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Résumé en francais

1 Introduction

Confronté & ses impacts environnementaux, le secteur de ’énergie doit s’engager
dans une transformation compléte. Les énergies renouvelables ont un role décisif a
jouer parce qu’elles émettent moins de gaz a effet de serre que les combustibles fos-
siles. Parmi les énergies renouvelables, I'utilisation de 1’énergie solaire dispose d’un fort
potentiel de croissance. Il existe actuellement deux technologies principales pour pro-
duire de ’électricité a partir de ’énergie solaire : le solaire photovoltaique et le solaire
thermodynamique. Si la technologie photovoltaique est aujourd’hui prédominante, le
solaire thermodynamique peut facilement étre couplé & un stockage d’énergie thermique
pour une production d’énergie plus flexible.

Dans les centrales solaires thermodynamiques a tour, un champ d’héliostats concentre
le rayonnement solaire vers un récepteur fixe placé au sommet d’une tour. Dans le récep-
teur solaire circule un fluide qui, chauffé, alimente une turbine et produit de 1’électricité.
Les centrales solaires & tour permettent d’atteindre des températures importantes (su-
périeures a 1000 K) pour des cycles thermodynamiques a haut rendement. Le récepteur
solaire est un composant essentiel des centrales solaires & tour puisqu’il est responsable
du transfert d’énergie entre le flux solaire concentré et le fluide. L’amélioration du trans-
fert de chaleur dans les récepteurs solaires a haute température est I'un des principaux
domaines de recherche du laboratoire PROMES. Pour assurer un échange efficace, un
niveau de turbulence élevé est nécessaire. L’écoulement est également soumis a un gra-
dient de température intense car il ne regoit le flux solaire que sur une seule face. Le
gradient de température et la turbulence s’influencent 'un I'autre dans une interac-
tion complexe. Ce couplage est caractéristique des écoulements turbulents fortement
anisothermes présents dans les récepteurs solaires.

L’optimisation du récepteur solaire exige une meilleure compréhension et modéli-
sation de l'interaction entre la température et la turbulence. Cette these cherche a y
contribuer selon deux approches. Une premiére partie étudie les échanges énergétiques
entre les différentes parties de I’énergie totale et en particulier ceux associés a 1’énergie
cinétique turbulente. Les résultats caractérisent l'effet du gradient de température sur
les échanges énergétiques. Une deuxiéme partie étudie la modélisation de type simula-
tion des grandes échelles (SGE) adaptée aux écoulements présents dans les récepteurs
solaires. Les modéles devraient permettre de développer des simulations numériques
de T’écoulement dans le récepteur solaire, ouvrant ainsi la voie a son optimisation.
Dans les deux cas, I’étude est fondée sur I’analyse numérique de ’écoulement dans un
canal plan turbulent fortement anisotherme. Cette géométrie simplifiée reproduit les
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caractéristiques distinctives des écoulements présents dans les récepteurs solaires. En
particulier, une grande partie du travail repose sur la simulation numérique directe

(SND) du canal.

La section 2 introduit les paramétres physiques et numériques utilisés dans le reste
de I’étude et décrit les simulations numériques directes. La section 3 présente 1’étude
des échanges énergétiques. La section 4 traite de la simulation des grandes échelles des
écoulements turbulents fortement anisothermes.

2 Cadre physique et numérique

Pour étudier l'effet du gradient de température dans les écoulements fortement
anisothermes, on modélise le récepteur solaire par un canal plan turbulent fortement
anisotherme. Cette section décrit la configuration géométrique du canal et la méthode
numérique utilisée pour les simulations. Avant cela, les choix faits en termes de modé-
lisation physique sont présentés.

2.1 Cadre physique

Les écoulements présents dans les récepteurs solaires a haute température sont tur-
bulents et fortement anisothermes, mais la vitesse du fluide est généralement faible par
rapport a la vitesse du son (nombre de Mach inférieur a 1072). Cette configuration
physique particuliére permet de simplifier la description du mouvement des fluides. En
effet, les effets purement compressibles caractéristiques des écoulements a grande vi-
tesse, tels les ondes acoustiques, peuvent étre négligés. On utilise pour cela les équations
de bas nombre de Mach [219]. On considére de plus que le fluide se comporte comme
un gaz parfait a la température et a la pression de fonctionnement du récepteur solaire.
Dans ces conditions les équations de bas nombre de Mach peuvent étre formulées de la
maniére suivante :

e Conservation de la masse

dp  OpU;

0, (1)

e Conservation de la quantité de mouvement

apUZ . _8pUjUi _ B_P i 822](U,T)
ot N (9xj 83:1 (%j ,

e Conservation de 1’énergie

ou; 1 [ 9Q,T) R

e Loi des gaz parfaits
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ol p est la masse volumique, T la température, ¢ le temps et U, la vitesse du fluide
dans la direction de la coordonnée cartésienne d’espace x;. La notation indicielle suit
la convention de sommation d’Einstein et d;; représente le symbole de Kronecker. La
pression est séparée en deux termes : la pression thermodynamique Fy, constante dans
I’espace, qui représente la pression moyenne dans le domaine et la pression mécanique
P, liée aux variations de quantité de mouvement et qui varie spatialement.

Les contraintes visqueuses sont déterminées en supposant le fluide newtonien avec
I’hypotheése de Stokes,

()

Eij(U,T):u(T)Kan an) 20U, }

oz, 0z, ) 302,00

ou u(T') est la viscosité dynamique. Le flux de chaleur conductif est donnée par la loi

de Fourier,

@uvz—xngg, (©)

ou A(T) est la conductivité thermique. Pour l'air, la constante spécifique des gaz par-
faits est égale a r = 287 J kg=! K~!. Les variations de viscosité dynamique avec la
température peuvent étre modélisées par la loi de Sutherland [287|, valide de 220 K &
1900 K [277],

3
T\2Ty+ 5
T)= — 7
W) = (1) Tre )
avec i = 1,716-107° Pa's, S; = 110,4 K et Ty = 273,15 K. En revanche, on néglige les

variations des capacités thermiques isochore C), et isobare C), et du nombre de Prandtl

Pr avec la température. Les variations de conductivité thermique peuvent ainsi étre
déterminées par \(T') = u(T)C,/Pr, avec Pr =0.76 et C, = 1005 J kg~* K.

2.2 Configuration de I’étude

En simulant numériquement les équations de bas nombre de Mach, on étudie un
écoulement turbulent statistiquement établi dans un canal plan soumis a un fort gra-
dient de température (figure 1). A des fins de validation et de comparaison, on considére
également le canal dans le cas isotherme incompressible, c¢’est-a-dire sans gradient de

Ny Hot wall
T2 > T1

Flow direction
.

y 2h

< Cold wall
T = 293K

Lx

FIGURE 1 — Canal plan anisotherme bipériodique.
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Nombre de points Dimensions du domaine Tailles de mailles adimensionnées

Ny x Ny x N, Ly x Lyx L, Af 5 AF(0) — Af(h) 5 AT
DNS180-1 384 x 266 x 384 4mh x 2h x 27h 9,8 ; 0,08 - 29 ; 29
DNSI180-2 384 x 266 x 384 4xh x 2h x 27h 85 : 0,13 - 42 ; 42
DNS395-1 768 x 512 x 512 4dwh x 2h x (4/3)7h 6,4 ; 0,18 - 2,9 ; 3,2
DNS395-2 768 x 512 x 512 drh x 2h x (4/3)7h 91 : 025 - 41 ; 46

TABLE 1 — Dimensions du domaine et tailles de mailles des simulations numériques directes.

température. Le canal est périodique dans les directions longitudinales (z) et trans-
verses (z). Les parois du canal sont & température constante. Dans le canal isotherme,
les deux parois sont a la température froide 77 = 293 K. Dans le canal anisotherme,
la température a la paroi froide (y = 0) est T} = 293 K et la température a la paroi
chaude (y = 2h) est Tp = 586 K. Cela crée un gradient de température dans la direction
normale de la paroi. Comme le canal est périodique, I'action dissipatrice des contraintes
de cisaillement n’est pas compensée par un gradient de pression dans la direction de
I’écoulement. Une force volumique f est ajoutée pour reproduire l'effet d'un gradient
de pression et maintenir un débit massique constant.

On a effectué des simulations numériques directes du canal isotherme et anisotherme
aux nombres de Reynolds de frottement moyen Re, = 180 et Re, = 395. Ce nombre
de Reynolds est défini comme la moyenne des nombres de Reynolds de frottement
Re,, = U.h/v, a la paroi froide et chaude, avec h la demi-hauteur du canal, v, la
viscosité cinématique & la paroi et U, = [14,(9,U,).]°° la vitesse de frottement. Les
simulations utilisent un maillage uniforme dans les directions homogénes et suivant
une loi en tangente hyperbolique dans la direction normale aux parois,

Yk = Ly, (1 + étanh [( ]f;y__ll — 1) tanhl(a)D , (8)

avec a le parametre de dilatation du maillage et IV, le nombre de points dans la direction
normale aux parois. La taille du domaine et les tailles de mailles adimensionnées des
différentes simulations sont données dans le tableau 1. Les simulations & Re, = 180 et
Re, = 395 ont le méme niveau de raffinement. Les petites différences sont dues aux
contraintes de la méthode numérique (solveur multigrille) et du parallélisme.

Les simulations reposent sur la résolution numérique des équations de bas nombre
de Mach par une méthode aux différences finies sur un maillage décalée [200, 212].
On utilise un schéma en temps Runge-Kutta d’ordre trois [313] et une discrétisation
centrée d’ordre quatre pour la convection de la quantité de mouvement et d’ordre deux
pour la diffusion. On utilise pour cela le code de calcul TrioCFD |[38]. La méthode
numérique est validée par une étude de convergence en maillage et la comparaison des
résultats dans le cas de I'isotherme incompressible aux données de référence de Moser
et al. [203], Vreman and Kuerten [305] et Lee and Moser [167] & Re, = 180 et Moser
et al. [203], Lee and Moser [167] & Re, = 395.
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3 Echanges énergétiques

Cette section présente I’étude des échanges énergétiques. La section 3.1 initie I'étude
des échanges énergétiques par une discussion théorique de la décomposition sous-jacente
de I'énergie totale. La section 3.2 examine l'effet du gradient de température sur les
échanges énergétiques associés a ’énergie cinétique turbulente & partir des résultats des
simulations numériques directes. La section 3.3 étend ’analyse & I'influence du nombre
de Reynolds sur 'effet du gradient de température.

3.1 Equations des échanges énergétiques

L’étude des échanges énergétiques dans les écoulements turbulents fortement ani-
sothermes requiert le choix d’une décomposition de I'énergie totale et des échanges
énergétiques entre les différentes parties de 1’énergie totale. En effet, étant donné les
variations de masse volumique, la décomposition de I'énergie totale n’est pas unique et
comporte une certaine part d’arbitraire [50]. Afin d’étudier les échanges énergétiques
associés a I'énergie cinétique turbulente dans les domaines spatial et spectral, on établit
une nouvelle représentation des échanges énergétiques entre les différentes parties de
I’énergie totale fondée sur la moyenne classique ou moyenne de Reynolds (non pondé-
rée par la masse volumique) [245]. Soit () I'opérateur de moyenne statistique et (’)
I'opérateur partie fluctuante. La décomposition de Reynolds de la vitesse U; = U, +

conduit & une décomposition ternaire de I'énergie cinétique pF,
1

ou pk = %pU ; U; est I'énergie cinétique moyenne, liée au mouvement moyen, pe =
Tpulul énergie cinétique turbulente, liéce au mouvement turbulent, et pe = puiU;
I’énergie cinétique mixte, associée a la fois au mouvement moyen et au mouvement
turbulent.

L’énergie totale instantanée par unité de volume est la somme des trois parties
de I'énergie cinétique pFE et de I'énergie interne pl. C’est une quantité conservative
mais ces composants ne le sont pas et échangent de 'énergie entre eux. Les échanges
énergétiques entre les quatre parties de ’énergie totale peuvent étre formulés ainsi :

—agf:§+é_f+f+5, (10)
ope [

T =TT P e (11)
ope . — —

= _ e _D_ 12
opl o

P _GTe 1§z 1

ol 'on identifie les termes suivants :

e les transferts par convection, représentant un transfert d’une partie de 1’éner-
gie cinétique par le mouvement du fluide : @ = —0;(pU,E) associé a 'éner-
gie cinétique moyenne, ¢¢ = —0;(pU;e) associé a 'énergie cinétique turbulente,
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FIGURE 2 — Représentation schématique des échanges énergétiques entre les quatre parties de
I’énergie totale dans la représentation ternaire. Une fléche indique une interaction entre deux

quantités.

¢ = —0;(pUje) associé a 'énergie cinétique mixte et &7 = —0;(pU;1) associé a
I’énergie interne ;

les transferts d’énergie liés aux contraintes totales 1;; = X;; — PJd;; (contraintes de
pression et contraintes visqueuses) : or = 0;(75;U;) associé a I'énergie cinétique
moyenne et ! = 9;(7;;u}) associé a 'énergie cinétique turbulente;

le transfert d’énergie par conduction @* = 9;(\9;T) ;

les interactions entre les différentes parties de I'énergie cinétique : l'interaction
P = —pulU;0;U; + pu'U;0,U; — pul(1/p)0;1;; entre I énergie cmet1que turbulente
et I'énergie cinétique mixte et 1’1nteract10n B = —pU,U;0;u; + pU; (U;0;U;) —

pU; ((1/p)0;7;;) entre I'énergie cinétique moyenne et 1'énergie cinétique mixte ;

les interactions entre 1'énergie cinétique et ’énergie interne : £ = —=7;;0;U; asso-
ciée a I'énergie cinétique moyenne et ¢ = —7;,0,u; associée a I'énergie cinétique
turbulente.

Ce systéme d’équations est représenté schématiquement sur la figure 2.

Afin d’obtenir ’équation d’évolution de la demi-trace du tenseur des corrélations de

fluctuation de vitesse, on décompose la masse volumique p en une partie constante pg et
une partie variable p1, p(x,t) = po+ p1(x, 1), ot  est le vecteur position et ¢ le temps.
Cela divise chaque partie de 1’énergie totale en une partie associée a py et une partie
associée a p;. L’étude des échanges énergétiques entre les huit parties résultantes de
I’énergie totale décompose chaque échange énergétique identifié plus haut en une partie
a masse volumique constante et une partie & masse volumique variable. De plus, les
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échanges font intervenir de nouveaux termes caractérisant I'interaction entre la partie a
masse volumique constante et variable de I’énergie totale. La formulation inclut au fac-
teur scalaire py pres la demi-trace du tenseur des corrélations de fluctuation de vitesse
e, permettant son étude dans les écoulements a masse volumique variable. Elle donne
également un sens aux termes de son équation d’évolution en termes d’échanges éner-
gétiques. Cette quantité ayant un équivalent spectral, il est possible d’étendre ’étude
au domaine spectral pour donner l'effet des échanges énergétiques sur la tailles des
structures turbulentes. Pour toute quantité physique g(z,y, z), 'opérateur chapeau ()
donne les coefficients du développement en série de Fourier de ¢ [173] :

Lo pL. .
x,y,t)e  Fde, (14)

g(k,y, 1)

" L.L.

ou & = (z, z) est le vecteur de position dans le plan xOz et k = (k,, k,) est le vecteur de
position dans le plan k,Ok,. Dans le domaine spectral, on étudie les termes de I’équation
d’évolution de ¢ = %12*7;;, [’analyse spectrale étend chaque terme de la décomposition
spatiale au domaine spectral. De plus, un terme purement spectral redistribue 1’énergie
entre les échelles sans contribution spatiale.

Que ce soit dans les domaines spatial ou spectral, les échanges énergétiques sont dé-
composés pour séparer les termes présents dans des écoulements a propriétés constantes
(indice I) et les termes spécifiques aux écoulements a propriétés variables (indice I).
Ces derniers proviennent de la compressibilité de ’écoulement, des variations ou fluc-
tuations des propriétés du fluide et de la présence d’une vitesse moyenne normale a la
paroi. Dans le domaine spectral, ’équation d’évolution de la demi-trace du tenseur des
corrélations de fluctuation de vitesse est ainsi donnée par

0é

o +E=&r+@r+Pi+Py, +(+&+Er+E, (15)

md
[I]<|

=P+P+(+
oll p = P°+ @P + ¥ représente la somme des transferts conservatifs liés a la convection,

a la pression et aux contraintes visqueuses, P la production, c¢’est-a-dire une interaction

avec les autres parties de I’énergie cinétique, C C ¢+ (P + (¥ Vinteraction avec la partie
a masse volumique variable de 1’énergie totale, € l'interaction avec 1’énergie interne

ct Z le terme purement spectral de transport inter-¢chelle. Le transfert conservatif in-
compressible est également décomposé en trois contributions, ¢; = @5+ @ +¢@%. On a :

(1/2)(u] w0,05)) 35 =

(1/2)(8,u] w,U,)) C¢ = Ref
Re(—u! (P/p>)(0:p) ¥1=
Re(u]

y,P/p) Cv_p

— Re(—
(-

e(ayu. Zol?) &
(—u
(

== e

elu

Re

w, (0,7;)) & = Re(—0,u! Ty;/p) Pr=
Re (1/2)(0u i ) (1/2)(u u@u)) €=

RS T Y I

On utilise les mémes notations que pour les termes complets afin d’éviter un alour-
dissement des notations. Les termes sont exprimés en prenant en compte les symé-
tries de I’écoulement et son homogénéité dans les directions longitudinale et transverse

Re(
Re(
T 0,) B = Re(#(9,0,8) + 7(9,0,4,
Re(
Re(
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(0, = 0,7 =0 et U, = 0). L’équation d’évolution de la demi-trace du tenseur des
corrélations de fluctuation de vitesse dans le domaine spatial est analogue a 1’équation
spectrale. Les termes spatiaux peuvent étre obtenus par intégration des termes spec-
traux sur I’ensemble des longueurs d’onde. On notera en particulier que pour tout a,
un terme spectral de la forme Re(%]'@) est associé & associé a un terme spatial u/a.

3.2 Effet du gradient de température

On étudie l'effet du gradient de température sur les termes de ’équation d’évolution
de la demi-trace du tenseur des corrélations de fluctuation de vitesse a partir des
résultats des simulations numériques directes. Dans le domaine spatial, les échanges
énergétiques ont été décrits dans la littérature dans le cas incompressible {203, 305]
mais n’ont pas été étudiés dans le cas anisotherme. Dans le domaine spectral, I’analyse
est nouvelle dans le cas isotherme et anisotherme avec la décomposition utilisée.

Dans les deux cas, on utilise la décomposition des échanges énergétiques en termes
thermiques et termes incompressibles pour identifier les termes thermiques les plus im-
portants. La production thermique est négligeable par rapport a la production incom-
pressible. En revanche, I'interaction avec 1’énergie cinétique & masse volumique variable
et les termes thermiques liés au transfert conservatif et a l'interaction avec 1’énergie
interne ne sont pas négligeables. En particulier, les termes thermiques associés aux
contraintes visqueuses ont une amplitude importante.

Le gradient de température génére une asymétrie entre les profils spatiaux des
échanges énergétiques cotés chaud et froid. Les échanges énergétiques sont plus impor-
tants du coté froid que du coté chaud, sont plus localisés et se produisent plus prés de
la paroi. L’adimensionnement des échanges énergétiques permet d’étudier efficacement
cette asymétrie. L’adimensionnement classique (1), fondé sur une combinaison linéaire
de la vitesse de frottement U, et de la viscosité cinématique v, a la paroi, n’est pas
adapté aux écoulements anisothermes car il ne prend pas en compte les variations des
propriétés du fluide. En revanche, il est utile d’étudier les échanges énergétiques avec
I’adimensionnement semi-local (*), fondé sur une combinaison linéaire de la vitesse de
frottement semi-locale U = [, /p(y)(9,U.).]%? et de la viscosité cinématique moyenne
v, fonction de la distance a la paroi. Avec I'adimensionnement semi-local, I’asymétrie
entre les cotés chaud et froid est considérablement réduite. Ces résultats sont en accord
avec des études antérieures sur I’adimensionnement semi-local [127, 224, 225]. La super-
position des deux profils n’est cependant pas atteinte pour la production, le transfert
conservatif et I'interaction avec I’énergie interne (figure 3). On peut expliquer une par-
tie des différences par un effet de bas nombre de Reynolds donné par les variations du
nombre de Reynolds de friction local U (y)h/7(y) dans le canal. En particulier, I’asy-
métrie des profils de la production est en accord avec 'effet de variations du nombre de
Reynolds dans la configuration isotherme. Les variations du nombre de Reynolds local
ont également une influence sur le transfert conservatif et I'interaction avec 1’énergie
interne mais ne sont pas suffisantes pour expliquer 'effet du gradient de température
sur ces termes.

L’étude individuelle des termes thermiques des échanges énergétiques (figure 4)
montre une certaine universalité. Les trois termes thermiques les plus importants sont
similaires mais de signe opposé entre le coté froid et le coté chaud. Il en résulte des
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FIGURE 3 — Profils des termes de 1’équation d’évolution de la demi-trace du tenseur des
corrélations de fluctuation de vitesse avec I’adimensionnement semi-local & Re, = 180 et Re;
= 395. Les résultats sont comparés aux données de référence de Moser et al. [203] dans un
canal incompressible & Re, = 180, 395 et 590.

deux cotés un pseudo-transfert énergétique dans la direction normale aux parois. Les
termes thermiques ont une amplitude plus faible que les termes incompressibles mais
ne peuvent étre négligés pour une description fidéle des échanges énergétiques.

Le gradient de température modifie également les spectres de échanges énergétiques.
On identifie quatre échanges énergétiques spectraux : la production, le transport inter-
échelle, le transfert conservatif et I'interaction avec ’énergie interne. La production a
lieu autour de y* = 12 et k* = 0.07 (figure 5). Le transport inter-échelle redistribue
I’énergie produite entre les échelles, principalement vers les petites échelles mais aussi
vers les grandes échelles (figure 6). L’énergie est de plus transférée spatialement par le
transfert conservatif, principalement vers la paroi et avec peu de variations d’échelles
(figure 7). Elle y est dissipée par l'interaction avec 'énergie interne (figure 8). Les
échanges énergétiques spectraux ont une amplitude plus faible du coté froid que du
coté chaud, mais se produisent a de plus petits nombres d’ondes, plus prés de la paroi
et sur une plus grande gamme d’échelles. Aussi, la plus grande amplitude spatiale des
termes du coté froid semble provenir de la prises en compte d’'un plus grand nombre
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FIGURE 4 — Profils des termes thermiques de I’équation d’évolution de la demi-trace du tenseur
des corrélations de fluctuation de vitesse avec I’adimensionnement semi-local & Re, — 180 et
Re, = 395.

d’échelles dans le domaine spectral.

3.3 Effet du nombre de Reynolds

L’effet du gradient de température sur les échanges énergétiques dépend du nombre
de Reynolds. A Re, = 395, I'asymétrie entre les cotés chaud et froid est plus faible
qu’a Re, = 180. Cette réduction est facilement interprétable en considérant l’asymétrie
comme ’effet combiné des variations des propriétés locales du fluide et d’un effet de bas
nombre de Reynolds donné par le nombre de Reynolds de friction semi-local. Les effets
de bas nombre de Reynolds sont plus faibles dans le cas incompressible aux alentours
de Re, = 395 que de Re, = 180, ce qui impacte directement 1’asymétrie obtenue dans
le canal anisotherme. Avec I’adimensionnement semi-local, les échanges énergétiques se
produisent plus prés de la paroi a Re, = 395 qu’a Re, = 180, sur une plus grande
gamme d’échelles et ont une plus grande amplitude spatiale. En revanche, 'effet des
variations des propriétés du fluide non pris en compte par 'adimensionnement semi-
local est relativement insensible au nombre de Reynolds. En particulier, le profil spatial
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FIGURE 5 — Spectre de la production P avec I'adimensionnement semi-local & Re; = 180
(lignes épaisses, couleur claire) et Re; = 395 (lignes fines, couleur foncée).
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FIGURE 6 — Spectre du terme purement spectral de transport inter-échelle = avec I’adimen-
sionnement semi-local & Re, = 180 (lignes épaisses, couleur claire) et Re, = 395 (lignes fines,
couleur foncée).
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FIGURE 7 — Spectre du transfert conservatif ¢ avec 1’adimensionnement semi-local & Re, =
180 (lignes épaisses, couleur claire) et Re; = 395 (lignes fines, couleur foncée).
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FIGURE 8 — Spectre de 'interaction avec I’énergie interne & avec I’adimensionnement semi-
local & Re, = 180 (lignes épaisses, couleur claire) et Re, = 395 (lignes fines, couleur foncée).

des termes thermiques n’est pas significativement affecté par le nombre de Reynolds
(figure 4).

Les échanges énergétiques sont pertinents pour la modélisation de type Reynolds-
averaged Navier—Stokes (RANS) et de type simulation des grandes échelles. La simula-
tion des grandes échelles repose sur la modélisation des petites échelles de la turbulence.
En turbulence homogéne isotrope isotherme, la région a petite échelle des échanges
énergétiques est purement dissipative, simplifiant la modélisation. Compte-tenu des
échanges énergétiques additionnels en turbulence de paroi anisotherme, la simulation
des grandes échelles de ces écoulements est rendue plus complexe.

4 Simulation des grandes échelles

Cette section traite de la simulation des grandes échelles des écoulements turbulents
fortement anisothermes. La section 4.1 initie I’étude par une identification des termes a
modéliser. La section 4.2 analyse la modélisation des termes les plus significatifs a priori,
c’est-a~dire a partir des résultats des simulations numériques directes. La section 4.3
examine leur modélisation a posteriori, ¢’est-a-dire a partir de simulations des grandes
échelles mettant en ceuvre les modéles.

4.1 Etude des termes sous-mailles

La simulation des grandes échelles est fondée sur 1'idée de séparation d’échelle.
Théoriquement, cette séparation est généralement représentée par l'application d'un
filtre spatial (7, filtre classique). Ce filtre vérifie les propriétés de conservation des
constantes, @ = a avec a une constante, et de linéarité, ¢ + 1) = ¢ = ¢. + 1 pour n’im-
porte quel ¢ et 1) [253|. Le filtre peut cependant étre inhomogéne et ne pas commuter
avec la dérivation. Le filtrage des équations de bas nombre de Mach conduit & diffé-
rentes formulations des équations filtrées en fonction des variables avec lesquelles on
exprime les équations et de la maniére dont les équations sont disposées lors du filtrage.
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On considére trois formulations : la formulation Classique, la formulation Favre et la
formulation Vitesse.

Dans la formulation Classique, les équations de bas nombre de Mach sont filtrées
puis exprimées en termes de variables filtrées classiquement :

% n a%j (PU; + Fou,) + Cy, =0, (16)

% (pU; + Fpu,) = —aimj (pU; U; + Fou,u,) — CngUi - g_z ~Cp+ aixj (2@' +Fy,) + C%u’
(17)
T = % <%+F1/p), (19)

La formulation Favre est fondée sur I'utilisation d'un filtre pondéré par la masse
volumique (-, filtre de Favre), défini pour tout ¢ par ¢ = pé/p. Dans la formulation
Favre, les équations de bas nombre de Mach sont filtrées puis exprimées en termes de
variables filtrées de Favre :

op  0pU; |
helld = 2
o+ Oz * Cou, =0 2
8/_)(7} . 0 [ ~~ _ j oP i 0 (& J
ot ox (pUjUi + pGUjUi) = Couu, — or; Cp dr; <EU * GZ”’) + Oz,
(21)
o (D4 ieun) + 0 =5t 50 (@ Ga) vy |~ p 5 @
S
T =_"2 2
n 29

La formulation Vitesse est fondée sur I’approche de filtrage suggérée par Sidharth
and Candler [271], Sidharth et al. [272]|. L’équation de conservation de la quantité de
mouvement est réécrite avant le filtrage comme une équation de transport de la vitesse.
Les équations sont ensuite filtrées puis exprimées en termes de variables filtrées classi-
quement. Le systéme d’équations résultant est donnée par 1’équation de conservation
de masse (16), I’équation de conservation de I’énergie (18), la loi des gaz parfaits (19)
et ’équation de transport de la vitesse :

GUZ _ 0 ,— — o __ oU . B s
P = —Pg— (U Ui+ Fuu) = PCyu, + PUi5—= + PFua,u, + pUCy,
ot 8ZL’]~ T 8£L‘j J
o°P . ) 4 (24)
B ox; —Cp - ﬁFaiP/p - 8_1.] (Zij + FEij) + CJEU + ﬁFajEij/P7

Les équivalents filtrés du tenseur des contraintes de cisaillement et du flux de chaleur
sont donnés par Xy; = Xi;(U,T) et Q; = Q;(T) avec le filtre classique et Yj; =
El-j(ﬁ T) et @j =Q; (T) avec le filtre de Favre. Les trois formulations font intervenir
les termes sous-mailles suivants :
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Equation Formulation Grand Moyen Petit ou trés petit
Masse Classique, Vitesse GJFPU].., C U

J
Favre CpUJ
Quantité de Classique i Fyou,u; &ngUi‘, C U, U C};, 0iFs,., C’:ij
& J ‘
mouvement Favre 9ipGu,u, . CpU]-Ui ' Cp, 0;Gxy, CZZ,L-J- '
Vitesse ﬁajFUjUi f)Cg]jUi, ﬁUiC(]Jj ﬁFUiajUj, ﬁFaip/p, C}g,
ﬁFBjEij/pa 6jFE¢j> CZZ‘”
: : j A j
Fnergie Classique, Vitesse CJUJ‘ 0 Fg,, Cij
Favre Gu,/p C'Uj 0;Gq;, C’Q]_
Loi des gaz Classique, Vitesse Fyy,
parfaits Favre

TABLE 2 — Classification des termes sous-mailles dans les trois formulations.

J
CpUj B

J
CPU]' U;
J _
Co,u, =

ci, —

J_

ch =

J
oy,
FPUz‘

pU;  9pU;
0w 0x;
opU;U;  0pU;U;
Oz, Oz,
ou;U;  oU;U;

(25)

0Q;(T)  0Q;(T)

ax]‘ an
= pU; — pU;
= pU; — pU;

Ox; Ox;
oP 0P
o0x; B o0x;
XU, T) 0%,;(U,T)
B Oz B Oz,
ou;  du;
Oy Oy

Gu,/p = Ui/p
FpU]U _pUjUz

w W W
S Ot

(34)
(35)
(36)
Gu,u. = U;U; — U,U; (37)
Fy, = 5,;(U,T) — £,(TU,T)  (38)
Gy, =2;U,T) - Eij(ﬁa'f) (39)
Fo, = Q,(T) — Q,(T) (10)
Ga, = Q) - Q,(T) (1)
1 1
Fyp=2 - (42)
Fu.o,u, = Ulg—gjj U; g—gj (43)
oiP/p = %g_i N %gi (44)
_10%,;(U,T) 10X;U,T)

%%ule = o, D Ox;

(45)

Ces termes sous-mailles sont de deux types. Le premier type (dénoté sous la forme C?)
provient de la non-commutation du filtre avec la dérivée et est lié¢ aux variations de la
largeur du filtre, c’est-a-dire de I'inhomogénéité du maillage SGE. Le second type (dé-
noté sous la forme F,) provient des non-linéarités, c’est-a-dire de la non-commutation
entre le filtre avec la multiplication. Les termes sous-mailles Fy; et GUj /p sont étroi-
tement liés par la relation F,y,/p = —pGy,,,. lls expriment tout deux la corrélation
entre la masse volumique et la vitesse.

Les différents termes sous-mailles mis en jeu dans les trois formulations sont estimés
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a partir du filtrage des simulations numériques directes présentées dans la section 2.
L’importance des termes sous-mailles est étudiée a partir de leur moyenne quadratique
par rapport aux termes non sous-mailles. Etant donnée ’homogénéité de 1’écoulement
dans les directions longitudinales et transverses, I’analyse est réalisée en fonction de la
coordonnée normale aux parois. Ceci permet de déterminer quels termes peuvent étre
négligés et quels termes doivent étre modélisés dans les trois formulations. Un résumé
de la classification des termes sous-mailles est donné dans le tableau 2. Les grands
termes sous-mailles sont les termes sous-mailles les plus significatifs et devraient étre
modélisés en premier. Les termes sous-mailles moyens ont une amplitude plus faible.
La modélisation des termes sous-mailles de petite ou trés petite amplitude n’est pas
recommandée. Les termes sous-mailles les plus importants sont des non-linéarités mais
en raison de l'inhomogénéité du maillage, les erreurs de commutation filtre-dérivée
peuvent aussi avoir une amplitude non-négligeable. C’est en particulier le cas si le filtre
SGE utilisé est trés inhomogeéne.

Le filtre classique est plus approprié si ’équation de conservation de la quantité de
mouvement est exprimée en tant qu’équation de transport de vitesse. Le filtre de Favre
élimine la nécessité de modéliser la corrélation entre la masse volumique et la vitesse
dans I’équation de conservation de la masse, mais ’ajoute a ’équation de conservation
de I'énergie. La corrélation entre la masse volumique et la vitesse doit donc étre mo-
délisée dans les deux cas. Aussi, les deux termes sous-mailles les plus significatifs sont
les termes sous-mailles associés a la convection de la quantité de mouvement et a la
corrélation entre la masse volumique et la vitesse quelle que soit la formulation.

4.2 Test a priori des modéles

On étudie la modélisation de ces deux termes sous-mailles a priori, c¢’est-a-dire a
partir des résultats des simulations numériques directes. Puisque ces deux termes sous-
mailles sont formellement similaires dans les formulations Vitesse et Favre, la méme
procédure de modélisation est utilisée dans les deux cas :

Fy,u, = 15°4U, A), (46)
Gy, = T2°UU, A), (47)

Fou, = YU, p, A), (48)
Gu,jp ~ T(U, 1/p, A). (49)

Les fonctions 7}5°4(U, A) et iU, ¢, A) sont dépendantes du modéle mais ne dé-
pendent pas de la formulation. On se concentre ici sur des modéles de type viscosité ou
diffusivité sous-maille, dans lesquels les termes sous-mailles sont modélisés par analogie

avec la diffusion moléculaire,

T;;md(U, A) = —2%(g, A)S;;, (50)
mo N VénOd g7 d’ K
m qU,p,A)= — —(PT )dj, (51)
t

avec S = %(gij + g;i) ot g est le gradient de vitesse, g;; = 0;U; et d le gradient du

scalaire, d; = 0;¢. La viscosité sous-maille v

(g, A) est donnée par le modéle utilisé.
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Le nombre de Prandtl ou Schmidtl sous-maille Pr;, supposé constant, relie diffusivité
sous-maille et viscosité sous-maille. Les modéles suivants, tirés de la littérature, sont
étudiés : le modele de Smagorinsky [276], le modele WALE [213], le modelé de Vreman
[304], le modelé Sigma [214], le modele AMD [250], le modéle AMD scalaire [3], le
modeéle VSS [252] et le modéle de Kobayashi [147]. L’échelle de longueur du filtre est
calculée suivant Deardorff [77] par A = (A, A,A,)Y3.

De plus, on propose dans ce travail deux nouveaux modéles. Premiérement, le mo-
déle Smagorinsky anisotrope est une version modifiée du modéle Smagorinsky congue
pour impliquer les trois échelles de longueur de filtre au lieu d’une seule. L’objectif est
d’améliorer ’anisotropie du modéle. Il est défini par,

Ty (UL A) = - 27 (g, A) S, (52)
o Smag da, Z
n.omag. e g a
pinsmag (g7 6 Ry = _g¥e Ve (53)

PTt

avec S% = 1 (g% + g%) ot g* est le gradient de vitesse reiimensionné, g% = (A;/D)o;U;,
et d® le gradient du scalaire redimensionné, dj = (A;/A)0;¢.
Deuxiémement, le modéle mixte multiplicatif fondé sur le modéle de gradient (MMG)

est construit pour avoir la méme amplitude que le modéle gradient [169] et la méme
orientation que le tenseur des déformations ou gradient du scalaire. Il est défini par,

Modéle MMG yMMG (g A) = — (JMMG%, (54)
— v D;D;
Modeéle MMG scalaire : PSMMG (g d A) = — CSMMG . (55)

;

dmd,,

Cette procédure rappelle le modéle mixte multiplicatif de Ghaisas and Frankel [113, 114]
qui avait un but opposé.

Pour étudier la performance des modéles sous-mailles a priori, on compare les mo-
déles aux termes sous-mailles calculés a partir des données SND par une analyse de
régression linéaire. Notons b un modele pour le terme sous-maille de valeur exacte a.
Le coefficient de concordance [178] entre a et b (compris entre —1 et 1) mesure I’accord
entre modéle et terme sous-maille, c’est-a-dire la proximité entre la relation entre les
deux variables et I'identité,

Conc(a, b) = {ab) = {a) (b) . (56)
’ (a?) = (a)” + (b2) — (b)* + ({a) — (b))?

Un coefficient de concordance de 1 implique que le modéle et le terme sous-maille exact
sont identiques. Compte tenu de I’homogénéité de 1’écoulement dans les directions
longitudinales et transverses, la relation linéaire est évaluée pour chaque valeur de
y et la moyenne d’ensemble ( - ) calculée comme une moyenne temporelle et sur les
directions d’homogénéité.

Il n’y a pas de différences significatives entre filtre classique et filtre de Favre vis-
a-vis de la performance des modéles. On présente donc seulement les résultats obtenus
avec le filtre classique. Pour faciliter la comparaison, chaque modéle est mis & I’échelle
pour donner lieu au méme niveau de dissipation sous-maille que le terme sous-maille
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sous-maille associé & la convection de la quantité de mouvement (haut) et le terme sous-
maille associé a la corrélation entre la masse volumique et la vitesse (bas). On compare a
gauche la contribution des termes dans les équations de bas nombre de Mach et & droite leur
contribution énergétique.

dans le volume. Les résultats sont donnés sur la figure 9. Pour les deux termes sous-
mailles, les modéles étudiés sont en meilleur accord avec la contribution énergétique
du terme qu’avec sa contribution dans les équations de bas nombre de Mach filtrées.
Pourtant, les modéles de type viscosité ou diffusivité sous-maille sont incapable de
reproduire les transferts des échelles sous-mailles aux échelles résolues, présents sur
un cinquiéme des points du domaine. Une meilleure concordance avec le terme sous-
maille est obtenue avec les modéles AMD et AMD scalaire, suivis par les modéles de
Vreman, de Smagorinsky anisotrope et MMG. La mauvaise concordance du modéle de
Smagorinsky s’explique par son caractére fortement surdissipatif en proche paroi. La
bonne performance des modéles AMD et AMD scalaire peut étre attribué au lien étroit
entre ces modéles et le modéle gradient. Contrairement au modéle gradient, ces modéles
sont en revanche purement dissipatifs et ne devraient pas entrainer des problémes de
stabilité numérique.
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4.3 Test a posteriori des modéles

On poursuit ’étude de la modélisation des termes sous-mailles associés a la convec-
tion de la quantité de mouvement et a la corrélation entre la masse volumique et la
vitesse par des tests a posteriori, ¢’est-a-dire a partir de simulations des grandes échelles
mettant en ceuvre les modéles. On considére différents modeéles algébriques, sans se li-
miter aux modéles de type viscosité ou diffusivité sous-maille. Cela inclut, en plus des
modeles fonctionnels présentés dans la section 4.2, des modéles structurels, tensoriels
et mixtes tensoriels.

Avec le modeéle de structurel gradient [169], les termes sous-mailles sont modélisés
selon un développement en série de Taylor du filtre,

rad. AN rad. AN rad. A2
5N (U,A) = LGy (U, A) = 09K g, (57)
7T]-Grad'(U, ¢’ Z) — %CGrad'D]’(U, K) _ %C«Grad.xigikdk’ (58)

Avec le modeéle structurel de similarité d’échelle [14], les termes sous-mailles sont mo-
délisés selon I'hypothése de similarité d’échelle,

TEimil.(U’ A) = (Sl <@ _ U\j ﬁz> ’ (59)
w6, B) = O (U6 — U 6) (60)
oul - est un filtre test explicitement calculé lors de la simulation des grandes échelles.
On utilise un filtre volumique calculé comme une moyenne sur trois mailles dans les
trois directions spatiales (filtre A).

Dans le but de mieux prendre en compte I'anisotropie de 1’écoulement, des modéles
tensoriels de la forme Té] (k)mOd(U, A) peuvent étre construits a partir de n’importe quel

modeéle 7 irjnOd(U; K) et tenseur du second ordre Hz‘(f)’

Tin{(k)mOd(U7 Z) — H(E)Tir;lod(U’ Z)7 (61)

)

)

ol aucune somme sur ¢ et 7 n’est implicitée. On définit & cet effet les tenseurs. Hi(j1 =

ij ij

[i=xzVj=ux]et HZ-(;) = [XZFVx;i/], ou [-] sont les crochets d’Iverson, valant 1 si
la proposition entre crochets est satisfaite et 0 sinon, — la négation logique (NON), A
la conjonction logique (ET), V la disjonction logique (OR) et avec la notation x{f =

(i=aNnj=b)V(i=bAj=na).

Enfin, on étudie pour chaque type de modéle des versions dynamiques correspon-
dantes. On s’intéresse pour cela exclusivement aux modeéles dynamiques fondés sur la
méthode de Lilly [177] avec une moyenne sur les directions d’homogénéité et son ex-
tension a une constante globale [221], ¢’est-a-dire avec une moyenne sur le volume. La
méthode dynamique de Lilly [177] multiplie les modéles par une fonction du temps et
de la coordonnée normale aux parois, tandis que la méthode dynamique globale les
multiplie par une fonction du temps uniquement. Dans les deux cas, la méthode repose
sur l'utilisation d’un filtre test (7).

Les simulations des grandes échelles implémentant les modeles utilisent la méme mé-
thode numérique et la méme taille de domaine que les simulations numériques directes.
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Re. Nom Nombre de points Dimensions du domaine Tailles de mailles adimensionnées

N, x N, x N, Ly X LyxL, AF 5 AF0) - AF(R) 5 AF
180 48B 48 x 50 x 48 Arh % 2h X 27h 68 : 050 - 25 : 34
180 36C 36 x 40 x 36 4dh X 2h X 27h 91 ; 20 - 22 ; 45
180  24C 24 x 28 x 24 Arh x 2h x 27h 136 : 20 - 35 : 68
395 96B 96 x 100 x 64 4dwh x 2h x (4/3)7h 3, 0560 - 27 ; 36

TABLE 3 — Dimensions du domaine et tailles de mailles des simulations des grandes échelles.
Les tailles de mailles adimensionnées sont calculées en utilisant les vitesses de friction des
simulations numériques directes.

Des simulations sont réalisées avec trois maillages (“48B”, “36C” et “24C”) a Re, = 180
et un maillage & Re, = 395 (“96B”). Les tailles de mailles adimensionnées des différents
maillages sont données dans le tableau 3. Afin de permettre la comparaison directe des
résultats des simulations des grandes échelles et des simulations numériques directes,
les données SND sont filtrées a la résolution des maillages SGE. La comparaison est
fondée sur le formalisme SGE de Leonard [169], dans lequel les simulations des grandes
échelles visent & fournir des champs résolus dont les statistiques correspondent aux
statistiques d’une simulation numérique directe filtrée.

Dans la plage de nombres de Reynolds étudiée, la modélisation fonctionnelle du
terme sous-maille associé a la convection de la quantité de mouvement ne semble pas
pertinente, sous-estimant par exemple les frottement & la paroi et le flux de chaleur
et surestimant ’écart type de la vitesse longitudinale et de la température. C’est par
exemple le cas du modeéle AMD (figure 10). Les prédictions sont & cet égard moins
fideles qu’avec une simulation sans modéle. De plus, les modéles fonctionnels ne par-
viennent pas a représenter fidélement ’anisotropie de la turbulence, car ils n’affectent
pas suffisamment ’écart type de la vitesse longitudinale par rapport aux composantes
transverse et normale a la paroi. Enfin, I’asymétrie entre les cotés chaud et froid n’est
pas correctement prise en compte par les modéles. D’autres approches de modélisa-
tion permettent d’améliorer ces lacunes, comme les modéles structurels, les modéles
fonctionnels tensoriels et tensoriels dynamiques. Le modéle AMD tensoriel fondé sur le
tenseur H* (modéle H®AMD) est I'un des modéles tensoriels non dynamiques iden-
tifiés comme pertinents pour le terme sous-maille associé a la convection de la quantité
de mouvement (figure 10). Bien que l'effet du terme sous-maille sur I’écoulement ne
soit pas correctement représenté, le modéle améliore les prédictions de la simulation
comparé au cas sans modele.

La modélisation du terme sous-maille associé a la corrélation entre la masse volu-
mique et la vitesse est utile et bénéfique pour la prédiction des statistiques relatives &
la température, mais ne modifie pas de fagon significativement la vitesse. Les modéles
étudiées augmentent le flux de chaleur a la paroi et réduisent ’écart type de la tempé-
rature. Cependant, la prédiction précise de 1’écoulement nécessite 1'accord de la force
du modéle avec 'effet du modéle pour le terme sous-maille associé a la convection de la
quantité de mouvement. Avec le modéle H®AMD, un impact important est nécessaire
car ce modeéle diminue la prédiction du flux de chaleur a la paroi par rapport a une
simulation sans modéle. Ceci peut étre atteint avec des modéles fonctionnels ou struc-
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FIGURE 10 — Comparaison de simulation des grandes échelles avec le modéle AMD et le modéle
AMD tensoriel fondé sur le tenseur H® pour le terme sous-maille associé a la convection de la
quantité de mouvement et le modéle de similarité d’échelle fondée sur le filtre A pour le terme
sous-maille associé & la corrélation entre la masse volumique et la vitesse dans les formulations
Vitesse et Favre pour les profils de la vitesse longitudinale (U;) (a, b), la covariance de la
vitesse longitudinale et normale aux parois (uyuy) (c), I'écart type de la vitesse longitudinale
(u?2) (d), la température (T) (e, f), la vitesse normale aux parois (Uy) (g) et Pécart type
de la température \/(T"?) (h) dans le canal anisotherme & Re, = 180 avec le maillage 48B.
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turel. La figure 10 présente les résultats obtenus avec le modéle de similarité d’échelle
fondé sur le filtre A. Les résultats suggérent que la formulation Favre est préférable a
la formulation Vitesse pour une prédiction précise de la température moyenne avec la
méthode numerique et les schémas utilisés. Les profils de la vitesse moyenne et de la
covariance de la vitesse longitudinale et normale aux parois sont également légérement
plus satisfaisants dans la formulation Favre.

5 Conclusion

Cette thése est consacrée aux écoulements turbulents soumis a un fort gradient
de température, présents dans les récepteurs solaires a haute température. L’analyse
peut étre divisée en deux parties. La premiére partie caractérise I'influence du gradient
de température sur les échanges énergétiques entre les différentes parties de I'énergie
totale. La deuxiéme partie analyse la modélisation sous-maille de ces écoulements pour
la simulation des grandes échelles.

L’énergie cinétique turbulente est produite a partir d’énergie cinétique moyenne,
redistribuée vers les grandes et petites échelles, transférée vers la paroi et convertie en
énergie interne. Le gradient de température crée une asymétrie entre les échanges éner-
gétiques du coté chaud et du coté froid du canal. L’asymétrie est due aux variations
des propriétés locales du fluide et & un effet de bas nombre de Reynolds. Les varia-
tions des propriétés locales du fluide sont prises en compte dans une certaine mesure
par 'adimensionnement semi-local et modifient les échelles de vitesse et de longueur
de la turbulence. L’effet de bas nombre de Reynolds est donné par les variations du
nombre de Reynolds de friction semi-local. Cet effet est accentué a bas nombre de
Reynolds et dépend donc du nombre de Reynolds de friction moyen. La décomposition
des échanges énergétiques en termes thermiques et termes incompressibles montre un
impact négligeable de l'effet de bas nombre de Reynolds sur les termes thermiques.

La simulation des grandes échelles des écoulements fortement anisothermes peut
avec les équations de bas nombre de Mach étre effectuée dans deux formulations ap-
pelées formulation Vitesse et formulation Favre. Les deux formulations sont a priori
similaires mais les résultats a posteriori suggérent que la formulation de Favre est plus
appropriée avec les schémas numériques et la discrétisation utilisés. Les modéles étudiés
ne prédisent pas correctement ’anisotropie de la turbulence ou I'asymétrie entre le coté
chaud et le coté froid mais améliorent les résultats par rapport a une simulation sans
modele. Les modéles tensoriels ou tensoriels dynamiques semblent avantageux par rap-
port aux modeéles de type viscosité sous-maille. La modélisation du terme sous-maille
associé a la corrélation entre la masse volumique et la vitesse est cruciale pour la pré-
diction précise du flux de chaleur. Les modéles de type diffusivité sous-maille et les
modéles structurels semblent pertinents pour ce terme sous-maille. La principale limite
de I'étude est la dépendance de I'analyse aux erreurs numériques. Une caractérisation
de I'influence des erreurs numériques est nécessaire & une meilleure compréhension des
résultats des simulations des grandes échelles. L’adoption d’un paradigme de filtrage
explicite peut par exemple étre utilisé pour séparer erreurs numériques et erreurs de
modélisation.
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(zeneral introduction

Energy is required by all economic activities, such as transportation, heating, cool-
ing, lighting, producing goods or running electronic computing devices. Following the
Industrial Revolution, energy consumption has increased massively, sustained by the
extraction of fossil fuels. The use of fossil fuels has increased the concentration of
greenhouse gas in the atmosphere, resulting in an ongoing climate change. In order to
address this climate change, countries around the world have pledged to reduce their
greenhouse gas emissions. Governments and energy market players need to undertake
a complete transformation of the energy sector to achieve a more sustainable economic
model.

Renewable energies have a decisive role to play in sustainable development policies,
because they emit less greenhouse gases than fossil fuels. There is already a clear
annual increase in global renewable electricity capacity. This emergence is explained
by state subsidies, technological innovations and economies of scale. Within renewable
energy, the use of solar energy has one of the largest future growth potential. There are
currently two main technologies to produce electricity from solar energy: photovoltaic
(PV) and concentrated solar power (CSP). Although photovoltaic systems currently
dominates, concentrated solar power plants can easily be coupled with a thermal energy
storage for a more flexible power generation. This ability will be crucial for the future
development of the CSP sector.

