
HAL Id: tel-01963290
https://theses.hal.science/tel-01963290v1

Submitted on 21 Dec 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Search and broadcast in stochastic environments, a
biological perspective.

Lucas Boczkowski

To cite this version:
Lucas Boczkowski. Search and broadcast in stochastic environments, a biological perspective.. Com-
puter Science [cs]. Université Paris 7, 2018. English. �NNT : �. �tel-01963290�

https://theses.hal.science/tel-01963290v1
https://hal.archives-ouvertes.fr

Thèse de doctorat

de l’Université Sorbonne Paris Cité

Préparée à l’Université Paris Diderot

ÉCOLE DOCTORALE DE SCIENCES MATHÉMATIQUES DE PARIS CENTRE (ED 386)

Institut de Recherche en Informatique Fondamentale (IRIF)

Spécialité : Informatique

Search and Broadcast in Stochastic Environments,
a Biological Perspective

Par :

Lucas BOCZKOWSKI

Directeurs de thèse : Iordanis KERENIDIS et Amos KORMAN

Soutenue publiquement à Paris le 30 novembre 2018 devant le jury constitué de :

Yehuda AFEK PU Tel-Aviv University Examinateur
Pierre FRAIGNIAUD DR CNRS & IRIF Président du jury
Iordanis KERENIDIS DR CNRS & IRIF Directeur
Amos KORMAN DR CNRS & IRIF Directeur
Claire MATHIEU DR CNRS & ENS Examinatrice
Kurt MEHLHORN PU Max-Planck-Institut für Informatik Examinateur
Luca TREVISAN PU U.C. Berkeley Rapporteur
Roger WATTENHOFER PU ETH Zurich Rapporteur

ii

Titre : Recherche et diffusion d’informations dans un environnement bruité, une perspec-
tive biologique.

Résumé : Cette thèse s’articule autour de deux séries de travaux motivés par des expériences
sur des fourmis. Bien qu’inspirés par la biologie, les modèles que nous développons utilisent
une terminologie et une approche typique de l’informatique théorique.

Le premier modèle s’inspire du transport collaboratif de nourriture au sein de l’espèce
P. Longicornis. Certains aspects fondamentaux du processus peuvent être décrits par un
problème de recherche sur un graphe augmenté d’un certain type d’indications bruitées à chaque
noeud. Ces indications représentent de courtes traces de phéromones déposées devant l’objet
transporté afin de faciliter la navigation. Dans cette thèse, nous donnons une analyse complète
du problème lorsque le graphe sous-jacent est un arbre, une hypothèse pertinente dans un
cadre informatique. En particulier, notre modèle peut être vu comme une généralisation de la
recherche binaire aux arbres en présence de bruit. De manière surprenante, les comportements
des algorithmes optimaux dans ce cadre diffèrent suivant le type de garantie que l’on étudie :
convergence en moyenne ou avec grande probabilité.

Le deuxième modèle présenté dans cette thèse décrit la diffusion d’informations au sein de
fourmis du désert. Dans notre modèle, les échanges ont lieu uniformément au hasard, et sont
sujets à du bruit. Nous prouvons une borne inférieure sur le nombre d’interactions requis en
fonction de la taille du groupe. La borne, de même que les hypothèses du modèle, semblent
compatible avec les données expérimentales. Une conséquence théorique de ce résultat est une
séparation dans ce cadre des variantes PUSH et PULL pour le problème du broadcast avec
bruit. Nous étudions aussi une version du problème avec des garanties de convergence plus
fortes. Dans ce cas, le problème peut être résolu efficacement, même si les messages échangés
au cours de chaque interaction sont très limités.

Mots clefs : Algorithmes biologiques - Dissémination d’informations - Recherche robuste
- Complexité moyenne - Erreurs permanentes - Communication bruitée

iii

Title: Search and broadcast in stochastic environments, a biological perspective.

Abstract: This thesis is built around two series of works, each motivated by experiments on
ants. We derive and analyse new models, that use computer science concepts and methodology,
despite their biological roots and motivation.

The first model studied in this thesis takes its inspiration in collaborative transport of food
in the P. Longicornis species. We find that some key aspects of the process are well described
by a graph search problem with noisy advice. The advice corresponds to characteristic short
scent marks laid in front of the load in order to facilitate its navigation. In this thesis, we
provide detailed analysis of the model on trees, which are relevant graph structures from a
computer science standpoint. In particular our model may be viewed as a noisy extension
of binary search to trees. Tight results in expectation and high probability are derived with
matching upper and lower bounds. Interestingly, there is a sharp phase transition phenomenon
for the expected runtime, but not when the algorithms are only required to succeed with high
probability.

The second model we work with was initially designed to capture information broadcast
amongst desert ants. The model uses a stochastic meeting pattern and noise in the interactions,
in a way that matches experimental data. Within this theoretical model, we present in this
document a strong lower bound on the number of interactions required before information can
be spread reliably. Experimentally, we see that the time required for the recruitment process of
even few ants increases sharply with the group size, in accordance with our result. A theoretical
consequence of the lower bound is a separation between the uniform noisy PUSH and PULL
models of interaction. We also study a close variant of broadcast, without noise this time but
under more strict convergence requirements and show that in this case, the problem can be
solved efficiently, even with very limited exchange of information on each interaction.

Keywords: Biological algorithms - Information dissemination - Fault tolerant search -
Average case analysis - Permanent faults - Noisy communication

iv

Acknowledgements

This thesis would have little to do with its current form had I not benefited from so many
lucky encounters and fruitful interactions over the past three years, starting with my two
outstanding advisers, whose guidance and support will be hard to match if I do another PhD.

Amos, your advice although not delivered in the form of pheromones was precious to reach
the end of this thesis. The dedication you put in your work, and the confidence with which you
manoeuvred through the obstacles of research made a lasting impression on me. Thank you
for involving me in your unique scientific enterprise, connecting the algorithms and the ants,
between Paris and Tel Aviv. Needless to say you changed my perception of many aspects of
life beyond computer science (in a good way).

Iordanis, we worked together mostly at the outset of this journey, but you were always a
great support along the way. I was always impressed by the breadth and acuteness of your
views on the field. The class you gave when I was a Master’s student was a pivotal moment
for me, which motivated me to engage in a PhD.

I am very grateful to Luca Trevisan and Roger Wattenhofer for taking the time to review
this manuscript and giving me very insightful feedback. I would also like to thank the members
of the jury Yehuda Afek, Pierre Fraigniaud, Claire Mathieu and Kurt Mehlhorn for their interest
in my work, and for being present at my defense.

In my experience, research was everything but a solitary exercise. I would like to warmly
thank Emanuele Natale and Yoav Rodeh for the time spent together around the globe (Uni-
versità Tor Vergata, the Max Planck Institute and the Weizmann Institute), increasing my
appreciation of rigor and calm respectively and of course sharing so many ideas. This thesis
would lack a great deal of motivation if it were not for Ofer Feinerman’s ant lab at the Weizmann
Institute. Thank you for making every visit such an interesting experience. The collaboration
with Uriel Feige has been a great drive to develop more results on the advice model. At IRIF,
I have also learned a lot from collaborating with Adrian Kosowski and Frédéric Magniez. More
recently, I enjoyed working with Brieuc Guinard and Ami Paz.

Ma thèse est largement tributaire de l’excellente atmosphère qui règne à l’Université Paris 7
et plus particulièrement à l’IRIF, laboratoire qui m’a accueilli au cours de ces trois ans. La vie
quotidienne y fut très agréable notamment grâce à Guillaume et Alexandre dont j’eus l’honneur
de partager le bureau, mais aussi Alex, Laurent, Mengchuan, Yassine, Mathieu, Alkida, Dennis,
Florent, Pierre et tous les autres doctorants, collègues devenus amis.

Ces remerciements s’étendent bien sûr aux membres de l’administration, dont le travail
a grandement facilité ma vie de chercheur. Un grand merci donc à Noëlle, Odile, Etienne,
Dieneba, Amina, Houy et Läıfa.

Je suis également reconnaissant à l’école républicaine et ses différents professeurs qui m’ont
donné le goût des mathématiques, ainsi qu’à Marc Lelarge pour m’avoir encadré en master
de probabilités et donné le goût des sujets inter-disciplinaires. In the past, Yuval Peres and
Rüdiger Urbanke have been great internship mentors.

v

J’aimerais aussi remercier mes amis : scientifiques, littéraires, littéraires post-coloniaux,
coureurs de fond, pousseurs de bois, pousseurs de luges, chefs cuistots, végétariens en période
probatoire, végans endurcis sauf en Russie, défenseurs professionnels de la Nature, cinéastes,
cinéphiles et assimilés, ceux qui m’ont fait grabataire ou cadavre pour une cause artistique,
ceux qui m’ont fait passer de si bons moments autour d’un d̂ıner à Paris, dans leur chalet en
Savoie (vous êtes plusieurs) ou dans toute autre propriété familiale, ceux qui étaient là pour
le dernier déménagement (vous n’êtes pas plusieurs), ceux que j’ai été voir à l’étranger et ceux
qui m’attendent encore : Anatole, Anne, Antoine, Arthur B., Arthur L.B., Camille, Charles
F., Charles M., Christian, Christophe, Clément M., Clément P., Emmanuel, Félix, Gabrielle,
Gary, Giulia, Ines, Kenza, Lisa, Louis, Lucas, Marianne Ha., Marianne Hi., Maxime, Mélina,
Minh-Tu, Nicolas, Pauline, Pierre B., Pierre D., Raphaël, Rebecca, Simon, Sophie, Thomas,
Victor.

The Argentinean, the Swedish, and the Israeli branch of my family, all have my gratitude
for their continuous hospitality, particularly during the making of this work. I am honored to
see some of their members coming to my defense. J’ai également une pensée spéciale pour la
branche Blésoise1, dont je me réjouis de la présence à ma soutenance et au-delà. Je salue enfin
les oncles et tantes de coeur, amis de mes parents qui me font aussi la joie d’être présents.

Je ne dirai que peu de choses ici à propos de ceux à qui je dois le plus. Merci à Jorge et
Diana, mes parents pour leur écoute et leur soutien inestimable. L’intransigeance intellectuelle
vivifiante de mon frère Octave a aussi beaucoup compté. J’ai apprécié son soutien à distance,
ainsi que celui plus récent de Nicole.

Merci enfin et surtout à Elsa, sans qui je n’envisagerais rien de tout le reste.

1 en incluant Betsy que je remercie en particulier pour la relecture de ces remerciements

Contents

1 Introduction ix

1.1 Summary . ix

1.2 Organization of the Introduction . x

1.3 Background . x

1.4 Searching with Noisy Local Advice . xii

1.4.1 Biological Setup . xii

1.4.2 The Noisy Advice model . xiv

1.4.3 Connection to Experiments and First Results xv

1.4.4 Theoretical Results . xvii

1.4.5 Different Guarantees - Different Approaches xviii

1.5 Broadcast under Harsh Communication Conditions xix

1.5.1 Biological Setup . xix

1.5.2 Bit Dissemination in the Pull Model . xx

1.5.3 Theoretical Results and Connection with Experiments xxi

1.5.4 A Self Stabilizing Solution without Noise xxi

1.5.5 Structure of the Proofs . xxiii

1.6 Related Work . xxiv

1.6.1 Swarm Intelligence . xxiv

1.6.2 Population Protocols . xxv

1.6.3 The Beeping Model . xxvi

1.6.4 The Lower Bound Approach . xxvi

1.6.5 Approaches From Other Fields . xxvii

1.7 Works Completed During My PhD . xxviii

1.7.1 Works Presented in This Document . xxviii

1.7.2 Other Works . xxix

2 Advice on Trees 1

2.1 Introduction . 1

2.1.1 The Noisy Advice Model . 1

2.1.2 Results in Expectation . 3

Contents vii

2.1.3 Results in High Probability . 5

2.1.4 Related Work . 5

2.1.5 Notations . 6

2.1.6 Organization of This Chapter . 6

2.2 Optimal Walking Algorithm in Expectation . 7

2.2.1 Algorithm Design following a Greedy Bayesian Approach 7

2.2.2 Algorithm Awalk . 9

2.2.3 Analysis . 10

2.3 Lower bounds in Expectation . 12

2.3.1 Exponential Complexity Above the Threshold 12

2.3.2 Proof of Lemma 2.10 . 13

2.3.3 A Lower Bound for the Move Complexity in Expectation Below the
Threshold . 15

2.4 Memoryless Algorithms . 15

2.4.1 Lower Bound in the Semi-Adversarial Variant 15

2.4.2 Probabilistic Following Algorithms . 16

2.5 Upper Bounds in High Probability . 20

2.5.1 The Meta Algorithm . 21

2.5.2 Upper Bound in the Walk Model with High Probability 22

2.6 Lower Bound . 25

2.6.1 Proof of Theorem 2.6 . 26

2.6.2 Proof of Lemma 2.28 . 28

2.7 Open Problems . 29

3 Advice on Trees: Query Complexity 31

3.1 Introduction . 31

3.2 Notation . 31

3.3 Our results . 32

3.4 A Lower Bound of Ω(
√

∆ · log∆ n) when q ∼ 1/
√

∆ 33

3.5 Proof of Theorem 3.2 . 34

3.5.1 Proof of Lemma 3.5 . 35

3.6 Proof of Corollary 3.3 . 37

3.7 Proof of Theorem 3.1 . 38

3.7.1 Algorithm Amid . 39

3.7.2 Analysis of Amid Conditioning On The Complement of Excellent . . . 40

3.7.3 Analysing Atomic Expressions . 44

3.7.4 The Lemmas About the Resilience of Aloop 45

3.8 Complementary Proofs . 48

3.8.1 Another Large Deviation Estimate . 48

3.8.2 Algorithm Aloop without Conditioning 49

3.8.3 Special Form of Union Bound . 50

viii Contents

4 A Lower Bound for Broadcast 52
4.1 Introduction . 52

4.1.1 Background and motivation . 52
4.1.2 The Problem . 53
4.1.3 Our Contributions . 54
4.1.4 Related Work . 59
4.1.5 Organization of the Chapter . 60

4.2 Formal Description of the Models . 60
4.2.1 Initial Configuration . 60
4.2.2 Alphabet and Noisy Messages . 61
4.2.3 Random Interaction Patterns . 62
4.2.4 Liberal Assumptions . 62
4.2.5 Considered Algorithms and Solution Concept 63
4.2.6 Convergence and Time Complexity . 64

4.3 The Lower Bounds . 64
4.3.1 Reducing to the broadcast-PULL Model 65
4.3.2 Rumor Spreading and Hypothesis Testing 66
4.3.3 Proof of Theorem 4.6 . 70

5 Self-Stabilizing Broadcast with 3-bit Messages 75
5.1 Introduction . 75

5.1.1 Background and Motivation . 75
5.1.2 Technical Difficulties and Intuition . 76
5.1.3 Organization of the Chapter . 79
5.1.4 The Model . 79
5.1.5 Our Results . 80
5.1.6 Related Work . 82

5.2 Preliminaries . 84
5.2.1 A majority Based, Self-Stabilizing Protocol for Consensus on One Bit . 84
5.2.2 Protocol Syn-Simple: A simple Protocol with Many Bits per Interaction 85
5.2.3 The bitwise-independence Property . 86

5.3 A General Compiler that Reduces Message Size 88
5.4 Self-Stabilizing Clock Synchronization . 90
5.5 Majority Bit Dissemination with a Clock . 96

5.5.1 Protocol Syn-Phase-Spread . 97
5.5.2 Proof of Theorem 5.1 . 106

5.6 Conclusion and Open Problems . 106

6 Conclusion 108
6.1 Summary of Contributions . 108
6.2 Future Directions . 109

Chapter 1

Introduction

1.1 Summary

This thesis is articulated around two series of works at the junction between computer science
and biology. The first series revolves around a new kind of graph search problem, while the
second is about broadcast.

The trajectory we follow is similar in the two cases, and summarized in Figure 1.1. Our
original scientific approach bridges theoretical algorithm analysis and experimental biology,
with a high level goal of reinforcing the interactions between the two fields. Experiments on
ants performed at Ofer Feinerman’s lab at the Weizmann Institute provide inspiration and
a reference point that drive the design of new theoretical models. The models are accurate
enough to capture some aspects of the biological algorithmic process at hand, but at the same
time simple enough to lend themselves to rigorous mathematical analysis and to encompass a
broad array of biological phenomena. By understanding which tasks are efficiently solvable in
our framework, we hope to obtain new insights on the experiments and the associated biological
phenomena. We also find relevance for our works in more standard computer science contexts,
so we refine the analysis in that direction, increasing the technical depth at the cost of losing
the connection with biology.

Both our broadcast and search models are motivated by experiments on food foraging, albeit
with different species of ants. The first setup uses ants of the species Paratrechina longicornis
commonly referred to as “Crazy ants”. These tiny ants occasionally carry large insects back to
their nest, by working in groups. The navigation is a complicated mechanism, due to the large
number of individuals that are involved, and the route not being well established. Ants that
are not carrying the load are able to help routing it by laying short scent marks. However this
guiding mechanism is not without faults. The individual ants signal a path that is good from
their perspective, but that may be too narrow for the larger item being carried.

In [71], we studied the kind of trail that is used by crazy ants. It presents characteristics
that were unreported before for any kind of ant. To capture the essence of the process, we

x Chapter 1. Introduction

introduce a simplified model that corresponds to a search problem on a graph with unreliable
advice. The advice, modeling pheromones, comes in the form of pointers located at each node.
The pointers indicate a step on a shortest path to the target node, but with some probability
they are misleading and then point to a randomly chosen neighbor. Crucially, the pointers
are fixed throughout the execution, and cannot be re-sampled. This yields a new model of
noise, leading to new algorithmic challenges and tailored techniques to overcome them. We
analyzed the model on the line and two dimensional grids first [71] and showed connections
with the experiments on ants. In subsequent work [28, 31] geared towards the computer science
community, we carried an analysis on trees, having in mind tree-like data structures. In this
manuscript, we present the works [28] and [31] in Chapters 2 and 3.

In the second line of research, the experiments were carried on Cataglyphis niger, a desert
ant species. When a forager ant finds a large amount of food outside the nest, it tries to share
that information with her peers who remained inside the nest, in order to recruit more ants
to deliver the food. Desert ants do not rely on pheromones to communicate. Instead they use
physical contact to convey information.

Our approach consists in viewing recruitment as a broadcast problem with a stochastic
meeting pattern. The model incorporates noise in the interactions, in a way that matches
the data gathered from experiments. Within this theoretical model for broadcast with noisy
interactions, we are able to show a strong lower bound on the number of interactions required
before information can be spread reliably to at least another individual. Although this is
a negative result, it sheds a new light on the experiments, by giving a new counterintuitive
prediction. Indeed, we see that the time required for the recruitment process of even few ants
increases sharply with the group size, in accordance with our result. Due to its generality, the
lower bound may also be relevant to other biological systems. In Chapter 4, based on [24],
we present the model and experiments in more details, and the associated lower bound. In
Chapter 5, based on [29], we study a close variant of broadcast, without noise this time but
under more strict convergence requirements.

1.2 Organization of the Introduction

A general background is given in Section 1.3. The works presented in this manuscript and their
connection to biology are explained in greater detail in Sections 1.4 and 1.5. In Section 1.6,
we expand on Section 1.3 by presenting other attempts to bridge computer science and biology
and more related work. In Section 1.7 two of my works that are outside of the scope of this
manuscript are briefly presented.

1.3 Background

Throughout its short history, computer science has already approached biology on several oc-
casions, and has had a profound impact on it. Perhaps the best established area of interaction

1.3. Background xi

Biology Model Theory

Predictions and
validation

Crazy ants
cooperative

transport

Noisy Advice
navigation
problem

Algorithms on trees
query complexity

lower bounds

Exponential escape from traps
Ballistic behavior on open terrain

CS Applications

Fault tolerant
data structures?

Desert ants
recruitment

Broadcast
problem

Self-stabilizing algorithm
without noise

lower bound with noise
separation between

noisy pull and noisy push

More ants
slower recruitment

Broadcast & clock
synchronization

under harsh
communication conditions?

C
ha

pt
er

s
1

&
2

C
ha

pt
er

s
3

&
4

Figure 1.1: The framework behind the works presented in this manuscript.

between the two disciplines is bio-informatics. The field of bio-informatics leverages computa-
tional tools to manipulate and analyze biological data, for instance nucleic acid sequences. On
the theoretical side, in 1956 already, Von Neumann wrote an essay entitled The Computer and
the Brain, which examines similarities and differences between the functioning of the brain and
that of computers.

Analyzing algorithms in the natural world requires handling many unknowns. The setting
is often not well defined, and sometimes the algorithm itself is not well specified either. In
line with the spirit of comparing biological processes to computational ones, several works have
drawn inspiration from biology to derive new algorithmic ideas. This fruitful approach was
pioneered in distributed computing through the Beeping model [1, 2], its companion “Stone age”
computing model [58] and population protocols [7]. More information on these interesting lines
of research is given in Section 1.6. Schematically, restrictions on communication or computing
power are added to standard distributed computing models to form new models, that are better
suited to describe biological systems. With such a bio-inspired model in hand, it is possible

xii Chapter 1. Introduction

to study the feasibility of a given computational task, such as broadcasting or computing a
Maximal Independent Set. Another approach consists in studying an algorithm that is thought
to be relevant to describe some biological process. A prominent example in this category is
the work by Chazelle on flocking [39]. In all these research lines however, it is rare to see close
collaborations between experimental biologists and computer scientists, [2] being a notable
exception. Thus, the theoretical findings are not necessarily confronted to the experiments
that inspired them.

Mathematical modeling has already been used in other disciplines to capture the essence
of biological phenomena. For the particular case of social insects and ants in particular, there
is a rich literature in the field of theoretical ecology. The models proposed by ecologists since
the 60’s draw on economic reasoning to characterize the optimality of decisions made by ants
(where to locate the nest, how to forage etc.). More recently, physicists have also proposed
models inspired by biology, importing techniques and tools from their field. Their models
are often based on continuous objects such as PDE’s, whereas their discrete counterparts are
favored in computer science. A more fundamental difference between the two fields is that in
computer science, the algorithm is systematically decoupled from the computational model,
and viewed as one way amongst others to achieve a given task. 1

1.4 Searching with Noisy Local Advice

In this section, the Noisy Advice Model of graph search is introduced. The model has a
biological motivation: it is closely related to experiments on ants, presented and analyzed in
[71]. The results presented in Section 1.4.4 are taken from the works [28] and [31], that are the
basis of Chapters 2 and 3 in this manuscript.

1.4.1 Biological Setup

P. longicornis ants are a very common ant species also known as “Crazy ants”. They are
small: adult specimens measure approximately 2mm. When they find a large food item while
foraging, they can engage in a cooperative transport process where several individuals join
forces to bring the item to the nest (see Figure 1.2). This is a very intricate mechanism, that is
interesting as an example of a complex collective behavior. Moving the load requires the ants
to master a scale that is beyond their own. Due to the difference in size between the ants and
the load they carry, there is a gap between the ants perspective and the knowledge required
for the load navigation. This can potentially lead to conflicts, or inefficiencies.

An important step towards understanding the navigation process was made when Ofer
Feinerman and his group at the Weizmann Institute were able to show empirical evidence for a

1Famous examples of computational models include the automata, Turing machine, the streaming model,
communication complexity models etc. In each of those, several algorithms or protocols exist to solve a par-
ticular task, with different performance guarantees. The performance is measured with respect to a relevant
computational resource such as time, space, communication.

1.4. Searching with Noisy Local Advice xiii

Figure 1.2: (A-C). Distribution of marking events (N = 408) during a specific example of 113 cm of

cooperative transport. Upper panels show the spatial distribution of scent marks (purple dots) locations,

upon marking, in a moving frame of reference that is attached to the center of the transported load. The

x-axis of this reference frame points towards the nest (a) or in the direction of the load movement in the

2 s that immediately proceed (b) or follow (c) the time this mark was deposited. Purple lines indicate

quartile polytopes. Bottom panels: Angular distribution of the same data points. (D) Cooperative

transport of a large prey item in a natural environment. Green dots denote scent marks. Red bars

denote 2 cm. This figure appeared as Figure 3 in [71].

new kind of scent marks used during the retrieval stage of cooperative transport. These marks
are laid by individual ants that are not carrying the load, and can be understood as guiding
instructions for the ants carrying the load. This common function of the pheromone is however
associated here to some unique features that also distinguish them from previously described
ant trails2.

1. They are short (median bout length is less than 10 cm) and volatile.

2. They typically convey precise information about the nest direction but they can be mis-
leading. This is interpreted as a consequence of the impossibility for single ants to detect

2All statements about ant behavior given here are based on numerical evidence provided by Feinerman’s
team. See [71] for details

xiv Chapter 1. Introduction

which paths are accessible for the much larger load being carried.

3. Empirically, it can be shown that the load typically follows the scents close to it, but also
occasionally deviates from them.

4. A trail composed of short scents is dynamically created in front of the load as it moves.
That is, everywhere the load goes, even if it deviates from a shortest path to the nest, it
keeps receiving navigation instructions.

In [71], we propose a model for the navigation process that incorporates the main macro-
scopic aspects of the pheromone guiding mechanism. For this, we use the language of discrete
graphs, and view the short scent marks as local advice.

1.4.2 The Noisy Advice model

We now introduce the Noisy Advice Model. Anticipating the following sections, the model is
given in a somewhat general form, including several variants of interest. The link between the
abstract model and the experiment is clarified in Section 1.4.3.

Let G be an undirected bi-directional graph, where a treasure has been hidden at some
node τ ∈ G. A searcher aiming to find τ interacts with G in the following way. The searcher
can probe any node v and learn if τ = v. If not, it is given an indication, called advice in
the form of a node u, amongst the neighbors of v. If the advice is valid, it should satisfy
d(u, τ) = d(v, τ) − 1, where d(·, ·) is the hop distance on the graph. In words, u is a possible
first step on a shortest path from v to τ .

Noise assumptions. Initially, each node is declared faulty with some fixed probability q ∈
(0, 1). If a node v is faulty, the advice it holds is either a random neighbor or an adversarially
chosen one. Importantly, the advice at each node is fixed throughout the execution of the
algorithm.

The most important aspect of our noise model is that advice is drawn once and for all.
When querying several times the same node, the answer remains the same.

Semi-adversarial variant. The purely-probabilistic Noisy Advice Model is well suited to
describe the ants’ navigation, as we explain below. Instead, in the semi-adversarial variant,
first, the adversary specifies the faulty advice w for each node u in case u is faulty, and then
the environment samples which node is faulty and which is sound. Therefore, the adversary
does not get to choose if a node is faulty, but rather what advice it would show if it is chosen
(randomly) as faulty.

Complexity measures. We mainly keep track of two resources. Our algorithms are either
efficient with respect to the number of moves made (edges traversed) or the number of queries
made before finding the treasure. Note that the number of advice queries is always smaller
than the number of moves.

1.4. Searching with Noisy Local Advice xv

Convergence requirements. We produced three related works on this model. In the first
two [71, 31], we were concerned about finding efficient algorithms in expectation over the
faulty locations, whereas in the third one [28], we studied the problem under high probability
requirements. In this manuscript, works are grouped according to the complexity measure
(moves VS queries) rather than the kind of guarantee on the running time.

1.4.3 Connection to Experiments and First Results

The agent moving along the edges of the graph models the moving load seeking the nest/target
τ . Local advice models the guiding scent marks laid by individual non-carrying ants3. The
crucial assumption that advice is permanent is motivated by the fact that the environment
does not change significantly during the motion of the load. Hence, if the scents are misleading
at a given point in time and space, it is likely to remain misleading at the same point in space,
later in time. Considering probabilistic rather than worst case faults models the fact that the
terrains ants face are not designed by an adversary.

Probabilistic Following. Empirical analysis carried by Feinerman’s team revealed that the
algorithm performed by the ants can be approximated by a randomized strategy, which we
term Probabilistic Following. This is a memory-less algorithms that consists in following the
advice proposed at each step with some probability λ ∈ (0, 1) and making a random move
otherwise.

In the paper [71] (results not included in this manuscript), we analyzed the Probabilistic
Following model over two kinds of graphs. Recall that q is the mistake parameter, it corresponds
to the probability of each advice being faulty. On 2-dimensional grids, describing an open
terrain, we were able to show that if the mistake parameter q is sufficiently low, under an
appropriate choice of λ, the probabilistic following strategy is ballistic. That is, it moves in
the direction of the nest at a constant speed. This analysis heavily relies on results from the
theory of random walks in random environment (RWRE), of which the process we study is a
particular example.

On the line, we show that the Probabilistic Following strategy has a linear speed if q < 1
2

and an exponential speed if q > 1
2 . The proofs are also adaptations of known RWRE results.

Empirical confirmation. In the Navigation was studied on an open terrain (corresponding
to a grid in our model). As the theory predicts, even if the scents do not always lead to the
nest, the travel time scales linearly with the distance to the nest. In contrast, it is possible to
design obstacles that will require the ants exponential time to bypass (exponential in the size
of the obstacle, see Figure 1.3C). The idea is to design a big line-shaped wall with a narrow

3The scent marks are volatile, so once the load follows some advice scent it is likely to have disappeared if
it ever comes to the same spot again. At that moment new scent (approximately identical to the first one) will
be dropped and so forth. This means we can safely assume advice is directed, even if in real life there is no
evidence for directionality in the scent marks themselves.

xvi Chapter 1. Introduction

slit at the center. The slit allows for single ants to pass. If no ant comes from the side, all the
scents point towards the slit and are thus misleading. The load will stay stuck trying to pass
through the slit, when the correct decision would be to go around the wall, either through the
left or right. This situation can be seen as a line with q = 1 where indeed the model predicts
exponential time to reach the endpoint. It is worth noting the measurement on an open terrain
and the design of the obstacles were guided by our theoretical findings.

Figure 1.3: (A) In an obstacle-free environment, the load loses the scent trail which then reforms

in front of it. Green dots indicate the position of scent marks produced before the load reached the

position indicated on the image (ring). Blue dots indicate scent marks laid after this time. Solid line

marks the load’s trajectory. (B) The probability that the load eventually approaches (to less than 3 cm)

a scent mark as a function of the distance between them at the moment of marking. For comparison,

the green line depicts the corresponding curve for a classical ant trail (C) Cooperative transport while

bypassing an obstacle (thick red lines) with a slit. Load position and marking colors as in panel (a).

(D) Distribution of single ant marking bout lengths defined as the distance between the load and the

furthest mark in a marking sequence. The inset shows a typical marking bout of nine marks (discs).

Furthest mark is denoted in orange. Red bars denote 2 cm. This figure appeared as Figure 3 in [71].

1.4. Searching with Noisy Local Advice xvii

Upper Bound Lower Bound

N.R. Moves Queries N.R. Moves Queries

E q � 1√
∆

O(d
√

∆) Õ(
√

∆ log n) q � 1√
∆

eΩ(d) nΩ(1)

h.p. q = ∆−ε dO(ε−1) (log n)O(ε−1) q = ∆−ε dΩ(ε−1) (log n)Ω(ε−1)

Figure 1.4: Purely-random variant. A summary of the results presented in Chapters 2
and 3, in simplified form. The symbol E indicates results that hold in expectation, while the
shorthand h.p. stands for high probability. The precise conditions behind the symbol � will be
clarified later. We write N.R. in place of Noise Regime.

Upper Bound Lower Bound

N.R. Moves Queries N.R. Moves Queries

E q � 1
∆ O(d

√
∆) − q � 1

∆ eΩ(d) nΩ(1)

h.p. q = ∆−ε dO(ε−1) (log n)O(ε−1) q = ∆−ε dΩ(ε−1) (log n)Ω(ε−1)

Figure 1.5: Semi-adversarial variant. A summary of the results presented in Chapters 2
and 3, in simplified form, for the semi-adversarial variant.

1.4.4 Theoretical Results

Later, the analysis of the advice model was deepened by studying more complicated algorithms
than probabilistic following [28, 31]. We also moved the focus to trees, which is a prominent
graph family in computer science, due to important data structure applications. These results
are presented in Chapters 2 and 3.

Our results on trees are summarized in Table 1.4 for the standard purely-random variant
and Table 1.5 for the semi-adversarial variant. As mentioned previously we study both the
number of edge traversals needed before finding the target and the number of advice queries,
in expectation and with high probability. Chapter 2 deals with walking algorithms, while
Chapter 3 is about their query counterparts. Interestingly, when considering high-probability
algorithms, the semi-adversarial variant does not introduce a difference in the threshold for effi-
cient algorithms. Another interesting point is that Probabilistic Following (the ants algorithm)
turns out to be optimal for walking algorithms in the semi-adversarial variant.

xviii Chapter 1. Introduction

1.4.5 Different Guarantees - Different Approaches

Each type of complexity measure and convergence guarantee is linked to different algorithmic
ideas. Let us briefly present the strategies underlying our algorithms.

Moving fast in expectation. The crucial notion in the design of the algorithm is a carefully
crafted scoring function. It assigns to each node a number between 0 and 1, which we interpret
as a likelihood to lead to the treasure, given the advice seen so far by the searcher. At a given
point in time, the algorithm has already seen a connected component of nodes of the tree.
It considers the frontier of this connected component and decides to visit the node with the
highest score on this frontier. Visiting this node yields one extra piece of advice, which in turn
allows to update of the scores. The analysis then involves estimating the expected number of
nodes with a better score than the actual node leading to τ , at each level of the tree.

The approach we follow is akin to Bayesian search heuristics, where a prior on the location
of the object being searched is updated after every move using Bayes rule. Indeed our scoring
function is essentially a likelihood, computed with respect to a certain prior. This is perhaps
surprising for we do not assume any distribution on the placement of the treasure, but rather
consider it is placed by an adversary. The big challenge is finding the right prior distribution
that in some sense represents the adversary.

Moving fast with high probability. The approach taken here is slightly different. The
key concept, rather than being a scoring function, is a notion of node fitness, which can also
be viewed as a scoring function taking only binary values. Essentially, a node is declared fit
if it has many pointers to it on the path coming from the root. This is good evidence that
the node is either on the path to the treasure, or at least not too far from it. The idea is to
explore the component of fit nodes to which the root, i.e., the starting point, belongs. If the
component contains the treasure and few nodes outside the root to treasure path, then the
treasure is found fast. With the appropriate formalization of fitness, we can show that these
sufficient conditions for efficient search hold with high probability.

Queries. The number of queries is measured with respect to the total size of the tree n,
rather than the distance to the treasure d. We build on a separator based-scheme, that would
find the treasure using O(log n) queries in the absence of faults. Since the advice is not fully
reliable, a mechanism is needed to catch the error in case the advice at a separator is faulty.
Probing the whole neighborhood around a separator would be too costly. Hence, we resort to a
local exploration which actually corresponds to a walking algorithm as the ones described in the
previous paragraph. The local exploration corrects potential errors at all O(log n) separators
on the way to the treasure, with high probability, thus leading to efficient algorithms in the
high probability setting.

Local exploration may however fail due to a large quantity of errors around a separator. A
simple remedy is to settle this case by querying the whole tree. This does not completely break

1.5. Broadcast under Harsh Communication Conditions xix

the expected runtime, as it yields a O(log2 n) algorithm. To derive our best query-algorithm,
we use two scales of local exploration. The biggest scale is used as a fallback in case local
exploration at the first scale fails.

Randomized VS Semi-adversarial. In some cases, the same algorithms that work in the
purely random variant, that is, when the faulty nodes have a uniformly chosen advice, also
perform well in the semi-adversarial variant. This holds for our walking algorithms in the
high-probability case.

When considering algorithms with a good performance in expectation, the adversary choos-
ing the direction of advice at faulty nodes is able to delay the phase transition from q = 1√

∆

to q = 1
∆ . This means that when the noise parameter q is greater than 1

∆ , any algorithm has
exponential expected walking complexity in the semi-adversarial variant.

It turns out that Probabilistic Following, the memoryless algorithm we gave as a good
approximation to the ants behavior, is also optimal in that setting, for it reaches the target in
linear time when q < 1

∆ , even in the semi-adversarial variant.

1.5 Broadcast under Harsh Communication Conditions

1.5.1 Biological Setup

Cataglyphis niger ants are a kind of scavenger ants living in deserts or arid environments.
They typically look for food outside their nest individually. If an oversized food item is found
in the vicinity of the nest, a forager may try to recruit other individuals to help her carry it
back to the nest. For desert ants however, cooperative transport is more rare than for crazy
ants4. It involves fewer individuals and no pheromone. It is thought that desert ants do not
use pheromones because the hot environments they live in would make it evaporate too fast.

We are interested in that moment where a single ant holds a piece of information (the
presence of food in the vicinity of the nest, and perhaps its location) and wishes to share it
with her peers. C. niger ants primarily communicate by bumping into each other, and not, as
said previously, using pheromones.

Experiments were carried at the Weizmann Institute of Science by Feinerman’s team.
Groups of moderate size (up to 10 individuals) were exposed to a blocked food item. An
ant, upon discovering it and failing to move it on her own returns to seek help amongst her
peers. In that setup recruitment happens in the small area of the nest’s entrance chamber.
Within this confined area, the interactions between ants are nearly uniform [102], such that an
ant cannot control which of her nest mates she meets next. Additionally, it has been shown
that recruitment in Cataglyphis niger ants relies on rudimentary alerting interactions [52, 85]
which are subject to high levels of noise [106]. Furthermore, the responses to a recruiting ant
and to an ant that is randomly moving in the nest are extremely similar [106]. We consider that

4It was documented only recently [6]

xx Chapter 1. Introduction

the forager succeeded in alerting about the presence of a food source when, after her return to
the nest, at least one other ant went outside as well.

1.5.2 Bit Dissemination in the Pull Model

To approach this experimental setup, we use the language of broadcast, also known as bit
dissemination or information spreading. Below we present the main assumptions we work
with. The model we work with retains a certain degree of generality. Although it is well suited
to describe recruitment in desert ants, we hope that it is simple enough to describe other
biological setups as well. The general underlying principle is to gain understanding into the
conditions that make bit dissemination feasible.

The problem. The word broadcast is used interchangeably with bit dissemination, and
rumor spreading. The setup is as follows. Within a population of n agents, a source holds a
value b ∈ {0, 1} it wishes to share with the rest of the group. Sometimes, we also extend this
assuming there are several sources, each with their fixed input bit. In that case, we want a
non-source agent to learn the majority of all source inputs.

Agents. Since we are looking for a lower bound, we are rather liberal and assume agents are
able to make arbitrary computations. This is convenient because we do not want to make strong
assumptions on the ants inner functioning. The limitations come from the communication
setting. Each agent holds a message, that can be updated at any time, but it is subject to
noise.

Noisy pull interactions. We assume the model of interaction is the uniform PULL model.
This means that at each time slot, each agent synchronously samples one other agent and reads
the message they are displaying. Interactions are subject to noise. We assume each message
sent can be transformed into any other message with some small probability δ > 0.

Convergence guarantees. Since the interactions are randomized, we cannot hope to guar-
antee agents will recover the value kept by the source on every run of the protocol, within a
given time bound. Instead, we ask for convergence with non trivial probability, usually meaning
with probability 2

3 .

Number of interactions. The main resource we keep track of is time: how many pairwise
interactions or parallel rounds are needed before convergence. If there is no noise, and if we
do not enforce self-stabilization, a simple protocol works in O(log n) parallel rounds. At a high
level, this is because on each round, the fractioned of informed agents increases by a constant
multiplicative factor (in expectation, at least). Hence, usually, when working with models like
ours, the goal is to achieve logarithmic convergence time.

1.5. Broadcast under Harsh Communication Conditions xxi

1.5.3 Theoretical Results and Connection with Experiments

Within our theoretical framework, we are able to show the following theorem, stated here
informally.

Theorem 1.1

No protocol can solve the broadcast problem in the uniform PULL model in less
than Ω(n) rounds. The constant in the term Ω(n) hides a dependency on the noise
parameter δ.

There are at least three ways to approach this negative result. To begin with, it is in line
with the experimental observations made on C. niger ants. The interactions between ants are
well described by our random meeting pattern (Figure 1.6(b)). Ants encode information in
the speed they use when bumping into each other. The response to different messages (here
bumps of different speeds) are statistically hard to distinguish (Figure 1.6(c)). We take this as
evidence that the interactions are noisy. In fact, the lower bound itself can be taken as another
validation that our model is a reasonable abstraction for the biological system at hand. The
recruitment time deteriorates with group size, which is in accordance with our lower bound.
See Figure 1.6(d) for details.

A more indirect way to gain biological insights from Theorem 1.1 is by taking its contrapos-
itive. This leads to the following general meta-statement: in order to achieve efficient rumor
spreading, a system must exhibit either some degree of structural stability or, alternatively,
some facet of the communication which is immune to noise. This interesting insight can be
confronted with different examples. For instance the interactions between synapses is known
to be noisy, yet the brain as a whole has a reliable behavior. It appears a key factor that allows
for such global efficiency despite unreliability at the synaptic level is the structural stability of
the cell network.

