: S → V a[x].f (σ) = σ(a, x (σ), f) (b) Semantics Figure 5
.1 -Extension of the language with composite type accesses through pointer dereference (analyzing such expressions would merely require extending our analysis by taking a product with a pointer domain). These restrictions allow to streamline the language under consideration around the purpose of our analysis, namely, to deal with arrays of complex data structures.

Concrete states and semantics. Because of the extension in the syntax, we need to redefine the concrete states and semantics.

Definition 5.1 (Concrete states). In this chapter, a concrete state σ is a partial function mapping basic cells (base variables and fields of array cells) into values (which are denoted by V). The set S of concrete states is defined by

σ ∈ S = (A × I × F ∪ X) → V
Specifically, the set of all fields of cells of array a is denoted by F a , and the set of valid indexes in a is denoted by I a . The semantics of l-values and r-values are also extended to account for array accesses.

An Example from Minix.

To recall the motivation for our non-contiguous partitioning domain, we show an example from Minix 1.1, which will be used throughout this paper. 5.2(a) stores the process descriptors. Each descriptor comprises a field mp parent that stores the index of the parent process in mproc, and a field mp flag that stores the process status. An element of mproc is a process descriptor when its field mp flag is strictly positive and a free slot if it is null. As in all Unix operating systems, processes form a reversed tree, where each process has a reference to its parent (namely, the process that created it) and is referred to by its children (the process that it has created). Figure 5.2(c) depicts the concrete values stored in mproc to describe the process topology shown in Figure 6.1(b) (the whole mproc table consists of 24 slots, here we show only 8, for the sake of space). Minix 1.1 uses the three initial elements of mproc to store the descriptors of the memory management service, the file system service and the init process. Descriptors of other processes appear in a random order. In the concrete state of Figure 5.2(c), init has two children whose descriptors are in mproc [3] and mproc [4]; similarly, the process corresponding to mproc [4] has a single child the descriptor of which is in mproc [6]. Moreover, Minix assumes a parent-child relation between mm and fs, as mm has index 0 and the parent field of fs stores 0.

To abstract the process table state, valid process descriptors and free slots should be partitioned into different groups. Traditional contiguous partitioning [START_REF] Gopan | A framework for numeric analysis of array operations[END_REF][START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF] cannot achieve this for two reasons: (1) the order of process descriptors in mproc cannot be predicted, hence is random in practice, and (2) there is no simple description of the boundaries between these regions in the program state. The symbolic abstract domain by Dillig, Dillig and Aiken [START_REF] Dillig | Fluid updates: Beyond strong vs. weak updates[END_REF] also fails here as it cannot attach arbitrary abstract Invariants. Our non-contiguous partitioning domain can abstract the process table state by partitioning valid process descriptors and free slots into different groups. To be more specific, it can abstract the following global invariants.

void cleanup ( i n t child ) { i n t parent = mproc [ child ]. mp_parent ; i f ( parent == 2 ) { mproc [ child ]. mpflag = 0; i = 0; while ( i < 24) { i f ( mproc [ i ]. mpflag > 0 ) i f ( mproc [ i ]. mp_parent == child ) mproc [ i ]. mp_parent = 2; i = i + 1; } } e l
• Each valid process descriptor (resp. free slot) has an mp flag which stores a strictly positive value (resp. null).

• Each valid process descriptor has an mp parent field, that should store a value in [0, 23] (since the length of array mproc is 24), It represents a valid index in mproc. This entails the absence of out-of-bound accesses in process table management functions.

• The mp parent field of any valid process descriptor should be the index of a valid process descriptor: as a process can only complete its exit phase when its parent calls wait, failure to maintain a parent for each process could cause a terminating process to become dangling and never be eliminated.

We denote the conjunction of these properties as R minix . It is necessary for the verification of the memory safety of the operations on the Minix memory management process table (and of other similar process tables).

System calls. New processes can be created by the system call fork from a parent process. A process exits after it calls exit and its parent calls wait. These two system calls form a synchronization barrier such that the process and its parent are set to be "hanging" and "waiting" respectively when they reach the barrier first. In Figure 6.1(b), the process described by mproc [4] would be "hanging" after it calls exit if mproc [2] is not "waiting", and after mproc [2] calls wait, mproc [4] will exit. Function mm init is called when the operating system is initialized and constructs slots in mproc for the first three system level processes.

Our non-contiguous partitioning domain needs to verify that (1) initialization function mm init establishes R minix and that (2) system calls fork, wait and exit preserve R minix . To achieve this, we design a fully automatic, abstract interpretation-based static analysis.

As an example, in the remainder of this chapter, we focus on an auxiliary function cleanup, which is called by wait and exit, and that turns elements of mproc that describe hanging processes into free slots. This function provides a representative view of the challenges that arise when analyzing the other functions manipulating this process table. It consists of a case split, depending of the nature of the process to cleanup. Figure 5.3 displays an excerpt of a de-recursified version of cleanup, which handles the case where the process being cleaned-up is a child of init.

This situation arises if we consider calling cleanup(4) in the state shown in Figure 5.2(c): indeed, this will cause the removal of user process usr0 the parent of which is init; this means that process usr2 should become a child of init, while the record formerly associated to usr0 turns into a free slot, the result is shown in Figure 5.4.

The correctness of the whole process table management relies on the fact that system calls wait and exit will always call cleanup in a state where the process table is correct. This means that function cleanup should always be called in a state that satisfies the precondition defined by the correctness condition R minix . To verify this automatically, our analysis shall abstract R minix and perform a forward abstract interpretation of cleanup, computing sound post-conditions and loop invariants [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF].

Abstraction

In this section, we formalize the abstract elements in our domain and their concretization. An abstract element consists of a combination of memory predicates and numeric 60 CHAPTER 5. NON-CONTIGUOUS PARTITIONING predicates.

Memory Predicates

To highlight the main idea of our domain, we assume that there is only one array a in the concrete states. In an abstract element, the memory predicate P partitions the array a into groups of cells, which may be non-contiguous, unlike array partitioning based on segments such as [START_REF] Gopan | A framework for numeric analysis of array operations[END_REF][START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF]. Definition 5.2 (Memory predicates). We use f to denote fields in F, a memory predicate P may be an atomic memory predicate G i @ f → I f G i or separating conjunctions of atomic memory predicates, as defined below.

P := G i @ f → I f G i
Predicates on a possibly empty group of cells | P * P Separating conjunction

An atomic memory predicate G i @ f → I f G i describes a possibly empty group of array cells. In this predicate, the group name is denoted by G i (where i is a sequential number), which is also a set variable (representing a set of values) that abstracts the indexes in the group. A vector of set variables I f G i abstracts the values stored in each field in the group. Since all atomic memory predicates in our domain follow the same style, we usually use

G i to abbreviate G i @ f → I f G i .
We write G for the set of group names. The memory predicates heavily utilize set variables to denote group indexes as well as contents. That is because array cells in a given group are not necessarily contiguous, thus upper / lower bounds could not precisely describe the set of indexes in a group.

The separating conjunction of two memory predicates P 0 * P 1 means that P 0 and P 1 describe disjoint memory locations, and that P 0 * P 1 describes the union of the sets of locations described by either of them. Therefore, a conjunction of memory predicates that constrain the whole array a represents a possibly non-contiguous partition of it.

Example 5.1 (Memory predicates). The array in the concrete state in Figure 5.2(c) can be partitioned into two groups: valid process descriptors (group G 0 ) and free slots (group G 1 ). The memory predicate in that example can be described as follows.

G 0 @{mp flag → I mp flag G 0 , mp parent → I mp parent G 0 } * G 1 @{mp parent → I mp parent G 1 , mp parent → I mp parent G 1 }
If we use abbreviation, this memory predicate can be denoted as G 0 * G 1 .

Numeric Predicates

To characterize each group, our domain utilizes numeric predicates to describe numeric properties of each group.

Definition 5.3 (Numeric predicates).

In this chapter, we let c ∈ V denote values. Atandard variables from programs and set variables from memory predicates P are denoted by x ∈ X and y ∈ Y respectively.

Numeric predicates are composed of two parts: set constraints and pure-numeric predicates, where set constraints are defined as

g ::= x ∈ G i 0 . . . G in | G i 0 ⊆ G i 1 . . . G in | g ∧ g
and pure-numeric predicates are defined as

u ::= c 0 x 0 + . . . + c m-1 x m-1 + c 0 y 0 + . . . + c n-1 y n-1 ≤ c | x = c | x 0 = x 1 | u ∧ u
Thus numeric predicates Q can be defined as g ∧ u A set constraint g can be a basic var-set constraint x ∈ G i 0 . . . G in , which states that the value of variable x lies in one of the groups G i 0 , . . . , G in , or a basic set-set constraint G i 0 ⊆ G i 1 . . . G in , which states that the cells in group G i 0 is in the disjoint union of groups G i 1 , . . . , G in , or a conjunction of basic set constraints.

A pure-numeric constraint u can be a disequality relation, an inequality relation or a conjunction of such relations. Pure-numeric constraints can be applied on both set variables y (i.e., set variables introduced by memory predicates) and standard variables x (i.e., variables that represent one value, like program variables in X). Set variables y like G i in a memory predicate, denote sets of values. An inequality on set variables means that, any value in the sets represented by these variables should satisfy the constraint. For example, 0 ≤ G 0 ≤ 99 means that G 0 only contains indexes between 0 and 99 (i.e., the semantics of arithmetic/logical operators is the same with that in Chapter 4).

The representation of such constraints requires a numeric domain that can abstract both standard variables and set variables. The Maya+ domain functor of Chapter 4 can describe such numerical constraints. However it cannot express several properties that are required in our domain, such as the fact that a set variable describes a non empty set, or a disequality between a set variable and a non-set variable. Therefore, our domain uses an extension of Maya+ in Chapter 4 that can express such constraints: first, the domain attaches a cardinality variable |G i | to group G i so as to represent its number of elements; second, it relies on a reduced product [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] with a domain expressing only disequality constraints. We still use the original notations (e.g., a pure-numeric constraint is denoted with a Maya+ abstract element u) of Maya+ domain functor in this chapter to denote this extension of Maya+. Memory: Once the cells of the array are partitioned into these two groups, the values of the individual fields of the slots can be abstracted in a rather precise manner as shown in Figure 5.5(b). According to R minix , the elements of group 0 satisfy the following correctness conditions.

G 0 G 1 Numeric: 0 ≤ |G 0 | ≤ 24 ∧ |G 0 | + |G 1 | = 24 ∧ 0 ≤ G 0 ≤ 23 ∧ 1 ≤ I mp flag G 0 ≤ 63 ∧ I mp flag G 1 = 0 ∧ 0 ≤ I mp parent G 0 ≤ 23 ∧ I mp parent G 0 ⊆ G 0 (b) Abstract state R minix with partitioning
• Their indexes are in [0, 23], which we note 0 ≤ G 0 ≤ 23.

• The size of group 0 is between 0 and 24, which we note 0 ≤ |G 0 | ≤ 24.

• Their flag fields are in [1,63], which we note 1 ≤ I mp flag G 0 ≤ 63 (Field mp flag uses 6 bits to indicate the state of that cell, and valid process descriptors have a strictly positive flag).

• Their parents are valid indexes, which we note 0 ≤ I mp parent G 0 ≤ 23.

• Their parent fields are indexes of valid process descriptors, hence are also in group 0, which we note

I mp parent G 0 ⊆ G 0 .
This abstraction does not assume each group consists of a contiguous set of cells. The non-contiguousness of groups is represented by a winding separation line in Figure 5.5(b). To characterize groups, our abstraction relies not only on constraints on indexes, but also on semantic properties of the cell contents: while groups 0 and 1 correspond to a similar range, the mp flag values of their elements are different (any value in [1,63] in group 0 and 0 in group 1). Therefore our abstraction can abstract both contiguous and non contiguous partitions. In this example, we believe the abstract state of Figure 5.5(b) is close to the programmer's intent, where the array is a collection of unsorted elements.

Concretization. To define the concretization of abstract states, we first define the concretization of numeric predicates, which maps Q to a set of valuations. A valuation is a function ν ∈ X → V ∪ Y → P(V), that maps standard variables to values and set variables to sets of values. The concretization of Q is a set of valuations that satisfy all constraints in Q. Definition 5.5 (Concretization of numeric predicates). This concretization γ Q of numeric predicates is expressed using a relation |= as follows.

γ Q (Q) = {ν | ν |= Q ∧ (∀G i ∈ G, |ν(G i )| = ν(|G i |))} ν |= x ∈ G i 0 . . . G in iff ∃k ∈ {0, . . . , n}, ν(x) ∈ ν(G i k ) ν |= G i 0 ⊆ G i 1 . . . G in iff ν(G 0 ) ⊆ 1≤k≤n ν(G i k ) ν |= c 0 x 0 + . . . + c m-1 x m-1 + c 0 y 0 + . . . + c n-1 y n-1 ≤ c iff ∀v 0 ∈ ν(y 0 ), . . . , v n-1 ∈ ν(y n-1 ), c 0 ν(x 0 ) + . . . + c m-1 ν(x m-1 ) + c 0 v 0 + . . . + c n-1 v n-1 ≤ c ν |= x 0 = x 1 iff ν(x 0 ) = ν(x 1 ) ν |= x = c iff ν(x) = c ν |= u 0 ∧ u 1 iff ν |= u 0 and ν |= u 1 ν |= g 0 ∧ g 1 iff ν |= g 0 and ν |= g 1 ν |= g ∧ u iff ν |= g and ν |= u
Definition 5.6 (Concretization of abstract states in the array domain). This concretization γ a of abstract states maps an abstract state in the domain to a set of concrete states and valuations that satisfy both the memory and numeric predicates, as shown below.

γ a (P, Q) = {σ ∈ S | ∃ν ∈ γ Q (Q), σ |= (P, ν) ∧ ∀x ∈ X, ν(x) = σ(x)} σ |= (G i @ f → I f G i , ν) iff ∀f ∈ F, ∀j ∈ ν(G i ), σ(a[j] • f) ∈ ν(I f i ) σ 0 * σ 1 |= (P 0 * P 1 , ν) iff σ 0 |= (P 0 , ν) ∧ σ 1 |= (P 1 , ν)
Example 5.3 (Concretization of abstract states in the array domain). Given a concrete state of array a in Figure 5.6(a), an abstract element in our domain that overapproximates the concrete state is shown in Figure 5.6(b). Group G 0 (resp., G 1 ) comprises all the cells that store positive (resp., negative) values, the numeric predicates reveal that all three positive values are stored in the first five cells of the array. ν :

G 0 G 1 Numeric: 2 ≤ I value G0 ≤ 8 ∧ |G 0 | = 3 ∧ -120 ≤ I value G1 ≤ -100 ∧ |G 1 | = i = 4 ∧ 0 ≤ G 0 ≤ 4 ∧ 1 ≤ G 1 ≤ 6 (b) Abstract state a
G 0 → {0, 2, 4} G 1 → {1, 3, 5, 6} |G 0 | → 3 |G 1 | → 4 I value G 0 → {2, 8} I value G 1 → {-100, -110, -120} σ : (a, 0, value) → 2 (a, 1, value) → -110 (a, 2, value) → 2 (a, 3, value) → -120
(a, 4, value) → 8 (a, 5, value) → -100 (a, 6, value) → -100

Basic Operators on Partitions

In this section, we define a set of basic operations on partitions, that abstract transfer functions and lattice operators will use in order to modify the structure of partitions.

Splitting. Unless it is provided with a pre-condition that specifies otherwise, our analysis initially partitions each array into a single group, with unconstrained contents. Additional groups can get introduced during the analysis, by a basic operator split.

Operator split applies to an abstract state a, an array a and a group G i corresponding to array a and replaces it with two groups G i , G j (where G j is a fresh group name). The two new groups inherit the properties of the group they replace (membership in the old group turns into membership in the union of the two new groups). Assuming that a = (P, Q), and with the above notations, split performs the following actions:

• It extends P with memory predicate G j on the fresh group G j .

• The pure-numeric predicates on indexes and fields of group G j are inherited from those of G i , and every occurrence of

|G i | is replaced by |G i | + |G j |.
• The set relation predicates on G j are inherited from those on G i .

BASIC OPERATORS ON PARTITIONS

65 In practice, the analysis often needs to use split in order to precisely handle an update into an array, or the reading of a value in an array. Therefore, we overload split so that it can also be applied to an abstract state a, an array a and a variable x known to store a valid index in a, and splits a so as to materialize the cell pointed to by x. This can only be done when the value of x can be tracked as an element of a specific group of a; operator split then splits this group into a group of one element, of index x and another group. This scheme will allow strong updates into the array.

P : G 0 Q : I value G 0 = 0 ∧ |G 0 | = 100 ∧ i ∈ G 0 (a) a P : Q : G 0 G 1 0 ≤ G 0 ≤ 99 ∧ I value G 0 = 0 ∧ I value G 1 = 0 ∧ G 1 = i ∧ |G 0 | = 99 ∧ |G 1 | = 1 (b) split(a, i)
Example 5.4 (The splitting operator). Figure 5.7(a) defines an abstract state (P, Q) with a single array, fully initialized to 0, and represented by a single group. Applying operator split to that abstract state and to index i produces the abstract state of Figure 5.7(b), where G 1 is a group with exactly one element, with the same constraints on field value as in the previous state.

Theorem 5.1 (Soundness of the splitting operator). Suppose a is an abstract state, G i a group and a an array, the operator split is sound in the sense that γ a (a) ⊆ γ a (split(a, a, G i ))

Proof. Let a = (P, Q) be an abstract state, and G i be a group of a in a. We assume that splitting G i in a produces groups G i , G k (G i is actually G i in the output, we add a superscript to distinguish it from the G i in the input) in a = split(a, a, G i ). Let σ ∈ γ a (a). We write ν for the witnesses of σ ∈ γ a (a) in the definition of Figure ??.

Then, we define ν from ν by:

• fixing ν (G i ) and ν (G k ) so that ν (G i ) ∪ ν (G k ) = ν(G i );
• adding set variables (fields, size, index) for groups G i , G k , that inherit from the values of the variables corresponding to G i :

ν maps |G i | and |G k | to the respective sizes of ν (G i ) and ν (G k ); other variables take the same value as in ν. Then, since the relation predicates on G i and G k inherit those on G i , to prove that ν are witnesses of σ ∈ γ a (a ), we simply need to check the implication relations in the concretization function.

This proves the soundness of split. This operator may lose a little precision on the sizes of the generated groups when the underlying numeric domain is not complete on linear assignments.

P : G 0 Q : I value G 0 = 0 ∧ |G 0 | = 100 ∧ i ∈ G 0 (a) a P : Q : G 0 G 1 0 ≤ G 0 ≤ 99 ∧ I value G 0 = 0 ∧ 0 ≤ G 1 ≤ 99 ∧ I value G 1 = 0 ∧ |G 0 | = 100 ∧ |G 1 | = 0 (b) create(a)
Creation of an empty group. Operator create extends the partition of an existing array with a new, empty group. It is used by join and widening, so as to generalize abstract states. By nature, an empty group satisfies any field property, thus the analysis may assign any numeric property to the fields of the new group, depending on the context.

When applied to abstract state a = (P, Q) and to array variable a, operator create performs the following operations:

• It introduces a fresh group G j to the memory predicate P on array a.