In concentrated solar power plants, solar radiation is concentrated by mirrors or
lenses to a solar receiver, in which a fluid flows. Heated, the fluid powers directly
or indirectly a turbine, producing electricity. Solar power tower is the second most
common CSP technology, after parabolic trough. In solar power towers, the solar field
is composed of a large number of heliostats, tracking the sun on two axes, and the
solar receiver is placed at the top of a tower (figure 1(a)). This configuration can
reach high concentration factors, hence high temperatures. Different types of heat
transfer fluid can be used, as water, molten salt or air. We focus on pressurised air,
which can operate on an open cycle, avoids the need for an heat exchanger with the
thermodynamic cycle, does not require cooling water and allows high temperatures
(larger than 1000 K). This enables the use of high-efficiency thermodynamic cycles.
However, this requires the development of efficient solar receivers operating at high
temperature.

The solar receiver is a critical component of solar power towers, since it is responsible
for the energy transfer between the concentrated solar flux and the fluid (figure 1(b)).
This transfer is very important for the efficiency of the conversion of solar energy into
electricity. The enhancement of the heat transfer in high-temperature solar receivers is
one of the main research topics of PROMES laboratory. To ensure an effective energy
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(a) Solar power tower. (b) Solar receiver.

Figure 1 — Solar power tower and high-temperature solar cavity receiver.

exchange, it is useful to have turbulence in the solar receiver. Since the solar flux
is received only on one side of the solar receiver, the flow is also subjected to a large
temperature gradient. The temperature gradient and turbulence influences one another
in a complex interaction. This coupling is characteristic of the strongly anisothermal
turbulent flows found in solar receivers.

The internal geometry of the solar receiver, and the flow within, should be optimised
to improve the solar power tower. In particular, the heat transfer towards the fluid
should be maximised and the pressure loss minimised. This objective requires a better
understanding and modelling of the interaction between temperature and turbulence.
First, a better characterisation of the influence of temperature on turbulence would
enable the development of mental heuristics and intuition regarding the effect of the
temperature gradient and the approximations that can be made for optimisation of the
solar receiver. Second, the accurate modelling of strongly anisothermal turbulent flows
would allow the development of numerical simulations of the flow in the solar receiver
taking into account the strong coupling between temperature and turbulence, paving
the way for its optimization.

In this thesis carried out in PROMES laboratory, strongly anisothermal turbu-
lent flows are investigated following two approaches. A first part studies the energy
exchanges between the different parts of total energy and in particular the energy ex-
changes associated with turbulence kinetic energy. The results characterise the effect
of the temperature gradient on the energy exchanges. A second part studies the large-
eddy simulation (LES) modelling suited to the flows found in solar receiver. The results
also characterise the effect of the temperature gradient with regard to the small-scale
variations of the turbulent fields. In both cases, the investigation is based on numerical
analyses of a strongly anisothermal turbulent channel flow, a simplified geometry that
reproduces the distinctive features of the flows found in solar receiver. In particular, a
large part of the work relies on the direct numerical simulation (DNS) of the channel.

Chapter 1 presents the physical and numerical settings used throughout the rest of
the manuscript and describes the direct numerical simulations. Chapter 2 introduces
the study of the energy exchanges with a brief comparison with homogeneous isotropic
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incompressible turbulence. Chapter 3 provides a theroretical discussion of the decom-
position of total energy underlying the energy exchanges. Chapter 4 investigates the
effect of the temperature gradient on the energy exchanges associated with turbulence
kinetic energy from the results of the direct numerical simulations. Chapter 5 extends
the analysis to the influence of the Reynolds number on the effect of the temperature
gradient. Chapter 6 concludes with regard to the physical phenomena governing the
energy exchanges. Chapter 7 introduces the study of the large-eddy simulation with
a brief overview of the LES paradigm. Chapter 8 investigates which terms should be
modelled. Chapter 9 analyses the modelling of the most significant terms a priori,
that is from the results of the direct numerical simulations. Chapter 10 examines their
modelling a posteriori, that is from large-eddy simulations implementing the models.
Chapter 11 concludes with regard to the LES modelling.

Chapters 3, 4 and 8 reproduce articles published in international peer-reviewed
journals, respectively:

e D. Dupuy, A. Toutant, and F. Bataille. Equations of energy exchanges in variable
density turbulent flows. Physics Letters A, 382(5):327-333, 2018 [89];

e D. Dupuy, A. Toutant, and F. Bataille. Turbulence kinetic energy exchanges in
flows with highly variable fluid properties. Journal of Fluid Mechanics, 834:5-54,
2018 [91];

e D. Dupuy, A. Toutant, and F. Bataille. Study of the large-eddy simulation subgrid
terms of a low mach number anisothermal channel flow. International Journal of
Thermal Sciences, 135:221-234, 2018 [90].

Chapter 9 reproduces an article submitted for publication in an international peer-
reviewed journal:

e D. Dupuy, A. Toutant, and F. Bataille. A priori tests of subgrid-scale models
in an anisothermal turbulent channel flow at low mach number. (Submitted for
publication) [86].

Chapters 5 and 10 present original materials.
A complementary study to this work has been published in
e F. Aulery, D. Dupuy, A. Toutant, F. Bataille, and Y. Zhou. Spectral analysis
of turbulence in anisothermal channel flows. Computers € Fluids, 151:115-131,

2017 [11].

The paper is given in appendix E.






Chapter 1

Physical and numerical settings

The flows found in solar receivers are turbulent and subjected to a strong asymmet-
ric heating, since the solar flux is collected to only on one side of the solar receiver. The
typical Reynolds number is 10° and the typical solar flux is 600 kW m~2, generating
a temperature gradient of around 300 K over 1 cm. The temperature gradient creates
large variations of the fluid properties (density, viscosity and thermal conductivity) in
the solar receiver. The variations of the fluid properties have a significant impact on
the velocity field and, conversely, the velocity influences the temperature field. This
strong coupling between turbulence and the temperature gradient characterises the rich
and complex behaviour of the flows found in solar receivers.

In order to study the effect of the interaction between temperature and turbulence,
we investigate strongly anisothermal turbulent flows from the direct numerical simu-
lation of the set of partial differential equations that govern their evolution. This is
currently the only available theoretical method for the reliable and precise prediction
of turbulent flows since, due to their strongly nonlinear nature, the equations govern-
ing the flow have no exact analytical solutions. The large computational complexity
of direct numerical simulation limits its domain of applicability to simple geometries
and moderate Reynolds numbers. To study the effect of the temperature gradient on
strongly anisothermal turbulent flows in the context of wall turbulence, we model the
solar receiver by a strongly anisothermal turbulent channel flow. The direct numeri-
cal simulation of fully developed turbulent channel flows with and without tempera-
ture gradient will provide high-resolution three-dimensional data which will be used
throughout the rest of the manuscript.

In this chapter, we specify the physical and numerical settings of the investigations.
We first discuss the choices made in terms of physical modelling, namely the use of the
low Mach number equations. Then, we describe the method used for the direct numer-
ical simulation of these equations, the resolution algorithm and the numerical schemes
used. Finally, we give more specifically the physical and numerical configuration of the
direct numerical simulations.
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1.1 Physical setting

The motion of fluids is described by the Navier—-Stokes equations which express
the laws of classical mechanics and of thermodynamics. In high-temperature solar re-
ceivers, the flows are turbulent and subjected to large variations of the fluid properties.
However, the velocity of the fluid in solar receivers is small compared to the speed
of sound, as the typical Mach number is below 1072. Hence, the purely compressible
effects found in high-speed flows, such as acoustic waves, are negligible. This partic-
ular physical configuration found in solar receivers let us simplify the Navier—Stokes
equations under the low Mach number hypothesis, leading to the low Mach number
equations. Two main assumptions are made in addition to the Navier—Stokes equations:

e The speed of the flow in the solar receiver is small compared to the speed of
sound neglect and acoustic effects are negligible.

e The fluid in the solar receiver behaves like an ideal gas at the operating temper-
ature and pressure of the solar receiver.

The model used are relevant to the flows found in high-temperature solar receivers and
allows the coupling between temperature and velocity.

This section presents the more general Navier—Stokes equations and the derivation
of the low Mach number equations for an ideal gas. In both cases, we give the underlying
hypotheses and the domain of application. At last, the turbulent character of the flow
described by these equations is briefly recalled.

1.1.1 Navier—Stokes Equations

1.1.1.1 General case

We consider a non-relativistic flow under the continuum hypothesis. Without loss
of generality, no body forces are taken into account. In particular, gravity is neglected.
The fluid is monophasic, non-reactive and without dissociation or molecular ionisation
effects. No heat sources are considered and radiative heat transfers are neglected.

Under these conditions, a complete description of the flow is given by the knowledge
of the spatiotemporal fields of velocity and of the state variables (in the thermodynamic
sense) of the system. Knowing the state equation of the fluid, relating the state vari-
ables, the behaviour of the fluid may be determined using the evolution equations of
velocity and any two independent state variables, generally among density p, temper-
ature T', pressure P, internal energy I, entropy S or enthalpy H. The behavior of the
unselected state variables may be inferred from the two independent state variables
using the equation of state.

The Navier—Stokes equations is a system of equations of this type that can model
the behaviour of a fluid in accordance with the hypotheses established above. They
express in a differential and local form three laws of conservation which govern the flow
[208, 282]:
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e Mass conservation 5 9ol
14 PYU;
— =0 1.1
o " on, (11)

e Momentum conservation

1.2
825 (91;]- 8xj ’ ( )
e Total energy conservation
Op(E+1) 0pU;(E+1) 0Q;  oT;;U;
= 1.3
8t + 8xj 8xj * 8%» ’ ( )

with z; the Cartesian coordinate in the i-th direction, U; the velocity in the i-th di-
rection, 7;; the component of the total stress tensor with the ¢ and j indices, @); the
conductive heat flux in the j-th direction, ¢ the time and (F + I) the total energy per
unit mass, sum of of internal energy per unit mass I and of kinetic energy per unit
mass F = %UiUi. The index notation follows Einstein’s summation convention and d;;
is the Kronecker delta.

The fact that the Navier—Stokes equations are conservation laws is reflected math-
ematically by the conservative form of equations (1.1)—(1.3), where all terms except
the time derivative are in the form of a divergence. Mass, momentum and energy
cannot be created or destroyed and are constants in an isolated system. The mass
conservation equation is an assumption of classical mechanics [119]. The momentum
conservation equation expresses Newton’s second law [211], that is the equality between
the variations of momentum and the sum of external forces. The energy conservation
equation expresses the first law of thermodynamics [65], that is the equality between
the variations of total energy and the sum of the external work and the heat flux
received.

The total stress tensor 7;; is given by the contributions of viscous stress X; and
pressure stress,

T = Xi; — Péy;. (1.4)
For a Newtonian fluid, the relationship between viscous stress and the rate of defor-
mation tensor is linear,
where i, called dynamic viscosity, and 7, the second viscosity, are in general functions
of the state variables and S;; is the rate of deformation tensor,

1 (U, 90U,
== . 1.

Under Stokes’ hypothesis [282], n = —% i and the viscous stress tensor is given by

The conductive heat flux is given by Fourier’s law [99],

orT

Q; = _)\G_a:j' (1.8)
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with T the temperature and A is the thermal conductivity, in general functions of the
state variables. Knowledge of the fluid properties i, n and A in functions of the state
variables is required to close the system.

In addition to equations (1.1)—(1.3), the second law of thermodynamics [66] imposes
a lower bound on the variations of entropy .S,

3,0;8 + 8,0U]S > 0 (Qj> .

(915 (930]- - _a,fj

= (1.9)

This is, assuming a Newtonian fluid and Fourier’s law, always statisfied if A > 0, ux > 0
and n > —% p. This may be shown by the comparison of equation (1.9) with equation
(1.15) below.

1.1.1.2 Alternative Formulations

The transport equation of internal energy I, enthalpy H, entropy S, temperature
T and pressure P may be used in place of the mass conservation equation (1.1) or the
total energy conservation equation (1.3) to close the system (1.1)—(1.3). This makes it
possible to establish alternative formulations of the Navier—Stokes equations.

First, we multiply the momentum conservation equation (1.2) by U; to obtain the
transport equation of kinetic energy,

E ) P i
E  OUE 0P o5,

. 1.1
825 833]' ]8.253' 8:15]- ( 0)

Subtracting this equation from the total energy conservation equation (1.3), we obtain
the transport equation of internal energy,

_ %% _p% 5 9%
ot " Tom, 0w, 0z, Vo,

(1.11)

Let us denote v = 1/p the specific volume. The transport equation of enthalpy H =
I+ Pv =1+ P/p follows directly,

el Rl 3 Bt
at | og, ou, "ot T Yiaw, T,

(1.12)

To obtain the entropy transport equation, we express internal energy as a function
of entropy and specific volume,

DI _ DS _,Dv

= or=2 _pL 1.13
Dt Dt Dt’ (1.13)
where the total derivative D - /Dt corresponds to a material derivative,
D- 0 0-
— =—4+U;—. 1.14
Dt o T 0w (1.14)
Injecting (1.13) into (1.11), we obtain the transport equation of entropy,
. 1 S 108
opS n opU;S __an i OU, (1.15)

at 8xj N T(?xj T (9ij
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The temperature transport equation may be obtained from the internal energy
transport equation (1.11) or the enthalpy transport equation (1.12). In the first case,
internal energy is first expressed as a function of temperature and specific volume,

DI DT Dv

0, v P(T —1

Dt Dt P ) D Dt’
with C, = (01/9T), the isochoric heat capacity and § = (1/P)(0P/0T), the isochoric
thermal pressure coefficient. Injecting (1.16) into (1.11), we obtain

(1.16)

Cy Cy T = ZX o grp ooyt 1.17
ot " og, oz, T o5, T g, (1.17)
In the second case, enthalpy is expressed as a function of temperature and pressure,
DH T DP
1—aT 1.1
Dt =CGpp Dt * vl =al) 5 Dt’ (1.18)

with C, = (0H/0T), the isobaric heat capacity and a = (1/v)(0v/0T)p the isobaric
thermal expansion coefficient. Injecting (1.18) into (1.12), we obtain
opT OpU; T 0Q; oP oP oU;

oL 4T, 22 4 x5, O 1.1
O o T o, oo, T g ellig + g (L19)

The pressure transport equation is derived from (1.17) and (1.19),

0P 8UP v —10Q; v v—1_ 90U
P (1 8% . aT i ox;’

ot + Oz, ol Oz

(1.20)

with v = C,/C, the adiabatic index. If we introduce the isothermal compressibility
xr = —(1/v)(0v/OP)r and the isentropic compressibility xs = —(1/v)(0v/0P)g, the
factor 76 P/a can be expressed as a function of the speed of sound ¢ = /1/(pxs) using
the triple product rule (0P/0T),(0T/0v)p(0v/IP)r = —1, which implies o = SPxr,
and Reech’s relation v = C,/C, = xr/xs [243],

P
WP _ v e (1.21)
o XT

In general, the heat capacities and the adiabatic index are functions of the state vari-
ables.

1.1.1.3 Case of an ideal gas

An ideal gas is a fluid satisfying the equation of state
P =rpT, (1.22)

where r is the ideal gas specific constant. In an ideal gas, the heat capacities depend
only on the temperature and obey Mayer’s relation, C, — C,, = r. In addition, a =
B = 1/T. Therefore, internal energy and enthalpy depend only on temperature. The
expression of the transport equations of temperature and pressure are simplified:

+ O, = — - P43

C, i
ot 0z Oz Oz, ] 6’

(1.23)



10 1. Physical and numerical settings

_ or Ly ot 5 OU 1.24
T e, "ot T Viag T ey, (1.24)

oP  OU,P 90, ou, v,

op L S NS B il SV i) 1.2

These expressions are valid even if the heat capacities and adiabatic index are temper-
ature dependent.

1.1.2 Low Mach number equations

The low Mach number equations are an approximation of the Navier—Stokes equa-
tions suited to flows where the compressibility effects due to velocity are negligible but
with large variations of fluid properties (density, viscosity and thermal conductivity).
The approximation neglects the effect of acoustic waves and allows the use of numerical
method intended for incompressible flows [206, 205]. The low Mach number hypothesis
is generally considered relevant if the characteristic flow velocity U® is small compared
to the speed of sound ¢?, and more specifically when the Mach number Ma = U®/cb is
below 0.3.

We use the method developed by Paolucci [219] to derive the low Mach number
equations for an ideal gas. Derivations of the low Mach number equations may also
be found in [186, 179, 193, 205, 128, 20, 22, 267, 12, 323, 157|. The approach is based
on two steps. First, the Navier-Stokes equations are nondimensionalised, introduc-
ing dimensionless numbers that characterise the relative importance of the competing
physical processes. Then, each dimensionless variable is expressed as a power series of
the squared Mach number, giving rise to the low Mach number equations if only the
smaller orders are kept.

1.1.2.1 Nondimensionalisation of the Navier—Stokes equations

The Navier—Stokes equations are nondimensionalised in the case of an ideal, Newto-
nian gas under Stokes’ hypothesis by introducing for each variable a value characteristic
of the flow considered. We define a length scale representative of the flow z°, a velocity
scale U, a time scale t* = 2°/U", a temperature scale T°, a density scale p°, a pressure
scale P® = rp®T®, a dynamic viscosity scale u’ = u(7%), a thermal conductivity scale
AP = \(T?), an isochoric heat capacity scale C? = C,(T?) and an isobar heat capacity
scale CY = Cp(T"):

o_ 7T P
=, (1.26) P =, (1.31)

t Iz

t° = — 1.27 = —
v (1.27) b= (1.32)

o_ Y o A
Ue = i (1.28) \° = N (1.33)

o T C
T° =7, (1.29) e = @ (1.34)

o P !
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The introduction of nondimensionalised variables in the Navier—Stokes equations
leads to the definition of three dimensionless numbers that characterise the flow. The
Reynolds number, -
Re=" be ,

1
represents the ratio between the convective and viscous transfers of momentum. The
Prandtl number,

(1.36)

bb
wo;
P’]" = )\b s

represents the ratio between the momentum diffusivity and the thermal diffusivity.
Finally, The Mach number,

(1.37)

Ub

X

Ma = (1.38)

already defined, where, for an ideal gas, the speed of sound of sound representative of
the flow is given by ¢® = \/y7rT®.
With the energy conservation equation expressed as the temperature transport

equation (1.17), the Navier—Stokes equations and the ideal gas law are in their nondi-
mensionalised form given by:

e Mass conservation

0p° 8p°UJ‘?
— =0 1.39
ote + o5 ’ ( )
e Momentum conservation
opclUe 0 cU?U; 1 OP° 1 aﬂf-
PUi (P +=——2 (1.40)
ote 0§ yMa? 0x7  Re Ox§

e Energy conservation (transport of temperature)

Ip°T° op°U;T" v 005 ou; Ma* __ 0U?

o o — _ _ 1 Po J _ 1 9'_7,
C ote +C, O RePr 0x§ (v ) o5 +r(y ) Re Y o5 ’
(1.41)

e Ideal gas law
P° = p°T°, (1.42)

with X7 the nondimensionalised viscous stress tensor,

29 = 20085 — 2 Sedij, (1.43)
and ()] the nondimensionalised conductive heat flux,
arTe
°©— _\° ) 1.44
QJ 81,9 ( )

J

For reference, we also give the nondimensionalised transport equations of temper-
ature, as deduced from (1.19),
op°T* op°UT*® 1 0Q; —10P° oP° Ma? __ OU?
O it R G 2 T el p(y—1) e
Pote P Oxg RePr Ox; v ot y—1"7 0z Re " 0x§
(1.45)
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and of pressure (1.20),

op°  oUZP° v 005 oU? Ma? __ 0U?
— P°(1— J —1 o1 1.46
ote + 83:;’ RePr 81’;? + ( 7) 83:;’ 0 ) Re Y 895;? ( )

In the nondimensionalised form (1.39)—(1.42), the pressure gradient in the momen-
tum conservation equation leads to a singularity when the Mach number tends to zero.
This implies that the pressure tends to a constant [6] and leads to the establishment of
a system of equations where the pressure is split in two terms, the low Mach number
equations. To show this, one possible approach is to perform an asymptotic devel-
opment of the variables of equations (1.39)—(1.42) as a function of the squared Mach
number [179, 205, 193|.

1.1.2.2 Asymptotic development of Navier—Stokes equations

An asymptotic development of each nondimensionalised variable as a function of
the squared Mach number Ma? is carried out:

U°=U"9 + Ma*UY + O(Ma?), (1.47)
T° =T + Ma*>TY + O(Ma*), (1.48)
p°=pO + Ma*pV +O(Ma), (1.49)
P° = PO 1 Ma*PY + O(Ma), (1.50)
A =20 4 Ma2AV 4 O(Mat), (1.51)
10 = + Ma*V + O(Ma"), (1.52)
Ce =0 + Ma*CV + O(Ma?), (1.53)
o __ 0 2 1 4
Ce =CO + Ma*CV + O(Ma"), (1.54)
7° =~ 4 Ma?y® 4 O(Ma4), (1.55)
Q; = QY + Ma*Q}" + O(Ma?), (1.56)
e =39+ Ma22§j1> +O(Ma?). (1.57)

Injecting these asymptotic developments into the nondimensionalised Navier—Stokes
equations (1.39)—(1.42), we obtain,

= O0(Ma* 1.58
ote * O (Md®), (1.58)

0p"U" | 90, L W) OO W) SO W T O(Ma)

ote 8x§ AOMa?2 9z AO 92 Re 8x ’
(1.59)

(0) (0) (0)

C(O)M + O ap(O)Uj T - _ 99, — (v —1) p(O)ai + O(Md?)

Yoot v o5 RePr 9, o5 ’
j

1.60)

PO = 07O L O(Ma?). (1.61)
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In the energy conservation equation, the term related to the viscous stress (the dissi-
pation) does not give any contributions of order below O(Ma?).

By grouping in each equation the terms of the same order and imposing that each
grouping must separately be equal to zero, the system of equations (1.58)—(1.61) is
reduced at the order O(Ma™?) to

oP©
oxs

=0, (1.62)

expressing the homogeneity of the zeroth-order pressure. In other words, the spatial
variations in pressure are at least of order O(Ma?) and P is a function of time only.

At the order O(Ma®), the system of equations (1.58)(1.61) is reduced to

ap©  9pOTU"

- =0 1.63
o ox ! (1.63)
8p(°)Ui(0) N ap(o)quo)Ui(O) B 1 9pW . 1 822-(]9) (160
ot° ox§ ERONG S Re x5 ’ '
0) (0 0)77(0)7(0) 0 (0) (0)
O)M + O(O)M _ 70 0Q; _ (’Y(O) ~1) p) oU; (1.65)
v ote v ax; RePr ax;o) am; )
PO = OO, (1.66)

These equations are very close to the Navier-Stokes equations (1.39)-(1.42) and form
with (1.62) the nondimensionalised low Mach number equations. The gradient of the
second-order pressure appears in the conservation equation of the momentum. Since
the zeroth-order pressure is constant in space, it may be seen that the mass conser-
vation equation and the conservation equation of the momentum are not affected by
the asymptotic development. In the energy conservation equation, dissipation is ne-
glected. Finally, the contribution of the second-order pressure is neglected in the energy
conservation equation and the ideal gas law.

1.1.2.3 Low Mach number equations

The redimensionalisation of equations (1.39)—(1.42) leads to the low Mach number
equations. Removing the exponent © and denoting Py = P*P© and P = Ma*P*P™M
or, equivalently, using p®(U®)? /7 as the pressure scale to redimensionalise P(!) the low
Mach number equations are given by:

o MaSS conservation a a
p  OpU;
9 9%y 1.67
ot " or, (1.67)

e Momentum conservation

= — - 1.
815 81:j 8@ + 81Ej ’ ( 68)
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e Energy conservation

8Uj 1 aQ] aF)O
— = —— —1)—+ — 1.69
alll'j ’)/PO (")/ ) 8xj * ot ’ ( )
o Ideal gas law
Py
T=—, (1.70)
pr

where the pressure is separated in two terms: the thermodynamical pressure Fy, con-
stant in space, which represents the mean pressure in the domain, and the mechanical
pressure P, spatially varying, related to variations in the momentum. The homogeneity
of the thermodynamical pressure may be interpreted as the consequence of the infinite
speed of the acoustic waves, in the approximation of low Mach number, leading to an
instantaneous uniformisation of pressure.

The particular form of the energy conservation equation (1.69) is obtained by in-
jecting (1.66) into the energy conservation equation (1.65) and using the fact that
the thermodynamical pressure is constant in space. The local energy conservation is
imposed by a constraint on the divergence of the velocity [212].

When the Mach number tends towards zero, the solutions of the Navier—Stokes
equations (1.1)—(1.3) converge to the solution of the low Mach number equations (1.67)—
(1.70) [5, 6]. If conductive heat transfers are neglected, the low Mach number equations
give rise to the incompressibe Navier—Stokes equations [206, 205].

1.1.3 Variations of the fluid properties

The system of equations (1.67)—(1.70) describes the physics of low Mach number
flows but its resolution requires closing the system by giving the expressions of the ideal
gas specific constant, the heat capacities and the properties of the fluid as a function
of the state variables. These expressions depend on the gas under consideration. For
air, the ideal gas specific constant is r = 287 J kg™! K~1. The variations of dynamic
viscosity with temperature may be modelled by Sutherland’s law [287], valid from

220 K to 1900 K [277],
3
T\? T+ S,
_ (L 1.71
K “O(TO) T+, (171)

with pig = 1.716-107° Pa s, S; = 110.4 K and T, = 273.15 K. Within this temperature
range, the variations of the adiabatic index of air are very small. Neglecting these
variations, it follows for an ideal gas that the isochoric and isobaric heat capacities, C,
and C),, are constant. Finally, the variations of thermal conductivity may be expressed
using the Prandtl number,

_ uCp
A= (1.72)

The Prandtl number is assumed constant over the temperature range considered, with
Pr =0.76 and C, = 1005 J kg~! K~
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1.1.4 Turbulence

The Navier-Stokes equations and the low Mach number equations form a highly
nonlinear system of equations whose solution can, depending on the Reynolds number,
be turbulent. Turbulent flows are chaotic and exhibit, at every point, numerous eddies
of various scales. They are also three-dimensional and characterised by a spatiotem-
poral irregularity, an unpredictability of trajectories, a rotational kinematics and an
enhanced diffusion and dissipation. The majority of flows encountered in nature and
engineering applications are turbulent. Turbulence is useful in heat exchangers because
it tends to accelerate homogenisation and mixing, thus improving the efficiency of heat
and momentum transfers.

The flow regime is characterised by the Reynolds number (1.36). For a given prob-
lem, the flow becomes turbulent if the Reynolds number exceeds a critical value, usually
between 2000 and 3000 [244, 48], with a fairly rapid transition. Below this value, the
flow is laminar as the friction forces outweigh inertial forces and quickly absorb any
perturbation.

Because of the chaotic nature of turbulent flows, independent experiments or sim-
ulations with arbitrarily close (but different) initial conditions give rise to a different
result. This leads to the definition of the Reynolds average or statistical average,
defined as the average over a large number of independent experiments,

t)) = lim — t), 1.
(G(,y,2,1)) = lim ZG (z,y, 2, (1.73)
where G is the value of G during the experiment ¢ and N the number of experiments.
The Reynolds decomposition corresponds to the decomposition of G into an average

part and a fluctuating part (),
G=(G)+G. (1.74)

where the fluctuating part, with no statistical mean, is the deviation from the statistical
mean. This is represented in figure 1.1.

Figure 1.1 — Reynolds decomposition of the velocity field.

1.2 Numerical schemes and resolution algorithm

The resolution of Navier—Stokes equations is an extremely difficult problem because
these equations are highly nonlinear and coupled. Exact analytical solutions have only
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been found for the most simple problems and in the absence of turbulence, and the
existence and regularity of the solutions of the Navier-Stokes equations remains an
open problem [132]. Nevertheless, numerical simulation offers a way to analyse and
predict the behaviour of complex flows.

The numerical simulation of turbulent flows, however, remains a difficult task due
to the inherent chaotic and multi-scale nature of turbulence. The resolution without
models of the Navier—Stokes equations, called direct numerical simulation, requires a
sufficient spatiotemporal resolution to describe the smallest turbulent structures while
ensuring that the computational domain is large enough to capture the largest flow
structures. As a result, the direct numerical simulation of turbulent flows requires
considerable computer resources, and is therefore only practicable for simple geometries
and for a moderate Reynolds number.

In spite of this, the direct numerical simulation of turbulence has since its ad-
vent [100, 218] proved to be a powerful tool for the fundamental study of turbulence.
The usefulness of direct numerical simulation is due to two unique characteristics.
First, they give access to all the three-dimensional fields that characterise the fluid as
a function of time, making it possible to determine any quantity of interest from the
simulation, including those that would be difficult or impossible to determine experi-
mentally. Second, direct numerical simulation allows complete control over turbulence,
through initial and boundary conditions, and the manipulation of resolved equations.
Reliable scientific inferences may be drawn from the results of direct numerical sim-
ulations because the mathematical models expressed by the Navier—Stokes equations
(Newtonian fluid, Fourier’s law, ideal gas) provide a relevant and valid description of
the dynamics of many flows, at all turbulence scales [202].

The direct numerical simulation of the low Mach number equations (1.67)—(1.70)
allows the use of different numerical methods than the Navier—Stokes equations (1.1)—
(1.3) because of the removal of acoustic waves and the decomposition of pressure in
two terms [206, 205]. In order to resolve the low Mach number equations from direct
numerical simulation, we use a finite difference method in a staggered grid system [200,
212] and a third-order Runge-Kutta time scheme [313] using the TrioCFD software [38].
The resolution algorithm and the numerical schemes are presented in this section.

1.2.1 Resolution algorithm

The resolution algorithm used to resolve the low Mach number equations (1.67)—
(1.70) is presented in this section. The algorithm aims to ensure that as many conser-
vation properties as possible are exactly verified numerically. The algorithm ensures
the local and global conservation of energy, using the energy conservation equation to
determine both the thermodynamical and mechanical pressures. The mass conserva-
tion is only guaranteed locally. The overall conservation of the mass is ensured by the
quality of the computation of the divergence of the mass flux.

A projection method is used to compute pressure and velocity. Projection methods
were introduced in the context of numerical simulations by Chorin [54], Temam [289]
following the basic ideas of prior works [171, 172, 152, 105]. Projection models are
based on a two-step procedure. First, an intermediate velocity field is computed by
ignoring the pressure term in the momentum conservation equation. Then, the in-
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termediate velocity is corrected using a pressure equation to impose the constraint of
the energy conservation equation on the divergence of the velocity. This results in the
decoupling of the computations of the velocity and the pressure fields. The low Mach
number equations can be resolved, at each timestep, from the resolution of a sequence
of decoupled equations.

We solve at each timestep the variables in the following order:

1. the density from the mass conservation equation,

prt —p" ny
2. the thermodynamical pressure and temperature using a fixed-point iteration,
namely Ppt!t = PPY2and T = 7713 where Pt = PPYF and T =
TV are computed from Pt = PPH0 and 771 = 7710 and the iteration

for k from 0 to 3 (value empirically determined to obtain convergence) of:

(a) the thermodynamical pressure from the integration on the whole domain of
the energy conservation equation,

P
Pyttt = T , (1.76)
1— 7__1—t N VTR g9

(b) the temperature from the ideal gas law,

n+1,k+1
PO

Tn+1,k+1 — : (177)

Tpn—l—l

3. the kinematic viscosity from Sutherland’s law (g = 1.716 - 107™° Pa s, S; =
1104 K, T, = 273.15 K),

3

TNz T+ S
n+1 0 1
0 “0<T0) Tl 1 g (1.78)
4. the thermal conductivity from the Prandtl number (C, = 1005 J kg=* K™
Pr =10.76),
n+10
att = B_p, 1.79
Pr 7’ (L.79)
5. the divergence of velocity from the energy conservation equation,
1 Pn+1 _ pn
VU = —— [(y-1)V -\t - 20 "0\, 1.80

6. an intermediate velocity from the momentum conservation equation without the
pressure term,

U*-ur
At ) (1.81)
+ V- (VU +VIUY)) - 3V (u"(V-U)").

n

p
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7. the mechanical pressure from the divergence of the intermediate velocity,

1 . * . n+1
v (—VP”> _ VU -V-U) (1.82)
pm At
8. the velocity from the momentum conservation equation,
Un+1 _ U*
7 — _vpn 183
A (183)

To simplify the expressions, the derivatives are given with an explicit Euler discretisa-
tion. In the actual algorithm, the time derivatives are discretised using a third-order
Runge-Kutta method [251, 153].

1.2.2 Stability timestep

The timestep At of the simulation is determined at each timestep in order to re-
spect stability criteria. The energy conservation equation acting as a constraint on the
pressure in the resolution algorithm, it has no associated stability constraints. The
timestep of the simulation is therefore only determined by the stability requirements
of the momentum conservation equation.

Two stability criteria are used. In accordance with the Courant-Friedrichs-Lewy
condition [69], the timestep of the simulation must be small enough for the fluid to be
at no point of the domain able to travel more than one mesh in one timestep. In other
words, the convection stability timestep defined by

1 u. U, U,
- A T A - 1.84
Atconv Imrvl&? {AI + Ay + AZ:| ( 8 )

In addition, we associate to the momentum diffusion a stability timestep defined by

! S) L (1.85)
= 1m 1% . .
Alagr  war Az A2 A2

The timestep of the simulation is the half of the harmonic mean of these two values,

L1
At B Atconv Atdiff.

(1.86)

In practice, the timestep is only updated if it is less than the previous timestep, or if
the difference is more than 5 %.

1.2.3 Numerical schemes

The equations are discretised in a rectangular three-dimensional grid with a nonuni-
form grid spacing. A finite difference scheme is used in a staggered grid system. The
scalar variables (pressure, density, temperature, viscosity, thermal conductivity etc.)
are stored at the same points while the velocity components are distributed around
these locations (see figure 1.2). The scalar variables are located at the centre of the



1.2. Numerical schemes and resolution algorithm 19

rectangular cells of the grid while and the velocity components at the centre of the faces
of the cell they are perpendicular to. All the terms of the mass and energy conservation
equations are discretised at the same location as the scalar variables. The terms of the
momentum conservation equation in the i-th direction are discretised at the centre of
the faces perpendicular to the i-th direction.

In the remaining part of this section, we give the discretisations and numerical
schemes used in more details. In order to describe the nonuniform staggered grid
system, we introduce a formalism to describe the discretisation of staggered fields.
The reader in a hurry might prefer to skip this part up to section 1.3.

In each direction k, we define an uniform grid coordinate £ = nAy, where Ay is
a constant. A monotonic differentiable function f, maps the points of the uniform
computational grid to the nonuniform grid. That is, the nonuniform grid coordinate
is given by x} = fi(£"). The points of the uniform grid are triplets of the form
(€n= &, €7=), associated with the point of the nonuniform grid (z"=,y™, 2"=). These
points may be given by a position vector &= """ = x7* e, where ey is the unit vector
in direction k.

Consider that the points of the form (27, ", 27#) corresponds to the centre of
the cells. Then, we denote @"="v": = qﬁ(a:k ex) = ¢(x", y"™ 2"*) the value of the
three-dimensional field ¢ discretised at the centre of the Cells. In order to account for
the staggered discretisation of velocity, we denote (b"l’”y’nz the field ¢ staggered o cells
in the ¢-th direction,

Py = Dlapte + (27 — 2 )es), (1.87)

[i:]

where summation is carried over k but not over i¢. For instance, the value of ¢ at
NNy, Nz

the centre of a face perpendicular to the x direction is represented by ¢ Ty =

P(zm==1/2 g 2m=). We have the property (b[ etz — gnatlngn: - The stackmg of the
staggering operator is allowed,

Bl = Olar e + (@ —ai)e;) + (2] — 27 e;). (1.88)

J J

N My, Nz

where summation is carried over k but not over ¢ or j. For instance, ¢ a1/ =

P(am==1/2 gmu=1/2 2n2) represents the value of ¢ at the centre of an edge of the cell.

Notice also that (bf;ml%’[";j g = s,

With this formalism, we have knowledge in the staggered grid system of pressure
Premy= - temperature 17" "= density p™+™v"= viscosity p™* ™" and thermal con-

ductivity A" ™™= at the centre of the cells and of the three components of velocity
U I?[Znyl;g] at the centre of the faces they are perpendicular to, namely Ux[fc’nyl’;l;], U;[Ziyl;li
and U." "”1/"; More generally, if ¢" ™" is a three-dimensional field discretised at the

centre of the cells and U,

N, Ny ,Nz Ny »nyanz

the i-th component of velocity, the values of qb
and U Tf&"y’ln/;] are available if a is an integer. Otherwise, their value may be est1mated
using an interpolation.

The following unweighted interpolation operator is defined,

—liza) _ Pliat1/2) + Plia-1/2)

% > (1.89)
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Figure 1.2 — Staggered grid system.

We extend this definition to a two-dimensional interpolation using

o A
p A X if i 7 (1.90)
¢[i:o¢+5} ifi = Js
where no interpolation is carried out if i = j because the value of ¢p;.q44) is supposed
available.

In addition, we introduce the notation

A[z:a]¢nz,ny»nz — ¢gmcf—l:1772z} — (bﬁxo’jiyl’;ls] (191>

It follows that Az}’ = A[j’o]x?j =z T2 x’ ~12 i the cell size the j-th direction.

1.2.3.1 Mass conservation equation

The mass convection is discretised using the third-order QUICK scheme [170] with
a FRAM filtering [46],

0pU; _ Al (p;[j:—1/2]Uj[jr—1/2}) (1.92)
8:1:j A$j ’ .
with,
( ——l5i—1/2]\ 2
% p+p i (A:I?J ) %
(1= 05may) (55— T Curv;) + 05y p
if Ujpjia1/2) 2 0
Pilji1/2) = 122
* p+P ji— Al‘j *
(1= 8am) (55 = ( 8 ) Curvjij.1)) + 055y oy i)
if Ujfji1/2 <0,

(1.93)
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where

- 1]_p/21 — pb{fﬁl/m’ (1.94)
Az, Az Ax;Ax

and 5 19 = Max (5 ljim1], 0; ) where

4
P - pmin ]
= 2L} ] 195
! Pmax,j — Pmin,j ( )

with Pmin,j = min (p[j:71]7 p[j:l]) and Pmax,j; — Max (p[j:fl}a p[j:l])'

Curv; =

1.2.3.2 Momentum conservation equation

The momentum convection is discretised using a fourth-order centred scheme [12],

lii—1/2] ——~— [5:—1/2]

(0U]~Ui> _ Ab#1/2] (Uj[j:—1/2] . Usli=—1/2] ) (1.96)
8xj [i:—1/2] ij[1:*1/2]
with
T[ -1/2] —li—1/2
=172 _ Ujgjimyymp A + U rg B
Uj[jifl/Q] = 1[J -1/2] [j:—1/2] ) (197)
Azl + Az}
and
—— [j==1/2]
i[i:—1/2] =
Tl 1/2,:-1/2] —lii=1/2,j:-1/2] ——— gl 1/2.0:-1/2]
g (A Y )Uifiz—1/21(j:-2)
gl 1/2,5:-1/2)] —li:=1/2,j:-1/2] ——— gl 1/2.0:-1/2]
+g2(A"L‘il ' ) "L‘il[ 2 /]7Al‘il+1 ) i[i:—1/2][5:—1]
——0:—=1/2,5:—1/2 Gi— T —:—1/2,5:=1/2
—I—g3(Al‘?iil[ / J /]7Al‘?l[ 1/27] 1/2]7Al‘7.7””+1[ / J /]) Z[’L 1/2]
Tl 1/2,:-1/2] —li:=1/2,j:-1/2] ——— gl 1/2.5:-1/2]
+g4(Axl ' 7A"L‘il[ [t Amil+1 ) i[i:—1/2][5:1]»
with,
(dy)* (dy + 2ds)
di,dy,d3) = — , 1.98
gi(diydads) = = g I (s do + ) (1.98)
(dy + 2dy) (dg + 2d3)
di,ds, d3) = , 1.99
92(1 2 3) 8d1(d2+d3) ( )
(do + 2dy) (do + 2d3)
di,dy,d3) = , 1.100
93 (1, dz, dy) 8ds (dy + do) (1.100)
dy)® (dy + 2d
94 (dy, da, d3) = — (da) (d; +2d1) (1.101)

8z (dy + d3) (dy + do + d3)

The terms of the momentum diffusion are given by a second-order discretisation,

ALH/2] (=12~ 1/21—A“ /Uy y2))

Az —~—i:—1/2,5:—1/2]

0 ( GUZ-)
2 (u - o (1.102)
Ox; \ Ou; [i:—1/2] A:Uj[' 12
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AL1/2) (gli1/25:-1/2) AE2I0; o1 y2) )

0 oU; [5=1/2,5:—-1/2]
dz; (Mé’ ]> - T (1.103)
i Ti/ fi-1/2) Az,"

(1.104)

i A=y,
9 (M8U1> _amA (u[z’:—u—4 eam—
axi 83}1 [i—1/2] Ax‘[z:fl/ﬂ

)

1.2.3.3 Energy conservation equation

The divergence of velocity is computed using a second-order centred discretisation,

oui\ _ AT

(1.105)

The temperature diffusion is discretised according to the following second-order

scheme,
A[jﬂ/g]x[j:fl/ﬂ Alii=1/2]7

0 or A T2
A = 4 1.1

1.3 Study configuration

Using the above-described numerical method, direct numerical simulations of fully
developed turbulent channel flows with and without temperature gradient are carried
out. This geometry provides a very simplified model of the flow in a high-temperature
solar receiver and is one of the simpler configuration that reproduces the distinctive
features of low Mach number strongly anisothermal turbulent flows. The channel has
been simulated in the incompressible isothermal case and in the anisothermal case at
a mean friction Reynolds number of 180 and 395. The results of the direct numerical
simulation are representative of the wall turbulence of strongly anisothermal turbulent
flows and are therefore meaningful for the flows found in solar receivers.

In this section, the geometrical configuration of the channel and the numerical
setting used for the simulations are described. The validation of the numerical method
is discussed and the mean flow variables are given. The results of the direct numerical
simulations will be investigated throughout the rest of the manuscript.

1.3.1 Channel flow configuration

We consider a fully developed three-dimensional turbulent channel flow under a
strong temperature gradient, as represented in figure 9.1. For validation and compari-
son purposes, we also consider the channel in the incompressible isothermal case, that
is without temperature gradient. The channel is periodic in the streamwise (z) and
spanwise (z) directions. The wall-normal direction is denoted (y). The channel walls
are at constant temperature. In the isothermal channel, the two walls are at the cold
temperature 77 = 293 K. In the anisothermal channel, the temperature of the cold wall
(y = 0) is 71 = 293 K and the temperature of the hot wall (y = 2h) is T, = 586 K.
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Figure 1.3 — Biperiodic anisothermal channel flow.

This creates a temperature gradient in the wall-normal direction. Since the channel
is periodic, the dissipative action of the viscous shear stress is not balanced out by a
streamwise pressure gradient. A streamwise volume force f is added to the channel
to replicate the effect of a streamwise pressure gradient and maintain a constant mass
flow rate.

For all simulations, a constant Prandtl number Pr = 0.76 is assumed. The flow is
therefore characterised by the Reynolds number. It is customary in wall turbulence to
define for this purpose the friction Reynolds number, defined by

h
Re., = " (1.107)

Vw

with A the half-height of the channel, v,, the wall kinematic viscosity and U the friction

velocity,
| (oU,
UT = Vw(a—y>w. (1108)

In the anisothermal channel, the two walls have a different friction Reynolds number.
We define the mean friction Reynolds number as the average of the friction Reynolds
number at the cold and hot sides,

1
Re, = 3 (Rer1 + Re;o). (1.109)

We carried out direct numerical simulations of the isothermal and anisothermal channel
at Re, = 180 and Re, = 395. These friction Reynolds number have been selected to
enable an easier comparison with reference data from the literature (in particular [203]).
The mean flow variables of the direct numerical simulations are given in table 1.1. The
bulk Mach number of all simulations is below 2 x 1072, justifying the low Mach number
hypothesis.

1.3.2 Numerical settings

The simulations use a regular mesh in the homogeneous directions (z and z) and
a nonuniform mesh in the wall-normal coordinate direction (y). The wall-normal grid
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DNS180-1  DNS180-2  DNS395-1  DNS395-2
Mass flow rate, kg/s 9.40 x 1073 1.11x 1072 1.57 x 1072 1.76 x 102
Bulk velocity U’ = o 02h U.dy, m/s 1.88 x 10T 3.24 x 1010 4.72 x 10T 7.68 x 1010
Bulk temperature 7% = 5- f02hT dy, K 2.93 x 1072 4.32 x 1072 2.93 x 1072 4.33 x 1072
Bulk density p® = 5 Ozhﬁdy, kg/m3 1.78 x 1019 1.23 x 1010 1.78 x 107 1.23 x 1010
Bulk dynamic viscosity p’ = 3= OQhﬂdy, Pa s 1.81 x 107° 240 x107° 1.81 x 107° 2.41x107°
Bulk kinematic viscosity v® = ﬁ f02h vdy, m? /s 1.02 x 107° 2.02x107° 1.02x107° 2.01 x 107°
Bulk thermal conductivity A’ = o 02h Ady, W/(mK) 2.39x1072 3.18 x1072 239 x 1072 3.19 x 1072
Bulk Reynolds number Re = p?U°h/ b 2.77 x 1073 247 x 10*3  6.93 x 1073 5.85 x 1073
Bulk Mach number Ma = U®/+\/yrT? 548 x 1073 7.77x 1073 1.38 x 1072 1.84 x 1072
Centerline streamwise velocity Uy centre, M/S 2.20 x 1019 3.80 x 1010 5.41 x 1019 8.84 x 1010
Centerline wall-normal velocity |Uy centre|, m/s — 2.98 x 1073 — 6.24 x 1073
Centerline Temperature Tyentre, K — 4.27 x 1012 — 4.30 x 1012
Cold friction velocity Uy1, m/s 1.20 x 1071 1.78 x 107! 2,67 x 1071 3.79 x 107!
Cold friction temperature 7’1, K — 5.45 x 1010 — 5.14 x 1010
Cold friction Reynolds number Re.; = p1Ur1h/m 1.76 x 1072 2.60 x 1072 3.93 x 1072 5.56 x 102
Cold wall heat flux Q1 = |A1(9,T)1], W/m? — 1.73 x 1073 — 3.49 x 1013
Cold wall shear stress 71 = u1(9,U,)1, Pa 2.56 x 1072 5.64 x 1072 1.27 x 107! 2.56 x 10~}
Hot friction velocity Uy, m/s 1.20 x 1071 236 x 107! 2,67 x 107! 5.05 x 107!
Hot friction temperature T o, K — 8.13 x 1010 — 7.59 x 1010
Hot friction Reynolds number Re, s = poU;2h/p2 1.76 x 1072 1.05 x 1072 3.93 x 1072 2.27 x 102
Hot wall heat flux Q = |A2(8,T)2|, W/m? — 1.71 x 1013 — 3.45 x 1013
Hot wall shear stress T2 = ua(9,Uy)2, Pa 2.56 x 1072 4.95x 1072 127 x 107! 229 x 10!
Mean friction Reynolds number Re, = %(Reﬂ +Rern) 1.76 x 1072 1.83 x 1072 3.93 x 1072 3.92 x 1012
Mean wall heat flux @ = 3 (Q1 + Q2), W/m? — 1.72 x 1073 — 3.47 x 1013
Mean wall shear stress 7 = 3 (71 + 72), Pa 2.56 x 1072 530 x 1072 1.27 x 107! 2.43 x 102

Table 1.1 — Mean flow variables of the direct numerical simulations.
points are given by a hyperbolic tangent law,
1 k—1
yp = Ly <1 + atanh [(Ny I 1) tanhl(a)l) , (1.110)

with a the mesh dilatation parameter and N, the number of grid points in the wall-
normal direction. The numerical settings of the direct numerical simulations are given

as follows:

Isothermal simulation at Re, = 180 (DNS180-1)

The domain size is 4mh X 2h x 2wh, with h = 15 mm, and the mesh used contains
384 x 266 x 384 grid points. The cell sizes in wall units are A = 5.8, A;r = 0.085
at the wall and 2.9 at the centre of the channel and Af = 2.9. The mesh

dilatation parameter is a = 0.0970.

Anisothermal simulation at Re, = 180 (DNS180-2)

The same mesh and domain as the incompressible isothermal simulation at Re, =
180 is used. Given the higher friction Reynolds number at the cold side, the cell
sizes in wall units are Af = 8.5, A7 = 0.13 at the wall and 4.2 at the centre of

the channel and A} = 4.2,
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Isothermal simulation at Re, = 395 (DNS395-1)

The domain size is 4wh x 2h x 4/37h and the mesh used contains 768 x 512 x 512
grid points. The cell sizes in wall units are A} = 6.4, Af = 0.18 at the wall and
2.9 at the centre of the channel and A = 3.2. The mesh dilatation parameter is
a = 0.0937.

Anisothermal simulation at Re, = 395 (DNS395-2)

The same mesh and domain as the incompressible isothermal simulation at Re, =
395 is used. Given the higher friction Reynolds number at the cold side, the cell
sizes in wall units are A} = 9.1, A} = 0.25 at the wall and 4.1 at the centre of
the channel and A = 4.6.

The simulations at Re, = 180 and Re, = 395 have the same level of refinement. The
small differences are due to the constraints of the numerical method (multigrid solver)
and parallelism.

The mass flow rate is imposed by the streamwise volume force f. The volume force
is determined using a control loop,

— 2Dy + Dy

Dtar et
— o i
Jis1= [ +Co N ;

(1.111)

with Cy = 3/(10L,L,) a damping constant, D the mass flow rate, Diaee the targeted
mass flow rate and t — 1, ¢t and t + 1 indices related to the previous, current and
next time step respectively. This is equivalent to a non-constant streamwise pressure
gradient whose small fluctuations maintain the mass flow rate around a targeted value.

1.3.3 Data acquisition

The turbulence statistics are computed using two data collection procedures. In
the first method, the statistics are computed on the fly during the simulation. In
the second method, the statistics are computed from instantaneous DNS data saved
during the simulation. The on-the-fly computation of the statistics makes use of the
information of every timestep of the simulation. The post-simulation computation of
the statistics use the saved DNS data, available once every 200 timestep due to storage
size constraints. Identical results are obtained using the two methods.