All assumptions in the lower bound are necessary for the result to hold. If we replace
the PULL model by the PUSH model, the very same problem we studied in Section 1.5.2
can be solved efficiently [63], even if the messages are corrupted by noise. The PUSH model
is different in that, agents seeking to share a piece of information deliberately engage in an
interaction, and may otherwise stay silent. It should be noted that the very act of engaging
into an interaction is not altered by noise in the PUSH model. The lower bound of Theorem
1.1 may thus also be interpreted as an exponential separation between the PULL and PUSH
models with noise.

1.5.4 A Self Stabilizing Solution without Noise

Removing the noise assumption makes our problem efficiently solvable, even in the PULL
model. We went further in that direction and added other constraints to see what could still
be done with purely pull interactions. The changes with respect to the previous assumptions

xxii Chapter 1. Introduction

Figure 1.6: Unreliable communication and slow recruitment by desert ant (Cataglyphis

niger). a. The experimental setup. The recruiter ant (circled) returns to the nest’s entrance chamber

(dark, 9cm diameter, disc) after finding the immobilized food item (arrow). Group size is ten. b. A

probability density function (pdf) of the number of interactions that an ant experiences before meeting

the same ant twice. The pdf is compared to uniform randomized interaction pattern. Data summarizes

N = 671 interactions from seven experiments with a group size of 6 ants. c. Interactions of stationary

ants with moving ants were classified into three different messages (’a’, ’b’, ’c’) depending on the ants’

speed. The noise at which messages were confused with each other was estimated according to the

response recipient, initially stationary, ants (see Materials and Methods). Gray scale indicates the

estimated overlap between every two messages δ(i, j). Note δ = min(δ(i, j)) ≈ 0.3. Data collected over

N = 278 interactions. d. The mean time it takes an ant that is informed about the food to recruit two

nest-mates to exit the nest is presented for two group size ranges. Error bars represent standard error

of the means over N = 24 experiments.

are summarized below. This attempt fits in the framework of understanding what are the most
restricted conditions under which broadcast of information can be achieved.

1.5. Broadcast under Harsh Communication Conditions xxiii

Limited message size. In the lower bound result, the size of the message is not an explicit
parameter. We now instead characterize the noise by a given parameter δ that indirectly
controls the size of the message (once a noise model is specified). Here, we no longer assume
noise in the interactions and make the message size an explicit parameter, that ideally is as
small as possible.

Memory constraint. Besides restricting the amount of bits exchanged between two agents,
we also restrict the amount of memory used by agents. Importantly, the amount of memory
may be larger than the message displayed by an agent. This distinction is crucial to us, and
it is a major difference with the similar model of population protocols (see Section 1.6.2). We
insist that agents exchange only a few bits in their messages, even if they can manipulate up
to O(log log n) bits internally.

Self-stabilization. We consider here another very hard fault tolerance constraint (on top of
random interactions and limited message size). Namely, we enforce convergence for any initial
internal configuration of the agents state. This is called self-stabilization, and it is in fact a topic
of its own. In particular, imagine the source at some point switches her bit b to 1 − b. If the
protocol is self-stabilizing, every agent will soon converge to 1−b as well, regardless of the state
they were in when the source changed her mind. Such flexibility, or rather sensitivity to the
changes in the source opinion, is desirable in many technological contexts, but also for biological
systems. This is perhaps the biggest change with respect to the setup of Section 1.5.2.

Having defined the setting, we can now give our result.

Theorem 1.2

There exists a self-stabilizing protocol for Broadcast in the PULL model, that
requires O(log n log logn) rounds, and 3 bits per message.

1.5.5 Structure of the Proofs

Let us now explain at a high level how the proof of both upper and lower bounds discussed
above work, starting with the lower bound (Theorem 1.1). The idea is to reduce to a coin
distinguishing task and use an information theoretic bottleneck. More precisely, if we take
the perspective of a single agent, what it sees at each round is a random sample from the
population, to which noise is applied. If we forget that agents adapt to what they previously
saw and become more knowledgeable about the source value as time advances, it looks like it
can only gain knowledge upon sampling the source, which happens with probability 1

n . The
task of learning the value of the source is thus tantamount to that of distinguishing between
a coin with some parameter c and another one with parameter c + 1

n . Standard information
theoretic tools show that this requires n2 samples. The whole proof revolves around making
this intuition precise.

xxiv Chapter 1. Introduction

The proof of the upper bound is as follows. We first observe that the problem can be solved
rather easily if agents have a clock (i.e., a counter), that is if they are able to have a common
reference of time that is incremented on each parallel round. However, in a self-stabilizing
world, it is not possible to assume this common reference, because the adversarial initialization
could destroy it. We thus design a self-stabilizing clock synchronization mechanism. Our
first attempt builds on a consensus protocol devised by Doerr & al [48]. It yields a clock
synchronization protocol with super constant communication per message. At a high level,
it consists in running the protocol of [48] on every bit of the clock (viewed as a number
written in binary) independently. We then provide a recursive construction that improves the
communication until reaching a constant number of bits. At the heart is a message reduction
lemma, that crucially exploits the independence between each bit of the counter (the notion of
bitwise-independence is made precise in Chapter 5).

1.6 Related Work

Some general background was already given in Section 1.3. In this section we go into further
detail, and review important lines of research related to the works presented in this manuscript.
The focus is on topics connecting biology and more specifically ecology and theoretical computer
science. For a more complete review of interactions between biology and distributed computing,
see [64].

1.6.1 Swarm Intelligence

Swarm Intelligence is a broad label designating the study of emergent collective phenomena
in decentralized, agent based systems. Even if the inspiration is often taken from Nature, the
algorithms derived in the context of Swarm Intelligence are usually designed to be used in a
technological settings, i.e., in robotics or operations research. In those works, the behavioral
observations motivate the algorithm, but the algorithm is not thought of as an accurate de-
scription of nature. It is viewed as a metaphor, useful to solve humand centered problems.
This is an important difference with the works presented in this manuscript.

Ant Colony Optimization. Ant Colony Optimization, introduced by Dorigo in the early
90’s is a prime example of a metaphor-based heuristic, where a situation or system found
in Nature serves as a model for combinatorial search heuristic. The main underlying idea is
reinforcement. When having to choose between several good candidate options (that could be
housing options, routes to a food source) ants typically start by exploring all of them. Then the
most promising one is signaled by some chemical mechanism. It thus attracts more individuals,
reinforcing the scent marks and ultimately making it the option chosen by a strong majority,
if not all individuals.

Surprisingly, the concept of reinforcement can be leveraged to derive iterative algorithms

1.6. Related Work xxv

that solve classical optimization tasks such as the traveling salesman problem5. Mimicking a
natural entity to derive optimization algorithms is also the idea behind neural networks, or
genetic algorithms. The biological entity serving as a model is the brain in the first case and
Evolution in the second. It is worth noting that in the field of Ant Colony Optimization, there
are usually no proofs of convergence, or mathematical guarantees on the algorithms, due in
part to their sophistication. Instead we choose to study more modest algorithms, so that we
are able to analyze them rigorously.

Flocking. Flocking models describe how groups of animals manage to move together, agree
on a direction to follow or exhibit other group-level behavior based on simple local rules.
Typically, each agent aligns its speed with that of its neighbors. Several variants exist. For
instance, the word neighbors could be interpreted as the few nearest other agents, or perhaps
all agents within a given distance6

The models are usually tested using numerical simulations, and sometimes comparisons
with data. In [39], Chazelle was able to give a theoretical foundation to flocking by means of
a tight bound for the flocking time. However, the bound is extremely high, which questions
the relevance of the model in practice. It could also be that the worst-case assumption is
overly pessimistic. On a theoretical side, flocking, as presented by Chazelle, is in fact only a
particular example within the rich and technically refined field of Markov Influence Systems.
In Chapter 4, we also show a lower bound for a biological phenomenon. It is however very
different technically from the one of [39].

1.6.2 Population Protocols

Another important line of research to be mentioned is that of population protocols [7]. It
is motivated by several biochemical contexts, such as chemical reaction networks or DNA
programming. In that framework, computationally limited entities meet through pairwise
interactions with the aim of computing some function of the initial state of the whole population.
The first line of work on this model studied what functions can be computed under a worst
case kind of scheduling [10]. It turns out to be the class of semi-linear predicates. This very
interesting result says nothing however on the time bounds required for such computations.
This became the focus of another line of works that emerged later [8]. The objective became to
find optimal space or time bounds for explicit tasks, under a probabilistic scheduler, meaning
pairs of agents are selected uniformly at random, see e.g., [3, 4, 74].

The tasks most commonly studied are consensus, majority and leader election. The majority
problem asks to find which of two initial states A and B has the biggest count. In the leader

5The same idea of reinforcement also found an echo in probability theory. Reinforced random walks became
an active field of research in the last decade, and the connection with ants is sometimes made explicit [111, 94].

6 In biology, the term flocking is used only for groups of birds, whereas the term schooling is used for fish,
and swarming for insect groups. Computer scientists however tend to ignore such differences, as the models for
these different biological systems are similar.

xxvi Chapter 1. Introduction

election problem, each agent has the same initial state. The population should converge to
having one single agent in a designated leader state.

1.6.3 The Beeping Model

The beeping model [2, 1], is rooted in distributed computing but has the potential to capture
biological objects such as cell networks. The idea in this model is to solve a computational task
over a network, such as selecting a maximal independent set under very harsh communication
conditions. Namely, the communication is reduced to a single bit (a beep) per message. In
a similar spirit, a central feature of the model studied in Chapter 5 is that it uses very short
messages.

1.6.4 The Lower Bound Approach

Showing lower bounds is a central endeavor in computer science. The study of any computa-
tional model involves understanding its limits. Usually this means showing lower bounds on the
amount of resources needed to solve a particular task. The resource can take different forms,
depending on the model. Traditional computational resources are time and space but there
are many others. The amount of randomness, interaction, communication can all be quantified
and considered as resources as well.

An original idea introduced by Feinerman and Korman in [68] is to use the lower bound
methodology to gain new knowledge on biological systems. The two-step approach is as follows.
A theoretical lower bound (L) is derived in a model that captures a certain task carried by a
biological entity. Then this lower bound is confronted with reality. If the system breaks the
lower bound, then we infer by the contrapositive of (L) that one of the assumptions under
which (L) holds is violated. This yields an indirect biological insight.

To be specific, let us give a little background on the paper [68]. It studies a collective
search problem over the grid. The k agents involved in the search process cannot communicate
while searching but are able to exchange some c(k) bits of information prior to engaging in
the search. It is shown among other things that efficient search is only possible if c(k) is at
least log log k+ Ω(1). This lower bound has not yet been confronted to actual experiments. In
principle, however, linking the number of searchers and the amount of time taken to find a food
item should allow to form an indirect guess on how many bits of information ants exchange
before performing the task under consideration.

In Chapter 4, a more refined attempt to develop this approach is presented, in a somewhat
different context. This time, we do confront a theoretical lower bound about information
spreading to actual experiments. Interestingly, the paper [68] was subsequently extended and
improved in several ways [59, 60].

1.6. Related Work xxvii

1.6.5 Approaches From Other Fields

Before biology attracted computer scientists, it has been an object of study in other fields
such as ecology or physics. In those fields, it is understood that a good model should serve
as a predictor, or perhaps orient the observations on the field. We share the same view as
Hölldobler and Wilson [86] when they say: Most of the predictions made from the foraging
models are intuitively clear and have a double heuristic value in the study of ant ecology. First
they allow a test of the basic proposition that natural selection shapes behavior [...]. Second, by
framing research in terms of these models, the ecologist asks questions and searches for predicted
phenomena that may otherwise easily be missed.

Theoretical ecology There is a tradition of mathematical modeling in biology. Foraging for
instance is the subject of a theory called Optimal Foraging Theory (OFT) based on economic
reasoning and optimization [86, Chapter 10]. It was initiated already in the sixties [61, 78]. The
topic is relevant from our perspective since all our experiments are related to group retrieval
and recruitment, which take place after successful foraging.

In OFT, and more specifically the so called central-place variant, relevant to describe social
insects living in a fixed place, the colony is viewed as a rational agent seeking to optimize a
utility function, with energy being the underlying currency. A typical question that OFT seeks
to address is to identify the optimal moment to leave a given high resource area, called a patch,
to explore a new one. In the canonical model, the optimal moment is when the remaining
resource in the patch is lower than the expected gain in other patches. Spatial modeling of the
search process was traditionally not a main focal point of these works7. In fact, taking into
account the mechanistic part of the search process, using models of intermittent search and
Levy flights became a popular research direction for physicists8. Ecologists are aware that the
actual behavior encountered in nature may not match the theoretical optimum. In some cases,
some simple algorithms are studied in the form of rules of thumbs.

Complex systems - the physics perspective Over the last decades, physicists gradually
turned their attention to biological systems. They model biological phenomena using technical
tools that are common in their field. Whereas computer science mainly builds on discrete
mathematics, physicists are often more comfortable using continuous objects and equations,
such as PDE’s. But this difference might be a superficial one.

The physics approach in fact leads to different questions as the ones we try to address.
Having a computer science background, we think of any natural process we observe as an
algorithm belonging to a larger family of possibilities. This naturally leads us to the following
fundamental questions: in what sense the process we observe is optimal? What is the gain in a

7 Quoting [14]: Most models of OFT typically assume that animals have information about the location of the
patches so that the time spent between patches does not come out from a search process, instead from the average
distance between the patches.

8 In fact, the work [26] about random walks with different step lengths, presented in Section 1.7.2 is related
to this line of research.

xxviii Chapter 1. Introduction

given trait or behavior with respect to another? Such questions are in fact closely tied in spirit
to the theory of Evolution.

The works in this manuscript are about group retrieval by P. longicornis ants and recruit-
ment in C. niger ants. Both phenomena are also the subject of other experiments and physics
oriented works at Feinerman’s group. The process of collaborative transport is studied in [75],
using the Ising model, a cornerstone of statistical physics. The question investigated there is
how much influence each carrier has within the group. From a single ant perspective, there is a
tradeoff to be found between individuality and fully conforming to the groups effort. The local
rules describing an ant behavior are connected with the macroscopic behavior of the load, which
is shown to evolve at a critical regime between random walk and purely ballistic movement.

In [106], Razin & al. study the communication framework of desert ants. Amongst other
things, they are able to quantify the information flow in each interaction amongst individual
of this species. As explained above, this species does not communicate through pheromones
but rather through physical contact, the speed of ants in some sense playing the role of an
alphabet.

1.7 Works Completed During My PhD

1.7.1 Works Presented in This Document

The content of the following works on searching in the Noisy Advice model is the basis of
Chapters 2 and 3. Reading Chapter 3 requires knowledge of the advice model.

[31] Searching a Tree with Permanently Noisy Advice.
L. Boczkowski, A. Korman, Y. Rodeh.
European Symposium on Algortihms (ESA), 2018.

[28] Typically Fast Search on Trees with Permanently Noisy Advice.
L. Boczkowski, U. Feige, A. Korman.
Under submission.

The following two works are presented respectively in Chapter 4 and 5.

[24, 25] Limits for Rumor Spreading in Stochastic Populations.
L. Boczkowski, O. Feinerman, A. Korman, E. Natale
Conference version: Innovations in Theoretical Computer Science, 2018.
Journal version: PLOS Computational Biology (ITCS), 2018.

[29, 30] Minimizing Message Size in Stochastic Communication Patterns: Fast Self-Stabilizing
Protocols with 3 bits.
L. Boczkowski, A. Korman, E. Natale.
Conference version: Symposium on Discrete Algorithms (SODA), 2017.
Journal version: Distributed Computing, 2018.

1.7. Works Completed During My PhD xxix

1.7.2 Other Works

During my thesis, I had the chance to take part in other projects than the ones presented in
this manuscript.

[26] Random Walks with Multiple Step Lengths.
L. Boczkowski, B. Guinard, A. Korman, Z. Lotker, M. Renault.
Latin American Symposium on Theoretical Informatics (LATIN), 2018.

In [26], I studied a variant of random walks where multiple step lengths are allowed. This
study is in part motivated by biology, since it has been shown that the case of two different
step lengths, called intermittent search, can model many animal search patterns in Nature. We
analyze how long it takes such a process with k distinct step lengths, to visit every node on a
cycle of a given length n. In particular, we show that if the k step lengths are chosen according
to a geometric sequence, the cover time of the cycle is roughly n1+O(1

k
). This is shown to be

tight, up to the constant hidden in the O in the exponent. Then, we try to generalize this model
of search to arbitrary graphs, and show general upper bounds in that generalized variant as
well.

[27] Streaming Communication Protocols.
L. Boczkowski, I. Kerenidis, F. Magniez.
Internationcal Colloquium on Automata, Language and Programming (ICALP), 2017.

The project [27] is about a new model combining aspects of streaming protocols and commu-
nication complexity. In the standard model of communication complexity, players are assumed
to be computationally unbounded and have unrestricted access to their own input. We assume
instead they have a limited memory and receive their inputs gradually, as a stream.

Both communication and memory are considered as resources to be optimized in our model.
We show tradeoffs for canonical problems from the Communication Complexity literature. We
also analyze the Approximate Matching problem and use it to separate the one-way variant of
our model from the usual streaming model and one-way communication complexity.

Chapter 2

Searching a Tree with Noisy Local
Advice

2.1 Introduction

This chapter considers a search problem on trees, in which the goal is to find a treasure that
is placed at one of the nodes by an adversary. Each node of the tree holds information, called
advice, regarding which of its neighbors is closer to the treasure, and the search may consult
the advice at some nodes in order to accelerate the search.

Crucially, we assume that advice at nodes may be faulty with some probability. Many works
consider noisy queries in the context of search, but it is typically assumed that queries can be
resampled (see e.g., [21, 57, 62, 88]). In contrast, we assume that each location is associated
with a single permanent advice. That is, faults are in the physical memory associated with
the node, and hence querying the node again would yield the same answer. This difference is
dramatic, as the search under our model does not allow for simple amplification procedures
(similar to [33] albeit in the context of sorting). Searching in contexts of permanently faulty
nodes has been studied in a number of works [34, 69, 79, 80, 81], but only assuming that the
faulty nodes are chosen by an adversary. The difference between such worst case scenarios
and the probabilistic version studied here is again significant, both in terms of results and
techniques (see more details in Section 2.1.4).

2.1.1 The Noisy Advice Model

We start with some notation. Further notations are given in Section 2.1.5. Let T be an n-node
tree1 rooted at some arbitrary node σ. We consider an agent that is initially located at the
root σ of T , aiming to find a node τ , called the treasure, which is chosen by an adversary. The

1We present the model for trees in this Section. As shown in the introduction of this manuscript, it can be
similarly defined for arbitrary graphs (see also Section 2.7).

2 Chapter 2. Advice on Trees

distance d(u, v) is the number of edges on the path between u and v. The depth of a node u
is d(u) = d(σ, u). Let d = d(τ) denote the depth of τ , and let the depth D of the tree be the
maximal depth of a node. Finally, let ∆u denote the degree of node u and let ∆ denote the
maximal degree in the tree.

Each node u 6= τ is assumed to be provided with an advice, termed adv(u), which provides
information regarding the direction of the treasure. Specifically, adv(u) is a pointer to one of
u’s neighbors. It is called correct if the pointed neighbor is one step closer to the treasure than
u is. Each vertex u 6= τ is faulty with probability q (the meaning of being faulty will soon be
explained). Otherwise, u is considered sound, in which case its advice is correct. We call q the
noise parameter. Unless otherwise stated, this parameter is the same across all nodes, but in
some occasions, we also allow it to vary across nodes. In that case q is defined as maxu(qu).

Random and semi-adversarial variant. We consider two models for faulty nodes. The
main model assumes that the advice at a faulty node points to one of its neighbors chosen
uniformly at random (and so possibly pointing at the correct one). We also consider an adver-
sarial variant, called the semi-adversarial model, where this neighbor is chosen by an oblivious
adversary. That is, an adversary specifies for each node what advice it would have assuming it
is faulty. Then, faulty nodes are still chosen randomly as in the main model, but their advice
is specified by the adversary.

Move and query complexity. The agent can move by traversing edges of the tree. At any
time, the agent can query its hosting node in order to “see” the corresponding advice and to
detect whether the treasure is present there. The protocol terminates when the agent queries
the treasure. We evaluate a search algorithm A by two measures: The move complexity is the
number of edge traversals. It is the focus of this chapter. We are also interested in the query
complexity, which is the number of times advice needs to be probed. This chapter focuses on
counting moves, but query complexity is convenient to phrase lower bounds. The number of
queries is always smaller than the number of moves.

Noise assumption. The noise parameter q governs the accuracy of the environment. If q = 0
for all nodes, then advice is always correct. This case allows to find the treasure in d moves,
by simply following each encountered advice. On the other extreme, if q = 1, then advice
is essentially meaningless, and the search cannot be expected to be efficient. An intriguing
question is therefore to identify the largest value of q that allows for efficient search.

Expectation and high probability. Importantly, we consider two kinds of guarantees:
expectation and high probability. In the first case, we measure the performance of the algorithm
as the expected number of moves before the treasure is found. By default, expectation is taken
over both the randomness involved in sampling advice and the possible probabilistic choices
made by A. In the second case, we only want to find a constant probability event under which

2.1. Introduction 3

the treasure is found fast. Interestingly, the two settings lead to quite different thresholds and
techniques.

A bound on expectation, can be converted into a high probability statement through the
Markov inequality. It happens that we derive a result in expectation by first gaining control of
the algorithm under a large probability event, and then taming the dangerous low probability
event where problems occur. These two facts indicate that high probability guarantees tend
to be easier to achieve than expectation ones. On the other hand, the high probability lower
bound presented in this chapter is arguably harder than its expectation counterpart.

2.1.2 Results in Expectation

We start by presenting our results for the average case. Consider the noisy advice model on
trees with maximum degree ∆ and depth D. Roughly speaking, we show that 1/

√
∆ is the

threshold for the noise parameter q, in order to obtain search algorithms with low expected
complexities.

The proof that there is no algorithm with low expected complexities when the noise exceeds
1/
√

∆ is rather simple, and in fact, holds even if the algorithm has access to the advice of all
internal nodes. Intuitively, the argument is as follows (the formal proof appears in Section 2.3).
Consider a complete ∆-ary tree of depth D and assume that the treasure τ is placed at a leaf.
The first observation (Lemma 2.10) is that the expected number of leaves having more advice
point to them than to τ is a lower bound on the query complexity. The next observation is
that there are roughly ∆D leaves whose distance from τ is 2D. For each of those leaves u,
the probability that more advice points towards it than towards τ can be approximated by the
probability that all nodes on path connecting u and τ are faulty. As this latter probability is
q2D, the expected number of leaves that have more pointers leading to them is roughly ∆Dq2D,
which explodes when q � 1/

√
∆. This essentially establishes the lower bound for the noise

regime.

In Section 2.2, we present an algorithm that is optimal up to a constant factor for the regime
of noise below the threshold. Furthermore, this algorithm does not require prior knowledge of
either the tree’s structure, or the values of ∆, q, d, or n.

In this section, we extend slightly the model, by allowing each node v to have a distinct
mistake parameter qv. This greater flexibility makes our results stronger. It also happens to
be convenient from a technical standpoint. The following technical definition is used in our
results, in place of the more crude q < 1√

∆
given in Table 2.1.

Definition 2.1

Condition (?) holds with parameter 0 < ε < 1 if for every node v, we have

qv <
1− ε−∆

− 1
4

v
√

∆v + ∆
1
4
v

.

4 Chapter 2. Advice on Trees

Since ∆v ≥ 2, the condition is always satisfiable when taking a small enough ε. In the
following theorems the O notation hides only a polynomial a polynomial term in 1/ε.

All our algorithms are deterministic, hence, expectation is taken with respect only to the
sampling of the advice.

Theorem 2.2

For any ε > 0, if Condition (?) holds with parameter ε there exists a deterministic
walking algorithm Awalk that requires O(

√
∆d) moves in expectation.

Lower Bounds in Expectation. We establish in Section 2.3 the following lower bounds.

Theorem 2.3

For any randomized algorithm A and any integer ∆ ≥ 3, we have

1. Exponential complexity above the threshold.
Consider a complete ∆-ary tree. For every constant ε > 0, if q ≥ 1+ε√

∆−1
· (1 +

1
∆−1), then A move complexity in expectation is exponential in D.

2. For any integer d, there is a tree with at most d∆ nodes, and a placement of
the treasure at depth d, such that A requires Ω(dq∆) moves in expectation.

Observe that taken together, Theorems 2.2,2.3 and Condition (?) imply that for any ε > 0
and large enough ∆, efficient search can be achieved if q < (1−ε)/

√
∆ but not if q > (1+ε)/

√
∆.

Memoryless Algorithms. Finally, we analyze the performance of simple memoryless algo-
rithms called probabilistic following, suggested in [71]. At every step, the algorithm follows
the advice at the current vertex with some fixed probability λ, and performs a random walk
step otherwise. It turns out that such algorithms can perform well, but only in a very limited
regime of noise. Specifically, we prove:

Theorem 2.4

There exist positive constants c1, c2 and c3 such that the following holds. If for
every vertex u, qu < c1/∆u then there exists a probabilistic following algorithm
that finds the treasure in less than c2d expected steps. On the other hand, if
q > c3/∆ then for any probabilistic following strategy the move complexity on a
complete ∆-ary tree is exponential in the depth of the tree.

Since this algorithm is randomized, expectation is taken over both the randomness involved
in sampling advice and the possible probabilistic choices made by the algorithm.

2.1. Introduction 5

Interestingly, when qu < c1/∆u for all vertices, this algorithm works even in a semi-
adversarial model. In fact, it turns out that in the semi-adversarial model, probabilistic follow-
ing algorithms are the best possible, as the threshold for efficient search, with respect to any
algorithm, is roughly 1/∆. There results are discussed and proved in Section 2.4.

2.1.3 Results in High Probability

We start with the following upper bound. The proof is presented in Section 2.5.

Theorem 2.5

Let 0 < ε < 1/2 be a constant, and suppose that q = ∆−ε, and that ∆ is suf-
ficiently large (∆ ≥ 26/ε2 suffices). Then there exists a moving algorithm Awalk
that discovers τ in (dδ)O(1

ε
) moves with probability 1− δ. Moreover, the statement

holds even in the semi-adversarial variant.

The upper bounds shown in Theorem 2.5 is matched up to the constant in the exponent,
by the following lower bound, presented in Section 2.6.

Theorem 2.6

Let 0 < ε < 1/2 be an arbitrary constant, and suppose that q ≤ ∆−ε, and that D
is sufficiently large, as a function of ∆ and ε. On the complete ∆-ary tree of depth

D, any algorithm with success probability 1− δ needs at least (δ−1D)
1−ε
ε

(1+oD(∗))

queries (and consequently also moves) before finding τ with constant probability.
(oD(·) denotes a function of D that tends to 0 as D grows.) The statement also
holds with respect to randomized algorithms.

2.1.4 Related Work

In computer science, search algorithms have been the focus of numerous works. Due to their
importance, trees are particularly popular structures to investigate search, see e.g., [92, 19,
103, 101]. Within the literature on search, many works considered noisy queries [62, 88, 57],
however, it was typically assumed that noise can be resampled at every query. As mentioned,
dealing with permanent faults incurs challenges that are fundamentally different from those
that arise when allowing queries to be resampled. To illustrate this difference, consider the
simple example of a star graph and a constant q < 1. Straightforward amplification can detect
the target in O(1) expected number of queries. In contrast, in our model, it can be easily seen
that Ω(n) is a lower bound for both the move and the query complexities, for any constant
noise parameter.

A search problem on graphs in which the set of nodes with misleading advice is chosen
by an adversary was studied in [79, 80, 81], as part of the more general framework of the liar

6 Chapter 2. Advice on Trees

models [11, 32, 41, 104]. Data structures with adversarial memory faults have been investigated
in the so called faulty-memory RAM model introduced in [70]. In particular, data structures
supporting the same operations as search trees with adversarial memory faults were studied
in [69, 34]. Interestingly, the data structures developed in [34] can cope with up to O(log n)
faults, happening at any time during the execution of the algorithm, while maintaining optimal
space and time complexity. It is important to observe that all these models take worst case
assumptions, leading to technical approaches and results which are very different from what
one would expect in average-case analysis. Persistent probabilistic memory faults, as we study
here, have been explicitly studied in [33], in the context of sorting. Persistent probabilistic
errors were also studied in contexts of learning and optimization, see [82].

The noisy advice model considered in this chapter actually originated in the recent biolog-
ically centered work [71], aiming to abstract navigation relying on guiding instructions in the
context of collaborative transport by ants. In that work, the authors modeled ant navigation as
a probabilistic following algorithm, and noticed that an execution of such an algorithm can be
viewed as an instance of Random Walks in Random Environment (RWRE) [112, 53]. Relying
on results from this subfield of probability theory, the authors showed that when tuned prop-
erly, such algorithms enjoy linear move complexity on grids, provided that the bias towards the
correct direction is sufficiently high.

2.1.5 Notations

Here we give some notation used throughout the chapter, leaving aside the terminology that is
specific to a given part or result.

Denote p = 1 − q, and for a node u, pu = 1 − qu. For two nodes u, v, let 〈u, v〉 denote
the simple path connecting them, excluding the end nodes, and let [u, v〉 = 〈u, v〉 ∪ {u} and
[u, v] = [u, v〉 ∪ {v}. For a node u, let T (u) be the subtree rooted at u. We denote by

−−→
adv(u)

(resp.
←−−
adv(u)) the set of nodes whose advice points towards (resp. away from) u. By convention

u /∈ −−→adv(u) ∪←−−adv(u). Unless stated otherwise, log is the natural logarithm.

The nodes on the path from the root σ to the treasure τ are named as [σ, τ] := {v0 =
σ, v1, . . . , vd−1, vd = τ}. We say that node v is a descendant of node u if u lies on the path from
σ to v, and v is a child of u if it is both a descendant of u and a neighbor of u.

2.1.6 Organization of This Chapter

In Section 2.2 we present our optimal walking algorithm in expectation. The associated lower
bound is the focus of Section 2.3. Theorem 2.4 and the threshold of Θ(1/∆) that applies to the
semi-adversarial setting are proved in Section 2.4. Section 2.5 is devoted to the high probability
algorithm mentioned in Theorem 2.5, while Section 2.6 is about the corresponding lower bound.
In Section 2.7, we give a list of open problems.

Table 2.1 summarizes the results presented in this chapter, in a simplified form.

2.2. Optimal Walking Algorithm in Expectation 7

Upper Bound Lower Bound

Regime Moves Regime Moves

Expectation q � 1√
∆
O(d
√

∆) q � 1√
∆

eΩ(d)

High Probability q = ∆−ε dO(ε−1) q = ∆−ε dΩ(ε−1)

Figure 2.1: A summary of the results presented in this chapter, in simplified form. The precise
conditions behind the symbol � will be clarified later.

2.2 Optimal Walking Algorithm in Expectation

In this section we prove Theorem 2.2. At a high level, at any given time, the walking algorithm
processes the advice seen so far, identifies a promising node to continue from on the border
of the already discovered connected component, moves to that node, and explores one of its
neighbors. The crux of the matter is identifying the correct formalisation of promising, that
leads to an efficient algorithm. This, we will see, amounts to finding a correct prior for the
treasure location.

2.2.1 Algorithm Design following a Greedy Bayesian Approach

In our setting the treasure is placed by an adversary. However, we can still study algorithms
induced by assuming that it is placed according to some known distribution and see how they
measure up in our worst case setting. As mentioned, this approach is similar to [21], which
studies the closely related, yet much simpler problem of search on the line. Of course, the
success of this scheme highly depends on the choice of the prior distribution we take.

To make our life easier, let us first assume that the structure of the tree is known to the
algorithm. Also, we assume the treasure is placed according to some known distribution θ
supported on the leaves, and denote by adv the advice on the nodes we have already visited.
Aiming to find the treasure as fast as possible, a possible greedy algorithm explores the vertex
that, given the advice seen so far, has the highest probability of having the treasure in its
subtree.

We extend the definition of θ to internal nodes by defining θ(u) to be the sum of θ(w) over
all leaves w of T (u). Given some u that was not visited yet, and given the previously seen

8 Chapter 2. Advice on Trees

advice adv, the probability of the treasure being in u’s subtree T (u), is:

P (τ ∈ T (u) | adv) =
P (τ ∈ T (u))

P (adv)
P (adv | τ ∈ T (u))

=
θ(u)

P (adv)

∏
w∈−→adv(u)

(
pw +

qw
∆w

) ∏
w∈←−adv(u)

qw
∆w

.

The last factor is qw/∆w because it is the probability that the advice at w points exactly the
way it does in adv, and not only away from τ . Note that the advice seen so far is never for
vertices in T (u) as we consider a walking algorithm, and u has not been visited yet. Therefore,
if τ ∈ T (u) then correct advice in adv points to u. We ignore the term pw + qw/∆w as it is
normally quite close to 1, and applying a log we can approximate the relative strength of a
node by:

log(θ(u)) +
∑

w∈←−adv(u)

log

(
qw
∆w

)
.

We do not want to assume that our algorithm knows qw, but we do assume that in the worst
scenario qw ∼ 1/

√
∆w. Assigning this value and rescaling we finally define:

score(u) =
2

3
log(θ(u))−

∑
w∈←−adv(u)

log(∆w).

When comparing two specific vertices u and v, score(u) > score(v) iff:∑
w∈〈u,v〉∩−→adv(u)

log(∆w)−
∑

w∈〈u,v〉∩−→adv(v)

log(∆w) >
2

3
log

(
θ(v)

θ(u)

)
.

This is because any advice that is not on the path between u and v contributes the same to
both sides, as well as advice on vertices on the path that point sideways, and not towards u
or v2. Since we use this score to compare two vertices that are neighbors of already explored
vertices, and our algorithm is a walking algorithm, then we will always have all the advice
on this path. In particular, the answer to whether score(u) > score(v), does not depend
on the specific choices of the algorithm, and does not change throughout the execution of the
algorithm, even though the scores themselves do change. The comparison depends only on the
advice given by the environment.

Let us try and justify the score criterion at an intuitive level. Consider the case of a complete
∆-ary tree, with θ being the uniform distribution on the leaves3. Here score(u) > score(v) if

2It is tempting to define score(u) as the sum of weighted advice from the root to u. However, when comparing
two vertices, the advice of their least common ancestor would be counted twice, which we prefer to avoid.

3Actually, a similar formula could be derived choosing θ to be the uniform distribution over all nodes, but
for technical reasons it is easier to restrict it to leaves only.

2.2. Optimal Walking Algorithm in Expectation 9

(cheating a little by thinking of log(∆) and log(∆− 1) as equal):

∣∣−−→adv(u) ∩ 〈u, v〉
∣∣− ∣∣−−→adv(v) ∩ 〈u, v〉

∣∣ > 2

3

(
d(u)− d(v)

)
.

If, for example, we consider two vertices u, v ∈ T at the same depth, then score(u) > score(v)
if there is more advice pointing towards u than towards v. If the vertices have different depths,
then the one closer to the root has some advantage, but it can still be beaten.

For general trees, perhaps the most natural θ is the uniform distribution on all nodes (or
just on all leaves - this choice is actually similar). It is also a generalization of the example
above. Unfortunately, however, while this works well on the complete ∆-ary tree, this approach
fails on other (non-complete) ∆-ary trees (see the full version of this work [31] for details).

2.2.2 Algorithm Awalk

In our context, there is no distribution over treasure location and we are free to choose θ as
we like. We take θ to be the distribution defined by a simple random process. Starting at
the root, at each step, walk down to a child uniformly at random. until reaching a leaf. For a
leaf v, define θ(v) as the probability that this process eventually reaches v. Our extension of θ
can be interpreted as θ(v) being the probability that this process passes through v. Formally,
θ(σ) = 1, and θ(u) = (∆σ

∏
w∈〈σ,u〉(∆w − 1))−1. It turns out that this choice, slightly changed,

works remarkably well, and gives an optimal algorithm in noise conditions that practically
match those of our lower bound. For a vertex u 6= σ, define:

β(u) =
∏

w∈[σ,u〉

∆w.

It is a sort of approximation of 1/θ(u), which we prefer for technical convenience. Indeed, for
all u, 1/β(u) ≤ θ(u). A wonderful property of this β (besides the fact that it gives rise to an
optimal algorithm) is that to calculate β(v) (just like θ), one only needs to know the degrees
of the vertices from v up to the root. It is hard to imagine distributions on leaves that allow
us to calculate the probability of being in a subtree without knowing anything about it!

In the walking algorithm, if v is a candidate for exploration, these nodes must have been
visited already and so the algorithm does not need any a priori knowledge of the structure of
the tree. The following claim will be soon useful:

Claim 2.7

The following two inequalities hold for every c < 1:

∑
v∈T

cd(v)

β(v)
≤ 1

1− c ,
∑
v∈T

d(v)cd(v)

β(v)
≤ c

(1− c)2
.

10 Chapter 2. Advice on Trees

Proof. To prove the first inequality, follow the same random walk defining θ. Starting at the
root, at each step choose uniformly at random one of the children of the current vertex. Now,
while passing through a vertex v collect cd(v) points. No matter what choices are made, the
number of points is at most 1 + c + c2 + ... = 1/(1 − c). On the other hand,

∑
v∈T θ(v)cd(v)

is the expected number of points gained. The result follows since 1/β(v) ≤ θ(v). The second
inequality is derived similarly, using the fact that c+ 2c2 + 3c3 + . . . = c/(1− c)2.

For a vertex u ∈ T and previously seen advice adv define:

score(u) =
2

3
log

(
1

β(u)

)
−

∑
w∈←−adv(u)

log(∆w).

Algorithm Awalk keeps track of all vertices that are children of the vertices it explored so far,
and repeatedly walks to and then explores the one with highest score according to the current
advice, breaking ties arbitrarily. As stated in the introduction, the algorithm does not require
prior knowledge of either the tree’s structure, or the values of ∆, q, d or n.

2.2.3 Analysis

Recall the definition of Condition (?) from Definition 2.1. The next lemma provides a large
deviation bound tailored to our setting.

Lemma 2.8

Consider independent random variables X1, . . . , X`, where Xi takes the values
(− log ∆i, 0, log ∆i) with respective probabilities (pi + qi

∆i
, qi(1 − 2

∆i
), qi∆i

), for pa-
rameters pi, qi = 1 − pi and ∆i > 0. Assume that Condition (?) holds for some
ε > 0. Then for every integer (positive or negative) m,

P

(∑̀
i=1

Xi ≥ m
)
≤ (1− ε)`

e
3m
4

∏̀
i=1

1√
∆i
.

Proof. For any s ∈ R,

P

(∑̀
i=1

Xi ≥ m
)

= P
(
es
∑`
i=1 Xi ≥ esm

)
≤ E

[
es
∑
iXi
]

esm
=

∏
i E
[
esXi

]
esm

=
1

esm

∏̀
i=1

(
pi + qi

∆i

elog(∆i)s
+ qi

(
1− 2

∆i

)
+

qi
∆i
elog(∆i)s

)

≤ 1

esm

∏̀
i=1

(
1

∆s
i

+ qi + qi∆
s−1
i

)
.

2.2. Optimal Walking Algorithm in Expectation 11

We take s = 3
4 , and get:

P

(∑̀
i=1

Xi ≥ m
)
≤ 1

e
3m
4

∏̀
i=1

(
∆
− 3

4
i + qi + qi∆

− 1
4

i

)
≤ 1

e
3m
4

∏̀
i=1

1− ε√
∆i

Where for the last step we used Condition (?) which says:

qi <
1− ε−∆

− 1
4

i√
∆i + ∆

1
4
i

qi∆
1
2
i + qi∆

1
4
i + ∆

− 1
4

i < 1− ε

∆
− 3

4
i + qi + qi∆

− 1
4

i <
1− ε√

∆i

The next theorem states that Awalk is optimal up to a constant factor for the regime of
noise below the threshold. It establishes Theorem 2.2.

Theorem 2.9

Assume that Condition (?) holds for some fixed ε > 0. Then Awalk requires only
O(d
√

∆) moves in expectation. The constant hidden in the O notation only de-
pends polynomially on 1/ε.

Proof. Denote the vertices on the path from σ to τ by σ = u0, u1, . . . , ud = τ in order. Denote
by Ek the expected time to reach uk once uk−1 is reached. We will show that for all k,
Ek = O(

√
∆), and by linearity of expectation this concludes the proof.

Once uk−1 is visited, Awalk only goes to some of the nodes that have score at least as high
as uk. We can therefore bound Ek from above by assuming we go through all of them, and
this expression does not depend on the previous choices of the algorithm and the nodes it saw
before seeing uk. The length of this tour is bounded by twice the sum of distances of these
nodes from uk. Hence,

Ek ≤ 2

k∑
i=1

∑
u∈C(ui)

P (score(u) ≥ score(uk)) · d(uk, u).