• The size constraint |G j | = 0 is added to Q.

• Additional constraints on the index and the fields of group G j are added to Q.

• For each group G i in P and each f ∈ F a , the set relations I f G j ⊆ G i are added to Q.

Example 5.5 (The creation operator). Operator create is sound in the sense that, for all abstract state a, for all array variable a, γ a (create(a, a)) = γ a (a)

Proof. In the new group G j created by operator create, the predicate |G j | = 0 indicates that the addition of the new group does not affect the concretization.

P :

Q : G 0 G 1 0 ≤ G 0 ≤ 99 ∧ 3 ≤ I value G 0 ≤ 5 ∧ 0 ≤ G 1 ≤ 99 ∧ I value G 1 = 1 ∧ |G 0 | = 50 ∧ |G 1 | = 50 ∧ i ∈ G 0 ∪ G 1 (a) a P : G 0 Q : 0 ≤ G 0 ≤ 99 ∧ 1 ≤ I value G 0 ≤ 5 ∧ |G 0 | = 100 ∧ i ∈ G 0 (b) merge(a, {0, 1})
Figure 5.9 -Merging in abstract state a Merging groups. Fine-grained abstract states, with many groups can express precisely complex properties, yet may incur increased analysis cost. In fact, the basic operators shown so far only add new groups, and removing groups may be required, at least for the sake of termination. Therefore, the analysis needs to merge distinct groups. This merge operator occurs as part of join, widening or when other transfer functions detect distinct groups of a same array enjoy similar properties. Operator merge takes an abstract state a = (P, Q), an array a and a set of groups of array a as arguments and replaces all the groups of that set by a single group. For the sake of simplicity, we describe the operations performed when input set of groups has two elements G j , G k (the case of a set of more than two elements is similar):

• It creates a fresh group name G i and adds corresponding memory predicate to P;

• The numeric constraints on indexes and fields of G i over-approximate those on G k and G j ; group size

|G i | is assigned with |G k | + |G j | in Q;
• The set relation predicates on G i over-approximate those on G k and G j in Q (namely any field that is known to be an element of G j or G k is then known to be an element of G i );

• It removes memory predicates G j and G k from P.

Example 5.6 (The merging operator). Figure 5.9(a) defines an abstract state a which describes an array with two groups. Applying merge to a and set {0, 1} produces the state shown in Figure 5.9(b), with a single group and coarser predicates, obtained by joining the constraints over the contents of the initial groups.

Theorem 5.3 (Soundness of the merging operator). Operator merge is sound in the following sense: For all abstract state a, array variable a, and two groups G k and G j in array a, γ a (a) ⊆ γ a (merge(a, a, {G k , G j }))

Proof. Let a = (P, Q) be an abstract state, and two groups G k and G j in P. We assume that applying merge on G k and G j in a produces group G i (in the algorithm of merge, G i will be renamed to G j or G k finally, but the renaming does not affect the concretization) in abstract state a = (P , Q ). Let σ ∈ γ a (a). We write ν for the witnesses of σ ∈ γ a (a) in the definition of Figure ??. We now show that σ is also in the concretization of a , by constructing a witnesses ν :

1. fixing ν (G i ) so that ν

(G i ) = ν(G j ) ∪ ν(G k ); 2.
adding new variables (fields, size, index) for group G i , that inherit from the values of the set variables corresponding to

G j , G k : (a) ν(|G i |) = ν(|G j |) + |ν(G k |); (b 
) similarly to G . , fields are set variables and defined by ν(

I f G i ) = ν(I f G j ) ∪ ν(I f G k ); 3.
removing all set variables corresponding to G j , G k . Then, since the set relation predicates on G i over-approximate those on G k and G j in Q, to prove that ν are witnesses of σ ∈ γ a (a ), we simply need to check the implication relations in the concretization function.

This proves the soundness of merge.

The precision loss in merging depends on the similarity of the groups being merged. Our analysis loses no precision when the merged groups are exactly the same.

Reduction. Our numeric predicates can be viewed as a product of set relations and pure-numeric predicates and can benefit from reduction [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF]. That is, if we consider numeric predicate Q = g∧u, components g and u may allow to refine each other. Such steps are performed by a partial reduction operator reduce, which strengthens the set relations and pure-numeric predicates, without changing the global concretization [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF]. The operations of reduce are based on the numeric implications of set relation predicates. It consists of two directions:

• from g to u: set relations always imply pure-numeric constraints over the size and indexes of array groups, e.g., if x ∈ G i , then group G i has at least one element (|G i | ≥ 1), and if G i < 5, then x < 5;

• from u to g: more precise set relations can be inferred from the pure-numeric relations between variables and group indexes, e.g., if x < G i , then reduce removes

G i from x ∈ G i ∪ G j in g.
Note that reduction could be overly costly to compute in general. To avoid that, reduction is done lazily: for instance, the analysis will attempt to generate relations between x and G i only when x is used as an index to access the array G i corresponds to.

Theorem 5.4 (Soundness of the reduction operator). Suppose a is an abstract state, operator reduce does not change concretization.

γ a (reduce(a)) = γ a (a)

Proof. To establish the soundness of reduce, we simply need to consider each of the reduction cases mentioned above. We discuss only the first case, as the proof of the other cases is similar. We let (P, g ∧ u) be an abstract state, such that x ∈ G i appears in g.

Then for any (σ, ν) ∈ γ a (P, g ∧ u), we have σ

(x) ∈ ν(G i ), which implies |ν(G i )| ≥ 1. Thus it is sound to add constraint |G i | ≥ 1 to u.
Principles of Partitioning. The basic operators on partitions are utilized by transfer functions and lattice operators to manipulate groups. The group modifications follow the principles listed below:

• No disjunctions are introduced: our analysis does not produce disjunctions even if it has to lose some precision.

• Groups with similar properties get merged: our analysis computes the similarities between groups and decides which groups to be merged, especially in join and widening.

• Assignments are based on strong updates: our analysis generates a group which contains only the cell being assigned to allow strong update.

• The analysis strives to limit the number of groups: the analysis cost increases dramatically with the the number of groups. Therefore our analysis merges groups whenever merging is an option (e.g., in an assignment and when the group an array cell belongs to is not known, our analysis merges all possible groups instead of generating a disjunction; this helps keeping the number of groups reasonable).

Transfer Functions

Our array static analysis performs a forward abstract interpretation [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF]. In this section, we study the abstract transfer functions for tests (Section 5.4.1) and assignments (Section 5.4.2). Each transfer function should over-approximate the concrete effect of the corresponding program construction in the abstract domain.

Analysis of Conditions

The concrete semantics of a condition r is a function that inputs a set of states S and returns the subset of S in which r evaluates to 1. Therefore, the abstract interpretation of a test from abstract state a = (P, Q) should narrow the set of concrete states described by a by filtering out states in which r does not evaluate to 1. Intuitively, it proceeds by strengthening constraints in the pure-numeric component u, and propagating them into g thanks to reduce. However, the application of test r to pure-numeric constraints u is not immediate, since the array cells that occur in r do not necessarily correspond directly to variables in u. As an example, let us consider condition test a[i].f == 0 in an abstract state where a is partitioned into two groups G 0 , G 1 and where the only constraint available is i ∈ G 0 ∪ G 1 : then, the group array cell a[i] belongs to cannot be identified without ambiguity. Moreover, each group may contain several elements, and its f field may be described by a set variable. Therefore, our analysis cannot refine a[i].f.

To derive a precise post-condition, our analysis relies on a local disjunction such that each case covers a group the index may belong to, and allows for a more precise test. In the above example, the analysis will analyze test a[i].f == 0 in a disjunction of two abstract states where the set relation is replaced by i ∈ G 0 (resp., i ∈ G 1 ). This process is called enumerate. The analysis then applies the numerical domain condition test operator to each disjunct. In this case, it will apply I f G 0 == 0 to disjunct 0 and I f G 1 == 0 to disjunct 1. Note that u may have set variables (whenever a group describes more than a single array cell, its fields are set variable), and that the actual condition test may not strengthen the constraints: for instance, if the size of group G 0 is not known to be exactly one, condition test I f G 0 == 0 will not strengthen the constraints in u. This suits the weak version of guard function guard U [.] w in the Maya+ functor. After the numerical condition test operator has been applied to all disjuncts, the analysis applies operator reduce, and merges all resulting disjuncts. Note that the abstract test operator does not change the memory predicates, thus, all the disjuncts generated by the above process can be merged by a trivial join operator, which simply over-approximates the properties for each group (a more general join operator, able to deal with abstract states with incompatible partitions will be presented in Section 5.5): 

u i = guard U [r i ] w (u);
P, u i , g i = reduce(P, u i , g i ); } (P, u , g ) = join a ≡ ((P, u 0 , g 0 ), (P, u 1 , g 1 ), . . . , (P, u k , g k )); return (P, u ∧ g ); } Example 5.7 (The transfer function for condition tests). Now, let us look at the function cleanup in Figure 5.3. At the beginning of the first fixpoint iteration over the loop at line 6, the abstract state is shwon in Figure 5.11. From numeric constraints over i and group indexes, mproc[i] may be in G 0 or G 1 . Then, the analysis of test mproc[i].mp flag > 0 at line 7 will locally create two disjuncts corresponding to each of these groups. However, in the case of G 1 , I mp flag G 1 = 0, thus the numeric test I mp flag G 1 > 0 will produce abstract value ⊥ denoting the empty set of states. Therefore, only the second disjunct (the case corresponding to G 0 ) contributes to the abstract post-condition. Thus, the analysis derives i ∈ G 0 .

Assignment

Given an l-value l and an expression r, the concrete semantics of the assignment l = r writes the value of r into the cell that l evaluates to. On the abstract level, given abstract pre-condition a = (P, Q), an abstract post-condition for l = r can be computed in two steps:

1. materialization of the memory cell that gets updated, and update of the set relations, and application of the reduction operator to the resulting abstract state. In the following, and unless specified otherwise, we mainly focus on assignments that write on array cells.

G 0 G 1 G 2 P : Q : 0 ≤ G 0 ≤ 23 ∧ 0 ≤ G 1 ≤ 23 ∧ G 2 = child ∧ I mp flag G 1 = 0 ∧ 0 ≤ I mp parent G 0 ≤ 23 ∧ 0 ≤ I mp parent G 2 ≤ 23 i ∈ G 0 ∪ G 1
• Step 1: Materialization. When the l-value l denotes an array cell, the analysis first materializes it into a group consisting of a single cell, so that strong updates can be carried out on Q. To achieve this, the analysis computes which group(s) l may evaluate into in abstract state a. If there is a single such group G i , that contains a single cell (i.e., |G i | = 1), then materialization is already achieved. If there is a single such group G i , and |G i | is greater than 1, then the analysis calls split in order to divide G i into a group of size 1 and a group containing the other elements. Last, when there are several such groups (e.g., when l is a[i] and i ∈ G 0 ∪ G 1 ), the analysis first calls merge to merge all such groups and then falls back to the case where l can only evaluate into a single group. This process is formalized as operator materialize : {l} × H → H.

Note that in the last case, the merge of several groups may incur a loss in precision since the properties of several groups get merged before the abstract assignment takes place. We believe this loss in precision is acceptable here. Another option would be to produce a disjunction of abstract states, yet it would increase the analysis cost and the gain in precision would be unclear, as programmers typically view those disjunctions of groups of cells as having similar roles. Our experiments (Section 5.7) confirm this intuition.

• ⊆ G 0 , and propagates them to the l-value as parent ∈ G 0 . (P, u ∧ g) = materialize(l, (P, u ∧ g)); r 0∼k , g 0∼k = enumerate(r, g); foreach(i ∈ {0, 1, . . . , k}){

P : G 0 G 1 G 2 Q : 0 ≤ G 0 ≤ 4 ∧ 5 ≤ G 1 ≤ 9 ∧ 10 ≤ G 2 ≤ 14 ∧ I value G 0 = 0 ∧ I value G 1 = 1 ∧ I value G 2 = 0 ∧ i ∈ G 0 ∪ G 2 (a) Pre-condition P : G 0 G 1 G 3 Q : 0 ≤ G 0 ≤ 14 ∧ 5 ≤ G 1 ≤ 9 ∧ G 3 = i ∧ I value G 0 = 0 ∧ I value G 1 = 1 ∧ I value G 3 = 2 ∧ i ∈ G 3 (b) Post-condition
u i = assign U [l = r i ](u); g i = propagate(l = r i , g i ); P, u i , g i = reduce(P, u i ∧ g i ); } (P, u ∧ g) = join
a ≡ ((P, u 0 ∧ g 0 ), (P, u 1 ∧ g 1 ), . . . , (P, u k ∧ g k )); return (P, u ∧ g); } Remark 5.1. Our analysis performs strong updates in assignments, which capture the precise information on the concrete memory cells being modified. However, the merging phase that occurs before strong update might lead to a precision loss. Without such a merge, the analysis would have to enumerate all the groups an index may belong to, and to carry out a case analysis over this set of groups (each case would require a splitting of a group), which could turn out overly costly. This motivates the decision to perform the merge before the update. Additionally, and without a merging phase, the number of groups would be increased by one for each assignment, which could significantly impact the analysis performance. Our analysis does not materialize the array elements that participate in condition tests. The reason is that compared to assignments, the precision our analysis gains from materialization in condition test does not seem worth the increased cost it would entail. Indeed, if there is no read / write operation in a[i] after it has been materialized in condition test, there would be no precision gain.

Example 5.9 (The transfer function for assignments). As remarked in Section 5.1.2, function cleanup should be called only in states that satisfy R minix , and where predicate child ∈ G 0 ∧ child > 2 holds (which means mproc[child] may be any element of group 0 the index of which is greater than 2). This is shown in Figure 5.14(a). After the assignment in line 2, the transfer function infers that parent is also an index in group G 0 , since R minix entails that I mp parent G 0 ⊆ G 0 (the parent of any valid process is also a valid

Memory: G 0 G 1 Numeric: 0 ≤ |G 0 | ≤ 24 ∧ |G 0 | + |G 1 | = 24 ∧ 0 ≤ G 0 ≤ 23 ∧ 1 ≤ I mp flag G 0 ≤ 63 ∧ I mp flag G 1 = 0 ∧ child ∈ G 0 ∧ child > 2 ∧ I mp parent G 0 ⊆ G 0 (a)
The pre-condition of the assignment at line 2

P : G 0 G 1 G 2 Q : 0 ≤ G 0 ≤ 23 ∧ G 2 = child ∧ 0 ≤ |G 0 | ≤ 23 ∧ |G 2 | = 1 ∧ 1 ≤ I mp flag G 0 ≤ 63 ∧ I mp flag G 2 = 0 ∧ 0 ≤ I mp parent G 0 ≤ 23 ∧ 0 ≤ I mp parent G 2 ≤ 23 ∧ child ∈ G 2 ∧ I mp parent G 0 ⊆ G 0 ∪ G 2 ∧ I mp parent G 2 ⊆ G 0 ∪ G 2 (b)
The post-condition of the assignment at line 4 Therefore, and in order to perform a strong update, our analysis first materializes the array element that is being modified, by splitting group G 0 into two groups, labeled G 0 and G 2 , where group G 2 has exactly one element, corresponding to mproc[child] (which is also expressed by child ∈ G 2 ). Both groups inherit predicates from former group G 0 . Since group G 2 has a single element (|G 2 | = 1) which corresponds exactly to the modified cell, the analysis can perform a strong update at this stage, and it generates the abstract state at Figure 5.14(b).

Join, Widening and Inclusion Check

Our analysis proceeds by standard abstract interpretation, and uses widening and inclusion check to compute abstract post-fixpoints for loops and abstract join for control flow union (e.g., after an if statement or unrolled iterations in loops). All these operators face the same difficulties: they may be applied to a pair of abstract states that do not have compatible memory predicates (either the numbers of partitions are different, or the groups that appear in both arguments have radically different meanings), thus, they may need to "re-partition" their arguments before they can compute any precise information. We discuss this issue in detail in the case of join. P :

Q : G 0 G 1 0 ≤ G 0 ≤ 4 ∧ 2 ≤ I value G0 ≤ 8 ∧ 1 ≤ G 1 ≤ 6 ∧ -120 ≤ I value G1 ≤ -100 ∧ i ∈ G 0 ∧ |G 0 | = 3 ∧ |G 1 | = 4
(a) Abstract state a 0 P : 

Q : G 0 G 1 1 ≤ G 0 ≤ 6 ∧ -120 ≤ I value G0 ≤ -100 ∧ 0 ≤ G 1 ≤ 4 ∧ 2 ≤ I value G1 ≤ 8 ∧ i ∈ G 1 ∧ |G 0 | = 4 ∧ |G 1 | = 3 (b) Abstract state a 1 P : Q : G 0 G 1 0 ≤ G 0 ≤ 6 ∧ -120 ≤ I value G0 ≤ 8 ∧ 0 ≤ G 1 ≤ 6 ∧ -120 ≤ I value G1 ≤ 8 ∧ 3 ≤ |G 0 | ≤ 4 ∧ 3 ≤ |G 1 | ≤ 4 (c) Imprecise join result P : Q : G 0 G 1 1 ≤ G 0 ≤ 6 ∧ -120 ≤ I value G0 ≤ -100 ∧ 0 ≤ G 1 ≤ 4 ∧ 2 ≤ I value G1 ≤ 8 ∧ i ∈ G 1 ∧ |G 0 | = 4 ∧ |G 1 | = 3 (d) Precise join result

Join and the Group Matching Problem

Abstract join should compute an abstract state whose concretization over-approximates that of both of its arguments.

The partition compatibility problem. The local join operator join a ≡ shown in Definition 5.7 simply over-approximates the properties for each group in abstract states with the same memory predicates. It cannot be applied to pairs of abstract states that do not have the same number of groups. In fact, in the context of control flow joins (and not basic abstract post-conditions as in Section 5.4.1), this operator would not be adequate even when both inputs have the same number of groups.

Example 5.10 (The partition compatibility problem). Let us assume two abstract states a 0 , a 1 with the same number of groups for each array, that we assume to have the same names. Then, the operator join a ≡ can be applied to these states, and computes an overapproximation for a 0 , a 1 , by joining predicates for each group name, the pure-numeric predicates and the set relations. However, this simple operator may produce very imprecise results if applied directly. As an example, we show two abstract states a 0 and a 1 in Figure 5.15(a) and Figure 5.15(b), that are similar up to a group name permutation. The direct join is shown in Figure 5.15(c). We note that the exact size of groups and the tight constraints over value were lost. Conversely, if the same operation is done after a permutation of group names, an optimal result is found, as shown in Figure 5.15(d). This example shows that we need to match groups with similar properties from both inputs before we can apply join a ≡ . Obviously, this group matching problem is actually even more complicated in general as a 0 , a 1 usually do not have the same number of groups. To address this, we need to define a join operator that modifies partitions and match groups with similar properties in both inputs to avoid precision loss. In this thesis, we use constraints over partition group fields into account to decide what partition modification is most adequate. The algorithm we choose is based on heuristics, yet a non optimal algorithm will impact only precision, but not soundness.