The knowledge of the mean and fluctuating flow variables is required for some
posttreatments, for instance the computation of the terms of the turbulence kinetic
energy budget. In that case, the statistics are computed in two steps. First, the mean
flow variables are computed following the ergodic hypothesis as an average over time
and the homogeneous directions. Then, the more complex statistics are computed
using the mean flow variables computed in the first step. If the statistics are computed
from saved DNS data, the same DNS data may be used for the two steps. The data
collection duration is 61 characteristic time (h/U;) for the isothermal simulation at
Re, = 180, 42 characteristic time for the anisothermal simulation at Re, = 180, 29
characteristic time for the isothermal simulation at Re, = 395 and 40 characteristic
time for the anisothermal simulation at Re, = 395.
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Number of grid points Dimension of the domain  Cell sizes in wall units
N; x Ny X N, Ly x Lyx L, AL AF(0)-AF(h); AF
DNS180-1 384 x 266 x 384 4dmth x 2h x 2mh 5.8; 0.085 -29; 2.9
MED180-1 192 x 190 x 192 2h x 2h x (4/3)7h 5.8; 0.16 - 3.7; 3.9
COA180-1 96 x 118 x 64 2h x 2h x (4/3)7h 12 0.17 - 6.7; 12
120A180-1 120 x 102 x 120 4dmh x 2h x 2mh 19; 0.085 -9.7; 94
96A180-1 96 x 88 x 96 4dmth x 2h x 2mh 245 0.085 - 12 ; 12
72A180-1 72 x 68 x 72 4dmth x 2h x 2mh 31; 0.085 - 16 ; 16
48A180-1 48 x 50 x 48 4dmth x 2h x 2mh 47 5 0.085 — 23 ; 24
36A180-1 36 x 40 x 36 4dmth x 2h x 2mh 63 ; 0.085 - 30 ; 31
24A180-1 24 x 28 x 24 4dmth x 2h x 2mh 94 ; 0.085 — 46 ; 47
DNS180-2 384 x 266 x 384 dmh x 2h x 2mh 85; 0.13-4.2; 4.2
MED180-2 192 x 190 x 192 2mh x 2h x (4/3)wh 8.6; 0.25-6.1; 7.0
120A180-2 120 x 102 x 120 4dmh x 2h x 2mh 275 0.13-14 ; 14
96A180-2 96 x 88 x 96 4dmh x 2h x 2mh 34; 0.13-17 ; 17
72A180-2 72 x 68 x 72 4dmh x 2h x 2mh 45; 0.13 - 23 ; 23
48A180-2 48 x 50 x 48 4dmh x 2h x 2mh 68; 0.13-33 ; 34
36A180-2 36 x 40 x 36 4dmh x 2h x 2mh 91; 0.13-43 ; 45
24A180-2 24 x 28 x 24 4dmh x 2h x 2mh 136 ; 0.13 - 66 ; 68
DNS395-1 768 x 512 x 512 4dwh x 2h x (4/3)7h 6.4; 0.18-29; 3.2
DNS395-2 768 x 512 x 512 4dmh x 2h x (4/3)7h 9.1; 0.25-4.1; 4.6
96B395-2 96 x 100 x 64 4dmh x 2h x (4/3)7h 735 0.50 - 27 ; 36

Table 1.2 — Computational domain and grid spacing of the simulations.

1.3.4 Validation

The numerical method is validated by a mesh convergence study and the comparison
of the results in the incompressible isothermal case to the reference data from the
literature. The mesh convergence is verified from the simulation of the channel with
meshes of increasing refinement. A list of the meshes used is given in table 1.2. The
mesh convergence is given in the isothermal channel at Re, = 180 in figure 1.4, in
the anisothermal channel at Re, = 180 in figure 1.5, in the isothermal channel at
Re, = 395 in figure 1.6, in the anisothermal channel at Re, = 395 in figure 1.7.
The mesh convergence of all statistics is attained for the isothermal simulation at
Re, = 180. In the anisothermal channel at Re, = 180, the mean streamwise velocity,
the covariance of streamwise and wall-normal velocity and the mean temperature are
converged but there is a small difference between the medium and fine meshes for the
standard deviation of temperature. The convergence of the simulations at Re, = 395
follows since they use a similar mesh refinement.

Besides, the results are compared in the incompressible case to the reference data
of Moser et al. [203], Vreman and Kuerten [305] and Lee and Moser [167] at Re, = 180
and Moser et al. [203], Lee and Moser [167] at Re, = 395. These numerical results
have been validated against experimental data [63, 92, 151, 9]. The results of the
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Figure 1.4 — Mesh convergence of the profiles of the mean streamwise velocity (U) (left)
and the covariance of streamwise and wall-normal velocity <u;u;> (right) in the isothermal
channel at Re; = 180. The values are scaled by the friction velocity. The reference data is
from Moser et al. [203].

ut

T(K)

25 T T

DNS180-2
MED180-2
550 |- 72A180-2

>0 m

250 : :

0 0.5 1

1.5 2

(v)*

Trms*

DNS180-2 m
MED180-2 o |
72A180-2

0.5 1 1.5 2

Figure 1.5 — Mesh convergence of the profiles of the mean streamwise velocity (U,) (top
left), the covariance of streamwise and wall-normal velocity <u;u;> (top right), the mean

temperature (T') (bottom left) and the standard deviation of temperature

(T"2?) (bottom

right) in the anisothermal channel at Re,; = 180. The values are scaled by the friction velocity
and the friction temperature.



28 1. Physical and numerical settings

25 1

DNS395-1 =
Moser et al. 395 ]

o
©
T

u*

DNS395-1
Moser et al. 395 ) 1 . . .

0 0.5 1 15 2 0 0.5 1 1.5 2

Figure 1.6 — Mesh convergence of the profiles of the mean streamwise velocity (U) (left)
and the covariance of streamwise and wall-normal velocity (u,uj,) (right) in the isothermal
channel at Re; = 395. The values are scaled by the friction velocity. The reference data is
from Moser et al. [203].

15 ‘ ‘ :
DNS395-2 =
96B395-2 4
N
=l
DNS395-2 m
96B395-2 &
0 ‘ ‘ 15 ‘ ‘ ‘
0 05 1 15 2 0 05 1 15 2
600 T ; 4.5 T :
DNS395-2 = DNS395-2 ®
96B395-2 4 | 96B395-2
— +(I)
< €
L =

.
.
N
05%
:

0.5 1 1.5 2

0 0.5 1 1.5 2

250

o

Figure 1.7 — Mesh convergence of the profiles of the mean streamwise velocity (U,) (top
left), the covariance of streamwise and wall-normal velocity <u;u;> (top right), the mean
temperature (T') (bottom left) and the standard deviation of temperature /(T"2) (bottom
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isothermal direct numerical simulations are nearly identical to the reference profiles,
validating the numerical method at the incompressible limit. This is shown in figure
1.4 at Re,; = 180 and in figure 1.6 at Re, = 395. In the anisothermal configuration, no
direct simulation data is available from the literature. The results have been compared
to experimental data for a similar friction Reynolds number and temperature gradient
by Bellec et al. [21]. The results are also compared to the reference data of Aulery et al.
[10] at Re, = 180 and Toutant and Bataille [290] at Re, = 395, but these simulations
use the same numerical code.

Conclusion

The strongly anisothermal low Mach number turbulent flows found in solar receivers
are subjected to large variations of the fluid properties without the purely compressible
effects of high-speed flows such as acoustic waves. The simplification of the Navier—
Stokes equations in the limit of low Mach number but taking into account the variations
of the fluid properties with temperature leads to the low Mach number equations. This
removes acoustic effects from the Navier-Stokes equations and lets us focus on the
study of the interaction between turbulence and the temperature gradient. The low
Mach number equations and the ideal gas law leads to a distinctive form of the energy
conservation equation, which imposes the local energy conservation by a constraint
on the divergence of the velocity. The numerical simulation of the low Mach number
equations has less timestep constraints because of the removal of acoustical waves and
allows the use of a resolution algorithm based on a projection method to compute
pressure and velocity.

The direct numerical simulation with this numerical method of strongly aniso-
thermal turbulent channel flows is to some extent representative of the strongly aniso-
thermal turbulent flows found in solar receivers. The direct numerical simulations
provide an accurate description of the effects of the interaction between turbulence
and the temperature gradient on the motion of the fluid. The direct numerical sim-
ulations are used to carry out an investigation of the energy exchanges between the
different parts of total energy in the spatial and spectral domains. In particular, the
study of the energy exchanges associated with the half-trace of the velocity fluctuation
correlation tensor, computed from the direct numerical simulations, lets us infer the
effect of the wall, the temperature gradient and the friction Reynolds number on the
energy exchanges. The filtering of the instantaneous direct numerical simulation data
is used to estimate the subgrid terms involved in the large-eddy simulation of the low
Mach number equations. It also allows the a priori investigation of the subgrid-scale
modelling, by comparing subgrid-scale models to the exact subgrid terms computed
from the direct numerical simulations. Finally, the direct numerical simulations and
filtered direct numerical simulations provide useful reference data for the interpretation
of the results of large-eddy simulations.
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Energy exchanges






Chapter 2

Introduction of part I

Energy exchanges in fluids are the transformation of energy between different forms
and its transfer between locations. The study of the energy exchanges rely on the phys-
ical decomposition of total energy into internal energy, associated with temperature,
and kinetic energy and the further decomposition of kinetic energy to associate a ki-
netic energy to the turbulent motion and a kinetic energy to the mean motion. Given
the differences of physical implications, the knowledge of the different parts of total
energy and not only total energy is often necessary for a satisfactory description of the
flow behaviour. The energy exchanges are fundamental processes in turbulence which
drives the evolution of the different parts of total energy. In particular, the energy
exchanges associated with turbulence kinetic energy redistribute the energy from the
scales and locations it is produced to other scales and locations [197]. These spatial
transfer and interscale transport of turbulence kinetic energy determine the continuous
spectrum of turbulence kinetic energy and its spatial profile. The knowledge of the
energy exchanges associated with turbulence kinetic energy are important because this
quantity gives a measure of the intensity of turbulence. It is critical for the modelling of
the Reynolds-averaged Navier—Stokes (RANS) equations, since most models are based
on the estimation of turbulence kinetic energy, either directly or from the modelling of
the energy exchanges. The energy exchanges are also relevant to the large-eddy simula-
tion of turbulent flows, which models the filtering out of small scales of the turbulence
kinetic energy spectrum.

Homogeneous isotropic incompressible turbulence is a well-documented canonical
case for the study of the energy exchanges [16, 104, 297|. Theories and models of
homogeneous isotropic incompressible turbulence have been validated with experiments
and direct numerical simulations [254]. Since the flow is homogeneous, there are no
spatial transfer of energy on statistical average. The only relevant part of total energy
is turbulence kinetic energy, produced through a forcing and irreversibly converted
to internal energy, that is dissipated. The production of turbulence kinetic energy
occurs at large scales and the dissipation at small scales, given by Kolmogorov length
scale [311]. In the intermediate range of scales, called inertial subrange, an energy
cascade transports the energy towards small scales [288]. The Reynolds number has
a large effect on the energy exchanges. At higher Reynolds number, the dissipation
occurs at smaller scales, separating distinctly the peaks of production and dissipation
(figure 2.1). Accordingly, a large inertial subrange is created where the interscale
transport is zero, or equivalently where a constant spectral flux transports turbulence
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Figure 2.1 — Typical spectra of turbulence kinetic energy (top) and of interscale transport
and the interaction with internal energy, premultiplied by the wavenumber k& (bottom) in ho-
mogeneous isotropic incompressible turbulence at Taylor Reynolds number of Rey = 30 (left)
and Rey = 10° (right). The scales are arbitrary. The straight lines are Kolmogorov's —5/3
slope. The spectra are from eddy-damped quasi-normal Markovian simulations of W. Bros
given in Sagaut and Cambon [254].

kinetic energy towards small scales without production or dissipation. The energy
exchanges determine the spectrum of turbulence kinetic energy, which follows, in the
limit of infinite Reynolds number, the universal Kolmogorov’s —5/3 slope in the inertial
subrange [108].

In the strongly anisothermal turbulent flows found in solar receivers, this canonical
description of the energy exchanges is modified by the influence of the walls and the
temperature gradient. Wall-bounded turbulent flows are intrinsically anisotropic and
inhomogeneous in the wall-normal direction. They provide a very different physics
from homogeneous isotropic turbulence [134] because of a two-way interaction between
the structures of the inner and outer layers [34, 80, 192]. Under the low Mach number
hypothesis, the effect of dissipation on internal energy is neglected, whereas its effect
on kinetic energy is taken into account. The energy exchanges are reduced to the
interaction between mean kinetic energy and turbulence kinetic energy. In the inner
layer, the mean velocity gradient provides without forcing a production of turbulence
kinetic energy, converting mean kinetic energy to turbulence kinetic energy, while the
dissipation mainly occurs in the viscous layer [136]. Unlike in homogeneous isotropic
turbulence, the energy is hence both transferred spatially and transported in between
scales, adding additional effects to the classical energy cascade [183, 134, 83, 188, 85,
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28, 59|. This has been demonstrated by studies of the statistically averaged energy
exchanges in the spectral domain [28, 165, 197, 166, 262|

The temperature gradient adds another layer of complexity to this heavy modifica-
tion of the homogeneous isotropic energy exchanges. In strongly anisothermal turbulent
flows, the temperature gradient leads to significant variations of the fluid properties
(density, viscosity and thermal conductivity), altering the behaviour of flow and the en-
ergy exchanges 35, 168, 127, 164]. The effect of the variations of the fluid properties on
the energy exchanges is not only found in high-temperature solar receivers and benefit
to and from the study of the high-speed flows [67, 161, 101, 84, 198|, heat exchang-
ers and cooling systems [329, 39, 163, 330| or fluids at supercritical pressure within
a small temperature range [319, 226, 210]. In each case, the variations of the fluid
properties modifies the mean flow variables and the incompressible near-wall scaling
fails. In strongly anisothermal turbulent channel flows, the temperature dependence
of the fluid properties creates an asymmetry between the hot and cold sides of the
channel related to the alteration of the energy exchanges. The direct numerical simu-
lation of strongly anisothermal turbulent flows can provide high-resolution data useful
for the study of the energy exchanges, for instance through the statistically averaged
production, spatial transfer, interscale transport and dissipation of turbulence kinetic
energy.

We investigate the energy exchanges in strongly anisothermal turbulent channel
flows from the direct numerical simulations. In particular, we focus on the energy
exchanges associated with the half-trace of the velocity fluctuation correlation tensor, a
part of turbulence kinetic energy. A spectral analysis of each energy exchange is carried
out to give both the spatial and spectral dependence of the energy exchanges. Chapter 3
develops a new representation of the energy exchanges based on the Reynolds averaging,
providing a theoretical basis for the investigation and the interpretation of the energy
exchanges. Chapter 4 studies on this basis the effect of the temperature gradient on the
energy exchanges associated with the half-trace of the velocity fluctuation correlation
tensor at Re, = 180. Chapter 5 carries on the study to Re, = 395 to investigate the
combined effect of the Reynolds number and the variations of the fluid properties on
the energy exchanges.






Chapter 3

Equations of energy exchanges in
variable density turbulent flows

3.1 Introduction of chapter 3

The study of the energy exchanges in strongly anisothermal turbulent flows requires
the choice of a decomposition of total energy and of the energy exchanges between the
different parts of total energy. Indeed, in variable density flows, the decomposition
of total energy is not unique and involves some arbitrariness in the identification of
a kinetic energy of the mean motion and a kinetic energy of the turbulent motion
[50]. Accordingly, it is difficult to determine the turbulence kinetic energy spectrum in
variable density flows. In this chapter, we provide a new representation of the energy
exchanges between the different parts of total energy based on the Reynolds averaging.
The Reynolds decomposition of velocity leads to the ternary decomposition of kinetic
energy into turbulence kinetic energy, mean kinetic energy and a mixed kinetic energy,
related to the interaction between the turbulent motion and the mean motion. The
Reynolds decomposition of density then extends the decomposition of total energy,
splitting each term in a mean density part and a fluctuating density part.

To devise the formulation of the energy exchanges, we temporarily work with the
Navier—Stokes equations directly instead of the low Mach number equations. This is
necessary for a consistent description of the energy exchanges since the low Mach num-
ber equations neglect the effect of dissipation on internal energy. Care is taken to pro-
vide a formulation that generalises to the local instantaneous energy exchanges. This
lets us consider the statistically averaged energy exchanges as the statistical average of
instantaneous energy exchanges, which is not possible with the classical representation
of the energy exchanges in the incompressible case. While the instantaneous energy
exchanges are not explored further in this thesis, they can be investigated theoretically
or from direct numerical simulations. Kida and Ohkitani [143, 142] provide an example
of such investigation in forced isotropic turbulence.

The study of the scale dependence of the energy exchanges from direct numerical
simulations is eased by the formulation and the use of the Reynolds average. Indeed, the
formulation includes the mean density turbulence kinetic energy, product of the mean
density and the half-trace of the velocity fluctuation correlation tensor. This quantity is
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a good approximation of turbulence kinetic energy under Morkovin’s hypothesis [201],
valid in the strongly anisothermal turbulent channel flows investigated. However, the
mean density turbulence kinetic energy is simpler to handle and has unlike turbulence
kinetic energy an univocal spectral equivalent. Using this fact, we extend the analysis
to the spectral domain considering to carry out the Fourier transform a flow with two
homogeneous and periodic directions. The spectral energy exchanges are given with a
one-to-one correspondence with the spatial energy exchanges, except for the addition
of a purely spectral term corresponding to the interscale transport of kinetic energy.
This is used with slight changes in chapters 4 and 5 to study the energy exchanges
from the direct numerical simulations of strongly anisothermal turbulent channel flows
presented in section 1.3.

3.2 Paper 1

This section reproduces the paper D. Dupuy, A. Toutant, and F. Bataille. Equations
of energy exchanges in variable density turbulent flows. Physics Letters A, 382(5):327—
333, 2018 [89].

Abstract

This paper establishes a new formulation of the energy exchanges be-
tween the different parts of total energy. The decomposition uses the
Reynolds averaging. This leads to a ternary decomposition of kinetic energy
into the turbulence kinetic energy, the mean kinetic energy and the mixed
kinetic energy, acting as an exchange term between the mean and turbu-
lent motion. The formulation is then extended to distinguish a mean and
fluctuating density part of each part of total energy. The formulation thus
includes the mean density turbulence kinetic energy, product of the mean
density and the half-trace of the velocity fluctuation correlation tensor. Its
evolution equation is given in the spectral domain.

3.2.1 Introduction

This paper addresses the energy exchanges in turbulent flows with highly variable
fluid properties. This covers flows with a high Mach number (high speed flows), such
as the flows around a high-speed aircraft, or through a high speed jet or a nozzle [110],
and low Mach number flows submitted to a strong temperature gradient, found for
instance in heat exchangers, propulsion systems or nuclear or concentrated solar power
plants [15, 191, 73, 264, 265, 266, 290]. The study of the energy exchanges between
the different parts of total energy is a useful tool for both turbulence modelling and
the fundamental understanding of turbulence. More detailed information is obtained
through the study of the energy exchanges in the spectral domain [183, 81, 83, 324, 325,
83, 188, 85, 28, 59, 60, 61, 62, 165, 197|. However, while kinetic energy is fundamental
property of any flow, it is not the case of its decomposition into turbulence kinetic
energy and mean kinetic energy.
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In incompressible flows with constant fluid properties, such decomposition is unique.
The averaged kinetic energy is decomposed clearly, unambiguously and straightfor-
wardly into the sum of two contributions: the kinetic energy of the mean motion
associated with the mean velocity and the kinetic energy of the turbulent motion as-
sociated with the velocity fluctuation [see e.g. 312, 235]. In compressible flows with
highly variable density, this analysis is hindered by additional density-velocity corre-
lations. The decomposition of kinetic energy becomes more complex and arbitrary. It
is even more difficult in the spectral domain. The choice ultimately depends on the
physical role given to the additional density-velocity correlations with respect to what
constitutes the mean motion and the turbulent motion [50]. The most popular and
successful decomposition extends the incompressible decomposition to the compressible
case through the introduction of a density weighted averaging. This decomposition was
widely developed by Favre [94, 95, 96]. Since, it has been used extensively by various
authors [168, 127, 120, 185, 233|. Another approach, the mixed weighted decomposi-
tion, mixes density weighted averaging and Reynolds averaging. It was first introduced
by Bauer et al. [17] and further studied by Ha Minh et al. [122, 123]. In this formu-
lation, kinetic energy is seen as the product of the velocity and the density weighted
velocity. In a third method, kinetic energy is decomposed using a change of variable
based on the density square root weighted velocity. This decomposition was first pro-
posed by Yih [318] then adopted by various authors [144, 247, 68, 10, 11|. This change
of variable allows the study of kinetic energy to be extended easily to the spectral
domain. Finally, Chassaing [47] [see also 70, 13, 49, 50| suggested the decomposition
of kinetic energy using the Reynolds averaging. From a modelling perspective, the
use of the unweighted averaging may be advantageous in low Mach number flows, in
which the energy conservation acts as a constraint on the divergence of the velocity
[212]. The square of the fluctuating velocity (without the density) is also encountered
for instance in the modelling of two-phase flows [291] or in variable density flows, pro-
vided the momentum equation is divided by the density before averaging [272]. In
a variable density setting, the use of the Reynolds averaging necessarily leads to the
decomposition of kinetic energy into three parts, called ternary decomposition. The
kinetic energy is thus split into turbulence kinetic energy, mean kinetic energy and a
mixed kinetic energy, related to both the mean and turbulent motions. However, we
believe the underlying idea behind the ternary decomposition has not been taken to
its logical conclusion as no interaction between the mixed kinetic energy and another
part of total energy was identified.

This paper aims to establish a new formulation of the energy exchanges between the
different parts of total energy in a ternary decomposition that gives to the mixed kinetic
energy a full role. The formulation is compared to the formulation of Chassaing [47] and
the differences between the two formulations with regard to the physical interpretation
of the terms are discussed. We then take the decomposition further and split the
density into a mean and fluctuating part. This leads to the definition of the mean
density part of total energy and the fluctuating density part of total energy. The
mean density turbulence kinetic energy, product of the mean density and the half-
trace of the velocity fluctuation correlation tensor, appears in the mean density part
of the decomposition as exchanging energy with the other parts of total energy. This
quantity is approximately equal to the turbulence kinetic energy in flows satisfying
Morkovin’s hypothesis [201].
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Once the new formulation of the energy exchanges established, we focus more specif-
ically on the mean density turbulence kinetic energy. We establish its evolution equa-
tion in spectral domain, recognizing that the mean density turbulence kinetic energy
has with the Reynolds averaging a clear spectral equivalent. The spectral equation
extends the spatial equation to the spectral domain, associating to each spatial term
a spectral equivalent. To the knowledge of the authors, this has not been achieved
in the literature for variable density flows. A purely spectral term that redistributes
the energy between scales is identified, as in the work of Lee and Moser [165] and
Mizuno [197]. In order to carry out the Fourier transform, we consider a flow with
two homogeneous and periodic directions. This does not lead to a loss of generality as
the equations given may easily be adapted to a flow with one or three homogeneous
directions.

The complete representation of the energy exchanges between the different parts
of total energy is presented in section 4.2.3 and the equation of the mean density
turbulence kinetic energy in the spectral domain in section 4.2.4.

3.2.2 Energy exchanges between the different parts of total en-
ergy in the ternary decomposition

3.2.2.1 General considerations

In this section, we describe a new formulation of the energy exchanges between
the different parts of total energy in a ternary decomposition. We will establish the
formulation obtained from the decomposition of velocity, but not density, with the
Reynolds averaging, referred to as the one-stage formulation in this paper, and from the
decomposition of both the velocity and density, referred to as the two-stage formulation
in this paper. The two-stage formulation is required to write the spectral equation of
the mean density turbulence kinetic energy. We first define here a few useful quantities
and give some general remarks on the derivation of the formulation.

The total energy per unit volume p(E + I) is a conservative quantity. Its compo-
nents however are not as they exchange energy among themselves. In the following,
the evolution equation of each part of total energy in the ternary representation will
be given and we will identify the energy exchanges between these quantities. Many
consistent formulations of the energy exchanges can be proposed. The formulation was
devised according to the following criteria:

e Each term of the formulation must be either interpreted as a conservative energy
transfer or an interaction with exactly one of the other parts of total energy.

e [f a term is to be interpreted as a conservative energy transfer, it must be written
in a conservative form, that is as a divergence; otherwise, it must be written in a
non-conservative form.

e The formulation must be symmetrical, in particular with respect to the manner
in which it deals with fluctuations and statistically averaged quantities.

e The formulation must correctly behave when considering a limit case such as
laminar, homogeneous or incompressible flows. In particular, a quantity that
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becomes instantaneously equal to zero must not be associated with any energy
exchange.

We consider a non-relativistic compressible flow with highly variable fluid properties
under the continuity hypothesis. Without loss of generality, no body forces are taken
into account which means gravity is neglected and there is no heat source. The flow is
governed by the Navier—Stokes equations under the following form [109]:

e mass conservation 9 9ol
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e momentum conservation
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with p the density, T' the temperature, I the internal energy per unit mass, ¢ the time,
U; the i-th component of the velocity, 7;; the component of the total stress tensor with
the ¢ and j indices and z; the Cartesian coordinate in the i-th direction. FEinstein
summation convention is used. The total stress tensor 7;; is given by the contributions
of the viscous shear stress tensor and of the pressure stress. We will keep the total
stress tensor undissociated throughout this paper because the pressure and viscous
contributions are formally similar.

3.2.2.2 One-stage formulation

The instantaneous total energy per unit volume p(E + I) is the sum of the instanta-
neous kinetic energy per unit volume pFE and the internal energy per unit volume p/. In
the ternary decomposition, the kinetic energy is decomposed into three parts by split-
ting the velocity into a mean and fluctuating part [following 245|, namely U; = U; 4,
where the overline () denotes the statistical average and the prime symbol (') the
fluctuating part. We use a lowercase u' for the velocity fluctuation for a better visual

differentiation but there is no further underlying differences. We obtain [47|

1
pE = 5pUili = pE + pe + pe, (3.4)
with pE = %pﬁi U; the mean kinetic energy, associated with the mean motion, pe =
%pu;u; the turbulence kinetic energy, associated with the turbulent motion, and pe =
puiU; the mixed kinetic energy, associated with both the mean and turbulent motion.
This results in a fourfold decomposition of total energy.

The evolution equation of total energy p(E + I) is given by

Op(E+ 1)

=P+ PT + P> 3.5
o + T+ P, (3.5)
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with: @° the convection, ®7 the transfer by the total stress and @* the transfer by
conduction, given by:

&L‘j
o, U,
Pr = I .
0 orT
A = —_— —
P = o ()\ axj) . (3.8)

These three terms are conservative terms that represent the transfer of total energy by
three different physical phenomena. With the fourfold decomposition of total energy,
this equation becomes four equations associated with each part of total energy. This has
two effects. First, the various conservative energy transfer terms are distributed among
the four parts of kinetic energy. Secondly, additional non-conservative terms emerge.
From the decomposition of total energy into kinetic energy and internal energy appears
a new term & that represents the interaction between these two quantities. From the
decomposition of kinetic energy into three terms appears two new terms P and P that
represent an interaction between the different parts of kinetic energy.

The energy exchanges between the four parts of total kinetic energy may be written

as:
O T i +D+E (39)
%—JJFFHSJ@, (3.10)
gD (3.11)
Ol _ e -E-z (3.12)

where we identify the following terms:

e the convection @, decomposed into: @° associated with the mean kinetic energy,
¢“ associated with the turbulence kinetic energy, ¢ associated with the mixed
kinetic energy and @7>¢ associated with internal energy,

o = _32%7 (3.13)
S —ag—gje, (3.14)
o= —ag—gjg, (3.15)
gre = OPUl (3.16)
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e the transfer by the total stress &7, decomposed into: @! associated with the
mean kinetic energy and ¢! associated with the turbulence kinetic energy,

o = % (3.17)

ol = % (3.18)

e the interaction between the turbulence kinetic energy and the mixed kinetic en-
ergy P, B L

P = —puU; ZU + puiU; ggj pu Z;gﬁ}j (3.19)

e the interaction between the mean kinetic energy and the mixed kinetic energy P,

o U\’ 107,
_ | _ 2
P = —pUUj— 5. -+ U (Ujaxj) pU, (p 6%) (3.20)

e the interaction between kinetic energy and internal energy &£, decomposed into:
& associated with the mean kinetic energy and ¢ associated with the turbulence
kinetic energy,

U,
- _71.2=2" 21
é 1] ax] Y (3 )
ou,

This set of equations is represented in a schematic form in figure 4.1.

In the limit case U = 0, the mean kinetic energy E and the mixed kinetic energy e
vanish as do all energy exchange terms associated with these two quantities. The for-
mulation reduces to the sole exchanges between turbulence kinetic energy and internal
energy and describes the well-known rate of decay of turbulence kinetic energy and the
paired gain of internal energy [16]. Similarly, the formulation reduces to the exchanges
between mean kinetic energy and internal energy in the limit case u’ = 0.

We compare the energy exchanges in the present formulation to the ternary de-
composition of Chassaing [47]. While Chassaing [47] did not explicitly give the energy
exchanges between the different parts of total energy, he gave enough information to
identify the energy exchanges without ambiguity. The formulation of Chassaing [47]
may be written using the notations of this paper as:

DL 5T+ +(B+X-V)-X+E (3.23)
%=7+?+(73—)_()+)_(+5, (3.24)
%:g—?—(ﬁ—f)—(f+)?—?), (3.25)
ap_]:qﬁT»%@—E—é, (3.26)

ot =
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Figure 3.1 — Schematic representation of the energy exchanges between the four parts of total
kinetic energy (in the one-stage formulation). An arrow represents an interaction between
two quantities. The orientation of the arrow gives the sign of the term according to classical
thermodynamic convention. (The term is positive in the right-hand side of the evolution
equation of the quantity towards which the arrow points and negative in the other). The
conservative energy transfers are represented within square brackets.

with:
— oU,;
_ dpu'.e
v= - (3.28)

It is represented in a schematic form in figure 3.2.

The formulation presented in this paper and the formulation of Chassaing [47] are
mathematically equivalent. However, the energy exchanges identified and the interpre-
tation given to the terms are different. The differences can be attributed to two main
changes. First, the present formulation associates to the four parts of total energy a
convective term related to both the mean and turbulent motion, that is of the transport
by advection and diffusion. However, the formulation of Chassaing [47| only associates
an advective term to the mixed kinetic energy pe, but no diffusive term. Due to this,
the term Y, diffusion of mixed kinetic energy in the present formulation, instead ap-
pears in the evolution equation of the mean kinetic energy pE and is interpreted as
the power of the Reynolds stress through the mean motion. In addition, there is in the
formulation of Chassaing [47] a direct energy exchange X between turbulence kinetic
energy and mean kinetic energy whereas any interaction between turbulence kinetic en-
ergy and mean kinetic energy occurs through the mixed kinetic energy in the present
formulation. Both of these changes modify the energy exchange associated with mixed
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Figure 3.2 — Schematic representation of the energy exchanges between the four parts of total
kinetic energy according to the formulation of Chassaing et al. [50]. Refer to the caption of
figure 4.1 for some indications on how to read this diagram.

kinetic energy.

The formulation of Chassaing [47] is due to these two differences more similar to
the classical incompressible representation of the energy exchanges, in which the term
Y appears in the evolution equation of the mean kinetic energy and where there is
a direct energy exchange between turbulence kinetic energy and mean kinetic energy.
However, some elements suggest that the present formulation is more physical. Indeed,
it associates a full convective term to each part of kinetic energy. We consider this
as necessary as it is part of the material derivative. Besides, the formulation is more
symmetrical with regard to the manner it deals with fluctuations and statistically
averaged quantities. The formulation is not modified if the statistical average operator
and the fluctuating part operator are substituted in equations (3.13) to (3.22) and in
the definitions of pE, pe and pe. Finally, the formulation may be used to consider
the instantaneous energy exchanges as it does not rely on simplifications only valid in
the statistically averaged case. This ensures the consistency of the formulation, in the
sense that the energy exchanges in both the instantaneous and statistically averaged
cases are well-defined and are not conflicting. This consistency is important to give a
physical interpretation to the energy exchange, as this lets us consider the statistically
averaged energy exchanges as the statistical average of the associated instantaneous
energy exchanges.

3.2.2.3 Two-stage formulation

The ternary decomposition of kinetic energy is taken further with the decomposition
of density into a mean and fluctuating part p = p+ p’. Namely, total energy p(E+1) is
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decomposed into a mean density part p(E+ 1) and a fluctuating density part p'(E+1).
Similarly, the mean kinetic energy pE, the turbulence kinetic energy pe, the mixed
kinetic energy pe and the internal energy per unit volume pl are decomposed into a
mean density part, pE, pe, pe and pl respectively, and a fluctuating density part, p'E,
pe, p'e and p'I respectively. This results in a eightfold decomposition of total energy.

In this eightfold decomposition of total energy, the terms of the ternary formulation
are decomposed further in a mean and fluctuating density part. Any term « identified
in the one-stage formulation is split into two terms in the two-stage formulation: ay,
associated with the mean density part of total energy and g, associated with the fluc-
tuating density part of total energy. Moreover, additional terms appear that represent
an interaction between the mean and fluctuating density part of total energy.

The energy exchanges between the eight parts of total energy may be written as:

OpE
ot
WE
ot
ope
ot
dp'e
ot
dpe
ot

e — = = =
5 =& PP (" (3.34)

opl S
% — QT L @)+ I+ 2P — &, — 5, (3.35)

op'l
ot

— B+ O+ P+ 2+ 2T+ &, (3.29)

=5+ 0T+ P, - Z - 2T+ &, (3.30)

=5+l + P+ 4T +5, (3.31)

=X+l +P - -7 +7, (3.32)

=gt =Py — Py + C, (3.33)

=T L ) — ZTe — 70 — & — &, (3.36)

with

OpU,E
@C — _ J= QSC —
=0 &EJ 1) 1 9
B _8ﬁUj€

QOO - amj ) Y1 = 8xj )
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oU; ou, 1073,
= — U, — + pu'U;,—* — pul = —
730 pU Y 83:]' + Uy ](9.1'3‘ puzp (%cj 5
oU; ou, 1073,
— U2 g Sy 2O
731 P u; ]896]- +puz ]axj P Zp&’[j’
— ou,  _— ou;\'  _— [107\
:—_UlU L _Ui Uv—Z __Ui - Y y
Bo=v 0w, 7 ( ja%) g (Pﬁfb})
— O — ou\ = (107
= —p'U;U;— U\ Ui=— | —pU; [ -2 |,
Br=rr 10w, 7 ( 13%‘) ! <P3$j>
_ P00 g, = T 0Us
U Oay’ L p Oy
_ Yy Ou; _ P10y
o =——"2-+, 1= ——22—+,
p O p Oz;
and where we identify the following terms:
e the energy dilatation correlation Z¢,
opU; — pU;
7 = (E+I)%7 (3.37)
j

decomposed into: Z¢ associated with the mean kinetic energy, (¢ associated with
the turbulence kinetic energy, (“ associated with the mixed kinetic energy and
ZT¢ associated with the internal energy,

_ pOU; = pU;

Z°=E TR (3.38)
¢ = e@ﬁUé—ﬁ, (3.39)
‘= QaﬁUJé—x_jij, (3.40)
zhe = I%Ué—ﬁ, (3.41)

e the interaction between the mean and fluctuating density part of total energy by
the total stress Z7,

o (p
77 = TUUZaxj (p) : (3.42)

decomposed into: Z7 associated with the mean kinetic energy and (7 associated
with the turbulence kinetic energy,

9 (P
AR —Tz’jUz‘a—xj (—) ; (3.43)

9 (p
YT _ _r. | E
< - Y;Juz axj < ) ) (344)
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Figure 3.3 — Schematic representation of the energy exchanges between the eight parts of
total kinetic energy (in the two-stage formulation). Refer to the caption of figure 4.1 for some
indications on how to read this diagram.

e the interaction between the mean and fluctuating density part of total energy by

conduction Z*. R
T p
7N = — (5. 3.45
dx; Oz, <P) (349)

This set of equations is represented in a schematic form in figure 4.2.

The two-stage formulation includes the mean density turbulence kinetic energy. In
the remaining part of the paper, we will establish its evolution equation in the spectral
domain.

3.2.3 Spectral equation of the mean density turbulence kinetic
energy

The investigation of the mean density turbulence kinetic energy evolution equation
provides information on the energy exchanges associated with this quantity in the
spatial direction. The study may be extended to the spectral domain by establishing
its spectral evolution equation. This investigation permits to give the effect of the
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energy exchanges with regard to the size of the turbulent structures.

In order to write the spectral equation, we need to consider a flow with at least
one direction of homogeneity. Without loss of generality, we consider a turbulent flow
with two homogeneous and periodic directions, x and z. The inhomogeneous direction
is denoted y. The dimensions of the domain in the x, y and z directions are denoted
L., L, and L, respectively. Since the flow is periodic in the z and z directions, we
perform the Fourier transform in the x and z directions only and leave the y direction
untransformed. Any physical quantity g(x,y, z) can be expressed as a Fourier series,

oo

9@y t) = > Glkpg y,t)era®, (3.46)

p,q=—00

where p and ¢ are positive or negative integers, = (x, z) is the position vector in
the 20z plane and ky,, = k = (k,, k.) = (22, 2) is the position vector in the k,Ok.
plane. The Fourier coefficients of the Fourier series expansion of g are denoted with

the hat operator (7) and are given by [173]:

-~ 1 b pbe —ik-x
deyt) = [ | at@y e e (3.47)
=z JO JO

The half-trace of the velocity fluctuation correlation tensor e is equal to half the
correlation

C(r,y,t) = u(r,y, t)u(x+r,y,t) (3.48)

in the particular case r = 0, that is é(y,t) = %C’(O, y,t). We can express C' as a Fourier

series from (3.46). The Fourier coefficients C' can be written as [173, 235]

~

Clk,y,t) =, (k,y,t)u(k,y,1), (3.49)

where the asterisk (*) denotes the complex conjugate. Henceforth, we denote € and
call spectral equivalent of € the half of the spectral correlation C,

€= —ul ul. (3.50)

From similar arguments, we shall associate to each term of the evolution equation of
the half-trace of the velocity fluctuation correlation tensor a spectral equivalent.

Spectral equations of the turbulence kinetic energy were given by Domaradzki et al.
[83], Marati et al. [188], Dunn and Morrison [85], Bolotnov et al. [28], Lee and Moser
[165], Mizuno [197] in the incompressible case and Aulery et al. [10] in the variable den-
sity case. The present decomposition gives a clear one-to-one correspondence between
the terms of the spectral and spatial decompositions. To this end, a purely spectral
term with no spatial contribution has to be considered. The decomposition is similar
to the decomposition of Mizuno [197] at the incompressible limit.

The spectral evolution equation of the mean density turbulence kinetic energy may
be written as:

at _ —_ -~ =~ ~ J—
S =B AE P+ T+, (3.51)

where we identify the following terms:
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e the convection @&, associated with the spatial convection ©§,

_ 1 0pu; uU,
—_ 3.52

e the transfer by the total stress gb_OT , associated with the spatial transfer by the
total stress of,

— T
¢5 = Re (%ﬁu; 7”) : (3.53)
J

e the interaction with mixed kinetic energy 75_0, associated with the spatial inter-
action with mixed kinetic energy Py,

u an) , (3.54)

75_0 = Re (—ﬁug u

J 3@

e the kinetic energy dilation correlation E, associated with the spatial kinetic en-
ergy dilation correlation (¢,

Fe 1~ ,0pU; — pU;

("= Re | gu} uj=—— , (3.55)
J

e the interaction with fluctuating density kinetic energy by the total stress Q? ,
associated with the spatial interaction with fluctuating density kinetic energy by
the total stress (7,

N N
T — Y. —— | & .
C Re U; v 8$j <p) ’ (3 56)

e the interaction between kinetic energy and internal energy &, associated with
the spatial interaction with internal energy &g,

_ ol T,
& =Re| —p— 2|, 3.57
0 p oz; p ( )
e the purely spectral term i with no contribution in the spatial domain,
- 10pu, — 1~ opu
=Z==Re| =— v — zu, v.— |, 3.58
2 (915]- v 2 v 8xj ( )

where Re denotes the real part operator.

The terms are decomposed in order to have a one-to-one correspondence with the
terms of the spatial decomposition. The inverted hat operator (7) is used to indicate
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the spectral equivalent of a spatial term. The spectral and spatial terms are tied
closely. Given a spectral term written in the form Re(%; a), for any a, the associated
spatial term is @. The spectral term comes from the Fourier coefficients of the spatial
two-point correlation between u; and a [173].

The purely spectral term = has no associated spatial term. The summation over the
whole wavenumber space of its spectra is zero. In other words, this term has no effect
on the spatial balance of kinetic energy but contributes to the interscale redistribution
of kinetic energy.

3.2.4 Conclusion

The ternary decomposition of kinetic energy gives another angle of approach to
the study of energy exchanges in turbulent flows. Based on the classical Reynolds
averaging, the decomposition leads to the definition of a turbulence kinetic energy,
a mean kinetic energy and a mixed kinetic energy. This new term, specific to the
formulation, is related to the interaction between the turbulent motion and the mean
motion. In the formulation, any energy exchange between the turbulence kinetic energy
and the mean kinetic energy goes through the mixed term, which adds its contribution
to the exchange. The formulation is decomposed further in order to include the mean
density turbulence kinetic energy, product of the mean density and the half-trace of the
velocity fluctuation correlation tensor. This is done by splitting the density in a mean
part and a fluctuating part. Contrary to the turbulence kinetic energy, the equation
of the mean density turbulence kinetic energy can easily be extended to the spectral
domain. This associates a spectral equivalent to each spatial term and adds a purely
spectral term to the decomposition.
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3.3 Conclusion of chapter 3

Using the Reynolds average, a new representation of the energy exchanges in vari-
able density flows is established. The formulation is developed in the context of a
monophasic non-reactive flow without gravity, limiting the energy exchanges to the
interaction between kinetic energy and internal energy. These hypotheses are relevant
to the flows found in high-temperature solar receivers. The representation can be com-
plemented in more complex flows to take into account additional effects, for instance
the chemical potential in reactive flows or the gravitational potential energy if gravity
is not neglected. The representation can also be simplified to take into account further
approximations. In low Mach number flows, the effect on internal energy of the interac-
tion between kinetic energy and internal energy is neglected. Low Mach number flows
therefore approximately obey to another description of the energy exchanges in which
kinetic energy is destructed rather than converted into internal energy. The internal
energy per unit volume is time dependent but constant in space.

The Reynolds decomposition of density provides a theoretical basis to the study
of the mean density turbulence kinetic energy in a variable density setting. This is
crucial to the further investigations of the energy exchanges as we are able to give the
energy exchanges associated with the mean density turbulence kinetic energy in the
spectral domain. The only other possible approach found in the literature is based
on a density square-root weighting of the velocity [318]|. Each spatial energy exchange
is associated with a spectral energy exchange and a purely spectral term representing
the interscale transport of kinetic energy is added. The correspondence between the
spatial and spectral energy exchanges implies that the expression of the spatial term
can be recovered from the associated spectral term and vice versa. In addition, the
spatial terms can be computed from the summation of the associated spectral term
over the whole wavenumber space. The arguments for this property are well known in
the literature [see e.g. 173| and reported in appendix A.

A modified version of the representation of the energy exchanges is used in the
two following chapters to investigate from direct numerical simulations the energy
exchanges associated with the half-trace of the velocity fluctuation correlation tensor
and improve our understanding of the influence of the temperature gradient and the
Reynolds number on the energy exchanges. Using the direct numerical simulations
presented in section 1.3, the most significant terms are identified and their physical
effect in the spatial and spectral domain is analysed.



Chapter 4

Turbulence kinetic energy exchanges
in flows with highly variable fluid
properties

4.1 Introduction of chapter 4

In the flows found in solar receivers, and in the strongly anisothermal turbu-
lent channel flows investigated, the temperature dependence of the fluid properties
with temperature is significant. This modifies the energy exchanges and invalidates
the passive scalar approach of dealing with temperature [145, 138, 139, 234]. The
variations of the fluid properties modifies the velocity profile, thereby not well de-
scribed by incompressible scaling laws and turbulence models [127, 124]. In addition,
strongly anisothermal turbulent channel flows exhibit an asymmetric character ab-
sent from most studies of the energy exchanges in flows with variable fluid properties
[215, 222, 224, 223, 225|. In this chapter, the energy exchanges associated with the
half-trace of the velocity fluctuation correlation tensor are investigated from direct
numerical simulations.

The study of the half-trace of the velocity fluctuation correlation tensor is justi-
fied by a decomposition of kinetic energy very similar to the decomposition of chapter
3. Using a decomposition of density in a constant and variable part instead of the
Reynolds decomposition replaces the mean density parts of total energy by the con-
stant density parts. Within this paradigm, the half-trace of the velocity fluctuation
correlation tensor is up to a constant scalar factor the constant density turbulence ki-
netic energy, which appears in the formulation in place of the mean density turbulence
kinetic energy. This allows us to identify the physically relevant groupings of its evolu-
tion equation in variable density flows. Compared to the incompressible case, there is a
new energy exchange between the constant and variable density part of kinetic energy.
The energy exchanges found in the incompressible case keep their physical meaning
but their mathematical expression is modified. The energy exchanges are decomposed
to isolate the terms formally identical to the terms remaining in incompressible flows
with constant fluid properties and the terms specific to compressible flows with vari-
able fluid properties. This highlights the explicit contributions of the flow dilatation,
the fluctuations of the fluid properties and the mean variations of the fluid proper-
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ties to the energy exchanges. Though, in general, the so-called incompressible terms
are also affected by the temperature gradient given the temperature velocity coupling.
The result of these decompositions is given in this chapter and used to analyse the
energy exchanges associated with the half-trace of the velocity fluctuation correlation
tensor from direct numerical simulations. The detailed derivation of this alternative
formulation of the energy exchanges and its decomposition is given in appendix B.

The energy exchanges are investigated from the direct numerical simulations of fully
developed channel flows at Re, = 180 presented in section 1.3, namely an incompress-
ible isothermal channel and an anisothermal channel. The main objective is to study
the effect of the temperature gradient on the energy exchanges. The contribution of
each term of the above-described decompositions to the energy exchanges is assessed
to identify the terms that can be neglected. In particular, the importance of some
terms specific to flows with variable fluid properties is emphasised. The energy ex-
change related to the streamwise volume force in the channel is also considered and is
found negligible. The spatial and spectral behaviour of the energy exchanges is then
discussed. The study of the energy exchanges shows the statistically averaged effect
of the energy exchanges on the half-trace of the velocity correlation fluctuation tensor.
The effect of the variations of the fluid properties is inferred from the comparison of
the behaviour in the incompressible isothermal configuration and at the hot and cold
side in the anisothermal configuration.

4.2 Paper 2

This section reproduces the paper D. Dupuy, A. Toutant, and F. Bataille. Turbu-
lence kinetic energy exchanges in flows with highly variable fluid properties. Journal
of Fluid Mechanics, 834:5-54, 2018 [91].

Abstract

This paper investigates the energy exchanges associated with the half-
trace of the velocity fluctuation correlation tensor in a strongly anisothermal
low Mach fully developed turbulent channel flow. The study is based on
direct numerical simulations of the channel within the low Mach number
hypothesis and without gravity. The overall low behaviour is governed by
the variable fluid properties. The temperature of the two channel walls are
imposed at 293 K and 586 K to generate the temperature gradient. The
mean friction Reynolds number of the simulation is 180. The analysis is
carried out in the spatial and spectral domains. The spatial and spectral
studies use the same decomposition of the terms of the evolution equation of
the half-trace of the velocity fluctuation correlation tensor. The importance
of each term of the decomposition in the energy exchanges is assessed.
This lets us identify the terms associated with variations or fluctuations
of the fluid properties that are not negligible. Then, the behaviour of the
terms is investigated. The spectral energy exchanges are first discussed in
the incompressible case since the analysis is not present in the literature
with the decomposition used in this study. The modification of the energy
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exchanges by the temperature gradient is then investigated in the spatial
and spectral domains. The temperature gradient generates an asymmetry
between the two sides of the channel. The asymmetry can in a large part
be explained by the combined effect of the mean local variations of the fluid
properties and a Reynolds number effect.

4.2.1 Introduction

This paper provides a numerical analysis of the energy exchanges associated with
the half-trace of the velocity fluctuation correlation tensor in a low Mach turbulent
channel flow subjected to a strong temperature gradient. The investigation is relevant
to the study of wall-bounded turbulent flows with variable fluid properties, provided
that acoustic effects are small. Flows subjected to a large temperature gradient are
characterised by a strong coupling between temperature and turbulence [264, 290].
The statistics of velocity and temperature means and fluctuations are modified by the
temperature gradient, as an asymmetry between the turbulence statistics at both walls
is generated. This asymmetry is more complex than a Reynolds number effect, as the
scaled statistics of turbulence do not collapse with those of the isothermal channels
at the turbulence Reynolds number corresponding to either wall of the anisothermal
channel [265|. The energy exchanges between the different parts of total energy are
insightful for the fundamental understanding of the behaviour of flows subjected to
a strong temperature gradient. They include in particular the energy exchanges as-
sociated with turbulence kinetic energy. The use of flow fields from direct numerical
simulations has demonstrated its relevance to the investigation of energy exchanges.
Indeed, this requires the knowledge of the instantaneous three-dimensional velocity,
pressure and temperature fields, which cannot be easily obtained experimentally.