Where C(uk) = T (uk−1) \T (uk), and so ∪ki=1C(ui) = T \T (uk). Recall that scores are defined
so that u has a larger score than uk, if the sum of weighted arrows on the path 〈uk, u〉 is
at least 2

3 log(β(u)/β(uk)). Setting m to be this value, Lemma 2.8 allows to calculate this
probability exactly. Indeed, a vertex x on the path should point towards uk: this happens with
probability px + qx/∆x. Otherwise, it points towards u with probability qx/∆x, and elsewhere

12 Chapter 2. Advice on Trees

with probability qx(1− 2/∆x). Denoting c = 1− ε,

Ek
2
≤

k∑
i=1

∑
u∈C(ui)

cd(uk,u)−1

e
3
4
· 2
3

log
(
β(u)
β(uk)

)
√√√√ ∏

v∈〈u,uk〉

1

∆v
· d(uk, u)

=
1

c

k∑
i=1

∑
u∈C(ui)

cd(uk,u)√
β(u)
β(uk)

√√√√ ∆ui
β(uk)
β(ui)

· β(u)
β(ui)

· d(uk, u)

≤
√

∆

c

k∑
i=1

cd(uk,ui)
∑

u∈C(ui)

cd(ui,u)β(ui)

β(u)
·
(
d(uk, ui) + d(ui, u)

)
.

By Claim 2.7, applied to the tree rooted at ui, we get:∑
u∈C(ui)

cd(ui,u)β(ui)

β(u)
<

1

1− c , and
∑

u∈C(ui)

cd(ui,u)β(ui)

β(u)
d(ui, u) <

c

(1− c)2
.

And so:

Ek
2
≤

√
∆

c(1− c)
k∑
i=1

cd(uk,ui)d(uk, ui) +

√
∆

(1− c)2

k∑
i=1

cd(uk,ui)

≤ (1 + c)
√

∆

(1− c)3
≤ 2
√

∆

ε3
= O

(√
∆
)
,

where we again used the equality c+ 2c2 + 3c3 + . . . = c/(1− c)2.

2.3 Lower bounds in Expectation

2.3.1 Exponential Complexity Above the Threshold

We wish to prove Item (1) in Theorem 2.3. Namely, that for every fixed ε > 0, and for every
complete ∆-ary tree, if q ≥ 1+ε√

∆−1
· (1 + 1

∆−1), then every randomized search algorithm has

query (and move) complexity which is both exponential in the depth d of the treasure and
polynomial in n. In fact, this lower bound holds even if the algorithm has access to the advice
of all internal nodes. The following lemma is proved in below, in Section 2.3.2:

Lemma 2.10

Assume the treasure is placed in a leaf τ of the complete ∆-ary tree. Denote by
adv the random advice on all internal nodes, then the expected number of leaves
u satisfying |−−→adv(u)| > |−−→adv(τ)|, is a lower bound on the query complexity of any
algorithm.

2.3. Lower bounds in Expectation 13

Using Lemma 2.10, all we need to do is approximate the number of leaves u satisfying
|−−→adv(u)| > |−−→adv(τ)|. When comparing the number of pointers that point towards each of two
different nodes, only the pointers of the internal nodes on the path between them may influence
on the result. The probability that a leaf u “beats” the treasure τ in the sense of Lemma 2.10,
is at least the probability that exactly one node on the path points to u and none of the rest
point towards the treasure. This probability is at least

q

∆
·
(
q ·
(

1− 1

∆

))d(u,τ)−2

.

There are precisely (∆ − 1)D leaves whose distance from the treasure is 2D. Therefore, the
expected number of leaves that beat the treasure is at least:

q

∆
(∆− 1)Dq2D−2 ·

(
1− 1

∆

)2D−2

=
∆

q(∆− 1)2
·
(
q2(∆− 1)3

∆2

)D
≥ ∆

q(∆− 1)2
· (1 + ε)2D.

Item (1) in Theorem 2.3 follows.

2.3.2 Proof of Lemma 2.10

For the lower bound, assume the algorithm is given the advice adv for all the internal nodes
for free. By Yao’s principle, instead of taking the worst case placement of the treasure for a
randomized algorithm, we obtain a lower bound by considering only deterministic algorithms
when the treasure is placed uniformly at random at one of the leaves.

In this simplified setting, an optimal algorithm can be described explicitly: It sorts the leaves
according P (· | adv) (Claim 2.11) and tries them in this order. This order in fact corresponds
to ranking nodes by how many arrows point to them (Claim 2.12). The expected number of
nodes which are higher than the treasure in this ordering is therefore a lower bound for this
algorithm, and thus for all algorithms.

Let L be the set of leaves. For a given leaf u ∈ L and an advice configuration adv, let
C(A, adv, u) be the cost (number of queries) of A when the advice is equal to adv and the
treasure is located at u. We also define the cost C(A, u) of an algorithm A when the treasure
τ is located at u to be the expected cost of A before finding τ where the expectation is over
advice setting. That is:

C(A, u) =
∑
adv

C(A, adv, u)P (adv |u) .

In our setting, the expected number of queries of A is:

C(A) =
∑
u∈L

P (u)
∑
adv

C(A, adv, u)P (adv |u) .

14 Chapter 2. Advice on Trees

Claim 2.11

The algorithm A that tries the locations u in the order given by P (u | adv), i.e.,
the most likely u is tried first and the least likely tried last, minimizes C(A).

Proof. We can write

C(A) =
∑
adv

P (adv)
∑
u∈L

C(A, adv, u)P (u | adv) ,

where it is understood that P (adv) is the marginal of P (adv, u) with respect to the advice. The
term P (u | adv), standing for the probability of u holding the treasure given that the advice
configuration is adv, is only defined because we assume the treasure is placed according to a
known distribution (uniform in our case). For a fixed advice setting adv, it follows from the
rearrangement inequality that

∑
u∈LC(A, adv, u)P (u | adv) is minimized when C(A, adv, u) and

P (u | adv) are sorted in the same order with respect to u. This corresponds to algorithm A

trying the locations u in the order given by P (u | adv), which is exactly the statement of the
claim. Hence, since we assume that all advice is known, the algorithm we have just described
is feasible, and, in fact, optimal. Moreover, its query complexity is at least 1 plus the expected
number of nodes which are strictly more likely than the treasure, where the expectation is
taken over the randomness of the advice.

It only remains to check that a node u is more likely than τ given an advice setting adv iff
more arrows point to u than τ . This will conclude the proof of Lemma 2.10 and hence of the
exponential lower bound in Theorem 2.3.

Claim 2.12

For two leaves u, v ∈ L, and advice configuration adv, P (u | adv) > P (v | adv) if
and only if there is more advice pointing towards u than advice pointing towards
v.

Proof. Recall that, by definition of the model

P (adv | τ = u) =
(
p+

q

∆

)|−→adv(u)|(
q(1− 1

∆
)

)|←−adv(u)|
,

In our regime it will always be the case that p + q
∆ > q(1 − 1

∆), simply because we assume

q < p. Hence P (adv | τ = u) is an increasing function of |−−→adv(u)|.
Since τ is placed uniformly at random, it follows from Bayes rule that P (adv | τ = u) ∝

P (τ = u | adv). The symbol ∝ indicates that we omit the renormalizing factor. Hence, we
obtain that P (τ = u | adv) > P (τ = v | adv) if and only if |−−→adv(u)| > |−−→adv(v)|.

2.4. Memoryless Algorithms 15

2.3.3 A Lower Bound for the Move Complexity in Expectation Below the
Threshold

Observation 2.13

For any ∆ and d, there exists a tree of depth d and maximal degree at most ∆ for
which any search algorithm A requires at least Ω(dq∆) moves in expectation.

Proof. To see why the observation holds consider the caterpillar tree, composed of a path of
length n/∆ with each of its nodes being the center of a star graph of degree ∆. Assume that
the agent starts at one of the end sides of the path and the treasure at distance d on the
caterpillar spine. Recall that we assume that the algorithm does not know the tree structure.
in expectation, Ω(dq) nodes will point at an incorrect neighbor, and to pass from any of those
to the next node on the path, will require the agent to perform Ω(∆) trials in expectation.

2.4 Memoryless Algorithms and the Semi-Adversarial Model
in Expectation

In this section we present our results on the memoryless algorithms described in the introduc-
tion. As mentioned, such algorithms can perform well also in a more difficult semi-adversarial
setting. Before we present these algorithms let us first describe formally the semi-adversarial
variant.

Definition 2.14: The Semi-Adversarial Model

As in the purely-probabilistic Noisy Advice Model, each node is chosen to be
faulty with probability q, and otherwise it is sound. Also, similarly to the original
model, a sound vertex always points at its correct neighbors. However, in the
semi-adversarial model, a faulty node u no longer points at a neighbor chosen
uniformly at random, and instead, the neighbor w which such a node points at is
chosen by an adversary. Importantly, for each node u, the adversary must specify
its potentially faulty advice w, before it is known which nodes will be faulty. In
other words, first, the adversary specifies the faulty advice w for each node u, and
then the environment samples which node is faulty and which is sound.

2.4.1 Lower Bound in the Semi-Adversarial Variant

The following result implies that if q > 1/∆ then any algorithm must have exponential query
and move complexity in the depth D.

16 Chapter 2. Advice on Trees

Theorem 2.15

Consider an algorithm in the semi-adversarial model. On the complete ∆-ary tree
of depth D, the expected number of queries to find the treasure is Ω

(
(q∆)D

)
. The

lower bound holds even if the algorithm has access to the advice of all internal
nodes in the tree.

We first need a simple observation, that follows from Yao’s principle (see [31] for a proof).

Observation 2.16

Any randomized algorithm trying to find a treasure chosen uniformly at random
between k identical objects will need an expected number of queries that is at least
(k + 1)/2.

Proof of Theorem 2.15. Consider the complete ∆-ary tree and assume that the treasure is
located at a leaf. The adversary behaves as follows. For any advice it gets a chance to
manipulate, it would always make it point towards the root. With probability qD the adversary
gets to choose all the advice on the path between the root and the treasure. Any other advice
points towards the root as well (either because it was correct to begin with or because it was
set by the adversary). Hence with probability qD the tree that the algorithm sees is the same
regardless of the position of the treasure. It follows from Observation 2.16 that the time to
find the treasure can only be linear in the number of leaves which is Ω(∆D).

2.4.2 Probabilistic Following Algorithms

Recall that a Probabilistic Following (PF) algorithm is specified by a listening parameter
λ ∈ (0, 1). At each step, the algorithm “listens” to the advice with probability λ and takes
a uniform random step otherwise. The first item in the next theorem states that if the noise
parameter is smaller than c/∆ for some small enough constant 0 < c < 1, then there exists a
listening parameter λ for which Algorithm PF achieves O(d) move complexity. Moreover, this
result holds also in the semi-adversarial model. Hence, together with Theorem 2.15, it implies
that in order to achieve efficient search, the noise parameter threshold for the semi-adversarial
model is Θ(1/∆).

2.4. Memoryless Algorithms 17

Theorem 2.17

1. Assuming qu < 1/(10∆u) for every u, then PF with parameter λ ∈ [0.7, 0.8]
finds the treasure in less than 100d expected steps, even in the semi-
adversarial setting.

2. Consider the complete ∆-ary tree and assume that q > 10/∆. Then for any
choice of λ the hitting time of the treasure by PF is exponential in the depth
of the tree, even assuming the faulty advice is drawn at random.

Proof. Our plan is to show that the expected time to make one step in the correct direction is
O(1), from any starting node. Conditioning on the advice setting, we make use of the Markov
property to relate these elementary steps to the total travel time. The main delicate point in
the proof stems from dealing with two different sources of randomness. Namely the randomness
of the advice and that of the walk itself.

In this section, it is convenient to picture the tree as rooted at the target node τ . For any
node u in the tree, we denote by u′ the parent of u with respect to the treasure. With this
convention, correct advice at a node u points at u′, while incorrect advice points at one of its
children. The fact the walk moves on a tree means that for a given advice setting, the expected
(over the walk) time it takes to reach u′ from u can be written conveniently as a product of a
variable involving the advice at u only and the advice on the set of u’s descendants (the two
being independent).

We denote by t(u) the time it takes to reach node u. Manipulating average symbols such
as E requires extra care. Indeed, there are two sources of randomness, the first being the
randomness used in drawing the advice and the second being the randomness used in the walk
itself. We write E for averaging over the advice, while we use Eu to denote expectation over the
walk, conditioning on u being the starting node. As a remark, observe that Eu(t(v)) depends
on the advice configuration, it is a random variable with respect to the advice, while EEu(t(v))
really is just a number.

The following is the central lemma of this section.

Lemma 2.18

Assume that for every vertex u, qu < 1/(10∆u), and λ ∈ [0.7, 0.8]. Then for all
nodes u, EEut(u′) ≤ 100. The result holds also in the semi-adversarial model.

Let us now see how we can conclude the proof of the first item in Theorem 2.17, given the
lemma. Consider a designated source σ. Let us denote by σ = ud, ud−1, . . . , u0 = τ the nodes
on the path from σ to τ . Let δi be the random variable indicating the time it takes to reach
ui−1 after ui has been visited for the first time. With these notations, the time to reach τ

from σ is precisely
∑d(σ,τ)

i=1 δi. Hence, the expected time to reach τ from σ is
∑d(σ,τ)

i=1 E[Eσδi] .

18 Chapter 2. Advice on Trees

Conditioning on the advice setting, the process is a Markov chain and we may write

Eσδi = Euit(ui−1).

Taking expectations over the advice (E), under the assumptions of Lemma 2.18, it follows that
E(Eσδi) ≤ 100, for every i ∈ [d(σ, τ)]. And this immediately implies a bound of 100 · d(σ, τ).

Proof of Lemma 2.18. We start with partitioning the nodes of the tree according to their dis-
tance from the root τ . More precisely, for i = 1, 2, . . . , D, where D is the depth of the tree, let
us define

Li := {u ∈ T : d(u, τ) = i} .
The nodes in Li are referred to as level-i nodes. We treat the statement of the lemma for nodes
u ∈ Li as an induction hypothesis, with i being the induction parameter. The induction goes
backwards, meaning we assume the assumption holds at level i + 1 and show it holds at level
i. The case of the maximal level (base case for the induction) is easy since, at a leaf the walk
can only go up and so if u is a leaf EEu(t(u′)) = 1 < 100.

Assume now that u ∈ Li. We first condition on the advice setting. A priori, Euτ(u′)
depends on the advice over the full tree, but in fact it is easy to see that only advice at layers
≥ i matter. Recall from Markov Chain theory that an excursion to/from a point is simply the
part of the walk between two visits to the given point. We denote Lu the average (over the
walk only) length of an excursion from u to itself that does not go straight to u′ and we write
Nu to denote the expected (over the walk only) number of excursions before going to u′. We
also refer to this number as a number of attempts. The variable Nu can be 0 if the walk goes
directly to u′ without any excursion. We decompose t(u′) in the following standard way, using
the Markov property

Eut(u
′) = 1 + Lu ·Nu. (2.1)

Indeed the expectation Eut(u
′) can be seen as the expectation (over the walk) of 1 +

∑T
i=1 Yi

where the Yi’s are the lengths of each excursion from u and T is the (random) number of such
excursions before hitting u′. The term 1+ accounts for the step from u to u′. The event {T ≥ t}
is independent of Y1, . . . , Yt and so using Wald’s identity we have that Eut(u

′) = 1+EuT ·EuY1.
The term EuT is equal to Nu (by definition) while EuY1 is equal to Lu (by definition).

We now want to average equality (2.1), which is only an average over the walk, by taking
the expectation over all advice in layers ≥ i. To this aim, we write Lu as follows

Lu = 1 +
∑

v 6=u′,v∼u
pu,vEvt(u),

where we write u ∼ v when u and v are neighbors in the tree and pu,v is the probability to go
straight from u to v given the advice setting. By assumption on the model, Evt(u) depends
on the advice at layers ≥ i + 1 only, if we start at a node v ∈ Li+1, while both pu,v and Nu

2.4. Memoryless Algorithms 19

depend only on the advice at layer = i of the tree. This is true also in the semi-adversarial
model. Hence when we average, we can first average over layers > i to obtain, denoting E>i,
the expectation over the layers > i,

E>iEut(u′) = 1 +

1 +
∑

v 6=u′,v∼u
pu,vE>iEvt(u)

Nu,

= 1 +

1 +
∑

v 6=u′,v∼u
pu,vEEvt(u)

Nu. (2.2)

and using the fact that,
∑

v 6=u′ pu,v ≤ 1, together with the induction assumption at rank i+ 1,
we obtain

E>iEut(u′) ≤ 1 + (1 + 100)Nu.

From now on we replace 100 by a parameter κ > 0, for mere aesthetic reasons. Averaging over
the layer i of advice we obtain

EEut(u′) ≤ 1 + (1 + κ)ENu.

It only remains to analyse the term ENu. If the advice at u is correct, which happens with
probability pu = 1−qu, then the number of attempts follows a (shifted by 1) geometric law with

parameter λ + (1−λ)
∆u

. In words, when the advice points to u′ which happens with probability
at most 1, the walker can go to the correct node either because she listens to the advice,
which happens with probability λ, or because she did not listen, but still took the right edge,
which happens with probability (1−λ)

∆u
. Similarly, when the advice points to a node 6= u′, which

happens with probability at most qu, then Nu follows a geometric law (shifted by 1) with

parameter (1−λ)
∆u

. The conclusion is that

ENu ≤
(

1

λ+ (1−λ)
∆u

− 1

)
+ qu

(
∆u

1− λ − 1

)
≤ 1

λ
− 1 +

qu∆u

1− λ (2.3)

And so it follows that

EEut(u′) ≤ 1 + (1 + κ) ·
(

1

λ
− 1 +

qu∆u

1− λ

)
Hence if qu∆u < 0.1 and we choose λ ∈ [0.7, 0.8] (for instance, we made no attempt in optimizing
these constants), we see that ENu < 0.8. This is because

1

λ
− 1 +

0.1

1− λ ≤
10

7
− 1 +

0.1

1− 0.8
< 0.93

20 Chapter 2. Advice on Trees

Hence it follows that EEut(u′) ≤ 1 + 0.93(1 + κ) < κ. The last inequality holds by choice
of κ = 100. By our (backwards) induction, we have just shown that, if q < 1

10∆ and we set
λ ∈ [0.7, 0.8] then for all nodes u in the tree

EEut(u′) < 100.

This concludes the proof of Lemma 2.18 and hence also of the first part of Theorem 2.17.

Let us explain how the lower bound in the second part of Theorem 2.17 is derived in the
case that q∆ > 10. We assume we are in a complete ∆-ary tree under our usual uniform noise
model. With probability q there is fault at u and with probability 1 − 1

∆ the advice does not

point to u′. In this case, Nu follows a geometric law with parameter 1−λ
∆ . Hence

E(Nu) ≥ q∆
(

1− 1

∆

)
1

1− λ − 1 ≥ 10(1− 1
∆)

1− λ − 1 ≥ 10

(
1− 1

∆

)
− 1 ≥ 3,

for any choice of λ, since ∆ ≥ 2. We proceed very similarly, by induction, and use Equality
(2.2) together with the previous bound on E(Nu) to obtain that for any node on layer i, u with
parent u′, EEut(u′) ≥ 1 + 3 minv∈Li+1 EEvt(v′), so in particular

min
u∈Li

EEut(u′) ≥ 1 + 3 min
v∈Li+1

EEvt(v′).

The expected hitting time of the target τ , even starting at one of its children is therefore of
order Ω(3D).

Observation 2.19

The proof uses crucially the tree structure and does not extend to general graphs
straightforwardly. Specifically, on a tree there is a single path from σ to τ and so
the points ui are uniquely defined, they are not random. Moreover an excursion
from a node u at Layer i that does not visit it’s parent can only remain in layers
≥ i. This was used through the fact that Evt(u) depends only on the advice at
layers ≥ i, if we start at a node v ∈ Li.

2.5 Upper Bounds in High Probability

We assume the following, w.l.o.g.

• The noise model is the semi-adversarial variant. Hence the results apply also to the
random variant.

• The algorithm knows the depth d of the treasure. This assumption can be removed by
an iterative process that guesses the depth to be 1,2,. . . . By running each iteration for a
limited time as specified in the theorem, the asymptotic runtime is not violated.

2.5. Upper Bounds in High Probability 21

Given that the algorithm knows the depth d of the treasure, we further assume w.l.o.g. that
it never searches a node at depth greater than d. Equivalently, we may (and do) assume
that the depth of the tree is d = D, and that the treasure is located at a leaf.

• The tree is balanced: all leaves are at depth D, and all non-leaf nodes have degree exactly
∆. To remove this assumption, whenever the algorithm visits a node v at depth i < D
of degree dv < ∆, it can connect to it ∆− dv “auxiliary trees”, where each auxiliary tree
has depth D − i − 1 and is balanced. The advice in all nodes of these auxiliary trees
points towards v, which is a valid choice in the semi-adversarial model.

2.5.1 The Meta Algorithm

Underlying the upper bound presented in Theorem 2.5 is a simple, yet general, scheme. It is
based on a notion of fitness, which we define later. This notion depends on the parameters of
the model. It is carefully crafted such that the following fitness properties hold:

• F1. The fitness of a node u only depends on the advice on the path [σ, u], excluding u.

• F2. For any node u on the path [σ, τ], P (u is fit) ≥ 1− δ
2D .

• F3. With probability at least ≥ 1− δ
2 , the connected component of fit nodes that contains

the root is of size bounded by f(D, δ), for some function f .

Once fitness is appropriately defined so that properties F1 - F3 hold, an algorithm is naturally
associated to it. It consists in exploring in a depth-first fashion the connected component of fit
nodes containing the root. Property F1 ensures that this strategy is well-defined. The time to
explore a component is at most twice its size, because each edge is traversed at most twice.

Claim 2.20

Property F2 implies that Awalk eventually finds τ with probability ≥ 1− δ
2 .

Proof. Using Property F2, the probability that all nodes on the root to treasure path [σ, τ] are
fit is at least as large as 1− δ·D

2D = 1− δ
2 . Under this event, τ belongs to the same component

of fit nodes as the root, and hence Awalk eventually finds it.

By Property F3, the Awalk algorithm needs a number of steps which is upper bounded by
2f(D, δ) with probability 1− δ

2 . Using a union bound we derive the following claim.

Claim 2.21

If the fitness properties F1-F3 are satisfied, then Awalk finds τ in at most 2f(D, δ)
steps with probability ≥ 1− δ.

22 Chapter 2. Advice on Trees

2.5.2 Upper Bound in the Walk Model with High Probability

This subsection is devoted to the proof of Theorem 2.5. Our algorithm Awalk follows the general
scheme presented in Section 2.5.1. It is based on a notion of fitness presented below. With
this notion in hand, Awalk simply visits, in a depth-first fashion, the component of fit nodes to
which the root σ belongs to.

Definition 2.22: Advice-fitness

Let h1 = 2
ε log∆(4δ−1D) and h2 = 6

ε2
log∆(4δ−1D). Let u be a node and u−h2 be

the ancestor of u at distance h2 from u, or σ if u is at distance < h2 from σ. The
node u is said to be fit if the number of locations on the path [u−h2 , u] that do not
point towards u is less than h1. It is said to be unfit otherwise. Moreover, a fit
node is said to be reachable if it is in the connected component of fit nodes that
contains the root (as in Property F3). Equivalently, a node is reachable if either
it is the root, or it is fit and its parent is reachable.

Note that by definition, all nodes at depth < h1 are fit and reachable. The notion of fitness
clearly satisfies the first fitness property F1. We want to show that it also satisfies Properties
F2 and F3 with f(D, δ) = (δ−1D)O(1/ε). Let us first give two useful conditions satisfied by our
choice of h1 and h2.

Claim 2.23

The following inequalities hold (∗) 2h2∆−εh1 ≤ δ
4D , (∗∗) 2h2∆(1+ε)h1−εh2 ≤ δ

4D .

Proof. Equation (∗). Replacing h1/2 by their values, we bound the left hand side in Equation

(∗) as follows 2
6
ε2

log∆(4δ−1D)∆−ε
2
ε

log∆(4δ−1D) ≤ 2(6ε−2−2 log ∆) log∆(4δ−1D). We assume that ∆ ≥
26ε−2

so that 6ε−2 ≤ log ∆ and 6ε−2 − 2 log ∆ ≤ − log ∆. Hence the left hand side in (∗) is no
greater than 2− log ∆ log∆(δ−1D) ≤ δ

4D .

Equation (∗∗). Using the fact that ε ≤ 1 and that h2 = 3
εh1, we obtain that (1+ε)h1−εh2 ≤

2h1 − 3h1 = −h1 ≤ −εh1. The result follows from Equation (∗).

Lemma 2.24

The notion of advice-fitness obeys Property F3 f(D, δ) = (δ−1D)O(ε−1). Hence
the move complexity of Awalk is less than (δ−1D)O(ε−1), with probability ≥ 1− δ

2 .

Proof. Let Fit be the connected set of reachable nodes (as defined in Definition 2.22). Our
goal is to show that with high probability, namely, with probability at least 1 − δ

2 , we have

|Fit| = (δ−1D)O(ε−1).

For i ≥ 0, the term i-node will refer to any node whose common ancestor with τ is at

2.5. Upper Bounds in High Probability 23

σ

τ

h2

ui

h1

0-nodes

Fit0

Fiti

Figure 2.2: The partition of fit vertices introduced in the proof of Lemma 2.24. The colored nodes in
the subtree on the right are the close 0-nodes, where those colored with dark green are the reachable fit
0-nodes. There are no fit 0-nodes at depth h2 in this example.

depth i. An i-node is further said to be close if its depth d lies in the range [i, i+ h2]. Let Fiti
be the set of close i-nodes in Fit (see Figure 2.2).

Our first goal is to show that with high probability, Fit does not contain any 0-node at depth
h2 (Claim 2.26). Under this high probability event, Awalk visits only fit 0-nodes that are close
(i.e., at depth at most h2), because Awalk visits only reachable nodes, and fit 0-nodes that are
not close are disconnected from the root at depth h2. Hence all the 0-nodes visited by Awalk are
in Fit0. By symmetry, a similar statement holds for each layer i, and the corresponding subset
Fiti. Thus, under a high probability event, the nodes visited by Awalk during its execution
form a subset of

⋃D
i=0 Fiti (namely, f(D, δ) ≤ |⋃D

i=0 Fiti|).
Denote the expected number of fit 0-nodes at depth h by

αh :=
∑

u is a 0-node at depth h

P (u is fit).

We have

E (|Fit0|) ≤
∑

u is a close 0-node

P (u is fit) =
∑
h≤h2

αh. (2.4)

Claim 2.25

(∗) ∑h≤h1
αh ≤ 2∆h1 . (∗∗) For any h1 < h ≤ h2, we have αh ≤ ∆h1(1+ε)2h∆−εh.

Proof. Every node at depth at most h1 is fit. There are at most 2∆h1 such nodes. Estimation
(∗) follows.

24 Chapter 2. Advice on Trees

We now show the second estimate. Let Uh be a node chosen uniformly at random among
all 0-nodes at depth h. Then P (Uh is fit) =

∑
u is a close 0-node P (Uh = u)P (u is fit), and

hence we may write:

αh = (∆− 1)hP (Uh is fit).

Choosing Uh randomly rather than arbitrarily is of crucial importance in the semi-adversarial
variant, because the adversary might choose to direct all the faulty advice towards a specific
node u. This could result in some terms in the sum (in the definition of αh) being much bigger
than the average. So it is important to avoid bounding the average by the max. We draw
a uniform path σ = U0, U1, . . . , Uh of length h from the root, in the component of 0-nodes.
Consider a node Ui on this path. With probability q, it is faulty. In this case, regardless of
how the adversary could set its advice, there is only probability of at most 1

∆−1 over the choice
of Ui+1 that the advice at Ui points to Ui+1.

It follows that the number of ancestors of Uh whose advice points to Uh may be viewed as the
sum of h Bernoulli variables Bi with parameter q

∆−1 . Moreover, the previous argument means
that P (Bi = 1 | Bj , j < i) = q

∆−1 = P (Bi = 1). The Bi variables are thus uncorrelated and
hence independent since they are Bernoullis. The node Uh is fit if at least h−h1 ancestors point
to it. Thus, by a union bound over the

(
h

h−h1

)
≤ 2h possible locations of faults, P (Uh is fit) ≤

2h
(

q
∆−1

)h−h1

. Hence

αh ≤ 2h(∆− 1)h
(

q

∆− 1

)h−h1

≤ 2hqh−h1∆h1 = ∆h1(1+ε)2h∆−εh.

In the last step, we used q = ∆−ε. This concludes the proof of Claim 2.25.

For h = h2, the combination Claim 2.25 and Equation (∗∗) stated in Claim 2.23 implies:

αh2 ≤
δ

4D
(2.5)

For i ∈ [D], denote by Zi (Z for zero) the event that there are no fit i-nodes at depth i + h2.
Applying Markov inequality on Equation (2.5) implies that P (Z0) ≥ 1 − δ(4D)−1. Since the
same argument can be applied to any i ≤ D, we get

Claim 2.26

For any i ≤ D, we have P (Zi) ≥ 1− δ
4D and hence P (

⋂
Zi) ≥ 1− δ

4 .

If follows from the assumption on ∆ ≥ 26ε−2
that ∆ε ≥ 26 ≥ 8, so that 2∆−ε < 1

4 . Using

2.6. Lower Bound 25

Claim 2.25 and the definition of h1 we get:

E (|Fit0|) ≤
∑
h≤h2

αh ≤ 2∆h1 +

h2∑
h=h1

∆h1(1+ε)
(
2∆−ε

)h
≤ 2∆h1 + ∆h1(1+ε)

∑
h≥h1

4−h ≤ 2∆h1 + 2∆h1(1+ε)

≤ 4 · (4δ−1D)2ε−1+2 = (4δ−1D)2ε−1+3.

The computation is the same for any i ≤ D, yielding that E(|Fiti|) ≤ (4δ−1D)2ε−1+3, and by lin-
earity of expectation, we obtain E(|⋃D

i=0 Fiti|) ≤ D ·(4δ−1D)2ε−1+3. Using the Markov inequal-

ity, with probability at least 1− δ
4D , this variable is upper bounded by 4δ−1D2 ·(4δ−1D)2ε−1+3 ≤

(4δ−1D)2ε−1+5. As explained in the beginning of the proof, under the event
⋂
i≤D Zi (which

occurs with probability at least 1− δ
4 thanks to Claim 2.26), we have Fit ⊂ ⋃i≤D Fiti. Using a

union bound, we conclude that with probability at least 1− δ
2 , we have |Fit| ≤ (4δ−1D)2ε−1+5 =

(δ−1D)O(ε−1), as desired.

Claim 2.21 in combination with Lemma 2.24 proves Theorem 2.5.

2.6 Lower Bound

The goal of this section is to prove Theorem 2.6. The proof is done for the query complexity,
in a complete ∆-ary tree of depth D = log∆ n. The proof for the move complexity immediately
follows. Throughout the proof, T denotes a complete ∆-tree of depth D. In our lower bound,
the adversary places τ at a leaf of T chosen at random from the uniform distribution. We
denote by F the set of faulty locations (without directional advice). Since this set as well as τ
are chosen uniformly at random, we may assume without loss of generality that the algorithm
is deterministic. The presentation of our proof is simplified if we assume that the algorithm is
told which nodes of T are faulty (namely, are in F). We can make this assumption because it
only strengthens our lower bound.

The letter H is reserved to denote a subtree of T . We consider implicitly that a subtree
H only contains the descendants of its root (with respect to the original root σ). A subset S
is said to be completely faulty if all nodes in S are faulty. Overloading this expression, we say
that a leaf v of some subtree H is completely faulty if the path from the root of H towards v
is completely faulty. The relevant reference subtree H will be specified if it is not clear from
context. The number of completely faulty leaves of a subtree H is denoted B(H) or simply
B if H is clear from context. When considering a subset S ⊆ T , we write S∗ to denote the
pair (S, S ∩F). In words, this corresponds to a subset with the information of which nodes are
faulty.

26 Chapter 2. Advice on Trees

2.6.1 Proof of Theorem 2.6

At a high level, the argument is as follows. On the path from the root to τ , typically, there
exists a segment [vi, vi+h−1] of length approximately h := 1

ε log∆D, where all advice is faulty
(Lemma 2.27), . On the other hand, the tree rooted at vi of depth h, typically hosts many such
completely faulty leaves (Lemma 2.28). In some sense these leaves are indistinguishable. This
means that any algorithm, will need to try a constant fraction of them before finding vi+h, the
one leading to τ with constant probability.

Let us make this intuition more precise. For each choice of faulty locations F and treasure
location τ = v, we define u(v, F) to be the first node on the path [σ, v] such that u and its
h − 1 descendants towards v (the next h − 1 nodes on the path to v) are faulty, if such u
exists, and otherwise we say u(v, F) is not defined. Denote by H(v, F) the subtree rooted
at u of depth h. A central object in the proof is H∗(v, F) which corresponds to the couple
H(v, F), (F ∩H(v, F)) (the subtree together with the faulty locations on it). Henceforth, we
will often drop the dependency on v, F in the interest of readability, but we keep the bold
notation to emphasize that H is a random object (it depends on F). If u is not defined, we
also say H is not defined.

The following lemma lower bounds the probability that H is well defined.

Lemma 2.27

If h satisfies qh ≥ 8δh
D and D ≥ max[h, 8δh] (for D that does not satisfy this

condition the statement does not make sense), then P (H is well defined) ≥ 4δ.

Proof. Recall that we write [σ, τ] := {v0 = σ, v1, . . . , vD−1, vD = τ}. For a given i, h ∈ N , let
us denote by Fi,h the event that [vi, vi+h−1] is completely faulty.

With this definition, H is well defined if the event Fi,h holds for at least one value of i in
the range 0 ≤ i ≤ D − h. Hence what we want to show is that

P

(
NOT

D−h⋃
i=0

Fi,h

)
≤ 1− 4δ. (2.6)

For any fixed, i, h, P (Fi,h) = qh. Indeed, there are h nodes on the path [vi, vi+h−1] and each
is independently faulty with probability q. The parameter h satisfies qh = 8δh

D by assumption.
The events Fi′h,h are independent when i′ varies in [D/h]. The probability that none of

these holds is

(1− qh)D/h ≤ (1− 8δh

D
)
D
h ≤ e− 8δh

D
D
h = e−8δ ≤ 1− 8δ/2 = 1− 4δ.

The last inequality holds for sufficiently small δ (e.g., δ ≤ 1
16).

From now on, we assume for simplicity that h is chosen so that qh = 8δh
D . (h being an

integer, this is only an approximate equality in general. We ignore this point in the discussion,

2.6. Lower Bound 27

assuming h has been appropriately rounded.) Recall that q = ∆−ε, so taking logarithms we
see that εh = log∆

D
δ − log∆ 8h. Viewing δ and ∆ as fixed and letting D go to infinity, the

previous equality entails that h = 1
ε log∆

D
δ (1 − o(·)), where the term o(·) is a function of D

going to 0 when D tends to infinity4.
Let B(H∗) denote the number of completely faulty leaves in H∗. Lemma 2.28 below is

proven in Section 2.6.2. It bounds the typical value of B(H∗) in those cases that H∗ is well
defined.

Lemma 2.28

Let C be a sufficiently large constant. Then

P
(
B(H∗) ≤ (q∆)h−C | H is well defined

)
≤ 0.5.

The following two intermediate results express how “indistinguishable” is formalized in this
context.

Claim 2.29

Consider a leaf v and a subtree H∗ (together with the faulty locations in it). Then,
the value of pv,H∗ := PF (H∗(v, F) = H∗ | τ = v) is the same for all v such that
pv,H∗ > 0.

Proof. Let H be a fixed subtree of depth h rooted at some node u. By definition, the statement
that P (H∗(v, F) = H∗ | τ = v) > 0 is equivalent to the following two statements:

A: On the path [σ, u], there are no h consecutive faulty nodes and, if u 6= σ, the parent of u
is not faulty.

B: The leaf v is a descendant of u and the leaf of H∗ which is an ancestor of v is completely
faulty in H∗.

The probability of A depends only (in some complicated way) on the length of [σ, u] and q and
hence does not depend on v. With these notations, if v,H∗ and F are such that A and B hold,
then

P (H∗(v, F) = H∗ | τ = v) = q|F∩H|(1− q)|H\F |P (A).

The right hand side does not depend on v. The claim follows.

Lemma 2.30

Conditioning on the subtree H∗ (and hence its existence), the leaf of H∗ which
leads to the treasure is uniform amongst all completely faulty leaves v of H∗.

4 Indeed, h goes to infinity when D goes to infinity so log∆ 4h = o(h).

28 Chapter 2. Advice on Trees

Proof. Denote by L the set of leaves of T . Using Bayes rule, and because we assume that τ is
uniform over all leaves L,

P (τ = v | H∗) = P (τ = v) · P (H∗ | τ = v)

P (H∗)
=

1

|L| ·
P (H∗ | τ = v)

P (H∗)
.

It follows that P (τ = v | H∗) has the same value for all leaves v of T such that P (τ = w |
H∗) > 0. Indeed, we saw that the right hand term is independent of w, as soon as w descends
from a completely faulty leaf of H∗ (Claim 2.29), and otherwise it is 0.

Since the tree T is complete and regular, each leaf of H∗ is the ancestor of the same
number of leaves in T , and so each completely faulty leaf of H∗ is equally likely to lead to the
treasure.

We now condition on the event that H is well defined and that it has more than s = (q∆)h−C

completely faulty leaves. This event holds with probability at least 4δ × 0.5 (combining the
results of Lemma 2.27 and Lemma 2.28). Under this conditioning, with probability at least 0.5
over treasure location the completely faulty leaf leading to the treasure is visited after at least
0.5s other faulty leaves have been visited. Indeed there are s faulty leaves, each being equally
likely to lead to the treasure (Lemma 2.30). Overall, with probability 4δ× 0.5× 0.5 = δ, more
than 0.5s nodes need to be visited. We saw that, h = 1

ε log∆(Dδ)(1−o(∗)), hence s = (q∆)h−C =

(q∆)h·(1−o(∗)) = (∆1−ε)
1
ε

log∆
D
δ

(1−o(∗)). After simplification, this is (δ−1D)
1−ε
ε

(1−o(∗)).

2.6.2 Proof of Lemma 2.28

The proof of Lemma 2.28 is broken into intermediate claims. To begin with we ignore the
treasure τ , and consider a fixed complete ∆-ary tree H of depth h. Each node of H is faulty
(namely, belongs to the set F) independently with probability q.

Claim 2.31

It holds that P
(
B(H) > 1

2(q∆)h
)

= Ω(q).

Proof. The proof uses a second moment argument. For any given leaf, the probability of the
full path from the root being faulty is qh and there are ∆h leaves. Hence E(B) = (q∆)h. Let
us denote by L the set of leaves. We may estimate E(B2) using

E(B2) = E(B) +
∑

u6=v∈L
P (u and v are completely faulty).

Fix a leaf v ∈ L. We partition other leaves according to the depth h−` of their common ancestor
with v. Let us denote such leaves L`. For any ` ∈ [1, h], |L`| ≤ ∆`. Moreover, for u ∈ L`, u and v
are completely faulty is equivalent to v being completely faulty and the `− 1 nodes connecting

2.7. Open Problems 29

u to the root to v path being faulty. Hence, P (u and v are completely faulty) = q`+h−1.
Altogether,

E(B2) ≤ (q∆)h + ∆h
h∑
`=1

∆`q`+h−1 = O

(
q−1(q∆)h

h∑
`=1

(q∆)`

)
= O

(
q−1(q∆)2h

)
= O(q−1E(B)2).

Using the Paley-Zygmund inequality, we get P (B ≥ 1
2E(B)) ≥ 1

4
E(B)2

E(B2)
= Ω(q).

Claim 2.32

For a constant C that depends only on q, for h that goes to infinity with D, and
for sufficiently large D, it holds that P (B ≤ (q∆)h−u(h) | B ≥ 1) ≤ 0.5.

Proof. Since B ≥ 1 there exists a path [σ, v] which is completely faulty. For every u ∈ [σ, v]
define Tu as the subtree rooted at u excluding the subtree rooted at the child of u on [σ, v]. The
subtrees Tu are pairwise disjoint and form a partition of T . For u ∈ [σ, v], define Bu := B(Tu),
the number of completely faulty leaves on Tu. Note that B =

∑
uBu ≥ maxuBu. Moreover

since, for u 6= u′, Tu ∩ Tu′ = ∅, the variables (Bu) are independent.
Let S be the prefix of size u(h) of [σ, v]. All subtrees rooted at a node u ∈ S are of depth

> h−u(h). Using Claim 2.31, together with the independence of the Bu’s, the probability that
all Bu’s are smaller than (q∆)h−u(h) is less than (1− cq)u(h) for a small constant c. The result
follows, if C is big enough (as a function of q).