Ranking function. The group field properties are achieved with the help of a ranking function rank : G×G → N, which computes a distance between groups of cells of the same array in different abstract states by comparing their numerical and relation predicates. A high value of rank(G i , G j ) indicates G i of a 0 and G j of a 1 are likely to describe sets of cells with similar properties.

The value of rank(G i , G j ) is positively correlated with three factors:

• the number of common constraints on the set variables associated to fields and indexes in u (including their ranges and, when a relational abstract domain is used, relations with program variables);

• the number of variables that have var-index relations with both groups;

• the "group origin", determined by group names in the representation of the abstract values (the name of a group keeps unchanged if it is not split or merged, thus two groups with the same name may be from a single group in a predecessor abstract state).

Re-partitioning. Using the set of rank(G i , G j ) values, the analysis computes a pairing ↔ ∈ P(G × G), that is a set of relations between groups of a 0 and groups of a 1 .

The pairing is defined by the rules below:

1. the analysis sorts all pairs of groups decreasingly according to their ranking values, and then select the first k pairs (k is parametric, usually the analysis lets k be the maximal number of groups in a 0 and a 1 ). That is, if the value of rank(G i , G j ) is among the highest k ranking values of all group pairs, a relation G i ↔ G j is added to the pairing;

if three relations of the form

G i ↔ G k , G i ↔ G j
and G t ↔ G j have been added to the pairing, then the "middle" relation G i ↔ G j is removed (since all relations are added sequentially, this also prevents these relations to forming a circle).

After the two steps above, our analysis transforms both arguments into "compatible" abstract states using the following (symmetric) principles:

• if there is no G j such that G i ↔ G j , then an empty such group in the right argument is created with create; CHAPTER 5. NON-CONTIGUOUS PARTITIONING join a (a 0 , a 1 ){ foreach(G i in a 0 ) foreach(G j in a 1 ) W ij = rank(G i , G j ); a 0 , a 1 = repartition(W, a 0 , a 1 ); return join a ≡ (a 0 , a 1 ); } 

• if G i ↔ G j and G i ↔ G k ,
then G j and G k are merged by operator merge and the resulting group is paired with G i (when more than two groups are to be merged, merge is assoicative);

• if G i is mapped only to G j , G j is mapped only to G i , and i = j, then one of them is renamed accordingly (so that they carry the same name).

The process of pairing and partition transforming is formalized as operator repartition.

It takes two abstract states, together with a set of ranking values, and outputs two "compatible" abstract states. After this process has completed, a pair of abstract states is produced that have the same number of groups, and such that groups of the same name carry similar abstract predicates, and join a ≡ can be applied. This defines the abstract join operator join a .

Definition 5.10 (Join algorithm). The algorithm of join a is shown in Figure 5.16. It first computes the ranking values of all groups from two abstract states by operator rank, and then repartitions the two states by repartition (with create and merge) according to the ranking values. Finally, it applies join a ≡ on two compatible states.

Theorem 5.8 (Soundness of the join algorithm). Join operator join a is sound in the sense that:

∀a 0 , a 1 , γ a (a 0 ) ⊆ γ a (join a (a 0 , a 1 )) ∧ γ a (a 1 ) ⊆ γ a (join a (a 0 , a 1 ))
Proof. The soundness of the join operator join a follows from the fact that the operator repartition is sound (since create and merge are sound), and from the soundness of join a ≡ .

Example 5.11 (Join algorithm). We assume a is an integer array of length 100 and i is an integer variable storing a value in [0, 99], and consider the program of Figure 5.17(a). At the exit of the if statement, the analysis needs to join the pre-condition (also the state in false branch) shown in Figure 5.17(c) (that has a single group) and the state in true

0 : if(random()){ 1 : a[i] = 1; 2 : } 3 :
. . . 

Q : G 0 G 1 0 ≤ G 0 ≤ 99 ∧ I value G0 = 0 ∧ I value G1 = 1 ∧ G 1 = i ∧ |G 0 | = 100 ∧ |G 1 | = 1 (b) True branch P : G 0 Q : I value G0 = 0 ∧ |G 0 | = 100 ∧ 0 ≤ G 0 ≤ 99 ∧ i ∈ G 0 (c) False branch P : Q : G 0 G 1 0 ≤ G 0 ≤ 99 ∧ I value G0 = 0 ∧ I value G1 = 1 ∧ G 1 = i ∧ i ∈ G 0 ∪ G 1 ∧ 99 ≤ |G 0 | ≤ 100 ∧ 0 ≤ |G 1 | ≤ 1 (d) Join result Figure 5
.17 -Join of a one group state with a two groups state branch shown in Figure 5.12(b) (that has two groups). We note that G 0 in Figure 5.17(c) has similar properties as G 0 in Figure 5.17(b), thus they get paired. Moreover, G 1 in Figure 5.17(b) is paired to no group, so a new group is created, and paired to it. At that stage join a ≡ applies, and returns the abstract state shown in Figure 5.17(d). In this abstract state, group G 1 with known content is possibly empty abstracts the fact that the assignment at line 1 is possibly executed.

Widening

The widening algorithm is similar to that of join, but with a different re-partitioning strategy that ensures termination.

Case of compatible partitions. We first define a restriction of widening to abstract states with compatible partitions (that is, partitions that have the same numbers of groups, with the same names): Definition 5.11 (Widening for abstract states with compatible partitions). The widening for abstract states with compatible partitions is defined by widen a ≡ ((P, u 0 ∧ g 0 ), (P, u 1 ∧ g 1 )) = (P, widen

U (u 0 , u 1 ) ∧ g 0 ∩ g 1 )
This operator clearly defines a widening operator. Indeed the widening operator widen U of the Maya+ domain ensures convergence, when the number of variables in u 0 , u 1 is bounded, and in the case of widen a ≡ , it is constant (the set of groups is fixed here). Similarly, the resulting set of set relation predicates is included in the set of g 0 , g 1
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Jiangchao Liu 80 CHAPTER 5. NON-CONTIGUOUS PARTITIONING widen a (a 0 , a 1 ){ foreach(G i in a 0 ) foreach(G j in a 1 ) W ij = rank(G i , G j ); a 0 , a 1 = repartition (W, a 0 , a 1 ); return widen a ≡ (a 0 , a 1 ); } Figure 5.18 -The algorithm of the widening operator of the arguments, which are finite sets, thus this component is well-founded and will also eventually converge. However, the termination property of widen a ≡ relies on the assumption that memory predicates never change. As this assumption is obviously not satisfied in general, we define a widening operator that can be applied to any sequence of abstract states, with no assumption on the memory predicates.

Re-partitioning for widening. To achieve termination, widen a needs to ensure that for any sequence of abstract iterates, the memory predicates eventually converges: when memory predicates have converged, the set of groups is stable and widen a ≡ can be applied, and will ensure both soundness and termination. This convergence property is not guaranteed by the group matching algorithm of Section 5.5.1. Therefore the widening operator widen a relies on a slightly different group re-partitioning operator repartition .

1. operator repartition pairs each group with the group with which it has the highest ranking value, thus each group is with at least one pair relation (this is different with the re-partitioning in join);

2. if three relations of the form G i ↔ G k , G i ↔ G j and G t ↔ G j have been added to the pairing, the "middle" relation G i ↔ G j gets removed.

The new pairing scheme pairs every group with at least one other group, which has the effect that no create is needed in the partition transforming phase. Actually, only operator merge is used. Therefore this group matching operation ensures termination.

Definition 5.12 (Widening algorithm). The algorithm of widen a is shown in Figure 5.18.

It just replaces repartition and join a ≡ in the algorithm of join with repartition and widen a ≡ respectively.

The resulting widen

a operator is a sound and terminating widening operator [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF].

For better precision, the analysis always uses join a for the first abstract iteration for a loop, and uses widening afterwards. Proof. As in the case of join a , the fact that widen a returns an over-approximation of its inputs follows from the soundness of the basic operators on groups. Thus, we only have to establish the convergence of any sequence of abstract iterates of the form a n+1 = widen a (a n , a n ).

P : G 0 Q : 0 ≤ G 0 ≤ 99 ∧ 0 ≤ I value G0 ≤ 1 ∧ |G 0 | = 100 ∧ i ∈ G 0
Since widen a never calls create and split, and changes the number of groups only by calling merge, the number of groups in its result decreases in any sequence of widened iterates, and eventually stabilizes after finitely many steps. From that point, groups are stable. Also, the height of the set of relation constraints over these groups is finite, thus the component will also stabilize after finitely many iterates. Therefore, since widen a applies widen U on the pure-numeric predicates component, it ensures the termination of any sequence of abstract iterates. Therefore, widen a is a widening operator.

Example 5.12 (Widening algorithm). We consider the abstract states depicted in Figure 5.17(b) and in Figure 5.17(c) and show how widen a applies to these abstract states.

The group matching algorithm will merge the two groups in Figure 5.17(b) and pair the resulting group to the only group in Figure 5.17(c). The output state after applying widen a ≡ is shown in Figure 5.19.

Inclusion Checking

To check the termination of sequences of abstract iterates over loops, and the entailment of post-conditions, the analysis uses a sound inclusion checking operator isle a : when isle a (a 0 , a 1 ) returns true, then γ a (a 0 ) ⊆ γ a (a 1 ).

As in the case of join, a restricted inclusion checking operator isle a ≡ can be defined in a straightforward manner, that checks inclusion on "compatible" abstract states, that is abstract states with matching partitions: if isle U (u 0 , u 1 ) = true and g 1 is included in g 0 (as a set of constraints), then γ a (P, u 0 ∧ g 0 ) ⊆ γ a (P, u 1 ∧ g 1 ), hence we let isle a ≡ return true in that case.
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Liu CHAPTER 5. NON-CONTIGUOUS PARTITIONING isle a (a 0 , a 1 ){ foreach(G i in a 0 ) foreach(G j in a 1 ) W ij = rank < (G i , G j ); if(∃G i in a 0 , ∀G j in a 1 , W ij ≤ 0)
return false; a 0 = repartition < (W, a 0 ); return isle a ≡ (a 0 , a 1 ); }

Figure 5.20 -The algorithm of the inclusion check operator

The inclusion checking algorithm is quite similar to that of join, but uses a modified ranking operator rank < and a modified re-partition operator repartition < . Operator rank < is the same as rank except that it evaluates rank < (G 0 , G 0 ) into a negative integer when the ranges of indexes, field contents and size of group G 0 (from the left argument) are not included into those of G 0 . The difference of repartition < with repartition lies in two aspects: firstly, in the pairing phase repartition < guarantees that each group from the left argument is paired with at least one group in the right argument; secondly, the partition transforming phase only modifies the groups in the left argument so as to construct an abstract state with the same groups as the right argument. This means that, when two groups G j and G k from the right argument are paired with a single group G i in the left argument, the inclusion checking algorithm will apply split to G i and pair the two resulting groups with G j and G k respectively. Definition 5.13 (Includsion checking). The inclusion checking algorithm is shown in Figure 5.20. It first computes the ranking values of all groups from two abstract states using operator rank < . If there is a group from the left argument that ranks negatively with all groups from the right argument, isle a conservatively returns false. Otherwise, it re-partitions the two states by repartition < (with create, split and merge) according to the ranking values. Finally, it applies isle a ≡ to the two resulting compatible states.

Theorem 5.10 (Soundness of inclusion checking). The inclusion check operator isle a is sound in the sense that isle a (a 0 , a 1 ) = true =⇒ γ a (a 0 ) ⊆ γ a (a 1 )

Proof. First, we note that repartition < does not modify the right hand side argument, and performs an over-approximation of the left hand side argument (through create, split and merge). Second, isle a ≡ is sound. Therefore, when isle a returns true, all elements in the concretization of the left argument also belong to the concretization of the right argument. Hence, it is sound. In addition to these, and at loop head, we have the following groups:

R minix ∧ child ∈ G 0 ∧ child > 2 void cleanup(int child){ int parent = mproc[child].mp_parent; R minix ∧ child ∈ G 0 ∧ parent ∈ G 0 ∧ child > 2 if(parent == 2){ mproc[child].mp_flag = 0; G 0 G 1 G 2 P : Q : 0 ≤ G 0 ≤ 23 ∧ G 2 = child ∧ 0 ≤ |G 0 | ≤ 23 ∧ |G 2 | = 1 ∧ child > 2 ∧ I mp flag G2 = 0 child ∈ G 2 ∧ I mp parent G0 ∈ G 0 ∪ G 2 ∧ I mp parent G2 ∈ G 0 ∪ G 2 i = 0; while(i < 24){ I loop : G 0 G 1 G 2 G 3 P : Q : i ≤ G 0 ≤ 23 ∧ 0 ≤ |G 0 | ≤ 23 ∧ 0 ≤ |G 3 | ≤ 23 ∧ child > 2 ∧ 1 ≤ I mp flag G3 ≤ 63 ∧ 0 ≤ I mp parent G3 ≤ 23 ∧ 0 ≤ i ∧ child ∈ G 2 ∧ I mp parent G0 ⊆ G 0 ∪ G 2 ∪ G 3 ∧ I mp parent G3 ⊆ G 0 ∪ G 3 if(mproc[i].mp_flag > 0) I loop ∧ i ∈ G 0 if(mproc[i].mp_parent == child) G 0 G 1 G 2 G 3 G 4 P : Q : i < G 0 ≤ 23 ∧ 0 ≤ G 0 ≤ 22 ∧ |G 4 | = 1 ∧ child > 2 ∧ 0 ≤ G 3 < i ∧ child ∈ G 2 ∧ I mp parent G4 ⊆ G 2 ∧ |G 4 | = i ∧ 1 ≤ I mp flag G4 ≤ 63 ∧ 0 ≤ I mp parent G4 ≤ 23 ∧ 0 ≤ i mproc[i].mp_parent = 2; i = i + 1; } G 1 G 2 G 3 P : Q : 3 ≤ G 1 ≤ 23 ∧ |G 2 | = 1 ∧ 0 ≤ |G 3 | ≤ 23 ∧ G 2 = child > 2 ∧ 0 ≤ G 3 ≤ 23 ∧ I mp flag G2 = 0 ∧ 1 ≤ I mp flag G3 ≤ 63 ∧ child ∈ G 2 ∧ 0 ≤ I mp parent G2 ≤ 23 ∧ 0 ≤ I mp parent G3 ≤ 23 ∧ I mp parent G2 ⊆ G 3 } else { \\cleanup child and its descendants } } G 1 G 2 G 3 P : Q : 3 ≤ G 1 ≤ 23 ∧ 0 ≤ |G 1 | ≤ 23 ∧ 1 ≤ |G 2 | ≤ 2 ∧ 0 ≤ |G 3 | ≤ 23 ∧ 3 ≤ |G 2 | ≤ 23 ∧ I mp flag G1 = 0 ∧ I mp flag G2 = 0 ∧ 1 ≤ I mp flag G3 ≤ 63 I mp parent G3 ⊆ G 3 ∧ child ∈ G 2
• group G 0 describes the valid process descriptors that have not yet been visited by the loop (i.e., with an index greater or equal than i);

• group G 2 describes a group that consists of exactly one cell, corresponding to the process descriptor that is being cleaned up (cell mproc[child]);

• group G 3 describes the valid process descriptors that were already examined during the loop (i.e., with an index strictly lower than i).

The test at line 7 entails that i cannot be in groups G 1 and G 2 (all those processes have a null flag), thus, i ∈ G 0 . The test at line 8 keeps only the states where i is the index of a child of the process being cleaned up. This test leads to the splitting of that group, which enables a strong update at line 9.

We now briefly discuss the abstract iterates that lead to this invariant. During the first iteration, a new group is created so that, during the loop, the analysis always distinguishes the valid process descriptors with an index strictly lower than i from those with an index that is greater or equal than i. Not applying widen a at the end of the first iteration, and delaying it to the second iteration allows to preserve this group. At the end of the subsequent widening iterations, the groups corresponding to index i and to indexes lower than or equal to i are merged together. Last, when exiting the loop, the analysis obtains i ≥ 24. Since the loop head invariant contains constraints i ≤ G 0 and G 0 ≤ 23, this group is necessarily empty, and can be removed. After removal of that group, the analysis produces the abstract post-condition shown at line 11.

The post-condition of function cleanup is presented right after line 13. Actually the only difference with the state after line 11 is that group 2 may contain more elements (more slots might be cleaned up in the else branch). With comparison operator isle a , our analysis proves that it implies R minix automatically.

Experimental Evaluation

We have implemented our analysis and evaluated how it copes with two classes of programs:

• process tables as found in the Minix memory management component;

• academic examples introduced in related works, and where we demonstrate that partitions in contiguous groups are not strictly necessary for the verification.

Our abstract domain has been integrated into the MemCAD static analyzer [SR12, [START_REF] Toubhans | Reduced product combination of abstract domains for shapes[END_REF][START_REF] Bor-Yuh | Modular construction of shapenumeric analyzers[END_REF]. It uses the Apron library of numerical abstract domains [START_REF] Jeannet | Apron: A library of numerical abstract domains for static analysis[END_REF]. In practice, our analysis uses octagons [START_REF] Miné | The octagon abstract domain[END_REF] for all test cases except one that is analyzed using convex polyhedra [START_REF] Chen | A sound floating-point polyhedra abstract domain[END_REF].

Verification of Memory Management Part in Minix.

The main data-structure of the Memory Management operating system service of Minix 1.1 is the MMPT mproc, which contains memory management information for each process. At start up, it is initialized by function mm init, which creates process descriptors for mm, fs and init. After that, mproc should satisfy property R minix . Then, it gets updated by system calls fork, wait and exit, which respectively create a process, wait for terminated children process descriptors to be removed, and terminate a process. Each of these functions should be called only in a state that satisfies R minix , and should return a state that also satisfies R minix (we recall R minix was defined in Figure 5.5(b), and splits the indexes in the process table into two groups: group G 0 contains all the indexes of the valid processes whereas group G 1 contains all the indexes of the "free cells" in the table). If property R minix was violated, several critical issues could occur. First, system calls could crash due to out-of-bound accesses, e.g., when accessing mproc through field mp parent. Moreover, higher level, hard to debug issues could occur, such as the persistence of dangling processes, that would never be eliminated. Therefore, we verified, using our analysis, that (1) mm init properly initializes the structure, so that R minix holds afterwards (under no pre-condition), and that (2) fork, wait and exit preserve R minix (i.e., the analysis of each of these functions from precondition R minix returns a post-condition that also satisfies R minix ). This verification boils down to the following computations:

isle a (stat[mm init]( ), R minix ) = true isle a (stat[exit(who)](R minix ∧ who ∈ G 0 ∧ who > 2), R minix ) = true isle a (stat[fork(who)](R minix ∧ who ∈ G 0 ), R minix ) = true isle a (stat[wait(who)](R minix ∧ who ∈ G 0 ), R minix ) = true
Note that function cleanup was inlined in wait and fork in a recursion free form (our analyzer currently does not supported recursion). Our tool achieves the verification of all these four functions. The results are shown in the first four lines of the table in Figure 5.22, including analysis time and peak number of groups for array mproc. The analysis of mm init and fork is very fast. The analysis of exit and wait also succeeds, although it is more complex due to the intricate structure of cleanup (which consists of five loops and a large number of tests) which requires 151 joins. Despite this, the maximum number of groups remains reasonable (six in the worst case).