In incompressible flows with constant fluid properties, direct numerical simulations
of homogeneous isotropic turbulence have validated Kolmogorov’s hypothesis on the
locality of the energy transfer [81] and interacting scales [324, 325]. Reliable statistics
of the terms of the evolution equation of the turbulence kinetic energy in a chan-
nel flow have been provided in the spatial domain by various authors, including Kim
et al. [146], Moser et al. [203], Abe et al. [2], Del Alamo and Jiménez [79], Hoyas
and Jiménez [126], Kozuka et al. [149] and more recently Vreman and Kuerten [305].
The analysis of the energy transfer processes in the incompressible channel flow has
been pursued in the space of scales through the analysis of the second-order structure
function by Marati et al. [188], Cimarelli et al. [59, 61, 62|, Cimarelli and De Angelis
[58] and in the spectral domain by Domaradzki et al. [83|, Bolotnov et al. [28]. In
compressible flows with highly variable fluid properties, the turbulence kinetic energy
may be defined in several manners according to the chosen decomposition of total
energy. The main approaches are the density-weighted averaging decomposition [94],
the mixed-weighted decomposition [17], the density square-root-weighted decomposi-
tion [318] and the classical averaging decomposition [47]. The reader may find more
details on these decompositions in Cousteix and Aupoix [70], Aupoix [13|, Chassaing
et al. [50], Gatski and Bonnet [110], Chassaing et al. [50]. Numerical analyses of the
turbulence energetic behaviour may be carried out using any of the above-mentioned
definitions of turbulence kinetic energy. Notable works include Ha Minh et al. [123]
for the mixed-weighted decomposition and Kida and Orszag [144], Cook and Zhou [68]
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for the density square-root-weighted decomposition. To the knowledge of the authors,
there is no such reference numerical analysis based on the classical averaging decom-
position. By contrast, the density-weighted averaging decomposition has been used by
many authors. In particular, the energy exchanges associated with turbulence kinetic
energy in compressible channel flows with a high Mach number have been investigated
extensively [127, 120, 185, 161, 233, 269, 268]. The density-weighted averaging is indeed
well suited to the physics of compressible flows. The low Mach channel flow subjected
to a strong temperature gradient has received less attention from the literature. The
sole analysis has been carried out in the spectral domain with the density square-root-
weighted decomposition by Aulery et al. [10, 11] at a mean friction Reynolds number
of 180 and 395. The two studies use a decomposition of the terms of the evolution
equation of turbulence kinetic energy based on the work of Bolotnov et al. [28]. The
literature thus lacks a detailed study of the effect of the temperature gradient on the
spatial profiles of the energy exchanges associated with turbulence kinetic energy.

Thereupon, this paper analyses the energy exchanges associated with the half-trace
of the velocity fluctuation correlation tensor using a decomposition of turbulence kinetic
energy based on the classical averaging. One of the main advantages of the classical
averaging is that it is the usual way to extend the study into the spectral domain.
Within the formulation used, each term of the evolution equation of the half-trace of
the velocity fluctuation correlation tensor is associated with an energy exchange. In
that sense, each term is given a physical meaning. Each term is then decomposed
in the particular case of a fully developed channel flow to isolate the parts that are
formally identical to the terms remaining in flows with constant fluid properties, and
the terms specific to flows with variable fluid properties. These terms are related to the
flow dilatation, the variation or the fluctuation of the fluid properties or the presence
of a mean wall-normal velocity. The decomposition is carried out in both the spatial
and spectral domains. There is a one-to-one correspondence between the terms of the
spatial and spectral decompositions.

In this paper, we use this property to investigate the energy exchanges associated
with the half-trace of the velocity fluctuation correlation tensor in the spatial and
spectral domains in a consistent manner. This ensures that the integration of the
spectral term is exactly equal to the associated spatial term. To compute the terms,
we carry out two direct numerical simulations of a fully developed low Mach turbulent
channel flow: one isothermal and one anisothermal. In both cases, the mean friction
Reynolds number of the simulation is 180. The effects of gravity are neglected. In
the anisothermal simulation, the temperatures of the two channel walls are 293 K and
586 K. Compared to the isothermal simulation, the only new physical phenomenon is
the variations of density, viscosity and conductivity with temperature. The numerical
set-up is validated in the isothermal configuration with the data of Moser et al. [203],
Bolotnov et al. [28] and Vreman and Kuerten [305]. The spatial and spectral amplitudes
of each term are assessed. This allows us to determine the relative importance of each
term, and in particular evaluate the importance of the terms specific to flows with
variable fluid properties. Then, we study the effect of the temperature gradient on
the energy exchanges. In the spatial domain, the results extend the existing literature
in the isothermal configuration to the anisothermal configuration. In the spectral
domain, the analysis provides new insights into the spectral energy exchanges in both
the isothermal and anisothermal configurations, since the energy exchanges have not
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been studied with the same decomposition in the incompressible literature.

The ternary representation of the energy exchanges used in this paper is summarised
in section 4.2.2. The detailed channel flow configuration, the numerical set-up and the
data acquisition are presented in section 4.2.3. The results are discussed and analysed
in section 4.2.4.

4.2.2 Energy exchanges associated with the half-trace of the
velocity fluctuation correlation tensor in the ternary de-
composition

The ternary representation of the energy exchanges is based on the decomposition
of velocity into a mean and fluctuating part with the classical (non-density-weighted)
averaging [245]. Let us denote () the statistical average operator and (') the fluctu-
ating part operator. The velocity is decomposed as U; = U; + u}, where U; the i-th
component of the velocity. We use a lowercase u’ for the velocity fluctuation for a
better visual differentiation but there is no further underlying differences. The instan-
taneous total energy per unit volume is the sum of the instantaneous kinetic energy
per unit volume pFE and the internal energy per unit volume pl, with p the density, /
the internal energy per unit mass and E the half-trace of the instantaneous velocity
correlation tensor £/ = %UiUi. The classical averaging decomposition of velocity leads

to the decomposition of kinetic energy into three terms:

e the mean kinetic energy pE = % pU,; U; related to the mean motion;
e the turbulence kinetic energy pe = % puiu; related to the turbulent motion; and

e the mixed kinetic energy pe = pu,U; related to the interaction between the mean
and turbulent motion.

Namely, we obtain pE = pE + pe + pe, that is [47]

: pU U; + Lpulnd; + puiU; (4.1)
The total energy per unit volume is a conservative quantity. However, the four parts
of total energy, pI, pE, pe and pe, are not conservative. The non-conservative terms
of the evolution equation of each part of total energy each can be interpreted as an
energy exchange between two parts of total energy. The energy exchanges between the
four parts of total energy are represented in a schematic form in figure 4.1. They are of
three different kinds. The terms £ and e represent an interaction between kinetic energy
and internal energy. The terms P and P are associated with an interaction between
two parts of kinetic energy. The conservative energy transfer terms are convective or
diffusive terms that account for a portion of the total energy transfer. The terms @¢,
¢, »¢ and @7 are convective terms. The term @* is the transfer by conduction and

the terms $7 and ” represent transfers by external force.

In order to obtain the evolution equation of the half-trace of the velocity fluctuation
correlation tensor within this formulation, we further decompose the three parts of
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Figure 4.1 — Schematic representation of the energy exchanges between the four parts of total
kinetic energy in the ternary representation. An arrow represents an interaction between two
quantities.

kinetic energy and internal energy in a constant and variable density part. We split
to this intent the density p into a constant part py and a variable part p;, p(x,t) =
po + p1(x,t), where x is the position vector and ¢ the time. We consider the resulting
decomposition of total energy into poE, poe, poe, pol, prE, pre, pre and p1I. The energy
exchanges between the eight parts of total energy include a new interaction, between
the constant and variable density part of total energy. The formulation includes up
to the constant scalar factor py the half-trace of the velocity fluctuation correlation
tensor e, as defined and extensively studied in the incompressible literature. This
quantity is directly related to the Reynolds stress and the turbulence kinetic energy

/ /

since puju; ~ pulu; under Morkovin’s hypothesis [201], which is valid in the flow

considered in this paper. It has a spectral equivalent, pgé = %poﬁg*ﬁg, which will
be investigated in this paper. From now on, we will focus on the energy exchanges
associated with its evolution equation. The formulation gives the relevant groupings of
the terms of its evolution equation in the variable density case: the conservative energy
transfers, ¢° and ¢'; the interaction with internal energy e; the interaction with the
other parts of kinetic energy P and the interaction with variable density kinetic energy,
¢¢and (7. The first three are present in the incompressible case though with a simpler
mathematical expression. The latter is unique to flows with variable density. We use
the same notations for the constant density part of the energy exchanges as for the
complete terms to avoid more cumbersome notations. The interaction with internal
energy ¢, the interaction with the other parts of kinetic energy (¥ and the transfer by
external force ¢! can be seen as the sum of a viscous and pressure contribution. In
particular, splitting the stress tensor 7" into the pressure and viscous stress leads to a
clearly reversible pressure contribution, the pressure dilatation correlation [260], that
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Figure 4.2 — Schematic representation of the energy exchanges associated with the “constant
density turbulence kinetic energy” pge, identical to the half-trace of the velocity fluctuation
correlation tensor e up to the constant scalar factor po.

exchanges energy in either direction, and an irreversible viscous contribution, called
dissipation, which always transfers kinetic energy into internal energy. The energy
exchanges associated with pge are represented in figure 4.2.

In this paper, the statistical average of these instantaneous energy exchanges are
considered. This ensures the consistency of the formulation, in the sense that the energy
exchanges in both the instantaneous and statistically averaged cases are well defined
and are not conflicting. This consistency is important to give a physical interpreta-
tion to the energy exchange, as this lets us consider the statistically averaged energy
exchanges as the statistical average of the associated instantaneous energy exchanges.
The schematic representation of the energy exchanges in the statistically averaged case
is not presented as it is identical, albeit with the addition of the statistical average.

The energy exchanges associated with the half-trace of the velocity fluctuation cor-
relation tensor are decomposed in the particular case of a fully developed channel flow
to recover the terms remaining in flows with constant fluid properties (here denoted
with subscript I). The terms specific to flows with variable fluid properties (here
denoted with subscript I") arise from the flow compressibility, the variations or fluc-
tuations of the fluid properties and the presence of a mean wall-normal velocity. The
mean wall-normal velocity Uy differs from zero in the compressible variable density
channel with the classical averaging because it is in balance with the turbulent mass
flux, ﬁUy = —p’T;. With a mass-weighted averaging, the mean wall-normal velocity
is equal to zero. The study is then extended to the spectral domain. Since the flow
is periodic in the streamwise and spanwise directions, any physical quantity g(z, vy, 2)
can be expressed as a Fourier series. We define and denote with the hat operator (7)
the Fourier coefficients of the Fourier series expansion of g [see e.g. 173]:

1 Ly prL, .
k. y.t) = e k2. 4.2
g(k,y.t) LmLz/O/O g(z,y,t)e x (4.2)

where & = (z, z) is the position vector in the Oz plane and k = (k,, k,) is the position
vector in the k,Ok, plane. In the spectral domain, we study the terms of the evolution
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equation of

1~
€= éuz u), (4.3)
The spectral analysis extends each term of the spatial decomposition to the spectral
domain, associating each of them with a corresponding term of the spectral decompo-
sition. In addition, a purely spectral term is identified in the spectral decomposition,
that is a spectral term with no spatial contribution.

To summarise the spatial and spectral decompositions, let us compare below the
evolution equation of the half-trace of the velocity fluctuation correlation tensor in the
spatial and spectral domains. It is given in the spatial domain by
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The terms are expressed using the symmetries of the flow and its homogeneity in the
streamwise and spanwise directions to simplify the writing (2= = %= = 0 and U, = 0).
In particular, only the terms that do not have a zero theoretical value are considered.
For instance, we only take into account the terms (i = z,7 = y) and (i = y,j = y) of

the production P = —u/u/, 8Ui, since the other terms are theoretically equal to zero.

1] Oz

In the incompressible case, only the incompressible terms remain. The evolution
equation of the half-trace of the velocity fluctuation correlation tensor reduces in the
spatial domain to

e - @ — 9 9 —
ot = 0§+ h + 011+ 9Is +Pr +ef el (4.6)
and in the spectral domain to
0é xR e~ e s e S 4.7
5 =PI PP AP P+ S (4.7)

In flows with highly variable fluid properties, additional terms appear. Nevertheless,
they originate from distinct flow characteristics. The thermal terms may appear be-
cause of the addition of a wall-normal mean velocity U,, come from the flow dilatation
O, or lie in variations or fluctuations of the fluid properties, namely the viscosity and
the density.

4.2.3 Study configuration

To provide the data necessary to compute the terms of the evolution equation of the
half-trace of the velocity fluctuation correlation tensor, a direct numerical simulation
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Figure 4.3 — Biperiodic anisothermal channel flow

of a fully developed channel flow is carried out. In the following, we describe the flow,
the geometry, the numerical settings and the numerical tools used. Then, we validate
the numerical method in the incompressible case.

4.2.3.1 Channel flow configuration

We consider a fully developed turbulent air flow under a strong temperature gradient
in a rectangular channel, as represented in figure 4.3. The channel is periodic in both
the streamwise (x) and spanwise (z) directions. The channel walls are at constant
temperature. The temperature of the hot wall is T, = 586 K and the temperature of
the cold wall is T} = 293 K. This creates a temperature gradient in the wall-normal
direction (y). The flow is fully developed despite non-adiabatic wall conditions because
the heat flux at the hot and cold wall exactly balance out. The mean friction Reynolds
number is Re, = 180. Let us define this quantity. The friction Reynolds number at
each wall is defined as

Re, = ———, (4.8)

with A the half-height of the channel, v, the cinematic viscosity at the wall and U, the

friction velocity
U,
U, =V, . 4.9
: ( y )w 49

The friction Reynolds numbers at the hot and cold wall are different, since the value of
the friction velocity and the properties of the fluid differ. The mean friction Reynolds
number is defined as the average of the friction Reynolds number computed at the cold
and hot side.

The same channel is also studied in the isothermal case. In that case, both walls
are at the cold temperature. The same friction Reynolds number is considered. This
results in a 20% lower mass flow rate. Hereafter, we will refer to the channel flow
configuration in which the channel is subjected to a strong temperature gradient as
the anisothermal configuration and the configuration in which both walls are at the
same temperature as the isothermal configuration.



66 4. 'Turbulence kinetic energy exchanges

4.2.3.2 Governing equations

The above-described flow is weakly turbulent. The mean Mach number is 0.008.
Compressibility effects due to velocity are therefore negligible. Large variations of
the fluid properties are generated by the temperature gradient. These considerations
let us use Paolucci’s method [219] to remove acoustic effects from the Navier—Stokes
equations. Each variable of the Navier—Stokes equations is written as a power series
of the squared Mach number. Then, the smaller-order terms of each equation are
kept. The resulting low Mach number equations split the pressure in two parts: the
thermodynamical pressure Fy and the mechanical pressure P. The constant in space
thermodynamical pressure F, is the mean pressure in the domain. The mechanical
pressure is the pressure induced by momentum variations. The effects of gravity are
neglected and air is considered as an ideal gas for the purpose of this study.

Since the channel flow is periodic in the streamwise direction, no pressure gradient
appears through the boundary conditions to balance out the dissipative forces. A
streamwise volume force f is added to the momentum conservation equation in order
to replicate the effect of a pressure gradient.

Given the above considerations, we use the following set of equations:

e Mass conservation equation

op  OpU;
— = 4.1
o " om (4.10)

Momentum conservation equation

dpU; 0pUU; 0P 0 { (aU,- an)} 2 9 (an
= - p + - p

ot or; axi—i_@_xj or; ' Ox; a—%)-i-f(%gc, (4.11)

e Energy conservation equation
orT orT 0F, 0 orT
Cy| —+U; = A 4.12
””(m* Jaxj) at+axj<axj)’ (4.12)
o Ideal gas law
Py = prT, (4.13)
e Thermodynamical pressure homogeneity
0P,
=0 4.14

with p the density, 7" the temperature, u the dynamic viscosity, A the thermal conduc-
tivity, C, the heat capacity at constant pressure, r the ideal gas specific constant, ¢ the
time, P the mechanical pressure, P, the thermodynamical pressure, U; the i-th com-
ponent of velocity and z; the Cartesian coordinate in i-direction. Einstein summation
convention is used and d;; is the Kronecker delta.
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We use Sutherland’s law [287| to compute the fluid properties

W) = (1) g (4.15)
M) = S2u(r), (4.16)

with g = 1.716 - 107° Pa's, S = 110.4 K and Ty = 273.15 K. The Prandtl number
and the heat capacity at constant pressure are assumed constant, with Pr = 0.76
and C, = 1005 J kg~! K~'. The ideal gas specific constant is r = 287 J kg™' K.

4.2.3.3 Numerical setting
The mesh is regular in both homogeneous directions and follows a hyperbolic tan-

gent law in the wall-normal direction. The wall-normal grid coordinates are symmet-
rical with respect to the plane y = h. In the first half of the channel, they are given

by
%:h<1+2MM{<£;}{—Qtwhlmﬂ), (4.17)

where a is the mesh dilatation constant and [V, the number of grid points in the
wall-normal direction.

The same mesh is used in the anisothermal and isothermal simulations. It contains
384 x 266 x 384 cells. The resulting cell sizes in wall units are A7 = 5.8, Af = 0.085
at the wall and 2.9 at the centre and Al = 2.9 in the isothermal case; A} = 8.5,
Af = 0.13 at the wall and 4.2 at the centre and AT = 4.2 in the anisothermal case.
Given the mesh precision, a no-slip boundary condition is used at the walls. The
domain size is: L, = 4nh, L, = 2h and L, = 27h with A = 15 mm.

To solve the set of equations (4.10)—(4.14), we use a finite difference method written
in a divergence form in a staggered grid system [200, 212]. The time scheme is a
third-order Runge-Kutta [313]. A fourth-order centred scheme is used for momentum
convection and a third-order upstream scheme is used for temperature convection [170].
This is performed using the TrioCFD software [38]. This software was used in many
direct numerical simulations of fluid flow coupled with other physical phenomena [291,

36, 44, 290].

The value of the volume force f is adjusted through a control loop to keep the mass
flow rate constant,

2D, + Dy
At ’

with Cp a damping constant, D the mass flow rate, Diaget the targeted mass flow
rate and ¢t — 1, ¢t and ¢ + 1 indices related to the previous, current and next time step
respectively. A term associated with the forcing term u’ f/p appears in the transport
equation of the half-trace of the velocity fluctuation correlation tensor. This term has
been computed from the result of the direct numerical simulation and was found to be
insignificant.

Dar et T
fror = fi + Co—=5% (4.18)
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4.2.3.4 Data acquisition

The data acquisition is carried out in two steps because the computation of different
terms of the evolution equation of the half-trace of the velocity fluctuation correlation
tensor requires knowledge of mean and fluctuating quantities. First, statistics on the
mean velocities, temperature and pressure are acquired. Full convergence is attained
after a total duration of 3.59 s in the isothermal case (29 characteristic time h/U;)
and 2.86 s in the anisothermal case (34 characteristic time, using the cold wall friction
velocity). Once this prior step completed, the data collection is carried out and spans
over a total duration of 7.95 s in the isothermal case (64 characteristic time) and 3.16 s
in the anisothermal case (37 characteristic time).

To compute the spectral terms, we use the discrete two-dimensional Fourier trans-
form

Nz—1N,—1
@\(kx,ma Y, kz,n) =

(mp kn
NN 2. 2 9(xp,y, 21) exp <—27r1 (Fx + E)) . (4.19)

The Fourier transform is carried out in the streamwise and spanwise directions only.
The time averaged spectral terms depends on the three parameters k,, y and k,. In
order to simplify the interpretation of the terms, only the dependence on the wavenum-
ber norm at each wall-normal coordinate will be considered. This removes from the
scope of this study the spectral directionality of the energy transfers.

4.2.3.5 Wavenumber bin

The two-dimensional spectral results are analysed using wavenumber bins following
Bolotnov et al. [28|. The procedure used is as follows: the wavenumber space is divided
in NV, annulus-shaped wavenumber bins. The bin #: contains every wavenumber vector
k whose norm k ranges between k; and k; 1, the lower and upper bound of the bin #4.
For each term, we then assign to the bin #4 (at its wavenumber centre k. ;) the sum of
the values of the term computed at each wavenumber contained in the bin.

Wavenumber bins kill any directionality of the energy transfers since only the
wavenumber norm is taken into account. This is only correctly done if the bin con-
tains a large number of wavenumber vectors and the distribution of the wavenumber
vectors is isotropic. Since the distribution of wavenumber bins is logarithmic and the
distribution of wavenumber vectors is not, the number of wavenumber vectors per bin
grows exponentially with the wavenumber bin number. This results in a low number
of wavenumber vector per bin at low wavenumbers. To address this issue, a low pass
filter was applied to the spectral data. This improves the quality of the statistics at
low wavenumbers.

The use of wavenumber bins should be taken into account in the interpretation of
the results. The values obtained are uniformly distributed on a logarithmic scale and
integration over the wavenumber space is done by simple summation of the values.
The use of wavenumber bins also reduces the dependence of the results on the domain
size and mesh. On the other hand, the results are entirely determined by the bins
construction.
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Bin number Lower bound k; Bin centre k.; Upper bound k; 1

1 1.00000 1.09350 1.19574
2 1.19574 1.30755 1.42981
3 1.42981 1.56349 1.70968
4 1.70968 1.86954 2.04434
) 2.04434 2.23549 2.44451
6 2.44451 2.67308 2.92301
7 2.92301 3.19632 3.49518
8 3.49518 3.82198 4.17934
9 4.17934 4.57011 4.99742
10 4.99742 5.46469 5.97564
11 5.97564 6.53437 7.14534
12 7.14534 7.81344 8.54400
13 8.54400 9.34288 10.21645
14 10.21645 11.17170 12.21626
15 12.21626 13.35850 14.60753
16 14.60753 15.97335 17.46688
17 17.46688 19.10005 20.88592
18 20.88592 22.83878 24.97423
19 24.97423 27.30935 29.86280
20 29.86280 32.65501 35.70829
21 35.70829 39.04705 42.69800
22 42.69800 46.69031 51.05590
23 51.05590 55.82969 61.04982
24 61.04982 66.75805 73.00000

Table 4.1 — Construction of the wavenumber bins.

Thereupon, in order to compare our results with Bolotnov et al. [28|, we use the
same wavenumber bins. We define N, = 24 wavenumber bins of uniform length in
logarithmic scale, with

kmax NL
ki:kmin( ) " (4.20)
kmin
where kpm = 1 m™! and kyax = 73 m™' are the minimum and maximum bound

across all bins. The bounds and centre of the wavenumber bins are given in table
4.1. Note that since the wavenumber bins are constructed with respect to the domain
and mesh sizes of the direct numerical simulation of Trofimova et al. [296] used by
Bolotnov et al. 28], they do not span over our entire computable wavenumber space.
This excludes very small and very large wavenumbers. Nonetheless, we verified that
no energy exchanges were located outside of the range of wavenumber bins.

4.2.3.6 Validation

The numerical set-up is validated in the isothermal configuration through a mesh
convergence study. The simulation is carried out with three meshes later referred to
as coarse mesh, medium mesh and fine mesh. The coarse mesh has 192 x 118 x 96
cells. The cell sizes in wall units are A7 = 11.5, AF = 0.17 at the wall and 6.7 at the
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Figure 4.4 — Validation of the profile of the viscous transfer Eg—;g (left) and of the turbulent

transfer —821;;’ (right).

centre and A = 11.5. The medium mesh has 384 x 190 x 288 cells. The cell sizes in
wall units are A} = 5.8, Al = 0.16 at the wall and 3.7 at the centre and A} = 3.9.
The fine mesh is described in section 4.2.3.3. The results are compared to the three
following references from the literature: Moser et al. [203] and Vreman and Kuerten
[305] in the spatial domain and Bolotnov et al. [28] in the spectral domain. The three
references are at the same friction Reynolds number of 180. The consistency of the
spectral results is ensured by making sure that the integrated spectral data reduces to
the correct spatial value.

Validation of the spatial turbulence kinetic energy terms

The turbulence kinetic energy is given in the incompressible case by the half-trace
of the velocity fluctuation correlation tensor. The viscous transfer and the turbulent
transfer, two terms of its evolution equation, are compared in the isothermal case to
the results of Moser et al. [203] and Vreman and Kuerten [305] in figure 4.4. The
values are scaled by U,*/u,, where U, is the friction velocity and v, the cinematic
viscosity at the wall. The results show two things. First, the profiles associated with
the medium and fine meshes are very close, indicating that the mesh convergence is
attained. Second, the fine mesh profiles are nearly identical to the reference profiles
of Vreman and Kuerten [305]. The profiles of Moser et al. [203] deviate slightly from
the profiles of Vreman and Kuerten [305] for the viscous transfer near to the wall. The
results of Vreman and Kuerten [305] are believed to be the most accurate as they use a
finer mesh and a longer averaging time. Hence, the data of Vreman and Kuerten [305]
will from now on be used exclusively for the validation of the spatial terms.

The mesh convergence study shows similar results for the other terms (not shown
here). The comparison of the fine mesh profiles with the results of Vreman and Kuerten
[305] is shown for each term in figure 8.3. The profile of each term is equal to the refer-
ence profile. This validates the spatial profiles of the terms of the evolution equation of
the half-trace of the velocity fluctuation correlation tensor at the incompressible limit.
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Validation of the spectral turbulence kinetic energy terms

The numerical properties of the discrete Fourier transform used ensure that the
summation of over all wavenumber bins of a spectral term for a given wall-normal
coordinate y is equal to the value of the associated spatial term. This property is used
to verify the consistency of the spectral and spatial data. The profiles of production
computed from the spectral data and computed directly in the spatial domain are
compared in figure 4.6 and are shown to be identical. This was verified to be true for
all terms in the isothermal case and in the anisothermal case.

The spectral data are compared in the isothermal case to the results provided by
Bolotnov et al. [28]. The figure 4.7 compares the spectral profiles of the production
computed from the coarse, medium and fine meshes with Bolotnov et al. [28] at a
distance of 10 in wall units from the wall. The fine and medium profiles are very close
showing a good convergence of the production statistical profile in the spectral domain.
The results are in agreement with those of Bolotnov et al. [28]. The spectral profiles
have the same shape and predict the same spectral location of the maximum value.
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There are however some differences. The profile of Bolotnov et al. [28] has a lower
amplitude and is more spread out in wavenumber. This leads to a very similar total
integrated value, though not exactly identical. Unfortunately, there are no further data
on the spectral turbulence kinetic energy terms in the literature to decide between the
two profiles. Therefore, we compare the spatial integrated value of the two spectra.
There is 3.5%-4% difference between the spatial integrated value of Bolotnov et al.
[28] and the results of Moser et al. [203] or Vreman and Kuerten [305], whereas the
difference is less than 1% for our spectrum. Our results are thus more accurate with
regard to their total integrated value.

This applies to all wall-normal positions and all terms investigated by Bolotnov et al.
[28], as shown by the comparison of the two-dimensional spectra of the production in
figure 4.8, the interplane triadic transfer in figure 4.9, the inplane triadic transfer in
figure 4.10, the inplane triadic transfer in figure 4.10, the interplane dissipation in figure
4.11, the inplane dissipation in figure 4.12 and the viscous transfer in figure 4.13. In
each case, both plot uses the same normalisation and the colour scales are identical.
For each plot, our results agree very closely with the results of Bolotnov et al. [28].
The two spectra follow the same general behaviour. They also are in a very good
agreement on the spatial and spectral location of the terms. Nevertheless, there are
some differences. The results of Bolotnov et al. [28] tends to have a lower amplitude
and be more spread out in wavenumber. This is the same behaviour as previously
discussed for the spectral profile of production and the same remarks may apply.

4.2.4 Results

The numerical results with regard to the terms of the evolution equation of the
half-trace of the velocity fluctuation correlation tensor are discussed in this section.

The energy exchanges associated with the half-trace of the velocity fluctuation cor-
relation tensor are investigated in the spatial and spectral domains. In both cases, the
analysis is carried out in two configurations as described in section 4.2.3.1: the isother-
mal configuration and the anisothermal configuration. In the isothermal configuration,
the flow is incompressible as there is no temperature gradient. In the anisothermal
configuration, the strong temperature gradient generates large variations of the fluid
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properties. In the spatial domain, the terms of the half-trace of the velocity fluctuation
correlation tensor have been studied in the literature in the isothermal configuration
[see e.g. 203, 305], but has not been documented in the anisothermal configuration.
In the spectral domain, the analysis is novel in both the isothermal and anisothermal
configurations with the decomposition used in this study. The spatial results in the
isothermal configuration are used solely to validate the numerical method. In this sec-
tion, we discuss the results in the isothermal configuration in the spectral domain and
in the anisothermal configuration in both the spatial and spectral domains.

The effect of the temperature gradient on the terms of the evolution equation of the
half-trace of the velocity fluctuation correlation tensor is decomposed in two separate
effects. The first effect is the behaviour modification of the terms of the incompressible
evolution equation, here called incompressible terms. The second effect is the addition
of terms specific to flows with variable fluid properties, here called thermal terms.
Each term is associated with an energy exchange, that is either a conservative energy
transfer or an interaction with another part of total energy. The incompressible energy
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exchanges are modified by the temperature gradient both through the incompressible
terms and the addition of thermal terms to their expression. Additionally, a new
thermal energy exchange is added, composed only of thermal terms.

In both the spatial and spectral domains, the analysis of the energy exchanges in
the anisothermal configuration first investigates the effect of the temperature gradient
on the incompressible energy exchanges. Then, we investigate the contribution of the
thermal terms to the energy exchanges. This analysis includes the thermal terms of
the incompressible energy exchanges and of the thermal energy exchange.

4.2.4.1 Scalings

For later use, we define here the four following scalings: the constant scaling, the
classical scaling, the semi-local scaling and the integral scaling. With the constant
scaling, all profiles are scaled identically thus keeping the same relative behaviour as
the raw profiles. The scaling uses a combination of the friction velocity U2 and the
cinematic viscosity at the wall v/ in the isothermal configuration. This scaling uses
the results of the isothermal configuration even for profiles in the anisothermal case
since the scaling should always be the same. The constant scaling is denoted with a
superscript circle (°),

- yU7
=1 (121)
k= kUV;J, (4.22)
U
U= (4.23)
¢ = erQ, (4.24)

T

(a0) = 77z () 429

With the classical scaling, the profiles are scaled using the results at the same side



76 4. 'Turbulence kinetic energy exchanges

of the channel. All quantities are scaled by a combination of the friction velocity U,
and the cinematic viscosity v, at the closest wall. The classical scaling is denoted with
a superscript plus sign (7),

+_ yUr

=27 4.2

Y o (4.26)
kv,

kT =2 4.27
UT ? ( )
U

Ut =— 4.28
UT’ ( )
e

6+ = ﬁ, (429)

%) - o (1) 430

With the semi-local scaling, the profiles takes into account the mean local fluid
properties instead of the fluid properties at the wall. The semi-local scaling is denoted
with a superscript asterisk (*),

Y= D(yT), (4.31)
k= k';(f) (4.32)
U = UET (4.33)
e = Ue*Q, (4.34)

(&) = e (). (4

Ur = \/% (agj)w. (4.36)

The semi-local scaling is part of the current paradigm of scalings for compressible wall
turbulence [293]. While it was first proposed using heuristic arguments [249, 127, 67|,
two different mathematical frameworks were developed recently to support the validity
of the semi-local scaling by Patel et al. [222] and Trettel and Larsson [293].

with,

With the integral scaling, the profiles are scaled using an integral length scale as in
Brun et al. [37]. The integral scaling is denoted with a superscript (?),

B v He
y© = /0 E(y)d?ﬁ (4.37)
U
B =" (4.39)
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(%)B _ UB%/VW (%) (4.40)
(4.41)

with,
B yPaly) [ pe

Tyt eV ply)

(4.42)

In particular, note that the terms of the evolution equation of the half-trace of the
velocity fluctuation correlation tensor are scaled by U°*/v¢ with the constant scaling,
U.* /v, with the classical scaling, U**/7(y) with the semi-local scaling and Uf4/ Vi
with the integral scaling.

We remark that the values of U,* /v, at the hot and cold sides are the same within
0.5% accuracy. The classical scaling thus does not modify the relative amplitude of
the hot and cold sides. We do not see any physical reason for the equality of U, Ve
at the two sides, that is of the relation

ou,\ > T, \>
— 2 4.4
(ay) (ay) (1.43)

where the subscript w; denotes the value at the cold wall and the subscript wy the
value at the hot wall. Further analyses at different friction Reynolds number and
temperature ratios are required to verify the possible generality of the property.

4.2.4.2 Assessment of the amplitude of the terms

The maximum amplitude of each term of the evolution equation of the half-trace
of the velocity fluctuation correlation tensor is reported in table 4.2. The purpose of
this is twofold. First, this gives an estimate of the relative importance of each term.
Second, the importance of each term compared to the balance term indicates whether
the term has reliable statistics.

The most significant terms in the low Mach anisothermal channel flow remain the
incompressible terms, namely terms that do not vanish in the incompressible case. For
each energy exchange, the most important term of the decomposition is an incompress-
ible term, with the obvious exception of the interaction with variable density kinetic
energy which vanish in the incompressible case. The only incompressible terms that
have a very low maximum amplitude are the two terms 5‘1’_2 and SE , which cancel each
other out in the incompressible case. The purely spectral term is found to be a major
part of the energy exchanges in the spectral domain.

The amplitudes of the thermal terms do not follow those of the associated incom-
pressible terms. For instance, while the incompressible production is the term with
the highest amplitude, the thermal production is one of the smallest terms. Instead, it
depends primarily on the underlying physical origin of the terms. The most significant
thermal terms are terms associated with the viscous shear stress, and more specifically
the part associated with the product with the velocity gradient. Though, they differ in
the energy exchange they are associated with (conservative energy transfer, interaction
with internal energy or with variable density kinetic energy) and the source of their
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Term of the equation of the half-trace of the velocity fluctuation correlation

Maximum value

Spatial equation Associated energy exchange Spatial Spectral
Pr = —ujul (8,Us) Production (I) 2.3-1071 3.4-1072
e}, = —v(05u;) (9ju;) Interaction with 1E, dissipation (I) 1.8-1071 2.0-1072
% = U(0y0y€) Conservative energy transfer, viscous transfer (I)  1.7-107! 2.0-1072
s = —@e@ Conservative energy transfer, convection (I) 6.5-107%2 7.7-1073
m = Oyv'u0yU; Conservative energy transfer, viscous transfer 24-107%2 2.6-1073
Copa = (/) (95p)u;(0;U5) Interaction with VDKE, viscous contribution 1.6-1072 1.7-1073
f% = —v/(0u})(0;U;) Interaction with IE, dissipation 1.5-1072 1.7-1073
% = (0y€)(0yV) Conservative energy transfer, viscous transfer 1.2-1072 1.4-1073
g07; = —(1/p)(0yul, P) Conservative energy transfer, pressure transfer (I) 9.0-107% 1.2-1073
CT% =€(0;U/) Interaction with VDKE, kinetic energy dilatation ~ 3.8-1073 4.1-1074
E=0 Purely spectral term (I) 3.6-107% 1.2.1072
@ = fm Interaction with VDKE, kinetic energy dilatation 2.7-107% 2.9-107*
SOTUy = —0,(eU,) Conservative energy transfer, convection 2.6-107% 3.4.107*
&E = —v(0ju;) (O;u}) Interaction with 1E, dissipation (I) 2.6-107% 3.1-107*
@ = D(ayﬁym) Conservative energy transfer, viscous transfer (I)  2.4-107% 3.1-107*
(P = —W Interaction with VDKE, pressure contribution 1.2-107% 1.5-107%

Balance term 1.0-107% 2.6-107*
g% = (uj, P/p*)(0,p) Conservative energy transfer, pressure transfer 7.0-107%* 8.9.107°
gpg, = Oyuy, Pp' [(p(p+ p')) Conservative energy transfer, pressure transfer 4.0-107% 7.8-107°
eP = (P/p)(0;u}) Interaction with 1E, pressure dilatation 3.4-107% 5.0-107°
% = m (OyD) Conservative energy transfer, viscous transfer 3.0-107% 4.0-107°
Cop2 = (V/p)(95p)ui(0:U5) Interaction with VDKE, viscous contribution 1.9-107% 23-107°
oY, = Oy (9;Uy) Conservative energy transfer, viscous transfer 1.5-107% 1.7-107°
PU; = —ubul (0,U,) Production 14-107% 1.7-107°
en o = V' (95u;)(0iU;) Interaction with IE, dissipation 1.0-107% 1.1-107°
% = —ﬁ(aym) Conservative energy transfer, viscous transfer 25-107° 1.1-107°
o5 = fayW Conservative energy transfer, viscous transfer 1.8-107° 2.6-107°
e = (2v/3)(9;u})(0;U;) Interaction with IE, dissipation 21-107% 1.2.1077
¢ = —(2v/3p)(9ip)ui(9;U;) Interaction with VDKE, viscous contribution 1.9-107% 2.0-1077

Table 4.2 — Maximum value of the terms of the evolution equation of the half-trace of the
velocity fluctuation correlation tensor in the spatial and spectral domain. For the sake of
conciseness, the expression of each term is given in the spatial domain only. The type of
each term refers to the four energy exchanges associated with the half-trace of the velocity
fluctuation correlation tensor according to the ternary representation: the conservative energy
transfer, the interaction with internal energy (I1E), the production, interaction with the other
parts of kinetic energy, and the interaction with variable density kinetic energy (VDKE). The
symbol (I) is appended to the terms that do no vanish in the incompressible case. The results
are given with the classical scaling.
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thermal character (fluctuation of the viscosity, variation of the mean viscosity or of
the density). With regard to the terms associated with the other parts of the viscous
shear stress, the terms associated with the product with the transpose of the velocity
gradient are very small compared to the terms associated with the product with the
velocity gradient. The terms associated with the product with the velocity divergence
are the smallest terms of all. This is only true for the viscous terms as the kinetic
energy dilatation correlation and to a lesser extent the pressure dilatation correlation
have larger amplitude.

Hence, the effect of the thermal terms with regard to the energy exchanges is the
largest on the conservative energy transfer and the interaction with internal energy.
The two most significant terms of the thermal conservative energy transfer or are ¢, |

and ¢y, |, both part of the thermal viscous transfer. In the thermal interaction with
internal energy &, the term 55_/1 predominates. The additional energy exchange with

variable density kinetic energy ¢ is substantial. It acts primarily through its viscous
contribution and secondly through the kinetic energy dilatation correlation. For the
three interactions, the pressure contribution is not significant. Note however that the
data provided in the table are mute towards the local importance of the terms, which
may be larger or lower than what the maximum amplitude make it appears to be.

For the purpose of this paper, a term is considered statistically reliable if its maxi-
mum amplitude is at least ten times larger than the maximum amplitude of the kinetic
energy balance. This leaves the eight following statistically reliable terms:

e P;, the incompressible production,

) E , a part of the incompressible dissipation,

. QE , a part of the incompressible viscous transfer,
e 5, the convection by turbulent motion,

® ¢y, a part of viscosity fluctuation viscous transfer,

® (5,1, a part of the density variation viscous interaction with variable density
kinetic energy,

e =/, |, a part of the viscosity fluctuation dissipation,

® 5,1, a part of the mean viscosity variation viscous transfer,

In the following, the behaviour of those eight terms is analysed. The remaining 18
terms are not discussed individually as their amplitude is too low to ensure that their
profile is correctly described. In particular, the pressure transfer and the pressure
contribution to the interaction with variable density kinetic energy and the interaction
with internal energy will not be studied.

4.2.4.3 Results in the spatial domain

In this section, we investigate the energy exchanges associated with the half-trace of
the velocity fluctuation correlation tensor in the spatial domain. The analysis is carried
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out in three steps. First, we study the total effect of the temperature gradient on the
incompressible energy exchanges, through the combined effect of the modification of
the behaviour of the incompressible terms and the addition of thermal terms. In
particular, we study the effect of the Reynolds number variations across the channel.
Then, we focus on the contribution of the modification of the incompressible terms
to the alteration of the incompressible energy exchanges. Finally, we investigate the
profiles of the thermal terms.

Profiles of the incompressible energy exchanges in the anisothermal config-
uration

The four energy exchanges associated with the half-trace of the velocity fluctuation
correlation tensor are the production, the conservative energy transfer, the interaction
with variable density kinetic energy and the interaction with internal energy. The
production represented in figure 4.14, the conservative energy transfer in figure 4.15 and
the interaction with internal energy in figure 4.16. The interaction with variable density
kinetic energy is discussed later since, as a thermal energy exchange, its behaviour is
particular. We also provide the profile of the relevant parts of each term. The viscous
transfer is given in figure 4.17 and the turbulent transfer in figure 4.18. The pressure
transfer is not discussed because it is not statistically reliable in the anisothermal
configuration. The dissipation is given by the profile of the interaction with internal
energy, since the pressure dilatation is negligible.

For each term, the profiles at the hot and cold sides are compared to each other
and to the corresponding profile in the isothermal configuration. The results are given
with the constant scaling, the classical scaling, the semi-local scaling and the integral
scaling. The three scalings show an asymmetry between the hot and cold profiles,
though of different nature. Some generalities are found in the manner in which the
temperature gradient manifests itself as summarised in the following.

The constant scaling shows the effect of the temperature gradient when not cor-
recting the friction velocity and viscosity differences between the isothermal and aniso-
thermal case. The general behaviour of the profiles is never drastically modified. How-
ever, the amplitudes in absolute value are increased considerably at the hot and cold
side compared to the isothermal results. The amplitudes at the cold side are larger
than the amplitudes at the hot side. Meanwhile, the positions of the local or global
extrema are shifted closer to the wall at the cold side compared to the isothermal
profile and closer to the centre of the channel at the hot side. Since the wall-normal
coordinate axis is logarithmic, this shift comes with an increase of the spatial range of
the term at the hot side and a decrease at the cold side. In particular, the effect of the
amplitude and spatial extent modification offset each other for the production, such
that the total integrated production is the same at the hot and cold side. Within 1%
error, this remark may also be applied to the interaction with internal energy

The classical scaling shows the effect of the temperature gradient when scaled by
the friction velocity and the viscosity at the wall. With the classical scaling, the
anisothermal profiles have the same order of magnitude as the isothermal profile. This
proves that most of the amplitude differences seen with the constant scaling are due to
the increased friction velocity on the anisothermal configuration. The scaled amplitude
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Figure 4.14 — Production, total P and incompressible P;.

at the cold side is increased compared to the isothermal profile and decreased at the
hot side. We recall that the classical scaling has no effect on the relative amplitude
of the terms at the hot and cold side since the value of U?/v, is the same at both
sides of the channel. In other words, the classical scaling successfully explains the
differences between the isothermal amplitudes and the anisothermal amplitudes but is
silent towards the difference between the hot and cold sides. The relative position of
the local or global extrema of the hot, cold and isothermal profiles are swapped by the
classical scaling. Now, the extrema are seen shifted closer to the wall in wall units at
the hot side compared to the isothermal profile and closer to the centre of the channel
at the cold side. A good explanation is that the classical scaling takes into account the
viscosity at the wall thus overcorrects the position closer to the centre of the channel
where the viscosity is similar at both sides of the channel.

To address this, the semi-local scaling takes into account the mean local variations
of the fluid properties. With the semi-local scaling, there is no position differences
between the hot, cold and isothermal profiles. This result shows the physical relevance
of the semi-local scaling, which is able to explain the positional shift of the hot and
cold profiles compared to the isothermal profile. However, the amplitude differences
are not modified.

A possible explanation of these amplitude differences could be a Reynolds number
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Figure 4.15 — Conservative energy transfer, total  and incompressible 7.

effect, that is the local variations of the friction Reynolds number across the channel
between the hot and cold sides. Indeed, the temperature gradient creates variations
of the local friction Reynolds number (figure 4.19), that we define as U (y)h/v(y)
following the semi-local scaling. The local friction Reynolds number spans between
107 at the hot wall and 260 at the cold wall. Within this Reynolds number range, the
scaled isothermal profiles depend on the Reynolds number. This makes the semi-local
scaling harder to interpret, as it would prevent the hot and cold profiles to collapse. To
study the Reynolds number effect, we compare the effect of the temperature gradient
to the effect of Reynolds number variations in the isothermal configuration. We use
to this intent the data of Tsukahara et al. [298| at the friction Reynolds numbers 110
and 150, the isothermal results at Re, = 180 and the data of Moser et al. [203] at
Re, = 395 (considering the lack of available data between 180 and 395).

The semi-locally scaled profiles of production (figure 4.14(c)) follow very closely
a Reynolds number effect. We use the empirical relation between the maximum of
production and the friction Reynolds number of Laadhari [154] to compute the peak
of production in the isothermal configuration associated with the friction Reynolds
number of the peak of production in the anisothermal configuration (around 121 at the
hot side and 215 at the cold side). The results agree within 1% accuracy to the aniso-
thermal results. Therefore, we can conclude that the effect of the temperature gradient
on production is to a very large extent a Reynolds number effect. A mathematical ar-
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Figure 4.16 — Interaction with internal energy, total £ and incompressible 7.

gument supporting this fact can be inferred from the mean streamwise momentum
balance, which may be rewritten with the semi-local scaling as

____ U y*
I% g 1% T 1 — 4.44
Um Uy + ay* ( Re;k_ ) ) ( )
assuming that pu)u) =~ pu/u; and ,uaa% ~ ﬁagy 2 The semi-locally scaled incompress-
ible production P;  is thus equal to
—% —x\ 2 —%
— —oU ou ou y*
N O T _ = A B . 4.45
Pr= s gy dy* dy* ( Rei) 449)

This expression is identical to the expression of the production in the incompressible
case with the semi-local scaling substituting the classical scaling, hinting that the semi-
local scaling is an appropriate scaling for the production in the variable property case.

While the effect of the temperature gradient on the interaction with internal energy
(figure 4.16(c)), the viscous transfer (figure 4.17(c)) and the convection (figure 4.18(c))
is also in a large part due to a Reynolds number effect, this explanation is not sufficient
to explain the effect of the temperature gradient on these terms. The value of the
interaction with internal energy (figure 4.16(c)) at the hot wall is comprised between
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Figure 4.17 — Viscous transfer (part of the conservative energy transfer), total ¥ and incom-
pressible ¢4.

the value at the wall in the isothermal configuration at Re, = 110 and Re, = 150,
despite being associated with a friction Reynolds number of 107. The semi-locally
scaled profile of the viscous transfer (4.17(c)) deviates noticeably from all isothermal
profiles from y* = 10 to the wall. In particular, while the semi-local profiles of the
viscous transfer in the four isothermal configurations (Re, = 110, 150, 180, 395) pass
through the same point at y* = 3.5, the hot and cold anisothermal profiles deviate from
this point significantly. The difference amounts to 20% of the maximum value of the
viscous transfer throughout the channel. The semi-locally scaled hot and cold profiles
of the convection (figure 4.18(c)) are farther from the isothermal profiles at the negative
extremum than at the positive extremum, closer from the wall, which is the opposite
of what a Reynolds number effect would imply. The effect of the temperature gradient
is from these simple observations proven inconsistent with a sole Reynolds number
effect. This shows that there is an additional effect that is not taken into account
by the semi-local scaling and a Reynolds number effect. This effect is related to the
variations of the fluid properties since it is the only new physical phenomenon in the
anisothermal channel compared to the isothermal simulation. Judging from the failure
of the semi-local scaling, based on the mean local value of the fluid properties, we may
presume that the mean local value of the fluid properties do not explain the entirety of
the effect of the temperature gradient. It may thus be necessary to take into account
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Figure 4.18 — Convection (part of the conservative energy transfer), total ¢ and incompress-
ible .

the fluctuations of the fluid properties to explain this effect. This is consistent with
the previous study of Serra et al. [265] which showed this effect through the analysis
of the isotropic component of the velocity fluctuation correlation tensor, out of which
the half-trace is governed by the energy exchanges studied here.

The integral scaling is another approach to scale the profile using the mean fluid
properties. The integral scaling significantly reduces the position asymmetry of the
classical scaling for the production (figure 4.14(d)). However, the scaling overcorrects
the amplitude difference between the hot and cold sides and swaps their positions.
The amplitude difference with the integral scaling is thus no longer consistent with a
Reynolds number effect. Moreover, the integral scaling gives very unsatisfying results
for the terms with non-zero value at the wall, in particular the interaction with internal
energy (figure 4.16(d)), since the ordering of the profiles at the wall is not changed.
Since the integral scaling appears less appropriate, this scaling will not be discussed
further in the remaining part of the paper.

All in all, the effect of the temperature gradient on the profiles at the hot and
cold sides is characterised by a twofold asymmetry. The asymmetry in the position
of the extrema is explained by the mean local variations of the fluid properties. The
asymmetry in the amplitudes is in part due to the local variations of the friction
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Reynolds number and in part due to the local fluctuations of the fluid properties.

Profiles of the incompressible terms in the anisothermal configuration

The effect of the temperature gradient on the profiles takes place both through the
addition of thermal terms to the energy exchanges and the alteration of the profile of
the incompressible terms. To assess the two phenomena, the set of figures 4.14 to 4.18
provides a comparison of the total energy exchanges to their incompressible part, that
we recall are formally identical to the terms in the incompressible case.

In agreements with the conclusions of the analysis of the maximum amplitude of
the terms in section 4.2.4.2, the production and the convection are not modified signifi-
cantly by the addition of the corresponding thermal terms. However, the profiles of the
interaction with internal energy, the viscous transfer and hence the conservative energy
transfer are noticeably modified. With semi-local scaling, the changes are restricted to
an area that arises very near to the wall and ends around y* = 20. The scaled profile of
the incompressible terms are much closer to the isothermal profile than the total term.
The addition of the thermal terms separates the three profiles more clearly, moving the
hot and cold profiles further away from each other and from the isothermal profile. In
other words, taking into account only the incompressible terms leads to results closer
to the isothermal profile than the true anisothermal profiles.

While the hot and cold profiles of the viscous transfer have a different behaviour
than the isothermal profiles, the hot and cold profiles of the incompressible viscous
transfer are more similar (figure 4.17(c)). In particular, the hot and cold profiles of
the incompressible viscous transfer pass through the point at y* = 3.5 as the profiles
of the viscous transfer in the four isothermal configurations (Re, = 110, 150, 180,
395). At the hot side, the profile of the incompressible term is in line with a Reynolds
number effect. The difference between the incompressible term and the total term thus
represents the more complex interaction between temperature and turbulence.
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Figure 4.20 — Thermal conservative energy transfer pr.

Profiles of the thermal terms in the anisothermal configuration

We study here the thermal terms of the energy exchanges. This includes the thermal
terms of the production, of the conservative energy transfer and of the interaction with
internal energy and the total profile of the interaction with variable density kinetic
energy since this energy exchange does not have an incompressible part. The thermal
conservative energy transfer is represented in figure 4.20, the interaction with variable
density kinetic energy in figure 4.21 and the thermal interaction with internal energy in
figure 4.22. The behaviour of the thermal production is not discussed as its amplitude
was found too low.