If it exists, by definition, H∗ has at least one completely faulty leaf, which is the one
leading to τ . Outside of the branch leading to τ , the nodes of H∗ are still independently
faulty with probability q. This means that the number of completely faulty leaves of H∗,
B(H∗) | {H∗ is well defined} is distributed as B(H∗) | {B(H∗) ≥ 1} for any fixed subtree H
of depth h.

Using this together with Claim 2.32 finishes the proof of Lemma 2.28. Indeed, we obtain

P
(
B(H∗) ≤ (q∆)h−u(h) | H is well defined

)
≤ 0.5.

2.7 Open Problems

Obtaining efficient search algorithms for general graphs is highly intriguing. Even though the
likelihood of a node being the treasure under a uniform prior can still be computed in principle,
it is not so easy to compare two nodes as in Theorem 2.9 because there may be more than a
single path between them.

In a limited regime of noise, we believe that memoryless strategies might very well be
efficient also on general graphs, and we pose the following conjecture. Proving it may require

30 Chapter 2. Advice on Trees

the use of tools from the theory of RWRE, which seem to be lacking in the context of general
graph topologies.

Conjecture 2.7.1. There exists a probabilistic following algorithm that finds the treasure in
expected linear time on any undirected graph assuming q < c/∆ for a small enough c > 0.

Chapter 3

Searching a Tree with Noisy Local
Advice: Query Complexity

3.1 Introduction

In the previous chapter, we introduced a model for tree search with Local Noisy Advice. The
goal is to reach a target τ using local guiding instructions at each node of the tree, which can
be faulty with some fixed probability q ∈ [0, 1]. We studied algorithms that worked well in
expectations and others that were only guaranteed to be efficient with some probability.

The algorithmic cost was measured through the number of edge traversals. In this chapter
we consider another complexity cost, the query complexity. It corresponds to the number of
advice that needs to be revealed. An important difference with respect to the previous chapter
is we now assume the tree is known in advance to the algorithm, so it may pre-compute a list
of nodes to query. These are typically separators, i.e., nodes that separate the tree into roughly
equal size subtrees and thus allow to make great progress in the search.

In the previous chapter, query complexity was already used, but in lower bounds only. If,
there were no mistakes in the advice (q = 0) a separator (as formally defined below) based
strategy would yield O(log n) queries worst-case strategies. Our goal is to achieve similar
complexities, even in the presence of faults.

3.2 Notation

The notation is the same as in the previous chapter. The target is denoted τ , while σ stands for
the root of the tree (previously, the starting point of the search, here it is an just an arbitrary
vertex). We use the letter n for the size of the tree. Moreover, in this chapter, we use the
notation Q(A) to denote the expected query cost of algorithm A.

32 Chapter 3. Advice on Trees: Query Complexity

Upper Bound Lower Bound

Regime Moves Regime Moves

Expectation q << 1√
∆
Õ(
√

∆ log n) q >> 1√
∆

nΩ(1)

High Probability q = ∆−ε (log n)O(ε−1) q = ∆−ε (log n)Ω(ε−1)

Figure 3.1: Query complexity results, in simplified form. The precise conditions behind the
symbol << will be clarified later.

3.3 Our results

Our main result is the following. It works assuming the advice parameter is the same at every
node, i.e., is bounded by the maximum degree rather than the local degree.

Theorem 3.1

Assume that q < c/
√

∆ for a small enough constant c > 0. Then there exists
a deterministic query algorithm A2−layers such that Q(A2−layers) = O(

√
∆ log n ·

log log n).

In fact, we will start by showing the slightly weaker bound below, as it contains the main
ideas and works in the more general setting where the mistake parameter depends on the node
qu. Condition (?) was introduced in the previous chapter (see Chapter 2, Definition 2.1). It
can roughly be understood as saying that for all nodes v, qv <

1−ε√
∆v

.

Theorem 3.2

For any ε > 0, there exists a deterministic query algorithm Aquery such that if
Condition (?) holds with parameter ε then the query complexity is Q(Aquery) =
O(
√

∆ log ∆ · log2 n).

Combining the ideas of Theorem 3.2 with the result Theorem 2.5 presented in the previous
chapter, it is possible to derive a query result also in the high probability setting.

3.4. A Lower Bound of Ω(
√

∆ · log∆ n) when q ∼ 1/
√

∆ 33

Corollary 3.3

Under the assumptions of Theorem 2.5, assuming n is sufficiently large (as a func-
tion of ε and ∆), there exists an algorithm Aquery in the query model that finds
the treasure with probability at least 1 − δ whose number of queries scales like
(δ−1 log n)O(ε−1). I.e., P [Q(Aquery) < (δ−1 log n)O(ε−1)] > 1− δ. This result holds
in the semi-adversarial variant as well.

Once again, as in the previous chapter, achieving a high probability guarantee seems easier
than low runtime in expectation. Anticipating on our proofs, the intuition for this is as follows.
Our query strategies work provided the neighborhood of separator nodes are well-behaved.
Given our formalization of well-behaved, this turns out a high probability event. If we are after
a guarantee in expectation, it means we need to gain some control on what happens when this
event does not hold, which requires extra work.

The lower bound presented in Theorem 2.3 of the previous chapter was phrased in terms
of the depth D of the tree but for query algorithms already. Since the trees considered in this
lower bound are complete and regular, we may replace D by log∆ n, we obtain a nΩ(1) lower

bound (as given in Table 3.1) when q > 1+ε√
∆−1

(
1 + 1

∆−1

)
.

The following is a lower bound that holds regardless of the noise regime.

Theorem 3.4

Consider a complete ∆-ary tree and a search algorithm A. Then Q(A) =
Ω(q∆ log∆ n)

Organization of This Chapter. We start by the proof of the lower bound in Section 3.4
The proof of Theorem 3.2 is presented in Section 3.5. We proceed to show the proof of Corollary
3.3 in Section 3.6. Section 3.7 is by far the longest section. It is entirely devoted to the proof
of Theorem 3.1.

3.4 A Lower Bound of Ω(
√

∆ · log∆ n) when q ∼ 1/
√

∆

We now prove Theorem 3.4. Specifically, we wish to prove that for ∆ ≥ 3, on the complete ∆-ary
tree of depth D, any algorithm needs Ω(q∆D) queries in expectation. Note that, in particular,
when q is roughly 1/

√
∆, and n is the tree size, the query complexity is Ω(

√
∆ · log∆ n). Before

proving this lower bound, we recall Observation 2.16 from the previous chapter:

34 Chapter 3. Advice on Trees: Query Complexity

Observation

Any randomized algorithm trying to find a treasure chosen uniformly at random
between k identical objects will need an expected number of queries that is at least
(k + 1)/2.

To prove the lower bound of Ω(q∆D), consider the complete ∆-ary tree of depth D. We
prove by induction on D, that if the treasure is placed u.a.r. in one of the leaves, then the
expected query complexity of any algorithm is at least q(∆/2 − 1)D. If D = 0, then there is
nothing to show. Assume this is true for D, and we shall prove it for D + 1. Let T1, . . . , T∆−1

be the subtrees hanging down from the root (in the induction, the “root” is actually an internal
node, and so has ∆ − 1 children), each having depth D. Let i be the index such that τ ∈ Ti,
and denote by Q the number of queries before the algorithm makes its first query in Ti. We
will assume that the algorithm gets the advice in the root for free. Denote by Y the event that
the root is faulty . In this case, Observation 2.16 applies, and we need at least ∆/2− 1 queries
to hit the correct tree. We subtracted one query from the count because we want to count the
number of queries strictly before querying inside Ti. We therefore get E [Q] ≥ P (Y) ·E [Q |Y] ≥
q(∆/2− 1). By linearity of expectation, using the induction hypothesis, we get the result for a
uniformly placed treasure over the leaves, and so it holds also in the adversarial case.

3.5 Proof of Theorem 3.2

As is common in search on trees, our technique in this section is based on separators. We say a
node u is a separator of T if all the connected components of T \ {u} are of size at most |T |/2.
It is well known that such a node exists. Assume there is some local procedure, that given a
vertex u decides with probability 1− δ in which one of the connected components of T \ {u},
the treasure resides. Applying this procedure on a separator of the tree, and then focusing
the search recursively only on the component it pointed out, results in a type of algorithm we
call a separator based algorithm. It uses the local procedure at most dlog2 ne times, and by a
union bound, finds the treasure with probability at least 1 − dlog2 neδ. Broadly speaking, we
will be interested in the expected running time of this sort of algorithm conditioned on it being
successful. This sort of conditioning complicates matters slightly. In what follows, we assume
that the set of separators for the tree is fixed.

Proof. (of Theorem 3.1) Asep runs a separator based algorithm in parallel (i.e. in an alter-
nating fashion) to some arbitrary exhaustive search algorithm. Fix some small h. The local
exploration procedure, denoted localh, for a vertex u proceeds as follows.

Procedure localh(u). Consider the tree Th(u) rooted at u consisting of all vertices satisfying
log∆ β(v) < h together with their children. So a leaf of v ∈ Th(u) is either a leaf of T , or
satisfies ∆h ≤ β(v) < ∆h+1. Denote the second kind a nominee. Call a nominee promising if
the number of weighted arrows pointing to v is large, specifically, if

∑
w∈[u,v〉Xw ≥ 2

3h log ∆,

3.5. Proof of Theorem 3.2 35

where Xw = log ∆w if the advice at w is pointing to v, Xw = − log ∆w if it is pointing to u, and
Xw = 0 otherwise. Viewing it as a query algorithm, we now run the walking algorithm Awalk on
Th(u) (starting at its root u) until it either finds the treasure or finds a promising nominee. In
the latter case, localh(u) declares that the treasure is on the connected component of T \ {u}
containing this nominee. If τ ∈ Th(u) then set τu = τ . Otherwise let τu be the leaf of Th(u)
closest to the treasure, and so in this case τu is a nominee. Say that u is h-misleading if either
(1) τ 6∈ Th(u) and τu is not promising, or (2) there is some promising nominee v ∈ Th(u)
that is not in the same connected component of T \ {u} as τu. In particular, if u is not h-
misleading then localh(u) necessarily outputs the correct component of T \ {u}, namely, the
one containing the treasure. The proof of the following lemma is to be found below in Section
3.5.1.

Lemma 3.5

For any u, P (u is h-misleading) ≤ (∆ + 1)(1 − ε)h. Also, for any event
X such that X occurring always implies that u is not misleading, we have
P (X)Q (localh(u) | X) = O(

√
∆ log ∆ · h). In the case that the noise is uni-

form across nodes, these bounds become 2(1 − ε)h and O(
√

∆ · h) respectively.
The constant hidden in the O notation only depends polynomially on 1/ε.

Taking h = −3 log(2n)/ log(1 − ε), gives P (u is misleading) ≤ 1/n2. Denote by Good the
event that none of the separators encountered are misleading. By a union bound, P (Good c) ≤
1/n.

Q(Asep) = P (Good)Q (Asep | Good) + P (Good c)Q (Asep | Good c) . (3.1)

As Asep runs an exhaustive search algorithm in parallel, the second term is O(1). For the first
term, note that conditioning on Good , all local procedures either find the treasure or give the
correct answer, and so there are O(log n) of them and they eventually find the treasure. Denote
by ui the i-th vertex that localh is executed on. By linearity of expectation, and applying
Lemma 3.5, the first term of (3.1) is P (Good)

∑
iQ (localh(ui) | Good) = O(log n ·

√
∆ log ∆ ·

h) = O(
√

∆ log ∆ log2 n). As log(1 + x) > x always, then −1/ log(1− ε) ≤ 1/ε, and the hidden
factor in the O is as stated.

3.5.1 Proof of Lemma 3.5

The proof makes use of Lemma 2.8, proven in the previous chapter. To check the probability
that u is misleading, consider two cases:

1. τ 6∈ Th(u), and τu is not promising. By Lemma 2.8, and recalling that ∆h ≤ β(τu), the

36 Chapter 3. Advice on Trees: Query Complexity

probability τu is not promising is:

P

 ∑
w∈[u,τu〉

−Xw ≤
2

3
h log(∆)

 = P

 ∑
w∈[u,τu〉

Xw ≥ −
2

3
· h log(∆)

≤

∏
w∈[u,τu〉

1− ε√
∆w
· e 3

4
· 2
3
h log(∆) =

(1− ε)d(u,τu)√
β(τu)

∆
h
2 ≤ (1− ε)d(u,τu).

As d(u, τu) ≥ log∆ β(τu) ≥ h, this is at most (1− ε)h.

2. If v is a nominee that is not in the same connected component of T \ {u} as τu, then by
Lemma 2.8, the probability that v is promising is

P

 ∑
w∈[u,v〉

Xw ≥
2

3
log ∆ · h

 ≤ ∏
w∈[u,v〉

1− ε√
∆w
· e− 3

4
· 2
3
h log ∆

=
(1− ε)d(u,v)√

β(v)
∆−

h
2 ≤ (1− ε)d(u,v)

∆h
.

However, denote by L the set of nominees in Tu. As they are a subset of the leaves of Tu,
by the way θ is defined:

1 ≥
∑
x∈L

θ(v) ≥
∑
x∈L

1

β(v)
≥
∑
x∈L

1

∆h+1
=
|L|

∆h+1
(3.2)

So, |L| ≤ ∆h+1. Therefore, by a union bound, the probability that there exists a nominee
v that renders u misleading is at most ∆(1− ε)h.

The probability that u is misleading is then at most (1 + ∆)(1 − ε)h as stated. In the case
where the noise parameter does not depend on each node, the analysis is the same, except that
in (3.2), β(v) = ∆h, and so following the same logic, |L| ≤ ∆h, and this part contributes only
(1− ε)h.

For the second part of the lemma, consider some event X where u is not misleading. As τu
is either the actual treasure or promising, and acts as the treasure in the eyes of Awalk, then the
local procedure stops when it encounters τu. It might actually stop before (because it found
another promising node), so,

P (X)Q (local(u) | X) ≤ P (X)Q (Awalk(Th(u)) | X)

≤ Q (Awalk(Th(u))) = O(
√

∆ · depth(Th(u)))

But the depth of Tu is at most O(h log ∆), since its leaves satisfy β(v) < ∆h+1, and β(v) ≥
2depth(v). For the case of a regular tree, β(v) = ∆depth(v) and so the depth of Tu is at most h,
giving the result.

3.6. Proof of Corollary 3.3 37

3.6 Proof of Corollary 3.3

As explained in the introduction, this proof builds on the proof of Theorem 3.2 and uses the
same terminology. It also relies on Theorem 2.5 presented in the previous section.

We use a local procedure described in Lemma 3.6 that allows us to learn with probability
1 − O(δ

logn), in which one of the connected components of T \ {u} the treasure resides. By a
union bound, applying this local procedure on a separator of the tree, and recursing on the
component pointed out by the procedure, allows to find the treasure in logarithmic number of
runs of the local procedure with probability at least 1−O(δ).

Lemma 3.6

Let d ∈ N be big enough. Let u be a separator. There exists a search procedure
that queries the vicinity of u up to distance d and outputs either (∗) the component
of T \ {u} that contains τ or (∗∗) τ itself if d(τ, u) ≤ d. The success probability is
at least 1− δ and the number of queries is not greater than (δ−1d)O(ε−1).

Proof. Let Tu be the subtree of depth d rooted at u. Hereafter, the reference tree is Tu, so the
notion of fitness is with respect to Tu (that is, the depth parameter involved in Definition 2.22
is d and not D).

Let us first describe the promised local procedure. It consists in applying algorithm Awalk
from Theorem 2.5 on Tu until either finding the treasure or finding a reachable fit node at
distance precisely d from u, denoted x. We will see that with high probability at least one of
these events holds so that the behavior of the local procedure when none of these events happen
is not relevant. For the sake of concreteness, we could say that it stops if all of Tu has been
explored. We note that Algorithm Awalk makes walking steps, which are viewed as queries in
the query model in this context. The output of the local search procedure is either τ , if it was
found, or the component of x in T \ {u}.

Let us analyse the performance of the local search procedure. If τ ∈ Tu, then Theorem 2.5
ensures that it is found with probability 1−δ in at most (δ−1d)O(ε−1) steps. Otherwise, consider
the node x at distance d from u in Tu that is on the path to τ . Within Tu, the advice is sampled
as if x was the treasure τ , so Theorem 2.5 guarantees in this case that x is found with probability
1− δ in less than (δ−1d)O(ε−1) steps. Moreover, under that event x is fit and reachable.

To complete the argument, we just need to guarantee that with high probability, there
are no reachable fit nodes at distance d from u outside the component of x. Then, the local
procedure may discover a reachable and fit node at distance d different from x, but it will still
be in the same component as x.

Recall that a 0-node is a node whose common ancestor with the treasure is the root (which is
u in this case, since the reference tree is Tu). These are precisely the nodes in other components
than the component of x. Claim 2.26 asserts that all reachable fit 0-nodes are within distance
h2(d) of u with probability at least 1− δ

4 . We write h2(d) to emphasize that the parameter is
defined here as a function of d, namely 6

ε2
log∆(4δ−1d). We see that if d is big enough (as a

38 Chapter 3. Advice on Trees: Query Complexity

function of ε,∆) then h2(d) < d.
Hence with that probability, any fit node at distance d found by the local procedure is

guaranteed to be in the right component, that is the component to which x belongs.
Overall, the success probability of this procedure is 1 − δ − δ

4 = 1 − 5
4δ. We may write

δ′ = 4
5δ and get the desired statement1.

To conclude, we apply Lemma 3.6 with δ′ = δ/ log n and d = log n for every one of the at
most log n separators leading to τ . By a union bound, the success probability is 1− δ and the
total number of queries is log n · (δ−1 log n)O(ε−1) = (δ−1 log n)O(ε−1).

Letting h be the depth of the local search procedure, no separator on the way to the treasure
is misleading with probability > 1−O(log ne−ch) for some parameter c that depends on ε only.
Under this event, all local search procedures find the correct way to proceed. Each of these
local search procedures takes at most hO(ε−1) moving steps (and hence queries) with probability
1− h−3. We use here Theorem 2.5 with an enhanced probability guarantee.

Overall, setting h = c log n for some large constant c > 0, we obtain that with probability
greater than 1 − O(log n · e−ch) − log nh−3 > 1 − O(log−1 n) ends correctly at takes at most
(log n)O(ε−1) steps and this concludes the proof.

3.7 Proof of Theorem 3.1

In this section, we present algorithm A2−layers that performs almost optimally (up to lower order
terms) in the regime where q < c/

√
∆ for some small enough positive constant c (as opposed

to q < (1 − ε)∆−1/2 as in Theorem 3.2). More precisely, in that regime, it finds the treasure
in O(

√
∆ log n · log logn) queries in expectation. Moreover, in contrast to Theorem 3.2, in this

section we do not allow the mistake the mistake parameter to depend on the node.
Before we continue, let us note that taking a small enough c, the condition q < c/

√
∆ we

are using here actually implies2 Condition (?) with ε = (1− 2−1/4)/2.
Algorithm A2−layers runs two algorithms in parallel, namely, Afast , and Amid . Algorithm

Afast is actually Asep, except that it applies the local procedure with parameter h being h2 =
dκ2 log logne rather than Θ(log n). Algorithm Amid is similar to Asep, as it also uses h being
h1 = dκ1 log ne. However it uses a different local exploration procedure, see more details in
Section 3.7.1. κ1 and κ2 are constant independent of n whose value will be determined later.
We will henceforth omit the ceiling d·e in the interest of readability.

Let us first recall some of the definitions that were introduced in Section 3.5. Here Th(u)
denotes the tree of nodes at distance at most h from u. Call a leaf v ∈ Th(u) a nominee if

1In fact, the rescaling δ′ = 4
5
δ could be avoided, by observing that the event of probability 1− δ/4 discussed

in the proof is included in the 1 − δ probability event that guarantees the success of Awalk. This follows from
inspecting the proof of Theorem 2.5.

2Indeed, recall that for regular trees, Condition (?) reads q < 1−ε−∆−1/4
√

∆+∆1/4 . Now, ∆ ≥ 2 implies that 1 −

∆−1/4 ≥ 1 − 2−1/4 and ∆1/4 ≤
√

∆. Hence 1−ε−∆
−1/4
v√

∆+∆1/4 ≥ 1−2−1/4−ε
2

1√
∆

. We may set ε = 1−2−1/4

2
so that, as

soon as c < 1−2−1/4−ε
2

= 1−2−1/4

4
, q < c∆−1/2 implies Condition (?) with that choice of ε.

3.7. Proof of Theorem 3.1 39

its distance to u is exactly h. Denote by U(u) the set of nominees that are not in the same
component as τu in T \ {u}. Call a nominee promising if

∑
w∈[u,v〉Xw ≥ 2

3h, where Xw = 1 if
the advice at w is pointing to v, Xw = −1 if it is pointing to u, and Xw = 0 otherwise. Note
that Xu can never be −1. Let τu be the leaf on Th(u) closest to τ if τ /∈ Th(u) and τu = τ
otherwise. Recall also that u is called h-misleading, if one of the two following happens (1)
τu 6= τ and τu is not promising, or (2) There is some promising nominee in U(u).

Let Excellent be the event that no separator on the way to the treasure is h2-misleading.
The following claim is a direct consequence of Lemma 3.5 (regular tree case) and linearity of
expectation, summing the query complexity of the dlog ne separators on the way to the treasure.

Claim 3.7

P(Excellent) · Q (Afast | Excellent) = O
(√

∆ log n · log log n
)
.

To bound the total expected number of queries, we run in parallel algorithm Amid . All that
remains is then to prove that P(Excellent c) · Q (Amid | Excellent c) = O(

√
∆ log n).

3.7.1 Algorithm Amid

As mentioned, Amid is similar to Asep except that it uses a different local procedure. More
precisely, recall that Asep executes Procedure localh(u) by running Awalk on Th(u) until it
either finds the treasure or finds a promising nominee, and in the latter case, it declares that
the treasure is on the connected component of T \ {u} containing this nominee. In the context
of Algorithm Amid , for technical commodity, we choose to run Procedure localh(u) with a
simpler exploration routine which we call Aloop. It is less efficient than Awalk but its simplicity
will be useful for analyzing its behaviour in various, “less clean”, circumstances. Indeed, we
will need to analyse the performances of Aloop, conditioning on the event Excellent c, implying
that some parts of the tree have to be pointing in the wrong direction.

The fact that Aloop is less efficient than Awalk will not affect the final bound, as its running
time will dominate the total running time with very low probability.

Algorithm Aloop. Recall in this section we only deal with ∆-regular trees. Define level i as
the set of all nodes at distance i from the root. At each round, Aloop only compares nodes
within a given level i. Specifically, it goes to the node in level i with most arrows pointing
at it among the non-visited nodes in level i. It only considers vertices whose parent has been
explored already. The index i is incremented modulo the depth of the tree D, on every round.
Below is a description in pseudocode. The loop over i explains the name Aloop.

In what follows we will analyse Algorithm Aloop conditioning on some parts of the tree being
misleading. For readability considerations, the interested reader might wish to first see how it
behaves on a simpler scenario, without any conditioning. The proof of this is shown in the full
version of the paper (see [31]).

40 Chapter 3. Advice on Trees: Query Complexity

Algorithm 1: Algorithm Aloop

1 Continuously loop over levels 1, 2, . . . , D
2 When considering level i, go to the yet unexplored reachable node at the current level

(if one exists) that has most arrows pointing to it.

Lemma 3.8

Consider a (not necessarily complete) ∆-ary tree. Then Q(Aloop) = O(D3
√

∆).

In fact, a slightly more refined analysis shows that Q(Aloop) = O(D2
√

∆), but this not
needed for our current purposes, and so we omit it.

3.7.2 Analysis of Amid Conditioning On The Complement of Excellent

To complete the proof of Theorem 3.1 we will show that if c small enough, then

P(Excellent c) · Q (Amid | Excellent c) = O(
√

∆ log n).

Decomposing Excellent c. At a high level, we seek to break Excellent c into many ele-
mentary bad events. Denote u1, . . . u` the sequence of separators on the way to the treasure τ .
Note that ` ≤ dlog ne. First,

Excellent c =
⋃
i≤`
{ui is h2-misleading} .

Using the union bound argument in Section 3.8 (Claim 3.13),

Q
(
Amid

⋂
Excellent c

)
≤
∑
i≤`
Q
(
Amid

⋂
ui is h2-misleading

)
, (3.3)

where, to keep the equation light we write Q(A
⋂
E) in place of Q(A | E) · P(E) where A is an

algorithm and E is an event.
Since we ultimately want to show that the left hand side in the previous equation is

O(
√

∆ log n), it is sufficient to show that for any fixed i ≤ `,

Q
(
Amid

⋂
ui is h2-misleading

)
= O(

√
∆). (3.4)

From now on, we fix i and focus on the case where ui is h2-misleading. Recall that algorithm
Amid , just as Asep, proceeds in phases of local exploration, running also an exhaustive search in
parallel to handle the case that one of the local explorations ends with a wrong answer. Denote
by Good the event that all separators on the way to the treasure, namely, u1, . . . , u`, are not

3.7. Proof of Theorem 3.1 41

h1-misleading. Under Good , the local exploration phases amount to running Aloop on Th1(uj)
for j ≤ `. Now,

Q
(
Amid

⋂
ui is h2-misleading

)
= Q

(
Amid

⋂
(ui is h2-misleading ∩ Good)

)
+Q

(
Amid

⋂
(ui is h2-misleading ∩ ¬Good)

)
.

By Lemma 3.5 (regular tree case),

P(¬Good) ≤ 2(1− ε)h1 = 2(1− ε)κ1 logn.

Recall that Condition (?) is satisfied with the constant ε = (1− 2−1/4)/2, and so taking κ1 to
be a large enough constant, gives that P(¬Good) > 1/n. This means that if Good does not
hold, it is fine to resort to exhaustive search, as the second term above becomes O(1). Also,
since Amid runs Aloop on local subtrees until it finds a promising nominee, and conditioned on
Good , the local “treasure” is such a promising nominee, then the number of queries made by
such a local run is bounded above by number of queries Aloop needs to find the treasure there.
So by linearity of expectation,

Q
(
Amid

⋂
ui is h2-misleading

)
≤

∑
j≤logn

Q
(
Aloop (Th1(uj))

⋂
(ui is h2-misleading ∩ Good)

)
+O(1)

≤
∑

j≤logn

Q
(
Aloop (Th1(uj))

⋂
ui is h2-misleading

)
+O(1).

The last inequality follows from the fact that for any algorithm A and any two events E1 ⊆ E2,
Q(A

⋂
E1) ≤ Q(A

⋂
E2).

For the sake of lightening notations, we henceforth refer to uj as σ′ and ui as u. This
choice of notations reflects the fact that we are rooting the tree at uj = σ′ and running Aloop on
Th1(σ′). The fact that σ′ and u are separators is not relevant in this analysis. We also denote
by τu the leaf on Th2(u) that is closest to τ and by τ ′ the leaf of Th1(u) that is closest to τ
or simply τ if τ ∈ Th1(u). With these notations Equation (3.4) immediately follows once we
prove:

Lemma 3.9

For any σ′, u ∈ T ,

Q
(
Aloop

(
Th1(σ′)

)⋂
u is h2-misleading

)
= O

(√
∆

log n

)
.

42 Chapter 3. Advice on Trees: Query Complexity

Decomposing the event {u is h2-misleading}. So far we saw that it is sufficient to analyse
the events where one separator is h2-misleading. We now pursue decomposing these events into
even smaller ones. To this aim the following definition is convenient.

Definition 3.10

Let a, b ∈ T be two nodes such that a is the closest one to τ out of the nodes in
[a, b]. Noting that a vertex can never point to itself:

• For S ⊆ 〈a, b], denote by MS
sides(a, b) the event that the nodes of S neither

point towards a nor towards b.

• For S ⊆ [a, b〉, denote by MS
up(a, b) the event that the nodes of S all point

towards b.

Claim 3.11

For any a, b and S as in Definition 3.10,

• P
(
MS

sides(a, b)
)
≤ q|S|,

• P
(
MS

up(a, b)
)
≤
(q

∆

)|S|
.

Let us now see in more detail what it means for a node u to be h2-misleading. First recall
from the definition that |[u, τu]| = h2, as otherwise τ ∈ Th2(u) and u cannot be h2-misleading
because of the path [u, τu]. Several cases need to be considered.

1. τu is not promising, and so the sum of advice on [u, τu〉 is strictly less than 2
3h2. In this

case, at least one of the following two must be true:

(a) There are 1
6h2 locations on the path [u, τu〉 where the advice points outside of the

path (the value of the corresponding Xi’s is 0). This corresponds to MS
sides(τu, u) for

some set S ⊆ [u, τu〉 of size3 |S| = 1
6h2.

(b) There are 1
12h2 locations on 〈u, τu〉 that point towards u (the value of the corre-

sponding Xi’s is 1). This corresponds to MS
up(τu, u) for some set S ⊆ [u, τu] of size

|S| = 1
12h2.

2. Some v ∈ U(u) is promising. In this case there must be some 2
3h2 locations on [u, v]

that point towards v. This corresponds to MS
up(u, v) for some S ⊆ MS

up([v, u]) of size

|S| = 2
3h2.

Define C(u) = {S ⊆ [u, τu] | |S| = 1
6h2} and D(u) = {S ⊆ [u, τu] | |S| = 1

12h2}. Similarly
define E(u) = {(v, S) | v ∈ U(u), S ⊆ [u, v], and |S| = 2

3h2}. Combining Definition 3.10 with

3Here again we omit the d·e.

3.7. Proof of Theorem 3.1 43

the previous paragraph, yields

{u is h2-misleading} ⊆ {τu is not promising} ∪
⋃

v∈U(u)

{v is promising}

⊆
⋃

S∈C(u)

MS
sides(τu, u)

⋃
S∈D(u)

MS
up(τu, u)

⋃
(v,S)∈E(u)

MS
up(u, v).

In fact, E(u) needs to be further decomposed. For each v ∈ E(u), let k(v) = |[u, v]∩ [σ′, τ ′]|.
For each non-negative integer k ≥ 0, let

Ek(u) = {(v, S) ∈ E(u) | k(v) = k}.

Clearly, E(u) = ∪h2
k=0Ek(u).

Th2
(u)

Th1
(σ) k(v)

MS
sides(τu, u) MS

up(u, v)

u

τ

σ

?

?
?

τu

τ

σ

?

?
?

τu

MS
up(τu, u)

τ

σ

?

?
?

τu

u v

??
?

u

?
?

σ

Figure 3.2: Different relative positions of u, τu and σ′. The path [u, τu] and different mistake patterns.
In the left one mistakes (depicted as red stars) point outside of [u, τu], in the second they point towards
u and in the third towards a nominee of Th2

(u), v ∈ U(u).

Using the union bound (Claim 3.13) as in Equation 3.3, the aforementioned decomposition
implies:

Q
(
Aloop

(
Th1(σ′)

)⋂
u is h2-misleading

)
≤

∑
S∈C(u)

Q
(
Aloop(Th1(σ′))

⋂
MS

sides(τu, u)
)

+
∑

S∈D(u)

Q
(
Aloop(Th1(σ′))

⋂
MS

up(τu, u)
)

+

h2∑
k=0

∑
(v,S)∈Ek(u)

Q
(
Aloop(Th1(σ′))

⋂
MS

up(u, v)
)
(3.5)

To prove Lemma 3.9, our goal will be to show that each sum in the above equation is at
most O(

√
∆/ log n).

44 Chapter 3. Advice on Trees: Query Complexity

3.7.3 Analysing Atomic Expressions

To prove that each sum is indeed O(
√

∆/ log n) we use the following two lemmas (proved in
Section 3.7.4), which encapsulate the core of this proof, namely, the resilience of Aloop to certain
kinds of error patterns.

Lemma 3.7.1. Consider a tree T rooted at σ with treasure located at τ . Let a, b ∈ T be two
nodes such that a is the closest one to τ out of the nodes in [a, b]. Then,

Q
(
Aloop |MS

sides(a, b)
)

= O
(
D4∆

|S|+1
2

)
.

Lemma 3.7.2. Consider a tree T rooted at σ with treasure located at τ . Let a, b ∈ T be two
nodes such that a is the closest one to τ out of the nodes in [a, b]. Then,

Q
(
Aloop |MS

up(a, b)
)

= O
(
D4∆K+ 1

2 4|S|
)
,

where K = |S ∩ [σ, τ]|.
As a first step to bounding the three sums of Equation (3.5), note that:

|C(u)| ≤ 2h2 (3.6)

|D(u)| ≤ 2h2 , (3.7)

|Ek(u)| ≤ 2h2∆h2−k. (3.8)

Indeed, C(u),D(u) are sets of subsets of a path of length h2. For the last term, the number of
v ∈ U(u) at distance h2 from u for which k(v) = k is bounded by ∆h2−k. Now the three sums:

1. S ∈ C(u), so S ⊆ [u, τu] and |S| = 1
6h2, and τu is the closest to τ of all the nodes on the

path. By Lemma 3.7.1,

Q
(
Aloop(Th1(σ′)) |MS

sides(τu, u)
)

= O
(
h4

1∆
|S|+1

2

)
.

According to Claim 3.11,
P(MS

sides(τu, u)) ≤ q|S|.
Combining these bounds and (3.6) yields∑

S∈C(u)

Q
(
Aloop(Th1(σ′))

⋂
MS

sides(τu, u)
)

= O
(

2h2 · q|S| · h4
1∆

|S|+1
2

)
= O

(√
∆ · 2h2 · c|S| · h4

1

)
,

because q < c/
√

∆. Recall that h1 = κ1 log n, h2 = κ2 log logn, and |S| = 1
6h2. κ1 was

already set to be some constant. Taking a large enough κ2 and a small enough c, both
independent of n, the previous expression is O(

√
∆/ log n) as needed.

3.7. Proof of Theorem 3.1 45

2. S ∈ D(u), so S ⊆ [u, τu] and |S| = 1
12h2. Therefore, by Lemma 3.7.2,

Q
(
Aloop(Th1(σ′)) |MS

up(τu, u)
)

= O
(
h4

1∆|S|+
1
2 2h2

)
.

Because K ≤ |S| and 4|S| ≤ 2h2 . Combined with Claim 3.11 and (3.7):∑
S∈D(u)

Q
(
Aloop(Th1(σ′))

⋂
MS

up(τu, u)
)

= O
(

2h2 ·
(q

∆

)|S|
· h4

1∆|S|+
1
2 2h2

)
= O

(√
∆ · 4h2 · q|S|h4

1

)
Again, since |S| = 1

12h2, then c and κ2 can be chosen so that this is O(
√

∆/ log n).

3. (v, S) ∈ Ek(u), where v ∈ U(u), S ⊆ [u, v], and |S| = 2
3h2. Also, |[u, v] ∩ [σ′, τ ′]| = k, and

so |S ∩ [σ′, τ ′]| ≤ k. As v ∈ U(u), then u is the closest to treasure of the vertices on [u, v].
By Lemma 3.7.2,

Q
(
Aloop(Th1(σ′)) |MS

up(u, v)
)

= O
(
h4

1∆k+ 1
2 4h2

)
Combined with (3.8) and Claim 3.11:

h2∑
k=0

∑
(v,S)∈Ek(u)

Q
(
Aloop(Th1(σ′))

⋂
MS

up(u, v)
)

= O

∑
k≤h2

2h2∆h2−k ·
(q

∆

) 2
3
h2

h4
1 ·∆k+ 1

2 4h2

= O

(√
∆ · h28h2h4

1

(
q2∆

) 1
3
h2
)
.

= O
(√

∆ · h28h2h4
1 · c

1
3
h2

)
.

Similarly to the two previous sums, this whole expression can be made as small as
O(
√

∆/ log n).

Note that we assumed for simplicity that u, τu and v are all inside Th1(σ′). If they are not, we
take nodes that are the closest to them on this subtree, which can only improve the bounds.

This concludes the proof of Lemma 3.9 and hence completes the proof of Theorem 3.1.

3.7.4 The Lemmas About the Resilience of Aloop

Lemma 3.7.1 (restated). Consider a tree T rooted at σ with treasure located at τ . Let a, b ∈ T
be two nodes such that a is the closest one to τ out of the nodes in [a, b]. Then,

Q
(
Aloop |MS

sides(a, b)
)

= O
(
D4∆

|S|+1
2

)
.

46 Chapter 3. Advice on Trees: Query Complexity

u

τ

σ

a b

z1 z2 z3 z4

?

?
? ?

?

Figure 3.3: Notations introduced in the proof of Lemma 3.7.1 and 3.7.2. Points of S are depicted in
red. On the figure n(z1) = 0,m(z1) = 0, n(z2) = 1,m(z2) = 0, n(z3) = 3,m(z3) = 2 and n(z4) =
3,m(z4) = 0.

Proof. As in the proof of Lemma 3.8, we break the number of queries made by Aloop conditioning
on MS

sides(a, b) into a sum of random variables Qj which correspond to the number of queries
needed to discover the j-th node on the path [σ, τ] once the (j−1)-th was discovered. Each Qj
is bounded above by D times the expected number of competitors who beat this node. This is
because each phase takes D steps, and only a subset of these nodes will actually be checked by
Aloop on layer j before trying the correct node. Hence, a bound on the number of competitors
who beat a given u ∈ [σ, τ] translates to a bound on Q

(
Aloop(T) |MS

sides(τ, σ)
)

by multiplying
it by D2.

Let u be such a node, and z be a competitor of u (i.e., it is at the same level as u).
Define k(z) as half the distance between z and u, and denote n(z) := |S ∩ [σ, τ] ∩ [u, z]| and
m(z) := |S ∩ [σ, τ]c ∩ [u, z]|. See Figure 3.3 for illustraion.

First note, that since all advice of S ⊆ [a, b] points sideways w.r.t. to this path, then any of
it which is on the path [u, z] also points sideways w.r.t. it, except possibly at one point, which
may actually point towards z. The different cases are seen in Figure 3.3:

• For z1, the paths do not intersect at all.

• In the case of z2, if the least common ancestor of u and z2 was a member of S, then it
could point towards z2, and that would be sideways w.r.t. [a, b].

• For z3, the least common ancestor of b and z3 could point towards z3.

3.7. Proof of Theorem 3.1 47

• For z4, the least common ancestor of a and b could point towards z4.

• There is also the case where a /∈ [σ, τ], which is not depicted on Figure 3.3. The analysis
remains valid, and in fact n(z) = 0 for all competitors z.

This one special vertex, if it exists, conditioned on that it points sideways w.r.t. [a, b], points
towards z with probabilty 1/(∆− 2), and otherwise points sideways w.r.t. [u, z].

Fix k, n and m, and consider a competitor z such that k(z) = k, n(z) = n, and m(z) = m.
On the path [u, z] the number of advice remaining to be sampled is 2k−n−m−1. By Lemma
3.12:

P (z beats u) ≤
(

1− 1

∆− 2

)
P

(
2k−1−n−m∑

s=1

Xs ≥ 0

)
+

1

∆− 2
P

(
2k−1−n−m∑

s=1

Xs ≥ −1

)

=

(
1√
∆

)2k−1−n−m
+

4

∆− 2

(
1√
∆

)2k−2−n−m

=

(
1 +

4
√

∆

∆− 2

)(
1√
∆

)2k−1−n−m
≤ 7 ·

(
1√
∆

)2k−1−n−m
,

as ∆ ≥ 3. For fixed k, n,m there are at most ∆k−m nodes z with k(z) = k and m(z) = m.
Also, for each such node, n + m ≤ 2k. Hence, the total expected number of competitors that
beat u is at most:

∑
k≤D,n+m≤2k

∆k−m · 7
(

1√
∆

)2k−1−m−n

For each choice of k there is exactly one corresponding value of n. This n satisfies n ≤ |S|.
There are also at most D choices for m. Thus, the above is at most

7 ·
∑

k≤D,n+m≤2k

∆(n+1−m)/2 = O
(
D2∆(|S|+1)/2

)
.

Lemma 3.7.2 (restated). Consider a tree T rooted at σ with treasure located at τ . Let a, b ∈ T
be two nodes such that a is the closest one to τ out of the nodes in [a, b]. Then,

Q
(
Aloop |MS

up(a, b)
)

= O
(
D4∆K+ 1

2 4|S|
)
,

where K = |S ∩ [σ, τ]|.

48 Chapter 3. Advice on Trees: Query Complexity

Proof. Let u be a node on the path [σ, τ]. Our aim is to show that the expected number of

competitors of u that beat it is O(D2∆K+ 1
2 4|S|).

As in the proof of Lemma 3.7.1, let z be a competitor of u. Define k(z) as half the
distance between z and u, namely k(z) := d(z, u)/2. Denote n(z) := |S ∩ [σ, τ] ∩ [u, z]|, and
m(z) := |S ∩ [σ, τ]c ∩ [u, z]|.