Application to Academic Test Cases

We now consider a couple of examples from the literature, where arrays are used as containers, i.e., where the relative order of groups does not matter for the program's correctness. The purpose of this study is to exemplify other examples of cases our abstract domain is adequate for. Program int init consists of a simple initialization loop. Our analysis succeeds here, and can handle other cases relying on basic segments, although our algorithms are not specific to segments (and are geared towards the abstraction of non contiguous partitions). Moreover, Figure 5.23 shows complex, an excerpt of an example from [START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF]. The second example is challenging for most existing techniques, as observed in [START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF] since resolving a[index] at line 10 is tricky. As shown in Figure 5.22, our analysis handles these two loops well, with respectively 4 and 3 groups.

The invariant of the first initialization loop in Figure 5.23 is abstract state 1 (at line 4): group G 1 accounts for initialized cells, whereas cells of G 0 remain to be initialized. The analysis of a[i] = 0; from 1 materializes a single uninitialized cell, so that a strong update produces abstract state 2 . At the next iteration, and after the incremention operation i++, the widening merges G 2 with G 1 , which produces abstract state 1 again. At loop exit, the analysis infers that G 0 is empty as it establishes that 56 ≤ G 0 ≤ 55. At this stage, this group is eliminated. The analysis of the second loop converges after two widening iterations, and produces abstract state 3 . We note that group G 3 is kept separate, while groups G 1 and G 2 get merged when the assignment at line 10 is analyzed (Section 5.4.2). This allows to prove the assertion at line 11.

Related Work and Conclusion

In this chapter, we have presented a novel abstract domain that is tailored for arrays, and that relies on partitioning, without imposing the constraint that the cells of a given group be contiguous.

Most array analyses require each group be a contiguous array segment. Abstract interpretation based static analysis tools [BCC + 03b, GRS05, HP08] and [START_REF] Cousot | A parametric segmentation functor for fully automatic and scalable array content analysis[END_REF] contiguously partition arrays over indexes statically and dynamically respectively. Tools based on decision procedures [AGS13, AGS14, BMS06], and theorem provers [JM07, SPW09, McM08, KV09] can describe properties of array cells over a certain range of indexes. We believe that both approaches are adequate for different sets of problems: segment based approaches are adequate to verify algorithms that use arrays to order elements, such as sorting algorithms, while our segment-less approach works better to verify programs that use arrays as dictionaries.

Other works target dictionary structures and summarize non contiguous sets of cells, that are not necessarily part of arrays. In particular, [START_REF] Dillig | Fluid updates: Beyond strong vs. weak updates[END_REF][START_REF] Dillig | Precise reasoning for programs using containers[END_REF] seeks for a unified way to reason about pointers, scalars and arrays. These works are orthogonal to our approach, as we strive to use properties specific to arrays in order to reason about the structure of groups. Therefore, [DDA10, DDA11] cannot express the invariants R minix for two reasons: (1) the access paths cannot describe the contents of array elements as an interval or with other numeric constraints; (2) they cannot express set-set predicates. Similarly, HOO [START_REF] Cox | Automatic analysis of open objects in dynamic language programs[END_REF] is an effective abstract domain for containers and JavaScript open objects. As it uses a set abstract domain [START_REF] Cox | QUIC graphs: Relational invariant generation for containers[END_REF], it has a very general scope but does not exploit the structure of arrays, hence would sacrifice efficiency in such cases.

Last, template-base methods [START_REF] Beyer | Invariant synthesis for combined theories[END_REF][START_REF] Gulwani | Lifting abstract interpreters to quantified logical domains[END_REF] are very powerful invariant generation techniques, yet require user supplied templates and can be quite costly.

Our approach has several key distinguishing factors. First, it not only relies on index relations, but also exploits semantic properties of array elements, to select groups. Second, set relation predicates track lightweight properties, that would not be captured in a numerical domain. Last, it allows empty groups, which eliminated the need for any global disjunction in our examples (a few assignments and tests benefit from cheap, local disjunctions). Finally, experiments show it is effective at inferring non trivial array invariants with non contiguous groups, and is able to verify the manipulation of two complex data-structures in two distinct operating systems.

Our analysis currently does not handle dynamically allocated arrays. However, that support could be added rather simply, by leaving the size of arrays abstract, to be represented by a standard variable in Q. Our domain can verify memory safety invariants involving complex data structure in operating systems, which could not be achieved by previous static analyses [PTS + 11, YLB + 08] which also target system code. 

2 int a[56]; 3 for(int i = 0; i < 56; i++){ 1 4 a[i] = 0; 2 } 5 a[55] = random(); 6 for(int i = 0; i < 55; i++){ 3 7 int index = 21 * i%55; 8 int num = random(); 9 if(num < 0){num = -1; } 10 a[index] = num; } 11 assert(∀i ∈ [0, 54], a[i] ≥ -1); (a) Test case complex state 1 G 0 G 1 P : Q : i ≤ G 0 ≤ 55 ∧ |G 0 | = 56 -i ∧ |G 1 | = i ∧ 0 ≤ G 1 ≤ i -1 ∧ i ∈ G 0 ∧ I value G1 = 0 state 2 G 0 G 1 G 2 P : Q : i + 1 ≤ G 0 ≤ 55 ∧ |G 0 | = 55 -i ∧ |G 1 | = i 0 ≤ G 1 ≤ i -1 ∧ I value G1 = 0 ∧ I value G2 = 0 G 2 = i ∧ i ∈ G 2 ∧ |G 2 | = 1 state 3 G 1 G 2 G 3 P : Q : 0 ≤ G 1 ≤ 54 ∧ |G 1 | = 54 ∧ G 2 = 1 ∧ G 3 = 1 ∧ 0 ≤ G 2 ≤ 54 ∧ -1 ≤ I value G1 ∧ -1 ≤ I value G2 ∧ G 3 = 55 ∧ i ∈ G 1 ∪ G 2 (b) Invariants

Coalescing Array and Shape Abstraction

In this chapter, we propose a technique to combine different shape abstractions. This combination locally ties summaries in both abstract domains and is called a coalescing abstraction. Coalescing allows to define efficient and precise static analysis algorithms on the combined abstraction, which can express new properties on the structure of memory.

As an instance, we show the combination of the array abstraction in Chapter 5 and a shape abstraction which captures linked structures with separation logic-based inductive predicates. This leads to an automatic static analysis for the verification of programs manipulating arrays storing linked structures, such as lists in an array. This programming pattern is commonly used in low-level systems, which avoids relying on dynamic allocation.

The verification of such programs is non-trivial as it requires reasoning both about the array structure with numeric indexes and about the linked structures stored in the array.

Context of The Analysis

In this section, we set the context of the analysis and recall the motivation for the coalescing domain. We use the same language as in Chapter 5.

An example taken from a real-world OS. Figure 6.1(a) shows a structure taken from an industrial real-time embedded operating system (called AOS), that stores three task priority lists a single array. Each cell is either unused, or it stores the information associated to a task. Moreover, the cells representing tasks are arranged into three (generally non contiguous) lists: the list of tasks that are ready (with head a[ready]), the list of sleeping tasks (with head a[sleep]), and the list of suspended tasks (with head a[suspend]). The next links of list elements are stored in the field next of array cells. Additionally, each cell has a field used, which indicates whether it corresponds to an actual process or a free slot (if used contains 0), and field prio indicates the priority

We call these invariants global correctness condition in AOS, denoted by R aos . These invariants are essential to the correctness of the operating system, since their violation may cause issues such as out-of-bound array accesses or tasks becoming dangling. Thus, it is necessary to verify that system calls preserve R aos . To verify a system call, we can let a static analyzer assume pre-condition R aos , analyze the body, and attempt to verify that the post-condition also satisfies R aos . To achieve this, it is necessary to reason at the same time about (1) the accesses into dynamic structures via both their next link (they are chained dynamically even though the array is statically allocated) and array indexes, (2) the shapes of the linked structures, (3) the non-contiguousness of regions occupied by each dynamic structure, (4) the sortedness of list structures. Each of these points is non trivial.

Shape analysis for dynamic structures like [SRW99b, DOY06, CR08] do not cope with array-specific statements, like accesses with random indexes. The non-contiguous array partition of Chapter 5 can express (3) using numeric predicates of non-contiguous sets of cells that should be abstracted together, but cannot describe nested structures that are dynamically linked, thus would fail to meet (2) and ( 4).

In this chapter, we propose a coalescing domain, which provides an efficient and precise method of combining different shape domains to deal with intertwined data structures. As an instance, the coalescing of the array abstraction from Chapter 5 and a heap abstraction can express properties (1), ( 2), ( 3) and (4). Our analysis proceeds by abstract interpretation, and is parameterized by the structural invariant R aos .

A system call. As an example, in the remainder of this chapter, we focus on the function create (shown in Figure 6.2), which preserves the invariant R aos . Function create locates a free slot (line 3 to 10), initializes it with the given priority and then inserts it (line 13 to 28) into the sorted list with head ready. It takes the priority of the new task as parameter priority. For concision, we omit some cases and lines that are not immediately relevant. To verify the correctness of create, we let our analysis compute an abstract post-condition under the pre-condition that property R aos holds and check that R aos still holds at the exit of the function. This boils down to the verification of: assume(R aos ); create(priority); assert(R aos );

Abstraction

This section formalizes the coalescing of two abstract domains both of which deal with summaries of memory blocks (we call them memory abstract domains). A signature of memory abstract domains is presented in Section 6.2.1 which defines a family of memory abstract domains that can be coalesced. A shape domain that we take as an instance of memory abstract domain is presented in Section 6.2.2. The principles for the coalescing of such domains are described in Section 6.2.3. The resulting coalescing domain of the 

Concrete states.

In this chapter, we use the same definition of concrete states as that in Chapter 5. Here, we just recall the notations.

• A: the set of program variables of array type;

• X: the set of program scalar variables;

• I: the set of non-negative integers;

• F: the set of fields;

• V: the set of values.

Definition 6.1 (Concrete states).

A concrete state is a partial function mapping basic cells (base variables and fields of array cells) into values, denoted as σ. The set S of concrete states is defined by

σ ∈ S = (A × I × F ∪ X) → V
More specifically, the set of the field names of the elements of array a is denoted by F a , and the set of valid indexes in a is denoted by I a .

A Signature of Memory Abstract Domains

To define the general principles of coalescing, we first need to define the signature of underlying memory abstract domains.

Abstract domains are characterized by abstract elements and transfer functions. A family of abstract domains can be defined by an abstract domain signature. A signature D of abstract domains consists of a definition of the set of concrete elements, a description for the set of abstract elements, and a list of descriptions for the transfer functions and operations.

Our coalescing can only be applied to a class of memory abstract domains, which can be specified with a signature D m . Definition 6.2 (A signature of memory abstract domains: D m ). The signature of memory abstract domains: D m is defined below. This signature is quite standard except that it defines some specific requirements on the form of abstract elements. It requires that all abstract elements contain two components: memory predicates M (predicates on symbolic abstraction of memory states) and numeric predicates N (predicates on the numeric properties of symbolic variables from memory predicates and programs). The set of all memory predicates and numeric predicates are denoted as D M and D N respectively. One requirement on the memory predicates is that different atomic memory predicates (i.e., A) should be compounded by separating conjunction (denoted as * ), i.e., they constrain disjoint memory blocks. This is formalized as A * . . . * A. The other requirement on memory predicates is that atomic memory predicates should include both inductive predicates (i.e., i) and non-inductive predicates (i.e., b). Inductive predicates describe possible configurations of summarized memory contents using a recursive property. They are instances of generic definitions supplied to the analyzer as abstract domain parameters before it is launched. Definition 6.3 (Inductive predicates). The form of inductive predicates is defined below.

S = (A × I × F ∪ X) → V
i := A 0,0 * . . . * A 0,n 0 , N 0 ∨ . . . ∨ A k,0 * . . . * A k,n k , N k
In the definition above, each element of the disjunction (called inductive case) consists of a separating conjunction [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF] of atomic memory predicates together with a conjunction of numeric constraints. This definition is more general than some others in the literature, where the form of A i,j is often restricted. For instance, in the inductive definition of list in [START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF], the non-inductive atomic memory predicates in any case must describe the head or the tail.

Introduction to A Shape Domain

Now we introduce a separation logic based domain D s [START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF], which is used to track linked structures. This shape domain fits into the signature defined in Section 6.2.1.

Coalescing this domain with our non-contiguous partitioning array domain, the analysis is able to describe the invariant R aos . As in the signature, an abstract element in this shape domain is composed of two parts: memory predicates and numeric predicates. An atomic memory predicate A s either describes a single cell with the index and contents (denoted as α@ f → β, where symbolic variables α represents the index and β represent the values stored in each field), or an empty region (denoted as emp), or a complex structure summarized by an inductive predicate (noted as i s ( α)), or no constraint (noted as true, which is our extension to [START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF]). The symbolic variables described by Greek letters denote values (array indexes, numeric or pointer values...). Unless specified otherwise, we use α, β to denote actual parameters, and π, τ to denote the formal parameters of inductive predicates. The numeric predicates in D s are a subset of the numeric predicates in the array domain in Chapter 5 and can be described by the extended Maya+ domain. Thus we still use Q to denote them.

The shape domain [START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF] assumes a restriction on the inductive definition i s ( π) in D s : each inductive case should correspond to a memory region reachable from π (i.e., the first parameter) and do not contain true. This is for the ease of unfolding/folding algorithm [START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF].

Our extension true is a special memory predicate. It is a non-inductive predicate. But in some algorithms, it is often taken as an inductive predicate, where its inductive definition is the disjunction of all tuples of memory predicates and numeric predicates in D s .

Example 6.1 (Inductive predicates in a shape domain). The following inductive predicate lseg is the formal definition of list segment in D s . Symbolic variable π stores the index of the first element of the list segment, and τ stores the value in the next field of the last element.

lseg(π, τ ) := emp, π = τ ∨ π@(next → π ) * lseg(π , τ ), π = τ Definition 6.5 (Concretization function in the shape domain). The concretization function γ s for D s maps an abstract element (M s , Q) to a set of concrete states σ ∈ S. The concretization is defined as follows.

γ s (M s , Q) = {σ ∈ S | ∃ν ∈ γ Q (Q), (σ, ν) |= M s ∧ ∀x ∈ X, ν(x) = σ(x)}
where

(σ, ν) |= α@ f → β iff ∀f ∈ F, σ(a[ν(α)] • f) ∈ ν(β f ) (σ, ν) |= i s ( α) iff there exists a disjunctive case A s 0 * . . . * A s n , Q of i s ( π) such that, (σ, ν) |= A s 0 * . . . * A s n , Q (σ, .) |= emp iff σ = [.] is an empty store (σ, .) |= true iff σ ∈ S (σ 0 * σ 1 , ν) |= M s 0 * M s 1 iff (σ 0 , ν) |= M s 0 ∧ (σ 1 , ν) |= M s 1

Principles of Coalescing Memory Abstract Domains

Given two memory abstract domains that fit the signature in Definition 6.2, we can define the coalescing domain as follows. An atomic memory predicate A in the coalescing domain can be a non-separating conjunction of non-inductive predicates b

• & b or a non-separating conjunction of inductive predicates i 

i • & i := A 0,0 * . . . * A 0,n 0 , N 0 ∨ . . . ∨ A k,0 * . . . * A k,n k , N k where if A i,j is denoted as A • i,j & A i,j , then i • ::= A • 0,0 * . . . * A • 0,n 0 , N 0 ∨ . . . ∨ A • k,0 * . . . * A • k,n k , N k and i ::= A 0,0 * . . . * A 0,n 0 , N 0 ∨ . . . ∨ A k,0 * . . . * A k,n k , N k
are both valid inductive definitions in the domains D

• and D respectively.

This definition ensures that a coalescing inductive definition can be decomposed into two inductive definitions from the two underlying domains respectively. This allows our coalescing domain to utilize the algorithms manipulating inductive predicates in the underlying domains. 

γ c (M, N) = {σ ∈ S | σ |= (M, N)} σ |= (i • & i , N) iff there exists a disjunctive case A 0 * . . . * A n , N of i • & i such that, σ |= (A 0 * . . . * A n , N ∧ N ) σ |= (b • & b , N) iff σ ∈ γ • (b • , N) ∩ γ (b , N) σ 0 * σ 1 |= (M 0 * M 1 , N) iff σ 0 |= (M 0 , N) ∧ σ 1 |= (M 1 , N)
This definition of the concretization function is quite straightforward. But it is worth noting that the concretization of a coalescing inductive predicates is not the intersection of the concretizations of the decomposed inductive predicates in the two underlying domains.

The Array/Shape Coalescing Domain

Following the principles introduced in Section 6.2.3, we would like to define the coalescing domain of the array domain in Chapter 5 and the shape domain introduced in Section 6.2.2. However, the array domain does not fit the signature in Section 6.2.1 strictly, since it does not contain inductive predicates. Actually, the atomic memory predicates in the array domain are of the form G i @ f → I f G i , which can be seen as both non-inductive and inductive. The following definition gives an inductive view of the atomic memory predicates in the array domain.

G@ f → I f G ::= emp, |G| = 0 | G 0 @ f → I f G 0 * . . . * G n @ f → I f Gn , G = 0≤i≤n G i ∧ ∀f ∈ F, I f G = 0≤i≤n 0 I f G 0,i ∧ | G 0 |= 1
In this inductive definition, we can see that a group could be either empty or split into several sub-groups, where the first group contains only one array cell. The unfold and fold operations in the signature correspond to the split and merge/create respectively. With this view, the array domain fits the signature D m , and we can coalesce it with the shape domain [START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF]. The resulting domain is called the array/shape coalescing domain. Definition 6.9 (The array/shape coalescing domain). An element (M a/s , N a/s ) in the array/shape coalescing domain is defined as follows.

M a/s := A a/s * . . . * A a/s A a/s := G i & α@ f → β | G i & emp | G i & i s ( α) | G i & true N a/s := Q Note that we still use G i for short of G i @ f → I f G i , which means G i & i s ( α) is a shortcut for G i @ f → I f G i & i s ( α).
A memory predicate in the coalescing domain can describe

• a single cell in the array: G i & α@ f → β;

• an empty group: G i & emp;

• a possibly empty group of cells with structural predicates: G i & i s ( α) (by "structural", we mean that the data in the corresponding memory region forms a definable structure);

• a possibly empty group of cells without structural predicates:

G i & true.
The concretization of the coalescing domain follows the principles described in Section 6.2.3. Now we use the array/shape coalescing domain to abstract the global correctness condition R aos . We first define the inductive predicates in it. 

(recall that G is short for G@next → I next G ). G & lseg(π, τ ) ::= G & emp, π = τ ∧ |G| = 0 ∨ G & π@(next → π ) * G & lseg(π , τ ), π = τ ∧ |G | = 1
In this definition, group G either is an empty group, or it can be split into two groups, where the first one contains the list head, and the other consists of the rest of the list. In the following, if some numeric constraints (e.g., |G| = 0) in the coalescing definition are implied by the memory predicates (e.g., G & emp), we will not write them.