The three profiles share an interesting characteristic unknown to any of the incom-
pressible terms. The profile at the hot and cold sides are of opposite signs. For most
terms, the sign inversion can be understood from their mathematical expression. For
instance, 0, (mﬁyU m), the leading term of the thermal conservative energy transfer
undergoes a sign inversion as both v/u/, and 8y(7 » undergo a sign inversion, which im-
plies that the derivative of their product also does. Because of the sign inversion, we
give, in addition to the profiles with the three scalings, the profile with the semi-local
scaling with sign of the term at the hot side inverted. This allows a more convenient
comparison of the hot and cold profiles when ignoring the sign difference.
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Figure 4.21 — Interaction with variable density kinetic energy ¢.

The shape of the three thermal terms is similar. This is rather unexpected as
the three terms are related to different energy exchanges and have different associated
incompressible profiles. Besides, the interaction with variable density kinetic energy is
interpreted as a new interaction whereas the thermal interaction with internal energy
and the thermal conservative energy transfer are seen as the thermal part of a larger
energy exchange. The hot and cold profiles both tend to zero at the wall and at
the centre of the channel. Between these two points, both profiles have two extrema,
one positive and one negative. The first extremum has a larger amplitude than the
second extremum but the second extremum has a larger spatial range. In the thermal
conservative energy transfer (figure 4.20), the two extrema have the same integral. This
term transfers the energy from the extremum close to the wall towards the centre of
the channel at the hot side, and conversely towards the wall at the cold side. On the
other hand, the first extremum has a smaller integral than the second extremum for
the thermal interaction with internal energy (figure 4.22). The effect of this term is
an energy loss at the extremum close to the wall at the cold side and a gain closer to
the centre of the channel at the cold side, and vice versa at the hot side. This can be
thought of as a pseudo-transfer in the opposite direction to the thermal conservative
energy transfer. However, this effect is accompanied by a net energy gain at the cold
side and loss at the hot side. The same remark may be applied to the interaction with
variable density kinetic energy (figure 4.21), but the transfer occurs in the opposite
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Figure 4.22 — Thermal interaction with internal energy &p.

direction. The amplitude of the extrema is always larger at the cold side than at the
hot side, and to a greater extent for the first extremum than for the second extremum.
As for the incompressible energy exchanges, the spatial extent of the term is at the
same time larger at the hot side compared to the cold side. As just previously noted,
the significant part of the thermal terms is limited to an area that excludes the near
vicinity of the wall and the centre of the channel. This can be explained as the velocity
and temperature fluctuations are zero at the wall and the temperature gradient is low
at the centre of the channel.

The signs of the extrema are the same for the two non-conservative thermal terms,
and are of opposite signs for the thermal conservative energy transfer. Hence, the sum
of the non-conservative terms and the sum of the conservative terms are of opposite
signs. With regard to the total energy exchanges, the sum of the non-conservative terms
is equal to the opposite of the conservative energy transfer. We may wonder if this
property holds for the thermal terms as the thermal conservative and non-conservative
terms may interact with each other only or also with the incompressible terms. To
answer this question, the sum of all thermal terms is represented in figure 4.23. The
profile is of the same order of magnitude as the thermal terms, proving that the thermal
terms do not cancel out. It is composed of three extrema where, like the individual
term, the profiles at the hot and cold side are of opposite sign. The integral of the
positive extrema is larger than the integral of the negative extrema at both the hot
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Figure 4.23 — Sum of all thermal terms @ +  + &r.

and cold sides, resulting in a net energy gain overall.

The profiles of the thermal terms are modified by the classical scaling and the semi-
local scaling in a similar way to the terms that do not vanish in the incompressible
case. With the constant scaling, an extremum is always closer to the wall at the cold
side than at the hot side. The classical scaling reduces the position differences between
the hot and cold side, and swaps their relative position. Indeed, by contrast with the
constant scaling, an extremum is always closer to the wall in wall units at the hot side
than at the cold side. The difference is very slight for the first extremum, but larger
for the second extremum. This is in agreement with the proposed interpretation of this
result given in the previous section.

With the semi-local scaling, there is no position differences between the extrema of
kinetic energy gain/loss at the hot and cold sides. Additionally, the areas where the
hot and cold profiles are of the same sign are removed. Therefore, any kinetic energy
loss coincides with a kinetic energy gain at the same position at the other side of the
channel. The semi-locally scaled hot and cold profiles can thus be considered to always
be of opposite sign and completely symmetric if not for the amplitude differences, which
are left largely unchanged. This shows that the amplitude difference cannot be solely
explained by the mean local variations of the fluid properties.
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4.2.4.4 Results in the spectral domain

In this section, the spectral behaviour of the terms of the evolution equation of the
half-trace of the velocity fluctuation correlation tensor is discussed. The spectra of the
energy exchanges are not documented in the literature with the decomposition used in
this study. Thereupon, we first describe the spectral behaviour of the energy exchanges
in the isothermal configuration. Then, we study the effect of the temperature gradient
on the spectra of the incompressible energy exchanges. Finally, we analyse the spectra
of the thermal terms separately.

Spectra of the incompressible energy exchanges in the isothermal configu-
ration

In the incompressible case, the four main spectral energy terms are the production,
the conservative energy transfer, the purely spectral transfer and the interaction with
internal energy. They are represented in the isothermal configuration in figure 4.24(c),
4.25(c), 4.26(c) and 4.27(c) respectively. We recall that for each plot, the amplitude
is given by the integration of the spectral density of the term over a wavenumber bin,
as described in section 4.2.3.5. The spectra give the total statistically averaged effect
of the term, that is the statistical balance of the energy taken and given at each wall-
normal coordinate and wavenumber. This may hide some physical phenomena from
the analysis.

The production (figure 4.24(c)) generates turbulence kinetic energy from mean ki-
netic energy in a limited area in both the spectral and spatial domains. The area is
roughly circular but slanted so that large eddies contribute to the production farther
from the wall and small eddies closer to the wall. This is consistent with the spatial
profile of production (figure 4.14) which consists of a single peak. The maximum of
production is located at (y° = 12;k° = 0.07).

The conservative energy transfer (figure 4.25(c)) transfers the energy from an area
centred on the position of the maximum of production, with a very large wavenumber
range. The energy is transferred towards the wall and slightly towards large scales.

This is consistent with the spatial profile of the conservative energy transfer (figure
4.15).

The purely spectral transfer (figure 4.26(c)) redistributes the energy among scales
with no effect in the spatial domain. The energy is taken from an area very close to the
maximum of production but slightly farther from the wall and redistributed towards
both large scales and small scales, with few spatial position shifts. The spectrum is
slanted and involves smaller eddies closer to the wall and larger eddies away from the
wall. The positive area at small scales has a twice as large amplitude than the positive
area at large scales. The purely spectral transfer thus primarily moves the energy
towards small scales. The spectrum highlights the complex redistribution of scales in
wall-bounded flows through both direct and inverse energy cascades.

The interaction with internal energy (figure 4.27(c)) dissipates kinetic energy into
internal energy very near to the wall. This is consistent with its spatial profile (figure
4.16). The extremum of its spectrum is at the same position as the positive area of the
spectrum of the conservative energy transfer. However, its spatial extent is significantly
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larger, going much closer to the centre of the channel. When away from the wall, the
scales that contribute to the interaction with internal energy are smaller. This is the
opposite behaviour of the production peak described above. Since the production and
the dissipation have opposite effect, the consequences are similar.

The conservative energy transfer is the sum of three contributions: the convection,
the viscous transfer and the pressure transfer. We study here individually the spectra
of the viscous transfer (figure 4.28(c)) and the convection (figure 4.29(c)). The pressure
transfer is not discussed as its amplitude is too small for its spectrum to be statistically
reliable in the anisothermal configuration (see section 4.2.4.2).

The viscous transfer (figure 4.28(c)) transfers the energy from an area around
y° = 10 to the wall with no scale shift. The transfer does not occur only in the
spatial direction, since the wavenumber range of the positive area is larger than the
wavenumber range of the negative area.

The convection (figure 4.29(c)) is characterised by transfers in both the spatial and
spectral domains. The energy is taken from an area located at the same wall-normal
coordinate as the maximum of production but at smaller scales and transferred both
towards the wall at larger scales and towards the centre of the channel at smaller scales.
The former of these two effects is however far more significant.

The overall spectral behaviour of the energy exchanges in a wall-bounded flow is
as follows. Mean kinetic energy is transformed into turbulence kinetic energy around
a particular point in the spatial and spectral domains. The energy is primarily redis-
tributed towards small scales; transferred with few scale shift towards the wall, then
transformed into internal energy.

Spectra of the incompressible energy exchanges in the anisothermal config-
uration

We now focus on the effect of the temperature gradient on the terms of the evolution
equation of the half-trace of the velocity fluctuation correlation tensor, investigated
above in the isothermal configuration. The production is represented in figure 4.24,
the conservative energy transfer in figure 4.25, the purely spectral transfer in figure 4.26,
the interaction with internal energy in figure 4.27, the viscous transfer in figure 4.28 and
the convection in figure 4.29. Let us recall that in flows with variable fluid properties,
the interaction with internal energy is the sum of two contributions: the dissipation
and the pressure dilatation correlation. Since the pressure dilatation correlation is
negligible, the spectra of the interaction with internal energy also give the spectra of
the dissipation.

For each term, we give the spectra obtained with the constant scaling and with
the semi-local scaling. As shown by the analysis in the spatial domain, the classical
scaling overcorrects the position of the maxima in the wall-normal direction because of
the large variations of the fluid properties. In the spectral domain, the classical scaling
was found to provide no further information over the constant scaling and the semi-
local scaling as this behaviour holds. For similar reasons, the results with the integral
scaling are not shown. For each scaling, we compare the spectra at the hot and cold
sides in the anisothermal configuration and the spectra in the isothermal configuration.
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Figure 4.24 — Production P.
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Figure 4.25 — Conservative energy transfer ¢.
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Figure 4.26 — Purely spectral transfer =,
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Figure 4.27 — Interaction with internal energy &.
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Figure 4.28 — Viscous transfer (part of the conservative energy transfer) ¢v.
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Figure 4.29 — Convection (part of the conservative energy transfer) .
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The effect of the temperature gradient is less universal in the spectral domain than
in the spatial domain. With the constant scaling, the spatial position of the spectral
extrema is modified for each term as described in the spatial domain. Namely, it is
shifted closer to the wall at the cold side and farther at the hot side. The spectral
position of the extrema is shifted towards large scales at both the hot and cold sides
compared to the isothermal spectra. The shift is small at the cold side and large at
the hot side. This creates an additional asymmetry between the hot and cold sides.
The amplitude of the extrema is larger at the hot side than at the cold side. This is
counterintuitive because the extrema in the spatial domain are larger at the cold side.
This apparent contradiction is explained by a difference in the range of scales handled.
The energy exchanges take place over a wider range of scales at the cold side and are
restricted to a smaller wavenumber range at the hot side. In other words, the larger
spatial amplitudes at the cold side do not root in larger spectral amplitudes but in a
larger number of scales handled.

In agreement with the analysis in the spatial domain, there is no spatial position
difference between the hot and cold sides with the semi-local scaling. The effect of the
semi-local scaling on the spectral position differences is not the same for each term.

With the semi-local scaling, there is no longer a spectral position difference between
the hot and cold sides of the maximum of production (figure 4.24).

This is also true for the negative area of the spectra of the conservative energy
transfer (figure 4.25), which hence stays centred on the maximum of production. The
positive area also stays centred on the extremum of dissipation, which as will be de-
scribed later means that the spectral positions of the extrema at the hot and cold sides
remain different. As a result of the inconsistency between the behaviour of the two
areas, the pseudo-transfer from the negative area to the positive area appears to be
almost entirely towards the wall at the hot side and both towards the wall and towards
large scales at the cold side.

With regard to the purely spectral transfer (figure 4.26), the spectral position dif-
ference between the hot and cold sides disappears for the negative area and the positive
area at small scales but remains for the positive area at large scales at the hot side.
The inverse energy cascade hence is modified by the complex interaction between tem-
perature and turbulence.

The extremum of the interaction with internal energy (figure 4.27) is not at the
same spectral position at the hot and cold sides. The relative positions of the hot
and cold extrema is swapped compared to the constant scaling. The extremum at
the hot side appears closer to the smallest scales than in the isothermal configuration,
and closer to the largest scales at the cold side. We previously identified that smaller
scales contribute to the interaction with internal energy away from the wall. This
behaviour almost vanishes at the hot side but is strengthened at the cold side. Taking
into account the mean local variations of the fluid properties with semi-local scaling,
the effect appears stronger.

The spectral position difference between the hot and cold sides observed with the
constant scaling remains for some extrema but vanishes for others with the semi-local
scaling. If the difference vanishes, it suggests that the spectral position asymmetry is a
direct consequence of the spatial position asymmetry, through the mean local variations
of the viscosity. If the difference remains, it suggests that the asymmetry additionally
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Figure 4.30 — Thermal conservative energy transfer @ .

lies in more complex phenomena, namely the combined effect of local Reynolds number
variations and of the local fluctuations of the fluid properties.

Spectra of the thermal terms in the anisothermal configuration

The thermal terms are the thermal part of the above-investigated terms and the
total profile of the interaction with variable density kinetic energy, a thermal energy
exchange. We only discuss here the terms that have a statistically reliable spectra
from our direct numerical simulation. The thermal conservative energy transfer is
represented in figure 4.30, the interaction with variable density kinetic energy in figure
4.31 and the thermal interaction with internal energy in figure 4.32. The thermal
production is not discussed as its effect is negligible and the purely spectral transfer
has no thermal contribution.

The three terms were shown to have a similar spatial profile. The similarities
also appear in the spectral domain. As could be induced from the spatial profiles, the
spectra are composed of two areas of opposite signs at each side, that are also of opposite
sign between the hot and cold sides. That is, a kinetic energy gain (respectively loss)
at one side of the channel occurs with a kinetic energy loss (respectively gain) at the
other side of the channel. The extrema close to the wall have a significantly larger
spectral amplitude than the second extrema. The spectral amplitude in absolute value



4.2. Paper 2 101

178.0 ———— 802e-03 1780 1.64e-03
T H 6.86e-03 T T l 1.41e-03
100.0 S L 1570003 1000 N~ b4 1.17e-03
56.23 |— I~ - - 4.55e-03 56.23 - 4 9.33e-04
i ‘ L {3.39e-03 | S| 1 6.96e-04
31.62 S e E—— L | 204e-03 3162 —_ 77 k4 4.59¢-04
17.78 _ F 10803 4775 T 7| 1 F 422204
o 1 732605 ‘s S E 4 -1.50e-05
10.00 W) | F 4 -1.23e-03  10.00 E 4 -2.526-04
5.62 L i F o -2.38e-03 5.62 a F o -4.89¢-04
* L | 354603 N7/, L | 7.266-04
3.16 7 -4.70e-03 3.16 -9.62e-04
- -5.85e-03 178 -1.20e-03
— -7.01e-03 1.446-03
1.00 . -8.16e-03 1.00 -1.67e-03

0010 0018 0032 0056 0100 0.178 0316 0010 0018 0032 0056 0100 0.178 0316

Ko K

(a) Hot side, constant scaling. (b) Hot side, semi-local scaling.
178.0 8.026-03 1780 1.64¢-03
H 6.866-03 l 1.41e-03
100.0 L 1570003 1000 b d 1.17e-03
56.23 —— - - 4.55e-03 56.23 — - 4 9.33e-04
T L {3.39e-03 g N L 1 6.960-04
81.62 N ~ L 4224003 3162 1 L 4.59¢-04
Y N i SN G ) Ed 108603 4775 B e S k222004
LN b4 7.326-05 s — ] [ 150605
10.00 k4 -1.23e-03  10.00 T ko -2.52e-04
562 B 238603 o b o -4.89e-04
( } L | 354003 \ ///// L | 7.260-04
3.16 470e-03  8.16 -9.62¢-04
178 \ = / | 585003 o = : -1.20e-03
N— -7.01e-03 1.44¢-03
1.00 L -8.16e-03 1.00 -1.676-03

0010 0018 0032 0056 0100 0.178 0316 0010 0018 0032 0056 0100 0178 0.316

4 K
(¢) Cold side, constant scaling. (d) Cold side, semi-local scaling.

Figure 4.31 — Interaction with variable density kinetic energy E .

of an extremum is larger at the cold side than the hot side. This may seem obvious
from the spatial profiles but contrasts with the spectra of the incompressible energy
exchanges. In agreement with the other spectra, the extrema with the constant scaling
are closer to the large scales at the hot side and spans over a wider range of scales at
the cold side. Hence, the larger spatial amplitudes at the cold side come both from a
larger spectral amplitude and a larger number of scales handled.

The spectral position of the extrema closer to the wall is identical for the three
terms at both the hot and cold sides. The spectral position of the extrema close to the
centre of the channel is identical for the thermal conservative energy transfer and the
interaction with variable density kinetic energy, but different for the thermal interaction
with internal energy. In the former case, its spectral position with the constant scaling
is the same as the extremum close to the wall. In the latter case, it is located at smaller
scales.

For the thermal conservative energy transfer and the interaction with variable den-
sity kinetic energy, the semi-local scaling creates a spectral position shift between the
two extrema. For the interaction with variable density kinetic energy, the already ex-
isting shift is increased at the cold side and reduced at the hot side. The semi-local
scaling fails to nullify the spectral position difference between the hot and cold sides for
all extrema of the thermal terms. With the semi-local scaling, an extremum appears
closer to the small scales at the hot side. This behaviour is similar to the behaviour of
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Figure 4.32 — Thermal interaction with internal energy .

some extrema of the previously discussed total terms.

The combined effect of the thermal terms is rather unobvious because of the spatial
and spectral position differences between the three terms. The spectra of the sum of all
thermal terms, represented in figure 4.33, are composed of three areas of opposite sign
between the hot and cold sides. This is in agreement with the spatial profiles (figure
4.23). The first two areas are located at the same wavenumber as the extrema closer
to the wall of the separate spectra. The third area more or less corresponds to the
extremum close to the centre of the channel of the thermal interaction with internal
energy. It is thus located at smaller scales than the first two areas. The spectra show
complex interactions both in the spatial and spectral directions and between the two
sides of the channel.

The semi-local scaling retains in the anisothermal configuration a large part of the
overall spectral behaviour of the energy exchanges found in the isothermal configura-
tion. The production and redistribution among scales of turbulence kinetic energy are
not significantly modified. However, the kinetic energy transfer towards the wall and
the dissipation are modified. In particular, the scales involved differ between the hot
and cold sides. They are shifted towards large scales at the cold side and towards small
scales at the hot side.
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Figure 4.33 — Sum of all thermal terms @, + E—i— Er.

4.2.5 Conclusion

The energy exchanges associated with the half-trace of the velocity fluctuation
correlation tensor are investigated in the spatial and spectral domains from two direct
numerical simulations of a fully developed turbulent channel flow: one isothermal and
one anisothermal, in which the flow is subjected to a strong temperature gradient.
The flow in the anisothermal channel is mainly an incompressible flow with variable
fluid properties. The most significant thermal terms are associated with the rate of
deformation part of the viscous shear stress while the viscous terms associated with
dilatation are very small. The temperature gradient generates an asymmetry between
the profiles of the energy exchanges between the hot and cold sides. This asymmetry
consists of: (1) an asymmetry in the position of the extrema explained by the mean local
variations of the fluid properties and (2) an asymmetry in the amplitude of the extrema,
explained with, in addition, the combined effect of local Reynolds number variations
and of the local fluctuations of the fluid properties. The asymmetry originates both
from the subtle modification of the behaviour of the incompressible terms compared to
the isothermal configuration and the addition of thermal terms. Both effects are found
necessary to obtain the correct behaviour of the energy exchanges for the interaction
with internal energy, the viscous transfer and hence the conservative energy transfer.

The spectral evolution equation of the half-trace of the velocity fluctuation correla-
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tion tensor allows us to carry on the analysis of the energy exchanges into the spectral
domain. In the isothermal configuration, the purely spectral term is found to represent
a significant part of the spectral energy exchanges. It redistributes the energy among
scales through both direct and inverse cascades. The extension of the spectral decom-
position to the anisothermal configuration shows that the larger spatial amplitudes at
the cold side come from a larger number of scales handled in the spectral domain.
Additionally, an asymmetry in the wavenumber position of the spectral extrema is ob-
served near the wall. This additional effect moves the cold side to the large scales and
the hot side to the small scales.
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4.3 Conclusion of chapter 4

The ternary decomposition of total energy and the decomposition of density in a
constant and variable part give physical groundings to the study of the energy ex-
changes associated with the half-trace of the velocity fluctuation correlation tensor in
the spatial and spectral domains. The energy exchanges are very different from the
energy exchanges found in homogeneous isotropic turbulence. The dissipation does not
occur at smaller scales than the production but at similar scales. The interscale trans-
port of kinetic energy towards small scales is supplemented by an interscale transport
towards large scales and a significant amount of kinetic energy is transferred to the
near-wall region. The temperature gradient creates an asymmetry between the energy
exchanges at the hot and cold sides, which are different and deviate from the energy
exchanges in the incompressible isothermal configuration. The asymmetry can be in-
terpreted as the combined influence of the addition of thermal terms and the behaviour
modification of the incompressible terms. The most significant thermal terms are asso-
ciated with the rate of deformation part of the viscous shear stress. The other thermal
terms do not have a large effect in the flow investigated. The significant thermal terms
show some universality in their behaviour and thus in their effect on the flow, mainly
characterised by a net energy transfer towards or away from the wall.

The use of a semi-local scaling taking into account the variations of the mean local
fluid properties successfully predicts a large part of the asymmetry. However, it does
not entirely explain the amplitude differences as the energy exchanges have with the
semi-local scaling a larger spatial amplitude at the cold side than at the hot side. In
the spectral domain, the energy exchanges also handle with the semi-local scaling a
larger number of scales at the cold side and, for some terms, a wavenumber asymmetry
is observed. This suggests that a nontrivial portion of the asymmetry between the
hot and cold sides is tied to more complex effects of the temperature gradient. A low
Reynolds number effect has been identified, given by the variations of the local friction
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Reynolds number across the channel. While this further explain a large part of the
asymmetry, the results are inconsistent with a sole Reynolds number effect. In the
next chapter, the analysis will be extended with the direct numerical simulation of
the anisothermal channel at Re, = 395 to investigate the effect of the mean friction
Reynolds number on the asymmetry.



Chapter 5

Effect of the Reynolds number on
turbulence kinetic energy exchanges

5.1 Introduction of chapter 5

The direct numerical simulations of the strongly anisothermal channel flow at the
mean friction Reynolds number of Re, = 180 and Re, = 395 enable the study of
the effect of the Reynolds number on the energy exchanges associated with the half-
trace of the velocity fluctuation correlation tensor. At Re, = 180, the effect of the
temperature gradient on the energy exchanges has been investigated in the previous
chapter. This chapter focuses on the effect of the mean friction Reynolds number on
the energy exchanges and on the influence of the temperature gradient. The same
method is used to analyse the energy exchanges and the study is based on the same
decomposition of kinetic energy [89, 91]. Namely, the energy exchanges are decomposed
into incompressible terms and thermal terms. The incompressible terms are formally
identical to the terms present in the incompressible isothermal configuration. The
thermal terms are specific to flows with variable fluid properties. The energy exchanges
composed of at least one non-zero incompressible term are called incompressible energy
exchanges. The energy exchanges composed only of thermal terms are called thermal
energy exchanges.

5.2 Results

The energy exchanges associated with the half-trace of the velocity fluctuation
correlation tensor are investigated using the semi-local scaling [127], which is an ap-
propriate scaling for the energy exchanges [91|[see also 224, 225, 91|. In contrast with
the classical scaling, based only on wall values, the semi-local scaling is based on a
velocity scale UF and a length scale 7/U?* defined using the wall shear-stress and the
mean local fluid properties. This leads to a semi-local wall coordinate y*, a semi-local
wavenumber k*, a semi-local velocity U* and a semi-local friction Reynolds number

Re*

. yUu;s
Y= ==,
7(y)

(5.1)



110 5. Effect of the Reynolds number

kv(y)

k* = 5.2
T (5.2)
U

U= — 5.3
= (53)

Rer = IR (5.4)
7(y)

with,

lﬁ:Jﬁ;(f}l; (55)

where the subscript w denotes the value at the wall. The terms of the evolution equation
of the half-trace of the velocity fluctuation correlation tensor are scaled by U**/m(y).

The energy exchanges are investigated in the spatial and spectral domains. In
both cases, the analysis is carried out in two steps. First, we study the effect of the
mean friction Reynolds number on the incompressible energy exchanges, through the
combined effect of incompressible terms and thermal terms. Then, we study its effect
on the incompressible terms and the thermal terms separately.

5.2.1 Effect of the Reynolds number in the spatial domain

5.2.1.1 Profiles of the incompressible energy exchanges in the anisothermal
configuration

The temperature gradient creates at Re, = 180 and Re, = 395 an asymmetry
between spatial profiles at the hot and cold sides of the three incompressible energy
exchanges associated with the half-trace of the velocity fluctuation correlation tensor:
the production, the conservative energy transfer and the interaction with internal en-
ergy. The energy exchanges have a greater magnitude at the cold side than at the hot
side, but occur over a narrower spatial range and closer to the wall. These effects of
the temperature gradient are Reynolds number dependent.

The spatial profiles at Re, = 180 and Re, = 395 of the three incompressible energy
exchanges is provided in figure 5.1 with the semi-local scaling. The profiles of the two
most significant parts of the conservative energy transfer, the viscous transfer and the
convection, are also given. At higher mean friction Reynolds number, the asymmetry
between the hot and cold sides is reduced. This is consistent with the assumption
that the asymmetry between the hot and cold sides is mainly due to two separate
contributions [91]:

e the variations of the local velocity and length scales due to the variations of the
local fluid properties, to some extent taken into account by the semi-local scaling;

e a varying low Reynolds number effect between the hot and cold sides depending
on the semi-local friction Reynolds number (not taken into account by the semi-
local scaling).

Indeed, the profiles of the energy exchanges exhibit low Reynolds number effects in
the incompressible isothermal case within the Reynolds number range of this study. A
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lower Reynolds number decreases the amplitude of the energy exchanges and shifts the
profiles farther from the wall. This Reynolds number dependence is more pronounced
for the interaction with internal energy and the viscous transfer than for the production
and the convection. In the anisothermal channel, the semi-local friction Reynolds
number varies across the channel due to the temperature gradient. At Re, = 180, the
semi-local friction Reynolds number ranges from 105 at the hot wall to 260 at the cold
wall. At Re, = 395, the semi-local friction Reynolds number ranges from 227 at the
hot wall to 556 at the cold wall. The profiles are therefore subjected to a varying low
Reynolds number effect between the hot and cold sides, which cannot be expected to
be taken into account by any scaling based on the local fluid properties, given that the
classical wall scaling does not collapse the incompressible isothermal profiles at various
friction Reynolds number.

As at Re, = 180 [91], the semi-local scaling properly account for the effect of the
variations of the local fluid properties on the profile of production (figure 5.1(a)) at
Re,. = 395. This is shown by the fact that the maximum of production with the
semi-local scaling follows a low Reynolds number effect according to the empirical
relation of Laadhari [154]. While the semi-local scaling is also relevant for the other
energy exchanges, the profiles of the conservative energy transfer (figure 5.1(b)) and the
interaction with internal energy (figure 5.1(c)) show evidence that the approximation
of the semi-local scaling does not perfectly take into account the effect of the variations
of the local fluid properties. The value of the interaction with internal energy (figure
5.1(c)) at the wall is not equal to that of the incompressible isothermal profile at the
wall semi-local friction Reynolds number. The hot and cold profiles of the viscous
transfer (figure 5.1(d)) deviates from all incompressible isothermal profiles, even at the
point near y* = 3.5 where they pass through the same points. The asymmetry between
the hot and cold profiles of the convection (figure 5.1(e)) is very small compared to a
low Reynolds number effect, especially at the positive extremum, closer from the wall.
These results confirms previous findings at Re, = 180 [91].

Hence, the asymmetry between the hot and cold sides is reduced at Re, = 395
compared to Re, = 180 because low Reynolds number effects are smaller the higher
the Reynolds number. This only affects one component of the effect of the temperature
gradient however. While a simulation at even higher Reynolds number would be free of
low Reynolds number effects, the results suggest that the hot and cold profiles would
still not collapse because the approximation of the semi-local scaling does not perfectly
account for the effect of the variations of the local fluid properties. This is investigated
further by decomposing the energy exchanges into incompressible terms and thermal
terms.

5.2.1.2 Profiles of the incompressible terms in the anisothermal configu-
ration

The spatial profiles with the semi-local scaling of the incompressible terms follows
for the most part the same general behaviour as the total incompressible energy ex-
changes and are subject to a similar effect of the Reynolds number (figure 5.1). The
incompressible production is identical to the total production because the thermal pro-
duction is negligible (figure 5.1(a)). At Re, = 180, the profiles of the incompressible
conservative energy transfer (figure 5.1(b)) and the incompressible interaction with in-
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Figure 5.1 — Profiles of the terms of the budget of the half-trace of the velocity fluctuation
correlation tensor with the semi-local scaling at Re, = 180 and Re, = 395. The profiles of
the two most significant parts of the conservative energy transfer are also given, The results
are compared to the reference data of Moser et al. [203] for an incompressible isothermal
channel flow at the friction Reynolds numbers 180, 395 and 590. The viscous transfer and the
convection are the two most significant parts of the conservative energy transfer.
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ternal energy (figure 5.1(c)) at the hot and cold sides are closer to each other and to
the incompressible isothermal profiles, especially in an area around y* = 4 but not at
the wall where the incompressible and total terms are identical. At Re, = 395, the
effect is similar but goes further, inverting the ordering of the hot and cold profiles at
some parts of the channel, leading to a larger amplitude at the hot side. This is due
to the reduced asymmetry of the energy exchanges between the hot and cold sides.

5.2.1.3 Profiles of the thermal terms in the anisothermal configuration

We provide in figure 5.2 the spatial profiles with the semi-local scaling of the three
most significant thermal terms at Re, = 180 and Re, = 395: the thermal conserva-
tive energy transfer (figure 5.2(a)), the interaction with variable density kinetic energy
(figure 5.2(b)) and the thermal interaction with internal energy (figure 5.2(c)). The
interaction with variable density kinetic energy is a thermal energy exchange while the
thermal conservative energy transfer and the thermal interaction with internal energy
are parts of incompressible exchanges specific to flows with variable fluid properties.
The thermal production is not discussed because it is negligible compared to the in-
compressible production. The three investigated thermal terms show some similarity
as their profile is composed of two peaks which are of opposite sign at the hot and cold
sides, and have a larger magnitude at the cold side than at the hot side.

The profiles of the thermal terms at the two mean friction Reynolds number are
very similar. The effects of the Reynolds number on the thermal terms, very small, are
given hereafter. At Re, = 395, the position of the extrema is shifted towards the wall
compared to Re, = 180, reducing the position asymmetry between the hot and cold
sides for the extremum closer to the centre of the channel. The amplitude of the ex-
tremum closer to the wall is increased slightly whereas the amplitude of the extremum
closer to the centre of the channel is decreased. These effects are not significant and
do not affect notably the amplitude asymmetry between the hot and cold sides. All
in all, the Reynolds number dependence of the thermal terms is very slight, suggest-
ing that the profiles are almost universal within the Reynolds number range of this
study. Therefore, we may infer the approximate conclusion that low Reynolds number
effects only affect the incompressible terms but are negligible on thermal terms. In
other words, the thermal terms are functions of the variations of the mean local fluid
properties only and do not substantially depend on the Reynolds number. This shows
the relevance of the decomposition of the energy exchanges into incompressible terms
and thermal terms.

Since the magnitude of the incompressible terms increases with the mean friction
Reynolds number while thermal terms are largely unaffected, the relative contributions
of the thermal terms to the energy exchanges decline at high Reynolds number. On the
other hand, the relative importance of the thermal terms on the asymmetry between
the hot and cold sides become larger, given that the asymmetry between the hot and
cold sides is reduced for the incompressible terms. This follows from the assumption
that a varying low Reynolds number effect is a significant part of the effect of the
temperature gradient on the incompressible terms whereas the thermal terms are only
tied to the variations of the mean local fluid properties. Increasing the mean friction
Reynolds number reduces the low Reynolds number effects, which gives less weight to
the incompressible terms on the asymmetry between the hot and cold sides. However,
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Figure 5.2 — Profiles of the thermal terms of the budget of the half-trace of the velocity
fluctuation correlation tensor with the semi-local scaling at Re, = 180 and Re, = 395.

as noted above, the incompressible terms are also in a large part related to the variations
of the local fluid properties since the decomposition does not completely separate the
two effects.

5.2.2 Effect of the Reynolds number in the spectral domain

5.2.2.1 Spectra of the incompressible energy exchanges in the anisothermal
configuration

The effect of the mean friction Reynolds number on the spectral energy exchanges
is investigated. The spectral behaviour of the energy exchanges has been described in
Dupuy et al. [91] in the incompressible isothermal case and in the anisothermal case.
The half-trace of the velocity fluctuation correlation tensor is in the spectral domain
predominantly governed by four incompressible spectral energy exchanges: the produc-
tion, the interscale transport, the conservative energy transfer and the interaction with
internal energy. The production of turbulence kinetic energy occurs around y* = 12
and £* = 0.07. The interscale transport redistributes the produced energy among
scales, mainly towards small scales but also towards large scales. The energy is, in ad-
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Figure 5.3 — Profiles of the terms of the budget of the half-trace of the velocity fluctuation
correlation tensor with the semi-local scaling at Re, = 180 and Re, = 395 as a function of
wavenumber at the location of the spatial peak of production (y* ~ 12).

dition, transferred away and towards the wall by the conservative energy transfer, with
a limited scale shift from production. A cut of the spectra at the location of the spatial
peak of production (figure 5.3) show that no energy exchange predominates. The pro-
duced energy is split almost evenly in three energy processes: its transfer towards the
wall, its redistribution towards large and small scales and its conversion into internal
energy. Near the wall, takes place most of the interaction with internal energy, that is
the conversion of turbulence kinetic energy into internal energy. The production and
the purely spectral transfer are negligible. The interaction with internal energy and the
conservative energy transfer are thus in balance and occurs at the same wavenumber
(figure 5.4). At the center of the channel, the production is negligible. The energy
coming from the production area is transported towards small scales where it is dissi-
pated. The conservative energy transfer and the interaction with internal energy thus
do not occur at the same wavenumber (figure 5.5). The temperature gradient alters
the energy exchanges. They have a lower spectral magnitude at the cold side than at
the hot side, but occur at smaller wavenumbers, closer to the wall and handle a larger
range of scales.

The spectra of the four incompressible energy exchanges are provided in the set of
figures 5.6 to 5.9 with the semi-local scaling. The spectra of the viscous transfer and the
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Figure 5.6 — Spectra of the production P with semi-local scaling at Re,; = 180 (thick lines,
light colour) and Re, = 395 (thin line, dark colour).

convection, the two most significant parts of the conservative energy transfer, are given
in figures 5.10 and 5.11. In addition, the spatial and spectral position and the amplitude
of the peaks of each energy exchange are provided in table 5.1. With the semi-local
scaling, the general behaviour of the spectral energy exchanges are similar at Re, =
180 and Re, = 395. As in the spatial domain, we consider that the spectral energy
exchanges in the anisothermal configuration are in a large part due to the combination
of the variations of the local fluid properties and a varying low Reynolds number effect.
These two effects also influence the scales handled by the energy exchanges. A large
part of the wavenumber asymmetry related to the variations of the local fluid properties
is taken into account by the semi-local scaling. In accordance with the spatial results,
the spectral extrema are closer to the wall at higher mean friction Reynolds number.
This also applies to the interscale transport (figure 5.8), which has no contribution
in the spatial domain. The spectra also suggest that the range of scales handled
by the energy exchanges increases with the mean friction Reynolds number, both at
large and small scales. This differs from the classical theory of homogeneous isotropic
turbulence [254, 288|, verified experimentally [108], which predicts a modification of
the spectra only at small scales. Possible explanations of this behaviour include an
effect of flow anisotropy due to the wall, the numerical procedure and the periodic
boundary conditions. A similar behaviour has been obtained by Schiavo et al. [262] in
incompressible isothermal straight and convergent-divergent channels.

Besides these general effects relevant to all energy exchanges, the production peak
(figure 5.6) is shifted towards small scales at Re, = 395 compared to Re, = 180 at the
hot and cold sides. Its amplitude is increased at the cold side and decreased at the
hot side, reducing the asymmetry between the hot and cold sides in terms of spectral
magnitude. The negative peak of the conservative energy transfer (figure 5.7) follows
the same pattern, thereby staying centred on the peak of production. The positive
peak behaves like the extremum of the interaction with internal energy, described later.
The negative extremum of the interscale transport (figure 5.8) is shifted towards small
scales at the higher mean friction Reynolds number while the maximum at large scales
is shifted towards large scales at the hot side and towards small scales at the cold side,
reducing the asymmetry between the hot and cold sides. The negative area and the
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Figure 5.7 — Spectra of the conservative energy transfer » with semi-local scaling at Re, =
180 (thick lines, light colour) and Re, = 395 (thin line, dark colour).
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Figure 5.8 — Spectra of the purely spectral transfer = with semi-local scaling at Re, = 180
(thick lines, light colour) and Re, = 395 (thin line, dark colour).
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Figure 5.9 — Spectra of the interaction with internal energy & with semi-local scaling at Re,
= 180 (thick lines, light colour) and Re, = 395 (thin line, dark colour).
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Figure 5.10 — Spectra of the viscous transfer (part of the conservative energy transfer) @¥
with semi-local scaling at Re,; = 180 (thick lines, light colour) and Re, = 395 (thin line, dark
colour).
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Figure 5.11 — Spectra of the convection (part of the conservative energy transfer) ¢ with
semi-local scaling at Re, = 180 (thick lines, light colour) and Re; = 395 (thin line, dark
colour).

positive area at large scales have a smaller amplitude at Re, = 395 than at Re, = 180
whereas the positive area at small scales has a larger amplitude. The direct interscale
transport towards small scales is therefore strengthened compared to the transport
towards large scales. The extremum of the interaction with internal energy (figure 5.9)
has a larger amplitude at the higher mean friction Reynolds number. It is also shifted
towards large scales at the hot side and towards small scales at the cold side, reducing
the wavenumber asymmetry between the hot and cold side. This suggests that the
wavenumber asymmetry between the hot and cold sides at Re, = 180 results in part
from a low Reynolds number effect, that is from the semi-local friction Reynolds number
asymmetry between the hot and cold side. The same remark can be made regarding
the amplitude asymmetry of the production peak and the wavenumber asymmetry of
the positive area at large scales of the interscale transport, although carefulness is
required. A more precise knowledge of the different effects of the friction Reynolds
number on the spectra in the incompressible isothermal case would be required for a
more accurate separation of the different effects of the temperature gradient.
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Re, =180 Re, = 395
Side k¥ y*  Amplitude k* y*  Amplitude
Production C  0.062 124  3.00x1072 0.069 11.2  3.19 x 1072
e H 0065 135 342x107% 0.076 116  3.19x107>

C  0.043 064 1.92x1072 0.050 1.21 1.97 x 102

) H 0074 026 193x1072 0.070 0.50  2.00 x 10~2
Conservative energy transfer

C 0052 124 —-1.05x10"2 0.070 11.7 —1.08 x 102

H 0066 11.9 —-1.18x10"2 0.076 11.2 —1.07 x 1072

0.021 124 265x1073 0.023 9.76 2.25x 1073
0.032 13.5 3.73x10~% 0.026 104 259 x 103

C
H
C  0.063 140 -9.13x10"% 0.070 11.7 —9.08 x 103
H 0064 165 —-121x10"2 0.075 124 -9.33x1073
C
H

0.186 14.6 520 x 1073 0.174 14.8 577 x 1073
0.187 15.8 5.07x1073 0.181 153 6.24x 1073

C 0043 038 —-191x10"2 0.049 0.73 —1.99 x 102
H 0074 015 —-197x10"2 0.070 0.30 —2.08 x 1072

C  0.043 0.64 1.88 x 1072 0.050 1.21 1.84 x 102

. H 007 026 190x1072 0.070 0.50  1.91 x 1072
VISCOUS transfer

C  0.050 9.56 —7.81x10"% 0.056 8.80 —7.50x 1073

H 0067 871 —1.06x10"2 0.065 7.95 —9.45x 1073

C  0.047 558 4.75x107% 0.054 5.48 551 x1073

. H 0070 562 520x1073 0.067 515 5.62x 1073

Convection

C 0090 135 —7.29x10"3 0.084 13.2 —8.09x 1073

H 0064 158 —6.52x1073 0.089 13.6 —7.30x 1073

C  0.038 3.87 3.77x107% 0.052 3.59 3.33x1073

Thermal conservative energy H 0.071 4.03 -3.08x107% 0.057 3.51 —2.49x 1073

transfer C 0045 151 -919x107% 0.059 13.8 —6.94 x 10~*

H 0053 165 990x107* 0.052 14.5 6.51 x 10~*

C 0040 5.94 —2.04x10"3 0.054 548 —1.88x1073
Interaction with variable density H 0.069 5.92 1.80 x 1072 0.066 5.44 1.51 x 1073
C
H

kinetic energy 0057 27.5 2.09x10~% 0075 27.2 1.73x 104
0.050 31.6 —2.56x10~* 0.059 30.3 —1.66x 10~*

0.039 4.53 —1.55x 1073 0.052 4.07 —1.37x 1073
1.34 x 1072 0.056 4.30  1.05x 1073

0.160 19.6 3.53x107%* 0.150 19.8 3.15x 107*
0.150 24.8 —2.39x10~% 0.147 22.7 —-222x10°%

Thermal interaction with internal
energy

—TQ TmQ
<
o
J
o
>~
3
Nej

Table 5.1 — Wavenumber, wall-normal coordinate and amplitude of the local spectral extrema
of each term of the equation of the half-trace of the velocity fluctuation correlation tensor
with the semi-local scaling at the hot (H) and cold (C) sides at Re, = 180 and Re, = 395 in
the anisothermal configuration.
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Figure 5.12 — Spectra of the thermal conservative energy transfer ¢y with semi-local scaling
at Re; = 180 (thick lines, light colour) and Re, = 395 (thin line, dark colour).
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Figure 5.13 — Spectra of the interaction with variable density kinetic energy Z with semi-local
scaling at Re; = 180 (thick lines, light colour) and Re, = 395 (thin line, dark colour).

5.2.2.2 Spectra of the thermal terms in the anisothermal configuration

The spectra of the three most significant thermal terms include the spectra of the
interaction with variable density kinetic energy, a thermal energy exchange, and the
thermal conservative energy transfer and the thermal interaction with internal energy,
the thermal parts of incompressible energy exchanges. They are given with the semi-
local scaling at Re, = 180 and Re, = 395 in the set of figures 5.12 to 5.14. The effect
of the mean friction Reynolds number on the spatial profiles of the thermal terms was
found to be small. In the spectral domain, more differences are identified. For the
three thermal terms (figures 5.12 to 5.14), the amplitude of the extremum close to the
wall is decreased at the hot and cold sides at Re, = 395 compared to Re, = 180,
by around 20% at the hot side and by around 10% at the cold side. This is rather
unexpected since the amplitude of the spatial profiles is largely unaffected by the mean
friction Reynolds number. The lower spectral magnitude are counterbalanced by the
larger range of scales handled. In addition to a spatial shift towards the wall affecting
all terms, the extremum close to the wall is shifted towards large scales at the hot side
and towards small scales at the cold side. This reduces the wavenumber asymmetry
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Figure 5.14 — Spectra of the thermal interaction with internal energy £ with semi-local scaling
at Re; = 180 (thick lines, light colour) and Re, = 395 (thin line, dark colour).
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Figure 5.15 — Normalised streamwise spectrum of the half-trace of the velocity fluctuation
correlation tensor at Re, = 180 and Re, = 395 at the location of the spatial peak of produc-
tion (y* ~ 12).

between the hot and cold sides and suggests that this asymmetry is tied to a low
Reynolds number effect. The mean friction Reynolds number seems to modify the
spectral behaviour of the thermal terms but does not alter significantly their spatial
profiles within the Reynolds number range of this study.

5.2.2.3 Kinetic energy spectrum

The energy exchanges drive the spectrum of the half-trace of the velocity fluctuation
correlation tensor, which is also asymmetrised between the hot and cold sides. Figure
5.15 gives the streamwise spectra in the anisothermal channels at Re, = 180 and Re,
= 395 at the location of the spatial peak of production. To compare the slope of
the different spectra at the hot and cold sides, the spectra are normalised to one at
the smallest wavenumber common to all simulations. The slope of the spectrum is
increased at the hot side and decreased at the cold side. The effect is consistent with
an effect of the semi-local friction Reynolds number as shown by the reference data of
Moser et al. [203]. We are not able to distinguish an effect of the variations of the fluid
properties on the slope of the spectrum. The variations of the fluid properties may
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have a small but insignificant effect on the slope or only affect the amplitude of the
spectrum.

5.3 Conclusion of chapter 5

The effect of the Reynolds number on the energy exchanges associated with the
half-trace of the velocity fluctuation correlation tensor are investigated in the spatial
and spectral domains in a strongly anisothermal low Mach fully developed turbulent
channel flow. The study is based on the direct numerical simulation of the channel at
the mean friction Reynolds number of Re, = 180 and Re, = 395. The temperature
gradient creates an asymmetry between the energy exchanges at the hot and cold side.
The asymmetry can be attributed to the combined effect of the variations of the local
fluid properties and a varying low Reynolds number effect, based on the semi-local
friction Reynolds number which varies across the channel. The effect of the variations
of the local fluid properties is to some extent taken into account by the semi-local
scaling, defined using the wall shear-stress and the mean local fluid properties. The
low Reynolds number effects, not taken into account by the semi-local scaling, are
investigated using reference data in the incompressible isothermal channel. The effects
of the semi-local friction Reynolds number variations are smaller at higher mean friction
Reynolds number, reducing the asymmetry between the hot and cold sides. With the
semi-local scaling, the energy exchanges occur closer to the wall at Re, = 395 than at
Re, = 180, handle a larger range of scales and have a larger spatial amplitude. The
energy exchanges are decomposed to isolate the terms specific to flows with variable
fluid properties, called thermal terms. The mean friction Reynolds number modifies the
spectral behaviour of the thermal terms but does not affect significantly their spatial
profile, showing the usefulness of the decomposition.






Chapter 6

Conclusion of part 1

The energy exchanges associated with turbulence kinetic energy have been inves-
tigated in isothermal and anisothermal low Mach number turbulent channel flows.
Chapter 3 addressed the decomposition of kinetic energy to define turbulence kinetic
energy using the Reynolds average. The approach has been used to study the energy
exchanges associated with turbulence kinetic energy in the spatial and spectral domain.
Chapter 4 examined the energy exchanges using the direct numerical simulations of the
isothermal and anisothermal channel at Re, = 180. The study focused on the effect
of the temperature gradient on the energy exchanges and on the asymmetry between
the two sides of the channel. Chapter 5 used the direct numerical simulation of the
anisothermal channel at Re, = 395 to analyse the effect of the Reynolds number on the
energy exchanges. The results show the combined influence of all physical phenomena
governing the energy exchanges.

In strongly anisothermal channel flows, the energy exchanges associated with turbu-
lence kinetic energy are determined by the walls, the mass flow rate and the temperature
gradient. The walls create an inhomogeneity in the wall-normall direction which drives
the anisotropy of the flow and the physics of the energy exchanges. The mass flow
rate dictates the mean friction Reynolds number. The temperature gradient creates an
asymmetry between the energy exchanges at the hot and cold sides. The asymmetry
is due to the variations of the local fluid properties and low Reynolds number effects.
The variations of the local fluid properties are to some extent taken into account by
the semi-local scaling and modify the velocity and length scales of turbulence. The low
Reynolds number effects are given by the variations of the semi-local friction Reynolds
number and are dependent on the mean friction Reynolds number. Prandtl number
variations are neglected and thus out of the scope of the study.

The results suggest that at higher mean friction Reynolds number, the asymmetry
between the hot and cold sides can in a large part be predicted by the semi-local
scaling. The approximation is relevant as long as the Reynolds number dependence of
the scaled profiles is negligible in the incompressible isothermal case. In practice, the
knowledge of the semi-local variables may not be sufficient as dimensioned variables are
more relevant. In contrast to the classical incompressible scaling, which only involves
the friction velocity, the semi-local requires the knowledge of the mean local fluid
properties. The reconstruction of the dimensioned profiles from the scaled profiles and
the simulation parameters involves in strongly anisothermal flows the friction velocity
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and the friction temperature. The experimental verification of the results requires the
full development of the flow with regard to velocity and temperature. In particular,
the flow should not receive or give any heat to the constant temperature walls, which
requires a very long channel.

The energy exchanges associated with turbulence kinetic energy are relevant to
Reynolds-averaged Navier-Stokes (RANS) modelling and large-eddy simulation (LES)
modelling. RANS simulations are based on the modelling of the Reynolds stress. Fol-
lowing isotropy assumptions, the spatial energy exchanges associated with turbulence
kinetic energy are most commonly used for this purpose. Large-eddy simulations are
based on the modelling of the small scales of turbulence. This may be thought as the
approximation of the small-scale part of the spectral energy exchanges associated with
kinetic energy. In homogeneous isotropic incompressible turbulence, the small-scale
region is the realm of dissipation. This lead to the construction of purely dissipative
models. In strongly anisothermal wall-bounded flows reign many types of energy ex-
changes in the small-scale region. This makes the large-eddy simulation of these flows
more complex.



Part 11

Large-eddy simulation






Chapter 7

Introduction of part 11

The computational complexity of direct numerical simulation hinders the numeri-
cal simulation of three-dimensional turbulent flows in complex geometries [209]. The
total number of operations typically grows as the cube of Reynolds number, a finer
spatial and temporal discretisation being required to capture the wide range of scales
of turbulence [270]. In most practical applications, the Reynolds number is too large
to resolve all scales of motion in reasonable time. Hence arises the idea of large-eddy
simulation (LES), where the larger scales of motion are resolved and the small scales
only considered with regard to their effect on the larger scales [276, 169, 77, 78, 100].
The scale separation may be formalised using spatiotemporal filter to decompose the
fields of velocity and of the state variables into large-scale and small-scale part [169].
The large-scale fields are referred to as resolved or filtered. The small-scale fields are
referred to as unresolved, subfilter or subgrid.