Fixing k, n and m, take a competitor z such that k(z) = k, n(z) = n, and k(z) = k. The
probability that such a z beats u is

P

(
2k−1−n−m∑

s=1

Xs ≥ −n−m
)
≤ 4n+m∆n+m−k+ 1

2 ,

by Lemma 3.12. There are at most ∆k−m such nodes z. We bound the probability that each
of these nodes z beats the treasure using the trivial bound 1 or the one above, depending on
whether n + m ≤ k or n + m > k. Hence the total expected number of competitors of u who
beat it is at most ∑

k≤D,n+m≤k
∆k−m · 4n+m∆n+m−k+ 1

2 +
∑

k≤D,n+m>k

∆k−m.

Since n+m ≤ |S|, and n ≤ K, the first term is at most:

4|S|
∑

k≤D,n+m≤k
∆K+ 1

2 ≤ 4|S| ·D2 ·∆K+ 1
2 ,

where we used the fact that there are most D distinct values for k and D distinct values for m,
while there is only one choice of n for each k. As for the second term, since n + m > k, then
it is at most: ∑

k≤D,n+m>k

∆n ≤
∑

k≤D,n+m>k

∆K ≤
∑

k,m≤D
∆K ≤ D2 ·∆K ,

concluding the proof.

3.8 Complementary Proofs

3.8.1 Another Large Deviation Estimate

Here, we introduce another large deviation estimate used for the analysis of the query algorithm
for regular trees. It gives better results for large h, yet works only for identical random variables,
and so suits only the case of uniform noise, unlike Lemma 2.8.

3.8. Complementary Proofs 49

Lemma 3.12

Consider random variables Xi taking values {−1, 0, 1} with respective probabilities
(1− q, q

(
1− 2

∆

)
, q∆). If q < c√

∆
where c < 1/64, then for all 0 ≤ h ≤ l,

P

(∑̀
i=1

Xi ≥ −h
)
≤ (4
√

∆)h∆−`/2

Proof. Assume
∑`

i=1Xi ≥ −h. Denote by j := {i | Xi = 1}. As the number of −1’s is at least
h, then j ≤ (` − h)/2. There must also be at least ` − h − 2j zeros amongst what remains,
otherwise the sum is less than −h. Using a union bound over the value of j and the locations
of the ones and zeros we get:

P

(∑̀
i=1

Xi ≥ −h
)
≤

`−h
2∑
j=0

(
`

j

)(
`− j

`− h− 2j

)(
q(1− 2

∆
)

)`−h−2j (q
∆

)j

≤
`−h

2∑
j=0

(
`

j

)(
`− j

`− h− 2j

)
q`−h−2j

(q
∆

)j

≤ 3`

`−h
2∑
j=0

q`−h−2j
(q

∆

)j
≤ 3` · `

2

(
q`−h +

(q
∆

) `−h
2

)
.

The last step uses the bound
∑N

j=1 ρ
k ≤ N · (ρ + ρN). Note that x/2 < (4/3)x always, and

assigning q < c/
√

∆, this is at most:

4`
1

√
∆
`−h

(
c`−h +

(√
c

∆3/2

)`−h)
≤ 4`

1
√

∆
`−h

(
c`−h +

√
c
`−h
)
≤ 4`

(
2
√
c√

∆

)`−h
.

Since c < 1/64, then 2
√
c ≤ 1/4 which means that this is at most

4h
(

1√
∆

)`−h
,

giving the desired bound.

3.8.2 Algorithm Aloop without Conditioning

Lemma (Lemma 3.8 restated). Consider a (not necessarily complete) ∆-ary tree. Then
Q(Aloop) = O(D3

√
∆).

50 Chapter 3. Advice on Trees: Query Complexity

Proof. Denote by Nlayer(u) the number of nodes on the same depth as u which have more
discovered arrows than u pointing to them. This definition is central because of the following
observation. The number of moves needed before finding ui+1 once ui has been found is less
than O(DNlayer(ui)). Indeed, once ui is discovered, only a subset of the nodes which have
more arrows pointing to them than ui+1 on layer i+ 1 are tried before ui+1 (at step (2) in the
pseudocode description). The loop over the levels (at step (1)) induces a multiplicative factor
of O(D).

Using linearity of expectation, it only remains to estimate E (Nlayer(ui)) where ui is the
ancestor of the treasure at depth i ≤ d. There are at most ∆` nodes on layer i at distance 2`−1
from ui, for any 1 ≤ ` ≤ i. Moreover the probability that each of these nodes has more arrows

pointing towards it than ui exactly corresponds to P
(∑2`−1

j=1 Xj ≥ 0
)

, with the notations of

Lemma 3.12.

Indeed, when comparing the amount of advice pointing to two different nodes u and v, only
the nodes of 〈u, v〉 matter.

When estimating the probability that v beats u, each random variable Xj has to be inter-
preted as taking value +1 if the advice points towards v, −1 if it points towards u, and 0 if
it points neither to u nor v. In the case that u = uj and v is another node on layer j, these
events happen respectively with probability q/∆, 1− q + q/∆ and q(1− 2 1

∆).

This means that for each i,

E (Nlayer(ui)) ≤
i∑

`=1

P

2`−1∑
j=1

Xj ≥ 0

∆` ≤
d∑
`=1

P

2`−1∑
j=1

Xj ≥ 0

∆`.

By Lemma 3.12 this is at most

O
(

d∑
`=1

∆−`+
1
2 ·∆`

)
= O(D

√
∆) = O

(
D
√

∆
)
.

3.8.3 Special Form of Union Bound

Claim 3.13

Let A be an event that can be decomposed as the union of events (Ai)i∈I , A ⊆⋃
i∈I Ai. Let X be a random variable.

E(X | A)P(A) ≤
∑
i

E(X | Ai)P(Ai)

3.8. Complementary Proofs 51

Proof. We denote by χ(B) the indicator function of event B. Then

E(X | A)P(A) = E(X · χ(A)) ≤ E

(
X · χ

(⋃
i

Ai

))
≤ E

(
X ·

∑
i

χ(Ai)

)
=
∑
i

E (X · χ(Ai)) =
∑
i

E(X | Ai)P(Ai).

Where we used the union bound in the form χ(
⋃
iAi) ≤

∑
i χAi and then linearity of expecta-

tion.

Chapter 4

Limits for Rumor Spreading in
Stochastic Populations

4.1 Introduction

4.1.1 Background and motivation

Systems composed of tiny mobile components must function under conditions of unreliability.
In particular, any sharing of information is inevitability subject to communication noise. The
effects of communication noise in distributed living systems appears to be highly variable.
While some systems disseminate information efficiently and reliably despite communication
noise [67, 35, 99, 110], others generally refrain from acquiring social information, consequently
losing all its potential benefits [76, 107, 114]. It is not well understood which characteristics
of a distributed system are crucial in facilitating noise reduction strategies and, conversely, in
which systems such strategies are bound to fail. Progress in this direction may be valuable
towards better understanding the constraints that govern the evolution of cooperative biological
systems.

Computation under noise has been extensively studied in the computer science community.
These studies suggest that different forms of error correction (e.g., redundancy) are highly useful
in maintaining reliability despite noise [5, 116, 115]. All these, however, require the ability
to transfer significant amount of information over stable communication channels. Similar
redundancy methods may seem biologically plausible in systems that enjoy stable structures,
such as brain tissues.

The impact of noise in stochastic systems with ephemeral connectivity patterns is far less
understood. To study these, we focus on rumor spreading - a fundamental information dissemi-
nation task that is a prerequisite to almost any distributed system [23, 36, 45, 87]. A successful
and efficient rumor spreading process is one in which a large group manages to quickly learn in-
formation initially held by one or a few informed individuals. Fast information flow to the whole
group dictates that messages be relayed between individuals. It currently remains unclear what

4.1. Introduction 53

are the precise conditions that enable fast rumor spreading. On the one hand, recent works
indicate that in some models of random noisy interactions, a collective coordinated process can
in fact achieve fast information spreading [63, 72]. These models, however, are based on push
operations that inherently include a certain reliable component (see more details in Section
4.1.3). On the other hand, other works consider computation through noisy operations, and
show that several distributed tasks require significant running time [77]. The tasks considered
in these works (including the problem of learning the input bits of all processors, or computing
the parity of all the inputs) were motivated by computer applications, and may be less relevant
for biological contexts. Moreover, they appear to be more demanding than basic tasks, such as
rumor spreading, and hence it is unclear how to relate bounds on the former problems to the
latter ones.

In this chapter we take a general stance to identify limitations under which reliable and
fast rumor spreading cannot be achieved. Modeling a well-mixed population, we consider a
passive communication scheme in which information flow occurs as one agent observes the cues
displayed by another. If these interactions are perfectly reliable, the population could achieve
extremely fast rumor spreading [87]. In contrast, here we focus on the situation in which
messages are noisy. Informally, our main theoretical result states that when all components of
communication are noisy then fast rumor spreading through large populations is not feasible.
In other words, our results imply that fast rumor spreading can only be achieved if either
1) the system exhibits some degree of structural stability or 2) some facet of the pairwise
communication is immune to noise. In fact, our lower bounds hold even when individuals
are granted unlimited computational power and even when the system can take advantage of
complete synchronization.

Finally, we corroborate our theoretical findings with new analyses regarding the efficiency
of information dissemination during recruitment by desert ants. More specifically, we analyze
data from an experiment conducted at the Weizmann Institute of Science, concerning recruit-
ment in Cataglyphis niger desert ants [106]. These analyses suggest that this biological system
lacks reliability in all its communication components, and its deficient performances qualita-
tively validate our predictions. We stress that this approach is highly uncommon. Indeed,
using empirical biological data to validate predictions from theoretical distributed computing
is extremely rare. We believe, however, that this interdisciplinary methodology may carry
significant potential, and hope that it will be useful for future works that will follow this
framework.

4.1.2 The Problem

An intuitive description of the model follows. For more precise definitions, see Section 4.2.

Consider a population of n agents. Thought of as computing entities, assume that each
agent has a discrete internal state, and can execute randomized algorithms - by internally
flipping coins. In addition, each agent has an opinion, which we assume for simplicity to be
binary, i.e., either 0 or 1. A small number, s, of agents play the role of sources. Source agents

54 Chapter 4. A Lower Bound for Broadcast

are aware of their role and share the same opinion, referred to as the correct opinion. The goal
of all agents is to have their opinion coincide with the correct opinion.

To achieve this goal, each agent continuously displays one of several messages taken from
some finite alphabet Σ. Agents interact according to a random pattern, termed as the parallel-
PULL model: In each round t ∈ N+, each agent u observes the message currently displayed
by another agent v, chosen uniformly at random (u.a.r) from all agents. Importantly, commu-
nication is noisy, hence the message observed by u may differ from that displayed by v. The
noise is characterized by a noise parameter δ > 0. Our model encapsulates a large family of
noise distributions, making our bounds highly general. Specifically, the noise distribution can
take any form, as long as it satisfies the following criterion.

Definition 4.1.1 (The δ-uniform noise criterion). Any time some agent u observes an agent
v holding some message m ∈ Σ, the probability that u actually receives a message m′ is at least
δ, for any m′ ∈ Σ. All noisy samples are independent.

When messages are noiseless, it is easy to see that the number of rounds that are required
to guarantee that all agents hold the correct opinion with high probability is O(log n) [87]. In
what follows, we aim to show that when the δ-uniform noise criterion is satisfied, the number
of rounds required until even one non-source agent can be moderately certain about the value
of the correct opinion is very large. Specifically, thinking of δ and s as constants independent
of the population size n, this time is at least Ω(n).

To prove the lower bound, we will bestow the agents with capabilities that far surpass those
that are reasonable for biological entities. These include:

• Unique identities: Agents have unique identities in the range {1, 2, . . . n}. When observing
agent v, its identity is received without noise.

• Complete knowledge of the system: Agents have access to all parameters of the system
(including n, s, and δ) as well as to the full knowledge of the initial configuration except,
of course, the correct opinion and the identity of the sources. In addition, agents have
access to the results of random coin flips used internally by all other agents.

• Full synchronization: Agents know when the execution starts, and can count rounds.

We show that even given this extra computational power, fast convergence cannot be achieved.

4.1.3 Our Contributions

Theoretical Results

In all the statements that follow we consider the parallel-PULL model satisfying the δ-uniform
noise criterion, where cs/n < δ ≤ 1/2 for some sufficiently large constant c. Note that our
criterion given in Definition 4.1.1 implies that δ ≤ 1/|Σ|. Hence, the previous lower bound on
δ implies a restriction on the alphabet size, specifically, |Σ| ≤ n/(cs).

4.1. Introduction 55

Theorem 4.1

Any rumor spreading protocol cannot converge in less than Ω(nδ
s2(1−2δ)2) rounds.

Recall that a source is aware that it is a source, but if it wishes to identify itself as such to
agents that observe it, it must encode this information in a message, which is, in turn, subject
to noise. We also consider the case in which an agent can reliably identify a source when it
observes one (i.e.,, this information is not noisy). For this case, the following bound, which is
weaker than the previous one but still polynomial, apply (a formal proof appears in the full
version of the paper):

Corollary 4.2

Assume that sources are reliably detectable. There is no rumor spreading protocol
that converges in less than Ω((nδ

s2(1−2δ)2)1/3) rounds.

Our results suggest that, in contrast to systems that enjoy stable connectivity, structureless
systems are highly sensitive to communication noise. More concretely, the two crucial as-
sumptions that make our lower bounds work are: 1) stochastic interactions, and 2) δ-uniform
noise (see the right column of Figure 4.1). When agents can stabilize their interactions the
first assumption is violated. In such cases, agents can overcome noise by employing simple
error-correction techniques, e.g., using redundant messaging or waiting for acknowledgment
before proceeding. As demonstrated in Figure 4.1 (left column), when the noise is not uni-
form, it might be possible to overcome it with simple techniques based on using default neutral
messages, and employing exceptional distinguishable signals only when necessary.

Exponential Separation Between PUSH and PULL

Our lower bounds on the parallel-PULL model (where agents observe other agents) should
be contrasted with known results in the parallel-PUSH model, which is the push equivalent
to parallel-PULL model, where in each round each agent may or may not actively push a
message to another agent chosen u.a.r. (see also Section 4.2.3). Although never proved, and
although their combination is known to achieve more power than each of them separately
[87], researchers often view the parallel-PULL and parallel-PUSH models as very similar on
complete communication topologies. Our lower bound result, however, undermines this belief,
proving that in the context of noisy communication, there is an exponential separation between
the two models. Indeed, when the noise level is constant for instance, convergence (and in fact,
a much stronger convergence than we consider here) can be achieved in the parallel-PUSH
using only logarithmic number of rounds [63, 72], by a simple strategy composed of two stages.
The first stage consists of providing all agents with a guess about the source’s opinion, in
such a way that ensures a non-negligible bias toward the correct guess. The second stage then
boosts this bias by progressively amplifying it. A crucial aspect in the first stage is that agents

56 Chapter 4. A Lower Bound for Broadcast

Non-uniform noise δ-uniform noise

m1 m2 m3 m4 m5 m1 m2 m3 m4 m5

Figure 4.1: Non-uniform noise vs. uniform noise. On the left, we consider an exam-
ple with non-uniform noise. Assume that the message vocabulary consists of 5 symbols, that is,
Σ = {m1,m2,m3,m4,m5}, where m1 = 0 and m5 = 1, represent the opinions. Assume that noise
can occur only between consecutive messages. For example, m2 can be observed as either m2, m3 or
m1, all with positive constant probability, but can never be viewed as m4 or m5. In this scenario, the
population can quickly converge on the correct opinion by executing the following. The sources always
display the correct opinion, i.e., either m1 or m5, and each other agent displays m3 unless it has seen
either m1 or m5 in which case it adopts the opinion it saw and displays it. In other words, m3 serves as
a default message for non-source agents, and m1 and m5 serve as attracting sinks. It is easy to see that
the correct opinion will propagate quickly through the system without disturbance, and within O(log n)
number of rounds, where n is the size of the population, all agents will hold it with high probability. In
contrast, as depicted on the right picture, if every message can be observed as any other message with
some constant positive probability (for clarity, some of the arrows have been omitted from the sketch),
then convergence cannot be achieved in less than Ω(n) rounds, as Theorem 4.1 dictates.

remain silent until a certain point in time that they start sending messages continuously, which
happens after being contacted for the first time. This prevents agents from starting to spread
information before they have sufficiently reliable knowledge. It further allows to control the
dynamics of the information spread in a balanced manner. More specifically, marking an edge
corresponding to a message received for the first time by a node, the set of marked edges forms
a spanning tree of low depth, rooted at the source. The depth of such tree can be interpreted
as the deterioration of the message’s reliability.

On the other hand, as shown here, in the parallel-PULL model, even with the synchoniza-
tion assumption, rumor spreading cannot be achieved in less than a linear number of rounds.
Perhaps the main reason why these two models are often considered similar is that with an
extra bit in the message, a PUSH protocol can be approximated in the PULL model, by let-
ting this bit indicate whether the agent in the PUSH model was aiming to push its message.
However, for such a strategy to work, this extra bit has to be reliable. Yet, in the noisy PULL
model, no bit is safe from noise, and hence, as we show, such an approximation cannot work.
In this sense, the extra power that the noisy PUSH model gains over the noisy PULL model,
is that the very fact that one node attempts to communicate with another is reliable. This,
seemingly minor, difference carries significant consequences.

4.1. Introduction 57

Generalizations

Several of the assumptions discussed earlier for the parallel-PULL model were made for the
sake of simplicity of presentation. In fact, our results can be shown to hold under more general
conditions, that include: 1) different rate for sampling a source, and 2) a more relaxed noise
criterion. In addition, our theorems were stated with respect to the parallel-PULL model. In
this model, at every round, each agent samples a single agent u.a.r. In fact, for any integer
k, our analysis can be applied to the model in which, at every round, each agent observes k
agents chosen u.a.r. In this case, the lower bound would simply reduce by a factor of k. Our
analysis can also apply to a sequential variant, in which in each time step, two agents u and v
are chosen u.a.r from the population and u observes v. In this case, our lower bounds would
multiply by a factor of n, yielding, for example, a lower bound of Ω(n2) in the case where δ
and s are constants1.

Recruitment in Desert Ants

Our theoretical results assert that efficient rumor spreading in large groups could not be
achieved without some degree of communication reliability. An example of a biological system
whose communication reliability appears to be deficient in all of its components is recruitment
in Cataglyphis niger desert ants. In this species, when a forager locates an oversized food item,
she returns to the nest to recruit other ants to help in its retrieval [6, 106].

We complement our theoretical findings by providing new analyses from an experiment on
this system conducted at the Weizmann Institute of Science [106]. In such experimental setting,
we interpret our theoretical findings as an abstraction of the interaction modes between ants.
While such high-level approximation may be considered very crude, we retain that it constitutes
a good trade-off between analytical tractability and experimental data.

In our experimental setup recruitment happens in the small area of the nest’s entrance
chamber (Figure 4.2a). We find that within this confined area, the interactions between ants
are nearly uniform [102], such that an ant cannot control which of her nest mates she meets
next (see Figure 4.2b). This random meeting pattern coincides with the first main assumption
of our model. Additionally, it has been shown that recruitment in Cataglyphis niger ants relies
on rudimentary alerting interactions [52, 85] which are subject to high levels of noise [106].
Furthermore, the responses to a recruiting ant and to an ant that is randomly moving in the
nest are extremely similar [106]. Although this may resemble a noisy push interaction scheme,
ants cannot reliably distinguish an ant that attempts to transmit information from any other
non-communicating individual. In our theoretical framework, the latter fact means that the
structure of communication is captured by a noisy-pull scheme (see more details about PUSH
vs. PULL in Section 4.1.3).

It has previously been shown that the information an ant passes in an interaction can

1This increase in not surprising as each round in the parallel-PULL model consists of n observations, while
the sequential model consists of only one observation in each time step.

58 Chapter 4. A Lower Bound for Broadcast

Figure 4.2: Unreliable communication and slow recruitment by desert ant (Cataglyphis
niger). a. The experimental setup. The recruiter ant (circled) returns to the nest’s entrance chamber
(dark, 9cm diameter, disc) after finding the immobilized food item (arrow). Group size is ten. b. A
pdf of the number of interactions that an ant experiences before meeting the same ant twice. The pdf
is compared to uniform randomized interaction pattern. Data summarizes N = 671 interactions from
seven experiments with a group size of 6 ants. c. Interactions with moving ants where classified into
four different messages (’a’ to ’d’) depending on the ants’ speed. The noise at which messages were
confused with each other was estimated according to the response recipient, initially stationary, ants
(see Materials and Methods). Gray scale indicates the estimated overlap between every two messages
δ(i, j). Note that δ = min(δ(i, j)) ≈ 0.2. Data collected over N = 64 interactions. d. The mean time it
takes an ant that is informed about the food to recruit two nest-mates to exit the nest is presented for
two group size ranges.

4.1. Introduction 59

be attributed solely to her speed before the interaction [106]. Binning ant speeds into four
arbitrary discrete messages and measuring the responses of stationary ants to these messages,
we can estimate the probabilities of one message to be mistakenly perceived as another one
(see Materials and Methods). Indeed, we find that this communication is extremely noisy and
complies with the uniform-noise assumption with a δ of approximately 0.2 (Figure 4.2c).

Given the coincidence between the communication patterns in this ant system and the
requirements of our lower bound we expect long delays before any uninformed ant can be rela-
tively certain that a recruitment process is occurring. We therefore measured the time it takes
an ant, that has been at the food source, to recruit the help of two nest-mates. We find that this
time increases with group size (p < 0.05 Kolmogorov-Smirnov test over N = 24 experiments,
Figure 4.2d). Thus, in this system, inherently noisy interactions on the microscopic level have
direct implications on group level performance. While group sizes in these experiments are
small, we nevertheless find these recruitment times in accordance with our asymptotic theoret-
ical results. More details on the experimental methodology can be found in the full version of
the paper.

4.1.4 Related Work

Lower bound approaches in biological contexts are still extremely rare [22, 64]. Our approach
can be framed within the general endeavour of addressing problems in theoretical biology
through the algorithmic perspective of theoretical computer science [38, 37].

The computational study of abstract systems composed of simple individuals that interact
using highly restricted and stochastic interactions has recently been gaining considerable at-
tention in the community of theoretical computer science. Popular models include population
protocols [12], which typically consider constant size individuals that interact in pairs (using
constant size messages) in random communication patterns, and the beeping model [2], which
assumes a fixed network with extremely restricted communication. Our model also falls in
this framework as we consider the PULL model [45, 87, 89] with constant size messages. So
far, despite interesting works that consider different fault-tolerant contexts [8, 9], most of the
progress in this framework considered noiseless scenarios.

In Rumor Spreading problems (also referred to as Broadcast) a piece of information typically
held by a single designated agent is to be disseminated to the rest of the population. It is
the subject of a vast literature in theoretical computer science, and more specifically in the
distributed computing community, see, e.g., [23, 36, 45, 48, 63, 77, 87, 105]. While some
works assume a fixed topology, the canonical setting does not assume a network. Instead
agents communicate through uniform PUSH/PULL based interactions (including the phone
call model), in which agents interact in pairs with other agents independently chosen at each
time step uniformly at random from all agents in the population. The success of such protocols
is largely due to their inherent simplicity and fault-tolerant resilience [56, 87]. In particular,
it has been shown that under the PUSH model, there exist efficient rumor spreading protocol
that uses a single bit per message and can overcome flips in messages (noise) [63].

60 Chapter 4. A Lower Bound for Broadcast

The line of research initiated by El-Gamal [44], also studies a broadcast problem with noisy
interactions. The regime however is rather different from ours: all n agents hold a bit they wish
to transmit to a single receiver. This line of research culminated in the Ω(n log logn) lower
bound on the number of messages shown in [77], matching the upper bound shown many years
sooner in [73].

4.1.5 Organization of the Chapter

The model was already briefly introduced above and in the Introduction of the manuscript.
We give more details in Section 4.2. The proofs are presented in Section 4.3.

4.2 Formal Description of the Models

We consider a population of n agents that interact stochastically and aim to converge on a
particular opinion held by few knowledgable individuals. For simplicity, we assume that the
set of opinions contain two opinions only, namely, 0 and 1.

As detailed in this section, we shall assume that agents have access to significant amount
of resources, often exceeding reasonable more realistic assumptions. Since we are concerned
with lower bounds, we do not loose generality from such permissive assumptions. These liberal
assumptions will actually simplify our proofs. One of these assumptions is the assumption that
each agent is equipped with a unique identity id(v) in the range {1, 2, . . . , n} (see more details
in Section 4.2.4).

4.2.1 Initial Configuration

The initial configuration is described in several layers. First, the neutral initial configuration
corresponds to the initial states of the agents, before the sources and the desired opinion
to converge to are set. Then, a random initialization is applied to the given neutral initial
configuration, which determines the set of sources and the opinion that agents need to converge
to. This will result in what we call the charged initial configuration. It can represent, for
example, an external event that was identified by few agents which now need to deliver their
knowledge to the rest of the population.

Neutral Initial Configuration x(0). Each agent v starts the execution with an input
that contains, in addition to its identity, an initial state taken from some discrete set of states,
and2 a binary opinion variable λv ∈ {0, 1}. The neutral initial configuration x(0) is the vector

whose i’th index, x
(0)
i for i ∈ [n], is the input of the agent with identity i.

Charged Initial Configuration and Correct Opinion. The charged initial configura-
tion is determined in three stages. The first corresponds to the random selection of sources,

2The opinion of an agent could have been considered as part of the state of the agent. We separate these two
notions merely for the presentation purposes.

4.2. Formal Description of the Models 61

the second to the selection of the correct opinion, and the third to a possible update of states
of sources, as a result of being selected as sources with a particular opinion.

• 1st stage - Random selection of sources. Given an integer s ≤ n, a set S of size
s is chosen uniformly at random (u.a.r) among the agents. The agents in S are called
sources. Note that any agent has equal probability of being a source. We assume that
each source knows it is a source, and conversely, each non-source knows it is not a source.
• 2nd stage - Random selection of correct opinion. In the main model we consider,

after sources have been determined in the first stage, the sources are randomly initialized
with an opinion, called the correct opinion. That is, a fair coin is flipped to determine an
opinion in {0, 1} and all sources are assigned with this opinion.
• 3rd stage - Update of initial states of sources. To capture a change in behavior as

a result of being selected as a source with a particular opinion, we assume that once the
opinion of a source u has been determined, the initial state of u may change according
to some distribution fsource−state that depends on (1) its identity, (2) its opinion, and (3)
the neutral configuration. Each source samples its new state independently.

4.2.2 Alphabet and Noisy Messages

Agents communicate by observing each other according to some random pattern (for details see
Section 4.2.3). To improve communication agents may choose which content, called message,
they wish to reveal to other agents that observe them. Importantly, however, such messages are
subject to noise. More specifically, at any given time, each agent v (including sources) displays
a message m ∈ Σ, where Σ is some finite alphabet. The alphabet Σ agents use to communicate
may be richer than the actual information content they seek to disseminate, namely, their
opinions. This, for instance, gives them the possibility to express several levels of certainty
[90]. We can safely assume that the size of Σ is at least two, and that Σ includes both symbols
0 and 1. We are mostly concerned with the case where Σ is of constant size (i.e., independent
of the number of agents), but note that our results hold for any size of the alphabet Σ, as long
as the noise criterion is satisfied (see below).

δ-uniform noise. When an agent u observes some agent v, it receives a sample of the
message currently held by v. More precisely, for any m,m′ ∈ Σ, let Pm,m′ be the probability
that, any time some agent u observes an agent v holding some message m ∈ Σ, u actually
receives message m′. The probabilities Pm,m′ define the entries of the noise-matrix P [72],
which does not depend on time. We hereby also emphasize that the agents’ samples are
independent.

The noise in the sample is characterized by a noise parameter 0 < δ ≤ 1/2. One of
the important aspects in our theorems is that they are general enough to hold assuming any
distribution governing the noise, as long as it satisfies the following noise criterion.

Definition 4.2.1 (The noise uniformity parameter δ). We say that the noise has uniformity
δ if Pm,m′ ≥ δ for any m,m′ ∈ Σ.

62 Chapter 4. A Lower Bound for Broadcast

Observe that the aforementioned criterion implies that δ ≤ 1/|Σ|, and that the case δ =
1/|Σ| corresponds to messages being completely random, and the rumor spreading problem is
thus unsolvable. We next define a weaker criterion, that is particularly meaningful in cases in
which sources are more restricted in their message repertoire than general agents. This may
be the case, for example, if sources always choose to display their opinion as their message
(possibly together with some extra symbol indicating that they are sources). Formally, we
define Σ′ ⊆ Σ as the set of possible messages that a source can hold together with the set
of messages that can be observed when viewing a source (i.e., after noise is applied). Our
theorems actually apply to the following criterion, that requires that only messages in Σ′ are
attained due to noise with some sufficient probability.

Definition 4.2.2 (The relaxed noise uniformity parameter δ). We say that the noise has
Σ′-relaxed uniformity δ if Pm,m′ ≥ δ for any m ∈ Σ and m′ ∈ Σ′.

4.2.3 Random Interaction Patterns

We consider several basic interaction patterns. Our main model is the parallel-PULL model. In
this model, time is divided into rounds, where at each round i ∈ N+, each agent u independently
selects an agent v (possibly u = v) u.a.r from the population and then u observes the message
held by v. The parallel-PULL model should be contrasted with the parallel-PUSH model, in
which u can choose between sending a message to the selected node v or doing nothing. We
shall also consider the following variants of PULL model.

• parallel-PULL(k). Generalizing parallel-PULL for an integer 1 ≤ k ≤ n, the parallel-PULL(k)
model allows agents to observe k other agents in each round. That is, at each round
i ∈ N+, each agent independently selects a set of k agents (possibly including itself) u.a.r
from the population and observes each of them.
• sequential-PULL. In each time step t ∈ N+, two agents u and v are selected uniformly

at random (u.a.r) among the population, and agent u observes v.
• broadcast-PULL. It each time step t ∈ N+ one agent is chosen u.a.r. from the population

and all agents observe it, receiving the same noisy sample of its message3.

Regarding the difference in time units between the models, since interactions occur in parallel in
the parallel-PULL model, one round in that model should informally be thought of as roughly
n time steps in the sequential-PULL or broadcast-PULL model.

4.2.4 Liberal Assumptions

As mentioned, we shall assume that agents have abilities that surpass their realistic ones.
These assumption not only increases the generality of our lower bounds, but also simplifies

3The broadcast-PULLmodel is mainly used for technical considerations. We use it in our proofs as it simplifies
our arguments while not harming their generality. Nevertheless, this broadcast model can also capture some
situations in which agents can be seen simultaneously by many other agents, where the fact that all agents
observe the same sample can be viewed as noise being originated by the observed agent.

4.2. Formal Description of the Models 63

their proofs. Specifically, the following liberal assumptions are considered.

• Unique identities. Each agent is equipped with a unique identity id(v) ∈ {1, 2, . . . , n},
that is, for every two agents u and v, we have id(u) 6= id(v). Moreover, whenever an
agent u observes some agent v, we assume that u can infer the identity of v. In other
words, we provide agents with the ability to reliably distinguish between different agents
at no cost.
• Unlimited internal computational power. We allow agents to have unlimited com-

putational abilities including infinite memory capacity. Therefore, agents can potentially
perform arbitrarily complex computations based on their knowledge (and their id).
• Complete knowledge of the system. Informally, we assume that agents have access

to the complete description of the system except for who are the sources and what is
their opinion. More formally, we assume that each agent has access to:

– the neutral initial configuration x(0),
– all the systems parameters, including the number of agents n, the noise parameter
δ, the number of sources s, and the distribution fsource−state governing the update
the states of sources in the third stage of the charged initial configuration.

• Full synchronization. We assume that all agents are equipped with clocks that can
count time steps (in sequential-PULL or broadcast-PULL) or rounds (in parallel-PULL(k)).
The clocks are synchronized, ticking at the same pace, and initialized to 0 at the begin-
ning of the execution. This means, in particular, that if they wish, the agents can actually
share a notion of time that is incremented at each time step.
• Shared randomness. We assume that algorithms can be randomized. That is, to

determine the next action, agents can internally toss coins and base their decision on the
outcome of these coin tosses. Being liberal, we shall assume that randomness is shared
in the following sense. At the outset, an arbitrarily long sequence r of random bits is
generated and the very same sequence r is written in each agent’s memory before the
protocol execution starts. Each agent can then deterministically choose (depending on
its state) which random bits in r to use as the outcome of its own random bits. This
implies that, for example, two agents can possibly make use of the very same random
bits or merely observe the outcome of the random bits used by the other agents. Note
that the above implies that, conditioning on an agent u being a non-source agent, all the
random bits used by u during the execution are accessible to all other agents.
• Coordinated sources. Even though non-source agents do not know who the sources

are, we assume that sources do know who are the other sources. This means, in particular,
that the sources can coordinate their actions.

4.2.5 Considered Algorithms and Solution Concept

Upon observation, each agent can alter its internal state (and in particular, its message to be
seen by others) as well as its opinion. The strategy in which agents update these variables is
called “algorithm”. As mentioned, algorithms can be randomized, that is, to determine the

64 Chapter 4. A Lower Bound for Broadcast

next action, agents can use the outcome of coin tosses in the sequence r (see Shared randomness
in Section 4.2.4). Overall, the action of an agent u at time t depends on:

1. the initial state of u in the charged initial configuration (including the identity of u and
whether or not it is a source),

2. the initial knowledge of u (including the system’s parameters and neutral configuration),

3. the time step t, and the list of its observations (history) up to time t− 1, denoted x
(<t)
u ,

4. the sequence of random bits r.

4.2.6 Convergence and Time Complexity

At any time, the opinion of an agent can be viewed as a binary guess function that is used
to express its most knowledgeable guess of the correct opinion. The agents aim to minimize
the probability that they fail to guess this opinion. In this context, it can be shown that the
optimal guessing function is deterministic.

Definition 4.2.3. We say that convergence has been achieved if one can specify a particular
non-source agent v, for which is it guaranteed that its opinion is the correct opinion with
probability at least 2/3. The time complexity is the number of time steps (respectively, rounds)
required to achieve convergence.

We remark that the latter definition encompasses all three models considered.

Remark 4.2.4 (Different sampling rates of sources). We consider sources as agents in the
population but remark that they can also be thought of as representing the environment. In this
case, one may consider a different rate for sampling a source (environment) vs. sampling a
typical agent. For example, the probability to observe any given source (or environment) may
be x times more than the probability to observe any given non-source agent. This scenario
can also be captured by a slight adaptation of our analysis. When x is an integer, we can
alternatively obtain such a generalization by considering additional artificial sources in the
system. Specifically, we replace each source ui with a set of sources Ui consisting of x sources
that coordinate their actions and behave identically, simulating the original behavior of ui.
(Recall that we assume that sources know who are the other sources and can coordinate their
actions.) Since the number of sources increases by a multiplicative factor of x, our lower bounds
(see Theorem 4.3 and Corollary 4.2) decrease by a multiplicative factor of x2.

4.3 The Lower Bounds

Throughout this section we consider δ < 1/2, such that (1−2δ)
δsn ≤ 1

10 . Our goal in this section
is to prove the following result.

4.3. The Lower Bounds 65

Theorem 4.3

Assume that the relaxed δ-uniform noise criterion is satisfied.

• Let k be an integer. Any rumor spreading protocol on the parallel-PULL(k)

model cannot converge in fewer rounds than Ω
(

nδ
ks2(1−2δ)2

)
.

• Consider either the sequential-PULL or the broadcast-PULL model. Any ru-

mor spreading protocol cannot converge in fewer rounds than Ω
(

n2δ
s2(1−2δ)2

)
.

To prove the theorem, we first prove (in Section 4.3.1) that an efficient rumor spreading
algorithm in either the noisy sequential-PULL model or the parallel-PULL(k) model can be
used to construct an efficient algorithm in the broadcast-PULL model. The resulted algorithm
has the same time complexity as the original one in the context of sequential-PULL and adds
a multiplicative factor of kn in the context of parallel-PULL(k).

We then show how to relate the rumor spreading problem in broadcast-PULL to a statistical
inference test (Section 4.3.2). A lower bound on the latter setting is then achieved by adapting
techniques from mathematical statistics (Section 4.3.3).

4.3.1 Reducing to the broadcast-PULL Model

The following lemma establishes a formal relation between the convergence times of the models
we consider. We assume all models are subject to the same noise distribution.

Lemma 4.4

Any protocol operating in sequential-PULL can be simulated by a protocol operat-
ing in broadcast-PULL with the same time complexity. Moreover, for any integer
1 ≤ k ≤ n, any protocol P operating in parallel-PULL(k) can be simulated by
a protocol operating in broadcast-PULL with a time complexity that is kn times
that of P in parallel-PULL(k).

Proof. Let us first show how to simulate a time step of sequential-PULL in the broadcast-PULL
model. Recall that in broadcast-PULL, in each time step, all agents receive the same obser-
vation sampled u.a.r from the population. Upon drawing such an observation, all agents use
their shared randomness to generate a (shared) uniform random integer X between 1 and n.
Then, the agent whose unique identity corresponds to X is the one processing the observation,
while all other agents ignore it. This reduces the situation to a scenario in sequential-PULL,
and the agents can safely execute the original algorithm designed for that model.

As for simulating a time step of parallel-PULL(k) in broadcast-PULL, agents divide time
steps in the latter model into rounds, each composing of exactly kn time steps. Recall that the
model assumes that agents share clocks that start when the execution starts and tick at each
time step. This implies that the agents can agree on the division of time into rounds, and can

66 Chapter 4. A Lower Bound for Broadcast

further agree on the round number. For 1 ≤ i ≤ kn, during the i-th step of each round, only the
agent whose identity is (i mod n)+1 receives4 the observation, while all other agents ignore it.
This ensures that when a round is completed in the broadcast-PULL model, each agent receives
exactly k independent uniform samples as it would in a round of parallel-PULL(k). Therefore,
at the end of each round j ∈ N+ in the broadcast-PULL model, all agents can safely execute
their actions in the j’th round of the original protocol designed for parallel-PULL(k). This
draws a precise bijection from rounds in parallel-PULL(k) and rounds in broadcast-PULL. The
multiplicative overhead of kn simply follows from the fact that each round in broadcast-PULL
consists of kn time steps.

Thanks to Lemma 4.4, Theorem 4.3 directly follows from the next theorem.

Theorem 4.5

Consider the broadcast-PULL model and assume that the relaxed δ-uniform noise
criterion is satisfied. Any rumor spreading protocol cannot converges in fewer time

steps than Ω
(

n2δ
s2(1−2δ)2

)
.

The remaining of the section is dedicated to proving Theorem 4.5. Towards achieving this,
we view the task of guessing the correct opinion in the broadcast-PULL model, given access
to noisy samples, within the more general framework of distinguishing between two types of
stochastic processes which obey some specific assumptions.

4.3.2 Rumor Spreading and Hypothesis Testing

To establish the desired lower bound, we next show how the rumor spreading problem in the
broadcast-PULL model relates to a statistical inference test. That is, from the perspective of
a given agent, the rumor spreading problem can be understood as the following: Based on a
sequence of noisy observations, the agent should be able to tell whether the correct opinion
is 0 or 1. We formulate this problem as a specific task of distinguishing between two random
processes, one originated by running the protocol assuming the correct opinion is 0 and the
other assuming it is 1.

One of the main difficulties lies in the stochastic dependencies affecting these processes. In
general, at different time steps, they do not consist of independent draws of a given random
variable. In other words, the law of an observation not only depends on the correct opinion,
on the initial configuration and on the underlying randomness used by agents, but also on
the previous noisy observation samples and (consequently) on the messages agents themselves
choose to display on that round. An intuitive version of this problem is the task of distinguishing
between two (multi-valued) biased coins, whose bias changes according to the previous outcomes

4Receiving the observation doesn’t imply that the agent processes this observation. In fact, it will store it in
its memory until the round is completed, and process it only then.

4.3. The Lower Bounds 67

of tossing them (e.g., due to wear). Following such intuition, we define the following general
class of Adaptive Coin Distinguishing Tasks, for short ACDT.

Definition 4.3.1 (ACDT). A distinguisher is presented with a sequence of observations taken
from a coin of type η where η ∈ {0, 1}. The type η is initially set to 0 or 1 with probability
1/2 (independently of everything else). The goal of the distinguisher is to determine the type
η, based on the observations. More specifically, for a given time step t, denote the sequence of
previous observations (up to, and including, time t − 1) by x(<t) = (x(1), . . . , x(t−1)). At each
time t, given the type η ∈ {0, 1} and the history of previous observations x(<t), the distinguisher

receives an observation X
(t)
η ∈ Σ, which has law5 P (X

(t)
η = m | x(<t)).