If we break down this definition into two inductive definitions in the underlying domains, they are still valid in their domains, as shown below. G & slseg(π, τ

G ::= G, π = τ ∧ |G| = 0 ∨ G * G , π = τ ∧ |G | = 1 lseg(π, τ ) ::= emp, π = τ ∧ |G| = 0 ∨ π@(next → π ) * lseg(π , τ ), π = τ ∧ |G| = 1
) ::= G & emp, π = τ ∨ G & π@(next → π , prio → π ) * G & slseg(π , τ ), π = τ ∧ π ≤ I prio G
In the second case of this definition, the linked list described by G & slseg(π, τ ) can be split into two new groups: G contains only one array cell which is also the list head and G consists of the rest of the list. The sortedness in this definition is expressed by the relation on π and I prio G .
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M a/s : G 0 & true * G 1 & lseg(α 1 , -1) * G 2 & lseg(α 2 , -1) * G 3 & slseg(α 3 , -1) N a/s : suspend = α 1 ∧ sleep = α 2 ∧ ready = α 3 ∧ I used 0 = 0 ∧ I used 1 = I used 2 = I used 3 = 1 (a)
The formal description of R aos Array:

G 0 G 1 G 2 G 3 Shape:
true lseg(α 1 , -1) lseg(α 2 , -1) slseg(α 3 , -1)

Numeric: suspend = α 1 sleep = α 2 ready = α 3 I used 0 = 0 I used 1 = 1 I used 2 = 1 I used 3 = 1 ∧ ∧ ∧ ∧ ∧ ∧ (b)
The graphical description of R aos 6.3(a) shows the abstract state (M a/s , N a/s ) corresponding to R aos . We also propose a graphical representation of the abstract state to make it easy to read in Figure 6.3(b). In this graphical representation, separating conjunction is expressed with winding lines and non-separating conjunction is expressed by putting the conjuncts in the same column. In the following, we will only show graphical representations by default.

The abstract state partitions the array a into four disjoint groups of cells, such that each group corresponds to cells with similar properties. Group G 0 collects all free slots, whereas groups G 1 , G 2 , and G 3 respectively account for the lists of suspended, sleeping and ready tasks. Following R aos , free slots are characterized with a used field storing 0 as I used 0 = 0, which means that all values in set variable I used 0 are equal to 0 (though this set may also be empty). Predicates G 3 & lseg(α 3 , -1) means that the cells in group G 3 correspond exactly to a list starting at index α 3 . Relation ready = α 3 expresses that variable ready points to the head of the list.

As a comparison, the memory predicates in a reduced product of the array/shape abstractions would in the form of (G 0 * G 1 * G 2 * G 3 ) ∧ (true * lseg(α 1 , -1) * lseg(α 2 , -1) * slseg(α 3 , -1)), where the correspondance of G 1 and lseg(α 1 , -1) is un- clear.

Algorithms for Unfolding and Folding

Unfolding and folding are two basic operations in shape analysis [START_REF] Sagiv | Parametric shape analysis via 3-valued logic[END_REF][START_REF] Distefano | A local shape analysis based on separation logic[END_REF][START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF]. When the analysis needs to reason about an operation affecting a cell that is summarized as part of an inductive predicate, that predicate should first be unfolded according to its definition, which amounts to locally refining the inductive predicate. Since inductive predicates are based on disjunctions of inductive cases, the unfolding operation also returns disjunctions of abstract states. While unfolding decomposes inductive predicates, the analysis also needs a mechanism to re-construct such predicates. The goal of folding 

unfold c ((M * i • & i , N), i • & i ) C = ∅ foreach A • j,0 & A j,0 * . . . * A • j,n j & A j,n j , N j in the definition of i • & i )) (., N • ) = unfold • (i • , N, i • := A • j,0 * . . . * A • j,n j , N j ) (., N ) = unfold (i , N, i := A j,0 * . . . * A j,n j , N j ) M t = M * A • j,0 & A j,0 * . . . * A • j,n j & A j,n j N t = N • j ∧ N j C = C ∪ {(M t , N t )} return C

The Unfolding Algorithm in the Coalescing Domain

Unfolding refines the abstract state by rewriting an inductive predicate to the disjunctive cases of memory predicates in its definition. In our coalescing domain, it distributes the rewriting to the underlying domains. j,n j , N j ), and (.,N • ) means that only the numeric predicate component of the unfolding result in the underlying domain contributes to the final result. Note that, some numeric constraints in N j may not be supported (like |G| = 1 in the shape domain [START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF]) in the underlying domains. These unsupported numeric constraints are simply ignored, when they are encountered in the algorithms in the underlying domains. Example 6.4 (Unfolding algorithm). Take G 3 & slseg(α 3 , -1) in Figure 6.3 for example. Suppose we have ready ≥ 0 in the numeric predicate, then Figure 6.5 shows the two disjuncts in the unfolding results. The first one (Figure 6.5(a)) comes from the empty disjunctive case G & emp, π = τ . This state is actually unreachable since the original

Array: G 0 G 1 G 2 G 3 Shape: true lseg(α 1 , -1) lseg(α 2 , -1) emp Numeric: suspend = α 1 sleep = α 2 α 3 = ready α 3 = -1 ready ≥ 0 I used 0 = 0 I used 1 = 1 I used 2 = 1 I used 3 = 1 ∧ ∧ ∧ ∧ ∧ ∧ ∧ (a)
The empty disjunctive case

Array: G 0 G 1 G 2 G 4 G 5 Shape: true lseg(α 1 , -1) lseg(α 2 , -1) α 4 @(next → α 5 , prio → β 4 ) slseg(α 5 , -1) 
Numeric:

suspend = α 1 sleep = α 2 ready = α 4 β 4 ≤ I prio G5 I used 0 = 0 I used 1 = 1 I used 2 = 1 I used 4 = 1 I used 5 = 1 ∧ ∧ ∧ ∧ ∧ ∧ ∧ ∧ (b)
The non-empty disjunctive case numeric predicates ready ≥ 0 ∧ ready = α 3 conflict with the new numeric predicate α 3 = -1 from the empty disjunctive case in unfolding. Therefore, the other one (Figure 6.5(b)) which splits the list into two parts (i.e., the head node and the rest of the list) is the only reachable state after unfolding.

Theorem 6.1 (Soundness of unfolding algorithm). The application of the unfolding operator unfold c returns an over-approximation of its argument:

∀(M, N) ∈ C, ∀A • i & A i in M, γ c (M, N) ⊆ {γ c (M t , N t ) | (M t , N t ) ∈ unfold c ((M, N), A • i & A i )}

The Folding Algorithm in the Coalescing Domain

Folding is the reverse operation of unfolding. It synthesizes an inductive predicate according to its definition from a set of memory predicates in an abstract state. In our coalescing domain, the folding operator distributes synthesization to the underlying domains. Array:

((M * A • j,0 & A j,0 * . . . * A • j,n j & A j,n j , N), i • & i , A • j,0 & A j,0 * . . . * A • j,n j & A j,n j ) if((∃ A • j,0 & A j,0 * . . . * A • j,n j & A j,n j , N j in the definition of (i • & i ) and isle N (N, N j )) (., N • ) = fold • (A • j,0 * . . . * A • j,n j , N, i • := A • j,0 * . . . * A • j,n j , N j ) (., N ) = fold (A j,0 * . . . * A j,n j , N, i := A j,0 * . . . * A j,n j , N j ) M = M * i • & i N = N • ∧ N return (M, N) else return (M * A • j,0 & A j,0 * . . . * A • j,n j & A j,n j , N)
G 0 G 1 G 2 Shape: true α 1 @next → β 1 lseg(α 2 , -1) Numeric: α 1 ≥ 0 α 2 = β 1 ∧ ∧ 0 ≤ G 2 ≤ 10
Since the memory predicates G 1 & α 1 @next → β 1 * G 2 & lseg(α 2 , -1) correspond to the non-empty case in the definition of G & lseg, Let fold a/s be the folding operator as defined in Definition 6.11. If we apply fold a/s ((M a/s , N a/s ),

G & lseg, G 1 & (α 1 @next → β 1 ) * G 2 & lseg(α 2 , - 1 
)), we would get the result as follows.

Array:

G 0 G 1 Shape: true α 1 @next → β 1 Numeric: α 1 ≥ 0
One special memory predicate in our array/shape coalescing domain is G & true. Basically, any separating conjunction of memory predicates can be seen as its inductive case. For instance, if we apply fold

a/s ((M a/s , N a/s ), G & true, G 0 & true * G 3 & lseg(α 1 , -1))
on the abstract state above, we get the abstract state as follows.

Array:

G 4 Shape:

true

Numeric: G 4 ≥ 0
The folding algorithm is sound in the sense that they return an over-approximation of the abstract states that it applies on. Theorem 6.2 (Soundness of folding algorithm). Let (M * A • j,0 & A j,0 * . . . * A • j,n j & A j,n j , N) and i • & i be the input abstract state and the inductive definition respectively, fold c is sound in the following sense.

γ c ((M * A • j,0 & A j,0 * . . . * A • j,n j & A j,n j , N)) ⊆ fold c ((M * A • j,0 & A j,0 * . . . * A • j,n j & A j,n j , N), i • & i , A j,0 * . . . * A • j,n j & A j,n j )

Transfer Functions

In this section, we study the abstract transfer functions for tests and assignments.

Condition Tests

Recall that the concrete semantics of a condition test guard r : P(S) → P(S) filters out the concrete states that do not evaluate r to true. In the abstract level, the transfer function for condition tests adds constraints on numeric predicates N. However, when some memory locations that are accessed in the statements are summarized in the memory predicates M, these memory locations should be resolved first. After that, we can apply transfer functions in the underlying domains to add numeric constraints. Since the numeric predicates in the coalescing domain is a conjunction of those in the underlying domains (N = N • ∧ N ), a reduction is performed on N

• ∧ N at last.

Resolving. In this step, our analysis looks for summarized memory locations in the input statement r and resolves them by calling unfold c . If there is no such location (e.g., in condition tests on program scalar variables), it does nothing. This step is described by operator resolve[r] : C → P(C) (note that it produces a finite disjunction of abstract states since it calls unfold c ). Array:

G 0 G 1 Shape: α 0 @(next → α 1 , prio → β 0 ) lss(α 1 , -1)
Numeric:

I prio 0 ≤ I prio 1 0 ≤ β 0 α 0 = ready ∧ Figure 6
.8 -The abstract state after resolving Array: Proof. The soundness of guard c [.] follows the soundness of the resolving operation resolve, underlying transfer functions, and the reduction operation.

G 0 G 1 Shape: α 0 @(next → α 1 , prio → β 0 ) lss(α 1 , -1) Numeric: 1 ≤ I prio 0 ≤ I prio 1 1 ≤ β 0 α 0 = ready ∧

Assignments

In the concrete semantics, an assignment stat l = r : P(S) → P(S) updates the value stored in left-value expression l with evaluation of the right-value expression r. In the abstract level, the transfer function for assignments updates the numeric predicates and memory predicates (when the left-value expression l is not a program scalar variable). Same with the transfer function for condition tests, the abstract transfer function for assignments first resolves all the memory locations in the statement (i.e., both l and r), and applies transfer functions for assignments in the underlying domains. Finally it performs reduction on the resulting numeric predicates.

Array:

G 0 G 1 Shape: α 0 @next → β 0 lseg(α 1 , -1) 
Numeric: α 0 = ready ∧ β 0 = 0 Since the memory predicates are the same in compatible abstract states, the lattice operators take effect on numeric constraints. Definition 6.16 (Lattice operators over compatible abstract states). We assume widen N , join 

γ c (c 0 ) ∪ γ c (c 1 ) ⊆ γ c (widen c ≡ (c 0 , c 1 )) γ c (c 0 ) ∪ γ c (c 1 ) ⊆ γ c (join c ≡ (c 0 , c 1 )) incl c ≡ (a 0 , a 1 ) = true =⇒ γ c (a 0 ) ⊆ γ c (a 1 )
Proof. The soundness of operators widen 

Processing on Non Compatible Abstract States

In most cases, the two input abstract states are not compatible, which means, they have different numbers of atomic memory predicates, or the correspondence between their atomic memory predicates is not obvious. Thus to make them compatible, we need to accomplish two tasks: (1) pairing the atomic memory predicate from two abstract states by their similarity; (2) folding the memory predicates in two abstract states when the Definition 6.17 (The algorithm of widening). The algorithm of widening is formalized in Figure 6.14. Join and inclusion checking. A join operator join c (to over-approximate concrete unions) and an inclusion check operator isle c (to conservatively decide inclusion) can be defined in a very similar manner. The only difference lies in the re-partitioning operators: repartition join c may apply fold c on the empty case when one atomic memory predicate in an abstract state is paired with no atomic memory predicate in the other state and repartition incl c only applies fold c on the left-hand operand.

widen c (c 0 , c 1 ){ foreach(A i in c 0 ) foreach(A j in c 1 ) W ij = rank c (A i , A j ); c 0 , c 1 = repartition widen c (W, c 0 , c 1 
Definition 6.18 (The algorithms of join and inclusion checking). The algorithms of join and inclusion checking are formalized in Figure 6.15. Theorem 6.9 (Soundness of join and inclusion checking). Operators join c and incl c are sound in the following sense. The parameters of the paired memory predicates are renamed to the same. The final result is shown in Figure 6.17(a).

γ c (c 0 ) ∪ γ c (c 1 ) ⊆ γ c (join c (c 0 , c 1 )) incl c (a 0 , a 1 ) = true =⇒ γ c (a 0 ) ⊆ γ c (a 1 ) join c (c 0 , c 1 ){ foreach(A i in c 0 ) foreach(A j in c 1 ) W ij = rank c (A i , A j ); c 0 , c 1 = repartition join c (W, c 0 , c 1 
c (c 0 , c 1 ){ foreach(A i in c 0 ) foreach(A j in c 1 ) W ij = rank c (A i , A j ); c 0 , c 1 = repartition incl c (W, c 0 , c 1 
• If we apply widen c on them, our analysis would pair both G 2 & lseg(α 2 , α 3 ) and

G 3 & lseg(α 3 , -1) in c 1 with G 1 & lseg(α 1 , -1) in c 0 . Then G 2 & lseg(α 2 , α 3 ) * G 3 & lseg(α 3 , -1) is folded into G 2 & lseg(α 2 , -1) and paired to G 1 & lseg(α 1 , -1) in c 0 .
The parameters of the paired memory predicates are renamed to the same. The final result is shown in Figure 6.17(b).
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In this section, we describe the details of the analysis on the motivating example in Section 6.1. In the next chapter, we will carry out experiments on multiple operating system components, which shows that our analysis can be parameterized and applied to other structures.

Example create Revisited

Now we look at the analysis on the function create, the code and the analysis of which are shown in Figure 6.18 and Figure 6.19.

The analysis starts with the global correctness condition R aos as pre-condition, which is recalled at x in Figure 6.18. The assignment at line 2 updates the value of the variable i to 0. In the first iteration of the while loop at line 3, the group that the cell a[i] belongs to is unknown. However, our analysis infers that a[i] stores 0 in field used thanks to the condition test if(a[i].used == 0 ). Thus our analysis infers that a[i] is a cell belonging to group G 0 , since numeric predicates on array contents entail that I used We now discuss the analysis of the assignments at lines 19 and 20. The abstract state before line 19 is actually quite similar to that at y, except that the numeric predicates include 0 ≤ i ≤ 99 ∧ ready = -1 instead of i = 0. The analysis of the assignment at line 19 is trivial and only requires the update of numeric predicates by adding pre = ready. Line 20 causes the reading of the array cell a[ready] which is also the head of the list of ready processes (because of ready = α 3 and G 3 & slseg(α 3 , -1)). This cell is part of an inductive predicate, thus the analysis carries out the unfolding. Since the abstract state contains predicates ready = -1 and ready = α 3 , only the non empty disjunctive case is possible. The unfolding result generates an atomic memory predicate G 5 & α 5 @(next → α 6 , prio → β 5 ) that describes the array cell to be updated. The assignment result after line 20 is shown at z. Now we look at the analysis on the loop at line 21 in Figure 6.18. To compute precise loop invariants, the analysis unrolls loops once, and then computes an abstract iteration sequence with widening. When widening is applied for the first time in the sequence for the loop at line 21, the arguments have different number of atomic memory predicates because the unfolding at line 22 increases the number by one at each iteration.

The abstract states after the first and the second iteration in this loop are shown at 

Related Work

Another way of combining abstract domains (D 0 , . . . , D n ) is reduced product [START_REF] Cousot | Systematic design of program analysis frameworks[END_REF], which expresses the logical conjunction of abstract elements in the form of c 0 ∧ . . . ∧ c n , where ∀i ∈ [0, n], c i ∈ D i . The ASTR ÉE analyzer [BCC + 03a] utilizes reduced product to combine numeric domains into more expressive ones. In [START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF], memory predicates and shape predicates are combined to track both shape and data properties. The forms of reduced products that are introduced in [LYP11] and [START_REF] Toubhans | Reduced product combination of abstract domains for shapes[END_REF] combine shape domains to abstract overlaid data structures. However, in reduced product, the correspondence between atomic memory predicates in two input domains are unclear, thus it is less precise than our coalescing domain.

One application of our coalescing domain is to combine an array domain and a shape domain to tackle dynamic structures nested into arrays. Few analyses have been developed to tackle such nested structures. In one hand, a large family of works have targeted numeric arrays, and often use segment abstractions [GRS05, HP08, CCL11], which prevents the inference of properties of non-contiguous sets of cells. Similar abstractions have been used in invariant generation, model checking and theorem proving [AGS14, JM07, KV09]. While such analyses can verify sortedness, they cannot cope with nested structural invariants such as the property R aos defined in Section 6.1. Fluid updates [DDA10, DDA11] allow a precise tracking of container properties, and analyze precisely operations such as a vector copy, but cannot capture nested structure properties. The analysis of Chapter 5 handles non-contiguous regions, and can compute abstractions of numeric constraints (for instance that all cells in a group G 0 store an index in G 1 ), but cannot infer a precise invariant such as R aos , as it lacks a proper memory abstraction. Shape analysis for dynamic structures like [SRW99b, DOY06, CR08] do not cope with array-specific statements, like accesses with random indexes. One could suggest interpreting the array indexes as if they were pointers. However, index arithmetics, even being interpreted by pointer arithmetics, is beyond the scope of shape analyses targeted at dynamic structures. Thus, we would be back to the same problem: dealing with both array and linked structures in the same analysis. An additional difficulty for this idea is localization by contents. Condition test on the values stored in the data field of an array cell is often used to find out whether that cell is a list node. This kind of statements are rare in dynamic structures manipulating codes but are common in our target programs. To the best of our knowledge, there exists no shape analysis could infer whether a memory cell is a list node (not necessarily the head node) by its contents on data field. Thus classical shape analyses would just fail to localize an array cell, which could cause huge precision loss.

In the other hand, significant progresses have been achieved in the analysis of programs with dynamic structures. Such works either use three-valued logic [START_REF] Sagiv | Parametric shape analysis via 3-valued logic[END_REF] or separation logic [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF], and allow the verification of programs that manipulate dynamically linked data-structures such as variants of lists [SRW99b, DOY06, BCC + 07] and trees [START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF]. In the other hand, these shape analyses cannot express that a structure lies inside an array, or a fixed contiguous space. Our work also extends the notion of abstraction parameterized by user supplied structure definitions of [START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF] to also deal with structures stored in arrays.