Large-eddy simulation is based on the assumption of universality of small scales,
that is their independence from large-scale driving mechanisms [246, 148|. Small-
scale motions are independent from large scales and macroscopic boundary conditions.
They are relatively isotropic, self-similar and contain a minority of kinetic energy.
Compared to Reynolds-averaged Navier—Stokes modelling, less need to be modelled and
more is resolved. It is more computationally expensive and intrinsically unsteady, thus
requiring additional computational time for the averaging of the turbulence statistics.
However, it gives more detailed flow data and has become a widely recognised and
acknowledged turbulence modelling method for engineering applications [241, 204, 217].

Most authors [155] follow an implicit filtering approach, based on the resolution of
the equations governing the evolution of the filtered variables. The strategy is similar
to an under-resolved numerical simulation with a subgrid-scale model to express the
effect of the subgrid-scale on the filtered variables. No actual filtering is carried out, the
filter being implicitly determined by the equations resolved, the mesh, the numerical
method and the subgrid-scale model [190, 207, 115, 150, 97, 55, 220, 196]. By contrast,
in the explicit filtering approach [169, 184, 121, 31, 275], the convective term is filtered
explicitly to reduce the number of scales of the solution. The procedure explicitly
defines a filter length and significantly reduces the dependency of the method on the
grid and numerical errors. However, it also reduces the range of resolved scales as the
filter length must be larger than the local cell size. Large-eddy simulation is sometimes
also coupled with other modelling approaches. In particular, detached-eddy simulation
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[278, 292, 285, 279| and constrained large-eddy simulation [51, 133, 158 combines large-
eddy simulation modelling and Reynolds-averaged Navier—Stokes (RANS) modelling.

This introduction gives briefly the main ideas of large-eddy simulation filtering and
modelling. This will be useful for the investigation of the large-eddy simulation of
strongly anisothermal turbulent flows carried out in the following chapters and intro-
duced at the end of this section.

7.1 Filtering

The separation of the large-scale motions and the small-scales motion may be mod-
elled by the spatiotemporal filtering of the instantaneous flow variables [169]. It is
customary to define the low-pass filter as a convolution in an unbounded domain. For
any field v, the filtered field v is defined as

U(z,t) = /_Oo /_OO V(& T)G(x — &t — 7, 2,t) dEdr, (7.1)

where G is the convolution kernel, associated with a characteristic filter time A, and
filter length A. Almost universally, the time filtering is neglected in equation (7.1)
[253]. Large-eddy simulation based on time filtering has been investigated by some
authors [74, 75, 40, 41, 237, 240, 238|. We here follows the more popular approach
based on spatial filtering, the spatial filter implicitly inducing a time filtering. The
filter verifies the following fundamental properties:

e conservation of constants, that is the filter normalisation,
1=1; (7.2)
e linearity, i.e. for any two fields ¢; and 1), and constants a; and as,

a1y + aghy = a1y + as,. (7.3)

In general, the filter is in however not idempotent, hence 1? £ 9p and Yr1Py # Elzz_Q.
The commutation of the filter with spatial derivation is also not assumed, 0,9 # 0,.

Three spatial filters are most classically employed in large-eddy simulation in the
one-dimensional case [102]:

e The box filter, also called rectangular or top-hat filter, is a weighted volume
average. Its filter kernel is given by

G- =5 [lo—€ <7, (7.4)

where [ -] are Iverson brackets, evaluating to 1 if the proposition within bracket
is satisfied and 0 otherwise. It is associated with a sinc transfer function G in
the spectral domain,

Aoy SiD (kA/2)
G =5 (7.5)
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Figure 7.1 — Typical spectra of the turbulence kinetic energy of non-filtered and filtered
solutions in homogeneous isotropic incompressible turbulence. The Gaussian and sinc filters
have the same filter length, such that k. = 7/A = 500. The scales are arbitrary. From Sagaut
[253].

e The sinc filter, also called spectral or sharp cutoff filter, removes frequencies
beyond the cutoff frequency m/A without affecting lower frequencies. Its filter
kernel is a sinc function in the spatial domain,

_ sin(w(x—f)/ﬁ)‘

Gz —€) L (7.6)

m(r—§) /A

It is associated with a rectangular transfer function,
G(k) = [|k| < 7/A]. &

e The Gaussian filter, also called generalised Weierstrass transorm, is based on the

normal distribution ,
_alz—=¢|
Gla—¢&) =, [—L5e o, (7.8)
TA

with v is a constant. The value 7 = 6 is commonly used [253|. The associated
spectral transfer function is also a Gaussian function,

A2g2

Gk)=e¢ "5 . (7.9)

The modification of the energy spectrum by the Gaussian and sinc filter are compared
on figure 7.1. The box filter has a compact support in the physical domain but is nonlo-
cal in the spectral domain. Conversely, the sinc filter is nonlocal in the spatial domain
and local in the spectral domain. The Gaussian filter is nonlocal both the spatial and
spectral domains. The sinc filter is idempotent, thus non-invertible. Besides, the sinc
filter is not positive. Therefore, it does not ensure positivity of the subgrid-scale vari-
ance 12 — 1%2 for any field 1, and of the subgrid-scale kinetic energy in particular [308].
These three continuous filters are ideal, and are approximated in practice.

Multidimensional filtering may be expressed as a sequence of one-dimensional filters
on the condition that the filter is separable [25],

==~

b=14 (7.10)
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where =, =¥ and ~- 7 are one-dimensional filters. This form is computationally

advantageous compared to a three-dimensional filter.

7.2 Modelling

The evolution equation of the filtered variables cannot be inferred from the flow gov-
erning equations because the filter does not, in general, commute with spatial derivation
and multiplication. The non-commutations can be represented with the introduction
of subgrid terms. To close the system of equations, the subgrid terms are modelled
using an algorithm computable in a large-eddy simulation. The models are called
subgrid-scales models. The addition of the subgrid-scale models should not violate
the symmetry properties of Navier—Stokes equations [280, 216, 242], including Galilean
invariance [107], and the laws of thermodynamics. It is also desirable that the models
have no effects in flows without subgrid-scale generation, and conversely in flows with
an interscale energy transport towards subgrid scales [304]. In wall-bounded flows, the
consistency of the asymptotic near-wall behaviour of the model with the exact sub-
grid term is considered very important {213, 214]|. An excellent review of the physical
properties of some subgrid-scale models may be found in Silvis et al. [273].

The filter-derivative non-commutation subgrid terms are proportional to the local
filter length [300, 301]|. Therefore, the filter and the derivative generally only commute
for space-independent filter length in an unbounded domain [116]. However, many flows
exhibit large variations of length scales, rendering the use of the space-independent filter
length computationally impracticable. In that case, the use of specifically designed
filters, commuting with the derivative up to an arbitrary order, has been suggested
[300, 302]. The modelling of the filter-derivative non-commutation subgrid term may
also be considered [117]. More often however, the filter-derivative non-commutation
subgrid terms are simply neglected to simplify the expression of the filtered governing
equations [169].

In the incompressible isothermal case, the filtering of the Navier—Stokes equations
only involve one filter-multiplication non-commutation subgrid term, related to the
momentum convection, and often called subgrid-scale tensor,

Fyu, =U;U; - U, U,. (7.11)

As will be discussed in the following chapters, the filtering leads to additional subgrid
terms in strongly anisothermal turbulent flows. This will not be discussed further in
this introduction because most modelling strategies are in common. The modelling
of the subgrid-scale tensor has received a lot of attention from the literature. Several
modelling strategies have been developed. Algebraic or zero-equation models express
the subgrid-scale model as a function of the filtered variables and the filter length scales.
They differ from models requiring the resolution of one or more additional transport
equations to compute the subgrid-scale model [253, 181|. This thesis focus only on
algebraic models, of the form

Fy,u, & T;;"d(ﬁ, A), (7.12)

where the function Ti‘de(U, A) is a subgrid-scale model. Orthogonal to this distinction
is the classification of subgrid-scale models into structural and functional models [253].
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7.2.1 Structural models

Structural models approximate the effect of the filter without assumptions on the
physical nature of the effect of the subgrid term. A review of structural models is
given by Lu and Rutland [181]. We here describe the two most popular zero-equation
approaches:

Gradient Model

The gradient model [169, 64] is based on a Taylor series expansion of the filter.
Equation (7.1) may be approximated as

_ e aan
V=) g (7.13)

n=1

for an even filter kernel. The coefficients are given by v, = A"/(2"(n 4 1)!) for
a box filter and v, = (n — 1)!!1A"/(12"/?n!) for a gaussian filter [137]. The Van
Cittert iterative deconvolution [299, 283, 284|, gives a series expansion of the

inverse of the filter,
o0

G'=> (1-a6)". (7.14)
n=1
Using (7.13) and (7.14), an approximation of the subgrid-scale tensor can be
obtained from

— —1=—1 —
u;u; -U;U;=U; U, =U;U,. (7.15)
At the second order, this expression leads to
_2 J— J—
o 1 S A, 0U; 0U;
Grad. A)= —@G.. A) = =k [ J 1
T’L] (U7 ) 12G'L](U7 ) 12 axk axk’ (7 6)

with the box and gaussian filter. We will use the generalised definition

C’Grad. I7 A Grad. ZZ aUZ 8UJ

Grad./TT A\ _

(7.17)

The classical gradient model is recovered using C¢d- = 1.

Scale-similarity model

The scale-similarity model [14, 180] assumes that structure of subgrid scales is
similar to the structure of the smallest resolved scales. Using a test filter (%),
explicitly computed in a large-eddy simulation, the subgrid-scale tensor is ap-
proximated as

Tgimﬂ.(ﬁ7 A) = ¢Sl (T) = ¢Smi (UjUz _ (:]j (:]l> : (7.18)

The original version of the model uses a second application of the large-eddy
simulation filter and C®™i = 1 [14]. Introducing the Taylor series expansion
(7.13) of the filter in this scale-similarity model is equivalent to the gradient
model (7.16) at the second order |42, 314|. However, the two methods are not
identical since the higher-order terms are different.
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7.2.2 Functional models

Functional models, also called eddy-viscosity models, assume that the effect of
subgrid scales is similar to viscous effects, hence strictly dissipative. The main action
of subgrid scales is the dissipation of the energy they receive from large scales, thus
they may be modelled with a subgrid-scale model ensuring the dissipation of the energy
that should have been transported from large scales to small scales [98]. These models
rely on the energy cascade model of homogeneous isotropic turbulence, challenged
as seen in part I in wall-bounded turbulent flows, the wall adding a spatial energy
transfer to the energy exchanges and an inverse energy cascade, towards large scales,
to the interscale transport. The prediction of the inverse energy cascade is required
for an accurate estimation of the subgrid-scale dissipation but can lead to numerical
instabilities [82, 135, 194, 7, 58, 311].

Eddy-viscosity models assume that the subgrid term is aligned with the rate of
deformation tensor [32],

Til;lOd(U, Z) = —2V§n0d (S” - %Skk) > (719)
with Sj; = 1 (9;U; + 9;U;) the rate of deformation tensor and 1°? the eddy-viscosity,
whose expression depends on the particular model used. Most authors consider that
only the deviatoric part of the subgrid term is modelled,

Tij — 7o = =200 (S — 1Sm) (7.20)

as the right-hand side of equation (7.20) has zero trace. The modelling of the isotropic
part of the subgrid-scale tensor 7y has been suggested by Yoshizawa [320][see also
281, 189] but is either neglected or ignored by most authors, on the basis that it can
be included as part of the filtered pressure. In practice, this is equivalent to the use of
(7.19), modifying only the interpretation of the results.

The first and most well-known eddy-viscosity model is the Smagorinsky model [276].
This model gives satisfactory results in homogeneous isotropic incompressible turbu-
lence [187] but does not generalise well to more complex geometries. A fundamental
problem of the Smagorinsky model [276] is that it is based on an invariant that does not
asymptotically vanish near walls. Various alternative eddy-viscosity models have been
proposed in the literature. The list includes the Smagorinsky model [276], the WALE
model [213], the Vreman model [304], the Kobayashi model [147| the shear-improved
Smagorinsky model [174], the Sigma model [214], the QR model [303], the VSS model
[252]. the S3PQR model [294], the AMD model [250], and the vortex-stretching model
[273]. In addition, damping function and wall models can be used to improve the
asymptotic near-wall behaviour of the model [230, 231, 228, 227].

7.2.3 Mixed models

Mixed models combine structural and functional models. The goal is to combine the
perceived advantages of both type of modelling, namely the capture of the structure
and anisotropy of the subgrid term for structural models, and the prediction of the
interscale energy transport between resolved scales and subgrid scales for functional
models. The main family of mixed models, introduced by Bardina et al. [14], expresses
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the subgrid term as a linear combination of a structural model and a functional model,
often the Smagorinsky model [276]. The multiplicative mixed models of Ghaisas and
Frankel [113, 114] may also be seen as mixed models.

7.2.4 Dynamic models

Most algebraic models involve a multiplicative constant, determined theoretically
or empirically, whose optimal value might depend on the physics of the flow inves-
tigated. Germano et al. [112] proposed a method to dynamically adjust the value
of this multiplicative constant, reducing the number of parameters of the model. The
method is essentially an algorithm that allow the construction from any algebraic model
med(U, A) of a new model TZ%yn’mOd(U, A), referred to as the dynamic version of the

model,
T;yn’m()d(l_], A) = CdynTirj’-md(U, A). (7.21)

The determination of the parameter OV is carried out using a test filter (%) and
the assumption, following the scale-similarity hypothesis, that the above formula holds
with the same parameter C%™ at both the level of the large-eddy simulation filter and
the level of the test filter,

U;U; — U; U; = C¥ oYU, A), (7.22)
UiU; —U; U; = CY oYU, A). (7.23)

The value of A is best approximated as A = (4A; + ﬁi)l/ 2 for Gaussian and box filters
[111, 307]. Filtering (7.22), and assuming

CdynTiI;‘lOd(l_Ia Z) - CdynTimOd(l_]’ Z)? (7.24)

J

it follows that . o
Lij(O) ~ CYmy(U, A), (7.25)

where L;;(U) is given by equation (7.18) and

myy(U, &) = 74T, &) — 72T, A). (7.26)

The parameter C¥® may be determined from relation (7.25) as all terms are computable
in a large-eddy simulation. Dynamic procedures aim to minimise the residual

Eﬁ(U, K) = LZ]<[_]) - C’dynmij(ﬁ, Z) (727)

This relation needs to be contracted to determine a single value of the parameter. The
non-contraction of equation (7.27) defines tensorial parameters C’ijn, extending the
dynamic procedure to the construction of models of the form

Tit;zn,dyn,mod(ﬁ’ Z) _ C%YHT;;od<l7’ Z)’ (728)
where no implicit summations over ¢ and j are assumed.

The computed parameter exhibits a large spatiotemporal variability and may take
negative values. To increase the robustness of the parameter calculation, a clipping pro-
cedure or a local, global or Lagrangian averaging should be introduced [118, 195, 221].
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A non-global averaging may be used to adapt the model to the local structure of the
flow and improve its asymptotic near-wall behaviour, particularity in the case of the
Smagorinsky model [276]. However, this is numerically instable if the subgrid-scale
model has already a proper asymptotic near-wall behaviour [19]. Global averaging
may then be used [321, 162, 19, 274|, following Park et al. [221] who extended previ-
ous dynamic procedure and suggested a new method based on the global equilibrium
hypothesis [71].

We here describe three approaches, given as follows:

Scalar dynamic method

Following the approach of Lilly [177|, the parameter is computed to minimise the
variance of the residual,

8(@%;%0 , (7.29)
leading to
o {my(U,A)Li;(0))
Cchm = T (T, AT, A (7.30)

Tensorial dynamic method

As in the (scalar) dynamic method, the tensorial parameter of the model is
computed dynamically to minimise for all 7 and j the variance of the residual
1],

0 (B Ey)

Yo T 0 for all ¢ and j, (7.31)
ij

leading to o o
civn _ (mi;(U, A)L;(O))

i (mi; (U, Aymy; (U, A))’ (7.32)

where no implicit summations over ¢ and j are assumed.

Zero-residual dynamic method

The tensorial parameter of the model is computed dynamically to zero for all ¢
and j the statistical average of the residual,

(Eij) =0 for all ¢ and j, (7.33)
leading to

Civn _ (my(U, A)Li;(O))

“ (mi (U, D)ymi; (U, A))’ (7:34)

where no implicit summations over ¢ and j are assumed.

The average (-) may be computed as an averaging over the homogeneous directions
or as a volume average for a global determination of the parameter [221|. The formula
needs to be adapted if a mixed model is used [199] or if only the deviatoric part of the
subgrid term is modelled.
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7.3 Objectives of this work

We investigate the large-eddy simulation of strongly anisothermal turbulent flows.
The validation of subgrid-scale models is carried out using a priori tests and a poste-
riori tests. A priori tests compare the subgrid-scale models to the subgrid term com-
puted from the filtering of experimental or numerical three-dimensional flow fields. A
posteriori tests investigate the predictions of large-eddy simulations implementing the
subgrid-scale models. It is difficult to assess the consequence of the errors found in a pri-
ori tests with regard the predictive capability of the models in large-eddy simulation.
For instance, it is well-known that the gradient model [169] and the scale-similarity
model [14] give poor performances used alone in a posteriori tests despite being well
correlated with the exact subgrid term in a priori tests [14, 253, 259, 24, 141|. On
the other hand, the a posteriori evaluation of subgrid-scale models is complicated by
the strong dependence of the results of the large-eddy simulations on the numerical
method. Besides, it is often difficult to assess from the results of a posteriori tests the
underlying cause of the failure of the models [253].

The analysis is carried out within the context of the simulation of strongly aniso-
thermal turbulent channel flows with the low Mach number equations. Chapter 8
studies the filtering of the low Mach number equations from the direct numerical sim-
ulations presented in section 1.3 to identify the relevant subgrid terms. The coupling
between temperature and turbulence leads to additional subgrid terms. Chapter 9 ad-
dresses their modelling of strongly anisothermal turbulent flows from a priori tests, also
using the results of the direct numerical simulations presented in section 1.3 Chapter 10
carries on the study of the subgrid-scale modelling from a posteriori tests at Re, = 180

and Re, = 395.






Chapter 8

Study of the large-eddy simulation
subgrid terms of a low Mach number
anisothermal channel flow

8.1 Introduction of chapter 8

The large-eddy simulation of strongly anisothermal low Mach number flows involve
additional specific subgrid terms compared to the incompressible isothermal configura-
tion because of the variations of the fluid properties. The interaction between temper-
ature and turbulence creates density-velocity correlations and nonlinearities related to
the viscous shear-stress and the conductive heat flux, which might require modelling.
The scale separation can be approached from the filtering of any formulation of the
Navier—Stokes equations or appropriate approximation of the Navier—Stokes equations.
In this chapter, we investigate the filtering of the low Mach number equations, suited
to the flows found in solar receivers. The subgrid terms arising from the filtering of
the low Mach number equations are classified to identify the most significant filter-
derivative non-commutation subgrid terms and filter-multiplication non-commutation
subgrid terms. The analysis is carried out with different formulations of the filtered
low Mach number equations. This strategy seeks to identify the most well-suited for-
mulation.

The subgrid terms of the low Mach number equations depend on the set of variables
resolved in the large-eddy simulation. In compressible flows, most authors use a change
of variable in which the filtered variables are weighted by density. This density-weighted
filter is called Favre filter. The unweighted filter is called classical filter. The expression
of the filtered governing equations in terms of Favre-filtered variables removes the sub-
grid terms related to density-velocity correlations. However, its relevance is not clear
for the low Mach number equations from a modelling perspective because the velocity
appears without the density in the energy conservation equation. The assessment of
the relevance of the classical filter and the Favre filter should take into account the
manner the equations are arranged upon filtering. To make the comparison of the two
approaches as fair as possible, we investigate both the filtering of the momentum con-
servation equation, in which the velocity appears along with density, and the filtering
of the velocity transport equation, in which the velocity appears without the density.
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The filtering of the low Mach number equations is investigated from the results of
the direct numerical simulations of fully developed strongly anisothermal channel flows
at Re, = 180 and Re, = 395 presented in section 1.3. The strength of the subgrid terms
is compared according to their quadratic mean. The filtering is carried out with box
filters of various filter widths. The box filter is simple, fits well with the intuitive idea
of spatial averaging and is an approximation of the implicit filter associated with finite
differences methods 248, 263|. The spectral filter is more appropriate to represent
the implicit filter associated with spectral methods. The Gaussian filter has a non-
compact support and would need to be approximated with a windowed Gaussian filter.
We verified that the results were similar using the second-order Taylor series expansion
(7.13) of the filter up to filter length six times as large as the local cell size, suggesting
that the dependence of the analysis on the choice of the filter is not strong.

8.2 Paper 3

This section reproduces the paper D. Dupuy, A. Toutant, and F. Bataille. Study of
the large-eddy simulation subgrid terms of a low mach number anisothermal channel
flow. International Journal of Thermal Sciences, 135:221-234, 2018 [90].

Abstract

The subgrid terms of the low Mach number equations are investigated
in a strongly anisothermal low Mach number flow. The filtered low Mach
number equations are established in three formulations in order to compare
the unweighted classical filter and the density-weighted Favre filter on the
one hand, and the filtering of the momentum conservation equation and the
velocity transport equation on the other hand. In the three formulations,
we establish the filtered equations of mass conservation, momentum conser-
vation, energy conservation, of the ideal gas law and of the resolved kinetic
energy transport equation. The magnitude of all subgrid terms is assessed
a priori in the three formulations using the results of direct numerical sim-
ulations of a strongly anisothermal fully developed turbulent channel flow.
The classification of the subgrid terms gives the relevance of various effects
of the temperature gradient.

8.2.1 Introduction

In solar power towers, the solar flux is concentrated towards the solar receiver,
wherethrough its energy is transferred to the heat transfer fluid. The optimisation of
the internal geometry of the solar receiver is a key challenge for the efficiency of solar
power towers. The thermal exchange towards the fluid should be maximised while the
pressure loss should be minimised. This long-term goal would benefit from accurate
numerical simulations of the low Mach number strongly anisothermal turbulent flows
found in solar receivers [265]. However, high numerical costs prevent the direct nu-
merical simulation (DNS) of all scales of turbulence in the conditions of a real solar
receiver. An effective alternative is the thermal large-eddy simulation (LES). The LES
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resolves the largest scales of the flow and models the effect of the small scales on the
large scales. The method requires subgrid-scale models suited to low Mach number
strongly anisothermal turbulent flows [10, 11, 91].

The subgrid terms can be investigated a priori from high-resolution three-dimensional
flow fields. A priori tests were carried out with particle image velocimetry measure-
ments [180, 43| and DNS results, in incompressible isotropic homogeneous turbulence
[64, 1], rotating turbulence [182], channel flows [229, 175], in two phase divergence-free
flows [291], in passive and active scalar decaying homogeneous turbulence [56, 113]
and in flows with purely compressible effects, in a temporal shear layer [309, 310, 306]
and in freely decaying homogeneous isotropic turbulence [189]. In flows with variable
fluid properties, the analysis can be carried out using two large-eddy simulation filters,
the unweighted classical filter and the density-weighted Favre filter [94]. The Favre
filter is used by most authors in compressible flows [109]. The classical filter has been
employed by Yoshizawa [320], Sun and Lu [286], Boersma and Lele [27], Bodony and
Lele [26] and Sidharth et al. [272]. In addition, the set of subgrid terms to model
depends on the formulation of the filtered governing equations, of the energy equation
in particular but also of the momentum equation [271]|. Using a priori tests, Vreman
et al. [309] and Martin et al. [189] assessed the amplitude of all subgrid terms involved
in the compressible Navier—Stokes equations for different formulations of the energy
conservation equation.

In the literature, the subgrid terms have not been investigated for low Mach num-
ber strongly anisothermal turbulent flows. In this paper, we extend the analysis to
this configuration. In strongly anisothermal flows, the large temperature differences
require taking into account the variations of the fluid properties. If in addition the
flow is turbulent, the variations of the fluid properties are related to the velocity fluc-
tuations. The figure 8.2 is an illustration of the correlation between the velocity and
temperature. The isosurface of figure 8.2 is not only an isotherm but also a surface
of isodensity, isoviscosity and isoconductivity. Both the velocity and temperature pro-
files are turbulent and exhibit a wide range of length scales. The correlations between
velocity and temperature lead to additional subgrid terms associated with the nonlin-
earities of the viscous term and of the heat flux. In the literature, these additional
subgrid terms are always neglected (see for example [265, 317, 4, 52, 264, 258, 176]).
However, to the best of our knowledge, there is no study to justify this assumption in
low Mach number flows. We investigate whether these additional subgrid terms may
be neglected. This study is essential for the flows found in solar receivers, characterised
by a strong coupling between turbulence and temperature, along with high variations
of the fluid properties (density, viscosity and thermal conductivity) with temperature
[290].

We study the subgrid terms using the results of direct numerical simulations of
a strongly anisothermal fully developed turbulent channel flow. The investigation is
based on a particular form of the Navier—Stokes equations under the low Mach number
hypothesis, called low Mach number equations [87]. The filtering of the low Mach
number equations gives rise to specific subgrid terms. Three formulations of the filtered
low Mach number equations are investigated, which leads to three specific sets of
subgrid terms. The analysis is carried out using the classical filter and the Favre
filter. With the classical filter, we compare the filtering of the momentum conservation
equation to the filtering of the velocity transport equation. We assess the magnitude
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of each term in the three formulations. This provides insights on the asymmetry of
the subgrid and non-subgrid terms between the two sides of the channel and on the
relative importance of the various competing physical processes. The study takes into
account both the subgrid terms associated with non-commutation of the filter with the
derivative and the nonlinearities arising from the large variations of the fluid properties.
The objective is to identify the subgrid terms that can be neglected and the subgrid
terms that should be modelled in the three formulations.

We describe the low Mach number equations in section 2. In section 3, we study the
filtering of the low Mach number equations in three formulations. The subgrid terms
derived in the general case are then estimated in the channel flow configuration. The
detailed channel flow configuration can be found in section 4 as well as the numerical
method used to compute the subgrid terms. The results are discussed in section 5.

8.2.2 Low Mach number equations

We consider a turbulent flow at low Mach number (Ma < 0.3). The low Mach
number hypothesis let us use Paolucci’s method [219] to remove acoustic effects from
the Navier—Stokes equations. Each variable of the Navier—Stokes equations is written
as a power series of the squared Mach number. Keeping only the smaller-order terms
leads to the so-called low Mach number equations. The pressure is split in two parts:
the thermodynamical pressure P, mean pressure in the domain, and the mechanical
pressure P, associated with momentum variations. The thermodynamical pressure is
constant in space. The gas is air, an ideal gas for the purpose of this study. The effects
of gravity are neglected.

Those considerations lead to the low Mach number equations, given by:

e Mass conservation equation

dp  OpU;
R ] (8.1)

e Momentum conservation equation

= 8.2
ot or,  or, | 0z, (8.2)
e Energy conservation equation
oU; 1 0Q; OF,
e Rl (83)
X ’YPQ 81']' ot
o Ideal gas law
F
T=2=, (8.4)
pr

with p the density, 7' the temperature, X;; the shear-stress tensor, (); the conductive
heat flux, v the heat capacity ratio, r the ideal gas specific constant, ¢ the time, P
the mechanical pressure, Fy the thermodynamical pressure, U; the i-th component
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of velocity and x; the Cartesian coordinate in ¢-th direction. Einstein summation
convention is used and d;; is the Kronecker delta.

In the low Mach number equations, the energy conservation equation has a distinc-
tive form. The local conservation of energy is imposed by a constraint on the divergence
of the velocity. Namely, the dilatation of the fluid is proportional to the difference be-
tween the conductive heat flux and the global variation of thermodynamical pressure.
To obtain equation (9.3), we use the low Mach number hypothesis to approximate the
compressible energy conservation equation in enthalpy form as [212]

8pCpT i (9pUJCpT . 8P0 _ 8Q]
ot (%cj N ot 8@’

(8.5)

where C,, is the heat capacity at constant pressure. We then use the ideal gas law (9.4)
to substitute in this equation pT" with Py/r. Using the fact that the thermodynamical
pressure is constant in space, we isolate the divergence of the velocity and combine the
two temporal terms.

We assume that air is a Newtonian fluid to compute the shear-stress tensor,

oUu; 0U; 2 oU}
5= (1) (S8 C 2y &
s =un) (G2 + 52) - 35

The heat flux is given by

5is. (8.6)

or
an.

Q; = —=A(T) (8.7)

The variations of viscosity with temperature are accounted for by the Sutherland’s
law [287],

T>2T0+S (8.8)

T) = —

w(T) ’”LO(TO T3
with po = 1.716-107° Pa s, S = 110.4 K and Ty = 273.15 K. The thermal conductivity
is deduced from the Prandlt number Pr and the heat capacity at constant pressure

C,, both assumed constant with Pr = 0.76 and C, = 1005 J kg=' K~'. The ideal gas
specific constant is r = 287 J kg~ K1,

We will study the filtering of the low Mach number equations in three formulations
that we shall call the Classical formulation, the Favre formulation and the Velocity
formulation.

8.2.3 Filtering of the low Mach number equations

The large-eddy simulation is based on the idea of scale separation. Theoretically,
the separation is carried out by the application of a filter, denoted (™), on the Navier—
Stokes equations. We restrict our discussion in this paper to a spatial filter. The filter
is taken to verify the properties of conservation of constants, @ = a with a a constant,
and of linearity, ¢ + 1) = ¢ +1) for any ¢ and 1 [253]. Note however that the filter may
be inhomogeneous and thus not commute with derivation. In the following, this spatial
filter will be referred to as the classical filter. The formulation of the filtered low Mach
number equations involves two kinds of subgrid terms. The first kind arises from the
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non-commutation of the filter with the derivative and are related to the variations of
filter width, that is from the LES mesh inhomogeneity. They are denoted in the form
CP. The second kind arises from nonlinearities, that is from the non-commutation
between the filtering and the multiplication operator. They are denoted in the form
F,,. Most of them are related to the large variations of the fluid properties, with the
notable exception of the subgrid term associated with momentum convection.

8.2.3.1 Classical formulation

In the Classical formulation, the low Mach number equations are filtered with the
classical filter and expressed in terms of classical-filtered variables. The filtered low
Mach number equations in the Classical formulation are given by:

e Mass conservation equation

o 0, .
a + a_],'j (pU] + FpUj) + C;Uj = O, (89)

e Momentum conservation equation

0 ,_— 0 ,_— — ; oP ;
g (AU + Fou,) = — 7. (PU; Ui + Fovyu.) = Couy, — 9. Cp
8J ! (8.10)
+ o, (i + Fx,) + 03,
e Energy conservation equation
U ; ; y=1[0 ,- ; 1 0P,
— 4+ = — — i+ Fo. CH| — —— 8.11
83;3 Uj ’}/PO |:8$J (Q] t Qj) + j:| ’}/PO (9t ’ ( )
e Ideal gas law
— P [1
T=2 <5 + Fl/p) : (8.12)
with the classical filter counterparts of the shear-stress tensor and of the heat flux given
by
. — (oU; oU;\ 2 - 0U
i =u(T : L) — Zu(T) =64, 8.13
y= D) (G0 + 52 ) - 3D by (8.13
- — 0T
= —\NT)— 14

with p the dynamic viscosity, A the thermal conductivity and the following subgrid
terms:

; opU;  0pU; ; opU,;U;  0pU,;U;
J _ J J 1 ] _ J o J 1
o Tl (8.15) Cov,u; o, o, (8.16)
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Ch = or — op (8.17) Fou, = @ - ﬁ?j (8.21)
Ow; 0w Fu, = pUs — U, (8.22)
. Dy 3 -
Cy, = %x? - aaf (8.18) Fouu, = pU;U; — pU; U; (8.23)
Y Fy,. =X, — % (8.24)
¢, =9 U (8.19) Fo.=Q;-Q, (8.25)
Ui Ox; Oz, : Qi — % J .
s T T 1
o 0Q;  0Q; Fipy=-—<= (8.26)
J - %1 %) 9 1/p p
©0 = Bu, " Ou; (8:20) pp

In addition, it is useful to express the transport equation of the resolved kinetic
energy ply = %ﬁUZU .- Indeed, the total energy conservation is not explicitly stated in
the system of equations (8.9)—(8.12) but implied by the momentum conservation equa-
tion (8.10) and the energy conservation equation (8.11). The resolved kinetic energy
transport equation is the part of total energy conservation related to the momentum
conservation. It is obtained from equation (8.10) multiplied by U; and equation (8.9),

OpE  OEF,y, OE . OU,F.y, oU;
= _ IR, = _EC iR

ot 81‘]‘ + PU; 6$j —CpU]- * ot pUs ot

= o, (pU; E + UiFpu,u;) + FpUjUia—xj ~UiClu,u, — o, o ~UiCr

0 — . — . ou;, — .
— (U X +U;Fy, ) — (X + Fy,. . O .

+ axj ( J + Ew) ( J + 21]) 8xj + U CE’L]

(8.27)

This equation gives the contribution of the subgrid terms of the filtered momentum
conservation equation to the balance of the resolved kinetic energy. It will be used to
assess the magnitude of their energetic contribution. The contribution of the subgrid
terms with regard to total energy is given by the subgrid terms of the resolved kinetic
energy transport equation (8.27) and the energy conservation equation (8.11).

8.2.3.2 Favre formulation

The use of the Favre filter ("+) is common when working with variable density
flows. It is a variable change in which filtered variables are weighted by density. For
any variable ¢, the Favre-filtered variable ¢ is defined as ¢ = p¢/p. With the Favre
filter, we avoid the subgrid terms associated with the nonlinearities of the form p¢ in
the convective term of the mass conservation equation, the time derivative term of the
momentum conservation equation and the ideal gas law. On the other hand, a subgrid
term is added when a variable ¢ appears without the density, as the velocity in the
energy conservation equation. The subgrid terms associated with the nonlinearities
of the shear-stress tensor and of the conductive heat flux are modified by the use of
the Favre filter, but it is not obvious to what extent this affects the behaviour and
importance of the subgrid terms. Finally, the subgrid terms associated with the non-
commutation of the filter with the derivative are not modified by the use of the Favre
filter.

In the Favre formulation, the low Mach number equations are filtered with the
classical filter and expressed in terms of Favre-filtered variables. The filtered low Mach
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number equations in the Favre formulation are given by:

e Mass conservation equation

op  0pU; |
- C’ =0 8.28
ot " ar, e Y (8.28)
e Momentum conservation equation
apU; 0 [ ~~ A oP
£t = — = (30,0 + PGu,u,) = Cluy, = 5= = Ch
ot aiL'j J PHiti 8@
5 (8.29)
0 (5, v am,) 4k,
+3IL’]’< it Gz )t ij
e Energy conservation equation
— (U _G.> cl =— —< G.> ChL | — —=—,
oz, (T + PG po) + €4, P {ag;j Qi+ Ga)+ |~ Jp o
(8.30)
o Ideal gas law
~ P
T=="2 (8.31)
pr
with the Favre filter counterparts of the shear-stress tensor and of the heat flux given
by
- - (oU, oU;\ 2 ~ 0U,
Y= (T : L) — Su(T)==64, 8.32
s = )<8xj * 81‘2-) S'M( )8xk ! (8:32)
~ ~ OT
= =\NT)— 8.33
and the following subgrid terms specific to the Favre formulation:
Guu, = UiU; = U;U; (8.34) Gu,po = Us/p—U;/p (8.36)
G, = Ty — 5y (8.35) Go, =Q; —Q; (8.37)
The subgrid terms F,y; and Gy, are closely related,
Fou, _
%f = —pGu,/p. (8.38)

These two subgrid terms express explicitly the correlation between density and velocity.

The resolved kinetic energy transport equation is obtained from equation (8.29)
multiplied by U; and equation (8.28),

OpE .
o
0 pU pU D! aﬁz 7.V aﬁzp —3[72 ~
s (pUjE + pUiGUjUi> + pGUjUia_xj —UiCopur, — . + Paxj — U,
0 (7.5 T7 v 3[71 ~ i
o (0.8 + UG, ) = (5 + G, ) 5.+ Uik,

(8.39)
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Compared to the Classical formulation, the Favre formulation is a priori more suited
to the momentum conservation equation, the mass conservation equation and the ideal
gas law but is less appropriate for the energy conservation equation.

8.2.3.3 Velocity formulation

The Velocity formulation is based on the velocity filtering approach suggested by
Sidharth and Candler [271], Sidharth et al. [272]. The momentum conservation equa-
tion in the low Mach number equations is rewritten before filtering as the velocity
transport equation,

Ui __OUU; 00U 10P 105,

= f + .
ot oz, Oxr; pdx; p Ox;
The equations are then filtered with the classical filter and expressed in terms of
classical-filtered variables. The filtered low Mach number equations in the Velocity
formulation are given by the mass conservation equation (8.9), the energy conservation
equation (8.11), the ideal gas law (8.12) and the velocity transport equation:

(8.40)

oU,; 0 - — o U, .
P = — P (UJ U’L'—i_FUjUZ‘) _pCJU-Ui +,0U¢—] +pFUiajUj —i—pUiCjU.
ot an J (9xj 7
o (8.41)
oP P 0 - j _
- axl - C(]3 - pF&;P/p + a_{lj'] (E'L] + FZU) + CEij + pFajzij/p7
with the following subgrid terms:
; ouU;, 0oUU; 10P 10P
Cl o, =———-—1= 8.42 Fopjp=—-7——= 8.45
Usli Ox; Ox; ( ) 9%iP/p pOx; pox; ( )
Fy,u, =U;U; = U; U, (8.43) [ ) i1 . j (8.46)
I3 _ 9% g, % (8.44) POt e
UiajU]' - ’Lamj 7 81'] N

Upon filtering, the velocity transport equation gives rise to different subgrid terms
than the momentum conservation equation. The time derivative of the velocity density
product subgrid term F,;;, does not appear in the Velocity formulation. However, there
is three additional subgrid terms associated with the divergence of the velocity and the
correlation of the density with other terms of the equation.

The resolved kinetic energy transport equation is given by

_OFE ) oU,

— = —p— (U,E + Fy.u,U;) + pFy.u,— — pUC}
p 8t paxj ( _]_+ U]Uz ) + p UJUZ 8IJ p UjUi
ov; :
+ ﬁﬁﬁ_x? + pUiFv,0,0, + 2PECY;
P, T, (847)

~ T P = UiCh — iUiFor,

0 e . v,

T Oz i

This equation is obtained from equation (8.41) multiplied by U; and equation (8.9).
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8.2.4 Numerical study configuration

8.2.4.1 Channel flow configuration

We consider a fully developed three-dimensional anisothermal channel flow, as
shown in figure 9.1. This geometry is one of the simpler that reproduces the distinctive
features of low Mach number strongly anisothermal turbulent flows. It is therefore well
suited to the study of the subgrid scale specificities of these flows.

N Hot wall
T >T

Flow direction
-
y 2h
< Cold wall
T = 293K

X

Lx

Figure 8.1 — Biperiodic anisothermal channel flow.

The channel is periodic in both the streamwise (x) and spanwise (z) directions.
The temperatures of the two plane channel walls are T, = 586 K at the hot wall and
T = 293 K at the cold wall. This creates the temperature gradient in the wall-normal
direction (y). Two mean friction Reynolds number are considered, Re, = 180 and Re,
= 395, where Re, is defined as the average of the friction Reynolds numbers Re.,,,
calculated at the hot and cold wall,

Rery, = v (8.48)

Vw

with U, = uw(ayU 2)05 the friction velocity and v, the wall kinematic viscosity. We
show in figure 8.2 an isotherm and the velocity magnitude on a plane for a given
timestep at Re, = 180.

8.2.4.2 Numerical settings

To provide the data required to compute the subgrid terms of the low Mach number
equations, direct numerical simulations of the fully developed channel flow described in
4.1 are carried for the two selected friction Reynolds number (180 and 395). At Re, =
180, the domain size is 4wh x 2h x 27h, and the mesh used contains 384 x 266 x 384 grid
points. At Re, = 395, the domain size is 4wh X 2h x 4/3mwh and the mesh used contains
768 x 512 x 512 grid points. In both cases, the mesh is regular in both homogeneous
directions and follow a hyperbolic tangent law in the wall-normal coordinate direction.
The wall-normal grid coordinates are given by

yr = L, <1 + étanh K ]iy__ll — 1> tanhl(a)D , (8.49)
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Isosurface 7 =400 K, p = 1.3 kg/m3, s = 2.3 10-5 kg/(ms), A = 3 10-2 W/(mK)

Velocity magnitude (m/s)

Figure 8.2 — Surface of the 400 K isotherm and velocity magnitude in a plane normal to the
flow direction (Re, = 180).

with a the mesh dilatation parameter and NV, the number of grid points in the wall-
normal direction. The cell sizes in wall units are A} = 8.5, Af = 0.13 — 4.2 and
AY = 4.2 at Re; = 180; Af = 9.1, A = 0.25 — 4.1 and A = 4.7 at Re, = 395.
The two meshes have the same level of refinement. The small differences are due to
the constraints of the numerical method (multigrid solver) and parallelism. A finite
volume method is used with a third-order Runge-Kutta time scheme and a fourth-
order centred momentum convection scheme. This is performed using the TrioCFD
software [38]. The numerical set-up is validated through a mesh convergence study
and by comparison of our results in the incompressible case to the reference data
of Moser et al. [203] and Vreman and Kuerten [305]. These numerical results have
been validated against experimental data [63, 92, 151, 9]. We provide in figure 8.3 a
comparison of the spatial turbulence kinetic energy terms computed by our numerical
procedure to the reference data of Vreman and Kuerten [305] at Re, = 180. Similarly,
the results have been compared to the reference data of Moser et al. [203] at Re, = 395
(not shown here). This validates our numerical method at the incompressible limit. In
the anisothermal configuration, the same code has been validated against experimental
data for a similar friction Reynolds number and temperature gradient by Bellec et al.
[21].

8.2.4.3 Filtering process

To compute the subgrid terms a priori, we filter explicitly the DNS flow field. At
Re, = 180, three filters of varying width are investigated, from now on called “filter A”,
“filter B” and “filter C”. The three filters are three-dimensional box filter, also known
as top-hat filter, of uniform width in both homogeneous directions and nonuniform
width in the wall-normal direction. The filter sizes in wall units and the number of
grid points corresponding to the filters are,

o filter A: A, =43, A) = 0.8 21, A] = 21 and 77 x 53 x 77 grid points;
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Figure 8.3 — Validation of the spatial turbulence kinetic energy terms.

e filter B: Z;r = 68, Z = 0.5 — 25, A = 34 and 48 x 50 x 48 grid points;
o filter C: A, =91, A) =0.13 - 43, A =45 and 36 x 40 x 36 grid points.

At Re, = 395, only filter A is examined. The filter sizes in wall units are Z: = 47,
Z; = 1.5 - 21 and E: = 24. This corresponds to a mesh with 154 x 102 x 102 grid
points.

The filter A corresponds to an average over five DNS cells in the three directions.
It is computed using the following discrete approximation of the box filter:

2 kt2 g2
Z Z Z O(ir, Yy 2jr5 1) (Y1 — Ynr) -

z’*z 2k'=k—-2j'=5j-2
(8.50)
The variations of the filter width in the wall-normal direction follow those of the DNS
mesh.

(Exia 72‘7t =
( Ui % ) 25(yk’+3_yk’

The filters B and C are constructed to follow a hyperbolic tangent law (8.49) in
the wall-normal direction. We cannot use the same method as for filter A to compute
the filters B and C because the filter width is a non-integer multiple of the DNS cell
size. In order to carry out the filtering with an arbitrary filter length, the DNS data
are first interpolated using a cubic spline. Then, the top-hat filter is computed from
the interpolated values without mesh restrictions. The spline interpolation adds an
additional filtering to the box filter. However, this additional filter can be neglected
given the resolution of the direct numerical simulation. The interpolation and filtering
are not computed in three dimensions but sequentially in the three spatial directions.
This is possible because the box filter is separable, that is, can be expressed as the
product of three one-dimensional filters. Using the filter width of filter A, the method
given similar results to equation (8.50).

The filtered quantities are not computed very close the domain boundary, where
not enough points are available to apply the filter. This is justified by the fact that
in practice, the large-eddy simulation of the channel would be carried out with DNS
precision very close to the wall.
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8.2.5 Results and discussion

We assess the importance of the subgrid terms in the Classical formulation, the
Favre formulation and the Velocity formulation. This provides valuable data to deter-
mine which terms can be neglected and which terms should be modelled. The strength
of the subgrid terms are investigated according to their quadratic mean, or root mean
square, compared to the non-subgrid terms. Numerically, the quadratic mean is com-
puted by an average on the two homogeneous directions and on 100 non-consecutive
time steps that cover all thermodynamic configurations of the flow. The results are
converged as the mean computed on 50 time steps is identical to the mean computed
on 100 time steps. Since the flow is homogeneous in the streamwise and spanwise
directions, the analysis is carried out as a function of the wall-normal coordinate v,
scaled by the height of the channel and in the classical wall scaling

U,
y+ —_= RQT% = yV . (851)

The subgrid terms are first investigated with the filter A. Then, the effect of the
filter width on the results is examined.

8.2.5.1 Magnitude of the subgrid terms

In this section, the magnitude of subgrid terms is assessed at Re, = 180 and Re, =
395 with the filter A. The results at Re, = 180 and Re, = 395 are identical with regard
to the classification of the subgrid terms. We thus only provide the results with the
filter A at Re, = 180, for the mass conservation equation (figure 8.4), the streamwise
momentum conservation equation or the streamwise velocity transport equation (figure
8.5), the spanwise momentum conservation equation or the spanwise velocity transport
equation (figure 8.6), the wall-normal momentum conservation equation or the wall-
normal velocity transport equation (figure 8.7), the resolved kinetic energy transport
equation (figure 8.8), the energy conservation equation (figure 8.9), and the ideal gas
law (figure 8.10). In each case, the results are given in the entire channel with a linear
abscissa and at the cold side with a logarithmic abscissa, to emphasise the near-wall
region. Only the cold side is shown with the logarithmic abscissa because a large-eddy
simulation of the channel would be less resolved at the cold side than at the hot side.

Indeed, given the dependence of density, viscosity and conductivity on temperature,
the temperature gradient generates an asymmetry between the hot and cold sides
of the channel. The dynamic viscosity and the friction velocity are higher at the
hot wall and the friction Reynolds number is larger at the cold side. All terms of
the mass conservation equation, momentum conservation equation, resolved kinetic
energy transport equation and energy conservation equation have a larger amplitude
at the cold side than at the hot side. In addition, the local maxima of the profiles of
most subgrid terms are closer to the wall at the cold side than at the hot side. This
asymmetry can in a large part be explained by the local variations of the mean fluid
properties [290]. The profiles are also subject to a low Reynolds number effect [91].
Since the three filters used are symmetric with respect to the centre of the channel, the
cold side is less resolved in wall units than the hot side. This contributes to the fact
that the subgrid terms have a larger amplitude at the cold side than at the hot side
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in the mass conservation equation, momentum conservation equation, resolved kinetic
energy transport equation and energy conservation equation.

Mass conservation equation

The mass conservation equation (figure 8.4) gives a relationship between the time
derivative of density and the divergence of the mass flux. With the classical filter (Clas-
sical or Velocity formulation), the subgrid term associated with the density-velocity
correlation 0;F,y, is very small at the centre of the channel and remains one order
of magnitude smaller than the non-subgrid terms near the wall, where it is the most
significant. The filter-derivative non-commutation subgrid term C’] has a smaller am-
plitude in most part of the channel but has the same order of magnltude at the wall.
With the Favre filter, it is the only subgrid term in the mass conservation equation.

Since the statistical average of the time derivative of density is zero, the divergence
of the resolved mass flux 9;pU; is in balance with the subgrid terms. With the classical
filter, the statistical average of the density-velocity correlation subgrid term has the
same order of magnitude as the divergence of the resolved mass flux, while the filter-
derivative non-commutation subgrid term is negligible. The modelling of the subgrid
term ajﬁ(Tj is necessary to take this behaviour into account in a large-eddy simulation.
Therefore, we consider that with the classical filter, the modelling of the density-
velocity correlation subgrid term 0;F,y, is more important than the modelling of the

filter-derivative non-commutation subgrid term CZU],.

Momentum conservation equation

To study the subgrid terms related to the momentum conservation, we investigate
the subgrid terms as they appear in the streamwise, spanwise and wall-normal momen-
tum conservation equations (figures 8.5, 8.6 and 8.7 respectively), or velocity transport
equation in the case of the Velocity formulation, and the energetic contribution of the
subgrid terms from the resolved kinetic energy transport equation (figure 8.9). In ei-
ther case, the time derivative term and the convective term predominate at the centre
of the channel. Nevertheless, these two terms in a large part cancel each other out. To
be considered negligible, a subgrid term should thus at least be negligible compared to
the third largest non-subgrid term, namely the pressure term.

Two non-subgrid terms are negligible throughout the entire channel, namely the
velocity-dilatation product in the spanwise and wall-normal velocity transport equa-
tions and the pressure-dilatation product in the resolved kinetic energy transport equa-
tion. The velocity-dilatation product in the streamwise velocity transport equation is
also small but is not negligible. This shows the small influence of dilatation on the flow
dynamics in low Mach number strongly anisotermal flows. This is consistent with the
negligible effect of dilatation on the turbulence kinetic energy budget [91].

In the momentum conservation equation (figures 8.5, 8.6 and 8.7), the most sig-
nificant subgrid term in the three formulations is the subgrid term associated with
momentum or velocity convection, 0;F,u,v;, 0;pGu,u, and 0;Fy,p,. It is larger than
viscous term in the bulk and cannot be neglected at the wall. This subgrid term has
a larger amplitude at the centre of the channel in the Classical formulation than in
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Figure 8.4 — Root mean square of the terms of the mass conservation equation as a function
of the wall-normal coordinate in the Classical and Velocity formulations (a) and in the Favre
formulation (b) at Re, = 180 with the filter A. The amplitude is scaled by the maximum
value in the domain in the three formulations.

the Favre and Velocity formulations but a slightly lower amplitude near the wall. It is
harder to model in the Classical formulation since it is a triple correlation whereas it
is a double correlation in the Favre and Velocity formulations.