We next introduce, for each m ∈ Σ, the parameter ε(m,x(<t)) = P (X
(t)
1 = m | x(<t)) −

P (X
(t)
0 = m | x(<t)). Since, at all times t, it holds that

∑
m∈Σ P (X

(t)
0 = m | x(<t)) =∑

m∈Σ P (X
(t)
1 = m | x(<t)) = 1, then

∑
m∈Σ ε(m,x

(<t)) = 0. We shall be interested in

the quantity dε(x
(<t)) :=

∑
m∈Σ |ε(m,x(<t))|, which corresponds to the `1 distance between

the distributions P (X
(t)
0 = m | x(<t)) and P (X

(t)
1 = m | x(<t)) given the sequence of previous

observations.

Definition 4.3.2 (The bounded family ACDT(ε, δ)). We consider a family of instances of ACDT,
called ACDT(ε, δ), governed by parameters ε and δ. Specifically, this family contains all instances
of ACDT such that for every t, and every history x(<t), we have:

• dε(x(<t)) ≤ ε, and

• ∀m ∈ Σ such that ε(m,x(<t)) 6= 0, we have δ ≤ P (X
(t)
η = m | x(<t)) for η ∈ {0, 1}.

In the rest of the section, we show how Theorem 4.5, that deals with the broadcast-PULL
model, follows directly from the next theorem that concerns the adaptive coin distinguishing
task, by setting ε = 2s(1−2δ)

n . The actual proof of Theorem 4.6 appears in Section 4.3.3.

Theorem 4.6

Consider any protocol for any instance of ACDT(ε, δ), The number of samples re-
quired to distinguish between a process of type 0 and a process of type 1 with

probability of error less than 1
3 is at least ln 2

9

(
6(δ−ε)3

δ3−δ2ε+3δε2−ε3

)
δ
ε2
. In particular, if

ε
δ < 10, then the number of necessary samples is Ω

(
δ
ε2

)
.

5We follow the common practice to use uppercase letters to denote random variables and lowercase letter
to denote a particular realisation, e.g., X(≤t) for the sequence of observations up to time t, and x(≤t) for a
corresponding realization.

68 Chapter 4. A Lower Bound for Broadcast

Proof of Theorem 4.5 assuming Theorem 4.6

Consider a rumor spreading protocol P in the broadcast-PULL model. Fix a node u. We first
show that running P by all agents, the perspective of node u corresponds to a specific instance
of ACDT(2s(1−2δ)

n
, δ) called Π(P, u). We break down the proof of such correspondence into two

claims.

The ACDT instance Π(P, u). Recall that we assume that each agent knows the complete
neutral initial configuration, the number of sources s, and the shared of random bits sequence
r. We avoid writing such parameters as explicit arguments to Π(P, u) in order to simplify
notation, however, we stress that what follows assumes that these parameters are fixed. The
bounds we show hold for any fixed value of r and hence also when r is randomized.

Each agent is interested in discriminating between two families of charged initial config-
urations: Those in which the correct opinion is 0 and those in which it is 1 (each of these
possibilities occurs with probability 1

2). Recall that the correct opinion is determined in the
2nd stage of the charged initial configuration, and is independent form the choice of sources
(1st stage).

We next consider the perspective of a generic non-source agent u, and define the instance

Π(P, u) as follows. Given the history x(<t), we set P (X
(t)
η = m | x(<t)), for η ∈ {0, 1}, to be

equal to the probability that u observes message m ∈ Σ at time step t of the execution P. For
clarity’s sake, we remark that the latter probability is conditional on: the history of observations
being x(<t), ,the sequence of random bits r, ,the correct opinion being η ∈ {0, 1}, ,the neutral
initial configuration, ,the identity of u, ,the algorithm P, and the system’s parameters (including
the distribution fsource−state and the number of sources s).

Claim 4.7

Let P be a correct protocol for the rumor spreading problem in broadcast-PULL
and let u be an agent for which the protocol is guaranteed to produce the correct
opinion with probability at least p by some time T (if one exists), for any fixed
constant p ∈ (0, 1). Then Π(P, u) can be solved in time T with correctness being
guaranteed with probability at least p.

Proof. Conditioning on η ∈ {0, 1} and on the random seed r, the distribution of observations in
the Π(P, u) instance follows the distribution of observations as perceived from the perspective
of u in broadcast-PULL. Hence, if the protocol P at u terminates with output j ∈ {0, 1}
at round T , after the T -th observation in Π(P, u) we can set Π(P, u)’s output to j as well.
Given that the two stochastic processes have the same law, the correctness guarantees are the
same.

4.3. The Lower Bounds 69

Lemma 4.8

Π(P, u) ∈ ACDT
(
2(1−2δ)s

n
, δ
)

.

Proof. Since the noise in broadcast-PULL flips each message m ∈ Σ into any m′ ∈ Σ′ with
probability at least δ, regardless of the previous history and of η ∈ {0, 1}, at all times t, if

m ∈ Σ′ then P (X
(t)
η = m | x(<t)) ≥ δ. Consider a message m ∈ Σ \ Σ′ (if such a message

exists). By definition, such a message could only be received by observing a non-source agent.
But given the same history x(<t), the same sequence of random bits r, and the same initial
knowledge, the behavior of a non-source agent is the same, no matter what is the correct

opinion η. Hence, for m ∈ Σ \ Σ′ we have P (X
(t)
0 = m | x(<t)) = P (X

(t)
1 = m | x(<t)), or in

other words, m ∈ Σ \ Σ′ =⇒ ε(m,x(<t)) = 0.

It remains to show that dε(x
(<t)) ≤ 2(1−2δ)s

n . Let us consider two executions of the rumor
spreading protocol, with the same neutral initial configuration, same shared sequence of random
bits r, same set of sources, except that in the first the correct opinion is 0 while in the other
it is 1. Let us condition on the history of observations x(<t) being the same in both processes.
As mentioned, given the same history x(<t), the behavior of a non-source agent is the same,
regardless of the correct opinion η. It follows that the difference in the probability of observing
any given message is only due to the event that a source is observed. Recall that the number
of sources is s. Therefore, the probability of observing a source is s/n, and we may write
as a first approximation ε(m,x(<t)) ≤ s/n . However, we can be more precise. In fact,
ε(m,x(<t)) is slightly smaller than s/n, because the noise can still affect the message of a
source. We may interpret ε(m,x(<t)) as the following difference. For a source v ∈ S, let mv

η

be the message of u assuming the given history x(<t) and that v is of type η ∈ {0, 1} (the
message mv

η is deterministically determined given the sequence r of random bits, the neutral
initial configuration, the parameters of the system, and the identity of v). Let αm′,m be the
probability that the noise transforms a message m′ into a message m. Then ε(m,x(<t)) =
1
n

∑
v∈S(αmv1 ,m − αmv0 ,m), and

dε(x
(<t)) =

∑
m∈Σ

|ε(m,x(<t))| ≤ 1

n

∑
m∈Σ

∑
v∈S
|αmv1 ,m − αmv0 ,m|. (4.1)

By the definition of ACDT(ε, δ), it follows that either αmv1 ,m = αmv0 ,m (if ε(m,x(<t)) = 0) or

δ ≤ αmv1 ,m, αmv0 ,m ≤ 1− δ (if ε(m,x(<t)) 6= 0). Thus, to bound the right hand side in (4.1), we
can use the following claim

Claim 4.9

Let P and Q be two distributions over a universe Σ such that for any element
m ∈ Σ, δ ≤ P (m), Q(m) ≤ 1− δ. Then

∑
m∈Σ|P (m)−Q(m)| ≤ 2(1− 2δ).

70 Chapter 4. A Lower Bound for Broadcast

Proof of Claim 4.9. Let Σ+ := {m : P (m) > Q(m)}. We may write∑
m∈Σ

|P (m)−Q(m)| =
∑
m∈Σ+

(P (m)−Q(m)) +
∑

m∈setminusΣ+

(Q(m)− P (m))

= P (Σ+)−Q(Σ+) +Q(Σ \ Σ+)− P (Σ \ Σ+)

= 2(P (Σ+)−Q(Σ+)),

where in the last line we used the fact that Q(Σ\Σ+)−P (Σ\Σ+) = 1−Q(Σ+)−1+P (Σ+) =
P (Σ+)−Q(Σ+). We now distinguish two cases. Case 1.If Σ+ is a singleton, Σ+ = {m∗}, then
P (Σ+) − Q(Σ+) = P (m∗) − Q(m∗) ≤ 1 − 2δ, by assumption. Case 2. Otherwise, |Σ+| ≥ 2
and 2

∑
m∈Σ+

(P (m)−Q(m)) ≤ 2− 2
∑

m∈Σ+
Q(m) ≤ 2(1− δ|Σ+|) ≤ 2(1− 2δ), using the fact

that for any m, Q(m) ≥ δ, and the fact that P is a probability measure. This completes the
proof of Claim 4.9.

Applying Claim 4.9 for a fixed v ∈ S to distributions (αmv0 ,m)m and (αmv1 ,m)m, we obtain

1

n

∑
m∈Σ

∑
v∈S
|αmv1 ,m − αmv0 ,m| ≤

1

n
2
∑
v∈S

(1− 2δ) ≤ 2(1− 2δ)s

n
.

Hence, we have Π(P) ∈ ACDT
(
2(1−2δ)s

n
, δ
)

, establishing Lemma 4.8.

Thanks to Claims 4.7 and Lemma 4.8, Theorem 4.5 regarding the broadcast-PULL model
becomes a direct consequence of Theorem 4.6 on the adaptive coin distinguishing task, taking
ε = 2(1−2δ)s

n . More precisely, the assumption (1−2δ)
δsn ≤ c for some small constant c, ensures that

ε
δ ≤ c as required by Theorem 4.6. The lower bound Ω

(
ε2

δ

)
corresponds to Ω

(
n2δ

(1−2δ)2s2

)
.

This concludes the proof of Theorem 4.5.

To establish our results it remains to prove Theorem 4.6.

4.3.3 Proof of Theorem 4.6

We start by recalling some facts from Hypothesis Testing. First let us recall two standard no-
tions of (pseudo) distances between probability distributions. Given two discrete distributions
P0, P1 over a probability space Ω with the same support6, the total variation distance is defined
as TV (P0, P1) := 1

2

∑
x∈Ω|P0(x) − P1(x)|, and the Kullback-Leibler divergence KL(P0, P1) is

defined7 as KL(P0, P1) :=
∑

x∈Ω P0(x) log P1(x)
P0(x) .

The following lemma shows that, when trying to discriminate between distributions P0, P1,
the total variation relates to the smallest error probability we can hope for.

6The assumption that the support is the same is not necessary but it is sufficient for our purposes, and is
thus made for simplicity’s sake.

7We use the notation log(·) to denote the base 2 logarithms, i.e., log2(·) and for a probability distribution P ,
use the notation P (x) as a short for P (X = x).

4.3. The Lower Bounds 71

Lemma 4.10: Neyman-Pearson [108, Lemma 5.3 and Proposition 5.4]

Let P0, P1 be two distributions. Let X be a random variable of law either P0 or
P1. Consider a (possibly probabilistic) mapping f : Ω → {0, 1} that attempts to
“guess” whether the observation X was drawn from P0 (in which case it outputs 0)
or from P1 (in which case it outputs 1). Then, we have the following lower bound,

P0 (f(X) = 1) + P1 (f(X) = 0) ≥ 1− TV (P0, P1). (4.2)

The total variation is related to the KL divergence by the following inequality.

Lemma 4.11: Pinsker [108, Lemma 5.8]

For any two distributions P0, P1,

TV (P0, P1) ≤
√
KL (P0, P1). (4.3)

We are now ready to prove the theorem.

Proof of Theorem 4.6. Let us define Pη (·) = P (· | “correct distribution is η”) for η ∈ {0, 1}.
We denote P

(≤t)
η , η ∈ {0, 1}, the two possible distributions of X(≤t). We refer to P

(≤t)
0 as the

distribution of type 0 and to P
(≤t)
1 as the distribution of type 1. Furthermore, we define the

correct type of a sequence of observations X(≤t) to be 0 if the observations are sampled from

P
(≤t)
0 , and to be 1 if they are sampled from P

(≤t)
1 .

After t observations x(≤t) = (x(1), . . . , x(t)) we have to decide whether the distribution is of
type 0 or 1. Our goal is to maximize the probability of guessing the type of the distribution,
observing X(≤t), which means that we want to minimize

f =
∑

η∈{0,1}

Pη

(
f(X(≤t)) = 1− η

)
P (“correct type is η”) . (4.4)

Recall that the correct type is either 0 or 1 with probability 1
2 . Thus, the error probability

described in (4.4) becomes

1

2
P0

(
f(X(≤t)) = 1

)
+

1

2
P1

(
f(X(≤t)) = 0

)
. (4.5)

By combining Lemmas 4.10 and 4.11 with X = X(≤t) and Pη = P
(≤t)
η for η = 0, 1, we get

the following Theorem. Although for convenience we think of f as a deterministic function, it
could in principle be randomized.

72 Chapter 4. A Lower Bound for Broadcast

Theorem 4.12

Let f be any guess function. Then

P0

(
f(X(≤t)) = 1

)
+ P1

(
f(X(≤t)) = 0

)
≥ 1−

√
KL

(
P

(≤t)
0 , P

(≤t)
1

)
. (4.6)

Theorem 4.12 implies that for the probability of error to be small, it must be the case that

the term KL
(
P

(≤t)
0 , P

(≤t)
1

)
is large. Our next goal is therefore to show that in order to make

this term large, t must be large.

Note that P
(≤T)
η for η ∈ {0, 1} cannot be written as the mere product of the marginal

distributions of the X(t)s, since the observations at different times may not necessarily be

independent. Nevertheless, we can still express the term KL(P
(≤T)
0 , P

(≤T)
1) as a sum, using

the Chain Rule for KL divergence. It yields

KL(P
(≤T)
0 , P

(≤T)
1) =

∑
t≤T

KL(P0(x(t) | x(<t)), P1(x(t) | x(<t))) (4.7)

:=
∑

x(<t)∈Σt−1

P0(x(<t))
∑
x(t)∈Σ

P0(x(t) | x(<t)) log
P0(x(t) | x(<t))

P1(x(t) | x(<t))
.

=
∑

x(<t)∈Σt−1

P0(x(<t))
∑
m∈Σ

P0(X
(t)
0 = m | x(<t)) log

P (X
(t)
0 = m | x(<t))

P (X
(t)
1 = m | x(<t))

.

(4.8)

Since we are considering an instance of ACDT (ε, δ), we have

• dε(x(<t)) =
∑

m∈Σ |ε(m,x(<t))| ≤ ε, and

• for every m ∈ Σ such that ε(m,x(<t)) 6= 0, it holds that δ ≤ Pη(X
(t)
0 = m | x(<t)) for

η ∈ {0, 1}.
We make use of the previous facts to upper bound the KL divergence terms in the right hand
side of (4.8), as follows.

KL(P0(x(t) | x(<t)), P1(x(t) | x(<t))) (4.9)

=
∑

x(<t)∈Σt−1

P0(x(<t))
∑
m∈Σ

(
P (X

(t)
0 = m | x(<t)) log

P (X
(t)
0 = m | x(<t))

P (X
(t)
0 = m | x(<t)) + ε(m,x(<t))

)
(4.10)

= −
∑
x(<t)

P0(x(<t))
∑
m∈Σ

(
P (X

(t)
0 = m | x(<t)) log

(
1 +

ε(m,x(<t))

P (X
(t)
0 = m | x(<t))

))
. (4.11)

4.3. The Lower Bounds 73

Recall that we assume ε(m,x(<t))

P (X
(t)
0 =m|x(<t))

≤ ε(m,x(<t))
δ ≤ ε

δ . We make use of the following claim,

which follows from the Taylor expansion of log(1 + u) around 0.

Claim 4.13

Let x ∈ [−a, a] for some a ∈ (0, 1). Then |log(1 + x)− x+ x2/2| ≤ x3

3(1−a)3 .

Using Claim 4.13 with a = ε
δ , we can bound the inner sum appearing in (4.11) from above

and below with

1

ln 2

∑
m∈Σ

(
ε(m,x(<t))− 1

2

(ε(m,x(<t)))2

P (X
(t)
0 = m | x(<t))

± δ3

3(δ − ε)3

(
(ε(m,x(<t)))3

P (X
(t)
0 = m | x(<t))2

))
. (4.12)

Since
∑

m|ε(m,x(<t))| ≤ ε, we also have that
∑

m (ε(m,x(<t)))2 ≤ ε2. The latter bound,

together with the fact that P (X
(t)
0 = m̃ | x(<t)) ≥ δ for any m̃ ∈ Σ such that ε(m̃, x(<t)) 6= 0,

implies ∑
m

(ε(m,x(<t)))2

P (X
(t)
0 = m | x(<t))

≤ ε2

δ
. (4.13)

Finally, we can similarly bound the term
∑

m∈Σ

(
(ε(m,x(<t)))3/P (X

(t)
0 = m | x(<t))2

)
with∑

m∈Σ

(
(ε(m,x(<t)))3/P (X

(t)
0 = m | x(<t))2

)
≤ ε3

δ2
. (4.14)

Recall that
∑

m ε(m,x
(<t)) = 0, thus the first term in (4.12) disappears. Hence, substituting

the bounds (4.13) and (4.14) in (4.12), we have∣∣∣∣∣log

(
1 +

ε(m,x(<t))

P (X
(t)
0 = m | x(<t))

)∣∣∣∣∣ ≤ 1

ln 2

(
1

2

ε2

δ
+

δε3

3(δ − ε)3

)
≤ 1

ln 2

(
1

2
+

δ2ε

3(δ − ε)3

)
ε2

δ
. (4.15)

If we define the right hand side (4.15) to be W (ε, δ) and we substitute the previous bound in
(4.11), we get

KL(P0(x(t) | x(<t)), P1(x(t) | x(<t))) ≤W (ε, δ), (4.16)

and combining the previous bound with (4.7), we can finally conclude that for any integer T ,

we have KL(P
(≤T)
0 , P

(≤T)
1) ≤ T ·W (ε, δ). Thus, from Theorem 4.12 and the latter bound, it

follows that the error under a uniform prior of the source type, as defined in (4.5), is at least

1

2
P0

(
f(X(≤t)) = 1

)
+

1

2
P1

(
f(X(≤t)) = 0

)
≥ 1

2
− 1

2

√
KL(P

(≤T)
0 , P

(≤T)
1) (4.17)

≥ 1

2
− 1

2

√
T ·W (ε, δ). (4.18)

74 Chapter 4. A Lower Bound for Broadcast

Hence, the number of samples T needs to be greater than 1
9

1
W (ε,δ) = ln 2

9

(
6(δ−ε)3

δ3−δ2ε+3δε2−ε3

)
δ
ε2

to

allow the possibility that the error be less than 1/3.

In particular, if we assume that 10ε < δ, then we can bound δ2ε
3(δ−ε)3 ≤ δ3

10 · 1
3(9/10)3δ3 ≤ 100

2187 .

It follows that (4.15) can be bounded with W (ε, δ) ≤ 1
ln 2

(
1
2 + 100

2187

)
≤ 0.79 , and so 1

9
1

W (ε,δ) ≥
0.14 · δ

ε2
= Ω

(
δ
ε2

)
. This completes the proof of Theorem 4.6 and hence of Theorem 4.5.

Chapter 5

Minimizing Message Size in
Stochastic Communication Patterns:
Fast Self-Stabilizing Protocols with
3 bits

5.1 Introduction

5.1.1 Background and Motivation

In this Chapter as in the previous one, we study distributed systems composed of limited
agents that interact in a stochastic fashion to collectively perform a given task. In Chapter 4,
the emphasis was put on the effect of noise. Here we will focus on other types of constraints:
namely, self-stabilization, and message size.

As many natural systems appear to be more restricted by their communication abilities
than by their memory capacities [66, 2, 58], we seek to understand what tasks can be achieved
while revealing as few bits per interaction as possible1. In dealing with such an existential
question, we do not claim that our solution represents actual plausible strategies employed
in nature, yet we believe that such mathematical results can be helpful in understanding the
limitations of natural systems.

The notion of self-stabilization [46], stemming from distributed computing asks that agents
converge to a correct configuration from any initial configuration of states. This notion is

1We note that stochastic communication patterns such as PULL or PUSH are inherently sensitive to con-
gestion issues. Indeed, in such models it is unclear how to simulate a protocol that uses large messages while
using only small size messages. For example, the straightforward strategy of breaking a large message into small
pieces and sequentially sending them one after another does not work, since one typically cannot make sure that
the small messages reach the same destination. Hence, reducing the message size may have a profound impact
on the running time, and perhaps even on the solvability of the problem at hand.

76 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

relevant in unstable setting, where the environment is constantly evolving. Self-stabilization
can be thought as a way to overcome the fact that there is no clear start for the algorithmic
process. Such a well defined origin of time gives agents knowledge of their respective initial
states.

Self-stabilizing Bit Dissemination. Disseminating information from one or several sources
to the rest of the population is one of the most fundamental building blocks in distributed
computing [36, 40, 45, 47, 87], and an important primitive in natural systems [113, 106, 109].
Here, we focus on the Majority Bit Dissemination problem defined as follows. We consider a
population of n agents. The population may contain multiple source agents which are specified
by a designated bit in the state of an agent indicating whether the agent is a source or not.
Each source agent holds a binary input bit, however, sources may not necessarily agree on their
input bits. In addition, each agent holds a binary output bit (also called opinion). The goal
of all agents is to converge their opinion on the majority bit among the initial input bits of
the sources, termed bmaj . This problem aims to capture scenarios in which some individuals
view themselves as informed, but some of these agents could also be wrong, or not up-to-date.
Such situations are common in nature [43, 106] as well as in man-made systems. The number
of sources is termed k. We do not assume that agents know the value k, or that sources know
whether they are in the majority or minority (in terms of their input bit). For simplicity,
to avoid dealing with the case that the fraction of the majority input bit among sources is
arbitrarily close to that of the minority input bit, we shall guarantee convergence only when
the fraction of source agents holding the majority input bit is bounded away from 1/2.

The particular case where we are promised to have k = 1 is called Bit Dissemination, for
short. In this case we have a single source agent that aims to disseminate its input bit b to
the rest of the population, and there are no other sources introducing a conflicting opinion.
Note that this problem has been studied extensively in different models under different names
(e.g., Broadcast or Rumor Spreading). A classical example of Bit Dissemination considers
the synchronous PUSH/PULL communication model, where b can be propagated from the
source to all other agents in O(log n) rounds, by simply letting each uninformed agent copy
it whenever it sees an informed agent [87]. The correctness of this protocol heavily relies on
the initial information held by agents. Such reliability however may be difficult to achieve in
dynamic or unreliable conditions. For example, if the source opinions fluctuates stabilizing
to its final value, the source may invoke several consecutive executions of the protocol with
contradicting initial opinions. This may in turn “infect” other agents with the wrong opinion
1 − b. If agents do not share a common time notion, it is unclear how to let infected agents
distinguish their current wrong opinion from the more “fresh”, correct opinion.

5.1.2 Technical Difficulties and Intuition

Consider the Bit Dissemination problem (where we are guaranteed to have a single source
agent). This particular case is already difficult in the self-stabilizing context if we are restricted

5.1. Introduction 77

to use O(1) bits per interaction. As hinted above, a main difficulty lies in the fact that agents
do not necessarily share a common time notion. Indeed, it is easy to see that if all agents
share the same clock, then convergence can be achieved in O(log n) time with high probability
(w.h.p.), i.e, with a probability of at least 1− n−Ω(1), and using two bits per interaction.

Self-stabilizing Bit Dissemination (k = 1) with 2 bits per interaction, assuming
synchronized clocks. The source sets her output bit to be her input bit b. In addition
to communicate its output bit bu, each agent u stores and communicates a certainty bit cu.
Informally, having a certainty bit equal to 1 indicates that the agent is certain of the correctness
of its output bit. The source’s certainty bit is always set to 1. Whenever a non-source agent
v observes u and sees the tuple (bu, cu), where cu = 1, it copies the output and certainty bits
of u (i.e., sets bv = bu and cv = 1). In addition, all non-source agents count rounds, and reset
their certainty bit to 0 simultaneously every T = O(log n) rounds. The reset allows to get rid
of “old” output bits that may result from applying the protocol before the source’s output bit
has stabilized. This way, from the first time a reset is applied after the source’s output bit has
stabilized, the correct source’s output bit will propagate to all agents within T rounds, w.h.p.
Note however, that if agents do not share a consistent notion of time they cannot reset their
certainty bit to zero simultaneously. In such cases, it is unclear how to prevent agents that
have just reset their certainty bit to 0 from being “infected” by “misleading” agents, namely,
those that have the wrong output bit and certainty bit equal to 1.

Self-stabilizing Bit Dissemination (k = 1) with a single bit per interaction, assum-
ing synchronized clocks. Under the assumption that all agents share the same clock, the
following trick shows how to obtain convergence in O(log n) time and using only a single bit
per message, namely, the output bit. As before, the source sets her output bit to be her input
bit b. Essentially, agents divide time into phases of some prescribed length T = O(log n), each
of them being further subdivided into 2 subphases of length T/2. In the first subphase of each
phase, non-source agents are sensitive to opinion 0. This means that whenever they see a 0 in
the output bit of another agent, they turn their output bit to 0, but if they see 1 they ignore
it. Then, in the second subphase of each phase, they do the opposite, namely they switch their
output bit to 1 as soon as they see a 1 (see Figure 5.1). Consider the first phase starting after
initialization. If b = 0 then within one complete subphase [1, T/2], every output bit is 0 w.h.p.,
and remains there forever. Otherwise, if b = 1, when all agents go over a subphase [T/2 + 1, T]
all output bits are set to 1 w.h.p., and remain 1 forever. Note that a common time notion is
required to achieve correctness.

The previous protocol indicates that the self-stabilizing Bit Dissemination problem is highly
related to the self-stabilizing Clock Synchronization problem, where each agent internally stores
a clock modulo T = O(log n) incremented at every round and, despite having arbitrary initial
states, all agents should converge on sharing the same value of the clock. Indeed, given such
a protocol, one can obtain a self-stabilizing Bit Dissemination protocol by running the Clock

78 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

T = 0

T/2
se
n
si
ti
ve

to
1 sen

sitive
to

0

Figure 5.1: The division in subphases used for self-stabilizing Bit Dissemination with a clock.
During the first half, between times 1 and T/2, agents are sensitive to 0. Then they are sensitive
to 1.

Synchronization protocol in parallel to the last example protocol. This parallel execution costs
only an additional bit to the message size and a O(log n) additive term to the time complexity
over the complexities of the Clock Synchronization protocol.

Intuition behind the self-stabilizing Clock Synchronization algorithm. Our tech-
nique for obtaining the Clock Synchronization protocol is based on a compact recursive use of
the stabilizing consensus protocol proposed by Doerr et al. [48] through our Message Reduction
Theorem (Theorem 5.6).

In Section 5.2.2, we describe a simple protocol called Syn-Simple that uses O(log T) bits
per message. In Syn-Simple, each agent u maintains a clock Cu ∈ [0, T − 1]. At each round,
each agent u displays the opinion of her clock, pulls 2 other such clock opinions, and updates
her clock as the bitwise majority of the two clocks she pulled and her own. Then the clock Cu is
incremented. This protocol essentially amounts to running the protocol of Doerr et al. on each
bit separately and in parallel, and self-stabilizes in O(log T log n) rounds w.h.p. (Proposition
5.2.1).

We want to apply a strategy similar to Syn-Simple, while using only O(1) many bits per
interaction. The core technical ingredient, made rigorous in the Message Reduction Theorem,
is that a certain class of protocols using messages of ` bits, to which Syn-Simple belongs, can
be emulated by another protocol which uses dlog `e+ 1 bits only. The idea is to build a clock
modulo ` using Syn-Simple itself on dlog `e bits and sequentially display one bit of the original
`-bit message according to such clock. Thus, by applying such strategy to Syn-Simple itself,
we use a smaller clock modulo `′ � ` to synchronize a clock modulo `. Iterating such process,
in Section 5.4, we obtain a compact protocol which uses only 3 bits.

5.1. Introduction 79

5.1.3 Organization of the Chapter

We first define the model with more details than in the Introduction 1.5.4, and give our results
afterwards in Section 5.1.5. After some necessary preliminaries (Section 5.2), we present the
compiler (the Message Reduction Theorem) that allows to reduce the message size of our
protocols in Section 5.3. Section 5.4 is devoted to the clock synchronization protocol and
Section 5.5 builds on it to derive our protocol for Majority Bit Dissemination.

5.1.4 The Model

The communication model. We adopt the synchronous PULL model [18, 45]. Specifically,
in the PULL(η) model, communication proceeds in discrete rounds. In each round, each agent
u “observes” η arbitrary other agents, chosen uniformly at random (with replacement), which
we abbreviate as u.a.r., among all agents, including herself. (We often omit the parameter
η when it is equal to 2). When an agent u “observes” another agent v, she can peek into a
designated visible part of v’s memory. If several agents observe an agent v at the same round
then they all see the same visible part. The message size denotes the number of bits stored in
the visible part of an agent. We denote with PULL(η, `) the PULL(η) model with message
size `. We are primarily interested in message size that is independent of n, the number of
agents.

Agents. We assume that agents do not have unique identities, that is, the system is anony-
mous. We do not aim to minimize the (non-visible) memory requirement of the agent, yet our
constructions can be implemented with relatively short memory, using O(log log n) bits. We
assume that each agent internally stores a clock modulo some integer T = O(log n), which is
incremented at every round.

Majority Bit Dissemination problem. We assume a system of n agents each having an
internal state that contains an indicator bit which indicates whether or not the agent is a source.
Each source holds a binary input bit and each agent (including sources) holds a binary opinion.
. Note that having the indicator bit equal to 1 is equivalent to possessing an input bit: both are
exclusive properties of source nodes. However, we keep them distinct for a clearer presentation.
The number of sources (i.e., agents whose indicator bit is 1) is denoted by k. We denote by k0

and k1 the number of sources whose input bit is initially set to 1 and 0, respectively. Assuming
k1 6= k0, we define the majority bit, termed bmaj , as 1 if k1 > k0 and 0 if k1 < k0. Source agents
know that they are sources (using the indicator bit) but they do not know whether they hold
the majority bit. The parameters k, k1 or k0 are not known to the sources or to any other
agent. It is required that the opinions of agents converge to the majority bit bmaj .

We note that agents hold their output and indicator bits privately, and we do not require
them to necessarily reveal these bits publicly (in their visible parts) unless they wish to. To
avoid dealing with the cases where the number of sources holding the majority bit is arbitrarily

80 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

close to k
2 , we shall guarantee correctness (w.h.p.) only if the fraction of sources holding the

majority is bounded away from 1
2 , i.e., only if |k1

k0
− 1| > ε, for some positive constant ε.

When k = 1, the problem is called Bit Dissemination, for short. Note that in this case, the
single source agent holds the bit bmaj to be disseminated and there is no other source agent
introducing a conflicting opinion.

T -Clock Synchronization. Let T be an integer. In the T -Clock Synchronization problem,
each agent maintains a clock modulo T that is incremented at each round. The goal of agents
is to converge on having the same value in their clocks modulo T . (We may omit the parameter
T when it is clear from the context.)

Probabilistic self-stabilization and convergence. Self-stabilizing protocols are meant
to guarantee that the system eventually converges to a legal configuration regardless of the
initial states of the agents [46]. Here we use a slightly weaker notion, called probabilistic
self-stabilization, where stability is guaranteed w.h.p. [16]. More formally, for the Clock Syn-
chronization problem, we assume that all states are initially set by an adversary. For the
Majority Bit Dissemination problem, we assume that all states are initially set by an adversary
except that it is assumed that the agents know their total number n, and that this information
is not corrupted.

In the context of T -Clock Synchronization, a legal configuration is reached when all clocks
show the same time modulo T , and in the Majority Bit Dissemination problem, a legal configu-
ration is reached when all agents output the majority bit bmaj . Note that in the context of the
Majority Bit Dissemination problem, the legality criterion depends on the initial configuration
(that may be set by an adversary). That is, the agents must converge their opinion on the
majority of input bits of sources, as evident in the initial configuration.

The system is said to stabilize in t rounds if, from any initial configuration, with high
probability, within t rounds it reaches a legal configuration and remains legal for at least some
polynomial time [16, 18, 48]. In fact, for the self-stabilizing Bit Dissemination problem, if
there are no conflicting source agents holding a minority opinion (such as in the case of a
single source agent), then our protocols guarantee that once a legal configuration is reached, it
remains legal indefinitely. Note that, for any of the problems, we do not require that each agent
irrevocably commits to a final opinion but that eventually agents arrive at a legal configuration
without necessarily being aware of that.

5.1.5 Our Results

Our main results are the following.

5.1. Introduction 81

Theorem 5.1

Fix an arbitrarily small constant ε > 0. There exists a protocol, called Syn-Phase-
Spread, which solves the Majority Bit Dissemination problem in a self-stabilizing
manner in Õ(log n) roundsa w.h.p using 3-bit messages, provided that the majority
bit is supported by at least a fraction 1

2 + ε of the source agents.

aWith a slight abuse of notation, with Õ(f(n)g(T)) we refer to
f(n)g(T) logO(1)(f(n)) logO(1)(g(T)). All logarithms are in base 2.

Theorem 5.1 is proved in Section 5.5. The core ingredient of Syn-Phase-Spread is our
construction of an efficient self-stabilizing T -Clock Synchronization protocol, which is used as
a black-box. For this purpose, the case that interests us is when T = Õ(log n). Note that in
this case, the following theorem, proved in Section 5.4, states that the convergence time of the
Clock Synchronization algorithm is Õ(log n).

Theorem 5.2

Let T be an integer. There exists a self-stabilizing T -Clock Synchronization pro-
tocol, called Syn-Clock, which employs only 3-bit messages, and synchronizes
clocks modulo T within Õ(log n log T) rounds w.h.p.

In addition to the self-stabilizing context our protocols can tolerate the presence of Byzantine
agents, as long as their number is2 O(n1/2−ε). However, in order to focus on the self-stabilizing
aspect of our results, in this work we do not explicitly address the presence of Byzantine agents.

The proofs of both Theorem 5.2 and Theorem 5.1 rely on recursively applying a new general
compiler which can essentially transform any self-stabilizing algorithm with a certain property
(called “the bitwise-independence property”) that uses `-bit messages to one that uses only
dlog `e+ 1-bit messages, while paying only a small penalty in the running time. This compiler
is described in Section 5.3, in Theorem 5.6, which is also referred as “the Message Reduction
Theorem”. The structure between our different lemmas and results is summarized in the picture
below, Figure 5.2.

It remains an open problem, both for the self-stabilizing Bit Dissemination problem and for
the self-stabilizing Clock Synchronization problem, whether the message size can be reduced
to 2 bits or even to 1 bit, while keeping the running time poly-logarithmic.

2Specifically, it is possible to show that, as a corollary of our analysis and the fault-tolerance property of the
analysis in [48], if T ≤ poly(n) then Syn-Clock can tolerate the presence of up to O(n1/2−ε) Byzantine agents
for any ε > 0. In addition, Syn-Phase-Spread can tolerate min{(1−ε)(kmaj−kmin), n1/2−ε} Byzantine agents,
where kmaj and kmin are the number of sources supporting the majority and minority opinions, respectively.
Note that for the case of a single source (k = 1), no Byzantine agents are allowed; indeed, a single Byzantine
agent pretending to be the source with the opposite opinion can clearly ruin any protocol.

82 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

Sync-

Intermediate

Se
ct
io
n
2.
4

4 bits 3 bits

syn-clock

T power of 2 T power of 2 T arbitrary T arbitrary

Building counters
modulo T :

Solving
Majority
Bit Dissemination:

phase-spread

M
es
sa
ge

R
ed
uc
tio
n

T
he
or
em

Õ (log T log n) roundsÕ (log T log n) roundsO (log T log n) rounds

Õ (log n) rounds Õ (log n) rounds

sync-simple

M
es
sa
ge

R
ed
uc
tio
n

T
he
or
em

M
es
sa
ge

R
ed
uc
tio
n

T
he
or
em

Õ(log2 T log n) rounds

Section 5.1 Section 5.2

Section 2.2

4 bits 3 bits3 bitslog T bits

Section 4.2Section 4.1 Section 4.2

4-bits Phase-Spread

4-bits Syn-Clock

Figure 5.2: The structure of our arguments. Note that the Message Reduction Theorem is used
on three occasions.

5.1.6 Related Work

The computational study of abstract systems composed of simple individuals that interact using
highly restricted and stochastic interactions has recently been gaining considerable attention
in the community of theoretical computer science. Popular models include population protocols
[7, 12, 9, 15], which typically consider constant size individuals that interact in pairs (using
constant size messages) in random communication patterns, and the beeping model [2, 58],
which assumes a fixed network with extremely restricted communication. Our model also falls
in this framework as we consider the PULL model [45, 87, 89] with constant size messages. So
far, despite interesting works that consider different fault-tolerant contexts [8, 9, 15], most of
the progress in this framework considered non-faulty scenarios.

Information dissemination is one of the most well-studied topics in the community of dis-
tributed computing, see, e.g., [8, 36, 45, 47, 48, 63, 87]. Classical examples include the Broadcast
(also referred to in the literature as Rumor Spreading) problem, in which a piece of informa-
tion residing at one source agent is to be disseminated to the rest of the population, and
majority-consensus (here, called Majority Bit Dissemination) problems in which processors are
required to agree on a common output value which is the majority initial input value among all
agents [8, 91] or among a set of designated source agents [63]. An extensive amount of research
has been dedicated to study such problems in PUSH/PULL based protocols (including the
phone call model), due to the inherent simplicity and fault-tolerant resilience of such meeting
patterns. Indeed, the robustness of PUSH/PULL based protocols to weak types of faults, such
as crashes of messages and/or agents, or to the presence of relatively few Byzantine agents, has

5.1. Introduction 83

been known for quite a while [56, 87]. Recently, it has been shown that under the PUSH model,
there exist efficient Broadcast and Majority Bit Dissemination protocols that use a single bit
per message and can overcome flips in messages (noise) [63]. The protocols therein, however,
heavily rely on the assumption that agents know when the protocol has started. Observe that
in a self-stabilizing context, in which the adversary can corrupt the initial clocks setting them
to arbitrary times, such an assumption would be difficult to remove while preserving the small
message size.

In general, there are only few known self-stabilizing protocols that operate efficiently under
stochastic and capacity restricted interactions. An example, which is also of high relevance to
this work, is the work of Doerr et al. on Stabilizing Consensus [48] operating in the PULL
model. In that work, each agent initially has a state taken out of a set of m opinions and the goal
is to converge on one of the proposed states. The proposed algorithm which runs in logarithmic
time is based on sampling the states of 2 agents and updating the agent’s state to be the median
of the 2 sampled states and the current state of the agent (3 opinions in total). Since the total
number of possible states is m, the number of bits that must be revealed in each interaction is
Ω(logm). Another example is the plurality consensus protocol in [18], in which each agent has
initially an opinion and we want the system to converge to the most frequent one in the initial
configuration of the system. In fact, the Majority Bit Dissemination problem can be viewed
as a generalization of the majority-consensus problem (i.e. the plurality consensus problem
with two opinions), to the case in which multiple agents may initially be unopinionated. In the
previous sense, we also contribute to the line of research on the majority-consensus problem
[17, 42, 55].

Another fundamental building block is Clock Synchronization [13, 93, 95, 96]. We consider a
synchronous system in which clocks tick at the same pace but may not share the same opinion.
This version has earlier been studied in e.g., [20, 49, 50, 51, 65, 83] under different names,
including “digital Clock Synchronization” and “synchronization of phase-clocks”; We simply
use the term “Clock Synchronization”. There is by now a substantial line of work on Clock
Synchronization problems in a self-stabilizing context [84, 51, 98, 97]. We note that in these
papers the main focus is on the resilience to Byzantine agents. The number of rounds and
message lengths are also minimized, but typically as a function of the number of Byzantine
processors. Our focus is instead on minimizing the time and message complexities as much as
possible. The authors in [98, 97] consider mostly a deterministic setting. The communication
model is very different than ours, as every agent gets one message from every other agent on
each round. Moreover, agents are assumed to have unique identifiers. In contrast, we work
in a more restricted, yet randomized communication setting. In [84, 98] randomized protocols
are also investigated. We remark that the first protocol we discuss Syn-Simple (Proposition
5.2.1), which relies on a known simple connection between consensus and counting [84], already
improves exponentially on the randomized algorithms from [84, 98] in terms of number of
rounds, number of memory states, message length and total amount of communication, in the
restricted regime where the resilience parameter f satisfies log n ≤ f ≤ √n. We further note
that the works [97, 98] also use a recursive construction for their clocks (although very different

84 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

from the one we use in the proof of Theorem 5.2). The induction in [98] is on the resilience
parameter f , the number of agents and the clock length together. This idea is improved in [97]
to achieve optimality in terms of resilience to Byzantine agents.