A notable exception is [START_REF] Sotin | Hierarchical shape abstraction of dynamic structures in static blocks[END_REF], which extends a shape analysis with structures nested into abstractions of memory blocks. This abstraction is limited to the case where a structure is stored in a non empty and contiguous region, and cannot cope with the examples discussed in Section 6.1. To achieve this more powerful association of array and structure reasoning, our analysis restricts the form of inductive predicates to one atomic inductive summary per region, which simplifies analysis algorithms, yet allows to deal with more complex structures.

Conclusion

To summarize, our work contributes a novel method of combining memory abstractions, which is called coalescing. In the logical point of view, the coalescing abstraction consists of local conjunctions of predicates taken in two different memory abstract domains. By keeping conjunctions of memory predicates local, it provides a greater precision than a conventional reduced product would. Coalescing an array abstraction and a dynamic structure abstraction constructs an analysis on structures nested into non-contiguous blocks in arrays.

x

Array: 

G 0 G 1 G 2 G 3 Shape: true lseg(α 1 , -1) lseg(α 2 , -1) slseg(α 3 , -1) Numeric: suspend = α 1 sleep = α 2 ready = α 3 I used 0 = 0 I used 1 = 1 I used 2 = 1 I used 3 = 1 ∧ ∧ ∧ ∧ ∧ ∧ void create(int priority){ int i = 0; while(i < 100){ if(a[i].used == 0){ a[i].used = 1; a[i].prio = priority; y Array: G 4 G 0 G 1 G 2 G 3 Shape: true true lseg(α 1 , -1) lseg(α 2 , -1) slseg(α 3 , -1) Numeric: . . . ∧ I used 4 = 1 ∧ |G 4 | = 1 ∧ I prio 4 = priority ∧ i = 0 i ∈ G 4 break; } i + +; } //
G 4 G 0 G 1 G 2 G 5 = {α 5 } G 6 
Numeric:

true true lseg(α 1 , -1) lseg(α 2 , -1) α 5 @(next → α 6 , prio → β 5 ) slseg(α 6 , -1) 
. . . ∧ β 5 ≤ I prio 

Experiments on OS Components

In this chapter, we evaluate the effectiveness of the techniques presented in this manuscript via experiments on components of operating systems with the implementation of our array/shape coalescing domain. It is an overall evaluation of all the techniques that we have introduced, since the array/shape coalescing domain is built on top of a shape domain [START_REF] Bor-Yuh | Relational inductive shape analysis[END_REF] and the non-contiguous domain presented in Chapter 5, which utilizes the Maya+ domain formalized in Chapter 4 to describe numeric predicates. From the evaluation, we expect to show three aspects of our static analysis, which we detail below.

Expressiveness. Expressiveness is one important criteria to evaluate a static analysis since it determines the properties that can be verified. Our coalescing domain can describe structural invariants on overlaid data structures, thus it can be used to verify properties like"the preservation of sorted lists in an array". This kind of properties are often necessary in some low-level programs like OS components, where dynamic memory allocation is not always allowed.

Efficiency. The efficiency of an analysis determines its scalability. In our case, since the target programs are system calls in real-time operating systems, the benchmarks are not large (usually around 100 LOC). We believe that the analysis for one system call taking several seconds is acceptable in practice (not too long to distract users' attention).

User friendliness. One barrier that prevents some static analyses being used in industry is the efforts needed to use them. These efforts consist of necessary training on users, specifications writing and sometimes modification on the code. We believe that the efforts (mainly including the specification for pre-and post-conditions of system calls) to employ our static analysis is reasonable.
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Thus operating systems which run with limited resources and low power such as TinyOS are expected.

TinyOS is implemented in the nesC language [GLvB + 03], which is an extension to the C programming language. nesC is a component-based, event-driven programming language, developed for networked embedded system. One feature of nesC is that it does not allow dynamic memory allocation. However, in the task scheduler in TinyOS, dynamicly linked lists are needed and implemented in arrays. Thus we choose the task scheduler in TinyOs as one of our benchmarks.

• Minix is a Unix-like multitasking computer operating system [START_REF] Andrew S Tanenbaum | Operating systems: design and implementation[END_REF]. It is a very small OS (with fewer than 10 000 lines of kernel), yet it greatly influenced the design of other kernels, including Linux. It is based on a micro-kernel architecture, with separate, lightweight services respectively in charge of task scheduling (in kernel), memory management and file system.

In the memory management service, a list recording all allocated memory blocks is stored in an array, and all free slots in that array is also linked as a list. Thus the two lists occupy the whole array. We take the system calls manipulating this array as parts of our benchmarks.

• Eicon [eic] is a company providing telephony boards for PC servers. Their products include Diva server, which is a range of telocoms products for voice, speech, conferencing and fax. It supports various protocols such as T1/E1 and ISDN.

In the linux driver for Diva server [div], the adapter request queue is maintained by a list in an array. One thing special about this list is that a variable recording the length of the list makes some operations faster (e.g., judging whether there are free slots in the array). We also include this driver in our benchmarks.

• Nordic nRF51 series [nor] is a family of system-on-chip (SoC) devices for ultralow power wireless applications. They support a range of protocol stacks including Bluetooth low energy and ANT.

To satisfy the requirement on low energy consumption, the applications running on it often avoids using dynamic memory allocation. In its timer application [tim], a sorted list is maintained in an array. We also put that application into our benchmarks.

All these programs manipulate one common type of overlaid data structure "lists inside arrays". However, we choose them as our benchmarks since they are representive in their fields and the structural properties that each of these modules relies on have different characteristics, that are also summarized in Table 7.1: (1) The numbers of lists stored in a single array in each module are various, as indicated in the row "Lists". (2) In the benchmark from Minix, all array cells are linked in two lists, thus one property of that array is that no array cell should be out of the control of the lists. is indicated in the row "Free slots", which specifies whether there are array cells storing "free" elements. (3) Some modules use a special variable to hold the index of the last element of each list. This is indicated in the row "Tail pointer". (4) The row "Length information" specifies whether a special variable holds the length of each list. (5) The row "Sortedness" says whether the structural invariant also relies on the sortedness of the lists.

Verification Framework

Environment. We implemented the analysis inside the MemCAD analyzer [START_REF] Sotin | Hierarchical shape abstraction of dynamic structures in static blocks[END_REF], which is a forward abstract interpreter that performs intra-procedural static analysis or fully context-sensitive inter-procedural inter-procedure analysis (does not support recursion) based on the ASTs generated by front-end Clang [App]. All our experiments are carried out on on Ubuntu 12.04.4, with 16 Gb of RAM, on an Intel Xeon E3 desktop, running at 3.2 GHz.

Verification methodology. Each of the considered cases relies on a structure that can be easily described using a structural inductive definition (e.g., Example 6.1). These definitions serve as specifications that drive the abstraction, and are used as basis of preand post-conditions, which may also include additional numeric relations. With these specifications, the verification process can be formalized as follows.

assume(R); systemcall(); assert(R);

That is, given a structural invariant R as pre-condition, we let our analysis compute an abstract post-condition and check that R still holds at the exit of the function.

Analysis options. We choose to use the "New Polka" polyhedra domain in Apron library [START_REF] Jeannet | Apron: A library of numerical abstract domains for static analysis[END_REF] as the underlying abstract numeric domain. Our strategy for loop iteration is applying join for the first iterate and then widening for the rest. The maximal time for the analysis on one function is set to be 1 minute.

Verified Properties

In this section, we show the properties that have been verified by our static analysis on the four OS components.

AOS. In Chapter 6, we have presented the analysis on examples from the task scheduler in AOS. Now we recall the invariants R aos as follows.

Array: This property indicates that variables ready, sleep and suspend should point to the heads of three well-formed acyclic disjoint lists, where the list with head ready is sorted with respect to the values in field prio, and all free slots and used nodes in the array are distinguished by the values stored in their used field (0 for free slots and 1 for used slots).

G 0 G 1 G 2 G 3 
System calls that manipulate this data structure include tinit (initialize the array and the three list variables), tcreat (locate a free slot in the array and insert it into the ready list), tstop (release a list node to be free), and tsched (move array nodes between lists), and tstart (move one node from the sleeping list to the ready list). The verification is carried out by proving the following assertions. assume( ) tinit() assert(R aos ); assume(R aos ) tcreat() assert(R aos ); assume(R aos ) tstop() assert(R aos ); assume(R aos ) tsched() assert(R aos ); assume(R aos ) tstart() assert(R aos );

Minix

The Minix memory management module maintains two lists inside an array: one of them stores the allocated blocks whereas the other stores the available nodes. Any cell in the array belongs to either of these two lists. An interesting property of these two lists is that they occupy the whole array, and no array cell is leaked during operations on the lists. This fact is expressed in our abstraction by partitioning all the array cells into only two groups, each containing one list. The invariant R m is shown as follows.

Array:

G 0 G 1 Shape: lseg(α 0 , 0) lseg(α 1 , 0) Numeric: hole head = α 0 free head = α 1 ∧

The functions manipulating this array include tinit (initialization), alloc mem (move one node from the list of available nodes list to the list of allocated blocks), free mem (the reverse operation of alloc mem), max hole (perform a traversal following a list structure). The verification is carried out by proving the following assertions. assume( ) tinit() assert(R m ); assume(R m ) alloc mem() assert(R m ); assume(R m ) free mem() assert(R m ); assume(R m ) max hole() assert(R m );

TinyOS

The task scheduler of TinyOS maintains one singly linked list (see row "Lists" in Table 7.1) in an array, the head and tail nodes of which are indexed by two integer variables head and tail respectively (see row "Tail pointer"). The array also contains free slots besides list nodes (see row "Free slots"). The invariant R t is shown as follows. Note that, even if there are only two lists, our abstraction partitions the array into three groups, since the additional group G 2 is needed to store free elements (that are in neither of these lists). The next field of these cells stores value 255 (I next 2 = 255). The functions manipulating this array include the system call pop task which pops a task from the list head, and the system call push task which pushes one task to the list tail. The verification is carried out by proving the following assertions. assume(R t ) pop task() assert(R t ); assume(R t ∧ 0 ≤ id ≤ 255) push task(int id) assert(R t );

Eicon

The Eicon network driver for Linux maintains a list in an array to deal with adapter request queue. They also maintain two variables head and tail which point to the head and tail of the list (just like TinyOS). A specific feature of the Eicon network driver is that it also has a variable count to record the length of the list (as shown in row "Length information"). By comparing count with the length of the array, the driver can quickly know whether there are free slots in the array. The invariant R e is shown as below.

Array:

G 0 G 1 G 2 Shape: lseg(α 0 , α 1 ) last(α 1 , α 0 ) true

Numeric: tail = α 1 I next 2 = -1 ∧ ∧ head = α 0 |G 0 | + |G 1 | = count ∧
Programs manipulating this array include insert (insert one request to the tail of the list), delete (delete one request at the head of the list), traversal (traverse the list). The verification is carried out by proving the following assertions. assume(R e ) insert() assert(R e ); assume(R e ) delete assert(R e ); assume(R e ) traversal() assert(R e );

Nordic

The timer application taken from the Nordic nRF51 SoC maintains a sorted list inside an array. Each node records an application with running time information. The list is sorted according to the ticks left for each application. The invariant R n is shown as below.

Array:

G 0 G 1 Shape:

slseg(α 0 , -1) true

Numeric: hole head = α 0 I next 1 = -1 ∧
Programs manipulating this array include insert (insert one timer according to its id) and delete (delete one timer according to its id). The verification is carried out by proving the following assertions. assume(R n ∧ 0 ≤ timer id < max timers) insert(int timer id) assert(R n ); assume(R n ∧ 0 ≤ timer id < max timers) delete(int timer id) assert(R n );

Efficiency

Table 7.2 shows the results of the analysis on the functions mentioned in Table 7.1. The table indicates the number of lines of codes and analysis times. Note that we distinguish the definition of complex data structures (noted as LOCs(d)) and other codes (noted as LOCs(f)), since in some benchmarks like Eicon, the definition of data structures could account for the most of LOC.

The analysis successfully verifies all these programs, using the aforementioned structure specifications. In each case, it verifies both memory safety and the preservation of the structural invariants attached to each case. In most cases, analysis run-times are under one second. While the programs are not very large, they are fairly subtle and with typical operating system primitives manipulating the pattern under study.

Effort Needed for Verification

In this section, we summarize the efforts that we have made to carry out all the experiments in this Chapter. This reflects how easy our static analysis is to use.

The effort to use our analysis lies in two aspects: writing specification and preprocessing the code: (1) Our analysis is parameterized by the specification describing the properties to be to verify (e.g., the invariants we show in Section 7.2). The specification should be provided by the users. (2) Since the targeting properties are at function level, thus we need to pre-process the benchmarks by extracting the system calls out to verify them as libraries. Another reason for pre-processing code is that our analyzer does not support recursion. Therefore we need to eliminate recursion where it emerges. The specification on each system call is fast to write (just a few lines). However, to figure out the invariants may take several minuets or more than one hour, depending on the complexity of the function. In the case of pre-processing the code, the time we have spent on each system call varies: (1) it could be ignorable, when the system call is selfcontained (such as the two functions in TinyOS); (2) it could take more than one hour when the dependency of data structures is deep (e.g., Nordic) or recursion arises in some functions (e.g., Minix).

We believe that real users may spend less time than us for two reasons: (1) the syntax of the specification in our analysis is easy to learn (they are based on simple separation logic), and inductive definitions (e.g., lseg) can be shared by all tasks; (2) users can do pre-processing and invariants extraction much faster than us since they know their systems much better than us.

Related Work and Conclusion

The importance of the verification of operating systems has been widely realized, and quite a few works on this issue have been presented.

Most of these works [KEH + 09, YH10, PF10] rely on theorem proving. The mathematical logics (e.g., first-order logic) used in theorem proving are usually very expressive, thus theorem proving has the potential to fully prove the functional correctness of a given operating system. However, rich expressiveness comes with the sacrifice of automation. Even with the help of interactive provers, the verification is quite time-consuming. Take project seL4 [KEH + 09] as an example, which implements seL4 (a third-generation microkernel of L4 provenance) comprising 8700 lines of C code and 600 lines of assembler, and verifies the correctness of it except the virtual memory manger, the initialization code and the assembler. The implementation of the operating system took 2.2 py, and the proof cost 20 py. The proof is also sensitive to changes in the operating system. In the experience of seL4, adding a complex new data structure to the kernel supporting new API calls could cost 1.5-2 py to re-verify.

Verifications of operating systems by static analysis [OMLB16, WCM + 16] utilize less expressive logic but are usually fully automatic. Compared to static analysis on user programs, static analysis on operating systems has to deal with difficulties like hardware abstraction, interrupts and complex data structures. In [START_REF] Ouadjaout | Static analysis by abstract interpretation of functional properties of device drivers in tinyos[END_REF], the semantics of lowlevel hardware interactions are modeled as a register automaton. In [WCM + 16], interrupts are considered into account and handled by sequentialization. Static analysis is specific to certain properties and can hardly prove the correctness of a system in all aspects. However, the advantage of static analysis is that it is not specific to a certain version of a given operating system, and could be applied to other versions or even other operating systems easily.

Our static analysis focuses on the automatic reasoning on properties of complex data structures, which is orthogonal to those in [OMLB16, WCM + 16]. However, our work and those in [OMLB16, WCM + 16] all contribute to the precision improvement of static analysis on operating systems. In particular, our experiments demonstrate that static analysis can verify non-trivial safety and functional properties on various OS components which may manipulate complex data structures.

Chapter 8 Conclusion and Discussion for The Future Work

In this thesis, we have contributed a series of techniques that can work together to address the difficulties of the verification of complex structural properties on array contents, that we have mentioned in the beginning of the thesis.

• The Maya(+) domain addresses the difficulty of describing numerical properties of array contents, the size of which could be unbounded;

• The non-contiguous partition array domain addresses the difficulty of extracting dynamic structures out of arrays, which usually occupy non-contiguous regions of arrays;

• The coalescing domain addresses the difficulty of reasoning about accesses into intertwined data structures (like dynamic structures in arrays) at the same time.

The Maya domain extends conventional numeric domains with the ability of abstracting optional variables (i.e., variables that may have no value). This domain can be used for numeric analysis on languages with optional data types. It can also be used to describe programs with dynamic allocations, where memory locations allocated in conditional branches are actually "optional". The Maya+ domain extends conventional numeric domains with the ability of abstracting possibly empty set variables (i.e., variables that may have a possibly empty set of values). In this thesis, it is used to summarize array indexes and contents.

Our array domain can describe numeric properties of non-contiguous cells. Compared with conventional static analysis on array contents, it enjoys several advantages: (1) it supportes non-contiguous partition, thus it can describe arrays where cells with similar properties are not contiguous more precisely; (2) it allows empty groups, thus the number of disjunction is fewer than those do not allow; (3) it is semantic, thus the partitioning is carried out during the analysis which avoids a syntactic pre-analysis and is more precise since semantic information can help the partitioning.

CHAPTER 8. CONCLUSION AND DISCUSSION FOR THE FUTURE WORK

Our coalesced domain can describe and automatically reason about inter-wined data structures. We have shown its ability in verifying the safety and functional properties of programs manipulating "lists nested in arrays". These properties are not widely realized in the literature, but we believe that they are important, especially in low-level software where arrays with structural contents are often used.

Our experiments demonstrate the effectiveness of our techniques. The benchmarks are all operating system components, including task schedulers, memory management and drivers. The safety of these programs are essential and the verification of them is non-trivial, considering the complex data structures that they utilize.

As for the future work, we believe that the following directions are promising.

• The Maya(+) domain can be extended with the ability of describing more set relations (like set inclusion). In this way, it turns into a set domain supporting numeric constraints on set variables. This kind of domain has potential use in many fields, like abstraction for general containers.

• The performance of the non-contiguous partition domain can be improved by controlling the number of groups with a heuristic algorithm. From our experiments, the time consumption of our analysis is mainly determined by the number of partitioned groups. In this thesis, we do not set a threshold for the number of groups, which limits the use of this domain on large code bases. In the future work, we can develop some heuristic strategies to control the number of groups.

• The future work for our coalescing domain is using it to combine more shape domains. This can be used to abstract more intertwined data structures like "trees on a list".

Résumé

Dans cette thèse, nous étudions l'analyse statique par interprétation abstraites de programmes manipulant des tableaux, afin d'inférer des propriétés sur les valeurs numériques et les structures de données qui y sont stockées.

Les tableaux sont omniprésents dans de nombreux programmes, et les erreurs liées à leur manipulation sont difficile à éviter en pratique. De nombreux travaux de recherche ont été consacrés à la vérification de tels programmes. Les travaux existants s'intéressent plus particulièrement aux propriétés concernant les valeurs numériques stockées dans les tableaux. Toutefois, les programmes bas-niveau (comme les systèmes embarqués ou les systèmes d'exploitation tempsréel) utilisent souvent des tableaux afin d'y stocker des structures de données telles que des listes, de manière à éviter d'avoir recours à l'allocation de mémoire dynamique. Dans cette thèse, nous présentons des techniques permettant de vérifer par interprétation abstraite des propriétés concernant à la fois les données numériques ainsi que les structures composites stockées dans des tableaux.