Three subgrid terms have a medium-sized amplitude. In the Classical formulation,
the time derivative subgrid term 0, F,y, is the second most significant subgrid term. In
particular, it has the same order of magnitude as the viscous term at the centre of the
channel. Present in the three formulations, the filter-derivative non-commutation sub-
grid term associated with the convective term, CZUJ, u, or C,jjj u,» has a lower amplitude
than any non-negligible non-subgrid term but by less than one order of magnitude. It
appears very small in the spanwise and wall-normal directions, but is more significant
in the streamwise momentum equation. In the Velocity formulation, this subgrid term
is followed by the velocity divergence filter-derivative non-commutation subgrid term
C’éj, which has a similar behaviour. Since the subgrid terms C&Ui and C’,j]j appear with
opposite sign in the velocity transport equation, the subgrid terms associated with the
filter-derivative non-commutation are less significant in the Velocity formulation.
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Figure 8.5 — Root mean square of the terms of the streamwise momentum conservation equa-
tion as a function of the wall-normal coordinate in the Classical formulation (a), in the Favre
formulation (b) and of the terms of the streamwise velocity transport equation in the Velocity
formulation (c) at Re, = 180 with the filter A. The amplitude is scaled by the maximum

value in the domain in the three formulations.
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Figure 8.6 — Root mean square of the terms of the spanwise momentum conservation equation
as a function of the wall-normal coordinate in the Classical formulation (a), in the Favre
formulation (b) and of the terms of the spanwise velocity transport equation in the Velocity
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180 with the filter A. The amplitude is scaled by the maximum
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Figure 8.7 — Root mean square of the terms of the wall-normal momentum conservation
equation as a function of the wall-normal coordinate in the Classical formulation (a), in the
Favre formulation (b) and of the terms of the wall-normal velocity transport equation and in
the Velocity formulation (c) at Re, = 180 with the filter A. The amplitude is scaled by the
maximum value in the domain in the three formulations.



8.2. Paper 3 157

1e+00 1e+00 . '.....nln--l-
1e-01 | " ML T - aansasssss
AAhiiiiasnnanansasass ’ 1e-01 ) Hégwéxxxnw“
[ ] 50000o%
1e-02 ° s 8 855°
1e-02 | &
[0} [0}
S 1e-03 3
‘Té_ 'Té_ 1e-03 +
E te-04 £ .
16-04 |
1e-05
1e-06 | 1e-05
1e-07 1e-06
10 100
y/2h vt
dpE = z)‘[ﬁlzlj M Covw, * OUFu, & dpE = U,ﬁl%J M Cov,u, +
E e  3,0,U; © Ei(',/,z', * 0;UiFuu, © 0;pU;E o  %,,0,U; E,(Yr/'f', * 0;UiFuu, &
. UiCp *  9;EF,y, < o,U,P » UCp *
. U.CL x  oUFs, ~ Po,U; * U,Ch %
(a) In the Classical formulation.
1e+00
1e-01
1e-02
(] (]
° °
2 2
= = - F ¥ XX
g— g— 1e-03 ociﬁi?ééééﬁéééxxxﬂx
< <
1e-04 + ***%%*wxmmma
*
* * % o
1e-05 |
* * *
*
*
1e-06 !
10 100
v
OpE = UIUIZZ/ v UGy, + ")/l\'("pl%! ;& " ‘)1(71211 v [v'('v/w[',(x + U/l\'r{v'mvr ;&
9;pU; E ij0;U; 0,;U;Gs, ~ ij0;U; 207, 9,UiGx,, =
ipU; £ e Lij0;U;i @ EC UiG s, ° Lij0;U;i @ EC, %UiG s,
oUP + U,Cp * oUP » U0p *
PoU; ® UiCl, Po,U; o UiCE,, *
(b) In the Favre formulation.
1e+00 1e+00 ....nni_l-
1e-01 1e-01 F
L - Q
1e-02 { 4009900000000
! 1e-02 R . ***f‘t**¢***¢*¢¢7v
B 1e-03 [ 3 . rrtd
= 3 2 qeo3} t *
o o 5
E te-04 £ e
; 16-04 |
1e-05 ¢
16-06 | 1e-05 p Y
*
*
1e-07 1e-06
y/2h vt
ﬁi'),E n 1)[)’,[71 . /7(7',(’,/‘," + /’)(‘]IIF7[7,~’[~’6 /’i),E n 1)[)’,[71 . /7(7',(’,/‘,"
pOUE e U5, v  2pECY, + 0;U;Fx,~ pojUE e  9,U 8, v  2pEC) -+
i* Z‘l/‘l)_lUl i U;Cp * /jgl.UJ’ Z‘ll(l)_lﬁl i U;Cp *
B U,cL x O UP U.cy, x

(¢) In the Velocity formulation.

Figure 8.8 — Root mean square of the terms of the resolved kinetic energy transport equation
as a function of the wall-normal coordinate in the Classical formulation (a), in the Favre
formulation (b) and in the Velocity formulation (c) at Re; = 180 with the filter A. The
amplitude is scaled by the maximum value in the domain in the three formulations.
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The subgrid term associated with the nonlinearities of the viscous diffusion, 9;Fx;,
and Gy,;, can be considered insignificant in the three formulations. Its amplitude is
increased by around one order of magnitude in the Favre formulation but remains one
order of magnitude smaller than any non-subgrid term in the entire channel. Assuming
that the small-scale variations of velocity are significant, this suggests that the influence
of small-scale variations of viscosity on the behaviour of the flow is negligible. The filter-
derivative non-commutation subgrid term associated with the pressure and viscous
terms C'% and C’gij are also negligible. All three of the additional subgrid terms in the
Velocity formulation, Fy,s,u;, Fo,p/p, and Fy, 5, /,, are also found to have a very small
amplitude. The most significant of the three is the subgrid term Fy,p/,. The Velocity
formulation thus appears more interesting than the classical formulation with regard to
the subgrid-scale modelling as the time derivative subgrid term is replaced with three
negligible subgrid terms.

The resolved kinetic energy transport equation (figure 8.9) confirms the classifica-
tion of the subgrid terms in the momentum conservation equation. The most significant
subgrid term in the momentum conservation equation have a significant energetic con-
tribution, reaffirming the importance of the subgrid terms associated with momentum
or velocity convection, 0;F,u,u;, 0;pGuy,u, and 0;Fy,y,, and, in the Classical formula-
tion, of the subgrid term associated with the time derivative term, 0, F,y,.

Energy conservation equation

Omitting the time derivative of the thermodynamical pressure, constant in space,
the energy conservation equation (figure 8.9) expresses the equality, up to a constant
scalar factor, of the divergence of the velocity and of the heat flux. The difference
between the divergence of the resolved velocity and heat flux represents the effect of
the subgrid terms. With the classical filter (Classical or Velocity formulation), the
only significant subgrid term is the filter-derivative non-commutation subgrid term
C’[j]j associated with the divergence of the velocity. The subgrid terms 0;Fg, and

Cé?j associated with the heat flux are at least 50 times smaller than the non-subgrid
terms throughout the entire channel. This is consistent with the assumption that
the variations of conductivity over a small control volume can be neglected. With the
Favre filter, the additional subgrid term associated with the density-velocity correlation
Gu,/p has a large amplitude, of the same magnitude as the non-subgrid terms. In other
words, the divergence of the Favre-filtered velocity is a poor approximation of the
divergence of the velocity because of the small-scale variations of density and velocity.
The density-velocity correlation is more significant in the energy conservation equation
in the Favre formulation than in mass or momentum conservation equation in the
Classical or Velocity formulations. The nonlinearity error 9;Gq, associated with the
heat flux is significantly larger with the Favre filter than with the classical filter but
remains rather small.

Ideal gas law

The ideal gas law (figure 8.10) is used to compute the filtered temperature from
the filtered density. With the Favre filter, there is theoretically no subgrid term in the
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Figure 8.9 — Root mean square of the terms of the energy conservation equation as a function
of the wall-normal coordinate in the Classical and Velocity formulations (a) and in the Favre
formulation (b) at Re, = 180 with the filter A. The amplitude is scaled by the maximum
value in the domain in the three formulations.

ideal gas law. With the classical filter (Classical or Velocity formulation), the subgrid
term [}, it is found negligible. The ideal gas law can thus be used without model
with both the classical and Favre filter.

Summary

The subgrid terms are classified according to their quadratic average in table 8.1.
The large subgrid terms are the most significant subgrid terms, and should be modelled
first. The medium subgrid terms have a smaller amplitude. The modelling of the small
or very small subgrid terms should only be considered after all large and medium
subgrid terms are modelled, and may not be recommended as their amplitude may not
be larger than even the modelling error of the larger subgrid terms.
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Figure 8.10 — Root mean square of the terms of the ideal gas law as a function of the wall-
normal coordinate in the Classical and Velocity formulations (a) and in the Favre formulation
(b) at Re, = 180 with the filter A. The amplitude is scaled by the maximum value in the
domain in the three formulations.

Equation Formulation Large Medium Small or very small
Mass Classical, Velocity 8JFPU§, C U,
Favre C U,
Classical i Fpu,u; 8tFpU¢') CZUJ-UZ- C?‘D’ 9jFs,;, C%ij
Momentum  Fayre 0ipGu,u, ‘ CzUle A Ch, 0;Gx,;, C’Eij |
Velocity poiFu,u,  PCly,, PUCT,  PFuou;: PEopyp, Cp,
ﬁFajE,-]-/pv ajFEijv CZEU
. . J . J
Energy Classical, Velocity C’(j]j 0;FQ;, CJQj
Favre Gu,/p C’Uj 0;Gq;» C’Qj
Ideal gas law Classical, Velocity Fiyp,
Favre

Table 8.1 — Classification of the subgrid terms in the three formulations.
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8.2.5.2 Effect of the filter width

The effect of the filter width on the subgrid term is investigated at Re, = 180 by
comparing the amplitude of the subgrid terms with the filters A, B and C. As the
filter size is increased, the magnitude of all subgrid term is increased compared to the
non-subgrid terms. In the mass conservation equation, the momentum conservation
equation and the ideal gas law, the increase is not sufficient to affect the conclusions
of the classification of the subgrid terms, since the order of magnitude of the subgrid
terms remains similar for the three filters. This supports the assumption that, while the
variations across the channel of viscosity and thermal conductivity have a significant
impact on turbulence [264], the effects of their small-scale variations on the flow are
negligible.

In the energy conservation equation, the filter width has a strong influence on the
magnitude of the filter-derivative non-commutation subgrid term CJU associated with
the divergence of the velocity. While the magnitude of this subgrid term is moderate
with the filter A (figure 8.9), it is very large with the filter C (figure 8.11), as its
amplitude is larger than that of the resolved heat flux from the logarithmic region to
near the centre of the channel. The results with the filter B (not presented here) are
in-between. The differences are primarily due to the increased anisotropy of the filter
when the filter width is increased. The three filters follow a hyperbolic tangent law
in the wall-normal coordinate direction, with a larger dilatation parameter the larger
the filter width. With the filter C, the subgrid term C’éj is rather small in the viscous
sublayer and becomes very large farther from the wall. This suggests that a filter more
uniform in the logarithmic region is preferable to limit the influence of this subgrid
term.

The conclusions of the classification of the subgrid terms (8.1) are valid for the
filter A and B. For the filter C, C’[J]j is a large subgrid term. We consider its modelling
necessary.

8.2.6 Conclusion

The low Mach number equations are suited to turbulent flows with a low Mach
number but subjected to large variations of the fluid properties. They are charac-
terised by a distinctive form of the energy conservation equation, that does not let us
categorically choose between the classical filter and the Favre filter. In this study, we
filter the low Mach number equations and identify the specific subgrid terms. Then,
we investigate a priori the magnitude of all subgrid terms using the flow field from
direct numerical simulations of a strongly anisothermal turbulent channel flow. The
temperature gradient creates an asymmetry between the hot and cold sides regard-
ing the amplitude and position of the maxima of the subgrid terms, explained by the
local variations of the mean fluid properties and a low Reynolds number effect. Re-
gardless of the formulation, more than half of the subgrid terms are found negligible.
In particular, the effect of small-scale variations of viscosity and thermal conductiv-
ity may be neglected. The two most significant subgrid terms are the subgrid terms
associated with momentum convection and with the density-velocity correlation. Due
to the mesh inhomogeneity, the modelling of some filter-derivative non-commutation
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Figure 8.11 — Root mean square of the terms of the energy conservation equation as a function
of the wall-normal coordinate in the Classical and Velocity formulations (a) and in the Favre
formulation (b) at Re, = 180 with the filter C. The amplitude is scaled by the maximum
value in the domain in the three formulations.

may also need to be considered, depending on the width of the selected filter. The
classical filter is found more appropriate if the momentum equation is expressed as
the velocity transport equation. The Favre filter removes the need for the modelling
of the density-velocity correlation from the mass conservation equation but requires
the modelling of an additional subgrid term in the energy equation, which has a very
significant amplitude. The density-velocity correlation thus needs to be modelled in
both cases.
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8.3 Conclusion of chapter 8

The estimation of relative importance of the subgrid terms from their quadratic
mean is used to identify the subgrid terms that can be neglected and the subgrid
terms that should be modelled for large-eddy simulation of the low Mach number
equations. The formulation of the low Mach number equations upon filtering is tied to
the choice of resolved variables. The filtering of the momentum conservation equation
is more adequate if the equations are expressed in terms of Favre-filtered variables.
The filtering of the velocity transport equation is more adequate if the equations are
expressed in terms of classical-filtered variables. However, the classification of the
subgrid terms does not provide sufficient evidences of the better suitability of either
the classical filter or the Favre filter for the large-eddy simulation of the low Mach
number equations. The filter-derivative non-commutation subgrid terms are mostly
independent of the choice of the formulation. The subgrid terms associated with the
nonlinearities of the shear-stress tensor and of the conductive heat flux have a larger
amplitude with the Favre filter but are small in both formulations. The subgrid term
associated with momentum convection has a similar amplitude with the Favre filter and
the classical filter. The subgrid term associated with the density-velocity correlation
appears in the energy conservation equation with the Favre filter and in the mass
conservation equation with the classical filter. It has a larger quadratic mean with
the Favre filter compared to the other terms of the energy conservation equation than
with the classical filter compared to the other terms of the mass conservation equation.
However, the density-velocity correlation subgrid term may has a significant statistical
average contribution to the mass conservation equation with the classical filter.

The use of three filters of varying width shows the robustness of the results to
moderate variations of the filter width. A larger filter width increases the amplitude of
all subgrid terms but particularly affects the filter-derivative non-commutation subgrid
terms. The more uneven the filter, the more the filter-derivative non-commutation
subgrid terms are significant. This is especially concerning for the filter-derivative
non-commutation subgrid term associated with the divergence of the velocity in the
energy conservation equation. With the largest filter used, the subgrid term has a large
amplitude and should be taken into account.

In the next chapter, we assess the modelling of the two most significant subgrid
terms of the filtered low Mach number equations, the momentum convection subgrid
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term and the density-velocity correlation subgrid term. The analysis follows a similar
approach, based on the direct numerical simulations of strongly anisothermal turbulent
channel flows presented in section 1.3.



Chapter 9

A priori tests of subgrid-scale models
in an anisothermal turbulent channel
flow at low Mach number

9.1 Introduction of chapter 9

The eddy-viscosity modelling of the filter-multiplication non-commutation subgrid
term associated with momentum convection encompass a variety of models with differ-
ent properties, sharing only the fundamental hypothesis that the effect of subgrid scales
is analogous to viscous diffusion [32]. The popularity of this class of model is attributed
to its robustness and low computational complexity. [253, 294] The main shortcom-
ing of eddy-viscosity models is the assumption that the action of the subgrid term is
purely dissipative, preventing a local inverse energy cascade from small to large scales,
or backscatter. The suitability of this assumption is not clear in strongly anisothermal
turbulent channel flows, but can also be perceived as an advantage since this property is
desirable for numerical stability. Assuming a constant subgrid-scale Prandtl or Schmidt
number, eddy-viscosity modelling can be extended to subgrid terms associated with the
correlation of velocity and a scalar with the simple gradient-diffusion hypothesis [253].
The resulting models are called eddy-diffusivity models. Alternative procedures such
as generalised gradient-diffusion hypothesis |76, 131|, algebraic flux model [140] and
differential flux model [159] provide improvements in Reynolds-averaged Navier—Stokes
simulations [316, 33| and can be adapted to large-eddy simulation [315]. They are not
investigated here. In this chapter, we investigate the eddy-viscosity modelling of the
momentum convection subgrid term and the eddy-diffusivity modelling of the density-
velocity correlation subgrid term, the two most significant subgrid terms arising from
the from the filtering of the low Mach number equations.

A priori tests of subgrid-scale models from the filtering of three-dimensional flow
fields may be carried out following different approaches. Ideally, the subgrid-scale mod-
els should give the best possible prediction in a large-eddy simulation that is achieve a
statistical correspondence between the fields of large-eddy simulation and the filtered
fields of direct numerical simulation. It is reasonable to assume that the predictive
capability of a subgrid-scale model is related to some measure of the closeness between
the subgrid-scale model and the exact subgrid term. This is not as simple as it might
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appear, for the subgrid-scale model is in practice applied to the resolved variables of
a large-eddy simulation, corresponding to the filtered variables of a direct numerical
simulation only ideally [173, 156, 253, 235, 236]. Structural models aim to reproduce
the local structure of the exact subgrid term from the reconstruction of unresolved
scales, suggesting that the local error between the exact subgrid term and the subgrid-
scale model should be investigated. The quadratic error is natural to quantify this
performance [156]. Functional models aim to globally reproduce the interscale energy
transport between resolved scales and subgrid scales, suggesting that the subgrid dis-
sipation should be investigated. Considering that the constant of the models can be
arbitrarily adjusted to obtain the correct total subgrid dissipation over the volume,
the models should have the ability to provide a representative profile of the statistical
average of the subgrid dissipation.

The subgrid-scale models are investigated from the direct numerical simulation of
the anisothermal channel flows at Re, = 180 presented in section 1.3. The analysis is
carried out whether the subgrid terms are expressed in terms of Favre-filtered variables
or in terms of classical-filtered variables. Using tools from linear regression analysis
and the direct comparison of the statistical average, we study the contribution of the
subgrid-scale models in the filtered low Mach number equations and the contribution
of the subgrid-scale models to the subgrid dissipation. As a basis of comparison, each
model is scaled in order to match the correct level of total subgrid dissipation over
the volume. In addition to the models from the literature, two new eddy-viscosity and
eddy-diffusivity models are proposed and investigated.

9.2 Paper 4

This section reproduces the paper D. Dupuy, A. Toutant, and F. Bataille. A priori
tests of subgrid-scale models in an anisothermal turbulent channel flow at low mach
number. (Submitted for publication) [86].

Abstract

The subgrid-scale modelling of a low Mach number strongly aniso-
thermal turbulent flow is investigated using direct numerical simulations.
The study is based on the filtering of the low Mach number equations,
suited to low Mach number flows with highly variable fluid properties.
The results are relevant to formulations of the filtered low Mach num-
ber equations established with the classical filter or the Favre filter. The
two most significant subgrid terms of the filtered low Mach number equa-
tions are considered. They are associated with the momentum convection
and the density-velocity correlation. We focus on eddy-viscosity and eddy-
diffusivity models. Subgrid-scale models from the literature are analysed
and two new models are proposed. The subgrid-scale models are compared
to the exact subgrid term using the instantaneous flow field of the direct
numerical simulation of a strongly anisothermal fully developed turbulent
channel flow. There is no significant differences between the use of the
classical and Favre filter regarding the performance of the models. We
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suggest that the models should take into account the asymptotic near-wall
behaviour of the filter length. Eddy-viscosity and eddy-diffusivity models
are able to represent the energetic contribution of the subgrid term but
not its effect in the flow governing equations. The AMD and scalar AMD
models are found to be in better agreement with the exact subgrid terms
than the other investigated models in the a priori tests.

9.2.1 Introduction

This paper addresses the large-eddy simulation subgrid-scale modelling of low Mach
number strongly anisothermal turbulent flows. Flows subjected to a strong temperature
gradient are prevalent in many industrial processes, such as heat exchangers, propul-
sion systems or solar power towers [265]. They are characterised by strong coupling
between turbulence and temperature, along with high variations of the fluid properties
(density, viscosity and thermal conductivity) with temperature [290, 11, 91]. In many
cases, the direct numerical simulation (DNS) of strongly anisothermal turbulent flows
is unpracticable because too many scales of temperature and velocity are produced and
not enough resolution is available to resolve all the relevant scales. In order to predict
the large-scale behaviour of low Mach number strongly anisothermal turbulent flows,
thermal large-eddy simulation (LES) is an effective alternative. Large-eddy simula-
tion is based on the explicit resolution of the large scales of turbulence and the use of
subgrid-scale models to account for the effect of the smaller scales on the large scales.
The scale separation may be represented by the application of a low-pass spatial filter
on the flow governing equations.

The filtering of the low Mach number equations gives rise to specific subgrid terms.
Using a priori tests, Dupuy et al. [90] assessed the amplitude of all subgrid terms in
several formulations. The expression of the filtered low Mach equations with the un-
weighted classical filter and the density-weighted Favre filter [94] leads to two different
set of equations involving the same non-negligible subgrid terms [87, 88, 90]. The two
most significant subgrid terms are associated with the momentum convection and the
density-velocity correlation. The adequate modelling of these subgrid terms is required
for the large-eddy simulation of low Mach number strongly anisothermal turbulent
flows.

Various modelling strategies have been devised to represent the subgrid terms.
Two main types of model are found: structural models, established with no prior
knowledge of the nature of the effect of the subgrid term, and functional models, which
assume that the effect of the subgrid term is similar to molecular diffusion and therefore
acts as a dissipative action [253]. The subgrid-scale models should be consistent with
important mathematical and physical properties of the Navier—Stokes equations and the
turbulent stresses [273]. With regard to the subgrid term associated with momentum
convection, the functional eddy-viscosity models are by far the most used because they
are simple, inexpensive and robust. A review of eddy-viscosity models may be found in
[253, 294, 273]. The eddy-viscosity assumption can be extended to the density-velocity
correlation subgrid term using the constant subgrid-scale Prandtl or Schmidt number
assumption. This is referred to as eddy-diffusivity models.

In this paper, we assess the subgrid-scale models a priori using the flow field from the
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direct numerical simulation of a strongly anisothermal turbulent channel flow. In the
literature, a priori studies of the subgrid-scale models have been carried out in incom-
pressible flows [64, 1, 182, 229, 175], two phase divergence-free flows [291, 141]|, passive
and active scalar decaying homogeneous turbulence [56, 113] and in flows with purely
compressible effects, in a temporal shear layer [309, 310, 306], a multi-species mixing
layer [29], and in freely decaying homogeneous isotropic turbulence [189]. The analysis
is here extended to low Mach number strongly anisothermal turbulent flows. We focus
on eddy-viscosity and eddy-diffusivity models. Structural models, such as the scale-
similarity [14] and gradient model [169], are known to display high degrees of correlation
with the exact subgrid term in a priori tests despite easily leading to instabilities when
used in an actual large-eddy simulation [14, 253, 259, 24, 141]. Eddy-viscosity models,
which assume that the subgrid term is aligned with the rate of deformation tensor or
the scalar gradient, are purely dissipative and have desirable property for numerical
stability. Besides, by restricting the study to a single family of models, we may hope
that the a priori tests have a more easy-to-interpret relevance for a posteriori results.
The subgrid-scale models investigated are the Smagorinsky model [276], the WALE
model [213], the Vreman model [304], the Sigma model [214], the AMD model [250],
the scalar AMD model [3], the VSS model [252] and the Kobayashi model [147]. In
addition, two new eddy-viscosity and eddy-diffusivity models are proposed and inves-
tigated, the Anisotropic Smagorinsky model, which attempts to improve anisotropy of
the Smagorinsky model by involving three filter length scales instead of one, and the
MMG model, which may be viewed as multiplicative mixed model.

The filtering of the low Mach number equations is described in section 2. The
subgrid-scale models are presented in section 3. The channel flow configuration and
the numerical method are given in section 4. The section 5 discusses the asymptotic
near-wall behaviour of the models. The results are analysed in section 6.

9.2.2 Filtering of the low Mach number equations

The low Mach number equations are an approximation of the Navier-Stokes equa-
tions suited to turbulent flows with a low Mach number (Ma < 0.3) but subjected to
large variations of the fluid properties. Using Paolucci’s method [219], each variable of
the Navier—Stokes equations is written as a power series of the squared Mach number.
Neglecting all but the smaller-order terms, the pressure is split in two parts: The ther-
modynamical pressure P (constant in space), which represents the mean pressure in the
domain, and the mechanical pressure F,, associated with the momentum variations.
The resulting equations are free from acoustic waves.

Considering in addition an ideal gas and neglecting gravity, the low Mach number

equations are given by:

e Mass conservation equation

dp  OpU;
R el (9.1)

e Momentum conservation equation
3pUZ . _8pUjUZ~ _ 8_P i 8EZJ(U,T)
ot N (996]- aLL’l (%j ’

(9.2)
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e Energy conservation equation

ou; 1 1 0Q(T) | OF,

=) = — 9.3
(9xj ’}/PO <7 ) Zhj ot ’ ( )
o Ideal gas law
T = Lo (9.4)
= .

with p the density, 7" the temperature, X;;(U,T') the shear-stress tensor, ();(1) the
conductive heat flux, v the heat capacity ratio, r the ideal gas specific constant, ¢
the time, P the mechanical pressure, P, the thermodynamical pressure, U; the i-th
component of velocity and x; the Cartesian coordinate in ¢-th direction. Einstein
summation convention is used. The low Mach number equations impose the local
energy conservation by a constraint (9.3) on the divergence of the velocity [212].

The filtering of the low Mach number equations may lead to different formulations
of the filtered low Mach number equations depending on the variables we express the
equations with and the manner the equations are arranged upon filtering. Two formu-
lations of the filtered low Mach number equations are selected, the Velocity formulation
and the Favre formulation. In the Velocity formulation, a spatial filter (7, classical
filter) is applied on the low Mach number equations with the momentum conserva-
tion equation rewritten as the velocity transport equation. The equations are then
expressed in terms of classical-filtered variables. The Favre formulation is based on the
use of a density-weighted filter (-, Favre filter), defined for any ¢, as ¢ = p¢/p. In
the Favre formulation, the low Mach number equations are filtered with the classical
filter and expressed in terms of Favre-filtered variables.

Retaining only the most significant subgrid terms [87, 88, 90|, the filtered low Mach
number equations are given in the Velocity formulation by:

dp 0 ,_—
E+a_{L‘j(pUj+FpUj) :07 (95)
oU; 0 ,— — _oU; 10P 10%,;U,T)
i_ _ YT F. R R 20=4\Yo 1) .
o = o, UiUit Fon) +Uig s = oo+ o—=p (99
oU; 1 0Q;(T) 0P,
B -1 }
N
T-—20 .
5’ (9.8)
and in the Favre formulation by:
o opU; _
o o 0, (9.9)
apU; 0 [ ~~ _ oP 90X, (U,T)
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T=22 (9.12)

with the subgrid terms:

Fyu, = U;U0; = U; U, (9.13)
Gu,v, = U,;U; — U;U,; (9.14)

Fpu; = pU; — pU; (9.15)
Gu,1p=Uslp—Us/p (9.16)

The Velocity and Favre formulations both involve a subgrid term associated with
the momentum convection, Fy,y, or Gy,y;, and a subgrid term associated with the
density-velocity correlation, F,y, or Gy,/,, such that

Fuu, _
%f = —pGu,p- (9.17)

The use of the Favre filter removes the need for the modelling of the density-velocity
correlation from the mass conservation equation but requires the modelling of an ad-
ditional subgrid term in the energy conservation equation [87, 88, 90].

The fluid (air) is assumed to be Newtonian to compute the shear-stress tensor,

ou;  oU; 2 oUj,
— ST =Es

Oz * 8@) BM( )8xk J

Zo(U.1) = i) 9.15)

with p(7") the dynamic viscosity and d;; the Kronecker delta. The heat flux is given by

oT
833]' ’

Qi(T) = =A(T) (9.19)

with A(7") the thermal conductivity. The variations of viscosity with temperature are
accounted for by Sutherland’s law [287],

T\ T,
) ot 5 (9.20)

T) = =
w(T) “O(TO TTg

with g = 1.716 - 107° Pa s, S = 110.4 K and T, = 273.15 K. The conductivity is
deduced from the Prandlt number Pr and the heat capacity at constant pressure C,,
both assumed constant with Pr = 0.76 and C, = 1005 J kg=! K~'. The ideal gas
specific constant is r = 287 J kg=! K1

9.2.3 Subgrid-scale models

The subgrid terms of the Velocity and Favre formulations are formally similar.
Accordingly, the same modelling procedure is used in both cases. To formalise this,
we may express the subgrid-scale models as a function of the filter length scales and of
the filtered velocity and density in the two formulations:

Fyu, ~ Tg;lod(ﬁ, A), (9.21)
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GUjUi ~ Tir]r'lOd(ﬁ7 Z)u (922)
F, = 74U, p,A), (9.23)
Gu,)p = YU, 1/p, A), (9.24)

where the functions T;;Od(U, A) and ﬂ;-nOd(U, ¢, A) are model-dependent but do not

depend on the formulation.
Eddy-viscosity models for the subgrid term associated with momentum convection
may be written in the form

oYU, A) = —202(g, A)Sy, (9.25)
with S;; = %(gij + g;i) the rate of deformation tensor and g the velocity gradient,
defined by g;; = 0;U;. Notice that Tir;lOd(U, A) may be considered traceless without
loss of generality, even in the incompressible case, since the trace can be included as
part of the filtered pressure P. The eddy-viscosity v™°d(g, A) is given by the model
used. The following models from the literature are investigated:

Smagorinsky model [276]: 5™ (g, A) = (Csmag'Z)2 |S|, (9.26)
- _ st 51)2
WALE model [213]: yWVALE (g R) = (CWALER)? o =
(9.27)
Vreman Vreman IIG
Vreman model [304]: (g,A)=C _— (9.28)
gmngmn
Sigma model [214]: poema (g A) = (C’SigmaZ)2 73 (01 U;g (o2 — 03),
i
(9.29)
AMD model [250]: yaMD (g &) = cavpmax(0, =Gy 5y) (9.30)
gmngmn
3
9 (RiiRy;)?
VSS model [252]: vYS(g, A) = (C’VSSA)2 (3—])5, (9.31)
(‘S??”msmn)E
: oba. oba. A2 3
Kobayashi model [147]: v (g, A) = CRP* A |F, |2 (1 - F,)|S|, (9.32)

where |S| = 1/25;;5;; is a norm of S, Sidj = %(gikgkj + 9ikGri) — %gkpgpk&j the trace-
less symmetric part of the squared velocity gradient tensor, o; > 09 > o3 the three
singular values of g, G;; = Kigikgjk the gradient model for the subgrid term asso-
ciated with momentum convection [169], Iz = 3 (tr* (G) — tr (G?)) its second in-
variant, R;; = (;g;; the volumetric strain-stretching, with § = (Sa3,S13, S12), and
F, = (£2;j82i; — SijSi5) | (2mn2imn + SinSmn) the coherent structure function, with
$2;; = % (gi; — g;i) the spin tensor or rate of rotation tensor. Only constant coeflicient
versions of eddy-viscosity and eddy-diffusivity models are considered. The typical value
of the coefficients from the literature is CS™28 = (.10, CWALE = (.55, C'Vreman — () 07,
CSema — 15 CAMD — 03, CVSS = 1.3 and CK°"* = 0.045. The corresponding dy-
namic versions of these models are not considered in order to assess the relevance of the
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models before any dynamic correction [112, 177, 221]. The filter length scale is com-
puted following Deardorff [77] as A = (A,A,A,)Y3. A review of alternative possible
definitions may be found in Trias et al. [295].

Following the same rationale, eddy-diffusivity models for the density-velocity cor-
relation subgrid term may be written in the form

W;nOd(Ua ¢7 Z) = = Qﬁ?Od(!L da K)d] (933)

with d the scalar gradient, defined by d; = 0;¢. It is common to express the eddy-

diffusivity x™°4(g, A) using the constant subgrid-scale Prandtl or Schmidtl number
assumption,

Wl (g,d, &) = 5 (g, A), (934
Pr,

where Pr; is the subgrid-scale Prandtl or Schmidt number. This provide a corre-
sponding eddy-diffusivity model for each eddy-viscosity of equations (9.26-9.32). The
dimensionless number Pr; corresponds to a subgrid-scale Schmidt number in the Ve-
locity formulation and a subgrid-scale Prandtl number in the Favre formulation. Given
the formal similarity between the density-velocity correlation subgrid term in the Ve-
locity and Favre formulation and the ideal gas law (9.4) which relates density and
temperature, it is presumed that the same value may be used in the two formulations.

Alternatively, some specific eddy-diffusivity models have been suggested in the lit-
erature [113, 3]. We investigate one,
(0, —D,d;)
A ’

Scalar AMD model [3]:  x53MP(g, d, A) = ¢SAMD X (9.35)

with D; = Zigjkdk the gradient model for the density-velocity correlation subgrid
term.

In addition, we suggest and investigate two new models. First, the Anisotropic
Smagorinsky model is a modified version of the Smagorinsky model, associated with
a single filter length scale, devised to involve the three filter length scales. This aims
to improve the anisotropy of the model. The model is obtained by substituting in
equations (9.25) and (9.33) the velocity gradient g and respectively the scalar gradient
d by the scaled velocity gradient g¢, defined by gf; = (A;/A)0;U;, and respectively
the scaled scalar gradient d®, defined by d? = (A;/A)d;¢. Namely,

(U, A) = — 2w (g, A) S, (9.36)

7TJAn.Smag.(Uv’ o, Z) _ Qﬁgmag. (ga’ de, K)d?, (9_37)

with S = %(gf] + g]“Z) the scaled rate of deformation tensor. The eddy-viscosity
and eddy-diffusivity are computed using equations (9.26) and (9.34). A similar proce-
dure could be applied to obtain an anisotropic version of the WALE, Sigma, VSS and
Kobayashi models.

Besides, we study the multiplicative mixed model based on the gradient model
(MMG model), a functional model constructed such that its magnitude is determined
by the gradient model [169] and its orientation is aligned with the rate of deformation
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Figure 9.1 — Biperiodic anisothermal channel flow.

tensor or the scalar gradient depending on the subgrid term. This procedure is remi-
niscent of the multiplicative mixed model of Ghaisas and Frankel [113, 114] which had
an opposite purpose. The eddy-viscosity and eddy-diffusivity according to the MMG
model are given by,
MMG [, A G Gk
MMG model: v, (g, A)= = C IGE (9.38)
D;D;
Ay,

Scalar MMG model: KSMMG (g d A) = — CSMME (9.39)

;

A similar procedure can be applied to other structural models, such as the scale-
similarity model [14]. We may also view the MMG model as a multiplicative mixed
model. Using the the Smagorinsky model and the isotropic part modelling of Yoshizawa
[320],

TYoh (U, A) = 20Y A" (8], (9.40)
the MMG model 7M%(U, A) = —20MMG(g A)S;; can be reformulated as

S (U, R)

MMG N
VMG ([T A) = G-t
WA s o)

(9.41)
emphasising that the MMG model combines the magnitude of the gradient model
and the structure of the Smagorinsky model. This leads by identification CMMG =
(C®mag-)2 /(2CYosh-) Note that the Vreman, AMD and scalar AMD models also directly
involve the gradient model [169].

9.2.4 Numerical study configuration

9.2.4.1 Channel flow configuration

We consider a fully developed three-dimensional anisothermal channel flow, as rep-
resented in figure 9.1. This geometry is one of the simpler that reproduces the distinc-
tive features of low Mach number strongly anisothermal turbulent flows. The channel is
periodic in the streamwise (x) and spanwise (z) directions. The wall-normal direction
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is denoted (y). The domain size is 4wh X 2h X 2wh, with b = 15 mm. The temperature
at the channel walls is imposed at T; = 293 K at the cold wall (y = 0) and T, = 586
K at the hot wall (y = 2h). This creates a temperature gradient in the wall-normal
direction. The mean friction Reynolds number is Re, = 180, where Re, is defined as
the average of the friction Reynolds numbers Re,, calculated at the hot and cold wall,

U.h
Rer, = — (9.42)

Vw

with U, = 1,(8,U,)%° the friction velocity and v,, the wall kinematic viscosity.

9.2.4.2 Numerical settings

The mesh contains 384 x 266 x 384 grid points and is regular in the homogeneous
directions. It follows a hyperbolic tangent law in the wall-normal coordinate direction.
The wall-normal grid coordinates are symmetrical with respect to the plane y = h. In
the first half of the channel, they are given by

yp = h (1 + %tanh [(Az__ll - 1) tanh—l(a)D : (9.43)

with a = 0.97 the mesh dilatation parameter and NV, the number of grid points in the
wall-normal direction. The cell sizes in wall units are A} = 8.5, AF = 0.13 at the wall
and 4.2 at the centre of the channel and A = 4.2. A finite volume method is used
with a third-order Runge-Kutta time scheme and a fourth-order centred momentum
convection scheme. This is performed using the TrioCFD software [38].

9.2.4.3 Filtering process

The subgrid terms and the models are computed from the filtering of the instan-
taneous DNS data at the resolution of a large-eddy simulation mesh. The filter corre-
sponds to a mesh with 48 x 50 x 48 grid points (A} = 68; Ay = 0.5 — 25; A} = 34)
constructed as the DNS mesh. Due to the inhomogeneity of the mesh, the filter width
is variable in the wall-normal direction.

A top-hat filter is used. In one dimension, it is given in the physical space by

B 1 $+%Z(I)
50 = 507 )iy, VO (9.44)

Multidimensional filtering is carried out by sequentially applying the one-dimensional
filter in the three spatial directions. In order to carry out the filtering with an arbitrary
filter length, the DNS data are first interpolated using a cubic spline. The top-hat filter
is then computed from the interpolated value without mesh restrictions.

The discretisation of the differential operator of the models is carried out on the
DNS grid, thus using data not available in an a posteriori large-eddy simulation [180].
This assesses the relevance of the models without regard to numerical errors. The
data from 100 uncorrelated timesteps were averaged in order to obtain a satisfactory
convergence of the results.
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9.2.5 Asymptotic near-wall behaviour of the models

The WALE, Sigma, VSS and Kobayashi models have been designed to have an eddy-
viscosity with a proper asymptotic near-wall behaviour for the subgrid term associated
with momentum convection. While the components of the subgrid terms have different
wall orders, the preferable asymptotic near-wall behaviour of the eddy-viscosity is cubic
with respect to the distance to the wall, that is v2°(g, A)| = O(y®). A reason is
that it is the order that the eddy-viscosity should have for the near-wall behaviour of
the subgrid kinetic energy dissipation to be consistent with the exact subgrid kinetic
energy dissipation. The asymptotic near-wall behaviour of the models given in the
literature {213, 214, 294, 273| considers the behaviour of the differential operator the
models are based on, assuming that the filter length does not tend to zero at the wall,
A {w = O(y°). The near-wall order of the models can be obtained from the Taylor series
expansion of the velocity and the scalar (density or inverse of density) [45, 253, 53, 214]:

Usl, = Oy), (9.45)
Uyl, = 0(92)7 (9.46)
U.l, = O(y"), (9.47)

¢l = Oy"). (9.48)

The quadratic behaviour of the wall-normal velocity follows from the mass conservation
equation, provided that the density is constant at the walls. This assumption is valid
in our case if the time variations of thermodynamical pressure are neglected, since the
wall temperatures are imposed. The filter is considered to not alter the asymptotic
near-wall behaviour of the variables. This assumption is valid for a top-hat filter as
defined in equation (9.44) with varying filter width. The cubic asymptotic near-wall
behaviour of the subgrid term can be recovered, for the “xy” component, from the
linear near-wall order of the streamwise velocity and the quadratic near-wall order of
the wall-normal velocity [253, 273].

We find that this procedure is not satisfactory for the density-velocity correlation
subgrid term. Indeed, it is not able to take into account the fact that Fjy, = pTJ —
pU; cannot have a near-wall order below 2 because the filter used, given in equation
(9.44), preserves constant and linear functions. To determine the asymptotic near-wall
behaviour of the subgrid terms, we carry out a Taylor series expansion of the filter,
leading to the gradient model [169]. Next, the near-wall order of the gradient model is
expressed considering a filter with a non-zero order at the wall. For a continuous filter
whose size in the wall-normal direction (y) tends to zero at the wall, it is natural to
consider

ALl =0, (9.49)

Ayl, =0, (9.50)

AL, =00 (9.51)
It follows

Al =0y'"?). (9.52)

Note also that the near-wall order of the streamwise and spanwise derivatives of the
scalar is at least O(y') under the hypothesis of constant density at the walls. With
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Subgrid-scale model With Zy’w =0(y") With Zy}w =0O(yh)
Smagorinsky model [276] Oy O(y?)
WALE model [213] O(y?) O(y'1/3)
Vreman model [304] o(yh) O(y3/?)
Sigma model [214] O(y?) O(y'/?)
AMD model [250] O(yh) O(y?)
Scalar AMD model [3] OyY) O(y?)
VSS model [252] O(y?) O(y'1/3)
Kobayashi model [147] O(y?) O(y'1/3)
Anisotropic Smagorinsky model OyY) O(y?)
MMG model OyY) O(y?)
Scalar MMG model OyY) O(y?)

Table 9.1 — Asymptotic near-wall behaviour of the models, for a constant and linear near-wall
behaviour of the filter width. The expected order is O(y?) for the subgrid term associated
with momentum convection and the density-velocity correlation subgrid term.

these assumptions, the expected asymptotic near-wall behaviour of the eddy-diffusivity
for models of the density-velocity correlation subgrid term is also cubic with respect
to the distance to the wall, x™°(g,d, K)’w = O(y?). This ensures that the order of
the subgrid squared scalar dissipation corresponds to that of the exact subgrid term.
For the subgrid term associated with momentum convection, the results are consistent
with the literature since it leads to the same near-wall order for each component as the
Taylor series expansion of the velocity tensor product.

The asymptotic near-wall behaviour of the investigated subgrid-scale models is given
in table 9.1 for a filter width of order O(3°) at the wall and a filter which obeys equations
(9.49-9.51). With KyL; = O(y°), the WALE, Sigma, VSS and Kobayashi models have
the proper asymptotic near-wall behaviour. With Z?JLJ = O(y'), the AMD and scalar
AMD models have the proper asymptotic near-wall behaviour.

9.2.6 Results and discussion

The performance of the subgrid-scale models is assessed from the comparison of
the models and the subgrid terms computed from the DNS data. It is customary [see
e.g. 64, 309, 30, 189, 239, 1, 182, 113, 141] to compare the model to the exact subgrid
terms using a linear regression analysis. The correlation coefficient is an index scaled
to between —1 and 1 which measures the linear correlation between two variables, that
is the closeness of the relationship between the two variables with a linear relationship.
A value of —1 indicates a perfect negative linear relationship, 0 no linear relationship
and 1 a perfect positive linear relationship. Let us note b a model for the subgrid term
of exact value a. The correlation coefficient between a and b is defined by,

Corr(a, b) = {ab) —2(a> (b =, (9.53)
V@) — @) - 1))
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where the angle brackets ( - ) denote an ensemble averaging. The regression coefficient
gives the slope of the linear relationship,

fab) — (o) (1)
(@) — (a)’
The concordance correlation coefficient [178] is a correlation-like index scaled to be-

tween —1 and 1 which measure the agreement between two variables, that is the close-
ness of the relationship between the two variables with identity,

Regr(a,b) = (9.54)

Conc(a, b) = 5 {ab) = {a) §b> : (9.55)
(a?) = {a)” + (b%) — (b)" + ({a) — (b))?

The correlation coefficient between the model and the exact subgrid term may be in-
terpreted as the ability of the model to capture the correct flow structure and the
regression coefficient of the correct magnitude level. The concordance correlation co-
efficient combines the two types of information. The optimal value of the correlation
coefficient, the regression coefficient and the concordance correlation coefficient is 1.
However, only a concordance correlation coefficient of 1 implies that the model and the
exact subgrid term are identical.

Given the homogeneity of the flow in the streamwise and spanwise directions, the
analysis is carried out as a function of the wall-normal coordinate. The ensemble
averaging ( - ) is computed as an average over time and the two homogeneous directions
and the linear relationship assessed for each value of y. Notice that the addition for
any value of y of a constant scaling factor to the model does not modify the correlation
coefficient, multiply the regression coefficient by the constant and has a non-trivial
effect on the concordance correlation coefficient.

We first present some general results regarding the performance of the models.
Then, the subgrid-scale models are assessed for the subgrid term associated with mo-
mentum convection and the density-velocity correlation subgrid term.

9.2.6.1 General results

The subgrid-scale modelling in the Velocity and Favre formulations are compared
from the study of the subgrid terms and the models with the classical filter and with
the Favre filter. The results show no differences between the classical and Favre filter
with regard to the performance of the models. For instance, the correlation coefficient
between the Smagorinsky model and the exact momentum convection subgrid term
with the classical filter and with the Favre filter are very similar (figure 9.2). The a
priori study of the subgrid-scale models thus does not let us select between the Velocity
and Favre formulations of the filtered low Mach number equations. Thereafter, the
subgrid-scale models are assessed in the Velocity formulation, using the classical filter,
but the results also apply to the Favre formulation.

The temperature gradient generates an asymmetry between the hot and cold sides
with regard to the performance of the models. This is highlighted in figure 9.3 by
comparing in the case of the Smagorinsky model the results with an isothermal sim-
ulation performed with the same mesh, numerical settings, friction Reynolds number
and filtering. The correlation coefficient is larger at the hot side than in the isothermal
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Figure 9.2 — Correlation coefficient between the exact momentum convection subgrid
term and the Smagorinsky model for the term that appears in the streamwise veloc-
ity transport equation (9.6) in the Velocity formulation, Corr(ajFUij,ajTj;nag‘(U, A)),
and in the streamwise momentum conservation equation (9.10) in the Favre formulation,
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Figure 9.3 — Correlation coefficient between the divergence of the streamwise-related

part of the exact momentum convection subgrid term and the Smagorinsky model,
Corr(0;Fy,u, OjTjjr-nag'(U, A)), in the isothermal and anisothermal configurations.

configuration, and lower at the cold side. The asymmetry may be attributed to an
asymmetry of filtering resolution compared to the turbulence intensity. Indeed, due
to the variations of the fluid properties with temperature, the local friction Reynolds
number varies across the channel, from 105 at the hot wall to 261 at the cold wall,
leading to a lower turbulence intensity level at the hot side than in the isothermal
configuration, and higher at the cold side.

9.2.6.2 Subgrid term associated with momentum convection

The models for the subgrid term associated with momentum convection are assessed
as it appears in the streamwise velocity transport equation in figure 9.4, in the spanwise
velocity transport equation in figure 9.5, and in the wall-normal velocity transport
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equation in figure 9.6. The figure 9.7 addresses the subgrid kinetic energy dissipation
pFy,u,S:, an important part of the contribution of the subgrid term to the kinetic
energy exchanges. In each case, the profiles of the correlation coefficient, the regression
coefficient and the concordance correlation coefficient are given as a function of the
wall-normal coordinate y, scaled by the height of the channel, and in the classical wall

scaling
U
t = Re, L =¥, 9.56
y T h Vw ( )
As a basis of comparison, each model is scaled in order to match the correct level of
total subgrid kinetic energy dissipation in the volume. This is equivalent to setting the

constant of the models to

Cmod — fT fV/_)FUjUiSij dﬂ?d’dedt
fT fv ﬁTmOd(U, Z)SZ] dx dy dz dt7

ij

(9.57)

where V' denotes the entire domain and 7" the integration time.

All the investigated subgrid-scale models correlates rather poorly with the exact
subgrid term as it occurs in the velocity transport equation (figures 9.4(a), 9.5(a),
9.6(a)). This is consistent with previous findings which showed that the exact subgrid
term correlates poorly with the rate of deformation tensor [182, 64, 180], and reflects
the limits of the eddy-viscosity assumption. The models are however better-correlated
with the exact subgrid term for the subgrid kinetic energy dissipation (figure 9.7(a)),
with correlation coefficients higher than 0.7-0.8 throughout the channel for the best
models. Accordingly, the regression coefficient at the centre of the channel appears
too low for all models in the three components of the velocity transport equation
(figures 9.4(b), 9.5(b), 9.6(b)), but around an adequate level for the subgrid kinetic
energy dissipation (figure 9.7(b)). This discrepancy is related to the intrinsic nature
of the models and may not be easily corrected as increasing the magnitude level of
the models to a sufficient amplitude in the velocity transport equation would make the
models overdissipative in the kinetic energy transport equation.

The AMD model is significantly more well-correlated with the exact subgrid term
than the other investigated models (figures 9.4(a), 9.5(a), 9.6(a), 9.7(a)). The Vre-
man, Anisotropic Smagorinsky and MMG models also have a high level of correlation
throughout the channel. In the streamwise velocity transport equation (figure 9.4(a)),
the WALE model has a very low correlation coefficient (< 0.2) in the bulk of the chan-
nel but gives better results at the wall. In the kinetic energy transport equation (figure
9.7(a)), it is the opposite. To a lesser extent, the Sigma, VSS and Kobayashi models
obey to the same pattern.

Near the wall, the correlation of the Smagorinsky model deteriorates and its am-
plitude increases dramatically because the differential operator it is based on does not
vanish in near-wall regions, which conflicts with the near-wall behaviour of the ex-
act subgrid term. The Anisotropic Smagorinsky model is able to improve greatly the
near-wall behaviour of the Smagorinsky model, the filter lengths in the Anisotropic
Smagorinsky model acting akin to a damping function. The Vreman, Anisotropic
Smagorinsky and MMG models vanish at the wall but with a lower order than the
exact subgrid term (table 9.1). Their magnitude compared to the exact subgrid term
is increased near the wall. Nevertheless, their regression coefficient is subject to less
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variations across throughout the channel than the WALE, Sigma, VSS and Kobayashi
models (figures 9.4(b), 9.5(b), 9.6(b), 9.7(b)), up to the first point of the LES mesh
that the filter represents.

The profile of the subgrid kinetic energy dissipation is given in figure 9.8. Compared
to the exact subgrid term, the Smagorinsky, Vreman, Anisotropic Smagorinsky and
MMG models are overdissipative in the near-wall region and underdissipative at the
centre of the channel, while the WALE, Sigma, VSS and Kobayashi models dissipates
more at the centre of the channel and less near the wall. This corresponds to the
models theoretically predicted to lead to, respectively, a lower and a higher near-wall
order than the exact subgrid term with a filter such that Zy‘w = O(y') (table 9.1).