To the best of our knowledge there are no previous works on self-stabilizing Clock Syn-
chronization or Majority Bit Dissemination that aim to minimize the message size beyond
logarithmic in the PULL model.

5.2 Preliminaries

5.2.1 A majority Based, Self-Stabilizing Protocol for Consensus on One Bit

Let us recall3 the stabilizing consensus protocol by Doerr et al. in [48]. In this protocol, called
maj-consensus, each agent holds an opinion. In each round each agent looks at the opinions
of two other random agents and updates her opinion taking the majority among the bits of
the observed agents and its own. Note that this protocol uses only a single bit per interaction,
namely, the opinion. The usefulness of maj-consensus comes from its extremely fast and
fault-tolerant convergence toward an agreement among agents, as given by the following result
4.

Theorem 5.3: Doerr et al. [48]

From any initial configuration, maj-consensus converges to a state in which all
agents agree on the same output bit in O(log n) rounds, w.h.p. Moreover, if
there are at most κ ≤ n1/2−ε Byzantine agents, for any constant ε > 0, then
after O(log n) rounds all non-Byzantine agents have converged and consensus is
maintained for nΩ(1) rounds w.h.p.

3Our protocols will use this protocol as a black box. However, we note that the constructions we outline are
in fact independent of the choice of consensus protocol, and this protocol could be replaced by other protocols
that achieve similar guarantees.

4The original statement of [48] says that if at most κ ≤
√
n agents can be corrupted at any round, then

convergence happens for all but at most O(κ) agents. Let us explain how this implies the statement we gave,

namely that we can replace O(κ) by κ, if κ ≤ n
1
2
−ε. Assume that we are in the regime κ ≤ n

1
2
−ε. It follows

from [48] that all but a set of O(κ) agents reach consensus after O(logn) round. This set of size O(κ) contains
both Byzantine and non Byzantine agents. However, if the number of agents holding the minority opinion is
O(κ) = O(n1/2−ε), then the expected number of non Byzantine agents that disagree with the majority at the
next round is in expectation O(κ2/n) = O(n−2ε). Thus, by Markov’s inequality, this implies, that at the next
round consensus is reached among all non-Byzantine agents w.h.p. Note also that, for the same reasons, the
Byzantine agents do not affect any other non-Byzantine agent for nε rounds w.h.p.

5.2. Preliminaries 85

5.2.2 Protocol Syn-Simple: A simple Protocol with Many Bits per Interac-
tion

We now present a simple self-stabilizing T -Clock Synchronization protocol, called Syn-Simple,
that uses relatively many bits per message, and relies on the assumption that T is a power of
2. The protocol is based on iteratively applying a self-stabilizing consensus protocol on each
bit of the clock separately, and in parallel.

Formally, each agent u maintains a clock Cu ∈ [0, T − 1]. At each round, u displays the
opinion of her clock Cu, pulls 2 uniform other such clock opinions, and updates her clock as
the bitwise majority of the two clocks it pulled, and her own. Subsequently, the clock Cu is
incremented. We present the pseudo code of Syn-Simple in Algorithm 1.

Syn-Simple protocol

1 u samples two agents u1 and u2.

2 u updates its clock with the bitwise majority of its clock and those of the sample nodes.

3 u increments its clock by one unit.

Algorithm 1: One round of Syn-Simple, executed by each agent u.

We prove the correctness of Syn-Simple in the next proposition.

Proposition 5.2.1. Let T be a power of 2. The protocol Syn-Simple is a self-stabilizing pro-
tocol that uses O(log T) bits per interaction and synchronizes clocks modulo T in O(log T log n)
rounds w.h.p.

Proof. Let us look at the least significant bit. One round of Syn-Simple is equivalent to
one round of maj-consensus with an extra flipping of the opinion due to the increment of
the clock. The crucial point is that all agents jointly flip their bit on every round. Because
the function agents apply, maj, is symmetric, it commutes with the flipping operation. More
formally, let ~bt be the vector of the first bits of the clocks of the agents at round t under an
execution of Syn-Simple. E.g. (~bt)u is the value of the less significant bit of node u’s clock at
time t. Similarly, we denote by ~ct the first bits of the clocks of the agents at round t obtained
by running a modified version of Syn-Simple in which time is not incremented (i.e. we skip
line 3 in Algorithm 1). We couple ~b and ~c trivially, by running the two versions on the same
interaction pattern (in other words, each agent starts with the same memory and pulls the
same agents at each round in both executions). Then, ~bt is equal to ~ct when t is even, while
is equal to ~bt = 1 − ~ct when t is odd. Moreover, we know from Theorem 5.3 that ~ct converge
to a stable opinion in a self-stabilizing manner. It follows that, from any initial configuration
of states (i.e. clocks), w.h.p, after O(log n) rounds of executing Syn-Simple, all agents share
the same opinion for their first bit, and jointly flip it in each round. Once agents agree on the

86 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

first bit, since T is a power of 2, the increment of time makes them flip the second bit jointly
once every 2 rounds. More generally, assuming agents agree on the first ` bits of their clocks,
they jointly flip the ` + 1’st bit once every 2` rounds, on top of doing the maj-consensus
protocol on that bit. Hence, the same coupling argument shows that the flipping doesn’t affect
the convergence on bit `+ 1. Therefore, O(log n) rounds after the first ` bits are synchronized,
w.h.p. the `+ 1’st bit is synchronized as well. The result thus follows by induction.

5.2.3 The bitwise-independence Property

Our general transformer described in Section 5.3 is useful for reducing the message size of
protocols with a certain property called bitwise-independence. Before defining the property we
need to define a variant of the PULL model, which we refer to as the BIT model. The reason
we introduce such a variant is mainly technical, as it appears naturally in our proofs. Thus,
unless explicitly stated, we always refer to the PULL model.

Recall that in the PULL(η, `) model, at any given round, each agent u is reading an `-bit
message mvj for each of the η observed agents vj chosen u.a.r. (in our case η = 2), and then,
in turn, u updates her state according to the instructions of a protocol P. Informally, in the
BIT model, each agent u also receives η messages, however, in contrast to the PULL model
where each such message corresponds to one observed agent, in the BIT model, the i’th bit of
each such message is received independently from a (typically new) agent, chosen u.a.r. from
all agents.

Definition 5.2.2 (The BIT model). In the BIT model, at each round, each agent u picks η`

agents u.a.r., namely, v
(1)
1 , v

(1)
2 , . . . v

(1)
` ,. . . ,v

(η)
1 , v

(η)
2 , . . . v

(η)
` , and reads ŝi

(j) = si(v
(j)
i), the i-th

bit of the visible part of agent v
(j)
i , for every i ≤ ` and j ≤ η. For each j ≤ η, let m̂j(u) be the

`-bit string m̂j(u) := (ŝ1
(j), ŝ2

(j), . . . , ŝ`
(j)). By a slight abuse of language we call the strings

{m̂j(u)}j≤η the messages received by u in the BIT model.

Definition 5.2.3 (The bitwise− independence property). Consider a protocol P designed to
work in the PULL model. We say that P has the bitwise-independence property if its correctness
and running time guarantees remain the same under the BIT model (assuming that given the
messages {m̂j(u)}j≤η it receives at any round, each agent u performs the same actions that it
would have, had it received these messages in the PULL model).

Let us first state a fact about protocols having the bitwise-independence property.

5.2. Preliminaries 87

Lemma 5.4

Assume we are given two protocols Syn-Generic and P, designed to work in the
PULL model, such that

• Protocol Syn-Generic synchronizes clocks modulo T for some T and

• Protocol P works assuming agents share a clock modulo T .

Denote by Syn-P the parallel execution of Syn-Generic and P, with P using
the clock synchronized by Syn-Generic. Then

1. If Syn-Generic and P are self-stabilizing then so is Syn-P, and the con-
vergence time of Syn-P is at most the sum of convergence times of Syn-
Generic and P.

2. Finally, if Syn-Generic and P have the bitwise-independence property, and
P is also self-stabilizing, Syn-P has the bitwise-independence property too.

Proof. The self-stabilizing property of Syn-P and its convergence time directly follow from
those of Syn-Generic and P (part 1 of the statement). We just need to check the correctness
of Syn-P, when run in the BIT model (part 2 of the statement). The fact that Syn-Generic
and P are run in parallel means that the part of the message and computations regarding Syn-
Generic are not affected by those regarding P. This still holds when running the protocol in the
BIT model. Since, by hypothesis, Syn-Generic has the independence property, there exists
a time τ after which all agents share a synchronized clock modulo T , even in the BIT model.
Thus, after time τ , we can disregard the part of the message corresponding to Syn-Generic,
and view the execution of Syn-P as simply P. The assumption that P is self-stabilizing and
has the independence property implies that, regardless of the nodes’ memory states concerning
the execution of P at time τ , Syn-P still works in the BIT model as in the original PULL
model, thus inheriting the bitwise-independence property from Syn-Generic and P.

We next show that the protocol Syn-Simple has the aforementioned bitwise-independence
property.

Lemma 5.5

Syn-Simple has the bitwise-independence property.

Proof. Let us start by commenting on Syn-Simple, when run in the usual PULL model. Let
`′ be the size of the clocks. Assume the first i < `′ bits of the clocks have been synchronized.
At this stage, the (i+ 1)-st bit of each agent u is flipped every 2i rounds (from 0 to 1 or from
1 to 0) and updated as the majority of the (i + 1)-st bit of C(u) and the 2 pulled messages
on each round. Since the first i bits are synchronized, the previous flipping is performed by

88 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

all agents at the same round. Let us now consider the protocol over the BIT model. Observe
that, in order for Syn-Simple to work, we do not need the bit at index (i + 1) to come from
the same agent as the bits corresponding to indices ≤ i, as long as convergence on the first i
bits has been achieved. Hence, as is, the reasoning above for the PULL model holds in the
BIT model as well.

5.3 A General Compiler that Reduces Message Size

In this section we present a general compiler that allows to implement a protocol P using
`-bit messages while using messages of order log ` instead, as long as P enjoys the bitwise-
independence property. The compiler is based on replacing a message by an index to a given
bit of the message. This tool will repeatedly be used in the following sections to obtain our
Clock Synchronization and Majority Bit Dissemination algorithms that use 3-bit messages.

Theorem 5.6: the Message Reduction Theorem

Any self-stabilizing protocol P in the PULL(η, `) model having the bitwise-
independence property, and whose running time is LP, can be emulated by a
protocol Emul(P) which runs in the PULL(2, dlog(η2`)e+ 1) model, has running
time O (log(η`) log n) + η

2`LP and has itself the bitwise-independence property.

Remark 5.3.1. The only reason for designing Emul(P) to run in the PULL(2, dlog(η2`)e+1)
model in the Message Reduction Theorem is the consensus protocol we adopt, maj-consensus,
which works in the PULL(2) model.

In fact, Emul(P) can be adapted to run in the PULL(1, dlog(η`)e + 1) model by using a
consensus protocol working in the PULL(1) model. However, no self-stabilizing binary consen-
sus protocol in the PULL(1) model with the same performances as maj-consensus is currently
known.

Proof of Theorem 5.6. Let s(u) ∈ {0, 1}` be the message displayed by an agent u under P
at a given round. For simplicity’s sake, in the following we assume that η is even, the other
case is handled similarly. In Emul(P), agent u keeps the message s(u) privately, and instead
displays a clock C(u) written on dlog(η2`)e bits, and one bit of the message s(u), which we refer
to as the P-bit. Thus, the total number of bits displayed by the agent operating in Emul(P)
is dlog(η2`)e + 1. The purpose of the clock C(u) is to indicate to agent u which bit of s(u)
to display. In particular, if the counter has value 0, then the 0-th bit (i.e the least significant
bit) of s(u) is shown as the P-bit, and so on. In what follows, we refer to s(u) as the private
message of u, to emphasize the fact that this message is not visible in Emul(P). See Figure
5.3 for an illustration.

Each round of P executed in the PULL(η, `) model by an agent u is emulated by η
2` rounds

of Emul(P) in the PULL(2, dlog(η2`)e + 1) model. We refer to such η
2` rounds as a phase,

5.3. A General Compiler that Reduces Message Size 89

1 0

Only updated ev-
ery 8 rounds.

1

A counter modulo 8.

Kept private.

Output bit.
Kept private.

s1, s2, . . . , s8
P emul(p)

Figure 5.3: On the left is a protocol P using ` = 8 bits in total and pulling only one node per round

(η = 1). On the right is the emulated version Emul(P) which uses 4 bits only. The bits depicted on

the bottom of each panel are kept privately, while the bits on the top are public, that is, appear in the

visible part.

which is further divided to η
2 subphases of length `. Note that since each agent samples 2

agents in a round, the total number of agents sampled by an agent during a phases is η`.

For a generic agent u, a phase starts when its clock C(u) is zero, and ends after a full loop
of its clock (i.e. when C(u) returns to zero). Each agent u is running protocol Syn-Simple
on the dlog(η2`)e bits which correspond to her clock C(u). Note that the phases executed by
different agents may initially be unsynchronized, but, thanks to Proposition 5.2.1, the clocks
C(u) eventually converge to the same value, for each agent u, and hence all agents eventually
agree on when each phase (and subphase) starts.

Let u be an arbitrary agent. Denote by ŝ
(1)
1 , ŝ

(1)
2 , . . . ŝ

(1)
` , ..., ŝ

(η)
1 , ŝ

(η)
2 , . . . ŝ

(η)
` the P-bits

collected by u from agents chosen u.a.r during a phase. Consider a phase and a round z ∈
{1, · · · , η2`} in that phase. Let i and j be such that z = j · ` + i. We view z as round i of
subphase j + 1 of the phase. On this round, agent u pulls two messages from agents v and
w, chosen u.a.r. Once the clocks (and thus phases and subphases) have synchronized, agents
v and w are guaranteed to be displaying the ith index of their private messages, namely, the

values si(v) and si(w), respectively. Agent u then sets ŝ
(2j−1)
i equal to si(v) and ŝ

(2j)
i equal to

si(w).

In Emul(P), the messages displayed by agents are only updated after a full loop of C.
It therefore follows from the previous paragraph that the P-bits collected by agent u after a
full-phase are distributed like the bits collected during one round of P in the BIT model (see
Definition 5.2.2), assuming the clocks are synchronized already.

Correctness. The bitwise-independence property of Syn-Simple (Lemma 5.5), implies that
Syn-Simple still works when messages are constructed from the P-bits collected by Emul(P).
Therefore, from Proposition 5.2.1, eventually all the clocks C are synchronized. Since private
messages s are only updated after a full loop of C, once the clocks C are synchronized a phase of
Emul(P) corresponds to one round of P, executed in the BIT model. Hence, the hypothesis
that P operates correctly in a self-stabilizing way in the BIT model implies the correctness of
Emul(P).

90 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

Running time. Once the clocks C(u) are synchronized, for all agents u, using the first dlog(η2`)e
bits of the messages, the agents reproduce an execution of P with a multiplicative time-overhead
of η

2`. Moreover, from Proposition 5.2.1, synchronizing the clocks C(u) takes O (log(ηm) log n)
rounds. Thus, the time to synchronize the clocks costs only an additive factor ofO (log(ηm) log n)
rounds, and the total running time is O (log(ηm) log n) + η

2` · LP.

Bitwise-independence property. Protocol Emul(P) inherits the bitwise-independence property
from that of Syn-Simple (Lemma 5.5) and P (which has the property by hypothesis): We
can apply Lemma 5.4 where Syn-Generic is Syn-Simple and P is the subroutine described
above, which displays at each round the bit of P whose index is given by a synchronized clock C
modulo ` (i.e. the one produced by Syn-Simple). Observe that the aforementioned subroutine
is self-stabilizing, since it emulates P once clocks are synchronized. Then, in the notation of
Lemma 5.4, Emul(P) is Syn-P.

5.4 Self-Stabilizing Clock Synchronization

In Section 5.2.2 we described Syn-Simple - a simple self-stabilizing Clock Synchronization
protocol that uses log T bits per interaction. In this section we describe our main self-stabilizing
Clock Synchronization protocol, Syn-3Bits, that uses only 3 bits per interaction. We first
assume T is a power of 2. We show how to get rid of this assumption at the end of this section.

Clock Synchronization with 3-bit Messages, Assuming T is a Power of Two. In
this section, we show the following result.

Lemma 5.7

Let T be a power of 2. There exists a synchronization protocol Syn-Intermediate
which synchronizes clocks modulo T in time Õ

(
log2 T log n

)
using only 3-bit mes-

sages. Moreover, Syn-Intermediate has the bitwise-independence property.

Before presenting the proof of Lemma 5.7, we need a remark about clocks.

Remark 5.4.1. In order to synchronize a clock C modulo T , throughout the analysis we often
obtain a clock C ′ modulo T which is incremented every ` rounds. However, C ′ can still be
translated back to a clock modulo T which is incremented every round, by keeping a third clock
C ′′ modulo ` and setting

C = `C ′ + C ′′ mod T.

Proof of Lemma 5.7. At a high level, we simply apply iteratively the Message Reduction
Theorem in order to reduce the message to 3 bits, starting with P = Syn-Simple. A pictorial
representation of our recursive protocol is given in Figure 5.4, and a pseudocode is given in
Algorithm 2. The pseudocode deviates slightly from the presentation done in the proof, as it
makes no use of recursion.

5.4. Self-Stabilizing Clock Synchronization 91

0

0

1

1 1 1

1

11 100 0 0

0

0

The emulated
protocol P
uses messages
of 27 bits.

Figure 5.4: A more explicit view of our 3-bit emulation of protocol P, obtained by iterating Lemma

5.6. The down-most layer represents the 27-bits message displayed by protocol P. Each layer on the

picture may be seen as the message of a protocol emulating P with fewer bits, that is, as we go up on the

figure we obtain more and more economical protocols in terms of message length. In particular, the top

layer represents the 3-bit message in the final emulation. The left-most part of each message (colored

in light blue) encodes a clock. The right-most bit (colored in light yellow) of each message (except the

bottom-most one) corresponds to a particular bit of the layer below it. The index of this particular

displayed bit is given by the value of the clock. Each clock on an intermediate layer is updated only

when the clock on the layer above completes a loop (i.e., has value 0). The clock on the top-most layer

is updated on every round.

Let us consider what we obtain after applying the Message Reduction Theorem the first
time to P =Syn-Simple for clocks modulo T . Recall that we assume that T is a power of
2. From Proposition 5.2.1 we know that in this case, the convergence time of Syn-Simple is
LP = O (log T log n), the number of pulled agents at each round is 2 and the number of bits of
each message is ` = log T .

With the emulation produced by the Message Reduction Theorem, the clock used in P
=Syn-Simple is incremented only every ` = log T rounds. Another way to interpret this is
that we obtain a clock modulo T ·` and using Remark 5.4.1 we can turn it into a counter modulo
T that is incremented at each round. Hence, by the running time analysis of the Message
Reduction Theorem, we obtain a protocol Emul(P) which synchronizes a clock modulo T in
O (log n log log T) + O

(
log2 T log n

)
= O

(
log2 T log n

)
rounds. The message size is reduced

from log T to dlog log T e+ 1 = O (log log T).

By repeatedly applying the Message Reduction Theorem, we reduce the size of the message
` as long as ` > dlog `e + 1, i.e. as long as ` > 3. The number of repeated application of the
Message Reduction Theorem until the message size is 3 is thus of order log∗ T .

Let us analyze the running time. Let `1 = log T , `i+1 = dlog `ie + 1 and let τ(T) = τ be
the smallest integer such that `τ = 3. We apply the Message Reduction Theorem i ≤ τ times,

92 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

Syn-Intermediate protocol

Memory: Each agent u keeps a sequence of clocks C1, . . . , Cτ and a sequence of bits b1, . . . , bτ .
The clock C1 runs modulo T , the clock Cτ runs modulo 4, and the i-th clock Ci runs modulo
2`i−1 (see proof of Lemma 5.7). Each agent u also maintains a sequence of heaps (or some
ordered structure) Sδi , for each δ ∈ {1, 2} and i = 1, . . . , τ .

Message: u displays Cτ (2 bits) and bτ (1 bit). For all i ∈ [τ], bi(u) is the Ci(u)-th bit of the
string obtained concatenating the binary representation of Ci−1(u) and bi−1(u).

1 u samples two agents u1 and u2.

2 u updates its clock with the bitwise majority of its clock and those of the sampled nodes.

3 u increments its clock by one unit.

4 u sets i∗ equal to the maximal i < τ such that Ci+1 6= 0.

5 For δ = 1, 2, u pushes bτ (uδ) in Sδi∗ .
(Note that, if Ci∗+1, . . . , Cτ are synchronized, then all agents are displaying the bit with
index Ci∗+1 of (Ci∗ , bi∗) as bτ .)

6 While i > 1 and Ci = 0, u does the following:

7 | Pops the last `i−1 − 1 bits from Sδi−1 and set sδ equal to it.

8 | Sets Ci−1 equal to the bitwise majority of Ci−1(u), s1 and s2.

9 | Increments Ci−1 and decrement i by one unit.

Algorithm 2: Iterative version of the protocol Syn-Intermediate, executed by each agent
u, unfolding the recursion in proof of Lemma 5.7.

and we obtain a message size `i and a running time Li, such that

Li+1 ≤ γ1(log `i log n+ `iLi), (5.1)

for some constant γ1 independent of i. Let a and b be two given numbers. Given two real
numbers a and b, we use the notation a ∨ b to denote the maximum of a and b. Set L1 to be
L1 := LSyn-Simple ∨ log n = O (log T log n)∨ log n, taking the maximum with log n for technical
convenience. The second term dominates in Equation (5.1) because `i >> log `i and Li > log n.
Hence, we obtain from Equation (5.1) that Li+1 ≤ 2γ1`iLi. It follows by induction that

Li+1 ≤ (2γ1)iL1

i∏
j=1

`j .

5.4. Self-Stabilizing Clock Synchronization 93

The running time of Emul(P) =Syn-Clock after the last application of the Message
Reduction Theorem, i.e. τ , is thus

LSyn-Clock := Lτ ≤ (2γ1)τL1

τ−1∏
i=1

`i. (5.2)

To complete the estimate of the runtime, we use the following fact and Lemma 5.8.

Fact 5.4.2. If |x| < 1, it holds

e
x

1+x ≤ 1 + x ≤ ex ≤ 1 +
x

1− x.

Lemma 5.8

Let f, τ : R+ → R be functions defined by f(x) = dlog xe+ 1 and

τ(x) = inf
{
k ∈ N | f~k(x) ≤ 3

}
, (5.3)

where we denote by f~k the k-fold iteration of f . It holds that

τ(T) ≤ log~4 T +O(1). (5.4)

Proof. We can notice that f(T) ≤ T − 1, if T is bigger than some constant c. Moreover, when
f(x) ≤ c, the number of iterations before reaching 1 is O(1). This implies that τ(T) ≤ T+O(1).
But in fact, by definition, `(T) = τ

(
f~4(T)

)
+ 4 (provided f~4(T) > 1, which holds if T is big

enough). Hence

τ(T) ≤ g
(
f~4(T)

)
+ 4 ≤ f~4(T) +O(1) ≤ log~4 T +O(1). (5.5)

From the bounds L1 = O(log T log n),
∏τ
i=1 `i ≤ `1`2`

τ
3 , `1 = O (log T), `2 = O (log log T)

and Lemma 5.8, we obtain (2γ1)τ = (log log log T)O(1) = O (log log T) and

`τ3 ≤ 2O((log log log log T)2) ≤ 2O(log log log T) ≤ (log log T)O(1) .

We thus conclude that

LSyn-Clock ≤ (2γ1)τ
τ∏
i=1

`iL1 ≤ O (log log T) · `1`2`τ3 · O(log T log n) (5.6)

≤ O (log log T) · O (log T) · O (log log T) · O (log log T)O(1) · O(log T log n) (5.7)

≤ log2 T log n · (log log T)O(1) . (5.8)

94 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

The total slowdown with respect to Syn-Simple corresponds to
∏τ
i=1 `i = Õ(log T). Hence

the clock produced by the emulation is incremented every Õ(log T) rounds. In other words we
obtain a clock modulo T · f(T) for some function f . But using Remark 5.4.1 we can still view
this as a clock modulo T .

Extension to General T and Running Time Improvement. We now aim to get rid of
the assumption that T is a power of 2 in Lemma 5.7, and also reduce the running time of our
protocol to Õ (log n log T), proving Theorem 5.2.

Syn-Clock protocol

Memory: Each agent u stores a clock C ′(u) which runs modulo T ′ � γ log n log T . Each agent
u also stores a variable Q which is incremented only once every T ′ rounds and runs modulo T .

Message: Each agent u displays 4 bits. On the first 3 bits, protocol Syn-Intermediate is

applied to synchronize C ′. The 4-th bit b(u) is the bit with index (b C′(u)
γ lognc mod dlog T e) of

Q(u).

1 u samples two agents u1 and u2.

2 u updates b(u) with the majority of b(u), b(u1) and b(u2).

3 If C ′ = 0, increment Q by one unit modulo T .

Output: The clock modulo T is obtained as C := (C ′ +Q · T ′) mod T

Algorithm 3: The protocol 4-bit Syn-Clock, executed by each agent u.

Proof of Theorem 5.2. From Lemma 5.7, we know that Syn-Intermediate synchronizes
clocks modulo T in time Õ

(
log2 T log n

)
using only 3-bit messages, provided that T is a power

of 2. While protocol Syn-Intermediate emulates protocol Syn-Simple, it displays the first
bit of the message of Syn-Simple only once every Õ (log T) rounds. Of course, it would be
more efficient to display it O (log n) times in a row, so that maj-consensus would make every
agent agree on this bit, and then move to agreeing on the second bit, and so on. To achieve
this, as in the proof of Syn-Simple, we can view a clock modulo T , say Q, as written on log T
bits. If agents already possess a “small” counter modulo T ′ := O (log T log n) they can use it
to display the first bit for O (log n) rounds, then the second one for O (log n) rounds, and so
on until each one of the dlog T e bits of T has been synchronized. This would synchronize all
bits of the desired clock within O (log T log n) rounds, w.h.p., while being very economical in
terms of message length, since only 1 bit is displayed at any time.

Therefore, we can use Lemma 5.7 to synchronize a counter modulo O (log T log n) in
Õ((log log T)2 log n) rounds, using 3 bits per message. Then, we can use a fourth bit to run
maj-consensus on each of the log T bits of Q for O(log n) consecutive rounds, for a total
running time of O(log T log n) rounds. At this point, an application of the Message Reduc-

5.4. Self-Stabilizing Clock Synchronization 95

tion Theorem would give us a protocol with running time O(log T log n) using 3-bit messages.
However, perhaps surprisingly, a similar strategy enables us to synchronize a clock modulo any
integer (not necessarily a power of 2).

Let us assume that T ∈ N is an arbitrary integer. Let γ log n be an upper bound on the
convergence time of maj-consensus which guarantees a correct consensus with probability
at least 1 − n−2, for some constant γ large enough [48]. Let T ′ be the smallest power of 2
bigger than log T · (γ log n+ γ log log T). By Lemma 5.7, using 3 bits, the agents can build
a synchronized clock C ′ running modulo T ′ in time Õ((log log T)2 log n). The other main
ingredient in this construction is another clock QT ′ which is incremented once every T ′ rounds
and runs modulo T . The desired clock modulo T , which we denote C, is obtained by

C :=
(
C ′ +QT ′ · T ′

)
mod T. (5.9)

It is easy to check, given the definitions of C ′ and QT ′ that this choice indeed produces a clock
modulo T .

It remains to show how the clock QT ′ modulo T is synchronized. On a first glance, it may
seem as if we did not simplify the problem since Q is a clock modulo T itself. However, the
difference between QT ′ and a regular clock modulo T is that QT ′ is incremented only once
every T ′ rounds. This is exploited as follows.

The counter QT ′ is written on dlog T e internal bits. We show how to synchronize QT ′ using
a 4-th bit in the messages, similarly to the aforementioned strategy to synchronize Q; we later
show how to remove this assumption using the Message Reduction Theorem. Let us call a
loop of C ′ modulo T ′ an epoch. The rounds of an epoch are divided in phases of equal length
γ log n+γ log log T (the remaining T ′ mod (γ log n+γ log log T) rounds are just ignored). The
clock C ′ determines which bit from QT ′ to display. The first bit of QT ′ is displayed during the
first phase, then the second one is displayed during the second phase, and so on. By Theorem
5.3, the length of each phase guarantees that consensus is achieved on each bit of QT ′ via5 maj-
consensus w.h.p. More precisely, after the first bit has been displayed for γ log n+ γ log log T
rounds, all agents agree on it with probability6 1− 1

n2 log T
, provided γ is large enough. Thus,

at the end of an epoch, agents agree on all dlog T e bits of QT ′ with probability greater than
(1− 1

n2 log T
)log T � 1−O(n−2).

We have thus shown that, by the time C ′ reaches its maximum value of T ′, i.e. after
one epoch, all agents agree on QT ′ w.h.p. and then increment it jointly. From Lemma 5.7,

5Observe that, once clock C′ is synchronized, the bits of QT ′ do not change for each agent during each
subphase. Thus, we may replace maj-consensus by the Min protocol where on each round of subphase i each
agent u pulls another agent v u.a.r. and updates her i-th bit of Q to the minimum between her current i-th bit
of Q and the one of v. However, for simplicity’s sake, we reuse the already introduced maj-consensus protocol.

6From Theorem 5.3, we have that after γ logn rounds, with γ large enough, the probability that consensus
has not been reached is smaller than 1

n2 . Thus, after N · γ logn rounds, the probability that consensus has not
been reached is smaller than 1

n2N . If we choose N logn = logn+ log log T , we thus get the claimed upper bound
1

n2 log T
.

96 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

Syn-Intermediate takes

Õ
(
log2 T ′ log n

)
= O

(
(log log n+ log log T)2 log n

)
= O

((
(log log n)2 log n+ (log log T)2 log n

))
rounds to synchronize a clock C ′ modulo T ′ w.h.p. Together with the log T (γ log n+ γ log log T)
rounds to agree on QT ′ w.h.p., this implies that after log T log n·(log log T)O(1) ·(log log n)O(1) =
Õ (log T log n) rounds the clocks C are all synchronized w.h.p.

Finally, we show how to get rid of the extra 4-th bit to achieve agreement on QT ′ . Ob-
serve that, once C ′ is synchronized, this bit is used in a self-stabilizing way. Thus, since
Syn-Intermediate has the bitwise-independence property, using Lemma 5.4, the protocol
we described above possesses the bitwise-independence property too. By using the Message
Reduction Theorem we can thus reduce the message size from 4 bits to dlog 4e + 1 = 3 bits,
while only incurring a constant multiplicative loss in the running time. The clock we obtain,
counts modulo T but is incremented every 4 rounds only. It follows from Remark 5.4.1 that
we may still view this as a clock modulo T .

Remark 5.4.3 (Internal memory space). The internal memory space needed to implement our
protocols Syn-Simple, Syn-Intermediate, and Syn-Clock is close to log T in all cases:
protocol Syn-Simple uses one counter written on log T bits, Syn-Intermediate needs inter-
nal memory of size

log T +O (log log T + log log log T + . . .) ≤ log T (1 + o(1)), (5.10)

and the internal memory requirement of Syn-Clock is of order log T + log log n.

5.5 Majority Bit Dissemination with a Clock

In this section we assume that agents are equipped with a synchronized clock C modulo γ log n
for some big enough constant γ > 0. In the previous section we showed how to establish such a
synchronized clock in Õ(log n) time and using 3-bit messages. We have already seen in Section
5.1.2 how to solve the Bit Dissemination problem (when we are promised to have a single source
agent) assuming such synchronized clocks, by paying an extra bit in the message size and an
O(log n) additive factor in the running time. This section is dedicated to showing that, in
fact, the more general Majority Bit Dissemination problem can be solved with the same time
complexity and using 3-bit messages, proving Theorem 5.1.

In Section 5.5.1, we describe and analyze protocol Syn-Phase-Spread, which solves Ma-
jority Bit Dissemination by paying only a O(log n) additive overhead in the running time w.r.t.
Clock Synchronization. For clarity’s sake, we first assume that the protocol is using 4 bits
(i.e. 1 additional bit over the 3 bits used for Clock Synchronization), and we later show how
to decrease the number of bits back to 3 in Section 5.5.2, by applying the Message Reduction
Theorem.

5.5. Majority Bit Dissemination with a Clock 97

The main idea behind the 3(+1)-bit protocol, called Syn-Phase-Spread, is to make the
sources’ input bits disseminate on the system in a way that preserves the initial ratio k1

k0
between

the number of sources supporting the majority and minority input bit. This is achieved by
dividing the dissemination process in phases, similarly to the main protocol in [63] which was
designed to solve the Bit Dissemination problem in a variant of the PUSH model in which
messages are affected by noise. The phases induce a spreading process which allows to leverage
on the concentration property of the Chernoff bounds, preserving the aforementioned ratio.
While, on an intuitive level, the role of noisy messages in the model considered in [63] may be
related to the presence of sources having conflicting opinion in our setting, we remark that our
protocol and its analysis depart from those of [63] on several key points: while the protocol in
[63] needs to know the noise parameter, Syn-Phase-Spread does not assume any knowledge
about the number of different sources, and our analysis does not require to control the growth
of the number of speaking agents from above.

In order to perform such spreading process with 1 bit only, the protocol in [63] leverages
on the fact that in the PUSH model agents can choose when to speak, i.e. whether to send a
message or not. To emulate this property in the PULL model, we use the parity of the clock
C: on odd rounds agents willing to “send” a 0 display 0, while others display 1 and conversely
on even rounds. Rounds are then grouped by two, so 2 rounds in the PULL model correspond
to 1 round in the PUSH version.

5.5.1 Protocol Syn-Phase-Spread

In this section we describe protocol Syn-Phase-Spread. As mentioned above, for clarity’s
sake we assume that Syn-Phase-Spread uses 4-bit messages, and we show how to remove
this assumption in Section 5.5.2. Three of such bits are devoted to the execution Syn-Clock,
in order to synchronize a clock C modulo 2dγphase log ne + γphased2 log ne for some constant
γphase large enough. Throughout this section we assume, thanks to Theorem 5.2, that C has
already been synchronized, which happens after Õ(log n) rounds from the start of the protocol.
In Section 5.5.1, we present a protocol Phase-Spread solving Majority Bit Dissemination
assuming agents already share a common clock.

Protocol Phase-Spread

Let γphase be a constant to be set later. Protocol Phase-Spread is executed periodically
over periods of length 2dγphase log ne + γphased2 log ne, given by a clock C. One run of length
2dγphase log ne + γphased2 log ne is divided in 2 + d2 log ne phases, the first and the last ones
lasting dγphase log ne rounds, all the other d2 log ne phases lasting γphase rounds. The first
phase is called boosting, the last one is called polling, and all the intermediate ones are called
spreading. For technical convenience, in Phase-Spread agents disregard the messages they
get as their second pull. In other words, Phase-Spread works in the PULL(1) model.

During the boosting and the spreading phases, as we already explained in the introduction

98 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

of this section, we make use of the parity of time to emulate the ability to actively send a
message or not to communicate anything as in the PUSH model(in the first case we say that
the agent is speaking, in the second case we say that the agent is silent). This induces a factor
2 slowdown which we henceforth omit for simplicity.

At the beginning of the boosting, each non-source agent u is silent. During the boosting
and during each spreading phase, each silent agent pulls until she sees a speaking agent. When
a silent agent u sees a speaking agent v, u memorizes b1 (v) but remains silent until the end of
the phase; at the end of the current phase, u starts speaking and sets b1 (u) = b1 (v). The bit
b1 is then never modified until the clock C reaches 0 again. Then, during the polling phase,
each agent u counts how many agents with b1 = 1 and how many with b1 = 0 she sees. At the
end of the phase, each agent u sets their output bit to the most frequent value of b1 observed
during the polling phase. We want to show that, for all agents, the latter is w.h.p. bmaj (the
most frequent initial opinion among sources).

Phase-Spread protocol

1 If u is not speaking and b1(u) has not yet been set, and the current phase is either the
boosting or the spreading one, u does the following:

2 | u observes a random agent v.

3 | If v is speaking, u sets b1(u) equal to b1(v),
and u will be speaking from the next phase.

4 | u sets c0 and c1 equal to 0.

5 If the current phase is polling:

6 | u observes a random agent v.

7 | If b1(v) = 1, u increments c1, otherwise increment c0.

8 u outputs 1 if and only if c1 > c0.

Algorithm 4: The protocol Phase-Spread, executed by each agent u.

A Technical Tool

Before we can analyze the protocol, let us recall a large deviation lemma

5.5. Majority Bit Dissemination with a Clock 99

Theorem 5.9: [100]

Let X1, ..., Xn be n independent random variables. If Xi ≤M for each i, then

P

(∑
i

Xi ≥ E

[∑
i

Xi

]
+ λ

)
≤ e
− λ2

2

(√∑
i E[X2

i]+Mλ
3

)
. (5.11)

Corollary 5.10

Let µ = E [
∑

iXi]. If the Xis are binary then, for λ =
√
µ log n and sufficiently

large n, (5.11) gives

P

(∑
i

Xi ≥ µ+
√
µ log n

)
≤ e−

√
µ logn, (5.12)

P

(∑
i

Xi ≤ µ−
√
µ log n

)
≤ e−

√
µ logn. (5.13)

Proof. The fact that the Xis are binary implies that
∑

i E
[
X2
i

]
≤ ∑

i E [Xi]. By setting

λ =
√
E [
∑

iXi] log n, one can show that the l.h.s. of (5.11) is upper bounded by e−
√
µ logn.

Analysis

We prove that at the end of the last spreading phase w.h.p. all agents are speaking and each
agent has b1 = 1 with probability 1

2 + εend for some positive constant εend = εend (γphase, ε)
(where the dependency in γphase is monotonically increasing), b1 = 0 otherwise. From the
Chernoff bound (Corollary 5.10) and the union bound, this implies that when γphase >

8
εend

at the end of the polling phase w.h.p. each agent learns bmaj . Without loss of generality, let
bmaj = 1, i.e. k1 > k0. For convenience, we estimate ratios of the form k1

k0
, which requires that

k0 > 0. The analysis can easily be adapted to handle the case where k0 = 0.

For ε ∈ {0, 1}, let us denote k
(i)
ε the number of nodes with b1(·) = ε at the end of phase i.

The analysis is divided in the following lemmas.

100 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

Lemma 5.11

At the end of the boosting phase it holds w.h.p.

k
(1)
1 + k

(1)
0 ≥

(k1 + k0)

γphase
3 log n if k1 + k0 <

n
2γphase logn

n
(

1− 1√
e

)
+ 1√

e
(k1 + k0)−√n log n

if n
2γphase logn ≤ k1 + k0 ≤ n− 2

√
n log n,

n otherwise.

(5.14)

Moreover,

k
(1)
1

k
(1)
0

≥ k1

k0
·
(

1−
√

9

γphasek0

)
. (5.15)

Proof. By using Fact 5.4.2, we have

E
[
k

(1)
1 + k

(1)
0

]
= k1 + k0 + (n− k1 − k0)

(
1−

(
1− k1 + k0

n

)γphase logn
)

≥ k1 + k0 + (n− k1 − k0)
(

1− e−
k1+k0
n

γphase logn
)
. (5.16)

We distinguish three cases.

Case k1 + k0 <
n

2γphase logn . By using Fact 5.4.2 again, from (5.16) we get

E
[
k

(1)
1 + k

(1)
0

]
≥ k1 + k0 + (n− k1 − k0)

(
1− e−

k1+k0
n

γphase logn
)

≥ k1 + k0 + (n− k1 − k0)
k1+k0
n γphase log n

1 + k1+k0
n γphase log n

≥ k1 + k0 + (n− k1 − k0)
k1 + k0

n

γphase
2

log n

≥ k1 + k0 +

(
1− k1 + k0

2n

)
(k1 + k0)

γphase
2

log n

≥ (k1 + k0)

(
1 +

(
1− 1

4γphase log n

)
γphase

2
log n

)
(5.17)

≥ (k1 + k0)
γphase

2
log n. (5.18)

From the Chernoff bound (Lemma 5.9), we thus get that w.h.p.

k
(1)
1 + k

(1)
0 ≥ (k1 + k0)

γphase
3

log n.

5.5. Majority Bit Dissemination with a Clock 101

Case n
2γphase logn ≤ k1 + k0 ≤ n− 2

√
n log n. From (5.16), we have

E
[
k

(1)
1 + k

(1)
0

]
≥ k1 + k0 + (n− k1 − k0)

(
1− e−

k1+k0
n

γphase
)

(5.19)

≥ k1 + k0 + (n− k1 − k0)

(
1− 1√

e

)
(5.20)

≥ n
(

1− 1√
e

)
+
k1 + k0√

e
. (5.21)

From the Chernoff bound (Lemma 5.9), we thus get that w.h.p.

k
(1)
1 + k

(1)
0 ≥ n

(
1− 1√

e

)
+
k1 + k0√

e
−
√
n log n.