Notre première contribution est une abstraction qui permet de décrire des stores à valeurs numériques et avec valeurs optionnelles (i.e., lorsqu'une variable peut soit avoir une valeur numérique, soit ne pas avoir de valeur du tout), ou bien avec valeurs ensemblistes (i.e., lorsqu'une variable est associée à un ensemble de valeurs qui peut être vide ou non). Cette abstraction peut être utilisée pour décrire des stores où certaines variables ont un type option, ou bien un type ensembliste. Elle peut aussi servir à la construction de domaines abstraits pour décrire des propriétés complexes à l'aide de variables symboliques, par exemple, pour résumer le contenu de zones dans des tableaux.

Notre seconde contribution est un domaine abstrait pour la description de tableaux, qui utilise des propriétés sémantiques des valeurs contenues afin de partitioner les cellules de tableaux en groupes homogènes. Ainsi, des cellules contenant des valeurs similaires sont décrites par les mêmes prédicats abstraits. De plus, au contraire des analyses de tableaux conventionnelles, les groupes ainsi formés ne sont pas nécessairement contigüs, ce qui contribue à la généralité de l'analyse. Notre analyse peut regrouper des cellules non-congitües, lorsque celles-ci ont des propriétés similaires. Ce domaine abstrait permet de construire des analyses complètement automatiques et capables d'inférer des invariants complexes sur les tableaux.

Notre troisième contribution repose sur une combinaison de cette abstraction des tableaux avec différents domaines abstraits issus de l'analyse de forme des structures de données et reposant sur la logique de séparation. Cette combinaison appelée coalescence opère localement, et relie des résumés pour des structures dynamiques à des groupes de cellules du tableau. La coalescence permet de définir de manière locale des algorithmes d'analyse statique dans le domaine combiné. Nous l'utilisons pour relier notre domaine abstrait pour tableaux et une analyse de forme générique, dont la tâche est de décrire des structures chaînées. L'analyse ainsi obtenue peut vérifier à la fois des propriétés de sûreté et des propriétés de correction fonctionnelle.

De nombreux programmes bas-niveau stockent des structures ynamiques chaînées dans des tableaux afin de n'utiliser que des zones mémoire allouées statiquement. La vérification de tels programmes est difficile, puisqu'elle nécessite à la fois de raisonner sur les tableaux et sur les structures chaînées. Nous construisons une analyse statique reposant sur ces trois contributions, et permettant d'analyser avec succés de tels programmes. Nous présentons des résultats d'analyse permettant la vérification de composants de systèmes d'exploitation et pilotes de périphériques.

Mots Clés

Analyse statique, interprétation abstraite, structures de données complexes, abstraction de tableaux

Abstract

We study the static analysis on both numeric and structural properties of array contents in the framework of abstract interpretation.

Since arrays are ubiquitous in most software systems, and software defects related to mis-uses of arrays are hard to avoid in practice, a lot of efforts have been devoted to ensuring the correctness of programs manipulating arrays. Current verification of these programs by static analysis focuses on numeric content properties. However, in some lowlevel programs (like embedded systems or real-time operating systems), arrays often contain structural data (e.g., lists) without using dynamic allocation. In this manuscript, we present a series of techniques to verify both numeric and structural properties of array contents.

Our first technique is used to describe properties of numerical stores with optional values (i.e., where some variables may have no value) or sets of values (i.e., where some variables may store a possibly empty set of values). Our approach lifts numerical abstract domains based on common linear inequality into abstract domains describing stores with optional values and sets of values. This abstraction can be used in order to analyze languages with some form of option scalar type. It can also be applied to the construction of abstract domains to describe complex memory properties that introduce symbolic variables, e.g., in order to summarize unbounded memory blocks like in arrays. Our second technique is an abstract domain which utilizes semantic properties to split array cells into groups. Cells with similar properties will be packed into groups and abstracted together. Additionally, groups are not necessarily contiguous. Compared to conventional array partitioning analyses that split arrays into contiguous partitions to infer properties of sets of array cells. Our analysis can group together non-contiguous cells when they have similar properties. Our abstract domain can infer complex array invariants in a fully automatic way.

The third technique is used to combine different shape domains. This combination locally ties summaries in both abstract domains and is called a coalesced abstraction. Coalescing allows to define efficient and precise static analysis algorithms in the combined domain. We utilize it to combine our array abstraction (i.e., our second technique) and a shape abstraction which captures linked structures with separation logicbased inductive predicates. The product domain can verify both safety and functional properties of programs manipulating arrays storing dynamically linked structures, such as lists.

Storing dynamic structures in arrays is a programming pattern commonly used in low-level systems, so as to avoid relying on dynamic allocation. The verification of such programs is very challenging as it requires reasoning both about the array structure with numeric indexes and about the linked structures stored in the array. Combining the three techniques that we have proposed, we can build an automatic static analysis for the verification of programs manipulating arrays storing linked structures. We report on the successful verification of several operating system kernel components and drivers.
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 3 Figure 3.1 shows the syntax of a simple imperative language. It could be seen as a subset of the C programming language. This language is only used to formalize the main idea of static analysis by abstract interpretation, and does not enjoy all features of our target programs. Later chapters will extend it as needed.This language supports only one primitive type: machine integers int. Type int corresponds to the set of all integers in the interval [-2 31 , 2 31 -1] (i.e., 32 bits), which is denoted as V. We do not have any Boolean type. Instead, in conditionals, non-zero integers and zero play the roles of "true" and "false" respectively, as in the C programming language. We let X denote the set of variables in a program.At this stage, an left-value l (expression that evaluates into a memory location) can only be an integer type variable. However, it will be expanded with other forms (e.g., array accesses) in the following chapters. An r-value r (expression that evaluates into a value or a set of values) could be a constant, an l-value or unary/binary operators applied on r-values. A program is made of statements. A statement p could be an assignment, a skip instruction, a sequence of statements, an assertion statement, a conditional branching or an loop. All these statements are classical and defined in a standard way. Note that, we do not support dynamic memory allocation in our language, because it is not the focus of this thesis.

Figure 3 . 1 -

 31 Figure 3.1 -Grammar of a simple imperative language.

Figure 3 . 2 -

 32 Figure 3.2 -Denotational semantics of a simple imperative language.

1 Figure 3 . 3 -

 133 Figure 3.3 -The join of two convex polyhedra

Definition 3 . 4 (

 34 Soundness of abstract guard).∀c ∈ S, guard r (γ(c)) ⊆ γ(guard[r](c))

Figure 4 . 2 -

 42 Figure 4.2 -Four types of variables in the language

Example 4 . 1 (

 41 Concrete semantics of condition tests). Suppose Y • = {y • }, Y * = {y * }, and given two concrete states σ 0

Example 4 . 4 (

 44 The concretization of an abstract state in the Maya domain). We consider the abstract state shown in Example 4.3. Its concretization consists of:

Definition 4 . 4 (

 44 Independence property). Let o = (n, A) be an abstract state. We say o satisfies the independence property if and only if

  N [.]. Moreover, this constraint is equivalent to the initial constraint up-to the γ O concretization function. Thus, this principle defines a sound abstract transfer function for condition tests.

Definition 4 . 6 (

 46 Analysis of condition tests in the Maya domain). The full algorithm of the condition test transfer function guard O [.] is shown in Figure 4.3. This function uses replace to perform variable substitutions in conditions and the sound test function of the underlying domain guard N [.]. Theorem 4.3 (Soundness of the transfer function for condition tests). The abstract transfer function guard O [.] is sound in the sense that, for all linear inequality constraint r and for all abstract state o satisfying the bi-avatar principle: guard r (γ O (o)) ⊆ γ O (guard O [r](o)) Theorem 4.4 (Perservation of bi-avatar principle by condition test). The image by abstract transfer function guard O [.] still satisfies the bi-avatar principle.
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 45 Soundness of transfer functions for assignments). If y •? ∈ Y • Y ? and r is a linear expression, then:∀o ∈ O, y •? = r (γ O (o)) ⊆ γ O (assign O [y •? = r]o)Example 4.11 (Transfer functions for assignments). We assumeY • = {y • 0 }, Y ? = {y ?1 , y ? 2 } and consider the abstract pre-condition defined by octagon n

Theorem 4 . 6 (

 46 Soundness of lattice operators). Operations isle O ., join O . and widen O .

Figure 4 . 6 -

 46 Figure 4.6 -Weak concrete semantics of condition tests

  does not correspond to the concrete semantcis of condition test defined in Figure 4.1. In contrast, guard N s [.] over-approximats the concrete semantics in Figure 4.6. We call this version of concrete semantics for condition tests weak tests (the version in Figure 4.1 is strong tests). A weak test evaluates to {1} when the logical relation is satisfied by at least one tuple in the Cartesian product of the operand sets. For instance, guard {3, 1} ≤ {2} w evaluates to {1}, but guard {3, 1} ≥ {2} evaluates to {0}.

Theorem 4 .

 4 7 (Soundness of the transfer function for condition tests). If condition r only contains standard and non-empty summary variables, the abstract transfer function guard N s [.] is sound in the sense that:

  performs weak updates on the left-value when it is a non-empty summary variable.

Theorem 4 .

 4 8 (Soundness of the transfer function for assignments). The transfer function for assignments assign N s [.] is sound in the sense that:

50CHAPTER 4 .

 4 MAYA AND MAYA+ FUNCTORS Transfer functions. The transfer functions in the Maya+ domain can be obtained by calling those in the Maya functor and the functor of summarizing numeric domains. Definition 4.11 (The transfer function for assignments). The transfer function for assignments assign U [.] is constructed by replacing all the occurrences of assign N [.] and guard N [.] by assign N s [.] and guard N s [.] in assign O [.]. The soundness of the transfer function for assignments assign U [.] follows the soundness of the operators from the two functors.

Definition 4 . 12 (

 412 The transfer function for condition tests). We define two transfer functions for condition tests in Maya+ domain: one accounts for weak (Figure 4.6) semantics and the other for strong (Figure 4.1) semantics. Indeed, the transfer function for weak condition test in Maya+ domain guard U [.] w is obtained by replacing all the occurrences of guard N [.] by guard N s [.] in guard O [.]. The transfer function guard U [.] for strong tests is the same as guard O [.]. Theorem 4.10 (Soundness of the transfer function for condition tests). The abstract transfer function guard U [.] is sound in the sense that:

  Figure 4.7(b) shows a concrete state on the array and the corresponding abstract state in Maya+ domain. The array analysis on the array initialization example could be encoded into the numeric analysis on the program in Figure 4.7(c).

Figure 4 .

 4 7(a)). Note that weak update G 0 = i just adds the value represented by i to set G 0 . They are analyzed by assign U [.] and guard U [.], and effectively extend group G 0 and shrink group G 1 by one cell. The loop exit invariant shown at point 5 defines stores where G 1 is mapped to no value, which indeed means that the group of uninitialized cells is empty. This actually means that the analysis proves the whole array is initialized to 0. The resulting invariants are shown in Figure 4.7(c).
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 152 Figure 5.2 -Minix 1.1 Memory Management Process Table (MMPT) structure
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 554 Figure 5.3 -A simplified excerpt of cleanup
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 522 Numeric predicates). Let us assume set variable G corresponds exactly to {0, 1}. This can be represented exactly using pure-numeric constraints 0 ≤ G ≤ 1 and |G| = Definition 5.4 (Abstract states in the array domain). An abstract state a ∈ H is a tuple (P, Q) where Q constrains set variables from P and program variables.

G 0 =

 0 {0, 1, 2, 3, 4, 6, . . .} G 1 = {5, 7, . . .} The topology of the partition on mproc
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 55 Figure 5.5 -A partitioning of mproc based on non contiguous groups
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 56 Figure 5.6 -An concrete state and a corresponding abstact state

Figure 5 . 7 -

 57 Figure 5.7 -Partition splitting in array a from abstract state a

Figure 5 . 8 -

 58 Figure 5.8 -Partition creation in array a from abstract state a

Figure 5 .Theorem 5 . 2 (

 552 8(a) defines an abstract state (P, Q) with a single array, fully initialized to 0, and represented by a single group. Similarly, Figure 5.8(b) shows a possible result for create. Soundness of the creation operator).

Definition 5 . 7 (

 57 Local disjunction join). Utilizing the join operator join U of Maya+ domain, we define the local disjunction join operator join a ≡ as join a ≡ ((P, Q 0 ), (P, Q 1 )) = (P, joinU (u 0 , u 1 ) ∧ (g 0 ∩ g 1 ))Theorem 5.5 (Soundness of local disjunction join). The local disjunction join operatorjoin a ≡ is sound. ∀i ∈ {0, 1}, γ a (P, Q 0 ) ⊆ γ a (join a ≡ ((P, Q 0 ), (P, Q 1 )))Definition 5.8 (The transfer function for condition tests). The algorithm of the abstract transfer function guard a [.] for condition tests is fully described in Figure 5.10. Operator enumerate : H → P(H) generates the set of every possible state in which each array cell in r belongs to exactly one group. Namely, γ a (a) = ∪{γ a (a i ) | a i ∈ enumerate(a)}, and in any a i , and for any array cell a[x] in r, the group that a[x] belongs to is deterministic. Then, condition test guard U [.] w of the Maya+ domain and the reduction operator are applied in each disjunctive state. All states are eventually joined together by the local disjunction join operator join a ](P, g ∧ u)){ r 0∼k , g 0∼k = enumerate(r, g); foreach(i ∈ {0, 1, . . . , k}){

Figure 5 .

 5 Figure 5.10 -The algorithm of the condition test transfer function
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 5 Figure 5.11 -The abstract state before the condition test at line 7
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 5123 Figure 5.12 -The pre-and post-condition of assignment a[i] = 2
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 5 Figure 5.13 -The algorithm of the assignment transfer function
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 5 Figure 5.14 -Analysis on two assignments

Figure 5 .

 5 Figure 5.15 -Impact of the group matching on the abstract join
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 5 Figure 5.16 -The algorithm of the join operator
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 5 Figure 5.19 -Widening result of two abstracts with different partitions
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 5 Figure 5.21 -Analysis of the cleanup excerpt
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 5 Figure 5.23 -Array random accesses

  the set of concrete elements M ::= A * . . . * A separating conjunction A ::= b non-inductive memory predicates | i inductive memory predicates N numeric predicates D = D M × D N the set of abstract elements γ ∈ D → P(S) concretization ∈ D top element ⊥ ∈ D bottom element unfold ∈ D → D unfolding operator fold ∈ D → D folding operator guard[.] ∈ D → D transfer function for condition tests assign[.] ∈ D → D transfer function for assignments isle ∈ D × D → D inclusion check operator join ∈ D × D → D join operator widen ∈ D × D → D widening operator

Definition 6 . 4 (

 64 Memory predicates of a shape domain). The syntax of memory predicates M s in D s is defined as follows. M s := A s * . . . * A s Separating conjunction A s := α@ f → β Predicates on a single memory cell | emp Predicates on an empty region | i s ( α) Predicates on a possibly empty set of memory cells | true True predicates

Definition 6 . 6 (

 66 Coalescing domain). Suppose that domains D• and D fit the signature D m , then an element c in their coalescing domain C is a tuple (M, N), where M and N follows the syntax defined below.M ::= A * . . . * A A ::= i • & i | b • & b N :: N • ∧ NMemory predicates M in the coalescing domain are separating conjunction of atomic memory predicates A. The set of memory predicates M is denoted as D M .

Definition 6 . 8 (

 68 Concretization function in the coalescing domain). Let γ • (resp. γ ) be the concretization function in the memory abstract domain D • (resp. D ). It maps an abstract element (M • , N • ) (resp. (M , N )) to a set of concrete states S ⊆ S. The concretization function γ c for coalescing domain C maps (M, N) to a set of concrete states, defined with the relation |= as follows.

Example 6 . 2 (

 62 Coalescing inductive definition). The coalescing inductive definition G & lseg(π, τ ) formalizes a possibly empty linked list. The definition of it is shown below

Example 6 . 3 (

 63 A coalescing inductive predicate on sorted lists in arrays). Inductive predicate G & slseg(π, τ ) describes a sorted list in an array. Its formal definition is shown as follows.

Figure 6 . 3 -

 63 Figure 6.3 -Abstract state corresponding to R aos

Figure

  Figure 6.3(a) shows the abstract state (M a/s , N a/s ) corresponding to R aos . We also propose a graphical representation of the abstract state to make it easy to read in Figure6.3(b). In this graphical representation, separating conjunction is expressed with winding lines and non-separating conjunction is expressed by putting the conjuncts in the same column. In the following, we will only show graphical representations by default.The abstract state partitions the array a into four disjoint groups of cells, such that each group corresponds to cells with similar properties. Group G 0 collects all free slots, whereas groups G 1 , G 2 , and G 3 respectively account for the lists of suspended, sleeping and ready tasks. Following R aos , free slots are characterized with a used field storing 0 as I used

Figure 6 . 4 -

 64 Figure 6.4 -Unfolding algorithm in coalescing domain

Definition 6 .

 6 10 (Unfolding algorithm). The algorithm of unfolding unfold c in coalescing domain is shown in Figure 6.4. It inputs an abstract state c = (M * i • & i , N) together with an inductive predicate i • & i in that state, and returns a finite set of abstract states, obtained by unfolding this inductive predicate. Function unfold c produces one disjunct per inductive case in the inductive definition of i • & i . Given an inductive case A • j,0 & A j,0 * . . . * A • j,n j & A j,n j , N j , it calls the unfolding operator in the underlying domain (unfold • and unfold ). Note that, in unfold • or unfold , only one inductive case is considered (e.g., i • := A • j,0 * . . . * A •

Figure 6 . 5 -

 65 Figure 6.5 -The unfolding results

Definition 6 .

 6 11 (Folding algorithm).

Figure 6 .

 6 6 shows the algorithm of folding fold c in our coalescing domain. It inputs an abstract state c = (M * A • j,0 & A j,0 * . . . * A • j,n j & A j,n j , N) together with an inductive definition i • & i , a separating conjunction of memory predicates A • j,0 & A j,0 * . . .

Figure 6 . 6 -

 66 Figure 6.6 -Folding algorithm in coalescing domain

Theorem 6 . 3 (

 63 Soundness of the resolving operator). For any right-value expression r, operator resolve is sound in the sense that,γ c (c) ⊆ γ c (resolve[r](c)))Transfer function for condition tests in the underlying domains. The parameters of the transfer functions in the underlying domains for condition tests (i.e., guard • [.] : D • → D • and guard [.] : D → D ) are abstract states in the underlying domains (i.e., (M • , N • ) and (M , N )). To apply the underlying transfer functions, our analysis needs to decompose (M, N) into underlying abstract states, so as to fit the parameters of guard • [.]

Figure 6 .≥ 1 ] and guard s [β 1 ≥ 1 ]Theorem 6 . 5 (

 611165 Figure 6.9 -The abstract state after guard

Figure 6 .

 6 Figure 6.13 -The abstract state after the assignment

N

  and inclN are the widening, join and inclusion checking operators over the numeric predicates respectively, then we can define the lattice operators over compatible abstract states below. widen c ≡ ((M, N 0 ), (M, N 1 )) = (M, widen N (N 0 , N 1 )) join c ≡ ((M, N 0 ), (M, N 1 )) = (M, join N (N 0 , N 1 )) incl c ≡ ((M, N 0 ), (M, N 1 )) = (M, incl N (N 0 , N 1 )) Theorem 6.7 (Soundness of lattice operators). Operators widen c ≡ , join c ≡ and incl c ≡ are sound in the following sense.