The maximum of subgrid kinetic energy dissipation is located at y™ = 12 at the
cold side and y™ = 10 at the hot side, in the range of the turbulence kinetic energy
production [91]. Its location is mispredicted towards the centre of the channel by
the WALE, Sigma, VSS and Kobayashi models and towards the wall by the Vreman,
Anisotropic Smagorinsky and MMG models. The AMD model predicts quite accurately
the location of the maximum of subgrid kinetic energy dissipation. It is underdissipative
at the cold side and slightly overdissipative at the hot side, meaning that the asymmetry
between the hot and cold side is not fully captured by the model.

Eddy-viscosity models are by construction purely dissipative. They represent rela-
tively well the exact subgrid term for the negative values of the subgrid kinetic energy
dissipation, which corresponds to a kinetic energy transfer from the resolved to subgrid
scales, but cannot represent positive values of the subgrid kinetic energy dissipation.
This readily appears in the probability density function of the subgrid kinetic energy
dissipation, given in figure 9.9. While this is a desirable characteristic for numerical
stability, this is inconsistent with the behaviour of the exact subgrid term which lo-
cally transfer the energy from the subgrid to resolved scales. The backscatter region
amounts to 21% of the points in the domain.

Overall, the models in better agreement with the exact subgrid term are the AMD
model, followed by the Vreman, Anisotropic Smagorinsky and MMG models (figures
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9.4(c), 9.5(c), 9.6(c), 9.7(c)). Note that in the a priori tests, the performance of the
AMD model is not significantly undermined by the clipping of negative viscosity or
diffusivity.

9.2.6.3 Density velocity correlation subgrid term

The models for the density-velocity correlation subgrid term are assessed as it ap-
pears in the mass conservation equation in figure 9.10 and the subgrid squared scalar
dissipation Fjy,d; is addressed in figure 9.11. As a basis of comparison, each model
is scaled in order to match the correct level of total subgrid squared scalar dissipation
in the volume. This is equivalent to a modification of the subgrid-scale Prandtl or
Schmidt number, or to setting the constant of the models to

Omod _ fT fV FpUjdj dmdydzdt
Jp Jy 74T, 5, A)d; d dy dz dt”

J

(9.58)

with Pr, = 1.

The correlation coefficient of the most models with the exact subgrid term as it
appears in the mass conservation equation (figure 9.10(a)) reaches a maximum in the
range 0.3-0.6, is lower at the centre of the channel and falls to or below zero near
the wall. The WALE model is here an exception as its correlation with the exact
subgrid term is very poor in the entire channel. At the centre of the channel, the AMD
and scalar AMD models have the largest correlation coefficient. This may indicate
their relevance in far-from-wall flows. Within the influence of the wall, the most well-
correlated models are the Smagorinsky model and the Anisotropic Smagorinsky model,
which is able to slightly improve the correlation of the Smagorinsky model. As the
correlation coefficient, the regression coefficient declines from the logarithmic layer to
the wall (figure 9.10(b)), meaning that the investigated subgrid-scale models fall too
rapidly to zero at the wall. The drop occurs nearer to the wall with the Anisotropic
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Smagorinsky model. The Anisotropic Smagorinsky, AMD and scalar AMD models are
overall in a better agreement with the exact subgrid term (figure 9.10(c)).

Similarly to eddy-viscosity models, larger correlation coefficients are found for the
subgrid squared scalar dissipation (figure 9.11(a)). The AMD and scalar AMD models
are clearly the models that represent the more accurately the exact subgrid squared
scalar dissipation (figure 9.11(c)), with in the entire channel a correlation coefficient
over 0.8 (figure 9.11(a)) and a regression coeflicient in the range 0.5-1 (figure 9.11(b)).
The scalar AMD model provides an improvement compared to the AMD model de-
veloped for the momentum convection subgrid term. An increase of the regression
coefficient of the Smagorinsky, Vreman, Anisotropic Smagorinsky and MMG models is
observed near the wall, while the regression coefficient of the WALE, Sigma, VSS and
Kobayashi models models stabilises to a low value (figure 9.11(b)). The profile of the
subgrid squared scalar dissipation (figure 9.12) shows that the Smagorinsky, Vreman,
Anisotropic Smagorinsky and MMG models are overdissipative in the near-wall region
and underdissipative at the centre of the channel compared to the exact subgrid term,
and conversely for the WALE, Sigma, VSS and Kobayashi models. These results are
identical to the results obtained for the subgrid kinetic energy dissipation. The profile
of the ratio of the subgrid kinetic energy dissipation and the subgrid squared scalar
dissipation (figure 9.13) shows that they have the same near-wall order. The results
are thus consistent with our theoretical analysis of the asymptotic near-wall behaviour
of the subgrid terms.

The eddy-diffusivity assumption is as appropriate as the eddy-viscosity assumption,
in the sense the same amount of backscatter is observed for the subgrid squared scalar
dissipation than for the subgrid kinetic energy dissipation, as can be seen in the proba-
bility density function of the subgrid squared scalar dissipation (figure 9.14). However,
it may be argued that the behaviour of the subgrid squared scalar dissipation is less
critical than the subgrid kinetic energy dissipation for the numerical stability of a nu-
merical simulation, suggesting that more emphasis should be placed on the relevance
of the model as it appears in the mass conservation equation.
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Overall, the models in better agreement with the exact subgrid term are the AMD
and scalar AMD models, followed by the Vreman, Anisotropic Smagorinsky and MMG
models (figures 9.10(c), 9.11(c)). They are the same models than for the subgrid term
associated with momentum convection.

9.2.7 Conclusion

The filtering of the low Mach number equations with the unweighted classical filter
or the density-weighted Favre filter leads to specific subgrid terms. The two most sig-
nificant subgrid terms are the subgrid terms associated with the momentum convection
and the density-velocity correlation. They are compared to subgrid-scale models using
the flow field from direct numerical simulations of a strongly anisothermal turbulent
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channel flow. Classical and Favre filter are found to have no influence on the perfor-
mance of the models. Eddy-viscosity and eddy-diffusivity models are shown to be in
better agreement with the subgrid kinetic energy dissipation and the subgrid squared
scalar dissipation respectively than with the contribution of the subgrid terms in the fil-
tered low Mach number equations. However, eddy-viscosity and eddy-diffusivity models
are not able to account for backscatter, present in a fifth of the points in the domain.
The AMD and scalar AMD models perform better than the other investigated models
with regard to the correlation coefficient, regression coefficient and concordance corre-
lation coefficient with the exact subgrid term. This may be attributed to the strong
link between the AMD and scalar AMD models and the gradient model. The AMD and
scalar AMD inherit from the gradient model a similarity with the exact subgrid term
but, unlike the gradient model, are purely dissipative and should not lead to numerical
stability issues.
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9.3 Tensorial models

9.3.1 Definition

To complement the analysis of eddy-viscosity models, we investigate a priori the
modelling of the subgrid term associated with momentum convection with tensorial
eddy-viscosity models. Tensorial models aim to take into account the anisotropy of the
flow by weighting of each component of a subgrid-scale model. Tensorial eddy-viscosity
models are tensorial models based on the eddy-viscosity assumption. They are moti-
vated by the fact that the relevance of the eddy-viscosity assumption is not the same for
each component of the subgrid term. In general, we may construct from any algebraic
model 75°4(U, A), and second-order tensors Hi(f) tensorial models 7,/ mod (7 A of
the form

M med(U Ay = HE U, A), (9.59)

)

where no implicit summations over ¢ and j are assumed. We define for this pur-
pose the tensors Hz-(jl) = [ # ], Hi(f) = [X;’;y}, Hi(;’) = [ﬂxi”]y], Hi(;.l) = [Xfy\/xfﬂ,
Hg’) =[x vy, Hl-(f) =li=xzVj=uz]et Hi(j) = [x§7 Vv xi/], where [-] are Iverson
brackets, evaluating to 1 if the proposition within bracket is satisfied and 0 otherwise,
— the logical negation (NOT), A the logical conjunction (AND), V the logical disjunction
(OR) and with the notation x¢’ = (i =aAj=0b)V (i =0bAj = a). More explicitly, we
have
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9.3.2 A priori tests

Using the same method as in provided in section 9.2, we assess a priori the rele-
vance of tensorial eddy-viscosity models based on the AMD model for the momentum
convection subgrid term as it appears in the streamwise velocity transport equation
in figure 9.15, in the spanwise velocity transport equation in figure 9.16, in the wall-
normal velocity transport equation in figure 9.17 and with regard to the subgrid kinetic
energy dissipation pFy,y,Si; in figure 9.18. As a basis of comparison, the same constant
as the AMD model is used to compute all tensorial AMD models.

All the investigated tensorial AMD models have a lower correlation coefficient,
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regression coefficient and concordance correlation coefficient with the exact subgrid
term than the scalar AMD model. In a priori tests, tensorial AMD models thus show
no benefit over the scalar AMD model. Nevertheless, the “xy” and “xz” components of
the AMD model are sufficient to provide a level of concordance with the exact subgrid
term similar to the AMD model in the streamwise velocity transport equation (figure
9.15(c)) and in the kinetic energy transport equation (figure 9.18(c)). This excludes
the tensorial models based on the H® and H® tensors. The significance of the other
components of the AMD model and their effect on the flow is crucial to the relevance of
tensorial AMD models in large-eddy simulation. Results with tensorial eddy-viscosity
models based on the Sigma and Anisotropic Smagorinsky models may be found in
appendix C and lead to similar conclusions.

9.4 Conclusion of chapter 9

In a fully developed three-dimensional strongly anisothermal channel flow, backscat-
ter occurs in approximately a fifth of the points in the domain. This value is similar for
the momentum convection subgrid term and the density-velocity correlation subgrid
term, the two most significant subgrid terms of the filtered low Mach number equations.
The modelling of these subgrid terms with eddy-viscosity or eddy-diffusivity models
assumes the alignment of the subgrid term and the rate of deformation tensor, imply-
ing an absence of backscatter. Nevertheless, the a priori tests of subgrid-scale models
suggest a larger correspondence between the subgrid term and the subgrid-scale model
with regard to subgrid dissipation than to the contribution of the subgrid term in the
filtered low Mach number equations. The comparison of the performance of various
subgrid-scale models for a given total subgrid dissipation over the volume seems to
indicate that better agreements are found with the AMD and scalar AMD models than
the other investigated models. This holds for both the classical and Favre filters and
for both the momentum convection and density-velocity correlation subgrid terms. In
order to analyse the results, the asymptotic near-wall behaviour of the subgrid-scale
models and of the exact subgrid term is investigated for a continuous filter whose size
in the wall-normal direction (y) tends to zero at the wall. While the study seems to be
consistent with the results, note that the filter used follows a hyperbolic tangent law
in the wall-normal coordinate direction which does not tend to zero at the wall.

Tensorial eddy-viscosity models do not seem to provide any improvement over scalar
eddy-viscosity models in a priori tests. The two new proposed eddy-viscosity and eddy-
diffusivity models, the Anisotropic Smagorinsky model and the MMG model, have a
high level of correlation with the exact subgrid term. In particular, the Anisotropic
Smagorinsky model improves the correlation of the Smagorinsky model and its near-
wall behaviour. The two models are overdissipative near to the wall as they have a
lower wall order than both exact subgrid terms. Overall, they provide promising results
nonetheless, outperformed only by the AMD, scalar AMD and Vreman models. The
next chapter investigates a posteriori the subgrid-scale modelling of strongly aniso-
thermal turbulent channel flows with the low Mach number equations, allowing the
verification of the a priori performance of the subgrid-scale models.



Chapter 10

A posteriori tests of subgrid-scale
models in an anisothermal turbulent
channel flow at low Mach number

10.1 Introduction of chapter 10

The accuracy of a large-eddy simulation is determined by the physical relevance of
the subgrid-scale models used with regard to the filtering operation and the numeri-
cal method. Within the low Mach number hypothesis, large-eddy simulations may be
carried out using the Velocity and Favre formulations. In both cases, the two most
significant subgrid terms are the momentum convection subgrid term and the density-
velocity correlation subgrid term. The effect of these subgrid terms and their modelling
is crucial for the prediction of the turbulent fields. In this chapter, we investigate a
posteriori the modelling of the momentum convection subgrid term and the density-
velocity correlation subgrid term in isothermal and anisothermal turbulent channel
flows. The anisothermal channel reproduces the distinctive features of low Mach num-
ber strongly anisothermal turbulent flows. Hence, we expect the results to be relevant
to the simulation of a high-temperature solar receiver.

We will focus on the effect of the models on the turbulence statistics. To assess the
performance of the large-eddy simulations, the results are compared to a direct numer-
ical simulation filtered at the resolution of the large-eddy simulations. This allows the
direct comparison of the results of the large-eddy simulations and of the direct numer-
ical simulations. The analysis is based on the LES formalism introduced by Leonard
[169]. In this paradigm, the large-eddy simulation aims to provide resolved fields whose
statistics correspond to the statistics of a filtered direct numerical simulation. Note
that the comparison with filtered direct numerical simulation is not systematically
carried out in the literature since other approaches are possible [236]. For practical
applications, the knowledge of the filtered variables may not be sufficient as nonfiltered
variables are more relevant. This implies that a reconstruction of the nonfiltered fields
from the results of the large-eddy simulation is required. As a first step, we assume
that since we use an invertible filter, an accurate prediction of the nonfiltered statistics
can be obtained from the large-eddy simulation, provided that the simulation provides
an accurate prediction of the filtered statistics.



202 10. A posteriori tests of subgrid-scale models

The filtered DNS fields are obtained from the direct numerical simulations of fully
developed channel flows at Re, = 180 and Re, = 395 presented in section 1.3. Using
these data, we investigate the large-eddy simulation of the isothermal channel at Re, =
180 and of the anisothermal channel at Re, = 180 and Re, = 395. We address
the effect of functional eddy-viscosity or eddy-diffusivity models, structural models,
tensorial eddy-viscosity models, mixed models, tensorial mixed models and dynamic
versions of these models. However, the analysis is restricted to zero-equation algebraic
models without wall function or wall model. Each model is studied using the numerical
method described in section 1.2. The robustness of the models to variations of the grid
resolution and of the Reynolds numbers is considered.

We give the resolved equations in section 10.2 and the subgrid-scale models inves-
tigated in section 10.3. The channel flow configuration and the numerical method are
given in section 10.4. The results are discussed in section 10.5.

10.2 Filtered low Mach number equations

As in chapter 9, we consider the large-eddy simulation of the low Mach number
equations in two formulations. The Velocity formulation expresses the filtered low
Mach number equations in terms of variables filtered with the unweighted classical
filter (). The Favre formulation expresses the filtered low Mach number equations
using Favre-filtered variables, that is based on the density-weighted Favre filter ("+)
defined for any field v as 1f/; = pp/p. The two formulations involve a different set of
subgrid terms. However, the two most significant subgrid terms are similar in the two
formulation [87, 88, 90]. In both cases, a subgrid term is related to the nonlinearity of
momentum convection and another related to the correlation of density and velocity.
Excluding all other subgrid term, the filtered low Mach number equations are given in
the Velocity formulation by:

e Mass conservation equation

o 0 -
o o, (PU; + Fyu,) =0, (10.1)

e Velocity transport equation

ou;, 0 - au; 19P +182ij(17,T)

——(U;U; + Fyp,) +U; : 10.2
(975 8;1:]< J + UJUZ) + 3@ /_)3382 ﬁ a.Tj ( )
e Energy conservation equation
oU 1 oQ;(T) 0P,
- -1 10.3
oz vFy =1 oz T ] (10.3)
e Ideal gas law
.
T=22 (10.4)
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and in the Favre formulation by:

e Mass conservation equation

o 0pU;
ot 391:]-

=0, (10.5)

e Momentum conservation equation

apU; 0 [ ~~ _ 0P  0X;(U,T)
- _ U.U; G ) — 7 10.6
ot o (PUU: + PGy or, o, (106)
e Energy conservation equation
o [/~ 1 0Q.(T) 0Py
—\U; +pGy.)p) = —— — J 10.7
8xj( itp UJ/p) vFy (r=1) Oz, * ot (107)
o Ideal gas law
~ P
T=2=, (10.8)
pr

with p the density, T the temperature, v the heat capacity ratio, r the ideal gas specific
constant, ¢ the time, P the mechanical pressure, P the thermodynamical pressure,
U; the i-th component of velocity and z; the Cartesian coordinate in i-th direction.
Einstein summation convention is used. The functions X;;(U,T) and Q;(7") are used
to compute the shear-stress tensor and conductive heat flux associated with a given
velocity and temperature. We assume a Newtonian fluid and Fourier’s law,

- ou, oU;\ 2, U,
So(U.T) = (1) (G + 52 ) = SH(TIGEds, (10.9)
oT
Q1) = -AT) 5 (10.10)

with (") the dynamic viscosity, A(T) the thermal conductivity and ¢;; the Kronecker
delta.

The momentum convection subgrid term is defined as Fu,u, U U, — U U; in the
Velocity formulation and Gy,u, = U;U; — U U, in the Favre formulatlon The density-
velocity correlation subgrid term is deﬁned as Fpy, = = pU; — pU; in the Velocity formu-
lation and Gy, = U;/p — U; ;/p in the Favre formulation. The two formulations are
related by the relation

Foy,

p

= —pGUJ/p (1011)

The fluid is air. We use Sutherland’s law [287] to compute the viscosity,

T>2 Hht5S (10.12)

u(T)Zuo(f) TTg

with g = 1.716 - 107® Pa s, S = 110.4 K and T, = 273.15 K. We assume a constant
Prandtl number Pr = 0.76 and heat capacity at constant pressure C,, = 1005 J kg~ K~
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The conductivity is deduced from the Prandlt number, the heat capacity at constant
pressure and the viscosity,

C,
NT) = 2 u(T). 10.13
(1) = Z2u(T) (10.13)
The ideal gas specific constant is r = 287 J kg=! K=!. These parameters are the same
as in the direct numerical simulations presented in section 1.3.

10.3 Subgrid-scale models

Subgrid-scale models express the subgrid terms as functions of variables resolved in
the large-eddy simulation. In order to express the models for the momentum convection
subgrid term and the density-velocity correlation subgrid term in the Velocity and Favre
formulations, it is useful to introduce the following formalism,

Fyu, = m°Y(U, A), (10.14)
Gy, = 75U, A), (10.15)

Fyy, = 74U, 5, A), (10.16)
Gu,yp = 77U, 1/p, A), (10.17)

where the functions 72°4(U, A) and m**4(U, ¢, A) are model-dependent but do not
depend on the formulation. We investigate zero-equation algebraic models without wall
function or wall model. This includes functional models, structural models, tensorial
models and tensorial mixed models. Dynamic versions of each type of modelling is also
considered.

10.3.1 Constant-parameter models

Using functional eddy-viscosity or eddy-diffusivity models, the subgrid terms are
modelled by analogy with molecular diffusion,

U, A) = — 20"%(g, A) Sy, (10.18)
mod d K
vle d, &)

mod AN —
7Tj <U7 ¢7 A) - PTt R

(10.19)
with S;; = % (gi; + gji) the rate of deformation tensor, g the velocity gradient, defined
by ¢;; = 0;U; and d the scalar gradient, defined by d; = 0;¢. The expression of
the eddy-viscosity depends on the model used. The subgrid-scale Prandtl or Schmidtl
number Pr;, assumed constant, relates the eddy-diffusivity to the eddy-viscosity. The
eddy-viscosity or eddy-diffusivity models investigated have been introduced in section
9. They are recalled here:

Smagorinsky model [276]: v (g A) = (Csmag'Zf |S], (10.20)
3
— S18d)2
WALE model [213]: vWALE(g A) = (CWALEA)Q ( & 5 -
<Smnsmn)2 + (Srdrmgrdrm)_

(10.21)
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Sigma model [214]: Slgma(g, A) = (C’SigmaZ)2 73 (1 = 0;2 (72 — 03),
i

(10.22)

AMD model [250]: yAMD (g R) = CAMD max(0, ~ G S“), (10.23)
gmngmn
—D;

Scalar AMD model [3]: VSAMD (g d A) = CSAMP max(;) i 4 ), (10.24)

Kobayashi model [147]: yioba-(g A) = CKoba A? |Fg| : (1-F,)|S|, (10.25)

where |S| = /25;;S;; is a norm of S, Sidj = %(gikgkj + 9ikGri) — %gkpgpkcsij the
traceless symmetric part of the squared velocity gradient tensor, o1 > 05 > o3 the
three singular values of g, G;; = Zigikgjk the gradient model for the subgrid term
associated with momentum convection, Ilg = 3 (tr* (G) — tr (G?)) its second invari-

ant, D; = Zigjkdk the gradient model for the density-velocity correlation subgrid
term, R;; = [;g;; the volumetric strain-stretching, with § = (Sa3,S13,512), and
Fy, = (2482 — Si;Si;) | (2mn2mn + SimnSmn) the coherent structure function, with
(2, = % (9i; — g;i) the spin tensor or rate of rotation tensor. The Smagorinsky, WALE,
Sigma, AMD, and Kobayashi models have been initially devised for the momentum con-
vection subgrid term and have been adapted to the density-velocity correlation subgrid
term. The scalar AMD model has been devised specifically for the density-velocity
correlation subgrid term.

Anisotropic eddy-viscosity or eddy-diffusivity models involve one length scale per
direction instead of a single length scale. Anisotropic versions of the Smagorinsky
WALE, Sigma and Kobayashi models can be devised. The AMD and Scalar AMD are
already anisotropic. We define the Anisotropic Smagorinsky model [86] as,

An Sma, Smag./ a a
’L] & (U A) 2Ve & (g >A>SU7

o Smag. ( 4a de Z)
An.Smag. U A) = — Ve (g ) )
RS (U6, K) o

(10.26)

de, (10.27)

with 7, = % (gfj + g?l) the scaled rate of deformation tensor, g® the scaled velocity
gradient, defined by gf; = (A;/A)0;U; and d® the scaled scalar gradient, defined by
dj = (A;/1)0;¢.

Using the structural gradient model [169], the subgrid terms are modelled according
to a Taylor series expansion of the filter,

Ti?rad'(U, A) = 1 CGrad Gi(U,A) = 1 CGrad Akglk:gjkn (10.28)
7 (U, ¢, A) = l—chmd-Dj(U, A) = %CGrad'Akgikdk, (10.29)

Using the structural scale-similarity model [14], the subgrid terms are modelled follow-
ing the scale-similarity assumption,

il (U7, &) = ¢S (T30, - 0,07, (10.30)
Sl (U g, A) = ¢Simil <U é— U, o), (10.31)
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where © is a test filter explicitly computed in the large-eddy simulation. The Taylor
series expansion of the filter = in (10.30) and (10.31) leads to

U, B) = HOGy(U,A) = B0 Rgag,  (1032)
7T_]Sirnil.<U’ ¢, K) — %CSlmﬂ'Dj(U, A) _ 1 CSlmll A gzkdk (1033)

This corresponds to the gradient model associated with the filter lengths AZ of the test
filter.

As presented in section 9.3, tensorial models can be constructed from any functional
or structural model in order to apply a different weighting to each component of the
subgrid-scale model. We focus on tensorial eddy-viscosity models, which use the eddy-
viscosity assumption only for some specific components of the subgrid term.

Functional and structural models may also be combined to form mixed models. To
be more general, we consider tensorial mixed models, which combine the two models
with a different weighting for each component. This may be used to combine structural
and functional models for each component or to model each component with either a
functional or a structural model. Tensorial mixed models are constructed from two
algebraic models 77°°(U, A) and 7;7°(U, A), and two constant second-order tensors
H® and HY,

(k) 0 —
et T (@A) = (1 — H)yrere(U, &) + HY7°(U, A). (10.34)
where no implicit summations over ¢ and j are assumed.

Unless stated otherwise, we implicitly use the model parameters C5™2 = (.10,
CWALE — 55, (CSema — 15 CAMD — (0.3 and CK°P® = (0.045 and a subgrid-scale
Prandtl or Schmidtl number Pr, = 0.9. We compute the filter length scale using
A = (A,A,A)Y3 [77]. The reader may refer to Trias et al. [295] for a review of
alternative definitions. Numerically, the divergence-related part of the deviatoric rate
of deformation tensor is neglected to compute eddy-viscosity models. In other words,
we make the hypothesis

(U, A) = 207 (S — LS) = —20m4S;;. (10.35)

which is exact in the incompressible isothermal case and an approximation in the
anisothermal case. We verified that this approximation does not affect significantly
the results of the large-eddy simulations.

10.3.2 Dynamic models

For any constant-parameter algebraic subgrid-scale model, dynamic models may be
constructed using the approach introduced by Germano et al. [112]. For a single model,
the dynamic procedures are presented in section 7.2.4 for the momentum convection
subgrid term. The generalisation to the density-velocity correlation subgrid term is
not presented here. In addition, dynamic mixed models can be constructed using
analogous procedures. For the momentum convection subgrid term, the dynamic mixed
model Tg-y moneto 7 A) may be expressed from two algebraic models (U, A) and

(U, ) as
Tldyn,one,two<ﬁ) Z) Coner one(l_j K) + tho two(U K) (1036)

)
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The determination of the parameters C°*® and C™° is carried out using a test filter
(7) and the assumptions

UiU; —U,;U; = Cor(U, A) + C™r7o(U, A), (10.37)
U;U; — U; U; = C°r°(U, A) + C™°77°(U, A), (10.38)

where E is best approximated as E = (A; + 31)1/ 2 for Gaussian and box filters [111,
307].

Filtering (10.37), and assuming

corere(U, A) = Cr* (U, A), (10.39)
Ccorto(U, A) = C™r° (U, A), (10.40)
it follows that - - o
L;(O) = C*m* (U, A) + C™°m{°(U, A), (10.41)
where L;;(U) is given by equation (7.18) and
my(U,A) = ;;ne(ﬁ ﬁ) — (U, A), (10.42)
mi(U, &) = 72°(T, A) — 7 (U, ). (10.43)

Dynamic procedures aim to minimise the residual

Eij — Zj o Cone one tho two. (1044)

Several methods have been suggested to compute the parameters C°" and C™°.
They are given as follows:

One-parameter dynamic mixed method

The parameter of one of the two models is arbitrarily set, for instance C°"°,
then the parameter of the other model is computed dynamically to minimise the
variance of the residual [322, 307],

0 (ExEw)

S =0, (10.45)

leading to

ij ij
(miemie)

The parameter of the first model C°™ may be set to a constant. Alternatively, it

may be computed with the classical dynamic method, that is without taking into

consideration the second model. This has been suggested in order to improve the

two-parameter dynamic procedure [8, 199].

<mt.WO (LU - Conempne)> |

e — (10.46)

Two-parameter dynamic mixed method

The parameters of the two models are computed dynamically to minimise the
variance of the residual [256, 257, 125, 259|,

0 (ExEr) _ 0 and 0 (EnEw)

o S =0, (10.47)
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leading to

<m0ne one Lklth()) <monemtwo> <mz?eLkl>

one one twopy two one two oney, two
(mgnemgne) (miwombve) — (meuemtie) (monemtue)”

™o = (10.48)

The parameter C°" may be computed from the permutation of the exponents
“one” and “two” in the above expression.

A generalisation of dynamic mixed models to an arbitrary number of parameters is
given by Sagaut et al. [255].

The dynamic procedure may be extended to the construction of a model using
tensorial parameters C7¢ and Cit]V-VO,

TRt (UL A) = Cprer(U, A) + Ciorio(U, A), (10.49)

vy Z] ) ZJ

where no implicit summations over 7 and j are assumed. The dynamic methods (10.46)
and (10.48) can be extended to tensorial parameters. The tensorial dynamic mixed
methods are given as follows:

Tensorial one-parameter dynamic mixed method

As in the (scalar) one-parameter dynamic mixed method, the parameters of one
of the two models are arbitrarily set, the parameters of the other model being
computed dynamically to minimise for all 7 and j the variance of the residual,

0 (ExnEw)

SCtwe | = 0 for all ¢ and j, (10.50)
ij

leading to
<m§WO ( — (C°neyy one)>

]
< mtwo mtwo >

e = : (10.51)

where no implicit summations over ¢ and j are assumed. The parameter of the
first model C°" either be set to a constant, computed using the classical tensorial
or zero-residual dynamic method.

Tensorial two-parameter dynamic mixed method

As in the (scalar) two-parameter dynamic mixed method, the parameters of the
two models are computed dynamically to minimise for all 7 and j the variance of
the residual,

EnE E.E
’ <aCk§)jneM>‘ =0 and . nggj‘.’Vokl> =0 foralliand j, (10.52)
leading to

<monemone < Lz] mtwo > <monemtwo > <moneLU >

one,,,one two,,, two one,,, two one ., two
(mggemgre) (miyemi©) — (mgremiye) (mgyemiy©)’

CH° = (10.53)
where no implicit summations over ¢ and j are assumed. The parameter C°"°
may be computed from the permutation of the exponents “one” and “two” in the
above expression.
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Besides, two tensorial dynamic mixed methods based on the zero-residual dynamic
method have been considered. Simulations with these dynamic methods were found to
be unstable. They are nonetheless given below for completeness:

Zero-residual one-parameter dynamic mixed method

The parameters of one of the two models are arbitrarily set, the parameters of
the other model being computed dynamically to zero for all 7 and j the statistical
average of the residual,

(Eij) =0 for all ¢ and j, (10.54)
leading to
o _ (= Cim)
ij = — (10.55)

)
<mtwo>
where no implicit summations over ¢ and j are assumed.

Zero-residual two-parameter dynamic mixed method

The parameters of the two models are computed dynamically to zero for all ¢ and
J the statistical average of the residual and the divergence of the variance of the
residual,

0 <EklEkl> 0 <Ek;lEkl>
aCe aCH"

=0 and (E;;)=0 foralliand j, (10.56)

leading to

<m0nemone <L <m0ne> <m0neLZ]> <m0ne> <mtwoLU> + < one <m;c;vo> <Lz]>
<monem0ne> <mtw0> <mone> <monemggvo> 4 <mtw0> <m0nem§;vo> _ <Z7],_Léojn;>7)<mgvom1i;;vo>7
where no implicit summations over ¢ and j are assumed. The parameter C°"°
may be computed from the permutation of the exponents “one” and “two” in the

above expression.

two __

For each dynamic procedure, the average (-) can be computed as a plane average,
that is over the homogeneous directions, or as a global average, that is over the volume
of the channel. The parameters of plane-average dynamic procedures is a function
of time and the wall-normal coordinate. The parameters of global-average dynamic
procedures is a function of time.

10.4 Numerical study configuration

10.4.1 Channel flow configuration

We investigate the large-eddy simulation of a fully developed three-dimensional
turbulent channel flow with and without a temperature gradient. The channel has the
same characteristics as the channel described in section 1.3, namely it is periodic in the



210 10. A posteriori tests of subgrid-scale models

streamwise (z) and spanwise (z) directions and enclosed by two plane walls in the wall-
normal direction (y). Without the temperature gradient, the flow is isothermal and
incompressible. The temperature of the two walls is T} = 293 K. With the temperature
gradient, the flow is strongly anisothermal and at low Mach number. The temperature
of the cold wall (y = 0) is 77 = 293 K and the temperature of the hot wall (y = 2h)
is T, = 586 K. Large-eddy simulations of the channel are carried out at the mean
friction Reynolds number Re, = 180 and Re, = 395, where Re, is the average of the
friction Reynolds number at the cold and hot sides. At Re, = 180, the domain size is
4dh x 2h X 2h, with h = 15 mm. At Re, = 395, the domain size is 4wh x 2h x 4/37mh.

10.4.2 Numerical settings

The channel flow presented in section 10.4.1 is simulated using three meshes at
Re, = 180, referred to as “48B”, “36C” and “24C”, and one mesh at Re, = 395, referred
to as “96B”. The meshes are rectilinear. The grid spacing is uniform in the homogeneous
directions (x and z) and follows a hyperbolic tangent law in the wall-normal coordinate

direction (y),
1 k—1 .
yr =L, (1 + Etanh {<N T 1) tanh 1(a)}) ) (10.58)

Y

with a the mesh dilatation parameter and N, the number of grid points in the wall-
normal direction. The number of grid points and the cell sizes of the meshes of the
large-eddy simulations are given in table 10.1.

The analysis of the results of the large-eddy simulations is made with the direct nu-
merical simulations of the same channel described in section 1.3. The direct numerical
simulations use the same numerical method as the large-eddy simulations and have the
same domain size.

As in the direct numerical simulations (section 1.3), a streamwise volume force f
is added to balance the viscous dissipation in the large-eddy simulations. The same
targeted mass flow rate is used in the large-eddy simulations and in the direct numeri-
cal simulations. The resulting wall shear stress may however be different. Accordingly,
the mass enclosed in the domain is the same in all simulations but the mean ther-
modynamical pressure may be different. This is discussed in more detail in section
10.5.1.

10.4.3 Filtering process

In order to allow the direct comparison of the results of the large-eddy simulations
and of the direct numerical simulations, we filter the instantaneous DNS data at the
resolution of the LES meshes. We use a top-hat filter to perform this filtering. The
top-hat filter is given in one dimension by

A(w)

_ 1 T+
7o) = 575 / 1 YO (10.59)

N =

and in three dimensions by the sequential application of the one-dimensional filter in
the three spatial directions. To carry out the box filter, we first interpolate the DNS



10.5. Results and discussion 211

Re; Name Number of grid points Dimension of the domain  Cell sizes in wall units

N x Ny x N, LyxLyxL, AT AF(0)-AF(h); AF
180 48B 48 x 50 x 48 4dmh X 2h x 2mh 68 ; 0.50 -25 ; 34
180  36C 36 x 40 x 36 4dmh X 2h x 2mh 91; 20-22 ; 45
180  24C 24 x 28 x 24 4dmth X 2h x 2mwh 136 ;  2.0-35 ; 68
395 968 96 x 100 x 64 dh x 2h x (4/3)mh 73; 0.50—-27 ; 36

Table 10.1 — Computational domain and grid spacing of the three meshes used at Re, = 180
and of the mesh used at Re, = 395. The cell sizes in wall units are computed using the
friction velocity of the direct numerical simulations at the cold side. They are smaller in the
isothermal channel and in the anisothermal channel at the hot side.

data using a cubic spline then compute the filter from the interpolated data, as in [86].
The cubic spline interpolation allows the computation of the filter with an arbitrary
filter length and without mesh restrictions. The spline interpolation adds an additional
filtering to the box filter. However, this additional filter is small compared to the box
filter with the DNS meshes used and can be neglected.

Filtering is also required to compute the test filter involved in the scale-similarity
model and dynamic models. These filters are computed using other methods because
the spline interpolation is too computationally expensive to be used in a large-eddy
simulation. The test filter of dynamic methods, referred to as “filter A” is computed as
an average over three cells in the three directions. In one dimension, it is given by

U(z;) = Y(@ig1) A(@ig1) + P () A;) + P(@i21) A(Ti-1)
' Awig) + A(x) + A(wiga) ’

(10.60)

where A(z;) is the local cell size around the point z;. This approximates a top-hat
filter whose width is thrice as large as the LES mesh. The test filter of the scale-
similarity model has been computed using the filter A and another filter. The second
filter, referred to as “filter T”, uses the Taylor series expansion of the box filter, given
in one dimension by )

_ A2 9%y

The second derivative is computed using a second-order centred finite difference ap-
proximation,

Sy i I () Alioyye) — ) [Aiory2) + Alwiay2)] + U@ Al )
(i) = (@) + 24 A(wi—172) A(@i) A(Tis1/2) 7
(10.62)

using the local cell size as the filter width.

10.5 Results and discussion

The large-eddy simulations of the isothermal and anisothermal channel address the
modelling of the two most significant subgrid terms arising from the filtering of the low



212 10. A posteriori tests of subgrid-scale models

Mach number equations. The isothermal channel will be used to study the relevance
of subgrid-scale models for the momentum convection subgrid term. The anisothermal
channel will be used to study the relevance of subgrid-scale models for the density-
velocity correlation subgrid term, of combinations of subgrid-scale models for the two
subgrid terms and of the use of the Velocity and Favre formulations. Before proceeding
to the comparison of the subgrid-scale models, we briefly discuss the simulation of the
channel without subgrid-scale model.

To analyse the results, we define the three following scalings:

e The scaling (7), or classical scaling, based on the friction velocity U,, the wall
kinematic viscosity v, and temperature T,, and the friction temperature 7,
L yU; U T-1T,

=27 yUt==—_— Tt=
Yy Vw’ UT’ TT )

e The scaling (°), based on the channel half-height, the average kinematic viscosity
%(1/1 + 1) and the temperature difference Ty — 77,

Uh T-1T,
o Y Uo* T° = .

(¢}

Y t+w) = D-T

e The scaling (*), based on the average friction velocity %(Uﬂl + U, ), the average
kinematic viscosity %(vl +112) and the average friction temperature %(Tﬂ +T;9),
1
oy, U= P eIt
E(UT,l + UT,Q) §(T‘r,1 + TT,2>

The friction Reynolds number and heat flux of the large-eddy simulations are given in
appendix D.

10.5.1 Simulation without subgrid-scale models

Simulations without subgrid-scale model are carried out with the meshes 24C, 36C
and 48B. The mass flow rate of the simulations is imposed using a control loop to adjust
the streamwise volume force f, as described in section 1.3. The targeted mass flow
rate is the same as in the direct numerical simulations. Accordingly, the simulations
have the same mass flow rate than the direct numerical simulations but predict a
different wall shear stress. With the mesh 48B, the error on the friction velocity
is 1% in the anisothermal channel at Re, = 180. Imposing a constant streamwise
volume force would maintain the wall shear stress at the same level as the direct
numerical simulations, but results in an error of 1% on the mass flow rate. The results
of simulations with constant mass flow rate and constant streamwise volume force are
compared in figure 10.1 in the anisothermal channel at Re, = 180. The scaling of
the profiles takes into account the differences of mass flow rate. Nevertheless, the two
approaches are not completely equivalent because the Reynolds number differences
between the two methods may induce low Reynolds number effects.

The results of the simulations without subgrid-scale model are compared to direct
numerical simulations filtered at the resolution of the simulation meshes. The filtering is
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Figure 10.1 — Comparison of simulations with no subgrid-scale model with constant mass flow
rate and constant streamwise volume force for the profiles of the mean streamwise velocity (Uy)
(a), the covariance of streamwise and wall-normal velocity (u;u;) (b), the mean temperature
(T) (c) and the standard deviation of temperature y/(772) (d) in the anisothermal channel at

Re,; = 180 with the mesh 48B.

carried out using the classical filter and the Favre filter. The two filters lead to identical
results for the mean streamwise velocity, the mean temperature, the covariance of
streamwise and wall-normal velocity and the standard deviation of velocity components
and of temperature. The distinction is only relevant for the mean wall-normal velocity,
which is different in the Velocity and Favre formulations. The mean filtered wall-normal
velocity requires a longer averaging time than the other turbulence statistics and is not
well-converged. We may only guess that the mean filtered wall-normal velocity has
a slightly lower amplitude than the mean nonfiltered wall-normal velocity with the
classical filter and a significantly lower amplitude with the Favre filter (figure 10.5).

The mean nonfiltered and filtered streamwise velocity are identical, whereas the
simulation with the mesh 24C at Re, = 180 underestimates significantly the friction
velocity, and thus the mean streamwise velocity near the wall. As the mass flow rate
is imposed, the mean streamwise velocity is without scaling satisfactory at the center
of the channel for all simulations in the incompressible case (figure 10.2). In the
anisothermal channel however (figures 10.3 and 10.4), the simulations do not capture
correctly the asymmetry between the profiles at the hot and cold sides, overestimating
the velocity at the cold side and underestimating the velocity at the hot side.

The heat flux at the wall is underestimated by all anisothermal simulations and by
the coarser simulations in particular. This error directly impacts the mean wall-normal
velocity. Indeed, without subgrid-scale models, the energy conservation equation leads
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Figure 10.2 — Comparison of simulations with no subgrid-scale model with the meshes 24C,
36C and 48B for the profiles of the mean streamwise velocity (U,) (a, b), the covariance of
streamwise and wall-normal velocity (uju;) (c), the standard deviation of streamwise velocity

(u?) (d), wall-normal velocity /(u;?) (e) and spanwise velocity /(u/?) (f) in the isothermal
channel at Re, = 180.

with the low Mach number hypothesis to a balance between the mean wall-normal
velocity and the mean local conductive heat flux,

7Py
v—1

(Uy) = = [{Qy) — Qul, (10.63)

where @)y is the conductive heat flux at y = 0 (cold wall). Since the heat flux at the
center of the channel is well predicted by all simulations, the error on the mean wall-
normal velocity is closely related to the error on the wall heat flux (figure 10.5). The
mean wall-normal velocity appears underestimated if it is compared to the classical-
filtered DNS data. In all simulations, the mean thermodynamical pressure is larger
than in the direct numerical simulation. The error is however not significant compared
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Figure 10.3 — Comparison of simulations with no subgrid-scale model with the meshes 24C,

36C and 48B for the profiles of the mean streamwise velocity (U,) (a, b), the covariance of

streamwise and wall-normal velocity (ujuy) (c), the standard deviation of streamwise velocity
(u2) (d), the mean temperature (T) (e, f) and the standard deviation of temperature
(T"?) (g, h) in the anisothermal channel at Re, = 180.
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Figure 10.4 — Comparison of simulations with no subgrid-scale model with the mesh 96B for
the profiles of the mean streamwise velocity (U,) (a, b), the covariance of streamwise and
wall-normal velocity (ujuy) (c), the standard deviation of streamwise velocity /(u/Z) (d), the
mean temperature (T') (e, f) and the standard deviation of temperature y/(77?) (g, h) in the
anisothermal channel at Re, = 395.
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Figure 10.5 — Comparison of simulations with no subgrid-scale model for the profiles of the
terms of the energy balance (10.63), namely the conductive heat flux (Uy(vFPy)/(y — 1)) (“Con-
vection”) and the conductive heat flux (—A(97'/0y)) (“Conduction”) with the meshes 24C, 36C
and 48B in the anisothermal channel at Re, = 180 and with the mesh 96B in the anisothermal
channel at Re, = 395.

to the error on the heat flux, and does not exceed 4% with the mesh 24C at Re, = 180.

The filtering of the DNS data decreases significantly the maximum value of the
covariance of streamwise and wall-normal velocity and the standard deviation of ve-
locity components. The decrease is larger for a larger filter width. In the isothermal
channel at Re, = 180, the decrease ranges from around 10% with the mesh 48B to
around 30% with the mesh 24C. However, the simulations without model lead with
the three meshes to a similar covariance of streamwise and wall-normal velocity and
standard deviation of spanwise velocity, while the standard deviation of streamwise
velocity increases with mesh derefinement (figure 10.2). The interpretation of these re-
sults should take into account the effect of the classical scaling, as the underestimation
of the wall shear stress in the coarser simulations offsets a slight decrease the covariance
of streamwise and wall-normal velocity and the standard deviation of spanwise velocity
without scaling.

In the anisothermal channel, the asymmetry between the profiles of the turbulence
statistics at the hot and cold sides is not captured correctly by the simulations. For
instance, the amplitude asymmetry between the profiles of the standard deviation
of streamwise velocity at the hot and cold sides is amplified compared to the direct
numerical simulation (figure 10.3). Conversely, the asymmetry is reduced using the
filtered DNS data. This reduction is due to the lower turbulence intensity level at the
hot side, leading, in wall units, to an asymmetry of filtering resolution. The mean
temperature is without scaling overestimated in the bulk of the channel. In other
words, the temperature difference to the wall is underestimated at the hot side and
overestimated at the cold side. With the classical scaling, it is overestimated at both
the hot and cold sides given the error on the wall heat flux. For the same reason, the
standard deviation of temperature decreases without scaling with mesh derefinement
but increases at the cold side with mesh derefinement with the classical scaling.

In the isothermal channel at Re, = 180, the error on the friction velocity is 9%
with the mesh 24C, 6% with the mesh 36C and 2% with the mesh 48B. The relative
accuracy of the wall shear stress with the mesh 48B is partly due to its non-monotonous
convergence of the prediction with mesh refinement. As identified by Meyers and
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Sagaut [196], the non-monotonous convergence allows the existence of a grid-resolution
line where the error on the wall shear stress is zero. The simulation of the channel with
a finer 72 x 68 x 72 mesh leads to an error of 4% for the wall shear stress in the isothermal
case. This is less accurate than with the mesh 48B, confirming that the mesh 48B is
close to Meyers’ no error line. Due to this non-monotonous convergence of the wall
shear stress and the turbulence statistics, it is important to verify the robustness of
the subgrid-scale models to a range of friction Reynolds numbers and grid resolutions.

In the following, we will study the simulation of the isothermal and anisothermal
channels with subgrid-scale models, that is its large-eddy simulation. We first study the
modelling of the subgrid term associated with momentum convection in the incompress-
ible isothermal case. We then verify the generality of the results in the anisothermal
case, extend the analysis to the modelling of the density-velocity correlation subgrid
term and compare the Velocity and Favre formulations.

10.5.2 Large-eddy simulation in the incompressible isothermal
case

To study the modelling of the momentum convection subgrid term, we carry out
large-eddy simulations of the isothermal channel at Re, = 180 with several functional
models, structural models, tensorial models and tensorial mixed models.

10.5.2.1 Functional modelling

In this section, we investigate the functional modelling of the momentum convection
subgrid term. The functional models investigated are the Smagorinsky, WALE, Sigma,
AMD, Kobayashi and Anisotropic Smagorinsky models, as well as dynamic versions of
these models. The results of large-eddy simulations with these models are compared
in figure 10.6 with the mesh 48B. As consistently found in the literature [see e.g. 304],
the Smagorinsky model does not perform well in shear flow and considerably deteri-
orates the profiles of the turbulence statistics. The Anisotropic Smagorinsky model
improves significantly the predictions compared to the Smagorinsky model, providing
similar results to the WALE, Sigma and AMD models. The WALE, Sigma, AMD,
Kobayashi and Anisotropic Smagorinsky models underestimate the wall shear stress,
thus do not lead to a good representation of the scaled mean streamwise velocity. The
additional dissipation provided by the model is able to decrease the maximum value
of the standard deviation of wall-normal and spanwise velocity, but the standard de-
viation of streamwise velocity is increased further away from the filtered DNS profile.
The no-model simulation yields a better prediction of the friction Reynolds number,
the mean streamwise velocity and the standard deviation of velocity components than
the large-eddy simulations with functional models. The points discussed above are also
valid for the meshes 24C and 36C. The larger filter widths amplify the reduction of the
standard deviation of wall-normal and spanwise velocity following approximately the
same behaviour as the filtered direct numerical simulation (figure 10.7). On the other
hand, the standard deviation of streamwise velocity is even with the 24C mesh not
reduced compared to the no-model simulation, further enhancing the discrepancy with
the filtered direct numerical simulation. The predictions of the large-eddy simulations
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Figure 10.6 — Comparison of large-eddy simulations with the Smagorinsky, WALE, Sigma,
AMD, Kobayashi and Anisotropic Smagorinsky models for the profiles of the mean streamwise
velocity (Uz) (a, b), the covariance of streamwise and wall-normal velocity (ulu!) (c), the
standard deviation of streamwise velocity \/(u/Z) (d), wall-normal velocity /(u;Z) (e) and
spanwise velocity 1/ (u?) (f) in the isothermal channel at Re, = 180 with the mesh 48B.

depend on the parameter of the model. Using the parameters given in section 10.3, a
lower subgrid-scale viscosity is obtained with the Kobayashi model (figure 10.9). This
leads to more accurate results with the meshes and numerical method of this study.

Dynamic models provide a less arbitrary comparison of functional models in the
sense that it is not complicated by the choice of the model parameter. We study
plane-average, global-average, tensorial plane-average and tensorial global-average dy-
namic methods. The main purpose of the plane-average dynamic method is the local
adaptation of the model parameter, which may compensate an unsatisfactory asymp-
totic near-wall behaviour of the model [273]. This is particularly well-suited to the
Smagorinsky model. The plane-average dynamic Smagorinsky model (figure 10.8) gives
similar results to the non-dynamic WALE and Sigma models. With the plane-average
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Figure 10.7 — Comparison of large-eddy simulations with the Smagorinsky, WALE, Sigma,
AMD, Kobayashi and Anisotropic Smagorinsky models with the meshes 24C (left) and 36C
(right) for the profiles of the standard deviation of streamwise velocity /(u/2) (a, b), wall-
normal velocity /(u2) (c, d) and spanwise velocity /(u/?) (e, f) in the isothermal channel
at Re, = 180.

dynamic procedure, the Anisotropic Smagorinsky model deteriorates the predictions
of the Smagorinsky model. Large-eddy simulations with the plane-average dynamic
WALE, Sigma, AMD and Kobayashi models are not stable. This is consistent with the
observation by Baya Toda et al. [18] that the plane-average dynamic method might
degrade subgrid-scale models with a proper asymptotic near-wall behaviour and lead
to numerical instabilities.

The global-average dynamic method multiplies the subgrid-scale models by a time-
dependent function without modifying the local behaviour of the model. The aver-
age and standard deviation of the dynamic parameters are given in table 10.2. The
global-average dynamic procedure increases the Kobayashi and Anisotropic Smagorin-
sky models but reduces the WALE and AMD models, except with the mesh 24C. The
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namic Anisotropic Smagorinsky model for the profiles of the mean streamwise velocity (Us)

(a, b), the covariance of streamwise and wall-normal velocity (u,u!) (c), the standard devia-

tion of streamwise velocity /(u/?) (d), wall-normal velocity /(u;?) (e) and spanwise velocity
(u?) (f) in the isothermal channel at Re, = 180 with the mesh 48B.

z

Smagorinsky model is made negligible to prevent its detrimental near-wall influence
(figure 10.9). The global-average dynamic WALE, AMD and Kobayashi models lead
to a good prediction of the standard deviation of wall-normal and spanwise velocity,
but the standard deviation of streamwise velocity is not improved compared to the
no-model simulation (figure 10.10). The Sigma and Anisotropic Smagorinsky models
do not provide good results with the global-average dynamic procedure.

The tensorial global-average dynamic method alters the relative contribution of
each component of the subgrid-scale models. Excluding the Anisotropic Smagorinky
model, the tensorial global-average dynamic procedure decreases heavily the relative

YARIN14

amplitude of the “yy”, “yz” and “zz” components, moderately decreases the “xz” com-
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