Case k
(1)
1 + k

(1)
0 > n − 2

√
n log n. The probability that a silent agent does not observe a

speaking one is (
n− k1 − k0

n

)γphase logn

≤
(

4 log n

n

) 1
2
γphase logn

,

hence by a simple union bound it follows that w.h.p. all agents are speaking.

Now, we prove (5.15). As before, we have two cases. The first case, k1
k0
≥ n

2γphase logn , is a

simple consequence of the Chernoff bound (Lemma 5.9).

In the second case, k1
k0

< n
2γphase logn , let us consider the set of agents Sboost that start

speaking at the end of the boosting, i.e. that observe a speaking agent during the phase.

Observe that |Sboost| = k
(1)
1 − k1 + k

(1)
0 − k0. The probability that an agent in Sboost observes a

source supporting 1 (resp. 0) is k1
k1+k0

(resp. k0
k1+k0

). Thus

E
[
k

(1)
1

]
= k1 +

k1

k1 + k0
E [|Sboost|] and

E
[
k

(1)
0

]
= k0 +

k0

k1 + k0
E [|Sboost|] . (5.22)

In particular

E
[
k

(1)
1

]
E
[
k

(1)
0

] =
k1 + k1

k1+k0
E [|Sboost|]

k0 + k0
k1+k0

E [|Sboost|]
=
k1

k0
, (5.23)

102 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

and from (5.18) and (5.22) we have

E
[
k

(1)
0

]
≥ k0

k1 + k0
E [|Sboost|] (5.24)

=
k0

k1 + k0

(
E
[
k

(1)
1 + k

(1)
0

]
− (k1 + k0)

)
(5.25)

≥ (1− o(1))
k0

k1 + k0

γphase
2

(k1 + k0) log n (5.26)

= (1− o(1))k0
γphase

2
log n, (5.27)

where the lower bound follows from the assumption k1
k0
< n

2γphase logn and (5.18). From (5.27)

and the multiplicative form of the Chernoff bound (Corollary 5.10), we have that w.h.p.

k
(1)
1 ≥ E

[
k

(1)
1

]
−
√
E
[
k

(1)
1

]
log n and (5.28)

k
(1)
0 ≤ E

[
k

(1)
0

]
+

√
E
[
k

(1)
0

]
log n. (5.29)

Thus, since (5.22) implies E
[
k

(1)
1

]
≥ E

[
k

(1)
0

]
, we have

k
(1)
1

k
(1)
0

≥
E
[
k

(1)
1

]
−
√

E
[
k

(1)
1

]
log n

E
[
k

(1)
0

]
+

√
E
[
k

(1)
0

]
log n

(5.30)

=
E
[
k

(1)
1

]
E
[
k

(1)
0

] · 1−
√

logn

E
[
k

(1)
1

]
1 +

√
logn

E
[
k

(1)
0

] (5.31)

≥
E
[
k

(1)
1

]
E
[
k

(1)
0

] ·
1−

√√√√ log n

E
[
k

(1)
1

] −√√√√ log n

E
[
k

(1)
0

]
 (5.32)

≥
E
[
k

(1)
1

]
E
[
k

(1)
0

] ·
1− 2

√√√√ log n

E
[
k

(1)
0

]
 (5.33)

=
k1

k0
·
(

1−
√

9

k0γphase

)
, (5.34)

concluding the proof.

5.5. Majority Bit Dissemination with a Clock 103

Lemma 5.12

At the end of the i+ 1th spreading phase, the following holds w.h.p.

k
(i+1)
1 + k

(i+1)
0 ≥

(
k

(i)
1 + k

(i)
0

)
γphase

3 , if k
(i)
1 + k

(i)
0 < n

2γphase

n
(

1− 1√
e

)
+ 1√

e

(
k

(i)
1 + k

(i)
0

)
−√n log n

if n
2γphase

≤ k(i)
1 + k

(i)
0 ≤ n− 2

√
n log n

n, otherwise.

k
(i+1)
1

k
(i+1)
0

≥ k
(i)
1

k
(i)
0

(
1− 4

√
log n

γphasek
(i)
0

)
. (5.35)

Proof. The proof is almost the same as that of Lemma 5.11. Thus, we condense some analogous
calculations.

By using Fact 5.4.2, we have

E
[
k

(i+1)
1 + k

(i+1)
0

]
≥ k(i)

1 + k
(i)
0 +

(
n− k(i)

1 − k
(i)
0

)(
1− e−

k
(i)
1 +k

(i)
0

n
γphase

)
. (5.36)

We distinguish three cases.

Case k
(i)
1 + k

(i)
0 < n

2γphase
. By using Fact 5.4.2 again, from (5.36) we get

E
[
k

(i+1)
1 + k

(i+1)
0

]
≥ k(i)

1 + k
(i)
0 +

(
n− k(i)

1 − k
(i)
0

)
· k

(i)
1 + k

(i)
0

2n
γphase ≥

(
k

(i)
1 + k

(i)
0

) γphase
2

.

(5.37)

After the boosting phase, i.e. for i ≥ 1, it follows from Lemma 5.11 that k
(i)
1 + k

(i)
0 =

Ω (γphase log n). From the Chernoff bound (Lemma 5.9), if γphase is chosen big enough, we
thus get that w.h.p.

k
(i+1)
1 + k

(i+1)
0 ≥

(
k

(i)
1 + k

(i)
0

) γphase
3

.

Case n
2γphase

≤ k(i)
1 + k

(i)
0 ≤ n− 2

√
n log n. From (5.36), we have

E
[(
k

(i+1)
1 + k

(i+1)
0

)]
≥ k(i)

1 + k
(i)
0 +

(
n− k(i)

1 − k
(i)
0

)(
1− 1√

e

)
≥ n

(
1− 1√

e

)
+

1√
e

(
k

(i)
1 + k

(i)
0

)
.

(5.38)

From the Chernoff bound (Lemma 5.9), we thus get that w.h.p.

k
(i+1)
1 + k

(i+1)
0 ≥ n

(
1− 1√

e

)
+

1√
e

(
k

(i)
1 + k

(i)
0

)
−
√
n log n.

104 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

Case k
(i)
1 + k

(i)
0 > n − 2

√
n log n. The probability that a silent agent does not observe a

speaking one is (
n− k(i)

1 − k
(i)
0

n

)γphase
≤
(

4 log n

n

) 1
2
γphase

,

hence by a simple union bound it follows that w.h.p. all agents are speaking.

Now, we prove (5.35). As in the proof of (5.15), we have two cases. The first case, k1
k0
≥

n
2γphase

, is a simple consequence of the Chernoff bound (Lemma 5.9). Otherwise, let us assume
k1
k0
< n

2γphase
. With an analogous argument to that for (5.22) and (5.23) we can prove

E
[
k

(i+1)
1

]
E
[
k

(i+1)
0

] =
k

(i)
1

k
(i)
0

, (5.39)

and

E
[
k

(i+1)
1

]
= k

(i)
1 +

k
(i)
1

k
(i)
1 + k

(i)
1

E
[
k

(i+1)
1 − k(i)

1 + k
(i+1)
0 − k(i)

0

]
, (5.40)

E
[
k

(i+1)
0

]
= k

(i)
0 +

k
(i)
0

k
(i)
1 + k

(i)
0

E
[
k

(i+1)
1 − k(i)

1 + k
(i+1)
0 − k(i)

0

]
. (5.41)

As in (5.29), from the multiplicative form of the Chernoff bound (Corollary 5.10) we have that
w.h.p.

k
(i+1)
1 ≥ E

[
k

(i+1)
1

]
−
√
E
[
k

(i+1)
1

]
log n and (5.42)

k
(i+1)
0 ≤ E

[
k

(i+1)
0

]
+

√
E
[
k

(i+1)
0

]
log n. (5.43)

Thus, as in (5.34), from (5.43) and (5.39), we get

k
(i+1)
1

k
(i+1)
0

≥
E
[
k

(i+1)
1

]
E
[
k

(i+1)
0

] ·
1− 2

√√√√ log n

E
[
k

(i+1)
0

]
 ≥ k

(i)
1

k
(i)
0

·
(

1− 4

√
log n

γphasek
(i)
0

)
, (5.44)

where, as in (5.27), in the last inequality we used that from (5.37) and (5.41) it holds E
[
k

(i+1)
0

]
≥

γphase
4 k

(i)
0 .

From the previous two lemmas, we can derive the following corollary, which concludes the
proof.

5.5. Majority Bit Dissemination with a Clock 105

Corollary 5.13

If k1 ≥ k0(1 + ε) for some constant ε > 0, then at the end of the last spreading
phase it holds w.h.p.

k
(1+2 logn)
1 = n− k(1+2 logn)

0 ≥ k(1+2 logn)
0 (1 + εend) , (5.45)

where εend = ε
2 − 4√

γphase
.

Proof. The equality in (5.45) follows from the first part of Lemma 5.11. When k
(i)
1 + k

(i)
0 <

n
2γphase

, k
(i)
1 +k

(i)
0 increases by multiplicative a factor γphase at the end of each spreading phase.

When n
2γphase

≤ k(i)
1 + k

(i)
0 ≤ n− 2

√
n log n,

n− k(i+1)
1 − k(i+1)

0 ≤ n− k(i)
1 − k

(i)
0√

e
−
√
n log n ≤ n− k(i)

1 − k
(i)
0√

e
. (5.46)

Hence the number of silent agents decreases by a factor
√
e after each spreading phase. Lastly,

when k
(i)
1 + k

(i)
0 > n − 2

√
n log n, after one more spreading phase, a simple application of

the union bound shows that k
(i+1)
1 + k

(i+1)
0 is equal to n w.h.p. As a consequence, if γphase

is big enough, after less than 1 + 2 log n spreading phases w.h.p it holds that k
(1+2 logn)
1 =

n− k(1+2 logn)
0 .

The inequality in (5.45) can be derived from (5.35), as follows. From (5.15) and (5.35) we
have

k
(1+2 logn)
1

k
(1+2 logn)
0

≥ k1

k0

(
1−

√
9

γphasek0

)
1+2 logn∏
i=2

(
1−

√
16 log n

γphasek
(i)
0

)
. (5.47)

We can estimate the product as

1+2 logn∏
i=2

(
1−

√
16 log n

γphasek
(i)
0

)
≥ exp

(
−4

1+2 logn∑
i=2

1(√
γphase

)i
)

≥ exp

{
−4

(
1

γphase −√γphase
− n−

2 log γphase
2

)}
≥ exp

{
− 4

γphase

}
≥
(

1− 5

γphase

)
. (5.48)

In the first inequality we used that 1 − x ≥ e−x if |x| < 1. To go from the first to the second

line, we use
∑a

2 x = −1− x+ 1−xa+1

1−x , with a = 1 + 2 log n and x = 1

(√γphase)
i . To go from the

106 Chapter 5. Self-Stabilizing Broadcast with 3-bit Messages

third to the fourth line, we use that for n big enough, 1
γphase−

√
γphase

− n−
2 log γphase

2 ≥ 1
γphase

.

The last inequality is obtained from e−x ≥ 1− 5
4x, if x > 0 is small enough.

Finally, from (5.47) and (5.48) we get

k
(1+2 logn)
1

k
(1+2 logn)
0

≥ k1

k0

(
1−

√
9

γphasek0

)(
1− 5

γphase

)
≥ k1

k0

(
1− 4
√
γphase

)
, (5.49)

which, together with the hypothesis k1
k0
≥ 1 + ε, concludes the proof.

5.5.2 Proof of Theorem 5.1

Proof. From Corollary 5.13, it follows that at the end of the last spreading phase, all agents
have been informed. After the last spreading phase, during the polling phase, each agent
samples γphase log n opinions from the population and then adopts the majority of these as her
output bit. Thus, (5.45) ensures that each sample holds the correct opinion with probability
≥ 1

2 + εend. Hence, by the Chernoff bound and a union bound, if γphase is big enough then the
majority of the γphase log n samples corresponds to the correct value for all the n agents w.h.p.

The protocol obtained so far solves Majority Bit Dissemination, but it does it using 4 bits per
message rather than 3. Indeed, synchronizing a clock using Syn-Clock takes 3 bits, and we use
an extra bit to execute Phase-Spread described in Section 5.5.1. However, the protocol Syn-
Phase-Spread has the bitwise-independence property. This follows from Lemma 5.4 with
Syn-Generic =Syn-Clock, P =Phase-Spread, Syn-P =Syn-Phase-Spread, together
with the observation that Phase-Spread is self-stabilizing. We can thus reduce the message
length of Syn-Phase-Spread to 3 bits using again the Message Reduction Theorem, with a
time overhead of a factor 4 only.

5.6 Conclusion and Open Problems

This chapter deals with the construction of protocols in highly congested stochastic interaction
patterns. Corresponding challenges are particularly evident when it is difficult to guarantee
synchronization, which seems to be essential for emulating a typical protocol that relies on
many bits per message with a protocol that uses fewer bits. We showed that in the PULL
model, if a self-stabilizing protocol satisfies the bitwise-independence property then it can
be emulated with only 3 bits per message. Using this rather general transformer, we solve
the self-stabilizing Clock-Synchronization and Majority Bit Dissemination problems in almost-
logarithmic time and using only 3 bits per message. It remains an open problem whether the
message size of either one of these problems can be further reduced while keeping the running
time polylogarithmic.

In particular, even for the self-stabilizing Bit Dissemination problem (with a single source)
it remains open whether there exists a polylogarithmic protocol that uses a single bit per

5.6. Conclusion and Open Problems 107

interaction. In fact, we investigated several candidate protocols which seem promising in
experimental simulation, but appear to be out of reach of current techniques for analysing
randomly-interacting agent systems in a self-stabilizing context. Let us informally present one
of them. Let `,k ∈ N be two parameters. Agents can be in 3 states: boosting, frozen or sensitive.
Boosting agents behave as in the maj-consensus protocol: they apply the majority rule to the
2 values they see in a given round and make it into their opinion for the next round. They also
keep a counter T . If they have seen only agents of a given color b for ` rounds, they become
sensitive to the opposite value. b-sensitive agents turn into frozen-b agents if they see value b.
b-frozen agents keep the value b for k rounds before becoming boosters again. Intuitively what
we expect is that, from every configuration, at some point almost all agents would be in the
boosting state. Then, the boosting behavior would lead the agents to converge to a value b
(which depends on the initial conditions). Most agents would then become sensitive to 1 − b.
If the source has opinion 1− b then there should be a “switch” from b to 1− b. The “frozen”
period is meant to allow for some delay in the times at which agents become sensitive, and
then flip their opinion.

Chapter 6

Conclusion

6.1 Summary of Contributions

In this thesis, we have presented two groups of works exploring new ways to combine algorithmic
perspectives with biological experiments. The works presented in this manuscript are geared
towards a computer science audience, but their inspiration comes from experiments on ants,
which they also contributed to shape. The insights generated by our theoretical results lead to
new interpretations of the biological systems they describe.

Our first theoretical contribution can be summarized as introducing and extensively study-
ing the Noisy Advice model on trees. This model of graph search with permanent faults,
captures some aspects of the collaborative transport process displayed by Crazy Ants. Study-
ing it on trees is naturally appealing from a Theoretical Computer Science perspective, given
the broad importance of trees in the discipline.

We provide tight results under different convergence requirements for move and query com-
plexity. Specifically, we show that when the noise is low, smaller than 1/

√
∆, it is possible to

obtain strategies that find the target with an expected linear number of steps in the distance
to the treasure and almost logarithmic number of queries in the number of nodes. Conversely,
when the noise is of order greater than 1√

∆
, the expected number of steps (resp. queries)

becomes exponential (resp. polynomial) in the distance to the target (resp. size of the tree).
Working with high probability guarantees leads to different results. If we write the noise as
∆−ε for some ε > 0, then it is possible to design strategies that walk no more than dO(ε−1)

steps before finding the target, where d denotes the distance to the target. A similar result
holds for queries. It is worth noting that in the high probability world, there is no thresh-
old phenomenon as in the expectation case. Thus our works provide a natural model with a
difference between these two kind of convergence requirements.

Our second theoretical contribution is extending our understanding of the conditions under
which broadcast can be performed in PULL-PUSH type of models. Such models are well
suited to describe biological systems composed of computationally limited agents, interacting
in a stochastic decentralized way. We first show in Section 4 a polynomial lower bound for

6.2. Future Directions 109

broadcast when interactions are noisy, and only pull interactions are allowed. In fact, it was
shown previously by Feinerman & al. [63] that the same problem can be solved in logarithmic
time if push interactions are allowed. Thus, our result provides an exponential separation
between the PUSH and PULL models. These two models may look very close: in the absence
of noise, it is possible to emulate uniform push interactions in a pull model. To do so, each
agent adds a bit in their message indicating whether they are looking to communicate. However,
noise may very well corrupt this extra bit in the PULL model. In the PUSH model, the very
act of engaging in an interaction is not “noisy” and this is the crucial difference that allows to
broadcast efficiently.

On more practical grounds, the high expressiveness of the lower bound does not prevent
us from showing a close connection to particular experiments on a desert ant species called
Cataglyphis niger. The polynomial lower bound is in accordance with the experimental data.
In a nutshell, the broadcast time increases with group size. Another way to gain biological
insights from our negative result is by considering its contrapositive. If a system is able to
broadcast efficiently, it has to possess some form of structural stability (as opposed to random-
ized interactions), or be able to eliminate noise.

On the positive side we show an upper bound in Chapter 5, under noiseless pull interactions.
This positive result is further enhanced by the self-stabilization property our protocol has and
its very parsimonious message complexity. Indeed, only 3-bits per message are needed to secure
efficient self-stabilizing broadcast, in that model. It is also possible to interpret the lower

6.2 Future Directions

At a general level, we hope the methodology we used in this thesis can be used and refined
with other biological entities. It could be nice for instance to obtain a lower bound matching
the performance of the system under consideration. Several technical questions remain to be
studied in the models we considered, some were already mentioned at the end of each chapter.
In the context of noisy advice, we posed the study of memoryless Probabilistic Following
algorithms on general graphs as an intriguing open problem. It would also be interesting to
obtain query or walk strategies for some specific graph families. Random permanent faults
may also be relevant for other problems than search. They have already been further studied
in the context of sorting [33].

Our broadcast lower bound could be extended in several ways. For instance, we could
consider meeting patterns that are not fully random and different noise assumptions. As for
our broadcast upper bound, it would be nice to obtain more simple self-stabilizing algorithms,
in the sense for instance that they do not rely on a clock, or perhaps that they use even less than
3 bits in the messages. Several candidate protocols seem promising in experimental simulation,
but their analysis seems beyond reach of current techniques. One such protocol was described
at the end of Chapter 5. The paper by Dudek and Kosowski [54], provides a very interesting
partial answer to this set of questions by giving some constant memory protocols, in a closely
related variant of our model.

Bibliography

[1] Y. Afek, N. Alon, Z. Bar-Joseph, A. Cornejo, B. Haeupler, and F. Kuhn. Beeping a
maximal independent set. Distributed Computing, 26(4):195–208, 2013.

[2] Y. Afek, N. Alon, O. Barad, E. Hornstein, N. Barkai, and Z. Bar-joseph. A biological
solution to a fundamental distributed computing problem. Science, 2011.

[3] D. Alistarh, J. Aspnes, D. Eisenstat, R. Gelashvili, and R. L. Rivest. Time-space trade-
offs in population protocols. SODA, pages 2560–2579, 2017.

[4] D. Alistarh, J. Aspnes, and R. Gelashvili. Space-optimal majority in population protocols.
SODA, pages 2221–2239, 2018.

[5] N. Alon, M. Braverman, K. Efremenko, R. Gelles, and B. Haeupler. Reliable communi-
cation over highly connected noisy networks. PODC, pages 165–173, 2016.

[6] F. Amor, P. Ortega, X. Cerdá, and R. Boulay. Cooperative prey-retrieving in the ant
cataglyphis floricola: An unusual short-distance recruitment. Insectes Sociaux, 57(1),
2010.

[7] D. Angluin, J. Aspnes, Z. Diamadi, M. J. Fischer, and R. Peralta. Computation in
networks of passively mobile finite-state sensors. Distributed Computing, 18(4):235–253,
2006.

[8] D. Angluin, J. Aspnes, and D. Eisenstat. A simple population protocol for fast robust
approximate majority. Distributed Computing, 21(2):87–102, 2008.

[9] D. Angluin, J. Aspnes, M. J. Fischer, and H. Jiang. Self-stabilizing population protocols.
TAAS, 3(4), 2008.

[10] D. Angluin, J. Aspnes, D. Eisenstat, and E. Ruppert. The computational power of
population protocols. Distributed Computing, 20(4):279–304, 2007.

[11] J. A. Aslam and A. Dhagat. Searching in the presence of linearly bounded errors. STOC,
pages 486–493, 1991.

Bibliography 111

[12] J. Aspnes and E. Ruppert. An introduction to population protocols. Bulletin of the
EATCS, 93:98–117, 2007.

[13] H. Attiya, A. Herzberg, and S. Rajsbaum. Optimal clock synchronization under different
delay assumptions. SIAM J. Comput., 25(2):369–389, 1996.

[14] F. Bartumeus and J. Catalan. Optimal search behavior and classic foraging theory.
Journal of Physics a-Mathematical and Theoretical, 42, 10 2009.

[15] J. Beauquier, J. Burman, and S. Kutten. A self-stabilizing transformer for population
protocols with covering. Theor. Comput. Sci., 412(33):4247–4259, 2011.

[16] L. Becchetti, A. Clementi, E. Natale, F. Pasquale, and G. Posta. Self-stabilizing repeated
balls-into-bins. SPAA, pages 332–339, 2015.

[17] L. Becchetti, A. E. F. Clementi, E. Natale, F. Pasquale, and R. Silvestri. Plurality
consensus in the gossip model. SODA, pages 371–390, 2015.

[18] L. Becchetti, A. E. F. Clementi, E. Natale, F. Pasquale, and L. Trevisan. Stabilizing
consensus with many opinions. SODA, pages 620–635, 2016.

[19] Y. Ben-Asher, E. Farchi, and I. Newman. Optimal search in trees. SIAM J. Comput.,
28(6):2090–2102, 1999.

[20] M. Ben-Or, D. Dolev, and E. N. Hoch. Fast self-stabilizing byzantine tolerant digital
clock synchronization. PODC, pages 385–394, 2008.

[21] M. Ben-Or and A. Hassidim. The bayesian learner is optimal for noisy binary search
(and pretty good for quantum as well). FOCS, pages 221–230, 2008.

[22] W. Bialek. Physical limits to sensation and perception. Annual review of biophysics and
biophysical chemistry, 16(1):455–478, 1987.

[23] L. Boczkowski, A. Korman, and E. Natale. Minimizing message size in stochastic com-
munication patterns: Fast self-stabilizing protocols with 3 bits. SODA, pages 2540–2559,
2017.

[24] L. Boczkowski, O. Feinerman, A. Korman, and E. Natale. Limits for rumor spreading in
stochastic populations. ITCS, pages 49:1–49:21, 2018.

[25] L. Boczkowski, O. Feinerman, A. Korman, and E. Natale. Limits on reliable information
flows through stochastic populations. PLOS Computational Biology, 2018.

[26] L. Boczkowski, B. Guinard, A. Korman, Z. Lotker, and M. Renault. Random walks with
multiple step lengths. LATIN, pages 174–186, 2018.

112 Bibliography

[27] L. Boczkowski, I. Kerenidis, and F. Magniez. Streaming communication protocols.
ICALP, pages 130:1–130:14, 2017.

[28] L. Boczkowski, A. Korman, and U. Feige. Typically fast search on trees with permanently
noisy advice. under submission.

[29] L. Boczkowski, A. Korman, and E. Natale. Minimizing message size in stochastic com-
munication patterns: Fast self-stabilizing protocols with 3 bits. SODA, pages 2540–2559,
2017.

[30] L. Boczkowski, A. Korman, and E. Natale. Minimizing message size in stochastic com-
munication patterns: Fast self-stabilizing protocols with 3 bits. Distributed Computing,
2018.

[31] L. Boczkowski, A. Korman, and Y. Rodeh. Searching a tree with permanently noisy
advice. ESA, 2018.

[32] R. S. Borgstrom and S. R. Kosaraju. Comparison-based search in the presence of errors.
STOC, pages 130–136, 1993.

[33] M. Braverman and E. Mossel. Noisy sorting without resampling. SODA, pages 268–276,
2008.

[34] G. S. Brodal, R. Fagerberg, I. Finocchi, F. Grandoni, G. F. Italiano, A. G. Jørgensen,
G. Moruz, and T. Mølhave. Optimal resilient dynamic dictionaries. Algorithms - ESA
2007, 15th Annual European Symposium, Eilat, Israel, October 8-10, 2007, Proceedings,
pages 347–358, 2007.

[35] A. Cavagna, A. Cimarelli, I. Giardina, G. Parisi, R. Santagati, F. Stefanini, and M. Viale.
Scale-free correlations in starling flocks. PNAS, 107(26):11865–11870, 2010.

[36] K. Censor-Hillel, B. Haeupler, J. A. Kelner, and P. Maymounkov. Global computation
in a poorly connected world: fast rumor spreading with no dependence on conductance.
STOC, pages 961–970, 2012.

[37] E. Chastain, A. Livnat, C. Papadimitriou, and U. Vazirani. Algorithms, games, and
evolution. PNAS, 111(29):10620–10623, 2014.

[38] B. Chazelle. Natural algorithms. SODA, pages 422–431, 2009.

[39] B. Chazelle. The convergence of bird flocking. J. ACM, 61(4):21:1–21:35, 2014.

[40] F. Chierichetti, S. Lattanzi, and A. Panconesi. Rumor spreading in social networks.
ICALP, pages 375–386, 2009.

Bibliography 113

[41] F. Cicalese and U. Vaccaro. Optimal strategies against a liar. Theor. Comput. Sci.,
230(1-2):167–193, 2000.

[42] C. Cooper, R. Elsässer, T. Radzik, N. Rivera, and T. Shiraga. Fast consensus for voting
on general expander graphs. DISC, pages 248–262, 2015.

[43] I. Couzin, J. Krause, N. Franks, and S. Levin. Effective leadership and decision making
in animal groups on the move. Nature 433, pages 513–516, 2005.

[44] T. M. Cover and B. Gopinath. Open problems in communication and computation.
Springer Science & Business Media, 2012.

[45] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swine-
hart, and D. Terry. Epidemic algorithms for replicated database maintenance. PODC,
1987.

[46] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Commun. ACM,
17(11):643–644, 1974.

[47] B. Doerr and M. Fouz. Asymptotically optimal randomized rumor spreading. Electronic
Notes in Discrete Mathematics, 38:297–302, 2011.

[48] B. Doerr, L. A. Goldberg, L. Minder, T. Sauerwald, and C. Scheideler. Stabilizing
consensus with the power of two choices. SPAA, pages 149–158, 2011.

[49] D. Dolev and E. N. Hoch. On self-stabilizing synchronous actions despite byzantine
attacks. DISC, pages 193–207, 2007.

[50] S. Dolev. Possible and impossible self-stabilizing digital clock synchronization in general
graphs. Real-Time Systems, 12(1):95–107, 1997.

[51] S. Dolev and J. L. Welch. Self-stabilizing clock synchronization in the presence of byzan-
tine faults. J. ACM, 51(5):780–799, 2004.

[52] A. Dornhaus and L. Chittka. Food alert in bumblebees (bombus terrestris): Possi-
ble mechanisms and evolutionary implications. Behavioral Ecology and Sociobiology,
50(6):570–576, 2001.

[53] A. Drewitz and A. F. Ramiréz. Selected topics in random walk in random environment.
Topics in Percolative and Disordered Systems, Springer Proceedings in Mathematics and
Statistics, 69:23–83, 2014.

[54] B. Dudek and A. Kosowski. Universal protocols for information dissemination using
emergent signals. STOC, pages 87–99, 2018.

114 Bibliography

[55] R. Elsässer, T. Friedetzky, D. Kaaser, F. Mallmann-Trenn, and H. Trinker. Efficient
k-party voting with two choices. CoRR, abs/1602.04667, 2016.

[56] R. Elsässer and T. Sauerwald. On the runtime and robustness of randomized broadcast-
ing. Theor. Comput. Sci., 410(36):3414–3427, 2009.

[57] E. Emamjomeh-Zadeh, D. Kempe, and V. Singhal. Deterministic and probabilistic binary
search in graphs. STOC, pages 519–532, 2016.

[58] Y. Emek and R. Wattenhofer. Stone age distributed computing. PODC, pages 137–146,
2013.

[59] Y. Emek, T. Langner, D. Stolz, J. Uitto, and R. Wattenhofer. How many ants does it
take to find the food? SIROCCO, pages 263–278, 2014.

[60] Y. Emek, T. Langner, J. Uitto, and R. Wattenhofer. Solving the ANTS problem with
asynchronous finite state machines. ICALP, pages 471–482, 2014.

[61] J. M. Emlen. The role of time and energy in food preference. The American Naturalist,
100(916):611–617, 1966.

[62] U. Feige, P. Raghavan, D. Peleg, and E. Upfal. Computing with noisy information. SIAM
J. Comput., 23(5):1001–1018, October 1994.

[63] O. Feinerman, B. Haeupler, and A. Korman. Breathe before speaking: efficient informa-
tion dissemination despite noisy, limited and anonymous communication. PODC, 2014.

[64] O. Feinerman and A. Korman. Theoretical distributed computing meets biology: A
review. ICDCIT, pages 1–18, 2013.

[65] O. Feinerman and A. Korman. Clock synchronization and estimation in highly dynamic
networks: An information theoretic approach. SIROCCO, pages 16–30, 2015.

[66] O. Feinerman and A. Korman. Individual versus collective cognition in social insects.
Submitted to Journal of Experimental Biology, 2016.

[67] O. Feinerman, A. Rotem, and E. Moses. Reliable neuronal logic devices from patterned
hippocampal cultures. Nature physics, 4(12):967–973, 2008.

[68] O. Feinerman and A. Korman. The ANTS problem. Distributed Computing, 30(3):149–
168, 2017.

[69] I. Finocchi, F. Grandoni, and G. F. Italiano. Resilient search trees. SODA, pages 547–553,
2007.

[70] I. Finocchi and G. F. Italiano. Sorting and searching in the presence of memory faults
(without redundancy). STOC, pages 101–110, 2004.

Bibliography 115

[71] E. Fonio, Y. Heyman, L. Boczkowski, A. Gelblum, A. Kosowski, A. Korman, and O. Fein-
erman. A locally-blazed ant trail achieves efficient collective navigation despite limited
information, eLife 2016;5:e20185. 2016.

[72] P. Fraigniaud and E. Natale. Noisy rumor spreading and plurality consensus. PODC,
pages 127–136, 2016.

[73] R. G. Gallager. Finding parity in a simple broadcast network. IEEE Trans. Inf. Theor.,
34(2):176–180, 2006.

[74] L. Gasieniec and G. Stachowiak. Fast space optimal leader election in population proto-
cols. SODA, pages 2653–2667, 2018.

[75] A. Gelblum, I. Pinkoviezky, E. Fonio, A. Ghosh, and O. Feinerman. Ant groups optimally
amplify the effect of transiently informed individuals. Nature Communications, 6:7729,
07 2015.

[76] L. A. Giraldeau, T. J. Valone, and J. Templeton. Potential disadvantages of using socially
acquired information. Philosophical Transactions of the Royal Society of London B:
Biological Sciences, 357(1427):1559–1566, 2002.

[77] N. Goyal, G. Kindler, and M. E. Saks. Lower bounds for the noisy broadcast problem.
SIAM J. Comput., 37(6):1806–1841, 2008.

[78] R. H. MacArthur and E. R. Pianka. On optimal use of a patchy environment. The
American Naturalist, 100:603–609, 01 1966.

[79] N. Hanusse, D. Ilcinkas, A. Kosowski, and N. Nisse. Locating a target with an agent
guided by unreliable local advice: How to beat the random walk when you have a clock?
PODC, pages 355–364, 2010.

[80] N. Hanusse, D. Kavvadias, E. Kranakis, and D. Krizanc. Memoryless search algorithms
in a network with faulty advice. Theoretical Computer Science, 402(2–3):190 – 198, 2008.

[81] N. Hanusse, E. Kranakis, and D. Krizanc. Searching with mobile agents in networks with
liars. Discrete Applied Mathematics, 137(1):69–85, 2004.

[82] A. Hassidim and Y. Singer. Submodular optimization under noise. COLT, pages 1069–
1122, 2017.

[83] T. Herman. Phase clocks for transient fault repair. IEEE Trans. Parallel Distrib. Syst.,
11(10):1048–1057, 2000.

[84] T. Higashino, Y. Katayama, T. Masuzawa, M. Potop-Butucaru, and M. Yamashita, edi-
tors. SSS, volume 8255 of Lecture Notes in Computer Science. Springer, 2013.

116 Bibliography

[85] B. Hölldobler. Recruitment behavior in camponotus socius (hym. formicidae). J. of
Comparative Physiology A, 75(2):123–142, 6 1971.

[86] B. Hölldobler and E. O. Wilson. The ants. Harvard University Press, 1990.

[87] R. M. Karp, C. Schindelhauer, S. Shenker, and B. Vöcking. Randomized rumor spreading.
FOCS, pages 565–574, 2000.

[88] R. M. Karp and R. Kleinberg. Noisy binary search and its applications. SODA, pages
881–890, 2007.

[89] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based computation of aggregate information.
FOCS, pages 482–491, 2003.

[90] A. Korman, E. Greenwald, and O. Feinerman. Confidence sharing: An economic strategy
for efficient information flows in animal groups. PLoS Comp. Biology, 10(10), 2014.

[91] A. Kravchik and S. Kutten. Time optimal synchronous self stabilizing spanning tree.
DISC, 8205:91–105, 2013.

[92] E. S. Laber and L. T. Nogueira. Fast searching in trees. Eletronic Notes on Discrete
Mathematics, 2001.

[93] L. Lamport. Time, clocks, and the ordering of events in a distributed system. Commun.
ACM, 21(7):558–565, 1978.

[94] L. Le Goff and P. Soulier. Of ants and urns: estimation of the parameters of a reinforced
random walk and application to ants behavior. 2014.

[95] C. Lenzen, T. Locher, P. Sommer, and R. Wattenhofer. Clock synchronization: Open
problems in theory and practice. SOFSEM, pages 61–70, 2010.

[96] C. Lenzen, T. Locher, and R. Wattenhofer. Tight bounds for clock synchronization. J.
ACM, 57(2), 2010.

[97] C. Lenzen and J. Rybicki. Efficient counting with optimal resilience. DISC, pages 16–30,
2015.

[98] C. Lenzen, J. Rybicki, and J. Suomela. Towards optimal synchronous counting. PODC,
pages 441–450, 2015.

[99] S. Marras, R. Batty, and P. Domenici. Information transfer and antipredator maneuvers
in schooling herring. Adaptive Behavior, 20(1):44–56, 2012.

[100] C. McDiarmid. Concentration, pages 195–248. Springer, 1998.

Bibliography 117

[101] S. Mozes, K. Onak, and O. Weimann. Finding an optimal tree searching strategy in
linear time. SODA, pages 1096–1105, 2008.

[102] C. Musco, H. Su, and N. A. Lynch. Ant-inspired density estimation via random walks:
Extended abstract. PODC, pages 469–478, 2016.

[103] K. Onak and P. Parys. Generalization of binary search: Searching in trees and forest-like
partial orders. FOCS, pages 379–388, 2006.

[104] A. Pelc. Searching games with errors - fifty years of coping with liars. Theor. Comput.
Sci., 270(1-2):71–109, 2002.

[105] B. Pittel. On spreading a rumor. SIAM J. Appl. Math., 47(1):213–223, 1987.

[106] N. Razin, J. Eckmann, and O. Feinerman. Desert ants achieve reliable recruitment across
noisy interactions. Journal of the Royal Society Interface; 10(20170079)., 2013.

[107] G. Rieucau and L. A. Giraldeau. Persuasive companions can be wrong: the use of
misleading social information in nutmeg mannikins. Behavioral Ecology, pages 1217–
1222, 2009.

[108] P. Rigollet. High dimensional statistics. Lecture notes for course 18S997., 2015.

[109] G. Roberts. Why individual vigilance increases as group size increases. Animal Behaviour
51, pages 1077–1086, 1996.

[110] S. B. Rosenthal, C. R. Twomey, A. T. Hartnett, H. S. Wu, and I. D. Couzin. Revealing
the hidden networks of interaction in mobile animal groups allows prediction of complex
behavioral contagion. PNAS, 112(15):4690–4695, 2015.

[111] S. Shah, R. Kothari, J. Dr, and S. Chandra. Trail formation in ants. a generalized polya
urn process. Swarm Intelligence, 4:145–171, 06 2010.

[112] A.-S. Snitzman. Topics in random walks in random environment. ICTP Lecture Notes
Series, 2004.

[113] D. J. T. Sumpter, J. Krause, R. James, I. D. Couzin, and A. J. W. Ward. Consensus
decision making by fish. Current biology: CB, 18(22):1773–1777, November 2008.

[114] J. J. Templeton and G. L. A. Patch assessment in foraging flocks of european starlings:
evidence for the use of public information. Behavioral Ecology, 6(1):65–72, 1995.

[115] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms from unre-
liable components. Automata Studies, pages 43–98, 1956.

[116] A. Xu and M. Raginsky. Information-theoretic lower bounds for distributed function
computation. IEEE Trans. Information Theory, 63(4):2314–2337, 2017.

	Introduction
	Summary
	Organization of the Introduction
	Background
	Searching with Noisy Local Advice
	Biological Setup
	The Noisy Advice model
	Connection to Experiments and First Results
	Theoretical Results
	Different Guarantees - Different Approaches

	Broadcast under Harsh Communication Conditions
	Biological Setup
	Bit Dissemination in the Pull Model
	Theoretical Results and Connection with Experiments
	A Self Stabilizing Solution without Noise
	Structure of the Proofs

	Related Work
	Swarm Intelligence
	Population Protocols
	The Beeping Model
	The Lower Bound Approach
	Approaches From Other Fields

	Works Completed During My PhD
	Works Presented in This Document
	Other Works

	Advice on Trees
	Introduction
	The Noisy Advice Model
	Results in Expectation
	Results in High Probability
	Related Work
	Notations
	Organization of This Chapter

	Optimal Walking Algorithm in Expectation
	Algorithm Design following a Greedy Bayesian Approach
	Algorithm Awalk
	Analysis

	Lower bounds in Expectation
	Exponential Complexity Above the Threshold
	Proof of Lemma 2.10
	A Lower Bound for the Move Complexity in Expectation Below the Threshold

	Memoryless Algorithms
	Lower Bound in the Semi-Adversarial Variant
	Probabilistic Following Algorithms

	Upper Bounds in High Probability
	The Meta Algorithm
	Upper Bound in the Walk Model with High Probability

	Lower Bound
	Proof of Theorem 2.6
	Proof of Lemma 2.28

	Open Problems

	Advice on Trees: Query Complexity
	Introduction
	Notation
	Our results
	A Lower Bound of (log n) when q1/
	Proof of Theorem 3.2
	Proof of Lemma 3.5

	Proof of Corollary 3.3
	Proof of Theorem 3.1
	Algorithm Amid
	Analysis of Amid Conditioning On The Complement of Excellent
	Analysing Atomic Expressions
	The Lemmas About the Resilience of Aloop

	Complementary Proofs
	Another Large Deviation Estimate
	Algorithm Aloop without Conditioning
	Special Form of Union Bound

	A Lower Bound for Broadcast
	Introduction
	Background and motivation
	The Problem
	Our Contributions
	Related Work
	Organization of the Chapter

	Formal Description of the Models
	Initial Configuration
	Alphabet and Noisy Messages
	Random Interaction Patterns
	Liberal Assumptions
	Considered Algorithms and Solution Concept
	Convergence and Time Complexity

	The Lower Bounds
	Reducing to the broadcast-PULL Model
	Rumor Spreading and Hypothesis Testing
	Proof of Theorem 4.6

	Self-Stabilizing Broadcast with 3-bit Messages
	Introduction
	Background and Motivation
	Technical Difficulties and Intuition
	Organization of the Chapter
	The Model
	Our Results
	Related Work

	Preliminaries
	A majority Based, Self-Stabilizing Protocol for Consensus on One Bit
	Protocol Syn-Simple: A simple Protocol with Many Bits per Interaction
	The bitwise-independence Property

	A General Compiler that Reduces Message Size
	Self-Stabilizing Clock Synchronization
	Majority Bit Dissemination with a Clock
	Protocol Syn-Phase-Spread
	Proof of Theorem 5.1

	Conclusion and Open Problems

	Conclusion
	Summary of Contributions
	Future Directions