≡

  follow the soundness of widen N , join N and incl N respectively.

Figure 6 .

 6 Figure 6.14 -The algorithm of the widening operator

Theorem 6 . 8 (

 68 Soundness and termination of the widening operator). Operator widen c is sound (for all abstract states c 0 , c 1 , the inclusionγ c (c 0 ) ∪ γ c (c 1 ) ⊆ γ c (widen c (c 0 , c 1 ))holds) and ensures termination of abstract iterates.Proof. The soundness of widen c follows from the soundness of fold c and widen N . Since widen c changes the memory predicates only by applying foldings on non-empty disjunctive case, thus the memory predicate should stabilize after finitely many iterations. Therefore, since widen c applies widen N on the numeric predicates component, it ensures the termination of any sequence of abstract iterates.

≡

  (c 0 , c 1 ); } (a) The algorithm of the join operator

  incl

≡Figure 6 . 1 Figure 6 .

 616 Figure 6.15 -The algorithms of the join and inclusion checking

1 = I used 2 = I used 3 = 1 ( 4 .

 12314 i.e., cells in groups G 1 , G 2 , G 3 only store 1 in field used). The assignments at line 5 and 6 update the contents of cell a[i]. The fields of this cell are summarized in atomic memory predicate G 0 & true. To perform strong updates on assignments, the transfer function unfolds G 0 & true. The empty disjunctive case is unreachable since |G 0 | ≥ 0 (this is inferred by i ∈ G 0 ). In the non-empty disjunctive case, our analysis singles out the modified cell: the new atomic memory predicate G 4 & true contains exactly this cell (i.e., i ∈ G 4 and |G 4 | = 1), and lets G 0 represent the other cells. After unfolding, it performs a strong update on I used The abstract state after line 6 is shown at y.

6 ∧ 6 Figure 6 .

 666 Figure 6.18 -The analysis on function create: part 1

Shape: true lseg(α 1 ,G

 1 -1) lseg(α 2 , -1) slseg(α 3 , -1)Numeric: suspend = α 1 sleep = α 2 ready = α 3 & lseg(π, τ ) ::= G & emp, π = τ ∨ G & π@(next → π ) * G & lseg(π , τ ), π = τ and G & slseg(π, τ ) ::= G & emp, π = τ ∨ G & π@(next → π , prio → π ) * G & slseg(π , τ ), π = τ ∧ π ≤ I prio G

  0 , α 1 ) last(α 1 , α 0 ) trueNumeric: tail = α 1 I next 2 = 255 ∧ ∧ head = α 0 where G & lseg(π, τ ) ::= G & emp, π = τ ∨ G & π@(next → π ) * G & lseg(π , τ ), π = τ and G & last(π, τ ) ::= G & emp, π = 255 ∧ τ = 255 ∨ G & π@(next → π ), π = 255 ∧ τ = 255 ∧ π = 255

  this section, we only consider programs with variables of standard integer type and optional type. Example 4.2 shows one such program. Programming languages like Ocaml or Scala are with such variable types.

Example 4.2 (A program with optional variables). We consider the program below, where

  Optional variable emptiness test. To evaluate condition guard O [is empty(y ? )], and filter out stores that do not map y ? into ∅, we can simply add two constraints on d ↓ and d ↑ that would be unsatisfiable, if added for a same dimension, such as 1 ≤ d ↓ and d ↑ ≤ 0. [.] should simply add a linear constraint to some abstract state o (with some approximation, as this constraint is in general not representable exactly in N ). Given condition test a 0 y • 0 + . . . + a n y • n + a n+1 y ? n+1 + . . . + a n+m y ?

	Numerical tests. We consider only conditions that are linear inequalities, as non-linear
	conditions are often handled by linearization techniques [Min04b], and a linear equality
	is equivalent to a pair of inequalities.
	Intuitively, guard

N [r] : N → N (where r contains only variables of standard integer type), and build an abstract operator guard O [r] : O → O. O n+m ≤ c (where

  3.2 Composition of Maya Functor and Summarizing Numeric DomainsOur Maya+ functor is obtained by composing the Maya functor and the functor of summarizing numeric domains. The resulting Maya+ domains can abstract stores with standard variables Y • and possibly-empty summary variables Y

* . An element in the Maya+ domain is a tuple (n s , A), where n s ∈ N s and A ∈ (Y • → E) ∪ (Y * → P(E)) maps a standard variable into a standard dimension and a possibly-empty summary variable into a set of summary dimensions. Definition 4.10 (Concretization in the Maya+ domain). Given an abstract state u = (n s , A), we define the following consistency predicates:

  Analysis of the array initialization example: invariants over group indexesFigure 4.8 -Analysis resultshold any value), and we also use the group names G 0 , G 1 to denote two possibly-empty summary variables that over-approximate the sets of indexes corresponding to the cells of the two groups.

	Program	LOCs #Standard #Summary Time (ms) #Assertions #Verified
	array-init	9	1	2	4.7	1	1
	array-random-access	30	3	6	36.5	3	3
	array-traverse	6	1	1	6.6	1	1
	array-compare	10	3	2	14.1	1	1
	Figure 4.7 -Applicaiton of Maya+ functor on A Simple Array Analysis	

  Step 2: Constraints update. New relation predicates can be inferred by operator propagate : {l = r} × {g} → {g}. It propagates relation predicates in two ways: (1) if both sides of the assignment are standard variables, e.g., v = u, and we have u ∈ G i , then after assignment, we get v ∈ G i ; (2) if the right hand side is an array cell as in parent = mproc[child].mp parent in the example of Figure 5.3, if child stores an index in group G 0 (child ∈ G 0 ), the operator first looks for relations between fields and indexes such as I mp parent

	G 0

  • & i . Note that we restrict the use of & in the following way: it can only be applied to two atomic inductive memory predicates or two atomic non-inductive memory predicates. This restriction indeed is the essential idea behind coalescence, which brings additional precision and makes unfolding/folding in the coalescing domain significantly simpler.A non-separating conjunction of non-inductive predicates b • & b denotes that the addresses and contents of a possibly empty set of memory cells satisfy memory predicates b • and b simultaneously. A non-separating conjunction of inductive predicates i • & i is also inductive, and is called a coalescing inductive predicate. Coalescing inductive predicates parameterize the coalescing domain, just like i s in the shape domain of Section 6.2.2. Definition 6.7 (Coalescing Inductive Predicates). The definition of a coalescing inductive predicate i • & i is of the form

  * A • j,n j & A j,n j in that state, and returns an abstract state, obtained by folding these memory predicates. * . . . * A • j,n j and only one case is considered in the inductive definition (i.e., i • := A • j,0 * . . . * A • j,n j , N j ).

	104 CHAPTER 6. COALESCING ARRAY AND SHAPE ABSTRACTION
	fold	c
	Operator fold	c first looks for an inductive case of the parameter inductive definition
	that is satisfied by the parameter memory predicates and numeric conditions. If there exists one such case, it calls the folding operator in the underlying domain (fold • and
	fold ). Similar as in unfold j,0 Static Analysis on Array Contents c , the input state of fold • is limited to A •	Jiangchao Liu

  omitted since they are the same as z. Our widening algorithm performs the following operations to make the two input states compatible.• foldingG 5 & α 5 @(next → α 7 , prio → β 5 ) and G 7 & α 7 @(next → α 8 , prio → β 7 ),which results in the atomic memory predicate G 10 & slseg(α 10 , α 8 ). • associating G 5 & . . ., G 6 & . . . and G 7 & . . . at {with G 10 & . . ., G 8 & . . . and G 9 & . . . at | respectively. The widening result is shown at }.

{ and |, where atomic memory predicates G 0 & . . . * G 1 & . . . * G 2 & . . . * G 4 & . . .

are

  Table 7.2 -Average times in seconds

	System	Program	LOCs(d)	LOCs(f)	Time
		tinit	6	36	0.12
	AOS	tcreat tstop	6 6	54 83	0.81 1.68
		tsched	6	71	1.36
		tstart	6	110	2.29
	TinyOS	push task pop task	1 1	30 24	0.11 0.11
		tinit	4	13	0.19
	Minix	alloc mem free mem	4 4	46 59	0.38 0.58
		max hole	4	15	0.31
		insert	157	43	0.24
	Eicon	delete	157	18	0.12
		traversal	157	19	0.28
	Nordic	insert delete	14 14	56 47	1.03 0.59

Jiangchao LiuStatic Analysis on Array Contents

i n t height [10]={177 ,176 ,176 ,172 ,168 ,178 ,171 , -1 ,190 ,163 ,171}; Jiangchao Liu Static Analysis on Array Contents

i f ( random () ) {

x = malloc (4) ;

Static Analysis on Array ContentsJiangchao Liu
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Our inclusion check operator is not complete because of the heuristics of the pairing algorithm and the precision loss in operators on partitions.

Static Analysis on Programs Involving Arrays

In this section, we formalize an abstract interpreter for the language of Figure 5.1, and we discuss in detail the full analysis of the cleanup example.

Abstract Semantics

Based on the abstract operators introduced in the previous sections, we can build the abstract semantics of a program stat[s] : H → H, which is a function that maps an abstract pre-condition into an abstract post-condition. The build process has been formalized in Chapter 3.

Theorem 5.11 (Soundness of abstract semantics). Given a program p and an abstract pre-condition a, the post-condition derived by the analysis is sound: p (γ a (a)) ⊆ γ a (stat[p](a))

Example "cleanup" Revisited

We have shown some parts of the analysis on the function cleanup in Figure 5. 3. In this section we provide more details about this analysis in Figure 5.21.

The function cleanup should always be called in a state where the Minix Memory Management Process Table satisfies global correctness property R minix described in Figure 5.5(b), and where argument child is the identifier of a valid user process descriptor. Therefore, the analysis starts with pre-condition R minix ∧ child ∈ G 0 ∧ child > 2. It then proves that, under this pre-condition, and after executing the body of cleanup, R minix always holds, which is checked with isle a .

At start-up, we get pre-condition R minix ∧ child ∈ G 0 ∧ child > 2 (before line 1 in the figure). Because of the property of field mp parent in group G 0 according to R minix , we obtain parent ∈ G 0 at line 2. At line 4, since child could be any cell whose index is larger than or equal to 2 in group G 0 . The analysis performs a materialization during the analysis of that update, which splits group G 0 into groups G 0 , G 2 , as shown after line 4.

Then, the analysis enters the while loop that starts at line 6. Our analysis for loops always unroll the loop once before applying the widening operator. For the sake of clarity, we show only the abstract states computed after the convergence of the sequence of 2 widening iterates. The loop head invariant is shown right after line 6. For the sake of space and readability, we elide the properties of the fields of some groups:

• group G 1 always describes the slots that were free before the call to cleanup (note that excludes the process descriptor of index child that is being freed). 

(b) Topology of the lists . . .

[0] :

[1] :

[2] :

[96] :

[97] :

[98] :

[99] : level of the corresponding task. The list of ready processes is sorted in increasing priority order. Figure 6.1(c) and Figure 6.1(b) respectively show an excerpt of a concrete state and its topology. In Figure 6.1(b), the number in each list node corresponds to the value of field prio. In this configuration, cells 0, 96, 98 describe processes that are ready, cell 1 describes a sleeping process, and cell 2 stores a suspended process; last, cells 97 and 99 are unused. System calls that manipulate this data structure include init (initialize the array and the three list variables), create (locate a free slot in the array and insert it into the ready list), stop (release a list node to be free), and schedule (move array nodes between lists).

Invariants. The following invariants should hold before and after each system call:

• variables ready, sleep and suspend should point to the heads of three well-formed acyclic disjoint lists, where the next field of each cell holds the index of the next element, and the end-of-list is encoded by index -1; • free slots and used nodes in the array are distinguished by the values stored in their used field (0 for free slots and 1 for used slots); furthermore, any used slot belongs to one of the three lists; • the list with head ready is sorted with respect to the values in field prio.

Array:

G 0 Shape: lss(α 0 , -1) Definition 6.12 (The algorithm of the decomposition operators). The algorithm of decom • (decom follows the same principles) can be defined recursively:

Note that, since guard function does not modify memory predicates, the resulting memory predicates M

• and M of decom This pre-condition describes an array with all cells linked by a sorted list with respect to the value in field prio in an increasing order. In the condition test, the accessed array The first and third steps of the transfer function for assignments are the same with that for condition tests. However, in the second step, memory predicates are possibly modified in the underlying transfer functions for assignments. Thus, after applying assign • [.] and assign [.], our analysis needs to collect the resulting memory predicates in the underlying domains and re-construct the memory predicates in the coalescing domain. This process is formalized as operator recons : Numeric:

(a) The decomposed state in array domain Shape:

The decomposed state in shape domain Figure 6.12 -The abstract state after resolving and decomposition abstract state. The two abstract states in underlying domains are shown in Figure 6.12.

Then the two states are updated by the transfer functions in the underlying domains. Note that in assign s [a[ready] = 0], memory predicate α 0 @next → α 1 is updated to α 0 @next → β 0 and β 0 = 0. The updated abstract states in the underlying domains are re-constructed, as shown in Figure 6.13. Note that the correspondence of the memory predicates between abstract states in the underlying domains are recorded in the process of decomposition.

Theorem 6.6 (Soundness of the transfer function for assignments). The transfer function for assignments is sound in the following sense.

Proof. The soundness of assign c [.] follows the soundness of the resolving operation resolve, underlying transfer functions, and the reduction operation.

Lattice Operators

In the framework of abstract interpretation, the union of sets of concrete states is overapproximated by abstract join or widening [START_REF] Cousot | Abstract interpretation: A unified lattice model for static analysis of programs by construction or approximation of fixpoints[END_REF] (which guarantees the termination of abstract iterations), and the order of sets of concrete states is over-approximated by abstract inclusion checking. In our coalescing domain, we first define these operators on compatible abstract states (i.e., they share the same memory predicates). Afterwards, we show how to repartition general abstract states to generate compatible abstract states.

numbers of atomic memory predicates are different. The two tasks are performed by operator repartition.

Ranking. Pairing is achieved with the help of a ranking function rank c : D M ×D M → N, which computes a logical distance between atomic memory predicates in different abstract states. A high value of rank c (A i , A j ) indicates A i of c 0 and A j of c 1 are likely to describe sets of cells with similar properties. The value of rank c (A i , A j ) is determined by two factors:

• whether the two atomic memory predicates are of the same type of inductive predicates, and whether the parameters in the memory predicates correspond to the same program variables;

• if two atomic memory predicates are not inductive predicates, whether the value ranges of the addresses and contents are similar.

Re-partitioning. The lattice operators do not use exactly the same re-partitioning algorithm. Thus our analysis provides three versions of re-partitioning (i.e., repartition widen c , repartition join c and repartition incl c ) for widen c (i.e., widening) , join c (i.e., join) and incl c (i.e., inclusion cheking) respectively. In this chapter, we only give the details of repartition widen c , since other versions follow very similar principles.

Operator repartition widen c (c 0 , c 1 ) first computes a pairing ↔ ∈ P(D M × D M ), which is a set of relations between memory predicates of c 0 and c 1 . The pairing is defined by the rules below:

1. operator repartition pairs each atomic memory predicate with the atomic memory predicate with which it has the highest ranking value;

2. if three relations of the form A i ↔ A k , A i ↔ A j and A t ↔ A j have been added to the pairing, then the "middle" relation A i ↔ A j is removed.

The algorithm we choose to filter pairs is based on heuristics, yet a non optimal pairing will impact only precision, but not soundness. After the two steps above, operator repartition widen c applies a partition transforming which transforms both arguments into "compatible" abstract states using the following (symmetric) principles:

• if A i ↔ A j and A i ↔ A k , then A j and A k are merged by operator fold c and the resulting memory predicate is paired with A i ;

• if A i is mapped only to A j , A j is paired only to A i , then their parameters are renamed to the same;

Array: G 4 G 5 Shape: lseg(α 4 , α 5 ) lseg(α 5 , -1) .17 -The result of lattice operators

Analysis

In this section, we formalize an abstract interpreter based on the coalescing domain for the language of Figure 5.1, and we discuss in detail the full analysis of the create example.

Abstract Semantics and Implementation

Abstract semantics. The definition of abstract semantics follows the principles defined in Chapter 3. Given a statement s, the analysis function [s] : C → C inputs an abstract pre-condition and returns an abstract post-condition. Our analysis uses lfp # defined in Chapter 3 to compute least fix points, and uses fusion : P(C) → C to compute the over-approximation of any number of abstract states (by applying join c repeatedly). Definition 6.19 (Abstract semantics in the coalescing domain). The abstract semantics [s] of a program s is defined by:

and lfp # c computes post-fixpoint with widen c , join c and isle c Theorem 6.10 (Soundness of the abstract semantics in the coalescing domain). For all program s and abstract pre-condition c,

Implementation. We have implemented the array/shape coalescing domain inside the MemCAD analyzer [START_REF] Sotin | Hierarchical shape abstraction of dynamic structures in static blocks[END_REF] using the Apron numeric abstract domain library [START_REF] Jeannet | Apron: A library of numerical abstract domains for static analysis[END_REF].

{

Array: Shape:

. . . We choose a set of OS components as the benchmarks to evaluate our analysis. This choice is based on the following facts.

• Verification of OS compoments is important. Since any fault in the implementation of an operating system could affect the user processes running on it or even halt the whole system unexpectedly, the reliability of a computer system can only be as good as that of the operating system in it. Thus the verification on operating system components is important by all means.

• Verification of OS compoments is challenging. There has been many attempts [KEH + 09, YH10, PF10, OMLB16] to ensure the correctness of components of OS by formal verification. Most of them are based on theorem proving and specific to one version of a certain OS. Verification by static analysis is much harder since the data structures in OS are usually complex and it is non-trivial to design automatic reasoning algorithms of proper precision to prove meaningful properties.

• Verification of OS compoments shows the strength of our anlysis. Our coalescing domain can describe overlaid data structures, especially dynamic structures in arrays, which happen to be common in real time operating systems. Thus experiments on these operating systems could demonstrate the strength of our analysis.

The benchmarks are summarized in Table 7.1.

• AOS is an industrial embedded real-time operating system. It is not open source and we are not authorized to give the background of it. The task scheduler in AOS maintains three lists in an array to record all the running tasks in the states of "suspend", "sleep" and "ready" respectively. The list of "ready" tasks are sorted with respect to the priority level. We take the task scheduler into our benchmark since it is representative and challenging (multiple lists including a sorted one in an array).

• TinyOS [LMP + 05] is an embedded, application-specific operating system designed for sensor networks. Each node in such networks integrates a low-power CPU with limited memory and radio or optical communication, so that they can interact with the environment and each other through sensors, actuators and communication. The limited resources on each node is for sake of cost, which is pivotal to the application of sensor networks, since typical applications of sensor networks like environmental monitoring and seismic analysis of structures, could easily require thousands of nodes. Moore's law will be applied to reduce size and cost rather than increase capability, to make Internet of things practical which needs huge amount of nodes.
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